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Since cell signaling is a major area of biomedical/
biological research and continues to advance at a very 
rapid pace, scientists at all levels, including researchers, 
teachers, and advanced students, need to stay current with 
the latest findings, yet maintain a solid foundation and 
knowledge of the important developments that underpin 
the field. Carefully selected articles from the 2nd edition of 
the Handbook of Cell Signaling offer the reader numerous, 
up-to-date views of intracellular signal processing, includ-
ing membrane receptors, signal transduction mechanisms, 
the modulation of gene expression/translation, and cellular/
organotypic signal responses in both normal and disease 
states. In addition to material focusing on recent advances, 
hallmark papers from historical to cutting-edge publications 
are cited. These references, included in each article, allow 
the reader a quick navigation route to the major papers in 
virtually all areas of cell signaling to further enhance his/
her expertise.

The Cell Signaling Collection consists of four independ-
ent volumes that focus on Functioning of Transmembrane 
Receptors in Cell Signaling, Transduction Mechanisms 
in Cellular Signaling, Regulation of Organelle and Cell 
Compartment Signaling, and Intercellular Signaling in 
Development and Disease. They can be used alone, in 
various combinations or as a set. In each case, an over-
view article, adapted from our introductory chapter for 
the Handbook, has been included. These articles, as they 
appear in each volume, are deliberately overlapping and 
provide both historical perspectives and brief summaries of 

the material in the volume in which they are found. These 
summary sections are not exhaustively referenced since the 
material to which they refer is.

The individual volumes should appeal to a wide array of 
researchers interested in the structural biology, biochemis-
try, molecular biology, pharmacology, and pathophysiology 
of cellular effectors. This is the ideal go-to books for indi-
viduals at every level looking for a quick reference on key 
aspects of cell signaling or a means for initiating a more in-
depth search. Written by authoritative experts in the field, 
these papers were chosen by the editors as the most impor-
tant articles for making the Cell Signaling Collection an 
easy-to-use reference and teaching tool. It should be noted 
that these volumes focus mainly on higher organisms, a 
compromise engendered by space limitations.

We wish to thank our Editorial Advisory Committee 
consisting of the editors of the Handbook of Cell Signaling, 
2nd edition, including Marilyn Farquhar, Tony Hunter, 
Michael Karin, Murray Korc, Suresh Subramani, Brad 
Thompson, and Jim Wells, for their advice and consultation 
on the composition of these volumes. Most importantly, we 
gratefully acknowledge all of the individual authors of the 
articles taken from the Handbook of Cell Signaling, who 
are the ‘experts’ upon which the credibility of this more 
focused book rests.

Ralph A. Bradshaw, San Francisco, California

Edward A. Dennis, La Jolla, California

January, 2011

Preface
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      Signaling in Development and Disease *    
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  Cell signaling, which is also often referred to as signal 
transduction or, in more specialized cases, transmembrane 
signaling, is the process by which cells communicate with 
their environment and respond temporally to external cues 
that they sense there. All cells have the capacity to achieve 
this to some degree, albeit with a wide variation in pur-
pose, mechanism, and response. At the same time, there 
is a remarkable degree of similarity over quite a range of 
species, particularly in the eukaryotic kingdom, and com-
parative physiology has been a useful tool in the develop-
ment of this field. The central importance of this general 
phenomenon (sensing of external stimuli by cells) has been 
appreciated for a long time, but it has truly become a domi-
nant part of cell and molecular biology research in the past 
three decades, in part because a description of the dynamic 
responses of cells to external stimuli is, in essence, a 
description of the life process itself. This approach lies at 
the core of the developing fields of proteomics and metab-
olomics, and its importance to human and animal health is 
already plainly evident. 

  ORIGINS OF CELL SIGNALING RESEARCH 

 Although cells from polycellular organisms derive sub-
stantial information from interactions with other cells 
and extracellular structural components, it was humoral 
components that first were appreciated to be intercellular 
messengers. This idea was certainly inherent in the ‘inter-
nal secretions’ initially described by Claude Bernard in 
1855 and thereafter, as it became understood that ductless 
glands, such as the spleen, thyroid, and adrenals, secreted 
material into the bloodstream. However, Bernard did not 
directly identify hormones as such. This was left to Bayliss 
and Starling and their description of secretin in 1902 [ 1 ]. 

 Recognizing that it was likely representative of a larger 
group of chemical messengers, the term  hormone  was 
introduced by Starling in a Croonian Lecture presented 
in 1905. The word, derived from the Greek word mean-
ing ‘to excite or arouse,’ was apparently proposed by a 
colleague, W. B. Hardy, and was adopted, even though it 
did not particularly connote the messenger role but rather 
emphasized the positive effects exerted on target organs via 
cell signaling (see Wright [ 2 ] for a general description of 
these events). The realization that these substances could 
also produce inhibitory effects, gave rise to a second des-
ignation, ‘chalones,’ introduced by Schaefer in 1913 (see 
Schaefer [ 3 ]), for the inhibitory elements of these glandular 
secretions. The word ‘autocoid’ was similarly coined for 
the group as a whole (hormones and chalones). Although 
the designation chalone has occasionally been applied to 
some growth factors with respect to certain of their activi-
ties (e.g., transforming growth factor  β ), autocoid has 
essentially disappeared. Thus, if the description of secretin 
and the introduction of the term hormone are taken to mark 
the beginnings of molecular endocrinology and the even-
tual development of cell signaling, then we have passed the 
hundredth anniversary of this field. 

 The origins of endocrinology, as the study of the glands 
that elaborate hormones and the effect of these entities on 
target cells, naturally gave rise to a definition of hormones 
as substances produced in one tissue type that traveled 
systemically to another tissue type to exert a character-
istic response. Of course, initially these responses were 
couched in organ and whole animal responses, although 
they increasingly were defined in terms of metabolic and 
other chemical changes at the cellular level. The early days 
of endocrinology were marked by many important discov-
eries, such as the discovery of insulin [ 4 ], to name one, 
that solidified the definition, and a well-established list of 
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hormones, composed primarily of three chemical classes 
(polypeptides, steroids, and amino acid derivatives), was 
eventually developed. Of course, it was appreciated even 
early on that the responses in the different targets were not 
the same, particularly with respect to time. For example, 
adrenalin was known to act very rapidly, while growth hor-
mone required a much longer time frame to exert its full 
range of effects. However, in the absence of any molecular 
details of mechanism, the emphasis remained on the dis-
tinct nature of the cells of origin versus those responding 
and on the systemic nature of transport, and this remained 
the case well into the 1970s. An important shift in endo-
crinological thinking had its seeds well before that, how-
ever, even though it took about 25 years for these ‘new’ 
ideas that greatly expanded endocrinology to be enunciated 
clearly. 
 Although the discovery of polypeptide growth factors as 
a new group of biological regulators is generally associ-
ated with nerve growth factor (NGF), it can certainly be 
argued that other members of this broad category were 
known before NGF. However, NGF was the source of the 
designation  growth factor  and has been, in many impor-
tant respects, a Rosetta stone for establishing principles 
that are now known to underpin much of signal transduc-
tion. Thus, its role as the progenitor of the field and the 
entity that keyed the expansion of endocrinology, and with 
it the field of cell signaling, is quite appropriate. The dis-
covery of NGF is well documented [ 5 ] and how this led 
directly to identification of epidermal growth factor (EGF) 
[ 6 ], another regulator that has been equally important in 
providing novel insights into cellular endocrinology, sig-
nal transduction and, more recently, molecular oncology. 
However, it was not till the sequences of NGF and EGF 
were determined [ 7 ,  8 ] that the molecular phase of growth 
factor research began in earnest. Of particular importance 
was the postulate that NGF and insulin were evolutionar-
ily related entities [ 9 ], which suggested a similar molecu-
lar action (which, indeed, turned out to be remarkably 
clairvoyant), and was the first indication that the identified 
growth factors, which at that time were quite limited in 
number, were like hormones. This hypothesis led quickly 
to the identification of receptors for NGF on target neu-
rons, using the tracer binding technology of the time (see 
Raffioni  et al.  [ 10 ] for a summary of these contributions), 
which further confirmed their hormonal status. Over the 
next several years, similar observations were recorded for 
a number of other growth factors, which in turn, led to the 
redefinition of endocrine mechanisms to include paracrine, 
autocrine, and juxtacrine interactions [ 11 ]. These studies 
were followed by first isolation and molecular characteriza-
tion using various biophysical methods and then cloning of 
their cDNAs, initially for the insulin and EGFR receptors 
[ 12–14 ] and then many others. Ultimately, the powerful 
techniques of molecular biology were applied to all aspects 

of cell signaling and are largely responsible for the detailed 
depictions we have today. They have allowed the broad 
understanding of the myriad of mechanisms and responses 
employed by cells to assess changes in their environment 
and to coordinate their functions to be compatible with the 
other parts of the organism of which they are a part.  

  RECEPTORS AND INTRACELLULAR 
SIGNALING 

 At the same time that the growth factor field was under-
going rapid development, major advances were also 
 occurring in studies on hormonal mechanisms. In particular, 
Sutherland and colleagues [ 15 ] were redefining hormones as 
messengers and their ability to produce second messengers. 
This was, of course, based primarily on the identification of 
cyclic AMP (cAMP) and its production by a number of clas-
sical hormones. However, it also became clear that not all hor-
mones produce this second messenger nor was it stimulated 
by any of the growth factors known at that time. This enigma 
remained unresolved for quite a long time until tyrosine kinases 
were identified [ 16 ,  17 ] and it was shown, first with the EGF 
receptor [ 18 ], that these modifications were responsible for ini-
tiating the signal transduction for many of those hormones and 
growth factors that did not stimulate the production of cAMP. 

 Aided by the tools of molecular biology, it was a fairly 
rapid transition to the cloning of most of the receptors for 
hormones and growth factors and the subsequent develop-
ment of the main classes of signaling mechanisms. These 
data allowed the six major classes of cell surface recep-
tors for hormones and growth factors to be defined, which 
included, in addition to the receptor tyrosine kinases 
(RTKs) described previosuly, the G-protein coupled recep-
tors (GPCRs) (including the receptors that produce cAMP) 
that constitute the largest class of cell surface receptors; the 
cytokine receptors, which recruit the soluble JAK tyrosine 
kinases and directly activate the STAT family of transcrip-
tion factors; serine/threonine kinase receptors of the TGF β  
superfamily; the tumor necrosis factor (TNF) receptors that 
activate nuclear factor kappa B (NF κ B) via TRAF mol-
ecules, among other pathways; and the guanylyl cyclase 
receptors. Structural biology has not maintained the same 
pace, and there are still both ligands and receptors for 
which we do not have three-dimensional information as yet. 

 In parallel with the development of our understanding 
of ligand/receptor organization at the plasma membrane, a 
variety of experimental approaches have also revealed the 
general mechanisms of transmembrane signal transduction 
in terms of the major intracellular events that are induced 
by these various receptor classes. There are three principal 
means by which intracellular signals are propagated: pro-
tein posttranslational modifications (PTMs), lipid messen-
gers, and ion fluxes. There are also additional moieties that 
play significant roles, such as cyclic nucleotides, but their 
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effects are generally manifested in downstream PTMs. 
There is considerable interplay between the three, particu-
larly in the more complex pathways. 

 By far the most significant of the PTMs is phosphor-
ylation of serine, threonine, and tyrosine residues. Indeed, 
there are over 500 protein kinases in the human genome 
with more than 100 phosphatases [ 19 ]. Many of these mod-
ifications activate various enzymes, which are designated 
effectors, but it has also become increasingly clear that 
many PTM additions were inducing new, specific (‘dock-
ing’) sites for protein–protein interactions. These intro-
duced the concept of both adaptors and multisite scaffolds 
that bound to the sites through specific motifs and as the 
process is repeated, successively built up multicomponent 
signaling structures [ 20 ]. There has now emerged a signifi-
cant number of binding motifs, recognizing, in addition to 
PTMs, phospholipids and proline-rich peptide segments 
to name a few, that are quite widely scattered through the 
large repertoire of signaling molecules and that are acti-
vated by different types of receptors in a variety of cell 
types. 

 Although the intracellular signaling pathways are char-
acterized by a plethora of modifications and interactions 
that alter existing proteomic and metabolomic landscapes, 
the major biological responses, such as mitosis, differen-
tiation, and apoptosis, require alterations in the phenotypic 
profile of the cell, and these require the modulation of tran-
scription and translation. Indeed, signaling can be thought 
of at two levels: responses (events) that affect (or require) 
preexisting structures (proteins) and those that depend on 
generating new proteins. Temporally, rapid responses are 
perforce of the first type, while longer-term responses gen-
erally are of the second. Thus, it may be viewed that the 
importance of the complex, largely cytoplasmic, machin-
ery, involving receptors, effectors, adaptors, and scaffolds, 
has two purposes: to generate immediate changes and then 
to ultimately reprogram the transcriptional activities for 
more permanent responses. 

 The process of gene expression in eukaryotes can be 
considered at several levels: the generation of the primary 
RNA transcript, its processing, and transport, translation 
of the mRNA into protein, and finally, its turnover. Since 
the amount of the potential activity associated with a given 
protein is fundamentally dependent on both its rate of syn-
thesis and its rate of degradation, the turnover of the protein 
itself is also critical to signaling processes and is certainly 
largely, if not completely, affected by signaling events, too. 
In eukaryotes, transcription and mRNA processing take 
place in the nucleus; translation and mRNA turnover are 
cytoplasmic events. All of these processes are controlled or 
affected by signal transduction pathways. 

 The effects on transcription occur at a number of levels 
and usually involve phosphorylation, either of transcrip-
tion factors or cofactors. In some cases, this occurs in the 

cytoplasm, and the effect of the modification is to induce 
transport into the nucleus; in other cases, the modifications 
affect binding of regulatory cofactors or to the DNA itself. 
One class of transcription factors, the nuclear receptor 
family, requires ligand binding before they are functional. 
Members of this family form the core of signal transduc-
tion pathways that regulate gene expression in response to 
steroid and thyroid hormones, fatty acids, bile acids, cho-
lesterol metabolites, and certain xenobiotic compounds. In 
fact, this can be viewed as an extension of lipid signaling, 
as most of the ligands for these receptors are hydrophobic 
in character. The ligands exert their affects through allos-
teric regulation, which has a dramatic effect on either the 
DNA binding or transcriptional activation properties of the 
transcription factor [ 21 ]. 

 Two biological phenomena of critical importance in 
all organisms are cell generation (cell division or mitosis/
meiosis) and cell death (apoptosis and necrosis). Both are 
extensively regulated and not surprisingly, much of this 
control is under the aegis of cell signaling events. The 
progression through the cell cycle and its various check-
points is a symphony of protein modifications coupled to 
programmed protein turnover. The key players are a com-
plement of kinases, known as cyclin-dependent kinases 
(Cdks), whose activation and deactivation are involved in 
every stage of the cycle. Interaction with cyclins, required 
for their activity, allows them to cycle in an on–off man-
ner, and the ubiquitin-dependent degradation of the cyclins 
controls the vectoral nature of the cycle. The cyclin–Cdk 
complexes can be further regulated by phosphorylation or 
complexation with other proteins, which also allows for 
pausing at checkpoints if the cell senses it should not con-
tinue with the division process. 

 There are also feed-forward mechanisms that allow 
early steps to regulate successive ones. Apoptosis is 
equally tightly regulated and its progression easily recog-
nized by distinct phenotypic responses (membrane bleb-
bing, cell shrinking, and chromosomal condensation) as 
the cell progresses to its end. It is predicated on a fam-
ily of cysteine proteases, called caspases (because they 
cleave their substrates to the C-terminal side of aspartic 
acid residues) that are activated in either an extrinsic or 
intrinsic pathway. The ten caspases generally exist as inac-
tive precursors (zymogens) and can be subclassified into 
executioner, initiator, and inflammatory types. These have 
different structural features and different roles in apopto-
sis. One apoptotic pathway is directly related to the TNF 
superfamily, transmembrane receptors that contain a death 
domain. When activated, these lead to the activation of 
caspases 8, which in turn, activates the executioner cas-
pases 3. Apoptosis is also triggered by cellular stress, and 
this leads to the involvement of the mitochondria (as noted 
above). In a complex pathway involving many proteins, 
an  apoptosome is formed which also leads to the eventual 
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activation of the executioner caspases. Clearly, the connec-
tions between these two fundamental processes are of great 
importance and are closely related to a number of human 
diseases, notably cancer and neural degeneration.  

  INTERCELLULAR SIGNALING 

 All living cells must be able to interact with their environ-
ment if they are to remain viable, whether to sense and 
move to sources of nourishment or to adjust and adapt to 
changes that may have occurred there. In multicellular 
organisms, where communication can become quite com-
plex, the effects of cell signaling extend well beyond the 
intracellular events triggered in the cytoplasm, and these 
must also be coordinated with those of sister cells to allow 
higher-level functions, such as exhibited by an organ 
(see  Figure 1.1   ). External information can be transmit-
ted to a recipient cell by soluble factors, by interactions 
with the extracellular matrix (ECM), or by cell–cell con-
tacts that can involve a variety of specific and  nonspecific 

 interactions, and the types of reactions initiated may be 
similar or different than those generated by the soluble 
ligands. Signals received from these sources are essential 
to direct developmental pathways and can play key roles 
in the support of some abnormal tissues such as cancers. 
The cues inherent in these signaling pathways can be tis-
sue-specific or they may be of a general nature. The same 
signal in two different cell types may lead to very different 
results. The general appreciation of signaling at this level is 
not as well-founded as the knowledge of the more detailed 
events that follow the activation of intracellular signaling 
pathways, but it will be of great importance for understand-
ing, for example, how stem cells differentiate and what 
controls their ultimate phenotype. Given the issues sur-
rounding the use of embryonic stem cells and the apparent 
gains in manufacturing induced pluripotent cells, these will 
be important targets for signaling research in the future. 

 There is developing a considerable interest in the role 
of cell signaling in development. Genetic studies have been 
enormously valuable in this regard and have pointed to the 

 FIGURE 1.1    There are over 200 cell types in the human body, and signaling in individual cells has extracellular manifestations that result from media-
tors effecting surrounding cells as well as controlling cell–cell interactions. The signaling cascade can extend outward to cause pleiotropic effects on 
tissues and organs and can, if gone awry, result in significant disease ramifications ranging from metabolic syndrome including insulin sensitivity and 
obesity to cardiovascular effects, to effects on the CNS, and to numerous forms of cancer throughout the body.    
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role of a number of factors (and their receptors) such as the 
Wnt family, notch, and hedgehog in development. Several 
systems have direct involvement of more specialized fac-
tors like VEGF and the FGFs for angiogenesis, bone mor-
phogenic proteins (BMP) and FGFs for skeletal growth, 
and a number of neurotrophic factors for neurogenesis, for 
example. Interestingly, most of these factors, which have 
defined functions in selected developmental systems, are 
found in the main growth factor families. Since factors 
like FGF and VEGF are known to activate similar intrac-
ellular pathways, there must be other means to distinguish 
their contributions. In bone growth, for example, FGFR1 
is replaced by FGFR3 during key points in bone develop-
ment, and this restricted expression becomes significant in 
the presence of certain mutations in the FGFR3 that lead to 
well-known human skeletal dysplasias [ 22 ]. 

 Following the discovery that the EGFR was related to 
the oncoprotein ErbB2 [ 23 ] and that the platelet-derived 
growth factor was related to v-Sis [ 24 ], another oncogene 
product, it confirmed what had already been widely spec-
ulated for some time previously, namely that growth fac-
tors (and by association, other signaling molecules) not 
only controlled growth processes like hypertrophy and 
hyperplasticity but also aberrations in the processes they 
controlled lead to growth disorders like cancer. The sub-
sequent efforts to define these relationships have occupied 
molecular oncologists for the succeeding 30 or so years. 
These investigations have provided considerable insight 
into what underlies cell transformations and have provided 
a number of drug targets. The tyrosine kinases have been 
a particularly rich source [ 25 ,  26 ] but are by no means the 
only ones. Signaling disorders are also not solely linked 
to cancer, and there are many other areas of translational 
research that have their basis in signaling systems. It may 
be expected that this area of applications will continue to 
expand as our understanding of cell signaling develops.  

  FOCUS AND SCOPE OF THIS VOLUME 

 The chapters of this volume have been selected from a 
larger collection [ 27 ] and have been organized to empha-
size the role of cell–cell interactions as well as organ and 
tissue effects in signaling activities and their disease impli-
cations. They have been contributed by recognized experts 
and they are authoritative to the extent that size limitations 
allow. It is our intention that this survey will be useful in 
teaching, particularly in introductory courses, and to more 
seasoned investigators new to this area. 

 It is not possible to develop any of the areas covered in 
this volume in great detail, and expansion of any topic is 
left to the reader. The references in each chapter provide 
an excellent starting point, and greater coverage can also 
be found in the parent work [ 27 ]. It is important to realize 
that this volume does not cover other aspects of cell sig-

naling such as transmembrane receptor structure, receptor 
organization and function, intracellular signaling mecha-
nisms, and transcriptional activation and responses in other 
organelles. These can be found in other volumes in this 
series [ 28–30 ].   
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 Cell   signaling pathways are not simply linear, but in fact 
form extensive interactive networks. Indeed it is the over-
lapping and interconnecting nature of these that provides 
the distinctive features distinguishing many of the response 
properties of specific tissues and organs. The complexity of 
these networks will require a great deal of research before 
their organization is understood in detail, but some gener-
alities are beginning to emerge  [1] . The advent of the tech-
niques of genomics, including microchip arrays of genes and 
proteomics, will stimulate much more rapid development of 
understanding of pathway interactions as we see how a given 
signal reverberates through the tissue and cellular systems. 
Indeed, a considerable amount is already known, and in many 
systems the overall patterns are beginning to be made clear. 
Completing this knowledge will undoubtedly be the goal of 
a great deal of research in the near future. Part V of this book 
describes how many major tissue and organ systems work as 
they consider the many signals that play upon them. 

 On   reading entries in this part, it may be necessary for 
the uninitiated peruser to refer to earlier entries in other 
parts of the book, which explain in detail how particular sig-
nal pathways function, as this part deals only with the iden-
tification of those pathways that are important in the control 
of organ and tissue function, and not the iteration of how 
each pathway works. However, one concept not covered pre-
viously needs to be introduced, i.e., the idea that chemical 
signals may be provided locally or regionally in tissues by a 
group of mechanisms that have become known as paracrine, 
autocrine, intracrine, and juxtacrine interactions. These con-
stitute means for regulating tissue-specific signal responses 
by providing the needed signals only on a local basis. 

 These   concepts were born from the field of endocrinol-
ogy. Traditionally, this discipline held that certain specific 
organs produce and secrete particular signaling molecules 
into the bloodstream, which delivered them elsewhere in the 

body to carry out their signaling activity. A classic example 
is the production of insulin by the beta cells of the pancreas, 
with the hormone transferred systemically to many other tis-
sues, where it activates its receptors thus affecting glucose 
metabolism, among other responses. Over the past 10 – 20 
years, it has become clear that, in addition to this classic 
endocrine notion, signaling molecules are also produced 
to function more locally. That is to say, although they may 
not enter the general circulation and consequently act only 
locally, they nevertheless work by binding receptors – either 
on the surface or within cells – and set off the same types of 
signal transduction pathways, as do traditional hormones. In 
fact, a general understanding has evolved that signal trans-
duction pathways that usually have been addressed separately 
because of their inclusion in a particular disc ipline – e.g., 
endocrinology as contrasted with immunology – behave in 
much the same ways. A great unanimity in general mech-
anisms is seen as signals are transmitted between cells, 
whether they be signals from one immune cell to another, 
or signals from a classic endocrine target organ to another 
tissue. In this sense, the same types of chemical and physi-
cal behaviors ultimately carry out cell signaling universally. 
The specific types of mechanisms mentioned above, in 
addi tion to endocrine, are defined according to the degree of 
localization of effect, but the signals generated carry out their 
functions by the same sorts of receptor-transduced pathways 
as do the ubiquitous signaling molecules. 

 In   addition to the classical endocrine mechanism, local-
ized signaling mechanisms can be conveniently sub-grouped 
into four types. Paracrine interactions induce signaling 
activities that occur from cell to cell within a given tissue or 
organ, rather than through the general circulation. This takes 
place as locally produced hormones or other small signal-
ing molecules exit their cell of origin, and then, by diffusion 
or local circulation, act only regionally on other cells of a 
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different type within that tissue. This has been found to be 
important in many organs, and is a field of investigation that 
continues to develop rapidly. The local concentrations of 
paracrine signals can be quite high compared to the circu-
lating levels, and thus can trigger effects by acting on low-
affinity receptors or by supplying sufficient local signals 
to bind to high-affinity receptors even when the circulat-
ing level of a molecule that produces a similar signal is too 
low to do so. Paracrine signaling molecules sometimes are 
very rapidly metabolized locally to further limit the physical 
extent of their action. Examples are the prostaglandins and 
nitric oxide. Other, longer-acting signaling molecules also 
are employed in a paracrine fashion. Limiting their access to 
the blood supply and/or the total amounts produced within 
a tissue, so that local receptors can bind them before the 
general circulation is reached, keeps them acting in a para-
crine fashion. Sometimes paracrine signaling molecules are 
moved by local physical means, so as to provide greater or 
lesser regional concentrations. An example is found in the 
development of the heart (see Chapter 309 of Handbook of 
Cell Signaling, Second Edition). Many growth  factors func-
tion by paracrine mechanisms. 

 The   term  autocrine  refers to entities that are released 
from a cell and bind to receptors on that same cell, thereby 
activating it. This sort of self-stimulation occurs in care-
fully timed phases during normal embryonic development 
and tissue differentiation. It is also used in inflammation 
and wound healing. Such localized signals help direct the 
concentration of appropriate cells at the wound or inflamed 
tissue. In addition to their importance in normal tissues, 
these localized signaling systems have been discovered to 
be quite important in understanding the autonomy achieved 
by cancer cells. Quite often, one of the contributing mech-
anisms by which a malignant cell population escapes the 
normal control mechanisms for regulated growth is by pro-
ducing autocrine, paracrine, and other localized types of 
signals that stimulate cell division or other activities that 
favor survival and expansion of the cancer cell population. 

 It   is interesting to note that historically the underly-
ing concepts inherent in these mechanisms were appreci-
ated, although not at the molecular level, as early as 1775. 
De Bordeu, and later Brown-Sequard in 1891  [2] , proposed 
that every cell, not just tissues and organs, actively secreted 
into the circulation substances that influenced other tissues. 
The focus on the role of endocrine glands (thyroid, pituitary, 
adrenal, pancreas, etc.) in providing these  “ internal secre-
tions ”  obscured the existence of the autocrine and paracrine 
messengers (as did the emphasis on the circulation) for some 
time, but the appreciation that all cells can and do actively 
secrete regulatory elements was an essential concept that 
was clearly recognized (although alas not considered to any 
great extent until relatively recently) over 200 years ago. 

 Both   normal and pathological conditions can use the 
same hormone for autocrine and paracrine interactions. 
Autocrine regulation of a phase of keratinocyte develop-
ment by NGF is well established  [3] , while the same fac-
tor generally acts as a paracrine regulator of sympathetic 
and selected sensory neurons  [4] . At the same time, many 
tumors progress by autocrine stimulation by any one of 
several mitogenic factors, such EGF and FGF. These same 
substances also participate in numerous normal tissue situ-
ations using paracrine mechanisms (see entries on these 
factors in earlier parts of this book). 

 Two   additional mechanisms have been proposed that 
further extend cell signaling beyond the action of circu-
lating messengers. These are juxtacrine signals, in which 
the signaling entity (receptor ligand) is not soluble but is 
membrane-bound on one cell, and is delivered by cell – cell 
physical approximation to the cell bearing the receptor 
(usually but not necessarily different in type from the target 
cell) and intracrine signals, in which both receptor and lig-
and are expressed intracellularly and signals are generated 
without external stimuli. The former mechanism is now 
well established and is exemplified by a number of sys-
tems, such as the notch receptor  [5]  and the tyrosine kinase 
receptor family, Eph  [6] . There is less compelling evidence 
for intracrine mechanisms, although there are a number of 
growth factors, such as FGF1 and 2 and interleukin 1, that 
are not exported in the usual manner via the endoplasmic 
reticulum, and that clearly exhibit both extracellular and 
intracellular concentrations of factor. Thus, the intracellular 
material could be appropriate for such signaling. 

 Throughout   the chapters of Part V, the reader will find 
multiple applications of these concepts as they are used in 
physiologically relevant systems.  
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    INTRODUCTION 

 Integrins   are a family of heterodimeric, transmembrane 
receptors that mediate attachment of cells to the surround-
ing extracellular matrix (ECM)  [1] . Different combinations 
of  α  and  β  subunits heterodimerize to form receptors with 
specificity for distinct extracellular ligands  [2] . There are 
24 identified receptors expressed in diverse tissues and cell 
types, allowing the selective interaction of different cell 
types with different ECM ligands  [3] . The cytoplasmic tail 
of the  β  subunit is both necessary and sufficient to medi-
ate the linkage of integrins to the actin cytoskeleton  [4] . 
Although subunit cytoplasmic tails bind to cytoskeletal 
proteins  [2] , the major functional role of the  α  subunit is 
to modulate cytoskeletal interactions by directly interact-
ing with the cytoplasmic tail region of the  β  subunit  [5] . 
Thus, integrins are ligand-dependent sensors of the ECM 
environment. Integrins represent a unique class of bidi-
rectional membrane receptors in that they are conduits for 
mechanical and chemical information providing  “ outside-
in signals ”  (for example, providing a signal in response to 
binding to a defined ECM proteins during cell migration) 
as well as providing  “ inside-out ”  signals (for example, 
altering ligand binding activity in response to a cytoplas-
mic signal)  [5] . As such, integrins are responsible for sens-
ing many aspects of the microenvironment, including the 
structure and composition of the ECM as well as biochemi-
cal signals generated following growth factor or cytokine 
stimulation. Integration of these complex signals contrib-
utes to the regulation of cellular migration, growth, and 
survival within an organism.  

    INTEGRINS NUCLEATE THE FORMATION 
OF DYNAMIC MULTI-PROTEIN COMPLEXES 

 A   central function of integrins is to mediate a structural 
linkage between the dynamic intracellular cytoskeleton and 
the ECM that conveys both mechanical and chemical sig-
nals. More than 150 proteins comprise the  “ integrin adhe-
some ”   [6] , although it is more likely that only about 50 of 
these are a part of the integrin complex. The  “ adhesome ”  
can be broken down into functional subnets comprised of 
structural proteins, kinases, and phosphatases that modu-
late phosphorylation and dephosphorylation; GTPases and 
their regulatory exchange factors (GEFs) and GTPase acti-
vating proteins (GAPs); lipid modifying enzymes; and reg-
ulators of proteolytic activity  [6] . The dynamic interaction 
amongst members of these subnets is subject to yet another 
set of interactions involving adapter proteins and scaffolds. 
Thus, upon engagement with specific ligands, integrins 
nucleate a complex array of interactions that together 
play a central role in regulating dynamic intracellular 
complexes. 

 The   association of integrin receptors with focal adhe-
sion and actin binding proteins including talin,  α -actinin, 
and vinculin serves to illustrate how integrins nucleate adhe-
sion complexes that are linked to actin filaments and other 
components in cytoplasm ( Figure 3.1   ). Talin, a major 
structural component of focal adhesions, binds directly to 
the tails of  β 1,  β 2, and  β 3 integrins  [4] . In addition, talin 
binds to actin, vinculin, focal adhesion kinase (FAK), and 
phospholipids. Cells deficient for the expression of talin 
exhibit significant increases in membrane blebbing, defects 
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in cell adhesion and spreading, and a failure to assemble 
focal adhesions and stress fibers  [7] . Alpha-actinin is an 
actin-binding/crosslinking protein that binds the cytoplas-
mic tails of  β 1,  β 2, and  β 3 integrins  [4] , as well as several 
additional focal adhesion proteins, including vinculin and 
zyxin. Localization of  α -actinin to adhesion complexes 
occurs by a direct interaction with  β -integrin cytoplasmic 
tails. Vinculin is a conformationally regulated protein that 
is recruited to adhesions upon its activation. Although vin-
culin does not bind integrins directly  [4] , once activated it 
binds several well characterized adhesion-associated pro-
teins, including talin and  α -actinin as well as actin and 
phospholipids. Thus, vinculin functions as a molecular 
bridge to regulate integrin dynamics and clustering and 
provides a link to the mechanotransduction machinery  [8] . 
Vinculin-deficient cells exhibit decreased mechanical stiff-
ness and increased cell motility        [4, 7] . 

 The   assembly and disassembly of integrin complexes 
is dynamic. The integrin adhesion complexes are observed 
to either turnover rapidly or stabilize through a mecha-
nism that involves the association of the complexes with 
the actin cytoskeleton. Fluorescent speckle microscopy of 
newly formed integrin complexes and actin filaments indi-
cates that the linkage of integrin adhesion complexes to 

actin is dynamic  [9] . Proteins such as paxillin, zyxin, and 
FAK do not exhibit movements correlated with actin, and 
thus appear not linked to actin, whereas the dynamics of  
α -actinin complexes indicate a strong association with 
actin filaments. Interestingly, the dynamics of talin and 
vinculin demonstrate a partial coupling to actin  [9] . The 
differential coupling of adhesion complex components with 
actin suggests the ordered recruitment and dissociation of 
integrin complexes with the actin cytoskeleton that is regu-
lated by a molecular  “ clutch. ”  Assembly and disassembly 
of adhesions is also regulated by the generation of tension 
on integrin adhesion complexes by the actomyosin contrac-
tility network. Signals generated from newly formed adhe-
sions (see below) act to stimulate localized actomyosin 
contractility, which is required to promote adhesion matu-
ration and stability  [10] . For example, highly motile cells 
(e.g., macrophages) tend to have small, highly dynamic 
adhesions that turnover rapidly, whereas the adhesions in 
slower-moving, more contractile cells (e.g., fibroblasts) 
stabilize and grow in response to increased tension before 
being turned over        [11, 12] . 

 Integrin  -mediated adhesion complexes contain pro-
teins that are directly involved in regulating the for-
mation and turnover of adhesion complexes and the 
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 FIGURE 3.1          Integrin signaling pathways involved in the regulation of cell migration.  
    Integrin signaling events are regulated in a spatial-temporal manner across the cell during cell migration. At the front of the cell, integrin clustering leads 
to the formation of dynamic adhesions, and the recruitment of scaffold and signaling proteins such as talin, vinculin,  α -actinin, FAK, and paxillin. FAK 
activation leads to the recruitment of Src, paxillin and Cas. Subsequent tyrosine phosphorylation of Cas provides a binding site for Crk leading to the 
recruitment and activation of Dock180, a GEF for Rac. Paxillin recruits GIT and PIX, both of which regulate Rac stimulating PAK activity (see text for 
details). At the rear of migrating cells, integrin-dependent regulation of actomyosin contractility leads to retraction of the tail of the cell. Integrins control 
actomyosin contractility by stimulating FAK, which regulates the activation/inactivation of RhoGTPases via different RhoGEFs and RhoGAPs, 
ultimately leading to modulation of ROCKs resulting in enhanced contraction (see text for details).    
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promotion of intracellular signals ( Figure 3.1 ). FAK is a 
focal- adhesion- associated, non-receptor protein tyrosine 
kinase. FAK binds  in vitro  to the cytoplasmic tails of  β 1 
and  β 3 integrins, although to date this interaction has not 
been demonstrated  in vivo   [13] . FAK is recruited to newly 
formed adhesions via the C-terminal focal adhesion target-
ing domain  [14] . This same region also directs the forma-
tion of a stable complex with the focal adhesion protein 
paxillin. FAK also associates with Src, talin, the cytoskel-
etal adaptor protein Cas, and GAPs for Rho (GRAF  [15] ) 
and ARF1 (ASAP1  [16] ). In addition to binding FAK, the 
multidomain protein paxillin serves as a scaffold to recruit 
and organize a number of additional signaling molecules 
at the sites of adhesion ( Figure 3.1 ). Paxillin binds Src, 
Crk, vinculin, actopaxin, and the serine/threonine kinase 
ILK, as well as the ARF GAPs GIT1 and GIT2          [17 – 19] . 
In addition, paxillin binds directly to the cytoplasmic tails 
of  α 4 integrins  [20] . Cells deficient for either FAK or pax-
illin exhibit defects in cell spreading and cell migration; 
in the case of paxillin-null cells, tyrosine phosphorylation 
of FAK and Cas is also decreased        [21, 22] . Cas is another 
adaptor protein that binds to both FAK and Src and serves 
to recruit additional signaling molecules to focal adhesions. 
Cas associates with the guanine nucleotide exchange factor 
C3G, protein phosphatases, and adaptor proteins Crk and 
Nck  [23] . Coupling between FAK, Src, and Cas appears 
to be important for FAK-stimulated cell migration  [24] . In 
lymphocyte migration, paxillin and Src appear to be impor-
tant signaling intermediates downstream of the integrin, 
 α 4 β 1  [25]  .

 A   number of other proteins and kinases have been clas-
sified as integrin-binding or integrin-associated proteins, 
including (1) adaptor proteins and kinases (e.g., RACK1, 
Shc, Grb2, and ILK); (2) growth factor receptors (EGF 
receptor, ErbB2, PDGF receptor- β , insulin receptor, VEGF 
receptor); (3) cytoplasmic, chaperone, calcium-binding 
proteins (calnexin, calreticulin, CIB, endonexin); and (4) 
membrane-associated proteins (tetraspanins, Ig superfamily 
proteins, GPI-linked receptors, transmembrane proteins, 
and ion channels)  [26] . The functional and structural diver-
sity amongst integrin-associated proteins underscores the 
importance of integrins as initiators of many intracellular 
signaling pathways.  

    CELL MIGRATION: A PARADIGM FOR 
STUDYING INTEGRIN SIGNALING 

 Cell   migration provides an exceptionally relevant model 
to study integrin signaling. Migration is a complex cellular 
process that involves the extension of lamellipodia; adhe-
sion at sites within newly formed lamella, organization 
of force-generating adhesions, contraction and cell-body 
 displacement, and detachment of the cell rear. These events 
require the coordination of multiple signaling pathways  [27] .  

    LAMELLIPODIA EXTENSION, AND 
ADHESION FORMATION AND 
STABILIZATION AT THE LEADING EDGE 

 The   initial steps in cell migration require the formation of 
protrusive structures (lamellipodia) at the leading edge of 
the cell, and the stabilization of the protrusion by newly 
formed adhesion complexes. Cell protrusions are regulated 
by the activity of surface receptors and Rho family GTPases 
Cdc42 and Rac  [28] . The interaction of Cdc42 and Rac with 
members of the Wiskott-Aldrich syndrome protein (WASP)/
Scar1 superfamily regulates actin polymerization at the 
front of the cell  [29] . Binding of Cdc42/Rac to WASP/Scar 
proteins activates the Arp2/3 complex  [30] , triggering its 
binding to the sides of pre-existing actin filaments and stim-
ulating new filament formation, which results in branched 
actin networks  [31] . The formation of branched actin fosters 
the growth of actin filaments in the barbed end direction. 
The growing filaments push the plasma membrane forward 
in a concerted fashion to generate lamellipodia          [31 – 33] . 

 The   lamellipodium is stabilized by the generation of 
new adhesions. This process involves integrin clustering, 
formation of integrin complexes containing structural and 
signaling proteins, and linkage to the actin cytoskeleton. 
While it is unclear how or if the process of adhesion assem-
bly is regulated, it is clear that the activation of FAK/Src 
complexes within the adhesion complex appears central to 
the process of adhesion turnover (breakdown)  [11] . Cells 
deficient for FAK expression form adhesions at the same 
rate as wild-type cells, but in these cells the adhesions that 
form fail to turn over, thus compromising the migratory 
process. Formation of the active FAK/Src signaling com-
plex also involves the recruitment of two adaptor proteins, 
Cas and paxillin, and the activation of downstream kinases, 
MAP kinase and PAK (p21-activated kinase)  [34] . Targeted 
deletion of either paxillin or Cas or the inhibition of MAP 
kinase activity leads to the inhibition of adhesion turno-
ver, affirming the importance of this pathway in regulating 
adhesion dynamics  [11] . Formation of the FAK/Src signal-
ing complex is also important to sustain activation of Rac 
and integrate signals for adhesion turnover and protrusion 
 [11] . FAK/Src-mediated tyrosine phosphorylation of Cas or 
paxillin creates binding sites for the adaptor proteins such 
as Crk and Nck. Cas/Crk complexes mediate Rac activation 
by binding DOCK180        [35, 36] . Tyrosine phosphorylated 
paxillin also binds Crk and signals to Rac. However FAK 
mutants deficient in binding to paxillin efficiently restore 
migration of FAK null cells to a wild-type level  [37] . Thus, 
in this setting, signaling to Cas appears to be sufficient to 
mediate adhesion turnover while tyrosine and serine phos-
phorylation of paxillin appears to be important in the regu-
lation of protrusive activity at the front of the cell        [38, 39]  .

 Paxillin   is an important regulator of Cdc42 and 
Rac through its binding to GIT family proteins and the 
 subsequent interaction of GIT with PIX, a Cdc42/Rac 
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GEF          [40 – 42] . PIX was originally reported to exhibit GEF 
 activity for Rac and Cdc42  [43] . However this property 
has been questioned, raising speculation that PIX proteins 
might activate PAK by binding the GTP form of Cdc42/
Rac rather than directly activating the GTPases  [40] . While 
the formation of the paxillin/GIT/PIX complex has been 
reported to activate PAK, the interaction of paxillin with 
Rac also leads to the downregulation of Rac activity  [44] , 
providing a possible mechanism for Rac turnover/down-
regulation.  Figure 3.1  illustrates one possible pathway of 
regulating protrusion and adhesion dynamics at the lead-
ing edge of the cell. Integrin recruitment and activation 
of FAK/Src leads to binding and phosphorylation of Cas, 
and activation of Rac via Cas/Crk/Dock180 complexes to 
promote lamellipodia formation and adhesion turnover. 
GTP-Rac may then bind to PIX proteins complexed with 
paxillin/GIT, resulting in PAK activation and Rac downreg-
ulation limiting protrusive activity and favoring adhesion 
maturation.  

    MATURATION, DETACHMENT, AND 
RELEASE OF ADHESIONS 

 Following   lamellipodia extension and adhesion formation, 
cell migration ensues with maturation of adhesions, trans-
location of the cell body, and release of rear adhesions, 
all of which depend on actomyosin-dependent contractile 
forces regulated by Rho ( Figure 3.1 ). Activated Rho regu-
lates Rho kinase (ROCK) I and II, resulting in the phospho-
rylation of myosin light chains (MLC)  [45] . In addition to 
phosphorylating MLC, ROCK phosphorylation of myosin 
phosphatase (MYPT)  [46]  inhibits its phosphatase activ-
ity, thereby maintaining MLCs in a highly phosphorylated 
(contractile) state. The resultant contractile forces are essen-
tial for the organization of actin filaments and adhesion 
complexes        [47, 48] . ROCK also phosphorylates and acti-
vates LIM kinases, which in turn regulate the actin-depo-
lymerizing protein, cofilin  [49] , possibly linking activation 
of ROCK to regulation of protrusive activity. Recently, dis-
tinct roles for ROCK I and II have been shown. ROCK I 
rather than ROCK II appears to be important for stress fiber 
formation, whereas ROCK II acts to regulate the microfila-
ment bundling at sites of adhesion  [50] . 

 During   cell migration, signaling by Cdc42/Rac and 
Rho is regulated in a reciprocal fashion, leading to the 
breakdown of stress fibers and focal adhesions (due to the 
downregulation of Rho) and the commensurate reorganiza-
tion of cortical actin networks at the leading edge of the 
cells          [51 – 53] . Plating cells on ECM stimulates a transient 
decrease in Rho activity, which is necessary for cell spread-
ing        [54, 55] . FAK contributes to the transient decrease in 
Rho activity; changes in Rho activity are not observed in 
cells deficient for FAK expression  [55] . The mechanism 
by which FAK regulates the initial decrease in Rho activity 

may involve its interaction with the Rho GTPase- activating 
protein GRAF  [15]  or its ability to activate Src, which has 
been shown to phosphorylate p190RhoGAP, resulting in 
decreased Rho activity upon integrin engagement        [56, 57] . 
A subsequent increase in Rho activity is necessary to 
restore contractile forces, leading to strengthening of 
attachment sites, stress fiber formation, and generation of 
the forces necessary for continued cell movement  [47] . 

 In   addition to stabilizing lamellipodia formation at the 
front of the cell, detachment of adhesions at the rear of 
the cell requires sustained contraction and disassembly of 
integrin complexes. Integrin signaling through FAK to Rho 
appears to be important in this process. The inhibition of 
Rho in several different cell types leads to the formation 
of an extended tail, possibly because actomyosin-based 
contractility in the body of the cell is decreased. In fibrob-
lasts, depletion of FAK, PDZ-RhoGEF, or the Rho effec-
tor ROCK II results in formation of long tail extensions 
and an inhibition of adhesion turnover  [58] . These obser-
vations are consistent with the requirement for tension on 
adhesions located at the rear of the cell. Rho may also act 
in the tail by stabilizing microtubules, which would then 
promote focal adhesion turnover  [59] . Proteolytic cleavage 
of adhesion proteins may also play a role in rear retraction. 
Phosphorylation of focal-adhesion-localized calpain by 
active MAPK  [60]  is reported to stimulate calpain-mediated 
cleavage of adhesion proteins and cell detachment        [61, 62] .  

    GROWTH FACTOR RECEPTOR AND 
INTEGRIN SIGNALING-SYNERGISTIC 
REGULATION OF CELL PROLIFERATION 
AND SURVIVAL 

 Ligand   activation of growth factor receptors and integrins 
activates many of the same pathways, leading to the possi-
bility that such pathways synergize to promote cell growth 
and survival. Integrins activate MAPK through three differ-
ent Ras-dependent pathways. Integrin-mediated activation 
of FAK and recruitment of Src results in phosphorylation 
of FAK on Tyr925        [63, 64] . Phosphorylation on Tyr925 
creates a binding site for Grb2  [63] , an SH2/SH3 adaptor 
protein that links growth factor receptor tyrosine kinases 
to the Ras/MEK/MAPK pathway through the Ras guano-
sine diphosphate (GDP)/guanosine triphosphate (GTP) 
exchange protein SOS ( Figure 3.2   ). Integrins also acti-
vate SOS through caveolin-1-mediated recruitment of Shc 
to integrins and subsequent phosphorylation by Fyn  [65]  
( Figure 3.1 ). Finally, integrin engagement results in phos-
phorylation and activation of the epidermal growth factor 
(EGF) receptor in the absence of EGF stimulation  [66] . 
Activated EGF receptor recruits Shc to the receptor, where 
phosphorylation creates a binding site for Grb2/SOS  [66]  
( Figure 3.2 ). Indeed, in this setting, ECM-mediated phos-
phorylation of Shc and activation of MAPK is blocked by 
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inhibitors of EGF receptor tyrosine kinase activity. Integrin-
stimulated migration is inhibited by MAPK inhibitors and 
stimulated by expression of active MEK  [67] . Interestingly, 
dominant-negative Ras expression has little effect on ECM-
stimulated migration        [68, 69] , indicating the existence of 
Ras-independent mechanisms of MAPK activation. 

 Several   studies show that Rac synergizes with Raf to 
stimulate MAPK-dependent migration in response to EGF 
 [70] . Rac-dependent activation of PAK stimulates phospho-
rylation of MEK, resulting in an increased affinity of MEK 
for Raf  [71] . An important consequence of Rac activation 
may be the enhancement of Raf – MEK interaction, lead-
ing to maximum MAPK activity in a setting of only basal 
Ras and Raf stimulation. This may provide a mechanism 
by which integrins potentiate signals from growth factor 
receptors, allowing cells to respond to low levels (gradi-
ents) of chemotactic signals in the environment.  

    INTEGRIN SIGNALS AND LINKS TO 
CANCER 

 The   ECM plays a critical role in the altered growth and 
metastatic behavior of cancer cells. In the case of both nor-
mal and cancer cells, these signals contribute to the bal-
ance of cell growth and death by regulating the apoptotic 
machinery of the cell. Under appropriate circumstances, 
integrin signals regulate G 0 -to-G 1  and G 1 -to-S progression 
           [72 – 75] , as well as the expression of growth-related gene 

products associated with these transition states. Transient 
MAPK activation stimulated by either growth factors or 
cell adhesion is sufficient to initiate G 0 -to-G 1  phase tran-
sition and the coincident expression of immediate – early 
response genes, including c-Fos, c-Myc, and c-Jun            [76 – 79] . 
Serum stimulation in the absence of adhesion to the ECM 
abrogates progression through G 1  into S phase by increas-
ing the accumulation of cdk2 inhibitors p21 cip1  and p27 kip1  
 [80] . Cyclin D1 functions to promote G 1  progression by 
sequestering p21 cip1  and p27 kip1   [81] . Cyclin D1 expres-
sion requires cell adhesion to mediate sustained MAPK 
activity initiated by growth factors  [82] . Growth factor 
stimulation of cells held in suspension results in a mod-
est, transient activation of MAPK compared to the robust 
MAPK stimulation following serum treatment of adherent 
cells  [83] . Maximal, sustained MAPK activation requires 
FAK and Rho activity        [84, 85] . Indeed, FAK and Rho have 
both been implicated in regulating cyclin D1 expression 
and progression through G 1         [75, 85] . Cyclin-D-depend-
ent downregulation of p21 cip1  and p27 kip1  is necessary 
for cyclin E/Cdk2 activity, which induces the expression 
of cyclin A  [80] , a key regulator of S-phase progression        
[86, 87] . Therefore, cell – substrate adhesion indirectly 
promotes cyclin A expression and S-phase progression 
by stimulating cyclin E/Cdk2 activity. Collectively, these 
data indicate that the G 0 -to-G 1  transition and progression 
through G 1  of the cell cycle is regulated by either serum or 
adhesion; however, progression through S phase requires 
both serum and adhesion. 

 Cell   proliferation is in dynamic balance with cell death. 
Shifts in this equilibrium, as a result of increasing cell 
proliferation or decreasing cell death, often result in tum-
origenesis. Integrins provide key signals to regulate this 
balance. Depriving epithelial or endothelial cells of contact 
with the ECM rapidly induces apoptosis          [88 – 90] . (This 
specialized form of cell death is referred to as  anoikis ). 
Normal epithelial cells acquire resistance to anoikis upon 
expression of certain oncogenes          [91 – 93] . A number of 
studies have implicated integrin signaling to the phosphoi-
nositide-3 � -kinase (PI3K) – AKT pathway as a central reg-
ulator of anoikis  [92] . FAK is thought to regulate anoikis 
by direct activation of PI3K and AKT, and perhaps indi-
rectly via interactions with Cas/Crk/DOCK180/Rac  [89] . 
Integrin-linked kinase (ILK) has also been implicated in 
signaling to AKT, although this pathway is poorly under-
stood. However, ILK binds to the cytoplasmic tails of  β 1 
and  β 3 integrin, and overexpression of ILK results in acti-
vation of AKT        [94, 95] . 

 In   cancer, increasing evidence indicates that integrins 
synergize with growth factor receptor signals to promote 
cell proliferation and to stimulate the migration of tumor 
cells from the primary site, and function to promote growth 
and survival at distant metastatic sites        [96, 97] . Integrins 
play a major role in remodeling the tumor microenvi-
ronment, and are important regulators of migration and 
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 FIGURE 3.2          Integrin signaling cooperates with receptor tyrosine 
kinase (RTK) pathways to regulate cell proliferation.  
    Upon activation by growth factors, RTKs recruit adapter proteins includ-
ing Shc and Grb2 and the Ras GEF Sos leading to the activation of Ras. 
Active Ras recruits Raf to the membrane for activation leading to MEK 
and MAP kinase activation, and ultimately activation of cyclin D. Integrin 
signaling through the paxillin/GIT/PIX pathway stimulates PAK activ-
ity, which phosphorylates Raf and MEK and stabilizes the Raf/MEK 
complex. This results in a prolonged activation of MAPK and the cyclins, 
leading to an increase in DNA synthesis (see text for details).    
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metastatic growth  [98] . In a variety of cancers, tumor 
 progression and acquisition of metastatic behavior is often 
accompanied by changes in integrin expression and upreg-
ulation of expression of integrin signaling proteins, such as 
FAK. Also of note is that many cancers exhibit loss of the 
tumor suppressor gene PTEN, which leads to the upregu-
lation of AKT and the suppression of anoikis  [99] . In the 
case of human breast cancer cells, blocking  β 1 integrin 
binding activity results in attenuation of EGF receptor sig-
naling and cell cycle progression  [100] . In mouse models 
of breast cancer, the targeted deletion of  β 1 or  β 4 integrin 
or the deletion of FAK or c-Src inhibits tumor progression 
 [101] . Many studies have shown a role for integrins in the 
metastatic spread of cancers. Metastasis of human breast 
cancer cells to the lung in a mouse xenograph model is 
blocked by systemic administration of an inhibitory anti- β 1 
integrin antibody  [102] . In another study, delivery of a pep-
tide designed to block the  α 5 β 1 and  α v β 3 integrin recep-
tors impaired the growth and metastasis of invasive human 
breast cancer cells in a mouse xenograph model  [103] . 
Currently, inhibitors of integrin signaling are being char-
acterized in preclinical and clinical settings. PF-573,228, 
a prototype ATP competitive inhibitor of FAK, inhibits 
FAK autophosphorylation in normal fibroblasts and human 
tumor cells, and inhibits cell migration by blocking adhe-
sion turnover  [104] . In preclinical animal models, the 
bioavailable compound, PF-562,271, inhibited FAK phos-
phorylation  in vivo  in a dose-dependent fashion in several 
human subcutaneous xenograft models, including: prostate, 
breast, pancreatic, colon, glioblastoma, and lung  [105] . 
The FAK inhibitor PF-562,271 is currently being evaluated 
in Phase I clinical trials  [106] . It is likely that additional 
molecules targeting components of the integrin signaling 
pathway will be evaluated for clinical efficacy in the near 
future.  

    CONCLUDING REMARKS 

 The   recognition that integrins are not only adhesive recep-
tors but also  “ integrators ”  of growth factor and ECM sign-
aling has had a profound impact on our understanding of 
cellular processes, including cell migration, differentiation, 
and cancer. The challenge for the next decade is to under-
stand how different ECM proteins, growth factors, and 
chemotactic molecules function in coordinating multiple 
signaling pathways in the context of individual tissues and 
the organism itself.  
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    INTRODUCTION 

 Dynamic   changes in cell interaction or adhesion to the sur-
rounding extracellular matrix (ECM) is of fundamental 
importance for numerous physiologic processes, including 
cell proliferation and migration, tissue remodeling and dif-
ferentiation during embryonic development, immune surveil-
lance, and wound healing. It also underlies the progression 
of a broad spectrum of pathologies, including cancer cell 
metastasis, atherosclerosis, and cardiac hypertrophy, as 
well as fibrotic and neurodegenerative disorders  [1] . Much 
of our current understanding of the molecular complexity, 
regulation and function of cell adhesion sites, or focal adhe-
sions, has come from the analysis of fibroblast adhesion and 
migration in simple two-dimensional cell culture systems. 
These studies, carried out over the past 37 years, have identi-
fied upwards of 150 focal adhesion protein components  [2] . 
Detailed structure – function analysis of individual proteins 
has revealed a complex network of protein – protein interac-
tions utilizing a wide spectrum of protein- and lipid-binding 
domains or motifs. Precise spatial and temporal control of 
these interactions, and thus the composition of focal adhe-
sions, serves to stabilize and regulate the structural links 
between the ECM and the cell’s internal cytoskeleton to 
control cell shape and motility. They are also important for 
coordinating the long-term cellular response to changes in 
the external environment to regulate cell survival, prolifera-
tion, and apoptosis  [3] . In this brief review we will highlight 
some of the unique ways that protein – protein interactions 
are modulated within focal adhesions to control the cell’s 
phenotypic readout.  

    INTEGRIN ACTIVATION 

 The   integrin family of heterodimeric transmembrane recep-
tors primarily mediates cell adhesion to the ECM. To date, 24 

individual integrin heterodimers have been identified in the 
human genome, each comprising an alpha and beta subunit 
       [4,  5] . Each subunit consists of a short cytoplasmic domain, 
a transmembrane domain, and a large extracellular domain. 
Through its complement of cell surface expressed integrins, 
a cell is able to adhere to and respond to a wide variety of 
extracellular molecules, including fibronectin, collagens, and 
laminins  [6] . Integrins are able to transduce signals from the 
ECM to the cell interior (outside-in signaling) as well as from 
the cell to the surrounding environment (inside-out signal-
ing) through a complex series of conformational alterations 
including alpha-beta cytoplasmic domain spatial separation 
and extracellular domain unbending, as indicated by fluo-
rescence resonance energy transfer (FRET), nuclear mag-
netic resonance (NMR), X-ray crystallography, and electron 
microscopy            [7 – 10] . Integrin activation is a prerequisite for 
focal adhesion formation and subsequent cell migration, and 
has been shown to be mediated by the direct interaction of 
integrin cytoplasmic domains with numerous proteins, includ-
ing talin-1/2, kindlin-2/3, alpha-actinin, and ICAP-1            [11 – 14] .  

    ADHESION STRENGTHENING 

 Talin   is able to activate integrins through direct interac-
tion with the highly conserved membrane proximal Asn –
 Pro – x – Tyr (NPXY) motif of integrin beta subunit cytoplasmic 
domains, through its globular N-terminal phosphotyrosine-
binding (PTB) FERM (band 4.1, ezrin, radixin, and moesin) 
domain            [15 – 18] . As well as interacting with the beta integrin 
cytoplasmic domains, talin also binds vinculin  [19]  and 
F-actin  [20] , and is believed to primarily function to reinforce 
integrin-mediated adhesions to enable linkage to the acto-
myosin contractile machinery and subsequent cell spread-
ing and migration  [21] . The talin – vinculin interaction is one 
of the best-studied molecular associations in focal adhe-
sions. Structural studies of talin suggest that only one of the 
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potential vinculin binding sites (VBS) is exposed on the sur-
face of the talin molecule        [19,  22] . The other VBS domains 
are buried in the series of amphipathic helical bundles  [23]  
comprising the talin rod domain, suggesting a conformational 
rearrangement must occur to enable increased talin – vinculin 
interaction. Cells devoid of talin are unable to form mature 
focal adhesions        [21,  24] , whereas cells devoid of vinculin 
display smaller and weaker adhesions, more sensitive to dis-
ruption by applied force        [25,  26] , thereby suggesting that vin-
culin acts to stabilize and strengthen focal adhesions. Indeed, 
it has been suggested that as actomyosin-driven contraction 
increases, conformational alterations occur in the talin rod, 
thereby unmasking increasing numbers of VBSs and in so 
doing strengthen the focal adhesion link to the cytoskeleton 
 [27]  and consequently negatively regulating focal adhesion 
dynamics  [28] . Importantly, additional factors, such as inter-
action with plasma membrane phospholipids including phos-
phatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P 2 ), further 
contribute to vinculin and talin activation and the regulation 
of their actin binding activity to stabilize focal adhesions. 
Indeed, phospholipids provide membrane-docking sites for a 
number of focal adhesion proteins, including alpha-actinin, 
WASp, ERM proteins, and Calpain, to control both their spa-
tial distribution and activation states  [29] . Vinculin, through 
recruitment of the Arp2/3 complex to focal adhesions, may 
also play a role in coordinating actin filament branching 
within the extending lamellipodium of migrating cells  [30] . 

 Stabilization   of cell adhesion to the ECM and coupling 
to the actin cytoskeleton permits the generation of ten-
sion within the cell, resulting in the conversion of mechani-
cal force into the initiation of intracellular signaling. Such 
mechanotransduction or mechanosensing        [31,  32] , which 
is sensitive to the deformability of the surrounding matrix, 
is essential for numerous physiological events, including 
wound healing and blood pressure maintenance  [33] , as 
well as patho-physiological conditions, including athero-
sclerosis  [34] . Several focal adhesion proteins, in addition to 
talin, have been identified as mechanosensors. In the case of 
p130Cas (Crk-associated substrate), mechanical tension on 
the cell leads to molecular extension of p130Cas exposing a 
series of tyrosine residues that can then serve as substrates for 
the Src kinase  [35] . These phosphotyrosine residues provide 
docking sites for SH2 domain-containing proteins such as 
Crk, thus permitting coupling to downstream signaling  [35] . 
Conversely, mechanical stretching causes zyxin, along with 
VASP, to translocate from focal adhesions to the attached 
actin stress fibers, resulting in increased actin assembly 
within focal adhesions and adhesion strengthening        [36,  37] .  

    INTRACELLULAR SIGNALING AND 
MOLECULAR SCAFFOLDS 

 Cell   migration is a multi-step process requiring dynamic 
changes in focal adhesion organization and signaling. 

Extension of the plasma membrane or lamellipodium at the 
front of the cell is driven by the assembly of a meshwork 
of actin filaments, and is followed by the formation, upon 
contact with the ECM, of small adhesions called focal com-
plexes. These nascent adhesions may disassemble rapidly, 
or mature into focal adhesions connected to robust actin 
filaments called stress fibers that are necessary for devel-
oping tension within the cell to facilitate translocation. 
Focal adhesion disassembly at the cell rear completes the 
migration cycle. The dynamic changes in the organization 
of the actin cytoskeleton, as well as the organization and 
composition of cell adhesions, is regulated by the activity 
of the Rho family of GTPases comprising Cdc42, Rac1, 
and RhoA  [38] . Cdc42 activation promotes actin filament 
assembly, filopodia formation, and thus membrane exten-
sion. Cdc42 is also required for establishing cell polar-
ity. Rac1 stimulates lamellipodia formation at the front of 
migrating cells, while RhoA activation stimulates focal 
adhesion maturation and stress-fiber formation to promote 
cell contractility, as well as focal adhesion disassembly at 
the cell rear. These molecular switches are themselves reg-
ulated by activators (guanine nucleotide exchange factors, 
GEFs), inhibitors (GTPase activating proteins, GAPs), and 
guanine nucleotide dissociating factors (GDIs) that seques-
ter inactive GTPases in the cytosol  [39] . Integrins lack any 
intrinsic enzymatic activity, thus the initiation and trans-
duction of intracellular signaling necessary for controlling 
the functional readout from these molecules is dependent 
on the coordinated recruitment and regulation of multiple 
structural and signaling proteins to focal adhesions  –  a role 
performed by multi-domain focal adhesion adaptor proteins 
such as paxillin and p130Cas ( Figure 4.1   ). 

 Paxillin   is comprised of four carboxyl-terminal LIM 
domains that are essential for targeting the protein to focal 
adhesions. They also mediate interactions with microtubules 
and the tyrosine-phosphatase PTP-PEST to promote focal 
adhesion disassembly  [1] . The amino-terminal portion of the 
molecule contains an abundance of protein – protein interac-
tion modules, including five non-redundant, short alpha-
helical leucine-rich LD motifs that provide docking sites for 
both structural actin-binding proteins including vinculin and 
actopaxin/parvin        [1,  40] , as well as signaling proteins such 
as the focal adhesion kinase (FAK) and Arf GAPs PKL/GIT 
 [41] . The paxillin amino-terminus also contains a  polyproline-
rich motif that can bind the SH3 domain of the cytoskeletal 
protein ponsin as well as the Src kinase. Finally, there are 
numerous serine, threonine, and tyrosine residues distributed 
throughout the paxillin molecule which, when phosphor-
ylated/dephosphorylated by adhesion-activated kinases or 
phosphatases respectively, either function as regulatable pro-
tein – protein interaction domains themselves through the crea-
tion of SH2 binding motifs, or indirectly modulate the affinity 
of paxillin’s other binding modules        [1,  40] . 

 One   of the earliest signaling events resulting from 
integrin-mediated cell attachment to the ECM is activation 
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of FAK, requiring phosphorylation-dependent conformation 
changes to relieve autoinhibition by FAK’s amino- terminal 
FERM domain        [42,  43] . Autophosphorylation of FAK 
on Y397 results in the binding and activation of another 
tyrosine kinase, Src, and together the FAK/Src complex 
regulates adhesion dynamics by phosphorylating a wide 
spectrum of focal adhesion proteins, including paxillin 
and p130Cas, to generate binding sites for SH2- containing 
adaptor proteins such as Crk  [44] . In turn, Crk binding 
to either protein facilitates cell migration by stimulat-
ing the local activity of Rac via Crk-mediated recruitment 
of the atypical Rac GEF Dock180/ELMO complex  [45] . 

Additionally, in the case of paxillin, tyrosine phosphor-
ylation may also promote binding of the p120RasGAP/
p190RhoGAP complex, resulting in localized suppression 
of Rho GTPase activity  [46] . Interestingly, tyrosine phos-
phorylation of paxillin by FAK has also been reported to 
indirectly enhance the interaction between FAK and the 
LD 2/4 motifs of paxillin to facilitate focal adhesion matu-
ration  [47] . 

 Paxillin   can also modulate localized Rac1 activity 
through a tightly regulated interaction with a complex of 
proteins comprising the Arf GAPs GIT1/2, the Rac1/Cdc42 
GEF PIX (p21-activated kinase interacting exchange fac-
tor), PAK (the p21-activated kinase), a serine/threonine 
kinase functioning for modulating cytoskeletal reorganiza-
tion, and finally the adaptor protein Nck  [48] . The adhesion-
 stimulated interaction of this complex with the LD4 motif of 
paxillin, and thus its recruitment to focal adhesions, involves 
a multi-step conformation-dependent activation cascade 
requiring both the binding of active Cdc42/Rac to PAK as 
well as the Src/FAK-dependent tyrosine phosphorylation of 
GIT  [48] . It is likely that PIX GEF activity is also increased 
during this process, thereby amplifying local Cdc42/Rac 
activity. The stability of this complex in focal adhesions can 
be further enhanced via PAK-dependent phosphorylation of 
S273 within the paxillin LD4 motif  [49]  ( Figure 4.1 ). The 
paxillin – GIT – PIX – PAK – Nck complex provides an impor-
tant mechanism for restricting the spatio-temporal activ-
ity of Cdc42/Rac1 to the leading lamellipodia of migrating 
cells, thus contributing to cell polarization and directional 
migration        [50,  51] . Through Nck, it may also play a role in 
functional cross-talk between integrins and growth factor 
receptors  [52] .  

    FOCAL ADHESION TURNOVER 

 Scaffold   proteins like paxillin play an equally important role 
in the termination of adhesion-based signaling, thereby con-
tributing to focal adhesion disassembly/turnover  [53] . For 
example, the recruitment of the tyrosine phosphatase PTP-
PEST to focal adhesions via interaction with the paxillin 
LIM domains is a prerequisite for dephosphorylation of mul-
tiple focal adhesion proteins, including FAK, p130Cas, GIT, 
as well as paxillin, and in turn accounts for the negative reg-
ulation of Rac signaling by PTP-PEST        [54,  55] . Other phos-
phatases, including SHP-2 and PTP-1B, also bind to paxillin 
and presumably perform a similar role  [1] . Interestingly, 
proteolytic degradation of key focal adhesion components 
provides an alternative mechanism for the regulation of focal 
adhesion organization and signaling. Both FAK/Src and PIX 
recruit and activate the calcium-dependent protease Calpain 
to promote focal adhesion disassembly and tail release via 
cleavage of talin, paxillin, FAK, Src, tensin,  α -actinin, vin-
culin, and  β 1-integrins        [44,  56] , while the E3 ligase RNF5 
binds to paxillin, leading to ubiquitin-mediated proteosomal 

 FIGURE 4.1          Focal adhesion protein networks transduce extracellular 
stimuli to regulate intracellular Rho family GTPase signaling.  
    The engagement of integrins with the extracellular matrix (ECM) as well 
as activation of growth factor receptors results in the localized activa-
tion of protein tyrosine kinases including Focal Adhesion Kinase (FAK) 
and Src. Adaptor proteins paxillin and p130Cas are recruited to nascent 
focal adhesions and phosphorylated by the activated FAK/Src complex. 
Tyrosine phosphorylated p130Cas and paxillin can then interact with 
the SH2/SH3 domain containing protein Crk, thereby coupling to Rac 
activation via the DOCK180/ELMO complex. Paxillin phosphorylation 
at Y31 and 118 also generates binding sites for p120RasGAP, which 
through p190RhoGAP can contribute to local suppression of RhoA activ-
ity. Similarly, FAK/Src phosphorylation of the Arf GAP, GIT facilitates 
recruitment of the GIT – PIX – PAK – Nck complex into focal adhesions via 
interaction with the paxillin LD4 motif. The Cdc42/Rac GEF PIX can 
locally stimulate Rac1 and Cdc42 and trigger cytoskeleton reorganization 
via activation of various effector proteins including p21-activated kinase 
(PAK). Active PAK may in turn, phosphorylate paxillin on S273 within 
the LD4 motif, to modulate paxillin’s interaction with GIT and/or FAK. 
In addition, the association of the SH2/SH3 adaptor protein, Nck with 
both PAK and GIT (not shown) provides a putative mechanism for link-
ing focal adhesion signaling nodes to growth factor receptor signaling. 
Recruitment of protein phosphatases PTP-PEST, SHP-2 and PTP-1B to 
focal adhesions via interactions with paxillin may also promote protein 
dephosphorylation, culminating in signal termination and focal adhesion 
disassembly. GF-growth factor, PM-plasma membrane, RTK-receptor 
tyrosine kinase    
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degradation of paxillin, Abl, and Src  [44] . These mecha-
nisms, albeit somewhat unrefined, seem particularly impor-
tant for adhesion disassembly at the rear of migrating cells, 
as well as for convergent extension migration in the develop-
ing embryo  [57] .  

    FOCAL ADHESIONS AND GENE 
EXPRESSION 

 In   addition to controlling the dynamic relationship between 
the ECM and the cytoskeleton, protein interactions within 
focal adhesions also play a significant role in regulation of 
gene expression and signaling associated with cell survival, 
proliferation, and differentiation  [58] . For example, the 
tyrosine kinase Abl is recruited to focal adhesions via inter-
action with phosphorylated paxillin, where it is activated 
before returning to the nucleus to regulate gene transcrip-
tion. Several other focal adhesion proteins, including Hic-
5, and zyxin contain nuclear localization and/or nuclear 
export signaling motifs and undergo nuclear – cytoplasmic 
shuttling  [58] . Conversely, FAK activation and phosphor-
ylation on Y925 facilitates the recruitment of the scaffold 
protein Grb2 to adhesion contacts, thereby coupling to Ras, 
and activation of the Erk-MAP kinase cascade to regulate 
anchorage-dependent survival. The direct binding of Erk 
and vinculin to paxillin may further facilitate signaling 
along this axis  [59] .  

    THE FUTURE 

 Integrin  -based adhesion signaling is of paramount importance 
to nearly every aspect of a multicellular organism’s develop-
ment and tissue homeostasis. Despite the abundance of infor-
mation now available regarding the molecular complexity of 
the focal adhesion interactome and its role in cellular commu-
nication, important questions remain. For instance, the pre-
cise mechanism(s) determining the spectrum and timing of 
individual protein – protein interactions within the focal adhe-
sion and in establishing specific signaling cassettes is still 
largely unknown. In addition, many cells express more than 
one integrin type, each capable of interacting with overlap-
ping, as well as distinct, complements of ECM and intracellu-
lar proteins, often utilizing different modalities. For example, 
paxillin is recruited to integrin  β 1 adhesions via its carboxyl-
terminal LIM domains, while in contrast it binds directly 
via the amino terminus to the cytoplasmic tails of integrin 
 α 4 and 9        [60,  61] . How this affects the capacity of paxillin 
to bind and signal through its numerous binding partners to 
influence the cellular response remains to be determined. 
Furthermore, the recent development of three- dimensional 
matrix model systems to evaluate adhesion signaling in 
a setting more analogous to the  in vivo  environment has 
revealed similarities, as well as important differences, in focal 

adhesion organization, composition, and signaling as com-
pared to adhesions formed in two-dimensions. For example, 
cell adhesions formed within a three-dimensional fibronectin-
rich matrix contain integrin  α 5 β 1, but not  α v β 3, and strik-
ing differences in phosphorylation of focal adhesion pro-
teins such as FAK and ERK, as well as the relative activity 
of Rho GTPase family members, have been documented 
       [62,  63] . These model systems, in combination with the use 
of advanced real-time microscopy such as Fluorescence 
Recovery After Photobleaching (FRAP), FRET, and 
Fluorescence Lifetime Imaging Microscopy (FLIM)  [64] , as 
well as detailed proteomic analysis  [65] , is expected to pro-
vide further insight into the complex, dynamic world of the 
focal adhesion molecular network.  
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    INTRODUCTION 

 Adhesive   interactions between neighboring cells regu-
late the dynamic organization and patterning of tissues in 
developing embryos, and are critical for tissue homeostasis 
       [1, 2] . Cadherins are a large family of calcium-dependent 
cell adhesion molecules that affect diverse cellular proper-
ties  in vivo  and  in vitro  [for reviews, see                [3 – 8] ]. A multi-
tude of studies have shown that the dynamic regulation of 
cadherin function affects development and physiology in 
vertebrate and invertebrate animals by promoting the for-
mation of tissue structures and regulating a fine-tuned bal-
ance of adhesive interactions and signal exchange between 
cells. The cadherin family now includes more than a hun-
dred members across species ranging from unicellular 
organisms to higher vertebrates  [9] . Since their discovery 
as molecules promoting calcium-dependent cell adhesion 
and compaction          [10 – 12] , numerous studies have exposed 
roles beyond these functions. In developing embryos, the 
dynamic regulation of cadherin subtype expression con-
trols cell segregation into tissue layers and organization of 
cells within organs  [13] . Cadherins affect changes of tissue 
shape due to cellular rearrangements during morphogenetic 
movements such as gastrulation  [14] . The formation of tis-
sue boundaries in developing embryos requires cadherin 
functions        [15, 16] . In the vertebrate nervous system, differ-
ent cadherin subtypes contribute to the embryonic forma-
tion of specific brain subdivisions and the connectivity of 
neurons into functional circuits  [17] . Cadherin expression 
is required for the initiation, elongation and pathfinding 
of axons to their targets            [5, 18 – 20] . They are expressed in 
an isotype-specific manner at synapses        [21, 22] , and regu-
late dendritic spine formation as well as synaptic plasticity 
           [23 – 26] . In epithelial cells, cadherins establish cell polar-
ity and form adherens junctions that bond cells through a 

cortical actin belt within epithelial structures  [27] . As cells 
transition from an epithelial to a migratory phenotype dur-
ing development or tumorigenesis, the junctional cadherin 
complex disintegrates to allow for cell detachment and 
assembly of the migratory machinery. 

 Cells   use diverse mechanisms to regulate cadherin 
expression and adhesion. The surface concentrations of 
cadherin molecules and differential adhesion are principal 
contributors of cell behavior and cell – cell communication 
       [28, 29] . Cadherin expression and functions are controlled 
at multiple levels, ranging from transcriptional control, to 
exocytosis and endocytosis, ligand engagement, associa-
tion with lateral proteins, and dynamic molecular interac-
tions that impinge on connections with the cytoskeletal 
network and downstream signaling pathways. This chapter 
will discuss the different cadherin subclasses as regulators 
of intercellular communication, and highlight the princi-
pal mechanisms of cadherin function in different cellular 
contexts. Since the large amount of literature in the field 
exceeds the scope of this chapter, the reader is referred to 
several excellent reviews from leaders in the field for more 
detailed information on structure, function, and physiologi-
cal roles of cadherins                    [3 – 9, 30] .  

    THE CADHERIN FAMILY 

    Classical and Divergent Cadherins 
Interacting with Catenins 

 The    vertebrate classical cadherins  are typically single-
span transmembrane proteins composed of five extra-
cellular cadherin domains and a conserved cytoplasmic 
region ( Figure 5.1   ). The hallmark of the cadherin family is 
calcium-dependent cell-to-cell binding between cadherin 
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homo- or heterodimers          [5, 30, 31] . Classical cadherins are 
subdivided into two major subgroups, type I and type II 
cadherins, based on phylogenetic maps  [9] . Type I classical 
cadherins including E-, N-, P-, and R-cadherins generally 
mediate strong adhesive interactions. They are essential 
for the formation of the embryonic germ layers and assem-
bly of organs. Deletions of E- cadherin gene expression 
halt mouse embryo development at the preimplantation 
stage        [32, 33] . Disruptions in the N-cadherin gene affect 
cardiac development and limit mouse embryo survival to 
day 10  [34] . Type I cadherins contain a conserved amino 
terminal HAV motif that has gained attention as a poten-
tial cell-recognition sequence  [35] . Although soluble HAV 
peptides indeed can inhibit cadherin-mediated adhesion  in 
vitro         [36, 37] , structural studies have established that the 
HAV motif is necessary for cadherin dimerization rather 
than for cell recognition  [38] . Type II cadherins, including 

VE-cadherin, MN-cadherin, cadherin 8, and cadherin 11, 
share the overall structure with type I cadherins, but repre-
sent a phylogenetically separate group  [9] . Type II cadher-
ins lack the HAV sequence, and accordingly form dimers 
with a binding interface structurally different from the type 
I group        [39, 40] . In comparison to type I cadherins, type II 
cadherins confer weak interactions. VE-cadherin regulates 
vascular remodeling and maturation rather than assembling 
endothelial cells into vascular plexi  [41] . In the spinal cord, 
type II cadherins sort motor neurons into pools innervating 
specific muscles  [42] , thereby fine-tuning motor neuron 
patterns rather than controlling motor neuron development. 

 A   characterizing feature of classical vertebrate and 
invertebrate cadherins is the association of their highly 
conserved cytoplasmic domains with the  “ amadillo repeat ”  
family protein  β -catenin        [3, 7] .  β -catenin serves multi-
ple functions within cells and switches roles between the 

 FIGURE 5.1          Diversity of the cadherin family.  
    The domain organization of representative members of each of the identified cadherin families is depicted. Arrows indicate the linkage with indicated 
intracellular molecules.    
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cadherin-associated state at the plasma membrane, the 
cytoplasmic state characterized by interactions affecting 
cell signaling events, and transcriptional activation in the 
nucleus upon Wnt-induced signaling  [43] . Bound to the 
cadherin cytoplasmic region,  β -catenin assembles a sig-
naling complex that regulates the dynamics of the actin 
cytoskeleton via  α -catenin        [3, 4] . Thus, availability of  β -
catenin and its association with the cytoplasmic region of 
cadherins critically regulate cell adhesion. 

 In    Drosophila,  DE-cadherin encoded by  shotgun  shares 
its extracellular and intracellular domain organization and 
interactions with vertebrate E-cadherin        [44, 45] . Mosaic 
analysis of mutations in the  shotgun (shg)  gene provides 
evidence for homophilic binding activity similar to that of 
classical cadherins  [46] . Other invertebrate members of the 
cadherin family, including  Drosophila  DN-cadherin  [47] , 
 C. elegans  HMR-1  [48] , and sea urchin LvG-cadherin  [49] , 
diverge in their extracellular domain organization from their 
vertebrate counterparts by the addition of cadherin domains, 
cysteine-rich EGF repeats, laminin G domains, and often a 
non-chordate classic cadherin domain [NCCD  [50] ] ( Figure 
5.1 ). These cadherins are listed under classical cadherins, 
as the intercellular domain of these molecules is conserved 
and interacts with amadillo-domain-containing  β -catenin 
homologs. Thus, despite structural divergence of their 
extracellular domains, principal functions of classical cad-
herins are conserved between vertebrate and non-vertebrate 
species  [51] .  

    Desmosomal Cadherins 

 Desmosomal   cadherins comprise two separate subfamilies, 
the Desmocollins (DSC) and Desmogleins (DSG), each 
represented by three members (DSC-1, -2, -3, and DSG-1, 
-2, -3)        [52, 53] . Desmosomal cadherins and associated 
intracellular proteins orchestrate the assembly of desmo-
somal plaques            [54 – 57] , and are expressed in a cell type- or 
differentiation-specific manner        [58, 59] . The extracellu-
lar domain of desmosomal cadherins is composed of five 
cadherin domains and confers homophilic or heterophilic 
binding interactions with other members of the desmo-
somal cadherin family ( Figure 5.1 ). DSCs and DSGs con-
tain characteristic intracellular domains that diverge from 
those of the classical cadherins and interact with either of 
the amadillo family proteins plakoglobin and plakophilin. 
The latter provide a link (via desmoplakin) to intermediate 
filaments. In the skin, autoimmune skin-blistering diseases 
such as Pemphigus vulgaris or foliaceus are caused by 
desmosome disruption through autoantibodies  [60] .  

    Cadherins with Divergent Structures 

 Bioinformatics   has revealed cadherin-like domains in 
yeast and bacteria  [61] , suggesting that the cadherin motif 

discovered in classical vertebrate cadherins is an ancient 
structural motif. The number of proteins containing cadherin 
domains has expanded enormously during evolution, and in 
humans more than 180 genes encoding proteins with cad-
herin domains have been reported ( www.pfam.wustl.edu ). 
Most, but not all, of these genes are classified into distinct 
subgroups based on sequence homologies, domain organiza-
tion, number of cadherin repeats, and genomic organization 
         [7, 9, 51] . Representative members of the major diver-
gent cadherin subclasses are shown, along with classical 
and desmosomal cadherins, in  Figure 5.1 . 

    Protocadherins 

 The   largest subgroup of cadherin-related proteins, with 
about 70 members in vertebrates, are transmembrane pro-
tocadherins that are composed of six or seven extracel-
lular cadherin domains and distinct cytoplasmic regions 
         [62 – 64] . Genomic organization subdivides protocadherins 
into clustered and non-clustered groups. The clustered pro-
tocadherins Pdch α , Pdch β , and Pdch γ  are generated from 
a small genome locus on human chromosome 5q31, and 
encode 52 cadherin-related molecules  [65] . The Pdch α  and 
Pdch γ  are transcribed from variable exons encoding differ-
ent extracellular domains and a constant exon generating a 
conserved, cluster-specific carboxy terminal domain. The 
Pdch β  cluster lacks the constant domain. Pdch α  orthologs 
were independently identified as cadherin-related neuronal 
receptors (CNR) in mouse brain by their ability to interact 
with Fyn  [66] , a Src-related intracellular protein kinase 
that supports synaptic plasticity  [67] . The observation that 
CNRs demarcate specific synapse populations  [66]  points 
to possible functions of CNR cadherins in regulating syn-
aptic function or plasticity. 

 Genetic   deletion of the entire protocadherin  γ  cluster 
comprising 22 genes induces apoptosis of spinal interneu-
rons and premature death of the mutant mice  [68] . In an 
elegant experiment in which apoptosis was prevented by 
crossing the mutation into Bax-deficient mice, loss of pro-
tocadherin  γ  altered synapse number and strength of the 
now surviving spinal cord neurons, suggesting functions in 
synaptic modulation  [69] . 

 Non  -clustered protocadherins comprise the Pdch δ  sub-
group and phylogenetically solitary protocadherins. Pdch δ  
protocadherins include nine different cadherins that are 
characterized by conserved regions, CM1 and CM2, in 
their cytoplasmic domains. Structural studies reveal the 
lack of a homophilic binding interface and a protocadherin-
specific loop structure in the extracellular domain  [70] . It is 
not clear if protocadherins exert adhesion  in vivo , or if they 
modulate cell functions by other mechanisms, as recently 
suggested for Arcadlin (Activity-Regulated Cadherin-like 
Protein; also paraxial protocadherin (PAPC) or Pdch8). 
Arcadlin expression is induced by synaptic activity and 
involved in long-term potentiation  [71] . Recent work 
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demonstrates that Arcadlin affects the density of dendritic 
spines. Spine density is reduced by endocytosis of the syn-
aptic N-cadherin – Arcadlin complex via a p38 MAPK path-
way  [24] . Outside the nervous system, PAPC controls cell 
movements during gastrulation in  Xenopus  embryos  [72]  
and establishes segmental boundaries during somite forma-
tion  [15] . In parallel to the findings in the central nervous 
system, PAPC affects morphogenetic movements by regulat-
ing C-cadherin activity in early embryos  [73] . The regulation 
of classical cadherin expression or function through proto-
cadherin activity is an emerging theme in the cadherin field.  

    FAT-Like Cadherins 

 Fat   and Dachsous, the prototypes of the fat-like cadher-
ins, are required for several developmental processes in 
 Drosophila             [74 – 77] . The hallmark of fat-like transmem-
brane cadherins is their large extracellular domain, which is 
composed of 17 – 34 tandemly arranged cadherin domains, 
EGF repeats, laminin G domains, and, in some subtypes, a 
flamingo box ( Figure 5.1 ,        [7, 75] ).  Drosophila fat  and the 
fat-like  dachsous  gene product regulate cell growth, the 
proximodistal patterning of the appendages, and planar cell 
polarity (PCP)  –  for example, the coordinated orientation 
of cells in the fly eye and wing        [78, 79] . Heterophilic bind-
ing between Fat and Dachsous does not confer strong cell 
adhesion, but seems to activate downstream signaling path-
ways that are not fully understood        [80, 81] . Fat-like cadher-
ins with functions in tissue morphogenesis are reported for 
the nematode  Caenorhabditis elegans         [82, 83] , and mam-
malian homologs with yet unknown functions have been 
identified        [84, 85] .  

    Seven-Pass Transmembrane Cadherins 

 The    Drosophila melanogaster  gene product Flamingo is 
a cadherin family protein anchored in the membrane by a 
seven-pass transmembrane domain that shows similarity to 
those of the secretin receptor family of G-protein-coupled 
receptors  [86] . The extracellular  Flamingo  domain consists 
of nine amino terminal cadherin domains, a flamingo box, 
EGF repeats, and Laminin A G-repeat homology domains 
( Figure 5.1 ,  [86] ).  Flamingo  acts in concert with frizzled 
and strabismus to establish planar polarity of hair cells in 
the  Drosophila  wing            [76, 79, 86, 87] . Frizzled and stra-
bismus relay asymmetric and intercellular signals through 
homotypic binding of the cadherin domains that are asym-
metrically associated with core components of the pla-
nar cell polarity (PCP) pathway  [88] . Flamingo-regulated 
PCP signaling represents a parallel pathway to Fat and 
Dachsous interactions discussed above. In the  Drosophila  
nervous system, Flamingo regulates patterning of axon 
projections from R8 photoreceptor cells to the medulla 
 [89]  and dendritic tiling of peripheral neurons, the restric-
tion of dendrites within boundaries complementary to the 

fields occupied by dendrites from other neurons  [90] . In 
vertebrates, three seven-pass transmembrane cadherins, 
Celsr1, Celsr2, and Celsr3, are known. Celsr 2 confers 
dendritic maturation  [91] , and Celsr3 affects development 
of specific axon tracts  [92] . The mechanism of Celsr func-
tions remains elusive; however, Celsr 3 and frizzled 3 are 
co-expressed by certain neurons and positioned to act in 
concert similar to their functions in the  Drosophila  wing.  

    Protein Kinase Cadherins 

 The   protein kinase cadherins are represented by Ret, which 
consists of four cadherin-like domains and an intracellular 
kinase region        [93, 94] . Ret is part of a tripartite receptor 
complex that is activated by interactions with neurotrophic 
factors of the glial cell line-derived neurotrophic factor 
(GDNF) family. GDNF induces or stabilizes a complex 
between Ret and GPI-linked alpha receptors (GFR alpha 
1 – 4), resulting in dimerization and activation of the Ret 
kinase  [95] . Mutagenesis studies have shown that Ret, 
GFR alpha 1, and GDNF affect multiple developmental 
events, including development of the enteric nervous sys-
tem affected in Hirschsprung’s disease          [96 – 98] .  

    Atypical Cadherins 

 Several   atypical cadherins, such as Ksp-cadherin (Cdh16), 
LI-cadherin (Cdh17), and T-cadherin (Cdh13), each repre-
sent a phylogenetically singular cadherin branch that shares 
the ectodomain structure with the classical cadherins but has 
either a short or no cytoplasmic domain  [9] . T-cadherin (T for 
 “ truncated ” ) is anchored in the membrane through a glycosyl-
phophatidyl inositol moiety  [99] . In cellular adhesion assays, 
T-cadherin confers calcium-dependent homotypic interactions 
 [100] ; this interaction leads to repulsion of extending neuro-
nal processes  in vitro  and  in vivo         [101, 102] . T-cadherin is 
also prominent in the vasculature, and analyses of mice with 
the systemic null mutation have identified pro-angiogenic 
 in vivo  functions for T-cadherin that seem to depend on bind-
ing the circulating adipokine adiponectin  [103] . 

 Clearly  , the size and diversity of the cadherin family is 
extensive, and many of the principal mechanisms of non-
classical cadherin function remain to be elucidated. On the 
other hand, research into the regulation of classical cad-
herin function has brought to light complex regulation and 
molecular interactions. The second part of this chapter dis-
cusses principle mechanisms of classical cadherin function.    

    CADHERIN STRUCTURE – FUNCTION 
RELATIONSHIPS 

 Proper   folding and formation of the active binding con-
figuration of classical cadherins requires calcium  [104] , 
and mutation of one of these sites in E-cadherin, abolishes 
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cadherin-mediated adhesion  [105] . Calcium binding sites 
are located between adjacent cadherin domains within the 
same molecule. Without calcium, E-cadherin appears col-
lapsed and disorganized by rotary shadowing and electron 
microscopy, while calcium at low concentrations (50        μ M) 
enforces the formation of rigid rod-like structures        [106, 
107] . A further increase in calcium concentration (500        μ M) 
supports  cis  association of adjacent cadherin extracellular 
domains, and concentrations above 1       mM drive  trans  inter-
actions between opposing  cis  strand dimers          [107 – 109] . 
 Trans  dimer configuration leads to strong adhesive forces 
between cadherin extracellular domains  [110] . Cadherins 
undergo both homodimer (between the same cadherin type) 
and heterodimer formation (between different cadherin 
types)  [111] . Thus, calcium is required on all levels of cad-
herin function, and enables the formation of rigid cadherin 
EC domains, dimerization in  cis , and interdigitatation with 
dimers on opposing cell surfaces. 

 Structural   studies of the type I cadherin amino termi-
nal domain revealed a  β  - strand organization similar to the 
immunoglobulin fold        [112, 113] . One key feature common 
to both type I and type II classical cadherins is the intermo-
lecular exchange of N-terminal  β -strands between corre-
sponding EC1 domains, also referred to as  “ domain swap ”  
         [30, 39, 113] . The binding interface differs between type 
I and type II cadherins. In the type I dimerized structure, 
the terminal tryptophan, Trp-2, of EC1 domain interacts 
with Alanine in position 80 (Ala-80), within the hydropho-
bic acceptor pouch formed around the HAV sequence              [38, 
111, 114 – 116] . The binding interface of type II classical 
cadherins shows two conserved tryptophan side-chains that 
anchor each swapped domain strand, and a large hydropho-
bic pocket unique to the type II interfaces        [39, 40] . 

 Several   experimental approaches provide evidence that 
cadherins engage multiple binding sites along the extracel-
lular domain to confer adhesion. First, biophysical studies 
demonstrate that the distance between opposing cadherin-
covered lipid bilayers (250        Å ) corresponds to the length of 
the cadherin extracellular domain        [117, 118] . Force applica-
tion results in the stepwise increase of the intermolecular dis-
tance between cadherin molecules, and suggests additional 
binding sites along the molecule        [117, 118] . Second, anal-
yses of the binding properties of C-cadherin domain con-
structs show that the highest homophilic binding activity is 
conferred by the entire extracellular domain, while domain 1 
polypeptides exhibit only low binding activity  [119] . Third, 
the crystal structure of the full C-cadherin ectodomain dis-
plays  cis  and  trans  association of the CD1 domain ,with 
multiple sites along the cadherin extracellular domain  [38] . 

 The   cumulative structural and biophysical data probing 
cadherin structure – function relationships lead to a model in 
which adhesion occurs in multiple steps ( Figure 5.2   ): cad-
herins undergo  cis  dimerization, which is a prerequisite for 
subsequent engagement of  cis  dimers with their dimerized 
counterparts on opposing cell surfaces. The structural data 

present a snapshot view of interactions between oppos-
ing EC1 domains. The biophysical data support a model in 
which cadherin-mediated adhesion is dynamic in strength 
and strongest upon full interdigitation of the entire EC 
domains. Cadherin interactions  in vivo  may be more complex 
than in these simplified experimental models. Their biophys-
ical properties may differ as they traverse the lipid bilayer 
of the plasma membrane, and association with neighboring 
proteins may result in structural modifications. Indeed, cad-
herins at cellular adherens junctions cross-communicate with 
another adhesion system, the actin-linked nectin – afadin 
complex        [120, 121] . Studies into the molecular and struc-
tural interactions between these combinatorially expressed 

 FIGURE 5.2          Stages of cadherin-mediated adhesive interactions.  
    Cadherin monomers associate into strand dimers that subsequently engage 
with  cis  dimers from opposing cell surfaces. Initial interactions may occur 
between the opposing amino terminal domains. Under favorable condi-
tions, the adhesive bonds tighten and the cadherin extracellular domains 
fully interdigitate to bring adjacent cell surfaces into close contact.    
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protein complexes may reveal new insights into adherens 
junction assembly and function.  

    MULTIPLE MODES FOR REGULATING 
CADHERIN ADHESIVE ACTIVITY 

 The   manifold cadherin functions in development and disease 
require a highly dynamic regulation of cadherin expression 
and function. In embryonic germlayers and epithelial struc-
tures, cadherins are engaged at adherens junctions intercon-
necting adjacent cells. The broadly accepted view is that 
cadherin clusters at cell junctions link the cadherins via asso-
ciated  β - and  α -catenin to the filamentous actin cytoskeleton 
       [122, 123] . Data from the Nelson and Weiss laboratories 
have challenged this model, and provide a new perspective 
on the regulation of cadherin-mediated adhesion        [124, 125] . 
Cell migration requires the loosening of adhesive bonds, 
which is often accompanied by a switch in cadherin func-
tion. How do cadherins support migratory behavior? Studies 
show that cadherin functions are regulated at multiple levels, 
including gene transcription, proteolysis, endocytosis, and 
association with intracellular proteins. The highly conserved 
cytoplasmic domain of classical cadherins provides selective 
target sites for regulating cadherin functions and thus adhe-
sive cell properties ( Figure 5.3   ). 

    Association With Intracellular Proteins 

     α - and  β -Catenin 

 Classical   cadherins display their most adhesive configuration 
as components of adherens junction in epithelial cells        [126, 
127] . They directly interact with several cytoplasmic pro-
teins, including the amadillo-repeat proteins  β -catenin and 
its close relative plakoglobin. The availability of  β -catenin, 
its posttranslational modifications and its intracellular 
associations are central to the regulation of cadherin-based 
adhesive activity. Classical cadherins display a highly con-
served binding site for  β -catenin at the extreme carboxy 
terminal region of the cadherin cytoplasmic domain  [104] . 
 β -catenin is a central signaling molecule that associates in 
a mutually exclusive manner with the cadherin cytoplas-
mic domain to regulate adhesion or with components of 
the Wnt signaling pathway to regulate transcription                [43, 
128 – 132] . Unbound  β -catenin is ubiquitinated and tar-
geted for degradation though the proteosome ( Figure 5.3 ). 
 β -catenin also binds to  α -catenin, an actin-binding protein 
distantly related to the focal adhesion plaque protein vincu-
lin. Biochemical work identified E-cadherin,  β -catenin, and 
 α -catenin in a roughly stoichoimetric manner in a complex 
resistant to harsh detergent conditions, suggesting strong 
interactions  [133] . Moreover, there is genetic evidence that 
adherens junctions and the underlying cortical actin belt are 
interdependent        [134, 135] . Combined, these data have led to 
the prevailing view that transmembrane classical cadherins 

bind to  β -catenin, which in turn associates with  α -catenin 
and links the complex to the actin-based cytoskeleton. 
However, more recent studies have challenged this model 
       [124, 125] . Biochemical data confirm the association of 
cadherin,  α - and  β -catenin in a complex, but in association 
with the cadherin- β -catenin complex,  α -catenin does not 
simultaneously bind to actin filaments        [124, 125] . Instead, 
 α -catenin seems to regulate actin dynamics        [136, 137] . 
Monomeric  α -catenin preferentially binds  β -catenin, while 
dimerized  α -catenin interacts with F-actin and suppresses 
actin filament branching by inhibiting the activity of the 
Arp2/3 complex. These findings now raise the question 
how cadherins connect to the actin cytoskeleton. Various 
possibilities are discussed, including the direct link via 
 α -catenin-interacting proteins (such as  α -actinin, vinculin, 
afadin, ZO1, ajuba, formin), or connection via other junc-
tion proteins such as the nectin – afadin complex. Another 
possibility is the concerted action with other adherens junc-
tion proteins that together achieve the connection with the 
cytoskeleton. Certainly, this work on cadherin functions 
has raised new questions that need to be addressed. 

 Classical   cadherin function is critically regulated by the 
available  β -catenin pool and,  vice versa , limitation of cad-
herin binding sites for intracellular  β -catenin leads to accu-
mulation of free  β -catenin that is rapidly degraded.  β -catenin 
association with a large protein complex (APC complex) 
containing the adenomatous polyposis coli (APC) tumor 
suppressor gene product, axin, conductin, and the glyco-
gen synthase kinase-3 ( Figure 5.3 ) leads to phosphoryla-
tion, ubiquitination, and targeting for degradation by the 26S 
proteosome  [138] . An effective way to counteract  β -catenin 
phosphorylation and degradation is activation of the Wnt 
signaling pathway. Wnts play an important role in cell fate 
determination during embryonic development and in can-
cers        [138, 139] , but functions of many Wnt proteins remain 
unexplored. Wnt-binding to a receptor of the Frizzled fam-
ily antagonizes  β -catenin phosphorylation and degradation. 
Free unphosphorylated  β -catenin can bind to unoccupied 
cadherin cytoplasmic domains and enforce adhesive inter-
actions through regulating cytoskeletal dynamics. When the 
free  β -catenin pool exceeds the number of available cadherin 
binding sites, it accumulates in the nucleus, where it interacts 
with DNA binding proteins of the T cell factor (TCF)/lym-
phoid enhancer binding factor (LEF) family.  β -catenin bind-
ing to TCF/LEF transcription factors enhances expression of 
genes that, for example, switch cellular functions by regulat-
ing the cell cycle  [138] . Thus,  β -catenin both enforces the 
strength of cadherin-mediated adhesion and acts as a molecu-
lar switch for regulating cell functions.  

    Cadherin Association With Growth 
Factor Receptors 

 Classical   cadherins can alternatively associate with growth 
factor receptors and associated signaling pathways to promote 
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migratory cell behavior. During epithelial – mesenchymal 
transition in tumorigenesis, epithelial cells often substitute 
junctional E-cadherin with another cadherin that integrates 
different signal transduction pathways and allows loosen-
ing of adhesive interactions, detachment, and migration 
 [140] . Similarly, downregulation of N-cadherin is required 
for neural crest migration  [141] . Growth cone movements 
during N-cadherin-mediated neurite extension  in vitro  
       [142, 143]  and axon guidance  in vivo         [144, 145]  require 

low-stringency adhesive interactions. Cadherin-mediated 
migratory behavior results from a switch in cadherin asso-
ciation and signaling. N-cadherin associates through binding 
sites in extracellular domain 4 with the HAV motif in fibrob-
last growth factor (FGF) receptor 1 to prevent FGF-induced 
receptor internalization  [146] . In the presence of N-cadherin, 
FGF-2 binding to its receptor results in sustained activation 
of the MAPK – Erk pathway, which in turn leads to activation 
of metalloprotease transcription and cell migration  [147] .  

 FIGURE 5.3          Association of classical cadherins with intracellular signaling pathways.  
    The conserved cytoplasmic region of the classical cadherins interacts with multiple proteins to regulate adhesion. The association of the cadherin cyto-
plasmic region with  β -catenin and  α -catenin is critical for regulating actin dynamics. Receptor protein kinases (RTKs), receptor tyrosine phosphatases 
(RPTPs), and intracellular phosphatases (PTPs) balance cadherin,  β -catenin, and p120ctn phosphorylation. PS1, presenilin-1;  β cat,  β -catenin;  α -cat, 
 α -catenin; RPTP μ , receptor tyrosine phosphatase  μ .    
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    p120 Catenins and Rho Family GTPases 

 An   earlier study  [148]  attributed functional importance to the 
cadherin membrane proximal cytoplasmic domain, and it has 
now become clear that this site is the target for complex regu-
lation of cadherin-mediated adhesivity  [149] . The membrane 
proximal cadherin cytoplasmic region contains the binding 
site for the amadillo repeat protein p120 catenins (p120ctn), 
a family of four proteins  –  ARVCF,  δ -catenin, p0071, 
and p120 catenin  –  that structurally differ from  β -catenin 
in the number of amadillo repeats  [150] . p120ctn is an 
important regulator of adherens junction assembly and dis-
assembly. Like  β -catenin, p120ctn undergoes diverse inter-
actions in a pool-specific manner. At the cytoplasmic face 
of the cell membrane, p120ctn associates with the cadherin 
cyoplasmic domain and regulates Rho-GTPase activity. In 
the nucleus it associates with Kaiso to repress transcription. 
p120ctn  per se  seems dispensable for adhesive interactions, 
but is thought to act as a molecular switch to promote or 
prevent adhesion, depending on its state of phosphorylation 
             [149, 151 – 154] . First, p120ctn regulates cadherin stability on 
the cell surface by controlling endocytosis and degradation 
         [155 – 157] . It is speculated that p120ctn occupation of the 
cadherin membrane-proximal domain competes with pro-
teins that target cadherins for degradation. A possible candi-
date for p120ctn competition is the ubiquitin E3 ligase Hakai 
that binds specifically to E-cadherin upon tyrosine phos-
phorylation by Src, and targets it to the proteosome  [158] . 
Hakai is specific for E-cadherin, thus Hakai-like E3-
ligases may regulate degradation of other classical cadher-
ins. Second, p120ctn binding is essential for maintaining 
the association of  β -catenin with the cadherin cytoplasmic 
region. The tyrosine kinase Fer associates with p120ctn to 
phosphorylate and activate the tyrosine phosphatase PTP1B 
that binds and dephosphorylates  β -catenin at tyrosine 654. 
 β -catenin associates with the cadherin cytoplasmic region 
only in the dephosphorylated state  [159] . Third, p120ctn 
associates with microtubules and kinesin motor proteins to 
partake in regulating cadherin trafficking and thus expression 
on the cell surface        [160, 161] . 

 Lastly  , p120ctn functions at least in part through reg-
ulation of RhoGTPases. The small GTPases Rac, Rho, 
and Cdc42 are well known for regulating and specifying 
membrane interactions with cortical actin filaments  [162] . 
p120ctn inhibits RhoA and activates Rac and Cdc42 to 
increase or decrease cell motility            [163 – 166] . IQGAP1, 
an effector of the Rho family GTPases Rac and Cdc42 
can modify the association of the cadherin cytoplasmic 
region with  α -catenin        [167, 168] . At cell-to-cell contact 
sites, IQGAP1 associates with active GTP-bound Rac and 
Cdc42 that prohibits binding to  β -catenin. In their inac-
tive GDP-bound form, Rac and Cdc42 do not associate 
with IQGAP1, which is then free for binding  β -catenin 
and for dissociating the cadherin –  β -catenin complex from 
 α -catenin and the actin cytoskeleton, thereby downregulat-
ing adhesivity  [166] . The association of  β -catenin with the 

cadherin cytoplasmic domain is also affected by the G α  
subunit of heterotrimeric G proteins. Binding of activated 
GTP-bound G α 12/13 to the cadherin cytoplasmic region 
dissociates  β -catenin from the complex and negates adhe-
sive interactions        [169, 170] . These and other studies pro-
vide evidence that cadherin-mediated adhesive interactions 
are controlled by multiple mechanisms that converge on 
regulating cadherin stability through  β -catenin.   

    Phosphorylation and Dephosphorylation of 
Cadherins and  β -Catenin 

 Structural   studies of the interacting E-cadherin- β -catenin 
domains reveal that adoption of structural conformation of the 
cadherin cytoplasmic domain depends on  β -catenin associa-
tion and cadherin phosphorylation on serine residues  [171] . 
The cadherin cytoplasmic region displays serine phosphor-
ylation consensus sites for casein kinase II and glycogen syn-
thase  β 3. Serine phosphorylation strengthens the association 
between the cadherin cytoplasmic region and  β -catenin, and 
fortifies adhesion  [172] . In contrast, tyrosine phosphorylation 
dramatically decreases binding between these proteins and 
weakens adhesive bonds          [173 – 175] . Both non-receptor and 
receptor protein type kinases regulate phosphorylation of the 
cadherin cytoplasmic tail and  β -catenin. Overexpression of 
the non-receptor tyrosine kinases Src or Fer in cultured cells 
promote tyrosine phosphorylation of cadherins and  β -catenin 
         [173, 176, 177]  and decrease adhesive interactions in favor 
of a motile phenotype. Interestingly, in cancer cells, the lipid 
phosphatase activity of PTEN can counteract Src-induced 
cell scattering and invasiveness and stabilize the E-cadherin 
junctional complex through a yet unknown mechanism  [178] . 
Similarly, E-cadherin and  β -catenin tyrosine phosphoryla-
tion by receptor protein kinase type growth factor receptors 
results in cell scattering        [179, 180] . Tyrosine-phosphorylated 
cadherin binds the adaptor protein Shc, which participates 
in stimulating mitogenic signaling pathways by growth fac-
tor activation of Ras  [181] . Thus, cadherin function is con-
trolled by multiple cell signaling pathways that regulate the 
availability of cadherins on the call surface and balance the 
cadherin association with  β -catenin and hence its interactions 
with the cytoskeleton. 

 Formation   of the cadherin – catenin complex is fur-
ther fine-tuned by the balance between protein kinase and 
phosphatase activity. Several phosphatases associate with 
and stabilize the cadherin –  β -catenin complex and prevent 
undesired phosphorylation. The non-receptor type phos-
phatase PTP1B is targeted to the cadherin complex, where 
it interacts with sequences partially overlapping with the 
binding site for  β -catenin  [182] . The receptor protein tyro-
sine phosphatase  μ  (PTP μ ) interacts with multiple cadher-
ins  [183]  and dynamically regulates its association with the 
cadherin cytoplasmic region through IQGAP1 and Cdc42 
       [184, 185] . Downregulation of either PTP1B or PTP μ  sup-
presses N-cadherin-mediated neurite extension        [186, 187] . 
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Other phosphatases, including LAR, receptor tyrosine 
phosphatase  β / ζ , and the Meprin/A5/Mu domain recep-
tors  κ  and  γ , do not associate directly with cadherins, but 
appear to regulate cadherin function through  β -catenin 
modifications.  

    Regulation by Proteolytic Cleavage 

 An   effective strategy for regulating cadherin activity is 
their cleavage by extracellular and intracellular proteases. 
Mature classical cadherins are derived from precursor 
proteins that are cleaved at the RKQR sequence in transit 
to or at the cell surface  [188] . Prevention of proteolytic 
processing through mutation of the cleavage site abolishes 
the adhesive functions of E-cadherin  [188] . The propro-
tein convertase furin is suggested to mediate the proprotein 
cleavage of E-cadherin  [189] . 

 Metalloproteases   cleave the cadherin extracellular 
domain. The cleaved extracellular fragment of N-cadherin 
generated during retinal development is thought to partake 
in modulating retinal axon guidance        [190, 191] . Numerous 
studies associate the loss of E-cadherin with tumor cell 
growth and metastasis  [192] . E-cadherin is proteolytically 
cleaved in non-cancerous mammary epithelial cells by ectop-
ically expressed metalloprotease stromelysin-1  [193] . The 
cleavage triggers the progressive conversion of the epithelial 
into a mesenchymal invasive phenotype characterized by the 
disappearance of E-cadherin and  β -catenin from cell – cell 
contacts and activation of growth factors and metallopro-
teases  [193] . Stromolysin, however, could not be detected in 
cancer cells or the embryo, and the tissue endogenous metal-
loproteases cleaving E-cadherin  [194]  remain to be defined. 
Adam family disintegrins and metalloprotease cleave cad-
herins in their extracellular domain causing changes in adhe-
sion, cell migration and  β -catenin translocation to the nucleus 
 [195] . In endothelial cells, Adam 10 cleaves vascular VE-
cadherin, thereby loosening endothelial cell interactions and 
allowing transcytosis of inflammatory cells  [196] . 

 Cellular   responses to apoptotic signals are characterized 
by the disruption of cell-to-cell and cell-to-extracellular 
matrix contacts and cytoskeletal reorganization. During 
programmed cell death, adherens junctions disintegrate 
through the actions of both metalloproteases and cas-
pases on cadherin and  β -catenin/plakoglobin molecules 
       [197, 198] . A metalloprotease activity releases most of the 
E-cadherin extracellular domain, while caspase-3 cleaves at 
an intracellular membrane proximal site  [197] . These data 
enforce the view that cadherin structural integrity, assem-
bly within adherens junctions and linkage to the actin fila-
ment network are critical for cell survival  [41] . 

 Lastly  , in response to apoptotic stimuli, the  γ -secretase 
activity of presenilin-1, a protein associated with Alzheimer’s 
disease, can cleave E-cadherin at the membrane – cytoplasm 
interface  [199] . This releases the cadherin intracellular 
domain, increases the intracellular pool of  β -catenin, and 

facilitates the disassembly of adherens junctions by discon-
necting cadherins from the cytoskeleton. However, under 
conditions that favor cell-to-cell adhesion, presenilin-1 bind-
ing stabilizes the junctional complex  [200] . Such dual func-
tions have also been reported for p120ctn that competes for 
the presenilin-1 binding site on E-cadherin in a mutually 
exclusive manner  [200] . Presenilin-1 also affects  β -catenin 
function and trafficking, thereby providing an additional 
mechanism for regulating cadherin functions in cell adhe-
sion          [201 – 203] . As presenilin-1 is recruited to sites of syn-
aptic contact  [204] , and synaptic morphology and function 
are regulated by the cadherin – catenin system          [25, 26, 205] , 
the cadherin – catenin – presenilin-1 interaction may favor the 
loss of synaptic structures at an early stage of Alzheimer’s 
disease and increase vulnerability to neuronal apoptosis.   

    CONCLUSIONS AND PERSPECTIVES 

 It   is now clear that adhesive functions of classical cadherins 
are dynamically regulated. While beginning to grasp some 
of the principal mechanisms of this regulation, we are faced 
with new challenges. First, a large number of new cadherin-
like molecules with cytoplasmic sequences different from 
those of the classical cadherins have been revealed. Little is 
known about the distribution, function, and modes of sign-
aling of these molecules. Second, recent work suggests that 
cadherins may be far more promiscuous in their binding spe-
cificities than previously assumed  [206] . N-cadherin-deficient 
mutant mice die of defects in heart development  [34] , but 
this phenotype can be rescued by the cardiac specific ectopic 
expression of E-cadherin  [207]  suggesting that cadherin-
mediated adhesion but not adhesive specificity is required. 
Moreover, cells express multiple cadherins. Cadherin func-
tion is required for the sorting of motor neurons into specific 
pools which are defined by the combinatorial expression of 
multiple cadherins  [42] . Overexpression of the type II MN 
cadherin disrupts pool sorting. Although the mechanism for 
MN-cadherin function remains to be determined, available 
evidence suggests that cadherin homophilic binding activity 
is not required  [42] . Thus, other mechanisms will need to 
explain the functions of the type II cadherins in this context. 
The identification of multiple molecular interactions has 
made clear that regulation of cadherin functions is multi-
faceted. The diversity and magnitude of the cadherin family 
adds a new level of complexity to the cellular interactions 
conferred by the combinatorial cadherin expression during 
development and in adult organisms.  
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    INTRODUCTION 

 The   transmembrane signaling system, which uses heter-
otrimeric G proteins to couple heptahelical receptors to 
various effectors, operates in all cells of the mammalian 
organism and is involved in many physiological and patho-
logical processes  [1] . The main properties of individual G 
proteins are determined by the identity of their  α  subunits. 
To elucidate the role of G-protein-mediated signaling proc-
esses in the intact mammalian organism, almost all known 
genes encoding G-protein  α  subunits have been inactivated 
by gene targeting in mice ( Table 6.1   ). Also, several mouse 
lines have been reported carrying targeted mutations of 
G β - or G γ -genes. This short review summarizes the main 
phenotypical changes observed in mice lacking G-protein 
 α  subunits.  

    DEVELOPMENT 

 Various   G α -deficient mouse models have pointed to the 
involvement of G-protein-mediated signaling pathways 
in certain developmental processes. For example, lack of 
G α  13  results in embryonic lethality at about mid-gestation 
due to a defect in angiogenesis  [2] , which most likely is 
due to the lack of G α  13  in embryonic endothelial cells  [3] . 
Mice deficient in both G α  q  and G α  11  suffer from a defect 
in heart development and die  in utero  (see below). In addi-
tion, signaling through G q  class members has also been 
implicated in the proliferation and/or migration of cranio-
facial neural crest cells          [4 – 6] . The complete loss of G α  s  in 
mice homozygous for an inactivating G α  s  mutation leads 
to embryonic lethality before embryonic day 10  [7] . It is 
interesting that heterozygotes show varying phenotypes 

depending on the paternal origin of the intact allele; these 
are probably caused by genetic haploinsufficiency and/or 
tissue-specific imprinting of the maternal G α  s  allele        [8, 9] .  

    CENTRAL NERVOUS SYSTEM 

 In   the central nervous system (CNS), many mediators and 
neurotransmitters function through G-protein-coupled 
receptors to modulate neuronal activity or morphology. 
Neurotransmitters that induce an inhibitory modulation 
typically act on receptors that are coupled to members of 
the G i/o  family, whereas G q  and G s  family members are pri-
marily involved in excitatory responses. 

 The   G-protein G o  is highly abundant in the mammalian 
nervous system, and has been shown to mediate inhibition 
of neuronal (N-, P/Q-, R-type) voltage-dependent Ca 2 +   
channels via its  β  γ -complex, thereby reducing the excitabil-
ity of the cell. G α  o -deficient mice suffer from tremors and 
have occasional seizures        [10, 11] . In addition, G α  o -deficient 
mice appear to be hyperalgesic when tested in the hot plate 
assay  [10] . The latter finding is consistent with the obser-
vation that opioid receptor-mediated inhibition of Ca 2+  
currents in dorsal root ganglia (DRG) from G α  o -deficient 
animals was reduced by about 30 percent compared to 
those in wild-type DRGs  [10] . 

 G   z , a member of the G i/o -family of G proteins, shares 
with G i1 , G i2 , and G i3  the ability to inhibit adenylyl cyclases 
but has a rather limited pattern of expression, being found 
in brain, adrenal medulla, and platelets. G α  z -deficient mice 
exhibit altered responses to a variety of psychoactive drugs. 
Cocaine-induced increases in locomotor activity were more 
pronounced, and short-term antinociceptive effects of mor-
phine were altered        [12, 13] . In addition, behavioral effects 

 Chapter 6 
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 TABLE 6.1          Phenotypical changes in mice lacking a-subunits of heterotrimeric G-proteins  

   Class/type  Gene  Expression  Effector(s)  Phenotype  Reference 

   G α  s  class           

   G α  s   1     Gnas   Ubiquitous  AC (all types)  ↑   Embryonic lethal  4     [7]  

           Osteoblast-restricted: reduced 
bone turnover 

  [44]  

           Chondrocyte-restricted: epiphyseal and 
growth plate abnormalities 

  [45]  

           Hepatocyte-restricted: increased 
glucose tolerance 

  [46]  

           Juxtaglomerular cell restricted: 
reduced renin formation 

  [47]  

           Pancreatic  β  cells: 
reduced  β  cell mass, diabetes 

  [48]  

           Hematopoietic system: defective 
engraftment of haematopoietic 
stem cells in bone 
marrow 

  [49]  

   G α  sXL    (GnasXL)   Neuroendocrine  AC  ↑   Perinatal lethal         [50, 51]  

   G α  olf    Gnal   Olfactory 
epithelium, brain 

 AC  ↑   Anosmia, hyperactivity   [14]  

   G α  i/o  class           

   G α  i1    Gnai1   Widely distributed  AC  ↓   5    Impaired memory 
formation 

  [52]  

   G α  i2    Gnai2   Ubiquitous    Inflammatory bowel 
disease 

          [22, 23, 
53]  

   G α  i3    Gnai3   Widely distributed    Lack of anti-autophagic action 
of insulin 

  [54]  

   G α  o   2     Gnao   Neuronal, 
neuroendocrine 

 VDCC ↓ , GIRK ↑   6    Various CNS defects             [10, 11, 
33, 55]  

   G α  z    Gnaz   Neuronal, platelets  AC (e.g. V,VI)  ↓   Viable, increased 
bleeding time 

        [12, 13]  

   G α  gust    Gnat3   Taste cells, brush 
cells 

 PDE  ↑ ?  Impaired bitter and 
sweet sensation 

  [34]  

   G α  t-r    Gnat1   Retinal rods, taste 
cells 

 PDE 6 (rod)  ↑   Mild retinal 
degeneration 

  [32]  

   G α  t-c    Gnat2   Retinal cones  PDE 6 (cone)  ↑   Achromatopsia   [56]  

   G α  i1  � G α  i3         Viable, immunological defects   [57]  

   G α  i2  � G α  i3         Lethal  9     [54]  

   G α  q/11  class           

   G α  q    Gnaq   Ubiquitous  PLC- β 1-4  ↑   Ataxia, defective 
platelet activation 

        [18, 38]  

   G α  11    Gna11   Almost ubiquitous  PLC- β 1-4  ↑   No obvious phenotype 
seen so far 

  [6]  

   G α  14    Gna14   Kidney, lung, spleen  PLC- β 1-4  ↑   No obvious phenotype 
seen so far  10   

  

   G α  15    Gna15   3    Hematopoietic cells  PLC- β 1-4  ↑   No obvious phenotype 
seen so far 

  [58]  

   G α  q  � G α  11         Myocardial hypoplasia (lethal e11)   [6]  
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of catecholamine reuptake inhibitors were abolished in 
G α  z -deficient mice  [13] , indicating that G z  is involved in 
signaling processes regulated by various neurotransmitters. 

 G   α  olf  is expressed in various regions of the CNS, includ-
ing olfactory sensory neurons and basal ganglia. G α  olf -
deficient mice exhibit clear motoric abnormalities such as 
hypermotoric behavior  [14] . Recent data indicate that G olf  
is critically involved in dopamin(D 1 )- and adenosine(A 2A )-
receptor-mediated effects in the striatum        [15, 16] . 

 The   two main members of the G q  family, G q  and G 11 , are 
widely expressed in the central nervous system. Mice lacking 
G α  q  develop an ataxia with clear signs of motor coordination 
deficits, and functional defects could be observed in the cere-
bellar cortex of G α  q -deficient mice        [17, 18] . In addition, lack 
of G α  q  resulted in defective cerebellar and hippocampal long-
term depression        [19, 20] , and loss of both, G α  q  and G α  11  in 
principal neurons of the forebrain leads to a decreased on-
demand formation of endocannabinoids and epilepsy  [21] .  

   Class/type  Gene  Expression  Effector(s)  Phenotype  Reference 

           Cardiomyocyte-
restricted: pressure 
overload induced hypertrophy  ↓  

  [27]  

           Nervous system-
restricted: perinatal lethal 

  [59]  

           Neural crest-restricted: 
craniofacial defects 

  [4]  

           Forebrain-restricted: abnormal mothering 
behaviors; epilepsy, impaired endo-
cannabinoid formation 

        [60, 61]  

           Parathyroid-restricted: hypercalcemia, 
hyperparathyroidism 

  [21]  

           Thyrocyte-restricted: impaired thyroid 
function and goiter development 

  [62]  

           Smooth muscle-restricted: hypotension, 
salt-dependent hypertension  ↓  

  [63]  

           Endothelial cell restricted: protection 
against anaphylactic shock 

  [30]  

   G α  12/13  class           

   G α  12    Gna12   Ubiquitous  RhoGEF  7    No obvious phenotype seen so far   [64]  

   G α  13    Gna13   Ubiquitous  RhoGEF  8    Defective angiogenesis (lethal e9.5)   [2]  

           Platelet-restricted : activation defect   [42]  

   G α  q  � G α  13         Severe platelet defect   [43]  

   G α  12  � G α  13         Embryonic lethal (e8.5)   [64]  

           Platelet-restricted : like  Gna13   � / �     [62]  

           Neural crest-restricted: cardiac defects   [4]  

           B-cell-restricted: lack of marginal zone 
B-cells 

        [24, 25]  

           Smooth muscle-restricted: salt-dependent 
hypertension  ↓  

  [63]  

           T cell-restricted: increased susceptibility 
towards T cell-mediated diseases 

  [26]  

  1  Several splice variants;  
  2  two splice variants;  
  3  human ortholog:  GNA16 ;  
  4  parent of origin specific defects in heterozygotes;  
  5  types I, III, V, VI, VIII, IX;  
  6   via  G β  γ ;  
  7  PDZ-RhoGEF/LARG � Btk, Gap1m, Cadherin;  
  8  p115RhoGEF, PDZ-RhoGEF/LARG � radixin;  
  9  L. Birnbaumer, M. Jiang, G. Boulay, K. Spicher (personal communication);  
  10  H. Jiang and M.I. Simon (personal communication); AC, adenylyl cyclase; PDE, phosphodiesterase; PLC, phospholipase C; GIRK, G-protein regulated 
inward rectifier potassium channel; VDCC, voltage-dependent Ca 2 �  -channel; RhoGEF, Rho guanine nucleotide exchange factor.  
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    IMMUNE SYSTEM 

 Mice   lacking G α  i2  develop a lethal, diffuse inflammatory 
bowel disease that resembles in many aspects ulcerative col-
itis in humans  [22] . In subsequent studies, dramatic changes 
in the phenotype and function of intestinal lymphocytes and 
epithelial cells have been described that are likely to be due 
to defective lymphocyte homing in enteric epithelia  [23] . 
On a cellular level, G i2  may be involved in the regulation 
of T cell function and trafficking. These processes are regu-
lated through chemoattractant and chemokine receptors that 
show a predominant coupling to G i -type G proteins. In addi-
tion to the colitis, many G α  i2 -deficient mice develop colonic 
adenocarcinomas, which are probably secondary to colonic 
inflammation  [22] . 

 Recently  , G 12 /G 13  have also been found to be involved 
in defined immunological functions. Mice lacking the  α  
subunits of G 12  and G 13  specifically in B cells lack a nor-
mal splenic marginal zone due to defects in marginal zone 
B cell migration  [24] . This defect may be based on a role 
of G 12 /G 13  in mediating the lysophospholipid-induced 
integrin activation of splenic B cells  [25] . Animals with 
T cell-specific G α  12 /G α  13  deficiency show altered T cell 
adhesiveness and mobility, resulting in increased suscepti-
bility towards T cell-mediated diseases  [26] .  

    HEART 

 The   G α  q /G α  11 -mediated signaling pathway appears to play 
a pivotal role in the regulation of physiological myocardial 
growth during embryogenesis. This is demonstrated by the 
phenotype of G α  q /G α  11  double-deficient mice that die at 
embryonic day 11 due to a severe thinning of the myocardial 
layer of the heart  [6] . Adult cardiomyocytes are terminally 
differentiated post-mitotic cells that respond to stimulatory 
signals with cell growth rather than proliferation. Myocardial 
hypertrophy in the adult heart following mechanical stress 
depends on G α  q /G α  11 -mediated signaling as demonstrated 
by the absence of a hypertrophic response in adult mice with 
cardiomyocyte-specific G α  q /G α  11  deficiency  [27] . 

 Inhibition   of L-type Ca 2+  channels in the heart through 
muscarinic M 2  receptors was found to be abrogated in 
hearts lacking G α  o  as well as G α  i2         [11, 28] . This unex-
pected finding suggests that both G proteins may regulate 
this downstream signaling event in a complex fashion. 

 Recently  , G proteins of the G q /G 11  and G 12 /G 13  family 
have been specifically deleted in endothelial cells and smooth 
muscle cells. Lack of G q /G 11 -mediated signaling in vascular 
smooth muscle cells resulted in a decrease in the basal blood 
pressure, whereas G 12 /G 13  deficiency was without effect. 
However, salt-induced hypertension was severely affected 
by both G α  q /G α  11  and G α  12 /G α  13  deficiency  [29] , indicat-
ing that the G q /G 11 -mediated signaling pathway in vascular 
smooth muscle cells is required for maintaining basal blood 

pressure, while both G q /G 11 - and G 12 /G 13 - mediated sig-
naling in vascular smooth muscle cells is required for salt-
dependent hypertension. Lack of G α  q /G α  11  or G α  12 /G α  13  
in endothelial cells did not have acute effects on the blood 
pressure. However, most of the acute effects of inflammatory 
and anaphylactic mediators on the vessel wall were absent 
in endothelial cell-specific G α  q /G α  11 -deficient mice which 
were also protected against the deleterious effects of severel 
systemic anaphylactic reactions  [30] .  

    SENSORY SYSTEMS 

 Odors  , light, and many tastants act directly on G-protein-
coupled receptors. The G protein G olf  is centrally involved 
in the transduction of odorant stimuli in olfactory cilia, and 
G α  olf -deficient mice exhibit dramatically reduced electro-
physiological responses to all odors tested  [14] . Since nurs-
ing and mothering behavior in rodents is mediated a great 
deal by the olfactory system, most G α  olf -deficient pups die 
a few days after birth due to insufficient feeding, and rarely 
survive their mothers ’  inadequate maternal behavior. In 
contrast to the olfactory epithelium, the vomeronasal organ, 
which detects pheromones, expresses receptors that are 
coupled to G i/o . Absence of G α  o  results in apoptotic death 
of receptor cells that usually express G α  o   [31] . 

 Rod  -transducin (G t � r ) and cone-transducin (G t � c ) play 
well-established roles in the phototransduction cascade in 
the outer segments of retinal rods and cones, where they 
couple light receptors to cGMP-phosphodiesterase. In mice 
lacking G α  t � r , the majority of retinal rods do not respond 
to light any more, and these animals develop mild retinal 
degeneration with age  [32] . The light response is trans-
ferred from the receptor cell to bipolar cells of the retina. 
In mice lacking G α  o , modulation of ON bipolar cells in 
response to light is abrogated, indicating that G o  is criti-
cally involved in the tonic inhibition of these cells medi-
ated by metabotropic glutamate (mGluR6) receptors  [33] . 

 Among   the four taste qualities  –  sweet, bitter, sour, and 
salty  –  bitter and sweet tastes appear to signal through heterot-
rimeric G-proteins. Gustducin is a G protein mainly expressed 
in taste cells, and G α  gust -deficient mice show impaired elec-
trophysiological and behavioral responses to bitter and sweet 
agents  [34] . The residual bitter- and sweet-taste responsive-
ness of G α  gust -deficient mice could be further diminished 
by a dominant-negative mutant of gustducin- α , suggesting 
the involvement of other G proteins related to G α  gust   [35] . 
Interestingly, recent evidence indicates that gustducin-mediated 
signaling is also involved in the regulation of various cells of 
the enteric epithelium        [36, 37] .  

    HEMOSTASIS 

 Hemostasis   is a complex process involving platelet adhe-
sion and aggregation as well as formation of fibrin through 
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the coagulation cascade. Platelet activation results in a rapid 
shape-change reaction immediately followed by secretion 
of granule contents, as well as inside-out activation of the 
fibrinogen receptor, integrin  α  IIb  β  3 , leading to platelet aggre-
gation. Most physiological platelet activators act through 
G-protein-coupled receptors, which in turn activate G i2/3 , 
G q , G 12 , and G 13 . In platelets from G α  q -deficient mice, the 
effect of various platelet stimuli on aggregation and degran-
ulation was abrogated, demonstrating that G α  q -mediated 
phospholipase C activation represents an essential event in 
platelet activation  [38] . However, platelet shape change can 
still be induced in the absence of G α  q , indicating that it is 
mediated by G proteins other than G q , most likely G 12 /G 13  
 [39] . The defective activation of G α  q -deficient platelets 
results in a primary hemostasis defect, and G α  q  ( � / � ) mice 
are protected against platelet-dependent thromboembolism. 

 The   role of G proteins of the G i/o  family in platelet acti-
vation has recently been elucidated. Platelets contain at least 
three members of this class: G i2 , G i3 , and G z . ADP, which is 
released from activated platelets and functions as a positive 
feedback mediator during platelet activation, induces plate-
let activation through the G q -coupled P2Y 1  receptor as well 
as through the G i -coupled P2Y 12  purinergic receptor. The 
general importance of the G i -mediated pathway is indicated 
by the fact that responses to ADP but also to thrombin were 
markedly reduced in platelets lacking G α  i2         [40, 41] . In con-
trast to ADP or thrombin, epinephrine is not a full platelet 
activator  per se  in murine platelets. However, it is able to 
potentiate the effect of other platelet stimuli. In platelets 
from G α  z -deficient mice, epinephrine’s potentiating effects 
were clearly impaired, while the effects of other platelet 
activators appeared to be unaffected by the lack of G α  z  
 [13] . Thus, members of the G-protein families G q , G 12 , and 
G i/o  are involved in processes leading to platelet activation. 

 Interestingly  , activation of platelets by various stimuli 
was severely inhibited in platelets lacking G α  13 , but not in 
G α  12 -deficient platelets  [42] . These defects were accom-
panied by a reduced activation of the RhoA-mediated 
signaling pathway as well as by an inability to form sta-
ble platelet thrombi under high sheer stress conditions. In 
addition, mice carrying G α  13 -deficient platelets have an 
increased bleeding time and are protected against the for-
mation of arterial thrombi  [42] . Various studies with G α -
deficient platelets have clearly shown that three G proteins 
are the major mediators of platelet activation: G q , G i2 , and 
G 13 . While in the absence of either G q , G i2 , or G 13  some 
platelet activation can still be induced, in the absence of 
both G α  q  and G α  13 , platelets are completely unresponsive 
to various stimuli  [43] .  

    CONCLUSIONS 

 Mouse   models lacking almost all known genes encoding 
G-protein  α  subunits have been generated, and they provide 

a first insight into the biological roles of G-protein-mediated 
signaling pathways. To overcome embryonic lethality or 
complex phenotypes of some G α -null mutations and to 
understand the degree of functional redundancy of closely 
related G proteins, researchers have begun to cross indi-
vidual mutants and to generate mouse lines that allow for 
the conditional inactivation of genes in a time- and tissue-
specific manner. These approaches will soon provide more 
detailed views on the functions of G-protein-mediated sig-
naling pathways in the developing and adult mammalian 
organism.   
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    INTRODUCTION 

 Chemotaxis   is the directed migration of cells in response to 
concentration gradients of extracellular signals. In unicel-
lular organisms, such as bacteria and amoebae, chemotaxis 
is frequently used as a foraging mechanism  [1] . In multi-
cellular organisms, it ensures that the right cells get to the 
right place at the right time during development, and plays 
an essential role in processes such as wound healing and 
inflammation        [2, 3] . Chemotaxis is also a contributing fac-
tor to many diseases. For example, metastatic cancer cells 
migrate toward stereotypic regions of the body that pro-
mote further growth, and the unregulated chemotaxis of 
immune cells can lead to inflammatory diseases such as 
asthma and arthritis. 

 Much   of our current understanding of chemotaxis-
signaling pathways through G-protein-coupled receptors 
(GPCRs) is derived from studies on the social amoeba, 
 Dictyostelium discoideum , and mammalian neutrophils (this 
term will be used to refer to both primary neutrophils and 
HL60s, a neutrophil-like cell line).  Dictyostelium  cells feed 
on microorganisms that they track down by chemotaxis 
towards secreted metabolites such as folic acid. More dra-
matic, however, is the response of this organism to starva-
tion. The individual amoebae aggregate and, through a series 
of morphogenetic changes and cell-fate choices, form mul-
ticellular structures containing spores that can survive star-
vation. The process of aggregation is directed by gradients 
of cAMP, and can easily be studied under physiologically 
relevant conditions using combined genetic, biochemical, 
and cell biological analyses  [1] . Neutrophils are impor-
tant cells of the immune system, and are most frequently 
studied in the context of chemotaxis to either formyl-Met-
Leu-Phe (fMLP) or chemokines  –   chemoattractants that reg-
ulate inflammation  in vivo . Neutrophils from knockout mice 
and cell lines that can be manipulated with retroviruses are 
available. As studies in these two systems have revealed 

many similarities, distinctions will only be made when dif-
ferences have been observed.  

    CHEMOTAXIS: MEMBRANE EXTENSIONS, 
DIRECTIONAL SENSING, AND 
POLARIZATION 

 Chemotaxis   can be thought of as the result of three sepa-
rate processes: membrane extensions, directional sens-
ing, and polarization        [2, 4] . Membrane extensions are the 
periodic pseudopods and blebs that cells make at regular 
intervals, and drive cell motility          [5 – 7] . In  Dictyostelium , 
membrane extensions can occur in cells lacking functional 
heterotrimeric G proteins  [8] . Neutrophils, though, are rela-
tively quiescent in the absence of ligand. Directional sens-
ing refers to the capacity of chemotactic cells to sense the 
direction of external gradients and localize proteins or reac-
tions towards or away from the high concentration. This 
process obviously requires receptor/G-protein signaling, 
but can occur when cell movement is inhibited. Polarization 
refers to the elongated cell morphology and the stable 
localization of molecules to the anterior and posterior poles 
that is acquired by neutrophils and starved  Dictyostelium  
cells during chemotaxis. Polarization depends on the 
cytoskeleton as well as chemoattractant receptor/G-protein 
signaling, but does not require a gradient.  

    CHEMOATTRACTANT SIGNALING 
REGULATES MULTIPLE DOWNSTREAM 
PATHWAYS 

 Recent   advances in our understanding of the molecular 
mechanisms that regulate chemotaxis have revealed the 
important and diverse roles played by G proteins        [9, 10] . 
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These studies not only highlight the critical function of G 
proteins as  “ molecular switches, ”  but also show how their 
signaling in the context of chemotactic signaling networks 
allows cells to translate the directional information of exter-
nal concentration gradients into directional movement. 

 Downstream   of GPCRs, many signal transduction 
events are initiated via heterotrimeric G proteins.  In vivo , 
chemoattractant binding triggers a rapid dissociation or 
rearrangement of G α  and G β  γ  subunits. Within seconds, 
this leads to activation of the small G proteins Ras, Rho, 
Rac, Cdc42 and Rap; the increase or decrease of the sec-
ond messengers phosphatidylinositol (3 � ,4 � ,5 � ) trisphos-
phate (PIP3), arachidonic acid, diacylglycerol (DAG), 
inositol trisphosphate (IP3), cAMP, cGMP, Ca 2 �   and 
H  �   ions; and stimulation of the kinases protein kinase A 
(PKA), protein kinase C (PKC), target of rapamycin (Tor), 
mitogen activated protein kinase (MAPK), protein kinase B 
(PKB), and a PKB-related kinase (PKB-R1). Interestingly, 
although the heterotrimeric G-protein complex is thought 
to remain dissociated as long as receptors are occupied, 
most of the downstream pathways are only transiently 
activated in response to a uniform stimulus and return to 

basal levels within a few minutes (see below)        [11, 12] . A 
key breakthrough in understanding how this signaling net-
work controls chemotactic migration was the finding that 
in a gradient, many responses are persistently activated and 
become asymmetrically localized and oriented according to 
the direction of the gradient ( Figure 7.1   )  [13] .  

    FRONT AND BACK SIGNALING 

 PIP3   was the first molecule found to have an asymmetric 
localization in a gradient, and has served as a model for 
understanding the temporal and spatial activation of chem-
otactic signal transduction pathways  [14] . In  Dictyostelium , 
the correct orientation of PIP3 in a gradient is achieved 
by the coordinated regulation of phosphatidylinositol-3 � -
kinase (PI3K) and phosphatase and tensin homolog deleted 
on chromosome 10 (PTEN)        [15, 16] . PI3K produces PIP3 
by phosphorylating the 3 � -hydroxl group of phosphatidyli-
nositol (4 � ,5 � ) bisphosphate (PIP2) and PTEN catalyzes the 
reverse reaction. In response to chemoattractant, PI3K is 
rapidly recruited from the cytosol to the plasma membrane, 

 FIGURE 7.1          Signaling at the front and back of chemotaxing amoebae.  
    Panels (a) and (b) illustrate some key signaling components that are localized to the front and back of migrating cells in a gradient of cAMP. At the front 
(a), cAMP binding to cAR1 results in PI3K recruitment, production of PIP3, PKBA translocation to the membrane, GTPase (such as Ras, Rap and Rac; 
gray ovals) activation, PKB phosphorylation (white stars) by TorC2, sGC activation and F-actin polymerization. These signaling events, as well as others 
(see text for an expanded list), are required for efficient chemotaxis. At the back (b), PI3K is cytosolic and PTEN is localized to the membrane where it 
degrades PIP3 to PIP2. In addition, Rho is activated (light gray oval) and cGMP regulates myosin II filament formation.    
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where it is likely activated by binding to Ras-GTP        [17, 18] . 
Conversely, PTEN is bound to the plasma membrane of 
resting cells and with stimulation it dissociates. In a uni-
form stimulus, the response is transient, as PI3K and PTEN 
return to their original locations after a few minutes. In a 
gradient, however, PI3K is persistently bound to the front 
and PTEN is restricted to the back, resulting in steady-
state PIP3 accumulation at the front ( Figure 7.1 ). Previous 
 studies have demonstrated that PIP3 can recruit proteins 
to the plasma membrane via pleckstrin homology (PH) 
domains, indicating that this may be a mechanism to local-
ize downstream effectors          [18 – 20] . 

 Recent   work has provided some insight into the mecha-
nisms of PI3K and PTEN localization in  Dictyostelium . 
The N-terminal domains from PI3K isoforms 1 and 2 are 
necessary and sufficient for cAMP-dependent membrane 
translocation        [15, 17] . Furthermore, this work has shown 
that PI3K also appears to localize to the membrane and in a 
narrow band adjacent to the membrane. Treating cells with 
latrunculin A, an inhibitor of actin polymerization, impairs 
localization, suggesting that PI3K recruitment to the cell 
cortex may depend on the cytoskeleton  [21] . For PTEN, it 
has been shown that the N-terminus contains an amphip-
athic  “ PIP2 binding motif, ”  and that this stretch of about 
15 amino acids is essential for membrane binding  [22] . A 
recent study suggests that signaling through phospholipase 
C (PLC), which degrades PIP2, may play a role in control-
ling PTEN localization. In  plc   �   cells, PTEN does not dis-
sociate from the membrane during stimulation, whereas 
in cells overexpressing PLC, PTEN is not associated with 
the membrane  [23] . Interestingly, some cAMP analogs, by 
coupling the receptor to different G α  proteins, can inhibit 
PLC and thereby act as repellents  [24] . 

 PIP3   also marks the front of neutrophils, suggesting that 
chemoattractant regulation of PIP3 metabolizing enzymes 
occurs in these cells. The recruitment of the PI3K γ  cata-
lytic subunit is dependent on the interaction with the p101 
regulatory subunit and is regulated by G β  γ  (coupled to G α  i ) 
and Ras        [25, 26] . In migrating neutrophils, PI3K γ  is found 
in a broad region at the leading edge. The requirement for 
binding to G β  γ  and Ras-GTP may further confine PI3K 
activity to an even narrower region. Compared with the 
 Dictyostelium  enzyme, less mammalian PTEN is associated 
with the plasma membrane, but its binding can be detected 
at the single molecule level by Total Internal Reflection 
Fluorescence (TIRF) microscopy  [27] . Membrane associa-
tion is essential for activity and depends on the conserved 
 “ PIP2 binding motif. ”  The C2 domain has also been impli-
cated in membrane binding as mutations in this domain 
have been found to inhibit lipid binding  in vitro   [28] . 
Other evidence suggests that phosphorylation and interac-
tions with binding proteins may be important for localiza-
tion. Mutating phosphorylated residues on the C-terminus 
to alanine is thought to favor an  “ open ”  conformation and 
strongly enhances membrane recruitment. The interaction of 

PTEN with several membrane proteins via its PDZ domain 
may also play a role  [29] . However, it is somewhat contro-
versial whether membrane binding occurs preferentially at 
the back and sides of migrating neutrophils        [25, 30] . 

 Although   many studies have highlighted the deleterious 
effects of elevated PIP3, there is now general agreement 
that chemotaxis is less severely impaired when PIP3 pro-
duction is inhibited.  Dictyostelium  amoebae lacking PTEN 
are defective in their ability to degrade PIP3 and chemo-
tax poorly due to the production of numerous lateral pseu-
dopods  [16] . Chemotaxis defects due to high PIP3 levels 
are also seen in neutrophils, although the role of PTEN is 
less clear in this system. One study found that chemotaxis, 
PIP3 levels, and actin polymerization are normal in  pten   � / �   
cells, and instead suggest that SHIP1, which removes the 
5 �  phosphate from PIP3, is the key regulator of PIP3 in 
neutrophils  [31] .  Ship1   � / �   neutrophils were found to have 
a prolonged PIP3 response and a chemotaxis defect simi-
lar to that of  pten   �   amoebae. A second study reported that 
 pten   � / �   neutrophils have marginally elevated levels of PKB 
phosphorylation and actin polymerization, but do not have 
a strong chemotaxis defect  [32] . Several groups have also 
looked at chemotaxis in conditions where PIP3 production 
is inhibited. Most recently,  Dictyostelium  cells lacking all 
type I PI3Ks and PI3K γ   � / �   neutrophils were found still to 
perform chemotaxis relatively well        [33, 34] . Similar results 
have also been obtained in cells where PI3K activity was 
inhibited pharmacologically          [35 – 37] . 

 The   limited effects of inhibiting PIP3 production clearly 
suggest that other pathways may act in parallel, and this 
has been substantiated by recent results. In  Dictyostelium , 
loss of phospholipase A2 (PLA2) activity, either through 
inhibitors or genetic manipulation, does not have a signifi-
cant effect        [35, 38] . However, when combined with a loss 
of PI3K function, chemotaxis is severely impaired. PLA2 
cleaves phospholipids to produce free fatty acids (such as 
arachidonic acid) and lyso-phospholipids. Additionally, it 
appears that the activity of this enzyme is regulated by che-
moattractant  [38] . It remains unclear what the downstream 
effects of this pathway are, and whether PLA2 enzymes 
play a similar role in neutrophils. There is also increasing 
evidence for the role of the TorC2 complex in regulating 
chemotaxis.  Ras interacting protein 3  ( Rip3 ) and  Pianissimo  
( PiaA ), were originally isolated as chemotactic mutants in 
 Dictyostelium         [39, 40] . The homologs of these proteins, 
Sin1/Avo1 and Rictor/Avo3, respectively, were subsequently 
found to be part of the highly conserved TorC2 complex 
that is thought to play a critical role in regulating PKB 
activity          [41 – 43] . This function appears to be conserved in 
 Dictyostelium , which has two PKB homologs: PKB-A and 
PKB-R1. Furthermore, in chemotaxing cells, activation of 
TorC2 is localized to the leading edge (Yoichiro Kamimura, 
personal communication). 

 Small   GTPases play important roles in regulating actin 
polymerization and myosin II function in neutrophils and 
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 Dictyostelium   [10] . For example, activated Rac and Cdc42 
localize to the front of neutrophils and are thought to play a 
key role in initiating actin polymerization  [44] . Consistent 
with this hypothesis, expression of dominant-negative Rac1 
inhibits neutrophil migration and actin polymerization, 
while dominant-negative Cdc42 prevents neutrophils from 
maintaining a persistent leading edge  [45] .  Dictyostelium  
has 17 Rac isoforms which, at the sequence level, cannot 
be divided into specific Rac, Rho, or Cdc42 homologs, 
and for simplicity have been named RacA – Q. Many have 
been knocked out, and RacB, C, and G are reported to 
have defects in chemotaxis and actin polymerization        [46, 
47] . Additionally, cells overexpressing dominant-negative 
RacB have reduced pseudopod extension and migration, as 
do cells lacking RacGEF1  [46] . The small G proteins Rho 
and Rap have been implicated as regulators of myosin II 
function. Myosin II (a hexameric enzyme composed of two 
myosin heavy chains (MHC), two essential light chains 
(ELC), and two regulatory light chains (RLC)) is a key 
regulator of chemotaxis which is thought to both facilitate 
the retraction of the cell rear and to suppress lateral pseu-
dopods through its actin crosslinking and motor protein 
functions  [48] . Both of these functions depend on multiple 
myosin II molecules assembling into bipolar filaments that 
can then associate with cortical actin cytoskeleton. Rap is 
activated at the front of  Dictyostelium  cells, and expressing 
constitutively active Rap inhibits myosin II filament forma-
tion, possibly by promoting the phosphorylation of MHC 
       [49, 50] . This may be mediated either directly or indirectly 
by Phg2, a Rap effector kinase that is required for chemoat-
tractant-stimulated MHC phosphorylation  [51] . In contrast, 
Rho is localized to the back and sides of neutrophils and is 
thought to promote myosin II motor activity by phosphor-
ylating the RLC through p120 ROCK  [25] . Inhibiting this 
kinase impairs RLC phosphorylation and leads to increased 
lateral pseudopod production, an indicator of reduced 
myosin II activity. A similar result is seen when dominant-
negative Rho is expressed. In neutrophils, this is prob-
ably regulated by G α  12/13  as pertussis toxin (PT), which 
inhibits G α  i  but not G α  12/13 , does not inhibit Rho activa-
tion. Consistent with the important role of Rho at the back 
and not the front, PT-treated cells fail to generate pseudo-
pods but extend uropods at the back when a chemoattract-
ant gradient is applied. An analogous pathway may exist 
in  Dictyostelium  involving another Rac isoform and p21 
activated kinase A (PakA), a Rac effector. This protein is 
reported to co-localize with myosin II at the back, and cells 
lacking PakA appear to have a defect in myosin II filament 
assembly        [52, 53] . 

 Other   proteins and reactions have also been found 
to localize to the front of migrating amoebae, includ-
ing myosin II heavy chain kinase (MHCK-A), a Na  �   – H  �   
exchanger (NHE), and soluble Guanylate Cyclase (sGC). 
MHCK-A is concentrated at the front by associating with 

newly polymerized F-actin, and can inhibit myosin II fila-
ment assembly by phosphorylating the heavy chain  [54] . 
 NHE  mutants make increased numbers of lateral pseudo-
pods and, given that myosin filament assembly is enhanced 
by an acidic pH  in vitro , the concentration of this protein 
at the leading edge may inhibit filament assembly in this 
region by making the cytosol more alkaline  [55] . The bind-
ing of sGC to the membrane is essential for guanylate 
cyclase activity, and although this protein is recruited to 
the leading edge, cGMP diffuses throughout the cell and 
has mainly been implicated in promoting myosin II fila-
ment assembly through cGMP binding protein C (GbpC) at 
the back        [56, 57] . Cells lacking either sGC or GbpC have 
strong chemotaxis defects that can be attributed to dramatic 
reduction in the levels of myosin II at the actin cortex. 
Amoebae lacking G α  9  have decreased cGMP levels, sug-
gesting a regulatory role for this protein.  

    MECHANISMS OF DIRECTIONAL SENSING 

 The   asymmetric localization of the molecules discussed 
above raises the question, How do cells orient these events 
based on a chemoattractant gradient? Models based on 
Local Excitation – Global Inhibition (LEGI) have proved 
very successful at explaining many features of directional 
sensing        [4, 58] . In these models, it is proposed that receptor – 
ligand binding triggers at least two signals: an excitatatory 
signal that is turned on rapidly and diffuses slowly (local 
excitation), and an inhibitory signal that is turned on slowly 
and diffuses rapidly (global inhibition). These models can 
explain responses to both uniform and gradient stimuli. In 
LEGI models, cells respond transiently to a uniform stim-
ulus because excitation occurs more rapidly than inhibi-
tion. Thus the initial activation of downstream pathways is 
attenuated over time as the slower forming global inhibi-
tor builds up ( Figure 7.2a   ). In a gradient, the LEGI model 
accurately predicts that downstream signaling will be per-
sistently activated at the front. Since diffusion of the exci-
tatory signals is slow, the level of excitation at each point 
along the cell membrane reflects the receptor occupancy 
at that site, and is higher at the front than at the back. In 
contrast, since the inhibitor is freely diffusible, inhibition 
will be averaged across the cell. Consequently, at steady 
state, excitation will exceed inhibition at the front but not 
at the back ( Figure 7.2d ). In this way the cell translates 
the directional information of the gradient into differences 
between front and back, and can readily adjust to changes 
in the temporal – spatial pattern of stimulation. 

 At   what point in the pathway does this asymmetry 
occur? By expressing CFP and YFP fusions of G α  and G β , 
the dissociation state of the heterotrimeric G proteins can 
be monitored by FRET        [12, 59] . In immobilized amoebae, 
the dissociation of heterotrimeric G proteins matches the 
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steepness of the gradient across the cells ( Figure 7.2b, d ). 
The earliest localized events are activation of Ras ( Figure 
7.2c, f ) and loss of PTEN at the front        [16, 21] . Thus, 
 directional sensing must occur in between the G proteins 
and these downstream events, possibly by regulating the 
localization or activity of a RasGEF. 

 While   LEGI models accurately describe the behaviors 
of proteins within immobilized cells, they cannot account 
for certain features of chemotaxis displayed by polarized 
cells. In particular, LEGI predicts that when challenged 
with a change in the direction of the gradient, cells should 
respond by establishing a new anterior – posterior axis. 
Polarized cells such as starved  Dictyostelium  cells and neu-
trophils, however, typically respond by turning, and thus 
maintain the same front and back regions        [6, 36] . Careful 
analysis of pseudopod extensions has also revealed other 
interesting points. First, cells tend to form pseudopods by 
splitting existing pseudopods, indicating that one outcome 
of polarization is to restrict the regions in the cell that can 
produce pseudopod extensions. Second, once a pseudopod 

splits, the cell appears to make a choice to maintain one 
pseudopod or the other based on which one is closer to the 
chemoattractant source. The mechanism cells use to make 
the  “ right ”  choice could be similar to the LEGI model we 
have described for directional sensing. These observations 
indicate that the interplay between directional sensing and 
polarization mechanisms must be accounted for in a com-
plete description of chemotaxis.  

    POLARIZATION 

 Feedback   loops are the key to establishing and maintaining 
polarization. Positive feedback loops amplify the absolute 
level of front or back signaling respectively, while negative 
feedback loops serve to increase the separation of these 
two pathways in space. In neutrophils, a positive feedback 
loop has been identified in the PIP3 – Rac – actin polymeri-
zation pathway. First, introducing PIP3 lipid directly into 
neutrophils is sufficient to make neutrophils polarize and 

 FIGURE 7.2          Temporal and spatial dynamics of chemotactic signaling.  
    Panels (a) – (c) illustrate the temporal dynamics of signals according to the LEGI model. In (a), the graphic representation of the LEGI model shows that 
many signaling responses ( “ response ” ) are transient after a uniform stimulus, since build-up of the diffusible inhibitor ( “ inhibition ” ) eventually dampens 
the quickly diffusing excitation signal ( “ excitation ” ). Not all responses are transient, however. In (b), FRET studies with fluorescently labeled G α  and 
G β  γ  show that once the G β  γ  complex dissociates, it remains dissociated as long as steady-state levels of the stimulus are present. When the stimulus is 
removed, the FRET response returns and additionally, increased concentrations of cAMP elicit further G β  γ  dissociation (adapted from  [12] ). In contrast, 
in (c), precipitation of activated Ras shows that the GTPase remains active only transiently following cAMP stimulation (adapted from  [8] ). Panels 
(d) – (f) refer to spatial regulation of signaling. The LEGI model predicts that in a gradient of chemoattractant, responses (black line in (d)) will only be 
seen at the front of the cell, since excitation is greater than inhibition here. Panel (e) displays G-protein dissociation in a gradient of cAMP. An increase 
in G α -CFP signal indicates G β  γ  dissociation in this experiment, which can be seen at higher levels at the front of the cell than at the back (taken from 
 [11] ). Note that this response reflects the shallow gradient outside the cell. In (f), Ras binding domain-GFP localizes very strongly to the front of the cell; 
the intensity of this response indicates that amplification of this signal has occurred downstream of G proteins (adapted from  [11] ).    
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migrate        [60, 61] . As this lipid is degraded over time, a posi-
tive feedback loop is required to account for the persistence 
of these effects. Second, inhibiting actin polymerization 
attenuates both PIP3 production and Rac activation, even 
in the presence of constant stimulus. As actin is thought to 
be downstream of both PIP3 and Rac, this indicates that 
persistent and robust activation requires an actin-depend-
ent positive feedback loop. The ability of several molecules 
to localize to the leading edge by associating with newly 
polymerized F-actin provides a possible mechanism for 
this feedback loop. As F-actin is polymerized, proteins that 
promote PIP3 production and Rac activation are recruited 
to the leading edge and thereby initiate more actin polym-
erization. PI3K, Ras and RacGEF1 in  Dictyostelium  and 
PI3K γ  in neutrophils are possible candidates. There is also 
evidence for the existence of negative feedback pathways. 
Expressing constitutively active Rho in neutrophils inhib-
its actin polymerization and Rac activation, while express-
ing activated Rac inhibits GTP exchange of Rho and the 
assembly of contractile myosin II filaments in the rear 
 [25] . The effect of Rho is probably mediated by myosin II 
filament assembly, as expressing activated myosin II RLC 
inhibits actin and Rac. How Rac inhibits Rho and myosin 
II in neutrophils is less clear. One possibility is that, as in 
 Dictyostelium , actin polymerization may recruit MHCKs 
to the leading edge. Whatever the mechanism, two recent 
experiments highlight the importance of this negative feed-
back loop in neutrophils. First, whereas untreated cells turn 
when the gradient is reversed, cells treated with an inhibitor 
of p120 ROCK retract the original pseudopod and extend a 
new one towards the chemoattractant source  [25] . Second, 
neutrophils that are treated with latrunculin B, to inhibit 
actin polymerization, have a reversed localization of acti-
vated Rho in a gradient  [62] . These data indicate that this 
feedback loop is critical for maintaining polarization and 
for restricting Rho and myosin II activity to the rear.  

    CONCLUSION 

 Chemotaxis   can be viewed as a modular process composed 
of membrane extensions, directional sensing, and polari-
zation. G proteins play a central role in regulating each of 
these modules, and we are beginning to understand how the 
signal transduction pathways they regulate are controlled 
in space and time. Future work will need to examine how 
these signaling networks interact, and new models need to 
be developed that can account for both directional sensing 
and polarization.  
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    INTRODUCTION 

 The   developmental specification of vascular cells, their 
formation into a circulatory network, and mature vascular 
function are under tight control of multiple signaling path-
ways. In the adult, physiological or pathological angiogen-
esis and vascular remodeling events are accompanied by the 
re-activation and interaction of these pathways. Numerous 
excellent reviews summarize recent progress in vascular cell 
differentiation and maturation            [1 – 4] , FGF  [5] , TGF β         [6, 7] , 
Notch signaling        [8, 9] , VEGF  [10] , Tie/angiopoietin, and 
ephrins          [11 – 13] , semaphorins  [14] , Kr ü ppel-like transcrip-
tion factors  [15] , Fox and Ets transcription factors  [16] , and 
sphingosine 1-phosphate  [17] . These mechanisms will not 
be discussed; rather, our focus is the signaling interaction 
of FGF, Notch, and TGF β  signaling and implications in the 
vasculature.  

    INTERACTIVE NETWORKS AS MODELS 
OF CELL SIGNALING 

 A   tremendous amount of work has addressed the cellular, 
biochemical, and molecular mechanisms of linear signaling 
pathways and their phenotypic outcomes. The repertoire of 
second messengers active in a particular signaling pathway 
is reiteratively used during development and remodeling 
events, allowing for cross-talk between multiple pathways. 
Many cellular signals are activated by ligand binding to a 
transmembrane receptor, leading to a series of events that 
control nuclear functions, including gene transcription. 
Technological advances that provide extensive data sets 
describing a cellular phenotype (i.e., gene chip microarray 
or proteomic approaches) have led to computational mod-
eling of signaling networks. Models of network interactions 
are likely to be more common in the future, and will reveal 

additional unanticipated complexity          [18 – 20] . Studying the 
interaction of select well-characterized pathways, however, 
can also provide insight into mechanisms of cross-talk. We 
focus on three major pathways critical in the development 
and maintenance of the vasculature: TGF β /BMP, Notch, 
and FGF. We provide examples of cross-talk at the level of 
gene regulation, inhibitory molecules, and protein – protein 
interactions of second messengers. In addition, cell – cell 
interactions are considered, since these pathways are also 
triggered  in trans  from neighboring cells.  Figure 8.1    sum-
marizes interactions between the major components of the 
three signaling pathways discussed in this chapter.  

    CROSS-TALK BETWEEN FGF AND NOTCH 
SIGNALING 

 FGF   and Notch signaling regulate vascular development and 
remodeling. Genetic models with mutations in the Notch sig-
naling pathway (Notch1, Notch2, Jagged1, HRT2 signaling) 
       [8, 21]  or FGF signaling  [22]  all lead to deficiencies in car-
diovascular development. Likewise, FGF is a major cytokine 
responsible for neointimal lesion formation following injury 
 [23] , and Notch participates in the maintenance and remod-
eling of the mature cardiovascular system  [24] . An early 
indication of the interplay between FGF and Notch signal-
ing was that oncogenic transformation caused by the mouse 
mammary tumor virus is due to multiple proviral integration 
events that simultaneously activate the expression of FGF2, 
FGF3, and Notch4  [25] . The regulation of Notch signaling 
by FGF occurs in several developmental situations            [26 – 29] . 
During  Drosophila  tracheal development, a branching mor-
phogenesis process similar to vascular development, Notch 
signaling is activated by the FGF homolog, Branchless, 
through the FGFR homolog, Breathless  [26] . This activa-
tion is a result of Breathless-dependent stimulation of Delta 
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expression at the tip of growing tracheal branches. Notch 
signaling is required to restrict the activation of MAPK to 
the tip of the branches in part through the negative regula-
tion of Breathless expression. 

 FGF2   induces expression of Jagged1 during  in vitro  
angiogenesis        [27, 28] , and stimulates Notch4 transcription 
in endothelial cells by enhancing AP-1 and glucocorticoid 
receptor binding to the Notch4 promoter  [29] . Thus, Notch 
expression is positively regulated by FGF. However, FGF-
dependent regulation of the Notch pathway can also be nega-
tive. FGF signaling induces the expression of the hes-related 
gene hey 13.2  [30] , which is required for periodic repression 
of Notch-regulated hey1 and hey7 genes. Moreover, Hey13.2 
protein enhances the auto-repression of hey1 gene by asso-
ciating with Hey1 protein. Joint inactivation of hey13.2 
and hey1 leads to a complete loss of somite borders  [31] . 
Interestingly, Hey2 (HRT2) cooperates with Hey1 (HRT1) in 
embryonic vascular development  [32] . It is of great interest 

to understand whether FGF negatively regulates Notch sign-
aling in the cardiovasculature. 

 The   connection between the FGF and Notch pathways 
is reciprocal. Experiments with soluble Notch ligands and 
receptors demonstrated that the Notch pathway regulates 
FGF signaling        [33, 34] . In human primary endothelial cells, 
Dll4 signaling through Notch can regulate the expression of 
angiogenic factors including genes of the VEGF and FGF 
families  [35] . Due to limitations in studying primary vas-
cular cells, regulation of FGF signaling by Notch has been 
explored using fibroblast cell models. NIH3T3 cells trans-
fected with soluble Jagged1 (sJag1), which inhibits Notch 
signaling, constitutively release FGF1, which contains 
no signal sequence. The same results were demonstrated 
for the extracellular dominant negative forms of Notch1, 
Notch2, and soluble Delta1 (sDl1) transfectants        [33, 34] . 
Inhibition of Notch signaling by sJag1 induced the tran-
scription of FGF1, FGF4 and FGF5  [33] . Transfection of 

 FIGURE 8.1          Major signaling pathways TGF β /BMP, Notch, and FGF are depicted, with potential areas of overlap or synergy.  
    Shown schematically is a cell containing these receptors on the plasma membrane, with cytoplasmic signals impinging upon nuclear function (shaded). 
A neighboring cell (top) is shown expressing a Notch (DSL) ligand. From left: endoglin and Cthrc1 both regulate TGF β /BMP signals, which are medi-
ated through Smad activation and translocation into the nucleus. Notch signaling represents a cell – cell interaction signal that also leads to regulation of 
downstream transcriptional targets. Smads and Notch intracellular domain (ICD) interact to regulate each other. FGF signaling is regulated at the level of 
ligand release, activity of negative regulators including sef and sprouty, and cytoplasmic signaling cascades including the Ras/MAP kinase pathway. This 
cascade regulates Smad activity, and impinges in the Notch pathway by modulating expression levels of Notch ligands and receptors. Interaction of these 
signaling pathways is important for vascular function and remodeling. Photomicrographs (from left) show examples of phenotypic regulation of vascular 
cells: human primary smooth muscle cells (SMC) with immunofluorescence staining against smooth muscle actin, which is expressed in differentiated 
SMC; human primary endothelial cells (EC) undergoing tubulogenesis in a three-dimensional matrix; cross section of a Masson’s Trichrome stained rat 
carotid artery 2 weeks after endothelial denudation injury. Note the thick neointimal lesion (N) in comparison to the medial layer (M) and adventitia (A).    
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sJag1 cells with constitutively active Notch1 (intracellular 
domain) completely abrogated the spontaneous release of 
FGF1, although it did not interfere with heat shock-induced 
FGF1 export. sJag1 transfected cells give rise to highly 
angiogenic solid tumors in nude mice, and form multi-
cellular substrate-dependent cord-like structures  in vitro , 
reminiscent of angiogenesis  [36] . Consistent with their 
tumorigenicity, sJag1 cells form colonies in soft agar, a 
phenotype that is inhibited by constitutively active Notch1 
and a specific chemical inhibitor of FGFR. Thus, the trans-
formed phenotype of sJag1 cells is dependent on the inhi-
bition of Notch signaling and activation of FGF signaling. 
This may be explained in part by de-repression of the tran-
scription of FGF1, FGF4, and FGF5, and by the release of 
FGF1. However, the situation appears to be more complex. 
Indeed, when exogenous recombinant FGF1 was present in 
the medium, the growth of sJag1 cells in soft agar was still 
inhibited by activation of Notch1 signaling. Also, consti-
tutive activation of either Notch1 or Notch2 blocked soft 
agar colony formation by cells that express a constitutively 
secreted, oncogenic form of FGF1. Interestingly, neither 
Notch activation nor sJag1 interfere with the expression 
of FGFR1, FGFR2, or FGFR3  [33] . Constitutively active 
Notch4 also inhibits FGF2-dependent endothelial sprouting 
 [37] . Thus, Notch interferes with the FGF pathway at the 
levels of FGF expression, release, and signaling. 

 Given   that FGF and Notch components are expressed in 
a temporally regulated fashion during vascular injury, we 
suggest that these pathways cooperatively regulate vascu-
lar repair. For example, FGF release from mechanically 
injured vessels is immediate, and FGF signaling is required 
for neointimal lesion formation and endothelial regrowth 
       [23, 38] . We hypothesize that injury-induced enhancement 
of FGF signaling is mediated by the attenuation of Notch 
signaling, which results from the loss of cell contacts. In 
turn, FGF induces components of the Notch signaling path-
way, leading to regulation of the cell cycle, cell migration, 
and gene transcription. Of interest is that Notch targets/
effector molecules, Hes and HRT, while mediating Notch 
effects, may also serve as a negative regulator of cell dif-
ferentiation  [39] . Notch suppression of FGF expression and 
export may be a negative feedback mechanism for decreas-
ing cell proliferation.  

    NOVEL MODULATORS OF TGF β  
SIGNALING 

 The   broad role of transforming growth factor beta (TGF β ) 
signaling in vascular development, homeostasis and repair is 
well appreciated (reviewed in  [40] ). However, novel TGF β  
regulatory mechanisms continue to emerge. Examples 
include the accessory protein endoglin, the recently identi-
fied collagen triple helix repeat containing 1 (Cthrc1), and 
Notch interactions with Smads. Canonical TGF β  signaling 

is mediated through seven type I and five type II recep-
tors. The type I receptors are serine/threonine kinases, and 
include activin-like kinase 1 (ALK1) and T β RI, also known 
as ALK5. ALK1 and ALK5 associate with, and are acti-
vated via ligand-dependent phosphorylation by the type II 
TGF β  receptor, T β RII. The activated type I receptor propa-
gates canonical Smad-dependent signals by phosphorylat-
ing Smads  [7] . Mutations in endoglin  [41] , a TGF β  type III 
receptor, or ALK1  [42] , cause the vascular dysplasia heredi-
tary hemorrhagic telangiectasia. Endoglin directly associates 
with TGF β  receptors to potentiate ALK1 or inhibit ALK5 
Smad-dependent signaling. Endoglin is also a substrate for 
T β RII-, ALK5-, and ALK1-mediated phosphorylation  [43] . 

 Phosphorylation   of endoglin may be a mechanism by 
which endoglin regulates ALK1 Smad-independent effects on 
endothelial cell growth and adhesion  [44] . Phosphorylation 
of endoglin affects its subcellular localization by a mecha-
nism that may involve its interactions with focal adhesion 
proteins such as zyxin and zyxin-related protein-1        [45, 46] , 
thus modifying adhesive properties of endoglin-expressing 
cells. Recent studies indicate that endoglin can affect both 
Smad-dependent and Smad-independent pathways that reg-
ulate the level and activity of cyclooxygenase-2  [47]  and 
endothelial nitric oxide synthase  [48] , respectively, which are 
important regulators of vascular tone. 

 Involvement   of endoglin in an alternative non-canonical 
TGF β  signaling pathway is suggested based on the pheno-
typic comparison between the  eng  � / �    and TGF β  activated 
kinase-1 ( TAK1 )  � / �   mouse strains  [49] . TAK1 is a non-
canonical Smad-independent effector of TGF β  and bone 
morphogenetic protein (BMP) signaling. Similar to the 
 eng  � / �    mouse, SMC development is impaired with normal 
endothelial cell development, thereby raising the possibility 
that TAK1 may mediate Smad-independent signals down-
stream of endoglin. More recently, genetic data obtained 
combining Smad4 conditional inactivation with conditional 
endoglin expression in cells of the embryonic neural crest 
indicate that endoglin operates in pathways that are sepa-
rate from the canonical TGF β  receptor signaling pathways 
required for smooth muscle cell fate determination  [50] . 
Recent data also show that endoglin participates in signaling 
independent of TGF β  receptors  ? The novel ligand BMP-9 
binds to ALK1 and the BMP type II receptor  [51] . BMP-9 
and the related cytokine BMP-10 exhibit high-affinity bind-
ing to ALK1 and endoglin on endothelial cells  [52]  in the 
absence of other TGF β  signaling receptors, providing more 
evidence for endoglin function in non-canonical pathways. 
Interestingly, this BMP-9 signaling through ALK1/endog-
lin antagonizes FGF-2-mediated endothelial proliferation 
and migration  [53]  and functions as a mediator of vascular 
quiescence  [54] . The aforementioned studies suggest that 
endoglin modulates multiple interactions between TGF β  
Smad-dependent and independent signaling pathways. 

 Cthrc1   is a secreted 28-kDa protein identified as a gene 
upregulated after vascular injury  [55] , and now known to 
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modulate TGF β  signaling. Cthrc1 mRNA expression lev-
els are increased in response to TGF β 1 and BMP-4  [56] . 
Though disease-causing human mutations in Cthrc1 have 
not yet been identified, studies of transgenic mice suggest 
a phenotype that is predictive of connective tissue disorders 
 [57] . More recent studies indicate that Cthrc1 expression 
reduces TGF β  Smad-dependent signaling in arterial smooth 
muscle, as demonstrated by reduced Smad phosphoryla-
tion and procollagen synthesis. These results indicate that 
Cthrc1 is a cell-type-specific inhibitor of TGF β  signaling 
that modulates collagen deposition, neointimal formation, 
and dedifferentiation of smooth muscle cells. Thus, endog-
lin and Cthrc1 exemplify the emergence of novel and unan-
ticipated mechanism of vascular regulation.  

    NOTCH, FGF, AND SMAD SIGNALING 
INTERACTIONS 

 There   are significant instances of interpathway cross-talk 
involving FGF, Notch, and TGF β . Ras activation, acting via 
the Erk MAP kinases, phosphorylates Smad2 and Smad3 
at sites that are separate from the TGF β  receptor phospho-
rylation sites. This event overcomes the growth inhibitory 
response to TGF β  in Ras-transformed cells  [58] . Initial 
interaction between Notch and Smad-mediated signaling 
pathways was shown in embryonic neuroepithelial cells, 
which respond to both BMP2 and constitutively activated 
Notch1 (Notch1ICD) with an increase in Hes5 and Hesr1 
(HRT1) promoter activity. The combination of BMP2 
and Notch1ICD synergistically promoted activity of both 
reporters  [59] , and this was dependent on intact Smad and 
CBF-1 (RBP-J κ ) binding sites in the Hes5 promoter. One 
mechanism behind this synergistic regulation is the bridg-
ing of Smad1 and Notch1ICD via p300 and P/CAF. Direct 
protein – protein interactions between Smad1 and NotchICD 
were subsequently demonstrated  in vitro   [60] , in relation 
to BMP4/Notch cross-talk in suppression of myogenic dif-
ferentiation. In endothelial cells, NotchICD interacts with 
Smad1, which is facilitated by P/CAF, and together they 
transcriptionally activate herp2 (HRT1)  [61] . Thus, a major 
mechanism of cross-talk in which Notch/Smad signals 
are potentiated is via protein – protein interactions to regu-
late known Notch target genes. Smad3/4 complexes also 
regulate hey1 (HRT1) at the promoter level in a Notch-
independent manner  [62] , and other components of these 
pathways may be targeted. For example, TGF β  induces 
expression of Jagged1, potentiating Notch signaling  [62] . 

 Bi  -directional signaling through the Notch ligand Delta-
like1 (Dll1) also converges on Smad signaling. The transmem-
brane form of Dll1 is proteolytically processed, and the Dll1 
intracellular domain (Dll1-ICD) can localize in the nucleus. 
Dll1-ICD binds Smad2, Smad3, and Smad4, and promotes 
Smad3-dependent activation of CAGA-Luc reporters  [63] . 

Conversely, antagonistic interactions may also occur through 
these cross-talk mechanisms. NotchICD binds to p300, and 
this was shown to suppress Smad3 signaling by recruiting 
p300 away from Smad3  [64] . Notch4ICD also binds Smad3, 
and to a lesser extent Smad2 and Smad4, and as a result inhib-
its TGF β  signaling  [65] . These data all support the interac-
tive coordination of Notch with Smad pathways, which have 
implications for both TGF β  and BMP signaling.  

    FEEDBACK INHIBITORY MECHANISMS 
IN VASCULAR CELL SIGNALING 

 Receptor   tyrosine kinases (RTKs) control many cellular proc-
esses during development and vascular remodeling, includ-
ing proliferation, migration, differentiation, and survival. 
RTKs are tightly controlled by positive and negative regula-
tors, which function at multiple levels. When RTK signaling 
is dysregulated, developmental abnormalities and pathologi-
cal conditions including retinopathies, restenosis, and tumor 
angiogenesis can occur          [66 – 68] . Recent studies in model 
organisms such as  Drosophila  and zebrafish have identified 
feedback inhibitory mechanisms that negatively regulate 
the duration and intensity of RTK signaling. In  Drosophila , 
Sprouty (Spry) was identified in a genetic screen as an inhibi-
tor of tracheal development  [69] . These and subsequent stud-
ies characterized Spry as a general inhibitor of RTK-mediated 
Ras signaling. There are four vertebrate Spry genes encod-
ing unique proteins that share a highly conserved cysteine-
rich domain similar to that in  Drosophila  Spry. Spry proteins 
inhibit the Ras – ERK pathway, although the exact point of 
regulation is controversial. Spry interacts with multiple pro-
teins, including Grb2, c-Cbl, Shp2, FRS2, Raf1, PTPB1, 
and Caveolin-1, as well forming homo- and heterodimers 
among themselves. These interactions and their biological 
significance have recently been reviewed  [68] . Spry1, Spry2, 
and Spry4 are expressed in endothelial cells in response to 
mitogenic stimulation, and overexpression of Spry proteins in 
endothelial cells inhibits their proliferation and capillary-like 
tube formation  in vitro . While little is known about the role 
of Spry in vascular development  in vivo , adenoviral-medi-
ated expression of Spry4 in E8.0 cultured mouse embryos 
resulted in a significant reduction in PECAM stained vessels 
after 24       h  [70] . A better understanding of the role of Spry in 
vascular development and remodeling awaits gain- and loss-
of-function studies of  Spry  genes both individually and in 
combination using tissue-specific mouse models. 

 Another   feedback inhibitor of potential importance to 
vascular development and homeostasis is Sef ( s imilar  e xpres-
sion to  F GF). Sef was identified in zebrafish as an inhibitor 
of FGF signaling  [71] . Sef is also expressed in epithelial tis-
sues and endothelial cells  [72] , associates with FGFR1 and 
FGFR2 in co-immunoprecipitation experiments, and inhib-
its FGF-induced ERK activation, Akt  phosphorylation, and 
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FGFR activation          [73 – 75] . Overexpression of Sef in human 
umbilical vein endothelial cells inhibits FGF signaling and 
induces apoptosis  [76] . Interestingly, deletion of the cyto-
plasmic domain of Sef did not affect its inhibition of FGFR 
activation in endothelial cells, whereas replacement of the 
transmembrane domain of Sef with that of the PDGFR 
completely abrogated the inhibitory effect of Sef on FGF 
signaling, suggesting an important role for the transmem-
brane region in Sef function. Disruption of the Sef gene by 
gene trap methodologies has not resulted in any discernable 
phenotypes  [77] ; however, analyses are still ongoing. It is 
intriguing to speculate that Sef and Spry may constitute a 
coordinately regulated feedback inhibitory pathway that reg-
ulates FGF signaling at multiple levels. Future studies using 
compound mouse mutants of Sef and Spry will likely reveal 
their cooperative roles on regulating vascular development 
and homeostasis.  

    IMPLICATIONS IN VASCULAR 
REMODELING 

 There   are many situations in the adult vasculature where 
remodeling is necessary, and a convenient model for vas-
cular cell phenotype is injury due to endothelial/smooth 
muscle mechanical stress. In the model of endothelial denu-
dation, for example, signal inhibitory reagents and genetics 
have clarified the roles of these major pathways. Antibodies 
against FGF2 inhibit neointimal lesion formation  [23] ; sol-
uble TGF β  receptor (pathway inhibitor) suppresses lesion 
formation, constrictive remodeling, and fibrosis  [78] ; 
increased expression of Cthrc1 prevents neointimal lesion 
formation and TGF β  signaling  [79] ; and we have prelimi-
nary evidence showing that Notch pathway antagonists also 
inhibit lesion formation (data not shown). Since FGFs are 
present in a moderate level in the vessel wall under normal 
conditions, we propose that release of FGF by injury and 
cellular damage is an acute response that serves to trigger 
cell proliferation as well as the expression of the Notch and 
TGF β  pathways. In addition, platelet aggregation following 
cellular damage also contributes TGF β  to the vessel wall, 
and Notch signaling and TGF β  may then serve as a sus-
tained signal for continued remodeling. This model allows 
for soluble signals (FGF, TGF β , Cthrc-1), cell membrane or 
intracellular signals that may act cell autonomously (endo-
glin, sef, sprouty), and potential heterotypic cell signaling 
systems activated by cell contact (Jagged or Delta/Notch). 
Our findings of high Jagged1 expression in regenerating 
endothelial cells abutting high Notch-expressing neointi-
mal smooth muscle cells  in vivo   [80]  support this model. 
A high priority in the future is to define the gene targets of 
these signaling pathways that cooperatively mediate these 
intercellular interactions in the vessel wall.   
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    INTRODUCTION 

 The   heart is a complex organ that is derived from multiple 
cell types and requires extensive cell – cell signaling events 
which are often guided by specialized forms of extracellu-
lar matrices. As the earliest organ to form in an embryo, 
the heart must be functional well before it has the oppor-
tunity to shape itself into a mature organ. The combina-
tion of multifarious morphogenetic events necessary for 
cardiogenesis and the superimposed hemodynamic influ-
ences may contribute to the exquisite sensitivity of the 
heart to perturbations. This phenomenon is reflected in the 
estimated 10 percent incidence of severe cardiac malfor-
mations observed in early miscarriages, and in the nearly 
1 percent of live births affected by cardiac developmental 
defects  [1]  An additional 1 – 2 percent of the population har-
bor more subtle cardiac developmental anomalies that only 
become apparent as age-dependent phenomena reveal the 
underlying pathology. With more than 1 million survivors 
of congenital heart disease (CHD) in the United States, it is 
becoming apparent that genetic disruptions that predispose 
to developmental defects can have ongoing consequences 
in maintenance of specific cell types and cellular processes 
over decades  [2] . In addition, deciphering nature’s secrets 
of heart formation might lead to novel approaches to repair 
or regenerate damaged heart muscle in the adult. Recent 
studies using stem cells have led to heightened interest in 
the early events involved in cardiac cell-fate decisions and 
cardiomyocyte differentiation, migration, and survival. 
Stem cells have enormous potential in regenerative medi-
cine, and insights into cardiogenesis from progenitor cells 
during embryogenesis will form the basis of reprogram-
ming cells for therapeutic use  [3] . 

 While   genetic approaches have been important in 
understanding human CHD, detailed molecular analysis of 

cardiac development in humans has been difficult. The rec-
ognition that genetic pathways that dictate cardiac devel-
opment are highly conserved across vastly diverse species 
ranging from flies to man has resulted in a rapid expansion 
of information from studies in more tractable biological 
models  [4] . Despite the diversity of body plans adopted by 
different species, there seems to exist a common genetic 
program for the early formation of a circulatory system. 
Cardiovascular systems seem to have developed increas-
ing complexity in order to adapt to specific environments. 
In a simplified view, it appears that higher organisms have 
retained the morphologic steps utilized by lower organ-
isms and have built complexity into the heart as needed. In 
particular, the specification of chamber structures and the 
advent of a parallel circulation through chamber duplica-
tion and outflow tract division by neural crest derivatives 
have facilitated the development of larger, air-breathing 
organisms utilizing complex circulatory systems. In such a 
scheme, defects in particular regions of the heart may arise 
from specific genetic and environmental effects during dis-
crete developmental windows of time. To simplify the com-
plex events of cardiogenesis and CHD, different regions of 
the developing heart will be considered individually in the 
context described above, weaving knowledge from model 
systems and human genetics when available.  

    ORIGIN OF CARDIOMYOCYTE 
PRECURSORS 

 Despite   decades of cell lineage tracings and descriptive 
embryology of the heart’s origins, only recently has a more 
complete and accurate picture of cardiogenesis emerged 
(reviewed in        [4, 5] . Two distinct mesodermal heart fields 
that share a common origin appear to contribute cells to 
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the developing heart in a temporally and spatially  specific 
 manner. The well-studied  “ first heart field ”  (FHF) is 
derived from cells in the anterior lateral plate mesoderm 
that align in a crescent shape at approximately embryonic 
(E) day 7.5 in the mouse embryo, roughly corresponding to 
week 2 of human gestation ( Figure 9.1   ). By mouse E8.0, or 
3 weeks in humans, these cells coalesce along the ventral 
midline to form a primitive heart tube, which consists of 
an interior layer of endocardial cells and an exterior layer 
of myocardial cells separated by extracellular matrix nec-
essary for reciprocal signaling between the two layers. The 
tubular heart initiates rhythmic contractions at about day 23 
in humans. 

 Previous   lineage tracings using dye-labeling techniques 
suggested that cells along the anterior – posterior axis of the 
heart tube were destined to contribute to specific chambers 
of the future heart (reviewed in  [6] ). However, such studies 
could not determine the clonal contributions of individual 
cells  [7] . More recent studies using Cre-lox technologies to 
mark progenitor cells and all their descendents indicate  –  
in stark contrast to previous models  –  that the heart tube 
derived from the FHF may predominantly provide a scaf-
fold that enables a second population of cells to migrate 
and expand into cardiac chambers  [5] . These additional 
cells arise from an area often referred to as the  “ second 
heart field ”  (SHF) or  “ anterior heart field, ”  based on its 
location anterior and medial to the crescent-shaped primary 

heart field        [8, 10]  ( Figure 9.1 ). Both heart fields appear to 
be regulated by complex positive and negative signaling 
networks involving members of the bone morphogenetic 
protein (BMP), sonic hedgehog (Shh), fibroblast growth 
factor (Fgf), Wnt, and Notch proteins. Such signals often 
arise from the adjacent endoderm, although the precise 
nature and role of these signals remain unknown (reviewed 
in            [11, 12 – 14] . SHF cells remain in an undifferentiated pro-
genitor state until incorporation into the heart, and this may 
in part be due to closer proximity to inhibitory Wnt signals 
emanating from the midline. Recent work has raised the 
possibility that the  Tbx18  may be required for the forma-
tion of a venous pole, which contributes portions of the 
atria and venous structures  [15] . Proepicardial (Tbx18  �   or 
Wt1  �  ) progenitors give rise to the epicardium and a subset 
of atrial and ventricular myocytes        [16, 17] . 

 As   the heart tube forms, the SHF cells migrate into the 
midline and position themselves dorsal to the heart tube 
in the pharyngeal mesoderm. Upon rightward looping of 
the heart tube, SHF cells cross the pharyngeal mesoderm 
into the anterior and posterior portions, populating a large 
portion of the outflow tract, future right ventricle, and 
atria  [18]  ( Figure 9.1 ). Precursors of the left ventricle are 
sparsely populated by the SHF and appear to largely be 
derived from the FHF. In contrast to the FHF, SHF cells do 
not differentiate into cardiac cells until they are positioned 
within the heart. Once within the heart, FHF and SHF cells 

 FIGURE 9.1          Illustration of cardiac development.  
    Illustrations depict cardiac development, with morphologically related regions color-coded, seen from a ventral view. (a) Two distinct cardiogenic pre-
cursor fields form a crescent that is specified to form specific regions of the heart tube (A, artery; V, ventricle), which is patterned to form the various 
regions and chambers of the looped and mature heart. (b) The secondary heart field (SHF) contributes to much of the right ventricle and outflow tract as 
the heart loops. (c) Each cardiac chamber balloons from the outer curvature of the looped heart tube in a segmental fashion. Neural crest cells populate 
the bilaterally symmetric aortic arch arteries (III, IV, and VI) and aortic sac that together contribute to specific segments of the mature aortic arch, also 
color-coded. (c, d ) Mesenchymal cells form the cardiac valves from the conotruncal (CT) and atrioventricular valve (AVV) segments, which divide into 
separate left- and right-sided valves. Corresponding days of human embryonic development are indicated. RV, right ventricle; LV, left ventricle; RA, 
right atrium; LA, left atrium; PA, pulmonary artery; Ao, aorta; DA, ductus arteriosus; RSCA, right subclavian artery; RCC, right common carotid; LCC, 
left common carotid; LSCA, left subclavian artery. (Color shown in online version.)    
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appear to proliferate in response to endocardial derived 
 signals such as neuregulin and epicardial signals dependent 
on retinoic acid, although the mechanisms through which 
these non-cell autonomous events occur remain poorly 
understood        [19, 20] .  

    CARDIOMYOCYTE AND HEART TUBE 
FORMATION 

 Knowledge   gained from multiple model systems has begun 
to establish a molecular network that controls early fate deci-
sions and subsequent morphogenetic events ( Figure 9.2   ). The 
earliest discoveries arose from studies in flies. Fruitflies have 
a primitive heart-like structure, known as the dorsal vessel, 
that is analogous to the straight heart tube of the vertebrate 
embryo. It contracts rhythmically, and pumps hemolymph 
through an open circulatory system. Formation of the dorsal 
vessel in flies is dependent on a protein, tinman, whose name 
is based on the  Wizard of Oz  character that lacks a heart  [21] . 
Tinman belongs to the homeodomain family of proteins, 
and was initially described as playing a role in establishing 
regional identity of cells and organs during embryogenesis. 

 In   contrast to the requirement of  tinman  for heart for-
mation in flies, its mammalian ortholog,  Nkx2.5 , is not 
essential for specification of the cardiac lineage in mice, 
suggesting either that other genes may share functions with 
 Nkx2.5 , or that cardiogenesis in flies and vertebrates differs 
with respect to its dependence on this family of homeobox 

genes        [22, 23] . The possibility of functional redundancy 
between  Nkx2.5  and other cardiac-expressed homeobox 
genes in vertebrates is supported by the ability of dominant 
negative versions of Nkx2.5 to block cardiogenesis in frog 
and zebrafish embryos        [24, 25] . Similarly, the transcrip-
tional co-activator, myocardin, is necessary and sufficient 
in frogs for cardiac gene expression, likely through activa-
tion of serum response factor (SRF)-dependent genes        [26, 
27] . Combinations of these transcription factors along with 
Mef2, Gata, Hand and Tbx family members appear to form 
core regulatory circuits that control early events during car-
diogenesis (reviewed in  [4] ). 

 The   cardiac outflow tract (conotruncus) and parts of 
the right ventricle are the last segments to form, and are 
derived from SHF cells as described above. The transcrip-
tion factor Tbx1, which appears to be a cause of cardiac 
and craniofacial disorders in humans            [28 – 31] , is a major 
transcriptional regulator of the SHF, and is necessary 
for proper development of conotruncal myocardium and 
fibroblast growth factor secretion          [32 – 34] . Islet1 (Isl1), a 
transcription factor involved in pancreatic development, 
also marks this population and is necessary for its develop-
ment  [18] . Interestingly, Isl1-positive cells mark niches of 
cardiac progenitor cells in the postnatal heart  [35] , suggest-
ing that understanding the regulation of SHF-derived pro-
genitor pools may be useful in developing approaches for 
cardiac repair. 

 Recent   evidence suggests that Wnt signals play a dyna-
mic and critical role in regulating cardiac  progenitors  [36] . 

 FIGURE 9.2          Pathways regulating region-specific cardiac morphogenesis.  
    A partial list of transcription factors, signaling proteins, and miRNAs that can be placed in pathways that influence the formation of regions of the heart. 
Positive influences are indicated by arrowheads, and negative effects by bars. Physical interactions are indicated by direct contact of factors.    
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Initially, Wnt signals are necessary to promote  mesoderm 
formation, but subsequently need to be repressed in order 
for cardiac mesoderm to emerge. However, after cardiac 
progenitors become committed to this fate, canonical Wnt 
signals again promote expansion of the progenitor pool and 
proliferation of cardiomyocytes  [37] . Such signals emanate 
from both the endoderm and the mesoderm. 

 In   addition to the AP segmentation, a discrete dorsal – 
ventral (DV) polarity is present in the primitive heart 
tube. As the heart tube loops to the right, the ventral sur-
face of the tube rotates, becoming the outer curvature of 
the looped heart with the dorsal surface forming the inner 
curvature. The outer curvature becomes the site of active 
growth, while remodeling of the inner curvature is essential 
for ultimate alignment of the inflow and outflow tracts of 
the heart. A model in which individual chambers  “ balloon ”  
from the outer curvature in a segmental fashion has been 
proposed  [38] . Consistent with this model, numerous genes, 
including the transcription factor  Hand1 , are expressed spe-
cifically on the ventral and outer curvature of the heart        [39, 
40] . Remodeling of the inner curvature occurs, allowing 
migration of the inflow tract to the right and outflow tract 
to the left, facilitating proper alignment and separation of 
right- and left-sided circulations. Defects of inner curvature 
remodeling may underlie a host of human congenital heart 
malformations that involve improper alignment of the atria, 
ventricles, and outflow tract, and are often observed in the 
setting of abnormalities of left – right asymmetry. Other car-
diac defects are a result of genetic defects that cause dis-
ruption of discrete developmental events, making it useful 
to consider the molecular processes governing central mor-
phogenetic aspects of cardiogenesis.  

    COMPLEX REGULATION OF CARDIAC 
MORPHOGENESIS 

 While   the pathways regulating individual cell lineages 
contributing to the heart are deeply understood, the subse-
quent complex events involved in integrating multiple cell 
types, formation of chambers, and patterning of the dis-
tinct regions of the heart are also now being elucidated. 
Some aspects of these morphogenetic events are described 
below, while others have been reviewed in depth else-
where          [4, 41, 42] . 

    Left – right asymmetry 

 The   heart is the first organ to break the bilateral symme-
try present in the early embryo, and the rightward direc-
tion of its looping reflects a more global establishment 
of left – right (LR) asymmetry that affects the lungs, liver, 
spleen, and gut. Defects in establishment of LR asymme-
try in humans are associated with a wide range of cardiac 
alignment defects, suggesting that pathways regulating LR 

asymmetry dramatically affect cardiac development. The 
elegant pathways that control the direction of cardiac loop-
ing along the left – right axis and the general left – right body 
plan have been elucidated in recent years, and are summa-
rized below  [43]  ( Figure 9.2 ). 

 A   cascade of signaling molecules regulating the estab-
lishment of embryonic LR asymmetry has been revealed 
from recent studies of chick embryonic development. 
Before the formation of organs in the developing embryo, 
asymmetric expression of the morphogen, Sonic hedgehog 
(Shh), on the left side of Hensen’s node leads to left lateral 
mesoderm expression of nodal and lefty, members of the 
transforming growth factor- β  (TGF β ) family  [44] . Transfer 
of this signal from the node to the lateral mesoderm is 
mediated by the secreted molecule, caronte. Caronte inhib-
its BMP on the left side, relieving BMP-mediated repres-
sion of nodal in the left lateral plate mesoderm  [45] . 
Left-sided expression of nodal induces rightward loop-
ing of the midline heart tube. Fibroblast growth factor 
and activin receptor-mediated pathways suppress caronte 
expression on the right side and the resulting activity of 
BMP signaling results in suppression of right-sided nodal 
expression. Conversely, the snail-related (cSnR-1) zinc 
finger transcription factor is expressed in the right lateral 
mesoderm and is repressed by Shh on the left  [46] . The 
above signaling pathways are active in the lateral plate 
mesoderm, but not in the heart or other organs that actually 
display LR asymmetry. Ultimately, the nodal-dependent 
pathways result in expression of a homoedomain protein, 
Pitx2, on the left side of visceral organs, and repression of 
Pitx2 on the right  [47] . Pitx2 appears to be the major factor 
that interprets the LR signaling cascade at the organ level. 
Asymmetric expression of Pitx2 is sufficient for establish-
ing the LR asymmetry of the heart, lungs, and gut  [48] . 

 The   mechanisms that control directionality of cardiac 
looping have also been explored by genetic analysis of 
mouse mutants with abnormalities in left – right asymme-
try. Mice homozygous for mutation in the  left – right dynein  
gene ( iv/iv ) display randomization of left – right orientation 
of the heart and viscera, and have bilaterally symmetric, 
absent or randomized expression of nodal and Pitx2        [49, 
50] . Nodal and Pitx2 are expressed along the right lateral 
mesoderm rather than the left, displaying complete reversal 
of the LR signals, and have bilaterally symmetric, absent, 
or randomized expression of nodal and Pitx2. In contrast, 
in the situs inversus ( inv ) mouse, which has nearly 100 per-
cent reversal of left – right asymmetry, nodal and Pitx2 are 
expressed along the right lateral mesoderm rather than the 
left, displaying complete reversal of the LR signals.  Pitx2  
mutant mice have abnormal LR asymmetry of the lungs 
and a low penetrance of reversed cardiac looping, similar 
to  Shh  and  Fgf8  mutant mice        [51, 52] . Oddly, the initial 
LR asymmetry and roles of Fgf and Shh are opposite in 
mice and chicks; however, the left – right orientation of later 
events involving nodal and Pitx2 are conserved  [53] . 
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 While   the necessity of LR asymmetric gene expres-
sion is intuitive, how the initial asymmetry of molecules 
is established remains in question. Initial clues came 
from studies of immotile cilia syndrome, also known as 
Kartagener’s syndrome, in which individuals had situs 
inversus totalis, with mirror-image reversal of all organs. It 
was recently found that, prior to organ formation, Hensen’s 
node contains ciliary processes that beat in a vortical fash-
ion, pushing morphogens to the left side of the embryo 
 [54] ; concurrent establishment of a midline barrier, pos-
sibly by lefty gene expression along the left midline, may 
be responsible for subsequent asymmetric gene expression. 
Mice lacking ciliary movement in the node display abnor-
mal LR patterning, consistent with this model.  

    Cardiac outflow tract regulation 

 Congenital   cardiac defects involving the cardiac outflow 
tract, aortic arch, ductus arteriosus, and proximal pulmo-
nary arteries account for 20 – 30 percent of all CHD. This 
region of the heart undergoes extensive and rather com-
plex morphogenetic changes, with reciprocal interactions 
between neural crest cells and the SHF and endoderm play-
ing critical roles. 

 Mesenchyme   cells originating from the crest of the 
neural folds are essential for proper septation and remod-
eling of the outflow tract and aortic arch (reviewed in  [55] ). 
Such neural crest-derived cells migrate away from the neu-
ral folds and retain the ability to differentiate into multiple 
cell types. The migratory path and ultimate fate of these 
cells depends on their relative position of origin along the 
anterior – posterior axis, and are partly regulated by the Hox 
code  [56] . Neural crest cells differentiate and contribute to 
diverse embryonic structures, including the cranial ganglia, 
peripheral nervous system, adrenal glands, and melano-
cytes. Neural crest cells that arise from the otic placode to 
the third somite migrate through the developing pharyngeal 
arches and populate the mesenchyme of each of the aortic 
arch arteries, and the mesenchyme necessary to septate the 
outflow tract septum ( Figure 9.1 ). Because of their migra-
tory path and role, this segment of the neural crest is often 
referred to as the cardiac neural crest. Mutations in many 
signaling cascades affect neural crest migration or develop-
ment, including the endothelin and semaphorin pathways, 
and cause outflow tract defects similar to those observed in 
humans  [55] . 

 Disruption   of SHF development by mutation of genes 
such as  Tbx1 ,  Fgf8 , and  Isl1  results in defects similar to 
those observed with neural crest disruption, including per-
sistent truncus arteriosus (failure of outflow septation), 
malalignment of the outflow tract of the heart with the 
ventricular chambers, and ventricular septal defects            [18, 
31, 57, 58] . SHF-derived myocardial cells neighbor neural 
crest-derived cells and secrete growth factors such as Fgf8, 
in a Tbx1-dependent manner  [33] . Such growth factors 

influence neural crest cells, and reciprocal interactions 
between the SHF and neural crest-derived cells in the out-
flow tract are likely essential for normal development. Con-
sistent with this, humans with deletion or mutation of  TBX1  
 [59] , expressed in the SHF, appear to have cell-autonomous 
defects of SHF development and non-cell-autonomous 
anomalies of neural crest-derived tissues.  

    Cardiac valve formation 

 Appropriate   placement and function of cardiac valves is 
essential for chamber septation and for unidirectional flow 
of blood through the heart. A molecular network involving 
BMP2 and Tbx2 defines the position of the valves relative 
to the chambers          [60 – 62] . During early heart tube formation, 
 “ cushions ”  of extracellular matrix between the endocar-
dium and myocardium presage valve formation at each end 
of the heart tube. Reciprocal signaling, mediated in part by 
TGF β  family members, between the myocardium and endo-
cardium in the cushion region induces a transformation of 
endocardial cells into mesenchymal cells that migrate into 
the extracellular matrix cushion          [63 – 65] . These mesenchy-
mal cells differentiate into the fibrous tissue of the valves 
and are involved in septation of the common atrioventricu-
lar canal into right- and left-sided orifices. 

