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PREFACE 
Courses that study vectors and elementary matrix theory and introduce 
linear transformations have proliferated greatly in recent years. Most of 
these courses are taught at the undergraduate level as part of, or adjacent to, 
the second-year calculus sequence. Although many students will ultimately 
find the material in these courses more valuable than calculus, they often 
experience a class that consists mostly of learning to implement a series of 
computational algorithms. The objective of this text is to bring a different 
vision to this course, including many of the key elements called for in 
current mathematics-teaching reform efforts. 

Three of the main components of this current effort are the following: 

1. Mathematical ideas should be introduced in meaningful contexts, with 
formal definitions and procedures developed after a clear understanding 
of practical situations has been achieved. 

2. Every topic should be treated from different perspectives, including the 
numerical, geometric, and symbolic viewpoints. 

3. The important ideas need to be visited repeatedly throughout the term, 
with students' understanding deepening each time. 

This text was written with these three objectives in mind. The first two 
chapters deal with situations requiring linear functions (at times, locally 
linear functions) or linear ideas in geometry for their understanding. These 
situations provide the context in which the formal mathematics is developed, 
and they are returned to with increasing sophistication throughout the text. 

In addition, expectations of student work have changed. Computer tech­
nology has reduced the need for students to devote large blocks of time 
learning to implement computational algorithms. Instead, we demand a 
deeper conceptual understanding. Students need to learn how to communi­
cate mathematics effectively, both orally and in writing. Students also need 
how to learn to u~e technology, applying it when appropriate and giving 
meaningful answers with it. Further, students need to collaborate on math­
ematical problems, and thus this collaboration often involves mathematical 
investigations where the final outcome depends on the assumptions they 
make. This text is designed to provide students with the opportunity to 
develop their skills in each of these areas. There are ample computational 
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exercises so that students can develop familiarity with all the basic algo­
rithms of the subject. However, many problems are not preceded by a 
worked-out example of a similar-looking problem, so students must spend 
some time grappling with the concepts rather than mimicking procedures. 
Each section concludes with problems or projects designed for student col­
laborative work. There is quite a bit of variation in the nature of these 
group projects, and most of them require more discussion and struggle than 
the regular problems. A number of them are open-ended, without single 
answers, and therefore part of the project is finding how to formulate the 
question so that the mathematics can be applied. 

Throughout the text, as well as in the problems, there are many oc­
casions where technology is needed for calculation. Most college students 
have access to graphing calculators, and the majority of these calculators are 
capable of performing all of the basic matrix calculations needed for the 
use of this text. Students should be encouraged to use technology where 
appropriate, and if a computer laboratory is available it will be useful, too. 
Some problems explicitly require calculators or use of a computer; others 
clearly do not; and on some occasions the student needs to take the ini­
tiative to make an intelligent use of technology. During the in-class testing 
of the material (as part of a second-year calculus sequence), instructors 
found that the use of graphing calculators gave students more time to foc_us 
on conceptual aspects of the material. Instructors used to assigning a large 
volume of algorithmic exercises found they had to reduce the number of 
problems assigned so that students had more opportunity to explore the 
ideas in the problems. 

A brief outline of how the text is organized follows. The first six chap­
ters constitute a core· course covering the material usually taught as part 
of a second-year sequence. Depending on how the class is paced, these 
chapters require seven to ten weeks to cover. The remaining three chapters 
deal with more advanced topics. Although they are designed to be taught 
in sequence, their order can be varied provided the instructor is willing to 
explain a few results from the omitted sections. Taken together, all nine 
chapters have more than enough material for a full-semester introductory 
course. Sections 1.4, 2.4, 3.5, and 4.5 can be omitted if time is tight, although 
it-would be preferable to avoid this, since their purpose is to give geomet­
ric meaning to material that students too often view purely symbolically. 
Chapter 6 could be covered immediately after Chap. 2 should the instructor 
prefer. No knowledge of calculus is assumed in the body of the text. How­
ever, some group projects are designed for use by students familiar with 
calculus. Answers to the odd-numbered problems are given at the end of 
the text. 

• Chapter 1 introduces the concept of a linear function. The main purpose 
of the chapter is to illustrate the numerical and geometric meaning of 
linearity and local linearity for functions. In Sec. 1.2, real data are analyzed 
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so that students see why this subject was developed. Matrices arise, 
initially, for convenience of notation. Linearly constrained maxima and 
minima problems are introduced because the study of level sets in this 
context provides one of the best ways to illustrate the geometric meaning 
of linearity for functions of several variables. 

• Chapter 2 studies the linear geometry of lines and planes in two- and 
three-dimensional space by considering problems that require their use. 
A main goal here is to provide a familiar geometric setting for introducing 
the use of vectors and matrix notation. The last section, covering linear 
perspective, illustrates how these topics impact our daily lives by showing 
how three-dimensional objects are represented on the plane. 

• Chapter 3 develops the basic principles of Gaussian and Gauss-jordan 
elimination and their use in solving systems of linear equations. Matrix 
rank is studied in the context of understanding the structure of solutions 
to systems of equations. Some basic problems in circuit theory motivate 
the study of systems of equations. The simplex algorithm is introduced 
in the last section, illustrating how the ideas behind Gaussian elimination 
can be used to solve the constrained optimization problems introduced 
geometrically in Chap. l. 

• Chapter 4 treats basic matrix algebra and its connections with systems 
of linear equations. The use of matrices in analyzing iterative processes, 
such as Markov chains or Fibonacci numbers, provides the setting for 
the development of matrix properties. The determinant is developed 
using the the Laplace expansion, and applications including the adjoint 
inversion formula and Cramer's rule are given. The chapter concludes 
with discussion of the LU-decomposition and its relationship to Gaussian 
elimination, determinants, and tridiagonal matrices. 

• Chapter 5 develops the basic linear algebra concepts of linear combina­
tions, linear independence, subspaces, span, and dimension. Problems 
involving network flow and stoichiometry are considered and proVide 
background for why these basic linear algebra concepts are so impor­
tant. All of these topics are treated in the setting of Rn only, although 
the results are formulated in such a way that the proofs apply to general 
vector spaces. 

• Chapter 6 returns to more vector geometry in two- and three-dimensional 
space. The emphasis is on applying the dot and cross product in answer­
ing geometric questions. The geometry of how carbon atoms fit together 
in cyclohexane ring systems is studied to help develop three-dimensional 
visual thinking. As mentioned, this material could be covered immedi­
ately after Chap. 2 if the instructor chooses. The author, however, prefers 
to have his students study this chapter after Chap. 5 in order to remind 
them of the importance of geometric thinking. 

• Chapter 7 studies eigenvalues and eigenvectors and their role in the 
problem of diagonalizing matrices. Motivation for considering eigenvec-



viii • PREFACE 

tors is provided by the return to the study of iterative processes initiated 
in Chap. 4. The cases of symmetric and probability matrices are studied 
in detail. This material is developed from a matrix perspective, prior to 
the treatment of linear operators (Chap. 8), for instructors who like to 
get to this topic as early as possible. In fact, this material provides nice 
motivation for Chap. 8. 

• Chapter 8 develops the theory of linear transformations and matrix rep­
resentations of linear operators on R n. A main objective is to show how 
the point of view of linear transformations unifies many of the matrix­
oriented subjects treated. earlier. The chapter returns to the examples 
of electrical networks first studied in Chap. 3, where the cascading of 
networks provides a basis for understanding the composition of linear 
transformations. The basic geometric transformations of rotations and 
reflections are also studied . 

• Chapter 9 returns to the geometry of Euclidean space. The Gram­
Schmidt process and orthogonal projections can be found here. Least­
squares problems are also studied from the geometric point of view. 
Some of the data given in Chap. 1 are fit using linear regressions, bring­
ing the course to a close by showing how the concepts. developed in 
the class deepen our understanding of some of the original problems 
considered. 

I would like to thank my numerous students and colleagues for their 
valuable input during the development of this text, provided both anony­
mously and in person. I am especially grateful to Juan Estrada, Gustavo 
Ponce, and Gerald Zaplawa for their detailed comments. I would also like 
to thank Jerry Lyons of Springer-Verlag for his encouragement and support. 
Finally, I wish to thank my family for their love throughout this project. 

Bill Jacob 
Santa Barbara, California 
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CHAPTER 

LINEAR FUNCTIONS 
L inear functions. are used throughout mathematics and its applications. 

We consider some examples in this chapter. Most of this book is devoted 
to the study of how to analyze and apply linear functions. 

1.1 Linear Functions -
Proportions: An Example 
The concept of proportion, or ratio, is one of the most fundamental ideas 
in elementary mathematics. Without it we would have great difficulty or­
ganizing our daily life. For example, if we begin our day cooking oatmeal 
for breakfast, we need to get our proportions right: According to the recipe 
on one box we need ~ cup of milk mixed with ! ~up of oatmeal for each 
serving. Using too much milk would produce oatmeal soup, and using too 
little milk would produce oatmeal glue. For a good oatmeal breakfast, the 
proportion of milk to oatmeal is the key. 

One convenient way to understand proportion is through linear func­
tions. Our formula for good oatmeal can be viewed as follows. Since 3' ~ = ~ 
cups of milk are required for each cup of oatmeal, the proportion of milk 
to oatmeal is ~. Therefore, we can write the linear function 

Cups of milk = ~(cuPS of oatmeal). 

In this formula we view milk as a function of oatmeal. For example if we 
use ~ cup of oatmeal, then according to the formula the right amount of 

1 
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Fig. 1..1.. Oatmeal graph 
Cups of 

4 

3 

2 

1 

1 2 3 4 
Cups of oatmeal 

milk is ~ . ~ = ¥, or if we are using 16 cups of oatmeal then we need 36 
cups of milk. The advantage of this expression is that no matter how much 
oatmeal we use, the formula tells us the necessary amount of milk for that 
particular amount of oatmeal. 

Linear Functions of One Variable 

We say that a variable Y is expressed as a linear function of another variable 
X when we write an equation of the form 

Y=kX+c, 

where k and c are real constants. In the oatmeal example above, if Y 
represents cups of milk and X represents cups of oatmeal, then the real 
number k is our proportion ~ and the real number c is O. For any linear 
function Y = kX + c, the constant k is the proportional change of Y as X 
varies. The constant c is the value of Y when the value of X is 0.1 

Functions of the form Y = kX + c are called linear functions since 
their graph in the xy-plane is a straight line. Figure 1.1 is the graph of our 
oatmeal function, where the the cups of oatmeal are plotted on the x-axis 
and the cups of milk on the y-axis. 

Finding the Expression for a Linear Function 

Quite often, instead of starting with an explicit formula describing a linear 
function, we have some information about the values of a function that we 
believe to be linear. Suppose we want to write an equation for the function. 
What do we do? 

1 As a notational convenience, in this book we use uppercase letters as variables and lowercase 
letters as constants in algebraic expressions. 
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For example, suppose you work in an office and each morning your 
first task is to make coffee in a large, cylindrical coffee maker. This coffee 
maker displays the amount (and color) of its contents in a glass tube that 
runs straight up above its spout. You !,lave learned by experience that once 
there is only one inch of coffee showing you should throw the contents 
away because your co-workers complain they get too many grounds in 
their cups. You have also learned that if you fill the coffee maker to the 
6-inch mark then you have the right amount of coffee for ten people. 

One morning eight additional coffee-drinking visitors arrive to spend the 
day working at your office. Your problem is to calculate how high to fill 
your coffee maker. Instead of guessing, you decide that coffee consumption 
is a linear function of the number of people drinking coffee. If X denotes 
the number of coffee drinkers and Y denotes the number of inches you 
need to fill your pot to satisfy everybody, your problem now is to find the 
constants k and c in a linear coffee function Y = kX + c. You know that 
the I-inch mark corresponds to the amount required to satisfy nobody and 
that when X = 10 coffee drinkers, the appropriate Y value is 6 inches. This 
gives the follOWing input-output chart for your linear function: 

(Input) X Y (Output) 
o 1 

10 6 

The values X = 0 and Y = 1 show that c = 1 in your linear coffee 
function. Further, substituting c = 1, X = 10, and Y = 6 into the coffee 
function shows 6 = k· 10 + 1. Hence, 5 = k· 10, or k = !. You have 
determined that the coffee function is 

1 
y = 2"X+ 1. 

This shows that when you have 18 coffee drinkers to satisfy (recall you have 
8 visitors for the day) you should fill your coffee maker to the ! ·18 + 1 = 10-
inch mark. We have the following interpretation for the constants c = 1 and 
k = !. The constant c = 1 reminds us that there is always I-inch of cruddy 
coffee at the bottom of the pot. The proportionality constant k = ! tells us 
that each coffee drinker's consumption lowers the pot by an average of ! 
inch each morning. 

More Oatmeal 
There is another way to consider our oatmeal recipe, and it may be better 
suited for feeding a large family. Suppose in one family there are three big 
eaters who like to eat one and a half oatmeal servings, three small oatmeal 
eaters who can eat three fourths of a serving, one normal serving eater, 
and two who eat no oatmeal. Our problem is to determine how much milk 
and oatmeal must be cooked. We first compute how many servings must 
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be prepared. We find that 

( 1) ( 3) 3 31 3' 12 + 3' 4 + 1 + (2' 0) = 74 = "4 

servings are needed. 
We next view the quantities of both milk and oatmeal as functions of 

the number of servings desired. We have the proportionalities: ! cup of 
oatmeal per serving and ~ cup of milk per serving. These give the two 
linear functions 

Cups of milk = ~(nUmber of servings), 

1 . 
Cups of oatmeal = 3(number of servmgs). 

In the above system of equations we have expressed two outputs (oatmeal 
and milk quantities) as a linear function of the single input (number of 
servings). 

We find that to make 7 ~ servings of oatmeal we need ~ . ¥ = ~ cups 
of milk and! . ¥ = H cups of oatmeal. Of course, it is unlikely you will 
measure your ingredients in this way-with this many people (seven you 
know eat oatmeal) it would be sensible to plan on 8 servings and measure 
6 cups of milk with 2~ cups of oatmeal. The point behind this example is 
that instead of viewing the amount of milk as a function of oatmeal as we 
did earlier, it is more natural to view each quantity of milk and oatmeal as a 
function of the number of servings. These two linear functions are graphed 
in Fig. 1.2. 

Renting an Automobile 

As our next example of linear functions, we consider the problem of finding 
the best deal in a car rental. Two competing rental companies rent the same 

Fig. 1.2. More oatmeal 
Cups 

4 

3 

2 

1 

1 2 

of milk 

of oatmeal 

3 4 5 6 
Number of servings 
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car according to the following pricing. Company A charges $25 per day plus 
$0.25 per mile, while Company B charges $35 per day plus $0.10 per mile 
(in both cases the renter pays for all gas used). In order to decide from 
whom to rent we need to know how far we plan to drive and how long 
it will take. The cost of renting from each company is described by the 
following functions: 

PriceA = (days) . $25.00 + (miles)' $0.25, 

PriceR = (days)' $35.00 + (miles) . $0.10. 

These are called linear functions of two variables since they are determined 
by two quantities and the value of the function is the sum of fixed propor­
tions of these quantities. 

For example, if we plan a 200-mile trip for 3 days, we find that the 
cost of renting from Company A would be 3 . $25 = $75 in daily fees and 
200· $0.25 = $50 in mileage fees, for a total of $125. Similarly, renting from 
Company B for the same trip would cost 3' $35 = $105 in daily fees and 
200' $0.10 = $20 in mileage fees, again for a total of $125. So the prices 
are the same for this particular trip. However, if we plan a 1200-mile trip for 
5 days, the expense of renting from Company A would be $425 while the 
expense of renting from Company B would be $295. For such a long trip, 
Company B has the better bargain. On the other hand, if we need a car for 
two weeks but plan to drive less than 20 miles per day, then we could save 
by renting from Company A (check this!). We see from this example that in 
order to make an intelligent decision regarding automobile rental we must 
take into account two variables: the number of miles and the number of 
days. 

Linear Functions of More Than One Variable 

We say that a variable Y is expressed as a linear function of other variables 
Xl, X2 , ... ,Xn when we write an equation of the form 

where kl' k2, ... , k n and c are real numbers. Both automobile rental pricing 
functions considered in the previous section were linear functions of two 
variables, days rented and miles driven. 

In this text we will use the symbol R to denote the set of real numbers, 
and we write c E R to mean "c is a real number." We will use R2 to denote 
the set of pairs (a, b) where a E Rand bE R, and R3 will denote the set of 
triples of real numbers. Using this notation, we will often write f : R -+ R 
to indicate that f is a real-valued function of one variable, f : R2 -+ R to 
indicate that f is a real-valued function of two variables, f : R3 -+ R to 
indicate three variables, and so forth. 
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We noted earlier when considering a linear function of one variable, 
Y = kX + c, that the constant k was the proportional change of Y as X 
varies. If we look at our expression for Y as a linear function of the variables 
Xl, X2, ... , Xn , we see that each of the constants k}, k2' ... , k n has a similar 
interpretation. The constant kl is the proportional change of Y as Xl varies 
while allother variables remain unchanged. Similarly, the constant k2 is 
the proportional change of Y as X2 varies while all other variables remain 
unchanged, and so forth. The constant c is the value of Y when all the 
variables Xl, X2, ... , Xn have value O. 

Rndlng Expressions for Linear Functions 
We previously examined a method for finding the expression of a linear 
function of one variable given some of its values. Similar ideas work in 
studying linear functions of more variables, except that additional data about 
the function are needed. Suppose that the following input-output chart gives 
some Y values of a linear function of two variables Xl and X2• 

Xl X2 Y 
1 0 0 
1 2 6 
2 2 8 
317 

For which constants kl' k2 and c can we express the function in the form 
Y = klXI + k2X2 + c? 

In order to solve this problem, we might hope to find the constant c 
first, but we abandon this strategy since we don't know the value of Y 
when both Xl and X2 are zero. Instead we first try to uncover the value 
of kl . Recall that kl is the proportional change in Y when Xl changes and 
X2 remains fixed. Observe that when X2 = 2 and Xl increases from 1 to 
2, our table shows that Y increases from 6 to 8. This shows that kl = 2 
(because, while Xl increased by 1, Y increased by 2). Observe that we also 
know two Y values when Xl = 1. These show that when X2 increases by 
2 (from 0 to 2), the Y value increases by 6. This shows that k2 = 3 since 
the proportional increase of Y is ~. At this point we know that the linear 
function must look like 

for some constant c. We may determine the value of c by substituting any 
of our function values. When Xl = 1 and X2 = 0 we have Y = 0, so 
substitution gives 0 = 2· 1 + 3' 0 + c. This shows c = -2. We have found 
that our linear function is 
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This method for finding the expression of a linear function requires 
knowledge of enough values to compute the proportional changes in the 
value of the function when only one variable changes. The procedure is 
similar to finding the pOint-slope expression for an equation of a line. 
Recall that if a line has slope m and passes through the point (a, b) in 
R2, it is represented by the equation (Y - b) = m(X - a), known as 
the paint-slope equation. For two variables, suppose that the proportional 
change in Y as Xl varies is ml, the the proportional change in Y as X2 

varies is m2, and the point (a, b, c) in R3 lies on the graph of the linear 
function. Then the linear function can be computed using the expression 
(Y - c) = ml(Xl - a) + m2(X2 - b). 

1. Suppose you are driving at a constant speed and you travel 220 miles 
in 5 hours. Write down the linear function that describes how far you 
have traveled as a function of time during these 5 hours. 

2. Find the equation of the linear functions that satisfy the following input­
output charts (where X is the input and Y is the output): 

Ca) -~ I ~ (b) ~ 1-~5 Ce) ~ I ; 
1 1 2 -1.5 2 -1 

3. (a) Consider the automobile rental pricing described earlier. If you rent 
a car for 5 days, how many miles do you have to drive so that the 
price from either company is the same? What if you rent the car for 
7 days? or 8 days? 

(b) Using your answer to part (a), find a linear function M = kD + c 
that shows that if you rent a car for D days and drive M miles, 
then the price from either company is the same. 

(c) Show that your answer to (b) can be checked by substituting D 
for number of days and your expression kD + c for miles into the 
formulas for PriceA and PriceB given in this section. 

4. Find the equations of the linear functions that satisfy the following 
input-output charts of two variables: 

(a) 
o 
o 
1 

4 
3 
3 

Y 

8 
7 
10 

Xl X2 

2 1 
(b) 3 1 

Y 
1 

3 
3 2 1 
4 3 1 

(c) 
2 
4 
4 

o 
o 
1 

Y 
8 
9 
12 

5. Find the equations of the linear functions that satisfy the following 
input-output charts of three variables: 
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Xl X2 X3 Y Xl X2 X3 Y 
1 1 0 -4 0 0 0 2 

(a) 1 1 1 -2 (b) 1 0 0 2 
0 1 1 0 1 1 0 3 
0 0 0 0 1 1 1 4 

6. Suppose you have $25 to spend in a candy store. Chocolate costs $6.80 
per pound, suckers cost $0.10 each, and gumballs cost $2.50 per quarter 
pound. 

(a) Suppose you buy C pounds of chocolate and G pounds of gum­
balls. Express the number of suckers S you can buy as a function 
of C and G. 

(b) Suppose you need one sucker and one ounce of gumballs for each 
person attending your birthday party. You want to buy as much 
chocolate as possible since you don't like suckers and gumballs. If 
P denotes the number of people who attend your party, express 
the number of pounds of chocolate C you can buy as a function 
of P. 

7. For each of the following functions, express X as a function of Y: 

(a) Y = 2X - 4 

(b) Y = -3X + 7 

(c) Y = 100X + 99 

(d) Your answer to (a) should be X = ~ Y + 2. If we substitute this 
expression for X into the original function, we obtain Y = 2( ~ Y + 
2) - 4, which is true after algebraiC simplification. What does this 
mean from the point of view of functions? 

(e) Check your answers to (b) and (c) using the technique given in 
(d). 

CD What happens if you try this problem for the constant function 
Y = 7? 

8. The Celsius temperature scale was designed so that 0° Celsius is the 
temperature at which water freezes (which is 32° Fahrenheit) and 100° 
Celsius is the temperature at which water boils (which is 212° Fahren­
heit). Since you may already know the formula for relating Celsius to 
Fahrenheit, explain how to derive the formula giving degrees Celsius 
from degrees Fahrenheit using this information. Also, explain what the 
constants in your formula mean. 

9. The following input-output chart does not give enough information to 
determine Y as a linear function of Xl and X2 . 

Xl X2 Y 
1 0 3 
1 1 3 
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(a) How much information can you obtain, and what further informa­
tion would be useful in determining this linear function? 

(b) What are the possible linear functions that could fit this chart? 
10. An elevator leaves the first floor of a twelve-story building with eight 

people. Three get off at the third floor, two on the fifth, and one on 
each of the top three floors. The function giving the elevator height 
in terms of time is not linear. It is, however, close to what is called 
piecewise linear. The term piecewise linear means what you would 
guess it means-so try to answer these problems. 
(a) Draw a graph of height vs time for this elevator trip. Make rea­

sonable estimates according to your experiences. Briefly explain in 
each section of the graph what is happening. 

(b) Suppose the time the elevator stops at each floor is proportional 
to the number of people getting off. Show how this changes the 
graph. Do you believe this assumption is reasonable? 

Group Project: Polyhedra 

Polyhedra can be found everywhere in the world around us. The chances 
are good that you are sitting on a piece of one right now. Buildings are 
constructed out of them, soccer balls are made out of them, and they are 
crucial to understanding many geometric problems. In this project you will 
explore many of the smaller polyhedra and their basic properties. 

We need to recall some terminology so we can talk about polyhedra. 
Recall that a polygon is a flat shape whose edges are line segments. Polygons 
with three edges are triangles, those with four edges are quadrilaterals, and 
so forth. The points where the edges of a polygon meet are called vertices. 
Note that if a polygon has three edges then it has three vertices, if it has 
four edges then it has four vertices, and so forth. Polyhedra are solid objects 
obtained by gluing polygons together at the edges. In the polyhedra we 
shall study here we will not allow any holes. Along each edge there must 
be exactly two polygons glued together. 

Two famous polyhedra are the cube and the tetrahedron (a tetrahedron 
is pictured in Fig. 6.4). The cube is made from six squares and has eight 
vertices and twelve edges. The tetrahedron is made from four triangles and 
has four vertices and six edges. The polygons that are used to make a 
polyhedron are called its faces. Of course, the edges of a polyhedron are 
the edges of its faces, and the vertices of a polyhedron are the vertices of 
its faces. 

(a) Divide your class into groups. Each group will be assigned one (or 
more) of the numbers 7, 8, 9, or 10. Your group project will be to build as 
many different polyhedra with as many faces as your group number. So, 
for example, if your group number were 6, you could build a cube as one 
of your polyhedra. Be sure to count only the faces on the outside of your 
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polyhedra. Toothpicks and clay work well for building the polyhedra. Every 
time you make a new polyhedron you should determine the number of 
vertices and edges. 
(b) Once your group has built at least five different polyhedra with the 
same number of faces, you next make a polyhedra graph. For the axes of 
the graph use the number of vertices and the number of edges. For each 
polyhedron built locate its point on the graph according to its number of 
vertices and its number of edges. (Make sure that all the polyhedra entered 
on your graph have the same number of faces!) If there are several polyhedra 
with the same number of edges and vertices, indicate this on your graph. Do 
you notice anything about your graph? Can you figure out an equation that 
relates the number of vertices to the number of edges for your polyhedra 
with the same number of faces? 

(c) Finally, all the groups should get tog~ther to compare the information 
they have generated. Your equations relating vertices to edges should be 
similar but not quite the same (since each group studied polyhedra with a 
different number of faces). Can you put your information together and find 
a single equation that relates vertices, edges, and faces? If you can, you will 
uncover a famous result known as Euler's formula. 

1.2 Local Linearity - Many functions that arise in economics, science, and engineering can be 
studied using linear functions in spite of the fact they may not actually 
be linear. In this section we consider three different situations and cor­
responding data that have been obtained either experimentally or from a 
complicated formula. Our task is to look for patterns in these numbers that 
resemble the behavior of linear functions. We will then use our observations 
to find a linear approximation to the function in question. 

Storage Battery Capacities 

The following table shows how the energy storage capacities (in amp-hours) 
of a small 12-volt, lead-acid automobile battery are related to the discharge 
rates (in amps) of the battery. The table shows that the capacity of the 
battery decreases as the the rate of discharge increases. 

Discharge rate (amps) 1 5 10 15 20 25 30 40 50 
Amp-hr capacity 70 68 66 62 58 54 50 40 28 

This table is based on an actual experiment, not on any particular theory. 
These numbers were found as follows. The battery was discharged with 
a constant current rate (electric current rates are measured in amps), and 
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the length of time until the battery died was measured. The product of this 
length of time with the discharge rate gives the amp-hour capacity of the 
battery at that discharge rate. For example, at a 20 amp discharge, it took 2.9 
hours before the battery died, giving the 20 X 2.9 = 58 amp-hour capacity 
in the table .. The equipment used to make these measurements was not 
the most accurate available, and for this reason the amp-hour values were 
rounded to the nearest integer. 

We next consider the data in the table. For most practical applications an 
exact theory of storage battery capacity is not important. What is important 
is the observation that between 10 and 30 amp discharge rates, the capacity 
of battery drops about 4 amp-hours for every 5 amp increase. Since the 
amp-hour capacity of this battery is 58 when the discharge rate is 20 amps, 
this means that we can write the point-slope equation of the line through 
(20,58) and slope - ~ as C - 58 = - ~(r - 20). Here we are using C for 
the capacity and r for the rate. In other words, the capacity function in this 
range is approximated by 

4 
C=74- Sr. 

A close look at the data reveals that while our linear approximation for 
C is accurate in the range between 10 and 30 amps, it gives too high a value 
at 5 amps or below and at 40 amps or more. Nonetheless, since most of 
the uses for which this battery is designed require 10 to 30 amp discharge 
rates, this linear approximation provides reasonable values. The expression 
C = 74 - ~ r is what is called a locally linear approximation to the capacity 
function. The nine discharge rates listed in our table and their locally linear 
approximation in the 10 to 30 amp range are shown in Fig. 1.3. 

You may be wondering why the battery capacity drops linearly for a 
while and then at high currents drops more rapidly. There are several rea­
sons that battery capacity drops with increased current rates. One reason is 
that the diffusion of compounds required for chemical reaction in the battery 

fig. 1.3. Locally linear 
battery capacity behavior 

Capacity 

(amp-hrs) 

60 

40 

20 

10 20 

• 

30 40 50 
Discharge rate (amps) 



12 • 1. UNEAR FUNCTIONS 

4% 6% 8% 10% 12% 
12 mo. 851.51 860.67 869.88 879.16 888.49 
24 mo. 434.25 443.21 452.31 461.45 470.73 
36 mo. 295.24 304.22 313.36 322.67 332.14 
48 mo. 225.79 234.85 244.13 253.63 263.34 
60 mo. 184.17 193.33 202.77 212.47 222.44 

Table 1.1. Monthly Payments on a $10,000 Loan. 

must occur more quickly at higher current rates. The difficulty of diffusion 
when the battery is partially discharged becomes significant at higher dis­
charge rates, and this is one possible explanation why the capacity drops 
so quickly at higher rates. Another reason may be that higher current rates 
produce more internal heat in the battery, and so energy is lost. In fact, 
automobile batteries are not made for continuous discharge at high rates. 
They are designed to discharge at very high rates for short time intervals 
(when the car is being started), and the rest of the time most of the car's 
electrical power is supplied by the car's alternator, which also recharges the 
battery. The considerations of this section are Significant, however, in the 
design of electric cars, where continuous battery discharge is necessary to 
drive the car. 

Amortization 
In the typical car or home loan, it is customary to repay the loan over 
a period of years through monthly payments of equal amounts. During 
this time period, the borrower is paying interest on the amount still owed. 
As time passes, the amount owed decreases, and so the amount of the 
monthly payment applied toward interest decreases and the remainder of 
the monthly payment reduces the principal. In this plan of repayment, one 
is said to amortize the loan. The amount of a monthly payment in an 
amortizing loan is determined by three variables: the amount borrowed P, 
the interest rate i, and the number of payments n. The monthly payment M 
is not a linear function of these three variables, and usually people look up 
M in a table once the values of P, i, and n are known. However, for many 
practical purposes (say, while home and loan shopping) the monthly rate 
can be estimated using local linearity once its value for several P, i, and n 
are known. 

In Table 1.1 we list the monthly payment required to amortize a $10,000 
loan as a function of the number of monthly payments and the annual 
interest rate. The entries in this table were computed as follows. The values 
of P, i, n, and M satisfy the equation 

_ M[1-(1+~rnN] 
P- i ' 

n 
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and so M can be computed once P, i, and n are known. However, we 
ask you to ignore this formula and instead look closely at the rows of 
the table. These values for M reveal what is essentially linear behavior. 
Note that each 2% increase in interest rate increases monthly payments by 
between $9 and $10. This $9 to $10 difference represents extra interest 
that must be paid. On a $10,000 principal, one month's interest at 2% is 
-b. X .02 X $10,000 = $16.67. Since monthly interest on an amortizing loan 
is paid only on the balance (not on the original loan amount), the payment 
increase due to the extra 2% is only a bit more than half of this. 

Our observation shows that the monthly payment is nearly a linear func­
tion of the interest rate. For example, on a 36-month repayment schedule, 
a point-slope calculation shows that the payments are given approximately 
by 

M = 277 + 4.6 Xi. 

This approximation gives the values 295, 304, 314, 323, and 332 for the 36-
month row of our table, which is a very accurate approximation. Although 
not an exact determination of a repayment price when a deal is finally nego­
tiated, this linear approximation is more than adequate as a determination 
of how interest rates will affect the purchaser when the repayment time is 
fixed. 

Note that the columns in Table 1.1 do not display linear behavior. As 
the number of repayment months increases by 12, the payment decreases, 
but by a significantly smaller amount each time. One reason for this is that 
the time intervals are increasing rapidly in this chart. If, for example, we 
were to consider an 8% interest rate over a period of 46, 48, 50, and 52 
months, the payment rates would be 253.14, 244.13, 235.84, and 228.20 re­
spectively. Here the drop in payments varies between $9 and $7.s0 for each 
increase of two months in amortization time. So it would be more accurate 
to approximate the payment rate as a function of repayment time as a linear 
function on this small region of our chart. However, it is not a customary 
business practice to consider 46- or 50-month repayment schedules, so we 
won't bother finding this linear approximation. 

Airplane Lift and Wing Flaps 
Prior to 1915, the design of airplane wing cross-sections consisted mostly 
of studying existing types followed by the trial use of variations of these 
to see what happens. However, in the decade that followed, wind tunnel 
experiments were conducted and the theory of airplane aerodynamics be­
gan. Two important numbers that depend on the airplane design and are 
crucial to determining flight characteristics are the drag and lift coefficients. 
Roughly speaking, the drag coefficient measures the air resistance as the 
plane flies, and the lift coefficient measures the upward pressure (lift) re­
sulting from flight. These coefficients are given in the units (lbs/ft2)/(mph2), 
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FIg. 1.4. Cr08&-88Ctlon of 
a simple wing flap Air 

flow 

which numerically represent the force (in pounds) per square foot of surface 
area at a given air velocity. Both the drag and lift forces are (essentially) pro­
portional to the square of the velocity (so the force is not a linear function 
of velocity). 

In early planes a lift coefficient of 1.6 was considered good, and for 
takeoff it was desirable to increase this lift coefficient to the range from 1.8 
to 2.5. One device used to increase lift is the wing flap, which lies flush to 
the wing during flight but is angled down by the pilot during takeoff and 
landing. Fig. 1.4 illustrates a simple wing flap design. 

Some early wind tunnel experiments generated the data given below in 
Table 1.2,2 which shows how the increase in lift coefficient, 11 CL , is related 
to two quantities, the chord ratio E and the flap angle B. The chord ratio is 
the ratio between the flap width and that of the wing, and the flap angle 
is the angle the flap makes with the wing. In Fig. 1.4 the chord ratio is 
approximately .3 and the flap angle is approximately 20°. Study of this 
table reveals that each 0.1 increase of E gives an approximate increase of 
.05 for 11 CL (except perhaps at the lower right), and each increase of 5° 
of B also gives a rough increase of about .05 for 11 CL. The numbers in the 
table may not be the most accurate possible (and modern data may differ 
from that collected in the 1920s), but the approximate increases in 11 CL just 
noted show that the table can be reasonably approximated by the linear 
equation 

11 CL "'" - .02 + .01B + .5E. 

The corresponding values of this linear approximation are shown in Table 
1.3. Although these values are not a perfect match for the data given, it is 
reasonably close for values of B near 10° and for values of E near .2. In 
absence of a precise theory (such as the case in the 1920s), this type of 
two-variable linear approximation could be quite useful in predicting flight 
c;haracteristics. Another linear approximation is given in Sec. 9.3 using the 
technique of linear regression. 

5° 10° 15° 20° 
0.1 0.08 0.13 0.19 0.24 
0.2 0.12 0.17 0.23 0.30 
0.3 0.17 0.22 0.29 0.42 

Table 1.2. Experimental Yalues for 4 CI.' 

2Prom Walter S. Diehl, EngIneering Aerodynamic:s, Ronald Press Co., New York (1928), 
pp. 150-152. 



0.1 
0.2 
0.3 

0.08 0.13 
0.13 0.18 
0.18 0.23 

0.18 
0.23 
0.28 

0.23 
0.28 
0.33 
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Table 1.3. The Unear Approximation ~ CL "" - .02 + .016 + .5E. 

5° 10° 20° 30° 40° 
0.1 0.005 0.015 0.022 0.035 0.06 
0.2 0.01 0.02 0.045 0.075 0.11 
0.3 0.02 0.03 0.07 0.12 0.17 

Table 1.4. Experimental Values for ~ CD. 

The presence of a wing flap also increases the drag. Table 1.4 shows how 
the increase in drag coefficient ~ CD is related to the same two variables, 
the chord ratio E and the flap angle 8. 

These data have characteristics of linearity in each of the variables E and 
8. For example, the approximations 

~ CD "'" .00138 when E = .1, 

~CD "'" .00278 when E = .2, 

~ CD "'" .00408 when E = .3 

were suggested by the scientists who obtained this data. Values given by 
these approximations are listed in Table 1.5 and are fairly close. 

It is important to note that the data in Table 1.4 do not appear to be 
that of a linear function of two variables, since the coefficients of 8 in the 
various approximations are quite different. In fact, the text containing this 
data suggests that the expression 

~CD "'" 0.0133E8 

gives a good match to the observed values. Note that this approximation 
is given by a function that is linear when either variable is fixed but is not 
linear itself. The values given by this approximation are contained in the 
following table. 

0.1 
0.2 
0.3 

0.006 
0.013 
0.020 

0.013 
0.026 
0.040 

0.026 
0.053 
0.080 

0.040 
0.080 
0.120 

0.053 
0.107 
0.160 

Table 1.5. Values of the Nonlinear Approximation ~ CD "" 0.0133E6. 
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Problems 

Summary 
In this section we have seen some linear approximations for various func­
tions. In the cases of battery capacity and the changes in lift and drag 
coefficients, there was no exact formula for giving these functions, and the 
linear approximations developed provide one way to study them. In the 
amortization problem, we had an exact formula, but the linear approxima­
tion provided an easier model for understanding how changes in interest 
rates affect monthly payments. 

In each case we estimated proportional changes and then used the 
point-slope formula to obtain linear approximations. This is all you will be 
expected to do in the problems and projects in this section. A refinement of 
this method you can try is to make some small changes in the coefficients 
and see if that makes the approximation better. This is useful for getting a 
feel for the problem but is not a sound procedure for serious applications. A 
powerful method for finding the best linear approximation for a collection 
of data is given by the method of least squares, which is sometimes known 
as linear regression. An introduction to this method is given in Sec. 9.3. 
In the second group project at the end of this section you will have an 
opportunity to explore the results of linear regression using a calculator or 
computer. 

All of the calculator projects in this text can be carried out, for example, 
on a Texas Instrument TI-85 scientific calculator, but many other calculators 
and computer software packages can do the same thing. You are encouraged 
to become familiar with the capabilities of whatever system is available. All 
of the text's instructions will be general in nature, and we will not specify 
what keys to push. So when the text says "use your calculator to ... ," it is 
your responsibility to find out how to accomplish the task on your computer 
or calculator. When you are learning to use new computer or calculator 
technology, it is a good idea to work as a team with some classmates and 
experiment a bit, since instruction booklets can at times be hard to follow. 
Students should get their instructors involved, too! 

1. Try to find a linear approximation for the first column of Table 1:1, that 
is, approximate M as a linear function of i for each of 12-, 24-, 48-, and 
60-monthrepayment plans. In the text it was stated that this would not 
work well, but how close can you get? 

2. Find a linear function of two variables that gives a reasonable approxi­
mation to the values below. Answers will vary from person to person, so 
be sure to explain how you found your answer. It might be a good idea 
to list several possibilities and then explain why your choice is best. 
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1 2 3 4 5 
-5 0.20 0.46 0.71 0.92 1.20 

0 0.05 0.29 0.61 0.74 1.03 
5 -0.09 0.15 0.40 0.62 0.89 

10 -0.24 om 0.24 0.40 0.55 

3. Contours on a topographic map describe the elevation function on a 
region of land. These contours are curves that represent constant eleva­
tions, or level sets. The elevation function has two input variables: location 
along the east-west axis and location along the north-south axis. If the 
elevation function has locally linear behavior in some region, explain in 
writing and with sketches what the contours look like in that region. 

4. Find linear approximations to the change in drag coefficient Ll CD (given 
in Table 1.4) as a function of flap angle 8 that are more accurate for the 
angle values between 100 and 20 0 than the approximations given in this 
section. Note that answers to this question may vary. 

5. Consider the following table of values, which gives the current drain (in 
amps) for an electric car driving at various ~elocities on level ground.3 

Velocity (mph) 10 20 30 40 50 
Current (amps) 85 150 235 340 470 

(a) Does it make sense to use a local linear approximation if you want to 
estimate current drains at 15 mph? Justify your answer. What about 
at 32 mph? 

(b) Suppose this car was capable of going 60 mph on level ground. (In 
fact, it wasn't.) How would you estimate the current necessary? 

6. Study the experimental data given in Tables 1.2 and 1.4. Is there a linear 
relationship between Ll CL and Ll CD for the values of the chord ratio 
and flap angle considered there? Part of your answer will be explaining 
how you make sense of this question and what is meant by a linear 
relationship in this context. 

Group Project: linearizing Amortization 

Suppose that a $150,000 home loan is to be repaid over a 20- to 30-year 
period and that the prevailing interest rates are varying between 7% and 
9%. 

(a) Find a two-variable linear function that approximates the monthly pay­
ment depending on the interest rate i and the number of years y of fully 
amortizing repayment. Set up your function so that it is exact at 25 years and 
8%. You will have to use the formula given in the section on amortization 
(along with a calculator) to compute the amortization payments. 

3Data collected in 1973 in author'S car. The car had a 36-volt battery pack. 
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(b) How accurate is your approximation for 26 years and 8.25%? For 24 
years and 8.25%, and for 30 years and 9%? 
Cc) Interpret the meaning of the coefficients of the variables in your linear 
approximation and write a sentence explaining each. 
Cd) At the end of the section on amortization it was noted for the chart 
considered there that the monthly payment was not close to being a linear 
function of the number of years of repayment. Is this situation similar or 
different in this regard? 

Group Project: Linear Regression on a Calculator or Computer 

The purpose of this project is for you to become familiar with how to use 
a calculator or computer to find locally linear approximations to data. We 
will learn more about how the calculator is making these computations (as 
well as why it works) later in Sec. 9.3. 

(a) The first step is to learn how to enter data into your calculator. This is 
usually done by creating and naming a list of points. Enter in the nine pairs 
given in the storage battery chart. 
(b) Next learn how your calculator runs a linear regression on the table of 
data just entered. (This can be found in the STAT menu of many calculators.) 
The output of this program usually gives you the coefficients a and b in an 
approximation of the form Y = bX + a to the data. For the battery capacity 
example you should find that a = 73 .6 and b = - .850. 
(c) Plot your data points on a graph, and graph the linear equation Y = 
- .850X + 73.6 there too. (Better yet, get your calculator or computer to 
draw this graph.) How does this linear approximation compare to the one 
considered in Fig. 1.3? 
(d) Use your machine to compute linear regressions for the functions given 
by the rows of Table 1.4 (the Ll CD values.) How close are these equations 
to the approximations given in the text? 

1.3 Matrices - In this section we continue our study of linear functions by introducing basic 
matrix algebra. Our first use of matrices will be to simplify the notation. 
Shortly, however, we shall see that their use is of a much broader scope. 

An Assembly Line 
In a small assembly line toy cars and trucks are put together from a ware­
house full of parts. These parts include car and truck bodies, chassis that 
both bodies snap onto, wheels, and toy people. In order to assemble a car, 
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you snap a car body onto a chassis, pop on four wheels, and put four peo­
ple inside. For the truck assembly you snap a truck body onto a chassis, pop 
on six wheels (four on the rear axle, two on each side), and put two people 
inside. We record all this assembly information in the following array: 

Cars Trucks 
Car bodies 1 0 

Truck bodies 0 1 
Chassis 1 1 
Wheels 4 6 
People 4 2 

Each column of this array indicates the number and type of parts needed to 
assemble your finished product-the first column for cars and the second 
column for trucks. 

We need to assemble 125 cars and 75 trucks in one day, and we want 
to know how many wheels, people, and so forth are necessary for the job. 
The array can be used to solve this. If you multiply each entry in the first 
column by 125, you will obtain a column listing the number of parts needed 
to build the cars, and if you multiply each entry in the second column by 
75, you will obtain a column listing the number of parts needed to build 
the trucks. This looks like 

and 

(

125 car bOdies) 
o truck bodies 

= 125 chassis 
500 wheels 
500 people 

Truck parts = 75' (:) = (7~ ~~~~~,) . 
6 450 wheels 
2 150 people 

Finally, adding these columns shows that the total number of parts needed 
to assemble 125 cars and 75 trucks is 

Total parts = (:~:) + ( ;; ) = (;;2~~h~~:~') . 
500 450 950 wheels 
500 150 650 people 

Of course, the answer to the question posed in this example could easily 
have been found without using arrays of numbers. However, before this 
section ends we will see problems whose solution would be a notational 
nightmare without such arrays, or matrices. 
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Matrix Notation 
A matrix is a rectangular array of real numbers, where the exact location 
of each number, or entry, is crucial. To be more precise, an m X n matrix 
is an array of real numbers withm rows and n columns. The ijth entry 
of the matrix is located in the ith row and jth column of the array. If the 
matrix is called A, we often write A = (aij) , which means that the aij are 
real numbers and the entry in the ith row and jth column of A is aij. We 
will also use the notation A(i, j) to denote the ijth entry aij of A. 

For example, the 2 X 3 matrix 

A = (~ 1 

° ~) 
has two rows and three columns. When we write A = (aij), we are spec­
ifying the six real numbers all = 4, al2 = 1, al3 = 7, aZI = 2, aZZ = 0, 
and aZ3 = 3. Whenever we describe the location of an entry in a matrix or 
specify matrix size, the row number is listed first and the column number 
is listed second. To help you get used to the row and column terminology, 
we point out that rows go across the page (as does writing in English), and 
columns go up and down (like the columns on a building). 

Matrices are usually denoted by capital letters A, B, C, ... to help avoid 
confusing them with real numbers. Column matrices are matrices with one 
column and are sometimes referred to as column vectors. We will often use 
vector notation, such as v to denote column matrices. 

We need to know what it means for two matrices to be equal. Two 
matrices A and B are equal if they have the same number of rows, the same 
number of columns, and precisely the same entries in the same pJaces. In 
pz.rticular, we emphasize that the matrices 

A = (~) and B = (1 2) 

are not equal, even though they look similar when rotated by 90° . 

Scalar Multiplication and Addition of Matrices 

In our assembly-line example we had to add matrices together and multiply 
matrices by real numbers. The first operation is known as matrix addition, 
and the second operation is known as scalar multiplication. Although the 
ideas behind these two operations are pretty clear (they are called "compo­
nentwise operations"), they can also be described using the ij notation just 
introduced. The definitions read as follows. 

Definition (Matrix Addition). If A = (aij) and B = (hij) are both m X n 
matrices, then we define the m X n matrix A + B by (A + B)(i, j) = A(i, j) + 
BCi, j). Thus to add two matrices of the same shape, one simply adds the 
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corresponding entries of the matrices to obtain another matrix of the same 
shape. 

Definition (Scalar Multiplication). If A = (aij) is an m X n matrix and 
k is a real number, then we define the m X n matrix kA by (kA)Ci, j) = 
k(ACi, j». That is, the ijth entry of kA is kaij, where aij is the ijth entry of 
A. This multiplication by a real number is called scalar multiplication. 

For example, 

and 

1 
3 

-1) = (3 
-5 6 

3 
9 

-3) 
-15 . 

Both matrix addition and scalar multiplication come from the usual multi­
plication and addition of real numbers applied entrywise to the matrices. 
Using this we see that the following familiar laws of algebra involving real 
numbers are also true for these two operations. 

Theorem 1. Suppose that A, B, and Care m X n matrices and r 
and s are real numbers. Then the following matrices are each m X n 
and 
(a) A + B = B + A; 
(b) (A + B) + C = A + (B + C); 
(c) r(sA) = (rs)A; 
(d) rCA + B) = rA + rB; 
(e) (r + s)A = rA + sA. 

Multiplying Matrices, Part I 
When we studied the problem of finding the best automobile rental (see 
Sec. 1.1), we analyzed the pair of linear functions with two input variables 

PriceA = $25' (days) + $0.25 . (miles), 

PriceB = $35' (days) + $0.10 . (miles). 

Matrices provide convenient notation for working with this type of situation. 
Since we have two rows in the functional expression (one for each variable), 
we use column matrices to denote the input and output: 

and ( days) 
miles . 
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We next consider the 2 X 2 matrix whose entries are the coefficients that 
arose in our functional expression 

( 25 0.25). 
35 0.10 

Matrix multiplication is defined in such a way that the expression 

( priceA) = (25 
PriceB 35 

0.25) ( days) = ($25' (days) + $0.25 . (mileS)) 
0.10 miles $35 0 (days) + $0.10 0 (miles) 

makes sense and is equivalent to the original expression. 
This is accomplished as follows. The first row of our 2 X 2 matrix of 

coefficients has entries 25 and 0.25, and if we multiply these entries by the 
corresponding entries days and miles of our input column and add the result, 
we obtain 25 0 (days) + 0.25 0 (miles). This is PriceA. Similarly, multiplying the 
entries of the second row of our matrix of coefficients (35 and 0.10) with 
the corresponding entries of our input column and adding the result gives 
PriceB. This shows how to define matrix multiplication to give our linear 
pricing function. More precisely, we give the following definition. 

Definition. Suppose that A = (aij) is an m X n matrix and suppose that v 
is the n X 1 column matrix with jth entry bj . Then we define Av to be the 
m X 1 column matrix whose ith entry is ail ~ + ai2 hz + 0 0 0 + ajn bn . 

For example, we have 

(~ 4 
5 

31) (~o) = ((10 8)+(4 02)+(3 00)) = (16) 
(2 0 8) + (5 0 2) + (1 0 0) 26' 

Observe that the resulting product has only two rows since the matrix on 
the left had only two rows. As another example we consider 

(4 3) (X) = (4X + 3Y) 
5 1 Y 5X + Y . 

This time we used variables in our column matrix to illustrate the fact 
that matrix multiplication is defined so that the left-hand matrix acts as the 
coefficients in a system of equations. 

As an additional example, suppose that 

and 



Then, the matrix equation 

represents the system of equations 

2X+3Y=1 
X+ Y=2 

OX + Oy = 1. 

Matrix Multiplication, Part II 
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We next define matrix multiplication in a more general situation than just 
considered. We need to define the product AB, where A is an m X n matrix 
and B is an n X p matrix. In a natural way this definition extends the case 
where B is a column matrix. What you do is multiply the left -hand matrix 
by the columns of the right-hand matrix one at a time, and then string the 
resulting columns along in order to form the product matrix. For example, 
since 

we define 

7) = (17 
8 39 

23) 
53 . 

Note in the next definition that it is not possible to multiply two matrices of 
arbitrary size. 

Definition (Matrix Multiplication). Suppose that A is an m X n matrix 
and B is an n X p matrix. (Thus the number of columns of A is the same 
as the number of rows of B.) The matrix product AB is defined to be the 
m X p matrix given by 

ABU, k) = A(i, 1)BO, k) + AU, 2)B(2, k) + ... + AU, n)B(n, k) 

n 

= LAU,j)B(j, k). 
j=1 

In the definition, the matrix product AB is the m X p matrix whose ith 
row, kth column entry is obtained by adding the products of the corre­
sponding entries of the ith row of A and the kth column of B. Note that 
since A is m X nand B is n X p, each row of A and each column 'of B 
have precisely n entries. Therefore the phrase "adding the products of the 
corresponding entries" makes sense. 
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For example, the product of a 2 X 2 matrix and a 2 X 3 matrix is given 
by 

(1 4) (8 9 
2 5 2 6 

0) = ((1 . 8) + (4 . 2) 
o (2 . 8) + (5 . 2) 

33 
48 

= (16 
26 

(1·9) + (4·6) (1·0) + (4.0)) 
(2 . 9) + (5 . 6) (2· 0) + (5 . 0) 

The product of a 2 X 3 matrix and a 4 X 2 matrix, 

(~ 1 
1 

is not defined, although their product in reverse order is 

1 
1 

6 
10 
o 
1 

27) 46 
o . 
4 

This next product is special: 

o 
1 
o 

We emphasize that matrix multiplication is not commutative in general. 
In other words, even when both AB and BA are defined, they need not be 
equal (nor even of the same size!). For example, 

C3 5) ( !) = C3 . 2 + 5 . 4) = (26), 

but 

10) 
20 . 

All students should practice matrix multiplication to become used to the 
process. The matrix product will be used in essentially every section in the 
rest of this book. It is also possible to mUltiply matrices on a calculator 
or computer, and everyone should learn to do this, too. In the first group 
project in this section it is necessary to use a computer or calculator to carry 
out the investigation. 

Counting the Number of Paths: An Application 
In Fig. 1.5 there are four points and four direct paths between them. There 
is one direct path between A and B, two direct paths between Band C, 
and one direct path between C and D. We shall say that each of these four 



Rg. 1.5. Four points and 
four paths 
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A----------B~<:~------:>~C----------D 
direct paths has length 1 (even though they do not have the same geometric 
length). Since there is no direct path between A and C, the shortest path 
from A to C has length 2. In fact, you can see there are two such paths, 
both passing through B. Inspection of the figure also shows that there are 
two paths of length 3 from A to D. 

Suppose our problem is to decide how many paths there are between A 
and C whose length is at most 4. Retracing the same path will be allowed. 
Counting these paths is not difficult, but we need to be systematic and make 
sure that we don't omit any path or count some path twice. Matrices provide 
a nice tool for carrying out this type of counting process. 

For example, let's examine a systematic method for counting the number 
of paths of length 2 between the points A and C. (We saw the answer was 
2, but we examine the counting process carefully.) To count such paths 
we organize our counting according to the midpoint of each possible path. 
This means we must add the following four numbers: nl = the number of 
paths with midpoint A; n2 = the number of paths with midpoint B; n3 = 
the number of paths with midpoint C; and n4 = the number of paths with 
midpoint D. Since there are no paths of length 1 from A to A, we see that 
nl = O. Since there is one path of length 1 from A to B and two paths of 
length 1 from B to C, we see that n2 = 1 . 2 = 2. Again, since there no 
paths of length 1 from A to CorD, we see that n3 = 0 and n4 = O. Adding, 
we obtain that there are 0 + 2 + 0 + 0 = 2 paths of length 2 between A and 
C. 

Our counting procedure for length 2 paths between A and C was the 
same as the process of computing an entry in a matrix multiplication. This 
can be written as 

( 0 1 0 0) (D ~ 0 . 0 + 1 . 2 + 0 . 0 + 0 . 1 ~ 2, 

where the first row matrix gives the number of length 1 paths from A to A, 
B, C, D and the second column matrix gives the number of length 1 paths 
from A, B, C, D to C. More generally, we consider the following matrix 
whose entries give the number of paths of length 1 between points in our 
figure. 

A B 

A 0 1 
B 1 0 

C D 

o 0 
2 0 

C02 0 1 
D 0 0 1 0 
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Problems 

Observe that when we counted the number of paths of length 2 between A 
and C according to our system, all we did was multiply the first row of our 
matrix by the· third column. 

We next set 

1 
o 
2 
o 

o 
2 
o 
1 

o 
5 
o 
2 

2 
o 
5 
o 

The first row, third column entry of M2 is 2, which is the number of paths 
of length 2 between A and C. Similarly, the 3,4 entry of the matrix M2 tells 
us that there are no paths of length 2 between C and D, and the 2,2 entry 
tells us that there are five paths of length 2 from B to B. 

We can now use the matrix M to answer our original question. The 
matrix M2 tells us the number of paths of length 2 between any two points 
in our figure. By similar reasoning the matrix M3 tells us the number of 
paths of exact length 3, the matrix M4 tells us the number of paths of exact 
length 4, and so forth. These matrices are 

M'~ G 
5 0 

D M'~ ( ~ 
0 12 

1~) 0 12 and 29 0 
12 0 12 0 29 o . 
0 5 0 12 0 5 

In order to find the number of paths of length at most 4 between any 
two points of our figure, we add the matrices M, M2, M3, and M4. We find 

M + M' + M' + M' ~ ( ~ 
6 14 

1~) 34 14 
14 14 34 6 . 
2 14 6 6 

We can answer our original question. There are 14 paths between A and C 
of length at most 4. Note that there are 34 paths of length at most 4 between 
B and itself. 

Using a calculator to compute the matrix M 25, we can also determine 
the number of paths of exact length 25 between A and B. The answer is 
the 1,2 entry of M25, which is 1,311,738,121. 

1. Consider the following matrices: 

o 
-1 

4 

6) (-2 
~ ,p= ~ -J 
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Q = (~ -3) = (-! 4 ,R 3 

o 
o 

-1 
o 

~), 5 = C3 -2 7). 

6 -1 

Practice the following matrix calculations by hand. If the requested op­
eration does not make sense, write "nonsense." 

(a) M + N 

(d) PM 

(g) N5 

(b) M + 4Q 

(e) MQ 

(h) RP 

(c) MP 

(D QM 

CO PR 

(j) PM - P (k) Q3 (1) PQ+M 

2. Consider the following matrices: 

.0833 
o 

.75 

.0833) (-0.3 o ,C= 0 
1 0 

-O.~) 
0.4 

Use a calculator or a computer to compute AlO , B7 C, AS - 5A7 + 6A6, 
and B17 - B16. 

3. Express each of the following collections of linear functions of several 
variables in matrix form. 

(a) PI = 2X - 3 Y 
P2 = X+ Y 

(b) Ql = 3X - Y - Z 
Q2 = X+ Y+ Z 
Q3 = 2X + Z 

(c) Rl = X - Y - Z - W 
R2 = X- y- Z- W 

Cd) 51 = 2Y + Z 
52 = 4X - 5Y -7Z 
53 = X - Y + 2Z 
54 = X + Z 

4. For each of the following systems of equations, express the system in 
matrix form. 

(a) 2X + Y - 3Z = 3 
Z+ W= 5 

X-Y- Z+W=O 

(b) X + Y + Z = 1 
X- Y- Z=l 

5X+ 3Z+ 3Y = 5 

(c) 2Xl + X2 - 2X3 - 5..\4 + Xs = 0 
Xl - X3 +Xs=O 

(d) X + Y = 2 
X- Y= 1 

2X + 3Y = 4 

5. Suppose that M and N are 2 X 2 matrices such that 

MN-NM = (: !). 
Show that a + d = O. (Hint: Express M and N as matrices with variables, 
and expand MN - NM.) 
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6. Find all 2 X 3 matrices Rand S for which 

R+S= (~ ° 
° ~) 

and R - S = (~ 1 

° 
7. (a) Use matrices to determine the number of paths of length 3 or 4 

between the points A and C in the graph below. How many paths 
are there of length at most 4? 

A --------.... C 

(b) Determine the number of paths of length at most 3 between the 
points A and C in the graph below. How many between A and A? 
Between C and C? 

A --------.... C 

Group Project: Matrix Powers 

To begin this project you will first have to learn how to input matrices into 
a calculator or a computer. Then you will have to learn how to find the 
result of matrix operations on your machine. 

(a) Input the matrix 

c = (0.2 0.6) 
0.8 0.4 

and find the powers C 2, C3, C 50 , C51, and C52. What do you notice? 

(b) Input the matrix 

H = (0.6 0.6) 
0.2 0.4 

and find the powers H2, H3, W O, H 51 , and H52. What do you notice here? 
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(c) Input the matrix 

J = (~ ~) 
and find the powers f, J3, J50 , J51, and J52. Now what do you notice? 
(d) What are the differences and similarities between the three cases con­
sidered in parts (a), (b), and (c)? Explain any theories you have about what 
is happening. 

Group Project: Matrix Games 

The type of game described next is known as a zero sum matrix game. 
The idea is somewhat like the elementary school game where two players 
quickly hold out their hands representing scissors, paper, or a rock. In this 
game there are two players whom we call X and Y. Each starts with twenty 
beans. For each play of the game the players have a choice of holding up 
one or two fingers at the same time. They exchange beans according to the 
following matrix: 

Payment to X 

X = 1 
X = 2 

Y=l 

-2 
1 

Y=2 

4 
-3 

So if both X and Y hold up one finger, then X gives Y two beans. If X 
holds up one finger and Y holds up two, then Y gives X four beans. 

(a) Play this game for a while to get the idea and keep a record of the 
payoffs. 
(b) Discuss if you think this game is fair. Does one player have an advantage 
over the other. Why? 
(c) What is the best strategy for each player? How do you decide this. (Note: 
if one player seems to be at a disadvantage, find a strategy that minimizes 
losses.) 
(d) You can represent strategies in matrix form as follows. Suppose X 
decides to hold up one finger ~ of the time and two fingers ~ of the time. 
Then player X's average payoff can be represented as the matrix sum 

2 
- (-2 
3 

1 
4) + - (1 

3 
-3) = ( -1 ~) . 

(For Y's average payoffs, use columns instead of rows.) We haven't ex­
plained what this matrix equation means. As a group try to figure out what 
this payoff matrix is saying for a given strategy. Represent your strategies 
for this game using equations of this form. 
(e) How could the game be fixed to be fair? How would you represent 
games using more fingers? 
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1.4 More Unearity 

In the first two sections of this chapter we studied linear functions and in the 
third we used matrices to organize our work. In this section we investigate 
other aspects of linearity-namely, problems involVing linear constraints. 
We will continue to use matrix notation whenever it proves useful. 

Returning to the Assembly Line 

We consider the assembly line for making toy cars and trucks introduced in 
Sec. 1.3. Our next project is to figure out the best strategy to make some 
money. A local toy store will pay $1.40 for each car and $1.80 for each truck. 
The store owner will be happy to buy 100 cars and trucks but requires that 
we sell him at least 25 cars and at least 25 trucks. How many of each should 
we sell him? Clearly, we cannot answer this question unless we know how 
much the materials cost. Our suppliers will sell us car bodies for $0 .30, truck 
bodies for $0.70, chassis for $0.10 each, wheels at $0.05 each, and people 
for $0.10 each. In order to calculate expense for parts, we recall our parts 
matrix 

Cars Trucks 

Car bodies 1 0 
Truck bodies 0 1 

Chassis 1 1 

Wheels 4 6 
People 4 2 

If we multiply the parts matrix on the left by the row that represents the 
cost of each part, we obtain a 1 X 2 matrix whose entries are the total cost 
of the parts to build a car or truck: 

(030 0.70 0.10 0.05 0.10) (~ i) ~ (1.00 1.30). 

Since the toy store owner will pay us $1.40 for each car, we will make 
$0 .40 profit on each car, and since he pays $1.80 for each truck, we will 
make $0.50 profit on each truck. Our strategy is now clear! We should 
sell the toy store owner as many trucks as possible, namely 75 trucks and 
25 cars. This would have worked fine, except some difficulties arose. Our 
wheel supplier just informed us that he now sells wheels only in boxes of 
500 (at $25 per box) and that he will not sell partial boxes. Since we needed 
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450 = 75 . 6 wheels for the trucks and 100 wheels for the 25 cars, we have 
to reevaluate our plans. 

Our supplier's limitations give what is called a linear constraint on our 
problem. We let C denote the number of cars we will assemble, and we let 
T denote the number of trucks we will assemble. Since we do not want a 
large number of wheels left over, we decide to buy only one box of 500 
wheels. This constraint shows that 

6T + 4C:5 500. 

Assuming we build 25 cars, the constraint means we have 500 - 4 X 25 = 400 
wheels to use on trucks. Since 400 -:- 6 = 66~, we see that we can build 
66 trucks. Next we can compute our profit. The cost of assembling a car 
excluding wheels is $0.80 and a truck excluding wheels is $1.00. So, since 
we spent $25 on a box of wheels, our material expense can be expressed as 
$(0.80 X C + 1.00 X T + 25). The toy store will pay us $(1.40 X C + 1.80 X n 
for our cars and trucks, so we find that our pI:ofit P can be expressed as 

P = $(1.40 XC + 1.80 X n - $(0.80 XC + 1.00 X T + 25.00) 

= $(0.60 X C + 0.80 X T - 25.00). 

By selling the toy store owner 25 cars and 66 trucks, we realize $(0.60 X 
25 + 0.80 X 66 - 25) = $42.80 in profit. 

The plan sounds good, except we realize that we are only selling the 
toy store owner a total of 25 + 66 = 91 vehicles, and we could possibly 
sell him more. Can we make more money by selling more cars and fewer 
trucks? Our toy store owner will buy up to 100 vehicles with a minimum of 
25 each of cars and trucks. In terms of our variables T and C, this means 
that 

T + C :5 100, T;::: 25, C;::: 25, 

which are some new linear constraints to consider. Suppose we try to as­
semble 100 vehicles without any wheels left over. This would mean finding 
a solution to the system of equations 

4C + 6T = 500 

C + T = 100. 

The second equation is the same as 4 C + 4 T = 400, and subtracting this from 
the first shows 2 T = 100 or T = 50. In this case C = 50 also. If we made 50 
cars and 50 trucks, our profit would be $(.60 X 50 + .80 X 50 - 25) = $45.00. 
We find that we make an additional $2.20 following this second scheme. 
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We are now left wondering if this second plan is the best possible. It 
turns out that it is. In order to understand why, we consider this type of 
problem in a more general setting. 

Linear Optimization with Constraints 

If we were asked to find the maximum value of the function Z = 2X + 3 Y -7, 
the correct answer would be to say there is none since the value of Z can 
be made as large as we like by choosing large X or Y values. However, 
as we just noted in our toy car and truck assembly problem, most real-life 
problems have limits on the size of the variables. Suppose now that the 
values of X and Yare subject to the following constraints: 

Y ~ 2, X - Y ~ 1, X::5 8, 2X + Y::5 20. 

What can we say about the linear function Z = 2X + 3 Y - 7? We shall 
see that Z. attains both a maximum and minimum value when X and Yare 
restricted to the given constraints. 

In order to find the maximum and minimum values of our function 
subject to the constraints, we first must find out which X and Y values are 
possible. The values of X and Y that satisfy the constraints form what is 
called the feasible region. To find the feasible region we graph the lines 
given by equality in each constraint inequality. They are Y = 2, X - Y = 1, 
X = 8, and 2X + Y = 20 and are shown in Fig. 1.6. 

If there is any hope to solve our problem, there must be common 
solutions to all of the constraint conditions. Each constraint condition has 
as solutions a half-plane (one side of a line). Therefore, the feasible region 
is the intersection of half-planes and must be one of the regions bounded 
by the lines in Fig. 1.6. It turns out that the feasible region is the area inside 
the quadrilateral shaded in Fig. 1.7. To see that the region pictured is the 
set of feasible points, we need only check that one point inside does satisfy 
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the constraints. For example the point (5,3) lies in the region pictured and 
it is quickly checked to satisfy all the constraints. 

Next we must decide which points in the feasible region give the max­
imum and minimum values of our function. For this we use a bit of geo­
metric thinking. The collection of lines 2X + 3 Y - 7 = 4, 2X + 3 Y - 7 = 8, 
2X+3Y-7 = 12, 2X+3Y-7 = 16, 2X+3Y-7 = 20, and 2X+3Y-7 = 24 
are drawn on top of the feasible region in Fig. 1.8. 

These lines are called lines of constant value for the function Z = 
2X + 3 Y - 7 since any two points on the same line give the same output 
value when used as inputs for the function. Such lines are also called level 
sets for the function. We have pictured only a few of the lines of constant 
value. All lines of constant value for our function are parallel to these, and 
the value along any line is always less than the value of a line above it. By 
visualizing these lines on top of our feasible region, we can see that the 
minimum value of our function is attained at the lower left corner while the 
maximum value is attained at the uppermost point. 
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y 

2X + 3Y - 7 = 24 

2X + 3Y - 7 = 20 

2X + 3Y - 7 = 16 

2X + 3Y - 7 = 12 
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The lower left corner of our feasible region is the point obtained by 
intersecting the boundary lines Y = 2 and X - Y = 1. It is the point (3,2), 
and the minimum value of our function is therefore Z = 2 . 3 + 3 . 2 - 7 = 
5. The uppermost point of our feasible region is the intersection of the 
boundary lines X - Y = 1 and 2X + Y = 20. It is (7,6), and this shows that 
the maximum value of our function is Z = 2 . 7 + 3 . 6 - 7 = 25. 

The Principle of Corners 
Another way to visualize the optimization problem just considered is to 
imagine a ruler set on top of the feasible region parallel to the lines of 
constant value. We slide the ruler upward, keeping it parallel to the constant 
value lines. As we move it up, it passes on top of larger and larger constant 
values. If our ruler starts below the feasible region, the point at which it 
first touches the feasible region will be the point of minimum value. After 
passing over the feasible region, the point at which the ruler leaves the 
region will be the point of maximum value. Observe that both these points 
are vertices of the feasible region. 

If we think about linear constraints in two variables X and Y, we can 
see that feasible regions always have lines for boundaries which meet at 
vertices. Furthermore, if we are trying to optimize a linear function of two 
variables, it will always have lines of constant value that are parallel. By 
the same reasoning as in the above example, our maximum and minimum 
values will always occur at vertices. We summarize this next. 

Theorem 2 (The principle of corners). If a linear function of 
two variables subject to linear constraints attains a maximum or 
minimum value, then these values always occur at the vertices of the 
feasible region. If the feasible region is a polygon, then a maximum 
value and a minimum value are attained. 

We remark that it is possible for a linear function subject to constraints 
to fail to have a maximum or minimum value. This occurs when the feasible 
regions are unbounded. For example, the function Z = X + Y clearly attains 
no maximum or minimum when the only constraints are X ~ 3 and Y :5 4. 
More discussion can be found in Prob. 8. 

A Few More Examples 
The principle of corners shows that one way to solve optimization problems 
with linear constraints is to determine the locations of the corners of the 
feasible region and then evaluate the function at these corners. For example, 
suppose we desire to know the maximum value of Z = 2X - 3 Y on the 
hexagon pictured in Fig. 1.9. The vertices of this hexagon are (1,4), (2,8), 
(4,8), (5,4), (4,0), and (2,0). 
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We haven't been given the linear constraints as a set of equations; instead 
we have a hexagon. But this hexagon could be described by a set of linear 
constraints. The principle of corners tells us that the maximum value of 
Z will occur at a vertex, so to find it we need only evaluate our function 
at the vertices. We find the values are Z(1,4) = -10, Z(2,8) = -20, 
Z( 4,8) = -16, Z(S,4) = - 2, Z( 4,0) = 8, and Z(2,0) = 4. Hence the 
maximum value of our function Z = 2X - 3 Y on our hexagon is 8. 

We might be tempted by the hexagon example to try a shortcut in some 
problems of this type. For example, consider the linear constraints given in 
our assembly-line problem described in earlier. These are shown in Fig. 1.10. 
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FIg. 1.10. The feasible region for the assembly-line problem 
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Problems 

If we consider the four boundary lines, we see by taking them two at a 
time that there are six possible intersection points. Suppose, for example, 
we intersect the lines given by T = 25 and 6T + 4C = 500. Solving these 
equations, we find that 4C = 350, or C = 87.5. If we assembled 87 cars and 
25 trucks, our profit function would be P = $( .60 X 87 + .80 X 25 - 25) = 
$47.20, which is even more profit than obtained earlier. But we forgot about 
the store owner's constraint that he will only buy 100 vehicles! So we do not 
have a better solution (unless we can find somebody else who will buy the 
12 remaining cars). The lesson here is that when you look for vertices by 
intersecting boundary lines, be sure to check that your points really lie on 
the feasible region. Fig. 1.10 illustrates why the intersection point (87.5, 25) 
just considered lies outside the feasible region. 

1. Suppose we ran into additional difficulties in our toy car and truck 
business discussed at the beginning of this section. In order to build 50 
cars and 50 trucks, our cost for parts is $(.80 X 50+ 1.00X50+25) = $115. 
Unfortunately, however, we only have $100 to invest in parts. So what 
do we do now? How much profit can we make? Should we go back 
to our original idea of making only 25 cars and the rest trucks? (Hint: 
What are the new constraints?) 

