
Editors-in-Chief
Rédacteurs-en-chef
Jonathan Borwein
Peter Borwein

1 HERMAN/KUČERA/ŠIMŠA Equations and Inequalities
2 ARNOLD Abelian Groups and Representations of Finite Partially Ordered Sets
3 BORWEIN/LEWIS Convex Analysis and Nonlinear Optimization
4 LEVIN/LUBINSKY Orthogonal Polynomials for Exponential Weights
5 KANE Reflection Groups and Invariant Theory
6 PHILLIPS Two Millennia of Mathematics
7 DEUTSCH Best Approximations in Inner Product Spaces
8 FABIAN ET AL. Functional Analysis and Infinite-Dimensional Geometry
9 KŘÍŽEK/LUCA/SOMER 17 Lectures on Fermat Numbers
10 BORWEIN Computational Excursions in Analysis and Number Theory
11 REED/SALES Recent Advances in Algorithms and Combinatorics

Bruce A. Reed Cláudia L. Sales
Editors

Recent Advances in
Algorithms and
Combinatorics

With 52 Illustrations

Bruce A. Reed Cláudia L. Sales
Equipe Combinatoire Universidade Federal do Ceara
CNRS, Paris, France Departamento de Computacao—LIA

Campus do Pici—Bloco 910and
CEP 60455-760 Fortaleza-CE BrasilMcGill University
linhares@lia.ufc.brMontreal Canada

Editors-in-Chief
Rédacteurs-en-chef
Jonathan Borwein
Peter Borwein
Centre for Experimental and Constructive Mathematics
Department of Mathematics and Statistics
Simon Fraser University
Burnaby, British Columbia V5A 1S6
Canada
cbs-editors@cms.math.ca

Mathematics Subject Classification (2000): 05-06

Library of Congress Cataloging-in-Publication Data
Recent advances in algorithms and combinatorics / Bruce Reed, Cláudia L. Sales.

p. cm. — (CMS books in mathematics ; 11)
Includes bibliographical references.
ISBN 0-387-95434-1 (alk. paper)
1. Combinatorial analysis. I. Reed, Bruce A. II. L. Sales, Cláudia. III. Series.

QA164 .R395 2002
511′6—dc21 2002017379

ISBN 0-387-95434-1 Printed on acid-free paper.

 2003 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 10864587

Typesetting: Pages created by the authors using a Springer TEX macro package.

www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

Preface

Combinatorics is one of the fastest growing fields of mathematics. In large
measure this is because many practical problems can be modeled and then
efficiently solved using combinatorial theory. This real world motivation for
studying algorithmic combinatorics has led not only to the development of
many software packages but also to some beautiful mathematics which has
no direct application to applied problems. In this volume we highlight some
exciting recent developments in algorithmic combinatorics.

Most practical applications of algorithmic combinatorics would be im-
possible without the use of the computer. As computers become ever more
powerful, more and more applications become possible. Computational
biology is one example of a relatively new field in which algorithmic com-
binatorics plays a key role. The chapter by Sagot and Wakabayashi in this
volume discusses how combinatorial tools can be used to search for patterns
in DNA and protein sequences.

The information technology revolution has not only allowed for the res-
olution of practical problems using combinatorial techniques, it has also
been the source of many new combinatorial problems. One example is ra-
dio channel assignment. In this problem we have a number of transmitters
each of which must handle a number of calls. Each call must be assigned a
frequency in such a way that interference is avoided (thus calls handled by
the same transmitter are assigned different frequencies as are calls handled
by transmitters which are near each other). The explosive growth in the
use of the frequency spectrum due to, e.g., mobile telephone networks, has
made it a very valuable resource. Indeed spectrum licenses were sold for
billions of dollars in recent actions. So, efficiently assigning radio channels
is of great importance. In his chapter in this volume, McDiarmid describes
how to model radio channel assignment as a graph colouring problem and
surveys the results that have been obtained using this approach.

Using graph colouring models to aid in studying how to direct the flow
of information through transmission channels is not new. Shannon defined
the zero-error capacity of a noisy (memoryless) channel as the maximum
number of bits per symbol which could be sent through the channel whilst
avoiding the introduction of errors. In 1961, Berge noted that determining
the Shannon capacity of a channel could be modeled as a graph theory

vi Preface

problem. In this context, he defined the class of perfect graphs, and noted
that for certain channels, the Shannon capacity was simply the chromatic
number of the associated perfect graph.

Berge’s work motivated considerable research into efficient algorithms for
colouring perfect graphs. This problem was finally resolved by Grötschel,
Lovász, and Schrijver in 1981 using the (then) recently developed ellip-
soid method. They modelled the problem as a semi-definite program(SDP)
and then showed how the ellipsoid method could be used to solve this
specific SDP. They later showed that in fact the ellipsoid method could
be used to solve (actually approximately solve to arbitrary precision) a
wide variety of SDP. It turned out that many combinatorial problems can
be solved, at least approximately, by solving a related SDP. The most
well-known example is the Goemans-Williamson algorithm to approximate
Max-Cut. We are fortunate to have a chapter by Lovász in the volume
which presents the basic theory of semi-definite programming and surveys
its role in combinatorial optimization.

The ellipsoid method is a heavy piece of artillery, and researchers still
hope to develop a combinatorial algorithm for colouring perfect graphs,
which does not require its use. In his chapter, Maffray surveys some of
the approaches with which this problem has been attacked. Many of the
techniques for graph colouring he discusses are of interest in their own right
and have applications to other graph colouring problems.

Although, the SDP artillery developed by Grötschel, Lovász, and Schri-
jver is incredibly powerful and beautiful, solving a graph theory problem
using this artillery generally yields little insight as to how the optimal so-
lution is determined by the graph’s structure. Algorithms developed using
decomposition theory, in contrast, often provide such information. Typi-
cally when using this paradigm, we decompose the graph into pieces which
are easy to deal with, in such a way that it is easy to paste the solutions
on the pieces together to obtain a global solution.

The first chapter in this volume is a beautifully written overview of one
very important theory of this type. The theory was developed by Lovász
to characterize the matching lattice (the matching lattice of a graph is the
set of vectors indexed by its edges generated by the incidence vectors of
perfect matchings). It was further refined by the authors of this chapter
Carvalho, Lucchesi, and Murty.

Another very important theory of this type, that of tree width and tree
decompositions, was developed by Robertson and Seymour as part of their
seminal work characterizing graphs without a given fixed graph as a minor.
In his chapter, Reed discusses the algorithmic aspects of tree decomposi-
tions, and mentions some applications to the theory of such diverse fields
as databases, code optimization, and bioinformatics.

The third decomposition theorem discussed in this book is Szemerédi’s
regularity lemma. Roughly speaking, this result tells us that any large graph
can be decomposed into edge disjoint random-looking bipartite graphs.

Preface vii

Thus the pieces in this decomposition are easy to deal with because they
have many of the properties of random graphs. The basics of this theory is
presented in the chapter of Kohayakawa and Rödl, who also survey some of
its algorithmic applications. There are many equivalent definitons of what
it means to be random looking, or formally quasi-random. In their chapter,
Kohayakawa and Rödl present a new definition and show that this allows for
more efficient algorithms to test this property. This important new result
leads to similar efficiency gains in many of the algorithms developed using
this theory.

Probability plays a different role in Steger’s chapter on approximation
algorithm. Recently, a link has been developed between the length of time
needed to solve a problem using a deterministic algorithm and the number
of bits needed to solve it using a random algorithm (with a given time
complexity). This link has allowed researchers to show that many NP -
complete optimization problems cannot be approximated unless P = NP .
Steger’s chapter provides an overview of this and other developments in
this important field.

One use of graphs as models is to capture the intersection properties of
various structures. In this context, the vertices correspond to the structures
and two are joined by an edge if they intersect. For example, we can crudely
model radio channel assignment in this way, To do so, we think of the
vertices as discs around the transmitters representing the area which their
broadcast signal covers, and join two vertices by an edge if these discs
intersect. Then transmitters with an edge between them must use different
frequencies.

Szwarcfiter’s chapter considers a self-referential use of graphs of this kind.
Here, the vertices of a graph G correspond to the cliques of some other
graphH. We join two vertices ofG by an edge if the corresponding cliques of
H intersect in a vertex. We say that G is the clique graph of H. Szwarcfiter
discusses various results on the class of clique graphs.

We have tried to point out some of the intersections between the topics
treated in the various chapters of this work. The reader will stumble upon
many more as he makes his way through it. More importantly, he will
discover that each chapter can be appreciated and enjoyed in its own right.

Bruce A. Reed
Cláudia L. Sales

July 2002

This page intentionally left blank

Contents

Preface v

List of Contributors xiii

1 The Matching Lattice 1
M.H. de Carvalho, C.L. Lucchesi, and U.S.R. Murty
1.1 Perfect Matchings . 1
1.2 Matching Covered Graphs 2
1.3 The Matching Lattice . 3
1.4 Tight Cut Decompositions 5
1.5 Separating Cut Decompositions 10
1.6 Removable Edges . 14
1.7 Ear Decompositions . 16
1.8 Optimal Ear Decomposition 20
1.9 A Characterization of the Matching Lattice 21
1.10 Unsolved Problems . 23
References . 24

2 Discrete Mathematics and Radio Channel Assignment 27
C. McDiarmid
2.1 Introduction . 27
2.2 The constraint matrix model 28
2.3 General results for the constraint matrix model 29
2.4 How hard is channel assignment? 38
2.5 Channel assignment in the plane 40
2.6 Channel assignment with demands 47
2.7 Random channel assignment problems 52
2.8 Modelling radio channel assignment 56
References . 58

3 On the coloration of perfect graphs 65
F. Maffray
3.1 Introduction . 65
3.2 Basic definitions and notation 66

x Contents

3.3 Bounds on the chromatic number 67
3.4 Edge coloring . 68
3.5 Sequential Algorithms . 69
3.6 Sequential coloring with bichromatic exchange 71
3.7 Sequential coloring with trichromatic exchange 74
3.8 Coloring by contraction . 74
3.9 Other methods . 79
References . 80

4 Algorithmic Aspects of Tree Width 85
B.A. Reed
4.1 Dividing and Conquering 85
4.2 Tree decompositions and tree width 89
4.3 Finding Bounded Width Decompositions 94
4.4 Using Bounded Width Decompositions 97
4.5 Walls . 98
4.6 Some Applications . 101
References . 104

5 A Survey on Clique Graphs 109
J.L. Szwarcfiter
5.1 Introduction . 109
5.2 Operations on Clique Graphs 110
5.3 A General Characterization 111
5.4 Clique Graphs of Classes of Graphs 113
5.5 Clique Inverse Classes . 115
5.6 Iterated Clique Graphs . 120
5.7 Convergence and Divergence 121
5.8 Diameters . 125
5.9 Remarks and Problems . 128
References . 130

6 Semidefinite Programs and Combinatorial Optimization 137
L. Lovász
6.1 Introduction . 137
6.2 Preliminaries . 142
6.3 Semidefinite programs . 151
6.4 Obtaining semidefinite programs 158
6.5 Semidefinite programming in proofs 166
6.6 Semidefinite programming in approximation algorithms . 173
6.7 Constraint generation and quadratic inequalities 177
6.8 Extensions and problems 183
References . 189

7 Approximability of NP-Optimization Problems 195

Contents xi

A. Steger
7.1 Introduction . 195
7.2 Proving Lower Bounds . 205
7.3 A Hierarchy for NP-Optimization Problems 212
7.4 Constructing Reductions 220
7.5 Open Problems . 239
References . 239

8 Pattern Inference under many Guises 245
M.-F. Sagot and Y. Wakabayashi
8.1 Introduction . 245
8.2 Biological motivation . 246
8.3 Notions of similarity . 247
8.4 Models and their properties 257
8.5 Algorithms . 260
References . 284

9 Szemerédi’s Regularity Lemma and Quasi-randomness 289
Y. Kohayakawa and V. Rödl
9.1 Introduction . 289
9.2 The regularity lemma . 292
9.3 An application of the regularity lemma 298
9.4 Further applications . 311
9.5 Proof of the regularity lemma 316
9.6 Local conditions for regularity 324
9.7 A new quasi-random property 331
References . 347

This page intentionally left blank

List of Contributors

Marcelo H. de Carvalho
Departamento de Computação e Estat́ıstica, Universidade Federal do Mato
Grosso do Sul, Campo Grande, MS, Brazil
Yoshi Kohayakawa
Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São
Paulo, SP, Brazil
László Lovász
Microsoft Research, Edmond, WA, USA
Cláudio L. Lucchesi
Instituto de Computação, Universidade de Campinas, Campinas, SP, Brazil
Frédéric Maffray
C.N.R.S., Laboratoire Leibniz - IMAG, Grenoble, France
Colin McDiarmid
Department of Statistics, University of Oxford, Oxford, UK
U. S. R. Murty
University of Waterloo, Waterloo, Canada
Bruce A. Reed
School of Computer Science, McGill University, Montreal, Canada
Vojtěch Rödl
Department of Mathematics and Computer Science, Emory University,
Atlanta, GA, USA
Marie-France Sagot
Inria Rhône-Alpes, Laboratoire de Biométrie et Biologie Évolutive, Uni-
versité Claude Bernard, Lyon, France
Angelika Steger
Institut für Informatik, Technische Universität München, München, Ger-
many
Jayme L. Szwarcfiter
Instituto de Matemática, NCE and COPPE, Universidade Federal do Rio
de Janeiro, Rio de Janeiro, RJ, Brazil
Yoshiko Wakabayashi
Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São
Paulo, SP, Brazil

This page intentionally left blank

1

The Matching Lattice
M.H. de Carvalho1

C.L. Lucchesi2
U.S.R. Murty3

1.1 Perfect Matchings

A set M of edges of a graph G is a matching of G if each vertex of G is
incident with at most one edge of M and a perfect matching of G if each
vertex of G is incident with precisely one edge of M .

The fundamental problem of characterizing graphs that admit a perfect
matching was settled first for bipartite graphs by Hall in 1935, and more
generally, for all graphs by Tutte in 1947. The two well-known theorems
which provide these characterizations are given below:

Theorem 1.1.1 (Hall, 1935 [10]) A graph G, with bipartition {A,B},
has a perfect matching if and only if |A| = |B| and, |I(G− S)| ≤ |S|, for
each subset S of B, where I(G − S) denotes the set of isolated vertices of
G− S.

Hall’s Theorem is usually stated differently, but this version, in terms
of isolated vertices, has a strong similarity with the statement of Tutte’s
Theorem, stated below.

Theorem 1.1.2 (Tutte, 1947 [24]) A graph G has a perfect matching if
and only if |O(G− S)| ≤ |S|, for each subset S of V (G), where O(G− S)
denotes the set of odd components of G− S.

We denote by M(G) the set of all perfect matchings of G, or simply by
M, if G is understood. Tutte’s Theorem gives a characterization of graphs
for which M is nonempty. There are a number of interesting problems in

1Supported by cnpq, Brazil. Member of pronex 107/97 (mct/finep)
2Supported by cnpq, and fapesp, Brazil. Member of pronex 107/97 (mct/finep)
3Partially supported by cnpq and fapesp during his visit to unicamp, Brazil.

2 de Carvalho, Lucchesi, and Murty

graph theory which are concerned with properties of graphs which have a
perfect matching. A natural setting for the study of these problems is the
theory of matching covered graphs.

1.2 Matching Covered Graphs

An edge of a graph G is admissible if it lies in some perfect matching of
G. A matching covered graph is a connected graph each edge of which
is admissible. Using Hall’s and Tutte’s Theorems, it is easy to derive the
following characterizations of matching covered graphs.

Theorem 1.2.1 Let G be a bipartite graph with bipartition {A,B} that
has a perfect matching. Graph G is matching covered if and only if for each
nontrivial partition (A′, A′′) of A and each partition (B′, B′′) of B such
that |A′| = |B′|, at least one edge of G joins some vertex of A′ to some
vertex of B′′.

Theorem 1.2.2 A connected graph G is matching covered if and only if for
each subset S of V (G) the inequality |O(G− S)| ≤ |S| holds, with equality
only if set S is independent.

(A set of vertices S of a graph G is independent (or stable) if the subgraph
G[S] of G spanned by S is free of edges.)

It can be shown that every matching covered graph is 2-connected. Us-
ing Theorem 1.2.2, it is easy to show that every 2-edge-connected cubic
graph is matching covered. There are three cubic graphs which play par-
ticularly important roles in this theory. They are the complete graph K4,
the triangular prism C6, and the Petersen graph P (see Figure 1.1).

(a) K4 (b) C6 (c) P

Figure 1.1. Three important cubic graphs.

1. The Matching Lattice 3

For a history of the matching covered graphs, see Lovász and Plum-
mer [13]. The most important source for this work is Lovász [12]. Murty [14]
is also a very useful reference.

1.3 The Matching Lattice

Let G be a matching covered graph. For each set F of edges of G, we denote
by χF the incidence vector of F in R

E , that is, the vector w of 0’s and
1’s such that a coordinate w(e) corresponding to edge e of G is equal to 1
if and only if edge e lies in set F . For any integer k, we denote by k the
vector of R

E whose coordinates are all equal to k. For every set F of edges
of G and any vector w in R

E , w(F) denotes the scalar product of w and
χF , that is, w(F) =

∑
e∈F w(e).

The linear space generated by the incidence vectors of perfect matchings
in G is the matching space of G and is denoted by Lin(G):

Lin(G) := {w ∈ R
E : w =

∑

M∈M
αMχM , αM ∈ R}.

Likewise, the lattice generated by the incidence vectors of perfect matchings
in G is the matching lattice of G and is denoted Lat(G):

Lat(G) := {w ∈ Z
E : w =

∑

M∈M
αMχM , αM ∈ Z}.

We may restrict the set of coefficients used in the linear combinations to
that of the set of nonnegative rationals Q≥0 or integers Z≥0, thereby ob-
taining the rational cone or integer cone spanned by the incidence vectors
of matchings in M(G), denoted Rat .Con(G) or Int .Con(G), respectively:

Rat .Con(G) := {w ∈ Q
E
≥0 : w =

∑

M∈M
αMχM , αM ∈ Q≥0},

Int .Con(G) := {w ∈ Z
E
≥0 : w =

∑

M∈M
αMχM , αM ∈ Z≥0}.

Tait showed that the Four-Colour Conjecture is equivalent to the
following assertion:

Conjecture 1.3.1 ([23]) Every 2-connected cubic planar graph is 3-edge
colourable.

If G is a k-regular graph, then G is k-edge colourable if and only if 1 can
be expressed as a sum of incidence vectors of k perfect matchings of G.
In other words, G is k-edge colourable if and only if 1 lies in Int .Con(G).
Tutte made the following generalization of the Four-Colour Conjecture:

4 de Carvalho, Lucchesi, and Murty

Conjecture 1.3.2 ([25]) Every 2-connected cubic graph free of Petersen
minors is 3-edge colourable.

A minor of a graph G is any graph that may be obtained from a subgraph
of G by edge contractions. Clearly, Int .Con ⊆ Lat . This observation led
Seymour to study the matching lattice of certain cubic graphs:

Theorem 1.3.3 ([21]) For every 2-edge-connected cubic graph G, if G
does not contain the Petersen graph as a minor, then 1 ∈ Lat(G).

We note that Theorem 1.3.3 may be regarded as a proof of a relaxation of
Conjecture 1.3.2.

Robertson, Sanders, Seymour and Thomas gave a new proof of the Four-
Colour Theorem in [15]. Extending the techniques they developed in that
proof, they gave a proof of Conjecture 1.3.2 [17, 19, 18, 16]. Thus, vector
1 lies in the integer cone of any cubic 2-edge-connected planar graph.

Seymour also proved the following assertion:

Theorem 1.3.4 ([21]) For every 2-edge-connected cubic graph G, vector
2 lies in Lat(G).

Theorem 1.3.4 may be regarded as a proof of a relaxation of a conjecture
due to Fulkerson and Berge [8]:

Conjecture 1.3.5 For every 2-edge-connected cubic graph G, vector 2 lies
in Int .Con(G).

Lovász, [12], generalized Theorems 1.3.3 and 1.3.4 of Seymour by estab-
lishing a complete characterization of the matching lattice of any matching
covered graph. More specifically, for any matching covered graph G, and
any w in Z

E , Lovász determined the necessary and sufficient conditions for
w to be in Lat(G).

We begin with an obvious necessary condition. For any subset S of V ,
C = ∇G(S) (or simply C = ∇(S)) denotes the (edge-) cut of G with S
and S = V − S as its shores; in other words, ∇(S) is the set of all edges of
G which have precisely one end in S. Clearly, for any perfect matching M
and any vertex v, χM (∇(v)) = 1. Therefore, if w =

∑
M∈MαMχM , then,

for any vertex v, w(∇(v)) =
∑

M∈MαM . A vector w in R
E is regular over

a set C of cuts of G if w(C) = w(D) for any two cuts C and D in C. Vector
w is regular if it is regular over the set of all stars {∇(v) : v ∈ V }. In view
of the above observation, we have:

Lemma 1.3.6 For every matching covered graph G, if a vector w lies in
Lat(G) then w is regular.

For matching covered bipartite graphs, the regularity of a vector is also
sufficient:

1. The Matching Lattice 5

Lemma 1.3.7 For every bipartite matching covered graph G, a vector in
Z

E lies in Lat(G) if and only if it is regular.

However, in general, the regularity condition is not sufficient for an inte-
gral vector w to belong to Lat(G). For the Petersen graph, 1 satisfies the
regularity condition, but it is not in the matching lattice4.

In the study of the matching lattice, one makes use of two types of
decompositions of matching covered graphs. These decompositions are tight
cut decompositions and ear decompositions. We will consider both in the
next sections.

1.4 Tight Cut Decompositions

The first type of decomposition of matching covered graphs, known as the
tight cut decomposition, was introduced by Lovász in [12]. In this section,
we describe this procedure and explain its relevance to the study of the
matching lattice.

1.4.1 Tight Cuts
Let G be a matching covered graph. A cut C of G is tight in G if every
perfect matching of G has precisely one edge in C.

Let S be a shore of a cut C of a matching covered graph G. Then, the
graph obtained from G by contracting S to a single vertex s is denoted by
G{S; s} and the graph obtained from G by contracting S to a single vertex
s is denoted by G{S; s}. We shall refer to these two graphs G{S; s} and
G{S; s} as the C-contractions of G. If the names of the new vertices in the
C-contractions are irrelevant, we shall simply denote them by G{S} and
G{S}. Observe that this notation is similar to the notation G[S] used for
the subgraph of G induced by S; G{S; s} is the subgraph induced by S,
together with a new vertex s such that each edge in ∇G(S) joins its end in
S to the vertex s.

Lemma 1.4.1 ([12]) Let G be a matching covered graph, and let C =
∇(X) be a tight cut of G. Then the two C-contractions G1 = G{X} and
G2 = G{X} obtained by contracting the two shores X and X, respectively,
are also matching covered.

4This follows from the fact that, for any pentagon C of the Petersen graph, 1(C) =
5 ≡ 1 (mod 2), whereas χM (C) ≡ 0 (mod 2), for any perfect matching M .

For the Petersen graph, a vector w in ZE is in the matching lattice if and only if it is
regular and, for any pentagon Q, w(E(Q)) is even.

6 de Carvalho, Lucchesi, and Murty

1.4.2 Barrier Cuts and 2-Separation Cuts
There are two types of tight cuts, namely barrier cuts and 2-separation
cuts, which are of special interest in this theory. To define the cuts of the
first type, we need the notion of a barrier in a matching covered graph.

Let G be a matching covered graph. By Tutte’s Theorem, |O(G− S)| ≤
|S|, for each subset S of V . A nonempty subset S of V is called a barrier
of G if |O(G− S)| = |S|. If v is any vertex of G, then {v} is a barrier of
G. Such a barrier is trivial.

Barrier Cut: If B is a nontrivial barrier and H is any nontrivial odd com-
ponent of G−B, then ∇(V (H)) is a tight cut. Such a cut is called a barrier
cut (see Figure 1.2(a)).

The second type of tight cut is defined below.

2-Separation cut: Let {u, v} be a 2-separation that is not a barrier. Let H
be a component of G−{u, v}. Since {u, v} is not a barrier, graph H is even.
Let X := V (H) ∪ {u}, Y := V (H) ∪ {v}. Then ∇(X) and ∇(Y) are both
tight cuts. Such cuts are referred to as 2-separation cuts (see Figure 1.2(b)).

B

H

(a)

u v

(b) (c)

Figure 1.2. (a) A barrier cut (b) a 2-separation cut and (c) a tight cut that is
neither a barrier nor a 2-separation cut.

A matching covered graph may have a tight cut that is neither a barrier
cut nor a 2-separation cut (see Figure 1.2(c)). However, Edmonds, Lovász
and Pulleyblank proved the following fundamental result:

1. The Matching Lattice 7

Theorem 1.4.2 ([7]) If a matching covered graph G has a nontrivial tight
cut, then it either has a nontrivial barrier cut or it has a 2-separation cut.

Until recently, the only known proof of Theorem 1.4.2 was based on LP-
duality. Recently Szigeti [22] obtained a simple proof which does not use
LP-duality.

1.4.3 Bricks and Braces
A matching covered graph G in which all barriers are trivial is bicritical.
(A graph G is bicritical if and only if G−{u, v} has a perfect matching for
any two distinct vertices u and v of G.) A brick is a 3-connected bicritical
graph. By definition, a brick cannot have barrier cuts or 2-separation cuts.
Hence, by Theorem 1.4.2, we have:

Lemma 1.4.3 A brick has no nontrivial tight cuts.

Let G be a bipartite matching covered graph G with bipartition (A,B), Let
(A1, A2) be a partition of A into non-empty sets A1 and A2, and (B1, B2)
be a partition of B into non-empty sets B1 and B2. Suppose that |A1| =
|B1| + 1, |B2| = |A2| + 1, and that there are no edges of G linking B1
with A2. Then, the cut ∇((A1 ∪ B1)) is a nontrivial tight cut of G (See
Figure 1.3). In fact, every tight cut in a bipartite matching covered graph
must be of this form (see Lovász, [12]). A bipartite matching covered graph
which does not have any nontrivial tight cuts is called a brace. The above

A1

B1

A2

B2

Figure 1.3. A tight cut in a bipartite graph.

mentioned facts concerning matching covered graphs without nontrivial
tight cuts are summarized by the following statement.

Theorem 1.4.4 (See [12]) A matching covered graph has no nontrivial
tight cuts if and only if it is either a brick or a brace.

8 de Carvalho, Lucchesi, and Murty

1.4.4 Tight Cut Decompositions
Let G be a matching covered graph, and let C = ∇(S) be a nontrivial
tight cut of G. Then, as already noted, the two C-contractions G1 and G2
of G are also matching covered. If either G1 or G2, say G1 has a nontrivial
tight cut D, then we can take D-contractions of G1, in the same manner as
above, and obtain smaller matching covered graphs than G1. Thus, given
any matching covered graph G, by repeatedly applying cut-contractions,
we can obtain a list of graphs which do not have nontrivial tight cuts (i.e.
bricks and braces. See Figure 1.4).

C 1 C2

C 3 C4

brace

brick
brick brace

brick

Figure 1.4. Tight cut decomposition.

Lovász gave a very elegant proof of the following remarkable result:

Theorem 1.4.5 (See [12]) The results of any two applications of the
tight cut decomposition procedure on a matching covered graph G are the
same list of bricks and braces, except possibly for the multiplicities of edges.

In particular, the numbers of bricks and braces resulting from a tight cut
decomposition of a matching covered graph G is independent of the tight
cut decomposition. We shall let b(G) denote the number of bricks of G.
The number of bricks of G whose underlying simple graphs are Petersen

1. The Matching Lattice 9

graphs is also an invariant of G; we shall denote it by p(G). The numbers
b(G), and (b+p)(G) = b(G) + p(G) play important roles in the theory of
matching covered graphs.

Note that b(G) = 0 if and only if G is bipartite, and b(G) = 1 if and only
if for every tight cut C of G one of the C-contractions of G is bipartite and
the other C-contraction has exactly one brick. We shall refer to a matching
covered graph G with b(G) = 1 as a near-brick. Many useful properties
that bricks satisfy are quite often satisfied more generally by near-bricks.
Furthermore, for proving theorems concerning bricks, it is often convenient
to consider the wider class of near-bricks.

1.4.5 Tight Cuts and the Matching Lattice
The matching lattice of a matching covered graph may be expressed in
terms of the matching lattices of tight cut contractions of the graph:

Theorem 1.4.6 Let G be a matching covered graph, let C := ∇(S) be a
tight cut of G, and let G1 and G2 be the two C-contractions of G. Let w be
a vector in Z

E, and let w1 and w2 be the restrictions of w to E(G1) and
E(G2), respectively. Then w is in Lat(G) if and only if w1 and w2 are in
Lat(G1) and Lat(G2), respectively.

Thus, the matching lattice of a matching covered graph G may be ex-
pressed in terms of the matching lattices of the bricks and braces of G.
As already noted, the characterization of the matching lattices of bipartite
matching covered graphs is simple. Thus, braces, which are bipartite, pose
no problem. Lovász proved the following interesting theorem concerning
bricks. (Note that a brick G with p(G) = 0 is a brick whose underlying
simple graph is not isomorphic to the Petersen graph.)

Theorem 1.4.7 ([12]) Let G be a brick with p(G) = 0, and let w be a
vector in Z

E. Then, w is in the matching lattice of G if and only if w is
regular.

Let G be a near-brick. Let C be any nontrivial tight cut of G. Let w be
any vector in Z

E that is regular. One of the C-contractions of G, say G′,
is bipartite, the other a near-brick, say G′′, such that p(G′′) = p(G) =
0. Then, a counting argument in G′ may be used to show that w(C) =
w(∇(v)), for any vertex v of G′. Thus, the restrictions of w to E(G′) and
E(G′′) are both regular. The next assertion then follows by induction:

Lemma 1.4.8 For any near-brick G, a vector in R
E is regular if and only

if it is regular over the set of tight cuts of G.

The next statement then follows from Theorem 1.4.7:

10 de Carvalho, Lucchesi, and Murty

Theorem 1.4.9 Let G be a near-brick with p(G) = 0, and let w be a vector
in Z

E. Then, w is in the matching lattice of G if and only if w is regular.

1.5 Separating Cut Decompositions

We have seen in Theorem 1.4.1, that for any tight cut C of a matching
covered graph G, both C-contractions of G are matching covered. The
converse, however, is not true. For example, if we consider a cut C in C6
spanned by the vertices of a triangle, then both C-contractions of C6 are
equal to K4, a brick, whence matching covered. However, there exists in
C6 a perfect matching that contains all three edges of C.

We now consider the class of cuts C of a matching covered graph G
such that both C-contractions of G are matching covered. These cuts play
a crucial role in many proofs in this theory; typically, we find a suitable
cut such that the two cut-contractions with respect to that cut are match-
ing covered, and prove the desired theorem by applying induction to the
resulting smaller graphs.

1.5.1 Separating Cuts
Let G be a matching covered graph. Cut C := ∇(S) is a separating cut
of G if both C-contractions of G are matching covered. In particular, ev-
ery tight cut of G is separating. The following lemma provides a useful
characterization of separating cuts in a matching covered graph.

Lemma 1.5.1 ([4]) A cut C of a matching covered graph G is separating
if and only if for each edge e of G, there exists a perfect matching that
contains e and just one edge in C.

1.5.2 Solid Matching Covered Graphs
A matching covered graph G is solid if each separating cut of G is tight.
We now describe some classes of solid matching covered graphs. Bipartite
matching covered graphs are solid. Bipartite matching covered graphs are
a particular case of a more general class of solid matching covered graphs,
which will be described now. A graph is odd-intercyclic if any two of its
odd circuits have at least one vertex in common. It can be shown that
if a matching covered graph G has a separating cut C that is not tight,
each shore of C spans a nonbipartite graph. Thus, every nonsolid matching
covered graph has at least two disjoint odd circuits. We then have the
following consequence:

Lemma 1.5.2 Every odd-intercyclic matching covered graph is solid.

1. The Matching Lattice 11

There are various classes of graphs which are obviously odd-intercyclic.
For example, every bipartite graph is odd-intercyclic. Similarly, any graph
which has a vertex whose deletion results in a bipartite graph is odd-
intercyclic. We describe now an important class of odd-intercyclic graphs.
A wheel is a simple graph obtained from a circuit by adding a new vertex
and joining that vertex to each vertex of the circuit; the circuit is called
the rim, the new vertex the hub and each edge joining the hub to the rim a
spoke. The order of the wheel is the number of vertices of its rim; a wheel of
order n is denoted Wn. A wheel is even or odd, according to the parity of n.
Note that the hub of a wheel is uniquely identified, except for W3, which is
K4, the complete graph on four vertices; in this case, we may say that any
of its vertices is a hub. It is easy to see that every wheel is odd-intercyclic
and that every odd wheel is a brick.

The complete graph K5 is an odd-intercyclic graph which does not belong
to any of the above described families of graphs. Gerards et al [9] discovered
an interesting class of odd-intercyclic graphs that are embeddable in the
projective plane. Suppose thatH is a 2-connected bipartite plane graph. Let
u1, u2, · · · , un, and v1, v2, · · · , vn be vertices of H which appear in the cyclic
order (u1, u2, · · · , un, v1, v2, · · · , vn) on the outer face of H. Now obtain G
from H by joining, for 1 ≤ i ≤ n, ui and vi by an edge ei. Using the fact
that H is planar and bipartite, and the fact that, for 1 ≤ i < j ≤ n, the
ends ui and vi of ei are ‘separated’ by the ends uj and vj of ej , it is easy
to verify that G is odd-intercyclic. For convenience, we shall denote by G
the class of graphs G that can be constructed in this manner.

Other examples of odd-intercyclic graphs may be obtained by suitably
gluing together graphs in the families described above. (For example, sup-
pose that G is a graph in the family G, such that the associated bipartite
plane graph H has a vertex v of degree three. Then the graph G′ ob-
tained by splicing G with K3,3 at v is also odd-intercyclic.) A complete
characterization of odd-intercyclic graphs has been given by Gerards et al
[9].

Let (v0, v1, · · · , vn−1) and (vn, vn+1, · · · , v2n−1) be two disjoint paths, for
some positive integer n. The graph obtained from these paths by adding
the edges vivi+n, for each i such that 0 ≤ i < n, is a ladder. If we also
add edges vn−1vn and v2n−1v0, we get a Möbius ladder Mn of order n.
Figure 1.5 (a) depicts the Möbius ladder of order four. The following result
is easy to prove:

Lemma 1.5.3 For each positive integer n, the Möbius ladder Mn, of order
n, is odd-intercyclic (belonging to the family G). Moreover, if n is even then
Mn is a (solid) brick.

We have seen that the property of being odd-intercyclic is sufficient for a
matching covered graph to be solid. However, the condition is not necessary.

12 de Carvalho, Lucchesi, and Murty

Figure 1.5 (b) shows an example, due to Murty, of a solid brick that has
two disjoint odd circuits.

(a) (b)

Figure 1.5. (a) Möbius ladder M4 (b) A solid brick that is not odd-intercyclic

1.5.3 Separating Cut Decompositions
Let G be a matching covered graph, and let C = ∇(S) be a nontrivial
separating cut of G. By definition of separating cut, the two C-contractions
G1 and G2 of G are also matching covered. If either G1 or G2, say G1,
has a nontrivial separating cut D, then we can take D-contractions of
G1, in the same manner as above, and obtain matching covered graphs
smaller than G1. Thus, given any matching covered graph G, by repeatedly
applying cut-contractions, we can obtain a list of solid bricks and braces.
Note that this is a generalization of the tight cut decomposition.

It turns out that for each separating cut C of a matching covered graphG,
both shores of C span connected graphs. Thus, both C-contractions of
G are minors of G. Consequently, the bricks and braces obtained by an
application of a separating cut decomposition procedure to a matching
covered graph G are solid minors of G. A graph H is a separating cut
minor of a matching covered graph G if H may be obtained from G by
a (possibly partial) application of a separating cut decomposition. More
formally, the collection of separating cut minors of a matching covered
graph G is defined recursively as follows:

(i) Graph G is a separating cut minor of itself.

(ii) For each nontrivial separating cut C of G, each separating cut minor
of either C-contraction of G is a separating cut minor of G.

(iii) The graphs obtained by the application of the two rules above are
the only separating cut minors of G.

1. The Matching Lattice 13

Although separating cuts are, in some sense, a generalization of tight
cuts, some nice properties of tight cuts are lost by this generalization. For
example, an analog of Theorem 1.4.5 is not valid for separating cuts in
general. That is, separating cut decompositions are not unique. Carvalho
obtained a graph that has two distinct separating cut decompositions. The
graph G depicted in Figure 1.6 is a variation of Carvalho’s original exam-
ple: the two D-contractions of G are isomorphic, up to multiple edges, to
the solid brick depicted in Figure 1.5(b), whereas the two C-contractions
of G are isomorphic nonsolid bricks, each of which has a separating cut
decomposition with three bricks of four vertices. Therefore, it is possible
to obtain two essentially distinct separating cut decompositions of G, one
with two isomorphic graphs, the other with six graphs, each of which a
brick of four vertices. Using this example, it is possible to build a family
Gn of graphs (n ≥ 0) such that for each n, Gn has two distinct separating
cut decompositions such that the number of bricks obtained by the two de-
compositions differ by at least 4 · 2n. (For example, by splicing two copies
of the graph in Figure 1.6, we can obtain a graph which has one separating
cut decomposition resulting in four solid bricks, and another decomposition
resulting in ten solid bricks.)

C

D

Figure 1.6. A brick with distinct separating cut decompositions.

1.5.4 The Characteristic of a Separating Cut
Let G be a matching covered graph. For each separating cut C of G, the
characteristic λ(C) of C is defined as follows:

λ(C) :=
{

min{|M ∩ C| > 1 : M ∈ M(G)}, if C is not tight
∞, otherwise.

14 de Carvalho, Lucchesi, and Murty

The characteristic λ(G) of a matching covered graph G is defined as
follows:

λ(G) := min{λ(C) : C is separating}.

It is easy to see that λ(C6) = 3 and that the characteristic of the Petersen
graph is five. We remark that a matching covered graph G is solid if and
only if its characteristic is infinite. The following result, proved by Carvalho
in his Ph. D. thesis [2] (see also [4]), establishes the quintessential property
of the characteristic of a brick.

Theorem 1.5.4 The characteristic of every brick G lies in {3, 5,∞}.
Moreover, if λ(G) = 5 then the underlying simple graph of G is the Petersen
graph.

The next two results, proved by Christiane N. Campos [1], a doctoral stu-
dent who is writing her dissertation under the supervision of the second
author, extend Theorem 1.5.4 to every separating cut of a matching covered
graph:

Theorem 1.5.5 The characteristic of every separating cut C of every
brick G lies in {3, 5,∞}. Moreover, if λ(C) = 5 then the underlying simple
graph of G is the Petersen graph.

Theorem 1.5.6 The characteristic of every separating cut C of every
matching covered graph G lies in {3, 5,∞}. Moreover, if λ(C) = 5 then
graph G has a separating cut minor P such that cut C is nontrivial and
separating in P , and the underlying simple graph of P is the Petersen graph.

Figure 1.7 shows an example of a separating cut of characteristic five in a
matching covered graph G with b(G) = p(G) = 2, due to Campos [1].

1.6 Removable Edges

An edge e of a matching covered graph G is removable if G− e is matching
covered. Lovász [12] proved the following important theorem. (He used it
in his inductive proof of Theorem 1.4.7.)

Theorem 1.6.1 Every brick different from K4 and C6 has a removable
edge.5

5It is in fact true that every brick different from K4 and C6 has (∆ − 2) removable
edges, where ∆ denotes the maximum degree in the brick. For a simple proof of this
result, see [3].

1. The Matching Lattice 15

C

D1

D2

Figure 1.7. A cut C of characteristic five and two cuts, D1 and D2, used in a
partial separating cut decomposition of G that yields the Petersen brick having
C as a nontrivial separating cut.

For a removable edge e in a brick G, b(G − e) and p(G − e) can be
arbitrarily large. In general, for every matching covered graph G, both
invariants, b and (b+ p), are monotonic:

Lemma 1.6.2 For every matching covered graph G and every removable
edge e of G, b(G− e) ≥ b(G) and (b+ p)(G− e) ≥ (b+ p)(G).

It is worth mentioning that p is not monotonic: for example, in the Petersen
graph, which is a brick, every edge e is removable, yet p(G−e) = 0 < p(G).

A removable edge e of a matching covered graph G is b-invariant if
b(G− e) = b(G), and is (b+ p)-invariant if (b+ p)(G− e) = (b+ p)(G). An
edge e of a matching covered graph G is b-removable if it is removable and
b-invariant, and is (b+p)-removable if it is removable and (b+p)-invariant.
In 1987, Lovász made the following conjecture [12]:

Conjecture 1.6.3 Every brick different from K4, C6, and the Petersen
graph has a b-removable edge.

This conjecture was generalized by Carvalho and Lucchesi, in 1993. The
first author proved the validity of this more general conjecture in his Ph. D.
dissertation, written under the supervision of the two other authors [2, 4, 5]:

Theorem 1.6.4 Every brick distinct from K4 and C6 has a (b +
p)-removable edge.

Thus, a simple brick distinct from K4, C6 and the Petersen graph not only
has a b-removable edge, but it has one, e, such that the underlying simple

16 de Carvalho, Lucchesi, and Murty

brick of near-brick G−e is not isomorphic to the Petersen graph. Figure 1.8
shows an example of an edge that is both b-removable and (b+p)-removable
and another that is b-removable but not (b+ p)-removable.

e

f

Figure 1.8. An edge e that is b-removable but not (b + p)-removable, and an edge
f that is both b-removable and (b + p)-removable.

The proof of Theorem 1.6.4 proceeds along the following general lines.
We first show that if G is a solid brick, then any removable edge of G
is (b + p)-removable. Thus, it is sufficient to prove the theorem for bricks
which have nontrivial separating cuts. We show that every such brick in
fact has a separating cut such that the two cut-contractions with respect
to that cut are near-bricks. By induction, the bricks of these near-bricks
have (b+p)-removable edges. From this we deduce that the given brick has
a (b+ p)-removable edge. A proof of this result can be found in [4] and [5]

1.7 Ear Decompositions

Let G′ be a subgraph of a graph G. Then, a path P of odd length in
G − E(G′) is a single ear of G′ if (i) both ends of P are in V (G′), and
(ii) P is internally disjoint from G′. A double ear of a subgraph G′ of a
graph G is a pair of vertex-disjoint single ears of G′. An ear of G′ is either
a single ear or a double ear of G′. An ear decomposition of a matching
covered graph G is a sequence

G1 ⊂ G2 ⊂ . . . ⊂ Gr = G

of matching covered subgraphs of G where (i) G1 = K2, and (ii) for 1 ≤
i ≤ r− 1, Gi+1 is the union of Gi and an ear (single or double) of Gi. The
following fundamental theorem was established by Lovász and Plummer.

1. The Matching Lattice 17

Theorem 1.7.1 (The two-ear Theorem [13], [3]) Every matching cov-
ered graph has an ear decomposition.

A bipartite matching covered graph has an ear decomposition which uses
only single ears, but an ear decomposition of a nonbipartite matching cov-
ered graph must have at least one double ear. There are matching covered
graphs which have no ear decompositions with just one double ear. For
example, in any ear decomposition of the Petersen graph, one has at least
two double ears. In fact, there is essentially only one ear decomposition of
the Petersen graph, with r = 5 and two double ears. (See [13], page 178.)

A given matching covered graph may have different ear decompositions
with different numbers of double ears. For example, consider the graph
P + e obtained from the Petersen graph P by adding an edge e joining two
nonadjacent vertices of P (Figure 1.8). By extending the ear decomposi-
tion of P to that of P + e, using e as the last ear, we can obtain an ear
decomposition of G with two double ears. However, it is possible to find
an ear-decomposition of P + e using just one double ear, in which the last
(single) ear is edge f (Figure 1.8).

If G is any matching covered graph, we denote by d∗(G) the minimum
possible number of double ears an ear decomposition of G may have, and
refer to an ear decomposition of G with exactly d∗(G) double ears as an
optimal ear decomposition of G. For any bipartite matching covered graph
d∗ = 0. For any nonbipartite matching covered graph, in particular for any
brick, d∗(G) ≥ 1, and as already noted, d∗ = 2 for the Petersen graph.

The relevance of optimal ear decompositions to finding bases of matching
lattices is described in the next section. We conclude this section with the
following simple identity relating the number n of vertices, the number
m of edges of a matching covered graph G, and the length r of an ear
decomposition (G1 = K2 ⊂ G2 ⊂ . . . ⊂ Gr = G) of G and d, the number
of double ears in the decomposition.

Theorem 1.7.2 The numbers m, n, r, and d satisfy the following identity.

r = m− n+ 2 − d.

1.7.1 Perfect Matchings and Ear Decompositions
A matching covered subgraph H of a matching covered graph G is a nice
subgraph of G if G−V (H) has a perfect matching. It is easy to see that all
the subgraphs Gi in an ear decomposition of a matching covered graph G
are nice. Using this property, it is possible to associate with any given ear
decomposition of length r, a set M1,M2, · · · ,Mr of r perfect matchings of
G such that χM1 , χM2 , · · · , χMr are linearly independent.

Theorem 1.7.3 Let G be a matching covered graph. Let

D = (G1 = K2 ⊂ G2 ⊂ . . . ⊂ Gr = G)

18 de Carvalho, Lucchesi, and Murty

be an ear decomposition of G. Then there exists a list

M(D) = (M1,M2, · · · ,Mr)

of perfect matchings of G such that, for 1 ≤ i ≤ r,

(i) Mi ∩ E(Gj) is a perfect matching of Gj for i ≤ j ≤ r, and

(ii) there is an edge ei in Mi ∩ E(Gi) such that ei �∈ Mk, for 1 ≤ k < i.

We shall refer to the list M(D) = (M1,M2, · · · ,Mr) of perfect matchings
obtained as in the above theorem as a list of perfect matchings associated
with the given ear decomposition. Since, for each i, 1 ≤ i ≤ r, there is an
edge ei which is in Mi but not in any one of the matchings M1,M2, ...Mi−1,
clearly, the incidence vectors of M1,M2, ...Mr are linearly independent.
This observation and Lemma 1.7.2 lead to the following simple, but very
useful corollary.

Theorem 1.7.4 If a matching covered graph G has an ear decomposition
with d double ears, then there exist m − n + 2 − d perfect matchings of G
whose incidence vectors are linearly independent, where m and n are the
numbers of edges and vertices of G, respectively.

Thus, one means of obtaining a ‘large’ independent set of perfect matchings
of a matching covered graph G would be to obtain an ear decomposition of
G with as few double ears as possible. However, it is not always the case that
the set of perfect matchings associated with an optimal ear decomposition
of a matching covered graph G yields a basis for the matching lattice of
G. For example, an optimal ear decomposition of the Petersen graph has
length five, and so yields an independent set of five perfect matchings.
However, the Petersen graph has six perfect matchings, and they are all
linearly independent.

1.7.2 A Lower Bound for d∗(G)
Using the next Lemma and the observations made in the previous section,
one is then able to determine a lower bound for the number of double ears
of an ear decomposition of a matching covered graph.

Lemma 1.7.5 Let G be a matching covered graph and C := ∇(S) a tight
cut in G. Let G′ and G′′ be the two C-contractions of G. Then d∗(G) ≥
d∗(G′) + d∗(G′′).

Theorem 1.7.6 For any matching covered graph G, d∗(G) ≥ b(G)+p(G).

1. The Matching Lattice 19

1.7.3 Removable Ears
In all the previous approaches, existence of ear decompositions of a match-
ing covered graphs were established by showing how a nice matching
covered proper subgraph Gi of a matching covered graph G could be ex-
tended to a nice matching covered subgraph Gi+1 by the addition of a
single or double ear. Another approach is to build an ear decomposition
of a matching covered graph in the reverse order. To state the theorem
precisely, we need to define the notion of a removable ear in a matching
covered graph.

Let G be a matching covered graph, and let P be a path in G. Then, P
is said to be a removable single ear in G if (i) P is a path of odd length
whose internal vertices have all degree two in the graph, and (ii) the graph
obtained from G by deleting all the edges and internal vertices of P is
matching covered. (A removable ear of length one is a removable edge.) A
removable double ear in G is a pair (P1, P2) of disjoint paths, each of which
of odd length, such that (i) each internal vertex of each of P1 and P2 has
degree two in the graph, (ii) the graph obtained from G by deleting all the
edges and internal vertices of each of P1 and P2 is matching covered, and
(iii) neither P1 nor P2 is a removable single ear. (A removable double ear
each path of which has length one is a removable doubleton.) A removable
ear in G is either a single or a double ear which is removable.

In trying to establish the existence of ear decompositions with special
properties, it is convenient to find the subgraphs in the ear decomposition
in the reverse order starting with Gr = G. Thus, after obtaining a subgraph
Gi in the sequence which is different from K2, we find a suitable removable
ear (single or double) and obtain Gi−1 from Gi by removing that ear from
Gi. For example, to show that every matching covered graph G has an
ear decomposition, it suffices to show that every matching covered graph
different from K2 has a removable ear. Similarly, if we are trying to find
an ear decomposition of a matching covered graph G with, say, at most d
double ears, it is necessary to show that G has a removable ear Q such that
the graph G−Q has an ear decomposition with at most d− t double ears,
where t = 0, or 1, depending on whether or not Q is a single or a double
ear. This is the motivation for the notion of a (b+ p)-removable ear given
below.

A removable ear Q of a matching covered graph G is (b + p)-removable
if

(b+ p)(G−Q) =
{

(b+ p)(G) if Q is a single ear, and
(b+ p)(G) − 1 if Q is a double ear.

In particular, a removable edge e of a matching covered graph G is (b +
p)-removable, if (b+ p)(G− e) = (b+ p)(G).

20 de Carvalho, Lucchesi, and Murty

1.7.4 Canonical Ear Decompositions
In any ear decomposition, by definition, G1 is K2, and G2 is an even cir-
cuit. It is not difficult to check that if G3 is nonbipartite, then it must in
fact be an odd subdivision of K4, and if G3 is bipartite and G4 is non-
bipartite, then G4 must be an odd subdivision of C6. We shall refer an ear
decomposition

G1 ⊂ G2 ⊂ . . . ⊂ Gr = G

of a nonbipartite matching covered graph G as a canonical ear decomposi-
tion if either its third member G3 or its fourth member G4 is nonbipartite.
The following fundamental theorem was proved by Lovász in 1983.

Theorem 1.7.7 ([11]) Every nonbipartite matching covered graph G has
a canonical ear decomposition.

The following generalization of the above theorem is given in [3].

Theorem 1.7.8 Every nonbipartite matching covered graph G has an
optimal ear decomposition which is canonical.

A lemma which was used in proving the above Theorem, and which we
shall need in the next section is the following.

Lemma 1.7.9 Let G be a matching covered graph. Let C = ∇(S) be a
nontrivial tight cut of G. Suppose that G1 = G{S, s} has a canonical ear
decomposition with d double ears and that G2 = G{S, s} is bipartite. Then,
G also has a canonical ear decomposition with d double ears.

A proof of the above Lemma can be found in [3].

1.8 Optimal Ear Decomposition

In this section we shall present the result that every matching covered
graph admits an ear decomposition that uses exactly (b + p) double ears.
In fact, to prove this for bricks, it is more convenient to prove the following
slightly more general result.

Theorem 1.8.1 Let G be a near-brick. Then there is a canonical ear
decomposition of G that uses precisely (b+ p) double ears.

The proof of this Theorem follows immediately from Lemma 1.7.9 and
Theorem 1.6.4.

1. The Matching Lattice 21

1.8.1 Optimal Ear Decompositions of Matching Covered
Graphs

Let G be a matching covered graph. If G is a brick or a brace, we have seen
how to find optimal ear decompositions of G. Suppose that G is neither a
brick nor a brace. Then it has nontrivial tight cuts. Unfortunately, there is
no obvious way of obtaining an ear decomposition (much less an optimal
ear decomposition) of G from arbitrary (optimal) ear decompositions of G1
and G2, where G1 and G2 are the two C-contractions of G with respect to
a tight cut C of G. For example, if the last ear in an ear decomposition of
G1 is Q, and E(Q)∩C is not a removable edge in G2, then Q will not be a
removable ear of G. For this reason, it is convenient to have some flexibility
in selecting the optimal ear decompositions of G1 and G2 in order for us
to be able to combine them to obtain an optimal ear decomposition of G
itself. The following theorem is motivated by the above consideration. It
may be viewed as a strengthening of Theorem 1.6.4.

Theorem 1.8.2 Every brick has two (b+ p)-removable ears.

Even with the aid of the above Theorem, if C is an arbitrary tight cut
of G, it is not clear how to combine ear decompositions of G1 and G2. (In
the notation described earlier, if C is an arbitrary tight cut of G, there is
no obvious reason why E(Q) ∩C should be removable in G2.) However, it
is possible to show that, if G is a matching covered graph which is neither
a brick nor is bipartite, then one can choose a tight cut C of G which
is either a 2-separation cut or a suitable barrier cut so that the above
mentioned difficulty does not arise. This makes it possible to prove the
following theorem [6].

Theorem 1.8.3 (Optimal Ear Decomposition Theorem) The mini-
mum number, d∗(G), of double ears an ear decomposition of a matching
covered graph G may have is equal to b(G) + p(G).

1.9 A Characterization of the Matching Lattice

We have noted that the difficult part of obtaining a characterization of
the matching lattice consists of proving Theorem 1.4.9. We shall see how
Theorem 1.8.1 can be used to prove Theorem 1.4.9. We first deal with
matching covered graphs which are odd subdivisions of K4 or C6 (by direct
verification).

Theorem 1.9.1 Let G be an odd subdivision of either K4 or C6, and let
w be any regular vector in Z

E. Then, w is in the matching lattice of G.

22 de Carvalho, Lucchesi, and Murty

Theorem 1.9.2 Let G be a matching covered graph with b(G) = 1 and
p(G) = 0, let w be a regular vector in Z

E. Then w is in the matching
lattice of G. Moreover, if D = (G1, G2, · · · , Gr−1, Gr = G) is an optimal
canonical ear decomposition of G, and M(D) = (M1,M2, · · · ,Mr−1,Mr)
is a set of perfect matchings of G associated with D, then w is an integer
linear combination of incidence vectors of perfect matchings in M(D).

Using similar (but more straightforward) arguments, it is easy to prove the
following theorem.

Theorem 1.9.3 Let G be a bipartite matching covered graph. Let w be a
regular vector in Z

E. Then w is in the matching lattice of G. Moreover,
if D = (G1, G2, · · · , Gr−1, Gr = G) is any ear decomposition of G, and
M(D) = (M1,M2, · · · ,Mr−1,Mr) is a set of perfect matchings of G asso-
ciated with D, then w is an integer linear combination of incidence vectors
of perfect matchings in M(D).

1.9.1 A Basis for the Matching Lattice
It is well-known that if L is any lattice generated by a set of integral
vectors, then L has a basis consisting of integral vectors [20, Corollary 4.1b,
page 47]. However, unlike the case with linear spaces, a generating set of a
lattice need not contain a basis of the lattice. Murty[14] raised the question
whether it is always possible to find a basis for the matching lattice of a
matching covered graph G consisting solely of incidence vectors of perfect
matchings of G. Henceforth, by a basis of a lattice L, we mean a linearly
independent set {a1, · · · , ak} of vectors in L such that every element a in
L may be expressed as

a = λ1a1 + · · · + λkak,

where the coefficients λ1, · · · , λk are all integers.

Theorem 1.9.4 The matching lattice of a matching covered graph G is of
dimension m− n+ 2 − b and has a basis consisting of incidence vectors of
perfect matchings.

1.9.2 A Characterization of the Matching Lattice
A collection of cuts is laminar if no two of its cuts cross. Two cuts ∇(X)
and ∇(Y) cross if each of X∩Y , X∩Y , X∩Y and X∩Y is nonnull. Using
splitting along nontrivial tight cuts of G and ad hoc observations in the
Petersen graph, it is then possible to prove the following result, originally
proved by Lovász:

1. The Matching Lattice 23

Theorem 1.9.5 Let G be a matching covered graph, C a maximal laminar
collection of nontrivial tight cuts of G. A vector w in Z

E lies in Lat(G) if
and only if it satisfies the following properties, for each brick and brace H
obtained by a tight cut decomposition of G using the cuts in C:

(i) the restriction of w to H is regular, and

(ii) if the underlying simple graph of H is the Petersen graph then, for
any pentagon C of H, w(C) is even.

As a Corollary of the above Theorem, one then derives the following
generalization of Theorem 1.3.4.

Theorem 1.9.6 Let G a matching covered graph, C a maximal laminar
collection of tight cuts of G, w a vector in Z

E. Vector 2w lies in Lat(G) if
and only if w is regular over the set of cuts in C.

1.10 Unsolved Problems

We conclude this survey with a list of three of the most attractive problems
concerning matching covered graphs.

Problem 1. Determining the characteristic of a matching covered
graph: The notion of the characteristic of a matching covered graph has
played a central role in our work. But as yet we do not know if there
exists a polynomial algorithm for determining the value of this parameter.
The characteristic of a matching covered graph is the minimum of the
characteristics of its bricks and braces, and all braces have characteristic
∞. Thus, in view of Theorem 1.5.4, the problem boils down to determining
whether a given brick is solid. We do not even know if this decision problem
is in NP.

Problem 2. Finding a good lower bound for the number of perfect
matchings in a matching covered graph: Clearly the number of perfect
matchings in a matching covered graph is at least the dimension of its
matching lattice. There are a number of graphs for which these two numbers
coincide; we refer to such graphs as extremal graphs. For example, every
odd wheel is extremal. The dimension of the matching lattice of a cubic
brick on 2n vertices is n + 1. Using Theorem 1.6.4, we have been able to
determine all extremal cubic matching covered graphs (they all have fewer
than eighteen vertices).

Lovász and Plummer have conjectured that there exist constants c1 > 0
and c2 > 1, such that every 2-connected cubic graph on 2n vertices has
at least c1cn2 perfect matchings. Our result mentioned above says that, for
n ≥ 9, the number of perfect matchings in a cubic brick on 2n vertices is

24 de Carvalho, Lucchesi, and Murty

at least n + 2. Insignificant though it is, this is the best lower bound we
know for the number of perfect matchings in cubic bricks.

Problem 3. Characterizing the integer cone of a matching cov-
ered graph: As noted in section 3, a 2-connected cubic graph G is
3-edge-colourable if and only if 1 is in Int .Con(G). Since the problem of
determining the edge-chromatic number of a cubic graph is NP-complete,
one cannot expect to be able to find a good characterization of the inte-
ger cone of a matching covered graph. Nevertheless, there may be special
classes of graphs for which this is feasible. For example, it is easy to show
that if G is a bipartite matching covered graph, then a non-negative integer
vector w is in Int .Con(G) if and only if it is regular. Generalizing this re-
sult, the second author has recently shown that if G is any solid matching
covered graph, then a non-negative integer vector w is in Int .Con(G) if and
only if it is in Lat(G).

Clearly, for any matching covered graph G,

Int .Con(G) ⊆ Rat .Con(G) ∩ Z
E
≥0.

As a generalization of Tutte’s conjecture, it has been suggested by Seymour
[21] that equality holds for every matching covered graph that does not
contain the Petersen graph as a minor. (We learnt of this conjecture, in
this form, from Lovász, through a private communication from Vempala).
By the four-colour theorem, this statement is true for cubic planar graphs.
It is not known whether it is true for all planar matching covered graphs.

References

[1] C. N. Campos and C. L. Lucchesi.On the characteristic of a separating cut
in a matching covered graph.Technical Report 22, Institute of Computing,
University of Campinas, Brazil, 2000.

[2] M. H. de Carvalho.Decomposição Ótima em Orelhas para Grafos Matching
Covered.PhD thesis, Institute of Computing–University of Campinas, Brazil,
1997.In Portuguese.

[3] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty.Ear decompositions
of matching covered graphs.Combinatorica, 19:151–174, 1999.

[4] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty.On a conjecture
of Lovász concerning bricks. I. The characteristic of a matching covered
graph.Submitted for publication, 1999.

[5] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty.On a conjecture
of Lovász concerning bricks. II. Bricks of finite characteristic.Submitted for
publication, 1999.

[6] M. H. de Carvalho, C. L. Lucchesi, and U. S. R. Murty.Optimal ear
decompositions of matching covered graphs.Submitted for publication, 1999.

1. The Matching Lattice 25

[7] J. Edmonds, L. Lovász, and W. R. PulleyblanK.Brick decomposition and
the matching rank of graphs.Combinatorica, 2:247–274, 1982.

[8] D. R. Fulkerson.Blocking and antiblocking pairs of polyhedra.Math. Pro-
gramming, 1:168–194, 1971.

[9] A. M. H. Gerards, L. Lovász, K. Truemper, A. Schrijver, P. Seymour, and
S. Shih.Regular matroids from graphs.Under preparation.

[10] P. Hall.On representatives of subsets.J. London Math. Soc., 10:26–30, 1935.

[11] L. Lovász.Ear decompositions of matching covered graphs.Combinatorica,
3:105–117, 1983.

[12] L. Lovász.Matching structure and the matching lattice.J. Combin. Theory
(B), 43:187–222, 1987.

[13] L. Lovász and M. D. Plummer.Matching Theory.Number 29 in Annals of
Discrete Mathematics. Elsevier Science, 1986.

[14] U. S. R. Murty.The matching lattice and related topics.Technical report,
University of Waterloo, 1994.Preliminary Report.

[15] N. Robertson, D. Sanders, P. D. Seymour, and R. Thomas.The four-colour
theorem.J. Combin. Theory (B), pages 2–44, 1997.

[16] N. Robertson, P. D. Seymour, and R. Thomas.Excluded minors in cubic
graphs.Manuscript.

[17] N. Robertson, P. D. Seymour, and R. Thomas.Tutte’s edge-coloring
conjecture.J. Combin. Theory (B), pages 166–183, 1997.

[18] D. Sanders, P. D. Seymour, and R. Thomas.Edge three-coloring cubic
doublecross graphs.Manuscript.

[19] D. Sanders and R. Thomas.Edge three-coloring cubic apex graphs.Manuscript.

[20] A. Schrijver.Theory of Linear and Integer Programming.Wiley, 1986.

[21] P. D. Seymour.On multicolourings of cubic graphs and conjectures of
Fulkerson and Tutte.Proc. London Math. Soc. Series 3, 38:423–460, 1979.

[22] Z. Szigeti.Perfect matchings versus odd cuts.submitted for publication,
November 1998.

[23] P. G. Tait.Note on a theorem in geometry of position.Trans. Roy. Soc. of
Edinburgh, pages 657–660, 1880.

[24] W. T. Tutte.The factorizations of linear graphs.J. London Math. Soc.,
22:107–111, 1947.

[25] W. T. Tutte.On the algebraic theory of graph colorings.J. Combin. Theory,
1:15–50, 1966.

This page intentionally left blank

2

Discrete Mathematics and
Radio Channel Assignment
C. McDiarmid

2.1 Introduction

The following generalization of graph colouring arises naturally in the study
of channel assignment for cellular radiocommunications networks.

Given a graph G and a length l(uv) for each edge uv of G, determine
the least positive integer t (the ‘span’) such that the nodes of G can be
assigned channels (or colours) from 1, ..., t so that for every edge uv, the
channels assigned to u and v differ by at least l(uv). The nodes correspond
to transmitter sites, and the lengths l(uv) specify minimum channel sepa-
rations to avoid interference. This ‘constraint matrix’ model provides the
central focus of the chapter.

The plan of the chapter is as follows. We start by giving a brief in-
troduction to the constraint matrix model which we have just met. Then
we present a variety of general results about this model, for example giv-
ing bounds on the span of channels required which are natural extensions
of well known results about graph colouring. We also discuss briefly the
related T -colouring model. This general discussion is followed by a short
section on the difficulty of finding the span, where we discuss bipartite and
nearly bipartite graphs and graphs of bounded tree-width.

There follow three substantial sections which focus on three aspects of the
constraint matrix model. First we consider the natural special case where
the transmitter sites are located in the plane, and the required minimum
separation between channels assigned to two sites depends on the distance
between them. We are led to consider unit disk graphs, and more generally
to consider frequency-distance models. Next, we introduce demands into
the picture. When all required channel separations are 0 or 1, and there
are large numbers of channels demanded at the sites, we find that we are
led into the world of imperfect graphs. After that we consider two sorts
of random models for channel assignment, one set in the plane, and one a
natural generalisation of the usual random graphs.

28 McDiarmid

In each of these sections, at some stage we let some parameter tend
to infinity in order to allow analysis and reveal structure: the parameters
correspond to the minimum channel re-use distance, the maximum demand,
and the number of sites. Also in each of these sections, we focus on the ratio
of chromatic number to clique number or generalisations of this idea.

Finally, we close by giving a fuller story concerning the modelling of the
radio channel assignment problem, and set the constraint matrix model
(and the T -colouring model) in a more general framework.

There has been a flood of work recently on applying heuristic methods
such as simulated annealing and tabu search to attack channel assignment
problems. See for example [42] for a particularly successful approach, and
see [65] for a recent review and for further references. We discuss here the
mathematical ideas that inform and guide such approaches but we do not
discuss the methods themselves.

2.2 The constraint matrix model

Let V = {v1, . . . , vn} be a set of n transmitter sites. We are given a graph
G = (V,E) on the sites, the interference or constraint graph, together
with a non-negative integer length l(e) for each edge e. An assignment
φ : V → {1, . . . , t} is feasible if |φ(u)−φ(v)| ≥ l(uv) for each edge uv. Here
we use uv to denote the undirected edge between u and v. The idea is that
if sites are close together then they must use widely separated channels.

The span of the problem, span(G, l), is the least t such there is a feasible
assignment. (Some authors call t − 1 the span.) We want to determine
or approximate the span, and find corresponding assignments. Note that
if 1 denotes the appropriate all 1’s function, then span(G,1) equals the
chromatic number χ(G). Also, with any positive edge lengths the least
number of colours required is just χ(G), but it is the span that is of interest
to us.

Sometimes more than one channel may be required at a site, and then
it is natural to phrase the problem in terms of a ‘constraint matrix’. In
the constraint matrix with demands model, we are given a graph on V
with edge-lengths l(e) as before, and a co-site constraint value c(v) ≥ 1
for each node v. Equivalently, we are given an n × n symmetric matrix A
(the constraint matrix) of non-negative integers with off-diagonal entries
the edge lengths l(uv) (or 0 for non-edges) and diagonal entries c(v) ≥ 1.

We are also given a demand vector x, which is an n-vector of non-negative
integers xv, which specifies how many channels are needed at each site v.
A feasible assignment φ is a family (φ(v) : v ∈ V) where for each v ∈ V
the set φ(v) contains xv positive integers such that the following condition
holds: for each distinct u, v ∈ V and each i ∈ φ(u) and j ∈ φ(v) we have
|i − j| ≥ l(uv), and for each v ∈ V and each distinct i, j ∈ φ(v) we have

2. Discrete Mathematics and Radio Channel Assignment 29

|i − j| ≥ c(v). The diagonal entries c(v) typically are the largest. We may
denote the span by span(A,x).

Examples

1. If G is a triangle with each edge of length 3, then the span is 7. More
generally, if G is the complete graph Kn and each edge length is k
then the span is k(n− 1) + 1 – see Proposition 2.3.1.

2. Is G is the 4-cycle C4 with each edge length 3, then the span is 4.
More generally if G is any bipartite graph then the span is 1+ the
maximum edge length – see Proposition 2.4.1.

3. Let G consist of a triangle with each edge of length 1, together with
a pendant edge of length 2 attached to each of the nodes. Then the
span is 4.

4. Let G be the 5-cycle C5, let each edge length be 1 and each co-site
constraint value be 2, and let each node have demand 2. Then the
span is 5.

2.3 General results for the constraint matrix model

In this section we give various results, some introductory, about the span
in the constraint matrix model. We restrict our attention here to the case
of unit demands.

2.3.1 All equal edge lengths
When the edge lengths are all the same, we are almost back to colouring.
The following result was perhaps first shown in [71]. Let 1 denote the
appropriate all 1’s function.

Proposition 2.3.1 If each edge length is k then

span(G, k1) = k(χ(G) − 1) + 1.

Proof. Observe that the span is at most the right hand side, since we could
always first colour G with χ(G) colours and then assign a channel to each
colour, using channels 1, k + 1, . . . , k(χ(G) − 1) + 1.

Now let us show that the span is at least the right hand side. Let t be
the span, and consider a feasible assignment φ using channels 0, 1, . . . , t−1
which uses as few as possible channels which are not multiples of k. Then
in fact φ must use only multiples of k, for otherwise the least channel not
a multiple of k could be pushed down to the nearest multiple of k, giving
a contradiction. But now if we let c(v) = φ(v)/k we obtain a (proper)

30 McDiarmid

colouring of G, and so χ(G) ≤ (t − 1)/k + 1, which yields the desired
inequality. �

2.3.2 Lower bounds for the span
It follows from Proposition 2.3.1 that if G is the complete graph Kn and
all edge lengths are at least k then

span(G, l) ≥ k(n− 1) + 1. (2.1)

This result may be extended as follows, see [44, 81]. Since we allow the
length of an edge to be 0, we could always assume that the graph G is
complete, though usually this is not helpful.

Proposition 2.3.2 If G is complete, then

span(G, l) ≥ hp(G, l),

where hp(G, l) is the minimum length of a hamiltonian path.

Proof. Given a feasible assignment φ, list the nodes as v1, . . . , vn so that
φ(v1) ≤ φ(v2) · · · ≤ φ(vn). This gives a hamiltonian path in G, and

φ(vn) − φ(v1) =
n−1∑

i=1

φ(vi+1) − φ(vi) ≥
n−1∑

i=1

l(vivi+1),

which is the length of the path. �

This last result has the drawback that it isNP -hard to calculate hp(G, l),
but there are good lower bounds which may be efficiently calculated, for
example the minimum length of a spanning tree. Observe that Proposi-
tion 2.3.2 is tight if the edge-lengths satisfy the triangle inequality, but we
should not expect this to hold for minimum channel separations.

Since we can apply the last two bounds on the span to any complete
subgraph of a graph, we may think of them as extending the lower bound
that χ(G) ≥ ω(G). Now let us consider another lower bound on χ(G). The
stability number (or independence number) α(G) is the maximum size of a
stable set in G. We have

χ(G) ≥ |V |/α(G). (2.2)

The inequality (2.2) can be extended as follows. For each node v let αv

denote the maximum size of a stable set containing v. Then

χ(G) ≥
∑

v

1/αv. (2.3)

2. Discrete Mathematics and Radio Channel Assignment 31

For, given any proper k-colouring of G, with colour sets S1, . . . , Sk, we have
αv ≥ |Si| if v ∈ Si, and so

∑

v

1/αv =
k∑

i=1

∑

v∈Si

1/αv ≤
k∑

i=1

∑

v∈Si

1/|Si| = k.

There are lower bounds for the span extending these ideas. Let m be a
positive integer, and let us keep m fixed throughout. Consider an instance
G, l of the constraint matrix problem. Call a subset U of nodes m-assignable
if the corresponding subproblem has span at most m. Let αm denote the
maximum size of an m-assignable set. Similarly, for each node v let αm

v

denote the maximum size of an m-assignable set containing v. Then

span(G, l) ≥ m|V |/αm − (m− 1), (2.4)

and indeed ([81])

span(G, l) ≥ m
∑

v

1/αm
v − (m− 1). (2.5)

It is perhaps most natural to prove these results (2.4) and (2.5) using weak
LP duality (exercise!), but that approach does not seem easily to give the
following slight extension of (2.5).

Let the index i always run through 1, . . . ,m. For each node v and each i,
let αm

vi denote the maximum size of an m-assignable set U containing v,
such there is a feasible assignment φ : U → {1, . . . ,m} with φ(v) = i. For
example, if G is the path with three nodes u, v, w (v in the middle) and
both edges of length 2, then

α3
v = α3

v1 = α3
v3 = 3 and α3

v2 = 1.

Proposition 2.3.3

span(G, l) ≥
∑

v

∑

i

1/αm
vi − (m− 1). (2.6)

Observe that αm
vi ≤ αm

v , and so the bound (2.6) is always at least as good
as (2.5).
Proof. Let t = span(G, l), and fix a feasible assignment φ : V → {1, . . . , t}.
For each set I of integers let Î denote φ−1(I). For each v and i let Ivi

denote the set {φ(v) − i + 1, . . . φ(v) + m − i} of m consecutive integers,
and let βvi = |Îvi|. Then 1 ≤ βvi ≤ αm

vi. Let I denote the collection of sets
I = {j, . . . , j + m − 1} of m consecutive integers such that Î �= ∅. Then
|I| ≤ t+m− 1. Hence

∑

v

∑

i

1/αm
vi ≤

∑

v

∑

i

1/βvi

=
∑

v

∑

i

∑

I∈I
1(I=Ivi)(1/|Î|)

32 McDiarmid

=
∑

I∈I
(1/|Î|)

∑

v∈Î

∑

i

1(I=Ivi).

But for each v ∈ Î we have
∑

i 1(I=Ivi) = 1, and so the last quantity above
equals

∑

I∈I
(1/|Î|)

∑

v∈Î

1 =
∑

I∈I
1 = |I| ≤ t+m− 1.

�

2.3.3 Span and orientations
The Gallai-Roy Theorem (see for example [88]) relates the chromatic num-
ber χ(G) to the maximum length of a path (with no repeated nodes allowed)
in an orientation of G. The theorem states that if D is an orientation of G
with maximum path length �(D), then

χ(G) ≤ 1 + �(D);

and further, equality holds for some acyclic orientation D. This theorem
extends directly to the weighted graph case, that is to constraint matrix
problems - see [4] which discusses the acyclic case and related algorithms.

Proposition 2.3.1 Given (G, l) and an orientation D of G, let �(D, l)
denote the maximum length of a path. Then

span(G, l) ≤ 1 + �(D, l);

and further, equality holds for some acyclic orientation D.

Observe that if G is complete, then an acyclic orientation D yields a
hamiltonian path, and so �(D, l) ≥ hp(G, l): thus the ‘equality part’ of
Proposition 2.3.1 extends the lower bound given in Proposition 2.3.2.
Proof. List the arcs of D in non-increasing order of length. Form a max-
imal acyclic subdigraph D′ of D, by running through the list of arcs, and
including an arc whenever it does not create a cycle. For each node v let
φ(v) be the maximum length of a path in D′ ending at v.

Observe that if there is a path Q in D′ from u to v of length d then φ(v) ≥
φ(u) + d; for since D′ is acyclic, if we start with a maximum length path
P in D′ ending at u we can continue along the path Q without repeating
a node.

Consider an arc uv of D. If it is in D′, then the above observation gives
φ(v) ≥ φ(u) + l(uv). If uv is not in D′, then there is a path Q in D′ from v
to u which consists of arcs each of length at least l(uv), and which thus has
length at least l(uv): hence the observation gives φ(u) ≥ φ(v) + l(uv). This
shows that φ is a feasible assignment, taking values in {0, 1, . . . , �(D, l)}.
Hence span(G, l) ≤ 1 + �(D, l), as required.

2. Discrete Mathematics and Radio Channel Assignment 33

For the last part, let φ be an optimal assignment. If nodes u and v
are adjacent in G, orient the edge from u to v if φ(u) < φ(v). Call the
resulting acyclic orientation D. Consider any path v1, v2, . . . , vk in D. Since
φ increases along the path, we may argue as in the proof of Proposition 2.3.2
to see that

k−1∑

i=1

l(vivi+1) ≤
k−1∑

i=1

(φ(vi+1) − φ(vi)) = φ(vk) − φ(v1),

and so the path has length at most span(G, l) − 1. Hence 1 + �(D, l) ≤
span(G, l), which completes the proof. �

2.3.4 Sequential assignment methods
Suppose that we want to colour the nodes of a graph with colours 1, 2, . . .,
and we have a given ordering on the nodes. Let us consider two variants of
the greedy colouring algorithm. In the ‘one-pass’ method, we run through
the nodes in order and always assign the smallest available colour. In the
‘many-passes’ method, we run through the nodes assigning colour 1 when-
ever possible, then repeat with colour 2 and so on. Both methods yield
exactly the same colouring, and show that

χ(G) ≤ ∆(G) + 1, (2.7)

since at most ∆(G) colours are ever denied to a node.
Now consider a constraint matrix problem (G, l). Define the weighted

degree of a node v by degl(v) =
∑

{l(uv) : uv ∈ E}, and define the
maximum weighted degree by ∆l(G) = maxv degl(v). The above greedy
methods generalise immediately [61].

Example
Let G be the 4-cycle C4, with nodes a, b, c, d and edge lengths l(ab) = 1

and l(bc) = l(cd) = l(ad) = 2. Note that ∆l = 4. The one-pass method
assigns channels 1,2,4,6 to the nodes a, b, c, d respectively, with span 6. The
many-passes method assigns channel 1 to nodes a and c, channel 2 to none
of the nodes, and channel 3 to nodes b and d, with span 3.

In fact the many passes method always uses a span of at most ∆l + 1,
and so we may extend (2.7) as follows.

Proposition 2.3.2

span(G, l) ≤ ∆l(G) + 1.

Proof. In order to show that the many passes method needs a span of
at most the above size, suppose that it is about to assign channel c to
node v. Let A be the set of neighbours u of v to which it has already
assigned a channel φ(u). For each channel j ∈ {1, . . . , c− 1} there must be

34 McDiarmid

a node u ∈ A with φ(u) ≤ j and φ(u) + l(uv) ≥ j + 1. Hence the intervals
{φ(u), . . . , φ(u) + l(uv) − 1} for u ∈ A cover {1, . . . , c− 1}. Thus

c− 1 ≤
∑

u∈A

l(uv) ≤ degl(v) ≤ ∆l(G),

and this completes the proof. �

There is a straightforward extension of (2.7), involving the ‘degeneracy’
of a graph – see for example [88]. Given an ordering σ = (v1, . . . , vn) of the
nodes, let g(σ) be the maximum over 1 < j ≤ n of the degree of node j in
the subgraph induced by nodes 1, . . . , j. We call the minimum value of g(σ)
over all such orderings σ the degeneracy of G, and denote it by δ∗(G). We
can compute δ∗(G) as follows. Find a node v of minimum degree, delete
it and put it at the end of the order, and repeat. This shows that δ∗(G)
equals the maximum over all induced subgraphs of the minimum degree,
and that we can compute it and find a corresponding order in O(n2) steps.

If we colour the nodes of G in an order yielding the minimum above,
then at each stage at most δ∗(G) colours are denied to a node. Hence

χ(G) ≤ δ∗(G) + 1, (2.8)

and further we can find a corresponding colouring quickly. (The quantity
δ∗(G) + 1 is sometimes called the colouring number of G.)

Does this result extend to span(G, l)? The answer is ‘not well’, since the
colouring method which yields the inequality (2.8) above does just what
we avoided earlier, namely it considers the nodes in order and colours one
after another. Consider the example where G consists of a triangle with
one edge of length 2 and two of length 1 adjacent to a node v, and one
pendant edge of length 2 attached to this node v: the span is 4, but in each
induced subgraph there is a node with weighted degree at most 2. However,
the inequality (2.8) does extend if we replace the degree of each node v not
by its weighted degree degl(v) but by the sum of the values 2l(uv)− 1 over
all the nodes u �= v with l(uv) ≥ 1. For, observe that if we have a feasible
assignment for the graph without v and we wish to extend it to v, then the
above sum bounds the number of channels denied to v – see Proposition 6
of [81].

How well do related upper bounds or other results on χ(G) extend to
the constraint matrix case? In particular, when can we save the +1 in (2.7)
as in Brooks’ Theorem? Is there any analogue of the Hajnal-Szemerédi
theorem that a graph G has a ∆ + 1 colouring in which the colour sets
differ in size by at most 1? What about Wilf’s result that χ(G) ≤ λ(G)+1,
where λ(G) is the maximum eigenvalue of the adjacency matrix (this result
follows from (2.8)). Is there any analogue of the Hajós construction? For
all these, see for example [88].

2. Discrete Mathematics and Radio Channel Assignment 35

2.3.5 An IP model
The following integer programme (IP) gives a simple reformulation of the
constraint matrix model, though other formulations may be better suited
to computations for particular types of problem, see also [65].

Choose an upper limit fmax, and let F = {1, . . . , fmax} be the set of
available channels. We let u and v run through the node set V , and let i and
j run through F . We introduce a binary variable yui for each transmitter u
and channel i: setting yui = 1 will correspond to assigning channel i as one
of the channels at transmitter u. Then span(A,x) is given by the following
integer programme.

min z subject to

z ≥ j yvj ∀v, j∑
j yvj = xv ∀v

yui + yvj ≤ 1 ∀ui �= vj with |i− j| < auv

yvj ∈ {0, 1} ∀v, j
When we write the shorthand

∀ui �= vj with |i− j| < auv

above, we mean

∀u, v ∈ V and i, j ∈ F such that (u, i) �= (v, j) and |i− j| < auv.

To see that this IP formulation is correct, consider an optimal assignment
φ : V → F . Run through the transmitters v ∈ V and the channels j ∈ F ,
and set yvj = 1 if j ∈ φ(v) and yvj = 0 otherwise; and set z to be the
maximum channel used. It is easy to see that this gives a feasible solution
to the IP, with z = span(A,x). Conversely, given a feasible solution to
the IP with value t, we may obtain in a similar way a feasible assignment
φ : V → {1, . . . , t}.

2.3.6 Counting feasible assignments
Given a graph G, for each positive integer t let f(t) be the number of
(proper) t-colourings of G. Thus for example if G consists of two adjacent
nodes then f(t) = t(t − 1). It is well known and easy to see that there is
a unique polynomial p(t) defined for all real t which agrees with f on the
positive integers: this is the chromatic polynomial of G.

Does this result extend to the constraint matrix problem? Let G be
a graph with n nodes, and with edge lengths as usual. For each positive
integer t let f(t) be the number of feasible assignments from V to {1, . . . , t}.

For example let G consist of two adjacent nodes u and v with l(uv) = 3.
Then it is easy to check that f(t) agrees with the polynomial p(t) = (t −
2)(t − 3) for each t ≥ 2, but f(1) = 0 which does not agree with p(t).
Thus there is no ‘feasible assignment counting polynomial’. However, there
is nearly one.

36 McDiarmid

Theorem 2.3.4 There is a monic polynomial p(x) of degree n such that
f(t) = p(t) for all sufficiently large integers t. Indeed, if the maximum edge
length is k then this is true for all t > (n− 1)k.

This result was shown independently in [87] by methods based on count-
ing hyperplane arrangements, and in [56] by elementary methods. See also
these papers for extensions of the above result.

2.3.7 Cyclic channel distances
Since the available channels are evenly spaced in the spectrum, we have
taken them to be the consecutive integers 1, 2, . . . , t or 0, 1, . . . , t − 1 for
some t. Sometimes it is convenient to ‘wrap the channels around a circle’,
and work with ‘cyclic channel distance’ – see for example [39]. For i, j ∈
{0, 1, . . . , t− 1} let

dt(i, j) = min{|i− j|, t− |i− j|}.

We say that an assignment φ : V → {0, 1, . . . , t−1} is t-cyclically-feasible if
the usual constraints are satisfied when we use the cyclic channel distance
dt as above. (Thus we are imposing more constraints than before.) The least
t for which there is such an assignment is the cyclic span of the problem.
Observe that the cyclic span is at least the span and at most the span
+(k − 1), where k denotes the maximum constraint value.

There are two reasons to work with cyclic channel distances. Firstly, as
noted in [17], if an assignment φ is t-cyclically feasible for unit demands,
then we can satisfy demand x + 1 at each node in a very straightforward
manner, by assigning channels φ(v), φ(v) + t, . . . , φ(v) + xt to each node v.

Secondly, cyclic channel distances are sometimes mathematically more
tractable, as there are no ‘end effects’. For example, suppose that G is
bipartite (with at least one edge), each edge length is 1 and each co-site
constraint value is 2. If we have a (non-zero) demand vector with maximum
entry xmax then it is easy to see that the cyclic span is 2xmax. For clearly this
is a lower bound, and we can assign even channels from {0, 2, . . . , 2xmax−2}
to the nodes in one part and odd channels from {1, 3, . . . , 2xmax−1} to the
nodes in the other part. In the usual linear case, we need to think more
about this problem – see section 2.6.3.

Cyclic channel distances are related to the circular chromatic number
(originally called the star chromatic number) of a graph G. This may be
defined as the infimum of the values t/k such there is a t-cyclically-feasible
assignment for G with each edge length k, see for example [45] and the
references therein. We shall not discuss cyclic channel distances further
here, but see for example [11, 79, 39, 55].

2. Discrete Mathematics and Radio Channel Assignment 37

2.3.8 Graph distance between sites
Given a graph G and positive integer k, let G(k) denote the graph with the
same vertices as G, and with distinct vertices u and v adjacent whenever
their distance in G is at most k. [The graph distance between u and v is
the least number of edges in a path joining them.] Thus G(1) is just G.

Consider the triangular lattice T in the plane, with minimum distance 1,
as described in section 2.5.2 below. If we join two points T when their
Euclidean distance is 1, we obtain the infinite 6-regular graph GT . Similarly
from the square lattice S we obtain the 4-regular graph GS . The following
result from [39, 63] concerns the chromatic number χ and the clique number
ω of the graphs G(k)

T and G
(k)
S .

Theorem 2.3.5 For each positive integer k, the graph GT of the triangular
lattice satisfies

χ(G(k)
T) = ω(G(k)

T) = �3
4

(k + 1)2�,

the graph GS of the square lattice satisfies

χ(G(k)
S) = ω(G(k)

S) = �1
2

(k + 1)2�.

There has been much related work concerning graph distance. For exam-
ple, an L(2, 1)-labelling or radio colouring of a graph G is an assignment
such that channels assigned to adjacent nodes differ by at least 2 and
channels assigned to nodes at distance 2 are distinct. Thus it is a feasible
assignment for the graph G(2), where each edge from G has length 2, and
each ‘new’ edge has length 1.

We shall be very interested in the Euclidean distance between points
(sites) in the plane, but we shall not discuss graph distance further here,
see [10, 20, 31, 39, 38, 35, 73, 75, 79].

2.3.9 The T -colouring model
We start by introducing the rather general Te-sets model. We are interested
in two specialisations of this model. One is the now familiar constraint ma-
trix problem, which has proved fruitful in terms of providing a model both
useful to engineers and tractable for mathematicians. The other speciali-
sation involves T -colourings of graphs. This topic took its motivation from
radio channel assignment, and set off from there to generate some attractive
mathematics. We shall discuss this topic very briefly.

The Te-sets model is specified by a constraint graph G = (V,E) together
with a set Te for each edge e of G, where always 0 ∈ Te. The sets Te contain
the ‘forbidden differences’. An assignment φ is feasible if for each distinct
u, v ∈ V we have |φ(u) − φ(v)| �∈ Tuv. As before we are interested in the
span.

38 McDiarmid

When each set Te is of the form {0, 1, . . . , l(e)} we are back to the con-
straint matrix model. In the T -colouring model, we are given a single set
T , that is each set Te = T . The idea is not to insist that the forbidden
differences are as in the constraint matrix model, and thus to allow for
interference caused by phenomena such as intermodulation products (see
section 2.8), but to specify only one such forbidden set T , in the interests
of mathematical tractability rather than practical use. To the mathemati-
cian this is of course a natural problem to extract from the general Te-sets
model, and there is some practical interest in this case, see for example [18].

Let us denote the span by spanT (G). Observe that

spanT (G) ≤ spanT (Kχ(G)),

since we could always first colour G with χ(G) colours and then assign a
channel to each colour. Observe also that

spanT (Kn) ≤ |T |(n− 1) + 1.

For, if we assign channels to the nodes one after another, when we come to
assign a channel to the ith node at most |T |(i−1) channels are forbidden.
[Indeed, we may extend the inequality in Proposition 2.3.2 if we replace
l(uv) in the definition of the weighted degree by |Tuv|.] From the last two
inequalities we have [84]

spanT (G) ≤ spanT (Kχ(G)) ≤ |T |(χ(G) − 1) + 1

for any set T . In the special case when T = {0, 1, . . . , k − 1} for some
positive integer k, Proposition 2.3.1 shows that the last inequalities hold
at equality throughout. A central focus in the theory of T -colourings is to
investigate for which sets T (always containing 0) is it true that

spanT (G) = spanT (Kχ(G))

for every graph G; that is, that spanT (G) is determined by χ(G). We have
just seen that this is true when T = {0, 1, . . . , k − 1}: for many further
examples see [73, 65] and the references therein.

2.4 How hard is channel assignment?

We noted earlier that the special case when all lengths are 1 is essentially
the graph colouring problem. Since graph colouring is NP-hard – see for
example [19] – we cannot expect an easy ride. Indeed, it is hard even to
approximate the chromatic number χ(G): if P �= NP then no polynomial
time algorithm can guarantee to colour an n-node graph with at most
n

1
7 −εχ(G) colours for any fixed ε > 0, see for example [3]. In fact the

general problem seems to be harder than graph colouring – see below and
see section 2.6.2.

2. Discrete Mathematics and Radio Channel Assignment 39

2.4.1 Bipartite graphs and odd cycles
Bipartite graphs are easy. For any graph G clearly span(G, l) ≥ L, where
L = max{l(xy) + 1|xy ∈ E(G)}.

Proposition 2.4.1 If G is bipartite, then span(G, l) = L.

Proof. If we set φ(x) = 1 for x in one part of the bipartition and φ(x) = L
for x in the other part, then we obtain a feasible assignment with span L.

�

After bipartite graphs the next thing to consider is odd cycles. Here again
it is easy to determine the span.

Proposition 2.4.2 If G is an odd cycle then span(G, l) = max(L,M),
where M = min{l(uv) + l(vw) + 1|uv, vw ∈ E(G)}.

Proof. Since G is an odd cycle, in any feasible assignment φ there exist
edges uv and vw of G such that φ(u) ≤ φ(v) ≤ φ(w), and then |φ(w) −
φ(u)| ≥ l(uv) + l(vw). Thus the span of G is at least M , and so it is at
least max(L,M).

On the other hand, let us choose two edges uv and vw in G with l(uv) +
l(vw) = M − 1. Form an even cycle G′ by deleting v and adding the
edge uw. Consider the length function l′ on E(G′) which satisfies l′(uw) =
l(uv) + l(vw) and agrees with l elsewhere. Since G′ is bipartite we see that
an optimal feasible assignment c for G′ has span max(M,L). Furthermore,
since u and w are at distance at least l(uv) + l(uw), we can choose φ(v)
between φ(u) and φ(w) to obtain a feasible assignment for G with the same
span. The result follows. �

Let us call a graph 1-nearly bipartite if by deleting at most one node
we may obtain a bipartite graph. It is of course easy to tell if this is the
case, by simply deleting each node in turn. It is also easy to determine the
chromatic number χ(G) of a 1-nearly bipartite graph G, as it is at most
3. However, it is NP-hard to determine span(G, l), even if we restrict the
edge lengths to be 1 or 2, see [64]. Further the span must then be at most
5, and it is NP-complete to tell if it is at most 4. Thus, we cannot hope to
obtain a polynomial time approximation algorithm with performance ratio
better than 5

4 , even for such restricted constraint matrix problems.
We discuss bipartite graphs further in section 2.6.3, where there are

demands and a co-site constraint.

2.4.2 Bounded tree-width graphs
The ‘tree-width’ of a connected graph measures how far the graph is from
being a tree – see for example Chapter 4 in this book. On trees, many
problems can be solved quickly (in polynomial time) by simple dynamic

40 McDiarmid

programming, and often a similar approach works for graphs of bounded
tree-width. For example it is easy to determine the chromatic number of
such graphs.

It may be natural for us to consider constraint matrix problems where
at most a fixed number b of different lengths allowed (for example there
may be a fixed number of frequency-distance constraints – see 2.5). For
such problems, if we consider graphs of bounded tree-width, the standard
dynamic programming approach will determine the span in polynomial
time. The key point is that there will be at most nb possible values for the
span, where n is the number of nodes: for, if the edge lengths are l1, . . . , lb
then by Proposition 2.3.1 the span equals 1 +

∑b
i=1 aili for some integers

0 ≤ ai ≤ n− 1.
However, such a dynamic programming approach does not work if we do

not restrict the lengths. Indeed, the problem of determining the span for
graphs of tree-width at most 3 with arbitrary lengths is NP-hard [64].

2.5 Channel assignment in the plane

It is natural to specialise the constraint matrix model to the case where the
transmitter sites are located in the plane, and the minimum channel sepa-
ration for a pair of sites depends on the distance between them. We are led
to consider unit disk graphs, and more generally to consider frequency-
distance models. A theme throughout is the comparison of chromatic
number to clique number and its generalisations.

2.5.1 Disk graphs
Let us consider only co-channel interference, which corresponds to each
minimum channel separation being 0 or 1. Suppose that we are given a
threshold distance d or d0, such that interference will be acceptable as long
as no channel is re-used at sites less than distance d apart. Given a set
V of points in the plane and given d > 0, let G(V, d) denote the graph
with node set V in which distinct nodes u and v are adjacent whenever the
Euclidean distance d(u, v) between them is less than d. Equivalently, we
may centre an open disk of diameter d at each point v, and then two nodes
are adjacent when their disks meet. Such a graph is called a unit disk (or
proximity) graph.

Our basic version of the channel assignment problem involves colouring
such unit disk graphs. We are naturally also interested in the clique number
ω(G) for such graphs G. The following result from [12], see also [51], shows
that the clique and chromatic numbers are not too far apart.

2. Discrete Mathematics and Radio Channel Assignment 41

Proposition 2.5.1 For a unit disk graph G,

χ(G) ≤ 3ω(G) − 2.

Proof. In a realisation of G with diameter 1, consider the ‘bottom left’
point v. All its neighbours lie within an angle of less than 180 degrees at v.
Thus we can cover all the neighbours with three sectors, each with radius
less than 1 and angle less than 60 degrees. But the points in each sector
together with v form a complete graph, and so the degree of v is at most
3(ω(G) − 1). Hence the degeneracy of G is at most 3ω(G) − 3, and the
result follows from (2.8). �

It would be nice to improve this result: perhaps the factor 3 could be
replaced by 3/2? It is shown in [8] that it is NP-hard to recognise unit
disk graphs. Many problems are hard for unit disk graphs, even given a
realisation in the plane, see [12]: for example finding χ(G) or α(G). How-
ever, a polynomial time algorithm has recently been given [70] to find ω(G)
without being given a realisation in the plane, see also [9]. It builds on an
earlier method [12] which needed a realisation in the plane.

The idea of the method to find ω(G) is as follows. Firstly, in polynomial
time we can find ω(H) if the graph H is co-bipartite, that is, if the com-
plementary graph H is bipartite. For, a set K of nodes forms a maximum
clique in H = (V,E) if and only if V \K is a minimum cover (of edges by
nodes) in H; and we can find a minimum cover in a bipartite graph when
we find a maximum matching.

Now let us call an ordering e1, . . . , em of the edges of a graph G good
if for each i = 1, . . . ,m the following condition holds: the set Ni of com-
mon neighbours of the two end nodes of ei in the subgraph with edges
ei+1, . . . , em is such that the subgraph G[Ni] it induces in G is co-bipartite.
[In [70] such an ordering is called a ‘cobipartite neighbourhood edge elimi-
nation ordering’.] Now ω(G) = maxi ω(G[Ni]) + 2 – to see this, consider a
maximum clique K and the first edge ei in K in the ordering. Hence, given
a good edge ordering we can determine ω(G) in polynomial time.

Every unit disk graph has a good edge ordering: given a realisation in
the plane we may simply order the edges by non-decreasing length. For
consider two nodes u and v with distance d(u, v) = d < 1. Let W be the
set of nodes in the ‘lozenge’ L of points in the plane within distance at
most d of both u and v. The line uv cuts L into two halves: if x and y are
nodes in the same half then d(x, y) ≤ d and so x and y are adjacent.

Finally, for any graph with a good edge ordering, a greedy method finds
such an ordering quickly. For if we have a partial list e1, . . . , ek−1 so far, we
may take ek as any edge which satisfies the condition above. There must be
such an edge - consider a good ordering and the first edge in this ordering
not amongst e1, . . . , ek−1.

42 McDiarmid

(0,1)

(1,0)

(1,-1)(0,-1)

(-1,1)

(-1,0)
(0,0)

Figure 2.1. The neighbours of (0, 0)

If the transmitters can have different powers, we are led to consider disk
graphs, which are defined as for unit disk graphs except that the diameters
may be different.

Proposition 2.5.2 For a disk graph G,

χ(G) ≤ 6ω(G) − 5.

Proof. Consider a node v with disk of smallest diameter, and proceed as
in the proof of Proposition 2.5.1 to show that the degeneracy is at most
6(ω(G) − 1). �

As with the result for unit disk graphs, it would be nice to improve this
result. It does not seem to be known whether for disk graphs there is a
polynomial time algorithm to find ω(G), even given a realisation in the
plane. In polynomial time we can approximate to within any fixed factor
the stability number α and the fractional chromatic number χf (defined in
Section 2.6) – see [53, 40, 16]. For related work see [51, 50, 29].

2.5.2 The triangular lattice
The triangular lattice T crops up naturally in radio channel assignment.
It is sensible to aim to spread the transmitters out to form roughly a part
of a triangular lattice, with hexagonal cells, since that will give the best
‘coverage’, that is, for a given number of transmitters in a given area this
pattern minimises the maximum distance to a transmitter.

The triangular lattice graph may be described as follows. The vertices
are all integer linear combinations xp + yq of the two vectors p = (1, 0)
and q = (1

2 ,
√

3
2): thus we may identify the vertices with the pairs (x, y) of

integers. Two vertices are adjacent when the Euclidean distance between
them is 1. Thus each vertex (x, y) has the six neighbours : (x±1, y), (x, y±
1), (x+ 1, y − 1), (x− 1, y + 1), see Figure 2.1. We always assume that the
lattice T has this natural embedding in the plane with minimum distance 1.
The cells are hexagons centered on the points, with diameter 2/

√
3.

2. Discrete Mathematics and Radio Channel Assignment 43

For any d > 0, we let d̂ be the minimum Euclidean distance between two
points in T subject to that distance being at least d. Then d ≤ d̂ ≤ �d�,
and we can compute the d̂2 quickly, in O(d) arithmetic operations.

Theorem 2.5.1 The triangular lattice T satisfies

χ(G(T, d)) = d̂2

for any d > 0.

This result [63] appears to have been known to engineers at least since
1979 – see [49, 17] – and see also Theorem 3 in [5]. In section 2.6.1 we shall
consider the triangular lattice again, focussing on the effect of demands.

2.5.3 Large distances in the plane
In order to gain insight without getting lost in details, one might consider
the case when d is large. It turns out (cf. [62]) that it is possible to make
quite precise statements in the limit as d → ∞. These results are phrased in
terms of the upper density of the set of sites, which is roughly the maximum
number of sites per unit area over large areas. Both the chromatic number
and the clique number tend to be large when the upper density is large.

So how do we define ‘upper density’? Let V be any countable set of points
in the plane. For x > 0 let f(x) be the supremum of the ratio |V ∩ S|/x2

over all open (x×x) squares S with sides aligned with the axes. The upper
density of V is σ+(V) = infx>0: f(x). In fact f(x) → σ+(V) as x → ∞;
and the definition could equally well be phrased in terms of disks say rather
than squares. The square lattice and the triangular lattice (with minimum
distance 1) have upper density 1 and 2/

√
3 respectively.

Theorem 2.5.2 Let V be a countable non-empty set of points in the plane,
with upper density :σ+(V) = σ. For any d > 0, denote the clique num-
ber ω(G(V, d)) by ωd, and use χd,∆d and δ∗

d similarly for the chromatic
number, maximum degree and degeneracy. Then ωd/d

2 ≥ σπ/4 and
χd/d

2 ≥ σ
√

3/2 for any d > 0; and, as : d → ∞, ∆d/d
2 → σπ:,

δ∗
d/d

2 → σπ/2:, ωd/d
2 → σπ/4: and χd/d

2 → σ
√

3/2.

It follows for example that for any countable set V of points in the plane
with a finite positive upper density, the ratio of the chromatic number of
G(V, d) to its clique number tends to : 2

√
3/π ∼ 1.103: as d → ∞. It was

suggested in [18] that such a result should hold for the triangular lattice.
A key step in proving the result on χd in Theorem 2.5.2 is provided by

Theorem 2.5.1. The idea is to scale the triangular lattice T so the density
is slightly greater than σ, and then transfer a good colouring of T over to
V .