 The   Smad proteins are intracellular transcriptional 
mediators of signaling initiated by TGF β  ligands. Smad6 
is specifically expressed in the atrioventricular cushions 
and outflow tract during cardiogenesis, and is a negative 
regulator of TGF β  signaling. Targeted disruption of  Smad6  
in mice results in thickened and gelatinous atrioventricu-
lar and semilunar valves, comparable to those observed in 
human aortic and pulmonary valve disease  [66] . Similarly, 
the absence of  Ptpn11 , which encodes the protein tyrosine 
phosphatase Shp-2, results in dysplastic outflow valves 
through its involvement in a signaling pathway mediated 
by epidermal growth factor receptor  [67] . The importance 
of  PTPN11  in CHD was shown by the presence of point 
mutations in  PTPN11  in patients with Noonan syndrome, 
who commonly have pulmonic valve stenosis  [68] . Finally, 
mice lacking Ephrin B2 also have thickened valves and, 
although the mechanism for this remains unclear, it will 
be interesting to determine how these signaling pathways 
intersect  [69] . 

 In   contrast to the thickened leaflets described above, 
disruption of signaling pathways converging on the tran-
scription factor Nfatc revealed a requirement of this calcium-
activated regulator.  Nfatc  is expressed specifically in the 
forming embryonic valves, and targeted deletion of  Nfatc  in 
mice results in absence of cardiac valve formation        [70, 71] . 
Signaling via the phosphatase, calcineurin, results in 
nuclear translocation of Nfatc and is similarly involved in 
cardiac valve formation, in part through regulation of vas-
cular endothelial growth factor (Vegf) expression in the 
endocardium  [72] . 
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 The   Notch signaling pathway is required for cell-fate 
and differentiation decisions throughout the embryo  [73] , 
but only recently have Notch proteins been implicated in 
vertebrate cardiac development. In fish and frogs, Notch 
appears to be involved in development of the endocardial 
cushions that contribute to valve tissue  [74] . In humans, 
heterozygous  NOTCH1  mutations disrupt normal develop-
ment of the aortic valve and occasionally the mitral valve 
 [75] . While not specifically affecting valves, human muta-
tions in  JAGGED1 , a NOTCH ligand, also cause outflow 
tract defects associated with the autosomal dominant dis-
ease, Alagille syndrome          [76 – 78] . The hairy-related family 
of transcriptional repressors (Hrt1, Hrt2, and Hrt3) may 
mediate the Notch signal during valve and myocardial 
development; however, their targets for repression remain 
unknown ( [79] , reviewed in  [80] ).   

    MOLECULAR REGULATION OF SEPTAL 
FORMATION 

 Recent   findings with the cardiac transcription factors 
NKX2.5, TBX5, and GATA4 exemplify the synergy 
between human genetics and studies of model organisms 
for understanding the etiology of human CHD. Numerous 
point mutations have been identified in  NKX2.5  in families 
with atrial septal defects and progressive cardiac conduc-
tion abnormalities  [81] . Retrospective analysis of mice 
heterozygous for Nkx2.5 disruption revealed a similar phe-
notype and progressive apoptotic loss of conduction cells, 
suggesting a likely mechanism for the human phenotype 
       [82, 83] . 

 Humans   with Holt-Oram syndrome, caused by muta-
tions in  TBX5 , have cardiac anomalies similar to those with 
 NKX2.5  mutations (atrial and ventricular septal defects) 
as well as limb abnormalities        [84, 85] . Intriguingly, muta-
tions responsible for defects in the heart and limbs are 
clustered in different regions of the protein, suggesting that 
TBX5 engages different downstream genes or co-factors 
in these tissues that depend on unique structural motifs in 
the protein. One potential cofactor is NKX2-5, as the two 
physically interact and cooperate to activate common target 
genes  [86] . 

 Like   the NKX2.5 and TBX5 mutations, mutations in 
the zinc-finger-containing protein GATA4 cause similar 
atrial and ventricular septal defects in autosomal dominant 
non-syndromic human pedigrees  [87] . GATA4 or related 
proteins are essential for cardiogenesis in flies, fish, and 
mice            [88 – 91] . Like NKX2.5, GATA4 and TBX5 also form 
a complex to regulate downstream genes, such as myosin 
heavy chain. Consistent with an important role for such 
combinatorial interactions, a familial GATA4 point muta-
tion disrupts GATA4’s ability to interact with TBX5  [75] . 
Conversely, several human TBX5 mutations disrupt TBX5 
interaction with GATA4, suggesting that the two cooperate 

in cardiac septation events  [87] . GATA4, TBX5, and 
NKX2-5 may form a common complex that is necessary 
for proper cardiac septation. Disruption of any one of the 
three proteins or their interactions can result in atrial or 
ventricular septal defects.  

    MICRORNA REGULATION OF 
CARDIOMYOCYTE DIFFERENTIATION 

 While   transcriptional and epigenetic events regulate many 
critical cardiac genes, translational control by small non-
coding RNAs, such as microRNAs (miRNAs), has recently 
emerged as another mechanism to  “ fine-tune ”  dosages of 
key proteins during cardiogenesis          [92 – 94] . miRNAs are 
genomically encoded 20 – 22 nucleotide RNAs that target 
mRNAs for translational inhibition or degradation by many 
of the same pathways as small interfering RNA (siRNA) 
         [95 – 97] . Over 650 human microRNAs have been identi-
fied, but in only a few cases are the biological function and 
mRNA targets known. 

 The   miRNA-1 family (miR-1-1 and miR-1-2) is highly 
conserved from worms to humans, and is specifically 
expressed in the developing cardiac and skeletal mus-
cle progenitor cells as they differentiate  [92] . Enrichment 
of miR-1-1 is initially observed in the atrial precursors 
before becoming ubiquitous in the heart, while miR-1-2 
is specific for the ventricle throughout development, sug-
gesting that the two may have chamber-specific effects 
 in vivo . Both are highly expressed in the SHF-derived cells 
of the cardiac outflow tract ( Figure 9.3   ). Interestingly, 
expression of these miRNAs is directly controlled by well-
studied transcriptional regulatory networks that promote 
muscle differentiation. Cardiac expression is dependent on 
serum response factor (SRF), and skeletal muscle expres-
sion requires the myogenic transcription factors MyoD and 
Mef2. SRF recruits the potent co-activator, myocardin, to 
cardiac and smooth muscle-specific genes that control dif-
ferentiation  [26] . 

 FIGURE 9.3          miR-1-1 and miR-1-2 enhancer-driven lacZ expression.  
    The expression patterns of miR-1-1 (a) and miR-1-2 (b) are demonstrated 
by the  β -gal (blue) staining in embryonic day 11.5 mouse embryos. h, head; 
ht, heart; arrowhead indicates somites. (Color shown in online version.)    
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 Consistent   with a role in differentiation,  overexpression 
of miR-1 in the developing mouse heart results in a 
decrease in ventricular myocyte expansion, with fewer pro-
liferating cardiomyocytes remaining in the cell cycle.  In 
vivo  validation of Hand2, a transcription factor that regu-
lates ventricular expansion, as an miR-1 target suggests that 
tight regulation of Hand2 protein levels may be involved 
in controlling the balance between cardiomyocyte pro-
liferation and differentiation. Disruption of the single fly 
ortholog of miR-1 had catastrophic consequences, resulting 
in uniform lethality at embryonic or larval stages with a fre-
quent defect in maintaining cardiac gene expression  [93] . 
In a subset of flies lacking miR-1, a severe defect of cardiac 
progenitor cell differentiation provided loss-of-function 
evidence that miR-1 was involved in muscle differentia-
tion events, similar to the gain-of-function findings in mice. 
Targeted deletion of miR-1-2 in mice results in ventricular 
septal defects and cardiac conduction abnormalities  [94] .  

    SUMMARY 

 The   steps of cardiogenesis described here illustrate some 
of the signaling networks necessary for multiple cell types 
to communicate with one another in order to form a func-
tioning organ. Reciprocal interactions between cell layers 
function to guide cells in the correct temporo-spatial pat-
tern, and ultimately to adopt specific cell fates and achieve 
terminal differentiation. Disruption of such signaling 
events often underlies pathologic development of the heart, 
which manifests as congenital heart disease. Because fetal 
gene programs are often reactivated in the adult diseased 
heart with negative consequences, it is possible that inhibi-
tion or activation of specific signaling pathways involved 
in cardiogenesis may prove to have therapeutic value, even 
in late-onset heart disease.  
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          Calcium Signaling in Cardiac Muscle 
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  Unit of Cardiac Physiology, University of Manchester, Manchester, England, UK    

    INTRODUCTION 

 Each   heartbeat is initiated by an increase of intracellular 
calcium concentration, the so-called  “ systolic calcium tran-
sient. ”  Changes of the amplitude of the calcium transient 
are the major factor controlling the force of contraction of 
the heart during, for example, exercise. Abnormalities in 
calcium signaling have been implicated in clinically impor-
tant conditions such as heart failure and cardiac arrhyth-
mias. The purpose of this chapter is to provide an overview 
of aspects of the state of knowledge of calcium signaling. 
It is impossible to cover the whole field of cardiac calcium 

signaling in this brief review, and interested readers are 
referred to recent reviews        [1,2] .  

    CALCIUM-INDUCED CALCIUM RELEASE 

 The   systolic calcium transient has two sources (see 
 Figure 10.1   ): calcium enters the cell from the extracellu-
lar fluid, and it is released from the sarcoplasmic reticu-
lum (SR). As far as calcium entry is concerned, the major 
source is via the voltage-activated L-type calcium current. 
This  channel is activated by depolarization to voltages 
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 FIGURE 10.1          Overview of cardiac calcium handling. 
 The sequence of steps in excitation – contraction coupling. (i) The cardiac action potential results in the opening of the L-type calcium channel (ii); this 
produces the entry of a small amount of calcium that triggers the opening of the RyR (iii), a process known as calcium induced calcium release. This 
released calcium binds to the myofilaments (iv), resulting in contraction. Relaxation requires that [Ca 2 �  ] i  is decreased, and this occurs by (v) re-uptake 
into the SR by SERCA (the activity of SERCA is controlled by phospholamban, PLB) and (vi) removal from the cell by Na/Ca exchange. The inset 
shows typical records of (from top to bottom), membrane potential, [Ca 2 �  ] i , cell contraction.    



78 SECTION | B Cell-Cell Signaling

positive to about  � 50 to  � 40       mV. Further depolarization 
increases the number of channels that open, but this is off-
set by the decreased electrochemical driving force, and 
the relationship between membrane potential and calcium 
entry is therefore bell-shaped with a maximum at about 
0       mV        [3,4] . The major source of calcium for the systolic 
calcium transient is the SR. Calcium release from the SR 
occurs through a specialized release channel known as the 
ryanodine receptor (RyR); in cardiac muscle, the RyR2 
isoform. Release occurs by the process of Calcium-Induced 
Calcium Release (CICR). The probability that the RyR is 
open (p o ) is increased by an increase of [Ca 2 �  ] i . Therefore, 
the calcium influx on the L-type calcium channel leads to 
the opening of the RyR and release of a larger amount of 
calcium from the SR  [5] . At first sight it might appear that 
such a calcium-induced calcium release mechanism has the 
potential for positive feedback, since the calcium released 
from the SR would be expected to further activate RyRs 
and therefore the SR would be expected always to empty 
completely. However, experimental work shows that cal-
cium release is a graded function of membrane potential, 
and calcium release from the SR changes in the same way 
as does the amplitude of the calcium current. The solution 
to this paradox came with the discovery of  “ local control of 
calcium release. ”  According to this hypothesis, one L-type 
calcium channel activates a small group of RyRs. Calcium 
release from this group of RyRs cannot diffuse far enough 
to activate other RyRs  [6] , and therefore there is no ten-
dency to positive feedback. The underlying calcium release 
events are seen as so-called  “ calcium sparks ”         [7,8] . The 
gradation of calcium release with changes of membrane 
potential results from recruitment of more of these release 
units as the L-type calcium current is increased  [9] . One 
question which still remains, however, is: what terminates 
calcium release from the SR? The decay of the systolic cal-
cium transient requires that calcium release stops in order 
that SERCA can return calcium to the sarcoplasmic reticu-
lum. There is still considerable controversy as to which 
mechanisms are responsible for RyR closing. Possible 
explanations include: (1) an inactivation or  “ adaptation ”  
of the RyR  [10] ; and (2) a decrease of SR calcium content 
resulting in a decreased opening of the RyR (see        [11,12]  
for extensive discussion of this issue).  

    HOW IS SR CALCIUM CONTENT 
CONTROLLED? 

 As   discussed below, the calcium content of the SR is a major 
factor controlling the amplitude of the calcium transient, and 
it is therefore important that SR calcium content be control-
led precisely. Breakdown of this control can result in cal-
cium waves and thence arrhythmias (see  [13]  for review), as 
well as  pulsus alternans  (a condition in which the strength 
of the heartbeat alternates from beat to beat)  [14] . We have 

investigated the factors responsible for regulating SR cal-
cium content. Briefly, control results from the fact that the 
major pathways for calcium movement across the surface 
membrane are sensitive to the amplitude of the systolic cal-
cium transient. An increase of the calcium transient results 
in more efflux from the cell (by activation of NCX) and less 
influx (by calcium-dependent inactivation of the L-type cal-
cium current)          [15-17] . This results in the following negative 
feedback loop to control SR calcium content: (i) an increase 
of SR calcium content will increase the amplitude of the 
systolic calcium transient; (ii) this will increase calcium 
efflux and decrease calcium influx across the sarcolemma; 
(iii) as a consequence, the cell and therefore SR calcium 
content will decrease towards control levels. It is important 
to realize that changes in the number or activity of any of 
the sarcolemmal or SR calcium pumps and channels will 
change the steady state SR calcium content. For example, 
an increase of SERCA activity or a decrease of NCX will 
increase SR calcium content. However, as reviewed above, 
the beat-to-beat control of SR calcium depends on the fact 
that SR calcium content controls the amplitude of the cal-
cium transient, and this affects sarcolemmal calcium fluxes.  

    WHICH FACTORS CONTROL THE 
AMPLITUDE OF THE SYSTOLIC CALCIUM 
TRANSIENT? 

 Changes   of the amplitude of the systolic calcium transient 
are the major means for changing contraction. There are at 
least three ways in which the amount of calcium released 
from the SR by CICR can be increased: (1) an increase 
of the trigger produced by the L-type calcium current and 
therefore the trigger for calcium release from the SR; (2) 
an increase in the opening of the RyR such that more cal-
cium is released for a given trigger L-type current and SR 
calcium content; and (3) an increase of SR calcium content. 
We will consider these factors in turn. 

    1.      An increase of the trigger produced by the L-type calcium 
current . It is well known that an increase in the L-type 
current increases the amplitude of the calcium transient 
and contraction  [18] , and this accounts for part of the 
positive inotropic effects of  β -adrenergic stimulation.  

    2.      An increase in the opening of the RyR . The question 
regarding the effects of changing the RyR is rather 
more controversial. A number of interventions affect 
the open probability of the RyR. For example, cyclic 
ADP ribose increases its open probability        [19,20] , as 
does phosphorylation  [21] . Indeed, it has been sug-
gested that phosphorylation of the RyR may contrib-
ute to the positive inotropic effect of  β -adrenergic 
stimulation  [22] . Arguing against this, however, is the 
demonstration that mice in which a phosphorylation 
site on the RyR has been removed show quantitatively 
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similar inotropic responses to  β -adrenergic stimulation 
 [23] . A further issue to consider is that maneuvers that 
affect the open probability of the RyR do not produce 
maintained effects on systolic calcium or contractility. 
Thus, the application of low concentrations of caffeine 
produces an immediate increase of systolic [Ca 2 �  ] i . 
However, this increase of amplitude is not maintained 
and, in the steady state, the calcium amplitude of the 
calcium transient is exactly the same in the presence of 
a low concentration of caffeine as in control          [24-26] . 
The transient nature of this response arises because 
the initial increase of the amplitude of the calcium 
transient results in more calcium efflux from the cell, 
thereby decreasing cell and thus SR calcium content. 
In the steady state, calcium efflux must equal calcium 
influx. If a maneuver has no effect on calcium influx, 
then in the steady state, calcium efflux must also be 
unaltered. If the properties of NCX are not altered, then 
this requirement for constant calcium efflux means that 
the calcium transient must also be unaffected and we 
therefore conclude that increasing the open probability 
of the RyR will not produce a positive inotropic effect.  

    3.      An increase of SR calcium content . The remaining con-
trol point for CICR is the amount of calcium in the SR. 
Much work has shown that calcium release from the SR 
is a steep function of SR content  [27] , with the release 
being approximately proportional to the cube of SR con-
tent. It is therefore likely that increases of SR calcium 
content produced by interventions such as an increase of 
heart rate and  β -adrenergic stimulation play an important 
role in regulating the force of contraction of the heart.    

 An   interesting special case of an inotropic maneuver is 
revealed by considering the effects of increasing the cal-
cium current. This has two effects on calcium handling: 
(1) an increase in the trigger for calcium release; and (2) an 
increase in the calcium entry into the cell and therefore into 
the SR. The former effect will tend to decrease SR calcium 
content, while the latter will increase it. Experimentally, we 
have found that large changes of L-type calcium current 
have very little effect on the SR calcium content  [28] . This 
suggests that the two effects of altering the L-type calcium 
current are well balanced. As noted previously  [29] , the rel-
ative constancy of SR content means that positive inotropic 
effects of an increase of SR calcium content can occur 
without the delay required if SR content needs to increase.  

    CALCIUM SIGNALING IN HEART FAILURE 

 The   general area of calcium handling in heart failure has 
been reviewed extensively  [30] . The decrease of contractil-
ity is associated with a decrease in both the amplitude and 
rate of decay of the systolic calcium transient  [31] . The 
decreased amplitude of the calcium transient can account 

for the decreased contractility, and the decreased rate of 
decay will impair relaxation. Most studies find no change 
in the amplitude of the calcium current, and the most com-
monly accepted explanation of the decreased calcium 
transient is that it results from a decrease of SR calcium 
content  [32] . An area of current controversy, however, is 
the origin of this decrease of content. There are two expla-
nations. The first and longest-established hypothesis is that 
SERCA activity is decreased. This can account not only for 
the decrease of SR calcium content, but also for the fact 
that the rate of decay of the systolic calcium transient is 
decreased. The other hypothesis is that there is an increase 
of leak of calcium out of the SR through the RyR        [33,34] . 
This leak has been attributed to hyperphosphorylation of 
the RyR by protein kinase A (PKA)  [35] . However, recent 
work directly measuring the SR leak in cardiac myocytes 
has implicated Ca 2 �  /calmodulin-dependent protein kinase 
 [36] . It is also worth noting that this calcium leak has also 
been suggested to trigger arrhythmias by initiating waves 
of CICR in conditions when the SR calcium is elevated or 
in the presence of mutations in the RyR.   
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    INTRODUCTION 

 Calcium   signaling in smooth muscle is a varied affair. 
The types of local and global calcium signals, the release 
process from the internal calcium store (SR, Sarcoplasmic 
Reticulum), and the calcium homeostatic control mecha-
nisms found in this one cell type encompass most of the 
mechanisms only found separately in other cell types. 
Some of this diversity can perhaps be explained by the 
different roles smooth muscles play in the body, lead-
ing to specialization; compare, for example, the role of a 
myocyte in a large blood vessel to that of one in the gut 
or vas deferens. However functional diversity cannot fully 
explain the extent of calcium signaling mechanisms found. 
For example, uterine smooth muscle cells possess all three 
isoforms of both IP 3  receptors and ryanodine receptors on 
their SR        [1, 2]  ;  vascular myocytes can express L-, P-/Q-, 
N-, R- and T-type calcium channels        [3, 4]  and 10 different 
TRP  channels  [5] . The ability of smooth muscle cells to 
transform their phenotype from contractile to secretory or 
proliferative may also contribute to the plethora of calcium 
signaling components. 

 As   has been demonstrated for other cell types, the ion 
channels and the contractile machinery in smooth muscle 
cells are sensitive not simply to the amount of calcium, but 
also the rate at which it rises or falls, its source, and how 
long it is present for (e.g.  [6] ). Calcium can, for example, 
both activate and inactivate channels, including voltage-
gated calcium channels. An example of how rate of change 
[Ca] affects smooth muscle function has been elegantly 
showed in ileal myocytes  [7] . The muscarinic response in 
the cells, which is a cationic current, was most responsive 
when [Ca] was rapidly elevated (using flash photolysis of 
IP 3 ), and poorly responsive to a rise of calcium produced in 
small steps, or by calcium sparks from the SR. Thus rapid, 
global calcium rises excite the muscarinic current in these 
cells, not slow or local calcium signals. There will also be 
intracellular heterogeneity in calcium regulation, as the dis-
tribution of plasmalemmal channels, receptors, and the SR 

is not uniform throughout the cell. This level of complexity 
presumably conveys to the smooth muscle cell mechanisms 
for transducing a wide range of signals impinging on their 
membranes from inside and out. The temporal, spatial, 
and quantitative aspects of the calcium signal in smooth 
muscle, along with microdomains (lipid rafts/caveolae) 
 [8]  in the plasma membrane and microdomains in the cell 
between, for example, SR and plasma membrane, all add 
to the complexity of understanding calcium signaling in 
smooth muscle.       [9, 10] . 

 A   major challenge to investigators is elucidating which 
aspects of calcium signaling are physiologically relevant to 
particular smooth muscles, and what the functional conse-
quences are of those calcium signals in health and disease. 
The challenge in reviewing this topic is to synthesize a 
cohesive account, while making some reference to aspects 
of specialization of mechanism found only in certain 
smooth muscles. In this short chapter, therefore, the focus 
is on calcium signals and contraction in those tissues with 
which I am most familiar – uterus, ureter, and vascular. The 
following reviews and the references cited within cover 
aspects of signaling in other smooth muscles                [3, 11 – 15] .  

    THE ROLE OF CALCIUM SIGNALING IN 
SMOOTH MUSCLE 

 The   functions of smooth muscle in the body can be viewed 
as powering the movement of substances (blood, urine, 
chyme, air, sperm, babies) through hollow tubes and organs. 
Cross bridges between actin and myosin provide the motive 
force, and calcium is the usual trigger for these molecular 
events. However, even the most fundamental property of 
muscle cells, i.e. contraction, does not necessarily involve 
calcium signals. Some smooth muscles, especially blood 
vessels, affect tone (pressure) by calcium-independent sensi-
tization mechanisms          [13, 16, 17] . The relationship between 
calcium and force in these vascular myocytes can be changed 
by altering the activity of myosin phosphatase, and thus 
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the amount of  phosphorylated myosin available for force 
 generation        [18, 19] . It is notable that some blood vessels do 
not generate action potentials, and thus this reliance on cal-
cium sensitization to modify force could be a consequence 
of the decreased role of voltage-gated calcium entry in 
these myocytes. In vascular myocytes, it has been calcu-
lated that the density of the peak calcium current (I ca ) is 
 � 1        μ A cm  � 2         [20, 21] , which is less than one-tenth of that 
in more excitable smooth muscles (see, for example,  [22] ), 
and that there are only  � 100 open L-type calcium channels 
at the peak I ca   [23] . However, despite the fact that many 
blood vessels have contractile responses that are resistant 
to L-type channel blockers        [24, 25] , it remains the case 
that L-type voltage-gated calcium entry is a major path-
way for calcium entry in most blood vessels        [26, 27] , and 
their inhibition is used to treat hypertension. Furthermore, 
most blood vessels produce a steady (tonic) level of force 
and are not required to undergo rhymic (phasic) activity 
in the way that visceral smooth muscles are. These dif-
ferences in contractile activity may also affect how they 
produce calcium signals and regulate force  [12] . Although 
mostly beyond the scope of this chapter, calcium signals in 
smooth muscles will underlie activities other than contrac-
tion – for example, secretion of extracellular matrix compo-
nents, proliferation  [28] , gene regulation,  [29] , and protein 
synthesis – and are therefore also intimately connected with 
normal growth and development, and disease processes. 
Removal of any smooth muscle and placement in culture 
medium is associated with a rapid phenotypic change from 
contractile to synthetic and proliferative phenotype. The 
changes in phenotype, as well as being associated with loss 
of contractile proteins, also involve changes in calcium 
handling; effects on SR release  [30]  ,  decrease of L-type 
calcium channels  [31]  and altered TRP channel expression 
 [32]  have all been reported. TRP proteins, STIM1, and 
Orai are also upregulated        [28, 33] . Caveolae (discussed 
below) and cavolin-1 appear to play a suppressive role in 
proliferation, and their number/expression decreases with 
culturing  [34] .  

    OVERVIEW OF TYPES OF CALCIUM 
SIGNALS IN SMOOTH MUSCLE 

 Calcium   signals in smooth muscles are associated with 
contraction and relaxation, and the control of excitability. 
Apart from some blood vessels, these changes in calcium 
are initiated and related to electrical activity (i.e., excit-
ability), which in turn depends upon ion channel activity. 
The internal calcium store can then add to this event and 
shape the calcium signals, but, as we will see, not necessar-
ily to augment contraction. Although not always  discrete 
and separate entities, it is possible to describe three major 
types of calcium signals produced in smooth muscle: 
 global calcium transients, global or partial calcium waves/

oscillations/spikes, and local transient signals from the 
SR, (calcium sparks and puffs). The calcium entry associ-
ated with action potential activity is referred to as a calcium 
transient. It is a global calcium signal causing a more or 
less simultaneous calcium rise throughout the cells in the 
tissue, spread via gap junctions. The large surface area to 
volume ratio of the long, thin, spindle-shaped smooth mus-
cle myocytes allows a uniform rise of calcium throughout 
individual cells, without the need for an additional delivery 
system, such as t-tubules. 

 Oscillating   waves of calcium occur in smooth mus-
cle cells in response to agonists, and involve interactions 
between calcium entry on the action potential and SR cal-
cium release. There is still uncertainty about whether SR 
calcium releases without calcium entry can generate such 
global oscillations, as well as the roles of the SR calcium 
release through IP 3 -gated channels (IP 3 Rs) and calcium-
gated channels (ryanodine receptors, RyRs). In addition, 
just how these calcium waves relate, if at all, to local cal-
cium releases remains an active area of research. 

 Local   rises of calcium that do not spread throughout 
the cell occur as the SR releases calcium spontaneously. 
These release events are known as calcium sparks if they 
occur from RyRs, and calcium puffs if they are from IP 3 Rs. 
These are brief calcium signals, and may be more related 
to controlling excitability via calcium sensitive ion chan-
nels than to contributing calcium to augment contraction. 
However global calcium signals are also important for 
activating calcium-sensitive ion channels, and so care is 
needed in making any broad generalizations. For example, 
calcium-activated CI channels (Ca ci ) may not be activated 
by local calcium signals, but require global calcium signals 
in the portal vein  [35] . In addition, agonists can produce 
substantial calcium release from the SR, leading to the dis-
crete release events increasing in spread and number and 
eliding into calcium waves, which may be partial or global 
within the cell. 

 Thus  , a variety of calcium signals can be produced by 
smooth muscle. To understand the mechanisms underlying 
them and their functional roles, it is necessary to under-
stand the processes of calcium entry and efflux across both 
the plasma and sarcolemma that produce calcium homeos-
tasis and the basal levels of [Ca], from which calcium sig-
nals arise        [36, 37] . These processes (i.e., influx and efflux 
mechanisms and SR calcium release and re-uptake) will 
also shape the calcium signals. For example, if calcium 
extrusion is inhibited as part of the mechanism by which 
an agonist stimulates contraction, then the normal kinet-
ics of the calcium transient, particularly its relaxation 
rate, will change. To maintain calcium balance inside the 
smooth muscle myocyte, the calcium that enters the cell 
in response to an action potential or agonist binding has to 
be removed and returned to the extracellular fluid, and any 
release of calcium from the SR has to be re-sequestered by 
its Ca-ATPase (SERCA). These homeostatic mechanisms 
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result in resting [Ca] of a few hundred nM, compared to 
the 1 – 2       mM extracellularly and the 0.5 – 1.5        μ M levels seen 
intracellularly during stimulation. These drivers of calcium 
signaling are affected by microdomains, both in the plasma 
membrane and between this membrane and the SR, and 
between the SR and other intracellular organelles, particu-
larly mitochondria. These aspects of calcium signaling will 
therefore also be discussed.  

    CALCIUM ENTRY MECHANISMS 

    L-Type Calcium Channels 

 Although   some basal calcium entry will occur across the 
smooth muscle membrane  [38] , the predominant mecha-
nism of elevating [Ca] occurs via increasing the membrane 
permeability to calcium, allowing calcium to enter rapidly 
down its electrochemical gradient. The opening of voltage-
gated calcium channels underlies the increased permeabil-
ity, and it is the L-type, dihydropyridine-sensitive calcium 
channel (Ca v2 ) that is expressed ubiquitously in smooth 
muscles. The fundamental importance of these channels to 
the activity of smooth muscles can be convincingly dem-
onstrated by the application of L-type channel-blocking 
drugs, such as nifedipine; calcium transients rapidly stop 
and contractions are simultaneously abolished. Such is the 
efficacy of these drugs in decreasing smooth muscle activ-
ity that they have great clinical utility in conditions such 
as hypertension, premature contractions of the uterus, GIT 
spasm, and renal (ureteric) colic. 

 The   relationship between electrical activity, calcium, 
and force has been demonstrated in some smooth muscles 
         [39 – 41] . In ureteric smooth muscle, it was shown that about 
one-third of the change in calcium occurs on the upstroke 
of the action potential and the remainder during the plateau 
phase. In addition, the slow kinetics of force development 
and relaxation in smooth muscles makes it unlikely that 
changes of [Ca] will ever be rate-limiting. Indeed, simul-
taneous measurements show that more force is produced 
as calcium is declining, due to the lag between the two. 
Myosin phosphorylation has been shown to be a major con-
tributor to the delay in the development of force          [41 – 43] .  

    T-Type Calcium Channels 

 Most   smooth muscles also express the Ca v3  gene product, 
the T-type (low-voltage-activated) form of voltage-gated 
calcium channels (e.g., uterus  [44] , urethra  [45] , vas def-
erens  [46] , bladder, umbilical artery  [4] ). However, it must 
be noted that T-type calcium channel expression occurs 
at much lower levels than L-type calcium channels, and, 
furthermore, at the resting membrane potential in smooth 
muscle, they will be mostly inactivated  [47] , although some 
small calcium leak may occur  [48] . T-type channel  calcium 

signals play a role in cell migration and  proliferation of 
tissue  [49] , and thus their expression may reflect these 
properties of smooth muscle and not point to a role in 
 excitation – contraction coupling.  

    Ligand-Gated and TRP Channels 

 Calcium   can also enter smooth muscles when ligand-gated 
ion channels open. These receptor-operated channels may 
be gated by specific agonist (e.g., ATP, endothelin) and are 
often non-selective for cations, rather than being calcium 
selective. These channels are activated by excitatory agonists 
such as nor-adrenaline, and therefore physiologically impor-
tant  [50] . However, a lack of good inhibitors has made their 
study difficult. Diacyl-glycerol, formed with IP 3  from PIP 2  
hydrolysis, has also been identified as being an important 
part of the signaling pathway associated with these channels. 
Recent evidence suggests receptor-operated cation channels 
are part of the TRP channel family, which is discussed next. 
For more detailed information and an excellent review of 
cation channels in vascular myocytes, see the  [51] . 

 In   addition to receptor-operated cation channels, other 
channels associated with calcium entry in smooth muscle 
(store-operated, and stretch activation) are now viewed as 
being part of the large family of channels first identified in 
drosophila. The transient receptor potential-TRP channels 
are a wide-ranging and growing family of channels expressed 
in many tissues, including smooth muscle. For example, 10 
TRP cationic channels have been reported in vascular myo-
cytes  [5]  and related to vasoconstriction, proliferation, and 
disease. TRP channels are almost all voltage-independent, 
non-selective cation channels, and their properties have been 
well covered in several recent reviews        [52, 53] . TRP channels 
are activated by PIP 2  hydrolysis, stretch, SR calcium deple-
tion and agonists; some are also calcium-activated. It seems 
reasonable therefore to expect that there will be interactions 
between not just TRPs and the SR, but also between TRPs 
and elements of G- protein-coupled receptors and their path-
ways. Recently, progress has been made in understanding the 
mechanism linking store depletion and TRP activation, with 
the identification of the calcium-sensing protein STIM 1 
(STromal-Interacting Molecule). It is thought that this ET/SR 
calcium sensor translocates to the plasma membrane as 
luminal calcium depletes, and mediates the pathway to cal-
cium entry. STIM-1 preferentially locates to regions of the 
plasma membrane where it can couple with Orai proteins, 
which are in the calcium-selective, low-conductance entry 
 channels        [54, 55] . 

 The   effects of TRP channels on tone in several smooth 
muscles can be explained by their relationship to the non-
selective cation currents. This current (Icat) is of consider-
able interest, as it underlies a large part of the mechanism 
whereby muscarinic agonists (e.g., ACh) and vasoconstric-
tors (e.g., Nad) affect smooth muscle tone. The molecu-
lar identify of Icat was unclear until TRP channels were 
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 identified. It now seems reasonable to conclude that in GI 
and vascular smooth muscles TRP channel are an essential 
part of the response to muscarinic agonists, and are respon-
sible for Icat            [56 – 59] . 

 This   cation entry will cause depolarization and the 
opening of L-type calcium channels, and thereby contrib-
ute to contraction in these myocytes. However, sodium 
rather than calcium is the dominant ion entering through 
these non-selective cationic TRP channels. Indeed, it has 
been calculated that under physiological conditions cal-
cium contributes only 1 percent to the current induced by 
carbachol in gastric myocytes  [60] . Therefore, these chan-
nels do not produce a discernable calcium signal in the way 
that SR calcium release or selective calcium channels (L, 
T types) do. The TRP channels may also contribute to resting 
membrane conductance and basal calcium influx in vascu-
lar myocytes  [51] . Thus, they may be considered part of the 
homeostatic mechanisms that allow rises of calcium to act 
as signals. A role in pacemaking in GI smooth muscle has 
also been proposed for TRP channels  [61] . The voltage-
independent cation entry into pacemaking interstitial cells 
leads to excitation in the myocytes. 

 For   all that we know more about TRPs, especially their 
molecular biology, the lack of good specific inhibitors and 
the existence of redundant pathways still leaves much more 
to be elucidated about their role in smooth muscle physiology 
and pathology. As a recent review concluded.  “ At present, 
the exact physiological role of the TRP superfamily in SMC 
is still largely unknown ”   [62] . For further discussion of TRP 
channels, readers are referred to the  references given and to 
Chapter 113 of Handbook of Cell Signaling, Second Edition.   

    CALCIUM EFFLUX MECHANISMS 

    Plasma Membrane Ca-ATPase (PMCA) 

 Apart   from non-regulated leakage, there are only two 
routes by which calcium can leave the smooth muscle cell; 
via Ca-ATPase and via sodium/calcium exchange. As these 
mechanisms have been the subject of recent reviews, only 
a short overview will be given here            [36, 37, 63, 64] . The 
plasma membrane Ca-ATPase, PMCA, is a P-type enzyme 
with four isoforms, PMCA 1 – 4. It is generally considered 
to be a lower-capacity but higher calcium-affinity system 
compared to the Na/Ca exchanger. This has led to PMCA 
being considered initially as a fine-tuning system for main-
taining basal calcium levels in myocytes. However, more 
recent work in uterine cells has shown that it is the pre-
dominant efflux mechanism. Thus following stimulation 
(a depolarizing pulse) PMCA can contribute 70 percent to 
the calcium efflux  [65] . In experiments designed to investi-
gate the role of different PMCA isoforms, a value of 85 per-
cent was found  [36] . A figure of 65 percent was determined 
for its contributions to efflux following agonist stimulation 

 [66] . Figures from studies of other smooth muscle vary 
from 25 to 100 percent (see  [37] ). 

 PMCA   is regulated by calmodulin through its carboxyl 
tail, and the affinity for calmodulin differs between the 
four isoforms  [67] . PMCA-4 has the lowest basal activity 
and greatest calmodulin stimulation, and a role in shaping 
myocytes ’  calcium signals has been suggested for it  [68] . 
Along with PMCA-1, the housekeeping isoform, these two 
appear to be the predominant isoforms expressed in smooth 
muscles. It has been suggested that there is a caveolae (see 
later) localization of smooth muscle PMCA, but more work 
is required to test this  [69] . In studies of PMCA4 knock-out 
mice, a contribution of  � 25 percent to relaxation of contrac-
tion (calcium not measured) was reported in bladder  [70] .  

    Na/Ca Exchange 

 The   Na/Ca exchanger uses the sodium gradient to drive 
calcium extrusion, in an electrogenic manner (1 Ca 2 �   for 3 
Na  �   with each cycle). The exchanger has a low affinity for 
calcium, but has a high capacity. Mice overexpressing the 
Na/Ca exchanger show an increased rate of calcium decline 
during relaxation  [71] . In smooth muscles the housekeep-
ing form of the exchanger is NCX1, and either NCX2 or 
3 have also been reported to be expressed  [72] . Interest in 
the contribution of the Na/Ca exchanger to smooth muscle 
calcium signaling has been heightened following the dem-
onstration that it is located in microdomains than overlie 
the SR  [73]  and is spatially coupled to the Na, K-ATPase 
(sodium pump)  [74] . Thus, in vascular smooth muscle evi-
dence suggests that, by co-localizing these transporters and 
the SR, microdomains of low sodium aid calcium extrusion 
on the exchanger and promote relaxation        [37, 75] , as dis-
cussed below. Therefore, both PMCA and Na/Ca exchange 
calcium efflux pathways are important for smooth muscle 
calcium signaling, as well as being responsible for lower-
ing calcium after stimulation, and maintaining low basal 
calcium levels.   

    SR AND CALCIUM SIGNALING 

    Structure, Distribution, and Release 
Mechanisms 

 The   SR of smooth muscle has been the subject of several 
recent reviews,          [8, 76, 77] . Confocal images of the SR, tar -
geted with low affinity fluorescent calcium indicators, 
have allowed 3D reconstructions of its structure in smooth 
muscle cells          [77 – 79] . A rich reticular formation is appar-
ent; with a dense network around the nucleus and close 
apposition to the plasma membrane. Recent estimates of 
SR volume in vascular smooth muscle cells are around 
5 – 7 percent  [78] , which is somewhat greater than those 
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obtained earlier with electron probe analysis ( � 2 percent 
 [80] ). Early EM studies had also reported the SR mem-
brane running parallel to that of the plasma membrane 
for distances of 1        μ M  [81] . Fluorescent probes directed 
at RyRs and the SR Ca-ATPase (SERCA) showed a non-
homogenous distribution in uterine myocytes. 

 Smooth   muscle cells contain IP 3 -and calcium-induced 
calcium release mechanisms. As mentioned above, many 
smooth muscles have both IP 3 Rs and RyRs, but substantial 
differences between tissues and species exist  [82] . Other 
more recently identified SR calcium-release mechanisms, 
such as cADP-ribose, nicotinic acid adenine dinucleotide 
phosphate, sphingosine, and sphingosine-1-phosphate  [83] , 
have been little studied in smooth muscle            [84 – 87] .  

    SERCA, Luminal Calcium Content, and 
Calcium Signals 

 Calcium   is taken back into the SR by the SR Ca-ATPase, 
referred to as SERCA. This P-type ATPase has three genes 
and several isoforms  [88] . The  “ housekeeping ”  form, 
SERCA 2b, has been identified in smooth muscles, and 
SERCA 2a and 3 additionally in uterus and some vessels 
               [37, 89 – 93] ; calcium transport into the SR leads to SR 
luminal calcium levels estimated at 100 – 500        μ M        [76, 94] , 
with SR calcium-binding proteins calsequestrin and calreti-
culin providing the necessary calcium buffering. 

 Luminal   SR calcium levels have been shown to regu-
late IP 3 -induced calcium release in cultured vascular cells 
(A7r5)  [95]  and more recently in freshly dispersed uterine 
myocytes  [96] . The luminal calcium ([Ca] L ) was directly 
monitored in uterine myocytes using the low affinity indi-
cator mag-fluo-4 and cytosolic calcium simultaneously 
monitored with Fura-2, a high-affinity calcium indica-
tor. Agonist application causes, in the absence of external 
calcium, a rapid rise of intracellular ([Ca]) and decline of 
[Ca] L . Interestingly, re-uptake into the SR was found to 
begin even while agonist was still present  [96] . Abolition of 
SERCA activity by cyclopiazonic acid or thapsigargin pre-
vented this re-uptake. This in turn suggests an overwhelm-
ing role for SERCA as the reuptake mechanism, as opposed 
to the recently identified secretory pathway Ca-ATPases, 
SPCAs  [97] . If external calcium is elevated, then [Ca] L  
increases  [96] . However, it was found in this study of uter-
ine myocytes that the overloaded SR did not increase the 
size of calcium transients elicited by agonists. As discussed 
below, the SR [Ca] L  can also increase following depolariz-
ing with elevated K solution; this is associated with inhibi-
tion of spontaneous action potentials and calcium transients 
in uterine myocytes  [94] . In contrast to overloaded SR, 
depletion of SR [Ca] L  had substantial effects on agonist-
evoked calcium transient  [96] ; a 20 percent reduction led 
to the abolition of the response. Thus, at least in uterine 
myocytes, a steep relation between IP 3 -induced SR calcium 

signals and [Ca] L  exists. Although difficult to accomplish, 
more studies directly measuring [Ca] L  in smooth mus-
cle cells are required to further investigate this and other 
aspects of SR function on calcium signaling  [98] . 

 As   mentioned above, TRP channels play an impor-
tant role in refilling the SR in non-excitable cells; this is 
known as store-operated calcium (SOC) entry or capaci-
tative calcium entry  [99] . While a role for this process in 
the more non-excitable vascular tissues has been demon-
strated, a role in excitable smooth muscles (e.g., ureter, 
GIT, and uterus) is much more open to question. The cur-
rent flow through SOCs has been difficult to measure, and 
is considered to be small  [100] . Although TPP channels are 
expressed in most smooth muscles, this does not prove a 
functional role. Similarly, a rise of calcium when SERCA 
has been inhibited can be explained by a reduction in cal-
cium buffering. Unfortunately, many experiments trying to 
show such a role have been made on cultured or transfected 
cells, which are so phenotypically altered that their rel-
evance to excitation – contraction is difficult to gauge  [101] . 
However, a recent study by Kovac and colleagues  [102]  in 
human freshly isolated colonic cells showed SERCA inhi-
bition produced an initial non-specific cation current, and 
regional  “ hotspots ”  of calcium entry were observed in 70 
percent of the cells. The authors suggest that these are due 
to store-operated calcium entry. Store-operated calcium 
influx in cerebral arterioles had previously been reported 
when the SR was inhibited  [103] , which, although causing 
a significant rise in [Ca], did not evoke vasoconstriction. 
This led to the authors suggesting it was a discrete subset 
of calcium channels allowing calcium influx into a non-
contractive compartment of the myocytes. As discussed 
later, such a compartment may exist in the sub-sarcolemma 
space adjacent to SR membrane.  

    SERCA Inhibition and Calcium Signals 

 Quantitative   studies of the calcium rise in myocytes in 
response to stimulation have been performed in single cells 
under voltage-clamp conditions. In a variety of different 
tissues, a voltage step of around 60       mV produced a rise of 
calcium of  � 100       nM (stomach  [104] , uterus  [22] , bladder 
 [105] ). Inhibition of the SR Ca-ATPase causes a rise in 
basal calcium (e.g., 75 – 170       nM in uterine myocytes  [106]  
and  � 50 – 120       nM in gastric myocytes  [104] ). The same 
authors found that CPA also increased the size of the cal-
cium transient from 5.3 to 12.3       nM/pC. 

 The   inhibition of SERCA by depleting SR [Ca] L  
might be anticipated to lower the rise in intracellular cal-
cium needed for agonist calcium signals as both IP 3 - and 
calcium-induced SR calcium release mechanisms are pre-
vented. This has been directly examined for IP 3  in iso-
lated, freshly dissociated uterine myocytes, in the study 
 discussed above. The role of the SR in shaping the calcium 
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transient has been examined in several smooth muscles 
using SERCA inhibitors. Specifically, its role in determin-
ing the decay of the calcium transient, as calcium is taken 
up into the SR, has been investigated. We have found in 
uterine myocytes that calcium transients elicited by depo-
larizing voltage-clamp pluses or carbachol application had 
a slower rate of decay if SERCA was inhibited        [65, 106] . 
The rate constant of decay fell from 0.6       s  � 1  to 0.3  � 1 , while 
the rate of the rising phase was unaffected  [106] . However, 
we also showed that SERCA alone could not produce the 
decay of calcium; PMCA and Na/Ca exchange were essen-
tial for this. We concluded that in these cells the SR takes 
up calcium and then releases it very close to the plasma 
membrane extruders – i.e., it acts in series with them and 
facilitates calcium decay. Mention should also be made of 
a study by Gomez-Viquez and colleagues  [107] , suggesting 
that SERCA  per se  can influence calcium release and sig-
naling. In urinary bladder myocytes they rapidly blocked 
SERCA, so that the SR still contained calcium (confirmed 
with direct luminal measurements), and found that both 
RyR and IP 3 R calcium releases were smaller and slower 
than those occurring when SERCA was not blocked. They 
conclude that SERCA pumps are involved in sustaining 
agonist-evoked calcium release, although the mechanism 
for this is unknown. These data are consistent with ours 
on uterine myocytes whereby we demonstrated that block-
ing SERCA decreases agonist-induced calcium responses, 
although we attributed this entirely to the larger, agonist-
induced [Ca] L  depletion  [108] . 

 The   SERCA accessory protein phospholamban may con-
tribute to the kinetics of SERCA in smooth muscle  [109] , 
although a prominent role for it has not been demonstrated 
yet in many muscles. Phospholamban reduces SERCA 
activity, and its phospharylation relieves this inhibition. In 
a recent study of airway smooth muscle  [110] , it was shown 
that small interfering RNA to phospholamban slowed the 
rate of fall of calcium following ACh stimulation. Using 
phospholamban knockouts, an increase in frequency and 
amplitude of spontaneous phasic contractions of gastric 
antrum was reported  [109] , and the rise in basal tone with 
cyclopiazonic acid (CPA) was smaller than that in wild-type 
mice. In portal vein, the knockout reduced frequency of 
spontaneous activity while increasing force amplitude  [111] , 
and CPA had little effect on wild-type activity and increased 
contraction frequency in knockouts. Interestingly, these 
authors also measured a lower resting membrane potential 
in the knockouts compared to wild-types.  

    Calcium-Induced Calcium Release 

 In   cardiac muscle, a clear role in calcium signaling for 
calcium release from ryanodine receptors (RyR 2 ) elicit-
ing Calcium-Induced Calcium Release (CICR) is well 
documented. A role for CICR in smooth muscle remains 

somewhat controversial. Earlier studies in voltage-clamped 
urinary bladder and portal vein myocytes        [23, 112]  indi-
cated the presence of CICR; hence, a mechanism to aug-
ment L-type calcium current entry, as occurs in cardiac 
muscle, was anticipated. A small amount of CICR could 
be demonstrated in single uterine myocytes under voltage-
clamp conditions  [22] , but not in intact tissue  [113] . In a 
follow-up study from their work on bladder cells, using 
coronary myocytes Isenberg and colleagues found no evi-
dence for CICR, which they explained by the smaller 
depolarizing currents in the vascular myocytes  [23] . Other 
more recent studies have also questioned the occurrence of 
CICR in other smooth muscles. It appears that when CICR 
can be demonstrated (for example, in bladder) it is graded 
and non-obligate – i.e., calcium influx does not necessary 
produce CICR. These differences may only partially be 
explained by differences in peak inward currents, as sug-
gested above, as, for example, pregnant uterine myocytes 
have very large current (6.3       pA/pF  [22] ) but little CICR. 
Another explanation may reside with the mixture of RyR 
expressed in the different smooth muscles. In cardiac mus-
cle the RyR2 form is expressed, whereas in smooth mus-
cles all three forms can be expressed  [2] . In addition, as 
discussed later, non-functional splice variants of RyR3 
may also explain the lack of CICR, and of local calcium 
signals (calcium sparks). Kotlikoff’s groups in particular 
have brought modern imaging techniques to bear on this 
issue, and suggest that the coupling between calcium flux 
and RyR calcium release is  “ loose, ”  and a sufficient rise 
in calcium/calcium entry is required for it to occur        [114, 
115] . In a recent paper using two-photon localized calcium 
uncaging in urinary bladder myocytes, his group showed 
that CICR was not confined to a few specific subcellular 
sites and that the process could occur through IP 3 Rs as 
well  [116] . In addition, by using caged calcium release the 
lack of involvement of depolarization or calcium entry  per 
se  was also demonstrated. This study therefore also ques-
tions whether frequent discharging sites are solely due to 
clustering of a few specialized RyRs, as uncaging could 
elicit release from a homogenously distributed SR. A role 
for FKBP12.6 in modifying RyR2 calcium sparks in mouse 
bladder was also reported by the group  [117] , and CICR 
increased in FKBP12.6 knockout mice. Normal calcium 
sparks and CICR occurred in RyR3 knockout mice.  

    SR, Calcium Signals, and Ion Channels 

 A   paradigm shift in the role played by the SR in smooth 
muscle has occurred with the discovery that its most impor-
tant role, at least in some tissues, is to control membrane 
excitability, and act to dampen calcium influx and limit 
contraction. 

 The   evidence for this has been elegantly demonstrated 
by Nelson and colleagues in vascular smooth muscle. Using 
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confocal microscopy, he demonstrated that the local SR 
RyR signals (i.e., calcium sparks) did not produce CICR 
but rather were directed to the plasma membrane, where 
they activated calcium-activated K channels, in particular 
BK channels                [118 – 123] . The opening of BK channels pro-
duced small, transient hyperpolarizations of the membrane 
(STOCs), which had previously been observed by Benham 
and Bolton  [124]  but not linked to then unknown calcium 
spark events. This sparks – STOCs coupling mechanism 
will lead to a reduced probability of L-type calcium chan-
nels opening as the membrane hyperpolarizes. In turn, if 
calcium falls, then force will also decline. This mechanism 
has been shown to be relevant to control of vascular tone, 
and aberrations produce hyperpolarization        [119, 122] . In 
bladder, the feedback mechanism may help prevent hyper-
activity and urinary incontinence  [118] . 

 We   have shown this mechanism to be fundamental to 
the control of the action potential refractory period in ure-
teric smooth muscle  [125] . Thus, when an action poten-
tial is fired, L-type calcium channels open and produce 
contraction. Some of this global calcium also enters the 
SR. The increase in [Ca] L  leads to an increase in calcium 
sparks, which in turn activate more BK channels. The 
increase in STOCs produces hyperpolarization of the mem-
brane, and terminates calcium entry through L-type chan-
nels. Consequently, calcium is reduced and dissocates from 
calmodulin and force falls. During this period of increased 
sparks and STOCs, the ureter is refractory. Only as [Ca] L  
returns to resting values, and sparks and STOCs decrease, 
can a stimulus produce an action potential and the next glo-
bal calcium transient and contraction        [125, 126] .  

    Unresolved Questions 

 While   elucidation of the sparks – STOCs mechanism has 
undoubtedly greatly advanced our understanding of calcium 
signaling and the role of the SR in smooth muscle, some 
major conundrums remain. One of these involves the mech-
anism whereby the SR regulates signaling and contraction in 
the uterus. It has been known for over a decade that the uterus 
expresses RyR1 – 3 and IP 3 R1 – 3. However, when the SR was 
inhibited (for example, by cyclopiazonic acid), cal cium sig-
naling and contractions increased        [113, 127] . As the sparks –
 STOCs mechanism was uncovered, it was assumed that this 
would underlie the increased calcium signaling and force 
when the uterine SR was inhibited – the negative feedback 
was prevented, and hence more calcium entered the uterine 
SR and promoted force production. As BK channels were 
also identified in the uterus            [128 – 131] , this viewpoint was 
reinforced. However, no reports of calcium sparks in uterine 
myocytes were produced, apart from in calcium overloaded 
transgenic mice  [132] . When we recently used confocal 
microscopy in rat myometrium and studied  in situ  calcium 
signaling, we confirmed that the pregnant and non-pregnant 

rat uterus does not produce calcium sparks  [40] . Thus, des-
pite having all the necessary elements – a well-developed SR, 
expression of RyR1 – 3 and BK channels – calcium sparks 
are not produced and cannot stimulate BK channels. Even 
using caffeine, a potent agonist at RyRs, calcium sparks do 
not occur, and in fact caffeine’s predominant action on the 
uterus is as an inhibitor of phosphodiesterases and promoter 
of relaxation. Ryanodine at blocking concentrations on RyR 
also has no significant effect on force and calcium in non-
pregnant myometrium, and only a small augmentation in 
pregnant tissues        [113, 133] . 

 The   lack of effect of caffeine, ryanodine, and absence 
of calcium sparks in myometrium may be due to truncated 
forms of RyR3 being expressed. Jiang and colleagues  [134]  
reported that smooth muscles express a splice variant and 
major dominant negative short form of RyR3. This variant 
inhibits RyR2. Dabertrand and colleagues        [135, 136]  con -
firmed these findings in native uterine cells, and showed 
them to be expressed close to the plasma membrane. 
Studies of RyR3 knockout mice also led to the conclusion 
that this isoform could inhibit calcium signaling in vas-
cular myocytes  [137] . These non-function release chan-
nels and dominant negative effects on other isoforms may 
exist in uterine and other smooth muscles. While these data 
explain the lack of calcium sparks, they do not explain why 
SR inhibition has such a large effect on calcium signals 
and contraction in the myometrium, which is particularly 
marked in neonatal uterus  [127] . The data are suggestive 
of membrane depolarization occurring, but the mechanism 
remains to be elucidated.  

    SR Summary 

 The   spatial distribution of SERCA, IP 3 Rs, RyRs, and 
plasma membrane ion channels and transporters plays an 
important role in shaping and regulating local and global 
calcium signals in smooth muscle cells. The roles of the 
SR calcium release and SERCA activity in calcium signal-
ing in smooth muscle are: (1) to help maintain low intracel-
lular [Ca]; (2) to facilitate decay of the calcium transient 
and relaxation of force; and (3) to contribute calcium for 
agonist-induced calcium waves. However, it is now clear 
that an additional and crucial role of the SR is regulat-
ing membrane excitability, and thereby calcium signals. 
Furthermore, this function acts as a negative feedback con-
trol step on calcium entry and contractility, as BK chan-
nels are activated by local calcium sparks in many smooth 
muscles. This calcium sparks – STOCs mechanism explains 
the augmentation of calcium signals and contractions seen 
in several smooth muscles when the SR is inhibited. Other 
as yet unknown mechanisms must underlie the increases in 
calcium signaling and force seen with SR inhibition in the 
uterus, where calcium sparks are not produced and splice 
variants of RyR3 are expressed.   
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    MITOCHONDRIAL AND OTHER 
ORGANELLAR CONTRIBUTION TO 
CALCIUM SIGNALING 

 Mitochondria   have the capacity to take up calcium rapidly, 
although resting values of calcium appear to be below the 
affinity of their calcium transporters  [138] . Until relatively 
recently, therefore, the view prevailed that mitochondria 
would only contribute to calcium accumulation and calcium 
signaling during pathologically high levels of calcium. When 
techniques suitable for reporting mitochondrial calcium lev-
els became available  [139] , they led to a gradual change in 
how mitochondrial calcium uptake was viewed; rapid uptake 
and changes in mitochondrial calcium occur during cell 
stimulation        [140, 141] . In addition, microdomains of high 
calcium (i.e., exceeding bulk cytoplasmic) were also dem-
onstrated, overcoming the low-affinity problem  [142] . The 
microdomains arise because of the close proximity of mito-
chondria to the SR (or ER in non-muscle cells). As Rizzuto 
and colleagues write, the new targeted calcium probes for 
measuring mitochondrial calcium have allowed the redis-
covery of these organelles in calcium signaling  [143] . 

 Studies   in a variety of smooth muscles have now shown 
that mitochondria can contribute to calcium signaling.            [144 – 
147] . Thus, elevations of mitochondrial calcium have been 
reported when global calcium transients occur in arterial 
smooth muscle and contribute to curtail the calcium rise 
       [148, 149] . If mitochondria are disabled by loss of their 
membrane potential (which is usually  �  � 180       mV nega-
tive with respect to the cytoplasm), then calcium transient 
decay is slowed and calcium-activated membrane currents 
are altered  [150] . Cross-talk between the SR and mitochon-
dria has been noted in some studies  [145] . Close apposi-
tion between SR and mitochondria in smooth muscle cells 
facilitates such interchange of calcium between the two 
organelles  [146] . More recently investigators have turned 
their attention to other organelles within the cell, including 
the Golgi, nucleus, and acidic granules (see, for example, 
       [151, 152] ). The SR is contiguous with the nuclear enve-
lope, and thus it may contribute to calcium-regulated gene 
transcription, via, for example, cAMP responsive element-
binding proteins (CREB)        [153, 154]  and nuclear factor of 
activated T cell  [155] . However, little or no information for 
smooth muscles exists so far, and thus nothing further can 
be said regarding how these structures may influences their 
calcium signals.  

    GLOBAL CALCIUM TRANSIENTS 

    Spontanous Activity 

 The   rise intracellular [Ca] upon stimulation is the best 
described type of calcium signal in smooth muscle. This 
is the calcium transient that underlies contraction. During 

spontaneous contractions of smooth muscles, the phasic 
rhymic activity is entirely due to this calcium transient 
activating the contractile machinery. The entry of calcium 
into the myocytes is through voltage-gated L-type calcium 
channels. Removal of external calcium or blocking of the 
L-type calcium channel will abolish calcium transients and 
contractions, whereas blockade of T-type channels has lit-
tle effect. No changes in [Ca] L  were detected during spon-
taneous activity in isolated uterine myocytes. These direct 
measurements of luminal [Ca] therefore further support the 
view that calcium entry is the only contributor to spontane-
ous phasic activity in smooth muscle.  

    Agonist Stimulation 

 In   several smooth muscles, especially vascular and in the 
presence of agonists, the calcium signal is often composed 
of two components, L-type calcium entry and SR calcium 
release, predominately though IP 3 Rs  [156] . The simplest 
explanation for these agonist-induced calcium signals is 
that there is an initial, rapid and transient part of this bio-
phasic calcium signal due to SR calcium release, and a sub-
sequent, more or less maintained but lower level of calcium 
due to calcium entry        [157, 158] . Thus nifedine and other 
calcium channel blockers have no effect on the initial cal-
cium rise  [159]  and any agonist-induced calcium sensitiza-
tion  [160] , but abolish the sustained effects  [161] . However, 
more recent studies have shown that the picture is probably 
more dynamic than this, as interactions occur between the 
SR release channels and calcium entry, so that repeated 
releases of SR calcium occur during both the sustained 
period ( “ regional switches and relays, ”  (see  [83] ) and in 
the phasic period interactions with the SR and ion chan-
nels        [162, 163] . These repetitive calcium releases from the 
SR spread throughout the cell and are known as calcium 
waves or oscillations, discussed next. Calcium entry is, 
however, needed to sustain the oscillations, as the SR cal-
cium store will gradually run down as some of the released 
calcium leaves the cell rather than being taken up again 
by the SR. Agonists differ in their reliance on calcium 
entry vs SR calcium release in bringing about their ef -
fects. For example, 5-HT is very sensitive to calcium chan-
nel blockers, whereas U46619, a thromboxane mimetic, is 
insensitive  [156] , and calcium sensitization may play an 
enhanced role.   

    LOCAL CALCIUM SIGNALS 

    Calcium Sparks and Puffs 

 Sometimes   referred to as elemental calcium signals, the 
calcium signals occurring as calcium is released from the 
SR can be characterized by their spatially local and tran-
sient nature. These release events occur spontaneously, 
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and are also modified by stimulation. The local calcium 
 signals are called calcium puffs and sparks, depending 
upon whether they arise from the activation of IP 3 Rs or 
RyRs, respectively. Although IP 3  is a crucial part of signal-
ing in smooth muscles, calcium puffs have been reported 
far less frequently that calcium sparks. This is gener-
ally explained by a lack of clustering of IP 3 Rs compared 
to RyRs, and thus the size of the calcium puffs being too 
small for resolution with most apparatus. Emptying of the 
SR (for example, by blocking the Ca-ATPase with cyclopi-
azonic acid (CPA) or thapsigargin) abolishes puffs and 
sparks. Calcium sparks were first reported in smooth mus-
cle by Nelson and colleagues  [123] . They have been shown 
to arise from a limited number of SR sites in the myo-
cytes; termed frequent discharging sites        [164, 165] , which 
are often close to the nucleus  [78] . They have essentially 
similar characteristics to those described previously in stri-
ated muscle        [6, 166] ; duration  � 100       ms, frequency 1       Hz, 
magnitude  � 100 – 300       nM (causing global calcium to rise 
only 2       nM), and spatial spread of around 2        μ M at half maxi-
mal [Ca]  [167] . The rise and fall times of smooth muscles 
sparks were slower than those found in striated muscles. It 
is unlikely that a single RyR can produce a calcium spark, 
but small (10 – 50) clusters do  [168] . It is thought that cal-
cium diffusion rather than SERCA uptake largely accounts 
for termination calcium sparks in smooth muscle  [166] . 
The properties of calcium sparks appear to be the same 
in phasic and ionic smooth muscles, although it should be 
appreciated that their properties can vary even within a sin-
gle myocyte  [6] . The coupling of calcium sparks to STOCs 
has now been demonstrated in several smooth muscles, 
and the average time course of both events is very similar 
 [123] . It has been estimated that a single calcium spark 
activates 13 BK channels. As discussed by Fay  [169] , given 
what is known about the calcium required to activate BK 
channels (i.e., a several micromolar level), it is likely that 
the estimation of calcium spark amplitude is larger than 
that revealed by global confocal imaging, and that higher 
resolution imaging methods are required. A later study 
with modeling of data undertook this, using fluo-3 and a 
high-speed widefield imaging system  [165] . The conclu-
sion reached was that BK channels lie close to RyRs and 
experience 20 – 150        μ M [Ca]. The STOC activity was deter-
mined by the BK channels kinetics. Global calcium rises of 
lower amplitude would not be capable of activating the BK 
channels.  

    Contribution to Global Calcium Signals? 

 It   has been proposed that the local calcium signals are 
building-blocks of global calcium signals; hence the sobri-
quet  “ elemental ”   [164] . While this is the case for, say, striated 
muscles, there is a fundamental problem with this concept in 
smooth muscle. This arises from the now well-documented 

evidence that calcium sparks target and activate calcium-
activated K channels (K ca ), especially these with a large 
conductance, referred to as BK channels. Activation of 
these channels will increase K conductance and produce 
a membrane hyperpolarization via STOCs, as discussed 
earlier. Such hyperpolarization will curtail calcium entry 
through voltage-gated calcium channels. Hence, increasing 
calcium sparks does not seem compatible with increasing 
the calcium signal so that it becomes global. The fusion 
of calcium sparks may occasionally produce excitatory 
propagating calcium waves during spontaneous activity 
       [170,171] , but mostly the global rise in calcium is insignif-
icant and thus the effects of local calcium signals on glo-
bal calcium rises are indirect. There are reports of agonists 
producing calcium oscillations from areas where calcium 
spark activity was increased, leading to the proposal that 
calcium sparks can act as  “ primers ”  for agonist-induced 
global calcium signals  [6] . Further studies are required to 
test this suggestion in  in situ  preparations. A role for cal-
cium sparks in agonist-induced responses can perhaps 
be inferred from the findings that the second messengers 
cAMP and cGMP, produced during agonist stimulation, 
can affect calcium spark activity. However these actions 
are associated with relaxation via BK channels, rather than 
production of global calcium signals. For example, in vas-
cular myocytes they have been shown to increase spark 
frequency        [166, 172] . In cerebral arteries, PKC activation 
decreased spark frequency and was associated with vaso-
constriction  [173].  

 These   local calcium signals may also contribute to pro-
ducing microdomains of higher [Ca]. It is suggested that, 
in the superficial SR, release of calcium is directed to the 
plasma membrane or mitochondria, and that it reaches a 
higher level of this microdomain than in bulk cytoplasm 
 [78] . In this way low-affinity channels or transporters can 
be activated, as discussed below. 

 In   addition to BK channels, many smooth muscles have 
calcium-activated (CL ca ) channels which may be activated 
by both global and local calcium signals. These channels 
produce spontaneous transient inward current (STICs), and 
will tend to depolarize smooth muscle. As smooth muscle 
cells can express both Kca and Cl ca  channels, it is possible 
to conceive of local calcium signals from the SR producing 
both STOCs and STICs. Few papers have investigated thus, 
but a good analysis is provided by Large and colleagues, 
based on channel kinetics and distribution  [174] .   

    CALCIUM OSCILLATIONS AND WAVES 

    Characteristics and Origins 

 Repetitive   waves of calcium travelling the length of the 
myocytes, have been reported in many smooth muscle tis-
sues, in response to agonist stimulation                  [175 – 181] . The rise 
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of calcium may be as high as 500 nM and frequency from 
5 to 3 per minute, which is usually dependent on basal 
calcium levels  [11]  and relatively independent of agonist 
dose in contrast to global contransients  [6] . The mecha-
nisms underlying calcium oscillations may be multiple and 
require further elucidation. Conclusions drawn from a par-
ticular smooth muscle and a specific agonist, may not be 
generalizable to others. 

 Oscillations   of calcium often start at a limited number 
of sites in the myocytes, and usually at one end, perhaps 
reflecting a local clustering of IP 3 Rs or RyRs or ion channel 
waves initiated at more than one site also occurs, and they 
can collide with each other. Speeds of around 100        μ m s  � 1  
for smooth muscle calcium waves have been reported  [78] . 
The frequency of oscillations and their speed may increase 
as agonist concentration increases  [182] . The majority of 
studies have been of calcium waves arising from SR, which 
ramifies throughout the cell, releasing and taking up cal-
cium, with or without a crucial role for calcium influx or 
a particular type of IP 3  or RyR subtype. However calcium 
oscillations may also arise due to fluctuations of mem-
brane potential, such as occur in gastrointestinal smooth 
muscle, leading to repetitive cycles of opening of voltage-
gated calcium channels and calcium entry rather than 
SR calcium releases. However, it has been demonstrated 
(although in other cell types) that oscillations can occur 
without oscillations of membrane potential (or IP 3 ), and 
in permeabilized preparations          [179, 183, 184] . Although 
changes in calcium entry and efflux may contribute to the 
time-course or frequency of calcium oscillations, in many 
tissues the SR is the predominant player. Elevation of lumi-
nal calcium is also associated with an increase in calcium 
waves  [185] . SR calcium release through IP 3 R may initiate 
RyR-dependent calcium oscillations in tracheal myocytes 
       [163, 186] . It has also been reported that cADP-ribose 
can modulate ACh-evoked calcium oscillations of tracheal 
myocytes  [187] . Wang and colleagues  [87]  showed re -
cently that FK506 binding protein (FKBP12.6) associates 
with and regulates type-2 RyRs. Tracheal myocytes which 
had increased spontaneous calcium release in the pres-
ence of low concentrations of cADP-ribose, and global 
calcium releases at higher cADP-ribose concentrations, 
were shown to exhibit these effects via FKBP12.6  [87] . In 
FKBP 12.6 null mice, cADP-ribose could not influence SR 
calcium release (see Jude and colleagues  [11]  for further 
discussion). Thus, more than one mechanism can produce 
calcium oscillations in smooth muscle, and this may be a 
way of tailoring calcium signals to specific functions of 
smooth muscle. As both contraction and relaxation occur 
on much slower time-courses than calcium oscillations, it 
is expected that these outputs reflect on integration of the 
spatial and temporal characteristics of the oscillation. 

 Despite   the presence of gap junctions between smooth 
muscle cells, the oscillations in individual cells are often 
found to be asynchronous with other cells in the  preparation 

understudy  [170] . Particularly in vascular smooth muscle, 
the view is emerging that although a smooth global cal-
cium transient may be recorded, it is composed of many 
asynchronous calcium oscillations in all the different cells 
of the vessel  [188] . Functionally, this may be associated 
with vasomotion. At higher agonist concentrations, a point 
may come where the calcium signals become synchronized 
and produce a powerful vasadilation. As discussed in the 
next section, sub-sarcolemmal membrane domains are 
considered to exist in smooth muscle myocytes. In their 
studies of the generation of asynchronous repetitive cal-
cium waves in the inferior vena cava, Lee and colleagues 
 [188] , have suggested that non-selective, store-operated 
channels and reverse mode Na/Ca exchange enhance 
SERCA filling of the SR, and thereby permit cyclic wave 
activity. Application of calyculin-A, a phosphatise inhibi-
tor, disrupts the close contact between the SR and plasma 
membrane and the asynchronous phenylephrine-induced 
calcium waves were progressively lost. 

 Despite   the presence of calcium waves and oscilla-
tions being reported over a decade ago, and much research 
effort, it appears that there is still no clear consensus on 
both their mechanism and function. For example, is extra-
cellular calcium entry always essential? Do RyRs or IP 3 R 
play the dominant/an essential role in their generation? 
Can they activate/inactivate other ion channels, including 
calcium-activated K and Cl channels? How are they propa-
gated? Does their occurrence correspond with increased or 
decreased tone? Some of the different conclusions reached 
may, of course, be due to the intrinsic differences between 
tissues; further experiments, under the same experimental 
conditions, are called for  [90].    

    CAVEOLAE, MICRODOMAINS, AND 
CALCIUM SIGNALS 

    Superficial Buffer Barrier and SR 

 First   expressed by van Breemen and colleagues        [189, 190]  
and Blaustein        [191, 192] , the suggestion that spatial micro-
domains must be present in smooth muscle cells to explain 
aspects of calcium signaling has received support as molec-
ular tools for investigating restricted spaces have advanced 
(see, for example,        [193, 194] ). As noted already, the SR is 
in close apposition to the plasma membrane. As proposed 
by van Breemen, it may take up or buffer some of the cal-
cium that enters on depolarization. This calcium can then 
be vectorially released to membrane pumps and exchang-
ers, facilitating calcium extrusion after stimulation  [195] . 
Moore and colleagues  [196]  demonstrated that certain 
signaling elements, specifically Na/Ca exchanger, sodium 
pump, and SERCA, appeared grouped in gastric smooth 
muscle cells. Support for the SR acting as a superficial 
buffer barrier was also provided by studies on  vascular 
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       [197, 198]  and gastric  [199]  myocytes. The  possibility of 
increased concentration of ions within a restricted space 
either between the surface membrane and SR, or mito-
chondria and SR, can explain how pumps, receptors, or 
exchangers with high Kd for ions, can be activated under 
physiological conditions. Details of this have already been 
given for mitochondrial calcium signaling.  A  role for Na/Ca 
exchange is also apparent during calcium extrusion, indica-
ting that the exchanger sees locally higher [Ca] than those 
occurring globally        [200, 201] . Participation of Na/Ca ex -
change in contraction is discussed below.  

    Sodium Pump, Na/Ca Exchange, and 
Calcium Signaling 

 By   locating the  α 2 isoform of the sodium pump close to 
the Na/Ca exchanger (spatial coupling), it has been pro-
posed that the sodium pump contributes to calcium trans-
port in vascular smooth muscle        [202, 203] . The [Na] in the 
sub-sarcolemmal space adjacent to SR calcium release sites 
will be particularly lowered due to sodium-pump activity 
driving and facilitating Na/Ca exchange in these regions 
 [73] . In mice which are two-sodium pump heterozygous, 
increased blood pressure and myogenic tone were noted, 
and cardiac muscle was hypercontractile  [204] . Further-
more, endogenous cardiac glycosides (ouabains  [205] ) are 
suggested to play a role in control of blood pressure via the 
Na/Ca exchanger, as inhibition of the sodium pump causes 
calcium influx (or decreased efflux)  [206] . A role for Na/Ca 
exchange separate from its link to the sodium pump in vas-
cular agonist-induced contraction has also been demon-
strated          [90, 207, 208] .  

    Lipid Rafts and Caveolae 

 It   is now well accepted that there are functional microdo-
mains within the plasma membrane. Called lipid rafts, these 
regions have a higher concentration of sphingolipids and 
cholesterol, resulting in locally decreased fluidity – hence 
they are  “ rafts ”  floating in the membrane sea        [209, 210] . 
Interest in these membrane regions has grown as the view 
has emerged that a range of signaling components (e.g., ion 
channel subunits, receptors, and enzymes) are dynamically 
associated in the lipid rafts, or excluded from them, as part 
of signaling mechanisms, in a variety of cells        [211, 212] . In 
smooth muscle, for example, PMCA, BK channel  χ  subu-
nit, and oxytocin receptors  [213]  have all been reported 
to be preferentially located in caveolae, while eNOS is 
excluded  [214] . Lipid rafts, in their caveolar form (i.e., 
containing the protein caveolin and thereby also invaginat-
ing the membrane), have been shown by us          [215 – 217]  and 
others        [218, 219]  to be functionally important in smooth 
muscles. For example, caveolar disruption by extraction 
of membrane cholesterol increases calcium  signaling and 

contractility in rat  [215]  and human  [220]  myometrium. 
Our recent work showing that this is associated with a 
decrease in outward current  [221]  is consistent with BK 
channel localizing to caveolae          [8, 216, 222] ; as caveolae 
are disrupted, so their ability to generate outward current is 
diminished, and excitability increases. We have postulated 
that elevated cholesterol in obese pregnant women may 
lead to enhanced outward current and increased uterine 
quiescence  [220] , which could underlie the difficult births 
and increased requirements for labor induction and emer-
gency caesarean section in these women.    
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    INTRODUCTION 

 The   mucosa of the gastrointestinal (GI) tract is a complex 
and constantly renewing tissue which is characterized by 
rapid proliferation, differentiation, and subsequent apopto-
sis, followed by extrusion into the GI lumen. These events 
occur as GI luminal epithelial cells ascend the vertical axis 
of the microfolded crypts lining the GI tract        [1, 2] . This 
process normally takes 2 – 5 days to reach the upper portion 
of the villus, depending upon the species and the location 
along the GI tract        [3, 4] . Numerous factors can contribute 
to growth of the GI mucosa. This chapter will specifically 
focus on the effects of GI hormones on the proliferation 
and repair of non-neoplastic tissues, and the receptors and 
signaling pathways which transmit signals from the cell 
surface to the nucleus. 

 By   definition, any agent that stimulates growth can 
be considered as a growth factor; however, these growth-
stimulating agents are usually divided into those that are 
produced by normal cells and are thought to act locally 
to control proliferation, and hormones which are thought 
to act at a distance. Peptide growth factors that act locally 
include members of the epidermal growth factor (EGF) 
family, the transforming growth factor- β  (TGF β ) family, 
the insulin-like growth factor (IGF) family, the fibroblast 
growth factor (FGF) family, the trefoil factor (TFF) family, 
the colony-stimulating factor (CSF) family, and a few other 
unrelated regulatory peptides, such as hepatocyte growth 
factor (HGF), platelet-derived growth factor (PDGF), vari-
ous interleukins, interferons, and tumor necrosis factor-
related proteins  [5] . 

 Various   gut hormones can regulate growth of the GI 
mucosa, usually through an endocrine effect. On occasion, 
an autocrine or paracrine mechanism has been postulated 
for the proliferative effects of these trophic peptides        [6, 7] . 

Neuroendocrine effects also mediate the effect of the gut 
mucosa. The gut peptides which have been best described 
in their role as stimulating mucosal proliferation of the 
stomach, small bowel, or colon include gastrin, bombe-
sin (BBS)/gastrin-releasing peptide (GRP), neurotensin 
(NT), glucagon-like peptide-2 (GLP-2), and peptide YY 
(PYY)  [1] . These hormones are secreted by endocrine cells 
which are widely distributed throughout the GI mucosa 
and pancreas. In addition to mucosal proliferation, these 
gut peptides control many other functions in the GI tract, 
including regulation of secretion, motility, absorption, and 
digestion ( Table 12.1   ).  

    TROPHIC EFFECTS OF GUT PEPTIDES IN 
THE STOMACH, SMALL BOWEL, AND 
COLON 

    Stomach 

 Gastrin   is the GI hormone that has been best characterized 
for its trophic effects in the stomach. Gastrin stimulates 
acid secretion from gastric parietal cells, and is the single 
most important trophic hormone for the gastric mucosa. 
The trophic effect of gastrin on gastric mucosa was initially 
demonstrated with the synthetic gastrin analog, pentagastrin, 
which, when given to rats, stimulated protein synthesis and 
parietal cell mass        [8, 9] . These results were further confirmed 
using the natural amidated gastrins, G17 and G34, with 
most pronounced effects noted in the oxyntic acid-secreting 
mucosa and enterochromaffin-like cells. Resection of the 
gastric antrum, which removes endogenous gastrin, results 
in gastric mucosal atrophy; this atrophy can be prevented by 
administration of exogenous gastrin  [10] . Further confirma-
tion of the effects of gastrin on gastric mucosal growth is 
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PYY, and GLP-2. Wood and colleagues  [20]  first noted that 
NT stimulated the small bowel mucosa of rats fed a nor-
mal diet. Investigators in our laboratory have shown that 
administration of NT prevents gut mucosal atrophy induced 
by feeding rats an elemental diet and stimulates mucosal 
growth in defunctionalized, self-emptying jejunoileal loops 
or isolated small bowel loops termed Thiry-Vella fistulas 
(TVFs), thus supporting a direct role for NT in the stimu-
lation of gut mucosal growth        [21, 22] . Assimakopoulos 
and colleagues  [23]  reported that NT restores gut mucosal 
integrity in rats and prevents the translocation of indig-
enous bacteria after partial hepatectomy. Furthermore, 
Izukura  et al .  [24]  and Ryan  et al .  [25]  demonstrated, in 
separate studies, that administration of NT can augment the 
normal adaptive hyperplasia of gut mucosa that is associ-
ated with a massive small bowel resection. 

 BBS   also stimulates growth of the small bowel mucosa. 
Administration of BBS effectively prevented mucosal atro-
phy associated with feeding rats a liquid elemental diet 
 [26] . Furthermore, BBS was noted to increase mucosal 
weight, DNA, and protein content in both jejunal and 
ileal TVFs compared to control animals, suggesting that 
the effects of BBS were directly mediated as opposed 
to indirect effects of stimulation of luminal pancreatic 
or biliary secretion  [27] . In addition to its effects on gut 
mucosal growth, BBS exhibits protective effects on the 
gut after injury  [28] . Using a lethal enterocolitis model in 
rats induced by the chemotherapeutic agent methotrexate 
(MTX), BBS enhanced gut mucosal growth and signifi-
cantly inhibited mortality. The beneficial effect of BBS on 
survival was noted when BBS was given prior to or at the 
same time as MTX, which suggested that BBS may act 
through additional mechanisms other than gut mucosal 
growth alone. One possibility is that BBS may produce its 

provided by transgenic mice which either overexpress 
 gastrin or are gastrin-deficient. In mice overexpressing either 
unprocessed gastrin or the amidated gastrins (G17 and G34), 
there is a marked thickening of the oxyntic mucosa with 
increased BrdU labeling, representing an 85 percent increase 
in cells undergoing proliferation        [11, 12] . Gastrin-deficient 
mice secrete acid in response to agonist stimulation, and 
there is a decrease in parietal cell size with an increase of 
parietal cell number when compared with wild-type controls 
       [13, 14] . 

 Another   peptide that has been shown to stimulate gas-
tric mucosal proliferation is BBS/GRP, which stimulates 
pancreatic, gastric, and intestinal secretion, gut motil-
ity, and smooth muscle contraction, and release of all gut 
hormones  [15] . In addition, these peptides can stimulate 
growth of GI mucosa and pancreas. BBS stimulates gas-
tric weight, fundic and antral mucosal height, and density 
of parietal cells in neonatal rats compared with saline-
treated controls        [16, 17] . These results were confirmed in 
adult rats given BBS for 7 days, demonstrating increased 
weight, RNA, and DNA contents of the oxyntic mucosa of 
the stomach and the duodenal mucosa; the inhibitory hor-
mone, somatostatin, attenuated the proliferative effect of 
BBS  [18] . In another study, the BBS receptor antagonist, 
RC-3095, prevented the proliferative effect of BBS on the 
gastric mucosa, thus providing evidence that BBS/GRP 
stimulates growth of stomach and duodenum, predomi-
nately due to a direct effect of hormone stimulation and not 
secondary to release of other gut hormones  [19] .  

    Small intestine 

 The   intestinal hormones that have been shown to stimulate 
growth of small intestine mucosa include NT, BBS/GRP, 

 TABLE 12.1          Gut hormones contributing to GI mucosal growth  

   Hormone  Location  Primary effects 

   Gastrin  Antrum, duodenum 
(G cells) 

      ●      Stimulates gastric acid and pepsinogen secretion  
    ●      Stimulates gastric mucosal growth    

   Gastrin releasing peptide (GRP) 
(mammalian equivalent of 
bombesin, BBS) 

 Small bowel       ●      Stimulates release of all GI hormones  
    ●      Stimulates GI secretion and motility  
    ●      Stimulates gastric acid secretion and release of antral gastrin  
    ●      Stimulates growth of intestinal mucosa and pancreas    

   Neurotensin (NT)  Small bowel (N cells)       ●      Stimulates pancreatic water and bicarbonate secretion  
    ●      Inhibits gastric secretion  
    ●      Stimulates growth of small and large bowel mucosa    

   Glucagon-like peptide-2 (GLP-2)  Small bowel (L cells)       ●      Potent enterotrophic factor    

   Peptide YY (PYY)  Distal small bowel, 
colon 

      ●      Inhibits gastric and pancreatic secretion  
    ●      Inhibits gallbladder contraction  
    ●      Stimulates intestinal growth?    
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beneficial effects through enhancement of the immune sys-
tem, a known action of BBS. 

 Although   the data are somewhat controversial, the 
gut peptide PYY has likewise been shown to produce a 
trophic effect in small bowel mucosa of both rat and mouse 
 [29] . These effects were noted at relatively high dosages. 
Similarly, Chance and colleagues  [30]  found that PYY 
treatment in Sprague-Dawley rats given total parenteral 
nutrition (TPN) produced significant increases in jejunal, 
ileal, and colonic protein contents. 

 A   trophic effect for glucagon-derived peptides in the 
intestinal mucosa has been postulated since the descrip-
tion of a glucagon-secreting tumor of the kidney associated 
with small bowel mucosal hypertrophy. Drucker and col-
leagues  [31]  were the first to demonstrate that the intesti-
nal trophic factor was GLP-2, which produced a 50 percent 
increase in small bowel weight and a significant increase 
in mucosal thickness. Similarly, Ghatei  et al .  [32]  demon-
strated prominent trophic effects of GLP-2 in Wistar rats, 
and Litvak  et al .  [33]  demonstrated that GLP-2 signifi-
cantly increased the weight of jejunum, ileum, and colon 
of athymic nude mice compared to control mice. In addi-
tion to the effects of GLP-2 on normal mucosa, the effects 
of this agent during periods of gut injury or atrophy have 
also been assessed. Mice treated with indomethacin devel-
oped small bowel enteritis associated with significant mor-
tality at 48 – 72 hours after administration; treatment with 
human [Gly 2 ]-GLP-2, before, during, or after indomethacin 
administration, resulted in reduced mortality and decreased 
mucosal injury  [34] . The protective effects were attrib-
uted to the significantly increased crypt cell proliferation 
and decreased crypt compartment apoptosis. The effect 
of GLP-2 on chemotherapy-induced intestinal mucositis 
has also been assessed. Pretreatment of mice with human 
[Gly 2 ]-GLP-2 before administration of the topoisomerase 
inhibitor, irinotecan, resulted in reduced bacterial translo-
cation, intestinal damage, and mortality  [35] . Histological 
and biochemical analyses revealed significant reductions in 
crypt compartment apoptosis and reduced caspase-8 activa-
tion. Consistent with these reports, Tavakkolizadeh and col-
leagues  [36]  noted decreased intestinal damage in rats given 
GLP-2 in combination with the chemotherapeutic agent 
5-fluorouracil. Finally, repeated cyclical administration of 
human [Gly 2 ]-GLP-2 resulted in significantly decreased 
mortality in groups of Balb/c mice given irinotecan.  

    Colon 

 Colonic   mucosal growth may be affected by the gut pep-
tides gastrin, BBS/GRP, NT, and GLP-2. Earlier reports 
suggested a role for amidated gastrin (i.e., G17 and G34) as 
a trophic factor in the colon  [37] . Recent studies now sug-
gest that glycine-extended progastrin (G-Gly) may be the 
responsible agent producing the effects noted with gastrin 

administration. These findings have sparked renewed 
interest in a role for gastrin precursor products in colonic 
growth. Koh and colleagues  [38]  generated mice that 
overexpressed progastrin truncated at glycine-72 which 
demonstrate elevated serum and mucosal levels of G-Gly 
compared with wild-type mice. Mice overexpressing G-Gly 
displayed a 43 percent increase in colonic mucosal thick-
ness and a 41 percent increase in the percentage of gob-
let cells per crypt. Furthermore, administration of G-Gly 
to gastrin-deficient mice resulted in a 10 percent increase 
in colonic mucosal thickness and an 81 percent increase in 
colonic proliferation as measured by BrdU incorporation. 

 Although   the small bowel is significantly more sen-
sitive to the effects of GLP-2, studies have shown that 
GLP-2 and analogs can stimulate the growth of colonic 
mucosa. Litvak and colleagues  [33]  demonstrated the 
trophic effect of GLP-2 on the colonic mucosa of athymic 
nude mice. Drucker  et al .  [39]  demonstrated an increase 
in colonic growth using dipeptidyl peptidase IV-resist-
ant GLP-2 analog, human [Gly 2 ]-GLP-2, in 6-week-old 
female mice. A significant increase in large bowel mass 
was detected in mice treated with this analog for 10 days. 
Furthermore, the combination of this agent with either 
IGF-1 or an IGF-1 analog produced a greater increase in 
large bowel mass than in mice treated with [Gly 2 ]-GLP-2 
alone. Administration of GLP-2 increased colonic weight 
in Wistar rats with atrophic colonic mucosa induced by 
TPN administration and reduced colonic mucosal injury in 
a dextran sulfate-induced colitis model  [32] . 

 Other   intestinal hormones may play a contributory role 
in colonic proliferation; however, the effects are relatively 
minimal. For example, BBS administered three times a 
day for 7 days stimulated rat colonic mucosal growth  [40] ; 
moreover, administration of BBS orally during the neonatal 
period stimulated colonic growth  [17] . Investigators in our 
laboratory have shown that, in rats given an elemental diet, 
the proliferative effect of BBS was confined to the proxi-
mal colon  [41] . Colonic proliferation is likewise noted with 
NT administration; however, the effects of NT on the colon 
are much less pronounced than in the small bowel  [42] . 
NT-induced colonic proliferation appears to be dependent 
upon age, with hyperplasia noted in the colon of young rats 
given NT, whereas NT significantly increased hypertro-
phy in aged rats. Similarly, PYY has been shown to have a 
modest effect on growth of the colonic mucosa  [29] .   

    GI HORMONE RECEPTORS AND SIGNAL 
TRANSDUCTION PATHWAYS 

 GI   hormone-stimulated signal transduction occurs with the 
binding of hormones to their cognate cell surface recep-
tors, which are G-protein-coupled receptors (GPCRs) 
 [43] . These receptors have the typical structural features of 
G-protein-binding seven-transmembrane receptors which 
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can regulate a number of physiological processes, including 
proliferation, growth, and development. It was originally 
thought that in order for GPCR signaling to occur, specific 
interactions between the GI hormone and the receptor were 
necessary to produce conformational changes in the recep-
tor and stimulate intercellular signal transduction pathways. 
However, recent studies suggest a more complex regulation 
of the GPCRs through (1) dimerization with themselves 
and other receptors, (2) activation of differing G proteins, 
(3) internalization and desensitization, and (4) the ability 
to change in conformation and interactions with empty or 
inactive receptors  [44] . 

 The   seven-transmembrane-spanning  α -helical domains 
function as ligand-regulated guanine nucleotide exchange 
factors for the intercellular heterotrimeric G proteins  [43] . 
Heterotrimeric G proteins are composed of the products 
of three gene families encoding  α ,  β , and  γ  subunits. The 
agonist-activated GPCR catalyzes the exchange of GTP 
for GDP bound to the G α  subunit, as well as the dissocia-
tion of GTP-G α  from its cognate G β  γ  dimer. The activated 
GTP-G α  and G β  γ  subunits, in turn, regulate the activity 
of various intercellular effector proteins, such as phos-
pholipases, adenyl cyclases, protein kinases, membrane ion 
channels, and members of the Ras family of GTP-binding 
proteins. In addition, based on structural similarities, the 
20 identified G α  subunits have been divided into four sub-
families: (1) the cholera toxin-sensitive ( α ) subunits that 
stimulate adenyl cyclase and increase cyclic AMP levels; 
(2) the pertussin toxin-sensitive ( α  i/o ) subunits that inhibit 
adenyl cyclase activity; (3) the pertussin toxin-sensitive 
( α  q/11/14 ) subunits which stimulate membrane phospholi-
pases; and (4) the ( α  12/13 ) subfamily that links GPCR to the 
Ras-related GTP binding protein, Rho  [43] . Additionally, 
12 G γ  and 6 G β  subunits have been identified. These  β  γ  
dimers have been linked to the signaling molecules, phos-
phatidylinositol-3 kinase (PI3K), and select forms of ade-
nyl cyclase and receptor kinases. 

 Among   the multiple intercellular signaling pathways that 
mediate the proliferative effects of GPCRs, a family of related 
serine-threonine kinases, collectively known as the mitogen-
activated protein kinases, or MAPKs, appear to play a central 
role        [45, 46] . Hormones act as ligands to eventually activate 
p42 and p44 ERKs, which occurs through the involvement of 
a complex interplay of several known non-receptor kinases 
and receptor kinases. The ability of tyrosine kinase inhibitors 
to reduce the activation of MAPK by GPCR and the rapid 
tyrosine phosphorylation of Shc ( src  homology and collagen) 
following GPCR stimulation with the consequent formation 
of Shc-Grb2 (growth factor receptor bound 2) complexes 
provides evidence that tyrosine kinases link GPCRs to the 
Ras – MAPK pathway        [47, 48] . Additionally, GPCRs link to 
the Jun-N terminal kinase (JNK), p38, MAPK, and the big 
mitogen-activated kinase-1 (BMK-1) or ERK5 pathways  [43] . 

 The   molecular mechanisms though which GPCRs 
transduce signals are complex, and likely involve multiple 

signaling pathways. In addition, the signaling pathways are 
likely cell-specific, which may explain the diverse physi-
ologic functions controlled by gut hormones, ranging from 
regulation of secretion, motility, and in some instances 
growth, depending on the target tissue.  

    SIGNALING PATHWAYS MEDIATING THE 
EFFECTS OF INTESTINAL PEPTIDES 

    Figure 12.1    summarizes how signaling pathways mediate 
the effects of intestinal peptides. Once a trophic GI pep-
tide binds its seven-transmembrane GPCR, signal trans-
duction pathways are activated which ultimately can lead 
to cell proliferation depending upon cell type              [43, 49 – 52] . 
A number of pathways and proteins have been identified 
that are stimulated by the trophic gut peptides. For the most 
part, these pathways have been identified using neoplastic 
cells that possess the receptor for the trophic gut hormone. 

    Pathways Involving Phospholipase C, 
Phosphatidylinositol Activation, Calcium 
Mobilization, and Protein Kinase C 

 An   early event associated with binding of trophic pep-
tides to its receptor is activation of the phospholipase C 
(PLC) signal transduction pathway. For example, gastrin 
stimulates PLC in a number of cell types, including gastric 
parietal cells and colonic epithelial cells, NIH-3T3 fibrob-
lasts that express the gastrin receptor (CCK-B/gastrin), 
and various neoplastic cell lines (reviewed in        [53, 54] ). 
The activation of PLC, which may involve coupling of the 
CCK-B/gastrin receptor with selected members of the G 
protein superfamily, induces the breakdown of membrane 
phosphatidylinositol 4,5-bisphosphate (PIP 2 ), leading to the 
formation of two second messengers, IP 3  and 1,2-diacylg-
lycerol (DAG). IP 3  binds to its intracellular receptor and 
triggers the release of calcium from internal stores. Gastrin 
stimulates inositol phosphate production in a variety of cell 
types, leading to IP 3  and DAG formation, protein kinase C 
(PKC) activation, and intracellular calcium mobilization 
       [53, 54] . These effects can be blocked by CCK-B/gastrin 
receptor antagonists. In addition to gastrin, other peptides, 
such as NT, have been shown to stimulate the PKC path-
way, IP 3  turnover, and calcium mobilization in a number 
of cell types, including the colon cancer cell lines HT29 
and KM20, as well as the pancreatic cancer cell line MIA 
PaCa-2            [55 – 58] . 

 The   trophic GI hormones also activate downstream PKC 
isoenzymes. Gastrin activates classic calcium- and phos-
pholipid-dependent PKCs, as demonstrated by translocation 
of the cytosolic activity of PKC to the membrane compart-
ment of rat colonic epithelial cells  [59] . The isoforms, PKC α  
and - β , are responsive to gastrin treatment, and mobilize from 
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the cytosol with treatment  [60] . In addition, recent results 
demonstrate that gastrin induces the novel protein kinase D 
(PKD, also known as PKC μ ), which has distinct structural 
and enzymological properties from the PKCs  [61] , in Rat-1 
cells transfected with the human CCK-B/gastrin receptor  [62] . 
Similarly, Guha and colleagues  [63]  recently reported that NT 
induced a rapid activation of PKD, which was linked to the 
mitogenic effect of NT in pancreatic cancer cells.  

    Tyrosine Kinases, Tyrosine Phosphorylation 
of Focal Adhesion Kinase, Paxillin, 
and CRK-Associated Substrate (CAS) 

 Through   pairing with non-receptor tyrosine kinases, 
GPCRs utilize the tyrosine kinase pathway to stimulate 
cell growth  [64] . Gastrin stimulates tyrosine kinase activ-
ity and tyrosine phosphorylation of membrane proteins in 
rat colonic mucosal cells, and membrane-associated pro-
tein tyrosine kinase and tyrosine phosphorylation of endog-
enous proteins in the IEC-6 intestinal cell line          [65 – 67] . 
In addition, gastrin results in tyrosine phosphorylation of 
62- and 54-kDa Src-like proteins in IEC-6 cells and pp60 c-

src  kinase in rat colonic epithelial cells, which leads to tyro-
sine phosphorylation and activation of PLC γ 1        [67, 68] . 

 Growth   factor receptors with intrinsic kinase activ-
ity and those that signal through G proteins can promote 
tyrosine phosphorylation of the adaptor protein Shc, which 
link activated growth factor receptors to the Ras signaling 
pathway, and its subsequent association with the Grb2 – Sos 
(growth factor receptor binding protein-2/Son of seven-
less) complex  [69] . Gastrin promotes a rapid and transient 

increase in tyrosine phosphorylation of the Shc proteins 
and association with Grb2-Sos, leading to activation of 
MAPKs in the human gastric cancer cell line, AGS-B, 
which expresses the human CCK-B/gastrin receptor  [70] . 
The involvement of PI3K, as well as other SH2 anchor-
ing proteins, in gastrin’s mitogenic pathway has been 
reported. Gastrin induces tyrosine phosphorylation of the 
insulin receptor substrate 1 (IRS-1) and association with 
the 85-kDa subunit of PI3K  [71] . Gastrin also stimulates 
the association of phosphorylated IRS-1 with the adapter 
Grb2, indicating that tyrosine phosphorylation of IRS-1 
may be a mechanism whereby gastrin activates PI3K and 
other adapters  [71] . Therefore, mobilization of the adapter 
proteins IRS-1, Shc, Grb2, and Sos could serve to link the 
CCK-B/gastrin receptor to the Ras-MAPK cascade, ulti-
mately leading to transcriptional regulation  [53] . 

 Gastrin   treatment results in the tyrosine phosphoryla-
tion of various proteins        [67, 72] . For example, gastrin pro-
motes tyrosine phosphorylation of focal adhesion kinase 
(p125 fak ), a tyrosine kinase that localizes at focal adhesions 
and is important for cell adhesion and transformation  [72] . 
The focal adhesion proteins paxillin and CAS are poten-
tial downstream targets for p125 fak  and function as adapter 
proteins. Gastrin induces phosphorylation of p125 fak , CAS, 
and paxillin in Rat-1 and NIH-3T3 cells transfected with 
the CCK-B/gastrin receptor        [72, 73] .  

    MAPK Pathway 

 The   MAPKs are a family of highly conserved serine- threonine 
kinases which are activated by a variety of extracellular 

 FIGURE 12.1          Summary of pathways which can mediate the trophic effect of gastrin.  
    Although these pathways have been best described for gastrin, other gut peptides can interact with their specific G-protein-coupled receptor (GPCR) to 
stimulate similar pathways in receptor-positive cells. See text for details and abbreviations. Adapted from  [53]  (Yassin, 1999).    
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signals and relay mitogenic signals to the nucleus  [74] . To 
date, four groups of MAPKs have been identified in mam-
mals. These include ERK1/2, JNK, p38, and ERK5. The 
activation of the MAPK pathway by gastrin has been dem-
onstrated in a variety of cell types, both containing the 
endogenous CCK-B/gastrin receptor and cells stably trans-
fected with this receptor          [69, 70, 72] . Gastrin also stimulates 
the serine-threonine kinase Raf-1, the cellular homolog of 
the Raf oncogene and an upstream modulator of ERK1/2, 
JNK, and p38        [70, 72] . The mechanism for the effect of 
these hormones on MAPK activation is dependent upon cell 
type. For example, in the AR4-2       J pancreatic cell line, gas-
trin-activated ERK was attenuated by treatment with agents 
that interfere with calcium mobilization or PKC activation 
 [75] . In other cells, the activation of MAPKs by gastrin does 
not involve PKC. In Chinese hamster ovary (CHO) cells 
transfected with the CCK-B/gastrin receptor, gastrin induces 
ERK activation partly through the Src and PI3K pathways 
and partly through PKC  [76] . Conversely, gastrin-stimulated 
Raf-1 and ERK activation in Rat-1 fibroblasts stably trans-
fected with the CCK-B/gastrin receptor are independent of 
PKC  [72] . Likewise, PYY stimulates ERK1/2, JNK, and 
p38 through binding of the Y1 receptor  [77] . The stimulation 
of these three MAPKs can occur via multiple and diverse 
pathways, but in the case of PYY it has been shown that 
PKC plays a major role in the signaling pathway between 
the Y1 receptor and MAPKs, acting between the EGFR 
and MAPKs. In CHO cells transfected with the human Y1 
receptor, both PKC and Ras are needed for the activation of 
the MAPK pathway  [78] . Specifically, only PKC � , an iso-
form that has been specifically linked to mitogenic effects 
in gut epithelium  [79] , was activated by PYY in the IEC-
6 intestinal cell line. NT has been shown to stimulate ERK 
and JNK activity in various neoplastic cell types contain-
ing endogenous NT receptors, ultimately leading to tran-
scription factor activation        [55, 56] . Therefore, activation 
of MAPKs appears to be an important mechanism for the 
mitogenic effects of intestinal hormones; this activation can 
occur by a variety of signal transduction mechanisms, and 
depends upon cell context as to which pathway is active in 
which cell type.  

    Downstream Transcription Factors 

 Ultimately  , stimulation of various signaling pathways, such 
as PKC, the MAPKs, or ribosomal S6 kinase (p70 S6K ), 
can lead to activation of downstream transcription factors. 
Gastrin stimulates the expression of early response genes, 
including c- fos  and c- jun  in AR4-2       J cells, and c- fos  and 
c- myc  in NIH-3T3 cells transfected with the CCK-B/gastrin 
receptor        [73, 80] . Gastrin-induced ERK-mediated phospho-
rylation and activation of these transcription factors was 
prevented by pharmacologic inhibition of PKC  [81] , sug-
gesting an important role for the PKCs and ERKs in the 

activation of the AP-1 transcription factors. In addition, NT 
and BBS have been shown to stimulate expression of c- jun  
and c- fos  in cell types possessing endogenous receptors for 
these peptides          [55, 56, 82] . It is likely that the activation of 
these, as well as other transcription factors such as Elk-1, 
ultimately play a major role in the mitogenic response of 
these hormones.   

    CONCLUSIONS 

 The   growth of GI mucosa is modulated by multiple fac-
tors, including intraluminal nutrients and the local release 
of growth factors and various GI hormones. These hor-
mones bind to their specific receptors, stimulating many 
signal transduction pathways which ultimately lead to the 
mitogenic effects of these gut peptides. In this regard, the 
GI hormones have been suggested as potential therapeu-
tic agents in disease states in the non-neoplastic GI tract 
related to gut disuse or atrophy, mucosal ulcers, or inflam-
matory conditions. For example, the trophic peptides, 
NT, BBS/GRP, and GLP-2, can augment or maintain GI 
mucosal growth during periods of gut disuse or atrophy 
           [21, 22, 27, 34] . In addition, these peptides enhance adap-
tive hyperplasia associated with massive intestinal resection 
       [24, 25] . In a limited clinical trial, administration of GLP-2 
improved intestinal energy absorption, decreased energy 
excretion, increased body weight and lean body mass, and 
enhanced urinary creatinine excretion in patients with short 
bowel syndrome  [83] . In addition, GI hormones may play 
a role in preventing the severe sequelae of chemotherapeu-
tic agents on the intestinal mucosa. Both BBS and GLP-2 
have been shown to prevent the severe mucosal inflamma-
tion associated with various chemotherapeutic agents          [28, 
35, 36] . In the future, it will be important to further define 
the signaling pathways regulated by the trophic intestinal 
peptides so that more effective agents can be developed 
which can take advantage of the gut-specific effects of 
these hormones on the proliferation and maintenance of the 
GI mucosa.  
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       Cell – Cell and Cell – Matrix Interactions 
in Bone 

   Lynda F.   Bonewald  
  Bone Biology Program, University of Missouri-Kansas City, Kansas City, Missouri    

    INTRODUCTION TO BONE AND BONE 
DISEASE 

 Far   from being the static, hard skeleton hanging in the anat-
omy classroom, the skeleton within the body is dynamic 
and constantly responding to internal and external forces. 
The internal forces include cytokines, growth factors, and 
hormones, and the external force is response to muscle 
and to strain placed on the skeleton. In fact, the adult skel-
eton undergoes greater remodeling than other organs in the 
body. Estrogens, androgens, parathyroid hormone (PTH), 
1,25-dihydroxy vitamin D 3  (1,25 D 3 ), and other hormones 
have been shown to play important roles in the skeleton. 
The three major bone cell types  –  osteoclasts, osteoblasts, 
and osteocytes  – are in constant communication with each 
other and with cells of the immune and hemopoietic sys-
tems. Bone cells are in constant communication not only 
with cells of other systems but also with the extracellular 
matrix (ECM), which is composed of osteoid, non-mineral-
ized bone tissue and the mineralized bone matrix. Although 
previously viewed as mainly a support structure for bone 
cells, it is now clear than the bone ECM controls and 
directs bone cell function.  

    DISEASES OF BONE 

 Manifestation   of bone disease is usually later or slower 
than manifestation of disease in other organs. For exam-
ple, bone cancer is usually discovered after manifestation 
in other tissues such as breast or lung. Bone cancer such as 
osteosarcoma usually does not present until fracture or pain 
occurs, often after the cancer has become fully entrenched 
and difficult, if not impossible, to cure. Another example 
is osteoporosis, in which bone loss can occur over decades 

before being identified and treated. As to bone malfor-
mations, at present the only hope of treatment is surgery. 
Therefore, a greater understanding of normal bone function 
and pathology is required for the design of preventive ther-
apy and for treatment of disease. 

    Osteoporosis 

 Osteoporosis   has become a major medical problem as the 
world population ages. Bone strength is reduced in the post-
menopausal female, and in both sexes with aging. Bone 
strength is a function of size, connectivity of trabecular struc-
tures, level of remodeling, and the intrinsic strength of the 
bone itself. Osteoporosis is defined as  “ the condition of gen-
eralized skeletal fragility in which bone strength is sufficiently 
weak that fractures occur with minimal trauma, often no 
more than is applied by routine daily activity ”   [1] .  “ Primary ”  
osteoporosis is a disorder of postmenopausal women and 
of older men and women.  “ Secondary ”  osteoporosis occurs 
due to clinical disorders such as endocrinopathies, genetic 
diseases, or to drugs as in glucocorticoid-induced bone loss. 
As the US population ages, osteoporosis is taking a greater 
and greater toll in terms of both suffering and economic cost. 
Each year, osteoporosis is the underlying basis for 1.5 million 
fractures. These cause not only pain and morbidity, but also 
diminish the quality of life for these individuals, as they lose 
their independence. Hip fracture results in up to 24 percent 
mortality, 25 percent of hip fracture patients require long-
term care, and only a third regain their pre-fracture level of 
independence  [2] . 

 Treatment   for osteoporosis includes hormone ther-
apy and the use of bone resorption inhibitors such as the 
bisphosphonates, and, in addition, stimulators of bone for-
mation such as modified forms of PTH. The use of hormone 
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(i.e., sex steroid) replacement therapy has become unclear 
and controversial since the Women’s Health Initiative 
Study        [3, 4]  showed an associated increase in breast cancer. 
It has been argued that this study mainly evaluated elderly 
and asymptomatic woman, not symptomatic peri- and early 
postmenopausal women in whom hormone replacement 
therapy may be beneficial  [5] . This continues to be an area 
of intense discussion and investigation. Bisphosphonates 
are used not only for the treatment of osteoporosis but also 
to prevent bone loss due to glucocorticoid use, and Paget’s 
disease. These compounds are useful not only to treat bone 
loss, but also to treat and reduce bone metastasis in meta-
static breast cancer and multiple myeloma,  [6] . However, 
recently, high-dose bisphosphonate treatment has been 
associated with osteonecrosis of the jaw  [7] . It is not known 
if other parts of the skeleton are affected. The newest agent 
developed to treat osteoporosis is anabolic, the amino ter-
minal fragment of parathyroid hormone, PTH (1-34), 
called teriparatide. This promising treatment restores bone 
and relieves pain  [8] .  

    Skeletal Malignancies 

 It   has become clear that tumor cells use disruption or 
enhancement of normal cell – cell and cell – ECM interac-
tions to enhance their own growth and metastasis. A prime 
example is multiple myeloma, in which the tumor cells 
express an integrin complex, VLA4, that allows them to 
home to bone marrow        [9, 10] . Myeloma is characterized 
by extensive bone destruction; therefore efforts are under-
way to prevent metastasis to bone through the use of agents 
that block myeloma – bone ECM interactions. Breast, lung, 
and prostate cancer preferentially metastasize to bone  [11] . 
Factors that may play a role in osteoblastic bone metasta-
sis include fibroblast growth factors, (FGFs), transforming 
growth factor beta (TGF β ), platelet-derived growth factor 
(PDGF), and, more recently, endothelin-1  [12] . Systemic 
syndromes can be associated with such cancers; these 
include leukocytosis and hypercalcemia. A well-studied 
factor clearly associated with hypercalcemia is parathy-
roid hormone-related peptide (PTHrp), which is normally 
produced by keratinocytes, uterus, placenta, and mammary 
tissue. This factor mimics PTH action by binding to the 
same receptor. Other factors implicated in osteolytic bone 
loss due to malignancy include interleukin-1, interleukin-6, 
tumor necrosis factor  α , RANKL, and MIP-1 α   [13] . These 
factors will be discussed in more detail below.  

    Bone Malformations and Genetic Defects 

 As   bone growth proceeds through the growth plate in long 
bones, defects or mutations in a number of factors essential 
in this process lead to chondrogenic dysplasias. Jansen’s 
metaphyseal chondrodysplasia and Blomstrand’s lethal 

chondrodysplasia are due to mutations in the PTH receptor 
 [14] . The genetics and environmental insult responsible for 
other genetic disorders such as Paget’s disease of bone, an 
autosomal dominant, are being identified. Complications 
of this disease include deformations of skull, face, and 
lower extremities, pain, degenerative arthritis, hearing 
loss, hypercalcemia, and hyperuricemia, due to enhanced 
osteoclast formation and activation  [15] . Mutations in the 
sequestosome-1 gene occur in 30 percent of patients with 
familial Paget’s  [16] . Such mutations may make these 
individuals predisposed to the effects of  Paramyxioviridae  
viruses on their osteoclasts  [17] . Targeted expression of 
measles virus nucleocapsid to osteoclasts in mice results 
in a phenotype similar to Paget’s disease  [18] . The mecha-
nism may be through induction of overexpression of TATA 
box-associated factor II-17, a potential co-activator of the 
vitamin D receptor  [19] . 

 Another   serious genetic bone disease is osteogenesis 
imperfecta, a heritable disease of bone characterized by 
recurring bone fractures. It is caused by mutations affect-
ing the structure of the collagen type I molecule, and is the 
most common single gene defect causing bone disease  [20] . 
Mutations in type I collagen can cause moderate disease, 
or can be lethal during the perinatal period. Interestingly, 
bisphosphonates are being used to successfully treat this 
condition, but their mechanism of action is unknown  [21] .   

    BONE CELLS AND THEIR FUNCTIONS 

    Osteoclasts 

 The   sole function of the osteoclast is to resorb bone. The 
mature osteoclast is described histologically as a multinuclea-
ted, tartrate-resistant acid phosphatase (TRAP)-positive cell. 
However, macrophage polykaryons can have these same 
characteristics, so the  “ gold standard ”  for identifying an oste-
oclast is the formation of resorption lacunae or  “ pits ”  on a 
mineralized surface. Other characteristics of the osteoclast 
include the expression of calcitonin receptors, enzymes such 
as cathepsin K and matrix metalloprotein-9 (MMP-9) that 
play a role in matrix degradation, and the vacuolar proton 
pump for the transport of protons to the resorption lacunae. 
For the osteoclast to resorb, it must form a  “ sealing zone ”  
around the periphery of its attached area to concentrate its 
secreted proteases and protons into a limited area. Underneath 
the cell a ruffled border is formed, and in this region the pH 
is reduced to approximately 2 – 3, which enhances the degra-
dation of mineralized matrix.  [22] . 

 Osteoclast   precursors are derived from the same stem 
cell hematopoietic precursors that can become granulo-
cytes and monocytes/macrophages. Cell lines such as RAW 
267.4 and MOPC-5 are available that represent osteoclast 
precursors, as these cells can form TRAP-positive multinu-
cleated cells that resorb bone  [23] . It has been well known 
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for the past 10 – 15 years in the bone field that osteoclast 
precursors require supporting cells for osteoclast forma-
tion. The importance of macrophage colony stimulating 
factor (M-CSF) as a supporter of proliferation of osteo-
clast precursors has been determined  [24] . Critical factors 
and cell surface molecules involved in osteoclast forma-
tion have only recently been elucidated with the discovery 
of RANK ligand (RANKL) and osteoprotogerin (OPG) 
       [25, 26] . The osteoclast precursor expresses a receptor 
known as RANK (receptor activator of NF κ B) that signals 
through the NF κ B pathway. The binding of the cell mem-
brane bound ligand, RANKL, activates RANK receptor. 
However, a soluble factor, OPG, acting as a  “ decoy ”  recep-
tor can bind to RANKL, preventing osteoclast formation. 
The expression of RANKL on the surface of supporting 
cells occurs when these cells are exposed to bone-resorbing 
cytokines, hormones, and factors such as interleukins-1, 
-6, -11, PTH, PTHrp, oncostatin M, leukemia inhibitory 
factor, prostaglandin E 2 , or 1,25 D 3.   [27] . These factors 
upregulate RANKL to a level capable of overcoming the 
effects of circulating OPG, thereby resulting in osteoclast 
formation. Efforts to generate osteoclasts without support-
ing cells have only recently been accomplished  in vitro  by 
using an artificial, soluble form of RANKL  [28] .  

    Osteoblasts 

 The   formation of bone matrix on bone-forming surfaces 
has been well studied. The osteoblast is derived from a yet 
to be identified precursor stem cell of mesenchymal origin, 
and in cell culture behaves similarly to fibroblasts, except 
for its specialized ability to form mineralized matrix. The 
osteoblast undergoes three major phenotypically iden-
tifiable stages of differentiation, which Stein, Lian and 
co-workers have characterized as proliferation, matrix pro-
duction, and maturation in which mineralization occurs 
 [29] . During the proliferation phase there is high level 
expression of c-fos, histone H4 and, during matrix produc-
tion, transforming growth factor-1 β  (TGF β ) and type I col-
lagen. During the maturation phase these proteins decrease, 
and the expression of alkaline phosphatase, osteopontin, 
and Cbfa1 increases. During the mineralization phase these 
previous proteins decline in expression while proteins such 
as osteocalcin increase, with increases in mineralized bone 
formation. Osteoblast cells in each of these phases are often 
described as early pre-osteoblasts, proliferating osteoblasts, 
mature osteoblasts, and, finally, pre-osteocytes/osteocytes 
within the mineralized matrix.  

    Osteocytes 

 Osteocytes   are terminally differentiated osteoblasts, mak-
ing up the majority (over 90 – 95 percent) of all bone cells 
         [30 – 32] . During osteocyte ontogeny, the matrix producing 

osteoblast becomes either a lining cell or a pre-osteocyte 
embedded in the newly-formed osteoid. These pre-osteocytes 
produce factors (such as osteocalcin) that locally inhibit 
mineralization, and form a lacuna around the main body 
of the osteocyte and canaliculi around the dendritic proc-
esses        [33, 34] . A mature osteocyte is defined as a cell sur-
rounded by mineralized bone, and is described as a stellate 
or star-shaped cell with a large number of slender, cyto-
plasmic processes radiating in all directions, but generally 
perpendicular to the bone surface. Osteocytes first attracted 
the attention of electron microscopists because of their 
extensive networks within the mineralized bone matrix that 
connect the embedded osteocytes to form an extensive net-
work with cells on the surface of bone. Mature osteocytes 
are most likely coupled by GAP junctions, and appear 
to be linked to lining cells by the same connections  [35]  
Recently it has been shown that osteocytes appear to also 
possess functional hemichannels, and that prostagland-
ins may be released through hemichannels in response to 
mechanical strain  [36] . 

 The   potential functions of osteocytes include: to 
respond to mechanical strain and to send signals of bone 
formation or bone resorption to the bone surface, to modify 
their microenvironment, and to regulate both local and sys-
temic mineral homeostasis. These functions are proposed to 
be accomplished through gap junctions, through the secre-
tion of factors, and through the direct dendritic contact with 
cells on the bone surface (for reviews, see            [30 – 32, 37] ).   

    MECHANICAL STRAIN 

 Julius   Wolff, in 1892, was the first to suggest that bone 
accommodates or responds to strain. To paraphrase Wolff’s 
Law: the law of bone remodeling, alteration of internal and 
external architecture, occurs as a consequence of the stress-
ing of bone. In general, athletes who put great stresses on 
their bones, such as wrestlers, and those who are chronic 
exercisers, such as tennis players, have higher bone mineral 
density and mass than matched, non-exercising controls. 
Astronauts subjected to long periods of weightlessness 
during space flight lose bone. The cells of bone that have 
the potential for sensing mechanical strain and translating 
these forces into biochemical signals include bone lining 
cells, osteoblasts, and osteocytes. 

 The   skeleton adapts to mechanical usage. When the 
skeleton is not used, as in immobilization, bone is lost. 
During growth the skeleton is in  “ mild overload, ”  which 
results in bone modeling and resulting new bone forma-
tion. When growth ceases, muscle strength is no longer in 
overload and bone strain is therefore reduced to the adapted 
level of strain. The estimated levels of micro-strain for 
each  “ window ”  or level of strain, have been determined by 
 in vivo  animal and human experiments. At less than 100        υ E 
only resorption occurs, and this has been called the  “ disuse 
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window. ”  The  “ adapted window ”  is where remodeling 
(resorption followed by formation) occurs, between 100 
and 1000        υ E. This adapted window can be raised or low-
ered, depending on the hormonal environment. The  “ mild 
overload window ”  is where modeling (formation only) 
occurs between 1000 and 3000        υ E, and this only occurs 
in growing animals. The  “ pathologic overload window ”  is 
where microdamage (resorption followed by formation) 
occurs at strains greater than 3000        υ E. Microdamage can 
occur in race horses and in military recruits during basic 
training. Microdamage due to pathologic overload results 
in rapid resorption followed by formation at areas of micro-
damage. Fracture strain is approximately 25,000        υ E  [38] . 

 It   has been proposed that bone possesses a  “ mechano-
stat, ”  a mechanism whereby bone can reset its response to 
particular levels of strain        [39, 40] . Hormones have been 
proposed to lower the mechanostat; that is, addition of 
hormones such as estrogen, PTH, or 1,25,D 3  can lower the 
magnitude of strain necessary to induce a response          [41 – 43] . 
For example, if bone normally responds to 2000        υ E with 
an increase in modeling, in the presence of hormone the 
same response would occur to lower strain levels  –  say 
1000        υ E. However, it has been shown that the skeleton 
cannot respond optimally to mechanical strain without the 
presence of estrogen; therefore, estrogen is essential for 
the normal response of bone and not for just resetting the 
mechanostat  [44] . Thus, for normal skeletal growth and 
maintenance, both biochemical signals and mechanical 
strain are essential. For the skeleton to optimally respond to 
mechanical strain, hormones must be present; conversely, 
bone cannot develop normally in the absence of strain. 

 The   cell that senses mechanical strain and translates 
strain into biochemical signals is thought to be the osteo-
cyte (see description above). It has been proposed that 
molecules travel in the bone fluid surrounding the osteo-
cyte through a glycocalyx which attaches the dendritic 
processes to the caniluculi  [45] . The glycocalyx acts as a 
sieve or  “ fishnet ”  to allow molecules below approximately 
7       nm to pass  [46] . Studies suggest that molecules as large 
as albumin can pass through the canaliculi, and that the 
bone fluid serves to provide nutrients to the osteocyte. 
Channels in osteocytes are proposed to open in response to 
mechanical strain induced by shear stress caused by mov-
ing bone fluid. Potential openings or channels to the extra-
cellular bone fluid have been identified, such as calcium-, 
ion-, voltage-, and stretch-activated channels. Molecules 
proposed to be involved in osteocyte signaling include 
nitric oxide, ATP, prostaglandin, glutamate, and others (for 
reviews, see        [30, 31] ). 

 The   cell processes of osteocytes are connected with each 
other and cells on the bone surface via gap junctions  [35] , 
thereby allowing direct cell-to-cell coupling. Recently it 
has been shown that connexins can compose and function 
in the form of un-apposed halves of gap junction channels, 
called hemichannels. These channels are localized at the 

cell surface, independent of physical contact with adjacent 
cells  [47] . Recently, evidence of functional hemichannels 
formed by Cx43 has been reported in neural progenitors 
and neurons, astrocytes, heart, and especially, osteoblasts 
and osteocytes. The opening of hemichannels appears to 
provide a mechanism for ATP and NAD  �   release, which 
raises intracellular Ca 2 �   levels and promotes Ca 2 �   wave 
propagation in astrocytes, bone cells, epithelial cells, and 
outer retina. Hemichannels expressed in bone cells appear 
to function as essential transducers of the anti-apoptotic 
effects of bisphosphonates [48] , and seem to allow the 
extracellular release of PGE 2  in osteocytes upon exposure 
to fluid flow shear stress  [36] . Therefore, in osteocytes, 
gap junctions at the tip of dendrites appear to mediate a 
form of intracellular communication, and hemichannels 
along the dendrite appear to mediate a form of extracellular 
communication.  

    HORMONES RESPONSIBLE FOR BONE 
DEVELOPMENT, GROWTH AND 
MAINTENANCE 

 A   number of hormones play a role in the maintenance of 
bone. These include estrogens, progesterone, aldosterone, 
androgens, vitamin A, and glucocorticoids. These hormones ’  
actions are mediated by hormone-activated transcription 
factors belonging to the superfamily of ligand-dependent 
nuclear receptors. The superfamily is usually referred to as 
Nuclear Hormone Receptors, or simply Nuclear Receptors, 
a subset of which contains the ligand-dependent group (see 
the NURSA website at NIH). These nuclear receptors, upon 
binding to ligand, can form homodimers or heterodimers at 
specific DNA binding sites. They also interact with a wide 
array of other transcription factors, as well as general and 
specific co-regulatory proteins. The complexity of these 
interactions leads to intrinsic specificity of gene regula-
tion, but the exact determinants of specificity are still under 
study. 

    Estrogen 

 Estrogen   is clearly the major sex hormone affecting growth, 
remodeling, and homeostasis of the skeleton. Reduction in 
estrogen levels that occurs with the menopause or through 
ovariectomy can result in bone loss. However, estrogen 
also plays a role in skeletal integrity in the male. Strong 
support for this comes from the clinical reports of two 
human males, one with a mutation in the alpha isomer of 
the estrogen receptor (ER- α ) gene, causing partial estrogen 
resistance; and another with aromatase p450 deficiency, 
causing complete estrogen deficiency. They both showed 
continued longitudinal bone growth due to delayed epi-
physeal growth-plate ossification and osteopenia        [49, 50] . 
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Therefore, there is increased clinical interest in the use of 
selective estrogen receptor modulators (SERMS) in the 
treatment of bone loss. These synthetic ligands appear to 
have greater specificity for estrogen receptor in bone, and 
therefore the undesired side-effects of estrogen in other tis-
sues is avoided while bone mass is maintained. 

 Estrogen   appears to have direct effects on osteoblasts, 
osteocytes, and osteoclasts. Estrogen is a viability factor 
for osteoblasts and osteocytes, but appears to induce apop-
tosis of osteoclasts        [51, 52] . Estrogen also appears to down-
regulate the production of several factors that play a role in 
bone resorption, such as interleukin-1, tumor necrosis fac-
tor, and interleukin-6  [53] . Therefore, considerable interest 
has been directed to inhibitors of these cytokines, such as 
their receptor antagonists. 

 There   are two forms of the ER, designated  α  and  β , 
and both forms are found in bone. The phenotypes of mice 
lacking either or both of these receptors are complicated, 
and show sexual dimorphism. One receptor isoform can 
partially compensate for the other. Also, it appears that 
estrogen can have opposite effects in mice compared to 
humans, especially on longitudinal bone growth, where 
estrogen enhances long bone growth in rodents but causes 
epiphyseal closure in humans. Homozygous deletion of 
ER- α  results in reduced cortical bone formation and den-
sity in both male and female mice  [54] . Female mice still 
lose bone with ovariectomy, and estrogen responsiveness 
is reduced. Studies with female estrogen receptor  β  (ER- β ) 
knockout ( � / � ) mice indicate that ER- β  is involved in 
the regulation of trabecular bone during adulthood by sup-
pressing bone resorption, whereas this is not the case for 
male mice, where there is no effect  [55] . Both sexes exhibit 
delayed growth-plate closure. Mice with both ER isoforms 
deleted generate a similar skeleton in the male as the ER- α  
knockout, but in contrast, females exhibit a more pro-
nounced phenotype with reduced cortical thickness and 
trabecular bone density  [56] . It is clear that ER- α  and ER- β  
perform different functions in cortical and trabecular bone, 
and that these functions differ between the sexes.  

    1 α ,25-Dihydroxyvitamin D 3  (1,25,D 3 ) 

 Vitamin   D is well known to prevent rickets; however, the 
compounds ergocalciferol (vitamin D 2 ) and cholecalciferol 
(vitamin D 3 ) are really pro-hormones that are converted to 
the biologically active form, 1 α , 25(OH) 2 vitamin D 3 , which 
functions in a manner analogous to that of the steroid hor-
mones  [57] . Metabolism of the precursors occurs first in 
the liver and is completed in the kidney. The final active 
form then acts on the major target organs, bone, intestine, 
and kidney. A vitamin D binding protein (DBP) transports 
the hormone in the circulation for delivery to cells, where the 
hormone is freed from its binding protein for binding to the 
vitamin D receptor (VDR), a canonical nuclear receptor. 

However, there is mounting evidence that 1,25,D 3  can also 
signal through membrane receptors        [58, 59]  and can have 
non-genomic effects  [60] . These rapid responses, such 
as enhanced transport of Ca 2 �  , and activation of protein 
kinase C and of phospholipase A2, have been attributed to 
the interaction of the hormone with a membrane receptor 
and not with the canonical VDR. This membrane receptor 
remains to be completely characterized. 

 Hereditary   vitamin D-resistant rickets is a rare autosomal 
recessive disease in which the patients exhibit defective bone 
mineralization and hypocalcemia due to decreased intesti-
nal calcium absorption. These patients are unresponsive to 
1,25,D 3  due to mutations in the VDR. Targeted disruption of 
this receptor in mice results in animals that appear normal 
at birth, but after weaning show growth retardation and alo-
pecia        [25, 61] . These mice are also infertile, which suggests 
a role for vitamin D in gonadal function. Much attention has 
focused on 1 α , 25(OH) 2 vitamin D 3,  the major metabolite of 
vitamin D. The second metabolite 24R, 25 (OH) 2  D 3 , may 
also be important. Deletion of the hydroxylase necessary for 
the generation of this metabolite results in mice that show 
poor viability, and bones with an accumulation of unminer-
alized matrix  [62] .  

    Parathyroid Hormone (PTH) and PTH-
Related Protein (PTH-rp) 

 PTH   is responsible for calcium homeostasis in the body 
both by its direct actions to provoke calcium release from 
bone and to enhance calcium reabsorption from kidney; 
and indirectly by actions on the gastrointestinal tract to 
effect conversion of 25 (OH)D 3  to 1,25 (OH) 2 D 3 . The prin-
cipal form is intact PTH (1–84); however, there are several 
circulating cleavage forms, the functions of which are not 
clear  [63] . It is clear that both the intact and amino termi-
nal forms of PTH bind to the PTH type I receptor, a G-pro-
tein-coupled, seven-transmembrane receptor that signals 
through cAMP and potentially also through protein kinase 
C and calcium activation. Mutations of this receptor in 
humans result in various forms of chondrodysplasias that 
resemble the disorganized growth-plate phenotype of mice 
lacking this receptor  [64] . Whereas both PTH and PTHrp 
bind to the PTH type I receptor, a second receptor, PTH 
type II, has been identified that responds to PTH but not to 
PTHrp  [65] . Recently, it has been clearly demonstrated that 
receptors also exist that are specific for carboxy terminal 
fragments of PTH  [66] . 

 PTH   has been shown to have both anabolic and cata-
bolic effects on bone  in vivo , to stimulate activation of 
osteoclasts, and either stimulate or inhibit osteoblast pro-
liferation and matrix production  in vitro . These effects of 
PTH have generated considerable debate on the role of 
PTH in bone remodeling. It appears that continuous PTH 
is responsible for resorption, whereas intermittent PTH can 
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induce new bone formation  [67] . Studies suggest that con-
tinuous exposure of cells results in downregulation of PTH 
receptor. Injections of either PTH or PTHrp into humans 
and animals can result in new bone formation, and inter-
mittent application can stimulate mineralization of osteob-
lasts  in vitro         [68, 69] . 

 PTHrp   was first identified as the factor responsible 
for causing humoral hypercalcemia of malignancy, but 
soon afterwards was identified in many normal tissues. 
Nonetheless, it was undetectable in the normal circulation 
 [70] . This molecule shares homology with PTH at the amino 
acid level, with 8 of the first 13 amino acids being identi-
cal, and three-dimensional homology in regions 13 – 34. 
PTHrp mRNA is alternatively spliced to yield three isoforms 
of 139, 141, and 173 amino acids. PTHrp is required for 
development of cartilage, morphogenesis of mammary gland, 
and tooth eruption, as demonstrated with tissue specific res-
cue of in PTHrp null mice that normally die at birth  [71] . 
PTHrp also plays a role in calcium transfer across the pla-
centa, and appears to play a role in smooth muscle contrac-
tility. Generally, bone cells appear to respond in a similar 
manner to PTHrp as to PTH.   

    GROWTH, SIGNALING, AND 
TRANSCRIPTION FACTORS RESPONSIBLE 
FOR BONE DEVELOPMENT AND GROWTH 

 Bone   formation proceeds through two ossification proc-
esses: endochondral ossification and intramembranous 
ossification. The former process involves a cartilage inter-
mediate and occurs during most of skeletal ossification, 
postnatal growth, bone remodeling, and fracture repair. 
The second process, by which bones form from mesen-
chymal condensations without a cartilage intermediate, 
only occurs in some craniofacial bones. The process of 
chondrogenesis and osteogenesis is tightly regulated at 
specific times and sites. Several transcription factors are 
important in this process, including Indian hedgehog and 
Sonic hedgehog, and the fibroblast growth factors and their 
receptors (see below). Indian hedgehog, expressed in pre-
hypertrophic and hypertrophic chondrocytes  [72] , couples 
chondrogenesis to osteogenesis through PTHrP-dependent 
and PTHrP-independent pathways        [73, 74] . The PTH sig-
naling pathway also plays a critical role in growth-plate 
development (see below). 

    Arachidonic Acid Metabolites 

 One   well-known group of arachidonic acid metabolites, 
the prostaglandins, clearly plays a role in both bone for-
mation and bone resorption, most likely coupling the two 
processes. Prostaglandins are generally thought to be skel-
etal anabolic agents, as administration of these agents can 

increase bone mass        [75, 76] ; however prostaglandins also 
have catabolic effects on bone, and have been shown to 
stimulate osteoclast formation and activation and osteo-
clastic bone resorption.  [77] . The differential effects of 
prostaglandins are thought to be mediated through multi-
ple subtypes of specific G-protein-coupled PGE 2  receptors, 
designated EP 1 , EP 2 , EP 3 , and EP 4   [78] . Recently, agonists 
of both the EP 2  and EP 4  have been shown to play a role in 
bone repair        [79, 80]  . However, mice lacking the genes for 
the cycloxygenases COX-1 or COX-2 do not appear to have 
any major bone developmental defects  [81] . Nevertheless, 
in the postnatal animal, the bone formation response to 
mechanical strain is blocked by inhibitors of prostaglandin 
synthesis  [82] . Mechanical strain in the form of pulsatile 
fluid flow shear stress raises intracellular Ca 2 �   and inositol 
trisphosphate, which then stimulates arachidonic acid pro-
duction and PGE 2  release  [83] . These observations suggest 
that prostaglandins are not as important in development as 
they are in the adult skeleton, and specifically in response 
to strain. 

 Clearly  , cyclooxygenase metabolites of arachidonic acid 
such as the prostaglandins are important in bone formation, 
but it appears that the other side of the coin, the alternate 
pathway of arachidonic acid conversion through the lipox-
ygenases, results in bone loss. Metabolites of the actions of 
the enzyme 5-lipoxygenase (5LO) stimulate osteoclastic 
bone resorption          [84 – 86]  independent of RANKL  [36] . 5LO 
metabolites also block the positive effects of prostaglandins 
and bone morphogenetic protein-2 on new bone formation 
 in vitro   [87] . Mice lacking the 5LO enzyme have greater 
bone mass  [88] , and the gene for 5LO,  Alox5 , has been 
shown to be a susceptibility gene for both obesity and bone 
traits  [89] . Recently, the 12/15 lipoxygenase gene  Alox15  
has been shown to also be a susceptibility gene for bone 
mineral density  [90] . This opens new avenues for the treat-
ment of diseases of bone loss.  

    Core Binding Factor 1 (Cbfa1), a Master 
Gene for Bone 

 Cbfa1  , also known as Pebp2a1, Aml3, and Runx2, was 
originally thought to be T cell specific  [91] . However, 
direct evidence that Cbfa1 is essential in bone and tooth 
development comes from Cbfa1 gene knockout experi-
ments  [92] . In these mice there is a total absence of bone, 
as well as arrested tooth development. The membranous 
bones of the skull are replaced by fibrous tissue, and endo-
chondral bone does not replace the cartilaginous skeleton. 
Heterozygous Cbfa1 mice express a phenotype that is simi-
lar to the clinical manifestations of cleidocranial dyspla-
sia, in which functional mutations of the Cbfa1 gene have 
been identified. Cleidocranial dysplasia is characterized 
by hypoplasia/aplasia of the clavicles, patent fontanelles, 
supernumerary teeth, short stature, and changes in skeletal 
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patterning and growth. Cbfa1 is the earliest and most spe-
cific marker of osteogenesis identified to date  [93] . Several 
homeodomain transcription factors, such as Msx2, Dlx5, 
Bapx1, and Hoxa-2 have been suggested to regulate Cbfa1 
expression. 

 Osterix   (Osx), a second transcription factor required for 
osteoblast differentiation during development, acts down-
stream of Cbfa1  [94] . Mice lacking Osx have a similar phe-
notype to those lacking Cbfa1. Target genes for Cbfa1 and 
Osx include osteocalcin, collagen type I, collagenase 3, 
TGF β  type II receptor, and other genes necessary for oste-
oblast funcion. Although Cbfa1 mRNA does not correlate 
with target gene regulation, phosphorylation of Cbfa1 pro-
tein does  [95] .  

    Low-density Lipoprotein Receptor-related 
Protein 5 (Lrp5) as a High Bone Mass Gene 

 Recently  , a mutation in the extracellular domain of the Lrp5 
gene was shown to result in extremely high bone mass in 
a human cohort. These individuals essentially never break 
their bones and have no other clinical features, suggesting 
solely positive effects of this mutation  [96] . This was unex-
pected, as this protein is ubiquitously expressed and had 
previously only been associated with lipoproteins and liver 
function. However, mutations in the intracellular domain of 
this receptor result in a condition called osteoporosis pseu-
doglioma syndrome of juvenile onset. These individuals 
have osteoporosis and exhibit progressive blindness  [97] . 
The extracellular mutation appears to result in constitutive 
activation, and the intracellular mutation results in a loss 
of function. These studies show the importance of Lrp5 in 
regulation of bone mass. 

 Lrp5   is a co-receptor with the seven-transmembrane 
receptor, frizzled, in the canonical Wnt signaling pathway  [98] . 
These discoveries have focused considerable attention on 
the Wnt signaling pathway in maintenance of bone density, 
involving other members of this pathway such as  β -catenin, 
glycogen synthase kinase 3B, Dishevelled, Dickkopt-1, 
axin, and targets of this pathway such as members of the 
T cell factor/lymphocyte enhancer factor family, includ-
ing COX-2, c-jun, and connexin 43        [99, 100] . Studies are 
now in progress to fully dissect the role of this pathway 
in osteocyte, osteoblast, and osteoclast biology. This gene 
may regulate bone mass during development, but, even 
more exciting, may regulate bone mass through responses 
to mechanical strain. Particularly intriguing is the connec-
tion between the role of Wnt signaling in mechanosensation 
and osteocyte function as the primary cell sensing mechani-
cal load in bone  [101] . A connection between regulation of 
Wnt signaling in osteoblasts and regulation of osteoclas-
togenesis through regulation of osteoprotegerin (OPG) has 
been established  [102] . All of these early studies implicate 
the Wnt signaling pathway as a major component through 

which bone mass is regulated and the behavior of bone cells 
is orchestrated.  

    Transforming Growth Factor  β  
 TGF   β -1 is the prototype and the founding molecule for the 
TGF β  superfamily  [37] . This family has grown to include 
more than 40 members, including the TGF β  isoforms, 
the activins and inhibins, M ü llerian inhibitory substance, 
growth differentiation factors (GDFs), and an ever-increasing 
number of bone morphogenetic proteins (BMPs). Members 
of this superfamily appear to mediate many key events in 
growth and development evolutionarily maintained from fruit 
flies to mammals. The actions of these proteins appear to be 
mediated through structurally similar serine/threonine kinase 
transmembrane receptors. 

 Members   of the TGF β  superfamily bind to two distinct 
forms of serine/threonine kinase receptors, called type I and 
type II  [103] . The constitutively active type II receptor ini-
tially binds to active TGF β , and upon binding subsequently 
associates with the type I receptor and phosphorylates it. 
The direct substrates for the phosphorylated Type I recep-
tor appear to be Smad2 and Smad3, also known as receptor-
activated Smads (R-Smads), whereas negative regulators of 
the Type I receptor include Smad6 and Smad7, the inhibitory 
Smads (I-Smads)  [104] . The discovery and naming of the 
Smads originated from studies of the  dpp  signaling path-way 
in  Drosophila   [105] . Smad2- or Smad3-heterozygous mutant 
mice are viable, but the compound heterozygous Smad2/
Smad3 mutant is lethal, suggesting a gene dosage effect. 
Thus the relative expression level of Smad2 and -3 in the 
cell may influence the nature of the TGF β  response. Loss of 
Smad3 results in lower bone formation rate and osteopenia 
in mice  [106] . Smad4, also called a common mediator (Co-
Smad), appears to bring the cytoplasmic Smad2 and Smad3 
into the nucleus, where together they can regulate transcrip-
tion of target genes. Smad4 was found to be homologous to 
a gene deleted in pancreatic carcinomas called  “ Deleted in 
Pancreatic Cancer-4, ”  or DPC-4  [107] . Smad4 is not always 
required for TGF β  signaling, since a number of Smad4-
independent TGF β  responses have been identified  [104] . 
These include Jun N-terminal kinase (JNK) and extracellular 
signal-related kinases (ERK) mitogen-activated protein (MAP) 
kinase pathways. The potential exists for other co-Smads to 
be identified. 

 The   major function of TGF β  in bone is as an inducer 
of matrix formation. Mice lacking specific isoforms of 
TGF β  have bony defects. Injections of TGF β  can induce 
new bone formation or prevent bone loss, but inappropriate 
expression of TGF β  or its receptor can lead to bone loss. 
Even though TGF β  stimulates osteoid production, it actu-
ally inhibits mineralization of osteoid. Therefore, this fac-
tor must be activated in a specific time and tissue and then 
inactivated for normal bone remodeling to occur. TGF β  
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can enhance either bone formation or bone resorption, 
depending on the assay system and the presence of other 
factors. TGF β  was proposed to be a  “ coupling ”  factor, cou-
pling bone resorption with bone formation, as this factor is 
released from the bone matrix where it is stored by resorb-
ing osteoclasts        [37, 108] . 

 TGF   β  is well-known among growth factors for its 
potent and widespread actions. Almost every cell in the 
body has been shown to make some form of TGF β , and 
almost every cell expresses receptors for TGF β . The larg-
est source of TGF β  in the body is bone. This growth factor 
must be tightly regulated to prevent disease. Appropriately, 
the mechanisms of regulation of TGF β  are extensive and 
complex. One unique set of regulatory mechanisms cent-
ers on the fact that TGF β  is produced in a latent form that 
must be activated to produce biologically active TGF β . The 
mechanisms of regulation include not only regulation of the 
latency of the molecule, but also the production of different 
latent forms, such as the small and large latent complexes, 
TGF β  targeting to matrix for storage or to cells for activa-
tion, and the various means of activation. The extracellu-
lar matrix protein, latent TGF β  binding protein (LTBP-1), 
appears to play a major role in the regulation of TGF β  (see 
below).  

    Bone Morphogenetic Factors 

 Unlike   the TGF β s, which can only induce bone when 
injected in close proximity to existing bone, the BMPs 
can induce new bone formation when injected into mus-
cle. Urist  [65]  was the first to describe bone regenerative 
capacity of bone extracts, but Celeste and co-workers were 
the first to identify the factors responsible through the use 
of peptide sequences from these mixtures and then cloning 
the resulting recombinant DNA for  in vivo  studies  [109] . 
The BMPs are more closely related to proteins involved 
in differentiation during embryogenesis than they are to 
the TGF β s. In fact, while it is clear that these factors are 
important or essential for development, it is not clear if 
these factors play an important role in the adult skeleton. 
This will not be known until time- and tissue-specific null 
mice are generated. 

 At   present, it is known that deletion of BMP2 or -4 is 
embryonic lethal, whereas deletion of other BMPs is not so 
dramatic. Deletion of BMP7 results in mice with mild limb 
skeleton abnormalities, BMP6  � / �   mice appear normal, 
and BMP5  � / �   mice exhibit the short ear phenotype. These 
results suggest that BMPs in some cases can compensate 
for deletion of one member. BMP3  � / �   mice are normal, 
and in fact have increased bone density, which may explain 
why injection of recombinant BMP3 has never induced 
bone formation. The growth and differentiation factors 
(GDFs) are also members of the BMP family. GDF5  � / �   
mice exhibit brachypodism, reduction in number of digits, 

and misshapen bones. Deletion of GFD11 leads to defects 
in skeletal patterning, and palate abnormalities. Even dele-
tion of the some of the receptors for BMPs (see below) 
does not result in severe or lethal phenotypes, suggesting 
that the receptors can compensate for one another. Deletion 
of either the BMPR1B receptor or the ActRIIA receptor is 
not severe, whereas deletion of the BMPR1A receptor is 
embryonic lethal  [110] . Negative regulators of the BMPs 
include the following; noggin for BMPs 2, 4, and 7, and 
GDFs 5 and 6; chordin for BMPs 2, 4, and 7; follistatin for 
BMPs 2, 4, 7, and 11; and gremlin for BMPs 2 and 4, and 
GDF5. 

 Like   the TGF β s, the BMPs signal through type I and 
type II receptors; though BMPs can signal through type II 
receptors alone, this signal is enhanced when both receptors 
are engaged  [111] . Seven type I receptors, called activin 
receptor-like kinases (ALKs), and three type II receptors 
have been identified. Members of the BMP family bind 
with different affinities to the type I and type II receptors, 
adding to redundancy and complexity in signaling. BMP 
receptors also signal through the Smads. The R-Smads for 
BMPs include Smads 1, 5, and 8 (for TGF β  they are 2 and 3, 
as described above). Smad4 is the only co-Smad that is 
shared by both the BMPs and TGF β . I-Smads are Smads 6 
and 7. Smad5-deficient mice have defects in angiogenesis, 
and Smad-6 mice exhibit cardiac defects. Transcriptional 
co-repressors of the Smads include TGIF, c-Ski, and SnoN. 
Target genes of the BMPs, such as Tlx-2, a homeobox gene 
related to human HoxII, Dad (Daughters against Dpp), and 
Id gene products, are generally responsible for patterning 
and development. 

 Recombinant   BMPs 2, 4, and 7 are being used for clini-
cal studies to induce fracture repair, and augmentation of 
alveolar bone, and for gene therapy. To date, none of these 
applications has been approved for general application, 
probably due to the difficulties in determining ideal doses, 
times for administration, and carriers. However, the poten-
tial still exists for more general therapeutic use.  

    Insulin-like Growth Factors (IGFs) 

 The   IGFs were shown to be the mediators of the effects 
of growth hormone. IGFs I and II are 7-kDa proteins that 
share homology with pro-insulin. Originally it was found 
that IGF is made by the liver, but it has also been shown 
that osteoblasts produce this growth factor. Bone is the 
major storage organ for IGFs, and IGF II is the most abun-
dant of all the growth factors stored in the skeleton  [112] . 
Factors such as PTH, estrogen, prostaglandin E2, and 
BMP2 increase IGF expression in osteoblasts. 

 Animals   with targeted overexpression of IGF in bone by 
use of the osteocalcin promoter have increased bone min-
eral density  [113] . IGF I-deficient neonates have a marked 
increase in death rate compared to IGF II-deficient animals, 
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which have normal survival rates. Mice lacking the IGF 
receptor die at birth. Regardless of whether ligand or recep-
tor is deleted, the pups express normal morphogenesis 
 [108] . This suggests that the major function of the IGFs is 
growth, not morphogenesis, as is true for other growth fac-
tors such as the BMPs and FGFs. 

 The   actions of the IGFs appear to be tightly regulated 
by the IGF binding proteins. These are found in serum and 
in bone matrix. Six have been cloned and characterized, 
They bind with high affinity to the IGFs, preventing their 
interaction with the IGF receptor. IGFBP-1 can inhibit or 
enhance IGF action, dependent on phosphorylation state of 
the binding protein, and may be responsible for suppression 
of bone formation in malnourished individuals. IGFBP-2 is 
the major binding protein secreted by osteoblasts. IGFBP-3 
has both inhibitory and stimulatory activity, depending on 
location within the cell. IGFBP-5 is not normally in the 
circulation, but is preferentially found in the bone matrix, 
where it appears to be protected from proteases and appears 
to potentiate IGF activity. IGFBP-6 has a selective affinity 
for IGF II over IGF I.        [108, 114] . The binding proteins can 
be degraded by specific and non-specific proteases, there-
fore adding another level of regulation of IGF activity. For 
example, cathepsin D will degrade IGFBPs 1 – 5, whereas 
pregnancy-associated plasma protein-A will specifically 
proteolyze IGFBP-4. 

 The   IGFs appear to stimulate new bone formation 
 in vivo , with little or no preliminary resorption phase. In ani-
mal models, IGF I can enhance longitudinal growth, bone 
formation, and bone mass in various, but not all, models. 
For example, growth can be restored in hypophysectomized 
rats, but there is little effect on normal rats. It is clear that 
recombinant IGF I can enhance trabecular and cortical bone 
mineral density in humans with an impaired growth hor-
mone – IGF axis, but such data are not available for normal 
or older adults. Therefore, at this time, use of IGF can only 
be justified in specific conditions, such as growth hormone-
resistant short stature  [115] .  

    Fibroblast Growth Factors 

 The   FGFs were named for their ability to stimulate the 
growth of 3T3 fibroblasts. The FGF family has grown to 
include at least 23 genes        [108, 116] . The first two FGFs 
were called acidic and basic FGF, based on their isoelectric 
points, but have since been renamed FGF-1 and FGF-2. In 
addition to promoting cell growth, these factors can induce 
a mitogenic response, and stimulate cell migration, angio-
genesis, vasculogenesis, transformation, morphogenesis, 
wound healing, and tissue repair. FGF-2 and -3 are distin-
guished from all other growth factors by a novel transla-
tion initiation mechanism. Four high molecular weight 
isoforms of FGF-2 are initiated with an unconventional 
CUG translation codon, whereas a smaller 18-kDa isoform 

is initiated by the classical AUG codon. Another interest-
ing feature of some of the FGFs, like interleukin 1, is their 
ability to be non-classically secreted even though they do 
not contain hydrophobic signal peptide sequences. On the 
cell surface, the FGFs interact with at least three types of 
molecules, including four high-affinity signaling receptors 
(FGFRs 1 – 4), low-affinity receptors such as perlecan and 
syndecan that potentiate ligand/receptor interactions, and 
cysteine-rich non-signaling receptors that may function to 
antagonize and remove ligand. 

 FGFs   clearly stimulate new bone formation; how-
ever, injections of FGF cause serious side-effects, such as 
acute hypotension. Mutations in FGF receptors result in a 
number of human dysmorphic (dwarfism) syndromes, such 
as achondroplasia, thanatophoric dysplasia, Jackson-Weiss 
syndrome, and Pfeiffer syndrome. The clearest indications 
that FGFs are important in bone development is revealed 
through the bone phenotypes of null mice lacking the 
FGF receptors, rather than mice lacking a particular FGF, 
as compensation among this family of factors appears to 
occur. Disruption of FGF-2, however, results in decreased 
bone mass and bone formation  [117] . Mice expressing acti-
vated  FGFR3  mutants reproduce the dwarfism phenotype 
of the chondrodysplasias, and show a marked decrease 
in the proliferation rate of the columnar proliferating 
chondrocytes and a decrease in size of the zone of hyper-
trophic chondrocytes            [118 – 121] . Thus, a normal function 
of FGF signaling in chondrocytes is to inhibit chondrocyte 
proliferation. 

 FGFs   may have additional effects on the skeleton. The 
newest member of the family, FGF-23, appears to play a 
key role in hyophosphatemic disorders  [122] . FGF23 is a 
phosphaturic factor that prevents reabsorption of Pi by 
the kidney, leading to hypophosphatemia. This FGF is 
produced by tumors that cause osteomalacia, and when 
injected into mice causes hypophosphatemic rickets. In all 
tumors causing hypophosphatemic osteomalacia, mutations 
around Ser180 have been identified resulting in a non-
cleaved 32-kDa protein. FGF-23 is not cleaved in auto-
somal dominant hypophosphatemic rickets. It is presumed 
that under normal conditions FGF-23 is cleaved at resi-
due Ser180, and that these mutations may cause a gain of 
function for FGF-23. There are two key molecules highly 
expressed in osteocytes that play a role in phosphate home-
ostasis and the control of FGF-23 in osteocytes: dentin 
matrix protein 1, (DMP1), and  Pex /Phex (phosphate regu-
lating neutral endopeptidase on chromosome X)        [123, 124] . 
FGF23 is also expressed in osteocytes  [125] , but deletion 
or mutation of either Pex or DMP1 results in hypophos-
phatemic rickets resulting from a dramatic elevation of 
FGF23 in osteocytes        [125, 126] . Hypophosphatemic rickets 
in humans is caused by inactivating mutations of  Pex,  and 
autosomal recessive hypophosphatemia in humans is due 
to mutations in DMP1, both resulting in elevated circulat-
ing levels of FGF23        [126, 127] . As both DMP1 and Phex 
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are regulated by mechanical loading          [128 – 130] , it will be 
important to determine if skeletal loading can play a role 
in mineral and phosphate metabolism. The mechanisms for 
the role of this FGF in hypophosphatemia are under intense 
investigation.   

    BONE EXTRACELLULAR MATRIX (ECM) 

 The   extracellular matrix and the proteins it contains have 
not received the same attention as other areas of bone biol-
ogy, such as cytokines, receptors, cell signaling, transcrip-
tion factors, etc. This is partially due to the difficulty in 
determining the potential functions of large, extensively 
modified extracellular matrix proteins. Recently, more 
attention has focused on the extracellular components of 
bone due to the advent of new technologies. Transgenic 
animals and null mice have greatly assisted in determin-
ing the functions of these proteins  [131] . Knockouts of the 
extracellular matrix proteins lead to various bone defects, 
such as thickened bones in osteocalcin-null mice, and an 
osteoporosis-like phenotype in biglycan-null mice. On 
the other hand, no or little bone phenotype was observed 
in the decorin- or osteonectin-null mice  [131] . Deletion of 
the gene for dentin matrix protein 1, DMP1, resulted in a 
dramatic bone and growth-plate phenotype resembling 
chondrodysplasia and osteomalacia  [132] . Occasionally, 
deleting a specific ECM protein gene, such as that for 
fibronectin, can result in embryonic lethality, which unfor-
tunately does not give information concerning the specific 
function of the matrix protein. In these cases, the pheno-
type of a transgenic animal or a deletion heterozygote can 
be more informative. 

 Another   new technology that has given a boost and 
additional insight into the function of extracellular matrix 
proteins is dynamic imaging, which combines fluorescent 
protein labeling, pH sensitive dyes, FRET, and laser confo-
cal microscopy to obtain spatio-temporal and kinetic infor-
mation. This approach is being applied to the bone ECM 
to study ECM molecules such as fibronectin, LTBPs, and 
bone-specific proteins        [133, 134] . Cell and fibrillar move-
ment in the bone ECM are considerably more dynamic 
than previously thought. 

 Although   the major ECM protein in bone is collagen 
type 1, there are numerous non-collagenous proteins. These 
include proteoglycans such as decorin and biglycan, which 
are characterized by glycosaminoglycans attached to core 
protein; chondroitin sulfate proteoglycans such as aggrecan 
and versican; glycoproteins such as osteonectin, vitronec-
tin and thrompospondins; proteins containing  γ  carboxy 
glutamic acid such as Matrix Gla protein and osteocalcin; 
and a group of proteins known as the SIBLINGS (Small 
Integrin-Binding Ligands with N-linked Glycosylation) 
 [135] . Members of the SIBLINGS include osteopontin, 
bone sialoprotein, dentin matrix protein-1 (DMP-1), dentin 

sialophosphoprotein, and MEPE. Bone proteins are pro-
posed to have a role in the mineralization process. Whereas 
deletion of osteocalcin, osteonectin, and bone sialoprotein 
have not resulted in significant changes in the bone pheno-
type, deletion of DMP-1 has dramatic effects on the growth 
plate. DMP-1  � / �   mice display a chondrodysplastic pheno-
type and dwarfism  [136] . Additionally, DMP-1 is highly 
expressed in osteocytes and may be important in osteocyte 
function  [123] . 

    Latent TGF β  Binding Proteins (LTBPs) 

 LTBPs   appear to be an important mechanism whereby 
TGF β  is controlled. To date, four LTBP genes have been 
isolated: LTBPs 1, 2, 3, and 4, containing cysteine and 
EGF-like repeating domains. LTBPs are highly homolo-
gous to fibrillins 1 and 2, major constituents of connective 
tissue microfibrils. LTBP-2 does not bind latent TGF β  and 
therefore may be more homologous than LTBPs 1, 3, and 4 
to the fibrillins. The third eight-cysteine repeat in LTBP-1 
forms a covalent disulfide bond with the TGF β 1 precur-
sor or  “ latency associated peptide ” . The major isoform of 
TGF β  stored in bone matrix is TGF β -1 (80 – 90 percent) as 
part of a latent complex containing LTBP-1. 

 LTBP  -1 does not confer latency to the TGF β  complex 
(the conformation of the TGF β  dimer does), but has other 
unique functions. The latent TGF β  complex produced by 
matrix-forming osteoblasts is directed by LTBP-1 to fibrillar 
structures known as microfibrils in bone extracellular matrix 
 [137] . Although LTBP-1 covalently associates with small 
latent TGF β 1, it is also produced by osteoblasts in a free 
form (80 percent of total) not associated with latent TGF β 1. 
This molar excess suggests a function separate and distinct 
from its association with TGF β . Many extracellular matrix 
proteins contain EGF-like repeats that mediate protein – 
protein interactions, suggesting that LTBP-1 may have sim-
ilar functions  [37] . 

 Deletion   of LTBP-2 is lethal, whereas deletion of 
LTBP-3 results in mice with osteopetrosis  [138]  and pre-
mature ossification of synchondroses at 2 weeks  [138] . At 
6 and 9 months, these animals develop osteosclerosis and 
osteoarthritis. The gene for LTBP3 has been disrupted, 
resulting in only trace amounts of protein in these animals 
 [139] . These animals have defective lung and colorectal 
function, most likely due to a reduction in available TGF β  
and an enhancement of BMP4 availability  [140] . To date, 
the LTBP-1 gene has not been successfully deleted.  

    Microfibrils 

 Recently  , the role of components of microfibrils in bone 
development has attracted attention. The components of 
microfibrils include fibronectin, fibrillins 1 and 2, elas-
tin, microfibril-associated glycoprotein (MAGPs) 1 and 2, 
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fibulin, and others        [141, 142] . Mice lacking the genes for 
the microfibril proteins often have a more dramatic bone 
phenotype than mice lacking genes for many of the  “ bone-
specific ”  matrix proteins. For example, deletion of the 
bone-specific gene osteocalcin results in a modest bone 
phenotype, where deletion of latent TGF β  binding protein-3 
(LTBP-3, see below) appears to have a more dramatic effect 
in bone  [138] . 

 The   deletion of fibronectin, a major component of 
ECM and microfibrils, is neonatal lethal, and there are no 
known human mutations of this protein        [143, 144] . The 
fibrillin 1 knockout does not appear to have a bone pheno-
type, whereas fragments of overexpressed fibrillin 1 result 
in mice with overgrowth of ribs and long bones  [145] . 
Based on these results, it was suggested that microfibrils 
control bone growth in a negative fashion. The fibrillin 2 
null mouse has a bone phenotype with contracture at birth 
which resolves with age, rear joints that do not flex, and 
fusion of three toes in the hind limbs into one phalange. 
The elastin null mouse dies at 4.5 days  post partum  due 
to arterial obstruction, while the heterozygote shows func-
tional haploinsufficiency  –  a model for human supravalvu-
lar aortic stenosis  [146] . Proteins that are components of 
microfibrils could function by physical influence through 
alteration of the physical properties of matrix, through indi-
rect signaling by way of retaining and releasing growth fac-
tors such as TGF β , and through presentation and binding of 
protein to receptors or signaling molecules on cell surfaces. 

 Components   of microfibrils have strong protein – protein 
interactions and protein – cell interactions. Cells have been 
shown to bind to fibrillin through integrins  [147] . MAGP-2 
has an RGD sequence motif that modulates cell to microfibril 
interactions and binds to  α v β 3 integrins, as does fibrillin-1 
 [148] . Fibulins all have long EGF repeats and bind to the 
matrix glycoproteins nidogen, aggrecan, versican, fibronectin, 
endostatin, collagen IV, laminin  α 2, and perlecan        [149, 150] , 
all of which have calcium-binding EGF-like repeats. These 
calcium binding repeats are necessary for stabilizing their 
tightly folded structures. Several growth factors have also 
been shown to bind to components of microfibrils  –  for 
example, connective tissue growth factor (CTGF) binds to 
fibrillin.  

    Matrix Metalloproteinases (MMPs) 

 An   intricate balance between deposition and breakdown of 
extracellular matrix (ECM) is critical for growth and devel-
opment of bone, and significant progress has been made in 
understanding the roles of MMPs in the balance between 
osteoblasts and osteoclasts  [151] . MMPs belong to a fam-
ily of zinc- and calcium-dependent endopeptidases that cat-
alyze the proteolysis of components of ECM at neutral pH. 
Each member has specificity for a particular subset of ECM 
components. The most important members are MMP-2 and 

MMP-9. Martignetti and colleagues found that a human 
disease which features osteolytic lesions in facial bones, 
arthritis, and subcutaneous nodules is associated with an 
enhanced degradation of ECM, due to the lack of a sin-
gle proteolytic enzyme, matrix metalloproteinase 2  [152] . 
Similarly, deficiency of mouse MT1-MMP, which activates 
MMP2, results in a decrease of collagen breakdown by 
osteoblasts, a decrease in bone formation, and an increase 
in the number of osteoclasts        [113, 153] . MMP-13 is pre-
dominantly expressed in the skeleton, and null mice have 
elongated growth plates and reduced bone resorption, sug-
gesting that MMP13 directly or indirectly inhibits chondro-
cyte growth and stimulates osteoclastogenesis  [154] , while 
overexpression of MMP-13 leads to osteoarthritis  [155] .   

    CONCLUSION AND SUMMARY 

 Though   this chapter merely touches on many important areas 
in bone research, room is not available for review of others  –  
topics such as the bone-resorbing cytokines including inter-
leukins 1, 6, 11, tumor necrosis factors, and regulatory factors 
such as nitric oxide and its regulatory enzymes. Though many 
of the factors involved in regulation of bone function are sim-
ilar to those in other organs, a level of complexity is added 
due to the mineralized nature of bone. Hematopoietic and 
immune cells have been well-characterized because they are 
relatively easy to obtain, but this is not the case for bone cells, 
especially for osteocytes embedded in bone. Investigators in 
the bone field have often referred back to the areas of hema-
tology, immunology, and development to understand the 
potential role of factors in bone. Determining the function of 
matrix proteins in bone has relied heavily on studies in other 
tissues, such as cartilage, skin, and other connective tissues. 
However, bone biologists are not able to rely on studies in 
other organs with regard to mineralization, the unique feature 
of the skeleton. 

 In   summary, bone is a storehouse of factors ready to be 
released during resorption that can modify the bone coupling 
process or provide circulating growth factors. A number of 
transcription factors have been identified that are specific for 
bone induction and development. Clearly these growth fac-
tors and transcription factors are regulated by a number of 
circulating hormones, such as parathyroid hormone, estro-
gen, and 1, 25 (OH)2 D3. Another layer of complexity is 
added due to the fact that bone structure is also regulated by 
mechanical strain. Understanding the normal physiology of 
bone and its diseases should lead to prevention and treatment 
of disease, acceleration and initiation of repair and treatment, 
or reversal of abnormal development.   
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    INTRODUCTION 

 The   evolution of multicellular organisms was facilitated by 
the ability of different cells to communicate and interact. 
This cell – cell signaling generates a higher order functional 
state than possible with individual cell types. Cell – cell 
interactions have become an essential requirement for the 
physiology of any organ or tissue, and are critical in the 
regulation of any cell’s biology. For this reason, elaborate 
networks of cell – cell interactions have evolved to control 
the development and maintenance of tissue functions. The 
focus of the current chapter will be on the regulatory signals 
that mediate cell – cell interactions in the testis and ovary. 

 Several   previous reviews have discussed the cell – cell 
interactions in the testis            [1 – 4]  and ovary          [5 – 7] . These 
include a focus on secretory products of the various cell 
types, and actions of individual regulatory molecules. The 
current chapter will briefly discuss the advances in cell – cell 
signaling in these organs. 

 Many   different types of cell – cell interactions are 
required for the control of tissue physiology and cellular 
functions. These have been previously categorized into reg-
ulatory, nutritional, and environmental classifications  [4] . 
Regulatory interactions are generally mediated by extracel-
lular factors that, through receptor-mediated actions, cause 
a signaling event to modulate cell functions. Nutritional 
interactions generally involve the transport of nutritional 
substances, energy metabolites, or metabolic substrates 
between cells. Environmental interactions involve extra-
cellular environmental factors that affect cell contacts and 
cytoarchitecture. The focus of the current chapter will be 
primarily on regulatory-type interactions that involve a 
receptor-mediated signaling event. It is this type of cellular 
signaling that actively regulates a cell’s function on a molec-
ular level. The factors involved are generally paracrine and 
autocrine agents such as growth factors and cytokines. 

 Both   the testis and ovary are endocrine organs. 
Endocrine hormones from the pituitary (i.e., gonadotropins, 

follicle stimulating hormone (FSH), and luteinizing hor-
mone (LH)) act on various cell types to influence cellular 
functions and cell – cell interactions. The influence these 
endocrine hormones have on cell – cell signaling events is 
in part how hormones regulate gonadal function. The tes-
tis and ovary are also sites for the production of hormones. 
These gonadal hormones have an endocrine role in regu-
lating a wide variety of tissues in the body, but also can 
act in a paracrine manner within the gonads to influence 
cell – cell signaling and cellular functions. Again, the role 
these gonadal steroids and peptide hormones play in the 
regulation of cell – cell signaling within the gonad will be 
discussed.  

    CELL – CELL SIGNALING IN THE TESTIS 

    Testis Cell Biology 

 The   adult testis is a complex organ that is composed of 
seminiferous tubules which are enclosed by a surrounding 
interstitium. The seminiferous tubules are the site of sper-
matogenesis where germ cells develop into spermatozoa 
in close interaction with Sertoli cells ( Figure 14.1   ). The 
Sertoli cell is an important testicular somatic cell which 
controls the germ cell environment by the secretion and 
transport of nutrients and regulatory factors. The Sertoli 
cells  [8]  form the basal and apical surface of the seminif-
erous tubule, and provide the cytoarchitectural framework 
for the developing germinal cells        [3, 9] . Tight junctional 
complexes between the Sertoli cells contribute to the main-
tenance of a blood – testis barrier  [10] , and create a unique 
environment within the tubule        [3, 11] . The structure of 
the Sertoli cell has been reviewed by several investigators 
 [9] , and a three-dimensional reconstruction has increased 
appreciation for the complexity of the structural relation-
ships between cells within the seminiferous tubule  [12] . 
The biochemical analysis of the Sertoli cell has primarily 
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focused on an examination of the components synthesized 
and secreted by the cell. The list of products includes ster-
oids such as estradiol  [13] , metabolites such as lactate 
 [14] , and various proteins such as plasminogen activator 
 [15] , testicular transferrin  [16] , testicular ceruloplasmin 
 [17] , inhibin  [2] , and others  [2] . The majority of the secre-
tory products are hormonally regulated and provide useful 
markers of Sertoli cell differentiation. 

 Surrounding   the basal surface of the Sertoli cells is a 
layer of peritubular myoid cells ( Figure 14.1 ), which func-
tion in contraction of the tubule. The peritubular cells sur-
round and form the exterior wall of the seminiferous tubule. 
Peritubular cells are mesenchymally derived cells that secrete 
fibronectin  [18]  and several extracellular matrix components 
 [19] . Both the peritubular and the Sertoli cells form the base-
ment membrane surrounding the seminiferous tubule, and 
their interactions are important in germ cell development. 

 The   interstitial space around the seminiferous tubules 
contains another somatic cell type, the Leydig cell ( Figure 
14.1 ), which is responsible for testosterone production. 
Leydig cells have a major influence on spermatogenesis 
through the actions of testosterone on both the seminifer-
ous tubule and the pituitary. Although the Leydig cell has 
numerous secretory products  [4] , testosterone is the most 
significant secretory product of these cells. Thus, interac-
tions of all three somatic cells, Sertoli, peritubular, and 
Leydig, are important for regulation of normal sperma-
togenic function in the testis (for review, see  [4] ).  

    Testis Development 

 The   process of fetal testis formation occurs late in embryonic 
development (embryonic day 13 where plug date  �  E0 (E13) 
in the rat) and is initiated by migration of primordial germ 
cells, first from the yolk sac to the hindgut, and then from 
the hindgut to the genital ridge. The first phase of migration 
is proposed to occur through a mechanism where transient 
interactions between fibronectin molecules on the extracel-
lular matrix and corresponding receptors on the primordial 
germ cells cause movement of the germ cells. The second 

migration is thought to occur by the release of chemoattract-
ant factors from the genital ridge. Kit ligand and its receptor 
c-kit appear to be involved first in the migration to the genital 
ridge, and later in the proliferation of germ cells after coloni-
zation of the genital ridge. Expression of kit ligand has been 
localized to cells along the migratory pathway, and c-kit is 
expressed by primordial germ cells at this time in develop-
ment (for review, see  [20] ). After migration, germ cell dif-
ferentiation in the gonad is dependent on locally produced 
factors such as prostaglandins  [21] , growth factors  [22] , and 
the induction of specific transcription factors  [23] . It is a 
complex network of cellular interactions that controls testis 
and germ cell development. 

 The   gonad has bipotential after germ cell migration, 
and can be distinguished morphologically from the adjoin-
ing mesonephros (E12 in rat), but cannot yet be identified 
as an ovary or a testis. A variety of genes, such as SRY, 
SOX-9, SF1, and DMRT1, are involved in the transcrip-
tional induction of sex determination and testis develop-
ment                        [24 – 33] . Two morphological events occur early on 
embryonic day 13 (E13) to alter the bipotential gonad. 
First, Sertoli cells, which are proposed to be the first cell in 
the testis to differentiate, aggregate around primordial germ 
cells        [34, 35] . Secondly, migration of mesenchymal cells 
occurs from the adjoining mesonephros into the developing 
gonad to surround the Sertoli cell – germinal cell aggregates. 
The migrating population of cells has been speculated to 
be pre-peritubular cells          [36 – 38] . The mechanism for this 
migration appears to involve chemotactic factors from the 
Sertoli cell, such as NT3  [39]  and FGF9  [22] , that cause 
cell migration. This is postulated due to the observation 
that ovarian mesonephros can also be stimulated to initiate 
cell migration after close interaction with a developing tes-
tis  [40] . In addition, using an organ culture system in which 
mesonephros and embryonic testis were separated by an 
embryonic ovary, mesonephros cells migrated through the 
ovary to the testis  [36] . Several growth factors appear to 
be involved in this initial testis morphogenesis, including 
interactions between FGF9 and Wnt 4        [22, 41] , Wnt(s)        [42, 
43] , and Notch regulators  [43] . Therefore, during early tes-
tis development Sertoli – peritubular cell interactions may 
allow for cord formation to occur. The cords develop neo-
natally into seminiferous cords and, at the onset of puberty, 
develop into the seminiferous tubules. Sertoli cells have 
been postulated to originate from stem cells in the coelomic 
epithelium at an early stage in gonadal development. Other 
cells which may potentially originate from the coelomic 
epithelium are interstitial or Leydig cells  [44] . 

 Seminiferous   cords, precursors of adult seminiferous 
tubules, form as the Sertoli cell – primordial germ cell aggre-
gates become more organized and are fully surrounded by 
mesenchymal cells. The formation of the seminiferous 
cords (E14 in rat) is a critical event in the morphogenesis of 
the testis, since this is the first indication of male sex differ-
entiation  [27] . During the process of cord formation Sertoli 
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 FIGURE 14.1          Testis cell biology.    
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cells undergo a number of morphological changes, includ-
ing: a change in expression of mesenchymal to epithelial 
cell markers (vimentin to cytokeratin  [45] ), a change in 
expression of cytokeratin 19 to cytokeratin 18 (cytokeratin 
21 expressed in ovary  [46] ), and expression of M ü llerian 
inhibiting substance (MIS), which inhibits the development 
of the M ü llerian duct – the precursor of the female uterus, 
cervix, fallopian tubes and upper vagina        [47, 48] . Vascular 
endothelial growth factor (VEGF) appears to mediate cell –
 cell interactions and migrations required for vascularization 
of the gonad  [49] . 

 Outside   of the seminiferous cords, the peritubular 
layer of cells becomes identifiable from the interstitium 
or Leydig cells at E15  [50] , and 3 β -hydroxysteroid dehy-
drogenase (3 β HSD) production is detected after E15  [48] . 
Leydig cells have been hypothesized to differentiate after 
cord formation and Sertoli cell differentiation is completed 
       [51, 52] . This is important, since the production of testo-
sterone and other androgens by the Leydig cells has been 
demonstrated to stabilize the Wolffian duct derivatives for 
normal male duct development        [53, 54] . Therefore, appro-
priate differentiation of somatic cell types in the testis 
around the time of cord formation is crucial not only to the 
normal development of the testis, but also for the continued 
presence of the Wolffian duct and normal male reproduc-
tive tract development.  

    Testis Cell – Cell Interactions 

    Table 14.1    outlines a number of the factors produced 
locally in the testis that mediate cell – cell signaling events 
in the control of spermatogenesis and testis function. 
Several reviews address the topic of cell – cell interactions 
in the testis and the control of spermatogenesis            [2, 4, 55, 
56] . Recent observations are cited below. 

 Transforming   growth factor- α  (TGF α ) is an epider-
mal growth factor (EGF) superfamily member, and is pro-
duced by Sertoli, peritubular, and Leydig cells. TGF α  can 
act as a growth stimulator on all the major cell types in 
the testis          [57 – 59] . In contrast, transforming growth factor-
beta (TGF β ) is also produced by Sertoli, peritubular, and 
Leydig cells, and can act on all the major cells in the tes-
tis              [60 – 64] . TGF β  primarily acts as a growth inhibitor, and 
can stimulate a variety of functions of differentiated cell 
types. A number of other TGF β  superfamily members have 
also been shown to regulate testis function and develop-
ment  [65] , including bone morphogenic proteins (BMPs), 
activins, and growth differentiation factors (GDFs)  [65] . 
Another example of a factor that is produced by all the 
testis cells and acts on all major cell types in the testis is 
insulin-like growth factor-1 (IGF-1)          [66 – 68] . IGF-1 plays a 
general role in regulation of the growth cycle and homeos-
tasis of the testis. A related family member, IGF-2, medi-
ates paracrine interactions between Sertoli cells and germ 

cells  [69] . These are examples of regulatory factors that 
mediate cell – cell signaling events between the majority of 
the cell types in the testis. 

 Several   interleukins (IL-1 α , IL-1 β , IL-6) are produced 
in the testis by Sertoli cells and Leydig cells. These inter-
leukins can regulate Sertoli, Leydig, and germ cell growth 
and differentiation functions                    [70 – 77] . Nitric oxide may be 
a mediator of interleukin actions  [78] . Although further 
analysis is needed, interleukins appear to mediate primarily 
Sertoli – germ cell and Leydig – Sertoli cell interactions, as 
well as having autocrine roles for these factors. 

 Several   hormonal factors produced in the testis also act 
locally within the testis as paracrine factors. One example 
is inhibin and its related peptide, activin          [79 – 81] . Inhibin 
is primarily produced by Sertoli cells, and can act on germ 
cells and Leydig cells. Further investigation of the actions of 
inhibin and related compounds within the testis is needed. 
Another major endocrine factor produced in the testis is tes-
tosterone, which is generated by Leydig cells and can in turn 
act on Sertoli, peritubular, and Leydig cells  [82] . Androgens 
have a major role in the maintenance of testis function by 
inducing cellular differentiated functions. The specific mech-
anism of action and gene products influenced by androgens 
remain to be elucidated. Early in prepubertal development, 
testosterone can also be metabolized by Sertoli cells to pro-
duce estrogen  [13] . The ability of Sertoli cells to produce 
estrogen declines as the cells differentiate during puberty, 
and the role of estrogen in the testis is unclear. 

 Fibroblast   growth factor (FGF) family members have 
been shown to be expressed in the testis, and regulate the 
growth and differentiation of a variety of cells              [83 – 87] . FGF 
receptors are predominant in germ cells and Leydig cells, 
but are also present in others  [84] . FGF-14 has recently 
been shown to be expressed in spermatocytes, and may 
influence adjacent Sertoli or peritubular cells. FGF-9 null 
mutants also suggest a role for FGF9 in early testis devel-
opment, but this remains to be investigated in the adult  [85] . 
Basic-FGF (bFGF) is produced by Sertoli cells and also can 
act on the other cells        [86, 88] , and appears to be influenced 
by androgens  [88] . The role of the various FGF ligands and 
receptors in testis function remains to be elucidated. 

 Platelet  -derived growth factor (PDGF) has been shown 
to be produced by Sertoli cells and to influence peritubular 
cells and Leydig cells          [89 – 91] . Although PDGF in the adult 
may also be produced by the Leydig cell  [92] , it appears to 
be a factor produced within the seminiferous tubules that 
acts on adjacent peritubular and Leydig cells. Another fac-
tor that is only produced by Sertoli cells is stem cell factor 
(SCF)/kit ligand (KL), which has a direct role in regulat-
ing spermatogonial cell proliferation            [93 – 96] . Mutations in 
SCF/KL block the process of spermatogenesis. A growth 
factor with similar activity is glial cell derived neurotropic 
factor (GDNF), which is produced by Sertoli cells and 
acts on spermatogonial stem cells  [97] . These are the best 
examples of somatic – germ cell interactions. 
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 TABLE 14.1          Cell – cell signaling factors in the testis  

   Signaling factor  Site production  Site action  Functions  Ref(s) 

   Transforming growth factor  α  (TGF α )  Sertoli  Sertoli  Growth stimulation           [57 – 59]  

     Peritubular  Peritubular     

     Leydig  Leydig     

       Germ     

   Transforming growth factor  β  (TGF β )  Sertoli  Sertoli  Growth inhibition               [60 – 64]  

     Peritubular  Peritubular  Differentiation, stimulation   
     Leydig  Leydig     

       Germ     

   Insulin-like growth factor (IGF1)  Sertoli  Sertoli  Homeostasis and DNA synthesis           [66 – 68]  

     Peritubular  Peritubular     

     Leydig  Leydig     

       Germ     

   Interleukin-s  Sertoli  Sertoli  Growth regulation                     [70 – 77]  

     Leydig  Leydig  Cellular differentiation   
       Germ     

   Inhibin  Sertoli  Germ  Cellular differentiation           [79 – 81]  

       Leydig     

   Androgen  Leydig  Sertoli  Cellular differentiation   [82]  

       Peributular     

       Leydig     

   Fibroblast growth factors  Sertoli  Germ  Growth stimulation                 [83 – 87, 239]  

     Germ  Peritubular     

     Leydig  Sertoli     

       Leydig     

   Platelet-derived growth factor (PDGF)  Sertoli  Peritubular  Growth stimulation             [89 – 92]  

       Leydig  Cellular differentiation   

   Stem cell factor/kit ligand (SCF/KL)  Sertoli  Germ  Growth stimulation             [93 – 96]  

   Leukemia inhibitory factor (LIF)  Peritubular  Germ  Growth stimulation         [98, 99]  

     Sertoli    Cell survival   

     Leydig       

   Tumor necrosis factors  Germ  Sertoli  Cellular apoptosis           [100 – 102]  

     Leydig  Germ  Cellular differentiation   
   Hepatocyte growth factor (HGF)  Peritubular  Leydig  Growth stimulation           [105 – 107]  

       Peritubular  Tubule formation   

       Sertoli     

   Neurotropins  Germ  Sertoli  Growth stimulation         [4, 109]  

     Sertoli  Peritubular  Cell migration   

         Cellular differentiation   

   Glial cell derived neurotropic factor (GDNF)  Sertoli  Spermatogonia  Growth stimulation   [97]  

         Cellular differentiation   



 Chapter   |   14    Cell – Cell Signaling in the Testis and Ovary 129

 Leukemia   inhibitory factor (LIF) is a pleiotropic cytokine 
that influences stem cell growth and survival. LIF is pre-
dominantly produced by peritubular cells, but also by 
Sertoli cells and Leydig cells  [98] . Although LIF has been 
shown to influence germ cell growth and survival  [99] , 
other functions remain to be elucidated. 

 Tumor   necrosis factors (TNF α ) and related ligands 
(TRAIL) are produced in the testis by germ cells and 
Leydig cells. Both TNF and TRAIL have a role in regulat-
ing germ cells and Sertoli cells            [100 – 103] . Germ cell apop-
tosis in response to hormone deficiency or environmental 
compound exposure is mediated in part through TNF α  
and TNF β  involving Sertoli cell and germ cell interactions 
       [103, 104] . These regulatory factors for the germ cells may 
be more involved in apoptosis regulation, unlike in Sertoli 
cells, in which they may be more involved in cellular dif-
ferentiated functions. 

 Hepatocyte   growth factor (HGF) is generally a mesen-
chymal-derived factor that acts on adjacent epithelial cells. 
HGF was found to be expressed by the mesenchymal-derived 
peritubular cells, and its receptor (cmet) was found on both 
Sertoli cells and Leydig cells          [105 – 107] . Interestingly, cmet 
was also found in the peritubular cells. HGF also may have a 
role in seminiferous tubule formation  [107] . 

 Several   neurotropins have been shown to be expressed 
in the testis. Nerve growth factor (NGF) is produced by 
germ cells in the adult, and appears to act on the Sertoli 
cells        [4, 108] . NGF can act as both an autocrine and a para-
crine factor to regulate spermatogenesis  [108] . In embry-
onic development, neurotropin-3 is expressed by Sertoli 
cells and acts on the migrating mesenephros cells to pro-
mote seminiferous cord formation        [39, 109] . Further inves-
tigations are needed to elucidate the roles of these and other 
neurotropins in the testis. 

 Additional   factors are anticipated to be identified and 
have critical roles in testis development. Newly identified 
factors such as erythropoietin (found to be expressed by 
Sertoli cells and peritubular cells  [110] ), hedgehog factors 
(found to affect spermatogenesis  [111] ), ghrelin  [112]  and 
interferon-gamma (found to act on Sertoli cells  [113] ), and 
relaxin-like factor (RLF) (expressed by Leydig cells  [114] ) 
will all likely have roles in cell – cell signaling in the tes-
tis. These and other factors  [115]  need to be further inves-
tigated to determine roles in testis cell biology. Clearly, a 
complex network of cell – cell signaling events and factors 
regulates testis function and spermatogenesis.   

    CELL – CELL SIGNALING IN THE OVARY 

    Ovarian Cell Biology 

 The   ability of somatic cells in the gonad to control and 
maintain the process of gametogenesis is an essential 
requirement for reproduction. The basic functional unit 

in the ovary is the ovarian follicle, which is composed of 
somatic cells and the developing oocyte ( Figure 14.2   ). The 
two primary somatic cell types in the ovarian follicle are 
the theca cells and granulosa cells. These two somatic cell 
types are the site of action and synthesis of a number of 
hormones which promote a complex regulation of follicu-
lar development. The proliferation of these two cell types 
is in part responsible for the growth of the ovarian follicle. 
The elucidation of factors that control ovarian somatic cell 
growth and development is critical to understanding ovar-
ian physiology. 

 Granulosa   cells are the primary cell type in the ovary 
that provide the physical support and microenviron-
ment required for the developing oocyte ( Figure 14.2 ). 
Granulosa cells are actively differentiating cell with several 
distinct populations. Alteration and progression of cellular 
differentiation is required during folliculogenesis from the 
arrested primordial stage of development through ovulation 
to the luteal stage of development. Regulation of granulosa 
cell cytodifferentiation requires the actions of a number of 
hormones and growth factors. Specific receptors have been 
demonstrated on granulosa cells for the gonadotropins FSH 
 [116]  and LH  [117] . In addition, receptors have been found 
for factors such as EGF        [118, 119] , insulin-like growth fac-
tor  [120] , and anti-M ü llerian hormone  [121] . The actions of 
these hormones and growth factors on granulosa cells vary 
with the functional marker being examined and the stage 
of differentiation. The biosynthesis of two important ovar-
ian steroids, estradiol ( Figure 14.2 ) and progesterone, is a 
primary function of the granulosa cells in species such as 
cattle, humans, and rodents. Estrogen biosynthesis is con-
trolled by the enzyme aromatase, which requires androgen 
( Figure 14.2 ) produced by the theca cells as a substrate. 
As the follicle develops, granulosa cells differentiate and 
estrogen biosynthesis increases. FSH promotes this fol-
licular development via the actions of cAMP. As the folli-
cle reaches the stages before ovulation, the granulosa cells 
develop an increased capacity to synthesize and secrete 
progestins under the control of LH. In contrast, the early 
follicle stage (e.g., primordial) granulosa cells appear to be 
hormone-independent and are non-steroidogenic. 

 Another   important cell type in the ovary is the ovarian 
theca cell ( Figure 14.2 ). These are differentiated stromal 
cells that surround the follicle and have also been termed 
theca interstitial cells  [122] . The inner layer of cells, the 
theca interna, has a basement membrane separating it from 
the outermost layer of mural granulosa cells. One of the 
major functions of theca cells in species such as cattle, 
humans, and rodents is the secretion of androgens which 
are used by granulosa cells to produce estrogen  [123] . 
Theca cells respond to LH by increasing the production of 
androgens from cholesterol  [124]  ( Figure 14.2 ). Theca cells 
also produce progestins under gonadotropin control            [125 –
 128] . Other secretory products of theca cells have not been 
thoroughly investigated. At the primordial stage no theca 
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cells are present; however, during transition to the primary 
stage theca cells (i.e., pre-cursor cells) are recruited to the 
follicle  [7] .  

    Follicle Growth and Differentiation (i.e., 
Folliculogenesis) 

 The   control of ovarian follicle development is complex, and 
involves multiple waves of growth  [129] . In the initial stage 
of follicle development, arrested primordial follicles undergo 
primordial follicle transition to begin follicle growth  [5] . In 
both the human and bovine ovary, two or three waves of fol-
licles are initiated to develop in a single ovarian cycle        [129, 
130] . For both these species, follicles expand to up to 2       cm 
in diameter during this process. A combination of granulosa 
cell growth, theca cell growth, and antrum formation (i.e., 
formation of fluid-filled space in the developing follicle) 
results in the expansion of the ovarian follicle ( Figure 14.2 ). 
Although a rapid stimulation of cell growth is required for 
the ovulatory follicle to develop, the vast majority of follicles 
undergo atresia, in which cell growth is arrested at various 
stages of follicle development. Hormones such as estrogen 
and FSH have been shown to promote follicle cell growth 
 in vivo ; however, these hormones alone do not stimulate 
growth of ovarian cells  in vitro   [131] . The possibility that 
these hormones may act indirectly through the local produc-
tion of growth factors is proposed for later stages of devel-
opment. Therefore, the regulation of ovarian cell growth is 
a complex process that requires an array of externally and 
locally derived regulatory agents. Interactions between 
theca cells, granulosa cells, and oocytes are required for fol-
licular maturation  [132] . The individual processes, such as 
dominant follicle selection  [133]  and follicle cell apoptosis/
atresia        [134, 135] , also require integrated cell – cell interac-
tions. A variety of specific growth factors produced in the 
follicle appear to mediate many of these cellular interactions 
in later stages of follicle development.  

    Ovarian Cell – Cell Interactions 

    Table 14.2    outlines a number of the factors produced 
locally in the ovary that mediate cell – cell signaling events 
in the control of follicle development and ovarian function. 
Several reviews address the topic of cell – cell interactions 
in the ovary and the control of follicle development                [5, 7, 
136 – 139] . Recent observations are cited below. 

 The   epidermal growth factor (EGF) family of growth 
factors regulates cell – cell interactions in the ovary. TGF α  
has been shown to be produced by theca cells            [140 – 143]  
and influence the growth of both theca and granulosa 
cells        [143, 144] . Several  in vivo  experiments have shown 
that TGF α  can influence follicle development        [145, 146] . 
TGF α  appears to be important for follicle development, 
and involves theca cell – granulosa cell interactions. TGF α  
has also been localized to isolated granulosa cells, but 
appears predominately in theca cells  [147] . The primary 
function of TGF α  is growth stimulation. Several other 
members of the EGF family are also involved including 
amphiregulin (AR), beta cellulin (Bt), and epiregulin (Ep) 
for granulosa cells        [148, 149] . The EGF receptor is also 
expressed and can be regulated by hormones such as LH 
and GnRH        [150, 151] . The EGF family also has a role in 
the ovarian surface epithelial cell biology  [152] . Therefore, 
the EGF family members mediate cell – cell interactions in the 
ovarian follicle, with autocrine granulosa interactions being 
predominant. 

 HGF   is produced by theca cells, and acts on granu-
losa cells to promote cell proliferation and function        [153, 
154] . This is an excellent example of the role HGF plays 
in mediating mesenchymal – epithelial interactions in tis-
sues. Interestingly, SCF/KL produced by the granulosa 
cells can provide feedback to the theca cells to stimulate 
HGF production        [155, 156] . In a similar manner, keratinoc-
yte growth factor (KGF) is produced by theca cells and acts 
on granulosa cells to regulate cell growth        [157, 158] . KGF 
can promote primordial follicle transition  [159] , and is also 
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 FIGURE 14.2          Ovary cell biology.    
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 TABLE 14.2          Cell – cell signaling factors in the ovary  

   Signaling factor  Site production  Site action  Functions  Ref(s) 

   Transforming growth factor  α  (TGF α )  Theca  Granulosa  Growth stimulation               [144 – 147, 166]  

       Theca     

   Transforming growth factor  β  (TGF β )  Theca  Granulosa  Growth inhibition               [186 – 190]  

     Granulosa  Theca  Cellular differentiation   

   Hepatocyte growth factor (HGF)  Theca  Granulosa  Growth stimulation             [154 – 156, 158]  

   Keratocyte growth factor (KGF)  Theca  Granulosa  Growth stimulation           [153, 157, 160]  

   Colony stimulating factor (CSF)  Theca  Granulosa  Growth regulation         [161, 162]  

       Theca     

   Tumor necrosis factor (TNF)  Granulosa  Oocyte  Apoptosis             [170 – 173]  

     Theca  Granulosa  Growth regulation   

     Oocyte  Theca     

   Fas ligand  Granulosa  Oocyte  Apoptosis             [176, 177, 240, 241]  

     Theca  Granulosa     

     Oocyte  Theca     

   Nerve growth factor (NGF)  Theca  Granulosa  Growth stimulation   [180]  

       Theca  Ovulation   
   Fibroblast growth factor (bFGF)  Granulosa  Granulosa  Growth stimulation           [182 – 184]  

     Theca  Theca     

     Oocyte       

   Growth differentiation factor-9 (GDF-9)  Oocyte  Granulosa  Cellular differentiation               [192 – 196]  

       Theca     

   Bone morphogenic proteins (BMP)  Oocyte  Granulosa  Cellular differentiation                   [200, 201, 203 – 205, 207, 108]  

     Theca  Theca     

   Kit ligand/stem cell factor (KL)  Granulosa  Oocyte  Growth stimulation               [209 – 213]  

       Theca     

   Leukemia inhibitory factor (LIF)  Granulosa  Oocyte  Growth stimulation         [215, 216]  

       Theca  Cellular differentiation   
   Vascular endothelial factor (VEGF)  Theca  Edothelium  Angiogenesis         [217, 221]  

     Granulosa  Granulosa     

   Interleukins  Granulosa  Granulosa  Cellular differentiation             [164 – 167]  

     Theca  Theca     

   Insulin-like growth factor (IGF-1)  Granulosa  Oocyte  Growth stimulation           [222 – 224]  

     Theca  Granulosa  Cellular differentiation   

       Theca     

   Inhibin  Granulosa  Oocyte  Cellular differentiation         [226, 227]  

       Theca     

       Granulosa     

   Anti-M ü llerian hormone (AMH)  Granulosa  Oocyte  Cellular differentiation   [228]  

       Granulosa     
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expressed in the corpus luteum  [160] . As was the case for 
HGF, SCF/KL was found to stimulate KGF expression by 
theca cells  [156] . These factors reflect the importance of 
the theca cell in the regulation of follicle growth. 

 A   number of immune-related cytokines have a poten-
tial role in the ovary. Granulocyte-macrophage colony-
stimulating factor (GM-CSF) was found to be expressed 
primarily by theca cells in the ovary        [161, 162] . The GM-
CSF can influence granulosa cell growth and function. 
Null mice had abnormal follicle development, suggesting 
effects on the local cell – cell interactions  [161] . Cytokines, 
as seen with the testis, also influence ovary function  [163] . 
The interleukins -1, -6, and -8 have all been shown to regu-
late follicle development. IL-1 is expressed by the granu-
lose, and affects granulosa function        [164, 165] . IL-8 is 
primarily expressed by the theca, and to a lesser extent by 
granulose, and influences cellular function  [166] . IL-6 is 
also expressed by granulosa cells and acts on various cells, 
including granulosa  [167] . Further investigation of the spe-
cific roles of these and other members of the interluekin 
family is needed. Recent analyses of the granulosa cell 
transcriptome revealed that a number of immune-related 
cytokines are expressed, suggesting roles for these secreted 
factors in local cell – cell interactions that also require fur-
ther investigation        [168, 169] . 

 Apoptosis   is an essential aspect of follicle development 
and ovarian function. The vast majority of follicles undergo 
atresia and apoptosis. TNF has been shown to be produced 
by most cell types in the ovary associated with apoptosis 
               [170 – 175] . TNF can act on all the cell types, and induce 
apoptosis or growth regulation. Another death ligand that 
binds death receptors to induce apoptosis is Fas ligand. 
Fas is also produced by all the cells associated with apop-
tosis, and acts to promote apoptosis in the atretic follicles 
         [176 – 178] . The endocrine system can regulate the expres-
sion and action of these factors to subsequently regulate 
apoptosis        [175, 178] . These signaling molecules are essen-
tial for ovarian function in promoting follicle atresia during 
folliculogenesis. 

 Nerve   growth factor (NGF) was found to be expressed 
by theca cells and act on theca and granulosa cells  [150] . 
NGF promotes the early stage of follicle growth  [179] . The 
localization and actions suggest a potentially important role 
at the time of ovulation  [180] . Other neurotropins (e.g., 
NT4) are also expressed at various stages of ovary develop-
ment  [181]  and require further investigation. 

 Basic   fibroblast growth factor (bFGF) has been shown 
to be expressed by granulosa cells, and to a lesser extent by 
theca cells  [182] . BFGF can regulate both granulosa cell and 
theca cell growth and differentiated functions        [183, 184] . 
During follicle development the expression of bFGF changes, 
being in the oocyte at the primordial stage and then in the 
granulosa at the primary stage  [7] . FGF9 has been shown 
also to mediate ovarian cell – cell interactions, being produced 
by theca cells, stroma, and the CL, and acting on granulosa, 

the oocyte, theca cells, and CL  [185] . The role of other FGF 
family members has not been rigorously addressed. 

 The   TGF β  superfamily of growth factors also has a 
critical role in regulating ovarian function  [138] . Members 
of the family involved include TGF β , GDF9, BMPs, and 
AMH. TGF β  is predominately produced by theca cells 
 [186] , but is also produced by isolated granulosa in selected 
follicle stages  [187] . TGF α  and TGF β  differentially regu-
late granulosa and theca cell differentiated functions and 
growth          [188 – 190] . Although TGF β  inhibits TGF α  growth 
stimulation, TGF β  also can influence cell functions  [191] . 

 Growth   differentiation factor-9 (GDF-9) is a member of 
the TGF β  superfamily, and is specifically localized to the 
oocyte. GDF-9 can act on both granulosa cells and theca 
cells to regulate steroidogenesis and differentiated func-
tions                  [191 – 197] . The actions of GDF-9 are follicle stage-
specific, and appear to be expressed in a variety of species. 
In early follicle development in the rat, GDF9 promotes 
primary follicle progression  [198] , while in pigs GDF9 
promotes primordial to primary follicle transition  [199] . 
GDF-9 regulates the expression of other paracrine factors 
such as SCF/KL in the developing follicle        [139, 194] . This 
is one of the few oocyte-specific products identified to be 
involved in cell – cell signaling in the ovary. 

 Another   factor specifically expressed in the oocyte 
that appears to regulate granulosa cell function is BMP-15 
           [197, 200 – 202] . BMP-15 and GDF-9 may act synergisti-
cally during follicle development. Other BMP family mem-
bers include BMP4 and -7, which are primarily localized 
in the theca cells and appear to act on the granulosa cells 
 [203] ; BMP2, which acts on granulosa cells        [202, 204] ; 
and BMP6, which also is expressed in the oocyte and acts 
on the granulosa cells        [202, 205] . In early follicles, BMP4 
promotes oocyte survival and primordial follicle transition 
 [206] . The BMP family of growth factors are members of 
the TGF β  superfamily, and appear to be critical to follicle 
development            [197, 202, 207, 208] . 

 Stem   cell factor/kit ligand (SCF/KL) is produced by 
the granulosa cell, and acts on the oocyte and theca cells 
               [139, 209 – 213] . The null mutant suggests a critical role 
in oocyte viability and recruitment of primordial follicles. 
This role in promoting primordial follicle transition was 
confirmed in organ culture experiments  [214] . In addition 
to the role in granulosa – oocyte interactions, granulosa KL 
also influences theca cell function and development  [212] . 
Oocytes appear to have a regulatory role in influencing the 
expression of KL by granulosa cells        [139, 210] . As found 
in the testis, this is a critical somatic – germ cell interaction. 
Another factor found to be expressed by granulosa cells 
and that regulates oocytes is LIF        [215, 216] . LIF can pro-
mote primordial follicle transition  [198] , and is also pro-
duced by stromal cells in the ovary. This action of LIF in 
mediating granulosa – oocyte interactions is supported by 
levels of LIF that increase in follicular fluid as the follicle 
develops        [215, 216] . 
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 Vascular   endothelial factor (VEGF) has a critical role in 
angiogenesis. This process is important for developing fol-
licles past the primary stage of development. VEGF is pri-
marily expressed in theca cells, and to a reduced level by 
granulosa cells              [217 – 221] . VEGF has a major role in act-
ing on endothelial cells to promote angiogenesis, but also 
can influence granulosa cell functions  [220] . This cell – cell 
signaling event controlled by VEGF is critical for follicle 
development. 

 IGF  -1 also has a role in the ovarian follicle  [222] . IGF-
1 is expressed by granulosa and theca cells, and acts on the 
oocyte, granulosa, and theca cells          [222 – 224] . Mice with 
null mutations in IGF-1 have impaired follicle develop-
ment  [224] . IGF-2 and the IGF-binding proteins also have 
a critical role in follicle development  [223] . A related fam-
ily member, relaxin, also integrates with the insulin family 
and may have a role in the ovary  [225] . 

 Inhibin   also has a paracrine role in the developing fol-
licle. Inhibin is primarily produced by the granulosa cells, 
and acts on the oocyte, theca, and granulosa cells        [226, 
227] . Related family members, such as the activins, are 
also anticipated to have similar roles. This is distinct from 
the roles these factors have in the endocrine system. 