2. (a) Explain why we know without calculation that there are some 
linear constraints that have as feasible region the hexagon shown 
in Fig. 1.9. 

(b) Find some linear constraints that have as their feasible region the 
hexagon shown in Fig. 1.9. 

3. Find the maximum value of the linear function Z = 2X + 5 Y + 1 subject 
to the constraints that X ;::: 0, y;::: 0, X + Y ::5 6, and 2X + Y ::5 8. 

4. (a) Graph the feasible region corresponding to the linear constraints 
X - 2 Y ::5 0, -2X + Y ::5 3, X ::5 2, and Y ::5 3. What are the 
vertices? 

(b) What are the maximum and minimum values of Z = - 3X + 3 Y + 5 
over the feasible region given in part (a)? 

(c) Suppose the constraint that X + Y ;::: 15 was added to this problem. 
How do your answers to (a) and (b) change? 

5. (a) Find the maximum and minimum values of Z = 3X + 4 Y subject to 
the constraints that X ;::: 0, Y;::: 0, X ::5 3, Y::5 3, and 6x + 8 Y ::5 

30. 

(b) Your maximum value in (a) occurred at more than one vertex of 
your feasible region. Why did this happen? Does your maximum 
value occur at any other points of your feasible region? 
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6. (a) A thrift shop received 3200 crayons as a gift. In their storeroom are 
100 small boxes that hold 20 crayons and 75 slightly larger boxes 
that hold 30 crayons. They sell crayons at a price of $1.50 for a 
small box and $2.00 for a larger box. In order to maximize their 
cash intake, how should they fill the boxes? 

(b) Explain your answer to (a) intuitively without referring to the prin­
ciple of corners. 

(c) Suppose that the crayons came in 8 colors and that they received 
400 of each color. Assuming the shop wants to sell boxes with a 
balance of colors, how should they fill the boxes in problem (a)? 

7. According to a biologist's estimate, there are 500 birds of species A 
in a small, 100,000 square yard valley. This number is assumed to be 
the maximum number the valley can feed. A new species B of birds is 
introduced to the valley. According to an ecological model, each pair 
of nesting birds fiercely defends a certain amount of territory and will 
not nest if other birds intrude. Suppose that a nesting pair of species A 
defends 100 square yards and that a nesting pair of species B defends 
300 square yards near their nests. Suppose also that species A eats twice 
as much as species B and that they eat the same type of food. What 
is the maximum number of birds of each type that can coexist in the 
valley? 

In the following two problems the feasible regions are not polygons. The 
principle of corners still applies to these regions with linear boundaries, but 
you must interpret it carefully. 

8. Consider the feasible region given by the constraints X + Y ~ 4, X ~ 0, 
and y ~ o. 
(a) Graph this feasible region. 

(b) What can you say about the maximum and minimum values of 
Z = 2X + Y subject to these constraints? 

(c) What can you say about the maximum and minimum values of 
Z = - 3X - Y + 5 subject to these constraints? 

I 

(d) What can you say about the maximum and minimum values of 
Z = 2X - Y subject to these constraints? 

(e) Based on your experience with this example, what theories do you 
have about when a linear problem with constraints can fail to attain 
maximum or minimum values? 

9. Consider the feasible region given by the constraints X + Y ~ 4, X­
Y ::;; 4, and Y - X ::;; 4. (This is a modification of the feasible region 
considered in Prob. 8.) 

(a) Graph this feasible region. 
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(b) Find a linear function that attains a minimum but no maximum on 
this region. 

(c) Find a linear function that attains a maximum but no minimum on 
this region. 

(d) Can you find a linear function that attains neither a maximum or 
minimum on this region? 

(e) How do your answers to this problem affect your answer to part 
(e) of Prob. 8, if at all? 

10. Find the maximum and minimum values of the linear function Z = 
X - 2 Y + 1 subject to the constraints that X ~ 0, Y ~ 0, 3X + Y:S; 8, 
and X + 3 Y :s; 8. 

Group Project: Three-Variable linear Constraints 

In this section we studied how to find the maximum and minimum values 
of a linear function of two variables subject to linear constraints. Suppose 
the number of variables was increased to three. How are linear optimization 
problems solved in this case? The next questions should guide your group 
through some ideas of how to solve such problems. 

(a) Suppose you are told that the geometry of this problem in R3 is anal­
ogous to the geometry in R2 discussed in this section. As a group, discuss 
what this means and what the principle of corners says in this situation. 
Why do you believe this? 

(b) Using your ideas from (a), find the maximum and minimum values of 
W = 2X - Y + 4z subject to the constraints that.X ~ 0, Y ~ 0, Z ~ 0, and 
X + Y + z:s; 4. 

(c) In either two or three dimensions, the feasible regions given by linear 
constraints are known to be convex. This means that if two points P and Q 
lie in the region, then the line segment PQ between them also lies in the 
region. Why are the feasible regions given by linear constraints convex? 

(d) Can you draw a convex region in R2 that is not the feasible region for 
any finite collection of linear constraints? Where does the linear function 
Z = 2X + Y attain a maximum on your region? 

Group Project: Diet Optimization 

You have been asked to design a diet for vacationers visiting the famous 
Atlas Health and Muscle Spa. For an entire week vacationers are allowed to 
eat only apples, bananas, carrots, and dates. This diet must be balanced so 
the following chart is important: 
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Measure Sugar Vitamin C Iron Cost 
Food of unit (g/unit) (mg/unit) (mg/unit) (cents/unit) 
Apples (large) 1 2 7 8 
Bananas (large) 3 2 4 8 
Carrots lIb. 3 8 6 16 
Dates 2 oz. 2 3 5 7 

Health officials have warned the owners of the Atlas Spa not to starve their 
clients. The law states that each visitor to the spa must consume at least 32 
g of sugar each day, at least 28 mg of Vitamin C- each day, and at least 35 
mg of iron each day. Your task is to find the least expensive way to feed 
the poor suckers who came to the Atlas Spa for the week. 

In this problem, you will need to solve a number of systems of equations 
in four variables. Now is a good time to learn to do this on your calculator 
or computer. Also, be sure to check that your solutions do indeed lie within 
the feasible region. 

Historical Note: In 1944 George Stigler in "The Cost of Subsistence," Journal 
of Farm Economics, vol. 27 (1945), pp. 303-314, considered a similar diet 
problem involving 77 types of foods, their costs, and nutritional content. 
He constructed a diet for America that satisfied all the basic nutritional 
requirements and, at 1939 prices, cost only $39.93 per year (less than 11 
cents a dayO The diet consisted solely of wheat flour, cabbage, and dried 
navy beans. Yum yum! 



CHAPTER 

LINEAR GEOMETRY 
T he purpose of this chapter is to explore some of the uses of matrices and 

vectors in expressing geometric ideas. We assume you are familiar with 
the basic properties of plane and space studied in high school geometry. 
For now, we concentrate on the plane and space; however, later in this text 
we shall lift the ideas developed here to higher dimensions. 

2.1 Linear Geometry in the Plane -
In this first section we study the plane (often called the Euclidean plane). 
The Euclidean plane, usually denoted R2, is the set of ordered pairs (x,y) 
of real numbers. There is a great variety of geometric objects that can be 
drawn on the plane-lines, triangles, circles, and rectangles to mention a 
few. These geometric objects are extremely important in both science and 
art. Painters communicate their visions of the universe to us on their canvas, 
which are almost always a piece of a plane. Architects and engineers repre­
sent the three-dimensional world around us through their planar drawings. 
It is important for us to learn how to interpret their work, as well as create 
our own. This is one good reason for studying geometry in the plane. We 
shall consider some problems encountered by artists in Sec. 2.4. 

Linear Functions Arising in Geometry 
Similar triangles can be useful in solving many problems of Euclidean geom­
etry. The reason for this is that the fixed ratio of lengths of sides of similar 
triangles gives linear functions. We consider an example. In Fig. 2.1 the dot 

40 
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represents the position of a person standing on a flat plane looking at three 
100-ft. power towers, which are represented by the vertical segments. This 
person knows that the closest tower is 500 yds. away and that the towers 
are 100 ft. tall, and wants to estimate how far away the other towers are. 
(Note: Fig. 2.1 is not drawn to scale.) The line that angles up toward the 
top of the third tower represents the observer's line of sight, from which 
information about the towers can be obtained. 

In order to estimate these distances, we notice that there are three similar 
triangles in the figure, each with the common vertex: our observer. It appears 
to our observer that the line of Sight crosses the first tower about ~ of the 
way up, or at a height of about 20 ft. If h denotes the height in feet at which 
this line crosses another pole, and if D denotes the distance in yards of this 
pole from our observer, then by similar triangles we know 

20 h 
500 D 

Rewriting this we obtain a distance function DCh), where the input variable 
is the height h of the line of sight on the pole. It is the linear function 
DCh) = szog h = 25h. Since the line of sight appears to cross the second pole 
about ~ of the way up, or 60 ft., we see that its distance is approximately 
25' 60 = 1500 yds. We also find that the farthest pole is about 25' 100 = 2500 
yds. away. 

The use of similar triangles, and the linear functions they give, is impor­
tant in many types of distance estimations. In the second group project in 
Sec. 2.4 you will have further opportunity to utilize this type of triangular 
distance estimation. 

Quadrilateral Subdivision and Vectors 
Consider the two quadrilaterals pictured in Fig. 2.2. No special assumptions 
were made in constructing them. Note that when new quadrilaterals are 
formed by connecting the midpoints of each, something special happens. 
Each of the bold quadrilaterals in Fig. 2.3 is a parallelogram. This will always 
happen no matter what the starting quadrilateral is, and it can be proved 
using similar triangles. In order to visualize why this occurs, we will use 
vectors. Imagine that these quadrilaterals have arrows for edges, as pictured 
in Fig. 2.4. Two paths start at one vertex of each quadrilateral and end 
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Fig. 2.2. Two 
quadrilaterals 

at the opposite vertex. One path goes to the left and the other to right. 
Each of these paths "adds" to the direct path going up the middle of the 
quadrilateral. Next notice the arrows which are thicker in Fig. 2.4 and lie on 
the sides of the quadrilateral. These arrows are half the length of the sides 
on which they lie. Note that when they are added, they give paths that are 
half the length of the central path and have the same direction. Further, 
these paths are two sides of the parallelograms in Fig. 2.3. We have shown, 
pictorially, why opposite segments connecting the midpoints of sides of a 
quadrilateral must be parallel and the same length. 

The pictorial use of arrows just demonstrated is useful in studying many 
problems arising not only in geometry, but also in physics, chemistry, efi­
gineering, and other subjects. Note that in the problem just considered it 
was important to consider both the length and direction of each arrow dis­
played. Whenever both the direction and length of a segment are crucial to 
consider, we use the notion of a vector. Our next task is to make this idea 
of a vector more precise. We will return to more applications shortly. 

Vectors In the Plane 
If P and Q are points on the plane, then we use PQ to denote the line 
segment with P and Q as end points. One often views line segments as 
a path, from a starting point to an end point. For this reason we have the 
notion of a directed line segment. A directed line segment is a segment PQ 
with a specified starting point P and a specified ending point Q. We will use -the notation PQ to denote the directed line segment with starting point P 

FIC. 2.3. Connecting 
midpoints of quadrilaterals 
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and end point Q. (The reason for specifying starting and ending points will 
become clear shortly.) Since the phrase "directed line segment" is somewhat 
long, we refer to directed line segments simply as directed segments. 

Often, in geometry as well as in science, it is important to specify both a 
magnitude and a direction at the same time. Such a combination of informa­
tion is called a vector. We define a vector in R2 to be a directed line segment 

~ 

with starting point (0,0) = 0, the origin. The magnitude of the vector OP is - ~ 
the length of the segment OP, and the direction of (he vector OP is the di-
rection of the directed line segment. In case P = (a, b) and Q = (c, d), then 
by the distance formula in Euclidean geometry we know that the distance 
between P and Q is v(a - b)2 + (c - d)2. Since 0 = (0,0), this says that 

the magnitude of oF is va2 + b2. The magnitude of a vector v is denoted 
IIvll. 

Observe that a directed segment is essentially a vector with a starting 
point other than the origin. As such, a directed segment specifies a vector by 
its length and direction. This is illustrated in Fig. 2.5. We note that any two 
directed segments that are parallel, point in the same direction, and have the 
same length specify the same vector (namely, the directed segment "slid" 
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FIg. 2.5. Directed line segments In the plane and the vectors they specify 
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or "translated" to start at the origin). We shall often view directed segments 
as vectors that have been translated to have starting points that are possibly 
different from the origin. We record these ideas in the following definition. 

Definition. A nonzero vector is a directed line segment whose starting 
--=-+ 

point is at the origin. Any directed line segment PQ specifies a vector, 
which is the parallel directed segment starting at the origin with the same 
direction and length. 

In case P = Q, then it doesn't make sense to talk about the line segment 
PQ. However, we often need to talk about vectors of length 0, so we will 
allow a single vector of length 0, which is often denoted O. This vector has 
no magnitude (its length is 0) and consequently has no direction. 

We are almost ready to use vectors in the study of geometry. But we 
need some new notation. Since vectors are directed segments with their 
starting point at the origin, in order to specify a vector we only need to 
specify the end point. Hence we give the following. 

Definition. Suppose that the point P has coordinates (r, s). Then we use 
the column matrix 

(:) 
--+ 

to denote the vector OP, where 0 is the origin (0,0). We shall often usc 
the terminology column vector synonymously with column matrix. We shall 

--+ 
also say that the vector OP is the position vector of the point with coordinates 
(r, s) since its en~oint is (r, s). The length of the vector oF is J r2 + S2 

and is denoted II opli. 

Vector Addition and Scalar Mul~rpllcatlon 

In the last chapter we defined matrix addition and scalar multiplication. 
Since we are using 2 X 1 matrices to denote vectors in the plane with 
starting point at the origin, we obtain these two operations for them. It is 
important to understand the geometric meaning of both these operations. 

Whenever 

v = (:) 

is a vector and t is a real number, the vector 

tv = (~) 
is called the scalar mUltiple of v by t. This vector tv geometrically results 
from stretching the vector v by length t. Note that in case t is negative, scalar 
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multiplication reverses the direction. Also, if I t I > 1, then tv is longer than 
v, while if I t I < 1, then tv is shorter than v. 

--+ --+ 
Consider next two directed segments PQ and QR, where the end point 

of the first coincides with the starting point of the second. Then we define 
the sum 

--+ --+ ---+ 
PQ + QR= PR. 

---+ 
The sum PR represents the end result of traveling along the directed segment 
--+ --+ 
PQ and continuing along QR. 

In case we are considering two vectors 

v = (:) and 

we define their sum as we do for matrices by 

v+w=(r+t). 
S + u 

The vector v + w given~ this definition can be understood as follows. The 
vector v is the vector OP where P is the point with coordinates (r, s), and 

--> 
the vector w is the vector OQ where Q is the point with coordinates Ct, u). If 

--+ 
S is the point with coordinates (r + t, S + u), then PS is the directed segment 

--> --+ 
arising by translating the vector OQ to start at P. (The directed segment PS 

--> 
has the same length and direction as w = OQ, the only difference being 

~ --+ 
that w starts at 0 and PS starts at P.) We see that the sum of directed 

~ --+ --+ 
segments 0 .... = OP + PS is the vector v + w. This is illustrated in Fig. 2.6. 

Example. Find (a) 11 + v, (b) 7w, and (c) the length of 11- 30 + 2w, where 

FIg. 2.6. Vector 
translation and addition 
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Solution. (a) (;) + ( -~ ) ( 3-4) 
2+7 

(b) 7 (~) = (~: ~) = (~3) 
(c) (;) - 3 ( -~) + 2 (~) = 

length is V152 + (_1)2 = J2z6. 

( 3+ 12 + 0 ) 
2 - 21 + 18 

Hexagons, Vectors, and Benzene 

= (~i) and so its 

Suppose that one vertex of a polygon lies at the origin (0, 0) of the Euclidean 
plane and that the edge vectors of the polygon are known. Then the other 
vertices of the polygon can be located by adding the vectors that represent 
the sides of the polygon. For example, suppose we are interested in deter­
mining the vertices of a regular hexagon, one of whose sides has vertices 
(0,0) and 0,0). Then, this edge is represented by the vector 0,0). We next 
need to find the vectors that represent the other sides of the hexagon. These 
vectors are obtained by rotating the vector 0,0) by multiples of 60° around 
the origin. Adding these vectors in sequence will give the coordinates of 
the vertices of the hexagon. This process is illustrated in Fig. 2.7. 

Using the definition of the trigonometric functions, we know that aside 
from 0,0), the five additional end points of the vectors giving our hexagon 
edges are (cos 60° , sin 60°), (cos 120° , sin 120°), (cos 180° , sin 180°), 
(cos 240°, sin 240°), and (cos 300°, sin 300°). In other words, the six vec­
tors that give the edges of our regular hexagon are 

( ~ ), (~), (:J), (~1 ), (_-~ ) , and (_ ~) . 
2 2 2 2 

Adding these six vectors in sequence gives the coordinates of the six vertices 
of our regular hexagon, 

(1,0), (%, ~), (I, V3), (0, V3), (-~, ~), and (0,0) 

Note that the sum of these six vectors gives the final coordinate (0,0) as 
it should. One word of caution: Be sure you distinguish between the use 

FIg. 2.7. Six vectors, 
60· apart, generating a 
hexagon 
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of vectors and points in the discussion just considered. It may initially be 
confusing since similar notation is used, but from context you should always 
be able to distinguish a vector from the point it represents. 

Regular hexagons are important in chemistry because the carbon atoms 
in a molecule of benzene, C6H6, are located on the vertices of a regular 
hexagon. We can use vector geometry to find the relative locations of the 
hydrogen atoms as well. The hydrogen atoms in benzene lie on the same 
plane as the hexagon of carbon atoms, and each carbon atom is bonded 
to a single hydrogen. The hydrogen atoms are attached to the carbons 
symmetrically, their bond making a 120· angle with the carbon bonds. The 
bond lengths between the carbon atoms in benzene is 154 A and the bond 
length between each hydrogen and carbon is 1.09 A (the units here are 
angstroms). This means that if we multiply each of our hexagon vectors by 
154 A we can represent our carbon atom hexagon in angstrom units, and 
if we add an appropriate 1.09 multiples of these vectors to the vertices of 
the hexagon, we can find coordinates that represent the locations of the 
hydrogen atoms as well. This representation of the benzene molecule is 
shown in Fig. 2.8. (The double lines between the carbon atoms indicate 
double bonds.) 

Vector addition will give the coordinates of all the atoms in our benzene 
model. The coordinates of our six carbon atoms are 054,0), (2.31,1.33), 
054,2.66), (0,2.66), (- .77,1.33), and (0,0) (which are 154 times the co­
ordinates of the vertices of the first hexagon). The six coordinates of our 
hydrogen atoms are obtained by adding 1.09 times the vector with appro­
priate direction to the coordinate of the carbon atom. They are 054,0) + 
1.09Q,-4) = (2.08,-.94), (2.31,1.33) + 1.09(1,0) = (3.40,1.33), 
(2.08,3.60), (- 54,3.60), (-1.86,1.33), and (- 54, - .94). This coordinate 
information can be useful in determining the distances between atoms in 
benzene. For example, the distance between two adjacent hydrogen atoms 
is the distance between (2.08, - .94) and (3.40,1.33), which using the dis­
tance formula in R2 is ..j 1.322 + 2.272 = 2.63 A. 

FIg. 2.8. Atom locations 
In the benzene molecule 
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Problems 

1. Find the sums and scalar multiples of the following vectors as indicated: 

(a) u + w 
(b) -5w 

u= (~), v= (~), w= (~). 

(c) u + 3v - 'trw 
2. Find the sums and scalar multiples of the following vectors as indicated: 

(a) p - 2q 
(b) -q-f 
(c) P + q - f 

- (-1) _ (3) _ (2) P = 7' q = -1 ,r = 6 . 

3. Find the coordinates of the vertices of a regular pentagon in the plane if 
two of the vertices are (0,0) and 0,0). 

4. You are rowing a boat across a ~-mile wide river that is flowing at 6.5 
mph. 
(a) In order to reach a point directly opposite your starting point, you 

decide to head upstream at an angle of 30°. You are rowing at 8 mph 
and cannot see the other side through the fog. Use vectors to rep­
resent the boat and river velocities (both direction and magnitude) 
to find out where you end up. If you like, obtain good estimates on 
graph paper (and avoid messy calculation). 

(b) What angle should you head in order to reach a point exactly op­
posite you? 

(c) Bow does your answer to (b) change if you increase your rowing 
velocity? 

5. Find all vectors v in the plane of length 2 that satisfy 

Ilv+(!)11=2. 
Explain what this condition means geometrically. 

6. Find all vectors v in the plane that satisfy 

IIv-(!)II=l and Ilv-(~)11=2. 
Explain what these conditions mean geometrically. 
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Group Project: Euclidean Geometry Theorems 

Use vector geometry to prove the following results from traditional Eu­
clidean geometry. Draw a figure to indicate your use of vectors. 

(a) The segments connecting opposite vertices of a parallelogram bisect 
each other. 

(b) The segment that joins the midpoints of two sides of a triangle is parallel 
and one-half the length of the other side. 

(c) The diagonals of an isosceles trapezoid are congruent. 

2.2 Vectors and Lines in the Plane -
Lines Through the Origin 
We next study lines in the plane using vectors. According to Euclidean 
geometry, a line is completely determined by two points on the line. In 
other words, there is a unique line through any two distinct points. This 
basic information can be used to give an algebraic description of lines using 
vectors. 

Example. Consider the two points 0 = (0,0) and P = (-2,3) in R2. We 
+--+ 

use vectors to determine all the points on the line £ = OP. The idea is this. 
Consider all the possible vectors that point in tbe same or opposite direction 
as the vector 

--+ (-2) OP= 
3 

+--+ 
The end points of all these possible vectors give the line OP. This is illus-
trated where P = (-2,3) in Fig. 2.9. 

What are all the possible vectors that start at 0 and point in the same or 
--+ 

opposite direction as the vector OP? These vectors are all the multiples 

of v where t is nonzero. This is because these vectors are obtained geomet­
--+ 

rically by stretching the vector OP by length t. When t > 0 this stretching 
--+ 

is in the same direction as OP, while when t < 0 this stretching includes a 
direction reversal. Several such vectors are shown in Fig. 2.9. Therefore the 
line £ is the set of end points of all the vectors 

(-~:) where t E R. 
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Fig. 2.9. Vectors In line 5 Y 
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This shows how position vectors can be used to describe lines through (0, 0) 
in R2. Using the notation of sets, we can express £ = {( -,2t, 3t) It E R}.1 

The Parametric Representation of Lines in R2 
We next use vectors to describe lines in R2 that might not pass through the 
origin. Consider the line £ through the points P = (0, 2) and Q = (2, 5). 
Our goal is to find all the position vectors that give the points of £. In other 

--+ 
words, we want to find all the vectors OP where 0 = (0,0) and P E £. We 

--+ 
begin by noting that the directed segment PQ specifies the vector 

Algebraically, this vector v was found by subtracting the coordinates of P 
from those of Q. All the points on the line £ arise as the end points of 

--+ 
multiples of the directed segment PQ (with starting point P). Each of these 
directed segments can be found by translating the possible vectors tv to -& 
where t is a real number. This is accomplished by adding the vectors OP 
and tv. This is illustrated in Fig. 2.10. Since 

oF = (~) and tv = (~~) , 
we find that 

oF+t-= (0+2t) 
v 2 + 3t 

where t E R. For example, when t = -1, we obtain the point S = (- 2, -1) 
on the line £ as shown in Fig. 2.10. We have found that the line £ can be 

IThe written expression {(-2t, 3t) I t E R} should be read as "the set of all pairs (-2t, 3t) 
such that t is a real number." 
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FIg. 2.10. Parametric 

representation of I. = pq 
y 

x 

described in Cartesian coordinates by f = {(2t,2 + 3t) I t E R}. This is 
called a parametric representation of f. Often one writes such a parametric 
representation in the form x = 2t, Y = 2 + 3t, where t is understood as a 
parameter ranging over all real numbers. 

We can generalize the discussion in the previous example as follows. If 

is a nonzero vector and P = (a, b) is a point in R2, then there is a unique 
line f parallel to v passing through P. This is the line whose points are 
given by the position vector 

(a) + t ( e) = (a + Ie) 
b d b+ td . 

In other words, f = {(a + tc, b + td) I t E R}, which is the parametric 
description of f. Observe that whenever a line f is described in parametric 
form one immediately knows both a point on f and a direction vector for f. 

The Cartesian Descriptions of Lines 
We next indicate how parametric representations of lines relate to the usual 
Cartesian descriptions found, say, in high school mathematics. Suppose that 
a line f is specified by 

f = {(a + te, b + td) It E R}. 

This means that the points on f can be expressed as (x,y), where x = a+ te 
and y = b + td for some real number t. We emphasize that the same t value 
is used to determine both the coordinates x and y. 
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Suppose for the moment that both e*"O and d*"O in the above 
parameterization of R.. Then solving each equation for t gives 

x = a+te, y b + td, 
x-a= te, and y-b= td, 

t = (x- a)/e. 

This shows that for every point (x,y) on R., 

y-b=x-a 
d e 

or 

t = (y- b)/d. 

d 
(y- b) = -(x- a). 

e 

This last expression is the pOint-slope equation for the line R.. Evidently, the 
point (a, b) satisfies this equation (both sides of the equality become 0), 
and the slope of the line is given by the ratio m = ~. Using the pOint-slope 
equation for a line, one can readily obtain the slope-intercept equation by 
a small bit of algebraic manipulation. One finds that 

y = ~(x - a) + b = ~x + (b _ da) . 
e c e 

Here again m = ~ is the slope of the line. When x = 0 we find that 
y = b - d; which shows that (0, b - tt;) lies on R.. The y-coordinate of .this 
point, b - ~a, is called the y-intereept of the line R.. (It is where the line 
R. intersects the y-axis.) Whenever a line is described by a slope-intercept 
equation y = mx + k, m is the slope of the line and k is the y-intercept. 

In the special case where d = 0 in our parametric representation for R., 
we find that y = b for all values of t. In this case R. is the horizontal line 
y = b, which has slope 0 and y-intercept b. Note that the slope formula 
m = ~ also applies in this case. In the special case where e = 0 in our 
parametric representation for R., we find that x = a for all values of t. In this 
case R. is the vertical line x = a, which has infinite slope 00 and does not 
have a y-intercept. The slope formula m = ~ applies in this case, provided 
you are willing to interpret division by zero as giving 00. 

Example. Find parametric, point-slope, and slope-intercept equations for 
each of the following lines: 
(a) the line through (0,0) and (3, -1), 

(b) the line through (2,1) and (-1,1), 

(c) the line through (3, -1) and in the direction of the vector 

(d) the line given by the equation x = -6. 
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Solution. (a) Since this line passes through the origin (0,0), we know that 
every point of the line has a position vector that is a multiple of 

This shows that a parametric representation is given ,by x = 3t and y = 
(-1)t. (We emphasize that there can be different parametric descriptions of 
the same line. For example, the line under consideration is also parameter­
ized by x = -6u and y = 2u, where u is the parameter.) Solving for the 
parameter t, we find that t = ~x = - y. This shows that the slope of the 
line is - ~ and therefore the point-slope equation is (y - 0) = - ~(x - 0). 
Applying algebra, the slope-intercept equation is y = - ~x + o. 
(b) Since this line does not pass through the origin, we must find a direction 
vector by subtracting the coordinates of the two known points. This gives 
the direction vector 

( -~) - (~) = ( -~ = ~) = ( -~) . 
Since the line passes through (-1, 1), this shows that a parametric repre­
sentation is given by x = -1 - 3t and y = 1 + Ot. In other words, this is 
the horizontal line y = 1. The point-slope equation is (y - 1) = O(x - 0), 
and the slope-intercept equation is y = 1. 
(c) The direction vector for the line is ti, and the line passes through (3, -1). 
This shows that a parametric representation is given by x = 3 + 4t and 
y = -1 + 7t. Solving for the parameter t, we find that t = ~(x-3) = ~(y+ 1). 

This shows that the point-slope equation is (y+ 1) = ~(x- 3) and the slope­
intercept equation is y = ~ x - ¥. 
(d) The line given by the equation x = 6 consists of the points in R2 with 
arbitrary y-coordinate and constant x-coordinate 6. Therefore, a parametric 
representation for this line is given by y = t and x = 6. Since this line has 
infinite slope (it is vertical), it does not have a point-slope or slope-intercept 
equation .. 

Intersections of Lines 
If descriptions of two nonparallel lines in R2 are known, then the point oj:' 
intersection can be found by finding common solutions to the equations 
describing the two lines. This is illustrated in our final example of this 
section. 

Example. Find the point of intersection of the given pairs of lines: 
(a) the line through the points (2,0) and (1,0) and the line given by the 

equation y = 3x - 1, 
(b) the lines parameterized by {Ct, t) It E R} and {Ct - 1, -t'- 3) It E R}. 
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Problems 

Solution. (a) In this case one sees that the line through the points (2,0) 
and (1,0) is the line whose equation is y = o. The point that solves both 
equations y = 0 and y = 3x - 1 must have y-coordinate 0 and x-coordinate 
solving 0 = 3x - 1. This is the point q, 0). 

(b) To solve this problem, we change the variable in the second parameter­
ization to u. So now the second line is parameterized by {(u - 1, -u - 3) I 
u E R}. We did this so we can look' for the point that this line has in 
common with the first line parameterized by {(t, t) I t E R}. This point is 
given by the possible t and u for which (t, t) = (u - 1, - u - 3). We find 
that t = u - 1 and t = -u - 3. Consequently, u - 1 = -u - 3. We find 
that 2u = -2, that is, u = -1. Thus t = -2, and the point in common is 
(-2, -2). 

1. Find a parametric, a point-slope, and the slope-intercept equations for 
each of the following lines: 
(a) the line through (3,2) and (1, -1), 

(b) the line through (2, 1) and (0,0), 

(c) the line through (0,0) and in the direction of (!), 
Cd) the line given by the equation y + x = -6. 

2. Find a parametric, a point-slope, and the slope-intercept equations for 
each of the following lines: 
(a) the line given by the equation 3(x - 1) = 2(y + 1), 

(b) the line through the points (1,2) and (3,4), 

C c) the line parallel to the vector through (1, 2) and (3, 4) passing through 
(1,1). 

3. Find the point of intersection of the given pairs of lines: 

(a) the line through the points (1, 1) and (0,0) and the line given by the 
equation 2x - y = 1, 

(b) the lines parameterized by {(t - 1, t) It E R} and {(2t - 1, -t - 3) I 
tER}, 

(c) the line through (1, 1) parallel to the vector (~) and the line given 

by the equation y = x. 
4. Give a parameterization of all the points on the following line segments 

(note that your parameter will have to range over an interval instead of 
all of R): 

(a) the segment OP, where 0 = (0, 0) and P = (2, 1), 
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(b) the segment RS, where R = (3,1) and S = (5,2), 

(c) the segment starting at (-1,2), which has the same direction and 

length as the vector ( _ ~ ). What is the end point of this segment? 

5. Recall that ·lines are perpendicular if their slopes are negative reciprocals. 
Find an equation and a parametric representation of the line through 
(2,3) and perpendicular to f. = {(6 + t,2 - 2t) I t E R}. 

6. Express, as a function of time, the position of the boat crossing the river 
described in Prob. 4(a) of Sec. 2.1. Relate your answer to a parametric 
representation of the segment that is the boat's path. 

Group Project: Families of Unes 

In this problem you will find descriptions for interesting collections of lines. 

(a) When are two vectors u = (:) and v = (~) perpendicular? Write 

your answer as a single equation in a, b, c, and d. 
(b) Recall from trigonometry that the set of points (cos(t), sin(t)) for all real 
numbers t forms a circle of radius 1. Call this circle C. Using your answer 
to (a), write down parametric equations that represent all possible lines 
tangent to C. (Your answer will have two parameters. Why?) 

(c) The collection of points (x,y) in the xy-plane that satisfy y = x3 + xl 
is a curve called a nodal cubic. Give a parametric description of this curve 
in terms of a single variable t. Sketch the curve. 

(d) If you have had calculus, write down parametric equations that repre­
sent all possible lines tangent to the nodal cubic drawn in (c). 

2.3 Unear Geometry in Space - In this section we study vectors in space by generalizing the ideas from 
the plane. We assume that the reader is familiar with the basic geometry of 
three-dimensional space as well as Cartesian coordinates. This includes the 
notions of points, lines, planes, parallelism, and perpendicularity in space. 
We will use the following facts: 

(a) There is a unique line through any two distinct points. 

(b) There is a unique plane through any three distinct, noncollinear points. 

(c) Two different lines in space meet either at a point or not at all. 

(d) Two different planes in space meet either in a line or not at all. 

(e) Given any plane 7T and a point P not on 7T, there is a unique plane A 
parallel to 7T containing P. 
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As in the plane, we shall define a vector in R3 to be a directed line 
--+ 

segment OP, where 0 = (0,0,0) is the origin of R3 and P is a point in R3. 
If P is the point with coordinates (p, q, r), then we use the column matrix 

v= (~) 
to denote the vector OF. We also call v the position vector of the point P. 
As in the case of the plane, this column notation is useful in helping us 
distinguish between vectors and the coordinates of points. 

Parameterizing Lines In Space 
Suppose next that l is a line in space. How do we describe its coordinates 
algebraically? In the previous section we explored two methods for lines in 
the plane. One method was to use vectors and parameterize the line, and 
the other, more familiar, method was to view the line as the graph of a 
function y = mx + k. In space, the second method doesn't work, because 
if one graphs a linear function I(X, Y) = aX + bY + c in R3, the resulting 
graph is a plane, not a line. So it is best to use vectors when describing 
lines in space. As in the last section, we will use vector addition and scalar 
mUltiplication, which is defined for their matrix representations. 

The process of parameterizing a line in R3 is essentially the same as in 
R2. Suppose that the line l contains the point P = (p, q, r) and is parallel 
to the vector 

Then every position vector w of points on i can be expressed as a sum 

In other words, the line l can be parameterized as the set of all points 

{Cta + p, tb + q, tc + r) It E R} 

inside R3~ 

Example. Consider P = (2,3, -7) and Q = (-3,4,0) in R3. Let l be the 
line through P and Q. A parametric representation for l can be found as 
follows. 
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By subtracting the coordinates of Q from P, we obtain the vector 

(2 -(-3)) (S) v = 3 - 4 = -1 . 
-7 - ° -7 

The line £ is parallel to the vector v. Since £ passes through P, we see that 
the position vectors of all the points on £ are given by 

w = t ( - i) + ( ~) = ( ~~: ~) where t E R. 
-7 -7 -7t - 7 

So £ is parameterized as 

{CSt + 2, -t + 3, -7t - 7) It E R}. 

Planes Through the Origin 
It is also possible to parameterize planes in space using vectors. One knows 
that any plane in R3 is uniquely determined by three noncollinear points. 
Suppose first that one of these three points is the origin 0 = (0,0,0) and 
the other two points are P = (a, b, c) and Q = (d, e, f). Let the plane that 
passes through the points 0, P, and Q be called P. We claim that the point 
R = (a + d, b + e, c + f) also lies on the plane P. To see this, first note that 
the vectors 

---+ 
both lie in the plane P. The directed segment QR is the translation of the 
vector v to the starting point Q. Since Q lies in P, this translated vector must 
also lie inside P, and consequently we see that REP. This is illustrated in 
Fig. 2.1l. 

In order to complete our parametric description of the plane P, we next 
note that the line £1 through 0 and P and the line £z through 0 and Q are 
contained in the plane P. The line £1 is the set of all points {(ta, tb, tc) It E 
R}, and the line £z is the set of all points {Cud, ue, uf) I u E R}. As we just 
saw, if we add the coordinates of a point on £1 to the coordinates of a point 
on fz, we obtain a point on P. In fact, all points on P arise in this way. 
Putting this together, we have shown that 

P = {(ta + ud, tb + ue, tc + uf) It, u E R}. 

We have shown how to describe parametrically any plane that contains the 
origin in terms of any two nonzero points that lie on the plane. Note that 
two variables (in this case t and u) are needed to parameterize a plane. 
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FIg. 2.11. Plane l' 
through origin, P and Q 
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Example. Suppose that P is the plane through the origin 0 and the two 
points P = (~, -1,3) and Q = (-4,0,2). Then the set of all points on the 
plane P can be described parametrically by 

P = { (i U, - U, 3U) + (-4t, Ot, 2t) I t, U E R} 

= {(iU-4t,-U,3U+2t) It,UER}. 
----+ ~ 

The region of this plane inside the parallelogram with edges OP and OQ is 
shaded in Fig. 2.11. 

Parameterizing Planes In Space 
Of course, we also want to be able to describe planes that may not contain 
the origin. Recall what we did in the case of lines. If we knew how to 
represent parametrically the line eo through the origin that was parallel 
to the line e of interest, then the parametric representation of e could be 
obtained by adding a position vector from e to the representation of eo. 
This same process works for planes. Suppose we know how to represent 
parametrically the plane Po through the origin that is parallel to the plane 
P of interest. Then the parametric representation of P can be obtained by 
translating the representation of Po by any vector on P. This is illustrated 
in the next example. 

Example. Consider the plane P that passes through the three points P = 
(2,0,1), Q = (0,3, -1), and R = (3, -1, 1). We first need to find a para­
metric representation for the plane Po that is parallel to P but passes 
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through the origin. For this we have to find the coordinates of two points 
on Po. For exactly the same reasons as in the case of lines (Sec. 2.2), 
this can be accomplished by subtracting the coordinates of P from the 
points Q and R. Hence A = (0 - 2,3 - 0, -1 - 1) = (-2,3, -2) and 
B = (3 - 2, -1 - 0,1 - 1) = (1, -1,0) are both points of Po. Using the 
coordinates of A and B, we find that Po has the parametric description 

Po = {( -2t + U, 3t - U, -2t) It, U E R}. 

Finally, we know that the points on P can be found by translating the points 
on Po by Q. This shows that 

P = {(0,3, -1) + (-2t + u,3t - u, -2t) j t, U E R} 

= {(-2t+ u,3+3t- u,-1-2t) It,uER}. 

The Cartesian Description of Planes 

Our last task in this section is to relate what we have learned about paramet­
ric representations of planes and lines to the more familiar representations 
you may have seen earlier. Suppose that a, b, c, and d are real numbers. 
Then the graph of the linear function z = ax + by + c inside R3 is a 
plane. More generally, the set of all solutions to an equation of the form 
ax + by + cz = din xyz-space is a plane. For example, the plane P whose 
points are the solutions of 2x - y + z = 4 is indicated in Fig. 2.12. The three 
axes intersect this plane at (2,0,0), (0, -4,0), and (0,0,4), which form the 
corners of the triangle on P that is shaded in the figure. 

Suppose we wish to find the parametric representation of this plane 
P. For this we must find two points on the plane Po that is parallel to P 

Fig. 2.12. The plane 
2x - y + z = 4 (shown for 
x 2:0, y :s; 0, and z 2: 0) 
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and passes through the origin. The plane Po is the set of solutions to the 
equation 2x - y + z = 0. (To see this, note that the equations 2x - y + z = 4 
and 2x - y + z = ° do not have any common solutions, so the planes they 
describe cannot intersect. Since (0,0,0) is a solution to 2x - Y + z = 0, this 
equation must describe Po.) In order to find two points of Po, we must find 
two different nonzero solutions to the equation 2x - y + z = 0. We rewrite 
this equation as - z = 2x - y. Setting x = 1 and y = ° gives z = -2 and 
therefore the point (1,0, -2) of Po. Setting x = ° and y = 1 gives z = 1 
and therefore the point (0,1,1) of Po. It follows that the plane Po can be 
parametrically described as 

Po = {t(1,O, -2) + u(O, 1, 1) It, u E R} 

= let, u, -2t + u) It, u E R} 

Finally, we know that the points on P can be found by translating the points 
on Po by any point on P. We note, for example, that (0,0,4) is a solution 
to 2x - Y + z = 4, the equation that gave P. This shows that 

P = {(o, 0, 4) + Ct, u, -2t + u) It, u E R} 

= {Ct, u,4 - 2t + u) I t, U E R}. 

More Examples 
Many problems involving lines and planes in R3 can be answered by the 
parametric representations developed in this section. 

Example 1. The two planes described by the equations 3X - 3 Y + 2Z = 6 
and 3X + 6 Y - 2Z = 18 intersect in a line e (see Fig. 2.13). Describe this 
line e parametrically. 

Solution. There are many ways to approflch this. Here is one. The planes 
described by the equations 3X - 3 Y +' 2Z = ° and 3X + 6 Y - 2Z = ° 
intersect in a line eo through the origin which is parallel to the line in 
question. (These planes are parallel to the planes in question. The vector v 
in Fig. 2.13 lies on eo.) Next we find a nonzero point on this intersection. 
Such a point must solve 3X - 3 Y + 2Z = ° and 3X + 6 Y - 2Z = 0. Adding 
these two equations gives 6X + 3 Y = 0. Choosing the solution X = 2 
and Y = -4 to this equation and substituting these values into the original 
equations gives Z = -9. This shows that (2, -4, -9) is a point on the line 
eo. In particular, the line eo is described parametrically by 

eo = {(2t, -4t, -9t) I t E R}. 

To conclude we must find a point on the original line e. Adding the original 
equations 3X - 3 Y + 2Z = 6 and 3X + 6 Y - 2Z = 18, we find that 
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6x + 3 Y = 24. If we set X = ° (an arbitrary choice-any choice will give 
a point on (), we find that Y = ¥ = 8. As -2Z = 6 - 3X + 3Y, we find 
for this point that Z = 15, and consequently (0,8,15) is a point of l. We 
conclude that a parameterization of i is given by 

i = {(o, 8,15) + (2t, -4t, -9t) I t E R} 

= {(2t,8 - 4t, 15 - 9t) It E R}. 

Alternate Solution. This solution is suggested by the algebra in the second 
part of the preceding calculation. Adding the equations 3X - 3 Y + 2Z = 6 
and 3X + 6 Y - 2Z = 18 gave us 6x + 3 Y = 24, which simplifies to 
2X + Y = 8, from which Y = - 2X + 8 follows. We can then use X = t as a 
parameter, from which we obtain Y = - 2t + 8. Since 3X - 3 Y + 2Z = 6, we 
substitute our parameterized X and Y values to obtain 2Z = 6 - 3X + 3 Y = 
6 - 3t + 3( - 2t + 8) = -9t + 30. Dividing this latter equation by 2 shows that 
i is parameterized by {Ct, -2t + 8, -~t + 15) It E R}. This is expression is 
essentially the same as our first, the only difference being that our parameter 
has been multiplied by ~. This process will be studied in greater detail in 
the next chapter. 

Example 2. The line it, which is parameterized by {O + t, 0, 3-21) It E R}, 
and the line i 2 , which is parameterized by {O + 2t, - t, 3 + 2t) It E R}, both 
contain the point 0,0,3). Find a parametric representation of the plane P 
that contains the lines i1 and i2. 

Solution. Observe that the lines i1 and i2 are different. If we decompose 
the parametric representation of the line iI, we see that an arbitrary point on 
i1 can be expressed as 0,0,3) + Ct,o, -2t). Similarly, an arbitrary point on 
i2 can be expressed as 0,0,3) + (2t, - t, 21). This means that if we consider 
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Problems 

the vectors 

we see that £1 is parallel to ~ and that £2 is parallel to iJz. Now this means 
that the plane Po, which is parallel to P and passes through the origin, 
consists of all the points whose position vectors are given by t~ + uiJz, 
where t, u E R. In other words, 

Po = {(t + 2u, -u, -2t + 2u) It, u E R}. 

If we translate this parametric description of Po by the point 0,0,3), we 
obtain the parametric description of P, 

P = {O, 0, 3) + (t + 2u, -u, -2t + 2u) It, u E R} 

= {O + t + 2u, -u,3 - 2t + 2u) It, U E R}. 

Example 3. Find two equations in the variables x, y, z that describe the 
line £ parameterized by {(%, t, ~ + t) It E R}. 

Solution. If such a system of equations is desired, the procedure of solving 
for t used in the last section for obtaining equations for lines in the plane 
can be used--Dnly we must be careful to obtain two linear equations and 
not just one. This means that an arbitrary point (x, y, z) on £ solves x = ;, 
y = t, and z = ~ + t for some t E R. Solving for t gives y = t = z - ~. 
This shows that the system of equations 

x 

has as solutions the line €. 

Note: Some of these problems are different than the examples given in the 
text. Students should try to use the type of geometric methods introduced 
in this section when looking for a method of solution. 

1. Let P = (1,1,3), Q = (2,4,0), R = (0, -1,2), and S = 0,1,1). Find a 
parametric description of the following lines in R3: 

~ 

(a) the line PQ, 
+--+ 

(b) the line RS, 
~ 

(c) the line parallel to PQ and containing S. 
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2. Consider the points A = (1,0,3), B = (2,2,0), C = (3,4, -3)' and 
D = (2,4,6) in R3. 

t---+ 
(a) Find a parametric description of the line AB. 

t---+ 
(b) Using your answer to (a), does either Cor D lie on AB? (For this, 

check to see if they can be represented by your parametric equation.) 

3. Find parametric descriptions of the following planes in R3: 

(a) the plane through 0 = (0,0,0), P = (1,1,1), and Q = (2,4,1), 

(b) the plane through A = (1,2,4), B = (1, -1, 1), and C = CO, 0,1), 

(c) the plane described by the equation x - y + z = 4, 

(d) the plane through 0 = (0,0,0), and the line described parametrically 
by {(t + 1, t + 2, t) I t E R}. 

4. Find parametric descriptions of the following planes in R3: 

(a) the plane through R = (1,0,0), 5 = (0,0,1), and T = (2,0,1), 

(b) the plane through L = (1,0,4), M = (-1, -1,0), and N = (1,0,1), 

(c) the plane described by the equation y - z = 0, 

(d) the plane through the two lines described parametrically by {Ct, t, t) I 
t E R} and {(t, 2t, 5t) I t E R}. 

5. Find an equation in the variables x, y, and z that describes each plane 
in R3 below: 

(a) the plane described parametrically by {(t + u, t - U + 1, t) It, U E R}, 

(b) the plane through the points 0 = (0,0,0), P = (1,3,5), and Q = 
(-1,0,2). 

6. Find both a parametric description and an equation in the variables x, 
y, and z for each plane in R3 below: 
(a) the plane containing the point P = (1,3,2) and the line f parame­

terized by {Ct, 2t - 1,3) I t E R}, 

(b) the plane through the points A = (2,1,0), B = (1,0,1), and C = 
(1,1,1). 

7. Find parametric descriptions of the following lines in R3: 

(a) the line that is the intersection of the planes given by the equations 
x + z = ° and x + 2y - 3z = 0, 

(b) the line that is the intersection of the planes given by the equations 
x - y + z = 1 and x + z = 6. 

8. Find parametric descriptions of the following lines in R3: 

(a) the line that is the intersection of the planes described parametrically 
by {(t - u, 3t + u, u) It, U E R} and {(4r - S, 0, S + r) I r, S E R}, 

(b) the line that is the intersection of the planes described parametrically 
by {(t + U + 1, t, U + 1) I t, U E R} and {(4r - S + 1, r, s + r + 1) I 
r, s E R}. 
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Group Project: Understanding Surfaces by Slicing with Planes 

In this problem you will study the surface T C R3 described parametrically 
by 

T = {(cos(s)(2 + cos(r)), sin(s)(2 + cos(r)), siner)) I r, s E R}. 

Before you begin, you should discuss what it means to parameterize a 
surface using two variables. 

(a) Give a general parametric description of all planes parallel to the .xy­
plane. 

(b) Using your answer to (a), if Q is a plane parallel to the .xy-plane, what 
does Q n T look like? 

(c) Your answer to (b) should tell you what T looks like. What is 1? 

(d) Give a general parametric description of all planes that pass through 
the z-axis. 

(e) Using your answer to (d), if P is a plane containing the z-axis, what 
does P n T look like? 

(f) Is your answer to (e) consistent with your answer to (c)? 

2.4 An Introduction to Linear Perspective 

Although we live in a three-dimensional world, most of the representa­
tions of our surroundings are two-dimensional. Paintings, photographs, and 
drawings all lie in a plane. However, this restriction to two dimensions is not 
a big problem. Photographs look quite real, and skilled artists can create the 
illusion of depth on their canvas. A reason for this is perspective. Discovered 
during the Renaissance, perspective is the theory of how three-dimensional 
objects correspond to points on a plane in our field of vision. In this section 
we will use the language of vectors to study some of the basic concepts of 
perspective. 

The setup we shall use for understanding perspective is the following. 
Suppose that an artist is standing in a fixed position in front of a large 
window. On the other side of the window is an ocean view the artist de­
sires ·to paint. In order to create a realistic painting, the artist decides to 
paint directly on the glass, placing every object exactly where it appears 
to be. Our problem is to help the artist determine where to locate cer­
tain objects on the glass. We shall shortly see that interesting things can 
happen. 

A version of this process is illustrated in Fig. 2.14, which is a woodcut 
by Albrecht Durer from his book Instrnction in Measurement. 



Fig. 2.14. illustration 
from Inatructlon In 
Measurement by Albrecht 
Diirer (1525) 
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The Perspective Correspondence 
In order to apply vector geometry, we need to set up our problem in xyz­
space. We shall assume that the plane of the glass is the xz-plane Pxz and 
that the plane of the beach is the xy-plane P xy' The artist is approximately 5 
feet tall and is standing 10 feet behind the glass. Therefore we shall assume 
that the artist's eye is located at the point E = (0, -10,5) in xyz-space. The 
scene to be painted lies on the other side of the glass, with all y-coordinates 
positive. Suppose the artist decides to paint an object that is positioned at 
P = (a, b, c). To what point on the glass does this point correspond? In 
order to find out, we consider the segment EP and its intersection with the 
glass plane P xz . This is where the object should be painted on the glass 
in order for it to appear where the artist actually sees it. If Q is the point 
in the intersection EP n Pxz , we say that Q corresponds perspectively to P 
from E. This is illustrated in Fig. 2.15. 

We next determine the coordinates of EP n P xz in terms of the coordi­
nates of P. The line R.p between the point E = (0, -10,5) (the "eye") and a 
point P = (a, b, c) can be parameterized as follows. The direction vector is 

and consequently 

i p = {(fa, -10 + t{b + 10),5+ t(c - 5)) It E R}. 

The intersection of i p with Pxz is the point on i p with y-coordinate zero, 
and this occurs where t = b~~O' Substituting this t value into the parame­
terization of i p shows that the point P= (a; b, c) corresponds perspectively 
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Now we tabulate some points on the y-axis in R3 and the points ih the 
plane P xz to which they perspectively correspond: 

Point on y-axis Point on P xz 
(0,0,0) (0,0,0) 
(0, ~,O) (0,0,1) 
(0,5,0) (O,O,~) 

(0,10,0) (O,O,~) 
(0,15,0) (0,0,3) 
(0,40,0) (0,0,4) 
(0,90,0) (O,O,~) 

Observe that as the points on the y-axis recede from the observer, the 
corresponding points on P xz rise more and more slowly along the z-axis, 
approaching the value z = 5. 

Collinear Points Correspond to Collinear Points 
If we knew all the coordinates of the objectS on the beach we wanted to 
paint, our formula would tell us exactly what to do. However, this is clearly 
impossible! Instead, we shall use our vector geometry in order to learn how 
different shapes transform in perspective. In the end this will save a great 
deal of time, and we will be able to paint more efficiently. 
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The first question asked by our artist is how to paint lines. We shall 
restrict our attention to the values y 2: 0, since the artist is painting objects 
on the opposite side of the window. As a first case we consider two parallel 
rays on the xy-plane (which is the ground level), say'R,l given by x = ° and 
'R,2 given by x = 2. These rays are parameterized as (0, t,O) and (2, t,O), 
respectively, where t 2: 0. We apply our calculations above. For the ray 
'R,1, we substitute a = 0, b = t, and c = 0, and find that it perspectively 
corresponds to set of points (0,0,5 - t1~0) where t 2: 0. Similarly, the 
second ray 'R,2 perspectively corresponds to set of points (t~~O' 0, 5 - t1~0) 
where t 2: 0. 

In both of these formulas, the fraction t+\o occurs. Since we are consid­
ering only the values of t with t 2: 0, the fraction t;lO varies between to 
and 0. Hence the fraction t1~0 varies between 5 and ° and the fraction t~~O 
varies between 2 and 0. If we set 5 = ,~~O' we find that the first line perspec­
tively corresponds to the line segment {CO, 0,5 - 55) los 5 S I}, and the 
second line perspectively corresponds to the line segment {(25, 0, 5 - 55) I ° s 5 S I}. We have found that both rays 'R,1 and'R,2 correspond to line 
segments on the plane 'Pxz. This illustrates a general fact about perspective: 

Fact. Any collection of collinear points perspectively corresponds to 
another collection of collinear points. 

Note that these two segments corresponding to 'R,1 and 'R,2 have the 
common end point (0,0, 5). This point is called the infinite point of the 
parallel rays 'R,1 and 'R,2. The reason for this is that if your eye looks down 
either ray as far as you can see (toward "infinity"), then you will be looking 
through the glass very close to the point (0,0, 5). If you look at a railroad 
track running straight away from you toward the horizon, the rails appear 
closer and closer together as they recede and in fact appear to join at the 
horizon. We just noted this phenomenon algebraically in this calculation for 
the parallel pair of rays 'R,1 and 'R,2. 

The perspective correspondence of the rays 'R,1 and 'R,2 is illustrated in 
Fig. 2.16. 

The Infinite Line 
We next consider two more parallel rays on 'Pxz. Suppose 'R,3 is param­
eterized by (t, 21,0) and 'R,4 is parameterized by (1 + t, 2t, 0), both where 
t > 0. By a calculation analogous to the preceding, we find that 'R,3 cor­
responds perspectively to set of points (2:2~0' 0, 5 - 21S:1O) where t 2: o. 
S· lOt - 5 - 50 fi d h "., ds th I· -mce 2t+1O - 21+10' we n t at I'\..3 correspon to e me seg-
ment {(5u, 0, 5u) los u s I}. Similarly, we find that 'R,4 corresponds 

. If· (.!Qili.ll. ° 5 50) h > OR· perspective y to set 0 pomts 2/+10" - 21+10 were t - . ewnt-
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Rg. 2.16. Collinear 
points perspectively 
correspond to collinear 
points 

z 
6 

-2 

-3 

-4 

---- ~ /.: 
.... ~vl 25~ 

'. P 
I 

x 

ing 1f~~~~) = 5 - 2t~1O shows that 1<-4 corresponds to the line segment 
{(5 - 4v, 0, 5 - 5v) 1o ::::; v ::::; I}. 

We find that the parallel rays 1<-3 and 1<-4 correspond to segments that 
have the common point (5,0,5) E Pxz . This is their infinite point. Observe 
that the infinite point for the parallel rays 1<-1 and 1<-2 also had z-coordinate 
5. In general, each collection of parallel rays in the xy-plane (with y > 
0) correspond to segments in Pxz that meet at an infinite point with z­
coordinate 5. This is because the line z = 5 on Pxz is where the horizon 
is viewed on the picture plane. For this reason it is called the horizon or 
infinite line. Observe that the height (z-coordinate) of the infinite line is the 
same height as the artist's eye. 

More Perspective Correspondences 
Students of perspective must learn how to draw many different three­
dimensional shapes. We will not give any further calculations in this section 
but will instead describe how some specific objects correspond. You will 
need to use your imagination to supply some of the reasons. 

First we ask you to imagine that the ground on the other side of our 
artist's glass is covered with square tiles. How will they be drawn in perspec­
tive on the glass? Of course, each tile will be drawn as a quadrilateral, since 
a square has four line segments as sides and line segments perspectively 
correspond to line segments. Since there are two directions of parallel sides 
in the squares, when drawing these square tiles on the glass the artist will 
have to draw two collections of lines that intersect at two different infinite 
points. The resulting representation of the tiles is shown in Fig. 2.17. When­
ever the dominant features of a drawing are determined by two collections 
of parallel lines (as are the tiles in the figure), the drawing is said to be 
two-point perspective. 
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fig. 2.17. Square tiles 
drawn In tw~nt 
perspective. The horizon 
line Is the dotted line. The 
two Infinite points on the 
horizon line are Indicated. 

--~-------------------~--

Problems 

We next ask, what happens to circles? Imagine a circle centered in the 
four tiles in Fig. 2.17. You can see by inspecting the representation of the 
tiles that circles need not perspectively correspond to circles. In fact, these 
circles turn out to correspond to ellipses! 

Finally, we ask the reader to think about how a sphere must be drawn. 
How must the artist draw the moon? If you think about the different times 
you have viewed a full moon, you know that it appears in the sky as a circle, 
regardless of the angle of view. In fact, any sphere will always perspectively 
correspond to a circle when drawn on the plane. 

1. In this problem you are not expected to carry out any calculations. 
Instead you should use your geometric irnagination-a tool that will be 
extremely valuable as you continue in this course. What can happen to 
the following geometric shapes and relationships when they are viewed 
in linear perspective? 

(a) Angles. Are they drawn as they really are in perspective? 

(b) Triangles. How do they change in perspective? 

(c) Squares. How do they change in perspective? 

(d) Lengths. Can they increase or decrease? 

2. Consider the perspective correspondence set up in this section. 

(a) Which line in Pxz corresponds to the line {(t, t,O) It E R} in Pxy? 

(b) Which line in Pxz corresponds to the line {Ct, t + 3,0) I t E R} in 
Pxy? 

(c) What is the infinite point on Pxz that arises when viewing all lines 
in Pxy parallel to the line {(t, t,O) It E R} from E? 

(d) What is the infinite line on P xz that arises when viewing P xy? 
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Fig. 2.18. A cube drawn In one-, two-, and three-point perspective 

Fig. 2.19. Nativity 
(1504) by Albrecht Diirer 
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Group Project: Perspective Drawing 

Figure 2.18 contains three drawings of a cube. The left-hand drawing is in 
one-point perspective, the middle drawing is in two-point perspective, and 
the right-hand drawing is in three-point perspective. Each drawing is made 
of nine line segments. 

(a) By considering the parallel edge~ of the above representations of a 
cube, give a precise definition of what you think one-, two- and three­
point perspective is. 

(b) Which drawing of the cube looks the most realistic. Why? 

(c) What impression of your position relative to the cube_do these drawings 
give you? Why do you think this happens? 

(d) Imagine a four-step staircase carved out of the cube. Draw this staircase 
in each of one-, two-, and three-point perspective. 

Group Project: Find the Floor Plan 

Figure 2.19 shows a famous engraving by Albrecht Durer. The scene is 
staged in what presumably were real buildings for Durer, and the picture is 
drawn according to the principles of linear perspective as described in this 
section. 

Your task is to estimate distances and draw a scaled floor plan repre­
senting the courtyard and the placement of the buildings in the picture. 
Hint: the courtyard is basically rectangular, but it is much deeper than it is 
wide (even though the width, as drawn on the paper, is longer). Don't try 
to use the messy coordinate calculations found in this section. Instead, use 
the proportionality of similar triangles as described in Sec. 2.1, along with 
what you have learned about perspective. Base your estimates on realistic 
measurements of things you see (for example, people or roof heights). Be 
sure to label your scale on your floor plan and be able to defend your 
distance estimates. 



CHAPTER 

SYSTEMS OF 
LINEAR EQUATIONS 

3.1 Systems of Linear Equations -
We have already seen many linear equations in our study of linear functions, 
and on a number of occasions we had to find their solution sets. In this 
chapter we will develop systematic methods for doing so. Throughout this 
chapter we will consider systems of linear equations where the number of 
equations and the number of variables will not necessarily be the same. This 
means that they may not have a single solution, as is often the case when 
this subject is discussed in high school texts. 

Linearity In Electrical Circuits 

In Fig. 3.1 we have illustrated the simplest electric circuit, that of a battery 
connected to a single resistor. The resistor could represent, for example, a 
light bulb, an electronic game, or any appliance that uses battery power. 
Linear equations describe the relationship between the amount of current 
flowing throughout the circuit and the voltage applied by the battery. This 
relationship is known as Ohm s law. Ohm's law states that the current flow 
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Rg. 3.1. A simple circuit 
with battery (left) and 
resistor (right) 
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through the resistor is proportional to the (battery) voltage applied. It is 
customary to denote the current by I and the voltage by V. With this 
notation, Ohm's law reads V = rI, where r is a constant, known as the 
resistance of the resistor. Ohm's law shows that given a fixed resistance, the 
voltage required is a linear function of the current desired. 

The units measuring voltage, V, as you are probably aware, are volts. The 
units measuring the current, I, are called amperes, or amps, and the units 
of the resistance constant, r, are called ohms. So, for example, if r = 100 
ohms (denoted r = 1000), and if we desire 15 amperes of current to flow 
through our circuit, then Ohm's laws says V = 1001 and consequently we 
need to apply 100· 15 = 1500 volts from our battery. Similarly, if we desire 
1 ampere of current, then we need 100 volts. To put the meaning of these 
units in better perspective, we remark that power dissipated through the 
resistor is the product (volts X amps) = watts. So if our 100-ohm resistor 
was really a light bulb, then applying 100 volts would give 1 amp of current 
and produce the light given by a 100-watt bulb. 

Conversely, if we know the voltage, Ohm's law enables us to determine 
current flow. For example, if we know that 6 volts are applied to a circuit 
with a resistance of 24 ohms, then the current I is determined by the linear 
equation 241 = 6. In this case I = .25 amps. We will study more complex 
circuits shortly, and instead of a single linear equation we will have to 
consider systems of linear equations. 

Linear Equations and Systems of Linear Equations 

We recall that a linear equation in the variables X}, X2, ... , Xn is an equation 
of the form 

where the constants al, a2, ... , an, b are real numbers. For example, the 
equations 3X - V2 Y + Z = 4 and 2Xl - 3X2 = -1 are both linear equations, 
while the equation X - Y + 3XY = 0 is not linear since it has a product of 
variables. 
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Fig. 3.2. A circuit with 
two resistors 
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A system of m linear equations in the n variables Xl, X2, ... , Xn is usually 
represented as 

al1 XI + a12X2 + ... + alnXn = ~ 
a2l X I + a22X2 + ... + a2n Xn = bz 

Here, aij and hi are real numbers. In order to simplify terminology, we will 
often use the phrase "a system of equations" instead of "a system of linear 
equations. " 

Two Resistors in a Circuit 
We saw how to use Ohm's law to compute the current through a simple 
circuit containing a battery and a single resistor. We next analyze the case 
where the circuit has two resistors instead of one. 

In order to compute the current flow through this circuit, it is necessary 
to know what the total resistance is between the points A and C. Figure 
3.2 indicates that the resistor between A and B has resistance r AB ohms 
(denoted rABn) and the resistor between Band C has resistance rBCn. 
Since the resistors are connected in series, the total resistance between A 
and C is known to be (rAB + rBC)n. Therefore, by Ohm's law we have that 
V = (rAB + rBc)I for this circuit. 

Suppose we know that the voltage applied by our battery is V. Then, if 
we connect a voltmeter between the points labeled A and C, we would read 
V volts. It is important to understand what happens if we instead measure 
the voltage between A and B, or between Band C. It turns out that Ohm's 
law applies to these pieces of the circuit as well. If the current flowing in this 
circuit is I, then the voltage read between A and B is given as VAB = rABI, 
and the voltage read between Band C is given as VBC = rBcI. We have 
now obtained a system of three equations in the four variables I, V, V AB, 
and VBC: 

V = rABI + rBcI 
VAB = rABI 
VBC = rBCI. 
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If we add the second and third equations, we find V AB + VBC = r ABI + rBC I = 
(rAB + rBc)I. But the first equation says that V = (rAB + rBc)I, so we obtain 
that V AB + VBC = V. This observation is known as Kirchoff's voltage law. 

Solutions to Systems of Equations 
We denote by Rn the set of all n-tuples of real numbers, that is Rn = 
{Crt, r2, ... , rn) I rt, r2, ... , rn E R}. In the past two chapters we made an 
effort to use column vectors when considering elements of R n. When we 
consider solutions to systems of linear equations, it will be convenient to 
use n-tuples in rows as well. We will add and scalar multiply these n-tuples 
as 

and 

In the last chapter we used R2 to give the coordinates of elements of 
the Euclidean plane, and R3 to give the coordinates of elements in three­
dimensional space. Often people ask, "What does R4 look like?, and how 
about R5?" Very few people have any clear picture in mind of these higher 
dimensions (the author doesn't), but this is not crucial. One does not have 
to worry about any possible geometric interpretation of R n for n > 3. What 
you need to remember is that Rn consists of n-tuples of real numbers and 
as such is a place where we can encode n-tuples of information. However, 
we do use our intuition from R2 and R3 as a guide when working with Rn , 

and consequently some geometric language is carried over. 
Our first definition is the following. The set of solutions to the linear 

equation 

is the set 

For example, consider the equation 

X+2Y= 1. 

The pairs of real numbers (1,0), (3, -1), and (-3,2) are each solutions to 
this equation. In fact, there are infinitely many possible solutions, because 
any solution must be a solution to the equation X = 1 - 2 Y, and the 
collection of solutions to this equation can be parameterized by setting 
Y = t and X = 1 - 2t. In other words, the solution set is {(1- 2t, t) I t E R}. 
We recognize that we have just parameterized a line in R2. Of course, the 
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fact that the set of solutions is a line should be familiar from the last chapter 
Cas well as high school mathematics). 

We next consider systems of linear equations. The set of solutions to the 
system of linear equations 

auXt + a12 X2 + ... + atnXn = ~ 
a21 Xt + a22X2 + ... + a2nXn = bz. 

is {Crt, r2, ... , rn) E R n I Crt, r2, ... , rn) is a solution to each of the m 
equations}. In other words, the set of solutions to the system is the intersec­
tion of the solution sets of each of the m individual equations. 

In Example 1 of Sec. 2.3 we studied' the solutions to the system of 
equations 

3X- 3Y+ 2Z = 6 
3X + 6 Y - 2Z = 18, 

and we found that its solution set in R3 is the line {Ct, -2t + 8, -~t + 15) I 
t E R}. Solution sets to systems often look like this. Whenever there is more 
than one solution to a system of equations, the solutions can be expressed 
using some parameters, with each coordinate of a solution expressed as a 
linear function of the parameters. 

A system of equations need not have a solution. For example, 

x + 2Y = 1 
2X+4Y=3 

does, not have any solutions. This is because any solution Cr, s) to the 
first equation must satisfy r + 2s = 1. Therefore, multiplying by 2 shows 
2r + 4s = 2, so Cr, s) cannot be a solution to the second equation. 

If a system of equations has at least one solution, it is called consistent. 
If it has no solutions, it is called inconsistent. 

An Electrical Network 
Recall that Ohm's law can be used to determine the current in a simple 
electric circuit if we know the resistance and the voltage applied. Also 
recall that when a circuit has two resistors, the sum of the voltages between 
the portions of the circuit loop is the total voltage. We utilize these ideas 
and consider a slightly more complicated circuit with two batteries and three 
resistors in Fig. 3.3. 

Our problem is to determine the current flow in the above circuit where 
the voltages and resistances are as indicated. In order to do this we assign 
currents to the three circuit sections: lBA for the section between B and A, 



3.1. SYSTEMS OF liNEAR EQUATIONS • 77 

Fig. 3.3. A circuit with 
two loops 

A 

8v ---

+ 

2n B 

c 

in D 

4n 6v 

+ 

IBD for the section between Band D, and lCB for the section between C 
and B. Ohm's law tells us that the voltage between B and A is 21BA, the 
voltage between C and B is 41cB, and the voltage between D and B is lIDB. 
The fact that we have 8 volts between C and A now shows by Kirchoff's 
voltage law that 8 = 41cB + 21BA ; similarly, since we have 6 volts between 
C and D, we find 6 = 41cB + IBD. Finally, we also know that the current lCB 
between C and B must be the sum of the currents lBA + IBD. This is called 
Kirchoffs current law. 

We have obtained three linear equations in three unknowns, which we 
write as 

41cB + 21BA = 8 
41cB + IBD = 6 

lCB - lBA - IBD = o. 

Adding the second and third equations together shows that 51cB - IBA = 6. 
Adding twice this new equation to the first equation shows that 141CB = 20. 
This shows that ICB = ~ = ¥ amp. The second equation now shows that 

21BA = 8 - ~ = ¥, so IBA = ~ amp. Finally, the third equation shows 
IBD = 6 - ~ = ~ amp. We have determined the solution to our system 
of equations (it is unique) and have therefore found how current flows 
through each section of our electrical network. 

The Geometry of Unique Solutions 
We consider three equations in three unknowns: 

x -z=o 
x+y-z=o 

z=1. 

Since we know that Z = 1 in any solution (by the third equation), the 
first equation shows that X = Z = 1 in any solution. The second equation 
gives Y = Z - X = 1 - 1 = O. Hence the only solution to the system is 
the point (1,0,1). This is reasonable, since each of the equations in this 
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FIg. 3.4. Solutions to X - Z = 0, X + Y - Z = 0, and Z = 1. 

system is the equation of a plane in R3. These three planes in R3 intersect 
pairwise in nonparallel lines, and consequently the intersection of all three 
is a single point. Portions of these planes and their point intersection (1,0, 1) 
are illustrated in Fig. 3.4. 

Inconsistent Systems 

Consider the system 

x +Z=o 
Y+Z=O 

X-V =1. 

It can quickly be checked that any two of these equations have common 
solutions. However, the entire system is inconsistent. To see this, add the 
second and third equations to obtain X + Z = 1. But the first equation says 
that X + Z = O. So the system can never have a solution. Geometrically 
On R3), each equation in the system defines a plane. Each pair of planes 
intersect in a line, but the three lines (given by the three pairs) are all 
parallel. These three parallel lines do not intersect, and consequently the 
three planes taken together do not have any points in common. This is why 
the entire system is inconsistent. 

In the next section we shall study a systematic procedure for finding 
the set of solutions to arbitrary systems of linear equations. This will enable 
us to handle large numbers of equations in many unknowns. But you will 
need to keep in mind the key examples from R2 and R3 illustrated here in 
order to have a geometric picture of what the solutions mean. 
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1. Determine the solution set of each of the following systems of equa­
tions. 
(a) X - Y = 5 

2X+ 2Y = 8 

(c) X-2Y=-2 
-3X+6Y = 6 

(b) X + 5Y = 0 
X - 3Y = 0 

(d) 2x+6Y= 1 
X + 3Y = 3 

2. Determine the solution set of each of the following systems of equa­
tions. 
(a) X - Y = 1 

2X-2Y=3 

(c) 3X-2Y=-2 
-3X + 6Y = 0 

(b) 2X+5Y=0 
X - 4Y = 0 

(d) 2X + 8 Y = -6 
-X-4Y= 3 

3. Determine the solution set of each of the following systems of equa­
tions. 
(a) 6x - 2 Y - 2Z = 10 

2X + Z= 5 
(b) X- 3Y+ z=o 

X + 5Y - 2Z = 0 
2X + lOY - 2Z = 0 

4. Determine the solution set of each of the following systems of equations 
in four variables. 

(a) 3XI + X2 - X3 = 0 
XI -2X2 -..\4=0 
Xl + 3X2 = 0 

=0 
- 2X3+ ..\4=1 
+ 2X3 - 3..\4 = 2 

5. Determine the solution set of each ofthe following systems of equations 
in four variables. 
(a) X + Y + Z + W = 7 (b) X - Z = 3 

Y+ W= 2 
6. Determine the solution set of each of the following systems of equa­

tions. Explain, in geometric terms, what the solution set looks like. 
(a) X + 3 Y + Z = 0 (b) X + 3 Y + Z = 1 

X - Y + 3Z = 0 X - Y + 3Z = 1 
2Y - Z = 0 2Y - Z = 1 

7. Consider the system of equations where u and v are real numbers, 

3X - Y = u 
6x- 2Y = v. 

