LINEAR FUNCTIONS
AND MATRIX THEORY



LINEAR FUNCTIONS
AND MATRIX THEORY

Bill Jacob

Department of Mathematics
University of California, Santa Barbara

Springer Science+Business Media, LLC



Textbooks in Mathematical Sciences

Series Editors:

Thomas F. Banchoff Jerrold Marsden _

Brown University University of California, Berkeley
John Ewing Stan Wagon

Indiana University Macalester College

Gaston Gonnet
ETH Zentrum, Ztirich

Cover: Paul Klee, Beware of Red, 1940. Private collection, Milan, Italy. Used by permission of
Erich Lessing/Art Resource, NY.

Grateful acknowledgment is also given for permission to use the following: p. 65: Albrecht
Diirer, Albrectus Durerus Nurembergensis Pictor Nuius. .., Paris, 1532, “Demonstration of
perspective” (woodcut), Spencer Collection, The New York Public Library, Astor, Lenox, and
Tilden Foundations; p. 70: Albrecht Diirer, The Nativity (1504), The Metropolitan Museum of
Art, Fletcher Fund, 1917.

Library of Congress Cataloging-in-Publication Data
Jacob, Bill.
Linear functions and matrix theory / Bl Jacob.
p- cm. — (Textbooks in mathematical sciences)
Includes bibliographical references and index.

1. Algebras, Linear. 2. Matrices. [I. Title. II. Series.
QA184J333 1995
512/.5—dc20 95-3756

© 1995 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc. in 1995

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC ),

except for brief excerpts in connection with reviews or scholarly analysis.

Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed
is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if
the former are not especially identified, is not to be taken as a sign that such names, as understood
by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone,

ISBN 978-3-540-78055-7 ISBN 978-3-642-59277-5 (eBook)
DOI 10.1007/978-3-642-59271-5



PREFACE

Courses that study vectors and elementary matrix theory and introduce
linear transformations have proliferated greatly in recent years. Most of
these courses are taught at the undergraduate level as part of, or adjacent to,
the second-year calculus sequence. Although many students will ultimately
find the material in these courses more valuable than calculus, they often
experience a class that consists mostly of learning to implement a series of
computational algorithms. The objective of this text is to bring a different
vision to this course, including many of the key elements called for in
current mathematics-teaching reform efforts.
Three of the main components of this current effort are the following:

1. Mathematical ideas should be introduced in meaningful contexts, with
formal definitions and procedures developed after a clear understanding
of practical situations has been achieved.

2. Every topic should be treated from different perspectives, including the
numerical, geometric, and symbolic viewpoints.

3. The important ideas need to be visited repeatedly throughout the term,
with students’ understanding deepening each time.

This text was written with these three objectives in mind. The first two
chapters deal with situations requiring linear functions (at times, locally
linear functions) or linear ideas in geometry for their understanding. These
situations provide the context in which the formal mathematics is developed,
and they are returned to with increasing sophistication throughout the text.

In addition, expectations of student work have changed. Computer tech-
nology has reduced the need for students to devote large blocks of time
learning to implement computational algorithms. Instead, we demand a
deeper conceptual understanding. Students need to learn how to communi-
cate mathematics effectively, both orally and in writing. Students also need
how to learn to use technology, applying it when appropriate and giving
meaningful answers with it. Further, students need to collaborate on math-
ematical problems, and thus this collaboration often involves mathematical
investigations where the final outcome depends on the assumptions they
make. This text is designed to provide students with the opportunity to
develop their skills in each of these areas. There are ample computational
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exercises so that students can develop familiarity with all the basic algo-
rithms of the subject. However, many problems are not preceded by a
worked-out example of a similar-looking problem, so students must spend
some time grappling with the concepts rather than mimicking procedures.
Each section concludes with problems or projects designed for student col-
laborative work. There is quite a bit of variation in the nature of these
group projects, and most of them require more discussion and struggle than
the regular problems. A number of them are open-ended, without single
answers, and therefore part of the project is finding how to formulate the
question so that the mathematics can be applied.

Throughout the text, as well as in the problems, there are many oc-
casions where technology is needed for calculation. Most college students
have access to graphing calculators, and the majority of these calculators are
capable of performing all of the basic matrix calculations needed for the
use of this text. Students should be encouraged to use technology where
appropriate, and if a computer laboratory is available it will be useful, too.
Some problems explicitly require calculators or use of a computer; others
clearly do not; and on some occasions the student needs to take the ini-
tiative to make an intelligent use of technology. During the in-class testing
of the material (as part of a second-year calculus sequence), instructors
found that the use of graphing calculators gave students more time to focus
on conceptual aspects of the material. Instructors used to assigning a large
volume of algorithmic exercises found they had to reduce the number of
problems assigned so that students had more opportunity to explore the
ideas in the problems. v

A brief outline of how the text is organized follows. The first six chap-
ters constitute a core course covering the material usually taught as part
of a second-year sequence. Depending on how the class is paced, these
chapters require seven to ten weeks to cover. The remaining three chapters
deal with more advanced topics. Although they are designed to be taught
in sequence, their order can be varied provided the instructor is willing to
explain a few results from the omitted sections. Taken together, all nine
chapters have more than enough material for a full-semester introductory
course. Sections 1.4, 2.4, 3.5, and 4.5 can be omitted if time is tight, although
it-would be preferable to avoid this, since their purpose is to give geomet-
ric meaning to material that students too often view purely symbolically.
Chapter 6 could be covered immediately after Chap. 2 should the instructor
prefer. No knowledge of calculus is assumed in the body of the text. How-
ever, some group projects are designed for use by students familiar with
calculus. Answers to the odd-numbered problems are given at the end of
the text.

e Chapter 1 introduces the concept of a linear function. The main purpose
of the chapter is to illustrate the numerical and geometric meaning of
linearity and local linearity for functions. In Sec. 1.2, real data are analyzed
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so that students see why this subject was developed. Matrices arise,
initially, for convenience of notation. Linearly constrained maxima and
minima problems are introduced because the study of level sets in this
context provides one of the best ways to illustrate the geometric meaning
of linearity for functions of several variables.

Chapter 2 studies the linear geometry of lines and planes in two- and
three-dimensional space by considering problems that require their use.
A main goal here is to provide a familiar geometric setting for introducing
the use of vectors and matrix notation. The last section, covering linear
perspective, illustrates how these topics impact our daily lives by showing
how three-dimensional objects are represented on the plane.

Chapter 3 develops the basic principles of Gaussian and Gauss-Jordan
elimination and their use in solving systems of linear equations. Matrix
rank is studied in the context of understanding the structure of solutions
to systems of equations. Some basic problems in circuit theory motivate
the study of systems of equations. The simplex algorithm is introduced
in the last section, illustrating how the ideas behind Gaussian elimination
can be used to solve the constrained optimization problems introduced
geometrically in Chap. 1.

Chapter 4 treats basic matrix algebra and its connections with systems
of linear equations. The use of matrices in analyzing iterative processes,
such as Markov chains or Fibonacci numbers, provides the setting for
the development of matrix properties. The determinant is developed
using the the Laplace expansion, and applications including the adjoint
inversion formula and Cramer’s rule are given. The chapter concludes
with discussion of the LU-decomposition and its relationship to Gaussian
elimination, determinants, and tridiagonal matrices.

Chapter 5 develops the basic linear algebra concepts of linear combina-
tions, linear independence, subspaces, span, and dimension. Problems
involving network flow and stoichiometry are considered and provide
background for why these basic linear algebra concepts are so impor-
tant. All of these topics are treated in the setting of R” only, although
the results are formulated in such a way that the proofs apply to general
vector spaces.

Chapter 6 returns to more vector geometry in two- and three-dimensional
space. The emphasis is on applying the dot and cross product in answer-
ing geometric questions. The geometry of how carbon atoms fit together
in cyclohexane ring systems is studied to help develop three-dimensional
visual thinking. As mentioned, this material could be covered immedi-
ately after Chap. 2 if the instructor chooses. The author, however, prefers
to have his students study this chapter after Chap. 5 in order to remind
them of the importance of geometric thinking.

Chapter 7 studies eigenvalues and eigenvectors and their role in the
problem of diagonalizing matrices. Motivation for considering eigenvec-
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tors is provided by the return to the study of iterative processes initiated
in Chap. 4. The cases of symmetric and probability matrices are studied
in detail. This material is developed from a matrix perspective, prior to
the treatment of linear operators (Chap. 8), for instructors who like to
get to this topic as early as possible. In fact, this material provides nice
motivation for Chap. 8.

Chapter 8 develops the theory of linear transformations and matrix rep-
resentations of linear operators on R”. A main objective is to show how
the point of view of linear transformations unifies many of the matrix-
oriented subjects treated. earlier. The chapter returns to the examples
of electrical networks first studied in Chap. 3, where the cascading of
networks provides a basis for understanding the composition of linear
transformations. The basic geometric transformations of rotations and
reflections are also studied.

Chapter 9 returns to the geometry of Euclidean space. The Gram-
Schmidt process and orthogonal projections can be found here. Least-
squares problems are also studied from the geometric point of view.
Some of the data given in Chap. 1 are fit using linear regressions, bring-
ing the course to a close by showing how the concepts developed in
the class deepen our understanding of some of the original problems
considered.

I would like to thank my numerous students and colleagues for their

valuable input during the development of this text, provided both anony-
mously and in person. I am especially grateful to Juan Estrada, Gustavo
Ponce, and Gerald Zaplawa for their detailed comments. I would also like
to thank Jerry Lyons of Springer-Verlag for his encouragement and support.
Finally, I wish to thank my family for their love throughout this project.

Bill Jacob
Santa Barbara, California
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inear functions are used throughout mathematics and its applications.
We consider some examples in this chapter. Most of this book is devoted
to the study of how to analyze and apply linear functions.

Linear Functions

Proportions: An Example

The concept of proportion, or ratio, is one of the most fundamental ideas
in elementary mathematics. Without it we would have great difficulty or-
ganizing our daily life. For example, if we begin our day cooking oatmeal
for breakfast, we need to get our proportions right: According to the recipe
on one box we need 2 cup of milk mixed with % cup of oatmeal for each
serving. Using too much milk would produce oatmeal soup, and using too
little milk would produce oatmeal glue. For a good oatmeal breakfast, the
proportion of milk to oatmeal is the key.

One convenient way to understand proportion is through linear func-
tions. Our formula for good oatmeal can be viewed as follows. Since 3% = %
cups of milk are required for each cup of oatmeal, the proportion of milk
to oatmeal is %. Therefore, we can write the linear function

Cups of milk = %(Cups of oatmeal).

In this formula we view milk as a function of oatmeal. For example if we
use % cup of oatmeal, then according to the formula the right amount of

1
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Fig. 1.1. Oatmeal graph y
& grap Cups of ‘milk

4 +

A

Cups of oatmeal

milk is 2 - 2 = Z, or if we are using 16 cups of oatmeal then we need 36
cups of milk. The advantage of this expression is that no matter how much
oatmeal we use, the formula tells us the necessary amount of milk for that

particular amount of oatmeal.

Linear Functions of One Variable

We say that a variable Y is expressed as a linear function of another variable
X when we write an equation of the form

Y = kX + ¢

where & and ¢ are real constants. In the oatmeal example above, if Y
represents cups of milk and X represents cups of oatmeal, then the real
number & is our proportion 4 and the real number ¢ is 0. For any linear
function Y = kX + c, the constant k is the proportional change of Y as X
varies. The constant ¢ is the value of ¥ when the value of X is 0.}

Functions of the form Y = kX + ¢ are called linear functions since
their graph in the xy-plane is a straight line. Figure 1.1 is the graph of our
oatmeal function, where the the cups of oatmeal are plotted on the x-axis
and the cups of milk on the y-axis.

Finding the Expression for a Linear Function

Quite often, instead of starting with an explicit formula describing a linear
function, we have some information about the values of a function that we
believe to be linear. Suppose we want to write an equation for the function.
What do we do?

! As a notational convenience, in this book we use uppercase letters as variables and lowercase
letters as constants in algebraic expressions.
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For example, suppose you work in an office and each morning your
first task is to make coffee in a large, cylindrical coffee maker. This coffee
maker displays the amount (and color) of its contents in a glass tube that
runs straight up above its spout. You have learned by experience that once
there is only one inch of coffee showing you should throw the contents
away because your co-workers complain they get too many grounds in
their cups. You have also learned that if you fill the coffee maker to the
6-inch mark then you have the right amount of coffee for ten people.

One morning eight additional coffee-drinking visitors arrive to spend the
day working at your office. Your problem is to calculate how high to fill
your coffee maker. Instead of guessing, you decide that coffee consumption
is a linear function of the number of people drinking coffee. If X denotes
the number of coffee drinkers and Y denotes the number of inches you
need to fill your pot to satisfy everybody, your problem now is to find the
constants k& and c in a linear coffee function ¥ = kX + c. You know that
the 1-inch mark corresponds to the amount required to satisfy nobody and
that when X = 10 coffee drinkers, the appropriate Y value is 6 inches. This
gives the following input-output chart for your linear function:

(Input) X | Y (Output)
01
10| 6

The values X = 0 and Y = 1 show that ¢ = 1 in your linear coffee
function. Further, substituting ¢ = 1, X = 10, and Y = 6 into the coffee
function shows 6 = k£ -10+ 1. Hence, 5 = k- 10, or k = % You have
determined that the coffee function is

—1X+1
2 .

This shows that when you have 18 coffee drinkers to satisfy (recall you have
8 visitors for the day) you should fill your coffee maker to the % -18+1 = 10-
inch mark. We have the following interpretation for the constants ¢ = 1 and

= 1. The constant ¢ = 1 reminds us that there is always 1-inch of cruddy
coffee at the bottom of the pot. The proportionality constant & = % tells us
that each coffee drinker’s consumption lowers the pot by an average of %
inch each morning.

More Oatmeal

There is another way to consider our oatmeal recipe, and it may be better
suited for feeding a large family. Suppose in one family there are three big
eaters who like to eat one and a half oatmeal servings, three small oatmeal
eaters who can eat three fourths of a serving, one normal serving eater,
and two who eat no oatmeal. Our problem is to determine how much milk
and oatmeal must be cooked. We first compute how many servings must
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be prepared. We find that

1 3 _ 3
(3 1§)+(3 Z)+1+(2 0)--'74

servings are needed.

We next view the quantities of both milk and oatmeal as functions of
the number of servings desired. We have the proportionalities: % cup of

oatmeal per serving and % cup of milk per serving. These give the two
linear functions

31
4

Cups of milk = %(number of servings),
Cups of oatmeal = %(number of servings).

In the above system of equations we have expressed two outputs (oatmeal
and milk quantities) as a linear function of the single input (number of
servings). .

We find that to make 7% servings of oatmeal we need 2 - 3} = %% cups
of milk and § - 3 = 2} cups of oatmeal. Of course, it is unlikely you will
measure your ingredients in this way—with this many people (seven you
know eat oatmeal) it would be sensible to plan on 8 servings and measure
6 cups of milk with 2% cups of oatmeal. The point behind this example is
that instead of viewing the amount of milk as a function of oatmeal as we
did earlier, it is more natural to view each quantity of milk and oatmeal as a
function of the number of servings. These two linear functions are graphed
in Fig. 1.2.

Renting an Automobile

As our next example of linear functions, we consider the problem of finding
the best deal in a car rental. Two competing rental companies rent the same

Fig. 1.2. More oatmeal A
Cups of milk
at
3 .
2+ of oatmeal
1 4

[
N

w
B4
[$)]

6
Number of servings
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car according to the following pricing. Company A charges $25 per day plus
$0.25 per mile, while Company B charges $35 per day plus $0.10 per mile
(in both cases the renter pays for all gas used). In order to decide from
whom to rent we need to know how far we plan to drive and how long
it will take. The cost of renting from each company is described by the
following functions:

Price, = (days) - $25.00 + (miles) - $0.25,
Priceg = (days) + $35.00 + (miles) - $0.10.

These are called linear functions of two variables since they are determined
by two quantities and the value of the function is the sum of fixed propor-
tions of these quantities.

For example, if we plan a 200-mile trip for 3 days, we find that the
cost of renting from Company A would be 3 - $25 = $75 in daily fees and
200 - $0.25 = $50 in mileage fees, for a total of $125. Similarly, renting from
Company B for the same trip would cost 3 *+ $35 = $105 in daily fees and
200 - $0.10 = $20 in mileage fees, again for a total of $125. So the prices
are the same for this particular trip. However, if we plan a 1200-mile trip for
5 days, the expense of renting from Company A would be $425 while the
expense of renting from Company B would be $295. For such a long trip,
Company B has the better bargain. On the other hand, if we need a car for
two weeks but plan to drive less than 20 miles per day, then we could save
by renting from Company A (check this!). We see from this example that in
order to make an intelligent decision regarding automobile rental we must
take into account two variables: the number of miles and the number of
days.

Linear Functions of More Than One Variable

We say that a variable Y is expressed as a linear function of other variables
X1, Xz, ..., Xn when we write an equation of the form

Y=k1X1+k2X2+“'+ann+C,

where &y, k2, . .., ky and ¢ are real numbers. Both automobile rental pricing
functions considered in the previous section were linear functions of two
variables, days rented and miles driven.

In this text we will use the symbol R to denote the set of real numbers,
and we write ¢ € R to mean “c is a real number.” We will use R? to denote
the set of pairs (4, b) where a € R and b € R, and R3 will denote the set of
triples of real numbers. Using this notation, we will often write f : R — R
to indicate that f is a real-valued function of one variable, f : RZ — R to
indicate that f is a real-valued function of two variables, f : R> — R to
indicate three variables, and so forth.
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We noted earlier when considering a linear function of one variable,
Y = kX + c, that the constant k£ was the proportional change of Y as X
varies. If we look at our expression for Y as a linear function of the variables
X1, Xz, ..., Xn, we see that each of the constants ki, k5, . . ., k, has a similar
interpretation. The constant & is the proportional change of Y as X; varies
while all other variables remain unchanged. Similarly, the constant k; is
the proportional change of Y as X, varies while all other variables remain
unchanged, and so forth. The constant ¢ is the value of Y when all the
variables Xi, X3, ..., X,, have value 0.

Finding Expressions for Linear Functions

We previously examined a method for finding the expression of a linear
function of one variable given some of its values. Similar ideas work in
studying linear functions of more variables, except that additional data about
the function are needed. Suppose that the following input-output chart gives
some Y values of a linear function of two variables X; and X;.

For which constants k;, k, and ¢ can we express the function in the form
Y= k1X1 + kzXz + ¢c?

In order to solve this problem, we might hope to find the constant ¢
first, but we abandon this strategy since we don’'t know the value of Y
when both X; and X, are zero. Instead we first try to uncover the value
of k;. Recall that &, is the proportional change in ¥ when X; changes and
X, remains fixed. Observe that when X, = 2 and X; increases from 1 to
2, our table shows that Y increases from 6 to 8. This shows that & = 2
(because, while X increased by 1, Y increased by 2). Observe that we also
know two Y values when X; = 1. These show that when X; increases by
2 (from 0 to 2), the Y value increases by 6. This shows that k, = 3 since
the proportional increase of Y is g. At this point we know that the linear
function must look like

Y=2X1+3X2+C

for some constant ¢. We may determine the value of ¢ by substituting any
of our function values. When X; = 1 and X, = 0 we have Y = 0, so
substitution gives 0 = 2+ 1 + 3 -0 + ¢. This shows ¢ = —2. We have found
that our linear function is

Y=2X +3X; — 2.
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This method for finding the expression of a linear function requires
knowledge of enough values to compute the proportional changes in the
value of the function when only one variable changes. The procedure is
similar to finding the point-slope expression for an equation of a line.
Recall that if a line has slope m and passes through the point (g, b) in
R?, it is represented by the equation (Y — b) = m(X — a), known as
the point-slope equation. For two variables, suppose that the proportional
change in Y as Xj varies is m, the the proportional change in Y as X;
varies is my, and the point (a, b, ¢) in R? lies on the graph of the linear
function. Then the linear function can be computed using the expression
(Y — o) = m(X — a) + my(X; — b).

1. Suppose you are driving at a constant speed and you travel 220 miles
in 5 hours. Write down the linear function that describes how far you
have traveled as a function of time during these 5 hours.

2. Find the equation of the linear functions that satisfy the following input-
output charts (where X is the input and Y is the output):

X|Y X Y
@ -2|0 @ 4 2
11 21 -1

3. (@) Consider the automobile rental pricing described earlier. If you rent
a car for 5 days, how many miles do you have to drive so that the
price from either company is the same? What if you rent the car for
7 days? or 8 days?

(b) Using your answer to part (a), find a linear function M = kD + ¢
that shows that if you rent a car for D days and drive M miles,
then the price from either company is the same.

() Show that your answer to (b) can be checked by substituting D
for number of days and your expression kD + ¢ for miles into the
formulas for Price4 and Priceg given in this section.

4. Find the equations of the linear functions that satisfy the following
input-output charts of two variables:

X X|Y

2 11

® 3 1|3
3 201

4 3|1

5. Find the equations of the linear functions that satisfy the following
input-output charts of three variables:
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X X X%| Y X X X|Y
1 1 0]—4 0 0 02
@ 1 1 1/|=2 ® 1 0 02
0 1 1| 0 1 1 0|3
0 0 0| O 1 1 1|4

6. Suppose you have $25 to spend in a candy store. Chocolate costs $6.80
per pound, suckers cost $0.10 each, and gumballs cost $2.50 per quarter
pound.

(@) Suppose you buy C pounds of chocolate and G pounds of gum-
balls. Express the number of suckers S you can buy as a function
of C and G.

(b) Suppose you need one sucker and one ounce of gumballs for each
person attending your birthday party. You want to buy as much
chocolate as possible since you don't like suckers and gumballs. If
P denotes the number of people who attend your party, express
the number of pounds of chocolate C you can buy as a function
of P.

7. For each of the following functions, express X as a function of Y:

(@ Y=2X-4

b Y=-3Xx+7

© Y =100X + 99

(d) Your answer to (a) should be X = %Y + 2. If we substitute this
expression for X into the original function, we obtain ¥ = 2(3 Y +
2) — 4, which is true after algebraic simplification. What does this

" mean from the point of view of functions?

(e) Check your answers to (b) and (c¢) using the technique given in
(d.

() What happens if you try this problem for the constant function
Y="7

8. The Celsius temperature scale was designed so that 0° Celsius is the

temperature at which water freezes (which is 32° Fahrenheit) and 100°

Celsius is the temperature at which water boils (which is 212° Fahren-

heit). Since you may already know the formula for relating Celsius to

Fahrenheit, explain how to derive the formula giving degrees Celsius

from degrees Fahrenheit using this information. Also, explain what the

constants in your formula mean.
9. The following input-output chart does not give enough information to

determine Y as a linear function of Xj and X;.

X1 Xx|Y
1 013
1 1|3
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(2) How much information can you obtain, and what further informa-
tion would be useful in determining this linear function?
(b) What are the possible linear functions that could fit this chart?

10. An elevator leaves the first floor of a twelve-story building with eight
people. Three get off at the third floor, two on the fifth, and one on
each of the top three floors. The function giving the elevator height
in terms of time is not linear. It is, however, close to what is called
piecewise linear. The term piecewise linear means what you would
guess it means—so try to answer these problems.

(a) Draw a graph of height vs time for this elevator trip. Make rea-
sonable estimates according to your experiences. Briefly explain in
each section of the graph what is happening.

(b) Suppose the time the elevator stops at each floor is proportional
to the number of people getting off. Show how this changes the
graph. Do you believe this assumption is reasonable?

Group Project: Polyhedra

Polyhedra can be found everywhere in the world around us. The chances
are good that you are sitting on a piece of one right now. Buildings are
constructed out of them, soccer balls are made out of them, and they are
crucial to understanding many geometric problems. In this project you will
explore many of the smaller polyhedra and their basic properties.

We need to recall some terminology so we can talk about polyhedra.
Recall that a polygon is a flat shape whose edges are line segments. Polygons
with three edges are triangles, those with four edges are quadrilaterals, and
so forth. The points where the edges of a polygon meet are called vertices.
Note that if a polygon has three edges then it has three vertices, if it has
four edges then it has four vertices, and so forth. Polybedra are solid objects
obtained by gluing polygons together at the edges. In the polyhedra we
shall study here we will not allow any holes. Along each edge there must
be exactly two polygons glued together.

Two famous polyhedra are the cube and the tetrabedron (a tetrahedron
is pictured in Fig. 6.4). The cube is made from six squares and has eight
vertices and twelve edges. The tetrahedron is made from four triangles and
has four vertices and six edges. The polygons that are used to make a
polyhedron are called its faces. Of course, the edges of a polyhedron are
the edges of its faces, and the vertices of a polyhedron are the vertices of
its faces.

(a) Divide your class into groups. Each group will be assigned one (or
more) of the numbers 7, 8, 9, or 10. Your group project will be to build as
many different polyhedra with as many faces as your group number. So,
for example, if your group number were 6, you could build a cube as one
of your polyhedra. Be sure to count only the faces on the outside of your
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polybedra. Toothpicks and clay work well for building the polyhedra. Every
time you make a new polyhedron you should determine the number of
vertices and edges.

(b) Once your group has built at least five different polyhedra with the
same number of faces, you next make a polyhedra graph. For the axes of
the graph use the number of vertices and the number of edges. For each
polyhedron built locate its point on the graph according to its number of
vertices and its number of edges. (Make sure that all the polyhedra entered
on your graph have the same number of faces!) If there are several polyhedra
with the same number of edges and vertices, indicate this on your graph. Do
you notice anything about your graph? Can you figure out an equation that
relates the number of vertices to the number of edges for your polyhedra
with the same number of faces?

(o) Finally, all the groups should get together to compare the information
they have generated. Your equations relating vertices to edges should be
similar but not quite the same (since each group studied polyhedra with a
different number of faces). Can you put your information together and find
a single equation that relates vertices, edges, and faces? If you can, you will
uncover a famous result known as Euler’s formula.

Local Linearity

Many functions that arise in economics, science, and engineering can be
studied using linear functions in spite of the fact they may not actually
be linear. In this section we consider three different situations and cor-
responding data that have been obtained either experimentally or from a
complicated formula. Our task is to look for patterns in these numbers that
resemble the behavior of linear functions. We will then use our observations
to find a linear approximation to the function in question.

Storage Battery Capacities

The following table shows how the energy storage capacities (in amp-hours)
of a small 12-volt, lead-acid automobile battery are related to the discharge
rates (in amps) of the battery. The table shows that the capacity of the
battery decreases as the the rate of discharge increases.

Discharge rate (amps) | 1 5 10 15 20 25 30 40 50
Amp-hr capacity | 70 68 66 62 58 54 50 40 28

This table is based on an actual experiment, not on any particular theory.
These numbers were found as follows. The battery was discharged with
a constant current rate (electric current rates are measured in amps), and
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the length of time until the battery died was measured. The product of this
length of time with the discharge rate gives the amp-bour capacity of the
battery at that discharge rate. For example, at a 20 amp discharge, it took 2.9
hours before the battery died, giving the 20 X 2.9 = 58 amp-hour capacity
in the table. The equipment used to make these measurements was not
the most accurate available, and for this reason the amp-hour values were
rounded to the nearest integer.