 Additional   signaling factors are anticipated to be 
essential for ovarian function and follicle development. 
One example is anti-M ü llerian hormone (AMH), which 
is expressed by the granulosa cells  [228]  and may have a 
role as a negative regulator of oocyte viability and/or pri-
mordial follicle development        [229, 230] . Local steroid pro-
duction is also expected to influence the network of local 
cell – cell signaling events. This includes both androgen and 
estrogen production  [231] . Newly identified developmental 
factors, such as Nodal, affect granulosa cell apoptosis        [232, 
233] ; the Notch ligands (e.g., Delta) mediate oocyte and 
somatic cell interactions  [234] ; and endothelin 2 has effects 
on granulosa cells  [235] . Platelet-derived growth factor 
(PDGF) also has a role in primordial follicle transition in 
the adult follicle and in the CL          [175, 236, 237] .   

    SUMMARY 

 The   above descriptive discussion of cell – cell signaling 
in the testis and ovary demonstrates a growing complexity in 
the networks of cellular interactions and factors. It is antici-
pated some of these factors will have compensatory roles to 
assure growth and differentiation of the tissues. The list of 
factors provided is likely only partially complete, and will 
have more added as investigation of cell – cell interactions 
in the gonads expands. The advent of microarray proce-
dures and analysis of the ovarian transcriptome have expe-
dited this research  [238] . Currently, we are primarily in the 
research phase of identifying the sites of production and 
action for these factors. The functions of some individual 
factors are also being analyzed. However, the next research 

phase of cell – cell signaling will involve a more systems 
biology approach to tie together all the potential interac-
tions and gain more insight into the regulation of testis and 
ovary function. 

 The   specific cell – cell signaling events identified are 
shown in most cases to change during development. The 
requirements and physiology of the embryonic testis and 
ovary are very different from the adult. Another research 
area to expand is the elucidation of cell – cell signaling at 
these different stages of development. 

 A   comparison of the cell – cell signaling events between 
the testis and ovary is very useful. Some signaling events 
are the same. For example, the role SCF has in mediating 
direct somatic – germ cell interaction and the role HGF and 
KGF play in mesenchymal – epithelial cell interactions is 
similar. A direct correlation of the cell – cell interactions of 
the testis and ovary will be invaluable in elucidating the sys-
tems biology approach to understanding gonadal function. 

 Elucidation   of cell – cell signaling events is required for 
the future development of therapeutic agents to control 
fertility and treat reproductive diseases. Through under-
standing the signaling events involved in testis and ovary 
function, basic information is provided to design more 
effective therapeutics. Significant advances are antici-
pated to be in the area of contraceptive and fertility agent 
development, and treatment of diseases such as polycystic 
ovarian disease or premature ovarian failure. Although an 
understanding of the intracellular signaling events is essen-
tial for understanding how a factor acts, the elucidation 
of the network of extracellular signaling molecules that 
regulates a cell’s function is essential to understand how a 
whole tissue or organism functions.   
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    OVERVIEW OF KIDNEY FUNCTION AND 
CELL-TO-CELL INTERACTIONS 

 The   kidney is a complex organ comprising diverse cell types 
that work in coordination to perform a broad spectrum of 
functions, including the maintenance of body fluid and elec-
trolyte balance, pH regulation, secretion of renin and erythro-
poietin, activation of vitamin D, excretion of numerous drugs 
and toxins, and regulation of blood pressure. Several of these 
functions are related and involve the process of urine forma-
tion, which takes place in the functional unit of the kidney, 
the nephron. 

 Each   human kidney has about a million nephrons that 
operate in parallel. A nephron consists of a glomerulus and 
a tubule arranged in series. The glomerulus is formed by a 
capillary network (glomerular tuft) extending between the 
afferent and efferent glomerular arterioles. The capillary 
loops are separated by intercellular material and surrounded 
by a layer of specialized epithelial cells ( podocytes ) 
attached to the basement membrane of the capillaries. The 
epithelial layer reflects on itself in the vascular pole, form-
ing the Bowman space (or urinary space) that is continued 
by the lumen of the proximal tubule ( Figure 15.1   ). Urine 
formation is the result of filtration in the glomerulus, and 
reabsorption and/or secretion by the tubule. The net flux 
from tubule lumen to blood constitutes reabsorption, and 
the net flux in the opposite direction constitutes secretion. 
The renal-tubule epithelial cells can perform net transport 
between solutions of very similar or identical composition 
because they are polarized  –  that is, different transport pro-
teins are expressed in the apical (lumen-facing) and baso-
lateral (blood-facing) membrane domains, allowing them 
to carry out directional transport of specific solutes. Water 
transport is osmotic, and occurs in the direction of net sol-
ute transport. Further details about renal organization and 
function can be found in recent texts        [1, 2] . 

 Glomerular   filtration, tubule transport, and excretion are 
finely regulated processes. The proximity of renal tubules 
to each other, as well as to capillaries and interstitial cells, 
facilitates paracrine interactions between different cell 
types. The glomerular urinary space is in series with the 
lumen of the renal tubule segments, so that cells in consec-
utive structures communicate with each other via the lumi-
nal fluid. The composition of this fluid can be changed by 
the rate of filtration (that modifies the NaCl load) or by the 
secretion of signaling molecules into the lumen or plasma. 
Glomerular release of vasoactive agents can influence the 
vascular resistance of the efferent arteriole and vasa recta 
pericytes. Both changes in luminal NaCl concentration and 
the presence of signaling molecules are sensed by down-
stream tubule segments. This signaling mode, unique to the 
kidney, provides functional integration at the level of the 
single nephron. This theme is one of the central topics of 
this chapter. 

 As   in other organs, cell-to-cell communication in the 
kidney is largely mediated by paracrine and autocrine 
agents that may act in the extracellular or intracellular com-
partments, activating signal transduction systems. These 
complex interactions unify membrane transport processes 
and urine formation with homeostatic regulation of renal 
hemodynamics and glomerular filtration rate (GFR)        [3, 4] . 

 The   kidney is divided in two regions: the superficial 
cortex and the interior medulla ( Figure 15.1a ). The cortex, 
70 percent of the renal parenchyma, contains three classes 
of cells:  vascular  (large and small arteries, arterioles, capil-
laries),  epithelial  (proximal convoluted tubule (PCT), loop 
of Henle (LH) of short-looped cortical nephrons, distal 
convoluted tubule (DCT), cortical collecting tubule (CCT)], 
and  interstitial  cells. The medulla comprises 30 percent of 
the kidney mass, and contains vasa recta capillaries, long 
loops of Henle of deep (juxtamedullary) nephrons, col-
lecting ducts (CD), and interstitial cells. Thin-descending 
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and thin-ascending loops of Henle are present in the inner 
medulla. The thick ascending limb of Henle’s loop (TAL) 
resides in the outer medulla and cortex. 

 The   vascular resistance of the kidney is lower than 
that of other organs, explaining the high blood flow of 
the organ, on average 1200       ml/min (about 25 percent of 
cardiac output), or 4       ml/min per g of kidney weight. The 
renal artery and its branches carry 85 – 90 percent of the 
total renal blood flow to the cortex, where the microvascu-
lature consists of two highly reactive arterioles separating 
two capillary beds arranged in series: the glomerular cap-
illaries (after the afferent arteriole of the glomerulus) and 
the peritubular capillaries in the cortex, and vasa recta in 
the medulla (after the efferent arteriole of the glomerulus). 
Afferent and efferent arterioles regulate blood flow and 
glomerular capillary hydrostatic pressure, the latter being 
the major determinant of the GFR. In the glomerulus the 
transcapillary hydrostatic pressure gradient exceeds the 
plasma colloid osmotic pressure throughout, thus causing 
fluid ultrafiltration all along the length of the glomerular 
capillaries. The glomerular capillary wall is formed, from 
blood to Bowman’s space, by a fenestrated endothelial 
layer, a basement membrane, and the epithelial layer that 
applies over the basal membrane by interdigitating proc-
esses separated by the  “ slit pores. ”  The basement mem-
brane slit pores constitute the effective size-restrictive 
barrier to the glomerular filtration, with a low permeability 
to plasma proteins and other molecules larger than albu-
min. In contrast, its permeability to water, ions, and other 
small solutes is considerably higher than that of capillaries 
of other organs. After filtration, fluid flows from Bowman’s 
space into the proximal tubule, where solutes and water 

are reabsorbed by transport, across both the cell mem-
branes and the intercellular pathway, into the peritubular 
space and then the capillaries. The plasma colloid-osmotic 
pressure in the peritubular capillaries (higher than in other 
capillary beds because the glomerular ultrafiltrate does not 
contain proteins) exceeds the transcapillary hydrostatic 
pressure gradient, and thus there is fluid flow from peritu-
bular interstitium into peritubular capillaries, both in the 
cortex and in the medulla. The capillaries in the latter are 
the hairpin-shaped  vasa recta  sporadically surrounded by 
pericytes; these smooth muscle cells may contract to act as 
sphincters. 

 Medullary   blood flow is 10 – 15 percent of the total renal 
blood flow (RBF). Its control is essential for the efficient 
operation of the countercurrent multiplication and exchange 
mechanisms that accumulate solute in the medullary inter-
stitial space, providing the driving force to concentrate or 
dilute the urine along the collecting ducts. In addition to 
upstream control by efferent arterioles, local blood-flow 
regulation is provided by pericytes around descending vasa 
recta. The medullary blood vessels may be less sensitive 
to vasoconstrictor agents than the cortical vessels due to 
protection provided by nitric oxide (NO) and eicosanoids 
released by endothelial and tubule cells. Abnormal regu-
lation of the renal-medullary circulation can lead to salt 
retention and hypertension          [5 – 7] . 

 Redundant   and complementary control mechanisms 
form the basis of structural – functional relationships that 
are central to two of the primary functions of the kidney, 
namely, the maintenance of salt and water balances and 
the control of blood pressure. In the steady state, the out-
put (excretion) of fluid and electrolytes matches the input 

 FIGURE 15.1(A)          Scheme of the structure of deep and superficial nephrons.  
    G, Glomerulus; PTC, proximal convoluted tubule; DTL, descending thin loop of Henle; ATL, ascending thin loop of Henle; TAL, thick ascending loop of 
Henle; DCT, distal convoluted tubule; CCD, cortical collecting tubule; OMCD, outer medullary collecting duct; IMCD, inner medullary collecting duct.    
 (B)          Scheme of the juxtaglomerular apparatus.  
    VSMCs, vascular smooth muscle cells; AA, afferent arteriole; EA, efferent arteriole; RSC, renin secreting (granular) cells; EGM, extraglomerular mes-
sangium; MD, macula densa; TALH, thick ascending loop of Henle; G, glomerulus; CL, capillary loop; MC, mesangial cell; PT, proximal tubule.    
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(intake   �   production plus administration), so that the 
volume and composition of the extracellular fluid remain 
constant, precisely controlled by homeostatic mechanisms 
         [3, 4, 8] . In a normal hydration state, the renal tubules 
reabsorb more than 99 percent of the glomerular filtrate. 
The rate of glomerular filtration in adult humans is about 
120              ml/min, or 170       l/day. About 67 percent of the reab-
sorption occurs in the PT, 20 percent in the loops of Henle 
(LH), and the rest in the distal nephron (DCT, CCD, MCD). 
 Figure 15.1(A)    outlines the main nephron segments. The 
luminal fluid flows from PT to the descending and ascend-
ing LH, DCT, and CD. The transport processes and perme-
ability properties of each nephron segment are regulated by 
paracrine factors generated by vascular and epithelial cells. 
NaCl is actively reabsorbed in all nephron segments, except 
the thin LH. The basolateral membranes of all renal-tubule 
cells express Na  �  ,K  �  -ATPase, or Na  �   pump, a primary-
active transport protein that extrudes Na  �   and takes up K  �  , 
establishing chemical and electrical gradients at the lumi-
nal membrane that favor passive Na  �   entry. The luminal 
membranes of the different tubule segments express diverse 
Na  �   transport proteins              [9 – 13] . The main mechanisms of 
Na  �   entry across the luminal membrane are: Na  �  /H  �   
exchange in the PCT (mediated by the antiporter NHE3, 
sensitive to high concentrations of the drug amiloride), 
Na  �   – K  �   – 2Cl  �   in the thick ascending LH (mediated by 
the symporter NKCC2, sensitive to the diuretic furosem-
ide), Na  �   – Cl  �   co-transport in the DCT (mediated by the 
symporter NCC, sensitive to diuretics of the thiazide fam-
ily), and channel-mediated entry in the principal cells of 
the CD (via ENaC, the epithelial Na  �   channel, blocked by 
low concentrations of amiloride). Reabsorption of Na  �   is 
accompanied by anion (largely Cl  �   and HCO 3  

 �  ) transport 
in the same direction, and/or transport of another cation 
(H  �   or K  �  ) in the opposite direction to Na  �   transport. The 
transport of Na  �   is coupled to transport of other solutes at 
the molecular level (examples given earlier) or by changing 
the driving force for transport of the other solute (i.e., tran-
scellular Na  �   absorption creates an electrical potential that 
drives paracellular Cl  �   absorption). 

 Changes   in tubule NaCl concentration in the macula densa 
region of the LH determine a complex sequence of events 
(termed tubuloglomerular feedback (TGF), see section below 
and  Figure 15.1b ) leading to changes in the in the local secre-
tion of renin by specialized cells in the afferent arteriole of the 
glomerulus and modifications of the artery arteriole resistance. 

 Arginine   vasopressin (AVP), also known as vasopressin 
or antidiuretic hormone (ADH), secreted by the posterior 
pituitary gland, acts on CD principal cells to elicit exocy-
totic insertion of aquaporin  2  (AQP2) and urea transporter 
(UT1) in the luminal membrane, thus increasing the perme-
ability to both urea and water. Aldosterone, secreted by the 
adrenal cortex, also exerts its main action on the principal 
cells of the CD, stimulating Na  �   reabsorption by genomic 
and non-genomic mechanisms that enhance the number of 

Na  �   channels at the luminal membrane and the number 
of Na  �   pumps at the basolateral membrane. Because of 
the differences in the salt and water permeabilities among 
renal-tubule segments, the fractional reabsorptions of salt 
and water are somewhat different in specific segments. In 
normal individuals, fractional Na  �   reabsorption is about 
67 percent in the PT, 20 percent in the LH, 7 percent in 
the DCT, 5 percent in the CD, and 1 percent in the IMCD. 
Water reabsorption is similar in the PT, less in the LH, 
and variable along the DCT and CD, where the effect of 
vasopressin on water reabsorption is exerted, and water 
reabsorption depends on the hydration state and plasma 
concentration of vasopressin. 

 In   summary, the kidney is a highly sophisticated organ 
serving multiple functions ranging from synthesis and 
release of the proteolytic enzyme renin to maintenance 
of extracellular fluid volume and composition. Several of 
these functions depend critically on cell-to-cell communi-
cation in a coordinated, integrated manner. Homeostasis is 
regulated by multiple systems featuring negative-feedback 
control of function characterized by coordination of hor-
monal, neural, paracrine, and autocrine signals as they 
act to regulate both the renal microcirculation and epithe-
lial transport along the renal tubule to maintain a constant 
internal environment. 

 This   chapter focuses on cell-to-cell communication 
within the kidney. The extrarenal neural – hormonal regu-
lation and other important functions, such as regulation 
of acid – base and calcium and potassium balances, are not 
discussed (for recent reviews, see                [3, 4, 9, 11 – 13] ). Signal 
transduction among different cells is highlighted, at the 
expense of in-depth discussion of mechanisms underly-
ing effector-cell responses. Due to space limitations, not 
all intrarenal events are discussed. The reader is referred 
to recent reviews on contractile mechanisms of vascular 
smooth muscle cells                  [14 – 20]  and basic transport mecha-
nisms in renal epithelial cells                        [9, 10, 21 – 28] .  

    VASCULAR SMOOTH MUSCLE CELLS 

 Vascular   smooth muscle cells (VSMCs) encircle endothelial 
cells and contract to regulate the blood-vessel diameter, and 
thereby its resistance to blood flow. Contraction and relax-
ation of VSMCs in interlobular arteries and in afferent and 
efferent glomerular arterioles are the primary determinants 
of total renal vascular resistance. The kidney has intrinsic 
autoregulatory mechanisms that maintain renal blood flow 
and GFR constant in the face of changes in arterial pres-
sure. The roles of myogenic response and tubuloglomerular 
feedback in the control of the afferent-arteriole vascular
resistance are discussed below, under  “ Tubulovascular 
interactions. ”  In addition to circulating hormones and 
sympathetic nerve activity, multiple paracrine/autocrine 
factors regulate the contraction of VSMCs of arteries and 
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arterioles, and of the mesangial cells (cells of smooth-mus-
cle origin located between the glomerular capillary loops). 
Vasomotor tone is regulated by communication between 
endothelial cells and the contractile VSMCs. Just before an 
afferent arteriole enters a glomerulus there is a short seg-
ment of juxtaglomerular granular cells responsible for the 
production, storage, and release of renin and Ang II. Renin 
release depends on signals from the macula-densa cells of 
the thick ascending LH, activity of sympathetic nerve ter-
minals, and stretch of juxtaglomerular granular cells (see 
 Figure 15.1(B) ). The juxtaglomerular apparatus (JGA) 
consists of four cell types: VSMCs of the terminal affer-
ent arteriole, renin-containing granular cells, macula-densa 
cells, and extraglomerular mesangial cells ( Figure 15.1b ). 
Unique functions of the integrated JGA are discussed 
below under  “ Tubulovascular interactions. ”  

    Vasoconstrictor Mechanisms 

 The   VSMCs of renal microvessels respond to local paracrine 
factors in addition to circulating hormones and sympathetic 
nerve activity                      [3, 4, 14, 16, 18, 19, 29-31] . Contraction of 
VSMCs is regulated by physical and chemical factors, with 
multiple signal transduction pathways coupling agonist-
receptor interactions to [Ca 2 �  ] i , followed by activation of 
the actin – myosin contractile machinery. G-protein-coupled 
receptors (GPCRs) in the plasma membrane play a promi-
nent role in these processes. Heterotrimeric G proteins 
transduce stimulatory or inhibitory signals to the cell inte-
rior.  Table 15.1    shows a list of representative cell-surface 
GPCRs found in afferent and efferent arterioles. Ligand 
binding to the receptor triggers the intracellular signals 
leading to changes in vasomotor tone. Subsequently, a 
receptor is inactivated by kinase-mediated phosphorylation 
(GPCR serine/threonine protein kinases), thus limiting the 
duration of the effect of the agonist. 

 Most   of the receptors mediating vasoconstriction cou-
ple primarily with G α  q/11  to activate PLC, form inositol 
trisphosphate (IP 3 ) and diacylglycerol (DAG), and thereby 
elevate [Ca 2 �  ] i  and activate protein kinase C (PKC). Rapid 
increases in [Ca 2 �  ] i  are mediated by mobilization from sar-
coplasmic-reticulum stores and more sustained elevations 
result from increased Ca 2 �   entry via plasma-membrane 
ion channels. Ca 2 �   mobilization is determined by the 
combined activity of two receptor/Ca 2 �   release channels on 
the sarcoplasmic reticulum: the IP 3  receptor and the ryano-
dine (Ry) receptor (RyR). There is an interaction between 
these two receptors/channels in Ca 2 �   release from the sar-
coplasmic reticulum. The fact that RyRs are very sensitive 
to local increases in Ca 2 �   is the basis for the process of 
Ca 2 �  -induced Ca 2 �  -release  [29] . In addition to respond-
ing to IP 3 -mediated Ca 2 �   release, RyRs are normally sen-
sitized by endogenous cyclic ADP ribose that is produced 
by a cell surface CD38 enzyme, ADP ribosyl cyclase. 
G α  q/11 -coupled receptors rapidly stimulate ADP ribosyl 

cyclase by an uncertain mechanism; candidates include G 
proteins and physiological levels of superoxide anion. 

 Ca   2 �  -entry channels in the plasma membrane can be 
voltage-dependent or voltage-independent. Voltage-gated T- 
and L-type Ca 2 �   channels open upon depolarization of the 
plasma membrane and allow Ca 2 �   entry from the extracellu-
lar fluid. Receptor activation may lead to opening of voltage-
insensitive receptor-operated channels by a poorly understood 
mechanism. Release of Ca 2 �   from the sarcoplasmic reticu-
lum leads to Ca 2 �   entry by opening of store-operated cation 
channels in the plasma membrane. There is considerable 
current interest in identifying the molecular identity of store-
operated and receptor-operated cation channels as combina-
tions of TRP channel proteins            [32 – 35] . In addition to Ca 2 �   
effects on contractility, sensitivity of the contractile apparatus 
to a given level of [Ca 2 �  ] i  is increased by Rho/Rho kinase 
and PKC. Cell-surface receptors for vasoconstrictor agents 
are phosphorylated and inactivated or desensitized by an 
indirect process consisting of PKC-mediated phosphoryla-
tion or a family of G-protein regulated kinases.   

    VASCULAR ENDOTHELIAL CELLS 

 Endothelial   cells are in contact with blood elements, and 
subjected to hemodynamic forces such as hydrostatic pres-
sure and shear stress              [36 – 40] . The lumen hydrostatic pres-
sure tends to distend the arterioles, causing a contractile 
myogenic response, whereas the shear stress, depending 
on the flow velocity, causes release of vasodilator agents, 
including nitric oxide (NO), cyclooxygenase (COX) prod-
ucts, and endothelium-derived hyperpolarizing factor 
(EDHF); and vasoconstrictor factors, including endothelin-1 
(ET), cytochrome P450 (Cyt-P450) products, and COX2 
derivatives. The interplay of these mechanisms determines 
the basal tone in resistance arterioles and allows for rapid 
adaptations to fluctuations in flow and pressure. 

 Endothelial   cells constitute a barrier whose permeability 
varies in different organs, largely depending on the presence 
of fenestrations and on the properties of the tight junctions 
that separate the endothelial cells. Endothelial cells synthe-
size paracrine agents (gases, fatty acids, and peptides) that 
act on both nearby VSMCs and epithelial cells                [36 – 41] . 

 The   release of vasoactive paracrine/autocrine factors, 
both relaxing and constricting, modulates the degree of con-
traction of VSMCs ( Table 15.1 ). Vasodilators produced by 
endothelial cells include NO, PGI 2,  epoxy-eicosatrienoic 
acids (EETs), and EDHF. The most potent vasoconstric-
tor made is ET. In addition, endothelial cells express 
angiotensin-converting enzyme (ACE), tethered to the 
blood-facing membrane; this enzyme catalyzes the local 
production of the vasoconstrictor angiotensin II (Ang II). 
Under physiological conditions the actions of local dila-
tor agents predominate, whereas constrictor systems tend 
to prevail in stressful and disease states. The physiological 
actions of vasodilator agents are important in counteracting 
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 TABLE 15.1          Major receptors and signaling pathways in the kidney vasculature  

   Vasoconstrictor agents (direct actions on VSMC) 

   Hormone/paracrine/autocrine Agents  Receptor  G protein  Intermediates/messengers 

   Adenosine  P 1  – A 1   G α  i    ↓  cAMP/PKA 

   ATP  P 2X   —  Non-selective cation channel/Ca 2 �   
  ↓  K �  channel activity/Depolarization/ 

    
    

 P 2Y     G α  q/11    Ca 2 �  /PKC
 Ca 2 �  /PLA 2 /Cyt P450/HETE 

   Angiotensin II  AT 1   G α  q/11  Ca 2 �  /PKC
 Ca 2 �  /ADP ribosyl cyclase/cADP ribose
  Ca 2 �  /PLA2/Cyt P450/HETE 

   Catecholamines   α  1   G α  q/11   Ca 2 �  /PKC 
Ca 2 �  /ADP ribosyl cyclase/cADP ribose

      α  2   G α  i    ↓  cAMP/PKA 

   Endothelin  ET A   G α  q/11   Ca 2 � / PKC
Ca 2 �  /ADP ribosyl cyclase/cADP ribose 
  Ca 2 �  /PLA2/Cyt P450/HETE

     ET B   G α  q/11   Ca 2 � / PKC
Ca 2 �  /ADP ribosyl cyclase/cADP ribose 
  Ca 2 �  /PLA2/Cyt P450/HETE

   PGE 2   EP 1   G α  q/11   Ca 2 � / PKC 

     EP 3   G α  i    ↓  cAMP/PKA 

   PGF 2 α    FP  G α  q/11   Ca 2 � / PKC 

   Thromboxane  TP  G α  q/11   Ca 2 � / PKC 
Ca 2 �  /ADP ribosyl cyclase/cADP ribose

   Vasopressin  V 1   G α  q/11   Ca 2 � / PKC 

   20-HETE  *   —   K channel (Ca 2 �   activated)/depolarization 

   Vasodilator agents (direct actions on VSMC) 

   Hormone/paracrine/autocrine agents  Receptor  G protein  Intermediates/messengers 

   Adenosine  P 1  – A 2   G α  s   cAMP/PKA 

   Catecholamines  B   G α  s   cAMP/PKA 

   Dopamine  D 1   G α  s   cAMP/PKA 

   PGE 2   EP 4   G α  s   cAMP/PKA 

   PGI 2   IP  G α  s   cAMP/PKA 

   EDHF  *   —   K channel (Ca 2 �   activated)/hyperpolarization 

   11,12-/14,15-EET  *   —   K channel (Ca 2 �   activated)/hyperpolarization 

   Nitric oxide  sGC   —   cGMP/PKG
cGMP/ ↓  PDE/ ↑  cAMP 
 ↓  ADP ribosyl cyclase/ ↓  cADP ribose

          ↓  Cyt P450/ ↓  20-HETE/hyperpolarization 

(Continued)
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cAMP-dependent pathway decreases the affinity of the 
myosin kinase for the calcium-calmodulin kinase that is 
necessary for the phosphorylation of myosin. The result 
is a decreased calcium sensitivity of smooth-muscle 
cells to stimuli for contraction.  

    2.     Inhibition of IP 3 -mediated Ca 2 �   release from the SR.  
    3.     Enhanced calcium pump activity in the sarcoplasmic 

reticulum, without increase in the plasma-membrane 
calcium pump activity.  

    4.     Phosphorylation and decreasing in the opening of dihy-
dropyridine sensitive calcium channels.    

 The   mechanisms proposed for cGMP-mediated vasodi-
lation (e.g., nitrovasodilators, EDRF, natriuretic peptides) 
include the following: 

    1.     Activation of soluble guanylyl cyclase and production 
of cGMP, which can activate PKG and also inhibit 
cAMP breakdown via a cGMP-sensitive phosphodieste-
rase. Agents such as 11, 12 EET and EDHF cause 
renal vasodilation by relaxing VSMCs secondary to 

the actions of constrictor systems (for example, angiotensin II 
and norepinephrine) rather than producing vasodilation  per se . 

    Vasodilator mechanisms 

 Relaxation   of vascular smooth muscle involves opposite 
mechanisms to those eliciting contraction. Whereas an 
increase [Ca 2 � ]  i  causes contraction, a decrease in [Ca 2 � ]  i  elic-
its vasodilation. The prostanoids PGE 2  and PGI 2  and NO exert 
similar vasodilator effects on afferent- and efferent-arteriole 
VSMCs, primarily by reducing the entry of Ca 2 �   mobilization 
and decreasing myosin phosphorylaton. Vasodilation mecha-
nisms can be cAMP- and/or cGMP-mediated          [17, 42, 43] . 

 The   mechanisms proposed for cAMP mediated vasodi-
lation (e.g., IP receptors for PGI 2 , or EP 4  receptors for 
PGE 2 ) include the following: 

    1.     GPCR activation of G s , which activates adenylyl 
cyclase, increasing cAMP levels and thus stimulating 
PKA; cAMP phosphorylation of myosin kinase via a 

 TABLE 15.1         (Continued) 

   Carbon monoxide  sGC   —   cGMP/PKG 

   Vasodilator agents (with preferential actions on endothelial cells)       

   Hormone/paracrine/autocrine Agents  Receptor  G protein  Intermediates/messengers 

   Endothelin 
    

 ET B     G α  q/11     Ca 2 �   NOS/NO 
 Ca 2 �   PLA 2 /COX/PGs/PLA 2 /EET 

   Vasodilator agents (with preferential actions on endothelial cells)       

   Hormone/paracrine/autocrine Agents  Receptor G protein Intermediates/messengers

   Bradykinin 
    

 B 2  
  

 G α  q/11  
  

 Ca 2 �   NOS/NO 
 Ca 2 �   PLA 2 /COX/PGs/PLA 2 /EET 

   Acetylcholine 
    

 M    G α  q/11     Ca 2 �   NOS/NO 
 Ca 2 �   PLA 2 /COX/PGs/PLA 2 /EET 

   Vasoconstrictor agents (also stimulators of vasodilators products by endothelial cells)       

   Hormone/paracrine/autocrine agents  Receptor  G protein  Intermediates/messengers 

   Adenosine 
    

 P 1  – A 1     G α q/11    Ca 2 �   NOS/NO 
 Ca 2 �   PLA 2 /COX/PGs/PLA 2 /Cyt-P450/EET 

   Angiotensin II 
    

 AT 1     G α  q/11     Ca 2 �   NOS/NO 
 Ca 2 �   PLA 2 /COX/PGs/PLA 2 /Cyt-P450/EET 

   ATP 
    

 P 2Y     G α  q/11     Ca 2 �   NOS/NO 
 Ca 2 �   PLA 2 /COX/PGsPLA 2 /Cyt-P450/EET 

   Vasopressin 
    

 V 1  
  

 G α  q/11  
  

 Ca 2 �   NOS/NO 
 Ca 2 �   PLA 2 /COX/PGs/PLA 2 /Cyt-P450/EET 

  Abbreviations: cAMP, cyclic adenosine monophosphate; ATP, adenosine triphosphate; CO, carbon dioxide; COX, cycloxygenase; cGMP, cyclic guanine 
monophosphate; Cyt-P450, cytochrome P450 enzyme; EET, Epoxy-eicosatrienoic acid; HETE, Hydroxy-eicosatrienoic acid; HO, heme oxgenase 
enzyme; NO, nitric oxide; NOS, nitric oxide synthase; PDE, phosphodiesterasePGs, prostaglandins; PLA 2 , phospholipase A 2 ; SGC, soluble guanylyl 
cyclase; *, undetermined;  ↓ , inhibits.  
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plasma-membrane hyperpolarization following activa-
tion of K  �   channels.  

    2.     Inhibition of L-type Ca 2 �   channels, which decreases 
Ca 2 �   entry into the cell.  

    3.     PKG activation of Ca 2 �   uptake by the sarcoplasmic 
reticulum.  

    4.     Increasing membrane polarization by activating K  �   chan-
nels, which will increase Ca 2 �   exit via Na – Ca exchanger.  

    5.     Decreased Ca 2 �   mobilization by inhibition of IP3 
formation or inhibition of the IP3 receptor in the sarco-
plasmic reticulum.  

  6.     Decreased Ca 2 �  mobilization mediated by ryanodine 
receptor due to inhibition of ADP ribosyl cyclase and 
cADP ribose production.  

    7.     Activation of myosin light-chain phosphatase, conduc-
ing to dephosphorylation of myosin light chains.    

 Cross  -talk mechanisms between cAMP and cGMP have 
also been proposed. 

 Indirect   effects have also been reported. An example is 
the NO inhibition of Cyt-P450-mediated production of the 
vasoconstrictor 20-HETE.   

    VASOACTIVE PARACRINE/AUTOCRINE 
AGENTS  –  ACTIONS IN THE RENAL 
VASCULATURE 

    Nitric Oxide 

 Nitric   oxide synthase (NOS) is activated, by hypoxia, shear 
stress, cell deformation, or vasoactive substances, to pro-
duce NO from l-arginine and molecular oxygen                [41, 44 – 48] . 
NO is an important mediator of communication between 
endothelial cells and VSMCs, as well as between endothe-
lial cells and tubule cells. Constitutively-active endothe-
lial NOS (eNOS) is richly expressed in blood vessels and 
IMCD. Vasoactive agents such as Ang II and bradykinin 
stimulate eNOS, and ATP can stimulate NOS isoenzymes. 
The activation by these agents is mediated by G-protein-
coupled receptors, and involves activation of phospholi-
pase C (PLC), increase in cytosolic calcium concentration 
([Ca 2 �  ] i  ), and calmodulin-dependent enzyme activation. 
Thus, many vasoconstrictor – ligand – receptor interactions 
leading to increased [Ca 2 �  ] I  elicit primarily VSMC contrac-
tion, but also stimulate endothelial production of the vasodi-
lator NO, which limits the degree of constriction. The final 
balance of these two effects depends on the agonist, and 
the density of receptors/enzymes in endothelial cells and 
VSMCs. Ang II produces net vasoconstriction by virtue of 
the dominant action of AT 1  receptors on VSMCs, whereas 
bradykinin and ATP cause net vasodilation due to their 
dominant effects on endothelial cells and NO production. 

 NO   rapidly permeates plasma membranes and binds to 
the heme moiety of soluble (no membrane tether) cyclic 
guanylyl cyclases to form a heterodimer of  α  and  β  sub-
units that catalyzes production of cGMP. NO is rapidly 

inactivated by hemoglobin. In health, NO may produce 
vasodilator effect by reducing the bioavailability of the 
constrictor O 2 -. In disease states, the function of NOS is 
altered to generate vasoconstricting agents such as super-
oxide  radicals and other reactive oxygen species. In these 
conditions,  superoxide can scavenge NO to produce 
ONOO  �  , reducing the availability of NO. 

 The   low renal vascular resistance, compared to other 
vascular beds, is explained in part by a high dependence 
on NO. Inhibition of all three NOS isoforms (type I or 
neuronal, type II or inducible, and type III or endothelial) 
reduces RBF by about 35 percent, reduces GFR to a lesser 
extent, and increases arterial pressure by about 30       mmHg. 
Vasoconstriction occurs along both afferent and efferent 
glomerular arterioles, and the glomerular filtration coeffi-
cient (directly proportional to the capillary surface area per 
glomerulus and the hydraulic conductivity) is reduced.  

    Heme oxygenases/carbon monoxide system 

 Microsomal   heme-oxygenase (HO) catalyzes the metabo-
lism of heme to form carbon monoxide (CO), biliverdin 
and free iron          [49 – 51] . Two isoforms, HO-1 and HO-2, are 
expressed in the kidney. Constitutively active HO-2 is ubiq-
uitous, present in the renal vasculature and in almost all 
nephron segments. Under basal conditions, inducible HO-1 
appears to be at low levels or absent from renal structures. 
In the vasculature, HO-2 is stimulated by vasoconstrictor 
substances such as Ang II and hypoxia. CO contributes 
to the renal vascular reactivity by acting as a vasodilator 
agent that counteracts the vasoconstriction produced by 
Ang II, catecholamines, 20-HETE, or pressure-induced 
myogenic tone. CO activates guanylate cyclase/cGMP sig-
naling and Ca 2 �  -sensitive K  �   channels that hyperpolarize 
the membrane of VSMCs, therefore reducing Ca 2 �   entry 
via voltage-sensitive channels. There may be an interac-
tion between CO and NO in eliciting vasodilation. Little is 
known about effects of endogenous CO on tubule transport 
and renal excretion of salt and water. Oxidative stress and 
cell injury, as well as chronic activation of AT 1  receptors 
by Ang II or V 1  receptors by vasopressin (AVP), induce 
HO-1 mRNA by Ca 2 �  - and perhaps PKC-dependent mech-
anisms. It has been reported that upregulation of the HO-
1 gene attenuates oxidative stress caused by angiotensin 
II in primary cultured of TALH cells, a nephron segment 
highly susceptible to ischemic injury. In these cells Ang II 
causes a decrease in glutathione levels and DNA damage  –  
a response that is respectively ameliorated and blocked by 
HO-1 expression. The response to HO-1 is, however, cell-
type dependent: in endothelial cells HO-1 overexpression 
suppresses inflammation-induced apoptosis (by generation 
of HO-1-derived carbon monoxide production that trig-
gers a protective vasodilatation), but in VSMCs it leads 
to apoptosis, an effect that can be secondary to bilirubin 
 production  [52] .  
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    Endothelin 

 Endothelins   (ET) are potent paracrine vasoconstrictors pro-
duced by endothelial cells            [53 – 56] . They are 21-amino-acid 
peptides, and three isoforms have been described, ET-1 
being the most prevalent in humans. Human ET is derived 
by successive proteolytic steps from preproendothelin (212 
amino acids), which is hydrolyzed by a specific endopepti-
dase to a 37 – 39 amino acid molecule named preproen-
dothelin-1, which is cleaved by a neutral endopeptidase to 
form proendothelin-1 or big ET-1(a non-functional peptide). 
This is further cleaved by the endothelium-bound endothe-
lin converting enzyme-1 (ECE-1) to ET-1. The stimuli for 
ET-1 production and immediate secretion are Ang II, ATP, 
bradkyinin, hypoxia, isoprostane, superoxide anion, shear 
stress, thrombin, cytokines, and high-salt diet. ET is pre-
dominantly secreted toward adjacent VSMCs. Local effects 
of endogenous ET are more pronounced than those elicited 
by the usually low concentrations of circulating ET. 

 Both   ET A  and ET B  receptors are found in renal VSMCs, 
and both are vasoconstrictors, activating G α  q/11 , promoting 
an increase in [Ca 2 �  ] i  and triggering a contraction more pro-
nounced and longer lasting than those elicited by norepine-
phrine or Ang II. This is due to a higher affinity of ET for its 
receptor and slower desensitization. ET-induced renal vaso-
constriction is mediated by stimulation of NADPH oxidase, 
superoxide production, and stimulation of Ca 2 �   signaling 
via the ADP ribosyl cyclase and RyR pathway. Only ET B  
receptors are expressed in endothelial cells, where their acti-
vation increases [Ca 2 �  ] i  and stimulates eNOS to produce the 
vasodilator NO. Production of vasodilator prostaglandins 
may also increase. Whether ET exerts a dilator or a constric-
tor action on arterioles depends on the relative abundance 
of ET receptors on the endothelium  versus  the VSMCs. 
Under normal conditions, ET-1 exerts a tonic constrictor 
effect. ET is thought to be primarily a vasoconstrictor agent 
in pathological conditions such as congestive heart failure 
and chronic renal failure, acting on both afferent and effer-
ent arterioles of the glomerulus. In the renal medulla, ET-1 
dilates the vasculature as a result of strong ET B  effects that 
increase NO production and vasodilator COX metabolites. 

 Gene  -targeted deletion of the ET A  receptor has no effect 
on arterial pressure in unstressed animals. On the other hand, 
ET B -receptor knockout animals have an increased arterial 
pressure, and high-salt diet induces salt-sensitive hypertension. 
Interestingly, specific deletion of ET B  receptors on endothelial 
cells does not result in a change in arterial pressure in animals 
consuming either a normal or high-sodium diet, suggesting 
the importance of ET B  receptors on collecting duct cells in 
maintaining salt balance and blood pressure        [57, 58] .  

    Arachidonic Acid Metabolites 

 Eicosanoid   production is governed by the availability of the 
membrane fatty acid arachidonic acid. Its release is mediated 

by calcium-dependent cytosolic phospholipase A2 (PLA 2 ), 
and the activity of enzymes of the cyclooxygenase (COX), 
lipoxygenase, and cytochrome (Cyt) P450 families. COX1 
and -2 synthesize prostaglandin H 2 , from which different 
eicosanoids (PGE 2 , PGI 2 , and thromboxane, TxA 2  ) are 
produced by the action of PGE 2 -isomerase, prostacyclin 
synthase, and thromboxane synthase, respectively. The 
lipoxygenase family generates leukotrienes. Very little is 
known about kidney lipoxygenase activity in physiological 
conditions. Finally, the Cyt-P450 monooxygenase family 
yields epoxy-eicosatrienoic acids (EETs) and hydroxy-
eicosatrienoic acids (HETEs). In the vasculature, 80 per-
cent of Cyt-P-450 activity is localized in endothelial cells. 

    Arachidonic Acid – COX Metabolites 

 Prostaglandins   (PGs) and thromboxane (TxA 2 ) are synthe-
sized by endothelial cells and act on vascular and tubule 
cells to function as autocrine or paracrine agents, contribut-
ing to the regulation of renal hemodynamics, renin release, 
tubule transport, and salt and water balance          [59 – 61] . When 
renin levels are normal, the net effects of COX metabolites 
are vasodilatory and natriuretic (i.e., promoting Na  �   excre-
tion), reflecting the predominant production and actions of 
PGE 2  and/or PGI 2  over PGF 2 α   and TxA 2 . Healthy kidneys 
produce very little of the vasoconstrictor TxA 2 . In the corti-
cal vasculature PGI 2  is the major COX metabolite, whereas 
tubule cells, especially IMCD cells, produce primarily 
PGE 2 . PGE 2  produced via COX2 in macula-densa cells is 
an important stimulus of renin release acting via EP 4  recep-
tors and cAMP/PKA signal transduction in juxtaglomerular 
granular cells. 

 Prostaglandins   activate G-protein-coupled receptors. In 
the renal vasculature, the main isotypes are EP 4  for dilator 
PGE 2 , IP for dilator PGI 2 , FP for constrictor PGF 2 α  , and TP 
for constrictor TxA 2 . EP 4  and IP receptors signal through 
G α  s -proteins and cAMP/PKA cascade to relax VSMCs via 
inhibition of IP 3  mediated Ca 2 �   mobilization from sarco-
plasmic-reticulum stores. Under resting conditions, vascular 
endothelial cells primarily produce PGI 2 . Descending vasa-
recta have dilatory IP and EP 4  receptors. PGE 2  may exert a 
vasoconstricting effect via EP 1  and EP 3  receptors (see  Table 
15.1 ). TP receptors favor platelet aggregation and are vaso-
constrictors, stimulating G α  q/11 proteins to activate PLC and 
IP 3 R-mediated Ca 2 �   mobilization and Ca 2 �   entry through 
L-type Ca 2 �   channels. In addition, ADP ribosyl cyclase, 
cADP-ribose and RyR signaling are important in Ca 2 �   
release from sarcoplasmic reticumum and calcium-induced 
calcium release, resulting in renal vasoconstriction. 

 Vasoconstrictors   such as Ang II and ET increase [Ca 2 �  ] i  
in endothelial cells as well as in VSMCs. Some of the 
[Ca 2 �  ] i  increase in endothelial cells may originate from 
VSMCs, traversing via gap-junction channels. The [Ca 2 �  ] i  
increase in endothelial cells stimulates PLA 2  to release ara-
chidonic acid, the rate-limiting step in eicosanoid production.
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Vasodilator COX metabolites (PGE 2  and PGI 2 ) are impor-
tant in limiting the degree of vasoconstriction and thus 
maintaining adequate renal blood flow during low-salt diet 
and pathophysiological conditions such as heart failure 
and chronic renal failure. Production of vasodilating pros-
taglandins is increased by chronic salt restriction, an effect 
presumably mediated in part by high levels of Ang II and 
continuous elevation of [Ca 2 �  ] i  in endothelial cells and per-
haps VSMCs. COX inhibition magnifies the vasoconstrictor 
effect of Ang II. The enhanced vasodilator effect of endog-
enous PGs during low sodium diet is due to a combination 
of Ang II stimulation of PG production and apparent upreg-
ulation of EP 4  receptors. A greater density of EP 4  receptors 
also may contribute to elevated renin release during extra-
cellular-volume contraction.  

    Arachidonic Acid – CYT-P450 Metabolites 

 In   renal vascular-endothelial cells, VSMCs and tubule 
cells, arachidonic-acid metabolism by Cyt-P450s gener-
ates EETs, diHETEs, and 20-HETE  –  substances that are 
autocrine agents and second messengers                [48, 62 – 66] . 
These agents are lipophilic, bind to proteins, and partition 
into phospholipids. Their actions may be independent of 
conventional receptors, perhaps acting directly on mem-
brane channels. VSMCs of large cortical arteries produce 
20-HETE via the Cyt-P450-4       A hydroxylase gene family. 
Smaller arterioles produce a combination of vasodilator 
EETs and constrictor 20-HETE, which can have oppos-
ing effects on tubule transport. The metabolites 5, 6-EET, 
11, 12-EET and 14, 15-EET are derived from the P450-2C 
epoxoxygenase family. Vasodilator 11, 12- and 14, 15-
EETs are primarily produced by endothelial cells in the 
renal cortex, whereas 20-HETE is preferentially synthe-
sized in the medulla, especially the thick ascending LH. 

 Vasoconstrictors   such as Ang II and ET increase vas-
cular production of 20-HETE, which reinforces agonist-
induced vasoconstriction by receptor-mediated increases 
in [Ca 2 �  ] i  and activation of PLA 2 , with 20-HETE forma-
tion via Cyt-P450  ω -hydroxylation of arachidonic acid. 20-
HETE produces vasoconstriction due to increased [Ca 2 �  ] i  
and reduces the open-state probability of the Ca 2 �  -activated 
high-conductance K  �   channel, causing depolarization and 
activation of voltage-gated Ca 2 �   channels. 

 5  , 6-EET appears to elicit vasodilation secondary to for-
mation of the COX metabolites PGI 2  and PGE 2 . Bradykinin 
and acetylcholine are thought to produce vasodilation due 
to their ability to produce endothelial-derived EET and di-
HETE (or EDHF) in addition to stimulating COX and NOS. 

 Isoprostanes   are prostaglandin-like compounds formed 
by free radical lipid peroxidation of arachidonate, inde-
pendent of COX, that are increased during high salt intake 
and chronic states of oxidative stress associated with dis-
eases            [67 – 70] . Two common isoprostanes, 8-isoPGE 2  
and 8-isoPGF 2a , activate the thromboxane TP receptor to 

cause vasoconstriction and other TxA 2 -like effects in the 
vasculature.   

    Endothelium-Dependent Hyperpolarizing 
Factor 

 In   response to stimulation by bradykinin or acetylcholine, 
endothelial cells release a vasodilating agent distinct from 
prostaglandins and NO          [48, 71, 72] . This elusive agent, termed 
Endothelium-Derived Hyperpolarizing Factor (EDHF), con-
sists of one or more diffusible factor(s) and relaxes VSMCs 
by hyperpolarization caused by cAMP/PKA signaling and 
activation of high-conductance, Ca 2 �  -dependent K  �   channels 
or by propagation of the endothelial-cell hyperpolarization 
via myoendothelial gap junctions. Recent evidence implicates 
11, 12 EET and 14, 15 EET as EDHFs, with greater relaxing 
effects in the microcirculation than in larger arteries.  

    Bradykinin 

 Intrarenal   bradykinin has vascular actions in the cortex 
and medulla mediated primarily, if not exclusively, by 
B 2  receptors              [73 – 77] . The main action of bradykinin is 
vasodilatation, mediated by a predominance of B 2  recep-
tors on endothelial cells, which stimulate PLC production 
and increase [Ca 2 �  ] i  to stimulate eNOS activity and release 
EDHF/EET. Vasodilation is mediated in part by activation 
of K  �   channels, leading to plasma-membrane hyperpolari-
zation. The B 2  receptor effects to increase medullary blood 
flow and inhibit Na  �   reabsorption appear to be primarily 
mediated by NO. A smaller population of constrictor B 2  
receptors coupled to G α  q/11  resides on VSMCs.  

    Purine Nucleotides and Purinoreceptors 

 Vasoconstrictor   adenosine-sensitive A 1  receptors are the 
predominant type expressed in preglomerular afferent arte-
rioles, glomerular mesangial cells, JG cells, and vasa recta 
         [78 – 80] . Extracellular adenosine acts on A 1  purinergic 
receptors that also respond to AMP but not to ADP or ATP. 
P 1 -A 1  receptors couple to G α  i  proteins and decrease cAMP/
PKA activity (as well as stimulating PLC  β  , presumably 
by G  β  γ  ) and increase [Ca 2 �  ] i  in VSMCs. In epithelial and 
endothelial cells, A 1  receptors couple to G α  q/11 , stimulating 
PLC signaling, increasing both [Ca 2 �  ] i  and PKC, and acti-
vating Ca 2 �  -dependent eNOS in endothelial cells. Afferent 
arterioles have more A 1  receptors than efferent arterioles, 
and adenosine produces net vasoconstriction by activating 
A 1  receptors. Renal P 1 -A 2  receptors linked to G α  s  proteins 
stimulate adenylyl cyclase to activate the cAMP/PKA path-
way in VSMCs and endothelial eNOS. A 2  receptor stimula-
tion by adenosine causes vasodilation mediated by opening 
of K ATP  channels of both afferent and efferent arterioles and 
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a natriuresis without a change in the filtered sodium load. 
Adenosine has a greater affinity for A 1  than for A 2  receptors. 
Therefore, low adenosine concentrations elicit vasoconstric-
tion, whereas high concentrations produce vasodilation. A 1 -
receptor antagonists attenuate or abolish TGF activity, as do 
mutations of A 1  receptors. In the medulla, adenosine activa-
tion of epithelial A 1  receptors appears to be antinatriuretic, 
in contrast to A 2 -receptor-mediated increase in medullary 
blood flow and natriuresis. The balance between A 2  vasodi-
lating receptors and A 1  vasoconstricting receptors varies 
with salt intake. P 1 �  receptor stimulation is more effective in 
animals maintained on a low-salt diet. In certain pathologi-
cal conditions, Ang II and adenosine are synergistic  –  i.e., 
Ang II enhances the vasoconstrictor response to adenosine, 
and  vice versa . The underlying mechanism is unclear. 

 ATP   can be released from nerve terminals, endothelial 
cells, VSMCs, and epithelial cells, and acts locally, pro-
ducing vasoconstriction. Extracellular ATP and ADP pref-
erentially activate P 2  receptors, which have less affinity for 
adenosine or AMP. ATP or P 2 -receptor agonists may cause 
renal vasodilation or vasoconstriction, depending on the pre-
dominating receptor type. ATP-responsive P 2X  receptors are 
present in the VSMCs of the preglomerular vasculature but 
not in glomeruli and efferent arterioles, with P 2Y  present in 
both glomerular arterioles. P 2  receptors are present on pre-
glomerular vessels (endothelial cells and VSMCs), glomer-
ular mesangial cells, and tubule cells (PCT and CD). P 2X  
receptors are ligand-gated cation channels with two mem-
brane-spanning domains. In preglomerular VSMCs, P 2X  
receptors allow entry of Ca 2 �   and Na  �   and efflux of K  �  ; 
the plasma membrane depolarizes, triggering Ca 2 �   entry 
via voltage-gated L-type Ca 2 �   channels. The result is rapid, 
albeit transient, vasoconstriction. ATP activation of P 2X  
receptors may also stimulate Cyt-P450 production of the 
vasoconstrictor 20-HETE. P 2Y  receptors are classic G α  q/11 -
protein-coupled receptors. Endothelial P 2Y  receptors are cou-
pled to G α  q/11 -proteins that activate PLC to mobilize Ca 2 �   
from sarcoplasmic-reticulum stores and stimulate PKC. 
Ca 2 �  -dependent eNOS and COX1 produce the vasodilators 
NO and PGI 2 . P 2Y  receptors on VSMCs activate the same 
second-messenger systems to produce contraction, which is 
usually weaker than endothelium-mediated relaxation. 

 Circulating   ATP elicits variable responses involving a 
combination of vasodilator P 2Y  receptors on endothelial cells 
and vasoconstrictor P 2X  receptors on VSMCs. When the 
vasodilating component is eliminated by inhibition of NO 
production, the net response becomes P 2X -receptor-mediated 
vasoconstriction. ATP constricts the afferent arteriole 
considerably more than the efferent arteriole. ATP act-
ing on P 2X  receptors is thought to mediate or modulate 
renal autoregulatory mechanisms involving the myogenic 
response and TGF          [4, 79, 81] . 

 Intracellular   ATP can modulate vascular resistance by 
regulating ATP-sensitive K  �   channels; high ATP levels 
lead to VSMCs hyperpolarization and vasodilatation.  

    Reactive Oxygen Species  –  Superoxide and 
Hydrogen Peroxide 

 Actions   of Ang II, norepinephrine, and ET on AT 1 , 
 α  1 -adrenergic, and ET A  and ET B  receptors stimulate vascu-
lar NADPH oxidase to produce superoxide anion, thereby 
activating ADP ribosyl cyclase and causing Ca 2 �   mobi-
lization via cyclic ADP-ribose sensitization of RyR in the 
preglomerular vasculature. This results in marked renal 
vasoconstriction                [29, 30, 56, 82 – 84] . Agonist-induced 
acute renal vasoconstriction produced by superoxide is 
largely independent of the presence or absence of NO. On 
the other hand, the pressure-induced myogenic response is 
markedly enhanced by superoxide in the absence, but not 
in the presence, of NO. Stimulation of NADPH oxidase 
expression and activity and O 2  

 �   production in the vascula-
ture is more pronounced in pathological conditions. 

 In   non-renal arteries, generally H 2 O 2  tends to produce 
vasodilation by activating KCa channels to produce hyper-
polarization. Little is known about the effects of physi-
ological levels of H 2 O 2  on renal resistance arterioles. In the 
renal medulla, H 2 O 2  is thought to act as a vasoconstrictor.  

    Summary 

 Vascular   endothelial cells play an important role in regu-
lating renal vascular resistance as well as ion and water 
transport by the renal tubules. Endothelial cells produce 
vasodilator and vasoconstrictor agents, whose actions are 
finely balanced to regulate extracellular fluid homeosta-
sis and blood pressure. Under physiological conditions, 
endothelium-derived vasodilators such as PGI 2 , nitric oxide, 
carbon monoxide, and EDHF counteract part of the renal 
vasoconstrictor effects produced by circulating agents such 
as vasopressin and norepinephrine, and local, as well as cir-
culating, Ang II. In disease states such as congestive heart 
failure, chronic renal disease, and hypertension, the vascu-
lar endothelium can produce large amounts of constrictor 
substances such as ET and TxA 2 . Our understanding of 
cell – cell interactions between endothelium and VSMCs, as 
well as the paracrine influences of vascular cells on tubule 
cells, is still quite limited. 

 VSMCs   contract and relax in response to a host of 
vasoactive factors that change the diameter of the inter-
lobular arteries and glomerular arterioles, the major renal 
resistance vessels. The balance of afferent and efferent 
arteriolar tone determines glomerular capillary pressure 
and, in turn, glomerular filtration rate. In a regulated fash-
ion, tubular reabsorption returns between about 99 percent 
of the filtered fluid and solutes to peritubular capillaries 
and vasa recta and, eventually, the systemic circulation. 
Capillary uptake is favored by a low hydrostatic pressure 
and a high colloid-osmotic pressure in postglomerular, per-
itubular capillaries. Most of the constrictor agents, such as 
angiotensin II, vasopressin, and norepinephrine, activate 
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specific G-protein-coupled cell surface receptors, lead-
ing to activation of a phospholipase C that elicits IP 3  and 
DAG signals which lead to increased intracellular [Ca 2 �  ] 
and stimulation of PKC. Another pathway for Ca 2 �   release 
from sarcoplasmic reticular stores involves ADP ribosyl 
cyclase and RyR. Vasodilator agents such as PGE 2  and 
PGI 2  activate specific receptors linked to the cAMP/PKA 
signaling pathway, which cause reductions in intracellular 
[Ca 2 �  ]. On the other hand, the vasodilators nitric oxide and 
carbon monoxide exert their relaxing effects on vascular 
smooth muscle cells through a cGMP/PKC pathway, as 
well as mechanisms independent of cGMP. Dilator EETs 
and constrictor HETEs act by stimulating or inhibiting K  �   
channels, respectively, changing the membrane potential 
and thus the activity of L-type Ca 2 �  channels.   

    ENDOTHELIAL CELL CONNECTIONS: 
CONNEXINS AND GAP JUNCTIONS 

 Connexins   (Cx), specialized channel proteins, combine 
to form endothelial and myoendothelial gap junctions that 
transduce chemical, electrical, and mechanical signals, 
thereby facilitating cell – cell communication in the renal 
vasculature          [85 – 87] . Gap-junction channels result from the 
docking of the extracellular loops of two hemichannels or 
connexons, each from one of the adjacent cells. Each con-
nexon is a Cx hexamer, either homomeric or heteromeric, 
circling a large aqueous pore, permeable to hydrophilic mol-
ecules up to 1       kDa, including paracrine agents. Hundreds to 
thousands of gap-junction channels cluster to form a gap 
junction or gap-junction plaque. Gap-junction channels have 
high conductances (15 – 300       pS), high open-probability, and 
exist in multiple subconductance states. These functional 
characteristics are regulated by membrane voltage, intracel-
lular pH, [Ca 2 �  ] i , signaling molecules, and phosphorylation 
events in an isoform-dependent manner. Cells with constitu-
tive higher sensitivity to a given stimulus may act as pace-
makers, initiating a response and signaling neighboring cells 
by intercellular permeation of ions or second-messenger 
molecules. Gap junctions may participate in intercellular 
signaling by coordinating oscillations of [Ca 2 �  ] i  . 

 The   physiological roles of gap junctions in the kid-
ney are just emerging. Vasodilators such as NO and PGI 2  
as well as Ca 2 �   may pass between endothelial cells and 
VSMCs, via gap junctions. Cx40 deficient mice are hyper-
tensive, with impaired conduction of dilatation signals 
in the arterioles and irregular conduction of vasomotion 
that can lead to complete vascular occlusion. Endothelial 
deficiency of Cx43 also leads to abnormal propagation of 
vasodilation along arteries/arterioles  [87] . 

 The   major connexins found in the renal circulation are 
Cx37, Cx40, and Cx43          [85 – 87] . Their functional roles are 
less well explored than those in other organs. Cx37 and 
Cx40 are highly expressed in endothelial cells of renal 

vessels and glomeruli. Endothelial cells of preglomerular 
arteries and arterioles also express Cx37, Cx 40, and Cx43. 
Cx37 is the main connexin in the media of arcuate and inter-
lobular arteries and afferent arterioles. Endothelial-cell Cx40 
is most abundant in large intrarenal arteries, including the 
interlobular artery and the proximal portion of the afferent 
arteriole, but markedly decreases as the arteriole approaches 
the glomerulus. Afferent arterioles have considerably more 
Cx isoforms than efferent arterioles. With regard to the effer-
ent arteriole, Cx43 is present in endothelial cells, but no con-
nexins appear to be expressed in VSMCs. Cx37 and Cx40 
are expressed in juxtaglomerular cells and extraglomeru-
lar mesangial cells. Cx43 is localized to extraglomerular 
mesangium, and seems to be involved in renin secretion. 
Intraglomerular mesangial cells have primarily Cx40. NO 
appears to upregulate Cx40 expression in VSMCs of affer-
ent arterioles, and downregulate Cx43 immunoreactivity in 
endothelial cells of efferent arterioles  [88] . 

 Gap   junctions appear to contribute to conduction of 
endothelium-derived hyperpolarization in the renal vascu-
lature. Peptides that are targeted to antagonize Cx function 
produce renal vasodilation (acetylcholine-induced, EDHF 
mediated) during inhibition of NOS and COX enzymes 
 [89] . Under these conditions, putative blockade of Cx40 
abolishes the increase in RBF, whereas that of Cx43 par-
tially reduces the renal vasodilation. Ca 2 �   spreading along 
interlobular arterioles appears to be mediated by gap junc-
tions and Ca 2 �   entry through L-type Ca 2 �   channels  [90] . 
Descending vasa-recta endothelial cells express Cx40 and 
Cx43 and function as an electrical syncytium, whereas per-
icytes express Cx37 without electrical conduction  [91] . 

 Gap   junctions formed by Cx40 connect endothelial 
cells and renin-containing juxtaglomerular cells  [86] . 
Upregulation of Cx40 in high-renin states implicates con-
nexins in the regulation of renin release. In Cx40-null mice, 
pressure-dependent control of renin synthesis and release is 
impaired. Normally, renin-producing cells are located in 
the walls of afferent arterioles before the glomerular cap-
illary tuft, but in Cx40-null mice renin-positive cells are 
absent in the vessel walls and instead are found in cells 
of the extraglomerular mesangium, glomerular tuft, and 
periglomerular interstitium. Stimulation of renin secre-
tion by severe sodium depletion fails to replicate the nor-
mal expression of renin in juxtaglomerular cells. Cx43 is 
critical for the large increases in renin secretion associated 
with renal-artery stenosis and changes in salt intake  [85] . 
Present information indicates that uptake of Na  �  , K  �  , and 
Cl  �   by the macula-densa cells results in production of 
adenosine that activates A1 receptors in the extraglomeru-
lar mesangial cells and triggers increase in [Ca 2 � ]  i ; a Ca 2 �   
wave propagates from extracellular mesangial cells to the 
affererent granular rennin-containing cells and to VSMCs 
via gap junctions, resulting in a decrease in renin release 
and afferent arteriole vasoconstriction        [92, 93] . Cx37 and 
Cx40 may play important roles in the autoregulation of 
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RBF and GFR  [94] . Inactivation of Cx37 and Cx43 inhibits 
myogenic responses in mesenteric arteries  [95] ; however, 
no expression of Cx43 has been described in the pericytes 
of the glomerular efferent arteriole. 

    Tubulovascular Interactions: the 
Juxtaglomerular Apparatus 

 The   juxtaglomerular apparatus (JGA,  Figure 15.1b ) is a 
structural and functional unit in which paracrine signals are 
transmitted between the macula-densa cells (differentiated 
tubule cells at the end of the TAL), the extraglomerular 
mesangial cells (interposed between the glomerular arte-
rioles and the macula densa), the arteriolar VSMCs, and 
the renin-producing granular cells in the afferent arteriole          
[3, 4, 96] . 

    Vascular and Neural Control of Renin Secretion 

 Granular   cells at the end of the afferent arteriole syn-
thesize and release renin by a process regulated by local 
changes in arteriolar hydrostatic pressure and stretch, and 
 β -adrenoceptor stimulation by norepinephrine released 
from perivascular sympathetic nerve terminals            [86, 97 – 99] . 
Increased afferent arteriolar pressure inhibits renin release, 
an effect presumably due to stretch of JGA cells causing 
an increase in Ca 2 �   influx that, in contrast with the effects 
in most secretory cells, inhibits renin secretion. The pres-
sure-dependent control of renin release requires an intact 
coupling of endothelial cells and JG cells via Cx40. Mice 
with specific endothelial cell knockout of Cx43 (normally 
expressed between endothelial cell of the efferent arteri-
oles) have hypotension, and elevated levels of Ang I and II. 
The first seems to be a primary mechanism due to NO pro-
duction; the latter a secondary compensatory mechanism. 

    β -adrenoceptors activate a G α  s -protein linked to the 
cAMP – PKA messenger pathway, stimulating renin secretion. 

 Circulating   hormones and paracrine factors also 
 influence renin secretion, some of them acting via the 
cAMP/PKA signaling pathway. Endothelium-derived PGE 2  
and PGI 2  and  β -adrenergic receptor agonists are potent 
stimuli of renin secretion. Dopamine stimulates renin 
release from granular cells via D 1  receptors and cAMP 
generation. Interactions such as Ang II with AT 1  receptors, 
AVP with V 1  receptors, or ET with ET A  receptors, activate a 
G α  q/11 -protein to increase [Ca 2 �  ] i  and activate PKC, caus-
ing a decrease in renin secretion. It is not clear whether the 
key signal is increased [Ca 2 �  ] i  by itself, Ca 2 �  -activation of 
Cl  �   channels and a fall in [Cl  �  ] i , depolarization associated 
with the increase in Cl  �   permeability, or increased PKC 
activity. 

 NO   has biphasic effects on granular cells. Acute 
increases are inhibitory, whereas long-term exposure 
 stimulates renin release. In this regard, endothelial NO 

appears to have a tonic permissive effect, mediated by the 
ability of cGMP to elevate cAMP by inhibiting phosphodi-
esterase and thereby cAMP breakdown. Under certain con-
ditions, NO can inhibit renin release via cGMP-dependent 
protein kinase (PKG) activity. In contrast, NO generated 
from nNOS in TAL and macula-densa cells does not medi-
ate changes in renin secretion in individuals on a low-
sodium diet, and renin secretion is normally regulated in 
eNOS-deficient mice.  

    Macula-Densa Control of Renin Release 

 The   macula densa participates in the regulation of renin 
release from juxtaglomerular granular cells. Renin secretion 
depends on NaCl delivery to and reabsorption by the macula-
densa cells at the end of the TAL. Inhibition of renin release 
occurs when solute delivery to this section of the renal tubule 
is high, and stimulation is associated with low solute delivery. 
Examples include high- and low-salt diet, respectively. Renin 
release leads to increased concentration of Ang I and Ang II 
in the adjacent interstitial compartment, as well as in the sys-
temic circulation. This is a regulatory mechanism mediated 
by macula-densa nNOS and COX2 metabolites          [60, 61, 100] . 
The COX2 metabolites PGE 2  and PGI 2  act on EP 4  and IP 
receptors on JG cells to stimulate cAMP and PKA, thereby 
enhancing renin secretion. COX2 expression can be induced 
either by chronic sodium restriction or by inhibition of TAL 
NaCl reabsorption by furosemide. In contrast, the Cyt-P450 
metabolite 20-HETE inhibits renin secretion, presumably by 
elevating [Ca 2 �  ] i  in juxtaglomerular granular cells. 

 Macula  -densa cells may signal granular cells to inhibit 
renin release by secreting adenosine and/or ATP across 
the basolateral membrane in response to increased sodium 
delivery          [96, 101, 102] . The precise mechanism of this 
effect is not clear. Adenosine stimulates granular-cell A 1  
and A 2  receptors. Adenosine A 1 -receptor activation inhibits 
renin secretion via stimulation of PLC, by increasing [Ca 2 �  ] i  
and reducing cAMP/PKA. As stated above, this is an excep-
tion in secretory cells. Conversely, adenosine A 2  receptors 
stimulate renin secretion via cAMP/PKA signaling.  

    Summary 

 The   juxtaglomerular apparatus has unique anatomical and 
functional properties. Macula-densa cells at the end of 
the thick ascending LH respond to low lumen [NaCl] by 
 signaling to juxtaglomerular granular cells at the end of the 
afferent arteriole to increase renin secretion. Other stimuli 
for renin secretion are high sympathetic nerve activity, low 
 systemic and afferent-arteriole pressure, and increased PGE 2 . 
High rates of NaCl reabsorption by macula-densa cells inhibit 
renin secretion. The signal mediating the functional con-
nection between macula-densa cells and afferent-arteriolar 
granular cells is not clear. Attractive candidates are adenosine 
and ATP.   
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    Tubulovascular Interactions: Juxtaglomerular 
Apparatus and Tubuloglomerular Feedback 

 Tubuloglomerular   feedback (TGF), a process mediated by the 
juxtaglomerular apparatus ( Figure 15.1b ), is the inverse rela-
tionship between the NaCl concentration in the tubule fluid 
at the macula densa and the capillary pressure and filtration 
rate of the same nephron                [96, 101 – 105] . In functional terms, 
an increase in distal delivery of NaCl produces contraction of 
the afferent arteriole and a decrease in glomerular filtration. 

 The   kidney regulates RBF and GFR during changes in 
arterial pressure by intrarenal mechanisms that adjust in 
preglomerular vascular resistance in proportion to perfusion 
pressure. This is referred to as  autoregulation , and is medi-
ated by two main mechanisms        [3, 105] . The first is a myo-
genic response intrinsic to the afferent-arteriole VSMCs 
 [106] . These cells contract in response to the increase in 
tension of the wall when stretched by a higher intravascular 
pressure. The second is TGF. Primary increases in arterial 
pressure initially increase glomerular filtration and fluid 
delivery to the TAL, where the macula-densa cells respond 
by sending a vasoconstricting signal to the afferent-arteriole 
VSMCs. The nature of the signal mediating TGF is uncer-
tain. Current postulates focus primarily on ATP and ade-
nosine  [107] . As NaCl transport by the macula-densa cells 
increases, so does [Ca 2 �  ] i , which can stimulate PLA 2  and 
nNOS as well as COX2; ATP may exit across the basola-
teral membrane. The Cyt-P450 metabolite 20-HETE and 
NO may also play roles in adjusting preglomerular tone, 
and extraglomerular mesangial cells may be also involved. 
These agents may act as either mediators or modulators. 
For example, NO generated by macula-densa nNOS acts as 
a modulator of TGF responsiveness, as it inhibits macula-
densa NaCl reabsorption at high tubule flow rates, compared 
to little or no effect when [NaCl] at the macula densa is 
low. NO also is thought to act directly on macula-densa 
cells suppressing release of a constrictor agent, rather 
than diffusing to the afferent arteriole. In this regard, NO 
appears to quench superoxide produced locally. Also, NO 
produced at upstream nephron sites may contribute to inhi-
bition of TGF due to its ability to inhibit NaCl transport 
by macula-densa cells. Nevertheless, a chronic deficit in 
nNOS in gene-targeted animals does not affect TGF. 

 It   is clear that Ang II does not mediate TGF. An increase 
in renin release and Ang II formation occurs when NaCl 
delivery to the macula densa is low and the preglomerular 
vessels dilate, not contract. However, Ang II may modu-
late TGF sensitivity and glomerular vascular reactivity by 
a mechanism that remains elusive. Other vasoconstrictors, 
such as norepinephrine and ET, have little effect on TGF 
sensitivity. There is an inverse relationship between TGF 
activity and chronic salt intake. High renin and Ang II lev-
els are associated with strong TGF during salt restriction. 
The attenuated TGF during high-salt diet is attributable to 
enhanced NO production and low Ang II levels. 

 The   involvement of eicosanoids in TGF is uncer-
tain. COX2 is present in macula-densa and TAL cells; its 
expression is enhanced during chronic sodium restriction. 
COX2 metabolites such as PGE 2  diminish the vasocon-
striction accompanying increased NaCl delivery. However, 
TGF is normal in animals null for COX2 or thromboxane 
TP receptors. 

    Role of Purinonucleotides and Purinoceptors in 
Tubuloglomerular Feedback 

 The   purinergic agents adenosine and ATP can be released 
from epithelial cells into or formed in the interstitial 
compartment, providing a metabolic link between epi-
thelial-cell NaCl transport in macula-densa cells and pre-
glomerular vascular resistance                [78, 79, 81, 97, 103, 108] . 
As load-dependent reabsorption of NaCl by the macula 
densa increases, so does ATP hydrolysis and hence adenos-
ine production. Adenosine diffuses to the afferent arterioles 
to activate vascular P 1  A 1  (adenosine) receptors and thereby 
elicit vasoconstriction; adenosine may also be released 
from nerve terminals. ATP can be released by exocytosis 
from macula-densa cells and epithelial cells of the thick 
ascending LH nerve terminals, or may exit from endothe-
lial cells, VSMCs, and epithelial cells, probably through 
membrane channels, to activate P 2  (ATP) receptors.  

    Modulation of TGF by Nitric Oxide and 
Superoxide Anion 

 Other   metabolites produced by macula-densa cells can 
modulate TGF            [104, 109 – 111] . For example, NO produc-
tion catalyzed by macula-densa nNOS induces vasodilata-
tion, buffering the vasoconstriction that follows arteriolar 
stretching at high tubular fluid flow rates. Macula-densa 
production of superoxide anion (O 2  

 �  ) has a vasoconstric-
tor role, with actions to quench the availability of NO (to 
form ONOO  �  ) and director constrictor action on afferent 
arterioles. Also contributing may be the HO-2 system in 
macula-densa cells, with production of CO and biliverdin 
that exert vasodilator-like actions. NO and CO may act to 
inhibit NaCl uptake across the luminal membrane of mac-
ula-densa cells. O 2  

 �   may have the opposite effect.  

    A second Tubuloglomerular Feedback System 

 A   recently unveiled second type of TGF system appears to 
link NaCl reabsorption in the cortical connecting tubule to 
the control of afferent arteriolar resistance  [112] . Increasing 
NaCl delivery in a connecting tubule increases capillary 
pressure in its parent glomerulus as a result of afferent arte-
riole dilation. The signal is initiated by Na reabsorption via 
ENaC (sensitive to amiloride inhibition). The effector limb 
is not certain, but may involve the kallikrein/kinin system 
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that is found in this nephron segment  [75] ; other dilator 
candidates are prostanoids, EETs. NO, and CO. An interac-
tion between the primary and secondary TGF systems and 
the relative importance of this second TGF system await 
investigation.  

    Intrarenal Angiotensin II Production, Storage, 
and Actions 

 Circulating   Ang II is formed by the action of angiotensin 
converting enzyme (ACE) on plasma Ang I in the lungs 
and the renal vasculature                [30, 112 – 116] . Ang I can be gen-
erated from angiotensinogen by renin and other proteolitic 
enzymes (e.g., chymase and catepsin). Recent evidence 
suggests important formation, storage, and actions of Ang 
II in the kidney. All necessary substrates and enzymes for 
Ang II production are present in juxtaglomerular granu-
lar cells, and in PCT and CD principal cells. ACE lines 
endothelial cells and luminal and basolateral membranes of 
PCT cells. About 20 percent of circulating inactive Ang I 
is converted to biologically active Ang II in a single pass 
through the kidney. The PCT can produce Ang II from cir-
culating or locally generated Ang I, concentrates Ang II 
by AT 1 -receptor-mediated uptake, and stores it in the cells. 
Ang II is secreted into the lumen, where it can act locally 
or downstream, binding to luminal-membrane receptors in 
TAL, DCT, and CD. The effects are to increase Na  �  , Cl  �   
and HCO 3  

 �   reabsorption. Angiotensinogen also appears to 
be secreted into tubule fluid by the PCT. 

 There   are two classes of Ang II receptors. AT 1  receptors, 
the predominant if not exclusive class under normal condi-
tions, are present along the renal vasculature, including pre-
glomerular arteries and arterioles, juxtaglomerular granular 
cells, glomeruli, efferent arterioles and vasa recta, multiple 
nephron segments (PCT, TAL, DCT, CD), and medullary 
interstitial cells. AT 1  receptors couple to G α  q/11  proteins, 
PLC, and the classical IP 3 -Ca 2 �   and DAG – PKC pathways 
to cause vasoconstriction and decrease salt excretion. AT 1  
receptors also stimulate vascular NADPH oxidase to pro-
duce superoxide anion, activate ADP ribosyl cyclase and 
Ca 2 �   mobilization in glomerular arterioles, to cause marked 
renal vasoconstriction. Cyclic ADP-ribose sensitizes RyR 
on sarcoplasmic reticulum to release Ca 2 �   and promote 
Ca 2 �  -induced Ca 2 �   release, which may amplify Ca 2 �   sign-
aling initiated via IP 3 R and other pathways  [29] . 

 Elevated   Ang II levels, as seen with chronic salt restric-
tion, constrict both afferent and efferent arterioles, reducing 
RBF more than GFR. High Ang II concentrations desensitize 
the blood vessels by reducing the AT 1  receptor density, and 
thus reduce the chronic effects of increased levels of the vaso-
constrictor. In contrast, high endogenous Ang II concentration 
may upregulate tubule AT 1  receptors, favoring Na  �   reten-
tion. AT 1  receptors on granular cells exert short-loop feed-
back inhibition of renin release in association with increased 
[Ca 2 �  ] i  and PKC activation. Stimulation of AT 1  receptors 

activates the Ca 2 �  -dependent enzymes PLA 2  and NOS in 
endothelial cells, promoting production of prostanoids and 
NO that buffer part of the Ang II-induced vasoconstriction. 
AT 1  receptors stimulate Na  �   – H  �   exchange in PCT and TAL. 

 AT   2  receptors are weakly expressed along the vascula-
ture and nephron in a healthy kidney, and may be upreg-
ulated during low-salt diet. Their actions are primarily 
mediated by NO and cGMP, tending to oppose the pre-
dominant vasoconstrictor and anti-natriuretic effects of AT 1  
receptor stimulation  [117] . 

 ACE  -2 converts either Ang I or Ang II to Ang 1-7, 
which appears to act on a unique receptor to exert vasodila-
tion and natriuresis          [118 – 120] . The actions of Ang 1-7 are 
more prevalent during inhibition of ACE, which upregu-
lates ACE-2 expression, and reduce the opposing effects of 
Ang II.  

    Pro-renin/renin Receptor and Regulation of 
Tissue Angiotensin II 

 The   pro-renin/renin receptor and its actions are emerging 
concepts          [121 – 123] . Recent evidence suggests inactive 
plasma pro-renin may bind to a pro-renin/renin receptor, 
a single-transmembrane-domain protein, to become an 
active form of renin, by a non-proteolytic process capable 
of catalyzing local production of Ang I from plasma angi-
otensinogen, leading to increased Ang II in the proximity 
of AT 1  receptors to signal by traditional pathways. In addi-
tion, it has been proposed that the ligand/receptor complex 
can activate ERK 1/2 signaling leading to proliferation and 
chronic inflammation, effects independent of Ang II and 
AT 1  receptors. In the kidneys, the pro-renin/renin recep-
tor resides in VSMCs and glomerular mesangial cells and 
podocytes, and thus may impact on glomerular perfusion 
and filtration. Pharmacological agents have been devel-
oped to function as pro-renin/renin receptor blockers that 
seem beneficial in improving renal structure and function 
and blood pressure control in disease states characterized 
by high pro-renin/renin conditions such a diabetes mellitus, 
possibly more so than conventional inhibitors of AT 1  recep-
tors or ACE.  

    Summary 

 Tubuloglomerular   feedback is an adaptive mechanism that 
links the rate of glomerular filtration to the concentra-
tion of salt in the tubule fluid at the macula densa. A high 
[NaCl] and reabsorption rate at this site causes contrac-
tion of the afferent arteriole and a reduction in GFR. This 
autoregulatory mechanism is intrinsic to the kidney  –  i.e., 
it does not require neural or humoral agents. The nature 
of the signal is still controversial. It could well involve 
adenosine or ATP. In addition to the general circulation, a 
renin – Ang II system exists within the kidney, apparently 
both in the medulla as well as in the cortex, with substrates 
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and enzymes localized in proximal-tubule and collecting-
duct cells in addition to juxtaglomerular granular cells. The 
major effects of local and circulating Ang II are vasocon-
striction, Na  �   retention, and inhibition of renin release, all 
of which are primarily mediated by AT 1  receptors.   

    Vasculotubular Communication 

 Receptors   in the basolateral membranes of renal-tubule 
cells convey chemical information from the blood, vascular 
cells, and interstitial cells. Interactions between extracellu-
lar matrix and cell functions are beginning to be understood. 
In general, vasodilating agents inhibit Na  �   reabsorption by 
one or more nephron segments. NO, PGE 2 /PGI 2 , dopamine, 
and bradykinin conform to this oversimplified notion. 
Vasoconstrictors such as Ang II and norepinephrine usu-
ally stimulate Na  �   reabsorption. As a consequence of con-
traction of afferent and efferent arterioles, vasoconstrictor 
agents favor postglomerular capillary uptake of reabsorbed 
fluid by reducing blood flow, reducing capillary hydrostatic 
pressure, and increasing plasma colloid osmotic pressure. 
Vasodilators tend to have the opposite effects, promoting 
less fluid uptake from the interstitium into peritubular cap-
illaries. Notable exceptions are the vasoconstrictors ET and 
20-HETE, both of which are natriuretic. Paracrine agents 
produced by vascular cells exert actions on tubule cells by 
receptor-mediated events, as those elicited by agents pro-
duced by epithelial cells. To minimize duplication, para-
crine control of carrier proteins is discussed below under 
the heading of  “ Tubule – tubule communication. ”  

    Pressure Natriuresis 

 Over   a specific pressure range, urinary sodium excretion 
increases as a function of arterial pressure. The slope of the 
relation may vary, depending on experimental conditions and 
sodium balance. The mechanisms by which acute changes in 
arterial pressure influence tubule transport and Na  �   excre-
tion are incompletely understood            [5, 8, 124, 125] . Increased 
vascular hydrostatic pressure may release the endothelial-
derived NO and PGE 2  that are vasodilators and natriuretic. 
Blood flow in the inner medulla may be more sensitive to 
changes in arterial pressure than cortical blood flow, and 
increased medullary blood flow is thought to elevate capil-
lary and interstitial hydrostatic pressure and decrease colloid-
osmotic pressure. Together, these changes lead to a reduction 
in net salt and water reabsorption along the LH and CD.    

    PARACRINE SIGNALING IN RENAL-TUBULE 
EPITHELIAL CELLS 

    Paracrine Control of Solute Transport 

 The   major nephron segments produce and release autocrine 
and paracrine factors that modulate transepithelial solute 

and water transport                [21, 24, 60, 126 – 128] . The main solute 
carrier proteins for solutes and water in the nephron are as 
follows: 

    1.     In the PT, the Na  �   – H  �   exchanger.  
    2.     In the thick ascending LH, Na  �   – K  �   – 2Cl  �   

co-transporter, ROMK channel, and Na  �   – H  �   
exchanger.  

    3.     In the DT, Na – Cl co-transporter, Na  �   – H  �   exchanger, 
Na  �   channel (ENaC), ROMK channel, and H  �  , 
K  �  -ATPase.  

    4.     In the principal cells of the CD, Na  �   channel, 
Aquaporin 2, urea transporter, H  �  -ATPase and ROMK     
channel.  

    5.     In the intercalated cells of the CD, H  �  -ATPase, 
Cl  �  /HCO 3  

 �   exchanger and Na  �   – H  �   exchanger.    

 All   these segments express Na  �  , K  �  -ATPase in their baso-
lateral membranes. The thick ascending LH also expresses 
Na  �   – H  �   exchanger and a Cl  �   channel in the basolateral 
membrane; the latter is also expressed in the basolateral 
membrane of the DT. The functions of these transporters 
are modified by a number of substances produced by the 
tubule cells that act upon the same cells or in neighbor-
ing ones. The PCT produces dopamine, NO, and Ang II; 
the thick ascending LHL synthesizes ET, 20-HETE, NO, 
and PGE 2 ; the DCT generates kallikrein 20-HETE, NO, 
and COX2 metabolites; and the CD produces ET, NO, and 
PGE 2 . All renal-epithelial cells consume ATP, and pro-
duce adenosine and purine nucleotides. In this section we 
will discuss the main signaling molecules involved in the 
modulation of salt and water transport in neighboring cells 
from a tubule segment, as well as signaling to more distal 
segments.  

    Angiotensin II 

 Ang   II exerts important effects on water and electrolyte 
transport by indirect and direct mechanisms        [115, 129] . Its 
main indirect effect is the stimulation of secretion of the 
sodium-retaining hormone aldosterone by the adrenal cor-
tex. The renin – angiotensin – aldosterone system (RAAS) is 
now recognized as an endocrine, paracrine, and autocrine 
system            [3, 4, 115, 130] . Ang II directly stimulates NaCl 
reabsorption in PCT, TAL, DCT, and CD. Systemically 
generated Ang II reaches the kidney via the circulation. 
New evidence demonstrates that in proximal tubules there 
is internalization of Ang II via AT 1  receptors (receptor-
mediated endocytosis). After internalization, the receptor 
may be recycled, degraded together with Ang II, or medi-
ate intracellular actions of Ang II. 

 The   non-hemodynamic effects of Ang II in the kidney 
(cell hypertrophy, proliferation, stimulation of extracellular 
matrix production, activation of inflammatory pathways) 
have been implicated in the pathogenesis of hypertension and 
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the progression of kidney damage. Ang II is also synthesized 
in the PT (where angiotensinogen, renin, ACE, and Ang II 
receptors are expressed) and secreted to the lumen, reach-
ing concentrations 100- to 1000-fold higher than in the 
systemic concentration ( � 10  � 12        M)  [114] . In the PCT, the 
classical effect of Ang II is mediated by activation of AT 1  
receptors expressed on the basolateral membrane. Receptor 
activation inhibits the cAMP/PKA pathway via G α  i  protein, 
and stimulates IP3 and PKC formation via G α  q/11  protein. 
In this segment, physiological concentrations of Ang II 
stimulate salt and fluid reabsorption, whereas higher con-
centrations are inhibitory. The stimulatory effect is medi-
ated by increased expression in the apical membrane of the 
Na  �   – H  �   exchanger (NHE-3); in the basolateral membrane, 
of the Na  �  ,K  �  -ATPase, the Na  �   /HCO 3  

 �   co-transporter, 
and the K  �   channels  –  all transport proteins that coordi-
nately account for Na  �   reabsorption. The inhibitory effect 
of high levels of Ang II is mediated by binding to AT 2  recep-
tors, resulting in PLA 2 -mediated arachidonic acid release. 
In the thick ascending LH, low Ang II concentrations 
( �  10  � 12        M) stimulate 20-HETE production and inhibit Na  �   
reabsorption by inhibiting the apical-membrane K  �   channel, 
an effect that decreases K  �   recycling and K  �   availability to 
the Na  �   – K  �   – 2Cl  �   co-transporter. NaHCO 3  transport in this 
segment is also inhibited by Ang II (10  � 8        M) via a mecha-
nism that can be inhibited by Cyt-P450 blockade and by 
inhibitors of AA metabolism. Higher Ang II concentrations 
stimulate AT 1  receptors, elevating PLC and PKC activities 
and stimulating the Na  �   – K  �   – 2Cl  �   co-transporter expressed 
in the apical membrane. There are additional binding sites 
for Ang II in the DCT and cortical and medullary CD con-
sistent with an action of Ang II in these segments: luminal 
Ang II stimulates bicarbonate reabsorption in the late distal 
tubule by increasing expression and insertion of H  �   pumps 
in the  α -intercalated cells, whilst in the collecting duct, 
basolateral exposure stimulates bicarbonate secretion by the 
 β -intercalated cells. A significant effect of Ang in the dis-
tal segments was demonstrated by studies of knockout mice 
for tissue ACE; the mice exhibit a defect in urine concentra-
tion that is concomitant with a decrease in transport proteins 
(UT-A, CIC-K1, NKCC2/BSC1, and AQP1). 

 In   summary, Ang II modulates water and electrolyte 
transport indirectly, via the stimulation of aldosterone 
secretion, and directly, by stimulating NaCl reabsorption 
in PCT, TAL, DCT, and CD. In the PCT this activation 
is mediated by AT 1  receptors that inhibit the cAMP/PKA 
pathway via G α  i  protein and stimulate IP 3  and PKC for-
mation via G α  q/11  protein. In the PCT, physiological con-
centrations of Ang II stimulate salt and fluid reabsorption, 
whereas high concentrations are inhibitory; the latter 
effect is mediated by AT 2  receptors. In the TAL, low con-
centrations of Ang II stimulate production of 20-HETE 
and inhibit Na  �   reabsorption by intracellular mechanisms 
that seem to differ for the different Na  �   transporters in 
the segment. At high concentrations, Ang II elevates PLC 

and PKC activities and stimulates the Na  �   – K  �   – 2Cl  �   
co-transporter in the apical membrane. Effects in more 
distal segments are suspected from the existence of Ang II 
receptors in the cells of these segments and studies in ACE 
knockout mice. Ang II is also produced by tubule cells, 
and circulating Ang II can be internalized in the kidney, 
remaining available for intracellular signaling that triggers 
cell growth and proliferation, and can play a pathogenic 
role in hypertension and in chronic damage to the kidney 
conducive to end-stage renal disease.  

    Dopamine 

 Dopamine   is an intrarenal hormone or paracrine agent that 
elicits vasodilation and natriuresis        [131, 132] . Endogenous 
renal dopamine is a major regulator of renal Na  �   excretion 
       [131, 132] . Renal dopamine is generated mainly in the PCT 
(from l-dopa by the action of aromatic l-amino acid decar-
boxylase) and secreted across both apical and basolateral 
membranes, to the lumen and the blood, respectively. The 
renal PT lacks the dopamine  β -hydroxylase that converts 
it to norepinephrine in neural tissue. Renal nerves are an 
additional, minor source of dopamine. During salt loading, 
dopamine production and excretion are increased in paral-
lel with sodium excretion. 

 Dopamine   receptors are classified as D 1 -like and D 2 -
like receptors. Both classes have been identified in the 
kidney: D 1 -like receptors comprise D 1  and D 5 ; D 2 -like 
receptors comprise D 2,  D 3,  and D 4.  Both D 1 -like and D 2 -
like receptors are present in the renal tubule cells. PTC 
cells express predominantly D 1 , but also D 5  and D 3 . The 
mTAL expresses D 5 . The CCD expresses predominantly D 5  
and, to a lesser extent, D 1 , D 3 , and D 4 . The overall effect of 
dopamine is inhibition of Na  �   reabsorption. Activation of 
D 1 -like receptors stimulates both the cAMP/PKA and the 
PLC pathways, with downstream activation of the IP 3  – Ca 2 �   
and DAG – PKC signaling pathways. Both paths inhibit the 
Na  �  ,K  �  -ATPase. In the PT, via the D 1  receptor, dopamine 
inhibits apical NHE3, Na  �  -phosphate co-transporter, 
and the Cl  �  /HCO 3  

 �   exchanger; as well as the basola-
teral Na  �  , K  �  -ATPases and Na  �  /HCO 3  

 �   co-transporter 
                     [132 – 140] . D 2 -like receptors inhibit cAMP/PKA produc-
tion, which stimulates the luminal Na  �   – H  �   exchanger 
and the basolateral Na  �  ,K  �  -ATPase. Thus, the actions of 
D 1 -like and D 2 -like receptor on salt reabsorption oppose 
each other, but in some instances D 2  receptors enhance D 1  
receptor effects, perhaps by shifting the effect of D 2  from 
inhibition of adenylyl cyclase to stimulation of phospholi-
pase A 2 , resulting in an increase of arachidonic acid pro-
duction. Nevertheless, the dominant effect of dopamine 
is to reduce Na  �   reabsorption. In the TAL, D 1  receptors 
inhibit the Na  �   – H  �   exchanger and the basolateral Na  �  , 
K  �  -ATPase, with weaker stimulation of Na  �   – K  �   – 2Cl  �   co-
transport via the cAMP/PKA pathway. The net effect is a 
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decrease in Na  �   transport due to the predominance of the 
inhibition of the Na  �   pump. Finally, D 1  receptors may also 
inhibit Na  �   reabsorption in the CCD, perhaps by antago-
nizing the stimulatory effects of aldosterone as well as 
inhibiting the Na  �  ,K  �  -ATPase. 

 In   summary, renal dopamine is generated mainly in the 
PCT, and can exert effects on more distal segments of the 
nephron. During salt loading, dopamine production and 
urinary excretion increase in parallel with Na  �   excretion. 
Activation of D 1 -like receptors in the PCT results in stimu-
lation of both cAMP/PKA signaling and PLC activity, with 
downstream activation of the IP 3  – Ca 2 �   and DAG – PKC sig-
naling pathways resulting in inhibition of Na  �  , K  �  -ATPase. 
D 1  receptor stimulation also inhibits the Na  �   – H  �   exchanger 
and the Na  �  ,K  �  -ATPase. Inhibition of the Na  �   pump 
also account for the natriuretic effect of dopamine in the 
mTAL and the CD.  

    Nitric Oxide 

 The   primary action of endogenous NO on renal-tubule 
cells is to inhibit Na  �   reabsorption, causing natriuresis and 
diuresis          [45, 127, 141] . The systemic inhibition of NOS 
results in Na  �   retention if the resulting hypertension and 
pressure natriuresis are pharmacologically prevented. The 
l-arginine/NO system inhibits solute and water reabsorption 
in most nephron segments, including PCT, TAL, and corti-
cal and medullary CD. Supporting the notion that NO is a 
regulator operating in physiological conditions, the natriu-
resis associated with a chronic high-salt diet is accompa-
nied by high levels of NOS activity and by increases in NO 
production in the kidney and excretion in the urine. 

 All   three NOS isoforms (type I or neuronal, type II 
or inducible, and type III or endothelial) are expressed in 
tubule cells. Endothelial NOS is present in PCT, TAL, and 
CD. Inducible NOS is found in PCT, TAL, DCT, and corti-
cal and inner medullary CD. Neuronal NOS is limited to 
the TAL, macula densa, and CD. Ang II is a potent stimu-
lus of NO production by PCT cells. In turn, NO inhibits the 
stimulatory action of Ang II on NaCl reabsorption. 

 A   direct effect of NO on PCT transport is controver-
sial, as both stimulation and inhibition of bicarbonate and 
fluid transport have been reported. However, evidence from 
knockout mice experiments indicates that type I and type II 
NOS reduce HCO 3  

 �   and fluid absorption. There is agree-
ment that NO inhibits both the luminal Na  �   – H  �   exchanger 
and the basolateral Na  �  ,K  �  -ATPase. NO may also influ-
ence ion transport by reducing cell ATP, an effect of poten-
tial importance in hypoxic injury. Very high NO inhibits the 
Na  �  ,K  �  -ATPase via activation of PKC. In PT, NOS types I 
and II are responsible for these effects (reviewed in  [45] ). 
NO is produced by eNOS in the medullary thick ascend-
ing LH, where it inhibits NaCl and HCO 3  

 �   reabsorption 
and thereby attenuates TGF at high tubule flow rates. The 

inhibition of NaCl reabsorption is primarily by  decreasing 
luminal-membrane Na  �   – K  �   – 2Cl  �   co-transport, with 
a secondary inhibitory effect on the Na  �   – H  �   exchanger. 
These effects result from stimulation of soluble guany-
lyl cyclase to form cGMP and consequent stimulation of 
phosphodiesterase II, reducing cAMP levels. NO inhib-
its NaHCO 3  absorption by activating soluble guanylate 
cyclase, increasing cGMP, and enhancing activity of 
cGMP-dependent protein kinase  [127] . NOS isoforms are 
expressed in DCT, but there is no information regarding 
effects of NO on ion transport in this nephron segment. 
The CD produces NO, which inhibits NaCl reabsorp-
tion by principal cells by a mechanism independent of the 
Na  �  ,K  �  -ATPase, probably involving mobilization of intra-
cellular Ca 2 �   and inhibition of ENaC. At high concentra-
tions, NO also impairs urine acidification by inhibiting the 
H  �  -ATPase in intercalated cells. At low NO concentrations, 
a stimulatory pathway has been described that is mediated 
by small increases in cGMP that activate basolateral K  �   
channels, hyperpolarizing the CD cell and increasing the 
driving force for Na  �   entry across the apical membrane. 
A stimulus of CD-NOS is AVP, acting via V  2  receptors. In 
turn, NO inhibits AVP-stimulated osmotic water permeabil-
ity in the medullary CD via decreased intracellular cAMP 
secondary to activation of guanylyl cyclase and cGMP-
dependent PKG. 

 In   summary, the l-arginine/NO system inhibits solute 
and water reabsorption in most nephron segments, includ-
ing PCT, TAL, and cortical and medullary CD. Ang II is a 
potent stimulus for NO production by PCT cells and inhib-
its the stimulatory action of Ang II on NaCl reabsorption. 
A direct effect of NO on PCT transport is supported by 
knockout-mice experiments demonstrating that type I and 
type II NOS are required for HCO 3  

 �   and fluid reabsorp-
tion. It is likely that NO inhibits both the luminal Na  �   – H  �   
exchanger and the basolateral Na  �  ,K  �  -ATPase. In the TAL, 
NO inhibits NaCl transport and may thereby contribute to 
attenuation of TGF at high tubule-flow rates. The CD also 
produces NO, which inhibits salt transport in principal cells 
by a mechanism independent of the Na  �  ,K  �  -ATPase, prob-
ably involving mobilization of intracellular Ca 2 �   and inhi-
bition of ENaC.  

    Endothelin 

 The   ET system is a family of peptides with vasoconstrict-
ing properties. Of the three isoforms (ET-1, ET-2, and 
ET-3), only ET-1 is expressed in the kidney        [56, 58] . The 
highest concentration of ET-1 in the body is in the renal 
medulla, where CD cells secrete ET-1 across the basola-
teral membrane. The major stimulant is AVP, acting via 
V 2  receptors, but production of ET-1 is also elicited by 
Ang II, adrenaline, insulin, cortisol, IL-1, transforming 
growth factor- β , low-density lipoproteins, hypoxia, and 
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endothelin itself. ET-1 synthesis is inhibited by atrial natri-
uretic peptide, NO, and prostacyclins. 

 The   ET receptors ET A  and ET B  (both of them G-protein 
coupled) are found in the inner medullary collecting duct 
cells, where ET may exert an autocrine effect. ET pro-
vides acute negative-feedback control of the AVP-induced 
osmotic water permeability in medullary CD. However, 
a chronic increase of interstitial osmolality may inhibit 
ET production and/or secretion. TAL and CD have ET B  
receptors. ET inhibits NaCl transport in these nephron seg-
ments by increasing [Ca 2 �  ] i  and stimulating nNOS to pro-
duce NO, which in turn inhibits both Na  �  ,K  �  -ATPase and 
ENaC at downstream sites  –  that is, the DCT and CD. ET 
is natriuretic by virtue of its action on ET B  receptors and 
NO production in the terminal CD. ET B -receptor-deficient 
mice develop salt-dependent hypertension that is reversed 
by inhibition of ENaC by amiloride in the distal nephron. 
The role of AT-1 in human natriuresis and diuresis has not 
been categorically demonstrated. However, ET-1 urinary 
excretion and free-water clearance increase in people that 
climb high altitudes, an effect that is inhibited by treatment 
with an ET-1 receptor antagonist. The inhibition of water 
excretion is not accompanied by changes in proximal or 
distal Na  �   reabsorption  [142] . 

 In   summary, CD cells are the main source of ET-1 in the 
renal medulla. ET production is elicited by AVP, Ang II, 
norepinephrine, insulin, cortisol, IL-1, TGF – , low-density 
lipoproteins, hypoxia, and endothelin itself. ET synthesis is 
inhibited by atrial natriuretic peptide, NO, and prostacyc-
lin. ET is natriuretic and diuretic by virtue of its action on 
ET B  receptors. In humans, inhibition of the ET B  receptor 
inhibits the high-altitude diuretic response associated with 
urinary excretion of ET-1. TAL and CD have ET B  recep-
tors. ET inhibits NaCl transport in these nephron segments 
by elevating [Ca 2 �  ] i  and nNOS to produce NO, which in 
turn inhibits both Na  �  ,K  �  -ATPase and ENaC.  

    Eicosanoids 

 Eicosanoids   are a family of biologically active, oxidized 
arachidonic acid metabolites. Of the three pathways 
of arachidonic acid metabolism, the one mediated by 
cyclooxygenase (COX) is the most important. The lipoxy-
genase pathway mediates the formation of mono-, di- and 
tri-hydroxyeicosatetraenoic acids (HETEs), leukotrienes 
and lipoxins. The cytochrome P450 (CYP450) mediates 
the formation of epoxyeicosatrienoic acids (EETs, diols, 
HETEs, and monooxygenated arachidonic acid deriva-
tives). Arachidonic acid metabolites affect renal-tubule 
transport as well as renal hemodynamics            [60, 62, 126, 143] . 
Eicosanoid synthesis is complex, and there is cross-talk 
between the three groups of enzymes  [144] . 

 Tubule   segments containing COX are the cortical thick 
ascending LH, which expresses the inducible COX2, and 

the medullary thick ascending LH and CD, which express 
the constitutive COX1. Both COX1 and COX2 participate 
in the synthesis of PGs in the normal and diseased kidney; 
PGI 2  synthesis is COX2-dependent. COX2 inhibition sup-
presses prostanoid biosynthesis in normal kidneys, and 
lowers the ratio PGI 2 /TXA 2  in the medulla. These findings 
dispelled the idea that selective inhibition of COX2 (an 
anti-inflammatory agent) would not produce adverse effects 
in the kidney. An additional COX (COX3) has been identi-
fied in canine tissues. COX3 is a splice variant of COX1; 
its relevance to human kidney function is unclear. 

 Little   is known about the lipoxygenase activity along 
the nephron. Cyt-P450 monoxygenases are present in PCT, 
TAL, and CD, where both EETs and 20-HETE are pro-
duced. The Cyt-P450-2 enzyme family in PCT and CD 
leads to preferential production of EETs in response to 
stimulation by Ang II, bradykinin, or ET. Increased levels 
of NO and CO inhibit Cyt-P450 activity, and thus decrease 
production of EET and 20-HETE. A role for EETs in the 
CD is suggested by experiments in perfused tubules show-
ing that addition of EETs to the lumen diminished Na  �   
reabsorption and K  �   excretion. Other studies demonstrate 
that EETs inhibit ENaC; that the inhibition by arachidonic 
acid requires conversion to 11, 12-EET; that CYP2C23 
epooxygenase is present in CD; that the effect of EETs is 
not blocked by COX inhibitors; and that 20-HETE does 
not mimic the EET effect  [66] . A high-salt diet is associ-
ated with increased production of EET by PCT and CD and 
inhibition of NaCl transport. Agents that signal via cAMP/
PKA, such as dopamine and PTH, increase 20-HETE for-
mation in PCT. 20-HETE is the exception to the proposi-
tion that vasoconstrictors favor Na  �   retention; it inhibits 
NaCl reabsorption in both PCT and TAL, by PKC-medi-
ated phosphorylation and inhibition of the a-subunit of the 
Na  �  ,K  �  -ATPase. Ang II stimulates 20-HETE production in 
the TAL by increasing [Ca 2 �  ] i  and stimulating PLA 2  to lib-
erate arachidonic acid. In the TAL, 20-HETE inhibits NaCl 
reabsorption by acting on the luminal Na  �   – K  �   – 2Cl  �   co-
transporter and the basolateral Na  �  ,K  �  -ATPase, opposing 
the stimulatory action of AT 1  receptors. In addition to being 
stimulated by paracrine and autocrine factors, PGE 2  and 
20-HETE production in TAL are triggered by activation of 
a luminal Ca 2 �  -sensing receptor that is coupled to G α  q/11 -
proteins and induces PLA 2  activation and an increase in 
[Ca 2 �  ] i.  

 High   PGE 2  in the inner medulla, produced locally by epi-
thelial and interstitial cells, antagonizes vasopressin-stimulated 
salt reabsorption in the thick ascending LH and water rea-
bsorption in the CD. The major tubule-cell PGE 2  receptors 
are EP 1  and EP 3,  with highest densities found in TAL and 
CD. Activation of EP 1  receptors inhibits sodium reabsorp-
tion through a G α  q/11  – PLC system that increases [Ca 2 �  ] i  
and stimulates PKC, inhibiting the basolateral Na  �  ,K  �   -
ATPase. EP 3  receptors stimulate a G α  i  -protein and reduce 
cAMP/PKA activity. EP 3  receptors inhibit NaCl reabsorption 
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in the thick ascending LH by downregulating the den-
sity of luminal-membrane Na  �   – K  �   – 2Cl  �   co-transporters 
independently of [Ca 2 �  ] i  , and in CD by inhibiting ENaC. 
Thought to be of minor functional significance during physi-
ological conditions, EP receptors sensitive to PGF 2  predomi-
nate along the DCT. They signal through PKC, and perhaps 
also a PKC-independent Rho-mediated pathway. Water 
transport (AVP regulated) in CD is modified by prostaglan-
dins. COX inhibition magnifies the effect of AVP. In turn, 
AVP stimulates endogenous PGE 2  production, creating a 
negative-feedback loop in which endogenous PGE 2  dimin-
ishes the antidiuretic effect of AVP. 

 In   summary, the main effects of arachidonic acid metab-
olites are natriuresis and water diuresis. Tubule segments 
distal to the PT contain COX, leading to the production of 
PGE 2  and PGI 2 . Cyt-P450 monoxygenases are present in 
PCT, TAL, and CD, where both EETs and 20-HETE are 
produced. In PCT and CD, preferential production of EETs 
occurs in response to Ang II, bradykinin, or ET. Increased 
levels of NO and CO inhibit Cyt-P450 activity, and thus 
decrease production of EET and 20-HETE. In the TAL, 20-
HETE inhibits NaCl reabsorption by acting on the luminal 
Na  �   – K  �   – 2Cl  �   co-transporter and the basolateral Na  �  ,K  �  -
ATPase. High concentrations of PGE 2  in the inner medulla, 
produced locally by epithelial cells and interstitial cells, 
antagonize vasopressin-stimulated salt reabsorption in the 
TAL and water reabsorption in the CD. Activation of PGE 2  
EP 1  receptors inhibits Na  �   reabsorption through a G α  q/11  –
 PLC mechanism that increases [Ca 2 �  ] i  and stimulates PKC, 
inhibiting the Na  �  ,K  �  -ATPase. EP 3  receptors inhibit NaCl 
reabsorption in the TAL by reducing the density of luminal 
Na  �   – K  �   – 2Cl  �   transporters independently of [Ca 2 �  ] i, and in 
CD by inhibiting ENaC. In the CD, ENaC is also inhibited 
by EETs.  

    Bradykinin 

 Bradykinin   is a peptide that regulates vascular tone, and 
water and electrolyte balance, and has a role in the control 
of arterial pressure        [73, 145] . Bradykinin of renal origin is 
vasodilator and natriuretic. The enzyme kallikrein is pro-
duced and released from the distal convoluted tubule and 
connecting segment by exocytosis at both the apical and 
basolateral membranes, to the lumen and interstitial fluid, 
respectively. Secretion at this site makes the enzyme avail-
able at the site of substrate (kininogen) production (i.e., 
the principal cells of the CD). Bradykinin produced by the 
action of kallikrein on kininogen is present both in the lumen 
of the CD and in the interstitial fluid. Renal bradykinin for-
mation is normally low, and is increased during sodium 
restriction and water deprivation. Bradykinin is inactivated 
by kininase II, the same enzyme as ACE. The B 2  receptors 
are expressed in mesangial cells, juxtaglomerular granular 
cells, TAL, cortical and medullary CD, and renomedullary 

interstitial cells. In the TAL, B 2  receptor activation inhib-
its NaCl reabsorption. In the CD, luminal bradykinin 
acts on B 2  receptors and inhibits both NaCl and water trans-
port. The mechanism of natriuresis is the inhibition of ENaC, 
an effect probably mediated by PGE 2 , although NO may have 
a role by modifying the local metabolism of atrial natriuretic 
peptide. Bradykinin exerts a negative regulatory effect on the 
water reabsorption induced by AVP. BK induces release of 
PGs via phosphatidylinositol-3-kinase and mitogen-activated 
protein signaling by modifying COX activity. In some mod-
els (rabbit CD), it induces release of AA. In CD cells, BK 
caused a transient increase in Ca 2 �   concentration via activa-
tion of G α  q /PLC pathway. BK decreases AQP2 translocation 
to the apical membrane of CD cells, an effect present in the 
presence of PLC inhibitors, suggesting that increases in intra-
cellular [Ca 2 �  ] are not responsible for the effect. BK also 
induces G α  13 , an upstream effector of Rho protein whose 
activation inhibits AQP2 targeting to the plasma membrane 
 [145] . Although absent during physiological conditions, 
tubule-cell B 1  receptors are induced during inflammation, 
primarily in efferent arterioles, PCT, TAL, and DCT. 

 In   summary, bradykinin of renal origin has vasodila-
tor, natriuretic and diuretic effects. Bradykinin is produced 
by the action of kallikrein on kininogen, and is present in 
both the lumen of the CD and the interstitial fluid. Renal 
bradykinin formation is normally low, and increases during 
sodium restriction and water deprivation. In the CD, lumi-
nal bradykinin acts on B 2  receptors to inhibit NaCl and 
water transport, by antagonizing the action of AVP.  

    Adenosine and ATP 

 Adenosine   and ATP are produced by renal-tubule cells 
and can affect their transport functions by autocrine or 
paracrine mechanisms              [79, 102, 146 – 148] . Purinergic 
receptors (P 1  and P 2 ) are responsible for these effects. P 1  
receptors comprise four subtypes (A 1 , A 2a , A 2b  and A 3 ), 
of which A 1  is expressed in PT, medullary thick ascend-
ing LH, cortical CD, and inner medullary CD. A 2  receptors 
are found in thick ascending LH, cortical CD, and inner 
medullary CD. The A 3  receptor, identified in cortical thick 
ascending LH and DCT, does not have a defined func-
tion in these segments. A 1  receptor activation by adeno-
sine produce (via pertussis-sensitive G i  and G o -proteins) 
inhibition of adenylyl cyclase and stimulation of PLC. A 2  
receptor activation (via cholera toxin-sensitive stimula-
tory G proteins) activates adenylyl cyclase and has effects 
on Na  �   and water excretion. The P 2  receptors respond 
predominantly to ATP, and can be P 2X  (Ca 2 �  -permeable 
non-selective cation channels) and P 2Y  (G-protein-coupled 
receptor). Block of A 1  receptors produces a reduction in 
Na  �   reabsorption, and hence natriuresis. In cultures of 
PT cells, A 1 -receptor activation increases Na  �  -glucose 
and Na  �  -phosphate co-transport at the luminal membrane, 
and also increases NaHCO 3  

    transport at the basolateral 
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membrane. The increase in HCO 3  
 �   reabsorption could be 

secondary to the activation of NHE3 that is seen at low 
concentrations of adenosine ( �        10  � 8        M), and contributes 
to explains the natriuretic effect  [101] . Adenosine can be 
formed from cAMP secreted in the proximal tubule by an 
ectophosphodiesterase. In the medullary thick ascending 
LH, activation of A 1  receptors decreases the transepithe-
lial voltage, and inhibits Cl  �   transport without affecting 
HCO 3  

 �   absorption, suggesting that the effect occurs by a 
signaling mechanism other than cAMP. These two effects 
result in a reduction in salt reabsorption. In the DCT, ade-
nosine has different effects on Mg 2 �   absorption, with A 1  
receptor being stimulatory and A 2  receptor inhibitory. A 1  
receptor also stimulates Ca 2 �   absorption. These findings 
suggest an effect of adenosine on the function of the tran-
sient-receptor-potential channels (TRPM6 and TRPV5) 
involved in divalent cation transport. In the CCD, A 1  recep-
tor activation stimulates an apical membrane Cl  �   channel, 
and in the inner medullary CD it inhibits the AVP stimu-
lation of cAMP and decreases the hydraulic water perme-
ability, increasing excretion of water in the urine, and also 
decreases Na  �   reabsorption. Activation of A 2  receptors also 
decreases the water permeability of the CD. 

 The   PCT is a rich source of ATP that is secreted to the 
lumen and travels downstream to regulate transport in more 
distal nephron segments. Luminal P 2X  and P 2Y  receptors in 
PCT and IMCD inhibit Na  �   reabsorption by Ca 2 �   -, PKC-, 
and arachidonic acid-dependent pathways. Activation of 
P 2Y  receptors in DCT and CD increases PLC activity and 
[Ca 2 �  ] i , resulting in increased luminal-membrane Cl  �   per-
meability and inhibition of Na  �   reabsorption, at least in part 
because of the resulting apical-membrane depolarization 

 In   summary, adenosine and ATP are produced by renal-
tubule cells, and can affect their transport functions by 
autocrine or paracrine mechanisms. Their effects are medi-
ated by stimulation of the purinergic receptors P 1  and P 2 . 
Adenosine is coupled to different heterotrimeric G pro-
teins, altering Na  �   and water excretion. The ATP produced 
in the PCT is secreted to the lumen, and regulates transport 
in more distal nephron segments. Inhibition of Na  �   trans-
port is mediated by both P 2  receptor types.  

    Gap Junctions 

 Gap   junctions are intercellular channels that, in the kid-
ney, communicate between adjacent epithelial cells, as well 
as adjacent vascular cells and mesangial cells (see section 
on  “ Endothelial cell connections: connexins and gap junc-
tions ” )        [149, 150] . Gap junctions are high-permeability, 
low-ion-selectivity channels that allow for intercellular flux 
of ions and water-soluble molecules of up to 1000       Da. The 
individual gap junction is formed by two hemichannels 
(connexons), one from each cell, which are hexamers of 
the membrane proteins called connexins. Prior to docking 
with the neighboring cell, the hemichannels inserted in the 
plasma membrane remain closed because of the cell-negative 

membrane potential and the presence of high extracellular 
[Ca 2 �  ]. Information on the localization and function of gap 
junctions in renal epithelial cells is scanty. Gap junctions 
coordinate oscillations of intracellular [Ca 2 �  ] in renal epi-
thelial monolayers stimulated with bradykinin  [149] . In CD 
cells, which express both Cx43 and the mechanosensitive 
transient receptor potential channel TRPV4, mechanical 
stimulation causes an increase in intracellular Ca 2 �   that is 
propagated to neighboring cells by a Cx-dependent, sensi-
tive to the gap-junction blocker heptanol. The rise in [Ca 2 �  ] i  
results from both Ca 2 �   influx and release from intracellu-
lar stores. The Ca 2 �   ionophore ionomycin and a five-fold 
increase in extracellular glucose concentration elevate Cx43 
expression. Immunohistochemistry in the mouse, rat, and 
rabbit kidney demonstrates localization of Cx30 hemichan-
nels throughout the luminal membrane of the medullary 
thick ascending LH, DCT, and CD (in the latter, the expres-
sion is confined to the  β -intercalated cells). It has been 
suggested that these hemichannels may be involved in ion 
transport. A high-salt diet upregulates Cx30 expression in 
the rat inner medulla, which may be related to the increase 
in Na  �   reabsorption associated with hypertension. The func-
tion of Cx30 in the apical membrane of  β -intercalated cells 
of the CD remains unclear, but a role in secretion of small 
metabolites like ATP and NAD that participate in paracrine 
signaling has been suggested  [151] . There is better evidence 
for Cx participation in intercellular signaling in tubule cells 
 [150] . Single cells with constitutive higher sensitivity to a 
stimulus may act as pacemakers, initiating a response (e.g., 
increase in ion concentration or production of a messenger 
molecule) and signaling neighboring cells by intercellular 
permeation of ions or second-messenger molecules.   

    INTERSTITIAL CELL – TUBULE 
COMMUNICATION 

 Renal   interstitial cells occupy the space that surrounds the 
blood vessels and tubules. In the renal cortical interstitium, 
there are stellate fibroblasts and lymphocyte-like cells. 
In the inner medulla, there are lipid-laden cells (located 
between thin descending limbs of Henle in a ladder-like 
appearance), cells similar to the fibroblasts and lym-
phocytes found in the cortex, and SMC-like pericytes that 
encircle descending vasa recta capillaries and act as sphinc-
ters to regulate medullary blood flow. 

    Cortical Interstitial Cells 

 Fibroblasts   have the potential to differentiate to myofibrob-
lasts containing �-smooth muscle actin and desmin, a proc-
ess observed in response to inflammatory cytokines and 
thought to be important in the interstitial fibrosis of kidney 
diseases. In response to hypoxia, cortical fibroblasts close to 
the outer medullary border produce erythropoietin, a glyco-
peptide hormone that stimulates erythropoiesis in the bone 
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marrow, as well as the synthesis of hemoglobin        [152, 153] . 
In anemia, cortical interstitial cells also produce erythropoi-
etin, and synthesis may also occur in proximal tubule cells 
 [154] . It is likely that the oxygen sensor located in cells 
that produce erythropoietin is a heme protein which, when 
activated, triggers expression of several factors (hypoxia 
inducible factor-1, HIF-1; hepatic nuclear factor, HNF-4; 
p300, and hypoxia inducible factor-1 (HIF-1) alpha and  –
 beta). Secreted erythropoietin binds to specific receptors on 
erythroid precursor cells. In normoxia, only the  β  subunit of 
HIF-1 is expressed. The  α  subunit (in the presence of iron 
and oxygen) undergoes proline hydroxylation, binds to the 
Von Hippel-Lindau protein, and is ubiquitinated. 

 Erythropoietin   appears to have additional effects, such 
as acting as an anti-apoptotic cytokine to protect tissue 
from ischemia-reperfusion injury, and mobilizing hemat-
opoietic progenitor cells that result in improved angiogen-
esis and greater density of capillaries        [155, 156] . 

 The   function of lymphocyte-like cells that reside in the 
cortical interstitium has been studied in co-cultures with 
proximal tubule cells. The findings indicate that the expo-
sure of proximal tubule cells to albumin triggers the gen-
eration of reactive oxygen species, and apical release of 
pro-inflammatory cytokines (IL-6, sICAM-1) and basola-
teral release of chemokines (CCL2, CCL5, and CXCL8) 
and sICAM-1. The release of cytokines recruits mononu-
clear cells from the microcirculation to the interstitial tissue 
via chemotaxis. The released chemokines from the  albumin-
activated PT cells upregulate the expression of chemokine 
receptors on infiltrating mononuclear cells. In turn, the T 
cells and monocytes release TNF α  and IL-1 β , which stimu-
late the PT cells, creating a positive loop that maintain the 
release of IL-6, sICAM-1, CCL2, and CCL5, resulting in 
inflammatory injury in the renal interstitium  [157] .  

    Medullary Interstitial Cells 

 Renal   medullary interstitial cells (RMICs) participate in 
the regulation of Na �  and water balance by interacting with 
endocrine and paracrine factors including COX2 metabo-
lites, primarily PGE 2 , in response to Ang II, AVP, ET, and 
bradykinin        [158, 159] . These cells express an unusually 
high density of AT 1  and ET A  and ET B  receptors, as well as 
bradykinin receptor (B 2 ), atrial natriuretic peptide receptors 
(NPR A  and NPR b ), and AVP receptor (V 1a ). The common 
signaling pathway involves G α  q/11  activation of PLC and 
IP 3 -induced mobilization of [Ca 2 �  ] i , which activates PLA 2 . 
Locally produced PGE 2  causes relaxation of vasa recta 
pericytes, and inhibits NaCl reabsorption in the TAL and 
medullary CD. In addition, PGE 2  can inhibit the ability of 
AVP to mobilize aquaporin-2 water channels to the luminal 
membrane, and thus reduces the osmotic water permeability 
in the inner medullary CD. The natriuretic peptides (atrial 
natriuretic peptide and the kidney-produced urodilatin) 
are endogenous antagonists of the RAS. They increase 

medullary blood flow, activating glomerular receptors, and 
are natriuretic and diuretic by inhibiting PT transport of Na 
and antagonizing aldosterone and the effect of vasopressin 
in CCD        [159, 160] . 

 Cultured   RMICs respond to vasoactive peptides with 
contraction, prostaglandin release, extracellular matrix syn-
thesis, and cell proliferation, as well as with release of auto-
crine and paracrine factors like NO, PGs, and medullipins 
         [159, 161, 162] . Medullipins are lipids produced by RMICs. 
An inactive form is released into the systemic circulation, 
markedly so after surgical relief from renal arterial stenosis. 
Medullipin becomes activated by a liver Cyt-P450 oxidase, 
and acts as a vasodilating and natriuretic agent. It may also 
suppress sympathetic nerve activity. The physiological roles 
of medullipins, if any, are not understood. 

 In   summary, cortical-interstitial fibroblasts respond to 
hypoxia by producing erythropoietin, a hormone that stimu-
lates erythropoiesis in the bone marrow. Medullary-interstitial 
cells produce COX2 metabolites, primarily PGE 2 , in 
response to Ang II, AVP, ET, and bradykinin. The common 
signaling pathway involves G α  q/11  activation of PLC and 
IP 3 -induced mobilization of [Ca 2 �  ] i  , which activates PLA 2 . 
RMICs may have an important role in the regulation of renal 
medullary functions and in blood pressure homeostasis.   

    CONCLUSIONS 

 The   kidney is a complex, highly sophisticated organ con-
taining diverse cells types responsible for specialized func-
tions, both in the renal vasculature and nephron segments. 
The structure of the kidney and the process of urine forma-
tion allow for cell-to-cell influences along single nephron 
segments that are distant in space. In addition, the prox-
imity of parallel structures permits lateral communication 
between tubules, capillaries, and interstitial cells. These 
two kinds of cell-to-cell communication are central for 
functional integration at the single-nephron and whole-
organ levels. Communication is mediated by paracrine and 
autocrine agents that act extracellularly or intracellularly 
by turning on signaling systems, thus eventually unifying 
homeostatic regulation of renal hemodynamics, glomeru-
lar filtration rate, tubule-transport processes, and urinary 
excretion. Endothelial cells regulate renal vascular resist-
ance and reabsorption of salt and water by the renal tubules 
via a variety of messenger molecules, including nitric 
oxide, prostaglandins, EETs, 20-HETE, and endothelin. 
The vascular and epithelial cells regulate their own func-
tions via the production of the autocrine agent 20-HETE. 

 Tubule   cells produce dopamine, purine nucleotides, 
nitric oxide, prostanoids, and endothelin. These agents 
act locally to regulate the vasculature and transepithe-
lial transport of salt and water. Despite a rapidly growing 
understanding of cell – cell signaling in the kidney, the wide 
variety of autocrine and paracrine systems and their actions 
on multiple cell types are not completely understood. 
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Interactions with hormones and neural control systems 
add to this complexity. Current research is largely reduc-
tionist. Integrative studies are also needed, in particular to 
discern the relative importance, cross-talk, redundancy, and 
compensatory effects of the various systems under physi-
ological and pathophysiological conditions. A thorough 
understanding of these systems will be the foundation for 
rational and effective approaches to the treatment of renal 
diseases.  
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    GENERAL ASPECTS OF HEMATOPOIESIS 

 Blood   contains red cells, megakaryocytes, lymphocytes, 
monocytes, and the various types of granulocyte. All 
mature blood cell types turn over rapidly, requiring active 
synthesis of large numbers of new cells to maintain a steady 
state. Differentiated blood cells are all ultimately derived 
from a small pool of undifferentiated, pluripotent hemat-
opoietic stem cells. This process, involving extensive cell 
proliferation and differentiation, is known as  hematopoie-
sis , and begins in the embryonic yolk sac (primitive hemat-
opoiesis) before maturing into definitive hematopoiesis in 
the fetal liver and adult bone marrow. Hematopoiesis is 
regulated by a large number of cytokines that are present in 
the microenvironment. Specific subsets of these cytokines 
influence each step in the process. This chapter reviews our 
current knowledge of the biology of adult hematopoiesis, 
with an emphasis on the cytokines and their target signal-
ing pathways important in steady-state maintenance of 
non-lymphoid cell lineages. Due to page limitations, only 
selected papers or comprehensive reviews are referenced. 

 Till  , McCulloch and colleagues  [1]  introduced the con-
cept of a hematopoietic stem cell with the capacity to (1) 
self-replicate; (2) proliferate to produce many progeny; and 
(3) differentiate to generate all the mature blood cell types. 
The pool of such stem cells, which are normally quiescent 
or cycling slowly, represents only 10  � 5  of the total nucleated 
bone marrow cells in the mouse. Upon division, a stem cell 
gives rise to an indistinguishable daughter cell to replenish 
stem cell stocks, and a daughter cell that proliferates exten-
sively and differentiates to give rise to common myeloid and 
lymphoid progenitor cells, which proliferate and differentiate 
while progressively developing a more restricted capacity for 

differentiation, eventually giving rise to cells that are capable 
of forming only one mature blood or lymphoid cell type  [2]  
( Figure 16.1   ). 

 Many   different cytokines in the microenvironment of 
the bone marrow stimulate the development of cells of dif-
ferent lineages. These growth factors may be circulating, or 
bound to either the surface of their producing cells or to the 
extracellular matrix. Progenitor cells can also proliferate 
and differentiate in semisolid culture under the influence 
of specific cytokines, to form macroscopic colonies of dif-
ferentiated cells  –  hence the term colony-stimulating factor 
(CSF) for the responsible growth factor  [3] . The analysis 
of mice with targeted inactivations of the genes encod-
ing most of these cytokines and their receptors has greatly 
increased our understanding of the biology of hematopoi-
esis. The dominant role of cytokines in the regulation of 
hematopoiesis has led to their rapid clinical application in 
maintaining normal hematopoiesis in the face of a variety 
of pathological conditions.  

    HEMATOPOIETIC CYTOKINES 

 The   hematopoietic cytokines are glycoproteins that are 
either constitutively present in the circulation (e.g., CSF-1, 
SCF, FL, G-CSF, EPO and TPO) or appear in response to 
infection or inflammation (e.g., GM-CSF, IL-3, IL-5, IL-6 
and IL-11), and their concentrations may be increased in 
response to specific triggering conditions such as hypoxia 
and/or anemia, which stimulate EPO production ( Table 
16.1   ). 

 Primitive   multipotent hematopoietic cells, which co-
express different lineage-specific cytokine receptors at low 
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levels, require a combination of cytokines (e.g., SCF, IL-1, 
IL-3, IL-6, GM-CSF, and CSF-1) for lineage commitment. 
As these cells differentiate, they lose receptors for some 
cytokines (e.g., SCF or IL-3) while increasing expression of 
receptors for the late-acting cytokines (e.g., CSF-1 or EPO). 
When they reach the stage of committed progenitor cell, 
their further proliferation and differentiation is along one 
particular lineage and is regulated by one or more late-act-
ing cytokines. Within specific lineages, the most primitive 
cells respond to cytokines by both proliferating and differ-
entiating (e.g., committed macrophage progenitors  →  mono-
blasts  →  promonocytes  →  monocytes  →  macrophages), 
while differentiating, non-dividing cells (e.g., peritoneal 
macrophages) require specific cytokines for survival, acti-
vation, and function. Despite an apparent overlap in tar-
get cell specificity of several cytokines, their functions are 
largely non-redundant, as indicated by the distinct hemat-
opoietic phenotypes of cytokine or receptor nullizygous 
mice ( Table 16.1 ). Transcription factors such as GATA-1 
and PU.1, which regulate cytokine receptor expression, are 
also important in hematopoietic cell commitment. 

 The    “ permissive ”  model of hematopoietic cell regula-
tion by cytokines is one in which the growth factor does not 

have a role in multipotent progenitor cell commitment, but 
simply allows the survival and proliferation of committed 
cells. In contrast, the  “ instructive ”  model posits that specific 
cytokines direct multipotent progenitors to become com-
mitted to a specific lineage. It is uncertain whether cytokine 
regulation of differentiation is simply permissive or instruc-
tive, since there is good evidence for both mechanisms. 
Both may be utilized, depending on the receptors and com-
mitment steps involved  [3] . 

 The   phenomenon of synergism between predominantly 
late-acting, lineage-restricted cytokines, such as CSF-1, EPO 
and G-CSF, with predominantly early-acting cytokines, such 
as SCF, in stimulating the proliferation and differentiation of 
primitive multipotent cells provides a mechanism for cou-
pling the changes in levels of the late-acting cytokine, which 
are tightly regulated by the primary stimuli, to the chan-
neling of multipotent cells into a lineage in order to satisfy 
the demand for differentiated cells. The mechanisms under-
lying synergism between cytokines in the regulation of prim-
itive hematopoietic cell proliferation can occur directly at the 
level of the receptors for the synergizing cytokines, or be due 
to synergistic effects between post-receptor signal transduc-
tion pathways  [3] .  

 FIGURE 16.1          Hematopoietic cells, indicating the points of regulation by hematopoietic cytokines.  
    The primary cytokines regulating proliferation and differentiation of committed progenitors of individual lineages are colored in red. Abbreviations: 
HSC, hematopoietic stem cell; CLP, common lymphoid progenitor; CMP, common myeloid progenitor; SCF, stem cell factor; FL, Flt ligand; IL, inter-
leukin; GM-CSF, granulocyte/macrophage-colony stimulating factor; CSF-1, colony stimulating factor-1; G-CSF, granulocyte-CSF; TPO, thrombopoi-
etin; EPO, erythropoietin; TNF, tumor necrosis factor.    
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    SIGNALING THROUGH CYTOKINE 
RECEPTORS 

    General 

 Hematopoietic   cytokine action on target cells is mediated by 
specific, high-affinity, cell-surface receptors that signal for 
progenitor cell survival, proliferation, and differentiation, and 

mature cell survival and activation. Some cytokines are rec-
ognized by a single, unique receptor, while some receptors or 
receptor subunits can recognize multiple cytokines. Cytokine 
receptors can be classified according to the presence of 
either intrinsic or associated tyrosine kinase activity and the 
structure of the extracellular domain (ECD), as well as their 
requirement for common shared receptor subunits ( Figure 
16.2   ). The end result of any cytokine binding to its cognate 

 TABLE 16.1          Hematopoietic cytokines  

   Cytokine  Sources  Primary hematopoietic phenotype  1   

   SCF  Bone marrow stroma, fibroblasts, placenta, 
others 

 Severe macrocytic anemia 

   FL  Ubiquitous  NK cell and dendritic cell 

   CSF-1  Endothelial cells, fibroblasts, uterine 
epithelium macrophages 

 Osteopetrosis 

   EPO  Kidney proximal tubular cells, liver  Severe anemia 

   G-CSF  Activated bone marrow stroma, 
macrophages, fibroblasts, endothelial cells 

 Neutropenia 

   TPO   Hepatocytes, endothelial cells, fibroblasts  Thrombocytopenia 

   IL-3  Activated T cells  Reduced delayed hypersensitivity 

   IL-5  Activated helper T cells  Eosinophil deficiency 

   GM-CSF  Bone marrow stroma, activated T cells, 
endothelial cells, fibroblasts, macrophages 

 Pulmonary alveolar proteinosis 

   IL-2  Activated T cells  Autoimmune disease 

   IL-4  TH2 and NK1.1 �  T cells, mast cells, 
basophils, and eosinophils 

 TH2 deficient 

   IL-7  Fetal liver, bone marrow and thymic, 
stromal cells, lymphoid cells, others 

 Reduced T and B cells 

   IL-9  TH2 cells, mast cells and eosinophils  Pulmonary mastocytosis and goblet 
cellhyperplasia 

   IL-15  Ubiquitous, increased by activation  Lymphopenic, deficient in NK, NK-T, 
CD8 �  cells and g δ T cells 

   IL-21  TH2 cells  No obvious defects 

   IL-6  Ubiquitous, in response to inflammatory 
stimuli 

 Reduced T cells, IgG  &  IgA responses, 
impaired neutrophil/macrophage function 

   IL-11  Ubiquitous, in response to inflammatory 
stimuli 

 Embryonic lethal 

   LIF  Monocytes, bone marrow stroma  None reported 

  1  References for these cytokine and cytokine receptor-deficient mice, except for IL-9 16  and IL-21 17 , are listed in 
[3] (Stanley, 2001).  
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receptor is the phosphorylation of particular receptor intra-
cellular domain (ICD) tyrosine residues that create binding 
sites for downstream signaling molecules. Different activated 
receptor cytoplasmic domains often bind a common signaling 
molecule or family of signaling molecules. Targeted down-
stream pathways include those regulating gene transcription, 
protein translation, actin cytoskeletal remodeling, and cell 
adhesion and motility          [3 – 5] .  

    Tyrosine Kinase Receptors 

 The   three hematopoietic cytokines signaling through tyrosine 
kinase receptors, stem cell factor (SCF), Flt3 ligand (FL) and 
colony stimulating factor-1 (CSF-1), are members of a fam-
ily of homodimeric cytokines that share some sequence and 
structural similarity. SCF and CSF-1 have been shown to have 
effects on non-hematopoietic as well as hematopoietic cells. 

 The   SCF, CSF-1, and FL receptors, all members of the 
PDGF receptor family, possess ECDs comprised of five 
heavily glycosylated immunoglobulin-like repeats, a trans-
membrane domain, and an intracellular tyrosine kinase 
domain that is interrupted by a kinase insert domain. Binding 
of their cognate bivalent ligands by this class of receptors sta-
bilizes their non-covalent dimerization, permitting receptor 
activation and trans-tyrosine phosphorylation of one ICD by 
the other. The receptor phosphotyrosines create binding sites 
for  src  homology region 2 (SH2) and other phosphotyrosine 
binding domains of signaling and adaptor proteins that bind 

the receptor and may themselves become tyrosine phos-
phorylated ( Figure 16.3a   ). Many of the signaling pathways 
activated by these receptors, including the MAP kinase 
(MAPK) cascade, the JAK/STAT pathway, Src family mem-
bers and PI3-kinase, are shared. Two of the receptors, SCFR 
and CSF-1R, are encoded by the proto-oncogenes c- kit  and 
c- fms  respectively. v- kit  and v- fms  oncogenes are present in 
feline sarcomatous retroviruses, and contain mutations of 
the normal cellular genes that render their encoded receptors 
constitutively active in the absence of cytokines. 

    SCF and SCF Receptor (SCFR) 

 SCF   influences development in the three different lineages 
involving pigmentation, hematopoiesis, and fertility. Both 
secreted and cell surface forms are widely expressed dur-
ing embryogenesis and in a variety of adult tissues, includ-
ing bone marrow stromal cells, fibroblasts, and endothelial 
cells, as well as yolk sac and placenta. Cells expressing the 
SCFR are frequently contiguous with SCF-expressing cells, 
and include germ cells, interstitial cells of Cajal in the gut, 
melanocytes, and early hematopoietic cells. Hematopoietic 
cell SCFR expression is low in very primitive multipo-
tent progenitors, highest in committed progenitors, and 
decreases as cells mature. Because pluripotent stem 
cells do not appear to express the SCFR and can survive  in 
vitro  in the absence of SCF, it may not act on the earliest 

 FIGURE 16.2          Schematic of selected high-affinity hematopoietic cytokine receptors showing the similarity between those containing intrinsic tyrosine 
kinase domains (left) and the modular nature of the cytokine receptor family that are pre-associated with cytoplasmic tyrosine kinases.    
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hematopoietic precursors  [3] . Although SCF has a broad 
spectrum of activity on hematopoietic cells, it has lit-
tle activity alone and acts synergistically with many of 
the hematopoietic cytokines, especially IL-6 and IL-3, to 
increase the numbers of precursors of most if not all lin-
eages. Spontaneously occurring SCF-null  Sl/Sl  mice are 
embryonic lethals, but a partially functional  Sl d   allele 
allows embryonic survival, yielding severely anemic and 
mast-cell deficient mice, indicating that the major effects 
of SCF are on erythropoiesis and mast cell development. In 
combination with EPO, SCF enhances the number of eryth-
roid precursor cells generated from primitive multipotent 
cells, and allows precursors to respond to levels of EPO 
that are too low to elicit a response in the absence of SCF. 
Mast cells and their progenitors require SCF throughout 
the differentiation of the lineage from early precursors to 
mature, primed tissue mast cells. There is also strong evi-
dence of biologic activity for SCF on the megakaryocyte, 

granulocyte/macrophage, and lymphoid lineages, yet the 
effects of the absence of SCF on their development are 
minimal, implying some redundancy in cytokine action on 
these lineages        [6, 7] .  

    FL and Flt3 

 FL  , which occurs largely as a cell-surface, non-cova-
lently associated homodimer, regulates the proliferation of 
primitive hematopoietic cells. It is widely expressed, while 
hematopoietic expression of its cognate receptor, Flt3, is 
predominantly restricted to the progenitor/stem cell com-
partment. Like SCF, FL alone cannot stimulate the pro-
liferation of its primitive hematopoietic target cells, but 
synergizes with other hematopoietic cytokines. In contrast to 
SCF, however, there is little or no effect of FL on erythroid, 
or megakaryocyte progenitor cells, since Flt3-deficient 
mice have no defects in red cell, megakaryocyte, or platelet 

 FIGURE 16.3          Models for the activation and signaling of hematopoietic growth factor receptors.  
    (A) Homodimeric receptors possessing intrinsic tyrosine kinase domains; SH2-P, SH2 domain- or PTB domain-containing signaling molecules. (B) 
Homodimeric cytokine family receptors. (C) Multimeric cytokine receptors sharing the common  β  subunit,  β c, illustrating the concept of 
cross-competition between cytokines for the  β  subunit that is necessary for the formation of the high-affinity signaling complex. GM-CSF is shown 
forming the high-affinity complex. (D) Receptors sharing the common  γ  subunit,  γ c, form a high affinity  α . γ c receptor complex (e.g. IL-4) or a high 
affinity  α . β . γ c receptor complex utilizing a second signaling subunit, IL-2 β  (e.g., IL-2, IL-15).    
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production. In combination with GM-CSF, TNF, and IL-4, 
FL enhances the production of dendritic cells, and dendritic 
cell numbers are reduced in FL-deficient mice  [7] . However, 
increased flt3 activity, due either to overexpression of or 
activating mutations in flt3, underlie most cases of acute 
myelogenous leukemia and many cases of acute lymphocytic 
leukemia  [8] .  

    CSF-1 and CSF-1 Receptor (CSF-1R) 

 CSF  -1 regulates the survival, differentiation, and function 
of cells of the mononuclear phagocytic (monocyte/mac-
rophage) lineage, osteoclasts, and epidermal Langerhans 
cells, as well as the function of cells of the female repro-
ductive tract. Mature forms of the disulfide-linked CSF-1 
homodimer include a secreted glycoprotein, a secreted pro-
teoglycan, and a membrane-spanning, cell-surface glyco-
protein. CSF-1 is synthesized by a variety of cell types, 
including fibroblasts, endothelial cells, bone marrow stro-
mal cells, osteoblasts, keratinocytes, astrocytes, myoblasts, 
and breast and uterine epithelial cells. Circulating CSF-1 is 
elevated in response to bacterial, viral, and parasitic infec-
tions, and is primarily cleared by Kupffer cells, so the 
number of sinusoidally located macrophages determines 
the concentration of the cytokine responsible for their pro-
duction  –  a simple feedback control. CSF-1 homodimer 
binding by the CSF-1R results in the formation or stabiliza-
tion and activation of a receptor dimer. After activation and 
tyrosine phosphorylation of signaling molecules, most of 
the receptor – ligand complexes are ubiquitinated, internal-
ized, and destroyed intralysosomally  [9] . 

 The   osteopetrotic ( Csf-1 op /Csf-1 op  ) mouse, which pos-
sesses an inactivating mutation in the CSF-1 gene, exhib-
its impaired bone resorption associated with a paucity of 
osteoclasts, no incisors, poor fertility, a lower body weight, 
a shortened lifespan, and deficiencies in macrophages in 
most tissues, indicating that CSF-1 is the primary regula-
tor of mononuclear phagocytes. Restoration of circulating 
CSF-1 in newborn  Csf-1 op /Csf-1 op   mice cures their osteo-
petrosis and monocytopenia, and some but not all of the 
tissue macrophage populations, demonstrating additional 
local regulation by CSF-1. CSF-1 regulates the develop-
ment of macrophages with trophic and scavenger (i.e., 
physiologic) functions, while the development of macro-
phages involved in inflammatory and immunologic (i.e., 
pathologic) functions such as lymph node and thymic mac-
rophages apparently depends on other cytokines. However, 
once developed, these macrophages are regulated by CSF-1. 
CSF-1 also synergizes with cytokines such as IL-1, SCF, IL-
3, IL-6 to stimulate the proliferation and differentiation of 
multipotent cells to committed macrophage progenitors that 
respond to CSF-1 alone        [9, 10].  A second cytokine, Il-34, 
that signals through the CSF-1R and has in vitro activities 
similar to those of CSF-1, has recently been identified (Lin 
et al., 2009).   

    Cytokines Signaling by Homodimerization 
of a Single, Non-Tyrosine Kinase Receptor 
Polypeptide Chain 

 Erythropoietin   (EPO), granulocyte-colony stimulating 
factor (G-CSF), and thrombopoietin (TPO) signal by ini-
tiating homodimerization of their cognate non-tyrosine 
kinase receptors, although additional receptor subunits 
may be involved. These receptors belong to a large fam-
ily of receptors, the cytokine receptor family, defined by 
the presence of an ECD cytokine receptor module ( Figure 
16.2 ). These modules contain conserved short amino acid 
sequence elements, particularly two pairs of conserved 
cysteine residues near the amino terminal end of the motif 
and a Trp – Ser – X – Trp – Ser (WSXWS) sequence near the 
transmembrane domain, the function of which is not clear 
although it is structurally important. The EPOR, G-CSFR, 
and TPOR each contain conserved motifs in their ICDs 
that mediate constitutive association with members of the 
cytosolic Janus kinase (JAK) family (       Figures 16.2, 16.3b ). 
The associated JAKs (JAK2 with EPOR and TPOR; JAK1 
with G-CSFR) are activated by formation of the ligand/
receptor complex, resulting in autophosphorylation and 
tyrosine phosphorylation of the receptor. This creates 
docking sites for molecules with protein tyrosine bind-
ing (PTB) or SH2 domains, and leads to phosphoryla-
tion and activation of these recruited signaling molecules. 
Recruited molecules include the Signal Transducers and 
Activators of Transcription (STATs), additional JAKs, other 
cytosolic tyrosine kinases, and SH2 domain-containing 
protein tyrosine phosphatases. The MAPK pathway and 
PI3 kinase are also activated in response to these cytokines. 

    EPO and the EPO Receptor (EPOR) 

 EPO   is the primary regulator of erythropoiesis, and is 
synthesized primarily by the proximal convoluted tubules 
of the kidney in response to hypoxia. Expression and 
homodimerization of the EPOR is necessary and sufficient 
for cell responsiveness to EPO, although, to facilitate the 
synergistic interaction of EPO and SCF, it functionally 
and physically interacts with the SCFR and possibly also 
with the IL-3R  β  chain. EPOR expression, which is cor-
related with the proliferative and differentiation effects 
of EPO in erythroid lineage cells, increases from BFU-E 
to CFU-E and erythroblasts ( Figure 16.1 ) before decreas-
ing again during the terminal stages of differentiation. EPO 
also stimulates the release of maturing normoblasts from 
the bone marrow, and increases the amount of hemoglobin 
synthesized per erythrocyte. An activating mutation in the 
EPOR-associated JAK2 has recently been identified in 
most cases of polycythemia vera as well as other diseases 
in the myeloproliferative disease spectrum, essential throm-
bocythemia and idiopathic myelofibrosis  [11] .  
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    G-CSF and the G-CSF Receptor (G-CSFR) 

 G  -CSF, which shares sequence homology with IL-6, is 
synthesized by a variety of cell types, including stromal 
cells, fibroblasts, and endothelial cells, usually in response 
to inflammatory stimuli such as lipopolysaccharide (LPS), 
tumor necrosis factor (TNF), and IL-1. The large ECD of its 
receptor contains one immunoglobulin and three fibronec-
tin domains as well as the cytokine receptor module, and it 
binds G-CSF with high affinity in a 2       :       2 stoichiometry. G-
CSF is the physiological regulator of neutrophil production, 
stimulating the proliferation and differentiation of com-
mitted neutrophil progenitor cells without affecting other 
granulocytic lineages, and its levels are increased during 
infection. It also synergizes with IL-3 or SCF to stimulate 
the proliferation and differentiation of primitive multipo-
tent hematopoietic progenitor cells. However, mice lack-
ing G-CSF or its receptor, while neutropenic, possess some 
mature neutrophils and have only a mild reduction in com-
mitted granulocyte-macrophage progenitor cells, suggesting 
that G-CSF is not necessary for neutrophil lineage commit-
ment. It also enhances the survival of mature neutrophils 
and may prime their functional responses  [3] . G-CSF is 
routinely used in the clinic for treatment of neutropenia.  

    TPO and the TPO Receptor (TPOR) 

 Structurally  , TPO can be divided into two domains: an 
amino terminal portion with EPO homology, and a carboxy 
terminal domain that is widely species divergent and lacks 
homology with other known proteins. It is synthesized pri-
marily by hepatocytes, endothelial cells, fibroblasts, and 
the proximal tubule cells of the kidney. The TPOR gene, 
 c-mpl , was originally identified as the cellular counterpart 
of  v-mpl , the oncogene carried by the murine myelopro-
liferative leukemia virus, and is restricted in its expression 
to megakaryocytes, platelets, and primitive hematopoietic 
cells. TPO affects all aspects of megakaryocyte and plate-
let development, including stimulation of megakaryocyte 
progenitor cell proliferation and differentiation, and stim-
ulation of platelet release. It has also been shown to have 
profound and non-redundant effects on survival and pro-
liferation of hematopoietic stem cells. Mice lacking either 
TPO or TPOR possess an identical phenotype and exhibit 
an 80 – 90 percent decrease in platelets with no effect on 
numbers of other differentiated peripheral blood cells, but 
they display a 60 percent reduction in multipotent and com-
mitted myeloid progenitors and are deficient in stem cells 
capable of long-term repopulation  [12] .   

    Cytokines Signaling Through Receptors with 
a Common  β  Subunit 

 The   three cytokines, interleukin-3 (IL-3), granulocyte/mac-
rophage CSF (GM-CSF), and interleukin-5 (IL-5), which 

signal through receptors sharing a common  β  subunit, are 
members of a subfamily of cytokines that appear to share 
a common ancestry despite their lack of homology at the 
amino acid level. Their genes have a similar structure, and 
map closely together on chromosome 5. The cytokines sig-
nal through receptors comprised of a cytokine-specific  α  
chain, which alone exhibits low affinity for the cytokine, 
and a larger, shared  β  chain,  β c, that can interact with any 
of the three  α  chain/cytokine complexes to generate a spe-
cific, high-affinity complex ( Figure 16.3c ). Ligand-induced 
disulfide bonding between an  α  and  β  subunit and dimeriza-
tion of the  β c subunit are required for signaling, producing a 
complex consisting of two receptor  α  chains, two  β c chains, 
and two ligand molecules. The shared  β c leads to competi-
tion between IL-3, GM-CSF, and IL-5, although the biologic 
significance of this is not well understood. However, they all 
act synergistically to stimulate differentiation and function 
of myeloid cells, and are important in allergic inflamma-
tion. Their  α  subunit ECD cytokine receptor module struc-
tures are similar to that of the EPOR ( Figure 16.2 ), and the 
divergent ICDs are required for proper receptor function. 
The 120-kDa  β  subunit contains two ECD cytokine receptor 
motifs and a long cytoplasmic tail that is required for pro-
liferative signaling. Box 1 and box 2 motifs in the ICD con-
tain the docking sites necessary for the association of JAK2 
and recruitment of other signaling molecules to the activated 
receptor complex, resulting in rapid tyrosine phosphoryla-
tion of several cellular proteins, including the  β c receptor 
subunit and activation of JAK/STAT, MAPK, and PI3 kinase 
pathways ( Figure 16.3c )  [13] . 

    IL-3 and the IL-3 Receptor (IL-3R) 

 IL  -3 is a secreted monomeric glycoprotein that is synthe-
sized almost exclusively by T cells in response to antigen 
stimulation. The IL-3R consists of a unique IL-3-specific, 
low-affinity  α  subunit and the  β c subunit. However, a 
duplication of the  β c gene has occurred in the mouse 
to produce  β IL-3, which interacts with IL-3R α  to cre-
ate an additional low-affinity receptor for IL-3. IL-3 is a 
pleiotropic hematopoietic cytokine supporting the pro-
liferation and differentiation of both primitive multipo-
tent progenitor cells and committed myeloid progenitors. 
Working alone, it stimulates primitive hematopoietic cells 
to form multilineage colonies, comprised of neutrophils, 
basophils, eosinophils, monocytes, and megakaryocytes. In 
combination with SCF, IL-1, and CSF-1, IL-3 stimulates 
the proliferation and differentiation of even more primitive 
precursors and, in concert with other late-acting hematopoi-
etic cytokines, it stimulates multipotent cells to specific 
lineage commitment. For example, the combination of IL-3 
and CSF-1 allows the proliferation of primitive cells that do 
not respond to CSF-1 alone to give rise to committed, CSF-
1R-expressing macrophage progenitors. Once committed, 
progenitor cells and their progeny lose expression of IL-3R 
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and their ability to respond to IL-3. Since IL-3 synthesis 
is highly restricted and regulated and IL-3-deficient mice 
display only a diminished delayed hypersensitivity with no 
obvious steady-state hematopoietic phenotype, it seems to 
be important only during hematopoietic demand  [3] .  

    GM-CSF and the GM-CSF Receptor (GM-CSFR) 

 GM  -CSF, a monomeric glycoprotein, is constitutively 
synthesized by macrophages, mast cells, eosinophils, 
basophils, endothelial cells, and fibroblasts, and induc-
ibly expressed in a variety of cells, especially T cells. The 
GM-CSFR  α  subunit has three alternative transcripts used 
to produce the main form, a soluble form, or an alternative 
membrane-spanning subunit with an elongated C-terminus. 
All are functional, but their relative physiologic signifi-
cance is not yet well understood. GM-CSF has been shown 
to have a broad range of biologic effects, acting on both 
progenitor cells and mature, terminally differentiated cells. 
The survival, proliferation, and differentiation of all stages 
of cells in the neutrophil, macrophage, and eosinophil 
lineages are supported by GM-CSF, and it appears to be 
important in the activation and enhancement of function 
of mature cells in these lineages. However, at most stages 
of development, each lineage also requires the presence of 
the other lineage-specific cytokines, G-CSF, CSF-1, and 
IL-5. The antigen-presenting dendritic cells appear to be 
derived from myeloid lineage and possibly also from lym-
phoid lineage cells. GM-CSF, with IL-4 and TNF α , stimu-
lates myeloid-derived pre-dendritic cells to differentiate 
into mature dendritic cells. GM-CSF also synergizes with 
EPO and TPO on primitive hematopoietic cells to generate 
erythroid and megakaryocytic progeny, respectively, and 
 in vivo  GM-CSF administration increases the number of 
circulating neutrophils, monocytes, and eosinophils, and 
the number of tissue-fixed macrophages. Nevertheless, 
since GM-CSF-deficient mice have normal granulocyte and 
macrophage production in both steady-state and stressed 
conditions, GM-CSF apparently does not play an important 
role in blood cell production  [14] .  

    IL-5 and the IL-5 Receptor (IL-5R) 

 Biologically   active IL-5 is a dimer that is secreted predom-
inantly by antigen-stimulated T lymphocytes, but also by 
NK cells, mast cells, B cells, eosinophils, and endothelial 
cells. However, only eosinophils and basophils, precursors 
of both lineages, and some B cells express both subunits 
of the IL-5R, so IL-5 has a restricted biologic activity. It 
is the primary late-acting cytokine for eosinophil prolif-
eration and differentiation, for mature eosinophil survival 
and activation, and,  in vivo , in the development of eosi-
nophilia. Complete abrogation of the development of eosi-
nophilia secondary to parasitic infections is observed in 
IL-5-deficient mice. In combination with GM-CSF, IL-3, 

and IL-4, IL-5 stimulates the survival, proliferation, and 
differentiation of the basophil-mast cell lineage  [15] .   

    Cytokines Signaling Through Receptors with 
a Common  γ  Subunit 

 Six   hematopoietic cytokines, IL-2, IL-4, IL-7, IL-9, IL-15, 
and IL-21, signal through a high-affinity receptor com-
prised of a cytokine-specific  α  chain and a common  γ  
chain ( γ c), in a manner similar to IL-3, GM-CSF, and 
IL-5 and their common  β c, in that the cytokine binds the 
 α  subunit with low affinity and requires further binding 
of the  γ c for high-affinity  α . γ c complex signaling ( Figure 
16.3d ). Additionally, IL-2R and IL-15R, which probably 
have a common ancestry and constitute a separate cytokine 
receptor subfamily, also share a common  β  subunit, IL-2R β  
( Figure 16.2 ), which can directly bind both ligands and thus 
replace the  α  chain, but is most usually included in a high-
affinity  α . β . γ c complex ( Figure 16.3d ). The signaling path-
ways described for all these receptors are similar and, since 
the ICDs of each receptor lack catalytic activity, involve 
associated JAKs. Upon ligand binding and assembly of the 
high-affinity receptor – ligand complex, JAK1, constitutively 
associated with the  α  and  β  subunits, and JAK3, constitu-
tively associated with the  γ c subunit, become activated and 
transphosphorylated. The JAKs phosphorylate the receptor 
chains, leading to recruitment and phosphorylation of phos-
photyrosine-associating signaling intermediates, including 
STATs 1, 3, 5 A, 5B, and 6, which dimerize and move to 
the nucleus to direct transcription. The MAPK pathway is 
activated via Shc interactions with the  α  or  β  subunit, and 
PI3 kinase activation is brought about by recruitment of 
the Src-family kinases and/or insulin receptor substrates-1 
and -2 to the receptors. A family of negative regulators of 
cytokine receptor signaling, the Suppressors of Cytokine 
Signaling (SOCS) family, bind and attenuate JAK/STAT 
signaling. In man, spontaneous mutations in the genes for 
 γ c and JAK3 produce, respectively, an X-linked and an 
autosomal severe combined immunodeficiency (SCID) 
syndrome, and mice lacking either  γ c or JAK3 are also 
severely immunodeficient, indicating the importance of 
these shared signaling pathways in immune function  [16] . 
Since the primary role of IL-2, IL-7, IL-15, and IL-21 is 
regulation of the development and/or function of lymphoid 
lineage cells, only a very brief summary of their actions is 
outlined, while IL-4 and IL-9 have more pleiotropic effects 
and will be covered in more detail.  

    IL-2, IL-7, IL-15, IL-21, and their Receptors 

 IL  -2 stimulates both a prompt T cell immune response 
to antigens and a subsequent, rapid dampening of this 
response. Since IL-2-deficient mice die from autoimmune 
disorders yet mount a normal response to infections, the 
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primary role of IL-2 appears to be the promotion of apop-
tosis of excess activated T cells. IL-15 exhibits consider-
able functional overlap with IL-2 in their regulation of 
innate immunity through the two shared receptor subunits, 
IL-2R β  and  γ c. However, in contrast to IL-2/IL-2R α , IL-
15R α  alone binds IL-15 with high affinity, and IL-15R sig-
naling has distinct effects on activated T cells. Rather than 
promoting apoptosis of excess T cells, as does IL-2, IL-
15 stimulates the survival of memory T cells for the sec-
ondary immune response. IL-7 plays a critical role in the 
early development of both B and T cells in mice, and of 
T cells only in man. Deletion of the gene for either IL-7 
or IL-7R produces severe B and T cell lymphopenia. IL-21 
is produced by activated T cells and targets a broad range 
of cells, including T cells, NK cells, B cells, and myeloid 
cells. It both positively and negatively regulates immune 
processes, and may play a role in autoimmune disease  [17] . 

    IL-4 and the IL-4 Receptor (IL-4R) 

 IL  -4 is a pleiotropic cytokine that is secreted by T H 2 and 
NK1.1 �  T cells, basophils, mast cells, and eosinophils. The 
high-affinity IL-4R is widely expressed in hematopoietic and 
non-hematopoietic cells, and its expression is upregulated 
by IL-4 itself. In hematopoietic cells, the IL-4R consists of 
the IL-4R α  and  γ c subunits, and requires JAK3 for STAT6 
activation. Non-hematopoietic signaling by IL-4 utilizes 
the IL-4R α  subunit in combination with the IL-13R rather 
than  γ c. Consequently, IL-4 can act on many cell types and 
can modulate cytokine production by a variety of tissues. 
Its primary role, however, is in the regulation of T helper 
cell differentiation to T H 2 cells and in B cell Ig switching. 
Apart from its effects on lymphocytes, IL-4 inhibits CSF-1-
induced macrophage colony formation and megakaryocyte 
colony formation, but enhances G-CSF-induced granulocyte 
colony formation and IL-5-induced basophil, mast cell, and 
eosinophil generation. Along with GM-CSF and TNF α , IL-
4 induces the differentiation of myeloid lineage cells into 
dendritic cells. It also regulates the production of inflamma-
tory mediators in a pattern consistent with its anti-inflamma-
tory role.  

    IL-9 and the IL-9 Receptor (IL-9R) 

 IL  -9 is a pleiotropic growth factor that appears to be 
important in the pathogenesis of asthma. It is predomi-
nantly secreted by T cells, especially T H 2 cells, but also by 
mast cells and eosinophils, particularly those derived from 
asthmatic subjects. IL-9R is expressed by T and B cells, 
eosinophils, and neutrophils, and IL-9 has been shown 
to stimulate early T cell development, B cell Ig produc-
tion, including IgE, mast cell survival, proliferation and 
cytokine release, as well as upregulation of eosinophil 
IL-5R expression. Hence, IL-9 influences many aspects of 
the  inflammatory process that underlies asthma.   

    Cytokines Signaling Through a Common 
gp130 Subunit 

 At   least three hematopoietic cytokines, IL-6, IL-11, and 
Leukemia Inhibitory Factor (LIF), and four non-hematopoi-
etic cytokines, oncostatin M (OSM), ciliary neurotrophic fac-
tor (CNTF), cardiotrophin-1 (CT-1), and cardiotrophin-like 
cytokine (CLC), comprise the IL-6-type cytokine group. 
All share at least one subunit, gp130, in their receptor com-
plexes, and, as a result, functional overlap is frequent. In 
addition, IL-27, a recently identified member of the het-
erodimetic cytokine family that IL-12, IL-23 and IL-35, 
binds gp130, in conjunction with the T cell cytokine recep-
tor (TCCR) IL-6R and IL-11R each contain a unique, 
cytokine-specific  α  chain, while the LIFR-specific subunit 
is much larger ( Figure 16.2 ) and more promiscuous, as it is 
incorporated into receptor complexes for OSM, CNTF, and 
CT-1. In total, gp130 interacts with five different IL-6-type 
cytokines and functionally cooperates with five different 
receptor subunits. The signaling complexes for this group 
of cytokines vary in their stoichiometry. IL-6, IL-6R α  
and gp130 bind together in a 2       :       2       :       2 molecular ratio to pro-
duce a high-affinity hexameric complex. A similar situation 
exists for the IL-11R, while LIF complexes in a 1       :       1       :       1 stoi-
chiometry with LIFR and gp130. Gp130 signal transduction 
is mediated via activation of the constitutively associated 
JAKs, JAK1, JAK2, and Tyk-2, which activate STAT1, 
STAT3, and STAT5 in turn. The MAPK pathway is also 
activated through SHP-2 binding to a juxtamembrane phos-
photyrosine on gp130. Gp130-deficient mice die  in utero  
due to severe hematopoietic and cardiac problems        [18, 19] . 

    IL-6 and the IL-6 Receptor (IL-6R) 

 IL  -6 is a multifunctional cytokine produced by both lymphoid 
and non-lymphoid cells, and its receptor is also expressed on 
a wide range of cells. In hematopoiesis, IL-6 acts synergisti-
cally with a number of cytokines, including SCF, IL-3, KL, 
CSF-1, and TPO, to stimulate primitive multipotent hemat-
opoietic cell proliferation, myelopoiesis, and megakaryocyte 
production, as well as lymphopoiesis. IL-6-deficient mice 
have reduced primitive multipotent progenitors, megakaryo-
cyte progenitors, and neutrophils, and are severely defective 
in their responses to tissue damage or infection.  

    IL-11 and the IL-11 Receptor (IL-11R) 

 Beyond   its shared receptor subunit, IL-11 is similar to IL-
6 in many other respects. Both IL-11 and its receptor are 
widely expressed in hematopoietic and non-hematopoietic 
tissues. Its expression is induced by pro-inflammatory and 
anti-inflammatory cytokines, and hematopoietic cell targets 
include those of the myeloid, erythroid, and megakaryocytic 
lineages. Although the effects of IL-11 on hematopoiesis 
are very similar to those of IL-6, and largely synergistic, 
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adult IL-11R α  nullizygous mice are hematopoietically 
normal, highlighting the significant redundancy in this fam-
ily of cytokines.  

    LIF and the LIF Receptor (LIFR) 

 LIF   is also multifunctional, and is produced by monocytes 
and stromal cells in response to activating stimuli such as 
IL-1 β  and LPS. The hematopoietic effects of LIF are simi-
lar to those of IL-6 and IL-11 and, as for IL-11, LIF-defi-
cient mice have no obvious hematopoietic phenotype.    

    CONCLUDING STATEMENTS 

 The   maintenance of the normal complement of hemat-
opoietic cells requires the complex interaction of a large 
number of cytokine signaling pathways, some of which are 
redundant while others are critically important. Moreover, 
this complexity is increased by the actions of a number 
of other cytokines that also regulate hematopoiesis but 
primarily act elsewhere, and which are therefore not cov-
ered in this chapter. They include IL-1 and IL-18, which 
do not signal through cytokine receptor motif-containing 
receptors; IFN γ , TGF β , TNF α , and TNF β , which mostly 
inhibit rather than promote hematopoiesis; several chemok-
ines, and the mammalian Notch paralogs and their ligands, 
which regulate primitive hematopoietic cells. 

 In   an extension of their physiological roles, some hemat-
opoietic cytokines are used extensively in the clinical set-
ting, usually to correct deficiencies of specific hematopoietic 
lineages such as EPO for anemia, TPO for thrombocytope-
nia, and GM-CSF and G-CSF for granulocytopenias.   
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    INTRODUCTION 

 CD45   (also known as leukocyte common antigen (LCA), EC 
3.1.3.48, T200, Ly5, PTPRC, and B220) constitutes the first 
and prototypic receptor-like protein tyrosine phosphatase 
(RPTP). Its expression is restricted to all nucleated hemat-
opoietic cells, where it is one of the most abundant cell sur-
face glycoproteins, constituting almost 10 percent of the cell 
surface, and estimated to be present at approximately 25        μ M 
in the plasma membrane          [1 – 3] . CD45 functions as a central 
regulator of phosphotyrosine levels in hematopoietic cells 
by modulating the activity of Src family kinases (SFKs). Its 
importance is highlighted by observations, in both mice and 
humans, that its absence leads to severe combined immunode-
ficiency (SCID), while dysregulation of its activity correlates 
with autoimmunity          [2 – 4] . This chapter briefly summarizes our 
current understanding of the structure, function, and regulation 
of this key phosphatase.  

    STRUCTURE 

 CD45   belongs to a large family of type I transmembrane 
receptor-like protein tyrosine phosphatases (RPTPs). The 
members of this family are defined by the presence of one or 
two highly conserved intracellular phosphatase domains, but 
are also characterized by very diverse extracellular domains 
       [5, 6] . The large extracellular domain of CD45 is heavily 
glycosylated and contains three alternatively spliced exons 
(4, 5, and 6) that are both O-linked glycosylated and sia-
lylated        [2, 3] . Alternative splicing of these exons produces 
isoforms differing in size, shape, and charge  [7] . The larg-
est isoform containing all three alternatively spliced exons, 
CD45RABC, is approximately 235       kDa, while the smallest 
isoform lacking all three exons, CD45RO, is approximately 

180       kDa ( Figure 17.1   ). Additionally, evidence for alternative 
splicing of exon 7 has been reported at an mRNA level  [3] . 

 The   expression of these isoforms depends on the cell type 
and activation state of the cell  [2] . B cells express primarily the 
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 FIGURE 17.1          Cartoon representation of CD45 isoform structures.  
    CD45 exists as multiple isoforms due to alternative splicing of three exons 
(4, 5, and 6, designated A, B, and C) in the extracellular domain. The larg-
est isoform RABC includes all three exons, while the smallest, RO, lacks 
all three exons. These three exons encode multiple sites of O-linked gly-
cosylation. As a result, various isoforms differ substantially in size, shape, 
and charge. The remaining extracellular domain is heavily glycosylated, 
and contains a cysteine-rich region followed by three fibronectin type III 
repeats. CD45 has a single transmembrane domain and a large cytoplas-
mic tail containing two tandemly duplicated PTPase domains, D1 and D2. 
Only D1 has enzymatic activity. In addition, the CD45 crystal structure 
indicates that the juxtamembrane region forms a structural wedge.    
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full-length form of CD45, also known as B220. Na ï ve T cells, 
on the other hand, express no B220, but do express intermediate 
sized isoforms containing one or two of these exons. Following 
activation or differentiation into memory cells, as a consequence 
of changes in CD45 splicing, T cells replace higher-sized iso-
forms with the smallest isoform, CD45RO  [7] . The part of the 
extracellular domain common to all of the isoforms consists 
of a cysteine-rich region followed by three fibronectin type III 
repeats. CD45 homologs have been identified in various mam-
mals, chicken, shark, and the hagfish  Eptatretus stoutii         [2, 3] . 
While the actual amino acid identity of the extracellular domain 
is low between species, the general structure is conserved. 

 In   contrast, the transmembrane and cytoplasmic 
domains of CD45 are more highly conserved amongst spe-
cies        [2, 3] . The transmembrane domain has been shown to 
interact with CD45 associated-protein (CD45AP), although 
the function of this interaction is unclear since the pheno-
type of CD45AP-deficient mice is minimally affected        [8, 9] . 
Some data suggest it may affect membrane localization of 
CD45  [10] . The highly conserved intracellular domain of 
CD45 consists of two tandemly duplicated phosphatase 
domains. Only the membrane proximal domain has enzy-
matic activity, which is necessary to rescue TCR signaling 
in a CD45-deficient cell line  [11] . The first domain also 
contains a juxtamembrane helix – turn – helix motif termed 
the  “ wedge ”  that was first identified in the crystal struc-
ture of a related phosphatase, RPTP α         [12, 13] . This motif 
is the most highly conserved region of CD45 between spe-
cies  [12] . The crystal structure of CD45 confirmed the 
presence of this wedge motif  [13] . Interestingly, the wedge 
has now been shown to be present in all six of the RPTPs 
 crystallized to date, suggesting that it may be a conserved 
element in this class of proteins ( Figure 17.2   )          [3, 14, 15] . 

 The   function of the more C-terminal second phosphatase 
domain in CD45, as well as in other RPTPs that contain a 
second tandem domain, remains uncertain, since the more C-
terminal domain lacks catalytic activity. Although it contains 
the catalytic cysteine present in all tyrosine phosphatases, the 
absence of a number of other key residues completely abol-
ishes its activity. However, the second domain may contrib-
ute to CD45 activity indirectly by stabilizing the first domain. 
Supporting this notion, the CD45 crystal structure revealed 
an extensive area of contact between the two phosphatase 
domains. In addition, there is evidence that the second 
domain can bind and recruit substrates to be dephosphor-
ylated by the first domain. The second domain also contains a 
unique 19 amino acid acidic insert that can be phosphorylated 
by casein kinase II and a long C-terminal tail; neither of these 
elements was included in the CD45 crystal structure. Their 
contribution to CD45 conformation is therefore unknown.  

    FUNCTION 

 Studies   using CD45-deficient T and B cell lines demon-
strate that CD45 is an obligate positive regulator of anti-
gen receptor signaling          [2, 3, 16] . Ablation of the murine 
CD45 gene by three independent groups reveals its criti-
cal positive role in lymphocyte development and activation 
       [17, 18] . For example, thymocyte development is largely 
blocked at the positive selection developmental checkpoint, 
and the few mature T cells produced are refractory to TCR 
stimulation. Whereas B cell production is less severely 
affected until the most terminal stages of differentiation, 
B cell responses to BCR stimulation are also impaired. 
Similarly, loss of CD45 in humans results in a form of 

 FIGURE 17.2          Three-dimensional structure of RPTP α  and CD45 phosphatase domains.  
    Left panel: Ribbon depiction of the RPTP α  domain 1 crystal structure. The wedge is highlighted. Middle panel: Ribbon depiction of the CD45 domain 
1 and 2 crystal structure based upon the coordinates provided by Nam  et al . (2005). Right panel: Overlay of RPTP α  and CD45 crystal structures reveals 
the high degree of structural conservation, including the helix – turn – helix  “ wedge ” . The mutated wedge residue (E624 in human, E613 in mice) is 
highlighted.    
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severe combined immunodeficiency (SCID)        [2, 3] . Recent 
studies have also shown that CD45 is essential for cytokine 
production, but not cell-mediated cytotoxicity, in NK 
cells        [19, 20] . The role of CD45 in myeloid lineage cells 
is less clear, and may be obscured in part by functional 
redundancy with other RPTPs such as CD148 (J. Xhu and 
A. Weiss, unpublished observations). 

 Src   family kinases (SFKs) are a primary substrate for 
CD45        [21, 22] . SFKs are responsible for initiating antigen 
receptor signaling. They also modulate signal transduction 
cascades emanating from growth factor, cytokine, and integrin 
receptors. In most CD45-deficient cells, SFKs are hyper-
phosphorylated at the negative regulatory tyrosine        [2, 3] . 
Moreover, expression of a constitutively active Lck Y505F 
mutant in CD45-deficient mice largely rescues the block in 
T cell development, confirming that this is a physiologically 
relevant substrate of CD45  [23] . By preferentially dephos-
phorylating the negative regulatory tyrosine, CD45 can 
maintain SFKs in a primed, or signal competent, state which 
is capable of full activation upon receptor stimulation. 

 Although   CD45 clearly plays a positive role in anti-
gen receptor signaling, it can also function as a negative 
regulator in other settings. For example, CD45 deficient 
macrophages are abnormally adherent  [24] . Despite hyper-
phosphorylation of the negative regulatory tyrosine of the 
SFKs, kinase activity is enhanced due to hyperphospho-
rylation at low stoichiometry of the autophosphorylation 
site, explaining the increased adhesiveness of these cells. 
This finding suggests that both the autophosphorylation 
site and the negative regulatory tyrosines can serve as 
CD45 substrates in some contexts. Interestingly, similar 
findings have been described for antigen receptor signal-
ing in some CD45-deficient T and B cell lines, as well as 
CD45-deficient mice reconstituted with low levels of CD45 
isoform-specific transgenes        [25, 26] . The discrepancy of 
positive and negative effects of CD45 may be explained by 
its inclusion in or exclusion from clustered signaling com-
plexes. Physical separation from the TCR during antigen 
recognition at the immunological synapse results in a net 
positive effect, while access to its substrate during integrin-
mediated adhesion results in a negative effect        [2, 26] . 

 In   addition to SFKs, CD45 may also negatively regu-
late cytokine and interferon receptor-mediated activation by 
dephosphorylating Janus kinases. Other possible (but contro-
versial) substrates include ZAP-70, PAG-85, and CD3 ζ   [3] .  

    REGULATION 

 The   regulation of CD45 is complex and incompletely under-
stood. Surprisingly, given the structural similarity between CD45 
and receptor tyrosine kinases, a definitive ligand for CD45 
has not been identified, although  interactions with various 
lectins have been suggested to modulate its activity  [3] . 
Potential and non-mutually exclusive means of regulation 

include spontaneous isoform-differential homodimerization, 
regulated membrane localization regulated by interactions with 
other molecules, phosphorylation, and oxidation-induced con-
formational changes. 

 The   alternative splicing of CD45 is highly conserved and 
tightly regulated  [7] . Naive T cells predominantly express 
the larger isoforms, and following activation, over the course 
of 3 – 5 days, the smallest RO isoform replaces the larger iso-
forms on the plasma membrane. This regulated event is likely 
to be under the control of splicing factors that are induced 
in a PKC- and Ras-dependent manner after T cell activation 
 [27] . An exonic splicing silencer (ESS) sequence in exon 4 
is responsible for controlling exon usage. The ESS interacts 
with hnRNP L or the splicing factor PSF in response to sig-
naling events in T cells  [28] . The importance of this ESS is 
highlighted by a translationally silent point mutation in exon 
4, which disrupts the function of the exonic splicing silencer 
and causes abnormally high levels and persistent expression 
of the larger isoform, and has been linked to the development 
of multiple sclerosis in a German, but not American or other 
European, patient cohort        [3, 4] . In contrast, a point mutation in 
exon 6, A138G, results in enhanced production of low molec-
ular weight isoforms and has been associated with resistance 
to Graves disease and hepatitis B in Japanese cohorts, where 
this polymorphism is prevalent        [3, 4] . Together, these obser-
vations provide support for a contribution by the extracellular 
domain in regulating CD45 activity, and suggest differences in 
regulation of the various isoforms. 

 Unfortunately  , attempts to understand the role of different 
isoforms by reconstituting CD45-deficient mice with isoform-
specific transgenes have met with limited success due to the dif-
ficulty of reconstituting wild-type levels of expression        [3, 29] . 
Interestingly, very low levels of any isoform of CD45 can 
reconstitute T, but not B, cell development. However, whether 
this low level expression can reconstitute an appropriate T 
cell repertoire has not been addressed. This is important, as 
positive selection has even been shown to be altered in CD45 
heterozygous mice expressing a TCR transgene  [30] . Recent 
studies have  suggested that the two phosphorylation sites of 
SFK are differentially sensitive to different levels of CD45 
transgene expression, with the C-terminal site being most 
sensitive to CD45 phosphatase levels  [25] . Thus, the expres-
sion levels of CD45 may be critical in regulating its function, 
and  suggest that CD45 could act as a rheostat to titrate  signal 
transduction thresholds in the T cell lineage  [2] . 

 One   possible means of regulation of CD45 is isoform-
differential spontaneous homodimerization. Dimeric forms 
of CD45 can be detected through chemical crosslinking of 
cellular lysates, by using a cysteine dimer-trapping method, 
or by fluorescence resonance energy transfer (FRET)          
[31 – 33] . Interestingly, low molecular weight  isoforms appear 
to dimerize more readily than larger isoforms. To test the role 
of dimerization, a chimeric protein containing the epidermal 
growth factor (EFG) receptor extracellular and transmem-
brane domains fused to the cytoplasmic domain of CD45 was 
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introduced into a CD45-deficient T cell line. Although the chi-
mera reconstituted TCR signaling in the CD45-deficient state, 
EGF-induced dimerization inhibited TCR-mediated signal 
transduction  [34] . 

 A   potential molecular explanation for dimer-mediated neg-
ative regulation was suggested by the crystal structure of the 
membrane proximal D1 domain of RPTP α   [12] . It formed a 
symmetrical dimer in which the catalytic site of one molecule 
was blocked by the juxtamembrane wedge of its partner. The 
phylogenetic conservation of the wedge between RPTP family 
members suggests a potential preserved evolutionary function. 
Introduction of a point mutation at the tip of this wedge (E624 
in human CD45) abolished the inhibitory effect of dimeriza-
tion on T cell receptor signaling in a transformed T cell line 
 [12] . Introduction of the analogous point mutation into mice 
by homologous recombination (termed CD45E613R) resulted 
in both B cell and thymocyte hyper-responsiveness to antigen 
receptor stimulation        [35, 36] . The phenotypic consequences 
of the CD45E613R mutation were development of a lympho-
proliferative syndrome and severe autoimmune nephritis with 
autoantibody production, resulting in early death  [36] . Taken 
together, these data validate a role for the wedge in negative 
regulation of CD45 function. 

 The   presence of the wedge in the CD45 crystal structure 
that was subsequently solved suggests its potential role in 
dimerization-mediated regulation of CD45 activity  [37] . At 
the same time, though, the crystal structure poses a signifi-
cant problem to a dimerization-based model. In the crystal 
structure, the orientation of the first and second domains 
would preclude the wedge from participating in dimer for-
mation. However, this conformation may only represent 
one of many possible conformations. Many other factors 
may influence CD45 structure and dimerization, including 
the extracellular domain, lipid bilayer, transmembrane seg-
ment, juxtamembrane region, acidic insert, and C-terminal 
tail. Alternatively, or in addition, the wedge could impact 
other means of CD45 regulation. 

 Cellular   localization and access to substrate may also 
contribute to CD45’s effect on signaling. Redistribution of 
an intracellular pool of CD45 upon T cell activation has been 
observed        [2, 3] . Most studies on the localization of CD45 
show that it is absent from membrane lipid rafts, and excluded 
from the central region of the interface between the T cell 
and the antigen-presenting cells, as well as regions contain-
ing stimulated TCR microclusters        [2, 38] . Such exclusion is 
presumed to be due to the large size of CD45 and the rela-
tively small size of molecules involved in antigen-specific rec-
ognition. Potential mechanisms  regulating the segregation of 
enzyme and substrate have yet to be fully elucidated. 

 The   function of CD45 may also be modulated through its 
interactions with other proteins. CD45 has been reported to 
associate at the cell surface with CD2, LFA-1, IFN receptor  α  
chain, Thy-1, CD100, and CD26        [2, 3] . Moreover, compared 
to larger isoforms, CD45RO is found to preferentially associ-
ate with CD4 and TCR via the CD45 extracellular domain. 

CD22, galectin-1, and glucosidase II can bind CD45 and other 
glycoproteins through specific sugar residues, although the 
functional consequences of these interactions are unclear. The 
transmembrane domain of CD45 mediates its interaction with 
lymphocyte phosphatase-associated phosphoprotein (LPAP) 
 [39] . The cytoplasmic tail of CD45 is associated with the 
cytoskeletal protein fodrin  [40] . 

 CD45   conformation and activity may also be dynami-
cally regulated by phosphorylation and/or oxidation of the 
second phosphatase domain. The acidic loop has been repor-
ted to be serine phosphorylated by casein kinase II, result-
ing in increased CD45 activity  [41] . How this kinase itself 
is regulated during cellular activation, however, remains to 
be elucidated. Reversible oxidation has been shown to be an 
important mode of regulation for many phosphatases  [42] . 
For example, oxidation-induced conformational changes 
have been observed in the oxidized crystals of the RPTP 
family members PTP1B and RPTP α . Interestingly, for the 
tandem phosphatase RPTP α , the second domain appears to 
be more sensitive to oxidation than the first, supporting the 
notion that the D2 domain can act as a redox sensor  [42] . In 
this model, low concentrations of ROS may preferentially 
oxidize the second domain, leading to a conformational 
change allowing dimerization to occur, thereby facilitating 
inhibition of phosphatase activity. Intriguingly, the primary 
target of oxidation, the catalytic cysteine, is phylogenetically 
preserved in the second domain of CD45, despite the loss of 
catalytic activity. Moreover, a recent report has suggested that 
CD45 may be oxidized in B cells  [43] . These authors showed 
that stimulation of B cells results in the generation of reac-
tive oxygen species (ROS) by the NADPH oxidase DUOX1. 
CD45 was inhibited with kinetics similar to that of the ROS 
production, and was rescued by use of ROS scavengers. 
However, direct oxidization of CD45 itself was not demon-
strated, and confirmation of this model will require further 
experimentation.  

    SYNOPSIS 

 While   considerable strides have been made in our understand-
ing of this highly abundant and critical phosphatase, signifi-
cant questions remain. Why is it expressed at such high levels? 
What is the physiologic significance of the highly regulated 
isoform expression? How is  membrane localization and sub-
strate access regulated? Further research is clearly needed to 
fully elucidate the answers to these questions.  
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    INTRODUCTION 

 The   immune system provides a highly sophisticated sur-
veillance mechanism to detect diverse antigens and protect 
the host organism from invading pathogens and altered cells 
(e.g., virus-infected and tumor cells). Adaptive immune 
responses depend on the recognition of antigen by specific 
antigen receptors that are expressed on the surface of T and 
B lymphocytes. To initiate effector mechanisms, binding 
of the antigen must induce intracellular signaling cascades 
that activate the lymphocyte and promote their differentia-
tion to an effector cell type appropriate for the particular 
antigenic challenge. Importantly, regulatory mechanisms 
must also be present to safeguard against inadvertent self-
reactivity, which could lead to autoimmunity, and to ter-
minate immune responses, thereby avoiding overexposure 
of the organism to toxic effectors (e.g., cytotoxic T cells, 
cytokines). 

 T   lymphocytes are derived from the lymphoid lineage 
of hematopoietic stem cells. T cell progenitors enter the 
thymus, where they develop into mature T lymphocytes. 
During thymic development, the immature thymocytes 
undergo rearrangement of first  β  and then  α  T cell recep-
tor (TCR) genes        [1, 2] . This process increases the diversity 
of available TCRs, and assures that each T cell expresses 
only a single type of TCR. Only those thymocytes that 
have successfully completed TCR gene rearrangement will 
be allowed to survive; unsuccessful rearrangements lead 
to programmed cell death. Following rearrangement, the 
functionality of the maturing thymocytes is tested by inter-
actions with thymic antigen-presenting cells. A distinct 
lineage of T cells express  γ  δ  TCR genes. Most of the infor-
mation on cellular signaling in T cells has been gathered in 
 α  β  T cells, and thus we focus on this lineage. 

 Thymocytes   undergo positive selection to ensure that 
their TCR can engage epitopes formed by short peptides 
bound to molecules encoded by the major histocompat-
ibility complex (MHC). Because of the large isotypic and 
allelic variability of MHC molecules within each species, 
not all recombination events of TCR genes lead to matches 
with a peptide – MHC complex potentially present in the 
individual organism. Two classes of MHC molecules select 
T cells with different functions. MHC class I molecules 
bind peptides derived from proteins synthesized by the pre-
senting cell and proteolytically processed by the cell’s pro-
teosome. These peptides can combine with nascent MHC 
class I molecules in the endoplasmic reticulum  [3] . MHC 
class II molecules bind peptides derived from extracellu-
lar, endocytosed proteins that are processed in lysosomes. 
Nascent and recycling MHC class II molecules bind these 
peptides while trafficking through lysosomes  [4] . These 
same antigen processing pathways are also responsible 
for presenting antigenic peptides to mature T cells, and 
thus initiate effector functions. Na ï ve T cells, those T cells 
that have not been stimulated subsequent to thymic egress, 
require co-stimulation, which can only be given by specific 
antigen-specific cells, such as dendritic cells. Thus, the 
clear dichotomy between the MHC class I and MHC class 
II pathways, which stimulate CD8 �  cytotoxic and CD4 �  
helper T cells, respectively, posed a problem in explain-
ing how T cells could respond to viruses that do not infect 
antigen-specific cells directly or to tumor antigens that are 
not expressed by antigen-specific cells. The recent discov-
ery that mannose receptor-mediated endocytosis provides 
an avenue for the presentation of extracellular antigens via 
MHC class I on dendritic cells demonstrates a constitutive 
mechanism whereby T cells can be stimulated by antigens 
that are present in non-lymphoid tissues  [5] . 

 Chapter 18 
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 Positive   selection of thymocytes requires that the inter-
action between TCR and peptide – MHC complex induces a 
signal of sufficient strength and duration. Thymocytes that 
do not receive a TCR-mediated signal during positive selec-
tion die. Positive selection occurs on thymic stromal epi-
thelial cells, which do not present a full complement of all 
possible antigens that the T cell might encounter during its 
lifetime. Thus, selected T cells have partial self-reactivity 
and the potential to recognize antigens that will only be 
encountered later in life. Maturing thymocytes express 
both CD4 and CD8 co-receptors. Following positive selec-
tion, the CD8 coreceptor gene is silenced. If the selection 
signal persists despite the absence of  Cd8  gene expres-
sion, the intermediate thymocytes differentiate into CD4 �  
T cells. If, however, the selection signal ceases upon  Cd8  
gene silencing, the CD4 � CD8-intermediate thymocytes 
re-initiate  Cd8  gene expression and enter the CD8 �  T cell 
lineage        [6, 7] . 

 A   separate selection step is a negative test to elimi-
nate thymocytes that overtly respond to self-antigens. Of 
all the thymocytes that mature up to the double-positive 
(CD4 � CD8 � ) stage, only about 3 percent complete 
maturation and emigrate from the thymus to peripheral 
lymphoid tissues (e.g., blood, lymph nodes, and spleen). 
Negative selection is mediated by thymic stromal cells or 
antigen-specific cells (mainly dendritic cells) that migrate 
from peripheral organs into the thymus. These cells pro-
vide a large battery, but not a complete complement, of 
different peptides derived from self and foreign proteins. 
Following interactions of TCRs with self-peptides in the 
thymus, cellular activation thresholds are dynamically 
tuned by modulating co-stimulatory and other molecules 
that modify cellular signaling in developing thymocytes to 
establish cellular activation thresholds that prevent reactiv-
ity to self  [8] . Thymocytes that continue to respond vig-
orously to stimuli presented during the negative selection 
phase undergo apoptosis  [9] . 

 This   chapter provides a broad overview of T cell sign-
aling, with emphasis on the signaling molecules and path-
ways important for antigen-induced signal transduction 
and elicitation of effector functions. General principles are 
discussed, and open questions and areas of current research 
are highlighted.  

    SIGNALING RECEPTORS IN T CELLS 
FORM DYNAMIC MACROMOLECULAR 
SIGNALING COMPLEXES 

    Antigen-specific T Cell Receptors 

 Most   mature T cells express  α  β  TCRs, but some T cells, 
especially those in mucosal tissues, express a  γ  δ  TCR. The 
antigen-specific TCR is a disulfide-linked heterodimer that 
does not have intrinsic signaling capability. The ability to 

transduce intracellular signals is conveyed to the TCR via 
its mandatory and constitutive association with a multi-
protein structure, termed the CD3-ζζ complex. Neither of 
the individual components of the TCR/CD3-ζζ signaling 
machine can be transported to the cell surface without the 
full assembly of the complex  [10] . 

 The   CD3 complex is composed of four transmembrane 
polypeptide chains, a  δ  �  and a  γ  �  heterodimer. These pro-
teins have very short extracellular domains and each intra-
cellular domain contains a conserved protein tyrosine 
kinase (PTK) recognition motif, termed Immunoreceptor 
Tyrosine - based Activation Motif (ITAM). The disulfide-
linked ζζ-dimer contains three ITAMs per protein chain 
       [11, 12] . The characteristic sequence motif of an ITAM is 
(D/E)xx Y xx(L/I) x 6 – 8   Y xx(L/I), with x indicating variable 
amino acid residues. ITAMs are substrates for  src  family 
PTKs, and phosphorylation of the paired tyrosines within 
ITAMs is a determining initiation event for T cell signaling 
       [11, 12]  ( Figure 18.1   ).  

    TCR Engagement and the Formation of 
Signalosomes 

 Binding   of a peptide-MHC complex to the TCR triggers 
the recruitment and trans-autocatalytic activation of  src  
family PTKs, such as p56  lck   and p59  fyn  . These  src  family 
PTKs rapidly phosphorylate the paired tyrosines within the 
ITAMs of the ζζ dimer and the CD3 subunits, thus generat-
ing binding sites for the cytosolic  syk  family PTK  ζ  chain-
associated protein of 70       kDa (ZAP-70), which contains 
tandem Src homology 2 (SH2) domains  [13] . Recruitment 
of ZAP-70 to the developing TCR signaling machinery 
allows phosphorylation of two pairs of tyrosines by p56  lck   
(Y 315  and Y 319 ) and by trans-autophosphorylation (Y 492  and 
Y 493 ), respectively  [14] . ZAP-70 in turn phosphorylates 
components of distinct downstream signaling pathways 
       [15, 16] . Thus, T cell activation depends on activation of 
both  src  family kinases and ZAP-70. 

 Before   we follow the signal transduction cascade fur-
ther, it is worthwhile to briefly discuss the complex tem-
poral and spatial arrangement of signaling complexes and 
networks activated by TCR engagement. Slightly different 
compositions of these signaling machines  –  also termed 
 “ signalosomes ”         [17, 18]   –  using essentially the same com-
ponents can induce different second messenger signals and 
lead to drastically diverse cellular responses. In addition, 
the dynamic assembly and disassembly of signalosomes is 
likely a major factor in regulating signal transduction net-
works. TCR signalosomes consist of transmembrane recep-
tors, protein kinases, phosphatases and their substrates, 
all of which are organized into signaling machines by 
anchoring, adapter, and scaffolding proteins. Signalosomes 
connect events on the plasma membrane to distal signal-
ing cascades, which ultimately modulate T cell biology. 
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Several protein adapters, in particular Linker of Activated 
T cells (LAT), act as central switches that translate the 
quality, quantity, and duration of signals into the correct 
activation of specific downstream pathways  [19] . 

 Formation   of signalosomes is aided by compartmentali-
zation of the plasma membrane into detergent-insoluble, 
sphingolipid/cholesterol-enriched microdomains, which 
promote the recruitment of signal transduction molecules 
to the TCR signaling machine upon TCR engagement        [20, 
21] . These areas of the T cell surface are also known as 
lipid  “ rafts. ”  Palmitoylation constitutively embeds several 
components, such as Lck and Fyn, into these lipid micro-
domains, whereas others, such as ZAP-70, relocalize into 
rafts upon TCR engagement          [22 – 24] . 

 While   it is generally acknowledged that ITAM phos-
phorylation by Lck and recruitment of ZAP-70 to the T 
cell signaling machinery constitute crucial events for TCR-
mediated signal transduction, the mechanism that causes 
the initial trigger is controversial  [25] . Competing mod-
els that are not mutually exclusive suggest that binding of 
peptide – MHC induces the aggregation of TCR/CD3 com-
plexes, or changes the conformation of TCR/CD3 com-
plexes or the orientation of the TCR in relation to the cell 

membrane  [26] , or induces segregation and redistribution 
of TCR/CD3 complexes in relation to other cell membrane 
proteins  [27] .  

    Adapter Proteins and Macromolecular 
Scaffolds 

 Returning   to the events following TCR engagement, it is 
now clear that the relocalization of signalosomes to receptor-
associated scaffolds is crucial for effective signal trans-
duction          [28 – 30] . Adapter proteins with SH2 domains 
bind to the phosphorylated ζ chain. Among these proteins 
is the Src homology 2 protein of beta-cells (Shb), which 
recruits LAT via its central, phosphotyrosine-binding (PTB) 
domain-like motif. LAT contains nine tyrosine phospho-
rylation sites, and is a substrate for ZAP-70. Tyrosine 
phosphorylation of LAT leads to the recruitment of addi-
tional signaling molecules with SH2 motifs, including the 
adapters growth factor receptor-bound protein 2 (Grb2) and 
Gads, the GDP/GTP exchange factor Vav, the phospholi-
pase C γ 1 (PLC γ 1), and the p85 subunit of phosphatidyli-
nositol 3-kinase (PI3K)          [15, 31, 32]  (         Figures 18.1, 18.2 ). 
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 FIGURE 18.1          The signalosome.  
    The initial signalosome consists of the TCR, the associated CD3 and ζζ complex, the co-receptor (CD4 or CD8), the phosphatase CD45, and the  srk  
kinase p56  lck  . The  syk  kinase ZAP-70 is recruited following phosphorylation of tyrosines located in the ITAMs of CD3 and ζζ. Adapters, such as LAT, 
Grb2, and Vav1 then associate with the signalsome and provide an expanding scaffold for downstream signaling molecules.    
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 Gads   is associated with the SH2 domain containing 
Leukocyte Protein of 76       kDa (SLP-76), and together they 
form a macromolecular scaffold, which stabilizes the inter-
action of PLC γ 1 with the TCR signalosome  [32] . SLP-76 is 
essential in the activation of PLC γ 1 and downstream sign-
aling  [33] . PLC γ 1 is tyrosine phosphorylated in antigen-
activated T cells, an event required for its activation. Active 
PLC γ 1 hydrolyzes phosphotidylinositol biphosphate (PIP 2 ), 
producing diacylglycerol (DAG) and 1,4,5-inositol triphos-
phate (IP 3 ). DAG in turn activates the serine/threonine kinase 
family of protein kinase C (PKC), while IP 3  induces calcium 
(Ca 2 �  ) mobilization in the cytosol. Thus, ZAP-70 amplifies 
the TCR signal by specifically phosphorylating downstream 
components such as LAT        [34, 35]  and PLC γ 1  [33] . 

 In   this way, the signalosome expands in molecular com-
plexity and amplifies the TCR initiated signal. Importantly, 
LAT can also bind proteins that negatively regulate TCR 
signaling. The SH2 domain-containing Hematopoietic 
Phosphotyrosine phosphatase, SHP-1, associates with LAT 
upon TCR stimulation and prevents further phosphoryla-
tion of the adapter by ZAP-70, suggesting a potential con-
version from an  “ activating ”  to an  “ inhibiting ”  signalosome 
as a means for  “ quality control ”  of the stimulation event 
 [36] . Similarly, the C-terminal  src  kinase (Csk) relocalizes 

to rafts by docking to the transmembrane adapter, Csk-
binding protein (Cbp), also known as Phosphoprotein 
Associated with Glycosphingolipid-enriched microdo-
mains (PAG)  [37] . In rafts, Csk inhibits  src  family PTKs by 
phosphorylating their regulatory tyrosines, and thus blocks 
TCR-mediated signal transduction  [38] .   

    CO-RECEPTOR AND CO-STIMULATORY 
PROTEINS MODULATE T CELL SIGNALING 
PATHWAYS 

 Before   discussing the second messenger signals induced 
by TCR engagement, we need to introduce two sets of T 
cell surface proteins that crucially modulate TCR/CD3-ζζ-
mediated signals: the co-receptors and the co-stimulators. 

    Co-receptors, TCRs, and the Formation of 
Signalosomes 

 Co  -receptors are associated with the TCR/CD3-ζζ complex 
upon T cell activation. Their presence in the TCR multi-
component signaling machine amplifies or modulates 
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the activation signal. Often, their presence is absolutely 
required, but not sufficient, for productive signaling  –  that 
is, signaling that results in cell cycle progression and effec-
tor functions. 

    CD4 and CD8 

 CD4   and CD8 are membrane glycoproteins associated 
with MHC class II and class I restriction, respectively. In 
mature T cells, their expression is mutually exclusive. In 
general, CD4 �  T helper (Th) cells respond to antigenic 
peptides presented by MHC class II molecules, and CD8 �  
cytotoxic T (Tc) cells respond to MHC class I-presented 
antigens. CD4 and CD8 have been thought of as mol-
ecules that enhance the stability of the tripartite complex 
between TCR and peptide – MHC. However, in recent years 
it has become clear that their function is more complex and 
dynamic. For example, TCR/peptide – MHC interactions 
initiate the formation of a specialized junction between 
T cells and antigen-specific cells, the immunological syn-
apse. Stimulation- and cytoskeleton-dependent processes 
cluster TCR/CD3 complexes in the center of the syn-
apse, also termed the central zone of the SupraMolecular 
Activation Cluster (cSMAC), whereas adhesion molecules 
such as LFA-1 form a ring surrounding the central area 
called the peripheral SMAC (pSMAC)        [39, 40] . After stim-
ulation of the T cell, CD4 co-receptors are rapidly recruited 
into the cSMAC, but migrate towards the periphery within a 
few minutes, while TCR/CD3 complexes stabilize within 
the central area  [41] . Both CD4 and CD8 associate with 
the PTK p56  lck  , and the efficient transport of p56  lck   into the 
cSMAC is a major function of these co-receptors  [42] . In 
addition, co-receptor interactions with MHC molecules 
regulate peripheral T cell homeostasis and the survival of 
na ï ve T cells in the absence of antigenic stimulation  [43] . 
The observation that CD4 can induce signals independ-
ent of the TCR suggests complex regulatory effects of co-
receptors on T cell function        [44, 45] .  

    CD5 

 The   CD5 lymphocyte glycoprotein is expressed on thymo-
cytes and all mature T cells. CD5 can act as a co-stimulatory 
molecule for resting T cells by augmenting CD3-mediated 
signaling  [46] . In mature, peripheral T cells, CD5 is present 
in lipid rafts of the T cell surface, where it promotes CD3 
redistribution into rafts, thus markedly upregulating ZAP-70 
and LAT activation, and Ca 2 �   influx  [47] . However, CD5 is 
also constitutively associated with SHP-1, an interaction that 
increases upon TCR stimulation and negatively regulates 
TCR-mediated activation  [48] . The differential modulatory 
properties of CD5 depend on the context of lymphocyte sub-
set and their differentiation stage. A recent review discusses 
contradictory and complementary reports of CD5-mediated 
molecular intracellular signaling events  [49] .  

    CD45 

 CD45   is a membrane-bound tyrosine phosphatase present 
on hematopoietic cells. CD45 phosphatase activity is abso-
lutely required for thymic T cell development and activation 
of mature T cells. CD45 dephosphorylates the negative regu-
latory site tyrosine-505 on the  scr  kinase p56  lck  . However, 
it is much less effective in dephosphorylating the activating 
tyrosine-395 on p56  lck  . Multiple exons and differential glyc-
osylation allow the expression of different CD45 isoforms in 
cell- and development-specific fashion. In peripheral, human 
CD4 �  T cells, the na ï ve subset (i.e., cells that have not been 
stimulated by antigen after thymic selection) expresses the 
high molecular weight form, CD45RA, whereas activated 
and memory CD4 �  T cells express the low molecular 
weight form, CD45RO  [50] . Importantly, TCR-dependent 
intracellular signaling events differ in relation to CD45 iso-
form expression  [51] . In a rheostat-like manner, CD45 activ-
ity differentially regulates phosphorylation of p56  lck  , thereby 
determining the strength of the TCR-induced signal  [52] . 
The distribution of CD45 in activated T cells is also highly 
regulated in that CD45 is completely excluded from the 
immunological synapse. The presence of CD45 in cSMACs 
prevents the continuation of the TCR-mediated signal  [53] . 
This is in contrast to the distribution of CD4 and CD8 co-
receptors, which migrate into the cSMAC before relocating 
to the pSMAC.  