For what values of u and v does the system have a solution? For what 
values does it have a unique solution? 

8. True or false, and why? (Use your geometric thinking.) 
(a) If two linear equations in two variables have a common solution, 

then this solution is unique. 
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(b) Three linear equations in three variables never have exactly two 
common solutions. 

(c) Two linear equations in three variables never have exactly one 
common solution. 

(d) Two linear equations in three variables always have at least one 
common solution. 

9. What happens to the current flow in the electrical network shown in 
Fig. 3.3 if the polarity of the 8 volt battery is reversed? 

10. Consider the electrical network shown in Fig. 3.3. Suppose that the 
resistors in that circuit have resistance values r, s, and t instead of the 
values 2, 1, and 4. Express the current flow from each battery in the 
circuit as a linear function of the variables r, s, and t. 

Group Project 

Consider the system of equations where a, b, e, d, e, ! E R: 

aX+ bY+ eZ = 0 
eX + dY + !Z = o. 

(a) Does this system always have a solution? If so, how many? 
(b) Show that if (r, s, t) and (u, v, w) are both solutions to the system, then 

(r + u, s + v, t + w) is also a solution. 
(c) Show that if (r, s, t) is a solution to the system and k E R, then 

(kr, ks, kt) is also a solution. 
(d) What happens to statements (a), (b), and (c) if we instead consider the 

system of equations: 

aX + bY + eZ = 1 
eX + dY + !Z = 1. 

(e) How can you generalize your ideas developed above? 

Group Project 

These questions involve the electrical network shown in Fig. 3.5. 

(a) Find a system of five equations in five unknowns that enables you to 
determine the-current flowing in each segment of the circuit. 

(b) Shorten this system to three equations in three unknowns. Why can 
you do this?-

(c) Find an equivalt:;nt network using only three resistors. By "equivalent" 
we mean that if the same voltages are used in both networks, then the 
current flowing is the same in each. 
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FIg. 3.5. Group project 
circuit 
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Cd) Can you find an equivalent network using only two resistors? Why or 
why not? 

3.2 Gaussian Elimination 

We begin by isolating the basic steps used in solving systems of linear 
equations. These are called elementary operations. 

Elementary Operations 
Definition. An elementary operation applied to a system of linear equa­
tions is one of the following three operations: 

Ci) Multiply any single equation by a nonzero real number, leaving all the 
other equations the same. 

(ii) Add a multiple of one equation to a second, leaving all but this second 
equation the same. 

(iii) Interchange the position of any two equations on the list. 

In Theorem 3 ahead, we point out that elementary operations do not 
change the set of solutions to a system of equations. One needs to know 
this in order to use elementary operations to solve systems of equations. 
This next example illustrates how to use elementary operations in solving 
systems of equations. 

Example. Consider the system of equations 

3X - Y = 4 
X+Y=1. 

Applying the first operation, we can multiply the second equation by 3 and 
obtain 

3X - Y = 4 
3X + 3Y = 3. 
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We next subtract the second equation from the first (this is allowed by the 
second elementary operation) 

3X- Y = 4 
-4Y = 1 

The second equation shows that Y = -!. Substituting this information into 
the first equation shows that 3X = 4 - ! = ¥. Hence X = ~, and we have 
found the solution to the system. 

These same operations can be applied to the rows of matrices. In this 
situation we will refer to them as elementary row operations. For example, 
if 

A~ G 5 7 9) 2 3 4 , 
2 2 2 

then multiplying the second row of A by 3 gives 

B~ G 5 7 

1~). 6 9 
2 2 

and subtracting 2 times the third row from the first row of B gives 

c = (~ 
1 3 
6 9 
2 2 

This shows that the matrix C can be obtained from the matrix A by applying 
a sequence of two elementary row operations. 

The Augmented Matrix of a System 

Consider the system of equations 

3X - 4Y + Z = 1 
6x ~ 8Y + 4Z = 12. 

In order to save the trouble involved in writing the variables in each line, 
we write this system in the matrix form 

(~ -4 
-8 

The coefficients of the variables in a particular equation are represented by 
a row of the left-hand matrix. We can save more notation by replacing this 
equation by the augmented matrix of the system, in which we add a final 
column separated by a bar that gives the constants in each equation. The 
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augmented matrix in this case is 

We now apply row operations to our augmented matrix in order to solve 
the system of equations. In this setup, our elementary operations on the 
augmented matrix correspond exactly to the same operations on the system 
of equations. Subtracting 2 times the first equation (first row) from the 
second equation (second row) gives 

(~ -4 1 I 1) o 2 10 . 

Multiplying the second equation by ! gives 

(~ -4 
o ~ I D· 

Subtracting the second equation from the first gives 

( 3 -4 0 1-4) 
o 0 1 5' 

and dividing the first equation by 3 gives 

This augmented matrix represents the system 

X- ~Y ~ 

Z = 5. 

At this point we have a system of equations whose solutions are precisely the 
same as the original system. In any solution of this system, the third variable 
Z must be 5, while the first and second variables are not uniquely deter­
mined. Representing the possible values of Y by the parameter t (ranging 
over all R), we see that in any solution the value of X is determined by the 
Y value as X = ~ t - ~. Hence, all the solutions to the original system have 

the form (X, Y, Z) = (~t - ~,t, 5), where t is a real parameter. Alternatively, 

this set of solutions can be expressed as {( -~, 0, 5) + t(~, 1,0) It E R}. 

Equivalent Systems of Equations 
Whenever elementary operations are applied, equivalent systems are ob­
tained. We formalize this notion of equivalent systems. 
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Definition. Two systems of m equations in n variables are called equiv­
alent if one system can be obtained from the other system by performing 
a sequence of elementary operations. Analogously, two matrices are called 
row equivalent if one can be obtained from the other by a sequence of 
elementary row operations. 

Thus, for example, the three systems of equations listed in the example 
at the beginning of this section are all equivalent systems. 

The concept of equivalence is useful because of the next result. It shows 
why the technique used in the previous section enabled us to solve systems 
of equations. 

Theorem 3. If two systems of equations are equivalent, then they 
have exactly the same set of solutions. 

Although we do not give a formal proof of this theorem, it should be 
quite believable. For example, if you multiply the equation X + y + Z = 1 
by 3 to obtain 3X + 3 y + 3Z = 3, then the set of solutions does not change. 
After all, if r, s, t E R and if r + s + t = 1, then multiplying this equation 
by 3 shows 3r + 3s + 3t = 3. Hence Cr, s, t) is a solution to each equation. 
Similar ideas show that the other elementary operations cannot change the 
set of solutions. 

Note. We emphasize one point. Elementary operations do not allow you to 
multiply an equation by zero. If you do this, you may enlarge the solution 
set since it eliminates an equation. Each of our elementary operations is 
reversible. This means that after applying an elementary operation thereis 
another elementary operation that will return you to the original system. 
Clearly, multiplication by zero is an irreversible operation, and therefore 
one does not obtain equivalent systems. 

Gaussian Elimination 
We next discuss the systematic process for solving systems of equations 
known as Gaussian elimination. In the subsection on augmented matrices 
we found that it was relatively easy to write down the set of solutions 
for the final system of equations considered there. This happened because 
in the second equation, the third variable Z was isolated by itself. One 
could then determine X in terms of Y using the first equation. In Gaussian 
elimination the strategy is to apply elementary operations in a systematic 
way to produce systems that are roughly triangular in shape. Then the 
solutions to the system can be understood by generalizing the ideas utilized 
in the subsection on augmented matrices. 
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As an example of this strategy, we consider the system 

X+ Y+Z+W=1 
2X + 2Y - Z + W = 2 
3X + 3 Y + Z + W = 4. 

We begin by writing down the augmented matrix for this system and apply­
ing row operations to eliminate the variable X from the second and third 
equations: 

1 1 
2 -1 
3 1 

1 1 
o -3 
o -2 

1 1) -1 0 . 
-2 1 

At this pOint, the variable Y has also been eliminated from the second and 
third equations. This doesn't always happen. We now view Z as our leading 
variable in the second and third equations. Our strategy is apply operations 
so that its lead coefficient in the second equation is 1 and to eliminate it 
from the third equation: 

('1 1 1 

D U 1 1 1 

D o 0 -3 -1 r-. 0 1 1 
3 

o 0 -2 -2 0 -2 -2 

~U 
1 1 1 

D 0 1 ! 
3 

0 o -1 
3 

We finally multiply the third equation by - ~ so it has lead coefficient 1. 
This gives the augmented matrix 

(
1 1 1 1 
001 ! 

3 
o 0 0 1 

~) , 
_.2 

4 

whose solution set is easily determined. The last equation says that W = 
- ~. Substituting this into the second equation shows Z + (!)( -~) = 0, 
so Z = i. Finally, letting t be a parameter for the variable Y, the first 
equation says X + t + i + ( - ~) = 1, giving X = - t + ~. Our solution set 
is {( - t + ~, t, i, -~) I t E R}. When we describe the set of solutions in this 
fashion, Y is called a free variable and t is called its parameter, while X, Z, 
and Ware called determined variables. 

Echelon Form Systems 
Now that we have seen an example of Gaussian elimination, we next put 
the key points of this strategy in words. The process is described in stages, 
with one stage for each row, starting at the top. The first stage begins 
by arranging the variables in some order and· aligning them in columns. 
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Next, make sure that the first variable occurs in the top equation-if not, 
interchange equations (we use the phrase "variable occurs" to mean that 
the variable has a nonzero coefficient). Next, the first equation is multiplied 
by an appropriate real number to give the first variable coefficient 1. Now, 
using the second row operation, remove the first variable from all equations 
below it. At this point, the first variable of the system only occurs in the first 
equation. 

In the second stage of Gaussian elimination, the process just described 
is repeated using the second equation as if it were the top equation, leaving 
the first equation alone. At the end of the second stage, the first occurring 
variable of the second equation does not occur in any equation below. Note 
that, as in the preceding example, the first occurring variable in the second 
equation is not necessarily the second variable. Also, one might have to 
interchange equations in order to bring the second occurring variable to the 
second equation. After this, the process is repeated for the third, fourth, ... , 
nth equations until a "triangular" or "staircase" shape system of equations 
results. This staircase shape of coefficients is pictured in Fig. 3.6. 

At the end of Gaussian elimination the resulting system of equations is in 
echelon form. In this definition it is crucial that an ordering of the variables 
be specified in advance. 

Definition. A system of equations is in echelon form if 
(EF 1) The first occurring variable of each equation has coefficient 1. (This 

variable, if any, is called the leading variable of that equation.) 
(EF 2) The leading variable of any equation occurs to the right of the lead­

ing variable of any equation above it. 

Solutions to Echelon Form Systems 

The set of solutions to a system in echelon form is reasonably easy to 
understand. A system in echelon form will be consistent unless an equation 
of the form 0 = r occurs where r is nonzero. Suppose the system is 
consistent. Any variable that is not the leading variable of an equation 
will be called a free variable. The remaining variables (that is, the leading 
variables) are called determined variables. By assigning parameters to the 
free variables, and solving for the determined variables in terms of the 
parameters, one obtains a description of all the solutions to the system. This 
process is known as back-substitution. 

Rg. 3.6. The staircase 
shape of an echelon 
system. All entries below 
the staircase are zero. 

1 



Consider the following examples: 

CD X-2Y=2 
Y=l 

(ii)X+Y =1 
OZ = 1 

(iii) X + 2 Y - Z + 2 W = 1 
Y-Z- W=O 

Z =1 

(iV) Xl + X2 = 1 
X3 -X4 =2 

X5 = 1 
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We use back-substitution to find all solutions to these systems of equations 
in echelon form. 

CD The second equation says that Y = 1. Substituting this value into the 
first equation, we see X - 2(1) = 2. We find that X = 4. Hence (4, 1) is the 
only solution to the system. 

(ii) This system is inconsistent. In other words, the solution set is the empty 
set 0. 
(iii) The third equation says that Z = 1. The variable W is a free variable, 
and we choose the parameter W = t. Using what we know about Z, we 
find that Y - (1) - t = 0; that is, Y = 1 + t. Substituting this information 
into the first equation, we see that X + 2(1 + t) - 1(1) + 2t = 1; that is, 
X = -4t. It follows that the set of solutions is {( -4t, 1 + t, 1, t) I t E R}. 
(iv) Necessarily, X5 = 1 in any solution. Assigning the free variable X4 
the parameter t and substituting X5 = 1, the second equation shows that 
X3 = t + 2. Now, if we assign the free variable X2 the parameter U, the first 
equation shows that Xl = - u + 1. Consequently, the set of solutions to this 
system is {(-u + 1, u, t + 2, t, 1) It, U E R}. 

Row-Echelon Matrices 
We shall say that a matrix is a row-echelon matrix if it is the matrix of 
coefficients of system of equations in echelon form. Specifically, this means 
the following. 

Definition. A matrix is a row-echelon matrix if 
(EM 1) The first nonzero entry of each row is 1. These are called leading 

entries. 
(EM 2) The leading entry of any row occurs to the right of the leading 

entries of any row above it. 
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Problems 

Thus, for example, the matrix obtained at the end of the subsection 
on Gaussian elimination is a row-echelon matrix. The process of Gaussian 
elimination shows that any matrix is row equivalent to some row-echelon 
matrix. Here are some more row-echelon matrices: 

o 
1 
o 

3 
3 
o 

Two Remarks About Parameters 

(~ 1 
o 

1 
1 

(1) In this text we use lowercase letters not used before as parameters in 
order to avoid confusing them with variables. For example, in Example 
(iii) just given we noted that W was a free variable and wrote W = t 
to demonstrate that t is a parameter that can be substituted for Wand 
ranges over all real numbers. Many people like to use the variable itself as 
the parameter. If this was done for the system just mentioned, its solution 
set would read {( -4 W, 1 + W, 1, W) I W E R}. This notation is fine, and 
you may use it if you prefer. Just be careful only to use free variables as 
parameters in your solution sets. 
(2) Note that prior to the definition of echelon systems we said that an 
ordering of the variables must be specified. This is crucial, for if the variables 
are reordered the echelon form can change. For example, 

X+Y+Z=1 
Y+Z=1 

is in echelon form, with X and Y determined variables and Z free. However, 
if we reorder so that Y comes first, then 

Y+X+Z=1 
Y +Z=1 

is not in echelon form. Further note that if we reorder as 

X+Z+Y=1 
Z+ Y = 1, 

then the system is in echelon form but now X and Z are the determined 
variables with Y free. 

1. Identify a sequence of row operations that transforms each of the fol­
lowing systems. 



(a) The system 

transforms to 

(b) The system 

transforms to 
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X+2Y+Z=4 
X+ Y-Z=1 

-x + 3z = 2 
X+Y- Z=1. 

x-Y=4 
X+ Y=O 

3X+ Y = 4 
4X+2Y=4. 

2. Use Gaussian elimination to find all solutions to the following systems: 
(a) X + Z = 0 (b) X + Y + Z = 1 

X + Y + Z = 3 X - Y = -3 

(c) X +Z=o 
2X+Y+Z=0 
X- Y =0 

2X-Y+Z= 0 

(d) X + Y + Z = 1 
X- Y =3 

2X- Y+Z= 1 
2Y+ Z = 2 

3. Use Gaussian elimination to find all solutions to the following systems: 
(a) 3X + Y + 2Z = 7 (b) -X - 2 Y - Z = 1 

2X+2Y+2Z=6 2X-3Y+Z= 0 
2X+4Y+3Z=8 5X- Y =-3 

(c) X - 2Z+ 3W = 13 
-Y+ Z-2W=-8 

4X-2Y-6z+8W= 36 

X- Y = 1 

(d) X+ Y-~Z+2W=0 
X-2Y+ Z- w=o 

2X - Y - ~Z + W = 0 
4. Explain how you can determine if the following systems of equations 

equivalent. Are they? 

-X+ Y=o 
3X + 2Y = 0 

and 
x - 4Y = 0 

2X- 2Y = O. 

5. The following transformation of equations is not a sequence of elemen­
tary operations. Why? Consider the system 

X- Y+ 2Z = 2 
2X+ Y+4Z= O. 
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6. 

We subtract half of the second equation from the first and at the same 
time subtract twice the first equation from the second: 

-~Y= 
2 2 

+3Y = -4. 

Use Gaussian elimination to find a row-echelon matrix row equivalent 
to each of the following matrices. 

(~ :) (b) 0 2 3 J) (a) 6 7 
10 11 

G 
4 

-D (c) 1 
(d) (~ 7 3 1~) 0 15 6 

1 
7. Give an example of two inconsistent systems in the variables X and Y 

that are not row equivalent. 
(a) Can you find a 3 X 3 row-echelon matrix that is not row equivalent 

to any other row-echelon matrix? Give an example or explain why 
such cannot exist. 

(b) Can you find a 3 X 4 row-echelon matrix that is not row equivalent 
to any other row-echelon matrix? Give an example or explain why 
such cannot exist. 

Group Project 

(a) The third elementary row operation can, in fact, be obtained from the 
other two. (For this reason, it is sometimes omitted as an elementary row 
operation.) This is illustrated below, where Rand R' denote matrix rows: 

Identify the row operations illustrated and show how to interchange the 
first and third rows of the matrix 

3 
3 
1 

2 
2 
1 

(b) As remarked in this section, each of the three row operations can be 
reversed. That is, whenever a single row operation is applied to a system of 
equations, another row operation can be applied to return the new system 
to the initial system. Explain how this is done. 
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3.3 Gau .... Jordan Elimination 

The Further Gauss-Jordan Strategy 
Consider the following sequence of row operations. It begins like Gaussian 
elimination but goes further. These addition steps are part of what is called 
Gauss-jordan elimination. 

G 1 1 ~ I ~)~G 1 
1 0 I 1) 

1 3 0 2 7 -1 

C 1 1 ~ I ~!) ~ 0 0 1 

~G 1 0 -2 I ~) 
0 1 l ~! 

The final augmented matrix of this sequence represents the system of equa­
tions 

x+y - 2W= .2 
2 2 

Z+~W=-!. 

Applying back-substitution, it readily follows that the set of solutions to this 
system is 

{ ( -u + 2t + ~ u -2t - ~ t) 1st E R} . 
2 2" 2 2' , 

In Gauss-jordan elimination, in addition to applying Gaussian elimination, 
one also eliminates all the entries above the leading 1 in any column. 

The Reduced Row-Echelon Form 
In Sec. 3.2 we described the Gaussian elimination process in a sequence of 
stages. The first stage of Gauss-Jordan elimination is the same as the first 
stage of Gaussian elimination. In the second stage, Gauss-Jordan elimination 
concludes by subtracting an appropriate multiple of the second equation 
from the first equation to eliminate (if necessary) the second leading variable 
from the first equation. In the conclusion of the third stage, appropriate 
multiples of the third equation are subtracted from the first and second 
equations to eliminate the third leading variable from these equations. This 
process is continued so that the leading variable of each equation of the 
system occurs only in the single equation for which it is the leading variable. 

The system of equations resulting from Gauss-Jordan elimination is said 
to be in reduced echelon form. They are characterized by the three condi-
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tions in the following definition. Again, as in the case of the echelon form, 
we shall assume that an ordering of the variables is specified. 

Definition. A system of equations is in reduced echelon form if: 
(REF 1) The leading variable of each equation has coefficient 1. 

(REF 2) The leading variable of any equation occurs to the right of the 
leading variable of any equation above it. 

(REF 3) The leading variable of each equation occurs in no other equation. 

The advantage of finding the reduced echelon form of a system of 
equations is that the solution set can be found without computation in back­
substitution. Note, for example, in the system considered at the beginning 
of this section all we had to do was assign parameters to the free variables 
Y and W, and the two equations in the reduced echelon form enabled us 
immediately to write expressions for X and Z in terms of the parameters. 
Of course, the computation involved in the extra steps of Gauss-Jordan 
elimination are essentially the computations we would have had in the 
back substitution. 

Another important property of the reduced echelon form of a system of 
equations is that in the consistent case it is uniquely determined (once an 
ordering of the variables has been fixed). This is discussed in Chap. 4. 

The system 

X =2 
Y =3 

Z=4 

is if! reduced echelon form. So is the system 

X- 2Z+ W = 4 

which consists of a Single equation. However, the system 

-Z+2X+W=4, 

is not in echelon form, since the lead coefficient is not 1. The system 

X - 2Z 1 
Y + 3W = 0 

Z- W= -3, 

is in echelon form but not in reduced echelon form. 
We shall say that a matrix is a reduced row-echelon matrix if it is the 

matrix of coefficients of system of equations in reduced echelon form. The 
process of Gauss-jordan elimination shows that any matrix is row equivalent 
to some reduced row-echelon matrix. 
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We give below some reduced row-echelon matrices that are row equiv­
alent to the echelon matrices given in Sec. 3.2: 

(~ 
o 
1 
o 

3 
3 
o 

III-Conditioned Systems of Equations 

(~ 1 
o 

o 
1 

Many computer programs and calculators enable you to perform row op­
erations on matrices. If possible you should try to learn how to use such 
a system. This will greatly reduce the risk of computational errors! We do 
have one caution, however. Keep in mind that computers will round off 
entries and at times this can lead to a problem. For example, the simple 
system of equations 

5.3433 X + 4.1245 Y = 3.1416 
5.3432 X + 4.1244 Y = 3.1416 

has as reduced echelon form 

x = 2.5776 
Y = -2.5776. 

However, if we drop one significant figure from our coefficients, we obtain 

5.343X + 4.124 Y = 3.142 
5.343X + 4.124 Y = 3.142 

whose reduced echelon form is 

x + 0.771 Y = 0.588 
0=0. 

These two echelon forms are quite different! This doesn't always happen, 
but when it does the original system is said to be ill-conditioned. Un­
fortunately, in many practical applications of linear algebra ill-conditioned 
systems of equations do arise. You will explore ill-conditioned systems more 
in the group project at the end of this section. 

Solving Matrix Equations 

Suppose that A and B are matrices. It is important to know how to solve 
the equation AM = B for the matrix M. The methods of Gaussian and 
Gauss-Jordan elimination are quite effective in this problem. For example, 



94 • 3 SYSTEMS OF UNEAR EQUATIONS 

consider the matrices 

A= (~ 1 
2 ~) _ (3 5) and B- 2 4 . 

If we want to solve the matrix equation AM = B, we note that M must be 
a 3 X 2 matrix. Suppose that the entries of M are labeled as 

and we multiply 

M = (l ~) 

AM=(X+Y 
2Y+Z 

R+S) 
2S+ T . 

Then the expression AM = B gives the two systems of equations: 

X+ Y =3 R+ S =5 
2 Y + Z = 2 and 2S + T = 4. 

We observe that for each of these systems of equations the coefficients of 
the variables are the same, namely they are given by the entries of the 
matrix A. This means we can solve both systems at the same time using a 
single Gauss-Jordan elimination: 

(1 1 0 1 3 5) (1 1 
02124 ~ 0 1 

~ (~ ~ 

o 13 5) 
! 1 2 
2 

-~ 12 3). 
! 1 2 
2 

The augmented matrix used in this elimination represents both systems of 
equations at the same time. The first column to the right of the augmentation 
bar represents the constants arising from the system in X, Y, and Z while 
the second column represents the constants arising from the system in R, 
S, and T. 

We are now able to find solutions for our matrix M. We solve for X, Y, 
and Z by back-substitution using the first column on the right of the bar. 
For example, if Z = 0, we would then obtain Y = 1 and X = 2. For the 
second system, if T = 0 we would have S = 2 and R = 3. This shows that 
one possible solution for M is 
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In fact, there are infinitely many solutions for M. If we take u and v as 
parameters for Z and T, respectively, we can back-substitute to determine 
X, Y, R, and S in terms of these parameters. We find that the general 
solution for M looks like 

( 

£ + 2 

M= +;1 
Inverting Square Matrices 
The n X n matrix with ones on the diagonal and zeros elsewhere is called 
the n X n identity matrix. It is denoted as 

o 
1 
o 

o 

o 
o 
1 

o !l 
In other words, In = (ali), where ati = 1 for i = j and aii = 0 otherwise. 

Suppose that A is an n X n matrix. Then both AIn = A and InA = A. 
Thus the identity matrix In plays the same role in matrix multiplication as 
the real number 1 does in the multiplication of real numbers. The inverse of 
a nonzero real number r is the number r -1 with the special property that 
r . r -1 = 1. If A is an n X n matrix, an inverse for A is a matrix A-I for which 
AA-1 = In = A-I A. A square matrix need not always have an inverse, but 
when the inverse exists it can be found by the process of Gauss-jordan 
elimination. We conclude this section by illustrating this. 

Suppose that you desire to find the inverse of the 2 X 2 matrix 

A=(i ~). 
Finding this inverse is equivalent to solving the matrix equation 

for x, y, z, and w. The matrix equation we are trying to solve is equivalent 
to solving the following two equations: 

( i ~) (;) = (~) and ( i ~) (~) = (~) . 
These two systems lead to the following augmented matrix, to which we 
apply Gauss-Jordan elimination: 

G ~ I ~ ~) ~ (~ ; I!~ ~) ~ 
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(~ ~ I 1 ~) ~ (~ 01 8 -1~) -1 1 -1 

~G 01 4 
1 -1 

-7) 2 . 

The solution to each of the systems of equations we are solving can be 
found by looking at the corresponding columns of the right-hand side of 
the augmented matrix. This shows that x = 4, Y = -7, Z = -1, and w = 2. 
We have found that the inverse for A is 

A-I = (_~ -i) 
We can readily check that 

AA-1 = (~ ~) (-~ -i) = (~ ~). 
We also note that 

A-1A = ( 4 
-1 

-7) (2 7) = (1 0) 
2 1 4 0 1 ' 

which shows that multiplication by G on both sides of A gives the identity. 
In fact, the process just given can be applied to an arbitrary 2 X 2 matrix 

to find its inverse. If ad - be '* 0, one obtains 

(~ b) -1 1 (d -a b) . 
d = ad-be -e 

In case ad - be = 0, then the row operations show that the matrix cannot 
have an inverse. 

Example. Here is 3 X 3 example. To find the inverse of 

T~ G 0 -D· 1 
1 

we row-reduce 

G 
0 1 1 0 

D~G 
0 1 1 o 0) 

1 -2 0 1 1 -3 -1 1 0 
1 1 0 0 1 1 0 o 1 

~G 
0 1 1 0 

n~G 
0 1 1 0 

D 1 -3 -1 1 1 -3 -1 1 
0 4 1 -1 0 1 1 -! 

4 4 

~G 
0 0 2 1 -I) 4 4 
1 0 -! 1 

4 4 4 • 

0 1 1 -! 1 
4 4 4 



We find hat the inverse of T is 

T-'~ H 
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1 
4" 
1 
4" 

-1 
4 

A direct calculation shows that IT-I = 13 = T- I T. 
Our procedure for computing matrix inverses shows that an n X n matrix 

has an inverse precisely when its reduced row-echelon form is In. (In the 
next section we will see that this means the matrix must have rank n.) We 
record this observation in the next corollary. 

Corollary. Ann X n matrix A has an inverse if and only if its re.duced 
row-echelon form is In . 

You can also invert matrices on a calculator or a computer. You should 
learn how to do this. The only tricky point is that the computer will give 
decimal expressions, which means that if you want an exact expression 
with fractional entries you will have to do some extra work. For example, if 

then a calculator computes that 

(
.2258 

R- I = .6774 
.1935 

o 
o 

-1 

- .1290 
-.3870 

.0323 
~D 

If you applied row operations to compute R- I , you would have obtained 
denominators of 31 in your expression. For most practical computations, 
outside of the ill-conditioned situation, the calculator result will work fine. 

Using Inverses to Solve Systems of Equations 
The inverse of a square matrix is useful in solving systems of equations. For 
example suppose we wish to solve the systems 

where A and T are the matrices whose inverses were found previously. If 
we premultiply these equations by the inverses, we find that 
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Problems 

and 

( 

3 

G;) ~ -1 
4 

1 
4 
1 
4 

-1 
4 

-~) (3) (2) 1 ~ ~. 
4 

This shows that the solutions are given by X = - 26, Y = 8, and Zl = 2, 
Z2 = 1, Z3 = 1. 

We close with a few useful remarks. 
Remark 1. Observe that when we computed the inverse of the square 

matrix A, we really only solved the equation AG = /2 for the matrix G. 
We subsequently checked that also GA = /2 holds, to see that G was the 
inverse of A. It turns out that whenever S is a square matrix, and whenever 
R is another square matrix for which SR = / is the identity, then RS = / is 
necessarily also the identity. For this reason it is unnecessary to check the 
second equation whenever an inverse is found by row operations as above. 
The reasons for this are indicated in the first group project in the upcoming 
problems. 

Remark 2. Suppose that D is a diagonal matrix, that is, D = (dij) where 
dij = 0 unless i = j. Then you can easily see that D is invertible if and 
only if each "diagonal entry" du is nonzero. In this case, the inverse of D is 
readily checked to be the matrix D- 1 = (d:j ), where d:j = 0 if i * j and 
d:i = dill otherwise. The reader should check this by a quick calculation. 

1. Use Gauss-Jordan elimination to find all solutions to the following sys­
tems: 
(a) X + Y - Z - W = 1 

X - W=2 
(b) X+3Y-4Z=O 

2x+6Y- 8Z = 1 

2. Find all possible echelon forms for the system given in Prob. 3(a) of 
Sec. 3.2. Find the reduced echelon form of the system as well. 

3. Explain why no system of three equations in four variables has a unique 
solution. (Use the existence of an equivalent reduced echelon form 
system.) 

4. Consider the system of equations 

X- Y+ Z=-l 
X+2Y- Z= 0 
X - Y+ 2Z = r. 

For which real numbers r is this system consistent? Find all solutions 
in this case. 
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5. Find conditions on the real numbers a, b, c which guarantee that the 
following system has a solution: 

y- Z= a 
X Z= b 
X+ Y- 2Z = c. 

Explain why you might suspect that a linear equation will arise between 
a, b, and c even before you do any calculations. What else could 
happen? 

6. What conditions must a, b, c E R satisfy in order that the following 
system be consistent? 

3X - 2 Y + 4z - W = a 
- 2X + 3 Y - 2Z - 2 W = b 

5X +8Z-7W = c 

7. Explain why two consistent systems of two equations in two unknowns 
are equivalent if they have the same set of solutions. 

8. Find a system of equations whose set of solutions is given by X = 
1 - 2t + u, Y = t, Z = 2 - U, and W = u, where t and U are real 
numbers. (Hint: Think about the reduced echelon form') 

9. Consider the system of equations over R 

auX + a12Y + a13Z = ~ 
a21 X + a22 Y + a23Z = bz. 
~lX + a32 Y + a33Z = ~. 

Suppose this system has two different solutions. Show it has infinitely 
many different solutions. 

10. Find all solutions to the equation AX = b, where 

-1 
2 
4 

-2 
-2 

-10 
and b = 

11. Find all solutions to the equation AX = b, where 

( -_101) . 

-23 

12: Show that for any invertible square matrix A, (A-1)-1 = A. 
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13. Find the inverse, if it exists, of the following square matrices. 

(a) ( -~ -;) (b) ( -~ -;) 

G 
1 

-D G 
1 J) (c) ° (d) 1 

1 2 
14. Suppose that C is invertible and A = CBe- l . Show that A is invertible 

if and only if B is invertible. 
15. If a square matrix A is invertible, show that An is invertible for all n > l. 

What is (An)-I? 

16. Suppose there is a nonzero column matrix C such that AC = O. Show 
that A cannot be invertible. 

17. Show that an upper triangular matrix A = (ai) is invertible whenever 
aii '* ° for all i. 

18. An n X n matrix N is called nilpotent if for some k > 0, N k = 0, the 
n X n matrix of all zeros. 
(a) Show that a nilpotent matrix cannot be invertible. 
(b) If N is nilpotent, show that (In - N) is invertible by verifying that 

its inverse is In + N + N 2 + ... + N k - I . 

19. Suppose A and B are square commuting matrices (that is, AB = BA). If 
A and B are invertible, show that A-I and B-1 commute. 

Group Project: Right and Left Inverses for Square Matrices 

Give a proof that if an n X n matrix S has a right inverse T (that is, ST = In 
is the identity), then T is also a left inverse for S (that is, TS = In also). This 
verifies the fact mentioned in the first remark at the end of this section. Use 
the the hints in (a) and (b) below as a guide: 

(a) First show that if S has a right inverse T, then every system of equations 
SX = b has a unique solution. (Here, X is a column of n variables and 
b is a column of n constants.) For this, think about the row reduction that 
enables you to find the right inverse T. 
(b) Next, let ek be the column vector with all entries ° except for a 1 in the 
kth row. Since ST = In, S(TSek) = Sek. Since the system SX = Sek has a 
unique solution, we must have TS ek = ek. Deduce that TS = In. 

(c) Find an example that shows a nonsquare matrix may have a right inverse 
but not a left inverse. Find another example that shows a nonsquare matrix 
may have a left inverse but not a right inverse. 

Group Project: ill-Conditioned Systems of Equations 

When interpreting scientific data one must always be careful and take into 
account the accuracy of the measurements. It is also crucial to understand 
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how various computations using the data can affect this accuracy. Suppose 
in some experiment the following vectors of data have been collected, 
representing three repetitions of the experiment: 

( 3.12) (3.11) (3.13) i\ = 2.14 ,~= 2.15 ,~= 2.14 . 
7.94 7.98 7.96 

You are happy with these results because the numbers seem quite close. 
However, in order to apply your results, you need to solve the following 
equations: 

(
2.1 
2.6 
4.1 

3.1 
1.0 
2.3 

4.0) (X) .70 Y = Vj and 
.81 Z 

(
1.1 
2.2 
5.4 

.70 

.40 
1.5 

2.1_) (X) .80 Y 
3.7 Z 

and obtain a 20% agreement among each collection of solutions. 

(a) Use a graphing calculator or a computer to solve these three equations 
for the three data vectors i\, ~, and ~. Did·you obtain 20% agreement? 
What are the implications for interpreting your experimental data? 
(b) Graph the following two pairs of systems of equations (on a computer 
or a calculator, if possible). 

and 

The first coefficient matrix of the pair is well~conditioned, while the second 
is ill-conditioned. What is the geometric difference between these graphs? 
Why, in geometric terms, are your solutions so different for the second pair? 
What do these equations look like after applying Gaussian elimination? How 
does that fit in? 
(c) Using what you have learned in (b), give an explanation of what hap­
pened in part (a). 

3.4 Matrix Rank and Systams of Unaar Equations 

Reduced Row-Echelon Matrices 
We saw in the last section that Gauss-Jordan elimination and reduced row­
echelon matrices were useful in a number of situations. Since we will often 
speak of a matrix and the row-echelon matrices that result from Gaussian 
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and Gauss-jordan elimination in the same context we have the following 
terminology. 

Definition. Suppose that A and B are matrices and B is row equivalent 
to A. If B is a row-echelon matrix, we say that B is a row-echelon form 
of A. If B is a reduced row-echelon matrix, we say that B is the reduced 
row-echelon form of A. 

For example, suppose 

A= (~ 
3 8 

!) 1 2 
1 2 

Applying elementary row operations, we obtain 

A~G 
3 8 

D~G 
3 8 :) 1 2 1 2 

0 0 0 0 

~G 
3 8 

n~G 
0 2 

D 1 2 1 2 
0 0 0 0 

This shows that both 

(~ 
3 8 

~) (~ 
0 2 

~) 1 2 and 1 2 
0 0 0 0 

are row-echelon forms of A. The latter matrix is the reduced row-echelon 
form of A. 

Matrix Rank 
It is important to note that in the previous definition we spoke of the reduced 
row-echelon form of a matrix. This language implies that there cannot be 
two different reduced row-echelon matrices row equivalent to any given 
matrix. This fact is crucial to the notion of rank. The rank of a matrix 
is defined to be the number of nonzero rows in its reduced row-echelon 
form. For example, the rank of the matrix A in the preceding example is 2. 
If a matrix could have different reduced row-echelon forms, the definition 
of rank would become ambiguous. Fortunately, this doesn't happen, as is 
summarized next. 

Theorem 4. If A is any matrix and Rl and R2 are both reduced row­
echelon matrices that are row equivalent to A, then Rl = R2 • In other 
words, the reduced row-echelon form of any matrix is unique. 
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We will not give a detailed proof of this theorem. The main idea behind 
the proof is reasonably simple. Suppose that A is an m X n matrix, and that 
X is a column of n variables. If the matrices Rl and R2 are row equivalent 
to A, then we know that the three systems of equations AX = 0, Rl X = 0, 
and R2X = 0 each have the same set of solutions. By studying the nature of 
the reduced row-echelon form carefully, one can show that this will force 
Rl = R2· 

For example, consider the two reduced echelon matrices 

-1 0 
o 1 ~) -1 

o 
o 
1 

The matrices Rl and R2 are close but not the same. We consider the systems 
of equations Rl X = 0 and R2X = O. Since the bottom rows of Rl and R2 are 
identical, the equations they represent have identical solutions. Looking at 
the first equation, we see that setting X4 = 1 and X2 = 0 necessarily means 
Xl = -7 in the first system and Xl = -6 in the second system. Since the 
variables X2 and X4 can be taken as parameters for either system, we find 
that the two systems of equations RlX = 0 and R2X = 0 have different 
solution sets. Hence Rl and R2 cannot be row equivalent, illustrating the 
theorem. 

Here is the definition of the rank of a matrix. As noted previously, the 
definition makes sense because we can talk about the reduced row-echelon 
form of a matrix A. 

Definition. The rank of any matrix A is the number of nonzero rows in 
the reduced row-echelon form of A. We denote the rank of A by rk(A). 

Observe that whenever A is an m X n matrix, rk(A) is at most the 
smaller of m or n, for the number of nonzero rows of any echelon form 
of A cannot exceed the number of rows of A. Therefore, rk(A) :5 m. But 
each leading 1 in a row-echelon matrix occurs in a distinct column. Thus 
the number of such rows cannot exceed the number of columns of A. This 
shows rk(A) :5 n. Note that it is possible for rk(A) to be strictly less than 
both nand m. Also, be careful and remember that rk(A) is not the number 
of nonzero rows of A. 

We defined the rank of a matrix to be the number of nonzero rows in 
its reduced row-echelon form. Note, however, that the number of nonzero 
rows in any row-echelon form of a matrix is the same. Therefore, in..order 
to determine the rank of a matrix A, all you need to do is determine some 
row-echelon form for A. The rank of A will be number of nonzero rows in 
this row-echelon matrix. 
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Solutions to Systems and Associated 
Homogeneous Systems 
Suppose that A is an m X n matrix and X is an n X 1 column of variables. 
The system of equations AX = i5 is called a homogeneous system. If B is an 
m X 1 column matrix, we consider the system of equations AX = B. We 
call the system AX = i5 the associated homogeneous system of equations of 
the system AX = B. 

For example, the system of equations 

2 
1 

is not homogeneous, while the system 

2 
1 

is homogeneous. This second system is the associated homogeneous system 
of the first. 

We can solve both of these systems by applying Gauss-jordan elimina­
tion to their augmented matrices. For the first system we have 

(
12 

f-+ 0 1 

-~ I ~ ) 
o -! I ~) 
1 ~ -! ' 

5 5 

and we find that its solution set is {q + ! t, -! - ~ t, t) I t E R}. Similarly, 
for the second system we have 

(~ ~ i I ~ ) f-+ (~ -~ -~ I ~ ) 

f-+ (~ ~ ; I ~ ) f-+ (~ ~ -i I ~ ) , 
and we find that its solution set is {q t, - ~ t, t) I t E R}. 

We obserVe that the exact same row operations were used each time, the 
only difference being that in the second sequence the right-hand ~olumn 
consisted solely of zeros. Consequently, the solutions have similar expres­
sions. Note that the homogeneous solutions were all multiples of the triple 
(!, - ~, 1) and the nonhomogeneous solutions could be obtained by adding 
the triple q, -!, 0) to these. This phenomenon is true more generally and 
is made explicit in the next two theorems. 
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Theorem 5. Let 11. denote the set of solutions to a homogeneous sys­
tem AX = O. Then 11. is nonempty. Further, 11. is closed under addition 
and scalar mUltiplication. This means that ifiA., ~ E 11. and r is a 
real number, then both iA. + ~, riA. E 11.. 

Proof Observe that a homogeneous system of linear equations always has 
a solution, namely Xl = 0, X2 = 0, ... ,Xn = 0. This is called the trivial 
solution, and any other solution is called a nontrivial solution. In particular, 
we find that 1i is nonempty. 

If Dt and ilz are solutions to AX = 0, then by definition ADt = 0 and 
Ailz = O. But the distributive law of matrix multiplication shows that A(Dt + 
ilz) = ADt + Ailz = 0 + 0 = O. Thus (Dt + ilz) E 1i. Since scalar multiplication 
commutes with matrices, we have A(rDt) = r(ADt) = rO = O. This proves 
the theorem. 0 

Theorem 6. LetI denote the set of solutions to the system of equations 
AX = Band 11. denote the set of solutions to the associated homoge­
neous system of equations AX = O. Suppose that I is nonempty, and 
let it E I. Then every element wEI is a translation of the form 
w = it + v for some fixed vector v E 11.. 

Proof By assumption we know that Au = Band Aw = B. Setting v = 
w - U, we find that Av = A(w - it) = Aw - Au = B - B = O. Thus, v E 1i 
and this shows that w = u + v has the desired form. Conversely, suppose 
that w = u+ v, where v E 1i. Then Aw = A(U+ V) = Au+ Av = B+O = B, 
and wEI follows. Thus, I is precisely the set of n-tuples u + v where 
vE 1i. 0 

Observe that Theorem 6 requires that I be nonempty. Without this the 
theorem would be false. For example, consider the system of equations 

3X+3Y= 1 
2X+2Y=3. 

Clearly, this system has no solutions, while its associated homogeneous 
system has infinitely many solutions (all of the form Ct, - t) where t is a real 
number). Be careful about this. 

The Relationship Between Rank and 
Solutions to Systems of Equations 
The existence solutions to a system of linear equations can be determined 
by comparing the rank of the coefficient matrix, the rank of the augmented 
matrix, and the number of variables. This is explained next. 
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Problems 

Theorem 7. Suppose the system of equations AX = B has n vari­
ables. We denote by A' = (A I B) the augmented matrix of the system. 
Then we have the following: 
CO The system AX = B has a solution if and only if rk(A) = rk(A,). 

(ii) The system AX = B has a unique solution if and only if rk(A) = 
n = rk(A'). 

This theorem can be understood if one thinks about the shape of the 
reduced row-echelon form system in each case. For part CO, suppose that 
the reduced row-echelon form of A' = (A I B) is R' = (R I S). If rk(A) < 
rk(A'), then R' has a row of the form (0 0 0 0 I 1). This row 
corresponds to the equation OX! + OX2 + ... + OXn = 1, which does not 
have any solutions. Since rk(A) :s;; rk(A'), we see that whenever AX = B has 
a solution, then rk(A') = rk(A). Conversely, if rk(A) = rk(A'), then AX = B 
has a solution by back-substitution, which shows why CO is true. 

In order to understand part (ii), note that the system will have a unique 
solution precisely when its reduced echelon system has no free variables and 
no inconsistent equations. This can happen only in case rk(A) = rk(A') = 
n = the number of variables. 

Observe that if A is an m X n coefficient matrix of a consistent system 
of equations, then there are rk(A) determined variables (comming from 
leading ones) when we solve the system using back substitution. This also 
shows there are n - rk(A) free variables. In fact, the number n - rk(A) is 
the smallest number of parameters that can describe the solution set, but to 
see that it is the "smallest" we will need some results developed in Chap. 5. 
We summarize this in the next corollary. 

Corollary. Suppose that A is an rri X n matrix. Tbe system AX = 
o always has a solution and the collection of all solutions can be 
described using n - rk(A) parameters. In particular, if the number of 
variables of a homogeneous system exceeds the number of equations, 
the system has a nontrivial solution. If AX = B has a solution, then the 
collection of all solutions can be described using n - rk(A) parameters. 

1. Find the reduced row-echelon form and rank of the following matrices. 

(a) G ~ D (b) (~ L~) 
3 0 8 12 
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(c) (~ 
1 1 

~) (d) (~ 
0 

~) 3 3 1 
4 4 1 

Consider the system of equations 

G 
0 -DG) (D 2 

-2 

Find the solutions to the associated homogeneous system of equations, 
and relate this solution set to the collection of solutions to the original 
system. What does Theorem 6 say in this context? 

3. Find all possible row-echelon and reduced row-echelon matrices equiv­
alent to 

6 
4 
8 

4. For which real numbers a, b, and c are the following matrices row 
equivalent? 

5. Consider the system of equations 

(~ 2 
1 

3 
4 

and 
a 
1 
c 

Explain what information can be obtained for this system by applying 
each of Theorems 5, 6, and 7. In your answer you should also give 
the solution set for this system as well as its associated homogeneous 
system. 

6. (a) Suppose that both systems of equations AX = 11 and AX = b' have 
infinitely many solutions. Show that the system AX = (11 + bl) has 
infinitely many solutions. 

(b) If rk(A) = 1, show that all nonzero rows of A are multiples of one 
another. 

7. For each of the following systems of equations, first solve the associated 
homogeneous system and then indicate how the general solution is 
related to the homogeneous solution. Explain how the corollary in 
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8. 

this section tells you the number of parameters needed to express the 
solution set. 

(a) G DU) = (D 

G 
2 0 D (1) m (b) 2 3 = 
1 2 

(c) G 0 DC) (D 3 = 

6 

(d) (1 1 n(r) =(1) 

Find all numbers r, s, and t for which 

(! 2 DC) m 4 = 
6 

has a solution. 

9. Give an example of an inconsistent system of four equations in four 
variables whose associated homogeneous system has a solution set that 
requires two parameters to describe. 

10. Suppose that M is a 3 X 3 matrix and the homogeneous system of 
equations M X = {5 has a unique solution. Let B be a 3 X 1 matrix. Why 
do you know that the system M X = B has a solution? 

11. Suppose that M is a 5 X 7 rank-5 matrix and let B be any 5 X 2 matrix. 
Explain why the matrix equation MX = B can always be solved for X. 

12. True or false? If true, give a reason, and if false give a counterexample. 

(a) If A is an n X m matrix where n > m, then the system of equations 
AX = {5 has infinitely many solutions. 

(b) If A is an n X m matrix where n > m, then for any bERm the 
system of equations AX = b has infinitely many solutions. 

(c) If A is a rank-n, n X m matrix, then the system of equations AX = {5 
has a unique solution. 

(d) If A is an n X n matrix, then the system of equations AX = b has 
a unique solution. 

(e) For any matrix A, the system of equations AX = {5 has a solution 
if and only if the system AX = b has a solution for all b. 
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Group Project 

(a) Show that (ab ~), (a2, hz), ... , (an, bn) are collinear in RZ if and only if 

(b) What is the appropriate generalization of part (a) to points (aI, ~, CI), 
(aZ, hz , CZ), .. . , (an , bn, en) E R3? 

3.5 The Simplex Algorithm 

In this section we show how the technique of Gaussian elimination can be 
used to solve linear optimization problems with constraints. The extension 
of Gaussian elimination used for these problems is called the simplex algo­
rithm. The simplex algorithm was developed so that computers could be 
used to solve optimization problems with a large number of variables. Since 
our goal is to get an idea of how and why this important algorithm works, 
we will only consider systems with two or three variables (such as those 
considered in Sec. 1.4). 

The Feasible Region Using Equalities and Positivity 
For the moment we consider two variables X and Y . The version of the 
simplex algorithm we study in this section is designed to solve linear op­
timization problems whose feasible region is described by the positivity 
conditions X ~ 0 and Y ~ 0, together with a collection of r linear inequal­
ities alX + ~Y S dl , a2X + hzY S d2, . .. ,arX + brY S dr. When we 
apply the simplex algorithm, we always start with feasible regions described 
in this way. Other optimization problems with different feasible regions can 
be solved by transforming their conditions to this form. 

For example, recall the constraints on the assembly-line problem con­
sidered in Sec. 1.4: 

T~25, C~25, T+CSlOO, 4T+6CS500. 

Since the variables are constrained to be greater than 25, these conditions 
do not have the required form. However, if we introduce new variables 
X and Y defined by X = T - 25 and Y = C - 25, then the conditions 
T ~ 25, C ~ 25 show that X ~ 0 and Y ~ O. Transforming our other 
constraints gives that T + C = X + 25 + Y + 25 S 100, so X + Y S 50, and 
4 T + 6c = 4(X + 25) + 6( Y + 25) S 500 so 4X + 6 Y S 250. Altogether, 
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our original constraints, in terms of X and Y, read 

X ~ 0, Y ~ 0, X + Y:S; 50, 4X + 6Y:s; 250. 

We now work with this feasible region for X and Y, noting that we can 
recapture our original T and C in any problem solved for X and Y using 
the equations T = X + 25 and C = Y + 25. 

Since we are interested in applying Gaussian elimination to study our 
optimization problem, we next need to replace our inequalities with equal­
ities in order to obtain a system of equations. We can do this as long as 
we require all variables to represent positive numbers only. This is ac­
complished by introducing a so-called slack variable for each inequality. 
Observe, for example, that the inequality X + Y :s; 50 is equivalent to the 
equality X + Y + SI = 50 together with the positivity condition SI ~ 0. We 
call SI the slack variable. Using this idea for each equation, we find that our 
constraints 

X ~ 0, Y ~ 0, X + Y :s; 50, 4X + 6 Y :s; 250 

can be replaced by the constraints 

X ~ 0, Y ~ 0, SI ~ 0, S2 ~ 0, X + Y + SI = 50, 4X + 6Y + S2 = 250, 

since restricting our attention to the variables X and Y only gives the same 
feasible region as before. 

The Simplex Tableau 

Suppose next that we have a linear function FCX, Y) = aX + bY + d whose 
value is to be maximized subject to linear constraints. Introducing a new 
variable V and considering the equation -aX - bY - d + V = 0, we see 
that a solution to this equation, say X = p, Y = q, V = s corresponds 
to the output value FCp, q) = s of our linear function. The slack variables, 
together with V, reduce our problem to studying the solutions to a system 
of linear equations with only positivity conditions. 

We illustrate this reduction by conSidering the linear function PC C, n = 
6c + .8T - 25 studied in the assembly-line problem. Recall our goal in 

Sec. 1.4 was to maximize pcc, n, since it was a profit function. Using our 
change of variables given by X = T - 25 and Y = C - 25, our function 
PCc, n becomes pcx, Y) = .6CX + 25) + .8CY + 25) - 25 = .6x + .8Y + 10. 
Introducing the value variablel V, we can replace our function PCx, Y) by 
the equation - .6x - .8 Y + V = 10. Taking this equation together with our 

IThe terminology of value variable is not common usage. Also, the appearance of V in the 
tableau is not standard but is included here because the author feels it helps clarify the ideas. 
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previously obtained constraint equations gives the system of equations 

x + Y + S1 = 50, 4X + 6Y + S2 = 250, -.6x - .8Y + V = 10. 

Any solution to this system of equations that satisfies the positivity condition 
X ~ 0, Y ~ 0, S1 ~ 0, S2 ~ ° will give a value for V that is the output of 
our function P(x, Y), where X and Y satisfy our original constraints. So 
our problem now is to find a positive solution to our new system of linear 
equations with the value of V as large as possible. 

In order to find the choice of X and Y that maximizes the value of V, 
we consider the augmented matrix of our system, which is known as the 
simplex tableau. In order to keep track of all the information in the tableau, 
we list the variables in the top row and put the equation corresponding to 
the function to maximize on the bottom row. Our tableau in this case is the 
following table. 

Y 

1 1 
4 6 

[

X 

-.6 -.8 

1 

° ° 
The Strategy for Maximizing V 

o 
1 

° 

V 

° ° 1 

50 ] 
250 . 
10 

We next look closely at the tableau just written. Any sequence of row 
operations on this tableau will not change the set of solutions to the system 
of equations it describes. How can we pick out a solution with V maximal 
by applying row operations to the tableau? 

The key is to think about the bottom row and the equation it represents. 
Suppose it looked like (0 ° 3 2 1 I 25). This would correspond to the 
equation 3S1 + 2S2 + V = 25. Then, since both S1 ~ 0 and S2 ~ 0, and 
since the coefficients of S1 and S2 are both nonnegative, we would find that 
the maximal V is obtained when S1 == ° = S2, in which case V = 25. We 
could find the values of X and Y giving this V using back-substitution in the 
other rows of the tableau, and our optimization problem would be solved. 
So our strategy is to obtain nonnegative coefficients on the bottom row of the 
tableau. 

Following this strategy, we now apply row operations to our initial 
tableau, trying to make all coefficients in the bottom row nonnegative. In 
each step we will choose a column containing a negative coefficient in the 
bottom row for elimination, and choose a row above whose multiples will 
be used in the reduction. We call the chosen row the Pivot row, and we call 
the element in the column above the chosen negative coefficient the pivot. 
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Starting with 

[J6 
y S} S2 V 
1 1 0 0 50 ] 
6 0 1 0 250 

-.8 0 0 1 10 

we use the first row as the pivot row with pivot element 1 to eliminate the 
coefficients of X in the second and third rows. 

[I 
y s} S2 V 

1 1 0 0 50 ] 
2 -4 1 0 50 

-.2 .6 0 1 40 

We next use the second row as a pivot row with pivot element 2 to eliminate 
the coefficients of Y in the first and third rows. 

[I 
Y s} S2 V 

0 3 -,5 0 25 ] 
2 -4 1 0 50 
0 .2 .1 1 45 

This third tableau has a bottom row with only positive coefficients. We see, 
setting S} = 0 = S2 and using back-substitution, that Y = .2J1 = 25 and 
X = 25· give the maximal value of V = 45. This is the maximum value 
of .6x + .8 Y subject to our given constraints. If we return to our Original 
variables C and T, we find that T = X + 25 = 50 and C = Y + 25 = 50. 
This is the answer obtained for the problem in Sec. 1.4 using the principle 
of corners. 

The Simplex Algorithm 
Our strategy of obtaining a bottom row without negative coefficients is 
almost everything we need to understand the simplex algorithm. There 
is, however, one difficulty we must be careful about. Suppose our back­
substitution gave us negative values for our variables? Then we would be 
in trouble since our constraints require them to be positive. We were lucky 
in the preceding example that this didn't happen. In order to avoid this 
difficulty, we must choose our row operations so that all entries above the 
bottom row in the right column are nonnegative. Then when we back­
substitute, we will obtain nonnegative values fcirour variables. For this, we 
must choose our pivot row so that the ratio oJ.the right-hand entry to the 
pivot is nonnegative and minimal among all possible choices. Then, as we 
note in the following example, the nonnegativity of the right-hand column 
will be maintained during our row operations. 
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For example, suppose we desired to maximize 6x + 8 Y subject to the 
constraints 

x ~ 0, Y ~ 0, X + Y $; 10, X + 2 Y $; 16, 2X + Y $; 18. 

We set up the initial tableau. 

X Y S1 S2 S3 V 

1 1 1 0 0 0 10 
1 2 0 1 0 0 16 
2 1 0 0 1 0 18 
-6 -8 0 0 0 1 0 

We decide first to eliminate the -6 in the bottom row. Looking at the three 
ratios of last-to-first column entries, 10 : 1, 16: 1, and 18 : 2, we see that the 
third is minimal; hence the third row is our pivot row. Row operations give 

X Y S1 S2 S3 V 

0 1 1 0 -! 0 1 2 2 

0 ~ 0 1 - 1 0 7 2 ? 
2 1 0 0 1 0 18 

0 -5 0 0 3 1 54 

We next eliminate the - 5 in the bottom row using our first row as the pivot 
row (check that the ratio 1 : ~ = 2 : 1 is smaller than the ratio 7 : ~ = 14 : 3.) 
We find 

X Y S1 S2 S3 V 

0 1 1 0 - 1 0 1 2 2 
0 0 -3 1 1 0 4 
2 0 -2 0 2 0 16 

0 0 10 0 -2 1 64 

We might have hoped to be done at this point, but we still have a negative 
coefficient in the bottom row to eliminate. The second row is our pivot 
this time, since it has minimal nonnegative ratio. (We can't use the first row 
since a negative pivot would bring new negative entries into the bottom 
row.) We find 

X Y S1 S2 S3 V 

0 1 - 1 1 0 0 3 2 2 2 
0 0 -3 1 1 0 4 
2 0 4 -2 0 0 8 
0 0 4 2 0 1 72 ... 

We conclude· that the maximum value of 6x + 8 Y on our region is 72 and 
occurs (by back-substitution) when X = 4 and Y = 6. 



114 • 3. SYSTEMS OF UNEAR EQUATIONS 

Problems 

This example illustrates the simplex algorithm. We summarize its key 
ingredients next. 

The Simplex A1gorithm.. Suppose a linear optimization problem has con­
straints as formulated in the beginning of this section. Assume that a tableau 
for this problem has a negative coefficient in its bottom row. The simplex 
algorithm produces another tableau according to the following steps: 

(a) Choose a negative entry in the bottom row and call its column the pivot 
column. 

(b) The pivot row is chosen to be a row whose ratio of the last column 
entry to the pivot column entry is positive and smallest among all such. 

(c) Using as pivot element the entry in the pivot column and pivot row, row 
operations are applied to reduce all other entries in the pivot column 
to 0. 

Steps (1), (2), and (3) are repeated until the bottom row has no negative 
entries. The maximum value can be read from the lower right-hand comer 
of the final tableau. The values of the variables giving the maximum can be 
found by back-substitution. 

The simplex algorithm can be used to solve linear optimization problems 
in as many variables as needed. Some three-variable examples are given in 
the problems next. They can be solved using the same method as in the 
two-variable case. The only difference is that the tableau is larger. 

1. (a) Use the simplex algorithm to find the maximum value of the linear 
function f ex, Y) = 2X + 5 Y + 1 subject to the constraints that X ~ 0, 
Y ~ 0, X + Y ~6, and 2X + Y ~ 8. 

(b) Use the simplex algorithm to find the maximum value of the linear 
function g(X, Y) = 5X + 2 Y subject to the constraints that X ~ 0, 
Y .~ 0, X + Y ~ 6, 4x + Y ~ 12, and 2X + Y ~ 8. 

2. (a) Use the simplex algorithm to find the maximum values of Z = 
3X + 4 Y subject to the constraints that X ~ 0, Y ~ 0, X ~ 3, Y ~ 3, 
and6X+8Y~30. 

(b) The maximum value in (a) occurs at more than one vertex of the 
feasible region. How does the simplex algorithm account for this? 

3. Use the simplex algorithm to find. the maximum value of the linear 
function 1:Ix, Y) = X - 2 Y + 1 subject to the constraints that X ~ 0, 
Y ~ 0, 3X + Y ~ 8, and X + 3 Y ~ 8. Why did the simplex algorithm 
work so qUickly? 



3.5. THE SIMPLEX ALGORITHM • 115 

4. (a) Use the simplex algorithm to find the maximum value of 
R(X, Y, Z) = 2X + Y + 4Z subject to the constraints that X ~ 0, 
Y ~ 0, Z ~ 0, and X + Y + Z ~ 4. 

(b) Use the simplex algorithm to find the maximum value of 
R(X,.Y, Z) = 2X + Y + 4Z subject to the constraints that X ~ 0, 
Y ~ 0, Z ~ 0, X + Y + Z ~ 4, and 2X + 2 Y + Z ~ 6. 

5. Use the simplex algorithm to find the maximum value of nx, Y, Z) = 
6x - 9 Y + 3Z subject to the constraints that X ~ 0, Y ~ 0, Z ~ 0, 
X + Y + 2Z ~ 10, X - Z ~ 6, and 2 Y + 3Z ~ 12. 

6. (a) Solve the optimization problem considered in the previous sub­
section by graphing the feasible region and using the principle of 
corners. 

(b) Now compare your feasible region to the four tableaus constructed 
in the previous subsection. If you back-substituted in the initial 
tableau to get V = 0, you would have required X = 0 and Y = 0, 
the lower left vertex of the feasible region. Similarly, back-substitu­
tion in the second tableau to obtain V = 54 gives Y = 0 and X = 9, 
the lower right vertex of the feasible region. To which vertices do 
the third and fourth tableaus correspond? Explain this correspon­
dence more carefully than is described here. Why do you think 
these vertices arise? 

7. Find the maximum value of 32X + 28Y + 35Z subject to X ~ 0, Y ~ 0, 
Z ~ 0, X + 2 Y + 7 Z ~ 8, 3X + 2 Y + 4Z ~ 8, and 2X + 3 Y + 5Z ~ 7 
using the principle of corners. For this find all the vertices that you need 
to test using a calculator. Compare this process to the simplex algorithm. 

Group Project: Minimum Optimization Problems and Duality 

Consider the optimization problem of trying to find the minimum value of 
F(X, Y) = rX + sY subject to the constraints 

X ~ 0, Y ~ 0, aX + bY ~ c, dX + eY ~ f, 

where a, b, c, d, e, and j are all positive real numbers. In this project you 
will find out how to transform this optimization problem into one of the 
types considered in this section. 

(a) Consider the matrices 

A= (~ !), C=(c j), D=(r s). 

Then we can say that v lies in the feasible region for our problem if Av ~ C, 
and that the function we choose to minimize is Dv among all feasible v with 
v ~ O. Explain why this makes sense. 

(b) Glance ahead to Sec. 4.1 and read the definition of the transpose ma­
trix. The dual problem to the problem just considered is the problem of 



116 • 3. SYSTEMS OF liNEAR EQUATIONS 

maximizing C' w subject to the constraint A' w :S D' with w ~ O. Write out 
specifically what this dual problem is. 
(c) Suppose that v and ware feasible vectors for the problems considered 
in (a) and (b) respectively. Show that C' w :S Dv. To do this, explain why 
the following reasoning works: Since Av ~ C, we find that w'Av ~ W'C; 
and since w' A :S D, we find that w' Av :S Dv. We conclude that w' C :S Dv, 
which, using W'C = C'w, is what we want. 
(d) Using the inequality C' w ~ Dv, show that the problem considered 
in (a) and its dual problem considered in (b) have the same solution. 
(e) Use the ideas presented above to find the minimum value of F(X, Y) = 
4x + Y subject to the constraints 

X~O, Y~O, X+2Y~6, 3X+5Y~7 

by applying the simplex algorithm to the dual problem. 



CHAPTER 

BASIC MATRIX 
ALGEBRA 

4.1 The Matrix Product: A Closer Look -
Matrices are useful in studying systems of linear equations precisely because 
matrix multiplication is defined so that the coefficient matrix times the col­
umn of variables gives the column of constants for the system. We begin this 
chapter by investigating matrix multiplication from a more general point of 
view. 

Products of Three Matrices 
Suppose that a fruit dealer has a fleet of four large and six medium-sized 
vans that are used for deliveries. The van drivers have found that the most 
efficient way to pack a large van is to lay 12 large crates along the bottom 
and then stack 20 smaller crates on top. For a medium-sized van it is best 
to stack 8 large crates on the bottom and place 14 small crates on top. This 
fruit dealer always packs 40 pounds each of bananas and apples in his large 
crates (bananas are easily smashed and need strong crates) and 20 pounds 
each of apples and oranges in his small crates. 

Suppose our problem is to find out how many pounds of apples, ba­
nanas, and oranges this fruit dealer can deliver each day. If we are counting 

117 



118 • 4. BASIC MATRIX ALGEBRA 

apples, we can count in two ways. As a first strategy we could figure out 
the number of pounds of apples in each large van and each medium van, 
multiply these numbers by the numbers of large and medium vans (in this 
case 4 and 6), and add the result. Alternatively, we could figure out the 
number of large crates and the number of small crates carried by the fleet of 
vans, multiply these numbers by the number of pounds of apples each type 
of crate carries, and add these numbers to find the result. Both methods are 
valid strategies for counting the total pounds of apples carried. 

Either of these strategies can be applied to bananas and oranges as well 
as apples. Let us express both of these computations in terms of matrices. 
Consider the matrices 

(
40 

A = 4~ 20) (12 o ,B = 20 
20 

In matrix A the first column entries are the pounds of apples, bananas, and 
oranges in the large crates, and the second column gives those numbers for 
the small crates. In matrix B the first column entries are the number of large 
and small crates stacked in the large vans, and the second column gives 
those numbers for the medium vans. Finally, matrix C is the column matrix 
denoting the number of large and medium vans. 

Suppose we are counting according to our first strategy. Then we will 
compute the number of pounds of each fruit carried in each type of van. This 
is given by the matrix product AB, whose columns give this information: 

(
40 

AB = 4~ 2~) (12 
20 20 

8) (880 14 = 480 
400 

600) 
320 . 
280 

For example; we see that each large van carries 880 pounds of apples and 
that the small vans each carry 600 pounds of apples. When we multiply this 
product AB by the column matrix C, we find the result of our first strategy, 
namely 

(
880 

(AB)C = 480 
400 

600) ( (7120) 320 :) = 3840 . 
280 3280 

In particular, we find a total of 7120 pounds of apples delivered daily. 
Suppose we carried out the second strategy. In order to figure out the 

number of large and small crates carried by the entire van fleet, we would 
multiply the matrices Band C, producing 

BC=(~~ 1~)(:)=(1~~)' 
This means the fleet can carry a total of 96 large crates and 164 small crates. 
Multiplying by our matrix A gives us the total number of pounds the fleet 
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can carry: 

(
40 

A(BC) = 4~ 20) (96) (7120) ° 164 = 3840 . 
20 3280 

Since we noted earlier that each of these strategies should yield the same 
answer, we should not be surprised that the resulting matrix products agree! 
We have just demonstrated in this example the general algebraic fact tha~ 
(AB)C = A(BC), that is, matrix mUltiplication is associative. The associative 
law is the most important algebraic law about matrix multiplication. For 
emphasis we state it as the next theorem. 

The Associativity of Matrix Multiplication 

Theorem 8. If A is an m X n matrix, R is an n X p matrix, and C 
is a p X q matrix, then (AB)C = A(RC). 

The previous discussion demonstrated why this thevrem is true. Next we 
give a purely algebraic (or symbolic) proof of this result. But we emphasize 
that the reason this associative law works is because one can count collec­
tions of collections in several ways, just as the fruit was counted above. 

For the proof we recall the E summation notation. We write E~1 at as 
an abbreviation for the sum of the n numbers al + a2 + a3 + ... + an-l + an. 
When you read the next proof, look carefully at which index is used with 
each summation. It is either j or k. Also note that between the third and 
fourth lines in the string of equalities we have the adjacent summation signs 
E~=l E7=1 and E7=1 E~=l' The proof uses the fact that these summations 
each describe the sum of the same pn elements, except in different orders. 

Proof Using the associative and distributive laws of the real numbers, we 
compute the irth entry of (AB)C: 

p 

(AB)C(i, r) = ~)AB)(i, k)C(k, r) 
k=1 

P n 

= L L A(i, j)B(j, k)C(k, r) 
k=1 }=1 

n P 
= L LA(i, j)B(j, k)C(k, r) 

}=1 k=1 
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n 

= L A( i, j)(BC)(j, r) 
j=l 

= A(BC)(i, r). 

This proves the theorem. 0 

We must emphasize one more time that matrix multiplication is not 
commutative, that is, in general one does not have AB = BA. However, the 
associative law is extremely useful and can be applied to long products of 
matrices. For example, the associative law shows that 

[(AB)ClD = (AB)(CD) = A[B(GD)]. 

This means that it is meaningful to write this product without parentheses 
or brackets as ABCD. In other words, we need not be concerned about the 
order in which the multiplications are performed as long as the order in 
which the matrices are listed remains the same. 

Different Views of the Matrix Product 

Consider the following expansion for the matrix product: 

AB = (~ 3 
2 

At first glance this formulation looks strange and perhaps even wrong, 
because it is not the usual way you multiply matrices. What interests us 
is the expression following the second/equal sign. It is a sum of multiples 
of the columns of matrix A. The numbers by which the columns of A are 
multiplied are the entries of matrix B. A sum of multiples of columns is 
called a linear combination of those columns. This example shows that if 
B is a column matrix, then the column matrix AB is a linear combination of 
the. columns of A. 

Next recall that if B has more than one column, then the matrix product 
AB was defined to be the matrix whose columns are the products of A with 
the corresponding columns of B. Combining this with the observation just 
made about the product of a matrix A with a column gives the following 
fact. 

Fact. The columns of a product matrix AB are linear combinations 
of the columns of A. 
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We can also turn this observation around. What can we say about the 
rows of a product matrix AB? It turns out that the rows of a product AB are 
linear combinations of the rows of B. Here is an example illustrating this: 

(1 2 3)0 D ~(1-1+2-1+3-0 1-2+2-3+3-4) 

= 1 (1 2) + 2 (1 3) + 3 ( 0 4) = (3 20) . 

We have the following fact. 

Fact. The rows of a product matrix AB are linear combinations of 
the rows of B. 

Triangular and Diagonal Matrices 
Two important types of matrices are the triangular and diagonal matrices. 

Definition. Suppose A is an n X n (square) matrix. A is called upper 
triangular if ACi, j) = 0 whenever i > j. A is called lower triangular if 
ACi, j) = 0 whenever i < j. A is called diagonal if A( i, j) = 0 whenever 
i =1= j, that is, whenever A is both upper and lower triangular. 

As the name suggests, upper triangular matrices are those matrices 
whose nonzero entries are contained in the "triangle" above the diagonal. 
For example, 

3 
2 
o D and 

o 
o 
o 

are both upper triangular. The second matrix is also lower triangular, and so 
it is diagonal. The following properties of triangular and diagonal matrices 
will be useful in subsequent sections. 

Theorem 9. CO Suppose that A and B are both upper triangular n X n 
matrices. Then AB is an upper triangular matrix. If A and B are both 
lower triangular, then so is AB. 
eii) If A and B are both diagonal n X n matrices, then AB = BA. 

The reason the theorem works is easily seen when investigating exam­
ples. For instance, consider the product of lower triangular matrices: 

o 
1 
2 

o 
1 
o 

o 
1 
2 

The product is lower triangular because in the calculation of any upper right 
entry we are always adding together three zeros. 
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Elementary Matrices and Row Operations 

It is useful to analyze elementary row operations on matrices in terms of 
matrix multiplication. The key concept is that of an elementary matrix. 
Each of the three basic row operations can be interpreted as an appropriate 
matrix multiplication. 

Definition. An n X n elementary matrix is a matrix obtained from the 
n X n identity matrix In by applying a single elementary row operation. 