We next consider the data in the table. For most practical applications an
exact theory of storage battery capacity is not important. What is important
is the observation that between 10 and 30 amp discharge rates, the capacity
of battery drops about 4 amp-hours for every 5 amp increase. Since the
amp-hour capacity of this battery is 58 when the discharge rate is 20 amps,
this means that we can write the point-slope equation of the line through
(20, 58) and slope —45 as C — 58 = —g(r — 20). Here we are using C for
the capacity and r for the rate. In other words, the capacity function in this
range is approximated by

Cz74—§r.

A close look at the data reveals that while our linear approximation for
C is accurate in the range between 10 and 30 amps, it gives too high a value
at 5 amps or below and at 40 amps or more. Nonetheless, since most of
the uses for which this battery is designed require 10 to 30 amp discharge
rates, this linear approximation provides reasonable values. The expression
C=74— ‘%r is what is called a locally linear approximation to the capacity
function. The nine discharge rates listed in our table and their locally linear
approximation in the 10 to 30 amp range are shown in Fig. 1.3.

You may be wondering why the battery capacity drops linearly for a
while and then at high currents drops more rapidly. There are several rea-
sons that battery capacity drops with increased current rates. One reason is
that the diffusion of compounds required for chemical reaction in the battery

Fig. 1.3. Locally linear
battery capacity behavior % e
Capacity 60 ——
(amp-hrs) T
40 —— ¢
T .
20
| | | | |

I | [ | [
10 20 30 40 50
Discharge rate (amps)
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4% 6% 8% 10% 12%

12 mo. | 851.51 860.67 869.88 879.16 888.49
24 mo. | 43425 443.21 45231 461.45 470.73
36 mo. | 295.24 30422 313.36 322.67 332.14
48 mo. | 22579 234.85 244.13 253.63 263.34
60 mo. | 184.17 193.33 202.77 212.47 222.44

Table 1.1. Monthly Payments on a $10,000 Loan.

must occur more quickly at higher current rates. The difficulty of diffusion
when the battery is partially discharged becomes significant at higher dis-
charge rates, and this is one possible explanation why the capacity drops
so quickly at higher rates. Another reason may be that higher current rates
produce more internal heat in the battery, and so energy is lost. In fact,
automobile batteries are not made for continuous discharge at high rates.
They are designed to discharge at very high rates for short time intervals
(when the car is being started), and the rest of the time most of the car’s
electrical power is supplied by the car’s alternator, which also recharges the
battery. The considerations of this section are significant, however, in the
design of electric cars, where continuous battery discharge is necessary to
drive the car.

Amortization

In the typical car or home loan, it is customary to repay the loan over
a period of years through monthly payments of equal amounts. During
this time period, the borrower is paying interest on the amount still owed.
As time passes, the amount owed decreases, and so the amount of the
monthly payment applied toward interest decreases and the remainder of
the monthly payment reduces the principal. In this plan of repayment, one
is said to amortize the loan. The amount of a monthly payment in an
amortizing loan is determined by three variables: the amount borrowed P,
the interest rate 7, and the number of payments n. The monthly payment M
is not a linear function of these three variables, and usually people look up
M in a table once the values of P, i, and n are known. However, for many
practical purposes (say, while home and loan shopping) the monthly rate
can be estimated using local linearity once its value for several P, i, and n
are known.

In Table 1.1 we list the monthly payment required to amortize a $10, 000
loan as a function of the number of monthly payments and the annual
interest rate. The entries in this table were computed as follows. The values
of P, i, n, and M satisfy the equation

LM [1- 1+ 5™

i 2
n
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and so M can be computed once P, i, and n are known. However, we
ask you to ignore this formula and instead look closely at the rows of
the table. These values for M reveal what is essentially linear behavior.
Note that each 2% increase in interest rate increases monthly payments by
between $9 and $10. This $9 to $10 difference represents extra interest
that must be paid. On a $10,000 principal, one month’s interest at 2% is
& X .02 X $10,000 = $16.67. Since monthly interest on an amortizing loan
is paid only on the balance (not on the original loan amount), the payment
increase due to the extra 2% is only a bit more than half of this.

Our observation shows that the monthly payment is nearly a linear func-
tion of the interest rate. For example, on a 36-month repayment schedule,
a point-slope calculation shows that the payments are given approximately
by

M =277 +46 X 1.

This approximation gives the values 295, 304, 314, 323, and 332 for the 36-
month row of our table, which is a very accurate approximation. Although
not an exact determination of a repayment price when a deal is finally nego-
tiated, this linear approximation is more than adequate as a determination
of how interest rates will affect the purchaser when the repayment time is
fixed.

Note that the columns in Table 1.1 do not display linear behavior. As
the number of repayment months increases by 12, the payment decreases,
but by a significantly smaller amount each time. One reason for this is that
the time intervals are increasing rapidly in this chart. If, for example, we
were to consider an 8% interest rate over a period of 46, 48, 50, and 52
months, the payment rates would be 253.14, 244.13, 235.84, and 228.20 re-
spectively. Here the drop in payments varies between $9 and $7.50 for each
increase of two months in amortization time. So it would be more accurate
to approximate the payment rate as a function of repayment time as a linear
function on this small region of our chart. However, it is not a customary
business practice to consider 46- or 50-month repayment schedules, so we
won’t bother finding this linear approximation.

Airplane Lift and Wing Flaps

Prior to 1915, the design of airplane wing cross-sections consisted mostly
of studying existing types followed by the trial use of variations of these
to see what happens. However, in the decade that followed, wind tunnel
experiments were conducted and the theory of airplane aerodynamics be-
gan. Two important numbers that depend on the airplane design and are
crucial to determining flight characteristics are the drag and lift coefficients.
Roughly speaking, the drag coefficient measures the air resistance as the
plane flies, and the lift coefficient measures the upward pressure (lift) re-
sulting from flight. These coefficients are given in the units (Ibs/ft*)/(mph?),
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Fig. 1.4. Cross-section of

a simple wing flap

Air )

flow -

which numerically represent the force (in pounds) per square foot of surface
area at a given air velocity. Both the drag and lift forces are (essentially) pro-
portional to the square of the velocity (so the force is not a linear function
of velocity).

In early planes a lift coefficient of 1.6 was considered good, and for
takeoff it was desirable to increase this lift coefficient to the range from 1.8
to 2.5. One device used to increase lift is the wing flap, which lies flush to
the wing during flight but is angled down by the pilot during takeoff and
landing. Fig. 1.4 illustrates a simple wing flap design.

Some early wind tunnel experiments generated the data given below in
Table 1.2,%> which shows how the increase in lift coefficient, A C;, is related
to two quantities, the chord ratio E and the flap angle 8. The chord ratio is
the ratio between the flap width and that of the wing, and the flap angle
is the angle the flap makes with the wing. In Fig. 1.4 the chord ratio is
approximately .3 and the flap angle is approximately 20°. Study of this
table reveals that each 0.1 increase of E gives an approximate increase of
.05 for AC; (except perhaps at the lower right), and each increase of 5°
of & also gives a rough increase of about .05 for A C;. The numbers in the
table may not be the most accurate possible (and modern data may differ
from that collected in the 1920s), but the approximate increases in A C; just
noted show that the table can be reasonably approximated by the linear
equation

AC; = —.02+ 018 + 5E.

The corresponding values of this linear approximation are shown in Table
1.3. Although these values are not a perfect match for the data given, it is
reasonably close for values of 8 near 10° and for values of E near 2. In
absence of a precise theory (such as the case in the 1920s), this type of
two-variable linear approximation could be quite useful in predicting flight
characteristics. Another linear approximation is given in Sec. 9.3 using the
technique of linear regression.

5  10° 15° 20°
0.1 0.08 013 0.19 0.24
02012 017 023 030
03]0.17 022 029 042

Table 1.2. Experimental Values for AC;.

2From Walter S. Dichl, Engineering Aerodynamics, Ronald Press Co., New York (1928),
pp. 150-152.
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5° 10°  15° 20°
01008 013 0.18 0.23
02013 0.18 023 0.28
03018 023 028 0.33

Table 1.3. The Linear Approximation AC; ~ —.02 + .018 + .5E.

| 5° 10°  20°  30°  40°
0.1 0.005 0015 0022 0035 0.06
021|001 002 0045 0075 0.11
03 (002 003 007 012 0.17

Table 1.4. Experimental Values for A Cp.

The presence of a wing flap also increases the drag. Table 1.4 shows how
the increase in drag coefficient A Cp is related to the same two variables,
the chord ratio E and the flap angle 8.

These data have characteristics of linearity in each of the variables E and
8. For example, the approximations

ACp = 00138 when E = 1,
ACp = 00278 when E = 2,
ACp = 004086 when E= 3

were suggested by the scientists who obtained this data. Values given by
these approximations are listed in Table 1.5 and are fairly close.

It is important to note that the data in Table 1.4 do not appear to be
that of a linear function of two variables, since the coefficients of § in the
various approximations are quite different. In fact, the text containing this
data suggests that the expression

ACp = 0.0133ES

gives a good match to the observed values. Note that this approximation
is given by a function that is linear when either variable is fixed but is not
linear itself. The values given by this approximation are contained in the
following table.

| 5° 10° 20°  30°  40°
010006 0013 0026 0.040 0.053
0.2 | 0013 0026 0053 0080 0.107
0.3 ]0.020 0040 0.080 0.120 0.160

Table 1.5. Values of the Nonlinear Approximation A Cp ~ 0.0133E5.
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Problems

Summary

In this section we have seen some linear approximations for various func-
tions. In the cases of battery capacity and the changes in lift and drag
coefficients, there was no exact formula for giving these functions, and the
linear approximations developed provide one way to study them. In the
amortization problem, we had an exact formula, but the linear approxima-
tion provided an easier model for understanding how changes in interest
rates affect monthly payments.

In each case we estimated proportional changes and then used the
point-slope formula to obtain linear approximations. This is all you will be
expected to do in the problems and projects in this section. A refinement of
this method you can try is to make some small changes in the coefficients
and see if that makes the approximation better. This is useful for getting a
feel for the problem but is not a sound procedure for serious applications. A
powerful method for finding the best linear approximation for a collection
of data is given by the method of least squares, which is sometimes known
as linear regression. An introduction to this method is given in Sec. 9.3.
In the second group project at the end of this section you will have an
opportunity to explore the results of linear regression using a calculator or
computer.

All of the calculator projects in this text can be carried out, for example,
on a Texas Instrument TI-85 scientific calculator, but many other calculators
and computer software packages can do the same thing. You are encouraged
to become familiar with the capabilities of whatever system is available. All
of the text’s instructions will be general in nature, and we will not specify
what keys to push. So when the text says “use your calculator to...,” it is
your responsibility to find out how to accomplish the task on your computer
or calculator. When you are learning to use new computer or calculator
technology, it is a good idea to work as a team with some classmates and
experiment a bit, since instruction booklets can at times be hard to follow.
Students should get their instructors involved, too!

1. Try to find a linear approximation for the first column of Table 1.1, that
is, approximate M as a linear function of i for each of 12-, 24-, 48-, and
60-month repayment plans. In the text it was stated that this would not
work well, but how close can you get?

2. Find a linear function of two variables that gives a reasonable approxi-
mation to the values below. Answers will vary from person to person, so
be sure to explain how you found your answer. It might be a good idea
to list several possibilities and then explain why your choice is best.
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1 2 3 4 5
=5 020 046 071 092 1.20
0 005 029 061 074 1.03
5(—-009 015 040 062 0.89
10 | —0.24 0.01 024 040 055

3. Contours on a topographic map describe the elevation function on a
region of land. These contours are curves that represent constant eleva-
tions, or level sets. The elevation function has two input variables: location
along the east-west axis and location along the north-south axis. If the
elevation function has locally linear behavior in some region, explain in
writing and with sketches what the contours look like in that region.

4. Find linear approximations to the change in drag coefficient A Cp (given
in Table 1.4) as a function of flap angle 8 that are more accurate for the
angle values between 10° and 20° than the approximations given in this
section. Note that answers to this question may vary.

5. Consider the following table of values, which gives the current drain (in
amps) for an electric car driving at various velocities on level ground.?

Velocity (mph) | 10 20 30 40 50
Current (amps) | 85 150 235 340 470

(a) Does it make sense to use a local linear approximation if you want to
estimate current drains at 15 mph? Justify your answer. What about
at 32 mph?

(b) Suppose this car was capable of going 60 mph on level ground. (In
fact, it wasn’t.) How would you estimate the current necessary?

6. Study the experimental data given in Tables 1.2 and 1.4. Is there a linear
relationship between AC; and ACp for the values of the chord ratio
and flap angle considered there? Part of your answer will be explaining
how you make sense of this question and what is meant by a linear
relationship in this context.

Group Project: Linearizing Amortization

Suppose that a $150,000 home loan is to be repaid over a 20- to 30-year
period and that the prevailing interest rates are varying between 7% and
9%.

(a) Find a two-variable linear function that approximates the monthly pay-
ment depending on the interest rate i and the number of years y of fully
amortizing repayment. Set up your function so that it is exact at 25 years and
8%. You will have to use the formula given in the section on amortization
(along with a calculator) to compute the amortization payments.

3Data collected in 1973 in author’s car. The car had a 36-volt battery pack.
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(b) How accurate is your approximation for 26 years and 8.25%? For 24
years and 8.25%, and for 30 years and 9%?

(o) Interpret the meaning of the coefficients of the variables in your linear
approximation and write a sentence explaining each.

(d) At the end of the section on amortization it was noted for the chart
considered there that the monthly payment was not close to being a linear
function of the number of years of repayment. Is this situation similar or
different in this regard?

Group Project: Linear Regression on a Calculator or Computer

The purpose of this project is for you to become familiar with how to use
a calculator or computer to find locally linear approximations to data. We
will learn more about how the calculator is making these computations (as
well as why it works) later in Sec. 9.3.

(a) The first step is to learn how to enter data into your calculator. This is
usually done by creating and naming a list of points. Enter in the nine pairs
given in the storage battery chart.

(b) Next learn how your calculator runs a linear regression on the table of
data just entered. (This can be found in the STAT menu of many calculators.)
The output of this program usually gives you the coefficients @ and b in an
approximation of the form Y = bX + a to the data. For the battery capacity
example you should find that @ = 73.6 and b = — 850.

() Plot your data points on a graph, and graph the linear equation ¥ =
—.850X + 73.6 there too. (Better yet, get your calculator or computer to
draw this graph.) How does this linear approximation compare to the one
considered in Fig. 1.3?

(d) Use your machine to compute linear regressions for the functions given
by the rows of Table 1.4 (the A Cp values.) How close are these equations
to the approximations given in the text?

Matrices

In this section we continue our study of linear functions by introducing basic
matrix algebra. Our first use of matrices will be to simplify the notation.
Shortly, however, we shall see that their use is of a much broader scope.

An Assembly Line

In a small assembly line toy cars and trucks are put together from a ware-
house full of parts. These parts include car and truck bodies, chassis that
both bodies snap onto, wheels, and toy people. In order to assemble a car,
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you snap a car body onto a chassis, pop on four wheels, and put four peo-
ple inside. For the truck assembly you snap a truck body onto a chassis, pop
on six wheels (four on the rear axle, two on each side), and put two people
inside. We record all this assembly information in the following array:

Cars Trucks
Car bodies 1 0
Truck bodies | 0 1
Chassis 1 1
Wheels | 4 6
People | 4 2

Each column of this array indicates the number and type of parts needed to
assemble your finished product—the first column for cars and the second
column for trucks.

We need to assemble 125 cars and 75 trucks in one day, and we want
to know how many wheels, people, and so forth are necessary for the job.
The array can be used to solve this. If you multiply each entry in the first
column by 125, you will obtain a column listing the number of parts needed
to build the cars, and if you multiply each entry in the second column by
75, you will obtain a column listing the number of parts needed to build
the trucks. This looks like

1 125 car bodies
0 0 truck bodies
Carparts =125 | 1 | = 125 chassis
4 500 wheels
4 500 people

and
0 0 car bodies
1 75 truck bodies
Truck parts =75 | 1 | = 75 chassis
6 450 wheels
2 150 people

Finally, adding these columns shows that the total number of parts needed
to assemble 125 cars and 75 trucks is

125 0 125 car bodies

0 75 75 truck bodies
Total parts = | 125 | + | 75 | = 200 chassis
500 450 950 wheels
500 150 650 people

Of course, the answer to the question posed in this example could easily
have been found without using arrays of numbers. However, before this
section ends we will see problems whose solution would be a notational
nightmare without such arrays, or matrices.
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Matrix Notation

A matrix is a rectangular array of real numbers, where the exact location
of each number, or entry, is crucial. To be more precise, an m X »n matrix
is an array of real numbers with m rows and # columns. The ijth entry
of the matrix is located in the ith row and jth column of the array. If the
matrix is called 4, we often write A = (a;;), which means that the a;; are
real numbers and the entry in the ith row and jth column of 4 is a;;. We
will also use the notation A(%, f) to denote the ijth entry a;; of A.
For example, the 2 X 3 matrix

_(4 1 7
A_(zos)

has two rows and three columns. When we write A = (4;;), we are spec-
ifying the six real numbers a;3 = 4, a1z = 1, a13 = 7, a1 = 2, ap = 0,
and a,3 = 3. Whenever we describe the location of an entry in a matrix or
specify matrix size, the row number is listed first and the column number
is listed second. To help you get used to the row and column terminology,
we point out that rows go across the page (as does writing in English), and
columns go up and down (like the columns on a building).

Matrices are usually denoted by capital letters 4, B, C, ... to help avoid
confusing them with real numbers. Column matrices are matrices with one
column and are sometimes referred to as column vectors. We will often use
vector notation, such as 7 to denote column matrices.

We need to know what it means for two matrices to be equal. Two
matrices A and B are equal if they have the same number of rows, the same
number of columns, and precisely the same entries in the same places. In
particular, we emphasize that the matrices

A=<;) and B=(1 2)

are not equal, even though they look similar when rotated by 90°.

Scalar Multiplication and Addition of Matrices

In our assembly-line example we had to add matrices together and multiply
matrices by real numbers. The first operation is known as matrix addition,
and the second operation is known as scalar multiplication. Although the
ideas behind these two operations are pretty clear (they are called “compo-
nentwise operations”), they can also be described using the ij notation just
introduced. The definitions read as follows.

Definition (Matrix Addition). If A = (a;;) and B = (b;;) are both m X n
matrices, then we define the m X n matrix A+ B by (4+ B)(4, j) = AG, )+
B(4, /). Thus to add two matrices of the same shape, one simply adds the
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corresponding entries of the matrices to obtain another matrix of the same
shape.

Definition (Scalar Multiplication). If A = (4;;) is an m X n matrix and
k is a real number, then we define the m X n matrix kA4 by (A, ) =
k(AG, 7)). That is, the ijth entry of kA is ka;;, where a;; is the ijth entry of
A. This multiplication by a real number is called scalar multiplication.

G (3563
(G 365 )

Both matrix addition and scalar multiplication come from the usual multi-
plication and addition of real numbers applied entrywise to the matrices.
Using this we see that the following familiar laws of algebra involving real
numbers are also true for these two operations.

For example,

and

Theorem 1. Suppose that A, B, and C are m X n matrices and r
and s are real numbers. Then the following matrices are each m X n
and

(@) A+ B= B+ 4

b)) A+B)+C=A+[B+O0);

© r(sA = (r)4;

(d r(4+ B) = rA + rB;

(&) (r + A= rA+ sA.

Multiplying Matrices, Part |

When we studied the problem of finding the best automobile rental (see
Sec. 1.1), we analyzed the pair of linear functions with two input variables

Price4 = $25 - (days) + $0.25 - (miles),
Priceg = $35 - (days) + $0.10 - (miles).

Matrices provide convenient notation for working with this type of situation.
Since we have two rows in the functional expression (one for each variable),
we use column matrices to denote the input and output:

Price4 and days
Pricep miles /
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We next consider the 2 X 2 matrix whose entries are the coefficients that
arose in our functional expression

25 025
35 010)°

Matrix multiplication is defined in such a way that the expression

<PriceA) _ (25 0.25 days \ _ ( $25- (days) + $0.25 - (miles)
Pricep 35 0.10 / \ miles $35 - (days) + $0.10 - (miles)
makes sense and is equivalent to the original expression.

This is accomplished as follows. The first row of our 2 X 2 matrix of
coefficients has entries 25 and 0.25, and if we multiply these entries by the
corresponding entries days and miles of our input column and add the result,
we obtain 25-(days) + 0.25 - (miles). This is Price 4. Similarly, multiplying the
entries of the second row of our matrix of coefficients (35 and 0.10) with
the corresponding entries of our input column and adding the result gives
Priceg. This shows how to define matrix multiplication to give our linear
pricing function. More precisely, we give the following definition.

Definition. Suppose that A = (a;;) is an m X n matrix and suppose that 7
is the 7 X 1 column matrix with jth entry b;. Then we define A7 to be the
m X 1 column matrix whose ith entry is a; by + apb, + - + ainb,,.

For example, we have
14 3\ (S)_(a®+E2+G-0) _ (16
2 5 1 0 2-89+6G-D+0-0 26)°

Observe that the resulting product has only two rows since the matrix on
the left had only two rows. As another example we consider

( 4 3\ (X _(4x+3Y

\5 1)\v 5X+Y )

This time we used variables in our column matrix to illustrate the fact
that matrix multiplication is defined so that the left-hand matrix acts as the

coefficients in a system of equations.
As an additional example, suppose that

2 3 1
A=<1 1) and C=<2).
0 0 1
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Then, the matrix equation

represents the system of equations

2X+3y =1
X+ Y=2
0X +0Y =1.

Matrix Multiplication, Part Il

We next define matrix multiplication in a more general situation than just
considered. We need to define the product AB, where A4 is an m X » matrix
and B is an 7 X p matrix. In a natural way this definition extends the case
where B is a column matrix. What you do is multiply the left-hand matrix
by the columns of the right-hand matrix one at a time, and then string the
resulting columns along in order to form the product matrix. For example,

T 00-() = 6 D0-©)
GIED-G B

Note in the next definition that it is not possible to multiply two matrices of
arbitrary size.

Definition (Matrix Multiplication). Suppose that 4 is an m X n matrix
and B is an 7 X p matrix. (Thus the number of columns of A4 is the same
as the number of rows of B.) The matrix product AB is defined to be the
m X p matrix given by

AB(i, k) = AG, DBQ, k) + A(3,2)B(2, k) + - - - + A(i, n)B(n, k)

=Y AG, DB, k).
=1

In the definition, the matrix product AB is the m X p matrix whose ith
row, kth column entry is obtained by adding the products of the corre-
sponding entries of the ith row of 4 and the kth column of B. Note that
since Ais m X n and B is n X p, each row of A4 and each column of B
have precisely 7 entries. Therefore the phrase “adding the products of the
corresponding entries” makes sense. ’
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For example, the product of a 2 X 2 matrix and a 2 X 3 matrix is given
by

1 4Y(890\_(Q®»+(-2 A-ND+A-6) A1-00+4-0)
25/\260 2-8+G5:2) @-N+G-60 2-0+G-0)

_(16 33 0
26 48 0)°

~ The product of a 2 X 3 matrix and a 4 X 2 matrix,

5 1
1 1 4 8 2
31 7 0 0}’

1 0
is not defined, although their product in reverse order is
5 1 8 6 27
8 2|(1 1 4\_[14 10 46
0 0 3 1 7 0 0 o0
1 0 1 1 4

This next product is special:

1 0 0 1 4 1 4
(01 o) (1 -1 9)
0 0 1 3 2 3 2

We emphasize that matrix multiplication is not commutative in general.
In other words, even when both AB and BA are defined, they need not be
equal (nor even of the same size!). For example,

3 5)(2) =(3-2+5-4)=(26),

2 _(6 10
<4)(3 5)'<12 20)'

All students should practice matrix multiplication to become used to the
process. The matrix product will be used in essentially every section in the
rest of this book. It is also possible to multiply matrices on a calculator
or computer, and everyone should learn to do this, too. In the first group
project in this section it is necessary to use a computer or calculator to carry
out the investigation.

but

Counting the Number of Paths: An Application

In Fig. 1.5 there are four points and four direct paths between them. There
is one direct path between A and B, two direct paths between B and C,
and one direct path between C and D. We shall say that each of these four
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Fig. 1.5. Four points and e N\
four paths A B\ ~ c D

direct paths has length 1 (even though they do not have the same geometric
length). Since there is no direct path between A and C, the shortest path
from A to C has length 2. In fact, you can see there are two such paths,
both passing through B. Inspection of the figure also shows that there are
two paths of length 3 from A to D.

Suppose our problem is to decide how many paths there are between A
and C whose length is at most 4. Retracing the same path will be allowed.
Counting these paths is not difficult, but we need to be systematic and make
sure that we don’t omit any path or count some path twice. Matrices provide
a nice tool for carrying out this type of counting process.

For example, let’s examine a systematic method for counting the number
of paths of length 2 between the points A and C. (We saw the answer was
2, but we examine the counting process carefully.) To count such paths
we organize our counting according to the midpoint of each possible path.
This means we must add the following four numbers: #; = the number of
paths with midpoint 4; 7n, = the number of paths with midpoint B; ns =
the number of paths with midpoint C; and n4 = the number of paths with
midpoint D. Since there are no paths of length 1 from A4 to A, we see that
n; = 0. Since there is one path of length 1 from A4 to B and two paths of
length 1 from B to C, we see that n, = 1-2 = 2. Again, since there no
paths of length 1 from A to C or D, we see that n3 = 0 and n4 = 0. Adding,
we obtain that there are 0 + 2 + 0 + 0 = 2 paths of length 2 between A4 and
C.

Our counting procedure for length 2 paths between A and C was the
same as the process of computing an entry in a matrix multiplication. This
can be written as

(01 0 O =0:0+1-24+0:0+0-1=2,

0
2
0
1
where the first row matrix gives the number of length 1 paths from A4 to A4,
B, C, D and the second column matrix gives the number of length 1 paths
from A, B, C, D to C. More generally, we consider the following matrix

whose entries give the number of paths of length 1 between points in our
figure.

D
0
0
1
0

Ao

oo o|n
O N O =
- o N ol
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Problems

Observe that when we counted the number of paths of length 2 between A
and C according to our system, all we did was multiply the first row of our
matrix by the third column.

We next set
01 0 O 1 0 2 0
11 0 2 0 . 210 5 0 2
M 0 2 0 1 andnote M -M=M 2.0 5 0
0O 0 1 0 0 2 0 1

The first row, third column entry of M? is 2, which is the number of paths
of length 2 between A and C. Similarly, the 3, 4 entry of the matrix M? tells
us that there are no paths of length 2 between C and D, and the 2, 2 entry
tells us that there are five paths of length 2 from B to B.

We can now use the matrix M to answer our original question. The
matrix M? tells us the number of paths of length 2 between any two points
in our figure. By similar reasoning the matrix M3 tells us the number of
paths of exact length 3, the matrix M* tells us the number of paths of exact
length 4, and so forth. These matrices are

0 5 0 2 5 0 12 0

s3_ |5 0 12 0 d méi=| 0 29 0 12
M 0 12 0 5] M 12 0 29 0
2 0 5 0 0 12 0 5

In order to find the number of paths of length at most 4 between any
two points of our figure, we add the matrices M, M2, M3, and M*. We find

6 6 14 2

2 3 s_| 6 34 14 14
M+M+M +M 14 14 34 6
2 14 6 6

We can answer our original question. There are 14 paths between A4 and C
of length at most 4. Note that there are 34 paths of length at most 4 between
B and itself.

