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To the Vulcans and other logical creatures

There’s always some error, even with experts. There’s got to be, since there are so
many variables. Put it this way—the geometry of space is too complicated to handle and
hyperspace compounds all these complications with a complexity of its own that we can’t
even pretend to understand.

From I. Asimov, Foundation’s Edge, Doubleday & Co., Inc., NY, 1982, p. 162.





Preface to the First Edition

Well, finally, here it is—the long-promised Revenge of the Higher Rank Symmetric
Spaces and Their Fundamental Domains. When I began work on it in 1977, I would
probably have stopped immediately if someone had told me that 10 years would
pass before I would declare it “finished.” Yes, I am declaring it finished—though
certainly not perfected. There is a large amount of work going on at the moment
as the piles of preprints reach the ceiling. Nevertheless, it is summer and the ocean
calls. So I am not going to spend another 10 years revising and polishing. But, gentle
reader, do send me your corrections and even your preprints.

I said it all in the Preface to Volume I [612]. So I will try not to repeat myself here.
Yes, the “recent trends” mentioned in that Preface are still just as recent. And there
are newer, perhaps even more pernicious tendencies here in the USA. This is the
age of the billion dollar “defense” funding of research, the “initiatives” to put more
power and money in the hands of fewer and fewer, the boondoggles to spend huge
sums on supercomputers and to bring space war movies into the university. Yes, and
compartmentalized research is still in the ascendancy. But I do not feel much happier
looking at the international mathematical community that just declared most female,
minority, and third world mathematicians unfit to speak at the international congress
in Berkeley last summer. Oh well, many fields were not represented either. But, for
me, the best conference is one run democratically and covering a wide spectrum of
viewpoints, a conference in which anyone who wishes can speak on their research.
Infinite diversity in infinite combinations!

Well, so much for purple prose. Clearly I am hoping for some forgiving readers.
I also need readers who are willing to work out lots of exercises on a large variety
of topics. Yes, once more there are lots of exercises. But, isn’t it boring to read other
people’s proofs? In Chapter 1 this can mean some rather complicated calculations
on matrix space. In Section 2.1 of Chapter 2, this will require some familiarity
with beginning differential geometry—tangent spaces, differentials, and the like.
Some parts of Section 2.2 of Chapter 2 will demand a little knowledge of beginning
algebraic number theory.
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viii Preface to the First Edition

Perhaps I should repeat one thing from the Preface to Volume I—the warning
that I am very bad at proofreading. And the formulas in Volume II are much worse
than in Volume I. So please do remember this when a formula looks weird.

Thanks again to all who helped me write this. You know who you are, I hope.
Live long and prosper!

Encinitas, CA, USA Audrey Terras
August 1987



Preface to the Second Edition

It is marvelous and a bit scary to return to this garden after 17 years or so. Sadly
many people such as Serge Lang, Hans Maass, and Atle Selberg are now gone. But
there are many new flowers. Many more women are working in this field. Yeah!
The books of Jorgenson and Lang [333], [334], as well as that of Elstrodt et al.
[168] are welcome. So also is that of Goldfeld [230]. Thanks to younger people,
there are even computations of automorphic forms for GL.n;Z/, when n D 3 and 4.
See the website:

www.lmfdb.org

for many computations of higher rank modular forms and L-functions. There is
much new work on random matrices. And, of course, there are many adelic books
and papers.

I had hoped that this edition would be finished in the summer of 2013. It took
more time than I expected to finish updating Volume II. There have been many
changes since 1987 as I noted in the preface to Volume I and much lack of progress
as well. I will not discuss adelic representation theory here either. I am still hoping
that this volume is friendlier than works requiring adelic group representations.
And, once again, I leave much to the reader. There is still no answer book for
the exercises. Sorry.

I have added a few new sections, including one on Donald St. P. Richards’
central limit theorem for O.n/-invariant random variables on the symmetric space
of GL.n;R/, another on random matrix theory, and some discussions of mostly non-
adelic advances in the theory of automorphic forms on arithmetic groups since 1987.

I should very belatedly thank Walter Kaufmann-Bühler for the translations of
French and German that appear in the footnotes. We miss him very much. And,
once more, I thank the Scientific Workplace people for allowing me to refuse to learn
TEX and thus making the work on this book a much more pleasurable experience.

I am very grateful to Aloys Krieg and Anton Deitmar who bravely sent me long
lists of errors at least 25 years ago. Sorry it took so long, but I hope that finally I
managed to correct them all. I am also extremely grateful to Andrew Odlyzko and
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x Preface to the Second Edition

Andrew Booker for sending me Figure 1.2 and Figure 1.32, respectively, which give
evidence for some of the most interesting conjectures touched on in this volume.

There are lots of other people I should thank, especially my POSSLQ and my
students.

When I refer to Volume I, now I will always refer to the new edition [612].
It should go without saying that it will be assumed that the reader has some
acquaintance with Volume I.

Live long and prosper!

Encinitas, CA, USA Audrey Terras
August 2015
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Chapter 1
The Space Pn of Positive n � n Matrices

1.1 Geometry and Analysis on Pn

The story so far:
In the beginning the Universe was created. This has made a lot of people very angry and
been widely regarded as a bad move. Many races believe that it was created by some sort
of god, though the Jatravartid people of Viltvodle VI believe that the entire Universe was in
fact sneezed out of the nose of a being called the Great Green Arkleseizure.

From The Restaurant at the End of the Universe, by Douglas Adams, Harmony
Books, NY, 1980.

Reprinted by permission of The Crown Publishing Group.

1.1.1 Introduction

In this chapter, our universe is a higher rank symmetric space Pn, the space of
positive n � n real matrices:

Pn D ˚
Y D .yij/1�i;j�n

ˇ̌
yij real; tY D Y; Y positive definite

�
: (1.1)

Here and throughout this book, “Y is positive” means that the quadratic form

YŒx� D txYx D
nX

i;jD1
xiyijxj > 0; if x 2 R

n; x ¤ 0: (1.2)

We shall always write vectors x in R
n as column vectors and so the transpose is

tx D .x1; : : : ; xn/.

© Springer Science+Business Media New York 2016
A. Terras, Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive
Definite Matrix Space and Generalizations, DOI 10.1007/978-1-4939-3408-9_1
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2 1 The Space Pn of Positive n � n Matrices

The universe which we now enter is one of dimension at least 6 and this means
that we will have trouble drawing meaningful pictures, not to mention keeping our
calculations on small pieces of paper. The reader is advised to get some big sheets
of paper to do some of the exercises.

Exercise 1.1.1. Some books define a real n � n matrix X to be positive if all of
its entries are positive (see Berman and Plemmons [46], Minc [452], and Pullman
[495]). Show that this concept is totally different from (1.2) in the sense that neither
implies the other when n > 1; even when X is symmetric.

We can lower the dimension of our space by one (and make the Lie group
involved simple) by looking at the symmetric space of special positive matrices
(the determinant one surface in Pn):

SPn D fY 2 Pn j jYj D det Y D 1g : (1.3)

Recall that we can identify SP2 with the Poincaré upper half plane H (see
Exercise 3.1.9 on p. 154 of Vol. I).

Our goal in this chapter is to extend to Pn as many of the results of Chapter 3,
Vol. I, as possible. For example, we will study analogues of our favorite special
functions—gamma, K-Bessel, and spherical. The last two functions will be eigen-
functions of the Laplacian on Pn. They will display a bit more complicated structure
than the functions we saw in Vol. I, but they and related functions have had many
applications. For example, James [328–330] and others have used zonal polynomials
and hypergeometric functions of matrix argument to good avail in multivariate
statistics (see also Muirhead [468]).

There are, in fact, many applications of analysis on Pn in multivariate statistics,
which is concerned with data on several aspects of the same individual or entity; e.g.,
reaction times of one subject to several stimuli. Multivariate statistics originated in
the early part of the last century with Fisher and Pearson. In Section 1.1 we will
consider a very simple application of one of our coordinate systems for Pn in the
study of partial correlations, with an example from agriculture. Limit theorems for
products of random matrices are also of interest; e.g., in demography (see Cohen
[114]). One can say something about this subject as well, by making use of harmonic
analysis on Pn.

We will see that Pn is a symmetric space; i.e., a Riemannian manifold with a
geodesic-reversing isometry at each point. Moreover it is a homogeneous space of
the Lie group GL.n;R/—the general linear group of all n � n non-singular real
matrices. The definition of Lie group is given around formula (2.1) of Chapter 2.
By homogeneous space, we essentially refer to the identification of Pn with
the quotient KnG in Exercise 1.1.5 below. Because Pn is a symmetric space,
harmonic analysis on Pn will be rather similar to that on the spaces considered
in Volume I—R

n; S2, and H. For example, the ring of G-invariant differential
operators on Pn is easily shown to be commutative from the existence of a geodesic-
reversing isometry. There are four main types of symmetric spaces: compact Lie
groups, quotients of compact Lie groups, quotients of noncompact semisimple
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Lie groups, and Euclidean spaces. E. Cartan classified these types further (see
Helgason [273, 275, 278, 282]). We are mainly considering a special example of
the third type here (if we restrict to the determinant 1 surface (1.3)). In the next
chapter we will look at the more general theory.

Work of Harish-Chandra and Helgason allows us to extend the results of
Section 3.2 of Volume I to Pn, by obtaining an analogue of the Fourier or Mellin
transform on Pn (see Section 1.3 or Helgason [275]). Of course this result is
more complicated than those discussed in Volume I and the available tables of this
transform are indeed very short. Still we will be able to generalize some of our
earlier applications.

We will also study the fundamental domain in Pn for our favorite modular
group GL.n;Z/, the discrete group of n � n matrices with integer entries and
determinant C1 or �1. But our attempt to generalize Section 3.7 of Volume I
and so obtain a theory of harmonic analysis on Pn=GL.n;Z/ will not be anywhere
near as satisfactory as it was for n D 2 in Chapter 3 of Volume I, although work
of Langlands [392], Selberg [543], and others allows us to complete many of the
foundational results.

One of the reasons for singling out the symmetric space Pn is that arguments
for Pn can often be generalized to arbitrary symmetric spaces. One such example is
the characterization of geodesics (see Chapter 2). This sort of approach is used by
Mostow [465], for example.

There are also many applications in physics. Some are analogues of applications
considered in Chapter 3 of Volume I. One can solve the heat and wave equations
on Pn and consider central limit theorems. There are applications in quantum
mechanics for systems of coherent states coming from higher rank symmetric spaces
such as Pn (see Hurt [312, 313], Monastyrsky and Perelmonov [457]). It is possible
to make a statistical study of eigenvalues of random symmetric matrices with
implications for quantum mechanics (see Mehta [441] and Section 1.3.5). Recent
work on quantum field theory involves function field analogues of some of the
subjects that we will consider. See Frenkel [187] and Ooguri’s interview [480] of
Ed Witten.

Many of our applications will be in number theory. For example, in Section 1.4,
we will begin with the work of Minkowski [453, Vol. II, pp. 53–100] on fundamental
domains for Pn=GL.n;Z/—work that is basic for algebraic number theory: e.g., in
the discussions of the finiteness of the class number and Dirichlet’s unit theorem
(see Vol. I, Section 1.4). We will find that integrals over Pn=GL.n;Z/ lead to some
higher dimensional integral tests for the convergence of matrix series. We will also
find that some of the integrals that we need for number-theoretic applications were
computed independently by number theorists and statisticians in the early part of
the last century. For example, one of Wishart’s formulas will be very useful in
applying our matrix integral test. Wishart was a statistician and his distribution is
of central importance in multivariate statistics (see Section 1.2, Farrell [173, 174],
and Muirhead [468]). It certainly came as a surprise to number theorists and
physicists to learn that some of the integrals needed by physicists in their study
of eigenvalues of random Hermitian matrices (see Mehta’s 1st edition [441]) were
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computed two decades before the physicists needed them in a Norwegian paper by
the number theorist Selberg [542]. Many number theorists are, in fact, interested
in such eigenvalue problems, thanks to possible connections with the Riemann
hypothesis (see Montgomery [458] and Hejhal [270]–as well as Section 1.3.5).

There are many sorts of fundamental domains for GL.n;Z/ besides that of
Minkowski. We will also consider the domain obtained by Grenier [241, 242]
using a generalization of the highest point method discussed for n D 2 in Vol.
I, Section 3.3. We discovered recently that this domain was also considered by
Hermite as well as Korkine and Zolotareff. The highest point method is similar
to that used by Siegel for the Siegel modular group Sp.n;Z/ (see Section 2.2,
Maass [426, p. 168], or Siegel [565]). The domain obtained by Grenier et al. has an
advantage over Minkowski’s in that it has an exact box shape at infinity. This allows
one to use it to compute the integrals arising in the parabolic terms of the Selberg
trace formula, for example (see Vol. I, pp. 270 and 355 ff.). One would hope to be
able to generalize many of the other results in Volume I, Chapter 3, which depended
on knowing the explicit shape of the fundamental domain. There are many places to
look for applications of the study of the fundamental domain for GL.n;Z/:

(1) algorithms for class numbers and units in number fields,
(2) higher dimensional continued fraction algorithms,
(3) geometric interpretations of �.3/,
(4) the study for Y 2 Pn of the numbers am.Y/ D # fa 2 Z

n j YŒa� D taYa D mg,
where m is a given integer. Here a is a column vector and ta denotes its
transpose. In 1883, Smith and Minkowski won a prize for proving Eisenstein’s
formula on the subject. This work was greatly generalized by C.L. Siegel
[565] and later reinterpreted adelically by Tamagawa and Weil [662, Vol. III,
pp. 71–157].

(5) densest lattice packings of spheres in Euclidean space, Hilbert’s 18th problem.
This has applications in coding (see Section 1.4.1 or Sloane [568]).

(6) study of matrix analogues of the Riemann zeta function and corresponding
automorphic forms generalizing the theta function. For example, we will
investigate the following zeta function:

Z.s/ D
X

A2Zn�nrank n=GL.n;Z/

jAj�s; for s 2 C with Re s > n; (1.4)

where jAj D determinant of A: Here the sum is over n � n integral matrices A
of rank n running through a complete set of representatives for the equivalence
relation

A � B iff A D BU for some U 2 GL.n;Z/:

This zeta function might be called the Dedekind zeta function attached to the
simple algebra Qn�n. It turns out to have an analytic continuation and functional
equation and one of Riemann’s original proofs can (with some difficulty) be
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made to show this. But actually Z.s/ is a product of Riemann zeta functions and
this leads to a formula for the volume of the fundamental domain for GL.n;Z/
involving a product of values of Riemann zeta functions at the integers from 2

to n.

Perhaps the main number theoretical application of harmonic analysis on
Pn=GL.n;Z/ is the study of L-functions corresponding to modular forms for � D
GL.n;Z/ and analogues of Hecke’s correspondence. By a modular form we mean
a “nice” function on the symmetric space of interest with some invariance property
under a modular group such as GL.n;Z/ or the Siegel modular group Sp.n;Z/. The
modular form is thus a special case of an automorphic form with invariance under a
general (perhaps non-arithmetic) discrete subgroup � � G acting on the symmetric
space G=K. Often, instead of calling these functions automorphic forms we will
name them for one of the main mathematicians who studied them (e.g., Maass
forms, Siegel modular forms). Or sometimes maybe we will call them modular
forms, indicating that they are invariant under some kind of modular group like
GL.n;Z/:

Results for L-functions corresponding to modular forms in the classical manner,
using matrix Mellin transforms, can be found in Section 1.5 (see also Maass
[419, 426], Goldfeld [230], Kaori Imai (Ota or also Ohta) [317], and Bump [83]).
This sort of result goes back to Koecher [359], who studied matrix Mellin transforms
(over Pn=GL.n;Z// of Siegel modular forms, but not enough complex variables
were present to invert Koecher’s transform. The L-function (1.4) above is an
example of one of the functions considered in Koecher’s theory. Kaori Imai Ota
[317] and Weissauer [663] show how to obtain a converse theorem for such a
transform. See Section 2.2. Solomon [570] as well as Bushnell and Reiner [93]
obtain generalizations of such zeta functions and applications to the theory of
algebras and combinatorics.

We will not discuss the adelic-representation theoretic view of Hecke theory
on higher rank groups such as GL.n/—a theory which has been developed by
Jacquet, Langlands, Piatetski-Shapiro, and others (see the Corvallis conference
volume edited by Borel and Casselman [66]). Jacquet et al. [325] show that “roughly
speaking, all infinite Euler products of degree 3 having a suitable analytic behavior
are attached to automorphic representations of GL.3/.” For GL.n/; n � 4, they
must “twist” the Euler product by all automorphic cuspidal representations of
GL.j/; 1 � j � n � 2. The GL.3/ result is applied to attach automorphic
representations to cubic number fields, in a similar way to that in which Maass
[417] found non-holomorphic cusp forms for congruence subgroups of SL.2;Z/ (of
level greater than one) corresponding to Hecke L-functions of real quadratic fields.
The Langlands philosophy indicates that non-abelian Galois groups of number fields
should have Artin L-functions coming from modular forms for matrix groups. More
recent references are Bump [84], Goldfeld [230], and Goldfeld and Hundley [232].

One might also hope for higher rank analogues of the classical applications
of harmonic analysis in number theory; e.g., in the proof of the prime number
theorem (see, for example, Davenport [130], Grosswald [249], or Steven J. Miller
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and Ramin Takloo-Bighash [448]). There is not much in print in this direction.
However, already Herz [293] had been motivated by the desire to understand the
asymptotics of

#
˚

T 2 Z
k�m

ˇ̌
A � tTT 2 Pm

�
; as A ! 1:

Herz hoped to use his theory of special functions on Pm to carry out this research,
but he did not apparently manage to do this. We will be able to use the Poisson
summation formula for GL.n;Z/ to study the related question of the asymptotics of

#
˚
� 2 GL.n;Z/

ˇ̌
Tr
�

t��
� � x

�
; as x ! 1;

where Tr denotes the trace of a matrix. Bartels [38] has obtained results on this
question for very general discrete groups � acting on symmetric spaces. One goal of
the theory developed in Sections 1.4 and 1.5 is the search for higher rank analogues
of the work of Sarnak on units in real quadratic fields (see Vol. I, p. 363). Dorothy
Wallace [642–650] gives results in this direction. One would also hope for higher
degree analogues of results of Hejhal [271] on the distribution of solutions of
quadratic congruences, results that were first proved by Hooley [305]. And there
should be analogues of the work of Elstrodt et al. [165–168]. Bump [83], Bump
and Goldfeld [89], Bump and Hoffstein [90], as well as Bump et al. [87], Goldfeld
[230], and Goldfeld and Hundley [232] have generalized many classical results to
GL.n/.

Warning to the Reader This volume will be much more sketchy and demanding
than the preceding volume [612]. The theory is still being developed. And it is not
possible to say the final word. There are many research problems here. Comparison
should be made with the work of Jorgenson and Lang [333] and [334] (who
complain loudly about my “exercises” ). See also Goldfeld [230].

I have chosen a point of view that I think best approximates that of Volume I,
as well as that of Maass [424, 426] and Siegel [565, Vol. III, pp. 97–137]. Many
experts might disagree with me here. And I’m sure that some would tell the reader
to do everything adelically or in the language of group representations or both. I
urge the reader to look at other references for a broader perspective on the subject.

I have sought to provide a large number of examples rather than general
theorems. I ask the reader to consider special cases, look at examples using pencil
and paper or even a computer. I have found that it is very helpful to use a computer
to understand fundamental domains by drawing pictures of projections of them (see
Section 1.4.3).

It is assumed that the reader has read about Haar or G-invariant measures
on Lie groups G as well as G-invariant measures on quotient spaces G=H for
closed subgroups H of G. Some references for this are Vol. I, Dieudonné [137],
Helgason [275, 282], Lang [388], and Weil [659]. For example, Haar measure on
the multiplicative abelian group
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A D fa 2 Pn j a is diagonalg

is given by

da D
nY

jD1
a�1

j daj; if a D

0

BBB
@

a1 0 � � � 0
0 a2 � � � 0
:::
:::
: : :

:::

0 0 � � � an

1

CCC
A
: (1.5)

Here the group operation on A is matrix multiplication and daj is Lebesgue measure
on the real line.

Throughout this book, we will use the following notation, for a square matrix A

jAj D det.A/ D determinant.A/ Tr .A/ D trace .A/ ;
In D n � n identity matrix; tA D transpose .A/ :

(1.6)

Exercise 1.1.2 (A Nilpotent Lie Group). Define N to be the group of all upper
triangular n � n real matrices with ones on the diagonal. Show that N forms a group
under matrix multiplication and that this group is not abelian unless n D 2. Show
that Haar measure on N is given by:

dn D
Y

1�i<j�n

dxij if n D

0

BBBBB
BBBB
@

1 x12 x13 � � � x1n

0 1 x23 � � � x2n

0 0 1 � � � x3n
:::

:::
::: � � � :::

0 0 0
: : : xn�1;n

0 0 0 � � � 1

1

CCCCC
CCCC
A

:

Here dxij is the Lebesgue measure on the real line. Show that right and left Haar
measures on N are the same. Note that some people use the word unipotent rather
than nilpotent for N.

Exercise 1.1.3. Show that the Haar measure on G D GL.n;R/ is given by

dg D kgk�n
Y

i;j

dgij:

Show that the right and left Haar measures are the same in this case.

From the theory of integrals on quotients G=H where H is a closed subgroup of
the Lie group G, we will need an understanding of the formula:
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Z

g2G

f .g/ dg D
Z

gHDg2G=H

0

@
Z

h2H

f .gh/ dh

1

A dg: (1.7)

Here dg and dh are Haar measures on G;H, respectively. This formula really
defines the G-invariant measure dg on the quotient space G=H. Such an integral is
determined up to a positive constant. Formula (1.7) holds provided that, for example,
both G and H are unimodular (i.e., left and right Haar measures are the same), and
even more generally (see Helgason [282, p. 91]). If there is a fundamental domain
S for H in G; i.e., a measurable subset S of G which can be identified with G=H, then
the integral over G=H is the same as the integral over S and (1.7) is clear since G is
a disjoint union of cosets sH over s 2 S. It is formula (1.7) that leads to our integral
test for the convergence of matrix series in Section 1.4.4. Helgason [282, pp. 139
ff.], uses this result to find some interesting formulas involving generalizations of
the Radon transform. Weil [662, Vol. I, pp. 339–357] employed (1.7) to prove an
integral formula of Siegel, which leads to the existence of dense lattice packings of
spheres in Euclidean spaces of high dimensions—a result that we will discuss in
Section 1.4.4.

It would also be useful for the reader to make herself or himself comfortable
with calculus on manifolds (see Yvonne Choquet-Bruhat, Cécile CeWitt-Morette,
and Margaret Dillard-Bleick [106], Dieudonné [137], or Lang [388], for example).
We will need to be able to change variables in Laplace operators, in particular.
Courant and Hilbert [125, p. 224] give an easy method to do this using the calculus
of variations. Suppose that the old variables are x 2 R

n and the new ones are y 2 R
n.

Let the Jacobian matrix of the change of variables be

J D .@xi=@yj/:

Then we have the following formulas for the arc length, volume, and Laplacian in
the new coordinates:

ds2 D
nX

jD1
dx2j D

nX

i;jD1
gijdyidyj; where G D tJJ;

dv D
nY

jD1
dxj D g1=2

nY

jD1
dyj; if g D jGj D det G;

� D g�1=2
nX

iD1
@
@yi

g1=2
nX

jD1
gij @

@yj
; for G�1 D .gij/:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(1.8)

Exercise 1.1.4. Prove (1.8) using the calculus of variations, as in Courant and
Hilbert [125, p. 224].
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Hint. See formulas (2.2)–(2.6) in Vol. I. The calculus of variations says that if u
minimizes the integral

F.u/ D
Z nX

iD1
u2xi

dx;

subject to the constraint

K.u/ D
Z

u2dx D constant;

then u must satisfy the Euler-Lagrange equation:

�u D
nX

iD1
uxixi D �uI

i.e., u is an eigenfunction for the Euclidean Laplacian.

Most of the rest of this section concerns the basic facts about Pn. There are lots
of exercises in advanced (or not so advanced) calculus on matrix space. We have
tried to give extensive hints. The summary §1.1.6 includes tables of formulas which
put these exercises into a nutshell. Many readers may want to skip to the summary,
as these exercises can be time consuming. But we do this at our peril, of course.

1.1.2 Elementary Results

Now we begin the detailed consideration of the geometry and analysis of Pn, the
space of positive n � n real matrices (1.1). Other references for this section are
Helgason [275–282], Hua [308], Maass [426], and Selberg [543].

Now Pn is the symmetric space of the general linear group G D GL.n;R/ of
non-singular n � n real matrices. The action of g 2 GL.n;R/ on Y 2 Pn is given by

YŒg� D tgYg; where tg denotes the transpose of g: (1.9)

Let K D O.n/ be theorthogonal group of matrices k 2 G D GL.n;R/ such that
tkk D I. Perhaps we should write O.n;R/ rather than O.n/; but we will not do this
in this chapter as here the group will almost always consist of real matrices. If it is
necessary, we will add the field to the notation.

Consider the map

KnG ! Pn

Kg 7! IŒg�: (1.10)
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This map provides an identification of the two spaces as homogeneous spaces of G.
By a homogeneous space X of G, we mean that X is a differentiable manifold with
transitive differentiable right G-action

G � X ! X

.g; x/ 7! x ı g

with the following two properties:

x ı e D x; for e D identity of G and all x 2 X;
x ı .gh/ D .x ı g/ ı h; for all g; h 2 G and x 2 X:

Exercise 1.1.5. Prove that the map (1.10) identifies the two spaces as homogeneous
spaces of G D GL.n;R/. Make sure that you show that the mapping preserves the
group actions. The action of g 2 G on a coset Kh 2 KnG is �g .Kh/ D Khg:
Hint. You need to use the general result which says that, having fixed a point p in a
homogeneous space X of the group G, then, defining the isotropy group Gp D fg 2
G j p ı g D pg, it follows that the map

GpnG ! X

Gpg 7! p ı g

is a diffeomorphism onto. There is a proof in Broecker and tom Dieck [81, p. 35].
In order to see that the map (1.10) is onto, you can use the spectral theorem for

positive matrices (Exercise 1.1.7 below).

Exercise 1.1.6 (Criteria for the Positivity of a Real Symmetric Matrix). Show
that if Y D tY is a real n � n matrix, then Y is positive definite (as in (1.2)) if and
only if one of the following equivalent conditions holds:

(a) All of the eigenvalues of Y are positive.
(b) If

Y D
�

Yk 	
	 	

�
; with Y 2 R

k�k;

then jYkj > 0, for all k D 1; 2; : : : ; n.

Hint. It is helpful to use the partial Iwasawa decomposition discussed in Exer-
cise 1.1.11 below.

Exercise 1.1.7 (Spectral Theorem for a Symmetric Matrix). Suppose Y D tY
is an n � n real matrix. Then there is an orthogonal matrix k in O.n/ such that
Y D tkDk D DŒk�, where D is the diagonal matrix
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D D

0

B
@

d1 � � � 0
:::
: : :
:::

0 � � � dn

1

C
A

and dj is real and equal to the jth eigenvalue of Y: We can characterize the dj by a
sequence of maximum problems:

dj D max
n

txYx
ˇ̌
ˇ x 2 R

n; kxk D p
txx D 1; txxi D 0; i D 1; : : : ; j � 1

o
D txjYxj;

with Yxj D djxj. Here we maximize over x in R
n of length 1 and orthogonal to all the

preceding j � 1 eigenvectors of Y: Then k D .x1 x2 � � � xn/; i.e., the matrix whose
jth column is xj:

Hint. See Courant and Hilbert [125, Chapter 1].

There are many familiar applications of Exercise 1.1.7; e.g., to the discussion of
normal modes of vibrating systems (see Courant and Hilbert [125]). Exercise 1.1.7
also leads to a numerical method for the solution of partial differential equations
known as the Rayleigh-Ritz method (see Arfken [20, pp. 800–803]), a method which
has developed into the modern finite element method (see Strang and Fix [582]).

Exercise 1.1.8 (Mini-Max Principle for Eigenvalues of Y D t Y).

(a) Let Y and dj be as in Exercise 1.1.7. Show that

dj D min
w1; : : : ;wj�1 2 R

n

 
max txYx
x2Rn; jjxjjD1
tx�wiD0; 8 iD1;:::;j�1

!

:

(b) As an application of part (a) show that if

Y D
�

Y1 	
	 	

�

where Y is as in Exercise 1.1.7 and Y1 is a k � k symmetric matrix, then

.jth eigenvalue of Y1/ � .jth eigenvalue of Y/ � ..j � 1/st eigenvalue of Y1/:

The mini-max principle can be generalized greatly and leads to many qualitative
results about solutions of boundary value problems of mathematical physics. For
example, it can be used to compare fundamental tones for vibrating strings. The
string of larger density will have the lower fundamental tones (see Courant and
Hilbert [125, Ch. VI]).

Exercise 1.1.9. Given two n � n real symmetric matrices P and Y with P 2 Pn,
show that there is a matrix g in GL.n;R/ such that both YŒg� and PŒg� are diagonal.
Hint. Use Exercise 1.1.7.
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The space of symmetric real n � n matrices is easily seen to be identifiable with
R

m, where m D n.n C 1/=2. And it follows from Exercise 1.1.9 that Pn is an open
cone in R

m; m D n.n C 1/=2; i.e., X;Y 2 Pn and t > 0 implies that X C Y and tX
are also in Pn.

1.1.3 Geodesics and Arc Length

In order to view the space Pn as an analogue of the Poincaré upper half plane which
was studied in Chapter 3 of Volume I, we need a notion of arc length. This will
turn the space into a Riemannian manifold. Now Pn is an open set in n.n C 1/=2-
dimensional Euclidean space as can be seen from Exercise 1.1.6 in the last
subsection. Thus it is indeed a differentiable manifold of the easiest sort to consider.
The choice of coordinates is not a problem. To define the Riemannian structure, we
need to define an arc length element (thinking as physicists). Differential geometers
would consider a bilinear form on the tangent space or a continuous 2-covariant
tensor field, or whatever. We want to take the point of view of a student of advanced
calculus, however. But duty impels us to note that Lie groups people would say that
it all comes from the Killing form on the Lie algebra. We will consider that approach
in Chapter 2.

Well, anyway, suppose we just define the arc length element ds by the formula:

ds2 D Tr ..Y�1dY/2/; where Y D .yij/1�i;j�n

and dY D .dyij/1�i;j�n; Tr D Trace: (1.11)

It is easy to show that ds is invariant under the group action of g 2 GL.n;R/ on
Y 2 Pn given by (1.9). For W D YŒg� is a linear function of Y: Recall from
advanced calculus that a linear map is its own differential (see for example Lang
[388, Chapter 5]). Therefore dW D dYŒg� and it follows that, upon plugging into
the definition of ds, we obtain:

ds2 D Tr
��

Y�1dY
�2� D Tr

��
g
�
W�1� tg

�
tg�1� dW g�1�2� D Tr

��
W�1dW

�2�
:

Thus we have shown that our arc length on Pn behaves like that on the Poincaré
upper half plane as far as group invariance properties go. Moreover, the arc length
element is positive definite, since it is positive definite at Y D I and the action of
GL.n;R/ on Pn is transitive (see Exercise 1.1.5).

Recall that in the case of the Poincaré upper half plane H, the geodesics through
the point gi, for g in SL.2;R/, have the form

g

�
exp.at/ 0

0 exp.�at/

�
i; for t 2 R;
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where the action of the 2 � 2 matrix on i is by fractional linear transformation (see
Volume I, page 151). Here a is any real number. Thus it will not come as a surprise
to you that in the case of Pn the geodesics through the point IŒg� for g 2 GL.n;R/
are given by:

0

B
@

exp.a1t/ � � � 0
:::

: : :
:::

0 � � � exp.ant/

1

C
A Œg�; for t 2 R;

where the numbers ai are arbitrary real numbers. It may not surprise you either if
we reveal that the method of proof of this fact (Theorem 1.1.1 below) is just a rather
straightforward generalization of the proof that works in the Euclidean case and in
the upper half plane case. The only problem will be the computation of a rather
nasty Jacobian. Mercifully Hans Maass [426] computes the Jacobian for us.

It is perhaps more convenient to view a geodesic through the identity in Pn as the
matrix exponential:

exp.tX/ D
X

n�0

.tX/n

nŠ
; for t 2 R; X 2 R

n�n; tX D X: (1.12)

The following exercise reviews the basic properties of exp. There is an analogue for
any Riemannian manifold (see Helgason [273, 278]). In Chapter 2 we will consider
the analogue for Lie groups G.

Exercise 1.1.10 (The Matrix Exponential).

(a) Show that the matrix power series below converges absolutely for all A 2 R
n�n

exp.A/ D
X

n�0

An

nŠ
:

(b) Show that if AB D BA, for A;B in R
n�n, then

exp.A C B/ D exp.A/ exp.B/:

Show that this equality may fail if AB ¤ BA.
(c) Show that if U is in GL.n;R/, then exp.U�1AU/ D U�1 exp.A/U.
(d) Using the notation (1.6), show that

j exp.A/j D exp.Tr.A//:

Hint. See Lang [385, pp. 295–296].

There are applications of the matrix exponential to the solution of ordinary
differential equations (see Apostol [17, Vol. II, pp. 213–214]).
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In order to prove the theorem characterizing the geodesics in Pn, we need to
have an analogue of rectangular coordinates in the Poincaré upper half plane. This
analogue is what I call partial Iwasawa coordinates defined as follows for Y 2 Pn,
with the notation (1.9):

Y D
�

V 0

0 W

�	
Ip 0

X Iq



; for V 2 Pp; W 2 Pq; X 2 R

q�p; n D p C q: (1.13)

Here Ip denotes the p � p identity matrix. When n D 2, Exercise 3.1.9 of Volume I
shows that these coordinates (or those from Exercise 1.1.11(b) below) correspond to
rectangular coordinates in the Poincaré upper half plane. There are as many versions
of these partial Iwasawa coordinates as there are partitions of n into two parts. We
feel impelled to say that somehow all these different coordinate systems measure
ways of approaching the boundary of the symmetric space. Thus if we manage to
try to do the analysis of behavior of functions like Eisenstein series for GL.n/, we
will have to make serious use of these coordinates.

Partial Iwasawa coordinates generalize the well-known technique from high
school algebra known as “completing the square,” since if a 2 R

p and b 2 R
q,

Y

	
a
b



D VŒa�C WŒXa C b�;

which is indeed a sum of squares if n D 2 and p D q D 1.
At the end of this section, we will see an application of partial Iwasawa

coordinates in multivariate statistics—with results going back to Pearson in 1896
and Yule in 1897 (see also T.W. Anderson [8, p. 27]).

There is also another type of partial Iwasawa coordinates, as the next exercise
shows.

Exercise 1.1.11 (Partial Iwasawa Coordinates).

(a) Show that the equation (1.13) can always be solved uniquely for V;W;X, once
Y in Pn is given, along with p; q 2 Z

C, such that n D p C q.
(b) Obtain a second set of partial Iwasawa coordinates, using the equality:

Y D
�

F 0

0 G

�	
Ip H
0 Iq



; with F 2 Pp; G 2 Pq; H 2 R

p�q; n D p C q:

We have seen that there are many sorts of partial Iwasawa coordinates. In
fact, you can continue the idea to decompose Y into an analogous product, with
any number (between 2 and n) of block matrices along the diagonal. This gives
coordinate systems associated with any partition of n. Such coordinate systems
will be needed in our study of Eisenstein series in Section 1.3. But let’s restrain
ourselves since we do not need these more general decompositions for our goal of
characterizing the geodesics in Pn. However, later in this section, we will need the
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full Iwasawa decomposition corresponding to the partition of n given by

n D 1C � � � C 1

—a decomposition which is studied in the following exercise.

Exercise 1.1.12 (The Full Iwasawa Decomposition). Show that repetition of the
partial Iwasawa decomposition in Exercise 1.1.11(b) leads to the full Iwasawa
decomposition: Y D aŒn�, where the matrix a is positive diagonal and the matrix
n is upper triangular with 1’s on the diagonal.1

The coordinate system of Exercise 1.1.12 corresponds to the full Iwasawa
decomposition on the group G D GL.n;R/ (see Helgason [275–278, 282], and
Iwasawa [322] as well as Chapter 2). Siegel [562, p. 29] calls the full Iwasawa
decomposition the “Jacobi transformation.” Weil [658, p. 7] calls it “Babylonian
reduction.” Numerical analysts call it the “LDU factorization” and obtain it
by Gaussian elimination (see Strang [581]). The Gram-Schmidt orthogonalization
process can also be used to derive the full Iwasawa decomposition.

Exercise 1.1.13. Suppose that Yk is the upper left-hand k�k corner of the matrix Y:
For

1 � i1 � � � � � ih � n and 1 � j1 � � � � � jh � n;

set

Y.i1; : : : ; ih j j1; : : : ; jh/ D det.Yiajb/1�a;b�h:

Then show that the matrices a and n from Exercise 1.1.12 are given by:

a D

0

B
@

a1 � � � 0
:::

: : :
:::

0 � � � an

1

C
A ; n D

0

B
@

1 � � � xij
:::
: : :
:::

0 � � � 1

1

C
A ; with

ai D jYij=jYi�1j and xij D Y.1; : : : ; i � 1; ij1; : : : ; i � 1; j/=jYij.
Hint. (See Minkowski [453, Vol. II, p. 55] and Hancock [260, Vol. II, pp. 536–539]).
Note that if we choose tu D .u1; : : : ; ui; 0; 0; : : : ; 0; 1; 0; : : : ; 0/ with the one in the
jth place, then we can minimize YŒu� over such vectors u. If Y D aŒn�, then

YŒu� D a1.u1 C x12u2 C � � � C x1nun/
2 C a2.u2 C x23u3 C � � � C x2nun/

2 C : : :C anu2n;

and thus to minimize YŒu�, we need

ui C xij D 0;

1Hopefully it will not be too confusing to use n for matrix size as well as a matrix in the nilpotent
group N:
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2Yu D grad YŒu� D
�
@YŒu�

@u1
; : : : ;

@YŒu�

@ui

�
D 0:

Cramer’s rule completes the proof of the formula for xij. The formula for ai is easily
proved.

Now, in order to obtain the geodesics on Pn, we must express the arc length
element in partial Iwasawa coordinates (1.13):

ds2Y D ds2V C ds2W C 2 Tr
�
V�1 �tdX

�
W dX

�
; (1.14)

where dsV is the element of arc length in Pp; dsW is the analogue for W 2 Pq, and
dX is the matrix of differentials dxij if X D .xij/ 2 R

q�p.
To prove (1.14) write:

Y D
�

V 0

0 W

�	
Ip 0

X Iq



D
�

V C WŒX� tXW
WX W

�
:

Then

Y�1 D
�

V�1 �V�1 .tX/
�XV�1 V�1ŒtX�C W�1

�

and

dY D
�

dV 0

0 dW

�	
Ip 0

X Iq



C
�
0 tdX
0 0

��
V 0

0 W

��
Ip 0

X Iq

�

C
�

Ip
tX

0 Iq

��
V 0

0 W

��
0 0

dX 0

�
:

This allows one to compute

dY Y�1 D
�

L0 L1
L2 L3

�
:

We might wish for any symbol manipulation language and a nice friendly
computer to help us out here.

Exercise 1.1.14 (Proof of Formula (1.14)).

(a) Prove that

L0 D dV V�1 C tX W dX V�1;

L1 D �dV V�1 �tX
� � tX W dX V�1 �tX

�C tX dW W�1 C tdX;

L2 D W dX V�1;

L3 D �W dX V�1 �tX
�C dW W�1:
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(b) Use part (a) to show that

ds2 D Tr
�
L20 C L1L2

�C Tr
�
L2L1 C L23

�

D Tr
�
.V�1 dV/2

�C Tr
�
.W�1 dW/2

�C 2Tr
�
V�1 �tdX

�
W dX

�
:

(c) Find ds2 for the other partial Iwasawa decomposition given in Exercise 1.1.11
(b).
Answer. ds2Y D Tr

�
.F�1 dF/2

�CTr
�
.G�1 dG/2

�C2 Tr
�
dH G�1 .tdH/ F

�
, for

Y D
�

F 0

0 G

�	
I H
0 I



:

Exercise 1.1.15. (a) Show that if V D tAA; W D tBB; H D B dX A�1, for A 2
GL.p;R/; B 2 GL.q;R/, then

Tr
�
V�1 �tdX

�
W dX

� D Tr
�
H
�

tH
�� � 0:

(b) Conclude from Exercise 1.1.14 and part (a) that when seeking a curve T.t/ 2
Pn, such that T.0/ D I; T.1/ D D, a diagonal matrix, the arc length will only
be decreased by taking the X-coordinate in the partial Iwasawa decomposition
of T.t/ in (1.13) to be zero.

(c) Use induction to conclude from part (b) that we only decrease the arc length by
taking T.t/ to be diagonal for all t 2 Œ0; 1�.

Theorem 1.1.1 (Geodesics in Pn). A geodesic segment T.t/ through I and Y in Pn

has the form:

T.t/ D exp.t AŒU�/; 0 � t � 1;

where Y has the spectral decomposition:

Y D .exp A/ŒU� D exp.AŒU�/; for U 2 O.n/

and

A D

0

BBB
@

a1 0 � � � 0
0 a2 � � � 0
:::
:::
: : :

:::

0 0 � � � an

1

CCC
A
; aj 2 R; j D 1; 2; : : : ; n:
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The length of the geodesic segment is:

0

@
nX

jD1
a2j

1

A

1=2

:

Proof. Use Exercise 1.1.7 to write Y D DŒU� with U in the orthogonal group O.n/
and

D D

0

BBB
@

d1 0 � � � 0
0 d2 � � � 0
:::
:::
: : :

:::

0 0 � � � dn

1

CCC
A
; dj > 0; j D 1; 2; : : : ; n:

Then D D exp A with dj D exp.aj/; j D 1; : : : ; n. From Exercise 1.1.10 we
know that Y D .exp A/ŒU� D exp.AŒU�/.

Exercise 1.1.15 tells us that a geodesic T.t/ in Pn such that T.0/ D I and T.1/ D
YŒU� has the form:

T.t/ D

0

BBB
@

d1.t/ 0 � � � 0

0 d2.t/ � � � 0
:::

:::
: : :

:::

0 0 � � � dn.t/

1

CCC
A
ŒU�;

dj.0/ D 1; dj.1/ D dj;

j D 1; : : : ; n;

where dj.t/ D exp.aj.t//. This is possible, since all the dj’s are positive. Using the
definition (1.11) of arc length in Pn, it is easily seen that the arc length of the curve
T.t/ is:

1Z

0

0

@
nX

jD1
a0 2

j

1

A

1=2

dt:

The curve a.t/ 2 R
n such that a.0/ D 0 and a.1/ D .a1; : : : ; an/ which minimizes

this distance is the straight line:

aj.t/ D taj; j D 1; : : : ; n:

This completes the proof of Theorem 1.1.1. �

Exercise 1.1.16. Use Exercise 1.1.9 and Theorem 1.1.1 to find the geodesics
through two arbitrary points in Pn.
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In Chapter 2 we will generalize Theorem 1.1.1 to an arbitrary noncompact
symmetric space. For example, define the symplectic group Sp.n;R/ of all .2n/ �
.2n/ real matrices g such that

tgJg D J; if J D
�
0 In

�In 0

�
: (1.15)

Then we can consider the symmetric space attached to Sp.n;R/ to be the subset of
P2n consisting of all positive .2n/� .2n/ symplectic matrices.2 In fact, this subset of
P2n will be seen to be a totally geodesic submanifold of P2n; i.e., the geodesics in
the larger space which join two points in the smaller space must actually lie entirely
in the smaller space.

Exercise 1.1.17 (The Determinant one Surface).

(a) As in Exercise 1.1.5, show that the determinant one surface SPn, defined
in (1.3), can be identified with KnG, for G D SL.n;R/; K D SO.n/. Here
SL.n;R/ denotes the special linear group of all determinant one matrices in
GL.n;R/ and SO.n/ denotes the special orthogonal group which is defined
analogously as the determinant one matrices in O.n/.

(b) Show that SPn is a totally geodesic submanifold of Pn.

Hint. You can relate the geometric structures on Pn and SPn using formula (1.8)
and the substitution

Y D tW; for t > 0 and W 2 SPn:

The group SL.n;R/ is a simple Lie group and thus certainly semisimple—a
standard hypothesis for many theorems in the theory of group representations and
harmonic analysis (see the next chapter). But GL.n;R/ has a center consisting of
nonzero scalar matrices and is thus not semisimple. GL.n;R/ is only reductive.
But this should not make us abandon GL.n/ for its “simple” relative. For many
theorems about simple and semisimple Lie groups are proved by first settling the
case of GL.n;R/ and then using the Adjoint representation. For examples of this
phenomenon, see the next chapter and Helgason [273, pp. 234–237]. Moreover, it
is often true that calculations are easier on GL.n;R/ than SL.n;R/. Thus we will
usually consider the general rather than special linear group.