We see that there are three types of elementary matrices. The 3 X 3 
elementary matrices are displayed below. The first operation gives 

o 
1 
o 

or 
o 
k 
o 

or 
o 
1 
o 

where k is a nonzero real number. The second. operation gives, for any 
nonzero real number k, the six matrices 

G 
k 

D G 
0 n, G 

0 D, 1 1 1 
0 0 0 

G 
0 D, G 

0 D, G 
0 

D 1 1 1 
0 0 k 

Finally, the third operation gives the three matrices 

(~ 
1 

~), (~ 
0 

~), (~ 
0 

~) . 0 1 0 
0 0 1 

Elementary matrices arising from this third operation are called elementary 
permutation matrices. 

Elementary matrices connect row operations and matrix multiplication 
as is noted next. 

Theorem 10. Suppose that E is an n X n elementary matrix and A 
is an n X m matrix. Then the matrix EA is the matrix obtained from A 
by applying to A the elementary row operation that was used to obtain 
Efrom In. 

This result is best understood by looking at a few examples. Note for 
instance that the matrix multiplication 

(; ~)(: b 
f 

c 
g 

3b 
f 

3c 
g 
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simply amounts to multiplying the first row of the right-hand matrix of the 
product by 3. This is precisely how the elementary matrix on the left was 
obtained; that is, 

is obtained by mUltiplying the first row of the 2 X 2 identity by 3. 
As a second example, 

is the elementary matrix obtained from the identity by adding two times the 
second row to the first. If we perform the multiplication 

(~ ~) (~ 3 
2 ~) = (i 7 

2 

we obtain the same result as adding two times the second row of 

(~ 
to the first row. 

3 
2 ~) 

Matrix Multiplication and Row Equivalence 
In the next theorem we show how sequences of elementary operations 
(which up to now have been our main computational tool) can be under­
stood as a matrix multiplication. In particular, we will be able to exploit 
properties of matrix algebra when studying row equivalence. 

For example, consider the sequence of elementary row operations 

(~ 3 
5 

3 
2 

3 
1 

o 
1 

-1) 1 . 

The final matrix in this sequence is a reduced row-echelon matrix. Accord­
ing to Theorem to, these three elementary row operations correspond to 
multiplication by the elementary matrices 

(~ ~), and (~ -3) 1 . 

Consequently, the following product describes the sequence of row opera­
tions just performed: 

(~ ~) (-~ ~) (~ 3 
5 

o 
1 

-1) 1 . 
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Multiplying our three elementary matrices together shows 

(~ o 
1 

3 
5 

In particular we see that the combined result of our sequence of three row 
operations is the same as multiplication on the left by a 2 X 2 matrix. 

Theorem 11 summarizes these ideas. 

Theorem 11. Assume that A and B are row equivalent matrices. 
Then there exist elementary matrices E1, Ez, ... , Es such that B = 
EsEs-1 ... E1A. Consequently, there is an invertible matrix S such that 
B= SA. 

Proof By hypothesis there is a sequence of elementary row operations 
that transform A into B. Suppose that the sequence of matrices resulting 
from these elementary operations is A = .40, A}, A2, ... ,As-1, As = B. 
Applying Theorem 10 we can find elementary matrices E1, E2, ... , Es such 
that Al = E1.4o, A2 = E2A1, ... , and B = As = EsAs-1' From this we see that 
B = EsAs-1 = EsCEs- 1As- 2) = ... = EsCEs- 1(··· (E1A)·· .)), as required. 
Applying the associativity of matrix multiplication (Theorem 8), we can 
omit all the parentheses. We set S = EsEs-1 ... EI, and the result follows. 0 

The theorem has the following corollary, which we will need later. 

Corollary. Suppose that A is an invertible n X n matrix. Then there 
exist elementary matrices E1, Ez, ... , Es such that A = EsEs-1 ... E1. 

Proof Since A is invertible, the results in the subsection on inverting ma­
trices in Sec. 3.3 show that In and A are row equivalent. The theorem now 
shows that A = EsEs-1 ... E1In = EsEs-1 ... E1 as required. 0 

The Transpose 
Sometimes it is important to interchange the rows and columns of a matrix. 
We conclude this section by finding out what happens when this is done. 
We start with a definition. 

Definition. Suppose A is an n X m matrix. The transpose of A, denoted At, 
is the m X n matrix with At(j, i) = A(i, j) for all j and i, where 1 :s j:S m 
and 1 :s i :s n. In other words, At is the matrix obtained from A by 
interchanging the rows and columns. If At = A, then A is called symmetric. 
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For example, we have 

1 
3 ~) and (~ 

o 
1 
o 

The second of these two matrices is symmetric. 

o 
1 
o 

It turns out that the transpose of a product is the product of the trans­
poses in reverse order. This fact turns out to be quite useful later. 

Theorem 12. If A is an m x n matrix and B is a n X p matrix, then 
(AB)f = (Bt)(At). 

Proof Observe that Bt is a p X n matrix and At is an n X m matrix so that the 
product CBt)(At) makes sense. Let A = Cai) and B = Cbjk ). The definition 
of matrix multiplication shows that the ikth entry of AB is 2:.7=1 aijbjk . 
Applying the transpose, this becomes the kith entry of CABY. Next note that 
bjk is the kjth entry of Bt and aij is the jith entry of At. Again using the 
definition of matrix multiplication, we see that the kith entry of CBt)(At) is 
2:7=ICbjk)(aij). The theorem follows since these two sums are identical. 0 

One nice application of the theorem is in constructing symmetric ma­
trices, because if A is any matrix then taking B = At in the theorem gives 
CAAty = (AtY At. But clearly, (Aty = A, so we find that (AAtY = AAt. This 
shows that AAt is always symmetric. As an example, if 

A= (~ 3 
5 !), then AAt = (~ 3 

5 

1. Are the following elementary matrices? 

~) = (29 
4 43 

(a) (~ ~ ~ ) Cb) (~ ~ ) (c) (~ ~ ) 

43) . 
77 

2. Identify the sequence of elementary operations used below and then 
show how to obtain them by multiplication by a product of elementary 
matrices. 

(~ 2 
6 

3. (a) Consider the matrix 

2 
2 

o 
o 
1 

o 
2 

For any 3 X m matrix A, describe PA in terms of A. 

~) 
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(b) Consider the matrix 

1 
1 
o 

For any 3 X m matrix A, describe QA in terms of A. 

4. Use elementary operations to transform A to B, and use your row 
operations to find an invertible matrix M such that A = ME, where A 
and B are as specified. 

(a) A = (~ i) and B = (~ ~ ) 

(b) A = (~ ~ i) and B = (! ~ ~ ) 
(c) A = (~ ~ i) and B = (i : ; ) 

5. Suppose that a 2 X 2 matrix A commutes with all other 2 X 2 matrices 
(that is, AB = BA for all 2 X 2 matrices B). Show that 

A= (ao aO) for some a E R. 

6. Find six different 2 X 2 matrices A for which 

7. (a) If A and B are invertible n X n matrices, show that the product AB 
is invertible and that (ABr l = B-IA-I . 

(b) Suppose that A is an invertible matrix. Show that At is invertible 
and that (At)-I = (A-I),. 

8. Find a 2 X 2 matrix A for which AAt '* At A. 

9. Suppose that the n X n matrix T = (ttj) is upper triangular. If Tn = 0, 
show that til = 0 for all i. Is the converse true? 

10. Find At if A is 

(a) G ~ ! D ~) G ~ D (c) G D 
11. (a) If A is symmetric, show A is square. 

(b) Show that for any square matrix A, the matrix A + At is symmetric. 

(c) Assume A and B are symmetric. Show that AB is symmetric if and 
only if A and B commute. (Two matrices A and B are said to 
commute if AB = EA.) 

12. A matrix K is called skew-symmetric if Kt = - K. 
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(a) For any square matrix A show that A - At is skew-symmetric. 
(b) For any skew-symmetric matrix K, if (I - K) is invertible show that 

the matrix B = (I + K)(I - K)-l satisfies Bt B = I = BBt. 

13. Express the following matrices as products of elementary matrices. 

(a) G ~) (b) G ! D 
14. When is the product of two elementary matrices another elementary 

matrix? 
15. What conditions characterize when an upper triangular, n X n matrix 

has rank n? 

Group Project: Elementary Column Operations 

You may have wondered if column operations are as useful as rowopera­
tions. Although they are not used as frequently, there are some important 
uses. Here is one such application. 

(a) Interpret multiplication on the right by elementary matrices as column 
operations. 

(b) Use part (a) together with the existence of a row equivalent, reduced 
echelon matrix to show that for any m X n rank m matrix A, there exist 
invertible matrices P and Q such that PAQ = (1m 10) is a "partitioned" 
matrix with left-hand block 1m and right-hand block the m X (n - m) 
matrix of zeros. 

Group Project: The Chain Rule and Matrix Multiplication 

This project requires some familiarity with multivariable calculus. Suppose 
that f : R m - R n is a differentiable function. The jacobian of f is the 
n X m matrix of functions f' whose entries are the partial derivatives of the n 
component functions of F with respect to the m variables. More precisely, if 
we express f (xt, ... ,xm) = (.Ii (xt, ... , xm), ... , fn(xt, ... , Xm)) , then f' = 
(ftj) , where 

Recall from one-variable calculus that if J, g : R - R are both functions 
with continuous derivatives, then the derivative of the composite function 
fog: R - R is given by the chain rule as (j 0 g)'(x) = f'(g(x))g'(x). 
This exact same formula can be used to compute Jacobian matrices of 
composites of functions of several variables. The only difference. is that 
multiplication of matrices is used instead of multiplication of real numbers. 
As a group, decipher what this means. Give some specific examples too, 
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where m andn are small. Note that the sizes of matrices will be appropriate 
for multiplication in the chain rule only when the dimensions of the domains 
and ranges of the functions involved are such that composition makes sense. 
One thing to be careful about-be sure you don't forget to substitute the 
function g into f' before multiplying by g' when applying the chain rule! 

4.2 Fibonacci Numbers and Difference Equations 

Counting More Paths 
We saw earlier in Sec. 1.3 that matrix arithmetic could be quite useful in the 
combinatorial problem of counting paths in a graph. In this example we 
will find a different relationship between the .problem of path counting and 
matrix algebra. Consider the graph in Fig. 4.1. Suppose that you needed to 
calculate the number of paths between the points A and B, where you are 
allowed to travel only in the directions indicated by the arrows, and you 
are not concerned about the lengths of the paths. 

If we try to tally the total number of paths, we will quickly discover that 
the list grows too rapidly. Not to say that this method won't work Cit will, 
try it!), but it is best in this type of problem to find an organized method 
for counting. Observe that except for the left-hand vertices on this graph, 
there are precisely two paths coming into each vertex. The vertices on the 
top row have as possible previous vertices the two vertices in the column 
immediately to the left, and the vertices on the bottom row have as possible 
previous vertices the vertex above and the vertex to the left. This suggests 
that we number the vertices of the graph as indicated in Fig. 4.2. 

With the vertices of the graph labeled as indicated, we see that any path 
through vertex n must come immediately from either vertex n - 1 or n - 2. 
In particular, if we know how many paths there are from A to the vertices 
labeled n - 2 and n - 1, then adding together these numbers gives the total 
number of paths to vertex n. For example, there is precisely one path to 
vertex 1 and only one path to vertex 2. This shows that there are 1 + 1 = 2 
paths to vertex 3. (These two paths are A -t 1 -t 3 and A -t 1 -t 2 -t 3.) 
Continuing this line of reasoning, we next see that there are 1 + 2 = 3 paths 
to vertex 4, and 2 + 3 = 5 paths to vertex 5. If we denote by pen). the 
number of paths to vertex n, our procedure gives the following result. 

n 1 2 3 4 5 6 7 8 9 10 11 12 

pen) 1 1 2 3 5 8 13 21 34 55 89 144 

Fig. 4.1. How many A '0ZlZlZlZl paths form A to B? 

~ B 
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Rg. 4.2. Ordering 1 3 5 7 9 11 
vertices for path counting A '1ZlZ020 • 8 

2 4 6 8 10 12 

We conclude that there are 144 paths between A and B. It might have been 
possible to count them by making a list, but without an organized method 
the possibility for error is great. 

The Fibonacci Numbers and Matrices 

The sequence of numbers given by the function Pen), 1,1,2,3,5,8, ... , 
is a famous sequence known as the Fibonacci sequence. 1 pen) is· called 
the nth Fibonacci number. The facts that p(1) = P(2) = 1 and pen) = 
Pen - 1) + Pen - 2) for n 2': 3 tie the Fibonacci numbers to matrices 
in a fundamental way. Since each Fibonacci number is determined by its 
two predecessors, we consider the column vector of successive Fibonacci 
numbers 

( p(n+1)) 
pen) 

and use matrix methods to analyze values of pen) for various n. The method 
for determining the next Fibonacci number shows 

( p(n+2)) = (p(n+1)+p(n)) 
Pen + 1) Pen + 1) 

= (~ ~) (PC;(;/)) . 
From this we see that successive values of pen) can be obtained by repeated 
matrix multiplication. Using the fact that 

as our starting point, we obtain 

( 3) = (P( 4)) = (1 
2 P(3) 1 ~) (~) 

= (~ ~)(~ ~)(~)=(~ ~r(~)· 
1 Named in honor of Leonardo of Pisa (1175-1250), best known by his patronymic, Fibonacci, 

who first wrote down this sequence. 
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More generally, we find 

for all natural numbers n. 
The defining equation pen) = Pen -1) + Pen - 2) is called a difference 

equation. (This terminology comes from the fact that they are closely related 
to differential equations.) Just as with the Fibonacci sequence, difference 
equations can be analyzed using repeated matrix methods. We shall see a 
bit later how important this type of matrix analysis is. 

Difference Equations and Population Growth 
A terrible flea-borne epidemic is beginning to attack the rabbit population 
on a small island with 12 million rabbits. Each month, one-third of the rabbits 
who have not had the disease contract it. Of these rabbits who contract the 
disease, one-fourth of them die a month later, but those that survive recover 
and become immune. It is further known that each month the population 
grows by one-twelfth, which takes into account both births and deaths due 
to causes other than the epidemic. We will assume that immunity to this 
disease is not passed on to rabbit children. Our problem is to determine 
what happens to the rabbit populatirm after one year. 

Observe that this problem can be solved on a month-by-month ba­
sis, where each month the numbers of uninfected, sick, and immune rab­
bits change. This suggests that we create the three functions U(n), Sen), 
and len) to represent these segments of the rabbit population On mil­
lions) after n months and then use a 3 X 3 matrix to relate the population 
changes in these categories each month. Our initial population is given by 
(U(O), S(O), 1(0)) = (12,0,0), which shows that before the epidemic there 
are 12 million uninfected rabbits. Each month, one-third of the uninfected 
rabbits become sick, which shows that 

1 
Sen + 1) = "3 U(n). 

Of those rabbits that were sick, one-fourth die and three-fourths join the 
immune rabbits. This shows that 

3 
l(n + 1) = 4S(n) + len). 

Finally, the population increases by one-twelfth, which means that 

2 1 
U(n + 1) = - U(n) + -(U(n) + Sen) + len)) 

3 12 

= ~ U(n) + 2- S(n) + 2-1(n). 
4 12 12 
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When these equations are assembled as a matrix equation we find 

(

3 
U(n + 1) 4 

( Sen + 1)) = i 
l(n + 1) 0 

1 
12 
o 
.2 
4 

tz) (u(n)) o S(n). 
1 len) 

The 3 X 3 matrix in this equation is called the transition matrix for this 
model. Repeatedly applying this equation shows that after n months the 
rabbit population vector is given by 

(

3 

( ~i;~) = ; 
len) 0 

1 
12 
o 
.2 
4 

Using a calculator with matrix multiplication capability to find the matrix 
power when n = 6, one obtains these results after 6 months: 

(
U(6)) (0.351 
5(6) = 0.125 
1(6) 0.810 

0.234 
0.070 
O.S88 

0.301) (12) _ (4.22) 0.090 0 - 1.50 . 
1.16 0 9.72 

This population model predicts that after six months 9.72 million rabbits 
will be immune to the disease, 4.22 million rabbits will have not contracted 
the disease, and 1.50 million rabbits will be sick. Note that the rabbit popu­
lation does successfully grow in spite of the deaths caused by the disease. 
Further calculation shows that the distribution of rabbits among the three 
categories at two-month intervals is the following. 

2mo. 4 mo. 6mo. Smo. 10 mo. 12 mo. 

(
4.99) 
1.94 
7.02 

(
4.22) 
1.50 
9.72 

(
4.76) 
1.51 
16.1 

(
4.09) 
1.36 
11.9 

(
4.32) 
1.39 
13.9 

( 7.0B 
3.0 
3.00 

Observe that as time passes the number of immune rabbits increases more 
rapidly than any other group. In later sections we will consider other models 
where iterative matrix multiplication is used to describe changes over time. 

1. Learn to use a calculator or a computer to compute matrix powers. Find 
A2, A5, A lO , A20 , and A30, where A is the matrix below. In each case, 
(a)-{O, write down any special observations. 

(a) G 4 
o 
2 

(b) (0.3 
0.7 

0.6) 
0.4 

() (~ c 1 

o 

o 1 
1 0 
o 1 
1 0 
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(
0.0 0.1 0.3) 

(d) 0.1 2 0.1 
0.2 0.6 0.2 

(
0.1 

(e) 0.4 
0.5 

0.3 0.1) (~1 2 0.2 0.6 (f) 5 
0.5 0.3 8 

2. Using a calculator with matrix capability, compute 

for N = 16, 32, and 50. Use your matrix powers to find the Fibonacci 
numbers P(17) , P(18), P(33), P(34), P(51), and P(52). Use a calcula­
tor to compute the ratios P(17)/P(18) , P(33)/P(34), and P(51)/P(52). 

Compute 1+2../5 on your calculator. What do you notice? This observation 
will be explained using eigenvalues in Chap. 7. 

3. You deposit $500 in a superbank that pays 1% interest each month. The 
bank compounds this interest monthly. How much money do you have 
in the bank after one month, two months, one year, 100 years? Even if 
you have seen a formula for this elsewhere, give an explanation of your 
answer that uses difference equations. 

4. Bee families are structured a bit differently than those of other animals. 
A male bee develops from an unfertilized egg; in other words a male bee 
has only a mother, not a father. A female bee (the queen), on the other 
hand, develops from a fertilized egg and therefore has both a mother 
and a father. So in a bee's family tree, female parentage always branches 
in two, while the male lineage does not. Suppose you are studying the 
genetics of bees and you need to know how many ancestors a queen 
bee has. How would you count the number of ancestors the queen has 
going back 15 generations? How can difference equations and matrices 
help? 

Group Project: How Many Trucks Where? 

"Move Yurself Trucks" has rental distribution centers in San Francisco, Los 
Angeles, and Redding, California. They own 1000 trucks, for use by Cali­
fornia families. Each month, half of the trucks rented in San Francisco are 
returned there, one-eighth are returned in Redding, and three-eighth are re­
turned in Los Angeles. Also, each month three-fourths of the trucks rented in 
Redding are returned in San Francisco, while one-eighth are returned in Los 
Angeles, and five-eighths of the trucks in Los Angeles are returned in Los 
Angeles, while one-fourth are returned in San Francisco. How should Move 
Yurself distribute its trucks to minimize the number of trucks the company 
has to transport from one region to the next each month? 

In writing up this project, explain the process that led you to your 
answer. Include any ideas you had that may have later been abandoned. 
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Group Project: More Paths 

In each question below be sure to explain how you used difference equa­
tions and matrix algebra to find your solution. 

(a) Find a graph whose number of paths from one end to the other is 
governed by the difference equation pen + 2) = 2P(n + 1) + pen) for some 
ordering of the vertices. 
(b) Find a difference equation that helps you find the number of paths 
from left to right in the following graph. Assume that paths join only at 
arrowheads. 

A 'CAJJ\AJ , B 

(c) Find a graph whose number of paths from one end to the other is 
governed by the difference equation P(n+3) = P(n+2)+2P(n+ 1)+ pen). 

4.3 The Determinant -
In this section we study the determinant of square matrices. The determinant 
of a square matrix A, denoted det(A), is an important number that gives some 
special information. We begin our look at the determinant by investigating 
the 2 X 2 and 3 X 3 cases using elementary operations. 

The 2 X 2 Determinant 
Some students are acquainted with the definition of the 2 X 2 and 3 X 3 
determinants. Usually these small determinants are given by a formula. The 
n X n determinant generalizes these familiar cases. Unfortunately, one can­
not understand the n X n determinant merely by manipulating the formula 
that defines it (as is often done in the 2 X 2 and 3 X 3 cases). 

The 2 X 2 determinant arises when considering the invertibility question 
for general 2 X 2 matrices. For example, suppose we wish to determine if 
the matrix 

A=(~ ~) 
is invertible. For the sake of argument we suppose that a -:/= 0, and we apply 
a row operation to A: 
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According to the process outlined in Sec. 3.3, the original matrix will be 
invertible whenever both diagonal entries of the second triangular matrix 
are nonzero, that is, whenever a*-O and d - ~ *- O. Since a*-O by 
assumption, multiplying d - ~ *- 0 by a shows the matrix A is invertible 
precisely if ad - bc *- O. We call the expression ad - bc the determinant, 
det(A) , of matrix A. We have shown in this case that A is invertible if 
and only if det(A) *- O. This calculation illustrates the origin of the 2 X 2 
determinant. 

The 3 x 3 Determinant 

Having found the 2 X 2 determinant using one row operation, we turn to 
the 3 X 3 case. We carry out the following sequence of row operations: 

b 
e 
h 

h 
e - bd 

a 

o 

b 
e - bd 

a 
b- !!JJ. 

a 

c ) 1- cd 
. c; 
1- -a 

First note that for this sequence of row operations to make sense, we need 
both a =I=- 0 and e - t;: =I=- O. With these assumptions, this calculation 
shows that matrix B is invertible precisely when the product of the diagonal 
entries of the last matrix is nonzero. We call this product the determinant of 
B, which after the following messy calculation is 

det(B) = a ( e - b:) [i - ~ - (I - c:) (h _ ~) / (e _ b:)] 
= a ( e - b:) (i - ~) - a (I - c:) (h - ~) 

= (ae - bd)i - (e - b:) cg - (al - cd)h + (I - c:) bg 

= (ae - bd)i - (al - cd)h + (bl - ce)g. 

This gives the formula for the 3 X 3 determinant. If you didn't like this 
computation, don't worry! You won't be asked to carry out this type of 
calculation any further. Instead we shall devote the rest of this section to 
a better method of understanding and computing the determinant. But do 
observe that we have shown in this case that B is invertible if and only if 
det(B) *- O. 
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The Cofactor Expansion Formula for the Determinant 
We next give an inductive deSCription of the determinant known as the 
cofactor expansion.2 The idea is to compute the determinant of an n X n 
matrix using determinants of smaller (n - I) X (n - I) submatrices. If we 
look again at the 3 X 3, case we see 

( a he) 
det de! = (ae - hd)i - (af - cd)h + (hf - ce)g 

g h t 

which illustrates how the determinant of a 3 X 3 matrix is related to the 
determinants of three 2 X 2 submatrices. 

This next definition is needed to generalize the idea from the 3 X 3 case 
and give the cofactor expansion of the determinant. 

Definition. Let A = (at) be an n X n matrix. We define A(i I j) to be the 
(n - I) X (n - I) matrix obtained from A by deleting the ith row and jth 
column. A(i I j) is called the ijth maximal submatrix of A. 

For example, if 

A = (! 1 

~), 1 
7 

the definition gives 

A(1 II) = (~ i), A(2 II) = (~ ~), and A(31I) = (~ ~) . 
The cofactor expansions for the determinant give det(A) in terms of the 

determinants of the maximal submatrices of A taken along a specified row 
or column. Specifically, we shall introduce functions denoted VeT n,i and 
V£Tj, each of which can be shown to be the same function on n X n 
matrices. The function VeT n,t is the cofactor expansion along the ith row, 
and the function V£Tj is the cofactor expansion along the jth column. 
We remark that this notation for the cofactor expansion is not standard 
and is introduced merely to emphasize the two different types of cofactor 
expansion. We will shortly abandon this notation and continue to use "det" 
to mean the determinant. 

2 Also known as the Laplace expansion. 
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Definition. If A = (a), we define V£'T1,1(A) = V£T~(A) = a = det(A). If 
A = (alj) is an n X n matrix with n > 1, for i with 1 :5 i :5 n we define 

n 

VET n,I(A) = ~::c -1)1+ j aljdet(A(i I j)), 
j=l 

which is called the ith row cofactor expansion of det. Similarly, for j with 
1 :5 j :5 n we define 

n 

V£Tj(A) = L) -1)1+ j aljdet(A(i I j)), 
1=1 

which is called the jth column expansion of det. 

The expression V£T3,3(B) is what we obtained earlier when we ex­
pressed the 3 X 3 determinant in terms of maximal 2 X 2 submatrices. In 
order to illustrate how the different cofactor expansions all compute the 
determinant, we give some examples. 

We considered the matrix 

1 
1 
7 

and found its maximal submatrices resulting from deleting the first column 
and the three possible rows. Computing the determinants of these max­
imal submatrices gives det(A(1 I 1)) = -48, det(A(2 I 1)) = -13, and 
det(A(3 11)) = 5. The cofactor expansion along the first column gives 

V£Ti(A) = 3(-48) + -1(-13) + 2(5) = -121. 

We caution the reader that the most common error in applying cofactor 
expansions is failing to keep track of the + and - signs appropriately. The 
sign is + 1 if i + j (the sum of the row and column numbers) is even, and 
it is -1 if i + j is odd. 

As a second example we use the cofactor expansion to compute the 
determinant of a 4 X 4 matrix. Suppose 

2 1 
3 2 
1 4 
1 0 

We will compute det( C) using a second row cofactor expansion, with further 
cofactor expansions of the 3 X 3 submatrices that arise. To save space, no 



summands equaling 0 will be listed: 

1 
4 
o 

= 3 [(_1)2+2 . 4 . det ( ~ 

= 3·4·4 - 2 ·1·4 = 40. 
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D +( - J)H3 2 • det G : D 
~ )] - 2 [(_1)2+2 . 1 . det ( ~ ~ ) ] 

We next state the theorem that has been promised-that all the cofactor 
expansions agree and are called the determinant. 

Theorem 13. For any n X n matrix A all of the cofactor expansions 
agree. That is, for any i and j with 1 :5 i, j :5 n, 

VET n,/A) = VET7(A) = det(A). 

We will not detail the proof of this theorem here as we wish to emphasize 
applications. The idea behind the proof is to show that cofactor expansions 
have the same properties as do det with regard to row operations. Hence, 
any row reduction of a matrix to triangular form will show that all cofactor 
expansions VET n.i or VETi agree. 

The theorem just given has some very useful corollaries. Note that a 
row cofactor expansion for the determinant of a matrix A is the same as 
the corresponding column cofactor expansion of the. determinant of the 
transpose matrix At. Hence we obtain the following corollary. 

Corollary. For any square matrix A, det(A) = det(At ). 

We also note that if A = (aij) is an n X n upper triangular matrix, the 
cofactor expansion along the bottom row shows that det(A) is ann times 
the determinant of the (n - 1) X (n - 1) upper triangular matrix, which 
is obtained by deleting the bottom row and right column. Inductively this 
shows that the determinant of an upper triangular matrix is the product 
of its diagonal entries. Since a similar argument applies to lower triangular 
matrices, we have the next corollary. 

Corollary. If A is an triangular matrix, then det(A) is the product of 
A's diagonal entries. 
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Calculating Determinants Using Gaussian Elimination 

Unless there are many zeros in the matrix, cofactor expansions can be a 
very tiresome method for computing determinants. We next show how a 
determinant can be computed using row operations. The objective of this 
method is to row~~educe the matrix to a triangular matrix, keeping track of 
how the determinant changes. Since the determinant of a triangular matrix 
is the product of its diagonal entries, the computation will be complete. 

Theorem 14. Suppose that A is a square matrix. Then 
(0 If B is obtained from A by multiplying a single row of A by a 

nonzero real number k, then det(B) = k . det(A). 
(ii) If B is obtained from A by adding a multiple of one row to 

another, then det(B) = det(A). 
(iii) If B is obtained from A by interchanging two rows, then det(B) = 

-det(A). 
(iv) If A is triangular (upper or lower) then det(A) is the product of 

its diagonal entries. 
(v) If A has a row or column of zeros, then det(A) = o. 

The result can be proved by inducti~n using the cofactor expansion, 
and you will have a chance to explore this in the group project at the 
end of the section. The next examples illustrate how to use the theorem 
to evaluate determinants. You will get to practice this technique in the 
homework problems. Observe in these examples we do not compute any 
cofactor expansions; all we need to do is apply Gaussian elimination. 

Examples. (a) Find the determinant of 

(
1 0 

M = 2 0 
1 3 

We could apply the 3 X 3 formula developed above, but instead we shall 
use row operations and apply the theorem. We begin by adding multiples 
of the first row to the second and third rows. According to property (ii) of 
Theorem 14 this doesn't change the determinant. We find 

d~G 
0 

D~ddG 
0 

D 0 0 
3 3 

We next interchange the second and third rows to find by part (iii) of the 
theorem that 

detG 0 D ~ -de'G 
0 

D 0 3 
3 0 
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Finally applying part (iv) of the theorem, we obtain 

detU 0 D ~6 3 
0 

which shows that det(M) = -6. 
(b) Consider 

A~ G 
1 4 

lD 0 1 
2 9 
1 1 

We apply row operations. Eliminating the nonzero entries from the first 
column gives 

1 
-2 

2 
-2 

2 

1 

4 
-5 
-5 

1 

and subtracting the second row from the third row of B gives 

1 
_2 

2 
o 
1 

4 
-5 

o 
1 

Applying part (ii) of the theorem, we find that det(A) = det(B) = det( C). 
Applying part (v) of the theorem gives det(C) = 0, so det(A) = 0 follows. 

We caution you to be sure to keep track of the changes in the deter­
minant that arise whenever a row is multiplied by a constant. Since the 
second row operation is the most frequently used and does not change the 
determinant, it is easy to become sloppy and forget this. 

Remark. Most scientific calculators are capable of computing determinants, 
and this has greatly reduced the need for computing determinants by row 
operations. Once a matrix has been entered into the calculator, the det com­
mand will do the rest. However, the relationship between the determinant 
function and row operations is still important to us because it enables us to 
understand the most important properties of the determinant. These results 
are given in the next section. In the meantime, you are encouraged to learn 
how to compute determinants on your calculator and computer, and you 
should use your machine to check your answers to the problems below. 
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Problems 

In problems 1 and 2 compute the determinants of the following matrices 
in three different ways. Use a cofactor expansion, use row operations, and 
then try to find the quickest method by mixing these techniques. In this third 
approach you strive to get zeros quickly by row operations and then use 
cofactors to obtain the determinant of the resulting matrix. Finally, check 
your answers using a calculator or computer, if available. 

1. (a) ( 2~ 

(d) U 
2. (a) ( 1~ 

(d) 0 

3 
1 
3 
o 
2 
o 
o 
5 
1 
2 
1 
2 
2 
1 

2 
4 
1 
1 

D 
1 
o 
o 
1 

2 
7 
4 
o 
1 
o 
1 
2 
8 
10 
o 
1 
o 
o 

~) 
2 
o 
3 
o 

o 
7 
2 
5 

4 
5 
6 
1 
2 
1 
o 
2 
2 
3 
o 
o 
3 
o 

3. Suppose that A is an n X n matrix with more than n2 - n entries that 
are O. Show that det(A) = o. 

4. If A and Bare 2 X 2 matrices, do you think that det(A + B) "* det(A) + 
det(B)? Give a proof if you think it is true, and give a counterexample if 
you think it is false. 

5. Verify by direct calculation that det(AB) = det(A)det(B) for 2X2 matrices. 

6. Show that the 3 X 3 Vandermonde determinant 

a 
b 
e 

is given by (b - a)(e - a)(e - b). When is the Vandermonde matrix 
invertible? 

7. A skew-symmetric matrix is a matrix A for which At = -A. Suppose that 
A is an n X n skew-symmetric matrix where n is odd. Show det(A) = O. 
Is this true when n is even? 

8. Use a calculator or computer to evaluate the determinants of each of the 
matrices in Prob. 1 in Sec. 4.2. Try to find a relationship between the 
determinants of these matrices and your observations about the matrix 
powers. 
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Group Project: Determinants and Row Operations 

(a) Verify each of the five assertions of Theorem 14 in the 2 X 2 and 3 X 3 
cases by explicit computation, using the formulas for the determinant. 
(b) Now verify each of the five assertions of Theorem 14 in the 3 X 3 case 
by using various cofactor expansions and the fact that the theorem is true 
in the 2 X 2 case. From this, explain why you believe the result is true in 
general. 

4.4 Properties and Applications of the Determinant 

In this section we detail two important properties of the determinant. The 
first is the fact that the nonvanishing of the determinant is equivalent to 
invertibility. Recall that the question of invertibility motivated our original 
discussion of the 2 X 2 and 3 X 3 determinants. We also show that the 
determinant of a product is the product of determinants of the factors. This 
famous result is understood by the use of elementary matrices and not by 
a long calculation. These results are followed by two applications of the 
cofactor expansion of the determinant. The first is a computation of the 
inverse matrix in terms of determinants. While not always practical from a 
computational point of view, this description of the inverse has important 
theoretical uses. The second application, Cramer's rule, describes the unique 
solution to AX = 11 whenever A is invertible. 

The Determinant and Invertibllity 
We recall from Sec. 3.3 that a square matrix A is invertible precisely in case 
A can be row-reduced to In. This shows, together with Theorem 14, that 
A is invertible if and only if det(A) *" o. Furthermore, these row opera­
tions also show that A is invertible if and only if rk(A) = n. Finally, we 
note by Theorem 7 (ij) that the condition rk(A) = n is equivalent to the 
homogeneous system AX = {5 having only the trivial solution. All of these 
equivalent forms of invertibility are summarized in the following theorem. 

Theorem 15. Suppose that A is an n X n matrix. Then the following 
are equivalent: 
(a) det(A) =1= 0; 
(b) A is invertible; 
(c) rk(A) = n; 

(d) The homogeneous system AX = (5 has only the trivial solution. 

Here are some examples. 
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Examples. Compute the determinants of the following matrices and deter­
mine if they are invertible. 

(a) A = (~ ~) 
2 
1 

3 

1 
o 
2 
1 

o 
o 
1 
o 

Solution. (a) det(A) = 2· 7 - 5' 3 = -1, and A is therefore invertible. 

(b) det(B) = 1·1 . 1 - 1·0· 3 + 2 . 3 . 0 - 2·5' 1 + 0 . 5 . 3 - 0·1' 3 = 
1 - 0 + 0 - 10 + 0 + 0 = -9 using the formula given in the subsection on 
3 X 3 determinants. Consequently, B is invertible. 

(c) The sequence of row operations 

1 
o 
2 
1 

o 
o 
1 
o 

1 
o 
2 
1 

o 
o 
1 
o 

shows that det(C) = 0 and that C cannot be invertible. 

The Determinant of a Product 

o 
o 
2 
1 

o 
o 
1 
o 

We noted earlier in this chapter that row operations can be obtained by 
multiplication by elementary matrices. We later determined how row oper­
ations affect the determinant. Putting these two results together gives us the 
following result, the verification of which is checked by direct calculation. 

Lemma. Suppose that E is an n X n elementary matrix and that A 
is an arbitrary n X n matrix. Then det(EA) = det(E)det(A). 

Next we recall from the final corollary in Sec. 4.1 that any invertible 
matrix can be expressed as a product of elementary matrices. The lemma 
can now be applied iteratively to obtain the following theorem. 

Theorem 16. If A and Bare n X n matrices, then 

det(AB) = det(A)det(B). 

Proof If A is invertible, then by the last corollary in Sec. 4.1, A = EsEs-I .•. 
E1 where E1, E2 , ... , Es are elementary matrices. Applying the lemma repeat­
edly gives 
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det(AB) = det(EsEs-l ... ElB) 

= det(Es)det(Es- l ... ElB) 

= ... = det(Es)det(Es- l) ... det(El)det(B) 

= det(EsEs- l )det(Es-2)' .. det(El)det(B) 

= ... = det(EsEs-"l ... El)det(B) 

= det(A)det(B). 

If A is not invertible, then by Theorem 15 det(A) = O. Suppose that 
C is the reduced row-echelon form of A. Then by Theorem 11 there is 
an invertible matrix M for which MA = C. As C has a row of zeros, the 
definition of matrix multiplication shows that CB has a row of zeros. Since 
CB = (MA)B = M(AB) , we see that AB is row equivalent to a matrix 
with a row of zeros. It follows that AB cannot be invertible either. Hence, 
o = det(AB) = Odet(B) = det(A)det(B), as desired. 0 

Suppose that A is an invertible matrix. Then we know that AA- l = I is 
the identity matrix. The theorem shows that det(A)det(A- l ) = det(AA- l) = 
det(J) = 1. In other words, det(A- l) is the reciprocal of det(A). We empha­
size this as the next corollary. 

Corollary. If A is an invertible matrix, then 

-1 _ 1 
det(A ) - det(A)' 

The Adjoint Matrix 

We now turn to the applications mentioned earlier. Recall that in the sub­
section on inverting square matrices in Sec. 3.3 we gave a direct formula for 
the inverse of a 2 X 2 matrix. We found that if 

A=(~ ~) then A-I = ---::---:-1 (d -a b) . 
ad - be -e 

We recognize the denominator ad - be as the determinant of A. The matrix 

( d -b) 
-e a 

is a special matrix known as the adjoint of A, which is denoted adj(A). 
Observe that the product Aadj(A) is det(A)h. Our next task is to generalize 
this observation. 
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Definition. Let A = (aij) be an n X n matrix. We define the adjoint of A, 
denoted adjeA), to be the n X n matrix whose jith entry is ( -1)i+ j det(ACi I 
j)). In other words, 

adj(A)(j, i) = (-1)i+ j det(A(i IJ)). 

Look closely at the uses of i and j in the definition of the adjoint. Note 
that it specifies the jith entry of adjeA) in terms of det(ACi I j)). This reversal 
of i and j is not a typographical error and plays a key role in the proof of 
Theorem 17. Using the adjoint, we have the following elegant description 
of the inverse of an invertible matrix. 

Theorem 17. For any invertible matrix A, 

1 
A-I = det(A) adjCA). 

Proof We directly compute A[det(A)-1 . adjeA)]. Since this product is 
det(A)-1 . A· adiCA), we must show that A· adjeA) is det(A)In. As the ith row 
of A is ( ail aiZ ain ) and the jth column of adj(A) is 

( 

(-l)j+Idet(A(j 11)) ) 
(-l)j+2det(A(j 12)) 

(~1)j+nd~t(A(j In)) , 

we see using the definition of matrix multiplication that the ijth entry of the 
product A . adjCA) is 

n 

L aik(-l)i+kdet(A(j I k)). 
k=1 

Observe that if i = j, this is precisely the cofactor expansion VeT n,/A) = 
det(A). In case i -=1= j, this sum is VeT n,i(A{), where A{ is the matrix 
obtained from A by replacing the jth row of A with the ith row of A. Since 
A{ has two identical rows, we know VeT n,;CA{) = det(A{) = O. From this 
we see A' adj(A) = det(A)In, as required. 0 

For example, consider the matrix 

B~ U 2 1 

D 3 2 
1 4 
1 0 
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Direct computation of the adjoint of B gives 

C 
7 1 

~) adj(B) = ~ 16 -8 
-4 12 

20 -2 6 40 

Since det(B) = 40, the theorem gives 

C 
7 1 

~) B-1 = 4~ ~ 16 -8 
-4 12 

20 -2 6 40 

Cramer's Rule 
The adjoint inversion formula has the following nice application. 

Theorem 18 (Cramer's rule). Assume that A = (ajj) is an n X n 
invertible matrix. Let jj = (bj ) be a column of n cvnstants. We denote 
by AU) the n X n matrix obtained from A by replacing the ith column 
of A by jj. Then the system of equations AX = jj has the unique 
solution given by 

det(A(i)) 
Xi = det(A) . 

Proof We know that AX = b has the solution X = A-I Ii = det(A)-ladKA)b. 
Therefore, it suffices to show that the ith row entry in the column matrix 
adKA)b is precisely det(A(i)). The definition shows that the ith row of adKA) 
is 

((-1)i+ 1det(A(1! i)) (-1)i+2det(A(2! i)) ... (-l)i+ ndet(A(n! i))). 

Multiplying matrices, we see that the ith entry of adj(A)b is 

n n 

L(-l)i+kdet(A(k! i))bk = L(-l)i+k bkdet(A(k! i)). 
k=1 k=l 

But this is the cofactor expansion V£T7(A(i)), which equals det(A(i)). 0 

For example, Cramer's rule shows that the matrix equation 

2 
4 
1 
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Problems 

has the unique solution given by 

det (~ 2 

D detG 
1 !) ddG 

2 

D 4 2 4 

X= 1 1 y= 1 Z= 1 

det (i 2 

~)' detG 
2 !)' det (i 2 

D 4 4 4 
1 1 1 

We find that X = ~i7 = t-;, Y = -=f7 = f-" and Z = ~1~ = -&. 

1. Use the adjoint formula to invert the following matrices. Check your 
results using a calculator or computer, if available. Otherwise, check 
your answer by multiplying to see that you get the identity. 

(a) (= ~ ~ -~ ) (b) (~ - ~ ~ ) 
o 2 -1 3 4-2 

2. Use Cramer's rule to solve the following systems of equations. Be sure 
to check your answers by plugging them back into the system. 

(a) (-~ : _:) (~) ( !) 
(b) 0 -~ -D (D (D 

3. Compute the determinant of the following matrices by any manner you 
like. 

G 
3 4 

D U 
2 3 

ID 
(a) 3 2 (b) 6 7 

0 2 10 11 
0 4 14 15 

(e) (~ 
2 -3 0 

~) (~ n 0 1 

D 
2 3 0 

0 2 
3 2 0 

1 0 
6 5 -9 

2 0 
8 0 1 

4. Two matrices A and B are said to anticommute if AB = - BA. Suppose 
that n is odd and A and Bare n X n real matrices that anticommute. 
Show that one of A or B is not invertible. Show this can fail if n is even. 

5. Suppose that det(An) = 1 for some natural number n. What can you say 
about det(A)? 
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6. (a) Show that for any two n X n matrices A and B, det(AB) = det(BA). 

(b) If P is an invertible n X n matrix and if A is another n X n matrix, 
show that det(PAp- l ) = det(A). 

Group Project: Properties of the Adjoint 

(a) Suppose that A is an n X n matrix and rk(A) < n - 1. Show that adj(A) 
is the matrix of all zeros. (Hint: The rank of any submatrix of A is also 
less than n - 1.) 

(b) If A is an n X n matrix and rk(A) = n - 1, show that rk(adj(A)) = 1. 

(c) Show that if A is an n X n matrix, then det(adj(A)) = det(A)"-I. 

(d) Show that for any n X n matrix A, adj(A)' = adj(At). 

(e) Show that for any n X n matrix A, adj(adj(A)) = det(A)"-2 A. 

Group Project: Partitioned Matrices 

If A is an n X m matrix, it can be partitioned into smaller matrices. For 
example, if 1 ~ r < n and if 1 ~ s < m, then A could be viewed as a 2 X 2 
partitioned matrix with upper left entry an r X s matrix, upper right entry 
an r X (m - s) matrix, lower left entry an (n - r) X s matrix, and lower 
right entry an (n - r) X (m - s) matrix. Of course, A could be partitioned 
in many other ways too. 

(a) Make the notion of a partitioned matrix precise. Then make sure that 
your definition of partitioned is set up so that if all dimensions of the entry 
matrices are correct, then the product of two partitioned matrices can be 
found by using normal matrix multiplication applied to the blocks. Illustrate 
this process of "block multiplication" with some examples. 
(b) Show that if A is an n X n partitioned matrix that is block upper 
triangular with square blocks on the diagonal, then det(A) is the product of 
the determinants of the diagonal blocks of A. 

4.5 The LU-Decomposition 

When applied to specific examples, the fact that row operations arise as 
multiplication by elementary matrices can give quite a bit of information. 
For example, suppose that A is an n X n matrix. Suppose also that Gaussian 
elimination row-reduces A to an upper triangular matrix U and that no 
row interchanges were used during the elimination process. Then we can 
express this upper triangular matrix U as U = E1E2 '" EsA, where the Ej 

are lower triangular elementary matrices. (The Ej are lower triangular since 
the only row operations used in reducing to U involving adding a multiple 
of a row to a row below it.) Since EI E2 ... Es is lower triangular, its inverse 
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is also. If we denote (E1E2 ' •• Es)-l = L, we find A = LU, which shows that 
A can be expressed as a lower triangular matrix times an upper triangular 
matrix. 

As an example, we consider the matrix 

A~ 0 2 D 3 
2 

The sequence of row operations 

0 2 

D~G 
2 

D~G 
2 

D 3 1 1 
2 2 0 

row-reduces A to an upper triangular matrix. This sequence of operations 
corresponds to multiplying A by the elementary matrices 

G 
0 

D ( -~ 0 

D 1 and 1 
-2 0 

This shows 

U= (~ 
2 

~) (~ 
0 

D (-~ 
0 

DO 
2 !) 1 1 1 3 

0 -2 0 2 

( -l 0 

DO 
2 !) = LA. = 1 3 

-2 2 

Inverting the lower triangular matrix L obtains the LU-decomposition for 
the original matrix A as A = rl U, that is 

o 
1 
2 

2 
1 
o 

In this process, the matrix L can a bit messy to calculate. However, 
rl is readily found without calculating L first. The jith entry of rl is 
equal to - m(j, i), where m(j, i) is the "multiplier" used to zero out the jith 
entry during the row operations. For example, in our calculation above, we 
multiplied our first row by -1 and added it to the second to eliminate the 
2,1 entry, and then we multiplied the second row by - 2 and added it to the 
third in order to eliminate the 3,2 entry. Observe that the 2,1 entry of rl is 
1 and the 3,2 entry ri is 2. You are asked to verify this more generally in 
the second group project at the end of this section. 

We restate the preceding observation as the next theorem. 
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Theorem 19. Suppose that Gaussian elimination transforms an n X 
n matrix A into an upper triangular matrix without using any row 
interchanges. Then A can be written as a product A = LU, where L is 
lower triangular and U is upper triangular. 

Permutation Matrices 
The LV -decomposition just described is useful for a variety of reasons. 
Unfortunately, it is not always possible to row-reduce an arbitrary matrix 
to an upper triangular matrix without using row interchanges. In order to 
obtain LV-decompositions in the general case, we need to use permutation 
matrices. 

Definition. A permutation matrix is a matrix obtained from the identity 
matrix by a sequence of row interchanges. 

For example, the matrices 

o 
o 
1 ~) and P2 = (~ 

1 
o 
o D 

are each 3 X 3 permutation matrices. PI is obtained from 13 by one row 
interchange (the' second and third rows), and P2 is obtained from 13 by two 
row interchanges (an interchange of the first and second rows followed by 
an interchange of the second and third rows). The next fact is analogous to 
Theorem 10 established for elementary matrices. This can be easily checked 
with a few calculations. 

Theorem 20. Suppose that P is an n X n permutation matrix and A 
is an n X m matrix. Then the matrix PA is the matrix obtained from A 
by applying the row interchanges that were used to obtain P from In . 

The PA = LU Decomposition 
Returning to our problem of a finding general LV-decompositions, we note 
that if A is an n X n matrix, then Gaussian elimination shows that A can 
be row-reduced to an upper triangular matrix V. However, one may have 
to use row interchanges in the process. Suppose that no row interchanges 
were required until the beginning of the ith stage of the reduction. In this 
case, one does not have a nonzero leading entry in the ith row of the matrix 
at that stage and a row below the ith row must be interchanged with the 
ith. Now assume this row interchange had been accomplished before the 
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Gaussian elimination ever started. Then at each reduction stage prior to 
the ith, the matrices would look the same, except that the ith row would 
already have been exchanged with the selected row below. When we reach 
the ith stage we can continue the elimination without an interchange since 
the newly selected ith row has a nonzero lead coefficient. 

Here is an example to illustrate the point just made. Consider 

A = (~ 
2 

o 
3 

We are forced to perform a row interchange in the second stage of our 
Gaussian elimination, as shown next. 

A = (~ 
2 

o 
3 

2 
o 
1 

2 

1 
o ~) 

Suppose, however, we premultiplied A by the permutation matrix that inter­
changes the second and third rows, and then applied Gaussian elimination. 
We would find 

PA = (~ 
0 

DG 
2 3) (1 

2 

D~G 
2 

~) . 
0 0 2 = 1 3 1 
1 3 4 0 0 0 

This process shows that PA does have an LV-decomposition (even though 
A does not). In fact, we can write 

PA = (i 0 

~) (~ 
2 

~) = LV. 1 1 
0 0 

(Here, the matrix V is the result of our elimination and the matrix L comes 
from the inverse of the row operation used in the reduction.) 

These ideas show that if one correctly exchanges rows in a matrix A 
before Gaussian elimination is applied, it is possible to start with a matrix 
that can be reduced to upper triangular form without row exchanges. The 
matrix resulting from the initial row exchanges will have the form PA, and 
the matrix PA will have an LV-decomposition. This is summarized in the 
next theorem. 

Theorem 21. If A is a n X n matrix, then there is a permutation 
matrix P, an upper triangular matrix U, and a lower triangular 
matrix L such that PA = LU. 



4.5. THE LU-DECOMPOSmON • 151 

Example. Suppose that we desired to find the PA = LU representation 
where 

4 
2 
6 
o 

2 
1 
3 
1 

The first two stages of row operations on A give 

4 
-2 
-2 

o 

2 
-1 
-1 

1 

4 
-2 

o 
o 

2 
-1 

o 
1 

We thus need to interchange the third and fourth rows in order to obtain 
an upper triangular matrix. If we set 

p~ G 
0 0 

D' 
1 0 
0 0 
0 1 

then we row-reduce 

PA~ G 
4 2 

D 
2 1 
0 1 
6 3 

to find its LU -decomposition. In order to keep track of the lower diagonal 
matrix that arises in our row reduction, we apply our elementary operations 
to the identity matrix augmented by the matrix PA as follows: 

u 0 0 0 1 4 2 n 1 0 0 1 2 1 
0 1 0 0 0 1 
0 0 1 2 6 3 

( 
1 000 1 4 2 

-~ ) -1 1 0 0 0 -2 -1 
f--> 

0 0 0 0 1 0 1 
-2 0 0 1 0 -2 -1 -5 

~( 
1 0 0 0 1 4 2 

-~ ) -1 1 0 0 0 -2 -1 
0 0 1 0 0 0 1 

-1 -1 0 1 0 0 0 -2 
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This calculation shows that r 1 (PA) = V, where 

L-' ~ ( -i 0 0 

D U~ 0 4 2 

-~) 1 0 and 
-2 -1 

0 1 0 1 
-1 -1 0 0 0 -2 

One readily computes that 

L~ G 
0 0 

D 
1 0 
0 1 
1 0 

We have found all the matrices in the expression PA = LV. (Also note 
that the off-diagonal entries of L can be found using the remarks before 
Theorem 19. The three row operations were subtracting the first row from 
the second row, subtracting twice the first row from the fourth row, and 
subtracting the second row from the fourth row. Therefore the off-diagonal 
entries of L are 1, 2, and 1.) 

A Tridiagonal Matrix, Its LU-Decomposltlon, 
and Its Determinant 
We next consider a 5 X 5 tridiagonal matrix. These special types of matrices 
are important in the study of some difference equations that are discrete ver-
sions of differential equations. (We will investigate one in detail in Chap. 7.) 
For now we will determine its LV-decomposition, and from that its deter-
minant. 

We consider 

( 2 

-1 0 0 

-~) -1 2 -1 0 

T~ ~ -1 2 -1 
0 -1 2 
0 0 -1 

The process of reducing T to an upper triangular matrix looks as follows: 

C~ 
-1 0 0 

-~) (~ 
-1 0 0 

-!) 
2 -1 0 ~ -1 0 2 

T= -1 2 -1 1-+ -1 2 -1 
0 -1 2 0 -1 2 
0 0 -1 0 0 -1 

~ (~ 
-1 0 0 

-~) (1 
-1 0 0 

-;] 
2 -1 0 ~ -1 0 
2 2 

0 4 -1 1-+ 0 4 -1 :3 :3 
0 -1 2 0 0 5 

;; 
0 0 -1 0 0 -1 
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~ (! 
-1 0 0 

~) ~ -1 0 2 
0 4 -1 3 
0 0 '5 -1 4 
0 0 0 6 

"5 

In the sequence of operations, we multiplied the first row by ~ and added 
it to the second, multiplied the second row by ~ and added it to the third, 
multiplied the third row by ~ and added it to the fourth, and multiplied 
the fourth row by ~ and added it to the fifth. These operations describe 
r 1, and remembering to invert them in obtaining L shows that T has the 
LU -decomposition 

o 
1 
2 
3 
o 
o 

o 
o 
1 

-~ 
4 
o 

o 
o 
o 
1 

-1 
5 

-1 
~ 
2 

0 

0 
0 

0 0 

~) ~LU -1 0 
4 -1 -3 
0 2- -1 4 

0 0 6 
"5 

We observe that that both Land U are bidiagonal matrices. Furthermore, 
since the determinant of T is the product of the determinants of Land U, 
we find that det( T) = 6. The ideas behind this calculation are more general, 
and you are asked to think about them in the first group project in the next 
problems. 

l. Find an LU-decomposition for the following matrices. What is the deter-
minant in each case? 

(a) (; ~) (b) (~ 
1 

!) (c) (i 2 

!) 1 0 
1 1 

2_ Find an LU-decomposition for the following matrices. What is the deter-
minant in each case? 

(a) (~ !) ~) G 1 

D G 
2 

D 0 (c) 2 
1 1 

3. Find a FA = LU-decomposition where A is 

(a) (~ ~) ~) G 1 

D G 
1 

D 1 (c) 0 
1 0 

4. Find a FA = LU-decomposition where A is 

(a) (~ !) ~) G 1 

D (e) G 1 

D 0 1 
1 2 



154 • 4. BASIC MATRIX ALGEBRA 

Group Project: More Tridiagonal Matrices 

(a) Generalize the ideas in the last part of Sec. 4.5 above to find the LU­
decomposition and determinant of a 5 X 5 tridiagonal matrix whose entries 
along each diagonal are the same. 
(b) Suppose T is a tridiagonal matrix such as just considered in part (a). 
Use the LU-decomposition for T to give a speedy solution to TX = v for 
any column of five entries v. 
(c) Many calculators and computers have the ability to find LU-decomposi­
tions for you. Try both parts (a) and (b) for a tridiagonal 8 X 8 matrix using 
your calculator or computer. 

Group Project: Multipliers and the LU-Decomposition 

In this project you will explain why the remark above Theorem 19 is true. 
Suppose that A is an n X m matrix and suppose that E n,n-1 ••• E2,lA = U 
represents a sequence of elementary row operations. Here, each Ei,j is the 
elementary matrix representing the row operation that adds - mij' Cith row) 
to the jth row in order to eliminate the ijth entry. 

(a) Show that one can represent 

(l 0 

D Ei,j = -mij 

0 

and that 

(l 0 

D E- 1 = 
mij i,j 

0 

(b) Now show that 

U: 
0 

~) Ez,-1 ••• Ez,-1 = 
,1 ,1 

mn1 m n .n -1 

In other words, when no row exchanges are required, one obtains A = LU, 
where L is a lower triangular matrix whose entries below the diagonal are 
simply the "multipliers" used in the Gaussian elimination. 



CHAPTER 

KEY CONCEPTS 
OF 
ALGEBRA IN Rn 

5.1 inear Combinations and Subspaces -
In this chapter we introduce the basic concepts of linear algebra. These 
ideas, namely linear independence, span, basis, and dimension, are crucial 
to all applications of this subject. 

Equations for Studying a Network Flow Problem 
In many problems where the methods of linear algebra are useful, it is 
necessary to analyze a large number of linear equations or conditions. In 
fact, at times so many equations arise that the computations look hopeless. 
Of course, one can use computers to study such problems, but again a 
large batch of equations can consume programming time. For this reason it 
becomes crucial to eliminate as many equations as possible that carry redun­
dant information about the problem. The idea of redundancy of equations 
is made precise using the notion of a linear combination. 
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B 400 

C E 

D 350 

Rg. 5.1. A freeway system with seven sections between A and E 

We illustrate the idea of linear combinations by considering a network 
flow problem and the various equations it gives. In Fig. 5.1 we have a 
graph with five vertices A, B, C, D, and E. We shall suppose that the graph 
represents possible freeway routes from point A to point E through a city. 
We shall assume that each segment in the graph has the carrying capacity 
indicated in cars per minute. Our problem is to determine the total carrying 
capacity between A and E of the freeway system (we will only consider one 
direction). We should also determine what the rate of flow should be along 
each freeway section in order to obtain the maximum capacity, which is 
important if we want to regulate traffic during peak hours. 

In order to study this freeway network, we will work with seven vari­
ables, one to represent the traffic flow along each of the seven freeway 

~ 

segments. We let XAB denote the flow along the segment AB, XAC denote 
the flow along the segment AC, and so forth. Then, since the total flow, 
denoted f, is given by the total number of cars leaving A and arriving at 
E, we have f = X AB + X AD and f = X BE + XCE + XDE. We write these first 
two equations as 

X AB + XAD - f = 0, 

X BE + XCE + X DE - f = 0. 

(1) 

(2) 

Also, since the flow into B equals the flow out of B, and similarly for C and 
D, we obtain 

XBC + XBE - X AB = 0, 

Xnc + X DE - X AD = 0, 

X BC + XDC - X CE = 0. 

(3) 

(4) 

(5) 

liowever, these are not all the possible equations. For example, we also 
have 

X AB + Xnc + X DE - f = 0, (6) 
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since the total flow equals the flow along An plus the total along both DC 
~ 

and DE. Likewise, the reader can check that 

X BE + X BC + X DC + X DE - f = 0, 

X AD + X BC + X BE - f = 0. 

(7) 

(8) 

At this point we have produced eight equations among our seven 
variables. We also have the seven inequalities XAB ::=:; 625, X AD ::=:; 800, 
X BE ::=:; 400, X BC ::=:; 300, Xoc ::=:; 225, XDE ::=:; 350, and XCE ::=:; 475. Which 
equations are crucial and which can be ignored? If we look carefully, we 
can see that one equation for each vertex of our graph suffices in the study 
of this network. For example, the first· five equations given can be used to 
derive the last three. To see this, first note that adding equations (1) and (4) 
gives (6) 

° = (XAB + X AD - f) + (XDC + X DE - X AD) 

= XAB + Xoc + XDE - f 

Similarly, adding equations (1) and (3) gives (8), and adding equations (2) 
and (5) gives (7). 

Our expressions show that these three equations are linear combinations 
of the first five. This means that our original five equations o::mtain the same 
amount of information as all eight. Consequently, any problem involving 
our freeway network can be solved using the information in five equations 
only. Note also that the information in the third, fourth, and fifth equations 
can be obtained from the first, second, sixth, seventh, and eighth equations, 
by reversing the calculations just given. This observation will be used later 
in solving our freeway optimization question. 

The Maximal Freeway Flow 

Let's return to the question of finding the optimal traffic flow in our free­
way network. The reader may recognize that the problem is one of linear 
optimization with constraints. However, instead of applying the simplex 
algorithm (see Sec. 3.5), we will analyze the situation directly, and our so­
lution will lead us to some new ideas. Since f = XAB + X AD and we have 
XAB ::=:; 625 and XAD ::=:; 800, we see that f ::=:; 625 + 800 = 1425. Similarly, 
as f = XBE + XCE + X DE and as X BE ::=:; 400, XDE ::=:; 350, and XCE ::=:; 475, 
we know that f ::=:; 400 + 350 + 475 = 1225. At this point, we know the 
flow is at most 1225 cars per minute. But can this be the maximal flow? 
To determine this we must use the information contained in five equations. 
Instead of using the third, fourth, and fifth equations in our list, we shall 
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utilize the last three, 

f = X AB + X DC + X DE , 

f = X BE + X BC + X DC + X DE , 

f = XAD + X BC + X BE , 

since these three equations determin~ values for f, the quantity we want 
to maximize. These equations, together with our inequalities XAB :5 625, 
X AD :5 800, X BE :5 400, XBc :5 300, X DC :5 225, XDE :5 350, and XCE :5 475 
show that 

f :5 625 + 225 + 350 = 1200, 

f :5 400 + 300 + 225 + 350 = 1275, 

f :5 800 + 300 + 400 = 1500. 

We now see that a maximum of 1200 cars per minute can flow through our 
freeway network. Since we have utilized a full set equations in this analysis, 
this is the maximal flow. 

We can find the flows through each freeway section during maximal flow 
by first using the flow values given by the fifth equation when f = 1200. 
This shows X AB = 625, X DC = 225, and X DE = 350. The fourth equation 
now shows that X AD = X DC + X DE = 575. To find the values of X BE , X BC , 

and X CE , we can apply the second, third, and fifth equations together with 
values just obtained to get the system 

X BE + XBC = 625 

-XBC + XCE = 225 

X BE + XCE = 1200 - 350 = 850. 

The third equation in this system can be obtained by adding the first 
two, that is, it is a linear combination of them. This means that although 
our optimal flow is 1200 for the entire network, this flow does not have 
a unique value for each variable. For example, if we allow XBE = 400 (its 
maximal capacity), then we find X BC = 225 and XCE = 450, all of which 
are allowable values. This gives a set of flow values that maximize the total 
freeway network flow. On the other hand, if we set XCE = 475 (its maximal 
capacity), then we find X BC = 250 and X BE = 375, again all of which 
are allowable values. This gives another set of flow values that maximize 
the total freeway network flow. In general, any solution to the first two 
equations of our latter system that satisfy our variable constraints will give 
a maximal set of flow values. For an extension of the techniques initiated 
in this problem, see the group project at the end of this section. 

In the preceding analysiS, we inspected the network to develop equa­
tions and inequalities with which we experimented until we found the pos­
sible solutions. However, our procedure was not efficiently organized, and 
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at times the reader may have wondered why we used the equations we did. 
In this chapter we will study two basic notions from linear algebra, namely 
linear combinations and linear independence, which help clarify how to 
solve efficiently problems like our freeway flow. Also, as you can imagine, 
for larger networks (imagine studying the Los Angeles freeway system!) the 
situation is similar but becomes incredibly messy. So it becomes important 
to utilize matrices to facilitate computation. The dependence of equations 
on other equations can be calculated using row operations. 

Linear Combinations of Vectors 
In this section, n will be a fixed natural number. An element of R n will 
be called an n -vector. However, in most discussions, the n is unimportant, 
so we will usually refer to n-vectors simply as vectors. It proves to be 
convenient to represent elements of R n as columns, that is, as column 
vectors. This is the notation we adopted in Chap. 2 when we discussed 
geometric vectors. We remarked at that time that there were good reasons 
for the column notation. These reasons will unfold in this chapter. 

We begin with the definition of a linear combination of a collection of 
vectors. 

Definition. Suppose VI, iJ.!, ... , Vn are vectors and rl, r2, ... , rn are real 
numbers. The vector 

is called a linear combination of ~, iJ.!, ... , vn. 

For example, the equation 

shows that the vector 

is a linear combination of 

(D, (D, and m 
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We also note that (5 = ODt + O~ + ... + OVn, which means the zero vector 
is always a linear combination of any nonempty set of vectors. 

The Span 
It is important to study the set of all linear combinations of a collection of 
vectors h Dt + r2~ + ... + rn vn I rl, r2, ... ,rn E R}. It is called the span, 
as is explained next. 

Definition. The set of all linear combinations of Dt, ~, ... , vn is called the 
span of Dt,~, ... , vn and is denoted by span{Dt,~, ... , Vn}. 

The span of any set of nonzero vectors, span{Dt,~, ... , Vn}, is always an 
infinite collection of vectors. Visually, the span of a single nonzero vector 
in R3 is a line, since it is the set of all multiples of that vector. The span of 
two vectors in R3 that point in different directions is the plane that contains 
them. 

We note that the vector 

does not lie in the span of 

Dt = (~) and ~ = (~) , 
because any linear combination of these two vectors cannot have a nonzero 
third entry. Another way to see this is to try to solve the vector equation 

r(D+sG)~m· 
We obtain the inconsistent system 

The span of the two vectors, span{Dt, ~}, is the collection of all vectors 
of the form 

r m +sG) where r,sER. 
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This span can be expressed in terms of the two parameters rand s as 

{ (2r + 3S) } 
r ~ 3s I r, S E R . 

Testing for the Span 
In the previous example we saw that the nonexistence of a linear combina­
tion was a consequence of the inconsistency of a system of linear equations. 
More generally, the question of determining if an n-vector is a linear com­
bination of a set of other n-vectors can always be reduced to the problem 
of determining if a system of equations has a solution. 

For example, suppose we need to know if the vectors 

are linear combinations of the vectors 

We consider the two systems of equations 

(~ 
1 
1 
1 DG) m and (~ 

1 
1 
1 

Observe that the columns of the coefficient matrices are the vectors ~, ~, 
and ~. Recall from Sec. 4.1 that in any matrix product AB the columns of 
the product are linear combinations of the columns of A. This means that 
~ is a linear combination of ~, ~, and ~ if the first system has a solution, 
and i1J;. is such if the second system has a solution. The first system has the 
solution X = 1, Y = 1, Z = 0, while the second system has no solutions. 
Hence we can write Wt = 1· VI + 1 . ~ + O~. 

We record the idea of what we just did in the next theorem. 

Theorem 22. Suppose {it~, ... , vm} is a set of n-vectors. Let A be 
the n X m matrix A = (VI ~ • .. vm ) whose columns are the VI, 
and let X denote a column of m variables. Then if; E Rn is a linear 
combination of VI, ~, ... , Vm if and only if the equation AX = w has 
a solution. 
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Proof The equation AX = w is 

(-,VI 

which has a solution if and only if 

Thus, the existence of a solution to AX = w is equivalent to being able to 
express was a linear combination of Vt, v.z, ... , vm. 0 

The span of a set of vectors can be found' using Gaussian elimination. If 
Vt, v.z, and ti.3 are the three vectors considered above, then the theorem says 
that 

1 
1 
1 

has a solution precisely when 

(:) E span{i\, ~, ~}. 

Row-reducing the augmented matrix gives 

(~ ~ ~ :) 1--+ (~ - ~ ~ b ~ 3a) 1--+ (~ ~ - ~ 
2 1 3 c 0 -1 1 c - 2a 0 0 0 

a ) -lb + la 2 2 • 
c-1b-1a 2 2 

We find that our vector lies in the span whenever 2c = a + b. In other 
words, span{Vt, v.z, ti.3} = {(a, b, ~(a + b) I a, b E R}. 

Subs paces of Rn 
Subsets of vectors that arise as the span of a collection of vectors are ex­
tremely important in linear algebra. They are called subspaces. 

Deftnition. A subspace of Rn is a subset V ~ Rn of n-vectors such that 

CD 0 E V; 
(ii) If v E V and a E R, then av E V; 

(iii) If Vt, v.z E V, then (Vt + v.z) E V. 
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Equivalently, a subspace of R n is a nonempty set of n-vectors that is closed 
under the operations of scalar multiplication and addition. 

Rn is a subspace of itself as is the subset {O} consisting of a single vector. 
Also, the xy-plane in R3, namely {(x, y, 0) I x, y E R}, is a subspace of R3 
because scalar multiples and sums of vectors in the .xy-plane still lie in the 
xy-plane. The xy-plane is the span of the vectors (1,0,0) and (0, 1,0). The 
same reasoning applies to show that the xz-plane and the yz-plane are 
subspaces of R3. 

At times we will use the phrase "vector space" to mean "subspace of 
R"" (some n). Often we will not specify the integer n, but of course this 
will become necessary before we do any concrete calculations. There is a 
more general notion of a vector space, which includes the subs paces of Rn. 
In this text we will always work with subspaces of R n , although the results 
we state for vector spaces will also be true in the more general situation. 
We shall use capitals such as V, w, ... to denote vector spaces. 

The span of any set of vectors in R" is a subspace of R". Whenever 
V = span{vj, ih, ... , vm}, we say that Vj, ih, ... , vm span V, or we say that 
{Vj, ih, ... , Vm} is a spanning set for V. 

Theorem 23. The span oj any set oJvectors, span{it ~, ... , vm }, is a 
subspace. 

Proof First note that 6' = O~ + Oih + ... + Ovm, so 6'lies in this set. Consider a 
vector iJJ = aj VI + a2 ih + ... + am vm in the span. Then for any real number b 
we have biJJ = b(ajvj + a2ih + ... + amvm) = baj~ + ba2ih + ... + bamvm, 
which is also a linear combination of ~,iS, ... , Vm. This shows closure 
under scalar multiplication. Next consider ~ = ajvj + a2ih + '" + amvm 
'and Wz = ~Vj + ~ih + ... + bmvm. Then, as ~ + Wz = Caj + ~)~ + Ca2 + 
~)ih + ... + Cam + bm)vm, we see that ~ + Wz is also a linear combination 
of Vj, ih, ... , Vm. This shows that span{~, ih, ... , Vm} is a vector space. 0 

Theorem 5 said that the set of solutions to a homogeneous system of 
equations is closed under vector addition and scalar multiplication. This 
means that such solutions form a subspace. 

Corollary. The set oj solutions to a system oj homogeneous equations 
is a subspace. 

For example, 
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Problems 

is a vector space. One way to see this is to note that by back-substitution 
W is the set of solutions to 

x - 4Z = 0 
Y+ 2Z = o. 

The corollary shows that the subset of all vectors (x, y, z) E R3 for 
which x + y - z = 0 is a vector space since it is the set of solutions to 
a homogeneous system. However, the collection of all (x,y, z) for which 
x + y - z = 1 is not a vector space. Note for example that it does not 
contain O. 

Suppose that V ~ Rl is a subspace and rEV is nonzero. Then 
kr E V for all real numbers k E R. But kr can be any real number, so 
V = R follows. This shows that the only subspaces of Rare {o} and R. A 
subspace of R2 is either {(O,O)}, a line through (0,0), or all of R2. To see 
this, note that all scalar multiples of a nonzero vector in R2 form the line 
through (0,0) and that vector, and the set of all linear combinations of any 
two noncollinear vectors in R2 is all of R2. By similar reasoning, a vector 
subspace of R3 must be {CO, 0, O)}, a line through (0,0,0), a plane through 
(0,0,0), or all of R3. 

1. Can you express the linear equation 3X + 4 Y - 2Z + W = 0 using a 
linear combination of 2X + Y - 2Z + 2 W = 0, 3 Y + 2Z - W = 0, and 
2X + W = O? 

2. Determine if the vector 

(~) 
is a linear combination of the following: 

(a) G).m.m 
~) G)' m 
~ (!).(~).(!).(!) 

3. Find an expression for the span of the following vectors using as few 
parameters as possible. 

(a) G)' (D. G) ~) (D. G)' m 
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(e) G} m 
4. Which of the following sets of vectors are subspaces of R3? Give reasons. 