Using a calculator to compute the matrix M?, we can also determine
the number of paths of exact length 25 between A and B. The answer is
the 1,2 entry of M%, which is 1,311,738,121.

1. Consider the following matrices:

1 3 2 0 6 -2 3
M=<0 2), N=<2 -1 2), P=< 2 —1),
5 4 3 0 0
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1 0 4
(1 -3 -6 o 7 = —
6 0 -1

Practice the following matrix calculations by hand. If the requested op-
eration does not make sense, write “nonsense.”

@ M+N (b) M +4Q (o) MP
d PMm (e) MQ O oM
® NS (h) RrRP @ PR
G) PM — P k) Q° M PQ+M

. Consider the following matrices:

3 1 75 0833 0833 —-03 0
A=(0 2),B= 3333 0 0 , €= 0 -02
0 75 1 0 0.4

Use a calculator or a computer to compute A0, B'C, A — 547 + 6A°,
and B — B,

. Express each of the following collections of linear functions of several
variables in matrix form.

(@ P =2X-3Y OR=X-Y—-2Z-W
= X+Y R=X-Y-Z-W
b) Q1=3X-Y—-2Z d 8 = 2Y+ Z
Q2= X+Y+2Z Sz=4X—5y—7Z
Qs =2X+2Z 5= X— Y+2Z
S = X + Z

. For each of the following systems of equations, express the system in
matrix form.

@) 2X+ Y -3Z =3 © 2X +X —2X;3 — 5% + X5 = 0
Z+W=5 X] - X3 +X5=0
X—-Y—- Z+W=0
b X+ Y+ Z=1 @ X+ v=2
X—- Y- 2Z=1 X—-Y=1
5X+3Z+3Y=5 2X+3Y =4

. Suppose that M and N are 2 X 2 matrices such that

_f(a b
MN NM—(C d)'

Show that @+ d = 0. (Hint: Express M and N as matrices with variables,
and expand MN — NM.)
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6. Find all 2 X 3 matrices R and S for which

1 0 1 01 0
+ — — —
R S—(l 0 l) and R S_<0 0 1).

7. (a) Use matrices to determine the number of paths of length 3 or 4
between the points A and C in the graph below. How many paths
are there of length at most 4?

A c

(b) Determine the number of paths of length at most 3 between the
points 4 and C in the graph below. How many between A and 4?
Between C and C?

B

A C

Group Project: Matrix Powers

To begin this project you will first have to learn how to input matrices into
a calculator or a computer. Then you will have to learn how to find the
result of matrix operations on your machine.

(a) Input the matrix
_ (02 06
< <0.8 0.4)
and find the powers G2, G, G, G°!, and G>2. What do you notice?

(b) Input the matrix
_ (06 06
H= (0.2 0.4)

and find the powers H?, H3, H°, H*!, and H>*. What do you notice here?
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(o) Input the matrix

7= (3 2)

and find the powers J2, /3, J3°, J°!, and J>?. Now what do you notice?

(d) What are the differences and similarities between the three cases con-
sidered in parts (a), (b), and (c)? Explain any theories you have about what
is happening.

Group Project: Matrix Games

The type of game described next is known as a zero sum matrix game.
The idea is somewhat like the elementary school game where two players
quickly hold out their hands representing scissors, paper, or a rock. In this
game there are two players whom we call X and Y. Each starts with twenty
beans. For each play of the game the players have a choice of holding up
one or two fingers at the same time. They exchange beans according to the
following matrix:

Paymentto X | Y =1 Y =2

X=1 -2 4
X =2 1 -3

So if both X and Y hold up one finger, then X gives Y two beans. If X
holds up one finger and Y holds up two, then Y gives X four beans.

(a) Play this game for a while to get the idea and keep a record of the
payoffs.

(b) Discuss if you think this game is fair. Does one player have an advantage
over the other. Why?

(©) What is the best strategy for each player? How do you decide this. (Note:
if one player seems to be at a disadvantage, find a strategy that minimizes
losses.)

(d) You can represent strategies in matrix form as follows. Suppose X
decides to hold up one finger % of the time and two fingers % of the time.
Then player X's average payoff can be represented as the matrix sum

2 1 5

302 93 -»H=(-1 7).
(For Y’s average payoffs, use columns instead of rows.) We haven't ex-
plained what this matrix equation means. As a group try to figure out what
this payoff matrix is saying for a given strategy. Represent your strategies
for this game using equations of this form.
(e) How could the game be fixed to be fair How would you represent
games using more fingers?
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14

More Linearity

In the first two sections of this chapter we studied linear functions and in the
third we used matrices to organize our work. In this section we investigate
other aspects of linearity—namely, problems involving linear constraints.
We will continue to use matrix notation whenever it proves useful.

Returning to the Assembly Line

We consider the assembly line for making toy cars and trucks introduced in
Sec. 1.3. Our next project is to figure out the best strategy to make some
money. A local toy store will pay $1.40 for each car and $1 .80 for each truck.
The store owner will be happy to buy 100 cars and trucks but requires that
we sell him at least 25 cars and at least 25 trucks. How many of each should
we sell him? Clearly, we cannot answer this question unless we know how
much the materials cost. Our suppliers will sell us car bodies for $0.30, truck
bedies for $0.70, chassis for $0.10 each, wheels at $0.05 each, and people
for $0.10 each. In order to calculate expense for parts, we recall our parts
matrix

Cars Trucks
Car bodies | 1 0
Truck bodies | 0 1
Chassis 1 1
Wheels | 4 6
People | 4 2

If we multiply the parts matrix on the left by the row that represents the
cost of each part, we obtain a 1 X 2 matrix whose entries are the total cost
of the parts to build a car or truck:

(030 070 0.10 0.05 0.10) =(1.00 1.30).

B = O
N O\ = O

Since the toy store owner will pay us $1.40 for each car, we will make
$0.40 profit-on each car, and since he pays $1.80 for each truck, we will
make $0.50 profit on each truck. Our strategy is now clear! We should
sell the toy store owner as many trucks as possible, namely 75 trucks and
25 cars. This would have worked fine, except some difficulties arose. Our
wheel supplier just informed us that he now sells wheels only in boxes of
500 (at $25 per box) and that he will not sell partial boxes. Since we needed
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450 = 75 - 6 wheels for the trucks and 100 wheels for the 25 cars, we have
to reevaluate our plans.

Our supplier’s limitations give what is called a linear constraint on our
problem. We let C denote the number of cars we will assemble, and we let
T denote the number of trucks we will assemble. Since we do not want a
large number of wheels left over, we decide to buy only one box of 500
wheels. This constraint shows that

6T + 4C = 500.

Assuming we build 25 cars, the constraint means we have 500 —4 X 25 = 400
wheels to use on trucks. Since 400 + 6 = 66%, we see that we can build
66 trucks. Next we can compute our profit. The cost of assembling a car
excluding wheels is $0.80 and a truck excluding wheels is $1.00. So, since
we spent $25 on a box of wheels, our material expense can be expressed as
$(0.80 X C +1.00 X T + 25). The toy store will pay us $(1.40X C+1.80X T)
for our cars and trucks, so we find that our profit P can be expressed as

P=8140XC+180X T)—$0.80X C+1.00X T + 25.00)
= $(0.60 X C + 0.80 X T — 25.00).

By selling the toy store owner 25 cars and 66 trucks, we realize $(0.60 X
25 + 0.80 X 66 — 25) = $42.80 in profit.

The plan sounds good, except we realize that we are only selling the
toy store owner a total of 25 + 66 = 91 vehicles, and we could possibly
sell him more. Can we make more money by selling more cars and fewer
trucks? Our toy store owner will buy up to 100 vehicles with a2 minimum of
25 each of cars and trucks. In terms of our variables T and C, this means
that

T+C=100, T=25 C =25,

which are some new linear constraints to consider. Suppose we try to as-
semble 100 vehicles without any wheels left over. This would mean finding
a solution to the system of equations

4C + 6T = 500
c+ T =100.

The second equation is the same as 4C+47T = 400, and subtracting this from
the first shows 2T = 100 or T = 50. In this case C = 50 also. If we made 50
cars and 50 trucks, our profit would be $(.60 X 50 + .80 X 50 — 25) = $45.00.
We find that we make an additional $2.20 following this second scheme.
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We are now left wondering if this second plan is the best possible. It
turns out that it is. In order to understand why, we consider this type of
problem in a more general setting.

Linear Optimization with Constraints

If we were asked to find the maximum value of the function Z = 2X+3Y -7,
the correct answer would be to say there is none since the value of Z can
be made as large as we like by choosing large X or Y values. However,
as we just noted in our toy car and truck assembly problem, most real-life
problems have limits on the size of the variables. Suppose now that the
values of X and Y are subject to the following constraints:

Y=2 X-Y=1 X=8 2X+Y=20.

What can we say about the linear function Z = 2X + 3Y — 7? We shall
see that Z attains both a maximum and minimum value when X and Y are
restricted to the given constraints.

In order to find the maximum and minimum values of our function
subject to the constraints, we first must find out which X and Y values are
possible. The values of X and Y that satisfy the constraints form what is
called the feasible region. To find the feasible region we graph the lines
given by equality in each constraint inequality. They are Y = 2, X — Y = 1,
X = 8, and 2X + Y = 20 and are shown in Fig. 1.6.

If there is any hope to solve our problem, there must be common
solutions to all of the constraint conditions. Each constraint condition has
as solutions a half-plane (one side of a line). Therefore, the feasible region
is the intersection of half-planes and must be one of the regions bounded
by the lines in Fig. 1.6. It turns out that the feasible region is the area inside
the quadrilateral shaded in Fig. 1.7. To see that the region pictured is the
set of feasible points, we need only check that one point inside does satisfy
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Fig. 1.7. Feasible region

Fig. 1.8. Lines of
constant value

the constraints. For example the point (5, 3) lies in the region pictured and
it is quickly checked to satisfy all the constraints.

Next we must decide which points in the feasible region give the max-
imum and minimum values of our function. For this we use a bit of geo-
metric thinking. The collection of lines 2X +3Y —7 = 4,2X +3Y -7 = 8,
2X+3Y-7 =12,2X+3Y -7 = 16,2X+3Y—7 = 20,and 2X+3Y—7 = 24
are drawn on top of the feasible region in Fig. 1.8.

These lines are called lines of constant value for the function Z =
2X + 3Y — 7 since any two points on the same line give the same output
value when used as inputs for the function. Such lines are also called level
sets for the function. We have pictured only a few of the lines of constant
value. All lines of constant value for our function are parallel to these, and
the value along any line is always less than the value of a line above it. By
visualizing these lines on top of our feasible region, we can see that the
minimum value of our function is attained at the lower left corner while the
maximum value is attained at the uppermost point.
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The lower left corner of our feasible region is the point obtained by
intersecting the boundary lines ¥ = 2 and X — Y = 1. It is the point (3, 2),
and the minimum value of our function is therefore Z=2-3+3-2—-7 =
5. The uppermost point of our feasible region is the intersection of the
boundary lines X — ¥ = 1 and 2X + Y = 20. It is (7, 6), and this shows that
the maximum value of our functionis Z=2-7+3-6—7 = 25.

The Principle of Corners

Another way to visualize the optimization problem just considered is to
imagine a ruler set on top of the feasible region parallel to the lines of
constant value. We slide the ruler upward, keeping it parallel to the constant
value lines. As we move it up, it passes on top of larger and larger constant
values. If our ruler starts below the feasible region, the point at which it
first touches the feasible region will be the point of minimum value. After
passing over the feasible region, the point at which the ruler leaves the
region will be the point of maximum value. Observe that both these points
are vertices of the feasible region.

If we think about linear constraints in two variables X and Y, we can
see that feasible regions always have lines for boundaries which meet at
vertices. Furthermore, if we are trying to optimize a linear function of two
variables, it will always have lines of constant value that are parallel. By
the same reasoning as in the above example, our maximum and minimum
values will always occur at vertices. We summarize this next.

Theorem 2 (The principle of corners). If a linear function of
two variables subject to linear constraints attains a maximum or
minimum value, then these values always occur at the vertices of the
Sfeasible region. If the feasible region is a polygon, then a maximum
value and a minimum value are attained.

We remark that it is possible for a linear function subject to constraints
to fail to have a maximum or minimum value. This occurs when the feasible
regions are unbounded. For example, the function Z = X + Y clearly attains
no maximum or minimum when the only constraints are X = 3 and Y < 4.
More discussion can be found in Prob. 8.

A Few More Examples

The principle of corners shows that one way to solve optimization problems
with linear constraints is to determine the locations of the corners of the
feasible region and then evaluate the function at these corners. For example,
suppose we desire to know the maximum value of Z = 2X — 3Y on the
hexagon pictured in Fig. 1.9. The vertices of this hexagon are (1, 4), (2,8),
4,8), (5,4), (4,0), and (2, 0).
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Fig. 1.9. Hexagon

We haven'’t been given the linear constraints as a set of equations; instead
we have a hexagon. But this hexagon could be described by a set of linear
constraints. The principle of corners tells us that the maximum value of
Z will occur at a vertex, so to find it we need only evaluate our function
at the vertices. We find the values are Z(1,4) = —10, Z(2,8) = —20,
Z(4,8) = —16, Z(5,4) = =2, Z(4,0) = 8, and Z(2,0) = 4. Hence the
maximum value of our function Z = 2X — 3Y on our hexagon is 8.

We might be tempted by the hexagon example to try a shortcut in some
problems of this type. For example, consider the linear constraints given in
our assembly-line problem described in earlier. These are shown in Fig. 1.10.

Fig. 1.10. The feasible region for the assembly-line problem
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Problems

If we consider the four boundary lines, we see by taking them two at a
time that there are six possible intersection points. Suppose, for example,
we intersect the lines given by T = 25 and 6T + 4C = 500. Solving these
equations, we find that 4C = 350, or C = 87.5. If we assembled 87 cars and
25 trucks, our profit function would be P = $(.60 X 87 + 80 X 25 — 25) =
$47.20, which is even more profit than obtained earlier. But we forgot about
the store owner’s constraint that he will only buy 100 vehicles! So we do not
have a better solution (unless we can find somebody else who will buy the
12 remaining cars). The lesson here is that when you look for vertices by
intersecting boundary lines, be sure to check that your points really lie on
the feasible region. Fig. 1.10 illustrates why the intersection point (87.5, 25)
just considered lies outside the feasible region.

1. Suppose we ran into additional difficulties in our toy car and truck
business discussed at the beginning of this section. In order to build 50
cars and 50 trucks, our cost for parts is $(.80X50+1.00X50+25) = $115.
Unfortunately, however, we only have $100 to invest in parts. So what
do we do now? How much profit can we make? Should we go back
to our original idea of making only 25 cars and the rest trucks? (Hint:
What are the new constraints?)

2. (a) Explain why we know without calculation that there are some
linear constraints that have as feasible region the hexagon shown
in Fig. 1.9.

(b) Find some linear constraints that have as their feasible region the
hexagon shown in Fig. 1.9.
3. Find the maximum value of the linear function Z = 2X +5Y + 1 subject
to the constraints that X =0, Y =0, X+ Y <6,and 2X + Y = 8.

4. (a) Graph the feasible region corresponding to the linear constraints
X-2Y=<0, -2X+Y =23 X =2 and Y < 3 What are the
vertices?

(b) What are the maximum and minimum values of Z = —3X+3Y +5
over the feasible region given in part (a)?

(c) Suppose the constraint that X + ¥ = 15 was added to this problem.
How do your answers to (a) and (b) change?

5. (a) Find the maximum and minimum values of Z = 3X +4Y subject to
the constraints that X =0, Y =0, X =<3, Y <3 and 6X + 8Y =
30.
(b) Your maximum value in (a) occurred at more than one vertex of
your feasible region. Why did this happen? Does your maximum
value occur at any other points of your feasible region?
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6. (a) A thrift shop received 3200 crayons as a gift. In their storeroom are
100 small boxes that hold 20 crayons and 75 slightly larger boxes
that hold 30 crayons. They sell crayons at a price of $1.50 for a
small box and $2.00 for a larger box. In order to maximize their
cash intake, how should they fill the boxes?

(b) Explain your answer to (a) intuitively without referring to the prin-
ciple of corners.

(c) Suppose that the crayons came in 8 colors and that they received
400 of each color. Assuming the shop wants to sell boxes with a
balance of colors, how should they fill the boxes in problem (a)?

7. According to a biologist’s estimate, there are 500 birds of species A
in a small, 100,000 square yard valley. This number is assumed to be
the maximum number the valley can feed. A new species B of birds is
introduced to the valley. According to an ecological model, each pair
of nesting birds fiercely defends a certain amount of territory and will
not nest if other birds intrude. Suppose that a nesting pair of species A
defends 100 square yards and that a nesting pair of species B defends
300 square yards near their nests. Suppose also that species A4 eats twice
as much as species B and that they eat the same type of food. What
is the maximum number of birds of each type that can coexist in the
valley?

In the following two problems the feasible regions are not polygons. The
principle of corners still applies to these regions with linear boundaries, but
you must interpret it carefully.

8. Consider the feasible region given by the constraints X+ Y =4, X = 0,
and Y = 0.

(a) Graph this feasible region.

(b) What can you say about the maximum and minimum values of
Z = 2X + Y subject to these constraints?

(c) What can you say about the maximum and minimum values of
Z = —3X — Y + 5 subject to these constraints?

/ ,
(d) What can you say about the maximum and minimum values of
Z = 2X — Y subject to these constraints?

(e) Based on your experience with this example, what theories do you
have about when a linear problem with constraints can fail to attain
maximum or minimum values?

9. Consider the feasible region given by the constraints X + ¥ = 4, X —
Y = 4, and Y — X =< 4. (This is a modification of the feasible region
considered in Prob. 8.)

(a) Graph this feasible region.
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(b) Find a linear function that attains a minimum but no maximum on
this region.

(¢) Find a linear function that attains a maximum but no minimum on
this region.

(d) Can you find a linear function that attains neither a maximum or
minimum on this region?

(e) How do your answers to this problem affect your answer to part
(e) of Prob. 8, if at all?

10. Find the maximum and minimum values of the linear function Z =
X — 2Y + 1 subject to the constraints that X =0, Y =0,3X + Y < §,
and X + 3Y < 8.

Group Project: Three-Variable Linear Constraints

In this section we studied how to find the maximum and minimum values
of a linear function of two variables subject to linear constraints. Suppose
the number of variables was increased to three. How are linear optimization
problems solved in this case? The next questions should guide your group
through some ideas of how to solve such problems.

(a) Suppose you are told that the geometry of this problem in R? is anal-
ogous to the geometry in R? discussed in this section. As a group, discuss
what this means and what the principle of corners says in this situation.
Why do you believe this?

(b) Using your ideas from (a), find the maximum and minimum values of
W = 2X — Y + 4Z subject to the constraints that X =0, Y =0, Z =0, and
X+Y+Z=4

(©) In either two or three dimensions, the feasible regions given by linear
constraints are known to be convex. This means that if two points P and Q
lie in the region, then the line segment PQ between them also lies in the
region. Why are the feasible regions given by linear constraints convex?

(d) Can you draw a convex region in R? that is not the feasible region for
any finite collection of linear constraints? Where does the linear function
Z = 2X + Y attain a maximum on your region?

Group Project: Diet Optimization

You have been asked to design a diet for vacationers visiting the famous
Atlas Health and Muscle Spa. For an entire week vacationers are allowed to
eat only apples, bananas, carrots, and dates. This diet must be balanced so
the following chart is important:
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Measure | Sugar  Vitamin C Iron Cost
Food of unit | (g/unit) (mg/unit) (mg/unit) (cents/unit)
Apples (large) 1 2 7 8
Bananas  (large) 3 2 4 8
Carrots 11b. 3 8 6 16
Dates 2 oz. 2 3 5 7

Health officials have warned the owners of the Atlas Spa not to starve their
clients. The law states that each visitor to the spa must consume at least 32
g of sugar each day, at least 28 mg of Vitamin C-each day, and at least 35
mg of iron each day. Your task is to find the least expensive way to feed
the poor suckers who came to the Atlas Spa for the week.

In this problem, you will need to solve a number of systems of equations
in four variables. Now is a good time to learn to do this on your calculator
or computer. Also, be sure to check that your solutions do indeed lie within
the feasible region.

Historical Note: In 1944 George Stigler in “The Cost of Subsistence,” Journal
of Farm Economics, vol. 27 (1945), pp. 303-314, considered a similar diet
problem involving 77 types of foods, their costs, and nutritional content.
He constructed a diet for America that satisfied all the basic nutritional
requirements and, at 1939 prices, cost only $39.93 per year (less than 11
cents a day!) The diet consisted solely of wheat flour, cabbage, and dried
navy beans. Yum yum!
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he purpose of this chapter is to explore some of the uses of matrices and

vectors in expressing geometric ideas. We assume you are familiar with
the basic properties of plane and space studied in high school geometry.
For now, we concentrate on the plane and space; however, later in this text
we shall lift the ideas developed here to higher dimensions.

Linear Geometry in the Plane

In this first section we study the plane (often called the Euclidean plane).
The Euclidean plane, usually denoted R?, is the set of ordered pairs (x;, )
of real numbers. There is a great variety of geometric objects that can be
drawn on the plane—lines, triangles, circles, and rectangles to mention a
few. These geometric objects are extremely important in both science and
art. Painters communicate their visions of the universe to us on their canvas,
which are almost always a piece of a plane. Architects and engineers repre-
sent the three-dimensional world around us through their planar drawings.
It is important for us to learn how to interpret their work, as well as create
our own. This is one good reason for studying geometry in the plane. We
shall consider some problems encountered by-artists in Sec. 2.4.

Linear Functions Arising in Geometry

Similar triangles can be useful in solving many problems of Euclidean geom-
etry. The reason for this is that the fixed ratio of lengths of sides of similar
triangles gives linear functions. We consider an example. In Fig. 2.1 the dot

40
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Fig. 2.1. How far away

are the towers?

represents the position of a person standing on a flat plane looking at three
100-ft. power towers, which are represented by the vertical segments. This
person knows that the closest tower is 500 yds. away and that the towers
are 100 ft. tall, and wants to estimate how far away the other towers are.
(Note: Fig. 2.1 is not drawn to scale.) The line that angles up toward the
top of the third tower represents the observer’s line of sight, from which
information about the towers can be obtained.

In order to estimate these distances, we notice that there are three similar
triangles in the figure, each with the common vertex: our observer. It appears
to our observer that the line of sight crosses the first tower about % of the
way up, or at a height of about 20 ft. If £ denotes the height in feet at which
this line crosses another pole, and if D denotes the distance in yards of this
pole from our observer, then by similar triangles we know

20 h

500 D’

Rewriting this we obtain a distance function D(h), where the input variable
is the height & of the line of sight on the pole. It is the linear function
D(h) = %Qh = 25h. Since the line of sight appears to cross the second pole
about 352 of the way up, or 60 ft., we see that its distance is approximately
25-60 = 1500 yds. We also find that the farthest pole is about 25-100 = 2500
yds. away.

The use of similar triangles, and the linear functions they give, is impor-
tant in many types of distance estimations. In the second group project in
Sec. 2.4 you will have further opportunity to utilize this type of triangular
distance estimation.

Quadrilateral Subdivision and Vectors

Consider the two quadrilaterals pictured in Fig. 2.2. No special assumptions
were made in constructing them. Note that when new quadrilaterals are
formed by connecting the midpoints of each, something special happens.
Each of the bold quadrilaterals in Fig. 2.3 is a parallelogram. This will always
happen no matter what the starting quadrilateral is, and it can be proved
using similar triangles. In order to visualize why this occurs, we will use
vectors. Imagine that these quadrilaterals have arrows for edges, as pictured
in Fig. 2.4. Two paths start at one vertex of each quadrilateral and end
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Fig. 2.2. Two
quadrilaterals

N\ N~

at the opposite vertex. One path goes to the left and the other to right.
Each of these paths “adds” to the direct path going up the middle of the
quadrilateral. Next notice the arrows which are thicker in Fig. 2.4 and lie on
the sides of the quadrilateral. These arrows are half the length of the sides
on which they lie. Note that when they are added, they give paths that are
half the length of the central path and have the same direction. Further,
these paths are two sides of the parallelograms in Fig. 2.3. We have shown,
pictorially, why opposite segments connecting the midpoints of sides of a
quadrilateral must be parallel and the same length.

The pictorial use of arrows just demonstrated is useful in studying many
problems arising not only in geometry, but also in physics, chemistry, en-
gineering, and other subjects. Note that in the problem just considered it
was important to consider both the length and direction of each arrow dis-
played. Whenever both the direction and length of a segment are crucial to
consider, we use the notion of a vector. Our next task is to make this idea
of a vector more precise. We will return to more applications shortly.

Vectors in the Plane

If P and Q are points on the plane, then we use PQ to denote the line
segment with P and Q as end points. One often views line segments as
a path, from a starting point to an end point. For this reason we have the
notion of a directed line segment. A directed line segment is a segment PQ
with a speciﬁe_d) starting point P and a specified ending point Q. We will use
the notation PQ to denote the directed line segment with starting point P

Fig. 2.3. Connecting
midpoints of quadrilaterals
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Fig. 2.4. Arrows showing

why parallelograms arise

inFig. 2.3

A

and end point Q. (The reason for specifying starting and ending points will
become clear shortly.) Since the phrase “directed line segment” is somewhat
long, we refer to directed line segments simply as directed segments.

Often, in geometry as well as in science, it is important to specify both a
magnitude and a direction at the same time. Such a combination of informa-
tion is called a vector. We define a vector in R? to be a directed line segment
with starting point (0,0) = O, the origin. The magnitude of the vector OPis
the length of the segment OP, and the direction of the vector OP is the di-
rection of the directed line segment. In case P = (g, b) and Q = (¢, d), then
by the distance formula in Euclidean geometry we know that the distance
between P and Q is v/(a — b)2 + (c — d)?. Since O = (0,0), this says that
the magnitude of OP is \/a® + b2. The magnitude of a vector ¥ is denoted
ll2ll.

Observe that a directed segment is essentially a vector with a starting
point other than the origin. As such, a directed segment specifies a vector by
its length and direction. This is illustrated in Fig. 2.5. We note that any two
directed segments that are parallel, point in the same direction, and have the
same length specify the same vector (namely, the directed segment “slid”

-6-5-4-3-2 _4

[N
w 4+
» 4
o+
o 4+

Fig. 2.5. Directed line segments In the plane and the vectors they specify
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or “translated” to start at the origin). We shall often view directed segments
as vectors that have been translated to have starting points that are possibly
different from the origin. We record these ideas in the following definition.

Definition. A nonzero vector is a directed line segment whose starting
point is at the origin. Any directed line segment PQ specifies a vector,
which is the parallel directed segment starting at the origin with the same
direction and length.

In case P = Q, then it doesn’t make sense to talk about the line segment
PQ. However, we often need to talk about vectors of length 0, so we will
allow a single vector of length 0, which is often denoted 0. This vector has
no magnitude (its length is 0) and consequently has no direction.

We are almost ready to use vectors in the study of geometry. But we
need some new notation. Since vectors are directed segments with their
starting point at the origin, in order to specify a vector we only need to
specify the end point. Hence we give the following.

Definition. Suppose that the point P has coordinates (7, s). Then we use
the column matrix

r

s

to denote the vector 5?, where O is the origin (0, 0). We shall often use
the terminology column vector synonymously with column matrix. We shall
also say that the vector OP is the position vector of the point with coordinates
(7, s) since its end_g)oint is (7, 5). The length of the vector OP is Vri+s?
and is denoted ||OP]|.