    Multiple Functions of Co-receptors 

 Views   on co-receptor function have evolved with available 
technologies. The traditional definition identifies co-receptors 
as proteins that associate with the TCR upon T cell stimu-
lation, and stabilize the TCR’s interactions with its ligands. 
However, the ability to identify PTKs and to measure their 
activities has demonstrated associations between p56  lck   and 
CD4 or CD8, inspiring the realization that these corecep-
tors enhance and regulate TCR functions by transporting 
Lck into the TCR/CD3-ζζ complex. Similarly, the recently 
identified co-receptor, CD160/BY55, which is expressed 
by most intestinal intraepithelial lymphocytes and by a 
minor subset of circulating lymphocytes including NK, 
 γ  δ TCR, and cytotoxic effector CD8 �  T lymphocytes, 
associates with Lck and tyrosine phosphorylated ζζ upon 
TCR/CD3 cell activation  [54] . In addition, CD5 is asso-
ciated with SHP-1 upon T cell activation  [48] , and CD45 
contains intrinsic phosphatase activity. Thus, physiological 
responses to TCR engagement at the contact site between 
T cells and antigen-specific cells are the result of localized 
and finely-tuned alterations in the balance between cellular 
kinases and phosphatases  [55] . 

 The   ability of co-receptors to transduce signals inde-
pendent of TCR stimulation suggests that they are not 
merely scaffolding or transport proteins, but also exert 
complex regulatory effects on T cell activation        [44, 45] . 
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Functionally, the distinction between co-receptors and 
co-stimulators blurs, and the distinguishing feature of co-
receptors may be their temporal association with the TCR/
CD3- ζζ complex.   

    Co-stimulatory Receptors and TCR-mediated 
Activation 

 The   concept of T cell co-stimulation was born out of the 
necessity to explain the phenomenon of self-tolerance 
within the concept of Burnet’s clonal selection theory. 
Because not all self-proteins traffic to the thymus or are 
expressed at all stages of development, central tolerance 
induced by negative selection of auto-reactive thymocytes 
in the thymus cannot fully explain the unresponsiveness 
of mature T cells to peripheral self-antigens. Therefore, 
several investigators introduced the two-signal model of 
activation          [56 – 58] . The model postulates that any na ï ve 
lymphocyte stimulated via engagement of only the antigen 
receptor will enter a state of anergy, which is characterized 
by unresponsiveness to future antigen-mediated stimula-
tion. Only if a second, co-stimulatory signal is given dur-
ing antigen stimulation is the lymphocyte fully activated to 
display effector functions and proliferate. Co-stimulatory 
signals for B cells and CD8 �  cytotoxic T cells are mainly 
provided by activated CD4 �  T helper cells, whereas a 
variety of surface molecules expressed on hematopoietic 
antigen-specific cells (e.g., dendritic cells, activated mac-
rophages, activated B cells) can induce co-stimulation in T 
helper cells. 

 Co  -stimulatory receptors do not have to associate with 
the TCR/CD3 complex to exert their function. They can 
transduce signals independent of the TCR/CD3. Originally, 
they were thought to only induce cellular effector func-
tions in combination with TCR-transduced signals. While 
this paradigm has been challenged, recent experiments sug-
gest that CD28-mediated signaling events depend on intact 
TCR and ZAP-70 activity  [59] . Some of the co-receptors 
discussed in the previous chapter also have co-stimulatory 
functions. 

    CD28 

 Interactions   of CD28 with its ligand B7 on antigen-specific 
cells activate the CD28-responsive element (CD28RE), con-
tained within the interleukin-2 (IL-2) gene promoter, and 
thus promote induction of IL-2 gene expression. Interaction 
of CD28 with three intracellular proteins  –  PI3K, the T 
cell-specific Tec-family kinase Itk  [60] , and the complex 
between Grb2 and the guanine nucleotide exchange protein 
Son of sevenless (SOS) activates the serine/threonine kinase 
MAPK/ERK kinase kinase (MEKK1), which contributes to 
full activation of the CD28RE and regulates nuclear translo-
cation of the transcription factors NF κ B and AP-1        [61, 62] . 

 The   CD28 signal also amplifies activation of PLC γ 1 
and mobilization of Ca 2 �  . Further, CD28 engagement acti-
vates p56  lck   molecules that are phosphorylated at the regu-
latory tyrosine residue 505, generally considered to be an 
inactive form of p56  lck    [42] . Thus, CD28 amplifies signals 
from the TCR that would otherwise be too weak for T cell 
activation. Interestingly, the PTKs p56  lck   and p59  fyn   phos-
phorylate CD28, and Itk binding to CD28 is dependent on 
the presence of p56  lck  . Thus, p56  lck   is likely to be a central 
switch in T cell activation, with the dual function of regu-
lating CD28-mediated costimulation as well as TCR/CD3/
CD4 signaling. 

 Because   CD28 provides co-signals in T cell responses, 
a key question is whether the CD28 operates exclusively 
via TCR/CD3-ζζ or also operates as an independent sign-
aling unit. Recent data show that mitogenic CD28 signals 
depend on the expression of a functional TCR and intact 
ZAP-70 kinase activity. However, these CD28 signals do 
not phosphorylate either ζζ or ZAP-70  [59] . The mitogenic 
CD28 signaling pathway further depends on binding of 
Grb2 to CD28, association with phosphorylated SLP-76, 
and recruitment of Vav1. SLP-76 cannot be phosphorylated 
independent of the TCR. The most likely pathway involves 
suboptimal phosphorylation of SLP-76 by ZAP-70, fol-
lowed by binding of CD28 to Grb2 in the signalosome, 
and CD28-mediated recruitment of Vav1 and Itk. Itk then 
completes the phosphorylation of SLP-76  [59] . Thus, the 
CD28 pathway feeds into the TCR signaling pathway to 
amplify signals that lead to Ca 2 �   flux, IL-2 production, and 
proliferation. 

 Importantly  , engagement of the TCR alone may result 
in an anergic state or T cell deletion, both of which can 
induce tolerance to antigen stimulation. Insight into the 
regulation of CD28 dependency comes from genetic exper-
iments. T cells that are deficient in the adapter molecule 
Cbl-b do not require CD28 engagement for IL-2 produc-
tion. Also, whereas B cells responding to T cell-dependent 
antigens cannot undergo isotype switching from IgM to 
IgG in CD28-deficient mice, T cell help is fully restored 
in CD28/Cbl-b double-deficient mice  [63] . The function 
of Cbl-b is to selectively suppress TCR-mediated Vav 
activation, thus rendering T cells dependent on CD28 co-
stimulation  [63] .  

    CD40L 

 The   interaction of the tumor necrosis factor (TNF) family 
member CD40L on activated T cells with its receptor, the 
TNF receptor family member, CD40, which is expressed on 
macrophages, dendritic cells, and activated B cells, provides 
a strong signal for IL-12 production  [64] . An important 
aspect of CD40-CD40L signaling is its synergistic relation-
ship with the CD28-B7 signal. CD40L cell surface expres-
sion is upregulated by CD28 signaling. The subsequent 
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interaction between CD40L and CD40 induces B7 upregula-
tion on antigen-specific cells, enhancing the co-stimulatory 
activity of macrophages, dendritic cells, and B cells  [65] .    

    INTRACELLULAR SIGNALING PATHWAYS 
INDUCED BY ANTIGEN STIMULATION OF 
T CELLS 

         Calcium Mobilization 

 The   TCR-induced signal transduction leads to activation of 
PLC γ 1, which hydrolyzes PIP 2  to DAG and IP 3 . Binding 
of IP 3  to its receptor in the endoplasmic reticulum mem-
brane induces the release of Ca 2 �   into the cytosol. The 
subsequent increase in intracellular free Ca 2 �   opens Ca 2 �  -
regulated Ca 2 �   channels in the plasma membrane, inducing 
additional Ca 2 �   influx. Intracellular free Ca 2 �   acts as an 
essential second messenger for T cell activation. Its regula-
tory effects on T cell activation are mediated via calmod-
ulin, a Ca 2 �  -binding protein expressed in all eukaryotic 
cells. Effective T cell activation leading to IL-2 secretion 
requires that intracellular Ca 2 �   levels be elevated for a 
period of 1 – 2 hours. Sustained Ca 2 �   signaling is required 
for maintaining the transcription factor Nuclear Factor of 
Activated T cells (NFAT) in the nucleus in an active form. 
NFAT is a key transcriptional regulator of the IL-2 gene 
and other cytokine genes ( Figure 18.2 ). 

 Ca   2 �   signaling is required for various lymphocyte 
activities  –  for example, cell mobility, change of cytoskel-
etal structure, cell death, differentiation, and activation. 
Thus, a single second messenger can elicit multiple cellular 
responses. The type of response induced may depend on 
the amplitude, duration, and temporal fluctuations of Ca 2 �   
mobilization. For example, activation of NF κ B is induced 
by high levels of Ca 2 �  , because of this transcription fac-
tor’s low Ca 2 �   sensitivity. In contrast, long-lasting, low 
levels of Ca 2 �   selectively activate NFAT, because NFAT 
is highly sensitive to Ca 2 �  , but is rapidly inactivated after 
Ca 2 �   removal  [66] .  

    PKC 

 Release   of DAG stimulates PKC, a family of serine/
threonine kinases. In T cells, multiple PKC isoforms are 
expressed  [67] . One of the major functions of PKC is to 
induce MAPKs. PKC α  directly phosphorylates and acti-
vates Raf-1, another serine/threonine kinase. Activation of 
Raf-1 triggers a protein kinase cascade by directly phospho-
rylating MAPK kinase. Activation of PKC also mediates 
the rapid accumulation of the active, GTP-bound form of 
p21  ras  . The Ca 2 �  -independent isoform PKC θ  is required for 
the activation of mature T cells and regulates the I κ B kinase 
(IKK) – NF κ B pathway by facilitating the phosphorylation 

of IKK γ  and subsequent degradation of I κ B α  and nuclear 
translocation of NF κ B        [67, 68] .  

    Transcription Factors: Activation and Gene 
Expression 

 The   multiple signaling pathways originating from T cell 
surface molecules initiate the expression of genes responsi-
ble for proliferation and immune functions in a cooperative 
manner. The most extensively studied example is the induc-
tion of the IL-2 gene. The IL-2 gene promoter contains at 
least seven distinct binding sites for transcription factors. 
Therefore, maximal transcription demands the simultane-
ous presence of all factors, among which AP-1, NFAT, and 
NF κ B are the best characterized. 

 AP  -1 is a heterodimer of c-Fos and c-Jun. Maximum 
activation of AP-1 requires  de novo  synthesis of c-Jun and 
c-Fos, and phosphorylation by MAPKs of the activation 
domains of both proteins, leading to translocation into the 
nucleus. 

 Activation   of NFAT requires dephosphorylation by the 
serine/threonine protein phosphatase, calcineurin, followed 
by translocation into the nucleus. In the nucleus, NFAT 
cooperates with AP-1 in gene transactivation, resulting in a 
20-fold increase in the stability of NFAT/AP-1/DNA com-
plexes as compared with NFAT/DNA complexes. 

 NF   κ B is a homodimer or heterodimer of a family of 
structurally related proteins. Each member of this family 
contains a conserved N-terminal Rel-homology domain 
(RHD), which mediates dimerization and binding to DNA. 
The RHD contains a nuclear localization sequence that pro-
motes NF κ B translocation to the nucleus following release 
of NF κ B from I κ B. In its inactive form, NF κ B is seques-
tered in the cytosol by non-covalent interactions with the 
inhibitory protein, I κ B, which masks the nuclear translo-
cation signal. Phosphorylation of I κ B by IKK targets I κ B 
for destruction by the ubiquitin-protease system. NF κ B 
induces IL-2 gene expression, and in a negative feedback 
loop, promotes transcription of the I κ B gene.   

    Role of Cyclic AMP in T Cell Activation 

    Cyclic AMP, Adenylyl Cyclases, and 
Phosphodiesterases 

 Cyclic   AMP (cAMP) is an intracellular second messenger 
to a wide variety of hormones and neurotransmitters. In T 
cells, elevated cAMP levels antagonize T cell activation by 
inhibiting T cell proliferation and by suppressing the pro-
duction of IL-2 and IFN- γ . TCR signaling in the absence 
of CD28 co-stimulation also elevates cAMP levels and ade-
nylyl cyclase (AC) activity. The regulation of cAMP during 
T cell activation is mediated via other T cell surface mol-
ecules, such as CD28 and CD44        [69, 70] , as well as via the 
co-receptor CD4  [44] . 
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 In   T cells, the cAMP level is controlled by two types of 
enzymes: ACs and phosphodiesterases (PDE). ACs catalyze 
the production of cAMP from ATP, whereas PDEs control 
the rate of cAMP degradation to AMP. Members of the PDE 
families 1, 3, 4, and 7 are expressed in T cells. Different 
mechanisms control the activity of the different families 
of PDEs: Ca 2 �  /calmodulin stimulates PDE1; cyclic GMP 
inhibits PDE 3; p70S6 kinase and the MAPK pathway 
activate PDE4; and CD28-mediated signals activate PDE7 
 [70] . Importantly, TCR/CD28 stimulation of human T cells 
transiently upregulates AC and PDE activities, with differ-
ent kinetics for different PDE isozymes  [71] . Thus, an ini-
tial increase, followed by a rapid decrease, in intracellular 
cAMP is required for T cell activation, suggesting a precise 
kinetic regulation of cAMP production and degradation.  

    cAMP-Dependent Kinase 

 The   cAMP-dependent protein kinase (PKA) is the princi-
pal intracellular cAMP receptor. In the absence of cAMP, 
PKA is an enzymatically inactive, tetrameric holoenzyme, 
consisting of two catalytic (C) subunits and two regulatory 
(R) subunits. The cooperative binding of four cAMP mol-
ecules to two sites on each R subunit drastically decreases 
the binding affinity between R and C subunits, and induces 
dissociation into dimeric R and two monomers of C subu-
nits. Once freed from the R subunits, the C subunits display 
serine/threonine kinase activity. 

 PKA   I, but not PKA II, mediates the inhibitory role of 
cAMP on T cell proliferation induced by TCR signaling by 
activating Csk to inhibit Lck activity  [38] . Thus, PKA I can 
diminish T cell activation at the initiation stage. PKA I also 
phosphorylates Ser-43 of Raf-1 to block the MAP kinase 
pathway  [72] . In the nucleus, activation of PKA prevents 
stable protein – DNA interactions at the NF κ B, NFAT, and 
AP-1 binding sites of the IL-2 enhancer  [73] . In addi-
tion, PKA I activity also inhibits cyclin D3 expression and 
induces the cyclin-dependent kinase inhibitor p27  kip1    [74] . 
For T cells to enter the S phase of the cell cycle, D-type 
cylins, including cyclin D3, are synthesized during the G 1  
phase  [75] . These cyclins can bind to cyclin-dependent 
kinase (Cdk) and form an active kinase complex that phos-
phorylates and inactivates retinoblastoma protein (pRb). 
Inactivation of pRb then allows cells to pass through 
the late G1 phase restriction point and enter the S phase. 
However, cyclin D/Cdk complexes can associate with the 
Cdk inhibitor p27  kip1  , thus be rendered inactive. Therefore, 
in addition to induction of cyclin D, downregulation of 
p27  kip1   is also required for the initiation of T cell prolifera-
tion  [75] . Hence, inhibition of cyclin D3 expression and 
induction of p27  kip1   by PKA I both block T cell cycle pro-
gression. This suggests that PKA I activity must be regu-
lated at all stages during T cell activation. 

 Interestingly  , the majority of TCR-induced cAMP is 
generated in lipid rafts  [76] . In a CD4-dependent fashion, 

both PDE1 and PDE4 are activated and counteract the 
production of cAMP  [44] . CD28 co-stimulation mediates 
the recruitment of PDE4 activity to lipid rafts        [76, 77] . In 
addition to regulating the level of cytosolic cAMP, T cells 
redistribute PKA I within minutes after TCR-stimulation to 
the distal cell pole opposite the aggregated TCR/CD3 com-
plexes, thereby spatially distancing PKA I from cAMP by 
micro-compartmentalization  [78] .    

    CONCLUSIONS 

 Signal   transduction research in T lymphocytes has 
focused on identifying the receptors and intracellular pro-
teins affecting specific signaling pathways. It has become 
clear that signaling machines in T cells differ in compo-
sition depending on the extracellular signal received and 
the requirements of the stimulated cell. The composition 
and activation state of an established signalosome can 
also change over time in order to fine-tune or alter effec-
tor signaling pathways. For example, a combination of 
computer modeling of early T cell activation events and 
quantitative cell-based experiments revealed a rapid SHP-
1-mediated negative feedback loop followed by a slower, 
but much more sensitive, positive feedback loop mediated 
by ERK        [79, 80] . In addition, subcellular compartmentali-
zation of signaling molecules is an important mechanism 
for regulating cellular signal transduction. For example, 
using a biosensor for ZAP-70 activity demonstrated an 
unexpected bipolar distribution of ZAP-70 activity upon 
T cell stimulation both at the immunological synapse and 
at the distal cell pole  [81] . In the future, it will be impor-
tant to determine the kinetics of assembly, the dynam-
ics of composition, and the compartmentalization for all 
signalosomes induced in T cells, as well as to define the 
interactions between different signaling pathways. Future 
research will increasingly utilize proteomics  [82] , live-cell 
video imaging, and computer modeling to characterize the 
signalome  –  the entire complement of a T cell’s signaling 
molecules and their interactions in a temporal and spatial 
context.   
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    INTRODUCTION 

 B   lymphocytes express antigen receptors (BCR) on their 
surface that impart the ability to detect foreign antigens. 
Binding of antigen to the BCR initiates a signal trans-
duction cascade that in turn leads to cellular activation, 
proliferation, and, ultimately, differentiation into antibody-
secreting plasma cells. Additionally, the BCR plays an 
important role in internalization of antigen, resulting in its 
processing and presentation in the context of MHC class II 
to helper T cells, which promote clonal expansion and dif-
ferentiation of the antigen-specific B cells        [1, 2] . Although 
signal transduction via the BCR is central to the genera-
tion of a productive humoral immune response, its role in 
regulating B cell biology is more complex and multifac-
eted. Indeed the BCR is involved in determining the fate 
of the B cell throughout its development and differentia-
tion          [3 – 5] . During B cell development in the bone marrow, 
the pre-BCR is crucial for transducing signals that ensure 
the formation and expression of a functional, mature BCR 
on the surface of the B cell. Additionally, the pre-BCR is 
involved in regulating allelic exclusion to ensure that only 
BCRs with a single antigenic specificity are expressed on 
the surface of any given B cell. Once a mature BCR is 
expressed on the surface of an immature B cell, signals 
delivered through it can either positively select those cells 
that will ultimately enter into the periphery to patrol for 
foreign antigen, or negatively select those cells that rec-
ognize self-antigens with a high affinity. Negative selec-
tion mediated by signals delivered via the BCR results in 
editing of the BCR to change its specificity, or in deletion 
of the self-reactive clone          [6 – 8] . Thus the BCR is directly 
involved in determining the fate of the cell presumably by 
virtue of its ability to transduce signals that vary both quan-
titatively as well as qualitatively. Additionally, the response 

of the B cell to such signals is likely to be regulated in a 
developmental manner        [9, 10] . In conclusion, the BCR 
serves a central role in regulating B cell biology by virtue 
of its ability to selectively transduce signals in response to 
antigen binding. The discussion that follows will prima-
rily deal with the basic signal transduction pathways that 
are activated in response to binding of antigen to BCRs 
expressed on mature, quiescent B cells.  

    INITIATION OF SIGNAL TRANSDUCTION 
THROUGH THE BCR 

 The   BCR complex is comprised of an antigen recognition 
structure, membrane immunoglobulin (mIg), and an associ-
ated signal transducing heterodimer. Membrane Ig consists 
of two heavy chains and two light chains that are disulfide 
bonded to one another to form the mature antigen recognition 
structure. Membrane Ig is non-covalently associated with one 
transmembrane heterodimer consisting of disulfide-linked 
Ig α  (CD79a) and Ig β  (CD79b) polypeptides        [11, 12] . The 
Ig α / β  heterodimer functions both as a transporter and a signal 
transducing structure  [12] . Initiation of signal transduction 
through the BCR was originally thought to occur in response 
to BCR crosslinking mediated by binding of bivalent or 
multivalent antigen to the bivalent mIg molecule. This was 
thought to induce BCR dimerization and/or multimerization, 
which in turn facilitated the ability of associated Src family 
protein tyrosine kinases (PTK) (e.g., Lyn, Fyn) to phospho-
rylate tyrosine residues in the cytoplasmic domains of Ig α / β  
 [13] . Although the BCR in resting B cells is constitutively 
associated with Src family PTKs at a low stoichiometry, the 
net level of Ig α / β  phosphorylation is presumably minimal 
due to the fact that individual receptor complexes are distrib-
uted throughout the membrane and the phosphorylation of 
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Ig α / β  is counterbalanced by one or more protein tyrosine 
phosphatases (PTP). In contrast, BCR aggregation presum-
ably favors a net increase in the total level of protein tyrosine 
phosphorylation associated with the activation complex due 
to the physical co-localization of Src family PTKs and their 
substrates (i.e., Ig α / β ) [13] . 

 More   recently, however, it has been proposed that the 
BCR exists in the membrane of unstimulated B cells in 
preformed oligomers, and that initiation of signaling occurs 
when antigen binds to one or more mIg molecules within 
an oligomer, thereby causing a conformational change or 
reorganization of the individual subunits that promote sig-
nal transduction            [11, 12, 14, 15] . In this regard, the trans-
membrane region of mIg heavy chains is thought to assume 
an  α -helical conformation in the membrane in which 
one face of the  α -helix is comprised of highly conserved 
hydrophilic amino acid residues that mediate the interac-
tion with the Ig α / β  heterodimer  [14] . The other face of the 
 α -helix is specific to each of the mIg isotypes, and contains 
several hydrophilic amino acid residues with large polar 
side groups. Because such hydrogen-binding, hydrophilic 
moieties exhibit a strong bias against being located within 
a lipid membrane, it is possible that this face of the helix 
constitutes an interaction surface that is involved in BCR 
oligomerization  [14] . Although the molecular composition 
of the resting BCR oligomers has yet to be elucidated, it 
has been hypothesized that the oligomers are associated 
with the PTK Syk  [16] . This PTK presumably promotes 
phosphorylation of Ig α / β  heterodimers within the oligomer, 
which in turn facilitates binding of Syk to phosphotyrosine 
residues via its tandem Src homology 2 (SH2) domains. 
It is further hypothesized that a low basal level of tyro-
sine phosphorylation is maintained by the action of a PTP 
called SHP-1, which acts to constitutively downregulate 
Syk kinase activity, and perhaps to dephosphorylate Ig α / β  
 [13] . Binding of antigen to the complex is thought to cause 
a conformational change in the resting BCR oligomer such 
that SHP-1 activity is attenuated, possibly by causing the 
PTP to become physically dissociated from the BCR com-
plex. Dissociation of SHP-1 would presumably favor a net 
increase in tyrosine phosphorylation of Ig α / β  leading to 
initiation of signal transduction and cellular activation. It 
has been reported that SHP-1 constitutively interacts with 
the BCR isolated from resting B cells and is induced to dis-
sociate from the BCR upon activation in agreement with 
this proposed mechanism  [17] . 

 Another   recent finding is that binding of antigen causes 
a rapid translocation of the BCR to glycosphingolipid-
enriched microdomains (GEMs) within the plasma mem-
brane. These microdomains are enriched for Src family 
PTKs including Lyn, and it has been hypothesized that 
translocation of the BCR into GEMs physically localizes 
the complex with Src PTKs, thereby promoting tyrosine 
phosphorylation of Ig α / β  by Lyn          [18 – 20] . Interestingly, 
translocation of the BCR into GEMs appears to consti-

tute a novel step that precedes signal transduction because 
translocation does not require the Ig α / β  heterodimer and 
is resistant to blockade by PTK inhibitors  [21] . Thus, it 
is possible that binding of antigen to BCR oligomers on 
resting B cells leads to a reorganization/conformational 
change in the oligomer that promotes its translocation to 
GEMs. As stated, localization of the BCR to GEMs pro-
motes Lyn-mediated phosphorylation of Ig α / β , as well 
as phosphorylation of Syk, resulting in potentiation of its 
catalytic activity. Simultaneously, translocation of the BCR 
to GEMs may lead to dissociation of SHP-1, thereby caus-
ing a net increase in tyrosine phosphorylation of Ig α / β  and 
initiation of signal transduction. Alternatively, it is possi-
ble that Lyn activity is relatively resistant to the inhibitory 
action of SHP-1, in which case co-localization of Lyn with 
the BCR may be sufficient to favor a net increase in Ig α / β  
phosphorylation despite the presence of SHP-1  [14] . 

 Regardless   of whether antigen binding promotes BCR 
aggregation or reorganization of pre-existing oligomers, it 
is clear that the BCR translocates to GEMs where there is 
a net increase in the tyrosine phosphorylation of Ig α  and 
Ig β . Both of these polypeptides contain immunoreceptor 
tyrosine-based activation motifs (ITAMs) within their cyto-
plasmic domains that function as docking sites for SH2 
domain-containing proteins including Syk, Shc, and BLNK 
 [13] . The net increase in tyrosine phosphorylation of the 
Ig α / β  ITAMs promotes the formation of multimolecular 
complexes that are targeted to the BCR and are critical for 
propagation of signal transduction. The formation of these 
complexes enables the BCR to activate several signaling 
pathways that are distinct yet interrelated, including the 
phospholipase C (PLC γ ) pathway, the phosphatidylinosi-
tol 3-kinase (PI3K) pathway, and signaling processes that 
are controlled by the Ras, Rac1, and Rap1 GTPases (for 
reviews, see              [22 – 26] ).  

    PROPAGATION OF SIGNAL 
TRANSDUCTION VIA THE BCR 

 Numerous   studies have demonstrated that ligand binding to 
the BCR results in inducible tyrosine phosphorylation and 
activation of the PTK Syk          [27 – 29] . The critical role that 
Syk serves during BCR-mediated signaling has been dem-
onstrated by the analysis of Syk-deficient B cells in which 
abrogation of Syk expression results in the loss of IP 3  
generation and Ca 2 �   mobilization  [30] . Moreover, studies 
using bone marrow cells derived from Syk-deficient mice 
have confirmed that Syk is essential for proper signal trans-
duction via the BCR based on the inability of these cells 
to develop normally into mature B cells in chimeric mice 
       [31, 32] . Recruitment of Syk to the BCR complex is medi-
ated by tyrosine phosphorylation of the ITAMs in Ig α  and 
Ig β , creating docking sites that are recognized by the dual 
SH2 domains of Syk          [33 – 35] . Efficient recruitment of Syk 
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requires that both conserved tyrosines within a given ITAM 
be present, and that they be phosphorylated. Additionally, 
both SH2 domains of Syk must be present and functional in 
order to observe optimal association of the kinase with Ig α  
and Ig β  and its subsequent activation through the physical 
interaction with these polypeptides  [13] . Binding of Syk to 
the ITAMs of Ig α  and Ig β  may also play a crucial role in 
its activation by focusing Syk to the BCR activation com-
plex within GEMs, which effectively brings Syk into close 
proximity to Lyn. Studies support the conclusion that Lyn 
phosphorylates key tyrosine residues on Syk, resulting in 
potentiation of its kinase activity  [13] . 

 The   ability of Syk to phosphorylate downstream signal-
ing effector proteins is dependent on the recruitment of an 
adaptor protein called BLNK (SLP65, BASH) to the BCR 
activation complex          [25, 26, 36] . Recent studies have deter-
mined that BLNK is recruited to the BCR complex by vir-
tue of its ability to bind to phosphorylated tyrosine residues 
in the cytoplasmic tail of Ig α  that lie outside the ITAM        [37, 
38] . It has been shown that mutation of tyrosines 176 and 
204, which flank the ITAM, abrogates BLNK-dependent 
signaling  [38] . Moreover, it was shown that the SH2 
domain of BLNK binds directly to tyrosine 204 of Ig α         [37, 
38] . Thus, it appears that Syk and BLNK are co-localized 
to the BCR complex through their interaction with Ig α . 
This facilitates the ability of Syk to phosphorylate BLNK, 
which in turn generates phosphotyrosine-dependent bind-
ing sites for recruitment of additional signal transducing 
proteins        [16, 39] . The formation of the BCR – Syk – BLNK 
complex constitutes the basic unit that is required for prop-
agation of signal transduction leading to the activation of 
several interrelated downstream pathways. 

    Activation of PLC γ 2-Dependent Signaling 

 The   initial activation of PTKs is responsible for mediating 
the production of second messengers that subsequently reg-
ulate intermediate signaling processes leading to transcrip-
tion factor activation. Studies have elegantly demonstrated 
that PLC γ 2 is activated in response to BCR ligation and is 
responsible for the production of diacylglycerol (DAG) and 
inositol 1,4,5-trisphosphate (IP 3 )          [40 – 42] . These in turn 
promote PKC activation and mobilization of Ca 2 �  , respec-
tively              [22 – 26] . It has been demonstrated, using a non-lym-
phoid cell reconstitution system, that expression of Ig α / β , 
Syk, and PLC γ 2 is not sufficient to mediate activation of 
PLC γ 2 and Ca 2 �   mobilization in response to BCR ligation, 
suggesting that one or more key components were missing 
 [43] . Subsequent work has clearly shown that PLC γ 2 is 
recruited to tyrosine phosphorylated BLNK via its tan-
dem SH2 domains. In cells that lack BLNK, PLC γ 2 is not 
observed to translocate from the cytoplasm to GEMs, and 
exhibits decreased activation  [36] . Additionally, mutation 
of the amino-terminal SH2 domain of PLC γ 2 blocks its 

binding to phosphorylated BLNK and blocks localization 
to GEMs  [44] . Therefore, it is apparent that BLNK pro-
vides a scaffold to localize PLC γ 2 to the BCR activation 
complex within GEMs, where it can be activated. 

 Based   on numerous findings, it has been concluded that 
Syk and the PTK Btk act in concert to regulate the phos-
phorylation and activity of PLC γ 2          [45 – 47] . In addition to 
the Src family PTKs and Syk, Btk is inducibly activated 
in response to BCR ligation and plays an important role in 
signal transduction        [46, 48] . Like the Src family PTKs, Btk 
contains contiguous SH3, SH2, and SH1 domains, although 
it does not possess a carboxyl-terminal negative regulatory 
tyrosine residue or a myristylation site. In addition to the SH 
domains, Btk contains an amino-terminal pleckstrin homol-
ogy (PH) domain and an adjacent proline- and cysteine-rich 
Tec homology (TH) domain  [46] . It has been shown that the 
SH2 domain of Btk is required for PLC γ 2 phosphorylation 
and activation, and that it exhibits restricted binding specifi-
city for tyrosine phosphorylated BLNK. Thus, PLC γ 2 and 
Btk are co-localized to the BCR activation complex by vir-
tue of their interaction with BLNK. 

 Studies   in the mouse and human have clearly demon-
strated that Btk expression is essential for BCR-mediated 
Ca 2 �   mobilization        [49, 50] . Moreover, expression of Btk 
has been shown to restore calcium signaling in Btk-defi-
cient XLA B cells. Although expression of Syk is required 
for normal mobilization of Ca 2 �   in B cells, overexpression 
of this PTK was not observed to restore calcium signaling 
in XLA B cells, demonstrating that it cannot compensate 
for the loss of Btk. This finding indicates that these PTKs 
must act in concert in a non-redundant manner to regulate 
PLC γ 2 function        [36, 47] . The ability of Btk to reconstitute 
calcium signaling is dependent on its catalytic function and 
the Btk activation loop tyrosine (Tyr551), which is phos-
phorylated by Syk. Mutation of the Syk transphosphoryla-
tion site or the ATP-binding site abrogates Btk-dependent 
phosphorylation of PLC γ 2        [45, 47] . Recent studies have 
demonstrated that specific tyrosine residues in PLC γ 2 
(tyrosines 753, 759, 1197, and 1217) are direct targets for 
Btk, and that their phosphorylation is essential for optimal 
activation of its catalytic function        [51, 52] . In conclusion, it 
appears that Syk is required for PLC γ 2 activation by virtue 
of its role in phosphorylating BLNK to generate docking 
sites for Btk and PLC γ 2, and through its role in phospho-
rylating Tyr551 on Btk leading to its catalytic activation. 
Btk appears to be specifically involved in phosphorylating 
multiple tyrosine residues on PLC γ 2 that are required for 
optimal catalytic activation leading to hydrolysis of phos-
phatidylinositol 4,5-bisphosphate to produce IP3 and DAG. 

 The   production of IP3 in response to activation of 
PLC γ 2 results in mobilization of Ca 2 �   from the endoplas-
mic reticulum (ER)  [53] . IP3-mediated release of Ca 2 �   
involves IP3 receptors (IP3R) located in the ER, which 
form heterotetrameric channels. It has been shown that the 
nature of the calcium mobilization response in B cells may 
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be controlled by the combinatorial function of three IP3R 
receptor subtypes  [54] . Additional evidence suggests that 
the function of IP3Rs may be regulated by phosphorylation, 
as well as in response to binding of IP3. A B cell restricted 
scaffold protein with ankyrin repeats (BANK) has recently 
been cloned that is inducibly phosphorylated on tyrosine 
residues in response to BCR ligation  [55] . Overexpression 
of BANK results in enhanced BCR-induced calcium mobi-
lization. Interestingly, BANK has been shown to interact 
with Lyn and IP3Rs, suggesting that this adaptor functions 
to bring Lyn and IP3Rs into close proximity, thereby pro-
moting tyrosine phosphorylation of IP3Rs by Lyn  [55] . 
This may play a key role in potentiating calcium mobiliza-
tion from the ER, as it has been shown that tyrosine phos-
phorylation of IP3Rs upregulates their channel activity. The 
release of Ca 2 �   from intracellular stores has been shown to 
promote Ca 2 �   influx across the plasma membrane, via the 
opening of store-operated Ca 2 �   channels (SOCs)            [56 – 59] . 
Numerous studies suggest that the main type of SOC oper-
ating in immune cells produces a distinct Ca 2 �   release 
activated current (I CRAC )            [56 – 59] . Recent studies have iden-
tified two important effector proteins that appear to play a 
role in mediating the I CRAC  response to BCR crosslinking; 
stromal interaction molecule 1 (STIM1) and ORAI (which 
is also referred to as CRAC modulator 1)                [60 – 65] . Based 
on studies of various mammalian cell types, STIM1 has 
been shown to sense Ca 2 �   levels in the lumen of the ER, 
and when the Ca 2 �   levels in the ER drop, STIM1 aggre-
gates and translocates to the plasma membrane, where it 
interacts with ORAI and thereby promotes activation of 
SOCs. In the DT40 B cell line, gene targeting of STIM1 
was shown to eliminate Ca 2 �   entry across the plasma mem-
brane exhibiting electrophysiological characteristics of 
I CRAC   [66] . Although deletion of ORAI in T cells has been 
shown to abrogate I CRAC , similar results were not observed 
in B cells, suggesting that other plasma membrane proteins 
may be critical for SOC-dependent Ca 2 �   entry. Moreover, 
recent studies support the conclusion that, in contrast to T 
cells, second messenger-operated Ca 2 �   channels (SMOCs) 
are important for Ca 2 �   entry in response to BCR crosslink-
ing. Members of the transient receptor potential (TRP) pro-
teins and IP3Rs have been shown to function as potential 
SMOCs in B cells              [67 – 71] . Thus, the relative importance 
of SOC versus SMOC in mediating Ca 2 �   entry across the 
plasma membrane of B cells in response to BCR ligation 
remains to be completely elucidated. 

 One   of the most important downstream targets of 
the calcium signaling pathway in B cells is the transcrip-
tion factor NFAT  [72] . Members of the NFAT family are 
retained in the cytosol due to constitutive phosphorylation 
on serine residues. NFAT activation leading to translocation 
to the nucleus is promoted by dephosphorylation mediated 
by the Ca 2 �   sensitive serine/threonine phosphatase cal-
cineurin. The calcineurin complex is comprised of three 
subunits, including the catalytic A subunit (A α , A β , or A γ ), 

a regulatory B subunit (B1 or B2), and the Ca 2 �  -sensitive 
calmodulin subunit bound to Ca 2 �  . Recent work has dem-
onstrated an important role for the B1 regulatory subunit 
of calcineurin in regulation of NFAT activation in B cells 
 [73] . B cells express three NFAT family members (c1, c2, 
and c3) that have been shown to be activated in a Ca 2 �  /cal-
modulin-dependent manner in response to BCR ligation 
         [74 – 76] .  

    Activation of Protein Kinase C-Dependent 
Signaling and the CARMA1 Signalosome 

 The   production of DAG by -PLC γ  2 leads to the activation 
of members of the PKC family. Both conventional (PKC α , 
- β , - β II, - γ ) and novel (PKC δ , - � , - η , - θ , - μ ) members of 
the PKC family require DAG for their activation, whereas 
the former require Ca 2 �   as well  [77] . Studies have detected 
PKC α , - β , - γ , - δ , - � , - η , - θ  and - μ  expression in B cells, 
and have also shown that several of these kinases (PKC α , 
- β II, - δ , - � ) translocate from the cytoplasm to the mem-
brane in response to BCR ligation        [77, 78] . It has further 
been shown that PKC μ  interacts with the BCR and exhib-
its increased specific activity in response to BCR ligation 
 [79] . The activation of members of the PKC family has 
been shown to play a role in regulating activation of sev-
eral transcription factors in B cells              [22 – 26] . PKC activation 
leads to activation of the mitogen-activated protein (MAP) 
kinase ERK2 via the classical Ras/Raf-1/Mek/ERK2 path-
way              [22 – 26] . ERK2 translocates to the nucleus, where it 
regulates phosphorylation and activation of transcription 
factors including Elk-1 and members of the Ets family        [80, 
81] . Additionally, it has been shown that novel PKC mem-
bers PKC θ  and - δ  may play a critical role in B cell activa-
tion by virtue of their ability to regulate the activation of 
the transcriptional regulator NF κ B and the MAP kinase 
JNK  [82] . 

 Recent   studies have demonstrated that PKC β  is acti-
vated in response to BCR crosslinking in a DAG and Ca 2 �  -
dependent manner, and that its recruitment to the plasma 
membrane plays a critical role in regulating activation of the 
transcriptional regulator NF κ B        [83, 84] . Subsequent work 
revealed that PKC β  binds to and phosphorylates CARMA1 
(caspase-recruitment domain (CARD)-membrane-associated 
guanylate kinase (MAGUK) protein 1), resulting in its acti-
vation, which involves a conformational reorganization of 
the protein thereby promoting its recruitment to lipid rafts, 
where it undergoes oligomerization          [83, 85, 86] . CARMA1 
then recruits B bell lymphoma 10 (Bcl-10), and Bcl-10 in 
turn binds to MALT1 (mucosa-associated lymphoid tissue 
lymphoma-translocation gene 1)  [83] . MALT1 then directly 
interacts with either TRAF2 (tumor-necroisis factor recep-
tor (TNFR)-associated factor 2 or TRAF6, resulting in acti-
vation of their E3 ubiquitin-ligase activity        [83, 87] . TRAF6, 
once activated undergoes auto-ubiquitination promoting 
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recruitment of the IKK γ  (inhibitor of NF κ B (I κ B) kinase 
gamma regulatory subunit) and TAK1 complexes  [83] . In 
contrast, TRAF 2 recruits RIP1, which becomes poly-ubiq-
uitinated, thereby recruiting IKK γ  and Tak1 complexes 
 [83] . Ultimately, IKK γ  is polyubiquitinated by TRAF6 or 
TRAF2, resulting in translocation and activation of TAK1, 
which in turn phosphorylates IKK β , leading to activation of 
the IKK complex. The IKK complex phosphorylates I κ B, 
thereby targeting it for degradation promoting the nuclear 
translocation of NF κ B. The importance of this pathway for 
BCR signal transduction leading to B cell activation has 
been borne out by gene-targeting studies resulting in loss 
of expression of the key effectors that promote formation of 
the CARMA1 signalosome (i.e., PKC β ), as well as compo-
nents of the signalosome itself, including CARMA1, Bcl-
10, MALT1, and Tak1              [88 – 92] .  

    Activation of Phosphoinositide 3-Kinase-
Dependent Signaling 

 Another   major signaling pathway that is activated upon 
BCR ligation involves the lipid kinase PI3K. Mice lack-
ing the p85 subunit of PI3K exhibit severe defects in B cell 
development as well as impaired proliferative responses to 
stimulation through the BCR        [93, 94] . Thus, it is apparent 
that PI3K plays a critical role in signaling via the BCR. 
Recruitment and activation of PI3K to the BCR complex 
has been shown to occur via the transmembrane protein 
CD19  [95] . BCR ligation leads to tyrosine phosphorylation 
of several tyrosine residues in the cytoplasmic domain of 
CD19. Two of these residues, Tyr 482 and 513, have been 
shown to mediate binding of the p85 subunit of PI3K via 
its tandem SH2 domains  [96] . Because CD19 localizes to 
GEMs in response to B cell activation, its interaction with 
PI3K provides a mechanism to focus this kinase in regions 
of the cell that are enriched for its substrate phosphoi-
nositide 4,5-bisphosphate (PIP2)  [97] . It is important to 
note, however, that loss of CD19 expression causes a less 
severe defect in B cell development and function than is 
observed in B cells that lack the p85 subunit of PI3K. This 
suggests that additional adaptor proteins other than CD19 
may mediate PI3K recruitment and activation  [25] . 

 Recent   studies have identified a protein called B cell 
adaptor for phosphoinositide 3-kinase (BCAP) that is induc-
ibly phosphorylated by Syk and Btk in response to BCR 
ligation  [98] . Of the 31 potential tyrosine residues that can 
be phosphorylated on BCAP, four are contained within con-
sensus motifs for binding to the SH2 domains of the PI3K 
p85 subunit. Mutation of these tyrosine residues ablates the 
ability of BCAP to interact with p85 or to restore Akt acti-
vation in cells that lack BCAP  [98] . Additionally, loss of 
BCAP expression has been shown to attenuate the recruit-
ment of PI3K to GEMs, suggesting that this adaptor plays 
an important role in targeting PI3K to the BCR activation 

complex. Nevertheless, loss of BCAP expression does not 
entirely abrogate the production of phosphatidylinositol 
3,4,5-trisphosphate (PIP3) or the activation of the down-
stream target Akt  [98] . Therefore, it is clear that CD19 as 
well as other potential adaptors may be able to promote 
PI3K recruitment to GEMs, where it is activated. A candi-
date for such an adaptor is Gab1, which is inducibly phos-
phorylated on tyrosine residues in response to BCR ligation 
mediating its direct interaction with the SH2 domains 
of PI3K, Shc, and the PTP SHP-2 in a phosphotyrosine-
dependent manner  [99] . Overexpression of Gab1 in B cells 
was observed to potentiate BCR-mediated phosphorylation 
of Akt, which is a PI3K-dependent response. Importantly, it 
was observed that the pleckstrin homology domain of Gab1 
is required for its ability to translocate from the cytoplasm 
to the plasma membrane, and for its ability to potentiate 
activation of PI3K  [100] . PH domains have been shown to 
bind to PIP3, which is produced in response to activation of 
PI3K. Thus, it is likely that Gab1 functions as an amplifier 
of PI3K-dependent signaling due to the fact that its recruit-
ment to the membrane and function require the initial pro-
duction of PIP3 by PI3K  [100] . 

 Activation   of PI3K is mediated by virtue of its ability 
to bind to tyrosine-phosphorylated proteins such as CD19 
and BCAP via the SH2 domains of the p85 subunit. This in 
turn promotes translocation of PI3K to GEMs, where it is 
able to access its substrate PIP2, which is enriched in these 
microdomains of the plasma membrane. Although PI3K 
binding to adaptor proteins and translocation is required 
for activation, it is not sufficient for full activation of PI3K 
catalytic function. Studies have indicated that Vav family 
members may play a role in potentiating the activation of 
PI3K  [25] . Generation of B cells lacking Vav3 resulted in 
significant decreases in PIP3 production and activation of 
Akt  [101] . These defects could be corrected by expressing 
Vav3 or Vav2 in Vav3-deficient B cells. However, the gua-
nine nucleotide exchange factor (GEF) mutant of Vav3 was 
not able to restore pI3K function, indicating that Vav3 may 
regulate PI3K activity through its target Rac1  [101] . This 
was indeed found to be the case, based on several experi-
mental strategies. In conclusion, Vav appears to be impor-
tant for potentiating PI3K activity in response to BCR 
ligation. Nevertheless, it has yet to be formally determined 
whether all members of the Vav family share the abil-
ity to potentiate PI3K activity through activation of Rac1, 
although it seems likely, based on the available experimen-
tal evidence. 

 Activation   of PI3K results in the phosphorylation 
of PIP2 to form PIP3, which regulates the activation of 
numerous downstream signaling proteins that contain PH 
domains  [102] . It has been shown that activation of PLC γ 2, 
Btk, Rac1, and the kinase network including PDK1, Akt, 
GSK-3, and mTOR is regulated by the ability of these 
proteins to bind to PIP3 via their PH domains              [22 – 26] . 
Presumably, the production of PIP3 by PI3K plays an 



198 SECTION | B Cell-Cell Signaling

important role in promoting recruitment of PH domain-
containing proteins such as PLC γ 2 and Btk to the mem-
brane, where they are co-localized through their interaction 
with BLNK. Additionally, it is possible that the production 
of PIP3 functions to maintain activated PLC γ 2 and/or Btk 
at the membrane once they have dissociated from BLNK, 
thereby prolonging the signal transduction response. It is 
now well documented that PI3K-dependent production of 
PIP3 plays a crucial role in activation of the PDK1/Akt/
GSK-3 kinase cascade, which in turn promotes cell sur-
vival  [102] . PIP3-dependent recruitment of PDK1 and Akt 
to the membrane facilitates the ability of PDK1 to phos-
phorylate Akt on serine/threonine residues, which in turn 
leads to activation of Akt  [102] . Numerous studies have 
documented activation of Akt in response to BCR liga-
tion            [103 – 106] . Kinetic studies have demonstrated that 
Akt transiently translocates to the plasma membrane in B 
cells, where it is activated and then migrates to the cyto-
plasm and nucleus, where it presumably can interact with 
potential substrates  [107] . Akt is a serine/threonine kinase 
that phosphorylates numerous downstream substrates, 
including Bad and GSK-3. Phosphorylation of the apopto-
sis-inducing Bad protein creates a binding site for 14-3-3 
proteins, preventing Bad from binding to Bcl2 and Bcl-X L  
and thereby releasing them to mediate cell survival  [102] . 
Phosphorylation of GSK-3, which is a serine/threonine 
kinase, inactivates its catalytic function. GSK-3 is constitu-
tively active in resting cells and phosphorylates numerous 
proteins, including c-myc and cyclin D, maintaining them 
in an inactive state  [102] . GSK-3 has also been shown to 
phosphorylate NF-AT, causing a change in its conforma-
tion that reveals a nuclear export signal  [108] . Thus, inhibi-
tion of GSK-3 activity by Akt promotes retention of NF-AT 
in the nucleus. Therefore, phosphorylation of GSK-3 by 
Akt promotes the activation of proteins that regulate cell 
cycling and cell survival.  

    Activation of Small Molecular Weight G 
Proteins and their Signaling Pathways 

 BCR   ligation promotes the activation of small molecular 
weight G proteins that in turn regulate signal transduction 
pathways that control transcription factor activation and 
cytoskeletal reorganization, which affects cell morphol-
ogy and motility. In many instances it appears that BLNK 
plays a role in co-localizing critical signal effector pro-
teins leading to activation of G proteins. It has been shown 
that BLNK interacts with the adaptor protein Grb2, which 
appears to bind constitutively to a proline-rich region on 
BLNK via one of its SH3 domains        [109, 110] . The inter-
action between Grb2 and BLNK can also be potentiated 
in a tyrosine phosphorylation-dependent manner in which 
the SH2 domain of Grb2 binds to phosphotyrosine on 
BLNK. In either case, Grb2 recruits the guanine nucleotide 

exchange factor (GEF) Sos to the complex. Another poten-
tial mechanism whereby Sos is recruited to the membrane 
involves the formation of a Shc/Grb2/Sos complex in 
which Shc is inducibly phosphorylated in response to BCR 
ligation promoting binding of Grb2 via its SH2 domain. 
It has been proposed that Shc in turn binds via its SH2 
domain to tyrosine residues within the cytoplasmic domain 
of Ig α / β           [13, 22, 23] . An alternative mechanism by which 
the Shc/Grb2/Sos complex may be recruited to the mem-
brane is through binding of Shc to tyrosine phosphorylated 
Gab1  [99] . Regardless of the specific mechanism by which 
Sos is recruited to the plasma membrane, its localization 
leads to direct activation of the small molecular weight G 
protein Ras by virtue of its GEF activity. GTP-bound Ras 
controls the activation of a kinase cascade that culminates 
in the activation of the MAP kinases ERK1 and ERK2          [22, 
23, 77] . This is mediated by binding of activated Ras to 
the Raf-1 kinase, which then phosphorylates and activates 
MEK1 and 2, and these phosphorylate the ERKs. Activated 
ERK1 and ERK2 translocate to the nucleus, where they 
phosphorylate and regulate the activity of transcription fac-
tors including Elk-1 and Sap1a. The Ras/Raf-1/ERK path-
way also functions to regulate cell cycle progression by 
virtue of its ability to upregulate the expression of cyclins 
D and E1 while at the same time inhibiting the expression 
of the cell cycle inhibitor p27 Kip1           [111 – 113] . The func-
tion of the Ras/Raf-1/ERK pathway is negatively regulated 
by the Rap1 G protein, which is inducibly activated in 
response to BCR ligation via a DAG-dependent mechanism 
 [114] . Rap1 possesses the same effector binding domain as 
Ras, suggesting that it can compete with Ras for binding 
to downstream proteins in the Ras/Raf-1/ERK cascade. 
Indeed, Rap1 has been shown to bind to Raf-1, but does not 
activate it  [115] . Thus Rap1 may sequester components of 
the Ras/Raf-1/ERK pathway, thereby blocking activation of 
ERK1 and 2. Alternatively, it has been proposed that Rap1 
activates a distinct pathway that may antagonize the func-
tion of the Ras pathway  [116] . 

 Activation   of the Rac1 GTPase is mediated through the 
GEF activity of Vav  [117] . Vav is effectively recruited to 
the plasma membrane by virtue of its PH domain, which 
binds to PIP3, as well as its ability to interact with adaptor 
proteins via SH2/phosphotyrosine-dependent interactions. 
It has been shown that Vav is recruited to tyrosine phospho-
rylated BLNK, where it is co-localized with the PTK Syk 
 [36] . Phosphorylation of Vav by Syk potentiates its GEF 
activity leading to activation of Rac1. Additionally, it has 
been shown that Vav interacts with CD19, suggesting that 
this may constitute another mechanism for targeting it to 
the membrane. Rac1 is important for regulation of receptor-
induced actin polymerization and cytoskeletal reorganization 
 [118] . Such processes are likely to play an important role in 
organization of signaling proteins into effective complexes 
that promote B cell activation. Rac1 activation also plays 
an important role in linking BCR signaling to activation
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of the downstream MAP kinases JNK and p38          [22, 23, 77] . 
Studies have shown that activation of these kinases is abro-
gated in cells that lack BLNK, and that activation cannot be 
restored by reconstitution of PLC γ 2 signaling alone  [36] . 
This indicates that binding of Vav to BLNK and its activa-
tion by Syk is crucial for subsequent activation of Rac1, and 
the JNK and p38 MAP kinases. Activated forms of these 
MAP kinases translocate to the nucleus, where they play 
an important role in regulating the function of transcription 
factors through phosphorylation. JNK can activate Elk-1 
and Sap1a transcription factors as well as c-Jun. It has been 
shown that p38 can regulate the activation of ATF-2, Sap1a, 
CHOP, and MEF2C transcription factors  [77] .   

    CONCLUSION 

 It   is clear that the BCR is able to access several distinct 
yet interrelated signaling pathways in response to bind-
ing of antigen. The initiation of signaling is dependent 
on antigen-driven changes in the organization of the BCR 
complexes expressed on the surface of a quiescent B cell. 
Although the exact nature of the changes that are elicited 
in response to antigen binding has yet to be elucidated, it is 
apparent that perturbation of the BCR complexes, whether 
they exist as individual monomeric structures or in pre-
formed oligomers, leads to translocation to GEMs. This 
is critical for promoting a net increase in tyrosine phos-
phorylation of the BCR-associated Ig α / β  heterodimer and 
for recruitment of Syk and BLNK, which form the central 
initiation complex. Formation of this initiation complex 
lead to propagation of signaling transduction via path-
ways that are regulated by activation of PLC γ 2, PI3K, 
PKC, Ras, and Rac1. These pathways in turn lead to acti-
vation of numerous transcription factors that regulate gene 
expression. The ability of the BCR to control the various 
biological outcomes associated with B cell development, 
selection, and activation is ultimately regulated by both 
intrinsic and extrinsic factors that affect the qualitative 
and quantitative nature of the overall signal transduced via 
the BCR. Extrinsic factors include the physical nature of 
the antigen, the duration of exposure to antigen, and the B 
cell’s previous exposure to that antigen. Intrinsic factors 
include the developmental state of the B cell, which may 
affect the response of the cell to a given antigenic signal 
at the genetic level. Additionally, it is clear that the matu-
rational and differentiative state of the B cell dramatically 
alter its response to antigenic challenge. This can occur 
through changes in the expression of proximal BCR sign-
aling proteins such as PTKs and PTPs, as well as through 
changes in the expression of other transmembrane recep-
tors that function as co-receptors for the BCR. Examples 
of these include CD19, CD22, Fc γ RIIb, and PIR-B. 
These co-receptors have the ability to provide contextual 
information to the B cell through their ability to detect 

extracellular ligands that affect their ability to engage the 
BCR and to recruit signal transducing proteins that modify 
the nature of the signal transduced via the BCR            [119 – 122] . 
Thus, it is clear that numerous mechanisms exist for modu-
lating the basic signal transduced via the BCR and this in 
turn alters the complement of transcriptional regulators that 
are activated, as well as the genes that may be accessible 
to them. This in turn dramatically alters the expression of 
key regulators that determine whether the B cell undergoes 
apoptosis, or mounts an active immune response.   
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    INTRODUCTION 

 Stem   cells have remarkable capabilities of self-renewal and 
the potency to differentiate into many different cell types. 
Through these properties, adult stem cells can serve as a 
repair system for the body. Some stem cells can divide 
indefinitely to replenish other cells for the lifespan of an 
individual. Many types of stem cells show great promise 
for clinical applications due to these unique and power-
ful capabilities to replenish other cells. However, clinical 
applications have lagged due to the difficulties in isolating 
pure populations of adult stem cells, and in growing suf-
ficient quantities required for transplantation indications. 
Consequently, it is critical to understand the mechanisms of 
self-renewal, differentiation, and multipotency to develop 
new strategies to isolate and to grow adult stem cells.  

    STEM CELL PROPERTIES 

    Self-Renewal and Differentiation 

 Self  -renewal and differentiation are two unique properties that 
distinguish stem cells from somatic cells. During division, a 
stem cell either self-renews (remains a stem cell after cell divi-
sion) or differentiates (becomes a more mature cell), resulting 
in the following three possibilities  [1] : (1) self-renewal to pro-
duce two daughter cells identical to the parental cell; (2) self-
renewal and differentiation to produce one identical and one 
differentiated daughter cell; (3) differentiation to produce two 
daughter cells that differ from the parent.  

    Multipotency 

 The   number of lineages that a stem cell can form defines 
its differentiation potential. A stem cell is pluripotent if it 

can differentiate into each of the three developmental germ 
layers. Thus, pluripotent embryonic stem cells (ESCs) form 
cells of the endoderm, ectoderm, and mesoderm. A stem 
cell is multipotent if it differentiates into many, but not all, 
lineages of cells. For example, adult cord blood stem cells 
described below can be engineered to produce insulin        [2, 3] .  

    Adult Stem Cells 

 Through   self-renewal and differentiation, adult stem cells 
are capable of tissue repair to maintain tissue homeosta-
sis in a niche-specific controlled microenvironment        [4, 5]  
as well as organize tissue regeneration and repair upon 
stress  [6] . Self-renewal generates an identical cell to main-
tain the stem cell population  [1] . Differentiation generates 
non-identical cells that can then differentiate into many 
cell types, but cannot self-renew. Although adult stem cells 
have been recently characterized in many tissues (includ-
ing neural, muscular, hepatic, and cardiovascular tissues), 
hematopoietic stem cells remain one of the best-character-
ized adult stem cell populations with evidence of clinical 
applications.  

    Hematopoietic Stem Cells (HSCs) 

 Hematopoietic   cells derived from bone marrow are com-
posed of multiple subpopulations. The stem cell subpopu-
lation is classified by its duration of self-renewal, either 
as long-term hematopoietic stem cells or as short-term 
hematopoietic stem cells. Both of these subpopulations are 
multipotent, but differ in the duration they maintain their 
self-renewal properties. They give rise to the committed 
myeloid and lymphoid progenitors. These progenitor sub-
populations differentiate into their respective lineages, but 
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do not self-renew. As HSCs mature, these populations mul-
tiply to maintain all the necessary cellular and functional 
features of blood.  

    Umbilical Cord Blood Stem Cells 

 Stem   cells from umbilical cord blood (UCB), bone marrow 
(BM), and mobilized peripheral blood have many properties 
that are advantageous clinically. For example, these sources 
were successfully used in cellular therapy of myocardially 
infarcted cardiac tissues for BM and in hematotherapy using 
UCB          [7 – 9] . McGuckin and colleagues previously reported 
           [10 – 13]  the isolation, expansion, and engineering of cord 
blood stem cell lineages of various degrees of multipo-
tency into many types of functional progenitor phenotypes, 
including blood, neural, and hepatic. Using multiparamet-
ric phenotyping, it was demonstrated that UCB contained a 
complex succession of heterogeneous stem and progenitor 
cell groups up- and downregulating a range of surface anti-
gens, including CD133, CD34, CD38, CD7, and CD90, as 
they differentiated        [11, 13] . 

 We   recently reported the identification, isolation, expan-
sion, and engineering of cord blood-derived, embryonic-like 
stem cells (CBEs) from the lineage negative compartment 
that express ESC-specific sialoprotein antigens SSEA-3 and 
-4 but not SSEA-1  [13] , consistent with the human ESC pat-
tern and confirming their undifferentiated phenotype  [14] . 
These CBEs also expressed tumour rejection antigens TRA 
1-60 and TRA 1-81, ESC-specific sialylated keratin sul-
phate proteoglycans. In addition, they formed clusters simi-
lar to embryoid bodies  [15]  that were quite fragile and may 
reflect a very undifferentiated state. CBEs were also posi-
tive for the pluripotency transcription factor Oct-4 involved 
in inhibition of differentiation and support of self-renewal 
of ESC        [16, 17] . The multipotency of these clusters was 
demonstrated by propagation with standard cytokines used 
for other stem cell lineages and differentiation to the hepatic 
lineage phenotype. 

 CD133   cord blood stem cells have the capacity for 
self-renewal, proliferation, and multipotency. Freshly iso-
lated cells can self-renew to grow and produce identical 
CD133 �  daughters, and are multipotent in ability to form 
all three developmental germ layers ( Figure 20.1   , type 1). 
Under normal cell culture conditions cells undergo asym-
metric growth, differentiate with loss of the CD133 marker, 
stop proliferating, and have decreased potency ( Figure 
20.1 , type 2). As described below, inhibition of glycogen 
synthase kinase 3 β , a key mediator of the Wnt signaling 
axis, causes loss of the CD133 marker, but maintenance 
of multipotency and, surprisingly, proliferative capacity 
( Figure 20.1 , type 3). It will be important to identify sign-
aling mechanisms under conditions of growth with or with-
out CD133 (type 1 vs type 3), or lack of CD133 with or 
without growth (type 2 vs type 3). Using this experimental 

paradigm, we can now distinguish signaling events impor-
tant for growth independent of differentiation in addition to 
those important for differentiation independent of growth.   

    SIGNALING INTERMEDIATES AND 
PATHWAYS IN CD133 STEM CELLS 

    Oct-4 Signaling Pathway 

 The   POU domain containing transcription factor Oct-4, 
previously known as Oct-3/4, confers ESC self-renewal 
and pluripotency  [18] . As ESCs differentiate and lose 
pluripotency, expression of Oct-4 is downregulated                    [19 –
 26] . Subsequent overexpression allows cells to regain the 
ESC primitive phenotype, indicating this marker alone can 
reprogram self-renewal mechanisms              [16, 23 – 26] . In addi-
tion, Oct-4 deficient embryos and Oct-4 knockdown ESCs 
exhibit a loss of pluripotency and differentiation        [16, 27] , 
while repression of Oct-4 expression results in the loss of 
self-renewal in ESCs  [28] . Also, in the absence of Oct-4 
the inner cell mass was restricted to the trophoblast lineage 
and lacked ESCs  [27] . Finally, overexpression of Oct-4 in 
combination with three other transcription factors (Sox-2, 
c-Myc, and Klf4) results in fibroblast transformation into 
pluripotent cells that have the ability to self-renew  [22] . 

 Oct  -4 is comprised of two isoforms, Oct-4 A and Oct-4B. 
These have identical central POU DNA binding domains and 
C-terminal domains, but differ in the N-terminal domains. 
Further, the A isoform resides in the nucleus, possesses a 
functional N-terminal transactivation domain, and induces 
target gene expression, while the B isoform is cytoplasmic 
and has no transactivation domain. Finally, only the A iso-
form is responsible for stemness properties  [29]  and sustains 
stem cell renewal  [18] . 

Normal
growth

Inhibition
of GSK

CD133+
Growth+
Type 1

CD133–
Growth+
Type 3

CD133–
Growth–
Type 2

 FIGURE 20.1          Characteristics of CD133 cord blood stem cell growth.  
    Freshly isolated CD133 �  cells grow to produce identical progeny through 
self-renewal (CD133 � , Growth � , type 1). Under normal culture conditions, 
type 1 cells also differentiate by losing the CD133 marker and stop growing 
(CD133 � , Growth � , type 2). When cultured with BIO to inhibit GSK, type 
1 cells differentiate but continue growing (CD133 � , Growth � , type 3).    
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 Previous   studies had reported that subsets of cord 
blood stem cells, lineage negative cells and CD133  �   cells, 
expressed Oct-4        [13, 30] . However, these studies did not 
specify the isomer of Oct-4 detected. We recently reported 
that lineage negative stem cells (CD133 - , CD34 - , CD45 - , 
CD33 -  and CD7 - ) isolated from human umbilical cord 
blood expressed many ESC markers, including Oct-4, thus 
raising the possibility that this transcription factor might 
confer ESC-like pluripotency and indefinite self-renewal to 
this type of stem cell  [13] . However, while lineage negative 
cells have the potential to generate all three developmental 
lineages, they did not demonstrate indefinite self-renewal 
 [31] . Furthermore, Oct-4 is expressed on hematopoietic, 
mesenchymal, follicular, breast, liver, pancreatic, kidney, 
and gastric adult stem cells              [13, 20, 30, 32, 33] . These 
observations continue to leave open the potential for Oct-4 
to confer self-renewal in some adult stem cells. However, 
Lengner and colleagues recently demonstrated that Oct-4 
is not even essential for self-renewal and maintenance of 
mouse somatic stem cells  [34] . Thus, the ability of Oct-4 
to confer self-renewal has been under intense scrutiny                      [13, 
18, 20, 30, 34 – 38] . 

 Studies   on Oct-4 have been complicated by subtleties 
posed by the two isoforms. Protein analysis was performed 
by several laboratories, using antibodies that recognize 
regions common to both isoforms        [18, 22]  and that are 
unable to distinguish which isoform is present in any given 
cell. This complexity provided the opportunity that Oct-4A 
might confer self-renewal. However, a goat anti-human 
Oct-4A antibody was raised to an undisclosed 10 amino 
acid peptide from within residues 10 to 60 in the 134 amino 
acid N-terminal domain of Oct-4A that does not exist in 
Oct-4B. 

 Detection   of the Oct-4 mRNA has been equally prob-
lematic. Several primers have been reported for the analy-
sis of Oct-4 mRNA expression, but many code for Oct-4 
pseudogenes  [37] . Primers specific for Oct-4A mRNA cod-
ing sequences have been recently reported wherein the 5 �  
primer only anneals to sequences coding for the N-terminal 
domain of Oct-4A that do not exist in Oct-4B. Thus, tools 
are available for specific detection of Oct-4A mRNA that 
does not identify Oct-4B mRNA. 

 We   used these new approaches to study Oct-4A expres-
sion in CD133 cord blood stem cells  [38] . Oct-4A pro-
tein and mRNA were expressed in freshly isolated CD133 
cells ( Figure 20.1 , type 1 cells) that had high proliferative 
potential. However, expression of Oct-4A was maintained 
during proliferation in culture during which CD133 and 
other adult stem cell markers were downregulated, while 
differentiated hematopoetic markers were induced, all 
the while maintaining multipotent capacity to give rise to 
hematopoetic lineages ( Figure 20.1 , type 2). Therefore, 
expression of Oct-4A mRNA or protein neither implies 
nor confers ESC-like properties in human umbilical cord 
blood CD133 stem cells or their differentiated progeny. It 

will be important to use the specific tools described here to 
understand the role of Oct-4A in other adult stem cells to 
better define the emergent, but undiscovered, properties of 
Oct-4A. 

 Bioinformatics   approaches such as Ingenuity Pathway 
Analysis ( www.ingenuity.com ) illuminate the complexity of 
the Oct-4 signaling pathway ( Figure 20.2   ). This analysis is 
based on the most extensive literature-based annotation of 
the relationships between molecular intermediates (signal-
ing nodes) and the signaling pathways they subserve. As has 
been long established, Nanog contributes to the maintenance 
of pluripotency, clonal expansion, and Oct-4 levels  [23] . 
Sox-2 is critical for establishment of early cell fate decisions 
and activated by Oct-4  [21] . Recently, Oct-4 and Sox-2 have 
been shown in several cell types, thus bringing into ques-
tion the universal role of Oct-4 and Sox-2 in identification 
of pluripotent, self renewing stem cells              [20, 32, 33, 39, 40] . 
The nuclear orphan receptor, GCNF, also has important 
regulatory interactions with Oct-4 itself, as well as regula-
tion of Oct-4 gene expression        [41, 42] . Oct-4 actions are fur-
ther mediated by other nuclear receptors such as retinoid X 
receptors (RXRB and RXRG) and the HOX family of tran-
scription factors (HOXB1, HOXC4). 

 There   are many potential possibilities for the inability 
of Oct-4 expression to confer self-renewal and multipo-
tency in adult stem cells as in ESCs. First, expression levels 
of Oct-4 govern its functional consequences, and levels in 
CD133 cells may just be too low  [28] . Second, we showed 
in human cord blood CD133 stem cells  [38]  that Oct-4A is 
present in both the nucleus and cytoplasm, clearly indicat-
ing some level of dysfunctional coupling of Oct-4A from 
its role as a nuclear transcription factor where it binds with 
co-regulators such as GCNF. Sox2 showed a similar subcel-
lular redistribution. Third, a recent report from Lengner and 
colleagues showed in somatic stem cells that Oct-4 is not 

 FIGURE 20.2          Ingenuity pathway analysis of the Oct-4 signaling 
network.  
    Light-gray arrows indicated relationships between Oct-4 and some of the 
proteins in the Oct-4 network. Black lines indicate relationships among 
other members of the Oct-4 network. The connectivity is an oversimplifi-
cation demonstrating the complex communication in among elements of 
signaling networks.    
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even essential for self-renewal  [34] . Fourth, it is implicit 
that appropriate functional regulation of Oct-4 is necessary 
for the manifestation of self-renewal and multipotency. 
Indeed, Oct-4 and Sox-2 undergo many posttranslational 
modifications, such as phosphorylation, acetylation  [43] , 
and sumoylation  [44] , that influence function. These stud-
ies in different species with stem cells of different origins 
directly point to a more complex role of Oct-4 in stem cell 
biology than previously considered. Measurement of Oct-
4 may be only a sentinel marker for the critical signaling 
pathways in stem cell self-renewal.  

    Wnt Signaling Pathway 

 Signaling   of the Wnt pathway, shown in  Figure 20.3   , is reg-
ulated by interactions between several key proteins, includ-
ing glycogen synthase kinase-3 β  (GSK-3 β ),  β -catenin, and 
T cell factor-4 (Tcf-4). The rate-limiting signaling node in 
this pathway is GSK-3 β , a serine-threonine kinase with two 
isoforms. The alpha isoform (51       kDa) is a key regulator of 
glucose metabolism, while the beta form (47       kDa) medi-
ates Wnt signaling through  β -catenin. In the absence of Wnt 
signaling ( Figure 20.3b ), active GSK-3 β  forms a multipro-
tein complex with Axin-1 and adenomatosis polyposis coli 
(APC). Casein kinase I- α  (CKI- α ) phosphorylates  β -catenin 
on Ser9  [45] , a  “ priming ”  site required for subsequent rec-
ognition by active GSK-3 β , which can then phosphorylate 
 β -catenin at Ser33, Ser37, and Thr41        [45, 46] . The F-box 
protein beta-TrCP binds to phosphorylated  β -catenin, tar-
geting it for proteosomal degradation by the E3 ubiquitin 
ligase ( Figure 20.1 )        [46, 47] . Conversely, activation of the 
Wnt pathway ( Figure 20.3a ) results in inhibition of GSK-
3 β , thereby preventing phosphorylation-dependent degrada-
tion of  β -catenin.  β -catenin then translocates to the nucleus, 
where it binds and activates Tcf-4 inducing transcription of 
target genes such as cyclin D1, c-myc, PPAR- γ , MMP-7, 
and Axin-1. 

 The   kinase activity of GSK-3 β  is regulated by phos-
phorylation on Tyr216 and Ser9. Tyr216 phosphorylation 
increases the kinase catalytic activity of GSK-3 β         [48, 49] , 
while phosphorylation of Ser9 decreases GSK-3 β  activity 
 [50] . Because GSK-3 β  has a role in a wide variety of dis-
ease processes, it has been a key target for drug discovery 
efforts that have produced more than 30 small molecule 
inhibitors of GSK-3 β  with different ranges of specificity 
 [51] . Pharmacological inhibition of phosphorylation of 
Tyr216 on GSK-3 β  directly inhibits kinase activity, thereby 
resulting in  β -catenin activation of Wnt pathway signal-
ing. (2 � Z,3 � E)-6-bromoindirubine-3 � -oxime (BIO), a small 
organic molecule, specifically inhibits the kinase activity 
of GSK-3 β  by preventing the activating phosphorylation of 
Tyr216  [52] . 

 The   canonical Wnt pathway has long been recognized 
to have an important role in development. Wnt signaling is 
required at four distinct developmental stages: formation of 

the primitive streak, subsequent induction of the mesoderm 
and endoderm, formation of hematopoietic progenitor cells, 
and differentiation of erythroid cells          [53 – 55] . The pathway 
was first recognized for its function in the development of 
body axes and subsequent patterning during gastrulation 
 [53] . Later, the role of the Wnt pathway in the development 
of the inner cell mass into both the mesoderm and HSCs 
was demonstrated        [54, 55] . Since then, many reports sup-
port the hypothesis that the Wnt pathway is important in 
proliferation, differentiation, and self-renewal of HSCs 
           [56 – 59] . More recently, the importance of the canonical 
Wnt pathway was demonstrated in studies on the tails of 
flatworms  [60] . Expression of the Wnt protein,  β -catenin, 
caused regeneration of the tail, while silencing  β -catenin 
resulted in the formation of a head instead of a tail. Many 
additional studies have since shown that co-incubation of 
HSCs with stromal cells transfected with genes coding for 
Wnt ligands (Wnt1, Wnt5a, or Wnt10b) increased the per-
centage of primitive stem cells          [56, 58, 59] . Furthermore, 
HSCs could be regulated by adding extracellular factors 

 FIGURE 20.3          The Role of GSK-3 β  in the Wnt signaling network.  
    (a) Phosphorylation of Tyr216 inhibits GSK-3 β , thereby activating the 
Wnt signaling pathway. (b) Activation of GSK leads to phosphorylation 
of  β -catenin, targeting it for degradation and resulting in inhibition of Wnt 
signaling. See text for detailed abbreviations.    
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such as lipid-modified Wnt3a          [56, 59, 61] . In addition to 
extracellular stimulation, intracellular modulation of the 
Wnt axis has been performed by transfection with constitu-
tively active  β -catenin, or inhibition of GSK-3 β  with phar-
macological compounds such as LiCl, CHIR-911, or BIO 
in HSCs and ESCs            [56, 57, 59, 62] . However, the effect of 
activating the Wnt pathway on proliferation, self-renewal, 
and differentiation of adult blood stem cells, in particular 
CD133 cells, remains relatively unexplored. 

 The   specific role of GSK-3 β  kinase activity in self-
renewal, differentiation, and multipotency of CD133 stem 
cells was, until recently, also unknown. However, we 
showed  [63]  that phosphorylation of Tyr216 on GSK-3 β  
increased specifically in the CD133 -  differentiated popula-
tion ( Figure 20.1 , type 2). This finding is the first to cor-
relate GSK-3 β  kinase activity with stem cell differentiation. 
Since  β -catenin was undetectable in fresh CD133 cells, 
GSK-3 β  kinase activity was not correlated with  β -catenin, 
as previously published literature suggested          [46, 64, 65] . 
However, since neither  β - nor  γ -catenin are essential for nor-
mal hematopoiesis in mice  [66] , these may not be essential 
for self-renewal of CD133 stem cell development. Another 
possibility is that GSK-3 β  is fully active in CD133 �  and 
CD133 �  cells to the extent that  β - and  γ -catenin are pro-
duced, but continuously degraded. This latter theory seems 
the most plausible, since BIO treatment decreased GSK-3 β  
kinase activity, leading to increased  β -catenin levels from 
previously undetectable levels. 

 The   downstream consequences of Wnt pathway activa-
tion provide important insight as well. While little is known 
about the role of the Wnt transcriptional mediator Tcf-4 in 
hematopoietic stem cells, it has been described in intestinal 
stem cells, where the loss of Tcf-4 resulted in differentiated, 
non-proliferative cells in intestinal crypts  [67] . As shown 
in  Figure 20.3 , Tcf-4 is also known to co-activate the tran-
scription of many target genes, including cyclin D1, through 
interactions with  β - and  γ -catenin        [68, 69] . Tcf-4 expression 
and activity dramatically decreased as CD133 cells differen-
tiated and cyclin D1 was downregulated (Howe, submitted 
data). Interestingly, Tcf-4 levels were unchanged by inhibi-
tion of GSK-3 β  even though cyclin D1 mRNA increased. 
Since cyclin D1 promotes progression through the G 1 -S 
phase of the cell cycle via inactivation of the retinoblastoma 
protein  [70] , cyclin D1 could play an essential role in prolif-
eration of CD133 �  BIO-treated cells. Thus, the Wnt path-
way is activated in cells that maintain the CD133 marker 
and deactivated in cells that lose the CD133 marker and 
gain the differentiation markers CD14, CD15, and CD56. 

 Inhibition   of GSK-3 β  has been shown to promote both 
self-renewal and differentiation of CD133 cord blood stem 
cells        [57, 62] . As expected, BIO treatment activated the 
Wnt pathway by inhibiting phosphorylation of Tyr216 on 
GSK-3 β  and increased expression of both cyclin D1 and 
previously undetected  β -catenin. BIO activation of the 
Wnt pathway led to an increased rate of loss of CD133 and 

other adult stem cell markers while, surprisingly, maintain-
ing proliferative capacity ( Figure 20.1 , type 3). Holmes and 
colleagues also found a similar phenomenon after treat-
ment of CD34  �   cord blood cells with BIO  [71] , suggesting 
potential common signaling pathways in various lineages 
of adult cord blood stem cells. 

 Although   further studies are required to delineate 
comprehensive effects of BIO inhibition of GSK-3 β , we 
speculate that treatment would expand the CFU-GEMM 
population in cord blood stem cells, thereby decreasing the 
time to repopulate the bone marrow. In addition, BIO-treated 
cells had a significantly increased erythroid potential. This 
is similar to a recent study showing that activation of the 
Wnt pathway through either addition of the Wnt3 ligand, or 
 β -catenin overexpression in mouse Flk1  �   mesodermal pro-
genitors, increased the frequency of primitive erythroid 
colony formation, and inhibition of the Wnt pathway com-
pletely blocked primitive erythroid colony formation  [54] . 
Since this is somewhat different than studies on CD133 cells, 
our findings highlight the importance of GSK-3 β  inhibition 
in directing cells down the hematopoietic pathway. 

 Proliferation   of differentiated cells is commonly noted 
in many cancers. GSK-3 β  inhibition provides an additional 
example of how activation of the Wnt pathway contributes 
to cancer. Through GSK-3 β  inhibition, increased expres-
sion of two oncogenes,  β -catenin and cyclin D1, have been 
shown to predict poor prognosis in patients with acute and 
chronic myeloid leukemia          [72 – 74] . For example, GSK-3 β  
inhibition may lead to major alterations in the Hedgehog 
and Notch pathways giving rise to different phenotypes 
       [75, 76] . Therefore, activation of the Wnt pathway could 
result in proliferation of differentiated hematopoietic cells 
in hematological malignancies, and provide insight into 
potential intervention strategies in the future. 

 Wnt   pathway signaling is critical to understanding regu-
lation of self-renewal and differentiation in cord blood stem 
cells for clinical applications in regenerative medicine. For 
example, activation of the Wnt pathway through inhibition of 
GSK-3 β  could result in increased self-renewal of CD133 �  
cells. This would be a key discovery for hematopoetic trans-
plantation. On the other hand, activation of the Wnt pathway 
through inhibition of GSK-3 β  could predispose CD133 �  
cells to differentiate into one or more hematopoetic lineages 
(erythroid, granulocyte, monocyte, or megakaryocyte). This 
knowledge would be relevant to the development of hemat-
opoietic cells and hematopoietic diseases.  

    Mass Spectrometry and Bioinformatics 
Identification of Signaling Pathways and 
Networks 

 While   typical studies have used reductionist approaches to 
focus on a single signaling intermediate or closely related 
members, unbiased mass spectrometry allows the discovery 
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of new entities not constrained by prior knowledge or pre-
conceived ideas. A stable isotope, quantitative mass spec-
trometry approach          [77 – 79]  was used to identify differentially 
expressed proteins in various CD133 populations and their 
differentiated progeny. Data were analyzed using bioinfor-
matics tools (Ingenuity Pathways Analysis,  www.ingenuity.
com ) to identify signaling pathways and networks critical for 
integration of convergent and divergent information process-
ing in growth and differentiation        [80, 81] . 

 The   experimental approach was rather straightforward. 
After 1 week in culture, the CD133 �  and CD133 �  pop-
ulations ( Figure 20.1 , types 1 and 2) were separated by 
immunomagnetic bead selection. Cell extracts from the 
two populations were separately digested with trypsin and 
differentially labeled with stable isotopes using trypsin-
mediated carboxyl-terminal exchange of oxygen molecules 
from normal ( 16 O-H 2 O) or heavy ( 18 O-H 2 O) water        [82, 83] . 
Following mixing of the samples, off-line strong cation 
exchange chromatography allowed deeper interrogation of 
the proteome. Reversed-phase tandem mass spectrometry 
was performed in the data-dependent mode to fragment 
peptides for sequence identification and to perform zoom 
scans to quantify differential expression ratios of tens of 
thousands of tryptic peptides corresponding to over 1100 
proteins. Extensive filtering and validation then confirmed 
263 differentially expressed proteins that changed more 
than  � 30 percent  –  the accuracy limit of the method. 

 Bioinformatics   tools are critical to the integration of 
large data sets into comprehensible models of pathways 
and related networks.  Table 20.1    shows Ingenuity Pathway 
Analysis classification of differentially expressed proteins 
in the CD133 �  cells compared to the CD133 �  cells into 
Molecular and Cellular Functions (top) and Signaling 
Network Functions (bottom). 

 The   highest-probability Molecular and Cellular Function 
( P   �  2.33E-06) with the most molecules ( n   �  60) is Cellular 
Growth and Proliferation ( Table 20.1 , top). This is excellent 
independent validation of the approach, since CD133 �  cells 
do grow while CD133 �  cells do not grow  [38] . Further vali-
dation derived from the calculated enhanced relative expres-
sion of CD34 in this functional group in CD133 �  cells, an 
observation consistent with those that we and others have 
made by flow cytometry showing this marker is present in 
CD133 �  cells and nearly absent from CD133 �  cells. This 
group also contains the growth regulators cyclins, histones, 
and RNA polymerase II. Other important Molecular and 
Cellular Functions include Cell-To-Cell Signaling, DNA 
Replication, and Cellular Assembly and Organization. All 
of these are critical to cell division in CD133 �  cells. 

 The   highest scoring (score  �  42) Signaling Network 
Function with the most focus molecules ( n   �  25) was also 
Cellular Growth and Proliferation ( Table 20.1 , bottom). This 
confirms the central connections between molecular and 
cellular functions with signaling network functions. Other 

high-scoring networks included Cell Morphology, Cell 
Death, with members like poly-ADP ribose polymerase 
(PARP) and annexins that execute apoptotic death. With 
recent reports of the central causal role of caspase-medi-
ated processes in ESC self-renewal, it will be important to 
assess engagement of the apoptotic machinery in CD133 cell 
growth and potency. 

 Thus  , a mass spectrometry/bioinformatics approach has 
led to several emergent properties of CD133 �  growth and 
differentiation to produce CD133 - progeny. This approach 
will also be invaluable to identify signaling pathways that 
underlie these processes in normal maturation in culture as 
well as under conditions of Wnt pathway activation with 
BIO treatment that induces the differentiated CD133 cells 
that continue to proliferate.   

 TABLE 20.1          Ingenuity Pathway Analysis of CD133 
cord blood stem cells  1    

   Molecular and Cellular Functions 

   Name   P  value  # Molecules 

   Cellular Growth and Proliferation  2.33E-06  60 

   RNA Post-transcriptional 
Modification 

 3.62E-06  19 

   Cell-to-Cell Signaling and 
Interaction 

 2.79E-05  40 

   DNA Replication, Recombination, 
and Repair 

 2.79E-05  34 

   Cellular Assembly and 
Organization 

 3.63E-05  50 

    Signaling Network Functions  

    Name    Score    Focus 
molecules  

   Cellular Growth and Proliferation  42  25 

   Cancer, Molecular Transport  39  24 

   Cell Morphology, Assembly, and 
Organization 

 37  23 

   Cell Signaling, DNA Replication  29  19 

   Cell Morphology, Cell Death  26  18 

  1  CD133 cells were grown for 1 week in culture, and CD133 �  
cells separated from CD133 �  cells. Stable isotope labeling and 
quantitative mass spectrometry identified differentially expressed 
proteins, which were submitted to IPA. Values represent functions 
enriched in CD133 �  cells compared to CD133 �  cells.  
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    CONCLUSIONS 

 Early   attempts to expand cord blood stem cells  ex-vivo  
before transplantation were disappointing, mainly due to 
predominant expansion of mature, rather than immature, 
cells  [84] . It is now clear that understanding the signaling 
pathways of self-renewal, differentiation, and proliferation 
is essential to leverage the special properties of adult cord 
blood stem cells for regenerative medicine. 

 The   principles that regulate these properties in ESCs are 
not operative in CD133 stem cells. For example, the Oct-4 
pathway does not recapitulate the same properties identi-
fied in other stem cell populations such as ESCs. Further, 
Oct-4 is expressed in many differentiated cell types where 
the function of Oct-4 remains to be discovered. 

 Activity   of the Wnt signaling pathway is also different 
in CD133 cord blood cells compared to ESCs. In freshly 
isolated CD133 cells, the Wnt pathway is active. In culture, 
these cells undergo a combination of self-renewal and dif-
ferentiation, the latter of which is correlated with inactiva-
tion of the Wnt pathway and loss of proliferative potential. 
Surprisingly, activation of Wnt signaling by BIO-induced 
inhibition of GSK accelerated differentiation but main-
tained the proliferative capacity. Signaling mechanisms that 
maintained expression of cyclin D1 may hold the key to this 
apparent conundrum. Clearly, there are important underlying 
signaling pathways that allow the generation of differentiated 
cells that continue to proliferate. Unbiased quantitative mass 
spectrometry to identify differentially expressed proteins 
combined with bioinformatics approaches to identifying 
signaling nodes, pathways, and networks holds tremendous 
promise to unveil the subtleties of signaling pathways in 
regulation of CD133 stem cell growth, differentiation, and 
potency.   
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    INTRODUCTION 

 The   term Wnt is an acronym of  wingless  ( wg ) and  INT-1 , 
which are the two founding member genes of this signaling 
pathway.  Wg  was found to be indispensable for segment 
polarity during  Drosophila melanogaster  larval develop-
ment  [1] .  Int-1  was first described as a preferential integra-
tion site in virally induced mammary tumors in mice  [2] . 
 Wnts  are highly conserved throughout evolution, with a 
multiplicity of genes found in species ranging from hydra 
to man. They encode secreted messenger molecules that 
share a common palmitoylation modification that is neces-
sary for proper function  [3] . To date, at least three major 
pathways downstream of Wnt can be distinguished: the 
Wnt/Ca 2 �   pathways  [4] , the Wnt/PCP (planar cell polarity) 
pathway and the Wnt/ β -catenin pathway. The latter is also 
referred to as the canonical Wnt signaling pathway. Only 
here is  β -catenin the central player, and, upon Wnt bind-
ing to its receptor, it translocates to the nucleus where it 
functions as a transcriptional co-activator. In this chapter, 
we will give an overview of the present knowledge regard-
ing Wnt signaling, focusing primarily on the Wnt/ β -catenin 
pathway and its role in invertebrate and vertebrate develop-
ment. Further, we briefly discuss recent progress concern-
ing the non-canonical Wnt/PCP pathway.  

    CANONICAL WNT SIGNALING 

 In   general, the canonical Wnt pathway involves the fine-
tuned interaction of activators, inhibitors, and many co-
factors at the cell membrane, in the cytoplasm, and in the 
nucleus. This complex molecular machinery is put into place 
to control cytoplasmic turnover of  β -catenin, thus regulating 
the transcription of Wnt target genes. The Wnt homepage 
( www.stanford.edu/~rnusse/wntwindow.html ) provides more 
detailed information about this signaling cascade. 

 In   the absence of Wnt signaling, cytoplasmic  β -catenin 
is bound to a multimeric protein complex. This so-called 

destruction complex, composed of the scaffolding protein 
axin, APC (adenomatous polyposis coli), and the kinases 
CK1 (casein kinase 1) and GSK3 β  (glycogen synthase 
kinase 3 β ), phosphorylates  β -catenin at N-terminal serine/
threonine residues, subjecting the protein to ubiquitination 
and proteasome dependent degradation                          [5 – 15] . Upon bind-
ing of Wnt to the membrane receptors Frizzled (Fz) and 
LRP5/6 (Low-density lipoprotein Receptor-related Protein 
5/6), intracellular signaling events impede  β -catenin break-
down. Wnt signaling promotes the phosphorylation of the 
intracellular domain of LRP6, as well as the interaction of 
Dishevelled (Dsh) with Fz. Together they sequester axin to 
the membrane, which in turn is followed by GSK3b and 
CK1        [16, 17] . The translocation of these proteins blocks 
phosphorylation of  β -catenin, and thereby amplifies the 
Wnt signal. Hypo-phosphorylated  β -catenin accumulates 
and translocates into the nucleus, where it binds to TCF/
LEF (T cell factor/lymphoid enhancer factor) transcrip-
tion factors  [18] . In the present model, TCF/LEF proteins 
are bound to sites in the promoters of canonical Wnt target 
genes and act as transcriptional repressors by associating 
with other factors including Groucho homologs (TLEs) and 
histone deacetylases        [19, 20] .  β -catenin displaces Groucho 
(TLE) from TCF/LEF, other co-activators including p300/
CBP are summoned, and target gene transcription is acti-
vated  [21] . Taking into account that most Wnt target genes 
are developmentally and cell-type-specifically regulated, it 
is not well understood how TCF/LEF and  β -catenin acti-
vate a distinct subset of target genes in a given cell. Recent 
evidence suggests that epigenetic mechanisms may come 
into play here  [22] .  

    WNT SIGNALING IN INVERTEBRATE 
DEVELOPMENT 

 The   first  wg  mutation in  D. melanogaster  was induced by 
X-irradiation, and resulted, as the name suggests, in missing 
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adult body structures, including the wings  [23] . Yet this 
phenotype is misleading, as the genetic lesion did not dis-
rupt the coding region but rather a small regulatory element 
9       kb downstream of the  wg  transcription unit. This element 
is believed to contribute to  wg  expression in the imagi-
nal discs        [24, 25] . Major contributions to the understand-
ing of canonical Wnt signaling came from genetic screens 
for zygotic mutations disrupting the embryonic body plan 
 [1] . The ventral cuticular exoskeleton of the larva displays 
a segmental repetitive pattern of denticle belts and naked 
smooth cuticle. In  wg  loss-of-function mutants, the abdom-
inal exoskeleton is covered with denticles. Other mutants, 
such as  Armadillo  ( β -catenin),  Arrow  (LRP5/6) and, using 
the dominant female sterile mutation  ovoD ,  Dsh  and  Zeste-
white3  ( Zw3 , GSK3 ß ) were identified  [26] . Hence, the cen-
tral mechanism of canonical Wnt signaling was recognized 
in  D. melanogaster . The discrepancy between Armadillo 
transcript and protein localization in the cuticle, the earlier 
showing uniform distribution and the latter a striped pat-
tern, led to the hypothesis that  wg  regulates Armadillo pro-
tein stability and that this involves  Zw3  (GSK3 β )        [27, 28] . 
However, the analysis in  D. melanogaster  did not reveal 
further downstream components of this signaling path-
way. This was achieved in the mammalian system, with the 
identification of the transcription factors TCF/LEF as bind-
ing partners of  β -catenin          [29 – 31] . Subsequently, the TCF 
ortholog  Pangolin  was identified in  D. melanogaster   [32] . 

 The    Caenorhabditis elegans  genome encodes multi-
ple genes for Wnt ligands (five) and Fz receptors (four). 
However, unlike vertebrates and  D. melanogaster , the 
nematode genome possesses three  β -catenin genes, which 
fulfill different functions in Wnt signaling and adhesion 
 [33] . Whilst bar-1 most likely adopts the role of canonical 
 β -catenin in the classical signal transduction cascade, Hmp-
1 only functions in cell adhesion. Remarkably, Wrm-1, 
the third nematode  β -catenin, acts in a non-canonical 
form of Wnt signaling, possibly unique to nematodes. In 
the four-cell stage embryo the Wnt signal is thought to 
align the mitotic spindle along the AP body axis. The out-
come of this non-canonical variant of Wnt signaling is the 
polarization of the bi-potent precursor cell (EMS)        [34, 35] . 
Subsequent cell division results in a posterior daughter 
cell that will give rise to the future endoderm, whereas 
the anterior daughter will form mesoderm. Disturbances 
in this important fate decision can be observed in several 
loss-of-function mutants, which lack of endodermal struc-
tures. Genetic analysis of these mutant worms revealed a 
high frequency of genes for components of the Wnt sign-
aling pathway. Among these are  mom-2  (more mesoderm) 
encoding one of the Wnt ligands,  mom-5 , a Fz receptor 
homolog, and  wrm-1 . 

 Canonical   Wnt signaling in  C. elegans  is required for vul-
val induction  [36] . The vulva develops post-embryonically 
from six vulva precursor cells (VPCs). Each of these cells 

can adopt one out of three fates, 1 ° , 2 ° , or 3 ° , respectively. 
Here, Wnt signaling is transduced by the  β -catenin ortholog 
bar-1 inducing the primary fate of the central VPC (P6.p) 
via the activation of the homeobox gene  lin-39   [37] . Loss 
of  bar-1  results in the adoption of the 3 °  fate of all VPCs, 
and thus in a vulva-less phenotype. Further genetic screens 
have shown that many Wnt components have effects on 
vulva induction. The mutants  mom-3  (Wnt),  mig-14  (not 
identified),  pry-1  (axin), and  apr-1  (APC) all exhibit vulva 
phenotypes        [38, 39] . As expected, the loss of the negative 
Wnt regulator  pry-1  results in the generation of multiple 
ectopic vulvae.  

    WNT SIGNALING IN VERTEBRATE 
DEVELOPMENT 

 Various   processes during chordate embryogenesis depend 
on canonical Wnt signaling. Although the significance 
of this pathway has been described in virtually every 
vertebrate species, including human, we will discuss some 
major developmental processes in  Xenopus laevis  and in 
mouse. Wnt signaling controls early patterning of the body 
plan, when the dorsal – ventral (DV) and anterior – posterior 
(AP) body axes are laid down. In addition, later in devel-
opment Wnt signaling is involved in many morphogenetic 
events leading to organogenesis. 

 Fertilization   of the amphibian egg sets in motion a 
cascade of events that leads to movements of the vegetal 
cortical cytoplasm away from the point of sperm entry  [40] . 
Thereby, maternal factors are relocated asymmetrically to 
the future dorsal side of the embryo  [41] . The result of this 
reorganization is the establishment of the Spemann organ-
izer that further directs  X. laevis  development. A role for 
Wnt signaling in this process has long been anticipated. 
While  β -catenin depletion leads to ventralization and 
concomitant lack of axial structures  [42] , ectopic overex-
pression induces axial duplication  [43] . In 2005, Tao and 
colleagues demonstrated that maternal wnt11 mRNA is 
necessary and sufficient to activate the canonical Wnt path-
way on the dorsal side of the embryo  [44] . Even though 
Wnt11 is considered a non-canonical member of the Wnt 
family  [45] , extracellular membrane-associated co-factors 
direct its potential towards a canonical signaling function. 
For example, posttranslational modifications of heparan 
sulfate proteoglycans are thought to be involved in Wnt 
stabilization, presentation to receptors, and extracellular 
transport  [46] . The extent to which the composition of the 
extracellular environment is able to regulate the signal-
ing property of a given Wnt molecule still remains to be 
investigated. 

 In   mouse pre-implantation embryos, a cytoplasmic pool 
of  β -catenin and other Wnt signaling components can be 
detected. Functionally, these molecules do not affect the key 
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lineage decisions made at early blastocyst stages, but rather 
prepare the embryo for implantation        [47, 48] . However, 
patterning of the epiblast, especially the development of 
the primitive streak, is highly dependent on intact canonical 
Wnt signaling. Monitoring canonical Wnt signaling activ-
ity during mouse development is possible with the help of 
TCF-reporter transgenic mice expressing  β -galactosidase 
under the transcriptional control of seven fused TCF/LEF 
binding sites from the minimal promoter-TATA box of the 
gene  siamois   [49] . In these BATgal mice, the activity of the 
reporter is first observed at day 6 of embryonic develop-
ment in a subpopulation of epiblast cells at the boundary 
between embryonic and extra-embryonic ectoderm. With 
the onset of gastrulation,  β -galactosidase activity becomes 
enriched in the primitive streak, where it remains present 
until the end of gastrulation. The candidate Wnt ligand 
upstream of these events is Wnt3, having an expression pat-
tern similar to the  β -galactosidase activity  [50] .  Wnt3 -null 
mutant embryos show a similar phenotype to   β -catenin  
knock-out mice: failure of primitive streak formation, and 
no gastrulation  [51] . Unlike in  X. laevis , expression of con-
stitutively active  β -catenin does not lead axis duplication, 
but to disorganization of the epiblast. Analyses of such 
embryos point towards a precocious mesoderm differen-
tiation of the embryonic ectoderm  [48] . Despite molecu-
lar differences between  X. laevis  and mouse during initial 
stages of development, both species share conserved mech-
anisms centered on canonical Wnt signaling, necessary for 
body axes formation. 

 After   the initial establishment of the major axes, 
organs are formed at precise positions along the body plan. 
Development of these highly specialized structures often 
depends on cross-talk between an inductive tissue and a 
responding cell population. 

 Three   distinct renal organs evolve in a defined temporal  –   
spatial order; the primary nephric duct in the intermediate 
mesoderm represents the vertebrate excretory system dur-
ing development. In mammals, pronephros and mesone-
phros are transient, partially functional excretory organs 
of the anterior portion of the duct. They degenerate as the 
metanephrous, or definite, kidney develops. The genera-
tion of the adult kidney makes use of several Wnt signal-
ing events. The key inducer of metanephric development is 
the ureteric bud (UB), a caudal outgrowth of the primary 
nephric duct  [52] . A promising factor expressed in the UB 
to initiate nephrogenesis is Wnt9b  [53] .  Wnt9b  mutants 
only develop rudimentary kidneys, reflecting a failure 
of the UB to induce the metanephric mesenchyme. In 
response to the signal emanating from the invading UB, the 
mesenchymal cells further condense, aggregate into pre-
tubular clusters, and undergo an epithelial transition form-
ing a tubule.  Wnt4  was found to be the factor expressed in 
the metanephric mesenchyme required for the tubulogene-
sis        [54, 55] . Besides Wnt4, other Wnt ligands are expressed 

in highly specific patterns in the developing metanephros 
       [56, 57] .  Wnt2b  transcripts are found in perinephric mesen-
chymal cells, whereas  Wnt11  is exclusively detected in the 
tips of the ureter; both function in ureteric bud branching 
morphogenesis  [58] . In  X. leavis , the pronephros is a fully 
functional filtration unit consisting of a glomus, tubules, 
and a duct. Its development partially depends on the same 
mechanisms as described in mice. Morphological changes 
in the pronephros anlage coincide with changes in gene 
expression  –  for example, upregulation of  wnt4 . 
Overexpression of  wnt4  results in fused pronephric tubules, 
while morpholino-mediated  wnt4  knockdown leads to 
a complete loss of pronephric tubules  [59] .  X. leavis Fz8  
( Xfz8 ) knockdown leads to a significant reduction in prone-
phric duct differentiation  [60] . Wnt11, transcripts of which 
are found in the vicinity of the pronephric duct, could acti-
vate Xfz8. However, to date a direct association of these 
two proteins has not been shown. 

 Another   well-studied example of a Wnt/ β -catenin-
dependent tissue specification is the hair follicle. Follicle 
development is guided by reciprocal exchange of signals 
between ectoderm and underlying dermis. At day 14 of 
embryonic development, an epidermal thickening or pla-
code marks the beginning of the hair-follicle formation. 
 In situ  hybridization reveals an upregulation of   β -catenin  
and  LEF1  in the epidermal part of these structures. Cre-
mediated skin-specific knockout of   β -catenin  results in the 
loss of placodes and later follicle formation  [61] . A simi-
lar phenotype is observed in  LEF1 -deficient mice  [62] . On 
the other hand, the overexpression of  LEF1  or constitu-
tively active  β -catenin induces extra hair follicles        [63, 64] . 
Several Wnts are expressed in the early placode (Wnt10a, 
10b) or within its close proximity (Wnt3, 3a, 4, 5a); nev-
ertheless, to date it remains elusive which Wnt ligands are 
truly involved in hair follicle formation  [65] . 

 These   are examples of the requirement for Wnt signal-
ing during development, but a detailed description of all of 
the processes where Wnts are involved would go beyond 
the scope of this chapter. Over recent years, stem cell 
research has evolved into one of the most prominent top-
ics in biological science. Given the importance of Wnt sig-
naling during development, it is not surprising that many 
reports have connected  β -catenin and other components 
of the Wnt signaling machinery to embryonic and somatic 
stem cell renewal and cancer        [66, 67] .  

    WNT/PLANAR CELL POLARITY 

 Planar   cell polarity (PCP) is distinct from apical – basal cell 
polarity. Whereas the latter comprises the functional bar-
rier property across a tissue, PCP describes the uniform 
alignment of cells within a tissue. Readily visible exam-
ples are the ordered array of distally pointing bristles on 



218 SECTION | C Signaling In Development

 D. melanogaster  wing cells, or the chevron-shaped align-
ment of stereocilia protruding from sensory hair cells in 
the mammalian cochlea. PCP, as a variant of non-canonical 
Wnt signaling, does not rely on  β -catenin. This implies 
that only the membrane components of the canonical Wnt 
machinery including Dsh are used in this pathway. In 
 D. melanogaster , Wnts seem not to be involved in the direct 
initiation of the PCP signaling cascade. Rather they are 
proposed to regulate the graded expression of protocadher-
ins upstream of PCP signaling  [68] . Activation of the PCP 
pathway is thought to arise from differential interaction of 
these cadherin superfamily members  [69] . In vertebrates, 
non-canonical Wnt ligands have been shown to activate 
PCP signaling. For example, gastrulation and neural tube 
closure in  X. laevis  or the zebrafish  Danio rerio  embryos 
depend on the presence of Wnt11 and Wnt5        [70, 71] . 
Furthermore, the complex construction of the mammalian 
cochlea could be orchestrated by Wnt7a  [72] . A key event 
in PCP is the asymmetric assembly of membrane-bound 
proteins (core components) into distinct complexes at the 
proximal or distal side of the cell. Through antagonizing 
and stabilizing feedback mechanisms, these complexes 
maintain their polarized distribution and further propagate 
this pattern to neighboring cells. This uniform patterning 
builds the basis for the execution of cellular events at one 
side of the cells        [73, 74] . One important outcome of PCP 
in vertebrates is convergent extension. Activated cells pref-
erentially extend filopodia from their proximal sides, along 
which they move towards the center, thereby concomi-
tantly elongating and thinning a tissue. Recent reports have 
identified non-redundant functions for Wnt5a and Wnt11 
in convergent extension of gastrulating  X. laevis  embryos. 
Wnt5a upregulates the expression of paraxial protocadherin 
(PAPC) in dorsal mesoderm  [75] . PAPC interacts with Fz7 
and direct the separation of involuting mesoderm and ecto-
derm  [76] . Whereas Wnt5a seems to establish directionality 
by sorting cells, Wnt11 is necessary to stimulate cell motil-
ity, as shown in depletion experiments. Only the combined 
function of Wnt5a and Wnt11 is sufficient to bring about 
convergent extension. The propagation of the PCP signal 
depends on distinctive domains of core players, dispensa-
ble for canonical Wnt signaling  [77] . In particular, the DEP 
domain of Dsh is involved in the activation of the cytoskel-
eton regulators JNK, Rho, Rac, and Cdc42        [78, 79] . 

 Different   responses to Wnt/PCP signaling are the gen-
eration of the invariant mosaic of sensory cells and sup-
porting cells in the fly eye based on Delta-Notch signaling 
 [80]  or mitotic spindle orientation  [81] . The involvement 
of PCP in a wide variety of developmental processes is 
increasingly appreciated. However, future research needs to 
better define the signaling events occurring upstream and 
downstream of the core cassette. Greater comprehension of 
the mechanisms underlying PCP will help us to understand 
how aberrant tissue polarity affects development and organ 
physiology.  
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            Interactions between Wnt/ β -Catenin/Fgf 
and Chemokine Signaling in Lateral Line 
Morphogenesis 

   Tatjana   Piotrowski  
  University of Utah, Department of Neurobiology and Anatomy, Salt Lake City, Utah    

    INTRODUCTION 

 During   embryonic development, cells organize themselves 
into distinct and often complex three-dimensional organs 
or tissues. In order for proper morphogenesis to occur, a 
variety of cellular behaviors have to be tightly coordinated 
(e.g., cell migration, cell – cell adhesion, cell proliferation, 
cell death, interactions with the environment and changes in 
cell morphology). Because of this complexity, the molecu-
lar and cell biological mechanisms that regulate embryonic 
morphogenesis remain poorly understood. Recent work has 
demonstrated that zebrafish lateral line development is an 
excellent model to study cell signaling pathways underly-
ing these events  in vivo . 

 The   lateral line is a sensory system present in all aquatic 
vertebrates for the detection of water movements, which 
initiates the appropriate behavioral responses for captur-
ing prey, avoiding predators and schooling. The lateral 
line consists of mechanosensory organs (neuromasts) dis-
tributed in lines on the head and along the flanks of the 
animal. Neuromasts contain hair cells that are very similar 
to the hair cells of the inner ear of vertebrates  [1] . Despite 
the unusual location of the hair cells in the skin ( Figure 
22.1a   ), lateral line and ear hair cells develop by similar 
stereotyped mechanisms and are derived from cephalic 
placodes ( Figure 22.1b )            [2 – 5] . However, in contrast to the 
otic placode, the lateral line placode (also called primor-
dium) undergoes a remarkable posterior migration toward 

 Chapter 22 

 FIGURE 22.1          Morphology of the lateral line system.  
    (a) Live 5-day-old larva stained with Daspei (Invitrogen) which labels the hair cells yellow (shown white). Individual neuromasts are represented by a 
bright spot. Signal in the yolk is autofluorescence. (b) Lateral view of the posterior lateral line primordium on the trunk of a 30-hours   post-fertilization 
(hpf) larva stained with the vital dye Bodipy (Molecular Probes). Anterior to the left. Primordium is migrating to the right. (c) Schematic drawing of 
neuromast deposition. Between 20 and 48   hpf the primordium (prim) gives rise to 7 – 9 primary neuromasts (shown as dots).    
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the tail. This migration is a dynamic event that involves 
the primordium depositing neuromasts every three to five 
somites until it reaches the tail tip, patterning the future lat-
eral line ( Figure 22.1c )          [6 – 8] . 

 Classically  , the development of the lateral line system has 
been studied in amphibian embryos because of the relatively 
large size of this organ system in these animals            [2, 4, 9, 10] . 
However, these studies have been restricted to embryologi-
cal manipulations, such as grafting and skin preparations, 
because of the general intractability of amphibians to genetic 
approaches. Thus, a major advantage of using zebrafish as 
a model is that, in addition to being able to manipulate the 
embryo, genetics and molecular methods can be employed 
to study developmental problems. 

 Analyses   of zebrafish mutants and experimental manipu-
lations of signaling pathways have begun to provide impor-
tant insights into how primordium migration is guided, and 
how collective cell movement and neurogenesis are regulated.  

    FGF SIGNALING CONTROLS SENSORY 
ORGAN FORMATION IN THE MIGRATING 
PRIMORDIUM 

 Neuromasts   consist of centrally located hair cells that are 
surrounded by support cells. All cell types within a depos-
ited neuromast are derived from the migrating primordium, 
raising the question of when these cells acquire their fates 

and which signaling pathways are involved. Morphological 
and molecular analyses reveal that proto-neuromasts already 
begin to form within the migrating primordium. Two to 
three proto-neuromasts can be morphologically detected 
in the trailing region of the primordium as cells organize 
themselves into epithelial rosettes with their apical poles 
facing toward a central cell ( Figure 22.2a   , arrows). At this 
stage, these centrally located cells within proto-neuromasts 
can also be identified by the expression of  fgf10 ,  delta A, B 
and C ,  neurod , and  atoh1  ( Figure 22.2d )          [11 – 13] . 

 The   leading region of the primordium is unpatterned, 
and lacks  delta  A, B and C,  neurod , and  atoh1  expression 
( Figure 22.2a ). Interestingly, proto-neuromasts are formed 
and deposited in a conveyer-belt-like fashion. A new proto-
neuromast is induced close to the leading region of the pri-
mordium as the most trailing proto-neuromast is deposited 
( Figure 22.2b ). As the primordium is constantly  “ losing ”  
whole clusters of cells from its trailing region and new 
proto-neuromasts form at the same rate, new cells have to 
be produced in the primordium as it migrates. 

 The   undifferentiated leading region of the primordium 
serves this purpose, and acts as a progenitor zone  [12] . 
When progenitor cells in the leading zone were fluorescently 
labeled, these cells were shown to proliferate and contrib-
ute to all cell types within deposited proto-neuromasts. 
The fact that proto-neuromasts can be studied from birth 
until deposition makes the lateral line primordium an 
excellent model to study the genetic cascades underlying 

 FIGURE 22.2          Fgf signaling controls neuromast formation.  
    (a) Primordium in a transgenic embryo in which the lateral line system is GFP-positive ( Tg(claudinb:gfp) ;  [23] ). Proto-neuromasts form epithelial 
rosettes in the trailing region of the migrating primordium (arrows). Anterior to the left. (b) Schematic drawing of neuromast formation and deposition 
over time. From  [12]  (Nechiporuk and Raible, 2008); reprinted with permission from AAAS.   (c, d, e)  In situ  hybridization with  fgf3  (c),  fgf10  (d) and the 
Fgf target  pea3  (d). Arrow in (e) points at central cell in a forming neuromast.    
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cell type specification, morphogenesis, and differentiation 
in a vertebrate. 

 Several   elegant studies have begun to shed light on the 
signaling pathways involved in rosette formation and spec-
ification of hair cell precursors. Fgf signaling has recently 
been shown to be required for hair cell specification within 
the ear and lateral line by regulating  atoh1 , a gene respon-
sible for hair cell differentiation  [14] . However, loss of Fgf 
signaling in the lateral line primordium not only causes loss 
of hair cells, but also prevents rosette formation        [11, 12, 17] . 
Fgf ligands are expressed in an interesting pattern in 
the primordium.  fgf3  and  fgf10  are expressed in all cells of 
the leading region, whereas in the trailing two-thirds of the 
primordium only  fgf10  is expressed in single central cells 
within proto-neuromasts ( Figure 22.2c, d ). However, Fgf 
pathway activation is inhibited in the leading region, as 
evidenced by the absence of the Fgf target gene  pea3  (see 
below), but is activated by diffusion of Fgf ligands in all 
trailing cells ( Figure 22.2e ). 

 By   inhibiting or hyperactivating Fgf signaling at dif-
ferent time points during primordium migration, it was 
demonstrated that Fgf signaling in the trailing two-thirds 
of the primordium is required for transitioning cells from 
their mesenchymal character in the leading zone to an epi-
thelial character as the proto-neuromast forms        [11, 12] . 
Specifically, a central  fgf10  expressing cell serves as a 
nucleation center around which future support cells form 
a rosette ( Figure 22.2d , arrow). Fgf ligand expression by 
this central cell causes radial epithelialization of surround-
ing support cells. During this process, support cells elongate 
along the basil/apical axis while their apical poles all con-
strict above the central cell  [11] . These Fgf-dependent cell 
shape changes cause the proto-neuromast to acquire a rosette 
shape, resembling a garlic bulb. This effect of Fgf signaling 
on cytoskeletal remodeling appears to be applicable to many 
other epithelial tissues that undergo morphogenesis, such as 
the inner ear and dorsal neural tube closure        [15,  16] . 

 As   mentioned above, Fgf signaling is also required 
for hair cell differentiation. To investigate whether proto-
neuromast morphogenesis depends on hair cell differen-
tiation, Nechiporuk and Raible (12) and Lecaudey and 
colleagues (11) inhibited hair cell differentiation by knock-
down of Atoh1 using antisense morpholino nucleotide 
injections. Neither rosettogenesis nor proto-neuromast dep-
osition were affected, demonstrating that Fgf signaling is 
independently required for rosettogenesis and later for hair 
cell differentiation.  

    WNT/ β -CATENIN SIGNALING RESTRICTS 
NEUROGENESIS TO TRAILING CELLS AND 
MAINTAINS THE PROGENITOR ZONE 

 The   analyses of the roles of Fgf signaling in neuromast 
development left several questions unanswered. It was not 

known how Fgf signaling is activated in the primordium, or 
by which mechanism Fgf signaling is restricted to the trail-
ing region. The analysis of Wnt/ β -catenin pathway mutants 
revealed that the Wnt/ β -catenin pathway plays crucial roles 
in these processes  [17] . Wnt/ β -catenin pathway genes, such 
as  lef1  and  axin2 , are expressed in leading cells of the pri-
mordium overlapping with  fgf3  and  fgf10  (schematically 
shown in  Figure 22.3a   , right-hand domain). Experimental 
inhibition of the Wnt/ β -catenin pathway leads to the loss 
of all four genes. On the other hand, ectopic activation of 
the Wnt/ β -catenin pathway in trailing cells causes strong 
upregulation of  fgf3  and  fgf10  in these cells. These results 
demonstrated that Wnt/ β -catenin signaling is activating 
the Fgf pathway. However, even though  fgf3  and  fgf10  are 
highly expressed in leading cells, they are not able to acti-
vate the Fgf pathway in that domain; this is reflected by 
the absence of the Fgf target  pea3  (       Figures 22.2e, 22.3a , 
left-hand domain). This repression can be attributed to the 
fact that Wnt/ β -catenin signaling simultaneously induces in 
leading cells the expression of  sef  ( il17rd ), a well-described 
cytoplasmic membrane associated Fgf signaling inhibi-
tor        [18, 19] . Thus, even though Wnt/ β -catenin signaling 
is inducing Fgf ligand expression in the leading zone, it 
restricts Fgf pathway activation to the trailing cells. This is 
of biological importance for the primordium, as Wnt/ β -
catenin signaling thereby restricts neurogenesis and dif-
ferentiation to the trailing region of the primordium. 
Inhibiting Fgf signaling in the leading cells also maintains 
the progenitor zone, enabling the primordium to form new 
proto-neuromasts as the older, trailing proto-neuromasts 
are deposited during migration  [17] .  

    THE FGF PATHWAY RESTRICTS WNT/ β -
CATENIN SIGNALING TO THE LEADING 
EDGE ENSURING NORMAL MIGRATION 

 Strikingly  , abrogation of the Fgf signaling pathway and 
ectopic activation of the Wnt/ β -catenin pathway cause 
migration defects, suggesting that these pathways not only 
regulate neurogenesis but also control migration of the 
primordium  [17] . The similarity in phenotype also sug-
gests that Wnt/ β -catenin and Fgf possibly act in a negative-
feedback loop. Indeed Wnt/ β -catenin signaling does not 
only restrict Fgf signaling to trailing cells, but Fgf sign-
aling in turn restricts Wnt/ β -catenin signaling to leading 
cells. Inhibition of the Fgf pathway using a pharmacologi-
cal inhibitor or heat shock induction of dominant-negative 
Fgfr1 leads to ectopic expression of Wnt/ β -catenin target 
genes in trailing cells. The inhibition of the Wnt/ β -catenin 
pathway in trailing cells is achieved by  dkk1   [20] , which 
is expressed adjacent to the Wnt/ β -catenin target gene 
expressing cells, but within the domain where the Fgf path-
way is activated. Because of this spatial overlap, it was 
tested whether  dkk1  depends on Fgf signaling. Indeed, even 
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though  dkk1  is commonly thought to be a Wnt/ β -catenin 
target, in the primordium  dkk1  is induced by Fgf signaling 
( Figure 22.3a ). 

 All   these results revealed that the Wnt/ β -catenin and 
Fgf pathways interact in a feedback loop, which restricts 
each pathway to mutually exclusive domains. Because of 
these feedback interactions, both loss of Fgf signaling and 
constitutive activation of the Wnt/ β -catenin pathway lead 
to ectopic expression of Wnt/ β -catenin target genes in the 
trailing cells. This ectopic expression of Wnt/ β -catenin tar-
get genes in trailing cells is disrupting directed cell migra-
tion (see below).  

    CHEMOKINE SIGNALING GUIDES THE 
MIGRATING PRIMORDIUM 

 Guided   primordium migration is a fascinating process, as 
the primordium migrates along the embryonic axis, thereby 
encountering many different positional cues. Nevertheless, 
the primordium does not stray on its way, but migrates 
straight along the horizontal myoseptum (a connective 
tissue along the midline of the trunk) toward the tail tip. 
Several studies have demonstrated that chemokine signal-
ing is the major guidance system employed by the primor-
dium. The chemokine ligand Sdf1 is expressed in cells 
along the horizontal myoseptum, prefiguring the track on 
which the primordium will migrate ( Figure 22.3b ). The 
two Sdf1 receptors Cxcr4b and Cxcr7b, on the other hand, 

are expressed in complementary regions of the primordium 
( Figure 22.3b, c ;              [21 – 25] ). 

 Initially   it was thought that Sdf1 was expressed in a gra-
dient that guides the primordium to the tail tip. However, 
in some zebrafish mutants the primordium turns around on 
itself midway down the trunk and migrates back toward the 
head          [23, 26, 27] . This finding led to the hypothesis that 
Sdf1 protein is not expressed as a gradient along the hori-
zontal myoseptum, but rather that the primordium itself is 
polarized or is able to create an Sdf1 gradient within the 
primordium. This hypothesis is supported by the finding 
that the two chemokine receptors  cxcr4b  and  cxcr7b  are 
expressed in opposing poles of the primordium ( Figure 
22.3c, d ). Both receptors are necessary for directed migra-
tion, as loss of either one disrupts migration. This find-
ing initially seemed puzzling, since both receptors bind to 
Sdf1. However, given that neither receptor is dispensable, 
the two chemokine receptors either bind Sdf1 with differ-
ent affinities, or they elicit distinct intracellular responses 
upon ligand binding. A beautiful study of the roles of 
chemokine signaling in primordial germ cell (PGC) migra-
tion in zebrafish discovered that Cxcr7b can also function 
as an Sdf1 sink without activating an intracellular signaling 
cascade  [28] . Therefore, Cxcr7b modulates the amount of 
Sdf1 available to bind to Cxcr4b, which enables PGCs to 
detect an Sdf1 gradient guiding the cells toward the devel-
oping gonads. If Cxcr7b acts as an Sdf1 sink in the trailing 
region of the primordium as well, the regionally distinct 
combinations of  cxcr4b  and  cxcr7b  expression in the 

 FIGURE 22.3          A feedback-loop between Fgf and Wnt/ β -catenin signaling controls neurogenesis and migration.  
    (a) Schematic drawing of signaling pathway interactions in the migrating primordium. (b)  sdf1  is expressed along the midline of the trunk and guides 
the primordium. (c, d) The  sdf1  receptors  cxcr4b  (c) and  cxcr7b  (d) are expressed in the leading and trailing regions of the primordium, respectively. 
Constitutive activation of Wnt/ β -catenin signaling in trailing cells leads to ectopic expression of  cxcr4b  in trailing cells (e) and complete loss of  cxcr7b  
disrupting directed migration (f).    
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primordium might enable individual cells to detect a Sdf1 
gradient necessary for directed migration.  

    A FEEDBACK LOOP BETWEEN FGF AND 
WNT/ β -CATENIN SIGNALING CONTROLS 
MIGRATION BY LOCALIZING CHEMOKINE 
RECEPTOR EXPRESSION 

 Ectopic   activation of Wnt/ β -catenin signaling in trailing 
cells, or disruption of Fgf signaling, cause primordium 
stalling. The migration defect is not caused by an inabil-
ity of cells to move, as time-lapse analyses showed that all 
cells are still highly motile but fail to migrate directionally 
 [17] . This phenotype is reminiscent of the defects observed 
in mutants in which the chemokine guidance receptors 
 cxcr4b  or  cxcr7b  are disrupted          [21, 23, 25] , suggesting 
that the Fgf and Wnt/ β -catenin pathways are also involved 
in regulating the chemokine guidance system. Indeed, 
chemokine receptor expression is highly aberrant in Fgf-
depleted embryos, or in embryos in which the Wnt/ β -
catenin pathway is constitutively active.  cxcr4b , which is 
normally more restricted to the leading cells, is ectopically 
expressed in trailing and deposited cells, and  cxcr7b , which 
is normally restricted to trailing cells, is completely absent 
( Figure 22.3e, f ). Thus, the migration defects observed in 
Fgf-depleted embryos, and in embryos in which the Wnt/ β -
catenin pathway is constitutively active, are likely due to 
misregulation of the two chemokine receptors  cxcr4b  and 
 cxcr7b   [17] . This study showed for the first time that Fgf/
Wnt/ β -catenin and chemokine signaling are functionally 
linked, which is significant not only for our understanding 
of developmental events but also for cancer biology.  

    CELL MIGRATION AND ROSETTOGENESIS 
ARE INDEPENDENTLY REGULATED 

 Since   rosettes are epithelial structures within the migrat-
ing primordium, it would be intuitive that rosettes or lack 
thereof would influence cell migration. Surprisingly, primor-
dia stall whether they contain rosettes, as in mutant embryos 
in which the Wnt/ β -catenin pathway is constitutively 
active, or whether they lack rosettes, as in Fgf-depleted 
embryos. On the other hand, primordia in which Wnt/ β -
catenin signaling is blocked migrate normally toward 
the tail tip, even though they do not form or deposit any 
neuromasts. Therefore, migration and neurogenesis are 
independently influenced by Wnt/ β -catenin signaling. 
Rosettogenesis is inhibited if loss of Wnt/ β -catenin sign-
aling leads to the loss of Fgf signaling, whereas migration 
is compromised if Wnt/ β -catenin signaling is ectopically 
expressed in trailing cells, irrespective of the state of Fgf 
signaling in these cells.  

    SUMMARY 

 Studies   of lateral line development have revealed how dif-
ferent signaling pathways interact with each other to con-
trol morphogenesis. On top of this cascade is Wnt/ β -catenin 
signaling in leading cells, which initiates a feedback loop 
between itself and Fgf signaling in trailing cells. The 
restriction of these pathways in regionally distinct domains 
ensures the coupling of neurogenesis in trailing cells, and 
directed cell migration of all cells within the primordium. 
An interesting aspect of how these two pathways interact is 
that each pathway induces the expression of inhibitors for 
the other pathway. This novel finding justifies the reinves-
tigation of the hierarchy of these signaling interactions in 
other organ systems. 

 Even   though the exact nature of the molecules might 
not be exactly recapitulated in other organ systems, it is 
likely that the overall characteristics of these signaling 
interactions are conserved. Many of the genes that have 
been identified to be important for lateral line development 
are also major players in cancer in humans. We therefore 
believe that, because of its relative simplicity and acces-
sibility, the migrating lateral line primordium is a very 
valuable model for understanding signaling interactions in 
development and disease.   
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    INTRODUCTION 

 Understanding   how multiple signaling pathways are integrated 
to generate simple cellular decisions is a major challenge in 
cellular and developmental biology.  Xenopus  ectoderm differ-
entiation provides an excellent experimental system to study 
signal integration because at gastrula its cells must choose 
between two fates: epidermis or neural tissue. Epidermis is 
formed at high Bone Morphogenetic Protein (BMP) signal-
ing levels, whereas the inhibition of BMPs by antagonists 
such as Noggin, Chordin, and Follistatin in the Spemann 
organizer leads to neuralization of the ectoderm          [1 – 3] . 
BMP signals through activation of its cognate receptors, 
which are serine/threonine kinases that phosphorylate the tran-
scription factors Smad1/5/8 at the carboxyl-terminal region, 
causing their activation and nuclear translocation        [4, 5] . 
Recent studies have identified additional signaling inputs 
which converge on Smads. In this chapter, we review how 
three different pathways – BMP, RTK, and Wnt – are inte-
grated at the level of a single transcription factor, Smad1, in 
the control of the differentiation of the ectoderm into neural 
or epidermal fates ( Figure 23.1   ). We will also discuss other 
situations in which Smads are utilized as a platform for the 
integration of different signaling pathways.  

    NEURAL INDUCTION: LINKING RTKS AND 
ANTI-BMP SIGNALS 

 In   the search for the molecular mechanisms that lead to 
neural induction, it was found that in amphibians, partic-
ularly in  Xenopus , ectodermal cells acquire neural fate in 
response to BMP antagonists secreted by the Spemann’s 
organizer region        [6, 7] . However, neural tissue can also 
be induced through the activation of Receptor Tyrosine 

Kinases (RTKs) by ligands such as Fibroblast Growth Factors 
(FGF) and Insulin-like Growth Factors (IGF). Experiments in 
the chick embryo have shown that FGF signals are required 
for CNS formation        [8, 9] , and overexpression of IGF in 
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 FIGURE 23.1          Biochemical pathway of Smad1 transcription factor 
signaling illustrating the different levels of signaling integration.  
    Upon binding of the BMP ligands, BMP receptor (BMPR) phosphorylates 
Smad1 at its C-terminal residues, resulting in its translocation into the 
nucleus and initiation of the transcription of target genes. Conversely, 
inhibitory MAPK and GSK3 phosphorylations of Smad1 at conserved 
sites in the linker (middle) region result in its polyubiquitinylation (medi-
ated by the E3 ubiquitin ligase, Smurf1) and degradation in the proteaso-
mal machinery        [12, 13] . For neural induction to be achieved, the Smad1 
transcriptional activity is required to be decreased by: (1) low BMP levels 
through the inhibition by antagonists such as Chordin and Noggin; (2) 
high MAPK activity through the activation of RTKs by growth factors 
such as FGF and IGF; and (3) high GSK3 activity through the inhibition 
of Wnt signals by antagonist such as Dkk1 and sFRPs. Reproduced from 
 [13]  (Fuentealba  et al ., 2007;  Cell   131 , 980 – 993) with permission.    
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 Xenopus  induced ectopic brain-like structures  [10] . How do 
such distinct signaling pathways achieve similar outputs? 

 A   key discovery was made in human cultured cell lines, 
in which the activation of the Mitogen-Activated Protein 
Kinase (MAPK) by Epidermal Growth Factor (EGF) 
resulted in the phosphorylation of Smad1 at its linker (mid-
dle) region, causing inhibition of its activity  [11] . There 
are four conserved consensus MAPK sites (PXS[PO 3 ]P) 
in Smad1. Phosphorylation of these sites promotes polyu-
biquitinylation by Smurf1 E3-ubiquitin ligase, and subse-
quent degradation in the proteasomal machinery ( Figure 
23.1 )        [12, 13] . Thus, MAPK signals oppose BMP signal-
ing by inhibiting the activity of the Smad1 transcription 
factor. Overexpression of MAPK phosphorylation-resistant 
mutants of Smad1 in  Xenopus  embryos resulted in 
increased expression of  Sizzled , a BMP target gene, and 
reduced neural tissue, marked by  NCAM , when compared 
to embryos injected with a wild-type Smad1 construct 
which had little effect        [14, 15] . In other words, the Smad1 
transcription factor is hyperactive in the absence of MAPK 
phosphorylation. This also suggests that neural genes are 
expressed only at very low levels of Smad1 activity, which 
are attained by having both low BMP levels and high 
MAPK signals. In agreement with this view, neural induc-
tion by the BMP antagonist Chordin can be blocked by 
agents that inhibit FGF or IGF signaling  [14] . 

 Signal   integration during neural induction is also illus-
trated by dissociated  Xenopus  ectodermal cells experi-
ments. Embryonic animal cap cells dissociated for 3 or 
more hours differentiate into neural tissue instead of adopt-
ing their normal epidermal fate. This default type of neu-
ral induction occurs in the absence of Spemann’s organizer 
signals, and was thought to be caused by the dilution of 
endogenous BMPs into the culture medium  [16] . However, 
analysis of the carboxyl-terminal phosphorylation of 
Smad1 showed that BMP ligands continue to signal in 
dissociated cells. Instead, cell dissociation induces a sus-
tained activation of the MAPK pathway  [17] . This sus-
tained MAPK activity induced phosphorylation of Smad1 
linker sites and inhibition of Smad1 transcriptional activity. 
Conversely, the inhibition of MAPK activation by various 
reagents resulted in epidermal differentiation  [17] . These 
results showed that the inhibition of the BMP pathway dur-
ing brain tissue formation in dissociated ectoderm was in 
fact caused by the activation of the MAPK pathway.  

    MAPK ACTIVATION EXPLAINS 
HETEROLOGOUS NEURAL INDUCERS 

 From   an embryological point of view, the activation of 
MAPK in dissociated ectodermal cells is very interest-
ing. Research in neural induction almost came to a halt 
in the 1930s, when it was found that dead organizer tis-
sue and many heterologous non-specific substances such 

as fatty acids, sterols, methylene blue, and even sand par-
ticles could induce neural tissue  [18] . Furthermore, Barth 
discovered and Holtfreter confirmed that ectoderm of the 
American salamander  Ambystoma maculatum  could differ-
entiate into neural tissue by culturing them in sub-optimal 
saline solutions even in the absence of inducing substances 
       [19, 20] . This was the final nail in the coffin of the once 
vibrant field of embryonic induction        [3, 21] . We obtained 
 Ambystoma maculatum  embryos and reproduced these 
60-year-old results  [22] . It was found that MAPK/Erk is 
strongly induced in  Ambystoma maculatum  ectodermal 
cultures. A chemical inhibitor of the Ras/MAPK pathway, 
U0126, caused the explants to differentiate into epidermis 
instead of neural tissue  [22] . Using sand particles as an 
example of a heterologous inducer produced similar results. 
Thus, the inhibition of Smad1 activity by MAPK activa-
tion provided the molecular explanation for the effects of 
the heterologous neural inducers described in the classical 
embryological literature  [22] .  

    EPIDERMAL DIFFERENTIATION: 
INTEGRATION OF WNT AND
BMP SIGNALS 

 The   choice between neural and epidermal fates is also 
regulated by canonical Wnt signals. In  Xenopus  and 
chicken embryos, Wnt promotes epidermal differentia-
tion while its inhibition by antagonists such as Dickkopf-1 
(Dkk1) and secreted Frizzled-related proteins (sFRPs) facil-
itates neural differentiation        [8, 23] . In mouse embryonic 
stem cells (ESCs), sFRP2 has been isolated during overex-
pression screens for molecules causing differentiation into 
neural lineages  [24] . Is there a common molecular mecha-
nism by which BMP and Wnt signals regulate the choice 
between neural and epidermal fates? 

 The   finding that Smad1 is phosphorylated by glyco-
gen synthase kinase (GSK3) sheds light onto a mechanism 
integrating Smad and Wnt signals        [12, 13] . GSK3 is a ser-
ine/threonine kinase that usually phosphorylates  “ primed, ”  
or prephosphorylated, substrates as in the well-known case 
of  β -catenin. The canonical Wnt pathway signals through 
the inhibition of GSK3, resulting in the stabilization of 
 β -catenin and translocation into the nucleus, where it func-
tions as a transcriptional co-activator  [25] . Coupled phos-
phorylations of  β -catenin by casein kinase I followed by 
GSK3 result in its polyubiquitinylation and degradation in 
the proteasome  [26] . A similar molecular mechanism was 
recently shown for the control of Smad1 stability. GSK3 
phosphorylates Smad1 primed by MAPK in the linker 
region, and both phosphorylations are required for Smad1 
polyubiquitinylation and degradation in the proteasome 
 [13] . Importantly, Wnt signaling decreased this GSK3-
dependent phosphorylation, resulting in the stabilization 
of Smad1, and prolonged the duration of the BMP  signal 
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( Figure 23.1 ). In dissociated ectodermal cells, Wnt3a 
caused epidermal induction, which could be blocked by a 
dominant-negative form of Smad1  [13] . In the presence of 
Wnt, the activity of Smad1 is stronger ( Figure 23.1 ). For 
as yet unknown reasons, the regulation of Smad1 by Wnt 
requires the presence of active  β -catenin, as do most other 
canonical Wnt signaling effects  [13] . 

 The   regulation of the Smad activity by both BMP 
and Wnt signals may also have important consequences 
during the formation of the body plan. During gastrula-
tion in  Xenopus , the embryonic patterning is regulated by 
gradients of growth factors and their antagonists, with 
BMPs controlling the dorsal – ventral (D-V) and Wnt sig-
nals the anterior – posterior (A-P) body axes  [27] . This posi-
tional information must be seamlessly integrated, for when 
a blastula is cut in half the embryo can self-regulate, form-
ing perfect identical twins  [3] . This tendency of the embryo 
to regulate towards the whole is what embryologists call a 
self-regulating morphogenetic field. Such fields are found 
not only in the whole gastrula, but also during the forma-
tion of many organs, such as the developing organ fields of 
limb buds, brain, lens, heart, ear, and hypophysis  [28] . 

 A   recent study using zebrafish as a model system pro-
posed that the A-P pattern is also controlled by BMP sig-
naling in a temporal progressive manner, with an early 
specification of anterior ventrolateral cells followed by a 
later specification of more posterior ventrolateral cells at 
critical intervals  [29] . These observations are congruent 
with a mechanism in which the D-V and A-P axes may be 
integrated at the level of the Smad1 signal integration plat-
form ( Figure 23.2   ). We proposed that a conserved extracel-
lular mechanism that controls BMP signaling regulates the 
intensity of Smad1 transcriptional activity in the D-V axis, 
while Wnt signals would control the stability and therefore 
the duration of the signal of this transcription factor in the 
nucleus  [13] . The model of transcriptional and biochemi-
cal interactions shown in  Figure 23.2  could provide the 
first molecular explanation for the self-regulating nature of 
embryonic morphogenetic fields. This biochemical pattern-
ing pathway is entirely composed of secreted extracellular 
signaling regulators, except for Smad1/5/8 which are tran-
scription factors.  

    SMAD1 AS A PLATFORM FOR MAPK 
INTEGRATION 

 During   development, there are multiple situations in which 
the FGF/MAPK pathway cross-talks with BMP signals. 
The finding that MAPK signaling can cause inhibition of 
signaling by BMP Smads via this hard-wired mechanism 
may help explain other situations in which FGF and BMP 
signals oppose each other during organogenesis. A classi-
cal example is the antagonism between FGF4 and BMP2 in 
limb development  [30] . Similarly, opposing effects of FGFs 

and BMPs have been reported in lung morphogenesis, cra-
nial suture fusion, tooth development, and the maintenance 
of undifferentiated human ESCs            [31 – 34] . In the mouse, 
knock-in of Smad1 forms that are insensitive to MAPK 
phosphorylation in the linker region exhibit phenotypes in 
gastrointestinal epithelium and the reproductive tract  [35] . 
Cultured fibroblasts of these knock-in mice with Smad1 
resistant to phosphorylation by MAPK have been prepared 
 [35] . Experiments using luciferase BMP responsive reporter 
construct have shown that the BMP signal is no longer inhib-
ited by the addition of FGF in mutant cells, demonstrating 
that in these conditions FGF signals through Smad1  [12] . 
The effects on the male reproductive tract may be explained 
by the recent discovery of a cross-talk between BMP and 
the androgen receptor  [36] . It was found that the MAPK-
dependent phosphorylations of Smad1 are required for the 
inhibitory effects of BMP/Smads on androgen receptor func-
tion, and there are indications that the integration of MAPK 
signals on Smad1 has a critical role in the androgen regula-
tion of prostate cancer progression  [36] .  

    SMAD1 AS A PLATFORM FOR WNT SIGNALS 

 The   potential role of Wnt signals in the regulation of the 
BMP pathway has also been found to include involvement in 

 FIGURE 23.2          Model of a system Cartesian coordinates for the for-
mation of the amphibian embryo body plan, in which the A-P (Wnt) 
and D-V (BMP) gradients are integrated at the level of Smad1/5/8 
phosphorylations during gastrulation.  
    An elaborate biochemical pathway of extracellular protein – protein inter-
actions mediates the formation of a DV gradient of BMP signaling, as 
well as an A-P gradient of Wnt signaling. In this model, BMP regulates 
the intensity, while Wnt controls the duration, of the Smad1/5/8 signal. 
ADMP is a dorsally expressed BMP  [7] . Tolloid (Tld) is a zinc metal-
loprotease  [52]  that cleaves Chordin  [53] , and Sizzled (Szl) functions as 
a competitive inhibitor of Tld  [54] . Direct protein – protein interactions 
are shown as a solid line, and transcriptional activity of Smad1/5/8 as a 
dashed line.    
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a number of developmental processes. In particular, recent 
studies have underscored the importance of the Wnt path-
way on the pathogenesis of hereditary bone diseases that 
were previously thought to be caused by abnormal BMP 
signaling. BMPs were isolated as potent inducers of bone 
morphogenesis  [37] , yet recent genetic studies in humans 
and mice have revealed that the Wnt signaling pathway is the 
one that is mutated in most hereditary bone-formation dis-
eases. Reduced bone formation or osteoporosis is observed in 
loss-of-function mutations in the Wnt co-receptor LRP5  [38] , 
as well as in transgenic mice overexpressing the BMP antag-
onist Noggin        [39, 40]  or the Smad1-specific E3 ubiquitin 
ligase Smurf1  [41] . Conversely, excessive bone-mass forma-
tion or osteopetrosis is caused by loss-of-function mutations 
of the antagonists Dkk1  [42]  and Sclerostin (SOST)        [43, 44]  
which bind to LRP5/6 and inhibit Wnt signaling. The similar-
ity of these bone phenotypes suggests that Wnt signals may 
regulate the bone formation through the mechanism involv-
ing Smad1 as a platform for signaling integration indicated in 
 Figure 23.1 .  

    A CONSERVED MECHANISM OF SIGNAL 
INTEGRATION 

 Is   this mechanism of signal integration unique for the BMP-
regulated transcription factors Smad1/5/8? In  Drosophila , 
the Smad ortholog Mad also contains a single conserved 
MAPK phosphorylation site preceded by two GSK3 phos-
phorylation sites  [13] . The conservation of these phosphor-
ylation sites suggests that a similar mechanism of integration 
of MAPK and Wnt signals may control Mad signaling in 
 Drosophila . Interestingly,  Drosophila  Mad is also a substrate 
for a MAPK-related kinase, Nemo, a member of the Nemo-
like kinase (Nlk) family of serine/threonine kinases involved 
in the Wnt signal pathway        [45, 46] . The Nlk phosphoryla-
tion occurs in a conserved serine at the N-terminal MH1 
domain, and was shown to promote nuclear export of Mad 
and inhibition of the BMP signaling  [47] . 

 Finally  , an analogous mechanism of signal integration 
has been found for the transcription factors Smad2 and 
Smad3, which transduce signals of Transforming Growth 
Factor  β  (TGF β ). The TGF β  growth factor pathway is very 
important tumor suppressor in mammals. In  Xenopus , the 
TGF β  molecule Activin induces the expression of mesoder-
mal genes in ectodermal cells, but this ability is lost after 
a certain point of development. This  “ loss of competence ”  
correlated with the inability of Smad2 to accumulate in the 
nucleus, and mutation of conserved MAPK phosphoryla-
tion sites (SP) at the linker region of Smad2 prolonged the 
competence of cells to respond to Activin by inducing mes-
odermal genes  [48] . 

 TGF   β s are also potent inhibitors of cell proliferation, and 
have crucial roles in the control of tumorigenesis. However, 
certain types of cancer are resistant to the growth-inhibitory 

effects of TGF β . Several studies have highlighted the role 
of linker-phosphorylation in TGF β  resistance in cancer. In 
transformed cell lines with activated oncogenic Ras/MAPK 
signals, Smad2/3 protein displays elevated phosphorylation 
at their MAPK sites, which inhibited TGF β -induced nuclear 
accumulation  [49] . Similarly, Smad2/3 is also a substrate 
target for G1 cyclin-dependent kinases. CDK4 and CDK2 
phosphorylate Smad2/3 in the linker region and repress its 
capacity to inhibit cell cycle progression from G1 to S phase 
 [50] . Since cancer cells often contain high levels of CDK 
activity, inactivation of Smad2/3 by CDK may contrib-
ute to tumorigenesis and TFG β  resistance in cancer cells. 
Furthermore, the stability of Smad3, but not Smad2, is regu-
lated by GSK3 phosphorylation in the MH1 domain, which 
triggers its degradation  [51] . The use of the different Smads 
as unique platforms for the integration of signals suggests 
that these are ancient molecular mechanisms that different 
cellular signaling pathways utilize to regulate the cross-talk 
between BMP/TGF β  signals and receptor tyrosine kinases 
and canonical Wnt/GSK3 signals.  

    CONCLUDING REMARKS 

 It   is important to emphasize that these regulations constitute 
hard-wired circuits that will affect the activity of many genes. 
The Smad1/5/8 and Smad2/3 transcription factors affect the 
activity of hundreds of target genes and presumably thousands 
of DNA enhancers that bind these proteins. All of them will 
be affected coordinately in this mode of signaling integration, 
which regulates the intensity (BMP makes the Smad1/5/8 
signal stronger) and the duration of the signal (RTK/MAPK 
makes the signal shorter and Wnt makes the BMP signal 
longer). The activity of Smad1 at any one time represents the 
summation of these three (or more) inputs of signaling infor-
mation. Hundreds of target genes are co-regulated simultane-
ously. Perhaps the need for coordinate control resides in the 
self-regulation nature of morphogenetic fields. In the case of 
the gastrula embryonic field, the Cartesian coordinates on 
which the various organs will develop at later stages are pre-
ordained in the phosphorylation sites of Smad1/5/8 ( Figure 
23.2 ). It might be simpler to integrate positional information 
in a few transcription factors rather than in hundreds of them, 
so as to generate a perfect embryo time after time. The human 
genome contains 1500 transcription factors, and a great many 
of them are phosphorylated. We can expect that other DNA-
binding proteins will also serve as platforms for signaling inte-
gration once they are studied in similar detail as Smad1.   
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    THE HEDGEHOG PROTEINS: GENERATION 
AND DISTRIBUTION 

 The   hedgehog mutation was originally identified in a 
 Drosophila  genetic screen as one of the segment-polarity 
genes important in fly development  [1] . It is now clear that 
Hh plays a vital role in the development of multiple organ 
systems in the fly and vertebrates (for review, see  [2] ). In 
mammals there are three Hh proteins, named Sonic Hh 
(Shh), Desert Hh (Dhh), and Indian Hh (Ihh). Dhh appears 
to be most closely related to  Drosophila  Hh, while Shh and 
Ihh are more closely related to one another. Production and 
diffusion of these factors in different tissues determines 
proper development of multiple organ systems. 

 Hh   proteins are synthesized as precursor proteins of 
about 45       kD. The C-terminal portion of the Hh precursor has 
autoproteolytic activity, and cleaves Hh into a C-terminal 
peptide of about 25       kD with no known function and an 
N-terminal fragment (Hh-N) which constitutes the biologi-
cally active portion of Hh  [3] . During autoprocessing, a cho-
lesterol moiety is coupled to the C-terminus of Hh-N, a form 
which is further denoted Hh-Np  [4] . It is thought that the addi-
tion of cholesterol helps to retain Hh-Np to cell membranes, 
thus limiting the range of action of Hh activity. However, in 
mice engineered to express a form of Shh lacking cholesterol 
modification (N-Shh), short-range Hh signaling was main-
tained while long-range signaling was defective, resulting in 
loss of digits and proper patterning in the developing limb, 
and suggesting differential requirements for cholesterol in 
Hh signaling  [5] . Additional proteins involved in the secre-
tion and diffusion of cholesterol-modified forms of Hh have 
been identified, such as Dispatched (Disp), which is required 
for release of Hh-Np from Hh-producing cells, and Tout velu 
(TTV), which is involved in the biosynthesis of a putative 
Hh-interacting proteoglycan          [6 – 8] . 

 Hh   proteins are further modified by palmitoylation on a 
highly conserved N-terminal cysteine residue  [9] . Mutation 
of the  sightless/skinny Hh  ( sig/ski ) gene, encoding a trans-
membrane (TM) acyl transferase, abrogates palmitoylation 
of Hh-N and results in a Hh-like phenotype, indicating that 
palmitoylation of Hh is required for some aspect of Hh func-
tion        [10, 11] . In some systems both modified and unmodified 
forms of Hh show equivalence, indicating that the importance 
of fatty acid modification may be context-dependent        [9, 12] . 
Together these data indicate that the biological activity of the 
Hh proteins is finely tuned through posttranslational modifi-
cation, affecting its activity and capacity to diffuse.  

    TRANSMITTING THE HH SIGNAL 

 Both    Drosophila  and mouse genetics indicate that the 
7-transmembrane protein Smoothened (Smo) is required 
to transmit the Hh signal          [13 – 15] , while Patched (Ptc), a 
12-transmembrane protein, negatively regulates Smo in the 
absence of Hh        [16, 17] . This inhibition has been shown to 
occur in a sub-stoichiometric or  “ catalytic ”  manner  [18] . 
Binding of Hh to Ptc is also regulated by additional cell 
surface proteins, such as Hh interacting protein (Hip  [19] ), 
which sequester Hh. In contrast, growth arrest-specific gene 
(Gas1  [20] ) and two newly identified single-transmembrane 
proteins, cell adhesion molecule-related/downregulated by 
oncogenes (Cdon/Cdo) and brother of Cdo (Boc), appear to 
facilitate Hh signaling          [21 – 23] . 

 Although   much remains to be clarified, some insights 
into the mechanistic details describing the interplay between 
these two proteins have started to emerge. Work in the fly 
initially showed that Smo activity requires cell surface 
localization, and that Smo access to the plasma membrane is 
controlled by Ptc via regulation of vesicular trafficking  [24] . 

 Chapter 24 
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Binding of Hh to Ptc leads to its internalization, and allows 
Smo to translocate to the cell surface and initiate signal-
ing ( Figure 24.1   ). Signal transduction by Smo appears to 
involve a conformational change in the carboxy-terminal 
tail of Smo homodimers  [25] . Very elegant mouse genetic 
work has recently shown that the primary cilium, a non-
motile projection present on most vertebrate cells, appears 
to be required for Hh signaling in higher organisms        [26, 
27] . Cell-localization studies have suggested a model of 
reciprocal movement between Ptc and Smo similar to that 
observed in flies, but where Smo access to the primary cil-
ium instead of merely the plasma membrane is critical in 
order to initiate signaling          [28 – 30] . Interestingly, Ptc may 
control the movement of Smo to the cilium by regulating 
the levels of oxysterols which are able to activate the path-
way and promote Smo translocation to the cilia        [31, 32] . 

 What   makes the cilium special in order to allow for sig-
naling downstream of Smo remains to be determined. Other 
important components of the pathway, including SuFu and 
the Gli family of zinc finger transcription factors known as 
cubitus interruptus (Ci) in the fly, are also found in cilia, 
where important steps in their activation may be occurring 
 [33] . Gli activity is regulated at multiple levels, includ-
ing nuclear export, proteosome-mediated degradation, and 
subcellular localization. In vertebrates there are three Ci 
orthologs, Gli1, Gli2, and Gli3, which may have retained 
aspects of Ci-155 and Ci-75 function (reviewed in        [2, 34] ). 
Knockout or transgenic mice of each Gli isoform have been 
generated, and the phenotypes observed support the idea that 
Gli2 and Gli3 are critical for normal development, while Gli1 
may be redundant for Gli2 and Gli3 function. The interplay 

between the activities of these isoforms increases the com-
plexity of vertebrate systems dramatically, making it difficult 
conclusively to delineate all of the functions for the different 
Glis during normal development (reviewed in  [2] ).  

    HH IN DEVELOPMENT AND DISEASE 

 Studies   of the normal functions for the Hhs in animal 
models have helped in our understanding of Hh-related 
diseases. Many studies have shown that Shh acts as a mor-
phogen in the nervous system, where it is secreted from 
the notochord and later from the floor plate, patterning 
neurons along the dorsoventral axis of the neural tube in 
a dose-dependent manner (reviewed in  [2] ) ( Figure 24.2   ). 
In the spinal cord and part of the hindbrain, a fine gradient 
of SHH with two- to three-fold incremental changes from 
the source (floor plate and notochord) delineates the ven-
tral neural tube into six distinct domains along the dorsal-
ventral axis. The expression of a set of homeodomain and 
bHLH transcription factors is tightly controlled by different 
SHH protein concentrations, thus generating six intricate 
combinatorial transcription factor codes in these domains 
       [35, 36] . These codes specify the identities of neural pro-
genitors, which ultimately give rise to six cell types, includ-
ing the floor plate (FP) cells, motor neurons (MN), and 
four classes of interneurons (V0, V1, V2, V3) (reviewed 
in  [37] ;  Figure 24.2a, c ). In the brains of mouse embryos, 
SHH acts in concert with another organizer molecule FGF8 
to create information grids, which serve as spatial cues 
for the specification of ventral cell types. Ventral neurons 
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 FIGURE 24.1          Model for transmitting the Hh signal through Patched and Smoothened via the primary cilium.  
    (a) In the absence of Hh, Ptc acts to repress Smo translocation to the cell surface and the primary cilium, leading to Gli phosphorylation and partial 
degradation by the proteasome in a transcriptional repressor form (Gli R ). (b) Upon Hh binding to Ptc, the Ptc – Hh complex is internalized via 
endocytosis resulting in the degradation of Ptc. This allows for the translocation of Smo to the cell surface and the primary cilium where signaling 
events downstream of Smo are activated and leads to Gli stabilization and translocation to the nucleus in an activated form (Gli A ).    
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such as dopaminergic (DA) neurons and serotonergic 
(5HT) neurons are specified in locations where Shh and 
FGF8 intersect ( Figure 24.2a, b )        [38, 39] . 

 Shh   controls cell fate not only by induction, but also by 
repression. It is found that SHH in the forebrain is required 
to repress Pax6 expression, thus resulting in the separation 
of a single eye field into two retinal primordia        [40, 41] . 
This explains the cyclopic phenotype in the Shh-deficient 
embryos  [42] . Late in development, Shh elicits cellular 
responses other than fate specification. For example, in the 
fetal cerebella, SHH induces proliferation of granule cells 
while inhibiting their differentiation          [43 – 45] . 

 Shh   also acts to determine anterior – posterior (A – P) pat-
terning in the developing skeleton, limb bud, and gut tube 
(reviewed in        [2, 34] ). Shh has also been shown to act as an 
angiogenic factor leading to neovascularization and the pro-
liferation of blood cells  [46] . In some tissue types, such as 
the pancreas, Shh acts as both a positive and a negative reg-
ulator, as its activity is needed for inhibition of pancreatic 

anlagen formation, but is also needed for specification of 
the pancreatic  β  cells        [47, 48] . Shh is also involved in the 
morphology of branching structures such as the lung  [49] . 
The importance of Shh is highlighted by the phenotype 
of Shh knockout mice, which die at birth due to multiple 
defects, including cyclopia and holoprosencephaly (HPE), 
as well as other defects in limbs, brain, spinal cord, axial 
skeleton, and midline structures  [42] . Overlapping roles 
of Shh and Ihh have been identified in heart development 
as well as specification of left/right (L – R) asymmetry, 
as observed in Shh/Ihh double knockout mice and Smo 
knockout mice  [50] . The major impact of Ihh is in radial 
patterning of the gut as well as bone morphogenensis        [51, 
52] . Loss of Ihh function results in a lack of chondrocyte 
proliferation and differentiation  [52] . Dhh is predominantly 
involved in peripheral nerve sheath and germ cell develop-
ment, particularly in the development of the male germ line 
and maturation of the testes        [53, 54] . 

 The   patterning functions of Hh are also highlighted 
in humans where mutations have clearly been linked to 
developmental disorders, including spina bifida, neu-
ral tube defects, and skeletal deformations. For example, 
mutations in human SHH result in cyclopia and HPE  [55] . 
Downstream of Hh, mutations within GLI3 are found in 
Grieg’s cephalopolycyndactyly  [56]  and Pallister-Hall syn-
drome (PHS)        [34, 57] , disorders associated with various 
abnormalities including polydactyly. 

 The   first indication that the Hh pathway might be 
involved in tumor formation stemmed from the observation 
that human Patched (PTCH) gene was mutated in individu-
als with Gorlin’s syndrome (also known as Basal-Cell Nevus 
Syndrome (BCNS))  [58] , a familial inherited predisposition 
to the development of basal cell carcinomas (BCCs), medul-
loblastomas, and rhabdomyocarcomas        [59, 60] . Most spo-
radic BCCs have been associated with mutation within PTCH 
 [61] . Loss of PTCH function leads to constitutive SMO sig-
naling and Hh pathway activation. Point mutations in Smo, 
which result in constitutively active PTCH-insensitive forms 
of SMO, have also been identified in sporadic BCC  [62] . 

 In   addition to tumors where mutations in components 
of the Hh pathway lead to its activation, Hh ligand-driven 
pathway activation has more recently been implicated in 
a large number of cancers, such as small cell lung cancer, 
various types of upper GI tract tumors such as pancreatic 
ductal adenocarcinoma, prostate cancer, and, more recently, 
multiple myeloma or other B cell derived malignancies 
(see  Table 24.1   ). However, the exact contribution of the 
Hh signal to tumorigenesis in these tissues remains to be 
defined. Evidence for a causative role is lacking, since 
oncogenic mutations in Hh pathway components have not 
been identified to date in these tumor types, and intro-
duction of constitutively active SMO (SMOM2) in mice 
only leads to the formation of tumors where the pathway 
is known to be mutated in humans  [63] . Most of the work 
performed  in vitro  on cell lines using high concentrations 

 FIGURE 24.2          Shh in the developing nervous system and the cell types 
controlled by Shh.  
    (a) Shh, FGF8, dopaminergic (DA) neurons, serotonergic (5HT) neurons, 
and six ventral spinal cord neurons are diagrammed on a sagittal sec-
tion of a 12-day-old mouse embryo. Shh in the notochord and floorplate 
is represented by a single line. (b) Wholemount  in situ  hybridization of 
Shh and FGF8 in the brain of an 11-day-old embryo. Shh is expressed 
in the ventral midline (dark arrow), FGF8 is expressed in two organ-
izers: the mid-hindbrain junction (MHB) and the anterior neural ridge 
(ANR) (white arrow heads). (c) The position of six Shh dependent cell 
types (filled circles) in the ventral spinal cord of wild-type (WT) and Shh 
mutant embryos (Shh  � / �  ), and their relationship to Shh concentration 
(dark arrow). Different cell types are induced by different threshold con-
centrations of Shh. Higher concentration of SHH induces cells in progres-
sively more ventral locations. FP, floor plate; N, notochord; MN, motor 
neuron; V0, V1, V2 and V3, four classes of interneurons.    
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of cyclopamine posit an autocrine role where epithelial 
tumor cells both produce and respond to Hh ligands. In 
a variation of this model, the responding cell population 
could be a subset of tumor cells, identified as cancer stem 
cells or cancer initiating cells  [64] . Yet another alternative 
model in line with the more typical role of the pathway in 
these tissues during development is one of paracrine sig-
naling, where Hh ligand made by tumor cells activate the 
pathway in the infiltrating stroma. The activated stroma 
would in return provide an environment more favorable to 
tumor growth/survival. 

 The   connection between the Hh pathway and human 
cancer drove the effort to identify small molecule Hh 
antagonists  [65] . In addition to cyclopamine, a natural 
Smo antagonist isolated from corn lilies  , different classes 
of small-molecule Hh antagonists have been identified 
through cell-based screens using Hh reporter assays        [66, 
67] . One of these small-molecule antagonists in preclini-
cal development has been used successfully to treat endog-
enous medulloblastoma tumors in the Ptch1  � / �  P53  � / �   
genetic mouse model  [68] , suggesting that drugs specifi-
cally inhibiting of the Hh pathway may be effective in the 
treatment of Hh-associated tumors.  
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    INTRODUCTION 

 Vertebrates   exhibit an extensive asymmetry of the internal 
organs with respect to the left – right axis that is established 
during embryogenesis and persists in the mature organ-
ism. During the past decade, numerous studies have dem-
onstrated that organ laterality is influenced by a left – right 
asymmetric signaling cascade in the lateral plate mesoderm 
that is evolutionarily conserved from fish to mammals. 
In this signaling cascade, expression of the TGF β  super-
family members  nodal  and  lefty  and the transcription fac-
tor  pitx2  are upregulated in the left lateral plate mesoderm. 
The mechanism by which left – right symmetry is broken 
appears to be less conserved, and is still not fully under-
stood in any vertebrate model organism. 

 In   several vertebrate models, calcium has been found 
to plan an essential role in left – right patterning. Left – sided 
expression of  nodal ,  lefty , and  pitx2  is preceded by an ele-
vation in intracellular calcium levels on the left side of the 
mouse node and zebrafish Kupffer’s vesicle (KV)        [1, 2] , or 
by an elevation in extracellular calcium levels on the left 
side of Hensen’s node in the chick  [3] . In the mouse, cilia 
in the node appear to be involved in elevating intracellu-
lar calcium on its left side. In the zebrafish, a direct link 
between nodal cilia and asymmetric calcium signaling has 
not yet been established, but intracellular calcium levels 
have recently been shown to influence left – right patterning 
by modulating KV cilia motility  [4] . The increase in extra-
cellular calcium on the left side of Hensen’s node is known 
to depend on left – right asymmetric activity of the H  �  /K  �  -
ATPase ion transporter and has been proposed to directly 
enhance Notch signaling  [3] . This review will discuss the 
conserved and divergent mechanisms regulating left – right 
axis development in vertebrate model organisms, and the 
role of calcium at different steps in this process.  

    CONSERVED MOLECULAR PATHWAYS 
REGULATING LR ASYMMETRY 

 Expression   of  nodal  genes in the left lateral plate meso-
derm is the first molecular asymmetry that is conserved 
between fish,  Xenopus , chick, and mouse. Abnormal 
expression of  nodal  genes in mouse and zebrafish results 
in organ laterality defects and disrupts asymmetric gene 
expression  [5] . For example, inhibition of the expression 
of  southpaw , the first  nodal  homolog expressed during 
zebrafish development, causes defects in cardiac and pan-
creas laterality, and an absence of  lefty1 ,  cyclops , and  pitx2  
expression in the lateral plate mesoderm and forebrain 
 [6] . Nodal protein binds to two activin type II receptors, 
ActRIIA and ActRIIB, and two activin type I receptors, 
ALK4 and ALK7, and initiates both positive- and nega-
tive-feedback loops (reviewed in        [7, 8] ). Transduction of 
Nodal signaling also requires the presence of membrane-
anchored EGF-CFC co-receptors that were first identified 
in zebrafish ( one-eyed pinhead ) and in mouse ( Cripto, 
Cryptic )        [9, 10] . Activation of Nodal signaling is inhib-
ited in the right lateral plate mesoderm by proteins of the 
Cerberus/DAN family, and increased right-sided expres-
sion of these Cerberus/DAN genes has been detected in 
mouse ( Cerberus ) and fish ( charon )        [11, 12] . Knockdown 
of  charon  in zebrafish using morpholino oligonucleotides 
results in a large percentage of embryos acquiring bilateral 
 southpaw  ( nodal ) expression and abnormal organ laterality, 
demonstrating that Charon negatively regulates Nodal sign-
aling in the right lateral plate mesoderm and is essential for 
left – right patterning  [13] . 

  Lefty    genes are upregulated by Nodal signaling in the 
left lateral plate mesoderm, and Lefty protein functions 
as a competitive inhibitor for Nodal, potentially restrict-
ing the activity of Nodal both spatially and temporally 

 Chapter 25 



240 SECTION | C Signaling In Development

       [13, 14] .  Lefty  genes are also expressed along the embry-
onic midline, and are thought to create a barrier prevent-
ing Nodal signaling from extending over to the right side. 
In accordance with this model, mouse embryos lacking 
 lefty1  have left-sided  nodal  expression at first, but bilat-
eral expression at later developmental stages  [15] . Nodal 
signaling in the left lateral plate mesoderm induces expres-
sion of the homeobox transcription factor  Pitx2 , and it is 
currently thought that Pitx2 coordinates the situs-specific 
morphogenesis of the visceral organs. Complex organ lat-
erality defects, including right isomerism of the lungs and 
abnormal gut rotation, have been reported in mice lacking 
an enhancer element required for asymmetric  Pitx2  expres-
sion. Interestingly, looping of the heart was unaffected, 
indicating that there may be more downstream  nodal  sign-
aling targets that remain to be identified  [16] .  

    INITIATING A BREAK IN SYMMETRY 

    Nodal Cilia 

 A   role for cilia in left – right development was first identified 
in the mouse, where monocilia in the node were shown to 
generate a leftward fluid flow that is required for initiating 
the break in left – right symmetry        [17, 18] . Left/right-dynein 
(Lrd), an axonemal dynein heavy chain, is localized to 
some nodal cilia and is required for their motility        [17, 19] . 

Populations of  “ nodal ”  cilia marked by expression of  lrd  
have also been identified in zebrafish,  Xenopus , and chick 
 [20] , but among non-mammalian vertebrates a function 
for nodal cilia as the initial symmetry-breaking mecha-
nism has only been demonstrated so far in the zebrafish 
( Figure 25.1   )        [21, 22] . 

 Identification   of  lrd  as the relevant gene deleted by the 
mouse  inversus viscerum  ( iv ) mutation implied that motil-
ity of nodal cilia was essential for left – right patterning 
       [17, 19] . The laterality of the internal organs is reversed 
in roughly half of  iv  mutant mice, indicating that without 
nodal fluid flow, establishment of the left – right axis is ran-
domized. The expression patterns of asymmetric markers 
like  nodal  and  lefty  are randomized as well, making nodal 
flow the earliest known step in mammalian left – right devel-
opment        [23, 24] . Nodal flow is also required as the earli-
est known step in zebrafish left – right patterning        [21, 22] . 
In zebrafish embryos injected with morpholino oligonu-
cleotides targeting  lrd , and in embryos in which KV cilia 
biogenesis is disrupted by injection of morpholinos target-
ing  polaris/Ift88  and  hippi/Ift57 , fluid flow in KV is inhib-
ited and the expression of  nodal  and/or  lefty  genes in the 
left lateral plate mesoderm is disrupted. Exactly how nodal 
flow induces the asymmetric  nodal  cascade is not yet fully 
understood in zebrafish or mouse. 

 Two   prevailing models have been developed to explain 
how nodal flow initiates the break in left – right symmetry 
in mouse. The first model, known as the  “ two-cilia model, ”  
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 FIGURE 25.1          Conserved and divergent mechanisms of left – right axis patterning.  
    In zebrafish and mouse, nodal flow (gray arrows) breaks left – right symmetry by leading to a left-sided increase in intracellular calcium levels (squares). 
In chick, an H  �  ,K  �  -ATPase-dependent increase in extracellular calcium levels (squares) on the left side of Hensen’s node is thought to potentiate Notch 
signaling and trigger asymmetric gene expression.  Xenopus  left – right axis formation occurs within the first few cell divisions after fertilization, and 
left – right determinants (shaded dark gray) are asymmetrically localized at least as early as the 32-cell stage. Following the symmetry breaking event, 
all vertebrates share a similar cascade of  nodal, lefty, and pitx2  expression in the left lateral plate mesoderm that transmits left – right information to the 
developing organ primordia. L, left; R, right.    
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suggests that the mouse node contains two distinct popu-
lations of cilia: motile Lrd-containing monocilia that are 
restricted to more medial regions of the node and generate a 
leftward flow, and non-motile Polycystin-2 (Pkd2) contain-
ing cilia that sense the nodal flow  [1] . Pkd2 is a Ca 2 �  -per-
meable channel that had previously been shown to localize 
to the primary cilium of kidney cells. In kidney cells, Pkd2 
senses fluid flow and causes an increase in intracellular 
calcium levels  [25] . The two-cilia model proposes that sen-
sory cilia on the left periphery of the node respond to fluid 
flow leading to an accumulation of intracellular calcium 
on the left side of the node. In agreement with this model, 
embryos lacking Pkd2 have no asymmetric calcium signal 
on the left node border  [1] . 

 The   second model of how nodal flow breaks left – right 
symmetry involves what have been termed  “ nodal vesicu-
lar parcels ”  (NVPs). Imaging of DiI-labeled nodes has 
revealed that membrane-sheathed objects 0.3- to 5- μ m in 
diameter are released from the floor of the node and are 
transported to the left by nodal flow. These NVPs then frag-
ment near the left wall of the node  [26] . Fgf signaling is 
required for production of NVPs and asymmetric calcium 
signaling on the left side of the node, but has been shown 
to be dispensable for the generation of leftward nodal flow. 
In the absence of Fgf signaling, NVP production and asym-
metric calcium signaling can be restored by exogenous 
application of Sonic hedgehog (Shh) protein or retinoic 
acid (RA), and immunostaining demonstrated that Shh and 
RA are contained within the NVPs. The NVP model is fur-
ther supported by the observation that  lrd  mutant embryos 
tend to have bilaterally elevated intracellular calcium lev-
els around the node, suggesting that NVPs may float indis-
criminately in either direction in the absence of directed 
nodal flow  [26] . How the fusion of Shh and RA-containing 
NVPs to the left edge of the node triggers an increase in 
intracellular calcium levels is not currently known.  

    Divergent Mechanisms of Symmetry Breaking 

 The   mechanisms by which LR symmetry is broken in 
 Xenopus  and chick appear to differ from the mammalian 
and fish models. In  Xenopus , monocilia present on the 
gastrocoel roof plate during neurulation have been shown 
to generate a leftward fluid flow that is required for nor-
mal asymmetric gene expression and organ situs  [27] , but 
molecular LR asymmetries are evident much earlier in 
 Xenopus  development than in any other vertebrate model 
organism ( Figure 25.1 ). Within the first few cell divisions, 
H  �  ,K  �  -ATPase and 14-3-3 mRNAs are asymmetrically 
localized with respect to the LR axis        [28, 29] . The signal-
ing molecule serotonin is also asymmetrically localized as 
early as the 32-cell stage  [30] . 

 In   both chick and  Xenopus , H  �  ,K  �  -ATPase activity is 
greater on the right side of the embryo and is important at a 
very early step in left – right patterning  [29] . H  �  ,K  �  -ATPase 

pumps protons out of the cell, resulting in a more negative 
membrane potential on the right side of the node than on 
the left. Chemical inhibition of H  �  ,K  �  -ATPase activity in 
 Xenopus  and chick leads to a disruption of the asymmetric 
expression of  nodal  and  pitx2 , and also disrupts asymmetric 
expression of  shh  around Hensen’s node, which precedes 
asymmetric  nodal  expression in the chick. Gap junctions 
are also required at a very early step in chick and  Xenopus  
LR patterning, and disrupting gap junctions results in a loss 
of asymmetric  shh  in chick and heterotaxic organ situs in 
 Xenopus         [31, 32] . Taken together, the requirement for both 
H  �  ,K  �  -ATPase and gap junctions at a very early step in LR 
patterning suggests that H  �  ,K  �  -ATPase might maintain an 
asymmetric cellular voltage potential, and that charged, low 
molecular weight signaling molecules can travel through 
gap junctions and accumulate preferentially on one side 
of the embryo. Alternatively, these two molecules may be 
functioning in parallel to influence the secretion and trans-
port of LR determinants.   

    CONSERVED ROLE OF CALCIUM IN LEFT 
 –  RIGHT ASYMMETRY DETERMINATION 

 LR   asymmetric gene expression is preceded by an eleva-
tion in intracellular calcium levels on the left side of the 
mouse node and zebrafish KV        [1, 2] . Asymmetric intrac-
ellular calcium was first demonstrated to be important for 
LR patterning in mouse, where loss of Pkd2 abolishes the 
increase in intracellular calcium on the left side of the node 
and leads to defects in organ laterality        [1, 33] . In zebrafish, 
Ipk1, a kinase that converts inositol 1,3,4,5,6-pentakisphos-
phate (IP 5 ) to inositol hexakisphosphate (IP 6 ), is essential 
for LR axis determination  [2] . Inositol polyphosphates 
function as second messengers that can affect multiple 
cellular processes including intracellular calcium levels. 
Zebrafish embryos injected with  ipk1  morpholinos exhibit 
reduced intracellular calcium levels in cells surrounding 
KV, and defects in LR patterning, suggesting that asym-
metric calcium signaling is critical for LR axis determina-
tion in the zebrafish model. 

 In   the chick, elevated extracellular calcium levels 
have been detected on the left side of Hensen’s node, and 
how these elevated calcium levels influence gene expres-
sion is better understood than in mouse or zebrafish 
( Figure 25.1 )  [3] . The increased extracellular calcium on 
the left side is thought to modulate Notch signaling, result-
ing in an increase in the expression level of the Notch 
ligand  Delta-like 1  ( Dll1 ) on the left. When Notch signal-
ing is downregulated by the gamma-secretase inhibitor 
DAPT,  Dll1  expression does not increase on the left side 
of Hensen’s node. Furthermore, overexpression of a domi-
nant-negative form of  Dll1  led to a loss of left-sided  nodal  
expression. Symmetric  Dll1  expression and a loss of left-
sided  nodal  were also observed in embryos treated with the 
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calcium chelator BAPTA, placing asymmetric calcium sig-
naling above Notch signaling in the pathway of LR axis 
determination. 

 Recently  , another role for calcium in LR patterning has 
been identified in the zebrafish model. Injection of mor-
pholinos targeting one zebrafish sodium – calcium exchanger 
(NCX) isoform, NCX4a, or Na  �  ,K  �  -ATPase  α 2 results in a 
disruption of asymmetric gene expression and organ lateral-
ity        [4, 34] . NCX function is one of the primary mechanisms 
by which calcium is extruded from cells, and the Na  �   gra-
dient established by Na  �  ,K  �  -ATPase helps to drive calcium 
extrusion via NCX (reviewed in  [35] ). In blastula-stage 
NCX4a and Na  �  ,K  �  -ATPase  α 2 morphants (morpholino 
injected embryos), intracellular calcium levels are globally 
elevated, directly demonstrating a requirement for these pro-
teins in intracellular calcium homeostasis  [4] . Surprisingly, 
although KV and the number and length of KV cilia appear 
normal in NCX4a and Na  �  ,K  �  -ATPase  α 2 morphants, injec-
tion of fluorescent beads into KV demonstrated that fluid 
flow in KV is completely abolished. High-speed video imag-
ing showed that cilia within the KV of these embryos are 
immotile, implying that calcium signaling can regulate cilia 
motility and thus functions both upstream and downstream 
of nodal flow in zebrafish LR patterning ( Figure 25.2   ). 
Furthermore, increasing calcium signaling by injecting a 
constitutively active form of calcium/calmodulin-dependent 
protein kinase II (CaMKII) led to defects in organ laterality, 
and decreasing CaMKII activity with the chemical inhibitor 

KN-62 was able to rescue the defects in organ laterality and 
KV flow of NCX4a and Na  �  ,K  �  -ATPase  α 2 morphants. 
Thus, intracellular calcium signals through CaMKII to regu-
late the motility of cilia in KV  [4] .  

    CONCLUSIONS 

 Many   questions still remain in the field of LR axis determi-
nation, and the realization that calcium signaling can regulate 
the motility of KV cilia in zebrafish suggests that a re-exami-
nation of the role of calcium in LR patterning in other model 
organisms may be in order. For example, in mouse  pkd2  
mutants, calcium levels appear to be reduced both in and 
around the node  [1] . If calcium regulates nodal cilia motility 
in the mouse, then nodal flow might be affected and present a 
new interpretation of the role of Pkd2 in the two-cilia model. 
Direct observations of nodal cilia motility in  pkd2  knockout 
embryos may be required to distinguish between the roles of 
calcium at different steps in LR patterning. 

 The   mechanism by which calcium regulates nodal 
cilia motility also requires further investigation. Calcium 
levels have been proposed to modulate dynein-regulated 
microtubule sliding, and thereby affect the waveform of 
 Clamydomonas  flagella and the motility of sea-urchin sperm 
flagella            [36 – 39] . Since CaMKII is known to be an impor-
tant component of calcium signaling in zebrafish LR devel-
opment, it is possible that CaMKII directly or indirectly 
regulates dynein activity in KV cilia. Alternatively, proper 
calcium homeostasis and signaling might be required for the 
biogenesis of ultrastructurally normal motile KV cilia. 

 How   the asymmetric calcium signals generated by 
nodal flow are translated into asymmetric gene expres-
sion in the lateral plate mesoderm in mouse and zebrafish 
is not yet understood. It is possible that increased intrac-
ellular calcium might stimulate production of a currently 
unknown left-sided determinant, or enhance the activity of 
a particular signaling pathway. Given the ease of forward 
and reverse genetic techniques in the zebrafish, it will serve 
as an excellent model for future studies aiming to tease out 
the intermediates between asymmetric calcium and asym-
metric gene expression, and also between calcium signal-
ing and cilia motility. 

 The   question still remains of precisely how asymmet-
ric intracellular calcium levels are triggered by fluid flow 
in the mouse node and zebrafish KV. A combination of 
the two-cilia model and the NVP hypothesis may be nec-
essary to fully explain the LR symmetry-breaking event 
in mouse. For example, the non-motile Pkd2-containing 
cilia on the sides of the node may be required to sense 
NVPs and in response, Pkd2 channels trigger the release 
of large amounts of calcium from intracellular stores, ele-
vating calcium levels in cells on the left side of the node. 
NVPs have not yet been identified in the zebrafish model, 
but, given the other similarities of mouse and zebrafish 
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 FIGURE 25.2          Roles of calcium at different steps in zebrafish 
left – right axis patterning.  
    In zebrafish, calcium (squares) functions at multiple steps in left – right 
patterning. Proper calcium homeostasis is required for Kupffer’s vesicle 
(KV) cilia motility and the generation of counterclockwise fluid flow in 
KV. KV flow triggers a left-sided increase in intracellular calcium levels 
that is required for asymmetric gene expression in the left lateral plate 
mesoderm. L, left; R, right.    
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LR determination, it will be interesting to determine when 
in evolution this symmetry-breaking mechanism arose. An 
examination of LR axis development in primitive chordates 
like amphioxus and urochordates will also reveal how early 
in evolution the different LR patterning mechanisms were 
developed, and will expand our understanding of their con-
servation and divergence.  
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    THE LIN-12/NOTCH PATHWAY 

 LIN  -12/Notch receptors are evolutionary conserved type I 
transmembrane proteins involved in many developmental 
events. Genetic and biochemical experiments from studies 
on invertebrates, mainly  D. melanogaster  and  C. elegans , 
and more recently on vertebrates, have identified members of 
the LIN-12/Notch signal transduction pathway ( Table 26.1    ).  
The canonical DSL LIN-12/Notch ligands, named after the 
 Drosophila D elta and  S errate, and  C. elegans L ag-2 factors 
are also evolutionary conserved. Most are transmembrane 
proteins, although secreted forms have been described, and 
they contain notably a DSL domain and EGF repeats in their 
extracellular region  [1] . In addition to the N-terminal DSL 
domain, an adjacent  “ DOS ”  domain, which encompasses the 
two first EGF repeats, might be important for DSL ligand 
function  [2] . The DOS domain is found in most known LIN-
12/Notch ligands, but not in the  C. elegans  DSL proteins. 
However, a secreted protein containing a DOS domain, but 
lacking the canonical DSL domain, probably acts as a co-
factor of the  C. elegans  DSL ligands during a  lin-12 -dependent 
specification  [2] . Cell contact is the main mode to trigger 
activation of LIN-12/Notch signaling pathway. 

 LIN  -12/Notch receptors undergo a proteolytic matura-
tion (site 1 cleavage, see  Figure 26.1   ) during their transpor-
tation to the cell surface, which produces the ligand-sensitive 
form. An original model for signal transduction has been 
proposed  [3] . Upon activation of a LIN-12/Notch receptor 
by its ligand, the receptor is cleaved both in its extracellular 
domain (site 2 cleavage) and underneath its transmembrane 
domain (site 3 cleavage) to produce an active intracellular 
fragment which translocates to the nucleus ( Figure 26.1 ). 

A number of membrane-associated factors are necessary for 
these proteolysis: the metalloprotease SUP-17/Kuzbanian 
 [4]  and its close homolog TACE/ADM-4        [5, 6]  are neces-
sary for site 2 cleavage, while presenilin, in a complex with 
the transmembrane proteins APH-1, APH-2/Nicastrin, and 
PEN-2, is necessary for site 3 cleavage  [7] . 

 The   intracellular part of the LIN-12/Notch receptor then 
associates with the CSL DNA binding protein (for  C BF1/ 
 S u(H)/ L AG-1, see  Table 26.1 ] on regulatory regions of tar-
get genes  [8] . Activation of the target genes is believed to 
be the sum of two events: release of a co-repressor complex 
previously associated with CSL        [9, 10] , and formation of an 
activator complex comprising LIN-12/Notch intra and LAG-
1, probably associated with a number of co-factors, such as 
SEL-8 and SKIP            [8, 11-13] . Known targets genes include 
 lin-12 , and EGF-MAPK negative regulators such as the  lst  
genes and  lip-1  in  C. elegans           [14 – 16] , the bHLH encoding 
 E(spl)  in  D. melanogaster   [17] , or  HES1  and  HES1 -related 
genes in vertebrates        [8, 18] . 

 Finally  , a number of negative modulators of LIN-12/
Notch signaling have been described, which influence the 
ability of a ligand to signal  [19] , the ability of the receptor 
to transmit the signal  [20] , the stability of the receptor  [21]  
or its ability to relieve repression of target genes        [22, 23] .  

    INDUCTIVE SIGNALING VERSUS LATERAL 
SPECIFICATION 

 Both   instructive and permissive roles have been described for 
LIN-12/Notch signaling. These processes, called inductive 
signaling (between two different cells) or lateral specification 

 Chapter 26 
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 TABLE 26.1          Members of the LIN-12/Notch signal transduction pathway identified by studies on invertebrates (mainly 
 D. melanogaster  and  C. elegans ) and vertebrates  

     C. elegans  D. melanogaster  Vertebrates 

   Emission of the signal  LAG-2, APX-1, DSL-1  DELTA  DELTA[DELTA-LIKE] -1 to -4 
     Others*  SERRATE  JAGGED-1, -2 
     OSM-11    (EGFL19) 

   Reception of the signal  LIN-12, GLP-1   NOTCH   NOTCH-1 to -4 

   Maturation/activation of the receptor  (FURINE)  (FURINE)  FURINE 
      SUP-17   KUZBANIAN  (KUZBANIAN/ADAM10) 
     ADM-4  (TACE)  TACE 
     SEL-12, HOP-1  PRESENILIN   PRESENILIN-1, -2  
     APH-1  (APH-1)  APH-1 
     APH-2  NICASTRIN  NICASTRIN 
     PEN-2  (PEN-2)  PEN-2 

   Nuclear effectors  LAG-1  SU(H)   RBP-J/CBF1  
     SEL-8   “ MASTERMIND ”   #    “ MASTERMIND ”   #  
     (SKIP)   –   SKIP 

   Direct modulators of the activity or 
stability of the LIN-12/Notch receptors     

 (NUMB) 
  –  

 NUMB 
 FRINGE 

 (NUMB) 
 LUNATIC FRINGE 

     SEL-10   –   SEL-10 

   Target genes   –   genes of the  E(spl)  complex  HES-1, -5 and HESR-1, -2 
      lip-1    –    –  
      lin-12   Notch?   –  

  Homologs are shown on the same line for each species.  
*Genes coding for proteins with similar characteristics exist in the  C. elegans  genome  [35]  (Chen and Greenwald, 2004)   
– , so far no known homologs have been described or implicated; ( ), a homolog is known in the organism, but its function in the LIN-12/Notch pathway 
has not been shown; #, sel-8 and mastermind do not share much homology in terms of sequence, but rather behave as functional homologs.  

 FIGURE 26.1          LIN-12/Notch activation and signal transduction.  
    The LIN-12/Notch receptor is cleaved by the furin protease at site 1 while in transit to the cell surface  [44]  (Logeat  et al ., 1998). The resulting het-
erodimeric receptor, after activation by a ligand, is cleaved by a metalloprotease from the ADAM family (see  Table 26.1 ) at site 2. The membrane-
anchored intracellular domain left is then constitutively cleaved by a complex containing Presenilin, at site 3. The released intracellular part of the receptor 
migrates to the nucleus and associates with the CSL DNA-binding protein (see  Table 26.1 ) and other co-activators to activate target genes transcription.    
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(between initially equivalent cells), respectively, are illus-
trated here using  C. elegans  cell-fate decisions as a model. 

    Inductive Signaling: Differentiation of the 
Germ Cells in  C. elegans  

 The   LIN-12/Notch signaling can take place between non-
equivalent cells. In this case, only one of the cells expresses 
the ligand whereas one or more receptive cells express the 
receptor. Its activation leads to adoption of a particular 
fate for the receptive cells, a process called inductive sig-
naling. Such a process is observed during differentiation of 
the female germ cells in  C. elegans . The  C. elegans  gonads 
comprise somatic and germinal components. The germi-
nal part is organized into two U-shaped symmetrical arms 
extending from the vulva, and the distal part contains the 
female germ cells. As the germ cell nuclei migrate proxi-
mally they enter meiosis and start to differentiate into 
oocytess, whereas the distal nuclei remain proliferative. 
Two somatic cells at the distal extremity of each arm, the 
 d is t al  c ells or DTCs, control the differentiation of the germ 
cells ( Figure 26.2a   ). If the DTCs are ablated, the distal 
germ cell nuclei enter meiosis precociously  [24] .  glp-1 , 
a  lin-12/Notch  gene, and  lag-2 , a DSL ligand, are impor-
tant for the interactions between the distal cells and the 
germ cells . glp-1  loss-of-function mutants have germ-cell 
proliferation defects similar to those observed in animals 
where the DTCs have been ablated: the distal germ cells 
enter meiosis        [25, 26] . The DTCs express  lag-2   [27]  and 
the germ cells express  glp-1   [28] . The analysis of mosaic 
animals showed that  glp-1  activity is required in the ger-
minal cells to transmit the  lag-2  signal coming from 
the DTCs and allow the maintenance of the germ cells in 
mitosis  [25] . 

 Lateral   specification mediated by the LIN-12/Notch signal-
ing pathway allows two (or more) initially equivalent cells, 
after interactions between them, to take on different fates. 
This cell-fate choice can be biased (i.e., the same cell of the 
equivalent group always adopt the same fate) or not (i.e., 
all cells in the equivalence group have an equiprobability 
to adopt each cell fate).  

    The AC/VU Decision During Gonadal 
Development, an Example of Unbiased 
Lateral Specification 

 During   formation of the somatic gonad of the nematode, 
two neighboring cells, named Z1.ppp and Z4.aaa, adopt 
with the same probability the  a n c hor (AC) or the  v en-
tral  u terine (VU) fates  [29]  ( Figure 26.2b ). Cell adhesion 
mutants and cell ablation experiments have shown that 
cell contacts between Z1.ppp and Z4.aaa are necessary for 
final fate acquisition, and that the VU fate depends on a 

signal emanating from the future AC cell  [29] . The LIN-
12/Notch signaling pathway is necessary for the correct 
specification of the AC/VU fates, and the level of  lin-12  
activity determines which fate is adopted: study of loss-of-
function and gain-of-function alleles of  lin-12  showed that 
high levels  of lin-12  activity lead to the VU fate, whereas 
low levels of  lin-12  cause the cell to adopt the AC fate 
 [30] . Both the LIN-12 receptor and its ligand LAG-2 are 
initially expressed at comparable levels in Z1.ppp and 
Z4.aaa  [15] . Through continuous cell – cell interactions, a 
small difference in the level of LIN-12 activation eventu-
ally arises which, amplified by feedback loops, results in 
one cell expressing LIN-12 and the other LAG-2 only        [15, 
30] . Thus, these initially equivalent precursor cells eventu-
ally acquire distinct fates through a unidirectional LIN-12/
Notch signaling.  

    Biased Lateral Signaling: Determination of 
the Ventral Precursor Cells (or VPC) 

 At   a later stage during  C. elegans  larval development, a 
group of six equivalent precursors in the ventral hypodermis 
(named the  V entral  P recursor  C ells, or VPCs) can all adopt 
a vulval fate. However, in wild-type animals, although the 
six VPCs are equipotent, the cell closest to the AC, named 
P6.p, always adopts a primary vulval fate (noted 1 ° ) and 
its two neighbors a secondary vulval fate (or 2 ° ), and their 
descendants will form the vulva  [31] . The other VPCs adopt 
a non-vulval fate (or 3 ° ) and fuse with the underlying hypo-
dermis, thus giving an invariant 3 °  3 °  2 °  1 °  2 °  3 °  pattern. 
Two signals are necessary for the specification of the vulval 
cells: one inductive signal, mediated by the EGF pathway 
and coming from the AC cell, is necessary for the establish-
ment of the 1 °  fate  [32] . A lateral signal, mediated by LIN-
12/Notch, takes place between the VPCs to specify the 2 °  
fate. For example, in gain-of-function  lin-12(d)  mutants, all 
six VPCs adopt a secondary vulval fate. Inversely, in loss-of-
function  lin-12(0)  mutants, the VPC cells adopt only the pri-
mary or non-vulval fates  [33] . All six VPCs express  lin-12  
and its ligand  lag-2 , and no change in  lin-12  transcription 
is observed during VPC determination  [34] . However, a 
decrease in LIN-12 protein level, and a concomitant increase 
in expression of the three  lin-12  ligands  lag-2 ,  apx-1 , 
and  dsl-1 , has been observed in the P6.p cell in response 
to the AC signal          [34 – 36] . Thus the AC signal, transmitted 
through the Ras pathway, biases the direction in which the 
 lin-12  signal is sent between the vulval VPCs by decreas-
ing  lin-12  activity in P6.p and increasing, simultaneously, 
the expression of its ligands in the same cell. In addition, 
the future 2 °  cells receive low levels of EGF/Ras signaling 
from the AC. Target genes of the LIN-12/Notch pathway in 
the future 2 °  cells include negative regulators of the RAS 
pathway, antagonizing it in these cells, thereby insuring that 
they do not adopt a 1 °  fate        [14, 16] . 
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 Further   examples of crosstalk between the LIN-12/
Notch signaling pathway and others, such as the frizzled 
pathway in Drosophila  [37] , have been described.   

    CELLULAR OUTCOME OF THE ACTIVATION 
OF THE LIN-12/NOTCH PATHWAY 

 Notch   activity via cell – cell contacts generates molecu-
lar differences between adjacent cells. This pathway can 
mediate both instructive and lateral signaling. The latter 
has also been coined  “ lateral inhibition. ”  Characterization 
of LIN-12/Notch loss-of-function phenotype in both flies 
and mice showed, notably, hypertrophy of neural tissue, a 
phenotype called  “ neurogenic ”   [38] . The additional neural 
cells reflect a failure of neuroepithelial progenitors to seg-
regate both epidermal and neural cell lineages in flies, or 
precocious neural differentiation in mice. These data led to 
the interpretation that activation of the LIN-12/Notch sig-
naling pathway results in inhibition of cell differentiation. 
Such an interpretation was reinforced by the apparent block 
in cell differentiation resulting from ectopic expression 
of an activated intracellular fragment of the receptor  [39] . 
Further studies, however, have shown that the consequences 
of LIN-12/Notch activation are varied, ranging from keep-
ing progenitors in a proliferative state, or orchestrating 
a molecular oscillator during somitogenesis, to instructing 

cells to adopt a specific fate or diversifying a progenitor 
pool            [38, 40 – 42] . Lateral inhibition between two equivalent 
cells, resulting in one adopting a fate  “ A ”  and the other a 
fate  “ B, ”  implies that the only outcome of LIN-12/Notch 
signaling is to repress one of these fates – for example,  “ A. ”  
It is, however, likely that the outcome of LIN-12/Notch sig-
naling in most cases is to specify fate  “ B ”  while it may, at 
the same time, repress fate  “ A ”  specification, as exemplified 
during the  C. elegans  VPC determination. In addition, it 
may be that activation of LIN-12/Notch signaling in certain 
instances results in maintenance of a larger developmental 
potential  [43] . 

 It   remains to be understood how LIN-12/Notch signal-
ing activates distinct targets in different cell types or at dif-
ferent developmental times. The answer will likely involve 
a combination of the ability of various LIN-12/Notch levels 
to displace repression complexes from target gene regula-
tory regions (in relationship with the number of CSL bind-
ing sites), the identity of the nuclear co-factors present in 
each cell type, and the integration of other signaling path-
ways inputs.  
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 FIGURE 26.2          Inductive LIN-12/Notch signaling and lateral specification.  
    (a) Germ cell proliferation. The DSL ligand LAG-2 activates GLP-1 in the distal part of the gonad. This inductive signal maintains the germ cells in a 
mitotic state. As the germ nuclei migrate more proximally, GLP-1 signaling levels drop, resulting in the germ cell nuclei entering meiosis. (b) The AC/
VU decision, an unbiased lateral specification. Two cells, named Z1.ppp and Z4.aaa, have an equipotential to adopt the AC or the VU fate. Initially, both 
express comparable levels of LIN-12 and its ligand LAG-2. A stochastic event is amplified by feedback loops so that one of these cells expresses more 
ligand and signals to the other, which expresses more LIN-12, to adopt the VU fate. (c), Biased lateral signaling during VPC specification. In wild type 
animals, six equivalent cells, named P3.p to P8.p, are specified so that they invariably adopt non-vulval (3 ° ), secondary vulval (2 ° ), and primary vulval 
(1 ° ) fates, in a 3 °  3 °  2 °  1 °  2 °  3 °  pattern. Adoption of the 2 °  depends on the interplay between the LIN-12/Notch and EGF/Ras pathways. The AC cell 
sends a graded EGF signal to the underlying VPCs. The closest one, P6.p, receives a high EGF signal and adopts the 1 °  fate, upregulating DSL ligand 
expression ( lag-2 ,  dsl-1  and  apx-1 ) while downregulating LIN-12 protein levels. Its neighbors, P5.p (not represented) and P7.p, receive a high LIN-12 
signal and low EGF signal. The efficient activation of LIN-12/Notch signaling in these two cells results in activation of negative regulators of the EGF/
Ras pathway and acquisition of the 2 °  fate.    
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    INTRODUCTION 

 The   Notch pathway is one of a relatively fehw signaling 
systems that is absolutely required for normal invertebrate 
and vertebrate development; however, Notch signaling also 
functions in the maintenance of adult cells and tissues  [1] . 
Signaling via the Notch pathway influences a wide range of 
cell types and cellular processes through effects on cell-type 
specification, differentiation, survival, proliferation, apopto-
sis, and morphogenetic events. The varied and often oppo-
site effects of Notch signaling are strongly dependent on 
the cellular context as well as interactions with other sign-
aling systems  [2] . Although initially identified as important 
in restricting cellular differentiation, Notch signaling has 
also been reported to induce the differentiation of a number 
of different cell types  [3] . Through a process known as lat-
eral inhibition, Notch signaling restricts the selection of 
specific cell fates from a field of equivalent progenitors. 
However, Notch signaling induced between compartments 
of non-equivalent cells directs cell type specification and 
boundary formation required for tissue patterning and mor-
phogenesis. Moreover, Notch signaling plays a critical role 
in coordinating binary cell-fate decisions obtained through 
asymmetric cell division, and losses in Notch signaling 
produce cell fate transformations. Finally, Notch signaling 
induced through interactions between stem cells and their 
adjacent niche cells has been implicated in stem cell sur-
vival, maintenance, and self-renewal, possibly reflecting a 
role for Notch in regeneration and renewal of tissues fol-
lowing injury and/or during aging in the adult. Given the 
extensive list of functions attributed to Notch signaling, it is 

not surprising that mutations in genes encoding components 
of this pathway have been found associated with a number 
of inherited human syndromes as well as cancer. 

 The   Notch receptors and DSL ligands are widely 
expressed during development, and in many cases interact-
ing cells express both ligands and receptors        [3, 4] . Cells 
take on distinct fates because Notch signaling is consist-
ently activated in only one of the two interacting cells, indi-
cating that the signaling polarity must be highly regulated. 
Studies in flies and worms have identified positive and 
negative transcriptional feedback mechanisms that amplify 
small differences in Notch and DSL ligand expression that 
could introduce a bias for which of the interacting cells 
sends or receives the Notch signal        [5, 6] . If this were the 
case, cells competent to induce a signal would be expected 
to display higher DSL ligand levels then cells receiving the 
Notch signal; however, Delta expression appears uniform 
among cells undergoing lateral inhibition during selection 
of the neural fate        [7, 8] . Therefore, mechanisms in addi-
tion to transcription must exist to ensure fidelity in cell-fate 
decisions regulated by Notch signaling. In this regard, the 
localization of DSL ligands to intracellular vesicles has 
been used to identify the signal-sending cell          [9 – 11] , which 
is surprising, given that ligands need to be on the cell sur-
face to bind and activate Notch on adjacent cells. Numerous 
lines of evidence have indicated that ligand must be inter-
nalized from the surface of signal-sending cells to activate 
signaling in Notch receiving cells (reviewed in              [12 – 16] ), 
underscoring the importance of endocytosis and membrane 
trafficking of DSL ligands in generating cell types regulated 
by Notch signaling. This chapter will discuss potential roles 
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for DSL ligand endocytosis in Notch signaling, with a focus 
on the generation of a physical force to mechanically disso-
ciate and activate Notch.  

    DSL LIGAND ENDOCYTOSIS IS REQUIRED 
FOR ACTIVATION OF NOTCH SIGNALING 

 DSL   ligands need to be expressed on the cell surface to 
engage Notch receptors on adjacent cells, however, DSL 
ligands are detected in intracellular vesicles              [7, 9, 17 – 19] , 
and display overlap with proteins involved in sorting and 
recycling, such as Hrs and Rab-11          [20 – 22] , suggesting that 
internalized ligands may undergo complex membrane traf-
ficking. Antibody uptake experiments clearly demonstrate 
the potential of DSL ligands to be internalized from the 
cell surface into endosomal vesicles          [21, 23, 24] , but not 
all internalized ligands appear competent to signal        [19, 25] . 
Nonetheless, several lines of evidence have indicated an 
absolute requirement for DSL ligand endocytosis in Notch 
signaling (reviewed in          [12, 14, 16] ). Genetic mosaic stud-
ies with the  Drosophila  homolog of dynamin, a key regula-
tor of endocytosis, were the first to suggest an important 
role for endocytosis by the DSL ligand cell in activation of 
Notch signaling  [26] . Consistent with this, specific inhibi-
tion of dynamin in the DSL ligand-presenting cell, in both 
 Drosophila  and mammalian systems, produces defects in 
Notch signaling        [9, 24] ; however, the exact function(s) of 
ligand endocytosis and membrane trafficking in activation 
of Notch have remained controversial. 

 Cell   surface proteins are targeted for internalization 
through the presence of either intrinsic endocytic signals or 
the covalent modification of ubiquitin within their cytoplas-
mic domains  [27] . The DSL ligand intracellular domains 
contain multiple lysine residues that represent potential 
sites for ubiquitination, and intracellular truncations yield 
ligands that accumulate on the cell surface, where they bind 
Notch but are unable to activate signaling  [24] . Two struc-
turally unrelated E3 ubiquitin ligases, Neuralized (Neur) 
and Mindbomb, ubiquitinate DSL ligands, and this modi-
fication is absolutely required for ligands to activate Notch 
signaling                      [23, 28 – 35] . Defects in these E3 ligases cause 
DSL ligands to accumulate on the cell surface, indicating 
that ubiquitination is required for ligand internalization. 
Importantly, in the absence of ubiquitination, the DSL lig-
ands cannot activate Notch signaling, indicating that ubiq-
uitination and/or endocytosis is critical for ligand activity. 
Interestingly, E3 ligase overexpression promotes efficient 
removal of ligands from the cell surface, conditions that 
counterintuitively enhance signaling activity. Although 
the mechanism by which ubiquitination promotes ligand 
signaling is currently unknown, cell surface proteins gain 
access to particular endocytic routes as well as undergo 
endosomal sorting and trafficking through ubiquitina-
tion  [36] . In fact, Neur2 is not required for internalization, 

but rather regulates membrane trafficking of DSL ligands 
downstream of endocytosis  [22] . 

 Internalization   of ubiquitinated cell surface proteins 
and endosomal trafficking are regulated by a number of 
different ubiquitin-binding proteins  [36] . Epsin is one such 
endocytic adaptor and sorting protein that contains ubiqui-
tin interaction motifs (UIM), and studies in flies and worms 
have indicated a strict requirement for epsin homologs in 
the ligand signal-sending cell during several processes 
that involve Notch signaling                [19, 25, 35, 37 – 39] . It seems 
likely that epsin directly binds ubiquitinated DSL ligands 
and recruits them to a specific endocytic pathway neces-
sary for signaling activity; however, both the endocytic 
route and specific function provided by epsin in generat-
ing an active ligand have remained unclear. Genetic stud-
ies in flies have identified requirements for clathrin heavy 
chain  [40]  and auxilin for DSL ligand activity        [40, 41] , 
suggesting that DSL ligand endocytosis is clathrin depend-
ent; however, recent findings supporting internalization of 
ubiquitinated cargo via the caveolar pathway        [42, 43] , raise 
the possibility that DSL ligands may also undergo clathrin-
independent endocytosis. In fact, dynamin and epsin are 
absolute requirements for ligand activity, and both have 
been reported to function in clathrin-dependent and -
independent endocytosis, and thus the specific endocytic 
route involved in activating DSL ligands is still unknown. 
Moreover, studies in flies suggest that DSL ligands use a 
number of different endocytic routes, but only ligands 
internalized in a ubiquitin- and epsin-dependent manner 
are competent to signal          [19, 25, 35] . The challenge now is 
to determine the specific property and/or mechanism con-
ferred by ubiquitin and epsin for ligand signaling potential.  