(a) {O, 1, 1)} 

(b) {CO, 0, 0), 0,1, 1), (2,2,2), ... } 

(c) {r(l, 1, 1) + s(2, 4, 5) I r, s E R} 

(d) {O, 1, 1) + s(2, 4, 5) Is E R} 

(e) {(t, 1 - t,2t) I t E R} 

(f) {(t, t,O) I t E R} 

(g) {(x, y, z) I x, y, z E R and x - z = O} 

(h) {(x,y, z) I x,y, z E R and x - z = I} 

CO {(u, v, w) E R3 I UVW = O} 

(j) {(u, v, w) E R3 I u2 + v2 + w2 = O} 

5. Show that if a vector v is a linear combination of the vectors ~, iJ.!, ... , vn , 

then span{v, Vl, iJ.!, ... , Vn} = span{~, iJ.!, ... , Vn}. 
6. Find a system of equations whose solutions are the span of 

7. Suppose that V and Ware subspaces of Rn. Under what conditions is 
V n W a subspace? How about V U W? 

8. Two solutions to the freeway optimization were found in the Maximal 
Freeway Flow subsection. There are others. Find a description of all of 
them. 

Group Project: Subspace Properties 

These two problems deal with sums of subspaces. If V and Ware subspaces 
of Rn , then we define V + W = {v + W I v E V, w E W}. 

1. Suppose that V and Ware subspaces of Rn. 

(a) Show that V + W is a subspace of Rn. 

(b) Suppose that V n W = {6}. Show that every it E V + W can be 
expressed uniquely in the form it = v + W, where v E V and 
wE W. When this occurs, we say that V and Ware independent 
subs paces and V + W is a direct sum. In this case we denote V + W 
by VEB W. 
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2. Suppose that V], V2, and Ware subspaces of Rn . 

(a) Show that (fA n W) + (V2 n W) ~ (fA + V2) n w. 
(b) Give an example in R2 that shows equality need not hold in 2(a). 

Group Project: The Max Flow-Min Cut Theorem 
and Integer Programming 

In the traffic flow problem considered in this section, we found that the 
maximal flow was determined by a single equation (6). The five inequalities 
for f in this example were each obtained by totaling the maxima) flow 
across a cut. Intuitively, a cut is obtained by cutting the graph into two 
pieces with a pair of scissors, where only the edges, not vertices, are cut, 
and where the beginning and ending vertices lie on different parts. 

Suppose that one is considering a flow problem similar to the traffic flow 
problem. These problems are often called integer programming problems. 

(a) Consider some cut of your network. Explain why the total flow of the 
network cannot exceed the sum of the capacities of the cut edges. 
(b) Next explain why the maximal flow is the minimal sum of the capacities 
of cut edges among all possible cuts. This is called the max flow-min cut 
theorem. Hint: If you have a maximal flow, consider cuts along edges where 
the flow attains the capacity of the cut. 
(c) Use the max flow-min cut theorem to determine the maximal flow of 
the following expansion of our earlier freeway network with capacities as 
indicated. 

8 

A 

5.2 Linear Independence -

450 

The Stoichiometry and the Kinetic Description of the 
Formation of Hydrogen Bromide 

E 

In the study of chemical reactions, stoichiometry is the mathematics of keep­
ing track of the chemical components of the system. Many chemical reac­
tions are not single-step processes, but are instead a multistage process with 
many interrelated reactions occurring Simultaneously. Even if the reactants 
and products of a reaction are completely understood, it is often quite dif-
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ficult to determine the exact mechanism of the reaction, and many theories 
may be consistent with experimental observation. An important problem 
for chemists is to determine if a reaction could be the result of a proposed 
collection of intermediate reactions, and if so to determine how the inter­
mediate reactions depend on one another. The dependence of component 
reactions in a reaction is important in understanding overall reaction mech­
anisms and rates. Using stoichiometry, we can algebraically analyze the 
dependence of reactions, associating each component reaction with a lin­
ear equation in which the variables represent a chemical species present in 
the system. The dependency of the reactions is reflected in the dependency 
of the associated linear equations. 

We illustrate this by considering what is believed to be the kinetic de­
scription of the formation of hydrogen bromide. The overall reaction is that 
of hydrogen, Hz, and bromine, Brz, combining to form hydrogen bromide, 
HBr, which is indicated by the expression 

Hz + Brz -4 2HBr. 

The 2 on the right was added to balance the equation by indicating that two 
hydrogen bromide molecules are produced from each pair of hydrogen and 
bromine molecules. Of course, one could have written 2Hz + 2Brz -4 4HBr, 
or some other multiple of this equation, but the convention is to leave the 
expression in the Simplest form possible. 

It turns out, however, that in the formation of hydrogen bromide in this 
reaction, a number of other reactions actually take place, the net result of 
which is the above equation. This is called the reaction mechanism. Current 
theory suggests that the following reactions take place Simultaneously in a 
reaction forming hydrogen bromide. l 

Brz -42Br 

Hz + Br -4 HBr + H 

H + Brz -4 HBr + Br 

2Br -4 Brz 

HBr + H -4 Hz + Br 

Note that the second and third reactions in this list produce HBr and that the 
fourth and fifth reactions are the reverse reactions of the first and second 
reactions. 

We now assume that all five of these reactions are occurring simulta­
neously (with presumably different rates). Our task is to understand if and 
how the desired reaction Hz + Brz -4 2HBr could arise as a result of the 

IThis mechanism has been suggested to explain the experimental observation due to Boden­
stein and lind [Z. Phys. Chern. 57, 168 (1906)] that the rate of this reaction is proportional to 
the concentration of H2 and to the square root of the concentration of Br2. 
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five reactions. In order to understand this, we consider a system of linear 
equations. We denote the quantity of each chemical species by variables, 
setting Xl = Brz, Xz = Br, X3 = Hz, X4 = H, Xs = HBr. Then the original 
reaction Hz + Br2 -> 2HBr is represented by the equation Xl + X3 = 2Xs. 
Our reaction mechanism leads to five additional equations, which we write 
as the homogeneous system 

-Xl + Xz 

-Xl + X2 

Xl - 2Xz 

=0 

-X4+Xs =O 

=0 

(1) 

(2) 

(3) 

(4) 

(5) 

where, according to convention, the reactants have negative coefficients, 
and the products' coefficients are positive. 

The matrix on the left below is the coefficient matrix of this system with 
a row on the bottom added to represent the equation, - Xl - X3 + 2Xs = 0, 
of our overall reaction. Gaussian elimination applied to this matrix gives 

-1 2 0 0 0 -1 2 0 0 0 
0 -1 -1 1 1 0 -1 -1 1 1 

-1 1 0 -1 1 0 0 1 -2 0 
1---+ 

1 -2 0 0 0 0 0 0 0 0 
0 1 1 -1 -1 0 0 0 0 0 

~1 0 -1 0 2 0 0 0 0 0 

Since we have obtained a rank-three matrix, this shows that the three equa-
tions 

-Xl + 2X2 =0 (1) 

-X2 -X3+ X4+Xs=O (2) 

X3 + -2X4 =0 (6) 

are independent and that the overall reaction equation, - Xl - X3 + 2Xs = 0, 
lies in their span. Note that equations (1) and (2) are our original reaction 
equations. Equation (6) was obtained in our row reduction by subtracting 
equations (1) and (2) from (3)' but for reasons that will be clear momentarily, 
we will view it as the sum of equations (3), (4), and (5). 

We may now analyze our overall reaction, H2 + Br2 -> 2HBr. Its equation, 
- Xl - X3 + 2Xs = 0, can be obtained by adding equations (1), (2) twice, 
and (6) as 

o = (-Xl + 2X2) + 2( - X2 - X3 + X4 + Xs) + (X3 - 2X4) 

= -Xl - X3 + 2Xs· 
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In particular, this shows that the overall reaction can arise as the outcome 
of the five reactions listed in the mechanism. Since equation (6) is the sum 
of equations (3), (4), and (5), we see that our overall reaction equation can 
be expressed as 

0= (-Xl + 2X2) + 2(-X2 - X3 + Xi + Xs) 

+ ( - Xl + X2 - Xi + Xs) + (Xl - 2X2) + (X2 + X3 - Xi - X5) 

= -Xl - X3 + 2X5· 

This expression is a sum of positive mUltiples of each component equa­
tion, and it therefore tells us how the reactions in the mechanism could 
combine to produce the overall reaction. We see that we can view the 
overall reaction as the following sequence of events: 

(a) a bromine molecule disassociates: Br2 -+ 2Brj 
(b) add two hydrogen molecules: 2H2 + 2Br -+ 2HBr + 2Hj 
(c) a free hydrogen finds a second bromine molecule: H + Br2 -+ HBr + Brj 
(d) a second free hydrogen reacts with a hydrogen bromide molecule: 

HBr + H -+ H2 + Br, returning a hydrogen molecule and a free brominej 
(e) two bromine atoms find each other: 2Br -+ Br2, returning another 

bromine molecule to the system. 

Note that although two H2 molecules and two Br2 molecules participated 
in the reaction mechanism, the overall effect was simply H2 + Br2 -+ 2HBr. 

Subspaces Associated with Matrices 
Determining the span of the rows of the matrix considered in our analysis of 
the hydrogen bromide stoichiometry was crucial to explaining the reaction 
mechanism. We need terminology for such spans. 

Definition. Suppose that A is an mX n matrix. The subspace of an spanned 
by the rows of A is called the row space of A. The subspace of am spanned 
by the columns of A is called the column space of A. The subspace of an 
of all solutions to AX = 0 is called the null space of A. The row space and 
column space of A are abbreviated as row(A) and col(A). We denote the 
null space by kerCA), where "ker" is short for "kernel." 

Determining the Row Space 
For an arbitrary matrix A it is usually quite difficult to determine any prop­
erties of its row space just by looking at the matrix. In order to find the set 
of solutions to a homogeneous system of equations (which is finding the 
null space), one can apply Gaussian elimination to obtain a row equivalent 
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(reduced), row-echelon matrix'. In order to study the row space of a matrix, 
one can again use Gaussian elimination. 

Recall from Sec. 4.1 that the rows of a matrix product PB are always linear 
combinations of the rows of B. This means that any linear combinations of 
the rows of PB must be a linear combination of the rows of B. In other 
words, the row space of PB is contained in the row space of B. Furthermore, 
if P is invertible, then as B = P- 1(PB), this same observation shows that 
the row space of B is contained in the row space of PB. This shows that 
whenever P is invertible, both Band PB have the same row space. 

This observation is extremely useful. Recall that all row operations are 
given by multiplication by an invertible matrix. So if A and B are row 
equivalent matrices, then A and B have the same row space. This is restated 
as the next theorem. 

Theorem 24. Suppose that A and B are row equivalent matrices. 
Then row(A) = row(B). 

For example, the row reduction in our analysis in Sec. 5.1 gives 

c~ 
2 ° ° 

J) (~ 
-2 ° ° -~) -1 -1 1 1 1 -1 

-1 1 ° -1 1-+ ° 1 -2 
1 -2 0 0 0 0 0 

° 1 1 -1 ° ° ° 
The second matrix is the reduced row-echelon form of the first. From this we 
see that 0, -2,0,0,0), (0,1,1, -1, -1), and (0,0, 1, -2,0) form a spanning 
set for the row space of each matrix. 

Observe that we can have three vectors in this spanning set because the 
rank of the matrix is 3. In fact, the rank is the minimum possible number of 
spanning vectors for the row space. This will discussed in detail shortly. 

The Null Space and Gaussian Elimination 

We developed Gaussian elimination in order to solve systems of equations. 
Since the null space of a matrix is precisely the set of solutions to the 
associated homogeneous system of equations, and since row operations do 
not change the set of solutions to a system of equations, we obtain the next 
theorem. 

Theorem 25. Suppose that A and B are row equivalent matrices. 
Then ker(A) = ker(B). 
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For example, consider the matrix 

c= (! ° 1 D 3 4 
3 6 

Row-reducing gives 

G ° 1 

D~G ° 1 

D 3 4 3 2 
3 6 3 2 

~G ° 1 

D 3 2 

° ° 
The null space is the span of two vectors, 

To see this, note that the last two variables in the homogeneous system 
associated with the matrix at the end of our row reduction are free. For 
convenience we can choose W = - 3, Z = ° to get the first vector, and 
W = 0, Z = - 3 to get the second. (The elimination also shows that the 
row space of C is the span of two vectors, span{O,O, 1,0), (0, 3, 2, 5)}.) 

Unearlndependence 
The matrix considered in our discussion of hydrogen bromide had a row 
space spanned by its five rows, while a row-equivalent matrix has the same 
row space with a spanning set of three vectors. Is it possible that two 
vectors could suffice? The answer is no, and the key concept that enables 
us to answer this is that of linear independence. 

The reader must study this definition carefully. In particular, note the "if 
... , then" nature of this definition. There is a great tendency among studentS 
(at least initially) to oversimplify the meaning of linear independence. 

Deftnition. A set of vectors {~, ~, ... , vn} is said to be linearly indepen-
dent if whenever rl, ti, ... , rn are real numbers and rl~ + r2~+'" + rnvn = 
0, then rl = 0, ti = 0, ... , rn = 0. In other words, the only way to express 0 
as a linear combination of ~, ~, ... , vn is to use only zeros as -coefficients. 
If {~,~, ... , vn} is not linearly independent, we say that {~, ~, ... , vn} is 
linearly dependent. 
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According to the definition, {~, Vz} is linearly dependent if one can find 
r}, t:z E R (not both 0) so that rl~ + r2Vz = O. If rl '* 0, we find that 
~ = - ~ ~. In case rl = 0, we find that Vz = O. This shows that whenever 
a set of two vectors is linearly dependent one of the vectors is a multiple of 
the other. 

Examples of Linear Independence 
Note that no one of the vectors 

is a multiple of another. However, the set of these three vectors is linearly 
dependent since 

(~) + (~) - (~) = (~). 
This example shows that you cannot hastily generalize to more than two 
vectors our observation that a set of two vectors is linearly independent if 
and only if one is a multiple of the other. 

The definition of linear independence is an "if ... , then" statement. This 
means that if you want to see whether a collection of vectors is linearly 
independent, you must first make an assumption and then check a second 
condition. For example, to show that the vectors 

(~), (l), (:) 
are linearly independent in R3, we assume that the equation 

is true. These equations say that b = 0, C = 0, and a + b = 0. Of course, 
from this we find a = ° as well. This is the desired conclusion in the 
definition of linear independence, so we have shown what is required. 

The zero vector can never be part of a linearly independent set of 
vectors. For example, the set of vectors 

is not linearly independent since one can express 
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Linear Independence and Gaussian Elimination 
Recall from Sec. 4.1 that if A is a matrix and if v is a column vector, then the 
column Au is a linear combination of the columns of A. This observation 
enables us to test for linear independence by calculating matrix rank. 

Theorem 26. Suppose Dt,~, ... , vm is a collection of n-vectors. Let 
A = (Dt ~ Vm ) be the n X m matrix whose columns are the 
VI. Then {Dt, ~, ... , vm} is linearly independent if and only ifrk(A) = 
m. 

Proof Expanding the matrix equation AX = (5 accordin...g to the definition 
of multiplication, we find 

if and only if 

XI~ + X2~ + ... + xmvm = (5. 

This shows that the linear independence of {~, ~, ... , Vm} is equivalent to 
the system AX = (5 having the unique solution Xl = 0, X2 = 0, .. , ,Xm = O. 
According to the Theorem 700, this occurs if and only if rk(A) = m. This 
proves the theorem. 0 

As an example we consider the vectors 

which are the columns of our matrix from the beginning of this section. Our 
row reduction 

c~ 
2 0 0 

I) ~ (~ 
-2 0 0 

-~) -1 -1 1 1 1 -1 
-1 1 0 -1 0 1 -2 

1 -2 0 0 0 0 0 
0 1 1 -1 -1 0 0 0 0 

shows these matrices have rank 3, and therefore the set of the original five 
vectors is not linearly independent. However the first three vectors listed 
form a linearly independent set since the matrix consisting of the first three 
columns has rank 3. 
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Problems 

1. Find a spanning set of as few vectors as possible for the row space, 
column space, and null space of each of the following matrices. 

(a) G : D (b) (: ; ~ ) (c) G ~ D 
2. Find a spanning set of as few vectors as possible for the row space, 

column space, and null space of each of the following matrices. 

(a) (i~) (b) (i ~ ~ 1) (c) (~ 3 6 ~) 
1 2 1 4 1 3 4 3 

3. Which of the following sets of vectors are linearly independent? 

(a) ((D·G)· G)} 
(b) {(D· m} 
(c) {(D. (D. (D} 
(d) {(Ii). (~). CD· (ll)} 

4. Show that two matrices, possibly of different size, with the same row 
space have the same rank. (Hint: Study their reduced echelon forms.) 

5. For each of the following collections of vectors, find all subcollections 
of minimal size with the same span. 

(a) (D. (D. m 
(b) (D. (D. G)' (D 
(c) G)' (D. m 
(d) (D. (1). (D. (D. (D 

6. Assume that the set {iit,~,~} is linearly independent in some vector 
space. Which of the following sets are linearly independent? 



(a) {Vl + ~ + ~, ~ + ~} 
(b) {O, iit, ~ + ~} 
(c) {9iit, 5~, 6Vl - 7~} 

(d) {Vl + ~, iit + ~, ~ - ~} 
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7. Show that a subset of any linearly independent set of vectors is linearly 
independent. 

8. (a) Can you find three vectors in R3 that are linearly dependent, any 
two of which are linearly independent? If so, give such; if not, show 
why. 

(b) What happens to part (a) if you try it in RZ? 

9. Assume that iit,~, ... , vn are vectors in some vector space that sat­
. isfy the conditions iit 1= 0, ~ $. span{iit}, ~ $. span{iit, ~}, ... , vn $. 

span{iit, ~, ... , Vn-l}. Show that {iit, ~, ... ,vn} is linearly independent. 

10. Suppose that U and V are subspaces of Rn and that the subsets {Ul, U2, 
... , us} C U and {iit, ~ ... , Vt} C V are linearly independent. If un V = 
{6}, show that {Ul, U2, ... , us, iit, ~ ... , Vt} is linearly independent. 

11. Assume that {iit,~, ... , vn} is a linearly independent subset of vec-
tors in R m. Suppose that A is an m X m invertible matrix. Show that 
{Aiit, A~, ... ,Avn} is linearly independent. 

12. Find conditions on the real numbers r, s, t which guarantee that 

is linearly independent. 

Group Project: How Many Unearly Independent vectors Are Possible? 

(a) Suppose that {iit, ~, ... , Vm} is linearly dependent in W'. Show there 
exists some j with 1 :5 j :5 m such that Vj is a .linear combination of 
Vb ~, ... , Vj-l' As a hint, write out a linear combination that is ° and look 
for the last nonzero coefficient. 

(b) Let V be a subspace of RP. Suppose that {t1It, i0., ... , wm} is linearly in­
dependent and each of t1It,~, ... , wm is a linear combination of Vt,~, ... , Vn. 
Show that m :5 n. In order to do this, one approach is to assume that 
m > n and derive a contradiction. Consider the equation Xl t1It + X2i0. + 
... + XmWm = ° in the variables Xb X2, ... , Xm. Substitute expressions for 
the Wi in terms of the Vj in this equation and obtain 

0= Xl(al1iit + a2l~ + ... + anlVn) 

+ XZ(a12Vt + a22~ + ... + an2Vn) 

+ ... + Xm(almVt + aZm~ + ... + anmvn) 



176 • 5. KEY CONCEPTS OF LINEAR ALGEBRA IN R n 

= (anXI + aI2 X 2 + ... + aImXm)~ 

+ (a2I XI + a22 X 2 + ... + a2mX m)V2 

+ ... + (anIXI + an2X2 + ... + anmXm)vn . 

What do you know about such systems? 

5.3 Basis and Dimension 

The Hydrogen Bromide Reaction Again 
In the last section we saw how the study of linear combinations of equations 
is used in stoichiometry. At that time we worked with linear equations 
that represented the various reactions that occur in formation of hydrogen 
bromide. In our next investigation we will simplify the notation used in 
Sec. 5.2 and represent these linear equations by the row vectors whose ith 
entry are the coefficients of Xi. So, for example, our reaction H2 + Br -
HBr + H, which was represented by the equation - X2 - X3 + A4 + Xs = 0, 
is now represented by the row vector (0, -1, -1, 1, 1). 

We now consider the question of whether it is possible to construct a 
simpler reaction mechanism involving only four of the component reac­
tions considered earlier. We ask if H2 + Br2 - 2HBr could arise from a 
combination of the following four reactions. 

Br2 - 2Br 

H2 + Br - HBr + H 

2Br - Br2 

HBr + H - H2 + Br 

We have deleted the third reaction H + Br2 - HBr + Br from our ear­
lier mechanism. It is conceivable that these reactions could suffice in the 

I 

production of hydrogen bromide, because hydrogen bromide is a product 
of the second reaction, and hydrogen and bromine are the only reactants 
needed. 

To solve this question, we must find out if the vector (-1,0, -1,0,2) 
representing our overall reaction H2 + Br2 - 2HBr is a linear combination 
of the vectors representing our four reactions. If we write the four vectors 
as columns, Theorem 22 shows that this is true if and only if the system of 
equations represented by the augmented matrix 

(-~ -~ ~ ~ -~l ° -1 1 ° -1 
° 1 -1 ° ° ° 1 -1 ° 2 
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has a solution. Inspection of the bottom two equations shows that this 
system is inconsistent. So, no matter how much we had hoped, the overall 
reaction H2 + Br2 ---t 2HBr cannot be explained by the four listed reactions. 

Our earlier calculations showed that the linearly independent set of 
three vectors {(-I, 2, 0, 0, 0), (0, -1, -1,1,1), (0, 0, -1,2, O)} contained the 
vector ( -1, 0, -1, 0, 2) in its span. But this vector does not lie in the span 
of the two vectors (-1,2,0,0,0) and (0, -1, -1,1,1). This information was 
crucial in helping us understand possible reaction mechanism. Collections of 
vectors that span a vector space and are linearly independent are extremely 
important. They are called bases. 

Basis 
Consider the row space V = row(A) of the reduced row-echelon matrix 

° 1 

° 

3 
5 

° 
Every vector in V is, by definition, a linear combination of the rows of A. 
By considering such linear combinations, we can express 

V = {r(1, 0, 3, 0) + 5(0,1,5,0) + teO, 0, 0,1) I r, 5, t E R} 

= {(r, s,3r + 55, t) I r,s, t E R}. 

Inspecting this description of V carefully, we observe that every element 
of V can be expressed uniquely as a linear combination r(1, 0, 3, 0) + 
5(0,1,5,0) + teO, 0, 0,1) of the rows of A. This crucial property of the rows 
of A motivates the following definition. 

Definition. A set of vectors {t;, ~, ... , un} in a vector space V is called a 
basis for V if every vector w E V can be expressed uniquely as a linear 
combination 

for real numbers a}, a2, ... , an. 

The simplest example of a basis is the following. We denote by ej 
(0, ... ,0,1, 0 ... ,0) the vector in Rn containing all zeros except for a one in 
the ith entry. It is easy to see that {e], ez, ... , en} is a basis for Rn , because 
any element (a], a2, ... , an) E Rn can be written uniquely as the linear 
combination 

{e], ez, ... , en} is called the standard basis for Rn. 
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A Basis Is Linearly Independent and Spanning 
Suppose that {Vt, ~, ... , tin} is a basis for a vector space V. Then, since 
every vector in V is a linear combination of {Vt, ~, ... , tin}, these vectors 
span V Further, by our uniqueness assumption, the only way to express 0 
as a linear combination of {Vt, ~, ... , tin} is 0 = OVt + O~ + ... + Otin. This 
shows that {Vt, ~, ... , tin} is linearly independent. 

The converse of this is also true. Suppose that {Vt, ~, ... , tin} is linearly 
independent and spans a vector space V. Then every vector ti E V can be 
written as a linear combination 

for real numbers aI, a2, ... , an. We ask if this representation is unique. 
Suppose there were another representation, that is, assume we have 

for real numbers ~, bz., ... , bn . Subtracting gives 

o = (al - ~)Vt + (a2 - bz.)~ + ... + (an - bn)tin. 

The linear independence of our basis vectors {Vt,~, ... , tin} shows that 
(al - ~) = 0, (a2 - bz.) = 0, ... ,(an - bn) = 0, and the uniqueness of our 
representation for ti follows. 

We have established the next theorem. Often this characterization is used 
for the definition of bases. 

Theorem 27. A set of vectors {lit,~, ... , tin} is a basis for a vector 
space V if and only if both of these conditions hold: 
CD {lit,~, ... , tin} is linearly independent; 

(ii) span{lit,~, ... , tin} = V. 

Rndlng Bases 
Suppose that V is the span of a set of m vectors in Rn. How do we find a 
basis for V? We can write these vectors as the rows of an m X n matrix and 
row-reduce to a row-echelon matrix. The nonzero rows of this row-echelon 
matrix will be a basis for V, because the row space of the row-echelon 
matrix is the same as that of the original matrix and the nonzero rows of a 
row-echelon matrix are linearly independent. 

For example, if we start with the matrix 

1 
1 
o 
1 

8 
5 
3 
8 
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and then apply Gaussian elimination, we find that its reduced row-echelon 
form is 

o 
1 
o 
o 

3 
5 
o 
o 

~) 1 . 

o 
The three nonzero rows of R are the three rows of the matrix A considered 
just before in the Basis subsection. This shows that the row space of B is 
same as the row space of A and that {O, 0, 3, 0), (0,1,5,0), (0, 0, 0, l)} is a 
basis for this vector space. 

This observation shows even more. We see that for any m X n matrix 
M, the row space V ofM has a basis with r = rk(M) elements. This basis 
consists of the nonzero rows of R, where R is the reduced row-echelon 
form of M. Observe that the nonzero rows of any reduced row-echelon 
matrix are linearly independent because of the condition on the leading 
ones. Moreover, it turns out that the number of elements in any two bases 
of a vector !>pace is always the same. To help understand this, suppose the 
row space V of M had a basis with s vectors where s :::; r. Let N be the 
m X n matrix with these s vectors as top rows and other rows zero, and let 
R' be the reduced echelon form of N. Since row(N) = V = row(M) , we 
must have roweR) = roweR'). Since both Rand R' are reduced row-echelon 
matrices with the same row space, a row-by-row comparison starting at the 
top rows shows they must be the same. We conclude that s = r. (This is 
essentially the uniqueness of the reduced echelon form given in Theorem 
4. See the group project at the end of this section for further discussion.) 

The number of elements in any basis of a vector space is called its 
dimension. This shows that the row space of a matrix M is r-dimensional, 
where r = rk(M). 

Definition. Suppose that V is a vector space and has a basis with n ele­
ments for some natural number n. Then we say that V is n-dimensional. 

For example, the dimension of the row space of matrix B just given is 
3. Summarizing all of this information, we give the next results. 

Theorem 28. Suppose that {VI, ~, ... , vn} and {il'I, i/;z, ... , wm} are 
both bases of a vector space V. Then n = m; that is, any two bases of 
a vector space have the same number of elements. 

Corollary. Let A be an m X n matrix and suppose that R is a row­
echelon form of A. A basis for the row space of A is the collection of 
nonzero rows of R. Therefore, the dimension of the row space of A is 
rk(A). 
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Examples of Bases 
In view of the existence of the standard basis for Rn , we see that (as 
expectedO the dimension of R n is n. By convention the zero vector space 
{6} has as a basis the empty set 0, which has zero elements. Thus, {6} is 
a zero-dimensional vector space. In general, any nonzero vector space has 
infinitely many different bases. However, all bases of a particular vector 
space have the same number of elements. 

For example, the set of vectors 

is a basis for R2. They are linearly independent by Theorem 25 since 

is a rank-2 matrix. Further, any system of equations of the form 

can always be solved whenever a and b are real numbers. Hence the two 
vectors span R2. 

The set of vectors 

{ ( -D' CD, ( ~m 
is not a basis for R3 since 

2 ( -D -U) -(~D m 
shows they are not linearly independent. 

The set of vectors 

{G), G), (fz)} 
is a basis for R3. They are linearly independent and span R3. 

A Basis for Our Network Flow Problem 
In Sec. 5.1 we studied the problem of optimizing the flow in a freeway 
network. We found eight equations that gave useful information about the 
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freeway system, but we also discovered that five equations contained all 
the information needed to solve our problem. We might wonder if fewer 
equations could suffice. To find out, we apply what we have learned about 
bases. We have a collection of eight equations in seven unknowns. If we 
order the variables of our equations as XAB, XAD, X BE , XBC, X DC , XDE , and 
XCE, then our eight equations (see the list in Sec. 5.1) are represented by 
the augmented matrix 

1 1 0 0 0 0 
o 0 1 0 0 1 

-1 0 1 1 0 0 
o -1 0 0 1 1 
o 0 0 1 1 0 
1 0 0 0 1 1 
o 0 1 1 1 1 
o 1 1 1 0 0 

This matrix can be row-reduced to 

o 1 
1 1 
o 0 
o 0 

-1 0 

o 1 
o 1 
o 1 

1 1 0 0 0 
o 1 0 0 -1 
o 0 1 0 0 
o 0 0 1 1 

o 0 
-1 0 

1 1 
o -1 

1 
o 
1 
o 

o 0 0 0 1 
00000 
00000 
o 0 0 0 0 

-1 -2 
o 0 
o 0 
o 0 

-I 
o 
o 
o 

which is a rank-5 matrix. In particular, we see that any basis of the row 
space of our original matrix must have five elements. This means that five 
equations can summarize the information in our network flow (as we have 
seen), but it also means that no lewer than five equations can contain this 
same information. 

Bases as Minimal Spanning Sets 

A minimal spanning set is a collection of vectors that span a vector space 
V but for which any proper subset does not span V. (A proper subset of 
a set 5 is a subset different from 5.) Suppose that {~, Oz, ... , un} spans a 
vector space V but is not a minimal spanning set. Then some subcollection, 
say {~, Oz, ... , Un-I} also spans V. This means that Un is in the span of 
{~, Oz, ... , Un-I}, and so we can write Un = kl~ + k20z + ... + kn-Iun-I for 
some real numbers kl' k2' ... , kn- I . Since kl ~ + k20z + ... + kn- I Un-I - Un = 
0, we find that {~, Oz, ... , un} is not linearly independent. 

Since bases for vector spaces are linearly independent, and since they 
are spanning sets, this discussion shows that bases are minimal spanning 
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sets. In fact, every minimal spanning set is a basis. For example, the set of 
the first five network flow equations in our example is a minimal spanning 
set and as we have seen is also a basis. 

Theorem 29. Suppose VI, ~, ... , Vn are elements of a vector space V. 
Then {VI,~,"" Vn} is a basisfor V ijand only ij{VI,~,"" vn} is a 
minimal spanning set for V. 

Proof Suppose that {~, il.!, ... , un} is a minimal spanning set for V. We 
must show that {~, il.!, ... , un} is linearly independent. If not, suppose that 
kl~ + kzil.! + ... + kn-Iun-I + knun = 0, where we assume that kn * O. 
Then we can write Un = _k;;-l(kl~ + kzil.! + ... + kn-Iun-I), which shows 
that Un lies in the span of~, il.!, ... , Vn-I. But now we see that ~,il.!, ... , vn 
is not a minimal spanning set after all, which is a contradiction. This shows 
that minimal spanning sets are linearly independent and hence are bases. 0 

Recall that in Sec. 3.4 it was shown that the solutions to the equation 
AX = 0 in n variables can be described by n - rk(A) parameters. Suppose 
that RX = 0 is a reduced echelon form for a system with s = n - rk(A) 
free variables. Denote by Wi the solution to RX = 0 for which the ith free 
variable is assigned 1 and all other free variables are assigned O. Then back­
substitution shows that the collection {~, : .. , ws} is a spanning set for the 
solution space. In fact, we claim that the collection {~, ... , ws } is a minimal 
spanning set for the solution space, because if w} were left out then any 
linear combination of the remaining Wi would assign the value 0 to the jth 
free variable. In particular, the solution wi does not lie in the span of the 
remaining Wi. Thus no proper subcollection of {~, ... , ws} can span. This 
discussion establishes the following result. 

Theorem 30. Suppose that A is an m X n matrix. Then ker(A) has a 
minimal spanning set containing n - rk(A) vectors. 

The Dimension Theorem 
Up to this point, we have studied bases of vector spaces by looking at row 
spaces of matrices and using the reduced echelon form to find a basis. But 
bases for the null space of a matrix are also important since they are solution 
sets to homogeneous systems of linear equations. Our next objective is to 
understand the dimension theorem. This theorem describes the fundamental 
relation between the rank of a matrix A and th~ dimension of its null space, 
ker(A). It is an important result about matrices that is also crucial to the 
study of linear transformations (taken up in Chap. 8). 

We just noted that for any matrix A, the vector space ker(A) has a minimal 
spanning set with n - rk(A) elements. This means that the dimension of 
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ker(A) is n - rk(A). The dimension of ker(A) is called the nullity of A and 
is denoted by null(A). We shall use this result often, and we will refer to it 
as the dimension theorem. Sometimes this result is referred to as the "rank 
plus nullity theorem." 

Theorem 31 (Dimension Theorem). Suppose A is an m X n matrix 
and rk(A) = r. Then ker(A) = {u I Au = 6} is a (n - r) -dimensional 
vector space. In other words, rk(A) + nul1(A) = n. 

As an example, consider the matrix 

A = (~ o 2 
1 0 ~) 

By inspection, the rows of A are linearly independent, so A has rank 2. 
Since A is 2 X 4, null(A) = 2. In particular, the homogeneous system of 
equations AX = (5 has a two-dimensional vector space of solutions. Two 
linearly independent solutions can be found by inspection. For example, 
both 

are solutions. Consequently, we know that all the solutions to this homoge­
neous system are given by Xl = t, X2 = -6t, X3 = - U - ~ t, and Xi = u 
for parameters t and u. 

Bases for the Row Space, Column Space, and Null Space 
Suppose that A is an m X n matrix and R is the reduced row-echelon form 
of A. Bases for the row space of A and for the null space were studied 
earlier in this chapter. However, what can be said about the column space 
of A? Can it be determined using the reduced row-echelon form? Of course, 
the column space of A is the same as the row space of At, so one could 
compute the reduced row-echelon form of AI and find a basis for its row 
space. But is it possible to find a basis for A using R directly? It turns out 
one can. 

Theorem 26 says that a set of columns of A are linearly independent pre­
cisely if the corresponding columns of R are linearly independent. EVidently, 
the columns of R containing the leading ones are linearly independent. This 
shows that the corresponding set of columns of A are linearly independent. 
Furthermore, Theorem 22 shows that the remaining columns of A are linear 
combinations of these columns. Thus we have found a basis for the column 
space of A. 

We collect all this information in the next result. 
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Theorem 32 (Finding bases for the row, column, and null 
spaces). Suppose that A is an m X n matrix and R is the reduced 
row-echelon form of A. 
(i) A basis for the row space of A is the set of nonzero rows of R. Its 

dimension is rk(A). 

(ii) A basis for the column space of A is the set of columns of A that 
correspond to the columns containing leading ones in R. The 
dimension of the column space of A is rk(A). 

(iii) A basis for the null space of A can be found using Rand back­
substitution, with a basis element corresponding to each free 
variable. The dimension of the null space of A is n - rk(A). 

Remark. A nice consequence of parts (0 and (ii) of Theorem 32 is the fact 
that for any matrix A we have rk(A) = rk(At), because the row space of At 
is the same as the column space of A. 

As an example of each of these, we consider the matrix 

M = (~ 
3 2 1 :) . 1 1 ° 7 5 2 

The reduced echelon form of M is 

(~ ° -1 1 -3) 1 1 ° 1 . 

° ° ° ° Applying (0, we find that the row space of M is two-dimensional where a 
basis is the rows of the reduced echelon form of M, namely 

{O,O, -1, 1, -3)' (0,1,1,0, l)}. 

If we apply part (ii) of the theorem, we find that the column space of M 
has as a basis the first and second columns of M, namely 

Be sure to return to the original columns of M! Finally, part (iii) tells us that 
a basis for the null space of M will have 5 - 2 = 3 vectors, that are obtained 
by back-substitution. One such basis is 
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1. Find a basis for the set of solutions to the system of equations 

2. Consider the matrix 

(
1 0 

M = 0 1 
1 1 
2 1 

1 2 
2 0 
3 0 
4 1 

(a) Find a basis for the row space of M. 

(b) Find a basis for the column space of M. Show that the leading one 
columns in the reduced row-echelon form of M are not a basis for 
col(M). 

(c) Find a basis for the null space of M. 

3. For each of the following matrices find a basis for the row space, the 
column space, and the null space. 

(a) (~ 1 ~) (b) G D 0 

(0) G 0 :) (d) n 1 

D 1 
0 
2 

1 
2 

4. For each of the following matrices find a basis for the row space, the 
column space, and the null space. 

(a) G 3 

D G 
4 j) 0 (b) 0 

5 8 

( 2 211 ~1 ~1) (c) ~ 

5. Find a basis for 

(a) v~~n{(D, (D, G)} 
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7. Do you believe that two matrices of the same size and rank are row 
equivalent? Why or why not? 

8. Find all possible subsets of the vectors 

that are a basis for their span. 

9. Show that each standard basis vector ~,~, ~ is a linear combination of 
the vectors in {(1, 0,1), (0,1, l), (1,1, 1)}. Explain why this is sufficient to 
show that the set {O, 0,1), (0,1,1),0,1, 1)} is a basis for R3. 

10. Suppose that {lit, j}z, ... , vn} is a basis of a vector space V. Assuming that 
n is odd, show that {lit + j}z, j}z + ~, ... , Vn-l + Vn, vn + lit} is also basis 
of V. What happens if n is even? 

Group Project: The Uniqueness of the Reduced Row-Echelon Form 

Explain why the reduced row-echelon form R of a matrix A is unique using 
steps (a) and (b) as an outline: 

(a) Show that the columns containing leading ones in R are characterized 
by being precisely those columns that are not linear combinations of 
the preceding columns. 

(b) Show the other columns are completely determined by how they are 
expressed as a linear combination of the columns that precede them. 

Explain how the uniqueness of the reduced echelon form can be used 
to show that the number of elements in a basis of a vector space is uniquely 
determined. (These ideas are indicated in the paragraph prior to the Theo­
rem 27.) 



5.3. BASIS AND DIMENSION • 187 

Group Project: Extending Unearly Independent Sets to Bases 

Suppose that {~,~, ... , iq is a linearly independent subset of Rn. Explain 
why there exists n - r vectors Vr+l, Vr+2, ... , vn for which {~, ~, ... , vn} is 
a basis for R n. (Hint: Consider the vectors el, ez, ... ; en from the standard 
basis of Rn. Consider adding these vectors one at a time to your set to fill it 
out to a basis. When do you add ej, and when do you pass it up?) 



CHAPTER 

MORE VECTOR 
GEOMETRY 

6.1 The Dot Product 

In this section we study the norm and the dot product in R2 and R3. The 
norm of a vector is its length. Closely related to the norm is the dot product. 
The dot product is a function of two vectors that is related not only to their 
length but to the angle between them as well. Both of these functions are 
crucial tools for using vectors to study the plane and the space around us. 
Many of the ideas in this chapter are extended to Rn in Chap. 9, where our 
intuitive understanding of geometry in R2 and R3 can be used (by analogy) 
to deepen our understanding of n-space. 

Vector Length 
The length of a vector in R2 was given in Sec. 2.1. The formula is a conse­
quence of the Pythagorean theorem. 

Definition. The vector 

v = (:) 

188 
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has length y'r2 + S2. The length of a vector v is denoted II VII and is some­
times called the norm of v. 

For example, if 

then the length of u is II ull = y'62 + (-4)2 = y'36 + 16 = y'52 = 2/13. 
The situation in R3 is similar. Let P = Cp, q, r) E R3. Then the segment 

OP is the hypotenuse of the right triangle A OP{2, where Q = Cp, q,O). The 
length of the leg PQ is r, and using the length formula for the plane we 
see that the length of the leg OQ is y' pZ + q2. The Pythagorean theorem 

now shows that the length of OP is V(y'pZ + q2)2 + r2 = y'pZ + q2 + r2. 
We record this in the next definition. 

Definition. The vector 

has length y' pZ. + q2 + r2. The length of a vector v E R3 is denoted II vII 
and is sometimes called the norm of v (see Fig. 6.1). 

Norm Properties 

Suppose that v is a vector in R2 or R3. The following conditions are satisfied 
by the norm. 

FIJ. 8.:1.. LenCth of a 
vector illn ~ 

z 

y 

... ,: (p,q,O) = Q 
..... q ..... 

.... x 
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Theorem 33 (Norm properties). 

0) IIvll ~ a/or all v E V, and II vII = a only if v = o. 
(ii) IIkvll = Ikl'lIvll/orall real numbe~ k and v E V. 

(iii) lIu + vII s lIuli + IIvll/orall u, v E v. 

Property CO is known as the positive-definite property of the norm. The 
point of this property is that the length of a vector is never negative and 
that the only vector with length zero is the zero vector. Property (ii) shows 
how scalar multiplication affects the length of a vector. This is what you 
should expect. Multiplying a vector by a real number r multiplies its length 
by Iri. (The absolute value is necessary because vector lengths cannot be 
negative.) Finally, property (iii) is known as the triangle inequality. This 
third property can be seen geometrically since it corresponds to the fact 
that the length of a side of a triangle is always less than the sum of the 
lengths of the other two sides. This is illustrated in Fig. 6.2. 

The first two properties CO and (ii) of Theorem 33 can be verified by 
some algebra using the definitions of the distance function. To check prop­
erty CO for R3 suppose that 

v = (~) . 
We first note that p2 + q. + r2 is always nonnegative and that it is zero 
only in case each of p, q and r are zero. Since J p2 + q2 + r2 is always 
nonnegative and is zero only in case p2 + q. + r2 is zero, the property 
follows. 

fie. 6.2. The triangle 
Inequality 

We next check property (ii) for R3. For this we consider 

v~ m and kv~ (!;) . 
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Applying the definition of the norm, we find that 

IIkvll = V(kp)2 + (kq)2 + (kr)2 

= Vk2(p2 + q2 + r2) 

= Iklvp2 + q2 + r2 = Ikl· Iltill, 

which gives property (ii). 

Suppose, for example, we wish to find the distance between the points 
R = (2, -4,1) and S = (3,7, -1) in R3. The distance between Rand S is 

---+ 
the length of the directed segment RS. This directed segment specifies the 
vector 

(7 ~ C!4)) = ( 1~) 
-1 - 1 -2 

whose length is computed to be V 12 + 112 + (-2)2 VI + 121 + 4 = 
J126 = 3J14. 

The Dot Product 

Closely related to the norm is dot product. We first give an algebraic defini­
tion and then explore the geometry. 

Definition. (a) Suppose that 

u= (:~) and v= (~) 
are two vectors in R2. The dot product of u and v is defined to be 

(b) Suppose that 

are two vectors in R3. The dot product of u and v is defined to be 

For example, consider the two vectors 
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in R2. Then u' v = 2(-1) + S' 3 = -2 + 15 = 13. Similarly, if 

u ~ m and v ~ ( -D 
in R3, then u' v = 2 . 1 + 5 . (-1) + 1 . 3 = 2 - 5 + 3 = o. 

Often, the dot product of two vectors U· v is denoted by wedges as 
(u, if). This notation is useful because it reminds us that u and v are vectors. 
(Sometimes the dot in the dot product is confused with the multiplication 
of numbers.) We emphasize, however, that the dot product of two vectors 
is a real number (not a vector)! The bracket notation for the dot product is 
used in this next list of properties of the dot product. 

Theorem 34 (Properties of the dot product). 
CO Suppose that v is a vector. Then V· v = II vII 2 • 

(ii) (it, V) = (v, it) for all vectors it, V. 

(iii) (kit, V) = k(it, V) for all k E R and all vectors it, V. 

(iv) (Vi' + itz, it) = (Ut, it) + (itz, it) for all vectors it, Ut, itz. 
(v) (v, V) ~ 0 for all vectors v, and (v, V) = 0 only if v = O. 

To see 0), we consider the vectors 

v= (:) and u= (~) 

in R2 and R3. Then v' v = a' a + b· b = a2 + b2 = IIvll2 as required. 
Similarly, we find u . u = p . p + q . q + r . r = p2 + q2 + r2 = II ulF as 
required. The remaining properties (ii), (iii), (iv), and (v) can be checked 
by similar calculations. 

Property (ii) of the dot product is known as symmetry, and (v) is referred 
to as the positive-definite property. Note that because of (ii), properties (iii) 
and (iv) hold as well on the opposite sides of the dot product bracket. 
Specifically, we have that 

(ii ') (u, kif) = k( U, if) for all k E R and all vectors U, v. 
(iii') (u, ~ + iJz) = (u, ~) + (u, iJz) for all vectors U, ~, iJz. 

Properties (iii), (iii'), (iv), and (iv') taken together are called bilinearity. 
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Geometry of the Dot Product 

We now turn to the geometry of the dot product. Our first key result is the 
following. 

Theorem 35. Suppose that it and v are nonzero vectors. Then 

it· v = II it II II vII cos(8), 

where 8 is the angle between the two vectors it and v. 

The key to understanding Theorem 35 is the law of cosines from basic 
trigonometry. The vectors u and v and the angle 0 betWeen them are drawn 
in Fig. 6.3. The triangle formed by these two vectors has sides of length II ull, 
II vII, with a third side of length II u - vII opposite angle O. 

To prove the theorem, applying the law of cosines we have that 

lIu - vll 2 = lIull2 + IIvW - 211ullllvil cosCO). 

However, we know that lIu-vll 2 = Cu-V)'CU-v), lIuUZ = u'u, IIvUZ = v'v, 
and consequently we can rewrite dur law of cosines as 

CU - V). CU - V) = u' u + v' v - 211ullllvil cosCO). 

Using the properties in Theorem 34, we find that CU - V) . CU - V) = 
U . CU - V) - v' CU - V) = u' u - u . v - v' u + V· v, and consequently 

u' u + V· v - 2u' v = u' u + V· v - 211ullllvil cosCO). 

Cancelling u . u + V· v from both sides gives 

-2u' v = -2l1ullllvll cosCO). 

The desired formula 

u' v = lIullllvll cosCO) 

follows from division by -2. 

FIg. 6.3. Angle fJ 
between vectors i1 and V 
and their triangle 
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For example, if 

the theorem gives 

a·v 
cos(O) = II all II vII 

2 2 
v'6 y'2 = y'i2 "= .577. 

In this case we. see that 0 "= .956 radians "= 55 degrees. 
Suppose that a and v are both nonzero vectors, yet a· v = o. Then 

Theorem 35 shows that cos(O) = 0, where 0 is the angle between a and 
v. This means that 0 = ~ radians = 90 degrees. In particular, a and v are 
perpendicular (which is often denoted by a ..L V). Perpendicular vectors 
are usually called orthogonal. We record this important application as a 
separate theorem. 

Theorem 36. Suppose that it and v are nonzero vectors. Then it· v = 
o if and only if it and v are perpendicular. 

In R3 the set of vectors perpendicular to a given vector form a plane. 
This can be seen algebraically as follows. Suppose 

By direct calculation, if 

and if v ..L a, we have a· v = p + 2q + r. Therefore, v is perpendicular to a 
ifand only if p = -2q - r. We see that the set of all vectors perpendicular 
to a are the vectors that form the plane P = {( -2q - r, q, r) I q, r E R}. 

The Tetrahedron and the Methane Bond Angle 
Vector geometry is often quite useful in giving descriptions of three-dimen­
sional objects. Most problems in the physical sciences and engineering 
would be difficult to describe without vectors. In chemistry, for example, 
it is important to be able to describe the locations of atoms in a molecule. 
This is usually done by viewing the atoms as vertices of a polyhedra whose 
edges can be described by vectors. We study an example of this next. 
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To start we study the geometry of the most basic polyhedra, the tetrahe­
dron (see the Group Project in Sec. 1.1 for the definition and more discus­
sion of polyhedra). A tetrahedron is a polyhedra whose edges are the six 
line segments between four points. We shall consider the situation where 
these four points (the vertices of the tetrahedron) are an equal distance from 
one another. Therefore each of the four faces of this tetrahedron will be an 
equilateral triangle. This kind of tetrahedron is important in basic chemistry 
because whenever four atoms are attached to a carbon atom in an organic 
molecule, they are are located on the vertices of a such a tetrahedron. For 
example, the carbon atom of the simple organic molecule methane, CH4, 

is centered in this tetrahedron with vertices the hydrogen atoms. Such a 
tetrahedron as well as the same tetrahedron with its center is illustrated in 
Fig. 6.4. 

An important problem is to compute the angle between a pair of line 
segments from the center point of this tetrahedron to its vertices. This angle 
is the bond angle between the hydrogen atoms that are attached to the 
carbon atom in the methane molecule. 

In order to compute this angle, it is first necessary to obtain the coordi­
nates of the vertices and center of our tetrahedron in R3. For this we shall 
choose an equilateral triangle in the xy-plane as one face of the tetrahedron. 
If we let A = (0,0,0), B = (2,0,0), and C = (1, y'3,0), then !:r..ABC is an 
equilateral triangle on the xy-plane with sides of length 2. (The length 2 
was chosen arbitrarily but also makes some calculations shorter.) The other 
vertex of our tetrahedron is a point D = (a, b, c) that has distance 2 from 
the points A, B. and C. Hence, by the distance formula, we find 

Subtracting the first equation from the second gives -4a + 4 = 0, so we find 
a = 1. Subtracting the first equation from the third gives -2a + 1 - 2y'3b + 
3 = 0, so since a = 1 we find that b = II. Finally, substituting a = 1 

FIg. 6.4. A tetrahedron and the same tetrahedron with Its center shown 
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and b = 0 into a2 + ~ + c2 = 4 shows that c2 = ~. It follows that there 

are two points in R3 that are distance 2 from each of A, B, and C, namely 

(1, 0, ± If)· For our calculations we will choose D = (1, j"f, If) as the 

fourth point of our tetrahedron (which will lie above the xy-plane). 
Next we need to find the coordinates of the center point of the tetra­

hedron, which is the point equidistant from each of A, B, C, and D. Using 
a little visual geometry, we see that the x- and y- coordinates of this point 
must be the same as those of D, because a top view of the tetrahedron 
(looking straight down from above D) would hide the center point below 

D. Hence, if P = 0, j"f,P) is the center point, since P is equidistant from 
A and D we must have that 

This equation shows that ~ - 2lfp = ~, which gives p = If. This shows 

that the center point of our tetrahedron is P = 0, j"f, If). 
We can now comRute the methane bond angle. It is the angle between 

--+ -the vectors PA and PD. Since we have computed the coordinates, we know 

that PA = (-1, -.[f, -If) and PD = (0,0, If - If)· We can also 

compute that IlPAIl = VI + ~ + ~ = If and IIPDII = V~ - ~ + ~ = If 
(of course they are equal, as they should be). We denote by 0 the angle 
between the vectors FA and PD. Then 

PDoPA 
cos(O) = ----

IIPDIlIlPAIl 
1 

= --
3 

This shows that 0 = COS-l(_~) or 109°28', often referred to as the tetrahe­
dral angle. The tetrahedral angle is particularly important in organic; chem­
istry since it is the angle at which carbon singly bonds to other atoms (if 
there are no other geometric constraints). 

Note. Diamonds are a form of pure carbon where each atom is bonded to 
its four nearest neighbors in such a way that these four are centered at the 
vertices of a tetrahedron. The distance between each atom and each of its 
four nearest neighbors is 1.53 X 10-8 cm. In contrast, graphite is also pure 
carbon, but the atoms are not symmetrically arranged and in fact are not 
equally spaced. The tetrahedral bonding of carbon atoms in diamonds is 
what makes diamonds so hard. 



Problems 

1. Consider the following vectors in R2. 

Find the following: 

(a) II all; 
(b) llii - wll; 
(c) w' ii; 
(d) (U + w)' (U - w). 

2. Consider the following vectors in R3. 

Find the following: 

(a) IIpll; 
(b) lip + 2qll; 
(c) q. r; 
(d) p. cP - q). 
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3. Consider the points P = (1,2), Q = (2, -5), and R = (1,1) in R2. Sketch 
the points and find: 

(a) the distance between P and Q; 

(b) the distance between P and R; 

(c) the angle between the segments PQ and PR. 

4. Consider the points U = (2,0,1), V = (0,1,1), and T = (-1,4,1) in R3. 
Sketch the points and find: 
(a) the distance between U and V; 

(b) the distance between U and T; 

(c) the angle between the segments UV and UT. 

5. According to the parallelogram law for the dot product, 

for all vectors ii, w in R2 or R3. Derive the parallelogram law using the 
properties of the dot product given in Theorem 34. 

6. (a) Give an algebraic proof of the triangle inequality. 

(b) Prove properties (ii), (iiD, (iv), and (v) of Theorem 34. 
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Group Project: More Properties of the Dot Product 

Try to show the following using the properties of the dot product (as given 
in Theorem 34) instead of direct computation. 

(a) Show for two vectors V, ib in RZ or R3 that IIv + ibll2 = IIvUZ + lIibll2 if 
and only if v and ib are perpendicular. 
(b) Show for two vectors U, v in R2 or R3 that 

(c) Show for two vectors U, v in R2 or R3 that 

This rC!sult is called the polar identity. 

6.2 Angles and Projections 

The Boat and Chair Forms of Cyclohexane 

In Sec. 2.1 we looked at vectors describing the location of carbon atoms 
in benzene, C6H6, that lie on a hexagon in a plane. Cyclohexane, C6H12, 
is an organic compound also having six carbon atoms bound together in a 
loop, but it differs from benzene in that there are twelve hydrogen atoms 
in the molecule instead of six. Since each carbon is bonded to two other 
carbon and two hydrogen atoms, the carbon atoms must be bound at the 
tetrahedral angle calculated in Sec. 6.1. Because of this, it is impossible for 
the carbon atoms in cyclohexane to lie in a single plane. 

In order to understand positions of the carbon atoms in cyclohexane, 
we will represent them by six points PI, Pu P3, P4, P;, P6, arranged in R3 so 
that the six angles, LPIP2P3, LP2P3P4, LP3P4PS, LP4P,P6, LP,P6PI, and 
LP6PIP2 are each tetrahedral. It turns out that there are two geometrically 
different possibilities for the arrangement of six points satisfying these con­
ditions, and each of these corresponds to different forms of cyclohexane 
found in nature. We set PI = (0,0,0) and P2 = (2,0,0) (so the distance 
between our carbon atoms is 2). It turns out that the points PI, P2, P4, and 
P, end up on a single plane with P1P2 parallel to P4PS (and with P3 and 
P6 not on that plane), so we let this plane be the .:ry-plane and we assume 
that P4 = (2, 2b, 0) and P, = (0, 2b, 0). Here, b is some number not yet 
determined. 

Next we must try to locate the point P3 . By the symmetry of this ar­
rangement, its y-coordinate must be half that of P4 and Ps, so we can 
assume that P~ = (a, b, c) (which shows why we used 2b in P4 and Ps.) --' -- --We have PI P2 = (2,0,0), P2 P3 = (a - 2, b, c), P3P4 = (2 - a, b, - c), and 
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----> 
P4PS = (-2,0,0). Our assumption that the angle LPIP2P3 is tetrahedral 
means that its cosine is -l and therefore 

-1 

3 

----> ----> 
P2PI . P2P3 

IIMIIII~II 

-2(a - 2) 

4 

----> ----> 
(Note that we have to use the vector P2PI instead of PIP2.) Consequently, 
a = ~. Since the angles LP2P3P4 and LP3P4PS are also tetrahedral, we find 
that 

-1 

3 

Since a = ~, we obtain -l = !(~ - b2 + c2), which gives -b2 + c2 = -~. 
But we also assumed that II~II = IIMII = 4, and therefore ~ + b2'+ c2 = 

4, which shows b2 + c2 = ~. Adding these, we find that 2c2 = ~, and 

so c = ± ¥. Substituting the c value shows that b2 = ~, :'0 we can take 

b = 2y6 
3 . 

We now have the coordinates of five of the six carbon atoms in our 
model of cyclohexane. These points are PI = (0,0,0), P2 = (2,0,0), 

- (8 W + 2/2) p. - (2 ~ 0) d D - (0 ~ 0) Th . P3 - 3' :3 '--3-' 4 - '3' ,an £5 - '3' . e pOlnt 
P6 must have the same possible positions relative to PI and Ps as P3 does 
relative to P2 and P4 (except sticking out in the opposite direction, as il-

lustrated in Fig. 6.5). This shows that P6 = (-~, 2f, ±2f). We find that 
there are two geometrically distinct solutions to our structure for cyclohex­
ane. The first is where the z-coordinates of P3 and P6 have the same sign, 
which is called the "boat form of cyclohexane," and the second is where 
the z-coordinates of P3 and P6 have opposite signs, which is called the 
"chair form of cyclohexane." In the boat form the points P3 and P6 lie on 
the same side of the plane containing PI, P2, P4, and Ps, while in the chair 
they lie on opposite sides. Both of these geometric forms occur naturally in 
cyclohexane. The cyclohexane ring system is also part of the structure of 

FIg. 6.5. The boat form (left) and the chair form (right) of cyclohexane 
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many other compounds such as terpenes, a class of natural products often 
found in essential oils. Familiar examples are camphor, used in medicine, 
and menthol, the flavor component of peppermint. These two forms of 
cyclohexane are pictured in Fig. 6.5. 

Projections of Vectors 
Recall the standard basis vectors ~ = (1,0, 0), ~ = (0,1,0), and ~ = 
(0,0,1) for R3. Clearly, if v = (a, b, c), we can write v = a~ + b~ + c~. 
This expression shows that v is the sum of its projections onto the standard 
basis vectors. Note that the three projections a~, b~, and c~ are mutually 
orthogonal. It will be useful to generalize this. Fig, 6.6 shows the projection 
of a vector a onto a vector v. 

Consider two vectors a and v. We denote by projv(U) the projection of a 
onto vas illustrated in Fig. 6.6. If 0 is the angle between these two vectors, 
then by trigonometry Hall cos(O) is the length of this projection. Since v III vII 
is the vector of length 1 with the same direction as v, the projection of a 
onto V is the vector 

. _ ( V) II all cos( 0) _ 
pro)v(U) = lIuli cosCO) II vII = II vII v 

Since IIvll = CV· ;1)1/2 and a· v = II all II vII cos(O), we find that 

. (~ _ lIallllifll cos(O)_ 
proJv u) - lliillllViI v 

This calculation motivates the following definition. 

Defi.nitioJ].. If ( , ) denotes the dot product on either R2 or R3, we define 
the orthogonal projection of a onto V by 

. C~ (a,ilL 
pro)v·u) = (_ ;1\ v. 

v, VI 

Observe in Fig. 6.6 that the vector a - projv(U) is perpendicular to the 
vector V. This is exactly what we noted for the projections onto the standard 

FIg. 6.6. ProjectIon of 
vectors 
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basis vectors of R3. Using a few algebraic manipulations, we see this is true 
in general. 

Theorem 37. If both u and v are nonzero vectors, then v and 
(U - Projii(U)) are orthogonal. 

Proof We check this in the following calculation, where we use the prop­
erties of the dot product given in Theorem 34. When interpreting this cal­
culation, be sure to remember that (u, 0 is a real number, not a vector: 

(_ _ . (_) (_ _ (u, 0:f\ 
v, u - proJii u = v, u - (_ :f\ VI 

v, VI 

More Applications 

( __ ) (_ (u, 0:f\ 
= v, u - v, (_ :f\ VI v, VI 

( __ ) (u, 0(_ :f\ 
= v, U - (_ :f\ v, VI 

v, VI 

= (v, U) - (u, 0 

= 0. o 

The dot product in R2 and R3 can be used to determine the equations of 
lines and planes. 

Examples. (a) Suppose you are interested in the line £1 in the plane that 
is perpendicular to a given vector 

and passes through (0,0). Then the geometric vectors that lie on £ are 
precisely those vectors whose dot product with v is zero. This shows that 

£1 = {(x,y) E R2 12x - 3y = OJ. 

If you are interested in the line £2 that is parallel to £1 but passes through the 
point (S,9) instead, simply translate the equation so that you take the dot 
product of v with the vector starting at (S, 9) instead of (0, 0). This results in 

£2 = ((x,y) E R2 12(x - S) - 3(y - 9) = O} 

= {(x,y) E R2 12x - 3y = -17}. 
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(b) Now suppose that you want to describe the plane P of all points 
perpendicular to the vector 

in R3 and passing through (3,1,1). The points on this plane are the end­
points of the geometric vectors that start at (3,1,1) and have a direction 
perpendicular to v. Using the dot product, we find that 

P = {(x,y, z) E R3 12(x - 3) + 3(y - 1) - Hz - 1) = o} 

= ICx, y, z) E R3 I 2x + 3y - z = 8}. 

(c) We can also use the theorem to compute the distance between a point 
P and a line i. According to Euclidean geometry, this distance is the length 
of the line segment PQ, where PQ .1 i. For example, suppose P = (5,3) 
and i is the line through the origin and (4, -1). Let 

Then i is the line spanned by v. Using the geometry of the projection, we 
see that the line segment PQ has the same length 1;1 - projvCU)l. By a direct 
calculation we find lit - proiv(U)1 = ..(0. 

Rotations In the Plane 

Recall that in Sec. 2.1 we were interested in six vectors that gave the edges 
of a regular hexagon. These six vectors were obtained by starting with the 
vector (1,0) and rotating it successively six times by an angle of 60°. It (Urns 
out that all rotations in the plane can be computed as a matrix multiplication. 
In order to see this, recall that the coordinates of any point P on the unit 
circle in R2 can be expressed as P = (cos(a), sin(a», where a denotes the 
angle the vector (cos(a), sin(a» makes with the positive x-axis. Suppose 
the point P is rotated counterclockwise by an angle O. Then we obtain 
the new point P8 whose coordinates are (cos(O + a), sin(O + a». We now 
rewrite this vector using the angle addition formulas from trigonometry and 
using matrix multiplication: 

( COS(O + a») = (COS(o)cos(a) --: Sin(O)Sin(a») 
sin(O + a) sin(O) cos(a) + cos((~) sin(a) 

= (COS(O) - Sin(O») (cos(a») 
sin(O) cos(O) sin(a)· 
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This shows that the coordinates of the rotation of a point on the unit circle 
can be obtained by matrix multiplication. 

The matrix 

RfJ = (cosce) 
sinCe) 

- SinCe)) 
cosce) 

is the matrix that, when left-multiplied to any vector v in R2, rotates the 
vector v counterclockwise by the angle e. For example, if e = 60°, we 
obtain 

If we multiply the vector C1, 0) repeatedly by /?t,o. we obtain 

which are the six unit vectors considered in Sec. 2.1. 
Observe that if we take the dot product of successive vectors in our list 

1 b . 1 CF 1 C 1 .Y2) C 1 .Y2) - 1 + 3 - 1 ) S· we a ways 0 tam 2· orexampe, 2' 2 • -2' 2 - -4 4 - 2· mee 
each of these vectors is a unit vector, Theorem 35 shows that the cosine 
of the angle between them is !. This verifies that the angle between these 
vectors is 60°. 

Schwarz's Inequality 

We conclude this section with one final application of Theorem 36 

Theorem 38 (Schwarz's inequality). Suppose that U, and v are 
vectors. Then 

U . v ~ II ull . II vII. 

Equality holds if and only if v = (5 or u = k v for some k ;::: o. 
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Problems 

Proof If V = 0, the result is easy since both sides are zero. Thus we may 
assume that v '* O. We know that a . v = II all II vII cos O. In case a is not a 
mUltiple of v, we know that !cos(O)1 < 1 and the result follows. In case a 
is a multiple of v, then we know that 0 is 0 or 71" and !cos(O) I = 1, so we 
have equality as required. 0 

1. Consider the following vectors in R2. 

Find and sketch the following: 
(a) proijj(U)j 
(b) Proiil(ii)j 
(c) W - proijj(w). 

2. Consider the following vectors in R3. 

Find and sketch the following: 
(a) projpCij)j 

(b) projq(jJ)j 
(c) r - proiq(f). 

3. Consider the points P = (I,2), Q = (2, -5), and R = (I, 1) in R2. Find 
a parametric description of the following lines in R2, and sketch them: 
(a) the line perpendicular to the segment PQ and passing through (0, O)j 
(b) the line perpendicular to the segment PR and passing through (I, 1). 

4. Consider the points U = (2,0,1), V = (0,1,1), and T = (-1,2,1) in R3. 
Find a parametric description of the following lines in R3, and sketch 
them: 
(a) the plane perpendicular to the segment UV and passing through 

(O,O,O)j 
(b) the line perpendicular to the segment VT and passing through V. 

5. Find the distances between the point Pl and the other five points in the 
model of cyclohexane. Compare these distances to those of the carbon 
atoms in a benzene molecule. Explain your observations. 

6. Let v be an arbitrary vector in R2 and let Rs denote the rotation matrix 
given in Sec. 6.2. Compute the dot product (v, Rs if) by a direct calculation. 
Use Theorem 35 to show that the angle between v and ReV is O. 
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Group Project: More Geometry of Cyclohexane 

In this project you will study some properties of the arrangement of the 
carbon atoms in cyclohexane. 

(a) First construct models of the location of these six points in cyclohexane 
(both forms) whose coordinates were computed earlier. This can be done 
with a single piece of paper folded twice or with clay and toothpicks. 

(b) Find the dihedral angle between the plane containing PI, Pz, P4, Ps 
and the plane containing Pz, P3, P4 in both the chair and boat forms of 
cyclohexane modeled in this section. (See Ex. 4 in Sec. 6.3 ahead for a 
definition of dihedral angle if you are not familiar with it.) 

(c) What other collections of four points in the two cyclohexane models lie 
in a common plane? 

(d) Find coordinates of the twelve hydrogen atoms in our model of cyclo­
hexane, where you assume that their distance is 1 from each carbon atom, 
and where each carbon atom has two hydrogen atoms bonded so that the 
four bonds to the carbon are all at tetrahedral angles. How close are these 
hydrogen atoms to one another? How well do they fit (you should look at 
your model to visualize their locations). 

6.3 The Cross Product 

Definition 

There is a special product of vectors in R3 which gives another vector. This 
is called the cross product and it has important geometric properties that 
will be explored in this section. 

Definition. Consider the vectors 

and v= 

Then we define the cross product of it and v by 

We emphasize that the second entry of it X v is not P1 rz - Pz rl (it is 
the negative of this). The importance of this sign difference will become 
apparent shortly, but for now we must keep it straight for the purposes of 
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computation. For example, 

( 2) (3) ((-1)4 -1(-2)) (-2) 
-1 . X -2 = 3' 1 - 2 . 4 = -5 1 4 2(-2) -(-1)3 -1 

and 

(DxG)-cn· 
We recall that whenever a, h, C, d E R, the 2 X 2 determinant is given by 

det ( : !) = ad - be. 

Using the determinant we can express the cross product as follows: 

(~) X (~) 

Many students find this formulation of the cross product easier to remember 
since its entries can be viewed as the determinants of possible 2 X 2 matrices 
built from entries of the original two vectors. This is sometimes expressed 
as 

where we denote 

We point out mat this latter expression for the cross product is a mnemonic 
device and is not really a determinant since it mixes vectors and scalars as 
entries. 



6.3. THE CROSS PRODUCT • 207 

Perpendicularity and the Cross Product 

We next give the most important property of the cross product. 

Theorem 39. Whenever it and v are nonzero vectors in R3, and 
v is not a scalar multiple of it, the vector it X v is nonzero and is 
perpendicular to both vectors it and v. 

Proof This theorem can be verified by direct computation. We suppose that 

and so by definition 

Suppose that 11 X v = 0. Since 11 *" 0, at least one of PI, ql, or rl is nonzero. 
If ql *" 0, then ql rz - 0. rl = ° gives rz = (E rl and PI 0. - 1>2ql = ° gives q, 
1>2 = !It.q PI. Of course, 0. = !It.q ql, and this shows that v = !It. 11. Hence v is a , , q, 
multiple of 11, contrary to the assumptions of the theorem. Similar reasoning 
shows that v is also a multiple of 11 if either PI or rl is nonzero. These 
contradictions show that 11 X v *" 0, giving the first part of the theorem. 

We next compute the dot products: 

and 

Since these dot products are zero, the result follows from Theorem 36. 0 

Theorem 39 will help us develop many applications of the cross product. 
As a start, we consider the problem of finding the equation of a plane 
through three noncollinear points. Using the three points, two vectors lying 
in the plane can be found. The cross product of these two vectors is a vector 
perpendicular to the plane, and therefore any vector in the plane has zero 
dot product with this vector. We illustrate this idea in the next example. 

Example. Find the equation of the plane P through the three points P = 
0, -2,3), Q = (0,1,2), and R = (-1,2,2) E R3. 
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---+ --+ 
Solution. The geometric vectors PQ and PR translated to the origin are 

The cross product can be computed to be 

The plane P is perpendicular to u X v and passes through (1, -2,3). Hence, 
using the dot product we see the equation of P is 

l(x - 1) + l(y + 2) + 2(z - 3) = o. 

Equivalently, the equation of P can be written as x + y + 2z = 5. 

Properties of the Cross Product 
We next give some additional properties of the cross product. Each of these 
properties can be verified by an algebraic computation. 

Theorem 40. Suppose that it, V, and ware vectors in R3 and that r 
is a real number. Tben 

CD it X v = - v X it; 
(ii) v X v = 0; 

(iii) r(it X iJ) = (rU) X v = it X (riJ); 
(iv) it X (V + w) = (i1 X iJ) + (it X w); 

(v) (i1 + iJ) X w = (i1 X w) + (v X w). 

Property (a) of the theorem can be seen by inspecting the definition of 
u X v, because if the order of the vectors in the cross product is reversed, 
then the entries in the cross product move to the other side of the minus 
sign. Therefore, U X v = - v X u. This property is important. Note that for 
any two vectors u and v, there are two directions that are perpendicular 
to both. Property (a) shows that both directions are given by t"J.e cross 
product; however, the vector you get depends on the order in which the 
cross product is taken. Which of these two directions arises when a given 
cross product is taken? The answer is given by the so-called right-hand rule. 
Suppose that the index finger of your right hand points in the direction 
of the vector u and the middle finger of your right hand points in the 
direction of the vector v. Then if you manipulate your thumb to point in 
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Fig. 6.7. Right-hand rule 

the direction perpendicular to the plane through it and V, then it will point 
in the direction of it X v (see Fig. 6.7). 

In the next calculation we illustrate how properties (b), (c), (d), and (e) 
of the theorem can be used in studying cross products. Suppose that 

Before computing it X v we note that it = 3v - i. Hence, applying (e), then 
(c), and finally (b) yields 

it X v = (3v - i) X V 

= 3CV X iJ) + (-i X iJ) 

~ m -(-D CD· 
The Length of the Cross Product 
We have seen that the cross product of two vectors in R3 is a third vector 
perpendicular to the original two. Does the length of the cross product have 
any significance? The answer is yes and is explained in the next theorem. 

Theorem 41. Let i1 and v be vectors in R3. Then the length of i1 X v 
is 

1i1 X vi = 1Ii1l1l1vlllsin(8)1, 
where 8 is the angle between i1 and v. This length is the same as the 
area of the parallelogram with adjacent edges i1 and v, shown in 
Fig. 6.8. 

Proof Suppose that 
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Fig. 6.S. Parallelogram 
with adjacent edges the 
vectors i1 and v h17 - ~ u 

According to the definitions Cand a bit of algebraic manipulation), 

la X iW = (q1r2 - q2 r])2 + (p;.r1 - />Jr2i + CPlq2 - Pz.q1i 

= Cp~ + q~ + r12)CJli + rIz + rD - CPlPz. + q] q2 + r2 r2i 

= lIall 2 11vll2 - (U. vi 
= II all 2 11 vII 2 - II all 2 11 vUZ cos2ce) 

= II auz II vII 2(1 - cos2(e)) 

= lIall2 11vll 2 sin2Ce). 