Vector Addition and Scalar Multiplication

In the last chapter we defined matrix addition and scalar multiplication.
Since we are using 2 X 1 matrices to denote vectors in the plane with
starting point at the origin, we obtain these two operations for them. It is
important to understand the geometric meaning of both these operations.

Whenever
v —_—
s

is a vector and ¢ is a real number, the vector

10 = (”)
\ 1s

is called the scalar multiple of ¥ by t. This vector ¢t geometrically results
from stretching the vector 7 by length ¢. Note that in case ¢ is negative, scalar
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translation and addition

2.1. LINEAR GEOMETRY INTHEPLANE = 45

multiplication reverses the direction. Also, if | ¢ | > 1, then t7 is longer than
7, while if | t| < 1, then t7 is shorter than 7.

Consider next two directed segments PQ and QR where the end point
of the first coincides with the starting point of the second. Then we define
the sum

—_— = —
PQ + OR = PR.

The sum PR represents the end result of traveling along the directed segment
PQ and continuing along QR
In case we are considering two vectors

D‘=(r) and t?z=(t>,
s u

we define their sum as we do for matrices by

o o r+t

sea-(170).
The vector 7+ @ given_by this definition can be understood as follows. The
vector ¥ is the vector OP where P is the point with coordinates (7, s), and
the vector @ is the vector OQ where Q is the point v with coordinates (¢, 1). If
S is the point with coordinates (7 + ¢, s + u), then PS is the directed segment

— —

arising by translating the vector OQ to start at P. (The directed segment PS
has the same length and direction as @ = OQ, the only difference being
that @ starts at o, and PS starts at P.) We see that the sum of directed
segments O3 = OP + PS is the vector 7 + @. This is illustrated in Fig. 2.6.

Example. Find (2) i + 7, (b) 7, and (¢) the length of & — 37 + 240, where

() o= (). o)

s>+
o+
ot
x Y
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3 4

2 7

0y _ 7-0 —

»7(5)-(5) = (

3\ _ (-4 0\ _ (3+12+0) _ (15 .

© (2) 3( 7)+2(9)—<2—21+18) (_1) and so its
length is 1/152 + (—1)2 = 1/226.

Hexagons, Vectors, and Benzene

Suppose that one vertex of a polygon lies at the origin (0, 0) of the Euclidean
plane and that the edge vectors of the polygon are known. Then the other
vertices of the polygon can be located by adding the vectors that represent
the sides of the polygon. For example, suppose we are interested in deter-
mining the vertices of a regular hexagon, one of whose sides has vertices
(0,0) and (1, 0). Then, this edge is represented by the vector (1,0). We next
need to find the vectors that represent the other sides of the hexagon. These
vectors are obtained by rotating the vector (1, 0) by multiples of 60° around
the origin. Adding these vectors in sequence will give the coordinates of
the vertices of the hexagon. This process is illustrated in Fig. 2.7.

Using the definition of the trigonometric functions, we know that aside
from (1, 0), the five additional end points of the vectors giving our hexagon
edges are (cos60°,sin60°), (cos120°,sin120°), (cos180°,sin180°),
(cos 240°, sin 240°), and (cos 300°,sin 300°). In other words, the six vec-
tors that give the edges of our regular hexagon are

() (5) () (3) (C)= ()

Adding these six vectors in sequence gives the coordinates of the six vertices
of our regular hexagon,

Q,o, (é ‘—@), 1,v/3), 0,v/3), (—%\/73) and (0, 0).

27 2

Note that the sum of these six vectors gives the final coordinate (0,0) as
it should. One word of caution: Be sure you distinguish between the use

Fig. 2.7. Six vectors,
60° apart, generating a
pd ~N

K-
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of vectors and points in the discussion just considered. It may initially be
confusing since similar notation is used, but from context you should always
be able to distinguish a vector from the point it represents.

Regular hexagons are important in chemistry because the carbon atoms
in a molecule of benzene, C¢Hg, are located on the vertices of a regular
hexagon. We can use vector geometry to find the relative locations of the
hydrogen atoms as well. The hydrogen atoms in benzene lie on the same
plane as the hexagon of carbon atoms, and each carbon atom is bonded
to a single hydrogen. The hydrogen atoms are attached to the carbons
symmetrically, their bond making a 120° angle with the carbon bonds. The
bond lengths between the carbon atoms in benzene is 1.54 A and the bond
length between each hydrogen and carbon is 1.09A (the units here are
angstroms). This means that if we multiply each of our hexagon vectors by
1.54 A we can represent our carbon atom hexagon in angstrom units, and
if we add an appropriate 1.09 multiples of these vectors to. the vertices of
the hexagon, we can find coordinates that represent the locations of the
hydrogen atoms as well. This representation of the benzene molecule is
shown in Fig. 2.8. (The double lines between the carbon atoms indicate
double bonds.)

Vector addition will give the coordinates of all the atoms in our benzene
model. The coordinates of our six carbon atoms are (1.54,0), (2.31,1.33),
(1.54,2.66), (0,2.66), (—.77,1.33), and (0,0) (which are 1.54 times the co-
ordinates of the vertices of the first hexagon). The six coordinates of our
hydrogen atoms are obtained by adding 1.09 times the vector with appro-
priate direction to the coordinate of the carbon atom. They are (1.54,0) +

1093, - ¥3) = (208,-94), (231,133) + 1.09(1,00 = (340,133),
(2.08,3.60), (—.54,3.60), (—1.86,1.33), and (—.54, —.94). This coordinate
information can be useful in determining the distances between atoms in
benzene. For example, the distance between two adjacent hydrogen atoms
is the distance between (2.08, — 94) and (3.40,1.33), which using the dis-

tance formula in R? is 1/1.322 + 2.272 = 2.63A.

Fig. 2.8. Atom locations
in the benzene molecule
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Problems

. Find the sums and scalar multiples of the following vectors as indicated:

@ i+

__ (o ~_(o) ._/[(2
7= (8)-7= () 2= (8),
(b) —5i

(© u+30— 7w

. Find the sums and scalar multiples of the following vectors as indicated:

p=(7) 9= () - (6):
@ p-24

b —¢g-7
©p+g—7

. Find the coordinates of the vertices of a regular pentagon in the plane if

two of the vertices are (0,0) and (1, 0).

. You are rowing a boat across a %—mile wide river that is flowing at 6.5

mph.

(@) In order to reach a point directly opposite your starting point, you
decide to head upstream at an angle of 30°. You are rowing at 8 mph
and cannot see the other side through the fog. Use vectors to rep-
resent the boat and river velocities (both direction and magnitude)
to find out where you end up. If you like, obtain good estimates on
graph paper (and avoid messy calculation).

(b) What angle should you head in order to reach a point exactly op-
posite you?

(c) How does your answer to (b) change if you increase your rowing
velocity?

. Find all vectors 7 in the plane of length 2 that satisfy

. (1
+ =2.
(1))

Explain what this condition means geometrically.

~_ (1|l 2 ~_(2)] _
0] P e

Explain what these conditions mean geometrically.

. Find all vectors 7 in the plane that satisfy
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Group Project: Euclidean Geometry Theorems

Use vector geometry to prove the following results from traditional Eu-
clidean geometry. Draw a figure to indicate your use of vectors.

(a) The segments connecting opposite vertices of a parallelogram bisect
each other.

(b) The segment that joins the midpoints of two sides of a triangle is parallel
and one-half the length of the other side.

(c¢) The diagonals of an isosceles trapezoid are congruent.

Vectors and Lines in the Plane

Lines Through the Origin

We next study lines in the plane using vectors. According to Euclidean
geometry, a line is completely determined by two points on the line. In
other words, there is a unique line through any two distinct points. This
basic information can be used to give an algebraic description of lines using
vectors.

Example. Consider the two points O = (0,0) and P = ( 2,3) in R%. We
use vectors to determine all the points on the line £ = OP. The idea is this.
Consider all the possible vectors that point in the same or opposite direction

as the vector
— (=2
OB = ( 3)

The end points of all these possible vectors give the line OP. This is illus-
trated where P = (=2, 3) in Fig. 2.9.

What are all the possible vectors that start at O and point in the same or
opposite direction as the vector OP? These vectors are all the multiples

—2t

3t
of 7 where ¢ is nonzero. This is because these vectors are obtained geomet-
rically by stretching the vector opP by length . When ¢ > 0 this stretching
is in the same direction as OP, while when ¢ < 0 this stretching includes a

direction reversal. Several such vectors are shown in Fig. 2.9. Therefore the
line £ is the set of end points of all the vectors

(_Zt) where ¢t € R.
3t
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This shows how position vectors can be used to describe lines through (0, 0)
in R?. Using the notation of sets, we can express £ = {(—2t,30) |t € R}.!

The Parametric Representation of Lines in R2

We next use vectors to describe lines in R? that might not pass through the
origin. Consider the line ¢ through the points P = (0,2) and Q = (2,5).
Our goal is to find all the position vectors that give the points of £. In other
words, we want to find all the vectors OP Where O0=(0,0)and P € £. We
begin by noting that the directed segment PQ specifies the vector

-()-(9-(29)-()

Algebraically, this vector ¥ was found by subtracting the coordinates of P
from those of Q. All the points on, the line ¢ arise as the end points of
multiples of the directed segment PQ (with starting point P). Each of these
directed segments can be found by translating the possible vectors t7 to P,
where ¢ is a real number. This is accomplished by adding the vectors OP
and t7. This is illustrated in Fig. 2.10. Since

—= (0 S _ (2t
OP—<2) and tU <3t)’

we find that
+ =
OP + tv ( 24 3t)
where ¢ € R. For example, when ¢t = —1, we obtain the point § = (-2, —1)

on the line ¢ as shown in Fig. 2.10. We have found that the line ¢ can be

!The written expression {(—2¢,3¢) | ¢ € R} should be read as “the set of all pairs (—2t,3t)
such that ¢ is a real number”
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Fig. 2.10. Parametric
representation of £ = %

described in Cartesian coordinates by £ = {(2¢,2 + 3) | t+ € R}. This is
called a parametric representation of £. Often one writes such a parametric
representation in the form x = 2¢, y = 2 + 3¢, where ¢ is understood as a
parameter ranging over all real numbers.

We can generalize the discussion .in the previous example as follows. If

- (3)

is a nonzero vector and P = (a, b) is a point in R?, then there is a unique
line ¢ parallel to ¥ passing through P. This is the line whose points are
given by the position vector

a c\ _ [a+tt
(b) “(d) = <b+td)'
In other words, £ = {(a + tc,b + td) | t € R}, which is the parametric

description of £. Observe that whenever a line £ is described in parametric
form one immediately knows both a point on £ and a direction vector for £.

The Cartesian Descriptions of Lines

We next indicate how parametric representations of lines relate to the usual
Cartesian descriptions found, say, in high school mathematics. Suppose that
a line ¢ is specified by

t={(a+tc,b+td)|tER}

This means that the points on £ can be expressed as (x, ), where x = a+ tc
and y = b+ td for some real number ¢. We emphasize that the same ¢ value
is used to determine both the coordinates x and y.
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Suppose for the moment that both ¢ # 0 and d # 0 in the above
parameterization of £. Then solving each equation for ¢ gives

x = att y = b+t
xX—a= tc, and y—b= td,
t =(x—-a/c t =@-b/d
This shows that for every point (x, ) on £,
y—b_x-a
d c ’

or
y—-b= g(x—a).

This last expression is the point-slope equation for the line £. Evidently, the
point (g, b) satisfies this equation (both sides of the equality become 0),
and the slope of the line is given by the ratio m = %' Using the point-slope
equation for a line, one can readily obtain the slope-intercept equation by
a small bit of algebraic manipulation. One finds that

y=6—i(x-—a)+b=6—ix+<b—d—a).
c c c

Here again m = —? is the slope of the line. When x = 0 we find that
y=b- dT“ which shows that (0, b — d—c“) lies on £. The y-coordinate of this
point, b — %‘3, is called the y-intercept of the line ¢. (It is where the line
¢ intersects the y-axis.) Whenever a line is described by a slope-intercept
equation y = mx + k, m is the slope of the line and & is the y-intercept.

In the special case where d = 0 in our parametric representation for £,
we find that y = b for all values of ¢. In this case £ is the horizontal line
y = b, which has slope 0 and y-intercept b. Note that the slope formula
m = -‘3 also applies in this case. In the special case where ¢ = 0 in our
parametric representation for £, we find that x = 4 for all values of ¢. In this
case £ is the vertical line x = a, which has infinite slope ® and does not
have a y-intercept. The slope formula m = g applies in this case, provided
you are willing to interpret division by zero as giving ».

Example. Find parametric, point-slope, and slope-intercept equations for
each of the following lines:

(a) the line through (0,0) and (3, — 1),

(b) the line through (2,1) and (-1, 1),

(c) the line through (3, —1) and in the direction of the vector

- (2)

(d) the line given by the equation x = —6.
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Solution. (a) Since this line passes through the origin (0, 0), we know that
every point of the line has a position vector that is a multiple of

(2).

This shows that a parametric representation is given by x = 3¢ and y =
(—1)t. (We emphasize that there can be different parametric descriptions of
the same line. For example, the line under consideration is also parameter-
ized by x = —6u and y = 2u, where u is the parameter.) Solving for the
parameter ¢, we find that ¢ = %x = —y. This shows that the slope of the
line is —1 and therefore the point-slope equation is (y — 0) = —3(x — 0).
Applying algebra, the slope-intercept equation is y = —%x + 0.

(b) Since this line does not pass through the origin, we must find a direction
vector by subtracting the coordinates of the two known points. This gives
the direction vector

(5)-()-(379)- (%)

Since the line passes through (—1, 1), this shows that a parametric repre-
sentation is given by x = —1 — 3¢t and y = 1 + 0¢. In other words, this is
the horizontal line y = 1. The point-slope equation is (y — 1) = 0(x — 0),
and the slope-intercept equation is y = 1.
(0) The direction vector for the line is 7, and the line passes through (3, —1).
This shows that a parametric representation is given by x = 3 + 4¢ and
= —1+7¢. Solving for the parameter ¢, we find that ¢ = z(x—3) = 3(y+D.
This shows that the point-slope equation is (y+1) = %(x— 3) and the slope-
intercept equation is y = Zx — £.
(d) The line given by the equation x = 6 consists of the points in R* with
arbitrary y-coordinate and constant x-coordinate 6. Therefore, a parametric
representation for this line is given by ¥ = ¢ and x = 6. Since this line has
infinite slope (it is vertical), it does not have a point-slope or slope-intercept
equation,

Intersections of Lines

If descriptions of two nonparallel lines in R? are known, then the point ¢
intersection can be found by finding common solutions to the equations
describing the two lines. This is illustrated in our final example of this
section.

Example. Find the point of intersection of the given pairs of lines:

(a) the line through the points (2,0) and (1,0) and the line given by the
equation y = 3x — 1,

(b) the lines parameterized by {(#,#) |t ER}and {(t — 1,—¢t—3) |t ER}.



54 = 2. LINEAR GEOMETRY

Problems

Solution. (a) In this case one sees that the line through the points (2,0)
and (1,0) is the line whose equation is y = 0. The point that solves both
equations y = 0 and y = 3x — 1 must have y-coordinate 0 and x-coordinate
solving 0 = 3x — 1. This is the point (5, 0).

(b) To solve this problem, we change the variable in the second parameter-
ization to u. So now the second line is parameterized by {(u — 1, —u — 3) |
u € R}. We did this so we can look' for the point that this line has in
common with the first line parameterized by {(¢,#) | ¢+ € R}. This point is
given by the possible ¢ and u for which (4, = (4 — 1, —u — 3). We find
that £ = 4 —1and ¢t = —u — 3. Consequently, 4 — 1 = —u — 3. We find
that 2u = —2, that is, # = —1. Thus ¢t = —2, and the point in common is
(-2,-2).

1. Find a parametric, a point-slope, and the slope-intercept equations for
each of the following lines:

(@) the line through (3,2) and (1, —1),
(b) the line through (2, 1) and (0, 0),

(o) the line through (0, 0) and in the direction of (;),

(d) the line given by the equation y + x = —6.

2. Find a parametric, a point-slope, and the slope-intercept equations for
each of the following lines:

(@) the line given by the equation 3(x — 1) = 2(y + 1),
(b) the line through the points (1, 2) and (3, 4),

(o) the line parallel to the vector through (1, 2) and (3, 4) passing through
aQ,D.
3. Find the point of intersection of the given pairs of lines:
(2 the line through the points (1, 1) and (0, 0) and the line given by the
equation 2x —y =1,

(b) the lines parameterized by {(+ — 1,#) |t ER} and {2t — 1, -t — 3) |
t E R},

(o) the line through (1, 1) parallel to the vector <;) and the line given
by the equation y = x.

4. Give a parameterization of all the points on the following line segments

(note that your parameter will have to range over an interval instead of
all of R):

() the segment OP, where O = (0,0) and P = (2, 1),
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(b) the segment RS, where R = (3,1) and S = (5, 2),
(o) the segment starting at (—1,2), which has the same direction and

length as the vector ( _f ) What is the end point of this segment?

5. Recall that lines are perpendicular if their slopes are negative reciprocals.
Find an equation and a parametric representation of the line through
(2,3) and perpendicularto £ = {(6 + t,2 — 2t) |t ER}.

6. Express, as a function of time, the position of the boat crossing the river
described in Prob. 4(a) of Sec. 2.1. Relate your answer to a parametric
representation of the segment that is the boat’s path.

Group Project: Families of Lines

In this problem you will find descriptions for interesting collections of lines.

(@) When are two vectors # = and 7 = ( C) perpendicular? Write

a
b d

your answer as a single equation in a, b, c, and d.

(b) Recall from trigonometry that the set of points (cos(#), sin(#)) for all real
numbers ¢ forms a circle of radius 1. Call this circle C. Using your answer
to (a), write down parametric equations that represent all possible lines
tangent to C. (Your answer will have two parameters. Why?)

(©) The collection of points (x, ») in the xy-plane that satisfy y? = x3 + x?
is a curve called a nodal cubic. Give a parametric description of this curve
in terms of a single variable ¢. Sketch the curve.

(d) If you have had calculus, write down parametric equations that repre-
sent all possible lines tangent to the nodal cubic drawn in ().

Linear Geometry in Space

In this section we study vectors in space by generalizing the ideas from
the plane. We assume that the reader is familiar with the basic geometry of
three-dimensional space as well as Cartesian coordinates. This includes the
notions of points, lines, planes, parallelism, and perpendicularity in space.
We will use the following facts:

(a) There is a unique line through any two distinct points.

(b) There is a unique plane through any three distinct, noncollinear points.
(c) Two different lines in space meet either at a point or not at all.

(d) Two different planes in space meet either in a line or not at all.

(e) Given any plane 7 and a point P not on , there is a unique plane A
parallel to 7 containing P.
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As in t_h)e plane, we shall define a vector in R3 to be a directed line
segment OP, where O = (0,0,0) is the origin of R?> and P is a point in R3.
If P is the point with coordinates (p, g, ), then we use the column matrix

- (1)

- - ) .
to denote the vector OP. We also call ¥ the position vector of the point P.
As in the case of the plane, this column notation is useful in helping us
distinguish between vectors and the coordinates of points.

Parameterizing Lines in Space

Suppose next that £ is a line in space. How do we describe its coordinates
algebraically? In the previous section we explored two methods for lines in
the plane. One method was to use vectors and parameterize the line, and
the other, more familiar, method was to view the line as the graph of a
function y = mx + k. In space, the second method doesn’t work, because
if one graphs a linear function f(X, Y) = aX + bY + c in R3, the resulting
graph is a plane, not a line. So it is best to use vectors when describing
lines in space. As in the last section, we will use vector addition and scalar
multiplication, which is defined for their matrix representations.

The process of parameterizing a line in R? is essentially the same as in
R2. Suppose that the line £ contains the point P = (p, g, r) and is parallel

to the vector
a
v={b].
c

Then every position vector @ of points on £ can be expressed as a sum

a b ta+ p
t'l'}=t<b) + (q) = (tb+q) where ¢t € R.
c r tc+r

In other words, the line £ can be parameterized as the set of all points
{(ta+p,tb+ g tc+r) |t ER}

inside R3.

Example. Consider P = (2,3,—-7) and Q = (—3,4,0) in R. Let £ be the

line through P and Q. A parametric representation for £ can be found as
follows.
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By subtracting the coordinates of Q from P, we obtain the vector

2-(=3 5
a=( 3_4')=<_1).
~7-0 -7

The line £ is parallel to the vector 7. Since £ passes through P, we see that
the position vectors of all the points on ¢ are given by

5 2 5t+2
17)=t<-1)+( 3)=< —t+3> where t € R.
-7 -7 -7t-7

So ¢ is parameterized as

{5¢+2,—t+3,-7t—7 |t ER}.

Planes Through the Origin

It is also possible to parameterize planes in space using vectors. One knows
that any plane in R? is uniquely determined by three noncollinear points.
Suppose first that one of these three points is the origin O = (0,0,0) and
the other two points are P = (a, b, ¢) and Q = (d, ¢, f). Let the plane that
passes through the points O, P, and Q be called P. We claim that the point
R=(a+d,b+e c+ f)also lies on the plane P. To see this, first note that

the vectors
a d
a=<b) and @=(9)
c S

both lie in the plane P. The directed segment ﬁ is the translation of the
vector 7 to the starting point Q. Since Q lies in P, this translated vector must
also lie inside P, and consequently we see that R € P. This is illustrated in
Fig. 2.11.

In order to complete our parametric description of the plane P, we next
note that the line ¢; through O and P and the line £, through O and Q are
contained in the plane P. The line ¢, is the set of all points {(ta, tb, tc) | t €
R}, and the line £, is the set of all points {(ud, ue, uf) | u € R}. As we just
saw, if we add the coordinates of a point on ¢; to the coordinates of a point
on ¢;, we obtain a point on P. In fact, all points on P arise in this way.
Putting this together, we have shown that

P={(ta+ ud tb+ ue tc+ uf) | t, u €R}.

We have shown how to describe parametrically any plane that contains the
origin in terms of any two nonzero points that lie on the plane. Note that
two variables (in this case ¢ and #) are needed to parameterize a plane.
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Fig. 2.11. Plane P

through origin, P and Q

Example. Suppose that P is the plane through the origin O and the two
points P = %, —1,3) and Q = (—4,0,2). Then the set of all points on the
plane P can be described parametrically by

p= {(%u-wu) +(—44,0420) |, u € R}

= {@u—4z,—u,3u+2t) It,uER}'

The region of this plane inside the parallelogram with edges OP and O—Q) is
shaded in Fig. 2.11.

Parameterizing Planes in Space

Of course, we also want to be able to describe planes that may not contain
the origin. Recall what we did in the case of lines. If we knew how to
represent parametrically the line ¢, through the origin that was parallel
to the line £ of interest, then the parametric representation of ¢ could be
obtained by adding a position vector from £ to the representation of #.
This same process works for planes. Suppose we know how to represent
parametrically the plane P, through the origin that is parallel to the plane
P of interest. Then the parametric representation of P can be obtained by
translating the representation of P, by any vector on P. This is illustrated
in the next example.

Example. Consider the plane P that passes through the three points P =
(2,0,D, Q =(0,3,-1), and R = (3,-1,1). We first need to find a para-
metric representation for the plane P, that is parallel to P but passes
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through the origin. For this we have to find the coordinates of two points
on P,. For exactly the same reasons as in the case of lines (Sec. 2.2),
this can be accomplished by subtracting the coordinates of P from the
points Q and R. Hence A = (0—-2,3—-0,-1—-1) = (—2,3,-2) and
B=3-2,-1-0,1-1 = (,—1,0) are both points of Py. Using the
coordinates of A and B, we find that P, has the parametric description

Po ={(—=2t+ u,3t—u -2 |t u€R}L

Finally, we know that the points on P can be found by translating the points
on Py by Q. This shows that

P=1{0,3,-D+ (=2t +u3t—u—-20|tuER}
={(—-2t+u3+3t—u—-1-20|tu€ER}

The Cartesian Description of Planes

Our last task in this section is to relate what we have learned about paramet-
ric representations of planes and lines to the more familiar representations
you may have seen earlier. Suppose that a, b, ¢, and d are real numbers.
Then the graph of the linear function z = ax + by + ¢ inside R3 is a
plane. More generally, the set of all solutions to an equation of the form
ax + by + cz = d in xyz-space is a plane. For example, the plane P whose
points are the solutions of 2x — y + z = 4 is indicated in Fig. 2.12. The three
axes intersect this plane at (2,0, 0), (0, —4,0), and (0,0, 4), which form the
corners of the triangle on P that is shaded in the figure.

Suppose we wish to find the parametric representation of this plane
P. For this we must find two points on the plane P, that is parallel to P

Fig. 2.12. The plane
2x — y + z = 4 (shown for
x=0,y=0,andz=0)
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and passes through the origin. The plane P; is the set of solutions to the
equation 2x — y+ z = 0. (To see this, note that the equations 2x—y+ 2z = 4
and 2x — y + z = 0 do not have any common solutions, so the planes they
describe cannot intersect. Since (0,0, 0) is a solution to 2x — y + z = 0, this
equation must describe P,.) In order to find two points of P,, we must find
two different nonzero solutions to the equation 2x — y + z = 0. We rewrite
this equation as —z = 2x — y. Setting x = 1 and y = 0 gives z = —2 and
therefore the point (1,0, —2) of P,. Setting x = 0 and y = 1 gives z = 1
and therefore the point (0,1,1) of P,. It follows that the plane P, can be
parametrically described as

Py = 1{t(1,0,—2) + u(0,1,1) |, u ER}
={(t u—2t+w|tu€ER}

Finally, we know that the points on P can be found by translating the points
on P, by any point on P. We note, for example, that (0,0,4) is a solution
to 2x — y + z = 4, the equation that gave P. This shows that

P =1{0,0,4)+ (t, u,—2t+ w) | t, u ER}
={(t,u,4—2t+uw|tu€R}

More Examples

Many problems involving lines and planes in R3 can be answered by the
parametric representations developed in this section.

Example 1. The two planes described by the equations 3X —3Y +2Z =6
and 3X + 6Y — 2Z = 18 intersect in a line ¢ (see Fig. 2.13). Describe this
line ¢ parametrically.

Solution. There are many ways to approgach this. Here is one. The planes
described by the equations 3X —3Y +2Z = 0 and 3X + 6Y —2Z = 0
intersect in a line £, through the origin which is parallel to the line in
question. (These planes are parallel to the planes in question. The vector
in Fig. 2.13 lies on £y.) Next we find a nonzero point on this intersection.
Such a point must solve 3X —3Y +2Z = 0 and 3X + 6Y — 2Z = 0. Adding
these two equations gives 6X + 3Y = 0. Choosing the solution X = 2
and Y = —4 to this equation and substituting these values into the original
equations gives Z = —9. This shows that (2, —4, —9) is a point on the line
£y. In particular, the line ¢, is described parametrically by

by = {(21,—4t, -9 | t ER}.