44 McDiarmid

2.5.4 The frequency-distance model
Unit disk graphs are interesting, but for channel assignment problems we
may want to consider more than just co-channel interference, and more
general trade-offs between geographical distance and channel separation.
Suppose that we are given a non-zero vector d = (d0, d1, . . . , dk−1) of k ≥ 1
distances, where d0 ≥ d1 ≥ · · · ≥ dk−1 ≥ 0. We call such a vector a
distance k-vector. An assignment f : V → {1, 2, . . . , t} is called d-feasible
if it satisfies the frequency-distance constraints

d(u, v) < di ⇒ |f(u) − f(v)| > i

for each pair of distinct points u, v in V and for each i = 0, 1, . . . , k−1. This
yields a constraint matrix problem where l(uv) = i+1 if di+1 ≤ d(u, v) < di

(set dk = 0). As usual, span(V,d) denotes the least integer t for which there
is such an assignment. This frequency-distance model is a popular standard
model for channel assignment, see for example [34], with k typically equal
to 2 or 3 or 4.

When k = 1, so that there is just one distance d0 given, we are back to
colouring proximity graphs as discussed above. For an example with k = 2,
suppose that d = (

√
2, 1) and the set V of sites is the set Z2 of integer

points (i, j). Then we may obtain a d-feasible assignment f : V → {1, 2}
from the natural 2-colouring of the sites: indeed we may set f((i, j)) = 1
if i+ j is odd, and = 2 if i+ j is even. Clearly : span(d;V) = 2 here. The
values d0, d1, . . . are set with the intention that any d-feasible assignment
will lead to acceptable levels of interference. As discussed above, the d0-
constraint limits co-channel interference, and similarly the d1-constraint
limits the contribution to the interference from first adjacent channels.

2.5.5 Large distances and frequency-distance constraints
When the distances d0, d1, . . . are small, small changes in them (or in the
set V) can lead to large proportional changes in the span. In order to gain
insight into the problem without getting lost in details, much as before in
Section 2.5.3, we consider the case when the distances are large. Suppose
then that d = dx where x = (x0, x1, . . . , xk−1) is a fixed distance k-vector
and d → ∞. Are there results for this case corresponding to Theorem 2.5.2
above on unit disk graphs? It turns out [57] that indeed span(V, dx)/d2

tends to a limit as d → ∞, and some partial results are known about the
limit. The limit is specified as the product of the upper density of V and
the ‘inverse channel density’ χ(x) of the distance vector x.

Let x be a distance k-vector, that is x = (x0, x1, . . . , xk−1), where x0 ≥
x1 ≥ · · · ≥ xk−1 ≥ 0 and x0 > 0. For each i = 1, 2, . . ., the i-channel
density αi(x) is the supremum of the upper density σ+(V) over all sets
V of points in the plane for which there is an x-feasible assignment using
channels 1, . . . , i. The 1-channel density α1(1) is thus the maximum density

2. Discrete Mathematics and Radio Channel Assignment 45

of a packing of pairwise disjoint unit-diameter circles in the plane; and so
α1(1) = 2/

√
3 and corresponds to taking V as the triangular lattice with

unit edge lengths. This is the classical result of Thue on packing circles in
the plane – see for example [74, 67, 78]. [We write α(1) instead of α((1))
and so on.]

We shall be interested in particular in the 2-channel density α2(1, x1).
This quantity is the solution of the following red-blue-purple circle packing
problem. We wish to pack in the plane a pairwise disjoint family of red unit-
diameter circles and a pairwise disjoint family of blue unit-diameter circles,
where a red and a blue circle may overlap, forming a purple patch, but their
centres must be at least distance x1 apart. What is the maximum density
of such a packing? [Equivalently we may think of packing unit-diameter
balls in R3, where the balls must be in two layers, one with centres on the
plane z = 0 and one with centres on the plane z = (1 − x2

1)
1
2 .]

The channel density α(x) is the infimum over all positive integers i of
αi(x)/i. It is not hard to see that α(1) = α1(1) and so α(1) = 2/

√
3; and

that always : 0 < α(x) < ∞. Further, define the inverse channel density
χ(x) to be 1/α(x).

Theorem 2.5.3 For any set V of points in the plane, and any distance
k-vector x

span(V, dx)/d2 → σ+(V):χ(x) as d → ∞.

Thus in particular, for any set V of points in the plane with upper density 1,
such as the set of points of the unit square lattice, the ratio span(V, dx)/d2

tends to the inverse channel density :χ(x): as : d → ∞.
We wish to develop an understanding of the quantity span(V,d), and

in particular of how it compares with certain natural lower bounds. One
of these lower bounds on the span comes from considering the ‘distance-s
cliques’. A family of points forms a distance-s clique if each pair of points in
the set is at distance less than s. If there is a distance-dj clique (sometimes
called a level-(j + 1) clique) with t elements then by (2.1) in section 2.3.2,

span(V,d) ≥ 1 + (t− 1)(j + 1) = (j + 1)t− j.

Let us call the maximum value of these bounds over all j = 0, . . . , l−1 and
all distance-dj cliques the clique bound for the problem and denote it by
cliquebound(V,d).

The quantity cliquebound(V,d) just introduced may be defined by

cliquebound(V,d) = max
j

((j + 1)ω(G(V, dj)) − j) ,

where the maximum is over j = 0, . . . , k − 1. Let us consider also

colourbound(V,d) = max
j

((j + 1)χ(G(V, dj)) − j) .

46 McDiarmid

Clearly colourbound(V,d) ≥ cliquebound(V,d) since χ(G) ≥ ω(G) for
every graph G, and it follows for example from Proposition 2.3.1 that
span(V,d) ≥ colourbound(V,d). Theorem 2.5.2 yields easily that for any
set V of points in the plane and any distance k-vector x, as : d → ∞

colourbound(V, dx)/d2 → σ+(V): max
j

{(j + 1)x2
j}

√
3/2 (2.9)

and

cliquebound(V, dx)/d2 → σ+(V): max
j

{(j + 1)x2
j}π/4. (2.10)

It follows using Theorem 2.5.3 that for any set V of points with finite
non-zero upper density, and any distance k-vector x, as : d → ∞,

span(V, dx)/colourbound(V, dx) → (2/
√

3) χ(x)/max
j

{(j + 1)x2
j)} (2.11)

and

colourbound(V, dx)/cliquebound(V, dx) → 2
√

3/π. (2.12)

Perhaps there is most interest in the case k = 2, when we have just
two distances d0 ≥ d1. The current knowledge on the value of χ(1, x) is
summarised in the following theorem – see also Figure 2.2.

Theorem 2.5.4 There are exact results, that :χ(1, x) =
√

3/2: for : 0 ≤
x ≤ 1/

√
3, :χ(1, 1/

√
2) = 1: and :χ(1, 1) =

√
3. There are lower bounds,

that :χ(1, x): is at least
√

3/2 for 1/
√

3 < x ≤ 3
1
4 /2 � 0.658

2x2 for 3
1
4 /2 ≤ x < 1/

√
2 � 0.707

1 for 1/
√

2 < x ≤ 3− 1
4 � 0.760√

3x2 for 3− 1
4 ≤ x < 1.

Finally, there are upper bounds, that :χ(1, x): is at most

3
√

3
2 x2 for 1/

√
3 < x ≤ 4/

√
43 � 0.610

2x
√

1 − x2 for 4/
√

43 ≤ x < 1/
√

2 � 0.707

2
√
x2 − 1

4 for 1/
√

2 < x < 1.

Suppose for example that k = 2 and x = (1, 1/
√

2). Then we have χ(x) = 1,
and max{x2

0, 2x
2
1} = 1, and so the limit in (2.11) above is 2/

√
3; and hence

span(V, dx)/cliquebound(V, dx) → 4/π

as d → ∞. If x = (1, x1) where 0 < x1 ≤ 1/
√

3 then we have χ(x) =
√

3/2
and max{x2

0, 2x
2
1} = 1, and so the limit in (2.11) above is 1.

2. Discrete Mathematics and Radio Channel Assignment 47

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1

↑
(1/

√
3,

√
3/2)

(1/
√

2, 1)
↓

(1,
√

3)→

Figure 2.2. Upper and lower bounds on χ(1, x)

2.6 Channel assignment with demands

2.6.1 The triangular lattice with demands
Given a finite induced subgraph of the triangular lattice graph together
with demands, how well can we assign channels? Here we are assuming
that each edge length l(uv) is 1 and each co-site constraint value c(v) is
1. We shall present two theorems from [63], one a hardness result and
one a result on algorithmic approximation. First, however, we make some
preliminary comments.

Given a graph G together with a demand vector x, there is a natural
associated ‘replicated’ graph Gx, obtained by replacing each node v by a
complete graph on :xv nodes. An assignment of channels for the pair (G,x)
corresponds to a colouring of the graph Gx.

A graph G is perfect if for each induced subgraph H of G, the chromatic
number χ(H) equals the maximum number ω(H) of vertices in a complete
subgraph of H. If a graph G is perfect then so is the replicated graph
Gx for any demand vector x, and further an optimal weighted colouring
can be found in polynomial time by using the ellipsoid method – see [32].
If G is bipartite, for example if it is a finite subgraph of the square or
hexagonal lattice, then things are even easier. Of course, finite subgraphs
of the triangular lattice graph need not be perfect – see the remarks at the
end of this section. Recall from section 2.5.2 that we may represent the
points of the triangular lattice by pairs of integers.

48 McDiarmid

Theorem 2.6.1 It is NP-complete to determine, on input a set F of pairs
of integers determining an induced subgraph G of the triangular lattice
graph together with a demand vector x, if the graph Gx is 3-colourable.

This theorem extends the result mentioned earlier that it is NP -hard to
determine the chromatic number of a unit disk graph. Given an input as
above, it is of course easy to find the maximum size ω(Gx) of a complete
subgraph of Gx in polynomial time, since each clique in G has at most
three nodes.

Theorem 2.6.2 There is a polynomial time combinatorial algorithm
which, on input a set F of pairs of integers determining an induced subgraph
G of the triangular lattice graph together with a demand vector x, finds a
feasible assignment which uses at most 4ω̂+1

3 colours, where ω̂ = ω(Gx).

For related results see [46, 66, 77]. The algorithm is quite simple and prac-
tical. It has a distributed phase, in which it constructs colour sets similar to
the colour sets of the 3-colouring of the triangular lattice graph, and then a
tidy-up phase which corresponds to colouring a forest. By using the algor-
ithm, we can find quickly a weighted colouring for an induced subgraph of
the triangular lattice such that the number of colours used is no more than
about 4/3 times the corresponding clique number of Gw, and hence is no
more than about 4/3 times the optimal number. Further by Theorem 2.6.1
we cannot guarantee to improve on the ratio 4/3, assuming that P �= NP .

However, perhaps we are being pessimistic. In typical radio channel
assignment problems, the maximum number of channels demanded at a
transmitter may be quite large. For example, the ‘Philadelphia problem’
described in [18] involves a 21 vertex subgraph of the triangular lattice
with demands ranging from 8 to 77 (though it also has constraints on the
colours of vertices at distances up to 3, and so it is not a simple weighted
colouring problem). Perhaps we can improve on the ratio 4/3 if there are
large demands?

We note that the 9-cycle C9 is an induced subgraph of the triangular
lattice graph. Further, for any positive integer k, if we start with a C9
and replicate each node k times, we obtain a graph with clique number 2k
and chromatic number � 9k

4 �. Is this ratio 9
8 of chromatic number to clique

number asymptotically worst (greatest) possible? This question has sparked
off much further work on the ‘imperfection ratio’ of graphs [24, 25, 58, 27],
but it is still not resolved. It has been shown [36] that for any triangle-free
subgraph of the triangular lattice graph together with demands, the ratio
is at most 7

6 . See also [37].
Throughout the above, we assumed that each co-site constraint value was

1. There is a very similar result if each co-site constraint value is 2, ([77],
see also [27]. If each co-site constraint value is 3, things are rather different:
for since χ(G) ≤ 3 the span is at most 3xmax (see Proposition 2.3.1), and
of course it is a least 3xmax − 2.

2. Discrete Mathematics and Radio Channel Assignment 49

2.6.2 The dumbell problem
Co-site constraints can cause difficulties. A (2 × 2) constraint matrix(
a b
b c

)

with a demand vector (m,n) yields a deceptively simple-looking

problem. Note that this corresponds to a constraint graph consisting of just
a single edge with length b, co-site constraint values a and c (not neces-
sarily the same), and demands. Dominic Welsh christened this the dumbell
problem, and asked if there is a formula for the span in terms of a, b, c,m, n,
or if we can at least compute the span in time bounded by a polynomial in
the input size, even for a fixed constraint matrix. Some partial results are
given in [68].

2.6.3 Bipartite graphs with co-site constraint value 2
Suppose that the constraint graph is bipartite, and each edge length is 1. If
each co-site constraint value (that is, each diagonal entry in the constraint
matrix) is 1, then the problem is easy, as we noted earlier. Let us consider
the case when each co-site constraint value is 2. (We discussed this problem
with cyclic channel distances in section 2.3.7.)

The span is at most 2xmax, since we could use the odd channels
1, 3, . . . , 2xmax − 1 on one part and the even channels 2, 4, . . . , 2xmax on
the other. Further, clearly the span is at least 2xmax −1. Can we tell which
value is correct?

Call a path in G critical if it has an odd number t of edges, the end
nodes have demand xmax and any internal nodes have demand < xmax.
Suppose that the span is 2xmax −1, with a feasible assignment φ : V (G) →
{1, . . . , 2xmax − 1}, and consider such a path. The end nodes must get
precisely all the odd channels, so each of the xmax − 1 even channels can
be used at most (t − 1)/2 times, and each of the xmax odd channels can
be used at most (t+ 1)/2 times. Thus the total number of appearances of
channels on the path is at most

(xmax − 1)(t− 1)/2 + xmax(t+ 1)/2 = txmax − (t− 1)/2.

The critical path condition is that for each critical path, the sum of the
demands on the nodes is at most txmax − (t− 1)/2.

Theorem 2.6.3 Let G be a bipartite graph, let each edge length be 1, and
let each co-site constraint value be 2. Let x be a demand vector. Then the
span is either 2xmax − 1 or 2xmax, and it is the lower value if and only
if the critical path condition holds. Further, we can determine the span in
polynomial time.

It is easier to handle the case when each co-site constraint value is 3.

50 McDiarmid

Theorem 2.6.4 Let G be a bipartite graph, let each edge length be 1, and
let each co-site constraint value be 3. Let x be a demand vector. Then the
span is either 3xmax − 2 or 3xmax − 1, and it is the lower value if and only
if no two nodes with maximum demand are adjacent.

For the above results and related results, see [22, 23].

2.6.4 Large demands
Since in applications demands are unpredictable, there is some advantage
(in terms of the ratio of numbers of channels needed to mean demand) in
having cells large enough so that the mean demand is not too small. This
effect is called ‘trunking gain’. (It need not concern us that, with a time
division multiple access scheme like GSM, there may be up to 8 users to a
channel.) Certainly, some standard test problems have large demands, as
mentioned in section 2.6.1.

Let us assume that each edge length is 1 and each co-site constraint is 1,
as in section 2.6.1, and focus on the demands. We pick up the discussion
from the end of that section.

Consider a (fixed) graph G. For each positive integer k, let

rk(G) = max{χ(Gx)
ω(Gx)

: xmax = k},

where the maximum is over all non-negative integral demand vectors x
with maximum entry xmax equal to k. Observe that : rk(G) ≥ 1: always.

Theorem 2.6.2 above shows that if G is an induced subgraph of the
triangular lattice T , then : rk(G) ≤ 4k+1

3k for all positive integers k. But we
are interested in the values of rk(G) for large k rather than the maximum
value over all k, as this corresponds to large demands.

Recall from section 2.6.1 that if a graph G is perfect then so is each graph
obtained from G by replication.Thus G is perfect if and only if rk(G) = 1
for each positive integer k. Since any bipartite graph is perfect, a natural
starting point for further investigation is to consider odd cycles. If n is
an odd integer at least 5, then : |rk(Cn) − n

n−1 | <
1
k , and so rk(Cn) →

n
n−1 as k → ∞. In fact rk(G) always tends to a limit as k → ∞, namely
the imperfection ratio of G, which we now proceed to define.

First we need to recall the definition of the fractional chromatic number of
a graph G. Introduce a variable yS for each stable set S in G. The fractional
chromatic number χf (G) is the value of the linear program: : min

∑
S yS

subject to :
∑

v∈S yS ≥ 1 for each node v: and : yS ≥ 0 for each stable set
S. Alternatively, χf (G) is the least value of the ratio a/b such that with a
colours we may colour each node of G exactly b times, see for example [76].
It is easily seen that

ω(G) ≤ χf (G) ≤ χ(G).

2. Discrete Mathematics and Radio Channel Assignment 51

Now we define the imperfection ratio, imp(G), by setting

imp(G) = max
x

{χf (Gx)
ω(Gx)

}, (2.13)

where the maximum is over all non-zero integral weight vectors x. (The
ratios on the right hand side above do indeed attain a maximum value.)
Observe that imp(G) ≥ 1.

Theorem 2.6.5 For any graph G, rk(G) → imp(G): as : k → ∞.

For example, we see immediately from the above result on odd cycles that
imp(Cn) = n

n−1 for the odd cycle Cn with n ≥ 5 nodes. The following
theorem records two basic properties of the imperfection ratio. It is most
naturally proved in the context of equivalent polyhedral definitions of the
imperfection ratio, see [24].

Theorem 2.6.6 For any graph G, imp(G) = 1 if and only if G is perfect;
and imp(G) = imp(Ḡ), : where Ḡ denotes the complement of G.

Further, imp(G) ≤ 4/3 for any finite induced subgraph G of the triangu-
lar lattice T , by Theorem 2.6.2; and the question we asked above about
asymptotic ratios may now be rephrased in terms of imp(G), as follows.

Conjecture 2.6.7 If G is a finite induced subgraph G of the triangular
lattice T , then imp(G) ≤ 9/8.

It turns out that the imperfection ratio is related to the ‘entropy’ of G and
its complement, see [58, 80]. Let us mention a few further results on the
imperfection ratio: for these and many more see [22, 24, 25, 58].

• Suppose that G is a line-graph. If G has no odd holes then G is
perfect, so imp(G) = 1. If G has an odd hole, and the shortest length
of one is g, then imp(G) = g/(g − 1).

• For any planar triangle-free graph G, imp(G) ≤ 3/2, and the constant
3/2 is best possible.

• For a unit disk graph G, imp(G) ≤ 1 + 2/
√

3 < 2.2. The cycle power
graph Ck−1

3k−1 is a unit disk graph (see [50]), which shows that this
bound cannot be reduced below 3/2. Perhaps this is the right value;
that is, do we have imp(G) ≤ 3/2 for any unit disk graph?

• For an n-node graph, the integer weights xv required to achieve
imp(G) in the definition (2.13) can grow exponentially with n, though
they can always be bounded by n

n
2 .

• For the random graph Gn, 1
2
, the imperfection ratio is close to

n(2 log2 n)−2 with high probability.

52 McDiarmid

2.7 Random channel assignment problems

2.7.1 Random models in the plane
It is not easy to model satisfactorily the distribution of sites in the plane.
Sometimes it is assumed that they form part of a regular lattice, but we
consider quite a different case here. We assume here that the sites are
generated by picking n points X1,X2, . . . independently according to some
fixed probability distribution on the plane, and we let n → ∞. The following
results are taken from [59]. The proofs lean heavily on the deterministic
work described in section 2.5.3.

Random unit disk graphs

It is of interest to investigate how large the ratio χ(G)/ω(G) is ‘usually’
for unit disk graphs. We saw earlier that always χ(G)/ω(G) ≤ 3 for a unit
disk graph G. To give some meaning here to the word ‘usually’, we need
either much empirical data or many simulations – see for example [89], or
a suitable random model. We adopt the latter approach here.

Let the random variable X be distributed in the plane with some distribu-
tion ν. Let X1,X2, . . . , be independent random variables, each distributed
like X. Let X(n) denote the family consisting of the first n random points
X1, . . . ,Xn. Let d = d(n) > 0 for n = 1, 2, . . ., and let Gn denote the
random (embedded) unit disk graph G(X(n), d(n)).

Previous work on random unit disk graphs, see [69], shows the importance
of the ratio d2n/ lnn. For example, suppose that the underlying distribution
is the uniform distribution on the unit square, so that for large n the average
degree of a node is close to πd2n. Then as n → ∞, the probability that Gn

is connected tends to 0 if d2n/ lnn → 0 and tends to 1 if d2n/ lnn → ∞.
It does not seem clear for the application to channel assignment problems
how we should wish the average degree to behave, though slow growth of
some sort seems reasonable.

An important quantity will be the maximum density νmax of the dis-
tribution. This may be defined in many equivalent ways, for example
as

νmax = sup
B
ν(B)/area(B), (2.14)

where the supremum is over all open balls B, ν(B) = P (X ∈ B), and of
course area(B) = πr2 if B has radius r. Typically this is just the maximum
value of the density function. We shall be interested in the case when this
quantity is finite.

As before we focus on the ratio of chromatic number to clique number.
We consider the ‘sparse’ case, when d = d(n) is such that the average
degree grows more slowly than lnn; and the ‘dense’ case, when the average
degree grows faster than lnn.

2. Discrete Mathematics and Radio Channel Assignment 53

Theorem 2.7.1 Let the distribution ν have finite maximum density. Let
d = d(n) satisfy d(n) → 0 as n → ∞.

(a) (Sparse case) As n → ∞, if d2n/ lnn → 0 but d2n ≥ n−o(1) then

χ(Gn)/ω(Gn) → 1 in probability.

(b) (Dense case) As n → ∞, if d2n/ lnn → ∞ then

χ(Gn)/ω(Gn) → 2
√

3/π ∼ 1.103 a.s.

In part (b) above we use ‘a.s.’ or ‘almost surely’ in the standard sense in
probability theory, that is we are asserting that

P
(
χ(Gn)/ω(Gn) → 2

√
3/π as n → ∞

)
= 1.

Let us amplify Theorem 2.7.1, and split the sparse and dense cases into
separate results.

We consider the upper bounds ∆(G) + 1 and δ∗(G) + 1 on χ(G), and
the lower bound ω(G). It is of interest also to consider a natural lower
bound on ω(G). We define the disk containment number of G(V, d) to be
the maximum over all open disks of diameter d of the number of points of
V in the disk. Let us denote this quantity by ω−(G(V, d)). Of course we
always have

ω(G(V, d)) ≥ ω−(G(V, d)).

It is straightforward to compute this quantity in O(n3) steps. We shall
see that with high probability ω and ω− are very close, which may help
somewhat to explain why it has been found to be easy to calculate ω. In
practice for problems arising in radio channel assignment (which do not
necessarily give rise to a unit disk graph) usually it turns out to be easy to
determine ω, and colouring methods that start from large cliques or near
cliques have proved to be very successful [42].

Theorem 2.7.2 (On sparse random disk graphs)
Let d = d(n) satisfy d2n = o(lnn) and d = n− 1

2+o(1). Let

k = k(n) =
lnn

ln(ln n
d2n)

.

Then k → ∞ as n → ∞:, and in probability : ∆(Gn)/k → 1: and
:ω−(Gn)/k → 1, : and so :χ(Gn)/ω−(Gn) → 1.

Theorem 2.7.3 (On dense random disk graphs)
Let d = d(n) satisfy d2n/ lnn → ∞ as n → ∞. Let

k = k(n) = νmax(π/4)d2n.

Then as n → ∞, almost surely :ω−(Gn)/k → 1, :ω(Gn)/k → 1,
:χ(Gn)/k → 2

√
3/π, : δ∗(Gn)/k → 2, and : ∆(Gn)/k → 4.

54 McDiarmid

This last result may be proved using many of the same ideas as for
Theorem 2.5.2.

There is an unfortunate gap between the sparse and dense cases above.
It would be interesting to learn about the behaviour of χ(Gn)/ω(Gn) when
d2n/ lnn → β where 0 < β < ∞. See [69] for the behaviour of ω(Gn) in
this case, and for further related results.

Random frequency-distance problems

Let c = (c0, c1, . . . , cl−1) be a fixed distance l-vector and let d = d(n) → 0
as n → ∞. We shall use d to scale the vector c appropriately, and focus on
the problem generated by the family X(n) consisting of the first n random
points X1, . . . ,Xn together with the distance vector dc. Denote the corre-
sponding span by span(X(n), dc), and similarly for the colour and clique
bounds. Then

span(X(n), dc) ≥ colourbound(X(n), dc) ≥ cliquebound(X(n), dc).

How good are these bounds usually?

Theorem 2.7.4 Suppose that the distribution ν has finite maximum den-
sity. Let c = (c0, c1, . . . , cl−1) be a fixed distance l-vector. Let d = d(n)
satisfy d(n) → 0 as n → ∞.

(a) (Sparse case) As n → ∞, if d2n/ lnn → 0 but d2n ≥ n−o(1), then in
probability

span(X(n), dc)/cliquebound(X(n), dc) → 1.

(b) (Dense case) As n → ∞, if d2n/ lnn → ∞ then a.s.

span(X(n), dc)/colourbound(X(n), dc) → (2/
√

3)χ(c)/max
j

{(j + 1)c2j}
(2.15)

where the maximum is over j = 0, . . . , l − 1, and

colourbound(X(n), dc)/cliquebound(X(n), dc) → 2
√

3/π. (2.16)

The limits in (2.15) and (2.16) above should be familiar from the earlier
results (2.11) and (2.12). By Theorems 2.7.2 and 2.7.3, it would make no
difference in the above result if we replaced ω by ω− in the definition of
the clique bound. More detailed results extending Theorem 2.7.4 are given
in [59].

2.7.2 Random {0, 1, 2}-valued constraints
In this section, we follow [60] and consider random constraint matrix prob-
lems, where each constraint value is 0,1 or 2. We stick to the case of unit
demands.

2. Discrete Mathematics and Radio Channel Assignment 55

Let us start with the complete graph on the set of n nodes V =
{v1, . . . , vn}, together with a length l(e) ∈ {0, 1, 2} for each edge e. Let Ei

denote the set of edges of length i. Then E2 contains the ‘long’ edges, E1
the ‘short’ edges, and E0 the ‘missing’ edges. Let G be the graph obtained
by omitting the ‘missing edges’, that is G = G(V,E1 ∪ E2).

We have seen already that the span is at least χ(G) and is at most
2χ(G) − 1. Trivally, if E2 is empty then we are back to ordinary node
colouring and the span is χ(G). Also, if E1 is empty then the span is
2χ(G) − 1 by Proposition 2.3.1.

Let us introduce the random model. Given 0 ≤ p ≤ 1 and a positive
integer n, the standard random graph Gn,p has nodes v1, . . . , vn and the(
n
2

)
possible edges appear independently each with probability p.

Now let p0, p1 and p2 be non-negative and sum to 1, and let p =
(p0, p1, p2). We call p a probability vector. The random network Gn,p has
nodes v1, . . . , vn and the

(
n
2

)
edges e have independent lengths Xe, where

P (Xe = i) = pi. An edge of length 0 corresponds to a missing edge, so the
graph associated with the network has distribution Gn,p1+p2 .

It is well known [6] that

χ(Gn,p) ∼ 2 ln(1/(1 − p)): (n/ lnn). (2.17)

(We take p as fixed, 0 < p < 1.) This notation means that the ratio of
left hand side to right hand side tends to 1 in probability. (Much more
precise results are known, see [6, 54].) At the Workshop on Radio Channel
Assignment in Brunel University in July 2000, Jan van den Heuvel asked
for similar results for the asymptotic behaviour of span(Gn,p).

Fix a probability vector p = (p0, p1, p2). It turns out that there is an
abrupt change of behaviour (a ‘phase transition’) in span(Gn,p) around
the curve p1 = p2(1− p2). If p1 ≤ p2(1− p2) we are in the ‘few short edges’
regime, where we may as well treat short edges as long and leave about half
the channel sets empty. In contrast, if p1 ≥ p2(1 − p2) we are in the ‘few
long edges’ regime, and it turns out that it is best to choose the channel
sets nearly uniform in size.

Theorem 2.7.5 Fix a probability vector p = (p0, p1, p2), where p0, p1, p2 >
0 and p0 + p1 + p2 = 1. If p1 ≤ p2(1 − p2) then

span(Gn,p) ∼ 2χ(Gn,p1+p2) ∼ ln(1/p0): (n/ lnn);

and if p1 ≥ p2(1 − p2) then

span(Gn,p) ∼ ((1/2) ln(1/p0) + ln(1/(1 − p2))) : (n/ lnn).

On the ‘critical curve’ p1 = p2(1−p2) we have ln(1/p0) = 2 ln(1/(1−p2)),
so the two expressions for span(Gn,p) are indeed equal there. It follows from
the theorem together with (2.17) that when p1 ≤ p2(1 − p2) we have

span(Gn,p) ∼ χ(Gn,p1+p2) + 2χ(Gn,p2),

56 McDiarmid

but it is not clear what to make of this.

2.8 Modelling radio channel assignment

In this section we discuss the background to radio channel assignment prob-
lems. We shall end up with the (Te)-sets model, which is where we started
in section 2.8.

We may think of the radio channel assignment problem as the final stage
in the design of a cellular radio communication system. The general idea of
such a system is that many low-powered transmitters (base stations) each
serve the customers in their local cell, and thus the same radio channel can
be used simultaneously in many different cells, as long as these cells are suf-
ficiently well separated. Since the radio spectrum is a finite resource which
is heavily in demand, we want to assign the channels to the transmitters
carefully in order to take maximum advantage of this re-use possibility.

Suppose then that transmitters are located at various sites in a geo-
graphical region, perhaps a city, with power levels set. Engineers often aim
to spread the transmitters out to form roughly a part of a triangular lat-
tice, since it gives the best ‘coverage’, that is, it minimises the maximum
distance to a transmitter. Sometimes the transmitters may be spread out
very differently, for example along a major road. We shall suppose that the
channel bandwidth has been fixed, so that we may without loss of general-
ity take the available channels to be the integers {1, . . . , t} for some t. The
service region is divided into cells around each transmitter. We may think
of the cell around transmitter v as consisting of the potential receiver sites
which are closer to v than to any other transmitter, at least in the case
when each transmitter has the same power. When such transmitters are
spread out like part of the triangular lattice, the cells are hexagonal.

For each cell, there is an estimate of the (peak period) expected demand.
Using these demand estimates, the requirement that calls be blocked say at
most 2% of the time, and a simple queuing model, an appropriate number
xv of channels is chosen for each transmitter v. Note that we are considering
a static model : there is interest also in dynamic models, where the demand
levels change over time, and the focus is on the method for re-assigning
channels. We shall not pursue this topic here, but see for example ..??

We have now described the input to the channel assignment problem from
the early stages of the design of the cellular communication system. The aim
in the final stage is to find an assignment of xv channels to each transmit-
ter v, such that the corresponding interference is acceptable, and the span
of channels used is minimised. (Alternatively, we might wish to minimise
the interference subject to a given span of channels being available.)

So, when will interference be acceptable? (For a general treatment par-
tially ducking this question see [26].) Typically a ‘protection ratio’ θ

2. Discrete Mathematics and Radio Channel Assignment 57

is set, depending on engineering considerations involving the selectivity
of the equipment used and the width of the channel. We say that the
interference arising from some channel assignment is acceptable if the
signal-to-interference ratio (SIR) is at least the ‘protection ratio’ θ at each
potential receiver site, or at all but a small proportion of test sites. In
order to estimate signal-to-interference ratios we need a model for the
propagation of radio waves, or many empirical measurements.

A typical simplified propagation model assumes that the signal power
received at distance r from the transmitter is proportional to r−α for an
appropriate constant α, where 3 ≤ α ≤ 4 for a typical urban environment.
(In free space α = 2.) Here the ‘power received’ refers to a receiver tuned to
the same channel c as the transmitter. For a receiver tuned to channel c± i
the received power drops off rapidly with i. In the model proposed in [28]
(and used for example in [89]), the received power drops off by a factor of
about (2i)5. Thus for a receiver tuned to one of the adjacent channels c±1,
the power received is reduced by a factor 32, and for a receiver tuned to a
more distant channel the power received is negligible.

It is assumed that the power received does not depend on the frequency
used (which is realistic since typically the range of frequencies involved is
small). For omnidirectional transmitters, it is sometimes assumed for sim-
plicity that this power depends only on the distance from the transmitter.
(We shall not consider directional versions here, but see for example [83]).
More detailed propagation models consider also ‘fading effects’ due to shad-
owing (perhaps from intervening buildings or rain) or to multiple path
interference effects, though these can be allowed for by adding a safety
margin to the protection ratio θ. Typically external effects such as thermal
noise are ignored.

Now consider a transmitter v and a potential receiver R in the cell around
v, where R is tuned to channel c, one of the channels at v. On the basis
of a propagation model or empirical measurements, we can estimate the
signal power received at R from transmitter v. We can also estimate the
unwanted power received at R from each of the other transmitters using
channel c: these combine to form the ‘co-channel’ interference. Similarly,
we can estimate the unwanted power received at R from each transmit-
ter using the adjacent channels c ± 1, and the resulting ‘first-adjacent
channel’ interference, and so on for more distant channels with decreasing
importance.

The question remains of how to combine the interfering unwanted signal
powers to yield the total interference. The usual way to do this is simply
to take the maximum value, and again allow a margin for error in the pro-
tection ratio θ. We follow this method here, which leads to models with
binary constraints, that is, involving only pairs of channels. If we do not
make the simplifying ‘dominant interferer’ assumption, we are led to hyper-
graph colouring models (see for example [41]) or models where we compute
the interference ‘globally’ from the entire assignment, see for example [89].

58 McDiarmid

A natural aim is to find a feasible assignment that achieves this minimum
span or is close to it. Alternatively, there might be a fixed range of channels
available, and the aim is to find a feasible assignment using only channels
within this range which then perhaps minimises the maximum interference.
Another possibility is that we cannot find a feasible assignment within the
given span, and we have to settle for some violated constraints. We shall
restrict our attention to the first aim.

Another simplifying assumption that seems reasonable from the physics
of interference is that only the difference between two channels matters.
Typically the smaller the difference the greater the interference, but this is
not always the case as there may for example be ‘intermodulation products’,
in particular at transmitters on the same site.

Consider a pair of transmitters u and v, and suppose that they transmit
on channels differing by c. If there is a potential receiver in the cell around u
such that the ratio of the received power from u to that from v is less than
the protection ratio θ, then we make c a ‘forbidden difference’ for u and
v; and similarly with u and v interchanged. We have now got to the stage
where the most general problem we wish to consider specifies for each pair
uv of transmitters a set Tuv of forbidden differences |i − j| for channels
i ∈ f(u) and j ∈ f(v). Clearly we may assume that always Tuv = Tvu.
Thus an assignment f is feasible if for each distinct u, v ∈ V and each
i ∈ f(u) and j ∈ f(v) we have |i − j| �∈ Tuv, and for each v ∈ V and
each distinct i, j ∈ f(v) we have |i − j| �∈ Tvv. We might add lists L(v) of
available channels, and insist that φ(v) ⊆ L(v).

The corresponding interference graph G has a node for each transmitter
v, and distinct nodes u and v are adjacent if Tuv is non-empty. It is often
convenient to think of the problem as being specified by the graph G to-
gether with a set Te for each edge e of G, where always 0 ∈ Te. This is
the Te-sets model we met in Section 2.3.9, with its two special cases the
constraint matrix model and the T -colouring model.

In order to keep the discussion reasonably brief some simplifications
have naturally been made. For example, typically communication involves
not one but two radio channels; a ‘down-link’ for signals from the base
station transmitter to the moble station, and an ‘up-link’ for the signals
back, perhaps at a fixed offset. Some useful references for further reading
include [28, 39, 41, 49, 79, 86].

Acknowledgements I would like to acknowledge helpful comments from
Stefanie Gerke and Bruce Reed.

References

[1] S.M. Allen and N. Dunkin, Frequency assignment problems: representations
and solutions, Technical report, University of Glamorgan, 1997.

2. Discrete Mathematics and Radio Channel Assignment 59

[2] S.M. Allen, D.H. Smith and S. Hurley, Lower bounding techniques for
frequency assignment, Discrete Mathematics 197/198 (1999) 41 – 52.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela
and M. Protasi, Complexity and Approximation, Springer, 1999.

[4] F. Barasi and J. van den Heuvel, Graph labelling, acyclic orientations, and
greedy algorithms, manuscript, 2001.

[5] M. Bernstein, N.J.A. Sloan and P.E. Wright, On sublattices of the hexagonal
lattice, Discrete Mathematics 170 (1997) 29 – 39.

[6] B. Bollobás, The chromatic number of random graphs, Combinatorica 8
(1988) 49 – 55.

[7] B. Bollobas, Modern Graph Theory, Graduate Texts in Mathematics 184,
Springer, 1998.

[8] H. Breu and D.G. Kirkpatrick, Unit disk graph recognition is NP-hard,
Comput. Geom. 9 (1998) 3 – 24.

[9] S. Ceroi, Clique number of intersection graphs of convex bodies, manuscript,
2001.

[10] G.J. Chang and D. Kuo, The L(2, 1)-labeling problem on graphs, SIAM J.
Discrete Math. 9 (1996) 309 – 316.

[11] G. Chang, L. Huang and X. Zhu, Circular chromatic numbers and fractional
chromatic numbers of distance graphs, Discrete Math. 19 (1997) 223 – 230.

[12] B.N. Clark, C.J. Colbourn and D.S. Johnson, Unit disk graphs, Discrete
Mathematics 86 (1990) 165 – 177.

[13] I. Csiszár, J. Körner, L. Lovász, K. Marton and G. Simonyi, Entropy splitting
for antiblocking corners and perfect graphs, Combinatorica 10 (1990) 27 –
40.

[14] N. Dunkin, S.M. Allen, D.H. Smith and S. Hurley, Frequency assignment
problems: benchmarks and lower bounds, Technical report UG-M-98-1,
University of Glamorgan, 1998.

[15] P. Erdős, Some remarks on chromatic graphs, Colloq. Math. 16 (1967) 253
– 256.

[16] T. Erlebach, K. Jansen and E. Seidel, Polynomial-time approximation
schemes for geometric graphs, Proceedings of the Twelth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2001), 2001, pp. 671-679.

[17] A. Gamst, Homogeneous distribution of frequencies in a regular hexagonal
cell system, IEEE Transactions on Vehicular Technology VT-31 (1982) 132
– 144.

[18] A. Gamst, Some lower bounds for a class of frequency assignment problems,
IEEE Transactions on Vehicular Technology VT-35 (1986) 8 – 14.

[19] M.R. Garey and D.S. Johnson, Computers and Intractability, Freeman, 1979.

[20] J.F. Georges and D.W. Mauro, Generalized vertex labelings with a condition
at distance two, Congressus Numerantium 109 (1995) 141 – 159.

[21] J.F. Georges, D.W. Mauro and M.I. Stein, Labelling products of complete
graphs with a condition at distance two, SIAM J. Discrete Mathematics 14
(2001) 28 – 35.

60 McDiarmid

[22] S. Gerke, Channel assignment problems, DPhil thesis, University of Oxford,
2000.

[23] S. Gerke, Colouring weighted bipartite graphs with a co-site constraint,
Discrete Mathematics 224 (2000) 125 – 138.

[24] S. Gerke and C. McDiarmid, Graph imperfection, J. Comb. Th. B, to appear.

[25] S. Gerke and C. McDiarmid, Graph imperfection II, J. Comb. Th. B, to
appear.

[26] S. Gerke and C. McDiarmid, Channel assignment with large demands,
manuscript, 2000.

[27] S. Gerke and C. McDiarmid, On the k-imperfection ratio of graphs,
manuscript, 2001.

[28] R.A.H. Gower and R.A. Leese, The sensitivity of channel assignment to
constraint specification, in Proceedings of EMC97 Symposium, Zurich, 131 –
136, 1997.

[29] A. Gräf, M. Stumpf and G. Weissenfels, On coloring unit disk graphs,
Algorithmica 20 (1998) 277 – 293.

[30] J.R. Griggs and D. Der-Fen Liu, The channel assignment problem for
mutually adjacent sites, J. Combinatorial Theory A 68 (1994) 169 – 183.

[31] J.R. Griggs and R.K. Yeh, Labelling graphs with a condition at distance
two, SIAM J. Discrete Math. 5 (1995) 586 – 595.

[32] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and
Combinatorial Optimization, Springer-Verlag, 1988.

[33] A. Gyárfás, Problems from the world surrounding perfect graphs, Za-
stosowania Matematyki Applicationes Mathematicae XIX (1987) 413 –
441.

[34] W.K. Hale, Frequency assignment, Proceedings of the IEEE 68 (1980) 1497
– 1514.

[35] F. Harary and M. Plantholt, Graphs whose radio coloring number equals
the number of nodes, in Graph Colouring and Applications, P. Hansen and
O. Marcotte editors, CRM Proceedings and Lecture Notes 23, American
Mathematical Society, 1999.

[36] F. Havet, Channel assignment and multicolouring of the induced subgraphs
of the triangular lattice, Discrete Mathematics 233 (2001) 219 – 231.

[37] F. Havet and J. Zerovnik, Finding a five bicolouring of a triangle-free
subgraph of the triangular lattice. Discrete Mathematics, to appear.

[38] J. van den Heuvel and S. McGuinness, Colouring the square of a planar
graph, manuscript.

[39] J. van den Heuvel, R.A. Leese and M.A. Shepherd, Graph labelling and radio
channel assignment, J. Graph Theory 29 (1998) 263 – 283.

[40] H.B. Hunt, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz
and R.E. Stearns, NC-approximation schemes for NP- and PSPACE-hard
problems for geometric graphs, J. Algorithms 26 (1998) 238 – 274.

[41] S. Hurley and R. Leese (editors), Models and Methods for Radio Channel
Assignment, Oxford University Press, to appear.

2. Discrete Mathematics and Radio Channel Assignment 61

[42] S. Hurley, D.H. Smith and S.U. Thiel, FASoft: a system for discrete channel
frequency assignment, Radio Science 32 1921 – 1939, 1997.

[43] S. Janson, T. �Luczak and A. Ruciński, Random Graphs, Wiley, 2000.

[44] J. Janssen and K. Kilakos, Polyhedral analysis of channel assignment
problems (part 1: tours), Research Report CDAM-96-17, LSE, August 1996.

[45] T.R. Jensen and B. Toft, Graph Colouring Problems, Wiley, 1995.

[46] S. Jordan and E.J. Schwabe, Worst-case performance of cellular channel
assignment policies, ACM Journal of Wireless Networks 2 (1996) 265 – 275.

[47] R.A. Leese, A unified approach to the assignment of radio channels on a
regular hexagonal grid, IEEE Trans. Vehicular Technology 46 (1997) 968 –
980.

[48] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete
Mathematics 2 (1972) 253 – 267.

[49] V.H. MacDonald, The cellular concept, The Bell System Technical Journal
58 (1979) 15 – 41.

[50] E. Malesińska, S. Piskorz and G. Weißenfels, On the chromatic number of
disk graphs, Networks 32 (1998) 13 – 22.

[51] M.V. Marathe, H. Breu, H.B. Hunt, S.S Ravi and D.J. Rosencrantz, Simple
heuristics for unit disk graphs, Networks 25 (1995) 59 – 68.

[52] M.V. Marathe, V. Radhakrishnan, H.B. Hunt and S.S Ravi, Hierarchically
specified unit disk graphs, Theoret. Comput. Sci 174 (1997) 23 – 65.

[53] T. Matsui, Approximation algorithms for maximum independent set prob-
lems and fractional coloring problems on unit disk graphs, Discrete and
Computational Geometry (Tokyo, 1998) 194 – 200, Lecture Notes in
Computer Science 1763, Springer, Berlin, 2000.

[54] C. McDiarmid, On the chromatic number of random graphs, Random
Structures and Algorithms 1 No.4 (1990) 435–442.

[55] C. McDiarmid, A doubly cyclic channel assignment problem, Discrete
Applied Mathematics 80 (1997) 263 – 268.

[56] C. McDiarmid, Counting and constraint matrices, manuscript, 1998.

[57] C. McDiarmid, Frequency-distance constraints with large distances, Discrete
Applied Mathematics 223 (2000) 227 – 251.

[58] C. McDiarmid, Channel assignment and graph imperfection, to appear as a
chapter in Perfect Graphs, J. Ramirez and B. Reed, editors, Wiley, 2001.

[59] C. McDiarmid, Random channel assignment in the plane, manuscript 2001.

[60] C. McDiarmid, On the span of a random channel assignment problem,
manuscript 2001.

[61] C. McDiarmid, On the span in channel assignment problems: bounds,
computing and counting, manuscript, 2001.

[62] C. McDiarmid and B.A. Reed, Colouring proximity graphs in the plane,
Discrete Mathematics 199 (1999) 123 – 137.

[63] C. McDiarmid and B.A. Reed, Channel assignment and weighted colouring,
Networks 36 (2000) 114 – 117.

62 McDiarmid

[64] C. McDiarmid and B.A. Reed, Channel assignment and bounded tree-width
graphs, manuscript, 2000.

[65] R.A. Murphy, P.M. Pardalos and M.G.C Resende, Frequency assignment
problems, chapter in Handbook of Combinatorial Optimization Vol 4 (1999)
(D.-Z. Dhu and P.M. Pardalos, editors).

[66] L. Narayanan and S. Shende, Static frequency assignment in cellular net-
works, Proc. 4th Colloquium on Structural Information and Communications
Complexity, July 1997.

[67] J. Pach and P.K. Agarwal, Combinatorial Geometry, Wiley, 1995.

[68] A. Paster, MSc thesis, University of Oxford, 2000.

[69] M.D. Penrose, Random Geometric Graphs, forthcoming book.

[70] V. Raghavan and J. Spinrad, Robust algorithms for restricted domains,
Proceedings of the Twelth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2001), 2001.

[71] A. Raychaudhuri, Intersection assignments, T -coloring, and powers of
graphs, PhD thesis, Department of Mathematics, Rutgers University, NJ,
1985.

[72] A. Raychaudhuri, Further results on T -coloring and frequency assignment
problems, SIAM J. Discrete Mathematics 7 (1994) 605 – 613.

[73] F.S. Roberts, T -colourings of graphs: recent results and open problems,
Discrete Math. 93 (1991) 229 – 245.

[74] C.A. Rogers, Packing and Covering, Cambridge University Press, 1964.

[75] D. Sakai, Labelling chordal graphs: distance two condition, SIAM J. Discrete
Math. 7 (1994) 133 – 140.

[76] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory, Wiley, 1997.

[77] N. Schnabel, S. Ubéda and J. Žerovnik, A note on upper bounds for the
span of the frequency planning in celular networks, manuscript, 1999.

[78] R. Schneider, Convex bodies: The Brunn - Minkowski Theory, Encyclopedia
of Mathematics and its Applications, vol. 44, Cambridge University Press,
1993.

[79] M. Shepherd, Radio Channel Assignment, DPhil thesis, University of
Oxford, 1999.

[80] G. Simonyi, Imperfection ratio and graph entropy, manuscript, 1999.

[81] D.H. Smith and S. Hurley, Bounds for the frequency assignment problem,
Discrete Mathematics 167/168 (1997) 571 – 582.

[82] D.H. Smith, S.M. Allen and S. Hurley, Lower bounds for channel assignment,
in S. Hurley and R. Leese (editors), Models and Methods for Radio Channel
Assignment, Oxford University Press, to appear.

[83] C.-E. Sundberg, Alternative cell configurations for digital mobile radio
systems, The Bell System Technical Journal 62 (1983) 2037 – 2065.

[84] B.A. Tesman, Applications of forbidden distance graphs to T -colorings,
Congressus Numerantium 74 (1990) 15 – 24.

2. Discrete Mathematics and Radio Channel Assignment 63

[85] W.J. Watkins, S. Hurley and D.H. Smith, Evaluation of models for area
coverage, Report to UK Radiocommunications Agency, Department of
Computer Science, Cardiff University, December 1998.

[86] W. Webb, The Complete Wireless Communications Professional, Artech
House Publishers, 1999.

[87] D.J.A. Welsh and G. Whittle, Arrangements, channel assignment, and
associated polynomials, Adv. in Appl. Math 23 (1999) 375 – 406.

[88] D.B. West, Introduction to Graph Theory, Prentice Hall, 1996.

[89] R.M. Whitaker, S. Hurley and D.H. Smith, Frequency assignment heuristics
for area coverage problems, Report to UK Radiocommunications Agency,
Department of Computer Science, Cardiff University, September 2000.

[90] X. Zhu, Circular chromatic number: a survey, Discrete Math. 229 (2001)
371 – 410.

This page intentionally left blank

3

On the coloration of perfect
graphs
F. Maffray

3.1 Introduction

We consider only finite graphs, without loops. Given an undirected graph
G = (V,E), a k-coloring of the vertices of G is a mapping c : V →
{1, 2, . . . , k} for which every edge xy of G has c(x) �= c(y). If c(v) = i
we say that v has color i. Those sets c−1(i) (i = 1, . . . , k) that are not
empty are called the color classes of the coloring c. Each color class is
clearly a stable set (i.e., a subset of vertices with no edge between any two
of them), hence we will frequently view a coloring as a partition into stable
sets. The graph G is called k-colorable if it admits a k-coloring, and the
chromatic number of G, denoted by χ(G), is the smallest integer k such
that G is k-colorable. We refer to [9, 16, 29] for general results on graph
theory.

A classical result [59], and indeed one of the earliest, from complexity
theory states that determining if a graph is k-colorable is an NP-complete
problem for every fixed integer k ≥ 3. (For k = 2 the problem is simply to
determine ifG is bipartite, which is an easy exercise.) For k = 3 the problem
remains NP-complete even for triangle-free graphs with maximum degree
four [71] (see also [32]). Approximation approaches to the chromatic number
also seem to be doomed; indeed, it is known [38] that, unless P=NP, there
is no polynomial-time algorithm that can find a 2χ(G)-coloring for every
graph G (see [69] for even stronger results). These complexity results show
that determining the chromatic number of a graph, or even, more modestly,
trying to color it with not too many colors, is a very hard problem. Thus one
feels that, for a class C of graphs to be such that there exists an algorithm
finding the chromatic number of every graph in C in polynomial time, it
must be that the graphs in C have a “strong structure”. There are not very
many such classes (apart from trivial ones). One of the few outstanding
classes of graphs for which the problem of the chromatic number becomes
tractable is the class of perfect graphs. This article attempts to present a

66 Maffray

survey on methods for coloring the vertices of a perfect graph. It is not
possible to review all the results, problems and questions arising in the
domain of graph coloring in a short survey paper. We prefer to refer the
interested reader the excellent book by Jensen and Toft [57]. For the specific
subject of perfect graphs, see [10, 67, 83].

3.2 Basic definitions and notation

Let G = (V,E) be an undirected graph. The neighborhood NG(v) of a
vertex v is the set of vertices in G that are adjacent to v in G; when there
is no ambiguity we will write N(v). A chordless path (resp. cycle, clique) on
k vertices is denoted by Pk (resp. Ck, Kk). A complete bipartite graph with
bipartition classes of size p and q is denoted by Kp,q. A hole is a chordless
cycle on at least four vertices. A hole is odd if it has an odd number of
vertices. An antihole is the complement of a hole. The maximum size of a
clique contained in a graph G is denoted by ω(G). The maximum size of a
stable set of G is denoted by α(G). For two vertices u, v of G, G+uv is the
graph obtained by adding the edge uv, and G/uv is the graph obtained by
identifying u, v into one vertex, adjacent to all vertices of NG(u) ∪NG(v)
(this operation is called contraction).

A graph G is perfect if the equality ω(H) = χ(H) holds for every induced
subgraph H of G. A minimal imperfect graph is not perfect but every
proper subgraph is. Berge [7, 8, 9] conjectured:

Strong Perfect Graph Conjecture [8]: Every minimal imperfect graph
is an odd hole or the complement of an odd hole.

A graph with no odd hole and no odd antihole is frequently called a
Berge graph. A weaker conjecture of Berge was proved by Lovász:

Perfect Graph Theorem [64, 65] (See also [39]): A graph is perfect if
and only if its complement is perfect.

Grötschel, Lovász and Schrijver [44] have shown that the problem of
computing ω(G) and χ(G) can be solved in polynomial time for all perfect
graphs. Their algorithm computes a certain value θ(G) which, if the graph
is perfect, is equal to χ(G). Moreover, it is possible to implement this
algorithm in such a way that a χ(G)-coloring is produced if the graph is
perfect. However, the algorithm is based on the ellipsoid method applied
to convex bodies that are not necessarily polyhedra, and it is not easy to
summarize. Thus it may be frustrating and opaque to the purely graph-
theory minded. The results presented here, on the other hand, are always
based on rather simple graph-theoretic concepts.

3. On the coloration of perfect graphs 67

3.3 Bounds on the chromatic number

Lower bounds
An easy bound is χ(G) ≥ n/α(G); this follows from the fact that a
χ(G)-coloring is a partition into χ(G) stable sets. This inequality can be
arbitrarily bad: taking a graph H with chromatic number k, and adding p
isolated vertices, we obtain a graph G with n = |V (H)| + p vertices and
with α(G) = α(H) + p. For p arbitrarily large the ratio n/α(G) tends to 1
while χ(G) = k.

Another lower bound for χ(G) is ω(G), since the vertices of any clique in
G must receive different colors. This bound too can be arbitrarily bad. To
illustrate this, Mycielski [82] proposed for every integer k ≥ 2 a graph Gk

which has chromatic number k and contains no triangle, i.e., ω(Gk) = 2.
Such graphs can be defined recursively as follows. Set G2 = K2. For k ≥ 3,
the graph Gk is obtained by taking a copy H of Gk−1, for every vertex
v ∈ H adding a vertex v∗ with an edge from v∗ to each vertex of NH(v),
and adding a vertex z with an edge from z to each ∗-vertex. It is easy to
check that Gk contains no triangle. To see that χ(Gk) = k, suppose on the
contrary that Gk is k − 1-colorable; assume that z receives color k − 1; for
each vertex v ∈ H of color k−1, assign to v the color of v∗ instead of k−1;
it is easy to check that this yields a k − 2-coloring of H, a contradiction.

Erdős [33] (see also [87]) proved that for all integers k, g there exists a
graph G with χ(G) = k and such that G contains no cycle of length strictly
less than g. This result is non-constructive and is a famous example of the
power of the Probabilistic Method developed by Erdős. Later, Lovász [63]
gave a constructive proof of the existence of such graphs.

Upper bounds
Let ∆ denote the maximum degree in a graph G. An easy observation is
that every graph G has χ(G) ≤ ∆ + 1. Indeed, take any vertex v ∈ G,
and consider a ∆ + 1-coloring of G− v; such a coloring may be assumed to
exist by induction on the size of V . Since v has at most ∆ neighbours, it is
possible to find among the colors 1, . . . ,∆ + 1 one that is not used on any
neighbour of v, and which can be assigned to v.

A famous result of Brooks [17] states that a graph satisfies χ(G) = ∆+1
if and only if either ∆ = 2 and G has a connected component that is an
odd cycle, or G has a connected component that is a K∆+1. Thus every
graph different from these two exceptional cases has χ(G) ≤ ∆. See also
Lovász [66] for an alternate proof of Brooks’s theorem. Again it is easy to
find graphs for which the difference between χ(G) and ∆ can be arbitrarily
bad, e.g., G = K1,q. Reed [85] proved that for large enough ∆, a graph
G has χ(G) ≥ ∆ if and only if G contains a K∆. Strengthenings of these
results were obtained by Molloy and Reed [81]: in particular, for given ∆,

68 Maffray

deciding if a graph ¡ith maximum degree ∆ is k-colorable is in the class P
if k ≥ ∆ − e

√
∆.

Exact value
It is possible to compute the chromatic number of a graph exactly, with
a method that may take much time but is combinatorially simple. Let
G = (V,E) be a graph. If G is a complete graph then χ(G) = |V |. If G is
not a complete graph, consider two non-adjacent vertices u, v. Any coloring
c of G has either c(u) �= c(v), and in this case c is a coloring of G + uv,
or c(u) = c(v), and in this case c is a coloring of G/uv. The converse is
also true. It follows that χ(G) = min{c(G + uv), c(G/uv)}. We can then
repeat this for the graphs G + uv and G/uv. Thus we obtain a recursive
procedure which finds the exact value of χ(G) and indeed finds a χ(G)-
coloring of G. However, the tree representing this recursive procedure may
have exponentially many nodes.

3.4 Edge coloring

Let us mention briefly the problem of coloring the edges of a graph (rather
than the vertices) in such a way that no two adjacent edges receive the
same color. Clearly, every edge-coloring of a simple graph G with maximum
degree ∆ uses at least ∆ colors. Vizing [92] proved that every simple graph
G with maximum degree ∆ can be edge-colored with at most ∆ + 1; more
generally, every multigraph with maximum degree ∆ and maximum edge
multiplicity λ can be edge-colored with at most ∆ + λ colors. Holyer [53]
proved that it is an NP-complete problem to decide if a given simple graph
can be edge-colored with ∆ colors. This problem seems to remain difficult
even for fairly small classes of graphs, see e.g., [26, 27].

The problem of coloring the edges of a graph G is equivalent to coloring
the vertices of its line-graph, which is the graph L(G) whose vertices are the
edges of G and whose edges are the pairs of adjacent edges in G. Clearly
every vertex-coloring of L(G) is an edge-coloring of G and vice-versa. As
proved by Beineke [6], line-graphs of simple graphs are exactly the graphs
that do not contain as an induced subgraph any of a list of nine forbidden
subgraphs; similarly, line-graphs of multigraphs are characterized by a list
of seven forbidden subgraphs. Thus the edge-coloring problem is just the
vertex-coloring problem for a certain subclass of graphs. Kierstead and
Schmerl [60] proved that by excluding only the claw K1,3 and the graph
K5 − e (which are among the nine forbidden subgraphs above) one obtains
a class of graphs G with χ(G) ≤ ω(G) + 1.

3. On the coloration of perfect graphs 69

3.5 Sequential Algorithms

One of the simplest kind of heuristics that can be imagined to color the
vertices of a graph G = (V,E) is the following.

Sequential Algorithm:
Input: An ordering v1 < · · · < vn of the vertices of a graph G.
Output: a coloring c of the vertices of G.
First step: give color 1 to vertex v1.
Main Step: For i := 2 to n, if some already used color does not
appear on any neighbour vj of vi with j < i, then assign to vi

any color from Ci \ Ui; else assign to vi the color 1 + maxCi.

As defined here, the Sequential Algorithm is not deterministic, because
we may have a choice for the color to be assigned at each step. To make
it deterministic, we can add a rule for the choice of an available color
(when there is a choice). Usually one chooses the smallest available integer.
This gives the so-called greedy coloring algorithm. We note that
the greedy coloring algorithm is easy to implement so as to work in time
O(|V | + |E|).

The quality of the solution produced by the greedy coloring algorithm
certainly depends on the ordering of the vertices given as input. Of course,
a lucky choice for the ordering could produce an optimal coloring. Indeed
suppose that S1, . . . , Sq are stable sets that partition V (G) with q = χ(G)
and consider the ordering obtained by putting first the vertices of S1, then
those of S2 and so on. If a kind person gives us this ordering as input, it
is easy to check that the greedy coloring along this ordering will produce
a coloring with q colors. But in general no one has a way to guess a good
ordering in polynomial time (unless P=NP) since the coloring problem is
NP-complete. Moreover, an ordering that is good for G might be bad for
some subgraphs of G.

This idea can be refined a little by choosing for the last vertex of the
ordering a vertex of small degree (hence increasing our chances that we
would not need a new color for v) [93]. Thus we may order the vertices as
v1 < · · · < vn so that d(v1) ≥ · · · ≥ d(vn) and apply the greedy algorithm
on this ordering. This implies the following bound:

χ(G) ≤ max min{i, d(vi) + 1}.

See [58, 89] for comments on the performance of this method.
Perhaps a better ordering consists in choosing for vn a vertex of minimum

degree in G, then for vn−1 a vertex of minimum degree among the vertices
of G−vn, etc (see [75, 76]). Thus, if v1 < · · · < vn is an ordering determined
by this procedure, and d′

i denotes the degree of vi in the subgraph induced
by v1, . . . , vi, we have:

χ(G) ≤ max min{i, d′
i + 1}.

70 Maffray

Consequently, if δ(G) is the minimum degree in G, we obtain:

χ(G) ≤ max{δ(H) + 1 | H is an induced subgraph of G}.

Let us denote by β(G) the value on the right-hand side of the preceding
inequality. So we have χ(G) ≤ β(G) for every graph. We note that, if
v is a vertex of minimum degree in G, i.e., d(v) = δ(G), then β(G) =
max{d(v) + 1, β(G − v)}. This suggests a simple way of computing the
value of β(G) for every graph.

Markossian, Gapsparian and Reed [74] call a graph G β-perfect if every
induced subgraph H of G satisfies χ(H) = β(H). They note that odd
cycles are β-perfect, while even cycles are not. Thus β-perfect graphs in
general are different from perfect graphs. However, they seem to show some
similarities. It was proved in [74] that every graph G such that G and G
contain no even hole C2k (k ≥ 2) is β-perfect, and that every graph in
which every even cycle has at least two chords is β-perfect. This result was
recently generalized in [28].

Perfectly orderable graphs
Chvátal [19] proposed to call perfectly orderable any graphG that admits an
ordering < such that the greedy algorithm produces an optimal coloring for
every induced subgraph H of G (with the induced ordering on H). Such an
ordering is called perfect. One of the interesting features here is that there
is a simple characterization of perfect orderings.

Theorem 3.5.1 ([19]) A linear ordering < of a graph G is perfect if and
only if there is no induced P4 abcd with edges ab, bc, cd and with a < b and
d < c.

A P4 abcd with edges ab, bc, cd and with a < b and d < c is called an ob-
struction. This theorem implies that the class of perfectly orderable graphs
is in the class NP, which was not obvious from the definition: indeed, we
only need to verify that a given ordering is such that the graph has no
obstruction. On the other hand, finding such an ordering may be hard;
in fact, the recognition of perfectly orderable graphs is an NP-complete
problem [80].

Another interesting feature is revealed in the next theorem.

Theorem 3.5.2 ([19]) Perfectly orderable graphs are perfect.

Examples of perfectly orderable graphs: Perfectly orderable graphs gen-
eralize two famous classes of perfect graphs: the triangulated graphs, and
the comparability graphs.

A triangulated graph (or chordal graph) is a graph that has no hole as
an induced subgraph. Triangulated graphs have been extensively studied

3. On the coloration of perfect graphs 71

since the last 1950s (see [42]), and we can only briefly summarize some
basic results about their structure. A simplicial vertex is a vertex whose
neighbourhood induces a complete subgraph.

Theorem 3.5.3 (see [9, 42]) Let G be a triangulated graph that is not a
clique. Then G admits at least two non-adjacent simplicial vertices.

This theorem yields a method to find a perfect ordering for a triangulated
graph G. Let vn be a simplicial vertex of G, then vn−1 be a simplicial
vertex of G − vn, etc. Let us call the ordering v1 < · · · < vn a simplicial
elimination ordering for G. It is easy to check that a simplicial elimination
ordering has no obstruction. Thus, and by Theorem 3.5.1, any simplicial
elimination ordering is perfect. In fact, using the greedy algorithm on a sim-
plicial elimination ordering is still the most efficient way to color optimally
the vertices of a triangulated graph.

A comparability graph is a graph that admits a transitive orientation of
its edges, that is, an acyclic orientation such that whenever �uv and �vw are
two arcs then u and w are adjacent and �uw is an arc of the orientation.
Comparability graphs too have been the object of much study, starting
with the seminal work of Ghouila-Houri [40], Gilmore and Hoffman [41] and
Gallai [37, 73]. Note that even if a transitive orientation of a comparability
graph G is not given a priori, it is nonetheless possible to find one in linear
time [77]. Given such an orientation, consider a topological ordering < that
is compatible with the orientation (i.e., if �uv is an arc then u < v); since the
orientation is acyclic it is always possible to find such an ordering. Then
it is a routine matter to check that any such ordering has no obstruction.
Thus, and by Theorem 3.5.1, such an ordering is perfect. Again, using the
greedy algorithm on such an ordering is still the most efficient way to color
optimally the vertices of a comparability graph.

Apart from triangulated graphs and comparability graphs, there are ac-
tually many classes of perfect graphs that were proved to be perfectly
orderable. It is not possible to mention all of them here, as they are numer-
ous and many have lengthy technical definitions. We refer the interested
reader to [52] for the most recent recent and complete survey, and to [51]
for algorithms on perfectly orderable graphs with vertex weights.

3.6 Sequential coloring with bichromatic exchange

After looking at the greedy (or ‘sequential’) coloring algorithm, one may
have the idea, at the i-th step, of trying to improve the current coloring on
the vertices v1, . . . , vi−1 before making a choice of a color for the vertex vi.
Hopefully the improvement will reduce the chance of having to use a new
color for vi.

72 Maffray

One way to modify a coloring c of a graph H is as follows. Consider two
color classes S, T of c. The subgraph H[S∪T] is bipartite, and it may have
several connected components. If this subgraph has several connected com-
ponents, then, by swapping (‘exchanging’) the colors along one component,
we obtain a coloring which is not the same as the original one and might
be “better” for later purposes. This is called bichromatic exchange. Given a
graph G, a vertex v of G and a coloring c of G−v, let us say that two color
classes S, T of c are indifferent for v if no connected component of GS,T

contains a neighbor of v in S and a neighbor of v in T . This is equivalent
to saying that the subgraph induced by S ∪ T ∪ {v} is bipartite. Now we
can define an improved form of sequential algorithm, involving bichromatic
exchanges, called Sequential with Bichromatic Exchange (SBX).

SBX Algorithm:
Input: An ordering v1 < · · · < vn of the vertices of a graph G.
Output: A coloring of the vertices of G.
First assign color 1 to v1.
Main Step: For i := 2 to n, if some already used color does
not appear on any neighbour vj of vi with j < i, then give
this color to vi; else, if there are two colors S and T that are
indifferent for vi, then perform the S, T -bichromatic exchanges
on the components of GS,T that contain the neighbours of vi

colored by S, and give the color S to vi; else give a new color
to vi.

Historically, this idea was exploited early in the proof of Brooks’s theorem
[17] that every connected graph G different from an odd cycle or a complete
graph has χ(G) ≤ ∆; indeed, this proof is constructive and uses bichromatic
exchanges to find a ∆-coloring of such a graph G.

We can note that the proof of Vizing’s theorem [92] that every simple
graph G can be edge-colored with at most ∆+1 colors also uses bichromatic
exchanges on the colored edges; looking at the line-graph of G, one sees
that these are exactly bichromatic exchanges on the vertices of L(G). Hence
we have another application of bichromatic exchanges.

This idea was also exploited by Tucker [90] for coloring the vertices
of diamond-free perfect graphs. The diamond is the graph K4 − e, with
four vertices and five edges (see Figure 3.1). Tucker [90] proved that in
a diamond-free graph G with no odd hole, if the edges that do not lie
in a triangle are removed (thus obtaining a graph G′ with no odd hole),
there exists in G′ a vertex v whose neighbourhood induces at most two
cliques with no edges between them. Tucker [90] then proved that, given
any ω(G′ − v) coloring c of G′ − v, either ω(G′) = ω(G′ − v) + 1 (and we
use a new color for v), or c has two color classes that are indifferent for v,
thus ω(G′) = ω(G′ − v) and G′ can be ω(G′)-colored (as in the main step
of Algorithm SBX). Finally, adding back the edges that were removed, the

3. On the coloration of perfect graphs 73

ω(G′) coloring of G′ can be turned into an ω(G)-coloring of G using again
only bichromatic exchanges.

Another example of coloring the vertices of a graph sequentially and
using bichromatic exchanges is the algorithm of Hsu and Nemhauser [56] for
coloring any claw-free perfect graphG with ω(G) colours. In that algorithm,
given a vertex v and an optimal coloring c of G−v, not just one but several
bichromatic exchanges may be necessary to “improve” the coloring c.

Figure 3.1. bull, claw, diamond

Just as with the greedy algorithm, every graph admits an ordering such
that any execution of algorithm SBX on this ordering provides an optimal
coloring. Call an ordering of the vertices of a graph SBX-perfect if for every
induced ordered subgraph the algorithm SBX produces an optimal coloring.
Likewise call a graph SBX-perfect if it admits an SBX-perfect ordering. Un-
like Chvátal’s perfectly orderable graphs, the SBX-perfect graphs are not
all perfect: for example every odd hole is in this class (every ordering of
the vertices of an odd hole is SBX-perfect). It is not known whether the
recognition problem for SBX-perfect graphs is in the class P, or even in NP.
The definition of SBX-perfect graphs was stated in [72] (extending results
from [70]), where the following result was established. Call a vertex v of a
graph G excellent if it does not lie in an odd hole of G and its neighborhood
contains no induced P4, 3K2 or P3 +K2. An ordering v1 < v2 < · · · < vn of
the vertices of a graph G is then called excellent if, for every i = 1, 2, . . . , n,
vertex vi is excellent in the subgraph of G induced by v1, v2, . . . , vi. It was
proved in [72] that Algorithm SBX applied along an excellent ordering of
the vertices of a graphs produces a coloring with ω(G) colors. Consequently
(noting that an excellent ordering of a graph remains excellent in each in-
duced ordered subgraph) the graphs that admit an excellent ordering are
perfect. It can be verified that the class of graphs having an excellent order-
ing contains the bipartite graphs, the triangulated graphs (any simplicial
vertex is excellent), and the graphs that contain no diamond and no odd
hole. There are perfect graphs such that neither they nor their comple-
ments have excellent vertices, for example the self-complementary graph
obtained from a P4 by substituting each vertex with a P4. This graph is
actually perfectly orderable, hence the class of perfectly orderable graphs
and the complementary class are different and incomparable with the class
of excellent graphs.

74 Maffray

3.7 Sequential coloring with trichromatic exchange

The following sequential method for coloring some perfect graphs was pro-
posed in [1, 3], based on an idea of Hacène Aı̈t Haddadène. We recall for now
that Tucker [91] found a combinatorial algorithm for coloring every K4-free
perfect graph G with ω(G) colors, in time O(|V |3). We will describe this
algorithm in the next section.

Let v be a vertex of a perfect graph G. Assume that G − v admits a
coloring c using ω(G) ≥ 3 colors, with color classes S1, . . . , Sω(G). Suppose
that there exist three distinct colors i, j, k such that the subgraph H in-
duced by Si∪Sj ∪Sk ∪{v} contains no K4. Thus this subgraph is a K4-free
perfect graph, and so we can apply Tucker’s algorithm to H in order to
color it with three colors. Hence, keeping the other ω(G)− 3 colors, we get
an ω(G)-coloring of G. If a vertex v has the property that for every coloring
c of G− v there are three color classes whose union with v form a K4-free
subgraph, one can call v a Tucker vertex. It may then be interesting to
find classes of graphs that always have a Tucker vertex. This question was
investigated in [1, 2, 3, 22, 43] for several classes of graphs; as their defi-
nitions are quite technical, we refer the interested reader directly to these
articles.

3.8 Coloring by contraction

As observed at the beginning, if u, v are two non-adjacent vertices in a
graph G, then any coloring of G/uv is a coloring of G, simply by assigining
to u and v the color of the contracted vertex uv in G/uv, and leaving the
same color for all other vertices. This procedure may be called “decontract-
ing” the coloring; clearly it is a simple and (timewise) efficient procedure.
However, the choice of the contracted pair is crucial: for example, if G is a
path P4 uabv, then χ(G) = 2 while χ(G/uv) = 3; in this case, it was not a
good idea to contract the pair u, v. In a general graph G, it will not be pos-
sible (unless P=NP) to guess a pair of non-adjacent vertices u, v such that
χ(G) = χ(G/uv), for otherwise we would be able to find a χ(G)-coloring
of G after at most n−1 contractions. Note that guessing such a pair u, v is
equivalent to assuming that there is an optimal coloring in which u, v have
the same color. As it turns out, the domain of perfect graphs offers more
hope in this direction than general graphs. This section will illustrate this
point. The main definition here is the following.

Definition 3.8.1 (Even pair [79]) Two non-adjacent vertices x, y in a
graph G form an even pair if every induced path between them has an even
number of edges.

3. On the coloration of perfect graphs 75

Before exploring the notion of even pairs, let us mention one of the most
astute applications of the method of coloring by contraction for perfect
graphs. Indeed Tucker [91] gave a polynomial-time algorithm that colors
every K4-free perfect graph G with 3 colors, as follows. If G is diamond-
free, use the other algorithm due to Tucker [90] and mentioned in Section
3.6. If G contains a diamond, then observe the two vertices of degree two in
the diamond must necessarily have the same color in every 3-coloring of G;
so it is natural to contract them. Repeating this for every diamond, we end
up with a diamond-free graph G′. Unfortunately, the graph G′ might not
be perfect, as it could contain some odd hole. (We will see below that the
contraction of even pairs ensure that no odd hole is created, but the vertices
that are contracted by Tucker are not necessarily even pairs.) However,
Tucker found in this specific case a way around the problem caused by the
appearance of odd holes, by decomposing the graph, see [91].

General graph-coloring heuristics based on the contraction of non-
adjacent vertices have been proposed by Dutton and Brigham [31] and
by Hertz [48]. Dutton and Brigham choose at each step a pair x, y that has
the largest number of common neighbours among all non-adjacent pairs in
G. Hertz fixes a vertex x and, as long as x has non-neighbours, picks a non-
neighbour y of x that has the most common neighbours with x. The vertices
x, y are then contracted and the procedure is iterated until a clique K is
obtained. One can get a |K|-coloring of G by proceeding backwards along
the contraction sequence. See [31, 48] for comments on the performance of
these heuristics.

Now we return to the study of even pairs. The following results motivate
our interest in even pairs and the contraction operation.

Lemma 3.8.1 Let G be a graph that contains an even pair {x, y}. Then,

1. ω(G/xy) = ω(G);

2. χ(G) = χ(G/xy).

3. If G is perfect then G/xy is perfect.

4. If G contains no odd hole then G/xy contains no odd hole;

5. If G contains no antihole then G/xy contains no antihole different
from C6.

6. If G contains no odd antihole then G/xy contains no odd antihole;

7. If G is a Berge graph then G/xy is a Berge graph.

More precisely, it can be prove that, whenever x, y is an even pair in a
graph G, if Q is a largest clique of G/xy, then either Q does not contain
vertex xy and is a largest clique of G, or Q contains xy and then one of
Q∪ {x}, Q∪ {y} is a largest clique of G. In parallel, if c is a χ(G) coloring
of G, then, using bichromatic interchange and the fact that x, y is an even

76 Maffray

pair, one can find a χ(G)-coloring c′ of G in which x, y have the same color
(hence c′ is a coloring of G/xy). A precise proof of these results can be
found in [36, 55].

Lemma 3.8.2 (The Even Pair Lemma [14, 79]) No minimal imper-
fect graph contains an even pair.

Meyniel [79] defined the following two classes of graphs. A graph G is a
strict quasi-parity (SQP) graph if every induced subgraph of G either has
an even pair or is a clique. A graph G is a quasi-parity (QP) graph if every
induced subgraph of G on at least two vertices either has an even pair or
its complement has an even pair. The Even Pair Lemma implies that every
strict quasi-parity graph is perfect; the Even Pair Lemma and Lovász’s
Perfect Graph Theorem implies that every quasi-parity graph is perfect.
These two classes are very interesting, but they are somewhat out of the
scope of this article. We refer the interested reader to [34, 35] for more
information on strict quasi-parity graphs and quasi-parity graphs.

Theorem 3.8.1 ([15]) It is co-NP-complete to decide whether a graph
admits an even pair.

Despite this theorem, since contracting an even pair of vertices in a
perfect graph G is a good operation from the point of view of coloring, we
may want to iterate it as long as possible. Hopefully the graph G′ we obtain
at the end of such a sequence of even-pair contractions will be easy to color
(for some other reason), and thus, going backward along the sequence and
decontracting the coloring we will obtain an optimal coloring of G. The
easiest graphs to color are complete graphs, and this leads to the following
definitions.

Definition 3.8.2 ([13]) A graph G is even-contractile if there exists a
sequence G0, G1, . . . , Gk of graphs such that G0 = G, Gk is a clique, and,
for i ≤ k − 1, Gi+1 is obtained from Gi by contracting an even pair of Gi.
A graph G is perfectly contractile if every induced subgraph of G is even
contractile.

Facts 1 and 2 imply that every perfectly contractile graph is perfect. Sev-
eral classical families of perfect graphs are perfectly contractile, especially
weakly triangulated graphs, Meyniel graphs and perfectly orderable graphs.

As an illustration, let G0, . . . , Gk be the sequence of graphs as in Fig-
ure 3.2. For i ≤ k − 1, Gi+1 is obtained from Gi by contracting the even
pair {xi, yi}. Since Gk is a clique, we have an optimal coloring and a largest
clique of Gk with no difficulty. We can then work backwards and decontract
the coloring to find a largest clique and an optimal coloring of G0. We note
that the size of the largest clique in G0 is equal to its chromatic number.

3. On the coloration of perfect graphs 77

Figure 3.2. A sequence of even-pair contractions

3.8.1 Perfectly orderable graphs
It was proved by Hertz and de Werra [49] that every non-complete perfectly
orderable graph has an even pair whose contraction yields a new perfectly
orderable graph. Thus perfectly orderable graphs are perfectly contractile.
However, the proof of [49] uses a given perfect ordering in order to find
such an even pair. But it is NP-complete to determine if a graph is per-
fectly orderable [80]. Thus, if an oracle tells us that a graph G is perfectly
orderable but does not show a perfect ordering of G, we can probably not
find such an ordering. It is still possible to determine which pairs of ver-
tices form even pairs in polynomial time in a perfectly orderable graph [4],
but after contracting an arbitrary even pair in G, we do not know and
can probably not check whether the resulting graph is perfectly orderable.
There may be a sophisticated way of finding quickly an even pair whose
contraction yields another perfectly orderable graph, but this problem is
open and seems hard.

3.8.2 Weakly triangulated graphs
A graph is weakly triangulated if it contains no hole or antihole of length at
least five. These graphs generalize triangulated graphs and their comple-
ments. Hayward [45] proved that all weakly triangulated graphs are perfect.
Two vertices x, y in a graph G form a 2-pair if every chordless path be-
tween them has length two. Hayward, Hoàng and Maffray [46] proved that
every weakly triangulated graph which is not a clique contains a 2-pair.
Moreover, the contraction of any 2-pair in a weakly triangulated graph
yields a weakly triangulated graph. Thus, every weakly triangulated graph
is perfectly contractile.

A nice feature of 2-pairs is that they are not hard to find; more precisely,
it is easy to check that two non-adjacent vertices x, y in a graph G form a
2-pair if and only if x and y lie in different connected components of the
subgraph G−N(x)∩N(y), a condition which can be tested in time O(m+n)
for a given pair. Thus, we can find a 2-pair in a graph (if it contains any)

78 Maffray

in O(n2m) time. Consequently, for every weakly triangulated graph G we
can find, in O(n3m) time, a sequence of 2-pair contractions that reduces
G to a clique, and we can use such a sequence to find an optimal coloring
and largest clique in G. See [46] for the details and for O(n3m) algorithms
that solve the maximum clique and minimum coloring problems on weakly
triangulated graphs, and also solve the weighted versions of these optimiza-
tion problems in O(n4m) time. Later, Arikati and Pandu Rangan [5] have
developed an O(nm) algorithm to find a 2-pair (if any) in a graph, thus
entailing a speedup in the optimization algorithms. Spinrad and Sritharan
[88] further improved on the complexity of the weighted version of the four
optimization problems.

3.8.3 Meyniel graphs

Henry Meyniel studied the graphs in which every odd cycle of length five
or more has at least two chords, and he proved in [78] that they graphs
are perfect. It has then become usual to call them Meyniel graphs. Later,
he showed that every such graph is either a clique or contains an even pair
[79].

Using even-pair contractions to color Meyniel graphs could be a prob-
lem, as there are non-complete Meyniel graphs which do not contain any
even pair whose contraction yields a Meyniel graph: consider the graph
obtained by substituting every vertex in a C6 by a pair of adjacent vertices
(this example is due to Sarkossian, and Hougardy; see also [12]). Hertz [47]
proposed to call a graph G quasi-Meyniel if it contains no odd hole and
there exists a vertex t of G such that every edge which is the only chord
of some odd cycle is incident with t (any such vertex is called a tip of G).
Note that every Meyniel graph is quasi-Meyniel. Hertz [47] proved that
every non-complete quasi-Meyniel graph contains an even pair whose con-
traction yields a quasi-Meyniel graph. More precisely, Hertz proved that if
t is a tip of a quasi-Meyniel graph G and t is not adjacent to every other
vertex, and if u is a non-neighbour of t with the most common neighbours
with t, then t, u form an even pair in G, G/tu is quasi-Meyniel, and the
contracted vertex tu is a tip of G/tu.

It follows that every non-complete quasi-Meyniel graph has an even pair
whose contraction yields a quasi-Meyniel graph, and that all quasi-Meyniel
graphs are perfectly contractile. We obtain an O(nm) algorithm for the
maximum clique and minimum coloring problems on Meyniel graphs. This
is the fastest way to color Meyniel graphs.

There are several other classes of graphs that might be perfectly contrac-
tile, in particular strongly perfect graphs [11], alternately orientable graphs
[50], and graphs in the class Bip* [20]. See [34, 35] for more details.

3. On the coloration of perfect graphs 79

3.8.4 Structure of perfectly contractile graphs
It is easy to see that antiholes and odd holes are not perfectly contractile,
as they have no even pair. A refinement of C6 is any graph that can be
obtained from a C6 by subdividing the edges that do not lie in a triangle.
An odd refinement of C6 is a refinement of C6 in which each of the three
subdivided paths has odd length. Everett and Reed (see [34, 35]) have
conjectured that a graph is perfectly contractile if and only if it contains
no antiholes, no odd holes and no odd refinement of C6. This conjecture on
the charaterization of perfectly contractile graphs is still open. It has been
verified for a few classes, in particular planar graphs [62], bull-free graphs
[24], and claw-free graphs [61].

3.9 Other methods

The preceeding sections gave examples of classes of (usually perfect) graphs
that can be optimally colored using either the sequential method, or the
method by contraction, or a combination of the two (e.g., for K4-free
graphs). Here we show some other methods.

Coloring the vertices of a co-comparability graph G is equivalent to par-
titioning the vertices of its complement G into cliques. Given a transitive
orientation of G, every clique is a directed paths in this transitive orienta-
tion. Build a graph B as follows: replace each vertex x of G by two vertices,
a “source” x+ and a “sink” x−, so that x is replaced by x+ in all incoming
arcs to x and by x− in all outgoing arcs from x. Clearly B is bipartite, and
it is not had to check that a partition of G into directed paths corresponds
to a matching in B. Thus our initial problem of finding an optimal coloring
for G is reduced to finding a maximum matching in a bipartite graph B, a
well-solved problem [68]. Note that this method also applies in the special
when G is the complement of a bipartite graph; in this case we simply have
B = G. See also [18] and [51] for the weighted version of these problems.

Recently, Roussel and Rusu [86] gave an O(n2) algorithm which colors
Meyniel graphs without using even pairs. This novel method is based on a
Lexicographic Breadth-First Search of the graph. With every vertex a label
is associated (the label is a word carrying information on the neighbours of
the vertex and on the colors). At each step, the next vertex to color as well
as the color to assign to this vertex is determined by an examination of the
labels. Thus this method could be considered as a sequential method with
a sophisticated rule of choice, except that the ordering is not given all at
once but is determined along the way.

De Figueiredo and Maffray [23] give a polynomial-time algorithm to color
bull-free perfect graphs. The algorithm works by decomposing the graph
into pieces, along a decomposition tree that has a linear number of nodes.
The leaves of the tree are graphs that are either comparability graphs or

80 Maffray

co-comparability graphs or weakly triangulated graphs, and hence can be
colored with the methods above. It is then shown how to combine color-
ing of the children of a node of the tree into a coloring of the node. The
determination of this decomposition tree uses many results from [21, 24].

References

[1] H. Aı̈t Haddadène, S. Gravier. On weakly diamond-free Berge graphs. Disc.
Math. 159 (1996), 237–240.

[2] H. Aı̈t Haddadène, S. Gravier, F. Maffray. An Algorithm for coloring some
perfect graphs. Disc. Math. 183 (1998), 1–16.

[3] H. Aı̈t Haddadène, F. Maffray. Coloring degenerate perfect graphs. Disc.
Math. 163 (1997), 211–215.

[4] S.R. Arikati, U.N. Peled. A polynomial algorithm for the parity path problem
on perfectly orientable graphs. Disc. App. Math. 65 (1996), 5–20.

[5] S.R. Arikati, C. Pandu Rangan. An efficient algorithm for finding a two-pair,
and its applications. Disc. App. Math. 31 (1991), 71–74.

[6] L.W. Beineke.Characterizations of derived graphs.J. Comb. Th. 9 (1970),
129–135.

[7] C. Berge, Les problèmes de coloration en théorie des graphes. Publ. Inst.
Stat. Univ. Paris 9 (1960), 123–160.

[8] C. Berge.Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise
starr sind (Zusammenfassung).Wiss. Z. Martin Luther Univ. Math.-Natur.
Reihe, 10 (1961), 114–115.

[9] C. Berge.Graphs.North-Holland, Amsterdam/New York, 1985.
[10] C. Berge, V. Chvátal (editors). Topics on Perfect Graphs. Ann. Disc. Math.

21 (1984), North Holland, Amsterdam.
[11] C. Berge, P. Duchet. Strongly perfect graphs. In Topics on Perfect Graphs,

C. Berge and V. Chvátal, editors, Ann. Disc. Math. 21 (1984), 57–62, North
Holland, Amsterdam.

[12] M.E. Bertschi. La colorabilité unique dans les graphes parfaits, PhD thesis,
Math. Institute, University of Lausanne, Switzerland, 1988.

[13] M. E. Bertschi, Perfectly contractile graphs. J. Comb. Th. B 50 (1990),
222–230.

[14] M. E. Bertschi, B.A. Reed. A note on even pairs. Disc. Math. 65 (1987),
317–318.

[15] D. Bienstock, On the complexity of testing for odd holes and odd induced
paths. Disc. Math. 90 (1991), 85–92.

[16] B. Bollobás. Modern Graph Theory. Grad. Texts in Math. 184, Springer,
1998.

[17] R.L. Brooks.On colouring the nodes of a network.Proc. Cambridge Phil. Soc.
37(1941), 194–197.

[18] K. Cameron.Antichain sequences.Order, 2 (1985), 249–255.

3. On the coloration of perfect graphs 81

[19] V. Chvátal, Perfectly ordered graphs, In Topics on Perfect Graphs, C. Berge
and V. Chvátal, editors, Ann. Disc. Math. 21 (1984), 63–68, North Holland,
Amsterdam.

[20] V. Chvátal, Star cutsets. J. Comb. Th. B 39 (1985), 189–199.

[21] V. Chvátal, N. Sbihi. Bull-free Berge graphs are perfect. Graphs and Combin.
3 (1987), 127–139.

[22] C.M.H. de Figueiredo, S. Gravier, C. Linhares Sales. On Tucker’s proof of
the Strong Perfect Graph Conjecture for K4 − e-free graphs. To appear in
Disc. Math.

[23] C.M.H. de Figueiredo, F. Maffray. Optimizing bull-free perfect graphs.
Manuscript, Universidade Federal do Rio de Janeiro, Brazil, 1998. To appear
in Graphs and Combinatorics.

[24] C.M.H. de Figueiredo, F. Maffray, O. Porto. On the structure of bull-free
perfect graphs. Graphs and Combin. 13 (1997), 31–55.

[25] C.M.H. de Figueiredo, F. Maffray, O. Porto. On the structure of bull-free
perfect graphs, 2: the weakly triangulated case. RUTCOR Research Report
45-94, Rutgers University, 1994. To appear in Graphs and Combinatorics.

[26] C.M.H. de Figueiredo, J. Meidanis, C. Mello.On edge-colouring indifference
graphs.Theor. Comp. Sci. 181 (1997), 91–106.

[27] C.M.H. de Figueiredo, J. Meidanis, C. Mello.Local conditions for edge-
coloring.J. Comb. Math. and Comb. Comp. 32 (2000), 79–91.

[28] C.M.H. de Figueiredo, K. Vušković.A class of beta-perfect graphs.Disc.
Math. 216 (2000), 169-193.

[29] R. Diestel. Graph Theory. Grad. Texts in Math. 173, Springer, 1998.

[30] G.A. Dirac.On rigid circuit graphs.Abh. Math. Sem. Univ. Hamburg, 25
(1961), 71–76.

[31] R.D. Dutton, R.C. Brigham. A new graph coloring algorithm. Computer
Journal 24 (1981), 85-86.

[32] Th. Emden-Weinert, S. Hougardy, B. Kreuter. Uniquely colourable graphs
and the hardness of colouring graphs of large girth. Comb., Prob. & Comp.
7 (1998), 375–386.

[33] P. Erdős. Graph theory and probability. Canad. J. Math. 11 (1959), 34–38.

[34] H. Everett, C.M.H. de Figueiredo, C. Linhares-Sales, F. Maffray, O. Porto,
B.A. Reed. Path parity and perfection. Disc. Math. 165/166 (1997), 223–242.

[35] H. Everett, C.M.H. de Figueiredo, C. Linhares-Sales, F. Maffray, O. Porto,
B.A. Reed.Even pairs. To appear in Perfect Graphs, J. L. Ramı́rezAlfonśın
and B.A. Reed, ed., John Wiley and Sons, 2001.

[36] J. Fonlupt, J.P. Uhry. Transformations which preserve perfectness and h-
perfectness of graphs. Ann. Disc. Math. 16 (1982), 83–85.

[37] T. Gallai.Transitiv orientierbare Graphen.Acta Math. Acad. Sci. Hungar. 18
(1967), 25–66.

[38] M. Garey, D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, San Francisco (1979).

82 Maffray

[39] G.S. Gasparian. Minimal imperfect graphs: a simple approach. Combinator-
ica 16 (1996), 209–212.

[40] A. Ghouila-Houri. Caractérisation des graphes non orientés dont on peut
orienter les arêtes de manière à obtenir le graphe d’une relation d’ordre.
C.R. Acad. Sci. Paris 254 (1962), 1370–1371.

[41] P.C. Gilmore, A.J. Hoffman. A characterization of comparability graphs and
of interval graphs. Canadian J. Math. 16 (1964), 539–548.

[42] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York (1980).

[43] S. Gravier. On Tucker vertices of graphs. Disc. Math. 203 (1999), 121–131.

[44] M. Grötschel, L. Lovász, A. Schrijver. Polynomial algorithms for perfect
graphs. In Topics on Perfect Graphs, C. Berge and V. Chvátal, editors,
Ann. Disc. Math. 21 (1984), 325–356, North Holland, Amsterdam.

[45] R. Hayward, Weakly triangulated graphs. J.Comb. Th. B 39 (1985), 200–208.

[46] R. Hayward, C .T. Hoàng, F. Maffray. Optimizing weakly triangulated
graphs. Graphs and Combin., 5 (1989), 339-349. Erratum in vol. 6 (1990),
33–35.

[47] A. Hertz, A fast algorithm for coloring Meyniel graphs. J. Comb. Th. B 50
(1990), 231–240.

[48] A. Hertz, COSINE, a new graph coloring algorithm. Operations Research
Letters 10 (1991), 411–415.

[49] A. Hertz, D. de Werra. Perfectly orderable graphs are quasi-parity graphs:
a short proof. Disc. Math. 68 (1988), 111–113.

[50] C.T. Hoàng. Alternating orientation and alternating coloration of perfect
graphs. J. Comb. Th. B 42 (1987), 264–273.

[51] C.T. Hoàng. Algorithms for minimum weighted coloring of perfectly ordered,
comparability, triangulated and clique-separable graphs. Disc. Appl. Math.
55 (1994), 133–143.

[52] C.T. Hoàng.Perfectly orderable graphs.To appear in Perfect Graphs, J.L.
Ramı́rez-Alfonśın and B.A. Reed, ed., John Wiley and Sons, 2001.

[53] I. Holyer.The NP-completeness of edge-coloring.SIAM J. Computing 10
(1981), 718–720.

[54] S. Hougardy. Perfekte Graphen. PhD thesis, Institut für Ökonometrie und
Operations Research, Rheinische Friedrich Wilhelms Universität, Bonn,
Germany, 1991.

[55] W. L. Hsu. Decomposition of perfect graphs. J. Comb. Th. B 43 (1987),
70–94.

[56] W.L. Hsu, G.L. Nemhauser. Algorithms for maximum weighted cliques, min-
imum weighted clique covers, and minimum colourings of claw-free perfect
graphs. In Topics on perfect graphs, C. Berge, and V. Chvátal ed., Ann.
Disc. Maths 21, North-Holland, Amsterdam, 1984.

[57] T.R. Jensen, B. Toft. Graph Coloring Problems. Wiley-Interscience Series in
Disc. Math. and Optimization, 1995.

3. On the coloration of perfect graphs 83

[58] D.S. Johnson. Worts case behavior of graph coloring algorithms. Proc. 5th
Southeastern Conf. on Comb., Graph Th. & Comput., Utilitas Mathematica
(Winnipeg, 1979), 513–527.

[59] R.M. Karp.Reducibility among combinatorial problems.In R.E. Miller and
J.W. Thatcher, editors, Complexity of computer computations, pages 85–104.
Plenum Press, New York, 1972.

[60] H. Kierstead, J.H. Schmerl. The chromatic number of graphs which induce
neither K1,3 nor K5 − e. Disc. Math. 58 (1986) 253–262.

[61] C. Linhares Sales, F. Maffray. Even pairs in claw-free perfect graphs. J.
Comb. Th. B 74 (1998), 169–191.

[62] C. Linhares Sales, F. Maffray, B.A. Reed. On planar perfectly contractile
graphs. Graphs and Combin. 13 (1997), 167–187.

[63] L. Lovász. On chromatic number of graphs and set-systems. Acta Math.
Hung. 19 (1968), 59–67.

[64] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Disc.
Math. 2 (1972), 253–267.

[65] L. Lovász.A characterization of perfect graphs.J. Comb. Th. B, 13 (1972),
95–98.

[66] L. Lovász.Three short proofs in Graph Theory.J. Comb. Th. B 19 (1975),
269–271.

[67] L. Lovász.Perfect Graphs.In Selected Topics in Graph Theory 2, L.W.
Beineke and R.J. Wilson ed., Academic Press, 1983, 55–87.

[68] L. Lovász, M.D. Plummer.Matching Theory.Annals of Disc. Maths 29,
North-Holland, 1986.

[69] C. Lund, M. Yannakakis. On the hardness of approximating minimization
problems. J. Assoc. Comp. Mach. 41 (1994), 960–981.

[70] F. Maffray, O. Porto, M. Preissmann.A generalization of simplicial elimina-
tion orderings.J. Graph Th., 23 (1996), 203–208.

[71] F. Maffray, M. Preissmann.On the NP-completeness of the k-colorability
problem for triangle-free graphs.Disc. Math. 162 (1996), 313–317.

[72] F. Maffray, M. Preissmann.Sequential colorings and perfect graphs.Disc.
Appl. Math. 94 (1999), 287–296.

[73] F. Maffray, M. Preissmann.A translation of Tibor Gallai’s article ‘Transitiv
orientierbare Graphen’.To appear in Perfect Graphs, J.L. Ramı́rez-Alfonśın
and B.A. Reed, ed., John Wiley and Sons, 2001.

[74] S.E. Markossian, G.S. Gasparian, B.A. Reed.β-perfect graphs.J. Comb. Th.
B 67 (1996), 1–11.

[75] D.W. Matula. A min-max theorem with application to graph coloring. SIAM
Rev. 10 (1968), 481–482.

[76] D.W. Matula, L.L. Beck. Smallest last ordering and clustering and graph
coloring algorithms. J. Assoc. Comp. Mach. 30 (1983), 417–427.

[77] R.M. McConnell, J.P. Spinrad.Linear-time modular decomposition and
efficient transitive orientation of undirected graphs.Proc. 7th Annual
ACM-SIAM Symp. Disc. Algorithms. SIAM, Philadelphia, 1997.

84 Maffray

[78] H. Meyniel. The graphs whose odd cycles have at least two chords. In Topics
on Perfect Graphs, C. Berge and V. Chvátal, editors, Ann. Disc. Math. 21
(1984), 115–120, North-Holland, Amsterdam.

[79] H. Meyniel. A new property of critical imperfect graphs and some
consequences. European J. Comb. 8 (1987), 313–316.

[80] M. Middendorf, F. Pfeiffer. On the complexity of recognizing perfectly
orderable graphs. Disc. Math. 80 (1990), 327–333.

[81] M. Molloy, B.A. Reed. Colouring graphs whose chromatic number is near
their maximum degree. Lecture Notes in Comp. Sci., vol. 1380 (Proc.
LATIN’98 Conf.), 216–225, 1998.

[82] J. Mycielski.Sur le coloriage des graphes.Colloq. Math. 3 (1955), 161–162.

[83] J.L. Ramı́rez-Alfonśın, B.A. Reed (editors). Perfect Graphs. John Wiley and
Sons, 2001.

[84] B.A. Reed. Problem session on parity problems (Public communication).
DIMACS Workshop on Perfect Graphs, Princeton University, New Jersey,
1993.

[85] B.A. Reed.A strengthening of Brooks’s theorem.J. Comb. Th. B 76 (1999),
136–149.

[86] F. Roussel, I. Rusu. An O(n2) algorithm to color Meyniel graphs.
Manuscript, LIFO, University of Orléans, France, 1998.

[87] J. Spencer. Ten Lectures on the Probabilistic Method. CMBS-NSF Region.
Conf. Ser. in Appl. Math., SIAM, Philadelphia, 1994.

[88] J. Spinrad, R. Sritharan. Algorithms for weakly triangulated graphs. Disc.
Appl. Math. 59 (1995), 181–191.

[89] M.M. Syslo. Sequential coloring versus Welsh-Powell bound. Disc. Math. 74
(1989), 241–243.

[90] A. Tucker. Coloring perfect (K4 − e)-free graphs. J. Comb. Th. B 42 (1987),
313–318.

[91] A. Tucker. A reduction procedure for colouring perfect K4-free graphs. J.
Comb. Th. B 43 (1987), 151-172.

[92] V.G. Vizing. On an estimate of the chromatic class of a p-graph (in Russian).
Diskret. Analiz. 3 (1964), 23–30.

[93] D.J.A. Welsh, M.B. Powell. An upper bound on the chromatic number of a
graph and its applications to timetabling problems. Computer J. 10 (1967),
85–87.

4

Algorithmic Aspects of Tree
Width
B.A. Reed

4.1 Dividing and Conquering

Divide and conquer is a technique which is effective when preparing military
campaigns, planning political strategy, and manipulating your parents. So, it is
not too surprising that it also has an important role to play in algorithmic graph
theory.

In this article, we present the rudiments of the theory of tree width and bram-
bles, which can be viewed as the theory of the restriction of a “divide and conquer”
approach to graph theory. From a different point of view, this theory is a new
way of looking at connectivity in graphs. In discussing it, we assume the reader
is familiar with the classical notions of connectivity.

To begin we present three examples of the use of the divide and conquer
approach for constructing algorithms to solve optimization problems on graphs.

4.1.1 Colouring, Clique Cutsets, and Chordal Graphs
We note that a clique has a unique colouring, up to relabelling the colours, as
each colour class must have size one. So, given a clique cutset C in a graph G,
and a c-colouring of the graph induced by C ∪U for each component U of G−C,
it is straightforward to obtain a c-colouring of G. We simply permute the colour
class names on each colouring so that the colourings agree on C. This fact, along
with a polynomial-time algorithm for finding a clique cutset in a graph which has
one (see [47]), yields efficient polynomial-time divide and conquer algorithms for
colouring many classes of graphs.

One such class is the chordal graphs. A graph is chordal if it contains no induced
cycle of length four or more. It is not difficult to show that every chordal graph
which is not a clique has a clique cutset (see [22]) . So, given a chordal graph we
can either (i) optimally colour it because it is a clique and hence has a unique
colouring, or (ii) find a clique cutset within it, and reduce our coluring problem
to a number of smaller colouring problems. It turns out that if we repeat this
reduction process until the subproblems we are left with are all cliques then we
will consider only a polynomial number of subproblems.

86 Reed

Hence, this divide and conquer approach is polynomial. There are faster
(indeed linear-time) algorithms for colouring chordal graphs, which take fuller
advantage of their special structure. The advantage of the divide and conquer
approach is that it is much more widely applicable. Indeed given any base class
B of graphs for which we can find optimal colourings in polynomial time, our
divide and conquer technique yields a poynomial time algorithm for colouring
any graph in the class:

B∗ = {G| every induced subgraph H of G is in B or has a clique cutset}.