Exercise 1.1.18 (A Geodesic-Reversing Isometry). Show that the map � I.Y/ D
Y�1 fixes the point I, preserves arc length, and reverses geodesics through the
point I.
Hint. You could use the fact that W D Y�1 implies that Y dW C dY W D 0.

2Some authors write Sp.2n;R/ instead of Sp.n;R/: Confusing!
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Note that one can easily find a geodesic-reversing isometry of Pn at each point
Y in Pn by translating the result of Exercise 1.1.18 using the action of GL.n;R/. It
is the existence of these geodesic-reversing isometries that turns the Riemannian
manifold Pn into a symmetric space. Such spaces were classified by E. Cartan in
the 1920s (see Cartan [94, 95], Helgason [275–278], and Chapter 2). The geodesic-
reversing isometry is used, for example, in the proof that the G-invariant differential
operators on Pn form a commutative algebra (see part 2 of Lemma 1.1.2 in
Section 1.1.5). Selberg [543, p. 51] notes that for this commutativity, it would suffice
to assume that the Riemannian manifold S is only a weakly symmetric space. That
is, S is assumed to have a group G of isometries such that G is locally compact
and transitive on S and having a fixed isometry 	 (which may not lie in G) such
that 	G	�1 D G, and 	2 2 G. And for S to be weakly symmetric it is assumed
that for every pair x; y 2 S, there is an element m 2 G such that mx D 	y and
my D 	x. Ernest Vinberg has proved that it is not necessary to assume 	2 2 G:
Selberg showed that weakly symmetric spaces give rise to Gelfand pairs. A group G
with a subgroup K is called a Gelfand pair .G;K/ if L1 .KnG=K/ is a commutative
algebra under convolution on G:

The locally symmetric spaces are quotients of a symmetric space G=K with a
discrete group � � G; thus of the form KnG=�:

1.1.4 Measure and Integration on Pn

Now that we have completed our study of geodesics on Pn, it is time to consider
the GL.n;R/-invariant volume element and integration on Pn. For Y D .yij/ 2 Pn,
let dyij D Lebesgue measure on R. Then we define the GL.n;R/-invariant volume
element d	 on Pn by:

d	 D d	n.Y/ D jYj�.nC1/=2 Y

1�i�j�n

dyij: (1.16)

One can show that d	n in (1.16) is the volume element associated by (1.8) to the
Riemannian metric defined by (1.11).

To prove that the volume element given in formula (1.16) is invariant under
GL.n;R/, suppose that g 2 GL.n;R/ and W D YŒg�. We follow Maass [426, p. 23].
The Jacobian of the mapping Y 7! W is:

J.g/ D kdW=dYk D kgknC1; for kgk D absolute value of det.g/: (1.17)

To prove this, note that J.g/ is multiplicative; i.e.,

J.gh/ D J.g/J.h/; for all g; h 2 G:

And J.g/ is clearly a polynomial in the entries of g. So we can assume that g lies
in the set of matrices whose eigenvalues are pairwise distinct. Then g has the form
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U�1DU, with D diagonal. Suppose that D has jth diagonal entry dj. Then YŒD� D
.diyijdj/, which implies that

J.U�1DU/ D J.D/ D
Y

1�i�j�n

jdidjj D kDknC1 D kU�1DUknC1:

This completes the proof of formula (1.17). One quickly deduces from (1.17) the
fact that the volume element in (1.16) is invariant under the action of GL.n;R/.

In the following Exercises we compute the Jacobian for various coordinate
systems that we call partial Iwasawa and full Iwasawa coordinates.

Exercise 1.1.19 (The Jacobian for Partial Iwasawa Coordinates).

(a) Show that if we have the partial Iwasawa coordinate decomposition defined by:

Y D
�

V 0

0 W

�	
Ip 0

X Iq



; V 2 Pp; W 2 Pq; X 2 R

q�p; n D p C q;

then
ˇ̌
ˇ
ˇ

@Y

@.V;W;X/

ˇ̌
ˇ
ˇ D jWjp:

(b) If instead, we write an alternate partial Iwasawa decomposition:

Y D
�

F 0

0 G

�	
Ip H
0 Iq



; F 2 Pp; G 2 Pq; H 2 R

p�q; n D p C q;

then
ˇ
ˇ̌
ˇ

@Y

@.F;G;H/

ˇ
ˇ̌
ˇ D jFjq:

Hint. (a) Set

Y D
�

A B
tB C

�
; with tB D WX;

and note that j@.WX/=@Xj D jWjp—you get one jWj for each column of X.

We can use Exercise 1.1.19 to obtain the relation between invariant volumes
in partial Iwasawa coordinates (1.13):

d	n.Y/ D jVj�q=2jWjp=2 d	p.V/ d	q.W/ dX; (1.18)

where d	n is the invariant volume on Pn defined by (1.16) and dX is Lebesgue
measure on R

q�p.
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By iterating partial Iwasawa decompositions, one obtains the full Iwasawa
decomposition of Y D IŒg� D IŒan�; where g 2 G D GL.n;R/; a 2 G
is diagonal with positive diagonal entries, n 2 G is upper triangular with one’s
on the diagonal. It follows that g D kan; with k 2 O.n/: This is known as the
Iwasawa decomposition of g 2 G:

Exercise 1.1.20 (The Jacobian for the Full Iwasawa Decomposition of
GL.n;R/).

(a) Define for G D GL.n;R/; K D O.n/,

A D fa 2 G j a is positive and diagonalg;
N D fn 2 G j n is upper triangular with ones on the diagonalg:

Write for x 2 G, the ANK-Iwasawa decomposition as x D a.x/n.x/k.x/, with
a.x/ 2 A; n.x/ 2 N, and k.x/ 2 K. Show that the integral formula for the
ANK-Iwasawa decomposition is:

Z

G

f .x/dx D
Z

A

Z

N

Z

K

f .ank/ dk dn da;

where all the measures are left .D right/ Haar measures.
(b) For x 2 G, the KAN-Iwasawa decomposition of x can be written x D

K.x/A.x/N.x/, with K.x/ 2 K; A.x/ 2 A, and N.x/ 2 N. Show that the relation
between the two Iwasawa decompositions is: A.x�1/ D a.x/�1; K.x�1/ D
k.x/�1; and N.x�1/ D a.x/n.x/�1a.x/�1:

(c) Show that if we set na D ana�1 for n 2 N; a 2 A, then na 2 N and the Jacobian
is

˛.a/
.defn/D jdna=dnj D

Y

1�i<j�n

ai

aj
D

nY

iD1
an�2iC1

i :

Here, if

n D

0

B
@

1 � � � xij
:::
: : :
:::

0 � � � 1

1

C
A ; then dn D

Y
dxij D

�
the left .D right/-invariant

Haar measure on N;

by Exercise 1.1.2.
(d) Prove the integral formula for the KAN-Iwasawa decomposition:

Z

G

f .x/ dx D
Z

K

Z

A

Z

N

f .kan/ ˛.a/ dn da dk; with ˛.a/ as in (c):
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Hints. (See Lang [387, pp. 37–40].) Note that one can normalize the left Haar
measures on G and K along with the G-invariant measure on G=K to obtain as
in (1.7):

Z

G

f .x/dx D
Z

gKDg2G=K

Z

k2K

f .gk/ dk dg:

Now G=K can be identified with AN, and we need to only show thatR
A

R
N f .an/ dn da gives a left AN-invariant integral on AN. To see this, note that if

a1 2 A and n1 2 N, then we have the equality below for n2 D a�1n1a:

Z

A

Z

N

f .a1n1 an / dn da D
Z

A

Z

N

f .a1an2n/dn da:

Then use the left invariance of da and dn, to complete the proof of (a).
It is also clear that if

n D

0

B
@

1 � � � xij
:::
: : :
:::

0 � � � 1

1

C
A and a D

0

B
@

a1 � � � 0
:::
: : :

:::

0 � � � an

1

C
A ;

then

ana�1 D

0

B
@

1 � � � yij
:::
: : :
:::

0 � � � 1

1

C
A ; for yij D aixija

�1
j :

Now the left Haar measure on N is just dn D Q
dxij (see Exercise 1.1.2), where dxij

is just the usual Lebesgue measure on R. The formula for the Jacobian in part (c)
follows easily from these considerations. And it implies that

Z

N

f .an/ dn D ˛�1.a/
Z

N

f .na/ dn:

Part (d) follows from this and part (a), along with the fact that all the groups
A;N;K;G are unimodular (i.e., the right and left Haar measures are the same). See
the discussion before Proposition 2.1.1 in Section 2.1 below. Thus

Z

G

f .x/ dx D
Z

G

f .x�1/ dx D
Z

N

Z

A

Z

K

f .k�1a�1n�1/ ˛�1.a/ dk da dn:
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Exercise 1.1.21 (Relation Between Measures on Pn and AN).

(a) Show that, if we write da D Q
daj=aj and dn D Q

dxij, for

a D

0

BBB
@

a1 0 � � � 0
0 a2 � � � 0
:::
:::
: : :
:::

0 0 � � � an

1

CCC
A

and n D

0

BBB
@

1 x12 : : : x1n

0 1 : : : x2n
:::
:::

: : :
:::

0 0 : : : 1

1

CCC
A
;

then
Z

Pn

f .Y/ d	n.Y/ D c
Z

A

Z

N

f .IŒ.an/�1�/ dn da D c
Z

A

Z

N

f .IŒan�/˛.a/ dn da:

Use induction on Exercise 1.1.19(b) to see that c D 2n.
(b) Another approach to this problem goes as follows. Make the change of variables

from Y in Pn to an upper triangular matrix T via

Y D tTT; T D

0

B
@

t1 � � � tij
:::
: : :
:::

0 � � � tn

1

C
A ; ti > 0; tij 2 R:

Show that the Jacobian of this change of variables is:

ˇ̌
ˇ̌@Y

@T

ˇ̌
ˇ̌ D 2n

nY

jD1
tn�jC1
j :

Later (see § 1.3), we will need to consider integrals over the boundary B of the
symmetric space Pn, which is defined to be the compact space B D K=M, where
M is the subgroup of K consisting of diagonal matrices with entries ˙1. Using the
Iwasawa decomposition, we can identify the boundary B with G=MAN. This is done
as follows:

G=MAN ! K=M
gMAN 7! K.g/M:

�
(1.19)

Here K.g/ is the K-part of g in the Iwasawa decomposition G D KAN, as in
Exercise 1.1.20. This mapping is well defined, as is easily checked, since xN D Nx,
for x 2 MA. Now an element g 2 G acts on the boundary element kM via:

g.kM/ D K.gk/M: (1.20)
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More information on boundaries of symmetric spaces and compactifications can
be found in Chapter 2 (see also Furstenberg [194], Gérardin [216], Helgason [275,
281], Koranyi [364], and Moore [459]). In the case of SL.2;R/, the symmetric space
is the Poincaré upper half plane H, and the boundary can be identified with the circle,
which can clearly be thought of as the compactified boundary of H.

Exercise 1.1.22 (The Jacobian of the Action of Gon the Boundary B). Show that
using the notation of Exercise 1.1.20 we

Z

B

h.b/ db D
Z

B

h.g.b//˛�1.A.gk// db; if b D kM 2 B:

Hint. (See Helgason [275, pp. 50–51].) We want to use Exercise 1.1.20, and apply
the integral formula for the KAN-Iwasawa decomposition to a function on the
boundary of the form

Z

A

Z

N

f .kan/ ˛.a/ dn da:

The whole theory of harmonic functions on the unit disc can be extended to
symmetric spaces such as Pn (see Chapter 2 of this Volume or Helgason [275, 281]
or [282, pp. 36 and 78 for the history]). Godement [222] defines a function u which
is infinitely differentiable on a symmetric space G=K to be harmonic if Lu D 0

for all G-invariant differential operators L on G=K such that L annihilates constants.
Furstenberg [194] shows that, when u is bounded, it suffices for the Laplacian of u
to be zero in order for u to be harmonic. The Poisson kernel on G=K � B can be
defined by:

P.gK; b/ D d.g�1.b//=db:

And Furstenberg [194] proved the Poisson integral representation for a bounded
harmonic function u on G=K:

u.x/ D
Z

b2B

P.x; b/ 	.b/ db;

where 	 denotes some bounded measurable function on the boundary B of G=K.
Helgason vastly generalized this result in 1970 (see his book [281, pp. 279–280]).
See also Chapter 2.

Exercise 1.1.23 (Relation Between Invariant Measures on Pn and the Determi-
nant One Surface SPn). Show that we can define an SL.n;R/-invariant measure
dW on the symmetric space SPn defined in (1.3) by setting, for Y 2 Pn,
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Y D t1=nW; with t > 0 and W 2 SPn;

d	n.Y/ D jYj�.nC1/=2Q dyij D t�1dt dW:

�
(1.21)

Another useful coordinate system on Pn is polar coordinates:

Y D aŒk�; for a 2 A and k 2 K; (1.22)

with A and K as in Exercise 1.1.20. The existence of this decomposition follows
from the spectral theorem (Exercise 1.1.7). On the group level, formula (1.22)
becomes G D KAK. Physicists often call this the Euler angle decomposition
(see Wigner [668]). Numerical analysts (and now anyone who takes or teaches the
linear algebra part of a calculus sequence) call it the singular value decomposition
(see Strang [581, p. 139]). Polar coordinates have been very useful in multivariate
statistics (see James [330] and Muirhead [468]). They are also the coordinates used
by Harish-Chandra and Helgason to do harmonic analysis on Pn (see § 1.3).

Exercise 1.1.24 (The Invariant Volume Element in Polar Coordinates). Show
that in polar coordinates Y D aŒk�, for a 2 A; k 2 K, the invariant volume (1.16) is:

d	n.Y/ D cn

nY

jD1
a�.n�1/=2

j

Y

1�i<j�n

jai � ajj da dk;

where

a D

0

B
@

a1 � � � 0
:::
: : :
:::

0 � � � an

1

C
A ;

da D
nY

jD1
daj

aj
; and

dk D Haar measure on K D O.n/;

with dk normalized so that
R

K dk D 1. The positive constant cn will be determined
in Proposition 1.2.3 of Section 1.2.1.
Hint. Note that if Y D aŒk�, for k 2 K and a 2 A, then

dY D daŒk�C tdk a k C tk a dk;

and

tdk k C tk dk D 0:

Thus

dY D fda � .dk k�1/a C a.dk k�1/gŒk�:
Now X D dk k�1 is a skew-symmetric matrix. And .aX � Xa/ij D .ai � ai/xij if
X D .xij/.
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Polar coordinates give a .2nnŠ/-fold covering of Pn, since the entries of a are the
eigenvalues of Y D aŒk�. Thus they are unique up to the action of the Weyl group
W of permutations of the aj; j D 1; 2; : : : ; n, as well as the action of the group M of
orthogonal diagonal matrices. The latter are matrices which are diagonal with C1
or �1 as the entries.

Exercise 1.1.25 (The Arc Length in Polar Coordinates). Show that in polar
coordinates (1.22), Y D aŒk�, for a 2 A; k 2 K, the arc length (1.11) is:

ds2Y D
nX

jD1
a�2

j da2j C Tr
��

a�1dk k�1a � dk k�1�2� :

Set dk k�1 D X D a skew-symmetric matrix. Then show that you can rewrite the
formula as:

ds2Y D
nX

jD1
a�2

j da2j C 2
X

1�i<j�n

.ai � aj/
2

aiaj
x2ij; for X D .xij/ D dk k�1:

You might want to write out the case n D 2 first. Then

k D
�

cos 
 sin 

� sin 
 cos 


�
; dk k�1 D

�
0 d


�d
 0

�
:

Hint. See the hint for Exercise 1.1.24 or see Muirhead [468, p. 241]. Thus

Y�1dY D tka�1 �da � �
dk k�1� a C a

�
dk k�1�� k

and if X D dk k�1, we have

Tr..Y�1dY/2/ D Tr
��

a�1da � a�1Xa C X
�2�

D Tr
�
.a�1da/2

� � 2Tr
�
Xa�1Xa

�C 2Tr
�
X2
�
:

The formula of Exercise 1.1.24 was first proved in 1939 by three statisticians
working independently (see Fisher [180], Hsu [307], and Roy [517]).

It is a familiar fact from calculus that integral operators are easier to deal
with than differential operators. Integrals tend to make sequences converge while
derivatives tend to make sequences diverge. Thus people use integral operators to
study spectral theory for differential operators—the theory of Green’s functions or
resolvent kernels. See Courant and Hilbert [125], or Lang [388], for example. In fact,
some mathematicians, perhaps motivated by the words of Hermann Weyl, in some
of his early papers, have decided to throw out the differential operators altogether
(cf. our remarks on p. 131 of Vol. I). In particular, there is a lot of work on spherical
functions that does not discuss differential equations at all. For p-adic groups, this
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may be a good idea, but I don’t think it is so clever to forget about differential
operators entirely—even if they may be ugly and/or hairy. Anyway, in this section
we want to discuss the integral operators that can be used to replace the differential
operators. That brings us to our next topic—convolution operators, as in Section 3.7
of Volume I. Of course, these convolution operators will be of central importance
for analysis on Pn and on fundamental domains thereof, just as in Chapter 3, Vol. I.

In order to define convolution, we must use Exercise 1.1.5 to identify Pn with the
homogenous space KnG where G D GL.n;R/ and K D O.n/, and then we must
think of functions on Pn as functions on G by writing:

f .x/ D f .IŒx�/; for x 2 G: (1.23)

Suppose that f and g are in L1.Pn; d	n/ and define the convolution (splat) of f and
g by:

.f 	g/.a/ D Cgf .a/ D
Z

GDGLhn;R/

f .b/g.ab�1/ db: (1.24)

Here db is the right or left (they are equal) Haar measure on G as in Exercise 1.1.3.
The difference between the definitions given in formula (1.24) above and in formula
(3.134) in Vol. I is due to the fact that we are thinking that Pn has a right G-action
while the Poincaré upper half plane H has a left G-action.

Lemma 1.1.1 (Properties of Convolution Operators). Throughout this list of
properties we assume that g is a right K D O.n/-invariantfunction on G D
GL.n;R/ which is infinitely differentiable with compact support (to be cautious)
i.e., g 2 C1

c .G=K/. We will ultimately need to generalize this, however. And g will
be convolved with integrable right K-invariant functions f :

(1) The operator Cg defined by (1.24) commutes with the action of c 2 GL.n;R/ on
functions f .a/; a 2 G, defined by

f c.a/ D f .ac/:

Thus we say that Cg is a G-invariant integral operator.
(2) If g.a/ D g.a�1/, for all a 2 G and if g is real-valued, then the convolution

operator Cg is a self-adjoint operator with respect to the usual inner product on
L2.Pn; d	n/. Here d	n is the G-invariant volume element defined by (1.16).

(3) Cg�hf D CgChf .
(4) The operators Cg commute for functions g which are K-bi-invariant (or radial in

the sense of polar coordinates (1.22)); i.e., g.kak0/ D g.a/; for all a 2 G, k; k0 2
K. Such functions g must be symmetric functions of the diagonal elements of
a 2 A. Thus considering g as a function of Y in Pn, we see that g.Y/ must be a
function of Tr.Yj/; for j D 1; 2; : : : ; n.

(5) Cg W L2.Pn; d	n/ ! C1.Pn/.
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Exercise 1.1.26. Prove Lemma 1.1.1 by imitating the proof of Lemma 3.7.2 in
Volume I. You may have to modify some of the arguments slightly since the action
of G on Pn is a right rather than a left action.

Selberg [543] and Maass [426] consider these convolution integral operators
from a slightly different point of view. Given an integrable kernel k.Y;W/ on
Pn � Pn; they define an invariant integral operator L to be given on integrable
functions f on Pn by:

Lf .Y/ D
Z

W2Pn

k.Y;W/ f .W/ d	n.W/; for Y;W 2 Pn;

provided that L.f a/ D .Lf /a for all a 2 G. Here for f W Pn ! C we define f a.Y/ D
f .YŒa�/, for all Y 2 Pn. Clearly L is an invariant operator if and only if the kernel k
has the following property for a 2 G:

k.YŒa�;WŒa�/ D k.Y;W/; for almost all Y;W 2 Pn: (1.25)

Kernels k W Pn � Pn ! C which satisfy (1.25) are called point-pair invariants by
Selberg and Maass. Note that for such k

k.Y;W/ D k.IŒa�; IŒb�/ D k.IŒab�1�; I/ + g.ab�1/; when a; b 2 G: (1.26)

Thus the invariant operator L is really a convolution operator. Moreover, the function
g in (1.26) must be K bi-invariant, since Y D IŒk1a� and W D IŒk2b� for k1; k2 2 K
implies that

g.ab�1/ D g.k1.ab�1/k�1
2 /:

1.1.5 Differential Operators on Pn

Given a Riemannian manifold, one always has a Laplacian (also known as the
Laplace-Beltrami operator) � defined using (1.8) once one knows the arc length
element. The goal of this chapter is the resolution of functions on Pn or Pn=GL.n;Z/
in eigenfunctions of this Laplacian. These are analogues of the main results of
Chapter 3 in Volume I. However, life is more complicated in Pn. There are G-
invariant differential operators which are not polynomials in the Laplacian. Here
a differential operator L on Pn is said to be invariant with respect to G D GL.n;R/
if L commutes with the action of G; i.e., if for a 2 G and f 2 C1.Pn/, defining

f a.Y/ D f .YŒa�/; when Y 2 Pn; (1.27)

then we have .Lf /a D .Lf a/. And we define
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D.Pn/ D the algebra of G-invariant differential operators on Pn: (1.28)

Proceeding as in Maass [426], we can find examples of invariant differential
operators on Pn using the total differential of f 2 C1.Pn/ defined by:

df D Tr
�
dY @

@Y f
� D

X

1�i�j�n

@f
@yij

dyij; writing

dY D .dyij/1�i;j�n and @
@Y D

�
1
2
.1C ıij/

@
@yij

�

1�i;j�n
:

9
>=

>;
(1.29)

Here ıij D 1 if i D j and 0 otherwise. It follows that if a 2 G D GL.n;R/ and
W D YŒa�, then

df D Tr

�
dW

@

@W

�
f D Tr

�
ta dY a

@

@W

�
f

D Tr

�
dY a

@

@W
ta

�
f D Tr

�
dY

@

@Y

�
f :

The transformation formula for the matrix differential operator in (1.29) is thus:

@

@W
D a�1 @

@Y
ta�1; if W D YŒa�; for Y 2 Pn and a 2 G: (1.30)

From this formula, one can easily prove the G-invariance of the differential
operators Lj defined by

Lj D Tr

 �
Y
@

@Y

�j
!

; j D 1; 2; 3; : : : : (1.31)

Exercise 1.1.27. Prove this last statement. Show also that L2 defined by (1.31) is
the Laplacian on Pn. You may want to postpone this last verification until we have
discussed what happens to these differential operators when we express them in
partial Iwasawa coordinates (see (1.33)).

Lemma 1.1.2. (1) A differential operator L in D.Pn/ is uniquely determined by its
action on K bi-invariant or radial functions f .Y/ D f .YŒk�/ for all Y 2 Pn and
k 2 K.

(2) D.Pn/ is a commutative algebra.

Proof. (1) Given g 2 C1.Pn/, we can construct a radial function g# as follows:

g#.Y/ D
Z

k2K

g.YŒk�/ dk;where dk D Haar measure on K; and
Z

k2K

dk D 1:
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Then, for L 2 D.Pn/, we have L.g#/ D .Lg/#, so that L.g#/.I/ D .Lg/.I/.
Suppose that L;M 2 D.Pn/ are identical on radial or K bi-invariant functions.
Then for any g 2 C1.Pn/ and any a in G, we have

Lg.a/ D .Lga/.I/ D .Mga/.I/ D Mg.a/:

Thus L D M.
(2) In this proof, which follows Selberg [543], let us use the point-pair invariant

kernel notation

f .ab�1/ D k.a; b/:

Then, if L 2 D.Pn/, write L1k when L acts on the first argument of k and L2k
when L acts on the second argument of k: Note that:

L1k.a; b/ D L.f b�1

/.a/ D .Lf /b
�1

.a/:

Now we want to make use of the geodesic-reversing isometry of Pn at I which is
given by �.Y/ D Y�1 (see Exercise 1.1.18). So we set

f � .a/ D f .a�1/ and k� .a; b/ D f � .ab�1/ D k.b; a/:

Define, for L 2 D.Pn/, the differential operator L� by:

L� f D Œ.L.f �
�1

/�� :

In Section 1.2, we will show that

L� D L� D the complex conjugate adjoint operator:

Next we need to prove the following fact.

Claim.

L1k.a; b/ D L�2 k.a; b/:

Proof of Claim. To believe this claim, we need to use the fact that Pn is indeed a
weakly symmetric space in the sense of Selberg; i.e., we need to know that for each
X;Y 2 Pn, there is a matrix g 2 G such that

XŒg� D Y�1 and YŒg� D X�1:

To see this, use the fact that there is a matrix h 2 G such that

XŒh� D I and YŒh� D D positive diagonal:
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If we replace g by hg th, the equations we seek to solve become:

XŒhg th� D Y�1 and YŒhg th� D X�1:

This means that we need to find g such that

IŒg� D .YŒh�/�1 D D�1;

and

DŒg� D .XŒh�/�1 D I:

The solution is thus g D D�1=2. Since D is a positive diagonal matrix, we can indeed
take its square root.

Now to prove the claim, note the following sequence of equalities:

L1k.X;Y/ D k0.X;Y/ D k0.Y�1Œg�1�;X�1Œg�1�/ D k0.Y�1;X�1/

D k0.Y; �X/jY!�Y D .LY/k.Y; �X/jY!�Y

D .LY/
�k.Y�1;X�1/ D .LY/

�k.X;Y/:

This completes the proof of the claim.

Thanks to the claim, we see that if L and M are both in D.Pn/, we can write

L1M1k D L1M
�
2 k D M�

2 L1k D M1L1k;

since differential operators acting on different arguments certainly commute. The
proof of (2) is thus accomplished. �

Theorem 1.1.2 (Structure of the Ring of G-invariant Differential Operators on
Pn). The differential operators

Lj D Tr

 �
Y
@

@Y

�j
!

; j D 1; 2; : : : ; n

form an algebraically independent basis for the ring D.Pn/ of GL.n;R/-invariant
differential operators on Pn. Thus D.Pn/ can be identified with CŒX1; : : : ;Xn� D the
ring of polynomials in n indeterminates. In particular, D.Pn/ is a commutative ring.

Proof (Of All but the Algebraic Independence of the Operators Lj). This is a result
of Selberg [543, pp. 49–51, 57]. We follow the discussion given by Maass [426,
pp. 64–67]. See also Jorgenson and Lang [334]. An invariant differential operator
L on Pn has the form L D L.Y; @=@Y/. We want to show that L is a polynomial
in Tr..Y@=@Y/j/; j D 1; 2; : : : ; n. The proof involves induction on the degree of
L.Y;X/ considered as a polynomial in the entries of the matrix X.
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The invariance of L implies that

L
�
Y Œa� ;X


ta�1�� D L.Y;X/; for all a 2 G:

So we may assume that Y D I and X is diagonal with diagonal entries
xj; j D 1; : : : ; n. If k 2 K, then L.I;X/ D L.I;XŒk�/. Thus L must be a symmetric
polynomial in x1; : : : ; xn, since we can take k to be any permutation matrix.

Then the fundamental theorem on symmetric polynomials says that L is a
polynomial in xj

1 C � � � C xj
n; j D 1; 2; : : : ; n. Going back to the old variables,

we find that there is a polynomial p with complex coefficients such that L.Y;X/ D
p.Tr.YX/;Tr..YX/2/; : : : ;Tr..YX/n//. Replacing X by @=@Y from formula (1.29),
we have

L.Y; @=@Y/ D p.L1; : : : ;Ln/C M; where Lj D Tr ..Y@=@Y/j/

and M 2 D.Pn/ has lower degree than L, for the homogeneous terms of highest
degree in two differential operators must commute. The induction hypothesis
completes the proof that the Lj; j D 1; 2; : : : ; n, do indeed generate D.Pn/.

See Maass [426, pp. 64–67], for the proof that the operators Lj; j D 1; 2; : : : ; n,
are algebraically independent. �

Theorem 1.1.2 is rather surprising since we have found a large number of
differential operators which behave like the Laplacian for the Riemannian structure
on Pn as in (1.8). One of them is the Laplacian, of course. But there are also
others, including a differential operator of degree one. This result can also be
generalized to arbitrary symmetric spaces (see Chapter 2 and Helgason [273,
p. 432]). The generalization requires results of Harish-Chandra on the algebra of
invariant differential operators for a semisimple Lie group as well as Chevalley’s
generalization of the fundamental theorem on symmetric polynomials. Chevalley’s
result can be found in Carter [97, Ch. 9].

The next exercise is useful in showing that the set of eigenfunctions for the
invariant differential operators in D.Pn/ is the same as that for the convolution
integral operators in formula (1.24).

Exercise 1.1.28. Suppose that g W Pn ! C is infinitely differentiable with compact
support. Identify it with a function on G D GL.n;R/ as in Lemma 1.1.1. Suppose
that L 2 D.Pn/. If g.a/ D g.a�1/ for all a 2 G, show that

LCg D CgL and LCg D CLg;

where Cg denotes the convolution integral operator defined by (1.24).
Hint. Recall Lemma 3.7.2 in Volume I.

Now consider what happens to the Laplace operator in the various coordinate
systems which have been introduced. We begin with partial Iwasawa coordinates:
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Y D
�

V 0

0 w

�	
I x
0 1



; V 2 Pn�1; w > 0; x 2 R

n�1: (1.32)

We know from Exercise 1.1.14 that

ds2Y D Tr
��

V�1dV
�2�C .w�1dw/2 C 2w�1VŒdx�

D ds2V C .w�1dw/2 C 2w�1VŒdx�:

So the Riemannian metric tensor GY for Pn is:

GY D .gij/ D
0

@
GV 0 0

0 2w�1V 0

0 0 w�2

1

A ;

where

jGY j D 2n�1jVj1�nw�n�1

and GV is the Riemannian metric tensor for V 2 Pn�1; G�1
V D .gijkl

V /. Thus, by
formula (1.8), we find that if V�1 D .vij/, then the Laplacian in partial Iwasawa
coordinates (1.32) is:

�Y D w.nC1/=2 @
@w w2w.�n�1/=2 @

@w C 1
2
w

n�1X

i;jD1
vij @2

@xi@xj
C LV ;

where LV D jVj.n�1/=2
n�1X

i;j;k;lD1
i�j; k�l

@
@vij

jVj.1�n/=2gijkl
V

@
@vkl
:

9
>>>>>>>>=

>>>>>>>>;

(1.33)

Note that LV is not the Laplacian �V on Pn�1, since:

�V D jVjn=2
n�1X

i;j;k;lD1
i�j; k�l

@

@vij
jVj�n=2gijkl

V

@

@vkl
:

However, we can rewrite (1.33) as:

�Y D
�

w
@

@w

�2
C1 � n

2
w
@

@w
C1

2
w

n�1X

i;jD1
vij @2

@xi@xj
C�V C1

2
Tr

�
V
@

@V

�
: (1.34)
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Exercise 1.1.29. Deduce formula (1.34) from formula (1.33).

Now let’s consider what happens to the differential operator Tr..Y@=@Y/2/ in the
partial Iwasawa decomposition (1.32). Let

Y D
�

F h
th g

�
and

@

@Y
D
�
@=@F 1

2
@=@h

1
2

t.@=@h/ @=@g

�
:

Then

F D V; g D w C VŒx�; h D Vx; dF D dV;
dg D dw C dVŒx�C tdxVx C txVdx; dh D dV � x C Vdx:

Substitute this into the total differential (1.29) to obtain

Tr

�
dY

@

@Y

�
D Tr

�
dF

@

@F

�
C dg

@

@g
C tdh

@

@h
;

and compare the result with

Tr

�
dY

@

@Y

�
D Tr

�
dV

@

@V

�
C dw

@

@w
C tdx

@

@x
:

This leads to the following formulas:

@

@V
D @

@F
C x

@

@g
tx C 1

2

�
x

� t@

@h

�
C t

�
x

� t@

@h

���
;

@

@w
D @

@g
;

@

@x
D 2Vx

@

@g
C V

@

@h
:

It follows that, setting � D x
�

t@
@x

�
,

@
@g D @

@w ;
@
@h D V�1 @

@x � 2x @
@w ;

@
@F D @

@V C x @
@w

tx � 1
2

˚
�V�1 C V�1 t�

�
:

The preceding calculation is a little tricky since @=@F must be symmetric. So you
must put in

1

2

�
�V�1 C V�1 t�

�
and not just �V�1 D x

� t@

@x

�
V�1:

In the term t .x t@=@x/, the order is to differentiate first, then multiply.
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Our calculation implies that, setting � D x
�

t@
@x

�
again, we have

Y
@

@Y
D
0

@
V @
@V � 1

2
t� 1

2
@
@x

txV @
@V � w @

@w
tx � 1

2
tx t�C 1

2
w
�

t@
@x

�
V�1 1

2
tx @
@x C w @

@w

1

A :

If we square this matrix operator and take the trace, we find via mathematical
induction that Tr..Y@=@Y/2/ has the same partial Iwasawa decomposition as that
of �Y which was given in (1.34). Therefore the two operators are indeed the same.

Next consider the Laplacian in polar coordinates (1.22). We saw in Exer-
cises 1.1.24 and 1.1.25 that if X D �tX D dk k�1; k 2 K, then

ds2Y D
nX

jD1

�
daj

aj

�2
C 2

X

1�i<j�n

.ai � aj/
2

aiaj
x2ij:

So the Riemannian metric tensor in (1.8) becomes:

G D

0

B
BB
BB
BB
B
BB
BB
BB
BB
@

a�2
1

: : :

a�2
n 0

2.a1 � a2/2=.a1a2/
: : :

2.a1 � an/
2=.a1an/

0
: : :

2.an�1 � an/
2=.an�1an/

1

C
CC
CC
CC
C
CC
CC
CC
CC
A

with

jGj D 2n.n�1/=2
nY

jD1
a�.nC1/

j

Y

1�i<j�n

.ai � aj/
2:

By formula (1.8), if a1 > a2 > � � � > an, then the Laplacian in polar coordinates
is:

� D
nY

jD1
a.nC1/=2

j

Y

1�i<j�n

.ai � a�1
j /

nX

kD1

@

@ak
a2k

nY

jD1
a�.nC1/=2

j

Y

1�i<j�n

.ai � aj/
@

@ak

C
X

1�i<j�n

aiaj

2.ai � aj/2
@2

@x2ij
:
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Clearly we can rewrite this as:

� D
nX

kD1

8
<̂

:̂
a2k
@2

@a2k
C

0

B
@

nX

jD1
j¤k

a2k
ak � aj

� n � 3
2

ak

1

C
A

@

@ak

9
>=

>;
C 1

2

X

1�i<j�n

aiaj

.ai � aj/2
@2

@x2ij
:

Therefore (cf. Muirhead [468, p. 242])

� D
nX

kD1
a2k
@2

@a2k
� n � 3

2

nX

kD1
ak

@

@ak
C 1

2

X

1�i<j�n

aiai

.ai � aj/2
@2

@x2ij

C
nX

kD1

0

B
@

nX

jD1
j¤k

a2k
ak � aj

1

C
A

@

@ak
: (1.35)

1.1.6 A List of the Main Formulas Derived in Section 1.1

Now we can finally summarize our results. This will be convenient for future
reference.

First the results of changing to partial Iwasawa coordinates are:

Y D
�

V 0

0 w

�	
I x
0 1



; for V 2 Pn�1; w > 0; and x 2 R

n�1;

ds2Y D Tr
��

Y�1dY
�2� D ds2V C .w�1dw/2 C 2w�1VŒdx�;

d	n.Y/ D jYj�.nC1/=2 Y

1�i�j�n

dyij D w.1�n/=2jVj1=2d	n�1.V/ dw
w dx;

�Y D Tr
�
.Y@=@Y/2

�

D �V C 1
2
Tr.V@=@V/C �

w @
@w

�2 � n�1
2

w @
@w C 1

2
w
�

t@
@x

�
V�1 @

@x :

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

(1.36)

For discussions of these formulas, see Exercises 1.1.14, 1.1.19, and 1.1.29.
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Then the results of changing to polar coordinates are:

Y D aŒk�; a 2 A; k 2 K;

ds2Y D
nX

jD1

�
a�1

j daj

�2 C 2
X

1�i<j�n

.ai�aj/
2

aiaj
x2ij; for X D dk k�1 D .xij/;

d	n.Y/ D cn

nY

jD1
a�.n�1/=2

j

Y

1�i<j�n

ˇ̌
ai � aj

ˇ̌
da dk;

da D
nY

jD1
daj

aj
;

Z

K

dk D 1; dk D Haar measure;

� D
nX

iD1
a2i

@2

@a2i
� n�3

2

nX

iD1
ai

@
@ai

C 1
2

X

1�i<j�n

aiaj

.ai�aj/2
@2

@x2ij
C

nX

kD1

0

@
nP

jD1
j¤k

a2k
ak�aj

1

A @
@ak
:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(1.37)
Here K D O.n/ and A is the multiplicative group of positive n�n diagonal matrices.
For discussions of these results, see Exercises 1.1.24 and 1.1.25 as well as the
discussion before formula (1.35). The positive constant cn will be determined in
Section 1.2.1, where we will show that it is given by (1.40) below.

Next we list a few integral formulas. For x 2 G D GL.n;R/, let dx denote a Haar
measure (as in Exercise 1.1.3). For k 2 K D O.n/, let dk be a Haar measure chosen
so that the volume of K is one.

Let N be the nilpotent group of upper triangular matrices n of the form:

n D

0

BBB
@

1 x12 � � � x1n

0 1 � � � x2n
:::

:::
: : :

:::

0 0 � � � 1

1

CCC
A
;

with Haar measure dn D Q
dxij; dxij D Lebesgue measure on R (see Exer-

cise 1.1.2). Let A D An be the positive diagonal group of matrices a of the form

a D

0

B
BB
@

a1 0 � � � 0

0 a2 � � � 0
:::

:::
: : :

:::

0 0 � � � an

1

C
CC
A
; aj > 0;

with Haar measure da D Q
dai=ai.
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Let Tn be the triangular group of matrices t of the form

t D

0

B
@

t11 � � � t1n
:::

: : :
:::

0 � � � tnn W

1

C
A ; tjj > 0;

with measure dt D Q
dtij; dtij D Lebesgue measure on R. Note that we can identify

both Tn and Pn with KnG; G D GL.n;R/; K D O.n/; pointwise. However Tn is a
group under matrix multiplication and Pn is not a group under matrix multiplication.

Let dW denote an SL.n;R/-invariant measure on SPn, the determinant one
surface in Pn defined in (1.3). If M denotes the diagonal matrices in K; set B D
K=M, the boundary of Pn, with K-invariant volume db. For b D kM in B and
g 2 G, define A.g.b// to be the A-part of gk in its KAN-Iwasawa decomposition
as in Exercise 1.1.20. Define

˛.a/ D
nY

iD1
an�2iC1

i ; for a 2 An; as aboveI

ˇ.t/ D
nY

iD1
t�i
ii ; for t 2 Tn; as aboveI

�.a/ D
nY

iD1
a�.n�1/=2

i

Y

1�i<j�n

jai � ajj; for a 2 An; as above:

9
>>>>>>>>>=

>>>>>>>>>;

(1.38)

Then we have the following integral formulas (using the notation in (1.38)):

Z

G

f .x/dx D
Z

A

Z

N

Z

K

f .ank/ dk dn da D
Z

K

Z

A

Z

N

f .kan/ ˛.a/ dn da dkI
Z

Pn

f .Y/ d	n.Y/ D 2n

Z

A

Z

N

f .IŒ.an/�1�/ dn da

D 2n

Z

A

Z

N

f .IŒan�/ ˛.a/ dn da D 2n

Z

Tn

f .IŒt�/ ˇ.t/ dtI
Z

Pn

f .Y/ d	n.Y/ D
Z

t>0

Z

W2SPn

f .t1=nW/ dW t�1 dtI
Z

B

h.b/ db D
Z

B

h.g.b// ˛�1.A.g.b// dbI
Z

Pn

f .Y/ d	n.Y/ D cn

Z

K

Z

A

f .aŒk�/ �.a/ da dk:

9
>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>;

(1.39)
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The formulas in (1.39) are proved in Exercises 1.1.20–1.1.24. The positive constant
cn in the last formula in (1.39) will be determined in Section 1.2.1, where we will
show that:

c�1
n D ��.n2Cn/=4

nY

jD1
j�.j=2/: (1.40)

Here � denotes the gamma function. Hopefully it will not be confused with � the
discrete subgroup of G:

Exercise 1.1.30. Show that right and left Haar measures are different for the
multiplicative group Tn D AN of upper triangular n � n matrices with positive
diagonal entries. The group Tn is called a “solvable” Lie group.

Exercise 1.1.31. Is the Laplacian � a negative operator on the square integrable
functions f 2 L2.Pn/ such that �f 2 L2.SPn/?

Exercise 1.1.32 (Grenier [241]). When Y lies in the determinant one surface
SPnC1, write:

Y D
�
v 0

0 v�1=nW

�	
1 tx
0 In



; v > 0; X 2 R

n; W 2 SPn:

Show that if ds2 is the arc length Tr..Y�1dY/2/ on the determinant one surface,
d	nC1 is the G-invariant volume, and�nC1 is the corresponding Laplacian, we have
the following expressions relating these quantities for rank n C 1 and those for the
rank n case:

ds2Y D nC1
n v�2dv2 C 2v.nC1/=n W�1Œdx�C ds2W ;

d	nC1.Y/ D v.n�1/=2 dv dx d	n.W/;

�nC1 D n
nC1

˚
v2 @

@v2
C nC3

2
v @
@v

�C 1
2
v�.nC1/=n W


@
@x

�C�n:

1.1.7 An Application to Multivariate Statistics

References for this application are Anderson [8], Morrison [464], and Muirhead
[468].

A random variable X in R
n is normal with mean 	 2 R

n and covariance † in
Pn, which is written N.	;†/ if it has the probability density:

.2�/�n=2j†j�1=2 exp

�
�1
2
†�1Œx � 	�

�
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(see Anderson [8, p. 17]). It follows that if X is a normal random variable in R
n

distributed according to N.	;†/ and if A 2 R
m�n, with m � n, then Y D AX is

normal and distributed according to N.A	;†ŒtA�/.
Notions of partial and multiple correlation are quite important in the analysis of

data. We can use the Iwasawa decomposition to aid in this analysis. Such results
go back to Pearson and Yule in the late 1890s (see Anderson [8, pp. 27–28]). If
we partition the random variable tX D . tX1; tX2/, mean t	 D . t	1;

t	2/, and
covariance

† D
0

@

P
11

P
12

t
P

12

P
22

1

A ;

with X1 2 R
p; X2 2 R

q; n D p C q; †11 2 Pp; then (using the result at the
end of the last paragraph) we can see that Xi is normal and distributed according
to N.	i; †ii/, for i D 1; 2. The conditional distribution of X1 holding X2 D x2
constant is normally distributed according to N.	1 C H.x2 � 	2/; V/, where H
and V are defined by the Iwasawa decomposition:

† D
�

V 0

0 W

�	
I 0
tH I



; for V 2 Pp; W 2 Pq; n D p C q:

To see this, note that the conditional distribution of X1 holding X2 D x2 constant is:

g.x1jx2/ D .2�/�n=2j†j�1=2 exp
˚� 1

2
†�1Œx � 	��

.2�/�q=2jWj�1=2 exp
˚� 1

2
W�1Œx2 � 	2�

� :

But we know that

†�1Œx� D V�1Œx1 � Hx2�C W�1Œx2�:

Therefore

g.x1jx2/ D .2�/�p=2jVj�1=2 exp

�
�1
2

V�1 Œx1 � 	1 � H.x2 � 	2/�
�
:

Note that V D †11 � †�1
22 Œ

t†12� and H D †12†
�1
22 . The matrix H is called the

matrix of regression coefficients of X1 on x2. The entries of V are called the partial
covariances. The partial correlation between the ith entry of X1 and the jth entry
of X1, holding X2 D x2 fixed is:

ij D vijp
viivjj

:
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A fundamental problem in statistics is the estimation of the mean and the
covariance, after making N sample observations of the random variable X. Suppose
X is distributed according to N.	;†/ and we have N observations x1; : : : ; xN ; N >

n. The likelihood function is

L D .2�/�nN=2j†j�N=2 exp

(

�1
2

NX

iD1
†�1Œxi � 	�

)

:

Maximizing L over †; 	 gives the maximum likelihood estimates for †; 	 and
which are:

b	 D x D 1

N

NX

kD1
xk; b† D 1

N

NX

kD1
IŒt.xi � x/�

(see Anderson [8, pp. 44–48]). Correlation coefficients can be estimated from b†.
Now we want to consider an example discussed in 1907 by Hooker (see Anderson

[8, p. 82]). Suppose that X1 represents hay yield in hundredweights per acre, X2
represents spring rainfall in inches, X3 represents accumulated spring temperature
over 42 ıF, for a certain English region, measured over a period of 20 years. One
looks at the data and uses maximum likelihood estimates for the mean, covariance,
and correlation coefficients. The result of these calculations is:

b	 D x D
0

@
28:02

4:91

594:00

1

A ;

0

@
b�1
b�2
b�3

1

A D
0

@
4:42

1:10

85:00

1

A ; b�2i D b� ii; bij D b� ij
ı
.b� ib� j/ ;

0

@
1 b12 b13
b21 1 O23
b31 b32 1

1

A D
0

@
1:00 0:80 �0:40
0:80 1:00 �0:56

�0:40 �0:56 1:00

1

A :

We can then ask: Is high temperature correlated with low yield or is high
temperature correlated with low rainfall and thus with low yield? To answer this
question, one estimates the partial correlation between X1 and X3 while holding
X2 D constant. The Iwasawa decomposition method discussed above then leads to
the result that this correlation is:

b�1b�3.b13 �b12b23/q
b�21.1 �b212/b�23.1 �b223/

D 0:0967:

Thus, if the effect of the rainfall is removed, yield and temperature are positively
correlated. So both high temperature and high rainfall increase yield, but usually
high rainfall occurs with low temperature.
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Exercise 1.1.33. Imitate the preceding example with X1=yearly global mean tem-
perature deviation from average in Co; X2=yearly carbon dioxide emissions,
X3=number of your choice chosen from world population, sunspot numbers, number
of species going extinct, sea level, area of glaciers, . . . ..—measured each year from
1961 to 2015. Then compute partial correlations between the various Xi and Xj:

Write an essay on climate change.