    UBIQUITIN AND EPSIN-DEPENDENT 
RECYCLING TO PRODUCE AN ACTIVE 
DSL LIGAND 

 The   findings that not all internalized DSL ligands are com-
petent to signal have suggested that a subpopulation of lig-
ands may gain access to a particular endosomal compartment 
to acquire signaling activity, and this requires both ubiquiti-
nation and interactions with epsin            [19, 25, 35, 37] . It is pos-
sible that ligand ubiquitination followed by epsin-dependent 
endocytosis and/or membrane trafficking regulates more 
than one event in Notch signaling, and roles both before and 
after binding to Notch have been proposed (reviewed in          [12, 
14, 16] ). For example, it has been suggested that internalized 
ligands are trafficked through the endosome for conversion 
into an active ligand that is recycled back to the cell surface 
 [25] . The idea that DSL ligands might need to recycle to 
activate Notch initially came from studies using a form of 
Delta in which the intracellular domain was replaced with 
a portion of the Low Density Lipoprotein Receptor (LDLR) 
containing a known internalization motif (FDNPXY)  [25] . 
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This chimeric ligand is surprisingly active in cells lacking 
epsin, suggesting that the LDLR endocytic signal allows 
DSL ligands to bypass the need for ubiquitination and epsin 
in Notch signaling, perhaps through recruiting other adaptors 
such as Dab2 or ARH that normally assist LDLR endocy-
tosis        [27, 36] . However, Serrate has a dileucine internaliza-
tion motif that is active in endocytosis but is not sufficient 
for signaling  [19] , indicating that not all intrinsic endocytic 
signals confer DSL activity. 

 Given   that internalized LDLR is rapidly recycled, the 
signaling activity detected with the Delta – LDLR chimera 
may reflect epsin-dependent recycling of endogenous DSL 
ligands; however, epsin is not known to function in recy-
cling, and losses in epsin do not perturb recycling of the 
transferrin receptor  [44] . Even though the activating prop-
erties conferred through recycling are undefined, endocyto-
sis followed by recycling has been suggested to produce an 
active DSL ligand through facilitating a posttranslational 
modification during endosomal trafficking  [25] . Recycling 
could also promote ligand clustering  [45] , or target ligand 
to a particular cell surface microdomain, or simply replen-
ish ligand at the cell surface to maintain high levels for 
active signaling. Although it is still unclear if recycling 
is required for ligand activity, losses in Rab11 or Sec15, 
which function together in recycling endosomes, produce 
cell-fate transformations indicative of losses in DSL activ-
ity            [20, 46 – 48] . However, not all Notch-dependent proc-
esses appear to require Sec 15 activity  [47] , as one might 
expect if recycling is an absolute requirement for signaling 
activity. It is important to note that even though Delta and 
Rab11 co-localize in endocytic vesicles, direct evidence 
that DSL ligands actually recycle and that recycling posi-
tively affects either Notch binding or activation is lacking.  

    NOTCH SIGNALING REQUIRES 
PROTEOLYSIS AND NUCLEAR 
TRANSLOCATION 

 Notch   signaling depends on a series of proteolytic cleavage 
events that serve to release the Notch intracellular domain 
(NICD) from the membrane and allow it to function as a 
signal transducer        [1, 49] . Ligand-induced proteolytic activa-
tion is dependent on furin proteolytic processing of the pri-
mary Notch translational product during its trafficking to the 
cell surface          [50 – 52] . The furin-cleavage fragments remain 
associated through intramolecular, non-covalent interac-
tions, which maintain the mature cell surface receptor in a 
heterodimeric form that is necessary to keep Notch inactive 
in the absence of ligand          [53 – 55] . Binding of DSL ligands 
to this heterodimeric Notch receptor activates signaling 
by inducing additional proteolysis, first within the Notch 
extracellular domain (NECD) by a disintegrin and metal-
loprotease (ADAM). Cleavage by ADAMs allows for effi-
cient proteolytic processing within the membrane-spanning 

region of Notch by  γ -secretase to generate the biologically 
active NICD        [56, 57] . Membrane release and trafficking 
of NICD to the nucleus permits interactions with the DNA 
binding protein CSL (CBF1, SuH, LAG-1) and recruitment 
of co-activators, which together allows Notch to directly 
participate in the transcriptional activation of Notch tar-
get genes        [1, 58] . Although activating proteases have been 
identified, the events prior to and following ligand binding 
required for Notch proteolysis in the generation of NICD 
are not well defined.  

    DSL LIGAND ENDOCYTOSIS TO PRODUCE 
A FORCE FOR NOTCH PROTEOLYTIC 
ACTIVATION 

 The   requirement for DSL endocytosis could reflect a more 
 “ active ”  role beyond presentation of a functional cell sur-
face ligand. Although DSL ligands are required to produce 
NICD from full-length Notch, it is still unclear how lig-
and binding promotes ADAM cleavage, a necessary step 
in activating  © -secretase proteolysis  [49] . Studies in flies 
have suggested that endocytosis of DSL ligand bound to 
Notch on adjacent cells induces a molecular strain in Notch 
that effects conformational changes and facilitates ADAM 
cleavage within the NECD  [9] . The ADAM-cleaved Notch 
ectodomain may be shed from the Notch cell; however, 
evidence initially provided by studies in flies        [9, 59] , and 
more recently from mammalian cells  [24] , indicates that 
released NECD is taken up by DSL ligand cells. In either 
event, these findings suggest that a critical step in Notch 
activation is NECD removal from intact Notch, which is 
also supported by previous findings, where engineered 
NECD truncations or deletions produce constitutively 
active forms of Notch            [60 – 63] . Additionally, dissociation 
of the NECD subunit from heterodimeric Notch via cal-
cium chelators  [53]  or mutations within the heterodimeri-
zation (HD) domain  [54]  also mimic signaling induced by 
DSL ligands. Moreover, mutations within the HD domain 
of human Notch1, associated with aberrant Notch signaling 
causative for T cell acute lymphoblastic leukemia, induce 
both NECD shedding and Notch signaling independent 
of ligand  [64] . Biochemical and structural studies have 
delineated a negative regulatory region (NRR) within the 
NECD that includes the HD domain, which is responsible 
for keeping the Notch receptor inactive in the absence of 
ligand          [54, 55, 65] . Structural analysis has identified mul-
tiple intramolecular interactions within the NRR, which 
function in maintaining the Notch heterodimeric structure 
and appear to mask the ADAM cleavage site  [55] . Based 
on this analysis, the authors propose that DSL ligand bind-
ing would need to induce substantial movement within the 
NECD to expose the ADAM cleavage site and allow pro-
teolytic activation. Whether the required conformational 
movement is mediated through allosteric changes induced 



254 SECTION | C Signaling In Development

by ligand binding or a mechanical force generated by DSL 
ligand endocytosis of bound Notch is currently unknown. 

 Recent   findings with mammalian cells have provided 
additional support for ligand endocytosis in proteolytic 
activation of Notch  [24] . Importantly, this study clearly 
demonstrates that Notch dissociation is driven not by lig-
and binding but by ligand endocytosis, and provides fur-
ther insight into the role and underlying mechanism of 
NECD removal in Notch activation. At odds with con-
ventional models of ligand-induced proteolytic activation 
of Notch, NECD release and uptake by DSL ligand cells 
does not require ADAM proteolysis. Specifically, ADAM 
inhibitors do not block NECD trans-endocytosis by DSL 
ligand cells, demonstrating for the first time non-enzy-
matic dissociation of Notch. Moreover, Notch signaling 
but not NECD removal by DSL ligand cells is dependent 
on ADAM proteolysis, suggesting that separation of the 
NECD heterodimeric subunit from the membrane-bound 
portion, rather than conformational changes within the 
intact Notch receptor, unmasks the ADAM cleavage site 
and facilitates activating Notch proteolysis. Consistent 
with this idea, inhibition of Notch furin processing, and 
thus heterodimeric formation, prevents Notch dissociation, 
trans-endocytosis of NECD by DSL ligand cells, and acti-
vation of Notch signaling  [24] . The dependence of Notch 
heterodimer dissociation and NECD removal on ligand 
endocytosis has suggested a model in which endocytosis of 
ligand-bound Notch provides a physical force to mechani-
cally remove the NECD subunit from the intact Notch het-
erodimer to allow activating Notch proteolysis  [24] . That 
the critical event in Notch signaling is non-enzymatic dis-
sociation of Notch brings its activation closer to the realm 
of mechanotransduction than previously proposed proteo-
lytic cleavage models.  

    CONVERTING DSL LIGAND ENDOCYTOSIS 
INTO A FORCE-GENERATING PROCESS 

 Endocytosis   of DSL ligand bound to Notch on adjacent 
cells is likely mechanistically different from constitu-
tive or bulk ligand endocytosis in the absence of Notch 
( Figure 27.1   ). In fact, bulk Delta endocytosis occurs in 
the absence of epsin  [25]  and a Serrate mutant defective 
in Notch binding trafficks normally  [19] , indicating that 
most endocytosis is not connected with signaling. Then 
how could bound Notch alter ligand endocytosis, and why 
is there an absolute dependence on E3 ubiquitin ligases 
and epsin for ligand signaling activity? Notch binding 
may induce ubiquitination and/or clustering of DSL lig-
ands, which could amass multiple ubiquitin-binding sites 
for epsin (see  Figure 27.1 ). By assembling multiple low-
affinity mono-ubiquitin interactions, strong epsin-UIM/
ubiquitinated-DSL interactions could be generated        [66, 67] , 
and this may be necessary to stabilize DSL ligands within 

endocytic vesicles and overcome any resistance to inter-
nalization when bound to Notch. In fact, replacement of 
the Delta intracellular domain with a single ubiquitin motif 
that can undergo polyubiquitination promotes internaliza-
tion and signaling activity in zebrafish  [23] . However, a 
non-extendable ubiquitin only weakly signals even though 
it promotes endocytosis  [25] , supporting the idea that mul-
tiple ubiquitin interaction sites are required for DSL lig-
ands to activate Notch, possibly through providing stable 
associations with epsin-containing endocytic vesicles. 

 Recent   studies in flies have suggested that Neur may 
play additional roles in DSL ligand endocytosis in potenti-
ating ligand signaling activity beyond ubiquitination        [34, 
68] . A phosphoinositide-binding domain identified in Neur 
functions to direct Neur to the plasma membrane; however, 
this is not required for Neur to interact with or ubiquitinate 
Delta, but membrane localization is required for Delta endo-
cytosis and thus Notch signaling  [68] . Epsin also binds phos-
phoinositides, an activity proposed to function in membrane 
curvature during endocytic vesicle formation  [69] ; however, 
epsin – phosphoinositide interactions also function in endo-
somal sorting and trafficking of internalized proteins  [36] . 
Therefore, both epsin and Neur perform multiple functions 
during endocytosis and membrane trafficking of cell surface 
proteins. Since Neur directly binds Delta and epsin has the 
potential to interact with ubiquitinated Delta, it seems pos-
sible that they could work together to recruit and/or stabilize 
the clustering of Delta bound to Notch into endocytic vesi-
cles. The association of epsin and Neur with Delta-Notch 
containing endocytic vesicles may help to generate a force 
during ligand internalization that could mechanically disso-
ciate the Notch heterodimer (see  Figure 27.1 ). 

 Although   it is not known if ubiqutin-dependent mul-
timerization of epsin during endocytosis of Delta – Notch 
complexes could stabilize endocytic vesicles, epsin is a 
multidomain protein that, in addition to binding ubiquiti-
nated cargo and membrane phospholipids, also directly 
binds clathrin and other accessory endocytic components 
 [69] . Recently, epsin has been reported to bind to Cdc42 
GTPase-activating proteins, suggesting a role for epsin in 
regulating actin dynamics  [70] . Given that both the actin 
cytoskeleton and dynamin are implicated in inducing mem-
brane constriction and tension during the process of endo-
cytosis        [71, 72] , it is tempting to speculate that the epsin 
requirement in ligand activity is the creation of a force-gen-
erating endocytic vesicle, capable of mechanically pulling 
the Notch heterodimer apart to expose the ADAM cleavage 
site and allow proteolytic activation ( Figure 27.1 ). This 
may explain why ubiquitinated ligands internalized in cells 
lacking epsin are unable to signal, and why only DSL lig-
ands internalized in an epsin-dependent manner are compe-
tent to signal. Since the FDNPXY endocytic motif allows 
Notch signaling in the absence of espin, clathrin adaptors 
recruited by this intrinsic signal might also confer endo-
cytic vesicles with force-generating properties.  
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    CONCLUSIONS AND FUTURE DIRECTIONS 

 At   this point there is no consensus as to how DSL ligand 
endocytosis contributes to Notch activation. It is also cur-
rently unclear what role(s) ligand recycling might play in 
Notch activation, but recycling could provide a mechanism 
to replenish ligand to the cell surface following its removal 
through NECD trans-endocytosis during Notch activation 
(see  Figure 27.1 ). High DSL ligand cell surface density may 
be required for continued Notch activation and sustained sig-
naling, especially given that each activated Notch generates 
only one signaling molecule (NICD) that is not amplified and 
turns over rapidly, and once Notch is activated it cannot be 
reactivated. Therefore, it is possible that DSL ligands recycle 
following both constitutive and Notch-associated endocyto-
sis. Understanding whether differences in endocytic pathways 

and membrane trafficking routes underlie differences in con-
stitutive and Notch-associated DSL ligand activities is likely 
to shed light on the molecular mechanisms underlying ligand-
induced activation of Notch. Future studies are also needed 
to determine whether a force can indeed pull the Notch het-
erodimer apart, and if ligand recycling alters interactions with 
Notch it will be important to define the molecular bases of 
such ligand modifications and determine how they contribute 
to Notch activation.   
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    INTRODUCTION TO VEGFs AND 
VEGF RECEPTORS 

 The   vascular endothelial growth factor (VEGF) family 
of ligands consists of five mammalian polypeptides and 
several structurally related factors of invertebrate origin. 
The VEGFs exist as homodimeric glycoproteins of about 
45       kDa. They belong to the cysteine-knot family of ligands, 
which have a tight disulfide-bonded structure  [1] . The pro-
totype VEGF, now denoted VEGFA, becomes alternatively 
spliced and exists in isoforms denoted according to the 
length of the mature polypeptide; VEGFA121, -145, -165 
and -189 in the human. The corresponding mouse VEGFA 
isoforms are each a single amino acid residue shorter (i.e., 
VEGFA120, etc). The splice variants are able, to different 
extents, to bind to co-receptors such as heparan sulfate pro-
teoglycans (HSPGs) and neuropilins (NRPs); such interac-
tions will retain the ligands by the producer cell and thereby 
restrict effects on endothelial cells located at a distance. 
VEGFA is expressed by most cell types; low oxygen ten-
sion, hypoxia, is an important regulator of VEGF expres-
sion  [2] . Other VEGF family members, placenta growth 
factor (PlGF) and VEGFB, also exist as alternatively spliced 
isoforms with distinct biology. The biology of VEGFC and 
VEGFD, on the other hand, is regulated through proteolytic 
processing. There are related invertebrate VEGFs, such 
as VEGFE (parapox virus open reading frame,  [3] ) and 
VEGFF (snake venom-derived,  [4] ), which have served as 
tools to dissect VEGF biology, since they bind to VEGFRs 
in a different pattern than the mammalian VEGFs. 

 The   diversity of the VEGFR family (VEGFR1, VEGFR2, 
and VEGFR3) is thought to have been established through 
gene duplication from a single common ancestral recep-
tor, exemplified by the  Drosophila melanogaster  receptor 

tyrosine kinase D-VEGFR (also denoted PVR, as there 
is a high similarity to the  platelet-derived growth factor 
receptors, PDGFRs)  [5] . The VEGFRs are classical recep-
tor tyrosine kinases that are organized in four regions: the 
extracellular ligand-binding domain, the transmembrane 
(TM) domain, the tyrosine kinase (TK) domain which is 
interrupted by a  “ kinase insert, ”  and the carboxy-terminal 
domain (see  Figure 28.1   ). 

 Ligand  -binding leads to receptor dimerization and 
activation. The receptor dimers are held together not only 
by binding of the growth factor but also by direct interac-
tion between the two receptor molecules in the dimer  [6] . 
Dimerization creates both homo- and heterodimers of 
VEGF receptors        [7, 8] , which may have distinct functions. 

 The   VEGFs and their receptors function in differ-
ent compartments of the vascular system; in embryonic 
development of blood and lymphatic endothelial cells, 
in formation of vessels from already established vascu-
lature (angiogenesis), and in migration of monocytes and 
endothelial cell progenitors. A very important function of 
VEGF is in regulation of vascular permeability, as inferred 
from its alternative designation, vascular permeability fac-
tor  [9] . In addition, neuronal stem cells express VEGF 
receptors and are to some extent regulated by VEGF, indic-
ative of the close relationship between vascular and neuro-
nal development (for a review, see  [10] ). 

 Gene   targeting has demonstrated a strict requirement 
for several of the VEGF ligand/receptor members for vas-
cular development during embryogenesis (vasculogenesis) 
(see  Table 28.1    for a summary of the phenotypes of all 
gene targeted VEGF/VEGFR mouse models described in 
this review). Certain VEGFs are dispensable for embryonic 
development but have a crucial function in regulation of 
blood vessel formation in pathological processes.  

 Chapter 28 
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    DEVELOPMENTAL PROCESSES; 
VASCULOGENESIS AND ANGIOGENESIS 

 Migration   of endothelial precursors (angioblasts) and their 
organization into so-called blood islands allow establish-
ment of the primitive vascular plexus  [11] . By pruning and 
splitting, finer vessels develop ( Figure 28.2   ). This proc-
ess is denoted vasculogenesis, and is strictly dependent on 
VEGFA/VEGFR2. To a large extent, however, vasculo-
genesis remains uncharacterized in molecular terms, and 
very little is known about VEGFR signaling at this stage. 
Differentiation of endothelial cells from precursors may also 
occur in the adult, through homing of bone-marrow derived 
circulating precursors to sites of active vascular regenera-
tion in a VEGFA/VEGFR2-dependent manner  [12] . 

 Formation   of new vessels from already established vas-
culature is denoted angiogenesis. The main mechanisms 
for creation of new vessels in angiogenesis are sprouting 
and splitting (intussusception) of vessels ( Figure 28.2 ). In 
vessel sprouting, VEGF-activated endothelial cells start to 
secrete proteases, which digest the vessel basement mem-
brane. Selected cells extend  “ sprouts ”  into the surrounding 
tissue, followed by formation of a stalk of dividing cells 
headed by a non-dividing tip cell  [13] . Sprouting is nega-
tively regulated by the Notch pathway  [14] ; otherwise, little 
is known about the signaling that regulates formation of the 
angiogenic sprout. VEGF-driven angiogenic sprouting has 
been documented in the developing retina in newborn mice, 
and in tumors. In vessel splitting, growth of transvascular 

tissue pillars allows rapid remodeling of the vasculature 
while maintaining the circulation  [15] . 

 Below   is an outline of the current understanding of 
VEGFR signaling pathways. We start with an account of 
VEGFR2, which has been intensely studied, and which 
may serve as a template.  

    VEGFR2 AND ITS LIGANDS IN 
VASCULAR DEVELOPMENT 

 VEGFR2   (also denoted KDR in humans and Flk1 in 
mouse) is the first vascular marker to appear during devel-
opment, and is central in endothelial cell function. It binds 
VEGFA and the processed forms of human VEGFC and 
VEGFD. It is expressed on endothelial and hematopoi-
etic precursor cells, mature capillary endothelial cells, and 
 neuronal cells. Although not required for hemangioblast 
formation, VEGFR2 is necessary for endothelial cell matu-
ration, migration, proliferation, and vascular organization 
during development        [16, 17] . Gene targeting of mouse 
 Vegfr2  is lethal at embryonic day (E)8.5, associated with 
defective blood island formation, and arrested endothelial 
and hematopoietic development  [18] . These effects are 
phenocopied by targeting of the  Vegfa  gene  [19] . VEGFA/
VEGFR2 signaling has been shown to control all aspects 
of endothelial cell function, such as migration, survival, 
proliferation, and differentiation to create lumen-containing 

 FIGURE 28.1          Schematic outline of VEGF ligands and receptors.  
    The specific binding of mammalian VEGFs (-A, -B, -C, -D and PlGF) to the three VEGFR tyrosine kinases results in formation of VEGFR homo- and 
heterodimers. Proteolytic processing regulates binding of VEGFC and -D to VEGFR2 (dashed line).    
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 vascular structures. The critical role of VEGFA/VEGFR2 in 
regulation of the vasculature has promoted efforts to block 
its function through anti-angiogenic therapies for treatment 
of, for example, cancer and retinopathy. Currently, ther-
apy with neutralizing antibodies against VEGFA is used 
to arrest vascularization in different malignancies such as 
renal, colorectal, and breast cancer  [20] . 

 There   is a strict requirement for a certain level of signaling 
through VEGFA/VEGFR2 during development, demonstrated 
by the fact that mice lacking one VEGFA allele  (Vegfa   �    / �  )  
die at E11.5 due to severe cardiovascular defects        [19, 21] . 
Moreover, engagement of co-receptors, which is differen-
tially regulated via alternative splicing of  Vegfa , is critical 

in VEGFA/VEGFR2 biology. Mice expressing only the 
VEGFA165 isoform, which binds to both HSPGs and NRP1 
(see further below), show no phenotypic deviation from the 
wild-type animal  [22] . The VEGFA120 isoform does not 
bind HSPGs or NRPs, and is therefore freely diffusable. 
Expression of VEGFA120 alone in the  Vegfa  120/120  mouse, 
however, leads to death shortly after birth in 50 percent of the 
mice, due to bleeding and cardiovascular distress        [22, 23] . 
Remaining mice have impaired postnatal myocardial angio-
genesis and die from cardiac failure within 2 weeks of birth 
       [22, 23] . Several VEGF isoforms also plays a role in bone 
formation.  Vegfa  120/120  mice show skeletal defects and impai-
red angiogenesis and endochondral bone formation        [24, 25] . 

 TABLE 28.1          VEGF/VEGFR and co-receptor function assessed by gene targeting in mice  

   Genotype  Phenotype  Ref(s) 

   Vegfa  � / �    Lethal at E11 – 12, defect vascular development  19, 21 

   Vegfa  � / �    More severe defects in vascular development than heterozygote, 
lethal at E9.5 – 10.5 

 19 

   Vegfa  120/120   50% die at birth due to bleeding in multiple organs, remaining 
mice die before postnatal day 14 due to cardiac failure. Impaired 
myocardial angiogenesis, ischemic cardiomyopathy, skeletal defects, 
defects in vascular outgrowth and patterning in the retina 

 22 – 25 

   Vegfa 188/188   Impaired retinal arterial development, dwarfism, defect epiphysal 
vascularization, impaired development of growth plates and secondary 
ossification centers, knee joint dysplasia 

 22, 26 

   Vegfb  � / �    Reduced heart size, dysfunctional coronary vasculature, impaired 
recovery from cardiac ischemia 

 65, 96 

   Vegfc  � / �    Prenatal death due to edema, no lymphatic vessels  69 

   Vegfd  � / �    Normal development, slight reduction of lymphatic vessels adjacent 
to lung bronchiole 

 71 

   Plgf  � / �    Impaired angiogenesis during ischemia, inflammation, wound 
healing and cancer 

 64 

   Vegfr1  � / �    Lethal at E8.5 – 9.0, increased hemangioblast commitment, vascular 
disorganization due to endothelial cell overgrowth 

 57, 97 

   Vegfr1 (TK)   � / �    Normal development, suppressed VEGF-induced macrophage 
migration, decreased tumor angiogenesis 

 60, 98 

   Vegfr1 (TM-TK)   � / �    50% of mice die during embryonic development due to 
vascular defects 

 59 

   Vegfr2  � / �    Lethal at E8.5 – 9.5, defect blood-island formation and 
vasculogenesis 

 18 

   Vegfr3  � / �    Lethal before formation of lymphatics due to cardiovascular failure. 
Embryos show vascular remodeling defects and pericardial fluid 
accumulation 

 68 

   Nrp1  � / �    Embryonically lethal, defect neural patterning, vascular regression  84, 85 

   Nrp1 overexpression  Cardiovascular defects, heart malformation, excess blood vessel 
formation, dilated blood vessels, hemorrhage, anomalies in 
nervous system and limb 

 86 

   Nrp2  � / �    40% show perinatal death. Survivors are smaller than littermates. 
Defects in neuronal patterning, severe reduction of small lymphatic 
vessels and capillaries 

 87 – 89 

   Nrp1  � / �  , Nrp2  � / �    Lethal at E8.5, defect vascular development  90 
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Mice expressing only VEGFA188, and thus lacking expres-
sion of soluble VEGFA isoforms, suffer from dwarfism, at 
least partially due to defects in vascularization of the epiphy-
sis and impaired cartilage development  [26] . 

 VEGFR2   tyrosine phosphorylation sites have been 
identified and, apart from two positive regulatory tyrosine 
residues (Y1054 and Y1059), required for maximal kinase 
activity  [27] , there are three major phosphorylation sites 
involved in downstream signaling (see  Figure 28.3   ). One 
is in the kinase insert sequence (the stretch of about 70 
amino acid  “ non-kinase ”  residues that divides the VEGFR 
kinase domains in two parts; see  Figure 28.1 ), at posi-
tion Y951 (Y949 in the mouse). This site binds the adaptor 
molecule T cell-specific adaptor (TSAd), which becomes 
tyrosine phosphorylated in VEGF-treated cells        [28, 29] . 
 Tsad  � / �    mice survive development, but show decreased 
tumor growth and vascularization  [29] . Tyrosine phospho-
rylated TSAd presents a binding site for the cytoplasmic 
tyrosine kinase Src, which regulates the organization of 
the actin cytoskeleton and cell migration. Mice deficient in 
expression of Src as well as the related tyrosine kinase Yes 
( Src/Yes  �    / �   mice) survive to adulthood, but are unable to 
respond to VEGF with increased vascular permeability due 
to defects in regulation of endothelial cell junctions        [30, 
31] . This indicates that Src and Yes are critically involved 

in the cross-talk between VEGFR2 and specialized 
endothelial junction proteins such as vascular endothelial 
(VE)-cadherin, to mediate opening of cell – cell junctions 
and the subsequent increase in vascular permeability. 

 A   second main tyrosine phosphorylation site in VEGFR2 
is at Y1175 (Y1173 in the mouse), in the C-terminal tail. 
Phosphorylation at this site allows binding and activation of 
phosphatidylinositol-specific phospholipase C (PLC) γ   [32] . 
PLC γ  hydrolyzes phosphatidylinositol 4,5 bisphosphate 
(PI-4,5-P2), a plasma membrane lipid. This results in gen-
eration of inositol 1,4,5-P3 and diacylglycerol, which leads 
to release of Ca 2 �   from intracellular stores and activation of 
protein kinase C (PKC), respectively. Many growth factor 
receptors transduce signals to activation of Erk and to cell 
proliferation via the small GTPase Ras. However, in the case 
of VEGFR-2, PLC γ  activation leads to a Ras-independent 
activation of extracellular-regulated kinase (Erk)1/2 via 
PKC, critical for transducing VEGF signals for prolifera-
tion  [33] . Elimination of the Y1173 phosphorylation site 
in mice  (Vegfr2  Y1173F  )  leads to embryonic lethality at E8.5, 
with a phenotype very similar to that of the complete  Vegfr2  
knockout  [34] . This is compatible with a role for Y1173 
and PLC γ  in endothelial cell proliferation. However, Y1173 
in VEGFR2 is also a binding site for the adaptor molecules 
Shb  [35]  and Sck/ShcB  [36] , which may contribute to the 

 FIGURE 28.2          Endothelial cell development and formation of new vessels.  
    Vascular development is initiated when angioblasts differentiate to endothelial cells and assemble to form a vascular plexus through a process denoted 
vasculogenesis. Angiogenesis, the formation of new vessels form pre-existing ones, occurs either through formation of a vascular sprout guided by a 
leading tip cell (TC) or through splitting of vessels (intussusception). EC, endothelial cell; Pr, pericyte.    
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phenotype of the  Vegfr2  Y1173F  mouse. The central role of the 
PLC γ  pathway in endothelial cell function is corroborated 
by the phenotype of  Plcg  � / �    mice. These animals show lack 
of erythropoiesis and diminished vasculogenesis, and die 
during early embryogenesis at E9.5 – 10.5  [37] . Inactivation 
of the zebrafish ( Danio rerio )  plcg  gene, on the other hand, 
leads to loss in arterial specification  [38] . 

 Another   critical signal transduction pathway activated 
downstream of Y1173 involves activation of phosphoi-
nositol 3 �  kinase (PI3K). There are several PI3K isoforms, 
of which p110a has been shown to be critical for vascu-
lar development  [39] . PI3K in turn mediates activation of 
the serine/threonine kinase Akt/PKB, which is essential 
in VEGFA-induced endothelial cell survival. Akt has also 
been implicated in regulation of endothelial permeabil-
ity through activation of endothelial nitric oxide (eNOS) 
synthase and subsequent nitric oxide production          [40–42] . 
 Akt1  � / �    mice are viable, but show impaired pathological 
angiogenesis, characterized by defects in vessel maturation 
and increased vascular permeability  [43] . 

 Interestingly  , a balance in the activities of the PI3K and 
PLC γ  pathways appears to direct the development of arter-
ies. Activation of Erk1/2 downstream of PLC γ  is required 

for arterial development, and this pathway is opposed by 
activation of PI3K  [44] . Erk1/2 activity may be essential in 
VEGF-mediated induction of Notch signaling pathways, 
in an as yet unidentified circuit (for reviews, see        [45, 46] ). 
Notch ligands and receptors have also been implicated in 
regulating arterial development downstream of VEGF/
VEGFR-2 (see  [46] ). 

 The   third autophosphorylation site, at Y1214 (Y1212 in 
the mouse), has been shown to regulate sequential activa-
tion of CDC42, p38 MAPK, and Hsp27 involved in VEGF-
induced actin reorganization          [47 – 49] . However, mice 
expressing a mutation at this site ( Vegfr2  Y1212F ) develop 
normally without vascular defects  [34] . Changes in adult 
physiological or pathological angiogenesis in these mice 
have not yet been reported. 

 The   central role of VEGFR2 signaling in vascular and 
hematopoietic development has been confirmed in small 
animal models of angiogenesis. Zebrafish is a tropical fish 
that survives the first day of development in the absence of 
blood circulation due to passive diffusion of oxygen, making 
it an excellent model for studying genes critically involved 
in vascular development. Furthermore, by injection in the 
zebrafish oocyte of  “ gene-specific morpholinos, ”  the role of 

 FIGURE 28.3          VEGFR2 signal transduction.  
    The intracellular domains of VEGF-bound, dimerized VEGFR2 are shown. Receptor dimerization leads to activation of the tyrosine kinase and 
 subsequent autophosphorylation of major phosphorylation sites Y951, Y1175, and Y1214. This results in activation of specific downstream signal-
ing molecules, which ultimately leads to the indicated biological responses in endothelial cells. VEGF-induced proliferation may involve activation of 
Ras, but this pathway has not been mapped (indicated by the dashed line) and it is unclear which phosphorylation sites are involved. See text for further 
 information on signaling pathways.    
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these genes in vascular development can easily and quickly 
be evaluated. See  [10]  for a review on the use of small ani-
mal models in vascular biology. 

 Morpholino  -mediated knockdown of one VEGFR2 
ortholog (Kdra) in zebrafish led to impaired intrasegmental 
sprouting angiogenesis  [50] . Subsequently another VEGFR2 
ortholog (Kdrb) was found, and a combined knockdown of 
both genes resulted in a more severe vascular phenotype, 
suggesting that Kdra and Kdrb cooperate in regulating 
vascular development in the zebrafish  [51] . Hematopoietic 
development, however, was not perturbed. The fruit fly 
 Drosophila melanogaster  lacks a proper vascular sys-
tem, but represents a useful model to study hematopoietic 
development. The common VEGF/PDGF receptor, PVR, is 
involved in guidance of cell migration during  Drosophila  
development. Mutation in PVR leads to increased apoptosis 
of embryonic hematopoietic cells, implying that PVR regu-
lates survival of blood cells in the embryo  [52] .  

    VEGFR1 AND ITS LIGANDS IN VASCULAR 
DEVELOPMENT AND INFLAMMATORY 
RESPONSES 

 VEGFR1   (also denoted Flt1 in mouse) binds three ligands: 
VEGFA, VEGFB, and PlGF. VEGFR1 stands out from the 
other VEGFRs by being expressed in two variants; a full-
length transmembrane form and a soluble form (sFlt1). 
sFlt1 encompasses the extracellular ligand-binding domain 
of VEGFR1, but is devoid of the transmembrane and intra-
cellular part, including the kinase domain (see  Figure 28.1 ). 
sFlt1 acts as a decoy by sequestering VEGF. It is expressed 
during development in the placenta. Expression of sFlt1 
increases during progression of the pregnancy and is upreg-
ulated further in pre-eclampsia  [53] , a condition character-
ized by high blood pressure, proteinurea and, finally, renal 
failure. Inflammatory cells infiltrating the placenta may be 
a source of sFlt during progression of pre-eclampsia  [54] . 
The full-length VEGFR1 variant is expressed on endothelial 
and hematopoietic precursor cells, monocytes/macrophages, 
and vascular endothelial cells (for references, see  [55] ). 

 Signal   transduction by VEGFR1 has been challenging 
to dissect due to its poor kinase activity compared to the 
other VEGFRs. Mapping of VEGFR1 tyrosine phospho-
rylation sites shows lack of phosphorylation at conserved 
sites traditionally serving in positive regulation of kinase 
activity  [56] , which may explain the difficulty in inducing 
the VEGFR1 kinase. 

  Vegfr1    gene targeting leads to increased endothelial 
cell proliferation and embryonic lethality at E8.5 – 9 due to 
vessel occlusion. This phenotype implicates VEGFR1 as 
a negative regulator in vascular development        [57, 58] . A 
plausible mechanism for the expansion of the endothelial 
cell pool may be the increased availability of VEGF to bind 
and activate VEGFR2. 

 To   better understand the negative regulatory role of 
VEGFR1, recombinant mice expressing only sFlt1 (i.e., 
encompassing only the soluble extracellular VEGFR1 
domain) were generated. The  Vegfr1  TK/TM � / �   mice show 
a complex fate, with 50 percent of the embryos dying at 
E8.5 – 9 due to vascular malformations  [59] . The remaining 
50 percent survive to adulthood and develop normally. 

 Mice   have also been created that express a tyrosine-
kinase (TK)-deleted but membrane-anchored VEGFR1 var-
iant,  Vegfr1  TK    � / �   . These mice survive embryogenesis and 
show apparently normal vascular development  [60] . These 
results strongly suggest that the membrane-fixed, ligand-
binding region of VEGFR1 traps VEGF for the appropriate 
regulation of VEGF signaling in vascular endothelial cells 
during early embryogenesis. 

 VEGFR1   is expressed not only in endothelial cells but 
also on hematopoietic precursors, bone marrow-derived 
progenitors, and mature monocytes/macrophages. Even 
though VEGFR1 kinase activity appears dispensable for 
both endothelial and hematopoietic cell development, loss 
of TK activity leads to reduced monocyte/macrophage 
migration, which dampens inflammatory reactions in a 
number of pathological conditions, such as chronic inflam-
matory joint diseases, atherosclerosis, and cancer        [61, 62] . 

 The   ligands for VEGFR1, VEGFA, VEGFB, and PlGF 
all transduce distinct biological responses. This may be 
attributable to recruitment of different co-receptors, to 
induction of different autophosphorylation sites in VEGFR1, 
or, in the case of PlGF, to induction of intramolecular cross-
talk between VEGFR1 and -2  [63] . 

 Mice   lacking PlGF also survive embryonic develop-
ment, but show reduced ability to cope with pathologi-
cal conditions such as myocardial infarction, ischemia, 
and tumor growth  [64] . The reduced capacity to regulate 
endothelial function during pathologies indicates distinct 
molecular mechanisms in regulation of endothelial cell 
function during vasculogenesis and angiogenesis. 

 Mice   lacking expression of the VEGFR1-specific lig-
and VEGFB survive development but show cardiac abnor-
malities and pathologically enhanced growth of the cardiac 
muscle  [65] , independent of effects on the vasculature.  

    VEGFR3 AND ITS LIGANDS IN 
LYMPHATIC DEVELOPMENT 

 VEGFR3   (Flt4 in the mouse) is an important regulator of 
lymphatic development and function. The lymphatic vas-
cular system is critical for reabsorption of extravasated 
fluid and dietary fat into the circulation; in addition, it con-
tributes to the host immune defense  [66] . VEGFR3 binds 
VEGFC and -D. It is expressed in lymphatic endothelial 
precursors and mature lymphendothelial capillaries, but 
also in blood vascular endothelial cells  –  for example, in 
tumor vessels and on monocytes/macrophages. 
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 The   positions of phosphorylated tyrosine residues in 
VEGFR3 have been mapped  [7] ; however, their role in sig-
nal transduction has not yet been addressed using  in vivo  
strategies. Phosphorylation sites in VEGFR3 are used dif-
ferently, dependent on whether receptor activation occurs 
in homodimers or in heterodimers with VEGFR2. The biol-
ogy of such differences in phosphorylation patterns also 
remains to be deduced. 

 Lymphatic   endothelial cells (LECs) that express 
VEGFR3 bud off and migrate away from the embryonic 
cardinal vein at E10.5 in response to a gradient of VEGFC, 
which is produced by nearby mesenchymal cells. The 
migrating LECs subsequently assemble into lymph sacs 
that extend through sprouting, to lay down the framework 
of the lymphatic system  [67] . However, targeting of  Vegfr3  
leads to embryonic death at E 9.5, prior to the establish-
ment of the lymphatics, and is accompanied by defective 
remodeling and maturation of the primitive blood vascular 
plexus into larger vessels  [68] . Targeted  Vegfc  � / �    embryos 
lack lymphatic vessels and die prior to birth due to severe 
tissue edema  [69] . Interestingly, targeting of the corre-
sponding  Vegfc/Vegfr3  genes in zebrafish leads to loss of 
lymphatic development  [70] . Targeting of mouse  Vegfd , 
on the other hand, shows that it is dispensable for lym-
phatic endothelial cell development  [71] . Overexpression 
of zVEGFD in zebrafish leads to misguidance of sprouting 
intrasegmental vessels, implicating a role for VEGFD in 
vascular development in zebrafish  [72] . 

 In    Xenopus laevis  tadpoles, morpholino-targeting of 
 vegfc  or  vegfr3  leads to lymphedema. Moreover, VEGFD 
is implicated in lymphatic endothelial cell migration dur-
ing development of the tadpole lymphatic system  [73] . The 
different roles of the VEGFR3 ligands in different model 
organisms may be related to their processing, and different 
abilities to interact also with VEGFR2. 

 Interestingly  , VEGFR3 is the only VEGFR for which 
naturally occurring mutations have been identified  [74] . 
Such mutations invariably lead to loss of function and 
lymphedema.  

    VEGF AND ITS CORECEPTORS 
IN MODULATION OF SIGNAL 
TRANSDUCTION 

 A   co-receptor implies a molecule that binds to the ligand 
and supports or stabilizes the formation of a signaling com-
plex. Thereby, downstream signal transduction may be 
modulated quantitatively and qualitatively. Co-receptors 
lack intrinsic enzymatic activity but may transmit signals 
independently of the receptor tyrosine kinase, through par-
ticipation in other molecular complexes. 

 There   are at least two co-receptors for the VEGF  ligand –
 receptor complex, namely HSPGs and NRPs. HSPGs are 
composed of a protein backbone with an  attachment of 

repeated units of sulfated glycosaminoglycans (GAGs) that 
form long, linear sugar chains. GAG sulfation confers a net 
negative charge, which allows binding to many different 
growth modulatory factors  [75] . In cells that lack heparan 
sulfate completely, or express defective heparan sulfate with 
reduced degree of sulfation, there is no response to VEGF 
even though VEGF receptors are expressed  [76] . The mode 
of presentation of HSPGs (on both endothelial cells and 
perivascular cells, or only on perivascular cells) determines 
the level and longevity of receptor activation  [77] . 

 NRPs   (1 and 2) are transmembrane molecules with a 
short cytoplasmic tail, which lack intrinsic enzymatic activ-
ity  [78] . NRPs were first identified as negative regulators 
of neuronal axon guidance through binding of members of 
the class 3 Semaphorin (Sema) family        [79, 80] . NRP1 was 
subsequently shown to bind exon 7-containing VEGFA iso-
forms such as VEGFA165  [81] . It is noteworthy that NRP1 
may be modified by chondroitin and heparan sulfation  [82] , 
potentially allowing binding of VEGF to the protein core 
as well as to the HS side-chains. Through these interac-
tions, NRPs become an integral part of the VEGF/VEGFR 
signaling complex. Whereas NRP1 is engaged in VEGFR2 
signaling, NRP2 interacts with the VEGFC/VEGFR3 sign-
aling complex in lymphendothelial cells  [83] . 

 NRPs   play an essential role in vascular development. 
 Nrp1  knockout mice die around embryonic day E12.5 to 
E13.5, displaying abnormal axonal networks and defects in 
embryonic and yolk sac vascular formation        [84, 85] . The 
knockout embryos have abnormal cardiovascular develop-
ment, such as agenesis of the brachial arch-related great 
vessels, dorsal aorta, and transposition of aortic arches. 
Overexpression of  Nrp1  in mice also confers vascular 
defects  [86] . These mice die  in utero  with morphological 
deformities, an excess of capillaries and blood vessels, dila-
tion of blood vessels, hemorrhage, and malformed hearts. 

  Nrp2   -deficient mice display normal development 
of blood vessels        [87, 88] , as well as of larger collecting 
lymphatic vessels, but exhibit a severe reduction in small 
lymphatic vessels and capillaries  [89] . Double  Nrp1Nrp2  
knockout mice have a more severe vascular phenotype than 
the individual knockouts, and die at E8.5 with defects rem-
iniscent of those in  Vegfa/Vegfr2  knockout mice  [90] . 

 Endothelial  -specific  Nrp1  knockout mice emphasize 
the essential role for NRP1 in cardiovascular development. 
These mice die at mid-to-late embryonic development, due 
to a poorly branched vasculature and multiple defects in 
the major arteries and failure of septation of the major car-
diac outflow tract  [91] . Knock-in mice expressing a mutant 
NRP1 that has lost the ability to bind semaphorins but still 
can bind VEGFA survive to birth and show no cardiovas-
cular defects  [91] . 

 The   zebrafish has two nrp 1  ( nrp1a  and  b ) and two nrp 2  
( nrp2a  and  b ) genes  [92] . During formation of the vascular 
system,  nrp1a  is first expressed by tail angioblasts toward the 
end of somitogenesis, and by 48 hours post-fertilization (hpf) 
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expression becomes more widespread to include the major 
trunk vessels as well as intersomitic vessels. Morpholino-
induced silencing of  nrp1  in the zebrafish does not disturb 
vasculogenesis, but leads to loss, or anarchic sprouting, of 
new capillaries from pre-existing intersomitic vessels  [93] . 

 Another   important binding partner of the VEGFR2, 
although by definition and function not a genuine co-receptor, 
is VE-cadherin. VE-cadherin is a strictly endothelial-specific 
adhesion molecule located at endothelial cell adherens junc-
tions. VE-cadherin-mediated adhesion is essential for the con-
trol of vascular permeability and leukocyte extravasation  [94] . 
Deficiency or truncation of VE-cadherin induces endothe-
lial apoptosis and abolished transmission of the endothelial 
survival signal by VEGFA to the Akt kinase and Bcl2, via 
reduced complex formation with VEGFR2, beta-catenin, and 
PI3K, leading to embryonic death at day E9.5  [95] .  

    CONCLUSIONS 

 Dissection   of the biology of the VEGF/VEGFR family of 
ligands and receptors in genetic models such as mouse, 
zebrafish, and tadpoles shows a remarkable degree of bio-
logical conservation. In most cases, gene targeting leads to 
arrested or impaired vascular development and embryonic 
lethality. Interesting exceptions are mice lacking PlGF and 
VEGFB, which are viable but show defects in pathological 
angiogenesis. This implies that developmental angiogen-
esis and pathological angiogenesis occur, at least partially, 
through distinct mechanisms. Vascular development is 
likely to result from a pre-determined genetic program that 
ensures an optimal blood vessel density in each develop-
ing organ. Pathological angiogenesis, on the other hand, 
appears to be chaotic and largely determined by the bio-
availability of VEGFs in the microenvironment. 

 Another   fascinating aspect of research performed to date 
is the fact that VEGFA isoforms VEGFA121, VEGFA165, 
and VEGFA189, acting on the same receptor, VEGFR2, have 
different biology. It is possible that different co-receptors 
recruited into the signaling complex qualitatively modify the 
output signal. Since co-receptor silencing in many respects 
phenocopies those seen as a result of VEGF family ligand and 
receptor silencing, these pathways are likely to be linked. 

 It   is vital to validate VEGFR phosphorylation sites and 
their functions  in vivo , both for understanding and control-
ling the biology. Pertinent questions include: which signaling 
pathways regulate developmental processes such as pre-
cursor migration, plexus formation, and three-dimensional 
organization of endothelial cells to form the vascular tube: 
Also, what are the principal differences between neonatal 
and adult angiogenesis? Such knowledge will be the key to 
the development of high-quality novel therapies aimed to 
create blood vessels for, for example, tissue  regeneration as 
well as anti-angiogenic strategies to treat cancer and other 
diseases characterized by excess angiogenesis.  
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    INTRODUCTION 

 Bone   morphogenetic proteins (BMPs) are members of the 
transforming growth factor beta (TGF β ) superfamily, whose 
other members include nodals, activins, anti-Mullarian 
hormone, and myostatins. In all organisms studied, BMPs 
are expressed at the earliest stages of embryogenesis and 
throughout adulthood, with diverse functions in cell fate, 
differentiation, proliferation, and survival in many tissues. 
BMPs are secreted proteins that in some circumstances 
act as morphogens because they can be expressed in gra-
dients and can function in a concentration-dependent man-
ner to direct gene expression. This chapter will provide 
an overview of BMP signal transduction and some of the 
conserved functions of BMP pathways in invertebrate and 
vertebrate development.  

    BMP SIGNAL TRANSDUCTION 

 Like   all members of the TGF β  superfamily, BMPs trans-
duce signals by binding to heteromeric complexes of ser-
ine/threonine kinase type I and type II receptors. BMP 
ligands are secreted and activated by proteolytic cleav-
age. Once activated, BMPs form homo- and heterodimers 
linked by disulfide bonds. Although differences in signal-
ing activity between heterodimeric and homodimeric lig-
and complexes have been demonstrated        [1, 2] , it has not 
been possible to perform genetic studies to test whether 
homodimers and heterodimers have differing roles  in vivo  
due to extensive functional redundancy and compensatory 
upregulation. BMPs can be structurally subdivided into 
three groups, BMP2/4, BMP5/6/7, and growth and differ-
entiation factor (GDF)5/6/7. Although originally classified 
as a BMP family member, the structurally divergent BMP3 

is an exception, and appears to antagonize both BMP and 
TGF β /activin signaling        [3, 4] . 

 BMPs   bind to type I receptors BMPRIA (ALK3), 
BMPRIB (ALK6), and ActRI (ALK2), and type II recep-
tors BMPRII, ActRII, and ActRIIB. Upon ligand binding, 
type II receptors activate type I receptors via phosphor-
ylation of serine/threonine residues on type I receptors, 
initiating signal transduction (reviewed in        [5, 6] ).  In vivo  
studies have demonstrated that the loss of  Bmpr1a  leads 
to lethality at gastrulation  [7] .  Bmpr1b  � / �    mice, however, 
are viable  [8] . Moreover, in the context of skeletal develop-
ment,  Bmpr1b  � / �    mice display defects in chondrogenesis 
restricted to distal phalanges        [8, 9] , while the cartilage spe-
cific knockout of  Bmpr1a  displays a generalized skeletal 
dysplasia  [10] . These different effects may be due in part to 
distinct expression patterns in the developing condensations 
       [11, 12] . Although these studies raise the possibility that 
type I receptor functions are unique, redundancy in carti-
lage is also evident. Overexpression of  Bmpr1a  can rescue 
the differentiation defect of chondrocytes in  Bmpr1b  � / �    
phalanges  [13] , and the combined loss of  Bmpr1a  and 
 Bmpr1b  in skeletal elements results in embryonic lethality 
due to the severe loss of endochondral bone formation        [10, 
14] . These studies highlight the fact that there are many 
factors regulating the specific functions of type I recep-
tors, which include differential expression, ligand – receptor 
combinations, and the level of signal activation. 

 Canonical   Smad signaling is believed to be the major 
transduction pathway of the TGF β  superfamily ( Figure 
29.1   ). Smad proteins can be divided into three groups: 
receptor Smads (R-Smads), co-Smad (Smad4), and inhibi-
tory Smads (I-Smads 6 and 7). Canonical BMP signaling is 
defined by phosphorylation of receptor Smads 1, 5, and 8, 
whereas TGF β s and activins signal through receptor Smads 
2 and 3        [5, 15] . Smads 1 and 5 are structurally related and 
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transduce equivalent signals  in vitro   [6] . Both Smads 1 and 
5 are essential for normal development in the early embryo 
         [16 – 18] , and the phenotypic similarity shared between 
 Smad1  � / �   : Smad5  � / �    double heterozygous mutants and 
those lacking  Smad1  or  Smad5  further suggests equivalent 
signaling functions by  Smad1  and  Smad5   [19] . Smad8, 
however, is more divergent in structure and expression pat-
terns, and is not required for normal development        [19, 20] . 
The extent of functional redundancy among R-Smads 
 in vivo  is currently unknown, and, due to embryonic 
lethality of null mutations, resolution of this question will 
require the use of conditional knockout models. 

 R  -Smads, which contain two globular Mad homology 
domains (MH1 and MH2) attached by a linker region, are 
phosphorylated by activated type I receptors on conserved 
serine residues at the carboxy terminus. Mice exhibit-
ing a disruption in the C-terminal residues of Smad1 have 
severe developmental defects similar to several phenotypes 
of  Smad1 -null mice  [21] , confirming that the C-terminus 
contains the critical functional domain for transcriptional 
activation by BMP signaling, and initiates the majority of 
Smad1 functions during early embryonic development. 

 R  -Smads subsequently complex with co-Smad4 and 
translocate to the nucleus, forming transcription complexes. 
It is generally believed that most canonical signaling events 
require complex formation  [5] . Many studies have sup-
ported this view, including the finding that  Smad4  � / �    mice 
exhibit early embryonic lethality  [22] . On the other hand, it 
has been demonstrated in both  Drosophila  and mammalian 
systems that several BMP-dependent developmental proc-
esses can occur in the absence of embryonic Smad4          [23 – 25] . 
Previous studies have suggested that Smad4 is required for 
R-Smad nuclear translocation  [26] . However, there are also 
studies that indicate that Smad4 may not always be required 
for this activity. Smad1, located in the cytoplasm in the basal 
state, accumulates in the nucleus upon BMP stimulation in 
Smad4-null human colon carcinoma cells  [27] . Moreover, 
the disruption of the Smad4 nuclear export signal results in 
normal development in transgenic mice  [28] , indicating that 
BMP signal transduction does not depend on Smad4 nucleo-
cytoplasmic shuttling for all developmental processes. 

 Subcellular   localization of Smad proteins can mediate 
BMP signal transduction. At the cytoplasmic membrane, 
endofin, an endosome-associated FYVE domain protein, 

 FIGURE 29.1          BMP signal transduction.  
    Heteromeric receptor complexes consisting of type I and type II receptors bind ligand dimers at the cell surface. Extracellular antagonists such as Noggin 
and Chordin can inhibit complex formation. Activated type I receptors phosphorylate receptor Smads at the carboxy terminus initiating the canonical 
pathway. Phosphorylated R-Smads can then complex with Co-Smad4 and translocate to the nucleus to initiate transcription of target genes. The BMP 
ligand – receptor complex can also activate p38 through TAK1. Inhibitory Smads 6 and 7 and Smurfs antagonize BMP signaling at the intracellular level.    
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has recently been demonstrated to anchor BMP R-Smads 
for phosphorylation by activated receptors  [29] . Smad 
phosphorylation and nuclear accumulation are also medi-
ated by actin binding proteins such as filamins and calponin 
3, which can also bind Smads        [30, 31] . The interaction of 
Smads and filamins has been developmentally implicated in 
several skeletal dysplasias  [32] . Activity is also mediated by 
cytoplasmic membrane protein SANE and nuclear envelop 
protein MAN1, which share significant sequence similarity, 
can inhibit Smad phorphorylation, and can antagonize BMP 
signaling during  Xenopus  embryogenesis          [33 – 35] . 

 Mutating   the linker region of Smad1 results in retention 
of the protein in the plasma membrane and cytoskeleton 
reorganization in primary cells of transgenic mice  [21] , 
suggesting that the linker region is also involved in Smad 
localization. R-Smads can be phosphorylated at the linker 
region by ERK/MAPK pathways, leading to the inhibition 
of R-Smad activation by C-terminal phosphorylation        [36, 
37] . The linker phosphorylation may restrict Smad activ-
ity by inducing polyubiquitination by Smurf1  [38] . These 
data suggest that BMP signaling can be antagonized at the 
level of R-Smad1/5/8 phosphorylation. The physiological 
relevance of this model was demonstrated by Pera and col-
leagues  [39] , who showed that FGF-mediated phosphoryla-
tion of the Smad1 linker region is essential to inhibit BMP 
activity during neural induction. This induction may be a 
major role in developmental systems in which opposing 
activities for BMP and FGF pathways have been demon-
strated, including limb bud development, skeletal growth, 
and lung bud morphogenesis          [10, 40, 41] . 

 Although   canonical Smad signaling is believed to be the 
predominant form of BMP signal transduction, BMP sign-
aling has also been shown to activate alternative pathways. 
BMP ligands can signal via TGF β  activated kinase (TAK1), 
which induces a p38 mitogen-activated (MAPK) pathway. 
Little is known about how BMP-activated canonical and 
non-canonical pathways interact, and it is unclear whether 
these pathways cooperate or antagonize each other. Studies 
have indicated that the balance between Smad and p38 sig-
naling may be influenced by ligand – receptor oligomeriza-
tion complexes        [42, 43] , and by complex internalization 
through association with either clathrin-coated vesicles or 
caveolae  [44] .  In vitro , overexpression of  TAK1  in chondro-
cytes can mimic the stimulatory effects of BMPs, while 
dominant-negative  TAK1  expression inhibits this induction 
 [45] , suggesting cooperation between canonical Smad and 
TAK1 pathways. However, the nature of the interactions 
remains to be clarified, as TAK1 has been found to nega-
tively interact with R-Smads, Smad4, and I-Smads in mes-
enchymal progenitor cells  [46] . Similarly, transgenic mice 
constitutively active for MKK6, an upstream activator of 
p38, exhibit skeletal abnormalities including dwarfism and 
a reduction in chondrocyte proliferation and differentia-
tion  [47] , consistent with the antagonism of BMP by p38 
pathways. Taken together, these studies indicate that Smad 

and p38-MAPK pathways can exhibit positive and negative 
interactions, although the extent of BMP-activated p38 sig-
naling  in vivo  remains to be determined. 

 Cross  -talk may also occur between TGF β  and BMP 
signaling. It has been shown that endogenous Smads1 and 
5 can be activated in a dose- and time dependent manner 
by TGF β  as well as BMP stimulation            [48 – 51] . TGF β s can 
complex with type I receptors ALK1 and ALK5 to trans-
duce a signal through Smad2/3. TGF β  signaling through 
ALK1 has also been shown to activate both Smad2/3 
and Smad1/5/8 pathways in endothelial cells        [51, 52] . 
Embryonic null mutations in either ALK1, ALK5, or 
Smad5 have similar defects in angiogenesis, demonstrat-
ing that TGF β  exerts essential effects by directly activating 
BMP pathways in endothelial cells  [53] . In addition to dif-
ferent heteromeric receptor combinations, TGF β -induced 
activation of BMP receptor Smads may involve cross-talk 
with other pathways such Ras/MEK        [6, 50] .  

    EXTRACELLULAR AND INTRACELLULAR 
BMP ANTAGONISTS AND THE 
ESTABLISHMENT OF MORPHOGEN 
GRADIENTS 

 The   threshold levels of morphogens give positional infor-
mation to cells and activate differential gene expression 
patterns (reviewed in  [54] ). Extracellular antagonists appear 
to be the key architects of BMP gradients. In addition to 
the negative interactions of BMP and FGF pathways dis-
cussed above, regulation of the intensity and duration of the 
BMP signal is tightly controlled in the extracellular space 
by secreted antagonists including noggin, chordin, twisted 
gastrulation (Tsg), and members of the Dan family, such as 
gremlin (reviewed in  [55] ). These antagonists are grouped 
based on the presence of evolutionarily conserved cysteine-
rich domains, and they inhibit BMP signaling by binding to 
ligands and preventing ligand – receptor interaction  [56] . 

 Much   of what is known about BMP signaling compo-
nents and the establishment of morphogen gradients was 
determined from studies of  Drosophila  development. In 
 Drosophila , mutations in decapentaplegic (Dpp), which 
is homologous to BMP2/4, cause abnormal dorso-ventral 
(DV) patterning in the embryo  [57] . Dpp is expressed uni-
formly in the dorsal blastomere embryo, and specifies the 
dorsal fate. Dpp activity is restricted into the dorsal-most 
region by a ventral to dorsal gradient of the antagonistic 
Sog, a chordin homolog expressed ventrally. The extracel-
lular transport of ligands regulated by antagonists such as 
Sog and Tsg, may influence spatial domains of the gradient 
and signal stability        [58, 59] . 

 At   the intracellular level, the BMP signal creates a step 
gradient of Smad responses by sharp transitions in phos-
phorylated Smad levels, which correlate to gene expression 
boundaries. This Smad activity gradient has been shown to 
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pattern the dorsovental axis at the onset of grastrulation, and 
later to pattern the wing primordium        [60, 61] . BMP canoni-
cal Smad signaling can be inhibited by inhibitory Smads 6 
and 7        [5, 62] . These I-Smads can compete with R-Smads to 
bind to type I receptors, inhibiting R-Smad phosphorylation 
at the carboxy terminus. I-Smads can also prevent complex 
formation between R-Smads and Smad4, recruit E3 ubiqui-
tin ligases (Smurfs 1 and 2), and target receptors for degra-
dation            [63 – 66] . I-Smad activity forms a feedback loop with 
BMP signaling, as both Smads 6 and 7 are activated by BMP 
signaling through R-Smad binding to the  Smad6  and  7  pro-
moters          [67 – 69] . I-Smads may be also be regulated by other 
pathways involved in development such as Wnts  [70] . Thus, 
the activity of BMPs is tightly regulated at multiple levels, 
suggesting the strength of the signal is very important.  

    BMPS IN VERTEBRATE EMBRYO 
PATTERNING 

 The   requirement for a gradient of BMP activity for dorsov-
entral patterning is conserved across a wide phylogenetic 
distance. During vertebrate embryo patterning, polarity is 
established similarly by the interaction of BMP and chordin 
to form the DV axis; however, the axis is inversed relative to 
that of invertebrates.  Xenopus  has been used as a model for 
many of these studies (reviewed in  [71] ) which demonstrate 
that BMPs promote ventralization of the mesoderm, repress-
ing development of dorsal tissues including the neural tube 
and notochord. During gastrulation in  Xenopus , BMP4 is 
found on the ventral side of the embryo in an opposing gra-
dient to the dorsal expression of secreted BMP antagonists 
noggin and chordin              [72 – 76] . BMP activity is reflected by the 
presence of C-terminal phosphorylated Smad1 (pSmad1), 
which is also found in the same ventral to dorsal gradient 
 [77] . BMP4 inhibits neuralization and induces epidermis in 
ectodermal explant assays        [72, 78] , while morpholino knock-
down of Chordin expression leads to a reduction in neural 
plate and CNS tissue with an expansion in ventral meso-
derm  [79] . Upon the loss of function of the three antagonists 
chordin, noggin, and follistatin, dorsal structures such as the 
neural plate fail to form at all, demonstrating cooperative 
and redundant functions among BMP antagonists  [35] . In 
contrast, loss-of-function experiments simultaneously inac-
tivating BMP2/4/7 and ADMP (a BMP-like anti-dorsalizing 
morphogenetic protein) show that the loss of BMP signals 
in both ventral and dorsal poles cause the entire ectoderm to 
become neural tissue  [80] . This establishment of dorsal and 
ventral cell types may be mediated by both canonical and 
non-canonical pathways; overexpression of Smads 1 and 5, 
induce epidermis        [81, 82] , while dominant-negative TAK1 
can block SMAD1/5-induced ventralization  [83] . Inhibitory 
Smads 6 and 7 antagonize BMP-induced ventralization, and 
can induce formation of a secondary dorsal axis when mis-
expressed ventrally in  Xenopus  embryos            [65, 84 – 86] . The 

BMP gradient is further modulated by the level of pSmad1 
in the nucleus, which regulates the transcription of dorsal 
and ventral genes such as Sizzled and Tolloid, altering antag-
onistic activity of Chordin via degradation  [87] . 

 Genetic   studies in mammals also support a role for 
BMP signaling in early development (reviewed in  [88] ). In 
the mouse epiblast, or embryo proper, mesoderm cells arise 
from the primitive streak. BMPs regulate patterning of the 
epiblast, the position of the primitive streak as a posterior 
organizing center, and formation of mesoderm. For example, 
the BMPRIA knockout is embryonic lethal, resulting in 
reduced epiblast proliferation and no mesoderm formation 
 [7] . Likewise, the loss of BMP4, which signals through 
BMPRIA, results in embryonic lethality at the egg cylin-
der stage, and little to no mesodermal differentiation  [89] . 
Furthermore, embryos that lack Smad4 in both embryonic 
and extra-embryonic tissues fail to gastrulate  [22] . 

 More   recent studies have utilized conditional gene abla-
tion or overexpression models to examine BMP function 
during organogenesis. For example, conditional deletion of 
BMPR1A in the limb mesenchyme demonstrates that BMPs 
are essential for pattern formation in the limb. BMPR1A is 
required for apical ectodermal ridge (AER) development 
 [90] , distal outgrowth, antero-posterior, and dorsoventral 
patterning  [91] . The same Prx1-Cre promoter-driven exci-
sion used to ablate BMPR1A in early limb bud mesenchyme 
has also been used to examine consequences of ligand dele-
tion to limb patterning. A severe reduction in limb growth 
occurs in the absence of BMP2/4; however, only a mild 
phenotype is observed in the absence of BMP2/7  [92] . 
Although these results indicate different functions in limb 
growth, mesenchymal condensations and chondrocyte dif-
ferentiation occur in both instances, indicating functional 
redundancy with remaining ligands at least at early stages. 

 BMP   signaling is also required along the antero-
posterior axis for somite differentiation. Compound 
mutants of  Bmp4  and  noggin  have axial patterning defects, 
demonstrating the interaction of BMP4 and noggin in pat-
terning the mesoderm bilateral to the neural tube        [93, 94] . 
The compound  Tsg;Bmp7  mutant displays a fusion of the 
distal limbs known as sirenomelia, indicating that poste-
rior patterning of the mesoderm requires the interaction of 
BMP7 and Tsg  [95] . Within the neural tube, overexpression 
of a constitutively active form of BMPRIA or BMPRIB 
induces an increase in dorsal cell types in neural precursor 
cells of the spinal cord  [96] , indicating BMPs are necessary 
for dorsoventral patterning of the neural tube.  

    BMPS AND BONE DEVELOPMENT 

 BMP   function in development is well characterized in 
the skeletal system. BMPs were originally discovered by 
Marshall Urist in 1965, who found that subcutaneously 
implanted decalcified bone could induce ectopic cartilage 
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and bone formation  [97] . Subsequent purification of osteo-
conductive factors led to the discovery of BMPs        [98, 99] . The 
majority of the vertebrate skeleton is composed of endochon-
dral bone. Endochondral ossification occurs when mesenchy-
mal cells differentiate into chondrocytes, which form a highly 
organized template known as the growth plate  [100] . This 
structure, in which cells are stratified in layers based on their 
stage of differentiation, permits assessments of the roles of 
BMP signaling pathways in specific aspects of cell commit-
ment, survival, proliferation, withdrawal from the cell cycle, 
differentiation, and apoptosis. Several studies have demon-
strated that BMP signaling is required for multiple aspects of 
endochondral bone formation (reviewed in        [101, 102] ). BMP 
signaling promotes the formation of early prechondrogenic 
condensations by sustaining the expression of Sox9, a tran-
scription factor required for commitment of mesenchymal 
cells to the chondrogenic lineage, adhesion molecules such 
as N-cadherin, and matrix production          [103 – 105] . BMPs can 
also induce proliferation and differentiation of chondrocytes 
by induction of target genes including  type II  and  type X col-
lagen           [104, 106, 107] . In addition, promoter activity of type 
X collagen can be induced in prehypertrophic chondrocytes 
by overexpressing Smads1 or 5        [108, 109] . In the growth 
plate, chondrocytes align into distinct zones of small rounded 
resting, flattened disk-like proliferating, and large hyper-
trophic chondrocytes. Many BMP ligands are expressed 
within the growth plate and in the surrounding perichondrium 
and periosteum, while BMP antagonists are expressed in 
opposing patterns        [12, 110] . Furthermore, the level of nuclear 
phosphorylated Smads1, 5, and 8 increases in chondrocytes 
as they progress from the resting to the prehypertrophic zone 
 [10] . These studies raise the possibility that BMPs may act 
as a gradient within the growth plate to regulate the balance 
between proliferation and differentiation. 

  In   vivo , overexpression of BMPs leads to enlarged, mis-
shapen, and fused skeletal elements as a result of increased 
matrix production and chondrocyte proliferation          [94, 111, 
112] . In contrast, low levels of BMPs induced by exposure to 
noggin prevent mesenchymal cell aggregation and differenti-
ation, and at later stages lead to osteopenia and reduced bone 
formation          [113 – 115] . Likewise, at the Smad level, transgenic 
mice overexpressing the inhibitory Smad6 exhibit delayed 
chondrocyte hypertrophy, postnatal dwarfism, and osteope-
nia  [116] . Chondrogenic differentiation is severely impaired 
in transgenic mice lacking both  Bmpr1a  and  Bmpr1b  in 
cartilage, leading to a virtual lack of endochondral skeletal 
formation  [14] . It remains to be determined whether the loss 
of intracellular R-Smads can mimic the effects of the BMP 
receptor knockout on endochondral bone formation  in vivo .  

    PERSPECTIVES 

 Recent   studies have highlighted the importance of BMP sig-
naling in embryonic stem cells (reviewed in  [117] ). BMPs 

can be used in the place of serum and feeder cells in com-
bination with leukemia inhibitory factor (LIF) to maintain 
mouse ES cells in an undifferentiated state  [118] . However, 
it is important to note that the undifferentiated state is not 
maintained in human ES cells under these conditions. A bal-
ance between transcriptional complexes formed by STAT3 
or Smad activity mediates the BMP signal and thus the 
maintenance of pluripotency  [119] . Upon removal of LIF, 
BMPs can block the neural pathway and drive mesodermal 
differentiation  [120] , demonstrating that in addition to con-
trolling whether stem cells self-renew, they also influence 
ES cell differentiation. Pluripotent hematopoetic stem cells 
(HSCs) require BMP4 for differentiation from the meso-
derm  [121] . BMP signaling through BMPR1A also controls 
the size of the regulatory microenvironment, or niche, and 
differentiation of HSCs in the bone marrow  [122] . 

 An   important area of future BMP research will be to 
understand how stem cell niches are maintained in postnatal 
development. In addition to HSCs, BMP signaling is essen-
tial for the control of the intestinal  [123]  and neural stem cell 
niches  [124] . Mechanisms controlling the BMP signaling 
cascade at the extracellular and intracellular levels, as well 
as interactions with other pathways, require further study. It 
is interesting to note that although ES cells cannot be derived 
from embryonic lethal BMPRIA  � / �   embryos, ES cells can 
be derived from Smad4  � / �   embryos        [22, 125] . These data 
further suggest that Smad4 may not be needed for R-Smad 
function in BMP-induced stem cell differentiation, and per-
haps another protein is aiding in R-Smad nuclear translo-
cation. Recently, it was demonstrated that Transcriptional 
Intermediary Factory 1 γ  (TIF1 γ ) can bind to phosphorylated 
Smad2/3 in competition with Smad4  [126] . Furthermore, the 
TIF1 γ /Smad2/3 complex stimulated HSC differentiation in 
response to TGF β  stimulation in contrast to the inhibitory 
effect of Smad2/3/4 complexes  [126] . These results indicate 
that there may be another stage of regulation in R-Smad sig-
naling at the level of complex formation, although it remains 
to be determined if and how TIF1 γ  mediates BMP signaling. 
In summary, the regulation of BMP pathways and their role 
in the directing of cell fate must be further explored. Studies 
of developmental and postnatal BMP function in the manip-
ulation of cell proliferation and regeneration will be impor-
tant for future therapeutic approaches in tissue engineering 
and treatment of genetic diseases.   
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    INTRODUCTION 

 Fibroblast   growth factor receptors (FGFRs) constitute a 
family of four (FGFR1 – 4)          [1 – 3]  structurally related, cell 
surface receptor tyrosine kinases (RTKs), with 55 – 72 per-
cent homology  [4] . FGFRs are involved in a variety of 
biological processes, including cell growth, migration, dif-
ferentiation, survival, and apoptosis, and are essential for 
embryonic and neural development, skeletal and organ for-
mation, and adult tissue homoeostasis        [5, 6] . Alternative 
splicing of  Fgfr  transcripts generates up to 15 isoforms, 
which transmit the signals of at least 22 fibroblast growth 
factors (FGF1 – 22)  [7] . Each receptor is comprised of an 
extracellular ligand binding domain consisting of three 
immunoglobulin (Ig)-like domains, an acidic box between 
IgI and IgII  [4] , a transmembrane domain, and a split intra-
cellular tyrosine kinase domain composed of an ATP bind-
ing site and catalytic site. FGFR activation is achieved upon 
ligand binding        [8, 9] , resulting in receptor dimerization and 
transautophosphorylation of multiple conserved intracel-
lular tyrosine residues  [10] , which stimulate the receptor’s 
intrinsic kinase activity and recruit downstream adaptor 
and signaling proteins          [11 – 13] . Heparan sulfate proteogly-
cans (HSPGs) facilitate ligand binding and are obligate co-
factors for FGFR activation by FGFs            [14 – 17] . The three 
main signaling pathways associated with FGFR activation 
include the Ras/MAPK, PI 3-kinase, and PLCg pathways. 
All but one of the mutations known for the  Fgfr  genes are 
gain-of-function mutations, and activation of these recep-
tors is associated with many developmental and skeletal 
disorders        [18, 19] . Additionally, FGFR and FGF overex-
pression has been observed in many tumor samples, and 
mutations are also likely to be involved in carcinogenesis.  

    FGFR EXPRESSION AND 
ROLE DURING DEVELOPMENT 

 During   embryonic development, FGFR signaling is essen-
tial for organ growth and patterning of the embryo. All 
FGFRs are widely expressed in distinct spatial patterns 
during development and in adult tissues              [20 – 24] . FGFR1 
expression is found mainly in the mesenchyme in the cen-
tral nervous system and limbs, and targeted inactivation of 
 Fgfr1  in mice severely impairs growth and results in reces-
sive embryonic lethality  [25] . During early neurogenesis, 
FGFR1 expression is upregulated in the ventricular zone 
of the neural tube and mesenchyme of developing limbs 
       [26, 27] , and at later stages is expressed in spinal cord 
motor neurons and maturing neurons in the brain        [26, 28] . 
Although required for correct axial organization and embry-
onic cell proliferation, FGFR1 is not directly required for 
mesoderm formation        [25, 29] . FGFR1 was also shown to 
play a role in neurulation, as chimeric mouse embryos, cre-
ated by injection of FGFR1 deficient (R1  � / �  ) embryonic 
stem (ES) cells into wild-type blastocytes, showed limb 
bud and tail distortion, partial neural tube duplication, and 
spina bifida  [30] . FGFR2 is highly expressed in epithe-
lial lineages during early gastrulation, and in both epithe-
lial and mesenchymal cells during later development and 
organogenesis        [26, 27] . Like  Fgfr1 , targeted disruption of 
 Fgfr2  results in an embryonic lethal phenotype  [31] . Its 
expression is essential for limb outgrowth, mammalian 
lung branching morphogenesis  [32] , and keratinocyte dif-
ferentiation  [33] . FGFR3 expression primarily occurs in the 
central nervous system and bone rudiments, specifically the 
developing brain, spinal cord, cochlea, and hypertrophic 
zone of the growth plate  [32] . Targeted disruption of  Fgfr3  
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in mice is not embryonic lethal, but leads to severe skeletal 
and inner ear defects, and mouse models indicate FGFR3 
negatively regulates bone growth and development        [34, 
35] . FGFR3 also cooperates with FGFR4 to mediate liver 
functions and lung development. FGFR4 expression occurs 
in the definitive endoderm, somatic myotome, and the ven-
tricular zone of developing dorsal root ganglia and spinal 
cord          [36 – 38] . Although,  Fgfr4  null mice appear normal, 
they exhibit elevated liver bile acids, enhanced cholesterol 
biosynthesis, and depleted gall bladders  [39] .  

    SIGNALING PATHWAYS MEDIATED 
BY FGFRS 

 Activation   of FGFRs can result in a variety of outcomes 
by initiating various intracellular signaling pathways. In 
many cases, the pathways activated depend on the cell type 
or stage of differentiation, leading to specific activation 
of downstream targets  [40] . Specificity is also achieved 
through the binding of different FGFs, of which many have 
unique and cell-specific roles. Splice variants of FGFRs 
also contribute to diverse cell signaling  [40] . Despite the 
varied outcomes of FGFR signaling, several key path-
ways are commonly activated in most cell types. FGFR 
activation results in tyrosine autophosphorylation, and 
these phosphorylated tyrosines serve as high-affinity bind-
ing sites for proteins containing Src-homology 2 (SH2) 
domains or phosphotyrosine binding (PTB) domains  [41] . 
These intracellular proteins then transduce the activation 
signal from the receptor through signaling cascades which 
eventually lead to changes in gene transcription and a bio-
logical response        [42, 43] . 

 The   membrane-associated docking protein FGF recep-
tor substrate 2 (FRS2) binds to the FGFR juxtamembrane 
domain (JM) through its PTB domain, and is phosphor-
ylated by the receptor  [44] . This leads to recruitment of a 
variety of adaptor proteins, including growth factor recep-
tor bound protein 2 (Grb2), which then binds the guanine 
nucleotide exchange factor Son of sevenless (Sos)  [45] . 
Recruitment of this complex to the plasma membrane acti-
vates the G-protein Ras, which stimulates the mitogen-
activated protein kinase (MAPK) pathway  [45] . MAPK 
pathway activation results in a variety of outcomes depend-
ing on cell type or state, including DNA synthesis, prolif-
eration, and/or differentiation. The adaptor molecule Shc is 
also phosphorylated by FGFR, leading to Grb2 recruitment 
and activation of the Ras/MAPK pathway  [46] . 

 FRS2   activation also signals through the PI 3-kinase 
pathway. The SH2 domain of Grb2 binds to a phosphor-
ylated tyrosine residue on FRS2 while the C-terminal SH3 
domain of Grb2 forms a complex with the proline-rich 
region of Grb2 associated binding protein 1 (Gab1)  [47] . 
Gab1 recruitment in close proximity to the receptor results 
in its tyrosine phosphorylation. Recruitment of PI 3-kinase 

and activation of AKT follows, leading to cell survival 
 [48] . FGFR binding and phosphorylation of FRS2 is essen-
tial for Gab1 recruitment and eventual activation of the PI 
3-kinase cascade  [47] , indicating that FGFR activation of 
FRS2 plays a prominent role in promoting cell survival. 
The N-terminal SH2 domain of SH2 tyrosine phosphatase 2 
(Shp2) interacts with a phosphotyrosine on FRS2 and leads 
to phosphorylation of Shp2 itself. Phosphorylated Shp2 
interacts with the Grb2/Sos complex and forms a ternary 
complex with FRS2  [49] . Shb also interacts with Shp2, and 
potentiates its FGF-mediated phosphorylation and FRS2 
interaction. Interaction of phosphorylated Shp2 with FRS2 
is essential for MAPK activation, indicating an important 
role for the adaptor Shb  [50] . FRS2 has also been shown 
to associate with Src, a non-receptor tyrosine kinase, which 
phosphorylates cortactin to affect cell migration        [51, 52] . 

 Autophosphorylation   of Tyr766 in the carboxy-terminal 
tail of FGFR1 creates a specific binding site for the SH2 
domain of PLCg  [48] . Activation of PLCg by tyrosine 
phosphorylation results in hydrolysis of phosphatidyli-
nositol, generating diacylglycerol (DAG) and Ins(1,4,5)P3 
(IP3)  [53] . Generation of these second messengers results 
in Ca 2 �   release and activation of PKC  [53] . Shb also inter-
acts with FGFR1 through Y766, although it does not seem 
to compete for binding with PLCg  [50] . 

 Other   adaptor molecules link FGFR activation to vari-
ous biological activities. Crk interacts with Tyr463 on 
FGFR1 and results in cellular proliferation in certain cell 
types        [54, 55] . The adaptor protein Nck also binds to phos-
phorylated FGFR, facilitating the interaction between 
Pak and Rac, and may link FGFR signaling to the actin 
cytoskeleton  [56] . Activated FGFR1, 3, and 4 also pro-
mote Stat1 and Stat3 activation  [57] , and FGFR3 can acti-
vate STAT5 through the adaptor protein SH2-B  [58] . Many 
of the interactions and signaling pathways activated by 
FGFRs described above are shown in  Figure 30.1   .  

    FGFRS AND DEVELOPMENTAL 
DISORDERS 

 Specific   mutations in the  Fgfr1 – 3  genes lead to congenital 
bone diseases classified as chondrodysplasia and craniosyn-
ostosis syndromes, which cause dwarfism, deafness, and 
abnormalities of the skeleton, skin, and eye        [59, 60] . Almost 
all of these are activating, gain-of-function mutations, and 
many occur in the IgII and IgIII domains, which mediate 
FGF binding        [61, 62] . Over 60 mutations have been found 
to be associated with craniosynostosis syndromes, with a 
majority in FGFR2, including Antley-Bixler-like syndrome 
(ABS), Apert syndrome (AS), Beare-Stevenson syndrome 
(BSS), Crouzon syndrome (CS), Jackson-Weiss syndrome 
(JWS), Muenke-like syndrome (MS), Saethre-Chotzen syn-
drome (SCS), as well as the FGFR1-associated craniofacial 
dysplasia with hypophosphatemia (CFDH) and Pfeiffer 
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syndrome (PS)                    [59, 60, 63 – 68] . All of these mutations are 
dominant, and craniofacial abnormalities varying in severity 
result from these syndromes. Missense mutations in FGFR3 
result in skeletal dysplasia syndromes and short-limbed 
dwarfisms, including achondroplasia (ACH), Crouzon syn-
drome with acanthosis nigricans (CAN), hypochondroplasia 
(HCH), severe achondroplasia with developmental delay, 
and acanthosis nigricans (SADDAN), and the platyspond-
ylic lethal skeletal dysplasias (PLSDs), including thanato-
phoric dysplasia (TD) types I and II                                  [69 – 83] . Additionally, 
two syndromes caused by loss-of-function mutations 
in FGFRs have been described, including the FGFR1-
 associated type 2 Kallmann syndrome (KS)          [60, 84, 85]  and 

the FGFR3-associated camptodactyly, tall stature, and hear-
ing loss (CATSHL) syndrome  [86] . To date, no mutations 
in FGFR4 are associated with any known chondrodysplasia 
or craniosynostosis syndromes. A list of the mutations and 
syndromes associated with their respective FGFR can be 
seen in  Table 30.1   .  

    ROLE OF FGFRS IN HUMAN CANCER 

 All   four members of the FGFR family and many of 
their ligands have been implicated in human cancers as 
well. They play roles in cancer progression by inducing 

 FIGURE 30.1          Signaling pathways activated by FGFRs.  
    FGFRs dimerize and ungergo autophosphorylation upon ligand stimulation, creating docking sites for various signaling molecules. Additional proteins 
are recruited to the membrane through modular domain interactions involving SH2, PTB, and other domains. Once at the membrane, these proteins acti-
vate multiple cellular signaling pathways, most notably the MAPK, PI3K, and PLC γ  pathways.    
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 angiogenesis  [87] , changes in cell morphology, increased 
motility, and tumor cell proliferation  [43] . FGFRs are over-
expressed or have altered activity in cancers of the colon 
 [88] , prostate        [89, 90] , breast  [91] , kidneys  [92] , ovaries 
       [93, 94] , central nervous system  [95] , gastrointestinal sys-
tem  [96] , thyroid  [97] , pituitary        [98, 99] , brain        [100, 101] , 
liver        [102, 103] , pancreas  [104] , skin  [105] , and lung  [106] , 
as well as in leukemia  [107] , multiple myeloma, urologi-
cal cancers  [108] , soft tissue sarcomas  [109] , head and 
neck squamous cell carcinoma  [110] , and lymphoma  [111] . 
Recent evidence indicates FGFRs may be used to target 
tumors for growth inhibition          [87, 112, 113] , and targeted 
inhibition of FGFRs may provide a therapeutic approach in 
the fight against cancer. 

 FGFR1   was recently found to be amplified in a small 
percentage of breast cancers, and contributes to the survival 
of lobular breast carcinomas  [114] . In estrogen-receptor 
positive breast cancer cells, FGFR1 amplification is a pro-
g nostic of poor outcome  [115] . Recent research found 
that activation of FGFR1 plays a role in the initiation of 
angiogenesis in prostate cancer  [116]  and may be a new 
marker for prostate cancer progression, as it was shown to 
be upregulated in late-stage prostate tumors  [117] . The role 
of FGFR1 is most widely described in chronic myelopro-
liferative disorders (CMPDs). One rare CMPD, known as 
8p11 myeloproliferative syndrome (EMS) or stem cell leu-
kemia lymphoma (SCLL), is caused by an 8p11 transloca-
tion of  Fgfr1   [118] . This leads to fusion of  Fgfr1  to other 

 TABLE 30.1          FGFR mutations associated with developmental syndromes  

   Syndrome  Missense Mutations  Receptor (Domain) 

   ACH  Y278C, S279C, G346E, G375C, G380R  FGFR3 (IgIII and TM) 

   ABS  S267P, W290C, C342R/S, S351C  FGFR2 (IgIII) 

   AS  S252W/F, P253R  FGFR2 (IgII-IgIII linker) 

   BSS  S372C, Y375C  FGFR2 (JM) 

   CFDH  Y372C  FGFR1 (TM) 

   CS  Y105C, S252L, S267P/F, C278F/Y, Y281C, Q289P, W290R/G, 
Y308C, Y328C, N331I, A337P, G338R/E, Y340H/S, C342S/F/Y/
W/R, A344G, S347C, S354C, S355V, L357S, V359F, A362S, 
K526F, 549H, K659N, R678G   

 FGFR2 (IgI, IgIII, and KD) 

   CAN  A391E  FGFR3 (TM) 

   CATSHL  R621H  FGFR3 (KD) 

   HCH  S84L, G268C, R200C, N262H, V381E, I538V, 
N540K/T/S, K650N/Q 

 FGFR3 (KD) 

   JWS  C278F, Q289P, C342S/R, A344G  FGFR2 (IgIII) 

   KS  G97D, Y99C, V102I, S107X, D129A, A167S, V273M, 
C277Y, A520T, V607M, R622X, W666R, G687R, 
E692G, M719R, Y730X, P745S P772S 

 FGFR1 (IgI, IgII, IgIII, AB, KD, and 
C-term) 

   MS  P250R  FGFR3 (IgII-IgIII linker) 

   PS  P252R A172F, S252F, P253S, S267P, F276V, C278F, 
W290C, A314S, D321A, Y340C, T341P, C342G/S/Y/W/R, 
A344P, S351C, V359F, Y375C, N549H, E565G, K641R, 
G663E 

 FGFR1 (IgII-IgIII linker) FGFR2 (IgII, 
IgIII, IgIII-TM linker, and KD) 

   TDI  R248C, S249C, G370C, S371C, Y373C, x807L/G/C/R/W  FGFR3 (IgII-IgIII linker and IgIII-TM 
linker) 

   TDII  K650E  FGFR3 (KD) 

   SCS  Q289P  FGFR2 (IgII-IgIII linker) 

   SADDAN  K650M  FGFR3 (KD) 
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genes, and constitutive activation of the receptor. The first 
fusion identified was to a zinc finger gene,  ZNF198 , and 
subsequently many  Fgfr1  rearrangements involved with a 
variety of partners have been demonstrated  [119] . 

 In   two recent genome-wide association studies, FGFR2 
was implicated in increased susceptibility to breast cancer 
       [120, 121] . It is believed that a splice variant of FGFR2 
or possibly an unwarranted estrogen receptor binding site 
may be the cause for the associated risk of breast cancer 
 [121] . Also, certain types of gastric cancers overexpress 
FGFR2, and recent research has discovered that an inhibi-
tor, AZD2171, exerts potent anti-tumor activity against gas-
tric cancer xenografts overexpressing FGFR2  [122] . 

 A   frequent translocation observed in multiple myeloma, 
t(4;14)(p16.3;q32.3), involves the  Fgfr3  gene, and results 

in increased expression of FGFR3 alleles that contain acti-
vating mutations        [123, 124] , including Y373C and K650E, 
which cause the lethal skeletal syndromes TDI and TDII 
       [72, 79] . The splice variant FGFRIIIb is expressed in a 
wide range of bladder and cervical carcinoma cell lines 
 [125] , and these cancers exhibited expression of mutant 
alleles of FGFRIIIb, including R248C, S249C, G372C and 
K652E  [125] . These and other FGFR mutations are shown 
in  Figure 30.2   . 

 Although   FGFR4 is not associated with any known 
syndromes, it is associated with the widest range of cancers. 
Of recent debate is the significance of the G388R polymor-
phism. This polymorphism exists in approximately half the 
population, and appears to have no effect on cancer suscep-
tibility. However, evidence suggests that the polymorphism 
leads to reduced disease-free survival in cancer patients, and 
correlates with a poor prognosis compared to the Gly388 
allele in head and neck squamous cell carcinoma        [110, 
126] , breast cancer          [127 – 129] , melanoma  [105] , lung ade-
nocarcinoma  [106] , prostate cancer  [130] , and high-grade 
soft tissue sarcomas  [109] . Opposing evidence suggests 
there is no correlation between the G388R polymorphism 
and cancer prognosis              [101, 131 – 134] . Continued research 
into the significance of this polymorphism is needed to con-
clude if it is a valuable marker for cancer prognosis.   
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    INTRODUCTION 

 Chemical   synaptic transmission is central to neural com-
munication. Alterations in its efficacy underlie our identity; 
physiological and pathophysiological. A component of this 
synaptic plasticity is controlled by presynaptic G-protein-
coupled-receptors (GPCRs), which universally modify neu-
rotransmitter release at all synapses in which their effect 
has been studied. GPCRs act either as autoreceptors follow-
ing neurotransmitter release from that particular terminal, 
or as heteroreceptors activated by axo-axonic or paracrine 
projections to the synapse. In neurons, exocytosis, or the 
fusion of a synaptic vesicle with a specialized area in the 
plasma membrane to cause neurotransmitter release, is a 
tightly regulated process that must be activated with strict 
orchestration. Ca 2 �   entry to the terminal, the trigger for 
exocytosis and neurotransmitter release, might be consid-
ered to represent the conductor. Thus, GPCRs have been 
found to alter the entry of Ca 2 �   to the presynaptic terminal, 
its storage and release in the terminal, and the outcome of 
its entry to the presynaptic terminal.  

    THE VESICLE FUSION MACHINERY 

 To   understand how G proteins modulate the release of neu-
rotransmitter, we must understand some basic principles of 
exocytosis. Synaptic transmission requires regulated exo-
cytosis; the fusion of a synaptic vesicle with a specialized 
area in the plasma membrane        [1, 2]  that utilizes a group of 
presynaptic proteins constituting the SNARE complex. The 
core complex, or SNARE (soluble NSF (N-ethylmaleimide-
sensitive factor) attachment protein receptor), is a bundle 
of four  α -helices, approximately 65 amino acids in length, 
which is thought to bridge the synaptic vesicle and plasma 

membranes  [3] . These  α -helices are donated by three dif-
ferent proteins; a family member from the syntaxin and the 
SNAP-25 families, located in the synaptic  “ active zone, ”  
and a VAMP (Vesicle Associated Membrane Protein, also 
known as synaptobrevin) family member, located in the 
synaptic vesicular membrane. The syntaxin family consists 
of integral membrane proteins, around 300 amino acids in 
length, that have been shown to bind to many regulatory 
proteins          [4 – 6] . It is now clear that among these regulatory 
proteins, synaptotagmin represents the Ca 2 �   sensor in syn-
chronous release of neurotransmitter. Indeed, synaptotag-
min interacts with the SNARE complex C-terminal region 
         [7 – 9]  as well as vesicle and cell membranes        [10, 11]  dur-
ing Ca 2 �  -dependent fusion. The core complex is sufficient 
to mediate fusion of lipid micelles  in vitro   [12] , and fusion 
of the synaptic vesicle with the plasma membrane requires 
the interaction of syntaxin, SNAP-25, and VAMP. 

 Vesicles   containing neurotransmitter must be able to 
fuse with the plasma membrane in microsecond timescales. 
Consequently, synaptic vesicles are located very near to the 
point of fusion, the active zone, at the presynaptic terminal. 
This organization is termed  docking . Vesicular recruitment 
and docking requires ATP  [13] . Multi-step fusion reactions 
are unlikely due to the speed of release. For this reason, 
it is believed that there is a pool of ready-to-fuse synap-
tic vesicles that have undergone a further maturation step, 
referred to as  priming   [14] . Priming in large dense-core 
vesicles requires ATP, submicromolar Ca 2 �   concentrations, 
and alterations in membrane lipids by lipid transferases 
and kinases  [15] . Furthermore, the possible role in prim-
ing of the N-ethylmaleimide-sensitive factor (NSF) in 
synaptic vesicles may indicate similar requirements  [16] . 
The priming reaction also provides a target for modifica-
tion of release by G-protein-coupled receptors. During 
priming, syntaxin undergoes a conformational modification 
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facilitated by UNC 13, which allows syntaxin to contrib-
ute to the SNARE complex [17–20].   At the final stage of 
evoked release, synaptic vesicle fusion is thought to require 
high (hundreds of  μ M) local concentrations of Ca 2 �    [21]  
following action potential invasion of the nerve terminal, 
although more recent work suggests that low  μ M increases 
in Ca 2 �   concentrations ( � 10        μ M) may activate fusion in 
some neurons  [22] .  

    MODES OF SYNAPTIC VESICLE 
FUSION 

 Until   recently, it was almost universally accepted that trans-
mitters are released as quanta. This premise, first based on 
recordings of postjunctional potentials at the neuromus-
cular junction  [23] , was later combined with the vesicular 
theory of transmitter release        [2, 24] . Consequently, presy-
naptic modification of neurotransmitter release has been 
envisaged as a means of altering the probability of exocyto-
sis occurring during presynaptic action potentials. Synaptic 
neurotransmitter release may, however, be more subtle and 
complex. Quantal transmission is believed to result from 
complete vesicle fusion with the presynaptic membrane, 
but complete fusion may not always occur. Three hypoth-
eses have been proposed to account for the recycling of 
vesicle membrane after exocytosis. Heuser and Reese  [2]  
proposed that vesicles are recycled through an endosome. 
Concern that this process is too slow to account for recy-
cling observed experimentally  [25]  led De Camilli and 
colleagues  [26]  to propose a model by which the vesicle 
completely fuses with the presynaptic membrane to be 
recovered into vesicles through clathrin-coated intermedi-
aries. However, it is apparent that large, dense-core vesi-
cles can fuse with the membrane and then return to a pool 
of vesicles available for release without being recycled by 
clathrin-mediated pathways, and this may lead to variabil-
ity in transmitter release through a process that has been 
named  “ kiss and run ”           [27 – 29] . Measurements of catecho-
lamine release from adrenal chromaffin vesicles provide 
direct evidence that variable amounts of hormone may 
be released during vesicle fusion        [30–31] . More recently, 
it has been proposed that changes in interactions between 
synaptotagmin (the Ca 2 �   sensor) and SNAP-25 may govern 
a mode shift of fusion. It has been suggested that synapto-
tagmin-Imay govern complete fusion  [32]  and synaptotag-
min-IV incomplete fusion (kiss and run)  [33] . 

 In   the mammalian CNS, incomplete fusion events also 
occur          [34 – 36] . Use of vesicle-staining techniques has 
demonstrated that various fusion modes occur at central 
synapses            [37 – 34] , and that incomplete fusion can alter 
neurotransmitter release            [38, 41 – 43] . This modification 
of vesicle fusion mode represents another point at which 
G-protein-coupled receptors may intervene in synaptic 
transmission.  

    G-PROTEIN-COUPLED RECEPTOR 
MEDIATED MODULATION AT THE 
PRESYNAPTIC TERMINAL 

 Regulation   of neurotransmitter release at the presynap-
tic terminal plays an important part in the plasticity of the 
nervous system  [44] . Various neurotransmitters modulate 
release from presynaptic terminals, and many of these 
interactions involve the activation of a G-protein-coupled 
receptor (GPCR)  [45] . Modulation of exocytotic release by 
GPCRs is an important mechanism by which neurons are 
able to respond and adapt to changes in secretory require-
ments. Some GPCRs may couple to more than one G pro-
tein, while others show a great deal of specificity. G β  γ  
binding to G α  involves widespread contacts at two distinct 
interfaces. Following activation by a GPCR, the heterot-
rimeric G protein dissociates into an activated G α -GTP 
subunit and a free G β  γ  subunit  [46]  Active G α -GTP and 
free G β  γ  may then activate many different signaling path-
ways  [47] . 

 Uncertainty   over the mechanisms by which G proteins 
alter neurotransmitter release in part reflects the variety 
of G-protein effector targets and the difficulties in gaining 
experimental access to these small structures. Thus, most 
molecular studies of the detailed mechanisms come from 
either transfection of the relevant proteins into cultured cell 
lines and  Xenopus  oocytes, or from electrophysiological 
measurements from neuronal cell bodies.  

    POSSIBLE MECHANISMS OF PRESYNAPTIC 
INHIBITION BY G PROTEINS 

 GPCRs   that inhibit neurotransmitter release have perhaps 
been the mostly widely studied modulators of synap-
tic transmission. A consensus mechanism by which these 
transmitters may modulate synaptic transmitter release has 
been hypothesized to involve an alteration in action poten-
tial-evoked Ca 2 �   entry to the presynaptic terminal. 

    1.     That this reduction in Ca 2 �   entry may occur by a 
modification of voltage gated Ca 2 �   channels (VGCCs) 
was first demonstrated for adrenergic and serotoner-
gic receptors 30 years ago  [48]  (       Figure 31.1     ), but this 
result has since been expanded upon to include many 
GPCRs        [49, 50] . This effect was since demonstrated to 
be mediated by a direct membrane-delimited  [51]  action 
of G β  γ         [52, 53] . If G β  γ  inhibits VGCCs, less Ca 2 �   will 
enter the presynaptic terminal and, since neurotransmit-
ter release is Ca 2 �  -dependent, less neurotransmitter will 
be released. GPCR-mediated inhibition of release via 
direct inhibition of VGCCs has been demonstrated at 
one presynaptic terminal  [54]  through multiple GPCRs 
       [55, 56] . Given the large number of neurotransmitters 
that inhibit release, many of which have very little effect 
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on Ca 2 �   entry through VGCCs  [55] , it is unlikely that 
this is the only pathway involved in GPCR- mediated 
inhibition at this terminal. Nevertheless, there is com-
pelling evidence that G β  γ -mediated modification of 
Ca 2 �   channels plays an important role in presynaptic 
inhibition  [57] . A great deal is now understood about 
the mechanisms by which G β  γ  modifies Ca 2 �   chan-
nel function, and this has been covered in depth in a 
recent review  [58] . However, these mechanisms are 
clearly important to presynaptic function. The strongest 
evidence for G β  γ -mediated modulation of Ca 2 �   chan-
nel function is at the C av 2.x class of channels, which 
includes N, P/Q, and R type  α  subunits              [50, 52, 53, 59, 
60] . These are precisely the channels that cause neuro-
transmitter release. G β  γ  binding to the Ca 2 �   channel 
is complex. Ca 2 �   channel  α  subunits that form the 

channel pore comprise four homologous domains 
linked to each other with intracellular region. Each 
domain comprises six transmembrane regions and a 
re-entrant loop that contribute to the ion channel. G β  γ  
binds to the N-terminal of the  α  subunit  [61] as well as 
the I/II domain linker region  [62] . In addition, this 
binding may be modified by interactions with the chan-
nel C-terminus  [63] and by interaction with Ca 2 �  -
channel  β  subunits  [64] . G β  γ -mediated inhibition of 
Ca 2 �   channels may also be modified by interaction of 
the channel and G β  γ  with the SNARE complex 
protein syntaxin. In this respect, syntaxin is likely to 
act as a Ca 2 �   channel – G β  γ  chaperone, increasing the 
probability of interaction        [65, 66]  –  although, as dis-
cussed below, direct interactions between G β  γ  and the 
SNARE complex may modify neurotransmitter release. 

(a)

 FIGURE 31.1(A)          GPCRs at the presynaptic terminal may modulate transmission through either G α  or G β  γ . These pathways may in turn 
alter the phosphorylation state of presynaptic proteins, cause the release of Ca 2 �   from presynaptic internal stores, or alter release through 
interactions with the release machinery or through actions at presynaptic ion channels.  
    (b) This demonstrates the most common explanation for GPCR-mediated presynaptic inhibition in which activation of numerous GPCRs can inhibit 
Ca 2 �   channels activation by a membrane-delimited effect of G β  γ . The resultant reduction in Ca 2 �   entry may then cause less neurotransmitter release. 
The effect of (i), 10  � 5        M 5-HT; (ii) 10  � 4        M GABA; (iii, iv) 10  � 4        M noradrenaline on dorsal root ganglion neuron soma action potential. The two suc-
cessive sweeps show the spike before (longer duration) and after drug application. Return to control shown in d with 10-s interval between sweeps. 
Calibration, 20       mV and 2       ms.    

(b)

i ii

iii iv

 Figure 31.1B          is reprinted from  [48]  (Dunlap and Fischbach, 1978) by permission from MacMillan Publishers Ltd,  Nature  (Dunlap and Fischbach, 1978; 
276: 837) ©1978.    
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The direct, membrane-delimited action by which G β  γ  
modifies Ca 2 �   channel function is also, to some extent, 
voltage-dependent. A strong (to  � 100-mV) pre-pulse 
depolarization of the channels relieves GPCR-mediated 
Ca 2 �   channel inhibition  [67] . Clearly, neurons never 
undergo such a profound stimulus under physiological 
circumstances; however, extended intense (200-Hz) 
stimulation of the channel to more physiological volt-
ages may imitate this effect  [68] . It remains unclear 
to what extent this might play a role in functional 
synapses.  

    2.     If G-protein-coupled inwardly rectifying K  �   chan-
nels (GIRKs) were located at presynaptic terminals, 
activation by G β  γ  could modulate action potential 
amplitudes, allowing fewer Ca 2 �   channels to open. G β  γ  
activates GIRKs in neuronal cell bodies, transfected cell 
lines, and  Xenopus  oocytes        [69, 70] . While GIRKs have 
been histochemically localized to presynaptic terminals 
 [71] , physiological evidence for their presynaptic action 
is lacking. These channels are believed to be more 
important for postsynaptic modulation  [72] . GPCR-
mediated inhibition of voltage-gated K  �   channels at 
an autaptic presynaptic terminal has also been shown 
 [73]  to occur through activation of dopamine receptors, 
although it is not clear which G-protein subunit, G α  or 
G β  γ , is responsible. At the reticulospinal-motoneuron 
synapse of the lamprey, both glutamate and 5-HT acti-
vate GPCRs which modulate a K  �   current, although 
the channel subtype and G-protein subunit involved are 
unknown        [74–75] .  

    3.     It has been suggested that G proteins may modulate 
voltage-gated Na  �   channels at the presynaptic ter-
minal; however, no direct evidence has yet been pre-
sented  [76] . Modulation of Na  �   channels could also 
indirectly affect the entry of Ca 2 �   into the presynaptic 
terminal.  

    4.     Presynaptic Ca 2 �   signaling may also be modified by 
less direct pathways. Often termed voltage-independ-
ent G-protein inhibition, because GPCR-mediated 
inhibition is not relaxed by application of a pre-pulse 
depolarization, these effects are mediated by cytosolic 
signaling rather than a direct membrane-delimited 
action of G β  γ . Free G β  γ  and activated G α -GTP signal 
by numerous mechanisms in all cells. Thus, GPCRs can 
inhibit Ca 2 �   channels via a number of cytosolic mes-
sengers. An example of such mechanisms is the effect 
of dopamine D1 receptor signaling using G α s and PKA 
and protein phosphatase 1 to dephosphorylate N and 
P/Q channels  [77] . This example perhaps highlights the 
sensitivity of Ca 2 �   channel function to its phosphoryla-
tion state.    

 These   studies led to the idea that G β  γ -mediated inhi-
bition of neurotransmission at the presynaptic terminal 
was through a direct or indirect effect on the amount of 

Ca 2 �   that enters the terminal during the action potential. 
However, there is growing evidence that G β  γ  may also 
inhibit synaptic transmission by modulation distal to the 
point of Ca 2 �   entry. The ability of G proteins to inhibit 
neurotransmitter release by directly targeting the release 
apparatus was first demonstrated by Silinsky  [78]  in the 
neuromuscular junction. Spontaneous exocytotic events, 
where exocytosis occurs independently of Ca 2 �   entry, 
can be detected by recording miniature excitatory/inhibi-
tory postsynaptic currents (mE/IPSCs). Measurements 
of mE/IPSCs allow the exocytotic modulatory processes 
that occur independently of Ca 2 �   entry to be isolated and 
studied, unlike evoked EPSCs. These mE/IPSCs have been 
shown to be regulated by many GPCRs  [79] . 

 In   support of the hypothesis that they inhibit vesicle 
fusion directly, G proteins can inhibit exocytosis after cell 
permeabilization, suggesting a role late in the exocytotic 
event  [80] . Additionally, exocytotic processes in pancreatic 
 β  cells, peritoneal mast cells, chromaffin cells, PC12 cells, 
and secretory granules are regulated independently of Ca 2 �   
entry by G proteins  [81] . G β  γ  has been shown to interact 
directly with the fusion machinery in rat mast cells  [82] . 
In the lamprey giant synapse, 5-HT-mediated synaptic 
inhibition does not cause a reduction in Ca 2 �   entry to the 
synapse  [75] . Furthermore, the actions of 5-HT at a GPCR 
are abolished by intracellular block of activated G β  γ  
 [83] . A mechanism for a direct interaction between G β  γ  
and the core vesicle fusion machinery was suggested by 
the finding that G β  γ  directly binds SNARE proteins syn-
taxin and SNAP-25        [65–83] , as well as the cysteine string 
protein (CSP)  [84] . It is now clear that G β  γ  can inhibit 
neurotransmitter release by a direct interaction with the 
SNARE complex  [85] . However, it is also clear that this 
modification represents an entirely different modification 
than that identified by effects on mini-frequency, because 
mini-frequency is unaffected by this mechanism        [86–87] . 
This interaction occurs at a late phase after priming in 
vesicles whose SNARE complex is formed and not avail-
able for cleavage by botulinum toxin B  [88] . Furthermore, 
G β  γ  binds to the C-terminal regions of the formed SNARE 
complex and competes with Ca 2 �  -dependent synaptotag-
min binding to the SNARE complex  [89] . In this way a 
Ca 2 �   dependency is conferred on this G β  γ -mediated pres-
ynaptic inhibition, because high presynaptic Ca 2 �   concen-
trations allow synaptotagmin to compete more effectively 
with G β  γ . 

 The   final outcome of G β  γ  competition with synapto-
tagmin at the SNARE complex allows a very fine-tuned 
control of neurotransmitter release. In both chromaffin-
cell large, dense-core vesicle fusion  [90]  and at lamprey 
giant synapses  [91] , G β  γ  causes kiss and run fusion of the 
exocytosing vesicle. This in turn reduces neurotransmitter 
release, in allowing subquantal postsynaptic events and a 
reduction in the peak synaptic cleft concentration of neuro-
transmitter release  [87] .  
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    G α  Q  SIGNALING CA 2 �   STORES, DAG AND 
MODULATION OF NEUROTRANSMITTER 
RELEASE 

 Ca   2 �   release from internal stores located at the presynaptic 
terminal may lead to enhancement of transmitter release. 
However, this Ca 2 �   may originate either from Ca 2 �  -activated 
channels (CICRs)  [92]  or following the activation of a pre-
synaptic GPCR leading to IP 3  production and activation of 
presynaptic IP 3  receptors        [74, 93] . It is important to note that 
the activation of presynaptic receptors leading to IP 3  produc-
tion will also produce diacylglycerol in the nerve terminal, 
leading to the possible activation of PKC or direct effects on 
proteins associated with the release machinery  –  for exam-
ple, UNC13  [94] . Indeed, it has been proposed that effects 
that were previously ascribed solely to PKC activation in 
the presynaptic terminal (see below) can be accounted for 
entirely by DAG interactions with (m)UNC13  [95] , which in 
turn leads to an enhancement in vesicle priming        [96, 97] .  

    G PROTEINS AND PHOSPHORYLATION 

 G   proteins may alter the efficacy of synaptic transmission 
either through phosphorylation or dephosphorylation of 

presynaptic components. G β  γ  has been suggested to acti-
vate the calcineurin phosphatase pathway to inhibit release 
independent of Ca 2 �   entry  [98]  in neuroendocrine cells. 
In addition, the activation of both PKA and PKC has been 
implicated in the enhancement of synaptic transmission in 
the central nervous system. Indeed, tonic activation of PKA 
may be necessary for vesicle fusion to occur        [99–100] , and 
PKA phosphorylates CSP to alter its binding to syntaxin 
 [101] . Metabotropic glutamate receptors in the mammalian 
CNS may activate either of these latter pathways        [102, 103] . 

 Although   relatively difficult to study, the presynaptic 
terminal may contain as rich an array of receptor-mediated 
mechanisms that modify information flow as has been 
identified at the postsynaptic side of the synapse.    
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           The Role of Receptor Protein Tyrosine 
Phosphatases in Axonal Pathfinding 

   Andrew W.   Stoker  
  Neural Development Unit, Institute of Child Health, University College London, London, England, UK    

    INTRODUCTION 

 One   of the most impressive processes that occurs during 
development is the establishment of countless connections 
between neurons and their targets. Such precise connectiv-
ity requires long-distance growth and accurate pathfinding by 
axons, short-range detection of target cells, and in most cases 
the establishment of permanent synaptic connections. This 
chapter reviews one family of molecules, the receptor-like 
protein tyrosine phosphatases (RPTPs), which direct axons in 
this astonishing feat. Most RPTPs are found to be expressed 
in developing nervous systems, in several cases within axons 
and their motile, pathfinding growth cones          [1 – 3] . Evidence is 
reviewed here for RPTP roles in axon growth and guidance. 
Their potential signaling mechanisms are also briefly dis-
cussed. Due to space limitations, readers will in most cases 
be referred to the above reviews and the references therein. 
 Figure 32.1    summarizes the basic axon growth and guidance 
events discussed below, and the RPTPs currently implicated 
in each. Readers should always be mindful that this reduc-
tionist focus on RPTPs must be viewed in the more holistic 
context of all the other axonal guidance mechanisms  [4] . 

 The   human genome contains 21 RPTP genes, most of 
which have either orthologs or homologs in other species. 
The encoded proteins are subgrouped according to their 
extracellular domain homologies and the number of cyto-
plasmic catalytic domains, and this has been described 
in detail elsewhere  [5] . The structure and biological roles 
of these genes have been conserved across species, and 
because of this scientists have been able to make use of 
several excellent model systems to study RPTP functions. 
Much of the discussion below focuses on two anatomical 
areas, the visual and neuromuscular systems, but other axon 
growth and guidance models are also highlighted briefly.  

    RPTPS AND THE VISUAL SYSTEM 

     Drosophila  

 The   compound eye of the fly contains about 800 light-
receiving ommatidia, each with photoreceptor neurons 
named R1 through R8. Axons from these photoreceptors 
project from the eye to the optic lobe in the brain, where 
each terminates either in the lamina layer (R1 to R6) or in 
proximal layers (R8) or distal layers (R7) of the medulla 
 [6] . DPTP69D and DLAR influence these axonal termi-
nation events          [2, 7, 8] . For example, if axons of R1 to R6 
are made DPTP69D-deficient, they will overshoot their 
target and terminate in the medulla. In addition, loss of 
DPTP69D in the R7 photoreceptor causes its axon to stop 
short in the R8 termination zone of the medulla. DPTP69D 
appears to control the ability of growth cones to de-adhere 
(defasciculate) from the R8 axon at correct navigational 
decision points (step 2,  Figure 32.1 ). Interestingly, whereas 
DLAR-deficient axons from R1 to R6 terminate normally, 
R7 axons that lack DLAR reach, but then retract from, 
their medulla targets        [7, 8] . This suggests a failure to estab-
lish stable adhesive or synaptic contacts with medulla tar-
get cells, indicating that DLAR is involved in this process. 
DLAR mutants and cadherin mutants have similar pheno-
types, suggesting that they may regulate similar adhesive 
signaling pathways  [7] , which is of interest given recent 
evidence that a related mammalian RPTP PTP σ  influences 
cadherin adhesion during neurite outgrowth  [9] . The collec-
tive data also indicate that DPTP69D and DLAR function 
cell autonomously, although DLAR also shows evidence 
of non-autonomous function in R8, suggesting that it may 
 “ send ”  signals through its extracellular domain. In con-
trast to their guidance roles, DRPTPs do not appear to be 
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 necessary for axon elongation in the visual system, unlike 
their vertebrate counterparts.  

    Vertebrate Retinotectal System 

 In   vertebrate eyes, retinal ganglion cell (rgc) axons relay 
visual signals from the eye to the brain. Neighboring rgc 
axons establish precise topographic connectivity with neigh-
boring neurons in the optic tectum or superior colliculus, so 
setting up an accurate visual map. Several studies in cell 
culture demonstrate a role for RPTPs in rgc neurite growth. 
Signaling from PTP μ  enhances cadherin-dependent retinal 
axon outgrowth  [2] . Furthermore, PTP μ  expression levels 
vary topographically across the retina and tectum, and PTP μ  
has a selective, growth cone collapsing function  [10] . PTP μ  
may therefore differentially influence axon growth within 
the retinotectal projection, and is thought to be a dominant, 
inhibitory guidance cue within a restricted, but critical, time 
window of retinal axon development          [1, 10, 11] .  Xenopus  
PTP δ  promotes both rgc axon growth along the optic 

tract  in vivo  and neurite growth on basement membranes 
in culture  [12] . A guidance role for PTP δ  has been sug-
gested from forebrain cultures, where soluble ectodomains 
of human PTP δ  can attract growth cones  [13] . Since both 
PTP δ  and PTP μ  bind homophilically, they may trigger sig-
nals directly between axons. Another retinal RPTP, PTPRO 
(initially known as CRYP-2), is anti-adhesive in retinal gan-
glion cell cultures  [14] . PTPRO was also shown to have an 
axon navigation capability in culture, since its ectodomain 
in the form of a PTPRO-Fc fusion protein induces growth 
cone collapse and repulsive growth cone turning  [14]  (step 1, 
 Figure 32.1 ). More recent studies  in ovo  have revealed that 
PTPRO does indeed play a role in guiding retinal axons to 
their topographic targets in the optic tectum  [15]  (steps 3 
and 4,  Figure 32.1 ). In this case it was shown that PTPRO 
acts through the negative regulation of another influential 
retinal guidance receptor, the tyrosine kinase EphB2. This 
elegantly confirms the concept that some RPTPs may act 
in growth cones by setting thresholds of sensitivity to other 
signals, including guidance cues  [16] . 

 FIGURE 32.1          Schematic diagram showing the RPTPs implicated at different stages of axon growth and guidance.  
    Step 1 shows repulsive signaling to make growth cones avoid a cue; step 2 shows defasciculation of axons, typically seen at choice points; step 3 shows 
positive attraction towards a target tissue or specific cellular target; step 4 shows direct recognition of targets, halting at that point and formation of stable 
synaptic contacts (a  “ target ”  can also be a cellular environment without direct synaptic contact with other cells, e.g. sensory nerve endings); step 5 shows 
the basic process of a growth cone’s forward migration. See text for further details.    
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 Another   RPTP implicated in retinal axon growth and 
guidance is PTP σ . The interaction between chick PTP σ  and a 
ligand(s) on basement membranes and glial endfeet maintains 
optimal retinal neurite outgrowth  [2]  (step 5,  Figure 32.1 ). 
Perhaps counterintuitively, interference with intracellular 
signaling of  Xenopus  PTP σ  causes faster neurite outgrowth 
in culture  [12] , suggesting a possible signaling model in 
which PTP σ  signals are inhibitory to axon growth. The first 
evidence for RPTP function in vertebrate axon targeting 
 in vivo  came from studies of chick PTP σ . Perturbation of 
the interactions between PTP σ  and its ligands in the optic 
tectum causes retinal axon stalling and rostral mistargeting 
 [17]  (possible failure of steps 1, 3, or 4,  Figure 32.1 ). PTP σ  
may therefore function by maintaining retinal axon growth 
over the tectum and facilitating the recognition of correct 
target sites. Whether it acts through the regulation of Eph 
receptors, like PTPRO, remains to be determined.   

    NEUROMUSCULAR SYSTEM 

  Drosophila    genetics has highlighted key RPTP functions 
during motor axon guidance. The segmental and interseg-
mental motor nerves ISN, ISNb and SNa of the fly larva 
innervate body wall muscles in a highly stereotyped man-
ner. Nerve defects arise after loss of function in  DLAR , 
 DPTP69D ,  DPTP99A ,  DPTP10D , and  DPTP52F         [3, 18] . 
DPTP69D and DPTP99A are required for ISNb axons 
to defasciculate from the ISN at the correct choice point. 
Gene-deficiency causes a  “ bypass ”  phenotype where axons 
fail to leave the ISN and thus travel past their targets (fail-
ure of step 2,  Figure 32.1 ). DLAR influences not only this 
defasciculation step, but also both the entry of axons into 
the muscle target field, and synapse formation        [19, 20]  
(steps 3 and 4,  Figure 32.1 ). The DLAR-related PTP-3 
protein in  C. elegans  has also been implicated in synapse 
formation  [21] . DPTP10D collaborates with other DRPTPs 
in guiding SNa, but antagonizes them during navigation 
of the ISN. Similarly, DLAR and DPTP99A antagonize 
each other within SNb axons. There is therefore a complex 
pattern of interaction between these RPTPs with  “ partial 
redundancy, competition and collaboration, ”  as described 
by Sun and co-workers  [22] . 

 The   LAR-related PTP-3 protein in  C. elegans  has been 
implicated in the control of guidance of motor axons in the 
ventral nerve cord of the worm. Mutations induce defects such 
as incorrect choice-point decisions, defasciculations, targeting 
errors, and growth-cone stalling  [21]  (steps 1, 2, 3, and 4). 

 In   vertebrates, there is also some evidence for the role 
of RPTPs in controlling motor axon growth, guidance, and 
targeting. In the chick model, acute knockdown of RPTP 
transcripts using RNAi has shown that PTP σ , PTP δ , and 
PTPRO are involved in the control of specific motor axon 
outgrowth from the spinal cord, as well as nerve fascicu-
lation  [23] . In the mouse, germline disruption of  Ptprs  

and  Ptprd  has shown that phrenic nerve targeting to the 
 diaphragm is aberrant, with failure either to form stere-
otypical nerve branching patterns or to maintain diaphragm 
innervation  [24]  (steps 2, 3, and 4,  Figure 32.1 ). These 
studies also suggest once again that there is both redun-
dancy and competition between different RPTP members 
during motor nerve development.  

    FURTHER AXON GROWTH AND 
GUIDANCE ROLES 

 In   the leech, LAR homolog HmLAR2 is expressed in growth 
cones of neurite-like processes of comb cells, where it con-
trols the orderly outgrowth of these processes  [2] . Evidence 
supports a homophilic interaction between HmLAR2 mol-
ecules, signaling a mutual repulsion between growth cones 
and neighboring processes. 

 In   the ventral nerve cord of  Drosophila , axon guidance 
across the midline is influenced by DLAR, DPTP99A, 
DPTP69D, and DPTP10D. The latter two in particular 
cooperate with Robo receptors to transduce repulsive sig-
nals from midline Slit protein  [2] . How these receptors 
cooperate biochemically remains unclear. 

 As   well as those described above, several RPTP gene-
deficiency models have been developed in mice. Loss of 
PTP σ  function causes motor function deficits and hypos-
mia, as well as defects in sciatic nerve myelination and 
maturation  [2] . Deficiency in PTP δ  also causes milder 
motor defects as well as memory alterations, while loss of 
LAR causes a reduction in forebrain cholinergic neuron 
numbers and some mild defects in hippocampal innerva-
tion  [25] . The developmental bases for all these neuronal 
and axonal defects have yet to be characterized.  

    AXONAL SIGNALING BY RPTPS. 

    Instructive or Permissive? 

 Do   axonal RPTPs send permissive or instructive 
signals during axon guidance? With DLAR, the fact that 
R7 growth cones reach targets, but then retract, supports an 
instructive role in securing adhesion to targets. DLAR may 
also control the instructive process of muscle cell recogni-
tion by motor axons  [22] . For DPTP69D, the consensus 
is more in favor of a permissive role in allowing defas-
ciculation, rather than active target recognition, although 
this remains unresolved  [2] . In fact, the many complex 
interactions between  Drosophila  RPTPs may ultimately 
make simple instructive/permissive distinctions untenable. 
Similarly in vertebrates, the instructive/permissive distinc-
tion is difficult to assess. Vertebrate PTP δ  and PTPRO may 
have instructive signaling roles given that they can force 
growth cone turning on otherwise permissive substrates        [2, 
14] . For PTP σ  and PTPRO in the visual system, however, 
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it is not known exactly how these phosphatases are control-
led by extracellular ligands, and so they could still have 
either active or more passive roles in regulating graded Eph 
signaling, for example        [15, 17] .  

    Ligands 

 As   already indicated above, one problem with under-
standing how RPTPs act is that we have relatively little 
knowledge of how RPTPs are themselves regulated at a 
molecular level. In particular, the identity of RPTP lig-
ands and their action in cells and tissues remains an area 
of keen interest. PTP μ  and PTP δ  bind homophilically, and 
ectodomains of these RPTPs can act as neurite growth-
promoting substrates in culture, suggesting that axon fas-
ciculation  in vivo  may be promoted by their homophilic 
action. Interestingly, while PTP μ  ectodomains can also 
have negative effects on growth cones, specifically in 
temporal retinal axons  [10] , studies with catalytically-
inactive PTP μ  indicate that both its permissive and repul-
sive signaling in retinal neurites is transduced directly by 
homophilic regulation of PTP μ  phosphatase activity  [26] . 
Ligands for PTP ζ  include the heparin-binding chemokine 
pleiotrophin. Pleiotrophin can inhibit PTP ζ , probably by 
causing inactive PTP ζ  dimers to form  [27] , and this leads 
to increased tyrosine phosphorylation of potential targets 
such as  β -catenin  [28]  (see below). The heparan sulfate 
proteoglycans agrin (HSPGs) and collagen XVIII are bind-
ing partners for PTP σ   [29] , and recent studies have shown 
that peptides that block the heparin-binding site can also 
interfere with retinal neurite outgrowth in culture (Stoker 
and Hawadle, unpublished work). One of several models 
proposed also suggests that chick PTP σ  ligands may inac-
tivate the phosphatase, thereby facilitating neurite growth 
 [12] . Interestingly, the  Drosophila  relative of PTP σ , 
DLAR, also binds to HSPGs, and two of these, Dallylike 

and Syndecan, regulate DLAR function in opposite ways 
during synaptogenesis  [20] . 

 Although   RPTP ectodomains have adhesive capacities, it 
is their catalytic functions that are crucial for most of their 
signaling roles. For example, enzymatically active PTP μ  is 
required for neurite outgrowth on cadherins  [2] . Furthermore, 
genetic rescue studies with  Drosophila  RPTPs indicate that 
the rescuing genes must encode active phosphatases            [2, 7, 
8, 22] . There are exceptions, however, since PTP σ  has been 
shown to have non-cell-autonomous functions both in retinal 
axon growth in culture  [30]  and in sciatic nerve guidance  in 
vivo   [31] , while PTPRO ectodomains can clearly send repul-
sive signals to other axons  [14] .  

    Downstream Signals 

    Figure 32.2    contains a summary of some of the known 
substrates and binding partners of neuronal RPTPs. Most 
of these impinge ultimately on the actin cytoskeleton, pro-
viding a logical handle on growth cone dynamics. DLAR 
interacts with several molecules, including the tyrosine 
kinase Abl and its substrate Enabled (Ena, a VASP fam-
ily member). Ena can be dephosphorylated by DLAR  [32] . 
Dephosphorylation of Ena activates downstream signals that 
pass through profilin and on to actin. DLAR also interacts 
genetically with Trio, a large protein with two exchange 
factor domains for Rho family GTPases.  Drosophila  Trio also 
signals through the SH2 – SH3 adaptor Dock and the p21-
activated kinase Pak, again impinging on the cytoskeleton. 
Mammalian Trio binds directly to LAR family members 
and signals through Rho family GTPases. Human Trio pro-
motes neurite outgrowth in PC12 neurons, although it is not 
known yet if LAR RPTPs are involved in this event  [33] . 
Catenins and cadherins are a key target of several axonal 
RPTPs, including PTP μ , PTP κ , PTP ζ , and LAR members 
             [9, 28, 34 – 36] . These RPTPs may well antagonize cadherin/
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catenin-regulated cell adhesion by  dephosphorylating  β -
catenin, p120 catenin, or cadherin, thereby directly influenc-
ing growth cone adhesion. PTP μ  also binds to the adaptor 
protein RACK and in turn requires PKC δ  to promote neu-
rite outgrowth  [37] . Furthermore, PTP μ  binds to IQGAP1 
and in so doing transmits signals downstream through Rho 
GTPAses  [38] . Other RPTP targets include the cell adhe-
sion molecule-like gp150 and the tyrosine kinase pp60 c � src . 
Finally, adaptor proteins of the liprin family bind to LAR 
family RPTPs and may be important for localizing these 
RPTPs in membranes and in forming complexes with roles 
in signaling, adhesionb and synapse function        [3, 19] .     
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    INTRODUCTION 

 The   formation of the vertebrate nervous system is char-
acterized by widespread programmed cell death, which 
determines cell number and appropriate target innerva-
tion during development. The neurotrophins, which include 
nerve growth factor (NGF), brain-derived growth factor 
(BDNF), NT-3 and NT-4, represent an important family of 
trophic factors that are essential for survival of selective pop-
ulations of neurons during different developmental periods. 
The neurotrophic hypothesis postulates that during nervous 
system development, neurons approaching the same final 
target compete for limited amounts of target-derived trophic 
factors  [1] . In this way, the nervous system moulds itself to 
maintain only the most competitive and appropriate connec-
tions. Competition among neurons for limiting amounts of 
neurotrophin molecules produced by target cells accounts 
for selective cell survival. Two predictions emanate from 
this hypothesis. First, the efficacy of neuronal survival will 
depend upon the amounts of trophic factors produced during 
development. Second, specific receptor expression in respon-
sive cell populations will dictate neuronal responsiveness. 

 Neurotrophins   exert their cellular effects through the 
actions of two different receptors: the tropomyosin-related 
kinase (Trk) receptor tyrosine kinase and the p75 neuro-
trophin receptor (p75 NTR ), a member of the tumor necro-
sis factor (TNF) receptor superfamily. On one level, 
neurotrophins fit well with the neurotrophic hypothesis, as 
many peripheral neuronal subpopulations exhibit a predomi-
nant dependence on a specific neurotrophin during the period 
of naturally occurring cell death ( Figure 33.1   ). However, the 
biological reality appears much more complex. In the cen-
tral nervous system, the overlapping expression of multiple 
neurotrophin receptors and their cognate ligands allows for 
the creation of diverse connectivity, which extends well into 
adulthood. And even in the periphery there are additional 
activities, such as the molecular mechanisms underlying the 
retrograde signal, a pathway that must efficiently transmit 

information over long distances  –  at times more than a meter. 
Moreover, it has recently become clear that, in addition to 
mature neurotrophins, the pro-neurotrophins also play impor-
tant roles in the development and modulation of the nervous 
system. Finally, the role of neurotrophins and their receptors 
is not confined to the nervous system, but is instead increas-
ingly recognized in non-neuronal tissues such as the vascula-
ture  [2] . The role of the neurotrophin system in development 
has been reviewed  [3] . This chapter will focus upon new 
views concerning ligand – receptor interactions, signal trans-
duction, and retrograde transport in the nervous system, and 
discuss the roles of both mature and pro-neurotrophins.  

    THE NEUROTROPHIN LIGANDS 

 The   neurotrophins are initially synthesized as precursors 
or pro-neurotrophins that are cleaved to release the mature, 
active proteins. The mature proteins form stable, non-covalent 
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dimers, and are normally expressed at very low levels dur-
ing development. Pro-neurotrophins are cleaved intracel-
lularly by furin or pro-convertases recognizing a highly 
conserved dibasic amino acid cleavage site to release 
carboxy-terminal mature proteins of approximately 13       kDa. 
These extensively studied mature proteins mediate neuro-
trophin actions by selectively binding to members of the 
Trk family of receptor tyrosine kinases to regulate neuronal 
survival, differentiation and synaptic plasticity. In addition, 
all mature neurotrophins interact with p75 NTR  which can 
modulate the affinity of Trk       :       neurotrophin associations. 

 Neurotrophins   promote cell survival and differentiation 
during neural development. These effects are primarily con-
veyed through Trk receptor activation. Paradoxically, neu-
rotrophins can also induce cell death. p75 NTR  serves as a 
pro-apoptotic receptor during developmental cell death and 
after injury to the nervous system. In the context of neu-
rotrophin processing, pro-neurotrophins are more effective 
than mature NGF in inducing p75 NTR -dependent apoptosis 
 [4] . This suggests that the biological action of the neuro-
trophins can be regulated by proteolytic cleavage, with pro-
forms preferentially activating p75 NTR  to mediate apoptosis 
and mature forms selectively activating Trk receptors to 
promote survival.  

    NEUROTROPHIN RECEPTORS 

 One   way of generating more specificity during development 
is by imparting greater discrimination of ligands for the Trk 
receptors. NGF binds most specifically to TrkA; BDNF and 
NT-4 to TrkB; and NT-3 to TrkC receptors. The p75 NTR  
receptor can bind to each neurotrophin, but has the addi-
tional capability of regulating a Trk’s affinity for its cognate 
ligand. Trk and p75 NTR  receptors have been referred to as 
high- and low-affinity receptors, respectively. However, this 
is not correct, since TrkA and TrkB actually bind their lig-
ands with an affinity of 10  � 9  – 10  � 10        M, which is lower than 
the high-affinity site (K d   �  10  � 11        M). Also, pro-NGF dis-
plays high affinity binding to p75 NTR . Trk-mediated respon-
siveness to low concentrations of NGF is dependent upon 
the relative levels of p75 NTR  and TrkA receptors and their 
combined ability to form high-affinity sites. 

 Although   p75 NTR  and Trk receptors do not appear to 
bind to each other directly, there is evidence that complexes 
form between the two receptors. As a result of these inter-
actions, increased ligand selectivity can be conferred onto 
Trks by p75 NTR . NGF and NT-3 can both bind to TrkA, but 
p75 NTR  restricts signaling of TrkA to NGF and not to NT-3 
 [5] . In addition to increasing ligand – receptor affinity and 
selectivity, p75 NTR  contains an intracellular death domain 
sequence that can recruit pro-apoptotic adaptor molecules 
 [6] . The ability of p75 NTR  to promote apoptosis in response 
to pro-neurotrophins requires sortilin, a member of the 
Vps10p family, as a co-receptor        [7, 8] . 

 What   are the reasons for having a Trk receptor that 
mediates neuronal survival and a p75 NTR  receptor that 
mediates apoptosis? One reason neurotrophins use a death 
receptor may be to prune neurons efficiently during periods 
of developmental cell death. In addition to competing for 
trophic support from the target, neurons must establish con-
nections with the proper target. In the event of mistargeting 
of axons, neurons may undergo apoptosis if the appropriate 
set of trophic factors is not encountered. In this case, a neu-
rotrophin may not only fail to activate Trks, but also bind 
to p75 NTR  and eliminate cells by an active killing process. 
For example, BDNF causes sympathetic cell death by bind-
ing to p75 NTR  when TrkB is absent. Likewise, NT-4 causes 
p75 NTR -mediated cell death in BDNF-dependent trigeminal 
neurons due presumably to preferential p75 NTR  rather than 
TrkB stimulation  [9] . Therefore, Trk and p75 NTR  receptors 
can give opposite outcomes in the same cells. Cell death 
mediated by p75 NTR  may be important for the refinement 
of correct target innervation during development.  

    SIGNALING SPECIFICITY DURING 
DEVELOPMENT 

 Specific   Trk receptor expression patterns determine the 
development of peripheral neuron populations. In the dor-
sal root ganglion, small-sized unmyelinated neurons pre-
dominantly express TrkA, whereas larger-sized neurons 
express TrkC receptors. Many of the small-diameter neu-
rons are nociceptive and frequently terminate in the epider-
mis ( Figure 33.1 ). NGF is important for the development 
of these neurons during early postnatal periods. The large-
diameter neurons are proprioceptive, and are most respon-
sive to NT-3. Consistent with the receptor expression, a 
lack of NGF leads to a lack of responsiveness to nocicep-
tive stimuli, and a lack of NT-3 leads to a loss of muscle 
spindle afferents  [10] . Furthermore, neurotrophin recep-
tors play an instructive role in the sub-specification of dor-
sal root ganglia neurons into nociceptive or proprioceptive 
neurons as expression of TrkC from the  TrkA  locus leads 
these neurons to switch fate  [11] . 

 Trk   receptors exhibit very high conservation in their 
intracellular domains, including the catalytic tyrosine 
kinase and the juxtamembrane NPXY motif that serves 
as the Shc binding site. However, several pronounced dif-
ferences among the Trks exist. In a sympathetic neuronal 
background, TrkA relies predominantly upon phosphoi-
nositide 3-kinase (PI3K) activation for survival, whereas 
TrkB uses both PI3K and ERK pathways. Thus, each Trk 
receptor carries distinctive signaling properties. For exam-
ple, TrkB may contain sequences that bind to factors that 
favor alternative pathways. Since there are now a number 
of different adaptor proteins and enzymatic functions 
associated with Trk receptors ( Figure 33.2   ), preferential 
interactions with these proteins must take place. Receptor 
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utilization of substrates with differential association/disso-
ciation kinetics, competition for binding among different 
substrates, or recruitment of unique target proteins, such 
as FRS-2, rAPS and SH2 for the Trk receptors, represent 
mechanisms by which each receptor may differentially 
employ common substrates for signaling. 

 Alternatively  , receptor processing or targeting into dif-
ferent membrane compartments may dictate their function. 
A comparison of TrkA and TrkB receptors in neuronal cell 
lines has revealed a difference in turnover of each recep-
tor. While NGF binding to TrkA leads primarily to receptor 
recycling, BDNF binding to TrkB results in rapid turnover 
of TrkB receptors at the cell surface        [12, 13] . In sensory 
neurons, activated TrkA is ubiquitinated by the E3 ubiquitin 
ligase NEDD4-2 and subsequently downregulated. NEDD4-2 
does not bind to or ubiquitinate TrkB, further strengthen-
ing the notion that Trk receptors are differentially regulated 
 [14] . Additionally, the number of surface TrkB receptors is 
highly influenced by depolarization and levels of cAMP. 
These observations hint at yet other receptor mechanisms 
that confer greater signaling specificity to the neurotrophins.  

    INTERACTING PROTEINS 

 Neurotrophin   receptors undergo ligand-induced dimeriza-
tion that activates multiple signal transduction pathways. 
Neurotrophin binding to Trk family members produces bio-
logical responses through rapid increases in the phosphor-
ylation of ERK, phospholipase C γ  and PI3K  [15] . Increased 

 Ras  activity, a common signal from all tyrosine kinase 
receptors, results from the stimulation of guanine nucleotide 
exchange factors coupled to adaptor proteins which directly 
interact with Trk after ligand binding. These adaptor pro-
teins include Shc, Grb2, SH2B, and FRS-2 ( Figure 33.2 ). 

 A   number of adaptor proteins also bind to p75 NTR  ( Figure 
33.2 ). Three different proteins, NRIF, NADE, and NRAGE, 
contribute to apoptosis in immortalized cell lines or are cor-
related with neurotrophin-dependent cell death. Each pro-
tein binds to separate sequence in the cytoplasmic domain 
of the p75 NTR   [16] . Another protein that interacts with both 
p75 NTR  and Trk receptors is ARMS, an ankyrin-rich trans-
membrane protein  [17] . ARMS is rapidly tyrosine phospho-
rylated after binding of neurotrophins to Trk receptors, and 
leads to sustained ERK signaling  [18] . This protein may act 
as a scaffold to cluster proteins essential to neurotrophin sig-
naling. Other proteins, including RhoA GTPase, SC-1, and 
NRAGE, exert non-apoptotic activities, such as neurite elon-
gation and growth arrest. These proteins expand the func-
tional scope of neurotrophins  [19] . Still other proteins, such 
as cytoplasmic dynein, myosin VI, and the PDZ-containing 
GIPC protein, serve to target neurotrophin receptors intrac-
ellularly during important cellular processes such as axonal 
and dendritic localization, and synaptic transmission  [20] . 
Given the wide number of activities of neurotrophins and 
the small number of neurotrophins and neurotrophin recep-
tor genes, it is likely other signaling systems are used. This 
includes the neurotrophin-induced modulation of ion chan-
nels such as TRP and glutamate receptors.  
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    RETROGRADE AXONAL TRANSPORT 

 The   biological effects of neurotrophins require that signals 
are conveyed over long distances from the nerve terminal 
to the cell body. Therefore, a central theme of the neuro-
trophic hypothesis is that neuronal survival and differen-
tiation depend upon retrograde signaling of trophic factors 
produced at the target tissue. 

 During   development, neurotrophins are produced and 
released from the target tissues and become internalized 
into vesicles, which are then transported to the cell body 
to convey the survival signal. The membrane vesicles car-
rying Trk, p75 NTR , and the neurotrophin have been termed 
 “ signaling endosomes. ”  Increasing evidence suggests that 
these endocytic vesicles indeed retain their signaling capac-
ity over long distances. A complex of NGF – TrkA has been 
found in clathrin-coated vesicles and endosomes, giving 
rise to the model that NGF and Trk are components of the 
retrograde signal  [21] . Internalization of NGF from axon 
terminals is necessary for phosphorylation and activation 
of the CREB transcription factor, which leads to changes in 
gene expression and increased neuronal cell survival  [22] . 

 Measurements   of  125 I-NGF transport from distal axons 
to the cell body in mice indicate a rate from 3 to 10     mm/h 
 in vivo   [23] . Recently,  in vitro  assays directly visualizing 
retrograde axonal transport of NGF, BDNF, or TrkB in cul-
tured dorsal root ganglia and motor neurons have replicated 
these transport rates and identified proteins controlling this 
process, such as dynein and endocytic Rab GTPases. In the 
future, these assays will allow a more detailed assessment 
of the molecules that regulate retrograde axonal transport 
in neuronal development, health, and disease  [24] .  

    NEUROTROPHIN SIGNALING IN THE 
ADULT NERVOUS SYSTEM 

 Neurotrophin   signaling is not only required during devel-
opment, but also plays important roles in higher order func-
tion in the adult, such as behavior, learning, and memory. 
For example, knockout animals with lower levels of BDNF 
or its receptor TrkB, as well as mice harboring a com-
mon polymorphism in the  bdnf  gene leading to decreased 
BDNF secretion, show eating disorders and an increase 
in anxiety-related behavior        [25, 26] . Moreover, decreases 
in BDNF have been correlated with depression, while 
increases in BDNF seem to have an antidepressant effect. 
Mature BDNF facilitates long-term potentiation and den-
dritic spine formation in the hippocampus, a process that 
has been implicated in learning and memory. This effect is 
specific to the action of TrkB, as reduction of TrkB but not 
TrkC levels reduces spine density in the hippocampus of 
aged mice  [27] . In contrast, proBDNF signaling via p75 NTR  
has been involved in reduced spine density and long-term 
depression, which in turn may contribute to depressive 

behavior  [28] . The discovery that pro- and mature neuro-
trophins have opposite biological actions has been termed 
the  “ yin and yang hypothesis of neurotrophin action ”   [29] . 
Together, these findings strengthen the notion that neuro-
trophins, in addition to their potent properties on the cellu-
lar level, possess abilities to influence cognitive functions.   
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    INTRODUCTION 

 The   function of the nervous system depends on complex 
and precise connections between nerve cells  [1] . The for-
mation of specific connections during development often 
requires the growing axons to navigate over considerable 
distances to reach their final target cells. This long-range 
navigation is achieved by guidance factors within the 
developing tissue that regulate the motility or directionality 
of the growing tip of the axon, the growth cone  [2] . During 
the past decade several families of guidance factors have 
been identified, including netrins, semaphorins, ephrins, 
and slits        [3, 4] . In addition, inhibitory factors associated 
with the myelin that exert repulsive actions on the navi-
gation of regenerating axons have also been discovered. 
Different classes of membrane receptors for these factors 
have been identified, and their intracellular signal transduc-
tion mechanisms are beginning to be elucidated. 

 How   does a guidance factor affect the navigation of the 
growing axon? A general scheme of signal transduction 
cascades from the receptor activation to cytoskeletal rear-
rangements is shown in  Figure 34.1     [4] . It starts with the 
binding of the guidance factor with the receptor protein 
or protein complexes at the cell surface. Ligand – receptor 
binding in general stimulates the activities of the cytoplas-
mic domain of the receptor, which in turn interacts spe-
cifically with cytoplasmic adaptor proteins. These adaptors 
may then recruit or activate their downstream effectors 
to further mediate the guidance signal. The effectors (or 
mediators) can be enzymes or second messengers that acti-
vate or inhibit cytoskeleton-associated proteins, leading to 
polymerization or depolymerization of cytoskeletal struc-
tures and steering of the growth cone. 

 Two   types of guidance signals may be distinguished: 
signals that convey a  “ stop or go ”  command  regulating 

growth cone motility, and signals that provide  directional 
instructions to the growing axon, triggering turning 
responses of the growth cone. For non-directional signals, 
mediators may simply alter the global cytoskeletal activ-
ity at the growth cone. For directional guidance signals, 
however, a gradient of cytoskeletal rearrangements must be 
created in order to induce directional motility. In the latter 
case, mediators must be activated or distributed in a gradi-
ent across the growth cone, and such a gradient may also 
need to be amplified in the cytoplasm in order to achieve 
a reliable directional response  [4] . Although a number of 
cytoplasmic components have been implicated in such a 
scheme of signal transduction, definitive identification of 
signaling pathways is yet to be established for any one of 
the major families of guidance factors. This chapter sum-
marizes some of the putative signaling pathways that have 
been shown to participate in growth cone navigation.  

    NETRIN SIGNALING 

 Netrins   are a family of secreted proteins, and their recep-
tors were identified to be DCC (deleted in colorectal 
cancer) and UNC-5  [5] , two interacting transmembrane 
proteins that set the polarity of growth cone responses. 
Ectopic expression of UNC-5 in neurons converted netrin 
(UNC-6)-dependent chemoattraction to chemorepulsion 
in both  Caenorhabditis elegans   [6]  and in dissociated 
 Xenopus  spinal neurons  [7] , a conversion that involves 
a netrin-dependent interaction between the cytoplasmic 
domain of DCC and UNC-5  [7] . The level of DCC can be 
actively regulated through degradation mediated by Sina/
Siah protein  [8]  or through metalloprotease-mediated shed-
ding  [9] , resulting in changes in the growth cone’s sensi-
tivity to netrin-1. Extracellular signal-regulated kinase1/2 
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(Erk l/2) was found to be recruited to DCC receptor 
complex in rat commissural neurons  [10]  and activation 
of phosphoinositide 3-kinase (PI3K), and phospholipase 
C γ  appears to mediate attractive turning of  Xenopus  spi-
nal neurons induced by a gradient of netrin-1  [11] . More 
recently, it has been shown that activation of MAPK, local 
protein synthesis, and protein degradation are involved 
in the netrin-induced chemoattraction of  Xenopus  spinal 
and retinal neurons        [13, 14] . These downstream events 
were shown to be critical for adaptive changes of growth 
cone sensitivity to netrin-1 as the extracellular concentra-
tion of netrin-1 is increased  [13] . How these cytoplasmic 
factors are linked to the cytoskeleton changes remains 
largely unclear. Two members of the Rho GTPase family, 
Rac1 and Cdc42, appear to be involved in netrin signal-
ing        [15, 16] , thus providing potential links to cytoskeletal 
regulation  [17] . To serve for directional guidance signals, 
a mediator is not only required for the guidance responses, 
but must also be activated in a gradient across the growth 
cone. Furthermore, such a gradient should be sufficient to 
induce a turning response of the growth cone. None of the 
putative signaling components described above fulfill these 
criteria. Interestingly, the well-known second messenger 
Ca 2 �   appears to satisfy these criteria for netrin-1 signaling. 
Elevation of cytoplasmic Ca 2 �  , through both Ca 2 �   influx 
and release from internal stores, is required for netrin-1-
induced turning responses, and a netrin-1 gradient can trig-
ger Ca 2 �   elevation and transient Ca 2 �   gradients across the 

growth cone        [7, 12] . Experimentally creating a gradient 
of Ca 2 �   across the growth cone in the absence of netrin-1 
signals is sufficient to induce the turning of the growth 
cone  [18] . However, it remains unclear how Ca 2 �   signals 
are linked to receptor activation upstream and cytoskeletal 
rearrangements downstream.  

    SEMAPHORIN SIGNALING 

 The   semaphorin family includes both membrane-bound 
and secreted molecules, thus it may work for both short- 
and long-range guidance        [19, 20] . Neuropilins were iden-
tified as semaphorin receptors and the plexin family of 
receptors was shown to be a co-receptor that transduces 
the signal. Several proteins have been shown to bind to 
neuropilins or plexins. These include a transmembrane 
protein OTK (off-track)  [21] , cytoplasmic protein NIP – a 
PSD-95/Dlg/ZO-1 domain-containing protein that may be 
involved in membrane trafficking  [22]  – and MICAL, a fla-
voprotein oxidoreductase  [23] . There is also evidence for 
the involvement of heterotrimeric G proteins  [24] . The pre-
cise role of these receptor-interacting proteins and whether 
they mediate or modulate the signaling process remain to 
be determined. More is known about the downstream cas-
cades that mediate cytoskeleton changes induced by sema-
phorins. Of particular interest is Rac1, a small Rho family 
GTPase. Introduction of dominant-negative Rac1  [25]  or 
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an  inhibitory peptide for Rac1 or C3 transferase, a Rho 
GTPase inhibitor, blocks Sema3A-induced growth cone 
collapse in sensory neurons        [26, 27] . A major downstream 
mediator of Rac1 and Cdc42 is P21-associated kinase 
(PAK), and LIM-domain-containing kinase (LIM-kinase), a 
direct substrate of PAK, is necessary for Sema3A-induced 
growth cone collapse  [28] . LIM-kinase is a serine-threo-
nine kinase that inhibits cofilin’s actin-severing function. 
Thus, at least one of the mechanisms for semaphorin-medi-
ated cytoskeletal changes is mediated through the activa-
tion of small GTPases and their target PAK, which then 
regulates actin dynamics through a LIM-kinase- and cofi-
lin-dependent pathway. Other small GTPases such as Rho 
and Rnd1        [29, 30]  and kinases such as GSK-3 (glycogen 
synthase kinase)  [31]  and Fes/Fps tyrosine kinase  [32]  have 
also been implicated in semaphorin signaling.  

    SLIT SIGNALING 

 Slits   are a family of secreted proteins that can exert short- 
and long-range guidance functions by activating their 
receptors, the roundabout (Robo) family of proteins  [33] . 
Slits appear to act not only as directional guidance factors 
but also as stop signals through activation in a combinato-
rial manner of different Robo receptors expressed on the 
growth cone surface          [34 – 36] . Both Abelson tyrosine kinase 
(Abl) and its substrate Enabled (Ena) can bind directly to 
the cytoplasmic domain of Robo and modulate its function 
 [37] . Interfering with the binding between Ena and Robo 
partially impairs the Robo function, while a mutation in a 
conserved tyrosine residue that can be phosphorylated by 
Abl generates a hyperactive Robo. Small GTPases and 
their regulators also affect slit-Robo signaling. A slit-Robo-
GTPase activating protein 1 (srGAP1) can bind to Robo 
and inactivate Cdc42, resulting in repulsion of growth 
cones  [38] , while GEF64C, a Dbl family guanine nucleo tide 
exchange factor (GEF), can activate Rho and block Robo-
induced repulsion  [39] . Thus, Robo-mediated cytoskeleton 
changes also appear to be mediated by activation of GAP 
or GEF of small GTPases.  

    EPHRIN SIGNALING 

 Ephrins   and the Eph family of tyrosine kinase receptors are 
membrane-bound molecules that mediate short-range axon 
guidance via cell – cell contacts  [40] . Ephrin-A ligands are 
attached to the plasma membrane via a glycophosphatidyli-
nositol (GPI) linkage, whereas the ephrin-B ligand con-
tains a transmembrane domain and a cytoplasmic tail  [41] . 
Similar to slits, ephrins can function as either directional or 
non-directional guidance factors. In addition, the signaling 
activated by ephrin-Eph binding is bidirectional  [41] , so 
that cytoplasmic activities are triggered in both interacting 

cells. A GEF, ephexin, binds to the kinase domain of EphA 
constitutively through its Dbl homology-pleckstrin homol-
ogy (DH/PH) domain and activates both RhoA and Cdc42, 
thus regulating cytoskeletal structures  [42] . In addition, 
focal adhesion kinase (FAK) and its downstream factor 
P130(cas), which are two proteins involved in actin reor-
ganization, are also implicated in EphA-induced cytoskel-
etal changes  [43] .  

    NOGO AND MYELIN-ASSOCIATED 
GLYCOPROTEIN SIGNALING 

 Two   proteins associated with myelin, Nogo and myelin-
associated glycoprotein (MAG), have been identified as 
the major inhibitory factors that prevent axon regeneration 
after CNS injury  [44] . Although the full lengths of these 
proteins are membrane-anchored, they can be released in 
a truncated form and function in repelling and inhibiting 
axon growth        [45, 46] . The receptors for Nogo (NogoR) 
 [46]  and for MAG (GD1a and GT1b)  [47]  have been identi-
fied. Interestingly, MAG also binds to NogoR  [48] . NogoR 
is a GPI-anchored protein at the cell surface  [46] , and an as 
yet unidentified co-receptor(s) is required for transducing 
the cytoplasmic signal. The downstream signal cascade for 
NogoR signaling is largely unknown, although Ca 2 �   and 
PI3K are required for MAG-induced repulsion of  Xenopus  
spinal neurons        [11, 49] . Rho is activated by MAG through 
receptor GD1a and GT1b  [47] . Inhibition of Rho activity 
can promote CNS axon regeneration, suggesting that 
Rho may also be involved in MAG-induced cytoskeletal 
rearrangement  [50] .  

    CRITICAL ROLES OF MODULATORY 
SIGNALS 

 For   a growth cone to make its navigational decisions, it 
must integrate information provided not only by the guid-
ance factors but also by other modulatory signals.  In vitro  
studies have shown that cytoplasmic cyclic nucleotides play 
key roles in modulating signal transduction events triggered 
by most guidance factors identified thus far  [4] . For exam-
ple, the growth cone responses to netrin and MAG are mod-
ulated by a cAMP-dependent pathway, whereas Sema3A 
and slit signaling is modulated by a cGMP-dependent path-
way. Elevating the cytoplasmic level of cyclic nucleotides 
favors attraction/growth, while lowering their level favors 
repulsion/collapse  [4] . Many extracellular ligands, includ-
ing neuromodulators, adhesion molecules, and extracel-
lular matrix (ECM) components, may change the level of 
cyclic nucleotides within the cell, thus altering the growth 
cone behavior when they are present concurrently with the 
guidance signal  [51] . For example, laminin, an abundant 
ECM protein, reduces the cAMP level in  Xenopus  retinal 
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ganglion neurons and converts the growth cone response 
to a netrin-1 gradient from attraction to repulsion both  in 
vitro  and  in vivo   [52] . Conversely, the repulsive response 
of DRG and cortical axons induced by Sema3A can be 
converted to attraction by exposure to soluble LI-Fc chi-
meric molecules; activation of guanylate cyclase activity is 
required for the conversion  [53] . The targets of PKA/PKG 
that are involved in regulating the polarity of growth cone 
turning responses remain to be identified.  

    CONCLUDING REMARKS 

 An   emerging view of axon guidance factors is that they are 
multifunctional molecules capable of conferring attractive, 
repulsive, or stop signals. The precise behavior of a growth 
cone is determined by the nature of specific receptors and 
the status of cytoplasmic signal cascades, which are under 
the influence of a variety of extrinsic and intrinsic factors 
( Figure 34.1 ). The combinatorial expression pattern of var-
ious receptors at the surface of a growth cone may trigger a 
differential downstream event  [54] . In addition, the efficacy 
of receptor signaling across the plasma membrane can be 
modulated by various factors both extra- and intracellularly 
 [4] . Recruitment of different adaptors and mediators in the 
cytoplasm can result in different growth cone behaviors. 
An area of interest for future studies is determining the 
mechanisms that control or modulate the recruitment and 
activation of these cytoplasmic factors, and that amplify 
the signals conveyed by the receptors. Signal cascades 
triggered by all known guidance factors appear eventu-
ally to converge upon different members of the Rho fam-
ily GTPases or their activators/inhibitors. It is of interest 
now to determine how spatio-temporal patterns of GTPase 
activation account for distinct navigational  behaviors of the 
growth cone.   
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    THE SEMAPHORIN FAMILY 

 Semaphorins   are a large family of proteins originally iden-
tified as axon guidance factors of the developing nerv-
ous system. Over 30 family members are grouped into 8 
classes based on structural and phylogenetic relationships 
(reviewed in  [1] ). Classes 1 and 2 are expressed in inver-
tebrates, classes 3 through 7 are vertebrate semaphorins, 
and Class V is expressed in non-neurotropic DNA viruses. 
All semaphorins share a highly conserved 500 amino 
acid  “ Sema ”  domain at their amino terminus, but differ-
ent classes possess divergent sequences in their carboxyl 
regions. Classes 1, 4, 5, and 6 are transmembrane pro-
teins, class 7 has a GPI-anchor, and classes 2, 3, and V are 
secreted proteins. The presence of both membrane-bound 
and secreted semaphorins suggests that semaphorins act as 
both short- and long-range cues. In addition, the diversity 
of structural properties between the classes implies roles in 
a diversity of biological processes. 

 The   best-documented function of semaphorins is 
their role in central nervous system (CNS) development. 
Semaphorins act as both repellents and attractants for 
growing axons. The first identified vertebrate semaphorin, 
Sema3A, causes retraction of axons and the collapse of the 
growth cone, a specialization at the tip of growing axons 
 [2] . While repellents for certain neurons, Sema3C and 3F 
also serve as attractants for cortical and olfactory neurons, 
respectively. Within the large semaphorin family, certain 
semaphorins can exert antagonistic activity by competi-
tively blocking the activity of other family members at 
certain receptors  [3] . Semaphorins may guide growing 
dendrites as well as axons. Specifically, Sema3A attracts 
the apical dendrite of pyramidal neurons in the cerebral 
cortex toward the pial surface  [4] . Many types of neurons 
are responsive to semaphorins, including dorsal root gan-
glion, sensory, motor, hippocampal, cortical, cerebellar, 

and olfactory. In addition to guiding axons and dendrites, 
semaphorins appear to play a role in fasciculation of nerve 
bundles, neuronal cell migration, axoplasmic transport, and 
apoptosis  [5] . Like developing neurons, adult neurons of 
the regenerating CNS are responsive to semaphorins, and 
semaphorin expression is upregulated after nerve injury  [6] . 

 Semaphorin   signaling is not restricted to the CNS, 
as evidenced by widespread expression throughout the 
embryo and adult tissue. Migrating non-neuronal cells 
are responsive to semaphorins, and cardiovascular abnor-
malities are observed when semaphorin signaling is dis-
rupted  [7] . In the immune system, expression of Sema4D 
(CD100) is regulated upon B- and T-lymphocyte activa-
tion, and migrating monocytes are responsive to Sema3A 
and Sema4D  [8] . Malignant lung cells show reduced levels 
and a cytoplasmic localization of semaphorins  [9] . Taken 
together, it can be concluded that semaphorins act as guid-
ance cues for many types of migrating cells in developmen-
tal, adult, and pathological tissue.  

    RECEPTORS FOR SEMAPHORINS 

    Neuropilins 

 Neuropilins   are high-affinity transmembrane receptors for 
the secreted class 3 semaphorins in the CNS, but play no 
role in the activity of other semaphorins. A neuropilin fam-
ily is composed of neuropilin-1 and several splice variants 
of neuropilin-2  [1] . Neuropilin-1 and -2 contain a number 
of conserved motifs on their extracellular domain, includ-
ing two CUB domains, FV/FVIII, and a MAM domain. 
The CUB domains are required for ligand binding, and the 
MAM domain mediates neuropilin oligomerization  [10] . 
Neuropilins have a short intracellular domain containing 
a PDZ binding motif that targets receptor localization to 
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signaling components in the membrane of the cell  [11] ; 
however, the intracellular domain is not required to trans-
duce the semaphorin signal  [10] . The neuropilin isoforms 
bind differentially to various class 3 semaphorins  [12] , 
and the specificity of binding is determined by the CUB 
domains  [10] . Although neuropilins are sufficient to bind 
class 3 semaphorins, the fact that the intracellular domain 
is not required for signaling suggests that a co-receptor 
transmits the semaphorin signal into the cell. 

 Outside   of the CNS, neuropilins are found in the mes-
enchyme surrounding blood vessels and act as co-receptors 
for vascular endothelial growth factor (VEGF). Upon bind-
ing VEGF, neuropilins potentiate the kinase activity of the 
VEGF receptors flt-1 and KDR, resulting in endothelial 
cell migration  [13] . There is some evidence to suggest that 
semaphorins and VEGF compete for neuropilin binding, 
and a dysregulation of the competition may lead to patho-
logical conditions  [9] .  

    Plexins 

 Plexins   are the predominant receptors for membrane-bound, 
GPI-linked and viral semaphorins, and they bind to neuropi-
lins to act as signaling co-receptors for the secreted class 3 
semaphorins  [14] . The initial discovery of plexins as sema-
phorin receptors occurred with the identification of virus-
encoded semaphorin protein receptor (VESPR; plexinC1) 
as a binding site for a class V semaphorin  [15] . Currently, 
at least 10 plexins have been identified and are classified 
into 4 groups, plexins A – D, which have different specifi-
cities for different semaphorins  [1] . Plexins are distantly 
related to semaphorins, since they possess the conserved 
Sema domain on their extracellular surface  [16]  and also 
share some sequence homology with the HGF receptor Met 
on their extracellular surface  [17] . The intracellular domain 
of plexin is highly conserved among family members, 
but is not significantly homologous to any known signal-
ing motif. In their native state plexins are autoinhibited by 
their Sema domain, and binding to semaphorin – neuropilin 
complexes or cleavage of the sema domain leads to acti-
vation of the protein and growth cone collapse in sensory 
neurons  [18] .   

    INTRACELLULAR SIGNALING PATHWAYS 

    Actin Cytoskeleton and Monomeric GTPases 

 The   actin cytoskeleton in growth cones undergoes dra-
matic rearrangement upon exposure to Sema3A. There is 
a relative decrease in F-actin within the lamellipodia  [19] , 
and actin co-localizes with neuropilin-1/plexinA1 recep-
tor complexes  [20] . The actin reorganization is linked to 
increased endocytosis  [20] . It was thought that semaphorins 

might regulate the actin cytoskeleton through monomeric G 
proteins due to the weak similarity of the conserved intra-
cellular domain of plexins to an R-Ras-GAP. However, no 
plexin protein has been shown to possess GAP activity, 
and semaphorin responses are not dependent on R-Ras. 
Instead, Rho family G proteins, namely Rac and Rho, seem 
to mediate the semaphorin response  [21]  (also reviewed in 
 [22] ). Active Rac binds directly to the intracellular domain 
of vertebrate and invertebrate plexinB1, and this interac-
tion is enhanced by the presence of ligand binding  [23] . 
Activation of plexinB1 appears to sequester active Rac 
from its endogenous substrate, p21-associated kinase, PAK 
         [24 – 26] . RhoA is also activated as a result of plexinB1, 
although it is not clear whether this is due to direct or indi-
rect action of plexinB1 on RhoA  [26] , or is downstream of 
Rac – plexin interactions  [24] . Together, Rac sequestration 
and RhoA activation appear to mediate axon repulsion by 
plexinB receptors. 

 Although   the intracellular domain is highly conserved 
among all plexin family members, it is not clear whether 
plexinA functions in a similar fashion as plexinB. PlexinA1 
binds to both RhoD and Rnd1, and Rnd1 binding has been 
suggested to induce growth cone collapse        [27, 28] , per-
haps due to Rnd1-dependent inhibition of Rac  [29] . Direct 
Rac – plexinA interactions have not been demonstrated. It 
is possible that plexins regulate monomeric GTPases indi-
rectly by regulating Rho family GEFs and GAPs, factors 
that activate or inactivate monomeric GTPases, respectively. 

 A   direct link between Sema3A and actin dynamics 
was recently demonstrated. Activated complexes of NP1 
and plexinA2 lead to the phosphorylation and deactiva-
tion of cofilin by LIM kinase  [30] . Cofilin leads to F-actin 
turnover, and plays a role in protrusion of lamellipodia and 
filopodia  [31] . Further, LIM kinase is a substrate for both 
PAK and Rho kinase, which is consistent with the require-
ment for Rac and Rho, respectively, for Sema3A-induced 
collapse  [31] .  

    CRMP 

 Collapsin  -response-mediator protein (CRMP) was identi fied 
in a  Xenopus  oocyte expression screen of mRNAs required 
for Sema3A responses  [32] . The protein sequence of 
CRMP shares sequence homology with the  Caenorhabditis 
elegans  unc-33, a protein required for proper axonal path-
finding  [33] . At least five isoforms of CRMP have been 
identified, and they form heterotetramers  in vivo   [34] . 
Function blocking antibodies to CRMP block Sema3A-
mediated growth cone collapse in chick DRG neurons  [32] , 
and CRMP is upregulated after axotomy of the sciatic  [35]  
and olfactory  [36]  nerves. The mechanism of CRMP action 
is still unclear. Studies have shown that it is phosphorylated 
by Rho kinase, but this is not required for Sema3A-induced 
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collapse  [37] . The microtubule abnormalities of unc-33 
mutants and the observation that CRMP co-localizes with 
microtubules at certain stages of the cell cycle  [38]  sug-
gest that plexin/CRMP signaling may regulate microtu-
bule dynamics. There is also evidence demonstrating that 
CRMP binds to and inactivates phospholipase D2, an 
enzyme implicated in a variety of cell processes, includ-
ing actin dynamics, vesicle trafficking, and mitogenesis 
 [39] . Finally, CRMP may act to mediate the cytoskeleton 
through Rho GTPases. Neuroblastoma cells overexpressing 
CRMP and constitutively active RhoA showed a Rac1-like 
morphology, whereas cells co-expressing CRMP and active 
Rac1 showed a RhoA-like morphology  [40] . Thus, it seems 
likely that CRMP enhances the function of a plexin – Rho 
family G-protein axis in axon repulsion.  

    Protein Phosphorylation 

 Receptors   for several other axon guidance molecules, such 
as ephrins and neurotrophins, act via kinase cascades. 
Although semaphorin receptors themselves show no kinase 
activity, indirect evidence suggests that protein phosphor-
ylation occurs and is required  [41] . The involvement of 
PAK and LIM kinase downstream of plexins is mentioned 
above. A recent study has shown that  Drosophila  plexinA 
associates with the membrane-bound receptor tyrosine 
kinase-related protein Off-Track (Otk;  [42] ). In addition, 
two proteins with kinase activity have been co-purified 
with CRMP        [38, 43] . The serine/threonine kinase, gly-
cogen synthase kinase (GSK)-3, is activated as a result 
of Sema3A in both neuronal cells and human breast can-
cer cells, and GSK-3 inhibitors prevent Sema3A-induced 
growth cone collapse  [44] .  

    Other Signaling Mechanisms 

 Another   pathway that has been implicated in semaphorin 
signaling may utilize heterotrimeric G proteins. Much of the 
evidence for this has come from experiments with pertus-
sis toxin (PTX), which blocks G-protein function        [21, 45] . 
Indeed, neuropilins were found to bind to a G α -interacting 
protein (GIPC, SEMPCAP-1) that associates with a regu-
lator of G-protein signaling (RGS) protein via its PDZ 
domains  [11] . Interestingly, some transmembrane sema-
phorins interact with SEMCAP-1 as well, suggesting that 
semaphorins may act as receptors to transduce signals into 
the cell  [46] . Semaphorin reverse signaling is further sup-
ported by the fact that Sema6B binds to Src both  in vitro  
and  in vivo   [47] , Sema4D interacts with a serine kinase  [48] , 
and Sema6A binds to the actin binding protein EVL  [49] . 

 Semaphorin  -mediated signaling can be modulated by 
other pathways. Cyclic nucleotides can alter the response 

of growth cones to various signaling molecules        [50, 51] . 
Increasing levels of cGMP switch Sema3A responses from 
repulsion to attraction, and decreasing cGMP potentiates 
the repulsive activity of Sema3A. Apical dendrites of cer-
ebral cortical neurons are attracted to Sema3A while the 
axons of the same cells are repelled  [4] . Remarkably, solu-
ble guanylate cyclase (SGC) is asymmetrically localized 
to the dendrites of these cells, implicating an endogenous 
regulation of cGMP  in vivo . The cell adhesion molecule, 
L1, is also able to modulate growth cone responses to 
Sema3A  [52] . DRG neurons from L1-deficient mice show 
no response to Sema3A, and soluble L1 protein switched 
repulsion to attraction. Finally, one or more of these 
pathways may impinge on protein synthesis and degra-
dation within axons. Evidence indicates that local regula-
tion of protein levels participates in multiple growth cone 
responses  [53] .  

    Semaphorin Signaling in the Immune System 

 Semaphorin   signaling in activated lymphocytes does 
not rely on neuropilins and plexins, but utilizes a dif-
ferent receptor called CD72  [54] . Under normal condi-
tions, CD72 is phosphorylated on its intracellular domain 
by a Src tyrosine kinase. This phosphorylation leads to 
the recruitment of an SH2-domain-containing tyrosine 
phosphatase SHP-1, which then dephosphorylates and 
inactivates signaling proteins involved in lymphocyte acti-
vation  [8] . Sema4D binding prevents the phosphorylation 
of CD72, therefore potentiating lymphocyte activation 
 [54] . The migration of monocytes is inhibited by Sema4D 
and Sema3A; this effect is likely to be mediated via plex-
ins and neuropilins, since monocytes do not express 
CD72  [55] .   

    SUMMARY AND FUTURE DIRECTIONS 

 Many   biological systems in the developing embryo and 
adult animal are dependent on semaphorin signaling. 
Although the importance of semaphorins in the developing 
CNS is well documented, their involvement in the immune 
response, the cardiovascular system, and in pathology is 
still being clarified. Most of the work to date has focused 
on the identification and classification of the various sem-
aphorin families and their receptors, with less clarifica-
tion of downstream signaling mechanisms. Regulation of 
the cytoskeleton is the most obvious effect of semaphorin 
signaling, and a number of studies have demonstrated a 
signaling connection of semaphorin receptors with actin 
filaments and microtubules. In particular, Rho family G 
proteins and CRMP appear to play major roles in this con-
nection (see  Figure 35.1   ).  
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    INTRODUCTION 

 A   cascade of signaling events triggers the differentiation of 
specific neuronal and glial cell populations that comprise 
the central nervous system (CNS). Ectoderm deprived of 
bone morphogenic protein (BMP) signaling differentiates 
into neuroepithelia that subsequently fold to form the neu-
ral tube. The neural tube is oriented along the rostrocaudal 
axis of the embryo, and is the precursor of the entire CNS 
 [1] . Neural precursors that make up the neural tube are 
multipotential, and respond to signals in their environment 
in order to generate the appropriate types of neurons and 
glia at the correct positions. In this chapter, we focus on 
the spinal cord, the most caudal region of the CNS, since it 
has served as a useful model in which to investigate signal-
ing events that give rise to neuronal and glial populations 
within the developing neural tube. 

 Emerging   from a combination of modern molecular 
studies and classical cellular studies, a central theme in 
spinal cord development is one in which inductive factors 
signal along the dorsoventral and rostrocaudal axes of the 
developing spinal cord to specify cell fate in a Cartesian-
coordinate-like manner  [2] . This signaling leads to the 
generation of dorsal spinal cord interneurons that proc-
ess sensory information and relay it to the brain, while the 
ventral spinal cord forms interneurons and motor neurons 
involved in locomotor control ( Figure 36.1a   ). Along the 
rostrocaudal axis, discontinuous subclasses of motor neu-
rons are generated in register with the peripheral targets 
that they innervate. In addition, numerous glial cell types 
are formed, including the roof plate and floor plate, which 
act as organizing centers within the spinal cord, and astro-
cytes and oligodendrocytes, which support neuronal func-
tion and myelinate neurons, respectively.  

    PATTERNING ALONG THE DORSOVENTRAL 
AXIS 

 Two   classes of factors play prominent roles in specifying 
distinct cell types along the dorsoventral axis of the spinal 
cord: members of the transforming growth factor  β  (TGF β ) 
superfamily acting dorsally, and Sonic hedgehog (Shh) ven-
trally ( Figure 36.1a )        [3,  4] . TGF β  signaling from the epi-
dermal ectoderm flanking the dorsal neural tube leads to the 
differentiation of the roof plate  [5] , and Shh expression from 
the notochord below the neural tube triggers the formation 
of the floor plate  [6] . These two glial structures in the spinal 
cord then express TGF β s dorsally and Shh ventrally. In this 
way, signals from the periphery are propagated into the spi-
nal cord to control cell differentiation locally. 

 The   dividing progenitor cells within the ventricular 
(medial) region of the spinal cord monitor the types and 
concentrations of TGF β s and Shh in order to determine their 
position, and consequently their fate, as they become post-
mitotic and migrate laterally into the mantle region ( Figure 
36.1a ). The signaling pathways triggered by these inductive 
factors lead to the activation of transcriptional networks that 
first define distinct domains along the dorsoventral axis of 
the ventricular zone, and ultimately lead to the expression of 
genes involved in controlling cell identity and that mediate 
specialized functions ( Table 36.1   )            [7 – 10] .  

    DORSAL SPINAL CORD DEVELOPMENT 

 The   embryonic dorsal spinal cord is made up of interneurons 
(INs) organized into six distinct classes (dorsal interneu-
rons dI1 – 6), which arise in an orderly fashion from spe-
cific regions of the progenitor zone ( Figure 36.1a )        [11, 12] . 

 Chapter 36 
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These INs, while not absolutely defined, consist of asso-
ciation and commissural cells that process and relay sen-
sory information. Dorsal INs can be further subdivided 
into two subclasses; those that are dependent on the roof 
plate for formation (dI1 – 3), and those that are independent 
(dI4 – 6, which gives rise to two additional sets of dorsal 
INs at a later stage of development, dIL A  and dIL B )          [5, 13, 
14] . Each of the six classes of INs expresses a unique set 
of transcription factors that changes as progenitor cells in 
the ventricular zone mature and migrate to the mantle. For 
example, dI1, which is characterized postmitotically by the 
markers Lhx2/9, arises from progenitor cells that express 
the bHLH transcription factor mATH1        [9, 10] . Likewise, 
dI2 cells marked by Lhx1/5 arise from progenitors that 
express the bHLH protein Ngn1 (for a more complete list-
ing, see  Figure 36.1a  and  Table 36.1 ). The precise set of 
markers that labels each class of dorsal INs has allowed 
researchers to work backward to characterize the signal 
transduction pathways that activate gene expression, and 
the factors provide a precise readout in experiments aimed 
at altering cell fate by overstimulating or knocking out sig-
naling pathways. 

 An   important source of patterning signals in the devel-
oping spinal cord is the roof plate and adjacent neural 
epithelial cells, which express overlapping and nested com-
binations of several TGF β  members, including BMP4/5/7, 
Gdf6/7, and Dsl1        [5, 9] . How might the TGF β s produce 
different cell types in the spinal cord? Several strategies 
are likely to be involved, including quantitative, qualitative, 
and timing differences in TGF β  activity. In gain-of-function 
studies, expression of activated BMP receptors (BMPR1A 

or BMPR1B) in transgenic mice and developing chicks 
showed an expansion of dorsal cell populations in the 
developing spinal cord, demonstrating that BMP-mediated 
TGF β  signaling is capable of directly inducing a dorsal fate 
       [15, 16] . The clearest example of how TGF β s trigger the 
differentiation of specific IN types is based on the finding 
that individual members of this family have different quali-
tative activities  [5] . The most convincing evidence for such 
a mechanism is found in the Gdf 7 mutant mice where dI1 
cells fail to be generated  [13] . These results suggest that the 
specificity of dorsal IN patterning is mediated, at least in 
part, by various TGF β  signaling molecules, some of which 
act directly to render class specificity ( Table 36.1 ). 

 The   expression pattern of the TGF β s suggests that 
a high-dorsal to low-ventral gradient of these proteins 
is present within the neural tube ( Figure 36.1a ).  In vitro  
experiments with neural explants have detected concentra-
tion-dependent activities for Activin A in the induction of 
dI1 and dI3 cells  [5] . The sensitivity of intermediate pro-
genitors to BMP signaling is illustrated in studies of BMP 
mutants in zebrafish. In swirl mutants lacking BMP2b, 
there is an expansion of Lim1 �    INs. If BMP signaling was 
normally in place to inhibit this class of INs, then we would 
expect that further knockdown of BMP signaling as a result 
of injection of mRNA encoding the secreted BMP antago-
nist Chordin would result in more Lim1 �    INs. Instead 
there was a reduction in Lim1 �    cells, suggesting that the 
intermediate progenitors are responding to a specific level 
or isoform of BMP  [17] . 

 An   additional mechanism for generating cellular diver-
sity in the dorsal spinal cord involves a temporal switch in 
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 FIGURE 36.1          Patterning signals along the dorsoventral and rostrocaudal axes of the developing spinal cord.  
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the way neuroepithelial cells respond to TGF β  signals. Early 
in development, progenitor cells produce neural crest cells 
when exposed to BMP4 or Activin A, but later they give 
rise to dorsal INs in response to the same signals  [5] . The 
basis for qualitative differences in TGF β  signaling and the 
mechanisms underlying the developmental switch in TGF β  
responsiveness by neural epithelial cells remain important 
questions. Shh signaling for ventral cell differentiation is 
attenuated by TGF β  signaling  [18] . What limits the range 
of TGF β  activity to the appropriate areas of the developing 
spinal cord? Several TGF β  antagonists have been identi-
fied, including noggin, chordin, and follistatin, which bind 
directly to and sequester specific TGF β s  [19] . These antag-
onists are expressed by the somites and notochord near the 
ventral surface of the neural tube, and therefore are expected 
to limit the exposure of ventral cells to certain TGF β s. In 
noggin mutant mice, TGF β  signaling in the ventral neural 
tube is unmasked ( Figure 36.1a ), which leads to a progres-
sive loss of ventral cell differentiation  [20] . 

 Cell   fate diversity might also be modulated by down-
stream signaling elements activated by TGF β s. The recep-
tors of the TGF β s are serine/threonine kinases comprised 
of type I and type II dimers. These receptor complexes 
have not been well characterized in the spinal cord, but 
may select for different ligands and serve as the basis for 
the qualitative differences in cell differentiation induced by 
different TGF β  family members. Along these lines, the loss 
of Type I BMP receptors results in a loss of dI1 and reduc-
tion of dI2 cells  [21] . The best known transducers of TGF β  
signaling are the SMAD transcription factors  [22] ; how-
ever, the role of SMADs in spinal cord development also 
requires further characterization. 

 Another   class of secreted morphogens present in the 
dorsal region of the developing spinal cord that potentially 
controls progenitor fate decisions consists of the Wnt pro-
teins. Mutant mouse embryos lacking Wnt1 and Wnt3a 
showed a reduction in dI1 and dI2 cells, and an expansion 
of dI3 INs  [23] . However subsequent studies have suggested 
that Wnt signaling may control cell identity decisions indi-
rectly by promoting proliferation of dorsal cells specified by 
TGF β  signaling  [24]  and/or maintaining the dorsal progeni-
tor pool by delaying differentiation  [25] . Highlighting the 
possibility that Wnt signaling can control both patterning 
and proliferation, a study in zebrafish demonstrated that two 
separate transcriptional activators downstream of Wnt sign-
aling were responsible for dorsal patterning (Tcf7) and pro-
liferation (Tcf3) in the spinal cord  [26] . BMPs also appear 
to control expression of Wnt signaling elements in the dor-
sal spinal cord        [21, 24] , which leads to further coupling of 
patterning and proliferation rates in the developing cord. As 
pointed out in a recent review by Ulloa and Briscoe  [27] , 
this coupling of growth and patterning could be important 
for scalability, so that the same set of morphogens can gen-
erate spinal cords of different sizes with relatively similar 
proportions of progenitor pools.  

    VENTRAL SPINAL CORD DEVELOPMENT 

 Genetic   studies as well as  in vitro  explant experiments have 
implicated Shh in the differentiation of ventral spinal cord 
cell types involved in locomotor control (V0 – V3 INs and 
MNs, motor neurons), as well as oligodendrocytes ( Figure 
36.1a )        [3, 8] . Unlike the nested combinations of TGF β  mol-
ecules in the dorsal spinal cord; however, only one hedge-
hog member appears to be involved in ventral spinal cord 
patterning in higher vertebrates. This raises the question of 
how different ventral cell types are induced by a single fac-
tor. The active Shh signaling molecule is autoprocessed and 
cholesterol-modified, and binds to the patched/smoothened 
receptor complex  [28] . In the absence of Shh, patched is 
thought to inhibit smoothened from signaling, and this 
inhibition is relieved when Shh binds patched. Extensive 
studies with  in vitro  explants have shown that Shh concen-
tration differences of approximately two- to threefold dra-
matically influence the types of cells that are triggered to 
differentiate. Part of the machinery responsible for detect-
ing differences in Shh concentration are the non-motile, 
microtubule-based cilia on the surface of neural progeni-
tors. Disruption of intraflagellar transport (IFT) proteins, 
which are required for assembly and maintenance of cilia, 
results in defects in ventral neural patterning consistent 
with a role for these proteins downstream of smoothened in 
mice but, interestingly, not  Drosophila   [29] . 

 Decreasing   concentrations of Shh progressively induce 
cell types found further from the ventral midline, recapitu-
lating the normal organization of cells in the ventral spinal 
cord  [30] . As with TGF β  signaling, there are also important 
temporal mechanisms that modify progenitor cell responses 
to Shh signaling during development. At early stages Shh 
acts on progenitor cells to trigger MN differentiation, but 
later in development oligodendrocytes are produced instead 
of MNs. The basis for this switch is not well understood, 
but seems to involve the regulation of the transcription fac-
tor Nkx2.2        [31, 32] . Studies of chick neural tube explants 
have shown that cells are capable of interpreting both the 
concentration and duration of Shh signaling. Cells become 
gradually desensitized to ongoing Shh as a result of Shh-
mediated upregulation of patched 1  [33] . Many additional 
components of the Shh signaling pathway have been iden-
tified through genetic studies in  Drosophila  , including the 
downstream Gli family of zinc finger transcription factors 
 [28] . The gradient of Shh signaling present in the ventral 
spinal cord seems to be faithfully translated without ampli-
fication to intracellular mediators such as Gli3, which has 
a gradient of activity that matches Shh  [34] . However Gli 
proteins can switch from transcriptional repressors to acti-
vators, adding further complexity to this signaling system 
 [35] . For example, in the absence of Shh, Gli3 is cleaved 
and the resulting truncated protein directly represses Shh 
target genes. The rescue of some defects seen in  Shh  � / �    
mutant mice in the double mutant  Shh  � / �   ,  Gli3  � / �    mouse 
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suggests that Shh signaling is important for downregulat-
ing the repressive form of Gli3  [36] . 

 How   might small gradations in the level of Shh sign-
aling produce sharp progenitor cell domains that serve as 
the precursors for different ventral cell types? Studies of 
the factors regulated by Shh in the ventricular zone have 
uncovered a network of homeodomain proteins that mark 
distinct progenitor domains ( Table 36.1 )  [7] . The expres-
sion of these factors is controlled at two levels. First, Shh 
either represses (class I) or activates (class II) the expres-
sion of the homeodomain factors. If this were the only 
mechanism operating to control these factors, it might 
be expected that the interpretation of the fine Shh gradi-
ent would lead to imprecise boundaries of gene expres-
sion. However, the domains appear to be further refined 
by cross-repressive transcriptional interactions between 
factors from different domains. In this two-step manner, 
graded Shh leads to the activation of unique combinations 
of homeodomain transcription factors in precise progenitor 
cell domains        [3, 8] . The combinatorial activities of these 
homeodomain factors lead to the activation of downstream 
transcriptional regulators involved in cell specification and 
function ( Table 36.1 )  [37] . 

 The   opposing nature of the ventral Shh gradient meet-
ing the dorsal TGF β  factors suggests that inhibitors of Shh 
activity might constrain its activity, much like the inhibitors 
of TGF β s. Hedgehog interacting protein (Hip) is a surface 
membrane protein that binds Shh and attenuates its activity 
 [38] . In addition, characterization of the mouse  open brain  
( opb ) mutant, in which ventral cell types form inappropri-
ately in the dorsal region of the spinal cord, has led to the 
identification of a member of the Rab family of vesicular 
transporters, Rab23, important in limiting the activity of 
Shh dorsally ( Figure 36.1a )  [39] . Interestingly, mice defi-
cient in both Shh and Rab23 regain many of the ventral cell 
types lost in Shh mutants. This, together with the observa-
tion that  Gli3/Shh  double mutants also regain many ventral 
cell types  [36] , suggests additional Shh-independent path-
ways might contribute to ventral spinal cord development. 
Studies to understand the basis for Shh-independent sig-
naling have uncovered a parallel pathway involving retin-
oic acid (RA) expressed by paraxial mesoderm beside 
the neural tube  [40] . RA can induce many of the class I 
genes expressed in the ventral spinal cord        [40, 41]  and null 
mutant mice lacking a key RA synthesizing enzyme reti-
naldehyde dehydrogenase-2 (Raldh2) fail to induce Pax6 
and Olig2 in the spinal cord, a phenotype that is reversed 
by maternal dietary supplement with RA  [42] . To summa-
rize, ventral patterning in the spinal cord is accomplished 
via RA activation of class I transcription factors and Shh 
repression (class I) and activation (class II) of transcription 
factors that in turn cross-repress one another to demarcate 
discrete progenitor pools. 

 As   in the case of Wnt/BMP signaling in the dorsal 
spinal cord, Shh signaling in the ventral cord also plays a 

mitogenic role to control the growth of neural progenitors 
       [43, 44] , and thus patterning and proliferation are coupled. 
Furthermore, not all patterning in the spinal cord is con-
trolled by secreted factors. For example, recent work on 
interneuron subtypes generated from the p2 domain show 
that Notch activation drives inhibitory V2b interneuron 
development, whereas p2 progenitors that fail to activate 
Notch become excitatory V2a interneurons        [45, 46] .  

    ROSTROCAUDAL SPECIFICATION 

 The   spinal cord can be subdivided into four broad, func-
tional regions along the rostrocaudal axis: cervical, bra-
chial, thoracic, and lumbosacral. The IN classes of the 
spinal cord extend continuously throughout these regions, 
while specific MN subclasses are found at each level  [47] . 
Individual MN subclasses form discontinuous columns in 
register with their targets, such that MNs of the cervical 
region innervate axial muscles, brachial region MNs inner-
vate the forelimb, MNs of the thoracic region innervate 
body wall muscle, and lumbar MNs innervate hindlimbs. 
Much like the initiation of dorsoventral patterning in the 
spinal cord, embryonic manipulations and  in vitro  explant 
studies suggest that members of several families of sign-
aling molecules originating initially from sources outside 
the spinal cord contribute to the diversification process that 
leads to the generation of specific classes of MNs along the 
rostrocaudal axis            [48 – 51] . 

 Studies   of the signals that control segmental identity 
along the rostrocaudal axis have used  Hox  gene expression 
patterns as downstream molecular correlates of the regional 
specification of cell identity ( Figure 36.1b ,  Table 36.1 ). 
Furthermore, there are increasing functional data to sug-
gest that  Hox  genes contribute to the proper development 
of MN subclasses          [47, 52, 53] . As neuroepithelial cell iden-
tity is first established, it is thought to have a rostral iden-
tity which is then modified by  “ caudalizing ”  signals  [4] . 
Hindbrain studies have found that increasing levels of RA 
activate more caudal-type  Hox  genes          [54 – 56] . Likewise, 
the pattern of  Hox  gene expression in the cervical spinal 
cord is regulated by RA synthesized by the cervical parax-
ial mesoderm flanking the neural tube ( Figure 36.1b )  [51] . 

 However  , at more caudal regions of the spinal cord, 
RA is insufficient to confer positional identity. A major 
source of additional regionalizing signals is detected in 
Hensen’s node (HN), a precursor of the axial mesoderm 
that moves in a caudal direction below the nascent neu-
ral tube as development progresses. Interestingly, HN tis-
sue taken from different stages (i.e., different rostrocaudal 
levels) is able to specify different regional values in neu-
ral explants (51). Studies utilizing fibroblast growth fac-
tor (FGF) receptor antagonist SU5402 and expression of 
constitutively active FGF receptors are found to alter the 
Hox coding in neural cells, implicating FGF signaling as a 
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mediator of HN activity. FGF8 is expressed by the HN, and 
 in vitro  studies have found that this factor can act in a con-
centration-dependent manner to induce progressively more 
caudal positional values in neural explants. The Cdx fam-
ily of transcription factors represents possible downstream 
mediators of both RA and FGF8 signaling in the regulation 
of Hox expression  [56] . 

 Taken   together, these findings suggest that the sign-
aling activity of FGF8 increases as the HN moves cau-
dally ( Figure 36.1b )  [51] . An additional mechanism that 
appears to contribute to the increased activity of FGF8 at 
more caudal positions is the involvement of accessory fac-
tors that enhance FGF signaling. One such example is the 
TGF β  superfamily member Gdf11. This factor is expressed 
in HN as it progresses through lumbosacral levels, where 
FGF signaling is expected to be highest ( Figure 36.1b ). 
Unlike other TGF β  members, Gdf11 does not influence 
the dorsoventral pattern of the spinal cord, but rather acts 
to enhance FGF8 signaling activity. In this way, progres-
sively more caudal regions of the spinal cord are defined 
by the composite functions of FGF8 and Gdf11 through the 
regulation of Hox codes involved in establishing regional 
levels of the spinal cord that will generate different MN 
subclasses ( Table 36.1 ). 

 The   development of the spinal cord is a highly con-
served process that utilizes the same classes of signal-
ing molecules to induce families of transcription factors, 
which define progenitor pools in everything from flies to 
people. While the progenitor pools produced appear to be 
conserved across species, variation and complexity arises 
from the number, timing, and combination of transcription 
factors induced        [57, 58] . Secreted patterning signals con-
trol cell identity but also division vs differentiation, which 
determines overall cell number and allows scalability. 
While partitioning of the embryonic spinal cord into dis-
tinct dorsal/ventral and rostral/caudal groups of neural 
precursors is a well-studied process, the subsequent stages 
of development, including how transcription factors con-
trol positioning of mature neurons in the cord and eventu-
ally the proper outgrowth and connection to other neurons 
and muscles, are exciting new areas of research. Perhaps 
not surprisingly, but only recently appreciated, the same 
mechanisms that control the fate of neurons in the develop-
ing cord also serve to specify astrocytes that emerge from 
the progenitor pools after neurons  [59] . Understanding of 
the signaling pathways that are used to establish cell fate in 
the spinal cord has allowed researchers to recapitulate some 
of these events  in vitro  to create motor neurons from mouse 
and human embryonic stem cells        [60, 61] . A more detailed 
understanding of how individual interneuron populations 
are generated and how developing neurons make axon path 
finding and connectivity decisions might ultimately allow 
researchers and clinicians to repair or even replace cells 
damaged by injury or disease.   
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    INTRODUCTION: RAS ACTIVATION IN 
CANCER 

 It   has been 20 years since H-Ras mutations were identified 
in DNA from the bladder cancer cell line T-24. Since this 
seminal observation, rates of mutation in H-Ras, N-Ras, 
and K-Ras have been measured in most types of human 
cancers  [1] . The clonal nature of these mutations in tumors 
strongly suggests a causal role, a suggestion that has been 
amply verified by mouse models of Ras-induced cancer. A 
striking result of this comprehensive survey is the consid-
erable variation in frequency in Ras mutation between dif-
ferent types of cancer. In pancreatic carcinoma, K-Ras is 
activated by point mutation in almost every case, whereas 
Ras mutations are hardly ever detected in mammary car-
cinomas, to cite two extreme examples. The biological or 
molecular basis of these observations is not yet understood. 
One interpretation is that alternative mechanisms of acti-
vating the Ras pathway (receptor amplification, activation 
of downstream pathways) also occur at varying frequen-
cies. Another interpretation is that different types of can-
cer vary in their dependence on the Ras pathway. Another 
unresolved issue is the predominance of K-Ras mutations 
over N-Ras and H-Ras: this may reflect different levels of 
expression of these genes in different tissues, and different 
levels of dependence on each type. Mouse knockout exper-
iments show that K-Ras is essential  [2] , whereas N-Ras 
and H-Ras are not, consistent with K-Ras being the most 
important form and therefore the most likely to be directly 
involved in carcinogenesis. However, other models must 
be considered: for example, each type of Ras may signal 
through a different set of downstream effectors, and K-Ras 
happens to provide a repertoire of signals that is consistent 
with malignant progression. Although most evidence points 
toward shared effectors among all three types of Ras, evi-
dence for discrimination among effectors also exists  [3] . 

 In   addition to mutations in Ras genes, gains and losses 
of Ras genes have been reported in human tumors                [4 – 9] . 
In mouse tumors, double minute chromosomes encod-
ing H-Ras have been identified  [10] . Also in mouse mod-
els, progress increase of copy numbers of H-Ras mutants 
appears to drive malignant progression, along with selec-
tive loss of the wild-type allele  [11] .  

    PATHWAYS DOWNSTREAM OF RAS 

    Figure 37.1    shows pathways regulated by Ras. In addition 
to the well-established pathways that Ras activates, the Raf-
MAP kinase cascade and the PI3 �  kinase pathway, Ras acti-
vates RalGDS and possibly other effector pathways that are 
not well characterized  [12] . Raf and PI3 �  kinase pathways 
act synergistically to mediate Ras transformation, suggest-
ing that inhibitors of either pathway have profound effects 
on Ras transformation  [13] . This is an important issue in 
the context of drug development based on Ras pathways. 

 The   precise molecular basis of synergy between effec-
tor pathways is not fully understood. However, there are 
multiple elements of these pathways that intersect and 
could contribute to synergistic interaction. For example, the 
cyclin D1 gene is a transcriptional target of the Raf-MAP 
kinase pathway, and cyclin D1 protein is stabilized by the 
PI3 �  kinase pathway  [14] . 

 Until   recently, there was little genetic evidence that 
the Raf – MAP kinase pathway is activated by mutation of 
gene copy number change in human cancer. However, the 
recent discovery that B-Raf is activated by mutation has 
changed this view dramatically. Two types of mutant have 
been described: one that renders B-Ras independent of Ras 
and occurs in tumors in which Ras is wild-type; another 
one that requires Ras interaction for full activity and 
occurs in tumors containing mutant Ras. It is conceivable 
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that the high-throughput sequencing approach that identi-
fied these mutations may yet reveal other activating events 
in the Raf – MAP kinase pathway. Nonetheless, these new 
data imply that activation of the Raf effector pathway is the 
major selection for Ras mutation in these diseases. 

 In   contrast, genetic changes activating the PI3 �  kinase 
have been well documented and are considered of major 
importance in human cancer. Loss of PTEN is by far 
the most frequent event that activates this pathway, but 
increases in copy number of Akt/PKB have been docu-
mented and implicate this arm of the pathway in PTEN-
deficient tumors. In endometrial and cutaneous melanoma 
cancers, loss of PTEN and Ras activation are mutually 
exclusive, suggesting that in these conditions, the major 
selection for Ras mutation is activation of the PI3 �  kinase 
effector pathway        [15, 16] .  

    MOUSE MODELS OF CANCER 

 Mouse   models of cancer provide important clues relating 
to the role of Ras in cancer. Many have involved forced 
expression of mutant Ras proteins under tissue-specific 
promoters, revealing transforming power of the Ras onco-
gene in different physiological settings. An interesting 
aspect of these models is the sustained requirement for Ras 
expression even in advanced cancers: withdrawal of Ras 

expression causes complete regression of such tumors  [17] . 
Recently a model has been developed in which mutant 
K-Ras is activated sporadically: this appears to be an excel-
lent model for sporadic human lung cancer  [18] . 

 Other   informative rodent models have used mutagens to 
initiate cancers, followed by analysis of Ras activation and 
progression. The classic studies of Sukamar and Barbacid 
and coworkers proved conclusively that Ras mutation can 
be the initiating event in cancer, and showed that mutations 
caused by an early chemical insult can persist in latent 
forms before progressing to cancer  [19] . The skin cancer 
models of Balmain and coworkers have revealed a step-
wise activation of H-Ras during initiation and progression: 
mutant H-Ras alleles created by exposure to carcinogen are 
selectively amplified in a step-wise manner as the tumors 
evolve. In parallel to increased Ras activity, levels of cyclin 
D1 increase during progression. A role of cyclin D1 in Ras 
transformation in this model was confirmed by demonstra-
tion that tumors ’  progression is strongly retarded in mice 
lacking the cyclin D1 gene. Even more striking effects of 
cyclin D1 were demonstrated recently in a model of mam-
mary carcinogenesis driven by Ras, erbB, wnt, or myc: the 
former two oncogenes were completely dependent on cyc-
lin D1, whereas the latter were not  [20] . This clear role of 
cyclin D1 points toward the importance of the Raf – MAP 
kinase effector pathway in Ras transformation, since 
this pathway activates transcription of cyclin D1 directly. 
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However, a role of the PI kinase pathway cannot be ruled 
out, as this pathway stabilizes cyclin D1 through inhibition 
of GSK-3-mediated degradation.  

    PROSPECTS FOR CANCER THERAPY BASED 
ON RAS 

 Attempts   to block Ras signaling in human cancers by 
inhibiting posttranslational farnesylation have been stalled 
by the fact that K-Ras, the major form of Ras involved in 
human cancer, can also be modified by geranylgeranyla-
tion. This allows continued K-Ras activity in the presence 
of farnesyl transferase inhibitors. Such inhibitors may have 
clinical value through their action on other cellular targets, 
however  [21] . More recent approaches to blocking Ras 
activity have targeted enzymes downstream of Ras. A Raf 
kinase inhibitor entered clinical trials recently  [22] , and a 
MEK inhibitor followed soon afterwards  [23] . Attempts 
to block other enzymes downstream of Ras are also under 
way  [24] .   
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    INTRODUCTION 

 Mutational   activation of  RAS  genes is associated with 33 
percent of human cancers  [1] . The three human  RAS  genes 
( HRAS ,  NRAS , and  KRAS ) encode small GTPases that 
function as binary switches in signal transduction        [2, 3]  
( Figure 38.1a   ). The lack of current success in the devel-
opment of candidate  “ anti-Ras ”  inhibitors has dampened 
enthusiasm for such efforts        [4, 5] . In particular, the disap-
pointing results with farnesyltransferase inhibitors (FTIs) 
in clinical trial analyses prompted the misleading percep-
tion that Ras is not a clinically useful target for pancreatic 
cancer treatment. Instead, the correct conclusion, surpris-
ingly not understood by many researchers, is that FTIs are 
not effective Ras inhibitors. When coupled with the poor 
 “ druggability ”  of GTPases, an outcome of the FTI saga has 
been greatly diminished interest in the development of anti-
Ras inhibitors. 

 Several   recent research observations have rekin-
dled interest in targeting Ras for cancer treatment. First, 
genome-wide cancer genome studies have revealed, per-
haps somewhat disappointingly, that the genes most com-
monly mutated in cancers were already identified in 
more systematic studies            [6 – 9] . For example, prior to the 
sequencing of pancreatic cancer (PDAC), the most fre-
quently mutated genes known to be associated with the 
progression of this cancer were the  KRAS  oncogene and 
the  TP53 ,  CDKN2A , and  SMAD4  tumor suppressors        [10, 
11] . The outcome of sequence analyses of 20,661 genes 
was that these same four genes remained the top four most 
frequently mutated genes, with  KRAS  mutation in 113 of 
114 PDAC tumors  [9] . A similar picture emerged from 
genome-wide sequencing of colorectal cancers (CRC), with 

 KRAS  the second most prevalent mutated gene. For colon 
and pancreatic cancer, the most frequent gain-of-function 
genetic event was  KRAS  activation, and, consequently, the 
most attractive target for therapeutic intervention. 

 The   second observation involved the association of 
 KRAS  mutations with resistance to treatment with inhibi-
tors of the epidermal growth factor receptor (EGFR)  [12] . 
Whereas  EGFR  mutation was a positive prognostic indica-
tor,  KRAS  was a negative indicator for non-small cell lung 
cancer (NSCLC)          [13 – 15] . A similar association between 
 KRAS  mutation and resistance to EGFR therapy has been 
seen for CRC          [16 – 18] . Overall, the combined results from 
20 clinical studies found that the response rate to anti-
EGFR therapy was less than 3 percent for  KRAS  mutant 
tumors, and in contrast, 35 percent and 20 percent response 
rates, respectively, for  KRAS  wild-type CRC or NSCLCs. 
Taken together with observations made from the genome 
sequencing studies, a rebirth in the appreciation of Ras as a 
clinically important target for cancer therapy has occurred.  