To conclude we must find a point on the original line ¢. Adding the original
equations 3X — 3Y + 2Z = 6 and 3X + 6Y — 2Z = 18, we find that
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6X + 3Y = 24. If we set X = 0 (an arbitrary choice—any choice will give
a point on ), we find that ¥ = 235‘- = 8. As —2Z = 6 — 3X + 3Y, we find
for this point that Z = 15, and consequently (0, 8,15) is a point of £. We
conclude that a parameterization of £ is given by

£ =1{(0,8,15) + (2t,—4t,—91) | t E R}
={(2t,8 — 41,1590 | t ER}.

Alternate Solution. This solution is suggested by the algebra in the second
part of the preceding calculation. Adding the equations 3X —3Y +2Z =6
and 3X + 6Y — 2Z = 18 gave us 6X + 3Y = 24, which simplifies to
2X + Y = 8, from which Y = —2X + 8 follows. We canthenuse X = fasa
parameter, from which we obtain ¥ = —2¢ +8. Since 3X —3Y +2Z = 6, we
substitute our parameterized X and Y values to obtain 2Z = 6 —3X +3Y =
6—3t+3(—2t+8) = —9¢+ 30. Dividing this latter equation by 2 shows that
¢ is parameterized by {(¢, —2¢ + 8, =21 + 15) | t € R}. This is expression is
essentially the same as our first, the only difference being that our parameter
has been multiplied by % This process will be studied in greater detail in
the next chapter.

Example 2. The line £;, which is parameterized by {(1+£,0,3—20 |t ER},
and the line ¢,, which is parameterized by {(1 + 2¢, —#,3 + 21) | t € R}, both
contain the point (1,0, 3). Find a parametric representation of the plane P
that contains the lines ¢; and £;.

Solution. Observe that the lines ¢; and £, are different. If we decompose
the parametric representation of the line ¢;, we see that an arbitrary point on
¢, can be expressed as (1,0, 3) + (£,0, —22). Similarly, an arbitrary point on
¢, can be expressed as (1,0, 3) + (2¢, —t,2¢). This means that if we consider
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Problems

the vectors

1 2
171=< 0) and 172=<—1),
-2 2

we see that ¢, is parallel to 7} and that ¢, is parallel to 7. Now this means
that the plane Py, which is parallel to P and passes through the origin,
consists of all the points whose position vectors are given by (7, + ub,,
where ¢, u € R. In other words,

Po ={(t+2u,—u —2t+2w|tu€ER}

If we translate this parametric description of Py by the point (1,0, 3), we
obtain the parametric description of P,

P=11,0,3)+ @ +2u,—u —2t+2w |t u€R}
={Q+¢t+2u—u3—2t+2u|tu€R}

Example 3. Find two equations in the variables x, y, z that describe the
line £ parameterized by {(%, 3 % + 1|t ER}L

Solution. If such a system of equations is desired, the procedure of solving
for t used in the last section for obtaining equations for lines in the plane
can be used—only we must be careful to obtain fwo linear equations and
not just one. This means that an arbitrary point (x, y, 2) on £ solves x = %,
y=tand z = %+tforsometER. Solving for ¢ gives y = t = z—-%.
This shows that the system of equations

has as solutions the line £.

Note: Some of these problems are different than the examples given in the
text. Students should try to use the type of geometric methods introduced
in this section when looking for a method of solution.

1. Let P =(1,1,3), Q = (2,4,0), R =(0,—1,2), and S = (1,1,1). Find a
parametric description of the following lines in R3:
(a) the line PQ,
(b) the line &S,
(o) the line parallel to @ and containing .
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. Consider the points 4 = (1,0,3), B = (2,2,0), C = (3,4,—3), and
D = (2,4,6) in R3.
(a) Find a parametric description of the line AB.

(b) Using your answer to (a), does either C or D lie on AB? (For this,
check to see if they can be represented by your parametric equation.)

. Find parametric descriptions of the following planes in R3:

(a) the plane through O =(0,0,0), P = (1,1,1), and Q = (2,4, 1),

(b) the plane through 4 = (1,2,4), B= (1, —1,1), and C = (0,0, 1),

(o) the plane described by the equation x — y + z = 4,

(d) the plane through O = (0,0, 0), and the line described parametrically
by {(t+1,t+2, |t ER}

. Find parametric descriptions of the following planes in R3:

(a) the plane through R = (1,0,0), S = (0,0,1), and T = (2,0, 1),

(b) the plane through L =(1,0,49), M = (—1,—1,0), and N = (1,0, 1),

(o) the plane described by the equation y — z = 0,

(d) the plane through the two lines described parametrically by {(z, ¢, ) |
t €R}and {(1,2t,50) | t € R}

. Find an equation in the variables x, y, and z that describes each plane

in R3 below:

(2) the plane described parametrically by {(¢+ u, t —u+1,0 | t,u € R},

(b) the plane through the points O = (0,0,0), P = (1,3,5), and Q =
(-1,0,2).

. Find both a parametric description and an equation in the variables x,

y, and z for each plane in R? below:

(@) the plane containing the point P = (1, 3,2) and the line ¢ parame-
terized by {(t,2t — 1,3) | t E R},

(b) the plane through the points 4 = (2,1,0), B = (1,0,1), and C =
1,1, D.

. Find parametric descriptions of the following lines in R3:

(a) the line that is the intersection of the planes given by the equations
x+z=0and x+ 2y —32 =0,

(b) the line that is the intersection of the planes given by the equations
x—y+z=landx+ 2z =6.

. Find parametric descriptions of the following lines in R3:

(a) the line that is the intersection of the planes described parametrically
by {(t — u,3t + u, 1) | t, u ER} and {47 — 5,0,s+ r) | ,s E R},

(b) the line that is the intersection of the planes described parametrically
by{t+u+1,u+D|t,u €ERand {4r —s+ 1, r,s+r+ 1D |
r,s € R}
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Group Project: Understanding Surfaces by Slicing with Planes

In this problem you will study the surface 7' C R3 described parametrically
by

T = {(cos(s)(2 + cos(r)), sin(s)(2 + cos(r)),sin(r)) | 7, s € R}.

Before you begin, you should discuss what it means to parameterize a
surface using two variables.

(a) Give a general parametric description of all planes parallel to the xy-
plane.

(b) Using your answer to (@), if Q is a plane parallel to the xy-plane, what
does @ N T look like?

(©) Your answer to (b) should tell you what T looks-like. What is 77

(d) Give a general parametric description of all planes that pass through
the z-axis.

(e) Using your answer to (d), if P is a plane containing the z-axis, what
does P N T look like?

(P Is your answer to (e) consistent with your answer to (c)?

An Introduction to Linear Perspective

Although we live in a three-dimensional world, most of the representa-
tions of our surroundings are two-dimensional. Paintings, photographs, and
drawings all lie in a plane. However, this restriction to two dimensions is not
a big problem. Photographs look quite real, and skilled artists can create the
illusion of depth on their canvas. A reason for this is perspective. Discovered
during the Renaissance, perspective is the theory of how three-dimensional
objects correspond to points on a plane in our field of vision. In this section
we will use the language of vectors to study some of the basic concepts of
perspective.

The setup we shall use for understanding perspective is the following.
Suppose that an artist is standing in a fixed position in front of a large
window. On the other side of the window is an ocean view the artist de-
sires to paint. In order to create a realistic painting, the artist decides to
paint directly on the glass, placing every object exactly where it appears
to be. Our problem is to help the artist determine where to locate cer-
tain objects on the glass. We shall shortly see that interesting things can
happen.

A version of this process is illustrated in Fig. 2.14, which is a woodcut
by Albrecht Direr from his book Instruction in Measurement.
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Fig. 2.14. lllustration

from Instruction in

Measurement by Albrecht

Diirer (1525)

The Perspective Correspondence

In order to apply vector geometry, we need to set up our problem in xyz-
space. We shall assume that the plane of the glass is the xz-plane P,, and
that the plane of the beach is the xy-plane Py,. The artist is approximately 5
feet tall and is standing 10 feet behind the glass. Therefore we shall assume
that the artist’s eye is located at the point E = (0, —10, 5) in xyz-space. The
scene to be painted lies on the other side of the glass, with all y-coordinates
positive. Suppose the artist decides to paint an object that is positioned at
P = (a, b, c). To what point on the glass does this point correspond? In
order to find out, we consider the segment EP and its intersection with the
glass plane P, . This is where the object should be painted on the glass
in order for it to appear where the artist actually sees it. If Q is the point
in the intersection EP N P,,, we say that Q corresponds perspectively to P
from E. This is illustrated in Fig. 2.15.

We next determine the coordinates of EP N P, in terms of the coordi-
nates of P. The line £p between the point E = (0, —10, 5) (the “eye”) and a
point P = (a, b, ¢) can be parameterized as follows. The direction vector is

_ a
EP={b+10|,
c—5

lp = {(ta,—10 + (b + 10),5+ t(c — 5)) | t ER}.

and consequently

The intersection of £p with P, is the point on £p with y-coordinate zero,
and this occurs where ¢ = 5}-0—10‘ Substituting this ¢ value into the parame-
terization of £p shows that the point P = (g; b, ¢) corresponds perspectively
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Fig. 2.15. Perspective 'y
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Now we tabulate some points on the y-axis in R3 and the points in the
plane P, to which they perspectively correspond:

Point on y-axis | Point on P,,
(0,0,0) | (0,0,0)
©,2,0) | (0,0,1)
©,5,0) | 0,0,

(0,10,0) | (0,0,2)
(0,15,0) | (0,0,3)
(0,40,0) | (0,0,

(0,90,0) | (0,0,

Observe that as the points on the y-axis recede from the observer, the
corresponding points on P, rise more and more slowly along the z-axis,
approaching the value z = 5.

Collinear Points Correspond to Collinear Points

If we knew all the coordinates of the objects on the beach we wanted to
paint, our formula would tell us exactly what to do. However, this is clearly
impossible! Instead, we shall use our vector geometry in order to learn how
different shapes transform in perspective. In the end this will save a great
deal of time, and we will be able to paint more efficiently.
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The first question asked by our artist is how to paint lines. We shall
restrict our attention to the values y = 0, since the artist is painting objects
on the opposite side of the window. As a first case we consider two parallel
rays on the xy-plane (which is the ground leveD), say R, given by x = 0 and
R, given by x = 2. These rays are parameterized as (0, ¢ 0) and (2, £, 0),
respectively, where ¢ = 0. We apply our calculations above. For the ray
R1, we substitute @ = 0, b = ¢, and ¢ = 0, and find that it perspectively
corresponds to set of points (0,0,5 — ; +10) where ¢t = 0. Similarly, the
second ray R, perspectively corresponds to set of points (;{75 +?0, 0,53 +10)
where ¢ = 0.

In both of these formulas, the fraction ;775 +10 occurs Since we are consid-

ering only the values of ¢ with ¢ = 0, the fraction m varies between %

and 0. Hence the fraction 2% varies between 5 and 0 and the fraction HZ-(iO

varies between 2 and 0. If we set s = 9., we find that the first line perspec-
tively corresponds to the line segment {(0,0,5 — 5s) |0 = s < 1}, and the
second line perspectively corresponds to the line segment {(2s,0,5 — 5s) |
0 = s = 1}. We have found that both rays R, and R, correspond to line

segments on the plane Py,. This illustrates a general fact about perspective:

Fact. Any collection of collinear points perspectively corresponds to
anotber collection of collinear points.

Note that these two segments corresponding to R; and R; have the
common end point (0,0,5). This point is called the infinite point of the
parallel rays R; and R;,. The reason for this is that if your eye looks down
either ray as far as you can see (toward “infinity”), then you will be looking
through the glass very close to the point (0,0, 5). If you look at a railroad
track running straight away from you toward the horizon, the rails appear
closer and closer together as they recede and in fact appear to join at the
horizon. We just noted this phenomenon algebraically in this calculation for
the parallel pair of rays R; and R,.

The perspective correspondence of the rays R; and R, is illustrated in
Fig. 2.16.

The Infinite Line

We next consider two more parallel rays on P,,. Suppose R3 is param-
eterized by (#,2¢,0) and Ry is parameterized by (1 + ¢,2t,0), both where
t > 0. By a calculation analogous to the preceding, we find that Rj cor-
responds perspectively to set of points (52 +1o’0 5= 3 +1o) where ¢t = 0.
Since Ztlfio 5- 2:?10, we find that R3; corresponds to the line “seg-
ment {(54,0,5%) | 0 = u =< 1}. Similarly, we find that R4 corresponds

. : 01 +1
perspectively to set of points (m(-)l,o 5- 5 +1o) where ¢t = 0. Rewrit-
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same height as the artist’s eye.

More Perspective Correspondences

Students of perspective must learn how to draw many different three-
dimensional shapes. We will not give any further calculations in this section
but will instead describe how some specific objects correspond. You will

We find that the parallel rays R3 and R4 correspond to segments that
have the common point (5,0, 5) € Px,. This is their infinite point. Observe
that the infinite point for the parallel rays R; and R, also had z-coordinate
5. In general, each collection of parallel rays in the xy-plane (with y >
0) correspond to segments in P,, that meet at an infinite point with z-
coordinate 5. This is because the line z = 5 on Py, is where the horizon
is viewed on the picture plane. For this reason it is called the horizon or
infinite line. Observe that the height (z-coordinate) of the infinite line is the

need to use your imagination to supply some of the reasons.

two-point perspective.

First we ask you to imagine that the ground on the other side of our
artist’s glass is covered with square tiles. How will they be drawn in perspec-
tive on the glass? Of course, each tile will be drawn as a quadrilateral, since
a square has four line segments as sides and line segments perspectively
correspond to line segments. Since there are two directions of parallel sides
in the squares, when drawing these square tiles on the glass the artist will
have to draw two collections of lines that intersect at two different infinite
points. The resulting representation of the tiles is shown in Fig. 2.17. When-
ever the dominant features of a drawing are determined by two collections
of parallel lines (as are the tiles in the figure), the drawing is said to be



Fig. 2.17. Square tiles
drawn in two-point
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perspective. The horizon
line Is the dotted line. The
two Infinite points on the
horizon line are Indicated.

Problems

We next ask, what happens to circles? Imagine a circle centered in the

four tiles in Fig. 2.17. You can see by inspecting the representation of the
tiles that circles need not perspectively correspond to circles. In fact, these
circles turn out to correspond to ellipses!

Finally, we ask the reader to think about how a sphere must be drawn.

How must the artist draw the moon? If you think about the different times
you have viewed a full moon, you know that it appears in the sky as a circle,
regardless of the angle of view. In fact, any sphere will always perspectively
correspond to a circle when drawn on the plane.

1. In this problem you are not expected to carry out any calculations.

Instead you should use your geometric imagination—a tool that will be
extremely valuable as you continue in this course. What can happen to
the following geometric shapes and relationships when they are viewed
in linear perspective?

(a) Angles. Are they drawn as they really are in perspective?
(b) Triangles. How do they change in perspective?
() Squares. How do they change in perspective?

(d) Lengths. Can they increase or decrease?

2. Consider the perspective correspondence set up in this section.

(a) Which line in Py, corresponds to the line {(,2,0) | t € R} in Pyy?

(b) Which line in Py, corresponds to the line {(¢, ¢ + 3,0) | ¢t € R} in

(c) What is the infinite point on Py, that arises when viewing all lines
in Py, parallel to the line {(, £ 0) | ¢ € R} from E?

(d) What is the infinite line on Py, that arises when viewing Px,?
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Fig. 2.18. A cube drawn in one-, two-, and three-point perspective

Fig. 2.19. Nativity
(1504) by Albrecht Diirer
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Group Project: Perspective Drawing

Figure 2.18 contains three drawings of a cube. The left-hand drawing is in
one-point perspective, the middle drawing is in two-point perspective, and
the right-hand drawing is in three-point perspective. Each drawing is made
of nine line segments.

(a) By considering the parallel edges of the above representations of a
cube, give a precise definition of what you think one-, two- and three-
point perspective is.

(b) Which drawing of the cube looks the most realistic. Why?

(c) What impression of your position relative to the cube do these drawings
give you? Why do you think this happens?

(d) Imagine a four-step staircase carved out of the cube. Draw this staircase
in each of one-, two-, and three-point perspective.

Group Project: Find the Floor Plan

Figure 2.19 shows a famous engraving by Albrecht Diirer. The scene is
staged in what presumably were real buildings for Diirer, and the picture is
drawn according to the principles of linear perspective as described in this
section.

Your task is to estimate distances and draw a scaled floor plan repre-
senting the courtyard and the placement of the buildings in the picture.
Hint: the courtyard is basically rectangular, but it is much deeper than it is
wide (even though the width, as drawn on the paper, is longer). Don't try
to use the messy coordinate calculations found in this section. Instead, use
the proportionality of similar triangles as described in Sec. 2.1, along with
what you have learned about perspective. Base your estimates on realistic
measurements of things you see (for example, people or roof heights). Be
sure to label your scale on your floor plan and be able to defend your
distance estimates.



.1 Systems of Linear Equations

We have already seen many linear equations in our study of linear functions,
and on a number of occasions we had to find their solution sets. In this
chapter we will develop systematic methods for doing so. Throughout this
chapter we will consider systems of linear equations where the number of
equations and the number of variables will not necessarily be the same. This
means that they may not have a single solution, as is often the case when
this subject is discussed in high school texts.

Linearity in Electrical Circuits

In Fig. 3.1 we have illustrated the simplest electric circuit, that of a battery
connected to a single resistor. The resistor could represent, for example, a
light bulb, an electronic game, or any appliance that uses battery power.
Linear equations describe the relationship between the amount of current
flowing throughout the circuit and the voltage applied by the battery. This
relationship is known as Obm’s law. Ohm’s law states that the current flow

72



Fig. 3.1. A simple circuit
with battery (left) and

resistor (right)
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through the resistor is proportional to the (battery) voltage applied. It is
customary to denote the current by I and the voltage by V. With this
notation, Ohm’s law reads V = 7I, where r is a constant, known as the
resistance of the resistor. Ohm’s law shows that given a fixed resistance, the
voltage required is a linear function of the current desired.

The units measuring voltage, V, as you are probably aware, are volts. The
units measuring the current, I, are called amperes, or amps, and the units
of the resistance constant, r, are called obms. So, for example, if » = 100
ohms (denoted » = 100€)), and if we desire 15 amperes of current to flow
through our circuit, then Ohm’s laws says V = 100/ and consequently we
need to apply 100 - 15 = 1500 volts from our battery. Similarly, if we desire
1 ampere of current, then we need 100 volts. To put the meaning of these
units in better perspective, we remark that power dissipated through the
resistor is the product (volts X amps) = watts. So if our 100-ohm resistor
was really a light bulb, then applying 100 volts would give 1 amp of current
and produce the light given by a 100-watt bulb.

Conversely, if we know the voltage, Ohm’s law enables us to determine
current flow. For example, if we know that 6 volts are applied to a circuit
with a resistance of 24 ohms, then the current 7 is determined by the linear
equation 24/ = 6. In this case I = .25 amps. We will study more complex
circuits shortly, and instead of a single linear equation we will have to
consider systems of linear equations.

Linear Equations and Systems of Linear Equations

We recall that a linear equation in the variables X;, Xz, . . ., X,, is an equation
of the form

aXitaXs+---+a,X, = b,

where the constants @, @, . .., a,, b are real numbers. For example, the
equations 3X — \/2 Y+Z = 4and 2X; —3X, = —1 are both linear equations,
while the equation X — Y + 3XY = 0 is not linear since it has a product of
variables.
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Fig. 3.2. A circult with A rap( B

two resistors

AAA

-_— n BCQ
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A system of m linear equations in the » variables X;, X5, . . ., X,, is usually
represented as

anXy + apXo + 0+ @mnX, = b
anXi+ anXo + 0+ X, = b

amXi + A2 Xo + 0+ Apn Xy = by,

Here, a;; and b; are real numbers. In order to simplify terminology, we will
often use the phrase “a system of equations” instead of “a system of linear

equations.”

Two Resistors in a Circuit

We saw how to use Ohm’s law to compute the current through a simple
circuit containing a battery and a single resistor. We next analyze the case
where the circuit has two resistors instead of one.

In order to compute the current flow through this circuit, it is necessary
to know what the total resistance is between the points A and C. Figure
3.2 indicates that the resistor between A4 and B has resistance 745 ohms
(denoted r45Q)) and the resistor between B and C has resistance rgc().
Since the resistors are connected in series, the total resistance between A
and C is known to be (45 + 75c)Q2. Therefore, by Ohm’s law we have that
V = (r4g + rgc)! for this circuit.

Suppose we know that the voltage applied by our battery is V. Then, if
we connect a voltmeter between the points labeled A and C, we would read
V volts. It is important to understand what happens if we instead measure
the voltage between A and B, or between B and C. It turns out that Ohm’s
law applies to these pieces of the circuit as well. If the current flowing in this
circuit is I, then the voltage read between A and B is given as Vg = rygl,
and the voltage read between B and C is given as Vgc = rgcl. We have
now obtained a system of three equations in the four variables I, V, Vyp,
and Vgc:

I

|4 rABI + rgcl
Vas rapl
VBC‘ = rgcl.

1l
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If we add the second and third equations, we find Vyg+ Vac = 74l t75cl =
(745 + r5c)I. But the first equation says that V = (745 + 75¢)1, so we obtain
that Vs + Vgc = V. This observation is known as Kirchoff’s voltage law.

Solutions to Systems of Equations

We denote by R” the set of all n-tuples of real numbers, that is R* =
{(n,7,....,r) | n,m, ..., 4 € R} In the past two chapters we made an
effort to use column vectors when considering elements of R”. When we
consider solutions to systems of linear equations, it will be convenient to
use n-tuples in rows as well. We will add and scalar multiply these #-tuples
as

(rn,n, ... )+ (1,8, .., =(n+s,nt s .., mts)
and
Wr,m, ..., 1) =Qr, tr, ..., ).

In the last chapter we used R? to give the coordinates of elements of
the Euclidean plane, and R3 to give the coordinates of elements in three-
dimensional space. Often people ask, “What does R* look like?, and how
about R%?” Very few people have any clear picture in mind of these higher
dimensions (the author doesn’t), but this is not crucial. One does not have
to worry about any possible geometric interpretation of R” for n > 3. What
you need to remember is that R” consists of n-tuples of real numbers and
as such is a place where we can encode n-tuples of information. However,
we do use our intuition from R? and R? as a guide when working with R”,
and consequently some geometric language is carried over.

Our first definition is the following. The set of solutions to the linear
equation

awXitaXo+ - +a,X,=b
is the set
{(n,r,....,m) ER" |ayn + ayrs + - -+ + apr, = b}.
For example, consider the equation
X+2Y=1

The pairs of real numbers (1,0), (3, —1), and (-3, 2) are each solutions to
this equation. In fact, there are infinitely many possible solutions, because
any solution must be a solution to the equation X = 1 — 2Y, and the
collection of solutions to this equation can be parameterized by setting
Y = tand X = 1—2¢. In other words, the solution set is {(1—2¢, | t € R}.
We recognize that we have just parameterized a line in R?. Of course, the
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fact that the set of solutions is a line should be familiar from the last chapter
(as well as high school mathematics).

We next consider systems of linear equations. The set of solutions to the
system of linear equations

anXi+ apXo + o+ Xy = b
1 X1t anXo -t BpX, = b

AmX1 + A Xo 0+ Aup Xy = by

is{(n,n,....,m) € R® | (n,n,...,r, is a solution to each of the m
equations}. In other words, the set of solutions to the system is the intersec-
tion of the solution sets of each of the m individual equations.

In Example 1 of Sec. 2.3 we studied the solutions to the system of
equations

3X -3Y+2Z=6
3X +6Y —2Z =18,

and we found that its solution set in R3 is the line {(¢, —2¢ + 8, —%t +15) |
t € R}. Solution sets to systems often look like this. Whenever there is more
than one solution to a system of equations, the solutions can be expressed
using some parameters, with each coordinate of a solution expressed as a
linear function of the parameters.

A system of equations need not have a solution. For example,

X+2Y=1
2X+4Y =3

does not have any solutions. This is because any solution (7,s) to the
first equation must satisfy r + 2s = 1. Therefore, multiplying by 2 shows
2r + 4s = 2, so (7, s) cannot be a solution to the second equation.

If a system of equations has at least one solution, it is called consistent.
If it has no solutions, it is called inconsistent.

An Electrical Network

Recall that Ohm’s law can be used to determine the current in a simple
electric circuit if we know the resistance and the voltage applied. Also
recall that when a circuit has two resistors, the sum of the voltages between
the portions of the circuit loop is the total voltage. We utilize these ideas
and consider a slightly more complicated circuit with two batteries and three
resistors in Fig. 3.3.

Our problem is to determine the current flow in the above circuit where
the voltages and resistances are as indicated. In order to do this we assign
currents to the three circuit sections: Ig4 for the section between B and A,
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Fig. 3.3. A circuit with A 20 B 10 D
two loops
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Igp for the section between B and D, and Igg for the section between C
and B. Ohm’s law tells us that the voltage between B and A is 2Iz4, the
voltage between C and B is 4Icg, and the voltage between D and B is 1Ipg.
The fact that we have 8 volts between C and A now shows by Kirchoff’s
voltage law that 8 = 4Icg + 2g4; similarly, since we have 6 volts between
C and D, we find 6 = 41 + Igp. Finally, we also know that the current /¢
between C and B must be the sum of the currents Ig4 + Igp. This is called
Kirchoff’s current law.

We have obtained three linear equations in three unknowns, which we
write as

4ICB + 2]5,4 =8
4ICB + [BD = 6
Icg — Ipa— Isp = 0.

Adding the second and third equations together shows that SIcg — Ip4 = 6.
Adding twice this new equation to the first equation shows that 14/ = 20.

This shows that Icg = % = % amp. The second equation now shows that

2Ig4 = 8 — 470 = %, so Igy = ’; amp. Finally, the third equation shows

Isp = 6 — 47—0 = % amp. We have determined the solution to our system

of equations (it is unique) and have therefore found how current flows
through each section of our electrical network.

The Geometry of Unique Solutions

We consider three equations in three unknowns:

X -Z=0
X+Y—-2=0
Z =1.

Since we know that Z = 1 in any solution (by the third equation), the
first equation shows that X = Z = 1 in any solution. The second equation
gives Y = Z— X = 1—1 = 0. Hence the only solution to the system is
the point (1,0, 1). This is reasonable, since each of the equations in this
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-4

T

Fig. 3.4. Solutionsto X-Z2=0,X+Y-2=0,andZ=1.

system is the equation of a plane in R3. These three planes in R intersect
pairwise in nonparallel lines, and consequently the intersection of all three
is a single point. Portions of these planes and their point intersection (1, 0, 1)
are illustrated in Fig. 3.4.

Inconsistent Systems

Consider the system

X +Z=0
Y+Z=0
X-Y =1.

It can quickly be checked that any two of these equations have common
solutions. However, the entire system is inconsistent. To see this, add the
second and third equations to obtain X + Z = 1. But the first equation says
that X + Z = 0. So the system can never have a solution. Geometrically
(in R?), each equation in the system defines a plane. Each pair of planes
intersect in a line, but the three lines (given by the three pairs) are all
parallel. These three parallel lines do not intersect, and consequently the
three planes taken together do not have any points in common. This is why
the entire system is inconsistent.