1.2 Special Functions on Pn

Attempts have been made to generalize hypergeometric functions to the case of several
variables, based on the construction of a many-dimensional analogue to the hypergeometric
series [P. Appell & J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques,
Polynomes d’Hermite, Gauthier-Villars, Paris, 1926]. However, this approach leads to
functions which, in the opinion of the author, do not sufficiently fully reflect the multi-
dimensionality of the domain. The present article is concerned with another approach to
the theory of special functions for several variables. Special functions of a single variable
can be expressed, as we know, in terms of elementary functions, viz., the power and
exponential functions, by use of simple integral representations. It is precisely these integral
representations that are taken as the pattern for the definition of the many-dimensional
analogues of special functions.

From Gindikin [218, p. 1].

1.2.1 Power and Gamma Functions

This section concerns the matrix argument analogues of functions we encountered
in Volume I—gamma, K-Bessel, and spherical functions. The approach is similar
to that of Gindikin [218] quoted above—an approach that emphasizes integral
representations for the functions. The main references for this section are Bengtson
[42], Bump [83], Gindikin [218], Helgason [273–282], James [328–330], Maass
[426], Muirhead [468], and Selberg [543]. See also Goldfeld [230], Gurarie [254],
Hua [308], Vilenkin [635], and Wawrzyńczyk [657]. Of course, our chief concern
will always be eigenfunctions of the ring D.Pn/ of invariant differential operators
whose structure was given in Theorem 1.1.2 of the preceding section.

A newer reference is the article of Richards on matrix argument special functions
in the NIST Digital Library of Mathematical Functions (http://dlmf.nist.gov/). See
F.W. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark [481]. This replaces the old
book by Milton Abramowitz and Irene Stegun [1]—a book so important to me when
I first obtained a programmable calculator in 1973 or so that I needed 2 copies, one at
home and one at UCSD. In those days my calculator (or even the UCSD computer
I soon managed to use) did not know how to compute a K-Bessel function of 1
variable unless I could convince someone (namely, my ex) to write a program for it.

http://dlmf.nist.gov/
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The most basic special function on Pn is a generalization of the power function
ys; y 2 P1 D R

C; s 2 C, appearing in the Mellin transform of Vol. I, Section 1.4.
The power function ps.Y/, for Y 2 Pn, and s D .s1; : : : ; sn/ 2 C

n, is defined by:

ps.Y/ D
nY

jD1
jYjjsj ; (1.41)

where Yj 2 Pj is the j � j upper left-hand corner in Y; j D 1; 2; : : : ; n. Note that
when n D 2 and Y 2 SP2, the power function can be identified with the function
on the upper half plane defined by ps.x C iy/ D ys for y > 0 (see Exercise 3.1.9 of
Volume I).

The power function (1.41) was introduced by Selberg [543, pp. 57–58]. Tam-
agawa [588, p. 369] calls it a right spherical function. In the language of Harish-
Chandra and Helgason [275, p. 52], the power function is:

expŒ�.H.gk//�; for g 2 G; k 2 K;

where H.x/ D log A.x/, if x D K.x/A.x/N.x/ is the Iwasawa decomposition of
x 2 G (see Exercise 1.1.20 of Section 1.1.4). So H maps the group A of positive
diagonal matrices into arbitrary diagonal matrices; i.e., into R

n. Now � is a linear
functional on R

n, which can be identified with an n-tuple of complex numbers.
Thus the composition of exp; �, and the H-function does indeed become a power
function.

It is also possible to view the power function ps.Y/ as a homomorphism of the
triangular group Tn of upper triangular matrices with positive diagonal entries:

t D

0

BBB
@

t11 t12 � � � t1n

0 t22 � � � t2n
:::

:::
: : :

:::

0 0 � � � tnn

1

CCC
A
; tjj > 0: (1.42)

If r D .r1; : : : ; rn/ 2 C
n and t 2 Tn, define the homomorphism � r W Tn ! C � 0

by:

� r.t/ D
nY

jD1
t
rj

jj : (1.43)

Clearly � r.t1t2/ D � r.t1/� r.t2/. So you can think of � r as a homomorphism or,
more significantly, as a degree one representation of the triangular group Tn. The
following proposition relates (1.41) and (1.43).
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Proposition 1.2.1 (Properties of the Power Function).

(1) Relation of ps and �r:

Suppose that Y D IŒt� for t 2 Tn as in (1.42). Then the power function
from (1.41) and the group homomorphism (1.43) are related by

ps.Y/ D � r.t/; if rj D 2.sj C � � � C sn/

and upon setting rnC1 D 0, we have

sj D .rj � rjC1/=2:

(2) Action of Tn on ps.
If Y 2 Pn and t 2 Tn, then ps.YŒt�/ D ps.Y/ps.IŒt�/.

(3) Power Functions Are Eigenfunctions of Invariant Differential Operators.
If L 2 D.Pn/, then Lps D �L.s/ps; i.e., ps is an eigenfunction of L with

eigenvalue �L.s/ D Lps.I/.
(4) A Symmetry.

Set s D .s1; : : : ; sn/; s� D .sn�1; : : : ; s2; s1;�.s1 C � � � C sn//, and

! D

0

BBBBB
@

0 1

�
�

�
1 0

1

CCCCC
A
:

Then ps.Y�1Œ!�/ D ps�.Y/, for all Y 2 Pn. Also !2 D I and s�� D s.

Proof. (1) Note that jYjj D t21 � � � t2j . The result follows easily.
(2) This follows from part (1) and the fact that � r is a homomorphism.
(3) Set W D YŒt� for Y 2 Pn; t 2 Tn. Then if L 2 D.Pn/, write LW for L acting

on the W-variable. We have the following equalities, if we make use of the
G-invariance of L as well as part (2):

LW ps.W/ D LY ps.YŒt�/ D ps.IŒt�/LY ps.Y/:

Then set Y D I to obtain W D IŒt� and Lps D �L.s/ps, with the eigenvalue
stated in the proposition.

(4) See Exercise 1.2.1 below. �

Note. The formula for the eigenvalue of the invariant differential operator L acting
on the power function ps is not a very useful one. In the case of the Poincaré upper
half plane we had�ys D s.s�1/ys and it was clear that we could find powers s 2 C

to match any eigenvalue � D s.s �1/, using high school algebra. To generalize this,
we need a better formula for the eigenvalues �L.s/ than that in part (3). We will do
better soon, with a fair amount of work, which was done for us by Maass [426].
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Exercise 1.2.1. Show that if t 2 Tn and ! is as defined in part (4) of the preceding
proposition, then

tŒ!� D

0

BBBB
B
@

tnn 0 � � � 0 0

	 tn�1;n�1 � � � 0 0
:::
:::

: : :
:::
:::

	 	 � � � t22 0
	 	 � � � 	 t11

1

CCCC
C
A
:

Use this result to prove part (4) of the preceding proposition.

The power function is the appropriate kernel for the Pn analogue of the Mellin
transform which we will call the Helgason–Fourier transform. We will see in
Section 1.3 that the Helgason–Fourier transform does indeed have many of the
properties of the usual Fourier and Mellin transforms. For example, the Pn Fourier
transform does have an inversion formula (if one also includes a variable from
K D O.n/ or the boundary K=M). It is also possible to consider an analogue of the
Laplace transform on Pn, a transform with a more elementary inversion formula,
whose proof requires only ordinary Euclidean Fourier transforms and Cauchy’s
theorem in one variable as is seen in the next exercise.

Exercise 1.2.2 (The Laplace Transform). Define the Laplace transform of f W
Pn ! C at the symmetric matrix Z 2 C

n�n by:

Lf .Z/ D
Z

Y2Pn

f .Y/ expŒ�Tr.YZ/� dY; where dY D
Y

1�i�j�n

dyij:

For sufficiently nice functions f , the integral above converges in a right half plane,
Re Z > X0, meaning that ReZ � X0 2 Pn. Show that the inversion formula for this
transform is:

.2� i/�n.nC1/=2
Z

Re ZDX0

Lf .Z/ expŒTr.YZ/�dZ D
�

f .Y/; for Y 2 Pn;

0; otherwise:

Here dZ D Q
dzij. And the integral is over symmetric matrices Z with fixed real

part (in the domain of absolute convergence).
Hints. This result is discussed by Bochner [55, pp. 686–702], Bochner and Martin
[56, pp. 90–92, 113–132], Herz [293, pp. 479–480], and Muirhead [468, p. 252].
You can use inversion of the Euclidean Fourier transform on the space of symmetric
n � n real matrices and imitate the proof that worked for n D 1 (see Exercise 1.2.18
of Vol. I).
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The most basic example of a Helgason–Fourier transform (or of a matrix Laplace
transform) on Pn is the gamma function for Pn defined by:

�n.s/ D
Z

Y2Pn

ps.Y/ expŒ�Tr.Y/� d	n.Y/; (1.44)

for s 2 C
n with Re sj sufficiently large; that is,

Re.sj C � � � C sn/ > .j � 1/=2; j D 1; : : : ; n:

In fact, we can use the Iwasawa decomposition to write �n.s/ as a product of
ordinary gamma functions �1 D �:

�n.s/ D �n.n�1/=4
nY

jD1
�

�
sj C � � � C sn � j � 1

2

�
: (1.45)

Exercise 1.2.3. Prove formula (1.45) by making the change of variables Y D IŒt�;
for t 2 Tn defined by (1.42), using formulas (1.38) and (1.39) from Section 1.1.6 to
get

�n.s/ D 2n
Z

Tn

expf�Tr.IŒt�/g � r.t/
nY

jD1
t�j
jj

Y

1�i�j�n

dtij:

Exercise 1.2.4. Show that
Z

Y2Pn

ps.Y/ exp
˚�Tr

�
YX�1�� d	n.Y/ D ps.X/�n.s/:

Exercise 1.2.4 will be useful in the study of the algebra D.Pn/ of invariant
differential operators on Pn—a study which was begun in § 1.1.5. It will also
be necessary when we consider analogues of Hecke’s correspondence between
modular forms and Dirichlet series in later sections of this chapter and the next.

A special case of the product formula (1.45) for �n was found in 1928 by the
statistician Wishart [670]. A more general result is due to Ingham [320]. Later Siegel
needed this special case of (1.45) in his work on quadratic forms (see [565, Vol. I,
pp. 326–405]). Such gamma functions for Pn and more general domains of positivity
are considered by Gindikin [218]. More general integrals of this type appear in
quantum statistical mechanics (see the first edition of the random matrix book of
Mehta [441, p. 40]) where a conjecture is given for the value of

Z

Rn
expf�ktxxg

Y

i<j

jxi � xjjs dx: (1.46)



48 1 The Space Pn of Positive n � n Matrices

Selberg had already proved the conjecture 23 years earlier in [542]—a paper in
Norwegian. Macdonald and Dyson have generalized the conjecture to arbitrary
groups. See also Greg Anderson, Alice Guionnet, and Ofer Zeitouni [7]. Regev
[502] has used a result of Bechner to prove Macdonald’s conjecture for the main
types of simple Lie groups. See Macdonald [427]. There is a special case of
Selberg’s formula in Exercise 1.2.5. We state the general formula in our discussion
of quantum chaos in Section 1.3.5.

Next we compute the constant in the integral formula for polar coordinates (see
formulas (1.37), (1.39), and (1.40)) from Section 1.1.6).

Proposition 1.2.2 (Volume of O.n/). Let dk k�1 D .dhij.k//1�i<j�n and set
dh.k/ D Q

1�i<j�n dhij.k/. Then

Vol.O.n// D
Z

k2KDO.n/

dh.k/ D 2n�n2=2

�n
�
0; : : : ; 0; n

2

� :

Proof (From Muirhead [468, pp. 63–71]). First note that

Z

X2Rn�n

expŒ�Tr.X tX/� dX D �n2=2:

Now change variables via X D kt, for k 2 K D O.n/ and t � Tn (the upper
triangular matrices with positive diagonal entries). This is possible by the Gram-
Schmidt orthogonalization process. Then

k�1dX D dt C .k�1dk/t;

and one finds the Jacobian of this change of variables to be:

nY

iD1
tn�i
ii :

If we use the formula for changing variables from Y 2 Pn to t 2 Tn via Y D IŒt�
in Exercise 1.2.3, then we obtain

�n2=2 D Vol.K/
Z

Tn

expŒ�Tr.IŒt�/�
nY

iD1
tn�i
ii dt D Vol.K/2�n�n

�
0; : : : ; 0;

n

2

�
:

This completes the proof. �

Note that the measure dh.k/ in Proposition 1.2.2 is an unnormalized Haar
measure for K. However, in the integral formula for polar coordinates (last line
of (1.39) and (1.40)) of Section 1.1.6), we normalized the Haar measure on K to
obtain:
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Z

k2K
dk D 1:

Now we can compute the constant in this integral formula.

Proposition 1.2.3 (The Constant in the Integral Formula for Polar Coordi-
nates). Let dk denote Haar measure on K D O.n/, normalized so that

R
k2K dk D 1,

and let

�.a/ D
nY

iD1
a�.n�1/=2

i

Y

1�i<j�n

jai � ajj; if a D

0

B
@

a1 � � � 0
:::
: : :
:::

0 � � � an

1

C
A 2 A;

with ai > 0 and da D Qn
iD1 dai=ai. Then the integral formula for polar coordinates,

given in the last line of (1.39) and (1.40) of Section 1.1.6, is:

Z

Y2Pn

f .Y/d	n.Y/ D cn

Z

a2A

Z

k2K

f .aŒk�/�.a/da dk;

with constant cn given by

c�1
n D ��n2=2nŠ �n

�
0; : : : ; 0;

n

2

�
D ��.n2Cn/=4

nY

jD1
j �.j=2/:

Proof. It suffices to prove the result for K bi-invariant functions f ; i.e., f .a/ D
f .aŒk�/; for a 2 A and k 2 K. Then, from Exercise 1.1.24 of § 1.1.4, we have

Z

Y2Pn

f .Y/d	n.Y/ D Vol.K/

2n nŠ

Z

a2A

f .a/�.a/da;

where the volume of K is computed as in Proposition 1.2.2. So the formula for this
volume which is given in Proposition 1.2.2 completes the proof of Proposition 1.2.3.

�

Exercise 1.2.5 (Evaluation of a Special Case of Selberg’s Integral). Set

D.a/ D
Y

1�i<j�n

jai � ajj; for a 2 A D positive diagonal matrices:
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Then a limiting case of Selberg’s integral [542] is:

S.p; z/ D
Z

a2A

jajpD.a/2z expŒ�Tr.a/� da

D
nY

kD1
�.1C kz/�.p C .k � 1/z/=�.1C z/:

Check that the formula (1.45) for �n.s/ and Proposition 1.2.3 give Selberg’s result in
the case z D 1

2
. Selberg [542] gives evaluations of integrals which appear in random

matrix theory (see Mehta [441] and Section 1.3.5).

Now we want to return to our study of D.Pn/, the G-invariant differential
operators on Pn (see Section 1.1.5). First we need a few definitions. We define the
adjoint L� of a differential operator L in D.Pn/ by the following formula, assuming
that f ; g are such that the integrals converge:

Z

Y2Pn

.Lf /.Y/g.Y/ d	n.Y/ D
Z

Y2Pn

f .Y/.L�g/.Y/ d	n.Y/: (1.47)

The geodesic-reversing isometry � of Pn at the identity is �.Y/ D Y�1 and we
can define L� for L 2 D.Pn/ by:

L� f D L.f ı ��1/ ı �; where “ ı00 denotes composition of functions: (1.48)

In Theorem 1.2.1 we will show that L� D L
�
. In order to do this, we will need

a result about the eigenvalues of the invariant differential operators acting on power
functions. To put this result in its best form, we need the proper normalization of
variables in the power function (Selberg [543, p. 57]) defined on the triangular
group Tn by:

'r.t/ D
nY

iD1
t2riCi�.nC1/=2
ii ; for t 2 Tn; r 2 C

n: (1.49)

Exercise 1.2.6. Find s D s.r/ such that ps.IŒt�/ D 'r.t/.

Selberg [543, p. 58] states the following theorem.

Theorem 1.2.1 (Normalized Power Functions and Invariant Differential
Operators).

(1) If Lj D Tr..Y@=@Y/j/; for j D 1; 2; : : : ; n, as in Theorem 1.1.2 of Section 1.1.5,
and 'r is the normalized power function from formula (1.49), then

Li'r D �i.r/'r
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and �i.r/ is a symmetric polynomial in rj of degree i and having the form:

�i.r1; : : : ; rn/ D ri
1 C � � � C ri

n C terms of lower degree:

(2) The effect of L 2 D.Pn/ on power functions ps.Y/ determines L uniquely.
(3) For L 2 D.Pn/, using the notation (1.47) and (1.48), we have

L� D L
�
;

with denoting complex conjugation.

Proof (Maass [426, pp. 70–76]).

(1) We shall use induction on n. Recall that we showed in Section 1.1.5 that if
Y 2 Pn has partial Iwasawa decomposition

Y D
�

V 0

0 w

�	
I x
0 1



; for V 2 Pn�1; w > 0; x 2 R

n�1; (1.50)

then, setting � D x
t@
@x ;

Y
@

@Y
D
 

V @
@V � 1

2
t� 1

2
@
@x

txV @
@V � w @

@w
tx � 1

2
tx t�C 1

2
w

t@
@x V�1 1

2
tx @
@x C w @

@w

!

: (1.51)

If L1 and L2 are matrix differential operators, we will write L1 � L2 if they agree
on functions on Pn which are independent of the x-variable in (1.50).

It can be proved inductively that if

Ah D
�

V
@

@V
C 1

2
I

�h

� 1

2

h�1X

jD0

�
V
@

@V
C 1

2
I

�j �
w
@

@w

�h�1�j

; (1.52)

then

�
Y
@

@Y

�h

�
 

Ah 0
txAh � �

w @
@w

�h tx
�
w @
@w

�h

!

: (1.53)

Exercise 1.2.7. Prove formula (1.53), using (1.52) to define Ah and induction.
Hint. Note that if c is a real variable which does not depend on x, but may depend
on the other variables, then

@

@x

�
c tx

� D cI;

where I denotes the .n � 1/ � .n � 1/ identity matrix.
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It follows from (1.53) that

Tr
��

Y @
@Y

�h
�

� Tr
��

V @
@V C 1

2
I
�h
�

C �
w @
@w

�h

� 1
2

h�1X

jD0
Tr
��

V @
@V C 1

2
I
�j
� �

w @
@w

�h�1�j
:

(1.54)

This formula is peculiarly unsymmetrical.
Next, set up the notation, Y D IŒt�, for t 2 Tn,

V D

0

B
@

t211 0
: : :

0 t2n�1;n�1

1

C
A

2

6
4

1 	
: : :

0 1

3

7
5 ; w D t2nn;

'r.Y/ D
nY

jD1
t
2rjCj�.nC1/=2
jj ; 'a.V/ D

n�1Y

jD1
t
2ajCj�n=2
jj ;

r D .a; b/; a 2 C
n�1; b 2 C:

Then

'r.Y/ D jVj�1=4wbC.n�1/=4'a.V/: (1.55)

Now we need the following exercise.

Exercise 1.2.8. Show that

Tr

 �
V
@

@V

�h
!

jVjm D jVjm Tr .mhI/;

where I denotes the .n � 1/ � .n � 1/ identity matrix.
Hint. Use expansion of jVj by minors to find @jVj=@vij is the i; j cofactor of V ,
that is,

Nij D .�1/iCjjMijj;

where Mij is the matrix obtained from V by crossing out the ith row and the jth
column of V . Then

jVj D
nX

iD1
vijjNijj

and V�1 D jVj�1 t.Nij/. Note that we need 1
2

in the off-diagonal entries of @=@V in
order to make this exercise work for symmetric matrices.
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Putting together formulas (1.54), (1.55) and Exercise 1.2.8, we see that

jVj 14 w
1�n
4 Tr

��
Y @
@Y

�h
�
'r.Y/ D

(

Tr
��

V @
@V C 1

4
I
�h
�

C �
w @
@w C n�1

4

�h

� 1
2

h�1X

jD0
Tr
��

V @
@V C 1

4
I
�j
� �

w @
@w C n�1

4

�h�1�j

)

'a.V/w
b: (1.56)

Now the eigenvalue of interest is:

�h.r/ D
"

Tr

 �
Y
@

@Y

�h
!

'r.Y/

#

YDI

: (1.57)

Exercise 1.2.9. Check that when n D 2 the eigenvalue defined by formula (1.57),
with Y 2 P2, is a symmetric polynomial in r1 and r2 having highest degree term

rh
1 C rh

2; h D 1; 2; 3; : : : :

The complete polynomial is:

�
r1 C 1

4

�h

C
�

r2 C 1

4

�h

� 1

2

h�1X

jD0

�
r1 C 1

4

�j �
r2 C 1

4

�h�1�j

:

Now suppose n � 3 and proceed by induction, assuming that

Tr

 �
V
@

@V
C 1

4
I

�h
!

'a.V/ D �h.a/'a.V/; where a1 D r1; : : : ; an�1 D rn�1

and �h.a/ is a symmetric polynomial in a with highest degree term

rh
1 C � � � C rh

n�1:

Clearly

�
w
@

@w
C n � 1

4

�h

wb D �h.b/w
b; b D rn; �h.b/ D

�
b C n � 1

4

�h

:

Then, by formula (1.56), �h.r/ is invariant under permutations of r1; : : : ; rn�1 and
�h.r/ has highest degree term rh

1 C � � � C rh
n�1 C rh

n, for
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�h.r/ D �h.a/C �h.b/ � 1

2

h�1X

jD0
� j.a/�h�1�j.b/:

In order to see that �h is symmetric in the last variable too, we have to note that you
could also do this expansion with

Y D
�
v 0

0 W

�	
1 tx
0 I



; v > 0; W 2 Pn�1; x 2 R

n�1:

Then you would find �h.r/ to be symmetric in r2; : : : ; rn, by the induction
assumption. In fact, you can make the same argument with an arbitrary partial
Iwasawa decomposition as in Exercise 1.2.11 below. This completes the proof of
part (1), since we have checked the case n D 2, by Exercise 1.2.9.
(2) Suppose L D p.L1; : : : ;Ln/, where p is a polynomial in n indeterminates.
and Lj D Tr..Y@=@Yj/, for j D 1; 2; : : : ; n. Then L'r D 0 implies that
p.�1.r/; : : : ; �n.r// vanishes for all r 2 C

n. But then p must vanish identically,
since the eigenvalues �j.r/ form a basis for the symmetric polynomials in r1; : : : ; rn

by part (1). Thus the mapping from C
n to C

n which takes r to .�1.r/; : : : ; �n.r// is
onto.

Exercise 1.2.10. Suppose that �1.r/; : : : ; �n.r/ form a basis for all the symmetric
polynomials in r1; : : : ; rn.

(a) Prove that the mapping from C
n to C

n taking r to .�1.r/; : : : ; �n.r// is onto.
(b) Prove that �j.r/ D �j.r0/ for all j D 1; : : : ; n, implies that r0 D .r�.1/; : : : ; r�.n//

for some permutation � of n elements.

Hint. Let uj.r/ D the jth elementary symmetric polynomial. Then

nX

jD0
uj.s/x

j D
nY

jD1
.x � sj/; for s 2 C

n:

(3) First, note that k.X;Y/ D exp.�Tr.YX�1// is a point-pair invariant leading to a
convolution operator as in § 1.1.4. If L 2 D.Pn/, write LXk.X;Y/ when L acts on
the X-variable and LYk.X;Y/ when L acts on the Y-variable. Just as in the proof of
part 2 of Lemma 1.1.2 in § 1.1.5, we use the fact that

L�Xk.X;Y/ D LYk.X;Y/:

This fact implies the second in the following sequence of equalities which stem
from Exercise 1.2.4:

.L�ps/.X/�n.s/ D
Z

Y2Pn

˚
L�X exp.�Tr.YX�1//

�
ps.Y/ d	n.Y/



1.2 Special Functions on Pn 55

D
Z

Y2Pn

fLY exp.�Tr.YX�1//gps.Y/ d	n.Y/

D
Z

Y2Pn

exp.�Tr.YX�1//.L�
ps.Y// d	n.Y/

D .L
�
ps/.X/�n.s/:

Here we use the fact that the adjoint operator is also G-invariant. This completes the
proof of Theorem 1.2.1. �

Exercise 1.2.11. Run through the preceding proof for a general Iwasawa decompo-
sition

Y D
�

V 0

0 W

�	
I X
0 I



; for V 2 Pr; W 2 Pn�r; X 2 R

r�.n�r/:

Hint. (See Maass [426, pp. 70–76].)

Our study of the gamma function for Pn is now at an end. It will find
applications in statistics at the end of the section. And these �-functions will also
appear in functional equations of L-functions and Eisenstein series for GL.n;Z/ in
Section 1.3.

One can also study matrix incomplete gamma functions. We saw an example of
these incomplete gamma functions in Exercise 3.6.5 in Volume I when we obtained
the analytic continuation of L-functions corresponding to Maass wave forms. These
incomplete gamma functions appear in the analytic continuation of Dedekind zeta
functions of number fields as well as in the analytic continuation of Eisenstein series
for GL.n;Z/ (see Section 1.4 of Volume I and Section 1.5 which follows). More
information on incomplete gamma functions can be found in Terras [602]. Matrix
beta functions will arise in Section 1.3 as part of the computation of the Plancherel
or spectral measure for inversion of the Helgason–Fourier transform on Pn. See also
Gindikin [218].

Exercise 1.2.12. (a) Consider the power function given by formula (1.49) and the
operator

Lj D Tr..Y@=@Y/j/; for Y 2 Pn:

If Lj'r.Y/ D �n
j .r/'r.Y/, show that the eigenvalue of L1 is �n

1.r/ D r1C� � �Crn

and the eigenvalue of �Y D L2 is �n
2.r/ D r21 C � � � C r2n C .n � n3/=48.

(b) Then show that if instead we consider the Laplacian on the determinant one
surface SP3 as in Exercise 1.1.32 of Section 1.1.6, we find that

�ps.Y/ D
�
2

3
.s21 C s1s2 C s22/C s1 C s2

�
ps.Y/:
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Hint. (a) You can use formulas (1.55) and (1.56) or you can use formula (1.34) of
Section 1.1.5 to see that

�Y � .w@=@w/2 C ..1 � n/=2/w@=@w C�V C 1

2
Tr.V@=@V/:

Now formula (1.55) implies that:

�n
2.r/ D Œ�Y jVj�1=4'a.V/w

bC.n�1/=4�YDI

D �
b C n�1

4

�2 C 1�n
2

�
b C n�1

4

�C �n�1
2

�
r1 � 1

4
; � � � ; rn�1 � 1

4

�

C 1
2
�n�1
1

�
r1 � 1

4
; � � � ; rn�1 � 1

4

�
:

1.2.2 K-Bessel Functions

K-Bessel functions for Pn have been discussed by various authors with vastly
different points of view. We will attempt to say a little more about some of the other
developments at the end of this section. The closest references to our treatment
are: Herz [293], Bengtson [42], Bump [83], Kaori Imai (Ota) and Terras [318],
Maass [426, Ch. 18], and Terras [605–607]. Bessel functions analogous to the
classical J-Bessel function are to be found in Bochner [55], Godement’s article
in Séminaire Cartan [547, exposé 9], Gelbart [207], and Gross et al. [246]. The
classical Whittaker functions are confluent hypergeometric functions generalizing
K-Bessel functions (see Lebedev [398]). Whittaker functions and Whittaker models
for representations of real, complex, p-adic and adelic groups are discussed by
Bump [83], Goldfeld [230], Hashizume [265], Jacquet [323], Piatetski-Shapiro in
Borel and Casselman [66, Vol. I, pp. 209–212], Schiffman [534], Shalika [552],
and Shintani [560]. Related references are Goodman [234], Goodman and Wallach
[235], and Kostant [367]. Hypergeometric functions of matrix argument are also
considered by Gindikin [218], Gross and Richards [248], Herz [293], James [328–
330], Maass [426, Chapter 18], Muirhead [468], and Shimura [555].

Many of the preceding references are motivated by the number-theoretical
problem of obtaining Fourier expansions of automorphic forms and this will be our
main application (see Section 1.5 and the references mentioned there).

Others seek to solve statistical problems such as that of finding the noncentral
Wishart distribution (see Herz [293], Muirhead [468], and the discussion at the end
of this section). Still others seek uniqueness results about representations.

The K-Bessel functions which we study are not the most general of those
mentioned above, but the suffice for our purposes and to give an introduction to
the subject. Consideration of Kirillov’s theory of the representations of the nilpotent
group N (see Kirillov [348], Proskurin [494], and Moore [459]) serves to clarify
the concepts. It is also useful to view Bessel and Whittaker functions in the light
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of the theory of the operators intertwining pairs of representations (see Dieudonné
[137, Vol. VI], Hashizume [265], Kirillov [349], Mackey [430, pp. 363 ff.], and
Vilenkin [635, Ch. VIII]). However, we will not delve into group representations in
this volume.

A character of an abelian group G is a group homomorphism from G into T,
the multiplicative group of complex numbers of norm 1. Define the abelian group
N.m; n � m/, for 1 � m < n, and define the character �A of N.m; n � m/ for fixed
A 2 R

m�.n�m/ by:

N.m; n � m/ D
�

U D
�

I X
0 I

� ˇ̌
ˇ
ˇ X 2 R

m�.n�m/

�
;

�A

�
I X
0 I

�
D exp.2� i Tr.tA X//; for X 2 R

m�.n�m/:

9
>>=

>>;
(1.58)

Using the notation (1.58), we will say that f W Pn ! C is a K-Bessel function if,
for some fixed A 2 R

m�.n�m/, f has the following 3 properties:

(a) f transforms by N.m; n � m/ according to �AI
i:e:; f .YŒU�/ D �A.U/f .Y/; 8 Y 2 Pn; U 2 N.m; n � m/I

(b) f is an eigenfunction for all the G-invariant differential operators L 2 D.Pn/I
(c) f grows at most like a power function at the boundary:

9
>>=

>>;

(1.59)

This definition is analogous to (3.14) of Volume I. However, if one simply thinks
of the behavior of Ks.y/, as y approaches infinity, one might think that the growth
condition (c) is somewhat weak. But recall that in the case of SL.2;R/ we found
that, for f as in (1.59),

f

��
1=y 0

0 y

�	
1 x
0 1


�
D cy1=2Ks�1=2.2�jRjy/;

if R ¤ 0 (see Exercise 3.2.1 of Vol. I). Here Ks.y/ denotes the ordinary K-Bessel
function. As y approaches infinity, the function Ks.y/ approaches zero exponentially.
But (c) in (1.59) is still O.K., since for Re s > 0, as y approaches 0; Ks.y/ blows up
like y�s (see Exercise 3.2.2 in Vol. I). Moreover, if R D 0, then we obtain (for the
case of SL.2;R/):

f

��
1=y 0
0 y

�	
1 x
0 1


�
D cys C dy1�s:

Just as in the case n D 2 (see Vol. I, Section 3.5) these K-Bessel functions
appear in Fourier expansions of Maass forms for GL.n;Z/, that is, expansions with
respect to the abelian groups N.m; n � m/ in (1.58) above (cf. Kaori Imai (Ota) and
Terras [318], and Terras [605–607]). Such expansions are analogous to those used
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by Siegel in his study of Siegel modular forms (see Siegel [565, Vol. III, pp. 97–
137], and Section 1.5).

Property (a) of (1.59) says that we are studying a special function corresponding
to a representation of G induced from the character of N.m; n � m/ given by �A.U/,
for U 2 N.m; n � m/, using the notation of (1.58).

Kirillov [348] shows that (up to equivalence) one obtains the infinite dimensional
irreducible unitary representations of the nilpotent group N of upper triangular
matrices with one on the diagonal by inducing the representations corresponding
to a character of N.m; n � m/ with m D Œn=2�. The finite dimensional (actually
one-dimensional) irreducible unitary representations of N come from a different
construction which we shall discuss at the end of this section in connection
with Whittaker functions. It is only the infinite dimensional representations that
contribute to the Plancherel formula for N.

In a sense, the K-Bessel functions considered here are analogous to the Eisenstein
series for maximal parabolic subgroups of GL.n/ which will be discussed in
Section 1.5. The Whittaker functions to be considered at the end of this section
are similar to the Eisenstein series for minimal parabolic subgroups of GL.n/ which
will also be studied in Section 1.5.

It is easy to give examples of functions satisfying the conditions in (1.59). In
what follows we will find it natural to define two sorts of K-Bessel functions. To
distinguish them, we use the capital “K” for the function in (1.61) below and the
small “k” for the function in (1.60) below. Part (2) of Theorem 1.2.2 shows that the
two functions are really essentially the same. Imitating formula (3.16) in Section 3.2
of Vol. I, we define the first type of matrix k-Bessel function to be:

km;n�m.sjY;A/ D
Z

X2Rm�.n�m/

p�s

�
Y�1

	
I 0
tX I


�
expf2� i Tr.tAX/g dX; (1.60)

for s 2 C
n with coordinates restricted to suitable half planes, Y 2 Pn; A 2

R
m�.n�m/; 1 � m < n. Here ps.Y/ denotes the power function (1.41). Formula

(1.60) is useful for demonstrating that km;n�m satisfies (1.59), parts (a) and (b),
since it is clearly an eigenfunction for any differential operator in D.Pn/ and has
the correct invariance property under transformation by elements of N.m; n � m/.

The second type of K-Bessel function is defined by:

Km.s j V;W/ D
Z

Y2Pm

ps.Y/ expf�Tr.VY C WY�1/g d	m.Y/; (1.61)

for V;W 2 Pm; s 2 C
m, or W singular with Re sj suitably restricted. The

function (1.61) generalizes the formula in part (a) of Exercise 3.2.1 in Vol. I. This
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second type of K-Bessel function is useful in the study of convergence properties
and analytic continuation in the s-variable. Herz [293, p. 506] considers the special
case of (1.61) with sj D 0 for j ¤ n.

At this point, it is not clear how Km is related to km;n�m. It will turn out that
Bengtson’s formula in Theorem 1.2.2 relates the two functions and thus gives a
generalization of the result in Exercise 3.2.1 of Vol. I. We review this latter result in
the next example.

Example 1.2.1 (The One Variable Case). When m D 1, formula (1.61) is the
ordinary K-Bessel function Ks defined in Exercise 3.2.1 (a) of Volume I, since for
a; b > 0; s 2 C:

K1.s j a; b/ D
1Z

0

ys�1 expf�.ay C b=y/g dy D 2

�
b

a

�s=2

Ks

�
2
p

ab
�
:

When n D 2 and m D 1; a 2 R, by part (a) of the same exercise, we have:

k1;1

�
s; 0

ˇ
ˇ̌
ˇ

�
1=y 0

0 y

�
; a

�
D
Z

x2R
p�s

��
y 0

0 1=y

�	
1 0

x 1


�
exp.2� iax/ dx

D ys

Z

x2R
.y2 C x2/�s exp.2� iax/ dx

D
8
<

:

2�1=2�.s/�1j�ajs�1=2y1=2Ks�1=2.2�jajy/; if a ¤ 0;

�. 1
2
/�.s � 1

2
/�.s/�1y1�s; if a D 0:

In the next example, we see that our matrix argument k-Bessel functions
can sometimes be factored into products of ordinary K-Bessel functions and �-
functions. However, we must caution the reader that this does not seem to be a
general phenomenon. Thus these Bessel functions differ greatly from the gamma
functions considered in the last section.

Example 1.2.2 (A Factorization in a Special Case). Using the first remarks in the
proof of part (5) in Theorem 1.2.2 below, we find that:

k2;1.s1; s2; 0jI; .a; 0// D
Z Z

.1C x21/
�s1 .1C x21 C x22/

�s2 exp.2� iax1/ dx1dx2

D
Z �

1C x21
��s1�s2C1=2 exp .2� iax1/ dx1

Z
.1C y2/�s2 dy

D k1;1

�
s1 C s2 � 1

2
; 0

ˇ
ˇ̌
ˇ I; a

�
k1;1 . s2; 0 j I; 0/

D k1;1

�
s1 C s2 � 1

2
; 0

ˇ̌
ˇ̌ I; a

�
B

�
1

2
; s2 � 1

2

�
;
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where we have used the substitution x2 D .1 C x21/
1=2y and the beta function is

B.p; q/ D �.p/�.q/=�.p C q/. The method of Example 1.2.2 extends to km;1 by
part (5) of Theorem 1.2.2:

km;1. s1; s2; 0 j ImC1; .a1; 0// D km�1;1 .s2; 0 j Im; 0 / k1;1 .�b; 0 j I; a1/ ;

where s1 2 C; s2 2 C
m�1; a1 2 R; b D .m � 1/=2 � Pm

jD1 sj. However, when
a2 ¤ 0, there does not appear to be such a factorization. Thus the k- and K-Bessel
functions for Pn do not, in general, appear to factor into products of ordinary K-
Bessel functions.

Exercise 1.2.13. Prove that the first matrix k-Bessel function km;n�m.sjY;A/
in (1.60) is an eigenfunction for all the differential operators in D.Pn/ when
considered as a function of Y 2 Pn. And show that it has the invariance property (a)
in (1.59) (again when considered as a function of Y).

The following exercise generalizes the first asymptotic result on the ordinary K-
Bessel function in Exercise 3.2.2 in Vol. I.

Exercise 1.2.14. (a) Show that Km.sjI; 0/ D �m.s/, where the �-function is
defined in (1.44).

(b) Show that Km.sjA;B/ � ps.A�1/�m.s/, as B ! 0, for fixed A 2 Pm.

Exercise 1.2.15. Show that if y > 0 and a 2 R, then

k1;1

�
s; 0

ˇ̌
ˇ
ˇ

�
1=y 0
0 y

�
; a

�
D y1�sk1;1 .s; 0 j I2; ay / ; for s 2 C:

Exercise 1.2.16. Suppose that g is an element of the triangular group Tm defined
in (1.42). Show that

Km
�
s
ˇ̌

VŒtg�;WŒg�1�
�

ps.IŒg�/ D Km.s j V;W/:

Exercise 1.2.16 shows that we can reduce one of the positive matrix arguments
in Km to the identity. However, it is convenient for our purposes to separate the
arguments V and W An illustration of this convenience can be found, for example,
in Exercise 1.2.14, where we see that we can treat the case that one of the arguments
is singular.

The following theorem gives the main properties (known to the author) of these
matrix argument K-Bessel functions. It is mainly due to Tom Bengtson [42].

Theorem 1.2.2 (Properties of Matrix K-Bessel Functions).

(1) Convergence and Decay at Infinity.
Suppose that � is the smallest element in the set of eigenvalues of V and W

in Pm. Then
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Km.s j V;W/ D O.��m.mC1/=4 exp.�2m�//; as � ! 1;

for fixed s. In particular, the integral (1.61) converges for all s 2 C
n if V;W 2

Pm. And Km.sjV;W/ ! 0 exponentially as the eigenvalues of V and W all go
to infinity.

(2) Bengtson’s Formula Relating the Two Bessel Functions.
Let s 2 C

m;

s# D �s C .0; : : : ; 0; .n � m/=2/ and s� D .sm�1; : : : ; s1;�.s1 C � � � C sm//:

Then, assuming that the coordinates of s are restricted to suitable half planes:

�m.�s�/km;n�m

 

s; 0

ˇ̌
ˇ̌
ˇ

 
V 0

0 W

!

;A

!

D �m.n�m/=2jWjm=2Km
�
s#
ˇ̌

WŒ� tA�;V�1
�
:

(3) K-Bessel Functions with a Singular Argument Reduce to Lower Rank
K-Bessel Functions.

For �1 2 C
m; �2 2 C

n�m;V 2 Pm;W 2 Pn�m, let

ps

�
V 0

0 W

�
D p�1.V/p�2.W/jWjm=2:

Then

Kn

�
s

ˇ̌
ˇ̌
�

A 0
0 B

�	
I 0
tC I



;

�
0 0

0 D

��

D �m.n�m/=2 jBj�m=2p�1.A
�1/ �m.�1/ Kn�m.�2jB;D/:

We need to assume that Re �1 is sufficiently large for the convergence of �m.
(4) The Argument in Pn of the Matrix k-Bessel Function Can Be Reduced to I.

Let V D g tg for g 2 Tm; i.e., g is upper triangular with positive diagonal. If
a 2 R

n; V 2 Pm; w > 0, then

km;1

�
s; 0

ˇ̌
ˇ̌
�

V 0

0 w

�
; a

�
D p�s.V

�1/ jVj�1=2wm=2 km;1
�
s; 0

ˇ̌
ImC1;w1=2g�1a

�
:

Here s 2 C
m.

(5) An Inductive Formula for k-Bessel Functions.
For s1 2 C; s2 2 C

m�1; a1 2 R; a2 2 R
m�1, we have the following formula,

if a D .a1; a2/ and s D .s1; s2/ are suitably restricted for convergence and
b D .m � 1/=2 �Pm

jD1 sj:
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km;1.s; 0jImC1; a/
D
Z

u2R
.1C u2/b km�1;1

�
s2; 0

ˇ̌
ˇ Im; a2

p
1C u2

�
exp.2� ia1u/ du:

Proof (Bengtson [42]).

(1) Since � is the smallest element of the set of eigenvalues of V and W; VŒx� �
� txx, for x 2 R

m and Tr.VŒX�/ � �Tr.IŒX�/ if X 2 R
m�m. By the integral

formula for the Iwasawa decomposition (see formulas (1.38) and (1.39) of
§ 1.1.6), we have, upon setting Y D IŒt�; t 2 Tn; the triangular group:

Km.sjV;W/ � 2m
Z

t2Tm

expf�� Tr
�
IŒt�C IŒt�1�

�g
mY

iD1
tRe ri�i
ii

Y

1�i�j�m

dtij:

The variables r 2 C
m are related to s 2 C

m by the formula given in part (1) of
Proposition 1.2.1.