See e.g. [21] where B is the class of complete multi-partite graphs.

4.1.2 Embedding Planar Graphs
Obviously every planar graph has infinitely many drawings in the plane as we
are free to wiggle its edges. Such a transformation, however, does not change the
basic structure of the drawing. To capture this structure, we define an embedding
of a planar graph G as a set of closed walks of G, which are the set of boundaries
of the regions for some planar drawing of G. Note that if G is biconnected then
these closed walks are cycles. It turns out that every three connected planar graph
has a unique embedding (see [28]).

This fact makes it relatively easy to find an embedding of a three connected
planar graph G. We begin by finding a subgraph H of G which also has a unique
embedding, We then perform a sequence of iterations, adding more of G to the
embedding at each step whilst maintaining the property that the embedded sub-
graph has a unique embedding. An appropriate implementation of this approach
yields a polynomial time algorithm for embedding three connected planar graphs.

By applying divide and conquer, we can extend this algorithm, so that it finds
embeddings of all planar graphs. If a planar graph is disconnected then we can
construct a planar embedding of G by combining embeddings of its components
in a straightforward way. Furthermore, if x is a cutvertex of G and G − x has
components U1, ..., Uk, then we can paste together embeddings of the graphs
x + U1, ..., x + Uk at x to obtain an embedding of G. In the same way, if {x, y} is
an edge such that G − x − y is disconnected with components U1, ...Uk then we
can paste together embeddings of the Ui + x + y along the edge xy to obtain an
embedding of G.

If {x, y} is a cutset of G which is not an edge then we need to be a wee bit
more clever. We can assume that neither x nor y is a cutvertex as otherwise we
can decompose the problem as discussed above. Thus, for every component Ui

there is a path from x to y in Ui + x + y and hence also in G − Ui (consider
j �= i). The existence of this second path implies that since G is planar so is
Hi = Ui + x + y + xy. Now, we can paste embeddings of the Hi together along
xy to obtain an embedding of G + xy. By deleting xy, we obtain an embedding
of G.

An appropriate implementation of this approach yields a polynomial time
algorithm for embedding planar graphs.

4. Algorithmic Aspects of Tree Width 87

4.1.3 Dynamic Programming in Trees
Many problems can be solved using divide and conquer in trees, to illustrate we
consider the maximum weight stable set problem. I.e, given a tree T , and an
integer weight w(t) for each node t of T , determine

max{
∑

t∈S

w(t)| S is an independent set in T}.

In order to solve this problem, we actually need to solve a generalization:
Rooted Maximum Weight Stable Set (RMWSS). Given a tree T , a root r which
is a node of T , and an integer weight function w on the nodes of T , determine
both:

W1(T, r, w) = max{
∑

t∈S

w(t)| S is an independent set in T containing r}.

and

W2(T, r, w) = max{
∑

t∈S

w(t)| S is an independent set in T − r},

Now, if r is the only node of T then W1(T, r, w) = w(r) and W2(T, r, w) = 0.
Otherwise, r has neighbours s1, ..., sk for some k ≥ 1 and T −r has corresponding
components T1, .., Tk with si ∈ Ti. If k = 1, then we note that W1(T, r, w) =
w(r) +W2(T1, s1, w) and W2(T, r, w) = max(W1(T1, s1, w), W2(T1, s1, w)). So we
can restrict our attention to the smaller instance (T1, s1, w) of RMWSS. If k ≥ 2
then we apply divide and conquer. We let T ′

i be the tree obtained from Ti by
adding the edge rsi. We solve the smaller (RMWSS) instance (T ′

i , r, w) for each
i. Having done so, we simply note that

W1(T, r, w) =
k∑

i=1

W1(T ′
i , r, w) − (k − 1)w(r)

and

W2(T, r, w) =
k∑

i=1

W2(T ′
i , r, w).

By traversing the tree using a postorder traversal, we can actually implement
this divide and conquer algorithm to solve RMWSS on trees in linear time.

Many other optimization problems can be solved on trees in linear time using
the same divide and conquer approach.

4.1.4 Pasting Solutions Together
In all three of the above examples, we found a cutset C for G and we decom-
posed our problem into similar subproblems on the subgraphs of G induced by
{U + C| U is a component of G − C}. We then pasted together the subproblem
solutions along the cutset C to obtain a solution to the original problem. In doing
so, we had to ensure that the partial solutions “agreed” on C.

In our chordal graph colouring algorithm, doing so was straightforward. For,
there is essentially only one way of colouring a clique and so the subproblem
solutions always agreed on C.

88 Reed

When embedding planar graphs, we had to pay a bit more attention to this
issue. When solving the subproblem on U + C for a cutset C consisting of two
non-adjacent vertices x and y, we insisted that the embedding of U + C be
obtained from an embedding of U + C + xy by deleting xy. This allowed us to
paste together solutions to the subproblems along the edge xy. So, in this case
we ensured that we could paste the embeddings together by restricting the set of
permissible solutions to each subproblem.

To solve MWSS on trees, we applied a different approach. For k ≥ 2, we
decomposed our subproblem into subproblems on T ′

1, ..., T
′
k. To determine if we

could paste together a set or solutions to the subproblems, we needed to know
for each i, whether or not r was in the solution for T ′

i . However, we did not
restrict our attention to stable sets containing r or not containing r. Rather, we
computed both the maximum weight of a stable set in T ′

i containing r and the
maximum weight of a stable set in T ′

i not containing r.
This latter approach is the one that interests us. When decomposing the graph

using a cutset C, for each possible restriction Π of a solution of the subproblem on
C +U to C, we will record the optimal extension of Π to a solution on C +U . To
obtain an efficient algorithm, we need to ensure that the number of possiblities
for such a Π is small (i.e. polynomial in the size on the input). To do so, we
will actually bound the size of C, which typically allows us to bound the number
of possible Π. For example, if C has size w then there are at most cw possible
c-colourings of C. Note that we also bound the size of the subgraphs which we
do not decompose as we also need to compute all possible solutions for these
subgraphs.

4.1.5 Knowing Your Roots
To apply the approach above, we actually solve rooted versions of the optimiza-
tion problems we consider. Thus for a given set of roots R, we need to compute a
table containing the best extension of each possible partial solution on the roots
to a complete solution. When we decompose our problem along a cutset C, the
set of roots RU of the subproblem defined on C + U for some component U of
G − C must include the vertices of C, because we need to see how to paste our
solutions together. RU must also include R∩U , as we are now solving the rooted
version of the problem so need to record how the solutions to the subproblems
behave with respect to R. We will actually set RU = C + R ∩ C.

We can build a rooted cutset decomposition tree for an instance (G, R) to record
the rooted subproblems we consider. The root of the tree is labelled with the inital
rooted problem (G, R). If we decompose (G,R) along a cutset C such that G−C
has components U1, ..., Uk then the children of the root will be labelled with the
instances (C ∪ Ui, RUi). The subtree of our decomposition tree rooted at the
node labelled (C ∪ Ui, RUi) will be a decomposition tree for the corresponding
subproblem. For a node t of the tree, we let (Ht, R − t) be the label of t.

These then are essentially the tree decompositions which we want to study.
However, we actually want to decompose graphs rather than rooted graphs so we
will consider a slightly different definition.

4. Algorithmic Aspects of Tree Width 89

4.1.6 The Rest of The Paper
We present a formal definition of a tree decomposition of a graph in the next
section. These tree decompositions point out how to split a graph up into pieces
using cutsets corresponding to the nodes of the tree. We will show that a wide
variety of optimization problems can be solved efficiently, using divide and con-
quer, on graphs which have tree decompositions where the size of these cutsets is
bounded. More interestingly, we see that this theory can be used to solve many
optimization problems on arbitrary graphs (both in theory and practice), in part
by exploiting structural properties of the graphs which do not have such tree
decompositions. Along the way, we introduce a dual of tree width.

4.2 Tree decompositions and tree width

A tree decomposition of a graph G consists of a tree T and for each node t of T ,
a subset Wt of V (G) such that:

(i) For each vertex v of G, the set Sv = {t | t is a node of T , v is in Wt}
induces a non-empty subtree of T , and

(ii) For each edge of G with endpoints x and y, Sx intersects Sy.

We let W = (Wt | t is a node of T), and speak of the tree decomposition [T, W].
We use Sv([T, W]) instead of Sv if this precision is necessary.

As depicted in Figures 4.1 and 4.2, given a tree decomposition [T, W] of G,
we can choose for each node t in T , a subgraph Xt of G with node set Wt

such that each edge of G is in precisely one of these subgraphs. To do so, we
place each edge e with endpoints x and y in Xt for some arbitrary element t
of Sx ∩ Sy. Originally a tree decomposition was defined in terms of the tree T
and the specification of such a set of subgraphs: X = (Xt | t is a node of T) (cf.
[32]). Our definition focuses on Wt = V (Xt). We justify this abuse of notation by
remarking that we are really always considering a partition of the edge set and
hence a tree decomposition of the second type. However, we simply don’t care
which element of Sx ∩ Sy contains a particular edge with endpoints x and y. So,
we use Wt instead of V (Xt) to ease our exposition.

Obviously, every graph has a tree decomposition using a tree with one node. We
are particularly interested in tree decompositions in which the Wt are small and
in graphs which have such tree decompositions. The width of a tree decomposition
[T, W] is max{|Wt| − 1, t a node of T}. The tree width of G, denoted TW(G), is
the minimum of the widths of its tree decompositions.

We remark that the −1 in the definition is present, to ensure that the following
holds:

Fact 4.2.1 Any tree which contains an edge has tree width 1.

Proof If xy is an edge of G then {x, y} ⊆ Wt for some T and so G has tree
width at most 1.

On the other hand, if G is a tree we obtain a tree decomposition of width 1 as
follows. We arbitrarily root G at some node r. We set T = G and for each vertex

90 Reed

d e�
�
�
��

�
�
�
��

����
b�
�
�

�
�
�

ca

�
�
�

�
�
�
f

Wt1 = {a, b, d} Wt2 = {c, b, e}

Wt3 = {d, e, f} Wt4 = {b, d, e}

G W

�

�

��

�
�
��

�
�
��

t4

t3

t2t1
ScSa

Sf

Se Sd

Sb Xt1 =

�
�
�
��

�
�
�

a

b

d

Xt2 =
��
�
�
�

�
�
�
��

b

e

c

Xt3 = �
�
�

�
�
�

d e

f

Xt4 =
��d e

b

T and the Sv X

Figure 4.1. An example of a tree decomposition

v let Sv consists of v and its children. Thus, Wr = r and for t �= r, Wt consists
of t and its parent. Clearly this is a tree decomposition of width one for G.

We show now that a tree decomposition of G points out a way of decomposing
G using cutsets corresponding to its nodes.

Definition 4.2.1 Let [T, W] be a tree decomposition of a graph G. For any
subtree S of T , by VS we mean

⋃{Wt | t is a node of S}.

Lemma 4.2.2 Let [T, W] be a tree decomposition of a graph G. Let rs be an arc
of T and let R and S be the components of T −rs containing r and s respectively.
Then, (VR −Ws, VS −Wr) is a partition of V − (Wr ∩Ws) and furthermore, there
is no edge of G between VR − Ws and VS − Wr.

Proof First, we note that for each vertex v of G, exactly one of the following
holds: Sv ⊆ R and hence v ∈ VR − Ws, Sv ⊆ S and hence v ∈ VS − Wr, or
Sv contains the arc rs and hence v ∈ Ws ∩ Wr. Thus, (VR − Ws, VS − Wr) is a
partition of V − (Wr ∩ Ws). Now, if u is in VR − Ws and v is in VS − Wr then
Su ⊆ R while Sv ⊆ S. Thus, Su ∩ Sv = ∅ and so uv �∈ E(G).

4. Algorithmic Aspects of Tree Width 91

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v1 v2 . . . vk−1 vk

vk+1
vk+2 v2k−1

v2k

...

...

.
...

vk2−2k+1
vk2−k

vk2−k+1 vk2−k+2 . . . vk2−1 vk2

Wti
= {vi−k, vi−k+1, . . . , vi}

for k < i ≤ k2

Wti = {v1, v2, . . . , vi}

for 1 ≤ i ≤ k

Wti
= {vi−k, . . . , vk2}

for k2 + 1 ≤ i ≤ k2 + k

G W

� � � . . . � �

tj tj+1 tj+k

Svj

� � � � . . . � �

t1 t2 t3 tk2+k

T

Xi =
� � . . . � � �

vi−k+1

vi−k+2

vi−2 vi−1 vi

�

vi−k

for k + 2 ≤ i ≤ k2 with k � | (i− 1)

Xi =
� � . . . � � �

vi−k+1

vi−k+2

vi−2 vi−1 vi

�

vi−k

for i = k + 1, 2k + 1, . . . , k2 − k + 1

Xi = � � . . . � � �

v1 v2 vi−2 vi−1 vi

for 1 ≤ i ≤ k

Xi = � � . . . � �

vi−k vk2

for i > k2

X

Figure 4.2. Another example of a tree decomposition

92 Reed

Corollary 4.2.3 Let [T, W] be a tree decomposition of a graph G and let t be a
node of T with l neighbours s1, . . . , sl. Let Si be the component of T − t contain-
ing si. Then (VS1 −Wt, . . . , VSl −Wt) is a partition of V −Wt. Furthermore, for
1 ≤ i < j ≤ l, there is no edge between VSi − Wt and VSj − Wt.

4.2.1 Rooted Tree Decompositions
In order to use tree decompositions to solve optimization problems, we need to
root them.

Definition 4.2.2 A rooted tree decomposition of a graph G consists of a tree
decomposition [T, W] of G and a rooted tree obtained by rooting T at some node
r.

For brevity’s sake, we often use [(T, r), W] to denote this tree decomposition.
It has the same width as [T, W].

Definition 4.2.3 Let s be a node of a rooted tree (T, r). We define Ts to be the
rooted tree with root s consisting of s and all its descendants.

Definition 4.2.4 We use Gt to denote the subgraph of G induced by VTt .

The following consequence of Corollary 4.2.3 will allow us to solve optimiza-
tion problems on graphs of bounded tree width using our dynamic programming
approach.

Fact 4.2.4 For each node s in T , there are no edges between Gs−Ws and G−Gs.
Furthermore, for any two children t and t′ of s, there are no edges between Gt−Ws

and Gt′ − Ws.

The following two results point out the relationship between tree decomposi-
tions and rooted cutset decomposition trees.

Theorem 4.2.5 If G has a rooted cutset decomposition tree such that:

(a) for every node t in the tree |Rt| ≤ w, and

(b) for every leaf t of the tree |V (Ht)| ≤ w,

then it has tree width at most 2w − 1.

Theorem 4.2.6 If G has tree width at most w then for any set R of at most
2w + 1 vertices of G, (G, R) has a rooted cutset decomposition tree such that:

(a) for every node t in the tree |Rt| ≤ 2w + 1, and

(b) for every leaf t of the tree |V (Ht)| ≤ 2w + 1.

Proof of 4.2.5: Let T be the tree in a rooted cutset decomposition tree for G
which satisfies (a) and (b). For each node t of T let (Ht, Rt) be the label of t.
For each leaf t of T , set Wt = V (Ht). For each internal node t of T , letting Ct

4. Algorithmic Aspects of Tree Width 93

be the cutset on which we decomposed Ht, set Wt = Rt ∪ Ct. A routine top down
recursive analysis verifies that this is a tree decomposition and it is easy to verify
that it has width at most 2w − 1. We leave the details to the reader.

We will present an algorithmic proof of Theorem 4.2.6 in Section 4.3

4.2.2 Two Alternative Definition
We motivated the definition of tree width by linking it to rooted cutset decom-
position trees, which are defined in a top-down manner starting at the root. As
we now show, we can also define tree width by considering the leaves.

Definition 4.2.5 A k-tree is defined recursively as follows:

(i) The empty graph is a k-tree, and

(ii) every graph which is obtained from a k-tree G by adding a vertex v and the
edges between v and a clique of size at most k in G, is also a k-tree.

Definition 4.2.6 A graph is a partial k-tree if it is a subgraph of a k-tree.

The class of partial k-trees was defined by Arnborg, Corneil, and Proskurowski
[4]. As we now show, the class of partial k-trees coincides with the class of graphs
of tree width k. To do so, we need:

Definition 4.2.7 A subtree intersection representation for G is a tree decompo-
sition such that Su ∩ Sv is non-empty if and only if uv is an edge. Its width is its
width as a tree decomposition.

Lemma 4.2.7 (The Helly Property for Trees) If F is a family of subtrees
of T every two of which intersect then ∩S∈FS is non-empty.

We leave the proof of the Helly property for trees as an exercise.

Observation 4.2.8 A graph has a subgraph intersection representation of width
at most k if and only if it is a k-tree.

Proof We prove that every k-tree has a subgraph intersection representation of
width at most k by induction. Clearly, if G has at most one node then the result
holds. So consider a k-tree G such that |V (G)| ≥ 2. By the definition of a k-tree,
there is a node v of G such that G − v is a k-tree and the neighbours of v induce
a clique with at most k nodes. By induction G − v has a subtree intersection
representation [T, W] of width at most k. For any two neighbours of v, since uv
is an edge, Su intersects Sv. So, by the Helly property for trees, there is a node t
of T such that Wt contains N(v). We construct a new tree by adding a vertex s
and an edge st to T . We construct a subgraph intersection representation of G by
setting Wt = v + N(v). (we leave it to the reader to verify that this does indeed
yield a subtree intersection representation). Since |W (t)| ≤ k + 1 this subtree
intersection representation has width at most k, as desired.

94 Reed

Now, to prove that any graph which has a subtree intersection representation of
width at most k is a k-tree, we proceed by induction on the number of nodes in the
tree decomposition and subject to this by induction on the number of vertices in
the graph. If the tree decomposition has only one node then the graph is a clique
of size at most k +1 so the desired result holds. So, consider a graph G which has
a subtree intersection representation [T, W]. of width at most k. We can assume
T has at least two nodes and choose a leaf t of T with a unique neighbour s in T .

If Wt ⊆ Ws then any Su and Sv which intersect in t also intersect in s. Thus,
deleting t and Wt yields a new subtree intersection representation of G of width
at most k. So, we are done by the induction hypothesis.

If Wt is not contained in Ws then let v be a vertex of Wt − Ws. Note that this
implies that Sv = t. Thus, the neighbour set of v is precisely Wt − v which is a
clique by the definition of subtree intersection representation, and has at most k
vertices because of our bound on the width of [T, W]. Furthermore, replacing Wt

by Wt − v yields a subtree intersection representation of G − v of width at most
k, so by our inductive hypothesis, G − v is a k-tree. Combining these two facts,
we obtain that G is a k-tree.

Corollary 4.2.9 A graph is a partial k-tree if and only if it has tree width at
most k.

Proof If G is a partial k-tree then it is a subgraph of some k-tree H with V (H) =
V (G). Now, H has a subgraph representation of width at most k which is a tree
decomposition of G.

Conversely, if G has a tree decomposition of width at most k then the graph H
on V (G) obtained by setting uv ∈ E(H) precisely if Su ∩ Sv �= ∅ is a k-tree, by
Observation 4.2.8. Hence, G is a partial k-tree.

As a corollary of Observation 4.2.8, we see that a graph has a subtree in-
tersection representation if and only if each of its subgraphs contains a vertex
whose neighbourhood induces a clique. Gallai[21] proved that a graph satisfies
this property precisely if it is chordal. Using this result and the recursive defini-
tion of k-tree it is easy to prove that a graph is a k-tree if and only if it is chordal
and has no clique with more than k + 1 vertices. Thus, we have:

Theorem 4.2.10 The tree width of G is one more than the minimum over all
chordal graphs H such that G ⊆ H of the size of the largest clique in H.

4.3 Finding Bounded Width Decompositions

In this section, we present a straightforward polynomial time algorithm which
given a graph of tree width w and a subset R of at most 2w + 1 of its vertices,
constructs a rooted cutset tree decomposition for it satisfying (a) and (b) of
Theorem 4.2.6, thereby proving that theorem. Furthermore, since the proof of
Theorem 4.2.5 can be made algorithmic, our algorithm can also be used to build
a tree decomposition of G with width at most 4w + 1 in polynomial time, if w

4. Algorithmic Aspects of Tree Width 95

is fixed (this problem is NP-complete if k is part of the input; see [26]). We then
go on to discuss faster algorithms and a related duality theorem.

Our algorithm for finding rooted cutset decomposition trees is recursive and
top down. Given a rooted graph (G, R) with |R| ≤ 2w+1 and |V (G)| > 2w+1, we
will find a cutset C such that for each component U of G−C, RU = C ∪ (R ∩C)
satisfies |RU | ≤ 2w + 1. A judicous choice of our cutsets will allow us to continue
this process until we have decomposed our problem into a family of subproblems,
each of which has at most 2w + 1 vertices.

Actually the following result, shows that we do not need to take any care in
choosing our cutset.

Lemma 4.3.1 If G has tree width at most w, then for every R ⊆ V (G), ∃C ⊆ V
with |C| ≤ w + 1 such that for each component U of G − C, |R ∩ U | ≤ 1

2R.

Proof Consider a tree decomposition [T, W] of G of width at most w. Suppose
the desired C does not exist. Then, for each node t of T , since |Wt| ≤ w + 1,
there is a component Ut of G − Wt containing more than half the vertices of R.
By Corollary 4.2.3, there is a unique arc st of T such that for every v ∈ Ut,
Sv is contained in the component of T − st containing s. We define a function
f by setting f(t) = s. Since T has n nodes and n − 1 arcs, there exists an arc
t1, t2 of T such that f(t1) = t2 and f(t2) = t1. Now, there must be a vertex v in
R ∩ Ut1 ∩ Ut2 . But this contradicts either our choice of f(t1) or f(t2).

This lemma tells us that in each iteration of our top down algorithm the
desired cutset C exists. We can find such a cutset in polynomial time via complete
enumeration. We need only determine for each of the O(|V (G)|w+1) subsets X
of V (G) with |V (G)| ≤ w + 1 whether we can set X = C. To test if we can set
X = C we just compute the connected components of G − X which can be done
in linear time. So, we can carry out an iteration in polynomial time.

A straightforward recursive argument which we omits shows that (provided we
insist that each C is non-empty) the recursive cutset decomposition tree which
we construct has at most |V (G) − R| nodes. This linear bound on the number
of iterations we perform ensures that the total running time reuqired by the
algorithm is also polynomial. It will also be useful later when we come to use
these tree decompositions.

As we discuss in Section 4.3.2, this algorithm can actually be implemented in
O(|V (G)|2) time and a different approach yields a linear time algorithm.

4.3.1 An Approximate Dual to Tree Width
We note that our algorithm actually computes a tree decomposition of width
4w + 1 for any graph such that for every R ⊆ V (G), a set C as described in the
statement of Lemma 4.3.1 exists. This fact motivates the following:

Definition 4.3.1 A set S is k-linked if for every set X of fewer than k vertices,
there is a component U of G−X containing more than half the vertices of S. the
linkedness of G, denoted li(G), is the maximum k for which G has a k-linked set.

Lemma 4.3.2 li(G) − 1 ≤ TW (G) ≤ 4li(G) + 1.

96 Reed

Proof Lemma 4.3.1 is simply a restatement of li(G) − 1 ≤ TW (G). The
algorithm just described is a constructive proof that TW (G) ≤ 4li(G) + 1.

Thus the maximum k such that G has a k-linked set is approximately the
minimum width of a tree decomposition of G. For an exact duality result for tree
width see [44].

4.3.2 Faster Algorithms
We now describe a variant of our algorithm for constructing tree decompositions
which can be implemented in O(|V (G)|2) time. In this variant, rather than choos-
ing a cutset C such that |R ∩ U | ≤ 1

2 |R| for every component U of G − C, we
settle for insisting that |R ∩ U | ≤ 2

3 |R| for each such component. We also raise
our bound on the size of Rt and max{|V (Ht)| : t is a leaf} to 3w + 1. Having
made these two changes, our recursive procedure yields the desired rooted cutset
decomposition tree of G and corresponding tree decomposition of G of width at
most 6w + 1.

This version of the algorithm can also be implemented in polynomial time, by
computing, in each iteration, the components of G − X for each X ⊆ V (G) with
|X| ≤ w + 1. The following fact allows us to speed the algorithm up.

Observation 4.3.3 For S ⊆ V (H), there is no component U of H containing
more than 2|S|

3 vertices of S if and only if we can partition V (H) into A and B

such that |A ∩ S| ≤ 2|S|
3 , |B ∩ S| ≤ 2|S|

3 , and there are no edges between A and
B.

Proof Left to the reader.

To test for a fixed w and subset R of V with R ≤ 3w + 1, whether or not
V has a partition into A, B, and C such that |C| ≤ w + 1, |A ∩ R| ≤ 2w, and
|B ∩ R| ≤ 2w, we proceed as follows.

For each of the fewer than 33w+1 partitions of R into AR, BR, CR with |AR| ≤
2w, |BR| ≤ 2w, and |CR| ≤ w + 1 we test whether we can choose the desired
A,B, and C so that A ∩ R = AR, B ∩ R = BR, and C ∩ R = CR. I.e. we test if
there is a set C′ of at most w + 1 − |CR| vertices such that there are no paths
between AR − C′ and BR − C′ in G − CR − C′. By Menger’s Theorem, if such
a set of vertices does not exist then there are w + 2 − |CR| vertex disjoint paths
between AR and CR. Furthermore, classical techniques (see e.g. [19]) allow us to
either find the desired C′ or such a set of paths in O(w|E(G)|) time.

Using this procedure, we can implement each iteration of our recursive tree
decomposition finding algorithm in O(33w+1w|E(G)|) time and hence implement
the algorithm using O(|V (G)||E(G)|) time in total, for a fixed w. Now, it is
immediate from the definition that a a partial k-tree has at most k|V (G)| edges,
so we need only apply our algorithm to graphs with O(|V (G)|) edges and hence
can implement it in O(|V (G)|2) time.

The two earliest polynomial time algorithms for computing tree width can be
found in [4] and [32]. In [38], Robertson and Seymour presented the algorithm
discussed here. Reed [30], by introducing some technical complications, speeded
up the algorithm. His variant runs in O(nlog n) time.

4. Algorithmic Aspects of Tree Width 97

Arnborg et al. in [5], gave a linear time algorithm for determining if the tree
width of a graph is some fixed w. However, their algorithm requires much more
than linear space, (reading in unwritten memory is permitted,) and requires
O(|V (G)|2) time if we actually want to find the tree decomposition. Bodlaen-
der in [13] (see also [14]), developed a linear time algorithm for determining if
the tree width of a graph is at most w and constructing a decomposition of width
w if possible.

4.4 Using Bounded Width Decompositions

Given a bounded width rooted tree decomposition of a graph, many hard (i.e.
NP-complete) problems can be solved efficiently. To illustrate, we reconsider the
maximum weight stable set problem.

So assume we are given a graph G, a positive integer weight w(x) for each
vertex x of G, and a rooted tree decomposition [(T, r), W] of G of width at most
k with at most n nodes. For a subset X of V we let w(X) =

∑
x∈X w(x).

We will traverse the tree using a post-order traversal and compute, for each
t ∈ T and stable set S ⊆ Wt:

f(S, t) = max (w(X)|X stable, X ⊆ V (GT), X ∩ Wt = S).

(Recall that Gt is the subgraph of G induced by those vertices v such that Sv

intersects the rooted subtree underneath t.) The the solution to our optimization
problem is simply max {f(S, r)|S ⊆ Wr, S stable}.

If t is a leaf then f(S, t) = w(S). If t is not a leaf then we let s1, ...sl be the
children of t, and Si = S ∩ Wsi . Corllary 4.2.3 implies that if for each i we let Xi

be a maximum stable set in Gsi with Xi ∩ Wsi ∩ Wt = Si then ∪l
i=1Xi is also a

stable set. Thus

f(S, t) = w(S) +
l∑

i=1

max {f(Y, si)|Y stable, Y ⊆ Wsi , Y ∩ Wt = Si} − w(Si).

When computing the values of f corresponding to a node t, we need consider
at most 2k possibilities for S and treating each possibilities requires l2k time
where l is the number of children of t. Thus, our algorithm runs in O(22k|V (T)|)
time which is linear in |V (G)| if k is fixed since |V (T)| ≤ |V (G)|.

With a little bit of extra bookkeeping we can also find a maximum weight
stable set of G in linear time.

Similar dynamic programming algorithms allow us to solve many NP-complete
optimization problems in linear time on graphs of bounded tree width. Examples
include Clique, Hamilton Cycle, Chromatic Number, Domination Number, and
H-minor containment. In fact, it has been shown [16] that any problem which
can be formulated as a certain kind of logical formula can be solved on graphs of
bounded tree width in linear time.

We note that graph isomorphism is an example of a problem which can be
solved in polynomial but not (yet) linear time in graphs of bounded tree width[11].
In the same vein, although the chromatic index of a bounded tree width graph
can be computed in linear time [12], the fastest algorithm known to construct an
optimal edge colouring of such graphs runs in polynomial but not linear time.

98 Reed

All the algorithms mentioned above, although polynomial in n, are exponential
in k and thus unlikely to be practical for graphs of tree width exceeding ten.

The problems which can be solved using these techniques come in three differ-
ent flavours: those in which the input has low tree width because of the nature
of the problem, those in which we can somehow restrict our attention to a sub-
problem on a subgraph of low tree width, and those for which we can attack the
problem using different techniques if the input graph has unbounded tree width.

One example of the first type of problem is the phylogeny problem which arises
in computational biology [10]. Here we are trying to construct a family tree so
it is natural that our input is tree-like. Another example is register allocation
(choosing which variables to load into a computer’s registers while running a
program). This can be modelled as a colouring problem on the interference graph
of the program’s control flow graph. Although such graphs can have high tree
width, if the program is structured then their tree width is at most seven (cf.
[46]). This allows for efficient resolution of the register allocation problem.

One example of the second type of problem is the Travelling Salesman Problem.
Often, when applying branch and bound, an optimal solution is approximated
by the best of 3 or 4 candidate heuristic solutions. Alternatively, one can paste
these solutions together and find the optimum solution contained in the union of
their edge sets. This is possible because the cycles tend not to differ too much
and hence their union may well have bounded tree width. This approach was
used by Applegate, Bixby, Chvatal and Cook [8] in their prize winning program
for solving large TSPs.

We discuss a number of problems of the third type in the last section of the
article. First however we need to develop a new characterization of graphs of high
tree width, which we do in the next section.

4.5 Walls

We now give a forbidden subgraph characterization of graphs of bounded tree
width. The subgraphs we need to forbid are the walls.

An elementary wall of height 8 is depicted in Figure 4.3. An elementary wall
of height h is similar. It is a piece of the hexagonal lattice consisting of h levels
each containing h bricks. More precisely, an elementary wall of height h contains
h + 1 vertex disjoint paths, R1, . . . , Rh+1 which we call rows, and h + 1 vertex
disjoint paths, C1, . . . , Ch+1 which we call columns. The reader should be able
to complete the definition by considering Figure 4.3, in which R1 is the top
row. (For fussy formalists: the first and last row, i.e. R1 and Rh+1, both contain
2h+1 vertices. All the other rows contain 2h+2 vertices. All the columns contain
2h vertices. Column i joins the (2i − 1)st vertex of R1 with the (2i − 1)st vertex
of Rh+1; it contains the (2i − 1)st and 2ith vertex of every other row, as well as
the edge between them. For j ≤ h and odd, each Ci contains an edge between the
(2i−1)st vertex of Rj and the (2i−1)st vertex of Rj+1. For j ≤ h and even, each
Ci contains an edge between the 2ith vertex of Rj and the 2ith vertex of Rj+1.
These are all the edges of the wall.)

A wall of height h is obtained from the elementary wall by replacing the edge
set by a corresponding set of internally vertex disjoint paths whose interiors

4. Algorithmic Aspects of Tree Width 99

� � � � � � � �

� � � � � � � �

R3

C2

Figure 4.3. An elementary wall of height 8

are vertex disjoint from the original elementary wall, see Figure 4.4. The rows,
columns, corners, and perimeter of the wall correspond to the same objects in
the original elementary wall. The nails of the wall are the vertices of degree three
within it as well as its corners.

� � � � �

�

�

�

� � � � � �

� �

� � � � � � � �

� � �

�

� � � � � � � � � �

Figure 4.4. A wall of height 3

We note that the nails of any wall of height h can be shown to be
h/2�-linked
(since any set of at most h/2 vertices misses half the rows and the nails in these
rows will clearly all be in the same component). This proves that li(G) exceeds
half the height of the largest wall in G. Since TW (G) ≥ li(G), this yields an
approximation to the easy direction of the following result:

Theorem 4.5.1 ([42](see also [34])) Let h be the maximum of the heights of
the walls in G. Then h + 1 ≤ TW (G) ≤ 2534h5

.

100 Reed

The proof of this result is long and complicated so we will not present it.
Instead, in the next section, we prove that if G is planar then TW (G) ≤ 96h + 1.

4.5.1 Excluding Walls in Planar Graphs
In this section, we prove:

Theorem 4.5.2 ([2]) Let G be a planar graph and let h ≥ 2 be the maximum
of the heights of the walls in G, then TW (G) ≤ 96h + 1.

We will need the following:

Definition 4.5.1 A set S is strongly k-linked if for every set X of fewer than
k vertices there is a component of G − X containing more than two-thirds of the
vertices of S.

Observation 4.5.3 Ever 2k-linked set contains a strongly k-linked set.

Proof Let S be a 2k-linked set in a graph G. If S is strongly k-linked we are
done. Otherwise, there is a set X of fewer than k vertices of G such that every
component of G − X contains at most two-thirds the vertices of U . Since S is
2k-linked, there is a (unique) component U∗ of G − X s.t S∗ = U∗ ∩ S satisfies;
|S∗| > |S|

2 .
If S∗ is strongly k-linked, we are done. Otherwise, there is a set X∗ of fewer

than k vertices such that every component U ′ of G − X∗ satisfies: |U ′ ∩ S∗| ≤
2|S∗|

3 ≤ 4|S|
9 .

Now, if U ′ is a component of G − X − X∗, then U ′ is contained in some
component of G−X. If U ′ is not contained in U∗, then |U ′ ∩S| ≤ |S −S∗| ≤ |S|

2 .
If U ′ is contained in U∗, then U ′ ∩ S = U ′ ∩ S∗, and so by our choice of X∗,
|U ′ ∩ S| ≤ 4|S|

9 . So, we see that every component U ′ of G − X − X∗ satisfies
|U ′ ∩ S| ≤ |S|

2 , contradicting the fact that S is 2k-linked.

Proof of Theorem 4.5.2 For some h ≥ 2, let G be a planar graph which has
tree width at least 96h + 1. By Lemma 4.3.2 and Observation 4.5.3, G contains
a strongly 12k linked set, S. Fix a drawing D of G in the plane R2.

We say that an arc or curve in the plane is G-normal if it intersects G only
at vertices. For any simple closed curve C in the plane, we use int(C) to denote
the non-infinite component of R2 − C.

We choose a simple closed curve C in the plane satisfying:

(i) C is G-normal,

(ii) |C ∩ V (G)| ≤ 8h,

(iii) |int(C) ∩ S| > 2|S|
3 , and

(iv) subject to (i) -(iii), |int(C) ∩ V (G)| is as small as possible.

4. Algorithmic Aspects of Tree Width 101

Such a choice is possible because if we let J be a simple closed curve in the
infinite face of our drawing which “surrounds” G (i.e. s.t. D ⊂ int(J)), then
J ∩ V (G) = ∅, so J satisfies (i)-(iii).

Now, if C ∩ V (G) < 8h, then it is easy to shift C slightly so as to obtain
a new G-normal curve C′ which touches some vertex v of int(C) ∩ V (G) and
satisfies C′ ∩ V (G) = C ∩ V (G) + v, int(C′) ∩ V (G) = int(C) ∩ V (G) − v.
Our choice of C implies that |int(C′) ∩ S| ≤ 2|S|

3 . Now, every component U
of G − (V (G) ∩ C) − v is contained either in int(C′) or in G − int(C) and in
either case satisfies |U ∩ S| ≤ |S|

3 . But this contradicts the fact that S is strongly
8h-linked.

This contradiction implies |V (G) ∩ C| = 8h. We enumerate the vertices on
C as v1, ..., v8h in the order they appear on when traversing C in the clockwise
direction from an arbitrarily chosen starting point. We let GC be the subgraph of
G drawn in C ∪ int(C).

Fact 4.5.4 There exist 2h + 2 vertex disjoint paths Q1, ..., Q2h+2 between
v1, ..., v2h+2 and v4h+1, ..., v6h+2 in GC .

Proof Otherwise, by a planar version of Menger’s Theorem, there is a G-normal
arc A with its endpoints on C and otherwise contained in int(C), such that letting
A1 and A2 be the components of C −A, we have: |V (G)∩ (A−C)| ≤ |V (G)∩A1|
and |V (G) ∩ (A − C)| ≤ |V (G) ∩ A2|.

Now, letting C1 = A1 ∪ A and C2 = A2 ∪ A, we see that both C1 and C2

are G-normal arcs containing at most 8h vertices of G. So, by our choice of C,
we have |int(C1) ∩ S| ≤ 2|S|

3 and |int(C2) ∩ S| ≤ 2|S|
3 . But now by considering

X = V (G) ∩ (C ∪ A), we see that S is not strongly 12h-linked, a contradiction.

In the same vein, we obtain,

Fact 4.5.5 There exist h + 1 vertex disjoint paths R1, . . . , Rh+1 between
v3h, . . . , v4h and v7h, . . . , v8h in GC .

Now, it is easy to prove that there is a wall in G whose rows are subsets of
R1, ...Rh+1 and whose columns are subsets of Q1, ...Q2h+2.

As a corollary, we obtain that the vertex set of a planar graph is not 128
√

n+1
linked, as a wall of height h contains more than h2 vertices. A stronger result
with the 128 replaced by a smaller constant was proven earlier by Lipton and
Tarjan [25]. Using an argument similar to that given above, Alon Seymour and
Thomas were abler to improve the constant in the Lipton-Tarjan result.

4.6 Some Applications

In this section, we discuss how to exploit the fact that graphs of high tree width
contain high walls to solve optimization problems over arbitrary graphs.

A classical problem in graph theory is the following:

102 Reed

Disjoint Paths: Given a graph G and two sets of vertices S and T of G with
|S| = |T | = k, determine whether there are k vertex disjoint paths from S
to T , and if so find such a set of paths.

This problem can be solved in polynomial time, even if k is part of the input (see
[23]). The algorithm used to solve this problem is one of the fundamental tools
used in Operations Research, indeed we used it to speed up our algorithm for
finding tree decompositions.

We consider a slightly different problem:

k-Rooted Routing: Given a graph G and two subsets S = {s1, ..., sk} and
T = {t1, ..., tk} of vertices of G, determine if there are k vertex disjoints
paths P1, .., Pk linking S and T so that Pi links si and ti.

This problem is NP -complete if k is part of the input (see [26]). However, it is in
P for any fixed k. In fact, Robertson and Seymour [38] developed an O(|V (G)|3)
time algorithm to solve k-Rooted Routing for a fixed k. Reed (cf. [31]) improved
this to O(|V (G)|2).)

We will now discuss Robertson and Seymour’s algorithm. It is quite compli-
cated, so we will focus on the role that tree decompositions play and give only a
vague description of the remainder of the algorithm. We begin with a definition.

Definition 4.6.1 Let (G, S, T) be an instance of k-Rooted Routing. A vertex v
is irrelevant (with respect to (G, S, T)) if the desired paths exist in G if and only
if they exist in G − v.

Rooted Routing for fixed k is easy to solve in linear time on graphs of bounded
tree width, using dynamic programming.

Robertson and Seymour [38] proved:

Theorem 4.6.1 For every k there is an hk such that if (G, S, T) is an instance
of k-Rooted Routing and W is a wall of height hk in G then there is an irrelevant
vertex v in W . Furthermore, such a wall and corresponding irrelevant vertex
can be found in polynomial time. (Robertson and Seymour’s algorithm runs in
O(|V (G)|2) time, Reed improved this to O(|E(G)|)).

Now, obviously having found an irrelevant vertex v for (G, S, T) we can re-
strict our attention to (G − v, S, T). Robertson and Seymour repeatedly apply
Theorem 4.6.1 and delete the irrelevant vertex it returns until the graph they are
considering contains no high wall. Theorem 4.5.1 implies that such a graph has
tree width at most 2534h5

k and hence we can solve the k-Rooted Routing problem
using dynamic programming.

We now briefly sketch the methods Robertson and Seymour use to prove Theo-
rem 4.6.1. To begin we present two special cases for which it is easy to find the
desired irrelevant vertex.

First, consider an instance (G, S, T) of of k−RR such that G contains a clique
C of size 2k + 1.

If there is a set P of 2k vertex disjoint paths between S ∪ T and some subset
C′ of C then the desired paths P1, .., Pk exist, indeed we can choose each Pi to
consist of the union of two elements of P and an edge of C (see Figure 4.5). So,
we could simply stop having solved the problem. If, for some perverse reason,

4. Algorithmic Aspects of Tree Width 103

we actually want to find an irrelevant vertex then we note that if we choose the
paths in P minimal then they are internally disjoint from C and by the above
remarks, every vertex in C − C′ is irrelevant.

�

�

�

�

�

�

�

	
	
	
	
		

�
�
�
�
�
�
�
�
��

�
�
�
�
��

��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
��

�
�
�
�
�����������

����
����

���

�
�
�
�
��

�
�
�
���

�
�
�
�
�
�
�

���������

��
���

�
�
�
�
�
��

�
�
�
�
��

c1

c5

c6

c7

c4

c2

c3

�

�

�

�

�

�s1

s2

s3

t1

t2

t3

Figure 4.5. c4 is irrelevant

Otherwise, by Menger’s Theorem, there is a set X of less than 2k vertices such
that there is no path between S ∪ T and C in G − X. That is, S ∪ T is disjoint
from the component U of G − X containing C − X. In fact, Menger’s Theorem
implies that if we choose such an X with |X| minimum then there is a set R
of |X| vertex disjoint paths from X to some subset C′ of C. By taking minimal
paths, we can ensure these paths are disjoint from C − C′. Now, for any set P
of k vertex disjoint paths linking S to T , the intersection of the paths in P with
X ∪ U must be a set P ′ of paths with endpoints in X (since there are no edges
from U to G − X − U). For any such set P ′ of paths, we can clearly obtain a set
of paths with the same endpoints using the paths of R and an appropriate subset
of the edges between vertices of C′. Thus, if a solution to our instance of k − RR
exists, there is a solution whose intersection with U uses only those vertices on
some element of R and in particular uses none of the vertices of C−C′. Therefore
the vertices in C − C′ are irrelevant.

So we obtain:
If (G, S, T) is an instance of k − RR, and C is a clique of size at least 2k + 1

in G then in polynomial time, we can either find the desired paths or find an
irrelevant vertex v.

It turns out that a similar statement holds if C is a sufficently large set of
disjoint connected subgraphs every pair of which are joined by an edge, we call
such a set a clique minor. In fact, Robertson and Seymour present a straightfor-
ward algorithm which uses Menger’s Theorem to find an irrelevant vertex given
a clique minor C consisting of 8k + 3 such subgraphs (cf. [38]).

Next, consider an instance (G, S, T) of k-Rooted Routing such that G contains
a wall W of height 2k and has a planar embedding such that the perimeter of

104 Reed

W forms the infinite face. Suppose that S ∪ T lies on the perimeter of W . Note
that there are nested cycles D1, ..., Dk such that Di lies in union of the rows
Ri, R2k+2−i and the columns Ci, C2k+2−i and hence Di+1 lies inside Di. If k = 1
then clearly the desired P1 exists in D1. If k = 2 then pushing the paths as close
to the perimeter as possible, we can show that if the desired paths exist we can
find them in subgraph consisting of D2 and that part of G drawn outside D2. In
the same vein, for any k, if the desired paths exist then they exist in the subgraph
of G on or outside Dk. Thus, every vertex in the intersection of Ck+1 and Rk+1

is irrelevant. So in this case, given the wall W , we can indeed find an irrelevant
vertex of G quickly.

It turns out that given any instance (G, S, T) such that G contains a high wall,
we will find ourselves in a situation similar to one of the two considered above.
If the connections between W and G − W are “highly non-planar” then G will
contain a clique minor consisting of 8k + 3 disjoint subgraphs and hence we are
in the first situation discussed above. If the connections between W and G − W
are “sufficiently planar” then we can find a subwall W ′ of G such that the vertex
in the middle of the subwall is irrelevant. The proof of this fact requires three
hundred pages, and even a precise statement of the results is beyond the scope
of this article.

The algorithm to solve k-Rooted Routing has a host of applications. In partic-
ular, Robertson and Seymour used it in developping a polynomial time algorithm
to test membership in any class of graphs closed under the taking of minors.

References

[1] N. Alon, P. Seymour, and R. Thomas, A separator theorem for graphs with
an excluded minor and its applications, Proceedings of the 22nd Annual
Association for Computing Machinery Symposium on Theory of Computing,
ACM Press, New York (1990) 293–299

[2] N. Alon, P. D. Seymour, and R. Thomas, Planar separators, SIAM Journal
on Discrete Mathematics 7 (1994) 184–193

[3] D. Archdeacon and P. Huneke, A Kuratowski theorem for nonorientable
surfaces, Journal of Combinatorial Theory, Series B 46 (1989) 173–231

[4] S. Arnborg, D. G. Corneil and A. Proskurowski, Complexity of finding em-
beddings in a k-tree, SIAM Journal on Algebraic and Discrete Methods 8
(1987) 277–284

[5] S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, An algebraic theory
of graph reduction, Journal of the Association for Computing Machinery 40
(1993) 1134–1164

[6] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable
graphs, Journal of Algorithms 12 (1991) 308–340

[7] S. Arnborg and A. Proskurowski, Linear time algorithms for NP-hard prob-
lems restricted to partial k-trees, Discrete Applied Mathematics 23 (1989)
(11–24)

4. Algorithmic Aspects of Tree Width 105

[8] D. Applegate, B. Bixby, V. Chvátal and W. Cook, On the solution of
travelling salesman problems, Proceedings of the International Congress of
Mathematicians Vol. III (Berlin, 1998) 645–656

[9] M. Ball, T. Magnanti, C. Monma, and G. Nemhauser, Network Models,
North Holland, Amsterdam, The Netherlands, 1995

[10] H. Bodlaender, M. Fellows, M. Hallett, T. Wareham and T. Warnow, The
hardness of perfect phylogeny, feasible register assignment, and other prob-
lems on thin coloured graphs, Theoretical Computer Science 244 (2000)
167–188

[11] H. L. Bodlaender, Dynamic programming on graphs of bounded treewidth,
Proceedings of the 15th International Colloquium on Automata, Languages
and Programming, T. Lepistö and A. Salomaa (eds.), Lecture Notes in
Computer Science 317 (1998) 105–118, Springer Verlag, Berlin

[12] H. L. Bodlaender, Polynomial algorithms for graph isomorphism and
chromatic index on partial k-trees, Journal of Algorithms 11 (1990) 631–643

[13] H. L. Bodlaender, A linear time algorithm for finding tree decompositions
of small treewidth, SIAM Journal of Computing 25 (1996) 1305-1317

[14] H. Bodlaender and T. Kloks, Efficient and Constructive algorithms for
pathwidth and treewidth of graphs, Journal of Algorithms 21 (1996) 358-402

[15] F. R. K. Chung, Spectral Graph Theory, American Mathematical Society,
Providence, Rhode Island, 1997

[16] B. Courcelle, The monadic second order logic of graphs. I. Recognizable sets
of finite graphs, Information and Computation 85 (1990) 12–75

[17] M. R. Fellows and M. A. Langston, Nonconstructive advances in polynomial-
time complexity, Information Processing Letters 26 (1987) 157–162

[18] M. R. Fellows and M. A. Langston, Nonconstructive tools for proving
polynomial-time decidability, Journal of the Association for Computing
Machinery 35 (1988) 727–739

[19] L. Ford and D. Fulkerson, Maximal flow through a network, Canad. J. Math.
8 (1956) 399-404

[20] L. Ford and D. Fulkerson, A simple algorithm for finding maximal network
flows and an application to the Hitchcock Problem, Canad. J. Math. 9 (1957)
210-218

[21] F. Gavril, Algorithms on Clique Seperable Graphs, Discrete Mathematics
19 (1977), 159-165

[22] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, Toronto, Ontario, 1980

[23] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Don
Mills, Ontario, 1969

[24] R. M. Karp, On the complexity of combinatorial problems, Networks 5
(1975) 45–68

[25] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM
Journal on Applied Mathematics 36 (1979) 177–189

106 Reed

[26] J. Lynch, The equivalence of theorem proving and the interconnection
problem, Association for Computing Machinery’s Special Interest Group on
Design Automation Newsletter 5 (1976)

[27] K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae 10
(1927) 96–115

[28] B. Mohar and C. Thomassen, Graphs on Surfaces, John Hopkins Univeristy
Press, Baltimore, 2001

[29] B. Reed, Tree width and tangles, a new measure of connectivity and some
applications, Surveys in Combinatorics, R. Bailey (ed.), LMS Lecture Note
Series 241 (1997) 87–162, Cambridge University Press, Cambridge, UK

[30] B. A. Reed, Finding approximate separators and computing tree width
quickly, Proceedings of the 24th Annual Association for Computing Ma-
chinery Symposium on Theory of Computing, ACM Press, New York, 1992,
221–228

[31] B. Reed, Disjoint connected paths: faster algorithms and shorter proofs,
manuscript.

[32] N. Robertson and P. D. Seymour, Graph Minors. II. Algorithmic aspects of
tree-width, Journal of Algorithms 7 (1986) 309–322

[33] N. Robertson and P. D. Seymour, Graph Minors. IV. Tree-width and well-
quasi-ordering, Journal of Combinatorial Theory, Series B 48 (1990) 227–
254

[34] N. Robertson and P. D. Seymour, Graph Minors. V. Excluding a planar
graph, Journal of Combinatorial Theory, Series B 41 (1986) 92–114

[35] N. Robertson and P. D. Seymour, Graph Minors. VII. Disjoint paths on a
surface, Journal of Combinatorial Theory, Series B 45 (1988) 212–254

[36] N. Robertson and P. D. Seymour, Graph Minors. VIII. A Kuratowski theo-
rem for general surfaces, Journal of Combinatorial Theory, Series B 48
(1990) 255–288

[37] N. Robertson and P. D. Seymour, Graph Minors. X. Obstructions to tree-
decomposition, Journal of Combinatorial Theory, Series B 52 (1991) 153–
190

[38] N. Robertson and P. D. Seymour, Graph Minors. XIII. The disjoint paths
problem, Journal of Combinatorial Theory, Series B 63 (1995) 65–110

[39] N. Robertson and P. D. Seymour, Graph Minors. XVI. Excluding a non-
planar graph, manuscript.

[40] N. Robertson and P. D. Seymour, Graph Minors. XX. Wagner’s Conjecture,
manuscript, 1988.

[41] N. Robertson, P. D. Seymour and R. Thomas, A survey of linkless embed-
dings, Graph Structure Theory (Proceedings of the AMS-IMS-SIAM Joint
Summer Research Conference on Graph Minors, Seattle, 1991), N. Robert-
son and P. Seymour (eds.), Contemporary Mathematics 147 (1993) 125–136,
American Mathematical Society, Providence, Rhode Island

[42] N. Robertson, P. Seymour and R. Thomas, Quickly excluding a planar graph,
Journal of Combinatorial Theory, Series B 62 (1994) 323–348

[43] P. Seymour, A bound on the excluded minors for a surface, manuscript.

4. Algorithmic Aspects of Tree Width 107

[44] P. D. Seymour and R. Thomas, Graph searching and a min-max theorem
for tree-width, Journal of Combinatorial Theory, Series B 58 (1993) 22–33

[45] R. Thomas, A Menger-like property of tree-width: the finite case, Journal
of Combinatorial Theory, Series B 48 (1990) 67–76

[46] M. Thorup, All structured programs have small tree-width and good register
allocation, Information and Computation 142 (1998) 159–181

[47] S. Whitesides, An Algorithm for Finding Clique Cutsets, Information
Processing Letters 12 (1981) 31–32

This page intentionally left blank

5

A Survey on Clique Graphs
J.L. Szwarcfiter1

5.1 Introduction

Intersection graphs, in general, have been receiving attention in graph theory, for
some time. For example, there are specific papers on this subject, dated some
sixty years ago. On the other hand, two books, [14] and [56], appeared recently
where intersection graphs play a central role. The book [30] also deals with various
classes of intersection graphs.

Clique graphs form a class of intersection graphs. In this sense, the clique
graph of a graph G exhibits the way in which the cliques of G are arranged.
Clique graphs have been also studied in the context of graph operators [70]. A
point of attraction in this study is the variety of different situations which arise
as a result of taking the clique graph of a graph. Clique graphs were included
in the books [14], [56] and [70]. Besides several papers have been written on the
subject, since the sixties.

In this work, we survey some of the results on clique graphs. Comments re-
lated to the computational complexities of some clique graph problems have been
included. In Section 2, we examine the effect on clique graphs, of some known
binary graph operations. In the following section, we address the questions of
characterization and recognition of the class. A study of clique graphs of classes
of graphs is the subject of Section 4. On the other hand, Section 5 examines the
inverse of the clique graph operation, for some classes of graphs. Iterated clique
graphs form the subject of Section 6. In particular, topics of convergence and
divergence of iterated clique graphs are described in Section 7. Diameters of iter-
ated clique graphs are studied in Section 8. Finally, in the last section there is a
brief description of some related topics and a list of open problems. An appendix
contains definitions of graph classes mentioned in the text.

Consider undirected and simple graphs. Denote by V (G) the vertex set and
by E(G) the edge set of a graph G. Represent by N(v) and N [v] the open and
closed neighbourhood of a vertex v ∈ V (G). If v and w are vertices of G satisfying
N [v] = N [w] then v, w are twins. If N [v] ⊆ N [w] say that v is dominated by w.

1Partially supported by the Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico, CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro,
FAPERJ, Brazil

110 Szwarcfiter

By d(v, w) denote the distance between v and w in G, that is, the length of the
shortest v − w path. Let G[v1, . . . , vk] represent the subgraph induced in G by
{v1, . . . , vk} ⊆ V (G). The symbol cn denotes an induced cycle of length n. If v
is a vertex of a subgraph H of G adjacent to every other vertex of H then v
is universal in H. The k-th power of G, denoted by Gk, is the graph obtained
from G by including the edge (v, w), whenever d(v, w) ≤ k. Finally, the symbol
G represents the complement of G.

Z Z’

Z’’ Z’’’

Figure 5.1. Extended Hajós Graphs

A complete of G is a subset of vertices pairwise adjacent. A clique is a maximal
complete. An independent set is a subset of vertices pairwise non adjacent. The
clique graph of G, denoted by K(G), is the intersection graph of the cliques of
G. In this case, G is a clique inverse graph of K(G). The graph Z of Figure 1 is
called Hajós graph, while the graphs Z, Z′, Z′′, Z′′′ are the extended Hajós graphs.
For example, the graph Z is such that K(Z) = K4. Hence K4 is the clique graph
of the Hajós graph, whereas the latter is a clique inverse graph of K4. An induced
star with four leaves is another clique inverse graph of K4. On the other hand,
not all graphs are clique graphs. Indeed, none of the extended Hajós graphs are
clique graphs.

5.2 Operations on Clique Graphs

To start our study, it would be interesting to examine the effect of some binary
operations in relation to clique graphs. Let G1, G2 be vertex disjoint graphs. In
special, consider the following specific operations.

5. A Survey on Clique Graphs 111

Union: G1 ∪ G2 is the graph such that V (G1 ∪ G2) = V (G1) ∪ V (G2) and
E(G1 ∪ G2) = E(G1) ∪ E(G2).

Join: G1 + G2 is defined as V (G1 + G2) = V (G1 ∪ G2) and E(G1 + G2) =
E(G1 ∪ G2) ∪ [V (G1) × V (G2)], where V (G1) × V (G2) represents the set of
unordered pairs (v1, v2), with v1 ∈ V (G1) and v2 ∈ V (G2).

Cartesian Product: G1 × G2 is the graph where V (G1 × G2) = V (G1) × V (G2)
and for v1, w1 ∈ V (G1) and v2, w2 ∈ V (G2), (v1, v2) and (w1, w2) are adjacent
vertices in G1 × G2 precisely when (v1, w1) ∈ E(G1) and (v2, w2) ∈ E(G2).

Dot Product: G1 ◦ G2 has vertex set V (G1 ◦ G2) = V (G1 × G2) and edges
as follows. For v1, w1 ∈ V (G1) and v2, w2 ∈ V (G2), (v1, v2) and (w1, w2) are
adjacent vertices in G1 ◦ G2 if (i) v1 = w1 and (v2, w2) ∈ E(G2), or (ii) v2 = w2

and (v1, w1) ∈ E(G1), or (iii) (v1, w1) ∈ E(G1) and (v2, w2) ∈ E(G2).
The following theorem relates the clique graphs of G1, G2, with that of a graph

obtained by an operation of G1, G2.

Theorem 5.2.1 [58]: Let G1, G2 be graphs with disjoint vertex sets. Then

(1) K(G1 ∪ G2) = K(G1) ∪ K(G2)

(2) K(G1 + G2) = K(G1) × K(G2)

(3) K(G1 ◦ G2) = K(G1) ◦ K(G2)

Proof.Equality (1) is trivial. For (2), because each pair of vertices v1, v2, where
v1 ∈ V (G1) and v2 ∈ V (G2), is adjacent in G1 +G2, it follows that each clique of
G1 + G2 corresponds to a pair of cliques C1 of G1 and C2 of G2. Consequently,
V (K(G1 + G2)) = V (K(G1)) × V (K(G2)). Let C, C′ be two cliques of G1 + G2,
while C1, C2 and C′

1, C
′
2 are their corresponding pairs of cliques in G1 and G2,

respectively. Then C ∩ C′ = ∅ if and only if C1 ∩ C′
1 = ∅ and C2 ∩ C′

2 = ∅.
Consequently, (2) holds. The proof of (3) is similar. �

5.3 A General Characterization

This section discusses the question of which graphs are clique graphs and the
related recognition problem.

Let S be a family of subsets of some set. Say that S satisfies the Helly property
when every subfamily of it, formed by pairwise intersecting subsets, contains a
common element.

A graph is clique-Helly when its family of cliques satisfies the Helly property.
The Hajós graph is the smallest graph which is not clique-Helly. This class of
graphs has a central role in the study of clique graphs.

Given a graph H, the question is whether or not H is a clique graph. A sufficient
condition has been formulated in [40], stating that H is a clique graph, whenever
it is clique-Helly. On the other hand, examples of clique graphs which are not
clique-Helly are given in Figure 3.

An edge cover (by completes) of a graph G is a collection C of completes of G,
such that every edge of G has its both ends in some complete of C.

112 Szwarcfiter

By turning weaker the condition of [40], the following characterization has been
formulated in [79]. In fact, it is the only general characterization for clique graphs
so far known.

Theorem 5.3.1 [79]: A graph is a clique graph if and only if it admits an edge
cover satisfying the Helly property.

Proof.Let H = K(G), V (G) = {v1, . . . , vn} and C1, . . . , C� the cliques of G. For
vi ∈ V (G), denote Li = {Cj |vi ∈ Cj} and L = {L1, . . . , Ln}. Clearly, each Li is
a complete of H, because every Cj ∈ Li contains vi. In addition, L is an edge
cover of H, because (Cj , Ck) ∈ E(H) implies vi ∈ Cj ∩ Ck, for some vi. Finally,
let L′ ⊆ L be a subfamily of pairwise intersecting completes of L. Without loss
of generality, let L′ = {L1, . . . , Lp}. Then there exists a vertex Cjk ∈ V (H), such
that Cjk ∈ Lj ∩ Lk. Then (vj , vk) ∈ E(G), for 1 ≤ j ≤ k ≤ p. The clique of G
containing the complete G[v1, . . . , vp] belongs to Lj , for 1 ≤ j ≤ p. Consequently,
L satisfies the Helly property. Conversely, let L = {L1, . . . , Ln} be an edge cover
by completes, satisfying the Helly property. Construct a graph G, with vertex
set V (G) = V (H) ∪ L, as follows. For Ci ∈ V (H) and Lj ∈ L, (Ci, Lj) ∈ E(G)
precisely when Ci ∈ Lj . For Li, Lj ∈ L, (Li, Lj) ∈ E(G) when i �= j and
Li ∩ Lj �= ∅. The graph G contains no other edges. It follows that H = K(G),
completing the proof. �

A consequence of the above theorem is that a K4-free graph is a clique graph
if and only if it is clique-Helly.

So far, this characterization did not lead to a polynomial time algorithm for
recognizing clique graphs. In fact, it is an open question to determine the com-
plexity of the recognition problem [14, 71]. However, it is simple to conclude that
the decision problem belongs to NP. This is so because we need no more than
|O(E(H))| completes to cover the edges of a graph H and there is a polynomial
time algorithm to verify if a given collection of subsets satisfies the Helly property
[6, 79].

A graph is clique-complete when every pair of its cliques intersect. Clique-
complete graphs were first considered in [57]. Clearly, a clique-complete graph is
clique-Helly precisely when it contains a universal vertex. The following theorem
describes a family of graphs, appearing as induced subgraphs in a clique-complete
graph with no universal vertex. For n ≥ 3, let Qn be the graph whose vertices
can be partitioned into two subsets V1, V2, both of size n, as follows: V1 = cn,
V2 = Kn, and each vertex of V1 is adjacent in Qn exactly to one vertex of V2

and conversely. There are no other edges. Note that Q3 is the Hajós graph. See
Figure 2.

Theorem 5.3.2 [55]: Every clique-complete graph with no universal vertex
contains Q2n+1 as an induced subgraph, for some n ≥ 1.

On the other hand, in a clique graph, each induced subgraph which is iso-
morphic to an extended Hajós graph, must be contained in a (larger) special
subgraph, as described by the following theorem.

5. A Survey on Clique Graphs 113

Q Q
3 5

Figure 5.2. Minimal clique-complete graphs with no universal vertices

Theorem 5.3.3 [36]: Let H be a clique graph. If H contains an induced subgraph
H ′ isomorphic to an extended Hajós graph then H ′ must be contained in a (not
necessarily induced) subgraph of H isomorphic to graphs A or B of Figure 3.

Proof.Let H ′ be and induced subgraph of H, isomorphic to the Hajós graph.
Let V (H ′) = {v1, . . . , v6}, labelled as in Figure 3. By Theorem 2, H has a Helly
edge cover C, formed by completes. First, suppose {v1, v2, v3} ⊆ C1, for some
complete C1 ∈ C. If there are completes C2, C3, C4 ∈ C, containing the subsets
{v1, v2, v4}, {v1, v3, v6}, {v2, v3, v5}, respectively, then H must contain a vertex
adjacent to all vertices of H ′, meaning that A is a subgraph of H. Otherwise,
without loss of generality, {v1, v4} and {v2, v4} are contained in distinct completes
C′

2, C
′′
2 ∈ C. Because C1 ∩ C′

2 ∩ C′′
2 �= ∅ it follows that there exists a vertex w

adjacent to all vertices of C1 ∪ C′
2 ∪ C′′

2 . Consequently H contains A. Otherwise,
{v1, v2, v3} �⊆ C, for any C ∈ C, and consider the following alternatives. Suppose
that {v1, v2, v4} ⊆ C1, for some C1 ∈ C. Then {v1, v3} and {v2, v3} must be
covered by distinct completes C2 and C3. Since C1, C2, C3 pairwise intersect, there
exists w ∈ C1 ∩C2 ∩C3. Then H contains A. The situations where {v1, v3, v6} or
{v2, v3, v5} are contained in a complete of C are similar. The last alternative is the
case where the edges in each of the subsets {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v6} and
{v2, v3, v5} belong to distinct completes of C. Consequently, there exists a vertex
wi, 1 ≤ i ≤ 4, adjacent to all the vertices of each of these subsets, respectively.
If two w′

is coincide then H contains A. Consider w1, w2, w3, w4 as distinct. Then
w1 must be adjacent to w2, w3, w4, otherwise C does not satisfy Helly. Therefore
H contains B. �

The above theorem might be useful in a recognition process for clique graphs.

5.4 Clique Graphs of Classes of Graphs

Given a class A of graphs, denote by K(A) the class containing exactly the clique
graphs of the graphs of A. In this section, we discuss the problems of character-
izing and recognizing the graphs of K(A), for several classes A. In general, we
identify a class by capital letters. For example, INTERVAL is the class of interval

114 Szwarcfiter

v v

v

v

vv

w

A B

w

w

w w

1

1

2 2

3

3 4

4

56

v
1 v

2

v
4

v
6 v

3
v
5

Figure 5.3. Graphs A and B

graphs. In the appendix there is a list of definitions of classes considered in this
text.

A class of graphs A is fixed when K(A) = A. The result that clique-Helly
graphs form a fixed class of graphs is fundamental in the study of clique graphs.

Theorem 5.4.1 [28]: K(CLIQUE-HELLY) = CLIQUE-HELLY.

Proof.Let G be a clique-Helly graph, H = K(G), and C a family of pairwise
intersecting cliques of H. Because G is clique-Helly, there is a vertex vi ∈ V (G)
common to all cliques of C, which form the clique Ci ∈ C. The collection of such
vertices vi, for Ci ∈ C, is a complete C of G. Therefore any maximal clique of
G, containing C, is a vertex of H common to all Ci ∈ C. Consequently, K(G) is
clique-Helly.

It remains to show that any clique-Helly graph H is the clique graph of some
clique-Helly graph. From [40], it follows that H = K(G), for some clique-Helly
G. �

As for the recognition problem, clique-Helly graphs can be recognized in poly-
nomial time. With the purpose of describing such a method, let G be a graph and
T a triangle of it. The extended triangle T ′ of G, relative to T , is the subgraph
induced in G by the set formed by all the vertices adjacent to at least two of the
vertices of T . The following is a characterization of clique-Helly graphs, which
leads to a polynomial time recognition algorithm.

Theorem 5.4.2 [25, 83]: A graph G is clique-Helly if and only if every extended
triangle of it contains a universal vertex.

Proof.Let T be a triangle of G. Suppose that the extended triangle T ′, relative
to T , does not contain a universal vertex. Let C be the collection of cliques of
G, containing at least one edge of T . It follows that C is a collection of pairwise
intersecting cliques of G, with no common vertex. Consequently, G is not clique-
Helly, a contradiction. Conversely, by hypothesis, every extended triangle T ′ of
G contains a universal vertex. Suppose that G is not clique-Helly. Let C be a
minimal family of pairwise intersecting cliques Ci of G, with no common vertex.
By the minimality of C , there exists a triangle T with vertices v1, v2, v3 such
that vi is a common vertex of C \ Ci, 1 ≤ i ≤ 3. The extended triangle T ′ of G
contains a universal vertex. This leads to conclude that C has a common vertex,
a contradiction. Therefore, G is clique-Helly. �

5. A Survey on Clique Graphs 115

The following theorem shows that clique graphs of interval graphs also remain
in the class, but do not cover all its domain.

Theorem 5.4.3 [43]: K(INTERVAL) = PROPER INTERVAL

Classes as those of interval graphs, such that K(A) ⊆ A are called closed.
Chordal graphs are not closed, because their clique graphs are not necessarily
chordal. In fact they correspond to the following class.

Theorem 5.4.4 [12, 32, 84]: K(CHORDAL) = DUALLY CHORDAL

The class of dually chordal graphs can be recognized in polynomial time [84].
Moreover, a linear time algorithm has been described in [12]. Additionally, the
complexities of some optimization problems, specialized to dually chordal graphs,
have been determined in [11]. Another main source for solving optimization prob-
lems on dually chordal graphs is the paper [13]. A relation between squares of
chordal graphs and dually chordal graphs is described in [86].

Clique graphs of several subclasses of chordal graphs have been characterized,
so far. On the other hand, there are proeminent classes of graphs, as planar graphs
and comparability graphs, whose clique graphs have not yet been characterized.

Table 5.1 summarizes some classes of graphs, together with their corresponding
classes of clique graphs. As it can be observed from the table, most of the classes
whose clique graphs have been characterized so far, can be classified into three
types: fixed classes, closed classes and classes A, such that A and K(A) overlap,
but K(K(A)) ⊆ A.

Finally, we mention some more general results on classes of clique graphs.
In [5], it has been shown that the underlying graphs of certain families
of hypergraphs form a fixed class, provided these families consist of self-
dual conformal hypergraphs, closed under the operations of reduction and
addition of isolated edges. On the other hand, [33, 34] describe a character-
ization of certain intersection graphs, which can be applied as a technique
for proving several results on clique graph classes.

5.5 Clique Inverse Classes

Let A be a class of (clique) graphs. Denote by K−1(A) the class of all
clique inverse graphs of the graphs of A. In the present section, we describe
results concerning the characterization and recognition ofK−1(A), for some
classes A. The reference [73] is devoted to this topic.

Clique inverse graphs ofK3-free graphs can be characterized by forbidden
subgraphs, as follows.

Theorem 5.5.1 [74]: A graph G is a clique inverse graph of a K3-free
graph if and only if it does not contain an induced subgraph isomorphic to
any of the graphs of Figure 4.

116 Szwarcfiter

CLASS A K(A) REFS
BLOCK BLOCK [42]
CLIQUE-HELLY CLIQUE-HELLY [28]
CHORDAL DUALLY CHORDAL [12, 32, 84]
CLOCKWORK CLOCKWORK [48]
DE DUALLY DE [35]
DIAMOND FREE DIAMOND FREE [21]
DISK-HELLY DISK-HELLY [5]
DISMANTABLE DISMANTABLE [5]
DUALLY CHORDAL CHORDAL ∩ CLIQUE-HELLY [12, 32]
DUALLY DE DE [35]
DUALLY DV DV [38, 72]
DUALLY RDV RDV [10, 72]
DV DUALLY DV [38, 72]
H1 H1 [23]
HELLY CIRCULAR ARC CIRCULAR CLIQUE [26]
HELLY HEREDITARY HELLY HEREDITARY [68]
INTERVAL PROPER INTERVAL [43]
MIN PROPER INTERVAL PROPER INTERVAL [37]
PROPER INTERVAL PROPER INTERVAL [43]
PTOLOMAIC PTOLOMAIC [5]
RDV DUALLY RDV [10, 72]
SPLIT STAR
STRONGLY CHORDAL STRONGLY CHORDAL [5, 12]
TREE BLOCK [42]
UV DUALLY CHORDAL [84]

Table 5.1. Clique Graph Classes

K
1,3 4-fan 4-wheel

Figure 5.4. Forbidden subgraphs for clique-inverse graphs of K3-free graphs

Proof.The graphs of Figure 4 have all three mutually intersecting cliques.
Therefore if G contains any of those as an induced subgraph, K(G) would
contain a triangle. Conversely, by hypothesis, G does not contain any of
these graphs as an induced subgraph. We show that K(G) is triangle free.

5. A Survey on Clique Graphs 117

Assume the contrary and let C1, C2, C3 be three distinct pairwise intersect-
ing cliques of G. For I ⊆ {1, 2, 3}, denote by VI the subset of vertices of
G lying exactly in every of the cliques Ci and in none of the cliques Cj ,
i ∈ I and j ∈ {1, 2, 3} \ I. For simplicity, write V123, instead of V{1,2,3}, V12
instead of V{1,2} and so on. Consider the following situations.

Case 1 : V123 �= ∅ and V12 = V13 = V23 = ∅
Let u ∈ V123, u1 ∈ V1, u2 ∈ V2 and u3 ∈ V3, such that
(u1, u2), (u1, u3) �∈ E(G). If (u2, u3) �∈ E(G) then G[u, u1, u2, u3] =
K1,3. Otherwise, let u′

3 ∈ V3 satisfying (u2, u
′
3) �∈ E(G). If (u1, u

′
3) ∈

E(G) then G[u, u1, u2, u3, u
′
3] is a 4-fan, otherwise G[u, u1, u2, u

′
3] =

K1,3.

Case 2 : V123, V12 �= ∅ and V13, V23 = ∅
Let u ∈ V123, u12 ∈ V12, u1 ∈ V1, u2 ∈ V2 and u3 ∈ V3, such that
(u1, u2), (u12, u3) �∈ E(G). If (u1, u3), (u2, u3) �∈ E(G) it follows that
G[u, u1, u2, u3] = K1,3. If (u1, u3) ∈ E(G) and (u2, u3) �∈ E(G) (or
(u2, u3) ∈ E(G) and (u1, u3) �∈ E(G)) then G[u, u1, u12, u2, u3] is a
4-fan. If (u1, u3), (u2, u3) ∈ E(G) it follows that the latter subgraph
is a 4-wheel.

Case 3 : V123, V12, V13 �= ∅ and V23 = ∅
Let u ∈ V123, u12 ∈ V12, u13 ∈ V13, u2 ∈ V2, u3 ∈ V3, such that
(u13, u2), (u12, u3) �∈ E(G). Then G[u, u12, u13, u2, u3] is either a 4-
wheel or a 4-fan, according to whether or not u2, u3 are adjacent,
respectively.

Case 4 : V123, V12, V13, V23 �= ∅
Let u ∈ V123, u12 ∈ V12, u13 ∈ V13, u23 ∈ V23, u2 ∈ V2, u3 ∈
V3, such that (u13, u2), (u12, u3) �∈ E(G). Similarly as in Case 3,
G[u, u12, u13, u2, u3] is a 4-wheel or a 4-fan, according to whether
u2, u3 are adjacent or not.

Case 5 : V123 = ∅
Then V12, V13, V23 �= ∅. Choose u1 ∈ V1, u2 ∈ V2, u12 ∈ V12, u13 ∈
V13, u23 ∈ V23, such that (u1, u23), (u13, u2) �∈ E(G). It follows that
G[u1, u12, u13, u2, u23] is a 4-wheel or a 4-fan, depending on whether
or not u1, u2 are adjacent, respectively.

All situations have been covered. In each of them a graph of Figure 4 has
been obtained. This completes the proof. �

The list of forbidden subgraphs increases, when considering K4-free
graphs, instead of K3-free.

Theorem 5.5.2 [74]: A graph G is a clique inverse graph of a K4-free
graph if and only if it does not contain an induced subgraph isomorphic to
any of the graphs of Figure 5.

118 Szwarcfiter

Figure 5.5. Forbidden subgraphs for clique-inverse graphs of K4-free graphs

Clique inverse graphs of bipartite graphs can also be described by
forbidden subgraphs.

Theorem 5.5.3 [76]: A graph G is a clique inverse graph of a bipartite
graph if and only if it does not contain as an induced subgraph any of the
following: K1,3, 4-fan, 4-wheel nor c2k+5, k ≥ 0.

However, for some classes of graphs A, recognizing graphs of K−1(A)
is NP-hard. The following theorem shows that deciding whether a given
graph is a clique inverse of a complete graph is Co-NP-complete.

Theorem 5.5.4 [55]: Recognizing clique-complete graphs is Co-NP-com-
plete.

Proof.Transformation from the satisfiability problem. Let E be a boolean
expression in conjunctive normal form, with clauses Li, 1 ≤ i ≤ p, each Li

having qi literals. Construct a graph G, as follows. There is one vertex vi

of G, for each clause Li. In addition, one vertex wij , for each occurrance
of a literal in Li, 1 ≤ i ≤ p and 1 ≤ j ≤ qi. There are two additional
vertices, u1 and u2. The edges of G are the following. For all 1 ≤ i, k ≤ p,
i �= k and 1 ≤ j ≤ qi, (vi, vk), (vi, wkj) ∈ E(G). Denote by �ij the literal of

5. A Survey on Clique Graphs 119

CLASS A K−1(A) REFS
BIPARTITE P [76]
3-COLOURABLE NP-complete [75]
CHORDAL Co-NP-complete [75]
CHORDAL BIPARTITE P [76]
CLIQUE-HELLY NP-hard [24]
CO-COMPARABILITY NP-hard [75]
CO-INTERVAL NP-hard [75]
COMPARABILITY NP-hard [75]
COMPLETE Co-NP-complete [55]
INTERVAL Co-NP-Complete [75]
K3 − FREE P [74]
K4 − FREE P [74]
SPLIT Co-NP-complete [75]
TREE P [76]
TRIANGLE FREE P [76]

Table 5.2. Complexity of Recognizing Clique Inverse Classes

Li, corresponding to wij . The edges (wij , wkt) exist precisely when i �= k
and �ij �= �kt. Vertex u1 is adjacent to all vertices of G, except u2. The
neighbours of u2 are v1, . . . , vp. The construction of G is completed. If E
is satisfiable, let wiji be the vertex of G corresponding to the literal of E,
which satisfies clause Li. In this case, u1, w1j1 , . . . , wpjp and u2, v1, . . . , vp

are disjoint cliques of G. Conversely, if G contains a pair of disjoint cliques
then one of them, is u1, w1j1 , . . . , wpjp and the other is u2, v1, . . . , vp. Con-
sequently, E is satisfiable if and only if G is not clique-complete. Finally,
a certificate for G not to be clique-complete is a pair of disjoint cliques.
Therefore recognizing clique-complete graphs is Co-NP-complete. �

Assuming that we know how to recognize graphs of a class A, the task of
verifying whether a given graph G belongs to K−1(A) becomes simple, if
the number of cliques of G is bounded by a polynomial in |V (G)|. Sufficient
conditions for a graph to have a polynomial number of cliques have been
described in [4, 71, 75].

Table 5.2 illustrates some classes of graphs, whose complexity of recog-
nizing the corresponding clique-inverse classes have been determined. That
is, whether each recognition problem is NP-hard or belongs to the class P.

Finally, the following concept provides additional information about min-
imal clique-inverse graphs. A graph G is critical when K(G) �= K(G− v),
for any v ∈ V (G). For a fixed graph H, the set of critical graphs G sat-
isfying H = K(G) is finite [29]. Observe that, for any clique graph H,
there are infinite graphs G satisfying H = K(G). However, it is simple to
prove that recognizing critical graphs is NP-hard. The reduction is from the

120 Szwarcfiter

problem of recognizing clique-complete graphs, which is Co-NP-complete
by Theorem 12.

5.6 Iterated Clique Graphs

Let G be a graph. Denote K0(G) = G and Ki(G) = K(Ki−1(G)), i > 0.
Call Ki(G) as the i-th iterated clique graph of G. In the present section, we
examine questions related to this concept.

Clique-Helly graphs play a central role in the study of iterated clique
graphs, once more. The following theorem is fundamental and its proof
provides a simple and complete description of the second iterated clique
graph of a clique Helly graph.

Theorem 5.6.1 [28]: Let G be a clique-Helly graph. Then K2(G) is an
induced subgraph of G.

Proof.Let H be an induced subgraph of G, obtained by identifying each
subset of pairwise twins of G and afterwards removing dominated vertices.
We show that H = K2(G). Associate to each vi ∈ V (H) the family Ci

of cliques of G, containing vi. Since vi is not dominated and G is clique-
Helly, it follows that Ci corresponds to a clique of K(G), hence to a vertex
wi of K2(G). In addition, since G is clique-Helly, every clique of K(G)
Ci contains a (unique) common vertex vi. Consequently, there is a one-to-
one correspondence between vertices of V (H) and V (K2(G)). Furthermore,
vi, vj ∈ V (H) are adjacent in H if and only if there is a clique of G common
to Ci and Cj , meaning that wi, wj ∈ V (K2(G)) are adjacent. Consequently,
H = K2(G). �

Induced subgraphs of clique-Helly graphs have been also considered in
[54].

For a graph G, assume that Ki(G) = G, for some i > 0. The value of the
smallest i satisfying the latter equation if the period of G, while G itself is
called a periodic graph.

The above theorem implies that periodic clique-Helly graphs can be rec-
ognized, using the following simple assertion. Let G be a clique-Helly graph.
Then G is periodic if and only if N [v] �⊆ N [w], for all distinct vertices
v, w ∈ V (G). Moreover, when G is a periodic clique-Helly graph it follows
that the period of G is 1 or 2.

In general, a graph G of period 1 is called a self-clique graph. The one-
vertex graph and cycles of length greater than 3 are simple examples of
these graphs. Figure 6 illustrates some other examples. Further examples
of self-clique graphs have been described in [3]. On the other hand, Theorem
13 also implies that the period of a periodic triangle free graph is always
two, except if it consists of a simple cycle. The latter has been extended

5. A Survey on Clique Graphs 121

in [20], where there is a characterization of self-clique graphs whose cliques
have all sizes at most 2, except precisely for one clique. The problem of
characterizing selff-clique graphs remains open, even if restricted to clique-
Helly graphs. Self-clique graphs have been also considered in [29].

Figure 5.6. Self-clique graphs

The following is a sufficient condition for a graph to be self-clique.

Theorem 5.6.2 [7]: Let G be a graph with minimum degree at least 2 and
girth at least 6k + 1, k ≥ 1. Then G2k is a self-clique graph.

In a sense, the above theorem is best possible. This is so because if G
has minimum degree 1 or girth 6k then G2k is not necessarily self-clique.
A graph G formed by a c7, together with an additional vertex adjacent
exactly to one vertex of the cycle is an example where the degree condition
of the theorem fails, while the girth condition is satisfied for k = 1. However
G2 is not self-clique. On the other hand, c6 is an example of a graph where
the degree condition is satisfied for k = 1, the girth condition fails and c62

is not a self-clique graph.
As for higher periods, there are examples of periodic (non clique-Helly

graphs), for any desired period [28].
If a graph is not clique-Helly, one might wonder whether its iterated

clique graph could become clique-Helly. For a graph G, define the Helly
defect of G as the smallest value i, such that Ki(G) is clique-Helly. In [5] it
has been shown that the Helly defect of a chordal graph is at most 1. On
the other hand, answering a question of [5], it has been proved in [8] that
there are graphs with any desired Helly defect. An example is the family of
graphs Gi, i ≥ 1, whose first three members are depicted in Figure 7. The
Helly defect of Gi is i− 1. However, it is NP-hard to recognize whether the
Helly defect of a given graph is equal to 1 [24].

5.7 Convergence and Divergence

Let G and H be graphs. Say that G is convergent to H when Ki(G) =
Ki+1(G) = H, for some i ≥ 0. When H is the one-vertex graph, call G,

122 Szwarcfiter

G G G1 2 3

Figure 5.7. Graphs with increasing Helly defects

simply, convergent. On the other hand, when limi→∞ |V (Ki(G))| = ∞, call
G a divergent graph. In this section, we examine convergence and divergence
of graphs.

For the study of convergence, we remark that convergent clique-Helly
graphs have been completely characterized. The following theorem implies
a polynomial time algorithm for recognizing graphs of this class.

Theorem 5.7.1 [5]: Let G be a clique-Helly graph. Then G is convergent
if and only if G is dismantable.

Proof.Because G is finite and by Theorems 5 and 13, G clique-Helly implies
the existence of an integer j ≥ 0 satisfying Ki(G) = Ki+2(G), for all i ≥ j.
Suppose that G is convergent. Then Kj(G) and Kj+1(G) are the one-
vertex graph. For any 0 ≤ i < j, if Ki(G) is not dismantable then it
contains a non-empty induced subgraph H formed by vertices which are
not dominated, both in H and Ki(G). By Theorem 13, H is preserved as an
induced subgraph in Ki+2m(G), for all m ≥ 0. This contradicts Kj(G) and
Kj+1(G) to be the one-vertex graph. Consequently, Ki(G) is dismantable
and so is G.

Conversely, by hypothesis G is a dismantable graph. Then Ki(G) is dis-
mantable, for all i ≥ 0. Since G is clique-Helly, Kj(G) = Kj+2(G), for some
j. If G is not convergent, by Theorem 13, Kj(G) has no dominated vertices,
meaning that Kj(G) is not dismantable, a contradiction. Therefore G must
be convergent. �

Moreover, G is a disk-Helly graph if and only if it is dismantable and
clique-Helly [5]. Dismantable graphs were considered in [63, 77], while disk-
Helly graphs in [62, 78].

On the other hand, convergent graphs are not necessarily dismantable.
Figure 8 illustrates such an example of a graph [67].

5. A Survey on Clique Graphs 123

Figure 5.8. A convergent non dismantable graph

In general, much less is known about convergence, when non clique-Helly
graphs are considered. If G is dismantable (and not clique-Helly) then it
remains convergent [67]. The index of a convergent graph G is the smallest
value of i, such that Ki(G) equals the one-vertex graph. For example,
the index of the graph of Figure 8 is equal to 7. Clique-complete graphs
having at least two cliques correspond exactly to the graphs of index 2.
By Theorem 12, it follows that recognizing convergent graphs of index 2 is
Co-NP-complete. In fact, it is NP-hard to recognize convergent graphs of
any given fixed index.

The study of convergence may have applications to other areas. For ex-
ample, in [41] it has been shown that a finite order has the fixed point
property whenever its comparability graph is convergent. However, there
are finite orders with the fixed point property whose comparability graphs
are divergent [53].

Next, we examine divergence. The class of divergent graphs has been
investigated in [58, 59, 60]. For n ≥ 3, denote by On the complement of a
perfect matching on 2n vertices. Then O3 is the extended Hajós graph Z ′′′.
It follows that K(On) = O2n−1 , meaning that On is divergent [28, 58].

O O3 4

Figure 5.9. Graphs On

124 Szwarcfiter

The following concepts are used for formulating a general sufficient
condition for divergence. Let G1, G2 be graphs. A homomorphism is a
function α : V (G1) → V (G2), such that the image under α of adjacent
vertices of G1 either coincide or are adjacent in G2. A homomorphism
α : V (G1) → V (G2) is a retraction from G1 to G2, when there exists a
homomorphism β : V (G2) → V (G1), such that the composition αβ is the
identity fuction. In this case, G2 is a retract of G1. The concept of retrac-
tion has been introduced in [46] and has been later studied in many papers.
The following theorem describes a relationship between retracts and clique
graphs.

Theorem 5.7.2 [59]: Let G1, G2 be graphs, such that G2 is a retract of
G1. Then

(i): K(G2) is a retract of K(G1), and

(ii): If G2 is divergent, so is G1.

Proof.For part (i), let α : V (G1) → V (G2) and β : V (G2) → V (G1)
be homomorphisms realizing G2 as a retract of G1. Let C ⊆ V (G2) be a
complete of G2 and M1(C) a clique of G1, containing the complete β(C).
Similarly, define M2(C). Define functions α′ : V (K(G1)) → V (K(G2)) and
β′ : V (K(G2)) → V (K(G1)), as follows. For cliques C1 and C2 of G1 and
G2, respectively, α′(C1) = M2(α(C1)) and β′(C2) = M1(β(C2)). It follows
that α′ and β′ are homomorphisms satisfying α′β′(C2) = C2, meaning that
K(G2) is a retract of K(G1).

For part (ii), apply (i). Then Ki(G2) is a retract of Ki(G1). If G2 is diver-
gent, so is G1. Otherwise, V (Ki(G1)) is bounded meaning that V (Ki(G2))
is bounded, an impossibility. �

It is possible to exhibit a retraction from the complete multipartite graph
Kr1,...,rm to Om, for r1, . . . , rm > 1 and m > 2 [58]. Since Om is divergent,
the above theorem implies that Kr1,...,rm is divergent too. Similarly, the
theorem also leads to conclude that c8 is divergent. In fact, cn is divergent
for n ≥ 8. However, for a proof of the latter, the following additional
concepts would be needed.

An automorphism α of a graph G is a bijective homomorphism of G into
itself. An automorphism is affine when v and α(v) are adjacent, for all
v ∈ V (G). Similarly, α is coaffine when v and α(v) neither coincide nor are
adjacent in G. The existence of coaffine automorphisms is preserved under
the clique graph operation.

Theorem 5.7.3 [59]: Let α be a coaffine automorphism for a graph G,
and αk : V (K(G)) → V (K(G)) a function satisfying αk(C) = α(C), where
α(C) denotes the images under α of the vertices of C, for any clique C of
G. Then αk is a coaffine automorphism of K(G)

5. A Survey on Clique Graphs 125

Theorem 17 leads to the description of further families of divergent
graphs, as cn, for n ≥ 8. The above mentioned divergent graphs G are
of exponential growth. In [60] it has been asked whether there are diver-
gent graphs with polynomial growth. An affirmative answer has been given
in [49], where there are descriptions of divergent graphs, whose growth is
bounded by a polynomial of degree d, for any desired d. Furthermore, there
are divergent graphs in which the number of vertices of its (finite) iterated
clique graphs increase exactly by one, at each application of the clique
graph operation [48].

The question to determine whether a graph converges to some graph
or is divergent has been solved for the following family. Say that a graph
is locally cn when N(v) = cn, for all v ∈ V (G). Clearly, K4 is the only
connected locally c3 graph and it is, of course, convergent. The extended
Hajos graph Z ′′′ is the only connected locally c4 graph and it has been
already mentioned that it is divergent. The icosahedron is the only con-
nected locally c5 graph. The question whether or not the icosahedron is
divergent has been mentioned as open in [58, 59]. This has been answered
in the affirmative in [65]. There is an infinite number of connected locally
ct graphs, for any t ≥ 6. In [51] it has been proved that locally c6 graphs
are divergent. In contrast, locally ct graphs are not divergent, for any t > 6
[52].

5.8 Diameters

In this section, we examine the behaviour of diameters of iterated clique
graphs. The basic property is a close relationship between the diameters
of a graph and that of its clique graph, as below described. Let v, v′ be
vertices of a graph G, while C,C ′ are cliques of G containing v and v′,
respectively. A shortest path v − v′ is called diametral for C,C ′, when its
length equals diam(G). In this case, C,C ′ are diametral cliques.

Theorem 5.8.1 [43]: diam(K(G)) − 1 ≤ diam(G) ≤ diam(K(G)) + 1

Proof.Let t = diam(G) and v0, . . . , vt be a diametral path in G. Then each
edge (vi−1, vi), 1 ≤ i ≤ t, belongs to a clique Ci of G, disjoint of any Cj ,
except when Ci, Cj are consecutive in the sequence. A simple argument
concludes that C1, . . . , Ct is a shortest path between C1 and Ct in K(G),
meaning that diam(G) − 1 ≤ diam(K(G)).

For the righmost inequality, let t = diam(K(G)) and C0, . . . , Ct be a
diametral path of K(G). Then G contains a shortest path v1, . . . , vt, for
vi ∈ Ci−1 ∩ Ci. Hence diam(K(G)) ≤ diam(G) + 1. �

126 Szwarcfiter

A similar relation holds for line graphs [47, 61]. The above theorem can
be generalized, so that an equivalent result is valid for induced subgraphs
of G [8].

A natural question is to classify all graphs G into classes 1,2 or 3, accord-
ing to whether diam(K(G)) − diam(G) equals to -1,0, or 1, respectively.
With this purpose, we classify pairs of diametral cliques C,C ′, into the
following types.

Type 1: There is a diametral path in G, containing both one edge of C
and one edge of C ′.

Type 2: There is a diametral path for C,C ′, containing exactly one edge
of C∪C ′, while any further diametral path for C,C ′ contains at most
one edge of C ∪ C ′.

Type 3: d(v, v′) = diam(G), for all v ∈ C, v′ ∈ C ′.

Theorem 5.8.2 [3]: Let G be a connected graph. Then

(1): G is of class 1 if and only if all pairs of diametral cliques are of type
1.

(2): G is of class 2 if and only if G contains a pair of type 2 diametral
cliques, but no type 3 pair.

(3): G is of class 3 if and only if G contains a pair of type 3 diametral
cliques.

In spite of the above characterizations, the problem of classifying graphs
according to their classes does not seem simple, as implied by the following
theorem.

Theorem 5.8.3 : Recognizing whether a graph is of class 1,2 or 3 is NP-
hard.

Proof.Theorem 12 states that recognizing clique-complete graphs is Co-
NP-complete. In the proof, a graph G is constructed, such that G is clique-
complete if and only if a given boolean equation is not satisfiable. It follows
that diam(G) = 2 and diam(K(G)) = 1 or 2, according to whether G is
clique-complete or not. A certificate for G not to be in class 1 is a pair of
diametral cliques of type 2 or 3. Consequently, to recognize class 1 graphs
is Co-NP-complete, while it is NP-hard to recognize class 2 graphs.

For class 3 graphs, we describe a transformation from the satisfiability
problem. Let E be a boolean expression in conjunctive normal form, having
clauses Li, 1 ≤ i ≤ p, p ≥ 3, each Li consisting of qi literals. Construct a
graph G, as follows. There is a pair of vertices vi, wi, for each clause Li.
In addition, G contains a vertex uij , for each occurrance of a literal in Li,
1 ≤ i ≤ p and 1 ≤ j ≤ qi. The following are the edges of G. For i �= k,
(vi, vk), (vi, wk) ∈ E(G). For i �= k and all 1 ≤ j ≤ qk, (wi, ukj) ∈ E(G).

5. A Survey on Clique Graphs 127

Denote by �ij the j-th literal of Li. Then (uij , ukt) ∈ E(G) precisely when
i �= k and �ij �= �kt. There are no other edges in G. The construction of the
graph is completed.

We show that G is a class 3 graph if and only if E is satisfiable. Suppose
E is satisfiable and for each clause Li, let �i,j(i) be the literal satisfying Li.
Then the vertices ui,j(i), 1 ≤ i ≤ p, form a complete C1 of G. In fact, C1
is a clique. On the other hand, the vertices v1, . . . , vp form a clique C2 of
G. It follows that C1, C2 constitute a pair of type 3 diametral cliques of G.
By Theorem 19, G is a class 3 graph.

Conversely, by hypothesis, G contains a pair of type 3 diametral cliques
C1, C2. It follows that wi �∈ C1 ∪ C2, for 1 ≤ i ≤ p, otherwise C1 or C2 is
not maximal, or C1, C2 are not of type 3. Consequently, one of the cliques,
say C1 is formed solely by vertices uij , for each 1 ≤ i ≤ p. The corre-
sponding literals of E turn the boolean expression satisfiable, as required.
Finally, a certificate for a class 3 graph is a pair of type 3 diametral cliques.
Consequently, to recognize graphs of class 3 is NP-complete. �

Further, we examine the diameters of iterated clique graphs. First, con-
sider decreasing diameters. For a given integer m > 0, we look for a graph
G, such that diam(Ki(G)) < diam(Ki−1(G)), i = 1, . . . ,m. Any con-
vergent graph with equal index and diameter satisfies this condition. All
chordal graphs fall into this category and therefore they are examples of
diameter decreasing iterated clique graphs [5, 19]. On the other hand, self-
clique graphs are trivial examples of diameter preserving iterated clique
graphs.

Finally, consider iterated clique graphs with increasing diameters. The
graphs G satisfying diam(K(G)) = diam(G) + 1 were characterized in
Theorem 19 (iii). In [44], it has been asked whether there are graphs G,
such that diam(Ki(G)) = diam(G) + i. In [44], itself, there is an example
of a graph satisfying this condition for i = 1. Such a graph is that of Figure
10(a). In [3], there is an example for i = 2. Examples of graphs verifying
the equality for i = 2, 3 and 4 were given in [64]. The graph of Figure 10(b)
is that of i = 2. The question for arbitrary i has been answered positively
in [9], where for each i, it has been described a family of graphs satisfying
diam(Ki(G)) = diam(G)+ i. A simpler family with this property has been
reported in [66].

Another question mentioned in [45] concerns the existence or not of (di-
vergent) graphs satisfying limi→∞ diam(Ki(G)) = ∞. This question has
been answered in the affirmative in [50]. Furthermore, locally c6 graphs
also have this property [51].

128 Szwarcfiter

(a)

K12

(b)

Figure 5.10. Iterated clique graphs with increasing diameters

5.9 Remarks and Problems

We have summarized some of the results in the study of clique graphs, the
intersection graphs of maximal cliques of a graph. There are other graph
operators, closely related to clique graphs. The following can be mentioned,
as examples. Intersection graphs of completes of sizes at most 2 of a graph
(middle graphs) [1, 39, 81]; intersection graphs of all independent sets of
G (independence graphs) [22, 82]; intersection graphs of all completes of
G (simplex graphs) [80]; intersection graphs of all completes of size k and
all cliques of size at most k (≤ k − clique graphs) [69]; edge-clique graphs
[2, 15, 16, 18]; among others. A comprehensive reference for graph operators
is the book [70].

The following is a list of problems in clique graphs.

(1) Determine the complexity of recognizing clique graphs ([14, 71]).

(2) Let G be the set of all graphs and K(G) be the set of the clique graphs
of the graphs of G. Denote K0(G) = G and Ki(G) = K(Ki−1(G)),

5. A Survey on Clique Graphs 129

i > 0. Is it true that Ki(G) �= Ki−1(G), for all i ? Clearly, the
inequality holds for i = 1. And for i = 2 [36] ?

(3) Characterize intersection graphs of the chains of an order (clique
graphs of comparability graphs).

(4) Characterize intersection graphs of antichains of an order (clique
graphs of co-comparability graphs).

(5) Determine the complexity of recognizing divergent graphs.

(6) Characterize self-clique graphs.

(7) Determine if the period of a periodic clique-Helly graph is 1 or 2.

(8) Is there a graph G satisfying limi→∞ diam(Ki(G)) = ∞ and such
that for every finite i, diam(Ki(G)) = diam(G) + i [66] ?

(9) A graph is clique irreducible if each clique of it contains an edge which
is not contained in any other clique. Characterize clique irreducible
graphs [87].

(10) Two graphs G1, G2 are clique-isomorphic when K(G1) and K(G2)
are isomorphic. Recognize if two given graphs are clique-isomorphic
[29].

(11) A clique-transversal of a graph G is a subset of vertices intersecting
every clique of G [27, 85]. A clique-independent set is a subset of pair-
wise disjoint cliques of G. Denote by τc(G) and αc(G) the cardinalities
of a minimum clique-transversal and maximum clique-independent
set of G, respectively. Clearly, τc(G) ≥ αc(G). For an arbitrary t, are
there graphs G satisfying t = τc(G) − αc(G) = θ(|V (G)|) ?

(12) A graph G is clique-perfect whenever τc(H) = αc(H), for every in-
duced subgraph H of G, where τc and αc are defined as above [17, 31].
Characterize clique perfect graphs.

(13) Prove or show a counter-example.
G is clique-perfect if and only G does not contain as induced sub-
graphs the following graphs: (i) c2k+1, k ≥ 2, (ii) ck, k ≥ 7 and k �= 0
(mod 3) and (iii) S2k+1, k ≥ 1, where St denotes a t-sun, that is, a
graph consisting of a clique C and an independent set I, such that
|C| = |I| = t, C ∩ I = ∅, while the degree of a vertex of C is t + 1
and that of a vertex of I is 2, t ≥ 3.

Acnowledgements: To Emerson M. Carmelo, Márcia R. Cerioli, Marisa Gutierrez
and Cláudia L. Sales for their comments and suggestions.

130 Szwarcfiter

References

[1] J. Akiyama, T.Hamada, and I. Yoshimura.On characterizations of the middle
graph.TRU Mathematics, 11:35–39, 1975.

[2] M. O. Albertson and K. L. Collins.Duality and perfection for edges in
cliques.Journal of Combinatorial Theory B, 36:298–309, 1984.

[3] R. Balakrishnan and P. Paulraja.Self-clique graphs and diameters of iterated
clique graphs.Utilitas Mathematica, 29:263–268, 1986.

[4] E. Balas and C. S. Yu.On graphs with polynomially solvable maximum-
weight clique problem.Networks, 19:247–253, 1989.

[5] H.-J. Bandelt and E. Prisner.Clique graphs and Helly graphs.Journal of
Combinatorial Theory B, 51:34–45, 1991.

[6] C. Berge.Hypergraphes.Gauthier-Villars, Paris, 1987.

[7] A. Bondy, G. Durán, M. C. Lin, and J. L. Szwarcfiter.A sufficient condi-
tion for self-clique graphs (extended abstract).Electronic Notes in Discrete
Mathematics, 2001.To appear.

[8] C. F. Bornstein and J. L. Szwarcfiter.On clique convergent graphs.Graphs
and Combinatorics, 11:213–220, 1995.

[9] C. F. Bornstein and J. L. Szwarcfiter.Iterated clique graphs with increasing
diameters.Journal of Graph Theory, 28:147–154, 1998.

[10] C. F. Bornstein and J. L. Szwarcfiter.A characterization of clique graphs
of rooted path graphs.In Y. Alavi, D. R. Lick, and A. Schwenck, editors,
Proceedings of the 8th Quadriennial International Conference on Graph The-
ory, Algorithms, Combinatorics and Applications, pages 117–122. Western
Michigan University, New Issues Press, 1999.

[11] A. Brandstädt, V. D. Chepoi, and F. F. Dragan.Clique r-domination
and clique r-packing problems on dually chordal graphs.SIAM Journal on
Discrete Mathematics, 10:109–127, 1997.