    RAS PROTEINS FUNCTION AS SIGNALING 
NODES 

 The   three  RAS  genes encode 188-189 amino acid proteins, 
with alternative splicing accounting for the K-Ras4A and 
K-Ras4B proteins that differ in their C-terminal 12 residues. 
The N-terminal 164 residues correspond to the G domain 
( Figure 38.1a ). The G domain includes consensus GTP 
binding motifs shared with other GTP binding proteins. 
Ras proteins bind GDP and GTP with high affinity ( K  d   �  
10       pM) and possess intrinsic GTP hydrolysis and GDP/
GTP exchange activities. These activities are accelerated by 
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guanine nucleotide exchange factors (RasGEFs) that stim-
ulate formation of the active GTP bound protein and by 
GTPase activating proteins (RasGAPs) that stimulate GTP 
hydrolysis and return Ras to the inactive GDP bound state 
 [19]  ( Figure 38.1b ). 

 A   diverse spectrum of extracellular stimuli (acting 
on receptor tyrosine kinases, G protein coupled recep-
tors, cytokine and antigen receptors, integrins, etc.) causes 
activation of Ras. This occurs most commonly through 
activation of RasGEFs. Ras-GDP and Ras-GTP differ 
in conformation in two regions, referred to as switch 1 
(30 – 38) and switch 2 (60 – 76) ( Figure 38.1a ). The active 
conformation displays preferential affinity and binding 
to multiple, catalytically distinct downstream effectors 
 [3] . Hence, Ras proteins serve as points of signaling con-
vergence and activators of divergent effective signaling 
networks. 

 The   classical Ras signaling pathway comprises EGF 
stimulation of the EGFR ( Figure 38.2a   ). Activated EGFR 
recruits the Sos RasGEF, in complex with the Grb2 adap-
tor, leading to increased association of Sos with membrane 
bound Ras, leading to transient formation of Ras-GTP. Ras-
GTP binds to and facilitates activation of the Raf serine/
threonine kinases (A-Raf, B-Raf, c-Raf-1). Activated Raf 
phosphorylates and activates the MEK1 and MEK2 dual 
specificity kinases, which then phosphorylate and activate 
the ERK1 and ERK2 mitogen activated protein kinases 
(MAPKs). Activated ERK translocates into the nucleus 
where it phosphorylates and activates Ets family tran-
scription factors (e.g., Elk-1). The EGF-EGFR-Grb2-Sos-
Ras-Raf-MEK-ERK cascade represents the first signaling 

pathway where all components from the cell surface to the 
nucleus were defined. However, the subsequent identifica-
tion of additional Ras effectors revealed a more complex 
signaling network regulated by Ras activation  [3] . Of these, 
currently five have been implicated in Ras mediated onco-
genesis ( Figure 38.2b ). The validation of these effectors in 
Ras transformation has involved studies in cell culture and 
mouse models of Ras mediated oncogenesis. For cell cul-
tures studies, the use of dominant negative mutants, inter-
fering RNA or pharmacologic inhibitors has demonstrated 
the necessity of an effector pathway for Ras transforma-
tion  [20] . For mouse model studies, an important approach 
has been the use of mice deficient in effector function. For 
example, a deficiency in Tiam1, the RalGDS RalGEF, or 
phospholipase C epsilon did not perturb mouse develop-
ment, but did impair carcinogen activated H-Ras induced 
skin tumor formation          [21 – 23] . Similarly, mice harboring a 
mutant p110 alpha catalytic subunit of phosphotidylinosi-
tol 3-kinase (PI3K) that cannot couple to Ras also showed 
impaired Ras induced tumor formation  [23] .  

    RAS ACTIVATION IN HUMAN CANCERS: 
VALIDATION AND DRUGGABILITY 

 Missense   mutations in  RAS  genes are present in cancers 
that arise from many tissues  [1] . Mutations in  KRAS  are the 
most common (21 percent), followed by  NRAS  (9 percent), 
with  HRAS  mutations the least common (3 percent). Most 
commonly, this results in single amino acid substitutions at 
residues 12, 13, or 61 ( Figure 38.3   ). Less frequently, mis-

 FIGURE 38.1          Ras structure and biochemistry. (a) Domain organization of Ras proteins. The three  RAS  genes encode four 188-189 amino acid pro-
teins that share 82 – 90 percent sequence identity;  KRAS  encodes two splice variants that differ in their C-terminal 25 amino acids (designated 4A and 
4B). Residues 1 – 164 comprise the G domain that contains six conserved sequence motifs shared with other Ras superfamily and GTP binding proteins 
and involved in either binding phosphate/Mg 2 �   (PM) or the guanine base (G) of GDP and GTP. Switch I (30 – 38) and II (60 – 76) residues change in 
conformation during GDP/GTP cycling. The core effector binding domain (E; residues 32 – 40) and flanking sequences are involved in effector bind-
ing specificity. The C-terminal 24 – 25 residues comprise the membrane targeting sequence and is composed of the C-terminal CAAX box, required for 
posttranslational lipid modification, and the hypervariable (HV) domain that includes a second membrane targeting sequence element (palmytoylated 
cysteine or polybasic stretches). (b) The Ras GDP/GTP cycle. Ras proteins cycle between a GTP-bound  “ on ”  state and a GDP bound  “ off ”  states. Ras 
proteins are positively regulated by Ras specific GEFs and negatively regulated by GAPs. When bound to GTP, Ras interacts with a variety of down-
stream effectors (E) to control cellular processes.    
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sense mutations are also seen affecting other residues, typi-
cally associated with regions involved in GTP binding and/
or hydrolysis. Mutant Ras proteins are refractory to GAP 
stimulation, rendering Ras persistently GTP bound and 
active. 

 The   structural and biochemical distinctions between 
normal and mutant Ras are well delineated. However, 
these differences have not been exploited successfully 
to develop small molecule inhibitors that direct target 
mutant Ras. Unlike the successful generation of small 
molecule antagonists of ATP binding to protein kinases 
(low micromolar binding affinity), the picomolar bind-
ing affinity of Ras for GTP has made this an unrealistic 
approach to reduce the GTP bound state of Ras. Finally, 
while considerable effort was made to utilize GAP as a 
foundation for approaches to reactivate the GTPase activ-
ity of mutant Ras, these efforts have also not yielded 
promising leads. Therefore, while there remains hope that 
approaches can still be identified to target Ras directly, 
the general feeling is that indirect approaches will provide 
the most promising leads. 

 Indirect   approaches for blocking Ras have focused on 
either inhibition of Ras membrane association or down-
stream effector signaling ( Figure 38.4   ). Below we sum-
marize the specific targets under evaluation for each of 
these directions. We have limited this list to those where 
(1) target validation has been done in cell culture or mouse 
models and (2) small molecule, cell permeable inhibitors 
have been identified and shown to exhibit target based and 
anti-tumor activity in cell culture and/or mouse models of 
cancer.  

    TARGETING RAS MEMBRANE 
ASSOCIATION 

 All   Ras proteins terminate with a CAAX tetrapeptide 
motif (where C  �  cysteine, A  �  aliphatic amino acid, 
X  �  serine, methionine) ( Figure 38.1a ) that is recog-
nized by farnesyltransferase (FTase), which catalyzes the 
covalent addition of a C15 farnesyl isoprenoid lipid  [24]  
( Figure 38.4a ). Two subsequent modifications signaled 

 FIGURE 38.2          Ras signaling. (a) Epidermal growth factor receptor activation of Ras and the ERK MAPK cascade. The activated EGFR recruits the 
Grb2 adaptor protein in complex with the RasGEF, Sos, to the plasma membrane, where Ras resides, leading to Ras activation. Activated Ras then binds 
and activates Raf and activations the ERK MAPK cascade. (b) Effector signaling networks that promote Ras mediated oncogenesis.    
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 FIGURE 38.3          Ras mutations in human cancers. Shown are the consensus GTP binding motifs shared with other GTP binding proteins as described in 
the legend to  Figure 38.1 . Shown are the missense mutations found in (a) H-Ras, (b) N-Ras, and (c) K-Ras. The most frequent amino acid substitutions 
are found at residues 12, 13, or 61 that impair the intrinsic and GAP stimulated GTP hydrolysis activity of Ras. The occurrence of each mutation is indi-
cated in parenthesis. Data were compiled from the COSMIC database.    
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by the farnesylated CAAX motif are endoproteolytic 
cleavage of the AAX residues by Ras converting enzyme 
1 (Rce1) and carboxyl methylation of the isoprenylated 
cysteine residue by isoprenylcysteine carboxyl methyl-
transferase (Icmt). The CAAX modifications are critical, 
but not sufficient, to promote Ras association with the 
inner face of the plasma membrane. Most Ras proteins 
(except K-Ras4B) undergo an additional covalent modifi-
cation, the addition of palmitate fatty acid to cysteine resi-
dues upstream of the CAAX motif that serves as a second 
signal to facilitate plasma membrane association ( Figure 
38.1a ). K-Ras4B contains polybasic amino acid sequences 
that serve as a second signal for its association with the 
plasma membrane. Inhibitors of Ras membrane asso-
ciation involve either inhibitors of CAAX motif signaled 

posttranslational modifications or farnesyl moiety contain-
ing molecules that are proposed to function as antagonists 
of Ras membrane association. 

    Farnesyltransferase Inhibitors 

 The   first evidence that farnesylation was critical for 
Ras transforming activity came from structure func-
tion mutagenesis studies of the CAAX motif. Mutation 
of the cysteine residue of the CAAX motif (e.g., H-
Ras(C186S)) prevented farnesylation and all subsequent 
C-terminal modifications, rendering Ras cytosolic and non-
transforming          [25 – 27] . Further support for targeting far-
nesylation came from the isolation of farnesyltransferase 
the demonstration that the CAAX tetrapeptide can serve 

 FIGURE 38.4          Anti-Ras inhibitors in clinical evaluation. (a) Inhibitors of Ras membrane association. The C-terminal CAAX motif is necessary and 
sufficient to signal for three posttranslational modifications: Ftase catalyzed covalent addition of a farnesyl isoprenoid to the cysteine residue, Rce1 
catalyzed endoproteolytic cleavage of the AAX residues, and Icmt catalyzed carboxylmethylation of the now terminal farnesylated cysteine residue. Two 
FTase inhibitors are currently in clinical trial analyses. The second class of inhibitors is the farnesyl group-containing small molecules that function, in 
part, to block the ability of farnesylated Ras to associate with membrane receptors. (b) Inhibitors of Ras effector signaling. Inhibitors of Raf and MEK 
activation of ERK or inhibitors of PI3K activation of AKT and mTOR are currently in Phase I – II clinical trial. See  www.clinicaltrials.gov  for specific 
completed, active, or recruiting clinical trials for each inhibitor.    
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as an inhibitor of FTase  [28] . These findings set the stage 
for the intensive development of CAAX peptidomimetics, 
as well as high throughput compound library screens, to 
develop FTase inhibitors  [29] . With many pharmaceutical 
companies involved, it turned out to be relatively easy to 
identify potent and selective FTase inhibitors (FTIs)  [30] . 
Numerous structurally distinct FTIs were identified that 
selectively inhibited FTase and not the closely related gera-
nylgeranyltransferase type I (GGTase-I) enzyme. GGTase-I 
typically recognizes CAAX motifs where X  �  leucine, 
and catalyzes the addition of the more hydrophobic C20 
geranylgeranyl isoprenoid ( Figure 38.5a   ). The majority of 
FTase substrates terminate with X  �  methionine, serine or 
glutamine. 

 Although   FTIs showed impressive anti-Ras and anti-
tumor activity in preclinical cell culture and mouse mod-
els, two key issues led to the demise of FTIs as anti-Ras 
inhibitors        [5, 30] . First, many of the early studies focused 
on H-Ras driven oncogenesis. While FTIs indeed effectively 
block H-Ras farnesylation and membrane association, and 
transformation, FTIs turned out to be ineffective against the 
N-Ras and K-Ras proteins. This was due to an unexpected 
biochemical difference among Ras proteins. When FTase 
activity is blocked, then K-Ras4B and N-Ras can serve as 
substrates for GGTase-I and addition of a geranylgeranyl 
isoprenoid        [31, 32] , which can effectively substitute for the 
farnesyl group and support Ras membrane association and 
transforming activity        [33, 34] . Therefore, it was not surpris-
ing that clinical trial analyses with pancreatic cancer, where 
 KRAS  is mutated, resulted in negative findings          [35 – 37] . 
Thus, the two most commonly mutated  RAS  genes encode 
proteins can bypass FTI mediated inhibition of function. 
Second, although commonly and mistakenly referred to as 

 “ anti-Ras inhibitors, ”  Ras proteins are not the only substrates 
for FTase  [38] . Other farnesylated proteins with established 
roles in growth regulation may also be targeted by FTIs, for 
example the Rheb small GTPase  [39] , an activator of mam-
malian target of rapamycin (mTOR), a pathway commonly 
deregulated in cancer. Thus, the anti-tumor activities of 
FTIs very likely involve inhibition of function of other far-
nesylated proteins. The therapeutic value of FTIs may also be 
complicated by inhibiting the function of some farnesylated 
Ras family GTPases that function as tumor suppressors (e.g., 
Di-Ras1/Rig, ARHI/NOEY2, RRP22/RasL10A)          [40 – 42] . 
Thus, while two FTIs continue to be evaluated for antican-
cer treatment ( Figure 38.5a ), the mystery of the key targets 
involved continues to hamper their development. While 
inhibitors of GGTase-I have been developed and considered 
for combination treatment with FTIs ( Figure 38.5c ), there 
is concern that this combination approach may suffer from 
significant off-target toxicity, since there are over 50 known 
putative substrates for GGTase-I .  

    Inhibitors of Rce1 and Icmt 

 Although   much less explored, the other two CAAX sig-
naled modifications have also been considered for anti-Ras 
inhibitors  [43] . Initial studies suggested that, unlike block-
ing FTase activity, blocking Rce1 and Icmt modification of 
Ras resulted in only a 50 percent reduction in membrane 
association and transforming activity  [44] . Hence, blocking 
these two enzymatic functions was not expected to signifi-
cantly impair Ras mediated oncogenesis. However, more 
recent studies support the potential usefulness of inhibitors 
of Rce1 and Icmt for blocking Ras oncogenicity. 
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 FIGURE 38.5          Structures of inhibitors of Ras membrane association or effector signaling that are currently undergoing preclinical or clinical evalu-
ation. (a) Farnesyltransferase inhibitors. (b) Farnesyl group-containing small molecule inhibitors. (c) Geranylgeranyltransferase-I inhibitor. (d) 
Isoprenylcysteine carboxyl methyltransferase inhibitor. (e) Raf serine/threonine kinase inhibitors. (f) MEK1/2 inhibitors. (g) Phosphotidylinositol 
3-kinase inhibitor. (h) Duel phosphotidylinositol 3-kinase and mTOR inhibitor. (i) AKT serine/threonine kinase inhibitor. (j) Ras – Raf interaction inhibi-
tor. (k) Rac small GTPase inhibitors.      
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 Studies   in mice deficient in Rce1 or Icmt function argue 
that inhibitors of these enzymes can also have a significant 
impact on Ras mediated tumor growth. Mouse embryo 
fibroblasts deficient in Rce1 revealed that Ras proteins 
were incompletely processed and membrane associated 
       [45, 46] . Cre mediated loss of Rce1 in fibroblasts gener-
ated from mice with a conditional Rce1 allele resulted in 
a loss of endoproteolytic processing and methylation of 
Ras. Additionally, soft agar assays revealed that excision of 
Rce1 reduced Ras mediated transformation. Finally, exci-
sion of Rce1 in a skin carcinoma cell line greatly reduced 
their growth  [47] . Loss of Icmt resulted in inhibition of 
K-Ras mediated growth in soft agar assays and tumor 
growth in nude mice. Unexpectedly, loss of Icmt activ-
ity also blocked transformation by an oncogenic form of 
B-Raf, which is not an Icmt substrate  [48] . This inhibition 
may be due to inhibition of other Icmt substrates. In sup-
port of this possibility, this study found evidence that RhoA 
inhibition may contribution to inhibition of K-Ras mediated 
transformation. Multiple Rho family GTPases have been 
implicated in Ras transformation. Our recent study found 
that RhoA and other Rho family members are dependent 
on Rce1 and Icmt mediated post-prenyl processing  [49] . 
In a recent study, an Icmt deficiency reduced lung tumor 
development in a mouse model of  KRAS  induced cancer 
 [50] . However, this issue may be highly context dependent, 
since an Rce1 deficiency was found to accelerate mutant 
 KRAS  induced myeloproliferative disease  [51] . 

 With   regards to inhibitors of post-prenyl processing, 
Casey and colleagues described the identification of a small 
molecule inhibitor of Icmt  [52] . Identified in a chemical 
library screen, cysmethynil (2-[5-(3-methylphenyl)-1-octyl-
1H-indol-3-yl]acetamide) ( Figure 38.5d ) treatment inhib-
ited cell growth in an Icmt dependent fashion. They also 
showed that cysmethynil treatment of cancer cells resulted 
in mislocalization of Ras. Cysmethynil treatment blocked 
the anchorage independent growth of a colon cancer cell 
line, and this effect was reversed by ectopic overexpres-
sion of Icmt, indicating that the inhibition was target based. 
Additionally, treatment of PC3 human prostate cell derived 
xenograft tumors with cysmethynil resulted in markedly 
reduced tumor size  [53] . 

 Other   small molecules with Icmt inhibitory activity 
have also been described. Inhibition of Icmt function has 
been shown to be a critical component of the antiprolifera-
tive effect of the anti-folate methotrexate. In a colon cancer 
cell line, methotrexate treatment resulted in a decrease in 
Ras methylation by nearly 90 percent, mislocalization of 
Ras to the cytoplasm  [54] . Finally, several natural product 
inhibitors of Icmt were discovered in a high throughput 
screen campaign          [55 – 57] . 

 To   date, only limited development of Rce1 inhibi-
tors has been described. In one compound library screen, 
several compounds were found to be effective at a low 
micromolar range for both yeast and human Rce1 and 

were identified as possible tools for design of future Rce1 
inhibitors  [58] . An additional study showed that peptidyl 
(acyloxy)methyl ketones can inhibit Rce1 enzyme activity 
 in vitro   [59] . 

 Finally  , inhibitors of Ras palmitoylation have also been 
considered. However, the enzymology of Ras palmitoyla-
tion is complex and a better understanding of the specificity 
of the DHHC domain proteins that function as  S -palmitoyl-
transferases remains to be achieved.  

    Farnesyl Containing Small Molecule 
Inhibitors of Ras Membrane Association 

 As   detailed above, carboxyl terminal farnesylation of Ras 
proteins is critical for localization to the plasma membrane, 
and this localization is necessary for Ras binding to effector 
molecules in the various downstream signaling pathways. 
There is evidence that the insertion of the lipophilic prenyl 
moiety into the plasma (or other lipid bi-layer) membrane 
is not simply random, but that specific  “ prenyl receptors ”  
facilitate prenylated protein binding  [60] . Indeed, the data 
showing that inappropriately prenylated H- or K-Ras is 
mislocalized in the cell        [61, 62]  and the necessary presence 
of the farnesyl group for the binding of Ras to the effec-
tor c-Raf-1          [63 – 65]  lend support to the hypothesis that pre-
nylation also provides specificity for interaction partners. 
Therefore, ongoing work is focused on inhibiting the bind-
ing of farnesylated Ras to sites on the inner surface of the 
plasma membrane. 

 Two   farnesyl isoprenoid containing small molecules 
have been described that are proposed to antagonize Ras 
function by competition for farnesyl binding ( Figure 
38.5b ). Salirasib (FTS;  S -trans,trans-farnesylthiosalicylic 
acid) is a farnesylcysteine mimetic, which selectively dis-
rupts the association of chronically active Ras proteins 
with the plasma membrane  [66] . Salirasib is proposed to 
compete with Ras for binding to membrane associated Ras 
escort proteins (galectins), which possess putative farnesyl 
binding domains, thereby dislodging Ras from the plasma 
membrane and disrupting effector signaling. 

 Galectin  -1 has been shown to interact with mutant H-Ras 
and K-Ras, and that this interaction was required for mem-
brane localization of the GTPases and subsequent trans-
forming activity in human and rat epithelial cells        [67, 68] . 
Kloog and colleagues demonstrated that the prenyl moiety 
is necessary for galectin-1 regulation of Ras activation by 
using site directed mutagenesis to create an L11A mutant 
in the putative prenyl binding domain of galectin-1 that 
was incapable of augmenting GTP loading of H-Ras and 
transforming oncogenic H-Ras transfected Rat-1 fibrob-
lasts, and disrupted membrane association of mutant H-Ras 
 [69] . The importance of the interaction in Ras driven trans-
formation is illustrated by data showing that galectin-1 
binding directs the signaling downstream of Ras from PI3K 
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to c-Raf-1, and that inhibition of galectin-1 expression by 
antisense reversed this preference for c-Raf-1 activation 
 [68] . There appears to be a preferential binding of galectins 
to the GTP bound form of Ras compared to Ras-GDP, and 
greater affinity of galectin-1 to activated H-Ras than K-Ras 
       [68, 70] . Since there is evidence of specific proteins that 
both recruit activated forms of Ras proteins and guide the 
activation of transforming effector cascades, it is desirable 
to investigate potential inhibitors of this binding. 

 Salirasib   blocks the membrane association of H-, K-, 
and N-Ras proteins in both transformed cells and can-
cer cells with oncogenic mutant Ras or hyperactivated 
wild-type Ras, including pancreatic, melanoma, glioblas-
toma, neuroblastoma, and neurofibromatosis cancer cells 
                   [71 – 78] . Bolstering the hypothesis that salirasib was spe-
cifically inhibiting activated Ras function, Kloog and col-
leagues demonstrated that signaling from three of the most 
studied effector pathways downstream of Ras, Raf-MEK-
ERK  [79] , RalGEF-Ral  [78] , and PI3K-AKT            [76 – 78, 80]  
could be blunted by treatment with salirasib. Several of 
the phenotypic changes attributed to aberrant Ras activa-
tion in cells were similarly inhibited by salirasib, including 
cell survival  [81] , proliferation        [71, 73] , and migration        [80, 
82] . In pancreatic and neurofibromatosis xenograft tumor 
models, tumor growth was inhibited by salirasib and was 
associated with a reduction of the abundance of Ras in the 
tumor tissue        [78, 83] . Phase I clinical trials have shown that 
salirasib was well tolerated and several Phase I/II trials are 
ongoing. 

 Another   putative Ras membrane binding inhibitor 
is also currently being developed. TLN-4601 (4,6,8-tri-
hydroxy-10-(3,7,11-trimethyldodeca-2,6,10-trienyl)-5,
10-dihydrodibenzo[b,e]; formerly ECO-4601) is a structur-
ally novel farnesylated dibenzodiazepinone discovered from 
a  Micromonospora  sp., 046Eco-11 bacterium  [84] . It was 
isolated independently in an antibacterial activity guided 
fractionation of fermentation extracts of a  Micromonospora  
sp., DPJ12 and called diazepinomicin  [85] . 

 TLN  -4601 was shown to have broad cytotoxic activ-
ity in micromolar concentrations when evaluated in the 
NCI 60 human tumor cell line panel ( http://dtp.nci.nih.
gov/docs/misc/common_files/cell_list.html ). In contrast to 
salirasib, TLN-4601 has a benzodiazepinone moiety that 
binds peripheral and not central nervous system benzodi-
azepine receptors (PBR, CBR)  in vitro   [84] . PBR expres-
sion is upregulated in several tumor subtypes compared to 
normal tissue  [86] , with increased PBR ligand binding in 
several solid tumors including colon          [87 – 89] , brain  [90] , 
breast          [91 – 93] , prostate  [86] , ovary  [94] , and liver  [95] . 
These studies suggest that the PBR might facilitate binding 
and uptake of TLN-4601 into tumor cells. 

 Like   salirasib, it is speculated that TLN-4601 also com-
petes with Ras for farnesyl binding proteins on membranes, 
and the displaced Ras is therefore susceptible to degrada-
tion. Preclinical cell culture studies support this mechanism. 

TLN-4601 exhibited anti-tumor activity in rat C6 and 
human U-87MG glioma tumor xenograft models, as well 
as in MDA-MB-231 breast and PC-3 prostate human tumor 
xenograft models  [84] . 

 A   Phase I/II trial for TLN-4601 was recently completed 
that examined the compound’s safety, pharmacologic pro-
file, and anti-tumor efficacy for the treatment of advanced 
solid tumors. TLN-4601 was found to be safe and well tol-
erated with no maximum tolerated dose attained. As with 
the experimental xenograft models, pharmacokinetic data 
indicated rapid clearance of TLN-4601 from the plasma 
upon termination of infusion, and that no accumulation of 
the drug occurred for subsequent dosing cycles. Based on 
promising results from this study and from preclinical gli-
oma model experiments a Phase II trial has recently been 
initiated that will evaluate TLN-4601 as a monotherapy 
treatment for patients with recurrent/refractory glioblas-
toma multiforme.   

    TARGETING RAS EFFECTOR SIGNALING 

 Activated   Ras binds preferentially to a spectrum of func-
tionally diverse downstream effectors. Most are charac-
terized by Ras binding (RBD) or Ras association (RA) 
domains that directly interact with Ras  [3] . As described 
above, the Raf kinases are the best characterized effectors 
of Ras  [96] . However, there exist at least 10 functionally 
distinct classes of Ras effectors, with evidence for Raf 
and four non-Raf effectors in Ras transformation ( Figure 
38.2b ). Genetic experiments in mice argue that inhibition 
of any one effector pathway alone is sufficient to effec-
tively block Ras driven tumor development. However, 
genetic ablation of a target is perhaps too blunt of a tool 
that may not accurately mimic pharmacologic inhibition of 
effector function. Furthermore, these analyses demonstrate 
tumor prevention rather than inhibition of an already devel-
oped tumor. Below we summarize the status of the devel-
opment of inhibitors of Ras effector signaling. 

    Inhibitors of the Raf-MEK-ERK MAPK 
Cascade 

 The   Raf serine/threonine kinases are the initiating signal-
ing component of the ERK kinase cascade. The three Raf 
kinases (A-Raf, B-Raf, c-Raf-1) are highly conserved 
structurally and share the same substrate specificity, with 
MEK1 and MEK2 the only known substrates. Despite 
their similarities with one another, the highly related Raf 
isoforms exhibit distinct differences in their regulation and 
biological function        [97, 98] . Furthermore, MEK independ-
ent functions have been described, although these activities 
remain poorly characterized. A number of structurally dis-
tinct classes of compounds have been developed as Raf and 
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MEK kinase inhibitors, many of which have now entered 
clinical development  [99]  (       Figures 38.4b, 38.5e, and 38.5f ) 
( Table 38.1   ). 

    Raf Inhibitors 

 Sorafenib   (tosylate salt of BAY 43-9006; Nexavar ® ), an 
orally available compound, is the first anti-Raf inhibi-
tor to gain FDA approval in 2005 for advanced renal cell 
carcinoma (RCC) and later in 2007 it received approval 
for use in patients with unresectable hepatocellular car-
cinoma (HCC) ( Figure 38.5e ). Originally developed as 
an inhibitor of Raf-1  [100] , sorafenib is a potent inhibitor 

of both wild-type and mutant B-Raf kinases  in vitro . 
Crystallographic analyses determined that the inhibitor 
bound to the ATP binding pocket and prevented kinase 
activation, preventing substrate binding and phosphoryla-
tion  [101] . 

 In   addition to its anti-Raf activity, sorafenib potently 
inhibits a diverse spectrum of additional protein kinases 
 [102] .  BRAF  mutations are not common in RCC or HCC 
and it is currently unclear whether Raf is a key target of 
sorafenib in HCC  [103] . Thus, it is believed that the anti-
tumor activity of sorafenib is due largely to its inhibition 
of receptor tyrosine kinases involved in tumor angiogenesis 
(e.g., VEGFR-2, VEGFR-3, Flt-3, c-Kit, and FGFR-1). 

 TABLE 38.1          Small molecule Raf and MEK Inhibitors  1    

   Agent  Company  Target  Status  Indication /target population 

   Sorafenib (BAY 43-09006; 
Nexavar ® ) 

 Bayer/Onyx  B-Raf, Raf-1  2    Approved  Advanced RCC, unresectable HCC 

         Phase II-III  CRC, NSCLC, pancreatic cancer, biliary 
tract cancer, HCC, glioblastoma, melanoma, 
thyroid, breast, neurofibromas, cervical 
cancer, prostate, Barrett’s esophagus cancer, 
ovarian cancer, AML, multiple myeloma, 
myelodysplastic syndrome, as well as other 
solid and hematological malignancies, 
Karposi’s sarcoma, nasopharyngeal 
carcinoma, SCCHN 

   Raf265 (CHIR-265)  Novartis  A-Raf, B-Raf, c-Raf-1  3    Phase I  Locally advanced or metastatic melanoma 

   PLX4032  Roche/Plexxikon  Mutant B-Raf(V600E)  Phase I  Melanoma 

   XL281  Exelixis  Raf  Phase I  NSCLC, CRC, papillary thyroid cancer 

   RO5126766  Hoffman-La Roche  Raf, MEK  Phase I  Solid tumors 

   PD0325901  Pfizer  MEK1, MEK2  Phase I – II  CRC, melanoma, breast 

   AZD6244 (ARRY-142886)  AstraZeneca/Array 
BioPharma 

 MEK1, MEK2  Phase II  Hepatocellular, AML, thyroid, ovarian 

   ARRY-438162  Array BioPharma  MEK1, MEK2  Phase II  Rheumatoid arthritis 

   XL518  Exelixis  MEK1, MEK2  Phase I  Solid tumors 

   GSK1120212  GlaxoSmithKline  MEK  Phase I  Solid tumors or lymphoma 

   RDEA119  Ardea Biosciences  MEK1, MEK2  Phase I  Advanced cancer 

   AZD8330 (ARRY-424704)  AstraZeneca/Array 
BioPharma 

 MEK1  Phase I  Advanced cancer 

  1  Compiled from studies cited in reviews that we have referenced in the text, from company websites, and from  www.clinicaltrials.gov ; RCC, renal 
cell cancer; HCC, hepatocellular carcinoma; CRC, colorectal cancer, NSCLC, non-small cell lung cancer; AML, acute myelogenous leukemia; SCCHN, 
squamous cell carcinomas of the head and neck.  
  2  Also activity for VEGFR-2, PDGFR- β , Flt-3, c-Kit, and FGFR-1.  
  3  Also activity for VEGFR-2.  
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In addition to RCC and HCC, several single agent and 
combination clinical studies are ongoing in NSCLC, pros-
tate cancer, breast cancer, ovarian cancer, pancreatic cancer, 
melanoma, and hematological malignancies        [104, 105] . 

 RAF265   (formerly CHIR-265) is another orally bio-
available Raf inhibitor that is being investigated in Phase I 
clinical trials in locally advanced or metastatic melanoma. 
RAF265 inhibits all three Raf isoforms as well as mutated 
B-Raf ( Table 38.1 ). Like sorafenib, RAF265 may also have 
anti-angiogenic activity through inhibition of VEGFR2. 

 PLX4032   is a potent and selective inhibitor of mutant 
B-Raf that is currently in Phase I clinical evaluation 
( Figure 38.5e ).  In vitro  analysis against a panel of 65 non-
Raf kinase showed PLX4032 is a highly selective inhibi-
tor of B-Raf kinase activity, with an IC 50  of 44       nM against 
V600E-mutant B-Raf  [106] , while only one kinase, 
BRK, showed inhibition in the nanomolar range (IC50  �  
240       nM). Most of the kinases tested showed  � 100-fold 
higher IC 50  than mutant Raf. In addition, cell culture 
experiments showed PLX4032 potently inhibited cell pro-
liferation and MEK activation in melanoma and thyroid 
carcinoma cell lines harboring mutant B-Raf. 

 A   fourth Raf kinase inhibitor, XL281, has also recently 
entered Phase I clinical testing ( Table 38.1 ). XL281 is 
reported to be a potent and highly selective inhibitor of Raf 
kinases  [107] . Data presented showed XL281 was gener-
ally well tolerated and pharmacodynamic analyses found 
that substantial modulation of Raf signaling was observed 
in tumor tissue, skin, and hair as indicated by decreases in 
the phosphorylation of MEK and ERK. Other Raf inhibi-
tors are also in preclinical evaluation and should be enter-
ing clinical evaluation in the near future.  

    MEK Inhibitors 

 MEK1   and MEK2 are closely related dual specificity 
kinases, capable of phosphorylating both serine/threonine 
and tyrosine residues of their substrates, p44 ERK1 and 
p42 ERK2. They are the only known catalytic substrates of 
Raf kinases. The fact that ERK1/2 are the only known sub-
strates of MEK1/2, when coupled with the observation that 
ERK is commonly activated in both tumor cell lines and 
patient tumors, has contributed to strong interest in devel-
oping pharmacological inhibitors of MEK as a means to 
block ERK activation  [108] . 

 In   contrast to sorafenib and RAF265, small molecule 
inhibitors of MEK1/2 are highly specific protein kinase 
inhibitors. Although the first two MEK inhibitors, PD98059 
and U0126, were highly specific  [109]  they lacked the 
pharmaceutical properties needed to be successful clini-
cal candidates. Nonetheless, these compounds have been 
invaluable academic research tools for dissecting the MEK-
ERK pathway and have provided enormous insight into the 
importance of ERK MAPK signaling in cancer        [4, 110] . 

 The   first MEK inhibitor to enter clinical trials was 
CI-1040 (PD184352), an orally active, highly potent and 
selective inhibitor of MEK1 and MEK2  [111] . Preclinical 
evaluation found that CI-1040 inhibited the growth of 
human colon cancer cells and human melanoma cells in 
athymic nude mice        [111,112] . Subsequent Phase I and II 
clinical trials reported the most common toxicities were 
mild skin rash, diarrhea, and fatigue        [113,114] . During 
the Phase I trial, a partial response was seen in one 
patient with pancreatic cancer and 25 percent of patients 
with a variety of tumors had stable disease for greater 
than 3 months  [113] . Tumor tissues from treated patients 
showed significant reduction in activated phosphorylated 
ERK, indicating that the target was inhibited. These 
promising results prompted a Phase II study in patients 
with advanced NSCLC, breast cancer, CRC, and PDAC. 
Unfortunately, the results of this trial were negative and 
CI-1040 was determined to have poor pharmacokinetic 
properties  [114] . 

 In   contrast to the majority of protein kinase inhibi-
tors, MEK inhibitors are non-ATP competitive inhibitors, 
which may account for their highly selective properties. 
Structural studies with an analog of CI-1040 in complex 
with MEK1 or MEK2 showed inhibitor binding did not 
perturb ATP binding, and, instead, bound to a unique inhib-
itor binding pocket adjacent to the ATP binding site  [115] . 
Inhibitor binding locked MEK in a catalytically inactive 
conformation. 

 PD0325901   is a derivative of CI-1040 where sev-
eral slight modifications to the chemical structure have 
resulted in more than a 50-fold increase in potency against 
MEK1/2, improved bioavailability, and longer duration 
of target suppression compared to CI-1040  [110]  ( Figure 
38.5f ). Anti-tumor activity for PD0325901 was demon-
strated for a variety of tumor xenografts and this inhibitor 
has been evaluated in Phase I/II clinical trials with a focus 
on tumors expected to have activated ERK MAPK signal-
ing        [116, 117] . However, current clinical development has 
been suspended likely due to poor side effect profile. 

 AZD6244   (ARRY-142886) is an orally bioavail-
able benzimidazole derivative known to potently inhibit 
MEK1/2  in vitro  and in cell based assays        [118, 119]  
( Figure 38.5f ). Like other MEK inhibitors, AZD6244 is 
ATP non-competitive. Preclinical evaluation of AZD6244 
showed anti-tumor activity in several human xenograft 
models including colon, pancreas, breast, NSCLC, and 
melanoma  [120] . Additionally, AZD6244 anti-tumor activ-
ity was found to correlate with suppression of ERK activa-
tion, which further validates that its mechanism of action 
is MEK dependent. Results from preclinical analysis have 
been extremely promising and thus AZD6244 has moved 
into clinical development. Recently, initial results of a 
first in human dose ranging study to assess the pharma-
cokinetics, pharmacodynamics, and toxicities of AZD6244 
in patients with advanced solid tumors, concluded that 
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AZD6244 is well tolerated, and the most common treat-
ment related adverse events were rash, diarrhea, nausea, 
fatigue, peripheral edema, and vomiting  [121] . 

 RDEA119   is a potent, non-ATP competitive, highly 
selective inhibitor of MEK1/2 and preclinical testing 
showed RDEA119 inhibited ERK phosphorylation, anchor-
age dependent growth, and anchorage independent growth 
in a variety of cancer cell lines at nanomolar concentra-
tions. Additionally, analyses in tumor xenograft models 
indicated significant tumor growth delay and even tumor 
regression in some models treated orally with REA119. 
RDEA119 is currently being evaluated alone in a Phase 
I trial for advanced solid tumors and in Phase I/II clini-
cal trial in combination with Nexavar in advanced cancer 
patients. 

 XL518   is a potent, selective, orally bioavailable inhibi-
tor of MEK1 that inhibits proliferation and stimulates 
apoptosis in a variety of human tumor cell lines.  In vitro  
analyses showed potent activity for MEK1 (0.95       nM), weak 
activity for MEK2 (199       nM) and no activity for a panel of 
103 serine/threonine or tyrosine protein kinases  [122] . In 
preclinical xenograft models, oral administration of XL518 
resulted in sustained inhibition of ERK in tumor tissue, but 
not brain tissue, leading to tumor growth inhibition and 
regression at well tolerated doses. 

 Several   other MEK inhibitors are also entering early 
phase clinical trials ( Table 38.1 ). Patients with solid tumors 
and lymphoma are now being recruited for evaluation of 
the GSK1120212 MEK inhibitor. A similar Phase I study 
is planned for RO5126766, a dual Raf and MEK inhibitor. 

 Finally  , one novel class of small molecule inhibitors 
of the Raf effector pathway are MCP1 and derivatives that 
have been described and shown to have anti-tumor activ-
ity in preclinical cell culture studies  [123]  ( Figure 38.5j ). 
MCP1 was identified as an inhibitor of Ras interaction with 
Raf in a yeast two-hybrid based screen and additional more 
potent analogs were identified (e.g., MCP110). Mouse 
model evaluation of MCP110 found anti-tumor activity 
against various human tumor xenografts  [124] . While the 
exact mechanism by which MCP compounds function is 
currently unclear, the inability of MCP to block a second 
Ras effector pathway  [123]  and the ability to block the 
growth of  BRAF  mutation positive melanomas  [125]  sup-
port a mechanism by which it antagonizes Raf function.    

    INHIBITORS OF PI3K-AKT-MTOR 
SIGNALING 

 The   p110 catalytic subunit of class I PI3Ks (p110 α ,  β ,  δ , 
and  γ ) were found to be effectors of Ras and shown to be 
required for Ras transformation        [126, 127] . A major activ-
ity of PI3K is the conversion of phosphoinositide(4,5)
bisphosphate to phosphoinositide(3,4,5)bisphosphate 
(PIP3). Membrane associated PIP3 promotes the activation 

of the AKT serine/threonine kinase as well as other sign-
aling proteins that include GEFs for Rho family GTPases. 
One downstream activity of AKT involves activation of the 
mTOR serine/threonine kinase. In addition to activation 
by Ras, the PI3K-AKT-mTOR pathway is deregulated by 
a variety of mechanisms in human cancers. Hence, these 
three components have been attractive targets for antican-
cer drug discovery, with many inhibitors recently entering 
clinical trial analyses        [128, 129]  ( Table 38.2   ). 

    PI3K Inhibitors 

 The   competitive ATP binding PI3K inhibitors, wortman-
nin and LY294002, have been used widely to study the 
mechanisms of the PI3K and other signal transduction 
pathways  [130] . Improved and more potent derivatives 
of wortmannin are currently in clinical trials. PX-866, an 
orally bioavailable semisynthetic derivative of wortmannin 
is currently in Phase I studies for advanced solid tumors 
( Table 38.2 ). PX-866 was selected as part of a screen of 
semisynthetic viridans for its ability to inhibit PI3K com-
pared to wortmannin and anchorage independent growth in 
HT-29 colorectal cancer cells  [131] . Initial preclinical stud-
ies also demonstrated  in vivo  activity against human tumor 
cell line xenografts  [131] . Further studies have demon-
strated that PX-866 in combination with gefitinib, a small 
molecule inhibitor of EGFR, was able to further inhibit 
growth of A549 cell line xenografts compared to either one 
alone  [132] . In addition, PX-866 has been shown to inhibit 
anchorage independent growth of U87 glioblastoma cells in 
a three-dimensional spheroid model  [133] . Finally, PX-866 
inhibits the number of lung nodules mutant  KRAS  driven 
mouse model of lung tumorigenesis  [134] . 

 XL147   is also an orally bioavailable PI3K inhibitor 
currently in Phase I clinical trials as monotherapy or in 
combination with erlotinib or paclitaxel and carboplatin in 
patients with solid tumors. Although the structure has not 
been disclosed, it is a selective reversible ATP competi-
tive inhibitor of PI3K. XL147 demonstrated growth inhibi-
tion of MCF-7, A549, ovarian cancer, and glioma cell line 
xenografts  [135] . In addition, it was found to also exhibit 
anti-angiogenic properties in a vascular endothelial growth 
factor driven tubule formation assay  [136] . Combination 
treatment with rapamycin, an EGFR inhibitor or paclitaxel 
and carboplatin, increased apoptosis  [136] , leading to the 
Phase I trial designs mentioned above. Finally, GDC-0941 
is another ATP competitive inhibitor of class I PI3Ks that 
entered Phase I studies ( Figure 38.5g ); however, currently 
no active or recruiting clinical trials are listed ( www.clini-
caltrials.gov ). 

 XL765          [137, 138] , BGT226 ( http://www.novartison-
cology.com/research  innovation/pipeline/BGT226.jsp) and 
NVP-BEZ235 are dual inhibitors of PI3K and mTOR 
( Figure 38.5g  and  Table 38.2 ). Preclinical studies of 
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XL765 demonstrated continued tumor regression after ces-
sation of treatment compared to rapamycin alone  [139] . 
NVP-BEZ235 has been studied in a genetically engineered 
mouse model of PTEN deletion and  KRAS  activation driven 
ovarian cancer model  [140]  as well as primary pancreatic 
cancer xenografts  [141]  demonstrating activity as a single 

agent. XL765 is currently in Phase I trials as monotherapy 
and in combination with erlotinib for solid tumors. In addi-
tion, it is being tested in combination with temozolamide 
for malignant gliomas. NVP-BEZ235 and BGT226 are in 
Phase I trails for advanced solid tumors.  

 TABLE 38.2          Small molecule PI3K and AKT Inhibitors  1    

   Agent  Company  Target  Status  Indication /target population  2   

   BGT226  Novartis  PI3K  Phase I – II  Solid tumors 

   BEZ235  Novartis  PI3K  Phase I – II  Solid tumors 

   PX-866  ProIX Pharmaceuticals  PI3K  Phase I  Solid tumors 

   XL765  Exelixis  PI3K and mTOR  Phase I  Solid tumors, glioma 

   XL147  Exelixis  PI3K  Phase I  Solid tumors 

   NVP-BEZ235  Novartis  PI3K and mTOR  Phase I – II   

   GDC-0941  Genentech/Piramed  PI3K  Not in trial   

   SF1126  Semafore  PI3K and mTOR  Phase I (completed)  Solid tumors 

   GSK690693  GlaxoSmithKline  AKT  Phase I  Lymphoma (terminated); hematologic 
malignancies (not yet open) 

   Perifosine (KRX-04010)  Keryx 
Biopharmaceuticals 

 AKT  3    Phase I – II  Solid tumors, hematologic malignancies 

   Sirolimus (rapamycin; 
Rapamune ® ) 

 Wyeth  mTOR  Phase II  Neurofibromatosis type I and 
plexiform neurofibromas, solid tumors, 
NSCLC, RCC, tuberous sclerosis and 
lymphangioleiomyomatosis, ALL, CML, 
Burkitt’s Lymphoma, pancreatic cancer 

   Deforolimus (AP23573; 
MK-8669) 

 Ariad Pharmaceuticals/
Merck 

 mTOR  Phase II – III  Sarcomas, hematologic cancers, 
endometrial cancer, breast cancer 

   Everolimus (RAD001; 
Certican ® ) 

 Novartis  mTOR  Phase I – II  Breast cancer, CRC, RCC, HCC, prostate, 
endometrial, NSCLC, mesotheliomas, 
lymphoma, pancreatic, tuberous 
sclerosis and giant cell astrocytoma or 
lymphangioleiomyomatosis, gastric, 
CML, AML 

   Temsirolimus (CCI-779; 
Torisel ® ) 

 Wyeth  mTOR  Approved  RCC 

         Phase II  NSCLC, solid tumors, chronic 
lymphocytic leukemia, prostate, RCC, 
glioblastoma, multiple myeloma 

   OSI-027  OSI Pharmaceuticals  mTOR  Phase I  Solid tumors, lymphoma 

  1  Compiled from studies cited in reviews that we have referenced in the text, from company websites, and from www.clinicaltrials.gov.  
  2  Abbreviations: NSCLC, non-small cell lung cancer; RCC, renal cell cancer, ALL, acute lymphocytic leukemia; CML, chronic myelogenous leukemia; 
CRC, colorectal cancer; HCC, hepatocellular carcinoma; AML, acute myelogenous leukemia.  
  3  Also activity for ERK inhibition and JNK activation.  
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    AKT Inhibitors 

 Two   inhibitors of AKT are currently in clinical trials. 
GSK690693 is a novel ATP competitive pan-AKT kinase 
inhibitor  [142]  ( Figure 38.5i ). Currently in Phase II clinical 
trials for relapsed or refractory hematologic malignancies, 
GSK690693 requires parenteral administration. Preclinical 
studies of GSK690693 demonstrated anti-tumor activ-
ity against breast, ovarian, and prostate cancer cell line 
xenografts  [143] . 

 Perifosine   (KRX-0401, NSC 639966) is an orally avail-
able alkylphospholipid that inhibits the translocation of 
AKT to the plasma membrane and its subsequent phospho-
rylation  [144] . This lipid based inhibitor has been studied 
extensively for its anti-neoplastic properties both as a sin-
gle agent and in combination with other targeted or chemo-
therapeutic agents in Phase I and II clinical trials  [128]  with 
24 currently active trials. Unfortunately, despite promising 
results from preclinical studies, no study of perifosine as 
monotherapy demonstrated significant efficacy for a wide 
range of tumor types                      [145 – 153] . Therefore it is being eval-
uated in combination with traditional chemotherapeutics as 
well as tyrosine kinase inhibitors for activity against most 
solid tumors.  

    mTOR Inhibitors 

 Four   mTOR inhibitors are currently in clinical trials. 
Sirolimus (rapamycin; Rapamune ® ), the prototype is the 
best studied. It was originally isolated as an antifungal 
metabolite produced by the bacterium  Streptomyces hygro-
scopicus  in a soil sample from Easter Island (Rapa Nui) 
 [154]  and early on was found to have anti-tumor effects 
in colorectal xenografts  [155] . Although FDA approved 
for use as an immunosuppressing agent in transplantation, 
there has been a resurgence of interest and excitement in 
the use of sirolimus and its derivatives as targeted therapies 
in cancer. Several Phase I and II studies of sirolimus as 
monotherapy and combination therapy are currently under-
way for solid tumors and hematological malignancies. In 
addition, sirolimus is being studied as a preventative agent 
for post-transplant related skin cancers. 

 Temsirolimus   (CCI-779; Torisel ® ), the only mTOR 
inhibitor with FDA approval as anticancer therapy, has 
demonstrated a median overall survival benefit of 3.6 
months for patients with poor prognostic RCC compared 
to interferon therapy        [156, 157] . As a result, temsirolimus 
is now recommended as first-line therapy for patients with 
RCC and poor prognostic risk factors  [158] . In preclinical 
studies of mantle cell lymphoma, temsirolimus induced cell 
cycle arrest and autophagy  [159] , prompting its evaluation 
in Phase II studies. A Phase II clinical trial of mantle cell 
lymphoma demonstrated an overall response rate of 41 per-
cent with 50 percent of the patients having been refractory 
to previous therapies  [160] , leading to its current evaluation 

in Phase III studies. Results of temsirolimus in advanced 
or metastatic breast cancer have been less favorable lead-
ing to early termination of the Phase III trial. Temsirolimus 
continues to be studied as a single agent for head and neck 
squamous cell and prostate carcinomas, NSCLC, gyne-
cologic malignancies and B cell lymphoma, and chronic 
lymphocytic leukemia. Studies in small cell lung cancer 
have not been promising and are no longer active  [161] . 
Preclinical studies have suggested temsirolimus sensitivity 
in EGFR resistant squamous cell carcinomas of the head 
and neck  [162] . In addition, temsirolimus demonstrated 
activity against prostate cancer cell line xenografts  [163] . 
Finally, many trials with temsirolimus in combination with 
either other targeted therapeutics or traditional chemothera-
peutics are underway. 

 In   Phase III studies of metastatic renal cell carcinoma, 
everolimus (RAD001; Certican ® ) demonstrated significant 
improvement in progression free survival  [164] . This study 
is ongoing and awaiting analysis of its secondary end point 
overall survival  [165] . Phase II studies of everolimus in 
breast cancer have not demonstrated responses as impres-
sive with an overall response rate of 68 percent compared to 
59 percent (p  �  0.062) in patients treated with everolimus 
plus the aromatose inhibitor letrozole, compared to letro-
zole alone  [166] . However these early results are promis-
ing and further studies of everolimus in combination with 
other agents is being studied for breast cancer. Early pre-
clinical studies of NSCLC using temsirolimus suggested 
that mTOR inhibition may restore cisplatin sensitivity in 
cisplatin resistant cell lines        [167, 168] . However, in Phase 
II studies of NSCLC using everolimus as monotherapy, 
this has not been confirmed  [169] . Phase II studies of 
everolimus in combination with gefitinib in smokers have 
shown promising results with a 17 percent response rate, 
which is higher than expected for this cohort  [170] . Trials 
of combination therapy for NSCLC are currently ongoing. 
Results of everolimus in small cell lung cancer have been 
less promising, although Phase II studies are still ongoing 
 [171] . Phase I – III studies are ongoing with everolimus as 
monotherapy or combination therapy for a wide range of 
solid tumors and hematologic malignancies. 

 Studies   of deferolimus (AP23573; MK-8669), a non-
pro drug derivative of rapamycin, have been more focused 
thus far. Phase II studies in hematologic malignancies 
have shown promise with 40 percent of heavily pretreated 
patients achieving stable disease, but only 10 percent had 
a partial response  [172] . Preclinical studies of deferolimus 
as monotherapy in leiomyosarcoma xenografts demon-
strated 67 percent tumor growth inhibition  [173] . Studies 
in endometrial and sarcoma cancer cell lines demonstrated 
an additive effect of deferolimus with doxorubicin, carbo-
platin, or paclitaxel  [174] . Deferolimus is reported to have 
promising activity in endometrial cancer and sarcomas with 
Phase II trials of endometrial cancer and a Phase III trial of 
sarcoma ongoing  [173] . 
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 Unlike   its predecessors, sirolimus, temsirolimus, 
everolimus, and deferolimus, OSI-027 is an mTOR inhibi-
tor that inhibits both the TORC1 and TORC2 complexes 
of mTOR. mTORC2 is a second and distinct mTOR pro-
tein complex that is less understood        [175, 176] . However 
recent studies have shown that mTORC2 phosphorylates 
and activates AKT  [177] , suggesting that the dual targeting 
of mTORC1 and mTORC2 will block additional signaling 
pathways important in cancer. A Phase I study of OSI-027 
in patients with solid tumors and lymphoma is underway.   

    INHIBITORS OF OTHER RAS EFFECTOR 
PATHWAYS 

    Tiam1-Rac Pathway 

 Tiam1   was identified originally as a T cell invasion and 
metastasis gene  [178] . Tiam1 is a member of the Dbl fam-
ily of RhoGEFs and specifically activates the Ras related 
Rac small GTPase. Subsequent studies identified a Ras 
binding domain in Tiam1 that facilitated its function as a 
Ras effector  [179] . The importance of Tiam1 in Ras medi-
ated oncogenesis was demonstrated by the reduced skin 
tumor induction seen by carcinogen induced H-Ras acti-
vation in Tiam1 deficient mice. The importance of Rac in 
Ras transformation has been demonstrated in cell culture 
studies where dominant-negative Rac impaired Ras trans-
formation of rodent fibroblasts        [180, 181] . Additionally, 
conditional loss of Rac1 impaired tumor formation in a 
mutant  KRAS  driven lung cancer mouse model  [182] . 

 To   date, two small molecule inhibitors of Rac have been 
described and evaluated in preclinical studies ( Figure 38.5k ). 
First, Zheng and colleagues took a rational design approach 
to identify a Rac inhibitor  [183] . NSC23766 was identified 
by a structure based virtual screening of compounds that fit 
into a surface groove of Rac1 known to be critical for GEF 
specification. NSC23766 inhibited Rac1 binding and activa-
tion by the Rac specific GEF Trio or Tiam1  in vitro . In cell 
based analyses, it potently blocked serum or platelet derived 
growth factor induced Rac1 activation and lamellipodia for-
mation without affecting the activity of endogenous Cdc42 
or RhoA. NSC23766 did not reduce the activity of another 
RacGEF, Vav, or the activity of GEFs for other Rho family 
GTPases. When applied to human prostate cancer PC-3 cells, 
it was able to inhibit the proliferation, anchorage independent 
growth, and invasion phenotypes that require the endogenous 
Rac1 activity. Finally, continuous NSC23766 treatment was 
used in mice transplanted with BCR-Abl expressing primary 
mouse or human CML cells and inhibition of leukemogen-
esis was seen, suggesting that Rac is a therapeutic target for 
BCR-Abl positive leukemias  [184] . 

 EHT   1864 is another Rac inhibitor that works by a 
mechanism distinct from that of NSC23766  [185] . Our 
studies determined that EHT 1864 specifically inhibited 

Rac1 dependent platelet derived growth factor induced 
lamellipodia formation  [186] . We completed biochemical 
analyses that showed that EHT 1864 possesses high affin-
ity binding to Rac1, as well as the related Rac1b, Rac2, 
and Rac3 isoforms, and this association promoted the loss 
of bound nucleotide, inhibiting both guanine nucleotide 
association and Tiam1 RacGEF stimulated exchange fac-
tor activity  in vitro . EHT 1864 therefore places Rac in an 
inert and inactive state, preventing its engagement with 
downstream effectors. Finally, we evaluated the ability of 
EHT 1864 to block Rac dependent growth transformation, 
and we determined that EHT 1864 potently blocked trans-
formation caused by constitutively activated Rac1, as well 
as Rac dependent transformation caused by Tiam1 or Ras. 
No  in vivo  evaluation of EHT 1864 anti-tumor activity in 
mouse models of cancer has been reported.  

    RalGEF-Ral Pathway 

 There   are four human RalGEFs that serve as effectors of 
Ras. RalGEFs are activators of the highly related Ras-
like RalA and RalB small GTPases (82 percent sequence 
identity)  [187] . Similar with Ras, Ral GTPases function 
as GDP/GTP regulated switches in signal transduction. 
Activated RalGTP can interact with multiple downstream 
effectors, with two components of the exocyst complex 
(Sec5 and Exo84) and RalBP1/RLIP (a GAP for the Rac 
and Cdc42 Rho family GTPases) the best characterized, 
and involved in regulation of exocytosis and endocyto-
sis, respectively. Additionally, RalGEF-Ral signaling can 
activate various transcription factors that include the ter-
nary complex factor, Jun, AFX (FOXO4), STAT3, and the 
NF κ B. 

 The   RalGEF-Ral pathway was characterized initially 
to play a relatively minor role in Ras transformation of 
rodent fibroblasts  [188] . However, subsequent studies by 
Counter and colleagues establish a very significant role 
for this effector pathway in Ras transformation of human 
cells  [189] . In particular, a significant role for Ral GTPases 
in pancreatic cancer has been established        [190, 191] . 
Additionally, studies of bladder and prostate cancer sup-
port the role of RalGEF-Ral signaling in tumor invasion 
and metastasis        [192, 193] . Finally mouse model studies 
showed that homozygous deletion of RalGDS (a RalGEF) 
caused resistance to Ras induced skin tumor formation 
 [23] . Consequently, there is increasing interest in targeting 
this pathway for novel anti-Ras strategies for cancer treat-
ment        [194, 195] . Our recent studies support the possibility 
that inhibitors of GGTase-I (GGTI) can be effective inhibi-
tors of Ral GTPases in oncogenesis  [196]  ( Figure 38.5c ). 
However, as with FTIs, since other GGTase-I substrates 
(e.g., RhoA, RhoC, Rac) are involved in oncogenesis, 
GTTI anti-tumor activity may also involve inhibition of 
non-Ral targets. Finally, a recent study identified RalA as a 
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substrate for Aurora A  [197] . Since Aurora A phosphoryla-
tion of RalA was important for Aurora A induced cellular 
motility and transformation perhaps inhibitors of Aurora A, 
currently in Phase I clinical trial analyses, may be effective 
inhibitors of RalA function.   

    CONCLUSIONS AND FUTURE 
DIRECTIONS 

 Despite   the lack of success of past efforts to develop 
anti-Ras inhibitors for cancer treatment, ongoing studies 
support promising new directions for these efforts. One 
potential limitation of the current targets of Ras is the fact 
that none are linked exclusively to Ras function. Hence, 
as with FTIs, off-target activities of these inhibitors will 
be a potential concern. An additional potential limitation 
regarding inhibitors of effector signaling is fact that multi-
ple effector pathways promote Ras transformation. Hence, 
whether inhibition of any one effector pathway alone will 
be effective for blocking Ras mediated oncogenesis is a 
logical concern. Future efforts will need to consider con-
current inhibition of multiple effector pathways. An addi-
tional complication is that each effector pathway is not a 
simple linear pathway, so effective inhibition of any one 
effector signaling network may also require inhibition at 
multiple points. In summary, with renewed appreciation 
and interest in Ras as a therapeutic target for cancer treat-
ment, and with promising leads for indirect approaches for 
blocking Ras function, there remains strong optimism that 
anti-Ras therapies will finally reach the clinic.  

    ACKNOWLEDGEMENTS 

 We   apologize to all colleagues whose work could not be cited due to 
space limitations. Research in the authors ’  laboratory was supported by 
grants from the National Institutes of Health (CA042978, CA106991, and 
CA67771) and from the Emerald Foundation.   

  REFERENCES  

       1.          Karnoub     AE  ,   Weinberg     RA            .   Ras oncogenes: split personalities                .      Nat 
Rev Mol Cell Biol            2008      ;  9          : 517  –       31            .     

       2.          Vetter     IR  ,   Wittinghofer     A            .   The guanine nucleotide-binding switch in 
three dimensions                .      Science            2001      ;  294          : 1299  –       304            .     

       3.          Repasky     GA  ,   Chenette     EJ  ,   Der     CJ            .   Renewing the conspiracy theory 
debate: does Raf function alone to mediate Ras oncogenesis?          Trends 
Cell Biol            2004      ;  14          : 639  –       47            .     

       4.          Cox     AD  ,   Der     CJ            .   Ras family signaling: therapeutic targeting                .      Cancer 
Biol Ther            2002      ;  1          : 599  –       606            .     

       5.          Rowinsky     EK            .   Lately, it occurs to me what a long, strange trip it’s been 
for the farnesyltransferase inhibitors                .      J Clin Oncol            2006      ;  24          : 2981  –       4            .     

       6.          Sjoblom     T  ,   Jones     S  ,   Wood     LD         , et al       .   The consensus coding sequences 
of human breast and colorectal cancers                .      Science            2006      ;  314          : 268  –       74            .     

       7.          Wood     LD  ,   Parsons     DW  ,   Jones     S         , et al       .   The genomic landscapes of 
human breast and colorectal cancers                .      Science            2007      ;  318          : 1108  –       13            .     

       8.          Parsons     DW  ,   Jones     S  ,   Zhang     X         , et al       .   An integrated genomic analysis 
of human glioblastoma multiforme                .      Science            2008      ;  321          : 1807  –       12            .     

       9.          Jones     S  ,   Zhang     X  ,   Parsons     DW         , et al       .   Core signaling pathways in 
human pancreatic cancers revealed by global genomic analyses                . 
     Science            2008      ;  321          : 1801  –       6            .     

      10.          Hezel     AF  ,   Kimmelman     AC  ,   Stanger     BZ         , et al       .   Genetics and biology 
of pancreatic ductal adenocarcinoma                .      Genes Dev            2006      ;  20          : 1218  –       49            .     

      11.          Yeh     JJ  ,   Der     CJ            .   Targeting signal transduction in pancreatic cancer 
treatment                .      Expert Opin Ther Targets            2007      ;  11          : 673  –       94            .     

      12.          Raponi     M  ,   Winkler     H  ,   Dracopoli     NC            .   KRAS mutations predict 
response to EGFR inhibitors                .      Curr Opin Pharmacol            2008      ;  8          : 413  –       18            .     

      13.          Eberhard     DA  ,   Johnson     BE  ,   Amler     LC         , et al       .   Mutations in the epider-
mal growth factor receptor and in KRAS are predictive and prognos-
tic indicators in patients with non-small-cell lung cancer treated with 
chemotherapy alone and in combination with erlotinib                .      J Clin Oncol           
 2005      ;  23          : 5900  –       9            .     

      14.          Massarelli     E  ,   Varella-Garcia     M  ,   Tang     X         , et al       .   KRAS mutation is an 
important predictor of resistance to therapy with epidermal growth 
factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer                .      
Clin Cancer Res            2007      ;  13          : 2890  –       6            .     

      15.          Zhu     CQ  ,   da Cunha Santos     G  ,   Ding     K         , et al       .   Role of KRAS and 
EGFR as biomarkers of response to erlotinib in National Cancer 
Institute of Canada Clinical Trials Group Study BR.21                .      J Clin Oncol           
 2008      ;  26          : 4268  –       75            .     

      16.          Lievre     A  ,   Bachet     JB  ,   Le Corre     D         , et al       .   KRAS mutation status is pre-
dictive of response to cetuximab therapy in colorectal cancer                .      Cancer 
Res            2006      ;  66          : 3992  –       5            .     

      17.          Amado     RG  ,   Wolf     M  ,   Peeters     M         , et al       .   Wild-type KRAS is required for 
panitumumab efficacy in patients with metastatic colorectal cancer                .      
J Clin Oncol            2008      ;  26          : 1626  –       34            .     

      18.          Lievre     A  ,   Bachet     JB  ,   Boige     V         , et al       .   KRAS mutations as an inde-
pendent prognostic factor in patients with advanced colorectal cancer 
treated with cetuximab                .      J Clin Oncol            2008      ;  26          : 374  –       9            .     

      19.          Mitin     N  ,   Rossman     KL  ,   Der     CJ            .   Signaling interplay in Ras superfamily 
function                .      Curr Biol            2005      ;  15          : R563  –       74            .     

      20.          Campbell     PM  ,   Singh     A  ,   Williams     FJ         , et al       .   Genetic and pharmaco-
logic dissection of Ras effector utilization in oncogenesis                .      Methods 
Enzymol            2006      ;  407          : 195  –       217            .     

      21.          Malliri     A  ,   van der Kammen     RA  ,   Clark     K         , et al       .   Mice deficient in the 
Rac activator Tiam1 are resistant to Ras-induced skin tumours                .      Nature           
 2002      ;  417          : 867  –       71            .     

      22.          Bai     Y  ,   Edamatsu     H  ,   Maeda     S         , et al       .   Crucial role of phospholipase 
Cepsilon in chemical carcinogen-induced skin tumor development                . 
     Cancer Res            2004      ;  64          : 8808  –       10            .     

      23.          Gonzalez-Garcia     A  ,   Pritchard     CA  ,   Paterson     HF         , et al       .   RalGDS is 
required for tumor formation in a model of skin carcinogenesis                . 
     Cancer Cell            2005      ;  7          : 219  –       26            .     

      24.          Sebti     SM  ,   Der     CJ            .   Opinion: searching for the elusive targets of far-
nesyltransferase inhibitors                .      Nat Rev Cancer            2003      ;  3          : 945  –       51            .     

      25.          Willumsen     BM  ,   Christensen     A  ,   Hubbert     NL         , et al       .   The p21 ras 
C-terminus is required for transformation and membrane association                . 
     Nature            1984      ;  310          : 583  –       6            .     

      26.          Hancock     JF  ,   Magee     AI  ,   Childs     JE  ,   Marshall     CJ            .   All ras pro-
teins are polyisoprenylated but only some are palmitoylated                .      Cell           
 1989      ;  57          : 1167  –       77            .     

      27.          Jackson     JH  ,   Cochrane     CG  ,   Bourne     JR         , et al       .   Farnesol modification of 
Kirsten-ras exon 4B protein is essential for transformation                .      Proc Natl 
Acad Sci U S A            1990      ;  87          : 3042  –       6            .     



 Chapter   |   38    Targeting Ras for Anticancer Drug Discovery 351

      28.          Reiss     Y  ,   Goldstein     JL  ,   Seabra     MC         , et al       .   Inhibition of purified 
p21ras farnesyl       :       protein transferase by Cys-AAX tetrapeptides                .      Cell           
 1990      ;  62          : 81  –       8            .     

      29.          Cox     AD  ,   Der     CJ            .   Farnesyltransferase inhibitors: promises and reali-
ties                .      Curr Opin Pharmacol            2002      ;  2          : 388  –       93            .     

      30.          Van Buskirk     R  ,   Dowling     JE            .   Isolated horizontal cells from carp retina 
demonstrate dopamine-dependent accumulation of cyclic AMP                .      Proc 
Natl Acad Sci U S A            1981      ;  78          : 7825  –       9            .     

      31.          Whyte     DB  ,   Kirschmeier     P  ,   Hockenberry     TN         , et al       .   K- and N-Ras are 
geranylgeranylated in cells treated with farnesyl protein transferase 
inhibitors                .      J Biol Chem            1997      ;  272          : 14,459  –       14,464            .     

      32.          Rowell     CA  ,   Kowalczyk     JJ  ,   Lewis     MD  ,   Garcia     AM            .   Direct demonstra-
tion of geranylgeranylation and farnesylation of Ki-Ras in vivo                .      J Biol 
Chem            1997      ;  272          : 14,093  –       14,097            .     

      33.          Cox     AD  ,   Hisaka     MM  ,   Buss     JE  ,   Der     CJ            .   Specific isoprenoid modifica-
tion is required for function of normal, but not oncogenic, Ras pro-
tein                .      Mol Cell Biol            1992      ;  12          : 2606  –       15            .     

      34.          Hancock     JF  ,   Cadwallader     K  ,   Paterson     H  ,   Marshall     CJ            .   A CAAX or a 
CAAL motif and a second signal are sufficient for plasma membrane 
targeting of ras proteins                .      EMBO J            1991      ;  10          : 4033  –       9            .     

      35.          Cohen     SJ  ,   Ho     L  ,   Ranganathan     S         , et al       .   Phase II and pharmacodynamic 
study of the farnesyltransferase inhibitor R115777 as initial therapy 
in patients with metastatic pancreatic adenocarcinoma                .      J Clin Oncol           
 2003      ;  21          : 1301  –       6            .     

      36.          Van Cutsem     E  ,   van de Velde     H  ,   Karasek     P         , et al       .   Phase III trial of 
gemcitabine plus tipifarnib compared with gemcitabine plus placebo 
in advanced pancreatic cancer                .      J Clin Oncol            2004      ;  22          : 1430  –       8            .     

      37.          Macdonald     JS  ,   McCoy     S  ,   Whitehead     RP         , et al       .   A phase II study 
of farnesyl transferase inhibitor R115777 in pancreatic cancer: a 
Southwest oncology group (SWOG 9924) study                .      Invest New Drugs           
 2005      ;  23          : 485  –       7            .     

      38.          Reid     TS  ,   Terry     KL  ,   Casey     PJ  ,   Beese     LS            .   Crystallographic analysis of 
CaaX prenyltransferases complexed with substrates defines rules of 
protein substrate selectivity                .      J Mol Biol            2004      ;  343          : 417  –       33            .     

      39.          Basso     AD  ,   Mirza     A  ,   Liu     G         , et al       .   The farnesyl transferase inhibitor 
(FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR 
signaling. Role in FTI enhancement of taxane and tamoxifen anti-
tumor activity                .      J Biol Chem            2005      ;  280          : 31,101  –       31,108            .     

      40.          Ellis     CA  ,   Vos     MD  ,   Howell     H         , et al       .   Rig is a novel Ras-related pro-
tein and potential neural tumor suppressor                .      Proc Natl Acad Sci U S A           
 2002      ;  99          : 9876  –       81            .     

      41.          Luo     RZ  ,   Fang     X  ,   Marquez     R         , et al       .   ARHI is a Ras-related small 
G-protein with a novel N-terminal extension that inhibits growth of 
ovarian and breast cancers                .      Oncogene            2003      ;  22          : 2897  –       909            .     

      42.          Elam     C  ,   Hesson     L  ,   Vos     MD         , et al       .   RRP22 is a farnesylated, nucleo-
lar, Ras-related protein with tumor suppressor potential                .      Cancer Res           
 2005      ;  65          : 3117  –       25            .     

      43.          Winter-Vann     AM  ,   Casey     PJ            .   Post-prenylation-processing enzymes as 
new targets in oncogenesis                .      Nat Rev Cancer            2005      ;  5          : 405  –       12            .     

      44.          Kato     K  ,   Cox     AD  ,   Hisaka     MM         , et al       .   Isoprenoid addition to Ras 
protein is the critical modification for its membrane association 
and transforming activity                .      Proc Natl Acad Sci U S A            1992      ;  89          : 
6403  –       7            .     

      45.          Kim     E  ,   Ambroziak     P  ,   Otto     JC         , et al       .   Disruption of the mouse Rce1 
gene results in defective Ras processing and mislocalization of Ras 
within cells                .      J Biol Chem            1999      ;  274          : 8383  –       90            .     

      46.          Bergo     MO  ,   Leung     GK  ,   Ambroziak     P         , et al       .   Targeted inactiva-
tion of the isoprenylcysteine carboxyl methyltransferase gene 
causes mislocalization of K-Ras in mammalian cells                .      J Biol Chem           
 2000      ;  275          : 17,605  –       17,610            .     

      47.          Bergo     MO  ,   Ambroziak     P  ,   Gregory     C         , et al       .   Absence of the CAAX 
endoprotease Rce1: effects on cell growth and transformation                .      Mol 
Cell Biol            2002      ;  22          : 171  –       81            .     

      48.          Bergo     MO  ,   Gavino     BJ  ,   Hong     C         , et al       .   Inactivation of Icmt inhib-
its transformation by oncogenic K-Ras and B-Raf                .      J Clin Invest           
 2004      ;  113          : 539  –       50            .     

      49.          Roberts     PJ  ,   Mitin     N  ,   Keller     PJ         , et al       .   Rho Family GTPase modifica-
tion and dependence on CAAX motif-signaled posttranslational mod-
ification                .      J Biol Chem            2008      ;  283          : 25,150  –       25,163            .     

      50.          Wahlstrom     AM  ,   Cutts     BA  ,   Liu     M         , et al       .   Inactivating Icmt amel-
iorates K-RAS-induced myeloproliferative disease                .      Blood           
 2008      ;  112          : 1357  –       65            .     

      51.          Wahlstrom     AM  ,   Cutts     BA  ,   Karlsson     C         , et al       .   Rce1 deficiency acceler-
ates the development of K-RAS-induced myeloproliferative disease                . 
     Blood            2007      ;  109          : 763  –       8            .     

      52.          Winter-Vann     AM  ,   Baron     RA  ,   Wong     W         , et al       .   A small-molecule 
inhibitor of isoprenylcysteine carboxyl methyltransferase with anti-
tumor activity in cancer cells                .      Proc Natl Acad Sci U S A            2005      ;  102          : 
4336  –       41            .     

      53.          Wang     M  ,   Tan     W  ,   Zhou     J         , et al       .   A small molecule inhibitor of iso-
prenylcysteine carboxymethyltransferase induces autophagic cell 
death in PC3 prostate cancer cells                .      J Biol Chem            2008      ;  283          :  
18,678  –       18,684            .     

      54.          Winter-Vann     AM  ,   Kamen     BA  ,   Bergo     MO         , et al       .   Targeting Ras signal-
ing through inhibition of carboxyl methylation: an unexpected prop-
erty of methotrexate                .      Proc Natl Acad Sci U S A            2003      ;  100          : 6529  –       34            .     

      55.          Buchanan     MS  ,   Carroll     AR  ,   Fechner     GA         , et al       .   Spermatinamine, the 
first natural product inhibitor of isoprenylcysteine carboxyl meth-
yltransferase, a new cancer target                .      Bioorg Med Chem Lett            2007      ;  
17          : 6860  –       3            .     

      56.          Buchanan     MS  ,   Carroll     AR  ,   Fechner     GA         , et al       .   Aplysamine 6, an alka-
loidal inhibitor of Isoprenylcysteine carboxyl methyltransferase from 
the sponge Pseudoceratina sp                .      J Nat Prod            2008      ;  71          : 1066  –       7            .     

      57.          Buchanan     MS  ,   Carroll     AR  ,   Fechner     GA         , et al       .   Small-molecule inhibi-
tors of the cancer target, isoprenylcysteine carboxyl methyltrans-
ferase, from Hovea parvicalyx                .      Phytochemistry            2008      ;  69          : 1886  –       9            .     

      58.          Manandhar     SP  ,   Hildebrandt     ER  ,   Schmidt     WK            .   Small-molecule inhibi-
tors of the Rce1p CaaX protease                .      J Biomol Screen            2007      ;  12          : 983  –       93            .     

      59.          Porter     SB  ,   Hildebrandt     ER  ,   Breevoort     SR         , et al       .   Inhibition of the 
CaaX proteases Rce1p and Ste24p by peptidyl (acyloxy)methyl 
ketones                .      Biochim Biophys Acta            2007      ;  1773          : 853  –       62            .     

      60.          Marshall     CJ            .   Protein prenylation: a mediator of protein – protein inter-
actions                .      Science            1993      ;  259          : 1865  –       6            .     

      61.          Cox     AD  ,   Der     CJ            .   The ras/cholesterol connection: implications for ras 
oncogenicity                .      Crit Rev Oncog            1992      ;  3          : 365  –       400            .     

      62.          Niv     H  ,   Gutman     O  ,   Henis     YI  ,   Kloog     Y            .   Membrane interactions of a con-
stitutively active GFP-Ki-Ras 4B and their role in signaling. Evidence 
from lateral mobility studies                .      J Biol Chem            1999      ;  274          : 1606  –       13            .     

      63.          Drugan     JK  ,   Khosravi-Far     R  ,   White     MA         , et al       .   Ras interaction with 
two distinct binding domains in Raf-1 may be required for Ras trans-
formation                .      J Biol Chem            1996      ;  271          : 233  –       7            .     

      64.          Luo     Z  ,   Diaz     B  ,   Marshall     MS  ,   Avruch     J            .   An intact Raf zinc finger is 
required for optimal binding to processed Ras and for ras-dependent 
Raf activation in situ                .      Mol Cell Biol            1997      ;  17          : 46  –       53            .     

      65.          Williams     JG  ,   Drugan     JK  ,   Yi     GS         , et al       .   Elucidation of binding determi-
nants and functional consequences of Ras/Raf-cysteine-rich domain 
interactions                .      J Biol Chem            2000      ;  275          : 22,172  –       22,179            .     

      66.          Blum     R  ,   Cox     AD  ,   Kloog     Y            .   Inhibitors of chronically active ras: poten-
tial for treatment of human malignancies                .      Recent Patents Anticancer 
Drug Discov            2008      ;  3          : 31  –       47            .     



352 SECTION | D Signaling In Disease

      67.          Paz     A  ,   Haklai     R  ,   Elad-Sfadia     G         , et al       .   Galectin-1 binds oncogenic 
H-Ras to mediate Ras membrane anchorage and cell transformation                . 
     Oncogene            2001      ;  20          : 7486  –       93            .     

      68.          Elad-Sfadia     G  ,   Haklai     R  ,   Ballan     E         , et al       .   Galectin-1 augments Ras 
activation and diverts Ras signals to Raf-1 at the expense of phosph-
oinositide 3-kinase                .      J Biol Chem            2002      ;  277          : 37,169  –       37,175   .     

      69.          Rotblat     B  ,   Niv     H  ,   Andre     S         , et al       .   Galectin-1(L11A) predicted from a 
computed galectin-1 farnesyl-binding pocket selectively inhibits Ras-
GTP                .      Cancer Res            2004      ;  64          : 3112  –       18            .     

      70.          Elad-Sfadia     G  ,   Haklai     R  ,   Balan     E  ,   Kloog     Y            .   Galectin-3 aug-
ments K-Ras activation and triggers a Ras signal that attenu-
ates ERK but not phosphoinositide 3-kinase activity                .      J Biol Chem           
 2004      ;  279          : 34,922  –       34,930            .     

      71.          Haklai     R  ,   Weisz     MG  ,   Elad     G         , et al       .   Dislodgment and accelerated deg-
radation of Ras                .      Biochemistry            1998      ;  37          : 1306  –       14            .     

      72.          Jansen     B  ,   Schlagbauer-Wadl     H  ,   Kahr     H         , et al       .   Novel Ras antagonist 
blocks human melanoma growth                .      Proc Natl Acad Sci USA            1999      ;
  96          : 14,019  –       14,024,            .     

      73.          Marom     M  ,   Haklai     R  ,   Ben-Baruch     G         , et al       .   Selective inhibition of 
Ras-dependent cell growth by farnesylthiosalisylic acid                .      J Biol Chem           
 1995      ;  270          : 22,263  –       22,270            .     

      74.          Gana-Weisz     M  ,   Halaschek-Wiener     J  ,   Jansen     B         , et al       .   The Ras inhibitor 
S-trans,trans-farnesylthiosalicylic acid chemosensitizes human tumor 
cells without causing resistance                .      Clin Cancer Res            2002      ;  8          : 555  –       65            .     

      75.          Weisz     B  ,   Giehl     K  ,   Gana-Weisz     M         , et al       .   A new functional Ras antago-
nist inhibits human pancreatic tumor growth in nude mice                .      Oncogene           
 1999      ;  18          : 2579  –       88            .     

      76.          Blum     R  ,   Jacob-Hirsch     J  ,   Amariglio     N         , et al       .   Ras inhibition in gliob-
lastoma down-regulates hypoxia-inducible factor-1alpha, causing gly-
colysis shutdown and cell death                .      Cancer Res            2005      ;  65          : 999  –       1006            .     

      77.          Yaari     S  ,   Jacob-Hirsch     J  ,   Amariglio     N         , et al       .   Disruption of coopera-
tion between Ras and MycN in human neuroblastoma cells promotes 
growth arrest                .      Clin Cancer Res            2005      ;  11          : 4321  –       30            .     

      78.          Barkan     B  ,   Starinsky     S  ,   Friedman     E         , et al       .   The Ras inhibitor far-
nesylthiosalicylic acid as a potential therapy for neurofibromatosis 
type 1                .      Clin Cancer Res            2006      ;  12          : 5533  –       42            .     

      79.          Gana-Weisz     M  ,   Haklai     R  ,   Marciano     D         , et al       .   The Ras antagonist 
S-farnesylthiosalicylic acid induces inhibition of MAPK activation                . 
     Biochem Biophys Res Commun            1997      ;  239          : 900  –       4            .     

      80.          Goldberg     L  ,   Kloog     Y            .   A Ras inhibitor tilts the balance between Rac 
and Rho and blocks phosphatidylinositol 3-kinase-dependent gliob-
lastoma cell migration                .      Cancer Res            2006      ;  66          : 11,709  –       11,717,            .     

      81.          Shalom-Feuerstein     R  ,   Lindenboim     L  ,   Stein     R         , et al       .   Restoration of 
sensitivity to anoikis in Ras-transformed rat intestinal epithelial cells 
by a Ras inhibitor                .      Cell Death Differ            2004      ;  11          : 244  –       7            .     

      82.          Reif     S  ,   Weis     B  ,   Aeed     H         , et al       .   The Ras antagonist, farnesylthiosali-
cylic acid (FTS), inhibits experimentally induced liver cirrhosis in 
rats                .      J Hepatol            1999      ;  31          : 1053  –       61            .     

      83.          Haklai     R  ,   Elad-Sfadia     G  ,   Egozi     Y  ,   Kloog     Y            .   Orally administered FTS 
(salirasib) inhibits human pancreatic tumor growth in nude mice                . 
     Cancer Chemother Pharmacol            2008      ;  61          : 89  –       96            .     

      84.          Gourdeau     H  ,   McAlpine     JB  ,   Ranger     M         , et al       .   Identification, charac-
terization and potent antitumor activity of ECO-4601, a novel periph-
eral benzodiazepine receptor ligand                .      Cancer Chemother Pharmacol           
 2008      ;  61          : 911  –       21            .     

      85.          Charan     RD  ,   Schlingmann     G  ,   Janso     J         , et al       .   Diazepinomicin, a new 
antimicrobial alkaloid from a marine Micromonospora sp                .      J Nat Prod           
 2004      ;  67          : 1431  –       3            .     

      86.          Han     Z  ,   Slack     RS  ,   Li     W  ,   Papadopoulos     V            .   Expression of peripheral 
benzodiazepine receptor (PBR) in human tumors: relationship to 

breast, colorectal, and prostate tumor progression                .      J Recept Signal 
Transduct Res            2003      ;  23          : 225  –       38            .     

         87.          Katz     Y  ,   Eitan     A  ,   Amiri     Z  ,   Gavish     M            .   Dramatic increase in periph-
eral benzodiazepine binding sites in human colonic adenocarcinoma 
as compared to normal colon                .      Eur J Pharmacol            1988      ;  148          : 483  –       4            .     

         88.          Katz     Y  ,   Eitan     A  ,   Gavish     M            .   Increase in peripheral benzodiazepine 
binding sites in colonic adenocarcinoma                .      Oncology            1990      ;  47          : 139  –       42            .     

         89.          Maaser     K  ,   Hopfner     M  ,   Jansen     A         , et al       .   Specific ligands of the 
peripheral benzodiazepine receptor induce apoptosis and cell cycle 
arrest in human colorectal cancer cells                .      Br J Cancer            2001      ;  85          : 
1771  –       80            .     

         90.          Cornu     P  ,   Benavides     J  ,   Scatton     B         , et al       .   Increase in omega 3 (peripheral-
type benzodiazepine) binding site densities in different types of 
human brain tumours. A quantitative autoradiography study                .      Acta 
Neurochir (Wien)            1992      ;  119          : 146  –       52            .     

         91.          Beinlich     A  ,   Strohmeier     R  ,   Kaufmann     M  ,   Kuhl     H            .   Specific bind-
ing of benzodiazepines to human breast cancer cell lines                .      Life Sci           
 1999      ;  65          : 2099  –       108            .     

         92.          Carmel     I  ,   Fares     FA  ,   Leschiner     S         , et al       .   Peripheral-type benzodi-
azepine receptors in the regulation of proliferation of MCF-7 human 
breast carcinoma cell line                .      Biochem Pharmacol            1999      ;  58          : 273  –       8            .     

         93.          Hardwick     M  ,   Fertikh     D  ,   Culty     M         , et al       .   Peripheral-type benzodi-
azepine receptor (PBR) in human breast cancer: correlation of breast 
cancer cell aggressive phenotype with PBR expression, nuclear 
localization, and PBR-mediated cell proliferation and nuclear trans-
port of cholesterol                .      Cancer Res            1999      ;  59          : 831  –       42            .     

         94.          Batra     S  ,   Larsson     I  ,   Boven     E            .   Mitochondrial and microsomal periph-
eral benzodiazepine receptors in human ovarian cancer xenografts                . 
     Int J Mol Med            2000      ;  5          : 619  –       23            .     

         95.          Venturini     I  ,   Zeneroli     ML  ,   Corsi     L         , et al       .   Up-regulation of peripheral 
benzodiazepine receptor system in hepatocellular carcinoma                .      Life 
Sci            1998      ;  63          : 1269  –       80            .     

         96.          Roberts     PJ  ,   Der     CJ            .   Targeting the Raf-MEK-ERK mitogen-activated 
protein kinase cascade for the treatment of cancer                .      Oncogene            2007      ;  26          : 
3291  –       310            .     

         97.          Wellbrock     C  ,   Karasarides     M  ,   Marais     R            .   The RAF proteins take cen-
tre stage                .      Nat Rev Mol Cell Biol            2004      ;  5          : 875  –       85            .     

         98.          Schreck     R  ,   Rapp     UR            .   Raf kinases: oncogenesis and drug discovery                . 
     Int J Cancer            2006      ;  119          : 2261  –       71            .     

         99.          Smith     RA  ,   Dumas     J  ,   Adnane     L  ,   Wilhelm     SM            .   Recent advances in 
the research and development of RAF kinase inhibitors                .      Curr Top 
Med Chem            2006      ;  6          : 1071  –       89            .     

      100.          Lyons     JF  ,   Wilhelm     S  ,   Hibner     B  ,   Bollag     G            .   Discovery of a novel Raf 
kinase inhibitor                .      Endocr Relat Cancer            2001      ;  8          : 219  –       25            .     

      101.          Wan     PT  ,   Garnett     MJ  ,   Roe     SM         , et al       .   Mechanism of activation of the 
RAF-ERK signaling pathway by oncogenic mutations of B-RAF                . 
     Cell            2004      ;  116          : 855  –       67            .     

      102.          Wilhelm     SM  ,   Carter     C  ,   Tang     L         , et al       .   BAY 43-9006 exhibits broad 
spectrum oral antitumor activity and targets the RAF/MEK/ERK 
pathway and receptor tyrosine kinases involved in tumor progression 
and angiogenesis                .      Cancer Res            2004      ;  64          : 7099  –       109            .     

      103.          Tannapfel     A  ,   Sommerer     F  ,   Benicke     M         , et al       .   Mutations of the BRAF 
gene in cholangiocarcinoma but not in hepatocellular carcinoma                . 
     Gut            2003      ;  52          : 706  –       12            .     

      104.          Hahn     O  ,   Stadler     W            .   Sorafenib                .      Curr Opin Oncol            2006      ;  18          : 615  –       21            .     
      105.          Rini     BI            .   Sorafenib                .      Expert Opin Pharmacother            2006      ;  7          : 453  –       61            .     
      106.          Sala     E  ,   Mologni     L  ,   Truffa     S         , et al       .   BRAF silencing by short hair-

pin RNA or chemical blockade by PLX4032 leads to different 
responses in melanoma and thyroid carcinoma cells                .      Mol Cancer 
Res            2008      ;  6          : 751  –       9            .     



 Chapter   |   38    Targeting Ras for Anticancer Drug Discovery 353

      107.          Lankelma     J  ,   Dekker     H  ,   Groeningen     C  ,   Hoekman     K            .   VEGF excretion 
in urine of colorectal cancer patients after bevacizumab administra-
tion                .      AACR Meet Abstr            2008      ;  383                      .     

      108.          Hoshino     R  ,   Chatani     Y  ,   Yamori     T         , et al       .   Constitutive activation of the 
41-/43-kDa mitogen-activated protein kinase signaling pathway in 
human tumors                .      Oncogene            1999      ;  18          : 813  –       22            .     

      109.          Davies     SP  ,   Reddy     H  ,   Caivano     M  ,   Cohen     P            .   Specificity and mecha-
nism of action of some commonly used protein kinase inhibitors                . 
     Biochem J            2000      ;  351          : 95  –       105            .     

      110.          Sebolt-Leopold     JS  ,   Herrera     R            .   Targeting the mitogen-activated pro-
tein kinase cascade to treat cancer                .      Nat Rev Cancer            2004      ;  4          : 937  –       47            .     

      111.          Sebolt-Leopold     JS  ,   Dudley     DT  ,   Herrera     R         , et al       .   Blockade of the 
MAP kinase pathway suppresses growth of colon tumors in vivo                . 
     Nat Med            1999      ;  5          : 810  –       16            .     

      112.          Collisson     EA  ,   De     A  ,   Suzuki     H         , et al       .   Treatment of metastatic 
melanoma with an orally available inhibitor of the Ras-Raf-MAPK 
cascade                .      Cancer Res            2003      ;  63          : 5669  –       73            .     

      113.          Lorusso     PM  ,   Adjei     AA  ,   Varterasian     M         , et al       .   Phase I and pharmaco-
dynamic study of the oral MEK inhibitor CI-1040 in patients with 
advanced malignancies                .      J Clin Oncol            2005      ;  23          : 5281  –       93            .     

      114.          Rinehart     J  ,   Adjei     AA  ,   Lorusso     PM         , et al       .   Multicenter phase II study 
of the oral MEK inhibitor, CI-1040, in patients with advanced non-
small-cell lung, breast, colon, and pancreatic cancer                .      J Clin Oncol           
 2004      ;  22          : 4456  –       62            .     

      115.          Ohren     JF  ,   Chen     H  ,   Pavlovsky     A         , et al       .   Structures of human MAP 
kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive 
kinase inhibition                .      Nat Struct Mol Biol            2004      ;  11          : 1192  –       7            .     

      116.          Thompson     N  ,   Lyons     J            .   Recent progress in targeting the Raf/MEK/
ERK pathway with inhibitors in cancer drug discovery                .      Curr Opin 
Pharmacol            2005      ;  5          : 350  –       6            .     

      117.          Solit     DB  ,   Garraway     LA  ,   Pratilas     CA         , et al       .   BRAF mutation predicts 
sensitivity to MEK inhibition                .      Nature            2006      ;  439          : 358  –       62            .     

      118.          Lyssikatos     J  ,   Yeh     T  ,   Wallace     E         , et al       .   ARRY-142886, a potent and 
selective MEK inhibitor: I) ATP-independent inhibition results 
in high enzymatic and cellular selectivity                .      AACR Meet Abstr           
 2004      ;  2004          : 896b               .     

      119.          Yeh     T  ,   Wallace     E  ,   Lyssikatos     J  ,   Winkler     J            .   ARRY-142886, a potent 
and selective MEK inhibitor: II) Potency against cellular MEK 
leads to inhibition of cellular proliferation and induction of apop-
tosis in cell lines with mutant Ras or B-Raf                .      AACR Meet Abstr           
 2004      ;  2004          : 896c  –       897c            .     

      120.          Lee     P  ,   Wallace     E  ,   Yeh     T         , et al       .   ARRY-142886, a potent and selec-
tive MEK inhibitor: III) Efficacy in murine xenograft models cor-
relates with decreased ERK phosphorylation                .      AACR Meet Abstr           
 2004      ;  2004          : 897               .     

      121.          Adjei     AA  ,   Cohen     RB  ,   Franklin     W         , et al       .   Phase I pharmacoki-
netic and pharmacodynamic study of the oral, small-molecule 
mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 
(ARRY-142886) in patients with advanced cancers                .      J Clin Oncol           
 2008      ;  26          : 2139  –       2146            .     

      122.          Johnston     S            .   XL518, a potent selective orally bioavailable MEK1 
inhibitor, downregulates the RAS/RAF/MEK/ERK pathway in vivo, 
resulting in tumor growth inhibition and regression in pre-clinical 
models                .      AACR Meet Abstr            2007      ;  C209                      .     

      123.          Kato-Stankiewicz     J  ,   Hakimi     I  ,   Zhi     G         , et al       .   Inhibitors of Ras/Raf-1 
interaction identified by two-hybrid screening revert Ras-dependent 
transformation phenotypes in human cancer cells                .      Proc Natl Acad 
Sci U S A            2002      ;  99          : 14,398  –       14,403,            .     

      124.          Skobeleva     N  ,   Menon     S  ,   Weber     L         , et al       .   In vitro and in vivo syn-
ergy of MCP compounds with mitogen-activated protein kinase 

pathway- and microtubule-targeting inhibitors                .      Mol Cancer Ther           
 2007      ;  6          : 898  –       906            .     

      125.          Hao     H  ,   Muniz-Medina     VM  ,   Mehta     H         , et al       .   Context-dependent roles 
of mutant B-Raf signaling in melanoma and colorectal carcinoma 
cell growth                .      Mol Cancer Ther            2007      ;  6          : 2220  –       2229            .     

      126.          Rodriguez-Viciana     P  ,   Warne     PH  ,   Dhand     R         , et al       .   Phosphatidylinositol-
3-OH kinase as a direct target of Ras                .      Nature            1994      ;  370          : 527  –       532            .     

      127.          Rodriguez-Viciana     P  ,   Warne     PH  ,   Khwaja     A         , et al       .   Role of phosphoi-
nositide 3-OH kinase in cell transformation and control of the actin 
cytoskeleton by Ras                .      Cell            1997      ;  89          : 457  –       467            .     

      128.          Garcia-Echeverria     C  ,   Sellers     WR            .   Drug discovery approaches target-
ing the PI3K/Akt pathway in cancer                .      Oncogene            2008      ;  27          : 5511  –       5526            .     

      129.          Fasolo     A  ,   Sessa     C            .   mTOR inhibitors in the treatment of cancer                . 
     Expert Opin Investig Drugs            2008      ;  17          : 1717  –       1734            .     

      130.          Yuan     TL  ,   Cantley     LC            .   PI3K pathway alterations in cancer: varia-
tions on a theme                .      Oncogene            2008      ;  27          : 5497  –       5510            .     

      131.          Ihle     NT  ,   Williams     R  ,   Chow     S         , et al       .   Molecular pharmacology and 
antitumor activity of PX-866, a novel inhibitor of phosphoinositide-
3-kinase signaling                .      Mol Cancer Ther            2004      ;  3          : 763  –       772            .     

      132.          Ihle     NT  ,   Paine-Murrieta     G  ,   Berggren     MI         , et al       .   The phosphati-
dylinositol-3-kinase inhibitor PX-866 overcomes resistance to 
the epidermal growth factor receptor inhibitor gefitinib in A-549 
human non-small cell lung cancer xenografts                .      Mol Cancer Ther           
 2005      ;  4          : 1349  –       1357            .     

      133.          Howes     AL  ,   Chiang     GG  ,   Lang     ES         , et al       .   The phosphatidylinositol 3-
kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motil-
ity and growth in three-dimensional cultures                .      Mol Cancer Ther           
 2007      ;  6          : 2505  –       2514            .     

      134.          Yang     Y  ,   Iwanaga     K  ,   Raso     MG         , et al       .   Phosphatidylinositol 3-kinase 
mediates bronchioalveolar stem cell expansion in mouse models of 
oncogenic K-ras-induced lung cancer                .      PLoS ONE            2008      ;  3          : e2220               .     

      135.            (2007).  AACR Meet Abstr  C205.      
      136.            (2007).  AACR Meet Abstr  C199.      
      137.            (2007).  AACR Meet Abstr  B265.      
      138.          Molckovsky     A  ,   Siu     LL            .   First-in-class, first-in-human phase I results 

of targeted agents: Highlights of the 2008 American Society of 
Clinical Oncology meeting                .      J Hematol Oncol            2008      ;  1          : 20               .     

      139.            (2007).  AACR Meet Abstr  B250.      
      140.            (2007).  AACR Meet Abstr  4970.      
      141.            (2007).  AACR Meet Abstr  C195.      
      142.          Heerding     DA  ,   Rhodes     N  ,   Leber     JD         , et al       .   Identification of 4-(2-(4-

amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7- { [(3S)-3-piperidinylmethyl]o 
xy } -1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol 
(GSK690693), a novel inhibitor of AKT kinase                .      J Med Chem           
 2008      ;  51          : 5663  –       5679            .     

      143.          Rhodes     N  ,   Heerding     DA  ,   Duckett     DR         , et al       .   Characterization of an 
Akt kinase inhibitor with potent pharmacodynamic and antitumor 
activity                .      Cancer Res            2008      ;  68          : 2366  –       2374            .     

      144.          Kondapaka     SB  ,   Singh     SS  ,   Dasmahapatra     GP         , et al       .   Perifosine, a 
novel alkylphospholipid, inhibits protein kinase B activation                .      Mol 
Cancer Ther            2003      ;  2          : 1093  –       1103            .     

      145.          Leighl     NB  ,   Dent     S  ,   Clemons     M         , et al       .   A Phase 2 study of perifosine 
in advanced or metastatic breast cancer                .      Breast Cancer Res Treat           
 2008      ;  108          : 87  –       92            .     

      146.          Marsh Rde     W  ,   Rocha Lima     CM  ,   Levy     DE         , et al       .   A phase II trial of 
perifosine in locally advanced, unresectable, or metastatic pancreatic 
adenocarcinoma                .      Am J Clin Oncol            2007      ;  30          : 26  –       31            .     

      147.          Bailey     HH  ,   Mahoney     MR  ,   Ettinger     DS         , et al       .   Phase II study of daily 
oral perifosine in patients with advanced soft tissue sarcoma                .      Cancer           
 2006      ;  107          : 2462  –       2467            .     



354 SECTION | D Signaling In Disease

      148.          Vink     SR  ,   Schellens     JH  ,   Beijnen     JH         , et al       .   Phase I and pharma-
cokinetic study of combined treatment with perifosine and radia-
tion in patients with advanced solid tumours                .      Radiother Oncol           
 2006      ;  80          : 207  –       213            .     

      149.          Argiris     A  ,   Cohen     E  ,   Karrison     T         , et al       .   A phase II trial of perifosine, 
an oral alkylphospholipid, in recurrent or metastatic head and neck 
cancer                .      Cancer Biol Ther            2006      ;  5          : 766  –       770            .     

      150.          Knowling     M  ,   Blackstein     M  ,   Tozer     R         , et al       .   A phase II study of 
perifosine (D-21226) in patients with previously untreated meta-
static or locally advanced soft tissue sarcoma: A National Cancer 
Institute of Canada Clinical Trials Group trial                .      Invest New Drugs           
 2006      ;  24          : 435  –       439            .     

      151.          Posadas     EM  ,   Gulley     J  ,   Arlen     PM         , et al       .   A phase II study of peri-
fosine in androgen independent prostate cancer                .      Cancer Biol Ther           
 2005      ;  4          : 1133  –       1137            .     

      152.          Ernst     DS  ,   Eisenhauer     E  ,   Wainman     N         , et al       .   Phase II study of peri-
fosine in previously untreated patients with metastatic melanoma                . 
     Invest New Drugs            2005      ;  23          : 569  –       575            .     

      153.          Van Ummersen     L  ,   Binger     K  ,   Volkman     J         , et al       .   A phase I trial of peri-
fosine (NSC 639966) on a loading dose/maintenance dose schedule in 
patients with advanced cancer                .      Clin Cancer Res            2004      ;  10          : 7450  –       7456            .     

      154.          Vezina     C  ,   Kudelski     A  ,   Sehgal     SN            .   Rapamycin (AY-22,989), a new 
antifungal antibiotic. I. Taxonomy of the producing streptomycete and 
isolation of the active principle                .      J Antibiot (Tokyo)            1975      ;  28          : 721  –       726            .     

      155.          Eng     CP  ,   Sehgal     SN  ,   Vezina     C            .   Activity of rapamycin (AY-22,989) 
against transplanted tumors                .      J Antibiot (Tokyo)            1984      ;  37          : 1231  –       1237            .     

      156.          Atkins     MB  ,   Hidalgo     M  ,   Stadler     WM         , et al       .   Randomized phase II 
study of multiple dose levels of CCI-779, a novel mammalian target 
of rapamycin kinase inhibitor, in patients with advanced refractory 
renal cell carcinoma                .      J Clin Oncol            2004      ;  22          : 909  –       918            .     

      157.          Hudes     G  ,   Carducci     M  ,   Tomczak     P         , et al       .   Temsirolimus, interferon 
alfa, or both for advanced renal-cell carcinoma                .      N Engl J Med           
 2007      ;  356          : 2271  –       2281            .     

      158.          Hanna     SC  ,   Heathcote     SA  ,   Kim     WY            .   mTOR pathway in renal cell 
carcinoma                .      Expert Rev Anticancer Ther            2008      ;  8          : 283  –       292            .     

      159.          Yazbeck     VY  ,   Buglio     D  ,   Georgakis     GV         , et al       .   Temsirolimus down-
regulates p21 without altering cyclin D1 expression and induces 
autophagy and synergizes with vorinostat in mantle cell lymphoma                . 
     Exp Hematol            2008      ;  36          : 443  –       450            .     

      160.          Ansell     Jr.     SM  ,   Inwards     DJ  ,   Rowland     KM         , et al          Low-dose, single-agent 
temsirolimus for relapsed mantle cell lymphoma: a phase 2 trial in the 
North Central Cancer Treatment Group                .      Cancer            2008      ;  113          : 508  –       514            .     

      161.          Pandya     KJ  ,   Dahlberg     S  ,   Hidalgo     M         , et al       .   A randomized, phase 
II trial of two dose levels of temsirolimus (CCI-779) in patients 
with extensive-stage small-cell lung cancer who have respond-
ing or stable disease after induction chemotherapy: a trial of the 
Eastern Cooperative Oncology Group (E1500)                .      J Thorac Oncol           
 2007      ;  2          : 1036  –       1041            .     

      162.          Jimeno     A  ,   Kulesza     P  ,   Wheelhouse     J         , et al       .   Dual EGFR and mTOR 
targeting in squamous cell carcinoma models, and development of 
early markers of efficacy                .      Br J Cancer            2007      ;  96          : 952  –       959            .     

      163.          Wu     L  ,   Birle     DC  ,   Tannock     IF            .   Effects of the mammalian target 
of rapamycin inhibitor CCI-779 used alone or with chemother-
apy on human prostate cancer cells and xenografts                .      Cancer Res           
 2005      ;  65          : 2825  –       2831            .     

      164.            (May 20, 2008).  J Clin Oncol  26 (Suppl.): LBA5026.      
      165.          Figlin     RA  ,   Brown     E  ,   Armstrong     AJ         , et al       .   NCCN Task Force 

Report: mTOR Inhibition in Solid Tumors                .      J Natl Compr Canc Netw           
 2008      ;  6          : S1  –       S22            .     

      166.            (May 20, 2008).  J Clin Oncol  26 (Suppl.): 530.      

      167.          Wu     C  ,   Wangpaichitr     M  ,   Feun     L         , et al       .   Overcoming cisplatin resist-
ance by mTOR inhibitor in lung cancer                .      Mol Cancer            2005      ;  4          : 25               .     

      168.          Wangpaichitr     M  ,   Wu     C  ,   You     M         , et al       .   Inhibition of mTOR restores 
cisplatin sensitivity through down-regulation of growth and anti-
apoptotic proteins                .      Eur J Pharmacol            2008      ;  591          : 124  –       127            .     

      169.            (June 20, 2007). 2007 ASCO Annual meeting Proceedings Part 1.  
J Clin Oncol  25 (Suppl.): 7589.      

      170.            (June 20, 2007). 2007 ASCO Annual Meeting  J Clin Oncol  25 
(Suppl.): 7575.      

      171.            (May 20, 2008).  J Clin Oncol  26: (Suppl.): 19,017.      
      172.          Rizzieri     DA  ,   Feldman     E  ,   Dipersio     JF         , et al       .   A phase 2 clinical trial 

of deforolimus (AP23573, MK-8669), a novel mammalian target of 
rapamycin inhibitor, in patients with relapsed or refractory hemato-
logic malignancies                .      Clin Cancer Res            2008      ;  14          : 2756  –       2762            .     

      173.            (2008).  AACR Meet Abstr  1482.      
      174.            (2008).  AACR Meet Abstr  4006.      
      175.          Sabatini     DM            .   mTOR and cancer: insights into a complex relation-

ship                .      Nat Rev Cancer            2006      ;  6          : 729  –       734            .     
      176.          Chiang     GG  ,   Abraham     RT            .   Targeting the mTOR signaling network in 

cancer                .      Trends Mol Med            2007      ;  13          : 433  –       442            .     
      177.          Sarbassov     DD  ,   Guertin     DA  ,   Ali     SM  ,   Sabatini     DM            .   Phosphorylation 

and regulation of Akt/PKB by the rictor-mTOR complex                .      Science           
 2005      ;  307          : 1098  –       1101            .     

      178.          Habets     GG  ,   Scholtes     EH  ,   Zuydgeest     D         , et al       .   Identification of 
an invasion-inducing gene, Tiam-1, that encodes a protein with 
homology to GDP-GTP exchangers for Rho-like proteins                .      Cell           
 1994      ;  77          : 537  –       549            .     

      179.          Lambert     JM  ,   Lambert     QT  ,   Reuther     GW         , et al       .   Tiam1 mediates Ras 
activation of Rac by a PI(3)K-independent mechanism                .      Nat Cell Biol           
 2002      ;  4          : 621  –       625            .     

      180.          Qiu     RG  ,   Chen     J  ,   Kirn     D         , et al       .   An essential role for Rac in Ras 
transformation                .      Nature            1995      ;  374          : 457  –       459            .     

      181.          Khosravi-Far     R  ,   Solski     PA  ,   Clark     GJ         , et al       .   Activation of Rac1, 
RhoA, and mitogen-activated protein kinases is required for Ras 
transformation                .      Mol Cell Biol            1995      ;  15          : 6443  –       6453            .     

      182.          Kissil     JL  ,   Walmsley     MJ  ,   Hanlon     L         , et al       .   Requirement for 
Rac1 in a K-ras induced lung cancer in the mouse                .      Cancer Res           
 2007      ;  67          : 8089  –       8094            .     

      183.          Gao     Y  ,   Dickerson     JB  ,   Guo     F         , et al       .   Rational design and characteriza-
tion of a Rac GTPase-specific small molecule inhibitor                .      Proc Natl 
Acad Sci U S A            2004      ;  101          : 7618  –       7623            .     

      184.          Thomas     EK  ,   Cancelas     JA  ,   Chae     HD         , et al       .   Rac guanosine tri-
phosphatases represent integrating molecular therapeutic targets 
for BCR-ABL-induced myeloproliferative disease                .      Cancer Cell           
 2007      ;  12          : 467  –       478            .     

      185.          Desire     L  ,   Bourdin     J  ,   Loiseau     N         , et al       .   RAC1 inhibition targets 
amyloid precursor protein processing by gamma-secretase and 
decreases Abeta production in vitro and in vivo                .      J Biol Chem           
 2005      ;  280          : 37,516  –       37,525            .     

      186.          Shutes     A  ,   Onesto     C  ,   Picard     V         , et al       .   Specificity and mechanism of 
action of EHT 1864, a novel small molecule inhibitor of Rac family 
small GTPases                .      J Biol Chem            2007      ;  282          : 35,666  –       35,678,            .     

      187.          Bodemann     BO  ,   White     MA            .   Ral GTPases and cancer: linchpin sup-
port of the tumorigenic platform                .      Nat Rev Cancer            2008      ;  8          : 133  –       140            .     

      188.          Urano     T  ,   Emkey     R  ,   Feig     LA            .   Ral-GTPases mediate a distinct down-
stream signaling pathway from Ras that facilitates cellular transfor-
mation                .      EMBO J            1996      ;  15          : 810  –       816            .     

      189.          Hamad     NM  ,   Elconin     JH  ,   Karnoub     AE         , et al       .   Distinct requirements 
for Ras oncogenesis in human versus mouse cells                .      Genes Dev           
 2002      ;  16          : 2045  –       2057            .     



 Chapter   |   38    Targeting Ras for Anticancer Drug Discovery 355

      190.          Lim     KH  ,   Baines     AT  ,   Fiordalisi     JJ         , et al       .   Activation of RalA is criti-
cal for Ras-induced tumorigenesis of human cells                .      Cancer Cell           
 2005      ;  7          : 533  –       545            .     

      191.          Lim     KH  ,   O’Hayer     K  ,   Adam     SJ         , et al       .   Divergent roles for RalA and 
RalB in malignant growth of human pancreatic carcinoma cells                . 
     Curr Biol            2006      ;  16          : 2385  –       2394            .     

      192.          Smith     SC  ,   Oxford     G  ,   Wu     Z         , et al       .   The metastasis-associated gene 
CD24 is regulated by Ral GTPase and is a mediator of cell prolifera-
tion and survival in human cancer                .      Cancer Res            2006      ;  66          : 1917  –       1922            .     

      193.          Yin     J  ,   Pollock     C  ,   Tracy     K         , et al       .   Activation of the RalGEF/Ral path-
way promotes prostate cancer metastasis to bone                .      Mol Cell Biol           
 2007      ;  27          : 7538  –       7550            .     

      194.          Rodriguez-Viciana     P  ,   McCormick     F            .   RalGDS comes of age                .      Cancer 
Cell            2005      ;  7          : 205  –       206            .     

      195.          Feig     LA            .   Ral-GTPases: approaching their 15 minutes of fame                . 
     Trends Cell Biol            2003      ;  13          : 419  –       425            .     

      196.          Falsetti     SC  ,   Wang     DA  ,   Peng     H         , et al       .   Geranylgeranyltransferase I 
inhibitors target RalB to inhibit anchorage-dependent growth and 
induce apoptosis and RalA to inhibit anchorage-independent growth                . 
     Mol Cell Biol            2007      ;  27          : 8003  –       8014            .     

      197.          Wu     JC  ,   Chen     TY  ,   Yu     CT         , et al       .   Identification of V23RalA-Ser194 
as a critical mediator for Aurora-A-induced cellular motility and 
transformation by small pool expression screening                .      J Biol Chem           
 2005      ;  280          : 9013  –       9022            .            



This page intentionally left blank



357
Handbook of Cell Signaling, Three-Volume Set 2 ed.
Copyright © 2009 Elsevier Inc. All rights reserved.2010

              The Roles of Ras Family Small GTPases in 
Breast Cancer 

   Ariella B.   Hanker   1    and     Channing J.   Der   2   
  1  Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 

Chapel Hill, North Carolina  

  2  Department of Pharmacology and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, 

University of North Carolina at Chapel Hill, Chapel Hill, North Carolina    

    INTRODUCTION 

 Approximately   180,000 new cases of breast cancer will 
be diagnosed in the United States in 2008 ( www.cancer.
gov ), and despite significant advances in understanding 
the molecular pathways driving this disease, breast cancer 
remains the second leading cause of cancer related deaths 
among American women, with more than 40,000 deaths 
per year. Nearly 70 percent of breast cancers express the 
estrogen receptor alpha (ER) and depend on estrogen for 
growth. Current therapies for ER-positive breast can-
cers exploit this dependency on estrogen. These therapies 
include the anti-estrogen tamoxifen (Nolvadex  ®  ), which 
competes with estrogen for binding to the ER, and aro-
matase inhibitors (anastrazole (Arimidex  ®  ), exemestane 
(Aromasin  ®  ), and letrozole (Femara  ®  )), which prevent 
the synthesis of estrogen        [1, 2] . However, many tumors 
develop resistance to these anti-estrogen therapies          [1 – 3] . 
ER-negative breast cancers tend to be more aggressive and 
metastatic than ER-positive tumors and therapeutic options 
for many of these patients are much more limited  [4] . A 
subset of ER-positive and ER-negative breast cancers 
overexpress the human epidermal growth factor receptor 
HER2/ErbB2/Neu, and while the advent of HER2 inhibi-
tors, including the HER2 monoclonal antibody trastuzumab 
(Herceptin  ®  ) and the lapatinib (Tykerb  ®  ) kinase inhibitor, 
have improved the survival of some of these patients, again 
the development of resistance to this targeted therapy is a 
major problem  [5] . While a number of other targeted thera-
pies are in clinical trials either alone or in combination with 
anti-estrogen or HER2 therapies, none have proven to be 
the  “ magic bullet ”  that selectively targets the breast cancer 
cell. Therefore, new therapies that block other molecules 

driving breast tumor growth are still required for breast 
cancer treatment. 

 Members   of the Ras branch (36 genes encoding 39 pro-
teins) of the Ras superfamily of small GTPases (156 mem-
bers) regulate a multitude of cellular processes, including 
cell adhesion, differentiation, survival, and proliferation 
 [6]  ( Figure 39.1a   ). The three Ras isoforms (H-, K-, and 
N-Ras) relay signals from outside the cell to the cytoplasm 
and the nucleus ( Figure 39.1b ). Ras proteins cycle between 
a GTP-bound active state and an inactive, GDP-bound con-
formation. Ras specific guanine nucleotide exchange fac-
tors (RasGEFs; e.g., Sos, RasGRF, RasGRP) promote the 
exchange of GDP for GTP and thereby activate Ras-GTP, 
whereas GTPase activating proteins (RasGAPs; e.g., NF1/
neurofibromin) negatively regulate Ras GTPases by catalyz-
ing the hydrolysis of GTP to GDP, thereby forming the inac-
tive Ras-GDP. The conformation of Ras differs in these two 
nucleotide-bound states in amino acid residues referred to as 
switch 1 (30 – 38) and switch 2 (60 – 76)  [7] . When bound to 
GTP, Ras proteins interact with multiple, functionally dis-
tinct effectors to initiate downstream cytoplasmic signaling 
networks that induce a plethora of cellular responses. 

 The   domain organization of Ras family GTPases is 
summarized in  Figure 39.2   . The amino acids G12 and Q61 
of Ras are conserved in the majority of Ras superfamily 
proteins and are essential for intrinsic and GAP stimulated 
GTP hydrolysis. Missense mutations of these residues 
are found in human cancers. These mutations render Ras 
insensitive to GAPs and thus constitutively GTP bound and 
active. Ras-GTP preferentially binds to and activates its 
downstream effectors via its core effector domain (residues 
32 – 40) and flanking switch 1 and 2 sequences. Although 
this core effector binding domain is conserved in Ras fam-

 Chapter 39 
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 FIGURE 39.1          The Ras branch of the human Ras superfamily of small GTPases and Ras signal transduction.  
    (a) The Ras branch of the human Ras superfamily of small GTPases. ClustalX was used to generate a dendrogram of the GTP binding domains of human 
Ras subfamily members. Bubbles indicate proteins with established or putative roles in breast cancer, discussed in the text. Pink (dark gray) indicates 
proteins that suppress breast cancer growth (tumor suppressors), whereas green (medium gray) indicates proteins that promote tumor growth. While Rad 
(yellow/light gray) has also been implicated in breast cancer, whether it promotes or suppresses tumor growth is unclear. The K-Ras2B isoform of K-Ras 
was used. (b) Ras signal transduction. Ras GTPases cycle between a GTP-bound  “ on ”  state and a GDP-bound  “ off ”  state. Ras proteins are positively 
regulated by GEFs and negatively regulated by GAPs. Ras is activated by growth factor stimulated receptor tyrosine kinases (RTKs), such as EGFR and 
HER2. When bound to GTP, Ras interacts with a variety of downstream effectors to control cellular processes. Asterisks denote proteins that are aber-
rantly expressed or mutated in breast cancer. The RTKs EGFR and HER2 are frequently overexpressed in breast cancer and loss of the RasGAP NF1 
leads to an increased risk of breast cancer. While Ras itself is infrequently mutated in breast cancer, mutations in some of its effectors, such as PI3K, are 
more common. In addition, loss of the Ras effector RIN1 has been observed in breast cancer.    

 FIGURE 39.2          Domain organization of Ras family proteins.  
    ARHI contains a 35-residue N-terminal extension (N-extension) that may be important for its tumor suppressor activity. The amino acid residues G12 
and Q61 in Ras are important for GAP stimulation of GTP hydrolysis; mutation of these residues in cancer leads to GAP insensitivity and therefore Ras 
is constitutively GTP bound and active. Since these residues are not conserved in ARHI, ARHI may be constitutively GTP bound. Rheb is regulated by 
the GAP TSC2, but whether the glutamine at position 64 is required for this regulation is unclear. Whether Rerg is regulated by GAPs is not known. Ras 
residues 32 – 40 comprise the core sequences important for effector binding. Although this core effector sequence is conserved between most Ras sub-
family members, many Ras related GTPases, such as Rheb, use distinct effectors. The residues in Rheb, ARHI, and Rerg that are not conserved in Ras 
are shown in bold. The hypervariable (HV) domain in Ras dictates subcellular localization, as does the C-terminal CAAX box, required for lipid modifi-
cation and membrane targeting. Ras, Rheb, and ARHI are farnesylated. Rerg is not farnesylated and does not localize to the membrane.    
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ily members, many members of this family signal through 
distinct effectors. Finally, most Ras family members ter-
minate in a CAAX (C, cysteine; A, aliphatic amino acid; 
X, terminal amino acid) tetrapeptide sequence, a substrate 
for C15 farnesyl or C20 geranylgeranyl lipid modification 
responsible for membrane localization and critical for Ras 
biological activity ( Figure 39.3   )  [8] . 

 Ras   itself is an oncoprotein and is mutationally activated 
in  � 30 percent of all cancers but only 5 percent of breast 
cancers  [9] . Despite the fact that Ras is rarely mutated in 
breast cancer, Ras is activated in many breast cancers by 
various upstream regulators, including the epidermal growth 
factor receptor family, in particular EGFR/HER1/ErbB1 
and HER2/ErbB2/Neu        [10, 11] . Therefore, blocking Ras 
signaling in breast cancer may be therapeutically beneficial. 
Recently, several Ras family proteins have been implicated 
in breast cancer and may play significant roles in the initia-
tion and progression of this disease. These proteins include 
Rheb (Ras homolog enriched in brain), an activator of the 
mTOR signaling pathway involved in estrogen regulated 
breast cancer, and Rerg (Ras related estrogen regulated 
growth inhibitor) and ARHI (Ras homolog member I, also 
known as Di-Ras3 or Noey2), two Ras family proteins that, 
in contrast to Ras and Rheb, negatively regulate breast can-
cer growth and may function as tumor suppressors rather 
than oncogenes ( Figure 39.1 ). In this chapter, we focus on 
these Ras family proteins involved in breast cancer and on 
possible strategies to correct the cancer related defects in 
these proteins for breast cancer treatment.  

    RAS IN BREAST CANCER 

 Ectopic   expression of mutationally activated Ras is capable 
of transforming immortalized human mammary epithelial 
cells and transgenic Ras expression drives mammary tumor 
development in mice  [12] . Furthermore, ectopic expression 
of Ras in the estrogen dependent MCF-7 cell line promotes 
estrogen independent growth          [13 – 15] . However, evidence 
for activation of endogenous Ras in human breast tumors 
is more limited. The growth factor receptors EGFR and 
HER2 are aberrantly activated by overexpression in breast 
cancers and can cause upstream activation of Ras. Studies 
have found that the levels of activated, GTP-bound Ras are 
increased in breast tumors and cell lines overexpressing 
EGFR or HER2        [10, 11] . Therefore, Ras may be activated 
in breast tumors in the absence of direct mutational activa-
tion of Ras. Ras proteins are also overexpressed in 20 – 50 
percent of breast cancers. Another mechanism by which 
Ras may be activated in breast cancer could be decreased 
expression of a negative regulator of Ras, such as a 
RasGAP. Women with the genetic disease neurofibromato-
sis, caused by inactivating mutations of the RasGAP NF1, 
have an increased risk of developing breast cancer        [16, 17] , 
but whether the NF1 tumor suppressor is downregulated in 
spontaneous breast cancers is not known. 

 Recent   work by Song and colleagues has revealed 
a mechanism by which H-Ras expression is elevated in 
breast tumor initiating cells, which may represent breast 
cancer  “ stem cells ”   [18] . They showed that expression of 
the microRNA  let-7 , a negative regulator of H-Ras protein 
expression, is reduced in breast tumor initiating cells (can-
cer stem cells) and in clinical samples. They further showed 
that restoring  let-7  expression reduced H-Ras expression, 
cell proliferation, mammosphere formation, tumorigenic-
ity, and metastasis, and that silencing H-Ras alone was 
sufficient to reduce mammosphere formation, tumor for-
mation, and metastasis  [18] . Thus, H-Ras inhibition may 
represent a promising therapeutic approach for targeting 
breast cancer stem cells. Further work is needed to deter-
mine whether H-Ras levels are increased in independently 
derived populations of breast cancer stem cells. 

 GTP  -bound Ras associates with a variety of effectors to 
elicit a diverse array of cellular responses. The best charac-
terized Ras effectors implicated in oncogenesis include the 
Raf serine/threonine kinases, the phosphatidylinositol 3-
kinases (PI3K), and GEFs for the Ral GTPases (RalGEFs) 
 [19] . Mutations in the genes encoding B-Raf and the p110 α  
catalytic subunit of PI3K ( PIK3CA ) have been identified 
in many cancers, supporting a role for these Ras effectors 
in oncogenesis. While  BRAF  mutations are rare in breast 
cancer, the gene encoding the p110 �  catalytic subunit of 
PI3K ( PIK3CA ) is mutated in 20 – 40 percent of human 
breast cancers  [20]  and its occurrence is mutually exclu-
sive with Ras mutations in breast cancer cell lines  [21] . 
However, Ras also activates some effectors that negatively 

 FIGURE 39.3          Ras posttranslational processing and membrane asso-
ciation.  
    Most members of the Ras subfamily, including Ras, Rheb, and ARHI/
Noey2, are processed by a series of posttranslational modifications that 
allow insertion into the plasma membrane or endomembranes. The first 
step in this process is the addition of a farnesyl isoprenoid lipid to the 
cysteine residue of the CAAX motif by FTase; FTIs block this step. Next, 
the endonuclease Rce1 cleaves the -AAX tripeptide and the methyltrans-
ferase Icmt methylates the now terminal farnesylated cysteine (O-Me). 
Complete processing is required for proper Ras localization and function. 
While FTIs have shown promise in breast cancer clinical trials, they do 
not inhibit K-Ras, and the FTase substrates responsible FTI inhibition of 
breast cancer growth are not known.    
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regulate cancer growth; silencing of these effectors, such 
as the RASSF1 tumor suppressor and its family members, 
is a common event in cancer        [22, 23] . Hyper-methylation 
of the  RASSF1A  promoter has been observed in 80 – 90 
percent of breast cancers        [24, 25] , but a definitive role for 
RASSF1A in breast cancer has not yet been established. 
The Ras effector RIN1 was recently implicated as a tumor 
suppressor in breast cancer. RIN1 regulates epithelial cell 
properties such as cytoskeletal remodeling through Abl 
tyrosine kinases  [26] . Colicelli and colleagues found that 
RIN1 levels are reduced in primary breast tumors and in 
breast cancer cell lines, and that restoring RIN1 expression 
suppressed tumor growth  [27] . Whether loss of RIN1 cor-
relates with Ras activation, and whether its loss is neces-
sary for Ras induced tumor growth, is not known. 

 Due   to the unequivocal importance of Ras in human can-
cer development and progression, there have been consider-
able efforts to develop pharmacologic agents that block Ras 
function for cancer therapy. One major approach has been 
the development of inhibitors of effector signaling, in partic-
ular inhibitors of Raf induced activation of the ERK mitogen 
activated protein kinase cascade  [28] . A second major 
focus has been inhibition of Ras membrane association. In 
order for Ras to function properly, it must be targeted to the 
plasma membrane. This proper localization is accomplished 
via posttranslational addition of a farnesyl isoprenoid lipid 
to the C-terminus of Ras  [8] . Farnesylation is catalyzed by 
the enzyme farnesyltransferase (FTase). FTase inhibitors 
(FTIs) were originally developed to block Ras localization 
and thereby block Ras function in cancer. However, it is 
now appreciated that FTIs do not in fact block localization 
of the most commonly mutated Ras isoforms in cancer, K- 
and N-Ras. K- and N-Ras escape FTI inhibition by a process 
known as alternative prenylation, whereby they are modi-
fied by addition of another isoprenoid lipid, geranylgeranol; 
geranylgeranylated Ras proteins remain functional and trans-
forming in the presence of FTIs  [29] . Despite an inability 
to effectively block Ras, FTIs have shown some anti-tumor 
activity, particularly in breast cancer  [30] . Since other sub-
strates of FTase do have known roles in cell proliferation 
(e.g., Rheb)  [31] , the anti-tumor activity of FTIs may be due 
to inhibiting the function of these proteins. FTIs have also 
demonstrated clinical activity in combination with hormo-
nal therapies in breast cancer        [32, 33] . Elucidating the FTase 
substrates responsible for the anti-tumor activity of FTIs in 
breast cancer could be very beneficial in selecting patients 
that may respond to this targeted therapy.  

    RHEB 

 Rheb1   and Rheb2 (51 percent identity) are also members 
of the Ras family of small GTPases  [34]  that may have 
increased activity in breast cancer. Rheb is a critical com-
ponent of the Akt-TSC-mTOR pathway that regulates 

protein translation, nutrient sensing, cell size, and cell 
proliferation ( Figure 39.4a   )  [35] . The tumor suppressor 
TSC2 (tuberin), in complex with TSC1 (hamartin), func-
tions as a GAP toward Rheb and thereby suppresses Rheb-
GTP formation and signaling. The role of TSC2 in Rheb 

 FIGURE 39.4          Estrogen regulation of Rheb signaling and estrogen 
regulation of Rerg expression.  
    (a) Estrogen regulation of Rheb signaling. When bound to estrogen (E2), 
the estrogen receptor (ER) can initiate rapid,  “ non-genomic ”  signaling 
through PI3K. PI3K is a lipid kinase that converts phosphatidylinositol 
(4,5) bisphosphate (PIP 2 ) into phosphatidylinositol (3,4,5) triphosphate 
(PIP 3 ). The reverse reaction is catalyzed by the lipid phosphatase PTEN, 
a negative regulator of the pathway. PIP 3  leads to activation of Akt, which 
then phosphorylates a variety of substrates involved in cell prolifera-
tion and survival, including TSC2. Akt mediated phosphorylation of 
TSC2 inactivates its RhebGAP activity, leading to increased levels of 
Rheb-GTP. Rheb then activates mTOR by displacing the mTOR inhibi-
tor FKBP38 and by activating PLD1. mTOR, in complex with raptor 
and mLST8, phosphorylates substrates involved in protein translation, 
including S6K and 4E-BP1. Rheb is inhibited by FTIs and mTOR is 
inhibited by rapamycin. Green (light gray) indicates positive regulators 
of the pathway; red (dark gray) indicates negative regulators. Asterisks 
denote proteins that are known to be mutated or aberrantly expressed in 
breast cancer. (b) Estrogen regulation of Rerg expression. When bound to 
estrogen (E2), the ER can function as a transcription factor in the nucleus. 
The  RERG  gene contains an upstream estrogen response element (ERE). 
When the ER binds to EREs, it recruits transcriptional coactivators to 
activate transcription of estrogen responsive genes such as Rerg. Rerg 
expression correlates with ER expression in breast cancer; ER-negative 
breast cancers lack Rerg expression.    
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signaling is analogous to that of the RasGAP NF1: loss of 
NF1 in neurofibromatosis type I leads to hyperactivation 
of Ras. Similarly, loss-of-function mutations in TSC1 or 
TSC2 cause the genetic disease tuberous sclerosis com-
plex, which is characterized by the formation of hamarto-
mas in a variety of organs        [36, 37] . In this disease, loss of 
TSC2 or TSC1 results in hyperactivation of Rheb and pro-
motes Rheb-GTP association with its two known effectors, 
FKBP38 and phospholipase D1 (PLD1)          [38 – 40] . Rheb-
GTP activates PLD1, which is required for Rheb activation 
of the mTOR pathway. FKBP38 associates with and inacti-
vates the mTOR (mammalian target of rapamycin) complex 
1 (mTORC1). The mTORC1 complex, which consists of 
mTOR, raptor, and mLST8 (also known as G β L), regulates 
protein translation initiation, metabolism, cell size, and 
cell proliferation        [41, 42] . Rheb association with FKBP38 
relieves this negative regulation, leading to mTORC1 acti-
vation, which causes inactivation of the translational inhibi-
tor eIF4E binding protein 1 (4E-BP1) and activation of p70 
S6 kinase (S6K). Hypo-phosphorylated 4E-BP1 binds and 
sequesters eIF4E. Phosphorylation of 4E-BP1 by mTOR 
allows the release of eIF4E, which promotes cap dependent 
mRNA translation and tumorigenesis  [43] . S6K phospho-
rylates the S6 ribosome subunit, also promoting increased 
protein translation and the development of benign tumors. 

 Although   mutations of TSC1 and TSC2 are not found 
in breast cancer, other mechanisms may activate Rheb in 
breast cancer. Studies have found reduced expression of 
TSC1 and TSC2 in breast cancer  [44] . The mRNA lev-
els of both Rheb1 and Rheb2 are elevated in breast can-
cer cells  [45] . The TSC2-Rheb-mTOR pathway can also 
be activated by genetic alterations that cause activation of 
PI3K and its target, the serine-threonine kinase Akt ( Figure 
39.4a ). Akt phosphorylates and inactivates TSC2, leading 
to an increase in GTP-bound Rheb. The PI3K-Akt pathway 
is one of the most commonly activated pathways in breast 
cancer  [20] . In particular, mutational activation of the gene 
encoding p110 α  is one of the most frequent gene mutations 
found in breast cancer  [46] . 

 Like   Ras, Rheb can be hyperactivated in breast can-
cer by upstream signals. HER2 and EGFR overexpression 
can cause activation of PI3K, and thus Rheb. Furthermore, 
estrogen can trigger Rheb signaling in the MCF-7 ER-posi-
tive breast cancer cell line. Estrogen activates PI3K and 
Akt through non-genomic mechanisms and estrogen treat-
ment was recently found to increase Rheb-GTP levels and 
to stimulate downstream signaling through mTOR        [47, 48] . 
Rheb was also shown to be required for estrogen induced 
DNA synthesis and cell cycle progression in MCF-7 cells 
 [48] . In addition, mTOR is required for estrogen induced 
MCF-7 cell proliferation  [49] . Rheb and mTOR have also 
been implicated in tamoxifen resistance: Rheb inhibition 
increased sensitivity to tamoxifen  [45]  and mTOR inhibi-
tion prevented Akt induced tamoxifen resistance in MCF-
7 cells        [50, 51] . Rapamycin analogs, which inhibit mTOR, 

are currently in clinical trials and have shown promise in 
combination with endocrine therapies for breast cancer 
treatment        [32, 52] . Therefore, inhibiting Rheb signaling 
may be beneficial in ER-positive and tamoxifen resistant 
breast cancers. Further research is needed to determine the 
role of Rheb in tamoxifen resistance and to validate Rheb 
as a therapeutic target for the treatment of breast cancer. 

 Like   Ras, Rheb terminates in a CAAX motif and is far-
nesylated. Farnesylation is essential for its proper locali-
zation and function  [53] . FTIs block Rheb signaling and 
function  [45] . Therefore, Rheb inhibition may be partially 
responsible for the anti-breast cancer effects of FTIs. Basso 
 et al.  showed that the FTI lonafarnib enhanced tamoxifen 
induced apoptosis, and this enhancement was prevented 
by an FTI resistant version of Rheb  [45] . Whether this 
FTI resistant Rheb version prevents FTIs from decreasing 
breast cancer growth will be of considerable interest for the 
selection of patients that may benefit from FTIs.  

    ARHI/DI-RAS3/NOEY2 

 Whereas   Ras is an oncogene, and many Ras subfamily 
members, such as Rheb, promote growth, there are also 
several Ras related proteins that have been implicated 
as tumor suppressors in breast cancer. One such protein, 
ARHI, was identified originally by Bast and colleagues by 
using differential display PCR in ovarian cancer cells to 
identify genes whose expression is lost in tumor cells  [54] . 
The  ARHI  gene is maternally imprinted and expressed 
monoallelically. Loss of heterozygosity, in which the non-
imprinted allele was deleted, was reported in 41 percent 
of breast and ovarian cancers  [54] . ARHI expression is 
also negatively regulated by promoter hyper-methylation, 
decreased mRNA stability, and transcriptional regulation 
by histone deacetylase (HDAC)-E2F complexes          [55 – 57] . 
ARHI expression was found to be reduced in 70 percent 
of invasive breast carcinoma tissues and decreased expres-
sion was associated with breast cancer progression and 
lymph node metastases        [58, 59] . ARHI expression is also 
downregulated in several other cancers, including pancre-
atic cancer, thyroid cancer, and non-small cell lung cancer, 
suggesting that loss of ARHI may be an important step in 
oncogenesis  [60] . 

 Ectopic   re-expression of ARHI was found to reduce the 
clonogenic growth of breast and ovarian cancer cells, reduce 
cyclin D1 promoter activity, and increase p21 CIP1  expression 
 [54] , supporting a tumor suppressor function. Bast and col-
leagues further showed that ARHI re-expression inhibited 
breast cancer cell proliferation and tumor xenograft forma-
tion and induced calpain dependent apoptosis in breast and 
ovarian cancer cells  [61] . Since ARHI is divergent at two 
key residues important for intrinsic GTPase activity (A46 
and G95), ARHI may be constitutively active and not regu-
lated by GDP/GTP cycling ( Figure 39.2 ). The mechanism 
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of ARHI induced tumor suppression was shown to depend 
on its unique N-terminal extension  [62] , absent in other Ras 
family members ( Figure 39.2 ), and to involve inhibition of 
the signal transducer and activator of transcription STAT3 
 [63] . Strategies to cause re-expression of ARHI may repre-
sent an attractive therapy for ARHI-negative breast cancer 
patients. 

 Like   Ras and Rheb, ARHI terminates in a CAAX motif 
and is farnesylated. The farnesylation of ARHI is essential 
for its membrane association and growth inhibitory func-
tion  [62] . Therefore, it may be an important  “ off-target ”  
for farnesyltransferase inhibitors that results in promotion, 
rather than inhibition, of growth.  

    RERG 

 Like   ARHI, Rerg is another Ras related small GTPase that 
is downregulated in breast cancers and is thought to play 
a growth inhibitory role. Rerg was initially identified in a 
microarray screen, where its expression was decreased in 
the most aggressive, ER-negative subtypes        [64, 65] . Rerg 
was found to be a transcriptional target of the ER, which 
functions as a transcription factor when bound to estrogen 
( Figure 39.4b ). Rerg expression was stimulated by estro-
gen treatment and reduced by the anti-estrogen tamoxifen 
 [64] . Other microarray studies have found decreased Rerg 
expression in several different types of cancer and in meta-
static cancers relative to their non-metastatic counterparts 
 [66] , suggesting that loss of Rerg expression may play a 
role in tumor progression and metasasis. 

 While   Rerg shares substantial sequence identity with 
Ras, particularly in the core effector domain ( Figure 
39.1b ), Rerg does not bind to canonical Ras effectors and 
no Rerg effectors have been identified to date. Unlike most 
Ras family members, Rerg lacks the C-terminal CAAX 
motif and is localized primarily in the cytosol        [64, 67] . 
Overexpression of Rerg in MCF-7 cells decreased cell 
proliferation and xenograft formation  [64] , suggesting 
that Rerg is a growth inhibitor in breast cancer. However, 
ectopic re-expression of Rerg in ER-negative, Rerg-negative 
breast cancer cell lines did not affect anchorage depend-
ent or independent growth or invasion  [66] , casting doubt 
on the role of Rerg as a tumor suppressor in breast cancer. 
More studies are needed to confirm the role of Rerg as a 
growth inhibitor in breast cancer  in vivo  and the identifica-
tion of Rerg binding partners may shed light on its function 
in breast cancer.  

    THERAPEUTIC RE-EXPRESSION OF ARHI OR 
RERG IN BREAST CANCER 

 Due   to the putative roles of ARHI and Rerg as tumor sup-
pressors or growth inhibitors in breast cancer, therapeutic 

re-expression of these proteins in tumors that have lost 
their expression may be beneficial. Although a gene ther-
apy approach to simply restore expression may be the most 
direct strategy, this feat remains difficult to accomplish. 
Instead, targeting the epigenetic regulation of ARHI and 
Rerg may be more promising. Expression of both genes is 
negatively regulated by HDACs ( Figure 39.5   ). The HDAC 
inhibitor trichostatin A restored expression of ARHI and 
Rerg in breast cancer cells        [68, 69] . Several HDAC inhibi-
tors are currently in clinical trials to treat cancer, includ-
ing breast cancer, and the HDAC inhibitor vorinostat 
(Zolinza  ®  ) has been approved by the FDA for the treat-
ment of cutaneous T cell lymphoma  [70] . It will be impor-
tant to determine whether these HDAC inhibitors restore 
expression of ARHI or Rerg in primary breast cancers lack-
ing expression of these proteins and whether restoration of 
ARHI or Rerg expression correlates with patient response. 

 Many   tumor suppressors, including ARHI, are epige-
netically silenced by promoter hyper-methylation ( Figure 
39.5 ). DNA methyltransferases (DNMTs) have thus 
attracted interest as therapeutic targets  [71] . The DNMT 
inhibitor 5-aza-2 ’ -deoxycytidine (5-aza-dC) reactivated 
ARHI expression in breast cancer cells        [56, 69] . Another 
way to restore ARHI expression could be E2F inhibitors, 
since RNA interference mediated suppression of E2F 
family member expression was shown to increase ARHI 
expression in SKBR3 breast cancer cells  [55] . Whether the 
Rerg promoter is hyper-methylated or whether Rerg expres-
sion can be restored by 5-aza-dC treatment is not known, 

 FIGURE 39.5          Epigenetic silencing of ARHI and Rerg and strategies 
to restore their expression.  
    The  ARHI  gene can be epigenetically silenced by promoter hyper-
methylation, catalyzed by DNMTs, and by HDAC/E2F complexes. The 
DNMT inhibitor 5-aza-dC and the HDAC inhibitor (HDACi) TSA have 
been shown to restore ARHI expression in some breast cancer cells. 
TSA can also restore Rerg expression in an ER-negative cell line. Other 
methods to restore Rerg expression in ER-negative breast cancers could 
include strategies to upregulate or to stabilize the ER, such as with Src 
inhibitors, MEK inhibitors, or DNMT inhibitors.    



 Chapter   |   39    The Roles of Ras Family Small GTPases in Breast Cancer 363

but 5-aza-dC can restore ER expression in ER-negative 
breast cancer cells  [72] . It will be important to determine 
if ER expression is sufficient to restore Rerg expression. If 
this is the case, then Rerg expression may also be restored 
by inhibitors of the Src tyrosine kinase or MEK1/2 dual 
specificity kinases, which have been shown to increase ER 
levels in breast cancer cells        [73, 74] . Since many of these 
therapies are in preclinical or clinical studies, understand-
ing the effects of ARHI or Rerg re-expression in breast can-
cer may help to predict patient response to these therapies.  

    OTHER RAS FAMILY PROTEINS IN 
BREAST CANCER 

 There   are several other members of the Ras subfamily that 
have been implicated in breast cancer, but more studies 
are needed to determine the importance of these proteins 
in breast cancer. Rap1, a Ras related protein involved in 
integrin and cadherin signaling, was shown to be involved 
in breast cancer lumen formation  [75] . Rap1 activity 
was elevated in a malignant breast cancer cell line com-
pared to its non-malignant counterpart when cultured in 
three-dimensional laminin-rich extracellular matrix  [75] . 
Dominant-negative Rap1 restored tissue polarity and 
induced lumen formation in breast cancer cells. Dominant-
negative Rap1 also reduced tumor incidence in mice, 
whereas constitutively active Rap1 increased invasive-
ness and tumorigenicity  [75] . Determining whether GTP-
bound Rap1 is increased in primary breast cancer tissue 
and whether RNAi mediated silencing of Rap1 in multiple 
breast cancer cell lines reduces tumorigenicity and invasion 
will strengthen the evidence for the importance of Rap1 in 
breast cancer tumorigenesis. 

 Rad   (R-Rad/Rem3) is a Ras related GTPase that is nor-
mally expressed in heart, skeletal muscle, and lung tissues 
 [76] . Multiple groups have reported reduced expression of 
Rad in breast cancers        [77, 78] , suggesting a role for Rad 
as a tumor suppressor. However, ectopic expression of 
Rad was shown to increase anchorage independent growth 
and tumor formation in mice, implicating Rad as an onco-
gene instead of a tumor suppressor  [77] . Coexpression of 
the metastasis suppressor nm23, which interacts with Rad, 
inhibited Rad induced breast cancer cell growth  [77] . More 
work is needed to resolve whether Rad is a tumor suppres-
sor or an oncogene in breast cancer. 

 The   Ral GTPases (RalA and RalB) have recently gar-
nered attention for their roles in promoting oncogenesis, 
tumor growth, and metastasis  [79] . Ral GTPases function 
downstream of the Ras effector, RalGEF, and the RalGEF-
Ral pathway is required for Ras induced transformation in 
human cells  [80] . However, whether RalA and RalB are 
involved in breast cancer is not known. Ral was shown 
to be required for EGFR induced estrogen independent 
growth in MCF-7 cells, but constitutively active RalA was 

not sufficient to promote estrogen independent growth  [81] . 
Missense mutations in the RalGEF Rgl1 have been found in 
breast cancer  [82] , but whether these mutations activate Ral 
and drive tumorigenesis has not been determined. Clearly, 
further research is warranted in order to determine whether 
targeting Ral or Rgl1 would be beneficial in breast cancer. 

 The   GEF BCAR3 was found in a screen to identify 
proteins that promote tamoxifen resistance  [83] . While 
BCAR3 overexpression does indeed promote anti-estrogen 
resistance, the question of which downstream GTPase it 
utilizes to do so is controversial. Studies originally impli-
cated the mouse homolog of BCAR3, AND-34, as a GEF 
for RalA, Rap1A, and R-Ras  [84] . However, overexpres-
sion of AND-34 failed to activate RalA or R-Ras in breast 
cancer cells        [81, 85] , and AND-34 induced anti-estrogen 
resistance was found to be mediated by PI3K and Rac1 
       [85, 86] . Nevertheless, constitutively active R-Ras was suf-
ficient to induce estrogen independent MCF-7 cell prolifer-
ation  [81] . Future studies to address whether R-Ras activity 
is elevated in tamoxifen resistant breast cancer tissues will 
help to evaluate its role in breast cancer. 

 In   summary, members of the Ras subfamily of small 
GTPases may represent attractive targets for the treatment 
of breast cancer, but more research is needed to fully under-
stand the roles these proteins play in breast cancer. In addi-
tion, other small GTPases, including members of the Rho 
and Rab subfamilies, have been implicated in breast can-
cer and have been reviewed elsewhere          [87 – 89] . Currently, 
GTPases are not considered promising druggable targets. 
Since GTPases bind GTP with nanomolar to picomolar 
affinities, small molecule approaches to block GTP bind-
ing are not feasible. As strategies to therapeutically inhibit 
small GTPase signaling improve, it will be imperative to 
understand the contributions of each of these proteins to 
breast cancer development and progression.   
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     INTRODUCTION 

 A   thorough discussion of the signaling pathways operant 
in the normal mammary gland would easily fill an entire 
volume, before even considering the derangement of those 
pathways in mammary cancer. This chapter is therefore, 
of necessity, highly selective in nature, and examines in 
detail a limited selection of pathways in a limited number 
of contexts. Where we have touched upon a topic without 
exploring it in depth, we have tried to direct the reader to 
one of the many excellent review articles written by leaders 
in those particular fields. 

 In   their broadest sense, signal transduction pathways 
include all biochemical cellular pathways that modulate or 
alter cellular behavior or function. During normal embry-
onic development and in adult life signaling needs to be 
precisely coordinated and integrated at all times, because 
properly regulated differentiation signals are critical for 
preventing oncogenesis. Cancers, therefore, do not nec-
essarily arise as a result of an increased rate of cellular 
proliferation. Rather, carcinogenesis is a combination of 
defects in cell cycle progression (cellular division), immor-
talization, genomic instability, cell survival regulation 
(apoptosis, autophagy, senescence, necrosis), cell – cell and 
cell – substrate adhesion, and angiogenesis. Deregulated cell 
and tissue growth is a defining feature of all neoplasms, 
both benign and malignant. Malignant neoplasms have the 
capacity to invade normal tissues, to induce the develop-
ment of a local vasculature, to metastasize, and to grow at 
distant body sites. All of the behaviors of malignant mam-
mary cancers can be found at some stage and in some con-
text during normal mammary development and mature 
function, and so, to a large extent, mammary carcinogenesis

and malignant progression can be viewed as the inappro-
priate manifestation of normal functions as a result of per-
turbed signaling pathways. Thus, understanding the role of 
signaling in normal mammary processes is invaluable to 
any description of lesions present in mammary cancers. 

 During   the latter part of the last century, much effort 
was devoted to the identification of the mechanisms of 
action of estrogen and progesterone at the local tissue level, 
in the normal breast, and during initiation, early promotion, 
and later progression to malignancy. The role of estrogens 
in breast cancer initiation remains somewhat controversial, 
whereas a role in promotion and progression is relatively 
well established. Breast tissue regulation by these hor-
mones is modulated in a rather complex fashion. Function 
of the cognate nuclear hormone receptors is regulated by a 
series of co-activators and co-repressors. A consequence of 
receptor activation regulates the expression of various tran-
scription factors and other genes, including those encoding 
autocrine and paracrine growth factors. These hormone-
regulated factors control epithelial cellular differentiation, 
and epithelial cell – cell and cell – stromal adhesion. 

 A   large body of breast cancer research has been focused 
on understanding the complex interactions among growth 
factors and deregulated growth regulatory genes (onco-
genes or proto-oncogenes and suppressor genes) in mediat-
ing or modulating endocrine steroid action in breast cancer. 
Another important area of investigation has been studied, 
of the involvement of growth factors in facilitating malig-
nant progression of the disease. One area of research has 
examined defective tumor host interactions, resulting in 
aberrant stromal collagen synthesis (desmoplasia), epithe-
lial cell invasion, and vascular infiltration (angiogenesis) 
to promote distant metastasis. Furthermore, several studies 
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characterized by the prototypic transforming growth factor 
 α  (TGF α ) and transforming growth factor  β  (TGF β ). The 
TGF β s and their receptors are structurally distinct from 
TGF α /EGFR, and are briefly discussed below. TGF α  is 
closely homologous to epidermal growth factor (EGF), and 
both ligands bind to and activate the EGF receptor (EGFR) 
 [6] . EGFR is a tyrosine-kinase which, on activation, stimu-
lates several cellular responses, including survival, prolif-
eration, motility, and differentiation  [6] , and which is the 
prototype for a family of four receptors collectively called 
the ErbB family (EGFR/HER-1, ErbB2/HER-2, ErbB3/
HER-3, and ErbB4/HER-4; see  Table 40.1   )  [7] . 

 The   EGF family members that bind to EGFR are EGF, 
TGF α , amphiregulin (AR, a heparin-binding factor), heparin-
binding EGF (HbEGF), epiregulin, and  β -cellulin  [8] . Cripto 
(CR-1) is an EGF family member that also plays an impor-
tant role in embryogenesis and mammary gland develop-
ment. CR-1 is overexpressed in several human tumors        [9, 
10] . However, CR-1 binds to a type I serine/threonine kinase 
receptor for activin (ALK4), which is expressed on the cell 
surface of mammary epithelial cells  [11] , rather than binding 
to EGFR or one of the other ErbB receptors. A related class 
of molecules known as the heregulins (human) and NDFs 
(neu differentiation factor, from rat)        [12, 13] , now commonly 
known simply as the neuregulins, bind to ErbB heterodim-
ers. Whereas c-ErbB4 is a tyrosine kinase, c-ErbB3 is kinase 
defective. A fourth member, c-ErbB2 (HER2/neu), binds no 
secreted ligand and is activated through heterodimeric inter-
action with other family members. c-ErbB2 is particularly 
important as an oncogene in breast cancer  [14] . 

 ErbB   receptors undergo homo- or heterodimerization 
following ligand binding. After ligand binding, EGFR/
ErbB1/HER-1 undergoes either endocytosis and degrada-
tion by both proteasomal and lysosomal pathways, or the 
receptor is recycled to plasma membrane. ErbB2/HER-2 is 
considered to be endocytosis-impaired, and is the most sta-
ble protein among ErbBs in the plasma membrane. Largely 

have found that certain growth factors may suppress the 
host immune response to the tumor and may influence a 
tumor’s response to therapy. Over the past few years, much 
progress has been made toward developing an appreciation 
for the plethora of signaling pathways that are involved in 
normal mammary gland biology and in elucidating the role 
of specific components of those pathways. However, it is 
becoming evident that several major pathways may be of 
particular importance both in the normal and malignant 
gland; this chapter will focus on a selection of these path-
ways. Other important pathways that have been the subject 
of other reviews we will only mention in passing. These 
include signaling from adhesion molecules        [1, 2] , the TGF β  
pathway        [3, 4] , and steroid hormones. 

 The   mammary gland is a fascinating organ from a devel-
opmental standpoint, going through several distinct phases 
of growth during which the relationships between, and 
importance of, various signaling pathways are dramatically 
altered. Formation of the mammary gland, which originates 
in the ectodermal layer during embryogenesis, involves 
complex interactions between epithelial and mesenchymal 
components. These interactions result in the coordinated 
activation of an array of signaling pathways. Since these 
processes have recently been the subject of an excellent 
review  [5] , they will not be examined further here. 

 During   pre-pubertal life, the mammary gland grows at 
essentially the same rate as the other organs, and undergoes 
little additional development until the onset of puberty. 
At puberty, the influence of ovarian hormones, in concert 
with an array of signaling pathways, stimulates the gland 
to begin to develop into its adult form. During reproductive 
life, the gland undergoes cyclical re-modeling throughout 
the ovarian cycle. Other pathways are invoked to prepare 
the organ for lactation during pregnancy. At weaning, a 
coordinated series of signals triggers several waves of 
apoptosis, initiating the regression of the mother’s gland 
to the resting adult state. Not surprisingly, many of the 
key regulators of these pathways are the locus of what 
are thought to be key lesions that can lead to transforma-
tion and malignant progression of cells within the mam-
mary gland. The role of several of these pathways in this 
process will be considered below; specifically the epider-
mal growth factor (EGF) family, and signaling through 
the phosphatidylinositol 3-kinase (PI3K)/phosphatase and 
tensin homolog (PTEN)/AKT axis.  

    THE EPIDERMAL GROWTH FACTOR FAMILY 

 Members   of the Epidermal Growth Factor (EGF) family 
play a critical role in the mammary gland, and work over 
the past few years has revealed an increasingly complex 
regulatory network involving these proteins and the family 
of receptors on which they act. Two major classes of struc-
turally and functionally distinct TGF families were initially 

 TABLE 40.1          Members of the EGFR family and their 
ligands  1    

   Receptor  Ligands 

   EGFR (c-Erb-B1)  Epidermal growth factor (EGF), transforming 
growth factor- α , amphiregulin, heparin-
binding EGF-like growth factor (Hb EGF), 
betacellulin (BC), epiregulin (EP) 

   c-ErbB2 (HER2)  Not established 

   c-ErbB3 (HER3)  Neuregulins  

   c-ErbB4 (HER4)  Neuregulins, Hb EGF, BC 

  1  The four ErbB receptors are shown along with their ligands. Note that 
ErbB2 does not have a direct binding ligand.  
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as a consequence of its stability, ErbB2/HER-2 is the pre-
ferred heterodimerization partner among the ErbBs. 

 All   four members of the EGFR family ( Table 40.1 ), 
and most of the EGFR-related growth factors, play a role 
in tumor growth and development, and in the progression 
of human breast cancer. The availability of targeted mutant 
mice, in which various members of the ligand and receptor 
families have been knocked out, has proven to be invaluable 
to elucidating the role that these proteins play in mammary 
gland development and function. Stromal EGFR is acti-
vated by amphiregulin (AR) in a paracrine manner, follow-
ing AR’s shedding from neighboring mammary epithelial 
cells  [15] . Shedding is mediated by the ADAM17 protease, 
which cleaves the epithelial-bound AR precursor on the 
outside of the plasma membrane. This mechanism revealed 
how the combined effect of EGFR and its ligand AR, 
through an epithelial – mesenchymal interaction, regulates 
the process of mammary ductal morphogenesis        [15, 16] . 

 Ductal   growth in the mammary epithelium is defec-
tive when ErbB2 is disrupted in the mammary gland  [17] , 
implying a prominent role for ErbB2 in mammary ductal 
growth. Cooperation between signaling molecules such as 
Akt and ErbB2 was observed in mammary specific bitrans-
genic mice, resulting in accelerated mammary tumor for-
mation  [18] . ErbB2 also plays a significant role in ductal 
morphogenesis        [19, 20] . While kinase-dead, ErbB3/HER-3 
frequently forms a high-affinity co-receptor for heregulin 
by heterodimerization with ErbB2/HER-2. ErbB3/HER-3 
possesses several docking sites for PI3K, and can initiate 
PI3K/Akt signaling when transactivated by ErbB2/HER-2. 
Heterodimerized ErbB-2/HER-2-ErbB3/HER-3 acts as an 
oncogenic unit for breast tumor cell proliferation  [21] . 

 While   the basic mechanism of ErbB signaling is iden-
tical in both normal and malignant mammary gland, it is 
frequently deregulated and uncontrolled in breast cancer. 
This is often the result of gene amplification or overexpres-
sion, and/or activating mutations in the ErbB receptors and 
ligands. Steroid-growth factor interactions have been stud-
ied in human mammary tissue most frequently in the con-
text of malignant epithelium; these interactions are almost 
certainly also crucial in the regulation of the normal gland 
and in the development of cancer. In hormone-responsive 
human breast cancer cells, estrogen-induced prolifera-
tion is accompanied by an increase in growth stimulatory 
TGF α , AR, and IGF-II, modulation of IGF-binding pro-
teins, induction of EGF and IGF-I receptors, inhibition of 
IGF-II and c-ErbB2 receptors, and inhibition of TGF β   [22] . 

 The   role of EGF family members in tumor onset and 
progression is well established  [8] . TGF α  has been shown, 
both in cell lines  in vitro  and in experimental animal mod-
els  in vivo , to be a positive modulator of cellular transfor-
mation. These effects of TGF α  are due to its regulatory 
effects on proliferation, survival, and motility, as well 
as its modulation of differentiation  [23] . Several labora-
tories have utilized mouse models in which the EGFR 

ligand, TGF α , was overexpressed in the mammary gland 
under control of either the MMTV-LTR or WAP promoter 
         [24 – 26] . Expression of the TGF α  transgene in the mam-
mary gland caused anomalous development. For example, 
alveoli appeared precociously and postlactational involu-
tion was impaired, resulting in the persistence of epithelial 
structures, termed hyperplastic alveolar nodules. The mice 
also developed focal mammary tumors with a high inci-
dence and short latency  [24] , indicating that EGFR signal-
ing leads to neoplastic progression in this tissue. 

 Humphreys   and Hennighausen        [25, 27] , compared 
TGF α -induced mammary tumorigenesis in wild-type mice 
with those lacking a functional Stat5a gene. These investi-
gators found that the absence of Stat5a delayed hyperpla-
sia and tumor development and, coincidentally, promoted 
more epithelial regression. However, these effects were not 
observed in TGF α  transgenic mice containing Stat5a. 

 Much   effort has been focused on understanding the 
cooperation and synergy between TGF α  and c-Myc. c-Myc, 
a downstream effector of the c-ErbB2 oncogene, is fre-
quently amplified and overexpressed in human breast can-
cer  [28] . Bitransgenic c-Myc/TGF α  mice develop multiple 
aggressive mammary tumors with a dramatically shorter 
latency compared to either single transgenic lineage  [24] . 
These results indicate a strong synergy between TGF α  and 
c-Myc, which could reflect the ability of c-Myc to amplify 
autocrine growth circuits, including those involving EGFR. 

 Recent   data suggest the possibility of cooperation 
between cyclin D1 and TGF α   [29] . Early upregulation of 
cyclin D1 by TGF α  might circumvent the normal ability of 
c-Myc to repress this cell cycle regulator, perhaps obviat-
ing the need for genetic alterations that would otherwise 
uncouple c-Myc and cyclin D1 during neoplastic progres-
sion. Work by Shroeder and colleagues  [26]  focused on 
identifying genes that cooperate with TGF α  in mammary 
tumorigenesis. Based on their results, TGF α  appears to 
upregulate the Wnt3 gene. Thus, the apparent synergy 
between the EGFR and Frizzled signaling pathways might 
contribute to neoplastic progression. Both Wnt and ErbB 
receptors can regulate  β -catenin activity leading to cellular 
disaggregation. Therefore, it is reasonable to speculate that 
the observed synergy involves this pathway. 

 Besides   the role of TGF α  in mammary tumorigenesis, 
other EGFR ligands regulate proliferation. The closely related 
factor, EGF, can act as an oncogene-like molecule when trans-
fected and overexpressed in immortalized rodent fibroblasts 
 [30] . Furthermore, it has been shown that both AR and CR-1 
may be important in early stages of the onset of breast cancer 
               [30 – 35] . Forced overexpression of EGFR in the mammary 
gland, under the control of the MMTV or  β -lactoglobulin 
(BLG) promoters, resulted in abnormal mammary gland 
development and the production of epithelial hyperplasias. 
With multiple pregnancies, dysplasias and tubular adenocar-
cinomas were also observed. Differentiation of the mammary 
epithelium was perturbed in response to deregulated EGFR, 
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as reflected by fewer alveoli developing in whole-mount 
organ cultures. Similar to EGFR, overexpression of c-ErbB2 
in the transgenic mouse, or in the transgenic mammary gland 
after retroviral transfer, also leads to pregnancy-induced 
mammary tumors  [7] . 

 The   roles of c-ErbB3 and c-ErbB4 in mammary tum-
origenesis are still incompletely understood. Increasing 
evidence suggests that whereas overexpression of c-ErbB3 
like the EGFR and c-ErbB2 is associated with more agg-
ressive cancer, c-ErbB4 tends to be lost in these tumors. 
c-ErbB4 signaling appears to inhibit proliferation and is 
pro-apoptotic. It is clear that complete elucidation of this 
pathway will require significant effort from researchers for 
many years to come.  

    OTHER GROWTH FACTOR FAMILIES 

 The   TGF β  family consists of several related gene prod-
ucts, each forming 25-kDa homodimeric or heterodimeric 
species, and is expressed in both normal and neoplastic 
mammary epithelium. Three membrane-binding proteins 
interact with this family of growth factors. These were ini-
tially termed receptors (type I, II, and III). Type III recep-
tors appear to be non-signaling proteins, whereas the other 
receptor types (type I and II) are serine/threonine kinases 
and have been shown to deliver intracellular signals              [36 –
 40] . Four different type II receptors have been cloned, and 
they each may associate with one of several type I receptors. 
The function of type II receptors is determined on the basis 
of which type I receptor is recruited into each heterodimer. 
TGF β  ligands only directly bind to type II receptors. 

 The   role of this signaling system in mammary gland 
development and carcinogenesis is complex. The various 
components of the system are expressed, under tight spe-
cial and temporal control, in both the epithelial and mes-
enchymal components of the gland during development. 
Recent advances in the role of TGF β  signaling in mam-
mary development and carcinogenesis have been reviewed 
by several investigators        [3, 4] . In addition to the EGFR and 
TGF β  growth factor families, at least five other growth 
factor stimulatory molecules likely play a role in breast 
cancer. These molecules are summarized in  Table 40.2   : 
insulin-like growth factors (type I and II)  [41] , members of 
the Wnt (wingless) growth factor receptor family (Wnt-2, 
Wnt-3, Wnt-4, Wnt-5a, and Wnt-7b)  [42] , platelet-derived 
growth factors A and B  [43] , and the fibroblast growth fac-
tor (FGF) family  [44] . 

 Each   of these growth factor classes binds to one or 
more specific tyrosine kinase-encoding receptors. Vascular 
endothelial growth factor (VEGF, a member of a differ-
ent family of tyrosine kinase receptor-binding factors)  [45] , 
pleiotrophin (a developmental, neurotropic factor)  [46] , and 
hepatocyte growth factor (HGF; also called scatter factor) 
and its tyrosine kinase encoding receptor, c-Met  [47] , are all 

produced by breast cancer. In addition, breast cancer cells also 
produce the hormone prolactin  [48]  and mammary-derived 
growth factor 1 (MDGF-1)  [49] . While the roles of some 
of these molecules are well established in breast signaling, 
much more research is needed to understand fully their role in 
both mammary gland development and human breast cancer.  

    THE PI 3-KINASE – AKT AND PTEN AXIS 

 One   of the most exciting advances over the past few years 
has been the growing appreciation of the importance of 
phosphatidylinositol 3-kinase (PI3K) mediated signaling 
in the mammary gland and its dysregulation in breast can-
cer. The PI3K/Akt/PTEN axis is involved in some aspect of 
the downstream signaling of all of the systems described 
above. Survival signals from the EGFR pathway, for exam-
ple, are transmitted both by the extracellular signal regu-
lated kinase (Erk1/2) pathway and the PI3K/Akt system 
       [50, 51] , though the PI3K pathway seems to predominate. 

 Akt   is a serine/threonine kinase, downstream of PI3K 
activation, which delivers strong survival signals in many 
cell types          [52 – 54] . Both growth factors and integrins activate 

 TABLE 40.2          Diverse group of growth factors and other 
molecules thought to play roles in breast cancer  1    

   Signaling molecules  Cellular response 

   Insulin-like growth factors 
(type I and II) 

 Stimulatory/tumor cells 

   Wnt growth factor family  Stimulatory/tumor cells 

   Platelet-derived growth factors 
A and B 

 Stimulatory/stromal cells  2   

   Fibroblast growth factors  Stimulatory/tumor cells 

   Vascular endothelial growth 
factor 

 Angiogenesis/vascular cells  2   

   Hepatocyte growth factor, 
receptor c-Met 

 Stimulatory/tumor cells 

   Prolactin  Stimulatory/tumor cells 

   Mammary-derived growth 
factor 1 

 Stimulatory/tumor cells 

   Pleiotrophin (developmental 
neurotropic factor) 

 Stimulatory/tumor cells  2   

  1  Proposed autocrine and paracrine factors in breast cancer. Tumor 
cells release variety of growth factors that might play autocrine roles 
 in vivo  (this is based mostly on their activity  in vitro ). Several of the 
same factors also are known to play paracrine and endocrine roles 
as well.  
  2  Additional, angiogenic effects of these factors.  
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one of the three isoforms of Akt (Akt1, Akt2, and Akt3), 
each of which is expressed at different levels in various tis-
sues  [55] . Akt then modulates the activity and expression 
of multiple downstream targets involved in the regulation 
of cell growth, metabolism, and apoptosis. Akt downstream 
targets include the BCL2 family of proteins  [56] , caspase-9 
 [57] , the Forkhead transcription factor  [58] , BCL-xL  [59] , 
MCL-1  [60]  and NF κ B activity  [61] . Akt signaling has 
been the subject of multiple reviews          [62 – 64] . 

 The   past few years have revealed the important role 
that aberrant PI3K signaling can play in mammary car-
cinogenesis. Deregulation of PI3K-Akt activation either by 
constitutive activation of PI3K or by deletion of PTEN, an 
endogenous Akt inhibitor, enhances the oncogenic poten-
tial of mammary gland. Constitutively active PI3K was 
shown to transform human mammary epithelial cells  [65] , 
thereby underscoring the potential role for PI3K in breast 
neoplasia. Several PI3KCA mutations have been reported 
in human breast tumor samples and breast cancer cell lines 
               [66 – 71] . These mutations were associated with PTEN loss, 
ErbB2 overexpression, and estrogen-progesterone receptor 
expression, thus activating several components of the car-
cinogenesis machinery. 

 Consistent   with its inhibitory role in breast tumorigen-
esis, PTEN overexpression in a transgenic mouse model 
enhanced apoptosis in the mammary gland  [72] . In addi-
tion to its well-established role as tumor suppressor, 
PTEN has been recently shown to increase the efficacy of 
Tratsuzumab (Hereceptin) therapy  [73] . This beneficial 
interaction appears to be the result of a previously unknown 
mechanism for increased PTEN recruitment and phos-
phatase activity by Src-mediated tyrosine phosphorylation. 
This work identifies a locus of cross-talk between signaling 
pathways, and indicates that parameters such as PTEN sta-
tus should be considered during Herceptin therapy. 

 Akt   is one of the best characterized of the pro-survival 
kinases. As in other organs, Akt has a major effect in 
regulating both the normal and neoplastic mammary gland. 
Mammary-specific transgene expression of Akt delays mam-
mary gland involution        [74, 75] . Recently, three groups have 
simultaneously reported that Akt phosphorylates the p27 cell 
cycle inhibitor, leading to the latter’s mislocalization from the 
nucleus          [76 – 78]  and a resultant enhanced cell cycle progres-
sion. It was further shown that Akt-mediated phosphoryla-
tion of p27 at Thr-157 impairs its association with importin, 
a component of transport machinery, thus preventing p27 
re-entry to nucleus  [79] . These observations present another 
mechanism by which Akt positively regulates biochemical 
mechanisms that are pro-tumorigenic in nature. 

 Contrary   to its pro-survival nature, Akt has also been 
found to have an unexpected additional role in breast cancer. 
In a recent report, Yoeli-Lerner and colleagues have shown 
that Akt activation inhibits breast cancer cell migration by 
indirectly regulating ubiquitination and degradation of the 
pro-invasive NFAT transcription factor  [80] . In another 

study, downregulation of Akt1 enhanced cell migration by 
EGF and IGF-1 in MCF-10A cells  [81] . These contrasting 
roles for Akt, when compared with its pro-tumorigenic role, 
demand a vigorous examination. Such additional examina-
tion is particularly timely in light of the ongoing clinical tri-
als targeting the expected pro-tumorigenic role of Akt. 

 Regarding   the regulation of Akt activity, two recent 
reports described two putative PDK-2       s responsible for 
phosphorylating the hydrophobic S473 site on Akt. One of 
these PDK2 molecules is a DNA-dependent protein kinase 
(DNA-PK)  [82] , the other being Rictor, in association 
with companion mTOR complex        [83, 84] . A new protein 
tyrosine phosphatase, called PHLPP, has been shown to 
dephosphorylate Akt at the S473 site in colon cancer and 
glioblastoma  [85] . While the status of PHLPP is currently 
unknown in breast cancer, this would present an interest-
ing therapeutic target, since PTEN is frequently mutated in 
breast cancer. PHLPP is the only phosphatase in the human 
genome with a Pleckstrin homology (PH) domain, and so 
potentially PHLPP has the ability to be membrane targeted 
in a PIP3 (product of PI3K)-dependent manner. 

 Calmodulin  , a protein long known to play multiple roles 
in cellular signaling and previously shown to be involved 
in estrogen receptor signaling and stabilization            [86 – 89] , 
has recently also been demonstrated to participate in Akt-
 mediated survival signaling in the mammary gland. In c-
Myc overexpressing mouse mammary carcinoma cells, 
calmodulin is required for EGF, insulin, and serum induced 
Akt activation. This effect is mediated downstream of PI3K, 
and appears to involve a direct interaction between Akt and 
calmodulin          [90 – 92] . Pharmacologic inhibition of calmodu-
lin results in the suppression of Akt signaling in a manner 
independent of PI3K activity. In addition to a pro-survival 
role for calmodulin, calmodulin kinase I was recently shown 
to control the G0 – G1 cell cycle checkpoint in MCF-7 breast 
cancer cells  [93] . Using pharmacologic and siRNA based 
approaches, Rodriguez-Mora and colleagues have shown 
that inhibition of calmodulin kinase I and its upstream 
activator calmodulin kinase kinase led to cell cycle arrest 
at G0 – G1 due to inhibition of cyclin D1 synthesis and Rb 
hypophosphorylation. In contrast to the pro-survival and 
pro-proliferative nature of calmodulin and calmodulin 
kinase I, Death Associated Protein kinase (DAP)  [94] , a cal-
modulin kinase and a death-promoting kinase, is expressed 
in normal breast epithelium. However, DAP expression 
is often lost in human breast cancer  [95] . Another study 
reported significant promoter hypermethylation of the DAP 
kinase gene in human breast cancer samples  [96] , suggest-
ing that this pathway warrants further study.  

    CONCLUSIONS 

 In   this chapter we have attempted to highlight some of 
the more important aspects of signaling in the normal and 
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neoplastic mammary gland. The past few years have seem 
major advances in our understanding of the key aspects of 
the control of mammary gland development, function, neo-
plastic transformation, and tumor progression. Increased 
understanding of the importance of survival signaling in all 
of these processes, and the recognition of the critical role 
that derangement of PI3K pathway plays in breast cancer, 
hold the promise that the next few years will be an exciting 
time for the development of novel therapeutic strategies for 
the prevention and treatment of breast cancer.  
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     I NTRODUCTION 

 The   pancreas is a small organ located just behind the stom-
ach. It measures approximately 6 inches long and 2 inches 
wide, situated horizontally in the abdomen. It is a com-
pound gland, containing both exocrine and endocrine cells. 
The exocrine pancreas produces pancreatic juice that con-
tains digestive enzymes that are synthesized in the acinar 
cells and bicarbonate-rich fluid that is secreted by the ductal 
cells. The majority (95 percent) of the cells of the pancreas 
are acinar cells, whereas only 2 percent are ductal cells, 
and an even smaller percentage of cells are endocrine cells, 
which are arranged into small clusters called the islets of 
Langerhans. These islets release insulin and glucagon into 
the bloodstream, thereby regulating glucose homeostasis. 

 To   date, the cell type that gives rise to pancreatic duc-
tal adenocarcinoma (PDAC) has not been clearly deline-
ated. Candidate cell types include the ductal epithelial cell, 
the acinar cell, the centro-acinar cell, and progenitor-stem 
cells. The first evidence of pancreatic dysplasia appears his-
tologically as pancreatic intraepithelial neoplasias (PanINs). 
As depicted in  Figure 41.1   , PanIN-1 A lesions exhibit only 
minimal molecular alterations and microscopically appear 
as tall columnar cells with some crowding. PanIN-1B are 
similar to PanIN-1 A, but with enhanced crowding of the 
columnar cells. PanIN-2 lesions exhibit nuclear atypia and 
papillary projections, whereas PanIN-3 lesions are highly 
dysplastic and have atypical ductal hyperplasia with severe 
atypia. The PanIN-3 lesions represent carcinomas  in situ , 
and are the immediate precursors to invasive carcinoma  [1] . 

 Less   common types of exocrine cancers include ade-
nosquamous carcinomas, squamous cell carcinomas, cys-
tadocarcinomas, and giant cell carcinomas, to name a few. 

Tumors may also arise in the endocrine portion of the pan-
creas. These are known as neuroendocrine tumors, and 
include such tumors as insulinomas and glucanomas. 

 PDAC  , the most common pancreatic tumor, is cur-
rently the fourth leading cause of cancer death in the United 
States, with just over 37,000 new cases diagnosed each year. 
It is one of the deadliest forms of cancer with a median sur-
vival of 5 months, an overall 1-year survival rate of 15 per-
cent, and a 5-year survival rate of 3 – 5 percent        [2, 3] . The 
majority of PDAC patients have extensive local and/or 
metastatic disease upon presentation, which excludes them 
from surgical resection. Yet, non-surgical treatment modali-
ties for PDAC are generally ineffective        [4, 5] , often leaving 
palliative care as the only other option in these patients. 

 Specific   molecular alterations have been shown to corre-
late with discrete pathological stages of pancreatic tumorigen-
esis ( Figure 41.1 ) and contribute to specific features of PDAC 
( Table 41.1   ). Based on the multi-hit hypothesis that was pro-
posed for colorectal adenocarcinoma, a similar hypothesis 
has been put forth for PDAC based on a series of gene array 
and immunohistochemical studies  [6] . The first detectable 
alteration in pancreatic cancer appears to be point mutations 
in the K- ras  oncogene, followed by the overexpression of the 
 HER-2/neu  gene. The second  “ hit ”  is then thought to be inac-
tivation of the  p16 INK4a   gene, followed by the loss of the  p53 , 
 DPC4  ( Smad4 ), and  BRCA2  genes              [7 – 11] . 

 Additional   alterations suggested to play a role in PDAC 
include the overexpression of a number of important growth 
factors and their corresponding high affinity tyrosine kinase 
receptors, transforming growth factor beta (TGF- β ) isoforms, 
Hedgehog signaling components, the Wnt signaling path-
way, the cell cycle regulatory pathway, and nuclear  effectors 
such as Notch, NF κ B, and Stat3. In general, the somatic 
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alterations that are found in PDAC lead to increased prolif-
eration, decreased apoptosis, and aberrant angiogenesis.  

     O NCOGENIC ACTIVATION IN  PDAC  

    Growth Receptor Pathways 

 Pancreatic   cancer cells, like several other cancers  [12] , have 
a high mitotic index and proliferative capacity due, in part, to 
the excessive activation of a number of growth factor recep-
tors ( Figure 41.2   ). One pathway that is particularly impor-
tant in PDAC is dependent on signaling via the epidermal 
growth factor (EGF) receptor (EGFR). This transmembrane 
tyrosine-kinase receptor is also known as human epidermal 
growth factor receptor 1 (HER1; ErbB-1). Human pancreatic 
cancer cell lines express high levels of EGFR, as well as at 
least five of the seven factors that bind to and activate EGFR 
       [12, 13] . These factors include EGF, transforming growth 
factor-alpha (TGF- α ), amphiregulin, betacellulin, and 
heparin binding EGF-like growth factor (HB-EGF). EGFR 
expression correlated with a more advanced clinical stage 
of PDAC and shorter survival of patients following tumor 
resection due to more rapid disease reactivation, even though 

EGFR is also expressed at high levels in chronic pancreati-
tis        [13, 14] . Additionally, c-Erb-B2 (HER2) and c-Erb-B3 
(HER3) are overexpressed in PDAC          [13, 15, 16] . These two 
EGFR related receptors further potentiate mitogenic signal-
ing through their heterodimerization with EGFR. Moreover, 
the heregulin ligands that bind to HER3 are also abundant 
in PDAC, with heregulin-beta exerting growth promoting 
effects on pancreatic cancer cells        [17, 18] . 

 A   number of other mitogenic factors are overexpressed 
in pancreatic cancers, including fibroblast growth fac-
tor-1 (FGF-1), FGF-2, FGF-5, keratinocyte growth fac-
tor-1 (FGF-1), platelet derived growth factor (PDGF) B 
chain, insulin-like growth factor (IGF), vascular endothe-
lial growth factor (VEGF), and hepatocyte growth factor 
(HGF). Additional overexpressed receptors include the 
PDGF receptors  α  and  β , FGF receptors, IGF-I, VEGF 
receptors, and the MET receptor. The elevation of these 
factors directly contributes to the highly active intracellu-
lar signaling (and subsequent proliferation and invasion) 
observed in cultured human pancreatic cells. In addition, 
high insulin levels deriving from the islet cells can stimu-
late the overexpressed IGF-I receptors on pancreatic cancer 
cells, thereby contributing to their excessive proliferation.  

 FIGURE 41.1          Molecular alterations in pancreatic cancer progression.  
    Pancreatic ductal adenocarcinoma (PDAC) arises as a consequence of a series of histological and molecular alterations, as depicted. This progression 
from histologically normal cells through various stages of pancreatic intraepithelial neoplasia (PanIN) lesions is now taken to represent the most com-
mon pathway leading to the genesis of PDAC. Pathological sections are pictured at top. A sample from a normal pancreas (left) includes numerous 
acinar cells, one duct consisting of uniformly sized ductal cells (black arrow) surrounded by a small amount of stroma, and one endocrine islet (white 
arrow) consisting of many small endocrine cells. A PanIN-1B lesion is shown in the middle panel. A PDAC sample is shown in the right panel, exhibits 
ductal-like structures that represent the pancreatic cancer cells, embedded in an extensive stroma that has a readily evident micro-vasculature. Original 
magnifications for all three hematoxylin-eosin sections: X 20.    
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of the type observed in PDAC, often lead to attenuated 
GTPase activity and constitutive mitogenic signaling. K- ras  
mutations are present in 40 percent of PanIN lesions, indi-
cating it may be one of the earliest alterations in pancreatic 
tumorigenesis ( Figure 41.1 ). It is postulated that signaling 
from mutated K-ras provides a strong selective pressure for 
cells to escape normal growth restraints and continuously 
proliferate, thereby setting the stage for cancer develop-
ment. In support of this hypothesis, several mouse models 
of PDAC have been produced in which a key component 
has been the expression of oncogenic K-ras in the pancreas 
through its own endogenous promoter  [22] .  

    Hedgehog Signaling Pathway 

 The   mammalian Hedgehog family comprises three mem-
bers: Sonic (Shh), Indian (Ihh), and Desert (Dhh). These pro-
teins regulate the growth and development of many organs 
in embryogenesis  [23]  and are vital for gastrointestinal pat-
terning early in development        [23, 24] . The two Hedgehog 
receptors are called Patched1 (Ptch1) and Patched2 (Ptch2). 
In the absence of bound Hedgehog ligand, these receptors 
are bound to and repress Smoothened (Smo). After ligand 
binding, Smo is released and subsequently signals for the 
translocation and activation of Gli family proteins        [25, 26] . 
Glis are transcriptional regulators that ultimately regulate 
the expression of Hedgehog responsive genes, including 
cyclin D1, N-Myc, p21, Wnt, Ptch, and Gli              [25, 27 – 30] . 

 Deregulation   of the Hedgehog pathway is found in 
many types of human cancer, including cancers of the 
lung, brain, skin, and pancreas              [26, 31 – 34] . The activation 
of Hedgehog signaling has been demonstrated in a major-
ity of PDAC cases        [26, 33] . Activation in pancreatic can-
cer can occur by a number of mechanisms including loss of 
 PTCH , constitutive activation of Smo, and overexpression 
of Gli and Shh  [26] . Hedgehog signaling blockade, both  in 
vivo  and  in vitro , was shown to inhibit proliferation, induce 
apoptosis, and suppress pancreatic cancer cell metastasis 
       [26, 35] . Oncogenic K-ras suppresses Gli1 protein degra-
dation, thereby activating Hedgehog signaling  [36] . 

 Transgenic   mouse models that overexpress Shh in a pan-
creas specific fashion have yielded conflicting results. While 
Thayer  et al . reported that Shh overexpression leads to the 
development of pancreatic intraepithelial neoplasia (PanIN) 
lesions, a recent consensus report concluded that this model 
developed only ductal-intestinal metaplasia without PanIN 
lesions        [26, 37] . Similarly, a mouse model with inducible acti-
vation of  Gli2  developed pancreatic tumors, but the lesions 
did not resemble those found in humans  [38] . However, when 
combined with mutated K-ras ( KrasG12D ),  Gli2  activation 
exacerbated PanIN formation  [38] , suggesting that Hedgehog 
signaling may only be important after dysplasia has already 
been initiated. Other transgenic animal and  in vitro  stud-
ies support the notion that activation of Hedgehog signaling 
may be secondary to K-ras activation  [39] . Nonetheless, this 

 TABLE 41.1          Molecular Alterations in Pancreatic Cancer  

     Type of alteration  Specific example 

   1  Altered oncogenes and 
proto-oncogenes 

 Mutated K-ras 

   2  Loss of tumor suppressor 
gene functions 

 Mutated p53 

   3  Aberrant growth factor 
and receptor expression 

 EGF overexpression 

   4  Aberrant activation of 
signaling pathways 

 BMP-2 mediated 
mitogenesis 

   5  Enhanced angiogenesis  Increased VEGF expression 

   6  Resistance to apoptosis  Expression of Fas and FasL 

   7  Altered epithelial –
 mesenchymal interactions 

 Increased glypican-1 
and CTGF 

   8  Loss of negative growth 
constraints 

 Mutated Smad4 

   9  Loss of metastasis 
suppressing genes 

 Loss of Kai1 

VEGF

IGF

HB-EGF AR
EGF

EGFR

HER-2
HER-3

K-ras Smad4

PDAC

BMPR-IA

TBRI
TBRII

Smad6/7

BMPR-II

BMP-2

TGF-B

Notch
Wnt

Hh

p53

p16

Loss or mutation
Increase or activation

HGF

 FIGURE 41.2          Altered signaling components in pancreatic cancer.  
    A number of key signaling proteins are known to contribute to the pro-
gression of pancreatic cancer. As depicted, items in white are elevated or 
constitutively active in the cancer cells, while items in black are either not 
expressed or harbor inactivating mutations.    

    K-ras 

 The   K- ras  oncogene is mutated in 75 to 95 percent of 
PDACs          [19 – 21] . K-ras is a 21       kDa membrane associated 
guanyl nucleotide exchange factor with intrinsic and extrin-
sic GTPase activity. K- ras  mutations on codons 12 and 13, 
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pathway has been shown to be a target for novel therapies, 
such as cyclopamine and IPI-269609  [40] .  

    Notch Signaling Pathway 

 The   Notch signaling pathway is another developmental 
pathway that is implicated in PDAC. This pathway main-
tains the balance between cell proliferation, apoptosis, 
and differentiation through cell – cell interactions involv-
ing membrane bound Notch receptors        [41, 42] . The Notch 
receptors (Notch 1 – 4) are activated by five ligands named 
Delta-like (DLL) 1, 3, and 4 and Jagged 1 and 2 in a lig-
and – receptor interaction between neighboring cells. This 
activation initiates proteolytic cleavage events, resulting in 
the release and nuclear translocation of the receptor cyto-
plasmic domain (NICD)            [43 – 46] . Once in the nucleus, 
NICD interacts with a number of transcriptional repressors 
and activators              [47 – 51]  to affect gene expression. Notch tar-
get genes include the Hairy enhance of split (Hes) family 
genes, Cdkn1a, cyclin D1, the ubiquitin ligase SKIP2, and 
the c-myc proto-oncogene              [52 – 56] . 

 The   proliferative consequences of Notch activation 
are complex and context dependent. Notch signaling is an 
important regulator of embryogenesis and pancreatic devel-
opment by serving to maintain a pool of undifferentiated 
precursor cells            [57 – 60] . Notch signaling is also required in 
normal pancreatic tissue regeneration after acute pancrea-
titis, as a consequence of its ability to promote acinar cell 
maturation by a crosstalk mechanism with Wnt signaling 
 [61] . Notch activation in PDAC is oncogenic  [62] , and alter-
ations in Notch signaling have been observed in early mouse 
and human PanIN lesions  [63] , suggesting that Notch sign-
aling may contribute to pancreatic tumorigenesis by promot-
ing the growth of undifferentiated cells. The Notch pathway 
is therefore a potential therapeutic target in PDAC  [64] . 
Moreover, blockade of Dll4 interferes with tumor angiogen-
esis, leading to a significant decrease in tumor growth both 
alone and in combination with anti-VEGF therapies        [65, 66] . 
Notch signaling can be targeted by sequestration of Notch 
ligands, by antisense Notch therapy, or by RNA interference 
and have been used in experimental anticancer approaches 
with varying degrees of efficacy            [67 – 70] . However, Notch 
1 and 2 exert opposite effects on tumor growth (67), indicat-
ing that such therapies may have potential pitfalls.   

     L OSS OF TUMOR SUPPRESSOR 
FUNCTION IN  PDAC  

    p53 

 The   p53 tumor suppressor is mutated in approximately 
85 percent of PDAC cases          [71 – 73] . p53 is a key regula-
tor of cellular proliferation, DNA repair, and the cell stress 
response. It is a nuclear protein that regulates the cellular 

response by modifying gene expression and triggering the 
G1/S cell cycle checkpoint in unfavorable conditions. The 
spectrum of p53 mutations in PDAC has been analyzed 
indirectly through immunohistochemical studies and direct 
sequence analysis        [73, 74] . p53 mutations become prevalent 
in later stages of PanIN formation and thus appear to be an 
early event in pancreatic tumorigenesis, but not an initiat-
ing event. Cells containing mutated p53 are less likely to 
undergo apoptosis or cell cycle arrest in response to stress 
stimuli and have reduced genomic stability  [75] . p53 defi-
cient cells are more sensitive to oncogene induced transfor-
mation and more resistant to standard anti-tumor treatment 
regimens (e.g., chemotherapy and radiation therapy).  

    p16 INK4a  

  p16   INK4a   is a tumor suppressor commonly altered in human 
adenocarcinoma. The p16 protein is an inhibitor of the cyclin 
D-Cdk4 and cyclin D-Cdk6 complexes, which themselves are 
regulators of the cell cycle. Loss of p16 results in increased 
activity of the CDKs and subsequent Rb protein activation, 
leading to unchecked cellular proliferation. The  p16 INK4a   
gene is mutated in 85 percent of PDAC cases and is epigenet-
ically silenced in the remaining 15 percent of cases        [19, 76] . 
 p16 INK4a   mutations include somatic point mutations (in ~40 
percent of cases) and deletion of both alleles (~40 percent). 
This alteration is found early in PanIN development and pre-
cedes loss of p53 in pancreatic cancer progression ( Figure 
41.2 )          [77 – 79] . Clinical studies suggest that PDAC patients 
carrying  p16 INK4a   mutations have more aggressive tumors and 
shorter survival times than patients with wild-type  p16 INK4a   
       [80, 81] . These alterations are not found in chronic pancreati-
tis, indicating this may be a genetic alteration that is specific 
to PDAC and an attractive target for molecular therapeutics.  

    The TGF- β  Pathway 

 TGF  - β  is a cytokine that has been implicated in a diverse 
range of biological processes. In addition to modulat-
ing proliferation, the TGF- β  pathway has been implicated 
in numerous cellular and biological processes including 
embryogenesis, differentiation, apoptosis, angiogenesis, 
immunosuppression, and wound healing. 

 There   are three mammalian TGF- β  isoforms (TGF- β 1, 
TGF- β 2, and TGF- β 3) that are encoded by different genes 
with different expression patterns  [82] . TGF- β  ligands 
initiate signaling by acting through two specific cell sur-
face receptors: type I TGF- β  receptor (T β RI) and type II 
TGF- β  receptor (T β RII)          [83 – 85] . In the presence of TGF-
 β  ligand and following binding to the T β RII homodimer, 
T β RII complexes with and phosphorylates T β RI  [86] . 
Phosphorylation results in the activation of T β RI kinase 
activity and subsequent phosphorylation of TGF- β  signal 
transducers: the Smad family proteins              [85, 87 – 90] . 
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 Smad   proteins are a family of transcription factors that 
are divided into three structure/function subcategories: the 
receptor regulated Smads (R-Smads: Smads2 and 3), the 
common partner Smad (Co-Smad: Smad4), and the inhibi-
tory Smads (I-Smads: Smads6 and 7). Smad2 and Smad3 
are directly phosphorylated by T β RI                [91 – 96] . Smad2 and 
Smad3 then heterodimerize with Smad4 and the resulting 
complex translocates to the nucleus. Once in the nucleus, 
the complex modulates gene transcription in conjunction 
with coactivators and corepressors such as AP-1, FAST, 
TFE3, p300/CBP, and Ski                [84, 85, 87, 88, 90, 97] . It is 
the specific interactions of the Smad complex with these 
nuclear factors that facilitates the specificity and complex-
ity of TGF- β  signaling. 

 The   TGF- β  signaling pathway is often dysfunctional 
in human cancers. When TGF- β  signaling is aberrant, cells 
become more invasive, metastatic, and proliferative. TGF- β  
is a key mediator of pancreatic fibrosis and is thought to con-
tribute to the formation of desmoplastic stroma in both PDAC 
and chronic pancreatitis            [98 – 101] . Similar to its effects in 
normal epithelium, TGF- β s act as tumor suppressors in the 
early stages of pancreatic tumorigenesis, but the expression 
of TGF- β  at later stages of cancer progression fosters a more 
aggressive phenotype                [102 – 107] . The mechanisms driving 
this functional  “ switch ”  remain to be elucidated. 

 A   number of alterations in the TGF- β  signaling occur 
in PDAC. For instance, the levels of all three TGF- β  lig-
ands and T β RII are elevated in PDAC, yet pancreatic 
cancer cells are often resistant to TGF- β  induced growth 
arrest  [108] .  Smad4  mutations are the most frequent TGF-
 β  alteration documented in human PDAC  [109] , followed 
by decreased T β RI expression        [106, 110] , increased T β RII 
expression, overexpression of Smad6/7        [111, 112] , and 
(rarely) mutations in T β RI/T β RII. 

 Smad4   is mutated in about half of PDAC cases            [109, 
113 – 115] . Immunohistochemical studies suggest that Smad4 
is lost late in pancreatic tumorigenesis because it can be 
detected in PanIN-1 and PanIN-2 lesions, but to a lesser 
extent in PanIN-3 and in PDAC  [116] . PDAC patients that 
have mutations in Smad4 displayed a shorter survival time 
after surgery compared to patients with wild-type Smad4 
(14.7       mo versus 19.2       mo)  [117] .  

    BMPs 

 Bone   morphogenetic proteins (BMPs) are growth factors 
that are members of the TGF- β  superfamily and have been 
implicated in PDAC. BMPs signal by binding coopera-
tively to two types of receptors simultaneously: the type-I 
BMP receptors (BMPR-IA/ALK-3 and BMPR-IB/ALK-6) 
and the type-II BMP receptor (BMPR-II). Once bound by 
ligand, BMPR-I becomes activated and phosphorylates 
Smad1. Activated Smad1 then forms a complex with Smad4 
and translocates to the nucleus to modify gene expression 
as described above for the TGF- β  pathway        [118, 119] . 

 The   BMP pathway is thought to be important for the 
overactive proliferation of pancreatic cancer cells. Studies 
with PDAC samples and cell lines have shown increased 
expression of the BMP-2 ligand, BMPR-IA, and BMPR-
II        [120, 121] . In addition to its role in the TGF- β  signal-
ing pathway, Smad4 has been shown to mediate signaling 
of the BMP pathway. This crosstalk between growth factor 
signaling pathways complicates the delineation of the role 
of individual pathways in PDAC.   

     C ONTRIBUTIONS OF PANCREATIC 
STROMA AND STROMAL COMPONENTS 
IN  PDAC  

 The   cellular interaction between the stromal elements and 
epithelial cells is required for normal glandular develop-
ment. In the pancreas, stromal interactions stimulate the 
embryonic pancreas to form the exocrine and the endocrine 
components  [122] . When these normal stromal interac-
tions are perturbed, the proliferation and differentiation of 
adjacent epithelial cells are affected                [123 – 128] . In general, 
tumor associated pancreatic stroma consists of pancreatic 
stellate cells and cancer associated fibroblasts, infiltrating 
inflammatory cells, blood vessels, nerves, and the extracel-
lular matrix ( Figure 41.3   ). Each of these is known to play a 
role in PDAC progression. 

 Pancreatic   stellate cells are the predominant mesen-
chymal cells in the pancreatic stroma  [129] . Stellate cells 
are thought to promote the development of a desmoplastic 
stroma through the production of extracellular matrix pro-
teins (e.g., collagen) and the release of pro-fibrotic inflam-
matory factors (e.g., TGF β )  [130] .  In vitro , pancreatic stellate 
cells can be activated by adjacent pancreatic cells  [131] . 
Recently, stellate cells were shown to contribute to increased 
tumor growth and metastasis in an orthotopic model  [132] . 
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 FIGURE 41.3          Role of pancreatic stroma.  
    Stromal elements are known to participate in pancreatic cancer initiation, 
progression, and dissemination. These elements include an extensive 
extracellular matrix (ECM), infiltrating immune cells (e.g., macrophages), 
stromal cells (including proliferating fibroblasts and pancreatic stellate 
cells), lymph/blood vessels, and adjacent nerves.    
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 Infiltrating   immune cells emigrate within the tumor 
microenvironment and release cytokines, growth factors, and 
reactive oxygen species, all of which affect epithelial cell 
growth. One such family of factors secreted by macrophages 
is the interleukins (IL). IL-1 promotes the motility and spread 
of cancer cells  [133]  while IL-6 activates pancreatic stellate 
cells and induces fibrotic ECM formation through TGF- β  
signaling (130). Additionally, fibroblasts in the stromal com-
partment can release cyclooxygenase 2 (COX-2), a mediator 
of inflammation and cancer cell invasion        [128, 134] . 

 Nerves   and blood vessels located in tumor associated 
stroma provide a conduit for cancer cell dissemination and 
metastasis. Perinerual invasion is frequent in PDAC, allows 
cancer cells to spread, and is associated with a poorer prog-
nosis        [135, 136] , whereas angiogenesis provides oxygen, 
nutrients, and a mode for rapid dissemination. Neo-angio-
genesis is initiated by factors secreted by cancer and stro-
mal cells that guide the distant endothelial cells to degrade 
the extracellular matrix and migrate toward the tumor mass 
 [137] . Additionally, inflammatory cell infiltrates secrete 
pro-angiogenic factors to induce endothelial cell prolifera-
tion in the tumor microenvironment  [138] . The expression 
of VEGF ligand correlates with disease progression        [139, 
140]  and is known to activate mitogenic signaling in some 
pancreatic cancer cells  in vitro   [94] . In general, marked 
neo-angiogenesis is a poor prognostic factor in solid 
tumors, including PDAC  [141] . 

 Finally  , the extracellular matrix (ECM) is a complex mix 
of glycoproteins and collagen that form a scaffolding for 
glandular formation. The tumor associated ECM is desmo-
plastic, meaning it contains high amounts of fibronectin 
and collagen  [131]  and is thought to be important in early 
neoplastic changes within the pancreas  [142] . Type I colla-
gen, which is abundant in PDAC stroma, is associated with 
increased motility of pancreatic ductal cells        [143, 144] . In 
addition, stromal cells secrete high levels of proteases, such 
as matrix metalloproteinases (MMPs)  [145]  and urokinase-
type plasminogen activators (uPAs). MMPs degrade the 
basement membrane and allow cancer cells to escape into 
adjacent blood vessels and nerves. uPAs stimulate tumor cell 
invasion and their expression correlates with the presence of 
metastases in PDAC patients  [146] . ECM associated proteins, 
which promote pancreatic cancer cell invasion and matrix 
remodeling, are also elevated in PDAC and include throm-
bospondin, tenascin, vitronectin, and versican              [147 – 151] . 
Alterations in the extracellular matrix components are also 
known to contribute to epithelial – mesenchymal transition 
 [152]  and to form a hydrostatic barrier against chemotherapy. 

 Foci   of inflammatory cells in the stroma produce chem-
okines and cytokines while nerve fibers release nerve 
growth factors        [153, 154] . These factors stimulate growth 
in both fibroblasts and pancreatic stellate cells  [155] . 
Additionally, the stroma is stimulated to proliferate by the 
abundance of growth factors, including FGF, EGF, TGF- β , 
and connective tissue growth factor (CTGF) secreted from 

proliferating cancer cells. The stroma functions in a storage 
capacity for these growth factors, further potentiating can-
cer growth        [156, 157] . Overall, the tumor associated stroma 
is an important component in pancreatic tumorigenesis, 
contributing to chemoresistance and to the high metastatic 
capacity of PDAC ( Figure 41.3 ).  

     D IFFERENTIATION 

 Cellular   differentiation is a complex process that involves 
the coordinated regulation of genes by a multitude of cellu-
lar pathways. Differentiation is controlled a number of DNA 
binding proteins that are aberrantly expressed in PDAC. 
One group of proteins regulating differentiation is the fam-
ily of helix-loop-helix (HLH) DNA binding proteins. The 
HLH motif consists of two conserved amphiphatic  α -helix 
structures separated by a variable loop region  [158] . HLH 
family members form heterodimeric complexes with each 
other to regulate gene expression. A subgroup of this fam-
ily, which contain a region of basic amino acids in the DNA 
binding domain, are called bHLH proteins and are known 
to affect a number of differentiation specific genes, includ-
ing immunoglobin genes, neuronal specific genes, muscle 
specific genes, and insulin related genes        [159, 160] . bHLH 
proteins are well established regulators of pancreatic cell 
function and differentiation, by affecting genes such as 
NeuroD/BETA2, E47, Neurogenin3, HES-1 and PTF1-p48, 
and Pax                [57, 59, 161 – 164] . 

 The   Id family of HLH proteins includes four members 
(Id1 through Id4). These proteins lack the DNA binding 
region, but affect gene expression by heterodimerizing with 
bHLH proteins and preventing their associations with DNA 
 [165] . Id family proteins are known to have some effect on 
pancreatic organogenesis. Id1 and Id2 levels increase dur-
ing the maturation process of  β -cells and inversely corre-
late with insulin gene activation  [166] . Id2 is regulated by 
the type 1 insulin-like growth factor receptor (IGF-IR) and 
the insulin receptor substrate-1 (IRS-1), as well as by the 
mitogen activated protein kinase (MAPK) and phosphati-
dylinositide 3-kinase (PI3K) pathways  [167] . Id expression 
inhibits insulin production, perhaps by blocking the  cis  reg-
ulated insulin control element (ICE) and/or by sequestering 
protein products that regulate the insulin gene  [168] . 