Write

t�1 D

0

B
@

t�111 tij

: : :

0 t�1mm

1

C
A :

Then

Km.sjV;W/ � 2m
mY

jD1

Z

tjj>0

expf��.t2jj C t�2jj /g t
Re rj�j
jj dtjj

�
Y

1�i<j�m

Z

tij2R
expf��.t2ij C .tij/2/g dtij

� .�
�
/

m.m�1/=4

mY

jD1
K.Re rj�jC1/=2.2�/; s 2 R:

For the final estimate, we need to know that Ks.y/ � .�=.2y//1=2e�y, for y >
0; s 2 R (see Lebedev [398]).
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(2) Let„ denote the left-hand side of the equality that we are trying to prove. Then

„ D �m.�s�/km;n�m

�
s; 0

ˇ̌
ˇ̌
�

V 0

0 W

�
;A

�

D
Z

Y2Pm

p�s�.Y/ expf�Tr.Y/g d	m.Y/

�
Z

X2Rm�.n�m/

p�s
�
V�1 C W�1 Œ tX�

�
expf2� i Tr . tAX/gdX:

Now we want to use Exercise 1.2.4 of Section 1.2.1. In order to do this, we
utilize another property of power functions from part (4) of Proposition 1.2.1 in
Section 1.2.1 and obtain:

p�s
�
V�1 C W�1  tX

�� D p�s�

���
V�1 C W�1  tX

��
Œ!�
��1�

;

! D

0

BB
BBB
@

0 1

�
�

�
1 0

1

CC
CCC
A
:

Then, by Exercise 1.2.4, we have the following equalities, letting Z D YŒ!�:

„ D
Z

Y2Pm

Z

X2Rm�.n�m/

p�s�.Y/ exp
˚�Tr

��
V�1 C W�1 Œ tX�

�
Œ!�Y

��

� exp f2� iTr . tAX/g dX d	m.Y/

D
Z

Z2Pm

Z

X2Rm�.n�m/

p�s.Z�1/ exp
˚�Tr

��
V�1 C W�1 Œ tX�

�
Z � 2� i tAX

��

� dX d	m.Z/:

Now complete the square in the exponent. Let Z D Y2 with Y 2 Pm; W D
Q2; Q 2 Pn�m, and change variables via U D YXQ�1 to obtain:

„ D jWjm=2
Z

Z2Pm

jZj�.n�m/=2

Z

U2Rm�.n�m/

p�s.Z�1/

� exp
˚�Tr

�
V�1Z C tUU � 2� i tAY�1UQ

��
dU d	m.Z/:

Let C D i�Y�1AQ and observe that

Tr
�

tUU � 2� i t
�
Y�1AQ

�
U
� D Tr

�
IŒU � C�C W


� tA

�
Z�1� :
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Thus

„ D jWjm=2
Z

Z2Pm

jZj�.n�m/=2
p�s

�
Z�1� exp

˚�Tr
�
V�1Z C W Œ� tA� Z�1��d	n.Z/

�
Z

U2Rm�.n�m/

exp f�Tr .IŒU � C�/g dU

D jWjm=2
�

m.n�m/=2
Km

�
s#
ˇ̌

W Œ� tA� ;V�1 � :

(3) Set „ equal to the left-hand side of the equality we are trying to prove. By
definition then

„ D
Z

Pn

ps.Y/ exp

�
�Tr

��
A 0

0 B

�	
I 0
tC I



Y C

�
0 0

0 D

�
Y�1

��
d	n.Y/:

Let Y be expressed according to the appropriate partial Iwasawa decomposition:

Y D
�

V 0

0 W

�	
I X
0 I



:

By Exercise 1.1.19 of Section 1.1.4, „ is

Z

X2Rm�.n�m/

Z

V2Pm

Z

W2Pn�m

p�1.V/ p�2.W/ jWjm=2

� exp
˚�Tr

�
VA C VŒX C C�B C WB C W�1D

��

�jVj.n�2m�1/=2jWj�.nC1/=2 Y

i;j

dwij dvij dxij

D �m.n�m/=2jBj�m=2p�1.A
�1/�m.�1/Kn�m .�2 j B;D/ :

(4) The left-hand side of the equality that we wish to prove is:

Z

x2Rm

p�s
�
V�1 C xw�1 tx

�
exp

�
2� i tax

�
dx

which equals:

wm=2jVj�1=2p�s.V
�1/

Z

u2Rm

p�s
�
I C I


tu
��

exp
�
2� i ta w1=2

�
tg�1� u

�
du;

upon setting u D tgxw�1=2.
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(5) First note that the upper left j � j corner of the matrix .I C x tx/ ; with x D a
column vector in R

m, is

�
Ij C wj

twj
�
; where twi D .x1 � � � xj/:

And the matrix
�
wj

twj
�

is a j � j matrix of rank one. The unique nonzero
eigenvalue of

�
wj

twj
�

is kwjk2 D x21 C � � � C x2j . We can therefore find k 2 O.j/
such that

�
Ij C wj

twj
�
Œk� D Ij C

� jjwjjj2 0

0 0

�
:

Thus
ˇ̌
Ij C wj

twj

ˇ̌ D 1C kwjk2.
It follows from these considerations that

km;1 .s j ImC1; a / D
Z

x2Rm

p�s
�
I C x tx

�
exp

�
2� i tax

�
dx

D
Z

x2Rm

�
1C x21

��s1 �
1C x21 C x22

��s2 � � � �1C x21 C � � � C x2m
��sm exp

�
2� i tax

�
dx:

Now make the change of variables x2j D �
1C x21

�
u2j ; j D 2; : : : ;m, to

complete the proof. �

Exercise 1.2.17. (a) Can you generalize property (4) of Theorem 1.2.2 to km;n�m?
(b) (Bengtson [42]). Show that K2 .s j tqq; I2 / converges for s 2 C

2; q 2 R
2, when

Re s2 and Re .s1 C s2/ < � 1
2
; if q D 0I

Re s2 < 0; if q2 D 0; q1 ¤ 0I
Re .s1 C s2/ < 0; if q2 ¤ 0:

Note that this is the function k2;1 essentially.
(c) Obtain a functional equation for k2;1.

Hint. (c) Use property (5) of Theorem 1.2.2 and the functional equation of the
ordinary K-Bessel function.

Remaining Questions

(1) Concerning the K-Bessel Functions.

(a) Are these K-Bessel functions products of ordinary K-Bessel functions as
was the case for the gamma function of matrix argument? The answer must
be “No, except under very special circumstances, as in Example 1.2.2 above.”

(b) Does (1.59) lead to a unique function? Here the answer appears to be “Yes”
and “ No.” For many functions satisfying (1.59) can be constructed out of the
same basic function; e.g.,
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f .Y/ D km;n�m

�
s

ˇ̌
ˇ̌ Y

	
tA�1 0

0 tB



;C

�
;

with A 2 GL.m;R/; B 2 GL.n � m;R/; C 2 R
m�.n�m/, such that R D ACB.

For it is easily seen that

f

�
Y

	
Im X
0 In�m


�
D expf2� iTr.t.ACB/X/gf .Y/:

(c) Are there relations between km;n�m and kn�m;m? What functional equations
do the km;n�m satisfy? See Exercise 1.2.17(c). The theory of Eisenstein
series for maximal parabolic subgroups of GL.n/, which will be discussed
in Section 1.5, leads us to expect that there is essentially only one
functional equation (e.g., that of Exercise 1.2.17). Note that m > n � m
implies that km;n�m.s; 0 j Y;A/; s 2 C

m, which is the function related to
Km

�
s#
ˇ̌

W Œ� tA� ;V�1 � by part (2) of Theorem 1.2.2, has more s-variables
than the same function with m and n � m interchanged. This means that you
cannot use parts (2) and (3) of Theorem 1.2.2 to write km;n�m as a product of
lower rank functions.

(d) Can one generalize the Kontorovich-Lebedev inversion formula (3.19) of
Section 3.2 in Vol. I to Pn and then obtain harmonic analysis on Pn in partial
Iwasawa coordinates, thus generalizing Theorem 3.2.1 in Vol. I? This leads
one to ask again: “What functional equations do matrix K-Bessel functions
satisfy?” One is also led to attempt to generalize the Laplace transform relations
between K-Bessel functions and spherical functions (Exercise 3.2.13 of Vol. I)
to a matrix version involving the spherical functions for Pn to be considered in
the next section.

Gelbart [207], Gross and Kunze [247], and Herz [293] generalize the
Hankel transform to a transform involving matrix J-Bessel functions (which
are operator valued in the first two references) and show that such a transform
can be used to generalize Theorem 2.2.2 of Vol. I and decompose the Fourier
transform on matrix space R

k�m in polar coordinates for that space. Define, for
k � m; the compact Stiefel manifold

Vk;m D fX 2 R
k�m

ˇ̌
tXX D Ig Š O.k/=O.k � m/:

Then polar coordinates for X 2 R
k�m are R 2 Pm and V 2 Vk;m with X D VR1=2.

Of course, harmonic analysis on the Stiefel manifold involves representations of
the orthogonal group. Thus one expects to see matrix-valued J-Bessel functions.
In any case, this work on J-Bessel functions and inversion formulas for Hankel
transforms certainly leads one to expect a similar theory for K-Bessel functions.



1.2 Special Functions on Pn 67

(2) More General Hypergeometric Functions for Pn.

(a) Can one relate the K-Bessel functions with the J-Bessel functions considered
by Gelbart [207], Gross et al. [246], Herz [293], and Muirhead [468, Ch. 10]?
Gelbart [207] and Gross et al. [246] consider matrix-valued J-Bessel functions
defined for an irreducible unitary representation � of a compact Lie group U
acting on a real finite dimensional inner product space X by orthogonal linear
transformations via:

J�.w; z/ D
Z

U

expfi.wjuz/g�.u/ du: (1.62)

for w; z 2 XC D X ˝R C, the complexification of X. Here .wjz/ is the complex
bilinear form on XC that uniquely extends the inner product on X. James (see
Muirhead [468, p. 262]) defines a function 0F1 which is the case �.u/ 
 1

identically in (1.62), with .wjz/ D Tr.wz/.
Herz [293] considers an analogue of the J-Bessel function given by

Aı.M/ D .2� i/�n
Z

Re ZDX0

exp
˚
Tr
�
Z � MZ�1�� jZj�ı�p dZ; (1.63)

for n D m.m C 1/=2; p D .m C 1/=2; ı 2 C with Re ı > p � 1; Z
in the Siegel upper half space Hm with fixed real part X0 2 Pm. We will
consider Hm more carefully in Chapter 2. Herz finds that this function is needed
to express the noncentral Wishart distribution in multivariate statistics (see
also Muirhead [468, Ch. 10]). In addition, such functions arise in summation
formulas considered by Bochner [55] in his study of matrix analogues of the
circle problem. But there do not appear to be good estimates for the error
terms in these formulas. Such integrals also appear in Fourier coefficients of
Eisenstein series for Sp.n;Z/. See Godement’s article in Séminaire Cartan [547,
Exposé 9].

How are (1.62) and (1.63) related? The answer is to be found in Herz [293,
p. 493] and Muirhead [468, p. 262]. See also Gelbart [207] and the references
indicated there. Gelbart applies his results to the construction of holomorphic
discrete series representations of Sp.n;R/. Gross et al. [246] apply their results
similarly to U.n; n/.

In the next section, we will develop an asymptotic relation between spherical
functions for Pn and J-Bessel type functions (which are spherical functions for
the Euclidean group of the tangent space to Pn at the point I). Such a relation
comes from Lemma 4.3 in Helgason [279]. Actually, to be precise, we will
relate spherical functions for Pn with James and Muirhead’s 0F0 function of 2
arguments for Pn. Presumably this function is related to the 0F1 for Pn�1. We
will use the same methods as Helgason [279] specialized to our case.
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(b) How do the K-Bessel functions relate to matrix argument confluent hyper-
geometric functions considered by Gindikin [218], Herz [293], James [328–
330], and Muirhead [468, pp. 264, 472]? One can define a matrix argument
confluent hypergeometric function of the first kind ˆn (also known as
1F1) by:

ˆn.a; cI X/ D �n.c/

�n.a/�n.c � a/

Z

0<Y<I

expŒTr.XY/� jYja jI�Yjc�a�.nC1/=2 d	n.Y/;

(1.64)
for a; b 2 C, with a; b suitably restricted and X a symmetric n � n matrix. The
domain of integration is the subset of Y 2 Pn such that I � Y 2 Pn. Muirhead
[468, p. 447] shows thatˆn gives the moment of the generalized variance of the
noncentral Wishart distribution. This is due to Herz [293] and Constantine.

A matrix confluent hypergeometric function of the second kind can be
defined for a; c 2 C and X 2 Pn by:

‰n.a; cI X/ D �n.a/
�1

Z

Y2Pn

expŒ�Tr.XY/� jYja jI C Yjc�a�.nC1/=2 d	n.Y/:

(1.65)
Muirhead [468, p. 474] uses this function to express certain statistical quantities
coming from the T20 -statistic, which was proposed by Lawley in 1938 and
Hotelling in 1947 in connection with a military problem—the air testing of
bombsights.

If we do ask for a relation between our K-Bessel function (1.61) and the
confluent hypergeometric function (1.65), we find that it is only clear for the
case n D 1, when the functions are the classical ones considered by Lebedev
[398].

One can show, for example, that the classical K-Bessel function is a special
case of ‰1:

Ks.z/ D p
�.2z/se�z‰1.s C 1=2; 2s C 1I 2z/:

This fact is proved in Lebedev [398, pp. 118 and 274]. The main results needed
to prove it are:

(i) Ks.z/ D 1
2

1Z

0

u�s�1 exp
� z

2

�
u C 1

u

��
duI

(ii) u�s�.1=2/ D �
�
s C 1

2

��1
1Z

0

e�xuxs�.1=2/ dxI

(iii) K1=2.z/ D
�
�
2z

�1=2
e�z:

9
>>>>>>>>>=

>>>>>>>>>;

(1.66)
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Thus it is worthwhile generalizing (iii) in (1.66) to Pn. We already have the
analogues of (i) and (ii). The analogous relation between the J-Bessel type
function in (1.63) and 1F1 in (1.64) is proved by Muirhead [468, p. 262].

Maass [426, Ch. 18] finds that the confluent hypergeometric functions
of matrix argument occur in the Fourier coefficients of certain nonholomor-
phic automorphic forms for the Siegel modular group Sp.n;Z/. See also
Shimura [555]. This suggests that we could relate ‰ and K by relating (non-
holomorphic) Eisenstein series for Sp.n;Z/ and those for GL.n;Z/.

(c) What is the connection between the K-Bessel functions and Whittaker
functions? Whittaker functions and Fourier expansions of automorphic forms
as sums of these functions are discussed by Bump [83], Goldfeld [230], Jacquet
[323], Jacquet et al. [325], Proskurin [494], Schiffman [534], and Shalika [552].
For r 2 R

m�1; Y 2 Pm, and s 2 C
m, with Re s suitably restricted for

convergence, the Whittaker function can be defined by:

W.s j Y; r/ D
Z

n2N

p�s
�
Y�1Œtn�

�
exp

 

2� i
m�1X

iD1
rixi;iC1

!

dn; (1.67)

where N is the nilpotent group of real m�m upper triangular matrices with ones
on the diagonal,

n D

0

B
@

1 xij

: : :

0 1

1

C
A ; and dn is found in Exercise 1.1.2:

The exponential appearing in the integral (1.67) is easily seen to be a one-
dimensional character of N. The integral itself can easily be shown to converge
wherever the numerator in the Harish-Chandra c-function of Section 1.3
converges (i.e., when bm given by (1.154) in Section 1.3 below converges). One
also sees easily that

W.s j YŒn�; r/ D exp

(

2� i
m�1X

iD1
rixi;iC1

)

W.s j Y; r/:

Thus the Whittaker function satisfies the analogues of properties (1.59) in
which the abelian group N .m; n � m/ is replaced by the nilpotent group N.
Kirillov [348] shows that the characters of N in the transformation formula
above are (up to unitary equivalence) the only finite (actually one) dimensional
irreducible unitary representations of N. There are also infinite dimensional
irreducible unitary representations, as we mentioned earlier. It is possible to
view W.s j Y; r/ as an analogue of Selberg’s Eisenstein series E.n/ (to be defined
in formula (1.249) Section 1.5.1) with the largest possible number of complex
variables s 2 C

n; i.e., the highest dimensional part of the spectrum of the
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Laplacian. Thus one can follow ideas of Jacquet and use techniques developed
by Selberg for Eisenstein series in order to obtain nŠ functional equations for
the Whittaker functions (see Bump [83], Goldfeld [230], and Jacquet [323]).
The idea is to write the Whittaker function for Pn as an integral of Whittaker
type functions of lower rank, such as the k-Bessel function (1.60). This is
analogous to writing an Eisenstein series with n complex variables as a sum of
Eisenstein series with a smaller number of complex variables (see Lemma 1.5.2
of Section 1.5.1, for example).

More explicitly, one can write the Whittaker function as a Fourier transform
of a k-Bessel function (1.60). For example, when n D 3:

W.s j Y; r/ D
Z

x122R
k2;1

0

@s

ˇ̌
ˇ̌
ˇ̌ Y

2

4
1 �x12 0

0 1 0

0 0 1

3

5 ; .0; r2/

1

A exp.2� ir1x12/ dx12:

(1.68)

Then one can obtain properties of the Whittaker functions from those of the
lower rank k-Bessel functions, and vice versa, since the k-Bessel function is also
a Fourier transform of the Whittaker function. This same sort of idea relates the
Fourier expansions of automorphic forms for GL.n;Z/ of Section 1.5.3 with
those involving Whittaker functions. See also Section 1.5.4.

As we mentioned at the beginning of this section, there are many refer-
ences on Whittaker functions, including those of Bump [83], Goldfeld [230],
Goodman and Wallach [235], Hashizume [265], Jacquet [323], Kostant [367],
and Shalika [552]. For example, Hashizume considers a Whittaker model to
come from intertwining operators between admissible representations of G and
representations induced from a nondegenerate unitary character of N. He proves
some general multiplicity results. Kostant connects the theory of Whittaker
functions and the theory of Toda lattices. He obtains the complete integrability
of the corresponding geometrically quantized system. Bump uses Shalika’s
multiplicity one theorem to argue that Whittaker functions give the Fourier
coefficients of automorphic forms for GL.3/ and notes that Kostant shows that
the solution space of the differential equations for W.sjY; r/ coming from the
operators in D.Pn/ has dimension the order of the Weyl group, which is nŠ. But
the solutions of polynomial growth form a one-dimensional subspace (i.e., we
have multiplicity one). See also Goldfeld [230].

Piatetski-Shapiro (in Borel and Casselman [66, Vol. I, pp. 209–212]) uses
the uniqueness of Whittaker models for representations to show that if � is an
irreducible smooth admissible representation of the adelized GL.n/, then the
multiplicity of � in the space of cusp forms is one or zero.

It is possible to use Theorem 1.2.2 along with Propositions 1.2.2 and 1.2.3 of
Section 1.2.1 to evaluate various special integrals.
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Example 1.2.3. For s 2 C, define a vector r.s/ 2 C
2m by setting every entry of

r.s/ equal to 0 except the mth entry which is set equal to s. Then, by part (2) of
Theorem 1.2.2 and Exercise 1.2.14, we have:

km;m.r.s/ j I; 0/ D �m2=2 �m
�
0; : : : ; 0; m

2
� s
�

�m.0; : : : ; 0; s/
:

Note that as in the proof of Proposition 1.2.2 in Section 1.2.1, we have the following
equalities, where Tn is the group of upper triangular n � n matrices with positive
diagonal entries:

km;m.r.s/ j I; 0/ D
Z

X2Rm�m

jI C tXXj�s dX

D Vol.K/
Z

t2Tm

jI C IŒt�j�s
mY

iD1
tm�i
ii dt

D Vol.K/ 2�m

Z

Y2Pm

jI C Yj�s jYjm=2 d	m.Y/

D �m2=2�m.0; : : : ; 0; m=2/�1
Z

Y2Pm

jI C Yj�s jYjm=2 d	m.Y/:

Let A D the group of positive diagonal matrices, as usual, and define

D.a/ D
Y

1�i<j�n

jai � ajj; da D
nY

jD1

daj

aj
; for a 2 A;

I.s/ D
Z

a2A

jI C aj�s jaj1=2 D.a/ da D �m.0; : : : ; 0;
m
2

� s/�m.0; : : : ; 0;
m
2
/

cm �m.0; :; 0; s/
:

Here c�1
m D ��m2=2 mŠ �m.0; : : : ; 0;m=2/. Thus

I.s/ D mŠ �m
�
0; : : : ; 0; m

2
� s
�
�m
�
0; : : : ; 0; m

2

�2

�m2=2 �m .0; : : : ; 0; s/
:

Exercise 1.2.18 (Mellin Transforms of K-Bessel Functions—A Generalization
of Exercise 3.6.4 of Vol. I). Show that if s; r 2 C

n, then if B 2 Pn,

Z

A2Pn

ps.A/ Kn .r j B;A/ d	n.A/ D �n.s/�n.s C r/psCr.B
�1/:
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Hint. (Bengtson [42].) Note that the left-hand side is:

Z

A2Pn

Z

Y2Pn

ps.A/pr.Y/ exp
˚�Tr

�
Y C AY�1�� d	n.Y/ d	n.A/:

Let Y D IŒt�; t 2 Tn; and change variables via C D AŒt�1�.

Bump [83, Ch. X] computes a Mellin-type transform of his Whittaker function
for SL.3;R/ and obtains a quotient of six gammas over one gamma. Such results are
useful in the study of L-functions corresponding to automorphic forms for GL.n/, as
we saw already in Volume I, Section 3.6.2 when we studied properties of Dirichlet
series corresponding to Maass wave forms. See also Goldfeld [230] and § 1.5.4.

Exercise 1.2.19 (A Functional Equation).

(a) Let ! and s� be as defined in part (4) of Proposition 1.2.1 in § 1.2.1. Show that
if A;B 2 Pn, then

Kn.s j A;B/ D Kn.s
� j BŒ!�;AŒ!�/:

(b) Show that if k 2 K D O.n/, then for s 2 C, we have

Km.0; s j AŒk�;BŒk�/ D Km.0; s j A;B/:

Exercise 1.2.20 (Inductive Formula for K-Bessel Functions). Prove that

Km

�
s

ˇ̌
ˇ̌
�

A 0
0 B

�	
I 0
tQ I



; I

�

D
Z

X2Rm�.n�m/

Km .r1 j A C B Œ tX C tQ� ; I /Kn�m .r2 j B; I C IŒX� / dX:

Here for s 2 C
n, we have chosen r1 2 C

m; r2 2 C
n�m such that:

ps

�
A 0
0 B

�
D pr1 .A/ jAj.m�n/=2 pr2 .B/ jBjm=2 :

Hint. See Terras [606].

Exercise 1.2.21 (Writing the Matrix K-Bessel Function as an Integral of the
Ordinary K-Bessel Function). Show that if r 2 C

m�1; s 2 C,

Km.r; s j A;B/ D 2

m

Z

W2SPm

pr.W
�1/ Kms

�
2

q
Tr.AW/Tr.BW�1/

� 
Tr.BW�1/

Tr.AW/

!ms=2

dW;

where the measure dW is chosen as in Exercise 1.1.23 of § 1.1.4.
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In Terras [606], motivated by the study of Fourier expansions of modular forms, I
consider more general K-Bessel type functions with the power function ps replaced
by other sorts of eigenfunctions for D.Pn/. It also seems that we need to answer
the question of whether it is possible to move the variable B over to be next to C in
K.s j WŒC�;VŒB�/. Exercise 1.2.16 allows us to do something in this direction. But
it does not seem to be exactly what we will need later. See the end of the proof of
Theorem 1.5.3 in Section 1.5.3 below.

Thus we close this section on Bessel functions with too many questions
unresolved. There has not been much progress since the last edition, as far as I know.
Sorry. This will not be the last such section. See the quotation at the beginning of
Section 1.5.

1.2.3 Spherical Functions

We want to find an analogue for Pn of the notion of spherical harmonic, the basic
function for Fourier analysis on the sphere which was considered in Chapter 2
of Volume I. Of course the symmetric space under consideration is a higher rank
analogue of the Poincaré upper half plane and thus it has spherical functions which
generalize the Legendre or conical functions discussed in Section 3.2 of Volume I.
We will see in the next section that we can use the spherical functions for Pn to
obtain a Fourier transform on Pn, with properties generalizing those of the Fourier
transform on H in Theorem 3.2.3 of Vol. I.

The theory of spherical functions really goes back to the study of spherical
harmonics by Legendre, Laplace, and Jacobi in the late 1700s (see Chapter 2 of
Vol. I). In 1916–1918 Funk [192] and Hecke [268, pp. 208–214] developed their
integral formula for spherical harmonics (see Theorem 2.1.2, of Vol. I). In 1929 and
1934 Cartan [96] and Weyl [666, Vol. III, pp. 386–399] began the modern theory
with the study of spherical functions associated with compact symmetric spaces.
The compactness hypothesis was dropped in the 1950s by Gelfand [212], Godement
[222], Harish-Chandra [263], and others. Selberg [543] gives the basic theory of
spherical functions for the case under consideration. Other references for the general
theory include: Barut and Raçzka [39] (who call spherical functions “harmonic
functions” on p. 302), Berezin and Gelfand [44], Dieudonné [137, Vol. V, Ch. XXI,
Vol. VI, Ch. XXII], Ehrenpreis and Mautner [155], Gangolli [198], Godement [224],
Helgason [273–282], Maurin [437], Mautner [439], Richards’ article in Olver et al.
[481], Satake [532], Tamagawa [588], Warner [655], and Wawrzyńczyk [657].

Many of the authors listed above are motivated by the desire to understand
the representation theory of Lie groups. Others are prompted by number theoretic
applications; e.g., connections with Hecke operators (see Section 3.6 of Vol. I and
Section 1.5.2 following). Still others are inspired by the appearance of spherical
functions in various statistical problems (see Farrell [173, 174] James [328–
330], and Muirhead [468]). Finally, some are motivated by physical applications.
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The following references are indicative of some of the possibilities for applications
of harmonic analysis on Lie groups in physics: Barut and Raçzka [39], Mackey
[429–431], and Menotti and Onofri [444].

We define a spherical function to be a function

h W Pn ! C

with the following properties:

(1) h.YŒk�/ D h.Y/; for all Y 2 Pn and k 2 O.n/I
(2) Lh D �Lh; .�L 2 C/ for all invariant differential operators L 2 D.Pn/I
(3) h.I/ D 1:

9
=

;

(1.69)

That is, we are seeking a rotation-invariant eigenfunction for all the invariant
differential operators, normalized to have the value 1 at the identity. This definition
should be compared with (1.59) in the last section.

We should probably call the functions satisfying (1.69) “zonal spherical func-
tions” or “spherical functions of class one,” but we will not do that here (cf.
Section 2.1 of Vol. I), since we do not intend to consider the more general spherical
functions transforming according to a nontrivial representation of K (but see Vol. I,
pp. 113–114, 172).

As we shall see in Theorem 1.2.3, there are many ways to characterize spherical
functions other than (1.69). In fact, H. Weyl has remarked that “their property
as eigenfunctions of Laplace operators is merely accidental” (see Maurin [437,
pp. 224–225]). However, one appears to have some difficulty in making connections
with applications if one insists on throwing out the differential equations.

Example 1.2.4 (Spherical Functions on the Poincaré Upper Half Plane). For
the Poincaré upper half plane H, the spherical function is a standard special
function—the Legendre or conical function discussed in Section 3.2 of Vol. I. It
is unique because it solves a second order singular ODE whose second solution has
a singularity at i in H.

It is easy to write down such a spherical function by integration over K D SO.2/:

h.sjz/ D 1

2�

2�Z

0

Im.k�u.z//
sdu; where ku D

�
cos u sin u

� sin u cos u

�
:

Here we use the notation of Vol. I. It follows that

h.sjz/ D P�s.cosh r/ if z D ku exp.�r/i;
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where the action of g 2 SL.2;R/ on z 2 H is by fractional linear transformation
(see page 172, Section 3.2 of Vol. I). Here P�s denotes the Legendre function which
can be defined by the integral:

Ps.t/ D 1

2�

2�Z

0

n
t C

p
t2 � 1 cos u

os
du:

The other solution to the second order ODE satisfied by the Legendre function is
called Q and it has the following asymptotic behavior as r approaches 0:

Qs�1.cosh r/ � �
�
1

2

�
log.cosh r � 1/; as r ! 0

(see Vol. I, pp. 338–339).

Motivated by the preceding example and the construction of k-Bessel functions
satisfying (1.59) via formula (1.60); i.e., by integration over the appropriate
subgroup of G, we construct a spherical function by integrating the power function
over K; i.e.,

hs.Y/ D
Z

k2K

ps.YŒk�/dk; for Y 2 Pn; s 2 C
n: (1.70)

Part (4) of Theorem 1.2.3 shows that these are the only spherical functions for Pn.
In the following discussion (just as in (1.23) of Section 1.1.4), we will sometimes

identify functions f .Y/; Y 2 Pn; with functions on G D GL.n;R/, by writing
Y D IŒg�, for g 2 G. Such a function on G will be left K-invariant.

Next we will need to show that we could equivalently require the spherical
functions to be eigenfunctions of convolution integral operators. In Section 3.7, Vol.
I, the analogous result was proved for the Poincaré upper half plane.

Recall now the definition of convolution operators in (1.24) of Section 1.1.4:

.f 	g/.a/ D Cgf .a/ D
Z

G

f .b/g.ab�1/db: (1.71)

And recall Lemma 1.1.1 of that same section—a lemma which gave the properties
of these convolution operators.

The following proposition is necessary for the study of spherical functions as well
as analogues of Poisson summation for Pn=GL.n;Z/. In order to state it, we need to
define the Helgason–Fourier transform of a function f 2 Cc.Pn=K/, which is:

bf .s/ D
Z

Y2Pn

f .Y/ ps.Y/ d	; for s 2 C
n: (1.72)
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This transform will be scrutinized as carefully as we can manage in the next section.
In the special case under consideration (i.e., when the function f is K-invariant) this
transform can be identified with the spherical transform whose inversion formula
was obtained by Harish-Chandra. And in the context of the present discussion it can
also be called the “Selberg transform.” We have named the transform for Helgason
since his lectures [275] demonstrate clearly that the transform really does behave
like the usual Fourier or Mellin transform and can be used to solve some of the
sorts of problems that Fourier transforms are traditionally used to solve in applied
mathematics (e.g., those connected with the wave equation on a symmetric space).
But the reader should be cautioned that this transform has a plethora of names in the
literature.

Part (2) of the following proposition is Selberg’s basic lemma that eigen-
functions of invariant differential operators are eigenfunctions of invariant integral
operators. It is of central importance for the trace formula.

Proposition 1.2.4. (1) The spherical function h corresponding to the eigenvalues
.�1; : : : ; �n/ 2 C

n, with

Tr..Y@=@Y/i/h D �ih;

is unique. Here the invariant differential operators are from Theorem 1.1.2 of
Section 1.1.5.

(2) Eigenfunctions of Invariant Differential Operators Are Eigenfunctions of
Invariant Integral Operators.

Let f 2 C1.Pn/ be an eigenfunction of all the G-invariant differential
operators L 2 D.Pn/; i.e., Lf D �Lf , for some �L 2 C. Define

s 2 C
n by Lps D �Lps;

where ps denotes the power function (1.41). If g 2 C1
c .KnG=K/; i.e., if g

is K-bi-invariant and infinitely differentiable with compact support, and if we
assume, in addition, that g.x/ D g.x�1/, for all x 2 G, then f is an eigenfunction
of the convolution operator Cg in (1.71). More precisely,

Cgf D f 	g Dbg.s/f ;

with bg denoting the Helgason–Fourier transform (1.72). Conversely, suppose
that f 2 C.Pn/ is an eigenfunction of all the convolution operators Cg in (1.71),
with g 2 C1

c .Pn=K/. Then f is also an eigenfunction of all the invariant
differential operators.
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Proof (Selberg [543, pp. 53–56]).

(1) Let hi; i D 1; 2, be two spherical functions corresponding to the eigenvalues
�L; i.e., Lhi D �Lhi; i D 1; 2, for L 2 D.Pn/. Since hi is a solution of an
elliptic partial differential equation with analytic coefficients, by a theorem of
Bernstein, hi must be real analytic (see John [332, p. 142] or Garabedian [201,
p. 164]). We want to show that all the terms in a Taylor expansion of h1 � h2
must be zero.

What is the Taylor expansion of a function f on a symmetric space like Pn?
It is best to view f as a function on G D GL.n;R/. The Taylor expansion of f
is then

f .exp Xg/ D
X

n�0

1

nŠ
.eXnf /.g/;

where .eXnf /.g/ D Œdn=dsnf .exp.sX/g/�sD0. Then eXn is a right-invariant
differential operator on G (see Helgason [275, p. 16] and Chapter 2 of this
volume).

Suppose L 2 D.Pn/. We can think of L as a differential operator on G
commuting with right translation. Form a left K D O.n/-invariant differential
operator L# by taking the K-average of the transforms Lk of L under inner
automorphism by k 2 K. That is, let ik.x/ D kxk�1, for x 2 G. Then

Lk.f / D L.f ı ik/ ı i�1k ; L# D
Z

k2K

Lk dk:

See Helgason [275, pp. 41–43] or [273, Chs. I and X], or [282] for more
details on these constructions. The conclusion is that the differential operators
in the Taylor series for f on the group G correspond to G-invariant differential
operators on the symmetric space KnG, with the same value at the identity.

It follows from our original hypothesis that all terms in the Taylor series for
h1 � h2 must vanish at the identity. But we can translate everything by g 2 G to
complete the proof.

(2) Here we imitate the proof of Lemma 3.7.3 in Vol. I. Define an operator M which
averages functions over the compact group K D O.n/:

Mf .Y/ D
Z

k2K

f .YŒk�/dk:

Since f is assumed to be an eigenfunction of the G-invariant differential
operators L 2 D.Pn/, it follows from part (1) that Mf is unique up to a constant.
So we find that



78 1 The Space Pn of Positive n � n Matrices

Mf .Y/ D f .I/hs.Y/;

where hs.Y/ is the spherical function defined by (1.70); i.e.,

hs.Y/ D
Z

k2K

ps.YŒk�/ dk:

Here we are using Exercise 1.1.11 of Section 1.2.1.
It follows that

M.f 	g/.a/ D .Mf 	g/.a/ D f .I/.hs	g/.a/:

Evaluate this at a D I to find that

.f 	g/.I/

f .I/
D .hs	g/.I/

hs.I/
;

since hs.I/ D 1 and Mf .I/ D f .I/. Therefore this quotient is independent of
the chosen eigenfunction f for all the L 2 D.Pn/. Thus, in particular, we can
replace f by the power function ps and get the same result. This means that

f 	g

f
.I/ D ps	g

ps
.I/:

Next note that if Lf D �f and if a 2 G, then, defining f a as in Lemma 1.1.1 of
Section 1.1.4, we have Lf a D �f a, by the G-invariance of L. It follows that

f 	g

f
.a/ D f a	g

f a
.I/ D ps	g

ps
.I/ Dbg.s/:

This completes the proof of the first statement in part (2).
For the converse, look at .f 	g/ D �gf and apply the G-invariant differential

operator L to this equality to obtain:

�gLf D L.f 	g/ D f 	.Lg/ D �Lgf :

This implies that

Lf D .�Lg=�g/f :

It is easy to see that we can force �g ¤ 0 by taking g to run through a Dirac
sequence at the identity. For then f 	g approaches f D f 	ı and the eigenvalues
�g must approach 1. �
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Exercise 1.2.22. (a) Fill in the details in the proof of part (2) of Proposition 1.2.4.
For example, what happens if f .a/ D 0?

(b) What happens in part (2) of Proposition 1.2.4 if we do not assume that g.x/ D
g.x�1/ for all x 2 G?

Now we can give some other characterizations of spherical functions.

Theorem 1.2.3 (Equivalent Definitions of Spherical Functions). Here G D
GL.n;R/; K D O.n/.

(1) Eigenfunctions of Convolution Operators.
Let A denote the set of all f W G ! C which are continuous with compact
support and K bi-invariant; i.e., f .k1ak2/ D f .a/; for all ki 2 K; a 2 G. Then
A is a commutative algebra under pointwise sum and convolution product. A
function h W G ! C which is K bi-invariant with h.I/ D 1 is a spherical
function if and only if h is a common eigenfunction of all the convolution
equations:

f 	h D �f h; for all f 2 A:

Here the eigenvalue is �f .
(2) Homomorphisms of A (Gelfand).

The spherical functions are the functions h W G ! C which are K bi-invariant
and continuous, with h.I/ D 1; such that the mapping

f 7! .f 	h/.I/

defines an algebra homomorphism of A onto C.
(3) More Integral Equations—The Analogue of the Funk-Hecke Theorem

(Gelfand).
A function h W G ! C which is nonzero, continuous, and K bi-invariant, is
spherical if and only if

Z

v2K

h.xvy/ dv D h.x/h.y/ for all x; y 2 G:

(4) Harish-Chandra’s Integral Formula (Selberg [543, pp. 53–59]).
A spherical function must be of the form (1.70) and if we use the r-variables
from formula (1.43) and Proposition 1.2.1 in Section 1.2.1, we have for Y 2 Pn

hs.Y/ D
Z

k2K

ps.YŒk�/ dk D
Z

k2K

'r.YŒk�/ dk; if 'r.IŒt�/ D
nY

jD1
t
2vj

jj
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where 2vj D 2.sj C � � � C sn/ D 2rj C j � .n C 1/=2, for r 2 C
n, and t 2 Tn,

the group of upper triangular n � n matrices with positive diagonal entries.
Moreover hs.r/ D hs.r0/ if and only if r0 D .r�.1/; : : : ; r�.n// for some permutation
� of n elements.

(5) Connection with Group Representations (Gelfand and Naimark).
A spherical function h is called positive definite if for any f W G ! C which is
continuous with compact support, the following inequality holds:

Z

G

Z

G

h.a�1b/ f .a/ f .b/ da db � 0:

Positive definite spherical functions h can be expressed in the form

h.a/ D .x0jUax0/; a 2 G;

for some irreducible unitary representation U of G of class one. Here x0 is a
K-fixed vector in the Hilbert space X on which U acts and .xjy/ denotes the
Hilbert space inner product of x and y in X. Class one means that such a K-
fixed x0 must exist in X.

Proof.

(1) , .h is spherical).

This follows from Proposition 1.2.4 and the following exercise.

Exercise 1.2.23. Show that A is a commutative algebra.
Hint. Imitate the proof of part (4) of Lemma 3.7.2 in Vol. I. This was essentially
Exercise 1.1.26 of Section 1.1.4.

.1/ ) .2/:

Suppose that .f 	h/ D �f h for all f 2 A. Then .f 	h/.I/ D �f h.I/ D �f . Therefore

�f �g D ..f 	g/	h/.I/ D .f 	.g	h//.I/ D �f�g:

(2))(3).

Suppose that h is as in (2); i.e., suppose that upon setting �f D .f 	h/.I/, we have
�f �g D �f�g, for all f ; g in A. We want to show that h satisfies the integral equation:

Z

K

h.xvy/ dv D h.x/h.y/:

Now �f �g D �f�g implies that

Z Z
f .y�1/g.x�1/h.yx/ dy dx D

Z Z
f .y�1/g.x�1/h.x/h.y/ dx dy:
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And the left-hand side of this equality may be rewritten as:

Z Z
f .y�1/g.x�1/

Z

K

h.yvx/ dv dy dx:

It follows that
Z

K

h.yvx/ dv D h.x/h.y/ almost everywhere

and continuity completes the proof.

(3)) .h is spherical).

To see that (3) implies that h is infinitely differentiable, suppose that g is in
C1

c .G/ with the property that
R

G g.y/h.y/dy ¤ 0. By part (3) we have:

h.x/
Z

G

h.y/g.y/ dy D
Z

G

g.y/
Z

K

h.xky/ dk dy D
Z

K

Z

G

g.k�1x�1u/h.u/ du dk:

It follows that h.x/ is infinitely differentiable, since g.x/ is.
To see that indeed part (3) implies that h is a spherical function, we must show

that h is an eigenfunction for the G-invariant differential operators L 2 D.Pn/. This
follows from the following considerations:

.Lxh.x//h.y/ D Lx

Z

K

h.xvy/ dv D
Z

K

.Lh/.xvy/ dv:

Set x D I to obtain .Lh/.I/h.y/ D .Lh/.y/. This completes the proof that h is
a spherical function, since the integral formula satisfied by h clearly implies that
h.I/ D 1.

This completes the proof that (1)–(3) are all equivalent to the definition of
spherical function.

(4), .h is spherical).

Only the ( needs some discussion. We know from Theorem 1.1.2 of § 1.1.5 that
the algebra D.Pn/ is the polynomial algebra over C generated by the algebraically
independent operators Lj D Tr..Y@=@Y/j/; for j D 1; 2; : : : ; n. Any spherical
function h gives a homomorphism of the algebra D.Pn/ into C, defined by sending
L in D.Pn/ to the eigenvalue �L, with Lh D �Lh.

We know from Theorem 1.2.1 of § 1.2.1 that Lihr D �j.r/hr; j D 1; 2; : : : ; n,
where �j.r/ is a symmetric polynomial of degree j in r1; : : : ; rn, such that the highest
degree homogeneous term is rj

1 C � � � C rj
n. It follows that the �j form a basis for the

symmetric polynomials in r1; : : : ; rn. Now suppose we are given a spherical function
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h and thus a set of eigenvalues �j, with Ljh D �jh; j D 1; : : : ; n. The uniqueness of
spherical functions (proved in part 1) of Proposition 1.2.4 implies that h D hr.

Suppose next that hr D hr0 , for r; r0 2 C
n. Then each polynomial �i.r/ D �i.r0/,

for i D 1; : : : ; n. But then all the symmetric polynomials agree on r and r0. This
implies that r0 is obtained from r by permuting the entries rj.

In this proof we used some facts about symmetric polynomials which are proved
in Exercise 1.2.10 of Section 1.2.1.

(5) We omit the proof of part (5) of Theorem 1.2.3. Proofs can be found in Helgason
[273, pp. 414–417] or Maurin [437, p. 233], for example. �

Harish-Chandra’s result in the preceding theorem, generalizing the unique
characterization of spherical functions for the Poincaré upper half plane, is very
remarkable. For it is much harder to obtain uniqueness results for solutions of
partial differential equations than for solutions of ordinary differential equations.
One might ask whether the method of proof could be used to obtain an analogue
for Bessel functions for Pn. So far, this does not appear to be possible. For there
is no obvious way to replace the operator M which averages functions over the
compact group K with its analogue for the noncompact group N.m; n � m/ in (1.58)
of Section 1.2.2. However, for Whittaker functions this might be possible. Indeed
we will see in the next section that integrals over K (actually K=M) can be replaced
by integrals over N (actually the opposite group N of lower triangular matrices with
ones on the diagonal). In fact, the multiplicity one result of Shalika mentioned in
Section 1.5.4 and proved in Goldfeld [230, p. 155] provides a uniqueness result for
Whittaker functions.

In Vol. I, p. 194, we claimed again (sorry) that the central limit theorem for
rotation invariant densities on the Poincaré upper half plane followed from the
following asymptotic formula:

h1=2Cip;0

�
e.1=2/r 0

0 e�.1=2/r
�

D P�1=2Cip.cosh r/ � J0.pr/; as r ! 0;

� 1 � 1
4
r2p2; as r ! 0:

(1.73)

Here Pv.z/ is the Legendre function and J0.z/ is the Bessel function. Actually for
the central limit theorem we need to know second order terms exactly and thus we
really need the following formulas, using the standard power series for the Gauss
hypergeometric function:

Pv.z/ D 2F 1

�
�v; v C 1I 1I 1

2
.1 � z/

�

D
X

k�1

.�v/k.v C 1/k

kŠ.1/k

�
1 � z

2

�k

; jz � 1j < 2:
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It follows that, as r ! 0,

P�.1=2/Cip.cosh r/ � 1C 1

2

ˇ̌
ˇ̌1
2

� ip

ˇ̌
ˇ̌
2

.1 � cosh r/ � 1 � 1

4

�
1

4
C p2

�
r2:

Thus when n D 2 the zonal spherical function has the following asymptotic
expansion:

h.1=2/Cip

�
er 0

0 e�r

�
� 1 �

�
1

4
C p2

�
r2; as r ! 0: (1.74)

This does not change the fact that the central limit theorem holds for identically
distributed rotation-invariant sequences of random variables on H. In fact (1.74)
is even “better” than (1.73) in the sense that the coefficient of r2 is exactly the
eigenvalue of the Laplacian corresponding to the spherical function; i.e.,

�h1=2Cip

�
er 0

0 e�r

�
D �

�
1

4
C p2

�
h1=2Cip

�
er 0

0 e�r

�
:

The arguments of Vol. I, pp. 194–195, go through exactly as before.
Despite the problem noted above, it is still useful to generalize (1.73) to the

space Pn. We can do this for general n using Helgason [279, Lemma 4.3] and
some expansions of James [328–330]. This will not give us a central limit theorem,
however. For that, we must generalize (1.74). In this section, we shall do that only
in the case of P3, using the Taylor expansion of the zonal spherical function. In
Section 1.2.5 we will consider Richards’ extension of this result to the general case.