[12] A. Brandstädt, V. D. Chepoi, F. F. Dragan, and V. I. Voloshin.Dually
chordal graphs.SIAM Journal on Discrete Mathematics, 11:437–455, 1998.

[13] A. Brandstädt, V. D. Chepoi, and F. F.Dragan.The algorithmic use of hy-
pertree structure and maximum neighbourhood orderings.Discrete Applied
Mathematics, 82:43–77, 1998.

[14] A. Brandstädt, V. B. Le, and J. Spinrad.Graph Classes: A Survey, volume 3
of SIAM Monographs on Discrete Mathematics and Applications.SIAM,
Philadelphia, 1999.

[15] M. R. Cerioli.Grafos Clique de Arestas.PhD thesis, Universidade Federal do
Rio de Janeiro, Rio de Janeiro, Brazil, 1999.

[16] M. R. Cerioli and J. L. Szwarcfiter.A characterization of edge clique
graphs.Ars Combinatoria, 2001.To appear.

[17] G. J. Chang, M. Farber, and Z. Tuza.Algorithmic aspects of neighbourhood
numbers.SIAM Journal on Discrete Mathematics, 6:24–29, 1991.

[18] G. Chartrand, S. F. Kapoor, T. A. McKee, and F. Saba.Edge-clique
graphs.Graphs and Combinatorics, 7:253–264, 1991.

5. A Survey on Clique Graphs 131

[19] B. L. Chen and K.-W. Lih.Diameters of iterated clique graphs of chordal
graphs.Journal of Graph Theory, 14:391–396, 1990.

[20] G. L. Chia.On self-clique graphs with given clique sizes.Discrete Mathemat-
ics, 212:185–189, 2000.

[21] L. Chong-Keang and P. Yee-Hock.On graphs without multicliqual edges.Jour-
nal of Graph Theory, 5:443–451, 1981.

[22] E. J. Cockayne and S. T. Hedetnieme.Independence graphs.Congressus
Numerantium, 10, 1974.

[23] C. L. Deng and C. K. Lim.A class of clique-closed graphs.Discrete
Mathematics, 127:131–137, 1994.

[24] M. C. Dourado, F. Protti, and J. L. Szwarcfiter.The complexity of
recognizing graphs with Helly defect one.In preparation.

[25] F. F. Dragan.Centers of Graphs and the Helly Property.PhD thesis, Moldava
State University, Chisinǎu, Moldava, 1989.In russian.

[26] G. Durán and M. C. Lin.Clique graphs of Helly circular-arc graphs.Ars
Combinatoria, 2001.To appear.

[27] P. Erdös, T. Gallai, and Z. Tuza.Covering the cliques of a graph with
vertices.Discrete Mathematics, 108:279–289, 1992.

[28] F. Escalante.Über iterierte Clique-Graphen.Abhandlungender Mathematis-
chen Seminar der Universität Hamburg, 39:59–68, 1973.

[29] F. Escalante and B. Toft.On clique-critical graphs.Journal of Combinatorial
Theory B, 17:170–182, 1974.

[30] M. C. Golumbic.Algorithmic Graph Theory and Perfect Graphs.Academic
Press, New York, 1980.

[31] V. Guruswami and C. P. Rangan.Algorithmic aspects of clique transver-
sal and clique-independent sets.Discrete Applied Mathematics, 100:183–202,
2000.

[32] M. Gutierrez.Tree-clique graphs.In J. L. Szwarcfiter, editor, Workshop Inter-
nacional de Combinatória, pages 7–26, Rio de Janeiro, 1996. Universidade
Federal do Rio de Janeiro.

[33] M. Gutierrez.Intersection graphs and clique application.Graphs and Combi-
natorics, 2001.To appear.

[34] M. Gutierrez and J. Meidanis.Algebraic theory for the clique opera-
tor.Manuscript.

[35] M. Gutierrez and J. Meidanis.Recognizing clique graphs of directed edge
path graphs.Manuscript.

[36] M. Gutierrez and J. Meidanis.On the clique operator.Lecture Notes in Com-
puter Science, 1380:261–272, 1998.Proceedings of the 3rd Latin American
Conference on Theoretical Informatics.

[37] M. Gutierrez and L. Oubiña.Minimum proper interval graphs.Discrete
Mathematics, 142:77–85, 1995.

[38] M. Gutierrez and R. Zucchello.Grafos ACI: Una generalización de los grafos
de intervalos própios.Manuscript.

132 Szwarcfiter

[39] T. Hamada and I. Yoshimura.Traversability and connectivity of the middle
graph of a graph.Discrete Mathematics, 14:247–255, 1976.

[40] R. C. Hamelink.A partial characterization of clique graphs.Journal of
Combinatorial Theory, 5:192–197, 1968.

[41] S. Hazan and V. Neumann-Lara.Fixed points of posets and clique graphs.Or-
der, 13:219–225, 1996.

[42] S. T. Hedetniemi and P. J. Slater.Line graphs of triangleless graphs and
iterated clique graphs.Lecture Notes in Mathematics, 303:139–147, 1972.

[43] B. Hedman.Clique graphs of time graphs.Journal of Combinatorial Theory
B, 37:270–278, 1984.

[44] B. Hedman.Diameters of iterated clique graphs.Hadronic Journal, 9:273–
276, 1986.

[45] B. Hedman.A polynomial algorithm for constructing the clique graph of a
line graph.Discrete Applied Mathematics, 15:61–66, 1986.

[46] P. Hell.Rétractions de Graphes.PhD thesis, Université de Montreal, Mon-
treal, Canada, 1972.

[47] M. Knor, L. Niepel, and L. Soltes.Centers in line graphs.Math. Slovaca,
43:11–20, 1993.

[48] F. Larrión and V. Neumann-Lara.On clique divergent graphs with linear
growth.Manuscript.

[49] F. Larrión and V. Neumann-Lara.A family of clique divergent graphs with
linear growth.Graphs and Combinatorics, 13:263–266, 1997.

[50] F. Larrión and V. Neumann-Lara.Clique divergent graphs with unbounded
sequence of diameters.Discrete Mathematics, 197-198:491–501, 1999.

[51] F. Larrión and V. Neumann-Lara.Locally C6 graphs are clique diver-
gent.Discrete Mathematics, 2000.To appear.

[52] F. Larrión, V. Neumann-Lara, and M. A. Pizaña.Whitney triangulations,
local girth and iterated clique graphs.Manuscript.

[53] F. Larrión, V. Neumann-Lara, and M. A. Pizaña.Clique divergent clockwork
graphs and partial orders (extended abstract).Electronic Notes in Discrete
Mathematics, 2001.To appear.

[54] C. K. Lim.A result on iterated clique graphs.Journal of the Australian
Mathematical Society A, 32:289–294, 1982.

[55] C. L. Lucchesi, C. P. Mello, and J. L. Szwarcfiter.On clique-complete
graphs.Discrete Mathematics, 183:247–254, 1998.

[56] T. A. McKee and F. R. McMorris.Topics in Intersection Graph Theory,
volume 2 of Monographs on Discrete Mathematics and Applications.SIAM,
Philadelphia, 1999.

[57] C. P. Mello.Sobre Grafos Clique-Completos.PhD thesis, Universidade Federal
do Rio de Janeiro, Rio de Janeiro, Brazil, 1992.

[58] V. Neumann-Lara.On clique-divergent graphs.In Problèmes Combinatoires
et Théorie des Graphes, pages 313–315, Orsay, France, 1978. Colloques
Internationaux C.N.R.S. 260.

5. A Survey on Clique Graphs 133

[59] V. Neumann-Lara.Clique divergence in graphs.In Algebraic Methods in
Graph Theory, volume 25, pages 563–569. Colloquia Mathematica Societatis
János Bolyai, Szeged, Hungary, 1981.

[60] V. Neumann-Lara.Clique divergence in graphs - some variations.Technical
report, Instituto de Matematicas, Universidad Nacional Autonoma de
Mexico, 1991.

[61] L. Niepel, M. Knor, and L. Soltes.Distances in iterated line graphs.Ars
Combinatoria, 43:193–202, 1996.

[62] R. Nowakowski and I. Rival.The smallest graph variety containing all
paths.Discrete Mathematics, 43:223–234, 1983.

[63] R. Nowakowski and P. Winkler.Vertex-to-vertex porsuit of a graph.Discrete
Mathematics, 43:235–239, 1983.

[64] C. Peyrat, D. F. Rall, and P. J. Slater.On iterated clique graphs with
increasing diameters.Journal of Graph Theory, 10:167–171, 1986.

[65] M. A. Pizaña.The icosahedron is clique-divergent.Manuscript.
[66] M. A. Pizaña.Distances and diameters on iterated clique graphs (extended

abstract).Electronic Notes in Discrete Mathematics, 2001.To appear.
[67] E. Prisner.Convergence of iterated clique graphs.Discrete Mathematics,

103:199–207, 1992.
[68] E. Prisner.Hereditary clique-Helly graphs.Journal of Combinatorial Mathe-

matics and Combinatorial Computing, 14:216–220, 1993.
[69] E. Prisner.A common generalization of line graphs and clique graphs.Journal

of Graph Theory, 18:301–313, 1994.
[70] E. Prisner.Graph Dynamics.Pitman Research Notes in Mathematics 338,

Longman, 1995.
[71] E. Prisner.Graphs with few cliques.In Y. Alavi and A. Schwenk, editors,

Proceedings of the 7th Quadrennial International Conference on Graph The-
ory, Algorithms, Combinatorics ans Applications, pages 945–956. Western
Michigam University, John Wiley and Sons, Inc., 1995.

[72] E. Prisner and J. L. Szwarcfiter.Recognizing clique graphs of directed and
rooted path graphs.Discrete Applied Mathematics, 94:321–328, 1999.

[73] F. Protti.Classes de Grafos Clique Inversos.PhD thesis, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1998.

[74] F. Protti and J. L. Szwarcfiter.Clique-inverse graphs of K3-free and K4-free
graphs.Journal of Graph Theory, 35:257–272, 2000.

[75] F. Protti and J. L. Szwarcfiter.On clique graphs of linear size.Congressus
Numerantium, 2000.To appear.

[76] F. Protti and J. L. Szwarcfiter.Clique-inverse graphs of bipartite graphs.Jour-
nal of Combinatorial Mathematics and Combinatorial Computing, 2001.To
appear.

[77] A. Quilliot.Homomorphismes, points fixes, retractions et jeux des poursuite
dans les graphes, les ensembles ordonnés et les espaces metriques.PhD thesis,
Université de Paris, Paris, France, 1983.

[78] A. Quilliot.On the Helly property working as a compactness criterion on
graphs.Journal of Combinatorial Theory A, 40:186–193, 1985.

134 Szwarcfiter

[79] F. S. Roberts and J. H. Spencer.A characterization of clique graphs.Journal
of Combinatorial Theory B, 10:102–108, 1971.

[80] E. Sampathkumar and H. B. Walikar.On the complete graph of a
graph.Abstract Graph Theory Newsletter, 3, 1978.

[81] M. Skowronska and M. M. Syslo.An algorithm to recognize a middle
graph.Discrete Applied Mathematics, 7:201–208, 1984.

[82] P. J. Slater.Irreducible point independence numbers and independence
graphs.Congressus Numerantium, 10:647–660, 1974.

[83] J. L. Szwarcfiter.Recognizing clique-Helly graphs.Ars Combinatoria, 45:29–
32, 1997.

[84] J. L. Szwarcfiter and C. F. Bornstein.Clique graphs of chordal and path
graphs.SIAM Journal on Discrete Mathematics, 7:331–336, 1994.

[85] Z. Tuza.Covering all cliques of a graph.Discrete Mathematics, 86:117–126,
1990.

[86] W. D. Wallis and J. Wu.Squares, clique graphs and chordality.Journal of
Graph Theory, 20:37–45, 1995.

[87] W. D. Wallis and G. H. Zhang.On maximal clique irreducible graphs.Journal
of Combinatorial Mathematics and Combinatorial Computing, 8:187–193,
1990.

5. A Survey on Clique Graphs 135

Appendix

Below are definitions of most of the classes mentioned in the text. An
arbitrary graph in each class is denoted by G.

BIPARTITE: There is a partition of V (G) into at most two independent
sets.

BLOCK: G is the intersection graph of the blocks (maximal biconnected
components) of a graph.

3-COLOURABLE: There is a partition of V (G) into at most three
independent sets.

CHORDAL: G is the intersection graph of subtrees of a tree.

CHORDAL BIPARTITE: G is bipartite and for every cycle c of G of
length ≥ 6, there is an edge between two non adjacent vertices in c.

CIRCULAR CLIQUE: G admits a circular ordering α of its vertices and
a Helly edge cover, formed by completes, each of them composed by
vertices which are consecutive in α.

CLIQUE: G is the intersection graph of the cliques of a graph.

CLIQUE-COMPLETE: Every pair of cliques of G intersect.

CLIQUE-HELLY: The cliques of G satisfy the Helly property.

COMPARABILITY: The edges of G can be transitively oriented.

COMPLETE: All pairs of distinct vertices of G are adjacent.

CONVERGENT: Ki(G) is the one-vertex graph, for some finite i.

DE: G is the edge intersection graph of paths of a directed tree, where
two paths are considered as intersecting, when they share a common
edge.

DIAMOND FREE: Every edge of G belongs to exactly one clique.

DISK HELLY: The disks of G satisfy the Helly property, where a disk is
a subset of vertices lying at a distance ≤ i, from some vertex of G.

DISMANTABLE: G is either the one-vertex graph or it has a dominated
vertex v, such that G− v is dismantable.

DUALLY CHORDAL: G admits a spanning tree T , such that each
complete of G induces a (connected) subtree in T .

DUALLY DV: G admits a spanning directed tree T , such that each
complete of G induces a (directed) path in T .

DUALLY RDV: G admits a spanning directed rooted tree T , such that
each complete of G induces a (directed rooted) path in T .

136 Szwarcfiter

DV: G is the intersection graph of paths of a directed tree.

EDGE-CLIQUE: The vertices of G correspond to the edges of some graph
H, with two vertices adjacent in G whenever their corresponding
edges in H belong to a same clique.

H1 : G has a pair of cliques C1, C2, for each pair of vertices v1, v2 ∈ V (G),
satisfying C1 contains v1 and not v2, while C2 contains v2 and not
v1.

HELLY CIRCULAR ARC: G is the intersection graph of arcs of a circle,
satisfying the Helly property.

HELLY HEREDITARY: Every induced subgraph of G is clique-Helly.

INTERVAL: G is the intersection graph of intervals of a real line.

LINE: G is the intersection graph of the pairs of adjacent vertices of a
graph.

MINIMAL PROPER INTERVAL: G is the intersection graph of proper
intervals of a real line, whose number of distinct extreme points of
the intervals is 2|C(G)| − |C(K(G))|, where C(G) is the set of cliques
of G.

PERIODIC: G satisfies Ki(G) = G, for some finite i.

PROPER INTERVAL: G is the intersection graph of proper intervals of
a real line.

PTOLOMAIC: Every four vertices u, v, w, t ∈ V (G) satisfy d(u, v).d(w, t) ≤
d(u,w).d(v, t) + d(u, t).d(v, w).

RDV: G is the intersection graph of paths of a directed rooted tree.

SELF-CLIQUE: G = K(G).

SPLIT: G and G are chordal.

STAR: G contains a universal vertex.

STRONGLY CHORDAL: G is chordal and contains no induced t-suns,
t ≥ 3.

TREE: G is connected and acyclic.

UV: G is the intersection graph of paths of a tree.

6

Semidefinite Programs and
Combinatorial Optimization
L. Lovász

6.1 Introduction

Linear programming has been one of the most fundamental and success-
ful tools in optimization and discrete mathematics. Its applications include
exact and approximation algorithms, as well as structural results and esti-
mates. The key point is that linear programs are very efficiently solvable,
and have a powerful duality theory.

A fundamental method in combinatorial optimization is to write a com-
binatorial optimization problem as a linear program with integer variables.
There are usually many ways to do so; ideally, one tries to get the “tightest”
description (in which the feasible set of the linear program is the convex
hull of integer solutions); but this is often too complicated to determine,
and we have to work with a “relaxed” description. We then forget the inte-
grality constraints, thereby obtaining a linear relaxation, a linear program
which can be solved efficiently; and then trying to restore the integrality
of the variables by some kind of rounding (which is usually heuristic, and
hence only gives approximately optimal integral solutions). In those par-
ticularly well-structured cases when we have the tightest description, the
basic optimal solutions to the linear program are automatically integral, so
it also solves the combinatorial optimization problem right away.

Linear programs are special cases of convex programs; semidefinite pro-
grams are more general but still convex programs, to which many of the
useful properties of linear programs extend. Recently, semidefinite program-
ming arose as a generalization of linear programming with substantial novel
applications. Again, it can be used both in proofs and in the design of exact
and approximation algorithms. It turns out that various combinatorial opti-
mization problems have semidefinite (rather than linear) relaxations which
are still efficiently computable, but approximate the optimum much better.
This fact has lead to a real breakthrough in approximation algorithms.

138 Lovász

In these notes we survey semidefinite optimization mainly as a relaxation
of discrete optimization problems. We start with two examples, a proof and
an approximation algorithm, where semidefinite optimization plays a im-
portant role. Still among the preliminaries, we survey some areas which
play a role in semidefinite optimization: linear algebra (in particular, pos-
itive semidefinite matrices), linear programming (duality and algorithms),
and polyhedral combinatorics (which we illustrate on the example of the
stable set polytope).

After introducing semidefinite programs and discussing some of their
basic properties, we show that semidefinite programs arise in a variety of
ways: as certain geometric extremal problems, as relaxations (stronger than
linear relaxations) of combinatorial optimization problems, in optimizing
eigenvalue bounds in graph theory, as stability problems in engineering.

Next we show through examples from graph theory, number theory, and
logic how semidefinite optimization can be used in proofs as well as in the
design of approximation algorithms.

In Chapter 6.7 we try to put the combinatorial applications of semidef-
inite optimization in a broader perspective: they can be viewed as
procedures to strengthen the descriptions of combinatorial optimization
problems as integer linear programs. It turns out that such procedures
can be formalized, and in some cases (like the stable set polytope, our fa-
vorite example) they lead to efficient ways of generating the tight linear
descriptions for most cases when this description is known at all.

There are many unsolved problems in this area; indeed, progress has
been quite slow (but steady) due to the difficulty of some of those. Several
of these roadblocks are described in Chapter 6.8.

For more comprehensive studies of issues concerning semidefinite
optimization, see [98].

6.1.1 Shannon capacity
Consider a noisy channel through which we are sending messages over a
finite alphabet V . The noise may blur some letters so that certain pairs can
be confounded. We want to select as many words of length k as possible
so that no two can possibly be confounded. As we shall see, the number
of words we can select grows as Θk for some Θ ≥ 1, which is called the
Shannon zero-error capacity of the channel.

In terms of graphs, we can model the problem as follows. We consider V
as the set of nodes of a graph, and connect two of them by an edge if they
can be confounded. This way we obtain a graph G = (V,E). We denote
by α(G) the maximum number of independent points (the maximum size
of a stable set) in the graph G. If k = 1, then the maximum number of
non-confoundable messages is α(G).

To describe longer messages, we define the strong product G ·H of two
graphs G = (V,E) and H = (W,F) as the graph with V (G ·H) = V ×W ,

6. Semidefinite Programs and Combinatorial Optimization 139

with (i, u)(j, v) ∈ E(G ·H) iff ij ∈ E and uv ∈ F , or ij ∈ E and u = v, or
i = j and uv ∈ F . The product of k copies of G is denoted by Gk. Thus
α(Gk) is the maximum number of words of length k, composed of elements
of V , so that for every two words there is at least one i (1 ≤ i ≤ k) such that
the i-th letters are different and non-adjacent in G, i.e., non-confoundable.

The Shannon capacity of a graphG is the value Θ(G) = limk→∞ α(Gk)1/k

(it is not hard to see that the limit exists). It is not known whether Θ(G)
can be computed for all graphs by any algorithm (polynomial or not), al-
though there are several special classes of graphs for which this is not hard.
For example, if G is a 4-cycle with nodes (a, b, c, d), then for every k ≥ 1, all
words of length k consisting of a and c only can be used, and so α(Ck

4) ≥ 2k.
On the other hand, if we use a word, then all the 2k words obtained from
it by replacing a and b by each other, as well as c and d by each other, are
excluded. Hence α(Ck

4) ≤ 4k/2k = 2k, and Θ(C4) = 2. More generally, we
have α(Gk) ≥ α(G)k for any graph G and so Θ((G) ≥ α(G). If we can also
bound Θ(G) from above by α(G), then we have determined it exactly (this
method works for all perfect graphs; cf section 6.2.3).

The smallest graph for which Θ(G) cannot be computed by such el-
ementary means is the pentagon C5. If we set V (C5) = {0, 1, 2, 3, 4}
with E(C5) = {01, 12, 23, 34, 40}, then C2

5 contains the stable set
{(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}. So α(C2k

5) ≥ α(C2
5)k ≥ 5k, and hence

Θ(C5) ≥
√

5.
We show that equality holds here [64]. Consider an “umbrella” in R

3

with the unit vector e1 as its handle, and 5 ribs of unit length (Figure 6.1).
Open it up to the point when non-consecutive ribs are orthogonal (i.e., form
an angle of 90◦). This way we get 5 unit vectors u0, u1, u2, u3, u4, assigned
to the nodes of C5 so that each ui forms the same angle with e1 and any
two non-adjacent nodes are labeled with orthogonal vectors. (Elementary
trigonometry gives eT1ui = 5−1/4).

Figure 6.1. An orthogonal representation of C5.

It turns out that we can obtain a similar labeling of the nodes of Ck
5 by

unit vectors vi ∈ R
3k, so that any two non-adjacent nodes are labeled with

orthogonal vectors. Moreover, eT1 vi = 5−k/4 for every i ∈ V (Ck
5). Such a

140 Lovász

labeling is obtained by taking tensor products. The tensor product of two
vectors (u1, . . . , un) ∈ R

n and (v1, . . . , vm) ∈ R
m is the vector

u ◦ v = (u1v1, . . . , u1vm, u2v1, . . . , u2vm, . . . , unv1, . . . , unvm) ∈ R
nm.

The tensor product of several vectors is defined similarly. The property
one uses in verifying the properties claimed above is that if u, x ∈ R

n and
v, y ∈ R

m, then

(u ◦ v)T(x ◦ y) = (uTx)(vTy).

If S is any stable set in Ck
5 , then {vi : i ∈ S} is a set of mutually

orthogonal unit vectors, and hence
∑

i∈S

(eT1 vi)2 ≤ |e1|2 = 1

(if the vi formed a basis then this inequality would be an equality).
On the other hand, each term on the left hand side is 5−1/4, hence the

left hand side is |S|5−k/2, and so |S| ≤ 5k/2. Thus α(Ck
5) ≤ 5k/2 and

Θ(C5) =
√

5.
This method extends to any graph G = (V,E) in place of C5: all we have

to do is to assign unit vectors to the nodes so that non-adjacent nodes
correspond to orthogonal vectors (such an assignment will be called an
orthogonal representation). If the first coordinate of each of these vectors is
s, then the Shannon capacity of the graph is at most 1/s2. The best bound
that can be achieved by this method will be denoted by ϑ(G).

But how to construct an optimum (or even good) orthogonal representa-
tion? Somewhat surprisingly, the optimum representation can be computed
in polynomial time using semidefinite optimization. Furthermore, it has
many nice properties, most of which are derived using semidefinite duality
and other fundamental properties of semidefinite programs (section 6.3.1),
as we shall see in section 6.5.1.

6.1.2 Maximum cuts
A cut in a graph G = (V,E) is the set of edges connecting a set S ⊆ V
to V \ S, where ∅ ⊂ S ⊂ V . The Max Cut Problem is to find a cut with
maximum cardinality. We denote by MC this maximum.

(More generally, we can be given a weighting w : V → R+, and we could
be looking for a cut with maximum total weight. Most other problems
discussed below, like the stable set problem, have such weighted versions.
To keep things simple, however, we usually restrict our discussions to the
unweighted case.)

The Max Cut Problem is NP-hard; one natural approach is to find an ap-
proximately maximum cut. Formulated differently, Erdős in 1967 described
the following simple heuristic: for an arbitrary ordering (v1, . . . , vn) of the
nodes, we color v1, v2, . . . , vn successively red or blue. For each i, vi is

6. Semidefinite Programs and Combinatorial Optimization 141

colored blue iff the number of edges connecting vi to blue nodes among
v1, . . . , vi−1 is less than the number of edges connecting vi to red nodes
in this set. Then the cut formed by the edges between red and blue nodes
contains at least half of all edges. In particular, we get a cut that is at least
half as large as the maximum cut.

There is an even easier randomized algorithm to achieve this approxima-
tion, at least in expected value. Let us 2-color the nodes of G randomly, so
that each node is colored red or blue independently, with probability 1/2.
Then the probability that an edge belongs to the cut between red and blue
is 1/2, and expected number of edges in this cut is |E|/2.

Both of these algorithms show that the maximum cut can be approxi-
mated from below in polynomial time with a multiplicative error of at most
1/2. Can we do better? The following strong negative result [10, 19, 45]
shows that we cannot get arbitrarily close to the optimum:

Proposition 6.1.1 It is NP-hard to find a cut with more than (16/17)MC ≈
.94MC edges.

But we can do better than 1/2, as the following seminal result of
Goemans and Williamson [37, 38] shows:

Theorem 6.1.2 One can find in polynomial time a cut with at least
.878MC edges.

The algorithm of Goemans and Williamson makes use of the following
geometric construction. We want to find an embedding i �→ ui (i ∈ V)
of the nodes of the graph in the unit sphere in R

d so that the following
“energy” is minimized:

E = −
∑

ij∈E

1
4

(ui − uj)2 = −
∑

ij∈E

1 − uT
i uj

2
.

(Note the negative sign: this means that the “force” between adjacent nodes
is repulsive, and grows linearly with the distance.)

If we work in R
1, then the problem is equivalent to MAX CUT: each

node is represented by either 1 or −1, and the edges between differently
labeled nodes contribute -1 to the energy, the other edges contribute 0.
Hence the negative of the minimum energy E is an upper bound on the
maximum size MC of a cut.

Unfortunately, the argument above also implies that for d = 1, the opti-
mal embedding is NP-hard to find. While I am not aware of a proof of this,
it is probably NP-hard for d = 2 and more generally, for any fixed d. The
surprising fact is that for d = n, such an embedding can be found using
semidefinite optimization (cf. section 6.4.1).

So −E is a polynomial time computable upper bound on the size of
the maximum cut. How good is this bound? And how to construct an

142 Lovász

approximately optimum cut from this representation? Here is the simple
but powerful trick: take a random hyperplane H through the origin in R

n

(Figure 6.2). The partition of Rd given by H yields a cut in our graph.
Since the construction pushes adjacent points apart, one expects that the
random cut will intersect many edges.

Figure 6.2. A cut in the graph given by a random hyperplane

To be more precise, let ij ∈ E and let ui, uj ∈ Sn−1 be the corresponding
vectors in the embedding constructed above. It is easy to see that the
probability that a random hyperplane H through 0 separates ui and uj is
αij/π, where αij = arccosuT

i uj is the angle between ui and uj . It is not
difficult to verify that if −1 ≤ t ≤ 1, then arccos t ≥ 1.38005(1 − t). Thus
the expected number of edges intersected by H is
∑

ij∈E

arccosuT
i uj

π
≥
∑

ij∈E

1.38005
1 − uT

i uj

π
=

1.38005
π

2(−E) ≥ .878MC.

(One objection to the above algorithm could be that it uses random
numbers. In fact, the algorithm can be derandomized by well established
but non-trivial techniques. We do not consider this issue in these notes; see
e.g. [5], Chapter 15 for a survey of derandomization methods.)

6.2 Preliminaries

We collect some of the basic results from linear programming, linear al-
gebra, and polyhedral combinatorics that we will use. While this is all
textbook material, it will be convenient to have this collection of results
for the purposes of notation, reference and comparison. [88] is a reference
for linear algebra, and a [79], for linear programming.

6.2.1 Linear algebra
As the title of these lecture notes suggests, we’ll be concerned with semidef-
inite matrices; to get to these, we start with a review of eigenvalues, and
in particular eigenvalues of symmetric matrices.

6. Semidefinite Programs and Combinatorial Optimization 143

Let A be an n×n real matrix. An eigenvector of A is a vector such that Ax
is parallel to x; in other words, Ax = λx for some real or complex number
λ. This number λ is called the eigenvalue of A belonging to eigenvector v.
Clearly λ is an eigenvalue iff the matrix A−λI is singular, equivalently, iff
det(A−λI) = 0. This is an algebraic equation of degree n for λ, and hence
has n roots (with multiplicity).

The trace of the (square) matrix A = (Aij) is defined as

tr(A) =
n∑

i=1

Aii.

The trace of A is the sum of the eigenvalues of A, each taken with the same
multiplicity as it occurs among the roots of the equation det(A− λI) = 0.

If the matrix A is symmetric, then its eigenvalues and eigenvectors are
particularly well behaved. All the eigenvalues are real. Furthermore, there
is an orthogonal basis v1, . . . , vn of the space consisting of eigenvectors of
A, so that the corresponding eigenvalues λ1, . . . , λn are precisely the roots
of det(A− λI) = 0. We may assume that |v1| = . . . = |vn| = 1; then A can
be written as

A =
n∑

i=1

λiviv
T
i .

Another way of saying this is that every symmetric matrix can be written
as UTDU , where U is an orthogonal matrix and D is a diagonal matrix.
The eigenvalues of A are just the diagonal entries of D.

To state a further important property of eigenvalues of symmetric matri-
ces, we need the following definition. A symmetric minor of A is a submatrix
B obtained by deleting some rows and the corresponding columns.

Theorem 6.2.1 (Interlacing eigenvalues) Let A be an n×n symmetric
matrix with eigenvalues λ1 ≥ . . . ≥ λn. Let B be an (n − k) × (n − k)
symmetric minor of A with eigenvalues µ1 ≥ . . . ≥ µn−k. Then

λi ≤ µi ≤ λi+k.

Now we come to the definition that is crucial for our lectures. A sym-
metric n×n matrix A is called positive semidefinite, if all of its eigenvalues
are nonnegative. This property is denoted by A � 0. The matrix is positive
definite, if all of its eigenvalues are positive.

There are many equivalent ways of defining positive semidefinite
matrices, some of which are summarized in the Proposition below.

Proposition 6.2.2 For a real symmetric n × n matrix A, the following
are equivalent:

(i) A is positive semidefinite;
(ii) the quadratic form xTAx is nonnegative for every x ∈ R

n;

144 Lovász

(iii) A can be written as the Gram matrix of n vectors u1, ..., un ∈ R
m

for some m; this means that aij = uT
i uj. Equivalently, A = UTU for some

matrix U ;
(iv) A is a nonnegative linear combination of matrices of the type xxT;
(v) The determinant of every symmetric minor of A is nonnegative.

Let me add some comments. The least m for which a representation as
in (iii) is possible is equal to the rank of A. It follows e.g. from (ii) that the
diagonal entries of any positive semidefinite matrix are nonnegative, and it
is not hard to work out the case of equality: all entries in a row or column
with a 0 diagonal entry are 0 as well. In particular, the trace of a positive
semidefinite matrix A is nonnegative, and tr(A) = 0 if and only if A = 0.

The sum of two positive semidefinite matrices is again positive semidef-
inite (this follows e.g. from (ii) again). The simplest positive semidefinite
matrices are of the form aaT for some vector a (by (ii): we have xT(aaT)x =
(aTx)2 ≥ 0 for every vector x). These matrices are precisely the posi-
tive semidefinite matrices of rank 1. Property (iv) above shows that every
positive semidefinite matrix can be written as the sum of rank-1 positive
semidefinite matrices.

The product of two positive semidefinite matrices A and B is not even
symmetric in general (and so it is not positive semidefinite); but the
following can still be claimed about the product:

Proposition 6.2.3 If A and B are positive semidefinite matrices, then
tr(AB) ≥ 0, and equality holds iff AB = 0.

Property (v) provides a way to check whether a given matrix is positive
semidefinite. This works well for small matrices, but it becomes inefficient
very soon, since there are many symmetric minors to check. An efficient
method to test if a symmetric matrix A is positive semidefinite is the fol-
lowing algorithm. Carry out 2-sided Gaussian elimination on A, pivoting
always on diagonal entries (“2-sided” means that we eliminate all entries
in both the row and the column of the pivot element).

If you ever find a negative diagonal entry, or a 0 diagonal entry whose
row contains a non-zero, stop: the matrix is not positive semidefinite. If
you obtain an all-zero matrix (or eliminate the whole matrix), stop: the
matrix is positive semidefinite.

If this simple algorithm finds that A is not positive semidefinite, it also
provides a certificate in the form of a vector v with vTAv < 0. Assume that
the i-th diagonal entry of the matrix A(k) after k steps is negative. Write
A(k) = ET

k . . . E
T
1AE1 . . . Ek, where Ei are elementary matrices. Then we

can take the vector v = E1 . . . Ekei. The case when there is a 0 diagonal
entry whose row contains a non-zero is similar.

It will be important to think of n×n matrices as vectors with n2 coordi-
nates. In this space, the usual inner product is written as A ·B. This should

6. Semidefinite Programs and Combinatorial Optimization 145

not be confused with the matrix product AB. However, we can express the
inner product of two n× n matrices A and B as follows:

A ·B =
n∑

i=1

n∑

j=1

AijBij = tr(ATB).

Positive semidefinite matrices have some important properties in terms
of the geometry of this space. To state these, we need two definitions. A
convex cone in R

n is a set of vectors which along with any vector, also
contains any positive scalar multiple of it, and along with any two vectors,
also contains their sum. Any system of homogeneous linear inequalities

aT
1x ≥ 0, . . . aT

mx ≥ 0

defines a convex cone; convex cones defined by such (finite) systems are
called polyhedral.

For every convex cone C, we can form its polar cone C∗, defined by

C∗ = {x ∈ R
n : xTy ≥ 0 ∀y ∈ C}.

This is again a convex cone. If C is closed (in the topological sense), then
we have (C∗)∗ = C.

The fact that the sum of two such matrices is again positive semidef-
inite (together with the trivial fact that every positive scalar multiple of
a positive semidefinite matrix is positive semidefinite), translates into the
geometric statement that the set of all positive semidefinite matrices forms
a convex closed cone Pn in R

n×n with vertex 0. This cone Pn is important,
but its structure is quite non-trivial. In particular, it is non-polyhedral for
n ≥ 2; for n = 2 it is a nice rotational cone (Figure 6.3; the fourth coor-
dinate x21, which is always equal to x12 by symmetry, is suppressed). For
n ≥ 3 the situation becomes more complicated, because Pn is neither poly-
hedral nor smooth: any matrix of rank less than n− 1 is on the boundary,
but the boundary is not differentiable at that point.

The polar cone of P is itself; in other words,

Proposition 6.2.4 A matrix A is positive semidefinite iff A · B ≥ 0 for
every positive semidefinite matrix B.

We conclude this little overview with a further basic fact about
nonnegative matrices.

Theorem 6.2.5 (Perron-Frobenius) If an n × n matrix has nonnega-
tive entries then it has a nonnegative real eigenvalue λ which has maximum
absolute value among all eigenvalues. This eigenvalue λ has a nonnegative
real eigenvector. If, in addition, the matrix has no block-triangular decom-
position (i.e., it does not contain a k × (n − k) block of 0-s disjoint from
the diagonal), then λ has multiplicity 1 and the corresponding eigenvector
is positive.

146 Lovász

x11

x12

x22

Figure 6.3. The semidefinite cone for n = 2.

6.2.2 Linear programming
Linear programming is closely related to (in a sense the same as) the study
of systems of linear inequalities. At the roots of this theory is the following
basic lemma.

Lemma 6.2.6 (Farkas Lemma) A system of linear inequalities aT
1 x ≤

b1, . . ., aT
mx ≤ bm has no solution iff there exist λ1, . . . , λm ≥ 0 such that∑

i λiai = 0 and
∑

i λibi = −1.

Let us make a remark about the computational complexity aspect of
this. The solvability of a system of linear inequalities is in NP (“just show
the solution”; to be precise, one has to argue that there is a rational so-
lution with small enough numerators and denominators so that it can be
exhibited in space polynomial in the input size; but this can be done). One
consequence of the Farkas Lemma (among many) is that this problem is
also in co-NP (“just show the λ’s”).

A closely related statement is the following:

Lemma 6.2.7 (Farkas Lemma, inference version) Let a1, . . . , am, c ∈
R

n and b1, . . . , bm, d ∈ R. Assume that the system aT
1 x ≤ b1, . . . , aT

mx ≤
bm has a solution. Then cTx ≤ d for all solutions of aT

1 x ≤ b1, . . . , a
T
mx ≤

bm iff there exist λ1, . . . , λm ≥ 0 such that c =
∑

i λiai and d ≥
∑

i λibi.

This again can be put into a general context: there is a semantical notion
of a linear inequality being a consequence of others (it holds whenever the
others do), and a syntactical (it is a linear combination of the others with
non-negative coefficients). The lemma asserts that these two are equiva-
lent. We’ll see that e.g. for quadratic inequalities, the situation is more
complicated.

6. Semidefinite Programs and Combinatorial Optimization 147

Now we turn to linear programming. A typical linear program has the
following form.

maximize cTx
subject to aT

1x ≤ b1,
...

aT
mx ≤ bm,

(6.1)

where a1, . . . , am are given vectors in R
n, b1, . . . , bm are real numbers, and

x = (x1, . . . , xn) is a vector of n unknowns. These inequalities can be
summed up in matrix form as Ax ≤ b, where A is a matrix with m rows
and m columns and b ∈ R

m.
It is very fruitful to think of linear programs geometrically. The solution

of the constraint system Ax ≤ b (also called feasible solutions) form a con-
vex polyhedron P in R

n. For the following discussion, let us assume that P
is bounded and has an internal point. Then each facet ((n−1)-dimensional
faces) of P corresponds to one of the inequalities aT

i x ≤ bi (there may be
other inequalities in the system, but those are redundant). The objective
function cTx can be visualized as a family of parallel hyperplanes; to find
its maximum over P means to translate this hyperplane in the direction of
the vector c as far as possible so that it still intersects P . If P is bounded,
then these “ultimate” common points will form a face (a vertex, an edge,
or higher dimensional face) P , and there will be at least one vertex among
them (see Figure 6.4).

Figure 6.4. The feasible domain and optimum solution of the linear program:
maximize x1 + 2x2, subject to 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1, and x1 + x2 ≤ 2.

There are many alternative ways to describe a linear program. We may
want to maximize instead of minimize; we may have equations, and/or in-
equalities of the form ≥. Sometimes we consider only nonnegative variables;
the inequalities xi ≥ 0 may be included in (6.1), but it may be advantageous
to separate them. All these versions are easily reduced to each other.

148 Lovász

The dual of (6.1) is the linear program

minimize bTy
subject to ATy = c,

y ≥ 0.
(6.2)

The crucial property of this very important construction is the following.

Theorem 6.2.8 (Duality Theorem) If either one of the primal and
dual programs has an optimum solution, then so does the other and the
two optimum values are equal.

The primal program is infeasible if and only if the dual is unbounded.
The dual program is infeasible iff the primal is unbounded.

The primal and dual linear programs are related to each other in
many ways. The following theorem describes the relationship between their
optimal solutions.

Theorem 6.2.9 (Complementary Slackness Theorem) Let x be a
solution of the primal program and y, a solution of the dual program. Then
both x and y are optimal if and only if for every j with yj > 0, the j-th
constraint of the primal problem (6.1) is satisfied with equality.

Linear programs are solvable in polynomial time. The classical, and still
very well usable algorithm to solve them is the Simplex Method. This is
practically quite efficient, but can be exponential on some instances. The
first polynomial time algorithm to solve linear programs was the Ellipsoid
Method; this is, however, impractical. The most efficient methods known
today, both theoretically and practically, are Interior Point Methods.

6.2.3 Polyhedral combinatorics: the stable set polytope
The basic technique of applying linear programming in discrete optimiza-
tion is polyhedral combinatorics. Instead of surveying this broad topic, we
illustrate it by recalling some results on the stable set polytope. A detailed
account can be found e.g. in [43].

Let G = (V,E) be a graph; it is convenient to assume that it has no
isolated nodes. The Stable Set Problem is the problem of finding α(G).
This problem is NP-hard.

The basic idea in applying linear programming to study the stable set
problem is the following. For every subset S ⊆ V , let χS ∈ R

V denote its
incidence vector, i.e., the vector defined by

χS
i =

{
1, if i ∈ S,

0, otherwise,

The stable set polytope STAB(G) of G is the convex hull of incidence vectors
of all stable sets.

6. Semidefinite Programs and Combinatorial Optimization 149

There is a system of linear inequalities whose solution set is exactly the
polytope STAB(G), and if we can find this system, then we can find α(G) by
optimizing the linear objective function

∑
i xi. Unfortunately, this system

is in general exponentially large and very complicated. But if we can find
at least some linear inequalities valid for the stable set polytope, then using
these we get an upper bound on α(G), and for special graphs, we get the
exact value.

Let us survey some classes of known constraints.

Non-negativity constraints:

xi ≥ 0 (i ∈ V). (6.3)

Edge constraints:

xi + xj ≤ 1 (ij ∈ E). (6.4)

These inequalities define a polytope FSTAB(G). The integral points in
FSTAB(G) are exactly the incidence vectors of stable sets, but FSTAB(G)
may have other non-integral vertices, and is in general larger than STAB(G)
(see Figure 6.5).

(1/2,1/2,1/2)

Figure 6.5. The fractional stable set polytope of the triangle. The black dots are
incidence vectors of stable sets; the vertex (1/2, 1/2, 1/2) (closest to us) is not a
vertex of STAB(K3).

Proposition 6.2.10 (a) STAB(G) = FSTAB(G) iff G is bipartite.
(b) The vertices of FSTAB(G) are half-integral.

A clique is a maximal complete subgraph.

Clique constraints:
∑

i∈B

xi ≤ 1, where B is a clique. (6.5)

Inequalities (6.3) and (6.5) define a polytope QSTAB(G), which is
contained in FSTAB(G), but is in general larger than STAB(G).

150 Lovász

A graph G is called perfect if χ(G′) = ω(G′) for every induced subgraph
G′ of G. If G is perfect then so is G [62]. See [39, 43, 65] for the theory of
perfect graphs.

Theorem 6.2.11 [Fulkerson–Chvatal] STAB(G) = QSTAB(G) iff G is
perfect.

A convex corner in R
V is a full-dimensional, compact, convex set P such

that x ∈ P , 0 ≤ y ≤ x implies y ∈ P . The antiblocker of a convex corner P
is defined as P ∗ = {x ∈ R

V
+ : xTy ≤ 1 for all y ∈ P}. P ∗ is a convex corner

and P ∗∗ = P . Figure 6.6 illustrates this important notion in 2 dimensions.

a ax≤1

Figure 6.6. A pair of antiblocking convex corners. The vertex a on the left
corresponds to the facet ax ≤ 1 on the right.

Proposition 6.2.12 For every graph G,

QSTAB(G) = STAB(G)∗.

Odd hole constraints:

∑

i∈C

xi ≤
|C| − 1

2
, where C induces a cordless odd cycle. (6.6)

A graph is called t-perfect if (6.3), (6.4) and (6.6) suffice to de-
scribe STAB(G), and h-perfect if (6.3), (6.5) and (6.6) suffice to describe
STAB(G).

Odd antihole constraints:

∑

i∈B

xi ≤ 2, where B induces the complement of a cordless odd cycle.

(6.7)
How strong are these inequalities? An inequality valid for a (for simplic-

ity, full-dimensional) polytope P ⊆ R
n is called a facet if there are n affine

independent vertices of P that satisfy it with equality. Such an inequality
must occur in every description of P by linear inequalities (up to scaling
by a positive number). The clique constraints are all facets, the odd hole
and antihole inequalities are facets if B = V , and in many other cases. (If

6. Semidefinite Programs and Combinatorial Optimization 151

there are nodes not occurring in the inequality then they may sometimes
be added to the constraint with non-zero coefficient; this is called lifting.)

All the previous constraints are special cases of the following construc-
tion. Let GS denote the subgraph of G induced by S ⊆ V .

Rank constraints:

∑

i∈S

xi ≤ α(GS).

For this general class of constraints, however, we cannot even compute
the right hand side efficiently. Another of their shortcomings is that we
don’t know when they are facets (or can be lifted to facets). An important
special case when at least we know that they are facets was described by
Chvátal [23]. A graph G is called α-critical if it has no isolated nodes, and
deleting any edge e, α(G) increases. These graphs have an interesting and
non-trivial structure theory; here we can only include figure 6.7 showing
some of them.

Theorem 6.2.13 Let G = (V,E) be an α-critical graph. Then the
inequality

∑
i∈V xi ≤ α(G) defines a facet of STAB(G).

Figure 6.7. Some α-critical graphs.

6.3 Semidefinite programs

A semidefinite program is an optimization problem of the following form:

minimize cTx

subject to x1A1 + . . . xnAn −B � 0 (6.8)

152 Lovász

Here A1, . . . , An, B are given symmetric m ×m matrices, and c ∈ R
n is a

given vector. We can think of X = x1A1 + . . . xnAn −B as a matrix whose
entries are linear functions of the variables.

As usual, any choice of the values xi that satisfies the given constraint
is called a feasible solution. A solution is strictly feasible, if the matrix X
is positive definite. We denote by vprimal the supremum of the objective
function.

The special case when A1, . . . , An, B are diagonal matrices is just a
“generic” linear program, and it is very fruitful to think of semidefinite
programs as generalizations of linear programs. But there are important
technical differences. The following example shows that, unlike in the case
of linear programs, the supremum may be finite but not a maximum, i.e.,
not attained by any feasible solution.

Example 6.3.1 Consider the semidefinite program

minimize x1

subject to
(
x1 1
1 x2

)

� 0

The semidefiniteness condition boils down to the inequalities x1, x2 ≥ 0
and x1x2 ≥ 1, so the possible values of the objective function are all positive
real numbers. Thus vprimal = 0, but the supremum is not attained.

As in the theory of linear programs, there are a large number of equiv-
alent formulations of a semidefinite program. Of course, we could consider
minimization instead of maximization. We could stipulate that the xi are
nonnegative, or more generally, we could allow additional linear constraints
on the variables xi (inequalities and/or equations). These could be incor-
porated into the form above by extending the Ai and B with new diagonal
entries.

We could introduce the entries of A as variables, in which case the fact
that they are linear functions of the original variables translates into linear
relations between them. Straightforward linear algebra transforms (6.8)
into an optimization problem of the form

maximize C ·X
subject to X � 0

D1 ·X = d1
...

Dk ·X = dk,

(6.9)

where C,D1, . . . , Dk are symmetric m × m matrices and d1, . . . , dk ∈ R.
Note that C ·X is the general form of a linear combination of entries of X,
and so Di ·X = di is the general form of a linear equation in the entries of
X.

6. Semidefinite Programs and Combinatorial Optimization 153

It is easy to see that we would not get any substantially more general
problem if we allowed linear inequalities in the entries of X in addition to
the equations.

6.3.1 Fundamental properties of semidefinite programs
We begin with the semidefinite version of the Farkas Lemma:

Lemma 6.3.2 [Homogeneous version] Let A1, . . . , An be symmetric m×m
matrices. The system

x1A1 + . . .+ xnAn � 0

has no solution in x1, . . . , xn if and only if there exists a symmetric matrix
Y �= 0 such that

A1 · Y = 0
A2 · Y = 0

...
An · Y = 0

Y � 0 .

Proof. As discussed in section 6.2.1, the set Pm of m × m positive
semidefinite matrices forms a closed convex cone. If

x1A1 + . . .+ xnAn � 0

has no solution, then the linear subspace L of matrices of the form x1A1 +
. . . xnAn is disjoint from the interior of this cone PSDm. It follows that this
linear space is contained in a hyperplane that is disjoint from the interior
of PSDm. This hyperplane can be described as {X : Y · X = 0}, where
we may assume that X · Y ≥ 0 for every X ∈ PSDm. Then Y �= 0, Y � 0
by Lemma 6.2.4, and Ai · Y = 0 since the Ai belong to L. �

By similar methods one can prove:

Lemma 6.3.3 [Inhomogeneous version] Let A1, . . . , An, B be symmetric
m×m matrices. The system

x1A1 + . . . xnAn −B � 0

has no solution in x1, . . . , xn if and only if there exists a symmetric matrix
Y �= 0 such that

A1 · Y = 0
A2 · Y = 0

...

154 Lovász

An · Y = 0
B · Y ≥ 0

Y � 0 .

Given a semidefinite program (6.8), one can formulate the dual program:

maximize B · Y
subject to A1 · Y = c1

A2 · Y = c2
...

An · Y = cm
Y � 0.

(6.10)

Note that this too is a semidefinite program in the general sense. We denote
by vdual the supremum of the objective function.

With this notion of duality, the Duality Theorem holds in the following
sense (see e.g. [96, 93, 94]):

Theorem 6.3.4 Assume that both the primal and the dual semidefinite
programs have feasible solutions. Then vprimal ≥ vdual. If, in addition, the
primal program (say) has a strictly feasible solution, then the dual opti-
mum is attained and vprimal = vdual. In particular, if both programs have
strictly feasible solutions, then the supremum resp. infimum of the objective
functions are attained.

Proof. Let x1, . . . , xn be any solution of (6.8) and Y , any solution of (6.10).
By Proposition 6.2.3, we have

∑

i

cixi −B · Y = tr(Y (
∑

i

xiAi −B)) ≥ 0,

which shows that vprimal ≥ vdual.
Moreover, the system

∑

i

cixi < vprimal

∑

i

xiAi � B

has no solution in the xi, by the definition of vprimal. Thus if we define the
matrices

A′
i =
(

−ci 0
0 Ai

)

, B′ =
(

−vprimal 0
0 B

)

,

then the system

x1A
′
1 + . . . xnA

′
n −B′ � 0

6. Semidefinite Programs and Combinatorial Optimization 155

has no solution. By Lemma 6.3.3, there is a positive semidefinite matrix
Y ′ �= 0 such that

A′
i · Y ′ = 0 (i = 1, . . . , n), B′ · Y ′ ≥ 0.

Writing

Y ′ =
(
y00 yT

y Y

)

,

we get that

Ai · Y = y00ci (i = 1, . . . , n), B · Y ≥ y00vprimal.

We claim that y00 �= 0. Indeed, if y00 = 0, then y = 0 by the semidefiniteness
of Y ′, and since Y ′ �= 0, it follows that Y �= 0. The existence of Y would
imply (by Lemma 6.3.3 again) that x1A1+. . . xnAn−B � 0 is not solvable,
which is contrary to the hypothesis about the existence of a strictly feasible
solution.

Thus y00 �= 0, and clearly y00 > 0. By scaling, we may assume that
y00 = 1. But then Y is a feasible solution of the dual problem (6.10), with
objective value B ·Y ≥ vprimal, proving that vdual ≥ vprimal, and completing
the proof.

The following complementary slackness conditions also follow from this
argument.

Proposition 6.3.5 Let x be a feasible solution of the primal program and
Y , a feasible solution of the dual program. Then vprimal = vdual and both x
and Y are optimal solutions if and only if Y (

∑
i xiAi −B) = 0.

The following example shows that the somewhat awkward conditions
about the strictly feasible solvability of the primal and dual programs can-
not be omitted (see [83] for a detailed discussion of conditions for exact
duality).

Example 6.3.6 Consider the semidefinite program

minimize x1

subject to

0 x1 0
x1 x2 0
0 0 x1 + 1

 � 0

The feasible solutions are x1 = 0, x2 ≥ 0. Hence vprimal is assumed and is
equal to 0. The dual program is

maximize −Y33
subject to Y12 + Y21 + Y33 = 1

Y22 = 0
Y � 0 .

156 Lovász

The feasible solutions are all matrices of the form

a 0 b
0 0 0
b 0 1

where a ≥ b2. Hence vdual = −1.

6.3.2 Algorithms for semidefinite programs
There are two essentially different algorithms known that solve semidef-
inite programs in polynomial time: the ellipsoid method and interior
point/barrier methods. Both of these have many variants, and the exact
technical descriptions are quite complicated; so we restrict ourselves to de-
scribing the general principles underlying these algorithms, and to some
comments on their usefulness. We ignore numerical problems, arising from
the fact that the optimum solutions may be irrational and the feasible
regions may be very small; we refer to [82, 83] for discussions of these
problems.

The first polynomial time algorithm to solve semidefinite optimization
problems in polynomial time was the ellipsoid method. Let K be a con-
vex body (closed, compact, convex, full-dimensional set) in R

N . We set
S(K, t) = {x ∈ R

N : d(x,K) ≤ t}, where d denotes euclidean distance.
Thus S(0, t) is the ball with radius t about 0.

A (weak) separation oracle for a convex body K ⊆ R
N is an oracle (a

subroutine which is handled as a black box; one call on the oracle is counted
as one step only) whose input is a rational vector x ∈ R

N and a rational
ε > 0; the oracle either asserts that x ∈ S(K, ε) or returns an “almost
separating hyperplane” in the form of a vector 0 �= y ∈ R

N such that
yTx > yTz − ε|y| for all z ∈ K.

If we have a weak separation oracle for a convex body (in practice, any
subroutine that realizes this oracle) then we can use the ellipsoid method
to optimize any linear objective function over K [43]:

Theorem 6.3.7 Let K be a convex body in R
n and assume that we know

two real numbers R > r > 0 such that S(0, r) ⊆ K ⊆ S(0, R). Assume
further that we have a weak separation oracle for K. Let a (rational) vector
c ∈ R

n and an error bound 0 < ε < 1 be also given. Then we can compute
a (rational) vector x ∈ R

n such that x ∈ K and cTx ≥ cT z − ε for every
y ∈ K. The number of calls on the oracle and the number of arithmetic
operations in the algorithm are polynomial in log(R/r) + log(1/ε) + n.

This method can be applied to solve semidefinite programs in polynomial
time, modulo some technical conditions. (Note that some complications
arise already from the fact that the optimum value is not necessarily a
rational number, even if all parameters are rational. A further warning is
example 6.3.6.)

6. Semidefinite Programs and Combinatorial Optimization 157

Assume that we are given a semidefinite program (6.8) with rational
coefficients and a rational error bound ε > 0. Also assume that we know a
rational, strictly feasible solution x̃, and a bound R > 0 for the coordinates
of an optimal solution. Then the set K of feasible solutions is a closed,
convex, bounded, full-dimensional set in R

n. It is easy to compute a small
ball around x0 that is contained in K.

The key step is to design a separation oracle for K. Given a vector x, we
need only check whether x ∈ K and if not, find a separating hyperplane.
Ignoring numerical problems, we can use the algorithm described in section
6.2.1 to check whether the matrix Y =

∑
i xiAi−B is positive semidefinite.

If it is, then x ∈ K. If not, the algorithm also returns a vector v ∈ R
m such

that vTY v < 0. Then
∑

i xiv
TAiv = vTBv is a separating hyperplane.

(Because of numerical problems, the error bound in the definition of the
weak separation oracle is needed.)

Thus using the ellipsoid method we can compute, in time polynomial in
log(1/ε) and in the number of digits in the coefficients and in x0, a feasible
solution x such that the value of the objective function is at most vprimal+ε.

Unfortunately, the above argument gives an algorithm which is polyno-
mial, but hopelessly slow, and practically useless. Still, the flexibility of the
ellipsoid method makes it an inevitable tool in proving the existence (and
not much more) of a polynomial time algorithm for many optimization
problems.

Semidefinite programs can be solved in polynomial time and also prac-
tically efficiently by interior point methods [77, 1, 2]. The key to this
method is the following property of the determinant of positive semidefinite
matrices.

Lemma 6.3.8 The function F defined by

F (Y) = − log det (Y)

is convex and analytic in the interior of the semidefinite cone Pn, and tends
to ∞ at the boundary.

The algorithm can be described very informally as follows. The feasible
domain of our semidefinite optimization problem is of the form K = Pn∩A,
where A is an affine subspace of symmetric matrices. We want to minimize
a linear function C · X over X ∈ K. The good news is that K is convex.
The bad news is that the minimum will be attained on the boundary of
K, and this boundary can have a very complicated structure; it is neither
smooth nor polyhedral. Therefore, neither gradient-type methods nor the
methods of linear programming can be used to minimize C ·X.

The main idea of barrier methods is that instead of minimizing CTX, we
minimize the function FC(X) = F (X) + λCTX for some λ > 0. Since Fλ

tends to infinity on the boundary of K, the minimum will be attained in the
interior. Since Fλ is convex and analytic in the interior, the minimum can

158 Lovász

be very efficiently computed by a variety of numerical methods (conjugate
gradient etc.)

Of course, the point we obtain this way is not what we want, but if λ
is large it will be close. If we don’t like it, we can increase λ and use the
minimizing point for the old Fλ as the starting point for a new gradient
type algorithm. (In practice, we can increase λ after each iteration of this
gradient algorithm.)

One can show that (under some technical assumptions about the feasible
domain) this algorithm gives an approximation of the optimum with rela-
tive error ε in time polynomial in log(1/ε) and the size of the presentation
of the program. The proof of this depends on a further rather technical
property of the determinant, called ”self-concordance”. We don’t go into
the details, but refer to the articles [2, 93, 94] and the book [76].

6.4 Obtaining semidefinite programs

How do we obtain semidefinite programs? It turns out that there are a
number of considerations from which semidefinite programs, in particu-
lar semidefinite relaxations of combinatorial optimization problems arise.
These don’t always lead to different relaxations; in fact, the best known ap-
plications of semidefinite programming seem to be very robust in the sense
that different methods for deriving their semidefinite relaxations yields the
same, or almost the same, result. However, these different methods seem
to have different heuristic power.

6.4.1 Unit distance graphs and orthogonal representations
We start with some semidefinite programs arising from geometric problems.
A unit distance representation of a graph G = (V,E) is a mapping u : V →
R

d for some d ≥ 1 such that |ui − uj | = 1 for every ij ∈ E (we allow that
|ui − uj | = 1 for some ij ∈ E). Figure 6.8 shows a 2-dimensional unit
distance representation of the Petersen graph [31].

There are many questions one can ask about the existence of unit dis-
tance representations: what is the smallest dimension in which it exists?
what is the smallest radius of a ball containing a unit distance representa-
tion of G (in any dimension)? In this paper, we are only concerned about
the last question, which can be answered using semidefinite programming
(for a survey of other aspects of such geometric representations, see [73]).
Considering the Gram matrix A = (uT

i uj), it is easy to obtain the following
reduction to semidefinite programming:

Proposition 6.4.1 A graph G has a unit distance representation in a ball
of radius R (in some appropriately high dimension) if and only if there

6. Semidefinite Programs and Combinatorial Optimization 159

Figure 6.8. A unit distance representation of the Petersen graph.

exists a positive semidefinite matrix A such that

Aii ≤ R2 (i ∈ V)
Aii − 2Aij +Ajj = 1 (ij ∈ E).

In other words, the smallest radius R is the square root of the optimum
value of the semidefinite program

minimize w
subject to A � 0

Aii ≤ w (i ∈ V)
Aii − 2Aij +Ajj = 1 (ij ∈ E).

The unit distance embedding of the Petersen graph in Figure 6.8 is not
an optimal solution of this problem. Let us illustrate how semidefinite op-
timization can find the optimal embedding by determining this for the
Petersen graph. In the formulation above, we have to find a 10 × 10 pos-
itive semidefinite matrix A satisfying the given linear constraints. For a
given w, the set of feasible solutions is convex, and it is invariant under
the automorphisms of the Petersen graph. Hence there is an optimum solu-
tion which is invariant under these automorphisms (in the sense that if we
permute the rows and columns by the same automorphism of the Petersen
graph, we get back the same matrix).

Now we know that the Petersen graph has a very rich automorphism
group: not only can we transform every node into every other node, but
also every edge into every other edge, and every nonadjacent pair of nodes
into every other non-adjacent pair of nodes. A matrix invariant under these
automorphisms has only 3 different entries: one number in the diagonal,
another number in positions corresponding to edges, and a third number
in positions corresponding to nonadjacent pairs of nodes. This means that
this optimal matrix A can be written as

A = xP + yJ + zI,

160 Lovász

where P is the adjacency matrix of the Petersen graph, J is the all-1 matrix,
and I is the identity matrix. So we only have these 3 unknowns x, y and z
to determine.

The linear conditions above are now easily translated into the variables
x, y, z. But what to do with the condition that A is positive semidefinite?
Luckily, the eigenvalues of A can also be expressed in terms of x, y, z. The
eigenvalues of P are well known (and easy to compute): they are 3, 1 (5
times) and -2 (4 times). Here 3 is the degree, and it corresponds to the
eigenvector 1 = (1, . . . , 1). This is also an eigenvector of J (with eigenvalue
10), and so are the other eigenvectors of P , since they are orthogonal to
1, and so are in the nullspace of J . Thus the eigenvalues of xP + yJ are
3x + 10y, x, and −2x. Adding zI just shifts the spectrum by z, so the
eigenvalues of A are 3x + 10y + z, x + z, and −2x + z. Thus the positive
semidefiniteness of A, together with the linear constraints above, gives the
following linear program for x, y, z, w:

minimize w
subject to 3x+ 10y + z ≥ 0,

x+ z ≥ 0,
−2x+ z ≥ 0,

y + z ≤ w,
2z − 2x = 1.

It is easy to solve this: clearly the optimum solution will have w = y+ z,
and y = (−3x− z)/10. We can also substitute x = z− 1/2, which leaves us
with a single variable. The solution is x = −1/4, y = 1/20, z = 1/4, and
w = 3/10. Thus the smallest radius of a ball in which the Petersen graph
has a unit distance representation is

√
3/10. The corresponding matrix A

has rank 4, so this representation is in 4 dimension.
It would be difficult to draw a picture of this representation, but I can of-

fer the following nice matrix, whose columns will realize this representation
(the center of the smallest ball containing it is not at the origin!):

1/2 1/2 1/2 1/2 0 0 0 0 0 0
1/2 0 0 0 1/2 1/2 1/2 0 0 0
0 1/2 0 0 1/2 0 0 1/2 1/2 0
0 0 1/2 0 0 1/2 0 1/2 0 1/2
0 0 0 1/2 0 0 1/2 0 1/2 1/2

(6.11)

(This matrix reflects the fact that the Petersen graph is the complement
of the line-graph of K5.)

It turns out that from a graph theoretic point of view, it is more in-
teresting to modify the question and require that the nodes all lie on the
surface of the sphere (in our example this happened automatically, due to
the symmetries of the Petersen graph). In other words, we are interested
in the smallest sphere (in any dimension) on which a given graph G can
be drawn so that the euclidean distance between adjacent nodes is 1 (of

6. Semidefinite Programs and Combinatorial Optimization 161

course, we could talk here about any other given distance instead of 1,
or spherical distance instead of euclidean, without essentially changing the
problem). Again, by considering the Gram matrix A = (uT

i uj), we find that
this smallest radius t(G) is given by the square root of the optimum value
of the following semidefinite program:

minimize z
subject to A � 0

Aii = z (i ∈ V)
Aii − 2Aij +Ajj = 1 (ij ∈ E).

(6.12)

Since A = diag(1/2, . . . , 1/2) is a solution, it follows that the optimal z
satisfies z ≤ 1/2.

Another way of looking at this question is to add a further dimension.
Think of a unit distance representation of the graph on the sphere with
radius t as lying in a “horizontal” hyperplane. Choose the origin above the
center of the sphere so that the vectors pointing to adjacent nodes of the
graph are orthogonal (the distance of the origin to the hyperplane will be√

(1/2) − z). It is worth scaling up by a factor of
√

2, so that the vectors
pointing to the nodes of the graph become unit vectors. Such a system
of vectors is called an orthonormal representation of the complementary
graph G (the complementation is, of course, just a matter of convention).
The matrix (6.11) above is an orthogonal representation of the complement
of the Petersen graph, which is related to its unit distance representation
by this construction, up to a change in coordinates.

In the introduction, we constructed an orthonormal representation of the
pentagon graph (Figure 6.1). This is not the simplest case (in a sense, it is
the smallest interesting orthogonal representation). Figure 6.9 below shows
that it if we add a diagonal to the pentagon, then a much easier orthogonal
representation in 2 dimensions can be constructed.

Figure 6.9. An (almost) trivial orthogonal representation

Orthogonal representations of graphs have several applications in graph
theory. In particular, it turns out that the quantity 1/(1 − 2t(G)2) is just
ϑ(G) introduced before (for the complementary graph G. We’ll return to
it in sections 6.5.1 and 6.6.1.

162 Lovász

6.4.2 Discrete linear and quadratic programs
Consider a typical 0-1 optimization problem:

maximize ctx

subject to

{
Ax ≤ b

x ∈ {0, 1}n.
(6.13)

We get an equivalent problem if we replace the last constraint by the
quadratic equation

x2
i = xi (i = 1, . . . , n). (6.14)

Once we allow quadratic equations, many things become much simpler.
First, we can restrict ourselves to homogeneous quadratic equations, by
introducing a new variable x0, and setting it to 1. Thus (6.14) becomes

x2
i = x0xi (i = 1, . . . , n). (6.15)

Second, we don’t need inequalities: we can just replace F ≥ 0 by F−x2 = 0,
where x is a new variable. Third, we can often replace constraints by sim-
pler and more powerful constraints. For example, for the stable set problem
(section 6.2.3), we could replace the edge constraints by the quadratic
equations

xixj = 0 (ij ∈ E). (6.16)

Trivially, the solutions of (6.14) and (6.16) are precisely the incidence vec-
tors of stable sets. If we are interested in α(G), we can consider the objective
function

∑n
i=1 x0xi.

Unfortunately, this also shows that even the solvability of such a simple
system of quadratic equations (together with a linear equation

∑
i xi = α)

is NP-hard.
The trick to obtain a polynomially solvable relaxation of such problems

is to think of the xi as vectors in R
k (and multiplication as inner product).

For k = 1, we get back the original 0-1 optimization problem. For k =
2, 3 . . ., we get various optimization problems with geometric flavor, which
are usually not any easier than the original. For example, for the stable set
problem we get the vector relaxation

maximize
∑

i∈V

vT
0 vi

subject to vi ∈ R
k

vT
0 vi = |vi|2 (i ∈ V) (6.17)
vT

i vj = 0 (ij ∈ E). (6.18)

But if we take k = n, then we get a relaxation which is polynomial time
solvable. Indeed, we can introduce new variables Yij = vT

i vj and then the
constraints and the objective function become linear, and if in addition we

6. Semidefinite Programs and Combinatorial Optimization 163

impose the condition that Y � 0, then we get a semidefinite optimization
problem. If we solve this problem, and then write Y as a Gram matrix, we
obtain an optimum solution of the vector relaxation.

The conditions on vector relaxations often have useful geometric content.
For example, (6.17) (which is common to the vector relaxations of all 0-1
programs) can be written in the following two forms:

(v0 − vi)Tvi = 0;
∣
∣
∣
∣vi −

1
2
v0

∣
∣
∣
∣

2

=
1
4
.

This says that the vectors vi and v0 − vi are orthogonal to each other, and
all the points vi lie on the sphere with radius 1/2 centered at (1/2)v0. (6.18)
says that the vi form an orthogonal representation of the complement of
G.

For discrete linear or quadratic programs with variables from {−1, 1},
(6.14) becomes even simpler:

x2
i = 1, (6.19)

i.e., the vectors are unit vectors. In the case of the Maximum Cut Problem
for a graph G = (V,E), we can think of a 2-coloring as an assignment of
1’s and −1’s to the nodes, and the number of edges in the cut is

∑

ij∈E

1
4

(xi − xj)2.

The vector relaxation of this problem has the nice physical meaning given
in the introductory example (energy-minimization).

One can add further constraints. For example, if the variables xi are 0-1,
then we have

(xi − xj)(xi − xk) ≥ 0

for any three variables. We may add these inequalities as quadratic con-
straints, and then get a vector relaxation that satisfies, besides the other
constraints, also

(vi − vj)T(vi − vk) ≥ 0.

Geometrically, this means that every triangle spanned by the vectors vi is
acute; this property is sometimes useful to have.

A further geometric property that can be exploited in some cases is
symmetry. Linear systems always have solutions invariant under the sym-
metries of the system, but quadratic systems, or discrete linear systems do
not. For example, if G is a cycle, then the system (6.14)-(6.16) is invariant
under rotation, but its only solution invariant under rotation is the trivial
all-0 vector. One advantage of the semidefinite relaxation is that it restores
symmetric solvability.

Assume that we start with a quadratic system such that both the con-
straint set and the objective function are invariant under some permutation

164 Lovász

group Γ acting on the variables (for example, it can be invariant under the
cyclic shift of indices). It may be that no optimal solution of the quadratic
system is invariant under these permutations: For example, no maximal
stable set in a cycle is invariant under cyclic shifts. However, in a semidefi-
nite program feasible solutions define convex sets in the space of matrices,
and the objective function is linear. Hence by averaging, we can assert that
there exists an optimum solution Y which itself is invariant under all per-
mutations of the indices under which the semidefinite program is. In other
words, the semidefinite relaxation of the quadratic system has an optimal
solution Y � 0, such that if γ ∈ Γ, then

Yγ(i),γ(j) = Yij . (6.20)

Now we go over to the vector relaxation: this is defined by Yij = vT
i vj ,

where vi ∈ R
d for some d ≤ n. We may assume that the vi span R

d. Let
γ ∈ Γ. (6.20) says that vT

γ(i)vγ(j) = vT
i vj . In other words, the permutation

vi �→ vγ(i) preserves the length of the ui and all the angles between them,
and hence there is an orthogonal matrix Mγ such that uγ(i) = Mγui. Since
the ui span the space, this matrix Mγ is uniquely determined, and so we
get a representation of Γ in R

d. The vector solution (vi) is invariant under
this representation.

6.4.3 Spectra of graphs
Let G = (V,E) be a graph. We denote by G = (V,E) its complement and
set ∆ = {ii : i ∈ V }. The adjacency matrix AG of G is defined by

(AG)ij =

{
1, if ij ∈ E,

0, if ij ∈ E ∪ ∆.

Let λ1 ≥ . . . ≥ λn be the eigenvalues of AG. It is well known and easy to
show that if G is d-regular than λ1 = d. Since the trace of AG is 0, we have
λ1 + . . .+ λn = 0, and hence if E �= ∅ then λ1 > 0 but λn < 0.

There are many useful connections between the eigenvalues of a graph
and its combinatorial properties. The first of these follows easily from
interlacing eigenvalues.

Proposition 6.4.2 The maximum size ω(G) of a clique in G is at most
λ1 + 1. This bound remains valid even if we replace the non-diagonal 0’s in
the adjacency matrix by arbitrary real numbers.

The following bound on the chromatic number is due to Hoffman.

Proposition 6.4.3 The chromatic number χ(G) of G is at least 1 −
(λ1/λn). This bound remains valid even if we replace the 1’s in the
adjacency matrix by arbitrary real numbers.

6. Semidefinite Programs and Combinatorial Optimization 165

The following bound on the maximum size of a cut is due to Delorme
and Poljak [28, 29, 75, 81], and was the basis for the Goemans-Williamson
algorithm discussed in the introduction.

Proposition 6.4.4 The maximum size γ(G) of a cut in G is at most
|E|/2 − (n/4)λn. This bound remains valid even if we replace the diagonal
0’s in the adjacency matrix by arbitrary real numbers.

Observation: to determine the best choice of the “free” entries in 6.4.2,
6.4.3 and 6.4.4 takes a semidefinite program. Consider 6.4.2 for example:
we fix the diagonal entries at 0, the entries corresponding to edges at 1,
but are free to choose the entries corresponding to non-adjacent pairs of
vertices (replacing the off-diagonal 1’s in the adjacency matrix). We want
to minimize the largest eigenvalue. This can be written as a semidefinite
program:

minimize t
subject to tI −X � 0,

Xii = 0 (∀i ∈ V),
Xij = 1 (∀ij ∈ E).

It turns out that the semidefinite program constructed for 6.4.3 is just
the dual of this, and their common optimum value is the parameter ϑ(G)
introduced before. The program for 6.4.4 gives the approximation used by
Goemans and Williamson (for the case when all weights are 1, from which
it is easily extended). See [50] for a similar method to obtain an improved
bound on the mixing rate of random walks.

6.4.4 Engineering applications
Semidefinite optimization has many applications in stability problems of
dynamical systems and optimal control. Since this is not in the main line
of these lecture notes, we only illustrate this area by a simple example; see
chapter 14 of [98] for a detailed survey.

Consider a “system” described by the differential equation

dx

dt
= A(t)x(t), (6.21)

where x ∈ R
n is a vector describing the state of the system, and A(t) is an

n× n matrix, about which we only know that it is a linear combination of
m given matrices A1, . . . , Am with nonnegative coefficients (an example of
this situation is when we know the signs of the matrix entries). Is the zero
solution x(t) ≡ 0 asymptotically stable, i.e., is it true that for every initial
value x(0) = x0, we have x(t) → 0 as t → ∞?

Suppose first that A(t) = A is a constant matrix, and also suppose that
we know from the structure of the problem that it is symmetric. Then

166 Lovász

the basic theory of differential equations tells us that the zero solution is
asymptotically stable if and only if A is negative definite.

But semidefinite optimization can be used even if A(t) can depend on t,
and is not necessarily symmetric, at least to establish a sufficient condition
for asymptotic stability. We look for a quadratic Lyapunov function xTPx,
where P is a positive definite n× n matrix, such that

d

dt
x(t)TPx(t) < 0 (6.22)

for every non-zero solution of the differential equation. If we find such a
matrix P , then Lyapunov’s theorem implies that the trivial solution is
asymptotically stable.

Now the left hand side of (6.22) can be written as

d

dt
x(t)TPx(t) = ẋTPx+ xTPẋ = xT(ATP + PA)x.

Thus (6.22) holds for every solution and every t if and only if ATP + PA
(which is a symmetric matrix) is negative semidefinite. We don’t explicitly
know A(t), but we do know that it is a linear combination of A1, . . . , Am;
so it suffices we require that the matrices AT

i P + PAi, i = 1, ...,m are
negative semidefinite.

To sum up, we see that a sufficient condition for the asymptotic stability
of the zero solution of (6.21) is that the semidefinite system

P � 0,
−ATP − PA � 0 (i = 1, . . . ,m)

has a solution in P .

6.5 Semidefinite programming in proofs

6.5.1 More on stable sets and the Shannon capacity
An orthogonal representation of a graph G = (V,E) is a mapping (labeling)
u : V → R

d for some d such that uT
i uj = 0 for all ij ∈ E. An orthonor-

mal representation is an orthogonal representation with |ui| = 1 for all i.
The angle of an orthonormal representation is the smallest half-angle of a
rotational cone containing the representing vectors.

Proposition 6.5.1 The minimum angle φ of any orthogonal representa-
tion of G is given by cos2 φ = 1/ϑ(G).

In what follows we collect some properties of ϑ, mostly from [64] (see
also [57] for a survey).

6. Semidefinite Programs and Combinatorial Optimization 167

We start with a formula that expresses ϑ(G) as a maximum over or-
thogonal representations of the complementary graph. Let the leaning of
an orthonormal representation of G be defined as

∑
i∈V (eT1ui)2.

Proposition 6.5.2 The maximum leaning of an orthonormal representa-
tion of G is ϑ(G).

The “umbrella” construction given in the introduction shows, by Propo-
sition 6.5.1, that ϑ(C5) ≤

√
5, and by Proposition 6.5.2, that ϑ(C5) ≥

√
5.

Hence ϑ(C5) =
√

5.
Proposition 6.5.2 is a ”duality” result, which is in fact a consequence of

the Duality Theorem of semidefinite programs (Theorem 6.3.4). To see the
connection, let us give a ”semidefinite” formulation of ϑ. This formulation
is by no means unique; in fact, several others come up in these lecture
notes.

Proposition 6.5.3 ϑ(G) is the optimum of the following semidefinite
program:

minimize t
subject to Y � 0

Yij = −1 (∀ ij ∈ E(G))
Yii = t− 1

(6.23)

It is also the optimum of the dual program

maximize
∑

i∈V

∑
j∈V Zij

subject to Z � 0
Zij = 0 (∀ ij ∈ E(G))

tr(Z) = 1

(6.24)

Any stable set S provides a feasible solution of (6.24), by choosing Zij =
1/|S| if i, j ∈ S and 0 otherwise. Similarly, any k-coloring of G provides a
feasible solution of (6.23), by choosing Yij = −1 if i and j have different
colors, Yii = k − 1 and Yij = 0 otherwise. These explicit solutions imply
the following.

Theorem 6.5.4 [Sandwich Theorem] For every graph G,

ω(G) ≤ ϑ(G) ≤ χ(G).

The fractional chromatic number χ∗(G) is defined as the least t for which
there exists a family (Aj : j = 1, . . . , p) of stable sets in G, and nonnegative
weights (τj : j = 1, . . . , p) such that

∑
{τj : Aj � i} ≥ 1 for all i ∈ V

and
∑

j τj = t. Note that the definition χ∗ can be considered as a linear
program. By linear programming duality, χ∗(G) is equal to the largest s
for which there exist weights (σi : i ∈ V) such that

∑
i∈A σi ≤ 1 for every

stable set A and
∑

i σi = s.
Clearly ω(G) ≤ χ∗(G) ≤ χ(G).

168 Lovász

Proposition 6.5.5 ϑ(G) ≤ χ∗(G).

Returning to orthogonal representations, it is easy to see that not only
the angle, but also the dimension of the representation yields an upper
bound on α(G). This is, however, not better that ϑ:

Proposition 6.5.6 Suppose that G has an orthonormal representation in
dimension d. Then ϑ(G) ≤ d.

On the other hand, if we consider orthogonal representations over fields
of finite characteristic, the dimension may be a better bound than ϑ [44, 6].
This, however, goes outside the ideas of semidefinite optimization.

To relate ϑ to the Shannon capacity of a graph, the following is the key
observation:

Proposition 6.5.7 For any two graphs,

ϑ(G ·H) = ϑ(G)ϑ(H)

and

ϑ(G ·H) = ϑ(G)ϑ(H).

It is now easy to generalize the bound for the Shannon capacity of the
pentagon, given in the introduction, to arbitrary graphs.

Corollary 6.5.8 For every graph,

Θ(G) ≤ ϑ(G).

Does equality hold here? Examples by Haemers [44], and more recent
much sharper examples by Alon [6] show that the answer is negative in
general. But we can derive at least one interesting class of examples from
the general results below.

Proposition 6.5.9 For every graph G,

ϑ(G)ϑ(G) ≥ n.

If G has a vertex-transitive automorphism group, then equality holds.

Corollary 6.5.10 If G is a self-complementary graph on n nodes with a
node-transitive automorphism group, then

Θ(G) = ϑ(G) =
√
n.

An example to which this corollary applies is the Paley graph: for a prime
p ≡ 1 (mod 4), we take the {0, 1, . . . , p− 1} as vertices, and connect two
of them iff their difference is a quadratic residue. Thus we get an infinite

6. Semidefinite Programs and Combinatorial Optimization 169

family for which the Shannon capacity is non-trivial (i.e., Θ > α), and can
be determined exactly.

The Paley graphs are quite similar to random graphs, and indeed, for
random graphs ϑ behaves similarly:

Theorem 6.5.11 (Juhász [49]) If G is a random graph on n nodes then√
n < ϑ(G) < 2

√
n with probability 1 − o(1).

It is not known how large the Shannon capacity of a random graph is.
We conclude this section by using semidefinite optimization to add fur-

ther constraints to the stable set polytope (continuing the treatment in
section 6.2.3). For every orthonormal representation (vi : i ∈ V) of G, we
consider the linear constraint

∑

i∈V

(eT1 vi)2xi ≤ 1. (6.25)

It is easy to see that these inequalities are valid for STAB(G); we call them
orthogonality constraints. The solution set of non-negativity and orthogo-
nality constraints is denoted by TSTAB(G). It is clear that TSTAB is a
closed, convex set. The incidence vector of any stable set A satisfies (6.25).
Indeed, it then says that

∑

i∈A

(eT1 vi)2 ≤ 1.

Since the vi (i ∈ A) are mutually orthogonal, the left hand side is just the
squared length projection of e1 onto the subspace spanned by these ei, and
the length of this projection is at most the length of e1, which is 1.

Furthermore, every clique constraint is an orthogonality constraint.
Indeed,

∑

i∈B

xi ≤ 1

is the constraint derived from the orthogonal representation

i �→
{
e1, if i ∈ A,

ei, if i /∈ A.

Hence we have

STAB(G) ⊆ TSTAB(G) ⊆ QSTAB(G)

for every graph G.
There is a dual characterization of TSTAB [42], which can be derived

from semidefinite duality. For every orthonormal representation (ui : i ∈
V), consider the vector x[u] = (eT1ui)2 : i ∈ V) ∈ R

V .

Theorem 6.5.12 TSTAB(G) = {x[u] : u is an orthonormal representa-
tion of G}.

170 Lovász

Not every orthogonality constraint is a clique constraint; in fact, the
number of essential orthogonality constraints is infinite in general:

Theorem 6.5.13 TSTAB(G) is polyhedral if and only if the graph is
perfect. In this case TSTAB = STAB = QSTAB.

While TSTAB is a rather complicated set, in many respects it behaves
much better than, say, STAB. For example, it has a very nice connection
with graph complementation:

Theorem 6.5.14 TSTAB(G) is the antiblocker of TSTAB(G).

Maximizing a linear function over STAB(G) or QSTAB(G) is NP-hard;
but, surprisingly, TSTAB behaves much better:

Theorem 6.5.15 Every linear objective function can be maximized over
TSTAB(G) (with arbitrarily small error) in polynomial time.

The maximum of
∑

i xi over TSTAB(G) is the familiar function ϑ(G).

6.5.2 Discrepancy and number theory
Let F be a family of subsets of {0, 1, . . . , n−1}. We want to find a sequence
x = (x0, x1, . . . , xn−1) of ±1’s so that each member of F contains about as
many 1’s as −1’s. More exactly, we define the discrepancy of the sequence
x by

max
A∈F

∣
∣
∣
∣
∣

∑

i∈A

xi

∣
∣
∣
∣
∣
,

and the discrepancy of the family F by

∆(F) = min
x∈{−1,1}n

max
A∈F

∣
∣
∣
∣
∣

∑

i∈A

xi

∣
∣
∣
∣
∣
.

We can also consider the “average discrepancy” in various versions. For our
purposes, we only need the �2-discrepancy

∆2(F) = min
x∈{−1,1}n

1
|F|

∑

A∈F

(
∑

i∈A

xi

)2

.

It is clear that ∆2 ≤ ∆2. (We refer to [17] and [18] for an exposition of
combinatorial discrepancy theory.)

Clearly, ∆(F) can be thought of as the optimum of a linear program in
{−1, 1}-variables:

minimize t
subject to −t ≤

∑
i∈A xi ≤ t

xi ∈ {−1, 1},
(6.26)

6. Semidefinite Programs and Combinatorial Optimization 171

while ∆2 is optimum of a quadratic function in {−1, 1}-variables (but
otherwise unconstrained). So both quantities have natural semidefinite
relaxations. We only formulate the second:

minimize 1
|F|
∑

A∈F
∑

i∈A

∑
j∈A Yij

subject to Y � 0,
Yii = 1 (∀ i ∈ V).

(6.27)

We show how to use the semidefinite relaxation to estimate ∆(F) in the
case when F is the family of arithmetic progressions in {0, 1, . . . , n − 1}
[68]. One way of looking at this particular question is to think of the xi

in the definition of discrepancy as the output of a pseudorandom number
generator, and of the discrepancy, as a randomness test (a quantitative
version of von Mises’ test). If the xi are truly random, we expect this
discrepancy to be about n1/2. Most “bad” sequences one encounters fail
by producing a larger discrepancy. Can a sequence fail by producing a
discrepancy that is too small?

The theorem of Roth [85] below shows that the discrepancy ∆(F) can-
not be smaller than Ω(n1/4); this allows sequences to have substantially
smaller discrepancy than a random sequence. One might expect that the
lower bound in the theorem can be strengthened to about Ω(n1/2) (so that
the random sequences would have, at least approximately, the smallest dis-
crepancy), but it was shown by Beck [16] that Roth’s estimate is sharp up
to a logarithmic factor. Recently, even this logarithmic factor was removed
by Matoušek and Spencer [74].

Theorem 6.5.16 For every sequence (x0, . . . , xn−1), xi ∈ {−1, 1}, there
is an arithmetic progression A ⊆ {0, . . . , n− 1} such that

∣
∣
∣
∣
∣

∑

i∈A

xi

∣
∣
∣
∣
∣
>

1
14
n1/4.

All proofs of this theorem establish more: one has such an arithmetic
progression A with difference at most 8k and length exactly k, where k =
�
√
n/8 . We consider arithmetic progressions modulo n, i.e., we let them

wrap around. (Of course, in this case it may happen that the progression
with the large discrepancy is wrapped; but since (k − 1)(8k) < n, it wraps
over n at most once, and so it is the union of two unwrapped arithmetic
progressions, one of which has discrepancy at least half the original.) Let
H denote the family of such arithmetic progressions. Clearly |H| = 8kn.

Following Roth, we prove the stronger result that the �2-discrepancy of
arithmetic progressions in H is at least (1/49)n1/2; even stronger, we prove
that the optimum of its semidefinite relaxation is large: the minimum of

1
|H|

∑

A∈H

∑

i∈A

∑

j∈A

Yij (6.28)

172 Lovász

subject to

Y � 0, (6.29)
Yii = 1 (1 ≤ i ≤ n) (6.30)

is at least (1/49)n1/2.
The next step is to notice that both (6.30) and (6.29) are invariant under

the cyclic shift of indices. Hence by our discussions in section 6.4.2, we have
an optimal vector solution (u0, . . . , un), and an orthogonal matrix M such
that Mn = I and ui = M iu0.

Elementary group representation theory tells us that the space decom-
poses into the direct sum of 1- and 2-dimensional subspaces invariant
under M . In other words, if we choose a basis appropriately, M has a
block-diagonal form

M =

M1 0 . . . 0
0 M2 . . . 0
...

...
0 0 . . . Md

where each Mt is a 1 × 1 or 2 × 2 real matrix of order n.
We show that the statement is true if M has only one block (thus d = 1

or 2). The general case then follows easily by adding up the lower bounds
on the objective function for all diagonal blocks. We treat the case d = 2;
the case d = 1 is trivial.

The matrix M defines a rotation in the plane with an angle 2πa/n for
some 1 ≤ a ≤ n. By Dirichlet’s Theorem, there are integers 1 ≤ q ≤ 8k and
p such that |q(a/n) − p| < 1/(8k). This implies that for every arithmetic
progression A of difference q and length k, the vectors M ju0 (j ∈ A) point
in almost the same direction: the maximum angle between them is less than
(k − 1)(2π/(8k)) < π/4. Hence

∣
∣
∣
∣
∣
∣

∑

j∈A

M ju0

∣
∣
∣
∣
∣
∣

2

>
k2

2
.

Since there are n arithmetic progressions in H with this difference, we get

1
8kn

∑

A∈H

∣
∣
∣
∣
∣
∣

∑

j∈A

M ju0

∣
∣
∣
∣
∣
∣

2

>
1

8kn
k2n

2
=

k

16
>
n1/2

49
,

as claimed.

6. Semidefinite Programs and Combinatorial Optimization 173

6.6 Semidefinite programming in approximation
algorithms

The algorithm of Goemans and Williamson, discussed in the introduction,
was a breakthrough which showed that semidefinite optimization can lead
to approximation algorithms with very good approximation ratio. Since
then, many other applications have been developed; a couple of these are
discussed below.

6.6.1 Stable sets, cliques, and chromatic number
The Sandwich Theorem 6.5.4 implies that ϑ(G) can be considered as an
approximation of the clique size ω(G), which is at least as good as the
natural upper bound χ(G). Note that both quantities ω(G) and χ(G) are
NP-hard, but ϑ(G), which is “sandwiched” between them, is polynomial
time computable.

The most important algorithmic consequence of theorem 6.5.4 is that
for perfect graphs, ω(G) = χ(G) is polynomial time computable [41]. Of
course, by complementation it follows that α(G) is also polynomial time
computable. It is not hard to see how to use this algorithm to compute
a maximum stable set and (with more work) an optimum coloring. The
surprising fact is that there is no algorithm known to find a maximum
stable set in a perfect graph without the use of semidefinite optimization.
(For another application of this result to complexity theory, see [90].)

How good an approximation does ϑ provide for α? Unfortunately, it
can be quite bad. First, consider the case when α is very small. Koni-
agin [55] constructed a graph that has α(G) = 2 and ϑ(G) = Ω(n1/3).
This is the largest ϑ(G) can be; in fact, Alon and Kahale [8], improv-
ing results of Kashin and Koniagin [54], proved that if α(G) ≤ k then
ϑ(G) < Cn(k−1)/(k+1), for some absolute constant C.

Once α is unbounded, very little is true. Feige [32] showed that there are
graphs for which α(G) = no(1) and ϑ(G) = n1−o(1); in other words, ϑ/α
can be larger than n1−ε for every ε > 0. (The existence of such graphs
also follows from the results of H̊astad [46] showing that it is NP-hard to
determine α(G) with a relative error less than n1−ε, where n = |V |.) By
results of Szegedy [89], this also implies that ϑ(G) does not approximate
the chromatic number within a factor of n1−ε.

Let us consider the other end of the scale, when ϑ(G) is small. Suppose
first that ϑ(G) = 2, then ϑ(G) = 2. Then it is not hard to see that G is
bipartite, and hence perfect, and hence ϑ(G) = α(G).

For the case when ϑ(G) is larger than 2 but bounded, the following (much
weaker) positive result was proved by Karger, Motwani and Sudan [51]:

174 Lovász

Theorem 6.6.1 Let k = �ϑ(G)�, then α(G) ≥ (1/2)n3/(k+1)/
√

lnn. Fur-
thermore, a stable set of this size can be found in randomized polynomial
time.

Note that we have ϑ(G) ≥ n/k by Proposition 6.5.9. It is not known how
large a stable set follows from the assumption ϑ(G) ≥ n/k.

Let us sketch the algorithm. If k = 2 then a stronger bound holds, as
discussed above, so suppose that k > 2.

We first treat the case when the maximum degree of the graph is
∆ > nk/(k+1). Let G′ be the subgraph induced by the neighbors of a
node with maximum degree. It is easy to see that ϑ(G′) ≤ k − 1, and
so (by induction on k) we can find in G′ a stable set of size at least
∆3/k/

√
ln ∆ ≥ n3/(k+1)/

√
lnn.

So suppose that ∆ ≤ nk/(k+1). Compute the optimum solution of (6.12)
for the complementary graph G, and the corresponding vector representa-
tion. Thus we get unit vectors ui ∈ R

d such that for every edge ij ∈ E, we
have uT

i uj = −1/(k − 1).
Next, we take a random vector w ∈ R

d from the standard normal distri-
bution in R

d, and consider the set S of nodes i such that wTui ≥ c, where
c =
√

2(lnn)(k − 2)/k. The probability that a given node belongs to S is

1√
π

∫ ∞

c

e−t2/2 dt ≥ n−(k−2)/(k+1)/
√

lnn,

and hence the expected size of S is at least n3/(k+1)/
√

lnn). On the other
hand, the probability that both endpoints ui and uj of an edge belong to
S can be estimated as follows:

P(wTui ≥ c, wTuj ≥ c) ≤ P(wT(ui + uj) ≥ 2c).

The conditions on the vector solution imply that

|ui + uj | =
√

2(k − 2)/(k − 1),

and using this a more elaborate computation shows that the expected num-
ber of edges spanned by S is less than |S|/2. Hence we can delete at most
half of the nodes of S and get a stable set of the desired size.

The previous algorithm has an important application to a coloring prob-
lem. Suppose that somebody gives a graph and guarantees that the graph
is 3-colorable, without telling us its 3-coloring. Can we find this 3-coloring?
(This may sound artificial, but this kind of situation does arise in cryp-
tography and other data security applications; one can think of the hidden
3-coloring as a “watermark” that can be verified if we know where to look.)

It is easy to argue that knowing that the graph is 3-colorable does not
help: it is still NP-hard to find the 3-coloration. But suppose that we
would be satisfied with finding a 4-coloration, or 5-coloration, or (logn)-
coloration; is this easier? It is known that to find a 4-coloration is still
NP-hard, but little is known above this. Improving earlier results, Karger,

6. Semidefinite Programs and Combinatorial Optimization 175

Motwani and Sudan [51] gave a polynomial time algorithm that, given a
3-colorable graph, computes a coloring with O(n1/4(lnn)3/2) colors. More
recently, this was improved by Blum and Karger [20] to O(n3/14).

The algorithm of Karger, Motwani and Sudan starts with computing
ϑ(G), which is at most 3 by Theorem 6.5.4. Using Theorem 6.6.1, they find
a stable set of size Ω(n3/4/

√
lnn). Deleting this set from G and iterating,

they get a coloring of G with O(n1/4(lnn)3/2) colors.

6.6.2 Satisfiability
One of the most fundamental problems in computer science is satisfiability.
Let x1, . . . , xn be Boolean variables. A literal is a variable xi or the negation
of a variable xi. A clause is a disjunction (OR) of literals; a conjunctive
normal form is a conjunction (AND) of clauses. In standard logics notation,
the following formula is an example of a conjunctive normal form:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5).

The Satisfiability Problem (SAT) is the problem of deciding whether
there is an assignment of values 0 or 1 to the variables that satisfies a given
conjunctive normal form. The restricted case when we assume that each
clause in the input has at most k literals is called k-SAT (the example
above is an instance of 3-SAT). k-SAT is polynomial time solvable by a
rather easy algorithm if k = 2, but NP-hard if k > 2.

Suppose that the given conjunctive normal form is not satisfiable; then we
may want to find an assignment that satisfies as many clauses as possible;
this optimization problem is called the MAX-SAT problem (we could assign
weights to the clauses, and try to maximize the total weight of satisfied
clauses; but we keep our discussion simple by assuming that all clauses
are equally valuable). The restricted case of MAX-k-SAT is defined in the
natural way. MAX-k-SAT is NP-hard already when k = 2; indeed, it is
easy to see that MAX CUT is a special case.

Can we extend the semidefinite programming method so successful for
MAX CUT to obtain good approximation algorithms for MAX-k-SAT?
This idea was exploited already by Goemans and Williamson [38], who
showed how to obtain for MAX-2-SAT the same approximation ratio .878
as for the MAX CUT problem; this was improved by Feige and Goemans
[34] to .931.

We do not survey all the developments for various versions of the Satis-
fiability Problem, only the case of MAX-3-SAT. An important special case
will be exact MAX-3-SAT, when all clauses contain exactly 3 literals.

In the negative direction, H̊astad [45] proved that for the exact MAX-
3-SAT problem no polynomial time approximation algorithm can have an
approximation ratio better than 7/8 (unless P=NP). This approximation
ratio is easy to achieve, since if we randomly assign values to the variables,
we can expect to satisfy 7/8-th of all clauses.

176 Lovász

Can this optimal approximation ratio be achieved in the more general
case of MAX-3-SAT (when the clauses may contain 1, 2 or 3 literals)? Of
course, H̊astad’s negative result remains valid. Using semidefinite optimiza-
tion, Karloff and Zwick [53] (cf. also [99]) showed that this bound can be
attained:

Theorem 6.6.2 There is a polynomial time approximation algorithm for
MAX-3-SAT with an approximation ratio of 7/8.

Let us sketch this algorithm. First, we give a quadratic programming
formulation. Let x1, . . . , xn be the original variables, where we consider
TRUE=1 and FALSE=0. Let xn+i = 1 − xi (i = n + 1, . . . , 2n) be their
negations. Let x0 be a further variable needed for homogenization, which
is set to x0 = 1. We also introduce a variable zC ∈ 0, 1 for the logical value
of each clause C. Then we can relate zC algebraically to the xi as follows.
For a clause C = xi, we have zC = xi. For a clause C = xi ∨ xj , we have
zC = xi + xj − xixj . So far, this is all linear or quadratic, but clauses with
3 literals are a bit more difficult. If C = xi ∨ xj ∨ xk, then clearly

zC = xi + xj + xk − xixj − xixk − xjxk + xixjxk.

unfortunately, this is cubic. We could get an upper bound on zC if we
omitted the last term, but as we will see, we need a lower bound. So we
delete the cubic term and one of the quadratic terms; then we do get a
lower bound. But which quadratic term should we delete? The trick is to
create three inequalities, deleting one at a time:

zC ≥ xi + xj + xk − xixj − xixk

zC ≥ xi + xj + xk − xixj − xjxk

zC ≥ xi + xj + xk − xixk − xjxk

Writing these expressions in a homogeneous form, we get the following
optimization problem:

x0xi + x0xj + x0xk − xixj − xixk ≥ zC ∀ clause C = xi ∨ xj ∨ xk

x0xi + x0xj − xixj = zC ∀ clause C = xi ∨ xj

xi = zC ∀ clause C = xi (6.31)
xn+i = x0 − xi ∀ 1 ≤ i ≤ n,

xi, zC ∈ {0, 1}.
It is easy to see that every assignment of the variables xi and the values

zC determined by them give a solution of this system, and vice versa. Thus
the valueM of the MAX-3-SAT problem is the maximum of

∑
C zC , subject

to (6.31).
Now we consider the semidefinite relaxation where we replace the xi by

unit vectors; the variables zC are relaxed to real values satisfying 0 ≤ zC ≤
1. Using semidefinite programming, this can be solved in polynomial time

6. Semidefinite Programs and Combinatorial Optimization 177

(with an arbitrarily small error, which causes some complications to be
ignored here).

Next, similarly as in the Goemans–Williamson algorithm, we take a ran-
dom hyperplane H through the point (1/2)v0, and set xi = 1 if xi is
separated from 0 by H, and xi = 0 otherwise. A clause with at most 2 vari-
ables will be satisfied with probability at least .878zC > (7/8)zC (which
follows similarly as in the case of the Maximum Cut problem). A clause
with 3 variables will be satisfied with probability at least (7/8)zC (this is
quite a bit more difficult to show). Hence the expected number of clauses
that are satisfied is at least

∑

C

7
8
zC =

7
8
M.

6.7 Constraint generation and quadratic
inequalities

6.7.1 Example: the stable set polytope again
Recall the stable set polytope of a graph G = (V,E) is the convex hull of
integer solutions of the following system of linear inequalities:

xi ≥ 0 (∀ i ∈ V) (6.32)
xi + xj ≤ 1 (∀ ij ∈ E) (6.33)

Without the integrality condition, however, this system describes the larger
polytope FSTAB. We discussed above how to add new faces to get a suffi-
ciently large set of inequalities for certain classes of graphs. The additional
constraints were obtained by ad hoc combinatorial considerations. We show
now that many of them (in fact, all those mentioned above) can also be
derived by algebraic arguments ([71, 72]; see also [67]).

The trick is to go quadratic. As we have seen, the fact that the variables
are 0-1 valued implies that for every node i,

x2
i = xi, (6.34)

and the fact that x is the incidence vector of a stable set can be expressed
as

xixj = 0 (ij ∈ E). (6.35)

Now we can start deriving inequalities, using only (6.34) and (6.35). We
have

xi = x2
i ≥ 0,

and

1 − xi − xj = 1 − xi − xj + xixj = (1 − xi)(1 − xj) ≥ 0, (6.36)

178 Lovász

so (6.32) and (6.33) follow. These are rather trivial, so let us consider the
odd hole constraint associated with a pentagon (1, 2, 3, 4, 5). Then we have

1 − x1 − x2 − x3 + x1x3 = 1 − x1 − x2 − x3 + x1x2 + x1x3

= (1 − x1)(1 − x2 − x3) ≥ 0,

and similarly

1 − x1 − x4 − x5 + x1x4 ≥ 0.

Furthermore,

x1 − x1x3 − x1x4 = x1(1 − x3 − x4) ≥ 0

Summing these inequalities, we get the odd hole constraint

2 − x1 − x2 − x3 − x4 − x5 ≥ 0. (6.37)

One obtains all odd hole constraints in a similar way.
We can also derive the clique constraints. Assume that nodes 1,2,3,4,5

induce a complete 5-graph. Then

0 ≤ (1 − x1 − x2 − x3 − x4 − x5)2 = 1 +
5∑

i=1

x2
i − 2

5∑

i=1

xi + 2
∑

i 	=j

xixj

= 1 − x1 − x2 − x3 − x4 − x5,

by (6.34) and (6.35). All clique constraints, and in fact all orthogonality
constraints can be derived similarly. Odd antihole constraints can be de-
rived from the clique constraints in a way similar to the derivation of the
odd hole constraints.