In the next section we shall study a systematic procedure for finding
the set of solutions to arbitrary systems of linear equations. This will enable
us to handle large numbers of equations in many unknowns. But you will
need to keep in mind the key examples from R? and R3 illustrated here in
order to have a geometric picture of what the solutions mean.
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. Determine the solution set of each of the following systems of equa-

tions.
@ X- Y=5 b) X+5Y=0
2X+2Y =8 X-3Y=0
© X-2Y=-2 @ 2x+6Yy =1
-3X+6Y= 6 X+3Yy =3
. Determine the solution set of each of the following systems of equa-
tions.
@ X-Yv=1 () 2X+5Y=0
2X-2Y=3 X—-4Y =0
© 3Xx-2Y=-2 (d 2x+8Y=-6
-3X+6Y= 0 -X—4Y= 3
. Determine the solution set of each of the following systems of equa-
tions.
(@ 6X-2Y-2Z=10 b X- 3Y+ Z=0
2X + Z=5 X+ 5Y—-2Z=0

2X+10Y —-2Z2=0

. Determine the solution set of each of the following systems of equations

in four variables.

@3+ X%X—-X =0 b 2x5 - X =0
X; —2X; -X4=0 Xy —-2X3+ X5=1
X +3X; =0 X +2X3—3X, =2

. Determine the solution set of each of the following systems of equations

in four variables.
Q@Q X+Y+Z+WwW=7 b)) X—- 2=3
Y+ W=2

. Determine the solution set of each of the following systems of equa-

tions. Explain, in geometric terms, what the solution set looks like.

(@ X+3Y+ Zz=0 b)) X+3Y+ Z=1
X—- Y+3Z=0 X— Y+3z=1
2Y- Z=0 2y - z=1
. Consider the system of equations where # and v are real numbers,
3X— Y=u
6X —2Y =v.

For what values of # and v does the system have a solution? For what
values does it have a unique solution?

. True or false, and why? (Use your geometric thinking.)

(@) If two linear equations in two variables have a common solution,
then this solution is unique.
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(b) Three linear equations in three variables never have exactly two
common solutions.

(c) Two linear equations in three variables never have exactly one
common solution. ‘

(d) Two linear equations in three variables always have at least one
common solution.

9. What happens to the current flow in the electrical network shown in
Fig. 3.3 if the polarity of the 8 volt battery is reversed?

10. Consider the electrical network shown in Fig. 3.3. Suppose that the
resistors in that circuit have resistance values r, s, and ¢ instead of the
values 2, 1, and 4. Express the current flow from each battery in the
circuit as a linear function of the variables 7, s, and ¢.

Group Project

Consider the system of equations where 4, b, ¢, d, e, f € R:

aX+bY+ez=0
cX+dy+ fZ=0.

(a) Does this system always have a solution? If so, how many?

(b) Show that if (7, s, ©) and («, v, w) are both solutions to the system, then
(r+u,s+ vt + w) is also a solution.

(c) Show that if (7,58 is a solution to the system and 2 € R, then
(kr, ks, kt) is also a solution.

(d) What happens to statements (a), (b), and (¢) if we instead consider the
system of equations:

aX + by + ez =1
X +dY+ fZ=1.

(e) How can you generalize your ideas developed above?

Group Project

These questions involve the electrical network shown in Fig. 3.5.

(a) Find a system of five equations in five unknowns that enables you to
determine the current flowing in each segment of the circuit.

(b) Shorten this system to three equations in three unknowns. Why can
you do this?

(o) Find an equivalent network using only three resistors. By “equivalent”
we mean that if the same voltages are used in both networks, then the
current flowing is the same in each.
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Fig. 3.5. Group project A 30 B 40 D

circuit

/\/\/\ ‘ //\/\/\T

|
|

4v

2Q

1Q

20
//\/\/\\ ' //\/\/\ \

c

(d) Can you find an equivalent network using only two resistors? Why or
why not?

Gaussian Elimination

We begin by isolating the basic steps used in solving systems of linear
equations. These are called elementary operations.

Elementary Operations

Definition. An elementary operation applied to a system of linear equa-
tions is one of the following three operations:
(i) Multiply any single equation by a nonzero real number, leaving all the
other equations the same.
(i) Add a multiple of one equation to a second, leaving all but this second
equation the same.
(iii) Interchange the position of any two equations on the list.

In Theorem 3 ahead, we point out that elementary operations do not
change the set of solutions to a system of equations. One needs to know
this in order to use elementary operations to solve systems of equations.
This next example illustrates how to use elementary operations in solving
systems of equations.

Example. Consider the system of equations

AX-Y=4
X+Y=1
Applying the first operation, we can multiply the second equation by 3 and
obtain
3X—- Y=4
3X + 3Y = 3.
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We next subtract the second equation from the first (this is allowed by the
second elementary operation)

The second equation shows that Y = —%. Substituting this information into

the first equation shows that 3X = 4 — } = 175. Hence X = %, and we have

found the solution to the system.

These same operations can be applied to the rows of matrices. In this
situation we will refer to them as elementary row operations. For example,

if
4 5 7 9
2 2 2 2

then multiplying the second row of A4 by 3 gives
4 5 7 9
B= <3 6 9 12) ,
2 2 2 2
and subtracting 2 times the third row from the first row of B gives
01 3 5
C= <3 6 9 12) .
2 2 2 2

This shows that the matrix C can be obtained from the matrix 4 by applying
a sequence of two elementary row operations.

The Augmented Matrix of a System
Consider the system of equations

3X—-4Y+ Z= 1
6X - 8Y +4Z = 12.

In order to save the trouble involved in writing the variables in each line,
we write this system in the matrix form

G2 0()-()

6 -8 4 Z 12

The coefficients of the variables in a particular equation are represented by
a row of the left-hand matrix. We can save more notation by replacing this

equation by the augmented matrix of the system, in which we add a final
column separated by a bar that gives the constants in each equation. The
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augmented matrix in this case is

3 =4 1| 1

6 -8 4|12)°
We now apply row operations to our augmented matrix in order to solve
the system of equations. In this setup, our elementary operations on the
augmented matrix correspond exactly to the same operations on the system

of equations. Subtracting 2 times the first equation (first row) from the
second equation (second row) gives

3 -4 1] 1
0 0 2|10/
Multiplying the second equation by % gives

3 —4 1|1
0 0 1|5/

Subtracting the second equation from the first gives

3 -4 0| —4
0 01 5)’

and dividing the first equation by 3 gives

4 4
0 01 5

This augmented matrix represents the system

_ 4 — _4
Z=5.

At this point we have a system of equations whose solutions are precisely the
same as the original system. In any solution of this system, the third variable
Z must be 5, while the first and second variables are not uniquely deter-
mined. Representing the possible values of Y by the parameter t (ranging
over all R), we see that in any solution the value of X is determined by the
Y value as X = %t - g. Hence, all the solutions to the original system have

the form (X, Y, Z2) = (%t - %, t,5), where t is a real parameter. Alternatively,
this set of solutions can be expressed as {(—%,0,5) + t(%, 1,0) | t ER}.

Equivalent Systems of Equations

Whenever elementary operations are applied, equivalent systems are ob-
tained. We formalize this notion of equivalent systems.
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Definition. Two systems of m equations in n variables are called equiv-
alent if one system can be obtained from the other system by performing
a sequence of elementary operations. Analogously, two matrices are called
row equivalent if one can be obtained from the other by a sequence of
elementary row operations.

Thus, for example, the three systems of equations listed in the example
at the beginning of this section are all equivalent systems.

The concept of equivalence is useful because of the next result. It shows
why the technique used in the previous section enabled us to solve systems
of equations.

Theorem 3. If two systems of equations are equivalent, then they
bave exactly the same set of solutions.

Although we do not give a formal proof of this theorem, it should be
quite believable. For example, if you multiply the equation X + Y+ Z =1
by 3 to obtain 3X +3Y + 3Z = 3, then the set of solutions does not change.
After all, if r,s5,¢t € R and if » + s + ¢t = 1, then multiplying this equation
by 3 shows 37 + 3s + 3¢t = 3. Hence (7, s, £) is a solution to each equation.
Similar ideas show that the other elementary operations cannot change the
set of solutions.

Note. We emphasize one point. Elementary operations do not allow you to
multiply an equation by zero. If you do this, you may enlarge the solution
set since it eliminates an equation. Each of our elementary operations is
reversible. This means that after applying an elementary operation there is
another elementary operation that will return you to the original system.
Clearly, multiplication by zero is an irreversible operation, and therefore
one does not obtain equivalent systems.

Gaussian Elimination

We next discuss the systematic process for solving systems of equations
known as Gaussian elimination. In the subsection on augmented matrices
we found that it was relatively easy to write down the set of solutions
for the final system of equations considered there. This happened because
in the second equation, the third variable Z was isolated by itself. One
could then determine X in terms of Y using the first equation. In Gaussian
elimination the strategy is to apply elementary operations in a systematic
way to produce systems that are roughly triangular in shape. Then the
solutions to the system can be understood by generalizing the ideas utilized
in the subsection on augmented matrices.
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As an example of this strategy, we consider the system

X+ Y+Z+w=1
2X+2Y-Z+W=2
3X+3Y+Z+ W =4,

We begin by writing down the augmented matrix for this system and apply-
ing row operations to eliminate the variable X from the second and third
equations:

1 1 1 1)1 1 1 1 11
2 2 -1 1|2}~ [|0 0 -3 —-1]0
3 3 1 1]4 0 0 -2 -=2|1

At this point, the variable Y has also been eliminated from the second and
third equations. This doesn’t always happen. We now view Z as our leading
variable in the second and third equations. Our strategy is apply operations
so that its lead coefficient in the second equation is 1 and to eliminate it
from the third equation:

11 1 1]1 11 1 1]1
00—3—10H001§0
00 -2 -21|1 00 -2 —-21{1
11 1 1]1

— 01%0

000 —-3|1

We finally multiply the third equation by —2 so it has lead coefficient 1.
This gives the augmented matrix

111 1) 1
0011 of,
000 1|2

whose solution set is easily determined. The last equation says that W =
—3. Substituting this into the second equation shows Z + (})(=%) = 0,
so Z = }. Finally, letting ¢ be a parameter for the variable Y, the first
equation says X + ¢t + 3 + (—=2) = 1, giving X = —¢ + 2. Our solution set
is {(—t+ %, L, %, —%) | t € R}. When we describe the set of solutions in this
fashion, Y is called a free variable and t is called its parameter, while X, Z,
and W are called determined variables.

Echelon Form Systems

Now that we have seen an example of Gaussian elimination, we next put
the key points of this strategy in words. The process is described in stages,
with one stage for each row, starting at the top. The first stage begins
by arranging the variables in some order and- aligning them in columns.
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Fig. 3.6. The staircase

shape of an echelon

system. All entries below
the staircase are zero.

Next, make sure that the first variable occurs in the top equation—if not,
interchange equations (we use the phrase “variable occurs” to mean that
the variable has a nonzero coefficient). Next, the first equation is multiplied
by an appropriate real number to give the first variable coefficient 1. Now,
using the second row operation, remove the first variable from all equations
below it. At this point, the first variable of the system only occurs in the first
equation.

In the second stage of Gaussian elimination, the process just described
is repeated using the second equation as if it were the top equation, leaving
the first equation alone. At the end of the second stage, the first occurring
variable of the second equation does not occur in any equation below. Note
that, as in the preceding example, the first occurring variable in the second
equation is not necessarily the second variable. Also, one might have to
interchange equations in order to bring the second occurring variable to the
second equation. After this, the process is repeated for the third, fourth, ...,
nth equations until a “triangular” or “staircase” shape system of equations
results. This staircase shape of coefficients is pictured in Fig. 3.6.

At the end of Gaussian elimination the resulting system of equations is in
echelon form. In this definition it is crucial that an ordering of the variables
be specified in advance.

Definition. A system of equations is in echelon form if
(EF 1) The first occurring variable of each equation has coefficient 1. (This
variable, if any, is called the leading variable of that equation.)

(EF 2) The leading variable of any equation occurs to the right of the lead-
ing variable of any equation above it.

Solutions to Echelon Form Systems

The set of solutions to a system in echelon form is reasonably easy to
understand. A system in echelon form will be consistent unless an equation
of the form 0 = r occurs where r is nonzero. Suppose the system is
consistent. Any variable that is not the leading variable of an equation
will be called a free variable. The remaining variables (that is, the leading
variables) are called determined variables. By assigning parameters to the
free variables, and solving for the determined variables in terms of the
parameters, one obtains a description of all the solutions to the system. This
process is known as back-substitution.
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Consider the following examples:

@ X-2Y=2
Yy=1
() X+Y =1
0Z=1

(i) X+2Y-Z+2w =1
Y-Z- WwW=0
Z =

vy 51+X; =1

We use back-substitution to find all solutions to these systems of equations
in echelon form.

(D) The second equation says that ¥ = 1. Substituting this value into the
first equation, we see X — 2(1) = 2. We find that X = 4. Hence (4,1) is the
only solution to the system.

(ii) This system is inconsistent. In other words, the solution set is the empty
set .

(iii) The third equation says that Z = 1. The variable W is a free variable,
and we choose the parameter W = t. Using what we know about Z, we
find that ¥ — (1) — ¢ = 0; that is, Y = 1 + ¢. Substituting this information
into the first equation, we see that X + 2(1 + #) — 1(1) + 2¢ = 1; that is,
X = —4¢. It follows that the set of solutions is {(—4t,1+ ¢,1,1) |t € R}.
(iv) Necessarily, Xs = 1 in any solution. Assigning the free variable X
the parameter ¢ and substituting X5 = 1, the second equation shows that
X3 = t+ 2. Now, if we assign the free variable X; the parameter u, the first
equation shows that X; = —u + 1. Consequently, the set of solutions to this
system is {(—u+ 1,u4,t +2,¢,1) | t, u € R}.

Row-Echelon Matrices
We shall say that a matrix is a row-echelon matrix if it is the matrix of

coefficients of system of equations in echelon form. Specifically, this means
the following.

Definition. A matrix is a row-echelon matrix if
(EM 1) The first nonzero entry of each row is 1. These are called leading
entries.

(EM 2) The leading entry of any row occurs to the right of the leading
entries of any row above it.
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Problems

Thus, for example, the matrix obtained at the end of the subsection
on Gaussian elimination is a row-echelon matrix. The process of Gaussian
elimination shows that any matrix is row equivalent to some row-echelon
matrix. Here are some more row-echelon matrices:

1 0 3 0 1 0
(o 13 5), (o 1), (8 (1) } i‘)
0 0 0 1 0 0

Two Remarks About Parameters

(D In this text we use lowercase letters not used before as parameters in
order to avoid confusing them with variables. For example, in Example
(i) just given we noted that W was a free variable and wrote W = ¢
to demonstrate that ¢ is a parameter that can be substituted for W and
ranges over all real numbers. Many people like to use the variable itself as
the parameter. If this was done for the system just mentioned, its solution
set would read {(—=4W,1 + W,1, W) | W € R}. This notation is fine, and
you may use it if you prefer. Just be careful only to use free variables as
parameters in your solution sets.

(2) Note that prior to the definition of echelon systems we said that an
ordering of the variables must be specified. This is crucial, for if the variables
are reordered the echelon form can change. For example,

X+Y+Z=1
Y+Z=1

is in echelon form, with X and Y determined variables and Z free. However,
if we reorder so that Y comes first, then

Y+X+Z=1
Y +Z=1

is not in echelon form. Further note that if we reorder as

X+zZ+v=1
Z+Y=1,

then the system is in echelon form but now X and Z are the determined
variables with Y free.

1. Identify a sequence of row operations that transforms each of the fol-
lowing systems.
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(a) The system

X+2Y+2Z=4
X+ Yy-zZ=1

transforms to

-X +3Z =2
X+Y—- Z=1.

(b) The system

X—-Y=4
X+Y=0
transforms to
3X+ Y=4
4X +2Y = 4.
. Use Gaussian elimination to find all solutions to the following systems:
@ X +Z=0 b X+Yy+zZ= 1
X+Y+z=3 X-y =-3
2X-Y+Z= 0
©© X +Z=0 @ X+ vy+z=1
2X+Y+Z=0 X—-Y =3
X-Y =0 2X—- Y+zZ=1
2Y+Z =2
. Use Gaussian elimination to find all solutions to the following systems:
@3X+ Y+2Z=7 ® -x-2vy-z= 1
2X +2Y+2Z=6 2X-3y+Z= 0
2X +4Y+3Z=8 5X— Y =-3
X-Y = 1
© X -2Z+3wW =13 d X+ Y-2Z+2Ww=0
-Y+ Z-2W=-8 X-2Y+ Z— wW=0
4X-2Y -6Z+8W = 36 2X—- Y—-3Z+ w=0

. Explain how you can determine if the following systems of equations
equivalent. Are they?
-X+ Y=0 X—4Y =0

sx+2v=0 2™ ox_oy=o.

. The following transformation of equations is 7ot a sequence of elemen-
tary operations. Why? Consider the system

X—-Y+2Z=2
2X+Y+4Z=0.
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We subtract half of the second equation from the first and at the same
time subtract twice the first equation from the second:

-2y= 2
+3Y = —4.

6. Use Gaussian elimination to find a row-echelon matrix row equivalent
to each of the following matrices.

L4 1 2 3 4
@ (2 3> b) (5 6 7 8)
9 10 11 12
1 4 7
01 2 3 7 3 7
©@12 0 -2 @ (6 15 6 15)
2 1 0

7. Give an example of two inconsistent systems in the variables X and Y
that are not row equivalent.

() Can you find a 3 X 3 row-echelon matrix that is not row equivalent
to any other row-echelon matrix? Give an example or explain why
such cannot exist.

(b) Can you find a 3 X 4 row-echelon matrix that is not row equivalent
to any other row-echelon matrix? Give an example or explain why
such cannot exist.

Group Project

(a) The third elementary row operation can, in fact, be obtained from the
other two. (For this reason, it is sometimes omitted as an elementary row
operation.) This is illustrated below, where R and R’ denote matrix rows:

(B)= (525 ) = (o 2% e) = (* %)
-(%)~ (%)

Identify the row operations illustrated and show how to interchange the
first and third rows of the matrix

1 3 2 5
(232 1)
5 1 1 2

(b) As remarked in this section, each of the three row operations can be
reversed. That is, whenever a single row operation is applied to a system of
equations, another row operation can be applied to return the new system
to the initial system. Explain how this is done.
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Gauss-Jordan Elimination

The Further Gauss-Jordan Strategy

Consider the following sequence of row operations. It begins like Gaussian
elimination but goes further. These addition steps are part of what is called
Gauss-Jordan elimination.

11101H1110
113 7|0 00 2 7

H(l 1 1 1)
1
0 0 1 -1
_7 3
H(l 1 0 g 51)
0 0 1 |-}

The final augmented matrix of this sequence represents the system of equa-
tions

Applying back-substitution, it readily follows that the set of solutions to this

system is
7 3 7 1
—u+t+ S, u—=t—= .
{<u Zt >t 2t z,t)ls,tER}

In Gauss-Jordan elimination, in addition to applying Gaussian elimination,
one also eliminates all the entries above the leading 1 in any column.

The Reduced Row-Echelon Form

In Sec. 3.2 we described the Gaussian elimination process in a sequence of
stages. The first stage of Gauss-Jordan elimination is the same as the first
stage of Gaussian elimination. In the second stage, Gauss-Jordan elimination
concludes by subtracting an appropriate multiple of the second equation
from the first equation to eliminate (if necessary) the second leading variable
from the first equation. In the conclusion of the third stage, appropriate
multiples of the third equation are subtracted from the first and second
equations to eliminate the third leading variable from these equations. This
process is continued so that the leading variable of each equation of the
system occurs only in the single equation for which it is the leading variable.

The system of equations resulting from Gauss-Jordan elimination is said
to be in reduced echelon form. They are characterized by the three condi-
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tions in the following definition. Again, as in the case of the echelon form,
we shall assume that an ordering of the variables is specified.

Definition. A system of equations is in reduced echelon form if:-
(REF 1) The leading variable of each equation has coefficient 1.

(REF 2) The leading variable of any equation occurs to the right of the
leading variable of any equation above it.

(REF 3) The leading variable of each equation occurs in no other equation.

The advantage of finding the reduced echelon form of a system of
equations is that the solution set can be found without computation in back-
substitution. Note, for example, in the system considered at the beginning
of this section all we had to do was assign parameters to the free variables
Y and W, and the two equations in the reduced echelon form enabled us
immediately to write expressions for X and Z in terms of the parameters.
Of course, the computation involved in the extra steps of Gauss-Jordan
elimination are essentially the computations we would have had in the
back substitution.

Another important property of the reduced echelon form of a system of
equations is that in the consistent case it is uniquely determined (once an
ordering of the variables has been fixed). This is discussed in Chap. 4.

The system

X

2

Y =3

Z=4

is in reduced echelon form. So is the system
X—-2Z+W=4

which consists of a single equation. However, the system

—-Z 42X+ W =4,

is not in echelon form, since the lead coefficient is not 1. The system

x -2z =1
Y  +3W= 0
zZ- w=-3

is in echelon form but not in reduced echelon form.

We shall say that a matrix is a reduced row-echelon matrix if it is the
matrix of coefficients of system of equations in reduced echelon form. The
process of Gauss-Jordan elimination shows that any matrix is row equivalent
to some reduced row-echelon matrix.
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We give below some reduced row-echelon matrices that are row equiv-
alent to the echelon matrices given in Sec. 3.2:

1 0 3 0 1 0 01 0 2
01 3 0]}, 0 1}, 00 1 1/
0 0 0 1 0 o

lll-Conditioned Systems of Equations

Many computer programs and calculators enable you to perform row op-
erations on matrices. If possible you should try to learn how to use such
a system. This will greatly reduce the risk of computational errors! We do
have one caution, however. Keep in mind that computers will round off
entries and at times this can lead to a problem. For example, the simple
system of equations

5.3433 X + 4.1245Y = 3.1416
53432 X + 4.1244 Y = 3.1416

has as reduced echelon form

X = 25776
Y = —25776.

However, if we drop one significant figure from our coefficients, we obtain

5343X +4.124Y = 3.142
5343X +4.124 Y = 3.142

whose reduced echelon form is

X+0771Y = 0.588
0=0.

These two echelon forms are quite different! This doesn’t always happen,
but when it does the original system is said to be ill-conditioned. Un-
fortunately, in many practical applications of linear algebra ill-conditioned
systems of equations do arise. You will explore ill-conditioned systems more
in the group project at the end of this section.

Solving Matrix Equations

Suppose that A and B are matrices. It is important to know how to solve
the equation AM = B for the matrix M. The methods of Gaussian and
Gauss-Jordan elimination are quite effective in this problem. For example,
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consider the matrices

_(1 1 0 (3 5
A—<021) and B <2 4).

If we want to solve the matrix equation AM = B, we note that M must be
a 3 X 2 matrix. Suppose that the entries of M are labeled as

X R
M=(Y S)
zZ T

AM=<X+Y R+S>'

and we multiply

2Y+Z 285+T
Then the expression AM = B gives the two systems of equations:

X+vy =3 R+S =5
2y +z=2 M 25+ T = 4.

We observe that for each of these systems of equations the coefficients of
the variables are the same, namely they are given by the entries of the
matrix A. This means we can solve both systems at the same time using a
single Gauss-Jordan elimination:

35

1 7)

11035\ (1
02 1|2 4 0
10 -1]2 3
— .
01 3|1 2

The augmented matrix used in this elimination represents both systems of
equations at the same time. The first column to the right of the augmentation
bar represents the constants arising from the system in X, Y, and Z while
the second column represents the constants arising from the system in R,
S,and T.

We are now able to find solutions for our matrix M. We solve for X, Y,
and Z by back-substitution using the first column on the right of the bar.
For example, if Z = 0, we would then obtain ¥ = 1 and X = 2. For the
second system, if 7 = 0 we would have § = 2 and R = 3. This shows that
one possible solution for M is

2 3
-1 2).
0 0

ey
Ni= O

—
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In fact, there are infinitely many solutions for M. If we take u and v as
parameters for Z and T, respectively, we can back-substitute to determine
X, Y, R, and S in terms of these parameters. We find that the general
solution for M looks like

F+2 3+3
M=|3FE+1 F+2
v u

Inverting Square Matrices

The 7 X n matrix with ones on the diagonal and zeros elsewhere is called
the n X n identity matrix. It is denoted as

100 -+ 0
01 0 0
=10 0 1 -+ 0
00 0 -+ 1

In other words, I, = (a;), where a;; = 1 for i = jand a;; = 0 otherwise.

Suppose that A4 is an 7 X 7 matrix. Then both AI, = A and I,A = A.
Thus the identity matrix I, plays the same role in matrix multiplication as
the real number 1 does in the multiplication of real numbers. The inverse of
a nonzero real number r is the number r~! with the special property that
r-r~! = 1.If Ais an n X n matrix, an inversefor A is a matrix A~! for which
AA™! = I, = A7'A. A square matrix need not always have an inverse, but
when the inverse exists it can be found by the process of Gauss-Jordan
elimination. We conclude this section by illustrating this.

Suppose that you desire to find the inverse of the 2 X 2 matrix

a=(2 7))

Finding this inverse is equivalent to solving the matrix equation

GDED-GY)

for x, y, z, and w. The matrix equation we are trying to solve is equivalent
to solving the following two equations:

(G DE-6) = G DE)-6)

These two systems lead to the following augmented matrix, to which we
apply Gauss-Jordan elimination:
1 o) .
_1
5 1

2 7|1 0\ (27
1 4|01 0 3
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2 7 1 0 -, 20 8 -—-14
0 1|-1 2 0 1|-1 2
(10 4 -7
0 1| -1 2/
The solution to each of the systems of equations we are solving can be
found by looking at the corresponding columns of the right-hand side of

the augmented matrix. This shows that x = 4, y = =7, 2 = —1,and w = 2.
We have found that the inverse for A is

a_f 4 -7
o= 7)

We can readily check that

wi (D D69

We also note that

(4 DE D069

which shows that multiplication by G on both sides of A gives the identity.
In fact, the process just given can be applied to an arbitrary 2 X 2 matrix
to find its inverse. If ad — bc # 0, one obtains

a b\ '_ 1 d —b

c d ad—bc \ —c a)’
In case ad — bc = 0, then the row operations show that the matrix cannot
have an inverse.

Example. Here is'3 X 3 example. To find the inverse of

1 0 1
r=1{1 1 —2),
0 1 1

we row-reduce

10 1|1 00 1 1] 100
11 -2/010|~|01 -3|-110
01 10 0 1 01 1] 001
10 1/ 1 00 10 1/ 1 00
—»|0 1 -3]-1 1 0]—|01 -3[-1 10
1

00 4| 1 -11 00 1| % -1 i
100%%——%

H01o—§§%

001 3 -3 3
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We find hat the inverse of T is

|

-
N[ N LN (W)
EN [t N TN
BN NSNS

A direct calculation shows that 777! = = T7!T.

Our procedure for computing matrix inverses shows that an # X # matrix
has an inverse precisely when its reduced row-echelon form is I,. (In the
next section we will see that this means the matrix must have rank n.) We
record this observation in the next corollary.

Corollary. AnnXn matrix A bas an inverse if and only if its reduced
row-echelon form is I,.

You can also invert matrices on a.calculator or a computer. You should
learn how to do this. The only tricky point is that the computer will give
decimal expressions, which means that if you want an exact expression
with fractional entries you will have to do some extra work. For example, if

1 0 4
e=(-s 0 7).
3 -1 0

then a calculator computes that
2258 —.1290 0
R = (.6774 —.3870 —1) .
1935 0323 0

If you applied row operations to compute R™!, you would have obtained
denominators of 31 in your expression. For most practical computations,
outside of the ill-conditioned situation, the calculator result will work fine.