Let us first discuss Helgason [279, Lemma 4.3] in our case. First we will need
some preliminaries from the theory of symmetric spaces and Lie groups. We saw in
Exercise 1.1.12 of Section 1.1.3 that any matrix g in GL.n;R/ can be decomposed
(uniquely) into Iwasawa coordinates:

g D kan; k 2 K; a 2 A; n 2 N:
Write k D K.g/; a D A.g/; n D N.g/:

�
(1.75)

Corresponding to (1.75), we have an Iwasawa decomposition of the Lie algebra
g of G which is the tangent space to G at the identity equipped with a Lie
bracket coming from identification of tangent vectors with left G-invariant first order
differential operators (vector fields) on G. In our case, we have:

g D gl.n;R/ D R
n�n; with Lie bracket ŒX;Y� D XY � YX: (1.76)

See Chapter 2 for more information on Lie algebras.
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The Lie algebra Iwasawa decomposition is:

g D k ˚ a ˚ n; where
k D o.n/ D fX 2 g j tX D �Xg ;
a D fX 2 g j X diagonalg ;
n D fX 2 g j X is upper triangular; 0 on the diagonalg :

9
>>=

>>;
(1.77)

The tangent space to Pn at I can be identified with:

p D ˚
X 2 R

n�n j tX D X
�
: (1.78)

We can clearly write

p D a ˚ q; with a as in (1.77)

and

q D fX 2 p j X is 0 on the diagonalg : (1.79)

We will use the following notation for X 2 p:

X D H C Y; H 2 a; Y 2 q; H D a.X/; Y D q.X/: (1.80)

Because Pn is a symmetric space coming from the Lie group G, we have a
Cartan involution 
 W g ! g given by 
.X/ D � tX. If � I denotes the geodesic-
reversing isometry of Pn at the identity, then .d�/I D 
 jp. We can therefore write,
for X 2 p:

q.X/ D �.Z C 
.Z//C 2Z D Z C tZ; for some Z 2 n: (1.81)

Now, it is not, in general, true that for X;Y 2 g, we have exp.X/ exp.Y/ D
exp.X C Y/. Instead there is an expansion called the Campbell-Baker-Hausdorff
formula. Here we give only the first two terms:

exp.tX/ exp.tY/ D exp

�
t.X C Y/C

�
1

2

�
t2ŒX;Y�C O.t3/

�
; (1.82)

for X;Y 2 g and t 2 R assumed to be small.
It follows that if H 2 a; k 2 K; t 2 R (small),

exp.tHŒk�C O.t2// D exp.�t.Z C 
.Z// exp.ta.HŒk�// exp.2tZ/; (1.83)
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for some Z 2 n. Note that in (1.83),

exp.�t.Z C 
.Z/// 2 K; exp.ta.HŒk�// 2 A; exp.2tZ/ 2 N:

Thus, the following lemma has been proved.

Lemma 1.2.1 (Helgason [279, Lemma 4.3]). Suppose that H 2 a and k 2 K D
O.n/, using the notation (1.77). Then we have the following asymptotic relation as
t approaches 0:

A.exp.tHŒk�/ � exp.ta.HŒk�//;

where we use the notation set up in (1.75) and (1.80).

The preceding lemma has as an immediate consequence an asymptotic formula
for the spherical function (1.70). Suppose that for H 2 a we write

H D

0

B
@

h1 0
: : :

0 hn

1

C
A ; hj 2 R:

Then we normalize the power function as in part (4) of Theorem 1.2.3, to obtain:

ps.exp H/ D
nY

jD1
exp.hjvj/; (1.84)

with vj D sj C � � � C sn D rj C 1
2

j � 1
4
.n C 1/. Lemma 1.2.1 says that

ps.exp.tHŒk�// � ps.exp.ta.HŒk�///; as t ! 0:

Now a.HŒk�/ is just the diagonal part of the symmetric matrix

HŒk� D .tkiHkj/1�i;j�n; for k D .k1 � � � kn/ 2 K: (1.85)

Here kj denotes the jth column of the orthogonal matrix k. So we find that

ps.exp.ta.HŒk�/// D
nY

jD1
exp.tHŒkj�vj/ D exp

8
<

:
t

nX

j

HŒkj�vj

9
=

;

D exp

8
<

:
t

nX

i;jD1
hivjk

2
ij

9
=

;
D expftTr.HŒk�V/g;

where V is the diagonal matrix with jth diagonal entry vj. The following result has
now been proved.
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Theorem 1.2.4 (An Asymptotic Formula for the Spherical Function at the
Identity). If

H D

0

B
@

h1 0
: : :

0 hn

1

C
A 2 a; s 2 C

n;

we have the following asymptotic formula for the spherical function in (1.70):

hs.exp.tH// �
Z

k2KDO.n/

expftTr.HŒk�V/g dk; as t ! 0;

where

V D

0

B
@

v1 0
: : :

0 vn

1

C
A ; vj D sj C � � � C sn D rj C 1

4
.2j � n � 1/:

Helgason [282, pp. 423–467] considers such functions as the integral appearing
in Theorem 1.2.4. James [328–330] has extensively studied these functions with a
view towards statistical applications (see also Farrell [173, 174]), Muirhead [468],
and Takemura [585]). We need to review some of this work. In the notation of James,
the integral of interest is:

0F0
.n/.X;Y/ D

Z

k2K

exp
˚
Tr
�
XkYk�1�� dk; for X;Y 2 p: (1.86)

James obtains an expansion of this integral in a series of zonal polynomials
associated with partitions � of k W

� D .k1; : : : ; kn/ of kI i:e:; k D k1 C � � � C kn;

with k1 � k2 � � � � � kn � 0, and kj 2 Z. Note that we are allowing the parts kj to
vanish.

If � D .k1; : : : ; kn/ and � D .l1; : : : ; ln/ are two partitions of k and if kj > lj
for the first index j for which the parts are unequal, then we say � > � and the
monomial

xk1
1 � � � xkn

n

is of higher weight than

xl1
1 � � � xln

n :

That is, we use the lexicographic order.
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Now define the zonal polynomial C�.Y/, for partition �; Y 2 Pn with
eigenvalues a1; : : : ; an, to be a symmetric homogeneous polynomial of degree k
in a1; : : : ; an with the following three properties:

(1) The term of highest weight is d�ak1
1 � � � akn

n ;
(2) C� is an eigenfunction of the Laplacian and

�#C� D �C�; where �# D the part of

8
<

:
�C n � 3

2

X

j

aj
@

@aj

9
=

;

coming from the aj variables; that is (cf. (1.36) in § 1.1.6),

�# D
X

j

a2j
@2

@a2j
C
X

i¤j

�
a2i

ai � aj

�
@

@ai
I (1.87)

(3) .TrY/k D P
� C�.Y/, where the sum runs over all partitions of k into n parts

some of which may vanish. Here we are using the well-known property of
Euler’s operator

P
i ai

@
@ai

. See formula (1.89) below.

Lemma 1.2.2. The eigenvalue � in the preceding definition of C� is

� D
X

i

ki.ki � i/C k.n � 1/:

Exercise 1.2.24. Prove Lemma 1.2.2.
Hint. See Muirhead [468, p. 229].

It is possible to express the zonal polynomials C� in terms of the following
monomial symmetric functions corresponding to a partition � D .k1; : : : ; kp/.
If Y D aŒk�, for a 2 A; k 2 K, then define M� by:

M�.Y/ D
X

�

ak1
i1

ak2
i2

� � � a
kp

ip
;

where the sum is over all choices � D fi1; : : : ; ipg of p distinct integers in
f1; 2; : : : ; ng. For example,

M.1/.Y/ D a1 C � � � C an D Tr.Y/;

M.2/.Y/ D a21 C � � � C a2n D Tr.Y2/;

M.1;1/.Y/ D a1a2 C � � � C a1an C a2a3 C � � � C an�1an:
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Clearly

M.1;1/.Y/ D 1

2

n
M2
.1/.Y/ � M.2/.Y/

o
:

Now it is easy to compute the first few zonal polynomials.

Example 1.2.5. k D 1.

C.1/.Y/ D M.1/.Y/ D Tr.Y/:

Example 1.2.6. k D 2.

C.2/.Y/ D M.2/.Y/C .2=3/M.1;1/.Y/:

C.1;1/.Y/ D .4=3/M.1;1/.Y/:

Exercise 1.2.25. Fill in the details for the preceding examples.
Hint. See Muirhead [468, pp. 231–232].

Finally we get the expansion for 0F
.n/
0 .X;Y/ obtained by James.

Proposition 1.2.5.

0F
.n/
0 .X;Y/ D

Z

k2K

exp
˚
Tr
�
XkYk�1�� dk

D
X

k�0

1

kŠ

X

�

C�.X/C�.Y/

C�.I/
;

where the second sum is over all partitions � of k.

Proof (Following Muirhead [468, pp. 243–244, 258–260]).
Clearly

exp
˚
Tr
�
XkYk�1�� D

X

l�0

1

lŠ

X

�

C�
�
XkYk�1� :

One can complete the proof by showing that

Z

k2K

C�
�
XkYk�1� dk D C�.X/C�.Y/

C�.I/
: (1.88)

To see this, consider the left-hand side as a function of Y and call it f .Y/. Then
f .Y/ D f .YŒk�/ for all k 2 K. Thus f .Y/ depends only on the eigenvalues of Y , and
moreover, it must be a homogeneous symmetric polynomial of degree k in these
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eigenvalues. Now use the G-invariance of �Y and standard facts about the Euler
differential operator

x1@=@x1 C � � � C xn@=@xn (1.89)

acting on homogeneous functions (see Apostol [17, Vol. II, p. 287]) to see that if�#

is as in (1.87)

�#f .Y/ D �f .Y/:

It follows that f .Y/ D ˛C�.Y/ for some scalar ˛. Set Y D I and note that f .I/ D
C�.X/ to complete the proof. �

Thus, in particular, if H 2 a; hj 2 R; vj 2 C W

H D

0

B
@

h1 0
: : :

0 hn

1

C
A ; V D

0

B
@

v1 0
: : :

0 vn

1

C
A ; (1.90)

we obtain the following expansion:

Z

k2K

exp
˚
Tr.HkVk�1/

�
dk

D 1C 1
n Tr.H/Tr.V/C 4

3n.n�1/
X

i<j

hihj

X

i<j

vivj

C 3
2n.nC2/

0

@
X

i

h2i C 2
3

X

i<j

hihj

1

A

0

@
X

i

v2i C 2
3

X

i<j

vivj

1

A

Chigher order terms:

(1.91)

Since Theorem 1.2.4 is only good to first order, we do not expect this expansion to
hold for the spherical function hs.exp H/, though we do expect some similarity.

Next let us do the Taylor expansion of hs.exp H/ directly (using brute force) when
n D 3. We will consider the general case in Section 1.2.5. Here H is as in (1.90).
The differential operators appearing in the expansion will be evaluated at H D 0 and
they can be identified with G-invariant differential operators L 2 D.Pn/ evaluated
at I (see Helgason [273, 282] and the proof of part (1) of Proposition 1.2.4 above).
So, making use of the symmetry of the function in the hj, we obtain the following
form of the spherical function expansion on P3, where ! .i/ D i1 C � � � C ip W
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hs.exp H/ D
X

p

1
pŠ

X

iD.i1;:::;in/2Zn

ij�0; !.i/Dp

	
@phs

@h
i1
1 ���@hin

n




hjD0
hi1
1 : : : h

in
n

D 1C ˚
˛1
�P

i ri
�C ˇ1

� �P
i hi
�

C
n
˛2
�P

i r2i
�C ˇ2

�P
i¤j rirj

�
C �2

�P
i ri
�C ı2

o �P
i h2i
�

Cp.r/
�P

i¤j hihj

�
C higher order terms:

9
>>>>>>>>=

>>>>>>>>;

(1.92)

Here ˛i; ˇi; � i are constants and p.r/ is a symmetric polynomial of degree 2 in r and
the r-variables are related to the s-variables by

sj C � � � C sn D rj C 1

4
.2j � n � 1/: (1.93)

The first order terms in (1.92) are easy to find when n D 3. Here let k D
.k1k2k3/ 2 K D O.3/; i.e., kj denotes the jth column of the 3 � 3 rotation matrix k.
Then if a D exp H;

ps.aŒk�/ D aŒk1�
s1 jaŒk1k2�js2 jajs3

D aŒk1�
s1
˚
aŒk1�aŒk2� � .tk1ak2/

2
�s2 jajs3 ;

and

aŒkj� D
3X

iD1
aik

2
ij;

tkiakj D
3X

lD1
klialklj; jaj D a1a2a3:

Therefore, we have, setting

wi .a; k/ D k2i1aŒk2�C k2i2aŒk1� � 2.tk1ak2/ki1ki2; (1.94)

@
@hi

ps.aŒk�/

D s1aŒk1�s1�1k2i1aijaŒk1k2�js2 jajs3 C s3aŒk1�s1 jaŒk1k2�js2 jajs3
Cs2aŒk1�s1 jaŒk1k2�js2�1jajs3ai wi .a; k/ :

(1.95)

If we set h1 D h2 D h3 D 0, then aŒk� D I and we obtain:

	
@

@hi
ps.aŒk�/




hjD 0

j D 1; 2; 3

D s1k
2
i1 C s2.k

2
i1 C k2i2/C s3: (1.96)

The representation theory of O.3/ helps to evaluate the integrals we need. In
particular, it is known (see Section 2.1.5 of Vol. I and Broecker and tom Dieck
[81]) that since kij is the entry of an irreducible representation of O.3/, we have the
formula:
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Z

k2K
k2ij dk D 1=3: (1.97)

You can check this using the Euler angle decomposition (see Vilenkin [635,
pp. 106, 435–440], Wawrzyńczyk [657, pp. 287–291], or Volume I, p. 115):

0 � ˛; � � 2�; 0 � ˇ � �; dk D .8�2/�1 sinˇ d˛ dˇ d�;

k D

0

B
@

cos˛ sin˛ 0

� sin˛ cos˛ 0

0 0 1

1

C
A

0

B
@
1 0 0

0 cosˇ sinˇ
0 � sinˇ cosˇ

1

C
A

0

B
@

cos � sin � 0

� sin � cos � 0

0 0 1

1

C
A

D

0

B
@

cos˛ cos � � cosˇ sin˛ sin � cos˛ sin � C cosˇ sin˛ cos � sin˛ sinˇ
� sin˛ cos � � cos˛ cosˇ sin � � sin˛ sin � C cos˛ cosˇ cos � cos˛ sinˇ
sinˇ sin � � sinˇ cos � cosˇ

1

C
A

9
>>>>>>>>>>=

>>>>>>>>>>;

(1.98)

Thus, for example,

.2�/2
1

8�2

�Z

0

cos2 ˇ sinˇ dˇ D 1

3
:

One can use permutation matrices to see that all the integrals

Z

k2K
k2ij dk

must be equal. We could also evaluate them using James’ formula (1.91). It follows
that

Z

k2K

	
@

@hi
ps.aŒk�/




hjD 0

j D 1; 2; 3

dk D 1

3
.s1 C 2s2 C 3s3/: (1.99)

Recall that (as in (1.84))

s3 D r3C1

2
D v3; s2 D r2�r3�1

2
D v2�v3; s1 D r1�r2�1

2
D v1�v2: (1.100)

Therefore the right-hand side of (1.99) can be rewritten as

1

3
.r1 C r2 C r3/ D 1

3
.v1 C v2 C v3/;

which is exactly the first order term in (1.91) for n D 3.
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Let us now compute the second derivative (a sum of ten terms), defining wi .a; k/
as in formula (1.94):

@2

@hj@hi
ps.aŒk�/ D s1.s1�1/ aŒk1�

s1�2k2i1k2j1aiaj jaŒk1k2�js2 jajs3
Cıijs1 aŒk1�

s1�1k2i1ai jaŒk1k2�js2 jajs3
Cs1s2 aŒk1�

s1�1k2i1 jaŒk1k2�js2�1aiaj wj .a; k/ jajs3
Cs2.s2�1/ aŒk1�

s1 jaŒk1k2�js2�2aiaj jajs3 wi .a; k/ wj .a; k/
Cs1s2 aŒk1�

s1�1k2j1jaŒk1k2�js2�1aiaj wi .a; k/ jajs3
Cs1s3 aŒk1�

s1�1
�

k2i1ai C k2j1aj

�
jaŒk1k2�js2 jajs3

Cs2 aŒk1�
s1 jaŒk1k2�js2�1aiaj

n
k2i1k

2
j2 C k2i2k

2
j1 � 2ki1ki2kj1kj2

o
jajs3

Cs2 aŒk1�
s1 jaŒk1k2�js2�1ai ıij wi .a; k/ jajs3

Cs2s3 aŒk1�
s1 jaŒk1k2�js2�1 jajs3 ˚ai wi .a; k/C aj wj .a; k/

�

Cs23 aŒk1�
s1 jaŒk1k2�js2 jajs3 :

If we set h1 D h2 D h3 D 0, we obtain:

h
@2

@hj@hi
ps.aŒk�/

i

hk D 0

k D 1; 2; 3

D s1.s1�1/k2i1k2j1Cıijk2i1s1Cs1s2k2i1.k
2
j1Ck2j2/C ıijs2.k

2
i1Ck2i2/C s1s2k

2
j1.k

2
i1Ck2i2/

Cs2fk2i1k
2
j2Ck2i2k

2
j1�2ki1ki2kj1kj2g C s2.s2�1/.k2i1Ck2i2/.k

2
j1Ck2j2/

Cs1s3.k
2
i1Ck2j1/C s2s3.k

2
i1Ck2i2Ck2j1Ck2j2/C s23:

9
>>>>>>>>=

>>>>>>>>;

(1.101)
To integrate over K, we need some integral formulas:

Z

k2K

k4ii dk D 1

5
;

Z

k2K

k2i1k
2
i2 dk D 1

15
: (1.102)

These formulas are easily proved using the Euler angle decomposition (1.98) or
from formula (1.91).

It follows that when i D j we have

Z

k2K

h
@2

@h2i
ps.aŒk�/

i

hjD 0

j D 1; 2; 3

dk D 1
5
s1.s1 � 1/C 1

3
.s1 C 2s3/C 8

15
s1s2

C 8
15

s2.s2 � 1/C 2
3
s1s3 C 4

3
s2s3 C s23:
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Using (1.100), this is the same as:

3
15
.v21 C v22 C v23/C 2

15
.v1v2 C v1v3 C v2v3/C 2

15
.v1 � v3/

D 3
15
.r21 C r22 C r23/C 2

15
.r1r2 C r1r3 C r2r3/ � 1

15
:

We are not interested in the terms with i ¤ j since they will disappear in the
central limit theorem. So our asymptotic expansion for the spherical function on P3
becomes:

hs.exp H/ � 1C 1
3
.r1 C r2 C r3/.h1 C h2 C h3/

C 1
30

f3.r21 C r22 C r23/C 2.r1r2 C r1r3 C r2r3/ � 1g.h21 C h22 C h23/

Cp.r/.h1h2 C h1h3 C h2h3/C higher order terms; as H ! 0:

9
>>>>>=

>>>>>;

(1.103)

Here p.r/ is a symmetric polynomial of degree 2which we will not need to evaluate.
Note that the coefficient of h21 C h22 C h23 is not the eigenvalue of � given in

Exercise 1.2.12 of Section 1.2.1. This has interesting consequences for the central
limit theorem. D. St. P. Richards [511] generalized (1.103) to Pn, for all n. See
Section 1.2.5.

Exercise 1.2.26. (a) Check the evaluations of integrals over O.3/ given in formu-
las (1.97) and (1.102). Find p.r/ in (1.103).

(b) What happens to formula (1.103) if Tr.H/ D 0‹

(c) Obtain the analogue of formula (1.103) for P2 and SP2:

This completes our discussion of spherical functions for the present. In the next
section we will consider another sort of asymptotic formula for spherical functions.
In the preceding formula Y approached I, but in that of Section 1.3 the variable
Y will approach the boundary of the symmetric space. It will be necessary to find
such an expansion in order to obtain the inversion formula for the Helgason–Fourier
transform on Pn.

It is possible to prove a Weyl character formula (cf. Chapter 2 of Vol. I)
in the framework of spherical functions (see Harish-Chandra [263] and Berezin
[43]). Gelfand and Naimark [215] do the special case of the symmetric space
SL.n;C/=SU.n/ (cf. Chapter 2 of this volume). Recall that the Weyl character
formula expresses the characters of the irreducible representations of compact
semisimple Lie groups as ratios of exponential polynomials on a maximal abelian
Lie subalgebra.

The continuous homomorphisms from the algebra A (defined in Theorem 1.2.3)
onto the complex numbers are maps f 7! .f 	h/.I/, provided that h is a bounded
spherical function (see Helgason [273, p. 410]). Helgason and Johnson [283]
characterize the bounded spherical functions in terms of the s-variables. Flensted-
Jensen discovered relations between spherical functions on real semisimple Lie
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groups (such as SL.n;R)) and the more elementary spherical functions on the
corresponding complex groups (e.g., SL.n;C// (see Helgason [282, pp. 489–
490]). Healy [266] has made a study of relations between Fourier analysis on
SL.2;C/=SU.2/ and that on the sphere. See also Chapter 2 of this volume.

1.2.4 The Wishart Distribution

Now we consider applications of some of the results of the preceding subsections.
In particular, we will obtain a theorem of Wishart which is important both for
multivariate statistics and for the study of some number theoretical results to be
discussed in Section 1.4.

References for this subsection are Anderson [8], Farrell [173, 174], Herz [293],
James [328–330], Morrison [464], Muirhead [468], and Press [493].

A random matrix Y 2 Pp is said to have the (central) Wishart distribution
W.†; p; n/ with scale matrix † and n degrees of freedom, p � n, if the joint
distribution of the entries of Y has the density function:

f .Y/ D cjYj.n�p�1/=2j†j�n=2 exp
�� 1

2
Tr
�
†�1Y

��
; † 2 Pp;

with c�1 D 2np=2�p.pC1/=4
0

@
pY

jD1
�
�

nC1�j
2

�
1

A D 2np=2�p.0; : : : ; 0; n=2/:

9
>>=

>>;

(1.104)

The application of this density comes from the following theorem. This result was
first obtained by Fisher in 1915 for the case that p D 2 and by Wishart [670] in 1928
for general p.

Exercise 1.2.27. Show that in order for
Z

Pn

f .Y/
Y

i�j

dyij D 1;

the constant c in formula (1.104) must be as stated.
Hint. Use the formula for �p.0; : : : ; 0; s/ in Section 1.2.1.

Theorem 1.2.5 (Wishart [670]). Let Xi be a random variable in R
p, for i D

1; 2; : : : ; n, where p � n. Suppose that X1; : : : ;Xn are mutually independent and
distributed according to N.0;†/; that is, normal with mean 0 and covariance matrix
† 2 Pp (as in Section 1.1.7). Let X D .X1; : : : ;Xn/ 2 R

p�n and Y D X tX. Then,
with probability one, Y is in Pp and is distributed according to the Wishart density
W.†; p; n/ defined by (1.104).

Proof. First one must show that Y D X tX is positive definite with probability one.
We leave this to the reader in Exercise 1.2.28 below.
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The joint density of X1; : : : ;Xn is (cf. Section 1.1.7):

d.X/ D .2�/�np=2j†j�n=2 exp

0

@�1
2

nX

jD1
tXj†

�1Xj

1

A

D .2�/�np=2j†j�n=2 exp

�
�1
2

Tr
�
†�1 �X tX

���
:

To complete the proof, we simply need to see how to change variables from X in
R

p�n to V D X tX in the closure of Pp. First note that

Z

X2Rp�n

h
�
X tX

� ˇ̌
X tX

ˇ̌�n=2
dX; with dX D

Y

i;j

dxij;

defines a GL.p;R/-invariant measure on functions h W Pp ! C. Such measures
on Pp are unique up to a constant. Exercise 1.2.27 shows that the constant given
in (1.104) is correct. This completes the proof of Theorem 1.2.5. �

The proof of Theorem 1.2.5 also proves Wishart’s integral formula for p � n:

Z

X2Rp�n

h .X tX/ jX tXj�n=2 dX D wp;n

Z

Pp

h.Y/ d	p.Y/;

wp;n D
nY

jDn�pC1
� j=2�. j

2
/�1 D �np=2 �p

�
0; : : : ; 0; n

2

��1
:

(1.105)

Later (see Section 1.4) this formula will be very important to us in our study of
matrix series.

Exercise 1.2.28. (a) Show that under the hypotheses of Theorem 1.2.5, Y D X tX
is in Pp with probability one.

(b) Show that if p > n; X 2 R
p�n, then Y D X tX is singular.

Hint. (See Muirhead [468, pp. 82–83].) Note that if the columns of X are linearly
independent then the matrix Y is non-singular.

The Wishart distribution is a matrix analogue of the chi-square distribution
(which is the case p D 1). Univariate statistics makes frequent use of tables of
the chi-square distribution, which is, in fact, an incomplete gamma function.

If the random variables in Theorem 1.2.5 did not all have mean zero, then one
would be dealing with the noncentral Wishart distribution, written in terms of the
integral

Z

k2K

exp.Tr.XkY// dk;
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which is a generalization of the J-Bessel function (see Herz [293], James [328–
330], Farrell [173, 174], Muirhead [468, pp. 441–449]). The noncentral Wishart
distribution was first studied by T.W. Anderson in 1946 in special cases. In 1955
Herz expressed the distribution in terms of the 0F1 matrix argument hypergeometric
function. In the early 1960s James and Constantine gave the zonal polynomial
expansion for it.

The Wishart distribution is important, for example, in factor analysis, which
seeks to explain correlation between a set of random variables in terms of a
minimum number of factors. Such analysis is useful in many of the social sciences.
There are many examples and references in Press [493, Chapter 10]. One example
given by Press involves a seven-factor analysis of prices of 63 securities. One of the
factors appeared to have an effect on all securities. The remaining six factors tended
to group the stocks by industry.

It is possible to use Proposition 1.2.4 of Section 1.2.3 to evaluate some special
integrals which arise in number theory and statistics (see Maass [426, Ch. 7] and
Muirhead [468, Ch. 7]). We want to evaluate an integral which appears in Muirhead
[468, Theorem 7.2.7, p. 248]:

I.B; r; s/ D
Z

Y2Pn

expŒ�Tr.B�1Y/� jB�1Yjr hs.Y/ d	n.Y/; (1.106)

for B 2 Pn; r 2 C; s 2 C
n. Here hs.Y/ denotes the spherical function defined

by (1.70) in the preceding subsection. We can use Proposition 1.2.4 of the preceding
subsection to evaluate I.B; r; s/ as

I.B; r; x/ Dbf .s�/hs.B/; with f .Y/ D jYjr expŒ�Tr.Y/�; (1.107)

and s� D .sn�1; : : : ; s2; s1; �.s1 C � � � C sn// as in part (4), Proposition 1.2.1,
Section 1.2.1. Here bf denotes the Helgason–Fourier transform defined in for-
mula (1.72).

We should perhaps discuss the proof of (1.107), since Proposition 1.2.4, Section
1.2.3 considered only functions g 2 C1

c .KnG=K/ such that g is invariant under
inversion. Our function f .Y/ does not satisfy these hypotheses, setting Y D IŒx�; x 2
G; to make it a function on G. We can easily do away with the hypothesis that f
have compact support. But to do away with the hypothesis that f be invariant under
inversion on G is impossible. But note that our function f has the property that
f .IŒx�/ D f .IŒtx�/ for all x 2 G. Therefore we have the following equalities:



1.2 Special Functions on Pn 97

.ps	f /.I/ D
Z

G

ps.IŒx�/f .IŒx
�1�/ dx D

Z

G

ps.IŒx�/f .IŒ
tx�1�/ dx

D
Z

Pn

ps.Y/f .Y
�1/ d	n.Y/ D

Z

Pn

ps.Y
�1/f .Y/ d	n.Y/

D
Z

Pn

ps.Y
�1Œ!�/f .Y/ d	n.Y/ D

Z

Pn

ps�.Y/f .Y/ d	n.Y/;

where! and s� are as in part (4) of Proposition 1.2.1, Section 1.2.1. This last integral
isbf .s�/, and our discussion of (1.107) is finished.

Now the Helgason–Fourier transformbf is:

bf .s/ D
Z

Y2Pn

ps.Y/ jYjr expŒ�Tr.Y/� d	n.Y/ D �n ..0; : : : ; 0; r/C s/ :

Thus we have proved that:

Z

Y2Pn

expŒ�Tr.B�1Y/� jB�1Yjr hs.Y/ d	n.Y/ D �n
�
s� C .0; : : : ; 0; r/

�
hs.B/;

(1.108)
where B 2 Pn; r 2 C; s 2 C

n. This says that a spherical function is reproduced
upon taking expectations with respect to the Wishart distribution. Muirhead [468,
p. 260] uses (1.108) to show that one obtains the matrix argument p�1Fq function as
the matrix Laplace transform (as defined in Exercise 1.2.2 of Section 1.2.1) of the
matrix pFq function. Herz [293] had defined the matrix argument hypergeometric
functions recursively by taking matrix Laplace transforms in this way. See James
[329] for a nice summary of the facts about the matrix argument hypergeometric
functions and their statistical applications. For example, James notes [329, p. 481]
that the zonal polynomials C� that we considered in the preceding section can
be expressed as integrals over O.n/ of the characters of the general linear group.
James defined the matrix argument hypergeometric functions as series of these zonal
polynomials.

Exercise 1.2.29. Prove that the integral I.B; r; s/ defined in (1.106) really is the one
considered by Muirhead [468]. To do this, you must show that given a partition � of
k, one can find a special choice s.�/ 2 C

n so that

˛hs.Y/ D C�.Y/; for some constant ˛:

Here C�.Y/ is the zonal polynomial which we defined in the preceding subsection
(see the discussion before Proposition 1.2.5).
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Hint. Clearly hs.Y/ is a K-invariant eigenfunction of the Laplacian. If you choose
s 2 C

n to be a vector of integers, then hs.Y/ is indeed a symmetric polynomial.

1.2.5 Richards’ Extension of the Asymptotics of Spherical
Functions for P3 to Pn for General n

It takes a new approach and much cleverness to generalize the asymptotic for-
mula (1.103) from n D 3 to general n. This is necessary in order to generalize
the central limit theorem from n D 3 to general n. Richards managed this in [511].
We follow his proof. It makes use of some integral formulas for the integral power
function ps.X/; for X a real, square, but not necessarily symmetric, matrix with
nonnegative integral s— formulas proved by Kushner [380].

Theorem 1.2.6 (Richards’ Asymptotic Formula for Spherical Functions). As
the n � n diagonal matrix H ! 0; we have the following asymptotic formula for the
spherical function hs .exp H/ W

hs .exp H/ � 1C 1

n

 
nX

iD1
ri

! 
nX

iD1
hi

!

C 1

2n .n C 2/

0

@3
nX

iD1
r2i C 2

X

1�i<j�n

rirj � n3 � n

24

1

A
 

nX

iD1
h2i

!

CP.r1; : : : ; rn/

0

@
X

1�i<j�n

hihj

1

AC higher order terms:

Here hi denotes the ith diagonal entry of H and the relation between r and s is

sj C � � � C sn D rj C 2j�n�1
4

; j D 1; : : : ; n;
rj � rjC1 D sj � 1

2
; j D 1; : : : ; n � 1; sn D rn � n�1

4

�
(1.109)

as in Theorem 1.2.3. The function P.r/ is a polynomial we will not need to determine.

Proof (From [511]).

Step 1. Derivatives of Power Functions.

First it helps to use the logarithmic derivative of the power function, since it is a
product. We find that if a D exp H and �j.x/ D jth principal minor of the n � n
matrix x W

@

@h1
log ps.aŒk�/ D 1

ps.aŒk�/

@

@h1
ps.aŒk�/ D

nX

jD1
sj

1

�j.aŒk�/

@

@h1
�j.aŒk�/: (1.110)
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Define�
b1;:::;bj
c1;:::;cj .x/ to be the j�j subdeterminant of the matrix x obtained by taking

the rows from b and the columns from c. Then apply the Cauchy–Binet formula to
get

�j.aŒk�/ D
X

1�b1<���<bj�n

X

1�c1<���<cj�n

�
1;:::;j
b1;:::;bj

�
tk
�
�

b1;:::;bj
c1;:::;cj .a/ �

c1;:::;cj

1;:::;j .k/:

(1.111)
As a is diagonal, �b

c D 0 unless b D c: One finds that �b
b D ab1 � � � abj : Thus

�j.aŒk�/ D
X

1�b1<���<bj�n

�
�
1;:::;j
b1;:::;bj

�
tk
��2

ab1 � � � abj : (1.112)

Since abi D ehbi ; we find that

@

@h1
ab1 � � � abj D

�
0; if b1 ¤ 1;

ab1 � � � abj if b1 D 1:

For ` D 1; 2; and j D 1; : : : ; n; define

fj.k/ D
	
@`

@h`1
�j.aŒk�/




HD0
D

X

1Db1<���<bj�n

�
�
1;:::;j
b1;:::;bj

�
tk
��2

: (1.113)

Note that fj.k/ is independent of ` and fn.k/ D 1:

Step 2. Integration over K D O.n/.

For any function � 2 L1.K/; define

E.�/ D
Z

K

�.k/ dk; dk D Haar measure on K:

Then we need two formulas, for j D 1; : : : ; n:

Formula 1. E
�
fj.k/

� D j
n :

Formula 2. E
�
f1.k/fj.k/

� D jC2
n.nC2/ :

9
>=

>;
(1.114)

Step 3. Proof of Formula 1.

The invariance of Haar measure allows us to see that E
��
�
1;:::;j
b1;:::;bj

.tk/
�2�

is

independent of b: Then, using (1.112) with a D I;



100 1 The Space Pn of Positive n � n Matrices

X

1Db1<���<bj�n

�
�
1;:::;j
b1;:::;bj

�
tk
��2 D 1:

Apply E to this equation and obtain

E
��
�
1;:::;j
b1;:::;bj

�
tk
��2� D 1

�
n
j

� :

Substitute this into (1.113) to see that

E
�
fj.k/

� D
X

1Db1<���<bj�n

E
��
�
1;:::;j
b1;:::;bj

�
tk
��2� D

�
n � 1
j � 1

�

�
n
j

� D j

n
:

Step 4. Proof of Formula 2.

Our usual invariance argument shows that

E
�
f1.k/fj.k/

� D
X

1Db1<���<bj�n

E
�
�1 .

tk/2 �1;:::;j
b1;:::;bj

.tk/2
�

D
�

n � 1
j � 1

�
E
�
�1 .k/

2 �j .k/
2
�
:

Using Kushner’s formula in Proposition 1.2.6 that follows, we obtain formula 2.

Step 5. Computation of the Coefficients in the Asymptotic Expansion.

Write

hs .exp H/ � 1C P1.r1; : : : ; rn/

 
nX

iD1
hi

!

C P2.r1; : : : ; rn/

 
nX

iD1
h2i

!

CP3.r1; : : : ; rn/

 
X

1�i<�n

hihj

!

C higher order terms;

where P1.r1; : : : ; rn/ D ˛11

nX

iD1
ri C ˛12;

P2.r1; : : : ; rn/ D ˛21

nX

iD1
r2i C ˛22

X

1�i<j�n

rirj C ˛23

nX

iD1
ri C ˛24:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(1.115)
We do not need to determine the polynomial P3.r1; : : : ; rn/:
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Recall the relation between the r variables and the s variables which is stated in
the theorem. Also note that formula (1.115) is symmetric in h1; : : : ; hn so that we
only need to find the coefficients of h1 and h21:

We need to rewrite the polynomials Pj.r1; : : : ; rn/ in terms of the s variables. We
obtain

P1.r1; : : : ; rn/ D ˛11

nX

iD1
ri C ˛12 D

nX

iD1
ˇ
.i/
11si C ˇ12

and

P2.r1; : : : ; rn/ D ˛21

nX

iD1
r2i C ˛22

X

1�i<j�n

rirj C ˛23

nX

iD1
ri C ˛24

D
nX

iD1
ˇ
.i/
21s

2
i C

X

1�i<j�n

ˇ
.i;j/
22 sisj C

nX

iD1
ˇ
.i/
23si C ˇ24:

(a) Computation of ˛11 and ˛12:

With effort we see that

	
@

@h1
hs
�
eH
�


HD0
D

nX

jD1
sjE

�
fj.k/

� D
nX

jD1
sj

j

n
:

Then one can use Abel partial summation (see Apostol [17, Vol. I, p. 407])
to see that

nX

jD1
jsj D

nX

jD1
rj:

This implies that ˛11 D 1
n and ˛12 D 0:

(b) Computation of ˛21:

After some work we find that

	
@2

@h21
hs
�
eH
�


HD0
D

nX

jD1
sj

�
E
�
fj.k/

� � E
�
fj.k/

�2�C E

0

@
nX

jD1
sjfj.k/

1

A

2

+ Q.s/

(1.116)
As the Taylor expansion we seek is symmetric in the rj; we need to only

compute the coefficient of r21 which is the same as the coefficient of s21: Thus
˛21 D E

�
f1.k/2

� D 3
n.nC2/ ; using formula 2.

(c) Computation of ˛22:

We have

2˛21 C ˛22 D ˇ
.1;2/
22 D 2E .f1.k/f2.k// :
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This implies

˛22 D 2E .f1.k/f2.k// � 2˛21 D 2E .f1.k/f2.k// � 2E �f1.k/2
�

D 2E
�
f1.k/f2.k/ � f1.k/

2
�
;

which implies ˛22 D 2
n.nC2/ :

(d) Computation of ˛23:

Using similar arguments to the preceding, we find that

˛23 D ˇ23 � ˛21 n � 1
2

C ˛22
n � 1
4

and ˇ23 D E
�
f1.k/ � f1.k/

2
�
:

Plug in the previously computed coefficients ˛21 D E
�
f1.k/2

�
and ˛22 D

2E
�
f1.k/f2.k/ � f1.k/2

�
to find that ˛23 D 0:

(e) Computation of ˛24:

From (1.116) we see that Q.0/ D 0 and

Q.s/ D
	
@2

@h21
hs
�
eH
�


HD0
D ˛21

nX

iD1
r2i C ˛22

X

1�i<j�n

rirj C ˛24:

If s D 0, then rj D nC1�2j
4

; for j D 1; : : : ; n. Evaluate everything at s D 0

to find after some effort that

˛24 D �.n � 1/.n C 1/

24.n C 2/
:

This completes the proof of the theorem. �

Next we must prove the integral formulas needed for the preceding theorem.
They are generalizations of (1.97). Kushner [380] proves a much more general
result but we will just consider the formulas we need. First we extend the power
function pn.X/ to any square matrix X 2 R

k�k (not necessarily positive definite
symmetric) if n D .n1; : : : ; nk/; where the ni are nonnegative integers. If Xi

denotes the upper left i � i part of X; then clearly the integral power function:

pn.X/ D
Y

iD1
jXijni (1.117)

makes sense. We want to evaluate certain integrals of the form

E.pn/ D
Z

O.k/

pn.X/dX;

where dX is Haar measure on the orthogonal group. Here E stands for expectation.
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We need to know that pn.X/ is an eigenfunction of the differential operator

jXj
ˇ̌
ˇ @@xij

ˇ̌
ˇ : That is we need the following exercises.

Exercise 1.2.30. Compute the eigenvalue of the differential operator D1 D jXj @X;

@X D det
�
1
2

�
1C ıij

�
@
@xij

�
on the usual the power function ps.X/ for X 2 Pk: The

answer is

D1ps.X/ D
kY

iD1

�
ri C k � 1

4

�
ps.X/;

if, as usual,

sj C � � � C sk D rj C 2j�k�1
4

; j D 1; : : : ; k;
rj � rjC1 D sj � 1

2
; j D 1; : : : ; k � 1; sk D rk � k�1

4
:

Hint. This is proved by Maass [424, p. 83.].
Start with

Js.X/ D ps.X/�k.s/ D
Z

Y2Pk

ps.Y/e
�Tr.YX�1/d	k;

where d	k D jYj�.kC1/=2 Y

1�i�j�k

dyij: Let �.Y/ D Y�1:We know that L� D L� and

ps
�
Y�1Œ!�

� D ps�.Y/; with ! and s� defined by Proposition 1.2.1.

ForbX D X�1 and s C 1 D .s1; s2; : : : ; sk�1; sk C 1/

Js.I/D1

�
bXŒ!�

�
ps�

�
bXŒ!�

�
D Js.I/D1

�
bX
�

ps.X/ D D1

�
bX
�

Js.X/

D
Z

Y2Pk

ps.Y/D1.bX/e
�Tr

�
YbX
�

d	k

D .�1/k
ˇ̌
ˇbX
ˇ̌
ˇ
Z

Y2Pk

jYj ps.Y/D1.Y/e
�Tr

�
YbX
�

d	k

D .�1/kJsC1.I/ps.X/ D .�1/kJsC1.I/ps�

�
bXŒ!�

�
:

Then use formula (1.45)

�k.s/ D �k.s/ D �k.k�1/=4
kY

jD1
�

�
sj C � � � C sk � j � 1

2

�
:



104 1 The Space Pn of Positive n � n Matrices

Exercise 1.2.31. Show that if DX D
ˇ̌
ˇ @@xij

ˇ̌
ˇ and pn.X/ denotes the power function

extended to X 2 R
k�k when the powers are n D .n1; : : : ; nk/; with nj nonnegative

integers:

jXj DX pn.X/ D � k.
n

2
/pn.X/;

where

� k.n/ D � k.t/ D
kY

iD1
.k � i C 2ti/ ; (1.118)

with ti � tiC1 D ni; for i D 1; : : : ; k:
Hint. This is Kushner’s Theorem 2 (see [380, p. 697]). First one needs to connect

the eigenvalue for jXj
ˇ̌
ˇ @@xij

ˇ̌
ˇ of the extended power function to that of D1 D jXj @X;

@X D det
�
1
2

�
1C ıij

�
@
@xij

�
on the usual power function with X 2 Pk which

we computed in the preceding exercise. Assume that the entries of n are even
nonnegative integers. Note that

pn.XT/ D pn.X/pn.T/ D pn=2.
tTT/pn.X/;

for upper triangular T:

Next we need to prove formula 2 in (1.114) above which means we need to prove

E
�
�1 .k/

2 �r .k/
2
�

D r C 2

k.k C 2/

�
k � 1
r � 1

� :

To do this, we follow Kushner [380]. For n D .n1; : : : ; nk/; with nj nonnegative
even integers he defines

g.X/ D e
1
2 Tr.tXX/ and .2�/k

2=2 cn D
Z

X2Rk�k

pn.X/g.X/dX; (1.119)

where dX is the usual Lebesgue measure on the space R
k�k:

Note that we are seeking to evaluate E .pn/ ; where n D .2; 0; : : : ; 0; 2; 0; : : : ; 0/,
the second 2 being in the rth place for 1 < r � k:

Exercise 1.2.32 (Kushner’s Integral Formula). Suppose that dX denotes Haar
measure on O.k/ and pn denotes the integral power function with n D .n1; : : : ; nk/;

such that nj are nonnegative even integers. Show that, if cn is as in (1.119), we have



1.2 Special Functions on Pn 105

E .pn/ D
Z

O.k/

pn.X/dX D cn .2�/
k2=2

gk�k
�

nCk
2

�
p nCk

2
.2I/

; (1.120)

where 2kgk D Vol.O.k// using the k�1dk measure on O.k/ which was computed in
Proposition 1.2.2. Note that if any of the nj were odd, the integral would vanish.
Hint. Kushner proves this [380, p. 698]. First make the change of variables X D HT;
where H 2 O.k/ and T is an upper triangular k�k matrix with nonnegative diagonal
entries. Then if dH is Haar measure on O.k/ and dT is the usual Lebesgue measure

dX D 2kgk

kY

iD1
tk�i
ii dH dT:

It follows that

cn D .2�/�k2=2 2kgk

Z

Tk

pn.T/g.T/
kY

iD1
tk�i
ii dT

Z

H2O.k/

pn.H/dH:

Now make the change of variables V D tTT: Then

dV D
Y

1�i�j�k

dvij D 2k
kY

iD1
tkC1�i
ii dT:

This shows that

cn D .2�/�k2=2 gk

Z

V2Pk

pn=2.V/e
� 1
2 Tr.V/ jVj� 1

2 dV
Z

H2O.k/

pn.H/ dH:

Proposition 1.2.6 (Special Case of Kushner’s Integral Formula).