6.7.2 Strong insolvability of quadratic equations
We describe the procedures behind the computations in the previous section
in a general context. We consider quadratic inequalities in n real vari-
ables x1, . . . , xn. Unfortunately, for quadratic inequalities there is no full
analogue of the Farkas Lemma or of the efficient algorithms of linear pro-
gramming. In fact, the system consisting of the quadratic equations (6.14)
and (6.16), and a single linear equation

∑
i xi = k has a solution if and

only if α(G) ≥ k. This reduction shows:

Proposition 6.7.1 It is NP-hard to decide whether a system of quadratic
inequalities has a real solution.

However, using a semidefiniteness test for matrices, at least the case of
a single inequality is solvable:

6. Semidefinite Programs and Combinatorial Optimization 179

Proposition 6.7.2 We can decide in polynomial time whether a single
quadratic inequality is solvable. In fact, the quadratic polynomial

q(x) = xTAx+ bTx+ c

(where A is an n× n symmetric matrix, b ∈ R
n and c ∈ R) is everywhere

positive if and only if

(a) A � 0,

(b) b = Ah for some h ∈ R
n, and

(c) for this h, hTb < 4c.

These conditions are easy to verify.
A system of quadratic inequalities is strongly unsolvable if there is a

single unsolvable quadratic inequality that can be obtained as a linear
combination of the given inequalities. By the Farkas Lemma, the analogous
condition for the solvability of a system of linear inequalities is necessary
and sufficient. In the quadratic case, there are unsolvable but not strongly
unsolvable systems. A nice example is given by the quadratic equations
(6.14) and (6.16), and the linear equation

∑
i xi = k. As we noted, this

system is unsolvable for k > α(G). However, it can be shown that it is
strongly unsolvable only for k > θ(G). So if we take G to be the pentagon
and k = 2.1, we get an unsolvable, but not strongly unsolvable system.

Using semidefinite optimization, we get a solution for a very special but
important case:

Theorem 6.7.3 It is decidable in polynomial time whether a system of
quadratic inequalities is strongly unsolvable.

6.7.3 Inference rules
An inference rule for algebraic inequalities is a procedure that, given a
system α1 ≥ 0, . . . , αm ≥ 0 of algebraic inequalities in n variables, deter-
mines a new algebraic inequality α ≥ 0, which is a logical consequence
of the given system in the sense that every vector x ∈ R

n satisfying
α1(x) ≥ 0, . . . , αm(x) ≥ 0 also satisfies α(x) ≥ 0. Perhaps the simplest
inference rule is the following.

Linear combination rule:

α1 ≥ 0, . . . , αm ≥ 0 =⇒ c0 + c1α1 + . . . cmαm ≥ 0 (c0, c1, . . . , cm ≥ 0).
(6.38)

The Farkas Lemma asserts that among linear inequalities, this single rule
generates all logical consequences. As we have mentioned, it is not sufficient
once we have quadratic inequalities; however, in this case we can formulate
other inference rules.

180 Lovász

Multiplication rule:

α1 ≥ 0, α2 ≥ 0 =⇒ α1α2 ≥ 0. (6.39)

Assume that the linear inequalities 0 ≤ xi ≤ 1 as well as the quadratic
equations x2

i = xi are present. Under this assumption, one can formulate
the following
Restricted multiplication rule:

α ≥ 0 =⇒ xiα ≥ 0, (1 − xi)α ≥ 0. (6.40)

The following rule will provide the connection with semidefinite opti-
mization:
Square rule:

α ≥ 0 =⇒ α+ β2
1 + . . .+ β2

m ≥ 0 (6.41)

(where the βi are arbitrary polynomials). We can consider the Restricted

square rule where all the βi are linear.
Finally, let us formulate one other rule:

Division rule:

α1 ≥ 0, (1 + α1)α2 ≥ 0 =⇒ α2 ≥ 0. (6.42)

A further restriction is obtained when we are not allowed to use the
commutativity of the variables. We’ll only consider this in connection with
the restricted multiplication and linear rules.

Artin’s Theorem (see below) implies that these rules are sufficient to de-
rive all consequences of a system of algebraic inequalities. In the case of
interest for us, namely linear consequences of linear programs with 0-1 vari-
ables, we don’t need all these rules to generate all the logical consequences
of our starting system. In fact, the following is true [71, 72, 12]:

Theorem 6.7.4 Starting with any system of linear inequalities and the
equations x2

i = xi, repeated application of the Linear rule and the Restricted
multiplication rule (even with the further non-commutativity restriction)
generates all linear inequalities valid for the 0-1 solutions, in at most n
iterations.

6.7.4 Deriving facets of the stable set polytope
Deriving a facet in n iterations (as guaranteed by Theorem 6.7.4) gives little
information about it. We have seen in section 6.7.1 that the most important
facets of the stable set polytope can be derived in just one or two iterations.
It turns out that (for the stable set polytope) one can obtain reasonably
good bounds on the number of iterations needed to derive a facet, in terms
of other useful parameters.

Let
∑

i aixi ≤ b be an inequality defining a facet of STAB(G); we assume
that it is scaled so that the ai are relatively prime integers. We define its

6. Semidefinite Programs and Combinatorial Optimization 181

defect as
∑

i ai−2b. The defect of an odd hole constraint is 1; the defect of a
clique constraint (6.5) is |B|−2. In the case of a facet defined by an α-critical
graph G, this value is the Gallai class number δ(G) = |V (G)| − 2α(G) of
the graph.

Lemma 6.7.5 [72] Let
∑

i aixi ≤ b be a facet of STAB(G). Then

max

{
∑

i

aixi : x ∈ FSTAB(G)

}

=
1
2

∑

i

ai.

It follows that the defect is non-negative, and in fact it can be char-
acterized as twice the integrality gap between optimizing over STAB and
FSTAB:

Corollary 6.7.6 The defect of a facet
∑

i aixi ≤ b satisfies

∑

i

ai − 2b = 2 max

{
∑

i

aixi : x ∈ FSTAB(G)

}

− 2 max

{
∑

i

aixi : x ∈ STAB(G)

}

.

Graphs that are α-critical with bounded Gallai class number have a finite
classification [63]. There is a similar classification of facets of STAB(G) with
bounded defect [61].

The following theorem can be proved by calculations similar to those
given in section 6.7.1 above.

Theorem 6.7.7 [71, 72] Let G any graph, and let F be a facet of
STAB(G), defined by the inequality

∑
i aixi ≤ b, with defect δ.

(a) Starting with the non-negativity constraints (6.3) and the edge con-
straints (6.4), the facet F can be derived, using the Linear and Restricted
Multiplication rules, in at most δ steps.

(b) Starting with the non-negativity constraints (6.3) and the edge con-
straints (6.4), the facet F can be derived, using the Linear, Restricted
Multiplication, and Restricted Square rules, in at most b steps.

If we also use the square rule, then the derivation may be much faster.
For example, to derive a k-clique constraint using the Linear and Restricted
multiplication rules takes k − 2 steps; with the Restricted square rule, it
takes only one. It seems that all the known “nice” (polynomially separable,
see below) classes of facets of the stable set polytope, with the excep-
tion of the ”Edmonds facets” in the case of the matching polytope, can
be derived by one or two rounds of applications of the Linear, Restricted
Multiplication, and Square Rules.

182 Lovász

6.7.5 A bit of real algebraic geometry
Finally, let us put these considerations into a more general context. A
fundamental theorem in real algebraic geometry is Artin’s Theorem:

Theorem 6.7.8 A polynomial f ∈ R[x1, . . . , xn] is nonnegative for all
(x1, . . . , xn) ∈ R

n if and only if it is a sum of squares of rational functions.

One might expect that the term ”rational functions” can be replaced by
”polynomials”, but this cannot be guaranteed in general. In special cases
of combinatorial interest, however, we do get a simpler representation.

Let G = (V,E) be a graph and let I(G) denote the polynomial ideal
generated by the polynomials x2

i −xi (i ∈ V) and xixj (ij ∈ E). Obviously,
the roots of this ideal are the incidence vectors of stable sets. We write f ≥ 0
(mod I(G)) iff f(x) ≥ 0 for every root of the ideal I(G).

Proposition 6.7.9 For any polynomial f , we have f ≥ 0 (mod I(G)) iff
there exist polynomials g1, . . . , gN such that f ≡ g2

1 + . . .+ g2
N (mod I(G)).

From theorem 6.5.13 it is easy to derive the following characterization of
perfect graphs:

Theorem 6.7.10 A graph G is perfect if and only if the following holds:
For any linear polynomial f , we have f ≥ 0 (mod I(G)) iff there exist
linear polynomials g1, . . . , gN such that f ≡ g2

1 + . . .+ g2
N (mod I(G)).

6.7.6 Algorithmic aspects of inference rules
Let L be a possibly infinite system of linear inequalities in n variables,
associated to a finite structure (e.g., a graph). We say that L is polynomially
separable, if for every vector x ∈ R

n, we can decide in polynomial time
whether x satisfies every member of L, and if it does not, we can find a
violated member.

Let R be any inference rule, and let RL denote the set of all linear
inequalities produced by one application of R to members of L. We say
that the rule is polynomial, if RL is polynomially separable whenever L is.

Using the ellipsoid method combined with semidefinite optimization, we
get:

Lemma 6.7.11 The Linear Rule (6.38), the Restricted Multiplication Rule
(6.40) and the Restricted Square Rule (6.41) are polynomial.

It follows that if for some class of graphs, all facets of the stable set
polytope can be derived by a bounded number of “rounds” of these three
rules, then the stable set problem is polynomial for the class. In particular,
we have the following consequences [42, 71, 72].

6. Semidefinite Programs and Combinatorial Optimization 183

Corollary 6.7.12 The Stable Set Problem can be solved for perfect,
t-perfect and h-perfect graphs in polynomial time.

Corollary 6.7.13 Assume that for a class of graphs either the right hand
side or the defect of each facet of the stable set polytope is bounded. Then
the Stable Set Problem can be solved polynomially for this class.

6.8 Extensions and problems

6.8.1 Small dimension representations and rank minimization
If we consider a semidefinite relaxation of a discrete optimization problem
(say, a 0-1 linear program), then typically the original solutions correspond
to semidefinite matrices of rank 1. In linear programming, there are special
but useful conditions that guarantee that the solutions of the relaxed linear
problem are also solutions of the original integer problem (for example,
perfectness, or total unimodularity).

Problem 6.8.1 Find combinatorial conditions that guarantee that the
semidefinite relaxation has a solution of rank 1.

This question can be interesting for special combinatorial semidefinite
relaxations. For example,

Problem 6.8.2 Which graphs are “max-cut-perfect?”

Theorem 6.7.10 suggests an algebraic question:

Problem 6.8.3 Which polynomial ideals I are “perfect” in the sense that
for any linear polynomial f , we have f ≥ 0 (mod I) iff there exist linear
polynomials g1, . . . , gN such that f ≡ g2

1 + . . . + g2
N (mod I)? Of course,

there is a lot of room to modify the question by replacing “linear” with
“bounded degree”, etc.

Coming back to semidefinite programs, if we find a solution that has,
instead of rank 1, some other small rank, (i.e., a vector solution in low
dimension), then this may decrease the error of the rounding methods,
used to extract approximate solutions to the original problems. Thus the
version of problem 6.8.1 with “low rank” instead of “rank 1” also seems
very interesting. One result in this direction is the following (discovered in
many versions [14, 36, 80, 59]; see also [27], section 31.5, and [15]):

Theorem 6.8.4 The semidefinite system

X � 0

184 Lovász

Figure 6.10. Representing a planar graph by touching circles

D1 ·X = d1

...
Dk ·X = dk,

has a solution of rank at most �
√

2k�.

Also from a geometric point of view, it is natural to consider unit distance
(orthogonal, etc.) representations in a fixed small dimension. Without con-
trol over the rank of the solutions of semidefinite programs, this additional
condition makes the use of semidefinite optimization methods very limited.
On the other hand, several of these geometric representations of graphs are
connected to interesting graph-theoretic properties, and some of them are
related to semidefinite optimization. This connection is largely unexplored.

Let us mention a few examples where we do have some information about
low rank solutions. A vector labeling V → R

d is generic if any d labels are
linearly independent. Let κ(G) denote the node-connectivity of G. The
following was proved in [69] (see also [70]):

Theorem 6.8.5 The minimum dimension in which a graph G has a
generic orthogonal representation is n− κ(G).

In other words, the smallest d for which the semidefinite constraints

Y � 0
Yij = 0 ∀ ij /∈ E, i �= j

have a solution of rank d such that every d×d subdeterminant is non-zero,
is exactly n− κ(G).

A classical result of Koebe [58] (see also [9, 91, 86], asserts that every
planar graph can be represented in the plane by touching circular disks
(Figure 6.10. One of the many extensions of this theorem characterizes
triangulations of the plane that have a representation by orthogonal circles:
more exactly, circles representing adjacent nodes must intersect at 90◦,
other pairs, at > 90◦ (i.e., their centers must be farther apart) [9, 91, 56]
(Figure 6.11.

6. Semidefinite Programs and Combinatorial Optimization 185

Figure 6.11. Representing a planar graph by orthogonal circles

Such a representation, if it exists, can be projected to a representation
by orthogonal circles on the unit sphere; with a little care, one can do the
projection so that each disk bounded by one of the circles is mapped onto a
“cap” which covers less than half of the sphere. Then each cap has a unique
pole: the point in space from which the part of the sphere you see is exactly
the given cap. The key observation is that two circles are orthogonal if and
only if the corresponding poles have inner product 1 (Figure 6.12). This
translates a representation with orthogonal circles into a representation by
vectors of length larger than 1, where adjacent nodes are represented by
vectors with inner product 1, non-adjacent nodes by vectors with inner
product less than 1.

ui
Ci

Cj
uj

Figure 6.12. Poles of circles

This in turn can be translated into semidefinite matrices. We only state
the final result of these transformations. Consider the following two sets of

186 Lovász

semidefinite constraints:

Y � 0
Yij = 1 ∀ ij ∈ E, (6.43)
Yij < 1 ∀ ij /∈ E, i �= j,

Yii > 1

and the weaker set of constraints

Y � 0
Yij = 1 ∀ ij ∈ E, (6.44)
Yij < 1 ∀ ij /∈ E, i �= j,

(6.45)

To formulate the theorem, we need two simple definitions. A cycle C
in a graph G is called separating, if G \ V (C) has at least two connected
components, where any chord of C is counted as a connected component
here. The cycle C is called strongly separating, if G \ V (C) has at least
two connected components, each of which has at least 2 nodes. If G is
a 3-connected planar map, then its non-separating cycles are exactly the
boundaries of the faces.

Theorem 6.8.6 Let G be a 3-connected graph
(a) If (6.44) has a solution of rank 3, then G is planar.
(b) Assume that G is a maximal planar graph. Then (6.43) has a solution

of rank 3 if and only if G has no separating 3- and 4-cycles.
(c) Assume that G is a maximal planar graph. Then (6.44) has a solution

with rank 3 if and only if G has no strongly separating 3- and 4-cycles.

Colin de Verdière [24] introduced an interesting spectral invariant of
graphs that is related to topological properties. Kotlov, Lovász and Vem-
pala [56] showed that this invariant can be defined in terms of the minimum
rank of a “non-degenerate” solution of (6.44) (see [3] for the definition and
theory of non-degeneracy in semidefinite programs).

Tutte [92] constructed a straight-line embedding in the plane of a 3-
connected planar graph by fixing the vertices of a face to the vertices of
a convex polygon, replacing the edges by ”rubber bands”, and letting the
other nodes find their equilibrium (Figure 6.13). A similar construction
was used in [60] to characterize k-connectivity of a graph, and to design
an efficient randomized k-connectivity test. There is an obvious similarity
with our description of the Goemans-Williamson algorithm in the introduc-
tion, and we could obtain the equilibrium situation through a semidefinite
program. But in Tutte’s case the sum of squares of edge lengths is to be min-
imized, rather than maximized; since this function is concave, this makes
a substantially better behaved optimization problem, which can be solved

6. Semidefinite Programs and Combinatorial Optimization 187

Figure 6.13. Tutte’s ”rubber band” representation of planar graphs

efficiently in every fixed dimension. What is important for us, however, is
that this is an example of a semidefinite program whose solution has fixed
small rank.

Rubber band problems form a special class of semidefinite optimization
problems which can be solved by direct means. Further such problems are
described in [95]. It would be interesting to understand the structure of
such special classes.

A final remark: many problems in graph theory, matroid theory, electri-
cal engineering, statics etc. can be formulated as maximizing the rank of
a matrix subject to linear constraints (see [84, 66]). Such problems can be
solved by an obvious polynomial time randomized algorithm, by substitut-
ing random numbers for the variables. Unlike in the case of the randomized
algorithms described above for the Max Cut and other problems, it is
not known whether these rank maximization problems can be solved in
deterministic polynomial time.

6.8.2 Approximation algorithms
The most important open question is: can the randomized “rounding”
method of Goemans–Williamson and Karger–Motwani–Sudan be gener-
alized to semidefinite relaxations of more general problems? Can other,
different rounding techniques be found?

There are many candidate problems, the most interesting is the “class
of the factor 2”. We have seen that the Maximum Cut problem has a
trivial factor 2 approximation algorithm. There are several other such
optimization problems; here are three very fundamental examples:

The Node Cover problem: given a graph G, find a minimum set of
nodes covering all edges.

188 Lovász

The Acyclic Subgraph problem: given a directed graph, find the
maximum number of edges that form no directed cycle.
The Overdetermined Binary Equations problem: given a system
of linear equations over GF(2), find an assignment of the variables that
satisfies as many of them as possible.

We leave it to the reader to find the easy algorithms that give suboptimal
solutions off by a factor of 2 or less. In all cases it is known that we cannot
bring this error factor arbitrarily close to 1.

Problem 6.8.7 Can we do better than the trivial factor of 2?

In the case of the Maximum Cut problem, we saw that the answer is
positive. Surprisingly, for the Overdetermined Binary Equations problem
(which is in fact a generalization of the Maximum Cut problem) H̊astad
[45] showed that the answer is negative: the factor of 2 is optimal. For the
Node Cover and Acyclic Subgraph problems the question is open. The most
promising technique to attack these questions is semidefinite optimization,
even though the attempts by many have not been successful so far.

There are many open questions about approximating the stability num-
ber (or equivalently, the largest clique), and the chromatic number (whether
or not semidefinite optimization can be used in answering these is not clear):

Problem 6.8.8 Can the ratio ϑ/α be estimated by n1−ε for special classes
of graphs? Are there interesting classes of graphs for which the ϑ can be
bounded by some function (or small function) of α?

Problem 6.8.9 Can α(G) be approximated better than the error factor
n/(log n)2 (this is achieved in [21]).

Problem 6.8.10 Is there a polynomial time algorithm that outputs an
upper bound φ(G) for α(G) such that there is a function f : Z+ → Z+
with φ(G) < f(α(G)) (f is independent of the size of the graph)?

Problem 6.8.11 Is is true that for every ε > 0 there exists an algorithm
that computes α(G) in time O((1 + ε)n)?

Problem 6.8.12 Suppose that G is a graph with chromatic number 3.
Can G be k-colored in polynomial time, where (a) k = no(1); (b) k = log n;
(c) k = O(1)?

6.8.3 Inference rules
We discussed strong insolvability of systems of quadratic equations. Barvi-
nok [13] gives a polynomial time algorithm to decide whether a system of

6. Semidefinite Programs and Combinatorial Optimization 189

a bounded number of quadratic equations is solvable (over the real field).
This suggests a hierarchy of extensions of strong insolvability: produce a
fixed number k of quadratic equations by linear combination which are
collectively unsolvable.

Problem 6.8.13 Can one decide in polynomial time the k-th version of
strong insolvability? Is this a real hierarchy? Are there any natural problems
in higher classes?

Problem 6.8.14 Are the multiplication rule (6.39) and the division rule
(6.42) polynomial? Are they polynomial if we restrict ourselves to quadratic
inequalities? If not, does the division rule have a natural and useful
restriction that is polynomial?

Problem 6.8.15 Are there other combinatorial optimization problems for
which interesting classes of facets can be derived using the division rule?

Problem 6.8.16 Are there other inference rules that are worth consider-
ing? Can any interesting discrete programming problem be attacked using
polynomials of higher degree?

Problem 6.8.17 How to implement the restricted multiplication rule
(6.40) efficiently? Is there a way to use interior point methods, in a way
parallel to Alizadeh’s application of interior point methods to semidefinite
programming?

Problem 6.8.18 If a graph G contains no subdivision of K4, then it is
series-parallel, and hence t-perfect [22]. This means that every facet of
STAB(G) has defect at most 1. Is there an analogous simple graph-theoretic
condition that guarantees that every facet has defect at most 2, 3, etc.?

Acknowledgement. My thanks are due to András Frank and to Bruce
Reed for organizing two series of talks on this subject. I am particularly
indebted to Miklós Újváry for pointing out several errors in an earlier
version of these notes, and to Wayne Barrett and the anonymous referees
of this version for suggesting many improvements.

References

[1] F. Alizadeh: Combinatorial optimization with semi-definite matrices, in: In-
teger Programming and Combinatorial Optimization (Proceedings of IPCO
’92), (eds. E. Balas, G. Cornuéjols and R. Kannan), Carnegie Mellon
University Printing (1992), 385–405.

190 Lovász

[2] F. Alizadeh, Interior point methods in semidefinite programming with
applications to combinatorial optimization, SIAM J. Optim. 5 (1995), 13–51.

[3] F. Alizadeh, J.-P. Haeberly, and M. Overton: Complementarity and nonde-
generacy in semidefinite programming, in: Semidefinite Programming, Math.
Programming Ser. B, 77 (1997), 111–128.

[4] N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R. Yuster: The algorithmic
aspects of the Regularity Lemma, Proc. 33rd Annual Symp. on Found. of
Computer Science, IEEE Computer Society Press (1992), 473–481.

[5] N. Alon and J.H. Spencer: The Probabilistic Method, Wiley, New York, 1992.

[6] N. Alon, The Shannon capacity of a union, Combinatorica 18 (1998), 301–
310.

[7] N. Alon: Explicit Ramsey graphs and orthonormal labelings, The Electronic
Journal of Combinatorics 1 (1994), 8pp.

[8] N. Alon and N. Kahale: Approximating the independence number via the
ϑ-function, Math. Programming 80 (1998), Ser. A, 253–264.

[9] E. Andre’ev, On convex polyhedra in Lobachevsky spaces, Mat. Sbornik,
Nov. Ser. 81 (1970), 445–478.

[10] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy: Proof verification
and hardness of approximation problems Proc. 33rd FOCS (1992), 14–23.

[11] R. Bacher and Y. Colin de Verdière, Multiplicités de valeurs propres et
transformations étoile-triangle des graphes, Bull. Soc. Math. France 123
(1995), 101-117.

[12] E. Balas, S. Ceria and G. Cornuéjols, A lift-and-project cutting plane al-
gorithm for mixed 0 − 1 programs, Mathematical Programming 58 (1993),
295–324.

[13] A.I. Barvinok: Feasibility testing for systems of real quadratic equations,
Discrete and Comp. Geometry 10 (1993), 1–13.

[14] A.I. Barvinok: Problems of distance geometry and convex properties of
quadratic maps, Discrete and Comp. Geometry 13 (1995), 189–202.

[15] A.I. Barvinok: A remark on the rank of positive semidefinite matrices subject
to affine constraints, Discrete and Comp. Geometry 25 (2001), 23–31.

[16] J. Beck: Roth’s estimate on the discrepancy of integer sequences is nearly
sharp, Combinatorica 1 (1981) 327–335.

[17] J. Beck and W. Chen: Irregularities of Distribution, Cambridge Univ. Press
(1987).

[18] J. Beck and V.T. Sós: Discrepancy Theory, Chapter 26 in: Handbook of Com-
binatorics (ed. R.L. Graham, M. Grötschel and L. Lovász), North-Holland,
Amsterdam (1995).

[19] M. Bellare, O. Goldreich, M. Sudan: Free bits, PCPs and non-approximability
— towards tight results, Proc. 36th FOCS (1996), 422–431.

[20] A. Blum and D. Karger: An O(n3/14)-coloring for 3-colorable graphs, Inform.
Process. Lett. 61 (1997), 49–53.

[21] R. Boppana and M. Haldórsson: Approximating maximum independent sets
by excluding subgraps, BIT 32 (1992), 180–196.

6. Semidefinite Programs and Combinatorial Optimization 191

[22] M. Boulala and J.-P. Uhry: Polytope des indépendants d’un graphe série-
parallèle, Discrete Math. 27 (1979), 225–243.

[23] V. Chvátal: On certain polytopes associated with graphs, J. of Combinato-
rial Theory (B) 18 (1975), 138–154.

[24] Y. Colin de Verdière, Sur la multiplicité de la première valeur propre non
nulle du laplacien, Comment. Math. Helv. 61 (1986), 254–270.

[25] Y. Colin de Verdière, Sur un novel invariant des graphes at un critère de
planarité, J. Combin. Theory B 50 (1990) 11–21.

[26] Y. Colin de Verdière, On a new graph invariant and a criterion for pla-
narity, in: Graph Structure Theory (Robertson and P. D. Seymour, eds.),
Contemporary Mathematics, Amer. Math. Soc., Providence, RI (1993),
137–147.

[27] M. Deza and M. Laurent: Geometry of Cuts and Metrics, Springer Verlag,
1997.

[28] C. Delorme and S. Poljak: Combinatorial properties and the complexity of
max-cut approximations, Europ. J. Combin. 14 (1993), 313–333.

[29] C. Delorme and S. Poljak: Laplacian eigenvalues and the maximum cut
problem, Math. Programming 62 (1993)

[30] P. Erdős: Gráfok páros körüljárású részgráfjairól (On bipartite subgraphs of
graphs, in Hungarian), Mat. Lapok 18 (1967), 283–288.

[31] P. Erdős, F. Harary and W.T. Tutte, On the dimension of a graph
Mathematika 12 (1965), 118–122.

[32] U. Feige: Randomized graph products, chromatic numbers, and the Lovász
ϑ-function, Combinatorica 17 (1997), 79–90.

[33] U. Feige: Approximating the Bandwidth via Volume Respecting Embed-
dings, Tech. Report CS98-03, Weizmann Institute (1998).

[34] U. Feige and M. Goemans, Approximating the value of two-prover proof
systems, with applications to MAX-2SAT and MAX-DICUT, in: Proc. 3rd
Israel Symp. on Theory and Comp. Sys., Tel Aviv, Isr. (1995), 182–189.

[35] U. Feige and L. Lovász: Two-prover one-round proof systems: Their power
and their problems. Proc. 24th ACM Symp. on Theory of Computing (1992),
733-744.

[36] S. Friedland and R. Loewy, Subspaces of symmetric matrices containing
matrices with multiple first eigenvalue, Pacific J. Math. 62 (1976), 389–399.

[37] M. X. Goemans and D. P. Williamson: .878-Approximation algorithms
for MAX CUT and MAX 2SAT, Proc. 26th ACM Symp. on Theory of
Computing (1994), 422-431.

[38] M. X. Goemans and D. P. Williamson: Improved approximation algorithms
for maximum cut and satisfiablity problems using semidefinite programming,
J. ACM 42 (1995), 1115–1145.

[39] M. C. Golumbic: Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York (1980).

[40] M. Grötschel, L. Lovász and A. Schrijver: The ellipsoid method and its
consequences in combinatorial optimization, Combinatorica 1 (1981), 169-
197.

192 Lovász

[41] M. Grötschel, L. Lovász and A. Schrijver: Polynomial algorithms for perfect
graphs, Annals of Discrete Math. 21 (1984), 325-256.

[42] M. Grötschel, L. Lovász and A. Schrijver: Relaxations of vertex packing, J.
Combin. Theory B 40 (1986), 330-343.

[43] M. Grötschel, L. Lovász and A. Schrijver: Geometric Algorithms and
Combinatorial Optimization, Springer, Heidelberg, 1988.

[44] W. Haemers: On some problems of Lovász concerning the Shannon capacity
of a graph, IEEE Trans. Inform. Theory 25 (1979), 231–232.

[45] J. H̊astad: Some optimal in-approximability results, Proc. 29th ACM Symp.
on Theory of Comp., 1997, 1–10.

[46] J. H̊astad: Clique is hard to approximate within a factor of n1−ε, Acta Math.
182 (1999), 105–142.

[47] H. van der Holst, A short proof of the planarity characterization of Colin de
Verdière, Preprint, CWI Amsterdam, 1994.

[48] H. van der Holst, L. Lovász and A. Schrijver: On the invariance of Colin
de Verdière’s graph parameter under clique sums, Linear Algebra and its
Applications, 226–228 (1995), 509–518.

[49] F. Juhász: The asymptotic behaviour of Lovász’ ϑ function for random
graphs, Combinatorica 2 (1982) 153–155.

[50] N. Kahale: A semidefinite bound for mixing rates of Markov chains, DIMACS
Tech. Report No. 95-41.

[51] D. Karger, R. Motwani, M. Sudan: Approximate graph coloring by semidef-
inite programming, Proc. 35th FOCS (1994), 2–13; full version: J. ACM 45
(1998), 246–265.

[52] H. Karloff: How good is the Goemans-Williamson MAX CUT algorithm?
SIAM J. Comput. 29 (1999), 336–350.

[53] H. Karloff and U. Zwick: A 7/8-approximation algorithm for MAX 3SAT?
in: Proc. of the 38th Ann. IEEE Symp. in Found. of Comp. Sci. (1997),
406–415.

[54] B. S. Kashin and S. V. Konyagin: On systems of vectors in Hilbert spaces,
Trudy Mat. Inst. V.A.Steklova 157 (1981), 64–67; English translation: Proc.
of the Steklov Inst. of Math. (AMS 1983), 67–70.

[55] V. S. Konyagin, Systems of vectors in Euclidean space and an extremal prob-
lem for polynomials, Mat. Zametky 29 (1981), 63–74. English translation:
Math. Notes of the Academy USSR 29 (1981), 33–39.

[56] A. Kotlov, L. Lovász, S. Vempala, The Colin de Verdière number and sphere
representations of a graph, Combinatorica 17 (1997) 483–521.

[57] D. E. Knuth: The sandwich theorem, The Electronic Journal of Combina-
torics 1 (1994) 48 pp.

[58] P. Koebe: Kontaktprobleme der konformen Abbildung, Berichte uber die
Verhandlungen d. Sächs. Akad. d. Wiss., Math.–Phys. Klasse, 88 (1936)
141–164.

[59] M. Laurent and S. Poljak: On the facial structure of the set of correlation
matrices, SIAM J. on Matrix Analysis and Applications 17 (1996), 530–547.

6. Semidefinite Programs and Combinatorial Optimization 193

[60] N. Linial, L. Lovász, A. Wigderson: Rubber bands, convex embeddings, and
graph connectivity, Combinatorica 8 (1988), 91–102.

[61] L. Lipták, L. Lovász: Facets with fixed defect of the stable set polytope,
Math. Programming, Series A 88 (2000), 33–44.

[62] L. Lovász: Normal hypergraphs and the perfect graph conjecture, Discrete
Math. 2 (1972), 253-267.

[63] L. Lovász: Some finite basis theorems in graph theory, in: Combinatorics,
Coll. Math. Soc. J. Bolyai 18 (1978), 717-729.

[64] L. Lovász: On the Shannon capacity of graphs, IEEE Trans. Inform. Theory
25 (1979), 1–7.

[65] L. Lovász: Perfect graphs, in: More Selected Topics in Graph Theory (ed. L.
W. Beineke, R. L. Wilson), Academic Press (1983), 55-67.

[66] L. Lovász: Singular spaces of matrices and their applications in combina-
torics, Bol. Soc. Braz. Mat. 20 (1989), 87–99.

[67] L. Lovász: Stable sets and polynomials, Discrete Math. 124 (1994), 137–153.

[68] L. Lovász: Integer sequences and semidefinite programming Publ. Math.
Debrecen 56 (2000) 475–479.

[69] L. Lovász, M. Saks and A. Schrijver: Orthogonal representations and
connectivity of graphs, Linear Alg. Appl. 114/115 (1989), 439–454.

[70] L. Lovász, M. Saks and A. Schrijver: A correction: orthogonal representations
and connectivity of graphs (with M. Saks and A. Schrijver) Linear Algebra
Appl. 313 (2000) 101–105.

[71] L. Lovász and A. Schrijver: Cones of matrices and set-functions, and 0-1
optimization, SIAM J. on Optimization 1 (1990), 166-190.

[72] L. Lovász and A. Schrijver: Matrix cones, projection representations, and
stable set polyhedra, in: Polyhedral Combinatorics, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science I, Amer. Math. Soc.,
Providence (1990), 1–17.

[73] L. Lovász and K. Vesztergombi: Geometric representations of graphs, in:
Paul Erdős and his Mathematics

[74] J. Matoušek and J. Spencer, Discrepancy in arithmetic progressions,
J. Amer. Math. Soc. 9 (1996) 195–204.

[75] B. Mohar and S. Poljak: Eigenvalues and the max-cut problem, Czechoslovak
Mathematical Journal 40 (1990), 343–352.

[76] Yu. E. Nesterov and A. Nemirovsky: Interior-point polynomial methods in
convex programming, Studies in Appl. Math. 13, SIAM, Philadelphia, 1994.

[77] M. L. Overton: On minimizing the maximum eigenvalue of a symmetric
matrix, SIAM J. on Matrix Analysis and Appl. 9 (1988), 256–268.

[78] M. L. Overton and R. Womersley: On the sum of the largest eigenvalues of a
symmetric matrix, SIAM J. on Matrix Analysis and Appl. 13 (1992), 41–45.

[79] M. Padberg: Linear optimization and extensions. Second, revised and ex-
panded edition, Algorithms and Combinatorics 12, Springer-Verlag, Berlin,
1999.

194 Lovász

[80] G. Pataki: On the rank of extreme matrices in semidefinite programs and the
multiplicity of optimal eigenvalues, Math. of Oper. Res. 23 (1998), 339–358.

[81] S. Poljak and F. Rendl: Nonpolyhedral relaxations of graph-bisection
problems, DIMACS Tech. Report 92-55 (1992).

[82] L. Porkoláb and L. Khachiyan: On the complexity of semidefinite programs,
J. Global Optim. 10 (1997), 351–365.

[83] M. Ramana: An exact duality theory for semidefinite programming and its
complexity implications, in: Semidefinite programming. Math. Programming
Ser. B, 77 (1997), 129–162.

[84] A. Recski: Matroid Theory and its Applications in Electric Network Theory
and Statics, Akadémiai Kiadó–Springer-Verlag (1989).

[85] K.F. Roth: Remark concerning integer sequences, Acta Arith. 35, 257–260.

[86] O. Schramm: How to cage an egg, Invent. Math. 107 (1992), 543–560.

[87] H.D. Sherali and W.P. Adams (1990): A hierarchy of relaxations between
the continuous and convex hull representations for zero-one programming
problems, SIAM J. on Discrete Math. bf 3, 411–430.

[88] G. Strang: Linear algebra and its applications, Second edition, Academic
Press, New York–London, 1980.

[89] M. Szegedy: A note on the θ number of Lovász and the generalized Delsarte
bound, Proc. 35th FOCS (1994), 36–39.

[90] É. Tardos: The gap between monotone and non-monotone circuit complexity
is exponential, Combinatorica 8 (1988), 141–142.

[91] W. Thurston: The Geometry and Topology of Three-manifolds, Princeton
Lecture Notes, Chapter 13, Princeton, 1985.

[92] W.T. Tutte: How to draw a graph, Proc. London Math. Soc. 13 (1963),
743-768.

[93] L. Vandeberghe and S. Boyd: Semidefinite programming, in: Math. Program-
ming: State of the Art (ed. J. R. Birge and K. G. Murty), Univ. of Michigan,
1994.

[94] L. Vandeberghe and S. Boyd: Semidefinite programming. SIAM Rev. 38
(1996), no. 1, 49–95.

[95] R.J. Vanderbei and B. Yang: The simplest semidefinite programs are trivial,
Math. of Oper. Res. 20 (1995), no. 3, 590–596.

[96] H. Wolkowitz: Some applications of optimization in matrix theory, Linear
Algebra and its Applications 40 (1981), 101–118.

[97] H. Wolkowicz: Explicit solutions for interval semidefinite linear programs,
Linear Algebra Appl. 236 (1996), 95–104.

[98] H. Wolkowicz, R. Saigal and L. Vandenberghe: Handbook of semidefinite
programming. Theory, algorithms, and applications. Int. Ser. Oper. Res. &
Man. Sci., 27 (2000) Kluwer Academic Publishers, Boston, MA.

[99] U. Zwick: Outward rotations: a tool for rounding solutions of semidefi-
nite programming relaxations, with applications to MAX CUT and other
problems, Proc. 31th STOC (1999), 679–687.

7

Approximability of
NP-Optimization Problems
A. Steger

7.1 Introduction

Probably every computer science student knows the short comics story from
the introduction of the fundamental textbook by Garey and Johnson [35]. It
indicates in a pictorial way why an a priori seemingly theoretical concept
as the notion of NP-completeness has been so successful. Till today, the
first attempt of every student, researcher, algorithm designer with a new
problem for which he can’t find a polynomial-time algorithm immediately
is to try proving that it is NP-complete.

However, from a practical point of view this is often not sufficient. A
proof that a problem is NP-complete just tells that we should not look for
a polynomial-time algorithm that solves the problem optimally. But what if
we relax this optimality constraint a bit and just aim at finding a “nearly”
optimal solution? For many applications this might still be sufficient. As
a theoretician we are thus asked to investigate the trade-off between the
quality of approximate solutions and the necessary running time of the
algorithm. Unfortunately, this turns out to be rather difficult.

Approximation algorithms were first considered even before the theory
of NP-completeness was established [38]. In the following years work by
several people [31, 33, 43, 59] formalized the notion of approximation algo-
rithms and provided the first non-approximability results, which are based
on the assumption P �= NP. But all in all the achieved results remained
more or less singular events and were out-shined by the success of NP-
completeness. A main reason was that the techniques for proving upper
bounds, that is, for actually constructing approximation algorithms became
more and more sophisticated, but there were basically no techniques avail-
able for proving lower bounds. In particular, one was missing an analogue
to the comparison techniques between problems according to the motto
“this problem is as difficult as this one, which is already accepted to be
difficult”, which made the theory of NP-completeness so successful. A first

196 Steger

major progress in this direction was the introduction of L-reductions and
MaxSNP-completeness by Papadimitriou and Yannakakis [55]. The next
key step was achieved by Condon [21] and Feige, Goldwasser, Lovász, Safra,
Szegedy [29] who linked the proof of hardness results of some optimization
problems to the existence of certain interactive proofs. Thereby establishing
a connection between computational complexity theory and approximabil-
ity of optimization problems, which allowed statements of the form “Unless
this and that collapse between complexity classes takes place, this problem
cannot be approximated within a certain factor.”. Their ideas culminated
in the introduction of a whole hierarchy of complexity classes by Arora,
Safra [8] based on probabilistically checkable proofs, and the proof of the
so-called PCP-Theorem by Arora, Lund, Motwani, Sudan, and Szegedy [7].
Altogether, these results opened the door for scientifically highly produc-
tive years yielding not only numerous strong non-approximability results,
but also the development of a natural and elegant hierarchy which classifies
optimization problems according to their approximability.

The aim of this survey is twofold. Firstly, we want to introduce the
reader to the development sketched above. Secondly, we aim at providing
an overview of the known techniques for constructing reductions between
optimization problems. We stress that throughout this survey we are in-
terested in providing the reader with a gentle introduction to these topics.
Our survey is neither meant to be comprehensive nor complete. Readers
may turn to the survey articles [6], [11] and the books [9], [36], and [52] for
more in-depth discussions of these areas.

The survey is organized as follows. In the remainder of this section we
state basic definitions from complexity theory and provide a list of exam-
ples which will be used further on. In Section 7.2 we describe various tools,
techniques, and results for proving lower bounds on the approximability of
optimization problems. In Section 7.3 we will then use these results to show
that the class NPO can be divided into various subclasses which resem-
ble problems of similar approximability. Finally, we discuss in Section 7.4
several methods for proving lower bounds for an optimization problem and
provide some examples.

7.1.1 Decision Problems
In this section we summarize a few basic definitions and results from com-
plexity theory. Let Σ = {0, 1}. As usual, we let Σ∗ denote the set of all
finite words over the alphabet Σ and use |x| to denote the length of a word
x ∈ Σ∗.

Every instance of a problem can be encoded as a word x ∈ Σ∗. The set
I of all instances of a problem will usually form a proper subset of Σ∗. For
arbitrary subsets I ⊆ Σ∗, the problem of deciding whether a word x ∈ Σ∗

belongs to I can be highly non-trivial or even undecidable. In the context
of decision problems the set I just corresponds to proper encodings of, for

7. Approximability of NP-Optimization Problems 197

example, a graph, a Boolean formula or any other combinatorial instance.
It should therefore be plausible that it is usually trivial to check whether
a given word x encodes a proper instance. Formally, we call a set I ⊆ Σ∗

recognizable in linear time, if there exists an algorithm A that stops for
every string x ∈ Σ∗ after at most O(|x|) steps and returns accept if x ∈ I
and reject if x ∈ Σ∗ \I. In this chapter we will only consider sets I ⊆ Σ∗

that are recognizable in linear time.

Definition 7.1 A decision problem Π is a pair 〈I,Sol〉 such that
• I ⊆ Σ∗ is a set of instances that is recognizable in linear time .

• For every instance I ∈ I, Sol(I) ⊆ Σ∗ denotes the set of solutions
of I .

An algorithm A is said to solve a decision problem Π = 〈I,Sol〉 if the
algorithm stops for all instances I ∈ I and returns accept if Sol(I) �= ∅
and reject otherwise. Note that we do not require that the algorithm
finds a member of Sol(I). It simply has to decide whether Sol(I) is empty
or not.

Definition 7.2 The class P contains all problems which can be solved by
a polynomial-time algorithm.

For many decision problems no polynomial-time algorithm is known.
Nevertheless many of these problems have a property which is not inherent
to every decision problem. Namely, that there exists an algorithm, which
may not find a solution in polynomial time, but which can at least check
in polynomial time, whether a given string x is a solution. Decision prob-
lems with this property form the class NP. This abbreviation comes from
Nondeterministic Polynomial time.

Definition 7.3 A decision problem Π = 〈I,Sol〉 belongs to the class NP
iff

• The size of the solutions is polynomially bounded in the length of I,
i.e., there exists a polynomial p such that

|x| ≤ p(|I|) for all I ∈ I and x ∈ Sol(I).

• There exists an algorithm A and a polynomial q such that for every
I ∈ I the following is true:

- If Sol(I) �= ∅ then there exists x0 ∈ Sol(I) such that A(I, x0)
accepts in time q(|I|).

- If Sol(I) = ∅ then for every x ∈ Σ∗ the algorithm A(I, x) rejects
in time q(|I|).

An immediate consequence of this definition is that P ⊆ NP. The ques-
tion whether the converse inclusion is also true, i.e., the question

198 Steger

P ?= NP
is one of the central open problems in complexity theory. There are thou-
sands of important and well studied problems in NP and so far no
polynomial-time algorithm is known which solves a single one of them.
A reasonable strategy to attack the P versus NP question is to study the
most difficult problems in NP.

Definition 7.4 A decision problem Π = 〈I,Sol〉 is said to be (Karp-
)reducible to another decision problem Π∗ = 〈I∗,Sol∗〉, written as Π ≤p Π∗,
if there exists a function f : I → I∗ computable in polynomial time such
that

Sol(I) �= ∅ ⇐⇒ Sol∗(f(I)) �= ∅ for all I ∈ I.

A decision problem Π∗ is called NP-complete if and only if Π∗ ∈ NP and
Π ≤p Π∗ for all problems Π ∈ NP.

The use of the less or equal sign in the above definition is justified by
the following observation. If Π ≤p Π∗ then the fact that there exists a
polynomial-time algorithm for Π∗ implies that there exists one for Π as
well. In particular, the existence of a polynomial-time algorithm for an
NP-complete problem thus implies that P = NP. Generalizing this idea to
arbitrary problems, e.g. optimization problems, we say that a problem Π
is NP-hard, iff the existence of a polynomial-time algorithm for Π implies
that P = NP.

The notion of NP-completeness was introduced independently by
Stephen Cook [22] and Leonid Levin [50] in the beginning of the 70ies.
They also showed that the problem

Sat: Given a Boolean formula in conjunctive normal form. Does there exist
a satisfying assignment?

is NP-complete. (See Section 7.1.3 for a more detailed definition of the
problem Sat.)

Theorem 7.1.1 Sat is NP-complete. �

For further use in Section 7.3.2 we also state the following corollary,
which follows immediately from the proof of Theorem 7.1.1.

Corollary 7.1.2 Let F denote the set of instances of Sat, that is, the
set of Boolean formulae in conjunctive normal form. Then for every
Π = 〈I,Sol〉 ∈ NP there exist mappings f and g which are computable
in polynomial time such that f maps any instance I ∈ I to a Boolean for-
mula f(I) ∈ F with variables y1, . . . , yn, z1, . . . , zm (where n and m depend
on I) such that

a = a1 · · · an′ ∈ Sol(I) ⇐⇒ ∃an′+1, . . . , an, b1, . . . , bm ∈ {0, 1} such that

7. Approximability of NP-Optimization Problems 199

(a1, . . . , an, b1, . . . , bm) is a satisfying
assignment for f(I).

Note that the relation ≤p is clearly transitive. In order to show that a
certain problem Π ∈ NP is NP-complete, Theorem 7.1.1 implies that it
suffices to show that Sat ≤p Π. A first list of twelve natural NP-complete
problems was presented by Karp [46]. A few years later Garey and John-
son [35] wrote their seminal book “Computers and Intractability, a Guide
to the Theory of NP-Completeness” which contains a list of hundreds of
NP-complete problems.

7.1.2 Optimization Problems
In the above definition of a decision problem, Sol(I) is the set of all cer-
tificates which “prove” that an instance I ∈ I has to be accepted. In the
context of optimization problems, we assume that the set Sol(I) is always
nonempty. Instead we are given an objective function val(I, x) which mea-
sures the quality of the solution. The task is to find for a given instance I
a solution x ∈ Sol(I) such that val(I, x) is as small (or large) as possible.

Definition 7.5 An optimization problem Π is a four-tuple 〈I,Sol, val, goal〉
such that

• I ⊆ Σ∗ is the set of instances;
• For every instance I ∈ I, Sol(I) ⊆ Σ∗ denotes the set of solutions of
I and is non-empty.

• For every instance I and solution x ∈ Sol(I), the value val(I, x) is a
positive integer. The function val(·, ·) is called the objective function.

• goal ∈ {min,max}.

The aim of an optimization problem is to find, for a given instance I, a
solution xopt ∈ Sol(I) such that

val(I, xopt) =

{
min{val(I, x) | x ∈ Sol(I)} if goal = min,
max{val(I, x) | x ∈ Sol(I)} if goal = max .

We abbreviate the value of the optimal solution by opt(I) := val(I, xopt).
Note that opt(I) is well defined, as Sol(I) is, by definition, nonempty for
all I ∈ I. An algorithm is said to solve an optimization problem Π, if the
algorithm stops for all instances I ∈ I with a solution y ∈ Sol(I) such that
val(I, y) = opt(I).

Definition 7.6 An optimization problem belongs to the class NPO iff
• I ⊆ Σ∗ is a set of instances that is recognizable in linear time .
• The size of the solutions is polynomially bounded in the length of I,
i.e., there exists a polynomial p such that

|x| ≤ p(|I|) for all I ∈ I and x ∈ Sol(I).

200 Steger

• The question “Is x ∈ Sol(I)?” is decidable in polynomial time.
• The function val(·, ·) is computable in polynomial time.

A (polynomial-time) approximation algorithm for an optimization prob-
lem Π = 〈I,Sol, val, goal〉 is an algorithm A which computes for each
instance I ∈ I (in polynomial time) a solution xA ∈ Sol(I). We will use
the notation A(I) := val(I, xA) to denote the value of the objective function
for the solution obtained by algorithm A.

Definition 7.7 Let Π = 〈I,Sol, val, goal〉 be an optimization problem. An
approximation algorithm with performance ratio � ≥ 1 is an algorithm A
such that

1
�

≤ A(I)
opt(I)

≤ � for all I ∈ I.

An algorithm A is said to be a polynomial-time approximation scheme if
A returns for every instance I ∈ I and every rational ε > 0 a solution
xA ∈ Sol(I) such that A(I, ε) := val(I, xA) satisfies

1
1 + ε

≤ A(I, ε)
opt(I)

≤ 1 + ε.

For every fixed ε > 0 the running time of A has to be polynomially bounded
in |I|. If the running time is in fact bounded by a polynomial in |I| and 1/ε
then A is called a fully polynomial-time approximation scheme.

Remark 7.1.3 In our formulation of Definition 7.7 � is a fixed constant.
This is, however, just for simplicity, as in this survey we restrict our at-
tention to these cases. In general, one also considers the case that the ratio
A(I)/opt(I) is bounded by �(|I|), where �(·) is some slowly growing func-
tion. For various problems this is in fact also necessary, as one can show
that, unless P = NP, no polynomial-time approximation algorithm with
constant performance ratio can exist. Prominent examples in this context
are the chromatic number and the clique number of a graph G = (V,E)
(see below for definitions) and the set-covering problem. In the first two
cases Feige and Kilian [30] and H̊astad [39] showed that it is unlikely
that an approximation algorithm with performance ratio n1−ε exists, where
n = |V | denotes the number of vertices of the graph G and ε > 0 is an
arbitrarily small constant. For the set covering problem Feige [28] showed
that unless P = NP the performance ratio (1 − o(1)) ln(n) of the greedy
algorithm [43, 51] is essentially best possible.

Based on Definition 7.7 we can subdivide the set NPO into classes of
problems which share the existence of certain approximation algorithms.

Definition 7.8 PO is the set of all optimization problems in NPO which
can be solved optimally in polynomial time.

7. Approximability of NP-Optimization Problems 201

Definition 7.9 FPT AS is the set of all optimization problems in NPO
which admit a fully polynomial-time approximation scheme.

Definition 7.10 PT AS is the set of all optimization problems in NPO
which admit a polynomial-time approximation scheme.

Definition 7.11 APX is the set of all optimization problems in NPO
which admit a polynomial-time approximation algorithm with performance
ratio � for some constant � ≥ 1.

From the definition it follows immediately that

P ⊆ FPT AS ⊆ PT AS ⊆ APX ⊆ NPO.

In Section 7.3 we will see that, unless P = NP, all these inclusions are in
fact strict.

7.1.3 Examples and Reference Problems
In this section we list a couple of optimization problems which will be used
as examples and reference problems in the latter sections of this survey.

We start with some optimization variants of satisfiability problems. A
Boolean formula for the set of variables X = {x1, . . . , xn} is recursively
defined as follows. Every variable xi is a Boolean formula. For Boolean
formulas F1 and F2, also the negation ¬(F1) and the two expressions F1∧F2
and F1 ∨F2 are Boolean formulas. The formulas xi and ¬xi are also called
literals. A Boolean formula is said to be in conjunctive normal form if it is
a conjunction of clauses Ci where each of these clauses Ci is a disjunction
of literals. A truth assignment is a mapping τ : X → {0, 1} which assigns
to every variable the Boolean value true or false. A truth assignment is
said to be a satisfying assignment for a Boolean formula F if F evaluates to
true when we replace each variable xi by τ(xi). Recall that Sat denotes
the decision problem “Given a Boolean formula in conjunctive normal form.
Does there exist a satisfying assignment?”. It is NP-complete according to
Theorem 7.1.1. It is well known that also the special case in which each
clause contains at most 3 literals and each variable appears in at most 3
clauses (negated or unnegated) is NP-complete [35]. With E3Sat we denote
the version where each clause contains exactly 3 literals. It is NP-complete
as well [35]. There are a couple of natural optimization problems related to
satisfiability problems.

MaxSat: Given a Boolean formula in conjunctive normal form, find an
assignment that satisfies as many clauses as possible.

MaxEkSat: Subcase of MaxSat in which every clause contain exactly k
literals.

202 Steger

MaxkSat: Subcase of MaxSat in which every clause contains at most
k literals.

MaxSat(�): Subcase of MaxSat in which every variable appears in at
most � clauses. With MaxkSat(�) we denote the combination
of the last two restrictions.

A set of optimization problems that are syntactically closely related to
satisfiability problems are systems of linear equations of the form xi1 +. . .+
xik

= bi. In this survey we restrict our considerations to the case that all
computations are done modulo 2, i.e. in the field F2 := {0, 1}. Note that
the decision version “Given a system of linear equations. Does there exist
an assignment that satisfies all equations simultaneously?” is solvable in
polynomial time by Gauss elimination. The optimization variants, however,
will turn out to be not so easy.

MaxLinEq: Given a system of linear equations over F2. Find an
assignment that satisfies as many equations as possible.

MaxEkLinEq: Subcase of MaxLinEq in which every equation contains
exactly k variables. With MaxEkLinEq(�) we denote the
variant in which every variable appears in at most � equations.

In graph theory the chromatic number χ(G) is a well studied parameter.
It is defined as follows. A legal k-coloring of a graphG = (V,E) is a mapping
c : V → {1, . . . , k} such that c(x) �= c(y) for all {x, y} ∈ E. The chromatic
number χ(G) is defined as the minimum k for which there exists a legal
k-coloring of G. The decision problem “Given a graph G and an integer k,
is χ(G) ≤ k?” is known to be NP-complete. It even remains NP-complete
if k ≥ 3 is a fixed integer which is not part of the input. There are two
natural related optimization problems.

MinCol: Given a graph G = (V,E), find a legal k-coloring such that
k is as small as possible. The subcase which contains only
those graphs G with chromatic number χ(G) ≤ � is denoted
by MinCol(�).

MaxkCol: Given a graph G, find a k-coloring c that maximizes the num-
ber of edges {x, y} in G for which c(x) �= c(y). Similarly as
above, MaxkCol(�) denotes the subcase in which the input
is restricted to graphs which are �-colorable.

A closely related concept to the chromatic number is the clique number
ω(G). It is defined as the cardinality of the largest clique which is contained
in G as a subgraph. (For the relation to the chromatic number observe that
χ(G) ≥ ω(G) and χ(G) ≥ |V |/ω(G), where G denotes the complement of
G.) The decision problem “Given a graph G and an integer k, is ω(G) ≥
k?” is again known to be NP-complete. Note, however, that for the clique
number the special case where k is a fixed constant that is not part of the

7. Approximability of NP-Optimization Problems 203

input is solvable in polynomial time. (Consider an enumeration algorithm
which checks all subsets of V of size k.) In this case there exists just one
natural optimization problem.

MaxClique: Given a graph G = (V,E), find a subset X ⊆ V such that X
induces a clique in G and such that |X| is as large as possible.

For a graph G = (V,E) and a subset X ⊂ V we denote by cut(X) the
number of edges from E which have exactly one endpoint in X. It is well
known, see e.g. [54], that one can find in polynomial time a set ∅ �= X ⊂ V
such that cut(X) is minimized. The maximization variant, however, is NP-
hard. If we restrict X to sets which contain exactly half the vertices, also
the minimization variant becomes NP-hard [34].

MaxCut: Given a graph G = (V,E), find a subset X ⊂ V such that
cut(X) is maximized.

MinBisection: Given a graph G, find a subset X ⊂ V , |X| = � 1
2V , such

that cut(X) is minimized.

MaxBisection: Given a graph G, find a subset X ⊂ V , |X| = � 1
2V , such

that cut(X) is maximized.

As we will see in the subsequent sections, there is a fundamental differ-
ence in the approximability of MinCol and MaxkCol. Intuitively, this is
due to the following difference in the definition of the two problems. In the
problem MinCol the solutions consist only of legal colorings – and finding
a legal coloring is a global problem where we do have to consider the whole
graph simultaneously. In MaxkCol on the other hand every k-coloring is
a solution and the objective function just counts the number of “good”
edges. Deciding whether an edge is good (has both of its vertices colored
with different colors) can be done locally, without considering other edges.
Thus MaxkCol is in a sense a local optimization problem, while MinCol

is a global optimization problem.
Observe also that MaxkCol is not only a local problem, it is also very

similar to MaxkSat. In both problems we are given a set of objects (ver-
tices, variables) which should be colored with a given number of colors such
that an objective function which counts the number of local configurations
which do satisfy a certain property is maximized. Generalizing this idea
leads to constraint satisfaction problems, which we define next.

Constraint satisfaction problems

A (k-ary) constraint function is a Boolean function f : {0, 1}k → {0, 1}.
Given a set of variables X = {x1, . . . , xn}, a constraint for X is a pair C =
(f, (i1, . . . , ik)) such that f is a constraint function and 1 ≤ i1, . . . , ik ≤ n.
The constraint is said to be satisfied by an assignment a = (a1, . . . , an) for
the variables (x1, . . . , xn) if f(ai1 , . . . , aik

) = 1. A constraint family F is a
finite collection of constraint functions. A constraint C = (f, (i1, . . . , ik)) is

204 Steger

said to be from F if f ∈ F . With this notation at hand we can now define
a constraint satisfaction problem formally.

MaxF : Given a set of variables X = {x1, . . . , xn} and a collection
C1, . . . , Cm of constraints for X from F . Find an assignment for
x1, . . . , xn which maximizes the number of satisfied constraints.

By choosing appropriate sets F , one easily observes that MaxF is a
generalization of many well known problems.

– Let SATk : {0, 1}k → {0, 1} with SATk(x1, . . . , xk) = x1 ∨
. . . ∨ xk. Then MaxkSat is equivalent to MaxF , if we set F =
{SAT1, . . . , SATk}.

– Let CUT : {0, 1}2 → {0, 1} with CUT (x, y) = x ⊕ y, where ⊕ de-
notes the XOR between the two variables. Then the graph problem
MaxCut is equivalent to MaxF , if we set F = {CUT}.

– Let COL4 : {0, 1}2 → {0, 1} with COL4(x1, x2, y1, y2) = (x1 ⊕ y1) ∨
(x2 ⊕ y2). Then the graph coloring problem Min4Col is equivalent
to MaxF , if we set F = {COL4}.

Remark 7.1.4 Note that the problem MaxF belongs (for all constraint
families F that do not contain a function that is identically 0) to the class
APX . This is easily seen as follows. A random assignment of the variables
satisfies a given constraint with probability at least 2−k, where k is the max-
imum arity of a constraint function in F . That is, a randomized algorithm
which just guesses an assignment has an (expected) performance ratio of at
least 2k. As this algorithm can easily be derandomized using the method of
conditional probabilities (see e.g. [53]), this implies that MaxF can always
be approximated within a ratio of 2k. The reader is invited to observe that
the constant 2k can often be decreased dramatically, if the constraint func-
tions satisfy additional properties. E.g. for SATk we obtain 2k/(2k −1), for
CUT we obtain 2, and for COL4 we obtain 4/3.

Weighted problems

In principle, any of the above optimization problems can be turned into
a weighted version. In a weighted version the instances are enlarged by
some weight function w, and the objective function measures the solution
also with respect to this weight function. For example, for MaxSat we
could assign a weight to each clause and then ask for an assignment that
maximizes the total weight of all satisfied clauses. In Section 7.4.2 we will
show that for a wide range of optimization problems the approximability of
weighted and unweighted problems is very similar. We therefore desist from
specifying weighted versions for all problems mentioned so far. Instead we
just define weighted constraint satisfaction problems.

7. Approximability of NP-Optimization Problems 205

MaxWeightF : Given a set of variables X = {x1, . . . , xn}, a collec-
tion C1, . . . , Cm of constraints for X from F , and weights
w1, . . . , wm ∈ Z

+. Find an assignment for x1, . . . , xn which
maximizes the total weight of all satisfied constraints.

7.2 Proving Lower Bounds

In this section we survey some techniques which have been used in proving
lower bounds.

7.2.1 Adversary
Adversary arguments have been used successfully in proving lower bounds
on the running time of certain algorithms. Perhaps the most well known
example is the proof of the fact that every comparison based sorting al-
gorithm needs at least �log2(n!)� many comparisons. As the total number
of linear orderings on n numbers is n!, an adversary can always answer a
comparison “Is a[i] ≤ a[j]?” of the algorithm in such a way that after k
comparisons n!/2k linear orders are still consistent with all answers given so
far. This implies that the algorithm may have to perform �log2(n!)� many
comparisons before the true linear ordering is identified.

Another area where adversary arguments have been used very suc-
cessfully, is in proving lower bounds on the competitive ratio of online
algorithms. See e.g. the textbook by Borodin and El-Yaniv [20] for details.

7.2.2 Bootstrapping
Bootstrapping is a technique which permits to obtain algorithms of in-
creasingly better quality by just applying the same algorithm to suitably
changed inputs. The following example from [32] illustrates this idea.

Theorem 7.2.1 If there exists an approximation algorithm for Max-

Clique with performance ratio �0 for some �0, then there also exist
approximation algorithms with performance ratio � for any � > 1.

Proof. Given a graph G = (V,E), we let G × G denote the graph with
vertex set V × V in which two vertices (x1, y1) and (x2, y2) are connected
by an edge if and only either x1 = x2 and {y1, y2} ∈ E or {x1, x2} ∈ E.
One easily checks that ω(G×G) = ω(G)2 and that every clique C in G×G
induces a clique C ′ in G of size at least

√
|C|.

Assume that A is an approximation algorithm for MaxClique with
performance ratio �0. If we apply A to G×G the algorithm has to return
a clique C of size at least ω(G × G)/�0. A can thus be used to find a
clique in G of size at least

√
ω(G×G)/�0 = ω(G)/

√
�0, yielding an an

206 Steger

approximation algorithm A′ for MaxClique with performance ratio
√
�0.

Now repeat this argument for
√
�0 instead of �0 to obtain an approximation

algorithm with performance ratio (�0)1/4, and so on. As (�0)1/2k

tends to
1 for every �0 > 1, this concludes the proof of the theorem. �

A slight variant of the bootstrapping techniques is the proof that opti-
mization problems where the value of the optimal solution is polynomially
bounded in the input size cannot belong to the class FPT AS \ PO.

Theorem 7.2.2 Let Π = 〈I,Sol, val, goal〉 be an optimization problem in
NPO. Assume that there exists a polynomial p such that |opt(I)| ≤ p(|I|)
for all instances I ∈ I. Then Π �∈ FPT AS \ PO, unless P = NP.

Proof. Assume Π ∈ FPT AS. Then there exists an approximation scheme
A which returns, for given I ∈ I and rational ε > 0, in time polynomial in
|I| and 1/ε a solution A(I, ε) ∈ Sol(I) whose performance ratio is bounded
by 1 + ε.

Apply the algorithm with ε0 = 1/(p(|I|) + 1). Then 1/ε0 is bounded by
a polynomial in |I| and according to the assumption on A we have

1
1 + 1

p(|I|)+1

≤ val(I,A(I, ε0))
opt(I)

≤ 1 +
1

p(|I|) + 1
.

As 1 − 1
p(|I|)+1 ≤ 1

1+ 1
p(|I|)+1

this implies that

|val(I,A(I, ε0)) − opt(I)| ≤ |opt(I)|
p(|I|) + 1

< 1,

where the last inequality follows from the assumption that |opt(I)| ≤ p(|I|)
for all instances I. As val(I,A(I, ε0)) and opt(I) are both integers this
therefore implies that val(I,A(I, ε0)) = opt(I). That is, we have con-
structed an algorithm which solves Π optimally and whose running time is
bounded by a polynomial in |I|. But this can only happen if Π ∈ PO or
P = NP. �

A similar result holds for problems for which the optimum is bounded by
a polynomial in |I| and Max(I) (the maximum number contained in the
input) if the underlying decision problem is strongly NP-complete [33].

7.2.3 The Gap Technique
In this section we first introduce a simple idea of deducing non-
approximability results from NP-completeness results. Subsequently we
then define so-called gap reductions, which can be used to get improved
non-approximability results.

As a first example consider the problem MinCol(3). The underlying
decision problem “Given a graph G, is G 3-colorable?” is known to be

7. Approximability of NP-Optimization Problems 207

NP-complete [34]. We can thus deduce that MinCol(3) cannot be approx-
imated within a factor of 4/3− ε, unless P = NP. To see this observe that
an approximation algorithm with performance ratio 4/3 − ε has to find a
3-coloring for every 3-colorable graph.

We now formalize this idea. Let Π be a minimization problem. Suppose
furthermore that we are given two functions t : I → N and g : I →
Q

>1. Then Πt,g denotes the restriction of Π to those instances I ∈ I such
that either opt(I) ≤ t(I) or opt(I) ≥ t(I) · g(I). Every such problem Πt,g

gives rise to a natural decision problem Πd
t,g if we set Sold(I) := {y ∈

Sol(I) | val(I, y) ≤ t(I)}. If Πd
t,g is NP-complete, we easily deduce a non-

approximability result for Π.

Theorem 7.2.3 Let Π be a minimization problem. Suppose furthermore
that t : I → N and g : I → Q

>1 are two functions computable in polynomial
time such that Πd

t,g is NP-complete. Then Π cannot be approximated within
a factor of g(I) − ε for any ε > 0, unless P = NP.

Proof. Assume A is a polynomial-time approximation algorithm for Π with
performance ratio g(I) − ε. Then A has to return for every instance I ∈ I
such that opt(I) ≤ t(I) a solution with value at most t(I) · (g(I) − ε). On
the other hand by assumption every instance I such that opt(I) > t(I) in
fact satisfies opt(I) ≥ t(I) · g(I). The approximation algorithm A can thus
be used to decide Πd

t,g. This is only possible if P = NP. �

Let us return to the problem MinCol(3). Setting t(G) = 3 and g(G) =
4/3 yields the non-approximability factor of 4/3− ε mentioned above. But
even more is true. Khanna, Linial and Safra [47] described a (polynomial-
time) reduction, which transforms every 3-colorable graph into another 3-
colorable graph, but every non-3-colorable graph into a graph which is also
not 4-colorable. Similarly as above, we can thus deduce that MinCol(3)
cannot be approximated within a factor of 5/3 − ε, unless P = NP.

We again formalize this idea. Let Πt,g and Π∗
t∗,g∗ be two minimization

problems. A gap preserving reduction from Πt,g to Π∗
t∗,g∗ – in symbols

Πt,g ≤gap Π∗
t∗,g∗ – is a function f : I → I∗ computable in polynomial time

such that the following property is satisfied for all instances I ∈ I.

opt(I) ≤ t(I) =⇒ opt(f(I)) ≤ t∗(I)
opt(I) ≥ t(I) · g(I) =⇒ opt(f(I)) ≥ t∗(I) · g∗(I).

Then the following theorem can be proven in a similar way as
Theorem 7.2.3.

Theorem 7.2.4 Assume Πt,g ≤gap Π∗
t∗,g∗ . Then the fact that Πd

t,g is NP-
complete implies that Π∗d

t∗,g∗ is NP-complete.

Proof. Just observe that the gap preserving reduction implies the existence
of a reduction between the two decision problems Πd

t,g and Π∗d
t∗,g∗ . �

208 Steger

Remark 7.2.5 In this section we only considered minimization problems
so far. This was just for convenience. It should be clear that similar defi-
nitions hold for maximization problems as well, if we interchange ≤ and ≥
and change t(I) · g(I) to t(I)/g(I).

Unfortunately, it turns out that an application of Theorem 7.2.4 to max-
imization problems or, more general, to problems Π in which the optimum
tends to infinity if the size of the problem tends to infinity is usually non-
trivial. The reason is that in this case it is a priori not clear how to obtain
suitable functions t and g. Consider for example satisfiability problems.
Given an instance I it is NP-complete to distinguish whether I is satis-
fiable or not. For MaxSat this just means that we could set t(I) = m,
where m denotes the number of clauses, and g(I) = 1 + 1

m−1 (so that
t(I)/g(I) = m − 1). As g(I) tends to one with |I| tending to infinity,
Theorem 7.2.3 gives no proper non-approximability result. But of course
we could try to apply Theorem 7.2.4. That is, construct a gap preserv-
ing reduction with the property that satisfiable instances are mapped to
satisfiable instances, and non-satisfiable instances are mapped to instances
where at most some constant fraction of all clauses can be satisfied simulta-
neously. At first sight this may sound like an easily solvable combinatorial
problem. Unfortunately, this is not so. In order to construct such a reduc-
tion we need some notions and deep results from computational complexity
theory.

7.2.4 Probabilistically Checkable Proofs
The connection between the existence of certain interactive proofs and
hardness results for optimization problems, first established in [21, 29], has
turned out to be immensely fruitful and productive over the last years. In
this section we briefly survey some of the key ideas and results.

Let us first informally recall the definition of the class NP. A decision
problem is in the class NP if there exists an algorithm which can check
in polynomial time whether a string x is a solution for a given instance
I. Recall that it is important that the algorithm just has to check a given
solution x. It need not find such a solution. It therefore makes sense to call
such a solution x ∈ Sol(I) a proof for the fact that Sol(I) �= ∅. The fact
that a decision problem is in the class NP then simply means that these
proofs can be checked (or, as we will henceforth also call it, verified) in
polynomial time.

For many problems in NP the “proofs” are simple and straightforward.
For example, they just consist of a satisfying assignment, a coloring or a
clique of a given size. It is important to note here that these proofs do
not contain much redundant information. For example, to distinguish a
satisfying assignment from one that satisfies all but one clause, one usually
has to read the truth value of every variable, i.e., the whole proof.

7. Approximability of NP-Optimization Problems 209

This is not the case with probabilistically checkable proofs. Proba-
bilistically checkable proofs are inspected by verifiers (polynomial-time
algorithms) which proceed as follows. After reading the instance I they
generate a couple of random bits. Based on these random bits they decide
which bits (positions) of the proof they want to read. Subsequently, they
either accept the instance I or reject it — only on the knowledge of the
(few) queried bits! A decision problem is said to have a probabilistically
checkable proof if for all yes-instances I there exists a proof π0 which the
verifier accepts for all possible outcomes of the random bits, while for all
no-instances the verifier rejects all proofs with probability at least one half.

At first it may seem impossible to construct probabilistically checkable
proofs for problems in NP, which can be checked by reading only a con-
stant number of bits. (Try it!) Surprisingly enough this is, however, not too
difficult. At least not if we allow the proof to be arbitrarily long. Highly
non-trivial on the other hand is the fact that every problem in NP has a
proof of polynomial length with the same property. More precisely, every
yes-instance I of length n := |I| admits a proof of length polynomial in n
which can be checked probabilistically by reading only a constant number
of bits from it. Note that in order to choose a bit from a proof of length
t we just need to specify �log2 t� many bits. That is, in order to specify
constantly many positions of a proof of length polynomial in n it suffices
to generate O(log n) many random bits. We now make these definitions
precise.

The concept of probabilistically checkable proofs or, more precisely, of
interactive proofs, were introduced independently by Goldwasser, Micale,
Rackoff [37] and Babai [10, 14] and generalized to multi-prover protocols
by Ben-Or, Goldwasser, Kilian, Wigderson [16]. The following definition
is due to Arora and Safra [8], who also coined the term probabilistically
checkable proofs.

Definition 7.12 Let r(n) and q(n) be positive integer functions. An
(r(n), q(n))-restricted verifier for a decision problem 〈I,Sol〉 is an algor-
ithm V that has access to an input I, a string τ of random bits, and a proof
π such that for every input I of length n := |I| the verifier V reads only the
first O(r(n)) many bits from τ and reads at most O(q(n)) positions of the
proof π.

Such a verifier is said to decide 〈I,Sol〉 if for every input I of length
n := |I| the verifier V returns in time polynomial in n either accept or
reject such that

Sol(I) �= ∅ =⇒ ∃π0 : Pr [V(I, τ, π0) = accept] = 1,

and

Sol(I) = ∅ =⇒ ∀π : Pr [V(I, τ, π) = reject] ≥ 1
2
.

210 Steger

�
� � �

�
�

�

�

V(I, τ, π)

accept or reject

random bits τ proof πinput I

Figure 7.1. Illustration of a verifier for the classes PCP(·, ·).

(Here the probability is with respect to the random string τ , assuming that
all such 0-1 strings are equally likely.)

The class PCP(r(n), q(n)) denotes the set of all decision problems
〈I,Sol〉 that can be decided by an (r(n), q(n))-restricted verifier.

The functions r(n) and q(n) make the definition of the classes PCP(·, ·)
rather general. In particular, it contains well-known classes like P or NP
as special cases. For example, one easily deduces that

P = PCP(0, 0)

NP = PCP(0, poly(n)) :=
⋃

k≥1

PCP(0, nk), and ,

coRP = PCP(poly(n), 0) :=
⋃

k≥1

PCP(nk, 0).

The next question arises quite naturally. How large is the class
PCP(poly(n), poly(n))? A result of Babai, Fortnow, Lund [13] implies that
this class is indeed very large:

PCP(poly(n), poly(n)) = NEXP.
This indicates that NP should also be contained in PCP(r(n), q(n))
for much smaller growing functions r and q. After several intermediate
steps [12, 29, 8], Arora, Lund Motwani, Sudan, and Szegedy [7] finally suc-
ceeded in proving the following surprisingly strong characterization of NP
in terms of probabilistically checkable proofs.

Theorem 7.2.6 [7] (PCP-Theorem) NP = PCP(log n, 1). �

The proof of Theorem 7.2.6 is highly non-trivial. Besides the original
reference [7] the reader can also check [9, 41, 42] for complete proofs.

Starting from Theorem 7.2.6 it is now straightforward to deduce non-
approximability results.

7. Approximability of NP-Optimization Problems 211

Theorem 7.2.7 [7] There exists ε0 > 0 and two functions f and g,
computable in polynomial time, such that for every instance ϕ ∈ Sat the
following properties are fulfilled:

(1) f(ϕ) is an instance of 3Sat.

(2) If ϕ is satisfiable, then there exists a truth assignment for f(ϕ).

(3) If ϕ is not satisfiable, then every truth assignment satisfies at most
(1 − ε0)m many clauses of f(ϕ), where m denotes the number of
clauses in f(ϕ).

(4) Given a truth assignment τ which satisfies more than (1 − ε0)m
clauses of f(ϕ), g(τ) is a satisfying truth assignment of ϕ.

Proof. As Sat belongs to NP, Theorem 7.2.6 implies that there exists
a (log n, 1)-restricted verifier V for Sat. Consider an arbitrary instance of
Sat, i.e., an arbitrary Boolean formula ϕ in conjunctive normal form. We
will use V to construct the desired instance f(ϕ) of 3Sat in polynomial
time.

The definition of a (logn, 1)-restricted verifier implies that there exist
constants c and k such that V will use at most c log2 |ϕ| many random bits
and read at most k many bits of a given proof π. Clearly, we may assume
without loss of generality that V always uses exactly c log2 |ϕ| many random
bits and reads exactly k many bits of the proof π. This implies in particular
that V can access at most k · 2c log2 |ϕ| = k · |ϕ|c different positions of π.

Assume the value of the ith bit from π is denoted by xi. We identify
these values with the variables x1, x2, . . . of the Boolean formula f(ϕ). The
clauses of f(ϕ) are constructed as follows. For every string τ of length
c log2 |ϕ| we construct a 3Sat formula Fτ . Assume that V reads the bits
xτ1 , . . . , xτk

from the proof π, if the random bits are set to τ . Clearly,
there are exactly 2k different conjunctive(!) clauses which use each of the
variable xτ1 , . . . , xτk

exactly once (negated or unnegated). From these 2k

clauses we keep exactly those which correspond to an assignment for which
the verifier accepts (identify True with 1 and False with 0). This Boolean
formula can easily be transformed into a 3Sat formula Fτ which contains
at most k2k many clauses.

Now consider f(ϕ) :=
∧

τ Fτ ? It obviously can be constructed in poly-
nomial time. Furthermore, by construction, every satisfying assignment of
F corresponds to a proof π for which the verifier V accepts for all random
strings τ . Similarly, every proof π, which is rejected by the verifier for at
least half of all random strings, corresponds to an assignment that does not
satisfy at least half of all formulas Fτ . In other words, for any such assign-
ment, at least 1

2c log2 |ϕ| many clauses of f(ϕ) are not satisfied. As f(ϕ)
contains at most k2k · c log2 |ϕ| many clauses, this shows that all properties
of Theorem 7.2.7 are satisfied if we let ε0 := 1

k2k+1 . �

Theorem 7.2.4 allows us to rephrase Theorem 7.2.7 as follows.

212 Steger

Corollary 7.2.8 There exists an ε0 > 0 such that it is NP-hard to distin-
guish satisfiable 3Sat instances from those in which at most 1 − ε0 of all
clauses can be satisfied simultaneously. �

Corollary 7.2.9 Max3Sat /∈ PT AS, unless P = NP. �

Historically, Theorem 7.2.6 was the starting point for a whole sequence
of stronger and stronger non-approximability results. See [6, 3] for sur-
veys. One line of research was to improve the constant ε0 in Theorem 7.2.7
by constructing slightly different verifiers and tightening the analysis, see
e.g. [61] for an overview and references. This race for better and better
constants was brought to an end by H̊astad [39, 40]. He combined Theo-
rem 7.2.6 with Raz’s proof [57] of the so-called “parallel repetition theorem”
to obtain essentially optimal non-approximability results.

Theorem 7.2.10 [40] For every ε > 0, it is NP-hard to distinguish sat-
isfiable E3Sat instances from those in which at most 7/8 + ε of all clauses
can be satisfied simultaneously.

Theorem 7.2.11 [40] For every ε > 0, it is NP-hard to distinguish be-
tween E3Lin instances in which at least (1−ε) of all clauses can be satisfied
simultaneously from those in which at most (1 + ε)/2 of all equations can
be satisfied simultaneously.

Remark 7.2.12 The fact, that these results are essentially best possi-
ble follows from Remark 7.1.4. Karloff and Zwick [45] could even show
that there also exists an approximation algorithm for Max3Sat with
performance ratio 8/7.

Theorem 7.2.13 [39] For every ε > 0, MaxClique is not approximable
within a factor of |V |1−ε, unless P = NP.

7.3 A Hierarchy for NP-Optimization Problems

The results of the last section enable us to explain a hierarchy for the prob-
lems in NPO, which categorize optimization problems according to their
approximability. There are three steps for achieving this. Firstly, we need
a suitable notion of reductions between optimization problems. Secondly,
we need a notion of “complete” problems. Thirdly, we need to show that
these two notions fit together properly so that we are able to identify a first
complete problem (similar as in the Cook-Levin Theorem 7.1.1).

7. Approximability of NP-Optimization Problems 213

7.3.1 Reducing optimization problems
In their seminal paper [55] Papadimitriou and Yannakakis introduced the so
called L-reduction and the notion of MaxSNP-hardness. In the subsequent
years the L-reduction was used very successfully to establish the MaxSNP-
hardness of many natural optimization problems. Unfortunately, it turned
out that the syntactically-defined class MaxSNP is difficult to compare with
the computationally-defined class APX . Moreover, the L-reduction seemed
to be to weak in order to allow identification of complete problems within
APX . Generalizing the L-reduction solved this problem [25, 27, 48].

Before we formally state definitions, let us first point out why reductions
for optimization problems are more complicated than those for decision
problems. A key feature of a reduction is that it allows to transform one
problem to another in such a way that it suffices to solve the new problem in
order to obtain an answer for the original problem. Note that this requires
that we do have a way for transforming the answers. In case of decision
problems this is trivial, as the answer consists just of accept or reject.
In case of optimization problems, however, the answer is a solution, which
satisfies some properties, e.g. meets a desired performance ratio. So the
notion of a reduction has to provide also a way of transforming solutions
of the new problem into solutions of the original problem. As there is some
flexibility in the precise realization of such a transformation there do exists
several possibilities for defining reductions between optimization problems.

In this section we introduce the notion of AP-reductions due to Crescenzi,
Kann, Silvestri, and Trevisan [24], which is by now widely accepted as the
standard reduction for optimization problems. Subsequently, we then also
introduce the concept of L-reductions, as they are often easier to construct.
For a discussion of other notions of reductions which were considered in the
literature we refer the reader to [23].

Definition 7.13 An optimization problem Π = 〈I,Sol, val, goal〉 is AP-
reducible to an optimization problem Π∗ = 〈I∗,Sol∗, val∗, goal∗〉 – in
symbols Π ≤AP Π∗ – if and only if there exist functions f and g and a
constant α > 0 such that:

(AP1) For any δ > 0, for any I ∈ I, f(I, δ) ∈ I∗.

(AP2) For any δ > 0, for any I ∈ I, and y ∈ Sol∗(f(I, δ)), g(I, y, δ) ∈
Sol(I).

(AP3) For any fixed δ > 0, the functions f and g are computable in
polynomial time.

(AP4) For any I ∈ I, for any δ > 0, and for any y ∈ Sol∗(f(I, δ)),

1
1 + δ

≤ val(f(I, δ), y)
opt(f(I, δ))

≤ 1 + δ =⇒

214 Steger

1
1 + α · δ ≤ val(I, g(I, y, δ))

opt(I)
≤ 1 + α · δ.

The triple (f, g, α) is an AP-reduction from Π to Π∗. If we want to empha-
size that there exists an AP-reduction (f, g, α) for some specific value of α,
we also write Π ≤α

AP Π∗.

The following lemmas capture important properties of AP-reductions.
We leave the easy proofs of the first two lemmas to the reader.

Lemma 7.3.1 Let Π0,Π1 and Π2 be optimization problems. If Π0 ≤AP Π1
and Π1 ≤AP Π2 then Π0 ≤AP Π2. �

Lemma 7.3.2 Let Π,Π∗ ∈ NPO. If Π∗ ∈ APX and Π ≤AP Π∗ then
Π ∈ APX . �

Lemma 7.3.3 Let Π,Π∗ ∈ NPO. If Π∗ ∈ PT AS and Π ≤AP Π∗ then
Π ∈ PT AS.

Proof. Let Π = 〈I,Sol, val, goal〉 and Π∗ = 〈I∗,Sol∗, val∗, goal∗〉. We have
to show that for every ε > 0 there exists a polynomial-time approximation
algorithm for Π with performance ratio 1 + ε. Fix some ε > 0.

Let (f, g, α) be an AP-reduction from Π to Π∗ and choose δ = ε · α−1.
Since Π∗ ∈ PT AS there exists a polynomial-time approximation algor-
ithm, say Aδ, for Π∗ with performance ratio 1 + δ. Let I ∈ I and consider
the instance f(I, δ) ∈ I∗ which can be computed in polynomial time. Aδ,
then, computes in polynomial time a solution y ∈ Sol∗(f(I, δ)) such that

1
1 + δ

≤ val(f(I, δ), y)
opt(f(I, δ))

≤ 1 + δ.

Starting from y we can then compute, again in polynomial time, a solution
g(I, y, δ) ∈ Sol(I). By condition (AP4) and the choice of δ we deduce that
this solution satisfies

1
1 + ε

≤ val(f(I, δ), y)
opt(f(I, δ))

≤ 1 + ε,

as desired. �

Lemma 7.3.4 Let Π ∈ NPO and ε > 0 and assume MaxE3Sat ≤α
AP

Π for some constant α > 0. Then there cannot exist a polynomial-time
approximation algorithm for Π with performance ratio at most 1 + 1

7α − ε,
unless P = NP.

Proof. According to Theorem 7.2.10 it is NP-hard to distinguish between
satisfiable E3Sat instances and those for which at most (7

8 +ε) of all clauses
can be satisfied simultaneously. Assume there exists an approximation al-
gorithm A for Π with performance ratio 1 + δ. Consider what happens if

7. Approximability of NP-Optimization Problems 215

we apply A to f(I, δ), where I is a satisfiable E3Sat instance. By property
(AP4) we know that

val(I, g(I,A(f(I, δ), δ))) ≥ opt(I)
1 + αδ

.

That is, whenever 1/(1 +αδ) > 7/8 the algorithm A can be used to decide
an NP-hard problem. �

Note that an important feature of Definition 7.13 is that the reduction
may depend on the desired performance ratio δ. In other words, an instance
I ∈ I may be mapped to different instances I∗ ∈ I∗, depending on the
parameter δ. According to present knowledge, this seems to be necessary
in order to show that APX contains natural complete problems. On the
other hand, reductions between different problems in APX will often not
need this freedom. From a technical point of view, this is quite fortunate, as
the dependence on the parameter δ makes AP-reductions usually difficult to
describe. We therefore also introduce the notion of the simpler L-reductions
and show that they are indeed weaker than AP-reductions.

Definition 7.14 An optimization problem Π = 〈I,Sol, val, goal〉 is L-
reducible to an optimization problem Π∗ = 〈I∗,Sol∗, val∗, goal∗〉 – in
symbols Π ≤L Π∗ – if and only if there exist functions f and g and constants
β, γ > 0 such that:

(L1) For any I ∈ I, f(I) ∈ I∗ is computable in polynomial time.

(L2) For any I ∈ I and for any y ∈ Sol∗(f(I)), g(I, y) ∈ Sol(I) is
computable in polynomial time.

(L3) For any I ∈ I, opt(f(I)) ≤ β · opt(I).

(L4) For any I ∈ I and for any y ∈ Sol∗(f(I)),

|opt(I) − val(I, g(I, y))| ≤ γ · |opt(f(I)) − val(f(I), y)|.

The quadruple (f, g, β, γ) is an L-reduction from Π to Π∗.

Lemma 7.3.5 Assume Π is a problem in APXand Π∗ is an arbitrary
problem in NPO. Then

Π ≤L Π∗ =⇒ Π ≤AP Π∗.

Proof. Let (f, g, β, γ) be an L-reduction from Π to Π∗. Then the functions f
and g trivially satisfy conditions (AP1)-(AP3). So we only have to show that
condition (AP4) holds as well. That is, assume I ∈ I and y ∈ Sol∗(f(I))
are such that

1
1 + δ

≤ val(f(I), y)
opt(f(I))

≤ 1 + δ (7.1)

216 Steger

for some δ > 0. We have to show that this implies that

1
1 + α · δ ≤ val(I, g(I, y))

opt(I)
≤ 1 + α · δ (7.2)

for an appropriate constant α > 0. Unfortunately, for maximization prob-
lems Π (and large values of δ) this will in general not be true. To cover
these case we have to use the assumption that Π is contained in APX .
We thus know that there exists an approximation algorithm A for Π with
performance ratio � for some � ≥ 1. This allows us to define

g′(I, y, δ) :=

{
g(I, y), if δ ≤ 1/(2βγ)
A(I), otherwise

We claim that (f, g′, α) is an AP-reduction from Π to Π∗, if we set α :=
2βγ�. Note that (AP1) - (AP3) are still trivially satisfied. To show (AP4)
we distinguish four cases. Consider first the case that Π is a maximization
problem and that Π∗ is a minimization problem. Then

val(I, g(I, y))
(L4)
≥ opt(I) − γ · (val(f(I), y) − opt(f(I)))

(7.1)
≥ opt(I) − γ · δ · opt(f(I))

(L3)
≥ opt(I) − βγδ · opt(I).

For δ ≤ 1/(2βγ) this implies

val(I, g′(I, y, δ))
opt(I)

=
val(I, g(I, y)

opt(I)
≥ 1 − βγδ ≥ 1

1 + 2βγδ

≥ 1
1 + 2βγ�δ

=
1

1 + αδ

by choice of α. If on the other hand δ > 1/(2βγ), we use the definition of g′

and the fact that A is an approximation algorithm with performance ratio
� to deduce that also in this case

val(I, g′(I, y, δ))
opt(I)

=
val(I,A(I))

opt(I)
≥ 1

�
=

1
1 + α/(2βγ)

≥ 1
1 + αδ

.

The case that both Π and Π∗ are maximization problems, and the two
cases that Π is a minimization problem are treated similarly and are left
to the reader. �

7.3.2 APX-completeness
Let us recall some facts about NP-completeness. The fact that a prob-
lem Π is NP-complete means that it is at least as difficult as any other
problem in NP. In other words, that the existence of a polynomial-time

7. Approximability of NP-Optimization Problems 217

algorithm for Π implies the existence of polynomial-time algorithms for ev-
ery problem in NP. The definition of APX-completeness transfers this idea
to optimization problems. The main difference is that we substitute “exis-
tence of a polynomial-time algorithm” by “existence of a polynomial-time
approximation scheme”.

Definition 7.15 An optimization problem Π ∈ APX is APX -complete if
for any other problem Π∗ ∈ APX we have Π∗ ≤AP Π.

As the AP-reduction is transitive, cf. Lemma 7.3.1, the identification of a
first APX-complete problem will drastically simplify the task of proving the
APX-completeness of other problems. The problem which we will first show
to be APX-complete is the optimization variant MaxSat of the problem
Sat which was shown to be NP-complete by Cook, cf. Theorem 7.1.1.

Theorem 7.3.6 [48] MaxSat is APX-complete.

For the proof of Theorem 7.3.6 we follow [60]. First we adapt a result
from [48] that, informally speaking, guarantees that minimization problems
in APX are not harder than maximization problems.

Lemma 7.3.7 For every minimization problem Π ∈ APX there exists a
maximization problem Π∗ ∈ APX such that Π≤AP Π∗.

Proof. Let Π = 〈I,Sol, val,min〉 be a minimization problem in APX . By
definition of APX , there exists some constant � ≥ 1 such that Π admits
a polynomial-time approximation algorithm A with performance ratio �.
Without loss of generality we assume that � ∈ N.

For I ∈ I, we denote by A(I) the solution x ∈ Sol(I) which is generated
by A. We define a maximization problem Π∗ = 〈I∗,Sol∗, val∗,max〉 by
I∗ := I, Sol∗ := Sol, and

val∗(I, x) := max{1, (1 + �)val(I,A(I)) − � · val(I, x)}.
As val is computable in polynomial time, val∗ is also computable in poly-
nomial time, implying that Π∗ ∈ NPO. To see that in fact Π∗ ∈ APX ,
we have to exhibit an approximation algorithm with constant performance
ratio. We claim that algorithm A is such an algorithm. To see this, observe
that

val∗(I,A(I)) = max{1, (1 + �)val(I,A(I))− � · val(I,A(I))} = val(I,A(I))

(recall that val(·) is by definition positive) and that

opt∗(I) = (1 + �)val(I,A(I)) − � · opt(I) ≤ (1 + �)val(I,A(I)) (7.3)

(as opt(I) is positive). This implies

val∗(I,A(I))
opt∗(I)

≥ 1
1 + �

.

218 Steger

That is, A is an approximation algorithm for Π∗ with performance ratio
1 + �.

It remains to show that Π≤AP Π∗. We claim that (f, g, 1 + �) where

f(I, δ) := I, and

g(I, y, δ) :=

{
y, if val(I, y) ≤ val(I,A(I))
A(I), otherwise

is an AP-reduction from Π to Π∗. Conditions (AP1)-(AP3) are obvioulsy
satisfied. So it remains to verify that (AP4) holds as well. That is, we have
to verify that for every δ > 0:

1
1 + δ

≤ val∗(I, y)
opt∗(I)

=⇒ val(I, g(I, y, δ))
opt(I)

≤ 1 + (1 + �)δ.

To see this observe first that the definitions of val∗ and g imply

val∗(I, y) ≤ (1 + �)val(I,A(I)) − � · val(I, g(I, y, δ)).

From the assumption val∗(I, y)/opt∗(I) ≥ 1/(1+δ) we can therefore deduce
that

val(I, g(I, y, δ))
opt(I)

<
1 + δ

�
· � · val(I, g(I, y, δ))

opt(I)

≤ 1 + δ

�
· (1 + �)val(I,A(I)) − val∗(I, y)

opt(I)

≤ 1 + δ

�
· [

(1 + �)val(I,A(I))
opt(I)

− opt∗(I)
(1 + δ)opt(I)

]

(7.3)
= 1 +

δ(1 + �)
�

val(I,A(I))
opt(I)

≤ 1 + δ(1 + �),

where the last inequality follows from the fact that A is an approximation
algorithm for Π with performance ratio �. This proves that (f, g, 1 + �) is
indeed an AP-reduction. �

Using Lemma 7.3.7 and Theorem 7.2.7 we are now able to prove
Theorem 7.3.6.
Proof of Theorem 7.3.6. By Lemma 7.3.7 and the transitivity of
≤AP , it suffices to prove that for any maximization problem Π =
〈I,Sol, val,max〉 ∈ APX we have that Π≤AP Max3Sat. So consider an
arbitrary maximization problem Π = 〈I,Sol, val,max〉. By definition of
APX , we know that there exists an approximation algorithm A for Π with
performance ratio � for some constant � ≥ 1. Let ε0 > 0 be the constant
from Theorem 7.2.7. Based on these two constants we will later define a
suitable constant α = α(�, ε0). Let δ > 0 be given. We have to construct
suitable functions f and g. First assume that δ is large enough so that
� ≤ 1 + α · δ. In this case the approximation algorithm A already yields
the required performance ratio. To be formally correct, we may map every

7. Approximability of NP-Optimization Problems 219

instance I to some trivial Max3Sat instance, say f(I, δ) ≡ x1 and define
g(I, y, δ) := A(I). Then

opt(I)
val(I, g(I, y, δ))

=
opt(I)

val(I,A(I))
≤ � ≤ 1 + α · δ,

and therefore the AP-condition is satisfied.
In the following we may therefore assume that δ > 0 is given such that

� > 1 + α · δ. To simplify notation, put c := 1 + α · δ, k := �logc�� and
val(AI) := val(I,A(I)). We partition the interval [val(AI), �val(AI)] into
k subintervals as follows:

[val(AI), c ·val(AI)], [c ·val(AI), c2 ·val(AI)], . . . , [ck−1 ·val(AI), � ·val(AI)]

Since val(AI) ≤ opt(I) ≤ � · val(AI), the optimum value opt(I) belongs to
one of the above subintervals. For i = 0, . . . , k−1 consider the NP-problem
Πi of deciding whether

opt(I) ≥ ci · val(AI).

Since Πi≤p 3Sat, Corollary 7.1.2 implies that we can compute for every I ∈
I in polynomial time a 3Sat instance ϕi := ϕi(I) such that given a truth
assignment σi satisfying ϕi, we can compute in polynomial time a solution
x ∈ Sol(I) so that val(I, x) ≥ cival(AI). Next we use Theorem 7.2.7 in
order to compute for every ϕi another 3Sat formula ψi := f(ϕi). Finally,
we define a 3Sat formula f(I, δ) as

f(I, δ) :=
k−1∧

i=0

ψi.

Notice that, since k is constant, ψ := f(I, δ) can be computed in polynomial
time. In the following we assume that each ψi contains the same number,
say m, of clauses. We can always achieve this, by taking sufficiently many
copies of each ψi. Furthermore, we denote with i0 the maximum index i
such that ψi is satisfiable. Note that by our construction this implies that

ci0val(AI) ≤ opt(I) < ci0+1val(AI).

Let τ be any truth assignment for the variables of ψ such that

opt(ψ)
val(ψ, τ)

≤ 1 + δ. (7.4)

Assume that for some index i the restriction τi of the assignment τ to the
variables in ψi satisfies

val(ψi, τi) ≥ (1 − ε0)m. (7.5)

According to Theorem 7.2.7 this can only happen, if ψi is satisfiable (i.e., if
i ≤ i0). Moreover, Theorem 7.2.7 also implies that starting from τi we can
compute in polynomial time a satisfying assignment σi for ϕi. As already

220 Steger

mentioned above, Cook’s Theorem implies that we can then compute, again
in polynomial time, a solution x ∈ Sol(I) such that val(I, x) ≥ cival(AI).

That is, if we can show that (7.5) holds for i = i0, we can compute in
polynomial time a solution x = g(I, τ, δ) ∈ Sol(I) such that

opt(I)
val(I, x)

≤ ci0+1val(AI)
ci0val(AI)

= c = 1 + α · δ,

i.e., condition (AP4) would be satisfied.
Thus, in order to complete the proof, it remains to show that

val(ψi0 , τi0) ≥ (1−ε0)m. According to (7.4) τ is a truth assignment for the
variables of ψ such that

opt(ψ) − val(ψ, τ) ≤ δ

1 + δ
opt(ψ) ≤ δ

1 + δ
k ·m.

On the other hand, defining ξ by val(ψi0 , τi0) = (1−ξ)m = (1−ξ)opt(ψi0),
we get

opt(ψ) − val(ψ, τ) =
∑

i 	=i0

(opt(ψi) − val(ψi, τi))

︸ ︷︷ ︸
≥ 0

+ opt(ψi0) − val(ψi0 , τi0)

︸ ︷︷ ︸
= ξm

.

Combining these two inequalities, we obtain

ξ ≤ δ

1 + δ
· k.

It thus suffices to show that we can define α (and thus k = �ln �/ ln(1 +
αδ)� ≤ 2 ln �/ ln(1 + αδ)) in such a way that

δ

1 + δ
· k ≤ δ

1 + δ
· 2 ln �

ln(1 + αδ)
< ε0 for all δ > 0.

As

2δ
1 + δ

· ln �
ln(1 + αδ)

< ε0 ⇐⇒ �
2δ

ε0(1+δ) − 1
δ

< α

and 1
x (�

2x
ε0(1+x) − 1) is monotone decreasing for all sufficiently large x and

converges to a constant for x → 0, such an α obviously exists. This
completes the proof of Theorem 7.3.6. �

7.4 Constructing Reductions

In this section we survey some techniques and results which are used
in constructing reductions between optimization problems. We start by
considering some specific examples.

7. Approximability of NP-Optimization Problems 221

7.4.1 Examples: Constraint Satisfaction Problems
Reductions between constraint satisfaction problems are particularly easy
to construct. In this section we present three examples. In Section 7.4.3
we will then outline how such reductions can be constructed automat-
ically. The reductions in this section are from Trevisan, Sorkin, Sudan,
Williamson [62].

Theorem 7.4.1 MaxE3Sat ≤L MaxE2Sat.

Proof. Given an E3Sat formula F we construct an E2Sat formula F ′ as
follows. We replace each clause x∨ y ∨ z in a given 3Sat instance by eight
2Sat clauses

x ∨ z, ¬x ∨ ¬z, x ∨ ¬ξ, ¬x ∨ ξ, z ∨ ¬ξ, ¬z ∨ ξ, y ∨ ξ, y ∨ ξ,

using a new variable ξ for each clause. (Note that the last two clauses are
identical!) By case checking one easily verifies that these 8 clauses have the
following property:
– At most 7 of the 8 clauses can be satisfied simultaneously.
– If x ∨ y ∨ z is satisfied than there exists an assignment for ξ such that

7 clauses are satisfied.
– If x∨ y∨ z is not satisfied than at most 5 clauses can be satisfied simul-

taneously.
– If x ∨ y ∨ z is not satisfied than there exists an assignment for ξ such

that 5 clauses are satisfied.
One easily checks that for this construction properties (L1)-(L4) of Def-
inition 7.14 are satisfied. (Use Remark 7.1.4 in order to see that (L3) is
satisfied.) �

With some more care one can show that the above reduction also implies
a non-approximability result. We defer the precise statement of such a result
to Section 7.4.3.

Theorem 7.4.2 MaxE3Lin ≤L MaxE2Lin.

Proof. Given an instance I from MaxE3Lin we construct an instance
f(I) from MaxE2Lin as follows. We add one new variable A and, for
each equation in I, 4 additional new variables. For each equation we then
introduce equations as indicated in Figure 7.2: a black edge between two
vertices u and v corresponds to an equation of the form u⊕ v = 1, while a
gray edge corresponds to an equation of the form u⊕ v = 0. (Note that we
use the notation u⊕v in order to emphasize that we consider the equations
modulo two.)

Observe that MaxE2Lin is symmetric in the sense that for every as-
signment a of the variables the complement a satisfies the same number of
equations. That is, we may assume without loss of generality that A = 0.

222 Steger

x

y

z

A

x

y

z

A

x⊕ y ⊕ z = 0 x⊕ y ⊕ z = 1

Figure 7.2. Reducing MaxE3Lin to MaxE2Lin.

Then the following properties of the construction are easily verified by case
checking.

The construction for x⊕ y ⊕ z = 0 is such that an assignment for x, y, z
that satisfies the equation can be extended to an assignment of the ad-
ditional (unnamed) variables such that 12 equations are satisfied, while
an assignment for x, y, z that does not satisfy the equation can only be
extended to an assignment that satisfies 10 equations.

Similarly, the construction for x ⊕ y ⊕ z = 1 also has the property that
an assignment for x, y, z that satisfies the equation can be extended to an
assignment of the additional (unnamed) variables such that 12 equations
are satisfied, while an an assignment for x, y, z that does not satisfy the
equation can only be extended to an assignment that satisfies 10 equations.

Note that this implies that opt(f(I)) = 10|I|+2opt(I), where |I| denotes
the number of equations in I. For every assignment a′ for the variables
in f(I) we can also “construct” (by just restricting a′ to the variables
which also occur in I) an assignment a for the variables in I such that
val(f(I), a′) = 10|I| + 2val(I, a). The conditions of Definition 7.14 are
thus all satisfied. (Again we use Remark 7.1.4 in order to see that (L3)
is satisfied.) �

Theorem 7.4.3 MaxE3Lin ≤L MaxCut.