Using Inverses to Solve Systems of Equations

The inverse of a square matrix is useful in solving systems of equations. For
example suppose we wish to solve the systems

Z 3
A(i) = (é) and T <ZZ) = (1) ,
Z3 \2
where A and T are the matrices whose inverses were found previously. If
we premultiply these equations by the inverses, we find that

(3) = (3) = ()= (4 ) ()= ()
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Problems

and

3 2
(3)-0)

2 1
This shows that the solutions are given by X = —26, ¥ = 8, and Z; = 2,
Zz = 1, Z3 =1.

We close with a few useful remarks.

Remark 1. Observe that when we computed the inverse of the square
matrix A, we really only solved the equation AG = & for the miatrix G.
We subsequently checked that also GA = & holds, to see that G was the
inverse of A. It turns out that whenever S is a square matrix, and whenever
R is another square matrix for which SR = [ is the identity, then RS = I is
necessarily also the identity. For this reason it is unnecessary to check the
second equation whenever an inverse is found by row operations as above.
The reasons for this are indicated in the first group project in the upcoming
problems.

Remark 2. Suppose that D is a diagonal matrix, that is, D = (d;;) where
dij = 0 unless i = j. Then you can easily see that D is invertible if and
only if each “diagonal entry” d;; is nonzero. In this case, the inverse of D is
readily checked to be the matrix D™! = (d})), where dj;=0if i # jand
d}, = d;! otherwise. The reader should check this by a quick calculation.

//
N NN
N——
Il
|
E TN N S8
|
PSS
|
W= B i

1. Use Gauss-Jordan elimination to find all solutions to the following sys-

tems:
@QX+Y-Z-w=1 b)) X+3Y—-4Z=0
X -—w=2 2X+6Y—-8Z=1

2. Find all possible echelon forms for the system given in Prob. 3(a) of
Sec. 3.2. Find the reduced echelon form of the system as well.

3. Explain why no system of three equations in four variables has a unique

solution. (Use the existence of an equivalent reduced echelon form
system.)

4. Consider the system of equations

X—- Y+ z=-1
X+2Yy- z= 0
X- Y+2Z= r

For which real numbers 7 is this system consistent? Find all solutions
in this case.
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Find conditions on the real numbers a, b, ¢ which guarantee that the
following system has a solution:

Y- Z
X - Z
X+Y—-2Z

a
b
c.
Explain why you might suspect that a linear equation will arise between

a, b, and ¢ even before you do any calculations. What else could
happen?

. What conditions must @, b,¢c € R satisfy in order that the following

system be consistent?

3X -2Y+4Z—- W=a
—2X+3Y-2Z-2W=1b
5X +8Z—-7W=c¢

Explain why two consistent systems of two equations in two unknowns
are equivalent if they have the same set of solutions.

Find a system of equations whose set of solutions is given by X =
1—2t+u Y=t Z=2-—u and W = u, where ¢t and u are real
numbers. (Hint: Think about the reduced echelon form.)

Consider the system of equations over R
anX + apY + aBZ = bl
anX + apY + anZ = b,
a31X + a32Y + a332 = b5

Suppose this system has two different solutions. Show it has infinitely
many different solutions.

Find all solutions to the equation AX = b, where

2 -1 -2 =5 . -10
A=<—1 2 -2 4) and b=( —1)‘
1 4 -10 2 -23

Find all solutions to the equation AX = 5, where

9 8 Rz
a=(12) 3= (o)
2 3 2

Show that for any invertible square matrix 4, (4™)7! = A.
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13. Find the inverse, if it exists, of the following square matrices.

1 3 2 5
@ (_1 _3) (b) (_1 _3)

1 1 0 1 1 3
© (z ) 1) @ (o ; 4)

11 -1 1 2 -2

14. Suppose that C is invertible and A = CBC~!. Show that A4 is invertible
if and only if B is invertible.

15. If a square matrix A is invertible, show that A” is invertible for all n > 1.
What is (4™)7!?

16. Suppose there is a nonzero column matrix C such that AC = 0. Show
that A cannot be invertible.

17. Show that an upper triangular matrix A = (ay;) is invertible whenever
a; # 0 for all i.

18. An n X n matrix N is called nilpotent if for some k& > 0, N* = 0, the
n X n matrix of all zeros.
(a) Show that a nilpotent matrix cannot be invertible.
(b) If N is nilpotent, show that (Z, — N) is invertible by verifying that

its inverse is I, + N + N2+ --- + N#71,

19. Suppose A and B are square commuting matrices (that is, AB = BA). If

A and B are invertible, show that A™! and B~! commute.

Group Project: Right and Left Inverses for Square Matrices

Give a proof that if an # X # matrix S has a right inverse T (that is, ST = I,
is the identity), then T is also a left inverse for S (that is, 7S = I, also). This
verifies the fact mentioned in the first remark at the end of this section. Use
the the hints in (a) and (b) below as a guide:

(a) First show that if S has a right inverse T, then every system of equations
SX = bhasa unique solution. (Here, X is a column of # variables and
b is a column of 7 constants.) For this, think about the row reduction that
enables you to find the right inverse 7.

(b) Next, let &, be the column vector with all entries 0 except for a 1 in the
kth row. Since ST = I,, S(TS&,) = S&,. Since the system SX = S&, has a
unique solution, we must have 75&, = &,. Deduce that TS = I,.

(c) Find an example that shows a nonsquare matrix may have a right inverse
but not a left inverse. Find another example that shows a nonsquare matrix
may have a left inverse but not a right inverse.

Group Project: IlI-Conditioned Systems of Equations

When interpreting scientific data one must always be careful and take into
account the accuracy of the measurements. It is also crucial to understand
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how various computations using the data can affect this accuracy. Suppose
in some experiment the following vectors of data have been collected,
representing three repetitions of the experiment:

3.12 3.11 (3.13
U= (2.14 , = (2.15), U = (2.14) .
7.94 7.98 7.96

You are happy with these results because the numbers seem quite close.
However, in order to apply your results, you need to solve the following
equations: '

21 31 40 X 11 70 21 X
(2.6 1.0 .70) (Y) =7; and (2.2 40 .80 (Y) =7
41 23 81 z 54 15 37 z

and obtain a 20% agreement among each collection of solutions.

(a) Use a graphing calculator or a computer to solve these three equations
for the three data vectors #, %, and 5. Did-you obtain 20% agreement?
What are the implications for interpreting your experimental data?

(b) Graph the following two pairs of systems of equations (on a computer
or a calculator, if possible).

G E)-CQ) = G E) ()
GE)=G) = ) E)-Gh)

The first coefficient matrix of the pair is well-conditioned, while the second
is ill-conditioned. What is the geometric difference between these graphs?
Why, in geometric terms, are your solutions so different for the second pair?
What do these equations look like after applying Gaussian elimination? How
does that fit in?

(c) Using what you have learned in (b), give an explanation of what hap-
pened in part (a).

and

Matrix Rank and Systems of Linear Equations

Reduced Row-Echelon Matrices

We saw in the last section that Gauss-Jordan elimination and reduced row-
echelon matrices were useful in a2 number of situations. Since we will often
speak of a matrix and the row-echelon matrices that result from Gaussian
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and Gauss-Jordan elimination in the same context we have the following
terminology.

Definition. Suppose that 4 and B are matrices and B is row equivalent
to A If B is a row-echelon matrix, we say that B is a row-echelon form
of A. If B is a reduced row-echelon matrix, we say that B is the reduced
row-echelon form of A.

For example, suppose

1 3 8 0
A=<O 1 2 1)
0 1 2 4

Applying elementary row operations, we obtain

1 8 0 1
AI—><O 2 1]—10
0 3 0
1 0 1
»—»(o O)H<o
0 1 0
This shows that both
1 3 8 0 1 0 2 O
0O 1 2 O and o 1 2 O)
0 0 0 1 0 0 0 1

are row-echelon forms of A. The latter matrix is the reduced row-echelon
form of A.

O =W O =W
O N O

O Rr O O, W
o DN ON®

_ O O =k = O

Matrix Rank

It is important to note that in the previous definition we spoke of the reduced
row-echelon form of a matrix. This language implies that there cannot be
two different reduced row-echelon matrices row equivalent to any given
matrix. This fact is crucial to the notion of rank. The rank of a matrix
is defined to be the number of nonzero rows in its reduced row-echelon
form. For example, the rank of the matrix 4 in the preceding example is 2.
If a matrix could have different reduced row-echelon forms, the definition
of rank would become ambiguous. Fortunately, this doesn’t happen, as is
summarized next.

Theorem 4. If A is any matrix and R, and R, are both reduced row-
echelon matrices that are row equivalent to A, then R, = R,. In other
words, the reduced row-echelon form of any matrix is unique.
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We will not give a detailed proof of this theorem. The main idea behind
the proof is reasonably simple. Suppose that 4 is an m X # matrix, and that
X is a column of 7 variables. If the matrices R, and R, are row equ1valent
to A, then we know that the three systems of equations AX = 0, R, X = 0,
and R,X = 0 each have the same set of solutions. By studying the nature of
the reduced row-echelon form carefully, one can show that this will force
R1 = Rz.

For example, consider the two reduced echelon matrices

(1 -1 0 7 _(1 -1 0 6
R‘"(o 013) and &y (o 013)'

The matrices R and R, are close but not the same. We consider the systems
of equations R X =0and RX = 0. Since the bottom rows of R, and R, are
identical, the equations they represent have identical solutions. Looking at
the first equation, we see that setting X; = 1 and X; = 0 necessarily means

X, = —7 in the first system and X; = —0 in the second system. Since the
variables X, and X; can be taken as parameters for either system, we find
that the two systems of equations R, X = 0 and R, X = 0 have different

solution sets. Hence R; and R, cannot be row equivalent, illustrating the
theorem.

Here is the definition of the rank of a matrix. As noted previously, the
definition makes sense because we can talk about the reduced row-echelon
form of a matrix A.

Definition. The rank of any matrix A4 is the number of nonzero rows in
the reduced row-echelon form of A. We denote the rank of 4 by rk(A4).

Observe that whenever A is an m X n matrix, rk(4) is at most the
smaller of m or n, for the number of nonzero rows of any echelon form
of A cannot exceed the number of rows of A. Therefore, tk(4) = m. But
each leading 1 in a row-echelon matrix occurs in a distinct column. Thus
the number of such rows cannot exceed the number of columns of A. This
shows rk(4) = n. Note that it is possible for rk(A4) to be strictly less than
both # and m. Also, be careful and remember that rk(A) is not the number
of nonzero rows of A.

We defined the rank of a matrix to be the number of nonzero rows in
its reduced row-echelon form. Note, however, that the number of nonzero
rows in any row-echelon form of a matrix is the same. Therefore, in_order
to determine the rank of a matrix 4, all you need to do is determine some
row-echelon form for A. The rank of A will be number of nonzero rows in
this row-echelon matrix.
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Solutions to Systems and Associated
Homogeneous Systems

Suppose that A is an m X n matrix and X is an 7 X 1 column of variables.
The system of equations AX = 0 is called a homogeneous system. If B is an
m X 1 column matrix, we consider the system of equations AX = B. We
call the system AX = 0 the associated homogeneous system of equations of
the system AX = B.

For example, the system of equations

G ()0

is not homogeneous, while the system

G1D0)-0)

31 1 7 0

is homogeneous. This second system is the associated homogeneous system
of the first.

We can solve both of these systems by applying Gauss-Jordan elimina-
tion to their augmented matrices. For the first system we have

12 3|0y (1 2 3|0
31 1|1 0 -5 -8|1
H1230H10—§§
01 &|-4 o1 §&|-1)

and we find that its solution set is {(3 + 2, —3 — 8,0 |+ € R}. Similarly,
for the second system we have

1230H1230
31 0 0 -5 —-8|0

H(1 2 3 0)H<1 0 —3 o)
01 %fo o1 %o )
and we find that its solution set is {(32, 22,0 | s ER}.

We observe that the exact same row operations were used each time, the
only difference being that in the second sequence the right-hand column
consisted solely of zeros. Consequently, the solutions have similar expres-
sions. Note that the homogeneous solutions were all multiples of the triple

%, - %, 1) and the nonhomogeneous solutions could be obtained by adding
the triple (%, —%, 0) to these. This phenomenon is true more generally and
is made explicit in the next two theorems.

p—
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Theorem 5. Let H denote the set of solutions to a homogeneous sys-
tem AX = 0. Then'H is nonempty. Further, H is closed under addition
and scalar multiplication. This means that if V), 0, € H and r is a
real number, then both U, + 0y, rt) € H.

Proof. Observe that a homogeneous system of linear equations always has
a solution, namely X; = 0,X, = 0,...,X, = 0. This is called the trivial
solution, and any other solution is called a nontrivial solution. In particular,
we find that H is nonempty.

If %, and 7, are solutions to AX = 0, then by definition A# = 0 and
A, = 0. But the distributive law of matrix multiplication shows that A(%; +
3,) = Aty + A, = 0+0 = 0. Thus (% + %) € H. Since scalar multiplication
commutes with matrices, we have A(r7)) = r(47) = 70 = 0. This proves
the theorem. O

Theorem 6. LetT denote the set of solutions to the system of equations
AX = B and H denote the set of solutions to the associated homoge-
neous system of equations AX = 0. Suppose that T is nonempty, and
let ii € I. Then every element W € T is a translation of the form
w = 1 + U for some fixed vector v € H.

Proof. By assumption we know that Aéi = B and A& = B. Setting 7 =
i — i, we find that AD = A(#% — #) = Ai)— Aii = B— B =0. Thus, € H
and this shows that & = i + ¥ has the desired form. Conversely, suppose
that @ = #+ U, where ¥ € H. Then AW = A(ii+7) = A+ AV = B+0 = B,
and @ € T follows. Thus, T is precisely the set of n-tuples # + ¥ where
7TEH.O

Observe that Theorem 6 requires that Z be nonempty. Without this the
theorem would be false. For example, consider the system of equations

3X+3y =1
2X +2Y =3.

Clearly, this system has no solutions, while its associated homogeneous
system has infinitely many solutions (all of the form (¢, —t) where ¢ is a real
number). Be careful about this.

The Relationship Between Rank and
Solutions to Systems of Equations

The existence solutions to a system of linear equations can be determined
by comparing the rank of the coefficient matrix, the rank of the augmented
matrix, and the number of variables. This is explained next.
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Problems

Theorem 7. Suppose the system of equations AX = B bas n vari-
ables. We denote by A' = (A | B) the augmented matrix of the system.
Then we bave the following:

() The system AX = B has a solution if and only if tk(A) = rk(4").

(i) The system AX = B bas a unique solution if and only iftk(4) =
n = rk(A4).

This theorem can be understood if one thinks about the shape of the
reduced row-echelon form system in each case. For part (i), suppose that
the reduced row-echelon form of A’ = (4| B) is R = (R | S). If tk(4) <
rk(A), then R’ hasarow oftheform (0 0 -+ 0 0 | 1).Thisrow
corresponds to the equation 0X; + 0X, + -+ + 0X,, = 1, which does not
have any solutions. Since rk(4) = rk(4), we see that whenever AX = B has
a solution, then rk(4") = rk(4). Conversely, if tk(4) = rk(4"), then AX = B
has a solution by back-substitution, which shows why (@) is true.

In order to understand part (ii), note that the system will have a unique
solution precisely when its reduced echelon system has no free variables and
no inconsistent equations. This can happen only in case tk(4) = tk(4) =
n = the number of variables.

Observe that if 4 is an m X » coefficient matrix of a consistent system
of equations, then there are rk(4) determined variables (comming from
leading ones) when we solve the system using back substitution. This also
shows. there are n — rk(A) free variables. In fact, the number # — rk(A) is
the smallest number of parameters that can describe the solution set, but to
see that it is the “smallest” we will need some results developed in Chap. 5.
We summarize this in the next corollary.

Corollary. Suppose that A is an m' X n matrix. The system AX =
0 always bas a solution and the collection of all solutions can be
described using n — rk(A) parameters. In particular, if the number of
variables of a homogeneous system exceeds the number of equations,
the system bas a nontrivial solution. If AX = B bas a solution, then the
collection of all solutions can be described using n—rk(A) parameters.

1. Find the reduced row-echelon form and rank of the following matrices.

2 13 2 4 6
(a)(O 2 3) (b) 5 8 12
2 3 6

0 8 12
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11 1 1 1 0 1
© (3 3 3 3) @ (0 1 0)
4 4 4 2 1 1 1

. Consider the system of equations

2 )-6)

Find the solutions to the associated homogeneous system of equations,
and relate this solution set to the collection of solutions to the original
system. What does Theorem 6 say in this context?

. Find all possible row-echelon and reduced row-echelon matrices equiv-

alent to
1 6 1
( 1 4 2) .
1 8 0

. For which real numbers a, b, and ¢ are the following matrices row

equivalent?
2 0 1 1 a b
( 1 3 1 ) and ( a 1 c)
5 -3 2 b ¢ a

. Consider the system of equations

X

(1230 Y |_ (6

01 4 1)z 6)
w

Explain what information can be obtained for this system by applying
each of Theorems 5, 6, and 7. In your answer you should also give
the solution set for this system as well as its associated homogeneous
system.

. (@ Suppose that both systems of equations AX = band AX = 5:" have
infinitely many solutions. Show that the system AX = (b + b’) has
infinitely many solutions.

(b) If tk(A) = 1, show that all nonzero rows of A are multiples of one
another.

. For each of the following systems of equations, first solve the associated
homogeneous system and then indicate how the general solution is
related to the homogeneous solution. Explain how the corollary in
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10.

11.

12.

this section tells you the number of parameters needed to express the
solution set.

(96

2 2 0 0 ); 2
oz 31)[2]-()
1 1 2 1 W 1

1
© (1
0

X
(1 1 7)<Y) =(1)
VA

AW O
AN~
N——
VS
N~ >
N—
Il
VS
O\ = =
N—

. Find all numbers 7, s, and ¢ for which

(13)0)-C)

has a solution.

. Give an example of an inconsistent system of four equations in four

variables whose associated homogeneous system has a solution set that
requires two parameters to describe.

Suppose that M is a 3 X 3 matrix and the homogeneous system of
equations MX = ( has a unique solution. Let B be a 3 X 1 matrix. Why
do you know that the system MX = B has a solution?

Suppose that M is a 5 X 7 rank-5 matrix and let B be any 5 X 2 matrix.
Explain why the matrix equation MX = B can always be solved for X.

True or false? If true, give a reason, and if false give a counterexample.

@ If Ais an n X m matrix where 7 > m, then the system of equations
AX = 0 has infinitely many solutions.

b IfAisan n X m matrix where n > m, then for any b € R™ the
system of equations AX = b has infinitely many solutions.

(©) If Ais a rank-n, X m matrix, then the system of equations AX = 0
has a unique solution.

(d) If Ais an 7 X n matrix, then the system of equations AX = b has
a unique solution.

(e) For any matrix 4, the system of equations AX =0 has a solution
if and only if the system AX = b has a solution for all b.
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Group Project
(2) Show that (ay, b),(ay, by), .. ., (ay, by) are collinear in R? if and only if
1 & b
rk 1 cfz bz =2.
1 4, b

(b) What is the appropriate generalization of part (a) to points (a4, by, 1),
(a3, by, ), ..., (G, by, cp) E RP?

The Simplex Algorithm

In this section we show how the technique of Gaussian elimination can be
used to solve linear optimization problems with constraints. The extension
of Gaussian elimination used for these problems is called the simplex algo-
rithm. The simplex algorithm was developed so that computers could be
used to solve optimization problems with a large number of variables. Since
our goal is to get an idea of how and why this important algorithm works,
we will only consider systems with two or three variables (such as those
considered in Sec. 1.4).

The Feasible Region Using Equalities and Positivity

For the moment we consider two variables X and Y. The version of the
simplex algorithm we study in this section is designed to solve linear op-
timization problems whose feasible region is described by the positivity
conditions X = 0 and Y = 0, together with a collection of r linear inequal-
ities X+ b)Y =d, X+ Y =dh,...,a,X+ b Y < d,. When we
apply the simplex algorithm, we always start with feasible regions described
in this way. Other optimization problems with different feasible regions can
be solved by transforming their conditions to this form.

For example, recall the constraints on the assembly-line problem con-
sidered in Sec. 1.4:

T=25 C=25 T+ C=100, 4T + 6C = 500.

Since the variables are constrained to be greater than 25, these conditions
do not have the required form. However, if we introduce new variables
X and Y defined by X = T~ 25 and Y = C — 25, then the conditions
T = 25, C = 25 show that X = 0 and Y = 0. Transforming our other
constraints gives that 7+ C = X +25+ Y + 25 = 100, so X + Y = 50, and
4T + 6C = 4(X + 25) + 6(Y + 25) = 500 so 4X + 6Y = 250. Altogether,



110

3. SYSTEMS OF LINEAR EQUATIONS

our original constraints, in terms of X and Y, read
X=0,Y=0 X+Y=<50 4X +6Y < 250.

We now work with this feasible region for X and Y, noting that we can
recapture our original T and C in any problem solved for X and Y using
the equations 7= X + 25and C = Y + 25.

Since we are interested in applying Gaussian elimination to study our
optimization problem, we next need to replace our inequalities with equal-
ities in order to obtain a system of equations. We can do this as long as
we require all variables to represent positive numbers only. This is ac-
complished by introducing a so-called slack variable for each inequality.
Observe, for example, that the inequality X + ¥ =< 50 is equivalent to the
equality X + Y + §; = 50 together with the positivity condition $; = 0. We
call S, the slack variable. Using this idea for each equation, we find that our
constraints

X=0,Y=0, X+Y=50 4X +6Y <250
can be replaced by the constraints
X=0,Y=0, 5=0 =0, X+Y+S5 =50, 4X +6Y + S, = 250,

since restricting our attention to the variables X and Y only gives the same
feasible region as before.

The Simplex Tableau

Suppose next that we have a linear function F(X, Y) = aX + bY + d whose
value is to be maximized subject to linear constraints. Introducing a new
variable V and considering the equation —aX — bY — d + V = 0, we see
that a solution to this equation, say X = p, Y = g, V = s corresponds
to the output value F(p, q) = s of our linear function. The slack variables,
together with V, reduce our problem to studying the solutions to a system
of linear equations with only positivity conditions.

We illustrate this reduction by considering the linear function P(C, T) =
6C + 8T — 25 studied in the assembly-line problem. Recall our goal in
Sec. 1.4 was to maximize P(C, T), since it was a profit function. Using our
change of variables given by X = T — 25 and Y = C — 25, our function
P(C, T) becomes P(X,Y) = 6(X+25)+ 8(Y+25—25= 6X+ 8Y +10.
Introducing the value variable' V, we can replace our function P(X, Y) by
the equation —.6X — 8Y + V = 10. Taking this equation together with our

The terminology of value variable is not common usage. Also, the appearance of V in the
tableau is not standard but is included here because the author feels it helps clarify the ideas.
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previously obtained constraint equations gives the system of equations
X+Y+ S8 =50 4X+6Y+ S, =250, —6X— 8Y+ V=10.

Any solution to this system of equations that satisfies the positivity condition
X=0,Y=05 =0,8, = 0 will give a value for V that is the output of
our function P(X, Y), where X and Y satisfy our original constraints. So
our problem now is to find a positive solution to our new system of linear
equations with the value of V as large as possible.

In order to find the choice of X and Y that maximizes the value of V,
we consider the augmented matrix of our system, which is known as the
simplex tableau. In order to keep track of all the information in the tableau,
we list the variables in the top row and put the equation corresponding to
the function to maximize on the bottom row. Our tableau in this case is the
following table.

X Y & SV

1 1 1 0 0] 50

4 6 0 1 0]250
-6 -8 0 1] 10

The Strategy for Maximizing V

We next look closely at the tableau just written. Any sequence of row
operations on this tableau will not change the set of solutions to the system
of equations it describes. How can we pick out a solution with V' maximal
by applying row operations to the tableau?

The key is to think about the bottom row and the equation it represents.
Suppose it looked like (0 0 3 2 1 | 25). This would correspond to the
equation 3S; + 25; + V = 25. Then, since both §; = 0 and §; = 0, and
since the coefficients of S; and S, are both nonnegative, we would find that
the maximal V is obtained when $; = 0 = §,, in which case V = 25. We
could find the values of X and Y giving this V using back-substitution in the
other rows of the tableau, and our optimization problem would be solved.
So our strategy is to obtain nonnegative coefficients on the bottom row of the
tableau.

Following this strategy, we now apply row operations to our initial
tableau, trying to make all coefficients in the bottom row nonnegative. In
each step we will choose a column containing a negative coefficient in the
bottom row for elimination, and choose a row above whose multiples will
be used in the reduction. We call the chosen row the pivot row, and we call
the element in the column above the chosen negative coefficient the pivor.
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Starting with

X Yy & SV

1 1 1 0 0] 50

4 6 0 1 0250
-6 -8 0 0 11|10

we use the first row as the pivot row with pivot element 1 to eliminate the
coefficients of X in the second and third rows.

X Y & SV
1 1 1 0 0150
0 2 -4 1 0]50
0 -2 6 0 1]40

We next use the second row as a pivot row with pivot element 2 to eliminate
the coefficients of Y in the first and third rows.

XY & S V

1 0 3 =5 0]25
0 2 -4 1 0150
0 0 2 1 1145

This third tableau has a bottom row with only positive coefficients. We see,
setting $; = 0 = S, and using back-substitution, that ¥ = % = 25 and
X = 25 give the maximal value of V = 45. This is the maximum value
of 6X + 8Y subject to our given constraints. If we return to our original
variables C and T, we find that T = X + 25 =50 and C = Y + 25 = 50.
This is the answer obtained for the problem in Sec. 1.4 using the principle
of corners.

The Simplex Algorithm

Our strategy of obtaining a bottom row without negative coefficients is
almost everything we need to understand the simplex algorithm. There
is, however, one difficulty we must be careful about. Suppose our back-
substitution gave us negative values for our variables? Then we would be
in trouble since our constraints require them to be positive. We were lucky
in the preceding example that this didn’t happen. In order to avoid this
difficulty, we must choose our row operations so that all entries above the
bottom row in the right column are nonnegative. Then when we back-
substitute, we will obtain nonnegative values for our variables. For this, we
must choose our pivot row so that the ratio of the right-hand entry to the
Divot is nonnegative and minimal among all possible choices. Then, as we
note in the following example, the nonnegativity of the right-hand column
will be maintained during our row operations.
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For example, suppose we desired to maximize 6X + 8Y subject to the

constraints

X=0,Y=0 X+Y=<10, X+2Y <16, 2X+ Y =<18.

We set up the initial tableau.

X Y 8§ S S V
1 1 1 0 0 0]10
1 2 0 1 0 0]16
2 1 0 0 1 0/18
-6 -8 0 0 0 10

We decide first to eliminate the —6 in the bottom row. Looking at the three
ratios of last-to-first column entries, 10 : 1, 16 : 1, and 18 : 2, we see that the
third is minimal; hence the third row is our pivot row. Row operations give

X Y S 8 & V
0 3 1 0 -1 01
0 2 0 1 -1 0|7
2 1. 0 0 1 0]18
0 -5 0 0 3 1|54

We next eliminate the —5 in the bottom row using our first row as the pivot
row (check that the ratio 1: 1 = 2: 1 is smaller than the ratio 7: 2 = 14:3.)