(1) If our k-vector of integers is n D .2; 0; : : : ; 0; 2; 0; : : : ; 0/, the second 2 being
in the rth place for 1 < r � k; the constant cn in (1.119) is

cn D
kY

iD1
.k � i C ti � 1/ D .r C 2/.r � 1/Š:

(2) With n as in part (1), Kushner’s integral formula (1.120) becomes

E .pn/ D r C 2

k.k C 2/

�
k�1
r�1

� :
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Proof. (1) We make use of the differential operator DX D
ˇ̌
ˇ @@xij

ˇ̌
ˇ : For n D

.2; 0; : : : ; 0; 2
r
; 0; : : : ; 0/ and

g.X/ D e
1
2 Tr.tXX/;

write X D
�

S T
U V

�
; with S 2 R

r�r; and let pn
jr denote the power function on

S 2 R
r�r defined by taking the first r parts of n as the powers. Define cnjr to be

the corresponding integral over S 2 R
r�r: First note that

Z

T2Rr�.k�r/

g.T/ dT D .2�/r
.k�r/=2 :

It follows that

.2�/k
2=2cn D

Z

X2Rk�k

pn.X/g.X/ dX

D
Z

T2Rr�.k�r/

g.T/ dT
Z

U2R.k�r//�r

g.U/ dU
Z

V2R.k�r/�.k�r/

g.V/ dV .2�/r
2=2cnjr D cnjr :

So it suffices to work out the formula when r D k: In this case, using
Exercise 1.2.31 and DXg D .�1/k jXj g;

.2�/k
2=2cn D

Z

X2Rk�k

pn.X/g.X/ dX D .�1/k
Z

X2Rk�k

pn�1.X/ DXg.X/ dX

D
Z

X2Rk�k

DXpn�1.X/ g.X/ dX

D � k

�
t � 1
2

� Z

X2Rk�k

pn�2.X/ g.X/ dX; with � k as in (1.118):

Here since r D k; we make the same change of variables X D
�

s T
U V

�
; now

with s 2 R, and find that if � k is as in (1.118)
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.2�/k
2=2cn D � k

�
t � 1
2

� Z

X2Rk�k

pn�2.X/ g.X/ dX

D � k

�
t � 1
2

� Z

s2R
s2e�s2=2ds .2�/.k

2�1/=2 D .2�/k
2=2� k

�
t � 1
2

�
:

Thus

cn D � k

�
t � 1
2

�
D

kY

iD1
.k � i C ti � 1/ D .k C 2/.k � 1/Š

as ni D ti � tiC1; tkC1 D 0; when n D .2; 0; : : : ; 0; 2/ which says t1 D 4; t2 D
2; : : : ; tk D 2:

It follows that in the general case that n D .2; 0; : : : ; 0; 2
r
; 0; : : : ; 0/; we have

cn D cnjr D .r C 2/.r � 1/Š and part (1) of the Proposition is proved.
(2) Now we seek to show that

E
�
�1 .k/

2 �r .k/
2
�

D r C 2

k.k C 2/

�
k � 1
r � 1

� :

It will help to know the duplication formula for the gamma function (see
Lebedev [398, p. 4]):

22z�1� .z/ �
�

z C 1

2

�
D p

�� .2z/ :

From part (1) and the preceding exercise,

E .pn/ D cn .2�/
k2=2

gk�k
�

nCk
2

�
p nCk

2
.2I/

D .r C 2/ .r � 1/Š .2�/k2=2 � � 1
2

�
�
�
2
2

� � � �� � k
2

�

�.k
2Ck/=4�k.k�1/=4/

kY

jD1

�
tjCk�jC1

2

�
p nCk

2
.2I/

:

Now

t1 D 4; t2 D � � � D tr D 2; trC1 D � � � D tk D 0:
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It follows with quite a bit of effort that

E .pn/ D r C 2

.k C 2/ r

�
k
r

� D r C 2

.k C 2/ k

�
k � 1
r � 1

� :

�

This ends our discussion of matrix argument special functions.

1.3 Harmonic Analysis on Pn in Polar Coordinates

. . . die Schwierigkeit beginnt da, wo es sich darum handelt, aus diesem Labyrinth
von Formeln einen Ausweg zu finden. . . .1 Frobenius (quoted by Siegel [565, Vol. III,
p. 373]).

1.3.1 Properties of the Helgason–Fourier Transform on Pn

The main goal of this section is the discussion of an inversion formula for the
Helgason–Fourier transform defined in formula (1.72) of Section 1.2.3 when the
function is K-invariant. The subject contains a labyrinth of formulas, similar to that
occurring in any higher rank symmetric space (as in the quote of Frobenius above,
which refers to the formulas for multidimensional theta functions). The discussion
is intended to provide a way through the labyrinth—a route which follows that
set out by Harish-Chandra and Helgason, particularly Helgason’s Battelle lectures
[275]. In outlining the path, we will not provide all the details of the arguments. For
example, our discussion of Fourier inversion (Theorem 1.3.1) will use the analogue
of the asymptotics/functional equations principle from Section 3.2 of Vol. I. We
will not give a rigorous justification of the principle. That would require an analysis
similar to that given in discussions of the Paley–Wiener theorem. See Helgason
[282, pp. 55–56, 452–453] for a careful treatment of the argument that we are
omitting.

The Helgason–Fourier inversion formula for Pn (in part (1) of Theorem 1.3.1)
writes a smooth compactly supported function on Pn as a superposition of eigen-
functions of the generalized Laplacians in D.Pn/. This provides the fundamentals
of harmonic analysis on Pn and an analogue of Theorem 3.2.3 in Volume I. This
result can also be viewed as an analogue of the Mellin inversion formula (see
Exercise 1.4.1 of Vol. I), which is the case n D 1.

1The difficulty begins when one must find a way out of this labyrinth of formulas.
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A reader interested in delving further into the labyrinth of formulas associated
with Fourier analysis on Lie groups and symmetric spaces might consult some of
the references below. We discuss some of these other points of view briefly at the
end of this section.

References for this section include: Bhanu-Murthy [48], Ehrenpreis and Mautner
[155], Flensted-Jensen [181], Gangolli [196–198], Gelfand and Naimark [215],
Gurarie [254], Harish-Chandra [263], Helgason [273–282], Rebecca Herb and
Joe Wolf [288], Koornwinder [363], Jorgenson and Lang [333], Rosenberg [516],
Varadarajan [624, 625], Michèle Vergne [629], Wallach [651, 653], Warner [655],
and Wawrzyńczyk [657].

Define the Helgason–Fourier Transform of a (sufficiently nice) function f W
Pn ! C, for s 2 C

n; k 2 K D O.n/, by:

Hf .s; k/ D
Z

Y2Pn

f .Y/ ps.YŒk�/ d	n.Y/: (1.121)

Here ps.Y/ denotes the power function in formula (1.41) of Section 1.2.1. The
Helgason–Fourier transform can be viewed as a Mellin transform on Pn:

Note that if we set f .Y/ D expf�Tr.Y/g in (1.121), we obtain

Hf .s; k/ D �n.s/;

with the gamma function as in (1.44) of Section 1.2.1.
If we consider the Helgason–Fourier transform Hf .s; k/ as a function of its

second variable k 2 K D O.n/, the function depends only on the coset kM D k
in the boundary K=M of the symmetric space, where M is the group of all diagonal
matrices with entries ˙1. See the discussion of the boundary and formulas (1.19)
and (1.20) as well as Exercise 1.1.22 in Section 1.1.4. The inversion formula for the
Helgason–Fourier transform will involve an integral over the boundary K=M and
we shall assume that the measure dk on K=M is normalized to give

Z

k2K=M
dk D 1: (1.122)

It is this inversion formula that gives us harmonic analysis on PnI i.e., the spectral
resolution of the generalized Laplace operators on Pn

Theorem 1.3.1 (Properties of the Helgason–Fourier Transform).

(1) Inversion Formula.

Suppose that f W Pn ! C is infinitely differentiable with compact support. If
Hf .s; k/ denotes the Helgason–Fourier transform defined by formula (1.121), then
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f .Y/ D !n

Z

s2Cn

Re sD�

Z

k2K=M

Hf .s; k/ ps.YŒk�/ dk jcn.s/j�2 ds;

where  D �
1
2
; : : : ; 1

2
; 1
4
.1 � n/

�
,

!n D
nY

jD1

�.j=2/

j.2� i/� j=2
;

and cn.s/ denotes the Harish-Chandra c-function given by:

cn.s/ D
Y

1�i�j�n�1

B
�
1
2
; si C � � � C sj C 1

2
.j � i C 1/

�

B
�
1
2
; 1
2
.j � i C 1/

� :

Here B.x; y/ D �.x/�.y/=�.x C y/, the beta function.

(2) Convolution Property.

If either f or g is a K-invariant functionon Pn satisfying the hypothesis of part
(1), then defining convolution as in formula (1.24) of Section 1.1.4:

H.f 	g/ D Hf � Hg:

(3) G-invariant Differential Operators Changed to Multiplication by a
Polynomial.

If L 2 D.Pn/ and f is as in (1), then

H.Lf /.s; k/ D �L�.s/Hf .s; k/; where Lps.Y/ D �L.s/ps.Y/:

Here L� denotes the adjoint of L (see Theorem 1.2.1 in Section 1.2.1). Note that the
eigenvalue �L�.s/ is a polynomial in s.

(4) Plancherel Theorem in the K-invariant Case.

Let ˛.s/ D !njcn.s/j�2. For f as in part (1) and K-invariant, ifbf .s/ D Hf .s; I/;
where I is the identity matrix, as in (1.72), we have

Z

Pn

jf .Y/j2 d	n.Y/ D
Z

Re sD�

ˇ̌
b̌f .s/

ˇ̌
ˇ
2

˛.s/ ds:

Moreover, the Helgason–Fourier transform can be extended to an isometry between
L2.Pn=K; d	n/ and functions of s which are square integrable with respect to ˛.s/ds
and invariant under permutations of the r-variables which are related to the s-
variables as in (1.123) below (see also Proposition 1.2.1 of Section 1.2.1).
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The discussion of the proof of Theorem 1.3.1 will extend through the next several
sections. There are four main steps. The first step (in Section 1.3.2) is a reduction
to the corresponding inversion formula for the determinant one surface SPn. The
second step (also in Section 1.3.2) is due to Helgason (see [275, pp. 60–61]). Using
arguments similar to those which we gave to prove Fourier inversion on R

n (see the
proof of Theorem 1.2.1 in Vol. I), Helgason demonstrates that it suffices to show the
inversion formula at any point Y in the symmetric space and for any Dirac family
of functions g.Y/. Thus, in particular, it suffices to show the inversion formula
for O.n/-invariant functions. The third step in the proof of the inversion formula
(found in Section 1.3.3) is due to Harish-Chandra [263] and Bhanu-Murthy [48]. It
proves the inversion formula in the O.n/-invariant case, when the Helgason–Fourier
transform is often called the spherical transform. The idea is similar to that which
we used in Section 3.2 of Vol. I to prove the Kontorovich-Lebedev and Mehler-
Fock inversion formulas. Thus one reduces the computation of the spectral measure
or Harish-Chandra c-function to the determination of the asymptotics and functional
equations of spherical functions. As we mentioned above, we will not give a rigorous
justification of this principle—only a heuristic argument. We have already found that
the spherical functions on Pn satisfy nŠ functional equations (see Theorem 1.2.3 of
Section 1.2.3). The fourth step (also in Section 1.3.3) is the determination of the
asymptotic behavior of these functions as the symmetric space variable approaches
the boundary. To do this, we shall rewrite Harish-Chandra’s integral formula for
spherical functions, in part (4) of the theorem just cited, as an integral over N,
which is the group of lower triangular matrices with ones on the diagonal. This
is analogous to the discussion indicated in Exercise 3.2.10 in Vol. I for the case of
the Poincaré upper half plane.

The details of the asymptotics/functional equations argument require Helgason’s
version of the Paley–Wiener theorem for Pn (see Helgason [273, 274, 276–278,
281, 282], Gangolli [196]). We will not discuss this here or give the proof of part
(4) of Theorem 1.3.1 which is the Fourier inversion formula for L2 functions on Pn.
Nor shall we discuss the Helgason–Fourier transform on Harish-Chandra’s Schwartz
space for Pn. See Helgason [282, p. 489] for an exercise on the subject. Or see
Gangolli [198, pp. 78–82]. Another possible reference is Jorgenson and Lang [333].

Before beginning our discussion of Theorem 1.3.1, we need to make a few
preliminary remarks and do some exercises.

Remarks. (1) Using the change of variables from formula (1.49) of Section 1.2.1,
we have

ps.IŒt�/ D 'r.t/ D
nY

tD1
t2riCi�.nC1/=2
ii ;

for t 2 Tn, which is the group of upper triangular n � n real matrices with
positive diagonal entries. Here then we have

2ri C i � .n C 1/=2 D 2.si C � � � C sn/: (1.123)
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It follows that if we write Harish-Chandra’s c-function in terms of the r-
variables, we obtain

cn.s/ D
Y

1�i�j�n�1

B
�
1
2
; ri � rjC1

�

B
�
1
2
; 1
2
.j � i C 1/

� : (1.124)

Furthermore, Re s D � D � � 1
2
; : : : ; 1

2
; 1
4
.1 � n/

�
implies that Re ri D 0. Of

course, we cannot allow the second argument of the beta function to be zero.
(2) In the case n D 1, Theorem 1.3.1 is just ordinary Mellin inversion (see

Exercise 1.4.1 of Volume I).
(3) When n D 2, Theorem 1.3.1 is just ordinary Mellin inversion plus the Helgason

inversion formula in Theorem 3.2.3 in Vol. I. To see this, suppose that f W P2 !
C is O.2/-invariant. Then the Helgason–Fourier transform of f is:

Hf .s; k/ D �

2

Z

a2A

f .a/hs.a/�.a/ da;

D �

Z

a2AC

f .a/hs.a/�.a/ da;

where AC D fa 2 A j a1 > a2g (a positive Weyl chamber),

da D da1
a1

da2
a2
; �.a/ D jaj�1=2ja1 � a2j; hs.a/ D

Z

k2K
ps.aŒk�/ dk:

Here we have used the integral formula for polar coordinates (see formula (1.37)
from Section 1.1.6).

Now change variables according to

a D
�

a1 0

0 a2

�
D v1=2

�
u 0

0 u�1
�
; writing f .a/ D f .v; u/:

Then we see that

a1 D u
p
v; a2 D p

v=u;

and

ˇ̌
ˇ̌@.a1; a2/
@.u; v/

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌

p
v �p

v=u2

u=.2
p
v/ 1=.2u

p
v/

ˇ̌
ˇ̌ D 1=u:

If we write f .a/ D f .v; u/, then the Helgason–Fourier transform is:
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Hf .s1; s2/ D �

Z

u�1

Z

v>0

f .v; u/ hs.v; u/.u � u�1/
du

u

dv

v
:

The spherical function is:

hs.v; u/ D vs2

2�

2�Z

0

�
a1 cos2 
 C a2 sin2 


�s1 d


D vs2Cs1=2Ps1 .cosh.log u//;

where Ps denotes the Legendre function from Section 3.2.3 of Vol. I.
To see the last formula, write

Y D
�

a1 0

0 a2

�	
cos 
 � sin 

sin 
 cos 




D
�

y1 	
	 	

�

and note that

y1 D a1 cos2 
 C a2 sin2 
 D a1 C .a2 � a1/ sin2 


D a1 C 1

2
.a2 � a1/.1 � cos .2
// D 1

2
.a1 C a2/ � 1

2
.a2 � a1/ cos .2
/ :

Thus

y1 D v1=2
�

u C u�1

2
� u � u�1

2
cos .2
/

�
:

So the inversion formula which we seek becomes, upon setting x D
cosh log u and x1 D cosh log u1:

f .v; u/ D 2�!2

Z

Re sD�

Z

v1>0
x1>1

f .v1; u1/v
s2C

s1
2

1 Ps1 .x1/ dx1
dv1
v1
vs2C

s1
2 Ps1 .x/ jc2.s/j�2 ds;

for the constant !2 of part (1) in Theorem 1.3.1. By formula (3.28) in
Section 3.2 of Volume I, we see that

ˇ̌
ˇ̌c2

�
�1
2

C it

�ˇ̌
ˇ̌
�2

D � t tanh .� t/ :

Thus we obtain the result of part (1) of Theorem 1.3.1 in the case n D 2

using ordinary Mellin inversion (Exercise 1.4.1 in Volume I) and the Mehler-
Fock inversion formula (formulas (3.26) and (3.27) in Section 3.2 of Volume I).
For this, we need:
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Re s1 D �1=2 and Re s2 D 1=4; with !2 D .2� i/�2.2�/�1 D �.2�/�3:

(4) Note that if we consider the spectral measure jcn.s/j�2 from part (1) of
Theorem 1.3.1, as a function of r D it, in formula (1.123), we are looking at:

Y

1�i�j�n�1

ˇ
ˇ̌
ˇB
�
1

2
; ri � rjC1

�ˇˇ̌
ˇ

�2
I

that is,

Y

1�i�j�n�1
�
ˇ
ˇti � tjC1

ˇ
ˇ tanh

�
�
ˇ
ˇti � tjC1

ˇ
ˇ� : (1.125)

Exercise 1.3.1 (Properties of the Helgason–Fourier Transform).

(a) Prove part (2) of Theorem 1.3.1 above. Show that the hypothesis of K-invariance
is necessary.

(b) Prove part (3) of Theorem 1.3.1.
Hint. (a) Use the power function identity (1.138) below. Note that the convolu-
tion property implies that f 	g D g	f

(5) The K-Invariant Case of Theorem 1.3.1. Suppose the function f .Y/ in (1.121)
is K-invariant; i.e., f .YŒk�/ D f .Y/ for all Y 2 Pn and k 2 K D O.n/. Then the
Helgason–Fourier transform (1.121) is really only a function of the s-variable
and we will write

Hf .s; k/ Dbf .s/; (1.126)

for K-invariant functions f , as in (1.72) of Section 1.2.3. Let hs.Y/ denote the
spherical function defined as in formula (1.70) of Section 1.2.3; i.e.,

hs.Y/ D
Z

k 2 K=M

ps.YŒk�/ dk; (1.127)

with dk normalized as in (1.122). Then we see from formula (1.37) of
Section 1.1.6 that
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bf .s/ D bn

Z

ai>a1C1

f .a/hs.a/ J.a/
Q

daj; where

a D

0

B
@

a1 0
: : :

0 an

1

C
A ; bn D �.n

2Cn/=4
nY

jD1
1

�
�

j
2

� ;

J.a/ D
nY

jD1
a�.nC1/=2

j

Y

1�i<j�n

.ai � aj/:

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(1.128)

As we said earlier, the transform (1.128) is often called the “spherical trans-
form” (see Helgason [282, p. 449]).

Exercise 1.3.2. Prove that the spherical function hs.Y/ is bounded when Re s D
�; for  D �

1
2
; : : : ; 1

2
; 1
4
.1 � n/

�
. Note that in the r-variables of (1.123), we are

just saying that the spherical function is bounded when the powers ri are purely
imaginary. Helgason and Johnson [283] obtain a more precise result (see Helgason
[282, pp. 458–466]). In fact, Helgason shows [282] that the spherical functions are
bounded on a tube domain wherebf .s/ is holomorphic for K-invariant f . Moreover
Helgason [282, p. 480] shows, using the Riemann–Lebesgue lemma, that for r D it,
the spherical function approaches 0 as ktk ! 1. See Lebedev [398, p. 191] for the
case G D SL.2;R/, when hs is P�1=2Cit:

Hints. Another reference is Gangolli [198]. You can use the fact that a holomorphic
function of s 2 C

n which is bounded on a region must be bounded on the convex hull
of that region. The exercise requires use of the functional equations of the spherical
function. Recall (1.123) relating the r- and s-variables. The permutation of ri and
riC1 corresponds in the s-variables to the map from s to s0 given by:

s0
i D �1 � si;

s0
i˙1 D si˙1 C si � 1

2
;

s0
j D sj; j ¤ i; i ˙ 1:

So Re si D 0 corresponds to Re s0
i D �1. The convex hull contains Re si D � 1

2
.

Exercise 1.3.3. Suppose that f is a K-invariant function on Pn of the sort considered
in part (1) of Theorem 1.3.1; i.e., assume that f .a/ D 0, for a 2 A such that the
diagonal entries aj satisfy

† log a2j > R2:

This means that the geodesic distance d.I; IŒa�/ is greater than R. Prove that for every
G-invariant differential operator L 2 D.Pn/ such that the eigenvalue polynomial
�L.s/ does not vanish; i.e., Lps D �L.s/ps, with �L.s/ ¤ 0, there is a positive
constant C such that

jbf .s/j � C exp.kukR/j�L.s/j�1:
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Here

u 2 C
n; uj D Re

�
sj C � � � C sn

�
; kuk D �

†u2j
�1=2

:

Note that we can find operators L to make �L.s/ have arbitrarily high degree.
This result is the converse of the Paley–Wiener theorem proved by Helgason [282,
pp. 450–454].
Hint. Note that

jps.a/j �
nY

jD1
exp

�
uj log aj

�
:

Use Iwasawa coordinates to writebf .s/ as a composition of a Mellin transform over
A and the Harish transform

Ff .IŒa�/ D ˛.a/1=2
Z

n2N

f .I Œan�/ dn (1.129)

where ˛.a/ is the Jacobian of Iwasawa coordinates as given in (1.38) of Sec-
tion 1.1.6. If is not hard to see that d.I; IŒa�/ > R implies that Ff .IŒa�/ D 0. For
you need only note that

d.I; IŒa�/ � d.I; IŒan�/ for all a 2 A; n 2 N:

When we restrict everything to the determinant one surface, so that jaj D 1,
we will write ˛.a/ in formula (1.38) as ˛.a/ D p2.IŒa�/, where j D 1

2
; j D

1; : : : ; n � 1. In this notation we have:

Z

Y2SPn

ps.Y/ f .Y/ dY D 2n
Z

a2AjajD1

psC.IŒa�/ Ff .a/ da;

where Ff denotes the Harish transform defined by (1.129). Note that if, for j D
1; : : : ; n � 1; Re sj D � 1

2
, as in the Fourier inversion formula, then Re.s C /j D

0; j D 1; : : : ; n � 1.

Exercise 1.3.4. Show that, with f as in Exercise 1.3.3, cn and  as in Theo-
rem 1.3.1,we have

Z

Re sD�
bf .s/ jcn.s/j�2 ds < 1:

Hint. You need a bound on jcn.s/j�2 when Re s D �. For this, use formula (1.125).



1.3 Harmonic Analysis on Pn in Polar Coordinates 117

1.3.2 Beginning of the Discussion of Part (1)
of Theorem 1.3.1—Steps 1 and 2

Now we start to contemplate how one might prove something like part (1) of
Theorem 1.3.1.
Step 1 (Pulling Out the Determinant). Write Y D v1=nW with v > 0 and
W 2 SPn, which is the determinant one surface in Pn. Then by formula (1.21)
of Section 1.1.4, we can normalize measures so that

d	n.Y/ D v�1dv dW; (1.130)

where dW is an SL.n;R/-invariant measure on SPn. It follows that the Helgason–
Fourier transform can be rewritten as:

Hf .s; k/ D
Z

v>0

vr
Z

W2SPn

f .v1=nW/ ps.WŒk�/ dW
dv

v
; where r D 1

n

nX

jD1
jsj:

(1.131)
It suffices to assume that f .v1=nW/ D f1.v/f2.W/. Then

Hf .s; k/ D Mf1.r/H0f2.s; k/; (1.132)

where Mf1 is the ordinary Mellin transform of f1 (see Section 1.4, Vol. I) and H0f2
denotes the Helgason–Fourier transform on the determinant one surface:

H0f2.s; k/ D
Z

W2SPn

f2.W/ ps.WŒk�/ dW: (1.133)

It follows from the ordinary Mellin inversion formula that the Harish-Chandra
c-function does not depend on the variable sn. Moreover, we need Re r D 0 in the
final inversion formula, and thus using formula (1.131):

Re sn D �1
n

n�1X

jD1
Re.jsj/:

Since we shall show that we need Re sj D � 1
2
, for j D 1; : : : ; n � 1; it follows that

we need:

Re sn D .n � 1/=4: (1.134)

For the rest of proof of part (1) of Theorem 1.3.1 we will replace Pn by SPn and
G will denote SL.n;R/.
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Step 2 (Helgason’s Reduction to the Case That f is K-Invariant). We base the
following analysis on Helgason [275, pp. 60–61]. The idea is to imitate the proof of
the Euclidean Fourier inversion formula (Theorem 1.2.1 of Volume I). Let T denote
the inverse transform defined for nice functions:

F W Cn�1 � .K=M/ ! C

and for Y 2 SPn by:

T F.Y/ D
Z

Re sD�

Z

k2K=M

F.s; k/ ps.YŒk�/ jcn.s/j�2 dk ds: (1.135)

Lemma 1.3.1 (Two Properties of the Helgason–Fourier Transform and Its
Inverse Transform).

(1) Let T be defined by (1.135) and choose  D . 1
2
; : : : ; 1

2
/ 2 C

n�1. For x 2 G and
f W SPn ! C, define

f x.W/ D f .WŒx�/; for W 2 SPn:

Then T H0 commutes with the action of G; i.e.,

T H0.f x/ D .T H0f /x; for all x 2 G D SL.n;R/:

(2) If f and g are infinitely differentiable functions with compact support on SPn,
then

Z

W2SPn

f .W/ T H0g.W/ dW D
Z

W2SPn

.T H0f /.W/ g.W/ dWI

i.e., T H0 is self-adjoint.

Proof. (1) First we need to show that T H0 makes sense for functions f which are
smooth and compactly supported. This follows from the estimate in Exercise 1.3.3
of the preceding section.

The main fact needed to prove part (1) is a certain identity satisfied by the power
function ps.Y/. This identity (1.138) provides a kind of substitute for the following
property of exponentials:

exp.x C y/ D exp.x/ exp.y/; for x; y 2 R:

To describe this identity, we need to recall the Iwasawa decomposition (see
Exercise 1.1.20 of Section 1.1.4) of x 2 G D GL.n;R/ into

x D K.x/A.x/N.x/;
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with K.x/ 2 K D O.n/; A.x/ 2 A, the group of positive diagonal matrices in G, and
N.x/ 2 N, the (nilpotent or unipotent) group of upper triangular elements of G with
ones on the diagonal. An element x 2 G acts on the boundary element k D kM, with
M defined to be the group of diagonal matrices lying in K, according to the formula:

x.k/ D K.xk/M (1.136)

(see formula (1.20) of Section 1.1.4). Here K.xk/ denotes the K-part of xk in the
Iwasawa decomposition.

It will help to use the following notation for the power function:

ps.YŒk�/ D ps.Y; kM/ D ps.Y; k/: (1.137)

Then we have the power function identity:

ps.Y; k/ D ps.YŒx�; x
�1.k//ps.IŒx

�1�; k/; (1.138)

for all x 2 G; Y 2 SPn; k 2 K=M. To prove formula (1.138), let x�1k D k1a1n1,
with k1 2 K; a1 2 A; n1 2 N. Clearly

ps.YŒk�/ D ps.YŒxx�1k�/ D ps.YŒxk1�/ps.IŒa1�/;

which gives the desired identity.
To prove part (1) of Lemma 1.3.1, note that for x 2 G:

T H0.f x/.Y/ D
Z Z Z

f .WŒx�/ ps.WŒk�/ ps.YŒk�/ jcn.s/j�2 dW dk ds

D
Z Z Z

f .V/ ps.VŒx�1k�/ ps.YŒk�/ jcn.s/j�2 dV dk ds

D
Z Z Z

f .V/ ps.V; x�1.k// ps.IŒx�1�; k/ ps.YŒk�/ jcn.s/j�2 dV dk ds

D
Z Z Z

f .V/ ps.V; k/ ps.IŒx�1�; x.k// ps.Y; x.k// ˛�1.A.xk// jcn.s/j�2

�dV dk ds:

The integrals are over Re s D �; k 2 K=M, and W 2 SPn. We have first changed
variables via V D WŒx�, then used (1.138), and finally replaced k by x.k/, using
Exercise 1.1.22 of Section 1.1.4 to give us the Jacobian of this change of variables,
which is:

˛.A.xk// D p2.IŒx�; k/ D p�2.IŒx�1�; x.k// D
nY

iD1
an�2iC1

i (1.139)
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with  2 C
n�1 given by formula (1.141) below.

Now choose

s D �C i� so that s C 2 D �s: (1.140)

It follows that

T H0.f x/.Y/

D
Z Z Z

f .V/ ps.V; k/ psC2.IŒx�1�; x.k// ps.Y; x.k// jcn.s/j�2 dV dk ds

D
Z Z Z

f .V/ ps.V; k/ ps.YŒx�; k/ jcn.s/j�2 dV dk ds

D .T H0f /x.Y/:

Here we used formulas (1.138)–(1.140) to see that

psC2.IŒx�1�; x.k// ps.Y; x.k// D ps.YŒx�; k/:

Now we want to compute  in formula (1.139). Exercise 1.1.20 of Section 1.1.4
shows that if

a D

0

B
@

a1 0
: : :

0 an

1

C
A with jaj D 1;

then

˛.a/ D
nY

jD1
an�2jC1

j D .a1 � � � an�1/n�1
n�1Y

jD1
an�2jC1

j D
n�1Y

jD1
a2.n�j/

j :

Thus if jaj D 1 we find that

˛.a/ D
n�1Y

jD1
a2.n�j/

j D
n�1Y

jD1
.a1 � � � aj/

4j D
n�1Y

jD1
a
4.jC���Cn�1/

j :
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It follows that 4j D 2.n � j � n C .j C 1// and therefore

j D 1

2
; .j D 1; : : : ; n � 1/: (1.141)

(2) To prove part (2) of Lemma 1.3.1, note that, assuming we can change the
order of integration, we have

Z

SPn

f .W/T F.W/ dW D
Z

Re sD�

Z

k2K=M

H0f .s; k/ F.s; k/ jcn.s/j�2 dk ds:

It follows that
Z

SPn

f .W/ T H0g.W/ dW D
Z

Re sD�

Z

k2K=M

H0f .s; k/H0g.s; k/ jcn.s/j�2 dk ds;

and therefore the operator T H0 is self-adjoint, completing the proof of
Lemma 1.3.1. �

Exercise 1.3.5. Show that the interchange of integration orders is legal in the proof
of part (2) of Lemma 1.3.1.

Exercise 1.3.6. Give an example of a Dirac sequence of functions fm W SPn ! C

such that fm approaches ıI ; as m ! 1:

In order to finish our discussion of Step 2 in the proof of part (1) of Theo-
rem 1.3.1, note that it suffices to prove the inversion formula for any Dirac sequence
of functions gm W SPn ! C approaching ıI , the Dirac delta function at the identity
matrix in SPn. One can always take such a Dirac sequence to be K-invariant. To see
that the general inversion formula follows from that for such a Dirac sequence, one
proceeds as in the analogous argument for Rn (which can be found in the proof of
Theorem 1.2.1 in Vol. I). For part (2) of Lemma 1.3.2 implies that if T H0gm D gm,
then

Z
f gm D

Z
.T H0f / gm;

assuming the functions gm are real-valued. Now the left-hand side of the above
equality will approach f .I/, while the right-hand side will approach T H0f .I/, as m
goes to infinity. Moreover, part (1) of Lemma 1.3.1 implies that it suffices to prove
that f .Y/ D T H0f .Y/ at the point Y D I, or any other fixed point of SPn.

Remarks. (1) Of course it is easy to believe that it should not really matter what
point in G=K is chosen at which to try to prove the inversion formula for the
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Helgason–Fourier transform, since the result is an eigenfunction expansion for
differential operators that commute with the action of G on the symmetric space
G=K.

(2) We will use our results from Step 2 to push the support of the function in the
inversion formula out to infinity. By this we mean out towards the boundary
of the symmetric space where asymptotic expansions and ordinary Mellin
inversion take over.

(3) The “lines” of integration in the inversion formula (part 1) of Theorem 1.3.1 are
Re sj D � 1

2
, for j D 1; : : : ; n � 1 and Re sn D .n � 1/=4. If we change variables

according to formula (1.123), then these lines correspond to Re rj D 0; j D
1; : : : ; n. These lines are certainly fixed by the nŠ permutations of the variables
rj which represent the functional equations of the spherical functions (see part
4 of Theorem 1.2.3 in Section 1.2.3).

Note that when Re rj D 0 the eigenvalues of the Laplacian on Pn are
negative, since the eigenvalues are:

r21 C � � � C r2n C n � n3

48

(see Exercise 1.2.12 of Section 1.2.1).
The Harish-Chandra c-function in part (1) of Theorem 1.3.1 is quickly seen

to have poles along the domain of integration for the inverse transform; i.e.,
when ri D rjC1. See formula (1.124) of the preceding section.

All of these phenomena occurred in the inversion formula for the Helgason–
Fourier transform on the Poincaré upper half plane (see Section 3.2 of Volume
I).

1.3.3 End of the Discussion of Part (1)
of Theorem 1.3.1—Steps 3 and 4

Step 3 (Asymptotics and Functional Equations). This part of the proof of part (1)
of Theorem 1.3.1 was obtained by Harish-Chandra [263, Vol. II, pp. 409–539], who
gave the general theory for G a semisimple real Lie group, and by Bhanu-Murthy
[48], who made Harish-Chandra’s results explicit when G D SL.n;R/. Gindikin and
Karpelevic [220] computed the spectral measure explicitly for general G. Helgason
[282, pp. 425–466] gives a very detailed treatment of this last step in our discussion.
We will stick to a heuristic version of the argument. See also Varadarajan [625].

Suppose that f .Y/ D f .YŒk�/ for all Y in Pn and k 2 K D O.n/. The Helgason–
Fourier transform of f is obtained in formula (1.128) in section 1.3.1. If we pull out
the determinant in formula (1.128), as in Step 1 of the proof, then we must change
variables via
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a D

0

B
@

a1 0
: : :

0 an

1

C
A D v1=n

0

B
@

u1 0
: : :

0 un

1

C
A ; with v D jaj and u1 � � � un D 1:

Then formula (1.128) becomes:

bf .s/ D bn

Z

v>0

Z

ui>uiC1

f .v; u/vr�1 Y

i<j

.ui � uj/ hs.u/ dv du; (1.142)

where f .a/ D f .v; u/,

du D
n�1Y

iD1
u�1

i du; (1.143)

r is defined by formula (1.131), and bn is defined by (1.128).
According to Step 1, we need to show that if we are given a function f on

SPn which is O.n/-invariant and if u and a denote positive diagonal matrices of
determinant one, then:

f .u/ D .2� i/!nbn

Z

Re sD�

Z

ai>aiC1

f .a/
Y

i<j

.ai � aj/ hs.a/ da hs.u/ jcn.s/j�2 ds;

(1.144)
with da as in formula (1.143), bn as in (1.128), and !n as in part (1) of Theo-
rem 1.3.1.

Suppose now that ai=ai�1 is near zero for all i D 2; : : : ; n. Then

Y

i<j

.ai � aj/ D
n�1Y

iD1
an�i

i

Y

i<j

.1 � aj=ai/;

which approaches

n�1Y

iD1
an�i

i ; as ai=ai�1 ! 0; i D 2; : : : ; n: (1.145)

Assume next that the function f .a/ is supported on positive diagonal matrices
a with ai=ai�1 near 0, for all i D 2; : : : ; n. Then the inversion formula of Harish-
Chandra can be obtained from an asymptotics/functional equations principle similar
to that seen in Section 3.2 of Vol. I, if we can show that the spherical functions have
asymptotic expansions of the form:

hs.a/ � cn.s/ps.a/; if aj=aj�1 ! 0: (1.146)
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Here the argument a of the spherical function is a diagonal determinant one matrix
with jth diagonal entry aj and the parameter s 2 C

n�1 is fixed with Re sj sufficiently
large. In fact, Re sj must be so large that sj is outside of the domain of integration
in the inversion transform. For such a parameter s, the term on the right in (1.146)
should be replaced by a sum of nŠ terms coming from the functional equations of the
spherical functions. This is proved by Harish-Chandra [263, Vol. II, pp. 409–539].
See also Helgason [282] and Varadarajan [625].

According to formulas (1.144)–(1.146), if f .Y/; Y 2 SPn, is K-invariant and
supported on a 2 A with aj=aj�1 near 0 for all j D 2; : : : ; n, the inversion formula
of part (1) of Theorem 1.3.1 would look approximately like:

f .u/ D nŠ.2� i/!nbn

Z

s2Cn�1

Re sD�

Z

a 2 A
ai

ai�1
near 0

f .a/
n�1Y

iD1
an�i

i ps.a/ da ps.u/ ds;

(1.147)
for u 2 A with uj=uj�1 near 0; j D 2; : : : ; n. The spectral measure in part (1) of
Theorem 1.3.1 is thus seen to be chosen to cancel out the term cn.s/cn.s/ coming
from the asymptotic formula (1.146) for the spherical function. The extra nŠ comes
from the nŠ functional equations of the spherical function, which replaces the right-
hand side of (1.146) by a sum of similar terms, where the sum is over the group
of permutations acting on the r-variables for the power functions. Here one needs
to note the orthogonality of the different exponentials that are summed over the
permutation group.

Clearly (1.147) is the same as

f .u/ D nŠ.2� i/!nbn

Z

s2C
n�1

Re sD�

Z

a 2 A
ai

ai�1
near 0

f .a/
n�1Y

iD1

asiC���Csn�1Cn�i�1
i dai

n�1Y

iD1

usiC���Csn�1

i ds:

Then ordinary Mellin inversion and formula (1.128) imply that we must choose !n

as in part (1) of Theorem 1.3.1. For if Re sj D � 1
2
, we find that the exponent

of aj is ej � 1 while that of uj is �ej, which is just what is required for ordinary
Mellin inversion. To give a rigorous justification of this argument would require us
to delve into the proof of the Paley–Wiener theorem on Pn. We shall not do this here
but see Helgason [282, pp. 450–454]. The miracle is that one needs only the main
term in the asymptotic expansion of the spherical function. This is very similar to
the standard miracle of Paley–Wiener theory, as well as the result of Lemma 3.7.1
of Volume I. And this miracle seems believable, recalling the orthogonality of the
distinct power functions.
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Anyway, we are accordingly reduced to the computation of the Harish-Chandra
c-function in formula (1.146).
Step 4 (Computation of Harish-Chandra’s c-Function). We must compute the
coefficient in the main term of the asymptotic formula (1.146) for the spherical
function. This computation is most easily accomplished by changing variables from
K=M to N in Harish-Chandra’s integral formula (1.127) for the spherical function.
Here N is the (nilpotent or unipotent) subgroup of G D SL.n;R/ consisting of all
lower triangular matrices with one’s on the diagonal. Harish-Chandra [263, Vol. II,
p. 455] shows how to produce this change of variables as a consequence of the
Bruhat decomposition to be discussed later. And Bhanu-Murthy [48] carried out the
computation of the c-function explicitly for G D SL.n;R/. See also Helgason [282,
pp. 198, 434–448]

Lemma 1.3.2. If P D MAN, then P is the minimal parabolic subgroup of G D
SL.n;R/ consisting of all upper triangular matrices and PN is an open subset of G
with lower dimensional complement. Thus we can realize the boundary B D K=M
as N as far as integration is concerned, obtaining the integral formula for the change
of variables from the boundary B to N:

Z

B

f .b/ db D �

Z

N

f .n.M// p�2.IŒn�/ dn; where ��1 D
Z

N

p�2.IŒn�/ dn:

Here n.M/ denotes the result of letting n act on the coset M in B D K=M. If K.n/ D
k1 is the K-component in the Iwasawa decomposition of n, then

n D k1a1n1; k1 2 K; a1 2 A; n1 2 N;

and

n.M/ D K.n/M D k1M:

The measure dn is defined by:

dn D
Y

i>j

dxij; if n D

0

BBB
@

1 0

1
: : :

xij 1

1

CCC
A
:

Proof (Cf. Helgason [282, p. 198]). To see the first statement of the lemma, multiply
the matrices below.
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0

BBBB
B
@

v11 v12 � � � v1;n�1 v1n

0 v22 � � � v2;n�1 v2n
:::

:::
: : :
:::

:::

0 0 � � � vn�1;n�1 vn�1;n
0 0 � � � 0 vnn

1

CCCC
C
A

0

BBBB
B
@

1 0 : : : 0 0

u21 1 � � � 0 0
:::

:::
: : :
:::

:::

un�1;1 un�1;2 : : : 1 0

un1 un2 : : : un;n�1 1

1

CCCC
C
A

D

0

BBBBB
@

v11 C v12u21 C � � � C v1nun1 � � � v1;n�1 C v1nun;n�1 v1n

v22u21 C � � � C v2nun1 � � � v2;n�1 C v2nun;n�1 v2n
:::

: : :
:::

:::

vn�1;n�1un�1;1 C vn�1;nun1 � � � vn�1;n�1 C vn�1;nun;n�1 vn�1;n
vnnun1 � � � vnnun;n�1 vnn

1

CCCCC
A
:

This is an element of G D SL.n;R/ such that the lower right k � k corner matrix
is non-singular for all k D 1; 2; : : : ; n. Thus PN is indeed an open subset of G with
lower dimensional complement.

As an Exercise, prove these last two statements. Hint. We can multiply block
matrices as follows:

.0 I/

�
F H
0 G

��
A 0

C B

��
0

I

�
D GB:

Thus we can define a mapping

 W N ! K=M

n 7! n.M/ D K.n/M:

And we can use this mapping to identify N and the boundary B D K=M Š G=P,
where P D MAN (recalling formula (1.20) of Section 1.1.4).

Next we seek the Jacobian J.n/ of the mapping  ; i.e.,

Z

BDK=M

f .b/ db D
Z

N

f .n.M// J.n/ dn: (1.148)

Now the integral formula for the action of G on B (see Exercise 1.1.22 of
Section 1.1.4 and formula (1.139) above) gives:

Z

bDk2K=M

f .n0.b//˛
�1.A.n0k// dk D

Z

b2K=M

f .b/ db (1.149)

with ˛.A.n0k// D p2.IŒn0k�/, for  2 C
n�1 as in (1.141). Combining (1.148)

and (1.149) yields:
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Z

n2N

f .n0n.M// ˛
�1.A.n0K.n/// J.n/ dn D

Z

n2N

f .n0n.M// J.n0n/ dn;

J.n0n/ D ˛�1.A.n0K.n///J.n/:

Set n D I to obtain

J.n0/ D p�2.IŒn0�/J.I/:

The constant J.I/ is determined by demanding that the total volume of the boundary
be one. This completes the proof of Lemma 1.3.2. �

If we apply Lemma 1.3.2 to the integral formula (1.127) for the spherical
function, we find the second integral formula for the spherical function:

hs.IŒa�/ D �

Z

N

ps.IŒa�; n.M// p�2.IŒn�/ dn (1.150)

with the constant � given in Lemma 1.3.2.
To discover the asymptotics of (1.150), we need the second power function

identity:

ps.IŒa�; n.M// D p2s.a/ps.IŒn
a�/p�s.IŒn�/; with na D ana�1: (1.151)

To prove this, write n D k1a1n1, with k1 2 K; a1 2 A; n1 2 N. Then

na D ak1a1n1a
�1 D ak1a1a

�1.an1a
�1/:

Since
�
an1a�1� 2 N, it follows from the definition of the power function that

ps.IŒn
a�/ D ps.IŒa�; n.M// ps.IŒn�/ ps.IŒa

�1�/:

This implies (1.151).
Combining (1.150) and (1.151) gives the third integral formula for the

spherical function:

hs.IŒa�/ D � p2s.a/
Z

N

ps.IŒn
a�/ p�s.IŒn�/ p�2.IŒn�/ dn; (1.152)

with � as in Lemma 1.3.2.
For Re sj all sufficiently large, we can let aj=aj�1 approach zero inside the integral

in (1.152). If
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n D

0

B
@

1 0
: : :

xij 1

1

C
A and na D

0

B
@

1 0
: : :

yij 1

1

C
A ;

then yij D aixija�1
j , for i > j. It follows that if ai=ai�1 approaches zero, then yij

approaches zero if i > j.
Thus for Re sj sufficiently large, j D 1; : : : ; n � 1, as aj=aj�1 ! 0; j D 2; : : : ; n,

we see that formula (1.152) approaches

� p2s.a/
Z

N

p�.sC2/.IŒn�/ dn:

This means that the Harish-Chandra c-function is:

cn.s/ D �

Z

N

p�.sC2/.IŒn�/ dn: (1.153)

Now we want to use mathematical induction to evaluate cn.s/. First, note that
when n D 2, we have ˛.a/ D a21 and  D 1

2
. Thus we find that c2.s/ is

evaluated as follows in terms of beta functions (see Lebedev [398, p. 13]) B.x; y/ D
�.x/�.y/=�.x C y/;

c2.s/ D �

Z

x2R
.1C x2/�.sC1/ dx D �B

�
1

2
; s C 1

2

�
D B

�
1
2
; s C 1

2

�

B
�
1
2
; 1
2

� :

In the general case we define

bn.s/ D
Z

N

p�s.IŒn�/ dn: (1.154)

This is a special case of the Whittaker function in Section 1.2.2. Clearly cn.s/ D
bn.s C 2/=bn.2/. We need to relate bn with bn�1. To do this, write the element n
in N as:

n D
�

m 0
tx 1

�
;

for x 2 R
n�1; m in the group N for SL.n � 1;R/, a group that we shall denote Nn�1.