Proof. Observe that MaxCut is essentially identical to MaxE2Lin, ex-
cept that we may use only equations with right hand side equal to 1. That is,
we can essentially use the same reduction as in the proof of Theorem 7.4.2
except that we have to get rid of the gray edges. This is easily achieved
by subdividing each such edge (introducing a new variable) as indicated in
the left picture in Figure 7.3. For the equation x⊕ y ⊕ z = 1 we could, in
principle, proceed similarly. However, in order to keep the number of addi-
tional variables small, we use instead the construction shown on the right
hand side of Figure 7.3. The properties of the reduction remain essentially
the same, only the numbers change slightly. In particular, for each former
gray edge one of the two new equations is now always satisfied. While both

7. Approximability of NP-Optimization Problems 223

x

y

z

A

x

y

z

A

x⊕ y ⊕ z = 0 x⊕ y ⊕ z = 1

Figure 7.3. Reducing MaxE3Lin to MaxCut.

equations are satisfied if and only if the equation corresponding to the gray
edge is satisfied.

That is, the construction for x⊕y⊕ z = 0 is such that an assignment for
x, y, z that satisfies the equation can be extended to an assignment of the
additional (unnamed) variables such that 16 equations are satisfied, while
an assignment for x, y, z that does not satisfy the equation can only be
extended to an assignment that satisfies 14 equations.

Similarly, the construction for x⊕ y ⊕ z = 1 is such that an assignment
for x, y, z that satisfies the equation can be extended to an assignment of
the additional (unnamed) variables such that 18 equations are satisfied,
while an an assignment for x, y, z that does not satisfy the equation can
only be extended to an assignment that satisfies 16 equations.

That is, we obtain opt(f(I)) = (14n0+16n1)+2opt(I), where ni denotes
the number of equations in I with right hand side i. For every assignment
a′ for the variables in f(I) we can again construct an assignment a for
the variables in I such that val(f(I), a′) ≤ (14n0 + 16n1) + 2val(I, a). The
conditions of Definition 7.14 are thus again all satisfied. �

Note that we have been slightly sloppy in the above proofs. Namely, we
ignored the fact that in the constructions we obtained multiple clauses resp.
edges. There are two ways to deal with this problem: either one can assume
that the definition tacitly allows the use of multiple clauses or, if not, we
have to add a second reduction which gets rid of multiple clauses/edges.
This can in fact be done, as we will show next.

7.4.2 Weighted vs. Unweighted
The aim of this section is to show that for a wide range of optimization
problems weighted versions are not harder than unweighted versions. As we
will see in the subsequent section, these results will turn out to be extremely
useful for designing reductions between optimization problems. The results
of this section are due to Crescenzi, Silvestri, and Trevisan [26, 60].

224 Steger

We start by showing how to restrict arbitrary weights to those which
are polynomially bounded in the input size. We will show such a result
for a rather large class of problems, namely, the so-called subset problems.
In order to first get some feeling for the upcoming definition consider the
(weighted) satisfiability problem as an example. It consists of a set of vari-
ables, a set of clauses, and weight function which assigns a weight to every
clause. The objective is to find an assignment of the variables such that
sum of the weights of the clauses which are satisfied by this assignment
is maximized. Clearly, by changing, for example, the weight function we
obtain another weighted satisfiability problem. The definition of a subset
problem generalizes these ideas.

An optimization problem Π is called a subset problem, if every instance
I ∈ I consists of a tuple I = (I0, S, w), where S is a finite set, w : S → N

is a weight function, and every solution x ∈ Sol(I) uniquely defines a set
Sx such that

val(I, x) =
∑

s∈Sx

w(s).

In addition, we require that Π is “complete” in the sense that just changing
the weight function w to some other function w′ leads to another legal
instance of Π.

Theorem 7.4.4 Assume Π ∈ APX is a subset problem. Let Πp denote the
restriction of Π to those instances I = (I0, S, w) which satisfy w(s) ≤ p(|I|)
for all s ∈ S. Then there exists a polynomial p0 such that Π≤α

AP Πp0 for all
α > 1.

Proof. We assume without loss of generality that Π is a maximization
problem. (For minimization problems the proof is very similar.) Let A
be an approximation algorithm for Π with performance ratio �, where �
is an arbitrary constant. Such an algorithm exists, as we assumed that
Π ∈ APX . We will use A to construct an AP -reduction from Π to Πp0 ,
where p0(n) = �n2 + 1.

First we define the function f . For an instance I = (I0, S, w) we define a
new weight function w̃ : S → N as follows:

w̃(s) =

{
�w(s)·|S|2

A(I) if w(s) ≤ �A(I)

�|S|2 + 1 otherwise

and let f(I) := (I0, S, w̃). Clearly, f(I) ∈ Πp0 . (Note that according to
the definition of an AP-reduction the function f may also depend on an
additional parameter δ. Here we do not use this freedom.) We denote the
objective function of f(I) by ṽal(I, x) =

∑
s∈Sx

w̃(s).
Before we continue let us provide some intuition for this definition. Ob-

serve that the fact that A is an approximation algorithm with performance
ratio � implies that opt(I) ≤ � ·A(I). As Π is a maximization problem, this

7. Approximability of NP-Optimization Problems 225

implies that there cannot exist a solution x ∈ Sol(I) such that Sx contains
an element s of weight w(s) > � · A(I). The second case of the definition
of w̃ thus specifies the value of elements in S which are in fact irrelevant.

Next we define the function g. Let x be an arbitrary solution in
Sol(f(I)) = Sol(I). We let

g(I, x, δ) :=

xopt if |I| ≤ ((α− 1)δ)−1

A(I) if val(I, x) ≤ A(I)
x otherwise.

Here xopt denotes an optimal solution. Clearly, g can be computed in
polynomial time for any fixed δ > 0. Note that this definition implies
that

val(I, g(I, x, δ)) ≥ max{val(I, x),A(I)}. (7.6)

It remains to show that condition (AP4) is satisfied. Consider an
arbitrary x ∈ Sol(I). Then

ṽal(I, x) =
∑

s∈Sx

w̃(s) ≤
∑

s∈Sx

w(s) · |S|2
A(I)

=
|S|2
A(I)

· val(I, x) (7.7)

and

val(I, x) =
∑

s∈Sx

w(s) ≤ A(I)
|S|2 ·

∑

s∈Sx

(⌊
w(s) · |S|2

A(I)

⌋

+ 1
)

≤ A(I)
|S|2 ·

(
ṽal(I, x) + |S|

)
.

Note that the last inequality implies in particular that

opt(I) = val(I, xopt) ≤ A(I)
|S|2 ·

(
ṽal(I, xopt) + |S|

)

≤ A(I)
|S|2 · (opt(f(I)) + |S|) .

With these observations at hand we are now ready to verify that (AP4)
holds. If |S| ≤ ((α − 1)δ)−1 there is nothing to show, as in this case g
computes an optimal solution anyway. So we may assume |S| > ((α −
1)δ)−1. Then

opt(I)
val(I, g(I, x, δ))

≤ (A(I)/|S|2) · (opt(f(I)) + |S|)
val(I, g(I, x, δ))

(7.6)
≤ (A(I)/|S|2) · opt(f(I))

val(I, x)
+

A(I)/|S|
val(I, g(I, x, δ))

(7.7)
≤ opt(f(I))

ṽal(I, x)
+

A(I)/|S|
val(I, g(I, x, δ))

226 Steger

(7.6)
≤ opt(f(I))

ṽal(I, x)
+

1
|S| ≤ 1 + αδ

whenever opt(f(I)) ≤ (1 + δ)ṽal(I, x),

which concludes the proof of the theorem. �

Our next aim is to reduce weighted constraint satisfaction problems to
unweighted ones. Observe that Theorem 7.4.4 implies that we only have to
consider weights which are polynomially bounded in the number of clauses
and variables. This allows us to construct in polynomial time a new instance
in which we replace every variable xi by N copies xj

i , 1 ≤ j ≤ N , where N
is a sufficiently large integer which depends polynomially on the weights of
the clauses. We then replace every clause of weight w which uses variables
x1, . . . , xk, say, by w copies using variables xj1

1 , . . . , x
jk

k . Here it is important
that the tuples (j1, . . . , jk) are carefully chosen so that we may in fact
deduce that every “good” solution of the transformed problem allows us
to construct also a “good” assignment for the variables xi. The following
lemma will be useful in achieving this.

Lemma 7.4.5 For every k ≥ 2 and ε > 0 there exists an integer n0 such
that we can construct in (random) polynomial time for every pair of integers
N,w, so that N ≥ n0 and N3/2 ≤ w ≤ Nk, a subset S ⊂ [N]k such that
|S| = w and

(1−ε)·w · |A1 × . . .×Ak|
Nk

≤ |S∩A1×. . .×Ak| ≤ (1+ε)·w · |A1 × . . .×Ak|
Nk

(7.8)
for all subsets Ai ⊆ [N] such that |Ai| ≥ εN .

Proof. The randomized algorithm which we are about to construct is
straightforward indeed. We just choose a set S randomly and then add
or delete some arbitrary elements so that S satisfies the condition |S| = w.

More precisely, the random construction is done as follows. We add every
element in [N]k to the set S independently with probability p = w/Nk. In
order to show that such a randomly chosen set has some nice properties,
we first fix some notation. For sets Ai ⊆ [N] we let A := A1 × . . . × Ak.
Furthermore, we let µ := εk+1

1+εk .
We claim that, whenever N is sufficiently large, a randomly chosen set

S satisfies

P[||S ∩A| − w |A|
Nk | ≤ µw |A|

Nk for all Ai ⊆ [N] s.t. |Ai| ≥ εN] ≥ 1 − 2−N .
(7.9)

In order to show this, consider arbitrary sets A1, . . . , Ak ⊆ [N] satisfying
|Ai| ≥ εN . We apply Chernoff’s inequality, see e.g. [53], to bound |S ∩A|.
More precisely, we let X denote the size of |S∩A|. Then X is the sum of |A|
many disjoint Bernoulli experiments with probability p = w/Nk. Hence,

7. Approximability of NP-Optimization Problems 227

E[X] = w · |A|/Nk ≥ εk · w ≥ εkN3/2 and Chernoff’s inequality implies

P[||S ∩A| − w |A|
Nk | ≥ µw |A|

Nk] = P[|X − E[X]| ≥ µ · E[X]]

≤ 2e− 1
4 µ2

E[X] ≤ 2e− 1
4 µ2εkN3/2

.

As there are at most 2kN many choices for the sets Ai, 1 ≤ i ≤ k, this
implies that

P[∃Ai s.t. ||S ∩A| − w |A|
Nk | ≥ µw |A|

Nk] ≤ 2kN · 2e− 1
4 µ2εkN3/2

.

As the term tends to zero for any fixed k ≥ 2 whenever N tends to infinity,
this implies that n0 can be chosen such that S satisfies (7.9) for all N ≥ n0.

To conclude the proof, assume that S is a “good” set. That is, one
for which the condition of (7.9) is satisfied. Observe that this implies in
particular that the set S satisfies w(1−µ) ≤ |S| ≤ w(1 +µ). Starting from
S we can thus construct a set S′ of size exactly |S′| = w by arbitrarily
adding or deleting at most µw elements. For all sets Ai ⊆ [N] s.t. |Ai| ≥ εN
the new set S′ then satisfies

|S′ ∩A| ≤ |S ∩A| + |(S \ S′) ∪ (S′ \ S)| ≤ (1 + µ)w|A|
Nk

+ µw

≤ (1 + µ)w|A|
Nk

+ µw · |A|
εkNk

= (1 + ε) · w|A|
Nk

,

where the last equality follows from the definition of µ. Similarly, we also
deduce |S′ ∩A| ≥ (1 − ε) · w|A|

Nk , concluding the proof of the lemma. �

Remark 7.4.6 Trevisan [60, 26] showed that Lemma 7.4.5 also holds if
we replace “random polynomial time” by “deterministic polynomial time”.

Theorem 7.4.7 For all α > 1, MaxWeightF ≤α
AP MaxF .

Proof. Note that Theorem 7.4.4 can be applied to MaxWeightF .
As the AP-reduction is transitive, it therefore suffices to show that
MaxWeightFp ≤α

AP MaxF for all polynomials p. Fix any such poly-
nomial p. Recall that in the definition of an AP-reduction the functions f
and g may depend on a parameter δ. Here we will use this possibility. In
the following we describe the reduction for an arbitrary, but fixed δ > 1.
First we choose a parameter ε > 0 such that

1
(1 + δ)(1 + ε)

− (1 − (1 − ε)�+1) · 2�

1 + ε
≥ 1

1 + αδ
.

(Observe that such an ε exists, as the left hand side tends to 1/(1 + δ) for
ε → 0 and α is a constant greater than one.) Let � be the largest arity of
a constraint in F . Choose n0 large enough so that Lemma 7.4.5 holds for
the ε chosen above, all N ≥ n0, and all k = 2, . . . , �.

Consider an instance I of MaxWeightFp. Assume I consists of n vari-
ables x1, . . . , xn and m constraints C1, . . . , Cm with weights w1, . . . , wm.

228 Steger

Let wmax := maxi wi. Note that wmax ≤ p(n + m). Observe that we may
assume without loss of generality that wi ≥ (n0)3/2 · (wmax)3/4 for all
1 ≤ i ≤ n. (If this is not the case a priori, consider instead the scaled prob-
lem with weights w′

i := ξ · wi. For ξ ≥ n6
0 · (wmax)3 we then trivially have

w′
i ≥ ξ ≥ n

3/2
0 ·(ξ ·wmax)3/4 = n

3/2
0 ·(w′

max)3/4.) Let N := n0 ·
√
wmax. Then

N3/2 ≤ wi ≤ N2 for all 1 ≤ i ≤ n. That is, we may apply Lemma 7.4.5 for
all wi.

We now describe how to transform the instance I in an unweighted
instance Ĩ of MaxF . First we replace each variable xi by a set of variables

Xi := {x1
i , . . . , x

N
i }.

Then we replace each constraint Cj of weight wj by wj suitably defined
constraints C1

j , . . . , C
wj

j . In order to define the constraints Ck
j let us assume

for simplicity of notation that Cj = (f, x1, . . . , xh), where f ∈ F is an h-ary
function. Then the Ck

j are chosen such that

{C1
j , . . . , C

wj

j } = {(f, xj1
1 , . . . , x

jh

h) | (j1, . . . , jh) ∈ Sj},

where Sj ⊂ [N]h denotes the set S according to Lemma 7.4.5 for the
parameters ε, h, N and wj .

Consider an arbitrary assignment a = (ai) for the variables xi. Let w(a)
denote the total weight of all satisfied clauses in I. By letting xj

i := ai

for all i and j, we obtain an assignment ã for the variables in Ĩ such that
exactly w(a) constraints in Ĩ are satisfied. In particular we therefore have

opt(Ĩ) ≥ opt(I). (7.10)

Now consider an arbitrary assignment ã = (aj
i) for the variables xj

i in Ĩ.
Our aim is to construct an assignment for I such that w(a) ≥ w̃(ã)/(1+ε),
where w̃(ã) denotes the number of satsified constraints in Ĩ.

In every set Xi we arbitrarily switch the value of εN variables xj
i in

such way that afterwards there exist at least εN many variables with value
true and at least εN many variables with value false. Let ã′ be the
resulting assignment for the variables in Ĩ. In order to bound the difference
w̃(ã) − w̃(ã′) we consider a constraint Cj = (f, x1, . . . , xh). Let Ai ⊆ Xi

denote the variables for which the truth value was not switched, then |Ai| ≥
(1 − ε)N . Lemma 7.4.5 thus implies

|Sj ∩A1 × . . .×Ah| ≥ (1 − ε) · wj · (1 − ε)h ≥ (1 − ε)�+1 · wj ,

as � was chosen to denote the maximum arity of a constraint function in F .
That is, at most |Sj | − |Sj ∩A1 × . . .×Ah| ≤ (1 − (1 − ε)�+1) ·wj many

constraints Ci
j may be satisfied for ã but not for ã′ or vice versa. Hence

|w̃(ã′)−w̃(ã)| ≤
m∑

j=1

(1−(1−ε)�+1) ·wj ≤ (1−(1−ε)�+1) ·2�opt(Ĩ), (7.11)

7. Approximability of NP-Optimization Problems 229

where the last inequality follows from Remark 7.1.4. (A random assignment
satisfies at least a fraction of 1/2� of the

∑m
j=1 wj many clauses in Ĩ.)

Starting from ã′ = (a′j
i) we now construct an assignment a for I such

that w(a) ≥ w̃(ã′). In a first step we construct such an assignment ran-
domly. Later we will see that this random construction can in fact be
derandomized. Let

Ti := {1 ≤ j ≤ N | a′j
i = true} and pi :=

|Ti|
N

and set the variable xi to true with probability pi. What can we say about
the expectation of the weight w(a) of the resulting assignment a? Consider
again a constraint Cj = (f, x1, . . . , xh). The probability that Cj is satisfied
is equal to the sum of the probabilities P[x1 = b1∧ . . .∧xh = bh], where the
sum is over all tuples �b = (b1, . . . , bh) such that f(�b) = f(b1, . . . , bh) = 1.
Observe that by construction

P[x1 = b1 ∧ . . . ∧ xh = bh] =
|B1 × . . .×Bh|

Nh
,

where Bi =

{
Ti, bi = 1
[N] \ Ti, otherwise.

As |Bi| ≥ εN , we know from Lemma 7.4.5 that the set Sj satisfies

|Sj ∩ (B1 × . . .×Bh)| ≤ (1 + ε) · wj · |B1 × . . .×Bh|
Nh

and hence

P[x1 = b1 ∧ . . . ∧ xh = bh] ≥ |Sj ∩ (B1 × . . .×Bh)|
wj · (1 + ε)

. (7.12)

As w̃(·) just counts the number of satisfied constraints, we also have

w̃(ã′) =
m∑

j=1

∑

�b:f(�b)=1

|Sj ∩ (B1 × . . .×Bh)|. (7.13)

Combining these observations we conclude

E[w(a)] =
m∑

j=1

wj · P[Cj is satisfied]

=
m∑

j=1

wj ·
∑

�b:f(�b)=1

P[x1 = b1 ∧ . . . ∧ xh = bh]

(7.12)
≥

m∑

j=1

∑

�b:f(�b)=1

|Sj ∩ (B1 × . . .×Bh)|
1 + ε

(7.13)
=

w̃(ã′)
1 + ε

230 Steger

(7.11)
≥ w̃(ã) − (1 − (1 − ε)�+1) · 2�opt(Ĩ)

1 + ε
.

Using the method of conditional probabilities (cf. e.g. [53]) we can also
construct in polynomial time an assignment a0 for I such that

w(a0) ≥ E[w(a)] ≥ w̃(ã) − (1 − (1 − ε)�+1) · 2�opt(Ĩ)
1 + ε

.

Rewriting the last inequality we deduce

w(a0)
opt(I)

(7.10)
≥ w̃(ã)

(1 + ε) · opt(Ĩ)
− (1 − (1 − ε)�+1) · 2�

1 + ε
.

In particular,

w̃(ã)
opt(Ĩ)

≥ 1
1 + δ

=⇒ w(a0)
opt(I)

≥ 1
(1 + δ)(1 + ε)

− (1 − (1 − ε)�+1) · 2�

1 + ε

≥ 1
1 + α · δ

by the choice of ε. �

7.4.3 Constructing optimal gadgets
A major advantage of constraint satisfaction problems is that it is very
easy to construct reductions between such problems. The reason is that
we only have to consider the underlying constraint functions, but not the
global structure of the problem. This allows the construction of reduc-
tions by “local replacements”. In the context of non-approximability for
optimization problems such an approach was first successfully pursued by
Bellare, Goldreich and Sudan [15] and then extended and further improved
by Trevisan, Sorkin, Sudan, and Williamson [62]. Here we largely follow
their exposition.

Definition 7.16 Let f be a k-ary constraint function and F be a constraint
family, where typically f �∈ F . An (α, β)-gadget reducing f to F is a finite
collection Gad = (f1, . . . , fr) of constraint functions fi from F involving
(primary) variables x1, . . . , xk and auxiliary variables y1, . . . , ys such that
the following properties are satisfied:

∀a ∈ {0, 1}k s.t. f(a) = 1 : max{
r∑

i=1

fi(a, b) | b ∈ {0, 1}s} = α (7.14)

∀a ∈ {0, 1}k s.t. f(a) = 0 : max{
r∑

i=1

fi(a, b) | b ∈ {0, 1}s} ≤ α− β.(7.15)

The gadget is called strict if (7.15) holds with equality.

7. Approximability of NP-Optimization Problems 231

A weighted α-gadget is a gadget Gad = (f1, . . . , fr) together with weights
(w1, . . . , wr) such that

∀a ∈ {0, 1}k s.t. f(a) = 1 : max{
r∑

i=1

wifi(a, b) | b ∈ {0, 1}s} = α(7.16)

∀a ∈ {0, 1}k s.t. f(a) = 0 : max{
r∑

i=1

wifi(a, b) | b ∈ {0, 1}s} = α− 1(7.17)

Note that every strict (α, β)-gadget induces a weighted α/(α− β)-gadget,
if we let wi := 1/(α− β).

Gadgets are a very useful tool for constructing reductions between con-
straint satisfaction problems. We exemplify this for the case that the
constraint family consists of just a single function, i.e. F = {h}.

Lemma 7.4.8 Assume Gad is a strict (α, β)-gadget between the k-ary
constraint function h and a constraint family F . Then

Max{h} ≤L MaxF .

Proof. Consider an instance I from Max{h}. We let f(I) be the instance
which is obtained by replacing every constraint C from Max{h} by the
collection of constraints from MaxF given by the gadget Gad, where we
choose as primary variables the variables from C. Note that the auxiliary
variables are different for each constraint C. If we let |I| denote the number
of constraints in I, then one easily checks that the following two properties
are satisfied:

opt(f(I)) = β · |I| + (α− β)opt(I).

and

val(f(I), a) ≤ β · |I| + (α− β)val(I, a′),

where a′ denotes the restriction of a to the variables occurring in I. Re-
calling (cf. Remark 7.1.4) that there exists a constant c = c(h) such that
opt(I) ≥ c · |I| we conclude that the conditions of Definition 7.14 are indeed
all satisfied. �

Remark 7.4.9 The reader is invited to check that Theorems 7.4.1, 7.4.2,
and 7.4.3 were in fact proven by constructing appropriate gadgets.

Using the non-approximability results from Section 7.2.4 the existence
of a gadget also carries over to non-approximability bounds. We only
examplify this for MaxE3Lin.

Lemma 7.4.10 Let F be some constraint family. Assume there exist an
α0-gadget reducing x⊕y⊕z = 0 to F , and an α1-gadget reducing x⊕y⊕z =

232 Steger

1 to F . Then MaxF cannot be approximated within α0+α1
α0+α1−1 − ε for all

ε > 0.

Proof. We aim at applying Theorem 7.2.11. For conciseness we assume
that α0 ≤ α1. The other case is treated similarly. Consider an instance
I of MaxE3Lin. Let ni denote the number of equations with right hand
side i. Note that we may assume without loss of generality that n0 ≥ n1.
(Otherwise we just replace each right hand side of 1 by 0 and vice versa, and
observe that the complement of an assignment a satisfies a new equation
if and only if a satisfies the old equation.)

Now use the reduction from Lemma 7.4.8. Then opt(f(I)) = (α0−1)n0+
(α1−1)n1+opt(I). If opt(I) ≥ (1−ε)|I| = (1−ε)(n0+n1), then opt(f(I)) ≥
α0n0 +α1n1 − ε|I|. If opt(I) ≤ 1

2 (1 + ε)|I|, then opt(f(I)) ≤ (α0 − 1
2)n0 +

(α1 − 1
2)n1 + 1

2ε|I|. As

α0n0 + α1n1 − ε|I|
(α0 − 1

2)n0 + (α1 − 1
2)n1 + 1

2ε|I|
= 1 +

1
2n0 + 1

2n1 − 3
2ε|I|

(α0 − 1
2)n0 + (α1 − 1

2)n1 + 1
2ε|I|

≥ 1 +
1 − 3ε

α0 + α1 − 1 + ε

the claim of the lemma follows from Theorem 7.2.11. �

Using the gadgets from Theorems 7.4.2, and 7.4.3 we obtain the following
non-approximability results for MaxE2Lin and MaxCut.

Corollary 7.4.11 For every ε > 0, MaxE2Lin is not approximable within
a factor of 12/11 − ε, unless P = NP.

Corollary 7.4.12 For every ε > 0, MaxCut is not approximable within
a factor of 17/16 − ε, unless P = NP.

In the remainder of this section we will see that for a large class of
constraint families the search for good gadgets can be computerized.

Definition 7.17 A constraint family F is called hereditary if for any k-
ary function f ∈ F and any two indices 1 ≤ i < j ≤ k the function f
when restricted to xi ≡ xj and considered as a function of k − 1 variables
is identical to some other function f ′ ∈ F .

Lemma 7.4.13 Assume Gad is a strict (α, β)-gadget between the k-ary
constraint function h and a hereditary constraint family F . Then there
also exists an (α, β)-gadget Gad′ between the k-ary constraint function h

and a constraint family F that uses at most 22k

many auxiliary variables.

Proof. The characterizing property of a strict gadget is that every assign-
ment a for the primary variables can be extended by an assignment b of the
auxiliary variables such that equations (7.14) or (7.15) hold with equality.

7. Approximability of NP-Optimization Problems 233

For every a we fix one such assignment ba. Assume Gad contains more than
22k

auxiliary variables. As there exactly 2k different assignments for the
primary variables, this implies that there have to exist two different auxil-
iary variables yi and yj that have the same values in ba for all assignments
of the primary variables. As F was assumed to be hereditary, we may thus
replace every occurrence of the variable yj by yi to obtain a gadget which
uses one less auxiliary variable. Repeating this argument until the number
of auxiliary variables is at most 22k

concludes the proof of the lemma. �

Lemma 7.4.13 implies that within the search of a good α-gadget for a
given k-ary function f we may restrict our attention to a finite number
of constraints. Namely, those which are built from a function from F and
use variables x1, . . . , xk, y1, . . . , y22k . If we denote these constraints by Cj ,
it thus suffices to compute the optimal weights wj . This is easily done by
solving the following linear program with variables wj and α.

(LP) minimize α
subject to
∀a : f(a) = 1, ∀b:

∑
j wjCj(a, b) ≤ α

∀a : f(a) = 1:
∑

j wjCj(a, ba) = α

∀a : f(a) = 0, ∀b:
∑

j wjCj(a, b) ≤ α− 1
∀a : f(a) = 0:

∑
j wjCj(a, ba) = α− 1

α ≥ 0
∀j: wj ≥ 0.

Theorem 7.4.14 Every optimal solution to (LP) corresponds to an
optimal α-gadget, i.e., an α-gadget where α is as small as possible. �

Note that the above phrase “This is easily done by solving the following
linear program...” should of course be handled with care. Theoretically, this
is indeed easy. In practice, the fact that the number of auxiliary variables
grows double exponentially in the arity of the function h, makes the task
of solving the LP not quite so easy. Nevertheless the linear programs have
been solved for many specific functions h and constraint families F . In
particular, Theorem 7.4.14 has been used to show [62] that the gadgets
which were used in the proofs of Section 7.4.1 are in fact optimal.

7.4.4 Randomized reductions
For many reductions it is essential to construct instances which have certain
properties. Thereby it sometimes happens that one can show that instances
satisfying a given property exist, but one does not know how to construct
such an instance efficiently (cf. Section 7.4.5 for examples). In the case
that there do exist sufficiently many “good” instances, it is sometimes a
good strategy to just choose an instance “randomly” hoping that one does
indeed hit a “good” instance. Proceeding in such a way, leads to randomized

234 Steger

reductions and non-approximability results based on the assumption RP �=
NP. In the remainder of this section we make these ideas precise. We
assume the reader to be familiar with the notion of randomized algorithms
and refer to the textbook by Motwani and Raghavan [53] for additional
background on this topic.

Definition 7.18 A randomized AP-reduction is defined as in Defini-
tion 7.13, except that we replace conditions (AP3) and (AP4) by

(AP3’) For any fixed δ > 0 the function g is computable in polynomial time,
and the function f is computable in polynomial time by a randomized
algorithm.

(AP4’) For any I ∈ I, for any δ > 0, f(I, δ) satisfies with probability at
least 1/2 the following property for all y ∈ Sol∗(f(I, δ)):

1
1 + δ

≤ val(f(I, δ), y)
opt(f(I, δ))

≤ 1 + δ =⇒

1
1 + α · δ ≤ val(g(I, y, δ))

opt(I)
≤ 1 + α · δ.

We use the notation Π ≤rAP Π∗ to indicate that Π is reducible to Π∗

by a randomized AP-reduction. If we want to emphasize that there ex-
ists a randomized AP-reduction for some specific value of α, we also write
Π ≤α

rAP Π∗.

Reductions have the property that they carry over the existence or
non-existence of algorithms of particular properties like running time or
approximation ratio. Due to the use of randomization within the construc-
tion of the instance f(I) the existence of a randomized AP-reduction allow
only statements about existence or non-existence of randomized algorithms.
With this difference in mind we could now rephrase all facts and lemmas
previously obtained for AP-reductions also for randomized AP-reductions.
We examplify this for just two cases.

Lemma 7.4.15 Let Π,Π∗ ∈ NPO. If Π∗ ∈ PT AS and Π ≤rAP Π∗ then
Π ∈ PRAS. (PRAS denotes the set of all optimization problems in NPO
which admit a randomized polynomial-time approximation scheme.) �

Lemma 7.4.16 Let Π ∈ NPO and ε > 0. If MaxE3Sat≤α
rAP Π then

there cannot exist a (random) polynomial time approximation algorithm
for Π with performance ratio 1 + 1

7α − ε, unless RP = NP. �

The advantage of randomized reductions is that it is sometimes much
easier to construct gadgets by a probabilistic method than in a determin-
istic fashion. Consider e.g. the construction in Lemma 7.4.5. Constructing
the desired set S was easy indeed. On the other hand, the deterministic

7. Approximability of NP-Optimization Problems 235

construction mention in Remark 7.4.6 is seemingly more complicated. At
the end of the next section we will also state some results using randomized
reductions, where a matching deterministic counterpart has not been found
up to now.

7.4.5 Expander
For decision problems the satisfiability problem Sat plays a major rôle.
Not only because it was the first problem shown to be NP-complete, but
also because over the years it has shown to be very often a good candidate
for constructing reductions in order to show the NP-completeness of other
decision problems.

For optimization problems a natural way to construct AP- or L-
reductions is to reconsider the reduction for the corresponding decision
problem – in the hope that it can be transformed into an AP-reduction.
In some cases such an approach works in a straightforward way. In many
cases, however, one runs into the following problem: the reductions start
not from Sat or 3Sat directly, but from a variant where the number of
occurrences of each variable is bounded by some constant. We therefore
would need a result saying that the corresponding problem Max3Sat(d)
is APX-complete as well.

For decision problems the reduction from Sat to Sat(3) is very simple,
indeed: one just replaces each variable xi by k variables x1

i , . . . , x
k
i , where

k is the number of occurrences of variable xi, replaces the jth occurrence
of xi by xj

i , and adds additional clauses

x̄1
i ∨ x2

i , x̄2
i ∨ x3

i , . . . , x̄k−1
i ∨ xk

i , x̄k
i ∨ x1

i .

As one easily checks, that the additional clauses have the property that
they are all satisfied if and only if all xj

i ’s are set to the same truth value,
this construction obviously has the desired properties.

Unfortunately, the attempt to reuse this reduction for showing that
Max3Sat ≤AP Max3Sat(d) fails. To see why, just consider what hap-
pens if k is large and we set e.g. the first � of the xj

i ’s to true and the
remaining ones to false. What one needs is a construction which adds only
a “few” additional clauses, which nevertheless ensure that in all “reason-
able” solutions all variables xj

i are set to the same value. The following
lemma explains such a construction for a special case.

Lemma 7.4.17 For all k ≥ 2, MaxkSat(5) ≤L MaxkSat(3).

Proof. Let F be an instance from MaxkSat(5). Starting from F we con-
struct an instance from MaxkSat(3) as follows. For each variable xi in F
we introduce 5 new variables x1

i , . . . , x
5
i and replace the jth occurrence of

xi by xj
i . In addition, we add for each variable 10 additional new variables

and 20 new clauses as indicated in Figure 7.4. For an edge directed from u

236 Steger

to v we add a clause ū∨v. Let F ′ be the resulting 2Sat instance. From the
construction it is immediately clear that each variable occurs in at most 3
clauses.

x1
i

x2
i x3

i

x4
i

x5
i

Figure 7.4. Reducing MaxkSat(5) to MaxkSat(3).

Consider an arbitrary assignment for F ′ in which for some i some of the
five variables x1

1, . . . , x
5
i are set to true and some are set to false. Observe

what happens if we set for this i all variables (the xj
i ’s and the additional

variables according to Figure 7.4) to the majority of the truth values occur-
ring among the xj

i . This will change the value of one or two variables of the
xj

i ’s, implying that at most one resp. two of the “old” clauses might not be
satisfied any more. On the other hand, straightforward case checking shows
that there always will be at least one resp. two “new” clauses which are sat-
isfied now, but hadn’t been satisfied before. Thus, opt(F ′) = opt(F) + 20n
and for every assignment a′ for F ′ we can construct (in polynomial time)
an assignment a for F such that opt(F ′)− val(F ′, a′) = opt(F)− val(F, a).

�

Can we extend the construction from Lemma 7.4.17 in order to show that
Max3Sat ≤L Max3Sat(3)? In principle, this is plausible. We would just
need to show that there exist digraphs similar to the one in Figure 7.4 for
arbitrarily many xj

i ’s. Namely, graphs Dk = (U ∪ V,A) with the following
properties: |U | = k, deg(x) = 2 for all x ∈ U , deg(x) = 3 for all x ∈ V and

∀X ⊆ U ∪ V, |X ∩ U | ≤ 1
2 |U | : cut+(X) ≥ |X|,

where cut+(X) denotes the number of edges (u, v) such that u ∈ X and
v �∈ X.

Constructing such graphs is, however, a very difficult task – which is far
from being completely solved. In the remainder of this chapter we state
some notions and results which have been used in attacking this problem
and comment their applicability.

Definition 7.19 A graph G = (V,E) is called a c-expander if it satisfies
the following condition:

|Γ(X)| ≥ c · |X| ∀X ⊆ V, |X| ≤ 1
2 |V |.

Of course, it is trivial to come up with a c-expander for every c ≤ 1:
every complete graph is such an expander. It is also not too difficult to

7. Approximability of NP-Optimization Problems 237

check that a random graph Gn,p with edge probability p = d/n is with
probability 1 − o(1) a c-expander, whenever d = d(c) is a sufficiently large
constant. In addition, Ajtai [1] describes a deterministic, polynomial-time
construction for a 3-regular c0-expander, where 0 < c0 < 1 is an appropriate
constant. More details on the construction of expanders can e.g. be found
in [2, 44].

Definition 7.20 A graph G = (V,E) is called an amplifier for a set S ⊆ V
if it satisfies the following condition:

|cut(X)| ≥ |X ∩ S| ∀X ⊆ V, |X ∩ S| ≤ 1
2 |S|.

Amplifiers are the type of graphs which are most useful in constructing
reductions for optimization problems. Unfortunately, the quality of the re-
duction (or, equivalently, the resulting non-approximability result) depends
heavily on two properties of the amplifier: the maximum degree and the
relation of the cardinality of the set S to the number of vertices in V \ S.
The following lemma exemplifies this.

Lemma 7.4.18 Assume there exists an algorithm that constructs for a
given set S in polynomial time an amplifier G = (S ∪T,E) for S such that
every vertex in S has degree d− 1, every vertex in T has degree d and such
that |T | = c · |S|. Then there cannot exist a polynomial-time approximation
algorithm for MaxE2Lin(d) with performance ratio 16d(c+1)−4

16d(c+1)−5 − ε, unless
P = NP.

Proof. First we reconsider the proof of Lemma 7.4.2. Observe that this
reduction can be viewed as a gap-reduction in the sense of Theorem 7.2.4: it
transforms a MaxE3Lin instance with n equations such that either at least
(1−ε)n or at most 1

2 (1+ε)n many equations are satisfiable simultaneously
(cf. Theorem 7.2.11), into a MaxE2Lin instance with 16n equations such
that either at least 12(1−ε)n+10εn = 12(1− 1

6ε)n or at most 121
2 (1+ε)n+

10 1
2 (1− ε) = 11(1 + 1

11ε)n many equations can be satisfied simultaneously.
Starting from this MaxE2Lin instance we now use the amplifier to con-

struct a MaxE2Lin(d) instance. We do this by using a similar construction
as in the proof of Lemma 7.4.17. That is, we replace every variable xi by a
set of variables x1

i , . . . , x
k
i , where k is the number of occurrences of variable

xi, and replace the jth occurrence of xi by xj
i . In addition, we construct for

each i an amplifier for the set {x1
i , . . . , x

k
i } and add an equation u⊕ v = 0

for each edge {u, v} of the amplifier. Observe that the defining properties
of an amplifier imply that changing an arbitrary assignment for the xj

i ’s to
one where all xj

i (and all additional variables in the amplifier) are set to
the value of the majority of xj

i ’s will never decrease the number of satisfied
equations. That is, without loss of generality we only have to consider as-
signments such that for each amplifier all variables have the same value –

238 Steger

implying that all equations, which correspond to an edge of an expander,
are satisfied.

The following table summarizes the properties of these two reductions:

MaxE3Lin MaxE2Lin MaxE2Lin(d)
equations n 16n 16n + 32n · 1

2 (d − 1 + cd)
satisfiable = 16(d + cd)n

either ≥ (1 − ε)n 12(1 − 1
6ε)n 12(1 − 1

6ε)n + 16(cd + d − 1)n
≥ (16d(c + 1) − 4)(1 − ε)n

or ≤ 1
2 (1 + ε) 11(1 + 1

11ε)n 11(1 + 1
11ε)n + 16(cd + d − 1)n

≤ (16d(c + 1) − 5)(1 + ε)n

The claimed result follows immediately from Theorems 7.2.11 and 7.2.4. �

In [55] Papadimitriou and Yannakakis describe a construction which
transforms a c-expander G = (S,E) with maximum degree d into
an amplifier G′ = (S ∪ T,E′) for S such that the maximum degree
of G′ is d + 1 and |T | ≈ 2|S|/c. Combining this with a variant of
Lemma 7.4.18 (for Max3Sat instead of MaxE3Lin) and subsequently ap-
plying Lemma 7.4.17 shows that Max3Sat ≤AP Max3Sat(3), implying
in particular that Max3Sat(3) is APX-complete as well.

Unfortunately, the detour of using expanders (which measure vertex ex-
pansion) in order to construct amplifiers (which measure edge expansion)
does not give very good results with respect to the maximum degree and
the size of the set V \ S. In [17] Berman and Karpinski pursue another
approach: they construct an amplifier directly. More precisely, they con-
struct a graph similarly as in Figure 7.4. Namely, they start with a circle
which contains alternatingly one vertex from S and then 6 vertices from
T . In a second step they add a random matching between the vertices in
T . Finally, they show that the resulting graph is with high probability an
amplifier for the set S. Plugging the numbers into Lemma 7.4.18 gives the
following result.

Theorem 7.4.19 [17] There cannot exist a polynomial-time approxi-
mation algorithm for MaxE2Lin(3) with performance ratio 332/331 − ε,
unless RP = NP. �

By slightly modifying this construction Berman and Karpinski also ob-
tain non-approximability results for several other optimization problems.
Here we just state the corresponding result for MaxE2Sat.

Theorem 7.4.20 [17] There cannot exist a polynomial-time approxima-
tion algorithm for MaxE2Sat(3) with performance ratio 2012/2011 − ε,
unless RP = NP. �

7. Approximability of NP-Optimization Problems 239

7.5 Open Problems

We close this survey by stating three famous problems whose approxima-
bility status is still largely unknown.
MinCol(3)

Given a 3-colorable graph G = (V,E), find a legal k-coloring such that k
is as small as possible.
The best lower bound is due to Khanna, Linial, and Safra [47] who showed
that is NP-hard to color 3-colorable graphs with 4 colors. On the other
hand, the best polynomial-time approximation algorithm, due to Blum,
Karger [19], has a performance ratio of O(|V |3/8 logO(1) |V |).
MinBisection

Given a graph G, find a subset X ⊂ V , |X| = � 1
2V , such that cut(X) is

minimized.
Leighton, Rao [49] approximate a closely related problem. Arora, Karger,
Karpinski [5] developed an approximation scheme for sufficiently dense
instances. Feige, Krauthgamer, Nissim [63] designed an O(

√
n log n)

approximation algorithm for the general problem.
PlanarSteinerTree

Given a planar graph G = (V,E) and a subset K ⊆ V , find a connected
subgraph T = (VT , ET) of G with K ⊆ VT such that |ET | is minimized.
The problem trivially belongs to APX , as the unrestricted Steiner tree
problem belongs to that class. See [58] for the best known approximation
algorithm for the general problem. The general case is known to be APX-
complete [18]. For the Euclidean case Arora [4] gave a polynomial-time
approximation scheme. The status of the planar case is still open.

Acknowledgment. Special thanks are due to my colleague Hans Jürgen
Prömel for his contribution to this survey. I benefited enormously from
our discussions and collaborations on various topics related to this article.
Moreover, I have freely plundered and adapted material from our joint
book [56].

References

[1] M. Ajtai.Recursive construction for 3-regular expanders.In 28th Annual
Symposium on Foundations of Computer Science, pages 295–304, 1987.

[2] N. Alon.Eigenvalues and expanders.Comb, 6(2):83–96, 1986.

[3] S. Arora.The approximability of NP-hard problems.In 28th Annual Sympo-
sium on Theory of Computing, pages 337–348, 1998.

[4] S. Arora.Polynomial time approximation schemes for Euclidean traveling
salesman and other geometric problems.JACM, 45(5):753–782, Sept. 1998.

240 Steger

[5] S. Arora, D. Karger, and M. Karpinski.Polynomial time approxima-
tion schemes for dense instances of graph problems.JCSS, 2000, to
appear.Preliminary version in STOC’95.

[6] S. Arora and C. Lund.Hardness of approximations.In D. Hochbaum, ed-
itor, Approximation Algorithms for NP-Hard Problems. PWS Publishing
Company, 1995.

[7] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.Proof verifi-
cation and the hardness of approximation problems.JACM, 45(3):501–555,
1998.Preliminary version in FOCS’92.

[8] S. Arora and S. Safra.Probabilistic checking of proofs: a new characterization
of NP.JACM, 45(1):70–122, 1998.Preliminary version in FOCS’92.

[9] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi.Complexity and Approximation.Springer-Verlag, Berlin,
1999.

[10] L. Babai.Trading group theory for randomness.In Proceedings of the 17th
Annual Symposium on Theory of Computing, pages 421–429, 1985.

[11] L. Babai.Transparent proofs and limits to approximations.In First European
Congress of Mathematicians, pages 31–91. Birkhäuser, Basel, 1994.

[12] L. Babai, L. Fortnow, L. Levin, and M. Szegedy.Checking computations
in polylogarithmic time.In Proceedings of the 23rd Annual Symposium on
Theory of Computing, pages 21–31, 1991.

[13] L. Babai, L. Fortnow, and C. Lund.Non-deterministic exponential time has
two-prover interactive protocols.Computational Complexity, 1:3–40, 1991.

[14] L. Babai and S. Moran.Arthur-Merlin games: a randomized proof system,
and a hierarchy of complexity classes.JCSS, 36:254–276, 1988.

[15] M. Bellare, S. Goldwasser, and M. Sudan.Free bits, PCPs and non-
approximability – Towards tight results.SIAMCOMP, 27:804–915, 1998.Pre-
liminary version in FOCS’95.

[16] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson.Multi-prover inter-
active proofs: How to remove intractability assumptions.In Proceedings of
the 20th Annual Symposium on Theory of Computing, pages 113–131, 1988.

[17] P. Berman and M. Karpinski.On some tighter inapproximability results.In
24th International Colloquium on Automata, Languages and Programming,
LNCS1644, pages 200–209, Berlin, 1999. Springer-Verlag.

[18] M. Bern and P. Plassmann.The Steiner problem with edge lengths 1 and
2.InfLet, 32:171–176, 1989.

[19] A. Blum and D. Karger.An Õ(n3/14)-coloring algorithm for 3-colorable
graphs.InfLet, 61:49–53, 1997.

[20] A. Borodin and R. El-Yaniv.Online Computation and Competitive Analy-
sis.Cambridge University Press, 1998.

[21] A. Condon.The complexity of the max word problem and the power of
one-way interactive proof systems.Computational Complexity, 3:292–305,
1993.Preliminary version in STACS’91.

7. Approximability of NP-Optimization Problems 241

[22] S. Cook.The complexity of theorem-proving procedure.In 3rd Annual
Symposium on Foundations of Computer Science, pages 151–158. IEEE,
1971.

[23] P. Crescenzi.A short guide to approximation preserving reductions.In 12th
Annual Conference on Computational Complexity, pages 262–273, 1997.

[24] P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan.Structure in approxi-
mation classes.SIAM Journal on Computing, 28:1759–1782, 1999.

[25] P. Crescenzi and A. Panconesi.Completeness in approximation classes.Infor-
mation and Computation, 93:241–262, 1991.

[26] P. Crescenzi, R. Sivestri, and L. Trevisan.To weight or not to weight: where is
the question?In 4th Israel Symposium on Theory of Computing and Systems,
pages 68–77, 1996.

[27] P. Crescenzi and L. Trevisan.On approximation scheme preserving re-
ducibility and its applications.Theory of Computing Systems, 33:1–16,
2000.

[28] U. Feige.A threshold of ln n for approximating set cover.JACM, 45(4):634–
652, 1998.Preliminary version in STOC’96.

[29] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy.Interactive
proofs and the hardness of approximating cliques.JACM, 43(2):268–292,
1996.Preliminary version in FOCS’91.

[30] U. Feige and J. Kilian.Zero knowledge and the chromatic number.JCSS,
57(2):187–199, 1998.Preliminary version in CCC’96.

[31] M. Garey, R. Graham, and D. Johnson.Worst case analysis of memory al-
location algorithms.In Proceedings of the 4th Annual Symposium on Theory
of Computing, pages 143–150, 1972.

[32] M. Garey and D. Johnson.Approximation algorithms for combinatorial
problems: an annotated bibliography.In J. Traub, editor, Algorithms and
Complexity: New Directions and Recent Results, pages 41–52. Academic
Press, New York, 1976.

[33] M. Garey and D. Johnson.Strong NP-completeness results: motivation,
examples, and implications.JACM, 25:499–508, 1978.

[34] M. Garey, D. Johnson, and L. Stockmeyer.Some simplified NP-complete
graph problems.TCS, 1:237–267, 1976.

[35] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to
the Theory of NP-Completeness.W. H. Freeman, New York, NY, 1979.

[36] O. Goldreich.Modern cryptography, probabilistic proofs and pseudo-random-
ness.Springer-Verlag, Berlin, 1999.

[37] S. Goldwasser, S. Micali, and C. Rackoff.The knowledge complexity of
interactive proof-systems.SIAMCOMP, 418:186–208, 1989.

[38] R. Graham.Bounds for certain multiprocessing anomalies.Bell System
Technical Journal, 45:1563–1581, 1966.

[39] J. H̊astad.Clique is hard to approximate within n1−ε.In Proceedings of the
37th Annual Symposium on Foundations of Computer Science, pages 627–
636, 1996.

242 Steger

[40] J. H̊astad.Some optimal inapproximability results.In Proceedings of the 29th
Annual Symposium on Theory of Computing, pages 1–10, 1997.

[41] V. Heun, W. Merkle, and U. Weigand.Proving the PCP-Theorem.In
E. Mayr, H. Prömel, and A. Steger, editors, Lectures on Proof Verification
and Approximation Algorithms, pages 83–160. Springer-Verlag, Berlin, 1998.

[42] S. Hougardy, H. Prömel, and A. Steger.Probabilistically checkable proofs and
their consequences for approximation algorithms.DM, 136:175–223, 1994.

[43] D. Johnson.Approximation algorithms for combinatorial problems.JCSS,
9:256–278, 1974.

[44] N. Kahale.Expander Graphs.PhD thesis, Department of Electrical En-
gineering and Computer Science, Massachusetts Institut of Technology,
1993.

[45] H. Karloff and U. Zwick.A 7/8-approximation algorithm for MAX3SAT?In
38th Annual Symposium on Foundations of Computer Science, pages 406–
415, 1997.Remark: According to the authors Conjectures 4.3 and 4.5 are now
proven.

[46] R. Karp.Reducibility among combinatorial problems.In J. Thatcher and
R. Miller, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, New York, 1972.

[47] S. Khanna, N. Linial, and S. Safra.On the hardness of approximating the
chromatic number.In Proceedings of the 2nd Israel Symposium on Theory of
Computing and Systems, pages 250–260, Natanya, Israel, 1993. IEEE Comp.
Soc. Press.

[48] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani.On syntactic versus
computational views of approximability.SIAMCOMP, 28:164–191, 1998.Pre-
liminary Version in FOCS’94.

[49] Leighton and Rao.Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms.JACM, 46:787–832, 1999.

[50] L. Levin.Universal search problems (in Russian).Problemy Peredaci In-
formatsii, 9:115–116, 1973.English translation in Problems of Information
Transmission 9:265-266.

[51] L. Lovasz.On the ratio of the optimal integral and fractional covers.Discrete
Mathematics, 13:383–390, 1975.

[52] E. Mayr, H. Prömel, and A. Steger, editors.Lectures on Proof Verification
and Approximation Algorithms.LNCS1367. Springer-Verlag, Berlin, 1998.

[53] R. Motwani and P. Raghavan.Randomized Algorithms.Cambridge University
Press, 1995.

[54] C. Papadimitriou and K. Steiglitz.Combinatorial Optimization. Algorithms
and Complexity.Prentice-Hall, 1982.

[55] C. Papadimitriou and M. Yannakakis.Optimization, approximation, and
complexity classes.JCSS, 43:425–440, 1991.

[56] H. Prömel and A. Steger.The Steiner Tree Problem. A Tour Through Graphs,
Algorithms and Complexity.Vieweg Verlag, Wiesbaden, 2001, to appear.

[57] R. Raz.A parallel repetition theorem.SIAMCOMP, 27:763–803, 1998.Pre-
liminary version in STOC’95.

7. Approximability of NP-Optimization Problems 243

[58] G. Robins and Z. A.Improved Steiner tree approximation in graphs.In
Proceedings 11th Symposium on Discrete Algorithms, pages 770–779, 2000.

[59] S. Sahni and T. Gonzales.P-complete approximation problems.JACM,
23:555–565, 1976.

[60] L. Trevisan.Reductions and (Non)-Approximability.PhD thesis, Computer
Science Department, University of Rome“La Sapienza”, 1997.

[61] L. Trevisan.Interactive and probabilistic proof-checking.Annals of Pure and
Applied Logic, 2000, to appear.

[62] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson.Gadgets, approxi-
mation, and linear programming.In Proceedings of the 37th Symposium on
Foundations of Computer Science, pages 617–626, 1996.

[63] K. N. U. Feige, R. Krauthgamer.Approximating minimum bisection size.In
30th Annual Symposium on Theory of Computing, pages 530–536, 2000.

This page intentionally left blank

8

Pattern Inference under many
Guises
M.-F. Sagot
Y. Wakabayashi1

8.1 Introduction

In a world of constant changes, conserved patterns of any kind are objects of
interest for various reasons. Some are prosaic. If one has to perform a given
operation on a set of objects and some of these objects are identical one
may sometimes economize by performing just one operation for each group
of identical objects. If the objects are not identical but almost (there are
just a very limited number of well-characterized differences between them),
one could perhaps adjust the operation to a smaller number of steps than
starting from scratch for each object among the group of almost identical
ones.

Another reason for being interested in conserved patterns is deeper:
things that do not change, or change a little, or less than others, are ob-
jects upon which strong constraints are potentially acting. The chances are
great that these objects may perform a function, possibly an important one.
This is typically the case in biology. Some portions of a DNA or protein
sequence, corresponding to string patterns, are conserved through evolu-
tion because the portions represent in fact segments of a molecule which
will interact in a biochemical way with another molecule. Such interaction
will be essential for some fundamental biological function (such as protein
synthesis) to happen, and thus the organism to survive.

What aspects or properties of a pattern are preserved, and how conserved
they must be depends on the area of investigation one is concerned with. In
many cases, this is a matter of debate even among specialists of the area.

1Partially supported by capes-cofecub (project 272/99-II), pronex project 107/97
(mct/finep/cnpq), and cnpq (proc. 464114/00-4 and proc. 304527/89-0)

246 Sagot and Wakabayashi

The area that will interest us in this paper is molecular biology. Among
the objects which may model biological entities, we shall consider strings
only. These may correspond, among others, to nucleic acid sequences (dna

or rna) or protein sequences, or protein structures. A string can be thought
as a labelled path. More generally, labelled graphs (sometimes directed) are
important for describing biological entities or modelling biological prob-
lems. A special type of graphs, the trees, are used to represent, among
others, phylogenies and some macromolecular structures (e.g. rna sec-
ondary structures). We shall not treat such general graphs in this paper;
they will however be encountered as an useful expository tool.

We concentrate upon one aspect related to pattern conservation; namely,
given one or more strings identify all patterns that have conserved some
well-defined properties (for instance, they appear in the string(s) with a
maximum number of substitutions, insertions and deletions). This is called
“inferring patterns”. The properties will vary depending on the biological
problem. Without going into detailed discussion on the biological subtleties,
the properties are presented, specially in what they may influence the in-
ference. Combinatorial methods for performing such inference are then
surveyed (references to statistical methods for solving the same problems
may be found in [34] and [45]). These include other persons work as well
as our own.

In the next section we present some biological motivations for the study
of the topics we address here. Then, in Section 3 we discuss the notions
of similarity we shall be considering. These include the identity, a non-
transitive relation, allowing for errors, a non-transitive relation with errors
and, finally, a word instead of a symbol-based similarity. We then intro-
duce the two main types of pattern inference we shall address: common
pattern inference and repeat identification. When the repetition of interest
appears dispersed in a string, the problem is quite similar to identifying
single patterns common to a set of strings. In fact, the second may be easily
derived from the first. We just need to concatenate the set of strings into
a single long one and insert a different character to distiguish the concate-
nation point. The case of tandem repeats, and of other forms of structured
patterns, that is, of patterns composed of various parts at non-random dis-
tances from one another, requires a different treatment. Finally, we survey
some algorithms for solving the various kinds of pattern inference problems
under these different notions of similarity.

8.2 Biological motivation

As is by now well known, biological sequences, whether dna, rna or pro-
teins, may be represented as strings over an alphabet of 4 letters (dna/rna)
or 20 (proteins). Some of the basic problems encountered in classical text

8. Pattern Inference under many Guises 247

analysis have their counterpart when the texts are biological, among them
pattern matching. However, this problem, as well as others, comes with a
twist once we are in the realm of biology: exact patterns hardly make sense
in this case.

By exact above, we mean identical; and there are in fact at least two types
of “non-identical” matchings one must consider in biology. One comes from
looking at what “hides” behind each letter of the dna/rna or protein al-
phabet while the other corresponds to the more familiar notion of “errors”.
The errors concern mutational events that may affect a molecule during
dna replication. Those that will be of interest to us in this paper are point
mutations, that is, mutations operating on single letters of a biological se-
quence: substitution, insertion or deletion. Considering substitutions only
will sometimes be enough for dealing with a given problem.

There is another important difference between classical text analysis and
biological sequence analysis. In the latter case, the most interesting question
is often not testing whether a specific known pattern has matches in one
or more strings, but rather determining which (initially unknown) patterns
match the string(s) often enough to have a “chance” of representing an
interesting biological entity. This entity may correspond to a binding site,
i.e. to a (in general small) part of a molecule that will interact with another,
or it may represent an element that is repeated in a dispersed or periodic
fashion (for instance, tandemly, that is adjacently). The role played by a
repetition of whatever type is often unknown: some repeats, in particular
small tandem ones, have been related to a number of genetic diseases and
are also interesting for the purposes of studying polymorphism; other types
of repeats, such as short inverted ones, seem seem to indicate hotspots
for recombination (roughly, the exchange of genetic material) intra and
inter-species.

8.3 Notions of similarity

If s is a string of length |s| = n over an alphabet Σ, that is, s ∈ Σn,
its individual elements (the letters composing it) will be denoted by si,
1 ≤ i ≤ n. A nonempty word u ∈ Σ∗ in a string s is a factor sisi+1 . . . sj

for a given pair (i, j) such that 1 ≤ i ≤ j ≤ n. The empty word trivially is
a factor of all strings. It is denoted by λ.

8.3.1 Identity
Although identity is seldom an appropriate notion of similarity to consider
when working with biological objects, it may sometimes be of interest.

248 Sagot and Wakabayashi

This is a straightforward notion we nevertheless define properly as this
will allow us to introduce some notations that will be used throughout the
paper.

The identity concerns words in a string and we therefore adopt Karp et
al. [20] identification of such words by their start position in the string.
To facilitate exposition, this and all other notions of similarity are given
for words in a single string. As mentioned, it is straightforward to adapt
them to the case of more than one string. Let us denote by E the identity
relation on the alphabet Σ (the letter E stands for “Equivalence”).

Relation E between elements of Σ may then be extended to a relation
Ek between words of length k in a string s in the following way.

Definition 8.3.1 Given a string s ∈ Σn and two positions i, j in s such
that i, j ≤ n− k + 1, then

i Ek j ⇔ si+l E sj+l for all l such that 0 ≤ l ≤ k − 1.

For each k ≥ 1, Ek establishes an equivalence relation that corresponds
to the identity relation between positions in a string s: two positions i and
j are in the relation Ek if and only if the words of length k in s starting at
positions i and j are identical. This gives us a first definition of similarity
between such words. Indeed, each class of Ek of cardinality at least two
represents a set of exactly repeated words in s.

8.3.2 Non-transitive relation
When dealing with biological strings one has to consider that the “letters”
represented by such strings are complex biological objects with physico-
chemical properties such as, for instance, electrical charge, polarity, size,
different levels of acidity, etc. Some of these (but seldom all) properties
may be shared by two or more of the objects. This applies more to proteins
than to dna/rna but is true to some extent of both.

A more realistic relation to establish between the letters of the protein or
dna/rna alphabet (respectively called amino acids and nucleotides) would
therefore be reflexive and symmetric but non-transitive [40]. An example of
such a relation, denoted by R, is given in Figure 8.1. It may be represented
by a graph. The nodes of the graph are the elements of Σ. An edge links
two nodes if the elements of Σ labelling the nodes correspond to biolog-
ical objects sharing enough physico-chemical properties to be considered
related.

As in the previous section, a relation R between elements of Σ may easily
be extended to a relation Rk between words of length k in a string s.

Definition 8.3.2 Given a string s ∈ Σn and two positions i, j in s such
that i, j ≤ n− k + 1, then

8. Pattern Inference under many Guises 249

Let Σ = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y } be
the alphabet of the amino acids and R be the relation of similarity
between these amino acids given by the following graph:

G

S

�
�
�
�
�

A

T
�
��

I

V

�
�
�
�
�

L

M
�
��

F

Y

D

E

K

R

C
.
P.

N
.
Q.

H
.
W.

The maximal cliques of R are the sets: {A,S,G}, {A, T}, {I, L, V },
{L,M}, {F, Y }, {D,E}, {K,R}, {C}, {P}, {N}, {Q}, {H}, {W}.

Figure 8.1. Example of a relation of similarity between the letters of the
protein alphabet (called amino acids).

i Rk j ⇔ si+l R sj+l for all l such that 0 ≤ l ≤ k − 1.

An important concept in our setting will be that of a (maximal) clique
of a non-transitive relation.

Definition 8.3.3 Given an alphabet Σ and a non-transitive relation R on
Σ, a set C of elements of Σ is a clique of relation R if α R β for all α, β
∈ C. If C is a clique and C

⋃
{γ} is not a clique for all γ ∈ Σ \ C, then

C is called a maximal clique.

Definition 8.3.4 Given a string s ∈ Σn, a set Ck of positions in s is a
clique of relation Rk if i Rk j for all i, j ∈ Ck. If Ck is a clique and Ck

⋃

{l} is not a clique for all l ∈ [1..n] \Ck, then Ck is called a maximal clique
of Rk.

Maximal cliques of Rk give us then a second way of establishing a defi-
nition of similarity between words of length k in a string. If the similarity
relation is transitive, the strings can be translated into a smaller alphabet
and R is an identity relation E.

As we describe in what follows, a non-transitive relation and its maximal
cliques are a particularly appropriate tool for analyzing protein structures
when such structures are coded as linear sequences of internal coordinates.

Indeed, the 3D structure of a protein is determined by the spatial ar-
rangement of the atoms of its amino acids or residues. The amino acids
are linked together in a chain and a representation of the structure that
preserves the linear order of the residues allows us to consider working with

250 Sagot and Wakabayashi

strings. When studying such structure, it is possible to focus attention on
its backbone only. It is well known [4] that the local conformation of the
backbone can be defined at each residue by three internal coordinates usu-
ally referred to as three dihedral angles: Φ, Ψ and ω [30]. For chemical
reasons, ω is fixed (to 0 or 180◦) and can usually be forgotten, and the
internal coordinates of the backbone are therefore in general represented
on a two-dimensional map Φ, Ψ called a Ramachandran map [30] (see Fig-
ure 8.2). The structure of the backbone can then be uniquely defined by
the linear succession of the pairs of angles (Φ, Ψ) along the backbone (see
Figure 8.3). Since these pairs of angles represent pairs of real values, they
have to be recoded into discrete values so that we can work with an alpha-
bet of discrete symbols. In order to do it, a grid of mesh ε◦ is constructed
on the Ramachandran map [28, 37] (see again Figure 8.2). Note that what
is shown in the figure as flat is actually the surface of a sphere. All the
following considerations about squares on this map will hence implicitly
assume that these squares actually wrap around the edges. The center of
each small square becomes a node of a square lattice. Each node of the
lattice corresponds then to a symbol of a new alphabet. Any real valued
pair of angles is thus coded into the symbol represented by the small square
inside which the pair is plotted. A relation R is then defined between the
new symbols (nodes) of the map in the following way:

∀(α, β) ∈ Σ2, α R β ⇔ ∃ a square of side 2Kε enclosing α and β,

where α and β are nodes of the lattice and K is a parameter (called mar-
gin) that can be adjusted to broaden or narrow the matching precision.
Reducing the values of ε and K, alphabets and relations of increasing sizes
and degeneracies are produced (for instance, for a mesh of 5◦ the alphabet
has 5182 symbols, and for K = 1 each symbol belongs to 9 distinct cliques
of R).

In terms of angles, the previous definition simply means that two pairs
of angles match if their corresponding symbols lie in a square of side 2Kε
of the Ramachandran map. The relation R is intrinsically non-transitive.
The maximal cliques of R on Σ are, by definition, all (big) squares of side
Kε centered on each node.

It is important to note that the maximal cliques of Rk represent then all
structural contiguous motifs of length k of a set of protein structures.

A similar approach has also been developed to look for structural motifs
in true three-dimensional space, that is, for motifs that are not necessarily
composed of contiguous amino acids [9, 18].

8.3.3 Allowing for errors
Let us initially assume the sole errors authorized are substitutions. In view
of the definitions established in the previous sections, one would be tempted

8. Pattern Inference under many Guises 251

-180◦

+180◦

-180◦ +180◦

Ψ

Φ

ε◦

.

.
.
.
.
.
.

.

.

Kε

Figure 8.2. Sampled Ramachandran map: one square of side ε = one symbol
of the alphabet.

...

...

αi: α-carbons

�
�
�
� �����

�
�
��

�
�
�

α1

α2 α3

α4

α5

α6 α7

•

• •

•

•

• •

(Φ1,Ψ1)

(Φ2,Ψ2) (Φ3,Ψ3)
(Φ4,Ψ4)

(Φ5,Ψ5)

(Φ6,Ψ6) (Φ7,Ψ7)

Protein structure first coded as:
. . . (Φ1,Ψ1)(Φ2,Ψ2)(Φ3,Ψ3)(Φ4,Ψ4)(Φ5,Ψ5)(Φ6,Ψ6)(Φ7,Ψ7) . . .

Figure 8.3. Structure of backbone defined as a linear succession of pairs of
angles (Φ, Ψ).

252 Sagot and Wakabayashi

to define a relation of similarity H between two words of length k in a string
s, that is, between two positions i and j in s, in the following way.

Definition 8.3.5 Given a string s ∈ Σn and two positions i, j in s such
that i, j ≤ n− k + 1, then

i Hk j ⇔ distH(si . . . si+k−1, sj . . . sj+k−1) ≤ e,

where distH(u, v) is the Hamming distance between u and v (that is, the
minimum number of substitutions to be performed on u to obtain v) and e
is a nonnegative integer that is fixed.

Parameter e corresponds to the maximum number of substitutions one
wishes to tolerate. In the same way as in Section 8.3.2, maximal cliques of
Hk would provide us with another possible definition of similarity between
words of length k in a string.

One could consider now how to adapt the above definition to the case
of a Levenshtein distance L (which, in the case of strings, is the minimum
number of substitutions, insertions and deletions necessary to obtain one
string from another), or any other type of distance where insertions and
deletions are permitted besides substitutions. This is not completely trivial:
indeed, given two words u and v respectively starting at positions i and j
in s and such that iLkj, what is the meaning of k ? Before even trying, one
may intuitively note that calculating Hk (and, a fortiori, Lk) is no longer
as easy as calculating Ek or Rk.

The reason is that, although the definitions given in Sections 8.3.1
and 8.3.2 involve pairs of positions in a string s, it is possible to rewrite
them in such a way that, given a position i in s and a length k (that of
the words in s one is currently considering), it is immediate to determine
to which class or clique(s) i belongs. Indeed, the class or clique(s) can be
uniquely identified just by “reading” si . . . si+k−1. Let us consider first the
simpler case of an identity. Straightforwardly, position i will belong to the
class whose label is si . . . si+k−1. In the case of a non-transitive relation
R between the letters of Σ, let us name C the set of (maximal) cliques of
R and denote by cliqueR(α) the cliques of R to which a letter α belongs.
Then, position i will belong to the sets of Rk whose labels may be spelled
from the regular expression cliqueR(si) . . . cliqueR(si+k−1) and that are
maximal under Rk. Note the small difference here with an identity rela-
tion: maximality of a validly labelled set has to be checked [40]; a class is
always “maximal”.

No such easy rewriting and verification are possible in the case of the
definition of Hk (or Lk) if we wish to build the notion of similarity between
words in a string upon that of the cliques of Hk. Indeed, obtaining such
cliques requires comparing (a possibly large number of) pairs of positions
between themselves. This is expensive.

8. Pattern Inference under many Guises 253

One may, however, rewrite the definition of Hk in such a way that it
refers to labels as we did above for Ek and Rk although such labels are no
longer as immediately identifiable. A possible definition (still for the case
where substitutions only are considered) would be the following.

Definition 8.3.6 Given a string s ∈ Σn and two positions i, j in s such
that i, j ≤ n− k + 1, then

i Hk j ⇔ ∃m ∈ Σk such that distH(m, si . . . si+k−1) ≤ e and
distH(m, sj . . . sj+k−1) ≤ e,

where distH(u, v) and e are as before.

Generalizing this, we would then have:

Definition 8.3.7 A set Sk of positions in s represents a set of words
in s of length k that are all similar between themselves if, and only
if, there exists (at least) one string m ∈ Σk such that, for all ele-
ments i in Sk, distH(m, si . . . si+k−1) ≤ e and, for all j ∈ [1..n] \ Sk,
distH(m, sj . . . sj+k−1) > e.

Observe that extension of both definitions to a Levenshtein distance be-
comes now straightforward. We reproduce below, after modification, just
the last definition.

Definition 8.3.8 A set Sk of positions in s represents a set of words that
are all similar between themselves if, and only if, there exists (at least) one
string m ∈ Σk such that, for all elements i in Sk, distL(m, si . . .) ≤ e and,
for all j ∈ [1..n] \ Sk, distL(m, sj . . .) > e.

Since the length of similar strings (with respect to m) may now be dif-
ferent from that of m (it will vary between |m|− e and |m|+ e where |m| is
the length of m), we denote it (si . . .) leaving undefined its right-end point.

Observe also that it remains possible, given a position i in s and a length
k, to obtain the label of the group(s) (we shall see that this is no longer a
clique and is obviously not a class unless e is zero) of the relation Hk (or
Lk) i belongs to. Such labels are represented by all strings m ∈ Σk such
that distH(m, si . . . si+k−1) ≤ e (or distL(m, si . . .) ≤ e), that is, such that
their distance from the word starting at position i in s is no more than e.

We call models such group labels. Positions in s indicating the start of
a word of length k are e-occurrences (or simply occurrences where there is
no ambiguity) of a model m if dist(m, si . . .) ≤ e, where dist is either the
Hamming or Levenshtein distance. Observe that a model m may never be
present exactly in s.

When e is zero, models represent the classes of an identity relation. In
the case where e is greater than zero, models such as defined in the previous

254 Sagot and Wakabayashi

section are neither classes nor cliques nor yet another well-defined mathe-
matical object: Steiner strings. We recall that, given a distance dist and a
set of strings S, s is a Steiner string of the strings in S if

∑
u∈S dist(s, u)

is minimal.
Although Definition 8.3.6 could lead us to believe that models correspond

to cliques, this is not the case. Consider s ∈ Σ∗ = {A, B, C}∗ equal to
ABACACABAAAA. If at most one substitution is allowed, then positions
1 and 5 (strings s are indexed from 1 to |s|) are related by H4 because of
models m = ABAB and m = ACAC; so are positions 1 and 9 because of
models m = ABAA and m = AAAC and, finally, positions 5 and 9 because
of models m = ACAA and m = AAAB. The set {1, 5, 9} forms therefore a
clique (any two elements are related by H4), but it is never the same model
for every possible pair. Indeed, there is no single model such that all three
positions are occurrences of it.

The case of a Steiner string also calls for an example. Let us consider
the string s ∈ Σ∗ = {A, B, C}∗ equal this time to AAAAAABBBBACAC,
and let us assume that at most one substitution is allowed. Consider O =
{1, 2, 3, 11} a set of positions in s. There exist only two models m ∈ Σ4

such that distH(m, si . . . si+3) ≤ e for all i ∈ O. These are models ACAA
and AAAC. None is a Steiner string for O. The unique string that is a
Steiner string for O is AAAA, which is not a model for O (it is at distance
2 from occurrence ACAC).

Nonetheless, models are interesting objects that provide a precise defi-
nition for the idea of conservation and will allow us, as we shall see later,
to obtain reasonably efficient algorithms for identifying sets of conserved
words in a string.

In what follows we extend the idea of models and introduce two other
concepts of similarity.

Models allow us to considerably enrich the notion of similarity. For in-
stance, they enable us to simultaneously consider a non-transitive relation
between the letters of the alphabet (amino acids or nucleotides) and the
possibility of errors. In order to do that, it suffices to permit the model to
be written over an extended alphabet composed of a subset of the set of
all subsets of Σ (denoted P(Σ)), where Σ is the alphabet of amino acids
or nucleotides. Such an alphabet could be, for instance, one defined by the
maximal cliques of the relation R given in Figure 8.1. Definition 8.3.8 of
Section 8.3.3 then becomes:

Definition 8.3.9 A set Sk of positions in s represents a set of words of
length k that are all similar between themselves if, and only if, there exists
(at least) one element M ∈ P k with P ⊆ P(Σ) such that, for all elements i
in Sk, setdist(M, si . . .) ≤ e and, for all j ∈ [1..n]\Sk, setdist(M, sj . . .) >
e, where setdist(M,v) for M ∈ P ∗ and v ∈ Σ∗ is the minimum Hamming
or Levenshtein distance between v and all u ∈ M .

8. Pattern Inference under many Guises 255

Let Σ = {A,B,C} and
score (α, α) = 1, ∀ α ∈ Σ;
score (A,B) = score (B,A) = −1;
score (A,C) = score (C,A) = −1;
score (B,C) = score (C,B) = −1.

If we say that two words are similar if either
- the number of substitutions between them is at most 1; or
- their score is at least 1;

then by the first criterion the words AABAB and AACCB are not simi-
lar, while by the second criterion they are, the second substitution being
allowed because the two words on average share enough resemblance.

Figure 8.4. Example of the greater flexibility allowed by scoring words rather
than counting errors.

Among the subsets allowed in P , the alphabet of models, we may take
{Σ} itself, that is, the wild card. It is obvious that this may lead to trivial
models. Alphabet P may then come with weights attached to each of its
elements indicating how many times (possibly infinite) it may appear in a
model of interest to us. Observe that another way of describing the alphabet
P of models is as the set of edges of a (possibly weighted) hypergraph whose
nodes are the elements of Σ.

When e is zero, we obtain a definition of similarity between words in
the string that closely resembles that given in Section 8.3.2. Note however
that, given two models M1 and M2, we may well have that the set of
occurrences of M1 is included in that of M2. The cliques of Definition 8.3.4
will correspond to the sets of occurrences that are maximal.

Errors between a group of similar words and the model of which they are
occurrences can either be counted as unitary events (possibly with different
weights) as was done previously, or they can be given a score. The main
idea behind scoring a resemblance between two objects is that it allows to
average the differences that may exist between them. It may thus provide a
more flexible function for measuring the similarity between words. A simple
example illustrates this point in Figure 8.4.

In the example and in the definition of similarity introduced in this
section, insertions and deletions are not allowed, only substitutions. This
is done essentially for the sake of clarity. Insertions and deletions may,
however, be authorized, the reader is referred to [38] for details.

Let a numerical matrix M of size | Σ | × | Σ | be given such that:

M(a, b) = score between a and b for all a, b ∈ Σ.

If this score measures a similarity between a and b, we talk of a similarity
matrix (two well-known examples of which in biology are PAM250 [7] and

256 Sagot and Wakabayashi

Let Σ = {A,B,C}, w = 3 and t = 6. Let M be the following matrix:

A B C
A 3 1 0
B 1 2 1
C 0 1 3

Given the three strings:
s1 = ABCBBABBBACABACBBBAB
s2 = CABACAACBACCABCACCACCC
s3 = BBBACACCABABACABACABA

then the longest model that is present in all strings is CACACACC (at
positions 9, 1 and 12 respectively).

Figure 8.5. Example of a model under a word-based relation of similarity.

BLOSUM62 [14]), while if the score measures a dissimilarity between a and
b we talk of a dissimilarity matrix. A special case of this latter matrix is
when the dissimilarity measure is a metric, that is when the scores obey,
among other conditions, the triangular inequality. In that case, we talk of
a distance matrix (an example of which is the matrix proposed by J.-L.
Risler [31]).

In what follows, we consider M a similarity matrix.

Definition 8.3.10 Given a string u = u1u2 . . . uk ∈ Σk, a model m =
m1m2 . . .mk ∈ Σk and a matrix M, we define

scoreM(m,u) =
k∑

i=1

M(mi, ui).

Definition 8.3.11 A set Sk of positions in s represents a set of words of
length k that are similar if, and only if, given a positive integer w such that
w ≤ k and a threshold value t, there exists (at least) one element m ∈ Σk

such that,

1. for all elements i in Sk and for all j ∈ {1, . . . , |m| − w + 1},
scoreM(mj . . .mj+w−1, si+j−1 . . . s(i+j−1)+(w−1)) ≥ t;

2. for all i ∈ [1..n]\Sk, there exists at least one j ∈ {1, . . . , |m|−w+ 1}
such that scoreM(mj . . .mj+w−1, si+j−1 . . . s(i+j−1)+(w−1)) < t.

An example is given in Figure 8.5.

8. Pattern Inference under many Guises 257

8.4 Models and their properties

The previous sections presented various definitions of similarity between
words in a string (easily extensible to words in a set of strings). The last
definitions (from Section 8.3.3 on) introduced the notion of a model that
was somewhat implicit in the earlier ones.

We discuss now further properties the models that will interest us must
satisfy. Doing so, we also render such models more complex. To facilitate
exposition, we henceforward denote models by a lower case m, whether this
represents a word (i.e., is defined over Σ) or a set of words (i.e., is defined
over P(Σ)).

8.4.1 “Simple” models
Models such as given in the previous sections will be called simple models.
There will be one important property such models (and, in some way or
another, all other kinds of models) will have to satisfy and that is the
following.

Property 8.4.1
Case of a single string. Given a string s and a nonnegative integer q, a

model m is said to be valid if it has at least q occurrences in s;

Case of a set of strings. Given a set of N strings and an integer q such
that 1 ≤ q ≤ N , a model m is said to be valid if it has at least one
occurrence in at least q distinct strings of the set.

Parameter q is called the quorum valid models must satisfy.

8.4.2 Structured models
Although the objects defined in the previous section can be reasonable,
algorithmically tractable models for single binding sites, they do not take
into account the fact that such sites are often not alone (in the case of
eukaryotes, they may even come in clusters). Specially, they do not consider
that the relative positions of such sites when more than one participates in
a biological process are in general not random. This is particularly true for
some dna binding sites such as those involved in the transcription of dna

into rna (e.g. the so-called promoter sequences).
There is therefore a need for defining biological models as objects that

take such characteristics into account. This has the motivation just men-
tioned but presents also interesting algorithmical aspects: exploiting such
characteristics could lead to algorithms that are both more sensitive and
more efficient. Models that incorporate such characteristics are called
structured models.

Formally, a structured model is a pair (m, d) where:

258 Sagot and Wakabayashi

m

unaligned
sequences

m
2d+_1

q = n/2

2

d

d-1

d+2

d+1

d+1

d+6

no occurrences

one only

too distant

valid model m

Figure 8.6. Example of a model with two boxes (p = 2).

• m is a p-tuple of simple models (m1, . . . ,mp) (representing the p parts
a structured model is composed of – we shall call these parts boxes);

• d is a (p−1)-tuple of triplets ((dmin1 , dmax1 , δ1), . . . , (dminp−1 , dmaxp−1 ,
δp−1)) (representing the p − 1 intervals of distance between two
successive boxes in the structured model);

with p a positive integer, mi ∈ Σ+ and dmini , dmaxi (dmaxi ≥ dmini), δi
nonnegative integers.

Given a set of N strings s1, . . . , sN and an integer 1 ≤ q ≤ N , a
model (m, d) is said to be valid if, for all 1 ≤ i ≤ p − 1 and for all oc-
currences ui of mi, there exist occurrences u1, . . . , ui−1, ui+1, . . . , up of
m1, . . . ,mi−1,mi+1, . . . ,mp such that:

• u1, . . . , ui−1, ui, ui+1, . . . , up belong to the same string of the set;

• there exists di, with dmini
+ δi ≤ di ≤ dmaxi

− δi, such that the
distance between the end position of ui and the start position of ui+1
in the string is equal to di ± δi;

• di is the same for p-tuples of occurrences present in at least q distinct
strings.

The term di represents a distance and ±δi an allowed interval around
that distance. When δi = (dmaxi −dmini +1)/2, then δi is omitted and d in
a structured model (m, d) is denoted by a pair (dmini , dmaxi). An example
of a model with p = 2 is given in Figure 8.6.

Observe that simple models are indeed but a special case of structured
ones.

8. Pattern Inference under many Guises 259

8.4.3 Models for tandem arrays (satellites)
Tandem arrays (called tandem repeats when there are only two units) are
a sequence of repeats that appear adjacent in a string. In biology, such
tandemly repeated units are divided into three categories depending on the
length of the repeated element, the span of the repeat region and its location
within the chromosome [2]. Repeats occurring in or near the centromeres
and telomeres are called simply satellites. Their span is large, up to a million
bases, and the length of the repeated element varies greatly, anywhere from
5 to a few hundreds of base pairs. In the remaining, euchromatic region of
the chromosome the kinds of tandem repeats found are classified as either
micro or mini satellites, according to the length of the repeated element.
Micro satellites are composed of short units, of 2 to 5 base pairs, in copy
numbers in general around 100. Mini satellites on the other hand involve
slightly longer repeats, typically around 15 base pairs, in clusters of variable
sizes, comprising between 30 and 2000 elements.

Satellites of whatever type ask for a more complex definition of mod-
els that may initially recall that of the structured models presented in
Section 8.4.2. Indeed, in the case of satellites, the models themselves are
simple. Indeed, some constraints are imposed on the relative positions of
the occurrences of a satellite model in a way that is somewhat similar to
what was done with structured models. However, the overall nature of such
constraints is not the same as we show in what follows.

Satellite models

We have in fact two definitions related to a satellite model, one called
prefix model and the other consensus model. The latter will concern satel-
lite models strictly speaking while prefix models are in fact models for
approximately periodic repetitions that are not necessarily tandem.

Formally, a prefix model of a satellite is a string m ∈ Σ∗ (or P(Σ)) that
approximately matches a train of wagons. A wagon of m is a word u in
s such that dist(m,u) ≤ e. A train of a satellite model m is a collection
of wagons u1, u2, . . . , up ordered by their starting positions in s and such
that:

Property 8.4.2 p ≥ min repeat, where min repeat is a fixed parameter
that indicates the minimum number of elements a repeating region must
contain.

Property 8.4.3 leftui+1
− leftui

∈ JUMP, where leftu is the position of
the left-end of wagon u in s and

JUMP = {y : y∈∪x∈[1,max jump] x× [min range,max range]},

with the three parameters min range, max range and max jump fixed.

260 Sagot and Wakabayashi

A prefix model m is said to be valid if there is at least one train of m
in the string s. Similarly, a train, when viewed simply as a sequence of
substrings of s, is valid if it is the train for some model m. A prefix model
represents the invariant that must be true as we progressively search for
our final goal, which is to arrive at a consensus model. This is a prefix
model which further satisfies the following:

Property 8.4.4 leftui+1
− rightui

∈ GAP, where rightu is the position of
the right-end of wagon u, and GAP = {y : y ∈ ∪x∈[0,max jump−1] x×
[min range,max range]}.

Parameter max jump allows us to deal with very badly conserved ele-
ments inside a satellite (by actually not counting them) while we require
that the satellite be relatively well conserved overall. Fixing max jump at
a value strictly greater than one means we allow some wagons (the badly
conserved ones) to be “jumped”. This may be seen as “meta-errors”, that
is as errors involving not a letter inside a wagon but a wagon inside a train.
Note that 0 ∈ GAP. This guarantees that, when jumps are not authorized,
the repeats found are effectively tandem.

Since mutations affecting a unit concern indels (that is, insertions and
deletions) as well as substitutions, it is sometimes interesting to work with
a variant of the above properties where JUMP and GAP are defined as

JUMP =
{
y :

y∈ [min range,max range] or
y∈∪x∈[2,max jump] x× [min range− g,max range+ g]

}

GAP =
{
y :

y∈ [min range,max range] or
y∈∪x∈[1,max jump] x× [min range− g,max range+ g]

}
,

where g ≥ e is a fixed value. The idea is to allow the length of the badly
conserved elements to vary more than is permitted for the detected “good”
wagons.

8.5 Algorithms

We now develop the main ideas behind the algorithms for inferring patterns
under the various definitions of similarity and properties specified in the
previous sections. We focus on one algorithm each time, or a class of equiv-
alent algorithms, the one that appears the most performing or flexible for
our purposes. This is in general the most easily adaptable to special cases
or the introduction of additional constraints. Other methods are just men-
tioned. We also discuss (Section 8.5.3) the use of a special data structure
for storing the string(s) itself (themselves).

We treat the case of one string only, except where considering more than
one string increases the complexity of the algorithm. In this latter case, we

8. Pattern Inference under many Guises 261

address the multiple string problem instead. Once errors are permitted, we
adopt the reference to models even though some of the earlier algorithms
that handled errors did not explicitly make use of such external objects for
extracting sets of similar words, or did not call them models.

Proofs are omitted and some details are skipped. Both may, in general,
be found in the original papers. In all cases, we start by stating the problem
that each specific algorithm intends to solve.

8.5.1 The simplest property: Identity
Perhaps the first classical algorithm for finding all exact repetitions in
a string (henceforth called KMR) was elaborated by Karp, Miller and
Rosenberg in 1972 [20]. Given a string s, KMR solves the following
problems:

Problem 8.5.1 Identify the positions of all words of a fixed length k that
appear repeated in s.

Problem 8.5.2 Find the length kmax of the longest repeated word in s,
and solve Problem 8.5.1 for k = kmax.

KMR rests on the definition of the equivalence relation Ek given in Sec-
tion 8.3.1. Problem 8.5.1 can then be formulated as the problem of finding
the partition associated with Ek. Problem 8.5.2 requires finding the max-
imum value of k such that Ek is not the identity. The algorithm is based
on an iterative construction of partitions El for l ≤ k. The mechanism for
performing such constructions rests on the following lemma.

Lemma 8.5.1 Given two integers a, b with 1 ≤ b ≤ a, and i, j two
positions in a string s of length n, such that i, j ≤ n− (a+ b) + 1, then

i Ea+b j ⇔ i Ea j and (i+ b) Ea (j + b).

The main idea behind the KMR algorithm is to use the lemma with
b = a for as long as possible. This means finding repeats of length 2a by
using previouly acquired information on the repeats of length a that may
become the prefixes and suffixes of those of length 2a. If we are dealing with
Problem 8.5.1, and if k is not a power of 2, we then use the lemma with
b < a in a last step in order to obtain Ek. If we are treating Problem 8.5.2,
we may need more than one step to find the value of kmax such that Ekmax

is not the identity but Ekmax+1 is. The search for kmax from the smallest
power of 2 that is bigger than kmax, let us say it is 2p, can be done by
applying the lemma with b < a in a dichotomous fashion between 2p−1 and
2p.

Constructing the partitions Ea basically corresponds to performing a set
intersection operation. The intersections may be implemented using, for

262 Sagot and Wakabayashi

instance, stacks. More precisely, we need an array Va of size n which stores,
for each position i in s, the label of the class of Ea to which the a-long
word starting at i belongs. The lemma is applied by means of two arrays
of stacks P and Q. Stacks in P are filled by traversing Va. Such stacks are
in fact a dual of Va. Each one corresponds to a class c of Ea and contains
the positions i in s belonging to c. Array P serves therefore to sort the
prefixes of length a of the repeats of length 2a one is trying to identify.
The content of each stack of P in turn is then poured into the appropriate
stack of Q. A division separates, within a same stack of Q, elements coming
from different stacks of P . Like P , array Q has as many stacks as there are
classes in Ea. It serves to sort the suffixes of length also a of the repeats
of length 2a. One then just needs to orderly pour Q into V2a to obtain
the classes of E2a. In case the quorum is higher than 2, verifying that it is
satisfied is a simple question of counting how many elements there are in
each class.

Each partition construction takes O(n) time, there are O(log k) such
constructions, KMR time complexity is therefore O(n log k). When solving
Problem 8.5.2, this leads to an O(n log n) complexity because of possible
degenerate cases (such as that of a string s composed of a single letter).
KMR space complexity is O(n).

Another method for obtaining the same result in a more efficient way
that does not make use of complex data structures as will be discussed in
Section 8.5.3 has been shown in [5]. It is, however, not easily extensible to
the case of a non-transitive relation.

8.5.2 More complex properties for single patterns:
non-transitive relation without/with errors

Let us consider first the case of non-transitive relations without errors.
In this case problems on simple patterns can be solved by algorithms

obtained from an adaptation of KMR to deal with a non-transitive relation
R [40]. The problems solved will be the same as for KMR in the previous
section.

Lemma 8.5.1 applies analogously, one just needs to substitute relation E
by R.

Lemma 8.5.2 Given two integers a, b with 1 ≤ b ≤ a, and i, j two
positions in a string s of length n, such that i, j ≤ n− (a+ b) + 1, then

i Ra+b j ⇔ i Ra j and (i+ b) Ra (j + b).

Computing relations Rl for l ≤ k requires the same structures as for
KMR, except that, as we saw, a set of positions pairwise-related by Rl is
no longer a class but a clique. The algorithm was in consequence called
KMRC (the “C” standing for Clique) [40]. In particular, a position may

8. Pattern Inference under many Guises 263

belong to two or more distinct cliques of Rl. Array Vl must therefore now be
an array of stacks, like P and Q. It indicates, for each cell i corresponding
to a position in s, the cliques of relation Rl to which i belongs.

The construction itself follows the same schema as indicated for KMR.
Some of the sets of similar words obtained at the end of each step may
not be maximal. A further operation is therefore needed to eliminate sets
included in another one to obtain maximal cliques.

To analyse the complexity of the KMRC algorithm, we need to define a
parameter g that measures the “degree of non-transitiveness” of relation
R.

Definition 8.5.1 Given R, a non-transitive relation on Σ, we call g the
greatest number of cliques of R to which a symbol may belong, that is:

g = Max {ga | a ∈ Σ, ga = number of cliques to which a belongs}.

We call ḡ the average value of ga for a ∈ Σ, that is:

ḡ =
∑

a ga

nc
,

where nc is the number of cliques of R.

If one does not count the set inclusion operations to eliminate non-
maximal cliques, KMRC has time complexity O(n log kgk) since each
position i in s may belong to up to gk (or, on average, ḡk) cliques of
Rk. Inclusion tests based on comparing the positions contained in each set
will take O(n2g2k) time at the end of step k. At least another approach
for testing set inclusion is possible and may result in a better theoretical
time complexity (but not necessarily better in practice – this is discussed
in [40]). Space complexity is O(ngk).

Another combinatorial approach for solving the problems addressed by
KMRC uses an idea that is quite close to that of inferring models and will
be discussed in the next section.

Let us now treat the case of non-transitive relations with errors.
Models are considered this time. The problem we wish to solve is then

the following.

Problem 8.5.3 Given a string s, an integer e ≥ 0 and a quorum q, find
all models m such that m is valid, that is, is present at least q times in s,
each time with at most e errors.

KMR’s principle for finding all exact repetitions of length 2k in a string
s is based on the idea that such repetitions can be decomposed into two
adjacent repetitions of length k.

In a likewise manner, we could base the principle of an algorithm for
finding all the models of length k that are present with errors in a string s

264 Sagot and Wakabayashi

on an iterative construction that would double the length of the models at
each step. Indeed, the set of occurrences of a model m = m1m2 with |m| =
2×|m1| = 2×|m2| = 2k is the set of occurrences of m1 which are adjacent
to at least one occurrence of m2. As for KMR, we need to obtain and stock
the sets of occurrences of all the valid models of length k in order to obtain
those of length 2k.

If we consider the search space of the problem, which corresponds to the
tree of all possible models (in fact a trie), KMR, KMRC and the algorithm
we are proposing now thus perform a breadth-first exploration of such
search tree. All levels are not visited since at each step a lot of pruning
may be realized (cutting off whole subtrees whose root is not labelled by
a valid model). However, all information concerning a given level, say k, is
needed to build a deeper level, say 2k. If errors are allowed, a breadth-first
exploration of the tree may therefore consume a lot of memory in the earlier
stages, when almost all models occur at almost all positions.

A second, more space-parsimonious approach to constructing such mod-
els is to traverse the tree depth-first, again with possible pruning along the
way. Indeed, if instead of doubling the length of the models at each step,
we extend each model separately to the right by just one unit at a time,
then all we need to obtain the set of occurrences of a model m is the set of
occurrences of the model m′ of length |m| - 1 that is its prefix, plus a look
at what follows each such occurrence in the string. In terms of memory, all
we need to stock at any time is therefore the sets of occurrences of all the
models that are prefixes of the currently considered model m.

The lemma that is applied is the following. Observe that, to facilitate
the “look at what follows in the string”, occurrences are now identified by
their right-end positions instead of left-ends. They come also accompanied
by the number of errors that they have accumulated against the model.
They are therefore represented by a pair (i, d) where i is a position in s
and d is a distance.

Lemma 8.5.3 Pair (i, d) is an occurrence of model mα with α ∈ Σ if, and
only if, d ≤ e and at least one of the following is true:

(match) (i− 1, d) is an occurrence of m and si = α;
(substitution) (i− 1, d− 1) is an occurrence of m and si �= α;
(deletion) (i, d− 1) is an occurrence of m;
(insertion) (i− 1, d− 1) is an occurrence of mα.

Note that applying the lemma corresponds to doing sparse dynamic pro-
gramming between string s and the virtual trie M of all possible valid
models. It is sparse because we are looking for models having occurrences
at a maximum distance and therefore only a few cells of the usual dynamic
programming matrix need to be kept.

Other, earlier approaches had been elaborated to infer patterns with
errors. They implied generating all possible words of a given length

8. Pattern Inference under many Guises 265

and identifying their occurrences by simple pattern matching against the
string [12, 29, 41, 47, 48, 49].

Extension of the algorithm to deal with models m defined over P(Σ)∗

is straighforward [17, 16] (no error) [39]. There is, however, a notion of
redundancy that appears at the level of models over P(Σ)∗ that is not
trivial to treat. The interested reader is referred to [27] and [36] for further
details.

In the case of no error, the difference in time complexity between
KMR/KMRC and the algorithm sketched above varies only in that a log k
term for the first approach is changed into a k term for the last one.

Before giving the complexity for the case where errors are permitted, we
need to introduce the notion of a word neighbourhood.

Definition 8.5.2 Given a word of length k defined over Σk, its e-
neighbourhood, denoted by V(e, k), is the number of words situated at a
distance (Hamming or Levenshtein) at most e from it.

In [33] and [39], we show that V(k, e) is bounded above in both cases by
ke|Σ|e.

The neighbourhood measures the number of models m ∈ Σk of which
a position i in s may be an occurrence. In the case where models are in
P(Σ)k instead, ke|Σ|e must be further multiplied by gk. Since there are
O(n) positions, and the algorithm takes k steps, the time complexity of the
algorithm sketched above is O(nkV(e, k)) or O(nkgkV(e, k)). The space
complexity is O(n) or O(ngk).

It is worth pointing out that, when e is zero, we obtain algorithms that
have time complexity O(nk) and O(nkgk) respectively. As we saw, KMR
and KMRC obtain better theoretical performances. Furthemore, at least
for models defined over Σ and an identity relation, it is possible to have
even better results, in particular but not exclusively, by making use of
special data structures such as suffix trees. The reader will find extensive
discussion of such use for the “no error” case in [13]. We discuss below
the use of suffix trees for inferring models with errors. Since considering
more than one input string makes a difference to the algorithm in terms
of time and space, we address the case of multiple input strings. Deducing
equivalent algorithms and their complexities for the case of just one string
is straighforward and will not be detailed.

8.5.3 Introducing suffix trees
The idea behind using suffix trees, as will be developed below, comes from
the observation that long strings, specially when they are defined over a
small alphabet, may contain many exact repetitions. One does not want
to compare such repeated parts more than once with the potentially valid
models. One way of doing that is using a representation of the string s that

266 Sagot and Wakabayashi

allows to put together some of the repetitions, that is, using an index of s
such as a suffix tree T .

We do not describe the suffix tree construction, this can be found in
either [25, 42] or (for a review of this and other data structures and text
algorithms) [6] and [13]. We just recall some of the basic properties such
structures have (these are taken from [25]).

Basic properties of the suffix tree T of a string s

Property 8.5.1 An arc of T may represent any nonempty substring of s.

Property 8.5.2 Each node of T that is not a leaf, except for the root,
must have at least two offspring arcs (compact version of the tree).

Property 8.5.3 The strings represented by sibling arcs of T must begin
with different symbols of Σ.

Observe that Property 8.5.2 means an arc of T may be labelled by an
element of Σk for k ≥ 2 (for space considerations, each arc of T is in fact
labelled by a pair of numbers corresponding to the start and end positions
in s of the substring it represents, or its start position and length). Fur-
thermore, an edge links every node spelling αx with α ∈ Σ and x ∈ Σ∗ to
the node spelling x. Such edges are called suffix links and are what allows
the tree to be built in time linear with the length of the string.

The key feature of a suffix tree is that for any leaf i, the concatenation
of the labels of the arcs on the path from the root to i spells the suffix
of s starting at position i. Reciprocally, the path spelled by every suffix of
s leads to a distinct leaf if we assume that the last symbol of s appears
nowhere else in s. To achieve this, we just need to concatenate at the end
of s a symbol not appearing in Σ.

Trees for representing all the suffixes of a set of strings {si, 1 ≤ i ≤ N
for some N ≥ 2} are called generalized suffix trees and are constructed
in a way very similar to the construction of the suffix tree for a single
string [1, 15]. We denote such generalized trees by GT . They share all the
properties of a suffix tree given in Section 8.5.3 with, in Property 8.5.1,
string s substituted by strings s1, . . . , sN .

In particular, a generalized suffix tree GT verifies the fact that every suf-
fix of every string si in the set leads to a distinct leaf. When p ≥ 2 strings
have a same suffix, the generalized tree has therefore p leaves correspond-
ing to this suffix, each associated with a different string. To achieve this
property during construction, we just need to concatenate to each string si

of the set a symbol that is not in Σ and is specific to that string.
To be able to spell valid models (i.e. models satisfying the quorum

constraint), we need to add some information to the nodes of the suffix
tree.

8. Pattern Inference under many Guises 267

In the case where we are looking for repeats in a single string s, we just
need to know, for each node x of T , how many leaves are contained in the
subtree rooted at x. Let us denote leavesx this number for each node x.
Such information can be added to the tree by a simple traversal of it.

If we are dealing with N ≥ 2 strings, and therefore a generalized suffix
tree GT , it is not enough anymore to know the value of leavesx for each
node x in GT in order to be able to check whether a model remains valid.
Indeed, for each node x, we need this time to know not the number of leaves
in the subtree of GT having x as root, but that number for each different
string the leaves refer to.

In order to do that, we must associate to each node x in GT an array,
denoted coloursx, of dimension N , that is defined by:

coloursx[i] =

1, if at least one leaf in the subtree rooted at x
represents a suffix of si;

0, otherwise,

for 1 ≤ i ≤ N .
The array coloursx for all x may also be obtained by a simple traversal

of the tree with each visit to a node taking O(N) time. The additional
space required is O(N) per node.

The main difference with the approach described in sections 8.5.1
and 8.5.2 is that occurrences are now grouped into classes and the “real”
ones (that is, occurrences considered as individual words in the strings) are
never directly manipulated. Occurrences of a model are thus in fact nodes
of the suffix tree (we denote them by the term “node-occurrences”) and
are extended in the tree instead of in the string. Once the process of model
spelling has ended, the start positions of the “real” occurrences of the valid
models may be recovered by traversing the subtrees of the nodes reached
so far and reading the labels of their leaves.

The algorithm is a development of the recurrence formula given in the
lemma below where x denotes a node of the tree, father(x) its father and
d the number of errors between the label of the path going from the root
to x as against a model m.

Lemma 8.5.4 A pair (x, d) is a node-occurrence of m′ = mα with m ∈
Σk and α ∈ Σ if, and only if, d ≤ e and one of the following two conditions
is verified:

(match) (father(x), d) is a node-occurrence of m and the
label of the arc from father(x) to x is α;

(substitution) (father(x), d− 1) is a node-occurrence of m and
the label of the arc from father(x) to x is β �= α;

(deletion) (x, d− 1) is a node-occurrence of m;
(insertion) (father(x), d− 1) is a node-occurrence of mα.

268 Sagot and Wakabayashi

If n is the average length of the strings and N their number, creating
coloursx for each node x of the tree takes time O(nN2), however manipu-
lating it requires O(N) time per model. Since there can be O(nNV(e, k))
valid models in the worst case, the algorithm time complexity becomes
O(nN2 V(e, k)).

8.5.4 Structured models
Concerning structured models, solutions to variants of increasing generality
of a same basic problem are proposed. Suffix trees are used in all cases.
These variants may be stated as follows. Given a set of N strings s1, . . . , sN ,
a nonnegative integer e and a positive integer q.

Problem 8.5.4 Find all models ((m1,m2), (dmin1 , dmax1)) that are valid.

Problem 8.5.5 Find all models ((m1, . . . ,mp), ((dmin1 , dmax1), . . . ,
(dminp−1 , dmaxp−1))) that are valid, where p ≥ 2.

Problem 8.5.6 Find all models ((m1,m2), (dmin1 , dmax1 , δ1)) that are
valid.

Problem 8.5.7 Find all models ((m1, . . . ,mp), ((dmin1 , dmax1 , δ1), . . . ,
(dminp−1 , dmaxp−1 , δp−1))) that are valid, where p ≥ 2.

The last two problems represent situations where the exact intervals of
distances separating the parts of a structured site are unknown, the only
known fact being that these intervals cover a restricted range of values.
How restricted is indicated by the δi parameters.