This gives the first result. 
In order to understand the second statement, we look closely at the 

parallelogram with adjacent edges a and v. Applying basic trigonometry we 
see that the length of the perpendicular segment from the edge a to the 
end point of v is II vII sinCe) Csee Fig. 6.8); in other words, II vII sinCe) is the 
altitude of the triangle with sides a and v from the end point of a to the 
side v. Since the area of a parallelogram is the length of the base given by v 
times this altitude, it follows that the area of the parallelogram in question 
is II all II vII sinCe). 0 

Applications 

We conclude this section with a sequence of problems applying the cross 
product and other ideas from this chapter in a variety of ways. There are 
several ways to solve some of these problems. The solutions presented 
here are chosen in order to give you an opportunity to visualize some of 
the concepts presented in the chapter. If you are familiar with other methods 
or can think of some other techniques-great! But be sure you understand 
the geometry behind your methods. 

Example 1. Find the area of the triangle Il.PQR with end points P = 
C2,0,1), Q = (1,1,0), and R = C -1,3,2) in R3. 

----t ---+ 
Solution. The geometric vectors PQ and PR translated to the origin are 

u~CD and v~CD· 
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Their cross product can be computed to be 

The length of the vector u X v is V 16 + 16 = 4 y'2. This shows that the area 
of the parallelogram with adjacent edges PQ and PR is 4y'2. The triangle 
/1PQR has exactly half the area of this parallelogram. Therefore the area of 
/1PQR is 2y'2. 

Example 2. Find the distance between the point Q = (3,1,2) in R3 and 
the plane P defined by the equation 2x - y + z = 13. 

Solution. The plane P is perpendicular to the vector 

(To see this look at tue coefficients of the equation that defines P.) Now 
consider the line f in the direction of v and· passing through Q. Parametri­
cally, f can be described as {(2t, - t, t) + (3,1,2) I t E R} = {(2t + 3, - t + 
1, t + 2) I t E R}. The intersection of f and P is the point R on P given 
by (2t + 3, - t + 1, t + 2), where 2(2t + 3) - (- t + 1) + (t + 2) = 13. 
Solving for t, we find that 6t = 6, or t = 1. This shows that R = (5,0,3). 
Since f is perpendicular to P, it follows th~he distance between Q and 
P is the distance between Q and R. Since QR = (2, -1, 1), this distance is 
V22 + (_1)2 + 12 = -16. 
Example 3. Find a description of the line f containing (5, 5, 5) that is per­
pendicular to the plane P passing through (0,0,0), (1,3,2), and (-1,2,1). 

Solution. We must first find a direction vector for this line f. Such a vector 
must be perpendicular to both 

U~m and v~CD' 
since these vectors lie on the plane P. SO we can take for our direction 
vector u X v, which is readily computed to be 

Since f passes through (5, 5, 5), a parametric description for f is f = {( - t + 
5, -3t + 5, 5t + 5) It E R}. 
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Problems 

Example 4. Suppose that PI and Pz are nonparallel planes and that Q is 
a point on their line of intersection. Let iit be a vector perpendicular to PI 
at Q, and let ~ be a vector perpendicular to Pz at Q. The dihedral angle 
between PI and Pz is defined to be the angle between the vectors iit and 
~. 

Solution. Consider the planes described by the equations 2x - y - z = 3 
and x + y + z = 7. The vectors 

are perpendicular to these planes, respectively. Therefore, the dihedral angle 
fJ between these planes satisfies 

iit·~ ° 
cos(fJ) = lliitllll~1I = /6V3 = 0. 

This shows fJ = ~ (radians) = 90·. 

1. Consider the following vectors in R3. 

Find the following: 

(a) p X qj 
(b) q X rj 
(c) p . (q X f)j 

(d) eft X i'j) . q. 
2. Use the cross product to help find the equations for the following 

planes: 

(a) the plane through the points (2,3,1), (0,0,0), and (-1,2, 9)j 

(b) the plane through the points (2,3,1), (1,0,0), and (-1,2, 9)j 

(c) the plane that contains the two lines parameterized by {Ct - 1, 
2t + 1, t - 1) I t E R} and {( -1, t + 1, -1) I t E R}j 

(d) the plane that contains the two lines parameterized by {Ct, 2t + 2, 
t - 1) It E R} and {CO, t + 2, -1) It E R}. 
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3. (a) Find the area of the parallelogram in R3 with vertices (0,0,0), 
(1,2,2), (2,3,5), and (3,5,7). 

(b) Find the area of the triangle in R3 with vertices (0,0,0), (3, -1,2), 
and (2,0,5). 

4. (a) Find the area of the parallelogram in R3 with vertices (1,0,1), 
(1,2,3), (2,0,5), and (2,2,7). 

(b) Find the area of the triangle in R3 with vertices (2, 1, 5)' (3, -1, 2), 
and (1,4,7). 

5. (a) Find the distance between the point R = (1,0, -2) in R3 and the 
plane P defined by the equation x + y + 3z = 6. 

(b) Find the distance between the point 0 = (0,0,0) in R3 and the 
plane Q defined by the equation 2x + y + 2z = 3. 

6. (a) Find the distance between the point Q = (0,0,2) in R3 and the 
plane P described parametrically by {Ct +. u, - t, U + 5) I t, U E R}. 

(b) Find the distance between the point 0 = (1,1,0) in R3 and the 
plane Q described parametrically by {(t+ 3u-1, -t+ u, t- u-1) I 
t, U E R}. 

7. (a) Find a parametric description of the line £1 in R3 containing (3, 2,1) 
which is perpendicular to the plane P passing through (0,0,0), 
(1,0,2), and (-1,1,0). 

(b) Find a parametric description of the line £2 in R3 containing (1,0,1) 
which is perpendicular to the plane P passing through (1,0,0), 
(0,1,0), and (0,0,1). 

8. (a) Find a parametric description of the line £1 in R3 containing (1, 2,1) 
which is perpendicular to the plane given by the equation x - 3y + 
4z = 9. 

(b) Find a parametric description of the line £2 in R3 containing (-1,2, 1) 
which is perpendicular to the plane given by the equation y - 2z = 
8. 

9. Find the equation for the plane P that is perpendicular to the plane 
x - y + z = 1 and contains the line £ parameterized by {(t, t, 1) I t E R}. 

10. Find the equation for the plane that passes through (1,0,0) and (0, 1,0) 
and is parallel to line £ parameterized by {Ct, t, t) It E R}. 

11. (a) Give a sketch illustrating the meaning of the dihedral angle. 

(b) Find the dihedral angle between the planes x+ y = 5 and x- z = 2. 

(c) Find the dihedral angle between the planes x = 3 and - x + z = 2. 

12. Find the dihedral angle between the faces of a regular octahedron. (A 
regular octahedron is a polyhedron with eight equilateral triangles for 
faces and where four faces meet at each vertex.) 

13. Suppose that u + v + W = O. Show that u X v = v X w = w X u. 
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Group Project: The Cross Product and Volume 

Suppose that ii, D, W E R3. We denote by P the parallelotope with edges 
ii, D, W starting from the origin. (A parallelotope is the three-dimensional 
analogue of the parallelogram; it is a polyhedron with eight vertices, twelve 
edges, and six faces. Each face of a parallelotope is a parallelogram that is 
congruent and parallel to the opposite face.) 

(a) Show that the volume of P is Iii· CV X w) I. (Hint: Rewrite Iii· (D X w) I = 
II iill . II D X wll . coson and use the geometric interpretation of D X w.) 

(b) Relate Iii· CV X w)1 to a 3 X 3 determinant. 

(c) Use Theorem 41 to show that the area of a parallelogram with edges 
given by two vectors in R2 is given by a determinant. 



CHAPTER 

EIGENVALUES AND 
EIGENVECTORS 
OF MATRICES 

7.1 Eigenvalues and Eigenvectors 

Throughout this chapter we will consider square matrices only. We shall see 
that many properties of an n X n matrix A can be understood by determining 
which (if any) vectors vERn satisfy Av = kv for some real number k. 

Long-Term Epidemic Effects 
In Sec. 4.2 we considered a model that described changes caused by an epi­
demic in a rabbit population. At that time it was observed that the numbers 
of uninfected U(n), sickS(n), and immune len) rabbits (in millions) after 
n months were given by multiplication by the nth power of the transition 
matrix 

(

3 

( ~~;?) = ; 
len) 0 

1 
12 
o 
2-
4 

215 
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If we examine what happens after six months, and one, two, three, and four 
years we find (using a calculator to evaluate) that the population vectors 
ar~ 

() mo. 12 mo. 24 mo. 36 mo. 48 mo. 

(
4.22) 
1.50 
9.72 

(
4.76) 
1.51 
16.1 

(
10.1 ) 
3.16 
35.3 

(
22.0) 
6.88 
76.9 

(
48.0) 
15.0 
167 

At first glance one may not notice any significant pattern in these num­
bers, but if we compute the relative percentage in each category, we find 

6 mo. 

(
27.3%) 
8.8% 

63.0010 

12 mo. 

(
21.3%) 
6.75% 
71.9% 

24 mo. 

(
20.8%) 
6.51% 
72.7% 

36 mo. 48 mo. 

(
20.8%) 
6.50% 
72.7% 

(
20.8%) 
6.500/0 
72.7% 

This shows that the percentages in each category become stable after 
enough time (at least within the three decimal points of this calculation). 

Why did this happen? Note that the difference between each successive 
12-month interval was obtained by multiplying by the twelfth power of the 
transition matrix. But also note that the yearly population vectors for the 
second, third, and fourth years can be obtained by multiplying the previous 
year's vector by 2.18. In other words, if T12 is our 12-month transition 
matrix, and if vn is our population vector after n months, we have 

This is an important observation. The vector vn is called an eigenvector 
of eigenvalue'- 2.18 for the matrix Tt2. Eigenvectors often show up when 
phenomena exhibit stable behavior (as did our rabbit epidemic). 

Definition of Eigenvalues and Eigenvectors 
Deftnldon. Suppose that A is an n X n matrix. If v ERn is a nonzero 
vector and there exists a real number k such that Av = k v, we call v an 
eigenvector of A. The real number k is called the eigenvalue of A associated 
with the eigenvector V. 

Notice that an eigenvalue can be zero but that 0 is never allowed to be an 
eigenvector. The reason for this is that the zero vector satisfies the equation 
AO = kO for all real numbers k. So if we allowed 0 to be an eigenvector, 
then every real number k would be an eigenvalue! It is important, however, 
to allow 0 to be an eigenvalue, for if v is an eigenvector with associated 
eigenvalue 0, then Av = Ov = 0, so in fact, v E ker(A). 

lStrictly speaking, the eigenvalue is only approximately 2.18, and Un is an approximate 
eigenvector. 
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For example, if we consider the 3 X 3 matrix 

B = ( i 2 

D (-~) , 2 and v= 
-1 -1 

then we can check that 

Bv~ ( ; 
2 

DCD CD ~2v 2 
-1 -1 

Thus, v is an eigenvector of B with associated eigenvalue 2. 

Column Buckling 
In Fig. 7.1(a) we have indicated a vertical column that is subject to a com­
pressive force (represented by P). For example, this column could be sup­
porting the roof of a building, and the force P could be the weight of the 
roof. An important problem for structural engineers is to determine when 
the column buckles under the force. When a column buckles, as indicated 
in Fig. 7.1(b), the situation becomes unstable and the roof could perhaps 
collapse. 

One way to study the column buckling problem is represent the column 
by a function and assume this function is a solution to a specific differential 
equation. This method requires calculus and gives what is called a contin­
uous model of the column. We will not do this. Instead we will use what is 
called a finite-difference approximation of the column. This is a sequence 
of points on the column equally spaced by height. We will then assume 
that this finite approximation of the column satisfies a difference equation 
(which is closely related to the differential equation in the continuous solu­
tion). As noted in Chap. 4, difference equations are best understood using 
matrix methods, and so we can use matrix techniques to study column 
buckling. 

Here's how the finite-difference approximation of column buckling 
works. First, the nonbuckled column is represented in the .xy plane by 

Fig. 7.1. A column (a) 
and the column buckling 
(b) 

(a) (b) 
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the points with x-coordinate ° and y-coordinates between ° and 6. We use 
the seven equally spaced points (0,0), (0, 1), (0, 2), (0,3), (0,4), (0, 5), and 
(0,6) on the column to give a discrete model of the column (see Fig. 7.2). 
Suppose the column buckles a little bit. Then we have the seven points 
(0,0), (x}, 1), (X2, 2), (X3, 3), (X4,4), (Xs,5) and (0,6), where some of the 
x; are nonzero. We will assume that the top and bottom remain fixed in 
this model, ignoring the fact that the y-coordinates drop a little bit during 
buckling. Our problem is to determine the possibilities for the five values 
x}, X2, X3, X4, and Xs, and this information will give us a picture of what the 
buckling looks like. 

Engineers have determined that a good model for buckling requires that 
the sequence of x-coordinates satisfy a difference equation of the form 

(X;-l - 2x; + Xi+l) + AX; = 0, 

where the values of A depend on the forceP and the bending stiffness of 
the column,2 and where i ranges from 1 to 5. Since ~ = XU = ° in our 
model, finding solutions to this difference equation is the same as finding 
solutions to the matrix equation 

-1 
2 

-1 

° ° 

° -1 
2 

-1 

° 

° ° -1 
2 

-1 

Of course, the solution Xl = 0, X2 = 0, x3 = 0, x4 = 0, and Xs = ° works 
for all A. This corresponds to the column being straight. But what about 
other nonzero solutions? 

It turns out that for most numbers A, the zero solution for the x's is 
the only one ,possible. However, for those A'S that are eigenvalues of this 
5 X 5 matrix, there are nonzero solutions for our x's, and these correspond 
to possible buckling positions of our column. For the above matrix, it turns 
out that A = 1,2, and 3 are eigenvalues. For example, if A = 1, then it can 
be checked that Xl = 1, X2 = 1, x3 = 0, X4 = -1, and Xs = -1 is a solution. 
If A = 2, then Xl = 1, X2 = 0, x3 = -1, X4 = 0, and Xs = 1 is a solution; 
and if A = 3, we find that Xl = 1, X2 = -1, x3 = 0, X4 = 1, and Xs = -1 
is a solution. These three solutions for the buckling problem, together with 
the solution representing the straight column, are pictured in Fig. 7.2. 

These solutions show that when this type of column buckles, it bends 
back and forth, assuming a wavelike appearance. If we wanted a more 
accurate picture of the column, we could use more than seven points, plac­
ing them closer together to help us visualize more points on the column. 
The computations would be similar--only the matrices would get bigger. 

21be polynomial Xi-I - 2xI + XI+I gives a discrete approximation to the second derivative 
d2 xl dy of x as a function of y (near XI), and therefore our difference equation is a discrete 
version of the differential equation d2 xl dy + Ax = O. 
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Fig. 7.2. Four discrete -- -- -- --buckling solutions • • • • 
• • • • 
• • • • 
• • • • 
• • • • -- -- -- --A=1 A=2 A=3 

In this particular problem, the crucial question is that of finding the possi­
ble eigenvalues of a tridiagonal matrix. The computation of eigenvalues of 
large tridiagonal matrices is important for applications such as the column 
buckling problem, and engineers and mathematicians have developed many 
methods for studying this question. As you might guess, when the matrices 
get large, computer techniques for computation are needed. Eigenvalues of 
some more tridiagonal matrices are studied in the next section. 

Eigenspaces 
We shall shortly describe a procedure for computing all the eigenvalues of 
an n X n matrix. In order to do this, we give an alternate characterization 
of the eigenvectors with a fixed eigenvalue. Recall for any matrix M that 
ker(M) denotes the null space of M, that is, ker(M) = {v I Mv = O}. 

Theorem 42. Let A be an n X n matrix. Then v is an eigenvector of 
A with associated eigenvalue r if and only ifO =1= v E ker(rln - A). 
Consequently, the set of eigenvectors of A with associated eigenvalue 
r, together with the vector 0, is a subspace of R n . 

Proof Note that Av = r v is equivalent to r1n v - Av = 0, and so v is an 
eigenvector with eigenvalue r if and only if (rln - A)V = 0. This gives 
the first assertion. The second statement is a consequence of the first since 
Theorem 23 shows the kernel of any matrix is always a subspace. 0 

As a consequence of this theorem it makes sense to give the following 
definition. 

Definition. Let r be an eigenvalue of an n X n matrix A. The subspace of 
R n of all eigenvectors with associated eigenvalue r together with the vector ° is called the eigenspace associated with r. 

In this textbook the eigenspace associated with r will be denoted by Er . 

For example, it is instructive to look at a diagonal matrix. Consider 

o 
2 

o 
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Then 

~~m, ~~m, and ~~m 
are eigenvectors for D. ~ and ~ have associated eigenvalue 3, and ~ 
has associated eigenvalue 2. The theorem shows that the eigenspace ~ 
contains the two-dimensional subspace span{~,~} and that the eigenspace 
E2 contains the one-dimensional subspace span{~}. In fact, ~ must be two­
dimensional. If it were larger, it would be all of R3, but this is impossible 
since not every vector is an eigenvector for A. In addition, E2 can only 
be one-dimensional. If it were two-dimensional, it would have to have a 
nonzero common vector with ~. (The intersection of two nonparallel planes 
in R3 must contain a line.) This is impossible since an eigenvector cannot 
have two different eigenvalues. Thus ~ = span{~,~} and E2 = span{~}. 

It must be emphasized that the sum of two eigenvectors with different 
eigenvalues is not an eigenvector. The sum of two eigenvectors is another 
eigenvector only if they have the same eigenvalue. For example, the vector 
~ + ~ is not an eigenvector for D since 

D(~ +~) ~ G 
which is not a multiple of ~ + ~. 

o 
2 
o 

The Characteristic Polynomial 
In order to study more examples, we must show how to compute the 
eigenvalues of a matrix. Theorem 42 shows that v is an eigenvector for A 
with eigenvalue r precisely if (rln - A)V = O. This obseFVation motivates 
the definition of the charclcteristic polynomial. 

DeJinition. Let A be an n X n matrix. The characteristic polynomial of A, 
CA(X), is the polynomial that is the determinant of the matrix (XIn - A). In 
other words, CA(X) = det(XIn - A). 

is 
For example, the characteristic polynomial of matrix D considered earlier 

o 
1 
o D-G o 

2 
o 

= det (X ~ 3 X ~ 2 ~) 
o 0 X-3 

= (X - 3)(X - 2)(X - 3) = (X - 3i(X - 2). 

Note that in this case Cv(X) is a polynomial of degree 3. 
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In general, if A is an n X n matrix, then the polynomial CA(X) is a 
polynomial of degree n. The reasons for this are explored in Prob. 8 at 
the end of this section. The next theorem shows that the roots of the 
characteristic polynomial of A are the eigenvalues of A. Recall for any matrix 
A that null (A} denotes the dimension of the null space kerCA) of A. 

Theorem 43. Suppose that A is an n X n matrix. 
(i) A real number r is an eigenvalue oj A if and only if CA (r) = O. 

(ii) If r is an eigenvalue oj A, the dimension oj the eigenspace Er oj 
eigenvalue r is null(r1n - A) = n - rk(rln - A). 

Proof CO By Theorem 42, a real number r is an eigenvalue of A if and only if 
there exists some nonzero vector v ERn such that (A - r1n)V = O. Applying 
Theorem 15, we see that this is eqUivalent to 0 = det(A - r1n) = CA(r). This 
gives (D. For (iD, since Er = kerCrln - A), the dimension theorem shows 
that dim(Er ) = dim(ker(rln - A)) = null(r1n - A) = n - rk(rln - A), as 
required. 0 

You may have been wondering how many different eigenvalues a matrix 
can have. The charac~eristic polynomial provides the answer. 

Corollary. Any n X n matrix A has at most n distinct eigenvalues. 

Proof As observed, the degree of the polynomial CA(X) is n. The result 
now follows from Theorem 43, since CA(X) can have at most n distinct 
roots. 0 

For example, consider 

B = (~ 
We compute that 

3 
2 

o 
~) . 

-1 

CB(X) = det (X _~ 2 
X -! 2 =!) = [(X - 2)(X - 2) - 9](X + 1) 

o 0 X+l 

= [X2 - 4X - 5](X + 1) = (X - 5)(X + 1)2, 

which has the two roots -1 and 5. Hence, B has the two eigenvalues -1 
and 5. To find the associated eigenspaces, we must compute the null spaces 
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of - / - Band 5/ - B. The eigenspace associated with 5 is 

and the eigenspace associated with -1 is 

(
-3 

B-1 = ker(-/ - B) = ker -~ 

The Epidemic Revisited 
In our study of the rabbit epidemic at the beginning of this section, we used 
the transition matrix 

1 
12 
o 
2 
4 

*) =~(: ~ 
1 12 0 9 

~) . 
12 

We can compute its eigenvalues by determining the roots of the character­
istic polynomial C12T(X). It is 

(
X-9 

det ~4 
-1 
X 
-9 

-1 ) o = (X - 9)X(X - 12) + (-4)(X - 12) - 36 
X-12 

= X 3 - 21X2 + 104X + 12. 

This cubic polynomial doesn't factor in any nice way, but we can use 
a graphing calculator to find close approximations to its roots. They are 
approximately - .113,8.31, and 12.81. Now our transition matrix Tis -b. of 
the matrix 12T, so its eigenvalues are -b. of these. We find, therefore, that the 
eigenvalues of T are approximately - .0094, .693, and 1.067. Observe that 
the eigenvalue 1.067 raised to the twelfth power is 1.06712 = 2.18. This is 
the eigenvalue (to two decimal places) of T12 found earlier by investigating 
the stable behavior of our rabbit population. 

Fibonacci Numbers and the Golden Ratio 
Recall that in Sec. 4.2 we noted that the Fibonacci numbers could be com­
puted by iterative matrix multiplication. We saw there that the (n + 2)nd 
Fibonacci number PCn + 2) was determined by Pen + 1), pcn), and the 
matrix equation 

( PCn + 2)) = (1 
PCn+1) 1 

1) (PCn+1)) o PCn) 
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FIg. 7.3. A golden 
rectangle with square 
Inside 

Problems 

for all numbers n. Just as our rabbit population ratios became stable above, 
ratios of successive Fibonacci numbers become stable, too. The reason is 
that the vectors of pairs of Fibonacci numbers are close to eigenvectors of 
the transition matrix. The eigenvalues of the matrix 

P= (~ ~) 
are the roots of its characteristic polynomial Cp(X) = (X - nx - 1 

X2 - X - 1. Using the quadratic formula we find that these are 1'±;./5. 
For large values of n the vector 

( p(n + 2») 
Pen + n 

of pairs of Fibonacci numbers is very close to an eigenvector for the matrix 

T with eigenvalue 1+;./5. This means that for large n we should have 

( p(n + 2») = 1 + y's (pcn + n) 
Pen + n 2 Pen)' 

so 
Pen + n 1 + y's --- = -----'''-

pen) 2 

Indeed, using a calculator we compute that P(30) = 832,040 and P(29) = 
514,229. From this we finds ~~~~ = 1.61803398875. You can check on your 

calculator that this agrees with 1+20 to all 12 decimal point') given. The 

ratio 1+20 is known as the golden ratio since it is the ratio of the sides 
of what many people believe is an aesthetically perfect rectangle. Such a 
rectangle is characterized by the property that if a square is cut off one end 
the remaining piece is another (smaller) golden rectangle (see Fig. 7.3). 

1. Find the characteristic polynomial, the eigenvalues, and the eigenspaces 
(if any) of each of the following matrices. 

(a) (~ ~ ) (b) (~ ~ ) (c) (_ ~ ~ ) 
2. Find the characteristic polynomial, the eigenvalues, and the eigenspaces 

(if any) of each of the following matrices. 
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3. 

(a) G 0 

D (b) G 1 

D (c) U 1 D 0 1 1 
1 0 1 

Find a 2 X 2 matrix R with eigenvalues 1 and -1 and with 

E1 = span { (_~)} and B-1 = span { (~)}. 
If you multiply a vector on the left by R, you obtain what is called its 
reflection. Explain geometrically what this means. 

4. Use a calculator or a computer to approximate the eigenvalues of the 
following matrices. 

( 0 .3.4) (2 3 
(a) .1 0.2 (b) 3

1 
4 

.9 .7 .4 3 
5. Show that the characteristic polynomial of 

is 

Find E1 and E2. 

B= ( i 
-1 

2 
2 

-1 

CB(X) = (X - l)(X - 2i. 

(c) G 3 
-3 

4 
-i) 
-2 

6. (a) Assume that the real number k is an eigenvalue of the matrix A. 
Show then that k 2 is an eigenvalue of the matrix A2. 

(b) If k is an eigenvalue of an invertible matrix A, show that k-1 is an 
eigenvalue of A-I. 

(c) Show that if N is nilpotent, then 0 is the only eigenvalue of N. 
(Recall that a square matrix N is called nilpotent if N k is the zero 
matrix for some positive integer k.) 

7. Show that the matrix 

o 
1 
o 

has the three eigenvalues 1, 1(3 + V5), and 1(3 - V5). 
8. Write a paragraph explaining why the characteristic polynomial of an 

n X n matrix has degree n. Use the fact that the determinant is a sum of 
(signed) products of entries of a matrix, where each summand consists 
of a product of entries representing exactly one row and exactly one 
column. 

9. Suppose that A is a 3 X 3 matrix. Show that there is some real number 
c with rk(A - cI) s 2. 
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10. Assume that A is an n X n matrix with the special property that the 
sum of the entries of each row is the same number r. Show that r is 
an eigenvalue of A. (Hint: Find an eigenvector.) 

Group Proj~t: Eigenvalues and Determinants 

For parts (a) and (b), suppose that A is an n X tl matrix with n distinct 
eigenvalues Cl, C2,"" Cn· 

(a) Show that det(A) = Cl C2 ••• Cn . (Hint: What must the characteristic poly­
nomial be?) 
(b) The trace of A, denoted by trCA) , is defined to be the sum of the 
diagonal entries of A. Show that tr(A) = Cl + C2 + ... + cn. (Note: For 
this problem you should first observe that the result is clear for diagonal 
matrices. Next try 2 X 2 and 3 X 3 matrices and find out which coefficient 
of the characteristic polynomial shows up as the trace.) 
(c) Suppose that A is an n X n matrix with characteristic polynomial Xn + 
an_1Xn- 1 + ... + a1X + ao. Show that det(A) = (_l)n ao. Deduce that for 
any matrix A, A is invertible if and only if CA(O) -=1= O. 

Group Project: Estimating Eigenvalues with Matrix Powers 

For this project you will need to know how to compute matrix powers on 
a calculator or computer. You will also need to find out how to calculate 
characteristic pQlynomials and approximate their roots on your machine. 
Consider the matrix 

(
0.2 

A = 0.3 
0.1 0.4 

0.3 0.1 
0.0 0.6 
0.6 0.2 
0.2 0.3 

0.4) 
0.2 
0.3 . 
0.1 

(<1) Find A25. The columns of A are eigenvectors of A (at least within a few 
decimal points). Check this. What eigenvalues do you obtain? 
(b) Using a graphing calculator or a computer, find the roots of the charac­
teristic polynomial of A to three decimal points. 
(c) Which eigenvalues in part (b) did you find in part (a), and which did 
you miss? What happened to the eigenvalues that you missed? Why didn't 
they show up as columns of A25? 

7.2 Eigenspaces and Diagonalizability - Dlagonalizable Matrices 
If D is the diagonal matrix with diagonal entries d1, d2, •.. , dn , then the char­
acteristic polynomial of D is (X - d1)(X - d2)· •• (X - dn ). Therefore, the 
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eigenvalues of D are db d2 , •.. , dn . Moreover, an eigenvector with eigen­
value dt is the ith basis element ej. (Recall that ej is our notation for the ith 
standard basis vector that has all zero entries except the ith entry, which is 
1.) In particular, we see that D has n linearly independent eigenvectors. 

Suppose that A is an n X n matrix and that the matrix p-1AP = Dis 
diagonal for some invertible matrix P. Assume that the diagonal entries of D 
are db d2 , ... , dn. Consider the vector Pet ERn. Multiplying the equation 
p-1AP = D by P shows AP = PD, and consequently 

A(PeD = (AP)et = (PD)ej = P(DeD = Pdtej = dj(pej). 

This shows that Pej is an eigenvector of A with eigenvalue d j . In particular, 
we see that the matrix A has n linearly independent eigenvectors, namely, 
P~, Pez, ... , Pen. 

The problem of finding an invertible matrix P so that the matrix p- I AP 
is diagonal turns out to be an extremely important problem in matrix theory. 
We give the following definition. 

Definition. A matrix A is called diagonalizable if there exists an invertible 
matrix P such that the matrix p-I AP = D is a diagonal matrix. 

We first note that not every matrix is diagonalizable. For example, the 
matrix 

J = (~ ~) 
has characteristic polynomial G.teX) = (X - 1)2. It ~ only eigenspace, E1, 

is one-dimensional, and therefore J cannot have two linearly independent 
eigenvectors. Thus, J is not diagonalizable. 

Often, however, a matrix that looks nothing like a diagonal matrix can 
be diagonalizable. Consider the matrix 

C = ( 2~ ; 
-2 -1 

-1~) . 
14 

Let 

p~ G 0 -D -1 
1 

Then by direct calculation, 

( -I 
1 

I) ( 2~ 3 5 -1~) (i 0 -D p-1CP = -1 5 -1 
5 

-1 1 -2 -1 '14 1 1 
5 5 5 

('~ 
0 

~), 15 
0 -5 
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which shows that C is diagonalizable. The meaning of the matrix P in this 
example (as well as how to find it) is addressed next. 

Theorem 44. Suppose A is an n X n matrix. Then A is diagonalizable 
if and only if A has n linearly independent eigenvectors. 

Proof We noted above that if p- l AP = D is diagonal, then the vectors Pej 
are eigenvectors of A. Since the Pe; are the columns of the invertible matrix 
P, they are linearly independent. Conversely, suppose that Vl'~"'" vn 
are linearly independent eigenvectors for A with eigenvalues kl' k2, ... , k n , 

respectively. Let P = (lit ~ ... vn) be the matrix whose columns are these 
vectors. By the definition of matrix multiplication, Pej = Vj since it is the ith 
column of P. Likewise, (P- l AP)e; is the ith column of p- l AP. We fihd that 
(P- l AP)e; = p- l Av; = p- l kjv; = k;P- l Vi = kiP- l Pe; = kjej. This shows 
that p- l AP is the diagonal matrix whose ith diagonal entry is k;. 0 

Note that the proof of Theorem 44 tells us how to find the diagonalizing 
matrix P once we know our matrix A is diagonalizable. P is the matrix 
whose columns are linearly independent eigenvectors for A. For example, 
recall the matrix C, which we diagonalized above. The diagonal entries of 
p- l CP were 10, 15, and -5. The columns of P, namely 

are eigenvectors of C with eigenvalues 10, 15, and -5 respectively. This 
can be checked by direct calculation. 

Linear Independence of Eigenvectors 
We have shown that a matrix is diagonalizable whenever it has enough 
linearly independent eigenvectors. How do we know if eigenvectors are 
linearly independent? This next result helps. 

Theorem 45. Suppose that Vl, ~J ••• , Vn are eigenvectors of a matrix 
A and that each corresponds to different eigenvalues. Then {i\, ~, 
... , Vn} is linearly independent. 

Proof Assume the contrary. Let k i be the eigenvalue associated with Vi, and 
suppose that 

(1) 

where not all aj = O. Assume also that this expression has a minimal 
number of nonzero coefficients aj among all possible such expressions. 
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Because each Vj is a nonzero vector, we see that at least two at must be 
nonzero. In particular, since the eigenvalues kl, k2' ... , k n are distinct, there 
is some i with at *" 0 and kt *" o. After reordering the vectors Ut,~, ... , vn 
(if necessary), we can assume that i = 1. This means that both al *" 0 and 
kl *" O. Hence 

0= AO = A(alUt + a2~ + ... + anvn) 

= alAUt + a2A~ + ... + anAvn 

= alklUt + a2k2~ + ... + anknvn . 

Since kl *" 0, this gives 

alit + a2~1t. + ... + a !!..o..v = O. VI kJ v~ n kJ n (2) 

Subtracting (2) from our original expression (1), we find 

OUt + a2 (1 - t) ~ + ... + an (1 - ~) vn = O. (3) 

Note that since kl' k2' ... , k n are all distinct, each of 1 - t, 1 - ~, ... , 1 - ~ 
is nonzero. Hence (3) is a nontrivial linear combination of Ut, V,z, ... , vn that 
is O. But (3) has fewer nonzero codficients than (1), since Ut has 0 as a 
coefficient. This contradicts our original choice of expression (1). It follows 
that {Ut, ~, ... , vn} is linearly independent. 0 

As an immediate consequence of Theorems 44 and 45, we have the 
following corollary. 

Corollary. If an n X n matrix A has n distinct eigenvalues, then A 
is diagonalizable. 

Proof According to Theorem 45, any set of n eigenvectors of A with distinct 
eigenvalues must be linearly independent. Theorem 44 shows that A is 
diagonalizable. 0 

Eigenvalues of the Tridiagonal Matrix Used In the Column 
Buckling Problem 
Recall that the solutions found in the column buckling problem appeared 
to oscillate back and forth, like a trigonometric function. 3 This suggests we 
adopt a strategy to look for possible eigenvectors that arc based on periodic 

3Students familiar with the solutions to second-order linear differential equations won't be 
surprised, because the difference equation that generated the tridiagonal matrix corresponds to 
the differential equation d2 xl dy. + AX = 0 whose solutions are generated by the trigonometric 
functions x = sin( JAy) and x = cos( JAy). 
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functions. The strategy will enable us to avoid computing the characteristic 
polynomial of tridiagonal matrices. We consider the n X n matrix 

Tn.a = (
a 1 0 0 "') 1 a 1 0 .. , 

~ .. ,I .. , ~ .. , ~ .. : : : ' 

which is symmetric and tridiagonal like the matrix considered in our buck­
ling model. We desire to find for which values a this n X n matrix is singular. 
For this we must find a nonzero vector x = (x}, X2, ... ,.Xn ) in the null space 
of Tn.a . Because x E kerCTn.a ), we have the system of equations 

aXI + X2 = 0 

Xl + aX2 + x3 = 0 

X2+ ax3+X4=0 

Xn-l + aX7I = O. 

If we take .xo = 0 and Xn+l = 0, then all of these equations can be repre­
sented by the single equation 

Xj-l + aXj + Xj+l = 0, 

where j = 1,2, ... , n. 
Our strategy of looking for periodic solutions to our buckling problem 

suggests that we try .xo = 0 = sin(O 8), Xl = sin(8), X2 = sin(28), x3 = 
sin(30), and so on for various values of 8, with the final assumption that 
Xn+l = 0 = sin((n + 1)8). This last assumption means that 8 is a multiple 
of n:l' The trigonometric identity 

sin(8 + t/!) = cos(8)sin(t/!) + sin(8)cos(t/!), 

together with the facts sine - 8) = - sin(8) and cos( - 8) = cos(8), applied 
to our proposed solution shows, 

o = Xj-l + aXj + Xj+l 

= sin((j - 1)8) + a sin(j 8) + sin((j + 1)8) 

= cos(j 8) sine - 8) + sin(j 8) cos( - 8) + a sin(j 8) 

+ cos(j 8) sin(8) + sin(j8) cos(8) 

= - cos(j8) sin(8) + sin(j8) cos(8) + a sin(j 8) 

+ cos(j 8) sin(8) + sin(j 8) cos(8) 

= a sin(j 8) + 2 sin(j 8) cos( 8) . 
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The last expression is zero when a = -2cos(0). This shows that whenever 
o = sin((n + 1)0) and a = -2 cos(O), the n X n symmetric tridiagonal matrix 
Tn,Of. is singular. For each n, we can choose 0 = ::'1' where k = 1,2, ... , n, 
and our calculation will give n distinct values of a for which Tn,Of. is singular. 

Note that Tn,b- A1n = Tn,b-A. If Tn,Of. is singular, then setting b - A = a 
gives A = b - a as an eigenvalue of Tn,b' Since we have found n distinct 
possible values of a, this gives the n eigenvalues of the matrix Tn,b. Since 
Tn,b has at most n distinct eigenvalues, we have found them all. This shows 
that Tn,b is diagonalizable. 

For example, if n = 5, the possible a values with 15,Of. singular are 
a = 2 cos 2! = 123 a = 2 cos 2! = 1 a = 2 cos 2! = 0 a = 2 cos 411" = -1 6 Y J, 3' 2' 3' 

and a = 2 cos 'i- = -..;3. In our buckling problem earlier we needed to 
know the eigenvalues of the matrix 

( 

2 
-1 

r" ~ ~ 

-1 
2 

-1 
o 
o 

o 
-1 

2 
-1 

o 

o 
o 

-1 
2 

-1 

~) . 
-1 

2 

These eigenvalues are precisely the values A for which A - 2 = a. We find 
that they are A = 2 + ..;3, 3, 2, 1, and 2 - ..;3. Recall that the eigenvalues 
1, 2, and 3 were used in constructing the discrete solutions to our buckling 
problem pictured in Fig. 7.1. 

Further Criteria for Diagonalizabillty 
We conclude this section by discussing further criteria that determine when 
a matrix is diagonalizable. Recall that in the corollary to Theorem 45 we 
showed that if an n X n matrix has n distinct eigenvalues then it is diag­
onalizable. This shows that if the characteristic polynomial of a matrix A 
factors as CA(X) = (X - d1)(X - d2)· • .I(X - dn), where d1, d2, ••. , dn are 
n distinct real numbers, then A is diagonalizable. A partial converse to this 
is true. 

Suppose that an n X n matrix A is diagonalizable. Then we can find P so 
that p-1 AP = D is a diagonal matrix, with diagonal entries d1, d2, ..• , dn. 

Using A = PDP-I, we can compute the characteristic polynomial of A using 
this expression: 

CA(X) = det(Xlrl - A) = det(XPlnP- 1 - PDP-I) 

= det(PXlnP- 1 - PDP-I) = det(P(XlnP- 1 - DP- l )) 

= det(P(Xln - D)P- l ) = det(P)det(Xln - D)det(p- l ) 

= det(XIn - D) = CD(X) = (X - dl)(X - d2)··· (X - dn). 
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In particular, CA(X) can be expressed as a product of linear factors. We 
record this in the following result. 

Theorem 46. If A is an n X n diagonalizable matrix, then its char­
acteristic polynomial can be expressed as a product oj linear Jactors, 
that is, CACX) = CX - d})CX - d2)· •• CX - dn ), where d}, d,z, ... , dn 

are real numbers. 

Unfortunately, Theorem 46 does not handle all possibilities. Many poly­
nomials cannot be factored into a product of linear polynomials (X - d j ) 

where the d i are real numbers. Even when they do, they may have multiple 
roots (which means the d i in a factorization may not be distinct). What then? 

For example, consider the following three matrices: 

(~ 
o 
2 
o (~ 

1 
2 

o 

1 
2 

o 

Each has the same characteristic polynomial, (X - 2)3, and thus each has 
the single eigenvalue 3. If we subtract 213 from each, we obtain 

o 
o 
o 

1 
o 
o 

1 
o 
o 

which have ranks 0, 1, and 2, respectively. This means the dimensions of 
the eigenspaces of these three matrices are 3, 2, and 1. Since the first matrix 
is diagonalizable, we see that it is possible for a matrix to be diagonalizable 
when it has a "repeated" eigenvalue. However, the later two matrices are 
not diagonalizable since it is impossible for them to have three linearly 
independent eigenvectors. These observations motivate the next definition. 

Definition. Let A be an n X n matrix, and suppose k is an eigenvalue of 
A. The highest power of (X - k) that divides CA(X) is called the algebraic 
multiplicity of the eigenvalue k. The dimension of the eigenspace Ek of A 
associated with k is called the geometric multiplicity of the eigenvalue k. 

The three matrices just considered each have eigenvalue 2 with algebraic 
multiplicity 3. The geometric multiplicities of these matrices are 3, 2, and 1. 
Only the first is diagonalizable. 

Note that if the characteristic polynomial of an n X n matrix is a prod­
uct of linear factors, the sum of the algebraic multiplicities is n. It turns 
out (although we won't give a prooD that the geometric multiplicity of 
an eigenvalue never exceeds its algebraic multiplicity. Using this we see 
that there exist n linearly independent eigenvectors for a matrix A only 
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Problems 

when the geometric multiplicity equals the algebraic multiplicity for each 
distinct eigenvalue of A. Conversely, if the geometric . mUltiplicity equals the 
algebraic multiplicity for each eigenvalue, then bases for each eigenspace, 
taken together, will give n linearly independent eigenvalues. This gives the 
following theorem. 

Theorem 47. Let A be an n X n matrix, and suppose that CA(X) 
factors into linear factors. Then A is diagonalizable if and only if 
the geometric multiplicity of each eigenvalue of A is the same as its 
algebraiC multiplicity. 

For example, the matrices 

6 
7 
o ~) and 

o 
9 
o 

are diagonalizable. In each case the characteristic polynomial has distinct 
linear factors. However, the matrix 

3 
2 
o 

from Sec. 7.1 has characteristic polynomial GB(X) = (X - 5)(X + 1)2. The 
two eigenvalues 5 and -1 have algebraic multiplicitf 1 and 2, respectively. 
The associated eigenspaces each have dimension 1. Theorem 47 shows that 
B is not diagonalizable. 

1. For each of the following matrices, determine all (real) eigenvalues and 
eigenspaces. If the matrix is diagonalizable, show how to express its 
diagonalization in the form p-1AP = D. 

(a) (~ ~ ~) (b) (~ ~ ~) 
2 2 0 1 -3 3 

(c) (~ -1) 
-1 

2. For each of the following matrices, determine all (real) eigenvalues and 
eigenspaces. If the matrix is diagonalizable, show how to express its 
diagonalization in the form p-l AP = D. 

(a) G 1 
1 
2 ~) 

1 
1 

-1 
(e) G 

1 
o 
o 
o 

o 
1 
o 
o 
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3. Suppose that A is a 3 X 3 matrix with eigenvalues 0, 1, and 2 and 
eigenvectors U, V, and iV, respectively. 

(a) Find a basis for col(A). Justify your assertions. 

(b) Find a basis for ker(A). Justify your assertions. 

(c) Can you solve the equation AX = v for 5b. How about AX = v + iV? 
or AX = u? 

4. Write five 5 X 5 matrices, each with the single eigenvalue 7, with all 
possible geometric multiplicities. 

5. Suppose that A is an n X n matrix and kerCA) is (n - I)-dimensional. If 
A also has a nonzero eigenvalue, show that A is diagonalizable. 

6. Find the eigenvalues of the tridiagonal matrices 

( -i 
-2 0 0 

-~) 
1 1 0 0 0 0 

3 -2 0 
1 1 1 0 0 0 
0 1 1 1 0 0 -2 3 -2 and 
0 0 1 1 1 0 

0 -2 3 0 0 0 1 1 1 
0 0 -2 

0 0 0 0 1 1 

7. Suppose that A2 = A. What are the possible eigenvalues of A? 

8. (a) Let 

A~ G 0 n 2 
0 

Suppose that B is a 3 X 3 matrix and that AB = BA. Show that B is 
also a diagonal 3 X 3 matrix. 

(b) Suppose that A is an 3 X 3 real matrix with three distinct eigenvalues. 
Let B be another 3 X 3 matrix for which AB = BA. Show that B is 
diagonalizable. (Hint: Think about part (a), and use a diagonalizing 
equation p-1AP = D.) 

(c) Suppose that A and Bare diagonalizable matrices with precisely the 
same eigenspaces (but not necessarily the same eigenvalues). Prove 
that AB = BA. 

9. Two matrices A and B are called similar if there exists an invertible 
matrix P such that A = p-l BP. 

(a) Show that if A is similar to B, and if B is similar to C, then A is 
similar to C. 

(b) Determine if the following pairs of matrices are similar. 

CO (~ ~) and (~ ~) 
(ij) (~ ~) and (~ ~ ) 
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(iii) (~ ~) and (~ ~) 
10. Diagonalize the following real symmetric matrices. In each case find the 

angle between the eigenspaces. 

(a) (! :) (b) (_~ -~) (c) (~ ~) 
11. Suppose that A is an n X n diagonalizable matrix. Show that for any m, 

Am is also diagonalizable. 

Group Project: Triangular Matrices 

Show that every matrix whose characteristic polynomial factors into linear 
factors is similar to an upper triangular matrix using the following outline 
as a guide: Proceed by induction on n where A is an n X n matrix. If A has 
the eigenvalue c, show that A is similar (see Prob. 9 for the definition) to 
the partitioned matrix 

where B is an (n -1) X (n -1) matrix. Observe that CA(X) = (X - c)CB(X). 
Apply the induction hypothesis to B and derive the result. 

Group Project: Diagonalization and Matrix Powers 

The matrix 

A=(~ -30) 
-16 

is diagonalizable. A has eigenvectors 

(~) and (;) 

(a) Find their eigenvalues, and find a matrix P so that p-I AP = D is 
diagonal. 

(b) For any square matrix D and invertible matrix P, show that (PDP- I )2 = 
pdp-I. What is (PDP-I)IO? 

(c) Use parts (a) and (b) to calculate AlO by hand. Check your answer 
using a calculator. 

Cd) Using the idea from part Cc), find a formula for An. 
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7.3 Symmetric Matrices and Probability Matrices -
Symmetric matrices arise in many applications of linear algebra. The most 
important fact is that any real symmetric matrix can be diagonalized. 

Symmetric Matrices Have Real Eigenvalues 
In our first result we shall need to use the set of complex numbers C. Recall 
that if a = a + bi E e, where a, b E R, then the complex conjugate a 
is a = a - bi. We shall need to use the facts that whenever a, {3 E e, 
a + fj = a + {3 and afj = a{3. We shall also require the theorem that every 
nonconstant polynomial over e has a root in e (the fundamental theorem 
of algebra). First we show that symmetric matrices have real eigenvalues. 

Theorem 48. Every real symmetric matrix has a real eigenvalue. 
Moreover, all eigenvalues of a symmetric matrix are real. 

Proof Let S be a real symmetric n X n matrix. We view S momentarily 
as a complex matrix. Since the characteristic polynomial of S has a root 
in e, we see that S has a complex eigenvalue a. (The reasoning given in 
Sec. 7.1 where we showed that the roots of the characteristic polynomial 
are eigenvalues, applies to complex roots as well, as long as we allow our 
eigenvectors to have complex coordinates.) To prove the theorem we must 
show that a E R. 

Let v E en be an eigenvector of eigenvalue a, which we view as a 
column vector. We denote by V the vector obtained by replacing each entry 
of v by its conjugate, and Similarly for S. Since S is a real symmetric matrix, 
we have S = S = S'. Note that since we use v as a column vector, it makes 
sense to write v', which is a row vector. Using Sv = av, we have the 
following sequence of equalities: 

a(V'V) = (av)'V = (Sv/D = v'StV 

= vl(SV) = vt(Sv) = vl(SU) = vl(aU) 

= vl(aV) = avIV. 

Suppose that v is the vector whose jth entry is the complex number 
aj + bji. Then multiplying out we find that vlV = ar + bi + ~ + ~ + 
... + a~ + b~. Since v "* 6, this shows that vlV "* O. Consequently, our 
computation shows that a = a. This shows that a is real and proves the 
theorem. 0 

Dlagonallzatlon of Symmetric Matrices 
Using Theorem 48 one can show that symmetric matrices are diagonaliz­
able. In fact, it turns out that the eigenspaces of a symmetric matrix are 
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perpendicular. The proof of this result will be given in Theorem 66, which 
appears in Chap. 9. 

Theorem 49. Every real symmetric matriX S is diagonalizable. More­
over, the eigenspaces of S are orthogonal. 

For example, consider the symmetric matrix 

T=(~ i). 
The characteristic ,polynomial of the matrix T is CT(X) = (X - 1-)2 - 9 = 
(X + 2)(X - 4). The eigenspaces of T are checked to be 

Note that B-2 and ~. are orthogonal in R2. If we choose an eigenbasis for 
T with length 1 eigenvectors and form the matrix 

p= (

I 

..fi. 
_ I 

·Vi 
Jz). 
I ' 

Vi 
then 

p-Iyp = (tz 
..fi. 

3) ( ~ 1 --
..fi. 

Jz)=(-20) 
...L ° 4 . 
..fi. 

Observe that p-I = pt. 

Quadratic Forms Associated with Symmetric Matrices 

Symmetric matrices are closely related to homogeneous quadratic polyno­
mials. A homogeneous quadratic polynomial, or quadratic form, in the 
variables Xl, X2, ... , Xn is a polynomial of the form 

F(X}, X2, •.. , Xn) = L aljX/Xj , 
Ij 

where every summand has degree two. For example, X2 + YX is a homo­
geneous quadratic polynomial, while X2 + Y is not. 

Observe that if A = (a/j) is an n X n matrix, then the polynomial 
obtained by multiplication, 
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is a homogeneous quadratic polynomial. Every homogeneous quadratic 
polynomial can be obtained by matrix multiplication in this way. In fact, we 
can require the matrix used be symmetric. For example, suppose the poly­
nomial F(X1, X2, ... , Xn) = ~Ij ajjXix.;. If we define S = (Sij) where Slj = 
!(ai + aj), we find that S is a symmetric matrix and that F(Xb X2, ... ,Xn) = 
~Ij aijXjXj = ~jj SljXjXj = Qs(X1, X2, ... , X n)· 

As an example, the polynomial F(X, Y) = 3X2 - 2XY can expressed as 
F(X, Y) = Qs(X, Y), where S is the symmetric matrix 

S = ( 3 
-1 

-1) ° ' 
since 

Note that when D is the diagonal matrix with diagonal entries db d2, •.. , 

dn then QD(X1, X2, ... , Xn) = d1Xl + d2Xf + ... + dnX~, which is called a 
diagonal polynomial. 

The positivity or negativity of functions defined by diagonal polynomials 
can be understood by looking at their coefficients. For example, if each 
d j > 0, then the function QD(X1, X2, ... , Xn) = d1Xl + d2Xf + ... + dnX~ 
increases whenever the variables do. Furthermore, the minimum value of 
this function is zero. On the other hand, if there are both positive and 
negative values for the dj's, then there is no maximum or minimum value 
for the function. If all the d j are positive, then QD is called positive definite; 
if all the d j are negative; then QD is called negative definite; and if both 
signs occur, QD is called indefinite. 

The fact that symmetric matrices can be diagonalized is extremely useful 
in this connection. It shows that every homogeneous quadratic polynomial 
can be diagonalized after a linear change of variables. Suppose that S is 
symmetric and that Qs(X) = X t SX is the associated quadratiC polynOmial. 
Assume that P is invertible with pt = p-l and D = pt SP is diagonal. (The 
fact that p can be chosen with pt = p-l is a special property of symmetric 
matrices that we prove in Theorem 66.) We define a new column of variables 
Y by Y = ptx, and so X = PY. Then we can express Qs(X) = XtSX = 
(PY)lSPY = yt(ptSP)Y = QD(Y) as a diagonal polynomial in the new 
variables Yi, Y2, ... , Yn. 

For example, consider F(X, Y) = X2 + 6XY + y2. Then F(X, Y) = 
QT(X, Y), where T is the symmetric matrix 

T= (~ i) 



238 • 7. EIGENVALUES AND ElGENVEcroRS OF MATIpCES 

considered at the start of this subsection. We saw there that if 

~) 1 ' 
7z 

( -2 
then ptyp = 0 ~) 

where pt = p-l. This means that if we set 

(~)~pU)~(~ -~)U)~ ~(~~n, 
then F(X, Y) = - 2A2 + 4B2. We check this: 

as desired. 

-2A2 + 4B2 = -2!(X - y)2 + 4!(X + Yi 

= - X2 + 2XY - y2 + 2X2 + 4XY + 2 y2 

= X2 + 6XY+ y2 

Remark. The two-variable case just illustrated is a familiar result from 
high school mathematics. It is nothing other than completing the square 
to eliminate the mixed term of a homogeneous quadratic. Explicitly, con­
sider CJI = aX2 + bXY + cy2. Then ql = a[X + i'a yj2 + (c - ~)y2, which 
shows how to diagonalize the original polynomial as lh = aR2 +(c- ~)S2. 
The matrix P giving this change of variables is 

p=(~ 2t) 
since 

It is possible to diagonalize any quadratic polynomial by completing the 
square. You need to eliminate successively all the nondiagonal terms by 
appropriate replacements of the variables in the same way that the XY term 
was removed above. 

Markov Chains and Random Events 
In our study of the effect of an epidemic on a rabbit population we saw 
that the population growth could be estimated using iterative matrix multi­
plication. These same ideas can be used to compute the probability of the 
outcome of a large number of sequential random events. Suppose that a 
new gambling game is introduced. In this game a mouse is placed in room 
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Fig. 7.4. A mouse maze F A--'-
D 

B 

c 

E 

A in the maze depicted in Fig. 7.4. All players bet on where the mouse will 
be exactly one minute later. Different rooms have different payoff rates. You 
want to determine the probability that the mouse will be in any given room 
so that you can decide how to bet. 

After observing the mouse that runs this maze, you decide that on the 
average, every two seconds the mouse will either move through a door or 
do nothing and that each of these events has equal probability. This means, 
for example, that after two seconds of its start in room A, the mouse has a 
one-in-three probability of being in room A, B, and D, and a zero probability 
of being in room e or E. Of course, after four seconds, the mouse could be 
anywhere. To find out what happens after 60 seconds, we construct a 5 X 5 
transition matrix representing each two-second movement of the mouse, 
and we raise the matrix to the 30th power. In its first column this matrix, 
M, has the probabilities of going from room A to each of the rooms A, B, 
e, D, and E. The second column of M contains the probabilities of going 
from room B to each of the rooms A, B, e, D, and E, and so forth. We have 

1 1 0 1 0 3 4 3 
1 1 1 0 1 
3 4 3 4 

M= 0 1 1 0 1 
4 3 4 

1 0 0 1 1 
3 3 4 
0 1 1 1 1 

4 3 3 4 

Using a calculator with matrix capabilities, we find that 

(1762 .1762 .1762 .1762 1762) .2349 .2349 .2349 .2349 .2349 
M 30 "", .1762 .1762 .1762 .1762 .1762 

.1762 .1762 .1762 .1762 .1762 

.2349 .2349 .2349 .2349 .2349 

This matrix tells us the probabilities of the mouse posItIon aft6f 30 
seconds. (Of course, this is all based on our theory of how the mouse 
runs. If we add food, or get a lazy mouse, the outcome probabilities will 
change.) Note that our initial mouse location is the column vector e1, and 
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consequently, 

(1762 .1762 .1762 .1762 1762) D (1762) .2349 .2349 .2349 .2349 .2349 0 .2349 
.1762 .1762 .1762 .1762 .1762 0 = .1762 
.1762 .1762 .1762 .1762 .1762 0 .1762 
.2349 .2349 .2349 .2349 .2349 0 .2349 

is the column representing the outcome probabilities. We see that on av­
erage, the mouse should end up in rooms A, C, and D 17.6% of the time 
and in rooms Band E 23.5% of the time. This should help us place our 
bets. Observe that if the mouse started in a different room the outcome 
probabilities would be the same since the columns of M30 are identical. 

Probability Matrices 

In our mouse example, the matrix M had some special features. The first 
noticeable fact is that its high powers, such as M30, have identical columns. 
In fact, M31 would have these same columns (to the four decimal points 
listed). The reason for this is that M is a probability matrix. Observe that 
the columns of M represent the probabilities of a certain outcome, and 
therefore all sum to 1. More generally, we have the next definition. 

Definition. A vector (aI, a2, ... , an) E Rn is called a probability vector 
(also called a distribution vector) if each aj ~ 0 and al + a2 + ... + an = 1. 
An n X n matrix T is called a probability matrix (also called a stochastic 
matrix) if each column is a probability vector. 

A model that uses iterative matrix multiplication by a probability matrix 
is called a Markov chain. For example, our mouse probability determination 
used a Markov chain. In a Markov chain, the probabilities of the states of 
the system are represented by a probability vector. Then each change in 
these probabilities-that is, each transition-will be given by multiplying 
the probability vector by a probability matrix. Of course, we have to make 
sure that the result of this transition is another probability vector. This next 
lemma says exactly this. 

Lemma. A matrix M is a probability matrix if and only if all entries 
are nonnegative and if whenever p is a probability vector, M p is also 
a probability vector. 

What we noticed in our mouse example is true in general. After many 
iterations the outcome is a matrix whose columns are the same and in fact 
are eigenvectors with eigenvalue 1. We say that a probability matrix M is 
regular if, for some n, M n has no zero entries. If a probability matrix is 
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regular, then eventually (after enough iterations) there is a positive proba­
bility that an object can change from its original state into any other state. A 
probability vector is called a stable vector for M if it is an eigenvector for M 
with eigenvalue 1. Using this terminology, one has the following theorem. 

Theorem 50. Let M be a regular probability matrix. Then 
(0 1 is an eigenvalue of M and M has a unique stable vector V, 
(ii) For any probability vector w the limit limn-->ooMn w makes sense 

and is the unique stable vector v. 

In the previous subsection each column of M30 is a stable vector for 
M30 (they are all the same to the decimal points listed). Although we won't 
define the limit in part (b) of the theorem, it can be understood as saying 
that for large n the M n il; all are extremely close. . 

Example. Suppose that there are three taxi zones in a small town which 
are called Zone I, Zone 2, and Zone 3. By studying the passenger logs over 
a one year period, the taxi company has determined the probabilities of 
passengers needing to travel from one zone to another. In the probability 
matrix 

(
.15 .30 

T = .40 .25 
.45 .45 

.25) 

.55 

.20 

the i jth entry represents the probability of a passenger starting in Zone i 
requiring a ride to Zone j. 

If the vector, V, represents the distribution of taxis in each zone, then the 
product Tv represents the likely distribution of these taxis after each makes 
one trip. We make the assumption that each trip takes the same amount of 
time (which of course isn't quite true, but is needed make the model work). 
Then Tn V represents the distribution of taxis after n trips. The second part 
of Theorem 50 says that for large values of n, the matrices Tn V will all be 
(essentially) the same. This value represents the distribution of taxis that 
will be stable, and therefore provide a service to taxi passengers that (on 
average) will minimize their waiting time. Computation shows that 

(
.25 .25 

T50 "", .39 .39 
.36 .36 

.25) 

.39 

.36 

Therefore, if there are 100 taxis in the fleet, a stable distribution would be 
25 taxis in Zone I, 39 taxis in Zone 2, and 36 taxis in Zone 3. 
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Problems 

The Closed Leontlef Input-Output Model 

An important problem in economics is to determine how goods and ser­
vices are exchanged. Markov chains can provide a model for understanding 
what may happen in a closed economy (one where the goods and services 
exchanged remain confined to a single location under study). These models 
are known as closed Leontief input-output models. 

As an illustration we consider an economy with n "industries" that buy 
and sell products from one another. These industries could be manufactur­
ers, stores, consulting firms, or similar entities. We will analyze this economy 
using an n X n matrix L = (iij) where the entry iij represents the fraction 
of the total output of the jth industry purchased by the ith industry. If you 
add the entries of the jth column of L, you are adding the various fractions 
of the total output of this industry and consequently obtain 1. This shows 
that L is a probability matrix. L will be used as the transition matrix in this 
model and in this setting is sometimes referred to as an exchange matrix. 

Next we consider a vector p = (Pj) whose jth component is the total 
price (say in dollars) charged for the entire output of the jth industry during 
one month. We want to study the vector arising as the product Lp. What 
do its entries mean? Note that iijpj is the product of the fraction of the jth 
industry output purchased by i and the total price of all of the jth industry 
goods, the total dollars spent by the ith industry in the jth industry goods. 
The ith entry of Lp is the sum 

and so it represents the total income by the jth industry. 
An economy is most healthy when the amount each industry spends is 

close to its income; otherwise some industry will risk bankruptcy. So for a 
healthy economy one would like prices to be set so that p is close to an 
eigenvector for L with eigenvalue 1. Such eigenvectors exist by Theorem 50. 
An alternate interpretation would be that in a closed economy prices tend 
to migrate to those eigenvectors since they give stability to the economy. 
This means that when new industries are added to an economy, one might 
try to predict their influence on prices by finding the new transition matrix 
and looking for its eigenvectors. A specific leontief model is developed in 
a group project at the end of this section. 

1. For each symmetric matrix S below, find a matrix P for which p-1SP is 
diagonal. 

(a) (~ ~) 
2 
o 
2 



(c) (i 1 
o 
1 
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Cd) G 
1 
o 
o 
o 

o 
o 
o 
1 

2. For each matrix S in Prob. 1 find the homogeneous quadratic polynomial 
Qs(X). Then find a diagonalization of each of these polynomials. 

3. Find the symmetric matrix associated with each quadratic form below. 
Find diagonalizations of these quadratic forms by completing the square 
or by diagonalizing the associated symmetric matrix. 
(a) 2X2 - 2XY + 2 y2 + XZ - Z2 

(b) X2 + YZ 

4. Consider 

S = (-~ 
-4 

-2 
5 

-2 

-4) -2 
2 

Then Cs(X) = (X - 6)2(X + 3). Using this, find three orthogonal eigenvec­
tors for S. Use them to obtain a diagonalizing matrix P whose columns 
are orthogonal unit vectors. Check that p-l = pI for your matrix. 

5. Show that the quadratic polynomial q(X, Y) = aX2 + 2bXY + cy2 gives 
a positive-definite quadratic form on R2 if and only if ac - b2 > 0 and 
a> O. 

6. Which of the following probability matrices are regular? 

G 
0 I), (! 

1 

D (t ~), 
:3 

0 2 
:3 

1 0 2 2 3 3 

7. What are the following matrix limits to two decimal places? Use a calcu­
lator or a computer to help if you like. 
(a) limn .... oo pn if 

p = (i i) 
(b) limn .... oo An if 

A~~U 
1 

D 3 
5 1 2 

8. If r is an eigenvalue of a probability matrix, show that Irl :S 1. 

9. Suppose that the Fibonacci sequence started with al = 1 and a2 = 3. 
What is the limit of the ratios ~ as n -+ 00 for this sequence? 

a,l+l 

10. Prove the lemma in the subsection on probability matrices. 
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Group Project: The Signature of Quadratic Forms 

The results of this section show that every quadratic form (with real numbers 
for coefficients) can be "diagonalized" in the form 

X 2+X2+"'+X2 X2 X2 . x2 1 2 r - r+l - r+2 - •• - r+s' 

(a) Explain why this follows from the results in this section. 
(a') Alternatively, use high school algebra to explain how, generalizing the 
idea of completing the square, this result can be understood. 
(b) The number r - s in the above representation is called the signature 
of the quadratic form. Find the signatures of each quadratic form studied in 
Prob.5. 
(c) It is possible to diagonalize a quadratic form according to various vari­
able changes. Explain why the signature of a quadratic form does not de­
pend on its diagonalization. (Hint: Think about the eigenspaces of the as­
sociated symmetric matrix.) 
(d) Two quadratic forms are called equivalent if one can be transformed 
into another by a linear change of variables. The classification problem 
for quadratic forms is to determine all possible equivalences of quadratic 
forms. Show that the signature, together with the dimension (or number of 
variables), enables one to "classify" quadratic forms with real coefficients. 
How many possible inequivalent quadratic forms with three variables are 
there? 

Group Project: A Leontief Model 

There is a small economy on an isolated island. It's sunny and warm all year 
long, and food is plentiful and can picked from trees whenever anyone is 
hungry. The only problem is that the soil is full of sharp volcanic rocks, 
so the inhabitants must wear shoes to avoid cutting their feet. The island 
economy is thus based almost entirely on shoes. 

There are three industries in this economy. There are 25 leather hunters, 
10 twine gatherers, and 15 shoemakers. The shoemakers have to buy 600/0 
of the leather and 80% of the twine from those industries for shoemaking. 
The remainder of the leather and twine is purchased equally by the entire 
population for personal use. The shoemakers keep enough of the shoes 
they make for their own use, and they sell the rest to the leather hunters 
and twine gatherers. The leather hunters need three times as many shoes 
as the rest of the island's inhabitants, since they wear out their shoes while 
chasing animals for leather. 

The island leaders have calculated how much leather, twine, and shoes 
need to be made monthly in order to keep everyone happy. However, 
they would like to set a price for each item and have it result in a stable 
exchange of currency. Your task is to write a short report explaining how 
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a Leontief model can help them. You will have to make up more to this 
story to complete your report, perhaps making additional assumptions not 
given here. Be sure to find an appropriate probability matrix that describes 
a Leontief model for the exchanges of goods in this economy. 

Group Project: The Second-Derivative Test 
for Functions of Several Variables 

This project is accessible to students who have seen the second-derivative 
test from multivariable calculus. 

(a) First recall the second-derivative test from differential calculus. What is 
the geometric reason that I"(a) > 0 at a critical point a shows that a is a 
local minimum of I? 
(b) Now suppose that U ~ Rn is an open subset and that I: U -+ R is a 
function with continuous first and second partial derivatives. Suppose that 
(al, az, ... , an) is a critical point of I. Consider the symmetric matrix 

(that is, the matrix whose ijth entry is the ijth second-order partial deriva­
tive). Why is 5 symmetric? What is 5 if the function I(Xl, Xz, ... , xn) is given 
by a quadratic form? 
(c) Suppose now that 5 is nonsingular, and let Q be its associated quadratic 
form. If Q is negative definite, explain why (al, az, ... , an) is a local max-
imum, and if Q is positive definite, explain (al, az, ... , an) is a local min-
imum. In case the quadratic form Q is indefinite and nonsingular, then 
(al, az, ... , an) is called a saddle point. What does that mean? Use the 
second-degree Taylor expansion of the function I, 

near your critical point in your explanation. 



CHAPTER 

MATRICES 
ASLINEAR 
TRANSFORMATIONS 

8.1 Linear Transformations -
Reflections in the Plane 

We all learned at an early age that in spite of the similarities, there is a 
significant difference between a left shoe and a right shoe. How does a 
mathematician recognize and describe this difference? To a mathematician, 
the right shoe is the reflection of the left shoe, and vice versa. Look in the 
mirror at a left shoe's reflection next to its companion right shoe to see why. 
It turns out that the difference between some objects and their reflections 
can be substantial, even more so than for shoes! 

Consider the two pairs of triangles pictured in Fig. 8.1. They are reflec­
tions of one another across the y-axis. In spite of the fact that the reflections 
of the triangles are congruent, there is a fundamental difference between 
the two cases considered. The upper triangles, being isosceles, are also con­
gruent through a rotation. In other words, the 1800 rotation centered at the 
point (0,3) moves one triangle onto the other. However, there is no way to 
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rotate the lower triangles onto one another. In fact, there is no combination 
of rotations or slides that can move one of the lower triangles onto the 
other. A reflection is needed to see their congruence (aside from cutting the 
triangles out of the page and flipping them over). 

The difference between our lower triangles is the same as the difference 
betwf'en right and left shoes. A left shoe looks like a right shoe in the 
mirror, but unfortunately it will never fit well on a right foot. The reflection 
relationship is also important in organic chemistry, where it is known that 
reflections of chemical compounds can sometimes behave differently. If 
you imagine a molecule bouncing around in a gas or liquid you realize it 
can move in many directions and it can rotate in various ways, but it may 
not be able to transform into its reflection. In this chapter we study linear 
transformations, which are helpful in analyzing motions and symmetry. It 
is also important to understand how reflections and rotations are related, 
and for this we will need to use their matrix descriptions. 

Matrix Descriptions of Reflections and Rotations 

The reflection across the y-axis used in Fig. 8.1 is obtained algebraically 
by multiplying the x-coordinate of a point by -1. Hence it is given by left 
multiplication by the matrix 

(
-1 

M= y 0 ~) 
In other words, if v E R2 is a column vector, then its reflection across 
the y-axis is the product Myv. We will denote this reflection function from 
R2 to R2 by the symbol TMv ' and we write TMv : R2 -t R2 to demonstrate 
that the domain and range of the reflection function are R2. Our matrix 
representation shows for all v E R2 that TM.(V) = Myv. 



248 • 8. MATRICES AS UNBAR TRANSFORMATIONS 

Observe that we are making a distinction between the reflection func­
tion and the matrix that describes it. We will shortly find that all linear 
transformations are represented by matrix multiplication in this fashion, and 
it is important conceptually to make this distinction. In later sections this 
distinction may at times become a bit blurred, and you should always be 
careful to keep the difference in mind. 

In Sec. 6.2 we studied the rotation matrix 

Rf} = (COSCO) 
sinCO) 

- SinCO») 
cosCO) , 

where we showed that the counterclockwise rotation by the angle 0 is 
given by left multiplication by Re. If we denote the rotation function by 
TRs : R2 --+ R2, then we have for all V E R2 that TR/W = ReV. Observe 
that detCMy) = -1 and detCRe) = cos2CO) + sin2CO) = 1. This shows that a 
reflection can never be a rotation, and vice versa. 

In R3 we can consider the three matrices 

o 
1 
o 

~), Mxz = (~ 
-1 0 

o 
-1 

o 

o 
1 
o 

The matrix Mxy gives reflection through the xy-plane, Mxz gives reflection 
through the xz-plane, and Myz gives reflection through the yz-plane. For 
example, if we left-multiply a vector by Mxy, then its x- and y-coordinates 
are unchanged, while the sign of its z-coordinate is reversed. 

We also can express some rotations in R3 using 'l1atrices 

COSCO) - sinCO) 

~), COSCO) 0 - sinCO)) 
Rf},z = sinCO) cosCO) Rf},y = 0 1 o , 

0 0 sinCO) 0 cosCO) 

and 

~,.~ G 0 
-S~Co} cosCO) 

sinCO) cosCO) 

The matrix Rf},z describes a rotation around Cand fixing) the z-axis by 0, Rf},y 

describes a rotation around the y-axis by 0, and Rf},x describes a rotation 
around the x-axis by O. More examples can be found in the second group 
project in the problems at the end of Sec. 8.3. 

Linear Transformations 
In our study of rotations and reflections we used matrix multiplication to 
define functions. This can be done more generally. Suppose that A is an 
m X n matrix. Multiplication on the left by A defines a function from R n 
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to R m. We denote this function by TA : R n -+ R m. In other words, 

for all n X 1 matrices v in R n. This change in viewpoint, from a matrix to 
the function it defines, is the key to the applications in this section. Next we 
give the definition of a linear transformation from Rn to Rm. Note that we 
are discussing functions, not matrices, in this definition. 

Definition. A linear transformation from R'l to Rm is a function T : Rn -+ 

Rm that satisfies these conditions: 

CO If U, vERn, then T(u + V) = TCit) + TCv). 

(ii) If vERn and k E R, then T(kV) = kTCv). 

If T : R n -+ R m( is a linear transformation, then R n is called the domain 
of the linear transformation T. Rm is called the range space (or range) of 
T. The term "image" is sometimes used for the range, but we will reserve it 
for a slightly different meaning in the next section. 

Observe that a linear function need not be a linear transformation. Note 
that if T : R m -+ RII is a linear transformation, then TCO) = TCOV) = 
o . T(V) = 0 for all v E R m. In other words, for every linear transformation 
T we have 

TCO) = O. 