Then

ps.IŒn�/ D ps.
tm m C x tx/;
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and it follows that:

bn.s/ D
Z

m2Nn�1

Z

x2Rn�1

p�s
�

tm m C x tx
�

dx dm:

Now write tm m D IŒt�, for t upper triangular with positive diagonal. Make the
change of variables x D ttu in the last formula for bn.s/. This gives:

bn.s/ D bn�1.s1; : : : ; sn�2/b0
n.s1; : : : ; sn�1/;

where

b0
n.s/ D

Z

u2Rn�1

p�s.I C u tu/ du: (1.155)

To evaluate this last integral, write u D .v;w/; with v 2 R
n�2 and w 2 R. Also

define s D .r; sn�1/, with r 2 C
n�2. Note that the determinant of I C u tu is:

ˇ̌
I C u tu

ˇ̌ D 1C tuu D 1C u21 C � � � C u2n�1:

This is an easy consequence of the spectral theorem, since u tu is an .n�1/� .n�1/
matrix with only one nonzero eigenvalue. And that eigenvalue is the square of the
norm of the vector u. By these remarks

b0
n.s/ D

Z

v2Rn�2

p�r
�
I C v tv

� Z

w2R

�ˇ̌
I C v tv

ˇ̌C w2
��sn�1 dw dv:

Next change variables via w D jI C v tvj1=2 y. Thus we obtain:

b0
n.s/ D b0

n�1
�

s1; : : : ; sn�3; sn�2 C sn�1 � 1

2

�
B

�
1

2
; sn�1 � 1

2

�

D
n�1Y

jD1
B

�
1

2
; sj C sjC1 C � � � C sn�1 � n � j

2

�
:

It follows from this that

bn.s/ D
Y

1�i�j�n�1
B

�
1

2
; si C siC1 C � � � C sj � j � i C 1

2

�
;

which quickly leads to the formula in part (1) of Theorem 1.3.1. Hopefully we have
given the reader enough insight into the proof of Theorem 1.3.1 to find the theorem
believable. Note that Re sj > � 1

2
; for j D 1; : : : ; n � 1, is required for the absolute
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convergence of the integral in the beta functions. Thus we find that the lines of
integration in Theorem 1.3.1 are outside the region of absolute convergence and
care must be taken because of this.

This completes our discussion of part (1) of Theorem 1.3.1. As we said earlier,
we will not prove part (4). And we relegated parts (2) and (3) of Theorem 1.3.1 to
Exercise 1.3.1.

Remark. The function b0
n defined by formula (1.155) is a k-Bessel function of sin-

gular argument (see formula (1.60) in Section 1.2.2). The function bn.s/ in (1.154)
is a Whittaker function of singular argument (see the end of Section 1.2.2). One
can also consider these functions to be analogues of the beta function (cf. Gindikin
[218]).

Finally we give a table of Helgason–Fourier transforms on Pn (see Table 1.1).
Sadly it is quite short.

Exercise 1.3.7. Check Table 1.1.

The Helgason–Fourier transform of a non-K-invariant function involves a vari-
able k 2 K. But one can use the Fourier inversion formula for K itself (see Chapter 2
of Vol. I) to replace functions on K with functions of � 2 bK, which is the set
of equivalence classes of irreducible unitary representations of K. Thus we could
replace Hf .s; k/; k 2 K, with a matrix-valued transform

Hf .s; �/; � 2 bK:

Would that make us happier?

Table 1.1 A short table of Helgason transforms

f .Y/ bf .s/ D Hf .s; I/ D
Z

Pn

f .Y/ps.Y/d	n.Y/

exp
�Tr

�
X�1Y

��
; X 2 Pn ps.X/�n.s/; § 1.2.1, Exercise 1.2.4

exp
�Tr

�
VY C WY�1

��
Kn.s j V;W /; § 1.2.2, Formula (1.61)

exp Œ�Tr .XY/� pr�s�.nC1/=2.I C Y/ ‰n.s; rI X/; § 1.2.2, Formula (1.65)

Kn.r j I;Y / �n.s/ �n.s C r/; §1.2.2, Exercise 1.2.18
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1.3.4 Applications—Richards’ Central Limit Theorem
for K-Invariant Functions on Pn

Analysis on Pn has seen many applications in multivariate statistics, as we have
already noted. See Sections 1.1.7 and 1.2.4. But it is only recently that the Helgason–
Fourier transform has appeared in such applications. The paper of Haff et al. [256]
gives a method of minimax estimation of Wishart mixtures, with applications to a
study of the stochastic volatility of stocks. Their proofs rely on the properties of the
Helgason–Fourier transform.

There are also many applications in random matrix theory, but you might wish
for more. We save this discussion for the next section.

The main result of this section is a generalization of the central limit theorem for
rotation-invariant random variables on Pn which was obtained by Richards using his
Theorem 1.2.6. In the old edition of this volume, we only did the case n D 3: Our
discussion of the central limit theorem will use methods related to those of Cramér
[126], Dym and McKean [149], and Feller [178], as in Section 1.2.4 of Volume I.
The proof is analogous to that of the central limit theorem proved in Section 3.2.7
of Volume I using harmonic analysis on the Poincaré upper half plane. We will
find that there is a significant difference between the situation for GL.n;R/ and that
for SL.2;R/. The limiting density is not the same as the fundamental solution of
the heat equation (see Exercise 1.3.8 below). See also Bougerol [72] and Graczyk
[240]. Other references are the volumes edited by H. Heyer appearing in Springer
Lecture Notes in Math. titled Probability Measures on Groups (e.g., [295]).

Our methods are special to the case of limit theorems for groups on which one
can do harmonic analysis. Methods based on martingales, semigroups, stochastic
difference, or differential equations can produce more general results. But the
methods of harmonic analysis can give more detailed information. There are many
papers on central limit theorems for Lie groups as we mentioned already in Vol. I.

Exercise 1.3.8 (The Heat Equation on Pn). Suppose that f is a K-invariant
function on Pn which is continuous with compact support. We seek a solution
u.Y; t/; Y 2 Pn; t > 0, to the heat equation:

�
ut D �u; � D Tr ..Y@=@Y/2/ D Laplacian on Pn;

u.Y; 0/ D f .Y/:

Show that the solution is u.Y; t/ D Gt	f , with convolution as in formula (1.156)
below, where the fundamental solution Gt; also known as the heat kernel or normal
density, is given by:

Gt.Y/ D !n

Z

Re sD�
expŒ�2.s/t� hs.Y/ jcn.s/j�2 ds:

Here �ps D �2.s/ps; with �n
2.r/ D r21 C � � � C r2n C .n � n3/=48: The relation

between the r and s variables is as stated in Theorem 1.2.6 (see Exercise 1.1.12 of
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Section 1.2.1). The constants !n;  as well as cn.s/ are defined in Theorem 1.3.1.
Here hs.Y/ denotes the spherical function in formula (1.127).
Hints. (See Gangolli [197, pp. 108 ff].) Imitate the method used to solve the heat
equation on the non-Euclidean upper half plane in Section 3.2 of Vol. I. Note that
Gt approaches the Dirac delta distribution at the identity, as t approaches 0 from
above, by the same argument that proved the analogous result in Vol. I. Moreover Gt

cannot have compact support, since it is a solution of a parabolic partial differential
equation and is thus an analytic function of Y: Therefore we really need an extension
of Theorem 1.3.1 to Schwartz functions on Pn in order to do this exercise rigorously.
Another reference for the heat kernel is Jorgenson and Lang [333, p. 365].

Remarks. Ólafsson and Schlichtkrull [479] consider the holomorphic extension of
Gt 	 f ; for f an L2 function on a general symmetric space such as SPn: The
extension is to the complex crown of the symmetric space—a space introduced
by Akhiezer and Gindikin in 1990. The crown of G=K is a G-invariant subdomain
of the complexified symmetric space Gc=Kc (obtained for a group like G D SL.n;R/
by replacing R by C/. We will say a little more about this later.

It would also be interesting and useful to consider other partial differential
equations on Pn. For example, Helgason [275] and [282, pp. 342–343] investigates
the wave equation on symmetric spaces and extensions of Huyghen’s principle.

We consider random variables Y in Pn with density f .Y/ in L1.Pn; d	n/; f � 0,
where d	n denotes the G-invariant measure on Pn. Then if S is a measurable subset
of Pn, the probability that the random variable Y , with density f , is in S is

P.Y 2 S/ D
Z

Y2S

f .Y/ d	n.Y/ D
Z

IŒg�2S

f .IŒg�/ dg;

where dg denotes Haar measure on G D GL.n;R/. There are many possible
analogues of the mean and the standard deviation as is the case for R

n. We will
return to this subject below (see (1.157) and (1.158)).

Here we consider only K-invariant random variables Y; i.e., we will always
assume that the density function f D fY satisfies:

f .YŒk�/ D f .Y/; for all Y 2 Pn and k 2 K D O.n/:

It will often be helpful to identify such a function f on Pn with a K-bi-invariant
function on the group G via

f .IŒg�/ D f .g/; for all g 2 G:

The composition Y1 ı Y2 of two K-invariant random variables Y1 and Y2 on Pn is
defined to be that coming from multiplication of the corresponding group elements.
If Yj has density function fj; j D 1; 2, then Y1 ı Y2 has density the convolution f1	f2,
assuming that Y1 and Y2 are independent:
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.f1	f2/.x/ D
Z

G

f1.y/ f2.y
�1x/ dy: (1.156)

Note the difference with equation (1.24) of Section 1.1.4. This does not matter for
K-invariant functions since then convolution is commutative.

To see that Y1 ı Y2 has density f1	f2, note that

P.Y1 ı Y2 2 S/ D
Z Z

g1g22S

f1.g1/ f2.g2/ dg1 dg2

D
Z

g12G

f1.g1/
Z

w2S

f2.g
�1
1 w/ dw dg1

D
Z

w2S

.f1	f2/.w/ dw:

If we now seek to imitate our discussion from Vol. I, Section 3.2.7, we find that
the result for Pn is somewhat different from that for the Poincaré upper half plane.

Let fY�g��1 be a sequence of independent K-invariant random variables on Pn,
each having the same density function f .Y/. We will assume the vanishing of the
means with respect to the hj D log aj, where aj denotes the jth eigenvalue of Y ,
and we will also assume that the covariance matrix with respect to the hj is the
identity; i.e., we assume via the change to polar coordinates that the following
integral formulas hold:

cn

Z

H2a
hj f .exp H/ J.exp H/ dh D 0; j D 1; : : : ; nI (1.157)

cn

Z

H2a
hihj f .exp H/ J.exp H/dh D ıij; 1 � i; j � n: (1.158)

Here

a D

8
<̂

:̂
H D

0

B
@

h1 � � � 0
:::
: : :
:::

0 � � � hn

1

C
A

ˇ̌
ˇ̌
ˇ̌
ˇ

hj 2 R

9
>=

>;
; dh D

nY

jD1
dhj:

Note that a is the tangent space to A at the identity (cf. (1.77) in Section 1.2.3).
Formulas (1.38), (1.40) in Section 1.1.6 give the constant cn and the Jacobian J.a/ D
�.a/=a; for a 2 A.

Consider the composition S� D Y1 ı � � � ı Y� which was defined in the paragraph
preceding (1.156). We will normalize S� as follows. Let hj D log aj, where aj
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denotes the jth eigenvalue of Y . Then normalize by replacing hj by ��1=2hj. Call
the resulting random variable S#

� . The characteristic function of the normalized
random variable is:

'S#
�
.s/ D

8
<

:
cn

Z

H2a
f .exp H/ hs.exp.��1=2H// J.exp H/ dH

9
=

;

�

: (1.159)

Here we have used the convolution property of the Helgason–Fourier transform
from Theorem 1.3.1.

Now use Richards’ Theorem 1.2.6 to see that, as � approaches infinity, the term
inside the braces in (1.159) is asymptotic to:

cn

8
<

:

Z

H2a
f .exp H/J.exp H/ dH C

Z

H2a

0

@
nX

jD1
hj

1

Af .exp H/J.exp H/dH
1

n
p
�

0

@
nX

jD1
rj

1

A

C
Z

H2a

0

@
nX

jD1
h2j

1

A f .exp H/J.exp H/ dH

� 1

2n.n C 2/�

0

@3
nX

jD1
r2j C 2

X

1�i<j�n

rirj � n3 � n

24

1

A

C
Z

H2a

0

@
X

1�i<j�n

hihj

1

A f .exp H/J.exp H/
P.r/

�
dH

9
=

;
:

Formulas (1.157) and (1.158) imply that as � approaches infinity:

'S#
�
.s/ �

8
<

:
1C 1

�

n

2n.n C 2/

0

@3

 
nX

iD1
r2i

!

C 2

0

@
X

1�i<j�n

rirj

1

A � n3 � n

24

1

A

9
=

;

�

� exp

8
<

:
1

2.n C 2/

0

@3

 
nX

iD1
r2i

!

C 2

0

@
X

1�i<j�n

rirj

1

A � n3 � n

24

1

A

9
=

;
:

Here s 2 C
n is the function of r 2 C

n specified in Theorem 1.2.6 and Theorem 1.3.2
below.

Recalling the formula for the eigenvalue of the Laplacian in Exercise 1.3.8 above,
we see that the limit characteristic function does not appear to be related in a simple
way to
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exp

(

t

 
nX

iD1
r2i � n3 � n

48

!)

;

the Fourier transform of the fundamental solution Gt of the heat equation.
By the convolution theorem we see that the limit density is

exp

�
n3 � n

96 .n C 2/

�
G3=.2.nC2//	F1=.nC2/.Y/;

where Ft is the function on Pn whose Helgason–Fourier transform is

exp

8
<

:
t

0

@
X

1�i<j�n

rirj

1

A

9
=

;
:

Here Gt is the fundamental solution of the heat equation from Exercise 1.3.8 above.

Theorem 1.3.2 (Richards’ Central Limit Theorem for Pn). Suppose that
fYmgm�1 is a sequence of independent, O.n/-invariant random variables in Pn, each
having the same density function f .Y/. And suppose that the density satisfies (1.157)
and (1.158). Let Sm D Y1 ı � � � ı Ym be normalized as in (1.159). The normalized
variable has density function f #

m. Then for measurable sets S in Pn we have, as
m ! 1:

Z

S

f #
m.Y/ d	.Y/ � exp

�
n3 � n

96 .n C 2/

�Z

S

G3=.2.nC2//	F1=.nC2/.Y/ d	.Y/:

Here Gt is the fundamental solution of the heat equation from Exercise 1.3.8 and its
Helgason–Fourier transform is

bGt.s.r// D exp

(

t

 
nX

iD1
r2i � n3 � n

48

!)

while Ft has Helgason–Fourier transform:

bFt.s.r// D exp

8
<

:
t

0

@
X

1�i<j�n

rirj

1

A

9
=

;
:

Note that we have reparametrized the Helgason–Fourier transform using the change
of variables from s-variables to r-variables as in Theorem 1.2.6

sj C � � � C sn D rj C 2j�n�1
4

; j D 1; : : : ; n;
rj � rjC1 D sj � 1

2
; j D 1; : : : ; n � 1; sn D rn � n�1

4
:
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Proof. As in the case n D 2; for the Poincaré upper half plane, we need only to
argue that the limiting behavior of densities mirrors that of their Fourier transforms.
To see this, recall the inversion and Plancherel formulas from Theorem 1.3.1. Let
ˇ be an infinitely differentiable function with compact support on Pn. Let d�.r/
denote the spectral measure in part (1) of Theorem 1.3.1, using the r-variables
from (1.123) rather than the s-variables of Theorem 1.3.1. Then, by Theorem 1.2.6
and the dominated convergence theorem, we have:

lim
m!1

Z

Pn

f #
m.Y/ ˇ.Y/ d	.Y/ D lim

m!1

Z

Re rD0

bf #
m.s.r// b̌.s.r// d�.r/

D
Z

Re rD0
exp

8
<

:
1

2.n C 2/

 

3

 
nX

iD1
r2i

!

C2
0

@
X

1�i<j�n

rirj

1

A � n3 � n

24

1

A

9
=

;
b̌.s.r// d�.r/

D exp

�
n3 � n

96 .n C 2/

� Z

Pn

.G3=.2.nC2//	F1=.nC2//.Y/ ˇ.Y/ d	:

Here we are using the fact (proved by Helgason [274, p. 458] that spherical functions
are bounded on the lines of integration for the inverse transform and thus if f is
in L1.Pn; d	/, thenbf .s.r// is bounded for Re r D 0. Next let ˇ approximate the
indicator function of a set S in Pn (i.e., the function that is 1 on S and 0 off S) to
complete the proof. �

Another reference for central limit theorems on Lie groups is the volume edited
by Cohen et al. [115]. It would be useful to compare our results here with the
limit theorem of Oseledec discussed by several authors in this volume. See also
Furstenberg [193].

Exercise 1.3.9. What is the central limit theorem for SO.n/-invariant functions on
SPn‹

1.3.5 Quantum Chaos and Random Matrix Theory

Physicists have long studied spectra of Schrödinger operators and random matrices
thanks to the implications for quantum mechanics. This is often found under the
hashtag quantum chaos. Number theorists and geometers have similarly studied
spectra of Laplacians on Riemannian manifolds. Sarnak has termed this “arithmetic
quantum chaos” when the manifold in question is a quotient of a symmetric space
with an arithmetic group. Equivalently one is investigating the zeros of the Selberg
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zeta function. Parallels with the statistics of the zeros of Riemann’s zeta function
have been known for some time. Here we only give a brief taste of a large subject.
Some references are: Gernot Akemann et al. [3], Greg Anderson, Alice Guionnet,
and Ofer Zeitouni [7], Oriol Bohigas and Marie-Joya Giannoni [57], Folkmar
Bornemann [71], Barry Cipra [112, pp. 2–17], Brian Conrey [121], Alan Edelman
and N. Raj Rao [151], Todd Kemp [347], Madan Lal Mehta [441], Stephen J. Miller
and Ramin Takloo-Bighash [448], Andrew Odlyzko [477], Michael Rubinstein
[518], Peter Sarnak [527], Craig A. Tracy and Harold Widom [615], Eugene Wigner
[667], and my surveys in [610] and [611, Chapter 5]. Many of these references and
lots more are available on line. Just Google random matrices.

In the 1950s Wigner (see [667]) modeled Schrödinger eigenvalues with the
eigenvalues of large real symmetric n � n matrices whose entries are independent
Gaussian random variables. He found that the histogram of such eigenvalues looks
like a semi-circle (or, more precisely, a semi-ellipse). This has been named the
Wigner semi-circle distribution (aka the Sato-Tate distribution in number theory).
For example, he considered the eigenvalues of 197 “random” real symmetric 20�20
matrices. It is easy now to do an analogous experiment to that of Wigner using
Matlab. See the upper histogram in Figure 1.1. However, Wigner notes on p. 5 of
[667]: “What is distressing about this distribution is that it shows no similarity to
the observed distribution in spectra.”

So physicists have devoted more attention to histograms of level spacings rather
than levels. This means that you arrange the energy levels (eigenvalues) Ei in
decreasing order:

E1 � E2 � � � � � En:

Assume that the eigenvalues are normalized so that the mean of the level spacings
.Ei � EiC1/ is 1. Then one can ask for the shape of the histogram of the normalized
level spacings. There are (see Sarnak [527]) two main sorts of answers to this
question: Poisson level spacings, meaning e�x; and GOE spacings (see Mehta

[441]) which is more complicated to describe exactly but looks roughly like �
2

xe� �x2
4

(the Wigner surmise). The spacings in the lower histogram of Figure 1.1 do
roughly approximate this function which vanishes at the origin—unlike e�x. This
is interpreted as level repulsion, meaning that the eigenvalues find each other
repulsive.

In 1957 Wigner (see [667]) gave an argument for the surmise that the level
spacing histogram for levels having the same values of all quantum numbers is given

by �
2

xe� �x2
4 if the mean spacing is 1. In 1960 Gaudin and Mehta found the correct

distribution function which is surprisingly close to Wigner’s conjecture but different.
There are many experimental studies comparing GOE prediction and nuclear data.
See Bohigas [57], Bohigas and Giannoni [58], and Bohigas et al. [59].

Wigner’s argument for the Wigner surmise from [667] is rather simple. He first
derives the Wigner surmise for the Poisson level (or eigenvalue) spacing density
as follows. If the location of the eigenvalues is independent, the probability � that
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Fig. 1.1 Histograms for
eigenvalues of a random
normal symmetric real
1001� 1001 matrix. The
upper histogram shows the
eigenvalues and the lower one
shows the normalized
spacings of the eigenvalues
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there is no eigenvalue within distance S of the given eigenvalue, for small value of
h; satisfies

�.S C h/ D �.S/ � �.S/hc (1.160)

where c is the probability of an eigenvalue in an interval of length 1: This leads to
the ODE

d�

dS
D �c� with solution � D e�cS:

Then the spacing density is proportional to d�
dS D e�cS. This is the spacing for events

distributed with the Poisson distribution. If we wish to find the spacing for random
matrices from the GUE or GOE distribution (and more generally) then instead of
formula (1.160), we start with

�.S C h/ D �.S/ � �.S/hcS:
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This leads to the differential equation

d�

dS
D �c�S with solution � D e�cS2=2:

Then if the mean spacing is 1, we find that the spacing density is d�
dS D �

2
Se� �S2

4 :

Andrew Odlyzko (see [477]) has investigated the level spacing distribution for
the nontrivial zeros of the Riemann zeta function. He considers only zeros which
are high up on the Re s D 1

2
line. Assume the Riemann hypothesis and look at the

zeros ordered by imaginary part

�
�n

ˇ̌
ˇ
ˇ �
�
1

2
C i�n

�
D 0; �n > 0

�
:

To normalize the level spacings, replace �n by e�n D 1
2�
�n log �n; since we want the

mean spacing to be one. Here one needs to know that the number of �n such that
�n � T is asymptotic to 1

2�
T log T as T �! 1: Odlyzko’s experimental results

show that the spacings
�
�nC1 � �n

�
; for large n, look like spacings of the Gaussian

unitary ensemble (GUE); i.e., the eigenvalue distribution of a random complex
Hermitian matrix (which differs slightly from the GOE spacing). See Figure 1.2,
which Odlyzko just emailed to me in August 2015. It shows Odlyzko’s results for
the spacing of high zeros of the Riemann zeta function and GUE eigenvalue spacing.
Another reference for this subject is Barry Cipra’s expository article [112].

Fig. 1.2 Odlyzko’s
comparison of the spacings of
the zeros of Riemann’s zeta
function and the GUE
eigenvalue spacings curve.
The fit is good for the close to
one billion zeros near zero
number
1023 C 17; 368; 588; 794
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Katz and Sarnak and others (see [341, 342, p. 23]) have investigated many zeta
and L-functions of number theory and have found that “the distribution of the high
zeroes of any L-function follow the universal GUE Laws, while the distribution
of the low-lying zeroes of certain families follow the laws dictated by symmetries
associated with the family. The function field analogs of these phenomena can be
established. . . .” More precisely (see [342, p. 11]) they show that “the zeta functions
of almost all curves C [over a finite field Fq� satisfy the Montgomery-Odlyzko law
[GUE] as q and g [the genus] go to infinity.” For the details, see Katz and Sarnak
[341].

It is quite surprising that the spacings of eigenvalues of the Poincaré Laplacian
detect arithmeticity of � for compact Riemannian manifolds �nH, H= the Poincaré
upper half plane or equivalently the unit disc. This is shown in Figure 1.3 from C.
Schmit [536]. The top of the figure shows the fundamental domain of an arithmetic
group in the unit disc. C. Schmit [536] found 1500 eigenvalues for the Dirichlet
problem of the Poincaré Laplacian on the triangle OLM with angles �=8; �=2; �=3:
The histogram of level spacings for this problem is the lower right part of Figure 1.3.
Schmit also considered the Dirichlet problem for a non-arithmetic triangle with
angles �=8; �=2; 67�=200: He found that the level spacing histogram for this non-
arithmetic triangle is given in the lower left of Figure 1.3. Schmit concludes: “The
spectrum of the tessellating [arithmetic] triangle exhibits neither level repulsion nor
spectral rigidity and there are strong evidences that asymptotically the spectrum is
of Poisson type, although the billiard is known to be a strongly chaotic system.
The spectrum of the non-tessellating [non-arithmetic] triangle, whose classical
properties are not known but which is probably a chaotic system too, exhibits the
essential features of a generic chaotic system, namely the level repulsion and the
spectral rigidity of GOE, as already observed in other chaotic systems.”

Let’s summarize a bit of the theory that ultimately derives the exact GUE and
GOE level spacing. We follow Madan Lal Mehta [441] mostly. Other references
are listed at the beginning of this section. One of the recent ones is Greg Anderson,
Alice Guionnet, and Ofer Zeitouni [7]. We will mostly restrict ourselves to the
GUE—the Gaussian unitary ensemble. An N � N random Hermitian matrix
H is distributed according to the GUE distribution if the joint probability density
is proportional to exp

��Tr.H2/
�
: A real symmetric random N � N matrix X is

distributed according to the GOE distribution if the joint probability density is
proportional to exp

�� 1
2
Tr.X2/

�
: Set ˇ D 1 for the GOE distribution and ˇ D 2

for the GUE distribution. Then one can show that the joint probability density of the
eigenvalues x1; : : : ; xN is

PNˇ.x1; : : : ; xN/ D constant j�.x/jˇ exp

 
�1
ˇ

nX

iD1
x2i

!

;

where �.x/ D
Y

1�i<j�N

�
xi � xj

�
:

(1.161)
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Fig. 1.3 From Schmit [536]. The top shows the fundamental domain of an arithmetic group which
tessellates the Poincaré disk. The lower right shows the level spacing histogram for the Dirichlet
problem on the triangle OLM using the 1500 eigenvalues computed by Schmit using the method
of collocation. The lower left is the analogous histogram for a non-arithmetic triangle. The solid
line is the GOE distribution and the dashed one is Poisson (e�x)

Note that �.x/ is the Vandermonde determinant

�.x/ D det
�

xj�1
i

�

1�i;j�n
D
Y

i<j

�
xj � xi

�
:

See Mehta [441] or Anderson et al. [7] for a number of proofs of (1.161). At
least in the GOE case, the density in formula (1.161) looks similar to that in the
polar decomposition used to evaluate the gamma integral on Pn: The constant of
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proportionality can be evaluated in various ways. A method used by Anderson et al.
[7] involves the Selberg integral formula which says that for all positive numbers
a; b; c

1

nŠ

1Z

0

� � �
1Z

0

j�.x/j2c
nY

iD1
xa�1

i .1 � xi/
b�1 dxi D

n�1Y

jD0

�.a C jc/� .b C jc/ � ..j C 1/ c/

�.a C b C .n C j � 1/ c/� .c/
:

(1.162)
A method used by Kemp [347] involves the representation of PNˇ.x1; : : : ; xN/

obtained below involving a kernel made up of Hermite functions.
The results on eigenvalue density and spacing of Gaudin and Mehta plus the

connection with the Painlevé ordinary differential equations are to be found in
Mehta [441] or Anderson et al. [7, Chapter 3]. Let us state them for the GUE
case. The Wigner semi-circle law (known to number theorists as the Sato-Tate
law) says that in the limit as the matrix size N goes to infinity, the eigenvalue density
approaches

�N.x/ D
(

1
�

�
2N � x2

� 1
2 ; if jxj < p

2N
0; if jxj > p

2N:

We discuss this result later in this section.
The main results as stated in Anderson et al. [7, Chapter 3] are the following

two theorems. The first really writes the limiting probabilities as a Fredholm
determinant. This was defined by Fredholm in 1903 in his famous paper on integral
equations. Fredholm sought solutions u to the Fredholm equation involving the
Fredholm integral operator with kernel K.x; y/ given by

.I � zLK/u D f ; where LKu.x/ D
bZ

a

K.x; y/u.y/dy:

He introduced the Fredholm determinant

d.z/ D
1X

kD0

zn

nŠ

bZ

a

� � �
bZ

a

det
�
K
�
ti; tj

��
1�i;j�n dt1 � � � dtn:

Fredholm showed that the Fredholm equation is uniquely solvable if and only if
d.z/ ¤ 0: Hilbert transformed this theory to the theory of compact operators
and really eliminated the determinants. However the subject has now shown its
usefulness. Bornemann [71] has given a means to compute Fredholm determinants
beginning with a short Matlab program. This enables one to avoid thinking about
computing solutions of the nonlinear ordinary differential equation satisfied by the
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Painlevé 5th transcendent in Theorem 1.3.4. More information on integral operators
can be found in the paper of Bornemann [71] and the book by Hochstadt [302], for
example.

The Fredholm determinant can be viewed as an infinite determinant of the
operator LK in the case under consideration. The requirements to be able to do
this are summarized by Bornemann [71]. One wants to use the formula (hopefully
converging for small z/

log det .I � zLK/ D Tr log .I � zLK/ D Tr

0

@�
X

n�1

1

n
.zLK/

n

1

A D �
X

n�1

1

n
Tr .zLK/

n :

The problem in general is that the operator LK might not have a finite trace.
The kernels KN associated with PNˇ.x1; : : : ; xN/ will be what is called a self-
reproducing kernel, meaning that Lj

K D Lj�1
K ; for j � 2: They are also separable

(or degenerate) kernels; i.e.,

K.x; y/ D
nX

jD1
˛j.x/ˇj.y/:

This really means that the operator LK is essentially a finite matrix operator for the
image of LK is then spanned by the ˇj: See Courant and Hilbert [125]. Moreover
our kernels KN are symmetric since ˇj D ˛j: We will be interested in the limit of
the KN as N ! 1: This will lead to the following theorem as we will explain in
a little more detail later. One would like to write the Fredholm determinant as an
infinite product over the eigenvalues of LK . Hochstadt [302] derives such formulas
in his last chapter.

Theorem 1.3.3 (Gaudin-Mehta). Let X be a random matrix with GUE probability
law Pn2 and eigenvalues �1 � �2 � � � � � �n: For any compact set A � R

lim
n!1Pn2

�p
n�1; : : : ;

p
n�n … A

�

D 1C
1X

kD1

.�1/k
kŠ

Z

A

� � �
Z

A

det
�
Ksinc.xi; xj/1�i;j�k

�
dx1 � � � dxk;

where

Ksinc.x; y/ D 1

�
sinc .x � y/ D

8
<̂

:̂

1
�

sin.x�y/
x�y ; if x ¤ y;

1
�
; if x D y:

Using this result one can show that one can connect the level spacings with a
solution of the nonlinear Painlevé V ordinary differential equation.
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Theorem 1.3.4 (Jimbo-Miwa-Môri-Sato). Let X be a random matrix with GUE
probability law Pn2 and eigenvalues �1 � �2 � � � � � �n: Then

lim
n!1Pn2

�p
n�1; : : : ;

p
n�n … .�t=2; t=2/

� D 1 � F.t/;

where for t � 0

1 � F.t/ D exp

0

@
tZ

0

�.x/

x
dx

1

A

with � the solution of the Painlevé V ordinary differential equation

�
t� 00�2 C 4.t� 0 � �/

�
t� 0 � � C �

� 0�2� D 0

such that

� D � t

�
�
� t

�

�2
�
� t

�

�3
C O

�
t4
�

as t # 0:

Let us give a brief summary of Mehta’s discussion of Theorem 1.3.3 stated above
(see Mehta [441]). First one needs to recall the Hermite polynomials from Volume I,
Chapter 1. The jth Hermite polynomial is (using what Wikipedia calls the “physics
normalization” )

Hj.x/ D ex2
�

� d

dx

�j

e�x2 D jŠ
Œj=2�X

iD0

.�1/i.2x/j�2i

iŠ.j � 2i/Š
: (1.163)

Thus, for example,

H0.x/ D 1;H1.x/ D 2x;H2.x/ D 4x2 � 2;H3.x/ D 8x3 � 12x:

Define the Hermite functions ' j by

' j.x/ D �
2jjŠ

p
�
��1=2

exp
��x2=2

�
Hj.x/: (1.164)

Physicists and Mathematica calls the ' j functions the quantum mechanical
oscillator wave functions. Figure 1.4 shows graphs of ' j.x/ for a small value of j:
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Fig. 1.4 Graphs of Hermite functions ' j; for j D 10; 20; 30

One has the orthogonality relations:

1Z

�1
' i' j D ıij D 1; if i D j and D 0 otherwise:

It follows from properties of determinants that the Vandermonde determinant �.x/
can be expressed as a determinant of Hermite functions; in particular, it satisfies

exp

 

�1
2

NX

iD1
x2i

!

�.x/ D constant det.M/; if Mij D ' i�1
�
xj
�
; 1 � i; j � N:

(1.165)
One sees that

PN2.x1; : : : ; xN/ D 1

NŠ
det

�
tMM

� D 1

NŠ
det

��
KN

�
xi; xj

��
1�i;j�N

�
; (1.166)

where KN.x; y/ denotes the symmetric and separable kernel made up of Hermite
functions ' j W

KN.x; y/ D
N�1X

kD0
'k.x/'k.y/: (1.167)

To see that the normalization constant in formula (1.166) is correct, one can argue
as in Kemp [347] using properties of the kernel KN.x; y/: Recall that in the theory
of Fredholm integral operators, separable kernels really are finite matrix operators.
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Moreover it is not hard to see that the kernels KN.x; y/ are self-reproducing kernels,
using the orthogonality relations of the Hermite functions. See the exercise below.

Exercise 1.3.10 (The Density of Eigenvalues for Matrices with GUE Distribu-
tion).

(a) Prove formula (1.165) using properties of determinants and Hermite polynomi-
als.

(b) Show that for K.x; y/ D KN.x; y/ as in formula (1.167), the Fredholm integral
operator

LKu.x/ D
1Z

�1
K.x; y/u.y/dy

satisfies .LK/
j D .LK/

j�1 ; for j D 2; 3; : : : :.
(c) Then show that the normalization in formula (1.166) is correct using the

orthogonality relations of the Hermite functions.

We want to integrate over N � n variables xnC1; : : : ; xN : Thanks to the
orthogonality properties of the Hermite functions this leads to

Z
� � �
Z

RN�n

PN2.x1; : : : ; xN/dxnC1 � � � dxN D Rn D det
��

KN.xi; xj
�
1�i;j�n

�
: (1.168)

Using various values of n one obtains various densities of interest. When
n D 1 we get the eigenvalue (or level) density which can be seen (as in Mehta
[441, Appendix A.9]) to approach the semi-circle distribution as N ! 1. When

n D 2, one has the 2-point correlation which can be seen to approach
�

sin.�r/
�r

�2

as N ! 1 (see [441, Appendix A.10]): When n D 0 one has the eigenvalue (or
level) spacing density. We are most interested in this last entity, thanks to Odlyzko’s
experiments with the spacings of high zeros of the Riemann zeta function.

But first let’s look at the case n D 1 and its approach to the Wigner semi-circle
distribution. We have

R1 D R1.x/ D KN.x; x/ D
N�1X

kD0
'k.x/

2 D N'N.x/
2 �

p
N.N C 1/'N�1.x/'NC1.x/;

(1.169)

using facts about the Hermite functions ' j (see Erdélyi et al. [170]). Then one
needs to understand the asymptotics as N ! 1: We content ourselves with letting
Mathematica show us what is happening. Figure 1.5 shows the results of computing�

�p
2N

�
R1
�p

2Nx
�
; for N D 5; 25; 45: If we let N get much bigger than this,

however, Mathematica seems to go crazy making giant oscillations that cannot be



1.3 Harmonic Analysis on Pn in Polar Coordinates 147

0.8

0.6

0.4

0.2

1−1

Fig. 1.5 Graphs of
�

�
p

2N

�
R1
�p

2Nx
�
; for N D 5; 25; 45 in red, green, and blue

right. In any case, the figure shows that the graphs are looking more like the Wigner
semi-circle. But the oscillations are indeed increasing.

Now let us try to understand the level spacing density, which is the case n D 0

in formula (1.168). We need an identity of Gram from linear algebra. We take
our proof from Conrey [121]. The identity says for any interval S and integrable
functions ' j and  j on S we have Gram’s formula:

1

NŠ

Z

SN

det
�
' j .
 k/

�
det

�
 j .
 k/

�
d
1 � � � d
N D det

0

@
Z

S

' j.
/ k.
/ d


1

A :

(1.170)

Edelman and Rao [151] note that this is a continuous version of the Cauchy–
Binet formula. Conrey [121] proves formula (1.170) by brute force from the
definition of the N � N determinant as a sum over the symmetric group SN . This
says that the left-hand side of the formula is

Z

SN

X

�2SN

sgn.�/
NY

jD1
' j

�

� j
� X

�2SN

sgn.�/
NY

kD1
 k .
�k/ d
1 � � � d
N

D
�!��

Z

SN

X

�2SN

X

�2SN

sgn.�/
NY

jD1
' j

�

� j
� NY

kD1
 k .
��k/ d
1 � � � d
N

D
k!��1k

Z

SN

X

�2SN

X

�2SN

sgn.�/
NY

jD1

NY

kD1
' j

�

� j
�
 ��1k .
�k/ d
1 � � � d
N



148 1 The Space Pn of Positive n � n Matrices

D
Z

SN

X

�2SN

X

�2SN

sgn.�/
NY

jD1
' j

�

� j
�
 ��1j

�

� j
�

d
1 � � � d
N

D
�!��1

Z

SN

X

�2SN

X

�2SN

sgn.�/
NY

jD1
' j

�

� j
�
 � j

�

� j
�

d
1 � � � d
N

D
X

�2SN

X

�2SN

sgn.�/
NY

jD1

Z

S

' j .
/  � j .
/ d


D NŠ
X

�2SN

sgn.�/
NY

jD1

Z

S

' j .
/  � j .
/ d
;

which is the right-hand side of the formula.
Define A2.
/ Dthe probability that the interval .�
; 
/ contains no level

x1; : : : ; xN : Then by Gram’s formula (1.170):

A2.
/ D
Z

jx1j�

� � �

Z

jxN j�

PN2 .x1; : : : xN/ dx1 � � � dxN

D 1
NŠ

Z

jx1j�

� � �

Z

jxN j�


�
det

��
' i�1

�
xj
��
1�i;j�n

��2
dx1 � � � dxN D det G;

where Gij D
Z

jxj�

' i�1 .x/ ' j�1 .x/ dx D ıij �


Z

�

' i�1 .x/ ' j�1 .x/ dx:

Since KN.x; y/ is a symmetric separable kernel, if �0; : : : ; �N�1 are the eigenval-
ues of the corresponding Fredholm integral operator on Œ�
; 
� one has

A2.
/ D
N�1Y

iD0
.1 � �i/ :

To take the limit as N ! 1; we need to renormalize KN and write

QN.�; �/ D � tp
2N

KN.x; y/; with � t D 

p
2N; � t� D x

p
2N; � t� D y

p
2N:

Mehta shows (see [441, Appendix A.10]) that (with sinc.x/ D sin.x/=x)

lim
N!1QN.�; �/ D sin .� t .� � �//

� .� � �/ D t sinc .� t .� � �// :

One has (see Erdélyi et al. [170]) for x ¤ y;
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KN.x; y/ D
N�1X

kD0
'k.x/'k.y/ D

r
N

2

�
'N.x/'N�1.y/ � 'N.y/'N�1.x/

x � y

�
:

(1.171)
Using (1.171) we can compare 3D plots of the surface

z D KN.x; y/ and z D sinc.x � y/

using Mathematica and small values of N: See Figures 1.6 and 1.7. There does
appear to be a similarity even for N D 5:

Fig. 1.6 A 3D plot of z D sinc.x � y/ in Mathematica

Fig. 1.7 A 3D plot of z D K5.x; y/
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The sinc kernel is a familiar Fredholm kernel from the theory of Fourier
transforms and uncertainty in Volume I, Chapter 1. The eigenfunctions are prolate
spheroidal wave functions. They have been well studied. This permits the
computation of the limiting density.

Mehta [441] replaces the eigenvalue problems with some involving sin and cos:

	2jf2j.x/ D 2

1Z

0

cos.�xyt/f2j.y/dy

	2jC1f2jC1.x/ D 2i

1Z

0

sin.�xyt/f2jC1.y/dy:

Write for s D 2t

E2.0; s/ D lim
N!1A2

 



p
2N

�

!

D
1Y

iD0

�
1 � t

2
j	ij2

�
:

Using these facts, Mehta (see [441, Appendix A.13]) finds that

E2.0; s/ D 1 � s C �2

36
s4 � �4

675
s6 C O

�
s8
�
:

Then the density

p2.0; s/ D d2

ds2
E2.0; s/ D �2

3
s2 � 2�4

45
s4 C O

�
s6
�
:

The corresponding result for the GOE random matrices (again in [441, Appendix
A.13]) is

p1.0; s/ D �2

6
s � �4

60
s3 C O

�
s4
�
:

If you compare this with the Taylor expansion for the Wigner surmise
�
2

s exp
�

��x2

4

�
; you see that the lead terms bear some resemblance.

A few last remarks are in order. The reader might be interested in a few more
references. Edelman and Rao [151] survey some results in random matrix theory
for the many kinds of ensembles, including the Wishart ensemble. The Oxford
Handbook of Random Matrices [3] includes many articles with applications of the
subject; e.g., to finance. Freeman Dyson has an interesting introduction in which he
notes that the times between buses in Cuernavaca, Mexico have been found to agree
with GUE spacings according to some physicists from the Czech Republic.
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Fig. 1.8 The top histogram is the spectrum (without multiplicity) of the adjacency matrix of
the finite Euclidean plane graph X.F2p; S/, where p D 1723 and S consists of solutions to the

congruence x21 C x22 � 1.mod p/, as defined in Volume I, p. 91. The bottom is the unnormalized
eigenvalue spacing histogram for the same graph

We and many others have performed experiments on spacings of eigenvalues of
adjacency matrices of graphs as well as zeros of Ihara zeta functions of graphs.
Some of the results are considered in [610] and [611]. For example consider
Figure 1.8 in which the top histogram is the spectrum (without multiplicity) of the
adjacency matrix of the finite Euclidean plane graph X.F2p; S/, where p D 1723 and
S consists of solutions to the congruence x21 C x22 
 1.mod p/, as defined in Volume
I, p. 91. The bottom is the unnormalized eigenvalue spacing histogram for the same
graph. Figure 1.9 shows histograms related to spectra (without multiplicity) of
the finite upper half plane graph X353.3; 3/ defined in Volume I, p. 223. In our
program to compute Soto-Andrade sums we needed to know that a generator of
the multiplicative group of F353.

p
3/ is 1 C 5

p
3. The top histogram is for the

spectrum and the lower one is for the unnormalized eigenvalue spacings. The lower
histograms in Figures 1.8 and 1.9 do indeed appear to be Poisson (i.e., e�x/: This
is in accordance with the arithmetic used in constructing the graphs. If instead
one creates the analogous histograms for random regular graphs, one finds that the
eigenvalue spacing histogram looks more like the GOE density. This is seen in
Figure 1.10 from Derek Newland’s Ph.D. thesis [473]. In Figure 1.10, the upper
part compares the histogram of the eigenvalues of the adjacency matrix for a random
regular graph of degree 52 having 2000 vertices with the semi-circle density. The
lower part of Figure 1.10 compares the histogram of normalized eigenvalue spacings
for the same graph with the Wigner surmise for the GOE density.
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Fig. 1.9 Histograms related to spectra (without multiplicity) of the finite upper half plane graph
X353.3; 3/ defined in Volume I, p. 223. The top histogram is for the spectrum and the lower one is
for the unnormalized eigenvalue spacings

One can also study the statistics of eigenvalues of non-Hermitian matrices. For
a random n � n matrix, one expects to see that the eigenvalues are dense in a
circle of radius

p
n: This is the Girko circle law. We discuss the subject with some

experiments from graph theory in [611, Chapter 26]. See also Tao and Vu [592].

1.3.6 Other Directions in the Labyrinth

Our discussion of inversion for the Helgason–Fourier transform on Pn mainly
followed the path of Helgason [275]. At this point, the reader might like to travel
some other paths. Varadarajan’s introduction to the collected works of Harish-
Chandra [263] gives a good historical introduction to the representation-theoretic
road to harmonic analysis, as it was traveled by Harish-Chandra and others.
Jorgenson and Lang [333] give a more recent treatment of the subject. See Rebecca
Herb and Paul Sally [287] for a survey of Plancherel formulas on real and p-adic
groups.

One part of the route involves orbital integrals:

Z

G=T

f .xtx�1/ dx; for t in a maximal abelian subgroup T of G:
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Fig. 1.10 The histograms of the spectrum of the adjacency matrix (top) and eigenvalue spacings
(bottom) for a random regular graph with degree 53 and 2000 vertices created by Mathematica
from the thesis of Derek Newland [473]

Weyl [666] already made great use of these integrals in his development of the
theory of representations of compact Lie groups. See also Broecker and tom Dieck
[81] or Helgason [282]. Gelfand and Graev [213] use such an approach for complex
groups such as SL.n;C/. In particular they utilize formulas for the residues of certain
integrals of M. Riesz type defined by:

R.s/ D
Z

x2Rm

QŒx��0

f .x/ QŒx�s dx; for s 2 C;
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where Q is a symmetric matrix in R
m�m and f W R

m ! C is sufficiently
differentiable. The residue formulas involve certain differential operators. This leads
to a version of Fourier analysis of f W G ! C which is often called the Plancherel
formula, for groups G like SL.n;C/;U.n/, at first, and then also real groups. One
writes f .e/; e D the identity of the group, as a differential operator applied to an
orbital integral.