To simplify matters, we shall consider that, for 1 ≤ i ≤ p, mi ∈ Σk where
k is a positive integer, i.e. each single model mi of a structured model (m, d)
is of fixed, unique length k. In a likewise manner, we shall assume that each
part mi has the same substitution rate e and, when dealing with models
composed of more than two boxes, that the dmini

, dmaxi
and, possibly,

δi for 1 ≤ i ≤ p − 1 have identical values. We denote by dmin, dmax

and δ these values. Problem 8.5.5 is then formulated as finding all models
((m1, . . . ,mp), (dmin, dmax)) that are valid and Problem 8.5.7 as finding all
valid models ((m1, . . . ,mp), (dmin, dmax, δ)).

Besides fixing a maximum substitution rate for each part in a structured
model, one can also establish a maximum substitution rate for the whole
model. Such a global error rate allows to consider in a limited way possible
correlations between boxes in a model.

Another possible global, or local, constraint one may wish to consider
for some applications concerns the composition of the boxes. One may, for
instance, determine that the frequency of one or more nucleotide in a box
(or among all boxes) be below or above a certain threshold. For structured

8. Pattern Inference under many Guises 269

models composed of more than p boxes, one may also establish that a box i
is palindromic in relation to a box j for 1 ≤ i < j ≤ p. In algorithmic terms,
the two types of constraints just mentioned are not equivalent. The first
type, box composition whether local or global, can in general be verified
only a posteriori while the second type (palindromic boxes) will result in
a, sometimes substantial, pruning of the virtual trie of models.

Introducing such additional constraints may in some cases require
changes to the basic algorithms described below. The interested reader
may find the details concerning such changes in the original paper [23, 24].

Algorithms for Problem 8.5.4

We start by presenting a naive approach then two algorithms that are
efficient enough to tackle structured model extraction from big datasets.
Since they will often be mentioned in what follows, we call them SMA1
and SMA2 (SM stands for Structured Model). The second algorithm has
a better time complexity than the first but needs more space. The first is
easier to understand and implement. Both are described in more detail than
previous algorithms as structured models in some ways incorporate almost
all other kinds of patterns we have been considering. The most notable
exception concerns satellites that will be discussed in Section 8.5.5.

Other combinatorial approaches were developed for treating somewhat
similar kinds of structured patterns. They either enumerate all possible (not
just valid) patterns [43], do not allow for errors [17, 16] or are heuristics
[11, 21].

A naive way of solving Problem 8.5.4 consists in extracting and storing
all valid single models of length k (given q and e), and then, once this
is finished, in checking which pairs of such models could represent valid
structured models (given an interval of distance [dmin, dmax]).

The lemma used for building valid single models is the same as in Sec-
tion 8.5.3 except that in practice, for most biological problems we wish to
address [44, 45], substitutions only will in general be allowed. The lemma
therefore becomes:

Lemma 8.5.5 A pair (x, d) is a node-occurrence of m′ = mα with m ∈
Σk and α ∈ Σ if, and only if, d ≤ e and one of the following two conditions
is verified:

(match) (father(x), d) is a node-occurrence of m and the
label of the arc from father(x) to x is α;

(substitution) (father(x), d− 1) is a node-occurrence of m and
the label of the arc from father(x) to x is β �= α.

One way of doing the verification profits from the simple observation
that two single models m1 and m2 may form a structured one if, and only
if, at least one occurrence of m1 is at the right distance of at least one

270 Sagot and Wakabayashi

occurrence of m2. Building an array of size nN where cell i contains the
list of models having an occurrence starting at that position in s = s1 . . . sN

allows to compare models in cell i to models in cells i+ dmin, . . . , i+ dmax

only. If the sets of occurrences of models are ordered, this comparison may
be done in an efficient way (in time proportional to the size of the sets of
node-occurrences, which is upper-bounded by nN).

Algorithm SMA1: Jumping in the suffix tree

A first non-naive approach to solving the problem starts by extracting single
models of length k. Since we are traversing the trie of models in depth-first
fashion (also in lexicographic order), models are recursively extracted one
by one. At any time, a single model m (and its prefixes) is being considered.
Once a valid model m1 of length k is obtained together with its set of
T -node-occurrences V1 (which are nodes located at level k in GT), the
extraction of all single models m2 with which m1 could form a structured
model ((m1,m2), (dmin, dmax)) starts. This is done with m2 representing
the empty word and having as node-occurrences the set V2 given by:

V2 = {(w, ew = ev) | there exists v in V1 ancestor of w with
dmin ≤ level(w) − level(v) ≤ dmax},

where level(v) indicates the level of node v in GT . From a node-occurrence v
in V1, a jump is therefore made in GT to all potential start node-occurrences
w of m2. These nodes are the dmin- to dmax-generation descendants of v
in GT . Exactly the same recurrence formula given in Lemma 8.5.5 may
be applied to the nodes w in V2 to extract all single models m2 that,
together with m1 could form a structured model verifying the conditions
of the problem, for all valid m1. An illustration is given in Figure 8.7 and
a pseudo-code is presented below. The procedure ExtractModels is called
with m the empty word having as sole node-occurrence the root of GT and
with i = 1.

Algorithm SMA1
procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if i = 2 then
3. put in PotentialStarts the children w of v at levels k + dmin

to k + dmax

4. else
5. put v (i.e., the root) in PotentialStarts
6. for each model mi (and its occurrences) obtained by doing a

recursive depth-first traversal from the root of the virtual
model tree M while M while simultaneously traversing GT
from the node-occurrences in PotentialStarts (Lemma 8.5.5
and quorum constraint) do

8. Pattern Inference under many Guises 271

1
d

...do a jump of variable length...

For each occurrence of m ...

dmax

...and look for occurrences of m k

to

k

min

1

2

Suffix tree of the sequences

1

Figure 8.7. Extracting structured models (in the context of Problem 8.5.4)
with a suffix tree – An illustration of Algorithm SMA1.

7. if i = 1 then
8. ExtractModels(m = m1, i+ 1)
9. else
10. report the complete model m = ((m1,m2), (dmin, dmax))

as valid

Since the minimum and maximum length of a structured model (m, d)
that may be considered are, respectively, 2k+dmin and 2k+dmax, we need
only build the tree of suffixes of length 2k + dmin or more, and for each
such suffix to consider at most the first 2k + dmax symbols.

The observation made in the previous paragraph applies also to the sec-
ond algorithm (to be described in what follows). Note that, in both cases,
this implies ni ≤ ni+1 ≤ Nn for all i ≥ 1 where ni is the number of nodes
at depth i in GT .

Algorithm SMA2: Modifying the suffix tree

Algorithm SMA2 initially proceeds like Algorithm SMA1: it starts by build-
ing single models of length k, one at a time. For each node-occurrence v
of a first part m1 considered in turn, a jump is made in GT down to the
descendants of v situated at lower levels. This time however, the algorithm

272 Sagot and Wakabayashi

just passes through the nodes at these lower levels, grabs some informa-
tion the nodes contain and jumps back up to level k again (in a way that
will be explained in a short while). The information grabbed in passing
is used to temporarily and partially modify GT and start, from the root
of GT , the extraction of the second part m2 of a potentially valid struc-
tured model ((m1,m2), (dmin, dmax)). Once the operation of extracting all
possible companions m2 for m1 has ended, that part of GT that was mod-
ified is restored to its previous state. The construction of another single
model m1 of a structured model ((m1,m2), (dmin, dmax)) then follows. The
whole process then unwinds in a recursive way until all structured models
satisfying the initial conditions are extracted.

More precisely, the operation between the spelling of models m1 and m2
locally alterates GT up to level k to a tree GT ′ that contains only the k-long
prefixes of suffixes of {s1, . . . , sN} starting at a position between dmin and
dmax from the end position in si of an occurrence of m1. Tree GT ′ is, in
a sense, the union of all the subtrees t of depth at most k rooted at nodes
that represent start occurrences of a potential companion m2 for m1.

For each model m1 obtained, before spelling all possible companions
m2 for m1, the content of coloursz for all nodes z at level k in GT are
stored in an array L of dimension nk (this is for later restoration of GT).
Tree GT ′ is then obtained from GT by considering all nodes w in GT that
may be reached on a descent of, this time, k + dmin to k + dmax arcs
down from the node-occurrences (v, ev) of m1. These correspond to all end
node-occurrences (instead of start as in the first algorithm) of potentially
valid models having m1 as first part. The boolean arrays coloursw for all
w indicate to which input strings these occurrences belong. This is the
information we grab in passing and take along the only path of suffix links
in GT that leads back to a node z at level k in GT . If it is the first time z
is reached, coloursz is set equal to coloursw, otherwise coloursw is added
(boolean “or” operation) to coloursz. Once all nodes v and w have been
treated, the information contained in the nodes z that were reached during
this operation are propagated up the tree from level k to the root (using
normal tree arcs) in the following way: if z̄ and ẑ have same parent z, then
coloursz = coloursz̄ ∪ coloursẑ. Any arc from the root that is not visited
at least once in such a traversal up the tree is not part of GT ′, nor are the
subtrees rooted at its end node.

The extraction of all second parts m2 of a structured model (m, d) follows
as for single models in the initial algorithm (Lemma 8.5.5).

Restoring the tree GT as it was before the operations described above
requires restoring the value of coloursz preserved in L for all nodes z at
level k and propagating the information (state of boolean arrays) from z
up to the root.

Since nodes w at level between 2k + dmin to 2k + dmax will be solicited
for the same operation over and over again, which consists in following the
unique suffix-link path from w to a node z at level k in GT , GT is pre-

8. Pattern Inference under many Guises 273

treated so that one single link has to be followed from z. Going from w to
z takes then constant time.

A pictorial illustration of Algorithm SMA2 is given in Figure 8.8.
A pseudo-code for the algorithm is as follows. The procedure Extract-

Models is called, as in the previous algorithm, with m the empty word
having as sole node-occurrence the root of GT and with i = 1.

Algorithm SMA2
procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if i = 2 then
3. put in PotentialEnds the children w at levels 2k + dmin to

2k + dmax

4. for each node-occurrence w in PotentialEnds do
5. follow fast suffix-link to node z at level k
6. put z in L
7. if first time z is reached then
8. initialize coloursz with zero
9. put z in NextEnds
10. add coloursw to coloursz

11. do a depth-first traversal of GT to update the boolean arrays
from the root to all z in NextEnds (let GT ′ be the k-deep
tree obtained by such an operation)

12. if i = 1 then
13. Tree = GT
14. else
15. Tree = GT ′

16. for each model mi (and its occurrences) obtained by doing a recursive
depth-first traversal from the root of the virtual model tree
M while simultaneously traversing Tree from the root
(Lemma 8.5.5 and quorum constraint) do

17. if i = 1 then
18. ExtractModels(m = m1, i+ 1)
19. else
20. report the complete model m = ((m1,m2), (dmin, dmax)) as valid
21. restore tree GT to its original state using L

Proposition 8.5.1 The following two statements are true:

• GT ′ contains only the k-long prefixes of suffixes of {s1, . . . , sN} that
start at a position between dmin and dmax of the end position in
{s1, . . . , sN} of an occurrence of m1;

• the above algorithm solves Problem 8.5.4.

274 Sagot and Wakabayashi

m

b c

d e

a
k

k

k k

k+d

Figure 8.8. Extracting structured models (in the context of Problem 8.5.4)
with a suffix tree – An illustration of Algorithm SMA2.

The proof is straightforward and may be found in [23, 24].

Let us now analyse the complexity of the algorithms we have described.
The naive approach to solve Problem 8.5.4 requires nN2V(e, k) time to
find single models that could correspond to either part of a structured
model (and nNV(e, k) space to store all potential parts). If we denote by
∆ the value dmax − dmin + 1, finding which pair of single models may be
put together to produce a structured model could then be done in time
proportional to:

V(e, k)
︸ ︷︷ ︸

(1)

∆V(e, k)
︸ ︷︷ ︸

(2)

nN︸︷︷︸
(3)

nN︸︷︷︸
(4)

where (1) is the maximum number of single models to which a position
may belong, (2) is the maximum number of models to which a position at
a distance between k+ dmin and k+ dmax from the first may belong, (3) is
the maximum number of comparisons that must be done to check whether
two single models may form a structured one and, finally, (4) is the number
of starting positions to consider.

To obtain the complexity of Algorithm SMA1, we have to calculate the
total number of visits we may do to nodes between level 2k + dmax (the
deeper level we ever reach) and the root. To count this, we need to consider,
for each node between levels 2k + dmin and 2k + dmax in GT , how many

8. Pattern Inference under many Guises 275

times it could represent the node-occurrence of a model composed of two
boxes, each one having length k and separated by a space of length dmin

to dmax. This number is at most:
∑dmax

i=dmin
n2k+iV2(e, k) ≤ min{2,∆}n2k+dmaxV2(e, k)

≤ min{2,∆}n2k+dmax
k2e|Σ|2e,

where ∆ denotes the value dmax − dmin + 1 and n2k+dmax is the num-
ber of tree nodes at depth 2k + dmax. This last number is never more
than nN . The min{2,∆} in the bound comes from the fact that the de-
gree of any internal node of GT is at least 2. Since each visit to a node
requires at most O(N) operations, the time complexity of the Algorithm
SMA1 is O(min{2,∆}Nn2k+dmaxV2(e, k)), that is, O(Nn2k+dmaxV2(e, k)).
The space complexity is O(N2n), as for the extraction of single models.

In the case of Algorithm SMA2, we have to consider the number of op-
erations necessary for building the two parts of each model using GT or
GT ′, as well as the number of operations needed to obtain GT ′ from GT
and then to restore back GT .

The single models composing either two parts of a structured model may
be built in at most NnkV2(e, k) operations. The reason for this is that,
when spelling either part of a model, we are working with nodes between
the root and level k only (there are at most 2nk such nodes), and there are
V2(e, k) ways of spelling two paths from a node at level k to the root (each
path corresponding to one part of a structured model) allowing for up to e
substitutions in each.

The total number of operations needed to modify the first k levels of the
suffix tree GT to obtain GT ′ before the identification of a second part at a
right distance of the first is upper-bounded by

dmax∑

i=dmin

Nn2k+iV(e, k) +NnkV(e, k) ≤ min{2,∆}Nn2k+dmaxV(e, k),

where the first summand corresponds to the visits to nodes z coming from
w for all m1 and the second one corresponds to the propagations from z to
the root for all m1.

Restoring GT to start the extraction of another structured model from
a different first part takes O(NnkV(e, k)) operations using O(Nnk) addi-
tional space (size of array L, each cell possibly pointing to a node at level
k in GT or to nil). The total time complexity of the second algorithm is
therefore O(NnkV2(e, k)+min{2,∆}Nn2k+dmaxV(e, k)+NnkV(e, k)). This
results in an O(NnkV2(e, k) + Nn2k+dmaxV(e, k)) time complexity. Space
complexity is slightly higher than for the previous algorithm:O(N2n+Nnk)
where nk ≤ Nn. The second term is for array L.

In either case, the complexity obtained is better both in terms of time
and space than the one given by a naive approach to Problem 8.5.4 (see
above).

276 Sagot and Wakabayashi

Algorithms for Problem 8.5.5

We describe now how the algorithms seem for Problem 8.5.4 can be
extended to extract structured models with p > 2 parts.

It is immediate how to extend Algorithm SMA1 to extract structured
models composed of p > 2 parts. After extracting the first i parts of a
structured model ((m1, . . . , mp), (dmin, dmax)) for 1 ≤ i < p−1, one jumps
down in the tree GT (following normal tree arcs) to get to the dmin- to
dmax-descendants of every node-occurrence of ((m1, . . . ,mi), (dmin, dmax))
then continues the extraction from there using Lemma 8.5.5.

A pseudo-code is given below.

Algorithm Extended-SMA1
procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if i > 1 then
3. put in PotentialStarts the children w of v at levels

(i− 1)k + (i− 1)dmin to (i− 1)k + (i− 1)dmax

4. else
5. put v (the root) in PotentialStarts
6. for each model mi (and its occurrences) obtained by doing a recursive

depth-first traversal from the root of the virtual model tree M
while simultaneously traversing GT from the node-occurrences
in PotentialStarts (Lemma 8.5.5 and quorum constraint) do

7. if i < p then
8. ExtractModels(m = m1 · · ·mi, i+ 1)
9. else
10. report the complete model m = ((m1, · · · ,mp), (dmin, dmax))

as valid

Let us now describe how to extend Algorithm SMA2 to solve Prob-
lem 8.5.5. This extension is slightly more complex then the previous one
and thus calls for a few remarks. The operations done to modify the tree
between building mi≥1 and mi+1 are almost the same as those described
for Algorithm SMA2, except for two facts. One is that up to (p−1) arrays L
are now needed to restore the tree after each modification it undergoes. The
second, more important difference is that we need to keep for each node vk

at level k reached from an ascent up GT ’s suffix links a list, noted Lptrvk
,

of pointers to the nodes at lower levels that affected the contents of vk. The
reason for this is that tree GT is modified up to level k only (resulting in tree
GT ′) as these are the only levels concerned by the search for occurrences
of each box of a structured model. Lower levels of GT remain unchanged,
in particular the boolean arrays at each node below level k. To obtain the
correct information concerning the potential end node-occurrences of boxes

8. Pattern Inference under many Guises 277

i for i > 2 (i.e. to which strings such occurrences belong), we therefore can-
not descend GT from the ends of node-occurrences in GT ′ of box (i− 1). If
we did, we would not miss any occurrence but we could get more, e.g. ones
that did not have an occurrence of a previous box in the model. We might
thus overcount some strings and consider as valid a model which, in fact,
no longer satisfied the quorum. We have to go down GT from the ends of
node-occurrences in GT , that is from the original ends of node-occurrences
in GT of the boxes built so far. These are reached from the list of point-
ers Lptrvk

for the nodes vk that are identified as occurrences of the box
currently just treated. For models composed of p boxes, we need at most
(p− 1) lists Lptrvk

for each node vk at level k.
A pseudo-code for the algorithm is as follows:

Algorithm Extended-SMA2
procedure ExtractModels(Model m, Block i)
1. for each node-occurrence v of m do
2. if i > 2 then
3. put in PotentialEnds the children w at levels ik + (i− 1)dmin

to ik + (i− 1)dmax

4. for each node-occurrence w in PotentialEnds do
5. follow fast suffix-link to node z at level k
6. put z in L(i)
7. if first time z is reached then
8. initialize coloursz with zero
9. put z in NextEnds
10. add coloursw to coloursz

11. do a depth-first traversal of GT to update the boolean arrays
from the root to all z in NextEnds (let GT ′ be the k-deep
tree obtained by such an operation)

12. if i = 1 then
13. Tree = GT
14. else
15. Tree = GT ′

16. for each model mi (and its occurrences) obtained by doing a recursive
depth-first traversal from the root of the virtual model tree
M while simultaneously traversing Tree from the root
(Lemma 8.5.5 and quorum constraint) do

17. if i < p then
18. ExtractModels(m = m1 · · ·mi, i+ 1)
19. else
20. report the complete model m = ((m1, · · · ,mp), (dmin, dmax))

as valid
21. if i > 1 then
22. restore tree GT to its original state using L(i)

278 Sagot and Wakabayashi

Using a same reasoning as before, it is not difficult to see that
the first algorithm requires O(Nnpk+(p−1)dmax

Vp(e, k)) time, where
Vp(e, k)) ≤ kpe|Σ|pe. The space complexity remains the same as for solving
Problem 8.5.4, that is O(N2n).

In the case of the second algorithm, the p single models composing a
structured model may be built in a number of operations upper bounded
by O(Nnk Vp(e, k)).

The total number of operations needed to modify the first k levels of the
suffix tree GT to obtain GT ′ before the identification of a box (i + 1) for
i > 2 at a right distance of box i is upper-bounded by:

∑dmax

j=dmin
Nnik+(i−1)jVi−1(e, k)) + (NnkV(e, k),

which is at most

min{2,∆}Nnik+(i−1)dmax
Vi−1(e, k).

Restoring GT ′ as we back off to the preceding box takes, as before,
O(Nnk V(e, k)) operations using O(N(p − 1)nk) additional space (size of
arrays L(1) to L(p)).

The total time complexity of the second algorithm is therefore of
O(NnkVp(e, k) + Nnpk+(p−1)dmax

Vp−1(e, k)). The space complexity is
O(N2n+N(p− 1)nk).

Algorithms for Problem 8.5.6

Let us now extend the previous algorithms to handle restricted intervals
of unknown limits. In the case where the distances between the two parts
m1 and m2 of a single model vary inside a restricted interval whose limits
are unknown, Algorithm SMA1 can be extended in the following way. Once
a first part m1 of a structured model ((m1,m2), (dmin, dmax, δ)) has been
extracted, we jump as before to nodes w in V2. As we now must verify that:

• there exists d, with dmin + δ ≤ d ≤ dmax − δ, such that level(w) -
level(v) is equal to d± δ;

• (more particularly) d is the same for pairs of occurrences (one oc-
currence for each part of the structured model) present in at least q
distinct strings;

we just need to keep at each node its distance from level k and to count
the number of distinct strings for each restricted interval d± δ separately.

A second algorithm can be derived, now extending Algorithm SMA2. In
this case, in order to verify the same two points mentioned above, we have
to keep an additional information at the nodes z situated at level k that are
reached from w by jumping back up the tree (following suffix links). This
information is required because a node at level k may be reached from nodes

8. Pattern Inference under many Guises 279

w corresponding to different distances from occurrences of the previous box.
We therefore need to have at each node z an array of dimension not N but
((dmax−dmin−(2∗δ))×N). The node-occurrences at each extension step of
the second part of a model are added for each cell i ∈ (dmax−dmin−(2∗δ))
in turn. If for any i, this number is at least q, the model is valid and the
second part may be further extended (if its length is still smaller than k).

We denote this boolean array Coloursz with a capital C to stress that it is
now multi-dimensional. If it is the first time a node z is reached from w, the l
cells of Coloursz for l ∈ [max{dmin+δ, level(w)−level(z)−δ},min{dmax−δ,
level(w)−level(z) + δ}] are set equal to coloursw and all the other cells are
initialized to zero, otherwise coloursw is added (boolean “or”) to the l cells
of Coloursz. Once all nodes v and w have been treated, the information
contained in the nodes z that were reached during this operation are prop-
agated up the tree from level k to the root (using normal tree arcs) in
the following way: if z̄ and ẑ have same parent z, then, for all l such that
dmin + δ1 ≤ l ≤ dmax − δ1, Coloursz[l] = Coloursz̄[l] ∪ Coloursẑ[l].

The time complexity of the first algorithm described above for solving
Problem 8.5.6 remains O(Nn2k+dmax V2(e, k)) and the space complexity
O(nN2).

The time complexity of the second algorithm for solving the same prob-
lem becomes O(N ∆′ nkV2(e, k) + N∆′n2k+dmax

V(e, k)) where ∆′ =
dmax − dmin − (2 ∗ δ). The space complexity is O(N2n+N∆′nk).

Algorithms for Problem 8.5.7

Few changes in the previous ideas are required when one wishes to
consider structured models that are composed of more than two boxes
separated by intervals of distances of the type d± δ for some d and a fixed
δ. The main one concerns the second algorithm: the boolean arrays at each
node in the suffix tree have now to be of dimension N(p − 1)∆′. The ∆′

comes from having to handle restricted intervals of unknown limits as we
saw in the previous problem. The (p− 1) comes from the fact that d may
be different for each pair of successive boxes in the structured model. The
time and space complexity will therefore be further multiplied by a term
of (p− 1).

The time complexity of the second algorithm (the only one for which
there is a change) for solving Problem 8.5.7 is O(N∆′(p − 1)nkVp(e, k) +
N∆′(p − 1)npk+(p−1)dmax

Vp−1(e, k)). The space complexity is O(N2n +
N∆′(p− 1)nk).

8.5.5 Satellites
The satellite problem we propose to solve is the following:

280 Sagot and Wakabayashi

Problem 8.5.8 Given a string s and parameters min repeat, min range,
max range, max jump, and e (possibly also g), find all consensus satellite
models m that are valid for s.

In fact, the original papers [34, 35] reported a set of disjoint “fittest”
trains realizing each model m given a measure of “fitness”.

The algorithm presented below is the only combinatorial, non-heuristical
developed so far for identifying tandem arrays. Other exact approaches
either treated the case of tandem repeats only [22, 19], did not allow
for errors [3, 5, 26, 46] or required generating all possible (not just valid)
models of a given length [8, 10, 32].

We first treat the problem of building prefix satellite models.
As with all previous cases considered in this paper, satellite models are

constructed by increasing lengths. In order to determine if a model is valid,
we must have some representation of the train or wagons that make it so.
There are two possibilities:

• we can keep track of each validating train and its associated wagons,
or

• we can keep track of individual wagons, and, on the fly, determine if
they can be combined into validating trains.

The first possibility is appealing because model extension is straightfor-
ward. We would just have to check, for each wagon of each train, whether
it can be extended in relation to the extended model, and then count how
many wagons remain to see whether the train it belonged to is still a valid
one. However, there are generally many overlapping trains involving many
of the same wagons for a given model. Common wagons may be present
more than once in the list of occurrences of m if this is kept as a list of
trains. This approach entails redundancies that lead to an inefficient algor-
ithm. We therefore adopt the second approach, of keeping track of wagons
and determining if they can be assembled into trains as needed.

The rules of prefix-model extension are given in Lemma 8.5.6 below. A
wagon is identified by a triple (i, j, d) indicating that it is the substring
sisi+1 . . . sj of s and is d ≤ e differences away from its model. Position i
indicates the left-end of the wagon, and j its right-end. Contrary to the
previous algorithms presented in this paper, models and their occurrences
(the wagons) will be extended to the left. This is just to facilitate verifying
Property 8.4.3. Right ends of occurrences are calculated but will be used
only for checking Property 8.4.4.

Lemma 8.5.6 The triple (i, j, d) encodes a wagon of m′ = αm with α ∈ Σ
and m ∈ Σk if, and only if, d ≤ e and at least one of the following conditions
is true:

8. Pattern Inference under many Guises 281

(match) (i+ 1, j, d) is a wagon of m and si = α;
(substitution) (i+ 1, j, d− 1) is a wagon of m and si �= α;
(deletion) (i, j, d− 1) is a wagon of m;
(insertion) (i+ 1, j, d− 1) is a wagon of αm.

For each prefix-model m, we keep a list of the wagons of m that are in
at least one train validating m. We describe such wagons as being valid
with respect to m. When we extend a model (to the left) to m′ = αm, we
perform two tasks:

• First, determine which valid wagons of m can be extended as above
to become wagons of m′.

• Second, of these newly determined wagons of m′, keep only those that
are valid with respect to m′. This requires effectively assemblying
wagons into trains, something that is not needed in an approach that
would keep track of trains directly.

Note that we need not actually enumerate the trains in the second step,
we simply must determine if a wagon is part of one. This will allow us to
perform an extension step in time linear with the length of the string.

As a final insight, consider the directed graph G = (V,E) where V is
the set of all valid wagons and there is an edge from wagon u to v if
leftv− leftu ∈ JUMP. Then a wagon u is valid if it is part of a path of length
min repeat or more in G. Determining this is quite simple as the graph
is clearly acyclic. In the computation that will follow, we will effectively
compute the length of the longest path to u in Lcntu and the length of the
longest path from u in Rcntu. If Lcntu + Rcntu > min repeat then u is
valid.

We now consider how to obtain the onsensus satellite models.
We encode the collection of all wagons of m in a set, Lm ⊆ {1 . . . , n},

and an (n+ 1) × (2e+ 1)-element array Dm as follows:

1. i ∈ Lm if and only if i is the left-end of at least one wagon valid with
respect to m.

2. for each i ∈ Lm, the value Dm[i, δ] for δ ∈ [−e, e] is the edit distance
of m from wagon sisi+1 . . . si+|m|−1+δ.

Intuitively, Lm gives the left-ends of all valid wagons which is all we need
to check Properties 8.4.2 and 8.4.3. Dm gives us the distances we need
for extending models, together with the right-ends needed for checking
Property 8.4.4. Formally, (i, i+ |m| − 1 + δ, d) is a valid wagon of m if and
only if i ∈ Lm and d = Dm[i, δ] ≤ e.

The complete algorithm is described in the sequel. When Extend(αm) is
called, it is assumed that Lm is known along with the relevant Dm values.
The routine computes these items for the extension αm and recursively for
the extensions thereof. Lines 0-5 compute the set of left-ends of wagons for

282 Sagot and Wakabayashi

αm derivable from wagons of m that are valid. While Lemma 8.5.6 gives us
a way to do so, recall that we are using dynamic programming to compute
all extensions simultaneously. This corresponds to adding the last row to
the dynamic programming matrix of s versus αm. At first Lm gives all the
positions in row |m| that have value e or less (and are valid) and Dm gives
their values. From these, we compute the positions in row |m| + 1 in the
obvious sparse fashion to arrive at Lαm and the values Dαm.

int Lcnt[1..n], Rcnt[1..n]

procedure Extend(αm)
Lαm ← ∅

1. for i+ 1 ∈ Lm (in decreasing order) do

2. for δ ∈ [−e, e] do

3. Dαm[i, δ] ← min

Dm[i+ 1, δ] + (if si = α then 0 else 1),
if i ∈ Lm then Dm[i, δ + 1] + 1,
if i+1 ∈ Lαm then Dαm[i+ 1, δ − 1] + 1

4. if minδ{Dαm[i, δ]} ≤ e then
5. Lαm ← Lαm ∪ {i}
6. for i ∈ Lαm (in decreasing order) do
7. Rcnt[i] ← maxk∈(i+JUMP)∩Lαm

{Rcnt[k]} + 1

8. for i ∈ Lαm (in increasing order) do
9. Lcnt[i] ← maxk∈(i−JUMP)∩Lαm

{Lcnt[k]} + 1

10. for i ∈ Lαm do
11. if Lcnt[i] +Rcnt[i] ≤ min repeat then Lαm ← Lαm − {i}

12. if Lαm �= ∅ then
13. if |αm| ∈ [min range,max range] then
14. Record(αm)
15. if |αm| < max range then
16. for β ∈ Σ do
17. Extend(βαm)

Once wagons have been extended when possible, we have to eliminate
those that are no longer valid. This is performed by Lines 6 to 11. We
compute, for each position i ∈ Lαm, the maximum number of wagons in
a train starting with a wagon whose left-end is at i in Rcnt[i] (includ-
ing itself), and the maximum number of wagons in a train ending with
a wagon whose left-end is at i in Lcnt[i]. The necessary recurrences are
given in Lines 7 and 9 of the algorithm where we recall that JUMP =
{y : y ∈

⋃
x∈[1,max jump] x× [min range,max range]} and i + JUMP de-

notes adding i to each element of JUMP. Observe that Rcnt[i]+Lcnt[i]−1
is the length of the longest train containing a wagon whose left-end is at
position i.

8. Pattern Inference under many Guises 283

Clearly Lines 6-9 take O(|Lαm||JUMP|) time. However, when Lαm is a
very large fraction of n, one can maintain an Rcnt(Lcnt)-prioritized queue
of the positions in (i + JUMP) ∩ Lαm, to obtain an O(n · max jump ·
log |JUMP|) bound.

Finally in the remaining steps, Lines 12-17, the algorithm calls Record
to record potential models and then recursively tries to extend the model if
possible. The routine Record confirms that the model is a consensus model
by checking Property 4.3 and recording the intervals spanned by trains
valid for the consensus model, if any.

We start by observing that O(|JUMP| + e) time is spent on a given left-
end position for each prefix model matching the string beginning at that
position. The term e comes from Lines 2 and 3 while |JUMP| is the number
of back or forward elements that have to be examined in order to determine,
for each wagon, the length of the longest train it may belong to (Lines 9 and
11). The number of prefix models that could match a given position with e
or fewer errors is by definition Σmax range

k=1 V(e, k). The total time taken by
the algorithm is therefore bounded above by O(n·(|JUMP|+e)·max range·
V(e,max range)) = O(n ·max range2 ·max jump · V(e,max range)) as
e < max range.

The space requirement is that of keeping all the information concerning
at most max range models at a time (a model m and all its prefixes).
It is therefore on the order of at most O(n ·max range · e) as only O(ne)
storage is required to record the left-end positions and edit-distance at each
possible right-end.

One of the by-products of the approach for finding satellites described
above is that the algorithm is also capable of identifying periodic, or approx-
imately periodic repeats that may be non-contiguous. These correspond to
prefix models, i.e. to models that verify properties 8.4.2 and 8.4.3 but not
necessarily Property 8.4.4.

A more substantial modification of the algorithm allows us to treat the
presence of inverted repeats amongst the direct ones when these occur in
tandem. The exercise of doing so entails distinguishing between direct and
inverted wagons, extending properties 8.4.2 and 8.4.3 to accommodate the
inverted wagons, and then modifying the basic algorithm accordingly.

The extension of properties 8.4.3 and 8.4.4 gives raise to the following
new versions:

Property (8.4.3)’

endui+1 − endui ∈

JUMP, if both ui and ui+1 are direct
or both are inverted;

JUMP INV, otherwise;

284 Sagot and Wakabayashi

where

endui+1 − endui
∈
{

leftu, if u is direct;
rightu, otherwise;

and

JUMP INV =
⋃

x∈[0,max jump−1]

[x× min range, (x+ 2) × max range].

Property (8.4.4)’

startui+1 − endui ∈ GAP,

where

startu =

{
rightu, if u is direct;
leftu, otherwise;

and

endu =

{
leftu, if u is direct;
rightu, otherwise.

A wagon is now identified by a quadruple (i, j, d, f) where the additional
variable f is a flag indicating whether we are dealing with a direct or an
inverted occurrence. Further details may be found in [34].

References

[1] P. Bieganski, J. Riedl, J. V. Carlis, and E. Retzel.Generalized suffix trees
for biological sequence data: applications and implementations.In Proc. of
the 27th Hawai Int. Conf. on Systems Sci., pages 35–44. IEEE Computer
Society Press, 1994.

[2] B. Charlesworth, P. Sniegowski, and W. Stephan.The evolutionary dynamics
of repetitive DNA in eukaryotes.Nature, 371:215–220, 1994.

[3] B. Clift, D. Haussler, R. McConnell, T. D. Schneider, and G. D. Stormo.Se-
quence landscapes.Nucleic Acids Res., 14:141–158, 1986.

[4] T. E. Creighton.Proteins: Structures and Molecular Properties.W.H. Free-
man, 1993.

[5] M. Crochemore.An optimal algorithm for computing the repetitions in a
word.Inf. Proc. Letters, 12:244–250, 1981.

[6] M. Crochemore and W. Rytter.Text algorithms.Oxford University Press,
1994.

[7] M. Dayhoff, R. Schwartz, and B. Orcutt.A model of evolutionary change
in proteins.In M. Dayhoff, editor, Atlas of Protein Sequence an Structure,
volume 5 suppl.3, pages 345–352. Natl. Biomed. Res. Found., 1978.

8. Pattern Inference under many Guises 285

[8] O. Delgrange.Un algorithme rapide pour une compression modulaire opti-
male. Application à l’analyse de séquences génétiques.Thèse de doctorat,
Université de Lille I, 1997.

[9] V. Escalier, J. Pothier, H. Soldano, and A. Viari.Pairwise and multiple
identification of three dimensional common substructures in proteins.J.
Computational Biology, 1996.

[10] V. Fischetti, G. Landau, J. Schmidt, and P. Sellers.Identifying periodic
occurrences of a template with applications to protein structure.In Z. G.
A. Apostolico, M. Crochemore and U. Manber, editors, Combinatorial Pat-
tern Matching, volume 644 of Lecture Notes in Computer Science, pages
111–120. Springer-Verlag, 1992.

[11] Y. M. Fraenkel, Y. Mandel, D. Friedberg, and H. Margalit.Identification of
common motifs in unaligned DNA sequences: application to escherichia coli
lrp regulon.Comput. Appl. Biosci., 11:379–387, 1995.

[12] D. J. Galas, M. Eggert, and M. S. Waterman.Rigorous pattern-recognition
methods for DNA sequences. analysis of promoter sequences from escherichia
coli.J. Mol. Biol., 186:117–128, 1985.

[13] D. Gusfield.Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology.Cambridge University Press, 1997.

[14] S. Henikoff and J. Henikoff.Amino acid substitution matrices from protein
blocks.Proc. Natl. Acad. Sci. USA, 89:10915–10919, 1992.

[15] L. C. K. Hui.Color set size problem with applications to string matching.In
A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors, Combina-
torial Pattern Matching, volume 644 of Lecture Notes in Computer Science,
pages 230–243. Springer-Verlag, 1992.

[16] I. Jonassen.Efficient discovery of conserved patterns using a pattern
graph.Comput. Appl. Biosci., 13:509–522, 1997.

[17] I. Jonassen, J. F. Collins, and D. G. Higgins.Finding flexible patterns in
unaligned protein sequences.Protein Science, 4:1587–1595, 1995.

[18] I. Jonassen, I. Eidhammer, and W. R. Taylor.Discovery of local packing
motifs in protein structures.Proteins: Structure, Function, and Genetics,
34:206–219, 1999.

[19] S. K. Kannan and E. W. Myers.An algorithm for locating non-overlapping
regions of maximum alignment score.In Z. G. A. Apostolico, M. Crochemore
and U. Manber, editors, Combinatorial Pattern Matching, volume 684 of
Lecture Notes in Computer Science, page 7486. Springer-Verlag, 1993.

[20] R. Karp, R. Miller, and A. Rosenberg.Rapid identification of repeated pat-
terns in strings, trees and arrays.In Proc. 4th Annu. ACM Symp. Theory of
Computing, pages 125–136, 1972.

[21] A. Klingenhoff, K. Frech, K. Quandt, and T. Werner.Functional promoter
modules can be detected by formal models independent of overall nucleotide
sequence similarity.Bioinformatics 1, 15:180–186, 1999.

[22] G. Landau and J. Schmidt.An algorithm for approximate tandem repeats.In
Z. G. A. Apostolico, M. Crochemore and U. Manber, editors, Combinatorial
Pattern Matching, volume 684 of Lecture Notes in Computer Science, pages
120–133. Springer-Verlag, 1993.

286 Sagot and Wakabayashi

[23] L. Marsan and M.-F. Sagot.Algorithms for extracting structured motifs using
a suffix tree with an application to promoter and regulatory site consensus
identification.J. Computational Biology, 7:345–362, 2000.

[24] L. Marsan and M.-F. Sagot.Extracting structured motifs using a suffix tree
– algorithms and application to promoter consensus identification.In S. Is-
trail, P. Pevzner, and M. Waterman, editors, RECOMB’00. Proceedings
of Fourth Annual International Conference on Computational Molecular
Biology. ACM Press, 2000.

[25] E. M. McCreight.A space-economical suffix tree construction algorithm.J.
ACM, 23:262–272, 1976.

[26] A. Milosavljevic and J. Jurka.Discovering simple DNA sequences by the
algorithmic significance method.Comput. Appl. Biosci., 9:407–411, 1993.

[27] L. Parida, I. Rigoutsos, A. Floratos, D. Platt, and Y. Gao.Pattern discovery
on character sets and real-valued data: linear bound on irredundant mo-
tifs and polynomial time algorithms.In Proc. of the eleventh ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 297–308. ACM Press,
2000.

[28] J. Pothier.1993.Personal communication.

[29] C. Queen, M. N. Wegman, and L. J. Korn.Improvements to a pro-
gram for DNA analysis: a procedure to find homologies among many
sequences.Nucleic Acids Res., 10:449–456, 1982.

[30] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan.Stereochemis-
try of polypeptide chain configurations.J. Mol. Biol., 87:95–99, 1963.

[31] J. Risler, M. Delorme, H. Delacroix, and A. Hénaut.Amino acid substitutions
in srtucturally related proteins: a pattern recognition approach.J. Mol. Biol.,
204:1019–1029, 1988.

[32] E. Rivals and O. Delgrange.A first step toward chromosome analysis by
compression algorithms.In N. G. Bourbakis, editor, First International IEEE
Symposium on Intelligence in Neural and Biological Systems, pages 233–239.
IEEE Computer Society Press, 1995.

[33] M.-F. Sagot, V. Escalier, A. Viari, and H. Soldano.Searching for repeated
words in a text allowing for mismatches and gaps.In R. Baeza-Yates and
U. Manber, editors, Second South American Workshop on String Processing,
pages 87–100, Viñas del Mar, Chili, 1995. University of Chili.

[34] M.-F. Sagot and E. W. Myers.Identifying satellites and periodic repetitions
in biological sequences.J. of Computational Biology, 10:10–20, 1998.

[35] M.-F. Sagot and E. W. Myers.Identifying satellites in nucleic acid se-
quences.In S. Istrail, P. Pevzner, and M. Waterman, editors, RECOMB’98.
Proceedings of Second Annual International Conference on Computational
Molecular Biology, pages 234–242. ACM Press, 1998.

[36] M.-F. Sagot and A. Viari.A double combinatorial approach to discovering
patterns in biological sequences.In D. Hirschberg and G. Myers, editors,
Combinatorial Pattern Matching, volume 1075 of Lecture Notes in Computer
Science, pages 186–208. Springer-Verlag, 1996.

8. Pattern Inference under many Guises 287

[37] M. F. Sagot, A. Viari, J. Pothier, and H. Soldano.Finding flexible patterns
in a text - an application to 3D molecular matching.Comput. Appl. Biosci.,
11:59–70, 1995.

[38] M.-F. Sagot, A. Viari, and H. Soldano.A distance-based block searching
algorithm.In C. Rawlings, D. Clark, R. Altman, L. Hunter, T. Lengauer, and
S. Wodak, editors, Third International Symposium on Intelligent Systems for
Molecular Biology, pages 322–331, Cambridge, England, 1995. AAAI Press.

[39] M.-F. Sagot, A. Viari, and H. Soldano.Multiple comparison: a peptide
matching approach.Theoret. Comput. Sci., 180:115–137, 1997.presented at
Combinatorial Pattern Matching 1995.

[40] H. Soldano, A. Viari, and M. Champesme.Searching for flexible repeated pat-
terns using a non transitive similarity relation.Pattern Recognition Letters,
16:233–246, 1995.

[41] R. Staden.Methods for discovering novel motifs in nucleic acid sequences.Com-
put. Appl. Biosci., 5:293–298, 1989.

[42] E. Ukkonen.Constructing suffix trees on-line in linear time.In IFIP’92, pages
484–492, 1992.

[43] J. van Helden, A. F. Rios, and J. Collado-Vides.Discovering regulatory el-
ements in non-coding sequences by analysis of spaced dyads.Nucleic Acids
Res., 28:1808–1818, 2000.

[44] A. Vanet, L. Marsan, A. Labigne, and M.-F. Sagot.Inferring regulatory el-
ements from a whole genome. An analysis of the σ80 family of promoter
signals.J. Mol. Biol., 297:335–353, 2000.

[45] A. Vanet, L. Marsan, and M.-F. Sagot.Promoter sequences and algorithmical
methods for identifying them.Research in Microbiology, 150:779–799, 1999.

[46] R. Verin and M. Crochemore.Direct construction of compact directed acyclic
word graphs.In A. Apostolico and J. Hein, editors, Combinatorial Pattern
Matching, volume 1264 of Lecture Notes in Computer Science, pages 116–
129. Springer-Verlag, 1997.

[47] M. S. Waterman.General methods of sequence comparison.Bull. Math. Biol.,
46:473–500, 1984.

[48] M. S. Waterman.Multiple sequence alignments by consensus.Nucleic Acids
Res., 14:9095–9102, 1986.

[49] M. S. Waterman.Consensus patterns in sequences.In M. S. Waterman, edi-
tor, Mathematical Methods for DNA Sequences, pages 93–116. CRC Press,
1989.

This page intentionally left blank

9

Szemerédi’s Regularity Lemma
and Quasi-randomness
Y. Kohayakawa1

V. Rödl2

9.1 Introduction

A beautiful result of Szemerédi on the asymptotic structure of graphs is
his regularity lemma. Roughly speaking, this result tells us that any large
graph may be written as a union of induced, random looking bipartite
graphs. There are many applications of this result—the reader is urged to
consult the excellent survey of Komlós and Simonovits [48] for a thorough
discussion on this fundamental result.

The original regularity lemma is best suited for attacking problems in-
volving ‘dense’ graphs, that is, n-vertex graphs with ≥ cn2 edges for some
constant c > 0. In the case of ‘sparse graphs’, that is, n-vertex graphs
with o(n2) edges, one has to adapt the definitions to take into account
the vanishing density of the graphs in question. It turns out that regular-
ity lemmas for certain classes of such sparse graphs may be proved easily.
More importantly, such results turned out to be quite important in dealing
with certain extremal and Ramsey type problems involving subgraphs of
random graphs. The interested reader is referred to [36].

One of our aims in this paper is to focus on a circle of ideas that concern
‘local’ characterizations of regularity, which we believe should be better
known. One tool that will be required is the regularity lemma for sparse
graphs. Since we would also like this paper to be useful as an introduction
to the regularity lemma, we include some expository sections.

The contents of this paper fall naturally into four parts. We start by
presenting the basic concepts and the statement of the regularity lemma

1Partially supported by MCT/CNPq through ProNEx Programme (Proc. CNPq
664107/1997–4), by CNPq (Proc. 300334/93–1 and 468516/2000–0), and by FAPESP
(Proj. 96/04505–2)

2Partially supported by NSF Grant 0071261

290 Kohayakawa and Rödl

in Section 9.2.1. In Sections 9.2.2 and 9.2.3, we state two variants of the
regularity lemma for sparse graphs.

If the reader is not too familiar with the regularity lemma, we suggest
skipping Sections 9.2.2 and 9.2.3 at first, and advancing directly to the
second part of this paper, Section 9.3, where we discuss in detail an ap-
plication of the regularity lemma in its original form. The result we prove
in Section 9.3, which closely follows parts of [55], shows that if the edges
of a graph are ‘uniformly distributed’, then the graph must have a rich
subgraph structure. This result, Theorem 18, will be used to confirm a
conjecture of Erdős and we shall also mention a classical result in Ramsey
theory that may be deduced easily from this result. We believe that Theo-
rem 18 also illustrates the importance of the notion of ‘quasi-randomness’,
addressed later in Section 9.7. The proof of Theorem 18 also illustrates a
typical application of the regularity lemma. We hope that the uninitiated
readers who are interested in regularity will study this proof in detail.

In Section 9.4 we mention some other applications of the regularity
lemma that have emerged more recently. Our choice of topics for Section 9.4
has to do in part with the ideas and techniques that appear in Section 9.3
and some natural questions that they suggest. One application we discuss
has an algorithmic flavour (see Section 9.4.2). In the following section, Sec-
tion 9.5, we prove the version of the regularity lemma for sparse graphs
given in Section 9.2.2.

In the third part of this paper, Section 9.6, we discuss a key fact that
states that a certain local property of bipartite graphs is, roughly speaking,
equivalent to the property of being regular in the sense of Szemerédi. This
fact was the key tool for the development of the algorithmic version of the
regularity lemma.

In the final part of this paper, Section 9.7, we discuss a new quasi-
random graph property, by which we mean, following Chung, Graham, and
Wilson [15], a property that belongs to a certain rather large and disparate
collection of equivalent graph properties, shared by almost all graphs. To
prove that our property is a quasi-random property in the sense of [15], we
shall make use of the sparse regularity lemma.

A few remarks are in order. To focus on the main point in Section 9.6,
we carry out our discussion on the local condition for regularity restricting
ourselves to the very basic case, namely, the case of n by n bipartite graphs
with edge density 1/2. In fact, for the sake of convenience, instead of talking
about bipartite graphs, we shall consider n by n matrices whose entries are
are +1s and −1s (and whose density of +1s will turn out to be ∼ 1/2). We
shall see that if the rows of a {±1}-matrix are pairwise orthogonal, then
the matrix has small discrepancy, which may be thought of as an indication
that our matrix is ‘random looking’. The reader may find a fuller discussion
of this in Frankl, Rödl, and Wilson [26].

The relevance of the ideas in Section 9.6 may be illustrated by the fact
that several authors have made use of them, in some form, in different

9. Szemerédi’s Regularity Lemma and Quasi-randomness 291

contexts; see [1, 2, 4, 5, 10, 15, 19, 62, 63] and the proof of the upper
bound in Theorem 15.2 in [23], due to J. H. Lindsey. We believe that these
ideas should be carried over to the sparse case in some way as well, since this
may prove to be quite fruitful; the interested reader is referred to [38, 39]
and to Alon, Capalbo, Kohayakawa, Rödl, Ruciński, and Szemerédi [3].

We hope that our discussion in Section 9.6 will naturally lead the reader
to the results in the final part of the paper, namely, the results concern-
ing our quasi-random graph property. Indeed, Sections 9.6.1 and 9.6.2,
which capture the essence of our discussion in Section 9.6, are quite gen-
tle and we hope that the reader will find them useful as a preparation
for the technically more involved Section 9.7. Before we close the intro-
duction, we mention that our quasi-random property allows one to check
whether an n-vertex graph is quasi-random in time O(n2). The fastest al-
gorithms so far had time complexity O(M(n)) = O(n2.376), where M(n)
denotes the time needed to square a {0, 1}-matrix over the integers [17].
Furthermore, in a forthcoming paper with Thoma [41], we shall present how
this quasi-random property may be used to develop a deterministic O(n2)
time algorithm for the regularity lemma, improving on the result of Alon,
Duke, Lefmann, Rödl, and Yuster [4, 5]. The reader is referred to [37] for
a discussion on the algorithmic aspects of regularity.

9.1.1 Remarks on notation and terminology
If δ > 0, we write A ∼δ B to mean that

1
1 + δ

B ≤ A ≤ (1 + δ)B. (9.1)

We shall use the following non-standard notation: we shall write O1(x) for
any term y that satisfies |y| ≤ x. Clearly, if A ∼δ B, then A = (1+O1(δ))B.

Given an integer n, we write [n] for the set {1, . . . , n}. If X is a set and k
is an integer, we write

(
X
k

)
for the set of all k-element subset of X. We

write X * Y for the symmetric difference (X \ Y) ∪ (Y \X) of the sets X
and Y .

We usually write Gn for a graph on n vertices. We denote the com-
plete graph on k vertices by Kk. We usually write e(G) for the number of
edges in the graph G. We denote the set of neighbours of a vertex x in a
graph G by Γ(x) = ΓG(x). If G is a graph and {u,w} ∈ E(G) ⊂

(
V (G)

2

)

is an edge of G, we often write uw and wu for this edge {u,w}. Some-
times we write B = (U,W ;E) for a bipartite graph B with a fixed
bipartition V (B) = U ∪W , where E = E(B).

As customary, if G = (V,E) and H = (U,F) are graphs with U ⊂ V
and F ⊂ E, then we say that H is a subgraph of G, and we write H ⊂ G.
Moreover, if U = V , then we say that H is a spanning subgraph of G.

292 Kohayakawa and Rödl

If W ⊂ V , then the subgraph of G induced by W in G is the subgraph
(

W,E ∩
(
W

2

))

, (9.2)

usually denoted by G[W]. A subgraph H of G is an induced subgraph if H =
G[V (H)], that is, every edge of G that has both its endpoints in the vertex
set V (H) of H is necessarily an edge of H as well.

Acknowledgement
The authors are very grateful to the editors of this volume for their extreme
patience.

9.2 The regularity lemma

Our aim in this section is to present the original regularity lemma of Sze-
merédi and two closely related versions of the regularity lemma for sparse
graphs.

9.2.1 Preliminary definitions and the regularity lemma
Let a graph G = Gn of order |V (G)| = n be fixed. For U , W ⊂ V =
V (G), we write E(U,W) = EG(U,W) for the set of edges of G that have
one endvertex in U and the other in W . We set e(U,W) = eG(U,W) =
|E(U,W)|. The rather natural concept of density d(U,W) = dG(U,W) of
a pair (U,W) in G is defined as follows: for any two disjoint non-empty
sets U , W ⊂ V , we let

dG(U,W) =
eG(U,W)
|U ||W | . (9.3)

Szemerédi’s regularity lemma asserts the existence of partitions of graphs
into a bounded number of remarkably ‘uniform’ pieces, known as ε-regular
pairs.

Definition 1 (ε-regular pair) Let 0 < ε ≤ 1 be a real number. Sup-
pose G is a graph and U and W ⊂ V = V (G) are two disjoint, non-empty
sets of vertices of G. We say that the pair (U,W) is (ε,G)-regular, or simply
ε-regular, if we have

|dG(U ′,W ′) − dG(U,W)| ≤ ε (9.4)

for all U ′ ⊂ U and W ′ ⊂ W with

|U ′| ≥ ε|U | and |W ′| ≥ ε|W |. (9.5)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 293

If a pair (U,W) fails to be ε-regular, then a pair (U ′,W ′) that certifies
this fact is called a witness for the ε-irregularity of (U,W). Thus, if (U ′,W ′)
is such a witness, then (9.5) holds but (9.4) fails.

In the regularity lemma, the vertex set of the graphs will be partitioned
into a bounded number of blocks, basically all of the same size.

Definition 2 ((ε, k)-equitable partition) Given a graph G, a real num-
ber 0 < ε ≤ 1, and an integer k ≥ 1, we say that a partition Q = (Ci)k

0
of V = V (G) is (ε, k)-equitable if we have

(i) |C0| ≤ εn,

(ii) |C1| = . . . = |Ck|.

The class C0 is referred to as the exceptional class of Q.

When the value of ε is not relevant, we refer to an (ε, k)-equitable par-
tition as a k-equitable partition. Similarly, Q is an equitable partition of V
if it is a k-equitable partition for some k. We may now introduce the key
notion of ε-regular partitions for the graph G.

Definition 3 (ε-regular partition) Given a graph G, we say that an
(ε, k)-equitable partition Q = (Ci)k

0 of V = V (G) is (ε,G)-regular, or sim-
ply ε-regular, if at most ε

(
k
2

)
pairs (Ci, Cj) with 1 ≤ i < j ≤ k are not

ε-regular.

We may now state the celebrated lemma of Szemerédi [60].

Theorem 4 (The regularity lemma) For any given ε > 0 and k0 ≥
1, there are constants K0 = K0(ε, k0) ≥ k0 and N0 = N0(ε, k0) such
that any graph G = Gn with n ≥ N0 vertices admits an (ε,G)-regular,
(ε, k)-equitable partition of its vertex set with k0 ≤ k ≤ K0.

We shall not prove Theorem 4 here. However, a proof of a generalization
of this result will be presented in detail later (see Section 9.5).

Some remarks on Theorem 4

Before we proceed, we make a few quite simple remarks on the concept of
regularity and on the formulation of Theorem 4. The remarks below are
primarily intended for the readers with little familiarity with the regularity
lemma.

Remark 5 Let B = (U,W ;E) be a bipartite graph with vertex classes U
and W and edge set E. Suppose |U | = |W | = m and, say, |E| =

⌊
m2/2

⌋
. Is

such a graph typically ε-regular? I.e., is the pair (U,W) typically ε-regular?
It turns out that this is indeed the case.

294 Kohayakawa and Rödl

Fact 6 Let B(U,W ;m,M) be the collection of all bipartite graphs B =
(U,W ;E) on a fixed pair of sets U and W with |U | = |W | = m and |E| =
M . For 0 < ε ≤ 1, let R(U,W ;m,M ; ε) ⊂ B(U,W ;m,M) be the set of all
ε-regular bipartite graphs in B(U,W ;m,M). If 0 < ε ≤ 1 is a fixed constant
and M(m) is such that, say,

lim
m→∞M(m)/m2 = p, (9.6)

where 0 < p < 1, then

lim
m→∞

|R(U,W ;m,M(m); ε)|
|B(U,W ;m,M(m))| = 1. (9.7)

The result above tells us that ‘almost all’ (dense) bipartite graphs are
ε-regular. Fact 6 follows easily from standard large deviation inequali-
ties. The reader is referred to, say, Chapter 7 of [12, 14] (the well-known
monographs [13, 35] will also certainly do).

Remark 7 Bipartite graphs that are very sparse are necessarily ε-regular.
We may make this observation precise as follows. Suppose B = (U,W ;E) ∈
B(U,W ;m,M), where d(U,W) = M/m2 ≤ ε3. Then B is automatically ε-
regular. Indeed, a witness (U ′,W ′) to the ε-irregularity of (U,W) must be
such that

d(U ′,W ′) > d(U,W) + ε ≥ ε. (9.8)

Therefore e(U,W) ≥ e(U ′,W ′) ≥ d(U ′,W ′)|U ′||W ′| > ε|U ′||W ′| ≥ ε3m2.
However, by assumption, e(U,W) = M ≤ ε3m2. This contradiction shows
that such a witness cannot exist. Therefore B is indeed ε-regular.

It should be also clear that bipartite graphs that are very dense are also
automatically ε-regular. The reader is invited to work out the details.

Remark 8 Suppose we have a graph G = Gn. Trivially, any k-equitable
partition of V (G) with k = 1 is ε-regular. However, in an ε-regular parti-
tion (Ci)k

0 for G, we do not have any information about the edges incident
to the exceptional class C0, nor do we have any information about the edges
contained within the Ci (1 ≤ i ≤ k). Therefore the 1-equitable partitions
of G are of no interest. The lower bound k0 in the statement of Theorem 4
may be used to rule out partitions into a small number of blocks.

In fact, the number of edges within the Ci (1 ≤ i ≤ k) in an (ε, k)-
equitable partition is at most k−1

(
n
2

)
≤ k−1

0

(
n
2

)
, and the number of edges

incident to C0 is at most εn2, since |C0| ≤ εn. Therefore, one usually
chooses k0 and ε so that

1
k0

(
n

2

)

+ εn2 (9.9)

is a negligible number of edges for the particular application in question.

9. Szemerédi’s Regularity Lemma and Quasi-randomness 295

Remark 9 Let G = Gn be a given graph. Sometimes it is a little more
convenient to consider regular partitions for G in which no exceptional class
is allowed. One may instead require that the partition (Ci)k

1 of V = V (G)
should be such that

⌊n

k

⌋
≤ |C1| ≤ . . . ≤ |Ck| ≤

⌈n

k

⌉
, (9.10)

and such that ≥ (1 − ε)
(
k
2

)
of the pairs (Ci, Cj) with 1 ≤ i < j ≤ k are

ε-regular. We leave it as an exercise to deduce this version of the regularity
lemma from Theorem 4.

Remark 10 Suppose we allow regular partitions as in Remark 9 above.
Then, as a side effect, we may omit the condition that the graph G = Gn

should satisfy n ≥ N0(ε, k0). Indeed, it suffices to use the fact that the
partition of the vertex set of a graph into singletons is ε-regular. Indeed,
let K0 = K0(ε, k0) be the upper bound for the number of classes in the
ε-regular partitions with at least k0 parts, in the sense of Remark 9, whose
existence may be ensured, and suppose N0 = N0(ε, k0) is such that any
graph with n ≥ N0 vertices is guaranteed to admit such a partition. Now
let K ′

0 = max{K0, N0}, and observe that, then, any graph admits an ε-
regular partition into k parts, where k0 ≤ k ≤ K ′

0. Indeed, if the given
graph G has fewer than N0 vertices, it suffices to consider the partition
of V (G) into singletons.

For the sake of completeness, we explicitly state the conclusion of
Remarks 9 and 10 as a theorem.

Theorem 11 For any given ε > 0 and k0 ≥ 1, there is a constant K0 =
K0(ε, k0) ≥ k0 such that any graph G admits a partition (Ci)k

1 of its vertex
set such that

(i) k0 ≤ k ≤ K0,

(ii) �n/k ≤ |C1| ≤ . . . ≤ |Ck| ≤ �n/k�, and

(iii) at least (1 − ε)
(
k
2

)
of the pairs (Ci, Cj) with 1 ≤ i < j ≤ k are

ε-regular.

Irregular pairs and the number of blocks in regular partitions

The notion of an ε-regular partition given in Definition 3 gives us a little
breathing room in that it allows up to ε

(
k
2

)
irregular pairs (Ci, Cj) in a k-

equitable partition
⋃

0≤i≤k Ci. Whether this is required is a rather natural
question (already raised by Szemerédi [60]): is there a strengthening of
the regularity lemma that guarantees the existence of an (ε, k)-equitable
partition with all the

(
k
2

)
pairs ε-regular for any large enough graph?

As observed by several researchers, Lovász, Seymour, Trotter, and the
authors of [5] among others (see [5, p. 82]), the irregular pairs are required.

296 Kohayakawa and Rödl

A simple example that shows this is as follows: let B = (U,W ;E) be the
bipartite graph with U = W = [n], and ij ∈ E if and only if i ≤ j.
The reader is invited to prove that, for small enough ε > 0, any (ε, k)-
equitable, ε-regular partition of this graph requires at least ck ε-irregular
pairs, where c = c(ε) > 0 is some constant that depends only on ε.

Let us now turn to the value of the constants K0 = K0(ε, k0) and N0 =
N0(ε, k0) in the statement of the regularity lemma, Theorem 4. As we
discussed in Remark 10, the requirement that we should only deal with
graphs G = Gn with n ≥ N0 is not important. However, K0 = K0(ε, k0) is
much more interesting.

The original proof of Theorem 4 gave for K0 a tower of 2s of height
proportional to ε−5, which is quite a large constant for any reasonable ε.
(How such a number comes about may be seen very clearly in the proof
of Theorem 13, given in Section 9.5.) As proved by Gowers [34], there are
graphs for which such a huge number of classes are required in any ε-
regular partition. We only give a weak form of the main result in [34] (see
Theorem 15 in [34]).

Theorem 12 There exist absolute constants ε0 > 0 and c0 > 0 for which
the following holds. For any 0 < ε ≤ ε0, there is a graph G for which the
number of classes in any ε-regular partition of its vertex set must be at least
as large as a tower of 2s of height at least c0ε−1/16.

Roughly speaking, the strongest result in [34] states that one may weaken
the requirements on the ε-regular partition in certain natural ways and still
have the same lower bound as in Theorem 12. The interested reader should
study the ingenious probabilistic constructions in [34].

Before we proceed, let us mention again that the readers who are not
too familiar with the regularity lemma may at first prefer to skip the next
two sections, namely, Sections 9.2.2 and 9.2.3, and proceed directly to
Section 9.3, where a typical application of Theorem 4 is discussed in detail.

9.2.2 A regularity lemma for sparse graphs
We shall now state a version of the regularity lemma for sparse graphs.
We in fact consider a slightly more general situation, including the case of
�-partite graphs G, where � is some fixed integer.

Let a partition P0 = (Vi)�
1 (� ≥ 1) of V = V (G) be fixed. For convenience,

let us write (U,W) ≺ P0 if U ∩W = ∅ and either � = 1 or else � ≥ 2 and
for some i �= j (1 ≤ i, j ≤ �) we have U ⊂ Vi, W ⊂ Vj .

Suppose 0 < η ≤ 1. We say that G is (P0, η)-uniform if, for some 0 <
p ≤ 1, we have that for all U , W ⊂ V with (U,W) ≺ P0 and |U |, |W | ≥ ηn,
we have

∣
∣eG(U,W) − p|U ||W |

∣
∣ ≤ ηp|U ||W |. (9.11)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 297

As mentioned above, the partition P0 is introduced to handle the case of
�-partite graphs (� ≥ 2). If � = 1, that is, if the partition P0 is trivial, then
we are thinking of the case of ordinary graphs. In this case, we shorten the
term (P0, η)-uniform to η-uniform.

The prime example of an η-uniform graph is of course a random
graph Gp = Gn,p. For any η > 0 a random graph Gp with p = p(n) = C/n
is almost surely η-uniform provided C ≥ C0 = C0(η), where C0(η) depends
only on η. Let 0 < p = p(n) ≤ 1 be given. The standard binomial random
graph Gp = Gn,p has as vertex set a fixed set V (Gp) of cardinality n and
two such vertices are adjacent in Gp with probability p, with all such adja-
cencies independent. For concepts and results concerning random graphs,
see, e.g., Bollobás [13] or Janson, �Luczak, and Ruciński [35]. (A lighter
introduction may be Chapter 7 of Bollobás [12, 14].)

We still need to introduce a few further definitions. Let a graph G = Gn

be fixed as before. Let H ⊂ G be a spanning subgraph of G. For U , W ⊂ V ,
let

dH,G(U,W) =
{
eH(U,W)/eG(U,W) if eG(U,W) > 0
0 if eG(U,W) = 0.

Suppose ε > 0, U , W ⊂ V , and U ∩W = ∅. We say that the pair (U,W) is
(ε,H,G)-regular, or simply ε-regular, if for all U ′ ⊂ U , W ′ ⊂ W with |U ′| ≥
ε|U | and |W ′| ≥ ε|W |, we have

|dH,G(U ′,W ′) − dH,G(U,W)| ≤ ε.

If P and Q are two equitable partitions of V (see Definition 2 in Sec-
tion 9.2.1), we say that Q refines P if every non-exceptional class of Q
is contained in some non-exceptional class of P . If P ′ is an arbitrary
partition of V , then Q refines P ′ if every non-exceptional class of Q is
contained in some block of P ′. Finally, we say that an (ε, k)-equitable par-
titionQ = (Ci)k

0 of V is (ε,H,G)-regular, or simply ε-regular, if at most ε
(
k
2

)

pairs (Ci, Cj) with 1 ≤ i < j ≤ k are not ε-regular. We may now state an
extension of Szemerédi’s lemma to subgraphs of (P0, η)-uniform graphs.

Theorem 13 Let ε > 0 and k0, � ≥ 1 be fixed. Then there are constants
η = η(ε, k0, �) > 0, K0 = K0(ε, k0, �) ≥ k0, and N0 = N0(ε, k0, �) satisfying
the following. For any (P0, η)-uniform graph G = Gn with n ≥ N0, where
P0 = (Vi)�

1 is a partition of V = V (G), if H ⊂ G is a spanning subgraph
of G, then there exists an (ε,H,G)-regular (ε, k)-equitable partition of V
refining P0 with k0 ≤ k ≤ K0.

Remark 14 To recover the original regularity lemma of Szemerédi from
Theorem 13, simply take G = Kn, the complete graph on n vertices.

298 Kohayakawa and Rödl

9.2.3 A second regularity lemma for sparse graphs
In some situations, the sparse graph H to which one would like to apply
the regularity lemma is not a subgraph of some fixed η-uniform graph G. A
simple variant of Theorem 13 may be useful in this case. For simplicity, we
shall not state this variant for ‘P0-partite’ graphs as we did in Section 9.2.2.

Let a graph H = Hn of order |V (H)| = n be fixed. Suppose 0 < η ≤ 1,
D ≥ 1, and 0 < p ≤ 1 are given. We say that H is an (η,D)-upper-uniform
graph with respect to density p if, for all U , W ⊂ V with U∩W = ∅ and |U |,
|W | ≥ ηn, we have eH(U,W) ≤ Dp|U ||W |. In what follows, for any two
disjoint non-empty sets U , W ⊂ V , let the normalized p-density dH,p(U,W)
of (U,W) be

dH,p(U,W) =
eH(U,W)
p|U ||W | . (9.12)

Now suppose ε > 0, U , W ⊂ V , and U∩W = ∅. We say that the pair (U,W)
is (ε,H, p)-regular, or simply (ε, p)-regular, if for all U ′ ⊂ U , W ′ ⊂ W
with |U ′| ≥ ε|U | and |W ′| ≥ ε|W | we have

|dH,p(U ′,W ′) − dH,p(U,W)| ≤ ε.

We say that an (ε, k)-equitable partition P = (Ci)k
0 of V is (ε,H, p)-

regular, or simply (ε, p)-regular, if at most ε
(
k
2

)
pairs (Ci, Cj) with 1 ≤ i <

j ≤ k are not (ε, p)-regular. We may now state a version of Szemerédi’s
regularity lemma for (η,D)-upper-uniform graphs.

Theorem 15 For any given ε > 0, k0 ≥ 1, and D ≥ 1, there are constants
η = η(ε, k0, D) > 0, K0 = K0(ε, k0, D) ≥ k0, and N0 = N0(ε, k0, D) such
that any graph H = Hn with n ≥ N0 vertices that is (η,D)-upper-uniform
with respect to density 0 < p ≤ 1 admits an (ε,H, p)-regular (ε, k)-equitable
partition of its vertex set with k0 ≤ k ≤ K0.

9.3 An application of the regularity lemma

Here we present an application of the regularity lemma. We believe that
this is a fairly illustrative example and we also hope that it will introduce
the notion of pseudorandomness in a natural way. We follow certain parts
of [55] closely.

9.3.1 A simple fact about almost all graphs
We start with two definitions. We shall say that a graph G is k-universal
if G contains all graphs with k vertices as induced subgraphs. As we shall
see below, large graphs are typically k-universal for any small k. Our second

9. Szemerédi’s Regularity Lemma and Quasi-randomness 299

definition captures another property of typical graphs, namely, the property
that their edges are ‘uniformly distributed’.

Definition 16 (Property R(γ, δ, σ)) We say that a graph G = Gn of
order n has property R(γ, δ, σ) if, for all S ⊂ V = V (G) with |S| ≥ γn, the
number of edges e(S) = e(G[S]) induced by S in G satisfies

e(S) = (σ +O1(δ))
(
|S|
2

)

. (9.13)

Let us write G(n,M) for the set of all graphs on the vertex set [n] =
{1, . . . , n} with M edges. Clearly, we have

|G(n,M)| =
((n

2

)

M

)

(9.14)

for all integers n ≥ 0 and 0 ≤ M ≤
(
n
2

)
. Let U(n,M ; k) be the

subset of G(n,M) of all the k-universal graphs, and let R(n,M ; γ, δ, σ)
be the subset of G(n,M) of all the graphs G ∈ G(n,M) satisfying
property R(γ, δ, σ).

The following fact is easy to prove.

Fact 17 Let k ≥ 1 be an integer and let 0 < γ ≤ 1, 0 < δ ≤ 1, and 0 <
σ < 1 be real numbers. Put M = M(n) =

⌊
σ
(
n
2

)⌋
. Then we have

lim
n→∞

|U(n,M ; k)|
|G(n,M)| = 1 (9.15)

and

lim
n→∞

|R(n,M ; γ, δ, σ)|
|G(n,M)| = 1. (9.16)

In the usual language of random graphs, one says that almost all G ∈
G(n,M) are k-universal to mean that (9.15) holds. Similarly, one says that
almost all G ∈ G(n,M) satisfy R(γ, δ, σ) because of (9.16). If γ and δ are
small, the latter assertion may be interpreted to mean that the edges of a
typical graph G ∈ G(n,M) are uniformly distributed.

The most direct way to verify Fact 17 is by proving (9.15) and (9.16)
independently. However, it turns out that, for any deterministic graph G =
Gn, having property R(γ, δ, σ) for any fixed 0 < σ < 1 implies the k-
universality of G. (Of course, the constants γ and δ have to be suitably
small with respect to k, and n has to be suitably large with respect to k.)
Thus, roughly speaking, having uniformly distributed edges is a stronger
property than being universal. (Quite surprisingly, if one strengthens the
notion of k-universality to include information on the number of copies of
all k-vertex graphs for fixed k ≥ 4, these properties become equivalent in a
certain precise sense; see Section 9.3.2 for a short discussion on this point.)

300 Kohayakawa and Rödl

We shall prove that uniform distribution of edges implies universality
by making use of the regularity lemma. We shall in fact prove a stronger
statement, and we shall see that this statement, coupled with an auxiliary
result, confirms a conjecture of Erdős.

9.3.2 The statement of the results
Let us state the first result we discuss in this section.

Theorem 18 For all integers k ≥ 1 and real numbers 0 < σ < 1
and 0 < δ < 1 with δ < σ < 1 − δ, there exist γ > 0 and N0 for which
the following holds. If G = Gn is a graph of order n ≥ N0 that satisfies
property R(γ, δ, σ), then G is k-universal.

We shall prove Theorem 18 in Section 9.3.3. It may be worth mentioning
that the constant δ, which controls the ‘error’ in (9.13), is quantified uni-
versally in Theorem 18 (under the obviously necessary condition that we
should have δ < σ < 1 − δ). Thus, the result above tells us that, whatever
the magnitude of the error, we may ensure k-universality by requiring con-
trol over small enough sets. Somewhat surprisingly, one may also prove a
result in which it is the quantity γ that is quantified universally, that is, we
are told that we have control over sets of some fixed cardinality, say �n/2 ,
and we would like to guarantee k-universality by requiring a tight enough
control over such sets. We make this precise in the following result, proved
in [55].

Theorem 19 For all integers k ≥ 1 and real numbers 0 < σ < 1 and 0 <
γ < 1, there exist δ > 0 and N1 for which the following holds. If G = Gn

is a graph of order n ≥ N1 that satisfies property R(γ, δ, σ), then G is
k-universal.

We shall not prove the above result here. We only remark that the proof
of Theorem 19 is based on the same tools that are used to prove Theo-
rem 18, but it is a little more delicate. Theorem 19 is closely related
to the following result, which was conjectured by Erdős (see [21] or [11,
Chapter VI, p. 363]).

Theorem 20 For every integer k ≥ 1 and real number 0 < σ < 1, there is
an ε > 0 for which the following holds. Suppose a graph G = Gn has M =⌊
σ
(
n
2

)⌋
edges, and for all W ⊂ V = V (G) with |W | = �n/2 we have

e(G[W]) ≥ σ

(
�n/2

2

)

(1 − ε). (9.17)

Then, if n ≥ n0(k, σ), the graph G contains a Kk.

We shall deduce Theorem 20 from Theorem 18 below. Nikiforov [53]
recently proved Theorem 20 by making use of different techniques.

9. Szemerédi’s Regularity Lemma and Quasi-randomness 301

Proof of Theorem 20

Theorem 20 follows from Theorem 18 and the auxiliary claim below.

Claim 21 For all real numbers 0 < γ < 1, 0 < δ < 1, and 0 < σ < 1,
there is an ε > 0 for which the following holds. Suppose a graph G = Gn

has M =
⌊
σ
(
n
2

)⌋
edges, and for all W ⊂ V = V (G) with |W | = �n/2

inequality (9.17) holds. Then, if n ≥ n1(γ, δ, σ), the graph G is such that
for all U ⊂ V = V (G) with |U | ≥ γn we have

e(G[U]) ≥ (σ − δ)
(
|U |
2

)

. (9.18)

Observe that the conclusion about G in Claim 21 above is very close
to property R(γ, δ, σ). Clearly, the difference is that we do not have the
upper bound in (9.13) in Definition 16, which is natural, given the one-sided
hypothesis about G in Claim 21. Let us now prove Theorem 20 assuming
Theorem 18 and Claim 21.

Proof. (Proof of Theorem 20) Let k and σ as in the statement of
Theorem 20 be given. Put

δ =
1
2
σ, (9.19)

and let

σ′ =
1
2

((

1 − 1
k

)

+ (σ − δ)
)

and δ′ =
1
2

((

1 − 1
k

)

− (σ − δ)
)

.

(9.20)
Clearly, we have

0 < σ′ − δ′ = σ − δ < σ′ + δ′ = 1 − 1
k
< 1, (9.21)

and, in particular, δ′ < σ′ < 1 − δ′. Hence, we may invoke Theorem 18
with k, σ′, and δ′. Theorem 18 then gives us

γ = γ(k, σ′, δ′) and N0(k, σ′, δ′). (9.22)

Let us now feed γ, δ, and σ into Claim 21. We obtain

ε = ε(γ, δ, σ) and n1(γ, δ, σ). (9.23)

Finally, let n0(k) be such that any graph with n ≥ n0(k) vertices and >
(1 − 1/k)

(
n
2

)
edges must contain a Kk. Put

n0 = n0(k, σ) = max
{

N0(k, σ′, δ′), n1(γ, δ, σ),
1
γ
n0(k)

}

. (9.24)

We claim that ε given in (9.23) and n0 given in (9.24) will do in Theorem 20.
To verify this claim, suppose a graph G = Gn with n ≥ n0 vertices

has M =
⌊
σ
(
n
2

)⌋
edges, and for all W ⊂ V = V (G) with |W | = �n/2

302 Kohayakawa and Rödl

inequality (9.17) holds. Then, by the choice of ε and n0 ≥ n1(γ, δ, σ)
(see (9.23)), we may deduce from Claim 21 that

(‡) for all U ⊂ V = V (G) with |U | ≥ γn inequality (9.18) holds.

Now, since n ≥ n0 ≥ γ−1n0(k), we know that if U ⊂ V = V (G) is such
that |U | ≥ γn and

e(G[U]) >
(

1 − 1
k

)(
|U |
2

)

, (9.25)

then G[U] ⊃ Kk. Therefore we may assume that

(‡‡) inequality (9.25) fails for all U ⊂ V = V (G) with |U | ≥ γn.

Assertions (‡) and (‡‡) imply that property R(γ, δ′, σ′) holds for G
(see (9.21)). By the choice of γ and n0 ≥ N0(k, σ′, δ′) (see (9.22)), we
may now deduce from Theorem 18 that G is k-universal. This completes
the proof of Theorem 20. �

We shall now turn to Claim 21, but before we proceed, we state the
following basic fact. Given a set of vertices W ⊂ V (G) with |W | ≥ 2 in a
graph G, the edge density d(W) of W is defined to be e(G[W])

(|W |
2

)−1
.

Fact 22 Let G be a graph and suppose we are given W ⊂ V (G) with |W | ≥
2. Suppose also that 2 ≤ u ≤ |W | is fixed. Then

d(W) = Ave
U

d(U), (9.26)

where the average is taken over all U ⊂ W with |U | = u.

Proof. The one-line proof goes as follows:

Ave
U

d(U) =
(
|W |
u

)−1∑

U

d(U) =
(
|W |
u

)−1∑

U

e(G[U])
(
|U |
2

)−1

= e(G[W])
(
|W |
u

)−1(
u

2

)−1(|W | − 2
u− 2

)

= e(G[W])
(
|W |

2

)−1

, (9.27)

where, clearly, the average and the sums are over all U ⊂ W with |U | = u.
�

Let us now prove Claim 21.

Proof. Let 0 < γ < 1, 0 < δ < 1, and 0 < σ < 1 be fixed, and suppose
that the graph G = Gn is as in the statement of the Claim 21. We shall
prove that if ε is small enough and n is large enough, then inequality (9.18)
holds for all U ⊂ V = V (G) with |U | ≥ γn.

Observe first that it suffices to consider sets U ⊂ V with |U | = �γn�,
because of Fact 22. We may also suppose that �γn� < �n/2 and, in fact,
0 < γ < 1/2.

9. Szemerédi’s Regularity Lemma and Quasi-randomness 303

Let U ⊂ V be such that u = |U | = �γn�. Put T = V \U . Let the number
of edges between U and T be σ1ut, where t = |T | = n − u. Let also σ2

(
t
2

)

be the number of edges induced by T in G. We have

e(G[U]) + σ1ut+ σ2

(
t

2

)

=
⌊

σ

(
n

2

)⌋

. (9.28)

Put t′ = �n/2 −u > 0. We now select a t′-element subset T ′ of T uniformly
at random, and consider the edges that are induced by U ∪ T ′. Fix an
edge xy of G, with x ∈ U and y ∈ T . Then, xy will be induced by U ∪T ′ if
and only if y ∈ T ′. However, this happens with probability

(
t−1
t′−1

)(
t
t′
)−1

=
t′/t. Given that there are σ1ut such edges xy, the expected number of these
edges that will be induced by U ∪ T ′ is

σ1ut×
t′

t
= σ1ut

′. (9.29)

Now fix an edge xy of G with both x and y in T . Then, xy will be induced
by U ∪ T ′ with probability

(
t− 2
t′ − 2

)(
t

t′

)−1

=
t′(t′ − 1)
t(t− 1)

. (9.30)

Since there are σ2
(

t
2

)
such edges xy, the expected number of these edges

that will be induced by U ∪ T ′ is

σ2

(
t

2

)
t′(t′ − 1)
t(t− 1)

= σ2

(
t′

2

)

. (9.31)

Therefore, by (9.29) and (9.31), the expected number of edges that are
induced by U ∪ T ′ is

e(G[U]) + σ1ut
′ + σ2

(
t′

2

)

. (9.32)

For the remainder of the proof, we fix a set T ′ such that this number of
induced edges e(G[U∪T ′]) is at least as large as given in (9.32). Since U∪T ′

is a set with �n/2 vertices, by our hypothesis on G we have

e(G[U]) + σ1ut
′ + σ2

(
t′

2

)

≥ σ

(
�n/2

2

)

(1 − ε). (9.33)

Subtracting (9.33) from (9.28), we obtain

σ1u(t− t′) + σ2

((
t

2

)

−
(
t′

2

))

≤ σ

((
n

2

)

− (1 − ε)
(
�n/2

2

))

. (9.34)

Suppose now that U induces fewer than (σ−δ)
(
u
2

)
edges. Then (9.33) gives

that

(σ − δ)
(
u

2

)

+ σ1ut
′ + σ2

(
t′

2

)

> σ

(
�n/2

2

)

(1 − ε). (9.35)

304 Kohayakawa and Rödl

We deduce that

σ1u >
1
t′

(

σ

(
�n/2

2

)

(1 − ε) − σ2

(
t′

2

)

− (σ − δ)
(
u

2

))

. (9.36)

Plugging (9.36) into (9.34), we obtain
(
t

t′
− 1
)(

σ

(
�n/2

2

)

(1 − ε) − σ2

(
t′

2

)

− (σ − δ)
(
u

2

))

+σ2

((
t

2

)

−
(
t′

2

))

< σ

((
n

2

)

− (1 − ε)
(
�n/2

2

))

. (9.37)

Observe that t/t′ − 1 → 1/(1 − 2γ) as n → ∞. Therefore, dividing (9.37)
by n2 and letting n → ∞, we obtain

1
1 − 2γ

(
σ

8
(1 − ε) − 1

2
σ2

(
1
2
− γ

)2

− 1
2

(σ − δ)γ2

)

+
1
2
σ2

(
3
4
− γ

)

≤ σ

2

(
1
2
− 1 − ε

8

)

, (9.38)

or, rearranging terms,

σ

8
(1−ε)+

1
4
σ2(1−2γ)(1−γ)− 1

2
(σ−δ)γ2 ≤ σ

(
1
2
− 1 − ε

8

)

(1−2γ). (9.39)

We now observe that Fact 22 and our hypothesis on G implies that σ2 ≥
σ(1 − ε). Therefore (9.39) implies that

σ

8
(1−ε)+

1
4
σ(1−ε)(1−2γ)(1−γ)− 1

2
(σ−δ)γ2 ≤ σ

(
1
2
− 1 − ε

8

)

(1−2γ).

(9.40)
Letting ε → 0 in (9.40), we obtain

σ

8
+

1
4
σ(1 − 2γ)(1 − γ) − 1

2
(σ − δ)γ2 ≤ 3

8
σ(1 − 2γ). (9.41)

However, inequality (9.41) reduces to

1
2
δγ2 ≤ 0, (9.42)

which does not hold. Therefore, there is an ε0 = ε0(γ, δ, σ) > 0 such
that (9.40) fails for all 0 < ε ≤ ε0. Moreover, there is n0 = n0(γ, δ, σ) ≥ 1
such that (9.37) fails for all n ≥ n0. However, this implies that if 0 < ε ≤ ε0
and n ≥ n0, then U induces at least than (σ − δ)

(
u
2

)
edges. We have thus

found ε0 = ε0(γ, δ, σ) and n0 = n0(γ, δ, σ) as required, and Claim 21 is
proved. �

9. Szemerédi’s Regularity Lemma and Quasi-randomness 305

An application in Ramsey theory

Before we proceed to the proof of Theorem 18, we state a pleasant corollary
to that result. Let G and H1, . . . , Hr be graphs. We write

G
ind−→(H1, . . . , Hr) (9.43)

to mean that, however we colour the edges ofG with colours c1, . . . , cr, there
must be some i such that G contains an induced subgraph H ′ isomorphic
to Hi and with all its edges coloured with colour ci.

Theorem 23 For any collection of graphs H1, . . . , Hr, there is a graph G
for which (9.43) holds.

Theorem 23 was independently proved by Deuber [18], Erdős, Hajnal,
and Pósa [22], and Rödl [54]. We leave it as an exercise for the reader
to deduce from Theorem 18 that, in fact, almost all graphs G ∈ G(n,M)
satisfy (9.43) if M =

⌊
σ
(
n
2

)⌋
, where 0 < σ < 1 is any fixed constant

(see [52]).

Uniform edge distribution and subgraph frequency

The proof of Theorem 18 given below may be adapted to prove the following
result: for any ε > 0 and 0 < σ < 1, and any integer k ≥ 1, there is
a δ > 0 such that if G = Gn satisfies property R(δ, δ, σ), then, as long
as n ≥ n0(ε, σ, k),

(*) for any graphH = Hk on k vertices, the number of induced embeddings
f :V (H) → V (G) of H in G is

(1 +O1(ε))(n)kσ
e(H)(1 − σ)(

k
2)−e(H). (9.44)

As customary, above we write (a)b for a(a− 1) . . . (a− b+ 1). It is straight-
forward that the expected number of embeddings f as above in the random
graph G ∈ G(n,M) is given by (9.44), where M = M(n) =

⌊
σ
(
n
2

)⌋
,

and in fact the number of such embeddings is this number for almost
all G ∈ G(n,M). Thus, again, the deterministic property R(δ, δ, σ) cap-
tures a feature of random graphs. Surprisingly, this ‘numerical’ version
of k-universality for k = 4, that is, property (*) for k = 4, implies
property R(δ, δ, σ), as long as ε is small enough with respect to δ and σ.

The properties above, together with several others, are now known as
quasi-random graph properties. The interested reader is referred to Thoma-
son [62, 63], Frankl, Rödl, and Wilson [26], and Chung, Graham, and
Wilson [15] (see also Alon and Spencer [8, Chapter 9]). The study of quasi-
randomness is appealing in its own right, but one may perhaps argue that
investigating quasi-randomness for graphs is especially important because
of the intimate relation between quasi-randomness, ε-regularity, and the
regularity lemma.

306 Kohayakawa and Rödl

In Section 9.7, we shall introduce a new quasi-random property for
graphs.

9.3.3 The proof of Theorem 18
The proof of Theorem 18 is based on the regularity lemma, Theorem 4, and
on an embedding lemma, which asserts the existence of certain embeddings
of graphs.

In this proof, γ, δ, σ, ε, β, and εk will always denote positive constants
smaller than 1.

The embedding lemma

We start with a warm-up. Suppose we have a tripartite graph G = G3�,
with tripartition V (G) = B1 ∪B2 ∪B3, where |B1| = |B2| = |B3| = � > 0.
Suppose also that all the 3 pairs (Bi, Bj), 1 ≤ i < j ≤ 3, are ε-regular,
with d(Bi, Bj) = σ > 0 for all 1 ≤ i < j ≤ 3.

We claim that, then, the graph G contains a triangle provided ε is small
with respect to σ. To prove this claim, first observe that, from the ε-
regularity of (B1, B2) and of (B1, B3), one may deduce that there are at
least (1− 4ε)� > 0 vertices b1 in B1 such that their degrees into B2 and B3
are both at least (σ − ε)� and at most (σ + ε)� (see Claim 27 below).
However, by the ε-regularity of (B2, B3), at least

(σ − ε)|Γ(b1) ∩B2||Γ(b1) ∩B3| ≥ (σ − ε)3�2 > 0 (9.45)

edges are induced by the pair (Γ(b1)∩B2,Γ(b1)∩B3) as long as σ− ε ≥ ε,
that is, ε < σ/2. Thus the claim is proved. Note that, in fact, we have
proved that if ε < σ/2, then the number of triangles in G is at least

c�3 = c(σ, ε)�3, (9.46)

where c(σ, ε) = (1 − 4ε)(σ − ε)3. Clearly, c(σ, ε) → σ3 as ε → 0. For
comparison, let us observe that the number of triangles is ∼ σ3�3 as � → ∞
if G is drawn at random from all the tripartite graphs on (B1, B2, B3)
with

⌊
σ�2
⌋

edges within all the pairs (Bi, Bj).
Let us now turn to the embedding lemma that we shall use to prove

Theorem 18. We have already seen the essence of the proof of this lemma
in the warm-up above. In order to state the lemma concisely, we introduce
the following definition.

Definition 24 (Property P(k, �, β, ε)) A graph G has property P(k, �, β, ε)
if it admits a partition V = V (G) =

⋃
1≤i≤k Bi of its vertex set such that

(i) |Bi| = � for all 1 ≤ i ≤ k,

(ii) all the
(
k
2

)
pairs (Bi, Bj), where 1 ≤ i < j ≤ k, are ε-regular, and

(iii) β < d(Bi, Bj) < 1 − β for all 1 ≤ i < j ≤ k.

9. Szemerédi’s Regularity Lemma and Quasi-randomness 307

The embedding lemma is as follows.

Lemma 25 For all 0 < β < 1/2 and k ≥ 1, there exist εk = εk(k, β) > 0
and �k = �k(k, β) so that every graph with property P(k, �, β, εk) with � ≥ �k
is k-universal.

Remark 26 If H is some graph on k vertices and G is a graph satisfying
property P(k, �, β, εk), then one may in fact estimate the number of copies
of H in G (cf. (9.46)). Variants of Lemma 25 that give such numerical
information are sometimes referred to as counting lemmas.

Before we start the proof of Lemma 25, we state and prove a simple
claim on regular pairs. If u is a vertex in a graph G and W ⊂ V (G), then
we write dW (u) for the degree |Γ(u) ∩W | of u ‘into’ W .

Claim 27 Let (U,W) be an ε-regular pair in a graph G, and sup-
pose d(U,W) = �. Then the number of vertices u ∈ U satisfying

(�− ε)|W | ≤ dW (u) = |Γ(u) ∩W | ≤ (�+ ε)|W | (9.47)

is more than (1 − 2ε)|U |.

Proof. Suppose for a contradiction that Claim 27 is false. Let U− ⊂ U be
the set of u ∈ U for which the first inequality in (9.47) fails, and let U+ ⊂ U
be the set of u ∈ U for which the second inequality in (9.47) fails. We are
assuming that |U+ ∪ U−| ≥ 2ε|U |. Therefore, say, |U+| ≥ ε|U |. However,
we then have

d(U+,W) > �+ ε. (9.48)

Since (U,W) is ε-regular, such a witness of ε-irregularity cannot exist. The
case in which |U−| ≥ ε|U | is similar. This proves Claim 27. �

We now give the proof of the embedding lemma, Lemma 25.

Proof. (Proof of Lemma 25) The proof will be by induction on k. For k =
1 the statement of the lemma is trivial. For k = 2, it suffices to take ε2 =
ε2(2, β) = β and �2(2, β) = 1. Indeed, observe that the fact that 0 <
d(B1, B2) < 1 implies that there must be bi and b′i ∈ Bi (i ∈ {1, 2}) such
that b1b2 is an edge and b′1b

′
2 is not an edge. For the induction step, suppose

that k ≥ 3 and that the assertion of the lemma is true for smaller values
of k and for all 0 < β < 1/2.

Suppose we are given some β, with 0 < β < 1/2. Let

εk = εk(k, β) = min
{

1
2k
,

1
2
βεk−1

}

, (9.49)

and

�k = �k(k, β) = max
{

2
⌈
�k−1

β

⌉

, k

}

, (9.50)

308 Kohayakawa and Rödl

where

εk−1 = εk−1(k − 1, β/2) and �k−1 = �k−1(k − 1, β/2). (9.51)

We claim that the choices for εk and �k in (9.49) and (9.50) will do.
Thus, let G be a graph satisfying property P(k, �, β, εk), where � ≥ �k.
Let B1, . . . , Bk be the blocks of the partition of V = V (G) ensured by
Definition 24. Suppose H is a graph on the vertices x1, . . . , xk. We shall
show that there exist b1, . . . , bk, with bi ∈ Bi, such that the map φ:xi �→ bi
is an embedding of H into G (that is, φ is an isomorphism between H
and G[b1, . . . , bk], the graph induced by the bi in G).

Pick a vertex bk ∈ Bk for which

(d(Bk, Bj) − εk)� < dBj
(bk) = |Γ(bk) ∩Bj | < (d(Bk, Bj) + εk)� (9.52)

for all 1 ≤ j < k. The existence of such a vertex bk follows from Claim 27.
Indeed, the claim tells us that the number of vertices that fail (9.52) for
some 1 ≤ j < k is at most

2(k − 1)εk� < � = |Bk|, (9.53)

since εk ≤ 1/2k (see (9.49)). For all 1 ≤ j < k, we now choose sets B̃j ⊂ Bj

satisfying the following properties:

(i) |B̃j | = �β�/2� ≥ �k−1,

(ii) if xjxk ∈ E(H), then bbk ∈ E(G) for all b ∈ B̃j , and if xjxk /∈ E(H),
then bbk /∈ E(G) for all b ∈ B̃j .

The existence of the sets B̃j (1 ≤ j < k) follows from our choice of bk.
Indeed, (9.52) tells us that bk has more than

(d(Bk, Bj) − εk)� > (β − εk)� ≥
(

β − 1
2
βεk−1

)

� ≥ 1
2
β� (9.54)

neighbours in Bj . Similarly, (9.52) tells us that bk has more than

(1 − d(Bk, Bj) − εk)� > (β − εk)� ≥ 1
2
β� (9.55)

non-neighbours in Bj .
Now fix a pair 1 ≤ i < j < k, and let Xi ⊂ B̃i and Xj ⊂ B̃j be such

that |Xi| ≥ εk−1|B̃i| and |Xj | ≥ εk−1|B̃j |. Then

min{|Xi|, |Xj |} ≥ εk−1|B̃i| = εk−1|B̃j | ≥
2εk

β

⌈
β�

2

⌉

≥ εk�. (9.56)

From the εk-regularity of the pair (Bi, Bj), we deduce that

|d(Xi, Xj) − d(B̃i, B̃j)| ≤ |d(Xi, Xj) − d(Bi, Bj)|
+|d(Bi, Bj) − d(B̃i, B̃j)| ≤ 2εk ≤ εk−1. (9.57)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 309

Therefore all the pairs (B̃i, B̃j) with 1 ≤ i < j < k are εk−1-regular. Our
induction hypothesis then tells us that there exist bj ∈ Bj (1 ≤ j < k) for
which the map xj �→ bj (1 ≤ j < k) is an isomorphism between H − xk

and G[b1, . . . , bk−1]. Clearly, φ:xj �→ bj (1 ≤ j ≤ k) is an isomorphism
between H and G[b1, . . . , bk]. �

Proof of Theorem 18

We are now able to prove Theorem 18. We shall make use of two well known
results from graph theory: Ramsey’s theorem and Turán’s theorem.

Proof. (Proof of Theorem 18) Let δ1 = max{σ + δ − 1/2, 1/2 − σ + δ}.
We clearly have 0 < δ1 < 1/2 and in fact

0 <
1
2
− δ1 ≤ 1

2
−
(

1
2
− σ + δ

)

= σ − δ

≤ σ + δ =
1
2

+
(

σ + δ − 1
2

)

≤ 1
2

+ δ1 < 1. (9.58)

The inequalities in (9.58) imply that property R(γ, δ, σ) implies prop-
erty R(γ, δ1, 1/2). Therefore we may assume in Theorem 18 that σ = 1/2
and 0 < δ < 1/2. We may further assume that

k ≥ 3
β
, where β =

1
2
− δ > 0. (9.59)

We now define the constants γ and N0 promised in Theorem 18. Put

ε = min
{

1
R(k, k, k)

, εk

}

, (9.60)

where εk = εk(k, β/2) is the number whose existence is guaranteed by
Lemma 25, and R(k, k, k) is the usual Ramsey number for Kk and three
colours: R(k, k, k) is the minimal integer R such that, in any colouring of
the edges of KR with three colours, we must have a Kk all of whose edges
are coloured with the same colour.

Put k0 = R(k, k, k), and invoke Theorem 4 with this k0 and ε given
in (9.60). We obtain constants K0(ε, k0) ≥ k0 and N0(ε, k0). Now let

N0 = max
{

N0(ε, k0),
1

1 − ε
K0(ε, k0)�k

}

, (9.61)

where �k = �k(k, β/2) is given by Lemma 25. Furthermore, we let

γ =
k(1 − ε)
K0(ε, k0)

. (9.62)

Our aim is to show that the choices for N0 and γ given in (9.61) and (9.62)
will do.

310 Kohayakawa and Rödl

Suppose a graph G = Gn with n ≥ N0 vertices satisfies prop-
erty R(γ, δ, 1/2). We shall use the regularity lemma to find an induced
subgraph G′ of G that satisfies property P(k, �, β/2, εk), where � ≥ �k. An
application of the embedding lemma, Lemma 25, will then complete the
proof.

Let V = V (G) =
⋃

0≤i≤t Ci be an ε-regular, (ε, t)-equitable partition
for G with k0 ≤ t ≤ K0(ε, k0). The existence of such a partition is ensured
by Theorem 4. Let � = |Ci| (1 ≤ i ≤ t).

Consider the graph F on the vertex set [t] = {1, . . . , t}, where ij ∈ E(F)
if and only if (Ci, Cj) is an ε-regular pair in G. We know that F has at least
(1−ε)

(
t
2

)
edges. By the well-known theorem of Turán [64], it follows that F

has a clique with R = R(k, k, k) vertices. Adjust the notation so that this
clique is induced by the vertices 1, . . . , R. Then the blocks Ci (1 ≤ i ≤ R)
are such that all the pairs (Ci, Cj) with 1 ≤ i < j ≤ R are ε-regular.

We now define a partition T1∪T2∪T3 of the set
([R]

2

)
of the pairs ij (1 ≤

i < j ≤ R) as follows: the pair ij belongs to T1 if and only if d(Ci, Cj) ≤
β/2; the pair ij belongs to T2 if and only if β/2 < d(Ci, Cj) < 1 − β/2;
and, finally, the pair ij belongs to T3 if and only if d(Ci, Cj) ≥ 1 − β/2.

By the definition of R = R(k, k, k), we know that there is a set J ⊂ [R]
with |J | = k such that F [J] is monochromatic, that is,

(
J
2

)
⊂ Tα for

some α ∈ {1, 2, 3}. We consider the graph

G′ = G

[⋃

j∈J

Cj

]

(9.63)

induced by
⋃

j∈J Cj in G. Suppose α = 1. Then the number of edges e(G′)
in G′ satisfies

e(G′) ≤
(
k

2

)
β

2
�2 + k

(
�

2

)

≤ βk2�2

4
+
k�2

2
<

(
1
2
− δ

)(
k�

2

)

, (9.64)

where we have used (9.59) and the fact that k� ≥ k > 6. Since |V (G′)| =
k� ≥ (1 − ε)kn/K0(ε, k0) = γn (see (9.62)), inequality (9.64) contradicts
property P(γ, δ, 1/2). This contradiction shows that α �= 1. If α = 3,
then we obtain a similar contradiction. In this case, as a little calculation
using (9.59) shows, the graph G′ satisfies

e(G′) ≥
(
k

2

)(

1 − β

2

)

�2 >

(
1
2

+ δ

)(
k�

2

)

. (9.65)

Thus α �= 3 and we conclude that α = 2. We finally observe that, by (9.61),
we have

� ≥ (1 − ε)n
K0(ε, k0)

≥ (1 − ε)N0

K0(ε, k0)
≥ �k. (9.66)

Therefore, as promised, the graph G′ satisfies property P(k, �, β/2, εk)
for � ≥ �k. To complete the induction step, it suffices to invoke Lemma 25.

The proof of Theorem 18 is complete. �

9. Szemerédi’s Regularity Lemma and Quasi-randomness 311

9.4 Further applications

In this section, we mention a few more applications of the regularity lemma
to illustrate some further aspects of its uses.

9.4.1 Embedding large bounded degree graphs
Lemma 25, the embedding lemma, deals with induced embedding, that is,
there we are concerned with embedding certain graphs as induced sub-
graphs in a given graph. In several applications, one is interested in finding
embeddings as subgraphs that need not be necessarily induced. In this sec-
tion, we shall briefly discuss some variants of Lemma 25 for ‘non-induced’
embeddings.

Let us say that a graph G has property Pw(k, �, β, ε) if it satisfies the
conditions in Definition 24, except that, instead of (iii) in that definition,
we only require the following weaker property:

(iv) d(Bi, Bj) > β for all 1 ≤ i < j ≤ k.

We now state a variant of the embedding lemma for subgraphs; at the
expense of requiring that the graph to be embedded should have bounded
degree, we gain on the size of the graph that we are able to embed. For
convenience, let us say that a graph H is of type (m, k) if H admits a proper
vertex colouring with k colours in such a way that every colour occurs at
most m times.

Lemma 28 For all k ≥ 1, β > 0 and ∆ ≥ 1, there exist ε = ε(k, β,∆) > 0,
ν = ν(k, β,∆) > 0, and �0 = �0(k, β,∆) so that every graph with prop-
erty Pw(k, �, β, ε) with � ≥ �0 contains all graphs of type (ν�, k) that have
maximum degree at most ∆.

Let us stress that the lemma above allows us to embed bounded degree
graphs H = Hn in certain graphs G = GN with N only linearly larger
than n. The regularity lemma and Lemma 28 were the key tools in Chvátal,
Rödl, Szemerédi, and Trotter [16], where it is proved that the Ramsey
number of a bounded degree graph H = Hn is linear in n.