However, the linear function L : R -+ R defined by L(x) = x + 1 has 
L(O) = 1. So this linear function L is not a linear transformation. In fact, a 
linear function F : R m -+ R is a linear transformation only if F(($) = O. This 
distinction causes a bit of confusion at first, but it is necessary. 

Usually, instead of calling a function a linear transformation, we will 
say that it is "linear" or we will call it a "transformation" for short. A linear 
transformation T : Rn -+ RII from Rn to itself is called a linear operator on 
R n. The properties of matrix multiplication guarantee that for every m X n 
matrix the function TA : R n -+ R m is a linear transformation. The notation is 
quite convenient, too. For example, suppose that 

Then TA : R2 -+ R3 is the linear transformation defined by 

TA (x) = (~ ~) (x) = ( 2::; ) . 
y 2 4 Y 2x + 4y 
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Observe that the entries of the matrix A appear as the coefficients of the 
variables in the formula for TA • 

For any n, the function I : Rn - Rn defined by I(V) = v and the 
function 0: Rn _ Rn defined by 0(iJ) = 0 are both linear transformations. 
For obvious reasons, I is called the identity transformation, and 0 is called 
the zero transformation. 

The next theorem is used so often that we do not refer to it by name, 
but rather we shall simply say "by linearity." 

Theorem 51 (General linearity). Suppose that T : R n ~ Rm is 
a linear transformation. Let VI, V:2, ... , Vs E Rn. Then for all real 
numbers aI, ~, ... , as, 

Proof We repeatedly apply both (i) arid (ii) of the definition: 

T(aIVt + ... + asvs) = T(aIVt) + T(a2V}. + ... + asvs) 

as required. 0 

= ... = T(aIVt) + T(a2V}.) + ... + T(asvs), 

= al T(Vt) + a2 T(V}.) + ... + as T(vs) 

Linear Transformations and Bases 
The next result says that a linear transformation from R n to R m is uniquely 
determined by how it "acts" on'a basis. 

Theorem 52. Let{~, Dz, ... , iU beabasisofRn and fA , il?, ... , wn E 
R m be arbitrary vectors (not necessarily distinct). Then there is a 
unique linear transformation T : Rn ~ Rm such that T(~) = fA, 
T(Dz) = il?, . .. , T(iJt,) = wn . 

Proof Since {~, ~, ... , vn} is a basis of Rn, every element of Rtl can be 
written uniquely as a linear combination al ~ + a2 ~ + ... + an vn. This 
means we can define the value of a function T on such a linear combination 
by 
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We must check that T defined in this manner is linear. Let a = al VI + a2 ~ + 
... + anvn and a' = bt~ + ~~ + ... + b"vn be two vectors in Rn. Then 
a + a' = (al + bt)~ + (a2 + ~)~ + ... + (an + bn)V'I, and so by the 
definition of T, 

TCa + a') = (al + bt)w., + (a2 + ~)ii? + ... + (an + bn)wn 

= (alw., + a2ii? + '" + anwn) 

+ (btw., + ~Wz + ... +b"w,J 

= TCu) + TCa '). 

Next, if k is a real number, then 

= kal w., + ka2ii? + ... + ka"wn 

= k(alWI + a2ii? + '" + a'lW") = kTCu). 

This shows that T is a linear transformation. 
Now observe that according to Theorem 51. we defined T in the only 

way possible. The uniqueness assertion of the theorem follows. 0 

Matrix Representations of Linear Transformations 

Using Theorem 52 we next show that every linear transformation from R n 

to R m arises from matrix multiplication. This result will enable us to translate 
questions about linear transformations into questions about matrices, and 
vice versa. 

Theorem 53. Suppose that S : R n -+ R m is a linear transformation. 
Then there exists a unique m X n matrix A such that S = TA . The 
matrix A is characterized by the property that sew = Av for all 
vERn. 

Proof We let {~, ez, ... , en} denote the standard basis of R n, and let {el' 
e2, ... , em} denote the standard basis of Rm. (Note the different notation 
between ej and ej.) We define real numbers aij for 1 :5 i:5 m, 1 :5 j :5 n 
using the expression seeD = aliel + a2ie2 + ... + amjem. Such ajj are 
uniquely determined since {el, e2, ... , em} is a basis for Rm. Then A = (ajj) 
is an m X n matrix. We claim that S = TA . To see this, by the uniqueness 
assertion of Theorem 52 it suffices to show that S(el) = TA(el), S(ez) = 
TA(ez). ... , Seen) = TA(e,,). 

According to the definition of A, the ith column of A consists of (the 
coordinates of) the vector G(ej). As Aej is precisely the ith column of A 
(according to the definition of matrix multiplication), we see that TA(eD = 
Aej = G(ej). The theorem is proved. 0 
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Deftnition. If S : an -+ am and if S = TA as guaranteed by Theorem 53, 
then matrix A is called the standard matrix of S. We often denote this matrix 
A by [Sl, in other words, S = 1iSJ and [TAl = A. 

The proof of Theorem 53 gives the procedure for finding the matrix 
A = [Sl corresponding to the linear transformation S : an -+ am. First you 
compute the values S(~), S(~), ... , Seen) of S applied to the standard 
basis vectors ~,~, ... , en of an. Then the ith column of the desired matrix 
A is precisely the (coordinates of the) vector S(el). 

For example, suppose that S : a3 -+ a4 is defined by 

(
x+ 2Y) 

s(~)= ::~. 
x+y 

First we compute the images of the standard basis under S: 

Then it follows that S = TA , where 

Observe that the entries of the matrix A are exactly the coefficients that 
appeared in front of the variables in the definition of S. 

Composition of Linear Transformations 
In many mathematical problems it is important to study the composition 
of functions. Consider an example where we compose two linear transfor­
mations: Suppose 11 : a3 -+ a2 is defined by 11 (x, y, z) = (x + y,2x + z) 
and Tz : a2 -+ a4 is defined by Tz(r, s) = (r + s, 2s, r, 2r + s). Then the 
composition Tz 0 11(x,y) = Tz(11(x,y)) = «x+ y) + (2x+ z), 2(2x+ z), x+ 
y, 2(x + y) + (2x + z)). This row is the same as column in the matrix product 

o 2 x+ Y (1 1) 
~ ~ (2X+Z) 
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Note that the left matrix is the standard matrix of 12, and the right matrix is 
the product 

( X+Y)_(l 
2x+ z 2 

1 

° ~) (~) 
of the standard matrix of Ti and the column of variables x, y, and z. 
Altogether this shows that 

1 

° ~) (~) . 
In other words, 12 0 Ti = TA where A is the product [12][Ti] of the standard 
matrices of the transformations 12 and Ti. 

This observation is true more generally. 

Theorem 54. Suppose that A is an n X m matrix and B is an s X n 
matrix. Then the composition of linear transformations TB 0 TA : R m ~ 
RS is a linear transformation and TB 0 TA = TBA . 

Proof Consider any v E R m, expressed as a column vector. Then TB 0 

TA(U) = TB(TA(U)) = TB(AU) = B(AU) = (BA)V = TBA(U), where the second 
to last equality 'is the associativity of matrix multiplication. This shows that 
the functions TB 0 TA and TBA must be the same. 0 

Products of Reflections and Rotations 

For some problems that utilize geometric symmetry it is important to under­
stand the composition of reflection and rotation transformations. According 
to Theorem 54 we need to determine products of reflection and rotation 
matrices to do this. The reflections across the x-axis and the y-axis are given 
by the matrices 

Their product 

T, Tx = (-1 0) (1 0) = (-1 0) = ( cos(1800) Sin(1800)) 
y 0 1 0 -1 0 -1 - sin(1800) cos(1800) 

is the matrix describing 180° rotation. 
In general, the product of two reflections in R2 is also a rotation. This can 

be understood geometrically. Consider the two lines £1 and £2 in Fig. 8.2. 
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FIg. 8.2. The reflection 
through tl followed by the 
reflection through t2 

R 

Problems 

---------,4E~----~----------il 

First the point P is reflected across the line fl to obtain Q, and then Q is 
reflected across the line f2 to obtain the point R. 

Observe that the line fl bisects the angle LPOQ and the line f2 bisects 
the angle LQOR. This shows that the measure of LPOR is exactly twice 
the measure of the angle between the lines fl and f 2. Note also, by triangle 
congruences, that the distances PO, Q 0, and RO are all equal. This shows 
that the point R is obtained from the point P by rotating around ° counter­
clockwise by the angle 28, where 8 is the angle between fl and f 2. Similar 
reasons show this composite rotates all points in the plane counterclock­
wise by the angle 28 (see Prob. 8 at the end of this section). Therefore, the 
product of two reflections is a rotation. 

The product of a rotation and a reflection, 

0) (COSC8) 
-1 sin(8) 

- Sin(8)) = ( cos(8) 
cos(8) - sin(8) 

- Sin(8)) 
- cos(8) , 

cannot be another rotation since its matrix has determinant -1. What is it? 
Observe that the characteristic polynomial of this matrix is 

Cp(X) = (X - cos(8))(X + cos(8)) - sin2(8) = X2 - 1. 

Therefore, the linear transformation Tp has an eigenvector ~ of eigenvalue 
1 and an eigenvector V-I of eigenvalue -1. Theorem 49 shows that ~ and 
V-I are perpendicular. This means that Tp must fix a line f, which is the line 
containing ~, and reflect the vector V-I across the line f. It follows from 
this that Tp is the reflection through the line f. The geometric determination 
of the line f and details why Tp is the reflection through f are set up in the 
second group project at the end of this section. 

1. Find the standard matrix of the linear transformation F : R2 --+ R2, where 
F is geometrically described by 
(a) the reflection across the line X = Yj 

(b) the projection onto the line X = 0. 
2. Determine whether each of the following functions is linear. If it is, find 

its standard matrix. 
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(a) 71 : RZ ---. RZ defined by 71(x,y) = (x,yZ) 

(b) Tz: RZ ---. RZ defined by Tz(x,y) = (x - y,y - x) 

(c) 13: R Z ---. RZ defined by 13(x,y) = (0, -xy) 

(d) 14: RZ ---. R4 defined by 14(x,y) = (0,0,0, x) 

(e) Ts : R3 ---. RZ defined by Ts(x,y, z) = C7x - 3,2y) 

([) 1(,: R3 ---. RZ defined by 1(,(x, y, z) = (sin(x),cos(y)) 
(g) 77: R3 ---. R4 defined by 77(x, y, z) = (x, x, x, x) 

3. (a) Find two linear transformations 71, Tz : RZ ---. RZ such that 71 0 Tz = 

Tz 0 71. 
(b) Find two linear transformations 71, Tz : RZ ---. RZ such that 71 0 Tz =1= 

Tz 0 71. 
4. For each part below, answer the question "Is there a linear transformation 

T : R3 ---. R3 such that ... ?" and justify your answer. 
(a) T(1, 0, 0) = (0,1,0), TCO, 1,0) = (0,1,0), and TCO, 0,1) = (1,0,0) 

(b) TCO, 0, 0) = (1,0,0), T(1, 0, 0) = (0,1,0), TCO, 1,0) = (0, 1,0), and 
T(O, 0, 1) = (0,0,0) 

5. Assume that 71 : R3 ---. RZ and Tz : RZ ---. R3 are the linear transformations 
described below. Show how Theorem 54 can be used to find the standard 
matrices for Tz 0 71, and 71 0 Tz. 

(a) 71(x,y,z) = (x+ y,O) and Tz(x,y) = (x,y,x) 

(b) 71(x,y,z) = (0,0) and Tz(x,y) is unknown. 
(c) 7l(x,y,z) = (x,x) and Tz(x,y) = (y,x,x+ y) 

6. Suppose that 71 : RS ---. R n and Tz : RS ---. R m are both linear trans­
formations. Show that the function T : RS ---. R n+ m defined by TCv) = 
(71(V), Tz(V)) is a linear transformation. 

7. (a) Assume that T : R n ---. R m is a linear transformation and that the 
collection of image vectors {T(lit), T(th.), ... , TCVn)} is linearly inde­
pendent in R m. Show that {lit, th., ... , Un} is linearly independent in 
Rn. 

(b) Is the converse to part (a) true? In other words, if we know that 
{lit, th., ... , un} is linearly independent, does it follow that {T(lit), 
TCth.), ... , TCVn)} is linearly independent? 

8. Study Fig. 8.2 and give geometric arguments extending the discussion 
there to all points of the plane. 

Group Project: Transformations of the Plane 

In this project you will investigate more of the geometric properties of linear 
transformations from RZ to itself. 

(a) Using the angle addition formulas, show that the product of R6 and Ra 
is R6+a . 
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(b) Which 2 X 2 matrix describes the reflection of the plane through the 
line y = kx, where k is a real number? 

(c) Both rotations and reflections "preserve area" in the sense that if C is a 
region in R2 then the area of C is the same as the transformed area. Give a 
short explanation of why this is true. 

(d) The linear transformation TA : R2 --+ R2 where A is the matrix kI2 
and k is a nonzero real number is called a similarity transformation. This 
means that although it does not preserve area, it does transform triangles 
into similar triangles. Why is this? 

(e) Give some more examples of similarity transformations that do not 
preserve area. (Hint: Consider composite transformations.) 

(f) Translations of the plane are defined by fixing a vector ~ and then 
defining T(iJ) = v + ~ for all v E R2. Show that translations are not linear 
transformations, but that they do preserve area. 

Group Project: The Product of a Reflection and a Rotation 

In this section we considered the composite P = TMx 0 Ro of the reflection 
across the x-axis (denoted TM.)' and a rotation by angle (J (denoted Ro). We 
noted there that P has characteristic polynomial Cp(X) = )(2 - 1. Your task 
here is to study the picture below and write out a geometric proof of this 
fact. You will be able to deduce from your work that P is a reflection. 

In this figure, the bold line is the line e of reflection, and the rotation by the 
angle (J is indicated between the thin lines. 

(a) The dots in the figure are reflections of one another across the line e. 
Th~y are also related by the rotation. Which of the smaller lines is fixed by 
the composite P = Tx 0 Ro? Give a full, careful explanation why. Include in 
your explanation any assumptions needed for this picture to work. 

(b) Show geometrically that the points on the line perpendicular to the fixed 
line you found in (a) are transformed to their opposites by the composite 
P = Tx 0 Ro. 

(c) Now you can show that the linear transformation P is the refleCtion 
through the fixed line you found in (a). For this, show that any vector on 
the plane can be expressed as a linear combination of a vector on this 
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line and a vector perpendicular to this line. Use the linearity property of 
linear transformations, together with geometry, to show that P is the desired 
reflection. 
Cd) What happens when the order of the composition is reversed, that is, 
can you use the geometry just developed to describe Ro 0 TM) 

8.2 Using Linear Transformations -
Linear Transformations and Two-Port Electrical Networks 
Next we consider electrical networks built from networks similar to those 
considered earlier in Sec. 3.1. In Fig. 8.3 we have modified the representation 
of such a network by removing the batteries and replacing them with circles. 
Our problem is to understand what happens when we connect networks 
like this together at the circles. These are called two-port networks because 
there are two places at which power sources or other networks can be 
attached. 

In Fig. 8.3 we assume that the voltage between the left-hand ports is 
\Ii. and the current between these ports is 11. Similarly, we assume that the 
voltage between the right-hand ports is V2 and the current is fz. This means 
that the current across the upper left resistor is /1 , the current across the 
upper right resistor is 12 , and the current across the center resistor is 11 + /Z. 

Recall that the voltage across the left port will be the sum of voltages 
across the upper left resistor and the center resistor. With the resistances 
as indicated, the voltage across the left port must be given by \Ii. = r1I1 + 
r3(J1 + 12). Similarly, the voltage across the right port must be given by 
V2 = r2 I2 + r3(J1 + /z). This means that we can write a matrix equation 

that relates the quantities \Ii. , V2, /1 , and /z. 

Fig. 8.3. The circuit from 
Fig. 3.1 viewed as a 
two-port network 

V1 o---~_-------1------_---0 V2 
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Fig. 8.4. A black box 
two-port network 

More generally, suppose that you have a two-port "black box" network, 
where you don't know exactly what the contents are. This situation is indi­
cated in Fig. 8.4. 

Then you could still measure the voltages and currents Vi, Vz, 11 , and /z 
and see what happens. Based on what we have learned, we will assume that 
the relationship is given by some linear transformation TZ U1, /z) = (Vi, Vz), 
where 

is some 2 X 2 matrix. We will call the matrix Z = (Zij) the characteristic 
matrix for the two-port network. In a group project at the end of this section 
you will explore ways to determine the entries Zij of the matrix Z. 

It turns out that there are other useful matrix descriptions of a two­
port network. Using the characteristic equation Vz = Z21I1 + z22I2, we can 
solve for 11 as 11 = z211 Vz - z22z211/z. Then, substituting this in the other 
characteristic equation Vi = zllI1 + Z12/z gives 

Together these new expressions for 11 and Vi give the matrix equation 

Note that we have used -12 instead of /z in this equation. This is not a 
typographical error. The reason is that we need to reverse the orientation 
of the current 12 when we apply this matrix to cascade networks, which we 
do ahead. The matrix 

is often referred to as the cascade parameter matrix or sometimes is called 
the transfer matrix. 

Cascading Two-Port Networks 
In Fig. 8.5 we consider two two-port black boxes, which we will subse­
quently connect at the adjacent open circles. Our goal is to understand how 
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Rg.8.S. Two black box two-port networks 

the behavior of the two individual black boxes can be used to understand 
the new network. Note the orientations of the currents on the right-hand 
side of each black box. This is necessaty so that when they are connected, 
both variables 12 (from either box) will have the same mientation. This also 
means that when we use the cascade parameter matrix just constructed, we 
will not need the minus sign. 

We assume that the relationships for these two black box circuits are 
given by the cascade parameter matrices 

Then, substituting the first matrix equation into the second shows that 

We have found that the product matrix BIB2 is the cascade parameter ma­
trix describing the relationship between the quantities Vi, h, 1;3, and 13 that 
results if the adjacent ports are connected and a new two-port network is 
formed. Note we have shown that the linear transformation representing a 
cascaded network is the composite of the linear transformations represent­
ing the component networks. 

We illustrate this technique by considering the network in Fig. 8.6. Our 
problem is to determine the currents 11 and 13 discharged by the two bat-

5.0 5.0 ion 

ion 5.0 5v 

+ 

Rg. 8.6. A cascaded network 
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teries, where the voltages and resistances are as indicated. We will have to 
be careful with the sign of 13 at the end of our calculation. 

In order to analyze this network, we must find the cascade parameter 
matrices for the left- and right-hand networks (on opposite sides of the cir­
cles). We will denote by V:z and 12 the voltage and current flow, respectively, 
between the two open circles. Applying the previous computations for each 
of the left and right networks, we find 

( Vt) = (15 
V:z 10 

10)(11) 10 -12 
and ( V:z) = (10 5) (12) . 

l'3 5 15 13 

(Note the orientation of 12 in the diagram.) Our formula for the cascade 
parameter matrices gives 

(i)=(1 ~)(~) and 25) ( l'3). 
3 -13 

Multiplying our cascade matrices shows 

( Vt) = (~ 5) (7 25) ( l'3 ) 
II J.. 1 - 3 -13 

10 5 

= (i 
We have found the cascade matrix for the total network. If we desire the 
matrix representation for our network in the standard form, we must solve 
for standard representation matrix A using the matrix equation 

( 
-1 

Zn Z 21 
-1 

Z21 

Z11Z22Zii1 - Z12) = (4 
-1 2 

Z22 Z21 5 
1~5 ) 
11 . 
T 

This equation is readily solved, and we find Z21 = ~, Z22 = ~ . ¥ = ¥, 
Zll = ~ . 4 = 10, and Z12 = 10' ¥/~ - 1~5 = ~. Altogether we have found 
that the standard representation of our total network is 

If we like, we can invert our standard representation matrix and obtain 

Substituting Vt = 10 and l'3 = 5 into this equation gives II = 1 and 13 = -Ii. 
This is the answer to our original question about how the current flows. 
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The network we just analyzed could have been studied by considering 
larger systems of equations. However, the technique of using matrix mul­
tiplication to study the cascading of basic electric circuits (including those 
that involve components other than resistors) is extremely important in cir­
cuit analysis. More information is contained in the group projects at the end 
of this section. 

The Image and Kernel of a Linear Transformation 
In our analysis of matrices, the column space and the null space were 
extremely important. These subspaces can be studied 'using linear transfor­
mations where they are called the image and the kernel, respectively. We 
begin with these two basic definitions. 

Definition. Suppose T: Rn -+ Rm is a linear transformation. 

CO The image 9f T, denoted im(T), is defined by 

im(T) = {TCv) I vERn}. 

(iO The kernel of T, denoted kerCT), is defined by 

kerCT) = {v ERn I T(V) = 6}. 

It is important to keep track of where these subsets are located. Note 
that im( T) ~ R m and kerC T) ~ R n. Often, kerC T) is called the null space 
of T. 

The kernel of T : R n -+ R m is the set of solutions to the equation 
T(V) = O. Thus, the kernel of TA : Rn -+ Rm is precisely the null space of 
the matrix A. The image of TA also has a familiar interpretation. By definition, 
im(TA) = {u E Rm I there exists v ERn with TAW) = U}. Later we shall see 
that the image of TA is precisely the column space of the matrix A. 

The next lemma shows that both the kernel and image of a linear trans­
formation are subspaces. 

Lemma. Suppose T : an -+ am is a linear transformation. Then 
ker( T) is a subspace of an and ime T) is a subspace of am. 

Proof Since T = TA, where A is the standard matrix of T, kerCT) = kerCA) 
is a subspace of Rn. Now choose ~, V,z E im(T). By the definition of im(T); 
there exist Ul, U2 ERn with Tcal) = ~ and TC~) = V,z. Then, since Tis 
linear, TCUl + U2) = ~ + V,z and TCkul) = k~. Hence, ~ + V,z, k~ E im(T), 
and so im(T) is a subspace of Rm. 0 
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The Rank and Nullity 

Now that we know that im(T) and ker(T) are subspaces, we give names to 
their dimensions. 

Definition. Suppose that T : Rn -+ Rm is a linear transformation. The 
dimension of im(T) is called the rank of T and is denoted rk(T). The 
dimension of ker(T) is called the nullity of T and is denoted by null(T). 

In the next theorem we prove the dimension theorem using linear trans­
formations. The proof illustrates the value of studying subspaces and linear 
transformations as opposed to always computing with matrices. 

Theorem 55. Suppose that A is an m X n matrix and consider the 
linear transformation TA : R n ~ R m. Then 

(0 ker( n is the set of solutions to AX = 0, im( n . is the column space 
of A, and rk( n = rk(A). 

(ii) (Dimension theorem) rk( n + null( n = n. 

Proof CO We have already noted that TA(V) = 0 if and only if AD = O. Now 
note that a vector U E R m lies in im( T) if and only if there exists some 
vERn such that u = Av. According to Sec. 5.1, this occurs if and only if u 
is a linear combination of the columns of A, that is, if and only if u lies in 
the column space of A. According to Theorem 31, rk(A) is the dimension of 
the column space of A. This proves CO. . 

(ii) Let {~, Wz, ... , ws} be a basis for ker(TA). Suppose that Ws+I, WS+2, 
... , wn extend these vectors to a basis of Rn , that is, {~, Wz, ... , wn} is now 
a basis for Rn (see the group project at the end of Sec. 5.3 for discussion of 
this). We claim that {TA(wS +1), TA(w,<4-2), ... , TA(wn)} is a basis for im(TA). 

Note that if W = al~ + a2Wz + ... + anwn ERn, then by linear-
ity TA(w) = al TA(~) + a2 TA(Wz) + ... + an TA(W,) = as+1 TA(ws+I) + 
as+2 TA(i1~<+2) + ... + all TA(wn), which shows that the vectors TA(ws+I), 
TA(w'<+2), ... , TA(wlI ) span im(TA). 

Next suppose that as+1 TA(ws+I) + as+2 TA(ws+2) + ... + an TA(wn) = O. 
Then TA(as+Iws+I + as+2ws+2 + ... + an WI!) = 0, so we see that as+1 Ws+I + 
as+2ws+2 + ... + anwu E ker(TA). Therefore, there exist real numbers 
aI, a2, ... , as such that al Wt + a2Wz + ... + asws = as+1 WS+I + as+2ws+2 + 
... + an wu. The linear independence of {~, Wz, ... , Wn} guarantees that 
al = 0, a2 = 0, ... , all = 0. This shows that {TA(Ws~I)' TA(ws+2), ... , TA(wn)} 
is linearly independent. 

We have shown that if dim(ker(TA)) = S, then dim(im(TA)) = n - s. The 
dimension theorem follows. 0 
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For example, consider the linear transformation TA : a3 -+ as where 

o 
2 

-2 
3 

10 
-~) 
10 

has the following reduced row-echelon form: 

o 
1 

o 
o 
o 

Applying back-substitution, we find that 

!) 
Using the fact that im(TA) = coICA), we find 

So, rk(TA ) + null(TA) = 2 + 1 = 3, as it should. 

Unear Transformations and Systems of Equations 
We have shown that the dimension theorem can be proved using properties 
of linear transformations. We next: consider the connections between linear 
transformations and the nature of solutions to systems of equations. 

Definition. A linear transformation T : an -+ am is called one-one if 
whenever iit, ~ E an and TCiit) = TC~), then necessarily iit = ~. 

For example, consider the linear transformation TA : a2 -+ a3, where A 
is the 3 X 2 matrix 
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In order to determine if TA is one-one, we must check to see that whenever 
TA(~) = TA(~)' necessarily ~ = ~. So we suppose that A~ = A~ for 
~,~ E R2. Explicitly, we have 

MUltiplying this expression out shows that 

(r+2S) (t+2U) r+s = t+u . 
s u 

Inspecting the bottom entry gives s = u, and then the remaining entries 
show that r = t. This shows ~ = ~ and consequently that TA is one-one. 

Theorem 56. Suppose that T : R n ---. R m is a linear transformation. 
Then T is one-one if and only ifker(T) = {O}. In particular, if A is 
an m X n matrix, then 1A is one-one if and only if the homogeneous 
system AX = i5 has only the zero solution. 

Proof Suppose that T is one-one. If T(V) = 0, then T(V) = reO) = 0. 
Since T is one-one, we must have v = 0. Hence ker(T) = {i5}. Conversely, 
assume ker(T) = {i5} and re~) = re~). Then re~ - ~) = 0; that is, 
~ - ~ E ker(T). Thus ~ - ~ = 0, and ~ = ~ follows. This shows that T 
is one-one. The second assertion follows since ker(TA) is the set of solutions 
to the homogeneous system AX = 0. 0 

Our next definition concerns the image of a linear transformation. 

Definition. A linear transformation T : R n -+ R m is called onto if im( T) = 
Rm. 

In our preceding example we saw that TA : R2 -+ R3 had nullity O. 
Applying Theorem 55, we find dimCim(TA)) = rk(A) = 2. Since R3 is a three­
dimensional vector space, it is impossible for im( TA) = R3. We conclude 
that TA is not onto. The relationship between TA being onto and systems of 
equations is speHed out next. 

Theorem 57. Suppose that T : Rn ---. Rm is a linear transformation. 
Then T is onto if and only if rk( T) = m. In particular, if A is an 
m X n matrix, then 1A is onto if and only if the system AX = v can 
be solved for all v E R m . 
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Proof By definition, T is onto if and only if im( T) = R m. However, by 
Theorem 55, dimCim(T)) = rk(T). Thus, im(T) = Rm if and only if rk(T) = 
dim(R m) = m. The second assertion follows since we know that AX = v 
can be solved for v if and only if v lies in the column space of A. 0 

Finally, we consider the conditions of being one-one and onto simulta­
neously. 

Definition. A linear transformation T is called an isomorphism if T is 
both one-one and onto. An isomorphism T : Rn -+ Rn is often called a 
nonsingular linear operator on R n . 

In this situation, Theorems 56 and 57 combine to give the next result. 

Theorem 58. Suppose that T : R n --t R m is a linear transformation. 
If T is an isomorphism, then n = m. In this case T- 1 exists as a 
function and T- 1 : R n --t R n is also an isomorphism. In particular, if 
A is an n X n matrix, then TA is invertible if and only if the system 
AX = v always has a unique solution. 

Proof If T is an isomorphism, we know by Theorems 56 and 57 that 
null(T) = 0 and rk(T) = m. By the dimension theorem we find that 0+ m = 
n, giving the first statement. Suppose now that the standard matrix for T 
is A. Then A is invertible since it is an n X n rank-n matrix. Since Av = U 
is equivalent to V = A-1 U, we see that the inverse function of TA must be 
TA-I. Since rk(A- 1) = n, we see that TA-l is also an isomorphism. The final 
assertion of the theorem follows from the invertibility of the matrix A. 0 

Note that Theorem 58 shows that a linear transformation TA is invertible 
as a function if and only if the matrix A is invertible. 

1. Show that the determinant of any cascade parameter matrix is always 
1. 

2. Find the standard matrix for the two-port network obtained by removing 
the batteries and connecting the two black boxes in Fig. 8.6 in reverse 
order. Put the batteries back on and determine the current flows. 

3. Find the standard matrix, the rank, and the nullity of each of the fol­
lowing linear transformations. 
(a) 1i : R3 -+ R4 defined by 1i (x, y, z) = (x + z,3x + 3z, 2x + 2z, 

-x- z) 

(b) 12: R4 -+ R defined by 12(x,y, z, w) = y - Z - W 
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(c) 7;: R4 -+ R4 given by7;(V) = v for all v E R4 

(d) 14: R -+ R where 14(r) = 7r 

(e) Ts: RS -+ RS given by Ts(V) = 0 for all v E RS 

4. Find the rank and nullity and bases for the range and kernel of TA 
whenever A is 

( 1 ° ° o~) (-1 -~1) (a) ~ ~ ~ (b) _ ~ (c) (1 1 1 1 1 ). 

5. Find a linear transformation T : R3 -+ R3 such that 

What is a basis for kerC T)? 

6. Suppose that T : R4 -+ R3 is defined by 

T (;) = (Y~:: W) . 
W x+2y 

(a) Find the standard matrix of T. 
(b) Find rk(T) and null(T). 
(c) Is T one-one? Is Tonto? 

(d) Find a basis for kerCT) and im(T). 
7. Suppose that T : R3 -+ R3 satisfies TO, 0, 0) = (0,1,0), T(O, 1,0) = 

(0,0,1). What conditions must rco,o, 1) satisfy so that T is invertible? 
8. (a) Suppose that T, U : Rn -+ Rn are both one-one linear transforma­

tions. Show that To U is also one-one. 
(b) Suppose that T, U : Rn -+ Rn are both onto linear transformations. 

Show that To U is also onto. 
9. (a) Show that a linear transformation T: R3 -+ R4 can never be onto. 

(b) Show that a linear transformation T : R4 -+ R3 can never be one­
one. 

(c) Suppose that T : R4 -+ R3 is linear and 

im(T) = {(x,y, z) I x - y - 2z = O}. 

What is null(T)? 
10. (a) Give an example of a linear operator T : R2 -+ R2 for which 

ker(T) = im(T). 

(b) Does there exist a linear operator T: R3 -+ R3 for which kerCT) = 
im(T)? 
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11. Suppose a linear transformation T : R3 -+ R3 satisfies ToT = 0 (the 
zero operator). Is it true that T = O? Show why or give a counterex­
ample. 

12. Suppose that A and Bare m X n matrices. Show that rk(A) + rk(B) ~ 
rk(A + B) by studying the ranks of TA , TB , and TA+B • 

13. Suppose that {i\, ~, ... , vn} is a basis for Rn. Let T : Rn -+ Rn be the 
linear transformation defined by T(i\) = ~, T(~) = ~, ... , Tevn-l) = 
Vn, and Tevn) = O. Give a basis for im(n, im(To n, im(To To n, .... 
Find the rank and nullity of Tt for all i. 

14. Assume that T : R n -+ Rn is a linear transformation and T = To T. 
Show that kerCn + im(n = Rn. 

Group Project: Network Analysis with Larger Systems of Equations 

Analyze the network studied in Fig. 8.6 by letting five variables represent 
the current across each of the five resistors. You can obtain five equations 
between these variables: two from the voltage drops across the batteries 
and ~hree from the junctions where resistors come together. (Recall both 
of Kirchoffs laws here') Your answer will agree with those found in this 
section, but which two of the five you computed correspond to the II and 
13 computed in the text? 

Group Project: Two-Port Networks Connected in Series 

Figure 8.7 shows two two-port black boxes connected in series. The matrix 
of the new network can be computed by adding the matrices corresponding 
to each box. But which matrices do you add, the standard or the cascade 
parameter matrices? Find out, and give a careful written explanation of your 
findings. 

F1J. 8.7. Two black box 
~networks 
connected In serl .. 

,..., -

,..., -

,.... -

-'" -
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Group Project: Determining the Characterisitic Matrix 
of a Black Box 

Suppose you have a two-port network as illustrated in Fig. 8.4 but you 
don't know what the resistances are and the resistors are hidden inside the 
black box. Assume you have a lO-volt battery and electronic equipment 
that enables you to measure the voltage and current flows at various ports. 
Explain how to use this equipment to determine the standard matrix for the 
black box. You may connect your battery across any two ports, measure 
current or voltage across the other two, and you can short across any two 
ports with a wire. However, you can't open the box! 

Group Project: MatriX Multiplication and Rank 

The following questions relate matrix ranks and products. The key in each 
case is to think about the linear transformations involved, not just matrices. 

1. Suppose that A is an n X n matrix such that A2 = o. 
(a) Show that im(TA) k ker(TA). 

(b) Show rk(A) ~ ¥. 
2. (a) Suppose that e is a k X P matrix and D is a p X r matrix. Show that 

im(TCD) is a subspace of im(Tc ) . 

(b) Using (a), conclude that whenever e is a k X P matrix and D is a 
p X r matrix, rk(eD) ~ rk(e). 

3. Suppose that A and B are matrices and the product • ~B makes sense. 
Show that null(AB) ~ null(B) by showing that ker(TB) k kerCTAB)' 

4. If A is invertible, show that AB and B have the same nullity and rank. 
5. The concept of a linear transformation helped you solve parts 1-4 much 

more easily than if you tried to use matrices and row operations. Why is 
this? 

8.3 Change of Basis 

In the previous sections we saw how to relate information about an m X n 
matrix A to the linear transformation TA : Rn ---- Rm. In this section we shall 
study linear transformations T : R n ____ R n and different n X n matrices that 
can represent the same operator T. To obtain these different representations, 
we will use different bases for R n . 

Coordinates with Respect to a Basis 
We recall that if {V:t, ~, ... , Vn} is a basis for R n, then for every vector 
wE Rn there is a unique sequence of real numbers aI, a2 , . .. , an such that 
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w = al ~ + a2 tiz + ... + an vn. Because of this important property, it makes 
sense to give the following definition. 

Definition. An ordered basts B = {~, tiz, ... , vn } for an is a basis of an 
whose elements are listed in a specific order. If B is an ordered basis for 
an and u E an, we say that (ab ~, ... , an) are the B-coordinates of u if 
u = al ~ + a2 tiz + ... + an vn. We denote this by the column 

We emphasize that the B-coordinates of a vector u depend not only on 
the choice of the basis but also on the order in which the basis elements 
are listed. 

First we note that if S = {~, e.z, ... , en} is the standard basis for an, 
then S-coordinates are the usual coordinates. In our notation, this says that 
if P = (al, a2, ... , an) E an and u = QP, then u = al~ + a2e.z + ... + an en 
and 

Now consider the ordered basis 

of a3. To find the coordinates of the vector (1,0,0) with respect to B, we 
must express 

for appropriate real numbers aI, a2, a3. Using the definition of matrix mul­
tiplication this is the same as 

1 

° 1 



270 • 8. MATRICES AS UNEAR TRANSFORMATIONS 

A calculation shows 

1 
o 
1 

~)-l=~( ! 
1 2_1 

1 
-1 

1 

and therefore we can find the at as 

We obtain 

1 
-1 

1 

1 (!) (~). ~ j . 
2 

-1) 1 , 
1 

More generally, this same calculation shows that whenever (x,y, z) E a3, 

( ;) = ~ ( ! 
Z B -1 

1 
-1 

1 

-1) (X) 1( X+Y-Z) 
1 Y =2 x-y+z. 
1 z -x+y+z 

The Coordlnate-Change Matrix 
The previous example shows that the coordinates of a vector in It n with 
respect to a nonstandard basis can be determined by matrix mUltiplication. 
This is spelled out in the next theorem. 

Theorem 59. Let B = {Ut, v.z, ... , Vn} be an ordered basis of Rn . Set 
P to be the matrix ( Ut v.z vn ); that is, P is the matrix whose 
columns are the standard coordinates of the vectors in B. Then P is 
invertible, andforany vERn, (V)B = p-1v and P(V)B = v. 

The theorem motivates the following definition. 

Definition. The matrix p-l characterized by (V)B = p-l V is called the 
coordinate-cbange matrix or transition from the standard basis to the basis 
B. The matrix P (without the inverse) characterized by PCiJ)B = v is called 
the coordinate-change matrix from the basis B to the standard basis. 

The existence of coordinate-change matrices shows immediately (using 
matrix algebra) that if B = {Ut, ~, ... , vn} is an ordered basis of an and if 
Wt, i0. E an, then 
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As an example, consider the ordered basis 

of R2. We set 

p= (~ ~) 

B={(~),(~)} 

and note p-l = ( 5 
-2 

-2) 1 . 

Then p-l is the coordinate-change matrix from the standard basis to B. This 
shows that 

We can check this by expressing the vector as a linear combination of the 
elements of the basis B: 

The Matrix of a Linear Operator with Respect to a Basis 

In Sec. 7.2 we discussed criteria for a matrix to be diagonalizable. Let's find 
out what this means from the geometric point of view. 

Definition. Suppose that T : Rn -t Rn is a linear operator and B 
{~,~, ... , v,J is an ordered basis for Rn. We define the n X n matrix 
[T]B by [T]B = (aij) , where for each j the real numbers aij are uniquely 
determined by the equations 

T(vj) = al.i~ + a2.i~ + ... + anjVn . 

In other words, [nB is the matrix whose jth column is the coordinates of 
TeVj) with respect to the basis B. 

Note that before the matrix representation [nB could be defined, we 
had to fix the basis B. This is crucial, for as we shall see later a change in 
the choice of bases can wildly change the matrix [TJs. 

The definition gives a recipe for computing the matrix [nB. For ex­
ample, suppose that T : R3 -t R3 is the linear transformation defined by 
Tex, y, z) = (x - y, Z + y,O). Let B = {(1, 1,0), (0,1,1), (0, 0, 1)} be an or­
dered basis for R3. To compute [T]B, we must compute the B-coordinates 
of the images of the basis elements in B and list these coordinates as the 
columns of the matrix [TJs. Direct calculation shows 

T(l, 1,0) = (0,1,0) = (0,1,1) - (0,0,1), 

TeO, 1, 1) = (-1,2,0) = -(1,1,0) + 3(0, 1, 1) - 3(0,0,1), 

T(O, 0, 1) = (0,1,0) = (0,1,1) - (0,0,1). 
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We find that (T(1, 1, O))B = (0,1, -1), (T(O, 1, 1))B = (-1,3, -3)' and 
(T(O, 0, 1))B = (0,1, -1). (Do not forget this second step of computing 
the B-coordinatesO From this we obtain 

[TlB = ( ~ 
-1 

-1 

3 
-3 

~) . 
-1 

Considerthe special case where T : R n --+ R nand S is the standard basis 
for R n. Then the matrix [Tls just defined is precisely the standard matrix 
of Tj that is, [Tls = A, where T = TA . This occurs because the recipe just 
described gives the standard matrix for T whenever the standard bases are 
used. 

The Defining Property of [T]B 
This next result shows that the matrix [TlB describes the linear operator 
T : Rn --+ Rn by matrix multiplication, except that all vector representations 
must be made by their B-coordinates. The proof is analogous to the case 
considered in Theorem 53 and is thus omitted. 

Theorem 60. Let T : R'l ---+ R n be a linear transformation, and 
suppose B is an ordered basis for R n. Then for all v E R/, 

Moreover, this condition uniquely determines the matrix [TlB . 

To illustrate the theorem we consider the ordered basis B = {(3,1), 
(-1, 1)} of R2. Suppose that T: R2 --+ R2 is defined by T(x,y) = (x + 3y, 
x - y). We compute that T(3,1) = (6,2) = 2(3,1) and T( -1,1) = (2, -2) = 
- 2( -1, 1). Therefore, the definition shows that 

This representation for T is quite nice since it is a diagonal matrix. 
The theorem shows that the value of T can be determined from the 

B-coordinates of any vector in R2. For example, 

and therefore the B-coordinates of T( 4, 4) are given by 
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Unravelling all of this we can conclude that T(4,4) = 4(3,1) - 4(-1,1) = 
06,0), which can be checked by direct computation using the definition 
of T. 

Basis Change for Operators 
It is important to learn to work with different bases when studying n X n 
matrices (which we view as linear operators on Rn). Suppose that a linear 
operator T : Rn ---> Rn is specified by a matrix [Tl in terms of the standard 
basis. Let B be an ordered basis for R n. An important problem is finding the 
matrix [TlB for this operator in terms of the matrix [Tl. The next theorem 
will solve this problem. This result is also the key tool needed to understand 
the geometry of linear operators. 

Theorem 61. Suppose that T : Rn -> Rn is a linear operator and B 
is an ordered basis of Rn. Let p-l denote the transition matrixfrom 
the standard basis to the ordered basis B. Then 

[T] = P[TlBP-l or P-1[TlP = [TlB. 

Proof ,-:ince p-1 is the transition matrix from the standard basis to the 
ordered basis B, we know for all v ERn that 

p-1v = (V)B and v = P(V)B. 

Applying the associativity of matrix multiplication together with the last 
theorem, we find 

P[TlB,P-1v = P[T1B(V)B = P(TCV))B = T(V). 

This shows that the matrix P[T1BP-1 satisfies the defining property of [Tl 
given in Theorem 53, and consequently they are equal. 0 

The theorem motivates the following definition. 

Definition. Suppose that A and Bare n X n matrices. If there exists an 
invertible matrix P such that A = PBP- 1, we say that A and B are similar. 

Example. Consider T : R3 ---> R3 defined by TCa, b, c) = (a + b + c, 2(b + 
c), 3c). With respect to the standard basis S we have 

1 
2 
o 

Now consider the basis C = {O, 0, 0), 0,1,0), (3, 4, 2)} for R3, The transition 
matrix from C to S is the matrix whose columns are the standard coordinates 
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of the elements of C; that is, it is 

(
1 

p= ~ 
1 
1 
o 

The transition matrix from S to C is given by 

The theorem now gives 

ITlc = p-1ITlP 

o 
= (~ 

-1 
1 
0 

0 
2 
0 

-1 
1 
o 

1) C -~ ~ 
2 

n 
1 
2 
o 

-D 
2 

DO 
1 
1 
o 

The change of basis enables us to better understand the geometry of the 
linear operator just considered. It shows that the operator T stretches by 
factors of 1, 2, and 3 in the three directions specified by the first, second, and 
third basis vectors of C, respectively. In other words, C is an eigenbasis for 
T with eigenvalues 1, 2, and 3. The reader shoul<.. compare this calculation 
with those presented in Sec. 7.2. When Wft diagonalized matrices there, we 
were really constructing the matrix of the operator in an eigenbasis. The 
only difference is that in Sec. 7.2 we didn't use the terminology of linear 
operators and their matrices with respect to a basis. 

Change of Basis and Rotations 
In Sec. 8.1 we noted that the rotation 19.x by 8 degrees around the x-axis 
in R3 had as standard matrix 

o 
cos(8) 
sin(8) 

- S~(8)) . 
cos(8) 

Suppose we needed to find the standard matrix of the rotation by 8 degrees 
around the line i through the origin and (1, 1, 0) in R3.' How could we find 
this matrix? One method is to consider the baSis 
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and compute the matrix [TII,xls. This is the matrix 

e 1 

DG C 
1 

~) 
../2 ° ° ../2 ../2 

--L cos(fn - sin(8) ) Jz --L 
../2 ../2 ../2 

° ° 
sin(8) cos(8) ° 

° 1 +cos(lI) l-cos(lI)' 

= (l-C;S(II) 1 +C;S(II) 
sinC II) - sinC II) 
../2 ../2 

7,) Si1z) 
cos(8) 

In order to understand why the process works, we view the transition 
matrix P as giving the linear transformation Tp. The transformation Tp moves 
the line i to the x-axis and takes the plane perpendicular to i to the plane 
perpendicular to the x-axis. If we rotate by TII,x after applying Tp , and then 
apply Til, the composite will have the affect of rotating around i by 8. 
The matrix of this composite is the same as the matrix [TII,xlB since it is the 
product of the three matrices representing these operators. 

The point of view of basis change just presented is different than consid­
ered previously. It is useful in a number of applied settings and is explored 
in more detail in the final group project of this section. 

1. For each of the following ordered bases, find the transition matrix from 
the basis B to the standard basis and find the B-coordinates of the vectors 
listed. 
(a) B = {(1, 2), (2, I)} for R2. Vectors: (2,4), (4,2), (3,3). 

(b) B = {(1, 1), (0, 1)} for R2. Vectors: (17,4), (3,1), (0,0). 

(c) B = {(1, 1, 1), (0,1,1), (0, 0, I)} for R3. Vectors: (3,1,1), 0,0,0). 

2. For each of the following ordered bases, find the transition matrix from 
the basis C to the standard basis and find the C-coordinates of the vectors 
listed. 
(a) C = {(r, s), (t, u)} for R2. Vectors: (2,4), (4,2), (a, b). 

(b) C = {O, -1,0), (0,0,1), (1,1, O)} for R3. Vectors: (3,1,1),0,0,0). 

(c) C = {O, 0, 0, 0), 0,1,0,0),0,1,1,0),0,1,1, l)} for R4. 
Vector: 0,0,2,1). 

3. Show that [TlB is the zero matrix for every ordered basis B of Rn if and 
only if T(iJ) = 0 for all vERn. 

4. Suppose that T is the linear transformation with standard matrix 

2 
3 
1 
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Find [T]B if B is the basis 
(a) B = {(1, 2, 0), (2,1,0), (0, 0, 1)}; 
(b) B = {(1, 1,0), (0,1,1), (1, 0, 1)}; 
(c) B = {(1, 1, 1), (1,1,0), (0, 0, 1)}. 

5. Let B = {l1t,~,~} be an ordered basis of R3. Assume that T : R3 -+ R3 
is a linear transformation for which T(l1t) = l1t +~, T(~) = ~ +~, and 
T(~) = l1t +~. 
(a) Find [T]B. 

(b) If B' is the ordered basis B' = {~, ~, l1t}, find [T]BI. 

6. Let T : R3 -+ R3 be defined by T(a, b, c) = (a + c,O,_b). If B = 
{(1, 1,0), (0,1, 1), (1,0, 1)} is an ordered basis for R3, 
(a) find LT]; 

(b) find [T]B; 

(c) find an invertible matrix P so that P[T]BP- l = [T]s. 

Group Project: Matrix Representations from 
Transformation Properties 

Suppose that B = {VI,~,"" vn} is an ordered basis bfRn. 
(a) Define T : Rn -+ R" by T(l1t) = ~, T(~) = ~, ... , Tevn-l) = Vn, and 
Tevn) = O. Find [T]B. What is [TtlB for i ~ I? 
(b) Define T : Rn -+ Rn by T(l1t) = ~, T(~) = ~, ... , Tevn-l) = Vn, and 
Tevn) = all1t + a2~ + ... + anvn. Find [T]B. When is this T on~-one? When 
is this Tonto? 

(c) Suppose that k E R, T(l1t) = kl1t, and TevD = kVt + Vt-l for i > 1. 
Find [T]B. What are the eigenvalues of T? Is T diagonalizable? 

Group Project: Matrix Representations for Rotations and Reflections 

In this project you will have to extend the ideas used in the last part Sec. 8.3. 
(a) Begin by discussing the peculiar way the discussion is set up there. Our 
first viewpoint was that a change of basis enables you to find the matrix of 
the operator with respect to a new basis, while in this later discussion the 
viewpoint taken is that the matrix is a composition' of three linear operators. 
Why is this done? What are the advantages of each point of view? How are 
they unified? 

Using these ideas find the standard matrix representations for the fol­
lowing linear operators on R3: 
(b) the reflection through the plane spanned by (1, 1,0) and the z-axis; 

(c) the rotation by () around the line through the origin and (1, 1, 1); 
(d) the rotation that moves the points (1,0,0) and (0,1,0) to the points 
(~,O,~) and (~,O, -~), respectively. 



CHAPTER 

ORTHOGONALITY 
AND LEAST-SQUARES 
PROBLEMS 

9.1 Orthogonality and the Gram-Schmidt Process 

In this chapter we extend the geometric ideas developed in Chap. 6 from 
R2 and R3 to Rn. As an application we will develop the ideas behind least­
squares approximations to data. 

The Dot Product in Rn 
Throughout this chapter we shall use the brackets ( , ) to represent the 
dot product. As pointed out in Sec. 6.1, one reason for this is to eliminate 
possible confusion of the "." with scalar or real number multiplication. In 
Chap. 6 we only defined the dot product for R2 and R3. For general R n the 
idea is the same, but we record the definition for emphasis. 

Definition. Suppose u = (al, a2, ... , an) and v = (~,~, ... , bn) are 
vectors in Rn. Then we define the dot product (or inner product) of u 

277 
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and vby 

(u, V) = al~ + azhz + ... + anbn. 

Often the dot product of u and v is denoted by u . V. For any u ERn we 
define the norm of u by lIuli = V(u, U) = vai + ~ + ... + a~. 

It turns out that all of the properties derived for the dot product in RZ and 
R3 remain true for the dot product in Rn. In particular, the entire statement 
of Theorem 34 holds verbatim. We will not repeat it here. However, we do 
recall from Theorem 35 that u' v = lIulilivlI cos(6), where 6 is the angle 
between the two vectors u and V. This result enables us to define the angle 
between two vectors u and v in R n to be the angle 6, where 0 :S 6 < 7T 

(we use radians, not degrees) and 

(u, V) 
cos(6) = lIullllvll' 

This is useful, particularly because we do not have a geometric model of 
Rn whenever n 2: 4. Furthermore, this definition enables us to extend our 
definition of orthogonal from RZ and R3 to Rn. We say that two nonzero 
vectors u and v are orthogonal if (u, V) = 0, and we see that this occurs 
only when the angle between them is ~. 

Orthogonal and Orthonormal Bases 
We now assume that V is a subspace of R n. We studied bases for V in 
Sec. 5.3. Often one wants bases whose elements are orthogonal (as is the 
standard basis for Rn). Intuitively, orthogonal vectors point in different 
directions, and because of this they are linearly independent. This is given 
next. 

Theorem 62. Suppose tha~ lit, ~, ... ,vm are mutually orthogonal 
vectors in Rn. Then {lit, ~, ... , vm} is linearly independent. 

Proof We use the properties of the dot product given in Theorem 34. 
Suppose that al ~ + az ~ + ... + an vn = 0. It then follows for each i that 

o = (Vj,O) 

= (Vi, al~ + az~ + .. , + anvn) 

= (Vj, al~) + (Vj, az~) + ... + (Vj, anvn) 

= al(Vj,~) + az(vt,~) + ... + an(vt, vn) = at(vt, Vj). 

Since Vj '* 0, we find that (Vj, Vj) '* 0 and consequently that aj = O. This 
shows that {~,~, ... , vm} is linearly independent. 0 
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Since orthogonal vectors are linearly independent, it makes sense to give 
the next definition. 

Definition. Suppose that V is a subspace of Rn. A basis {UI, U2, ... , Un} is 
called an orthogonal basis for V if the Ui are mutually orthogonal; that is, 
(Ui, Uj) = 0 ·whenever i "* j. In addition, if each II uill = 1 (that is, each Ui 
is a unit vector), we say that the basis is orthonormal. 

The Key Property of Orthonormal Bases 

The standard basis {el, ~, ... , en} of R n is orthonormal. Also, if iJ = al el + 
a2~ + ... + anen, then we have 

(- -) - + (- -) - + (- - ) -= v, el el v, ~ ~ + . . . v, en en. 

This result is true more generally. 

Theorem 63. Suppose that B = {UI, U2, ... , um} is an orthonormal 
basi:- of a subspace V of R n. Then for any v E V, 

where ai = (v, Ui). In other words, 

Proof Since {UI, U2, ... , Um} is a basis of V, we know that there is a unique 
expression of the form iJ = al UI + a2 U2 + ... + am um. We must show that 
ai = (iJ, Ui). We compute as follows: 

= (al UI, Ui) + ... + (aiUi, Ui) + ... + (amum, Ui) 

= al(UI, Ui) + ... + ai(Ui, Ui) + ... + am(Um, Ui) 

= alO + ... + aj 1 + ... + amO 

= aj. 

This proves the theorem. 0 
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As an example, we consider the orthonormal basis 

of R3 and we consider the vector 

v-G). 
Theorem 63 says 

and consequently, 

The Gram-Schmldt Theorem 
Suppose that V is the two-dimensional subspace of R3 that is spanned 
by two vectors it and v. We saw in Sec. 6.2 that the vectors v and it -
projiJ(U) were orthogonal. Since this second pair of vectors also spans V, 
we have produced an orthogonal basis for V. This same process will work 
for any two-dimensional subspace of Rn (arbitrary n). This next theorem 
generalizes this idea and helps us find orthogonal bases for vector spaces. 

Theorem 64 (Gram-Schmidt theorem). Suppose that fA, ... , Wm 
are mutually orthogonal and nonzero vectors in an. Suppose v ~ 
span{ fA, ... , Wm}. We define 

-+ _ -+ ~ (v, Wj) -+ _ -+ ~ . (:-t\ 
W m+1 - V - L.J (-+ -+) Wj - v - L.J proJWj Vj. 

j=l Wj, Wj j=l 

Then the vectors fA, iV;., ... , Wm , Wm+1 are mutually orthogonal. More-
over, we have span{fA, ... , Wm, i1} = span{fA, ... , Wm, Wm+1}. 
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Proof According to the definition of Wm+l, one sees immediately that v E 
span{11;, ... , Wm, Wm+l} and Wm+l E span{11;, ... , Wm, V}. Therefore, the 
two spans span{11;, ... , Wm, Wm+l} and span{11;; ... , Wm, V} are equal. To 
prove the orthogonality of 11;, ... , Wm, Wm+l, since 11;, ... , wm are mutually 
orthogonal, we must show that (Wm+l, Wk) = 0 for each k = 1,2, ... , m. 
For this, we compute 

This proves the theorem. 0 

m ( ...... ) _ ( ...... ) ~ v, Wi (... ...) - v, Wk - L.J ( ... ...) wi, Wk 
i=l Wi, Wi 

( ...... ) (v, Wk) (... ...) = v, wk - (... ...) wk, Wk 
wk,Wk 

= (v, Wk) - (v, W~) 

= o. 

The Gram-Schmldt Process 
Assume that {Ut, ~, ... , vn} is a basis for a vector space V. Suppose, how­
ever, that we desire an orthonormal basis for V. One can be constructed 
using {Ut,~, ... , Vn} and Theorem 64. This procedure is known as the Gram­
Schmidt process. 

In the Gram-Schmidt process we first set 11; = Ut. Next we set 

... ... (~, 11;) ...... . C ... ) 
W2 = t-'2 - (... ...) Wt = v.z - proJ~ v.z . Wt,Wt 

The Gram-Schmidt theorem guarantees that 11; and Wz are orthogonal. 'As a 
third step we set 

... ... (~, 11;) ... (~, Wz) ... 
lV3 = L3 - ( ... ... )Wt - ( ...... )W2. Wt,Wt W2,W2 

Again using the Gram-Schmidt theorem, we note that 11;,Wz, and ill?, are 
mutually orthogonal. The idea of how to proceed is now clear. Suppose 
that 11;, Wz, ... , Wk-l have been chosen. Then we define Wk by 

k-l (... ...) ... _... ~ Vk,Wj ... 
Wk - Vk - L.J ( ... ...) wi· 

j=l Wi, Wi 

Inductively, this procedure gives us n mutually orthogonal vectors 11;, Wz, 
... , wn . The Gram-Schmidt theorem also guarantees that both spans 
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span{Dt, ~, ... , vn } and span{iV:t, i/Jz, ... , wn } are equal. The new basis 
{iV:t, i/Jz, ... , wn } is called the Gram-Schmidt orthogonalization of the basis 
{ ~ ~ ~ } VI, Vz., ... , Vn . 

It is often convenient to normalize Wk to a unit vector Uk immediately 
after its computation. When doing so, we can use the Uj for 1 :5 j < k 
in defining Wk. This has the advantage that (Uj, ui) = 1 in this calculation. 
However, in some applications it is not convenient to normalize until the 
end. 

For example, consider the subspace V of R4 whose basis is the set 
containing three vectors 

We will apply the Gram-Schmidt process, normalizing our orthogonal vec­
tors as we go along. Since II Dt II = 2, we set Ul = ! Vi. The Gram-Schmidt 
process now gives 

~~m-G+Dm (J) 
z z 

Since 1Ii/Jz1I = 1, we set Uz = i/Jz. Finally, the Gram-Schmidt process gives 

~~m-G+D(!)-G-DU) (=1) 
z z z 

Since II~II = 1 we can set U3 = ~, and {Ul, uz, U3} is the desired orthonor­
mal basis of V. 

Orthogonal Matrices 
Suppose we apply the Gram-Schmidt procedure to the basis 

{(D, (JU)} 
of R3. We obtain the orthogonal basis 
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If we normalize these vectors, we obtain the orthonormal basis 

Note that this is the basis we used earlier. 
The transition matrix from the basis 13 to the standard basis is the matrix P 

whose columns are the vectors in 13. Since P has as columns an orthonormal 
basis for R3, we will see that p-1 = pl. We check this here. pl. P is 

1 

J6 
2 

J6 
1 

J6 

o 
1 
o 

In particular, we find that the transition matrix from the standard basis to 
the basis 13 is the matrix pl. This motivates the following definition. 

Definition. An n X n matrix P is called orthogonal if p-1 = pl. 

Whenever P is an n X n matrix and you compute the product pip, the 
ijth entry is the dot prJduct of the ith row of pi with the jth column of 
P. Since the jth row of pi is the jth column of P, we see that P being 
orthogonal means that the dot product of the ith and jth columns of p is 0 
if i "* j and is 1 if i = j. This is the same as saying P's columns form an 
orthonormal basis for R". We record this as the next theorem. 

Theorem 65. An n X n matrix P is orthogonal if and only if its 
columns (or rows) form an orthonormal basis for R". 

We are now in a position to give a proof of Theorem 49, which states 
that every symmetric matrix is diagonalizable. Suppose that 5 is a symmetric 
n X n matrix. According to Theorem 48, we know that 5 has an eigenvector 
i;. We can assume that 1Ii;1I = 1, and using the Gram-Schmidt procedure 
we can find an orthonormal basis 13 = {i;, Vz, ... , v,,} with the eigenvector 
i; as first element. 

Let P be the orthogonal matrix with columns VI, Vz, ... , V". What can we 
say about the matrix 51 = P-15P = pi 5F? First, we recall from Sec. 8.3 that 
51 is the matrix that represents the operator Ts in the orthonormal basis 13. 
Since i; is an eigenvector of Ts with eigenvalue say k1 , we find that the 
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first column of SI must be the B-coordinates of Ts(ilt), namely 

is the first column of Sl. 
Recall from Theorem 12 that (AB)t = Bt At whenever the matrix product 

AB is defined. Using this we find (SlY = (PtSPY = ptst(pty = ptSP = Sl. 
So, Sl is symmetric. This, together with our calculation of the first column 
of Sl, shows that in fact 

6) S' , 

where S' is an (n -1) X (n -1) symmetric matrix. Since S' is a smaller sym­
metric matrix, we can use mathematical induction to say that TSI : Rn - 1 -+ 

Rn - 1 is diagonalizable. This means that S' has n - 1 linearly independent 
eigenvectors in Rn - 1. If we take these eigenvectors and "put them" in Rn 

by giving them 0 as a first coordinate, we see that they are eigenvectors for 
Sl. Since ~ is also an eigenvector for Sl, we see that Sl has n linearly in­
dependent eigenvectors. This also means that S has n linearly independent 
eigenvectors and consequently is diagonalizable. 

OUf proof that any n X n symmetric matrix S is diagonalizable gives, 
in fact, more information. Observe that in the last stage, if we assumed that 
the n - 1 eigenvectors for S' were orthonormal, then the collection of n 
eigenvectors we obtained for Sl would also be orthonormal. We noticed in 
the example in the Coordinate-Change Matrix subsection in Sec. 8.3 that the 
eigenvectors of the matrix considered there were orthogonal. What we have 
just observed shows that whenever a symmetric matrix has distinct eigen­
values, any collection of the associated eigenvectors must be orthogonal. 
Summarizing this, we have the following result. 

Theorem 66. If S is an n X n symmetric matrix, then S has an 
orthonormal basis of eigenvectors. In particular, there is a orthogonal 
matrix P such that pt SP is diagonal. 

The Q-R Factorization 
Suppose that we apply the Gram-Schmidt procedure to a collection of 
columns of an n X m matrix, where m < n. Of course, we won't ob­
tain an orthogonal matrix, because the matrix isn't square. However, this 
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procedure does have an important interpretation. For example, consider 

Earlier we applied the Gram-Schmidt process to the columns of A. The 
columns of A were denoted Vt, V,z,~, and the Gram-Schmidt procedure 
gave us 

... 1 ... 
Ul = ZVI, 

... ... ... 0...... - 1 ..... U3 = t!.3 - Ul - U2 = t!.3 - - VI 2 . 

If we view the three parts of our Gram-Schmidt process as column opera­
tions on A, we see that this process can be interpreted as multiplication on 
the right by an upper triangular matrix. We have 

-1 
2 

1 
o 

-!) o = 
1 (1 J =1) 

222 

The columns of the right-hand matrix are the orthonormal vectors that 
resulted from applying the Gram-Schmidt procedure. 

Inverting the square matrix in the above equation, and multiplying this 
equation on the right by this inverse, gives the expression 

A - (j 1 
o 
1 
o 

1 
1 
o 

This factorization of A is known as a Q-R factorization, and we denote the 
factors according to the equation A = QR. The matrix Q has orthonormal 
columns, and the square matrix R is upper triangular. The Gram-Schmidt 
process shows that any n X m matrix of rank m has a Q-R factorization. The 
Q-R factorization turns out to be quite useful wh~n solving least-squares 
problems. This is discussed in Sec. 9.3. 
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Problems 

1. (a) Apply the Gram-Schmidt process to the vectors (3,4), (5,12) in R2 
to find an orthonormal basis. 

(b) Apply the Gram-Schmidt process to the vectors (2,2,1), (0,4,1), 
(8, 3, 5) in R3 to find an orthogonal basis. 

2. (a) Apply the Gram-Schmidt process to the vectors (1,0,1) and (1, 1, 1) 
in R3 to find an orthonormal basis for their span. 

(b) Use part (a) to find a Q-R factorization of 

3. Suppose that V is a subspace of Rn and U, V, w E V. If u 1- V, and 
v 1- W, is it also true that u 1- w? Give a proof or a counterexample. 

4. Suppose that {UI, U2, ... , un} is an orthonormal basis of Rn. Show for 
any vERn that IIvll2 = (v, UI)2 + (v, U2)2 + ... + (v, Un )2. 

5. Find an orthogonal matrix P such that pI SP is diagonal if S is the sym­
metric matrix below. 

(a) (~ ~) ° 1 
1 D 

6. Find a Q-R factorization of the following matrix. 

(c) (: 

1 
1 
1 D 

7. Let v = (1,1,0,0). Find an orthonormal basis for the subspace W = 
{w E R4 I (w, V) = o}. 

8. Let ~ = (1,1,1,1, 1), ~ = (1,0,1,0,1) E RS. Find an orthogonal basis 
for the subspace U = {u E RS I (v,~) = ° and (v,~) = O}. 

Group Project: The Distance Between a Point and a Subspace 

In this problem you will use the ideas beliind the Gram-Schmidt procedure 
to compute the distance between a point and a subspace in R n . 

(a) Consider a line .c = span{V} in Rn, where v =1= O. For any w E Rn 
explain why the distance between w (viewed as a point) and .c is 
IIw - projii(w)lI. 
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(b) Using the ideas from (a), describe how the Gram-Schmidt theorem can 
help you find the distance between the subspace span{~, t}z, ... , vs} 

and a point in Rn. 

(c) Find the distance between the subspace V = span{O, 1, 1, 1),0,1,0, 1)} 
C R4 and the point (0, 1, -2,0). 

9.2 Orthogonal Projections - This section deals with orthogonal projections. An orthogonal projection 
of a three-dimensional object is like its shadow when the sun is directly 
overhead. In order to compute the matrix representations of orthogonal 
projections, we need to begin with the study of orthogonal complements. 

Orthogonal Complements 
Whenever S is a subspace of Rn , the set of vectors perpendicular to S form 
another subspace of R n, known as the orthogonal compliment of S. 

Definition. Suppose that S is a subspace of Rn. The orthogonal comple­
ment of S in R n is defined to be the subspace S.l (read "S perp") defined 
by S.l = {v ERn I (v, w) = ° for all wE S}. 

For example, if S C R3 is the xy-plane, then S.l is the z-axis. Observe 
that the bilinearity property of the dot product (Theorem 34) guarantees 
that S.l is a vector space. See Prob. 1 at the end of this section for more 
details. 

Orthogonal Decomposition 
This next result is an important consequence of the Gram-Schmidt theorem. 
It says that if V ~ Rn is a subspace, then Rn is spanned by V together with 
its orthogonal complement V.l. More precisely, it shows that any such V 
determines a unique decomposition of any vector as a sum of two vectors, 
one in V and the other orthogonal to V. 

Theorem 67. Let V be a subspace of R n. Then 
CD Every wE Rn can be expressed as w = v + v' with v E V and 

v'E V.l. 

(ii) V n V.l = {6}. 
(iii) The expression w = v + V I with v E V and v I E V.l in part (i) 

is unique. 
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Proof CO Let {U}, U2, ... , us} be an orthonormal basis for V, and let w E 
an. In case w E V, then w = w + 0 is the desired expression. In case 
w ~ span{ul, U2, ... ,us}, then by the Gram-Schmidt theorem we find that 

s 
.... , .... ~( ........ } .... v = w - L..J W, Uj Uj 

j=l 

is orthogonal to each of Ul, U2, ... , us. Since U}, U2, ... , Us span V, any el­
ement z E V is a linear combination of U}, U2, ... , us, and consequently 
(v', z) = 0 for all z E V. This shows that v' E V.L. Setting v = 
L:~=l(W, Uj} Uj, we find that w = v + v' with v E V and v' E V.L. 
This gives CO. 

For (ii) we suppose that U E V n V.L. Applying part CO we express 
U = v + v' with v E V and v' E V.L. Since U E V we have (u, iJ) = 0, 
and since U E V.L we have (u, v') = O. This shows (u, it) = (u, v + v') = 
(u, iJ) + (u, v') = o. So U = 0, giving (ii). 

(iii) We now suppose that w = v + v' = z + z', where v, z E V and 
v', Z, E V.L. Then v - z = v' - Z, E V n V.L, so by (ii) we find that 
v - z = v' - z, = O. We conclude that v = z and v' = z', establishing the 
uniqueness assertion. 0 

The geometric meaning of the theorem can be understood as follows. 
Imagine a plane l' in a3 passing through the origin O. Let P be a point in 
a3 and let Q E l' be chosen so that PQ is perpendicular to 1'. Then Q is 
the orthogonal projection of Ponto 1'. The unique expression w = v + v' 
in part (iii) of Theorem 67 corresponds to the addition of geometric vectors 
--+ --+ --+ 
OP = OQ + QP (see Fig. 9.1). 

Orthogonal Projection 
The uniqueness assertion of Theorem 67 (iii) enables us to give the following 
definition. 

FI,. 9.1. Ortholonal 
projection onto the plane 
l' 

z 
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Deftnidon. If V is a subspace of an, the orthogonal projection Proj v : 
an -+ an is the function defined by Projv(w) = v whenever W = v + v' 
with v E V and v I E V.i. We shall often refer to Proj v as the projection 
operator onto V. 

Using this definition, observe that whenever W = v + V I with v E V and 
v' E V.i, we also have ProjV.L(w) = v' . (This is because (V.i).i = Vi see 
Prob. 5(b).) In particular, for any wEan we have Projv(w) + ProjV.L(w) = 
V + v' = W. In other words, the operator Projv + Projv.L = I is the identity 
operator on an. 

We shall see shortly how to express orthogonal projection by matrix 
multiplication. First, however, we note that the proof of Theorem 67 gives a 
description of the orthogonal projection. In the proof we computed w from 
v by projecting v onto an orthogonal basis of V and summed the results. 
We state this as a corollary. 

Corollary. Suppose that V is a subspace ofRn. Let ul, ii,z, ... , Us be 
an orthonormal basis of V. The orthogonal projection Proj v can be 
computed by the formula 

Projv(w) = (w, UI) UI + (w, ii,z) ii,z + ... + (w, us) us. 

For example, the subspace V of a4 considered in Sec. 9.1 had the basis 
of orthonormal vectors 

{(l). (j). ( =1) } 
2 2 2 

The corollary tells us that the projection of a vector (a, b, c, d) E an is given 
by 

. (:) a+b+C+d(l) a-b+C-d(_l) Pro) = 2 + 2 
V C 2 1 2 1 

2 2 
d 1 -1 

2 2 

+a-b-C+d(-t) 
2 -1 

2 
I 
2 

-t J -i)(D 
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The 4 X 4 matrix in this expression is the standard matrix (Proj v 1 of the 
projection onto V. Since Projv + Projv.L = I, we find that [Projv.Ll = 
14 - (Projvl. Hence our calculations also show 

( 

1 
.11 

[ProJv.Ll = 4 -1 

-1 

1 
1 

-1 
-1 

-1 
-1 

1 
1 

-1) -1 
1 . 

1 

Observe that [Projv.Ll is a rank-1 matrix. This should be expected since V.1 
is one-dimensional. In fact V.1 is the subspace spanned by a column of 
(ProjV.Ll. 

Matrix Applications 

Recall that for any matrix A, ker(A) denotes the null space of A, row(A) 
denotes the row space of A, and col (A) denotes the column space of A. 

Theorem 68. Suppose that A is an m X n matrix. Then ker(A) -
(row(A)).1 ~ R n . 

Proof Let RI denote the ith row of A. The definition of matrix multiplication 
shows that v E kerCA) if and only if Rlv = 0 for each i. However, viewing 
RI and vas vectors in R n, the matrix product RI V is precisely the dot product 
of RI and V. Since row(A) is the subspace of R n spanned by the rows of A, 
we find that v E (row(A)).1 if and only if v E kerCA). 0 

Earlier we studied the column space V of 

According to Theorem 68 V.l is ker(At ). We readily see 

which agrees with our previous determination that V.1 was the span of a 
column of (Projv.Ll. 

If A is a rank-n, m X n matrix, then we can use Theorem 68 to obtain 
the following. 
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Corollary. Suppose that A is a rank-n, m X n matrix. Then AtA is 
an invertible n X n matrix. 