We find
XY & 8 S V
1 1
0 3 1 0 —5 0f1
0O 0 -3 1 1 0| 4
2 0 -2 0 2 0|16
0 0 10 0 -2 1|64

We might have hoped to be done at this point, but we still have a negative
coefficient in the bottom row to eliminate. The second row is our pivot
this time, since it has minimal nonnegative ratio. (We can’t use the first row
since a negative pivot would bring new negative entries into the bottom
row.) We find

XY & 8 &V
0 3 -1 1 o0 0|3
0 0 -3 1 1 0|4
2 0 4 -2 0 0]8
00 4 2 0 1|72

We conclude that the maximum value of 6X + 8Y on our region is 72 and
occurs (by back-substitution) when X = 4 and Y = 6.
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Problems

This example illustrates the simplex algorithm. We summarize its key
ingredients next.

The Simplex Algorithm. Suppose a linear optimization problem has con-
straints as formulated in the beginning of this section. Assume that a tableau
for this problem has a negative coefficient in its bottom row. The simplex
algorithm produces another tableau according to the following steps:

(a) Choose a negative entry in the bottom row and call its column the pivot
column.

(b) The pivot row is chosen to be a row whose ratio of the last column
entry to the pivot column entry is positive and smallest among all such.

(c) Using as pivot element the entry in the pivot column and pivot row, row
operations are applied to reduce all other entries in the pivot column
to 0.

Steps (1), (2), and (3) are repeated until the bottom row has no negative
entries. The maximum value can be read from the lower right-hand corner
of the final tableau. The values of the variables giving the maximum can be
found by back-substitution.

The simplex algorithm can be used to solve linear optimization problems
in as many variables as needed. Some three-variable examples are given in
the problems next. They can be solved using the same method as in the
two-variable case. The only difference is that the tableau is larger.

1. (a) Use the simplex algorithm to find the maximum value of the linear
function f(X, Y) = 2X+5Y +1 subject to the constraints that X = 0,
Y=0,X+Y=<6and2X+ Y <8

(b) Use the simplex algorithm to find the maximum value of the linear
function g(X, Y) = 5X + 2Y subject to the constraints that X = 0,
Y=0,X+Y=<64X+Y=12 and2X + Y <8.

2. (@) Use the simplex algorithm to find the maximum values of Z =
3X +4Y subject to the constraintsthat X = 0, Y =0, X <3, Y < 3,
and 6X + 8Y = 30.
(b) The maximum value in (a) occurs at more than one vertex of the
feasible region. How does the simplex algorithm account for this?
3. Use the simplex algorithm to find the maximum value of the linear
function WX, Y) = X — 2Y + 1 subject to the constraints that X = 0,
Y=0,3X+Y =8, and X + 3Y = 8. Why did the simplex algorithm
work so quickly?
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4. (a) Use the simplex algorithm to find the maximum value of
R(X,Y,Z2) = 2X + Y + 4Z subject to the constraints that X = 0,
Y=0,Z=0,and X+ Y+ Z =4

(b) Use the simplex algorithm to find the maximum value of
R(X,Y,Z) = 2X + Y + 4Z subject to the constraints that X = 0,
Y=0,Z=0,X+Y+Z=4 and2X+2Y+Z=6.

5. Use the simplex algorithm to find the maximum value of T(X, Y, 2) =
6X — 9Y + 3Z subject to the constraints that X = 0, ¥ = 0, Z = 0,
X+Y+2Z=10,X—Z=<6,and 2Y +3Z =12

6. (a) Solve the optimization problem considered in the previous sub-
section by graphing the feasible region and using the principle of
corners.

(b) Now compare your feasible region to the four tableaus constructed
in the previous subsection. If you back-substituted in the initial
tableau to get V = 0, you would have required X = 0 and Y = 0,
the lower left vertex of the feasible region. Similarly, back-substitu-
tion in the second tableau to obtain V = 54 gives ¥ = 0and X = 9,
the lower right vertex of the feasible region. To which vertices do
the third and fourth tableaus correspond? Explain this correspon-
dence more carefully than is described here. Why do you think
these vertices arise?

7. Find the maximum value of 32X + 28Y + 35Z subjectto X =0, Y =0,
Z=Z0,X+2Y+7Z2=8,3X+2Y+4Z=8,and2X +3Y +5Z2 =<7
using the principle of corners. For this find all the vertices that you need
to test using a calculator. Compare this process to the simplex algorithm.

Group Project: Minimum Optimization Problems and Duality

Consider the optimization problem of trying to find the minimum value of
F(X,Y) = rX + sY subject to the constraints

X=0,Y=0,aX+bY=c, dX+eY=f

where a, b, ¢, d, e, and f are all positive real numbers. In this project you
will find out how to transform this optimization problem into one of the
types considered in this section.

(a) Consider the matrices
_f(a b _ _
A—(d e))c (C f)) D"(r S).

Then we can say that 7 lies in the feasible region for our problem if A7 = C,
and that the function we choose to minimize is D7 among all feasible 7 with
U = 0. Explain why this makes sense.

(b} Glance ahead to Sec. 4.1 and read the definition of the transpose ma-
trix. The dual problem to the problem just considered is the problem of
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maximizing C*# subject to the constraint A'@ < D' with @ = 0. Write out
specifically what this dual problem is.

(c) Suppose that 7 and @ are feasible vectors for the problems considered
in (a) and (b) respectively. Show that C*& = D#. To do this, explain why
the following reasoning works: Since AV = C, we find that @AV = @'C;
and since @A < D, we find that @’ AU < D?. We conclude that @' C < D7,
which, using @' C = C*w, is what we want.

(d) Using the inequality C*#& < D%, show that the problem considered
in (@) and its dual problem considered in (b) have the same solution.

(e) Use the ideas presented above to find the minimum value of F(X, Y) =
4X + Y subject to the constraints

X=0,Y=0 X+2Y=6,3X+5Y=7

by applying the simplex algorithm to the dual problem.



The Matrix Product: A Closer Look

Matrices are useful in studying systems of linear equations precisely because
matrix multiplication is defined so that the coefficient matrix times the col-
umn of variables gives the column of constants for the system. We begin this
chapter by investigating matrix multiplication from a more general point of
view.

Products of Three Matrices

Suppose that a fruit dealer has a fleet of four large and six medium-sized
vans that are used for deliveries. The van drivers have found that the most
efficient way to pack a large van is to lay 12 large crates along the bottom
and then stack 20 smaller crates on top. For a medium-sized van it is best
to stack 8 large crates on the bottom and place 14 small crates on top. This
fruit dealer always packs 40 pounds each of bananas and apples in his large
crates (bahanas are easily smashed and need strong crates) and 20 pounds
each of apples and oranges in his small crates.

Suppose our problem is to find out how many pounds of apples, ba-
nanas, and oranges this fruit dealer can deliver each day. If we are counting
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apples, we can count in two ways. As a first strategy we could figure out
the number of pounds of apples in each large van and each medium van,
multiply these numbers by the numbers of large and medium vans (in this
case 4 and 6), and add the result. Alternatively, we could figure out the
number of large crates and the number of small crates carried by the fleet of
vans, multiply these numbers by the number of pounds of apples each type
of crate carries, and add these numbers to find the result. Both methods are
valid strategies for counting the total pounds of apples carried.

Either of these strategies can be applied to bananas and oranges as well
as apples. Let us express both of these computations in terms of matrices.
Consider the matrices

40 20
A= (40 o), B= (;g 12), c= <é)

0 20
In matrix A the first column entries are the pounds of apples, bananas, and
oranges in the large crates, and the second column gives those numbers for
the small crates. In matrix B the first column entries are the number of large
and small crates stacked in the large vans, and the second column gives
those numbers for the medium vans. Finally, matrix C is the column matrix

denoting the number of large and medium vans.

Suppose we are counting according to our first strategy. Then we will

compute the number of pounds of each fruit carried in each type of van. This
is given by the matrix product AB, whose columns give this information:

40 20 12 8 880 600
AB = (40 O) (20 14> = (480 320) .
0 20 400 280

For example; we see that each large van carries 880 pounds of apples and
that the small vans each carry 600 pounds of apples. When we multiply this
product AB by the column matrix C, we find the result of our first strategy,

namely
880 600 4 7120
(AB)C = | 480 320) (6) =1 3840 | .
400 280 3280
In particular, we find a total of 7120 pounds of apples delivered daily.
Suppose we carried out the second strategy. In order to figure out the

number of large and small crates carried by the entire van fleet, we would
multiply the matrices B and C, producing

o= (a42) ()= (&)

This means the fleet can carry a total of 96 large crates and 164 small crates.
Multiplying by our matrix A gives us the total number of pounds the fleet
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40 20 96 7120
A(BC) = (40 O) (164) = (3840) .
0 20 3280
Since we noted earlier that each of these strategies should yield the same
answer, we should not be surprised that the resulting matrix products agree!
We have just demonstrated in this example the general algebraic fact that
(AB)C = A(BC), that is, matrix multiplication is associative. The associative

law is the most important algebraic law about matrix multiplication. For
emphasis we state it as the next theorem.

can carry:

The Associativity of Matrix Multiplication

Theorem 8. If A is an m X n matrix, B is an n X p matrix, and C
is a p X q matrix, then (AB)C = A(BC).

The previous discussion demonstrated why this thecrem is true. Next we
give a purely algebraic (or symbolic) proof of this result. But we emphasize
that the reason this associative law works is because one can count collec-
tions of collections in several ways, just as the fruit was counted above.

For the proof we recall the Y~ summation notation. We write Y-, a; as
an abbreviation for the sum of the #» numbers @y + a; + a3+ - -+ a,,—1 + a,.
When you read the next proof, look carefully at which index is used with
each summation. It is either j or k. Also note that between the third and
fourth lines in the string of equalities we have the adjacent summation signs
P, > -, and PRy Y-2_,. The proof uses the fact that these summations
each describe the sum of the same pn elements, except in different orders.

Proof. Using the associative and distributive laws of the real numbers, we
compute the irth entry of (AB)C:

p
(AB)CG,r) = Y (4B)G, B)C(k, )

1

k=

p n

=Y " | 4G pBG | Cle,r
k=1 | j=1

P n
= Z Z AG, PB(j, ©YC(k, 1)

k=1 j=1

n p
= A, ])B(], k)C(k, 1)
j=1 k=1
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n p
=3 4G, p [Z B(j, )C(k, r)]

7=1 k=1

= 4G, NBOG, )
=1

i
= ABCO), 7).

This proves the theorem. O

We must emphasize one more time that matrix multiplication is not
commutative, that is, in general one does not have AB = BA. However, the
associative law is extremely useful and can be applied to long products of
matrices. For example, the associative law shows that

[(AB)CID = (AB)(CD) = AIB(CD)].

This means that it is meaningful to write this product without parentheses
or brackets as ABCD. In other words, we need not be concerned about the
order in which the multiplications are performed as long as the order in
which the matrices are listed remains the same.

Different Views of the Matrix Product

Consider the following expansion for the matrix product:

-
_[(2 3 4 _ (2 3 4\ _ (74
e=(33 %) (S) -7(3)+s(3)+2(3)- (%)

At first glance this formulation looks strange and perhaps even wrong,
because it is not the usual way you multiply matrices. What interests us
is the expression following the second’equal sign. It is a sum of multiples
of the columns of matrix A. The numbers by which the columns of A are
multiplied are the entries of matrix B. A sum of multiples of columns is
called a linear combination of those columns. This example shows that if
B is a column matrix, then the column matrix 4B is a linear combination of

the columns of A.

Next recall that if B has more than one column, then the matrix product
AB was defined to be the matrix whose columns are the products of 4 with
the corresponding columns of B. Combining this with the observation just
made about the product of a matrix 4 with a column gives the following
fact.

Fact. The columns of a product matrix AB are linear combinations
of the columns of A.
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We can also turn this observation around. What can we say about the
rows of a product matrix AB? It turns out that the rows of a product AB are
linear combinations of the rows of B. Here is an example illustrating this:

1 2

(1 2 3)<1 3)=(1~1+2-1+3-0 1-2+2-3+3-4)
0 4

=1(1 2)+2(1 3)+3(0 4)=(3 20).

We have the following fact.

Fact. The rows of a product matrix AB are linear combinations of
the rows of B.

Triangular and Diagonal Matrices

Two important types of matrices are the triangular and diagonal matrices.

Definition. Suppose A is an n X n (square) matrix. A is called upper
triangular if A(i, j) = 0 whenever i > j. A is called lower triangular if
AL, ) = 0 whenever i < j. A is called diagonal if AGi, j) = 0 whenever
i # j, that is, whenever A is both upper and lower triangular.

As the name suggests, upper triangular matrices are those matrices
whose nonzero entries are contained in the “triangle” above the diagonal.

For example,
1 3 2 4 0 O
(o , 1) and <o 0 o)
0 0 3 0 0 2

are both upper triangular. The second matrix is also lower triangular, and so
it is diagonal. The following properties of triangular and diagonal matrices
will be useful in subsequent sections.

Theorem 9. (i) Suppose that A and B are both upper triangular n X n
matrices. Then AB is an upper triangular matrix. If A and B are both
lower triangular, then so is AB.

(i) If A and B are both diagonal n X n matrices, then AB = BA.

The reason the theorem works is easily seen when investigating exam-
ples. For instance, consider the product of lower triangular matrices:

3 00 10 0 3 00
1 1 0 010)=<1 1 0.
0 2 1 1 0 1 1 2 1

The product is lower triangular because in the calculation of any upper right
entry we are always adding together three zeros.



122

4. BASIC MATRIX ALGEBRA

Elementary Matrices and Row Operations

It is useful to analyze elementary row operations on' matrices in terms of
matrix multiplication. The key concept is that of an elementary matrix.
Each of the three basic row operations can be interpreted as an appropriate
matrix multiplication.

Definition. An n X n elementary matrix is a matrix obtained from the
n X n identity matrix I, by applying a single elementary row operation.

We see that there are three types of elementary matrices. The 3 X 3
elementary matrices are displayed below. The first operation gives

kR 0 O 1 0 O 1 0 O
0 1 0) or (O k O) or (O 1 O),
0 0 1 0 0 1 0 0 &

where k& is a nonzero real number. The second. operation gives, for any
nonzero real number k, the six matrices

0

k1,

1

1 k& O 1 0 & 1
01 0], 01 0]}, ( 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1 0
k1 0], 01 0], ( 0 0 ) .
0 0 1 k 0 1 0 1
Finally, the third operation gives the three matrices
01 0 0 0 1 1 0 0
1 0 0], 01 0}, (O 0 1) .
0 0 1 1 0 0 0 1-0
Elementary matrices arising from this third operation are called elementary
permutation matrices.

Elementary matrices connect row operations and matrix multiplication
as is noted next.

= O O = O

Theorem 10. Suppose that E is an n X n elementary matrix and A
is an n X m matrix. Then the matrix EA is the matrix obtained from A
by applying to A the elementary row operation that was used to obtain
E from I,.

This result is best understood by looking at a few examples. Note for
instance that the matrix multiplication

(3 0) (2 b ¢ @)= (3 % % 3
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simply amounts to multiplying the first row of the right-hand matrix of the
product by 3. This is precisely how the elementary matrix on the left was

obtained; that is,
3 0
0 1

is obtained by multiplying the first row of the 2 X 2 identity by 3.
As a second example,
1 2
0 1

is the elementary matrix obtained from the identity by adding two times the
second row to the first. If we perform the multiplication

1 2\ (2 3 4\_(4 7 4
0 1 1 2 0 1 2 0)’
we obtain the same result as adding two times the second row of

(234)

\1 2 0

to the first row.

Matrix Multiplication and Row Equivalence

In the next theorem we show how sequences of elementary operations
(which up to now have been our main computational tool) can be under-
stood as a matrix multiplication. In particular, we will be able to exploit
properties of matrix algebra when studying row equivalence.

For example, consider the sequence of elementary row operations

13 2\ (1 3 2
1 5 4 0 2 2
1 3 2 1 0 -1
— = .
(011) <01 1)

The final matrix in this sequence is a reduced row-echelon matrix. Accord-
ing to Theorem 10, these three elementary row operations correspond to
multiplication by the elementary matrices

10 1 0 1 -3
(9) G5 = (6 7)

Consequently, the following product describes the sequence of row opera-
tions just performed:

G DEHEDETH-G1 )

- O
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Multiplying our three elementary matrices together shows

(1 0 —-1>=< 2 —%)(1 3 2)
1 :
0 1 1 : : 1 5 4
In particular we see that the combined result of our sequence of three row

operations is the same as multiplication on the left by a 2 X 2 matrix.
Theorem 11 summarizes these ideas.

Theorem 11. Assume that A and B are row equivalent matrices.
Then there exist elementary matrices E,, E,, ..., E; such that B =
E,E,_, - - - E A. Consequently, there is an invertible matrix S such that
B = SA.

Proof. By hypothesis there is a sequence of elementary row operations
that transform A4 into B. Suppose that the sequence of matrices resulting
from these elementary operations is A = Ay, A, A, ..., As—1, As = B.

Applying Theorem 10 we can find elementary matrices F, E, ..., E; such
that 4; = E1 4y, A, = EA,, ..., and B = A; = E;As—1. From this we see that
B = EA; 1 = E(E; 145-2) = -+ = E(E;_1(---(EA)---)), as required.

Applying the associativity of matrix multiplication (Theorem 8), we can
omit all the parentheses. We set § = E;E;_ - * - E1, and the result follows. O

The theorem has the following corollary, which we will need later.

Corollary. Suppose that A is an invertible n X n matrix. Then there
exist elementary matrices Ey, E,, . . ., E; such that A = EE,_, -+ E,.

Proof. Since A is invertible, the results in the subsection on inverting ma-
trices in Sec. 3.3 show that I, and A are row equivalent. The theorem now
shows that A = E;E;_; - -+ E\l, = E;E;_, - - E; as required. O

The Transpose

Sometimes it is important to interchange the rows and columns of a matrix.
We conclude this section by finding out what happens when this is done.
We start with a definition.

Definition. Suppose 4 is an 7 X m matrix. The transpose of A, denoted A’,
is the m X n matrix with A’(j, 7)) = AG, j) for all jand i, where 1 =< j = m
and 1 < i < n. In other words, A’ is the matrix obtained from A4 by
interchanging the rows and columns. If A" = 4, then A4 is called symmetric.
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For example, we have

1 4\' 0 0 1\ 0 0 1
(1 3) =(i ; g) and (o 1 0) = (o 1 o).
8 2 1 0 O 1 0 0

The second of these two matrices is symmetric.
It turns out that the transpose of a product is the product of the trans-
poses in reverse order. This fact turns out to be quite useful later.

Theorem 12. IfA is an m X n matrix and B is a n X p matrix, then
(4B)' = (B')(A4).

Proof. Observe that B is a p X n matrix and A’ is an 7 X m matrix so that the
product (B)(A") makes sense. Let A = (a) and B = (bje). The definition
of matrix multiplication shows that the ikth entry of AB is Z;;l aijby,.
Applying the transpose, this becomes the kith entry of (AB)*. Next note that
by is the kjth entry of B’ and ay; is the jith entry of A'. Again using the
definition of matrix multiplication, we see that the kith entry of (B)(A4") is
E;;l(bjk)(a,‘ ;). The theorem follows since these two sums are identical. O

One nice application of the theorem is in constructing symmetric ma-
trices, because if A4 is any matrix then taking B = A’ in the theorem gives
(44" = (4)'A'. But clearly, (4")' = A, so we find that (44")' = AA’. This
shows that A4’ is always symmetric. As an example, if

2 6
(2 3 4 r_ (2 3 4 _(2 43
A (6 5 4), then AA (6 5 4)<2 Z) <43 77).

1. Are the following elementary matrices?

1 0 O 1 1 2 1
@ (O : 0) ®) (O 1) © (0 1)

2. Identify the sequence of elementary operations used below and then
show how to obtain them by multiplication by a product of elementary

matrices.
1 2 3 . 1 2 3 — 0 0 1
3 6 8 1 2 2 1 2 2
3. (a) Consider the matrix
0 0 1
P= (1 0 O)
01 0o

For any 3 X m matrix A4, describe PA in terms of A.
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10.

11.

12

(b) Consider the matrix

1 1 1
Q=<0 1 1).
0 0 1

For any 3 X m matrix A, describe QA in terms of A.

. Use elementary operations to transform A to B, and use your row

operations to find an invertible matrix M such that A = MB, where 4
and B are as specified.

(a)A=(1 2) andB=((1) 1)

21 0

_(1 1 2 _(1 1 2
wa-(} ) Yaan- (11 2)

(11 2 _(2 4 5
(C)A‘(o 2 1)andB (1 3 3)

. Suppose that a 2 X 2 matrix A commutes with all other 2 X 2 matrices

(that is, AB = BA for all 2 X 2 matrices B). Show that

A=<a O) for some a ER.
0 a

. Find six different 2 X 2 matrices A4 for which

a_(1 0
2= (5 ).

(@) If Aand B are invertible 7 X 7 matrices, show that the product AB
is invertible and that (4B)™! = B71471,

(b) Suppose that 4 is an invertible matrix. Show that 4’ is invertible
and that (4)7! = (4™D".

Find a 2 X 2 matrix A4 for which 44" # A'A.

Suppose that the 7 X n matrix T = (¢;) is upper triangular. If 7% = 0,
show that ¢; = 0 for all i. Is the converse true?

Find A if A is

3 1 1 4 3 4 4 1 2
@ (3 3 2 1) ® (4 2 1) © (4 4).
2 4 4 9 4 1 9 3 7

(a) If A is symmetric, show 4 is square.
(b) Show that for any square matrix A, the matrix A + A' is symmetric.

(c) Assume A4 and B are symmetric. Show that AB is symmetric if and
only if A and B commute. (Two matrices A and B are said to
commute if AB = BA.)

A matrix K is called skew-symmetric if K' = —K.
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(a) For any square matrix A show that A — A’ is skew-symmetric.
(b) For any skew-symmetric matrix K, if (I — K) is invertible show that
the matrix B = (I + K)(I — K)! satisfies B'B = I = BB'.
13. Express the following matrices as products of elementary matrices.

1 0 1
@ (; j) ® (1 1 0)
0 0 2
14. When is the product of two elementary matrices another elementary
matrix?

15. What conditions characterize when an upper triangular, # X »n matrix
has rank n?

Group Project: Elementary Column Operations

You may have wondered if column operations are as useful as row opera-
tions. Although they are not used as frequently, there are some important
uses. Here is one such application.

(a) Interpret multiplication on the right by elementary matrices as column
operations.

(b) Use part (a) together with the existence of a row equivalent, reduced
echelon matrix to show that for any m X n rank m matrix A, there exist
invertible matrices P and Q such that PAQ = (I, | 0) is a “partitioned”
matrix with left-hand block I, and right-hand block the m X (nz — m)
matrix of zeros.

Group Project: The Chain Rule and Matrix Multiplication

This project requires some familiarity with multivariable calculus. Suppose
that f : R”™ — R” is a differentiable function. The Jacobian of f is the
n X m matrix of functions f’ whose entries are the partial derivatives of the 7
component functions of F with respect to the m variables. More precisely, if
we express f(xy, ..., Xpy) = (fl(xl, ey Xm),y e, fu(oa, ..4,x,,,)), then f/ =
(fij), where

af;
/ = e—
fi/ ox;

Recall from one-variable calculus that if £ g : R — R are both functions
with continuous derivatives, then the derivative of the composite function
f ©g:R — Ris given by the chain rule as (f o @'(x) = f'(g(x))g'(x).
This exact same formula can be used to compute Jacobian matrices of
composites of functions of several variables. The only difference is that
multiplication of matrices is used instead of multiplication of real numbers.
As a group, decipher what this means. Give some specific examples too,
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Fig. 4.1. How many A

paths form A to B?

where m and 7z are small. Note that the sizes of matrices will be appropriate
for multiplication in the chain rule only when the dimensions of the domains
and ranges of the functions involved are such that composition makes sense.
One thing to be careful about—be sure you don’t forget to substitute the
function g into f' before multiplying by g’ when applying the chain rule!

Fibonacci Numbers and Difference Equations

Counting More Paths

We saw earlier in Sec. 1.3 that matrix arithmetic could be quite useful in the
combinatorial problem of counting paths in a graph. In this example we
will find a different relationship between the problem of path counting and
matrix algebra. Consider the graph in Fig. 4.1. Suppose that you needed to
calculate the number of paths between the points 4 and B, where you are
allowed to travel only in the directions indicated by the arrows, and you
are not concerned about the lengths of the paths.

If we try to tally the total number of paths, we will quickly discover that
the list grows too rapidly. Not to say that this method won’t work (it will,
try itD), but it is best in this type of problem to find an organized method
for counting. Observe that except for the left-hand vertices on this graph,
there are precisely two paths coming into each vertex. The vertices on the
top row have as possible previous vertices the two vertices in the column
immediately to the left, and the vertices on the bottom row have as possible
previous vertices the vertex above and the vertex to the left. This suggests
that we number the vertices of the graph as indicated in Fig. 4.2.

With the vertices of the graph labeled as indicated, we see that any path
through vertex #» must come immediately from either vertex » — 1 or n — 2.
In particular, if we know how many paths there are from A to the vertices
labeled # — 2 and n — 1, then adding together these numbers gives the total
number of paths to vertex n. For example, there is precisely one path to
vertex 1 and only one path to vertex 2. This shows that there are 1 + 1 = 2
paths to vertex 3. (These two paths are A > 1 —-3and A —-1—-2— 3)
Continuing this line of reasoning, we next see that there are 1+ 2 = 3 paths
to vertex 4, and 2 + 3 = 5 paths to vertex 5. If we denote by P(n) the
number of paths to vertex n, our procedure gives the following result.

56 7 8 9 10 11 12
5 8 13 21 34 55 89 144

A 4
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1 3 5 7 9 11

vertices for path counting A > m
‘ B

2 4 6 8 10 12

We conclude that there are 144 paths between A4 and B. It might have been
possible to count them by making a list, but without an organized method
the possibility for error is great.

The Fibonaccli Numbers and Matrices

The sequence of numbers given by the function P(n), 1,1,2,3,5,8, ...,
is a famous sequence known as the Fibonacci sequence.! P(n) is-called
the nth Fibonacci number. The facts that P(1) = P(2) = 1 and P(n) =
P(n — 1)+ P(n — 2) for n = 3 tie the Fibonacci numbers to matrices
in a fundamental way. Since each Fibonacci number is determined by its
two predecessors, we consider the column vector of successive Fibonacci

numbers
P(n+1)
P(n)
and use matrix methods to analyze values of P(%) for various #. The method
for determining the next Fibonacci number shows

Pn+2)\ _ (Pn+D+ P
P(n+1) P(n+1)

_(1 1\ (Prn+D
10 P(n) )’
From this we see that successive values of P(#) can be obtained by repeated
matrix multiplication. Using the fact that

o (i)=(£§2§)=(i ) (1)
(2)-(3)-G 8) ()
(oG D=6 Y0

!Named in honor of Leonardo of Pisa (1175-1250), best known by his patronymic, Fibonacci,
who first wrote down this sequence.
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More generally, we find

Pn+2\ _ (1 1\"(1
P(n+1) 1 0 1
for all natural numbers 7.
The defining equation P(n) = P(n — 1) + P(n — 2) is called a difference
equation. (This terminology comes from the fact that they are closely related
to differential equations.) Just as with the Fibonacci sequence, difference
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