The proof of Lemma 28 in [16] gives for ν an exponentially small quantity
in ∆. Thus, one has to have ‘a lot of extra room’ for the embedding. A
recent, beautiful result of Komlós, Sárközy, and Szemerédi [44] (see [45] for
an algorithmic version), known as the blow-up lemma, shows that one need
not waste so much room; in fact, one does not have to waste any room at all
if a small extra hypothesis is imposed on the graph where the embedding
is to take place.

Let (U,W) be an ε-regular pair in a graph G. We say that (U,W) is
(ε, δ)-super-regular if

312 Kohayakawa and Rödl

(†) for all u ∈ U , we have d(u) ≥ δ|W |, and for all w ∈ W , we have d(w) ≥
δ|U |.
Observe that (†) implies that d(U,W) ≥ δ. Let us say that a graph G
satisfies property Pw(k, �, β, ε, δ) if it satisfies Pw(k, �, β, ε), with (ii) in the
definition of property P(k, �, β, ε), Definition 24, strengthened to

(v) all the
(
k
2

)
pairs (Bi, Bj), where 1 ≤ i < j ≤ k, are (ε, δ)-super-

regular.

We may now state the blow-up lemma.

Theorem 29 For all k ≥ 1, β > 0, δ > 0, and ∆ ≥ 1, there exist ε =
ε(k, β, δ,∆) > 0 and �0 = �0(k, β, δ,∆) so that every graph that satisfies
property Pw(k, �, β, ε, δ) with � ≥ �0 contains all graphs of type (�, k) that
have maximum degree at most ∆.

The striking difference between Lemma 28 and Theorem 29 is that, with
the rather weak additional condition (†), we are able to embed spanning
subgraphs (that is, we may take ν = 1).

Theorem 29 is one of the key ingredients in the recent successes of
Komlós, Sárközy, and Szemerédi in tackling well-known, hard conjectures
such as Seymour’s conjecture and Pósa’s conjecture on powers of Hamilto-
nian cycles [46, 47], a conjecture of Bollobás on graph packings [43], and
Alon and Yuster’s conjecture [9] (see [42, p. 175]).

We shall not discuss the proof of Theorem 29, which is indeed quite
difficult (see [56, 57] for alternative proofs). The reader should consult
Komlós [42] for a survey on the blow-up lemma.

9.4.2 Property testing
We shall now discuss a recent application of regularity to a complexity
problem. We shall see how the regularity lemma may be used to prove the
correctness of certain algorithms. This section is based on results due to
Alon, Fischer, Krivelevich, and Szegedy [6, 7]. These authors develop a new
variant of the regularity lemma and use it to prove a far reaching result
concerning the testability of certain graph properties.

As a starting point, we state the following result, which the reader should
first try to prove with bare hands.

Theorem 30 For any ε > 0 there is a δ > 0 for which the following holds.
Suppose a graph G = Gn = (V,E) is such that G−F = (V,E\F) contains a
triangle for any set F ⊂

(
V
2

)
with |F | ≤ ε

(
n
2

)
. Then G contains at least δn3

triangles.

The theorem above follows easily from the warm-up result in Section 9.3.3
and the regularity lemma. A proof of Theorem 30 that does not use the
regularity lemma (in any form!) would be of considerable interest.

9. Szemerédi’s Regularity Lemma and Quasi-randomness 313

Theorem 30 implies that we may efficiently distinguish triangle-free
graphs from graphs that contain triangles in a robust way, that is, graphs G
as in the statement of this theorem. Indeed, one may simply randomly pick
a number of vertices, say N , from the input graph G = Gn and then check
whether a triangle is induced. If we catch no triangle, we return the answer
‘yes, the graph G is triangle-free’. If we do catch a triangle, we return the
answer ‘no, the graph G is “ε-far” from being triangle-free’.

The striking fact about the algorithm above is that it will return the
correct answer with high probability if N is a large enough constant with
respect to ε. Here, N need not grow with n, the number of vertices in the
input graph G = Gn, and hence this is a constant time algorithm. In this
section, we shall briefly discuss some far reaching generalizations of this
result.

Definitions and the testability result

The general notion of property testing was introduced by Rubinfeld and
Sudan [58], but in the context of combinatorial testing it is the work of
Goldreich and his co-authors [29, 30, 31, 32, 33] that are most relevant to
us.

Let Gn be the collection of all graphs on a fixed n-vertex set, say [n] =
{1, . . . , n}. Put G =

⋃
n≥1 Gn. A property of graphs is simply a subset P ⊂ G

that is closed under isomorphisms. There is a natural notion of distance
in each Gn, the normalized Hamming distance: the distance d(G,H) =
dn(G,H) between two graphs G and H ∈ Gn is |E(G) * E(H)|

(
n
2

)−1,
where E(G)*E(H) denotes the symmetric difference of the edge sets of G
and H.

We say that a graph G is ε-far from having property P if

d(G,P) = min
H∈P

d(G,H) ≥ ε, (9.67)

that is, a total of ≥ ε
(
n
2

)
edges have to be added to or removed from G to

turn it into a graph that satisfies P.
An ε-test for a graph property P is a randomized algorithm A that

receives as input a graph G and behaves as follows: if G has P then with
probability ≥ 2/3 we have A(G) = 1, and if G is ε-far from having P then
with probability ≥ 2/3 we have A(G) = 0. The graph G is given to A
through an oracle; we assume that A is able to generate random vertices
from G and it may query the oracle whether two vertices that have been
generated are adjacent.

We say that a graph property P is testable if, for all ε > 0, it admits
an ε-test that makes at most Q queries to the oracle, where Q = Q(ε) is a
constant that depends only on ε. Note that, in particular, we require the
number of queries to be independent of the order of the input graph.

Goldreich, Goldwasser, and Ron [30, 31], besides showing that there exist
NP graph properties that are not testable, proved that a large class of

314 Kohayakawa and Rödl

interesting graph properties are testable, including the property of being
k-colourable, of having a clique with ≥ �n vertices, and of having a cut
with ≥ �n2 edges, where n is the order of the input graph. The regularity
lemma is not used in [30, 31]. The fact that k-colourability is testable had
in fact been proved implicitly in [20], where regularity is used.

We are now ready to turn to the result of Alon, Fischer, Krivelevich,
and Szegedy [6, 7]. Let us consider properties from the first order theory
of graphs. Thus, we are concerned with properties that may be expressed
through quantification of vertices, Boolean connectives, equality, and ad-
jacency. Of particular interest are the properties that may be expressed in
the form

∃x1, . . . , xr ∀y1, . . . , ys A(x1, . . . , xr, y1, . . . , ys), (9.68)

where A is a quantifier-free first order expression. Let us call such properties
of type ∃∀. Similarly, we define properties of type ∀∃. The main result
of [6, 7] is as follows.

Theorem 31 All first order properties of graphs that may be expressed
with at most one quantifier as well as all properties that are of type ∃∀ are
testable. Furthermore, there exist first order properties of type ∀∃ that are
not testable.

The first part of the proof of the positive result in Theorem 31 involves
the reduction, up to testability, of properties of type ∃∀ to a certain gen-
eralized colourability property. A new variant of the regularity lemma is
then used to handle this generalized colouring problem.

A variant of the regularity lemma

In this section we shall state a variant of the regularity lemma proved
in [6, 7].

Let us say that a partition P = (Ci)k
i=1 of a set V is an equipartition

of V if all the sets Ci (1 ≤ i ≤ k) differ by at most 1 in size. In this section,
we shall be interested in partitions as in Remark 9 and Theorem 11. Below,
we shall have an equipartition of V

P ′ = {Ci,j : 1 ≤ i ≤ k, 1 ≤ j ≤ �}

that is a refinement of a given partition P = (Ci)k
i=1. In this notation, we

understand that, for all i, all the Ci,j (1 ≤ j ≤ �) are contained in Ci.

Theorem 32 For every integer k0 and every function 0 < ε(r) < 1 defined
on the positive integers, there are constants K = K(k0, ε) and N = N(k0, ε)
with the following property. If G is any graph with at least N vertices,
then there exist equipartitions P = (Ci)1≤i≤k and P ′ = (Ci,j)1≤i≤k, 1≤j≤�

of V = V (G) such that the following hold:

9. Szemerédi’s Regularity Lemma and Quasi-randomness 315

(i) |P | = k ≥ k0 and |P ′| = k� ≤ K;

(ii) at least (1 − ε(0))
(
k
2

)
of the pairs (Ci, Ci′) with 1 ≤ i < i′ ≤ k are

ε(0)-regular;

(iii) for all 1 ≤ i < i′ ≤ k, at least (1 − ε(k))�2 of the pairs (Ci,j , Ci′,j′)
with j, j′ ∈ [�] are ε(k)-regular;

(iv) for at least (1 − ε(0))
(
k
2

)
of the pairs 1 ≤ i < i′ ≤ k, we have that for

at least (1 − ε(0))�2 of the pairs j, j′ ∈ [�] we have

|dG(Ci, Ci′) − dG(Ci,j , Ci′,j′)| ≤ ε(0).

Suppose we have partitions P and P ′ as in Theorem 32 above and that
ε(k) - 1/k. It is not difficult to see that then, for many ‘choice’ functions
j: [k] → [�], we have that P̃ = (Ci,j(i))1≤i≤k is an equipartition of an
induced subgraph of G such that the following hold:

(a) all the pairs (Ci,j(i), Ci′,j(i′)) are ε(k)-regular,

(b) for at least (1 − ε(0))
(
k
2

)
of the pairs 1 ≤ i < i′ ≤ k, we have

|dG(Ci, Ci′) − dG(Ci,j(i), Ci′,j(i′))| ≤ ε(0).

Roughly speaking, this consequence of Theorem 32 lets us have some grip
on the irregular pairs. Even if (Ci, Ci′) is irregular, the pair (Ci,j(i), Ci′,j(i′))
is regular and hence we have some control over the induced bipartite
graph G[Ci, Ci′]. For instance, if in some application we have to construct
some bipartite graph within G[Ci, Ci′], we may do so by working on the
subgraph G[Ci,j(i), Ci′,j(i′)].

We have already observed that we must allow irregular pairs in Theo-
rem 4 (see Section 9.2.1). In a way, Theorem 32 presents a way around this
difficulty.

Theorem 32 and its corollary mentioned above are the main ingredients
in the proof of the following result (see [6, 7] for details).

Theorem 33 For every ε > 0 and h ≥ 1, there is δ = δ(ε, h) > 0 for
which the following holds. Let H be an arbitrary graph on h vertices and
let P = Forbind(H) be the property of not containing H as an induced
subgraph. If an n-vertex graph G is ε-far from P, then G contains δnh

induced copies of H.

The case in which H is a complete graph follows from the original
regularity lemma (the warm-up observation of Section 9.3.3 proved this
for H = K3), but the general case requires the corollary to Theorem 32
discussed above. Note that Theorem 33 immediately implies that the prop-
erty of membership in Forbind(H) (in order words, the property of not
containing an induced copy of H) is a testable property for any graph H.

316 Kohayakawa and Rödl

The proof of Theorem 31 requires a generalization of Theorem 33 related
to the colouring problem alluded to at the end of the previous section. We
refer the reader to [6, 7]. We close by remarking that Theorem 32 has an
algorithmic version, although we stress that this is not required in the proof
of Theorem 31.

9.5 Proof of the regularity lemma

We now prove the regularity lemma for sparse graphs. We shall prove Theo-
rem 13. The proof of Theorem 15 is similar. We observe that the proof below
follows very closely the proof of the original regularity lemma, Theorem 4.
Indeed, to recover a proof of Theorem 4 from the proof below, it suffices
to set G = Kn.

9.5.1 The refining procedure
Fix G = Gn and put V = V (G). Also, assume that P0 = (Vi)�

1 is a fixed
partition of V , and that G is (P0, η)-uniform for some 0 < η ≤ 1. Moreover,
let p = p(G) be as in (9.11).

We start with a ‘continuity’ result. Let H ⊂ G be a spanning subgraph
of G.

Lemma 34 Let 0 < δ ≤ 10−2 be fixed. Let U , W ⊂ V (G) be such
that (U,W) ≺ P0, and δ|U |, δ|W | ≥ ηn. If U∗ ⊂ U , W ∗ ⊂ W ,
|U∗| ≥ (1 − δ)|U |, and |W ∗| ≥ (1 − δ)|W |, then

(i) |dH,G(U∗,W ∗) − dH,G(U,W)| ≤ 5δ,

(ii) |dH,G(U∗,W ∗)2 − dH,G(U,W)2| ≤ 9δ.

Proof. Note first that we have η ≤ δ, as ηn ≤ δ|U |, δ|W | ≤ δn. Let U∗,
W ∗ be as given in the lemma. We first check (i).

(i) We start by noticing that

dH,G(U∗,W ∗) ≥ eH(U,W) − 2(1 + η)pδ|U ||W |
eG(U,W)

≥ dH,G(U,W) − 2δ
1 + η

1 − η
≥ dH,G(U,W) − 3δ.

Moreover,

dH,G(U∗,W ∗) ≤ eH(U,W)
eG(U∗,W ∗)

≤ eH(U,W)
(1 − η)p|U∗||W ∗|

9. Szemerédi’s Regularity Lemma and Quasi-randomness 317

≤ eH(U,W)
(1 − η)p(1 − δ)2|U ||W |

≤ 1 + η

(1 − η)(1 − δ)2
dH,G(U,W)

≤ dH,G(U,W) + 5δ.

Thus (i) follows.
(ii) The argument here is similar. First

dH,G(U∗,W ∗) ≥
(
eH(U,W) − 2(1 + η)pδ|U ||W |

)2

eG(U,W)2

≥ dH,G(U,W)2 − 4(1 + η)pδ|U ||W |eH(U,W)
eG(U,W)(1 − η)p|U ||W |

≥ dH,G(U,W)2 − 4δ
1 + δ

1 − δ

≥ dH,G(U,W)2 − 5δ.

Secondly,

dH,G(U∗,W ∗)2 ≤ eH(U,W)2

eG(U∗,W ∗)2

≤ eH(U,W)2

(1 − η)2p2|U∗|2|W ∗|2

≤ eH(U,W)2

(1 − η)2(1 − δ)4p2|U ||W |

≤
(

1 + η

(1 − η)(1 − δ)2

)2

dH,G(U,W)2

≤ dH,G(U,W)2 + 9δ.

Thus (ii) follows. �

In what follows, a constant 0 < ε ≤ 1/2 and a spanning subgraph H ⊂ G
of G is fixed. Also, we let P = (Ci)k

0 be an (ε, k)-equitable partition of V =
V (G) refining P0, where 4k ≥ ε−5. Moreover, we assume that η ≤ η0 =
η0(k) = 1/k4k+1 and that n = |G| ≥ n0 = n0(k) = k41+2k.

We now define an equitable partition Q = Q(P) of V = V (G) from P
as follows. First, for each (ε,H,G)-irregular pair (Cs, Ct) of P with 1 ≤
s < t ≤ k, we choose X = X(s, t) ⊂ Cs, Y = Y (s, t) ⊂ Ct such that
(i) |X|, |Y | ≥ ε|Cs| = ε|Ct|, and (ii) |dH,G(X,Y) − dH,G(Cs, Ct)| ≥ ε. For
fixed 1 ≤ s ≤ k, the sets X(s, t) in

{X = X(s, t) ⊂ Cs : 1 ≤ t ≤ k and (Cs, Ct) is not (ε,H,G)-regular}

define a natural partition of Cs into at most 2k−1 blocks. Let us call such
blocks the atoms of Cs. Now let q = 4k and set m = �|Cs|/q (1 ≤ s ≤ k).
Note that �|Cs|/m = q as |Cs| ≥ n/2k ≥ 2q2. Moreover, for later use, note

318 Kohayakawa and Rödl

that m ≥ ηn. We now let Q′ be a partition of V = V (G) refining P such
that (i) C0 is a block of Q′, (ii) all other blocks of Q′ have cardinality m,
except for possibly one, which has cardinality at most m − 1, (iii) for
all 1 ≤ s ≤ k, every atom A ⊂ Cs contains exactly �|A|/m blocks of Q′,
(iv) for all 1 ≤ s ≤ k, the set Cs contains exactly q = �|Cs|/m blocks
of Q′.

Let C ′
0 be the union of the blocks of Q′ that are not contained in any

class Cs (1 ≤ s ≤ k), and let C ′
i (1 ≤ i ≤ k′) be the remaining blocks

of Q′. We are finally ready to define our equitable partition Q = Q(P): we
let Q = (C ′

i)
k′
1 .

Lemma 35 The partition Q = Q(P) = (C ′
i)

k′
0 defined from P as above

is a k′-equitable partition of V = V (G) refining P , where k′ = kq = k4k,
and |C ′

0| ≤ |C0| + n4−k.

Proof. Clearly Q refines P . Moreover, clearly m = |C ′
1| = . . . = |C ′

k′ | and,
for all 1 ≤ s ≤ k, we have |C ′

0| ≤ |C0| + k(m − 1) ≤ |C0| + k|Cs|/q ≤
|C0| + n4−k. �

In what follows, for 1 ≤ s ≤ k, we let Cs(i) (1 ≤ i ≤ q) be the classes ofQ′

that are contained in the class Cs of P . Also, for all 1 ≤ s ≤ k, we set C∗
s =⋃

1≤i≤q Cs(i). Now let 1 ≤ s ≤ k be fixed. Note that |C∗
s | ≥ |Cs|−(m−1) ≥

|Cs| − q−1|Cs| ≥ |Cs|(1 − q−1). As q−1 ≤ 10−2 and q−1|Cs| ≥ m ≥ ηn, by
Lemma 34 we have, for all 1 ≤ s < t ≤ k,

|dH,G(C∗
s , C

∗
t) − dH,G(Cs, Ct)| ≤ 5q−1 (9.69)

and

|dH,G(C∗
s , C

∗
t)2 − dH,G(Cs, Ct)2| ≤ 9q−1. (9.70)

9.5.2 Defect form of the Cauchy–Schwarz inequality
As in [60], the following ‘defect’ form of the Cauchy–Schwarz inequality
will be used in the proof of Theorem 13.

Lemma 36 Let y1, . . . , yv ≥ 0 be given. Suppose 0 ≤ � = u/v < 1,
and

∑
1≤i≤u yi = α�

∑
1≤i≤v yi. Then

∑

1≤i≤v

y2
i ≥ 1

v

(

1 + (α− 1)2
�

1 − �

){ ∑

1≤i≤v

yi

}2

. (9.71)

Since it is for the same price, we prove a weighted version of Lemma 36.
The statement and proof of Lemma 37 below are from [25] (see also [24, 60]).

9. Szemerédi’s Regularity Lemma and Quasi-randomness 319

Lemma 37 Let σi and di (i ∈ I) be non-negative reals with
∑

i∈I σi = 1.
Set d =

∑
i∈I σidi. Let J ⊂ I be a proper subset of I such that

∑
j∈J σj =

σ < 1 and
∑

j∈J

σjdj = σ(d+ µ).

Then
∑

i∈I

σid
2
i ≥ d2 +

µ2σ

1 − σ
. (9.72)

Proof. Let uJ =
(√
σj

)
j∈J

, vJ =
(√
σjdj

)
j∈J

, uI\J =
(√
σi

)
i∈I\J

, and

vI\J =
(√
σidi

)
i∈I\J

.
We use the Cauchy–Schwarz inequality in the form | 〈x,y〉 |2 ≤ ‖x‖2‖y‖2.

Taking x = uJ and y = vJ and x = uI\J and y = vI\J , respectively, we
infer that

(∑

j∈J

σjdj

)2

≤
∑

j∈J

σj

∑

j∈J

σjd
2
j ,

and
(∑

i∈I\J

σidi

)2

≤
∑

i∈I\J

σi

∑

i∈I\J

σid
2
i .

Therefore
∑

i∈I

σid
2
i ≥ 1

σ

(∑

j∈J

σjdj

)2

+
1

1 − σ

(∑

i∈I−J

σidi

)2

= σ(d+ µ)2 + (1 − σ)
(

d− σµ

1 − σ

)2

= d2 +
µ2σ

1 − σ
,

as required. �

Proof. (Proof of Lemma 36) To prove Lemma 36, simply take σi = 1/v
and di = yi (1 ≤ i ≤ v) in Lemma 37. Then d = v−1∑

1≤i≤v yi, σ = �,
and µ = (α− 1)d. Inequality (9.72) then reduces to (9.71). �

9.5.3 The index of a partition
Similarly to [60], we define the index ind(R) of an equitable partition R =
(Ci)r

0 of V = V (G) to be

ind(R) =
2
r2

∑

1≤i<j≤�

dH,G(Ci, Cj)2.

Note that trivially 0 ≤ ind(R) < 1.

320 Kohayakawa and Rödl

9.5.4 The index of subpartitions
Our aim now is to show that, for Q = Q(P) defined as above, we
have ind(Q) ≥ ind(P) + ε5/100.

The draw case

We start with the following lemma.

Lemma 38 Suppose 1 ≤ s < t ≤ k. Then

1
q2

q∑

i, j=1

dH,G(Cs(i), Ct(j))2 ≥ dH,G(Cs, Ct)2 − ε5

100
.

Proof. By the (P0, η)-uniformity of G and the fact that (Cs, Ct) ≺ P0, we
have

1
q2

∑

1≤i≤q

∑

1≤j≤q

dH,G(Cs(i), Ct(j)) =
1
q2

∑

i, j

eH(Cs(i), Ct(j))
eG(Cs(i), Ct(j))

≥
∑

i, j

eH(Cs(i), Ct(j))
(1 + η)q2p|Cs(i)||Ct(j)|

=
eH(C∗

s , C
∗
t)

(1 + η)p|C∗
s ||C∗

t |

≥ 1 − η

1 + η
dH,G(C∗

s , C
∗
t)

≥ dH,G(C∗
s , C

∗
t) − 2η.

Thus, by the Cauchy–Schwarz inequality, we have

1
q2

∑

1≤i≤q

∑

1≤j≤q

dH,G(Cs(i), Ct(j))2 ≥ dH,G(C∗
s , C

∗
t)2 − 4η.

Furthermore, by (9.70), we have dH,G(C∗
s , C

∗
t)2 ≥ dH,G(Cs, Ct)2 − 9q−1.

Since we have 9q−1 + 4η ≤ ε5/100, the lemma follows. �

The winning case

The inequality in Lemma 38 may be improved if (Cs, Ct) is an (ε,H,G)-
irregular pair, as shows the following result.

Lemma 39 Let 1 ≤ s < t ≤ k be such that (Cs, Ct) is not (ε,H,G)-
regular. Then

1
q2

q∑

i, j=1

dH,G(Cs(i), Ct(j))2 ≥ dH,G(Cs, Ct)2 +
ε4

40
− ε5

100
.

9. Szemerédi’s Regularity Lemma and Quasi-randomness 321

Proof. Let X = X(s, t) ⊂ Cs, Y = Y (s, t) ⊂ Ct be as in the defini-
tion of Q. Let X∗ ⊂ X be the maximal subset of X that is the union
of blocks of Q, and similarly for Y ∗ ⊂ Y . Without loss of generality,
we may assume that X∗ =

⋃
1≤i≤qs

Cs(i), and Y ∗ =
⋃

1≤j≤qt
Ct(j).

Note that |X∗| ≥ |X| − 2k−1(m − 1) ≥ |X|(1 − 2k−1m/|X|) ≥ |X|(1 −
2k−1/qε) = |X|(1 − 1/ε2k+1), and similarly |Y ∗| ≥ |Y |(1 − 1/ε2k+1).
However, we have 1/ε2k+1 ≤ 10−2 and |X|/ε2k+1, |Y |/ε2k+1 ≥ ηn.
Thus, by Lemma 34, we have |dH,G(X∗, Y ∗) − dH,G(X,Y)| ≤ 5/ε2k+1.
Moreover, by (9.69), we have |dH,G(C∗

s , C
∗
t) − dH,G(Cs, Ct)| ≤ 5q−1.

Since |dH,G(X,Y) − dH,G(Cs, Ct)| ≥ ε and 5q−1 + 5/ε2k+1 ≤ ε/2, we
have

|dH,G(X∗, Y ∗) − dH,G(C∗
s , C

∗
t)| ≥ ε/2. (9.73)

For later reference, let us note that qsm = |X∗| ≥ |X| − 2k−1m ≥ ε|Cs| −
2k−1m ≥ εqm − 2k−1m, and hence qs ≥ εq − 2k−1 ≥ εq/2. Similarly, we
have qt ≥ εq/2. Let us now set yij = dH,G(Cs(i), Ct(j)) for i, j = 1, . . . , q.
In the proof of Lemma 38 we checked that

∑

1≤i≤q

∑

1≤j≤q

yij ≥ 1 − η

1 + η
q2dH,G(C∗

s , C
∗
t) ≥ (1 − 2η)q2dH,G(C∗

s , C
∗
t).

Similarly, one has
∑

1≤i≤q

∑

1≤j≤q

yij ≤ (1 + 3η)q2dH,G(C∗
s , C

∗
t),

∑

1≤i≤qs

∑

1≤j≤qt

yij ≥ (1 − 2η)qsqtdH,G(X∗, Y ∗),

and
∑

1≤i≤qs

∑

1≤j≤qt

yij ≤ (1 + 3η)qsqtdH,G(X∗, Y ∗).

Let us set � = qsqt/q
2 ≥ ε2/4, and d∗

s,t = dH,G(C∗
s , C

∗
t). We now note that

by (9.73) we either have
∑

1≤i≤qs

∑

1≤j≤qt

yij ≥ 1 − 2η
1 + 3η

· qsqt
q2

(

1 +
ε

2(d∗
s,t)2

) ∑

1≤i≤q

∑

1≤j≤q

yij

≥ �

(

1 +
ε

3(d∗
s,t)2

) ∑

1≤i≤q

∑

1≤j≤q

yij ,

or else
∑

1≤i≤qs

∑

1≤j≤qt

yij ≤ 1 + 3η
1 − 2η

· qsqt
q2

(

1 − ε

2(d∗
s,t)2

) ∑

1≤i≤q

∑

1≤j≤q

yij

≤ �

(

1 − ε

3(d∗
s,t)2

) ∑

1≤i≤q

∑

1≤j≤q

yij .

322 Kohayakawa and Rödl

We may now apply Lemma 36 to conclude that

∑

1≤i≤q

∑

1≤j≤q

y2
ij ≥ 1

q2

(

1 +
ε2

9(d∗
s,t)2

· �

1 − �

){ ∑

1≤i≤q

∑

1≤j≤q

yij

}2

≥ 1
q2

(

1 +
ε2�

9(d∗
s,t)2

)
{
q2(1 − 2η)d∗

s,t

}2

≥ q2(1 − 4η)
(

(d∗
s,t)

2 +
ε2�

9

)

≥ q2
(

(d∗
s,t)

2 +
ε2�

10
− 4η

)

.

Therefore

1
q2

∑

1≤i≤q

∑

1≤j≤q

dH,G(Cs(i), Ct(j))2 ≥ dH,G(C∗
s , C

∗
t)2 +

ε2�

10
− 4η

≥ dH,G(Cs, Ct)2 +
ε4

40
− (9η−1 + 4η)

≥ dH,G(Cs, Ct)2 +
ε4

40
− ε5

100
,

as required. �

9.5.5 Proof of Theorem 13
We are now ready to prove the main lemma needed in the proof of
Theorem 13.

Lemma 40 Suppose k ≥ 1 and 0 < ε ≤ 1/2 are such that 4k ≥ 1800ε−5.
Let G = Gn be a (P0, η)-uniform graph of order n ≥ n0 = n0(k) =
k42k+1, where P0 = (Vi)�

1 is a partition of V = V (G), and assume
that η ≤ η0 = η0(k) = 1/k4k+1. Let H ⊂ G be a spanning sub-
graph of G. If P = (Ci)k

0 is an (ε,H,G)-irregular (ε, k)-equitable partition
of V = V (G) refining P0, then there is a k′-equitable partition Q = (C ′

i)
k′
0

of V such that (i) Q refines P , (ii) k′ = k4k, (iii) |C ′
0| ≤ |C0|+n4−k, and

(iv) ind(Q) ≥ ind(P) + ε5/100.

Proof. Let P be as in the lemma. We show that the k′-equitable par-
tition Q = (C ′

i)
k′
0 defined from P as above satisfies (i)–(iv). In view of

Lemma 35, it only remains to check (iv). By Lemmas 38 and 39, we have

ind(Q) =
2

(kq)2
∑

1≤i≤q

∑

1≤j≤q

dH,G(C ′
i, C

′
j)2

≥ 2
k2

∑

1≤s<t≤k

1
q2

∑

1≤i≤q

∑

1≤j≤q

dH,G(Cs(i), Ct(j))2

9. Szemerédi’s Regularity Lemma and Quasi-randomness 323

≥ 2
k2

{
∑

1≤s<t≤k

(

dH,G(Cs, Ct)2 − ε5

100

)

+ ε

(
k

2

)
ε4

40

}

≥ ind(P) − ε5

100
+
ε5

50

≥ ind(P) +
ε5

100
.

This completes the proof of the lemma. �

We now deduce Theorem 13 from Lemma 40.

Proof. (Proof of Theorem 13) Let ε > 0, k0 ≥ 1, and � ≥ 1 be given.
We may assume that ε ≤ 1/2. Pick s ≥ 1 such that 4s/4� ≥ 1800ε−5,
s ≥ max{2k0, 3�/ε}, and ε4s−1 ≥ 1. Let f(0) = s, and put inductively

f(t) = f(t− 1)4f(t−1) (t ≥ 1).

Let t0 = �100ε−5 and set

N = max{n0(f(t)): 0 ≤ t ≤ t0} = f(t0)42f(t0)+1,

K0 = max{6�/ε,N},

and

η = η(ε, k0, �) = min{η0(f(t)): 0 ≤ t ≤ t0} = 1/4f(t0 + 1) > 0.

Finally, we take N0 = N0(ε, k0, �) = K0. We claim that η, K0, and N0 as
defined above will do.

To prove our claim, let G = Gn be a fixed (P0, η)-uniform graph
with n ≥ N0, where P0 = (Vi)�

1 is a partition of V = V (G). Further-
more, let H ⊂ G be a spanning subgraph of G. We have n ≥ N0 = K0.
Suppose t ≥ 0. Let us say that an equitable partition P (t) = (Ci)k

0 of V is
t-valid if (i) P (t) refines P0, (ii) s/4� ≤ k ≤ f(t), (iii) ind{P (t)} ≥ tε5/100,
and (iv) |C0| ≤ εn(1−2−(t+1)). We now verify that a 0-valid partition P (0)

of V does exist. Let m = �n/s�, and let Q be a partition of V with all
blocks of cardinality m, except for possibly one, which has cardinality at
most m− 1, and moreover such that each Vi (1 ≤ i ≤ �) contains �|Vi|/m
blocks of Q. Grouping at most � blocks of Q into a single block C0, we
arrive at an equitable partition P (0) = (Ci)k

0 of V that is 0-valid. In-
deed, (i) is clear, and to check (ii) note that k ≤ n/m ≤ s = f(0), and
that there is 1 ≤ i ≤ � such that |Vi| ≥ n/�, and so k ≥ �|Vi|/m ≥
�(n/�)/�n/s� ≥ (1/2){(n/�)/(2n/s)} = s/4�. Also, (iii) is trivial and (iv)
does follow, since |C0| < �m ≤ ��nε/3�� ≤ nε/2 as n ≥ K0 ≥ 6�/ε.

Now note that if there is a t-valid partition P (t) of V , then t ≤ t0 =
�100ε−5 , since ind{P (t)} ≤ 1. Suppose t is the maximal integer for which
there is a t-valid partition P (t) of V . We claim that P (t) is (ε,H,G)-regular.
Suppose to the contrary that P (t) is not (ε,H,G)-regular. Then simply

324 Kohayakawa and Rödl

note that Lemma 40 gives a (t+ 1)-valid equitable partition P (t+1) = Q =
Q(P (t)), contradicting the maximality of t. This completes the proof of
Theorem 13. �

9.6 Local conditions for regularity

As briefly discussed in the introduction, our aim in this section is to discuss
a well-known ‘local’ condition for regularity. It should be stressed that in
Sections 9.6 and 9.7, we are concerned with dense graphs, that is, we are in
the context of the original regularity lemma. (See Section 9.6.5 for a very
brief discussion on extensions of the results in Section 9.6 to the sparse
case.)

9.6.1 The basic argument
In this section, we give a result of Lindsey (see the proof of the upper bound
in Theorem 15.2 in [23]) because it contains one of the key ideas used in
developing local conditions for regularity.

Let H = (hij) be an n by n Hadamard matrix. Thus H is a {±1}-matrix
whose rows are pairwise orthogonal. Let

disc(H; a, b) = max
I,J

∣
∣
∣
∣

∑

i∈I, j∈J

hij

∣
∣
∣
∣, (9.74)

where the maximum is taken over all sets of rows I and all sets of columns J
with |I| = a and |J | = b. We also let the discrepancy of H be

disc(H) = max
a,b

disc(H; a, b), (9.75)

where the maximum is taken over all 1 ≤ a ≤ n and 1 ≤ b ≤ n.

Theorem 41 For any n by n Hadamard matrix H, and any 1 ≤ a ≤ n
and 1 ≤ b ≤ n, we have

disc(H; a, b) ≤
√
abn. (9.76)

Proof. Let the rows of H be v1, . . . ,vn, and fix a and b. Suppose, without
loss of generality, that I = {1, . . . , a} and J = {1, . . . , b}. Let also 1J =
(1, . . . , 1, 0, . . .)T ∈ R

n be the characteristic vector of J . By the Cauchy–
Schwarz inequality, we have

∣
∣
∣
∣

∑

I,J

hij

∣
∣
∣
∣ =
∣
∣
∣
∣

〈∑

i∈I

vi,1J

〉∣
∣
∣
∣ ≤
∥
∥
∥
∥

∑

i∈I

vi

∥
∥
∥
∥

√
|J | =

∥
∥
∥
∥

∑

i∈I

vi

∥
∥
∥
∥

√
b. (9.77)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 325

From the pairwise orthogonality of the vectors vi, we have
∥
∥
∥
∥

∑

i∈I

vi

∥
∥
∥
∥ =

√∑

i∈I

‖vi‖2 =
√
n|I| =

√
na. (9.78)

Plugging (9.78) into (9.77), we have
∣
∣
∣
∣

∑

I,J

hij

∣
∣
∣
∣ ≤

√
abn,

and the result follows. �

Corollary 42 The discrepancy disc(H) of an n by n Hadamard matrix H
satisfies disc(H) ≤ n3/2.

An easy generalization of Theorem 41 above concerns the case in which
we weaken the condition that the rows of H should be precisely orthogonal.
Let us say that two vectors u, v ∈ R

n are ε-quasi-orthogonal if | 〈u, v〉 | ≤
εn. Our next result roughly states that if the rows of an n by n matrix H
are o(1)-quasi-orthogonal, then the discrepancy of H is o(n2).

Theorem 43 Let δ > 0 be fixed and let H be an n by n matrix whose
rows vi (1 ≤ i ≤ n) are δ-quasi-orthogonal and ‖vi‖ ≤

√
n for all 1 ≤ i ≤

n. Then

disc(H; a, b) ≤ n2
√

2δ (9.79)

for all a ≥ 1/δ and all b ≥ 1.

Proof. We proceed exactly in the same manner as in the proof of
Theorem 41. However, instead of (9.78), we observe that

∥
∥
∥
∥

∑

i∈I

vi

∥
∥
∥
∥

2

=
〈∑

i∈I

vi,
∑

i∈I

vi

〉

=
∑

i∈I

〈vi,vi〉 +
∑

i 	=j

〈vi,vj〉 , (9.80)

where the last sum is over all i �= j with i, j ∈ I. The result now follows
from the hypotheses on the ‖vi‖ and on the 〈vi,vj〉. Indeed, the right-hand
side of (9.80) is at most

an+ 2
(
a

2

)

δn ≤ a2δn

(

1 +
1
aδ

)

≤ 2a2δn. (9.81)

Therefore, the right-hand side of (9.77) is at most
√

2a2bδn ≤ n2
√

2δ.
Theorem 43 follows. �

Before we proceed, let us observe that, in fact, the hypothesis of δ-quasi-
orthogonality of the vi (1 ≤ i ≤ n) in Theorem 43 may be further weakened
to

〈vi,vj〉 ≤ δn for all i �= j with 1 ≤ i, j ≤ n. (9.82)

326 Kohayakawa and Rödl

Indeed, hypothesis (9.82) above suffices for us to estimate the last sum
in (9.80). The reader may also observe that, in fact, it suffices to require
that the inequality in (9.82) should hold for most pairs {i, j} with i �= j,
with little loss in the conclusion (9.79). We omit the details.

Finally, let us observe that Theorem 41 concerns matrices in which the
number of +1s is about the same as the number of −1s, and hence the
average entry is about 0. In general, we shall be interested in the case
in which the rows of our matrix are pairwise quasi-orthogonal (or, more
generally, the rows satisfy (9.82)), the average entry is about 0, but the
entries are not necessarily ±1. Adapting carefully the argument in the proof
of Theorem 41 to this more general case gives Lemma 45, to be discussed
in the Section 9.6.3.

9.6.2 The converse
In the previous section, we proved that the pairwise orthogonality of the
rows of a {±1}-matrix has as a somewhat unexpected consequence the fact
that the matrix must have small discrepancy. In this section, we prove
that o(n2) discrepancy for an n by n matrix implies the existence of
only o(n2) pairs of rows that are ‘substantially’ non-orthogonal (in fact,
we prove that the number of pairs {i, j} violating the condition in (9.82)
is o(n2)). Thus, roughly speaking, we shall prove the converse of the results
in Section 9.6.1.

Theorem 44 Let δ > 0 be a real number and let H = (hij) be an n by n
matrix with entries in {±1}. Let the rows of H be vi (1 ≤ i ≤ n). Let D be
the graph on V = V (D) = [n] = {1, . . . , n} whose edges are the pairs {i, j}
(i �= j) for which we have

〈vi,vj〉 > δn. (9.83)

If D is such that e(D) = |E(D)| ≥ δn2, then

disc(H) >
1
2
δ2n2. (9.84)

Before we give the proof of Theorem 44, let us give the underlying ar-
gument in its simplest form. Let us suppose that we have the following
convenient set-up:

v1 = 1 = (1, . . . , 1) ∈ R
n (9.85)

and

〈v1,vi〉 = Ω(n). (9.86)

for all i ∈ I, where |I| = Ω(n). Clearly, we may restate (9.86) by saying
that all the vectors vi (i ∈ I) have a ‘surplus’ of +1s of order Ω(n). Since

9. Szemerédi’s Regularity Lemma and Quasi-randomness 327

we have |I| = Ω(n) such vectors vi, if we sum all the entries of these vi we
obtain a discrepancy of Ω(n2).

To prove Theorem 44, we concentrate our attention on a vertex of high
degree in D, and we consider a subset of the columns of H so that the
simplifying hypothesis (9.85) holds.

Proof. (Proof of Theorem 44) We start by noticing that the average
degree of D is ≥ 2δn. Let i0 ∈ [n] = V (D) be a vertex of D with degree ≥
2δn. We let I be the neighbourhood Γ(i0) of i0 in D. Therefore,

|I| ≥ 2δn. (9.87)

For α ∈ {+,−}, let

Jα = {j ∈ [n]:hi0j = α}. (9.88)

Clearly, we have vi0 = 1J+ − 1J− , where we write 1S for the characteristic
vector of a set S. For any i ∈ [n] and α ∈ {+,−}, let vα

i be the restriction
of vi = (hij)1≤j≤n to Jα, that is,

vα
i = (hij)j∈Jα

. (9.89)

For any i ∈ I = Γ(i0), we have
〈
v+

i0
,v+

i

〉
+
〈
v−

i0
,v−

i

〉
= 〈vi0 ,vi〉 > δn.

Therefore, either
〈
1J+ ,v

+
i

〉
=
〈
v+

i0
,v+

i

〉
>

1
2
δn, (9.90)

or else
〈
−1J− ,v

−
i

〉
=
〈
v−

i0
,v−

i

〉
>

1
2
δn. (9.91)

Let

I+ = {i ∈ I = Γ(i0): (9.90) holds}, (9.92)

and let

I− = {i ∈ I = Γ(i0): (9.91) holds}. (9.93)

Clearly, I = Γ(i0) = I+ ∪ I− and hence

max{|I+|, |I−|} ≥ 1
2
|I| ≥ δn, (9.94)

where we used (9.87). Let us now put Sα =
∑
hij for α ∈ {+,−}, where

the sum runs over all i ∈ Iα and j ∈ Jα. Observe that then

S+ =
∑{

hij : i ∈ I+, j ∈ J+

}
=
〈∑

i∈I+

v+
i ,1J+

〉

>
1
2
δn|I+|, (9.95)

328 Kohayakawa and Rödl

and

S− =
∑{

hij : i ∈ I−, j ∈ J−
}

=
〈∑

i∈I−

v−
i ,1J−

〉

< −1
2
δn|I−|, (9.96)

where the inequalities follow from (9.90) and (9.91). We now observe
that (9.94) gives that

disc(H) ≥ max{|S+|, |S−|} > max{|I+|, |I−|}1
2
δn ≥ 1

2
δ2n2, (9.97)

which completes the proof. �

We shall discuss the ‘full’ version of Theorem 44 above in Section 9.6.3.

9.6.3 The general results
We now state the ‘general versions’ of the results in Sections 9.6.1 and 9.6.2.
We follow [19]. The results in this section are stated for graphs instead of
matrices.

The sufficiency of the condition

Recall that we write Γ(x) = ΓG(x) for the neighbourhood of a vertex x in
a graph G. Moreover, if B ⊂ V (G) is a subset of vertices of our graph G,
we write dB(x) for the degree |Γ(x) ∩ B| of x into B, and, similarly, we
write dB(x, x′) for the ‘joint degree’ |Γ(x) ∩ Γ(x′) ∩B| of x and x′ into B.

We now state the ‘full’ version of Theorem 43 (see also the comment
concerning the weaker hypothesis (9.82)).

Theorem 45 Let ε be a constant with 0 < ε < 1. Let G = (V,E) be a
graph with (A,B) a pair of disjoint, nonempty subsets of V with |A| ≥ 2/ε.
Set � = d(A,B) = e(A,B)/|A||B|. Let D be the collection of all pairs
{x, x′} of vertices of A for which

(i) dB(x), dB(x′) > (�− ε)|B|,

(ii) dB(x, x′) < (�+ ε)2|B|.

Then if |D| > (1/2)(1 − 5ε)|A|2, the pair (A,B) is (16ε)1/5-regular.

We only give a brief sketch for the proof of Theorem 45 here. The first
step is to construct an A by B ‘adjacency’ matrix M , whose entries are −1
and λ = (1 − �)/�. A −1 entry indicates the absence of the edge and the
entry λ indicates the presence of the edge. It is not difficult to check that
the discrepancy of this matrix M is tightly connected with the regularity
of the pair (A,B). Indeed, we have

disc(M ; a′, b′) =
1
�

max
A′, B′

∣
∣e(A′, B′) − �|A′||B′|

∣
∣, (9.98)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 329

where the maximum is taken over all A′ ⊂ A and B′ ⊂ B with |A′| = a′

and |B′| = b′. On the other hand, by making use of the hypothesis on D,
a careful application of Lindsey’s argument gives that

disc(M ; a′, b′) ≤ 1
�

(16ε)1/5a′b′ (9.99)

for all a′ ≥ ε|A| and b′ ≥ ε|B|. Theorem 45 follows from (9.98) and (9.99).
See [19] for the details.

The necessity of the condition

We now turn to the converse of Theorem 45. The ‘full’ version of
Theorem 44 is as follows.

Theorem 46 Let G = (V,E) be a graph with (A,B) an ε-regular
pair of disjoint, nonempty subsets of V , having density d(A,B) =
e(A,B)/|A||B| = �, where �|B| ≥ 1 and 0 < ε < 1. Then

(i) all but at most 2ε|A| vertices x ∈ A satisfy

(�− ε)|B| < dB(x), dB(x′) < (�+ ε)|B|,

(ii) all but at most 2ε|A|2 pairs {x, x′} of vertices of A satisfy

dB(x, x′) < (�+ ε)2|B|.

Theorem 46 may be proved by adapting the proof of Theorem 44. See [19]
for the details.

9.6.4 Algorithmic versions
Let us briefly discuss some algorithmic aspects. The reader is referred to [37]
for a survey.

In algorithmic applications of regularity, once an ε-regular partition is
obtained, one typically makes use of constructive versions of results such
as the embedding lemma, Lemma 25. The reader will have no difficulty in
observing that an efficient algorithm is implied in the proof of Lemma 25.

The question is, then, whether ε-regular partitions may be constructed
efficiently. It turns out that this is indeed the case [4, 5]. The main tool
to prove this is the local characterization of regularity that we have been
discussing in this section. In fact, Theorems 45 and 46 imply Lemma 47
below (see [4, 5, 19]), which is the key ingredient of the constructive version
of the regularity lemma given in [4, 5].

Recall that a bipartite graph B = (U,W ;E) with vertex classes U and W
and edge set E is said to be ε-regular if (U,W) is an ε-regular pair with
respect to B. Thus, a witness to the ε-irregularity of B is a pair (U ′,W ′)
with U ′ ⊂ U , W ′ ⊂ W , |U ′|, |W ′| ≥ εn, and |dB(U ′,W ′) − dB(U,W)| > ε.
Below, we write M(n) for the time required to square an n × n matrix

330 Kohayakawa and Rödl

with entries in {0, 1} over the integers. By a result of Coppersmith and
Winograd [17], we have M(n) = O(n2.376). (We leave it as an easy exercise
for the reader to see how matrix multiplication comes into play here; with-
out fast matrix multiplication, we would have an algorithm with running
time O(n3) in Lemma 47 below.)

Lemma 47 There exists an algorithm A for which the following holds.
When A receives as input an ε > 0 and a bipartite graph B = (U,W ;E)
with |U | = |W | = n ≥ (2/ε)5, it either correctly asserts that B is ε-regular,
or else it returns a witness for the ε′-irregularity of B, where ε′ = ε′

A(ε) =
ε5/16. The running time of A is O(M(n)).

Note that Lemma 47 leaves open what the behaviour of A should be
when B is ε-regular but is not ε′-regular. Despite this fact, Lemma 47 does
indeed imply the existence of a polynomial-time algorithm for finding ε-
regular partitions of graphs. A moment’s thought should make it clear that
what is required is an algorithmic version of Lemma 40. Lemma 47 readily
provides such a result. We leave the proof of this assertion as an exercise
for the reader.

Summing up the results discussed so far, we have the following theorem,
which is an algorithmic version of Szemerédi’s regularity lemma [4, 5].

Theorem 48 There is a deterministic algorithm B and functions K0(ε, k0)
and N0(ε, k0) for which the following holds. On input G = Gn, 0 < ε ≤
1, and k0 ≥ 1, where n ≥ N0(ε, k0), algorithm B returns an ε-regular,
(ε, k)-equitable partition for G in time O(M(n)), where k0 ≤ k ≤ K0(ε, k0).

Let us observe that the constant implied in the big O notation in
Theorem 48 depends on ε and k0.

In [41], we shall show how to improve on the running time given in
Lemma 47 (at the cost of decreasing the value of ε′ = ε′(ε) substantially).
The key idea is to make use of the quasi-random property to be discussed
in Section 9.7. The algorithm for constructing ε-regular partitions given
in [41] has running time O(n2) for graphs of order n, where, again, the
implicit constant depends on ε and k0.

The algorithms we have discussed so far are all deterministic. If one
allows randomization, one may develop algorithms that run in O(n) time,
as shown by Frieze and Kannan [27, 28].

A coNP-completeness result

The reader may find it unsatisfactory that, strictly speaking, we did not
solve the problem of characterizing precisely the ε-regular pairs. Indeed,
Lemma 47 can only tell the difference between ε′

A(ε)-regular pairs and ε-
irregular pairs, and ε′

A(ε) - ε. This is, by no means, an accident. Consider
the decision problem below.

9. Szemerédi’s Regularity Lemma and Quasi-randomness 331

Problem 49 Given a graph G, a pair (U,W) of non-empty, pairwise dis-
joint sets of vertices of G, and a positive ε, decide whether this pair is
ε-regular with respect to G.

It should be clear that, in the case in which the answer to Problem 49
is negative for a given instance, we would like to have a witness for the
ε-irregularity of the given pair. Indeed, an algorithm that is able to solve
Problem 49 and is also able to provide such a witness in the case in which
the answer is negative would prove Lemma 47 with ε′ = ε. Unfortunately,
such an algorithm does not exist, unless P = NP, as shows the following
result of Alon, Duke, Lefmann, Rödl, and Yuster [4, 5].

Theorem 50 Problem 49 is coNP-complete.

Let us remark in passing that Theorem 50 is proved in [4, 5] for the case
in which ε = 1/2; for a proof for arbitrary 0 < ε ≤ 1/2, see Taraz [61].

9.6.5 The sparse case
As proved in [38], Theorems 45 and 46 do not generalize to graphs of
vanishing density. However, in view of the applicability of those results,
it seems worth pursuing the sparse case. In [38], we prove that natural
generalizations of Theorems 45 and 46 do hold for subgraphs of sparse
random graphs. Examples of applications of these generalizations appear
in [3] (cf. Theorem 1.5) and [40]. We do not go into the details here.

9.7 A new quasi-random property

In this section, we present a new quasi-random graph property, in the
sense of Chung, Graham, and Wilson [15]. In the introduction and in Sec-
tion 9.3.2, we very briefly discussed the basics of quasi-randomness, and
mentioned the close relationship between quasi-randomness, ε-regularity,
and the regularity lemma as a strong motivation for studying quasi-random
graph properties.

In Section 9.6, we discussed ‘local’ conditions for regularity, and observed
that these conditions were the key for developing a O(n2.376)-time algor-
ithm that checks whether a given bipartite graph is regular (see Lemma 47).
In turn, this led to a O(n2.376)-time algorithm for finding regular partitions
of graphs. The quasi-random property that we present in this section al-
lows one to check regularity, somewhat surprisingly, in time O(n2). Since
we deal with dense input graphs, this running time is proportional to the
input size, and hence we have a linear time algorithm. (The correspond-
ing linear time algorithm for finding regular partitions of graphs, which is
based on some additional ideas, will be presented in [41].)

332 Kohayakawa and Rödl

The proof of the fact that our property is indeed a quasi-random prop-
erty will make use of the sparse regularity lemma, Theorem 15. To simplify
the notation, we restrict our discussion to the case of graphs with den-
sity ∼ 1/2. Moreover, we deal with quasi-randomness and arbitrary graphs,
instead of regularity and bipartite graphs. We hope that the reader finds
the correspondence between these two contexts clear.

9.7.1 Basic definitions
We start with the definition of a standard quasi-random graph property.

Definition 51 ((1/2, ε, δ)-quasi-randomness) Let reals 0 < ε ≤ 1
and 0 < δ ≤ 1 be given. We shall say that a graph G is (1/2, ε, δ)-quasi-
random if, for all U , W ⊂ V (G) with U ∩W = ∅ and |U |, |W | ≥ δn, we
have

∣
∣
∣
∣eG(U,W) − 1

2
|U ||W |

∣
∣
∣
∣ ≤

1
2
ε|U ||W |. (9.100)

Before we proceed, we need to introduce a technical definition concerning
graphs with uniformly distributed edges.

Definition 52 ((�,A)-uniformity) If 0 < � ≤ 1 and A are reals, we say
that an n-vertex graph J = Jn is (�,A)-uniform if, for all U , W ⊂ V (J)
with U ∩W = ∅, we have

∣
∣eJ(U,W) − �|U ||W |

∣
∣ ≤ A

√
r|U ||W |, (9.101)

where r = �n.

As it will become clear later, we shall be mainly concerned with (�,A)-
uniform graphs J with constant average degree, that is, graphs J = Jn

with O(n) edges. The construction of such (�,A)-uniform graphs J = Jn

with linearly many edges will be briefly discussed in Section 9.7.3.
In the sequel, when dealing with a (�,A)-uniform graph J = Jn, we

usually write r for �n. Let us remark for later reference that the following
fact, whose simple proof will be given in Section 9.7.3, holds.

Fact 53 If J is a (�,A)-uniform graph, then, for any U ⊂ V (J), we have
∣
∣
∣
∣eJ(U) − �

(
|U |
2

)∣
∣
∣
∣ ≤ A

√
r|U |. (9.102)

We shall now define a property for n-vertex graphs G = Gn, based on a
fixed (�,A)-uniform graph J = Jn with the same vertex set as G. Below,
we write ij ∈ J to mean that ij is an edge of the graph J . We recall that
we denote the neighbourhood of a vertex x in a graph G by Γ(x) = ΓG(x),
and we write X * Y for the symmetric difference of X and Y .

9. Szemerédi’s Regularity Lemma and Quasi-randomness 333

Definition 54 (Property PJ,�(ε)) Let G = Gn and J = Jn be n-vertex
graphs on the same vertex set. Let 0 < ε ≤ 1 be a real number. We say
that G satisfies property PJ,�(ε) if we have

∑

ij∈J

∣
∣
∣
∣|ΓG(i) * ΓG(j)| − 1

2
n

∣
∣
∣
∣ ≤

1
2
εne(J). (9.103)

Our new quasi-random property is PJ,�(ε) above. It should be now clear
why it is interesting for us to have (�,A)-uniform graphs J with as few
edges as possible: the number of terms in the sum in (9.103) is e(J). Since
each term of that sum may be computed in O(n) time if, say, we have
access to the adjacency matrix of G, it follows that the time required to
verify property PJ,�(ε) is O(ne(J)), which is O(n2) if we have linear-sized
(�,A)-uniform graphs J .

For technical reasons, we need to introduce a variant of property PJ,�(ε).

Definition 55 (Property P ′
J,�(γ, ε)) Let G = Gn and J = Jn be n-

vertex graphs on the same vertex set. Let 0 < γ ≤ 1 and 0 < ε ≤ 1 be
two real numbers. We shall say that G satisfies property P ′

J,�(γ, ε) if the
inequality

∣
∣
∣
∣|ΓG(i) * ΓG(j)| − 1

2
n

∣
∣
∣
∣ ≤

1
2
εn (9.104)

fails for at most γe(J) edges ij ∈ J of J .

As a quick argument will show, properties PJ,�(ε) and P ′
J,�(γ, ε) are

equivalent under suitable assumptions on the parameters; see Lemma 60.
Our main result in Section 9.7 is that, roughly speaking, proper-

ties PJ,�(o(1)) and P ′
J,�(o(1), o(1)) are equivalent to (1/2, o(1), o(1))-quasi-

randomness. We make the form of this equivalence precise in the next
section.

9.7.2 The equivalence result
Theorems 56 and 57 below are the main results of Section 9.7. In-
tuitively, Theorem 56 states that property PJ,�(o(1)) is a sufficient
condition for (1/2, o(1), o(1))-quasi-randomness, whereas Theorem 57
states that P ′

J,�(o(1), o(1)) is a necessary condition. Lemma 60 tells us
that PJ,�(o(1)) and P ′

J,�(o(1), o(1)) are equivalent.

Theorem 56 For any 0 < ε ≤ 1, 0 < δ ≤ 1, and A ≥ 1, there exist ε0 =
ε0(ε, δ, A) > 0 and r0 = r0(ε, δ, A) ≥ 1 for which the following holds.
Suppose G = Gn and J = Jn are two graphs on the same vertex set.
Suppose further that J = Jn is a (�,A)-uniform graph with r = �n ≥ r0.
Then, if G satisfies property PJ,�(ε′) for some 0 < ε′ ≤ ε0, then G is
(1/2, ε, δ)-quasi-random.

334 Kohayakawa and Rödl

Theorem 57 For any 0 < γ ≤ 1, 0 < ε ≤ 1, and A ≥ 1, there exist ε0 =
ε0(γ, ε, A) > 0, δ0 = δ0(γ, ε, A) > 0, r1 = r1(γ, ε, A) ≥ 1, and N1 =
N1(γ, ε, A) ≥ 1 for which the following holds. Suppose G = Gn and J =
Jn are two graphs on the same vertex set, with n ≥ N1. Suppose further
that J = Jn is a (�,A)-uniform graph with r = �n ≥ r1. Then, if G is
(1/2, ε′, δ′)-quasi-random for some 0 < ε′ ≤ ε0 and 0 < δ′ ≤ δ0, then
property P ′

J,�(γ, ε) holds for G.

Remark 58 As our previous discussion suggests, it is of special relevance
to us that in Theorems 56 and 57 the quantity r = �n is not required to
grow with n.

Remark 59 We remark that Theorems 56 and 57 basically reduce to the
results in Sections 9.6.1–9.6.3 if we take J = Jn to be the complete
graph Kn.

Lemma 60 Let a (�,A)-uniform graph J = Jn be given, and suppose G =
Gn is a graph on the same vertex set as J . Then the following assertions
hold.

(i) If G satisfies property P ′
J,�(γ, ε), then G satisfies property PJ,�(ε+

γ).

(ii) If G satisfies property PJ,�(ε) and 0 < ε ≤ ε′ ≤ 1, then G satisfies
property P ′

J,�(ε/ε′, ε′).

We shall prove Theorems 56 and 57 in two separate sections below. Here,
we give the simple proof of Lemma 60.

Proof. (Proof of Lemma 60) Let J = Jn and G = Gn be as in the
statement of Lemma 60. Suppose first that G has property P ′

J,�(γ, ε). Then

∑

ij∈J

∣
∣
∣
∣|ΓG(i) * ΓG(j)| − 1

2
n

∣
∣
∣
∣ ≤

1
2
εne(J) +

1
2
nγe(J) =

1
2

(ε+ γ)ne(J).

(9.105)
Therefore property PJ,�(ε + γ) holds and (i) is proved. To prove (ii),
suppose that G satisfies PJ,�(ε) and 0 < ε ≤ ε′ ≤ 1. If P ′

J,�(ε/ε′, ε′) were
to fail, then we would have > (ε/ε′)e(J) edges ij of J with

∣
∣
∣
∣|ΓG(i) * ΓG(j)| − 1

2
n

∣
∣
∣
∣ >

1
2
ε′n. (9.106)

But then
∑

ij∈J

∣
∣
∣
∣|ΓG(i) * ΓG(j)| − 1

2
n

∣
∣
∣
∣ >

1
2
ε′n× ε

ε′ e(J) =
1
2
εne(J), (9.107)

which contradicts PJ,�(ε). Thus P ′
J,�(ε/ε′, ε′) must hold, and (ii) is proved.

�

9. Szemerédi’s Regularity Lemma and Quasi-randomness 335

9.7.3 The existence of (�, A)-uniform graphs
As promised before, in this section we discuss the construction of suitable
(�,A)-uniform graphs J = Jn with linearly many edges. We state the
following result without proof.

Lemma 61 There exist absolute constant r0 and n0 for which the following
holds. Let r ≥ r0 be a constant and let n ≥ n0 be given. Then we may explic-
itly construct an adjacency list representation of a particular (�, 5)-uniform
graph J = Jn on V (J) = [n] with r ≤ �n ≤ 2r in time O(n(log n)O(1)).

Lemma 61 may be deduced in a straightforward manner from the cele-
brated construction of the Ramanujan graphs Xp,q of Lubotzky, Phillips,
and Sarnak [51] (see also [49, 50, 59]). We mention in passing that, for prov-
ing the existence of suitable parameters p and q in the proof of Lemma 61,
it suffices to use Dirichlet’s theorem on the density of primes in arithmetic
progressions. We omit the details (see [41]).

We also promised to prove Fact 53 in this section.

Proof. (Proof of Fact 53) We may clearly assume that u = |U | ≥ 2. Note
that, for any 1 ≤ s < u, we have 2e(U)

(
u−2
s−1

)
=
∑

S e(S,U \ S), where the
sum is extended over all S ⊂ U with |S| = s. Thus

e(U) =
1
2

(
u

s

)(
u− 2
s− 1

)−1 {
�|S||U \ S| +O1

(
A
√
rs(u− s)

)}
(9.108)

for any 1 ≤ s < u. We use (9.108) with s = �u/2 . Note that
(

u

�u/2

)(
u− 2

�u/2 − 1

)−1

=
u(u− 1)

�u/2 �u/2� ≤ 4, (9.109)

and so

e(U) = �

(
u

2

)

+O1

(
2A
√
r�u/2 �u/2�

)
= �

(
u

2

)

+O1
(
Au

√
r
)
, (9.110)

as required. �

In the next two sections, we prove Theorems 56 and 57.

9.7.4 Proof of Theorem 56
Let constants 0 < ε ≤ 1, 0 < δ ≤ 1, and A ≥ 1 be given. We then put

ε0 = ε0(ε, δ, A) =
1
4
ε2δ3 and r0 = r0(ε, δ, A) = 26A2ε−4δ−4. (9.111)

For later reference, let us observe that

A

2
√
r0

≤ 1
16

<
1
4
, (9.112)

336 Kohayakawa and Rödl

and that
A√
r0

=
1
8
ε2δ2. (9.113)

Our aim is to show that the values of ε0 and r0 given in (9.111) will do
in Theorem 56. Thus, suppose we are given a graph G = Gn and a (�,A)-
uniform graph J = Jn on the same vertex set, say V , and suppose further
that G satisfies property PJ,�(ε′), where 0 < ε′ ≤ ε0, and r = �n ≥ r0. We
have to show that G is (1/2, ε, δ)-quasi-random.

In what follows, we assume that two disjoint sets U , W ⊂ V with |U |,
|W | ≥ δn are given. We wish to show that inequality (9.100) holds. The
approach we take is similar in spirit to the one used in the proof of
Theorem 41.

Let A = (aij)i,j∈V be the adjacency matrix of G with entries in {±1},
with aij = 1 if ij ∈ G and aij = −1 if ij /∈ G. Let us write vi = (aij)j∈V

(i ∈ V) for the ith row of A. We start by observing that property PJ,�(ε′)
implies that

∑
ij∈J | 〈vi,vj〉 | is small.

Lemma 62 We have
∑

ij∈J

|〈vi,vj〉| ≤ ε′ne(J). (9.114)

Proof. By the definition of the vi, we have

〈vi,vj〉 = n− 2|ΓG(i) * ΓG(j)|,
and the result follows from the definition of property PJ,�(ε′). �

Our aim now is to estimate the left-hand side of (9.114) from below.
It turns out that one may give a good lower bound for this quantity in
terms of the number of G-edges eG(U,W) between U and W ⊂ V for any
pair (U,W) as long as both U and W are large enough.

Recall that sets U , W ⊂ V with u = |U |, w = |W | ≥ δn are fixed, and
put wi = (aij)j∈W for all i ∈ U . Thus, wi is the restriction of vi to the
coordinates in W . For convenience, we shall write

∑U
ij∈J to indicate sum

over all edges ij ∈ J with both i and j in U .
Let us compare

∑U
ij∈J 〈vi,vj〉 and

∑U
ij∈J 〈wi,wj〉. Clearly,

∑U

ij∈J
〈vi,vj〉 =

∑U

ij∈J
〈wi,wj〉 +

∑

k∈V \W

∑U

ij∈J
aikajk. (9.115)

In the lemma below, we estimate SU
k =

∑U
ij∈J aikajk for all k ∈ V . Recall

that we write O1(x) for any term y satisfying |y| ≤ x.

Lemma 63 Fix a vertex k ∈ V , and let u = |U |, u+ = u+
k = |ΓG(k) ∩ U |,

and u− = u−
k = |U \ ΓG(k)|. Then

SU
k =

∑U

ij∈J
aikajk =

1
2
�
(
(u+ − u−)2 − u

)
+O1

(
3
2
Au

√
r

)

. (9.116)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 337

In particular, we have

SU
k ≥ 1

2
�(u+ − u−)2 − 2Au

√
r ≥ −2Au

√
r. (9.117)

Proof. Note that an edge ij ∈ J contributes +1 to the sum in (9.116)
if i, j ∈ ΓG(k) ∩ U or else i, j ∈ U \ ΓG(k). Similarly, the edge ij ∈ J
contributes −1 to that sum if ij ∈ E

(
ΓG(k) ∩ U,U \ ΓG(k)

)
.

By the (�,A)-uniformity of J (see also (9.102) in Fact 53), we have

SU
k =

∑U

ij∈J
aikajk

= �

(
u+

2

)

+O1
(
Au+√

r
)

+ �

(
u−

2

)

+O1
(
Au−√

r
)

− �u+u− +O1

(
A
√
ru+u−

)

= �

(
1
2

(u+)2 +
1
2

(u−)2 − u+u− − 1
2

(u+ + u−)
)

+O1

(
A
√
r(u+ + u− +

√
u+u−)

)
,

from which (9.116) follows.
Since A ≥ 1 and r < n, we have �u/2 ≤ (1/2)Au

√
r. Therefore, the

right-hand side of (9.116) is at least

1
2
�(u+ − u−)2 − 1

2
�u− 3

2
Au

√
r >

1
2
�(u+ − u−)2 − 2Au

√
r. (9.118)

Inequality (9.117) follows from (9.118) and Lemma 63 is proved. �

An immediate corollary to (9.115) and (9.117) is that
∑U

ij∈J
〈vi,vj〉 ≥

∑U

ij∈J
〈wi,wj〉 − 2A(n− w)u

√
r, (9.119)

where, as before, w = |W |. We now estimate
∑U

ij∈J 〈wi,wj〉 from below
using Lemma 63. Put

u+
∗ = Ave

k∈W
u+

k = Ave
k∈W

|ΓG(k) ∩ U | =
1
w
eG(U,W), (9.120)

where Avek∈W denotes average over all k ∈ W .

Lemma 64 We have
∑U

ij∈J
〈wi,wj〉 ≥ 1

2
�w(2u+

∗ − u)2 − 2Auw
√
r. (9.121)

Proof. We make use of Lemma 63. We have u+
k − u−

k = 2u+
k − u for all k.

Therefore, inequality (9.117) in Lemma 63 tells us that
∑U

ij∈J
〈wi,wj〉 =

∑

k∈W

∑U

ij∈J
aikajk

338 Kohayakawa and Rödl

≥ 1
2
�
∑

k∈W

(u+
k − u−

k)2 − 2Auw
√
r

=
1
2
�
∑

k∈W

(2u+
k − u)2 − 2Auw

√
r,

which, by convexity (or Cauchy–Schwarz), is at least as large as the right-
hand side of (9.121). The proof of this lemma is complete. �

We now put Lemmas 62 and 64 and inequality (9.119) together to obtain

1
2
�w(2u+

∗ − u)2 − 2Aun
√
r ≤

∑U

ij∈J
〈wi,wj〉 − 2Au(n− w)

√
r

≤
∑U

ij∈J
〈vi,vj〉 ≤

∑U

ij∈J
|〈vi,vj〉| ≤

∑

ij∈J

|〈vi,vj〉| ≤ ε′ne(J). (9.122)

We now make use of (9.102) in Fact 53 to deduce that

e(J) ≤ �

(
n

2

)

+An
√
r ≤ 1

2
rn+An

√
r. (9.123)

Therefore

ε′ne(J) ≤ 1
2
ε′rn2 + ε′An2√r, (9.124)

and hence (9.122) gives that

1
2
�w(2u+

∗ − u)2 ≤ 1
2
ε′rn2 + ε′An2√r + 2Aun

√
r. (9.125)

However, we have

1
2
�w(2u+

∗ − u)2 =
1
2
�w

(
2
w
eG(U,W) − u

)2

= 2
�

w

(

eG(U,W) − 1
2
uw

)2

.

(9.126)
From (9.125) and (9.126), we obtain

∣
∣
∣
∣eG(U,W) − 1

2
uw

∣
∣
∣
∣

2

≤ 1
4�
ε′rn2w +

1
2�
ε′An2w

√
r +

1
�
Auwn

√
r

=
1
4
ε′n3w +

1
2
√
r
ε′An3w +

1√
r
Auwn2

= ε′n3w

(
1
4

+
A

2
√
r

)

+
A√
r
n2uw. (9.127)

Using (9.111), (9.112), and (9.113) and the fact that ε′ ≤ ε0 and r ≥ r0,
we deduce that the last expression in (9.127) is at most

1
2
ε′n3w +

1
8
ε2δ2n2uw ≤ 1

8
ε2δ3n3w +

1
8
ε2δ2n2uw

≤ 1
8
ε2u2w2 +

1
8
ε2u2w2 =

(
1
2
εuw

)2

. (9.128)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 339

Putting together (9.127) and (9.128), we deduce inequality (9.100).
The proof of Theorem 56 is complete.

9.7.5 Proof of Theorem 57
Let constants 0 < γ ≤ 1, 0 < ε ≤ 1, and A ≥ 1 be given. Let us define
the constants ε0 = ε0(γ, ε, A), δ0 = δ0(γ, ε, A), r1 = r1(γ, ε, A), and N1 =
N1(γ, ε, A) as follows.

We start by putting

ε0 = ε0(γ, ε, A) =
1
26 γε. (9.129)

The definitions of δ0 and r1 are a little more elaborate. Let

ε′′ =
1
26 γε ≤ 1

26 (9.130)

and

k0 =
⌈

26

γε

⌉

, (9.131)

and put D = 2. Let

η = η(ε′′, k0, D) > 0 and K0 = K0(ε′′, k0, D) ≥ k0, (9.132)

and N0 = N0(ε′′, k0, D) be the constants whose existence is guaranteed by
Theorem 15 for ε′′, k0, and D = 2. We may clearly assume that

K0 ≥ 1
2ε′′ . (9.133)

We now let

δ0 = δ0(γ, ε, A) = min
{

1
27 γε,

1
2K0

}

, (9.134)

and let

r1 = r1(γ, ε, A) = max

{

(2AK0)2,
(
A

η

)2
}

(9.135)

and

N1 = N1(γ, ε, A) = N0(ε′′, k0, D). (9.136)

We claim that these choices for ε0, δ0, r1, and N1 will do in Theorem 57.
However, before we start the proof of this claim, let us observe that the
constants above obey the following ‘hierarchy’:

δ0 - 1
K0

≤ 1
k0

- γε (9.137)

and

ε0, ε
′′ ≤ γε. (9.138)

340 Kohayakawa and Rödl

Moreover,

r1 / A, K0,
1
η

(9.139)

so that, in a (�,A)-uniform graph J = Jn, the number of edges between two
disjoint sets of vertices U and W ⊂ V (J) is roughly equal to the expected
quantity �|U ||W |, as long as

|U |, |W | ≥ nmin
{

1
2K0

, η

}

(9.140)

(see the proof of (9.143) below for details). The reader may find it useful
to keep in mind the above relationship among our constants.

We now start with the proof that the above choices for ε0, δ0, r1, and N1
work. Let a (�,A)-uniform graph J = Jn with n ≥ N1 vertices be fixed and
let G be a (1/2, ε′, δ′)-quasi-random graph on V = V (J), where 0 < ε′ ≤ ε0,
0 < δ′ ≤ δ0, and r ≥ r1. We shall prove that G has property P ′

J,�(γ, ε).
Assume for a contradiction that P ′

J,�(γ, ε) fails for G. Therefore we know
that the number of edges ij ∈ J in J that violate inequality (9.104) is
greater than γe(J). Let us assume that the number of edges ij ∈ J for
which we have

|ΓG(i) * ΓG(j)| − 1
2
n < −1

2
εn (9.141)

is larger than (γ/2)e(J). The case in which

|ΓG(i) * ΓG(j)| − 1
2
n >

1
2
εn (9.142)

occurs for more than (γ/2)e(J) edges ij of J is analogous. We let H be the
graph on V = V (J) whose edges are the edges ij ∈ J that satisfy (9.141).

The regularity lemma for sparse graphs implies Lemma 65 below. We
shall use the second form of the lemma, Theorem 15, although the first ver-
sion, Theorem 13, would equally do (with the first version the calculations
involved would be slightly longer).

Lemma 65 The graph H contains an (ε′′, H, �)-regular pair (U,W) of �-
density dH,(U,W) at least γ/4 and with |U | = |W | = m ≥ n/2K0.

Proof. Let η0 = min{1/2K0, η}, where η and K0 are as defined in (9.132).
We claim that H = Hn is an (η0, 2)-upper-uniform graph with respect to
density �, that is, if U , W ⊂ V = V (H) are disjoint and |U |, |W | ≥ η0n,
then

eH(U,W) ≤ 2�|U ||W |.

Because of the (�,A)-uniformity of J ⊃ H, it suffices to check that

A
√
r|U ||W | ≤ �|U ||W | (9.143)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 341

(see (9.101)). However, this follows easily from (9.135) and the fact that r =
�n ≥ r1.

Having verified that H is (η0, 2)-upper-uniform with respect to density �,
we may invoke Theorem 15 to obtain an (ε′′, H, �)-regular (ε′′, k)-equitable
partition (Ci)k

0 of the vertex set of H with k0 ≤ k ≤ K0. Observe that

|Ci| ≥
n

2K0
for all 1 ≤ i ≤ k, (9.144)

since |C0| ≤ ε′′n < n/2 (see (9.130)). We shall now apply a standard
argument to show that we may take for (U,W) some pair (Ci, Cj). We
already know from (9.144) that the Ci (1 ≤ i ≤ k) have large enough
cardinality. Put m = |Ci| (1 ≤ i ≤ k) and observe that

n

2K0
≤ m ≤ n

k
. (9.145)

It suffices to prove the following claim to complete the proof of Lemma 65.

Claim 66 There exist 1 ≤ i < j ≤ k for which the pair (Ci, Cj) is
(ε′′, H, �)-regular and dH,(Ci, Cj) ≥ γ/4.

Proof. Suppose for a contradiction that no pair (Ci, Cj) with 1 ≤ i < j ≤ k
is good. Working under this hypothesis, we shall deduce that the number
of edges in H is at most (γ/2)e(J), which will contradict the definition of
the graph H.

Let us turn to the estimation of e(H). There are four types of edges in H:
(i) edges that are induced by (ε′′, H, �)-regular pairs (Ci, Cj) with 1 ≤ i <
j ≤ k, (ii) edges that are induced by (ε′′, H, �)-irregular pairs (Ci, Cj)
with 1 ≤ i < j ≤ k, (iii) edges that are induced within the classes Ci

(1 ≤ i ≤ k), that is, edges in
⋃

1≤i≤k H[Ci], and (iv) edges that are incident
to the exceptional class C0. We now estimate the number of edges of each
type in turn.

Because of our assumption that no pair (Ci, Cj) will do for our claim, all
the (ε′′, H, �)-regular pairs (Ci, Cj) with 1 ≤ i < j ≤ k are such that

dH,(U,W) =
eH(U,W)
�|U ||W | <

γ

4
. (9.146)

Thus, the number of edges of type (i) is

<
γ

4
�m2

(
k

2

)

≤ γ

4
�
(n

k

)2 k2

2
=
γ

4

(

�
n2

2

)

. (9.147)

We know that H is a (η0, 2)-upper-uniform graph with respect to density �,
and that the Ci (1 ≤ i ≤ k) have cardinality m ≥ (1/2K0)n ≥ η0n.
Therefore the number of edges induced by a pair (Ci, Cj) with 1 ≤ i < j ≤ k
is at most 2�m2. We also know that the number of (ε′′, H, �)-irregular pairs
is at most ε′′(k

2

)
, and hence we deduce that the number of edges of type (ii)

342 Kohayakawa and Rödl

is, by (9.130),

≤ 2�m2ε′′
(
k

2

)

≤ 2ε′′�
(n

k

)2 k2

2
≤ γ

25

(
1
2
�n2
)

. (9.148)

Fact 53 together with the fact that Am
√
r ≤ �m2 (cf. (9.143)) imply

that e(H[Ci]) ≤ (3/2)�m2. Therefore, the number of edges of type (iii)
is, by (9.131),

≤ 3
2
�m2k ≤ 3

2
�
(n

k

)2
k =

3
k

(

�
n2

2

)

≤ 3
26 γ

(
1
2
�n2
)

. (9.149)

We now observe that, because of (9.133), we have ε′′ ≥ 1/2K0 ≥ η0.
Therefore, the number of edges of type (iv), that is, incident to C0, is,
by (9.130),

≤ 3
2
�(ε′′n)2 + 2�ε′′n2 =

(
3(ε′′)2 + 4ε′′) �

n2

2
≤ 5

26 γ

(
1
2
�n2
)

. (9.150)

We conclude from (9.147)–(9.150) that the number of edges in H satisfies

e(H) ≤
(

1
22 +

1
25 +

1
23

)

γ

(
1
2
�n2
)

<
7
16
γ

(
1
2
�n2
)

. (9.151)

We shall now estimate e(J) from below. Fact 53 tells us that

e(J) ≥ �

(
n

2

)

−An
√
r =

1
2
�n2− 1

2
�n−An

√
r =

1
2
�n2− r

2
−An

√
r. (9.152)

Using that n ≥ N1 ≥ 16, we obtain r/2 ≤ (1/16)�n2/2, and using that r ≥
r1 ≥ (2AK0)2 ≥ (2Ak0)2 > (25A)2, we obtain that An

√
r ≤ (1/16)�n2/2.

We therefore conclude from (9.152) that

e(J) ≥ 7
8

(
1
2
�n2
)

. (9.153)

Finally, (9.151) and (9.153) imply that e(H) < (γ/2)e(J), which is a con-
tradiction. Therefore some pair (Ci, Cj) must be as required, and the proof
of Claim 66 is complete. �

We now fix a pair (Ci, Cj) as in Claim 66, and let U = Ci and W = Cj .
Recalling (9.144), we see that the pair (U,W) is as required in Lemma 65,
and hence we are done. �

We now restrict our attention to the pair (U,W) given by Lemma 65.
We shall in fact obtain a contradiction by estimating from above and from
below the quantity

∣
∣
∣
∣

∑(U,W)

ij∈H
〈vi,vj〉

∣
∣
∣
∣ , (9.154)

where
∑(U,W)

ij∈H denotes sum over all edges ij ∈ H with i ∈ U and j ∈ W .
(The number of summands in (9.154) is, therefore, eH(U,W).)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 343

We start by noticing that we have the following lower bound for (9.154)
from the definition of the edge set of H and the fact that (U,W) is a ‘dense’
pair for H.

Lemma 67 We have
∣
∣
∣
∣

∑(U,W)

ij∈H
〈vi,vj〉

∣
∣
∣
∣ >

1
4
εγn�m2. (9.155)

Proof. For any ij ∈ H, by (9.141), we have

〈vi,vj〉 = n− 2|ΓG(i) * ΓG(j)| > n− 2
(

1
2
n− 1

2
εn

)

= εn.

Therefore, we have
∑(U,W)

ij∈H
〈vi,vj〉 > εneH(U,W) ≥ 1

4
�εγnm2,

since dH,(U,W) ≥ γ/4 and hence eH(U,W) ≥ (1/4)γ�m2. Inequal-
ity (9.155) is proved. �

Remark 68 In the case in which H is the graph with edges ij for
which (9.142) holds instead of (9.141), we have

〈vi,vj〉 = n− 2|ΓG(i) * ΓG(j)| < n− 2
(

1
2
n+

1
2
εn

)

= −εn.

Therefore, we would have
∑(U,W)

ij∈H
〈vi,vj〉 < −εneH(U,W) ≤ −1

4
�εγnm2,

and (9.155) would follow as well. For the remainder of the proof, it will not
matter whether the edges of H satisfy (9.141) or (9.142). We shall only
make use of (9.155).

Our upper bound for (9.154) will come from the (1/2, ε′, δ′)-quasi-
randomness of G and the (ε′′, H, �)-regularity of the pair (U,W). More
specifically, we let

S
(U,W)
k =

∑(U,W)

ij∈H
aikajk (9.156)

for all k ∈ V , and show that this sum is essentially always small, which will
tell us that

∑(U,W)
ij∈H 〈vi,vj〉 =

∑
k∈V S

(U,W)
k is quite small.

Let a vertex k ∈ V be given. We then let

U+ = U+
k = ΓG(k) ∩ U U− = U−

k = U \ ΓG(k) (9.157)
W+ = W+

k = ΓG(k) ∩W W− = W−
k = W \ ΓG(k). (9.158)

344 Kohayakawa and Rödl

Then, clearly,

S
(U,W)
k = eH(U+,W+) + eH(U−,W−) − eH(U+,W−) − eH(U−,W+).

(9.159)
Moreover, for most k ∈ V , we may estimate the four terms on the right-
hand side of (9.159) by ∼ dH,(U,W)m2/4.

Indeed, let us say that a vertex k ∈ V \ (U ∪W) is (U,W)-typical, or
simply typical, if

|U+|, |U−|, |W+|, |W−| =
1
2

(1 +O1(ε′))m ≥ ε′′m. (9.160)

Then, by the (ε′′, H, �)-regularity of the pair (U,W), we have

eH(U+,W+), eH(U−,W−), eH(U+,W−), eH(U−,W+) ∼ 1
4
dH,(U,W)m2

(9.161)
for any typical k. Let us make this remark more precise. For simplicity,
let us write σ = dH,(U,W), and u+ = u+

k = |U+|, u− = u−
k = |U−| and

similarly for w+ and w−.
Because r ≥ r1 ≥ (2AK0)2, the graph H = Hn is a (1/2K0, 2)-upper-

uniform graph with respect to density � (cf. the proof of Lemma 65).
Therefore, we have

σ = dH,(U,W) ≤ 2, (9.162)

since |U |, |W | ≥ (1/2K0)n.
From (9.160) and the (ε′′, H, �)-regularity of (U,W), we have

eH(Uα,W β) = (σ +O1(ε′′)) �uαwβ , (9.163)

for all α, β ∈ {+,−}. In particular, if we know that k is typical, we have

eH(U+,W+), eH(U−,W−) ≤ (σ + ε′′)�
{

1
2

(1 + ε′)m
}2

(9.164)

and

eH(U+,W−), eH(U−,W+) ≥ (σ − ε′′)�
{

1
2

(1 − ε′)m
}2

. (9.165)

A little computation now gives the first statement in the following lemma.
The second statement is immediate.

Lemma 69 (i) For any (U,W)-typical vertex k ∈ V \ (U ∪W), we have
∣
∣
∣S

(U,W)
k

∣
∣
∣ =
∣
∣
∣
∣

∑(U,W)

ij∈H
aikajk

∣
∣
∣
∣ ≤ 2�m2(ε′σ + ε′′). (9.166)

(ii) For any vertex k ∈ V , we have
∣
∣
∣S

(U,W)
k

∣
∣
∣ =
∣
∣
∣
∣

∑(U,W)

ij∈H
aikajk

∣
∣
∣
∣ ≤ �m2 +Am

√
r. (9.167)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 345

Proof. Let us prove (i). Let a (U,W)-typical vertex k be fixed.
Using (9.159), (9.164), and (9.165), we obtain

S
(U,W)
k =

∑(U,W)

ij∈H
aikajk

≤ (σ + ε′′)�u+w+ + (σ + ε′′)�u−w−

− (σ − ε′′)�u+w− − (σ − ε′′)�u−w+

≤ 2(σ + ε′′)�
{

1
2

(1 + ε′)m
}2

− 2(σ − ε′′)�
{

1
2

(1 − ε′)m
}2

=
1
2

(σ + ε′′)�
(
1 + 2ε′ + (ε′)2

)
m2

− 1
2

(σ − ε′′)�
(
1 − 2ε′ + (ε′)2

)
m2

=
1
2
σ�m2(4ε′) +

1
2
ε′′�m2(2 + 2(ε′)2)

=
1
2
�m2(4ε′σ + ε′′(2 + 2(ε′)2))

≤ 2�m2(ε′σ + ε′′),

and (i) is proved. To prove (ii) it suffices to recall that H ⊂ J and that J
is a (�,A)-uniform graph, and hence
∣
∣
∣S

(U,W)
k

∣
∣
∣ =
∣
∣
∣
∣

∑(U,W)

ij∈H
aikajk

∣
∣
∣
∣ ≤ eH(U,W) ≤ eJ(U,W) ≤ �m2 +Am

√
r,

(9.168)
as required. �

Our next lemma gives an upper bound for the quantity in (9.154). The
reader will immediately see that this upper bound is a consequence of
Lemma 69 and the fact that there are only very few atypical vertices k,
because of the (1/2, ε′, δ′)-quasi-randomness of G.

Lemma 70 We have
∣
∣
∣
∣

∑(U,W)

ij∈H
〈vi,vj〉

∣
∣
∣
∣ ≤ 2(2δ′n+m)

(
�m2 +Am

√
r
)

+ 2�m2n (ε′σ + ε′′) .

(9.169)

Proof. We claim that the number of vertices k ∈ V \ (U ∪W) that are not
(U,W)-typical is, by the (1/2, ε′, δ′)-quasi-randomness of G, less than 4δ′n.
Indeed, if we had ≥ 4δ′n vertices that are not (U,W)-typical, then we would
have ≥ 2δ′n vertices that are not ‘typical’ for either U alone or else for W
alone. In other words, we would have ≥ 2δ′n vertices k ∈ V \ (U ∪W) for
which, say,

|ΓG(k) ∩ U | = |U+| > 1
2

(1 + ε′)m (9.170)

346 Kohayakawa and Rödl

and hence |U\ΓG(k)| = |U−| < (1/2)(1−ε′)m, or else we would have ≥ 2δ′n
vertices k ∈ V \ (U ∪W) for which we have

|ΓG(k) ∩ U | = |U+| < 1
2

(1 − ε′)m (9.171)

and hence |U \ ΓG(k)| = |U−| > (1/2)(1 + ε′)m. Therefore there would
be ≥ δ′n vertices k ∈ V \ (U ∪W) for which, say, (9.170) holds. Let T ⊂
V \ (U ∪W) be the set of such vertices k. Then

|T | ≥ δ′n (9.172)

and

e(T,U) >
1
2

(1 + ε′)|T |m =
1
2

(1 + ε′)|T ||U |. (9.173)

We also have

|U | = m ≥ n

2K0
≥ δ0n ≥ δ′n (9.174)

(see (9.134)). Inequalities (9.172)–(9.174) say that the pair (T,U) is a
witness against the (1/2, ε′, δ′)-quasi-randomness of G. This contradiction
confirms that, indeed, the number of vertices k ∈ V \ (U ∪W) that are not
(U,W)-typical is less than 4δ′n.

Using (9.166) for the (U,W)-typical vertices k ∈ V \ (U ∪W), and us-
ing (9.167) for the vertices k ∈ V \ (U ∪W) that are not (U,W)-typical
and for all the vertices k ∈ U ∪W , we have

∣
∣
∣
∣

∑(U,W)

ij∈H
〈vi,vj〉

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∑

k∈V

∑(U,W)

ij∈H
aikajk

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

k∈V

S
(U,W)
k

∣
∣
∣
∣
∣

≤ (4δ′n+ 2m)
(
�m2 +Am

√
r
)

+ 2�m2n (ε′σ + ε′′) ,

as required. �

We finish the proof by deriving a contradiction comparing Lemmas 67
and 70. To that end, we first claim that

1
8
γε > 2

(

2δ0 +
1
k0

)

+ ε0σ + ε′′ ≥ 2
(

2δ′ +
1
k0

)

+ ε′σ + ε′′. (9.175)

To prove our claim, we first observe that, because δ′ ≤ δ0 and ε′ ≤ ε0, the
second inequality in (9.175) is obvious. As to the first inequality in (9.175),
observe that, because of (9.134), we have

4δ0 ≤ 1
25 γε. (9.176)

Moreover, because of (9.131), we have

2
k0

≤ 1
25 γε. (9.177)

9. Szemerédi’s Regularity Lemma and Quasi-randomness 347

Since σ ≤ 2 (see (9.162)), we have from (9.129) that

ε0σ ≤ 1
25 γε. (9.178)

Inequalities (9.176)–(9.178) and (9.130) imply the first inequality in (9.175).
We now recall inequalities (9.155) and (9.169) to obtain that

1
4
εγn�m2 <

∣
∣
∣
∣

∑(U,W)

ij∈H
〈vi,vj〉

∣
∣
∣
∣

≤ 2(2δ′n+m)
(
�m2 +Am

√
r
)

+ 2�m2n (ε′σ + ε′′) . (9.179)

Let us also recall that

Am
√
r ≤ �m2, (9.180)

because r = �n ≥ r1 ≥ (2AK0)2 and m ≥ (1/2K0)n. Moreover, the fact
that m ≤ n/k gives us that

2δ′n+m ≤
(

2δ′ +
1
k

)

n ≤
(

2δ′ +
1
k0

)

n. (9.181)

Inequalities (9.179), (9.180), and (9.144) give that

1
4
εγn�m2 ≤ 4(2δ′n+m)�m2 + 2�m2n (ε′σ + ε′′)

≤ 4
(

2δ′ +
1
k0

)

�nm2 + 2�m2n (ε′σ + ε′′) . (9.182)

Dividing (9.182) by 2�m2n, we obtain

1
8
εγ ≤ 2

(

2δ′ +
1
k0

)

+ ε′σ + ε′′, (9.183)

which contradicts (9.175).
The proof of Theorem 57 is complete.

References

[1] N. Alon.Expanders, sorting in rounds and superconcentrators of limited
depth.In Proceedings of the 17th Annual ACM Symposium on the Theory
of Computing (STOC 85), pages 98–102, 1985.

[2] N. Alon.Eigenvalues, geometric expanders, sorting in rounds, and Ramsey
theory.Combinatorica, 6(3):207–219, 1986.

[3] N. Alon, M. Capalbo, Y. Kohayakawa, V. Rödl, A. Ruciński, and E. Sze-
merédi.Universality and tolerance (extended abstract).In Proceedings of the
41st IEEE Annual Symposium on Foundations of Computer Science (FOCS
2000), pages 14–21, 2000.

348 Kohayakawa and Rödl

[4] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster.The algorithmic
aspects of the regularity lemma (extended abstract).In 33rd Annual Sym-
posium on Foundations of Computer Science, pages 473–481, Pittsburgh,
Pennsylvania, 1992. IEEE Comput. Soc. Press.

[5] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster.The algorithmic
aspects of the regularity lemma.Journal of Algorithms, 16(1):80–109, 1994.

[6] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy.Efficient testing of large
graphs.submitted, 22pp., 1999.

[7] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy.Efficient testing of large
graphs (extended abstract).In 40th Annual Symposium on Foundations of
Computer Science, pages 656–666, New York City, NY, 1999. IEEE Comput.
Soc. Press.

[8] N. Alon and J. Spencer.The Probabilistic Method.Wiley-Interscience Series
in Discrete Mathematics. John Wiley & Sons, New York, 1992.

[9] N. Alon and R. Yuster.H-factors in dense graphs.Journal of Combinatorial
Theory, Series B, 66(2):269–282, 1996.

[10] L. Babai, P. Frankl, and J. Simon.Complexity classes in communica-
tion complexity theory (preliminary version).In 27th Annual Symposium
on Foundations of Computer Science, pages 337–347, Toronto, Ontario,
Canada, 1986. IEEE.

[11] B. Bollobás.Extremal graph theory.Academic Press Inc. [Harcourt Brace
Jovanovich Publishers], London, 1978.

[12] B. Bollobás.Graph theory.Springer-Verlag, New York, 1979.An introductory
course.

[13] B. Bollobás.Random graphs.Academic Press Inc. [Harcourt Brace Jovanovich
Publishers], London, 1985.

[14] B. Bollobás.Modern graph theory.Springer-Verlag, New York, 1998.
[15] F. R. K. Chung, R. L. Graham, and R. M. Wilson.Quasi-random graphs.Com-

binatorica, 9(4):345–362, 1989.
[16] V. Chvátal, V. Rödl, E. Szemerédi, and W. T. Trotter.The Ramsey number

of a graph with bounded maximum degree.Journal of Combinatorial Theory,
Series B, 34(3):239–243, 1983.

[17] D. Coppersmith and S. Winograd.Matrix multiplication via arithmetic
progressions.J. Symbolic Comput., 9(3):251–280, 1990.

[18] W. Deuber.A generalization of Ramsey’s theorem.In A. Hajnal, R. Rado,
and V. T. Sós, editors, Infinite and Finite Sets, volume 10 of Colloquia
Mathematica Societatis János Bolyai, pages 323–332, Keszthely, 1973, 1975.
North-Holland.

[19] R. A. Duke, H. Lefmann, and V. Rödl.A fast approximation algorithm for
computing the frequencies of subgraphs in a given graph.SIAM Journal on
Computing, 24(3):598–620, 1995.

[20] R. A. Duke and V. Rödl.On graphs with small subgraphs of large chromatic
number.Graphs and Combinatorics, 1(1):91–96, 1985.

[21] P. Erdős.Some old and new problems in various branches of combinatorics.In
Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph

9. Szemerédi’s Regularity Lemma and Quasi-randomness 349

Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979),
pages 19–37, Winnipeg, Man., 1979. Utilitas Math.

[22] P. Erdős, A. Hajnal, and L. Pósa.Strong embeddings of graphs into colored
graphs.In A. Hajnal, R. Rado, and V. T. Sós, editors, Infinite and Finite
Sets, volume 10 of Colloquia Mathematica Societatis János Bolyai, pages
585–595, Keszthely, 1973, 1975. North-Holland.

[23] P. Erdős and J. Spencer.Probabilistic methods in combinatorics.Akademiai
Kiado, Budapest, 1974.106pp.

[24] P. Frankl and V. Rödl.The uniformity lemma for hypergraphs.Graphs and
Combinatorics, 8(4):309–312, 1992.

[25] P. Frankl and V. Rödl.Extremal problems on set systems.Random Structures
and Algorithms, 2002.to appear.

[26] P. Frankl, V. Rödl, and R. M. Wilson.The number of submatrices of a given
type in a Hadamard matrix and related results.J. Combin. Theory Ser. B,
44(3):317–328, 1988.

[27] A. Frieze and R. Kannan.The regularity lemma and approximation schemes
for dense problems.In 37th Annual Symposium on Foundations of Computer
Science (Burlington, VT, 1996), pages 12–20. IEEE Comput. Soc. Press,
Los Alamitos, CA, 1996.

[28] A. Frieze and R. Kannan.Quick approximation to matrices and applica-
tions.Combinatorica, 19(2):175–220, 1999.

[29] O. Goldreich.Combinatorial property testing (a survey).In Randomization
methods in algorithm design (Princeton, NJ, 1997), pages 45–59. Amer.
Math. Soc., Providence, RI, 1999.

[30] O. Goldreich, S. Goldwasser, and D. Ron.Property testing and its connection
to learning and approximation.In 37th Annual Symposium on Foundations
of Computer Science (Burlington, VT, 1996), pages 339–348. IEEE Comput.
Soc. Press, Los Alamitos, CA, 1996.

[31] O. Goldreich, S. Goldwasser, and D. Ron.Property testing and its connection
to learning and approximation.Journal of the Association for Computing
Machinery, 45(4):653–750, 1998.

[32] O. Goldreich and D. Ron.Property testing in bounded degree graphs.In 29th
ACM Symposium on Theory of Computing, pages 406–419, El Paso, Texas,
1997.

[33] O. Goldreich and D. Ron.A sublinear bipartiteness tester for bounded degree
graphs.Combinatorica, 19(3):335–373, 1999.

[34] W. T. Gowers.Lower bounds of tower type for Szemerédi’s uniformity
lemma.Geometric and Functional Analysis, 7(2):322–337, 1997.

[35] S. Janson, T. �Luczak, and A. Rucinski.Random graphs.Wiley-Interscience,
New York, 2000.

[36] Y. Kohayakawa.Szemerédi’s regularity lemma for sparse graphs.In F. Cucker
and M. Shub, editors, Foundations of Computational Mathematics, pages
216–230, Berlin, Heidelberg, January 1997. Springer-Verlag.

[37] Y. Kohayakawa and V. Rödl.Algorithmic aspects of regularity.In G. Gonnet,
D. Panario, and A. Viola, editors, LATIN’2000: Theoretical Informatics

350 Kohayakawa and Rödl

(Punta del Este, 2000), Lecture Notes in Computer Science, pages 1–17.
Springer, Berlin, 2000.

[38] Y. Kohayakawa and V. Rödl.Regular pairs in sparse random graphs
I.submitted, 2001.

[39] Y. Kohayakawa and V. Rödl.Regular pairs in sparse random graphs II.in
preparation, 2001.

[40] Y. Kohayakawa, V. Rödl, and E. Szemerédi.The size-Ramsey number of
graphs of bounded degree.in preparation, 2001.

[41] Y. Kohayakawa, V. Rödl, and L. Thoma.An optimal algorithm for check-
ing regularity (extended abstract).In Proceedings of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), 2002.to
appear.

[42] J. Komlós.The blow-up lemma.Combinatorics, Probability and Computing,
8(1-2):161–176, 1999.Recent trends in combinatorics (Mátraháza, 1995).

[43] J. Komlós, G. N. Sárközy, and E. Szemerédi.Proof of a packing conjecture
of Bollobás.Combin. Probab. Comput., 4(3):241–255, 1995.

[44] J. Komlós, G. N. Sárközy, and E. Szemerédi.Blow-up lemma.Combinatorica,
17(1):109–123, 1997.

[45] J. Komlós, G. N. Sárközy, and E. Szemerédi.An algorithmic version of the
blow-up lemma.Random Structures and Algorithms, 12(3):297–312, 1998.

[46] J. Komlós, G. N. Sárközy, and E. Szemerédi.On the Pósa-Seymour
conjecture.J. Graph Theory, 29(3):167–176, 1998.

[47] J. Komlós, G. N. Sárközy, and E. Szemerédi.Proof of the Seymour conjecture
for large graphs.Ann. Comb., 2(1):43–60, 1998.

[48] J. Komlós and M. Simonovits.Szemerédi’s regularity lemma and its appli-
cations in graph theory.In D. Miklós, V. T. Sós, and T. Szőnyi, editors,
Combinatorics—Paul Erdős is eighty, vol. 2 (Keszthely, 1993), volume 2
of Bolyai Society Mathematical Studies, pages 295–352. János Bolyai
Mathematical Society, Budapest, 1996.

[49] A. Lubotzky.Discrete groups, expanding graphs and invariant measures.Birk-
häuser Verlag, Basel, 1994.With an appendix by Jonathan D. Rogawski.

[50] A. Lubotzky, R. Phillips, and P. Sarnak.Explicit expanders and the Ramanu-
jan conjectures.In Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing (STOC ’86), pages 240–246, Berkeley, California, 1986.
ACM.

[51] A. Lubotzky, R. Phillips, and P. Sarnak.Ramanujan graphs.Combinatorica,
8:261–277, 1988.

[52] J. Nešetřil and V. Rödl.Partition theory and its application.In Surveys
in combinatorics (Proc. Seventh British Combinatorial Conf., Cambridge,
1979), pages 96–156. Cambridge Univ. Press, Cambridge, 1979.

[53] V. Nikiforov.On a problem of Erdős about the local density of Kp-free
graphs.submitted, 1999.

[54] V. Rödl.The dimension of a graph and generalized Ramsey theorems.Master’s
thesis, Charles University, 1973.

9. Szemerédi’s Regularity Lemma and Quasi-randomness 351

[55] V. Rödl.On universality of graphs with uniformly distributed edges.Discrete
Mathematics, 59(1-2):125–134, 1986.

[56] V. Rödl and A. Ruciński.Perfect matchings in ε-regular graphs and the blow-
up lemma.Combinatorica, 19(3):437–452, 1999.

[57] V. Rödl, A. Ruciński, and M. Wagner.An algorithmic embedding of graphs
via perfect matchings.In Randomization and approximation techniques in
computer science (Barcelona, 1998), pages 25–34. Springer, Berlin, 1998.

[58] R. Rubinfeld and M. Sudan.Robust characterizations of polynomials with
applications to program testing.SIAM Journal on Computing, 25(2):252–
271, Apr. 1996.

[59] P. Sarnak.Some applications of modular forms.Cambridge University Press,
Cambridge, 1990.

[60] E. Szemerédi.Regular partitions of graphs.In Problèmes Combinatoires et
Théorie des Graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976),
pages 399–401, Paris, 1978. Colloques Internationaux CNRS n. 260.

[61] A. R. Taraz.Szemerédis Regularitätslemma, Apr. 1995.Diplomarbeit, Uni-
versität Bonn, 83pp.

[62] A. G. Thomason.Pseudorandom graphs.In Random graphs ’85 (Poznań,
1985), volume 144 of North-Holland Math. Stud., pages 307–331. North-
Holland, Amsterdam–New York, 1987.

[63] A. G. Thomason.Random graphs, strongly regular graphs and pseudoran-
dom graphs.In C. Whitehead, editor, Surveys in Combinatorics 1987, volume
123 of London Mathematical Society Lecture Note Series, pages 173–195.
Cambridge University Press, Cambridge–New York, 1987.

[64] P. Turán.Eine Extremalaufgabe aus der Graphentheorie.Mat. Fiz. Lapok,
48:436–452, 1941.in Hungarian, with German summary.