Proof According to Theorem 15 it suffices to show that ker(At A) = {5}. 
If At Au = 0, then we see that Au E ker(At). However, we also have 
that Au E col(A) = row(At). Since row(At)l. = ker(At), we conclude that 
Au E row(At) n row(At)l. = {5}. We find that Au = O. Since rk(A) = n, 
Theorem 15 shows ker(A) = {5}, and consequently u = O. 0 

We now have a new method for computing the matrices that give pro­
jection operators. 

Theorem 69. SupposeA isa rank-n mX n matrix. Then the standard 
matrix of the projection operator onto col (A) can be computed by the 
matrix equation [ProjcoI(A)] = A(At A)-l At. 

Proof Since rk(A) = n and A is m X n, At A is invertible by the previous 
corollary. Therefore, the product A = A(At A)-l At is defined. Theorem 68 
shows that col(A)l. = ker(At). Therefore, if i/;' E ker(At), then Ai/;' = 
A(AtA)-l(Ati/;') = A(AtA)-lO = O. 

Next note that if Cj is the ith column of A, then we know that ACj is 
the ith column of AA. Observe that AA = A(At A)-l(At A) = A. From this, 
ACj = Cj follows. Since any vector i/; E col(A) is a sum of such columns of 
A, we find that Ai/; = i/;. Since Ai/;' = 0 when i/;' E ker(At), and Ai/; = i/; 
when i/; E col(A), we conclude that [ProjcoI(A)l = A as required. 0 

An Example 
Note that whenever a subspace veRn has a basis of m vectors, Theorem 
69 can be applied to the matrix whose columns are these vectors. For exam­
ple, we consider the two-dimensional subspace V = span{Cl, 2,1), (-1,3, a)} 
of R3. We set A to be the matrix 

whose columns span V. Then direct calculation gives 

AtA = ( 1 
-1 

2 
3 
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Problems 

and consequently 

(At A)-l = ~ ( 10 
35 -5 

We may now compute that 

A(At A)-l At = - 2 1 (1 
35 1 

-5) 6 . 

-5) ( 1 
6 -1 

= ~ (~~ 
35 15 

15) 5 = (ProjvJ. 
10 

The reader can readily check that 

1 ( 26 

35 ~; 

1 ( 26 

35 ~; 

~ :n(D~(D and 

~: :n ( -D ~ ( -D . 

2 

3 ~) 

This is as it should be, since vectors in V must project to themselves. If we 
compute 

(~ ° 1 

° 
~) - ~ (~~ 
1 35 15 

-3 
34 
5 

3 
1 

-5 

-15) 
-5 , 
25 

we obtain the matrix of the projection operator Proj v.L. Observe that this 
latter matrix has rank 1. This is because V.L is the one-dimensional subspace 
of R3 spanned by (3,1, -5) (or any column of (Projv.LD. 

1. Show that for any subset S eRn, the set S.L is a subspace of Rn. Use 
the properties of the dot product stated in Theorem 34 to show that S.L 
contains i5 and is closed under scalar multiplication and vector addition. 
Note that you need to assume only that S is a s~bset, not a subspace. 

2. Consider the subspace W = span{(2, 1,0,0), (0, 0,1,2), (1,1,1, I)} ~ R4. 
Show that 

C 
2 -2 

-~) . 1 2 6 4 
[Pro)w1 = 10 -~ 4 6 2 ' 

-2 2 9 

and find [Projw.Ll. 
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3. Find the standard matrices of the projection operators Proj v : R3 -> R3 
and Projv~ : R3 -> R3, where V is as given. 

(a) V = span{Cl, 4, 0), Cl, 3, 1)} 

(b) V = span{(2,4, -8)} 

(c) V = {(x, y, z) 14x - y - z = O} 

4. Use the Theorem 69 to compute the projection operator Proj w : R4 -> R4 
for 

(a) W = span{Cl, 1,0,0), (0, 0,1, 1)}; 

(b) W = span{(2, 4, 3, 1)}; 

(c) W = span{Cl, 1,0,0),(0, 1,0, 1),(0,0, 1, 1)}. 

5. Suppose that U and V are subs paces of Rn. 

(a) If dime V) = d, what is dime v1-)? 

(b) Use (a) to help show V = (V 1-)1- . 

(c) If U C V, show v1- C u1-. 

(d) Show that (U + V)1- = U1- n v1-. 

6. Suppose that U and V are subspaces of Rn. Show that U1- + V1- = 

(U n V)1-. 

7. If V is a subspace of R n, show that IIprojv(w)1I :s IIwll for all wE Rn. 
Why is this true intuitively? 

8. Why are the matrices [Projv1 studied in this section always symmetric? 

9. Give an alternative proof of the corollary following Theorem 68 by show­
ing that ker(At A) = kerCA) , so that rk(A t A) = rk(A). (Hint: Compute 
.iuAtAx.) 

10. Suppose that B is an n X n invertible matrix. Let Vi be the subspace of 
R n spanned by the ith row of B. Show that the orthogonal complement 
V1- of V is spanned by the (n - 1) columns of B- 1 , excluding the ith. 

Group Project: Orthogonal Matrices 

In this investigation you will study more properties of orthogonal matrices. 

(a) Show that if A and B are both orthogonal matrices then AB is orthogo­
nal. 

(b) Suppose that U, w E Rn and that A is an orthogonal n X n matrix. Show 
that the dot product (u, w) = (Au, AW). 

(c) What you just checked in (b) shows that the function F : Rn -> Rn 

defined by F(U) = Au is what is called an isometry. What does this mean 
geometrically in R2 or R3? Rotations and reflections are examples of isome­
tries. Show that every 2 X 2 orthogonal matrix is either a rotation or a 
reflection matrix. 
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9.3 Least-5quares Approximations - In Sec. 1.2 we noted that the output of many functions studied in science 
looks very much like that of a linear function. Recall that such behavior is 
called loeallinearity. An important problem for scientists in many subjects 
is to take some data, find a good linear approximation, and use this to help 
understand and predict outcomes. But what is the best way to find these 
linear approximations? 

The geometric ideas developed in the first two sections of this chapter 
turn out to be quite useful in helping us understand and devise methods for 
finding good linear approximations. We give a brief orientation to the ideas 
of one method in this section. We will study what are called least-squares 
approximations. Undoubtedly, many of you reading this text will see this 
process in much greater detail in later classes, perhaps in an econometrics 
class, where this process is known as linear regression. 

Estimation of Cost 

According to a study of accounting records dating 1935-1938,1 tne four­
week cost of operating a certain leather belt shop can be accurately esti­
mated by 

C = -60 .178 + .77b + 70.18w, 

where b is the thousands of square feet of single-ply belting, W is the belt 
weight in pounds per square foot, and C is the total cost in thousands of 
dollars . This looks useful, but you must be wondering where the numbers 
in this equation came from. Our next task is to find out. 

We begin by thinking about a possible matrix formulation of this situ­
ation. One has a collection of data showing various bi and Wi values with 
their respective outputs Ci. We want to try to find coefficients f31, f32, and 
f33 so that the equation C = f31 + f32 b + f33 W gives a good prediction of 
the behavior we want to describe. In other words, for each triple of leather 
shop data bi, Wi, Ci, we should have C; = f31 + f32b; + f33Wi. If we think of 
f3J, f32, and f33 as unkowns, this problem can be represented by the matrix 
equation 

li 
~ 

~l 
C1 

~ Wz 

(~:) -
C2 

~ 110 C3 

~Il bll C'l 

where we have n triples of data to approximate. This makes our problem 
look more like one of matrix theory. The economists studying the leather 

lJ. Dean, The Relation of Cost to Output for a Leather Belt Shop, National Bureau of Economic 
Research, New York (1941). 
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belt shop found that /31 = -60.178, /32 = .77, and /33 = 70.18 give good 
approximate solutions. 

The phrase "a good approximate solution" can be interpreted in many 
ways. One useful notion is the following. 

Definition. Let A be an m X n matrix. A vector ;3 E an is called a least­
squares solution to the (possibly inconsistent) system AX = C if the distance 

in an is a minimum among all possible choices for ;3. 

If we analyze our matrix equation above, we see that minimizing the 
length IIA;3 - CII is the same as minimizing its square, which expanded is 

(/31 + ht/32 + WI/33 - c1i + (/31 + ~/32 + 1»2/33 - c2i 
+ ... + (/31 + bn /32 + W n /33 - Cn )2. 

This accounts for the terminology "least squares." 

Projections and Least Squares 
Suppose that P is a plane in a3 and that Q is a point not on P. Then the 
distance between Q and P is the distance of the segment from Q to P 
that is perpendicular to P. This is the same as the distance between Q and 
Projp(Q), the projection of Q on P. (See the group project at the end of 
Sec. 9.1 for more details.) The same ideas extend to higher dimensions. The 
distance between a point and a subspace is the distance between the point 
and the projection of that point onto the subspace. 

Now suppose that A is an n X m matrix and that we are trying to 
find a least-s.9uares solution to AX = C. Recall that for any ;3 E am, 
the vector A/3 is an element of the column space of A. This means that 
the least-squares solutions ;3 correspond to points A;3 E col(A) for which 
the distance between C and A;3 is minimal. What we just noted shows 
th~t this minimal distancs occurs where A;3 = ProjcOJ(A)(C), that is, where 
A/3 is the projection of C onto col(A). This means that finding the least­
squares solutions to AX = C is the same as finding the actual solutions to 
AX = ProjcoICA/C). This observation is our next theorem. 

Theorem 70. Consider the (possibly inconsistent) system AX = C. 
Then AX = C has a least-squares solution, and all its least-squares 
solutions are the solutions to the consistent system AX = Proicol(A) (C). 

If A is an m X n rank-n matrix, then Theorem 69 gives a computation of 
Projcol(A)' Plugging this information into Theorem 70 gives our next result. 
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Theorem 71. If A is an m X n rank n matrix, then the least-squares 
solutions to the system AX = C are the solutions to the system AX = 
A(AtA)-lAtC. Tbis system has the unique solution X = (AtA)-lAtC. 

Proof Since the matrix [ProicolCA) = A(At A)-l At by Theorem 69, Theorem 
70 shows that the least-squares solutions to AX = C are the solutions to 
AX = A(AtA)-lAtC. However, since rk(A) = n, this system of equations 
has a unique solution. As X = (AtA)-lAtC is a solution to this system, it 
must be the desired least-squares solution. 0 

Linear RegreSSion 
Suppose that a collection of n data points PI = (rl, Sl), ... , Pn = (rn, sn) E 
R2 are given, where we assume that they all lie reasonably close to a line. 
Our problem is to find the equation of a line for which these points are 
close. This means we want to find an equation of the line Y = mX + b 
which fits our data in the least-squares sense. To find our "best" m and b, 
we must find a least-squares solution the system 

Since the coefficient matrix has rank 2, the least-squares solution can be 
computed using Theorem 71. 

For example, let us consider the nine values considered in our storage 
battery capacity example in Sec. 1.2. The values were given in the following 
chart. 

Discharge rate (amps) 1 5 10 15 20 25 30 40 50 
Amp - hr Capacity 70 68 66 62 58 54 50 40 28 

Suppose we wanted to find a line that approximated all of these points, 
instead of the local linear approximation illustrated in Fig. 1.3. Then we set 
A to be the 9 X 2 matrix where 

1 
5 

1 
10 

1 
15 

1 1 
20 25 

1 1 
30 40 5~) 

(we write At here to save space), and C is the 9 X 1 matrix where 
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Entering these matrices into a calculator gives 

(AtA)-lAtC = (~.':~~) . 
This tells us that the line C = 73.626 - .850r is a good approximation to the 
battery's amp-hr capacity C as a function of its discharge rate r. It is called 
the least-squares line. Recall that our locally linear approximation obtained 
in Sec. 1.2 was C = 74 - ~ r. Note how close these linear functions are, 
but also note the difference. Our equation in Sec. 1.2. was a line through 
two data points, that happened to pass through several others. Incidentally, 
most calculators will compute the equation of the least-squares line if you 
enter the data points and ask the machine to calculate a linear regression, 
which is usually found in the statistics menu. The least-squares line for our 
storage battery capacity data is shown in Fig. 9.2. 

We can also use least squares to obtain a two-variable linear approxi­
mation to the values of A CL given in Table 1.2, which is reproduced here. 

5° 10° 15° 20° 
.1 .08 .13 .19 .24 
.2 .12 .17 .23 .30 
.3 .17 .22 .29 .42 

Here we are looking for real numbers aI, az, a3 so that ACL = al +aZ5+a3E. 
Our discussion above shows that we are looking for a least-squares solution 
to the equation AX = C where A is a 12 X 3 matrix whose transpose IS 

At = (~ 
1 1 1 1 1 1 1 1 
10 15 20 5 10 15 20 5 

.1 .1 .1 .1 .2 .2 .2 .2 .3 

and where C is the 12 X 1 vector whose transpose is 

C t = (.08 

Capacity 

(Amp-hr) 

60 

40 

20 

.13 .19 .24 

10 20 

.12 .17 .23 .30 .17 

• 

30 40 50 

1 1 
2~) , 10 15 

.3 .3 .3 

.22 . 29 .42) . 

Discharge rate (amps) 

FIg. 9.2. Least-squares approximation to storage battery capacity data 
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Note that the reason we have 12 rows in our matrices is that we have 12 data 
values that we want our approximation to take into account. The second and 
third columns of A give the various input values (they are pictured as the 
lower two rows of At above), and the column C lists in corresponding order 
the output values from the table. We enter these matrices into a calculator 
and obtain the least-squares solution 

This gives the linear regression (least-squares approximation) 

A CL = - .065 + .0138 + .575E, 

which is close to the approximation 

ACL = -.02 + .018 + .5E 

obtained in Sec. 1.2. The latter approximation was based on estimates of 
rates of change of output where one variable was held fixed. We saw at the 
time that while the approximation was close for values of 8 near 10° and 
E near .2 it was less accurate at values farther away. In contrast, our linear 
regression will be more accurate overall, but less accurate near the values 
of 8 = 10° and E = .2. 

The Least-5quares Quadratic 
Since our data in the battery capacity problem are not exactly linear, we 
might decide to try to approximate the values using a nonlinear function. 
The simplest choice would be to try find a quadratic function, say C = 
a + br + cr2. Solving this problem is essentially the same as finding a least­
squares line, the only difference is that our matrix A becomes 9 X 3 instead 
of 9 X 2. The reason for this is that the constants a, b, and c arise as least­
squares solutions to the system whose ith equation is a + rib + r/c = Ci. 
In other words, A is the transpose of the matrix 

1 1 
10 15 

2) 100 225 

111 
20 25 30 

400 625 900 

1 
40 

1600 

1 ) 50 , 
2500 

where the third column of A is obtained by taking the squares of the second 
column of A. Entering this A and the same C as before into a calculator 
gives 

(
70.618) 

(At A)-l At C = - .454 . 
-.008 

This means that our battery capacity function can be approximated by the 
quadratic function C = 70.618 - .454r - .008r2. 
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The Normal Equation 
One may wonder what happens if the matrix A in a least-squares problem 
does not have full rank as required by Theorem 71. This may happen, for 
example, when an experiment is repeated a number of times and different 
outputs arise from the same input. The next result gives an alternative 
consistent system whose solutions are the least-squares solutions to the 
originai system. 

Theorem 72. If A is an m X n matrix, then the least-squares solutions 
to the system AX = C are the same as the solutions to the system 
(AtA)X = AtC. 

Proof According to Theorem 70, if 13 is a least-squares solution to AX = C, 
then Ai3 = Projcol(A/C), But one knows from the defining property of the 
projection that (C - Projcol(A)(C)) E coI(A)1-. But Theorem 69 shows that 
coI(A)1- = ket(At) , and therefore putting these equations together shows 
(C- Ai3) E ker(At). This says that At(C-Ai3) = 0; in other words, (At A)i3 = 
At C. Hence all least-squares solutions are solutions to the system (At A)X = 
AtC. 

Conversely, if (At A)i3 = At C, then Ai3 - C E kerCAt) = coI(A)1-. 
Since Ai3 E col(A) and C = (Ai3) - (Ai3 - C), we find by definition that 
Projw(C) = Ai3. Theorem 71 shows that 13 is a least-squares solution to 
AX = C. 0 

Definition. The system (At A)X = At C in Theorem 72 is called the normal 
equation associated with the least-squares problem AX = C. 

For example, Theorem 72 shows that the solutions to the least-squares 
problem 

(l 
2 

D (D~ GD 2 
2 
2 

are the solutions to the system of equations 

G 
1 1 

D (j 
2 

DG) G 
1 1 

1 C) 2 2 
2 

2 2 !) :i . 4 4 
2 

4 4 
2 

This latter system is 

U 8 E)G) C7
) 

16 394 
32 788 
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Problems 

We obtain that the least-squares solutions to this problem are the set of 
solutions to X + 2 Y + 4Z = 1~7. Note that this means there are infinitely 
many least-squares solutions to the original system, but each least-squares 
solution has as output 197/4 (in this case the average value of the four 
outputs in the original system). 

Least-5quares Solutions and the Q-R Factorization 
The conclusion of Theorem 71 simplifies in case we have determined the 
Q-R factorization of the matrix A. If A = QR is a Q-R factorization, then as 
the matrix Q has orthonormal columns we find Qt Q = 1m. Therefore, we 
find At A = (QR)f QR = Rt(Qt Q)R = Rt R and the least-squares solution be­
comes X = (AtA)-lAtC = (RtR)-l(QR)fC = R-1(Rt)-lRtQtC = R-IQtC. 

For example, in Sec. 9.1 we found the Q-R factorization 

D ~ (1 
1 

=1) (1 
1 2 

(~ 
1 

~) . 
0 1 

A= 2 1 
1 1 

2 0 
0 1 

2 2 2 

This shows that the least-squares solution to 

(l 
1 

DG) m 0 
1 
0 

is given by 

~ -~) (! 1 0 2 
o 1 ! 

2 

1 
2 

-! 
2 
1 
2 

1 
2 
1 
2 
1 
2 -!)(D' 

which after calculation shows X = ~, Y = ~, and Z = ~. 

1. Find the least-squares solution of the following. You may use your cal­
culator or computer for the matrix computations. 

(a) X + Y = 2 (b) X - Y + 2Z = 3 
X+ 3Y=5 X+ Y- z=6 
X + 5Y = 9 2X - 2Y + Z = 4 
X + 11 Y = 14 2X - Y + 6z = 9 
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2. (a) Show by an algebraic calculation that A = A(At A)-l At is symmetric 
with A2 = A whenever A is m X n and has rank n 

(b) Give a geometric explanation of why the result in part (a) is true. 
(You will need to interpret the geometric meaning of Theorem 69.) 

3. A matrix P is called a projection matrix if it is symmetric and satisfies 
p2 = P. (This was checked for A in Prob. 2.) If P is an n X n pro­
jection matrix, show that In - P is also a projection matrix. What do 
these properties mean geometrically if P is the matrix of an orthogonal 
projection? 

4. (a) Use the method of linear regression to find linear approximations 
to the one-variable functions in the rows of Table 1.4. (These rows 
correspond to the fixed values of E = .1, .2, .3,) How do these three 
linear functions compare to the three linear approximations for <l CD 
given in Sec. 1.2? 

(b) Find the least-squares, two-variable linear approximation for <l CD 
using the 12 values given in Table 1.4. How does your approximation 
compare with the nonlinear approximation to <l CD given in Table 
1.5? Which approximation would you trust if you were designing an 
airplane? 

5. Suppose that P is the 2 X 2 matrix of an orthogonal projection onto a 
line in R2. The matrix R = 12 - 2P is called a reflection matrix. Explain, 
in geometric terms, what the transformation given by R is doing. Show 
algebraically that R2 = h. Why does this make sense geometrically? 

6. (a) Find the least-squares line for the data points (2,3), (3,7), (5,18), 
(6,24), (7,31), and (9,43). 

(b) Find the least-squares quadratic approximation to the points in part 
(a). 

(c) Find the least-squares cubic approximation to the points in part (a). 

7. Use the Q-R factorization 

1) ()z 1 = 0 
1 1 

/2 
~) 

to find the least-squares solution to 

GD 
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8. Consider the following table. 

2 4 6 8 10 
1 3 6 9 12 14 
3 10 14 16 18 22 
5 24 28 32 35 38 

Using a calculator or a computer to find a linear approximation to the 
function represented by this table of data. 

Group Project: Weighted Least Squares 

Suppose that you desire to fit a line to some data in which some numbers 
are more reliable (or important) than others. Then you may want to use 
a variation of the least-squares line in which the reliability of the data is 
taken into account. Suppose, for example, you are considering PI = (rl, S2), 
P2 = (r2, S2), ... , P" = (r", s,,) in R2. Then you could try to find a weighted 
least-squares line Y = mX + b by minimizing the sum 

" 
" w·(s· - mr· - b)2 ~ " I , 

i=1 

where the real numbers Wi are "weights." 

(a) Explain why you might do this. How would you determine the weights 
Wt? 

(b) How would you find the values of m and b that minimize the sum? 
What least-squares problem must you solve? Express this in matrix form. 
(c) Rework Prob. 5(a), but this time weight the points (5,18), (6,24), and 
(7,31) as twice as important as first three. Use your calculator or computer 
as needed. 

Group Project: Quadratic Approximations in Several Variables 

(a) As a group, compare your solutions to Prob. 8, and discuss how satisfied 
you are with the approximations obtained. 

(b) Next, figure out how to use least squares to find a quadratic ap­
proximation to this function. Your quadratic approximation will look like 
Q(X, Y) = al + a2X + a3 Y + a'iX2 + asXY + tl(; y2. Write the least-squares 
problem in matrix form. 

(c) Using a calculator or a computer, obtain your least-squares quadratic 
approximation. Compare its values to those you studied in part (a). Which 
approximation is better? 



ANSWERS TO 
ODD·NUMBERED 
PROBLEMS 
Section 1.1 

1. Since you can travel 220 miles in 5 hours at a constant speed, you are 
traveling at 220 -:- 5 = 44 miles per hour. At this speed your distance traveled 
at time t is D(t) = 44t miles. 

3. (a) PA = 5 . 25 + .25 . M and PB = 5 . 35 + .10 . M for M miles in five 
days. Setting these functions equal shows 5' 25 + .25' M = 5· 35 + .10' M, 
and so 50 = .15' M. We find that M = .;~ = 333~ miles for the same price 
in five days. For seven days the answer is 466~ miles, and for eight days 
the answer is 533~ miles. 

(b) M = 1~~ = 66~ . D. 

(c) Substituting PA = 25' D + .25 . 66~ . D = 41~ . D and PB = 35' D + 
.1 0 . 66~ . D = 41 ~ . D, checking that the costs are the same. 

5. (a) Y = -2X1 - 2Xz + 2X3 (b) Y = Xz + X3 + 2 

7. (a) X = ! Y + 2 (b) X = - ~ Y + ~ (c) X = 160 Y - tfo 
(d) This means that the expressions are those of inverse functions. 
(e) For (b) we have -3(-;1 Y + ~) + 7 = Y - 7 + 7 and for (c) Y = 
100(160 Y - 1~0) + 99 = Y - 99 + 99. 
CD This linear function doesn't have an im~erse! 

9. (a) In order to determine this linear function uniquely, one needs another 
input-output value. For example, it would be useful to know some values 
where the input of Xl is zero. One can see from the data given that the 
coefficient of X2 must be O. 
(b) Since the coefficient of X2 is 0 in any linear function satisfying this input­
output chart, these linear functions must all look like Y = kX1 + (3 - k), 
where k is some real constant. 

303 
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Section 1.2 
1. For example, the first column drops by $417, $139, $70, and $41 for each 
successive 12-month increase (starting at 12 months). This is not character­
istic of a linear function. However, one could try a slope of - ll~' where 
the -100 is close to the average of the second and third drops listed. Then, 
since our linear approximation should pass through (M, n) = (295,36), we 
obtain M - 295 ... - ll~(n - 36) or M ... -8.3n + 593. This linear approxi­
mation is not accurate when n is 12 or 60 (but is more reasonable when n 
is 35, 36, or 37). Many other answers are possible. 
3. If the elevation function is locally linear in some region, then the con­
tours representing equal elevation changes should look like equally spaced 
parallel lines. 
5. (a) The increase from 10 to 20 mph was 65 amps, and from 20 to 30 
mph was 85 amps. This isn't too far from the behavior of a linear function, 
so it's reasonable to estimate that the current drain at 15 mph would be 
halfway between the 10 and 20 currents, say about 117 amps. If we assume 
that the rate of increase near 30 mph is about ~ = 8.5 amps/mph, then at 
32 mph we would approximate 235 + 17 = 252 amps. 
(b) The increase between 30 and 40 mph is 105 amps, and the increase 
between 40 and 50 mph is 130 amps. So the increase between 50 and 60 
mph would probably be 160 or more, so a rough guess is 470 + 160 = 630 
amps. 

Section 1.3 

1. (a) Nonsense. (b) 

(e) (~ ~) (f) (~ 

(c) (~~) = (! 

(~ -9) 
18 

(c) Nonsense. (-2 
(d) ~ D 
C2 -1~) -3) 12 

14 Cg) Nonsense. (h) -8 10 

(k) (-35 
30 

-45) 
10 

-12 18 

(1) Nonsense. 
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(d) (~) ~ n 2 

-D (~) -5 
-1 

0 

5. Assume that 

A= (~ ~) and B = (~ ~) . 
Then by the definition of matrix multiplication we have 

AB = (sx: uy tz: vw) and BA = ( sx : tz 
Uy: vw)' 

where the values in the * places are omitted. Subtracting, we find that 

AB - BA = (uy *- tz *) ( a tz - uy = c 

Hence, we find a + d = (uy - tz) + (tz - uy) = O. 

7. (a) The initial path matrix for this graph and its powers are 

2 
o 
1 

12 
4 
6 

and adding these powers gives 

(
30 

M4 = 14 
16 

(
39 29 

M + M2 + M3 + M4 = 29 39 
25 25 

~ ;), 
2 2 

14 16) 
30 16 , 
16 12 

25) 25 . 
18 
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We find that between points A and C there are 6 paths of length 3, 16 paths 
of length 4, and 25 paths of length at most 4. 
(b) In this graph one finds that there are 15 paths between A and C of 
length at most 3, 16 paths between A and A of length at most 3, and 8 paths 
between C and C of length at most 3. 

Section 1.4 
1. Excluding wheels, the parts for a car total $0.80 and the parts for a 
truck total $1.00. Since we have to spend $25 for a box of wheels, the 
new constraint in this problem is .8 . C + T + 25 :5 100. Graphing this 
new inequality on top of our previous feasible region gives a new feasible 
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region, which is the triangle with corners (25,25), (25,55), and (62.5,25). 
Evaluating our profit function on these three points gives $10.00, $34.00, 
and $32.50, respectively. So making 25 cars and the rest trucks is the best 
strategy this time. 
3. The vertices of the feasible region turn out to be (0,0), (0,6), (2,4), and 
(4,0). The maximum value of 2X + 5 Y + 1 on these inputs is attained at 
(0,6) and is 31. 

5. (a) The vertices of the feasible region are (0,0), (0,3), (3,0), (3, ~), and 
0,3). The maximum value of Z = 3X + 4Y is 15 and the minimum value 
is 0. 
(b) The maximum value is attained at both vertices (3, ~) and 0,3). This 
occurred because one of the lines of constant value of the function X = 
3X + 4 Y happened to contain one of the sides of our feasible region. 
(Namely, the side with vertices (3, ~) and 0,3) lies on the line 3X + 4Y = 
15.) Because of this, every point of the feasible region on the segment with 
vertices (3, ~) and 0,3) attains the maximum value 15 for our function. 

7. If A and B denote the number of birds of species A and B respectively, 
then we have the territorial constraint 1001 + 300~ :5 100,000. The food 
constraint equation is A + .5 . B :5 500 since there is enough food for 500 
species A birds and the B birds eat half as much as the A birds. The corners 
of the feasible region for this problem are (0,0), (500,0), (0, 666~), and 
(200,600). The maximum of the function A + B occurs when A = 200 and 
B = 600, and there are 800 birds total. 
9. (a) 

7 

6 
5 
4 
3 
2 

1 

1 234 5 6 7 8 9 

(b) X + Y has minimum of 4, but no maximum. 
(c) -X - Y has a maximum of -4, but no minimum. 
(d) No, this is not possible. 
(e) This example shows that some unbounded regions can have the prop­
erty that for any linear function, there always is a maximum or minimum. 

Section 2.1 

1. (a) (1~) (b) (=~~) (c) (4 -=-2:1T ) 
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3. The vectors on the unit circle representing successive 72° rotations to 
three decimal places are (1,0), (,309, .951), (- .809, .588), (- .809, - .588), 
and (,309, - .951). Adding these vectors in succession gives the five vertices 
of a regular pentagon with sides of length 1 as (1,0), (1.309, .951), (.5, 1.539), 
(- .309, .951), and (0,0). 

5. If v = C:) and II ( :) + (!) II = 2, then (a + 1)2 + (b + 1)2 = 4. 

This means that v is the position vector of points on the circle of radius 2 
centered at (-1, -1). 

Section 2.2 

1. (a) The direction vector for this line is (~), which shows that the line 

has slope ~. Consequently, a parametric description of the line is given 
by {(2t + 1,3t - 1) I t E R}. A point-slope representation is given by 
y + 1 = ~ (x - 1) and the slope-intercept equation of the line is y = ~ x - ~. 
(b) {(U, t) I t E R}; (y - 0) = !(x - 0); y = !x 
(c) {Ct,3t) I t E R}; (y - 0) = 3(x - 0); y = 3x 
(d) {(t,-t-6) ItER};(y-O) = -(x+6);y= -x-6 

3. (a) The line through the points (1,1) and (0,0) is given by the equation 
y = x. The second line is given by the equation y = 2x - 1. Therefore, the 
x-coordinate of their intersection is given by x = 2x - 1. Hence x = 1, and 
we see that the point of intersection is (1,1). 
(b) The point of intersection is (-3, -2). 

(c) The point of intersection is (1,1). 

5. The perpendicular line is {(2 + 2t, 3 + t) I t E R}. 

Section 2.3 
t---+ 

1. (a) A direction vector for the line PQ can be found subtracting the 
coordinates of P from Q and is 

CD 
Since P = (1,1,3), is a point of PQ, we find that this line is described 

• t---+ 
parametncally by PQ = {Ct + 1, 3t + 1, -3t + 3) It E R}. 

+--+ 
(b) A parameterization of RS is {Ct, 2t - 1, -t + 2) It E R}. 
(c) A parameterization is {Ct + 1,3t + 1, -3t + 1) It E R}. 

3. There are many possible correct answers to these problems. These are 
possible answers. 
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(a) Since the plane contains the origin (0, 0, 0), the points P and Q give two 
direction vectors for the plane. Therefore, a parameterization is {(t + 2u, 
t + 4u, t + u) I t, u ER}. 

(b) Subtracting the coordinates of A from Band C gives the direction 
vectors 

Since A = (1,2,4) lies on the plane, we obtain the parameterization {( - u+ 1, 
-3t - 2u + 2, -3t - 3u + 4) It, u E R}. 
(c) Solving z = - x + y + 4 shows a parameterization is {Ct, u, - t + U + 4) I 
t, U E R}. 
(d) This plane contains the origin and the points (1,2,0) and (0,1, -1) 

(obtained by setting t = ° and t = -1 in the parameterization, respectively). 
Therefore, a parameterization is {(t, 2t + u, - u) I t, U E R}. 

5. (a) We know that the points on this plane are given by x = t + u, 
y = t - u + 1, and z = t, where t and u range over R. We must use this 
information to find the relationship between x, y, and z. Inspecting these 
equations, we see that adding x and y gives x + y = 2t + 1. Since z = t, 
we make this substitution to obtain x + y = 2z + 1 or x + y - 2z - 1 = 0, 
either of which is a possible answer. 
(b) Since 0 is the origin, this plane can be parameterized by {(t - u,3t, 
5t + 2u) I t, U E R}. So we manipulate the equations x = t - u, Y = 3t, and 
z = 5t + 2u to obtain an equation for the plane. I.~ we add 2x and z, we 
find that 2x + z = 7t. Since y = 3t, we find that 2x + z = ~y, which can 
be rewritten if you like as 6x + 3z - 7y = 0. 
7. (a) Both of these planes contain the point (0,0,0). We need to find 
another point. Setting x = 1, we must have z = -1 by the first equation. 
Then y = - 2 by the second equation. Since the line passes through the 
origin and contains (1, -2, -1), it is parameterized by {(t, -2t, -t) It E R}. 
(b) Substituting x = ° into these equations gives z = 6 and y = 5. Hence, 
(0,5,6) lies on this line. Similarly, (6,5,0) lies on this line, and therefore a 
direction vector for the line is (6,0, -6). We find that a parameterization is 
{(6t, 5, -6t + 6) I t E R}. 

Section 2.4 

1. Here are some answers, but there are more! Draw some pictures of these. 
(a) Triangles usually look like other triangles when viewed in perspective, 
although their shape can change. However, if a vertex of a triangle lies 
on the horizon, then under the perspective correspondence the triangle 
would correspond to a segment with two parallel rays emerging. (Often, 
the reverse of this is seen when a railroad track vanishing at the horizon is 
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drawn as a triangle with a vertex as the infinite point.) What happens if the 
horizon passes through a side of the triangle? 
(b) Squares can perspectively correspond to other quadrilaterals that need 
not be squares or even rectangles. 
(c) Angles can perspectively correspond to any other angle. 
(d) Lengths can change drastically in a perspective correspondence. 

Section 3.1 

1. (a) X = ~, y = - ~ 
(b) X = 0, Y = 0 
(c) X = t, Y = ~t + 1, where t E R is a parameter 
(d) 0, that is, there are no solutions. 

3. (a) X = -~t + ~, Y = -~t + ~, Z = t, where t is a parameter. 
(b) X = 0, Y = 0, Z = 0 

5. (a) (7 - t - u - v, t, u, v), where t, u, v are parameters 
(b) (3 + t,2 - u, t, u), where t and U are parameters 

7. Subtracting twice the first equation from the second gives the equation 
o = v - 2u. Therefore, this system of equations has a solution only if 
v = 2u. In this case it has infinitely many solutions. In particular, the system 
will never have a unique solution. 

9. If the polarity of the 8-volt battery is reversed, we have to study the 
system of equations: 

41cB + 2IBA = -8 
41cB + IBD = 6 

ICB - lBA - IBD = o. 

This system is the same as the system considered in the section except that 
the 8 is replaced by -8. The solution is ICB = ~, lBA = =f-, and IBD = ¥. 
In this circuit, the 6 volt battery is discharging at ¥ amps, a higher rate than 
the ¥ amp discharge of the 8 volt battery. However, since polarities are 
opposite, the net current flow between Band C is only ~ amp. 

Section 3.2 

1. (a) Subtract twice the second equation from the first. 
(b) Add twice the second equation to the first equation and then add the 
(new) first equation to the second. (Other methods are possible.) 

3. (a) {(2 - ~ t, 1 - ~ t, t) I t E R} 
(b) 0; this system of equations is inconsistent. 
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(c) W = t, Z = u, Y = u - 2t + 8, and X = 2u - 31 + 13, where t and u 
are parameters 
(d) {q u - v, ~ u - v, u, v) I u, v E R}. 

5. This sequence is invalid because too much was done at once! After one 
row operation is applied, a further operation must be applied to the new 
system. Here, two operations were applied to the original system. Note that 
the resulting systems cannot be row equivalent since (0, - ~,O) is a solution 
to the second but not the first. 

Remark: The author included this problem because he has seen this 
type of mistake on student exams. There is nothing wrong with saving 
some space and writing down a few operations at a time-but be careful 
and make sure that what you've done really arises from a sequence of 
operations. 

7. Consider the inconsistent systems given by X + 0 Y = 0 and X + 0 Y = 2, 
and the inconsistent system given by X + Y = 0 and X + Y = 2. Any 
elementary operations applied to the first system will have zero coefficient 
in front of Y. Any elementary operations applied to the second system that 
has zero coefficient for Y will also produce a zero coefficient for X. So the 
systems are not equivalent. 

Section 3.3 

1. (a) {(t + 2, u - 1, u, t) I u, t ER} 
(b) 0; this system of equations is inconsistent. 

3. Applying Gauss-Jordan elimination, we can assume that this system is in 
reduced echelon form. (Row operations do not change the solution set.) 
If the system is inconsistent, it has no solutions, so in particular it cannot 
have a unique solution. Thus we can assume the system is consistent. Since 
there are at most three equations in this reduced echelon form, there are 
at most three determined variables. In particular, there must be at least one 
free variable (since there are four variables). If we use the process of back­
substitution, it follows that there is a solution to the system with this free 
variable taking any scalar value. This shows the system has more than one 
solution, which is what we want. 

5. After Gaussian elimination we obtain a third equation, which reads 0 = 
c - b - a. Therefore, the system will be consistent only if a + b = c to 
begin with. One expects a result like this because row operations will give 
linear expressions involving a, b, and c on the right~hand side of the equal 
sign. Of course, after Gaussian elimination the third equation could have 
read Z = "', in which case the system would have had a solution for all 
possible a, b, c. 
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7. Since these systems are consistent, they can be reduced to one of the 
following types of reduced echelon form systems: 

x = a 
Y= h, 

X+aY = h 
OY = 0, 

Y=a 
0=0. 

In the first case, the system has a unique solution, completely determined by 
the echelon form. In the second case, the solution set is precisely {(h- at, t) I 
t E R}, and in the third case, the solution set is {Ct, a) I t E R}. In each 
case, the set of solutions is completely determined by the echelon form, and 
moreover, if the echelon forms are different, the solution sets are different. 
Thus, two consistent systems that have precisely the same solution set must 
have the same reduced echelon form. It follows that they are row equivalent. 

9. Suppose that the system of equations 

al1X + a12 Y + a13Z = ~ 
a21X + a22 Y + a23Z = hz. 
a31 X + ~2Y + a33Z = ~ 

has the two different solutions (r, s, t) and (r " s', t'). Then (r - r " s- s', t- t') 
is a solution to the system of equations 

al1X + a12Y + a13Z = 0 
a21X + a22Y + a23Z = 0 
~lX+ ~2Y+ ~3Z = O. 

Since the two solutions (r, s, t) and (r', s', t') of the original system are 
distinct, we know that (r - r', s - s', t - t') "* (0,0,0). Therefore, whenever 
k E R, (r + k(r - r'), s + k(s - s'), t + kCt - t')) is a solution to the original 
system. This shows that the original system has infinitely many solutions. 
11. Gaussian elimination applied to the augmented matrix gives 

(
9 8 2) (1 2 2) 1 2 2 t-+ 0 -10 -16 , 
2 2 2 0 -2 -2 

which is inconsistent. It follows that there are no solutions to the original 
equation. 

13. (a) No inverse (b) (3 5 ) 
-1 -2 

(e) C! 1 
2 

-1 
2 

o 
-1) 
-1 

(d) (-t_;l -! -i) 
1 -1 

999 
15. A matrix A is invertible if and only if there is a matrix B such that 
AB = I. In this case, we claim that An is invertible with inverse Bn. To 
see this we repeatedly apply the associative law for matrix multiplication 
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and check: An B n = (AA' .. AA)(BB ... BB) = (AA· .. A)(AB)(B ... BB) = 
(AA" . A)In(B" . BB) = (AA" . A) . (B" . BB) = (AA" ')(AB)(" . BB) = 
... = (AA)(BB) = A(AB)B = AlB = AB = I, as required. 
17. Observe that a triangular matrix A is row equivalent to a row-echelon 
matrix with diagonal entries 1 whenever the diagonal entries of A are all 
nonzero. It follows from this that for any column of variables X and con­
stants v the system of equations AX = v can always be solved using back­
substitution. As a consequence we see that the matrix equation AM = I can 
be solved. This shows that A has an inverse. 
19. We know that AB = BA. We multiply both equations on both sides by 
A-I to find that A-l (AB)A-l = A-l (BA)A- l . Since AA- l = I = A-I A, 
we can use associativity to find that BA- l = A-I B. We next multiply 
these expressions on both sides by B-1 to find that B-l (A- l B)B- l 

B- l(BA- l )B-l . Using associativity and BB- l = I shows that B-1 A-I = 
A-I B-1, as required. 

Section 3.4 

1 (a) G 0 I), mnk 2 (~ 
0 

(b) 
1 

1 
0 

0 0 
D·mnk2 

(c) (~ 
1 1 !), rank 2. (d) (~ 

0 
0 0 1 

0 0 0 0 
~), rank 2. 

-D. All of 

its row-echelon forms can be Obtained( ~y a:di~g_a~t a)rbitrary multiple of 

the second row to the first. They are 0 1 - ~2 , where t is a real 

o 0 0 

(~1 O~ 3. The reduced row-echelon form of this matrix is 

number. 
S. Applying Gaussian elimination to this system gives 

( 1 2 3 0 16) f-+ (1 0 -S -21-6) 
01416 01416' 

The solutions to the associated homogeneous system can be found by 
replacing the right-hand columns by zeros and using back-substitution. They 
are {(Su + 2v, -4u - v, u, v) I u, v E R}. Theorem S guarantees that this 
solution set is closed under vector addition and scalar multiplication. Using 
back-substitution with Z = W = 0, we see that the point (-6,6,0,0) is a 
solution to the original system. Theorem 6 now shows that the solutions 
to the original system can be obtained by adding this solution to all the 
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homogeneous solutions. They are {( -6+5u+2v, 6-4u- v, u, v) I u, v E R}. 
Finally, Theorem 7 guarantees that the system is consistent since the rank 
of the coefficient matrix equals the rank of the augmented matrix. 

7. (a) This system is inconsistent. The associated homogeneous system has 
as its only solution (0,0). 
(b) The ranks of the coefficient matrix and the augmented matrix for this 
system are both 3. The corollary shows that this system and its associated 
homogeneous system both require one parameter to describe their solution 
sets. The set of solutions to the system is {( -! t, 1 + ! t, - ~ t, t) I t E R}. 
(c) The ranks of the coefficient matrix and the augmented matrix for this 
system are both 3. Therefore, both systems have unique solutions. The 
solution to the original system is (-~, -~, ~). 
(d) The ranks of the coefficient matrix and the augmented matrix for this 
system are both 1. Therefore, two parameters are needed to describe each 
solution set. The set of solutions to the original system are {(1 - U - 7 v, u, v) I 
u, v E R}. 

9. For example, consider the system described by the augmented matrix 

(
1 0 0 0 0) o 1 000 
1 000 1 
o 1 001 

11. Since B is a 5 X 2 matrix, the matrix equation MX = B is equivalent 
to two systems of five equations in seven unknowns. Since M has rank-5, 
any system of equations with coefficient matrix M has a solution because 
the rank of the augmented matrix must also be 5. This shows that MX = B 
can always be solved for X (which will be a 7 X 2 matrix). 

Section 3.5 

1. (a) The maximum value of j(X, Y) is 31 and occurs where X = 0 and 
Y = 6. 
(b) The maximum value of g(X, Y) is 18 and occurs where X = 2 and 
Y= 4. 

3. The maximum value of l:i..x, Y) is ¥ and occurs where X = ~ and Y = O. 
The simplex algorithm worked quickly because of the negative coefficient in 
the function l:i..x, Y). Only one coefficient in the bottom row of the tableau 
had to be made positive. 

5. The maximum value of rex, Y, Z) is 48 and occurs where X = ¥, Y = 0, 

and Z = ~. 
7. The maximum value of 92 occurs where X = 2, Y = 1, and Z = o. 
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Section 4.1 

1. (a) no (b) yes (c) no 

3. (a) Multiplication on the left by P has the effect of reordering the rows 
of A; thus PA has the third row of A as its first row, the first row of A as its 
second row, and the second row of A as its third row. 
(b) The matrix QA has as its first row the sum of the rows of A, as its 
second row the sum of the second and third rows of A, and the same third 
row as A. 

5. Suppose that A = (: ~ ). Since AB = BA for all matrices B, we can 

in particular choose B = (~ ~ ). We compute 

We conclude that a = d and that c = O. The analogous computation, using 

B = (~ ~ ), shows that b = O. This shows that A = (~ ~ ) . 

7. (a) We use the associative law repeatedly. Then (AB)(B- 1A-1) = 
A(BB-1)A-l = AlnA- l = AA-l = In and (B-lA-l)(AB) = B-l(A-lA)B = 
B-1InB = B- 1 B = In. This shows that AB is invertible with inverse B-lA-1. 
(b) Theorem 12 shows that At(A-lY = (A-lAY = (InY = In and that 
(A-IYAt = (AA- 1Y = (InY = In. This shows that At is invertible with 
inverse (A- l )t. 

9. Suppose that T = (ti.;) is an upper triangular n X n matrix and Tn = O. 
The definition of matrix multiplication shows that TnU, i) = ti7 for each i. 
Hence ti7 = 0; this shows that tjj = 0 for each i. Yes, the converse is also 
true. Hint: Show that TkCi, j) = 0 whenever i :S j + k by induction on k. 
The case of k = n gives Tn = O. 

11. (a) In order for A = At, the number of rows of A must equal the number 
of columns of At. So, A must be square. 
(b) See that (A + At)(i, j) = AU, j) + AtCi, j) = ACi, j) + A(j, i). So (A + 
At)(i, j) = (A + At)(j, i), which shows that A + At is symmetric. 
(c) Suppose that AB is symmetric. Then AB = (ABY = Bt At = BA, since 
both A and B are symmetric. This shows that A and B commute. Conversely, 
if A and B commute, then (AB)t = BlAt = BA = AB, so AB is symmetric. 

13. There are many possible solutions to these problems. Some possible 
solutions are 
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15. An upper triangular n X n matrix has rank n precisely when all its 
diagonal entries are nonzero. This is exactly the situation when it can be 
row-reduced to the identity matrix. 

Section 4.2 

1. This is a calculator exercise, and the solution won't be given. But when 
looking at high powers of a matrix you should be concerned with three 
possibilities, namely, when the entries all become close to zero, when they 
stabilize, and when they get larger and larger without bound. In· looking at 
these examples, try to decide why these different possibilities occur. 

3. Each month this bank adds to your deposit 1% of your previous balance. 
This means that if D(n) represents the deposit after n months, then D(n) = 
D(n - 1) + O.OID(n - 1). This is a difference equation. Iterating this we 
find that D(n) = (l.01)nD(O), which is the usual formula for compounding 
1 % interest per month for n months. 

Section 4.3 

1. (a) The determinant is 11. 
(b) The determinant is -8. 
(c) The determinant is O. 
(d) The determinant is -2. 
(e) The determinant is 2. 
m The determinant is 5. 
3. An n X n matrix A has n 2 entries. If more than n 2 - n entries of A are 
zero, then A has at most n - 1 nonzero entries. Since A has n rows, this 
means that there is some row with all zero entries. The cofactor expansion 
of the determinant along this row must be zero. Hence the determinant of 
A is zero. 

5. (~ ~) (; ~) = (~::~: ~j: ~Z) , which has determinant 

(ae+ bg)(c! + dh)-(a! + bh)(ce+ dg) = [ace! + adeh+ bcfg+ bdgh]­
[ace! + adfg + bceh + bdgh] = adeh + bcfg - adfg - bceh = ad(eh­
fg) + bc(fg - eh) = (ad - bc)(eh - fg), as required. 

7. The matrix -A is obtained from A by multiplying each of the rows of 
A by -1. If n is odd, Theorem 14(i) shows det(-A) = (-1)ndet(A) = 
-det(A). Now, if A is skew symmetric, as At = -A, the corollary following 
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Theorem 13 gives det(A) = det(At ) = det( - A) = -det(A). This shows 
that det(A) = O. In case n is even, the result is not true. For example, the 

skew-symmetric matrix (~ - ~) has determinant 1. 

Section 4.4 

(
-3 

1. (a) ~ -3 
-6 

3. (a) 6 (b) 0 

-~ !) (b) ~ (-~ 
2 -1 -8 

(c) 143 (d)-l 

-2 
5 
7 

-!) 
-2 

5. Theorem 16 shows that det(An) = det(A)n. Therefore, if det(An) = 1, 
then det(A)n = 1. It follows that det(A) = 1 if n is odd, and det(A) = ±1 if 
n is even. 

Section 4.5 

1. (a) (~ ;) = (~ ~) (~ i) 
0» G 1 

D~G 
0 Dn 1 

D 1 1 1 
1 0 0 

(c) (: 
1 !) = (: 

0 

~) (~ 
1 

-~) 0 1 -1 
0 1 0 -1 

3. (a) (~ ~) (~ ;) = (~ ~) (~ ~ ) 

(~ 
0 

~) (~ 
1 

~) = (~ 
0 

~) (~ 
1 

~) (b) 0 1 1 1 
1 1 1 0 

(e) G 0 DO 1 

D~G 
0 Dn 0 

D 0 0 1 1 
1 0 0 0 

Section 5.1 
1. No. 

3 (a) { (D ItER} 0» R' (e) { (;~~3: }t'UER} (~R' 
5. It is clear that span{ilt, iJ.!, ... , un} ~ span{u, ilt, iJ.!, ... , Un}, since any lin­
ear combination of ilt, iJ.!, ... , Un is also a linear combination of U, ilt, iJ.!, ... , 
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Vn. For the reverse inclusion, we may suppose that v = al~ + az~ + ... + 
anvn for some real numbers at. a2, ... , an. Consider w E span{v,~,~, 
... , Vn}. If W = CV + ht~ + ~~ + ... + bnvn, then w = c(al~ + a2~ + 
... + anvn) + ht~ + ~~ + ... + bnvn = (cal + ht)~ + (ca2 + ~)~ + ... + 
(can + bn)vn E span{~,~, ... , Vn}. This shows what we wanted. 

7. V n W will be always be a subspace. Since each of V and W is closed 
under vector addition and scalar multiplication, so is V n w. 

However, VU W need not be a subspace. The only time it is a subspace 
is when either V ~ W or W ~ V, in which case the union V U W will be 
either V or W. 

Section 5.2 

1. (a) A spanning set for the row space is {(I, 2, 1)}, a spanning set for 
the column space is {(I, 3, 2)}, and a spanning set for the null space is 
{(-1,0, 1),(-2, 1,0)}. 
(b) A spanning set for the row space is {(I, 3, 4), (I, 3, 5)}, a spanning set 
for the column space is {(I, 0), (0, 1)}, and a spanning set for the null space 
is {( -3,1, O)}. 
(c) A spanning set for the row space is {(2, 1,4), (I, 0, 5)}, a spanning set for 
the column space is {(2, 1,3), (I, 0, 1)}, and a spanning set for the null space 
is {( -5,6, 1)}. 

3. (a) Not linearly independent (b) Not linearly independent 
(c) Not linearly independent (d) Not linearly independent 

5. (a) Any pair is a minimal spanning set. 
(b) Any pair except the last two is a minimal spanning set. 
(c) All three form a minimal spanning set. 
(d) Any pair excluding the zero vector forms a minimal spanning set. 

7. Suppose that {~, ~, ... , vs} ~ {~,~, ... , Vn} is our subset, where s ~ 
n. Assume that al~ + a2~ + ... + asvs = 0 for some real numbers at. 
a2, ... , as. Then we have al~ + a2~ + ... + asvs + OVs+1 + ... OVn = O. 
Since {~, ~, ... , Vn} is linearly independent, we find that al = 0, a2 = 0, 
... , as = O. This shows that {~, ~, ... , vs} is linearly independent. 

9. Suppose that al~ + a2~ + ... + an-IVn-1 + anvn = 0, where the 
at E R. Suppose first that an ::/= O. Then we can write vn = - IL (al ~ + 
a2~ + ... + an-IVn-I). But this contradicts the assumption that vn f£. 
span{~,~, ... , Vn-l}' Consequently, an = O. This means that al~ + a2~ + 
... + an-l Vn-l = O. We are now done, by using induction on n, for we 
have exactly the same problem except with n - 1 vectors instead of n. 
11. Suppose that {~,~, ... , Vn} is linearly independeot and A is invertible. 
Since we want to show that {A~, A~, ... , Avn} is linearly independent, we 
assume 0 = alA~ + a2A~ + ... + anAvn, where at E R. Multiplying by 
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A-I, we find 0 = A-10 = A-I(aIA~ + ... + anAvn) = al ~ + ... + an vn. 
The linear independence· of {~, i1z, ... , vn} gives al = 0, az = 0, ... , an = ° 
and shows that {A~, Ai1z, ... , Avn} is linearly independent. 

Section 5.3 

3. (a) The matrix has rank 2. A basis for its row space is {(1, 1,3), (3, 0, 2)}, 
a basis for its column space (which is R2) is {(1, 0), (0, 1)}, and a basis for 
the null space is {( -2, -7, 3)}. 
(b) The matrix has rank 2. A basis for its row space is {(1, 0), (0, 1)}, a basis 
for its column space is {(1, 0, 2,1), (1,1,2, 3)}, and a basis for the null space 
is the empty set, 0 (that is, the null space is {Q}). 
(c) Row-reducing shows the matrix has rank 3. Therefore, its row and 
column spaces are R3 and the standard basis works for each. A basis for the 
null space is 0. 
(d) The matrix has rank 3. The standard basis for R3 works for its row 
space, the three columns of the matrix give a basis for its column space, 
and a basis for the null space is 0. 

S.<a) {G).(D} (b) {(D.(D} 
7. Observe that 

(~ ° 1 ~) and (~ ° 1 ~) 

are both rank-2,. 2 X 3 matrices. In fact, both are reduced row-echelon 
matrices. Observe that their row spaces are different since the row space of 
the first matrix cannot have an element whose third coordinate is nonzero, 
while the second matrix has such an element in its row space. 

9. We can write ~ = (1,1,1) - (0,1, 1), ~ = (1,1,1) - (1,0,1), and ~ = 
(1,0,1) + (0,1,1) - (1,1,1). It follows that every vector in R3 is a linear 
combination of these three vectors. Since dim(R3) = 3, we see that they 
must be a basis for R3. 
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Section 6.1 

1. (a) II all = J2 (b) II v - wll = II (~) II = J5 

(c) w' v = 12 (d) (~) . ( ~4) = -7 

3. (a) 110, -7)11 = J50 = 5J2 (b) 1 

(c) cos-1 (0,-7)-(0,-1)) = cos-1 (_7_) = cos-1('9899) = .141 radians 
5\12'1 5Vz 

5. We consider V, w E R2 or R3. We expand according to properties given 
in Theorem 34: 

IIv + wll 2 + IIv - wll 2 = (v + W, v + w) + (v - ill, V - w) 

= (v, V) + (v, w) + (w, V) + (w, w) 

Section 6.2 

+ (v, V) - (v, w) - (w, V) + (w, w) 

= 2(v, V) + 2(w, w) 

= 211vll 2 + 211w1l 2 . 

( - 2 ) J2 ( - 12) ( ~) 
1. (a) _ ~ (b) (-J22) (c) 3 __ ~ = 1~-;1y'S 
3. (a) f = {(7t, t) I t E R} (b) e = {O + t, 1) I t E R} 

5. The distance between PI and both P2 and P6 is 2, because we set up the 

model that way. The distance between PI and both P3 and Ps is ¥ = 3.27, 
and the distance between PI and P4 is 2v{3 = 3.83. 

To make the comparable calculations for benzene, we have to find the 
distances between the vertices of a regular hexagon whose side also has 
length 2. Doubling the coordinates for the hexagon given in Sec. 2.1 and 
computing the distances, we find the distance between PI and both P3 and 
P5 is 20 = 3.46 and the distance between PI and P4. is 4. Note that the 
distances between the carbon atoms in benzene is greater than cyclohexane, 
mostly because the angle 020°) between the carbons in benzene is greater 
than in cyclohexane. 

Section 6.3 

L (a) (-D (b) C~D (c) 19 (d) 0 

3. (a) 3J2 (b) 2# 
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5. (a) ~ (b) 1 

7. (a) {(3 - Zt,2 - 2t, 1 + t) It E R} (b) {Cl + t, t, 1 + t) It E R} 

9. x - y - 2(z - 1) = 0 
11. (a) (J = } radians = 600 (b) (J = ~ radians = 45 0 

13. For this we use the properties of the cross product given in Theorem 
40. Since U +v + W = 0, we find that 0= (i1 + v + w) X v = u X v + v X 
v + W X v = u X v + W X v. Hence u X v = - w X v = v X W. The other 
equality is established similarly. 

Section 7.1 

1. (a) X2 - 4x - 5 = (X + 1)(X - 5), B-1 = span { ( -~) }, 

~ = span { (~) } 

(b) X2 -1, £1 = span { (~)}, B-1 = span { (-~)} 
(c) X2 + 1; there are no real eigenvalues 

3. To solve this, we need a matrix ( ~ !) such that 

and 

( a-l 
ker 

c 

ker ( a +c 1 b) { ( 2 ) } d + 1 = span 1 . 

The first condition means that (a - 1) - 2b = 0 and c - 2(d - 1) = 0, and 
the second condition means that 2(a + 1) + b = 0 and 2c + (d + 1) = O. 

Solving these systems for a, b, c, and d give the matrix! (=~ -:). Left 

multiplication by this matrix fixes all points on the line given by £1 and takes 
all points on line B-1 to their opposite. Since £1 and B-1 are perpendicular, 
this is what a reflection in the line £1 does. 

7. Bya direct calculation 

(
X-2 

det -1 
-1 

o 
X-I 

o 
-1 ) o = (X - 2)(X - 1)(X - 1) - ex - 1) 

X-I 

= ex - 1)[X2 - 3X + 11. 
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Therefore, the given numbers are the eigenvalues since (using the quadratic 
formula to factor the quadratic) they are the roots of the characteristic 
polynomial. 

9. If A is a real 3 X 3 matrix, then'its characteristic polynomial CA(X) is a 
real polynomial of degree 3. However, every-odd degree real polynomial 
has a real root. Since the roots of CA(X) are the eigenvalues of A, A has a 
real eigenvalue c. By Theorem 43 this shows that rk(A - cI3) ::::; 2. 

Section 7.2 

1. (a) The characteristic polynomial is X3 - 12X - 4 = (X - 4)(X + 2)2. 
The eigenspaces are 

If P is the matrix 

-1 
o 
1 

-D' men r'AP ~ G o 
-2 

o 
~) . 

-2 

(b) The characteristic polynomial is X3 - 3X2 + 3X - 1 = (X - I)3. Hence 
A has the single eigenvalue 1. The eigenspace 

is one-dimensional and it follows that A is not diagonalizable. 
(c) The characteristic polynomial is X2 + X + I, and thus this matrix has no 
real eigenvalues. 
3. (a) First note that D and ware in the column space of A since we 
have AD = D and !Aw = w. Therefore, rk(A) ~ 2 since {D, w} is linearly 
independent. But as Au = (5 we see U E kerCA) so that null(A) ~ 1. Since 
rk(A) + null(A) = 3 (by the dimension theorem), we find rk(A) = 2 and 
null(A) = 1. Therefore a basis for col(A} is {D, w}. 

(b) Since null(A) = I, we see that a basis for ker(A) is {ii}. 
(c) The equations AX = D and AX = D + w can both be solved for X since 
these vectors lie in the column space of A. However, AX = U cannot be 
solved since U is not in the column space of A. 

5. Since kerCA) is (n - I)-dimensional, we see that A has n - 1 linearly 
independent eigenvectors {UI. U2, ... , Un-I} of eigenvalue O. Let Un be 
another eigenvector of A with nonzero eigenvalue. Then we claim that 
{UI, U2, ... , Un-I. Un} is linearly independent. For if al UI + ... + an-l Un-I + 
an Un = (5, where an '* 0, then the set of two eigenvectors {al UI + ... + 
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an-l Un-I, Un} is linearly dependent. This contradicts Theorem 45. It now 
follows from Theorem 44 that A is diagonalizable. 

7. Suppose that v is an eigenvector of A with eigenvalue k. Then, Av = kv. 
But since A2 = A, we also see that Av = A2v = A(kV) = kAv = k 2v. This 
shows that k 2 = k and we see that either k = 0 or k = 1. 

9. (a) If A = p-l BP and if B = Q-l CQ, then substituting and applying 
the associative law gives A = p-1(Q-l CQ)P = (P- 1 Q-l)C(QP). Since 
(P- 1 Q-l) = (QP)-l, we see that A is similar to C. 
(b) Only the third pair is similar. 

11. Suppose that v is an eigenvector of A with associated eigenvalue k. 
Then, as Av = kv; we find that A2v = A(AV) = A(kV) = k2vand similarly 
Amv = kmv for all m. Thus v is an eigenvector for Am. Since A is an 
n X n diagonalizable matrix, Theorem 44 shows there is a set of n linearly 
independent eigenvectors of A. What we have just observed shows that this 
set is a set of n linearly independent eigenvectors for Am. Consequently, by 
Theorem 44 again, Am is diagonalizable. 

As another proof, note that if p-1 AP is a diagonal matrix, then so is 
(P- 1 AP)m = p-1 Am P.So we see that Am is diagonalizable. The two proofs 
given illustrate the geometric and symbolic viewpoints of diagonalizability. 

Section 7.3 

1. There are many possible solutions. The different diagonalizations can 
differ by squares on the diagonal and the order in which the diagonal 
entries are listed. Possible solutions are as follows. 

(a) (_ ~ ~) (~ i) (~ -~) = (~ -1 ~ ) 

(b) G -i J) G ~ D G -i -D 
3 (a) (-~ -~ -D (b) G ~ D 

o 
-4 

o 

5. We complete the square and find that aX2 + 2bXY + cy2 = a{X +!!. y)2 + a 
(c - ~) y2. To be positive definite we need both of the diagonal coefficients 

a > 0 and c - ~ > O. Multiplying by a > 0, the latter equation is equivalent 
to ac - ~ > 0, as required. 

7 (a) (! D (b) (i i D 
9. Just as with the usual Fibonacci sequence, the limit is the golden ratio 
~ 2 . 
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Section 8.1 

1. (a) (~ ~ ) (b) (~ ~ ) 

3. (a) Suppose that A = (~ ~) and B = (~ ~). Then AB = BA. It 

follows from Theorem 54 that if 11 = TA and 12 = TB, then 11 0 TB = 12 0 11, 

(b) Suppose that A = (~ ~) and B = (~ ~ ). Then AB :1= BA. It now 

follows from Theorem 54 that if 11 = TA and 12 = TB, then 11 0 TB :1= 12 0 11. 

5 (a) We have that IT,I ~ G ~ ~) and IT,) ~ 0 D· Theorem 

54 shows that IT, 0 T,) ~ G ~ ~) G D ~ (~ n Sinillarly, 

IT, 0 T,) ~ G 1 

D 0 
1 

(b) [11 0 121 = (~ 0 ~) G D (~ ~ ). Similarly, [12 0 111 = = 
0 

G 
0 

D 0 
0 

(c) [11 0 121 = (! 0 nG D (~ !). Similarly, [12 0 111 = 
0 

(~ 
0 

~). 0 
0 

7. (a) To show that the set {ilt, Vz, ... , un} is linearly independent, we as­
sume that al ilt + a2 Vz + ... + an Un = O. Applying the linear transformation T, 
we find 0 = TCal ilt + a2 Vz + ... + an un) = al T(ilt) + a2 TCVz) + ... + an TCUn). 
Since the set {TCilt), T(Vz), ... , TCUn)} is linearly independent, we must have 
al = 0, a2 = 0, ... ,an = O. This shows what we wanted. 
(b) The converse to part (a) is not true. For example, T could be the 
zero linear transformation, and then {TCilt), TCVz), ... , TCUn)} could never 
be linearly independent! 

Section 8.2 

1. The determinant of a cascade parameter matrix is, by direct calculation, 
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3. (a) [11] = ( ~ ~ ~) has rank 1 and nullity 2. 

-1 0 -1 
(b) [72] = (0 1 -1 -1) has rank 1 and nUllity 3. 
(c) [7;] = 4 has rank 4 and nullity O. 
(d) [14] = (7) has rank 1 and nullity O. 
(e) [75] is the 5 X 5 matrix with all entries O. It has rank 0 and nullity 5. 

5. One possibility is TA where A is (~ ~ ~). Since the rank of any 
1 0 0 

such example must be 1, we see that the nullity must be 2. In this example, 
a basis for kerCTA) is {~, ~}. 

7. We need that T is onto in order that T is invertible. Hence, if T(O, 0, 1) = 
(a, b, c), we need that a *' O. 

9. (a) We know by the dimension theorem that if T : R3 -+ R4, then 
rk(D:5 3. But in order for T to be onto, Theorem 57 shows we must have 
rk(D = 4. Hence T cannot be onto. 
(b) We know by the dimension theorem that if T: R4 -+ R3, then rk(D + 
nulleD = 4. But since the range space of Tis R3, we know rk(D :5 3. 
Th~refore, nulleD ~ 1 and Theorem 56 shows that T cannot be one~one. 
(c) Since im(D is a plane, we have rk(D = 2. Consequently, nulleD = 2. 

11. It is not necessarily true that T = O. For example, we could have 
T = TA , where 

Since A2 is zero, we have TA 0 TA = 0, but TA *' O. 
13. Whenever 1 :5 i < n, we have that {Vt+b Vi+2, ... , Vn} is a basis for 
im(T/). Whenever i ~ n, then im(T/) = {6}. Hence, rk(Ti ) = n - i and 
null(T/) = i whenever 1 :5 i :5 n and whenever i > n, rk(Ti ) = 0 and 
null(T/) = n. 

Section 8.3 
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3. If [TlB is zero, then for vERn, (TCV»)B = [TlB(V)B = 0 for all vERn. 
This shows that T(V) = 0 for all vERn. Conversely, if T(V) = 0 for all 
vERn, then for any ordered basis B = {~, if.!, ... , vn}, (TCvD)B = (iJ)B = O. 
But (T(VD)B is the ith column of [11B, so [TlB is zero. 

5. (a) [TlB = (~ ~ ~) (b) [TlB' = (~ ~ ~) 
010 101 

Section 9.1 
1. (a) {(;, ~), (~, -;)} 

(b) {q,~,~),(- v0'v0,0)'(-~'-3.fi'3~)} 
3. False; for example, take u = (1,0,0), v = (0,1,0), and w = (1,0, 1) in 
R3. 

5. (a) P = (tz 
y2 

(-tz 
(c) P = ~ 

~) p~ ( -}, 

f f) v'3 v'6 
1 _ 2 

v'3 V6 

1 

v'3 

7. An orthonormal basis is { (v0' - v0' 0, ° ) ,(0,0,1,0), (0, 0, 0,1) }. 

Section 9.2 
1. If S C Rn is a subset, then S1- = {v E Rn I ('5, if) = ° for all '5 E S}. 
To see that S1- is a subspace, we suppose that ~,if.! E S1- and that k is a 
real number. Then for all '5 E S we have G = ('5,~) + ('5, if.!) = ('5, ~ + if.!) 
and 0 = kG = k('5, ~) = ('5, k~). This shows that ~ + if.!, k~ E S1- as well. 
Hence S1- is a subspace of Rn. 

(2 4 4) (16 -4~ -4~) 3. (a) Projv = fa 4 17 -1 and Projvl. = fa -4 
4 -1 17 -4 

~) Pwiv ~ n ( j _: ~D and P~v' ~ n (~ ~~ n 
ee) Pwiv ~ ~ G ~~ ~D and Pwiv' ~ ~ (~! -r -D 
5. (a) If dim(V) = d, then dim(V1-) = n - d. To see this, one must check 
that bases for V and V 1- taken together give a basis for R n . 
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(b) If w E V, then for all u E Vol we have (w, U) = O. This shows that 
w E (Vol)ol. If dim(V) = d, then using (a) that dim(Vol) = n - d, and 
by (a) again, dim((Vol)ol) = n - (n - d) = d. As V !; (Vol)ol, we have 
V = (Vol )ol. 
(c) If U !; V and if v E Vol, then (v, U) = 0 for all u E V. So, in particular, 
as U !; V we have (v, U) = 0 for all u E U. This shows that v E Uol, and 
we have Vol !; Uol. 

(d) Suppose that v E (U + V)ol:-Since U, V!; (U + V), we have for all u E 
U, w E V that (v, U) = 0 = (v, w) so that v E Uol n Vol. Conversely, suppose 
that v E Uol n Vol. For u E U and w E V we have 0 = (v, U) = (v, w) so 
that 0 = (v, u + w) for all u = wE U + V. This shows v E (U + V)ol, as 
required. 
7. Consider the orthogonal projection Projv : Rn - Rn. Then for any 
vERn, Projv(V) and v - Projv(V) are orthogonal. Hence, 

IIprojv(V)1I2 + IIv - projv(V)1I2 = IIv1l2, 

and consequently IIprojv(V)1I S IIvll. (Note that IIProjv(V)1I < IIvll whenever 
v"* Projv(V).) An intuitive explanation for this is that projections should be 
shorter. For example, if the sun is directly overhead, the length of a shadow 
should not be more than the length of the object. 
9. Suppose that A is a rank-n m X n matrix. Let v E kerCAt A) !; Rnj that is, 
assume that (At A)v = O. The dot product (AV) . (AV) is given by the matrix 
multiplication (AV)t(AV) = vtAtAv = vt(AtAV) = O. Consequently, by the 
positive-definite property of the dot product on Rn, we see that Av = O. 
This shows that v E kerCA) and therefore v = 0 since A has rank n. But this 
shows that kerCAt A) = {O}j in other words rk(At A) = n also. This proves 
that At A is invertible, as required. 

Section 9.3 
1. (a) The least-squares solution is approximately X = 1.607, Y = 1.179. 
(b) The least-squares solution is approximately X = 4.133, Y = 2.368, and 
Z = .525. 
3. Suppose that p2 = P. Then by a direct calculation, (In - p)2 = (In -
P)(In - P) = In - P - P + p2 = In - P, using p2 = P in the last step. 
This shows that In - P is also a projection matrix. If P is the matrix of a 
projection operator onto a subspace VeRn, then In - P is the matrix of 
the projection onto the orthogonal complement of V. 
5. Suppose that P is the standard matrix of the projection onto a line i in R2, 
and let R = 12 - 2P. First, consider a point Q E i. Since P is the matrix of the 
projection onto i, we see that PQ = Q. It follows that RQ = Q - 2Q = - Q. 
Next suppose that Q' E iol. Then, PQ' = 0, and consequently, RQ' = Q'. 
This shows that R is the matrix of the reflection through iol. 

7. X = 35 and Y = 17 
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Fibonacci sequence 129 
Free variable 85 
Function, linear 1, 2, 5 

Gaussian elimination 84, 173 
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elementary permutation 122 
equality 20 
exchange 242 
inverse 95 
of linear transformation 251 
lower triangular 121 
multiplication 21, 23 
nilpotent 100, 224 
of operator 271 



orthogonal 283 
partitioned 147 
powers 28, 131, 225, 234 
product 23, 142 
reduced row-echelon 91,92 
scalar multiplication 21 
skew-symmetric 126 
stochastic 240 
symmetric 124 
tridiagonal 152, 154, 218, 228 
upper triangular 121 

Max flow-min cut theorem 166 
Maximal submatrix 135 
Methane 194 
Minimal spanning set 181 
Multiplier 148, 154 

Negative definite 237 
Network flow 156, 166, 180 
Nilpotent matrix 100, 224 
Nonsingular linear operator 265 
Nontrivial solution 105 
Norm 189, 190 
Normal equation 299 
Null space 261 
Nullity 183, 262 

Ohms 73 
Ohm's law 72 
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