 There   is  in vitro  data linking Id expression with cell 
cycle progression and arrested differentiation in various 
cell types          [169 – 171] . In the HIT pancreatic cell line, Id 
proteins regulate p21 activity  [172]  thereby affecting both 
cellular proliferation and differentiation. In PANC-1 cells, 
Id2 mRNA levels are decreased after induction of differen-
tiation  [173] . Combined with studies showing overexpres-
sion of Id proteins in pancreatic cancer and in dysplastic 
lesions        [174, 175] , these data suggest that the Id family 
proteins may play some role in the early stages of pancre-
atic cancer by promoting cellular proliferation and inhibit-
ing full differentiation of pancreatic cells.  



 Chapter   |   41    Aberrant Signaling Pathways in Pancreatic Cancer: Opportunities for Targeted Therapeutics 381

     A POPTOTIC PATHWAYS AND APOPTOTIC 
RESISTANCE 

 Programmed   cell death, or apoptosis, is a natural mechanism 
for the essential clearing of diseased cells from an organism. 
Apoptosis can be initiated in response to various conditions, 
including exposure to cytotoxic drugs, activation of pro-
death receptor pathways (e.g., Fas, TNF, and TRAIL), cel-
lular detachment, and the absence of growth factors  [176] . 
A decreased apoptotic response is known to play an impor-
tant role in cancer initiation and progression  [177] . 

 Human   pancreatic cancer cell lines are generally resist-
ant to apoptosis in response to chemotherapy and death 
receptor signaling  [178] . One proapoptotic pathway that is 
aberrant in pancreatic cancer is the Fas pathway. Normal 
binding of the Fas receptor by the Fas ligand induces a 
conformational change in the receptor, which leads to the 
recruitment and activation of the proapoptotic caspase 
pathway. Despite normal expression of the Fas receptor and 
ligand, pancreatic cancer cells display marked resistance to 
Fas mediated apoptosis  [179] . This may be a consequence 
of somatic mutations leading to mutated Fas protein, 
enhanced expression of a Fas associated phosphatase that 
inhibits the effects exerted by Fas  [180] , or mutations in 
downstream proteins that perpetuate the Fas signaling. 
Additionally, Fas expression correlates with Ki-67 staining 
and poor patient outcome        [181, 182] .  

     C LINICAL ASPECTS OF  PDAC  

    Current Therapy 

 The   standard surgical treatments for PDAC consist of three 
procedures designed to remove the tumor: the Whipple 
procedure, a distal pancreatectomy, and a total pancrea-
tectomy. If the cancer has progressed beyond the point of 
resection, palliative surgery can be performed to relieve 
symptoms associated with tumor blockage of the small 
intestine, bile duct, or stomach. 

 Neoadjuvant   chemotherapy and radiation are also 
employed in the treatment of PDAC, depending on the stage 
of disease at presentation. Such therapy, administered prior 
to attempts at resection, may occasionally shrink the tumor 
sufficiently to allow for subsequent surgery        [183, 184] . By 
contrast, radiation therapy given following surgical resec-
tion, may be associated with shortened survival  [185] . The 
current standard chemotherapy for PDAC, which received 
approval by the Food and Drug Administration (FDA) in 
1996, is gemcitabine (Gemzar ® ). This drug is converted 
intracellularly to active metabolites difluorodeoxycytidine 
di- and triphosphate (dFdCDP, dFdCTP), which act to both 
inhibit ribonucleotide reductase and decrease the amount 
of deoxynucleotide that is available for DNA synthesis. 
dFdCTP is also incorporated into DNA, resulting in DNA 
strand termination and apoptosis. It is currently used both 

as a first-line therapy and as a radiosensitizer in the treat-
ment of pancreatic cancer  [186] .  

    Molecular Markers as Prognostic Indicators 

 Prognostic   markers are important for predicting a patient’s 
risk of recurrence and overall survival at time of diagno-
sis. They may also aid the clinician in performing an accu-
rate diagnosis and associate with a patient’s response to 
anticancer therapy. Proposed prognostic markers in PDAC 
include the presence of EGFR, TGF- α , p53 mutations, 
and the overexpression of c-erbB3, uPA, FGF-2, VEGF, or 
TGF- β               [108, 187 – 190] . 

 New   molecular biology techniques enable the detection 
of K- ras  mutations not only in pancreatic tissue sections, 
but also in pancreatic juice, pancreatic biopsies, and pan-
creatic duct brushings collected during endoscopic retro-
grade cholangiopancreatography          [191 – 193] . The rapid and 
reproducible detection of K- ras  mutations may be helpful 
in the diagnosis of PDAC and eventually may help to select 
patients that are more responsive to particular anti-tumor 
therapy or targeted molecular therapy.  

    Clinical Trials of Molecular Therapeutics 

 A   number of targetable molecular alterations are known to 
occur in PDAC and several therapies have been devised to 
target those alterations ( Figure 41.4   ). For example, because 
matrix metalloproteinases (MMPs) are expressed at high 
levels in PDAC, Marimastat, an inhibitor of MMPs, was 
tested in a large phase II clinical trial on 414 patients as a 
first-line agent in PDAC patients with unresectable disease. 
Overall, there was no difference in the median survival 
between patients treated with either marimastat or gem-
citabine. This study showed that marimastat had no sig-
nificant survival advantage when used alone, but suggested 
it might be good in the adjuvant setting (194). A more 
recent phase III trial, by Bramhall  et al . (2002) went on to 
conclude that marimastat did not improve survival when 
used in combination to gemcitabine, compared to gemcit-
abine alone in patients with advanced PDAC  [195] . 

 Farnesylation  , which is catalyzed by farnesyl-transferase 
(FT), is a critical step in Ras activation and therefore affects 
cell growth and differentiation  [196] . FT inhibitors were 
shown to suppress the growth of human pancreatic cells  in 
vitro         [197, 198] . However these inhibitors lacked efficacy 
in clinical trials. For example, tipifarnib (Zarnestra), an FT 
inhibitor, was evaluated in a small phase II clinical trial for 
patients with advanced PDAC. This study failed to show 
any benefit for those patients treated with tipifarnib when 
compared to gemcitabine  [199] . A second larger phase 
III study evaluated the ability of tipifarnib to enhance the 
therapeutic efficacy of gemcitabine in PDAC. This study 
concluded that there was no significant difference for 
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patients treated with the combination therapy when com-
pared to gemcitabine alone  [200] . Ongoing clinical trials 
are evaluating the efficacy of tipifarnib as a radiosensitizer 
in the absence or presence of multimodal chemotherapy in 
patients with unresectable pancreatic cancer. 

 Another   area of targeted therapeutics for pancreatic 
cancer is in the abrogation of EGF signaling. Two thera-
peutic approaches have been used: antibody therapy to 
block EGFR activation or tyrosine kinase inhibitors (TKIs) 
to inhibit EGFR kinase activity. Cetuximab (Erbitux) 
is a chimeric human-mouse antibody that binds EGFR 
with high affinity and prevents stimulation of the recep-
tor by other ligands        [201, 202] . Cetuximab was shown to 
block the G1 phase of the cell cycle, affect the apoptotic 
response, and inhibit tumor angiogenesis in several human 
tumor cell lines and xenograft models        [203, 204] . It has 
been approved for treatment of EGFR-positive colorectal 
cancers and for metastatic head and neck cancer        [205, 206] . 
In a small phase II multicenter trial, cetuximab was shown 
to have better overall survival when used in combination 
with gemcitabine, compared to gemcitabine only data from 
a previous trial  [207] . These results were not recapitulated, 
however, in a large multisite phase II clinical trial evalu-
ating the efficacy of cetuximab in combination with gem-
citabine and cisplatin  [208] . A number of clinical trials are 
currently underway to more clearly delineate the potential 
benefits of cetuximab in PDAC when used in combination 
with other treatment modalities. 

 Erlontinib   (Tarceva) is a reversible inhibitor of EGFR. 
 In vitro , human pancreatic cancer cell lines displayed sig-
nificant growth inhibition in response to erlontinib  [12] . 
A large multicenter phase III clinical showed that erlon-
tinib could improve the median survival of patients by 0.5 
months, when used in combination with gemcitabine  [209] . 
Following these results, a number of clinical trials have 
been initiated to evaluate the therapeutic benefits of com-
bining erlontinib with chemotherapy and radiation therapy 
in pancreatic cancer. 

 As   introduced elsewhere in this  Handbook , vascular 
endothelial growth factor (VEGF) is another potential target 

for molecular therapy. VEGF blockade would theoretically 
diminish the growth of new blood vessels (neo-angiogen-
esis). A number of approaches have been used to block 
VEGF signaling. Bevacizumab is a humanized monoclonal 
antibody against VEGF and received FDA approval for the 
treatment of metastatic colon cancer in combination with 
fluorouracil and leucovorin  [210] . In a multicenter phase 
II clinical trial, PDAC patients treated with a combination 
of bevacizumab and gemcitabine were found to have bet-
ter survival statistics than those patients who received gem-
citabine alone  [211] . Additionally, bevacizumab was found 
to have benefit in a stage IV pancreatic cancer patient who 
had previously failed chemotherapy  [210] . Based on these 
results, a larger phase III clinical study was undertaken to 
assess the efficacy of adding bevacizumab to gemcitabine 
in patients with advanced PDAC. Unfortunately, the addi-
tion of bevacizumab to gemcitabine did not prolong sur-
vival in this more robust study  [212] . 

 VEGF   signaling may also be blocked by inhibiting 
cyclooxygenase-2 (COX-2), a proinflammatory enzyme that 
is overexpressed in 70 – 90 percent of pancreatic tumors. 
COX-2 overexpression has been linked with tumor prolifer-
ation and increased angiogenesis        [213, 214] . Celecoxib is a 
compound that inhibits COX-2        [215, 216] . Celecoxib poten-
tiates gemcitabine induced apoptosis  in vitro  and inhibits 
angiogenesis and tumor growth  in vivo         [216, 217] . When 
studied in clinical trials in combination with 5-fluorouracil, 
celecoxib was initially found to be well tolerated and to pro-
duce a durable response in a patient with gemcitabine resist-
ant pancreatic cancer  [218] . However, in a phase II clinical 
study testing the efficacy of celecoxib in combination with 
gemcitabine and cisplatin, celecoxib did not confer a signifi-
cant advantage in patients with advanced PDAC  [219] .  

    Stromal Targets 

 As   discussed above, the tumor associated stromal compart-
ment is emerging as an important regulator of cancer pro-
gression and response to anticancer therapy. In the pancreas, 
proliferating fibroblasts and stellate cells support the growth 
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of cancer and endothelial cells by activating growth pathways 
dependent on cell-to-cell contacts, production of collagen, 
and the release of local mitogenic factors (e.g., EGF, FGF, 
PDGF, and IGF-1). Molecular therapies could be used to 
both suppress the proliferation of these stromal components 
and interfere with the secreted factors. For instance, a VEGF 
 “ trap ”  could be used to bind to and inhibit the pro-angiogenic 
signals produced by secreted VEGF-A ligand  [220] . In a sim-
ilar manner, expression of a soluble type II TGF- β  receptor 
has been shown to attenuate tumor growth, angiogenesis, and 
pro-metastatic genes (e.g., plasminogen activator inhibitor 1 
and urokinase plasminogen activator)        [221, 222] , and target-
ing CTGF has been effective in mouse models        [223, 224] .   

     C ONCLUSIONS 

 In   spite of tremendous progress in understanding the patho-
biology of PDAC, very little progress has been made with 
respect to impacting the 5-year survival rates of PDAC 
patients. There are several reasons for this failure. First, as 
these drugs are designed to target cancers with a particular 
molecular alteration, it follows that the selection of patients 
can only be as good as the tools used to characterize the biol-
ogy of their tumor. While the use of immunohistochemistry 
(IHC) has become widespread to detect protein alterations, 
there is still considerable variability in this process. Site-to-
site differences in protocol, incomplete characterization of 
antibody specificity, and even alterations between commer-
cial batches of the  “ same ”  antibody contribute to the absence 
of rigorous reproducibility. Additionally, IHC is basically a 
snapshot of the protein expression level in a tumor at a par-
ticular time and is generally inadequate for assessing func-
tionality. Second, therapeutic failure could be due to the 
inability of the agent to permeate the tumor, as solid tumors 
are notorious for having a disordered angiogenic network. 
This inability to reach the target within the pancreatic tumor 
mass is compounded by the desmoplastic nature of this 
malignancy and the resultant increased intra-tumoral hydro-
static pressures. Third, the range of doses used in clinical 
trials are constrained by the side effect profile of the drugs, 
and may be insufficient to recapitulate the biological effects 
observed  in vitro  and in subcutaneous mouse models. Fourth, 
tumor heterogeneity and crosstalk between signaling path-
ways may result in cancer cell populations that are resist-
ant to a particular targeted therapy approach, or that acquire 
resistance to that approach. Finally, in addition to cross talk 
mechanisms, redundant defects in specific aberrant signaling 
pathways (e.g., the TGF- β  pathway) may contribute to the 
resistance to targeted therapies        [225, 226] . Thus, combina-
tional regimens in conjunction with standard chemotherapy 
may need to be devised, based on the specific molecular 
alterations that are delineated in a particular patients cancer. 
This personalized combinatorial targeted approach may offer 
a new ray of hope to patients with PDAC.  
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    INTRODUCTION 

 The   pancreas is a complex organ that is essential for life, 
exerting a critical role in digestion and glucose homeos-
tasis. It is composed of an exocrine component consisting 
of acini and ductal network, and an endocrine component 
consisting of hormone-secreting islets. The acinar cells 
constitute approximately 95 percent of the total gland. 
They synthesize and secrete digestive enzymes. The duct 
cells secrete bicarbonate-rich fluid that transports the aci-
nar enzymes to the duodenum. The endocrine islets, also 
known as the islets of Langherans, make up only 1 – 2 per-
cent of the gland and are dispersed throughout the exocrine 
pancreas. Four major peptide hormone-producing cell 
types constitute the islets:  α  cells, which secrete glucagons; 
 β  cells, which secrete insulin;  δ  cells, which make somato-
statin; and PP cells, which make pancreatic polypeptide. 

 Both   the exocrine and endocrine components of the 
pancreas have a common origin, the gut endoderm  [1] . In 
the mouse, by embryonic day 8 – 8.5 (e8 – 8.5), an area of 
the endoderm is fated to become pancreas. Pancreatic dor-
sal and ventral buds will develop between e9.5 and e10.5. 
In an initial step called the first transition, the pancreatic 
epithelium goes through an extensive proliferation phase 
and few cells start differentiating and expressing endocrine 
markers. The buds expand and grow into a highly branched 
structure. A second wave of differentiation, called the sec-
ond transition, occurs around e13.5: more endocrine cells 
differentiate and islets form; exocrine cells appear and start 
organizing into acini with the duct cells lining the central 
epithelium. It is interesting to note that the first population 
of endocrine cells appears to come from a different progen-
itor pool than the second population. Between e16 and e17, 

the dorsal and ventral buds fuse following the rotation of 
the stomach and the duodenum (for more details, see  [2] ). 

 Pancreas   development is highly conserved between 
human and rodent. It has been extensively studied in the 
mouse, and numerous transcription factors have been 
characterized as being important for the embryonic devel-
opment as well as for regulation of differentiated func-
tions in the adult. Proper expression of these transcription 
factors depends on the balanced activation of conserved 
developmental signaling pathways. If insufficient signals 
are received, organ growth will be deficient. By contrast, 
excessive unregulated signaling will lead to hyperprolifera-
tion, tumor, and metastasis. 

 In   this chapter, we will focus on five major embryonic 
signaling networks and discuss the role of their aberrant 
reactivation in the pathobiology of pancreatic cancer.  

    NOTCH SIGNALING PATHWAY 

 One   of the earliest signaling pathways known to be impor-
tant in pancreas development is the Notch pathway. Once 
the transmembrane Notch receptor is activated by binding 
of its ligands Delta and Serrate (in mammals, Delta-like, 
Dll, Jagged1 and Jagged2), its intracellular domain translo-
cates in the nucleus where it associates with Recombination 
Signal Binding Proteins (RBPs), also known as CSL/CBF1/
Su(H)/LAG-1 transcription factors. This leads to the activa-
tion of transcription on the Hairy Enhancer of Split1 (HES1) 
promoter and subsequent expression of the HES-1 and HES-
related family of transcriptional repressors        [3, 4] . In the 
developing central nervous system where it was originally 
characterized, Notch signaling prevents the expression of 
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pro-neural bHLH genes, by a mechanism known as lateral 
inhibition, thereby impeding neuronal differentiation  [5] . 

 Several   lines of evidence suggest that the Notch pathway 
has similar role during pancreas development, by preventing 
endocrine differentiation. Thus, blocking the Notch pathway 
in early stages of embryonic development by overexpress-
ing a dominant-negative Notch receptor  [6]  or by inactivat-
ing other components of the pathway, as in mice deficient 
for Delta-like, HES-1, or RBP-j        [6, 7] , causes a precocious 
differentiation and excessive formation of endocrine cells 
in the pancreas. These data suggested that Notch signaling 
might be critical for the early cell-fate decision to differenti-
ate into either endocrine cells or precursor exocrine cells. 

 RBP  -j is the main partner of Notch during embryogen-
esis. Its targeted inactivation specifically in the pancreas 
(to circumvent early embryonic lethality) reduces differ-
entiation into acinar and endocrine cells, and induces the 
formation of abnormal tubular structures  [8] . Conversely, 
pancreatic overexpression of a constitutively activated form 
of Notch leads to a reduced number of endocrine cells and, 
in later stages, branching morphogenesis abnormalities and 
development of duct-like structures in the absence of aci-
nar differentiation        [9, 10] . Taken together, these observa-
tions suggest that Notch signaling prevents the premature 
differentiation of pancreatic progenitor cells into endocrine 
and ductal cells during early development of the pancreas, 
and exocrine differentiation in later stages. Thus, one pos-
sible role for Notch1 in pancreas development would be to 
maintain the progenitor cell pool. 

 RBP  -j is also part of the trimeric transcription factor 
Ptf1, which is essential for early pancreas development as 
well as differentiation and maintenance of exocrine cells 
 [11] . Ptf1 is composed of p48, a pancreas- and cerebellum-
specific factor, a class A bHLH protein, and RBP-j, these 
latter two being ubiquitously expressed. Mutations in p48 
that eliminate its interaction with RBPs are associated with 
a human genetic disorder characterized by pancreatic and 
cerebellar agenesis  [12] . Part of the phenotypes observed 
in the acinar population when activated Notch is overex-
pressed could be due to a competition between Notch itself 
and p48 for the binding of RBP-j. As Ptf1 is responsible for 
the activation of numerous acinar-specific genes, disruption 
of the complex would result in loss of differentiation of the 
acinar cells  [13] . This would suggest that the original pool 
of pancreatic progenitor cell is converted into a pool of 
exocrine progenitor cells during the second transition of the 
pancreas, and Ptf1 would be the main factor for the induc-
tion of pancreatic differentiation. 

 Expression   profile analysis, comparing human pancre-
atic ductal adenocarcinoma (PDAC) with the normal pan-
creas, reveals an upregulation of multiple Notch pathway 
components  [14] . Epidermal Growth Factor (EGF) signal-
ing, which is highly upregulated in PDAC, has been shown 
to activate Notch signaling, and the latter is essential for 
the expansion of a metaplastic ductal epithelium  [14] . 

Moreover, in the most recent mouse models of PDAC, it 
has been shown that Notch activation represents an early 
event in tumorigenesis. Thus, Notch activation was detected 
in the earliest pre-neoplastic lesions. These pancreatic 
intraepithelial neoplasia (PanIN) lesions are classified into 
stages I to III, and are believed to represent the precursor 
lesions for invasive pancreatic cancer  [15] . It is not clear, 
however, whether the original genetic lesion targets a puta-
tive progenitor cell that has an active Notch, or whether the 
Notch pathway is reactivated in PDAC. Activation of the 
Ras pathway, which is almost invariably found in PDAC 
 [16] , would also mediate increases in Notch signaling (14). 
These observations raise the possibility that Notch activity 
is an essential component in PDAC progression.  

    HEDGEHOG SIGNALING PATHWAY 

 Hedgehog   (Hh) signaling appears to play multiple roles in 
mouse embryonic pancreas development, as well as in the 
maintenance of endocrine cells in the adult. Two transmem-
brane receptors Patched 1 and 2 (Ptch 1 and 2) act as recep-
tors of the processed Hh ligands  [17] . In the absence of 
ligand, Ptch receptors repress the activity of the G-protein-
coupled-like receptor Smoothened (Smo). Smo repression 
blocks all downstream signaling events. After binding to 
Hh ligands, Ptch repression of Smo is alleviated and Smo 
can initiate a signaling cascade that will result in the acti-
vation and/or repression of transcription by the Gli family 
of transcription factors  [18] . 

 Sonic   hedgehog (Shh) and its receptors are highly 
expressed in the embryonic foregut before any budding 
of the pancreas. By embryonic day 8, Shh expression is 
downregulated in the region fated to give rise to the dorsal 
bud of the pancreas. Pdx1/IPF1, a transcription factor that 
is essential for pancreas development and one of its earli-
est markers, has initially a broader expression domain, as 
it is expressed in the future stomach, pancreas, and duode-
num        [19, 20] . Shh downregulation would be the key event 
in restricting the zone of Pdx1 expression that will become 
the pancreas. Gain-of-function studies in which ectopic 
Shh was expressed under the control of the Pdx1 promoter, 
during early stages of development, resulted in severely 
disrupted pancreatic morphogenesis and an abnormal, 
duodenal-like pancreatic epithelium        [21, 22] . Conversely, 
the pancreas of Shh null mouse embryos is the same size as 
a wild-type pancreas in spite of the severely decreased size 
of the embryos  [23] . This suggests that pancreas develop-
ment does not depend on Shh signaling, but on its absence. 
By contrast, in the mature mouse pancreas, Hh signaling 
components are present in the ducts and islets. While their 
function in these cell types  in vivo  is not known, cell cul-
ture studies showed that ectopic expression of Shh can pro-
mote insulin production, and this could be in part through 
upregulation of Pdx1 expression          [23 – 25] . 
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 As   described in rodents, expression of components 
of the Hh signaling pathway (such as Ptch and Smo) is 
restricted to the endocrine cells in normal adult human pan-
creatic tissues  [26] . Interestingly, there is a clear upregula-
tion of these molecules in the fibrotic pancreas of chronic 
pancreatitis patients        [26, 27] . Parallel  in vitro  experiments 
on non-transformed pancreatic duct cells show that treat-
ment with Hh agonists promotes cell proliferation  [26] . 
It is possible, therefore, that Hh signaling upregulation is 
required for the proliferation of certain cell types in chronic 
pancreatitis. 

 The   Hh signaling pathway is also dramatically upregu-
lated during the progression from PanINs lesions to PDAC, 
and PTCH expression is also present in the stromal ele-
ments adjacent to the cancer  [28] . The possibility that Shh 
may have a role in the development of PDAC was initially 
suggested by results obtained through Shh overexpression 
in the pancreas using the Pdx1 promoter. These transgenic 
mice exhibit abnormal pancreatic development with mixed 
populations of duodenal and pancreatic cells and significant 
intestinal phenotypes  [21] . At 3 weeks of age, their pancre-
ata display lesions strongly reminiscent of human PanINs. 
Interestingly, they also show an upregulation of the EGF 
receptor and HER2/neu, and harbor a mutated activated 
form of KRas (G12D), a mutation that seems to occur 
spontaneously in the lesions. As in human PDAC, Hh sig-
naling components were present in the stroma surrounding 
the lesions, suggesting that a dysregulated Hh pathway can 
act in a paracrine as well as an autocrine manner. Human 
pancreatic cancer cell lines also express high levels of Hh 
signaling components, and blocking the Hh pathway with 
a specific inhibitor, cyclopamine, results in attenuated pro-
liferation, increased apoptosis, and reduced tumor growth 
in  ex vivo  experiments  [28] . Thus, activated Hh signaling 
pathways appear to have a critical role in PDAC and in cer-
tain genetically engineered mouse models of PDAC, and 
Hh pathway activation could potentially be one of the initi-
ating events in the development of this malignancy  [29] .  

    TRANSFORMING GROWTH FACTOR-BETA 
SIGNALING PATHWAY 

 Transforming   growth factor-beta (TGF β ) isoforms are 
major regulators of pancreatic endocrine and exocrine cell 
fates, and all three isoforms and their signaling components 
are expressed in the pancreatic epithelium and surrounding 
mesenchyme from embryonic to adult stages. The TGF β  
superfamily of secreted growth factors consists of several 
sub-families that include the three mammalian TGF β  iso-
forms, the activins/inhibins and the Bone Morphogenetic 
Proteins (BMPs). These signaling pathways include the 
TGF β  heterotetrameric receptor family that can bind vari-
ous combinations of ligands with different affinities; antag-
onist ligands such as follistatin, noggin and gremlin; and 

intracellular complexes of Smad proteins that  regulate 
 transcription. Smads are divided into three categories: 
receptor-activated Smads or R-Smads (Smad1, 2, 3, 5, 8), 
common mediator Smad (Smad4), and inhibitory Smads 
(Smad6, 7). Ligand binding to the TGF β  receptors is ini-
tiated by direct interaction of the ligand with the type II 
TGF β  receptor (T β RII) homodimer, which then associates 
with the type I receptor (T β RI) homodimer  [30] . T β RI is 
phosphorylated by the T β RII kinase, leading to the activa-
tion of its serine/threonine-kinase activity, thereby allow-
ing it to phosphorylate Smad2 and Smad3. Phosphorylated 
R-Smads can then form a complex with Smad4 and trans-
locate to the nucleus, where they can interact with multi-
ple classes of co-activator and co-repressor complexes and 
modulate the expression of TGF β  target genes. Repressor 
Smads compete with R-Smads for binding to activated 
T β RI, thereby inhibiting the phosphorylation of R-Smads 
       [31, 32] . TGF β  can also activate alternative signaling path-
ways, such as mitogen-activated protein kinase (MAPK) or 
phosphatidylinositol 3-kinase (PI3K) pathways  [33].  

 As   indicated earlier, by embryonic day 8 – 8.5 (e8 – 8.5) 
an area of the endoderm is fated to become the mouse pan-
creas, and pancreatic dorsal and ventral buds will develop 
between e9.5 and e10.5, ultimately giving rise to endocrine 
islets, as well as acinar and ductal cells. At e8.5, when pan-
creas formation is initiated, the notochord secretes numer-
ous growth factors, including activin-B and FGF-2. Tissue 
culture experiments have shown that both growth factors 
can mimic the notochord effect, which is to induce tran-
scription of early pancreatic marker genes, such as Pdx1, 
by repressing Shh in the dorsal pre-pancreatic epithelium. 
By contrast, in the adjacent future hepatic domain, a combi-
nation of FGF-2 and BMP4 secreted by the cardiac mesen-
chyme, induce Shh and repress Pdx1  [23] . Not surprisingly, 
mice deficient for the B form of the type II activin receptor 
( ActRIIB ) have severe pancreatic hypoplasia        [34, 35] . 

 Altering   TGF β  expression in the pancreas during 
embryogenesis has been shown to affect pancreatic devel-
opment at multiple levels, from tissue determination, to 
proliferation, to cell type differentiation via autocrine and 
paracrine mechanisms. Some components of the pathway, 
such as activin-B and BMP2, are required for fate deter-
mination; others such as follistatin promote the growth of 
exocrine tissue, while TGF β 1 inhibits acinar growth and 
favors the development of  β  cells  [36] . This last effect is in 
fact more complex, as TGF β 1 was shown to be present at 
low level in acinar tissue. Modest levels of TGF β 1 would 
then be permissive for acinar development, while increased 
levels of TGF β 1 later in time would allow for the forma-
tion of the islets  [37] . Null mutations in the activin sign-
aling pathway are associated with gross pancreatic defects 
       [34, 38] . Mice overexpressing a dominant-negative recep-
tor T β RII, thereby actively preventing activation of the 
TGF β signaling pathway, display increased proliferation 
and severe abnormalities in differentiation of the  acinar 
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cells  [39] , while the specific deletion of this  receptor 
 during pancreas  development does not affect its formation 
and function  [40] . Another expected major component of 
the TGF β  signaling pathway, Smad4, was also specifically 
deleted in the pancreas during embryogenesis and again 
no developmental abnormalities were observed  [41] , while 
the overexpression of a dominant-negative Smad4 in acinar 
cells seem to result in an increase of islet size  [42] . Finally, 
overexpression of inhibitory Smad, Smad7, during pancreas 
development results in severe pancreatic malformations 
and  β  cell defects  [43] . These various phenotypes show the 
complexity of this particular pathway, and suggest roles for 
Smad4- and T β RII-independent TGF β  signaling pathways 
in these developmental processes. It also underscores the 
potentially non-physiological gain of function effects of 
ectopically over expressed proteins. 

 The   complex expression patterns of the numerous 
members of the TGF β  signaling pathway reflect the com-
plexity of their functions        [44, 45] . Moreover, in a variety 
of biological systems, TGF β s present in the circulation 
and platelets, and/or produced within tissues, regulate cell 
growth by enhancing the proliferation of cells that are of 
mesenchymal origin while inhibiting the proliferation of 
epithelial cell types. This inhibition would be due to the 
downregulation of cell cycle activators such as Cdk4 and 
cyclin D1, and upregulation of cell cycle inhibitors such as 
p21 Cip1 , p27 Kip1 , and p15 Ink4b         [46, 47] . 

 Although   epithelial in origin, human pancreatic can-
cer cells are generally resistant to TGF β -mediated growth 
inhibition. Several perturbations in TGF β  signaling path-
ways have been described in PDAC, including inactivating 
Smad4 mutations (in 50 percent of PDAC), upregulation 
of TGF β 1, -2, and -3, BMP2 and its receptors, as well as 
inhibitory Smads, Smad6 and 7          [48 – 50] . 

  In   vitro  experiments using PDAC-derived cell lines 
have allowed for the elucidation of the mechanisms that 
contribute to dysregulated TGF β  signaling. One common 
mechanism is the inactivation of the tumor suppressor 
gene Smad4, a frequent event in PDAC  [50] . Some human 
pancreatic cancer lines carrying mutations in Smad4 can 
be growth-stimulated by BMP2, and the reintroduction of 
wild-type Smad4 in the cells is sufficient to restore growth 
inhibition by BMP2  [51] . Other studies have shown that 
restoring Smad4 in one pancreatic cancer cell line led to 
decreased vascular endothelial growth factor (VEGF) 
expression, which in turn resulted in smaller tumors with 
reduced vascular density when compared with sham trans-
fected cells  [52] . Conversely, restoration of Smad4 in 
another pancreatic cancer cell line resulted in a transient 
attenuation in its capacity to proliferate  in vivo , and was 
not associated with attenuated angiogenesis, indicating that 
Smad4 growth inhibitory actions can be circumvented in 
later stages of pancreatic tumorigenicity  [53] . Thus, Smad4 
mutations in PDAC result in complex alterations that are 
context dependent, and that confer a growth advantage 

to pancreatic cancer cells by rendering them resistant to 
TGF β -mediated growth inhibition and by allowing, in 
some circumstances, for the acquisition of a pro-angiogenic 
profile. 

 The   repressor Smad7 is commonly upregulated in 
human pancreatic cancer cells. In the pancreatic cell lines 
that retain TGF β -mediated growth inhibitory response, 
the overexpression of Smad7 is sufficient to overcome this 
growth inhibition. Interestingly, the cells maintain the abil-
ity to translocate Smad2/3 in the nucleus and to modulate 
the expression of several TGF β  target genes  [51] . These 
data show that Smad7 may also act independently from its 
known repressor function. Indeed, Smad7 overexpression 
in these cells interferes with TGF β -mediated attenuation 
of cyclin A and B levels, inhibition of cdc2 dephosphor-
ylation, and functional inactivation the retinoblastoma 
protein  [54] . 

 A   recent report also demonstrated that while epithelial 
cells with a sustained TGF β /Smad response are sensitive 
to TGF β -induced growth arrest, some pancreatic cell lines 
that do not harbor mutations in Smad4 have a compara-
tively more transient nuclear accumulation of active Smad 
complexes. This would allow pancreatic cancer cells to 
evade TGF β -induced growth arrest, while allowing them to 
maintain other TGF β  responses that can lead to enhanced 
transformation and malignancy  [55] . 

 Finally  , TGF β 1 can cooperate with Ras to promote 
epithelial  –  mesenchymal transformation (EMT). In this 
process, epithelial cells acquire mesenchymal markers and 
lose cell – cell junctional integrity;  β -catenin and E-cadherin 
become mislocalized principally to the nucleus and cyto-
plasm, respectively, in conjunction with the upregulation of 
transcription factors such as Twist and Snail, and increased 
expression of the mesenchymal markers vimentin and N-
cadherin            [33, 56 – 58] . The importance of this process rests 
in the fact that EMT is associated with enhanced cellular 
invasiveness. In addition, oncogenic Ras cooperates with 
activated Smad2 to promote EMT and metastasis  [59] . 
Oncogenic KRas can also modulate TGF β  actions by 
repressing normal TGF β  signaling  [60] , inducing Smad4 
degradation  [61] , and redirecting TGF β  actions towards 
tumor promotion          [62 – 64] . Moreover, in mouse keratino-
cytes, Smad7 (but not Smad6) cooperates with oncogenic 
Ras to induce carcinoma formation  [65] , while raf acti-
vation upregulates TGF β  expression, which then acts to 
enhance cancer cell invasion  [66] . Together, these altera-
tions allow TGF β  to exert intercellular effects that promote 
cancer spread and metastasis. 

 In   support of a deleterious intersection between mutated 
KRas and TGF β  signaling pathways with respect to malig-
nant transformation in the pancreas, studies of various 
mouse models of PDAC have shown that specific deletions 
of Smad4 or T β RII, when superimposed on oncogenic KRas 
activation, cause more aggressive disease when compared to 
KRas oncogenic activation alone          [40, 41, 67] . These results 
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argue for a role of TGF β  signaling pathways in  controlling 
tumor initiation, and subsequently cancer progression as 
suggested by the frequent mutations of this pathway in 
PDAC. Despite these observations, the TGF β  signaling 
pathway has also been implicated in advanced stages of 
tumorigenesis, underscoring the dual role of the TGF sign-
aling pathway in cancer initiation and progression.  

    WNT SIGNALING PATHWAY 

 Wnt   proteins play crucial roles in embryogenesis, and this 
pathway was recently shown to be involved in pancreas 
development  [28] . Like other major signaling pathways, 
Wnt signaling is involved in proliferation, stem cell main-
tenance, tissue commitment and differentiation. In most 
of the cases, it acts via the so-called  “ canonical ”  pathway: 
Wnts are glycoproteins that are normally secreted by spe-
cific subpopulations of cells within tissues, which then 
bind to the Frizzled (Frz) receptors or lipoprotein receptor-
related proteins 5 and 6 (LRP5 and 6) on neighboring 
cells, thereby acting as morphogens or modulators of cell 
function. Wnt activation of its receptor results in the dis-
sociation of an intracellular complex containing APC (ade-
nomatous polyposis coli), axin and the serine-threonine 
kinase Gsk3 β ; this dissociation prevents the phosphoryla-
tion and subsequent degradation of cytosolic  β -catenin. 
 β -catenin can then translocate in the nucleus where, in col-
laboration with the Lef/TCF family of transcription factors 
(and potentially other families), it regulates transcription 
 [68] . Like the TGF β  signaling pathway, the Wnt path-
way has numerous components that have highly complex 
expression patterns. There are at least eight unique Frz 
genes in the mouse, but little is known about the specificity 
of Wnt – Frz interactions  [69] . Additionally, in the mouse, 
four secreted Frz-related proteins (sFRPs) have been 
cloned which have been shown to bind Wnts and antago-
nize Wnt-mediated signaling  [70] . Because multiple Wnts 
and Frizzleds appear to be expressed in similar patterns, it 
has been suggested that secreted FRPs may locally regulate 
which Wnt ligands may interact with a specific receptor to 
create local morphogen gradients. Finally, an increasing 
number of Wnt signaling modifiers have been character-
ized in recent years  [68] , resulting in multicellular interac-
tive signaling cascades that regulate cell – cell interactions. 

 Several   Wnt pathway components are expressed during 
pancreas development, and can be detected in the pancre-
atic endoderm as well as in the surrounding mesenchyme 
         [71 – 73] . Mice overexpressing Wnt1 under control of the 
Pdx1 promoter display pancreatic hypoplasia, which sug-
gests that Wnt signaling is important for early proliferation 
stages and that the maintenance of this signaling prevents 
further specification/differentiation of the pancreas  [72] . 
Specific disruptions of the Wnt pathway in the pancreas 
were reported recently. Thus, pancreas-specific deletion 

of  β -catenin and overexpression of dominant-negative Frz 
receptor in the pancreas (under the control of the Pdx1 pro-
moter) result in hypoplasia of the exocrine pancreas at birth 
         [73 – 75] . The endocrine population appears to be relatively 
intact in these animals, with the endocrine cells exhibiting 
timely differentiation and the adult mice showing normal 
glucose homeostasis. These observations suggest that the 
early pancreatic progenitor pool is not affected and that 
 β -catenin is required solely for the differentiation of exo-
crine progenitor cells into acini  [74] . 

 Activating   mutations of  β -catenin and loss-of-function 
mutations of APC were described in non-ductal and non-
endocrine tumors of the pancreas such as pancreatoblasto-
mas, acinar cells carcinomas, solid cystic papillary tumors, 
and solid pseudopapillary tumors (reviewed in  [76] ), but 
the Wnt pathway was shown to be aberrantly activated in 
advanced pancreatic adenocarcinomas independently of 
 β -catenin mutation  [77] . However, at this stage of our 
knowledge regarding the role of Wnt signaling in the pan-
creas, it is difficult to explain its specific roles in pancreatic 
cancer development.  

    FIBROBLAST GROWTH FACTORS 
SIGNALING PATHWAY 

 The   importance of epithelial – mesenchymal interactions 
in the control of pancreas development has been well 
known since the 1960s. In the absence of mesenchyme, it 
was observed that isolated pancreatic epithelium failed to 
grow and undergo morphogenesis, and only endocrine cells 
underwent differentiation. More recent studies have shown 
that the mesenchyme can in fact regulate the expansion of 
the pancreas epithelium and the ratio between endocrine 
and exocrine cells  [78] . The mesenchyme secretes numer-
ous growth factors, and among these, Fibroblast Growth 
Factors (FGFs) seem to play a major role in pancreas 
formation. 

 Functionally  , FGFs constitute a family of 23 known 
members in mammals. Signaling is mediated by binding 
to high-affinity receptors that often require the presence 
of low-affinity heparan sulfate proteoglycans (HSPGs) for 
their efficient activation. There are four known receptor 
genes that generate a larger number of receptors by alter-
native splicing. Upon ligand binding, the FGF receptors 
(FGF-R) dimerize, and downstream signaling is mediated 
through activation of the FGFR substrate FRS and, subse-
quently, the Ras/MAPK cascade  [79] . 

 FGF  -10 is expressed in the mesenchyme immediately 
adjacent to the early dorsal and ventral epithelial buds that 
give rise to the pancreas between e9.5 and e12.5  [80] . FGF-1 
and -7 were also detected  [81] . In FGF-10 null mouse 
embryos, while initial pancreatic bud formation occurs, 
there is no subsequent growth, differentiation, or branching 
of the epithelium  [80] . This is primarily due to a dramatic 
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reduction in the proliferation of the progenitor cells. Few 
endocrine and exocrine cells can be detected, showing that 
the differentiation capacity of the progenitors themselves 
is not affected  [80] . The broad mid-gestational overexpres-
sion of a kinase-deficient soluble form of FGFR2 shows a 
similar result, with a drastic reduction in size of the pan-
creas as well as the kidney, lung, and other glands, suggest-
ing that FGFR2 has a more general role in the maintenance 
of progenitor cells in multiple organs  [82] . By contrast, 
the specific targeting of a dominant-negative FGFR to 
the pancreas with the Pdx1 promoter did not generate any 
abnormalities during pancreatic organogenesis  [83] . One 
explanation for this absence of effect could be the redun-
dancy of the signaling pathways, as other FGF receptors 
are expressed during pancreas development  [44] . Another 
explanation could be the difference in targeting of the 
dominant-negative receptors. The interplay between pan-
creatic bud and surrounding mesoderm is known to be 
essential for pancreas morphogenesis. In the case of the dom-
inant-negative FGFR2, which was expressed in the whole 
organism, this interplay was disrupted, while in the case of 
the dominant-negative FGFR targeted to the pancreas only, 
FGF signaling coming from the surrounding mesoderm 
was not affected. 

 The   ectopic expression of FGF-10 under the Pdx1 pro-
moter causes increased proliferation in pancreatic progeni-
tor cells and suppression of all cell types at a stage when 
differentiation should have started. Later on, as proliferation 
slows down, few differentiated cells start to appear. Notch1 
and Notch2, as well as their ligands Jagged1 and Jagged2, 
and their target Hes1 can be detected at a very high level in 
the proliferating epithelium  [84] . A recent study performed 
on cultured explants of pancreas shows that specific inhi-
bition of Notch processing after treatment with FGF-10 is 
sufficient to abrogate the effect of FGF-10 on proliferation 
and maintenance of pancreatic progenitors  [85] , thereby 
demonstrating a direct connection between FGF and Notch 
signaling pathways. Altogether, these data suggest that the 
mesenchyme signals via FGF-10 to the pancreatic epithe-
lium at early stages of development, and that this signal is 
integrated by the Notch pathway at the level of the pancre-
atic progenitor pools. Maintenance of the FGF-10 signaling 
later in development results in maintenance of an activated 
Notch pathway and, consequently, maintenance of highly 
proliferative progenitor pools, which would be sufficient to 
prevent or at least delay differentiation. 

 Several   FGFs and FGFRs are overexpressed in PDAC 
 [86] . The available data suggest that each FGF may have 
specific roles in PDAC progression. FGF-1 and -2 are 
overexpressed principally in the cancer cells, not in the 
surrounding stroma, and increases in their protein lev-
els correlate with advanced tumor stages  [87] . High 
FGF-2 protein levels also correlate with shorter postop-
erative patient survival  [87] . By contrast, FGF-5, which is 
also overexpressed in PDAC, was shown to be abundant 

 predominantly in the stromal fibroblasts and infiltrating 
macrophages adjacent to the cancer cells, as well as in the 
endocrine islet cells, and only to a lesser extent in the can-
cer cells  [14] . FGF-7/KGF localizes essentially around the 
acinar and ductal cells adjacent to the cancer cells, but  in 
situ  hybridization studies show that it is also present at low 
level in the cancer cells  [88] . 

  In   vitro  experiments show that several FGFs exert 
mitogenic effects on multiple PDAC-derived cell lines 
         [89 – 91] . Moreover,  in vitro , pancreatic cancer cells secrete 
abundant amounts of FGF-5, suggesting that it can par-
ticipate in autocrine and paracrine regulatory pathways 
 [90] . Studies of the effect of a dominant-negative FGFR-1 
(devoid of its intrinsic tyrosine kinase activity) in PDAC-
derived cell lines shows a clearly diminished proliferative 
response to FGF-2 as well as decreased downstream sign-
aling  [92] . Conversely, overexpression of the isoform IIIc 
of FGFR-1 in an immortalized ductal cell line dramatically 
increased the tumorigenicity of these cells  [93] . Taken 
together, these observations indicate that FGFs contribute 
to aberrant intercellular signaling pathways that promote 
pancreatic cancer cell growth. 

 Finally  , the HSPG glypican-1 (GPC1) is a co-receptor 
for heparin binding growth factors (HBGFs), includ-
ing FGFs. Cancer-cell derived GPC1 plays a crucial role 
in PDAC, as evidenced by the observations that down-
regulation of GPC1 in pancreatic cancer cells results in 
decreased anchorage-independent growth, and attenuated 
tumor growth, angiogenesis, and metastasis          [94 – 96] . It was 
also recently shown that tumors derived from PDAC cells 
implanted in athymic mice that are GPC1 null also exhibit 
decreased tumor angiogenesis and metastasis, indicat-
ing that host-derived GPC1 is also important for efficient 
pancreatic cancer cell metastasis  [96] . Inasmuch as GPC1 
is expressed in pancreatic cancer cells, cancer-associated 
fibroblasts, and endothelial cells, it is likely that GPC1 and 
the associated FGF signaling components contribute to 
cell autonomous effects in pancreatic cancer cells, as well 
as to aberrant cancer cell – fibroblast interactions, abnor-
mal cancer cell – endothelial cell interactions, and dysregu-
lated FGF signaling cascades within the pancreatic tumor 
microenvironment.  

    CONCLUSION 

 Studies   of signaling pathways in pancreatic embryogenesis 
point towards complex regulatory interactions between dif-
ferent tissues and/or different cell types that are turned on 
and off in a carefully orchestrated manner. The fine-tuning 
of proliferation versus specification and differentiation is 
under the control of multiple, but clearly defined, signal-
ing pathways that allow for exquisitely sensitive control of 
pancreatic organogenesis. The mechanisms used by pan-
creatic cancer cells in their progression toward invasiveness 
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are reminiscent of the ones used in normal pancreatic devel-
opment (see  Figure 42.1   ). However, reactivation of these 
pathways in the adult pancreas in the context of genetic 
alterations that include KRas activation, and INK4A/ARF, 
TRP53, and SMAD/DPC4 tumor suppressor loss of func-
tion, subsequently results in the activation of multiple auto-
crine and paracrine regulatory loops that are not readily 
controlled. Instead, these aberrant regulatory loops promote 
cancer cell growth and metastasis by  “ manipulating ”  the 
surrounding stroma, leading to EMT, excessive expression 
of multiple growth factors, aberrant cell – cell and cell – matrix 
interactions, and tumor angiogenesis. A better understanding 
of these pathways during early development may thus pro-
vide an improved understanding of the early stages of cancer 
formation and, potentially, better means of disease detection 
and prevention. Similarly, an improved understanding of the 
factors that maintain the equilibrium between proliferation 
and differentiation will open new therapeutic avenues for 
suppressing tumor progression and invasion.  
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    INTRODUCTION 

 Under   normal conditions blood vessels supply essential nutri-
ents to all tissues through a highly organized network of blood 
vessels. New blood vessels may form through vasculogenesis, 
a process whereby the vessels arise as a result of the  de novo  
emergence of endothelial cell progenitors from the meso-
derm during embryogenesis, or through angiogenesis, which 
is dependent on the generation of endothelial cells by sprout-
ing from pre-existing vessels        [1, 2] . In the adult, physiologi-
cal angiogenesis is crucial for wound and tissue repair as well 
as for the recurrent formation of the shed endometrial lining. 
By contrast, cancer associated angiogenesis is often driven by 
an abnormal pro-angiogenic profile, a phenomenon that may 
also be observed in certain inflammatory states, whereas inad-
equate angiogenesis may be associated with inefficient tissue 
repair and defective collateral blood vessel formation          [2 – 4] . 
In solid tumors, which account for more than 85 percent of 
cancer mortality, angiogenesis is essential for growth and 
metastasis  [5] . Thus, targeting vital pro-angiogenic pathways 
may prove to be highly effective at inducing tumor regression 
and enhancing the effectiveness of chemo- and radiotherapy.  

    OVERVIEW OF ANGIOGENESIS AND ITS 
ROLE IN TUMOR DEVELOPMENT 

 Tumor   angiogenesis is driven by hypoxia and by a variety 
of growth factors and chemokines. It requires the recruit-
ment of neighboring host vasculature in order to grow new 
capillaries toward and into the tumor mass, a phenomenon 
called cooption, as well as circulating endothelial precursor 
cells from the bone marrow                  [4, 6 – 11] . The delicate balance 
between angiogenic stimulators and inhibitors is lost and 
the resulting pro-angiogenic imbalance promotes angiogen-
esis that supports tumor growth beyond the distance that 

oxygen can diffuse ( � 1 – 2       mm)          [9, 10, 12] . Angiogenesis 
is further enhanced by the release of angiogenic factors and 
proteolytic enzymes that initiate and support the prolifera-
tion of endothelial cells and facilitate the breakdown of the 
basement membrane and the extracellular matrix (ECM) 
         [13 – 15] . The resulting enhanced vascularity increases the 
likelihood of metastatic spread as well as the growth of the 
metastatic foci  [15] . Additionally, there is evidence that can-
cer cells may have integrated into the vessel walls in some 
tumors, and that angiogenesis is enhanced by the recruitment 
of endothelial precursor cells from the bone marrow        [16, 17] . 

 The   angiogenic process in tumors can be compartmen-
talized into three main phases: inflammatory, proliferative, 
and remodeling. During the inflammatory phase leukocytes 
and monocytes are recruited to the tumor where they pro-
duce pro-angiogenic chemokines and cytokines. During the 
proliferative phase, in conjunction with the proliferation of 
endothelial cells there is increased proliferation of fibroblasts, 
which produce ECM components such as collagen. The pro-
liferation stage is crucial for successful tumor angiogenesis, 
as it is during this phase that microvascular endothelial cells 
contribute to the hyperpermeability and local degradation 
of the basement membrane. This allows for the release of 
growth factors, heparin, platelet factors, and proteases, which 
combine to promote the formation of new blood vessels as 
well as to induce their migration and sprouting into the local 
stroma        [11, 18] . In the remodeling phase, the blood vessels 
are remodeled, pruned, and allowed to mature  [11] .  

    TUMOR VESSEL STRUCTURE 

 Solid   tumors are highly heterogenous and are comprised of 
cancer cells and a mixture of stromal cells including endothe-
lial cells, pericytes, fibroblasts, myofibroblasts, macrophages, 
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inflammatory cells, dendritic cells, and mast cells, all of 
which are embedded within the ECM  [19] . The vessels 
within solid tumors often exhibit a highly chaotic structure 
that is devoid of the typical hierarchical branching observed 
in normal vasculature ( Figure 43.1   ). The resulting loss of 
equilibrium between vascular growth and cellular demands 
creates avascular and hypoxic regions, leaky vessels with 
uneven diameters (due to compression from proliferating 
tumor cells), a variation in expression of endothelial mark-
ers, abnormal or absent lymphatic vessels, and heterogene-
ous expression of adhesion molecules                    [1, 20 – 26] . 

 Additionally  , tumor vasculature is continuously undergo-
ing remodeling. Consequently, there is variability in blood 
flow and permeability between tumors, their metastatic 
lesions, and within an individual tumor even from one day 
to the next  [19] . Overall perfusion rates (blood flow rate per 
unit volume) as well as red blood cell velocity are lower 
in tumors than in normal tissues and tumor blood flow is 
unevenly distributed and can fluctuate over time and even 
reverse direction        [25, 27] . Circulation within the tumor 
is also reduced and interstitial fluid pressure is elevated 
as a consequence of the loss of both vascular hyperperme-
ability and functional lymphatic vessels that are critical for 
maintaining interstitial fluid balance          [20, 25, 26] . These fea-
tures, in combination with the leaky blood vessels and high 
hypoxic conditions, interfere with the efficient delivery of 
therapeutic agents.  

    TUMOR STROMA AND THE 
EXTRACELLULAR MATRIX 

 The   interactions between tumor cells and host stromal cells 
have a profound influence on tumor cell proliferation, inva-
sion, angiogenesis, and metastasis            [28 – 31] . Potentially the 
two most critical components of the tumor stroma are the 
endothelial cells and the fibroblasts  [32] . By promoting 
basement membrane degradation, endothelial cells lead to 
the release of matrix bound growth factors, such as vascular 

endothelial growth factor (VEGF) and fibroblast growth fac-
tors (FGFs). In addition, matrix metalloproteinases (MMPs), 
especially MMP 2, 3, and 9, contribute to ECM degrada-
tion and cause the release of pro-angiogenic growth factors. 
These proteases also generate anti-angiogenic factors such 
as angiostatin and matrix molecules such as collagen  [1] , 
resulting in complex oscillations in the angiogenic switch. 

 Cancer   associated fibroblasts (CAFs) also play a critical 
role in tumor growth. CAFs are abundant at the host – tumor 
interface, express VEGF and FGF, and co-localize with the 
vasculature throughout the tumor        [33, 34] . Activated CAFs 
stimulate the growth of tumor cells  [35] ; their activation 
is mediated by platelet derived growth factor (PDGF) and 
transforming growth factor-beta (TGF- β ) isoforms        [36, 37] . 
PDGF also recruits pericytes, which are vascular smooth 
muscle cells that have a prominent nucleus, scant cyto-
plasm, and long processes that wrap around blood capillar-
ies and promote the maturation of tumor microvasculature 
 [38] . Pericytes collaborate with endothelial cells and fibrob-
lasts in the production of the basement membrane. Thus, in 
combination with extracellular proteins fibronectin, collagen, 
vitronectin, tenascin, and laminin, pericytes contribute to the 
maintenance of the integrity of the tumor vasculature        [1, 39] .  

    THE ROLE OF HYPOXIA IN REGULATING 
TUMOR ANGIOGENESIS 

 The   abnormal microcirculation within tumors results in 
areas of hypoxia, which serves to alter the metabolic pro-
file of cancer cells and to further enhance angiogenesis. 
Typically, there is an associated acidosis, but low pH and 
hypoxia do not always coincide, inasmuch as tumor vessels 
may be able to remove waste products such as lactic acid 
       [25, 40] . Hypoxia and acidic pH combine to significantly 
reduce cancer cells ’  sensitivity to radiation and chemother-
apy, while also interfering with the cellular uptake of cer-
tain drugs and with cancer directed immune mechanisms 
         [25, 41, 42] . A hypoxic environment may also induce 

 FIGURE 43.1          Schematic representation of tissue and tumor vasculature.  
    The normal vasculature has a highly organized hierarchy of branching tubes. When the angiogenic balance is tipped in favor of angiogenic stimulators 
excessive angiogenesis occurs and the tumor vasculature becomes chaotic, leaky, and disorganized. Following anti-angiogenic therapy the tumor vascu-
lature may initially be normalized and during this normalization window additional therapies may become more effective due to improved delivery of 
therapeutic agents.    
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genetic instability thereby increasing tumor cells invasive-
ness and metastatic potential              [5, 19, 30, 43, 44] . 

 Hypoxia   exerts its influence on tumor cells by upregu-
lating glucose transporter 1 (GLUT1) and the expression of 
a host of growth factors, including VEGF, angiopoietin-2, 
PDGF, placenta growth factor (PlGF), transforming growth 
factor-alpha (TGF α ), interleukin-8 (IL-8), and hepato-
cyte growth factor (HGF)        [25, 45] . A crucial mediator of 
the hypoxic response is the transcription factor, hypoxia 
inducible factor-1 (HIF-1), which is upregulated in many 
types of human tumors and binds to the hypoxia responsive 
element (HRE) in the promoter region of responsive genes 
       [45, 46] . HIF-1 is a heterodimeric transcription factor con-
sisting of a constitutive subunit (HIF-1 β ) and an oxygen 
responsive subunit (HIF-1 α ), which undergoes ubiquitin 
mediated degradation in the presence of oxygen. Under 
hypoxic condition, HIF-1 α  becomes stable, allowing HIF-1 
to control the expression of numerous genes that medi-
ate developmental and physiological pathways that either 
deliver oxygen to cells or allow cells to survive hypoxic 
conditions  [47] . HIF-1 is a pro-angiogenic factor that acts 
upstream of VEGF-A (both increasing its expression and 
stabilizing the mRNA transcript), thereby rendering cancer 
cells resistant to hypoxia induced apoptosis while promot-
ing angiogenesis              [9, 15, 48 – 50] .  

    OVERVIEW OF CRITICAL PATHWAYS 
INVOLVED IN STIMULATING 
ANGIOGENESIS 

 Many   growth factors and, occasionally, their corresponding 
high affinity transmembrane receptors, are overexpressed 
in a variety of cancers. For example, VEGF, TGF α , PDGF, 
TGF β , and FGFs are expressed at high levels in many 
solid tumors. These growth factors have been shown to be 
essential for the development and progression of cancer, to 
promote cell proliferation, metastasis, and angiogenesis, and 
to act synergistically to stimulate endothelial motility and 
angiogenesis              [9, 15, 51 – 53] . In addition to promoting angio-
genesis, PDGF, TGF β , and the angiopoetins (Ang-1 and -2) 
in combination with their receptor, Tie2, participate in the 
regulation of the maturation of nascent vessels into special-
ized structures  [1] . 

 It   is generally accepted that VEGF is one of the most 
crucial growth factors that contributes to tumor angio-
genesis. The VEGF family comprises seven secreted 
homodimeric glycoproteins: VEGF-A, -B, -C, -D, -E, -F, 
and PlGF  [54] . Although VEGF-C and -D are involved in 
both angiogenesis and lymphangiogenesis and are associ-
ated with lymphatic metastasis in a variety of tumor types, 
VEGF-A appears to be the critical regulator of tumor ang-
iogenesis factor  [55] . There are five major VEGF-A iso-
forms, all of which suppress endothelial cell apoptosis, are 
vasodilatory, and promote endothelial cell migration and 

proliferation          [19, 56, 57] . These isoforms have 121, 145, 
165, 189, and 206 amino acid residues, and arise as a result 
of alternative splicing from a single gene        [58,59] . VEGF 121  
and VEGF 145  are usually secreted, whereas VEGF 189  
and VEGF 206  are nearly completely sequestered in the 
ECM  [59] . Interestingly, VEGF 165  is half secreted and half 
bound to the cell surface and the ECM  [60] . The impor-
tance of VEGF-A in embryonic vasculogenesis and angio-
genesis is underscored by gene knockout studies in which 
loss of a single VEGF-A allele in mice resulted in embry-
onic lethality between day 11 and 12, impaired angiogen-
esis and blood-island formation, and severe developmental 
abnormalities        [61, 62] . 

 VEGF  -A stimulates endothelial cell proliferation fol-
lowing binding to two endothelial cell surface tyrosine 
kinase receptors, VEGFR-1 (flt-1) and VEGFR-2 (flk-1/
KDR)          [63 – 65] . A third high affinity VEGF receptor, termed 
VEGFR-3 (Flt4), is generally preferentially expressed in 
lymphatic vessels        [66,67] . By contrast, placenta growth 
factor and VEGF-B bind only VEGFR-1, whereas VEGF-C 
and VEGF-D interact with both VEGFR-2 and VEGFR-3, 
and VEGF-E binds only to VEGFR-2  [66] . All three 
VEGFRs are class III transmembrane protein tyrosine 
kinases that possess seven immunoglobulin-like sequences 
in their extracellular domains and a kinase insert in their 
intracellular domains              [63 – 67] . Their importance in ang-
iogenesis has also been demonstrated in gene knockout 
studies, which have shown that both VEGFR-1  � / �   and 
VEGFR-2  � / �   mice die  in utero  between day 8.5 and 9.5 
       [68, 69] . Specifically, in VEGFR-1  � / �   mice, endothelial 
cells developed in both embryonic and extra-embryonic 
sites but failed to organize into normal vascular channels 
 [68] . In VEGFR-2  � / �   mice, hematopoietic precursors were 
severely reduced, yolk sac blood islands were absent, and 
organized blood vessels failed to develop throughout the 
embryo or the yolk sac  [69] . 

 In   addition to being upregulated by HIF-1 and hypoxia, 
VEGF-A expression may be induced by multiple mecha-
nisms, including mutant  ras  and mutant  p53 , transcription 
factors such as SP1 and the VHL protein, or factors such as 
FGF-2 and TGF β             [70 – 73] . Consequently, VEGF-A expres-
sion is elevated  in vivo  in many types of tumors including 
gliomas, breast, colorectal, renal, liver, ovarian, gastric, and 
pancreatic carcinomas        [74, 75] . Moreover, VEGF-A over-
expression has been correlated with poor prognosis in many 
cancers. For example, breast cancer patients with metastatic 
disease whose tumors exhibit increased angiogenesis have 
a worse prognosis than the corresponding patients whose 
tumors do not exhibit increased angiogenesis        [76, 77] . 
Furthermore, suppression of VEGF functions inhibits tumor 
growth in animal models as demonstrated with a dominant-
negative VEGFR-2, soluble VEGFR-1, neutralizing anti-
VEGF antibody, VEGF antisense expression, anti-VEGFR-1 
or anti-VEGFR-2 ribozymes, tyrosine kinase inhibitors of 
VEGFR-2, and anti-VEGFR-2 antibodies                      [78 – 86] . 
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 An   additional method of inhibition of VEGF is through 
VEGF Trap. VEGF Trap is a modified soluble VEGFR 
that is essentially a chimeric protein consisting of the sec-
ond immunoglobulin (Ig)-like domain of VEGFR-1 and 
the third Ig-like domain of VEGFR-2        [87, 88] , stabilized 
by the fusion to a human immunoglobulin heavy chain Fc 
fragment  [89] . VEGF Trap binds VEGF-A with a kD of 
approximately 1       pM and completely blocks ligand induced 
phosphorylation of VEGFR-2  [88] , the crucial receptor that 
mediates the mitogenic effects of VEGF-A in endothelial 
cells. VEGF Trap also blocks the subcutaneous growth and 
vascularity of tumors deriving from melanoma cells, rat C6 
glioma cells, rhabdomyosarcoma cells, and pancreatic can-
cer cells        [88, 90] . 

 VEGF  -A interactions with VEGFRs are facilitated by two 
co-receptors, neuropilin-1 (Np-1) and neuropilin-2 (Np-2). 
Np-1, originally identified as a mediator of chemorepul-
sive guidance for axons in the developing nervous system        
[91, 92] , is a transmembrane protein that acts as a co-receptor 
for VEGF-A  [93] . Its extracellular region consists of 
two complementing binding-like domains (a1 and a2), 
two coagulation factor V/VIII homology domains (b1 and 
b2), and a meprin A5 (MAM or c) domain, whereas its 
intracellular domain consists of a short cytoplasmic tail of 
about 40 amino acids        [91, 92] . Although Np-2 has a similar 
domain structure, the overall sequence homology between 
the two genes is only 44 percent  [94] . Both Np-1 and Np-2 
also act as co-receptors for several, but not necessarily the 
same, class 3 secreted semaphorins        [91, 92] . Semaphorins 
also bind to plexins, which are transmembrane receptors 
that are related to semaphorins  [95] . 

 VEGF  -A activation of VEGFR2 in these cells is 
facilitated by glypican-1 (GPC1), a heparan sulfate pro-
teoglycan that is attached to the surface of endothelial 
cells through a glycophopshatidyl inositol anchor  [96] . 
Indeed, endothelial cells isolated form GPC1 knockout 
mice exhibit an attenuated mitogenic response to VEGF-
A  [97] , whereas targeted deletion of N-acetylgluocsamine 
N-deacetylase/N-sulfotransferase (Ndst1) leads to decreased 
N-sulfation of glusoamine residues and attenuated tumor ang-
iogenesis  [98] . Once VEGFR2 is phosphorylated on tyrosine 
residues and becomes activated, there is activation of a cas-
cade of downstream signaling events that includes the Ras-
MAPK, src, phosphatidyl-inositol 3 ' -kinase (PI3-K)/AKT, 
and eNOS pathways        [54, 99] . VEGF-A also induces the 
mobilization and recruitment of bone marrow derived cells 
and acts as a survival agent by signaling within the PI3K/Akt 
signaling pathway to induce expression of the antiapoptotic 
protein Bcl-2. In addition, VEGF-A renders endothelial 
cells more radioresistant  [100] , and promotes the survival of 
leukemic cells, certain tumor cells, and hematopoietic stem 
cells        [101, 102] . 

 FGF  -2 is another potent stimulator of angiogenesis and 
has been shown to interact synergistically with VEGF in 
tumor development and growth  [103] . There are 23 members 

in the FGF family, and overexpression of several FGFs has 
been correlated with tumor invasiveness, angiogenesis, and 
lymph node metastasis          [15, 104, 105] . FGFs bind to their 
cognate high affinity receptors (FGFRs), which consist of 
two or three extracellular immunoglobulin-like domains, 
a single pass transmembrane region, and an intracellular 
discontinuous tyrosine kinase domain  [106] . Of the four 
known FGFRs, FGFR1 is commonly expressed on endothe-
lial cells. Stable binding of FGF to FGFR1 requires the 
presence of heparan sulfate proteoglycans (HSPGs) and in 
particular GPC1  [96] . This interaction leads to an increased 
cellular response and induces endothelial cell proliferation, 
migration, and tubulogenesis              [15, 103, 107 – 109] . 

 In   addition to binding their high affinity receptors, growth 
factors rely upon synergistic interactions with major trans-
membrane cell surface receptors called integrins to medi-
ate efficient signaling between a variety of cell types and the 
ECM. These interactions lead to alternate mechanisms for the 
activation of Ras, MAP kinase, focal adhesion kinase (FAK), 
Src, and PI3-K/AKT signaling pathways  [110] . Integrins are 
often required for optimal signaling via cell adhesion to the 
ECM with EGF, PDGF, and VEGF. These observations have 
therapeutic implications, inasmuch as antagonism of integrin 
 α 1 β 1 can block VEGF induced angiogenesis whereas block-
ade of  α V β 3 impedes FGF mediated angiogenesis          [11, 111, 112] .
 Moreover, activation of the endothelial integrin,  α V β 3, facili-
tates the binding of endothelial cells to the ECM and pro-
motes their migration        [113, 114] .  

    THE ROLE OF CYTOKINES IN 
ANGIOGENESIS 

 Several   proinflammatory cytokines, in particular inter-
leukin-6 (IL-6) and interleukin-8 (IL-8), are overexpressed 
in many cancers and have been associated with increased 
VEGF expression, especially under hypoxic conditions 
             [15, 115 – 118] . IL-6 upregulates the expression of several 
other cytokines that act together to create a tumor envi-
ronment that favors tumor growth and suppresses cancer 
directed immunity  [115] . For example, in gastric cancer 
cell lines, transfection with IL-8 resulted in rapidly grow-
ing highly vascular tumors        [9, 119] , whereas neutralizing 
antibodies against IL-8 and/or VEGF have been shown to 
attenuate the growth and metastasis of human pancreatic 
cancer in an orthotopic mouse model          [15, 120, 121] . 

 Another   family of multifaceted cytokines is the TGF β  
superfamily. TGF β s play an essential role in almost 
every aspect of cellular processes, including cell growth 
and differentiation, apoptosis, and angiogenesis  [122] . 
Specifically, TGF β s modulate angiogenesis by regulat-
ing the proliferation, migration, and differentiation of 
endothelial cells, promoting capillary tubule formation, and 
enhancing ECM deposition. As described in more detail 
elsewhere in the  Handbook , TGF β s modulate the levels of 
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cyclin dependent kinases (CDK) and CDK inhibitors such 
as p21 and p27        [15, 123] . 

 TGF   β  actions on angiogenesis are complex. While 
TGF β  is potentially best known for inhibiting growth in 
many epithelial cell types, TGF β  has also been shown to 
play an important role in the transcriptional activation of 
ECM associated genes and their regulatory proteins  [124] . 
Additionally, TGF β  stimulates carcinoma cells to undergo 
an epithelial-to-mesenchymal transdifferentiation (EMT) 
leading to enhanced metastasis and invasion        [122, 124] . 
TGF β  promotes tumorigenesis by paracrine stimulation of 
angiogenesis, which occurs in part by inducing the recruit-
ment of inflammatory cells that aid in the release of VEGF 
and FGFs  [125] . TGF β  also induces the expression of con-
nective tissue growth factor (CTGF), which promotes both 
stroma formation and angiogenesis, thereby enhancing the 
pro-angiogenic imbalance in certain cancers  [126] . 

 TGF   β  actions require the presence of the TGF β  serine-
threonine kinase receptors types I (T β RI) and II (T β RII) and 
betaglycan            [127 – 130] . Betaglycan, which is also known as 
the type III TGF β  receptor, binds all three TGF β s through 
its core protein, and facilitates the activation of T β RI by 
T β RII  [130] . A related co-receptor, called endoglin, is pre-
dominantly expressed in endothelial cells  [131] . After T β RII 
binds its ligand it is constitutively active as a homodimeric 
kinase        [132,133]  and must associate with a T β RI homodimer 
to initiate a signaling cascade. T β RI is also known as activin-
like kinase-5 (ALK5). In addition, endothelial cells express 
the related receptor ALK1. ALK1 and ALK5 are phospho-
rylated within their GS region by T β RII, allowing them to 
phosphorylate receptor activated Smads (R-Smads), Smad2 
and Smad3, at their C-terminal SSXS motif  [134] . This 
interaction is facilitated by the co-receptor endoglin  [135] . 
Mice that are null for endoglin, T β RI, ALK1, or T β RII, are 
all embryonic lethal due to severe vascular defects, under-
scoring the important role of these receptors and their sig-
naling pathways in vasculogenesis                  [136 – 142] . Moreover, 
endoglin and ALK1 germline mutations are associated with 
specific vascular abnormalities in humans, termed heredi-
tary hemorrhagic telangiectasia types I and II, respectively 
                 [136 – 142] . It is not surprising therefore, that sequestration 
of TGF β s by expression of a soluble receptor leads to atten-
uated tumor growth and angiogenesis in a mouse model of 
pancreatic cancer        [143, 144] .  

    THE ANGIOPOIETINS AND THE 
ANGIOGENIC SHIFT 

 Of   the four angiopoietins, only Angiopoietin-1 (Ang-1) and 
angiopoietin-2 (Ang-2) have been implicated in tumor angio-
genesis. Both interact with the tyrosine kinase receptor Tie-2. 
However, Ang-2 antagonizes Ang-1 and prevents Tie-2 acti-
vation by competitively binding Tie-2            [15,145 – 147] . Because 
Ang-2 is expressed at the site of vascular remodeling, its 

antagonism of Ang-1 actions promotes vessel destabiliza-
tion          [11, 148, 149] . These destabilized vessels may undergo 
regression unless VEGF is present to promote angiogenesis 
 [145] . Conversely, Ang-1 acts as a maturation factor promot-
ing development and stabilization of mature normal vessels 
 in vivo  by mediating endothelial cell interactions        [150, 151] . 
Activation of Tie-2 by Ang-1 results in downstream activa-
tion of the PI3-K/Akt survival pathway, which ultimately 
leads to endothelial cell migration, tube formation, sprouting, 
and survival        [146, 148] , thereby assuring a dynamic balance 
between vessel regression and growth.  

    ANGIOGENESIS INHIBITORS 

 A   number of agents and factors act as direct inhibitors of 
angiogenesis ( Table 43.1   ). The glycoprotein thrombospon-
din-1 (TSP-1) was the first angiogenic inhibitor discovered 
that plays a role in cell adhesion, angiogenesis, cell prolif-
eration, cell survival, and the activation of both TGF β  and 
a variety of proteases          [2, 152, 153] . TSP-1 has been shown 
to prevent VEGF induced angiogenesis by interfering with 
its ability to bind HSPGs        [2, 152] . However, clinical use of 
TSP-1 is limited due to its large size, limited bioavailabil-
ity, and general instability  [154] . 

 Additional   inhibitors that act directly on the endothe-
lial cell include such agents as type IV collagen, arresten, 
endostatin, angiostatin, and 2-methoxyestradiol. Type IV 
collagen complexes with other macromolecules including 
laminin, HSPGs, fibronectin, and entactin, thereby inhibit-
ing capillary endothelial cell proliferation  [155] . Arresten 
is another endogenous inhibitor of endothelial cell tube 
formation found within the basement membrane  [156] . 
Arrestin may function by blocking the binding of the  α 1 β 1 
integrin to type I collagen and highly efficient signaling is 
likely to require HSPGs        [111, 157] . 

 TABLE 43.1          Endogenous angiogenesis inhibitors  

   Inhibitor  Mechanism 

   Type IV 
collagen 

 Binds to other macromolecules to inhibit 
endothelial cell proliferation 

   Arrestin  Derived from Type IV collagen and inhibits 
endothelial cell tube formation 

   Endostation  Interferes with activity of FGF-2 and VEGF 

   TSP-1  Interacts with cell adhesion receptors to 
inhibit neovascularization and endothelial 
cell migration 

   Angiostatin  Binds endothelial cell surface ATP synthase 
and integrins to inhibit endothelial cell 
migration and proliferation 
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 Similarly  , endostatin is an endogenous collagen derived 
angiogenesis inhibitor that suppresses angiogenesis, tumor 
growth, and metastasis        [158, 159] . Endostatin interferes 
with FGF-2 signaling, thereby blocking endothelial cell 
motility and invasion, inducing apoptosis, and blocking 
VEGF mediated signaling          [160 – 162] . In addition, several 
MMPs hydrolyze plasminogen generating angiostatin frag-
ments that also inhibit endothelial cell proliferation and 
migration  [163] . By contrast, 2-methoxyestradiol induces 
endothelial cell apoptosis by inhibiting microtubule func-
tion in proliferating endothelial cells  [164] .  

    ANTI-ANGIOGENESIS APPROACHES AND 
TREATMENTS 

 A   large body or work suggests that anti-angiogenic ther-
apy that restores the angiogenic balance and normalizes 
the blood vessels may prove to be a highly advantageous 
approach to inhibit tumor growth and metastasis ( Table 
43.2   ). In fact, judiciously applied anti-angiogenic therapy 
given during the normalization window resulted in more 
organized vasculature ( Figure 43.1 ), an increase in blood 
flow to the tumor, and more efficient drug delivery        [19, 
165] . Moreover, combining anti-angiogenic treatment 
with radiation therapy during the normalization window 

resulted in a synergistic effect on decreased tumor growth 
       [166, 167] . 

 The   first anti-VEGF monoclonal antibody to receive 
U.S. Food and Drug Administration (FDA) approval was 
bevacizumab (Avastin  ™  )  [168] . It is a recombinant human-
ized antibody that neutralizes VEGF. Its clinical effective-
ness was initially established in patients with metastatic 
colorectal cancer, when given in combination with intrave-
nous 5-fluorouracil  [169] . By contrast, in metastatic renal 
carcinoma, which is often highly vascular, bevacizumab 
was shown to be effective for first line therapy, alone or 
in combination with interferon alpha  [170] . Bevacizumab 
was also shown to confer a survival benefit in patients with 
non-small cell lung cancer when given in combination with 
paclitaxel and carboplatin  [171] . In addition, bevacizumab 
improved progression free survival when given with taxol in 
previously untreated metastatic breast cancer patients  [172] . 

 The   kinase inhibitor sunitinib, which blocks signal-
ing by VEGFR, PDGFR, and the c-kit receptor, recently 
received FDA approval for treatment of gastrointestinal 
stromal tumors  [173] . A more multifunctional kinase inhib-
itor, Sorafenib, which inhibits Raf kinase and the kinase 
activities of VEGFR-1, -2, and -3, PDGFR- β , RET, and 
c-Kit protein, was shown to prolong progression free sur-
vival in patients with advanced clear-cell renal-cell car-
cinoma in whom previous therapy has failed  [170] . Such 
anti-VEGF treatments not only reduce the size, length, 
and permeability of tumor associated vessels, but this nor-
malized vasculature also exhibits an increased number of 
perivascular cells and a more normal basement membrane 
       [166, 167] . 

 Another   anti-angiogenic treatment that has shown 
encouraging results is the targeting of the human epidermal 
growth factor receptor (HER-2) by the neutralizing anti-
body trastuzumab (Herceptin). Herceptin, which has been 
successfully used to treat HER2-neu overexpressing tumor, 
normalizes tumor vasculature by downregulating growth 
factors such as VEGF, TGF α , and Ang-1  [174] . One spe-
cific way that Herceptin reduces angiogenesis is by target-
ing VEGF signaling resulting in pruned immature vessels 
and maturation of other blood vessels, thereby allow-
ing cytotoxic agents to be more efficient          [1, 175, 176] . 
Although VEGF levels are reduced in the cancer cells, 
the overall levels in the tumor remains the same, which is 
most likely due to increased VEGF expression by CAFs 
 [174] . Thus, Herceptin may be most effective when used 
in combination with other anti-angiogenic treatments. It is 
also plausible that hormone withdrawal from a hormone 
dependent tumor will be necessary to aid in the reduction 
of VEGF levels  [165] . VEGF levels may also be reduced 
by utilizing an adenoviral vector that expresses Ang-1 
 [177]  or VEGF Trap, which sequesters VEGF  [178] . 

 In   some cancers, such as breast cancer, VEGF is the 
predominant angiogenic growth factor in the early stages 
of the disease, whereas in later stages tumor growth and 

 TABLE 43.2          Anti-angiogenic treatments in clinical 
trials  

   Therapeutic 
agent 

 Target pathway  Type of chemical 

   Sunitinib  VEGFR-2 and 
PDGFR 

 Kinase inhibitor 

   Sorafenib 
(Nexavar) 

 VEGFR-1, -2, -3, 
and PDGFR 

 Kinase inhibitor 

   Bevacizumab 
(Avastin  ™  ) 

 VEGF  Monoclonal antibody 

   DC101  VEGF  Monoclonal antibody 

   SU11657  VEGF  Monoclonal antibody 

   Herceptin/
trastuzumab 

 HER-2  Neutralizing antibody 

   Vitaxin/
Etaracizumab 

  α  v  β  3   Humanized 
monoclonal antibody 

   VEGF Trap  VEGF-A  Modified soluble 
VEGFR 

   SU6668  VEGFR, FGFR, 
PDGFR 

 Small molecule 
kinase inhibitor 
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angiogenesis is also promoted by additional growth factors 
such as FGF-1, FGF-2, TGF β , and PIGF        [5, 179] . Therefore 
it is plausible that a late stage breast tumor may not respond 
to anti-VEGF treatment and for optimal cancer treatment 
it will be necessary to target multiple angiogenic pathways 
specifically tailored to the specific gene and protein profile.  

    IMPLICATIONS OF TARGETING 
ANGIOGENESIS – ADVANTAGES AND 
DISADVANTAGES 

 While   anti-angiogenic therapies can normalize tumor vascula-
ture and the tumor microenvironment, the effect is often tran-
sient and is dictated by the type of tumor and its location  [25] , 
underscoring the importance of timing and duration of ther-
apy. In addition, tumors can become resistant to a specific 
anti-angiogenic drug as a consequence of the activation of 
alternate signaling pathways, as a result of the cancer cells 
acquiring additional genetic mutations, or through the acquisi-
tion by the tumor of alternative methods for sustaining growth 
             [180 – 184] , such as the recruitment of bone marrow derived 
pro-angiogenic cells, increased pericyte activity and function, 
and invasion of normal tissue vasculature  [39] . Taken together, 
these observations suggest that it may be important to con-
comitantly target multiple pro-angiogenic factors and their 
downstream signaling pathways as well as to simultaneously 
target the stromal elements and cancer cells          [4, 185, 186] .  

    CONCLUSIONS 

 Anti  -angiogenic therapy can effectively normalize the tumor 
vasculature and attenuate vessel growth for a period of time, 
known as the normalization window, during which additional 
therapies such as chemotherapy and radiation become more 
efficacious. Anti-angiogenic therapy may also cause endothe-
lial cell apoptosis, leading to attenuated tumor growth. To 
achieve additional advances in anti-angiogenic therapy, 
it is critical to understand the gene and protein expression 
profile of each tumor type, determine the timing and extent 
of treatment based on these profiles, and develop highly 
accurate tools and biomarkers to measure treatment effec-
tiveness. It is likely that targeting multiple pro-angiogenic 
factors and their downstream signaling pathways will be 
necessary to induce tumor regression. However, there is 
a high risk that such a multitargeted approach will greatly 
increase health care costs and may increase to unacceptable 
levels the side effect profile of anti-angiogenic therapy.  
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    INTRODUCTION 

 The   treatment of cancer has traditionally involved three 
major therapeutic modalities: surgery, radiotherapy, and 
systemic chemotherapy. Within the latter category, thera-
pies could be broadly categorized as cytotoxic chemo-
therapies (e.g., alkylating agents, DNA damaging agents, 
antimetabolites, topoisomerase interactive agents, and anti-
microtubule agents) and biotherapeutics (e.g., interferons, 
interleukins, hormonal therapies, differentiation agents, and 
monoclonal antibodies)  [1] . Recently, a newer class of  “ tar-
geted therapies, ”  involving selective kinase inhibitors, has 
been developed. The development of such agents has been 
the direct result of major progress made in the elucidation 
of molecular signaling events that lead to and sustain can-
cer. Remarkably, it was only in 1979 that a cancer-causing 
gene (i.e., the  v-src  oncogene), was first found to act bio-
chemically as a kinase  [2] . 

 That   kinase inhibitors have effective and sustained 
antitumor activity is best exemplified by the use of imat-
inib mesylate (STI-571, Gleevec ™  (US), Glivec ™  
(Europe); Novartis, Basel, Switzerland) to treat patients 
with chronic myelegenous leukemia (CML). Imatinib, a 
2 - phenylaminopyrimidine derivative (4 - 4 - methylpiper-
azin-1 - yl)-methyl]-N-[4 - methyl-3 - 4 - pyridin-3 - ylpyrimi-
din-2 - yl)-amino]-phenyl]-benzamide;  Figure 44.1   ), is an 
oral small molecule selective inhibitor of the ABL kinase. 
Patients with CML contain tumor cells driven by a consti-
tutively activated ABL kinase (due to the pathognemonic 
 BCR-ABL  translocation), and imatinib can be used effec-
tively to treat CML. In May 2001 imatinib became the first 
kinase inhibitor approved by the FDA to treat a human 
cancer  [3] , ushering in a new paradigm in cancer drug 
development. 

 Some   skeptics thought that imatinib may represent an 
outlier class of drug with only a small niche in hemato-
logic malignancies. However, developments over the past 
few years have demonstrated that kinase inhibitors also 
have extensive utility in treating solid tumors from a vari-
ety of tissue origins. This chapter will highlight the clinical 
applications of kinase inhibitors in the first three specific 
solid tumors for which kinase inhibitors were approved: 
gastrointestinal stromal tumor (GISTs), non-small cell lung 
cancer (NSCLC), and renal cell carcinoma (RCC) ( Table 
44.1   ). In one case (GIST), understanding of the molecular 
etiology of the disease led to rational drug development; in 
another case (NSCLC), clinical drug development led to 
rational dissection of the underlying biology; and in a third 
case (RCC), an existing body of molecular knowledge has 
provided a framework to begin to understand why a certain 
class of drugs may be effective. As more detailed kinase 
biology is discussed in other chapters, we will only discuss 
relevant translational studies. For detailed information on 
(1) clinical aspects of these diseases, (2) pharmacologic 
properties of the kinase inhibitors used in these diseases, or 
(3) clinical trial design, the reader is referred to other refer-
ences (for example,  [4] ).  

    RATIONALE FOR KINASE INHIBITION IN 
THE TREATMENT OF SOLID TUMORS 

 Cancers   arise from the progressive accumulation of acti-
vating mutations in growth-enhancing genes (oncogenes) 
and inactivating mutations in growth-inhibitory genes 
(tumor suppressor genes). For most cancers, it is currently 
not known whether a genetic lesion that is necessary for 
the initial development or progression of a specific tumor 
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 FIGURE 44.1          Chemical structures of erlotinib, gefitinib, imatinib, sorafenib, and sunitinib.    

 TABLE 44.1          Small molecule tyrosine kinase inhibitors approved by the US FDA for use in solid tumors  

   Disease  Drug  Relevant target(s)  FDA approval    Reference 

         Indication  Date   

   Gastrointestinal 
stromal tumor 

 Imatinib  CKIT/PDGFR- α  
(mutant) 

 First-line  2002  24 

     Sunitinib  CKIT/PDGFR- α  
(mutant) 

 Second-line, after imatinib failure  2006  37 

   Non-small cell lung 
cancer 

 Gefitinib  EGFR  Third-line, restricted to patients 
benefiting from gefitinib 

 2003
2005 

 48, 49 50 

     Erlotinib  EGFR  Second-line  2004  52 

   Renal cell carcinoma  Sorafenib  VEGFR?  Second-line  2005  127 

     Sunitinib  VEGFR?  First-line  2007  131 

   Breast cancer  Lapatinib  HER2 (amplified)  Third/Fourth-line, in association with 
capecitabine, in HER2 overexpressing 
tumors, after previous anthracycline, 
taxane, and trastuzumab 

 2007  134 

   Hepatocellular 
carcinoma 

 Sorafenib  ?  First-line  2007  135 

   Thyroid carcinoma  Vandetinib  RET (mutant)  First-line, orphan drug designation  2004  136 
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is also required for the maintenance of that tumor’s sur-
vival. However, multiple mouse models of cancer involv-
ing inducible transgenes have demonstrated that tumors, 
remarkably, can be dependent upon the expression of sin-
gle oncogenes for survival, even in the absence of tumor 
suppressor genes          [5 - 7] . Furthermore, the success of target-
ing the constitutively activated BCR-ABL tyrosine kinase 
with the oral kinase inhibitor, imatinib, in patients with 
CML shows that human malignancies can also rely upon 
single oncogenes for survival  [3] . This concept of tumor 
maintenance has also been called  “ oncogene addiction ”  
 [8] . Studies supportive of this notion offer an optimistic 
view on new approaches for treating cancer; they suggest 
that tumors harboring complex genetic lesions nevertheless 
have an  “ Achilles heel ”  that just needs to be systematically 
identified and exploited. 

 Although   tumor suppressor genes (for example,  p53 ) 
may also play a role in tumor maintenance  [9] , the most 
clinically relevant examples of  “ oncogene addiction ”  
involve aberrant kinases. The human genome encodes 
approximately 518 kinases (1.7 percent of all human 
genes), classified phylogenetically into seven major groups 
 [10] , including: 

    1.     Sixty-three cyclic nucleotide-regulated kinases (con-
taining PKA, PKG, and PKC families)  

    2.     Seventy-four calcium/calmodulin-dependent kinases 
(CaMK)  

    3.     Twelve casein kinases (CK1)  
    4.     Sixty-one cyclin-dependent kinases (containing CDK, 

MAPK, GSK3, CLK families)  
    5.     Forty-seven STE kinases (homologs of yeast Sterile 7, 

Sterile 11, and Sterile 20 kinases)  
    6.     Ninety tyrosine kinases  
    7.     Forty-three tyrosine-like kinases.    

 The   remaining 128 kinases fall into  “ atypical ”  protein 
kinase families. Among these, thus far, mutant tyrosine 
kinases have proven to be the most effective targets for 
drug therapy for at least four major reasons. First, malig-
nant transformation is often the result of deregulated tyro-
sine kinase activity  [11] . Second, simple screening methods 
(e.g., antiproliferative and/or apoptotic activity) can be used 
to identify and select novel inhibitors for clinical develop-
ment  [12] . Third, elucidation of tyrosine kinase crystal 
structures has facilitated structure-based drug design of 
ATP-competitive analogs  [13] . Finally, aberrant kinases are 
often inhibited at lower doses of drug versus their wild-type 
counterparts, providing a therapeutic  “ window of opportu-
nity ”  that maximizes specificity and minimizes side effects. 
Thus far, the most successful kinase inhibitors have been 
agents that block enzymatic activity by competing with 
ATP in the ATP binding pocket of target kinases. 

 Notably  , kinase inhibitors are very different from con-
ventional cytotoxic chemotherapies and/or biotherapeutics, 
most of which are administered intravenously in outpatient 

oncology clinics. All available kinase inhibitors are orally 
administered drugs with a once- or twice-daily schedule. 
While they are not completely devoid of side effects, in 
general kinase inhibitors are well-tolerated, with relatively 
fewer life-threatening complications. These considerations 
make a big difference in the lives of patients who want to 
balance quality of life with the therapeutic benefits of vari-
ous treatment regimens.  

    KINASE INHIBITION IN 
GASTROINTESTINAL STROMAL TUMORS 

 GIST   was the first human solid tumor in which specific 
inhibition of a tyrosine kinase was shown be a clinically 
useful therapeutic intervention. Thus, this disease has 
served as a paradigm for the development of kinase inhibi-
tors in solid tumors. 

    GIST Background 

 Soft   tissue sarcomas are a heterogenous group of neoplasms, 
and represent 1 percent of adult malignancies. GISTs are a 
subset of soft tissue sarcomas that arise from mesenchymal 
precursors that normally give rise to connective-tissue cells 
of the gastrointestinal tract  [14] . The annual incidence in the 
United States is estimated at 3800  [15] . Approximately 70 
percent of GISTs are found in the stomach, 20 - 30 percent in 
the small intestine, and less than 10 percent elsewhere in the 
gastrointestinal tract  [16] . Most cases are sporadic, although 
familial GISTs also occur  [17] . Surgery is the only curative 
option. In the twentieth century, for patients with unresecta-
ble or recurrent disease, no systemic treatments were shown 
to have meaningful clinical activity against GISTs  [18] . 
The median duration of survival for patients with metastatic 
GIST was 20 months, and for patients with local recurrence 
it was 9 - 12 months        [18, 19] . 

 Classification   of these neoplasms used to be based upon 
histological assessments, and was historically controver-
sial. However, key observations in 1998 helped to clarify 
the nature of GISTs. First, GISTs were shown to strongly 
express the receptor tyrosine kinase KIT (CD117)  [20] . 
This marker, which is rarely present on other spindle cell 
tumors occurring in the abdominal cavity, is now accepted 
as the most specific immunohistochemical marker for 
GISTs. Second, GISTs were shown to harbor mutations 
in the juxtamembrane domain (exon 11) of the  KIT  gene 
( Figure 44.2a   )  [20] . These mutations led to constitutive 
activation of the KIT kinase in the absence of ligand (stem 
cell factor; SCF). Finally, based upon IHC staining of cell 
differentiation markers, GISTs were proposed to arise from 
the interstitial cells of Cajal (ICC). These cells reside in and 
near the circular muscle layer of the gastrointestinal tract, 
and are thought to serve as pacemakers that trigger gut 
 contraction        [14, 21] . Myenteric plexus ICC fail to develop 



416 SECTION | D Signaling In Disease

in mice lacking KIT or SCF, indicating that the KIT - SCF 
axis is essential to development of these cells  [21] .  

    Development of Kinase Inhibitors in GIST 

 The   treatment of GIST was revolutionized based on two 
key preclinical observations. First, the kinase inhibitor, 
imatinib, was shown to block the  in vitro  kinase activity of 
both wild-type KIT and a mutant KIT isoform commonly 
found in GISTs  [22] . Second, imatinib was shown  in vitro  
using cells from GIST patients harboring activating KIT 
mutations to arrest cell proliferation and induce apoptosis 
 [22] . As discussed above, imatinib is an oral small mole-
cule kinase inhibitor that targets the BCR-ABL fusion pro-
tein in CML, but it also inhibits the kinase activity in the 
nanomolar range of both KIT and platelet-derived growth 
factor receptor  α  (PDGFRA). Imatinib was subsequently 
shown to induce a rapid, substantial, and durable response 
in a patient with chemotherapy-resistant GIST  [23] . Within 
a year, a phase II multi-national trial enrolling patients with 
advanced CD117-positive GIST demonstrated efficacy and 
safety of the drug. Among 147 patients, 54 percent (95% 
CI 45.3 - 62.0) demonstrated partial, sustained, clinically 
significant responses  [24] . Based on this trial, the FDA 
approved imatinib, in February 2002, for the treatment of 

patients with KIT (CD117)-positive unresectable and/or 
metastatic malignant GISTs. 

 Correlative   translational studies have demonstrated that 
KIT expression is exhibited by 95 percent of GISTs and is 
related to  KIT  activating mutations in a majority of cases  [25] . 
 KIT  mutations occur predominantly within exons 9, 11, 13, 
and 17 ( Figure 44.2a )  [25] . Exon 9 mutations (duplication/
insertions) occur in the extracellular domain; the mechanism 
of action remains to be determined, but it is hypothesized 
that they disrupt an antidimerization motif. Exon 11 muta-
tions (deletions, insertions, point mutations, and internal 
tandem duplications) occur in the juxtamembrane domain, 
which normally functions to inhibit receptor dimerization in 
the absence of ligand. Exon 13 mutations (point mutations) 
occur in the kinase I domain, and may lead to spontaneous 
receptor homodimerization. Exon 17 mutations occur in the 
activation loop; the mechanism of activation is unclear. 

 Among   the minority of GISTs that lack detectable  KIT  
mutations, nearly half harbor intragenic activating mutations 
in the gene encoding the related receptor tyrosine kinase, 
 PDGFRA . These were identified after a series of elegant 
immunoprecipation and immunoblotting experiments 
revealed that PDGFRA was activated in  KIT -wild-type 
GIST tumor lysates  [26] . Mutations occur in exons 12 
(juxtamembrane region) or 18 (activation loop), and lead to 
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 FIGURE 44.2          Spectrum of drug-sensitive (a) and -resistant (b) mutations found in EGFR in NSCLC, and KIT/PDGFRA in GIST, respectively. 
Percentages indicate the relative proportion of each mutation.    
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constitutive activation of the receptor. Tumors expressing 
KIT or PDGFRA oncoproteins appear to be indistinguish-
able with respect to activation of downstream signaling 
intermediates and cytogenetic changes associated with 
tumor progression        [25, 26] . 

 In   terms of the prevalence of the various  KIT  and 
 PDGFRA  mutations, one comprehensive analysis of 127 
patients with GIST enrolled onto a phase II clinical study 
of imatinib found  KIT  and  PDGFRA  mutations in 88.2 per-
cent and 4.7 percent of GISTs, respectively  [27] . In total, 
66.9 percent of cases harbored exon 11  KIT  mutations, 18.1 
percent exon 9  KIT  mutations, and 3.9 percent  PDGFRA  18 
mutations. The remaining mutations occurred in  KIT  exons 
13 or 17 or  PDGFRA  exon 12; 7.1 percent of patients had 
no detectable mutations in either gene. Interestingly, dis-
ease response rates to imatinib vary according to tumor 
mutation type, ranging from 65 – 87 percent in tumors bear-
ing  KIT  exon 11 mutations vs 34 - 48 percent in tumors with 
 KIT  exon 9 mutations  [27] . These differences translate into 
significantly longer event-free and overall survival rates for 
patients harboring exon 11 mutations.  

    Resistance to Kinase Inhibitors in GIST 

    Primary Resistance 

 Despite   harboring  KIT  or  PDGFRA  mutations, some GISTs 
are resistant to treatment with imatinib. These are more 
likely to harbor  KIT  exon 9 mutations or  PDGFRA  D842V 
mutations ( Figure 44.2b )  [28] . Additional molecular mecha-
nisms underlying primary resistance remain to be elucidated.  

    Acquired Resistance 

 In   patients whose disease demonstrates initial response, 
secondary or acquired resistance invariably develops after 
a median time of about 2 years  [29] . Analyses of tumor 
specimens biopsied after disease response and progression 
have revealed that resistant tumor cells harbor second-site 
kinase domain mutations in exons 13, 14, or 17 of  KIT , 
or exon 18 of  PDGFRA,  respectively ( Figure 44.2b )          [28, 
30, 31] . About one-fourth of secondary KIT mutations 
result in the same amino acid substitution, changing a 
threonine to isoleucine at position 670 (encoded by exon 
14). This mutation is analogous to a mutation that affects 
the corresponding residue (T315I) in ABL, found in CML 
patients who develop acquired resistance to imatinib  [32] . 
Replacement of this threonine residue by isoleucine is 
thought to lead to bulky steric clash with the kinase inhibi-
tor but not ATP  [33] . Because of its key location at the 
entrance to a hydrophobic pocket in the back of the ATP 
binding cleft, this threonine is an important determinant of 
inhibitor specificity in protein kinases and has been there-
fore called a  “ gatekeeper ”  residue. The remaining muta-
tions in exons 13 and 17 are predicted to destabilize the 

inactive conformation of KIT, thus preventing proper bind-
ing of imatinib  [34] . 

 More   recently, an alternative mechanism of acquired 
resistance has been identified, involving a  “ kinase switch ”  
from dependency on KIT to a different tyrosine kinase, 
AXL  [35] . This mechanism was elucidated by the study 
of imatinib-sensitive GIST cell lines selected  in vitro  over 
time for resistance to the drug. A  “ kinase switch ”  has also 
been observed in acquired resistance to EGFR inhibitors in 
lung cancer (see below), suggesting that this may be a com-
mon mechanism by which tumor cells adapt to inhibition 
of a kinase upon which they are dependent for survival. 

 Importantly  , soon after second-site kinase domain 
mutations were found to mediate acquired resistance to 
imatinib in GIST, sunitinib malate (SU11248, Sutent  ™ ; 
Pfizer, New-York, NY) was identified as a potential agent 
to overcome resistance. Sunitinib is an oral quinazoline 
( N -[2 - diethylamino)ethyl]-5 -  Z )-(5 - fluoro-1,2 - dihydro-2 -
 oxo-3 H -indol-3 - ylidine)methyl]-2,4 - dimethyl-1 H -pyrrole-3 -
 carboxamide;  Figure 44.1 ) that inhibits KIT, PDGFR, and all 
three isoforms of the vascular endothelial growth factor recep-
tor (VEGFR-1, VEGFR-2, and VEGFR-3) in the nanomolar 
range ( Figure 44.3   )  [36] . Although sunitinib binds the same 
ATP binding site as imatinib, both on KIT and PDGFR, these 
two molecules are members of different chemical classes and 
bear different binding characteristics with different affinities 
for the respective receptors. As second-line treatment after 
failure to imatinib, a phase III randomized, double-blind, 
placebo-controlled, multicenter international trial assessed 
the tolerability and anticancer efficacy of sunitinib in patients 
( n  � 312) with advanced GIST who were resistant to or intol-
erant of previous treatment with imatinib. Patients were rand-
omized in a 2       :       1 ratio to receive sunitinib or placebo; the trial 
was unblinded early when a planned interim analysis showed 
significantly longer time to tumor progression with sunitinib 
(27.3 weeks vs 6.4 weeks, HR 0.33; 95% CI 0.23 - 0.47; p �  
0.0001)  [36] . Further studies showed that exon 13 and 14 
secondary  KIT  mutations were sensitive  in vitro  to sunitinib 
 [37] . Based on this trial, in January 2006 the FDA approved 
sunitinib for this indication. Response rates to sunitinib were 
significantly better in patients whose tumors bore exon 9 
mutations (37 percent vs 5 percent in case of exon 11 muta-
tions), the opposite result to that with imatinib. This suggests 
that GISTs that arise from different types of mutations may 
best be treated with different kinase inhibitors  [28] . The addi-
tional inhibition of VEGFRs by sunitinib may also play a 
significant role in tumor responses, as GISTs are highly vas-
cularized tumors  [16] .    

    KINASE INHIBITORS IN NON-SMALL CELL 
LUNG CANCER 

 As   discussed above, small molecule kinase inhibitors 
were rationally developed for use in GIST, based upon an 
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understanding of the underlying pathophysiology of the 
disease. By contrast, the development of kinase inhibi-
tors in NSCLC revealed kinase biology that was highly 
unexpected. 

    Lung Cancer Background 

 Cancer   of the lung is the most frequent cause of cancer-
related death worldwide, accounting for more than 1 mil-
lion deaths per year  [38] . Despite recent advances in the 
treatment of this disease, the overall 5 - year survival in the 
United States remains only 15 percent, highlighting the need 
for novel treatment strategies. 

 Lung   cancers are currently classified into two major 
groups depending on histology: small cell lung cancer, and 
non-small cell lung cancer (NSCLC). The latter is comprised 
of three different subtypes: adenocarcinoma, squamous 
cell carcinoma, and large cell carcinoma. The incidence 
of the adenocarcinoma subtype has been rising, and now 
accounts for  � 50 percent of all cases of lung cancer 

 [39] . The main risk factor for lung cancer is cigarette smok-
ing; however, nearly half of lung cancers occur in patients 
who quit smoking more than a year prior to diagnosis (i.e., 
in  “ former ”  as opposed to  “ current ”  smokers) and 10 per-
cent of lung cancers occur in  “ never smokers ”  (i.e., indi-
viduals who smoked less than 100 cigarettes in a lifetime). 
Sixty percent of patients are diagnosed at incurable stages. 

 Standard   treatment for metastatic lung cancer involves 
empiric cytotoxic chemotherapy, which appears to have 
reached a plateau in terms of efficacy. In a landmark clini-
cal trial involving 1207 patients randomized to one of four 
treatment arms using  “ modern doublets ”  (i.e., cisplatin/
gemcitabine, cisplatin/paclitaxel, cisplatin/docetaxel, carbo-
platin/paclitaxel), the median overall survival was 8 months 
regardless of the doublet used  [40] . Recently, addition to 
chemotherapy of the  “ angiogenesis inhibitor ”  bevacizumab 
 –  a monoclonal antibody against the vascular endothelial 
growth factor  –  conferred an additional 2 - month survival 
benefit to patients with non-squamous NSCLC over those 
receiving chemotherapy alone  [41] .  

 FIGURE 44.3          Kinase interaction maps demonstrating relative kinase selectivities for erlotinib, gefitinib, imatinib, sorafenib, and sunitinib (see  [137]  for 
details).    
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    Development of EGFR Tyrosine Kinase 
Inhibitors in Lung Cancer 

 Contrary   to the development of kinase inhibitors in GISTs, 
EGFR inhibitors were developed in lung cancer originally 
along clinical lines. The dysregulation of EGFR activity in 
some cancers coupled with the limited activity of cytotoxic 
chemotherapies in general spurred the development in the 
1990s of small molecule agents to inhibit EGFR kinase 
activity. Investigation of the structure and catalytic mecha-
nism of the wild-type EGFR tyrosine kinase led to the iden-
tification of a new structural class of anilinoquinazoline 
tyrosine kinase inhibitors  [42] . One structural derivative, 
  4 - quinazolinamine,  N -(3 - chloro-4 - fluorophenylamino)-7 -
 methoxy-6 - 3 - 4 - morpholinyl)-propoxy], molecular weight 
446.9,   eventually became gefitinib (ZD1839; Iressa  ™ ; 
AstraZeneca, Macclefields, UK;  Figure 44.1 ). A differ-
ent quinazoline derivative  -  [6,7 - bis (2 - methoxy-ethoxy)-
quinazolin-4 - yl]-[3 - ethylphenyl]-amine  -  became erlotinib 
(OSI-774 ; Tarveva  ™  ; OSI Pharmaceuticals, Melville, 
NY, and Genentech, South San Francisco, CA;  Figure 
44.1 ). Both agents are orally available, reversible, ATP-
competitive inhibitors of the EGFR tyrosine kinase ( Figure 
44.3 ). Gefitinib was developed first. 

 In   preclinical studies of cell lines and human tumor 
xenografts, gefitinib produced growth inhibition in a vari-
ety of solid tumor types, including lung, prostate, breast, 
colon, and ovarian cancers  [43] . Subsequently, in four 
phase I studies of gefitinib in unselected patients, durable 
clinical benefit was seen in advanced cancers of multiple 
tumor types            [44 – 47] . Although no complete responses were 
seen in 221 patients studied, unanticipated dramatic radio-
graphic regressions (within several days to weeks) were 
noted in 10 of 100 heavily pretreated NSCLC patients. 

 The   promising activity seen in NSCLC led to two multi-
center phase II trials: the  I ressa  D ose  E valuation in  A dvanced 
 L ung Cancer (IDEAL)-1 trial in Japan and Europe with 210 
patients, and the IDEAL-2 trial in the US with 221 patients 
       [48, 49] . In both trials, patients were required to have 
received prior platinum-containing chemotherapy regimens. 
Overall response rates in IDEAL-1 and -2 were 18 percent 
and 10 percent, respectively. Based upon these data involv-
ing  “ surrogate endpoints ” , gefitinib received approval in 
Japan and South Korea in July 2002 as second-line chemo-
therapy for advanced NSCLC. In the US, the FDA approved 
gefitinib in May 2003, under the Agency’s accelerated 
approval program, for the treatment of patients with NSCLC 
who had failed two or more courses of chemotherapy. 

 After   the approval of gefitinib in 2003, AstraZeneca 
conducted an FDA-required study ( I RESSA  S urvival 
 E valuation in  L ung cancer (ISEL)) to compare the effi-
cacy of gefitinib vs placebo in patients ( n  � 1692) with 
refractory NSCLC  [50] . A statistically significant differ-
ence in survival was not observed (5.6 vs 5.1 months; HR 
0.89, p � 0.11). For this reason, and because alternatives 

to gefitinib by then existed for patients with NSCLC (e.g., 
docetaxel, pemetrexed, and erlotinib; see below), the FDA 
withdrew gefitinib from the US market in June 2005. 
However, preplanned subset analyses did demonstrate 
a significant survival benefit in patients who had never 
smoked, and in patients of Asian origin  [51] . The drug 
remains widely used in East Asia. 

 While   the phase III trial of gefitinib failed to show a sur-
vival benefit, the phase III trial of erlotinib (NCIC BR.21) 
did  [52] . This trial randomized 731 patients to either drug 
or placebo after first- or second-line chemotherapy. The 
overall response to erlotinib was 9 percent, and the over-
all survival was 6.7 months for erlotinib versus 4.7 months 
for placebo (p � 0.001). Erlotinib received approval by the 
FDA in November 2004. Why gefitinib failed and erlotinib 
succeeded in their respective phase III trials remains a sub-
ject of intense debate. Major explanations include differ-
ences in (1) drug potency (gefitinib was dosed at one-third 
its maximum tolerated dose (MTD), while erlotinib was 
dosed at its MTD), (2) drug pharmacokinetics, (3) clinical 
trial design (ISEL patients had more treatment-refractory 
patients than BR.21), and (4) potential off-target activity of 
the respective kinase inhibitors  [50] . 

 Preclinical   models demonstrated synergy between 
EGFR TKIs and cytotoxic chemotherapy        [53, 54] . Thus, 
both gefitinib and erlotinib were also evaluated as first-
line therapy for NSCLC, given continuously with cyto-
toxic chemotherapy in four separate phase III trials:  I ressa 
 N SCLC  T rials  A ssessing  C ombination  T herapy (INTACT)-
1 ( n  � 1093) and -2 ( n  � 1037)        [55, 56] , and TRIBUTE 
( n  � 1059) and TALENT ( n  � 1172) (for  T arceva)        [57, 58] . 
No survival benefit or improvements in response rates were 
noted with the addition of TKI to chemotherapy in either 
trial. Thus, concurrent use of an EGFR TKI with chemo-
therapy in the first-line setting remains investigational.   

     EGFR  MUTATIONS IN LUNG CANCER 

 When   gefitinib received FDA approval in May 2003, erlo-
tinib studies were still ongoing, and the specific target(s) of 
these drugs in human tumors were unknown. Three groups 
took different approaches leading to the identification of 
 EGFR  kinase domain mutations in NSCLC. All groups 
were motivated by the observation that tumors could be 
 “ addicted ”  to signaling from aberrant TKs        [59, 60]  and 
other oncogenes          [61 – 63] , as discussed above. One approach 
hypothesized that patients who had striking responses to 
gefitinib had somatic mutations in  EGFR  that would indi-
cate the essential role of the EGFR signaling pathway in 
the tumor  [64] . Another approach involved high-through-
put re-sequencing in lung tumors of exons encoding the 
kinase domains of receptor tyrosine kinases, to determine 
whether mutations in specific kinases played a causal role 
in NSCLC  [65] . This group followed that of Bardelli and 
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colleagues, who showed the feasibility of determining 
the mutational status of all TKs within a tumor type  [66] . 
Similar to Bardelli and colleagues, we initiated an effort to 
perform mutational profiling on all tyrosine kinases, choos-
ing to start with EGFR first, since it was the putative target 
of gefitinib and erlotinib  [67] . We also reasoned that further 
careful study of tumors from patients with clinical char-
acteristics predictive of response  –  a strategy of  “ clinical 
enrichment ”   –  would accelerate the identification of either 
the  “ true ”  molecular targets of gefitinib and erlotinib or 
other molecular predictors of response  [68] . Thus, we chose 
initially to focus on tumors from  “ never smokers ”  that dem-
onstrated marked clinical or radiographic responses on drug 
and who had adenocarcinoma histology, particularly a sub-
type called bronchioloalveolar carcinoma (BAC)        [69] . All 
three studies demonstrated that somatic mutations in the 
EGFR kinase domain were present in a subset of NSCLCs, 
and that such mutations were associated with increased sen-
sitivity to gefitinib or erlotinib. 

  EGFR    kinase domain mutations are almost exclu-
sively found in NSCLCs            [70 – 74] . Many types of muta-
tions have been reported, but there thus far are only four 
types of drug-sensitive mutations, validated from  in vitro  
studies  [75]  and/or from actual tumor responses in human 
patients. These are point mutations in exons 18 (G719A/C) 
and 21 (L858R and L861Q), and in-frame deletions in 
exon 19, most of which eliminate four amino acids, LREA, 
just downstream of a critical lysine residue at position 
745 ( Figure 44.2a ). (Note that EGFR has two numbering 
systems. The first denotes the initiating methionine in the 
signal sequence as amino acid -24; the second, used here, 
denotes the methionine as amino acid  � 1.) The most com-
mon of these four drug-sensitive mutations are exon 19 
deletions and the exon 21 L858R substitution, together 
representing 85 – 90 percent of  EGFR  mutations in NSCLC 
( Figure 44.2a )  [76] . Thus far, four kinase domain muta-
tions are associated with drug resistance: two exon 19 point 
mutations (L747S and D761Y), an exon 20 point mutation 
(T790M) (see section on acquired resistance) and exon 20 
insertions (e.g., D770_N771insNPG). Within lung can-
cers,  EGFR  kinase domain mutations are more common in 
adenocarcinomas, East Asians, women, and never smok-
ers (reviewed in  [76] ). Mutations in  EGFR  may be more 
common in women, since the majority of never smokers 
are women  [77] . These characteristics had been previously 
noted as clinical predictors of response to gefitinib and 
erlotinib          [48, 49, 68] . Kinase domain mutations are usually 
somatic, although a family with rare germ-line mutations 
in  EGFR  has been identified  [78] . Mutations outside the 
exons encoding the kinase domain are uncommon in lung 
cancers          [64, 65, 67] , but the EGFRvIII mutations found in 
gliomas have been identified in some NSCLCs, especially 
in those with squamous cell histology        [79, 80] . 

 EGFR   exon 19 deletion and L858R mutants confer lig-
and-independent activation and prolonged receptor kinase 

activity after ligand stimulation          [64, 65, 81] . Such muta-
tions are also sufficient for oncogenic transformation.  In 
vitro  work has shown that selected mutations in  EGFR  
(exon 18 G719S, exon 19 deletion, exon 21 L858R, and 
exon 20 insertion) can transform both fibroblasts and lung 
epithelial cells        [82, 83] . Additionally, tetracycline-regulata-
ble mouse model systems indicate that expression of either 
 EGFR  exon 19 deletions or  L858R  alleles in mouse lung 
epithelia leads to formation of tumors analogous to human 
lung cancers        [84, 85] . 

 Kinetic   analysis of the purified intracellular domains 
of the L858R mutant and a deletion mutant reveals that 
both mutants exhibit a higher K m  for ATP (i.e. a decreased 
affinity for ATP) and a lower K i  for erlotinib (i.e. increased 
affinity for drug) relative to wild-type receptor  [83] . 
Separate  in vitro  kinase activity assays show that the cata-
lytic efficiency (k cat /K M ) of the L858R mutant form of the 
kinase domain is ~20 - fold higher than that for the wild-type 
kinase domain, suggesting that while the wild-type kinase 
domain is autoinhibited, the L858R mutant is constitutively 
active, probably because the L → R amino acid substitution 
destabilizes the inactive EGFR conformation        [86, 87] . The 
structural basis for the enhanced sensitivity of the deletion 
mutants is not apparent from previously published reports 
of crystal structure data of EGFR TKIs with the kinase 
domain of EGFR        [88, 89] , and no crystal structures have 
yet been elucidated. 

 Similar   to GIST, where patients whose tumors bear 
exon 11 and 9 mutations have different clinical outcomes 
to imatinib, different mutations in  EGFR  may confer dif-
ferent tumor activation profiles which lead to variations 
in both natural history and clinical course after treatment 
with erlotinib or gefitinib. In one study, in NSCLC patients 
treated with surgery alone, patients with  EGFR  point muta-
tions ( n  � 31) had a prolonged overall survival when com-
pared to patients with exon 19 deletions ( n  � 31)  [90] . In 
contrast, retrospective data from our group  [91]  and others 
 [92]  suggest that after treatment with gefitinib or erlotinib, 
patients with  EGFR  exon 19 deletions have a longer over-
all survival when compared to patients with  EGFR  L858R 
(34 months vs 8 months, log-rank p � 0.01). The molecu-
lar basis for this observation remains to be elucidated, 
although kinetic analyses of EGFR mutant proteins suggest 
that the off-rate for erlotinib may be slower for the deletion 
mutant, as compared to the L858R mutant, thus prolong-
ing the duration of erlotinib binding to the deletion mutant 
 [83] . Remarkably, a 34 - month median survival far exceeds 
the norm for patients treated with standard chemotherapy 
(~10 - 12 months). Patients with  EGFR  mutant tumors may 
also have a better prognosis than those with wild-type 
tumors  [93] . 

 Drug   sensitivity may be associated with both  EGFR  
mutation and amplification. Several groups have inves-
tigated the predictive value of  EGFR  amplification in 
patients treated with gefitinib or erlotinib on clinical trials 
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       [94, 95] . In these studies, patients with amplification or 
polysomy of  EGFR  were more likely to respond to erlotinib 
or gefitinib as compared to patients with normal  EGFR  
copy number. Patients with amplification or high polys-
omy also had longer median time to progression and over-
all survival. However, confounding these results, in most 
studies, amplification of  EGFR  has been associated with 
somatic mutation in  EGFR   [96] . Thus, whether amplified 
wild-type  EGFR  alone contributes to lung cancer oncogen-
esis and susceptibility to erlotinib and gefitinib remains to 
be established. In the absence of ligand, wild-type  EGFR  is 
not transforming in mouse fibroblasts or bronchial epithe-
lial cells        [75, 97] . 

    Resistance to EGFR Kinase Inhibitors in 
NSCLC 

    Primary Resistance 

 Dramatic   radiographic responses to gefitinib and erlo-
tinib are only observed in a minority of patients. Since the 
majority of patients do not respond dramatically to gefit-
inib or erlotinib, and since some patients whose tumors 
are reported to have wild-type EGFR do respond to treat-
ment, we and others investigated whether we could find 
molecular markers predictive of primary resistance to these 
drugs. As a first step, we examined the status of  KRAS  
(exon 2) mutations in drug-sensitive vs drug-refractory 
tumors, since (1) KRAS is a known downstream signaling 
molecule in the EGFR pathway, and (2)  KRAS  mutations 
had previously been reported to occur in 15 – 30 percent of 
lung adenocarcinomas. Our analysis of 60 tumors revealed 
that  EGFR  mutations were found only in sensitive tumors, 
while  KRAS  mutations were found only in resistant tumors 
 [98] . Subsequent prospective studies have further verified 
these findings        [99, 100] . Since  EGFR  and  KRAS  mutations 
are, with some rare exceptions, mutually exclusive  [98] , 
 KRAS  mutation testing in conjunction with  EGFR  muta-
tion testing can be used to help guide treatment decisions 
regarding the use of gefitinib or erlotinib.  

    Acquired Resistance 

 Despite   an initial response to  EGFR  tyrosine kinase inhibi-
tors, patients whose tumors harbor drug-sensitive  EGFR  
mutations rarely achieve a complete radiographic or path-
ologic response, and their disease usually begins to grow 
again after about 12 months. Analyses of tumor tissue from 
patients with such acquired resistance have revealed the 
presence of additional second-site  EGFR  mutations ( Figure 
44.2b )          [101 – 103] . The major lesion identified to date 
is an  EGFR  T790M mutation (exon 20), which has been 
reported in about half of patient tumors after disease pro-
gression              [101 – 105] , and is analogous to mutations seen in 
acquired resistance to imatinib in GIST and CML ( Figure 

44.2b ). Like T670I in  KIT , the T790M mutation in  EGFR  
was predicted to block binding of erlotinib or gefitinib to 
the kinase ATP binding pocket. However, recently, it has 
been suggested that the amino acid substitution causes 
drug resistance by increasing the affinity for ATP  [106] . 
Other second-site mutations implicated in acquired resist-
ance include L747S (exon 19)  [107]  and D761Y (exon 19) 
( Figure 44.2b )  [108] . 

 Another   mechanism of acquired resistance may involve 
a  “ kinase switch ” , as amplification of the gene encoding the 
MET receptor tyrosine kinase has been implicated in two 
recent separate studies. One group isolated gefitinib-resist-
ant clones from an  EGFR  mutant lung cancer cell line and 
found that the resistant cells displayed amplification of  MET  
and maintained activation of ERBB3/PI3K/Akt signaling in 
the presence of gefitinib. Inhibition of MET signaling in 
these cells restored their sensitivity to gefitinib  [109] . Our 
group used array-based comparative genomic hybridiza-
tion (aCGH) to compare genomic profiles of  EGFR  mutant 
tumors from untreated patients with those from patients with 
acquired resistance  [110] . Among three loci demonstrating 
copy number alterations specific to the acquired resistance 
set, one contained the  MET  proto-oncogene. Collectively, 
 MET  amplification has been found in about 20 percent of 
samples from patients with acquired resistance, with or 
without EGFR T790M mutations. Notably,  MET  encodes 
a heterodimeric transmembrane receptor tyrosine kinase 
composed of an extracellular  α -chain disulfide bonded to 
a membrane-spanning  β  chain        [111, 112] . Binding of the 
receptor to its ligand, hepatocyte growth factor/scatter fac-
tor, induces receptor dimerization, triggering conforma-
tional changes that activate MET tyrosine kinase activity. 
MET activation can have profound effects on cell growth, 
survival, motility, invasion, and angiogenesis  [113] . 

 Understanding   the basis for acquired resistance has led 
to the identification of agents that may overcome acquired 
resistance. Currently, a number of  “ second-generation ”  
EGFR inhibitors are under clinical investigation specifically 
for patients with secondary resistance (HKI-272, Wyeth, 
Pearl River, NY; XL647, Exelixis, San Francisco, CA; 
BIBW2992, Boehringer-Ingelheim, Ingelheim, Germany). 
MET kinase inhibitors are in phase I/II development, and 
are also being considered for treatment of this cohort of 
patients.    

    KINASE INHIBITORS IN RENAL CELL 
CARCINOMA 

 The   success of kinase inhibitors in RCC was the culmina-
tion of a third paradigm of drug development. Here, while 
the exact mechanisms underlying tumor responses remain 
under investigation, an existing body of molecular knowl-
edge rapidly provided a framework to comprehend why a 
certain class of drugs was effective. 
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    Renal Cell Carcinoma Background 

 Cancer   of the kidney and renal pelvis is the seventh lead-
ing malignant condition among men and the ninth among 
women, accounting for ~3 percent of all cancers in the US 
annually  [38] . Although more than 75 percent of patients 
initially present with early-stage resectable tumours, RCC 
recurs in about one-third of patients treated for localized 
disease. Median survival for patients with metastatic dis-
ease is about 13 months  [114] . 

 Renal   carcinomas arise from the proximal renal tubular 
epithelium. At the histological level, RCCs are comprised of 
five main cellular types: clear cell, papillary, chromophobe, 
oncocytoma, and collecting duct. Clear-cell carcinomas con-
stitute 85 percent of kidney cancers. Papillary renal carcinoma 
makes up approximately 10 percent of all kidney cancers, 
with the remainder comprised of chromophobe, collecting 
duct, and miscellaneous histologic types. Renal oncocytoma 
is considered to be a predominantly benign lesion  [114] . 

 Renal   carcinoma occurs in both sporadic and hereditary 
forms. At least four forms of hereditary renal carcinoma are 
recognized: von Hippel-Landau Syndrome, hereditary papil-
lary renal carcinoma, Birt-Hogg-Dubé Syndrome, and heredi-
tary clear-cell renal carcinoma. VHL patients harbor germline 
mutations in the  VHL  tumor suppressor gene and develop 
clear-cell RCC  [115] . Sporadic (non-hereditary) clear-cell 
RCCs also harbor VHL gene mutations  [116] . Papillary RCC 
is attributed to germline mutations in the tyrosine kinase 
domain of the  MET  gene  [117] . Genes responsible for the 
other hereditary forms of RCC remain to be identified.  

    Development of Kinase Inhibitors in RCC 

 In   the twentieth century, three decades of extensive clini-
cal investigation identified only two agents  –  non-cyto-
toxic chemotherapies  –  that result in improved survival for 
patients with metastatic renal cell carcinoma  [118] . High-
dose intravenous interleukin-2 administered in an intensive 
care unit setting demonstrated a 14 percent partial or com-
plete response rate  [119] . Two phase III trials comparing 
interferon- α  therapy with vinblastine or medroxyprogester-
one showed a modest survival benefit for interferon  α         [120, 
121] . Thus, standard first-line treatment involved cytokine 
therapy. No effective treatments were available for patients 
whose disease progressed after initial response, or who did 
not respond to cytokine treatment. 

 Concurrent   with the systematic testing of various sys-
temic agents against RCC, studies of RCCs associated with 
VHL syndrome provided mechanistic insights into the etiol-
ogy of the disease. An important observation was that muta-
tions or deletions in the  VHL  gene (found in both hereditary 
and sporadic forms) stimulate hypoxia by preventing deg-
radation of the hypoxia-inducible factor 1 α  (HIF-1       A) 
       [122, 123] . This in turn leads to unregulated expression 
of hypoxia-inducible genes, including  VEGF  and  PDGF  

 [122] . These secreted growth factors then bind to VEGFRs 
and PDGFRs on the surface of endothelial cells and vas-
cular pericytes, respectively, promoting angiogenesis and 
stimulating cell migration, proliferation, and survival. In 
2003, VEGF was validated as a clinically relevant target 
in RCC in a randomized, double-blind, phase II trial com-
paring the effect of placebo with the anti-VEGF antibody, 
bevacizumab (rhuMAb-VEGF, Avastin  ™ ; Genentech, San 
Francisco, CA) in patients with clear-cell RCC previously 
treated or intolerant of IL-2 therapy. Bevacizumab signifi-
cantly prolonged time to progression  [124] . 

 Subsequently  , multiple kinase inhibitors that target 
receptors for VEGF and PDGF were found to have antitu-
mor activity in RCC. However, during the drug develop-
ment process for most of these agents, RCC was not the 
first tumor type considered. For example, sorafenib tosylate 
(BAY43-9006, Nexavar  ™ ; Bayer, West Haven, CT) is an 
oral kinase inhibitor ( Figure 44.1 ), originally developed 
to target RAF1 but found to inhibit a number of kinases in 
the nanomolar range, including wild-type BRAF, mutant 
BRAF V600E , VEGFR-1, VEGFR-2, VEGFR-3, PDGFR, 
FLT-3, and KIT (reviewed in  [125] ;  Figure 44.3 ). Based on 
phase I data showing that the primary benefit of sorafenib 
was disease stabilization, a phase II study was conducted 
using a novel randomized discontinuation design in which all 
patients received study drug (sorafenib) for an initial run-in 
period, followed by random assignment of patients with dis-
ease stabilization to either the study drug or placebo  [126] . 
The trial was initially designed to focus on patients with 
colorectal cancer, while allowing patients with other tumor 
types to enroll. When responses were observed in RCC but 
not colorectal cancer, recruitment was directed to RCC. A 
total of 502 patients were enrolled, including 202 patients 
with metastatic refractory RCC. In this population, soraf-
enib demonstrated significant disease-stabilizing activity 
 [126] . Subsquently, in a phase III randomized, double-blind, 
placebo-controlled trial of sorafenib in patients ( n  � 903) 
with clear-cell RCC in whom previous therapy had failed, 
the drug prolonged progression-free survival (5.5 months 
vs 2.8 months, HR 0.44; 95% CI 0.35 - 0.55; p � 0.01)  [127] . 
Sorafenib was approved by the FDA in December 2005 for 
the second-line treatment of advanced clear-cell RCC. 

 Sunitinib  , as discussed above, is another highly potent, 
selective competitive inhibitor of VEGFR1-3 and PDGFR-
 α / β  ( Figure 44.3 )  [125] . In a phase I trial, the drug demon-
strated evidence of antitumor activity in a subset of patients 
with metatastic RCC  [128] . The follow-up phase II study, 
for patients ( n  � 63) with metatastic RCC and progression 
on first-line cytokine therapy, demonstrated a 40 percent 
response rate, with a median time to progression of 8.7 
months  [129] . Based upon this study, sunitinib received 
a priority review by the FDA and received   “ accelerated 
approval ”  in less than 6 months in January 2006. A separate 
phase II trial involving another 106 patients specifically 
with clear-cell RCC  [130]  further validated the original 
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findings. Soon thereafter, in a phase III trial involving 750 
patients with clear-cell RCC, sunitinib was compared with 
interferon- α  in the first-line setting  [131] . Progression-free 
survival was longer (11 vs 5 months; HR 0.42, 95% CI 
0.32 - 0.54, p � 0.001), and response rates were higher (31 
percent vs 6 percent, p � 0.0001) in patients who received 
sunitinib than in those receiving interferon- α . Based on 
this trial, the FDA converted the approval of sunitinib from 
accelerated approval to regular approval for first-line treat-
ment of advanced RCC in February 2007. 

 Currently  , the relative benefit of sorafenib and sunitinib 
for patients with metastatic RCC has not been compared 
directly. Moreover, despite the preclinical data linking  VHL  
mutations and RCC to angiogenesis, the actual molecular 
basis for the activity of these agents in RCC is unclear. For 
example, investigators have been unable to correlate dis-
ease responses with specific types of  VHL  mutations  [132]  
or blood levels of VEGF  [133] . Not surprisingly, then, the 
molecular basis of acquired resistance to these agents is 
not yet understood. Since sunitinib and sorafenib inhibit 
multiple kinases, including ones potentially involved in 
the tumor microenvironment rather than within tumor cells 
itself, it is currently unclear whether RCCs are  “ addicted ”  
to specific aberrant kinases for survival in the same manner 
as GISTs and  EGFR  mutant NSCLCs.   

    KINASE INHIBITORS IN OTHER SOLID 
TUMORS 

 Above  , we have highlighted the first three solid tumors 
treated effectively with small molecule kinase inhibitors. 
However, already in the past several years, kinase inhibi-
tors have shown promise in other solid tumors ( Table 44.1 ). 
For example, in anti-HER2 antibody (trastuzumab)-resist-
ant, metastatic HER2-positive breast tumors  [134] , the dual 
EGFR/HER2 inhibitor lapatinib (GW572016, Tykerb  ™  , 
Glaxo-Wellcome, London, UK) has been shown, compared 
to placebo, to delay time to disease progression. Notably, 
the drug was given concurrently with the oral antimetabo-
lite, capecitabine. The multi-kinase inhibitor sorafenib was 
approved by the FDA in 2007 for the treatment of unresect-
able hepatocellular carcinoma (HCC), following a phase III 
trial that showed a 44 percent improvement in overall sur-
vival compared to placebo  [135] . Similar to RCC, the exact 
mechanism(s) of action is/are unclear. Finally, in medullary 
thyroid carcinomas, which often harbor mutations in the 
gene encoding the RET tyrosine kinase, the oral anilino-
quinazoline RET inhibitor vandetanib (ZD6474, Zactima  ™  , 
Astra-Zeneca) has shown promising antitumor activity 
 [136]  and was designated as an orphan drug by FDA in 
2004 for treatment of this disease. Collectively, all of these 
data demonstrate that kinase inhibitors are likely to play an 
increasingly important role in the treatment of human solid 
tumor malignancies.  

    LESSONS LEARNED? 

 The   clinical development of kinase inhibitors in GIST, 
NSCLC, and RCC provides three distinct examples of how 
this class of agents can be developed to treat solid tumors. 
Can lessons be drawn from these case histories? 

    Good Science Can Lead to Rapid and 
Rational Development of a Drug 

 The   development of imatinib for GIST was based upon 
detailed understanding of the pathophysiology of the dis-
ease. The observation that  KIT  mutations caused GIST 
led to preclinical assessment of a KIT inhibitor (imatinib) 
against mutant KIT, which led to testing of the drug in a 
patient, and ultimately a clinical trial proving the drug’s 
efficacy over existing therapies. The observation that some 
 KIT  wild-type patients responded to therapy spurred identi-
fication of  PDGFRA  mutations as a cause of GIST. Finally, 
an understanding of acquired resistance mechanisms led 
to the rapid development of a second kinase inhibitor for 
that setting. This experience indicates that clinical trials 
of promising new kinase inhibitors should, when possible, 
enrich for cohorts of patients likely to benefit using criteria 
based upon molecular mechanisms of disease.  

    Despite What We Think We Know, We Don’t 
Understand Everything 

 Despite   the best laid plans, clinical trials can often unex-
pectedly reveal biological insights heretofore unrecog-
nized. This notion is exemplified by the surprising dramatic 
responses to EGFR inhibitors seen in NSCLC patients 
across four phase I trials, and the subsequent discovery of 
 EGFR  mutations in a subset of patients with NSCLC after 
multiple advanced trials had already been completed. A 
similar theme was experienced with the demonstration that 
sorafenib offers significant benefit in RCC, while the drug 
was originally developed for colon cancer. These occur-
rences suggest that while we should apply molecular criteria 
as best we can to enrich for patients likely to benefit from a 
kinase inhibitor, early trials should still consider enrolling a 
broad spectrum of patients with various diseases. Clinical 
researchers then need to make astute observations to steer 
the development of promising agents in the right direction.  

    Kinase Inhibitors Have Off-Target Activities 
Which Can be Exploited 

 In   the early phase of kinase inhibitor development, only 
handfuls of kinases were tested using  in vitro  assays 
(see, for example,  [137] ). However, while large-scale  in 
vitro  kinase assays have not yet been established for all 



424 SECTION | D Signaling In Disease

518 kinases encoded in the human genome, recent high-
throughput methods have begun to make it easier to assess 
a larger spectrum of drug target activity against kinases 
 [137] . Now, for example, we know that gefitinib and erlo-
tinib demonstrate relatively high specificity, while sunitinib 
and sorafenib do not ( Figure 44.3 ).  “ Off-target activity ”  
may lead to more side effects, but can also lead to alterna-
tive uses of drugs, just as imatinib was originally developed 
for use in CML to target ABL and then was developed in 
GIST to target mutant KIT and PDGFRA. In the future, 
investigators will need to understand the full spectrum of 
kinase inhibition of various compounds in order to mix and 
match the appropriate ones to the appropriate patients.  

    Solid Tumors Refractory to Conventional 
Treatments Nonetheless Harbor Novel 
Targets for Therapy 

 By   the end of the twentieth century, treatments for GIST, 
NSCLC, and RCC appeared to have reached a therapeutic 
plateau with regard to existing therapies. However, for each 
disease, novel targeted agents were identified and shown to 
have proven clinical benefit over standard treatments, even 
in patients with heavily pre-treated disease. These studies 
indeed support an optimistic message with respect to new 
approaches for treating cancer, because they do demon-
strate that tumors harboring complex genetic lesions nev-
ertheless have an  “ Achilles heel ”  that can be identified 
and exploited  [138] . In the future, as large-scale efforts to 
define the role of the kinome in human solid tumors come 
to fruition, the tasks will be to determine how many actual 
cancers have a kinase-based Achilles heel, and to identify 
the appropriate kinase inhibitors to treat them.   

    GLOSSARY 

     Hazard ratio  
The hazard ratio in  survival analysis  is the effect of an 
exploratory? variable on the hazard or risk of an event. 
Hazard ratio can be considered as an estimate of  relative 
risk , which is the risk of an event (or of developing a dis-
ease) relative to exposure. Relative risk is a ratio of the 
probability of the event occurring in the exposed group ver-
sus the control (non-exposed) group.
  95% Confidence Interval  
A confidence interval is an interval estimate of a population 
parameter. Instead of estimating the parameter by a single 
value, an interval of likely estimates is given.
  Phase I trial  
Phase I trials are conducted in a small number of patients, 
primarily to determine the appropriate and safe dose of a 
new drug or drug combination. Antitumor activity is usu-
ally a secondary endpoint of a phase I trial.  

Phase II trial  
Phase II trials are conducted in a larger number of patients 
to determine if a new drug or drug combination has effi-
cacy in a given population.
  Phase III trial
  Phase III trials compare a new treatment (as determined 
from phase II trials) versus the standard of care. These tri-
als usually involve hundreds of patients in order to deter-
mine with statistical significance if the new treatment is 
indeed superior to the standard of care.    
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    ADIPOSE TISSUE AND ITS RELATION 
TO OBESITY 

 Obesity   has reached epidemic levels globally, affecting 
both developed and developing countries  [1] . More than 
1.6 billion adults worldwide are overweight (body mass 
index; BMI        �        25) and 400 million are obese (BMI        �        30). 
Obesity is also increasing rapidly among children  [1] . 
Obesity poses enormous challenges to health care systems 
because it is associated with increased risk of Type 2 dia-
betes, hypertension, coronary artery disease, sleep apnea, 
cancer, and various ailments  [1] . The past decade has seen 
major advances in our understanding of the pathogenesis 
of obesity  [2] . Fundamentally obesity is the result of an 
imbalance between energy intake and expenditure. The cur-
rent epidemic of obesity and related diseases is attributed 
mainly to increased intake of energy-dense foods rich in fat 
and sugar, and sedentary lifestyle        [1, 2] . 

 White   adipose tissue contains lipid filled cells (adi-
pocytes), preadipocytes, and immune cells, and has a rich 
vascular supply and innervation. The distribution of adipose 
tissue is influenced by sex hormones, such that women 
have greater amounts of subcutaneous adipose tissue partly 
due to estrogen, while accumulation of visceral adipo-
sity in males and postmenopausal women is promoted by 
androgens  [2] . The stored triglycerides in white adipocytes 
provides an enormous reservoir of metabolic fuel. During 
fasting, lipolysis is stimulated in adipocytes under the 
influence of catecholamines, hormone sensitive lipase, and 
adipose tissue triglyceride lipase  [3] . Non-esterified fatty 
acids are released into the circulation and transported to 
various organs, in particular skeletal muscle, to be oxidized 
for energy. Unlike rodents, the capacity for  de novo  lipo-
genesis in adipocytes is very low in humans. Instead, in the 
fed state, triglycerides derived from the diet or synthesized 
in the liver are transported as lipoprotein particles, hydro-
lyzed by lipoprotein lipase into fatty acids, and then taken 

up by adipocytes for triglyceride synthesis. Excessive food 
consumption leads to major alterations in the structure and 
function of adipose tissue to accommodate the increased 
demand for triglyceride storage. Adipocytes undergo hyper-
plasia and hypertrophy, the extracellular matrix expands, 
and angiogenesis and macrophage infiltration are enhanced 
in obesity              [2 – 6] . Accumulation of adipose tissue in obesity, 
in particular visceral adipose tissue, results in greater rate 
of lipolysis, ectopic lipid accumulation in the liver, muscle, 
and pancreatic islets, insulin resistance, diabetes, hyperten-
sion, dyslipidemia, and cardiovascular morbidity        [2, 7] . 

 In   addition to fatty acids, adipose tissue is the source of 
several circulating peptides including leptin, adiponectin, reti-
nol binding protein-4, proinflammatory cytokines, and com-
plement vasoactive and procoagulant factors, some of which 
act through autocrine and paracrine mechanisms to control 
the growth, and metabolic and storage functions of adipose 
tissue  [2] . Other adipokines act in the brain and periph-
eral organs to modulate energy balance, glucose and lipid 
metabolism, and neuroendocrine and immune systems  [2] . 
The following sections will provide insights into adipokine 
signaling under normal physiological conditions, obesity, 
and associated diseases.  

    LEPTIN 

 The   discovery of leptin was a major milestone in the con-
cept of adipose tissue as  “ an endocrine organ ”           [2, 3, 8] . 
Leptin is secreted mainly by white adipocytes, but small 
amounts are produced in the gastric fundus, intestine, and 
muscle. The levels of leptin in adipose tissue and plasma 
are proportional to fat stores, hence leptin is increased in 
obesity and reduced in lean individuals. Leptin rises sev-
eral hours after feeding and falls rapidly in response to 
fasting        [9, 10] . These changes are mediated, at least in part, 
by insulin. Leptin levels are higher in females than males 
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because of increased synthesis in subcutaneous adipose tis-
sue, stimulation by estrogen and suppression by androgens 
       [9, 11] . Leptin is increased in response to chronic glucocor-
ticoid exposure and acutely by tumor necrosis factor- α   [9] . 
On the other hand, cold exposure and  β 3 adrenergic stimu-
lation decrease leptin levels  [9] . 

 Leptin   acts in the brain to control feeding, energy bal-
ance, and the neuroendocrine axis. The fall in leptin during 
fasting results in suppression of reproduction, immunity, 
thyroid and growth hormones and energy expenditure, and 
stimulation of appetite                  [9 – 15] . These responses are attenu-
ated by exogenously administered leptin that signals to 
the brain that energy stores are sufficient                  [9 – 15] . Similar 
changes in energy balance, immune responses, and hor-
mones reversible by leptin treatment occur in lipodystro-
phy          [16 – 18] . Moreover, abrogation of leptin signaling due 
to mutation of leptin or the leptin receptor genes results in 
hyperphagia, reduction in energy expenditure, hypothy-
roidism and hypogonadism, decreased growth, and immu-
nosuppression  [9] . Together, these findings demonstrate a 
critical role of leptin as a signal for energy deficiency. 

 Multiple   leptin receptor (LR) isoforms derived from 
alternative splicing of the  Lepr  gene product have been 
described  [19] . Short-form LRs (LRa, LRc, LRd, and LRf 
in mice) and the long-form LR (LRb in mice) share identi-
cal extracellular and transmembrane domains and the first 
29 intracellular amino acids. However, only LRb has the 
intracellular domain necessary for leptin signaling. LRa 
is the most abundantly expressed isoform, well conserved 
among species, and is proposed to transport leptin across 

the blood – brain barrier. Secreted forms of LR, e.g., murine 
LRe, comprising only the extracellular domain bind leptin 
in the plasma thereby controlling bioavailability. LRb is 
critical for leptin action, as evidenced by identical obese 
phenotypes of  db/db  mice lacking LRb due to a mutation 
that causes missplicing of the LRb mRNA,  db3j/db3j  mice 
lacking all LR isoforms, and leptin deficient  ob/ob  mice 
         [9, 20, 21] . 

 LRb   is mainly present in the brain, with the highest 
levels in hypothalamus nuclei, including the arcuate (Arc), 
and dorsomedial, ventromedial, and ventral premammil-
lary nuclei  [9] . One population of LRb neurons in the Arc 
expresses neuropeptide Y (NPY) and agouti related pep-
tide (AGRP) ( Figure 45.1   ). Other LRb neurons synthesize 
pro-opiomelanocortin (POMC), precursor of  α -melanocyte 
stimulating hormone ( α MSH) ( Figure 45.1 ). NPY/AGRP 
neurons project to the paraventricular nucleus (PVN) 
to stimulate feeding, while  α -MSH inhibits feeding by 
activating the melanocortin-4 receptor (MC4R) and the 
melanocortin-3 receptor (MC3R)  [9] . The binding of lep-
tin to LRb exerts an anorexigenic action by activating LRb/
POMC, and stimulating the synthesis of and secretion of 
 α -MSH  [9]  ( Figure 45.1 ). AGRP normally blocks  α -MSH/
MC4R signaling. In the fed state, leptin acts as a nega-
tive feedback signal via LRb to suppress the expression 
and secretion of NPY and AGRP and inhibit feeding  [9] . 
Conversely, the reduction in leptin levels during fasting or 
lack of leptin signaling in  ob/ob  and  db/db  mice, decreases 
 α -MSH and increases NPY and AGRP, resulting in hyper-
phagia and weight gain  [9] . 

 FIGURE 45.1          Neuronal targets of leptin in the hypothalamus.  
    Leptin stimulates POMC and CART, and suppresses AGRP and NPY in the Arc. Arc neurons project to the paraventricular (PVN) and lateral hypotha-
lamic area (LHA) to inhibit feeding and increase energy expenditure, through the regulation of corticotropin releasing hormone (CRH), thyrotropin 
releasing hormone (TRH), oxytocin (OXY), orexins (ORX), and melanin concentrating hormone (MCH). Leptin responsive neurons in the PVN and 
LHA control hormonal and autonomic functions, and feeding behavior via projections to the median eminence, cerebral cortex, limbic regions, and 
brainstem. Leptin also affects circadian rhythms and glucose metabolism, likely through indirect interactions with the suprachiasmatic (SCN), ventrome-
dial (VMN) and dorsomedial nuclei (DMN), and subparaventricular zone (SpVZ).    
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 Leptin   signaling has been analyzed  in vitro  and in mice 
 [19] . The binding of leptin to LRb enables the transphos-
phorylation and activation of the intracellular LRb asso-
ciated janus kinase-2 (Jak2), which then phosphorylates 
other tyrosine residues within the LRb/Jak2 complex 
( Figure 45.2   ). Three conserved tyrosine residues present 
on the intracellular domain of LRb, Tyr985, Tyr1077, and 
Tyr1138, are phosphorylated and contribute to leptin sign-
aling. The phosphorylation of Tyr985 creates a binding site 
for the specialized phosphotyrosine binding (SH2) domain 
of the tyrosine phosphatase SHP-2, which leads to acti-
vation of p21ras and ERK signaling. Phosphorylation of 
Tyr1138 recruits STAT3 to the LRb/Jak2 complex, result-
ing in the tyrosine phosphorylation and nuclear transloca-
tion of STAT3 to mediate transcriptional regulation ( Figure 
45.2 ). Among the STAT3 regulated genes is SOCS3 (sup-
pressor of cytokine signaling 3), which binds to Tyr985 of 
LRb and terminates LRb-STAT3 signaling ( Figure 45.2 ). 
Tyr1077 activates STAT5 (signal transducer and activa-
tor of transcription 5) phosphorylation and transcriptional 
regulation by leptin. 

 The   roles of leptin signaling molecules have been 
studied in mice                  [22 – 28] . Deletion of LRb or STAT3 reca-
pitulated obesity, thermoregulatory and neuroendocrine 
deficits, and diabetes seen in  db/db  mice        [22, 23] . A homol-
ogously targeted knockin mouse model in which LRb was 
replaced by a mutant molecule (LRbS1138) containing a 
substitution mutation of Tyr1138 (the STAT3 binding site), 
failed to mediate STAT3 activation in response to leptin, 
resulting in hyperphagia, decreased energy expenditure, 
and obesity  [24] . LRbS1138 mutation caused hyperleptine-
mia, leptin resistance, and central hypothyroidism similar 

to  db/db  mice  [24] . However, LRbS1138 mice showed 
improved glucose tolerance and fertility, and increased lin-
ear growth and immunity, in contrast to  db/db  mice  [24] . 
Hypothalamic POMC expression was reduced in both 
LRbS1138 and  db/db  mice, whereas NPY and AGRP 
were suppressed in LRbS1138 but elevated in  db/db  mice. 
Together, these data reveal different roles of LRb-Tyr1138-
STAT3 signaling in the pathogenesis of obesity, hormonal 
control, and diabetes. 

 A   mutation of Tyr985 prevented phosphorylation of the 
site and blocked recruitment of SHP-2/SOCS3, and decreased 
food intake and adiposity  [28] . In this model, hypothalamic 
NPY and AGRP were suppressed, basal STAT3 activa-
tion was increased, and sensitivity to leptin treatment was 
increased, indicating Tyr985 plays a key role in inhibiting 
LRb signaling  [28] . 

 Although   leptin deficiency offers important lessons on 
LRb signaling, obesity is often associated with elevated 
levels of leptin  [2] . The failure of high leptin levels to pre-
vent obesity has given rise to the notion of  “ leptin resist-
ance, ”  akin to hyperinsulinemia and insulin resistance 
 [2] . A number of mechanisms are proposed to explain 
leptin resistance in diet induced obesity (DIO). The trans-
port of leptin across the blood – brain barrier is impaired in 
DIO  [29] . Although there is no obvious mutation of LRb 
to explain leptin resistance in DIO, LRb signaling, par-
ticularly in the Arc, is abnormal        [30, 31] . Leptin’s ability 
to suppress food intake is attenuated in DIO, and this is 
related to decreased STAT3 phosphorylation and impaired 
neuropeptide release          [30 – 32] . 

 As   noted earlier, SOCS3 binds to LRb Tyr985 and 
Jak2, leading to termination of LRb signaling. Obesity is 

 FIGURE 45.2          Leptin signaling in the hypothalamus and crosstalk with insulin signaling.  
    Leptin binding to LRb activates Janus kinase (JAK), leading to nuclear translocation of STAT3 to activate transcription of neuropeptides and suppressor 
of cytokine signaling-3 (SOCS3). SOCS3 terminates leptin signaling. Leptin and insulin both activate phosphatidylinositol-3 kinase (PI3K) and inhibit 
feeding.    
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characterized by hyperleptinemia, decreased LRb Tyr985 
mediated phosphorylation of STAT3, and induction of 
SOCS3 expression in the hypothalamus        [26, 27] . Tyr985 
and SOCS3 contribute to leptin resistance, as evidenced by 
increased leptin sensitivity and leanness when SOCS3 was 
deleted in neurons, specifically Arc POMC neurons        [26, 27] . 
Potentially, the absence of a blood – brain barrier in the median 
eminence of the hypothalamus allows free access of leptin 
and other circulating factors to the Arc, while other hypotha-
lamic sites are protected by the blood – brain barrier  [33] . 
Another possible mediator of leptin resistance is the tyro-
sine phosphatase PTP1B that dephosphorylates Jak2 and 
blunts LRb signaling        [34, 35] . Neuron specific deletion of 
PTP1B increased leptin sensitivity and protected against 
obesity, whereas PTP1B deletion in adipocytes and liver 
did not decrease weight  [36] . 

 The   robust responses signaled by leptin deficiency is 
consistent with the evolutionary pressure to maximize feed-
ing and energy storage against the threat of starvation  [2] , 
but is there a physiological need to attenuate leptin signal-
ing? In seasonal animals, such as hibernators, the leptin-LRb 
feedback mechanism may work in concert with other proc-
esses to increase food intake and promote energy storage 
 [37] . The feedback inhibition of LRb signaling has also 
been proposed as a means of maintaining high food con-
sumption and energy storage to meet the demands of preg-
nancy and lactation        [38, 39] . 

 LRb   is expressed in various regions of the brain, includ-
ing the nucleus of the solitary tract (NTS), lateral para-
brachial nucleus, and ventral tegmental area  [9] . Studies 
have shown a crucial role of leptin in the feeding reward 
circuitry, through induction of STAT3 phosphorylation in 
dopamine and GABA ( γ -amino butyric acid) neurons of the 
ventral tegmental area and mesoaccumbens        [40, 41] . AMP 
activated protein kinase (AMPK) is another leptin target in 
the brain        [42, 43] . AMPK is phosphorylated and activated 
in response to energy deficits during cellular stress or fast-
ing, leading to increased fatty acid oxidation and inhibi-
tion of anabolic pathways  [43] . AMPK is co-localized 
with STAT3, NPY, and other hypothalamic neuropeptides. 
Leptin inhibits AMPK in the hypothalamus, resulting in 
appetite suppression and weight loss  [42] . Studies have 
also revealed a crosstalk between leptin and insulin sign-
aling in the hypothalamus mediated through Jak2, PI3K 
(phosphoinositide 3-kinase) and IRS1 and IRS2 (insulin 
receptor substrate 1 and 2), resulting in inhibition of feed-
ing  [44]  ( Figure 45.2 ). 

 Leptin   affects neurotransmission in a manner that can-
not be explained by Jak-STAT signaling. For example, lep-
tin depolarizes POMC neurons in the Arc and decreases the 
inhibitory tone of GABA on POMC neurons  [45] . Rising 
leptin levels also hyperpolarize and inactivate NPY neurons 
in the Arc  [45] . Conversely, low leptin levels during fasting 
activate NPY/AGRP neurons and stimulate feeding  [46] . 
Leptin also hyperpolarizes glucose responsive neurons in 

the hypothalamus by opening KATP channels, and this has 
been linked to inhibition of feeding and weight reduction 
 [47]  ( Figure 45.2 ). 

 Leptin   restores synaptic density in NPY and POMC 
neurons in the hypothalamus within a few hours, and this is 
thought to mediate leptin induced satiety  [48] . Congenital 
leptin deficiency is associated with obesity and reduced 
brain size due to neuronal loss and impaired myelination 
       [49, 50] . These deficits are reversed by leptin treatment in 
concert with inhibition of appetite and weight loss        [49, 50] . 
Leptin also stimulates the development of axonal projec-
tions from Arc to PVN, and this trophic action is attenuated 
in DIO        [51, 52] . 

 Leptin   has profound effects on human brain activ-
ity          [53 – 55] . In one study, obese patients were food 
restricted, maintained at 90 percent of their initial weight, 
and received replacement doses of leptin or placebo  [53] . 
Brain activity responses to visual food and non-food visual 
stimuli were monitored using functional magnetic reso-
nance imaging. Leptin levels fell during weight loss and 
increased brain activity in areas involved in emotional, cog-
nitive, and sensory control of food intake. Leptin replace-
ment maintained weight loss and reversed the changes in 
brain activity, confirming leptin is a critical factor linking 
reduced energy stores to eating behavior  [53] . Leptin treat-
ment attenuated the desire to eat in patients with congeni-
tal leptin deficiency, and this was related to suppression of 
activity in the striatum, a region involved in the pleasure 
and reward responses to food  [54] . In another study, lep-
tin suppressed brain activity in regions related to hunger, 
and increased activity in areas linked to satiety  [55] . Leptin 
also stimulates hippocampal activity cognitive function 
       [56, 57] . 

 Leptin   resistance in obesity has been linked to steatosis, 
lipotoxicity, and organ dysfunction  [7] . Although the brain is 
the major site of leptin action, low levels of LRb are expressed 
in peripheral tissues and involved in metabolism  [7] . Deletion 
of LRb from pancreatic  β -cells increased islet mass, and 
impaired glucose stimulated insulin release and glucose 
tolerance  [58] . LRb is also expressed by CD34 �  hema-
topoietic bone marrow precursors, monocytes and macro-
phages, and T and B cells  [59] . Leptin promotes innate 
immunity through activation of monocytes/macrophages, 
neutrophils, and natural killer cells  [59] . 

 Obesity   protects against osteoporosis suggesting a con-
nection between energy metabolism and regulation of bone 
 [60] . Leptin regulates bone mass through the sympathetic 
nervous system and activation of cocaine and ampheta-
mine regulated transcript (CART) neurons  [60] . Deletion 
of neuronal LRb increased bone formation and resorption, 
resulting in a high bone mass  [61] . Enhancement of leptin 
signaling through a Y985L substitution in LRb decreased 
bone mass without changing feeding or energy expendi-
ture  [61] . Furthermore, leptin decreased the levels of 
osteocalcin, leading to attenuation of insulin release  [62] . 
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Thus, leptin is an important signal linking adipose tissue 
and skeleton to glucose homeostasis.  

    ADIPONECTIN 

 Adiponectin   is produced exclusively by white adipocytes and 
composed of an N-terminal sequence, hypervariable domain, 
15 collagenous repeats, and a C-terminal domain  [63] . 
A trimeric form of adiponectin is secreted by adipocytes 
and gives rise to hexamers (low molecular weight; LMW) 
and six trimers (18       mers, high molecular weight; HMW) 
through non-covalent bonding  [63] . HMW adiponectin is 
thought to be the bioactive form in plasma, while trimeric 
and hexameric adiponectin is predominant in the cerebro-
spinal fluid        [64, 65] . Adiponectin also undergoes post-
translational modifications including glycosylation  [63] . 
Total and HMW adiponectin are more abundant in females, 
partly due to suppression of adiponectin by androgens in 
males. In contrast to leptin, adiponectin is reduced in obes-
ity and rises with prolonged fasting and severe weight 
reduction. Adiponectin, particularly HMW, is increased by 
thiazolidinediones (TZD) and mediates the insulin sensitiz-
ing effect of TZD  [64] . 

 Adiponectin   deficiency in rodents increases hepatic 
insulin resistance, which is reversed by adiponectin treat-
ment          [66 – 68] . Hypoadiponectinemia in humans is also 
strongly associated with obesity, hepatic steatosis, insulin 
resistance, inflammation, dyslipidemia, and cardiovas-
cular morbidity  [63]  ( Figure 45.3   ). Insulin resistance is 
associated with impaired skeletal muscle oxidation capa-
city and reduced mitochondrial number and function  [69] . 
Individuals with a family history of Type 2 diabetes display 
skeletal muscle insulin resistance and impaired mitochon-
drial function strongly associated with adiponectin defi-
ciency  [69] . Adiponectin treatment of human myotubes 
in primary culture induced mitochondrial biogenesis, and 
fatty acid oxidation and citrate synthase activity, sup-
pressed reactive oxygen species production, and improved 
glucose uptake  [69] . 

 Reduced   adiponectin levels in obesity and insulin 
resistant states contribute to the excess cardiovascular risk 
observed in these conditions  [63] . Adiponectin ameliorates 
the progression of vascular injury and atherosclerosis in 
rodents, consistent with its association with improved vas-
cular outcomes in epidemiological studies  [63] . In endothe-
lial cells, adiponectin stimulates production of nitric oxide, 
suppresses reactive oxygen species, and protects against 
inflammation resulting from exposure to hyperglycemia 
or inflammatory cytokines, by activating cyclic AMP 
dependent protein kinase (AMPK)  [63] . Adiponectin pro-
tects against ischemic-reperfusion injury in the heart via 
cyclo-oxygenase-2 mediated suppression of TNF signaling, 
inhibition of apoptosis by AMPK, and inhibition of perox-
ynitrite induced oxidative stress  [70] . Adiponectin inhibits 

monocyte adhesion, macrophage transformation, and pro-
liferation and migration of vascular smooth muscle cells, 
by activating AMPK and inhibiting NF κ B (nuclear fac-
tor  κ B)  [63] . Putative adiponectin receptors, AdipoR1 and 
AdipoR2, containing seven transmembrane domains with 
an internal N-terminus and an external C-terminus, mediate 
the signaling of adiponectin  [71] . In contrast to G protein 
coupled receptors, activation of AdipoRs does not affect 
cAMP levels. AdipoR1 is highly expressed in skeletal mus-
cle, while AdipoR2 is mainly expressed in liver. AdipoR1 
has a higher affinity for globular adiponectin than for full 
length adiponectin. AdipoR2 has an intermediate affinity 
for both globular and full length adiponectin  [71] . 

 Adiponectin   stimulates glucose uptake and fatty acid 
oxidation in skeletal muscle          [68 ,69, 71] , through inter-
action between AdipoR1 and adaptor protein containing 
pleckstrin homology domain, phosphotyrosine domain, 
and leucine zipper domain (APPL)  [72] . Once bound to 
AdipoR1, adiponectin stimulates APPL binding to the intra-
cellular region of AdipoR1, which activates Rab5, a small 
GTPase known to facilitate the membrane translocation of 
glucose transporter-4. APPL also interacts with PI3K and 
Akt, suggesting a crosstalk between adiponectin and insu-
lin signaling  [72] . Association of APPL and AdipoR1 stim-
ulates phosphorylation and activation of AMPK, leading 

 FIGURE 45.3          Effects of adiponectin on hepatic lipid metabolism.  
    In lean individuals, adiponectin activates AMPK and inhibits ACC, result-
ing in diminution of malonyl-CoA, enhanced fatty acid oxidation and 
reduced lipogenesis. Adiponectin is decreased in obesity, and this results 
in attenuation of AMPK activity, increased ACC activity, elevated 
malonyl-CoA levels, reduced fatty acid oxidation, and increased 
lipogenesis. Hepatic steatosis in obesity has been associated with 
insulin resistance.    
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to inactivation of ACC  [72] . Normally, ACC catalyzes the 
reaction that produces malonyl-CoA, an inhibitor of fatty 
acid oxidation. Therefore, AdipoR mediated activation of 
AMPK has a net effect to enhance fatty acid oxidation. 
AMPK activation also mediates adiponectin’s ability to 
increase glucose uptake and lactate production in muscle 
and suppress gluconeogenesis  [72] . 

 The   function of AdipoRs has been studied in mice. 
Adenovirus mediated expression of AdipoR1 and R2 in 
the liver of  db/db  mice activated AMPK and PPAR α  sign-
aling, decreased gluconeogenesis, and enhanced fatty acid 
oxidation  [73] . Conversely, ablation of AdipoR1 attenu-
ated adiponectin induced AMPK activation, while ablation 
of AdipoR2 decreased PPAR α  signaling. Disruption of 
both AdipoR1 and AdipoR2 abolished adiponectin bind-
ing, induced lipid accumulation in liver and muscle, and 
induced inflammation, oxidative stress, and insulin resist-
ance  [73] . 

 Adiponectin   also plays a role in energy balance via 
neuronal targets in the brain. Adiponectin is present in the 
cerebrospinal fluid (CSF) in rodents and humans, and CSF 
adiponectin is increased following peripheral adiponectin 
administration          [65, 74, 75] . This indicates adiponectin can 
cross the blood – brain barrier          [65, 74, 75] . Central admin-
istration of adiponectin stimulated energy expenditure and 
decreased weight and fat content in mice  [74] . Adiponectin 
also enhanced AMPK activity in the Arc through AdipoR1, 
stimulated food intake, and decreased energy expendi-
ture  [75] . In contrast, adiponectin knockout mice showed 
decreased AMPK phosphorylation in the Arc, decreased 
food intake, increased energy expenditure, and resistance 
to obesity  [75] . Serum and cerebrospinal fluid levels of adi-
ponectin and AdipoR1 expression in the Arc are increased 
during fasting, and this has led to the proposal that adi-
ponectin is a major signal for the physiological adaptation 
to fasting  [75] . 

 Contrary   to these findings, intracerebroventricular 
injection of adiponectin suppressed food intake, and this 
effect was associated with activation of IRS1/2, ERK, 
Akt, FOXO1, Jak2, and STAT3, via AdipoR1 in the Arc 
and LHA  [76] . Thus, adiponectin shares similar signal-
ing pathways with leptin and insulin in the hypothalamus. 
Another study revealed opposing effects of AdipoR dele-
tion on energy balance  [77] . AdipoR1 deficient mice had 
increased adiposity associated with decreased glucose tol-
erance, locomotor activity, and energy expenditure. In con-
trast, AdipoR2 knockout mice were lean, and had improved 
glucose tolerance, higher locomotor activity and energy 
expenditure, and reduced plasma cholesterol levels  [77] . 

 As   with leptin, adiponectin exerts electrophysiologi-
cal actions in the brain            [78 – 81] . The area postrema (AP) 
in the brainstem lacks a blood – brain barrier and is a criti-
cal homeostatic integrator for humoral and neural sig-
nals. AP neurons expressing both AdipoR1 and AdipoR2 
were depolarized by adiponectin, and direct injection of 

adiponectin into AP increased blood pressure  [78] . In con-
trast, adiponectin decreased blood pressure by modulating 
the excitability of NPY neurons in the NTS  [79] . 

 Adiponectin   also depolarized neuroendocrine cor-
ticotropin releasing hormone neurons in the PVN, and 
increased plasma ACTH levels  [80] . In contrast, adiponec-
tin did not affect thyrotropin releasing hormone (TRH) 
neurons in the PVN  [81] . Instead, adiponectin depolarized 
both preautonomic TRH and oxytocin neurons, indicat-
ing the existence of distinct populations of PVN neurons 
involved in the neuroendocrine and autonomic functions of 
adiponectin  [81] . 

 Excessive   caloric intake leads to accumulation of lipids 
not only in adipose tissue, but also in non-adipose tissue. 
Ectopic lipid accumulation has been linked to insulin resist-
ance in liver and muscle and pancreatic  β -cell failure  [7] . 
Some studies have suggested that ectopic fat in the liver 
rather than fat accumulation in adipose tissue plays a criti-
cal role in the development of abnormal metabolism in 
obesity. Indeed, removal of subcutaneous adipose tissue 
through liposuction did not alter plasma concentrations 
of adiponectin or improve obesity associated metabolic 
abnormalities  [82] . Scherer and colleagues explored the 
connection between adiponectin and metabolic alterations 
in obesity  [83] . A modest overexpression of adiponectin in 
 ob/ob  mice resulted in marked expansion of subcutaneous 
adipose tissue. However, hepatic steatosis, insulin resist-
ance, and islet function, were all improved in these mas-
sively obese mice  [83] . Whether adiponectin acts directly 
to promote adipogenesis and lipid storage in adipose tis-
sue is unclear  [83] . Nonetheless, this is a novel example of 
metabolically benign obesity  [83] .  

    PROINFLAMMATORY CYTOKINES 

 TNF   α  is expressed by adipocytes, stromovascular cells, 
and macrophages in adipose tissue          [2, 84, 85] . TNF α  
induces the expression of genes involved in cholesterol and 
fatty acid synthesis while suppressing the expression of 
genes involved in fatty acid oxidation and glucose uptake 
in liver  [86] . Obesity is associated with increased TNF α  
expression, insulin resistance, and hyperlipidemia  [85] . 
Conversely, deletion of TNF α  or its receptors improved 
insulin sensitivity and reduced the levels of circulating free 
fatty acids in obese mice  [87] . In rodents, TNF α  attenuates 
insulin signaling in part through activation of the NF κ B 
pathway  [88] . Overexpression of IKK β  impairs insulin 
signaling, while  ob/ob  mice heterozygous for IKK β  are 
protected from insulin resistance  [88] . TNF α  also induces 
insulin resistance through activation of the Jun N-terminal 
kinase (JNK) family of serine/threonine protein kinases. 
JNK phosphorylates IRS-1/IRS-2 on serine residues, mak-
ing these poor substrates for the insulin receptor kinase 
and decreasing their affinity for PI3K. Insulin resistance in 
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obesity is associated with increased JNK activity in liver, 
muscle, and adipose tissue  [89] . 

 TNF   α  in the circulation is generated from cleavage of 
plasma membrane bound TNF by TNF converting enzyme 
(TACE). Mice with TACE haploinsufficiency were pro-
tected from obesity and insulin resistance associated with 
increased uncoupling protein-1 and GLUT4 expression in 
white adipose tissue  [90] . 

 Interleukin  -6 (IL-6) is another proinflammatory 
cytokine that is increased in obesity        [2, 84] . Adipocytes and 
stromal cells express IL-6 and its receptor (IL-6R), which 
belongs to the same cytokine receptor family as LRb. 
IL-6 binding to IL-6R and gp130 results in activation of 
Jak/STAT3 signaling pathway  [91] . Increased serum con-
centrations of IL-6 parallel the development of insu-
lin resistance and cardiovascular disease in humans  [2] . 
Administration of IL-6 inhibits insulin signaling in hepa-
tocytes by decreasing tyrosine phosphorylation of the 
insulin receptor, association with PI3K to IRS-1, and acti-
vation of Akt  [91] . IL-6 also induces the expression of 
SOCS3, which binds to the insulin receptor and decreases 
its autophosphorylation  [92] . Injection of IL-6 in the brain 
decreases body fat and increases energy expenditure in 
rodents. Conversely, mice lacking IL-6 develop late onset 
obesity that is partly reversed by IL-6 treatment  [93] .  

    OTHER ADIPOKINES RELATED TO OBESITY 

 Resistin   belongs to a family of cysteine-rich C-terminal 
domain proteins called RELMs (resistin-like molecules) 
       [94, 95] . Initial studies revealed that resistin was sup-
pressed by thiazolidinediones (TZD) and induced insulin 
resistance when administered in rodents  [94] . Resistin defi-
ciency decreases glucose and enhances insulin sensitivity 
in mice  [96] , while transgenic overexpression of resistin or 
infusion of recombinant resistin induces insulin resistance 
       [97, 98] . The resistin receptor is not known; however, stud-
ies in rodents suggest resistin inhibits the phosphorylation 
and activation of AMPK, and induces SOCS3        [96, 98] . 

 Unlike   rodents where resistin is synthesized and 
secreted from adipocytes, the source of resistin in humans 
is mononuclear cells and activated macrophages  [99] . 
Resistin has been associated with obesity, insulin resist-
ance, vascular inflammation, and atherogenesis, but 
whether this is clinically relevant is unknown          [100 – 102] . 

 Resistin   is present in cerebrospinal fluid, and inhibits 
the release of dopamine and norepinephrine from hypotha-
lamic synaptosomes        [103, 104] . Central administration of 
resistin in rodents induced insulin resistance in the liver 
       [105, 106] . This action was partly explained by activation 
of neuropeptide Y in the hypothalamus and an increase in 
TNF α , IL-6, and SOCS3 expression in liver        [105, 106] . 

 Retinol   binding protein 4 (RBP4) was discovered in 
mice lacking GLUT-4 in (glucose transport)-4 in adipose 

tissue, and shown to be elevated in insulin resistant mice 
and obese and diabetic patients        [107, 108] . Transgenic 
overexpression of human RBP4 or injection of recombinant 
RBP4 induced insulin resistance in mice, while deletion 
of  Rbp4  enhanced insulin sensitivity  [107] . However, the 
role of RPB4 in humans is controversial        [109, 110] . Some 
studies have reported an association between serum RBP4 
levels, obesity, and cardiovascular risk, but others have not 
consistently observed a relationship between RBP4 and 
glucose and lipid metabolism        [109, 110] .  

    CONCLUDING REMARKS 

 Adipose   tissue has gained recognition not only as the main 
energy storage organ, but also as a source of secreted pep-
tides. This review highlights the roles of leptin, adiponec-
tin, and proinflammatory cytokines in obesity, diabetes, 
and related disorders. Current research areas include the 
origin of adipose tissue, and specific functions of subcuta-
neous and visceral adipose tissue, and how they relate to 
normal physiology and disease. Our knowledge of adipok-
ine signaling has benefited immensely from animal mod-
els, but there are potential pitfalls, e.g., differences in the 
sources of adipokines and target tissues. Moreover, impor-
tant differences exist between rodent and human circadian 
rhythms, thermoregulation, immune function, and glucose 
and lipid metabolism. Thus, it is necessary to confirm dis-
coveries about adipokine signaling in humans under normal 
health and disease states.  
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    INTRODUCTION 

 Interstitial   lung diseases are a heterogeneous group of 
parenchymal lung diseases characterized by varying 
degrees of lung inflammation and fibrosis. Some interstitial 
lung diseases occur in response to known environmental 
insults and autoimmune mechanisms; the other idiopathic 
interstitial lung diseases are classified as several distinct 
syndromes on the basis of clinical, radiographic, and his-
topathologic features  [1] . The prototypic interstitial lung 
disease, idiopathic pulmonary fibrosis (IPF), is a progres-
sive fibrotic illness with no effective therapy that typically 
results in respiratory failure a median of 3 years after diag-
nosis          [2 – 4] . 

 Usual   interstitial pneumonia (UIP) is the term used to 
describe the histologic pattern shared between IPF and sev-
eral interstitial lung diseases of known etiology. The hall-
mark of UIP, described as temporal heterogeneity, is the 
juxtaposition of relatively normal areas of lung with areas 
of leukocyte infiltration and other areas with advanced 
fibrosis and architectural distortion within a given low 
power field          [5 – 7] . Another histologic feature of UIP is 
focal collections of fibroblasts and myofibroblasts, referred 
to as fibroblastic foci, which are thought to represent focal 
aggregates within an organized reticulum of fibroblasts that 
courses through the entire lung  [8] . UIP has been hypoth-
esized to represent the result of repeated epithelial injury 
and repair and vascular remodeling in the absence of intact 
basement membrane          [9 – 11] . 

 Members   of the CXC chemokine family were originally 
described for their role in recruiting leukocytes in the con-
text of inflammation. In this chapter, we review the data on 
the role of this family of chemokine ligands and receptors 
in mediating vascular remodeling and in orchestrating the 
recruitment of circulating fibroblast progenitors to the lung 
in the context of interstitial lung disease.  

    CHEMOKINE REGULATION OF 
ANGIOGENESIS IN PULMONARY 
FIBROSIS: RECIPROCAL ROLES OF CXCR2 
AND CXCR3 

 Angiogenesis  , defined as formation and remodeling of new 
capillaries, is a critical biological process that is intimately 
connected in the pathogenesis of chronic fibroproliferative 
diseases, malignancy, and compensatory revascularization 
of ischemic tissues. In human lung disease, increase in vas-
cular resistance in the pulmonary circulation (arising from 
the right ventricle) results in new blood vessel formation 
in the bronchial circulation (which, as part of the systemic 
circulation, arises from the left ventricle); similar vascu-
lar remodeling between the systemic and pulmonary cir-
culations occur in mouse models of increased pulmonary 
vascular resistance              [12 – 16] . In his context, vascular remod-
eling is well documented in pathological studies of human 
interstitial lung diseases            [17 – 20] . 

 The   process of angiogenesis is regulated by a number 
of secreted mediators, which include the CXC chemokines. 
The defining feature of chemokine ligands is four highly 
conserved cysteine amino acid residues. In the CXC fam-
ily, the first two of these cysteines near the amino termi-
nus are separated by a non-conserved residue, resulting in 
the CXC motif. The CXC family is further classified based 
on the presence or absence of another amino acid sequence 
(glutamic acid-leucine-arginine or the ELR motif) imme-
diately upstream of the CXC sequence        [21, 22] . The ELR 
containing CXC chemokines, which include CXCL1/
Gro- α , CXCL2/Gro- β , CXCL3/Gro- γ , CXCL5/ENA-78, 
CXCL6/GCP-2, CXCL7/NAP-2, and CXCL8/IL-8, were 
originally discovered for their neutrophil chemoattractant 
properties but are also potent inducers of angiogenesis  [22] . 
The ELR �  chemokine ligands signal exclusively via the 
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CXCR2 receptor in mice. In humans, all angiogenic human 
chemokines bind and signal via CXCR2, whereas CXCL6 
and CXCL8 also signal via CXCR1. Although endothelial 
cells express both CXCR1 and CXCR2, ligand mediated 
angiogenesis is dependent on CXCR2 but not CXCR1, 
both in the context of  in vitro  chemotaxis assays and  in 
vivo  angiogenesis models            [23 – 26] . 

 A   subset of the ELR-negative chemokines, CXCL9, 
CXCL10, CXCL11, as well as CXCL4 are potent inhibi-
tors of angiogenesis via their interaction with the receptor, 
CXCR3        [21, 22] . Among these angiostatic chemokines, 
CXCL9-11 (but not CXCL4) are potently induced by both 
interferon- α / β  and interferon- γ   [27] ; as such, Th-1 medi-
ated immune responses in the context of interstitial lung 
disease may be associated with reduced angiogenesis  [28] . 
The angiostatic chemokine receptor, CXCR3, exists in at 
least three variants generated by alternative mRNA splicing 
and exon skipping, designated CXCR3A, CXCR3B, and 
CXCR3alt        [29, 30] . CXCR3A is primarily responsible for 
mediating leukocyte influx whereas CXCR3B is expressed 
on endothelial cells and mediates the angiostatic properties 
of the receptor via the p38 MAP kinase pathway            [31 – 34] ; 
the functional role of CXCR3alt in regulation of angiogen-
esis remains to be established. 

 In   the context of human interstitial lung disease, bron-
choalveolar lavage fluid from patients with IPF is potently 
angiogenic in the rat corneal micropocket model and con-
tains high levels of the angiogenic chemokines CXCL5 and 
CXCL8 and low levels of angiostatic chemokines CXCL10 
and CXCL11. Furthermore, neutralization of CXCL5 and 
CXCL8 inhibits the angiogenic properties of the fluid 
             [28, 35 – 38] . In the context of the mouse model of bleomy-
cin induced pulmonary fibrosis, the induction of the ang-
iogenic chemokines CXCL1/KC and CXCL2-3/MIP-2 in 
the lungs correlated with the degree of tissue angiogenic 
activity, whereas the expression of the angiostatic chem-
okines CXCL10 and CXCL11 were suppressed        [39, 40] . 
In this model, the immunoneutralization of CXCL1/KC 
or CXCL2-3/MIP-2 resulted in attenuation of lung ang-
iogenic activity as well as the degree of fibrosis          [38 – 40] . 
Conversely, exogenous administration of the angiostatic 
chemokines CXCL10 or CXCL11 resulted in both reduced 
lung angiogenic activity and reduced lung fibrosis          [38 – 40] . 
In addition, while the chemokine CXCL11 can bind and 
signal via CXCR7 in addition to CXCR3, the angiostatic 
effect of exogenously administered CXCL11 in this model 
system was entirely CXCR3 dependent          [38 – 40] .  

    MESENCHYMAL PROGENITORS IN 
PULMONARY FIBROSIS: ROLE OF CXCR4 

 Among   the many cells that have been implicated in the patho-
genesis of interstitial lung diseases, cells of the fibroblast-
myofibroblast lineage play pivotal roles in the generation 

of the extracellular matrix and generation of fibrosis. The 
classical hypothesis regarding the source of these cells in 
the fibrotic lung is that tissue injury induces activation and 
proliferation of resident interstitial fibroblasts that subse-
quently migrate into the alveolar spaces, expresses con-
stituents of the extracellular matrix, and differentiates into 
myofibroblasts          [41 – 43] . A second hypothetical mechanism 
involves trans-differentiation of epithelial cells into fibrob-
lasts and myofibroblasts as a result of changes in the lung 
microenvironment          [43 – 45] . Finally, a circulating bone 
marrow derived progenitor cell, the fibrocyte, can home to 
sites of lung injury, differentiate to myofibroblasts, prolifer-
ate, and contribute to the generation of extracellular matrix 
           [27, 46 – 48] . Fibrocytes, defined as collagen-1 expressing 
circulating leukocytes, comprise approximately 0.5 percent 
of nucleated cells in peripheral blood of healthy humans 
         [46, 48, 49] , and can be cultured from a CD14 �  cell popu-
lation and have a monocytic morphology  [47] . Fibrocytes 
express fibroblast markers (vimentin, fibronectin, collagens 
I and III), the common leukocyte antigen (CD45RO), the 
pan-myeloid antigen (CD13), HLA-DR, and the hemat-
opoietic stem cell marker, CD34                [27, 46 – 50] , as well as 
the adhesion molecules CD11b and CD18            [27, 47 – 49] . 
In contrast, fibrocytes do not express markers of mono-
cyte/macrophage lineage, lymphocyte markers, or surface 
markers for epithelial and endothelial cells myofibroblasts 
               [27, 46 – 50] . In culture, fibrocytes lose expression of CD34 
and CD45 and spontaneously express alpha-smooth muscle 
actin ( α -SMA);  α -SMA is upregulated in the presence of 
TGF β  compatible with differentiation into myofibroblasts 
                 [27, 46 – 51] . Human and mouse fibrocytes both express 
the chemokine receptors CCR7 and CXCR4 but differ in 
that humans express CCR3 and CCR5 whereas mouse 
fibrocytes express CCR2            [46, 47, 49, 52] . CXCR4 and its 
ligand, CXCL12, are critical to the homing of both hemat-
opoietic and non-hematopoietic progenitor cells, including 
fibrocytes        [46, 53] . 

 In   the mouse model of bleomycin induced pulmonary 
fibrosis, the fibrocyte pool progressively expands in the 
bone marrow and blood early after exposure to bleomycin, 
and fibrocytes accumulated in the lungs and correlated with 
deposition of collagen. Similarly, human cultured fibrocytes 
administered intravenously to immunocompromised mice 
challenged with intrapulmonary bleomycin home to the 
lungs. This accumulation corresponded with expression of 
CXCL12 in the lungs after administration of bleomycin and 
neutralization of CXCL12 resulted in both reduced lung num-
bers of fibrocytes and attenuated lung fibrosis without influ-
encing other lung leukocyte populations  [46]  suggesting that 
CXCR4 mediated homing of fibrocytes to the lung is impor-
tant to the pathophysiology of pulmonary fibrosis. A smaller 
pool of CCR7 �  fibrocytes were also found to accumulate in 
the lung in response to bleomycin, potentially indicating that 
a CXCR4 independent mechanism may be relevant homing 
of this smaller population of fibrocytes to the lungs. 
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 Fibrocytes   were also found to accumulate in the lung 
in another mouse model of fluorescein induced pulmonary 
fibrosis  [52] . These cells were found to express CXCR4, 
CCR5, CCR7, and CCR2, migrated in response to the CCR2 
ligands, CCL2 and CCL12, and lost expression of CCR2 
when cultured  [52] ; in addition, CCR2 deficient mice chal-
lenged with intrapulmonary fluorescein had fewer number 
of lung fibrocytes and attenuated fibrosis  [52] . The effects 
of CCR2 in this model were subsequently shown to be via 
the ligand CCL12 rather than CCL2  [54] . Since only a small 
subset of human fibrocytes express CCR2 and the mouse 
ligand CCL12 does not have a human counterpart, the rel-
evance of this observation in human interstitial lung dis-
ease remains to be determined. Another group has reported 
fibrocyte influx to the lung in the bleomycin model to be 
mediated by the CCL3-CCR5 ligand receptor pair  [55] . 
Interestingly, this work also found parallel attenuation of 
CXCL12 expression in the lungs of CCL3- and CCR5 defi-
cient animals, suggesting that the effect of CCL3/CCR5 
may be mediated via the regulation of CXCL12 expression. 

 The   relevance of chemokines and fibrocytes has also 
been investigated in the context of human interstitial lung 
diseases. Patients with fibrotic interstitial lung disease were 
found to have elevated lung and blood levels of CXCL12 
that correlated with a log-fold elevated concentration of cir-
culating fibrocytes in the peripheral blood, which consisted 
mostly of CXCR4 expressing cells  [56] . In addition, fibro-
cytes were detectable by immunofluorescent microscopy in 
the lungs of patients with IPF but not in normal lungs and 
their number correlated with the number of fibroblastic foci 
and lung CXCL12 levels  [57] .  

    POTENTIAL THERAPEUTIC APPLICATIONS 
OF CHEMOKINE SIGNALING 

 Therapeutic   manipulation of chemokine ligands or recep-
tors has not, to our knowledge, been applied to patients with 
interstitial lung disease. A small molecule CXCR2 antagonist 

has been developed by Glaxo-SmithKline for use in COPD 
       [58, 59]  and a phase I safety study of the compound has 
recently been completed in healthy adults (Trials.gov iden-
tifier NCT00504439). With regards to CXCR4, several 
small molecule antagonists have been developed with the 
aim of inhibiting cellular entry of CXCR4-trophic strains 
of HIV and for mobilization of bone marrow stem cells 
               [60 – 65] . Phase I safety trials have been published for one 
such agent, AMD070, in healthy volunteers        [66, 67] , and 
for another agent, AMD3100, in a small number of indi-
viduals with HIV  [61] . As of the time of writing, Trials.
gov lists nine recruiting and six completed trials of CXCR4 
antagonists in several cancers, HIV, and for mobilization of 
progenitor cells.  

    CONCLUSIONS 

 The   CXC chemokine family contributes to the pathogen-
esis of interstitial lung diseases via several distinct mecha-
nisms, including the regulation of vascular modeling and 
mediating the traffic of bone marrow derived progenitor 
cells to the lungs. In the context of animal models, manipu-
lation of these mechanisms results in measurable alteration 
of disease severity, suggesting that CXC chemokines might 
represent novel therapeutic targets in interstitial lung dis-
eases ( Figure 46.1   ).  
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    INTRODUCTION 

 The   endoplasmic reticulum (ER) is a membranous net-
work extending throughout the cytoplasm of the eukaryo-
tic cell and is contiguous with the nuclear envelope. The 
ER is the site of synthesis of sterols, lipids, core-asparagine 
linked oligosaccharides, and membrane and secreted pro-
teins biosynthesis. The ER has evolved as a protein fold-
ing machine and a major intracellular signaling organelle. 
Numerous posttranslational modification reactions occur 
at the ER and many of these are required for proteins to 
attain their final-folded functional conformation. The qual-
ity of protein folding is strictly monitored by protein chap-
erones that prevent aberrant folding and aggregation. These 
chaperones permit only properly folded proteins to exit 
the ER, a process termed as  quality control . Quality con-
trol is a surveillance mechanism that permits only properly 
folded proteins to exit the ER  en route  to other intracellu-
lar organelles and the cell surface. Misfolded proteins are 
retained within the ER lumen in complex with molecular 
chaperones or are directed toward degradation through the 
26S proteasome in a process called ER associated protein 
degradation (ERAD) or through autophagy. 

 The   ER provides a unique environment for protein fold-
ing, assembly, and disulfide bond formation prior to tran-
sit to Golgi compartment. ER function is perturbed when 
unfolded or misfolded proteins exceed the folding capac-
ity of the ER. The high concentration of partially folded 
and unfolded proteins predisposes partially folded proteins 
to aggregation. Polypeptide binding proteins, such as BiP 
and GRP94, act to slow protein folding reactions and pre-
vent aberrant interactions and aggregation. The ER lumen 
is an oxidizing environment so disulfide bonds form. As a 
consequence, cells have evolved sophisticated machinery 
composed of many protein disulfide isomerases (PDIs) that 

are required to ensure proper disulfide bond formation and 
prevent formation of illegitimate disulfide bonds. Protein 
folding in the ER requires extensive amounts of energy and 
depletion of energy stores prevents proper protein folding. 
The ER is also the primary Ca 2 �   storage organelle in the 
cell. Both protein folding reactions and protein chaperone 
functions require high levels of ER intralumenal calcium. 
All these processes are highly sensitive to alterations in 
the ER luminal environment. As a consequence, innumer-
able environmental insults alter protein folding reactions in 
the ER through mechanisms that include depletion of ER 
calcium, alteration in the redox status, and energy (sugar/
glucose) deprivation. The accumulation of unfolded pro-
teins signals activation of an adaptive process known as 
the unfolded protein response (UPR). Appropriate adapta-
tion to misfolded protein accumulation in the ER lumen 
requires regulation at all levels of gene expression includ-
ing transcription, translation, translocation into the ER 
lumen, and ERAD. Coordinate regulation of all these proc-
esses is required to restore proper protein folding and ER 
homeostasis                [1 – 6] . Conversely, if the protein folding defect 
is not resolved, the UPR is chronically activated to signal 
an apoptotic (programmed cell death) response.  

    UPR SIGNALING 

 Upon   accumulation of unfolded or misfolded proteins in 
the ER lumen three ER localized transmembrane signal tra-
nsducers are activated to initiate adaptive responses. These 
transducers are two protein kinases IRE1 (inositol requiring 
kinase 1)        [7, 8] , and PERK (double-stranded RNA activa-
ted protein kinase-like ER kinase)  [9]  and the transcrip-
tion factor ATF6 (activating transcription factor 6)        [8, 10]  
( Figure 47.1   ).  

         Chapter 47 
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    IRE1 SIGNALING 

 The   first component in the UPR pathway was identified in 
the budding yeast  Saccharomyces cerevisiae  in the early 
1990s using a genetic screen to identify mutants in UPR 
signaling. Two independent groups identified Ire1p/Ern1p 
as an ER transmembrane protein kinase that acts as a prox-
imal sensor in the yeast UPR        [3, 11] . Subsequently, it was 
discovered that Ire1p is a bifunctional protein that also has 
a site specific endoribonuclease (RNase) activity. When the 
cells are not stressed, Ire1p protein kinase is maintained 
in an inactive monomeric form through interactions with 
the protein chaperone Kar2p/BiP. Under conditions of ER 
stress, Ire1p is released from Kar2p/BiP and undergoes 
homodimerization and trans-autophosphorylation to acti-
vate its RNase activity. The RNase activity of Ire1p cleaves 
a 252-base intron from mRNA encoding the basic leucine 
zipper (bZIP) containing transcription factor Hac1p  [12] . 
The protein encoded by spliced  HAC1  mRNA binds and 
activates transcription from the UPR element (UPRE, mini-
mal motif TGACGTG(C/A)) upstream of many UPR target 

genes        [2, 13] . In  S. cerevisiae , the UPR activates transcrip-
tion of approximately 381 genes  [14] . 

 Two   mammalian homologs of yeast IRE1 have been 
identified; IRE1 α   [15]  and IRE1 β   [16] . IRE1 α  is expressed 
in most cells and tissues, with highest levels of expression in 
the pancreas and placenta  [15] . IRE1 β  expression is promi-
nent only in intestinal epithelial cells  [16] . The cleavage 
specificities of IRE1 α  and IRE1 β  are quite similar, thereby 
suggesting that they do not recognize distinct substrates but 
rather confer temporal and tissue specific expression  [17] . 

 Analysis   of promoter regions of UPR inducible genes 
in mammals, such as BiP, Grp94, and calreticulin, identi-
fied a mammalian ER stress response element (ERSE, 
CCAAT(N9)CCACG) that is necessary and sufficient for 
UPR gene activation  [18] . Subsequently, Yoshida  et al .  [18]  
used a yeast one hybrid screen to identify the bZIP con-
taining transcription factor XBP1 (X-box binding protein) 
as an ERSE binding protein. Several groups demonstrated 
that  XBP1  mRNA is a substrate for the endoribonuclease 
activity of mammalian IRE1            [8, 19 – 21] . On activation of 
the UPR, IRE1 RNase cleaves  XBP1  mRNA to remove 26 

 FIGURE 47.1          Signaling the unfolded protein response.  
    Three proximal sensors, IRE1, PERK, and ATF6, act in concert to regulate the UPR through their respective signaling cascade and collectively referred 
to as tripartite signaling in the ER. The protein chaperone BiP is the master regulator and negatively regulates these pathways. Under non-stressed 
conditions, BiP binds to the lumenal domains of IRE1 and PERK to prevent their dimerization. With the accumulation of the unfolded proteins, BiP is 
released from IRE1 permits dimerization to activate its kinase and RNase activities to initiate XBP1 mRNA splicing thereby creating a potent transcrip-
tional activator. Primary targets that require IRE1/XBP1 pathway for induction are genes encoding functions in ERAD. Similarly BiP release from ATF6 
permits transport to the Golgi compartment where ATF6 is cleaved by SIP and S2P proteases to yield cytosolic fragment that migrates to the nucleus to 
further activate transcription of UPR responsive genes. Finally BiP release permits PERK dimerization and activation to phosphorylate eIF2 α  on Ser 51, 
which leads to general attenuation of translational initiation. eIF2 α  / phosphorylation preferentially induces ATF4 mRNA and also recent evidence has 
shown that PERK/eIF2 α /ATF4 regulatory axis induces expression of antioxidative stress response genes pathway and also promotes expression of proa-
poptotic transcription factor CHOP.    
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nucleotide intron. This splicing reaction creates a transla-
tional frame shift to produce a larger form of XBP1 that 
contains a novel transcriptional activation domain in its C-
terminus. Spliced Xbp1 is a transcriptional activator that 
plays a key role activation of wide variety of UPR target 
genes. Some of the genes identified that require the IRE1/
XBP1 pathway are those that encode functions involved in 
ERAD, such as EDEM. Indeed, cells that are deficient in 
either IRE1 or XBP1 are defective in ERAD. 

 Deletion   of  Ire1 α   or  Xbp1  in mice creates an embryonic 
lethality at E11.5 – E14        [20, 22] . Mice with heterozygous 
Xbp1 deletion appear normal but develop insulin resistance 
when fed a high fat diet  [23] . Thus, it was proposed that the 
UPR might be important in insulin signaling (see below). 
In addition, both Ire1 and Xbp 1 have critical roles for B 
cell differentiation. Antigenic stimulation of mature B lym-
phocytes activates the UPR and signaling through IRE1 
mediated XBP1 mRNA splicing is required to drive cells 
to differentiate into plasma cells            [19, 24 – 26] . These studies 
suggest that the IRE1/XBP1 subpathway of the UPR might 
be required for differentiation of cell types that secrete high 
levels of protein  [27] .  

    PERK SIGNALING 

 In   response to ER stress there is an immediate transient 
attenuation of mRNA translation, thereby preventing con-
tinued influx of newly synthesized polypeptides into the 
stressed ER lumen  [28] . This translational attenuation is 
signaled through PERK mediated phosphorylation of the 
eukaryotic translation initiation factor 2 on the alpha sub-
unit (eIF2 α ) at Ser51. eIF2 α  phosphorylation inhibits the 
guanine nucleotide exchange factor eIF2B that recycles the 
eIF2 complex to its active GTP bound form. The formation 
of the ternary translation initiation complex eIF2-GTP-
tRNAMet is required for AUG initiation codon recognition 
and joining of the 60S ribosomal subunit that occurs dur-
ing initiation phase of polypeptide chain synthesis. Lower 
levels of active ternary complex result in lower levels of 
translation initiation          [9, 29, 30] . PERK is an ER associ-
ated transmembrane serine/threonine protein kinase. Upon 
accumulation of unfolded proteins in the ER lumen, PERK 
dimerization and trans-autophosphorylation leads to acti-
vation of the eIF2 α  kinase function        [9, 31] . In addition to 
translational attenuation, activation of PERK also contrib-
utes to transcriptional induction of the majority of the UPR 
genes            [29, 30, 32, 33] . Although phosphorylation of eIF2 α  
inhibits general translation initiation, it is required for the 
selective translation of several mRNAs. One fundamental 
transcription factor for which translation is activated upon 
PERK mediated phosphorylation of eIF2 α , is the activat-
ing transcription factor 4 (ATF4). Expression profiling 
identified that genes encoding amino acid biosynthesis 
and transport functions, anti-oxidative stress responses, 

and apoptosis, such as growth arrest and DNA damage 34 
(GADD34) and CAAT/enhancer binding protein (C/EBP) 
homologous protein (CHOP)        [31, 34]  require PERK, eIF2 α  
phosphorylation, and ATF4            [29, 30, 32, 33] .  

    ATF6 SIGNALING 

 The   bZiP containing activating transcription factor 6 
(ATF6) was identified as another regulatory protein that, 
like XBP1, binds the ERSE1 element in the promot-
ers of UPR responsive genes  [18] . There are two alleles 
of ATF6, ATF6 α  and ATF6 β , both synthesized in all cell 
types as ER transmembrane proteins. In the unstressed 
state ATF6 is localized at the ER membrane and bound 
to BiP. In response to ER stress, BiP dissociation leads 
to transport of ATF6 to the Golgi complex. In the Golgi 
complex, ATF6 is sequentially cleaved by two proteases. 
The serine protease site-1 protease (S1P) cleaves ATF6 in 
the luminal domain. The N-terminal portion is cleaved 
by the metalloprotease site-2 protease S2P  [35] . The 
processed forms of ATF6 α  and ATF6 β  translocate to the 
nucleus and bind to the ATF/cAMP response element 
(CRE) and to the ER stress responsive element (ERSE-1) 
to activate target genes  [36] . ATF6 α  (90       kda) and ATF6 β  
(110       kDa) both require the presence of the transcription 
factor CBF (also called NF-Y) to bind ERSEI          [36 – 38] . 
Recently, ATF6 α  and ATF6 β  have been deleted in the 
mouse. Although deletion of either alone produce no sig-
nificant phenotype, combined deletion is an early embry-
onic lethal. Where ATF6 α  contributes significantly to 
UPR induced gene expression, no genes were identified 
that are regulated through ATF6 β . 

 Recently  , CREBH was identified as a liver specific 
bZiP transcription factor of the CREB/ATF family with a 
transmembrane domain directs localization to the ER. Pro-
inflammatory cytokines IL6, 1L-1 β , and TNF α  increase 
transcription of CREBH to produce an inert protein that 
is localized to the ER. Upon ER stress, CREBH transits 
to the Golgi compartment where it is cleaved by S1P and 
S2P processing enzymes. However, cleaved CREBH does 
not activate transcription of UPR genes but, rather, induces 
transcription of many acute phase response genes, such 
as C-reactive protein and murine Serum Amyloid P com-
ponent (SAP) in hepatocytes. These studies have identi-
fied CREBH as a novel ER localized transcription factor 
that has an essential role in induction of innate immune 
response genes and links for the first time ER stress to 
inflammatory responses  [39] . 

 Biochemical   studies have demonstrated that in the 
unstressed state, the luminal domains of IRE1, PERK, and 
ATF6 are bound to the protein chaperone BiP. As unfolded 
proteins accumulate, they bind to BiP, thereby promoting 
BiP release from the UPR signal transducers. When these 
sensors are bound to BiP, they are maintained in an inactive 
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state. This model for negative regulation of the UPR by 
BiP is also supported by the observation that BiP overex-
pression prevented activation of the UPR upon ER stress. 
However, recently, based on the crystal structure of the 
yeast Ire1p luminal domain, Credle  et al . identified that 
a deep, long MHC1-type groove exists in an Ire1p dimer 
and proposed that unfolded polypeptides directly bind 
Ire1p to mediate its dimerization  [40] . However, although 
analysis of the human IRE1 indicated a similar structure, 
the MHC1-type groove was not solvent accessible  [41] . In 
addition, the luminal domain was shown to form dimers in 
the absence of added polypeptide, bringing into question 
the requirement for peptide binding to promote dimeriza-
tion. Future studies should resolve this issue.  

    ER STRESS INDUCED APOPTOSIS 

 If   the efforts to correct the protein folding defect fail, apop-
tosis is activated. Both mitochondrial dependent and inde-
pendent cell death pathways likely mediate apoptosis in 
response to ER stress. The ER might actually serve as a site 
where apoptotic signals are generated and integrated to elicit 
the death response. Several mechanisms have been proposed 

by which apoptotic signals at the ER are generated. These 
include Bak/Bax regulated Ca 2 �   release from the ER, 
cleavage and activation of procaspase-12, IRE1 mediated 
activation of ASK1 (apoptosis signal regulating kinase 
1)/JNK (c-Jun amino terminal kinase), and PERK/eIF2 α  
dependent induction of the proapoptotic transcription fac-
tor CHOP ( Figure 47.2   ). 

 Upon   ER stress, Bak and Bax in the ER membrane 
undergo a conformational change to permit Ca 2 �   efflux, 
which activates Ca 2 �   dependent processes such as protein 
kinase C and calcineurin. It was also proposed that Ca 2 �   
activates m-Calpain in the cytoplasm to cleave and activate 
ER resident procaspase 12. However, the significance of 
caspase 12 activation remains in question since a functional 
caspase 12 is not conserved in humans. The Ca 2 �   efflux 
also activates mitochondria dependent apoptotic pathways. 
Activated IRE1 binds to c-Jun N-terminal inhibitory kinase 
(JIK) and recruits TRAF2, which leads to the activation of 
ASK1/JNK. The Ca 2 �   released from the ER enters mito-
chondria leading to depolarization of the inner membrane, 
cytochrome  c  release, and activation of Apaf-1 (apoptosis 
protease activating factor 1)/procaspase-9 regulated apop-
tosis. CHOP (CEBP homologous protein) is a downstream 
UPR transcriptional target. CHOP is a basic leucine zipper 

 FIGURE 47.2          UPR regulated programmed cell death.  
    ER stress leads to several redundant pathways for caspase activation that involve mitochondrial dependent or independent pathways. Activated IRE1 
recruits TRAF2 that leads to activation of JNK phosphorylation. A second death signaling pathway activated by ER stress is mediated by transcriptional 
activation of genes encoding proapoptotic functions. Activation of PERK, ATF6, and possibly IRE1, lead to transcriptional activation of CHOP that 
potentiates apoptosis possibly through regulation of Gadd 34, Dr5, and Trb3, or by inhibiting the antiapoptotic protein Bcl2. ER stress can also lead to 
ROS production and this can also occur subsequent to accumulation of unfolded protein in the ER. Mitochondrial ROS can also be generated as a result 
of ER stress induced Ca  � 2  release by depolarizing the inner mitochondrial membrane (PTP), cytochrome C release, and activation of Apaf-1/procas-
pase-9 regulated apoptosis. Thus oxidative stress in association of unresolved ER stress contributes to multiple pathways of cell death.    
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containing transcription factor that inhibits the expression 
of Bcl-2, and activates transcription of several genes that 
encode apoptotic functions including GADD34, DR5, and 
TRB3. 

 Analysis   of gene deleted mice has provided insight into 
ER stress induced apoptosis. Cells from Apaf-1 deficient 
mice are susceptible to ER stress induced apoptosis, indi-
cating that non-mitochondrial death pathways exist. Bak/
Bax double knockout,  Caspase-12 – / –  , and  Chop – / –   MEFs 
all show partial resistance to ER stress induced apoptosis, 
further supporting the idea that they facilitate the apoptotic 
response upon ER stress. Although, caspase 12 deficient 
and CHOP deficient mice show no developmental defects, 
they display protection to genetically imposed or environ-
mentally imposed ER stress.  

    ER – MITOCHONDRIAL INTERACTIONS 

 ER   and mitochondria interact both physiologically and 
functionally and the most critical aspect is the calcium sig-
naling. The key processes linking the apoptosis to the ER –
 mitochondria interactions is the discovery that a massive 
and/or a prolonged influx of calcium into mitochondria can 
lead to the opening of a large conductance pore in the PTP 
swelling of the organelle, breakage of OMM and release 
into the cytosol of a series of proapoptotic proteins such as 
cytochrome c, apoptosis inducing factor (AIF), and smac/
Diablo  [42] . Antiapoptotic Bcl-2 members (Bcl2 and Bcl2-
XL) can affect ER Ca 2 �   storage. Overexpression of Bcl2 
results in decrease of ER luminal Ca 2 �   and this effect has 
been attributed to an increase in the Ca 2 �   leak from the 
organelle            [43 – 46] . Bax and Bak knockdown increases the in -
teraction of Bcl2 with type-1 IP3s and promotes both the 
phosphorylation of the IP3R and constitutive Ca 2 �   leak 
through the IP3Rs          [47 – 49] . A reduced ER Ca 2 �   content as 
in the case of Bcl2 overexpression or knockdown of Bax/
Bak reduces the amount of Ca 2 �   that can be released from 
the ER owing to an apoptotic stimulus and thus decreases 
the probability of a Ca 2 �   dependent PTP opening            [50 – 53] .  

    OXIDATIVE PROTEIN FOLDING IN THE ER 

 There   is accumulating evidence to suggest that protein 
folding and production of ROS are closely linked events; 
however, this area of ER stress is not well explored. In 
eukaryotes, oxidative protein folding occurs in the ER. 
A growing family of ER oxidoreductases, including PDI 
(protein disulphide isomerase), ERp57, ERp72, PDIR, 
PDIp, and P5, catalyze these protein folding reactions 
in mammalian cells. PDI is a multi-functional protein 
capable of catalyzing the formation, isomerization, and 
reduction of disulfide bonds  in vitro  as well as being an 
essential subunit for the enzymes prolyl 4-hydroxylase 

and microsomal triacylglycerol transfer protein  [54] . 
When disulfide bond formation occurs, cysteine residues 
within the PDI active site [-C-X-X-C-] accept two elec-
trons from the polypeptide chain substrate. This electron 
transfer results in the oxidation of the substrate and the 
reduction of the PDI active site. Despite the ability of PDI 
to enhance the rate of disulfide linked folding, the mecha-
nisms by which the ER disposes of electrons as a result 
of the oxidative disulfide bond formation reaction have 
remained enigmatic. A number of different factors have 
been proposed to maintain the oxidizing environment of 
the ER, including the preferential secretion of reduced thi-
ols and uptake of oxidized thiols, and a variety of differ-
ent redox enzymes and small molecule oxidants. However, 
there is a lack of genetic evidence demonstrating that 
these factors are physiologically important          [55 – 57] . It was 
believed for many years that the low molecular mass thiol 
glutathione is responsible for oxidizing the PDI active 
sites. This was contrary to observations in yeast where 
depletion of glutathione did not interfere with disulfide 
bond formation        [58, 59]  

 One   fundamental unanswered question is whether the 
presence of an unfolded protein in the ER lumen is suffi-
cient to activate oxidative stress. It has been estimated that 
approximately 25 percent of the ROS generated in a cell 
may result from formation of disulfide bonds in the ER dur-
ing oxidative protein folding. During formation of disulfide 
bonds, ROS are a by-product formed as ERO1 and PDI act 
in concert to transfer electrons from thiol groups in proteins 
to molecular oxygen. In addition, ROS may be formed as 
a consequence of the glutathione depletion that occurs as 
glutathione reduces unstable and improper disulfide bonds. 
The consumption of GSH would return thiols involved in 
non-native disulfide bonds to their reduced form so they 
may again interact with ERO1/PDI1 to be reoxidized. This 
would generate a futile cycle of disulfide bond formation 
and breakage in which each cycle would generate ROS and 
consume GSH. As a consequence, it is expected that pro-
teins that have multiple disulfide bonds may be more prone 
to generating oxidative stress. It is presently unknown 
whether misfolding of a protein that has no disulfide bonds 
would generate oxidative stress.  

    ER STRESS AND OXIDATIVE STRESS: 
IMPLICATIONS IN HUMAN DISEASE 

 The   UPR evolved as a complex homeostatic mechanism 
to balance the load of newly synthesized proteins with 
the capacity for chaperone assisted protein folding in the 
lumen of the ER. Increasing evidence suggests that pro-
tein misfolding in the ER lumen and alterations in the UPR 
play important roles in numerous disease states, including 
diabetes mellitus, atherosclerosis, neoplasia, and neurode-
generative diseases.  



452 SECTION | D Signaling In Disease

    UPR AND OXIDATIVE STRESS 
IN METABOLIC DISEASE 

 The   development of Type 2 diabetes is associated with a 
combination of insulin resistance in fat, muscle, and liver 
and a failure of pancreatic beta cells to adequately compen-
sate by increased insulin production        [60, 61] . There is also 
evidence that oxidative damage is associated with develop-
ment of the diabetic state          [62 – 64] . 

 The   requirement for the UPR in beta cell function 
was first suggested through the identification of  PERK  as 
the gene defective in the human disease Wolcott-Rallison 
syndrome (WRS)  [65] . Individuals with WRS, as well as 
 Perk – / –   mice, develop beta cell apoptosis with infantile 
onset insulin dependent diabetes        [65, 66] . In addition, mice 
with homozygous Ser51Ala mutation at the PERK phos-
phorylation site in eIF2 α  display even greater beta cell loss 
that appears  in utero   [29] . There are several mechanisms 
that may explain the unique requirement beta cells display 
for PERK/eIF2 α . First, beta cells may require PERK/eIF2 α  
signaling because they are sensitive to physiological fluctu-
ations in blood glucose. In beta cells the generation of ATP 
fluctuates with blood glucose because glycolysis is con-
trolled by glucokinase that has a low affinity for glucose. 
Periodic decreases blood glucose level would decrease the 
ATP       :       ADP ratio and compromise protein folding in the 
ER so that UPR may be frequently activated. Through this 
mechanism, PERK/eIF2 α  signaling would couple protein 
synthesis with energy available for protein folding reac-
tions in the ER lumen. Alternatively, glucose stimulates 
insulin transcription, translation, and secretion. PERK 
phosphorylation of eIF2 α  may be required for beta cells to 
attenuate protein synthesis so that insulin production does 
not exceed folding capacity of the ER. Finally, it is also 
possible that beta cells require PERK/eIF2 α  to minimize 
oxidative stress. There is increasing evidence that sug-
gests oxidative stress contributes to the beta cell failure in 
diabetes. Beta cells express low levels of catalase and glu-
tathione peroxidase, two enzymes that protect from ROS. 
Recent evidence indicates the PERK/eIF2 α  pathway pre-
vents oxidative stress  [67] . In addition, the PERK/eIF2 α /
ATF4 pathway induces expression of antioxidative stress 
response genes        [30, 68] . Thus, defects in PERK/eIF2 α  sig-
naling might generate oxidative stress. 

 Antioxidants   have been reported to preserve glucose 
stimulated insulin secretion, prevent apoptosis, and expand 
beta cell mass, without significantly affecting cell prolif-
eration. For example, treatment of Zucker diabetic fatty 
(ZDF) rats with the antioxidants N-acetyl-L-cysteine or 
aminoguanidine prevented hyperglycemia, improved insu-
lin secretion, and increased PDX1 binding to the insulin 
promoter  [69] . Although the mechanism by which anti-
oxidants improve beta cell function is not known, there is 
evidence to support the idea that oxidative stress activates 
JNK. Activated JNK can phosphorylate PDX1 to suppress 

PDX1 binding to specific promoters by preventing its trans-
location to the nucleus  [70] . Significantly, JNK inhibition 
protects beta cells from oxidative stress, prevents apopto-
sis, and improves islet graft function  [71] . In conclusion, 
evidence supports the notion that oxidative stress and ER 
stress play central roles in the pathogenesis of Type 2 dia-
betes. The findings support the notion that targeted therapy 
to intervene to prevent JNK activation may reduce progres-
sion of insulin resistance to diabetes.  

    NEURODEGENERATIVE DISEASES 

 Neurodegenerative   diseases, such as Alzhiemer’s disease 
and Parkinson’s disease, represent a large class of confor-
mational diseases associated with accumulation of abnor-
mal protein aggregates in and around affected neurons. 
Oxidative stress and protein misfolding play critical roles 
in the pathogenesis of these neurodegenerative diseases 
 [72] . These diseases are characterized by fibrillar aggre-
gates that are composed of misfolded proteins  [73] . At the 
cellular level, neuronal death or apoptosis may be mediated 
by oxidative stress and/or ER stress. Upregulation of ER 
stress markers has been demonstrated in postmortem brain 
tissues and cell culture models of many neurodegenera-
tive disorders, including Parkinson’s disease, Alzheimer’s 
disease, amyotropic lateral sclerosis (ALS), and expanded 
polyglutamine diseases such as Huntingtons’s disease and 
spinocerebellar ataxias  [74] . The significance of ER dys-
function that occurs by direct action of oligomeric, a poten-
tially toxic species that in turn generates oxidative stress 
and cell death is not clear. However several  in vivo  studies 
suggest that at least in some cases ER stress may have a 
significant correlation with neurodegeneration  [75] . 

 The   mechanisms underlying the accumulation of 
abnormal protein aggregates in and around neurons in 
Alzheimer’s and Parkinson’s disease has bewildered both 
researchers and clinicians. How these protein aggregates 
disturb ER function directly is not understood, but  in vitro  
studies suggest these aggregates can inhibit the protea-
some and ERAD. For example, in disease Machado-Joseph 
syndrome, the polyglutamine repeats present in spinoc-
erebrocellular atrophy protein (SCA3) form cytosolic 
aggregates that can inhibit the proteasome. Proteasome 
inhibition in the cytosol can interfere with ERAD to elicit 
UPR activation, caspase 12 activation, and apoptosis        [76, 
77] . In humans, mutations in SIL1, which encodes an ade-
nine nucleotide exchange factor of BiP cause Marinesco-
Sj ö gren syndrome, a rare disease associated with cerebellar 
ataxia, progressive myopathy, and cataracts  [78] . In mice, 
homozygous mutations in  Sil1  cause cerebellar Purkinje 
cell degeneration and subsequent ataxia  [75] . Analysis of 
Sil-1 deficient mice demonstrated that the mutant Purkinje 
cells have ubiquitinated nuclear and ER associated pro-
tein aggregates and also exhibit upregulation of several ER 
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stress markers BiP, CHOP, and ORP150  [75] . As the pro-
tein chaperone BiP requires ATP/ADP exchange during its 
peptide binding and release cycle, it is possible that SIL1 is 
essential to preserve proper protein folding in the ER and 
prevent UPR activation  [79] . 

 Recent   studies have also implicated oxidative stress 
in the pathogenesis of neurodegenerative diseases. The 
pathology of a group of neurodegenerative diseases, includ-
ing Alzheimer’s disease, are characterized by the deposi-
tion of intracellular aggregates containing abnormally 
phosphorylated forms of the microtubule binding protein 
tau  [80] . Using a  Drosophila  model relevant to human neu-
rodegenerative diseases, it was demonstrated that oxidative 
stress plays a casual role in neurotoxicity and promotes 
tau-phosphorylation. In this model, activation of the JNK 
pathway correlated with the degree of tau induced neuro-
degeneration  [81] . Although oxidative stress and ER stress 
have been linked to neurodegenerative diseases, in most 
instances these events may not be the primary cause of 
neuron death. However, these stresses may modify the pro-
gression and severity of these complex diseases.  

    FUTURE DIRECTIONS 

 There   has been significant progress in understanding the 
mechanisms underlying the cause of ER stress over the 
past few decades. New insights have been gained into how 
the cells respond to ER stress to mediate survival as well as 
cell death responses. Each of the signaling pathways that 
constitute the UPR contributes to activation of different 
subsets of UPR genes. There is a close link between ER 
stress and oxidative stress but the mechanisms linking both 
are not very well understood. Future studies are required to 
understand how these stresses affect protein folding, mis-
folding, and secretion  in vivo . Further studies should iden-
tify under what physiological and pathological states these 
pathways are activated  in vivo  and how they influence the 
disease outcome. Studies in this important area will aid in 
comprehending how interactions between ER stress and 
oxidative stress are integrated into other signaling path-
ways. A greater exploration of the understanding of com-
plex interaction between protein misfolding and oxidative 
stress may lead to development of more specific therapeu-
tic agents targeted for diseases associated with ER/oxida-
tive stress.  
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    INTRODUCTION 

 Coordinating   the activity of protein kinases and phosphatases 
allows cells to amplify and accelerate hormonal signals and 
elicit a robust and decisive physiological response. Hormonal 
signals have been shown to modulate the expression or activ-
ity of endogenous phosphatase inhibitor proteins (described 
in Chapter 105 of Handbook of Cell Signaling, Second 
Edition) that dampen the functions of specific protein phos-
phatases and enhance the phosphorylation of their cellular 
substrates. This paradigm is best exemplified by protein ser-
ine/threonine phosphatases, many of which are targeted by 
an increasing number of endogenous protein inhibitors. By 
suppressing the functions of the relatively few phosphatase 
catalytic subunits that catalyze serine/threonine dephospho-
rylation in eukaryotic cells, these inhibitor proteins have the 
potential to modulate a broad range of physiological events 
and orchestrate an integrated physiological response that 
coordinates such diverse processes as metabolism, migration, 
gene transcription, and growth. Emerging studies suggest 
that some phosphatase inhibitors physically associate with 
cellular phosphatase complexes comprised of a catalytic sub-
unit bound to one or more regulatory proteins that restrict the 
actions of the phosphatases to control specific cellular events. 
The functions of these phosphatase inhibitors are in turn con-
trolled by their expression, reversible phosphorylation, and 
dynamic association with target protein phosphatases. In this 
manner, endogenous serine/threonine phosphatase inhibitors 
achieve both spatial and temporal control of phosphoproteins 
that regulate normal cell physiology, and growing evidence 
suggests that aberrant expression and/or activity of phos-
phatase inhibitors may be associated with many human dis-
eases. This chapter focuses on new information on the mode 
of action of phosphatase inhibitors and discusses their poten-
tial contributions to the pathophysiology of human disease.  

    ENVIRONMENTAL TOXINS AS 
PHOSPHATASE INHIBITORS 

 Okadaic   acid, responsible for human diarrheretic shellfish 
poisoning, was first identified as a toxin concentrated by 
marine sponges, and functions as a potent inhibitor of sev-
eral eukaryotic protein serine/threonine phosphatases. By 
inhibiting one or more phosphatases, okadaic acid enhances 
smooth muscle myosin phosphorylation and the contractil-
ity of the gut  [1] . Subsequent studies identified cyclic pep-
tides like microcystin and nodularin in freshwater ponds 
and lakes infested with cyanobacteria, which cause severe 
hepatotoxicity that is often lethal to animals  [2] . Like oka-
daic acid, these compounds also inhibited the major mam-
malian serine/threonine phosphatases. To date, more than a 
dozen environmental toxins or natural products have been 
shown to inhibit protein serine/threonine phosphatases. 
Almost all of these compounds have the potential to pro-
mote cell growth and transformation, and induce a variety 
of cancers in experimental animals. However, at least one 
report hinted at other cellular actions of these toxins, specif-
ically that okadaic acid impaired DNA repair mechanisms 
and elicited DNA damage through an unknown mechanism 
independent of phosphatase inhibition  [3] . In any case, a 
number of these cell-permeable compounds are now com-
mercially available and, by enhancing cellular protein phos-
phorylation, have become valuable experimental tools in 
elucidating the physiological functions of phosphoproteins. 
Some compounds contain a phosphate moiety and yet oth-
ers possess an acidic residue, which serves as a phosphom-
imetic and directly interacts with the metals in the catalytic 
site of serine/threonine phosphatases  [4] . Although com-
pounds like okadaic acid and calyculin-A show dif-
fering selectivity for the inhibition of protein serine/
threonine phosphatases (e.g., type 1 versus type 2) at the 
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exposures that promote cell growth and transformation, 
they most likely inhibit as many as five of the seven fami-
lies of mammalian serine/threonine phosphatases to elicit 
their broad effects on cell physiology. By comparison, the 
deletion of individual genes encoding protein serine/threo-
nine phosphatases in the model eukaryotes (yeast and flies) 
suggests that several phosphatases play critical and non-
overlapping roles in eukaryotic biology such that the loss 
of function of any of these enzymes inhibits cell growth 
and reduces cell viability  [5] . In this regard, the enhanced 
growth and transformation of mammalian cells elicited by 
xenobiotics most likely reflects an incomplete or partial 
inhibition of protein phosphatases that increases or pro-
longs the phosphorylation of proteins involved in cell divi-
sion and growth. However, higher concentrations of these 
compounds associated with greater inhibition of cellular 
phosphatases are generally cytotoxic, severely impairing 
cell growth and often inducing programmed cell death. Due 
to their broad actions, these compounds have not provided 
a clear-cut link between the inhibition of individual pro-
tein phosphatases and the development of human disease. 
However, it is also worth stressing that compounds like 
fostriecin, which inhibits several type 2 phosphatases but 
has no discernable activity against type 1 enzymes, have 
been extensively analyzed as potential anticancer drugs  [6] . 
Indeed, the two natural products, cyclosporin A and FK-
506, are known to be potent and selective inhibitors of cal-
cineurin (protein phosphatase-2B), and are among the most 
effective immunosuppressive drugs that are widely used to 
prevent rejection of transplanted organs  [7] . These drugs 
are also clinically approved for the treatment of psoriasis, 
rheumatoid arthritis, aplastic anemia, nephritic syndrome, 
and atopic dermatitis, and the list may soon be extended to 
include other autoimmune diseases. However, these drugs 
are costly and have some serious side effects. For example, 
the inhibition of calcineurin has also been implicated in 
their renal toxicity. Thus, the potential of natural products 
to be either cytotoxic or valuable therapeutic agents may 
depend on their phosphatase specificity, degree of enzyme 
inhibition and physiological roles of the targeted enzymes 
in mammalian tissues. The availability of natural product 
inhibitors has also provided scientists with valuable tools 
to affinity-isolate and -analyze a wide variety of cellular 
phosphatase complexes  [8] .  

    NEW INSIGHTS IN CELLULAR 
PHOSPHATASE INHIBITORS 

   As reviewed in Chapter 105 of Handbook of Cell Signaling, 
Second Edition, endogenous inhibitor proteins are much 
more selective than the environmental toxins discussed 
above, targeting selected members of the protein serine/
threonine phosphatase family and, at the highest concentra-
tions found in mammalian tissues, having little or no effect 

on other phosphatases  [9] . The largest group of known 
mammalian protein inhibitors targets type 1 phosphatases 
(PP1). An emerging theme from studies of PP1 inhibitors 
is that they can exist in unique cellular complexes that con-
tain not only the PP1 catalytic subunit but also selected reg-
ulatory or targeting subunits that dictate PP1’s localization 
and substrate specificity. Thus, some PP1 inhibitors appear 
to target highly specific physiological events. 

 The   first suggestion that cells utilized PP1 inhibitors to 
target certain physiological events came from the finding 
that inhibitor-1 (I-1), a PKA-activated PP1 inhibitor, bound 
both PP1 and its regulator, GADD34. Later experiments 
showed that the I-1 C-terminus, which directs its interaction 
with GADD34, was essential for the efficient transduction of 
cyclic AMP signals that inhibit PP1 activity and promote the 
phosphorylation of the eukaryotic translation initiation factor, 
eIF2 α , a substrate of the GADD34/PP1 complex  [10] . This 
raised the possibility that the heterotrimeric complex of PP1/
GADD34/I-1 tranduces hormonal signals that inhibit protein 
translation in some mammalian tissues. Moreover, the region 
of I-1 mRNA encoding its C-terminus that binds GADD34 is 
alternately spliced, and is also not conserved in protein prod-
ucts of other predicted human genes encoding I-1 isoforms. 
This also suggests that mammalian tissues may contain mul-
tiple I-1 isoforms, only one of which regulates protein trans-
lation, while the other I-1 polypeptides transduce cAMP 
signals that control other physiological events  [11] . It is also 
noteworthy that I-1 expression and alternate splicing may 
be developmentally controlled, peaking after birth to reach 
much lower steady-state levels in many adult tissues. 

 The   recent co-crystallization of PP1 with inhibitor-2 
(I-2) provided new insights into the mechanism by which 
this inhibitor protein regulates PP1 activity  [12] . Acute 
modulation of PP1 most likely occurs by I-2’s binding at an 
allosteric site shared with many PP1 inhibitors, including I-
1, which lies some distance from the PP1 catalytic site. In 
addition, I-2 may chronically suppress phosphatase activ-
ity by a direct interaction with the PP1 active site, resulting 
in the displacement of one of the two catalytic metals and 
leading to a more prolonged inactivation of PP1. These and 
other studies demonstrated that I-2 displays two modali-
ties of PP1 regulation, one short-term or transient, and the 
other prolonged or more persistent. Following the identi-
fication of several mammalian PP1 complexes containing 
I-2, it was speculated that I-2 also targets selected cellular 
PP1 pools. Thus, I-2 may control the duration of protein 
phosphorylation at the actin cytoskeleton through its bind-
ing to the actin- and PP1-binding protein, neurabin  [13] , or 
at mitotic spindles through its association with the kinase, 
Nek2  [14] . It should be noted that the persistent inacti-
vation of the PP1/I-2 complex is reversed  in vitro  by the 
phosphorylation of I-2 (threonine-72) by GSK-3, which 
also requires the prior phosphorylation of I-2 at several 
serines by casein kinase-II  [15] . The precise  physiological 
circumstances under which GSK-3 and casein kinase-II 
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phosphorylate I-2 and reactivate the latent PP1 complexes 
in mammalian cells are still unclear. 

 Most   recently, a novel complex containing the PP1 
catalytic subunit, the nuclear regulatory subunit, Sds22, 
and inhibitor-3 (I-3) was identified in yeast and mamma-
lian cells        [16,17] . While the precise function of the PP1/
Sds22/I-3 complex remains to be investigated, the subcellu-
lar localization of this complex suggests that this complex 
controls nucleolar phosphorylation events. Yet other stud-
ies have shown that a PKC-activated PP1 inhibitor, CPI-17, 
and its structural relatives, the PHI proteins, target a PP1 
catalytic subunit bound to the regulatory subunit, MYPT1. 
This in turn targets the heterotrimeric PP1/MYPT1/CPI-17 
complex to smooth muscle myosin, and transduces signals 
from PKC and other kinases to enhance the calcium sen-
sitivity of muscle contraction and elicit rapid and robust 
contraction of smooth muscle tissue  [18] . Together, these 
studies begin to highlight a critical difference in the actions 
of endogenous phosphatase inhibitors from those of envi-
ronmental toxins, distinguishing them on the basis of their 
selectivity for phosphatase catalytic subunits and their 
ability to target defined pools of phosphatases within all 
eukaryotic cells. 

 Recent   work shows that cytokines such as IL-6 down-
regulate CPI-17 expression in smooth muscle cells  [19] , 
while the structurally related PKC-activated PP1 inhibi-
tor, KEPI, is upregulated in neurons in response to opioids 
 [20] . Prior studies also show that levels of I-2 mRNA, and 
protein, as well as the localization of I-2 in the nucleus, 
are regulated during the cell division cycle  [21] . This high-
lights a critical mode of modulating the signaling capacity 
of mammalian cells by rapid changes in cellular content 
and subcellular distribution of phosphatase inhibitors.  

    CELLULAR PHOSPHATASE INHIBITORS 
AND HUMAN DISEASE 

    Reduced expression of phosphatase 
inhibitors and human disease 

 A   widely-held view in cell signaling is that in some tissues, 
under unstimulated or basal conditions, cellular protein 
phosphatase activity effectively antagonizes or clamps the 
functions of protein kinases, especially those displaying 
significant basal activity. This eliminates leaky or unwar-
ranted signaling, but it also means that, following cell stim-
ulation, intracellular signals that are transduced by these 
protein kinases are severely blunted or sluggish. Thus, cells 
require mechanisms to activate endogenous phosphatase 
inhibitors to remove the  “ brake ”  imposed by their target 
phosphatases in parallel with the activation of the protein 
kinases to achieve speedy and effective signal transduc-
tion. Such a  “ necessary ”  role for phosphatase inhibitors 
in  hormone signaling may be limited to some tissues and 

processes, where speed and accuracy of signaling is vital. 
Thus far, the best evidence for a necessary or essential role 
for phosphatase inhibitors in cell signaling was obtained by 
the genetic deletion of mouse genes encoding I-1 and its 
structural homologue, DARPP-32. 

 DARPP  -32 is primarily expressed in dopaminergic neu-
rons. The remarkable finding in the DARPP-32 null mice 
was a dramatic diminution or near complete loss in many 
aspects of dopamine (D1 receptor) signaling  [22] . Thus, 
the mutant mice demonstrate an altered response to neuro-
transmitters and drugs of abuse as well as a variety of other 
behavioral defects  [23] . This led to the hypothesis that a 
loss of DARPP-32 function may also contribute to human 
neurological disease, specifically schizophrenia. Indeed, 
several studies reported reduced levels of DARPP-32 pro-
tein in brain samples from individuals with schizophrenia 
 [24] . However, analysis of the human DARPP-32 gene in 
the  post mortem  brain samples provided no insight into the 
molecular mechanism underlying DARPP-32 reduction 
in schizophrenia patients, and a role for DARPP-32 defi-
ciency in human neurological disease remains to be estab-
lished. Interestingly, a search for candidate genes from 
mouse models of neurological disease identified DARPP-
32 as a potential disease-causing gene  [25] , but more work 
is needed to establish a clear link between DARPP-32 and 
bipolar disease and other neurological disorders. 

 In   contrast to DARPP-32, I-1 is widely expressed in 
mammalian tissues, with the highest content of I-1 protein 
found in brain and muscle. While the I-1 null mice showed 
defects in excitatory neurotransmission in some areas of 
the brain, no major behavioral abnormalities were noted 
in the mutant mice  [26] . This argued for the presence of 
redundant mechanisms, possibly DARPP-32 or other PKA-
regulated PP1-binding proteins, for amplifying cAMP 
signaling in the mammalian brain. The I-1 null mice did, 
however, display defects in cardiac contractility, similar 
to those previously reported in transgenic mice that over-
expressed PP1 catalytic subunit in the heart  [27] . Indeed, 
levels of PP1 inhibitors, both I-1 and I-2, were diminished 
in experimental models of heart failure  [28] . While these 
data pointed to changes in PP1 inhibitors as a contributing 
factor in heart disease, direct evidence that PP1 inhibitors 
improved cardiac function and alleviated or delayed heart 
failure was obtained from the generation of transgenic 
mice that overexpressed I-1  [29]  or I-2  [30]  in the heart. 
These animals showed significantly improved  β -adrenergic 
signaling and enhanced calcium cycling which results from 
the phosphorylation of the sarcoplasmic reticulum protein, 
phospholamban, a known PP1 substrate. Additional sup-
port for a specific role of I-1 in human heart disease came 
from the observation that I-1 levels were greatly reduced in 
the myocardium from failing human hearts  [31] . Together, 
the above studies make a compelling case for I-1 as a major 
contributor in effective hormonal signaling and cardiac 
function in the normal human heart, and suggest that errors 
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in I-1 expression and/or activity play an important role in 
heart disease.  

    Increased Expression of Phosphatase 
Inhibitors 

 While   some tissues express high levels of specific phos-
phatase inhibitors, no inhibitor proteins are detected 
in other tissues. For example, compared to muscle and 
brain, mammalian liver expresses very low levels of I-1. 
Similarly, no measurable DARRP-32 protein can be seen 
in most non-neural tissues, and significantly less CPI-
17 is expressed in tissues other than smooth muscle. The 
transcriptional mechanisms that dictate the tissue-specific 
expression of phosphatase inhibitors are just being under-
stood. In addition, there are undoubtedly mechanisms that 
can also downregulate these proteins. Thus, it comes as no 
surprise that errors in the regulatory processes that con-
trol the phosphatase inhibitors can result in their aberrant 
expression, and this in turn may contribute to the patho-
physiology of many human diseases. 

 Indeed  , a growing number of publications have linked 
an elevated expression of I-1 with human hepatic cancers 
 [32] , DARPP-32 overexpression in gastric, esophageal, 
gastrointestinal, and colorectal cancers        [33,34] , and I-2 in 
prostrate cancer        [35,36] . As the tumor-promoting activity 
of environmental toxins that inhibit protein serine/threo-
nine phosphatases is well documented, the development 
of cancer associated with abnormally elevated expression 
of phosphatase inhibitors simply points to the ability of 
protein serine/threonine phosphatases to regulate critical 
events in the mammalian cell division cycle and phospho-
rylation of substrates that promote cell proliferation. For 
example, the PP1/MYPT1 complex, which dephosphor-
ylates smooth muscle myosin, also targets members of the 
ERM family of actin-binding proteins, including merlin, 
the product of the human neurofibromatosis NF2 gene. By 
inhibiting the PP1/MYPT1 complex in mammalian cells, 
CPI-17 can elevate merlin phosphorylation and lead to acti-
vation of the oncogene, Ras, and cell transformation [37]. 
Elevated expression of the putative PP2A inhibitor, SET, 
has also been linked with cell growth and transformation, 
but direct evidence has not been obtained to show that 
PP2A activity is inhibited in human cancers  [38] . However, 
emerging studies show that a growing number of cell-cycle 
regulators, such as Cdc25, are subject to regulation by 
dephosphorylation events catalyzed by both PP1 and PP2A 
       [39,40] . In conclusion, the overall concept that abnormal 
levels of PP1 inhibitors contribute to rapid growth and 
metastasis of human cancers is perhaps not surprising. 
However, the cause-or-effect relationship between cellular 
changes in phosphatase inhibitors and the disease process 
needs further clarification. 

 The   product of the Down Syndrome Critical Region 1 
or  DSCR1  gene (also known as  Adapt78 , a gene induced by 
oxidative stress) is elevated in Down syndrome patients, who 
also display neural pathology similar to that of early onset 
Alzheimer’s disease  [41] . Studies of  post mortem  tissue from 
Alzheimer’s patients also showed that increased expression 
of  DSCR1  correlated with the severity of disease and the 
abundance of neurofibrillar tangles.  DSCR1  encodes RCAN1 
(regulator of calcineurin 1), a protein previously termed cal-
cipressin 1, Rcn1 (the yeast regulator of calcineurin) and 
MCIP1 (myocyte-enriched calcineurin-interacting protein), 
and is highly conserved in all eukaryotes. RCAN proteins 
share a signature sequence also found in NFAT (nuclear 
factor of activated T cells), the calcineurin substrate that 
directly binds the phosphatase. Biochemical and genetic 
studies indicate some similarities between calcineurin regu-
lation by RCAN1 and PP1 regulation by I-2. For example, 
several factors, including oxidative stress, elevated intracel-
lular calcium, and amyloid (A β ) peptide induce RCAN1 
expression. RCAN1 binds and inhibits calcineurin or PP2B 
activity, specifically towards the substrate, NFAT. Like I-2, 
RCAN1 may also function as a possible chaperone to ele-
vate cellular functions of its target phosphatase, and, like I-2, 
phosphatase inhibition by RCAN1 appears to be subject to 
regulation by GSK-3-mediated phosphorylation  [42] . While 
RCAN1 and calcineurin are highly expressed in the brain, 
calcium and calcineurin also play a critical role in cardiac 
output and promote cardiac hypertrophy. Genetic studies in 
mice suggest that excessive NFAT dephosphorylation by cal-
cineurin promotes cardiac hypertrophy, and transgenic mice 
with elevated RCAN1 levels in the heart tissue are protected 
from hypertrophy  [43] . However, these animals show defects 
in heart valve formation. Thus, either reduced inhibition of 
calcineurin or excessive levels of its inhibitor, RCAN1, may 
contribute to different aspects of cardiac disease. Other stud-
ies suggest that that aberrant RCAN1 function may also 
contribute to diabetes, immunological diseases, and skin dis-
orders. However, more work is needed to establish the rel-
evance of these findings to human disease.   

    CONCLUDING REMARKS 

 The   availability of protein and non-protein inhibitors 
of protein serine/threonine phosphatases has provided 
researchers with an extensive toolkit to study the role of 
phosphatases and phosphatase inhibitors in modulating 
the mammalian physiology. Rapid progress is also being 
made in the understanding of cellular phosphatase com-
plexes and their functions. In addition, the mechanisms that 
regulate the expression and activity of phosphatase inhibi-
tors and their mode of action in controlling specific pools 
of cellular protein phosphatases are being actively inves-
tigated. Many studies have correlated changes in phos-
phatase inhibitors with human diseases, including cancer, 
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Alzheimer’s, and cardiomyopathy. Thus, it is anticipated 
that it will not be long before experimental evidence clearly 
demonstrates the mechanism or mode of action of phos-
phatase inhibitors in the genesis and progression of human 
disease.  
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    INTRODUCTION 

 Rheumatoid   arthritis (RA) is the most common cause of 
adult inflammatory arthritis and causes substantial mor-
bidity and mortality. T and B lymphocytes together with 
macrophages and synovial fibroblasts play a central role in 
the immunopathogenesis of inflammatory joint diseases, in 
particular RA. 

 Studies   of twins identified a genetic contribution to 
disease susceptibility  [1]  and the siblings of patients with 
seropositive, erosive rheumatoid arthritis have an estimated 
risk of developing the disease of between 5 and 10 times 
that of the general population  [2] . 

 The   introduction of new therapies, including the block-
ade of TNF, IL-1, and IL-6, as well B cell depletion and 
co-stimulation blockade using CTLA4-Ig has improved the 
signs and symptoms, disability and radiologic progression 
in patients with severe RA  [3] . A major lesson learned by 
this therapeutic success is that immune intervention has 
clearly gained clinical value beyond what was initially 
expected. On the other hand, there is promise that deeper 
understanding of immune mechanisms, including genetic 
predispositions and intracellular signaling processes can 
improve immune targeting and even achieve ultimate 
goals of remission or prevention of the disease, with fewer 
adverse events. 

 The   highly polymorphic HLA region is a major con-
tributor to genetic risk of rheumatoid arthritis  [4] . Several 
HLA associated and other non-HLA genes associated with a 
modest risk for RA have recently been identified, including 
the Arg620Trp variant of the intracellular phosphatase 
gene PTPN22  [5]  that elevates the risk for RA, whereas an 

IL4-R gene polymorphism primarily enhances the risk for 
erosive disease  [6] . Other candidate genes associated with 
RA have been reported in the literature (e.g., CTLA4 and 
PADI4), but had only a modest statistical association          [7 – 9] . 
Reassuring associations between RA and loci in and around 
HLA-DRB1 and PTPN22 have been repeatedly implicated 
as genetic risk factors in persons of European descent. 
Earlier large scale linkage disequilibrium studies implicated 
a variant of PADI4 as a risk factor for RA  [9] . This variant 
would seem to have a more potent effect in Asian popula-
tions than in those of European descent. Variants of these 
genes are believed to confer a risk for the development 
of RA by affecting the presentation of autoantigens (in the 
case of HLA-DRB1), T cell receptor signal transduction 
(in the case of PTPN22), and the citrullination of proteins, 
the targets of anti-CCP antibodies (in the case of PADI4). 
The definitive identification of risk genes outside the HLA 
region has been challenging. In spite of the likely involve-
ment of specific genes in RA, there is no clear evidence for 
an RA specific abnormality in intracellular signaling rather 
than disturbances related to generally enhanced inflamma-
tion as also seen in other autoimmune disorders. 

 Communication   between plasma membrane receptors, 
cytoplasmic events, and the nucleus allows cells to respond 
appropriately to environmental danger signals. Rapid and 
adequate transduction of this information is critical for 
appropriate cell reactions and survival. Intracellular mes-
sengers are important for the interaction between the 
extracellular and intracellular milieus and the genes inside 
the nucleus. A number of these pathways are suspected to 
be involved in RA pathogenesis mainly based in the identifi-
cation of non-HLA SNPs linked to RA itself or RA severity.  

 Chapter 49 
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    STAT4 RS7574865 ALLELE AND THE 
RISK OF RA 

 It   is known that STAT4 is a latent cytosolic factor and phos-
phorylated after activation by cytokines and then accumu-
lates in the nucleus. Of note, STAT4 is a transcription factor 
that transmits signals induced by several key cytokines, 
such as interleukin-12, type 1 interferons, and interleukin-
23  [10] . Activated STAT4 induces transcription of specific 
genes including interferon- γ , a key indicator of T cell dif-
ferentiation into type 1 helper T (Th1) cells. Therefore, 
STAT4 dependent signaling by interleukin-12 receptors 
plays a critical role in the development of a Th1-type 
T cell response        [11,12] . STAT4 has also been shown to be 
involved in differentiation of Th17 cells dependent in part 
on the activity of interleukin-23, a cytokine related to inter-
leukin-12  [13] . These proinflammatory Th17 cells can play 
an important, if not predominant, role in chronic inflamma-
tory disorders  [14] . Thus, STAT4 represents a key player in 
both TH1 and TH17 lineages as evidenced by experimental 
models of autoimmunity. STAT4 deficient mice are gener-
ally resistant to models of autoimmune disease, including 
arthritis  [15] . In addition, it has been shown that specific 
blockade of STAT4 signaling by inhibitory oligodeoxy-
nucleotides or antisense oligonucleotides ameliorated the 
disease in arthritis models  [16]  suggesting the utility of 
STAT4 as a therapeutic target. 

 In   a recent large genetic study, a variant allele of STAT4 
was identified to confer an enhanced risk for RA  [16] . A 
linkage of genes located on the long (q) arm of chromo-
some 2 was found previously to be associated with RA 
in 642 families of European ancestry  [17]  collected by 
the North American Rheumatoid Arthritis Consortium 
(NARAC)  [18] . The detailed study cited above  [16] , tested 
single nucleotide polymorphisms (SNPs) in and around 13 
candidate genes within the previously linked chromosome 
2q region and found the STAT1-STAT4 region in 1620 
RA patients versus 2635 controls to be linked to RA. The 
relation was replicated in 1529 RA and 881 controls from 
Sweden. In detail, a SNP haplotype in the third intron of 
STAT4 was found to be associated with susceptibility to 
RA but also SLE. The odds ratio for having the risk allele 
in chromosomes of RA patients vs. those of controls was 
1.32, whereas for SLE patients the odds ratio was calcu-
lated 1.55. Homozygosity of the risk allele was associated 
with a more than doubled risk for SLE and a 60 percent 
increased risk for RA. Among anti-CCP positive NARAC 
patients (81 percent positive for anti-cyclic citrullinated 
peptide antibody), the rs7574865 minor allele frequency 
did not differ significantly (P        �        0.05) in the subgroup that 
was positive for the antibody (0.28) and the subgroup that 
was negative for the antibody (0.27). Interestingly, logis-
tic-regression analysis after accounting for the rs7574865 
genotype showed that this one SNP could explain the sig-
nal across the STAT1-STAT4 region. Even after accounting 

for the CTLA4 SNP associated with RA (rs3087243), the 
result for the STAT4 rs7574865 remained significant. 

 Since   STAT4 rs7574865 was also identified in SLE 
patients, it was concluded that common risk genes appar-
ently underlie multiple autoimmune disorders and likely the 
involvement of common pathways of pathogenesis among 
these different diseases, similarly as seen with PNTP22 
alleles  [19] . Although the association of STAT4 rs7574865 
genotype has been identified in American, Swedish, and a 
Korean  [16]  population, whether the polymorphism affects 
STAT4 expression or function is not known. Moreover, the 
specific role of STAT4 in RA and other autoimmune disor-
ders needs to be delineated as well as influences of allelic 
variation on certain disease subgroups.  

    TNFR1 AND C5 (RS376147 AND 
RS2900180) AND THE RISK OF RA 

 Another   study addressing risk factors for RA outside the 
HLA region  [20]  identified an association of a 100       kb 
region on chromosome 9 containing the TRAF1 and C5 
genes with disease in anti-CCP positive patients with RA. 
Since the most highly associated SNPs (rs376147 and 
rs2900180) are in linkage disequilibrium with both genes, 
it cannot be dissected whether the causal alleles or group 
of alleles influences TRAF1 or C5 (or both) to increase 
susceptibility for RA. 

 It   is known that the TRAF1 gene encodes an intracellu-
lar protein that mediates signal transduction through tumor 
necrosis factor (TNF) receptors. TNF has been consid-
ered as a critical cytokine in the pathogenesis of RA and 
blocking TNF is effective in the treatment of RA. TRAF1 
knockout mice have exaggerated T cell proliferation and 
activation in response to TNF or when stimulated through 
the T cell receptor complex, suggesting that TRAF1 acts 
as a negative regulator of these signaling pathways  [21] . 
TRAF1 binds several intracellular proteins, including the 
nuclear factor-(kappa)B inhibitory protein TNFAIP3  [22] . 

 The   clinical and biologic data for C5 for the involvement 
in RA are also very compelling. The complement pathway 
has been implicated in the pathogenesis of RA for more 
than 30 years  [23] . Complement activation leading to sig-
nificant depletion of complement components has been 
shown in synovial fluid of patients with RA. C5 cleavage 
generates the proinflammatory anaphylatoxin C5a as well 
as C5b, which initiates the generation of the membrane 
attack complex. C5 deficient mice are resistant to inflam-
matory arthritis in models with dominant humoral immu-
nity          [24 – 26] . It cannot be excluded that the allele identified 
acts through C5 by amplifying complement activation in 
the joints of patients with RA. 

 Collectively  , it is important to note that despite the asso-
ciation of genetic abnormalities and RA there is no known 
or obvious functional allele that explains these associations 
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although intracellular and extracellular consequences are 
conceivable. Moreover, it is possible that the identified 
SNPs need the presence of certain other genetic abnormali-
ties in order to express the disease.  

    CHALLENGES TO THE APPLICATION OF 
FINDINGS FROM GENETIC MAPPING 
STUDIES TO CLINICAL CONSEQUENCES 

 The   impact of SNPs associated with an enhanced risk for 
RA and their potential functional differences are usually 
smaller than those of mutations responsible for monogenic 
disorders. Therefore it is difficult to show that such vari-
ants have a relevant biologic effect and most association 
studies lack the provision of functional data. Thus, sensi-
tive and sophisticated methods in molecular biology and 
translational immunology are required for the investigation 
of functionally important variants to understand their clini-
cal relevance. 

 Another   critical issue is related to SNP associations 
across populations of various ancestries. For example, 
PADI4 associations were identified in Japanese and Korean 
RA patients  [9]  but could not be consistently confirmed 
in European populations. Along this line, one study  [8]  
observed weaker odds ratios and P values for TRAF1-
C5 and RA in the Swedish population compared to North 
American RA patients, whereas the TRAF1-C5 locus did 
not surface in the Wellcome Trust Case Control Consortium 
study among British RA patients  [27] . Similarly, the 
PTPN22 allele associated with RA in Caucasians does not 
exist in Asians. It is commonly accepted that polymor-
phisms identified in a signaling pathway in any population 
implies a role for that pathway in disease pathogenesis. It 
is possible, therefore, that polymorphisms in other genes 
in that signaling pathway may explain the disease risk in 
other populations.  

    MAPKp38 

 Mitogen   activated protein kinase p38 (p38MAPK) is an 
important intracellular kinase activated by cellular stress 
that links inflammatory as well as environmental stress to 
transcription factors        [28, 29] . Signal transduction is accom-
plished by a cascade of activation steps involving sequen-
tial kinases linking the plasma membrane level with the 
transcription factor level binding to DNA. P38MAPK is 
ultimate downstream signaling step before the transcrip-
tion factor level. Whereas, p38MAPK and c-Jun N-ter-
minal kinase (JNK) are mainly regulated by extracellular 
stress factors, the third pathway, extracellular signal related 
kinases (ERK) is preferentially a target for mitogenic 
stimuli. 

    Induction of p38MAPK Pathway 

 P38MAPK   comprises four different isoforms termed 
p38MAPK-alpha, beta, gamma, and delta. Importantly, all 
isoforms are serine-threonine protein kinases that share 
the common phosphorylation motif TGY. Upon activa-
tion p38MAPK undergoes dual phosphorylation at threo-
nine 180 and tyrosine 182  [30] . Inflammatory stimuli, 
such as lipopolysaccharide (LPS), tumor necrosis fac-
tor (TNF) and interleukin-1 (IL-1) are the major inducers 
of p38MAPK activation. Initially, it was found that LPS 
induced p38MAPK  [30]  and research focused on the role 
of p38MAPK in septic shock and LPS mediated induc-
tion of inflammatory cytokines, such as TNF        [30, 31] . 
Moreover, TNF itself also activates p38MAPK by engag-
ing type I TNF receptor        [32, 33] . Downstream activation of 
p38MAPK then allows TNF to transduce its inflammatory 
message to the target organ, e.g., the synovial membrane. 
TNF mediated activation is also relevant  in vivo  because 
systemic TNF overexpression in mice leads to activation 
of p38MAPK in the inflamed joints  [33] . P38MAPK does 
not only integrate inflammatory stimuli but also signals heat 
stress, osmotic shock, ultraviolet light, and cytotoxic chemi-
cals        [28, 29] . The activity of p38MAPK is tightly regulated 
by phosphatases such as mitogen activated protein kinase 
phosphatase-1 (MKP-1), dephosphorylating p38MAPK 
 [34] . Interestingly MKP-1 is strongly upregulated by glu-
cocorticoids, suggesting that part of the anti-inflammatory 
properties of these drugs are base on p38MAPK inhibition 
 [35]  as it has been shown for the regulation of MKP-1 by glu-
cocorticoids in synovial fibroblasts from RA patients  [36] . 

 Since   several different stress factors are present in the 
rheumatoid synovium, activation of the p38MAPK path-
way is conceivable and may be a target for therapeutic 
approaches. In this context, proinflammatory cytokines are 
chronically elevated in RA, which appears to be critical for 
p38MAPK activation  [37] . 

 A   detailed description of regulation of the activation 
cascade via MAPKKK, MAPKK, and finally resulting 
into p38MAPK induction can be found elsewhere        [33, 38] . 
It should be emphasized that a particular abnormality 
in RA with regard to p38MAPK signaling has not been 
identified so far.  

    Role of p38MAPK in Synovial Inflammation 

 The   mechanisms of gene regulation are complex and can 
include both transcriptional and translational events as well 
as alterations in mRNA stability. One major group of tar-
get genes for p38MAPK activation are proinflammatory 
cytokines such as TNF, IL-1, and IL-6        [30, 31] . Regulation 
of these inflammatory mediators is thus a major function 
of p38MAPK, which influences the balance of pro- and 
anti-inflammatory mechanisms. Selective blockade of 
TNF, IL-1, or IL- 6 can control disease by inhibiting joint 
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inflammation and structural damage. Since p38MAPK plays 
a central role in intracellular signaling, it was considered as 
an important target for inhibition. Such compounds indeed 
have anti-inflammatory properties in experimental animal 
models of arthritis but failed early clinical trials because 
of toxicity                [39 – 44] . Inhibition of p38MAPK in animal 
models led to reduced inflammation and correlated with 
reduced expression of cytokines such as IL-1, IL-6, and 
also RANKL  [44] . Upon inhibition of p38MAPK, forma-
tion of synovial inflammatory tissue is generally reduced 
along with a decrease in infiltrating cells. It is interesting to 
note that pharmacological inhibition of p38MAPK affects 
more than one isoform of p38MAPK, whereas the selective 
genetic deletion of the  β -isoform is not sufficient to inhibit 
experimental arthritis  [45] .  

    Role of p38MAPK in Cartilage Damage 

 Cartilage   damage is a hallmark of RA. The expression of 
matrix metalloproteinases by synovial tissue appears to be 
a key prerequisite for synovial tissue to invade and destroy 
cartilage        [46, 47] . Synthesis of MMPs is regulated through 
multiple MAPK families, including p38MAPK, suggesting 
that blockade of p38MAPK may have an effect in arthri-
tis        [48, 49] . This could be confirmed by animal models of 
arthritis that suggested that p38MAPK activation might be 
especially important for the destructive features of arthritis 
since p38 inhibitors strongly reduce cartilage degradation 
 [44] . It is uncertain, whether this effect is directly through 
p38MAPK dependent regulation of MMP expression or an 
indirect effect related to lower expression of proinflamma-
tory cytokines, especially IL-1, which is a key inducer of 
MMPs.  

    Role of p38MAPK in Inflammatory 
Bone Loss 

 Inflammatory   bone destruction is another central compo-
nent of RA explaining local bone erosions in RA leading to 
structural damage, changed joint architecture, and loss of 
joint function. Bone damage in arthritis results from osteo-
clasts that are derived from monocyte precursors and are 
able to damage bone          [50 – 52] . Interestingly, the formation 
of osteoclasts is modulated by the stimulation of hemat-
opoietic precursor cells with cytokines, i.e., RANKL and 
TNF, which ultimately results in p38MAPK phosphoryla-
tion        [51, 53] . Evidence for the central role of p38MAPK 
in this process comes from the substantial reduction of 
mature osteoclasts and osteoclast precursors in the synovial 
tissue of experimental arthritis after p38MAPK blockade 
 [44] . As a consequence tissue invasion into juxta-articular 
bone can be effectively blocked by the use of p38MAPK 
inhibitors. In contrast, deregulation of p38MAPK signaling 
such as found in CD44  � / �   mice when challenged with 

TNF leads to increased osteoclast formation and increased 
bone resorption  [54] . Resulting osteoclasts are increased 
in number and size caused by a decreased expression 
of MKP-1, which is a major regulatory molecule of the 
p38MAPK  [54] .  

    Other Functions 

 It   is notable, that activation of p38MAPK in syno-
vial microvessels may represent the result of autocrine, 
paracrine, or endocrine activation by proinflammatory 
cytokines. VEGF also uses p38MAPK to communicate 
mitogenic stimuli to endothelial cells, which are essential 
for the synovial microvessel proliferation into the newly 
formed inflammatory tissue  [55] . Activation of p38MAPK 
is critical for several different functions of endothelial 
cells, such as (i) chemoattraction, (ii) vasodilation, and 
(iii) angiogenesis, all of which are important for RA. 
Chemoattraction or chemotaxis is a particularly critical 
event in synovial inflammation, since a majority of cells 
migrate in the inflamed synovium from the blood stream 
and have passed the endothelial barrier. P38MAPK regu-
lates adhesion molecule expression, including E-selectin 
and VCAM-1 on endothelial cells, which regulate rolling 
and adhesion of leukocytes on the endothelium before 
transmigrating to the inflamed tissue, respectively        [56, 57] . 
Further, molecules involved in chemoattraction such as 
MCP-1 are regulated by p38MAPK  [58] . 

 Collectively  , P38MAPK are important stress kinases 
that are involved in a variety of processes of synovial 
inflammation and bone resorption but also appear to be 
active under a number of other conditions as well. So far, 
their inhibition in clinical trials also encountered toxicity 
problems that halted further development.   

    PTPN22 

 The   Arg620Trp variant of the intracellular phosphatase 
gene PTPN22        [5, 59]  has been found as a SNP conferring 
a higher risk for the susceptibility for RA. It is interesting 
to note that PTPN22 is involved in modulating the strength 
of the T cell receptor signal and therefore able to translate 
a functional consequence. Very similar to the identification 
of STAT4, this appears to be a common predisposition gene 
for both lupus and RA  [16] , since other studies reported 
broad associations of the intracellular phosphatase PTPN22 
with RA and SLE and with other autoimmune diseases  [59]  
such as type 1 diabetes mellitus  [60] , autoimmune thyroid 
disease  [61] , and myasthenia gravis  [62] . It is notable that 
the R620W mutation of PTPN22 conveys a gain of func-
tion that may truncate the T cell receptor response, possibly 
resulting in diminished activation induced T cell apoptosis 
and persistence of autoreactive T cells.  
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    CTLA4 

 Activation   of T cells requires two distinct signals. The first 
is an antigen specific interaction between the T cell recep-
tor and antigen presented in the context of the MHC on the 
surface of an antigen presenting cell. The second signal 
may be provided through a number of potential co-stimula-
tory molecules, of which CD28 may be the most important. 
Co-stimulation is especially important for the initial T cell 
response, and its effects are mediated by promoting prolif-
eration and survival. One of the most prominent T cell co-
stimulatory signals is mediated through the CD28-CD80/86 
pathway, which regulates interleukin-2 production and 
the expression of antiapoptotic molecules, such as Bcl-x L  
       [63, 64] . CD28 is present on most T cells and it binds to 
both CD80 (B7-1) and CD86 (B7-2), which are present on 
antigen presenting cells, including dendritic cells, B cells, 
and macrophages. These ligands are also expressed on acti-
vated T cells and are present on T cells obtained from the 
RA joint, suggesting a self-sustaining mechanism for T cell 
activation  [65] . Engagement with these ligands provides 
the second signal required for maximal T cell activation, 
and the absence of a co-stimulatory signal may result in 
anergy and apoptotic cell death. Cytotoxic T lymphocyte 
associated antigen (CTLA)4 (CD152), which is upregu-
lated on T cells following their activation, also interacts 
with CD80 and CD86, providing an important mechanism 
for downregulating T cell function        [66, 67] . Not only does 
CTLA4 permit interruption of the activating CD28 pathway 
but it may also provide important negative signals that per-
mit long term tolerance. CD28/B7 interactions are critical 
for the generation of CD4  �  , CD25  �  , CTLA4  �   T regula-
tory cells, and signaling through CTLA4 may promote 
the release of immunoregulatory cytokines such as TGF β        
 [64, 68] . Of interest, CTLA4 is expressed on T cells in the 
RA joint  [6] , supporting the potential importance of this 
pathway in regulating T cell activation in RA. 

 The   regulatory effects of interrupting CD28 interac-
tions with CD80/86 have been harnessed in recombinant 
molecules (CTLA4-immunoglobulin (Ig), abatacept) that 
combine the extracellular domain of human CTLA4 with a 
portion of the Fc domain of IgG 1   [69] , which has obtained 
approval for the treatment of RA.  

    IL4R VARIANTS I50V AND Q551R AND RA 

 Identification   of non- HLA  loci associated with RA has also 
been extended to the 16p12 region        [70, 71] , which included 
 IL4R , the gene coding for a specific receptor subunit of the 
Th2 cytokine interleukin-4 (IL-4). IL-4 and its receptor IL-
4R play an important modifying role in the pathogenesis 
of RA, since diminished production of IL-4 is believed to 
contribute to the characteristic Th1 mediated autoimmune 
rheumatoid inflammation        [72, 73] . Within the coding region 

of the  IL4R  gene, 2 SNPs, the I50V, and the Q551R poly-
morphisms reside within sequences coding for functionally 
important regions of the  IL4R  molecule. A recent study  [6]  
identified two  IL4R  SNPs (I50V and Q551R) with RA sus-
ceptibility and severity in an association study of 371 con-
trols and 471 well characterized RA patients with erosive 
disease. Although no association between I50V and Q551R 
 IL4R  SNPs and disease susceptibility was identified, the 
I50V SNP was strongly associated with rapid development 
of joint erosions. The predictive power of the I50V SNP for 
early erosive disease was higher than that of the auto-anti-
body, rheumatoid factor and the  HLA-DR  shared epitope 
(SE), thus identifying the I50V  IL4R  SNP as a novel genetic 
marker in RA with a high predictive value for early joint ero-
sion. Interestingly, the functional role of the I50V SNP was 
analyzed and it could be shown that the response of CD4       T 
cells from subjects homozygous for the V50 allele had a sig-
nificantly lower responsiveness to IL-4 than did cells from 
subjects homozygous for I50, as assessed by STAT-6 phos-
phorylation, GATA-3 induction, and IL-12R2 downmodula-
tion. This study provided evidence for a possible mechanism 
that might underlie the newly identified association of the 
I50V  IL4R  SNP with early erosions in RA and confirms that 
subtle but predictable functional consequences that occur as 
a result of change of function polymorphisms can contribute 
to specific aspects of disease pathogenesis.  

    TLR SIGNALING AND ARTHRITIS AND 
AUTOIMMUNITY 

 Recognition   of invading microorganisms by pattern recog-
nition receptoirs (PRR), such as TLRs, results in the acti-
vation of genes encoding proinflammatory cytokines and 
chemokines, which induce local inflammatory reactions. 
Moreover, TLR signaling leads to upregulation of co-stimu-
latory molecules on antigen presenting cells, facilitating 
the subsequent activation of the adaptive immune system. 
Finally, engagement of TLRs on B Cells along with ligation 
of the B cell receptor can lead to increased stimulation of 
specific B cells and enhanced production of antibody  [74] . 

 The   innate immune system is therefore able to influence 
adaptive immune responses via the provision of a second 
signal to T cell and B cell stimulation. Because of this 
important role of the innate immune system, it has been 
postulated that dysregulation of innate immune recogni-
tion of pathogens may be associated with autoimmunity. 
In this regard, an association of a TLR4 polymorphism 
(Asp299Gly) with Crohn’s disease and ulcerative coli-
tis has been identified  [75] . However, a study in patients 
with rheumatoid arthritis and systemic lupus erythema-
tosus (SLE) revealed no evidence for an association with 
TLR2 or -4 polymorphisms  [76] , whereas another report 
described a decreased susceptibility to rheumatoid arthri-
tis in individuals with the TLR4 variant Asp299Gly  [77] . 
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Classical animal models of arthritis such as adjuvant arthri-
tis or streptococcal cell wall arthritis are dependent on the 
activation of the innate immune system by TLR ligands 
as confirmed in mice deficient in the adaptor molecule 
MyD88; such mice did not develop arthritis  [78] . The 
availability of TLR ligands might be sufficient to initiate 
arthritis in a susceptible host but require maintenance by 
adaptive immune mechanisms, although it remains unclear 
whether chronic stimulation of the innate immune system 
by TLRs is required. Heat shock proteins, fibrinogen, and 
hyaluronan are commonly found in inflamed joints and can 
bind to TLR4. A study conducted by Marshak-Rothstein 
and colleagues  [74]  has demonstrated in a transgenic mouse 
model, that chromatin containing immune complexes can 
activate B cells to produce rheumatoid factor auto-antibod-
ies by synergistic engagement of the B cell receptor and 
TLR9. There is considerable evidence for the presence of 
exogenous as well as endogenous TLR ligands in autoim-
mune disease, although it is unclear whether activation of 
TLR signaling pathways is present or required in arthritis. 

 There   is also evidence for a role for TLRs in the devel-
opment of murine lupus. The autoimmunity susceptibility 
locus,  yaa , that resides on the Y chromosome and accounts 
for the susceptibility to lupus in the BXSB strain of mice, 
contains a duplication of the TLR7 gene  [79] . Moreover, 
genetic disruption of the TLR7 gene in BXSB mice prevents 
some but not all disease manifestations  [80] . The complex-
ity of TLR function in lupus is further emphasized by the 
finding that disruption of TLR7 in the MRL lp/lpr strain of 
mice blocked the development of auto-antibodies to RNA 
containing autoantigens and also disease development  [81] . 
In contrast, disruption of TLR9 inhibits the production of 
some anti-histone antibodies, but actually causes the dis-
ease to worsen  [81] . Efforts to control human lupus with 
antagonistic TLR ligands are currently in progress.  

    NF κ B SIGNALING IN ARTHRITIS AND 
INFLAMMATION 

 Activation   of the nuclear factor- κ B (NF κ B) pathway in 
the inflamed RA synovium appears to play a central role 
and results in the transactivation of a number of responsive 
elements (p105/p50, p100/p52, p65, RelB, c-Rel) that are 
intimately involved in the inflammatory reactions, includ-
ing TNF, release of matrix metalloproteinases by synovial 
fibroblasts, and the production of proinflammatory chem-
okines. As a consequence, immune cells are recruited to 
the inflamed joints. Of central importance, the activation 
of the so-called  “ canonical ”  NF κ B pathway leads to the 
formation of heterodimers of p50/p65. Although murine 
studies provide very compelling information on the role of 
NF κ B in inflammation and autoimmunity  [82] , important 
differences exist in the signaling networks between human 
and murine immune cells and immortalized cell lines, and 

require further studies. Although inhibition of the NF κ B is 
attempting pharmacologic approach, it can result in activa-
tion and simultaneous exacerbation of inflammation  [82] . 
A more detailed knowledge about the impact of NF κ B 
inhibition is necessary before its safe potential use in the 
clinic is contemplated.  

    B CELL SIGNALING IN AUTOIMMUNITY 

 Historically  , B cells have not been thought of as playing 
a central role in the immunopathogenesis of inflammatory 
joint diseases, in particular RA. Despite this, it has been 
accepted that auto-antibodies and immune complexes in 
the inflamed joints play an important amplifying role in 
synovitis. Recent data show that deleting B cells using an 
anti-CD20 antibody, rituximab, provides an effective ther-
apy with an acceptable safety profile        [7, 83] . 

 Currently   it is not clear whether intrinsic abnormali-
ties of B cell function ( Table 49.1   ) and/or their interaction 
with other immune cells appear to be of central importance 
of RA        [7, 84] . Loss of precise regulatory influences stabi-
lizing B cell homeostasis can result into autoimmunity or 
immune deficiency or sometimes both, although the predis-
position and/or mechanisms remain unclear. 

    B Cell Signal Transduction Pathways and their 
Implications for Autoimmunity 

 The   immune system is maintained by a fine balance 
between activation and inhibition ( Table 49.2   ). On the one 
hand, it must possess adequate reactivity to generate an 

 TABLE 49.1          Potential B cell abnormalities leading 
to autoimmunity  

   V(D)J recombination 

   Entry of B cells into the immune repertoire 

    Survival  of B cells by altered apoptosis 

   Selection 

   Somatic hypermutation 

   Receptor editing/revision 

   Differentiation of plasma cells 

   Extrinsic: 

   T cells, cytokines, APC, autoantigens 

    Altered activation threshold  
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effective immune response to target non-self molecules, 
whereas the emergence of autoimmunity must be avoided 
on the other hand. Essential to this process is the ability 
to control the timing and site of B cell activation and to 
limit the extent of activation precisely. All of this is suf-
ficiently regulated by a number of extrinsic and intrinsic 
mechanisms in a normal immune system to avoid patho-
genic autoimmunity. It is currently believed that failure to 
maintain this balance of activating and inhibiting factors, 
receptors, and pathways could result in either immunode-
ficiency or autoimmunity. Since B cells represent a unique 
crossroad between the innate and adaptive immune system, 
especially since they can be directly activated by toll-like 
receptors (TLRs), it becomes important that simple struc-
tures, such as methylated bacterial DNA, are able to acti-
vate B cells resulting in the production of auto-antibodies, 
such as rheumatoid factor  [74] . 

 Multiple   checkpoints permit both positive and negative 
selection of B cells, both centrally in the bone marrow and 
in the peripheral lymphoid tissues, such as the spleen and 
lymph nodes. These checkpoints are necessary to produce 
a diverse population of B cells capable of generating high 
affinity effector antibodies in the absence of pathologic 
autoreactivity.  

    Disturbances that Alter B Cell Survival and 
Lead to Autoimmunity 

 A   major process involved in B cell decisions in germinal 
centers (GC) is apoptosis, which is centrally involved in the 
selection of high affinity variants. Transgenic mice expressing 

the genes  bcl -2 and  bcl -x  L  , the products of which inhibit 
certain forms of apoptosis, provided evidence for the role 
of apoptosis in GC differentiation of B cells. A classical 
example of dysregulated apoptotic regulatory genes leading 
to autoimmunity was identified in a bcl-2 transgenic mouse 
model. Enhanced bcl-2 expression allows inappropriate 
survival of autoreactive B cell clones  [85] . Bcl-2 transgenic 
mice develop antinuclear antibodies and glomerulonephritis 
caused by immune complex deposition. Primary immuniza-
tion of  bcl -2 transgenic mice resulted in 20-fold more mem-
ory B cells than controls. Furthermore, a high proportion 
of these  bcl -2 transgenic memory B cells, despite having a 
typical memory phenotype, retained their V H  genes in a low 
affinity configuration. Thus, these memory B cells showed 
no evidence of having undergone affinity maturation. 

 An   additional  bcl -x  L   transgenic mouse also preserved 
low affinity cells in the GC, although in this case the low 
affinity cells were not germline variants of the dominant 
clonotype but rather were B cells using V H  genes that usu-
ally appear only during the early stages of the response 
 [86] . In both cases, blocking apoptosis in the GC had the 
effect of promoting the survival of low affinity variants 
that, in the case of the  bcl - 2  transgenic mice, entered the 
memory compartment. This demonstrates the role of apop-
tosis in selecting B cells that enter the memory compart-
ment, including a certain frequency of autoreactive cells. In 
contrast with the alterations of the memory compartment, 
 bcl -2 transgenic mice showed no perturbation of selection 
of bone marrow antibody secreting cells. This compart-
ment remained predominantly composed of high affinity 
antibody producers. These findings suggest that resistance 
to apoptosis in the GC is an important prerequisite to allow 
differentiation of a GC cell into a memory cell, whereas the 
differentiation to long lived plasma cells requires a more 
stringent affinity based signal. How this translates into 
human autoimmunity is still a matter of debate. 

 Another   example of autoimmunity developing as a result 
of alterations in lymphocyte apoptosis is provided by MRL 
mice homozygous for mutations in the Fas gene, a death 
inducing receptor required for normal regulation of B cell 
and T cell survival. MRL lpr/lpr  mice develop a spectrum of 
autoreactivity resembling that found in human SLE and other 
autoimmune diseases. Thus, enhanced lymphocyte survival 
caused by inappropriate expression of apoptotic and/or antia-
poptotic signals can promote the emergence of autoimmunity. 

 In   addition to intrinsic defects that can lead to increased 
B cell survival, external signals permit autoreactive B cells 
to escape deletion. A signal that is particularly important in 
B cell growth, differentiation, and survival is BAFF (also 
known as BlyS, TALL-1, THANK, and zTNF4)  [87] . BAFF 
is a member of the TNF family of cytokines that is pro-
duced by myeloid cells, such as dendritic cells, monocytes, 
and macrophages in inflamed tissue. It has remote effects 
and induces immature B cell survival as well as growth of 
mature B cells within peripheral lymphoid tissues. BAFF 

 TABLE 49.2          Immune functions of B cells  

   Precursors of (auto)antibody secreting plasma cells 

   Essential functions of B cells in regulating immune responses: 

   a.   antigen presenting cells 

   b.    differentiation of follicular dendritic cells in secondary 
lymphoid organs 

   c.    essential role in lymphoid organogenesis as well as in the 
initiation and regulation of T and B cell responses 

   d.    development of effective lymphoid architecture (antigen 
presenting M cells) 

   e.    activated B cells express co-stimulatory molecules and may 
differentiate into polarized cytokine producing effector cells 
that can be essential for the evolution of T effector cells 

   f.    differentiation of T effector cells 

   g.   immunoregulatory functions by IL-10 positive B cells 

   h.    cytokine production by activated B cells may influence the 
function of antigen presenting dendritic cells 



470 SECTION | D Signaling In Disease

binds three receptors; BCMA (B cell maturation antigen), 
TACI (transmembrane activator and calcium modulator and 
cyclophilin ligand interactor), and BAFF receptor. Through 
these receptors, BAFF acts as a potent co-stimulator for 
B cell survival when coupled with B cell antigen receptor 
ligation. In this regard, it was reported that BAFF ligation 
increased bcl-2 expression and increased activation of NF-b, 
both of which increase B cell survival  [88] . BCMA or 
BAFF transgenic mice display mature B cell hyperplasia 
and develop an SLE-like disease, with anti-DNA antibod-
ies, elevated serum IgM, vasculitis, and glomerulonephritis 
 [88] . Moreover, BAFF expression is elevated in MRL lpr/lpr  
mice and lupus prone (NZW � NZB)F1 hybrid mice and 
correlates with disease progression. In this regard, elevated 
BAFF levels were found in the serum of some patients with 
SLE, Sj ö gren’s syndrome and idiopathic thrombocytopenic 
purpura patients  [89]  as well as in the synovial fluid of RA 
patients. Conversely, BAFF deficient mice show a complete 
loss of follicular and marginal zone B lymphocytes. 

 Studies   of knockout mice have shown that BCMA, 
TACI, and BAFF-R are not directly equivalent in function 
 [90] . Mice lacking BCMA show normal B cell develop-
ment and antibody responses  [91] , whereas TACI deficient 
mice were shown to be deficient only in T cell independ-
ent antibody responses  [92] .   Paradoxically, mice lacking 
TACI show increased B cell proliferation and accumula-
tion suggesting an inhibitory role for TACI in B cell home-
ostasis. Recently, BCMA has been identified as being 
involved in the generation of long lived plasma cells  [93] . 
Thus far, gene targeted mice lacking BAFF-R have not 
been reported, but the natural mouse mutant, A/WySnJ, 
has a disruption of the intracellular domain of BAFF-
R. A/WySnJ mice display a phenotype that is similar to 
BAFF  � / �   mice, although follicular and marginal zone B 
cells are not completely abolished  [94] . A/WySnJ mice 
are impaired only in T cell dependent antibody responses, 
in contrast to the comprehensive defect of BAFF deficient 
mice. These results suggest that, while BAFF-R may be the 
major receptor of BAFF mediated signals for B cell sur-
vival, redundancy in function may be provided by the other 
two receptors, especially by TACI. 

 An   interesting role for BAFF was recently shown when 
it was reported that BAFF regulated the survival of both 
marginal zone and follicular B cells in mice treated with 
anti-CD20 antibody  [95]   . The increased levels of BAFF 
found in some subjects with SLE or Sj ö gren’s syndrome 
 [87-89]  may limit the therapeutic potential of this B cell 
depleting antibody.  

    Altered Thresholds for B Cellular Activation 
can Lead to Autoimmunity 

 Signals   generated through the B cell antigen receptor (BCR) 
are critical for B cell development and survival  [96]  as well 

as responses to antigen. The BCR is non-covalently asso-
ciated with the signal transduction elements, Ig α  (CD79a) 
and Ig β  (CD79b) ( Table 49.2 ). The cytoplasmic domains of 
Ig α  and  β  contain highly conserved motifs that are the sites 
of Src family kinase docking and tyrosine phosphorylation, 
termed the immunoreceptor tyrosine based activation motifs 
(ITAM). Phosphorylation of tyrosines within these motifs is 
mediated by Src family kinases, including Lyn, Fyn, or Blk. 
This phosphorylation cascade promotes BCR recruitment 
of another tyrosine kinase, Syk, which facilitates receptor 
phosphorylation and initiates downstream signaling cas-
cades that promote B cell activation  [97] . 

 The   generation and maintenance of self-reactive B cells 
is regulated by autoantigen signaling through the BCR 
complex. These responses are further influenced by other 
cell surface signal transduction molecules, including CD19, 
CD21, and CD22, which function as response regulators to 
amplify or inhibit BCR signaling. CD19, CD21, and CD22 
modulate BCR mediated signals by altering intrinsic intra-
cellular signal transduction thresholds and thereby adjusting 
the strength of signal needed to initiate BCR mediated acti-
vation  [97] . Intracellular regulatory molecules that also 
control the BCR signaling intensity include Lyn, Btk, Vav, 
and the SHP1 protein tyrosine phosphatase  [97] . Notably, 
CD19, CD21, CD22, Lyn, Vav, and SHP1 are functionally 
linked in a common signaling pathway as summarized in 
 Figure 49.1   .  

    Inhibitory Receptors of B Cells 

 Currently  , two major classes of inhibitory receptors have 
been described that share a number of structural and func-
tional similarities. Each inhibitory receptor contains one 
or more immunoreceptor tyrosine based inhibitory motifs 
(ITIMs) within its cytoplasmic domain essential for gener-
ation and transduction of inhibitory signals. Ligation of the 
inhibitory receptor to an immunoreceptor tyrosine based 
activating motif (ITAM) containing activating molecule, 
results in tyrosine kinase phosphorylation of the tyrosine 
residue within the ITIM  [98]  by lyn  [99] , which allows it to 
bind and activate phosphatases containing an src homology 
2 (SH2) domain. Two classes of SH2 containing inhibitory 
phosphatases have been identified: (i) the protein tyrosine 
phosphatases SHP-1 and SHP-2, and (ii) the phosphoi-
nositol phosphatases, SHIP and SHIP2. These classes have 
separate downstream signaling pathways through which 
they modulate cellular inhibition. In general, each class of 
phosphatase interacts with the ITIMs of different inhibitory 
receptors, but each inhibitory receptor acts predominantly 
through only one class of phosphatase  [99] . The surface 
molecules FcRII, CD22, and PD1 are inhibitory surface 
receptors and experimental evidence suggests that defective 
regulation by B cell inhibitory receptors may be of impor-
tance in autoimmunity.  
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    Fc Receptors FcRIIb 

 Three   classes of FcR have been described in humans, FcRI, 
FcRII, and FcRIII. FcRII and III are further divided into 
a and b forms. FcRI, IIa and IIIa are activating receptors, 
whereas FcRIIb is considered as inhibitory receptor. The 
function of FcRIIIb, which lacks an intracellular domain, 
is still unknown. Coordinate expression of FcR has been 
implicated in various diseases involving immune com-
plexes, such as insulin dependent diabetes mellitus, SLE, 
RA, multiple sclerosis, and autoimmune anemia. FcRIIb 
is a member of the Ig superfamily and represents a single 
chain, low affinity receptor for the Fc portion of IgG. It is 
a 40       kDa protein that consists of two extracellular Ig-like 
domains, a transmembrane domain and an intracytoplas-
mic domain that contains a single ITIM. It binds IgG either 
complexed to multivalent soluble antigens as immune com-
plexes or bound to cell membranes  [100] . The isoform on 
B cells is unique in containing an intracytoplasmic motif 
that prevents its internalization  [101] . 

 In   B cells, which do not express any Fc receptors other 
than FcRIIb, it acts to inhibit signaling through the B cell 
receptor (BCR), whereas in myeloid cells, FcRIIb inhibits 
activation through activating Fc receptors. Co-ligation of 
FcRIIb to the BCR leads to tyrosine phosphorylation of 
the ITIM by the tyrosine kinase lyn, recruitment of SHIP, 
and inhibition of Ca 2 �   flux and proliferation. The precise 

mechanism by which SHIP prevents B cell proliferation is 
uncertain  [101] . 

 Evidence   of a role for defective FcRIIb inhibition in 
the pathogenesis of autoimmunity is provided by studies 
of FcRII deficient mice, murine models of autoimmune 
disease, and human SLE as well as RA. FcRIIb deficiency 
renders normally resistant strains of mice susceptible to 
collagen induced arthritis and Goodpasture’s syndrome. 
FcRIIb  � / �   mice derived on a C57BL/6 but not a Balb/c 
background produce auto-antibodies and develop immune 
complex mediated autoimmune disease resembling SLE ,  
including immune complex mediated glomerulonephritis 
and renal failure. The  Fcr2b  and its polymorphisms repre-
sent a candidate gene of an inhibitory receptor that is likely 
to be involved in human autoimmune disease, in particular 
SLE. However, there has been no association reported for 
RA so far.  

    CD22 

 CD22   is a B cell specific glycoprotein that first appears 
intracellularly during the late pro-B cell stage of ontog-
eny. Subsequently, CD22 shifts to the plasma membrane 
with B cell maturation until plasma cell differentiation. 
Plasma cells do not express the molecule. CD22 has seven 
extracytoplasmic Ig-like domains and belongs to the Ig 

 FIGURE 49.1          Activation and inhibitory surface molecules and subsequent signaling pathways of B cells that modulate the strength of the BCR signal.    
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superfamily. It serves as a receptor for carbohydrate determi-
nants on a wide variety of cell surface and soluble molecules 
 in vivo . In contrast to CD19, CD22 can act as an antagonist 
to B cell activation most likely by enhancing the thresh-
old of BCR induced signals. Following BCR engagement, 
CD22 is predominantly phosphorylated within ITIMs 
present in its cytoplasmic domain. Phosphorylation is pre-
dominantly mediated by Lyn, downstream of the CD19 
dependent Lyn kinase amplification loop. If phosphorylated 
by Lyn, CD22 recruits the SHP-1 and SHIP phosphatases, 
leading to activation of a CD22/SHP-1/SHIP regulatory 
pathway that downregulates CD19 phosphorylation and 
BCR mediated signal transduction. Thus, CD19 and CD22 
together define signaling thresholds critical for expansion 
of the peripheral B cell pool  [101] . Ligation of CD22 to 
the BCR, and subsequent SHP-1 activation inhibits B cell 
activation by inhibiting the MAP kinases ERK2, JNK, and 
p38, and dephosphorylating molecules involved in the early 
events of BCR mediated activation. These include the BCR 
itself, tyrosine kinases activated by phosphorylation of 
Ig α  β  (such as syk) and the targets of these kinases (includ-
ing the adaptor protein BLNK and PLC). Since co-ligation 
of CD22 to the BCR reduces B cell activation, the interac-
tion of CD22 with its ligand may be involved in downregu-
lating B cell activation  [101] . 

 CD22   has been linked genetically to autoimmune dis-
ease indicating a possible role for defects in CD22 and 
subsequent signaling pathways in the development of 
autoimmunity. It has been shown that CD22 deficient mice 
have an expanded B1 cell population and develop increased 
serum IgM. The B cells of these mice are hyper-responsive 
to stimulation through the BCR  [102]  suggesting that CD22 
is an important inhibitory receptor in BCR dependent B 
cell activation. Importantly, these mice develop high affin-
ity auto-antibodies to dsDNA, myeloperoxidase, and cardi-
olipin, although they do not develop autoimmune disease. 
Interestingly, CD22 has been successfully used as a target 
of biological therapies in patients with non-Hodgkin lym-
phomas as well as in Sj ö gren’s syndrome  [103]  and SLE 
 [104]  by employing a humanized monoclonal antibody to 
CD22. To what extent this monoclonal antibody exerts its 
effects by depletion, inducing apoptosis, or by inhibition of 
B cell activation via CD22 remains to be shown.  

    PD-1 

 PD  -1 is a 55       kDa highly conserved inhibitory receptor 
of the Ig superfamily  [105] . It is expressed on resting B 
cells, T cells, and macrophages and is induced on activa-
tion of these cells        [102, 105] . PD-1 is composed of a sin-
gle extracellular Ig-like domain, a transmembrane region 
and has two tyrosine residues in the cytoplasmic tail, one 
of which forms part of an ITIM. Two PD-1 ligands (PD-
Ls) have been identified and are constitutively expressed on 
dendritic cells and on heart, lung, thymus, and kidney and 

also on monocytes after IFN stimulation.  In vitro  studies 
on a B cell lymphoma line using a chimeric molecule with 
the FcRII extracellular domain and the PD-1 cytoplasmic 
domain have shown that ligation of the PD-1 cytoplasmic 
domain to the BCR can inhibit BCR mediated signaling. 
This inhibition prevented BCR mediated proliferation, Ca 2 �   
mobilization, and tyrosine phosphorylation of molecules, 
including CD79beta, syk, PLC2, and ERK1/2. The physi-
ological role of PD-1 in B cells remains unclear, but it may 
play a role in maintaining peripheral tolerance by limiting 
activation of autoreactive B cells by crosslinking PD-1 dur-
ing interactions with PD-L expressing cells. PD-1 knockout 
mice develop either a lupus-like syndrome or autoimmune 
myocarditis, depending on the genetic background. 

 Collectively  , preclinical studies in animal models, 
genetic analysis as well as linkage studies, indicate that the 
three inhibitory receptors PD-1, CD22, and FcRIIb can-
didate as being involved in autoimmunity. Whether these 
potential defects are involved in initiation or the mainte-
nance of autoimmunity needs to be addressed.  

    Inhibitory Receptor Pathways and 
Autoimmunity 

 It   needs emphasis that the large number of inhibitory recep-
tors on the surface of B cells is subserved by remarkably 
similar intracellular signaling pathways. To date, Lyn is the 
only tyrosine kinase that has been identified as phosphorylat-
ing ITIMs on the B cell inhibitory receptors. Most of these 
ITIMs then associate with SHP-1 or SHIP ( Figure 49.1 ). 

 Inhibitory   receptors control the activation threshold of 
many immune cells, including B cells. There are many sim-
ilarities in the signaling pathways of these inhibitory recep-
tors. Inhibitory receptors also have specific effects, as they 
bind different ligands, including the activation of different 
phosphatases. Consistent with a role of defects in inhibi-
tory receptor function in autoimmunity is the finding that B 
cells from inhibitory receptor deficient mice have similari-
ties in phenotype and lowered thresholds for activation to 
that reported for B cells from SLE patients.  

    SHP-1 

 SHP  -1 is a protein tyrosine phosphatase and is similar in 
structure to SHP-2. SHP-1 is the phosphatase that is utilized 
most widely in the inhibitory receptor signaling pathways. 
SHP-1 plays the predominant role in regulating through 
ITIMs, whereas increasing evidence suggests that SHP-2 
may well have an additional activating role. Obviously, these 
molecules have an important role in regulation of a normal 
immune system. Defects in SHP-1 expression have been 
associated with SLE in humans; reduced levels of SHP-1 
and Lyn are found in the lymphocytes of patients with inac-
tive SLE, suggesting a potential role in pathogenesis.  
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    SHIP 

 SHIP   is a highly conserved SH2 containing inositol phos-
phatase related to SHIP-2  [104] . Both share a conserved 
N-terminal SH2 catalytic domain. SHIP acts predominantly 
on the FcRIIb signaling pathway. The molecule is expressed 
in myeloid and lymphoid lineages, including B cells  [106] . 
Genetic studies in humans have identified susceptibility 
loci for both diabetes and SLE mapping to the region of 
the genome containing SHIP, although direct evidence for 
abnormal SHIP function in human disease is lacking. 

 Recently  , the K/BxN mouse has generated particular 
interest. In this model, spontaneous arthritis occurs in mice 
that express both the transgene encoded KRN T cell recep-
tor and the IAg 7  MHC class II allele  [107] . The transgenic 
T cells have a specificity for glucose-6-phosphate isomer-
ase (G6PI) and are able to break tolerance in the B cell 
compartment resulting in the production of auto-antibodies 
to G6PI. Affinity purified anti-G6PI Ig from these mice can 
transfer joint specific inflammation to healthy recipients. A 
mechanism for joint specific disease arising from autoim-
munity to G6PI has been suggested recently. G6PI bound 
to the surface of cartilage serves as the target for anti-G6PI 
binding and subsequent complement mediated damage. 
In this model, the inciting event is the expression of an 
autoreactive T cell receptor in the periphery. However, joint 
destruction is delegated by the adaptive response to innate 
immune mechanisms and can be transferred to animals that 
lack B and T cells  [108] . Whereas these animal studies are 
very compelling, anti-G6PI antibodies do not frequently 
occur in the serum of RA patients.   

    SUMMARY 

 Although   a number of associations of genetic abnormalities 
and RA suggest a functional involvement in this disease, so 
far none has been proven to be effective in disease suscepti-
bility or disease activity. That extracellular and intracellular 
factors involved in signaling pathways clearly play a role 
in RA with p38MAPK, has been characterized most inten-
sively. With regard to systemic autoimmune diseases, much 
attention has been focused on interaction of immune cells 
(CD40/CD40L, PD-1) and intracellular signaling. Because 
of the central role of B cells in these entities, inhibitory 
receptors and their signaling pathways appear to be central 
in the regulation of activation thresholds. Although still at 
early stages of investigation, identification of distinct signal-
ing pathways have the promise for new therapeutic avenues.   
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    INTRODUCTION 

 Delivery   of oxygen and nutrients to the end organs and 
the removal of by-products from bodily tissues are major 
functions of the vascular tree. These vital processes may 
be severely perturbed by the vasculitides, a varied group of 
inflammatory diseases that have as their common denomi-
nator inflammation of blood vessels, decreased blood 
flow, and subsequent tissue damage through ischemic 
and/or hemorrhagic mechanisms. Organized classification 
schemes devised in the last 20 years have been very help-
ful in characterizing the multitude of vasculitic syndromes. 
These rubrics have allowed basic science researchers and 
clinicians alike to gain a better understanding of the core 
pathological processes at work in vasculitis. Though the 
etiology of vasculitis remains relatively obscure, our 
understanding of the pathophysiology of these diseases has 
grown through the study of the vascular endothelium and 
antiendothelial cell antibodies (AECAs), immune com-
plex formation and deposition, antineutrophil cytoplasmic 
antibodies (ANCAs), and animal models. Translational 
research involving signal transduction and resulting clini-
cal application is now gaining a foothold in the vasculitis 
scientific community, and these efforts promise to usher in 
a new revolution of therapies targeted toward a group of 
diseases that generate significant morbidity and mortality.  

    MECHANISMS IN THE PATHOGENESIS OF 
VASCULITIS 

    The Vascular Endothelium 

 The   endothelial layer of blood vessels constitutes a 
dynamic and physiologically active layer of cells that line 
blood vessels. The endothelial cell (EC) layer is not a static 
structure, but instead a highly specialized single layer of 
cells that is able to react to the microenvironment and alter 
the physiology of the end organs they serve. ECs have a 

number of functions, some of which include hemostasis, 
neovascularization, control of local blood flow, and coor-
dination of the transport and recruitment of leukocytes. 
Through these mechanisms and their interface with the 
blood stream, ECs are involved in the normal physiol-
ogy of the end organ, but also in the pathophysiology as it 
relates to vasculitic processes and other deleterious insults. 
The characteristics and functions of the endothelial cells 
vary depending on the size and location of the blood vessel 
studied, and there are both microvascular and macrovascu-
lar ECs. Much of our understanding of EC signaling comes 
from the  in vitro  study of human umbilical vein endothe-
lial cells (HUVECs), though researchers are now starting 
to incorporate tenets from more organ specific endothe-
lial cell subtypes in the study of vasculitis. For example, 
human kidney microvascular endothelial cells (HKMECs) 
are found in Wegener’s granulomatosis (WG)  [1] . Effector 
cells of the immune system interact with the endothelium 
to evoke an immune response. This chapter will encompass 
the signaling mechanisms by which these processes occur 
in vasculitis. 

 Endothelial   cells are activated by inflammatory proc-
esses, either local or systemic. Trauma, infection, and vas-
culitis are three examples of inflammatory insults that can 
trigger the activation of ECs. Interleukin-1 (IL-1) and tumor 
necrosis factor-alpha (TNF α ) are two very potent inflamma-
tory cytokines produced by dendritic cells (DCs), fibroblasts, 
and macrophages that can activate the EC. An overview of 
EC adhesion pathways is illustrated in  Figure 50.1   . 

 Through   a cascade of intracellular signaling and enzy-
matic modifications nuclear factor kappa beta (NF κ  β ) 
is generated, which leads to a whole host of downstream 
events. These include the production of inflammatory and 
recruitment cytokines Interleukin-6 (IL-6) and Interleukin-8 
(IL-8), respectively, upregulation of the adhesion mol-
ecules intercellular adhesion molecule-1 (ICAM-1) and 
vascular cell adhesion molecule-1 (VCAM-1) among oth-
ers. Cyclo-oxygenase-2 (COX-2) and inducible nitric oxide 
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synthase (iNOS) enzymes are also produced. The net effect 
is recruitment of further immune cells to the inflammatory 
site, with egress of these effector cells into the surrounding 
tissue  [2] , as shown in  Figure 50.2     [3] . 

 Through   an understanding of these signaling mecha-
nisms, translational research has revealed potential thera-
peutic targets in the treatment of vasculitis  [4] .  

    Antiendothelial Cell Antibodies 

 Antiendothelial   cell antibodies (AECAs) are a heterogene-
ous group of auto-antibodies without well defined antigens 
that have been implicated in the pathogenesis of several 
autoimmune connective tissue diseases and vasculitides  
        [5 – 7] . A host of pathogenetic mechanisms have been posited 
in an effort to link AECAs in the chain of events leading to 
tissue damage in vasculitis. Some of these include activa-
tion of thrombosis, increased leukocyte adhesion, direct 
cytotoxicity, and induction of apoptosis. The clinical utility 
of AECAs is unclear at the present time  [8] , though several 
authors have speculated that AECAs may be a worthwhile 
assay to pursue in patients with vasculitis, in particular, 
Wegener’s granulomatosis            [9 – 12] . Perhaps the most com-
pelling support for AECA involvement in the pathogenesis 
of vasculitis results from the work of Damianovich  et al.  
who described a murine model of AECA induced vasculitis 

 [13] . In this model, BALB/c mice were immunized with 
IgG AECA from a patient with WG, which triggered 
murine AECA production and resultant pulmonary and 
renal vasculitic lesions. Other evidence for the possible role 
of AECAs in vasculitis comes from AECA titer studies 
 [14] ,  in vitro  effects of AECA on endothelial cells  [15] , and 
the upregulation of vascular endothelial adherence mol-
ecules with increased leukocyte activation in patients with 
WG who have been exposed to AECA IgG  [16] . A recent 
study by Holm é n  et al.  lends some support to AECA sign-
aling through the stress activated protein kinase (SAPK)/c-
Jun N-terminal Kinase (JNK) and NF κ  β  pathways, which 
has generated some interest in translational efforts for mod-
ulation of vascular adhesion protein-1 (VAP-1) in the treat-
ment of WG  [17] . 

 However  , several groups have questioned the methodol-
ogy of AECA detection and quantification          [18 – 20]  result-
ing in a call for more robust data by combining at least two 
molecular techniques  [21]  in the identification and meas-
urement of AECAs. One of the more promising biochemi-
cal techniques used in the last few years to better identify 
putative AECA antigens is proteomics  [22] . In review, 
ongoing and future investigations should provide a clearer 
view into the role of AECAs in the pathogenesis of vascu-
litides and putative signaling mechanisms that may affect 
inflammation and tissue damage.  

 FIGURE 50.1          Leukocyte adhesion cascade.  
    The inflammatory process that results in vasculitis is initiated by a series of molecular events between leukocytes and the vascular endothelium. The 
process involves the recruitment of leukocytes to inflammation sites, due, in part, to the actions of the indicated cytokines.    
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    Immune Complex Mediated Vasculitic 
Syndromes 

 The   immunological mechanisms involved in the immune 
complex mediated vasculitides can be broadly considered 
humoral in nature with examples including cryoglobuline-
mic vasculitis, hypersensitivity vasculitis, and Henoch-
Schonlein Purpura (HSP). An immune complex (IC) 
comprises the formation of antigen-antibody conglomer-
ates. The IC is an important function of the immune sys-
tem in that the foreign antigens are more readily removed 
when detected by the immune system as an immune com-
plex. These ICs are normally rather innocuous and do not 
stimulate the immune system to any great degree. In addi-
tion, they do not normally deposit in the walls of blood 
vessels. However, in the immune complex mediated vascu-
litides, ICs are deposited in the walls of the blood vessels 
in organs such as the skin and kidneys. This often triggers 
a pathological cascade of deleterious pathways that include 
complement activation, recruitment of lymphocytes, and 
resultant perpetuation of inflammation ( Figure 50.3   ). This 

cycle leads to endothelial damage of the vessel, decreased 
blood flow to vital organs through ischemia and/or hemor-
rhage, and the widespread clinical manifestations seen in 
the immune complex mediated vasculitic syndromes. 

 The   complement system is a cascade of tightly regulated 
plasma proteins that functions to convert pathogen recog-
nition into host defense  [23] . It has multiple other related 
roles, for example, defense against bacterial infection, link-
age of innate and adaptive immunity, and removal of ICs. 
The early events in the complement cascade are a series of 
proenzymatic cleavage reactions that result in activation of 
downstream complement components. It can be activated in 
three ways: directly by the pathogen (the classical pathway); 
activated C3 binding in plasma to the surface of a pathogen 
(the alternative pathway); and by binding of mannose bind-
ing lectin (the MB-lectin pathway). These three pathways 
converge to produce the critical C3 convertases that func-
tion to cleave C3 into C3b. C3b then acts as an opsoniz-
ing molecule, and it also binds to C3 convertase to form C5 
convertase. C5a, an important peptide mediator of inflam-
mation, is produced from C3b binding to C3 convertase, 

 FIGURE 50.2          Schematic overview of the various functions and cellular interactions mediated by microvascular ECs that impact on innate and 
adaptive immunity, coagulation, and inflammation.  
    PC, Protein C; APC, activated protein C; sEPCR, soluble EPCR; sTM, soluble TM.P 64. Both the innate and adaptive immune systems are involved in 
the pathogenesis of vasculitis.    
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and the larger cleavage product, C5b, then triggers the 
downstream events of the complement cascade, with the 
production of the membrane attack complex (C5b-9 com-
plex). This results in the creation of C5a, further chemotaxis 
and leukocyte recruitment, and the initiation of a destruc-
tive cycle that may involve the membrane attack complex 
in both the skin and the kidney  [24] . More recently, the 
MB-lectin and alternative pathways of complement activa-
tion, in addition to the classical complement pathway, have 
been implicated in the renal pathogenesis of immune com-
plex disease, and others have suggested that monitoring 
certain levels of complement may be useful in monitoring 
HSP disease activity  [25] . Alternatively, C4 complement 
deficiencies have also been linked to immune complex dis-
ease, perhaps reflecting the importance of the complement 
system in the clearance of Ics        [26, 27] . There are a number 
of regulating pathways that motivate the activation.  

    ANCA: Implications in Vasculitis 

 Antineutrophil   cytoplasmic antibodies (ANCA) are auto-
antibodies that have activity against intracytoplasmic 
enzymes found in neutrophils, namely proteinase 3 (PR3) 
and myeloperoxidase (MPO)        [28,29] . ANCAs are rec-
ognized based on their characteristic staining patterns on 
direct immunofluorescence, with C-ANCA denoting cyto-
plasmic staining and P-ANCA illustrating a predominant 
perinuclear staining pattern. Vasculitic processes that are 
associated with ANCAs include WG, MPA, and CSS, and 
these entities often have a preponderance of either PR3 or 
MPO on enzyme-linked immunosorbent assay (ELISA). 

PR3-ANCA is strongly associated with WG, while MPO-
ANCA is more commonly found in MPA and CSS. There 
is overlap between the vasculitides, however, with respect 
to their antigen specificities. In contrast to the immune 
complex mediated vasculitic processes, the small vessel 
vasculitides associated with ANCAs are considered to be 
pauci-immune, that is, they have very little immune com-
plex deposition in the walls of the blood vessel. In addition, 
they tend to be more granulomatous in nature, thus impli-
cating predominantly cell mediated immune mechanisms 
rather than humoral involvement. 

  In   vitro  data supporting the pathogenic link between 
ANCA and vasculitis began to emerge over the last 10 
years, with several studies illustrating the ability of MPO-
ANCA and PR3-ANCA to stimulate neutrophils to pro-
duce reactive oxygen radicals, release lytic enzymes, and 
increase the neutrophil adherence to the endothelium; these 
mechanisms ultimately result in lysis of the endothelial 
cells with subsequent tissue damage        [30,31] . Neutrophil 
activation is thought to be mediated by Fc and Fab’2 bind-
ing, with signaling pathways possibly distinct from those 
used in the immune complex mediated vasculitides  [32] . 
The Fc receptor signaling mechanisms are further explored 
below.  Figure 50.4    illustrates the proposed pathways in the 
pathogenesis of ANCA mediated vasculitis. 

 The   group of Fc γ  receptors (Fc γ Rs) deserve special 
mention, as they are finding an increasingly significant role 
in the field of translational research in immunology and 
autoimmune disease          [33 – 35] . The Fc γ Rs are a family of 
glycoproteins that are intimately involved in the homeosta-
sis of the immune system, as they have both activation and 

 FIGURE 50.3          Immune complexes (IC) result in vasculitis primarily by activating the complement cascade. Inflammation is often triggered by 
circulating ICs entering tissue.    



 Chapter   |   50    Translational Concepts in Vasculitis 481

inhibitory functions. They have roles in antigen presenta-
tion, effector cell activation, B cell activation, and dendritic 
cell maturation. Through these functions, the Fc γ Rs modu-
late the intensity of the immune response and serve as a link 
between the innate and adaptive immune systems. Their sig-
naling pathways are mediated through phosphorylation of 
immunoreceptor tyrosine based activation motifs (ITAMs) 
by the SRC family of kinases, with subsequent recruitment 
of SYK family (cytosolic tyrosine kinase) kinases        [36, 37] . 
Downstream events involve activation of Bruton’s tyrosine 
kinase (BTK) and phospholipase C γ  (PLC γ ), with resultant 
calcium influx, in addition to the activation of RAS-RAF-
MAPK pathways  [38] . Work by Hewins  et al.  has shown 
that Syk phosphorylation is induced during ANCA medi-
ated neutrophil activation, and that phosphorylation is abro-
gated by blockade of Fc γ R  [39] . The precise involvement 
of the various members of the Fc γ R family in ANCA asso-
ciated vasculitis is still being investigated, but the number 
of possible therapeutic targets is staggering in these com-
plex pathways, and translational research is underway to 
best determine viable targets, especially now that there are 
Fc γ R humanized mice models        [40, 41] . 

 Clinical   evidence supporting the pathogenic role of 
ANCA lies not only in the strong association of PR3-
ANCA and MPO-ANCA with WG, CSS, and MPA, but 
also in clinical case reports of vasculitis in human patients. 
As illustrated in  Table 50.2 , the CHCC incorporated the 
diagnostic value of ANCA into their vasculitis rubric, 
and further studies have corroborated the usefulness of 
ANCA in the diagnosis of CSS, MPA, and WG        [42,43] . 
Furthermore, because of the strong association of ANCA 

with MPA, CSS, and WG, ANCA has been implicated in 
the pathogenesis of these vasculitides  [44] . Some have 
advocated following titers of ANCA in an effort to predict 
relapse of disease and guide treatment  [45] . As in the case 
of AECAs, however, the utility of serial ANCA measure-
ments has been questioned by others  [46] . 

 In   2004 and 2005, a case of possible vertical transmis-
sion of MPO-ANCA IgG was reported  [47] . This newborn 
child developed pulmonary hemorrhage and glomerulone-
phritis after delivery. The child’s mother had active MPA 
that was associated with MPO-ANCA, and the causal 
link between the MPO-ANCA IgG in the infant’s blood 
and the resulting clinical manifestations has been postu-
lated. Speculation has also arisen regarding a possible link 
between propylthiouracil and hydralazine and the induction 
of ANCA associated disease manifesting as pauci-immune 
glomerulonephritis  [48] . 

 There   are several lines of evidence that support the role 
of ANCA in the pathogenesis of vasculitis; however, it 
should be stressed that the preponderance of the data thus 
far do not provide a direct link, and indeed provide a path-
ogenic model more by inference than by direct causality. 
Whether or not the ANCA is playing a direct role in the 
pathogenesis of these vasculitic syndromes, or is an epi-
phenomenon of immunological activation, remains specu-
lation at this time.  

    Animal Models of Vasculitis 

 There   are several animal models that investigate the pos-
sible pathogenetic relationships of ANCA and infectious 

 FIGURE 50.4          Neutrophil activation resulting in lysosomal enzyme release and subsequent damage to the vascular endothelium.    
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agents with vasculitic syndromes. They include knockout 
murine models, rat studies, and antigen transfer studies, all 
of which have shed some light on the specter of the role 
of infection and ANCA in the pathogenesis of vasculitis. It 
should be noted that these are animal models, however, and 
they do not perfectly describe the human disease pheno-
type. However, they do serve an important purpose in that 
they function to illustrate possible pathogenetic pathways 
by which the vasculitides perturb the vascular tree.  

    ANCA        �        Vasculitis 

 Investigations   from the 1990s hinted at the possibility of 
ANCA pathogenicity in animals  [49] . These initial stud-
ies have been further substantiated by work from Xiao, 
Jennette, Huugen, and others at the University of North 
Carolina at Chapel Hill, and a possible role of the comple-
ment system in the ANCA associated vasculitides has also 
been postulated. Xiao’s model utilizes MPO deficient mice 
that are immunized with murine MPO; this immunization 
initiates an MPO directed immunological reaction. When 
splenocytes or IgG are passively transferred into recipient 
wild-type or immunodeficient mice without T or B cells, 
leukocytoclastic angiitis and pulmonary capillaritis ensues 
in some of the mice. All of them develop a focal necrotiz-
ing glomerulonephritis, which is exacerbated by injection 
of lipopolysaccharide          [50 – 52] . Microscopic immunofluo-
rescent analysis has revealed this to be a pauci-immune 
process, w/o significant complement or immunoglobulin 
deposition. The role of anti-MPO T cells in this pathologi-
cal process is less clear. 

 A   rat model has been developed by Little and others 
that implicates MPO-ANCA in the pathogenesis of vas-
culitis  [53] . In this model, rats are immunized with human 
MPO, which creates anti-MPO antibodies that cross react 
with both rat MPO and human MPO. The ability of anti-
MPO to interfere with leukocyte migration and adher-
ence, in addition to the generation of a focal pauci-immune 
glomerulonephritis and pulmonary capillaritis,  in vivo , was 
shown in this study. 

 The   evidence for ANCA pathogenicity is less convinc-
ing with respect to the PR3 antigen and the possible link 
with WG in animal models. A model developed by Pfister 
and others illustrates the potential for anti-PR3 pathogenic-
ity, however  [54] . In this mouse model, PR3 and elastase 
genes are knocked out, and the mice are immunized with 
recombinant murine PR3. This results in anti-PR3 auto-
antibodies against the cytoplasm of the neutrophils. 
Interestingly, these mice did not develop full blown renal or 
pulmonary disease, only the earliest renal and pulmonary 
lesions. They did develop cutaneous inflammation, how-
ever, when the mice received both a skin injection of tumor 
necrosis factor-alpha (TNF α ) and an intravenous injection 
of anti-PR3 antibodies.  

    Kawasaki Disease 

 Perhaps   the most exciting mouse model of vasculitis, with 
respect to translational applications, comes from Kawasaki 
disease (KD). KD is a disease of young persons and is 
characterized by prolonged fever, rash, conjunctival injec-
tion, mucosal inflammation, and enlarged cervical lymph 
nodes  [55] . Duong and others have created a murine model 
of KD in which inbred mice receive intraperitoneal injec-
tions of lactobacillus cell wall extract  [56] . The histology 
and the time course of the coronary artery lesions in these 
mice is very similar to those found in children affected with 
KD, by way of immune cells invading myocardial tissue as 
early as day 3 post-injection and formation of aneurisms at 
day 42. Intravenous immunoglobulin therapy prevents the 
vascular lesions in this mouse model, just as it does in chil-
dren with KD        [57,58] . Upregulation of leukocyte recruit-
ment proteins is thought to be mediated by TNF α , and 
blockade of TNF α  by entanercept completely ameliorates 
the elastin breakdown in the coronary arteries, which is the 
major defect in the aneurysm formation. This type of excit-
ing basic science research has led to translational applica-
tions of anti-TNF α  agents to treat KD.   

    TRANSLATIONAL APPROACHES TO 
THERAPEUTICS IN VASCULITIS 

 The   current treatment approach to life or organ threaten-
ing systemic vasculitides (with the exception of Kawasaki 
disease) involve the administration of high dose corticos-
teroids and Cyclophosphamide (CYC), to put the diseases 
into remission. Though effective, their use is associated 
with high morbidity and, occasionally, mortality. After the 
severe manifestations of the vasculitis are controlled, alter-
native, less toxic agents such as methotrexate, mycophe-
nolate, or azathioprine are used as maintenance therapies. 
As discussed above, intensive basic science research has 
illustrated many of the pathways involved in the pathogen-
esis of vasculitis, and this has resulted in the development 
of new agents more specifically targeted at the underlying 
mechanisms. Two classes of medications, TNF α  inhibi-
tors and anti-B cell agents, have been studied in prospec-
tive trials, and though the results have been mixed, they 
provide good examples of  “ bench to bedside to practice ”  
methodology. 

 TNF   α  is found in vasculitic lesions, and levels of the 
cytokine have been shown to correlate with disease activity, 
in addition to its putative role in neutrophil priming. There 
is also evidence in an animal model of TNF α  blockade 
efficacy  [59] . The Wegener’s granulomatosis entanercept 
trial (WGET) trial was initiated on this basic science foun-
dation  [60] . Over 100 patients were randomized to receive 
 “ standard therapy, ”  which consisted of CYC and corticos-
teroids plus placebo or entanercept, a TNF α  fusion protein 
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receptor blocker, plus placebo. This was a negative study, 
in that no differences were found between the two groups 
with respect to remission rates. 

 Rituximab   (RTX) is a monoclonal IgG antibody 
directed against the CD20 molecule on B cells that result in 
a rapid and sustained depletion of most subsets of B cells. 
It has found widespread use in hematology with the treat-
ment of Non-Hodgkin Lymphoma, and it has found rheu-
matological applications in the treatment of rheumatoid 
arthritis. Given that B cells produce auto-antibodies and 
cytokines and that ANCAs are posited to be pathogenic 
in vasculitis, there is biological plausibility for the use of 
RTX in the vasculitides. Two recent studies in patients with 
WG have illustrated this proof of principle. Keogh  et al.  
examined 11 patients with refractory vasculitis despite the 
use of CYC or in those who had a contraindication to its 
use. RTX induced a remission in all patients, with con-
comitant decreases in peripheral B cells and ANCA titers 
 [61] . In the other study, 10 patients (seven of whom had 
renal involvement) went into remission after therapy with 
RTX  [62] . The results of these promising preliminary stud-
ies need to be validated by larger randomized trials, and the 
ongoing rituximab for ANCA associated vasculitis (RAVE) 
trial hopes to address these unanswered questions.  

    CLASSIFICATION OF VASCULITIC 
SYNDROMES 

 Correct   classification of clinical syndromes allows the 
practitioner to better characterize the disease entity and to 
direct his or her therapies against the pathological process. 
In addition, appropriate classification of patients allows 
clinical and basic science researchers to better under-
stand the effectiveness of treatments in clinical trials and 
the pathophysiological mechanisms underlying the dis-
eases. Until the 1990s, the vasculitides were lacking such 
organizational rubrics.  Table 50.1    depicts the classification 
criteria of systemic vasculitis developed by the American 
College of Rheumatology (ACR) in 1990, which helped 
bring some order to the spectrum of vasculitic disease  [63] . 

 Approximately   4 years later, experts from the field of 
vasculitis met at the Chapel Hill Consensus Conference 
(CHCC) on the Nomenclature of Systemic Vasculitis in 
an effort to create clearer definitions of vasculitis and to 
develop diagnostic terminology related to the vasculitic 
syndromes  [64]  as depicted in  Table 50.2   . 

 More   recently, the European League against 
Rheumatism (EULAR) and the Paediatric Rheumatology 
European Society (PReS) developed classification criteria 
for the vasculitic syndromes found in children.  Table 50.3    
illustrates the EULAR/PReS rubric. 

 These   classification schemes take into account the most 
common clinical and pathologic presentations of the indi-
vidual disorders, though they somewhat artificially divide 

 TABLE 50.1          1990 ACR classification of systemic 
vasculitis  

   Dominant vessel  Primary  Secondary 

   Large arteries  Giant cell arteritis  Aortitis associated 
with RA 

     Takayasu’s arteritis  Infection (e.g., 
syphilis, TB) 

   Medium arteries  Classical PAN 
 Kawasaki disease 

 Hepatitis B 
associated PAN 

   Small vessels and 
medium arteries 

 Wegener’s 
granulomatosis  1   

 Vasculitis 
secondary to RA, 

     Churg-Strauss 
syndrome  1   

 SLE, Sj ö gren’s 
syndrome 

     Microscopic polyangiitis  1    Drugs 
       Infection (e.g., HIV) 

   Small vessels 
(leukocytoclastic) 

 Henoch-Sch ö nlein 
purpura 

 Drugs  2   

     Cryoglobulinemia  Hepatitis C 
associated 

     Cutaneous 
leukocytoclastic angiitis 

 Infection 

  PAN - polyarteritis nodosa; RA - rheumatoid arteritis; TB  –  tuberculosis  
  1  Diseases most commonly associated with ANCA  –  significant risk 
of renal involvement, most responsive to immunosuppression with 
cyclophosphamide.  
  2  For example: sulfonamides, penicillins, thiazide diuretics, and many 
others.  

 TABLE 50.2          Names and definitions of vasculitis 
adopted by the Chapel Hill Consensus Conference on 
the nomenclature of systemic vasculitis  

   Name  Definition 

   Polyarteritis 
nodosa (PAN) 

 Necrotizing inflammation of medium-sized or 
small arteries without glomerulonephritis or 
vasculitis in arterioles, capillaries, or venules. 

   Wegener´s 
granulomatosis 
(WG) 

 Granulomatous inflammation involving the 
respiratory tract, and necrotizing vasculitis 
affecting small to medium-sized vessels, e.g., 
capillaries, venules, arterioles, and arteries. 
 Necrotizing glomerulonephritis is common.  

   Churg-Strauss 
syndrome 
(CSS) 

 Eosinophil-rich and granulomatous 
inflammation involving the respiratory tract 
and necrotizing vasculitis affecting small- to 
medium-sized vessels, and associated with 
asthma and blood eosinophilia. 

   Microscopic 
polyangiitis 
(MSA) 

 Necrotizing vasculitis with few or no immune 
deposits affecting small vessels, i.e., capillaries, 
venules, or arterioles . Necrotizing arteritis 
of small- and medium-sized arteries may be 
present. Necrotizing glomerulonephritis is very 
common. Pulmonary capillaritis often occurs.  
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them according to the size of blood vessel affected by the 
vasculitic process. Several of the vasculitic syndromes 
affect more than one size of blood vessel, and this overlap 
often leads to the protean manifestations of these diseases, 
which can result in diagnostic dilemmas. These classi-
fication motifs are not all inclusive, as there are a multi-
tude of rare vasculitic syndromes that are not listed in the 
ACR, CHCC, or EULAR/PreS classification schemes. A 
second way to group the vasculitides is according to their 
relationship with other diseases; thus, they may be con-
sidered primary or secondary processes. Secondary vascu-
litic syndromes occur as a result of, or in association with, 
other systemic processes or insults. Examples of second-
ary vasculitides include those related to malignancy, sub-
stance abuse, and radiation therapy. While not perfect by 
any means, the aforementioned sets of classification crite-
ria serve to gain a better sense of the clinical, pathological, 
and diagnostic characteristics of the vasculitic syndromes.  

    CONCLUSIONS 

 The   vasculitides describe a very heterogeneous group of dis-
eases that all have a common thread, that is, inflammation 

 TABLE 50.3          New classification of childhood vasculitis  

      1.     Predominantly large vessel vasculitis 
    ●      Takayasu arteritis     

  2.     Predominantly medium-sized vessel vasculitis 
    ●      Childhood polyarteritis nodosa  
    ●      Cutaneous polyarteritis  
    ●      Kawasaki disease     

  3.     Predominantly small vessels vasculitis                  
  a.     Granulomatous     

    ●      Wegener’s granulomatosis  
    ●      Churg-Strauss syndrome                

  b.     Non-granulomatous     
    ●      Microscopic polyangiitis  
    ●      Henoch-Sch ö nlein purpura  
    ●      Isolated cutaneous leucocytoclastic vasculitis  
    ●      Hypocomplementic urticarial vasculitis     

  4.     Other vasculitides 
    ●      Beh ç et disease  
    ●       Vasculitis secondary to infection (including hepatitis B 

associated polyarteritis nodosa), malignancies, and drugs, 
including hypersensitivity vasculitis  

    ●      Vasculitis associated with connective tissue diseases  
    ●      Isolated vasculitis of the central nervous system  
    ●      Cogan syndrome  
    ●      Unclassified       

 TABLE 50.4          Pathogenic mechanisms  

   Disease  Mechanisms 

   Kawasaki     1.      Mouse model: lactobacillus casei cell-wall extract induction of toll-like receptors (TLR2) 
through myeloid differentiation factor 88 (MyD88) and nuclear factor-kappa β   [65]   

  2.      Superantigen (toxic shock syndrome toxin 1) or (streptococcal pyrogenic exotoxin A) or 
(streptococcal pyrogenic exotoxin C) or (Lactobacillus casei cell-wall extract)  [66]   

  3.      Metalloproteinase-2 activation with elastolytic activity  [66]   
  4.      Anti-alpha-enolase antibody shock protein  [67]     

   Wegener’s granulomatosis 
Microscopic polyangiitis 

    1.      Anti-myeloperoxidase antibodies binding myeloperoxidase on surface of leukocytes 
inducing leukocyte adhesion  [68] to endothelial cells through CD11a/CD18, CD11b/
CD18 beta2 integrins, and chemokine receptors CXCR1 and CXCR2  [69]   

  2.     Antibodies to HSP60  [70]   
  3.      ANCA activation of alternative pathway complement  [71]     

   Takayasu’s arteritis     1.     Antibodies to HSP60        [72, 73]   
  2.     Antiendothelial antibodies  [65]   
  3.     Antibodies to HSP65  [74]     

   Behςet’s disease     1.      HLA-B51 binds MIC-A  [75] (non-classical) HLA Class I antigen which is unregulated by 
bacterial infection TH1 and 2 and TBet cells are involved    

   Mixed cryoglobulinemia     1.     Reactivity to HSP70, HSP 90  [76]   
  2.      Activation of matrix metalloproteinases (MMP-1, MMP-7, MMP-9) and Il1  β     

   Henoch-Sch ö nlein purpura     1.     Abnormal glycosylated IgA1  [70]   
  2.      IgA containing immune complexes bind Fc γ  receptors activate SRC family of kinases    

   Churg-Strauss syndrome     1.     IL10 polymorphisms  [77]     
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of blood vessel walls with subsequent downstream tis-
sue damage. They may affect small, medium, and/or large 
vascular structures, and they may be primary in nature or 
secondarily associated with other disease processes. They 
manifest in protean phenotypes with a great deal of over-
lap, which can make diagnosis, especially at the onset of 
disease, quite challenging. However,  in vitro ,  in vivo , and 
animal model studies are beginning to unlock many of 
the previous mysteries that have been associated with the 
pathogenesis of vasculitis. The study of immune complex 
deposition and the biochemical and clinical relevance of 
AECAs and ANCAs are bringing to light the importance 
of overlap between basic science and clinical as well as 
translational medicine. The molecular mechanisms that 
underlie the pathogenesis of vasculitis are now being teased 
out by basic science researchers around the world, and the 
signal transduction pathways are starting to find translational 
implications in the realm of therapeutics. The pathogenic 
mechanisms are summarized in        Tables 50.4 and 50.5     . 

 We   can only hope that continued translational efforts in 
the field of vasculitis research will be able to shed further 
light on a group of diseases that, even in present day tech-
nologically advanced medicine, persist in producing signif-
icant morbidity and mortality.   
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            Translational Implications of Proteomics 
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    INTRODUCTION 

 Biomarkers   are commonly defined as indicators that inform 
about events in biological samples or systems. In addition 
to their diagnostic utility, biomarkers offer the promise of 
assessing disease risk and more efficient discovery and 
development of novel therapies and individualized dis-
ease treatment  [1] . Biomarker proteins detectable in serum 
and plasma are the basis of commonly relied upon tests to 
screen and monitor prostate cancer through the measure-
ment of PSA, to monitor ovarian, pancreatic, and colon 
cancer response to therapy and disease recurrence through 
the measurement of CA125, CA19.9, and carcinoembry-
onic antigen respectively, among others  [2] . While such 
protein biomarkers were not identified through proteom-
ics, but mostly through antibody based searches for tumor 
antigens, they do occur in serum at concentrations that are 
within the reach of current proteomic profiling technolo-
gies. Therefore it is reasonable to assume that many more 
cancer markers with similar concentrations in serum and 
plasma may be identified through systematic proteomic 
searches. While there is currently an intense effort to apply 
proteomics to biomarker discovery, the field is challenged 
by a requirement for biomarkers with high sensitivity and 
specificity in the face of substantial heterogeneity among 
human subjects and disease processes. The search for such 
biomarkers has been quite diversified from the point of 
view of sources of biomarkers investigated ( Table 51.1   ) 
and the particular approaches being followed.  

    PROFILING OF TISSUES TO IDENTIFY 
POTENTIAL CIRCULATING MARKERS 

 Given   the wide dynamic range of protein abundance in 
serum and plasma and the likely occurrence of tumor tis-
sue derived proteins in circulation at the lower end of this 
range, there is merit in profiling tumor tissue to identify 
proteins that potentially may be released into the circulation

and therefore may serve as blood based biomarkers. 
Potential circulating protein markers may be deduced from 
proteomic and also from transcriptomic profiling data for 
tissues. However, the ability to predict from tissue sources 
potential circulating proteins is complicated by issues of tis-
sue specificity of identified proteins. A comparison of tumor 
expression profiles relative to healthy or unaffected tissues 
from the same organ type may identify protein differences. 
However, the extent to which the contributions of tumor tis-
sue proteins to the overall circulating levels for these pro-
teins, relative to the contribution of other unaffected organ 
types that may be releasing the same proteins into the cir-
culation, is difficult to predict and requires exhaustive tis-
sue analysis. Additional issues include rates of release and 

 Chapter 51 

 TABLE 51.1          Sources of biomarkers for discovery  

   Serum, plasma, and other biological fluids 

       –      comprehensive analysis of intact proteins  
   –      comprehensive analysis of protein digests  
   –       enriched protein and peptide subsets e.g., glycoproteins 

and glycopeptides    

   Isolated fresh cells and cultured cell lines 

       –      whole lysates  
   –       subcellular compartments e.g., cell surface, secreted/shed 

proteins, phosphoproteins, glycoproteins    

   Tissue sources 

       –      whole tissue lysates  
   –      microdissected tissue  
   –      vascular endothelium  
   –      infiltrating cells    

   Animal models 

       –      engineered mouse models  
   –      xenotransplants    
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clearance from the circulation, which are not predictable 
from analyses at the tissue level. Additional factors that may 
contribute to discrepancies between tissue and plasma find-
ings include heterogeneity within tumors not represented 
in samples subjected to profiling and difficulty in defining 
and obtaining adequate controls from confounding condi-
tions that inform about disease specificity. It should also be 
pointed out that levels of a protein in tumor tissue may be 
unchanged compared to unaffected tissues, but because of 
altered processing, increased turnover, and cell breakdown, 
the protein may occur at increased concentrations in circula-
tion  [3] . Therefore analysis of tumor tissue for the purpose 
of identifying circulating markers has numerous caveats that 
need to be taken into consideration.  

    PROTEOMIC PROFILING OF PROXIMAL 
BIOLOGICAL FLUIDS 

 Because   circulating proteins largely represent a subset of 
tissue proteins that are primarily secreted or shed from 
cells, biological fluids, and disease related effusions that are 
proximal to the disease tissue may represent useful sources 
for discovery of circulating biomarkers. Furthermore, given 
their proximity to disease tissue, proximal fluids poten-
tially contain higher concentrations of proteins released 
from tumor tissue into extracellular fluids through secre-
tion or cell and tissue breakdown  [4] . Such fluids include 
pleural effusions in the case of intrathoracic tumors, ascites 
fluid for intra-abdominal tumors, seminal fluid for prostate 
cancer, breast ductal fluid for breast cancer, and cerebro-
spinal fluid for central nervous system tumors. Proximal 
biological fluids also have some challenges as exemplified 
by nipple aspirates and ductal lavages to identify potential 
breast cancer markers. Procedures for obtaining fluid are 
difficult to standardize. Controls may not be adequate even 
when obtained from a contra-lateral presumably unaffected 
breast, due to disparities in the amount of fluid obtained 
and occurrence of micro-hemorrhages among others. 
Additional heterogeneity may be introduced due to varying 
cell and tissue admixture and breakdown.  

    PROFILING OF TUMOR CELL 
POPULATIONS 

 The   use of isolated cell populations and cell lines to iden-
tify candidate markers requires that the cell material utilized 
adequately reflects the tumor type for which biomarkers 
are being sought. While a single cell line is unlikely to be 
representative of the spectrum of changes that may occur 
in a disease, analysis of a set of well chosen cell popula-
tions and cell lines may be quite informative. This is illus-
trated in a study of ovarian cancer cells from the author’s 
laboratory  [5] . The repertoire of proteins expressed in three 

ovarian adenocarcinoma cell lines, OVCAR3, CaOV3, and 
ES2, as well as in ovarian cancer cells enriched from 
ascites fluid has been substantially elucidated  [6] . Separate 
mass spectrometric analysis of proteins released into cul-
ture media and of cell surface proteins were done, using 
total cell lysates as a reference ( Figure 51.1   ). Some 6400 
proteins were identified with high confidence. Similar or 
complementary data have been published for ovarian cell 
lines and ovarian ascites fluid        [7, 8]  with substantial con-
cordance. Included among secreted proteins identified are 
WFDC2 (HE4), MUC16 (mucin 16, CA125), IGFBP3 
(insulin-like growth factor binding protein 3), MDK (mid-
kine), PROS1(vitamin k dependent protein s), and SLPI 
(secretory leukoprotease inhibitor) for which prior associa-
tions with ovarian cancer have been made. Numerous addi-
tional candidates have been identified that require further 
testing to confirm their relevance to ovarian cancer. 

 Important   features of secreted or shed proteins that 
inform with respect to their potential as biomarkers include 
a high secretion rate specifically by tumor cells and a low 
baseline concentration in normal plasma. A recent mathe-
matical model has derived estimates of the balance between 
tumor biomarker secretion into and removal out of the 
intravascular compartment that take into account protein 
secretion rates by tumor cells  [9] . The model was primed 
by the authors based on publicly available data for the ovar-
ian marker CA125 leading to estimate the minimal tumor 
size required to detect elevated levels of CA125 in circu-
lation in ovarian cancer. Applying this model to TIMP1, a 
secreted protein identified in ovarian cancer cell profiling, 
the secretion rate of which was found to be  � 3       ng/million 
cells/h)  [6] , would lead to an estimate that a tumor  � 2       cm 
in diameter would result in a detectable 50 percent increase 
in the level of TIMP1. Assumptions made for the calcula-
tion are: (i) a half-life in blood of 48       h, which is signifi-
cantly below 151       h calculated for CA125; (ii) 50 percent of 
the secreted protein reaches the blood. These favorable pre-
dictions led to the testing of TIMP1 levels in serum from 
newly diagnosed patients with ovarian cancer and demon-
stration of increased levels in ovarian cancer including in 
early stage disease (Hanash  et al . unpublished).  

    PROFILING THE PLASMA PROTEOME FOR 
CANCER BIOMARKER IDENTIFICATION 

 Undoubtedly  , in principle, the objective of identifying pla-
sma (or serum) based biomarkers is best accomplished 
through profiling of plasma rather than other indirect 
sources from which inferences need to be made and that 
may not reflect protein content in plasma. However, in 
addition to the technological challenges related to the vast 
dynamic range of protein concentrations, profiling plasma 
for cancer biomarker identification is challenged in other 
ways; perhaps most important are the numerous sources of 
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variability that may contribute to false discovery and that 
have to be taken into consideration as part of the experi-
mental design and data interpretation. These include sub-
ject variability, and sample processing variability unrelated 
to the disease state being investigated. Thus, artifacts or 
non-specific disease related changes in plasma proteins 
need to be distinguished from potentially specific mark-
ers. A case in point is cancer serum protein profiling by 
MALDI mass spectrometry, which has uncovered mass 
profiles for unidentified proteins that were proposed to be 
diagnostic for several common types of cancer but whose 
validity was subsequently questioned  [10] . 

 Currently   the workhorse for proteomic profiling is mass 
spectrometry, which has evolved from a tool to identify and 
characterize isolated proteins or for mass peak profiling as 
in the application of MALDI to clinical samples, to a plat-
form for interrogating complex proteomes by matching 
mass spectra to sequence databases to derive protein iden-
tifications  [11] . However, even with substantial improve-
ments in sensitivity and mass accuracy, the complexities of 
plasma far exceeds the current capabilities of mass spec-
trometry to fully resolve the full complement of individual 

protein and peptide constituents in a single analysis. Current 
strategies to achieve in-depth coverage require sample frac-
tionation followed by separate analyses of individual frac-
tions as illustrated in  Figure 51.2   , or capture of protein or 
peptide subsets such as glycosylated proteins or phos-
phopeptides that are analyzed exclusively  [12] . The trade-off 
is limited throughput with extensive fractionation or limited 
coverage of the proteome if a protein subset is singled out 
for analysis. Quantitative analysis of protein and peptide 
constituents is achieved by means of isotopic labeling of 
proteins and peptides or label free quantification of derived 
mass spectra. 

 Cancer   specificity of circulating markers may not be 
required for certain applications, e.g., for delineating signal-
ing pathways or for predicting response to therapy and moni-
toring disease progression. As cancer is increasingly defined 
based on deregulated pathways, relevant markers may cut 
across tumor types without exhibiting tissue specificity. In 
this regard, there is substantial interest in defining proteomic 
signatures that predict response to therapy. A case in point is 
identifying subjects who are likely to benefit from treatment 
with EGFR tyrosine kinase (TK) inhibitors  [13] .  

 FIGURE 51.1          Profiling the secretome and cell surface proteome of cancer cells.    
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    POSTTRANSLATIONAL MODIFICATIONS 
AS A SOURCE OF CANCER BIOMARKERS 

 The   study of posttranslational modifications (PTMs) as a 
source of biomarkers in cancer or other disease is still at a 
relatively early stage. Aside from phosphorylation analysis, 
which can be rather readily accomplished using a variety 
of methods from mass spectrometry to application of phos-
phospecific antibodies, most other modifications have not 
been investigated as a source of biomarkers, perhaps with 
the exception of altered glycosylation  [14] . Glycan modifica-
tions of proteins are primarily Asn linked (N-linked glycans) 
or Ser or Thr linked (O-linked glycans). Glycoproteins with 
complex glycans are membrane bound or secreted. Proteins 
that are predominantly nuclear or cytoplasmic frequently 
exhibit glycosylation with the monosaccharide  O -linked 
 N -acetylglucosamine ( O -GlcNAc) at serine residues, a site 
of protein phosphorylation. Research going back several 
decades has yielded evidence that cancer cells exhibit altered 
glycans relative to normal cells  [15] . Interestingly, many of 
the initial studies with naturally occurring and hybridoma 

derived monoclonal antibodies that were targeted against 
tumor antigens yielded evidence of reactivity that were 
directed against carbohydrate epitopes as in the case of so-
called oncofetal antigens  [16] . 

 Some   effort within the field of proteomics has focused 
on glycoproteins because of their biological significance 
and because of their importance as sources of biomarkers. 
One approach is to capture and enrich for glycoproteins, 
followed by their identification through mass spectromet-
ric analysis after their deglycosylation and therefore with-
out elucidating their glycan modifications. A more glycan 
informative approach has been to enrich glycoproteins 
based on their lectin affinity, followed by mass spectrom-
etry analysis. Glycoproteins are then classified based on 
their lectin binding properties. Alternative approaches other 
than mass spectrometry for glycoprotein profiling include 
array based analyses. Glycoproteins in complex mixtures 
are subclassified based on their binding to lectin arrays, 
followed by their individual quantitative analysis based on 
their recognition by antibodies that recognize particular 
proteins  [17] . Glycomic centric approaches have largely 

 FIGURE 51.2          Quantitative profiling of plasma proteins.  
    Control and cancer plasmas are first immunodepleted to remove abundant proteins and then labeled with acrylamide isotopes to distinguish cancer from 
control. Plasmas are then mixed and subjected to intact protein fractionation by anion exchange, followed by reverse phase chromatography. After tryp-
tic digestion, samples are subjected to high resolution mass spectrometry and shotgun LC-MS/MS analysis for protein identification and quantitation. 
Following statistical analysis and data mining, upregulated and downregulated proteins in cancer plasma relative controls are selected for further investi-
gations and validation as candidate cancer markers.    
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been focused on analysis of individual targeted glycopro-
teins obtained through preparative approaches followed 
by detailed analysis of their glycan composition and struc-
ture. Some effort at profiling cleaved glycan from serum or 
tissue to identify biomarkers without their correspond-
ing proteins have yielded potential glycan markers  [18] . 
Increased fucosylation of serum ribonuclease 1 and altered 
glycosylation of other proteins have been reported in pan-
creatic cancer        [19,20] .  

    MICROARRAY BASED APPROACHES FOR 
BIOMARKER IDENTIFICATION 

 Microarrays  , using various formats that contain pro-
teins, lysates, or affinity capture agents, are increasingly 
relied upon for investigations of signaling processes in 
cells and tissues and for identification of biomarkers  [21] . 
Additionally microarrays have been particularly useful for 
the identification of tumor antigens that induce an antibody 
response. For example, recombinant protein microarrays 
were utilized to screen for auto-antibodies in ovarian cancer 
 [22] . Sera from 30 ovarian cancer patients and 30 healthy 
individuals were used to probe microarrays containing 5005 
human proteins for immunoglobulin reactivity. A total of 94 
antigens were identified that exhibited enhanced reactivity 
with cancer patient sera relative to control sera. Reactive 
antigens tested using tissue microarrays were found to 
exhibit increased expression in ovarian cancer tissue rela-
tive to controls providing support for their immune recogni-
tion as aberrantly expressed proteins. In blinded validation 
studies that relied on natural protein containing microarrays, 
anti-annexin antibodies were detected in sera collected a 
year before a diagnosis of lung cancer was made. Annexin 
auto-antibodies together with auto-antibodies to PGP9.5 
and 14-3-3- theta proteins gave a sensitivity of 55 percent at 
95 percent specificity in discriminating lung cancer at the 
preclinical stage from matched controls  [23] . Microarrays 
containing the repertoire of natural proteins expressed in 
tumor cells have the potential to substantially accelerate the 
pace of discovery of tumor antigens and could provide a 
molecular signature for immune responses in different types 
of cancer  [24] .  

    VALIDATION STRATEGIES FOR 
DISCOVERED PROTEIN BIOMARKERS 

 Following   an initial discovery, further progress toward 
biomarker development requires validation studies to be 
conducted. The biomarker validation process has been con-
ceptually divided into five phases  [25]  .    Assay development 
for validation studies remains a major hurdle and the number 
of samples needed for validation increases with advanced 
validation phases and so does the need to implement assays 

that are applicable in the clinical laboratory and that can pro-
vide the needed throughput. The most relied upon approach 
for validation remains the Enzyme Linked Immuno Sorbent 
Assay (ELISA), which provides the requisite specificity 
and ready application in the clinical laboratory. For further 
optimization and increases in sensitivity, antibodies have 
been coupled to a wide variety of fluorescent molecules, 
such as quantum dots  [27] . The limits of detection have also 
been increased with amplification strategies taking advan-
tage of the polymerase chain reaction with rolling circle 
amplification  [28]  or proximity ligation  [29] . Technological 
developments are also improving the limits of detection 
for antibody – antigen complexes, as with Surface Plasmon 
Resonance  [30] , or with nanomechanical resonators that 
accurately measure the mass of molecules  [31] . 

 Of   interest to the field of proteomics, and eventually 
more broadly, are mass spectrometry based approaches 
that do not require antibodies. The use of multiple reaction 
monitoring (MRM) to monitor fragments of specific pep-
tides to directly quantify corresponding proteins in serum, 
using stable isotope labeled peptides as internal standards, 
presents an attractive alternative  [32] . Other approaches 
namely peptide  [33] , RNA, or DNA  [34]  aptamers also 
have a potential to overcome the need for antibodies.   
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    BIOGENESIS AND FUNCTIONS OF ANIMAL 
MICRORNAS 

 The   founding members of the miRNA class, lin-4  [1]  and 
let-7  [2] , were identified by forward genetics as central 
players of the heterochronic gene pathway in the nematode 
 C. elegans  and first deemed as curious oddities of this little 
worm  [3] . However, three studies published in 2001 reported 
on miRNA discovery in  C. elegans ,  Drosophila , and human 
HeLa cells          [4 – 6] . More than 1000 miRNA genes are esti-
mated to be encoded in the human genome        [7, 8] . The accu-
mulating number of miRNA genes along with their highly 
diverse expression patterns and the multiple target genes 
( � 100) thought to be regulated by individual miRNAs imply 
that miRNAs play important roles in a wide variety of physi-
ological processes and pathological conditions. 

 The   functional mature miRNA is released after sequen-
tial enzymatic cleavage of a pri-pre-miRNA molecule 
( Figure 52.1   ). First, a long capped and polyadenylated 
primary transcript is cleaved in the nucleus by Drosha 
and associated proteins of the Microprocessor to release 
a canonical 70       nt precursor hairpin, which is exported via 
the exportin 5 pathway into the cytoplasm where it is fur-
ther cleaved by the Dicer/Argonaute multiprotein complex 
(miRISC for miRNA induced silencing complex)        [9, 10] . 
The  � 18 – 25       nt mature miRNA, which is loaded in the 
miRISC, guides it to the 3'  -untranslated region (3' UTR) of 
target mRNAs thereby triggering translational repression 
and/or degradation of the target mRNA  [11]  ( Figure 52.1 ). 
In some cases, miRNAs bind to promoter regions and can 
stimulate transcription  [12] . The exact mechanisms of the 
translational repression are not well understood and may 
vary depending on the cell type and the composition of 
auxiliary regulatory proteins and sequence features of the 

target gene. A series of studies probing for the mechanistic 
details have proposed that miRNAs affect mRNA accessibil-
ity to the translational machinery when stored in P-bodies, 
ribosome assembly, initiation, and elongation steps. The 
shortcomings of some of these experimental designs have 
been thoroughly and critically reviewed        [13, 14] . As for 
mRNA degradation, miRNAs are thought to stimulate 
decapping and deadenylation permitting access to endonu-
cleases or they may act as RNA guides to direct cleavage of 
target mRNAs, reminiscent of the siRNA triggered RNAi 
mechanism  [14] . 

    Prediction and Validation of Target Genes 

 The   identification of the miRNA/target mRNA interactions 
should shed light on their mode of action. Initial computa-
tional target prediction algorithms were based on simulation 
of a few known miRNA/mRNA interactions that lack uni-
fying features and consequently yielded a high rate of false 
positives (for review, see  [15] ). Experimental approaches 
have established the importance of the 5 '  seed sequence (2 – 8 
nucleotides) of the miRNA in directing the interaction with 
its target mRNA  [11] . A possible caveat of these experi-
ments was that they relied on detectable changes of mRNA 
levels as the principal mode of action or a collateral effect of 
translational repression. This potential bias was recently cir-
cumvented using other strategies. Co-immunoprecipitation 
protocols were developed to capture the physical association 
of miRNA/mRNA molecules. The miRISC and interacting 
mRNAs were pulled down with antibodies against Ago2 or 
directly against a biotinylated miRNA mimic, which was 
followed by high throughput mRNA analysis for target dis-
covery or by specific primer RT-PCR for target validation 

 Chapter 52 
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         [16 – 18] . Two recent reports utilized a high throughput mass 
spectrometry approach to identify changes of differentially 
labeled proteins obtained after manipulation of specific 
miRNA activity        [19, 20] . An emerging trend suggested that 
the higher the levels of protein repression ( � fourfold) the 
more likely it was for mRNA levels to be significantly dimin-
ished as well, yet several targets were mainly affected at the 
translational level        [19, 20] . Of the identified target genes, 
 � 60 – 70 percent could be ascribed to the seed directed bind-
ing category, whereas the remaining targets did not present 
a discernable seed motif, suggesting that other sequences or 
structural features are important and can mediate the inter-
action with miRISC loaded miRNA        [19, 20] . Together, 
these experimental approaches should assist in refining and 
improving computer predictions. Accurate target prediction 
and experimental validation should further our understanding 
of the specific genes and pathways regulated by miRNAs.  

    Regulatory Mechanisms of miRNA Expression 
and Activity 

 Several   studies have demonstrated that miRNAs are gener-
ally transcribed by RNA polymerase II and follow a process-
ing that is similar to mRNAs ( but see  [21]  for RNA pol III 
transcription). Indeed, more than 50 percent of the human 
miRNAs reside in exonic regions of transcriptional units 
without discernable protein encoding potential or in introns 
of host genes          [22 – 24] . High throughput profiling by cloning, 
microarray, and qRT-PCR analyses have been extensively 
used to characterize and classify miRNA expression in a 
wide variety of tissues and organs at different stages dur-
ing development, in cell lines, and in animal models upon 
administration of growth factors or other chemical com-
pounds to stimulate a cellular response, as well as in path-
ological specimens. These massive efforts have identified 
tissue specific miRNAs or linked small subsets of miRNAs 

to a given disease. However, little is known about the tran-
scriptional regulation of miRNAs, even though they should 
be subject to the same transcription factor associated regu-
latory networks as other RNA pol II transcribed genes. In 
some instances, restricted expression of a miRNA to a spe-
cific cell type or tissue has allowed to test transcriptional 
regulation of miRNAs by master gene regulator(s) such as 
MyoD in skeletal muscle (see below). The fact that the loca-
tion of the miRNA hairpin does not inform as to where the 
transcription starts (this can be up to 20 – 50       kb upstream), 
has hampered a more global analysis of transcription factor 
binding sites. Genome-wide chromatin immunoprecipitation 
analyses have shed light on features of miRNA promoter 
and other regulatory regions, such as CpG islands. Using tri-
methylated lysine 4 on Histone 3 as a landmark of the tran-
scriptional start site, Marson  et al . 2008 found that about 20 
percent of the miRNA promoter regions were occupied by 
Oct4/Sox2/Nanog/TCF3 core embryonic stem (ES) cell tran-
scription factors and were actively engaged in the produc-
tion of primary transcripts in murine ES cells  [25] . Promoter 
binding by Myc has been shown to repress transcription of 
multiple miRNAs with tumor suppressive functions  [26] , 
while selectively activating transcription of the proto-onco-
genic miR-17 � miR-92 cluster  [27] , suggesting that Myc 
can alter miRNA mediated processes to enhance malignant 
transformation. 

 Besides   transcriptional control, miRNA levels and activ-
ity can be subject to other types of regulation that affect 
target gene expression ( Figure 52.1 ). Epigenetic silencing 
of the  mir-127  locus has been observed in several cancer 
cell lines. For example, treatment with chromatin modify-
ing drugs 5-aza-20-deoxycytidine and 4-phenylbutyric acid 
restored miR-127 expression via usage of a cryptic pro-
moter  [28] . In a similar study, chromatin silencing by hyper-
methylation of the tumor suppressive  mir-9 ,  mir-34b/c , and 
 mir-148  genes in cancer cells correlated with metastatic 

 FIGURE 52.1          miRNA biogenesis, regulation, and functions.  
    Left panel, schematic depiction of stepwise processing of a miRNA molecule from transcription and nuclear processing to export and cytoplasmic 
processing. Once loaded in the miRISC, the miRNA can control gene expression via different mechanisms. Right panel, different regulatory mechanisms 
that affect miRNA levels and/or binding interaction with the cognate target mRNAs. Higher levels of mature miRNA increase inhibitory effect on target 
genes, while lower levels or absence of miRNA relieve target mRNA repression. Abbreviations: H3-Ac, acetylated lysine 9 on histone 3; H3-Me, tri-
methylated lysine 9 on histone 3; Me, methylated DNA; LOH, loss of heterozygosity; transcriptional firing (arrow); activator (star); repressor (hexagon).    
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potential  [29] . Chromosomal deletion of tumor suppres-
sive miRNAs and increased gene copy number of proto-
oncogenic miRNAs were frequently detected in ovarian 
and breast cancer as well as in melanomas  [30] . In human 
vascular smooth muscle cells, pri-miR-21 processing by 
Drosha is regulated by a TGF β  mediated mechanism, which 
involves direct interaction of a SMAD protein complex with 
the p68 helicase component of the Microprocessor  [31] . 
All these modes of regulation affect the steady state lev-
els of the miRNA and hence increase or decrease miRNA 
activity. Conversely, miRNA editing of adenosine to inos-
ine, catalyzed by the adenosine deaminases ADAR1 and 
ADAR2, can alter the affinity for target sites as exempli-
fied by miR-376 mediated regulation of the phosphoribo-
syl pyrophosphate synthetase (involved in purine and uric 
acid metabolism) in murine cortex, but not in the liver  [32] . 
Accordingly, miR-376 is preferentially edited in the brain, 
while other miRNAs present a different editing pattern, 
such as miR-144 and miR-451, which are exclusively edited 
in the spleen and testis  [33] . Thus, A-to-I editing may have 
a profound effect in miRNA target recognition to the extent 
that almost non-overlapping sets of regulated mRNAs may 
be controlled by the same miRNA in different cell types 
or under different physiological or pathological condi-
tions. Similarly, single nucleotide polymorphisms (SNP) or 
other mutations in the 3'UTR of target genes that reduce or 
increase miRNA binding affinity provide an  in trans  mecha-
nism to alter miRNA regulated processes. Reduced myosta-
tin levels contribute to muscular hypertrophy, a single point 
mutation (6723G → A transition) in the 3'UTR of myosta-
tin in the Texel sheep creates a  de novo  binding site for the 
muscle specific miR-1 and miR-206, which may account 
for the renowned meatiness of this strain  [34] . In contrast, 
a single point mutation (829C → T transition) in 3'UTR of 
human dihydrofolate reductase (DHFR) mRNA abolishes 
miR-24 mediated regulation; elevated DHFR expression 
increased cellular resistance to the anti-tumoral drug meth-
otrexate  [35] .   

    MICRORNAS IN PHYSIOLOGICAL AND 
METABOLIC PROCESSES 

 The   RNase III enzyme Dicer cleaves the miRNA hairpin 
precursor to render the mature miRNA duplex. In mice and 
humans, Dicer enzyme is encoded by a single gene  Dicer1 , 
whereas other species such as  Drosophila  contain several 
Dicer isoforms specialized in the processing of miRNAs or 
siRNAs generated during an RNAi response. Loss of func-
tion (lf) Dicer mutants in plants, the nematode  C. elegans , 
the fruit fly  Drosophila , zebrafish, and mouse lead to block-
age of maturation for all miRNAs. Phenotypes of Dicer 
deficient organisms are consistent with the loss of miRNA 
functions. In  C. elegans ,  dcr-1 KO  animals exhibit deve-
lopmental defects in the temporal specification of cell fates 

reminiscent of the lf-mutant phenotypes of  lin-4  and  let-7  
miRNAs  [36] . In zebrafish, brain morphological defects 
of Dicer deficient animals can be rescued by injection of 
miR-430  [37] . In the mouse,  Dicer1  deficient animals do 
not survive past embryonic day 7.5, inferring an impor-
tant developmental role for Dicer  [38] . To circumvent this 
early lethality, Harfe  et al . 2005, generated a conditional lf-
allele of  Dicer1  gene by flanking exon 23 with  LoxP  sites 
( “ floxed ”  allele;  “ flox ” )  [38] . Upon Cre mediated recombi-
nation, exon 23 is excised rendering a non-functional  Dicer1  
gene product. In the original report of the  Dicer1 flox/flox   
mouse, expression of Cre recombinase was driven by  Prx-1  
promoter in the mesoderm of budding limbs; Dicer deficient 
animals exhibited a retarded development and had smaller 
limbs compared to age matched littermates  [38] . In a follow-
up study, the authors observed in  Prx-1::Cre ; Dicer1 flox/flox   
animals a relief of an unknown inhibitory activity that pre-
vented retinoic acid mediated activation in the hindlimb. 
This led to the discovery of miR-196 as a negative regula-
tor of Hoxb8 gene expression in the hindlimb  [39] . Other 
groups have employed similar strategies to conditionally 
inactivate Dicer by crossing  Dicer1 flox/flox   animals with dif-
ferent driver strains that express Cre recombinase in specific 
cell types and study the consequences of impaired miRNA 
functions in different physiological and developmental 
contexts. Dicer deficient animals exhibit defects in lung 
morphogenesis ( Sonic hedgehog::Cre )  [40] ; in skin mor-
phogenesis ( Cytokeratin-14::Cre )  [41] ; in skeletal muscle 
development ( MyoD::Cre )  [42] ; in postnatal angiogenesis 
( Tie-2::Cre  or  Vascular endothelial Cadherin::Cre-ER T2  ) 
 [43] ; in proliferation and differentiation of chondrocytes 
during skeletal development ( Col2a1::Cre )  [44] ; in cerebel-
lar neurodegeneration ( Purkinje cell specific::Cre )  [45] ; in 
forebrain morphogenesis ( α -Calmodulin kinase II::Cre) 
 [46] ; in cytoskeletal dynamics and develop glomerular dis-
ease ( Podocyte-specific::Cre )        [47, 48] ; in homeostasis and 
function of regulatory T lymphocytes and develop aggres-
sive autoimmune disease ( Foxp3::Cre )        [49,50] ; in the devel-
opment and function of the female reproductive tract ( Anti 
M ü llerian hormone receptor type 2 :: Cre )  [51] ; in structural 
and functional retinal neurodegeneration ( Chx10::Cre )  [52] ; 
and in increased premature senescence of cultured murine 
embryonic fibroblast ( Cagg::Cre-ER T2  )  [53] . These proxy 
studies were refined by generation of targeted  “ knockout ”  
(KO) chromosomal deletion or forced expression of specific 
miRNAs in transgenic mouse models; and complemented 
by gain and loss of function approaches in cell culture 
systems. 

    MicroRNAs in Brain Development 

 Profiling   experiments in P19 and NTera2 cell lines during 
retinoic acid induced neural differentiation and at different 
stages of rodent brain development uncovered a subset of 
miRNAs that were brain enriched or brain specific, whose 
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expression dynamically changed in close association with 
morphological and differentiation hallmarks of neural deve-
lopment          [22, 54, 55] . Some of these miRNAs are neuronal 
specific, such as miR-124, others are enriched in glial cells, 
and yet others (e.g., miR-9) exhibit a broader but brain spe-
cific pattern. Unveiled roles for these miRNAs are consist-
ent with their restricted expression pattern. During brain 
development, miR-9 promotes progression of neurogen-
esis in the midbrain – hindbrain regions via regulation of the 
fibroblast growth factor (FGF) signaling pathway in the mid-
brain – hindbrain boundary  [56] . In the midbrain, miR-133b 
is involved in maturation and homeostasis of dopaminergic 
neurons through a negative feedback loop with the paired-
like homeodomain transcriptional factor Pitx3  [57] . miR-124 
functions to initiate and maintain neuronal cell identity; miR-
124 directly represses expression of non-neuronal mRNAs 
and indirectly favors expression of neuronal specific mRNAs 
via inhibition of PTBP1, which interferes with neuronal spe-
cific alternative splicing forms  [58] . Thus, miR-124 globally 
fine-tunes neuronal gene expression. miR-134 localizes 
to the synaptodendritic compartment, where it locally and 
dynamically controls expression of the Limk1 kinase  [59] . 
The miR-134/Limk1 complex modulates dendritic spine 
morphogenesis and synaptic plasticity. Translational regula-
tion by miR-34 and other microRNAs at synapses is thought 
to be implicated in processes of memory consolidation and 
retrieval (for review, see  [60] ). Interestingly, several miRNAs 
have been associated with neurodegenerative disease and 
cancer. In Alzheimer’s disease, a marked decrease of miR-29 
 [61]  and miR-107  [62]  was observed in afflicted individuals 
and the  β -site amyloid precursor protein cleaving enzyme 1 
(BACE1)/ β  secretase was suggested as key target of these 
miRNAs. Decreased levels of miR-133b were observed 
in the midbrain of patients with Parkinson’s disease  [57] . 
Altered expression of miR-7, miR-9, miR-21, miR-124, 
miR-137, and miR-181 was documented in gliomas and 
other forms of brain cancer                [63 – 68] .  

    MicroRNAs in Cardiac and Skeletal Muscle 
Development 

 Restricted   expression of miR-1, miR-133, miR-206, and 
miR-208 to skeletal and cardiac muscle is associated by 
direct regulation of the myogenic transcriptional factors 
SRF/myocardin and MyoD/MEF2, respectively        [69, 70] . 
KO experiments in  Drosophila  and mouse have revealed a 
crucial role for miR-1 in muscular integrity        [71, 72] . In the 
mouse, Hand2 has been proposed as a key miR-1 target in 
cardiac development  [71] , while the  Drosophila  miR-1 
(analogous to miR-124 in the brain) appears to act as a fine-
tuner of muscle specific gene expression by actively repress-
ing non-muscle mRNAs, mostly neuronal mRNAs  [72] . A 
mouse KO of the myocardium specific miR-208 revealed 
that miR-208 was required to protect cardiomyocyte growth 
under stress conditions and to safeguard cardiomyocyte 

identity by preventing ectopic expression of skeletal muscle 
specific and other mRNAs  [73] . Altered expression and/or 
function of miR-1, miR-133, miR-206, and/or miR-208 has 
also been linked to muscular atrophy, cardiac hypertrophy, 
and other medical conditions ( [74] ; for review, see        [75, 76] ).  

    MicroRNAs in the Immune System 

 Specific   subsets of miRNAs are expressed in lymphoid and 
myeloid lineages derived from hematopoietic stem cells. 
These miRNAs are important players not only in differentia-
tion programs, but also in highly specialized processes, such 
as innate immunity, antigen presentation, and T cell activa-
tion. The miR-17 � miR-92 cluster, miR-150, and miR-181 
participate in differentiation of B cells, miR-142, miR-181, 
and miR-223 in T cells, miR-223 in granulocytes (for review, 
see        [77, 78] ), and miR-451 in erythrocytes  [79] . Independent 
studies using mouse KO strains have revealed that miR-155 
is required for normal functioning of B and T cells          [80 – 82] . 
miR-155 null animals failed to mount an adaptive immune 
response against  Salmonella  challenge after vaccination 
with attenuated strain; fewer class switched antibodies after 
immunization (B cell function) and reduced IL-2 and IFN- γ  
production (T cell function) were observed compared to con-
trol animals  [81] . miR-155 was also required to control the 
germinal center reaction after pathogen challenge  [82]  and it 
was suggested that this occurred in part by regulating activa-
tion induced cytidine deaminase        [83, 84] . 

 miR  -132, miR-146, and miR-155 have been implicated in 
the innate immune response in monocytes and macrophages. 
Lipopolysaccharide (LPS) triggers an inflammatory response 
via toll-like receptor 4 (TLR-4).  In vitro  treatment with LPS 
induced expression of miR-132, miR-146 in a monocytic cell 
line  [85] . In addition, miR-146 expression was also stimu-
lated by TNF α  and IL-1 β  treatment. LPS, TNF α , and IL-1 β  
stimuli converged in the activation of the NF κ B pathway. 
Thus, miR-146 was proposed to act in an NF κ B dependent 
manner as an attenuator of toll-like receptor and cytokine 
signaling via repression of IRAK1 and TRAF6, which are 
key adapter molecules in these signaling cascades that lead 
to activation of NF κ B and AP-1 pathways  [85] .  

    MicroRNAs in the Liver 

 miR  -122 is a highly abundant miRNA with restricted expres-
sion to hepatocytes ( � 50,000 copies/cell) (for review, see 
 [86] ). miR-122 regulates expression of the cationic amino 
acid transporter protein (CAT-1), which is involved in the 
import of the essential amino acids lysine and arginine 
 [87] . miR-122 is also implicated in the regulation of choles-
terol, fatty acid, and lipid metabolism. Recent studies have 
reported on profound and prolonged lowering of total plasma 
cholesterol levels after silencing of miR-122  in vivo  in mice 
and non-human primates              [88 – 92] . Several target mRNAs of 
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miR-122 have been experimentally validated, including 
Aldolase A (ALDOA), Cyclin G1 (CCNG1), Glycogen 
Synthase 1 (GYS1), prolyl 4-hydroxylase alpha subunit 
(P4HA1), branched chain  α -ketoacid dehydrogenase kinase 
(Bckdk), CD320 antigen-putative VLDL receptor, and N-
Myc downstream regulated gene 3 (Ndrg3)          [88, 90, 91] . 

 miR  -122 may also play an important role in liver neo-
plasia. Decreased levels of miR-122 were detected in hepa-
tocellular carcinomas        [93, 94] . Bcl-w, an antiapoptotic 
Bcl-2 family member, and promitogenic CCNG1 were 
suggested as miR-122 targets and may explain the need 
of liver cancer cells to dismantle this negative regulation 
       [94, 95] . Contrary to the aforementioned findings, a recent 
report showed that miR-122 is upregulated in hepatitis C 
virus associated hepatocellular carcinomas  [96] .   

    MICRORNAS IN HUMAN DISEASE 

 Human   diseases have been associated with mutations in 
components of the multiprotein machineries that process 
miRNAs or assist in miRNA mediated regulation. Although 
a dysfunctional machinery could lead to global alterations 
of miRNA functions, specific miRNAs and their regulated 
targets may be more sensitive to dose effects. DGCR8 is 
a key component of the nuclear microprocessor complex. 
DGCR8 recognizes the structural features of the pri-
miRNA transcript and binds to the basal region of the stem 
loop, correctly positioning Drosha for productive cleavage 
of the pre-miRNA hairpin  [97] . DGCR8 (for DiGeorge 
chromosomal region gene 8) was cloned from the DiGeorge 
syndrome region on human chromosome 22q11.2  [98] . 
DiGeorge syndrome affects multiple organs and afflicted 
individuals present with cardiac malformations, craniofa-
cial, limb, and digit anomalies, as well as with learning, 
language, behavioral, and other mental disorders. The hap-
loinsufficiency of this syndrome suggests that dose reduc-
tion of some miRNAs may interfere with proper regulation 
of gene expression. Experiments on an engineered mouse 
strain to recapitulate syntenic 22q11.2 microdeletion, which 
deletes one copy of DGCR8 locus, uncovered the reduced 
processing of brain specific miRNAs, which partially 
explained the observed defects  [99] . Fragile X syndrome, 
one of the most common forms of inherited mental retarda-
tion, is caused by the functional loss of fragile X mental 
retardation protein (FMRP). FMRP is an RNA binding pro-
tein with known roles in translational control. Several lines 
of evidence have shown that FMRP genetically interacts 
and/or physically associates with protein components of 
the (mi)RISC complexes (for review, see  [100] ). Although 
there is no direct evidence that FMRP affects functions of 
specific miRNAs, it is possible that recruitment of FMRP 
to the miRISC complex potentiates inhibitory activity of 
brain expressed miRNAs, since even slight leakiness of 
key target genes under tight miRNA mediated regulation 
may have deleterious effects. In contrast, trisomic dosage 

overexpression of miRNAs located on chromosome 21 has 
been suggested as an etiological factor in Down’s syndrome 
(or Trisomy 21), which is the most common genetic cause 
of cognitive impairment and congenital heart defects  [101] . 
This exposes the importance of adequate miRNA mediated 
control of gene expression, where too much repression may 
distort the balance in biological processes. 

 Genome  -wide SNP analyses have linked allele vari-
ants with increased risk of different diseases. Some of these 
variants map to 3 '  UTRs and causality for altered miRNA 
binding and regulation of the affected gene has been probed 
for and found (for review, see  [102] ). Briefly, SNPs in the 
3 '  UTRs of the following genes have been implicated in 
disease: (i) the candidate gene for Tourette’s syndrome 
SLITRK1 was associated with miR-189 regulation in brain 
tissue of afflicted patients; (ii) the fibroblast growth factor 
20 (FGF20) with miR-433 in Parkinson’s disease; (iii) the 
angiotensin receptor-1 (AGTR1) with miR-155 in hyperten-
sion; (iv) the IGF-II receptor gene (IGF2R) with miR-657 
in Type 2 diabetes; (v) and the HLA-G gene with miR-148/
miR-152 in asthma.  

    MICRORNAS IN HUMAN CANCER 

 During   the past few years, numerous seminal studies on 
the role of miRNAs in cancer have greatly contributed to 
the understanding of tumorigenic processes. The following 
will present an overview of this rapidly expanding field of 
cancer biology. 

    microRNA Signatures in Liquid and Solid 
Cancers 

 Chromosomal   deletion and/or downregulation of miR-15a and 
miR-16-1 expression in B cell chronic lymphocytic leukemia 
(CLL) was the first association between miRNAs and cancer 
 [103] . Now a unique signature affecting 13 miRNA genes 
has been linked to prognosis and progression of this disease 
 [104] . High throughput technologies have been applied for 
detection of miRNA in fresh, frozen, and archived specimens 
from liquid and solid tumors, including leukemias, lympho-
mas, and carcinomas of the breast, colon, ovaries, pancreas, 
liver, lung, and thyroid, as well as brain cancer and melanoma 
(for review, see  [105] ). These profiling efforts have uncovered 
specific miRNA signatures associated with different cancer 
types, while a few miRNAs are consistently detected at higher 
(e.g., miR-21 and miR-155) and lower levels (e.g., let-7, miR-
34, and miR-145), respectively, across several cancer types. 
Importantly, miRNA signatures can more robustly distinguish 
normal from tumor tissues compared with expression patterns 
for protein encoding genes        [106, 107] . For example, miRNA 
based classification of poorly differentiated gastro-intestinal 
tumors was more accurate than mRNA profiles, when applied 
to the same specimens  [106] . 
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 The   utility of miRNAs as markers for detection, diag-
nosis, and treatment selection (i.e., drug resistance profile 
 [108] ), prognostic indicators of progression and recurrence, 
as well as molecular surrogate markers to monitor treat-
ment response has been clinically assessed or suggested. 
Higher levels of miR-21, miR-155, and miR-221 in acti-
vated B cell-like compared with germinal center B cell-like 
could separate these subtypes of diffuse large B cell lym-
phoma  [109] . In lung adenocarcinomas, elevated miR-155 
detection and low let-7 levels correlated with a poor clinical 
outcome        [110, 111] . High levels of miR-21 correlated with 
poor prognosis in breast, colon, lung, and pancreatic cancer 
as well as glioblastomas, but not in gastric cancer  [112] . 
In breast cancer, hypoxia induced miR-210 was suggested 
as an independent prognostic indicator  [113] . In colonic 
adenocarcinomas, miR-145 was consistently detected at 
lower levels          [114 – 116] , while high levels of miR-320 and 
miR-498 correlated with the probability of recurrence free 
survival  [115] . In hepatocellular carcinomas, a 20-miRNA 
metastasis signature confidently predicted which primary 
tumors were associated with venous metastases or were 
metastasis free  [117] . In conclusion, miRNAs hold great 
promise as novel biomarkers to assist in multiple aspects of 
cancer management.  

    miRNA Detection in Archived Specimens, 
Fine Needle Aspirates, and Blood Samples 

 Differential   detection of miRNA levels (or other mole-
cules) in whole tissue biopsies should be cautiously inter-
preted. It is generally assumed that an elevated signal of a 
miRNA corresponds to its upregulation within cancer cells, 
whereas low or no signal is associated with downregula-
tion of miRNA expression. However, differential detection 
could merely reflect cell type heterogeneity among normal 
and tumor tissues and/or the recruitment of reactive stroma 
and infiltrating lymphocytes to the cancerous lesions. 
Differential detection of an miRNA (or miRNA signa-
ture) that can distinguish patients with favorable (e.g., low 
miRNA-X) or poor prognosis (e.g., high miRNA-X) will 
be clinically relevant independent of the underlying bio-
logical cause; for example miR-X is upregulated in cancer 
cells and increases aggressiveness or miR-X is expressed in 
lymphocytes and/or macrophages and elevated signal cor-
relates with inflammation. To gain further insight into the 
differential miRNA expression in cancer, an  in situ  hybridi-
zation (ISH) protocol has been developed and implemented 
to visualize the spatial distribution of miRNA expression 
in archived formalin fixed paraffin embedded (FFPE) sec-
tions        [118, 119] . This is an innovative method due to the 
technical limitations associated with detection of small 
RNAs, such as miRNAs using conventional methods  [120] . 
The success of this ISH method relies primarily on the 
design and use of LNA modified oligonucleotide detection 
probes with high binding affinity to their cognate miRNAs. 

Locked nucleic acids (LNAs) are a class of bicyclic RNA 
analogs with unprecedented affinity against their com-
plementary RNA molecules  [121] . Differential detection 
of miR-124 in oligodendrogliomas suggested a potential 
etiological contribution, but an LNA based ISH assay con-
ducted on FFPE sections of normal brain and oligoden-
drogliomas revealed a neuronal specific expression of 
miR-124; this explained the differential detection since 
neurons are underrepresented in oligodendroglioma lesions 
 [119] . In breast cancer, decreased detection of miR-451 
merely reflected changes of the tumor associated vascula-
ture; as miR-451 was predominantly expressed in mature 
erythrocytes as determined by LNA-ISH  [118] , and independ-
ently confirmed by functional assays of hematopoietic cell 
differentiation        [79,122] . Nonetheless, the ISH approaches 
have clinically validated differential expression of some 
miRNAs: the brain specific miR-9 is upregulated in glioma 
lesions  [119] , miR-145 and miR-205 are predominantly 
expressed in the mammary myoepithelial cell layer, while 
miR-21 is upregulated in tumor associated fibroblasts and 
in breast cancer cells ( Figure 52.2    and  [118] ). ISH is not as 
sensitive as quantitative RT-PCR or microarray profiling. 
Thus, alternative or complementary techniques, such as 
laser capture microdissection to enrich for stromal cells or 
cancer cells followed by miRNA expression analysis should 
be employed to clinically validate differential expression 
and prioritize further studies of the most etiologically rel-
evant miRNAs. For example, enrichment of pancreatic can-
cer lesions by physically drilling with a 2       mm bore through 
FFPE tissue blocks identified a different miRNA signature 
 [123]  as compared to whole tissue biopsies        [124, 125] . 

 Mature   miRNAs have a very long half-life and their 
small size makes them less sensitive than mRNAs to 
degradation often associated with processing of tissue for 
formalin fixation and paraffin embedding, cell preparations 
obtained by endoscopic ultrasound guided (EUS) fine nee-
dle aspiration (FNA), or blood based samples. Thus, miR-
NAs may be more suitable as biomarkers than mRNAs for 
expression profiling in these biological materials. Indeed, 
miRNA expression analysis of pancreatic cell preparations 
obtained by EUS-FNA suggested that the ratio of miR-
196a/miR-217 could assist in separating benign cases and 
chronic pancreatitis from pancreatic ductal adenocarci-
noma  [126] . miR-217 is highly enriched in the acinar cell 
compartment  [125] , hence cell type heterogeneity may at 
least in part explain these findings. If confirmed in a larger 
patient cohort, this miRNA assay could represent an impor-
tant breakthrough for early detection of pancreatic cancer, 
which is one of the most aggressive and deadliest can-
cers. Remarkably, circulating cell free miRNAs have been 
detected in blood plasma and serum, which could provide 
a non-invasive method of diagnosis ( Figure 52.2 ). The pla-
cental miRNAs, miR-526a, miR-527, and miR-520d-5p, 
are detected at higher levels in blood serum of pregnant 
women  [127] . Elevated detection of the tumor associated 
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miR-21, miR-155, and miR-210 in serum could separate 
patients with diffuse large B cell lymphoma from healthy 
volunteers  [128] . Similarly, elevated detection of miR-141 
in blood plasma has been suggested as an independent 
marker for detection of prostate cancer, which moderately 
correlates with prostate specific antigen (PSA) levels  [129] . 
PSA can be elevated in benign prostate conditions, thus 
miR-141 may assist in refining PSA based diagnosis. miR-
141 is also differentially detected in breast and lung can-
cer, and thus it will be interesting to determine whether 

circulating miR-141 can detect patients afflicted with other 
carcinomas.  

    Contribution of miRNAs to Cancer Initiation, 
Progression, and Metastasis 

 Experiments   in cell culture and in mouse models have pro-
vided detailed molecular mechanisms of miRNA mediated 
regulation on cancer progression and metastasis. These 
studies clearly indicate that specific miRNAs can act as 
oncogenes (OG) or tumor suppressor genes (TSG). The 
following examples demonstrate that altered miRNA func-
tions confer a growth advantage to cancer cells, either by 
reducing activities that repress mitogenesis and/or induce 
apoptosis, or by increasing activities that favor malignant 
transformation ( Figure 52.3   ). 

 Overexpression   of miR-155 by a B cell specific promoter 
caused rapid and aggressive B cell lymphoma in mice  [130] . 
Similarly, overexpression of the polycistronic miRNA clus-
ter, miR-17 � miR-92, accelerated tumor development in a 
c-Myc induced mouse model of B cell lymphoma  [131] . In 
contrast, overexpression of miR-15 and miR-16 increased 
cell death in the MEG-01 leukemic cell line via targeting 
of the antiapoptotic gene  Bcl-2   [132] . Frequent loss of miR-
15 and miR-16 in CLL cases may in part contribute to the 
reduced apoptotic potential of malignant cells. 

 The   miR-17 � miR-92 cluster consists of six tightly linked 
miRNAs: miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, 
and miR-92-1, that are co-transcribed as a long pri-miRNA, 
which was previously identified in B cell lymphomas as the 
C13orf25 transcript (for review, see  [133] ). Myc stimulates 
transcription of the  mir-17  �  mir-92  gene cluster and conco-
mitant elevation of Myc, and these miRNAs were detected 
in B cell lymphomas and lung cancer  [133] . Moreover, 
miR-17-5p and miR-20 overexpression protected prostate and 
lung cancer cell lines from undergoing apoptosis        [134, 135] . 
This is consistent with the notion that these miRNAs mediate 
Myc driven processes to promote tumor growth. However, 

 FIGURE 52.2          miRNA based diagnostics.  
    RNA extracted from fresh and archived tissue biopsies, FNA cell prepara-
tions and blood collections can be used to determine changes of miRNA 
expression and to obtain clinically valuable information for early detec-
tion, diagnosis, and prognosis. Different technological platforms have 
been employed to detect miRNA levels such as ISH in archived breast 
FFPE, microarray analysis in frozen lung tissue, quantitative RT-PCR in 
pancreatic FNA, and blood samples.    

 FIGURE 52.3          miRNA mediated mechanisms in cancer biology.  
    Schematic illustration of representative tumor suppressive and oncogenic miRNAs and their regulatory interactions with protein encoding genes. 
miRNAs and proteins whose functions promote malignant transformation are indicated in bold print, whereas those that act as tumor suppressors are 
shown in regular print. The actions of these miRNAs may be contextual and/or cell type specific as exemplified by miR-221.  →  indicates positive 
and      negative effect that may be direct or require intermediary players.     denotes a protein that acts as a transcription factor.    
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the miR-17 � miR-92 cluster can also exert tumor suppres-
sive functions. miR-17-5p and miR-20 are engaged in regula-
tory loops with Myc and the E2F family members as well as 
with Cyclin D1 (CycD1). While Myc and E2Fs stimulate the 
transcriptional output of each other and that of the miRNA 
cluster, miR-17-5p and miR-20 repress expression of E2Fs, 
dampening post-transcriptionally the magnitude of transcrip-
tional activation  [133] . Similarly, in the MCF7 breast cancer 
cell line, CycD1 stimulated expression of this miRNA cluster, 
while miR-17-5p and miR-20 inhibited CycD1 expression 
via binding to its 3'UTR  [136] . Thus, in breast and other can-
cers with low levels of the miR-17 � miR-92 cluster, members 
of this cluster may act as TSGs by limiting CycD1 and E2Fs 
proliferative signals, while in B cell lymphomas and colon 
cancer that are associated with Myc and miR-17 � miR-92 
overexpression the miRNA cluster members may promote 
tumorigenesis by dissociating proliferative Myc activities 
from the proapoptotic functions of E2F1 and other proteins. 

 One   of the first miRNAs discovered, let-7, targets the 
oncogenic HMGA2, Myc, N-Ras, and K-Ras        [137, 138] . 
Poor prognosis of lung adenocarcinoma was associated with 
low levels of let-7 and elevated Ras activity  [137] . In a com-
plementary study, global decrease of miRNA activity by loss 
of Dicer (or other enzymes required for miRNA maturation) 
enhanced the tumorigenic potential of a lung adenocarci-
noma cell line  [139] . Inactivation of Dicer in combination 
with constitutively active K-Ras G12D  by adenoviral delivery 
of Cre recombinase into the respiratory tract accelerated 
tumor progression in a mouse model of lung cancer  [139] . 
let-7 mediated regulation of K-Ras and c-Myc was an impor-
tant tumor suppressive mechanism impaired in the Dicer 
deficient animals  [139] . Forced expression of let-7 in mouse 
models of lung cancer reduces tumor burden        [140, 141] . In 
Burkitt’s lymphoma cell lines, replenishing let-7 activity 
with a synthetic let-7 mimic repressed Myc expression and 
had a profound antiproliferative effect  [142] . 

 The   miR-34 family members (miR-34a, b, c) are tran-
scriptionally activated by p53 in response to DNA dam-
age and mitogenic signals (for review, see  [143] ). miR-34 
 inhibits translation of several cell cycle and/or survival pro-
moting genes including cyclin dependent kinase 4 (CDK-4), 
CDK-6, CycD1, CycE2, and BCL-2  [143] . Conversely, 
a group of proto-oncogenic miRNAs represses inhibi-
tory cell cycle regulators to promote rapid tumor growth. 
The miR-221/-222 family members have been shown to 
repress the CDK inhibitor p27(kip1) expression in breast, 
thyroid, liver, prostate, melanoma, and glioblastoma cells 
               [144 – 149] , as well as the CDK inhibitor p57 in liver cancer 
cells  [145] , while miR-17-5p and miR-106 were shown to 
repress the CDK inhibitor p21 expression        [116, 150] . 

 miR  -21, which is commonly upregulated in both liq-
uid and solid cancers, is considered as a master oncogenic 
miRNA. Validated mRNA targets of miR-21 include: 
phos phatase and tensin homolog deleted on chromosome 
10 (PTEN), which is a TSG and natural attenuator of the 

Ras/PI3K signaling pathway        [151,152] ; programmed 
cell death 4 gene (PDCD4), which is a TSG that inhibits 
translation and interferes with the transactivation of the 
NF κ  and AP-1 transcriptional factors and their neoplas-
tic programs            [153 – 156] ; tropomyosin (TPM1) and maspin 
       [153, 157] , and membrane anchored matrix metalloprotein-
ase regulator (RECK) and tissue inhibitors of matrix metal-
loproteinases (TIMP3), which are TSGs and inhibitors of 
cell migration and invasion  [65] . Thus, miR-21 orchestrates 
a coordinated disassembly of anti-mitogenic, proapoptotic, 
and anti-metastatic mechanisms, thereby contributing to 
aggressiveness of malignant cells. 

 Loss   of E-cadherin weakens epithelial cell-to-cell junc-
tions and facilitates an epithelial to mesenchymal transition 
(EMT), which leads to cell invasion and metastasis. The 
miR-141/miR-200 family members, miR-205 and miR-489, 
maintain expression of E-cadherin by post-transcriptional 
repression of ZEB1 and ZEB2, which are zinc finger tran-
scriptional repressors of E-cadherin              [158 – 162] . ZEB1 and 
ZEB2 also repress transcription of the miR-141/miR-200 
genes via binding to E boxes  [158] . Thus, the ZEBs and 
these miRNAs are engaged in a reciprocal negative feed-
back loop  [158] . miR-335 suppresses breast cancer meta-
stasis by inhibiting the pro-metastatic transcriptional factor 
SOX4 and the extracellular matrix component tenascin C 
 [115] , while miR-373 and miR-520c promote cell migra-
tion and invasion  [163]  via repression of anti-metastatic 
CD44. miR-10b is a key player of a regulatory transcrip-
tional/post-transcriptional cascade that promotes metastatic 
programs in part by stimulating an EMT  [164] . Twist drives 
transcription of miR-10b, which in turn inhibits Homeobox 
D10 expression, releasing HoxD10 mediated transcrip-
tional repression of pro-metastatic gene RhoC  [164] . 

 miRNAs   have also been shown to participate in cancer 
cell response to hypoxia and angiogenesis. miR-210 expres-
sion is upregulated by hypoxia inducible factor (HIF-1) under 
hypoxic conditions in breast cancer and endothelial cell lines 
(for review, see  [165] ). A connection between hypoxia and 
the need of blood supplies suggest that hypoxic induction 
may stimulate blood vessel formation. Indeed, overexpres-
sion of miR-210 in the HUVEC cell line promoted tubulo-
genesis and cell migration by repressing EphrinA3  [166] . 
Similar observations  in vitro  and  in vivo  demonstrated a pro-
angiogenic role of the miR-17 � miR-92 cluster, miR-130b, 
and miR-378 and an anti-angiogenic role of miR-15/-16 
via VEGF and Bcl-2 repression, and miR-221/-222 via 
c-Kit and eNOS  [165] . None of these miRNAs is specifically 
expressed in endothelial cells and, thus, functional analysis of 
known miRNAs with an enriched or restricted expression to 
endothelial cells could uncover other regulatory mechanisms 
of blood vessel formation. This approach has been under-
taken to study the endothelial specific miR-126. miR-126 
null animals exhibit defects in endothelial cell prolifera-
tion, migration, and angiogenesis  [167] . Under physiologi-
cal conditions, miR-126 is required to relay VEGF and FGF 
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signaling to activate angiogenic programs, by opposing the 
inhibitory action of SPRED-1  [167] . Interestingly, miR-126 
was detected at lower levels in tumor tissue of breast, lung, 
and other organs, suggesting that miR-126 is not required 
or perhaps interferes with tumor induced angiogenesis. This 
warrants further investigations given the potential therapeu-
tic implication of blocking tumor access to blood supply via 
miR-126 mediated mechanisms.   

    MICRORNAS AND VIRAL LIFE CYCLES 

 Viral   encoded miRNAs were first demonstrated in the 
Epstein – Barr virus (EBV) and have since been identified in 
several human pathogenic herpesviruses, including Kaposi’s 
Sarcoma associated herpesvirus, cytomegalovirus, and her-
pes simplex virus type 1 (HSV-1) (for review, see  [168] ). 
Herpesviruses possess long dsDNA genomes ( � 120       kb), 
which may have enhanced their evolutionary potential to 
encode miRNAs. Indeed, viral encoded miRNAs have pri-
marily been detected in dsDNA virus types (adenoviruses, 
herpesviruses, polyomaviruses) whereas attempts to clone 
miRNAs from retroviral and ssRNA viruses have failed to 
identify miRNAs  [168] . Intriguingly, the structured RNA 
transactivation responsive (TAR) element, which is located 
at the 5 '  end of all transcripts derived from retroviral human 
immunodeficiency virus type 1 (HIV-1), is recognized as a 
Dicer substrate and yields processed and functional miRNAs 
       [169,170] . This opens the possibility that non-dsDNA viruses 
may have devised alternative mechanisms to encode and uti-
lize miRNAs. Viruses have not only acquired viral encoded 
miRNAs during evolution that control expression of viral and 
host gene transcripts, but have also recruited and exploited 
host miRNAs to regulate viral replication and latency  [168] . 

    Herpesvirus Latency 

 During   latency, the only viral product of HSV-1 is the 
non-coding RNA transcript (LAT). Four viral miRNAs 
are processed from LAT (a pri-miRNA) and one of these, 
miR-H2-3p, post-transcriptionally represses expression of 
ICP0  [171] . ICP0 is a viral immediate early transcriptional 
activator required for replication and re-entry into the lytic 
cycle. In the related virus HSV-2, LAT also functions as a 
pri-miRNA from which a single miRNA, miR-I, is proc-
essed  [172] . It has been postulated that miR-I modulates 
HSV-2 virulence by controlling expression of ICP34.5  [172] . 
In EBV, latently expressed miR-BART2 directs the mRNA 
cleavage of BALF5, the viral polymerase required during the 
lytic cycle  [173] . These examples illustrate the evolution of 
miRNA mediated mechanisms to actively maintain latency.  

    HIV-1 Latency 

 HIV  -1 escapes the immune system by latently  “ hiding ”  in 
resting CD4  �   lymphocytes. The 3 '  region of HIV-1 RNA 

contains binding sites for multiple miRNAs whose expres-
sion is enriched in resting CD4  �   cells  [174] . Cooperative 
binding of these host miRNAs (miR-28, miR-125b, miR-
150, miR-223, and miR-382) attenuate viral protein pro-
duction  [174]  and hence maintain latency. Treatment with 
inhibitors of the host miRNAs  in vitro  was shown to stimu-
late viral replication, even though viral transcriptional acti-
vation was also required  [174] . In addition, HIV-1 encodes 
viral miRNAs that also contribute to maintenance of latency 
       [169,170] . A TAR derived miRNA directs binding of histone 
deacetylase HDAC-1 to the HIV-1 Long Term Repeat region, 
which triggers chromatin silencing of HIV expression  [170] .  

    Hepatitis C Virus Replication 

 Several   studies have shown that the liver expressed miR-
122 is required for replication of the positive-strand RNA 
Hepatitis C virus (HCV) (for review, see  [86] ). miR-122 
is recruited via two binding sites in the 5 '  end of the HCV 
genome  [175] . The 5 '  location of these sites is crucial for 
the positive miR-122 effect as placing this motif in the 3 '  
region inhibits expression  [175] . Interestingly, transfection 
of Huh-7 cells harboring the HCV-N replicon NNeo/C-5B 
with a 2 ' -O-methyl antimiR oligonucleotide complemen-
tary to miR-122 resulted in significant reduction of viral 
RNA underscoring the role of miR-122 in HCV replica-
tion        [175,176] . In addition, miR-196, miR-296, miR-351, 
miR-431, and miR-448, whose expression is induced by 
interferon- β  (natural cellular response and first line of 
therapeutic treatment against viral infections), have been 
reported to inhibit HCV viral production  [177] .   

    FUTURE MICRORNA BASED THERAPEUTIC 
STRATEGIES 

 Several   biopharmaceutical companies are currently devel-
oping miRNA based therapeutics. These include: Santaris 
Pharma (Denmark), Regulus Therapeutics (USA), Miragen 
Therapeutics (USA), and Mirna Therapeutics (USA). In 
May 2008, Santaris Pharma initiated a Phase I human volun-
teer trial of the world’s first miRNA medicine to be tested in 
man. Santaris Pharma’s LNA based antagonist of miR-122 
(SPC3649) is being developed as a potential new approach to 
the treatment for Hepatitis C infection. The Phase I clinical 
trial is a placebo controlled, double-blind, randomized, sin-
gle dose, dose escalating safety study in a total of 48 healthy 
male volunteers. If successful, the company is planning to test 
SPC3649 in patients with hepatitis C virus (HCV) infection. 

 miRNA   based therapeutics exhibits several features that 
may provide patient benefits unobtainable by other therapeu-
tic approaches (       Figures 52.4, 52.5     ). (i) The ability of miRNAs 
to coordinately modulate the expression of multiple target 
genes and thereby affect several output pathways in disease 
through key target gene(s) may have a major etiological con-
tribution. Such a combinatorial effect is difficult to achieve 
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with other therapeutic approaches, which most often aim at 
interfering with the function of one or a few selected proteins. 
(ii) miRNA based therapeutics could be used to replace a 
given miRNA activity using synthetic miRNA mimics, while 
replacing a protein encoding gene requires viral delivery and 

production (transcription/translation) by the endogenous cel-
lular machinery. (iii) The flexible design and the ability to 
scale-up the synthesis of chemically modified oligonucleotide 
compounds provide the basis for development of therapeutic 
approaches that either mimic an miRNA activity (miRNA 
mimics) or effectively bind the mature miRNA, thereby 
antagonizing its function (antimiR). 

    Modulation of miRNA Activity 

 Synthetic   miRNA compounds are commercially avail-
able from various companies. An miRNA mimic approach, 
commercialized by Ambion as  “ pre-miR, ”  comprises a 
double-stranded RNA molecule with proprietary modified 
nucleosides and with asymmetric features to favor unwind-
ing of the miRNA guide (sense) strand. Other approaches 
have also used double-stranded RNA, chemically identi-
cal to siRNAs or with modifications, to obtain a similar 
effect (Dharmacon;        [19, 178] ). Neither of these compounds 

 FIGURE 52.4          Strategies for miRNA based therapeutic intervention.  
    Reduced levels/activity of a miRNA with tumor suppressive functions (upper panel) or increased levels/activity of a miRNA with tumor promoting 
functions (lower panel) by altered regulation of their expression results in increased activity of proteins that accelerate cell cycle progression, inhibit 
cell death, and promote neoplastic programs, or that inhibit cell cycle progression, enable cell death, and maintain cell identify programs, respectively. 
Together, these changes confer a higher tumorigenic potential and facilitate malignant transformation. Administration of a miR mimic compound replen-
ishes miRNA activity and concomitantly restores negative regulation on multiple target genes (upper panel) whereas an antimiR compound antagonizes 
miRNA activity and thereby relieves inhibition of target genes (lower panel), effectively reducing aggressiveness and malignancy of cancer cells.    

 FIGURE 52.5          Potential benefits of miRNA based therapeutics.  
    The use of miRNA based therapeutics enables simultaneous targeting of 
multiple mRNAs in disease pathways, whereas this cannot be achieved 
using conventional drug compounds. Furthermore, single agent miRNA 
based medications may exhibit milder, more predictable side effects and 
adverse drug – drug interactions compared with conventional medications.    



 Chapter   |   52    Translational Implications of MicroRNAs in Clinical Diagnostics and Therapeutics 505

exactly mimics a hairpin RNA precursor, which may affect 
their mode of action. These siRNA-like molecules are 
processed by Dicer and loaded into miRISC (for miRNAs) 
and/or RISC (for siRNAs); sorting of RNA guide strand 
into miRISC or RISC depends on the structural features of 
precursor molecule  [179] . Despite the similarity between 
miRNAs and siRNAs with respect to their processing 
machinery, they are biologically and functionally differ-
ent: miRNAs are endogenous and processed from a hairpin 
precursor, while siRNAs are typically exogenously admin-
istered and processed from a double-stranded molecule. 
Thus, the use of double-stranded compounds may not fully 
recapitulate endogenous miRNA functions, if they are pref-
erentially loaded in RISC rather than miRISC. The miRNA 
mimics have been utilized in cell culture systems, and hence 
additional modifications and/or conjugation chemistries will 
be needed for stabilization and efficient uptake in animals. 

 Since   binding of the miRNA to its cognate target 
mRNA is guided by Watson-Crick base pairing, miRNA 
function can be effectively blocked using an antisense 
oligonucleotide, termed here as antimiR, that binds to the 
miRNA in competition with cellular target mRNAs. Indeed, 
different chemically modified oligonucleotides have proven 
efficient in functional inhibition of miRNAs in inverte-
brate and mammalian cell culture and  in vivo  in animals 
including worms, zebrafish, and rodents. These include 
morpholinos  [180] , 2 ' -O-methyl  [88] , 2 ' -O-methoxyethyl 
(2 ' -MOE)  [91] , and LNA modified antimiR oligonucleotides        
[90, 92]  ( Figure 52.6   ). Several studies have reported on 
miR-122 silencing in mice using antimiR oligonucleotides 
delivered either as unconjugated, phosphorothiolated com-
pounds or conjugated to cholesterol using different dos-
ing regimens          [88, 90, 91] . In a recent study, Elmen  et al . 

2008  [92]  used a high affinity LNA-antimiR to silence 
miR-122 in non-human primates. Systemic delivery of 
PBS-formulated LNA-antimiR at doses ranging from 3        �        1 
to 3        �        10       mg/kg with three intravenous infusions over 
5 days resulted in dose dependent and long-lasting decrease 
of total plasma cholesterol in African green monkeys. 
Consistent with the data from miR-122 antagonized mice 
           [88,90 – 92] , miR-122 silencing in primates was revers-
ible as the levels of cholesterol returned to normal over a 
3-month period after antimiR treatment. The LNA mediated 
miR-122 silencing approach was well tolerated in primates 
as no acute or subchronic toxicities were observed in this 
study. Importantly, no hepatotoxicity, renal toxicity, or 
abnormalities in histopathological investigations of primate 
liver biopsies were detected in the LNA-antimiR treated 
primates. Considered together, reports on efficient miRNA 
silencing in rodents and non-human primates using high 
affinity targeting by chemically modified antimiR oligo-
nucleotides underscore the potential of such compounds in 
the future development of miRNA based therapeutics.  

    Delivery 

 Efficient    in vivo  delivery of therapeutic compounds is a 
critical factor for the development of successful miRNA 
based treatment modalities. Many peripheral tissues can 
be effectively targeted by systemically delivered oligonu-
cleotides containing phosphorothioate backbone modifica-
tions, which provide good pharmacokinetic properties and 
tissue uptake along with good biostability  in vivo   [181] . 
Unconjugated ( “ naked ” ), phosphorothiolated 2 ' -MOE, and 
LNA-antimiR oligonucleotides have been used to silence 
miR-122  in vivo , whereas the use of cholesterol-conjugated 

 FIGURE 52.6          Synthetic RNA analogs for miRNA based therapeutics.  
    Chemical structures of different nucleoside modifications used to design miRNA mimics or antimiR oligonucleotides. Depicted miR mimic and antimiR 
compounds are based on: Selbach  et al ., 2008  [19] , RNA let-7 mimic; Shan  et al ., 2007  [178] , 2-O-methyl miR-122 mimic; Elmen  et al ., 2008  [90] , 
unconjugated 15-mer LNA-antimiR-122; Krutzfeldt  et al ., 2005  [88] , cholesterol (chol)-conjugated 2 ' -O-methyl/RNA antimiR-122; Fabani  et al ., 2008 
 [89] , penetratin (pen)-conjugated 2 ' -O-methyl/LNA antimiR-122.    
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2 ' -O-methyl oligonucleotides (termed as antagomirs) repre-
sents another delivery approach to silence miRNA function 
           [88,90 – 92] . A number of different strategies for efficient 
siRNA delivery are being tested and these could also be 
applied to miRNA based therapies. For example, ligands 
for specific cell surface receptors capable of being internal-
ized can be conjugated to oligonucleotides thereby facili-
tating both cellular uptake and cell type specific delivery. 
The use of supramolecular nanocarriers, such as liposomes, 
and polymeric nanoparticles represents another strategy 
for delivering antisense oligonucleotides (for review, see 
 [182, 183] ). The field of nanoparticle delivery is advanc-
ing at a fast pace, and different formulations are already 
in preclinical trials for targeted delivery to ovarian cancer 
cells using poly(beta-amino ester) derivatives and to epi-
thelial cancer cells with folic acid coated dendrimers  [184] . 
Recent findings that siRNAs are recognized by cell surface 
toll-like receptor 3 (TLR3) and elicit non-target extracellu-
lar induction of interferon- γ  and interleukin-12 via TLR3 
and its adaptor TRIF  [185]  should be taken into considera-
tion when refining miRNA mimic formulations.  

    Therapeutic Intervention 

 Accumulating   evidence implies that miR-21 and miR-155 
could be potential targets for antimiR based cancer thera-
peutics. Several studies have shown that miR-21 is overex-
pressed in glioblastomas and in breast, lung, colon, prostate, 
and stomach cancers                [65, 153 – 157] , suggesting that miR-21 
acts as an oncogene. Recent data suggest that miR-21 plays 
a role in malignancy by repressing matrix metalloprotease 
(MMP) inhibitors, which, in turn, leads to activation of 
MMPs thereby accelerating glioma cell invasiveness  [65] . 
The oncogenic activity of miR-155, which is overexpressed 
in Burkitt’s and Hodgkin’s lymphomas, has been confirmed 
in transgenic mice where miR-155 overexpression leads to 
aggressive B cell malignancy mice  [130] . However, miR-155 
has also been implicated as a central regulator of the 
immune system        [78, 165] , whereas miR-21 is detected in 
normal fibroblasts and monocyte derived dendritic cells and 
mast cells        [118, 186] . Thus, preclinical studies in mouse 
cancer models using chemically modified antimiR oligonu-
cleotides will be necessary to address the therapeutic value 
of targeting miR-21 and miR-155. Furthermore, spatial 
localization of miR-21 and miR-155 accumulation in tumor 
lesions will provide useful information for future develop-
ment of targeted drug delivery into the cancer cells, the stro-
mal compartment, and/or infiltrating immune cells. 

 Given   the prevalence of activated K-Ras mutations in 
colon, pancreas, and lung cancer, replenishing let-7 activity 
with a let-7 mimic may provide a viable avenue for develop-
ment of let-7 based cancer therapeutics. Enabling global let-
7 suppressive mechanisms against K-Ras, c-Myc, and other 
oncogenic targets in conjunction with current chemother-
apy may bring hopes for a cure, where other drugs such as 

farnesyltransferase inhibitors and small molecule inhibitors 
of K-Ras or downstream effector pathways have failed so 
far. Similar strategies could be envisioned for replenishing 
miR-34 activity. As a mediator of the p53 regulated proc-
esses, a miR-34 mimic could partially restore p53 functions 
and render cancer cells more vulnerable to p53 dependent 
cytotoxic compounds.  

    Antiviral Agents 

 Most   antiviral agents act primarily on the replication active 
virus. For example, HIV is refractory in resting CD4  �   lym-
phocytes to suppressive highly active antiretroviral therapy 
(HAART)  [187] . AntimiRs against viral miRNAs that con-
trol and maintain latency in combination with antiviral agents 
may provide an effective therapy to eradicate viral infection 
(e.g., herpesviruses and HIV-1). However, careful preclini-
cal studies should evaluate protocol safety for a controlled 
entrance in the lytic cycle, as antimiR compounds that spe-
cifically target viral sequences should have minimized side 
effects on host cells. Interestingly, miRNA based strategies 
to eliminate HIV-1 via inhibition of host miRNAs have been 
successfully tested in cell line systems  [174] . Thus, the devel-
opment of therapeutic approaches that would allow targeted 
delivery of antimiR compounds against miR-28, miR-125b, 
miR-150, miR-223, and miR-382 to resting CD4  �   cells could 
be used in combination with HAART to improve treatment 
of HIV patients. The impediments of applying host miRNA 
based therapies have been thoroughly discussed  [187] . 

 A   high proportion of HCV infections become chronic 
and lead to HCC, which is one of the most common cancers 
in the world. Due to the suboptimal efficacy and safety pro-
files of currently employed HCV therapies there is a high 
unmet medical need for novel HCV targeted therapeutics. 
Since miR-122 is required for HCV replication it represents 
a potential therapeutic target for treatment of HCV infec-
tion, which, in turn, necessitates the development of effec-
tive and safe approaches for miR-122 silencing  in vivo .  

    Passive Regulators of Gene Therapy 

 There   are several highly abundant miRNAs with organ/cell 
type specific expression (e.g., miR-122 in hepatocytes, 
miR-1 in muscle cells, miR-124 in neurons). Although the 
clinical application of gene therapy is currently halted and 
under serious scrutiny, the use of tissue specific miRNAs 
as passive regulators of transgene expression may provide 
a reliable safeguard mechanism to effect a precise delivery 
and functioning of gene therapy in the intended target cells. 
Proof-of-principle experiments were recently conducted 
in preclinical animal models. Reduced hepatotoxicity 
of suicide gene therapy was accomplished by engineer-
ing the thymidine kinase (HSVtk) and ganciclovir (GCV) 
transgenes to contain four perfectly complementary sites 
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for miR-122 in their 3’UTR  [188] . Using miR-122 as an 
endogenous RNA guide to cleave the HSVtk and GCV 
mRNAs, adenovirus delivered vectors were expressed more 
than 100-fold lower in hepatocytes compared to intended 
target tumor cells  [188] .   

    CONCLUSIONS 

 miRNAs   were presented to the scientific community in 2001 
and have emerged as a new paradigm for the control of gene 
expression. This miRNA mediated regulatory layer of gene 
expression has been repeatedly and convincingly shown to 
play an important role in developmental, physiological, and 
pathological processes. Indeed, after 7 years of miRNA 
research and with over 3400 miRNA related publications 
in the Pubmed database, very few fields of life sciences and 
biomedicine have been left unshaken. The significance of 
this breakthrough discovery has already been acknowledged 
with prestigious awards including the Lasker Award in 2008. 

 The   field of cancer biology has been significantly 
transformed by the discovery of miRNAs and is expected 
to have a major impact on translational research. miRNAs 
have already shed light on the molecular mechanisms of 
carcinogenesis, provided potential new biomarker tools for 
cancer management and suggested novel approaches for 
therapeutic intervention. Furthermore, our understanding of 
the etiological contribution of miRNAs to other human dis-
eases is rapidly advancing. Hence, we foresee an impend-
ing biomedical revolution based on the clinical application 
of miRNAs and miRNA mediated pathways for diagnostic 
and therapeutic purposes.  
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ACC, in adiponectin signaling, 435f, 436
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Activin receptor-like kinases (ALKs)
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AC/VU decision, during gonadal development, 
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Adapter proteins
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in TCR signaling complexes, 185–186
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TGF modulation by, 153

Adenylyl cyclase (AC), in T cell activation, 
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tumor stroma and ECM, 402
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Angiotensin converting enzyme (ACE), 154

Angiotensin II
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TGF modulation by, 153
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Ras effector signaling inhibition, 337f, 
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validation and druggability of Ras 
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Antiendothelial cell antibodies (AECAs), 478, 
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Antigen stimulation, of T cells, 189
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Anti-Müllerian hormone (AMH), 131t, 132
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FHF. See First heart fi eld

Fibrillins, 118–119

Fibroblast growth factors (FGFs)
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in immune system, 46
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Gastrointestinal stromal tumors (GISTs), 413

kinase inhibitors for, 414t, 415–417, 416f, 

418f

development of, 416–417

resistance to, 417

Gastrointestinal tract, trophic effects of gut 
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gastrointestinal tract, 100t, 101, 104

Glucocorticoids

bone loss due to, 109–110

for rheumatoid arthritis, 465
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in development and disease, 234–236, 235f, 

236t

generation and distribution of, 233

in pancreatic organogenesis, 392–393

in PDAC, 377–378

transmission of signal of, 233–234, 234f

Hedgehog interacting protein (Hip), 326
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Hepatocellular carcinoma, kinase inhibitors for, 

414t, 423
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I
Icmt inhibitors, 340–341f, 341–342

Id family proteins, 380
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in BMP signaling, 271, 272f, 273–275

in pancreatic cancer, 379

in pancreatic organogenesis, 393–394
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IL-15, 174–175
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Intracellular proteins, cadherin interactions 

with, 34–36, 35f

Intracellular signaling, molecular scaffolds and, 

24–25, 25f
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NICD. See Notch intracellular domain

Nifedipine, 83, 88
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oncogenic activation in PDAC, 376–378, 377f

stroma and stromal component contributions 

to PDAC, 379–380, 379f

TGFβ in, 393–395

Wnt signaling in, 395

Pancreatic ductal adenocarcinoma (PDAC), 
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prognostic markers, 381

stromal targets, 382–383

loss of tumor suppressor function in, 

378–379

oncogenic activation in, 376–378, 377f

growth receptor pathways, 376

Hh pathways, 377–378

K-ras pathways, 377

Notch signaling pathways, 378

stroma and stromal component contributions, 

379–380, 379f

Pancreatic intraepithelial neoplasias (PanINs), 
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Paracrine signaling, in renal-tubule epithelial 

cells, 155–160

adenosine and ATP, 159–160

angiotensin II, 155–156

bradykinin, 159

dopamine, 156–157

eicosanoids, 158–159

endothelin, 157–158

gap junctions, 160

nitric oxide, 157
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Parkinson’s disease, UPR in, 452

Patched (Ptc), 233–235, 234f, 325

in pancreatic organogenesis, 392–393

in PDAC, 377

Patterning, 274

Pax6, 235

Paxillin

in adhesion turnover, 25–26
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in FGFR signaling pathways, 280, 281f

in gastrointestinal tract, 103
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FGF control of sensory organ formation in, 
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