Michèle Vergne [629] provides a view of harmonic analysis on G D SL.2;R/ and
other groups, which is close to that of Kirillov for nilpotent groups. Again the main
direction is given by the orbit method which is used to classify representations
according to orbits of the Adjoint action of G on the dual of its Lie algebra. For
matrix groups, the Adjoint is conjugation.

Ehrenpreis and Mautner [155] give an interesting discussion of Fourier analysis
on SL.2;R/ and SL.2;R/=� from the point of view of “classical” analysis
(after Laurent Schwartz), including a Riemann–Lebesgue lemma and a readable
discussion of the Schwartz space.

Flensted-Jensen [181] gives some relations between analysis on symmetric
spaces like GL.n;R/=O.n/ and GL.n;C/=U.n/. Analysis is much easier on the latter
space. Healy [266] studies relations between harmonic analysis on GL.2;C/=U.2/
and that on SU.2/.

Rebecca Herb and Joe Wolf [288] note that Harish-Chandra’s Plancherel formula
was not proved for all real connected semisimple Lie groups; e.g., the universal
covers of groups like SL.2;R/. They obtain the Plancherel formula for all real
semisimple groups using different methods from Harish-Chandra. Once more,
orbital integrals play a key role.

Orbital integrals are also of fundamental importance in the Selberg trace formula.
See Section 1.5.5 as well as Section 3.7 of Volume I. Another reference is the
conference volume edited by Hejhal et al. [272] which contains many papers on that
subject; e.g., that of James Arthur, Rebecca Herb, and Paul Sally. Orbital integrals
are also intrinsic to the theory of the Radon transform. See Helgason [280].

When G D SL.2;R/, for example, the Plancherel formula involves a series as
well as an integral (see Lang [388]). Why doesn’t this happen for G=K Š H? Or for
Pn? Equivalently, one wonders why there are no square-integrable eigenfunctions
of the G-invariant differential operators on Pn? One answer to this question comes
from thinking about discrete subgroups � of GL.n;R/ or SL.n;R/. If there is a
nonzero function f in L2.Pn/, such that Lf D �f for all L in D.Pn/, it follows that
f 2 L2.Pn=�/ for all discrete subgroups � of GL.n;R/. This is absurd.

Furstenberg [194] defines a boundary M for a Lie group G to be a compact space
such that there is a continuous G action .g; x/ 7! gx taking G � M into M such that
the group action has the following three properties:

(1) associative W .g1g2/x D g1.g2x/I
(2) transitive: for each x; y 2 M; there is a g 2 G so that gx D yI
(3) for each probability measure � on M; 9 gn 2 G

such that gn� converges to a point measure on M:



1.4 Fundamental Domains for Pn=GL.n;Z/ 155

A maximal boundary B.G/ has the property that, for any boundary M of G;
there is a map from B.G/ to M preserving the G actions. Furstenberg [194] proves
that a maximal boundary for G D SL.n;R/ is the boundary G=MAN appearing in
Theorem 1.3.1. Here MAN consists of the upper triangular matrices in G and we
can identify G=MAN with K=M by the Iwasawa decomposition of G. Furstenberg’s
result is actually more general and he goes on to show that Poisson’s integral formula
for bounded harmonic functions can be generalized using the maximal boundary.
We will discuss this further in Chapter 2.

Exercise 1.3.11 (Boundaries of G D SL.n;R/).

(a) Show that if G D SL.n;R/ and MAN is the group of upper triangular matrices
of determinant one, then the maximal boundary G=MAN can be identified with
the flag manifold Fn of .n � 1/-tuples .V1;V2; : : : ;Vn�1/ where Vi denotes an
i-dimensional vector subspace of Rn and V1 � V2 � � � � � Vn�1. The action of
G on Fn is the obvious one defined via gVi D fgx j x 2 Vi g.

(b) Define Gi;n�1 to be the Grassmann variety of i-dimensional subspaces of Rn.
Show that the mapping .V1; : : : ;Vn�1/ 7! Vi sends Fn onto Gi;n�1 and preserves
the G-actions. Thus Gi;n�1 is also a boundary of G. In particular, the projective
space G1;n�1 D P

n�1 is a boundary of G.
(c) Let P.i; n � i/ denote the parabolic subgroup of G consisting of matrices with

block form

�
A B
0 C

�
; A 2 GL.i;R/; C 2 GL.n � i;R/:

Show that we can identify the Grassmann variety Gi;n�1 of part (b) with
G=P.i; n � i/.

As we noted earlier, holomorphic extensions of eigenfunctions of the invariant
differential operators on a symmetric space to the crown domain of the symmetric
space have been studied and applied to various topics such as the heat operator,
estimating Maass cusp forms and Helgason’s conjecture on eigenfunctions of
the invariant differential operators being reconstructible from their hyperfunction
boundary values. See the papers of Gindikin [219], Krötz and Opdam [372], and
Ólafsson and Schlichtkrull [479].

1.4 Fundamental Domains for Pn=GL.n;Z/

Seit meiner ersten Studienzeit war mir Minkowski der beste und zuverlässigste
Freunde, der an mir hing mit der ganzen ihm eigenen Tiefe und Treue. Unsere
Wissenschaft, die uns das liebste war, hatte uns zusammengeführt; sie erschien uns
wie ein blühender Garten; in diesem Garten gibt es geebnete Wege, auf denen
man mühelos geniesst, indem man sich umschaut, zumal an der Seite eines
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Gleichempfindenden. Gern suchten wir aber auch verborgene Pfade auf und
entdeckten manche neue, uns schön dünkende Aussischt, und wenn der eine
dem andern sie zeigte und wir sie gemeinsam bewunderten, war unsere Freude
vollkommen.3

From Hilbert’s speech in memory of Minkowski (see Minkowski [453, Vol. I,
XXX]).

1.4.1 Introduction

In this section we study the action of the modular group GL.n;Z/ consisting of
n � n matrices with integer entries and determinant ˙1 on the space Pn of positive
matrices. A fundamental domain D for Pn=GL.n;Z/ is a subset of Pn which
behaves like the quotient space Pn=GL.n;Z/, at least up to boundary identifications.
The fundamental domains for Pn=GL.n;Z/ are much more difficult to visualize than
those for SL.2;Z/nH which were considered in Section 3.3 of Volume I, since Pn is
a subset of .n.n C 1/=2/-dimensional Euclidean space. Thus the smallest dimension
for a picture of such a fundamental domain .for n � 3/ would be six. If we consider
only the determinant one surface SPn=GL.n;Z/, this reduces the dimension by one,
making our picture five-dimensional. We will include some pictures of projections
of points in a fundamental domain for SP3=GL.3;Z/ in Section 1.4.3 as well as a
“movie” of the region obtained by projecting onto the three x-variables as the two
y-variables dance around near .1; 1/: See Figure 1.26.

Much of this section is due to Minkowski, who was the first to describe a
fundamental domain for GL.n;Z/ (see Section 1.4.2). We will discuss another
fundamental domain—that of Grenier [241] (also Hermite, Korkine and Zolotareff)
in Section 1.4.3. The latter domain has the advantage of looking more like the one
for SL.2;Z/ which we used in Section 3.3 of Volume I. There are indeed many
unusual flowers in these higher dimensional gardens. The names of those who
have cultivated these flowers include: Gauss, Hermite, Minkowski, Voronoi, Siegel,
Weyl, Weil, Satake, Baily, Borel, Serre, Harish-Chandra, Mostow, Tamagawa,
Mumford, Delone, Korkine and Zolotareff, Ryskov, : : :.

The reader may be wondering why one would want to wander about in these
higher dimensional gardens. As we mentioned in Section 1.1.1, our main motivation
is the desire to study some relatives of Riemann’s zeta function. We will see
that we can generalize Riemann’s method of analytic continuation of the Riemann
zeta function—a method used in Theorem 1.4.1 in Volume I. This method involves

3Since my first days as a student, Minkowski, with his typical depth and faith, was my best and
most reliable friend. Our beloved science had brought us together; it seemed to us like a blooming
garden; in this garden there were smooth (well-tended) paths that one enjoyed effortlessly while
looking around, especially at the side of someone with the same feelings. But we also liked to seek
out the hidden paths and discovered several new views which were beautiful in our opinion and
when one of us showed them to the other and we both admired them, our joy was complete.
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taking a Mellin transform of a theta function. If X 2 Pn, and Y 2 Pm, for 1 � m � n,
we define the theta function by:


.Y;X/ D
X

A2Zn�m

expf�� Tr.XŒA�Y/g: (1.172)

This theta function is related to a zeta function generalizing Epstein’s zeta function
from Section 1.4 of Volume I as well as the zeta function introduced in formula (1.4)
of Section 1.1.1. The zeta function in question is called Koecher’s zeta function
because it was first studied by Koecher [359] and it is defined for 1 � m � n by:

Zm;n�m.X; s/ D
X

A2Zn�m=GL.m;Z/
rank ADm

jXŒA�j�s; if Re s >
n

2
: (1.173)

Here the sum is over n�m integral matrices A of rank m running through a complete
set of representatives for the equivalence relation

A � B iff A D BU for some U 2 GL.m;Z/:

Note that if m D 1, the theta function (1.172) is just that considered in Exercise 1.4.6
in Section 1.4.2 of Volume I, and in this case, Koecher’s zeta function reduces to the
Epstein zeta function defined in Section 1.4.2 of Volume I. When n D m, Koecher’s
zeta function is the function in formula (1.4) of Section 1.1.1 of this Volume and
we will prove that—in this case—it is a product of Riemann zeta functions (see
Lemma 1.4.7 below)

Zn;0.X; s/ D jXj�s
n�1Y

jD0
�.2s � j/: (1.174)

In fact Zn;0.I; s/ is the analogue of the Dedekind zeta function (considered in
Section 1.4 of Volume I) for the simple algebra of all n � n rational matrices.

In order to imitate the proof of the analytic continuation of the Epstein zeta
function given in Section 1.4 of Volume I, we need to Mellin transform the theta
function (1.172). The Mellin transform used here is not a transform over all Y in Pm,
but instead over Pm=GL.m;Z/. This is necessary because 
.YŒU�;X/ D 
.Y;X/ for
all U 2 GL.m;Z/. Explicitly, the Mellin transform is:

Z

Pm=GL.m;Z/

jYjs 
m.Y;X/ d	m.Y/ D 2��ms �m.0; : : : ; 0; s/ Zm;n�m.X; s/:

(1.175)
Here �m denotes the gamma function defined by (1.44) in Section 1.2.1 and 
m

denotes the partial sum of (1.172) over all A 2 Z
n�m such that the rank of A is m.

Here we always assume that 1 � m � n.
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This kind of example motivates the search for analogues of Hecke’s correspon-
dence (see Section 3.6 of Volume I) which would relate Siegel modular forms such
as the theta function in (1.172) with Dirichlet series of several variables. One needs
more variables than the one complex variable s appearing in (1.175) in order to
invert the matrix analogue of the Mellin transform on the fundamental domain
for GL.2;Z/. This inversion was used by Kaori Imai (Ota) [317] in the case of
cuspidal Siegel modular forms for Sp.2;Z/ to generalize Hecke’s correspondence.
Her results say that there is a dictionary which translates between the languages:

Siegel modular forms for Sp.2;Z/ , Dirichlet series “twisted” by Maass wave
forms for GL.2;Z/ with functional equations:

The H) can be found in Maass [426, Section 16] for Siegel modular forms for
Sp.n;Z/ with n arbitrary, in fact. The converse correspondence (H is proved for
cusp forms by Kaori Imai (Ota) [317] using the Roelcke–Selberg–Mellin inversion
formula on P2=GL.2;Z/. See also Chapter 2, as well as Maass [419] and Roelcke
[512]. Weissauer [663] extended the converse result to congruence subgroups of
Sp.n;Z/ for all n.

The main goal of this chapter is to present some of the ideas necessary for
harmonic analysis on Pn=GL.n;Z/, from the same point of view that worked in
the preceding section for Pn itself. The theory is still not in its final form, however.
But it is this goal that motivates our detailed study of the fundamental domain.

Jacquet et al. [325] have shown that the adelic version of the Hecke converse
theorem for GL.n/ does not require “twists” by Maass forms for GL.m/, m � n �1;
but only those for GL.m/; m � n � 2. Such a converse theorem can be used to
show, for example, that zeta and L-functions for totally real cubic number fields
correspond to cusp forms for the adelized version of GL.3/, i.e., cusp forms for
congruence subgroups of GL.3/. Thus when one sees L-functions with the right
gamma factors in their functional equations, one expects to find corresponding
cusp forms for GL.n/. But, in general, one must also have functional equations for
L-functions “twisted” by Maass forms for GL.m/; m � n � 2. Making use of the
Rankin–Selberg convolution, which leads to L-functions with an Euler product that
indicates the presence of a Maass form for GL.3/, Gelbart and Jacquet [210] obtain
a lifting of Maass forms from GL.2/ to GL.3/. See Goldfeld [230].

The aforementioned results are part of a vast program of Langlands and many
coworkers which gives a theory of L-functions attached to adelic irreducible
automorphic representations of reductive groups over global fields such as Q

and Fp.x/. This theory is surveyed by Borel in Borel and Casselman [66, Vol. II,
pp. 27–61] and by Gelbart [209]. Newer references are the 2002 Park City
Conference Proceedings edited by Sarnak and Shahidi [529], Bernstein and Gelbart
[47], Booker [60], Frenkel [187], Goldfeld [230], and Goldfeld and Hundley [232].
Langlands has attached L-functions to an automorphic representation of the adelic
GL.n/ by defining an Euler product over primes p: Langlands made a conjecture
about his L-functions which generalizes the Artin reciprocity law in the theory of
abelian extensions of number fields. This conjecture of Langlands would imply the
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Artin conjecture that the Artin L-functions are entire (excluding cases which are
obviously not entire; e.g., when the character is trivial), since the Langlands L-
function is entire for any nontrivial cuspidal representation of GL.n/. Attempts to
prove the Artin conjecture this way have indeed made progress in the case of degree
2 representations of the Galois group of the extension (see Bernstein and Gelbart
(Eds.) [47], Goldfeld [230], Langlands [394], Sarnak and Shahidi (Eds.) [529],
Tunnell [620, 621]). This progress involves the “twisted” Selberg trace formula and
“base change.” There are several L-functions websites that provide a wealth of
information.

At first sight, the Langlands L-function defined by an Euler product sounds rather
different from an L-function defined by a Dirichlet series or a Mellin transform over
a fundamental domain for GL.n;Z/. However, as we saw in Sections 3.6.4 and 3.6.5
of Volume I, Hecke L-functions can be defined in either way, if the corresponding
automorphic form is an eigenform for all the Hecke operators. We will find that
an analogous result holds for GL.n;Z/ in Section 1.5 which follows. Thus we
will study L-functions using Mellin transforms over Pn=GL.n;Z/; and these L-
functions will indeed have Euler products when the corresponding Maass form is
an eigenfunction of all the Hecke operators for GL.n;Z/. Of course, these Mellin
transforms can also be used to study the Eisenstein series generalizing Koecher’s
zeta function (1.173). Such Eisenstein series need not have Euler products, except
in certain special cases, such as that of (1.174), where the Euler product comes from
that for the Riemann zeta function. Bump [83] and Goldfeld [230] provide more
connections between the adelic point of view and the Dirichlet series point of view.
See, in particular, Section 1.5.4 for more information on L-functions for GL.n;Z/:

If you are not interested in these L-functions for GL.n;Z/, there are still lots of
reasons to study fundamental domains for Pn=GL.n;Z/. We listed some of these at
the beginning of Section 1.1.1. Let’s go into more detail here.

The embedding used by Hecke to relate zeta functions of algebraic number
fields with Epstein zeta functions (see Theorem 1.4.2 of Volume I) leads one to
suspect that explicit fundamental domains for Pn=GL.n;Z/ should lead to explicit
algorithms for the computation of class numbers and units of number fields.
This was indeed the case for imaginary quadratic fields (see Section 3.3.3 of
Volume I). The units in a number field are connected with a certain fundamental
domain in a Euclidean space (see the proof of Theorem 1.4.2 in Section 1.4.3 of
Volume I). The units and class number also influence the fundamental domains for
SL.2;OK/; OK D the ring of integers of a number field K—groups to be considered
in the next chapter. In many ways, Pn=GL.n;Z/ is the prototype for all fundamental
domains.

Another related issue is that of the closed geodesics in SL.2;Z/nH corresponding
to hyperbolic elements of SL.2;Z/. Such a geodesic corresponds to an element z in
a real quadratic number field—z being fixed by the hyperbolic matrix � . Here � in
SL.2;Z/ is called hyperbolic if the eigenvalues of � are distinct, real, and different
from 1 or �1. If
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�

�
" 0

0 1="

�
��1 D �; for � 2 SL.2;R/;

then the geodesic fixed by � is the image of the positive y-axis under � . Moreover
the eigenvalue " of � is a unit in a real quadratic field and the columns of � are
eigenvectors of � . The periodic continued fraction expansions of these quadratic
numbers z come from the translations and inversions needed to map the half circle
connecting z and its conjugate into the fundamental domain for SL.2;Z/ (see
Exercise 3.7.20 of Volume I). You might wonder how z and its conjugate z0 over
Q relate to " and its conjugate "�1. It is not hard to see that if

� D
�

a b
c d

�
; and �z D .az C b/=.cz C d/ D z;

then

˚
"; "�1� D ˚

cz C d; cz0 C d
�
:

This happens because �z D z, �z0 D z0; and

�

�
z
1

�
D
�

az C b
cz C d

�
;

�

�
z z0
1 1

�
D
�

z z0
1 1

��
cz C d 0
0 cz0 C d

�
:

One wonders whether GL.n;Z/-analogues of the preceding remarks would lead
to periodic algorithms for the approximation of elements of a totally real number
field of degree n. Here totally real field K means that all the conjugate fields of
K over Q are real. There is a long history of the search for a generalization of
the theorem that a real number is quadratic if and only if its continued fraction
expansion is periodic. Minkowski [453, Vol. I, pp. 357–371]) gives an algorithm
which is periodic in some cases. There are many other algorithms generalizing
continued fractions, but none seems to be completely satisfactory.

There is a generalization to GL.n;Z/ of the relation between units in real
quadratic fields and closed geodesics in SL.2;Z/nH (see Dorothy Wallace [643]
for related results). A hyperbolic element � in GL.n;Z/ is one with distinct real
eigenvalues none of which are equal to ˙1. Thus � has eigenvalues which are units
in a totally real number field of degree n. If for � 2 GL.n;R/, we have ����1 is
diagonal with jth diagonal entry "j, then the following totally geodesic submanifold
is fixed by � :

[

a2Rn

GaŒ��;
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where
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:::
: : :

:::
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ˇ
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t 2 R
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>=

>;
:

Other references for continued fraction type algorithms are Brentjes [79], and
Ferguson and Forcade [179]. There are many applications of higher dimensional
continued fraction algorithms in coding and elsewhere (see Lagarias and Odlyzko
[383]). Related references are: Ash et al. [30], Barrucand et al. [37], Cusick and
Schoenfeld [128], Delone and Faddeev [133], Hirzebruch [296], and Williams and
Broere [669].

It is also of interest to number theorists that the Euclidean volume of the subset of
matrices Y in Minkowski’s fundamental domain for Pn=GL.n;Z/ such that jYj � 1

involves a product of Riemann zeta functions at odd as well as even positive
integer arguments n > 1 (see Theorem 1.4.4). For recall from Exercise 3.5.7
of Volume I that Euler found a nice formula for values of zeta at positive even
integers, but no one has managed a similar result for odd integers. Siegel used
formulas (1.174) and (1.175) above to prove Minkowski’s formula for this volume
(see Siegel [565, Vol. I, pp. 459–468 and Vol. III, pp. 328–333]). Weil [662, Vol. I,
p. 561] notes:

Siegel était arrivé à Princeton en 1940; pendant tout mon séjour aux États-Unis, je l’avais vu
souvent. Depuis longtemps, avec juste raison, il attachait une grande importance au calcul
du volume des domaines fondamentaux pour les sous-groupes arithmétiques des groupes
simples; il avail consacré à ce sujet, inauguré autrefois par Minkowski, plusieurs mémoires
importants. À ce propos il s’était vivement intéressé à la formule générale de Gauss-Bonnet,
d’où pouvait résulter, du moins pour les sous-groupes à quotient compact, une détermination
topologique des volumes en question. Je crois même me souvenir qu’il avait cru un jour tirer
de là des conclusions au sujet de valeurs de �.n/ pour n impair> 1, et s’était donné quelque
mal pour les vérifier numériquement, avant de s’apercevoir qu’il s’agissait d’un cas où la
courbure de Gauss-Bonnet est nulle.4

To bring up a different and quite old question from number theory, define the
representation numbers AY.m/ for the number of representations of an integer
m as m D YŒa� for a positive definite quadratic form Y in Pn with integer
coefficients and an integral vector a 2 Z

n. We discussed some of this at the end

4Siegel arrived at Princeton in 1940; during my entire stay in the United States, I saw him often.
For a long time, rightly, he attached a great importance to the calculation of the volume of the
fundamental domain for arithmetic subgroups of simple groups; he had devoted several important
papers to this subject which had been begun long before by Minkowski. In this regard he was
keenly interested in the general Gauss–Bonnet formula, from which could result a topological
characterization of the volume in question, at least for subgroups with compact quotient. I even
believe that I remember that he once thought that he had derived conclusions from that on the
subject of the values of �.n/ for n odd > 1, and had taken some trouble to verify this numerically,
before realizing that it was a question of a case where the Gauss–Bonnet curvature is zero.
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of Section 3.4 in Volume I. Gauss treated the cases n D 2; 3. The case that Y D In is
the n�n identity matrix has received special attention. For example, in 1829, Jacobi
proved that

AI4 .n/ D 8
X

0<djn
d; if n is odd:

One can view the left-hand side of the equality as the Fourier coefficient of a
theta function of weight 2 and the right-hand side as the Fourier coefficient of an
Eisenstein series of weight 2.

In 1883 when Minkowski was 17, he and Smith split a prize for proofs of
Eisenstein’s formula for the mass of a genus of quadratic forms (see Minkowski
[453, Vol. I, pp. 157–202] or Hancock [260]). Siegel developed a vast extension
of these results in the 1930s (see Siegel [565, Vol. I, pp. 326–405, 410–443, 469–
548; Vol. II, pp. 1–7, 20–40] and Milnor and Husemoller [451]). The general result
can be viewed as an identity between Siegel modular forms. See also Freitag [185,
pp. 285–297]. There is a brief exposition of Siegel’s work and related developments
in Cassels [99, pp. 374–388].

These studies of quadratic forms require a knowledge of the fundamental domain
for Pn=GL.n;Z/ since the usual fundamental domain for the Siegel modular
group cannot be understood without first understanding a fundamental domain for
GL.n;Z/, as we shall see in Chapter 2 of this volume.

In the 1960s Tamagawa, Weil, Ono, and Kneser obtained an adelic version of
Siegel’s results on quadratic forms. Some references are the article of Kneser in
Cassels and Fröhlich [101, pp. 250–265], the articles of Mars in Borel and Mostow
[68, pp. 133–142], and Weil [662, Vol. III pp. 1–157].

Fundamental domains for groups like GL.n;Z/ are not just of interest to number
theorists. They also provide food for thought to those interested in geometry
and topology. Ash et al. [30] have obtained smooth compactifications of such
fundamental domains. This would allow one to use the Riemann–Roch theorem and
other methods from geometry to compute dimensions of spaces of modular forms.
These smooth compactifications are obtained explicitly using ideas of Minkowski
and Voronoi, as well as the theory of toroidal embeddings. References include: Baily
and Borel [33], Borel and Ji [67], Borel and Serre [69], Chai [103], Goresky [236],
Mostow and Tamagawa [467], Namikawa [472], Satake [531, 533], and Yamazaki
[673]. References related to the computation of cohomology of arithmetic groups
are: Ash [28], Ash et al. [29], Borel [65], Borel and Serre [69], Borel and Wallach
[70], Schwermer [539, 540], Serre [548], and Soulé [571, 572].

There are many places in physics where automorphic forms for GL.n;Z/ and
Sp.n;Z/ have popped up. Of course, it should not be surprising to find that abelian
integrals and thus Riemann theta functions such as (1.172) above should bear
solutions to partial differential equations as their fruit. For example, classical theta
functions such as those discussed in Section 3.4 of Volume I appear in the solutions
by Euler, Lagrange, and Poisson of two special cases of the problem of describing
the motion of a solid body rotating about a fixed point. The third known case of
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this problem was solved by Sofya Kovalevskaya [aka Sonya Kovalevsky] [368]
using Siegel modular forms (Riemann theta functions). She was awarded the Prix
Bordin for this work in 1888. Evidently no less a mathematician than Picard told
Kovalevskaya in 1886 that he was skeptical that theta functions for Sp.n;Z/ “can
be useful in the integration of certain differential equations” (see Dubrovin et al.
[143]). But 90 years later, in the paper of Dubrovin et al. [143] theta functions are
used to solve the Korteweg–deVries partial differential equation arising in the theory
of solitons. For related papers and some short articles on Kovalevskaya’s life see the
volume edited by Linda Keen [345]. The books of Cooke [124], Ann Hibner Koblitz
[357], and Pelageya Kochina [358] give more detailed discussions.

The theta functions for Sp.n;Z/ are also intrinsic to Siegel’s work on quadratic
forms mentioned above. This work has recently been connected with quantum
mechanics via the Segal-Shale-Weil representation. References are Gérard Lion and
Michèle Vergne [406], Shale [551], Wallach [653], and Weil [662, Vol. 3, pp. 1–
157]. See also the book by Mumford [471].

Finding densest lattice packings of spheres in R
n is a part of Hilbert’s

eighteenth problem (see Cassels [99], Davenport [129], Milnor [449], Rogers [514],
Siegel [561, 562], Sloane [568, 569]), and Thompson [614]). A lattice L 5in R

n is a
subgroup of the additive group of Rn of the form:

L D Zv1 ˚ Zv2 ˚ � � � ˚ Zvn; (1.176)

where the vectors v1; v2; : : : ; vn form a vector space basis of Rn. It can be shown
that this is equivalent to saying that L is a discrete subgroup of Rn such that Rn=L is
compact; i.e., a discrete cocompact subgroup of Rn. For a proof of this last remark
see Siegel [562, pp. 9–12]. The problem of finding the densest lattice packings of
spheres in R

n is that of finding a lattice L such that if nonoverlapping open spheres
of equal radii are centered at each point of L, the largest possible volume is filled up.
This sphere packing problem goes back to a book review that Gauss wrote in 1831.

There is an identification between lattices L (modulo rotation) in R
n and

positive matrices Y in a fundamental domain for Pn=GL.n;Z/ which is made as
follows. Suppose we are given a lattice L as in formula (1.176). Define the positive
matrix Y.L/ in Pn by:

Y.L/ D IŒv�; for v D .v1v2 � � � vn/ 2 R
n: (1.177)

Since the lattice L remains the same upon change of Z-basis, which amounts to
replacing v by v� , for some � 2 GL.n;Z/, we must consider Y.L/ as an equivalence
class in Pn=GL.n;Z/.

Using the identification (1.177), the problem of finding the lattice L giving the
densest packing of spheres of equal radius r with centers at points in L turns out to
be equivalent to the problem of choosing Y in Pn to maximize mY jYj�1=n ; where
mY denotes the minimum over the integer lattice:

5Some people use the word lattice for discrete subgroups of non-abelian Lie groups. We will not.
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mY D min fYŒa� j a 2 Z
n � 0g : (1.178)

To see this, note first that if a 2 Z
n, and we set

w D a1v1 C � � � C anvn;

then YŒa� D tww is the square of the distance from the lattice point w 2 L to the
origin. Next note that the spheres must not intersect, which means that one should
take them to have radius equal to one-half the minimum distance of any lattice point
from the origin. This means that the radius r must be chosen to be 1

2
.mY/

1=2.
The density of space occupied by spheres of radius r centered at points in the

lattice L is:

dL D lim
X!1

vn.r/ � #.L \ .cube of volume X//

X
; (1.179)

with vn.r/ being the volume of the sphere of radius r in R
n. Now the number of

points of L in a cube of volume X is easily seen to be asymptotic to jYj�1=2X as X
approaches infinity. Therefore

dL D rnvn.1/ jYj�1=2 D
�mY

4

�n=2
vn.1/ jYj�1=2 ; (1.180)

and

vn.1/ D �n=2

�.1C n=2/
: (1.181)

Note that the density dL is unchanged if we multiply the Z-basis of L by a constant
c (or equivalently if we multiply the corresponding matrix Y.L/ by c2/ for then r is
multiplied by c and jYj�1=2 is multiplied by 1=c. The fact that the density dL must be
less than or equal to one gives the Minkowski upper bound for the minimum mY :

mY � cnjYj1=n; with cn D 4

�
�.1C n=2/2=n � 2n

�e
; as n ! 1: (1.182)

The asymptotic behavior of cn comes from Stirling’s asymptotic formula for the
gamma function (see Lebedev [398]).

Exercise 1.4.1. Show that any packing (whether the centers form a lattice or not)
of spheres of equal radii in R

n such that no further spheres can be added without
overlap has density � 2�n:

Hint. Spheres of radius 2r completely cover Rn.

We will give another (and more detailed) view of (1.182) throughout the next
part of this section. Blichfeldt showed in 1914 that the constant cn can be halved.
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This is equivalent to showing that the density dL cannot exceed about 2�:5n, for large
n. Kabatiansky and Levenshtein [337] have shown that for large n the density cannot
exceed about 2�:599n. This leads to an upper bound on mY ; Y 2 SPn; of about

n

�e
2�:198n; for large n:

In Section 1.4.4 we will consider Minkowski’s result that there exist Y in Pn such
that the minimum satisfies

mY >
n

2�e
jYj1=n; for large n

(see Corollary 1.4.2 below). We will also consider the Minkowski-Hlawka theorem
saying that there are lattice packings L of R

n such that dL � �.n/2�nC1; where
�.n/ is Riemann’s zeta function. This result does not, however, give a construction
for these lattices. This lower bound on dL has been improved by K.M. Ball [34] to
.n � 1/�.n/2�nC1: Stephanie Vance [622] has improved the lower bound further
when n is divisible by 4:

See Henry Cohn’s website for some interesting talks and papers on sphere
packing and applications. Some work on finding dense lattice packings explicitly is
surveyed by Sloane [568]. For example, Barnes and Sloane have constructed lattice
packings in dimensions up to 100,000 with density roughly 2�1:25n. But Sloane notes
that Minkowski’s theorem guarantees that there exist packings that are 104000 times
denser. See also Rush [519] and Rush and Sloane [520].

It may surprise the reader to learn that the Kepler conjecture to the effect that
the densest lattice packing in R

3 actually gives the densest not necessarily lattice
centered packing of spheres in R

3 required such a complex computer proof that
the dozen referees of the paper for the Annals of Math. said they were just 99 %
convinced and had run out of energy to consider the matter further. In 2014 Hales
announced completion of the Flyspeck project giving a formal proof of the Kepler
conjecture, which it claims is more trustworthy than peer reviewed proofs. A formal
proof is a mathematical proof that has been checked by computer. See the Flyspeck
website for more information. The Wikipedia page on the Kepler conjecture gives a
short summary of the story.

In 1983 Sigrist [567] gave a short survey on sphere packing. Sigrist noted the
following quotes on the Kepler problem:

H.S.M. Coxeter: “It is conceivable that some irregular packing might be still
denser.”

C.A. Rogers: “Many mathematicians believe, and all physicists know, that the
density cannot exceed �=

p
18.”

Other references on sphere packing are Berger [45, Ch. 10], Conway and Sloane
[122], J.H. Conway et al. [123], Hales and Ferguson [257].
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See Figures 1.11 and 1.12 for the densest lattice packings in the plane and 3-
space. It is known that the densest lattice packing in the plane also gives the densest
packing, lattice or not. As we’ve said, this is known for 3-space, provided that you
accept the computer proof and you acknowledge that there are equally dense non-
lattice packings in 3-space. In fact, Berger [45, Ch. 10, p. 631] shows how to find an
infinite number of non-lattice packings of 3-space with density equal to the face-
centered cubic packing. He says: “We point out that a large number of metals
crystallize in the lattice A3 (or D3), or cubic face centered lattice, also called cubic
dense: Al, Ni, Cu, Ag, Au, while others crystallize in a hexagonal dense packing:
Mn, Ca, Sr, Ti. But there are some that crystallize in still other forms that aren’t
always of maximal density.”

Henry Cohn and Noam Elkies [117, 118] give upper bounds on sphere packing
densities which are the best known for dimensions 4–36. Poisson summation and
linear programming bounds for error-correcting codes are integral components of
the proofs.

Exercise 1.4.2. (a) Prove formula (1.181) for the volume of the unit sphere in R
n.

(b) Fill in the details in the rest of the discussion of formula (1.182) above.
Hints. (a) Note that

Z

Rn

exp
�� txx

�
dx D �n=2:

Suppose now that wn denotes the surface area of the unit sphere in R
n; i.e.,

wn D surface areafx 2 R
n j txx D 1g:

Use polar coordinates on the preceding integral to show that

�n=2 D wn

2
�
�n

2

�
:

On the other hand, polar coordinates can be used to show that

vn.1/ D wn=n: (1.183)

Formula (1.183) says that the volume of the unit sphere in R
n gets much smaller

than the surface area as n goes to infinity. In fact, both wn and vn.1/ approach zero—
a fact that we will use later in this section (see Corollary 1.4.2 in Section 1.4.4).
Hamming [258, Ch. 9, 10] gives an interesting paradox related to these facts as well
as applications to information theory. We’ll consider this paradox in Section 1.4.4.

Denote by Ln, a lattice giving the densest lattice packing of spheres of equal
radii in R

n. For n � 5, the lattice Ln was determined by Korkine and Zolotareff.
For n � 8; Ln was found by Blichfeldt. The lattice L2 is often called the regular
hexagonal lattice because the Voronoi polyhedron, which is the set of points in R

2
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Fig. 1.11 Part of the densest lattice packing of circles of equal radii in the plane

Fig. 1.12 Part of the face-centered cubic lattice packing in 3-space

lying as close to the origin as any lattice point, is a regular hexagon (see Figure 1.11).

In 1831 Gauss proved that the lattice L2 has Z-basis v1 D
�
1;

p
3
�
; v2 D .2; 0/

and thus corresponds to the positive matrix

2

�
2 1

1 2

�
; dL D �

2
p
3

Š :9068:
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The lattice L3 is the face centered cubic lattice pictured in the crystallography
discussion in Section 1.4 of Volume I as well as Figure 1.12. This lattice occurs
in crystals of gold, silver, and aluminum, for example. It has Z-basis v1 D
.1; 1; 0/ ; v2 D .1; 0; 1/ ; v3 D .0; 1; 1/ and thus corresponds to the positive matrix:

0

@
2 1 1

1 2 1

1 1 2

1

A ; dL D �p
18

Š :7404:

The Voronoi polyhedron for L3 is a rhombic dodecahedron (a solid bounded by 12
rhombuses). The lattices Ln, for n � 8, can be shown to correspond to root systems
for the simple Lie groups

A2; A3; D4; D5; E6; E7; E8:

See Chapter 2 for a discussion of root systems and see Milnor [449, p. 502] or
Milnor and Husemoller [451] for a description of how to get Y out of the Dynkin
diagram for the Lie group. See Thompson [614, Appendix] for a table of densest
known sphere packings at the time of publication.

We know from Section 3.4 of Volume I that there are connections between
sphere packings and coding theory (see Sloane [568, 569]). Shannon found that
the problem of finding densest sphere packings in spherical space has applications
to information theory (see Van der Waerden [639]). One can consider various
non-Euclidean analogues of the sphere-packing problem (see Fejes Tóth [177]).
Moreover, work on codes led to the discovery of the Leech lattice in R

24 which
gives rise to many of the densest known lattice packings as well as some new
simple groups. Thompson [614] provides a survey of the connection. Elkies [163]
gives a survey of lattices, codes, and connections with other parts of mathematics.
Henry Cohn and Abhinav Kumar [119] show that the densest lattice packing in 24
dimensions comes from the Leech lattice.

Dyson [150] discusses some of the stories of the interplay between dense lattice
packings, codes, and simple groups in an article about unfashionable mathematics.
We quote:

Roughly speaking, unfashionable mathematics consists of those parts of mathematics
which were declared by the mandarins of Bourbaki not to be mathematics. A number
of very beautiful mathematical discoveries fall into this category. To be mathematics
according to Bourbaki, an idea should be general, abstract, coherent, and connected by
clear logical relationships with the rest of mathematics. Excluded from mathematics are
particular facts, concrete objects which just happen to exist for no identifiable reason, things
which a mathematician would call accidental or sporadic. Unfashionable mathematics is
mainly concerned with things of accidental beauty, special functions, particular number
fields, exceptional algebras, sporadic finite groups. It is among these unorganized and
undisciplined parts of mathematics that I would advise you to look for the next revolution
in physics.

Analysis on the fundamental domain Pn=GL.n;Z/ can also be applied to the
problem of finding the best lattice of points in R

n to use for numerical integration
(see Ryskov [522]).
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Explicit fundamental domains for Pn=GL.n;Z/ are pertinent to the problem of
finding subgroups of GL.n;Z/ fixing some Y in Pn, a problem which is of interest
in crystallography and was thus solved long ago for n � 3. The cases n D 4 and 5
have been solved by Dade and Ryskov (see Ryskov [522] for the references).

There are also applications of reduction theory in cryptography (in the design
of algorithms to break codes). Related applications to integer programming have
also appeared. Here one needs the reduction of lattices rather than quadratic forms.
The HKZ algorithm of Hermite, Korkine, and Zolotareff (which we call Grenier
reduction) is used as well as the LLL algorithm of Lenstra, Lenstra, and Lovász. See
Joux and Stern [336] or Lagarias et al. [382]. The LLL algorithm was discovered in
the 1980s. Immediately thereafter Shamir used it to break the Merkle–Hellman
public-key cryptographic code (based on the knapsack problem) in polynomial
time.

Sarnak and Strömbergsson [530] prove that if Ln is a lattice yielding the densest
lattice packing of n-space for n D 4; 8 and 24 and s > 0, the Epstein zeta function
Z.YLn ; s/ has a strict local minimum at L D Ln, where YLn 2 SPn has ij coordinate
tvivj if the lattice L has Z-basis v1; : : : ; vn and the torus R

n=L is assumed to have
volume 1 so that YL has determinant 1: They also show that in these cases the lattice
Ln will have minimum height defined as a multiple of the derivative of the Epstein
zeta function at 0: They define a lattice Ln to be universal (i.e., universally extremal
for the Epstein zeta function) if

Z.Y; s/ � Z.YLn ; s/ for all s > 0 and all Y 2 SPn:

They conjecture that in dimensions n D 4; 8; 24 the lattice Ln is universal. They
prove that for n D 3 the height of L3 is minimal. Use is made of the incomplete
gamma expansion of Epstein’s zeta function as well as the Grenier fundamental
domain for SPn=GL.n;Z/ from § 1.4.3. Gruber and Lekkerkerker [251] provide
more information on minima of Epstein zetas. They note [251, p. 531]: “On the
one hand British mathematicians investigated the minimum of the Epstein zeta-
function primarily for its number-geometric interest : : :. On the other hand the same
problem was studied by the Russian school of geometry of numbers because of its
implications for numerical integration.”

This completes our list of reasons for beginning the study of the fundamental
domain Pn=GL.n;Z/. The main references for this section are: Borel [63, 65],
Borel’s article in Borel and Mostow [68, pp. 20–25], Cassels [99, 100], Davenport
[129], Delone and Ryskov [134], Freitag [185], Grenier [241, 242], Gordon et al.
[237], Gruber and Lekkerkerker [251], Hancock [260], Humphreys [308], O.-H.
Keller [346], Maass [426], Minkowski [453], Raghunathan [496], Rogers [514],
Ryskov [522], Ryskov and Baranovskii [523], Schwarzenberger [538], Séminaire
Cartan [547], Siegel [561, 562, 566], Van der Waerden [638, 639], Weil [662, Vol. I,
pp. 339–358], [658], and Weyl [666, Vol. III, pp. 719–757, Vol. IV, pp. 46–96].
Some of the earlier references are: Gauss [205, Vol. I, p. 188], Hermite [291, Vol. I,
pp. 94–164], Korkine and Zolotareff [365, 366], Lagrange [384, Vol. III, pp. 693–
758], Seeber [541], and Voronoi [636, 637].
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1.4.2 Minkowski’s Fundamental Domain

Before describing Minkowski’s fundamental domain for Pn=GL.n;Z/, we need
to retrace Minkowski’s steps and consider his most fundamental results in the
geometry of numbers. These results have immediate applications in the very
foundations of algebraic number theory. In general, they are useful when one wants
to know whether some inequality has a solution in integers. Here we are interested
in the size of the minimum of a quadratic form Y over the integer lattice; i.e., in
the size of mY defined by (1.178) for Y 2 Pn. We have already given one approach
to this problem, which led to the inequality (1.182). Now let us consider another
approach. Define the ellipsoid in R

n associated with the positive matrix Y 2 Pn:

SY.t/ D fx 2 R
n j YŒx� < tg ; for t > 0: (1.184)

This is a convex set; i.e., if x; y 2 SY.t/ and a 2 Œ0; 1�, then

ax C .1 � a/y 2 SY.t/:

Exercise 1.4.3. (a) Show that SY.t/ defined in (1.184) is a convex set. Show also
that its closure is compact. Why do we call it an ellipsoid?

(b) Show that the volume of SY.t/ is jYj� 1
2 vn

�p
t
�
; where vn .r/ is the volume of

the sphere of radius r; obtained using formula (1.181).

Minkowski used the fundamental facts in the Lemma below to see that

SY.t/ \ Z
n ¤ f0g; if Vol .SY.t// > 2

n:

This means that

t >
4

�
�
�
1C n

2

�2=n jYj1=n

implies that there exists an a 2 Z
n � 0 such that YŒa� < t. The inequality (1.182) for

mY follows from this result.

Lemma 1.4.1 (Minkowski’s Fundamental Lemma in the Geometry of Num-
bers).

(1) Suppose that S is a Lebesgue measurable set in R
n with Vol.S/ > 1. Then there

are two points x; y in S such that 0 ¤ x � y 2 Z
n.

(2) Let S be a Lebesgue measurable subset of Rn which is convex and symmetric
with respect to the origin (i.e., x 2 S implies �x 2 S). If, in addition, Vol.S/ >
2n, then S \ Z

n ¤ f0g.

Proof. (1) (From Weil [662, p. 36].) One has the following integral formula (as a
special case of formula (1.7) from Section 1.1.1):
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Z

Rn

f .x/dx D
Z

Œ0;1�n

X

a2Zn

f .x C a/ dx:

Let f be the indicator function of S; i.e., f .x/ D 1 if x 2 S and 0 otherwise. If
the conclusion of part (1) of the lemma were false, the inner sum over Zn on the
right-hand side of this integral formula would be less than or equal to one for
all x in Œ0; 1�n. This gives a contradiction to the hypothesis that Vol.S/ > 1.

Another way to see part (1) is to translate S to the unit cube Œ0; 1�n by
elements of Z

n. If there were no overlap among these translates, the volume
of S would be less than one. See Figure 1.13.

(2) The proof of this part of the lemma is illustrated in Figure 1.14. More explicitly,
let us define S0 to be the set 1

2
S consisting of vectors of the form 1

2
x, for x 2 S.

Then Vol.S0/ > 1 by hypothesis and thus, by part (1) of this lemma, there are
points x;y in S0 such that x � y 2 Z

n � 0. It follows that 1
2
.x � y/ lies in S0 by

the convexity and symmetry of S. So x � y lies in S. This completes the proof of
Lemma 1.4.1.

Minkowski’s fundamental lemma leads quickly to the finiteness of the class
number of an algebraic number field K as well as to Dirichlet’s unit theorem giving
the structure of the group of units in the ring of integers of K (see Section 1.4 of
Volume I and the references mentioned there). A lower bound on the absolute value
of the discriminant of K is also a consequence.

Fig. 1.13 Picture proof of part 1 of Minkowski’s fundamental lemma in two dimensions. Each
square is a unit square. The four parts of the big square are translated to the square on the lower
right by integral translations. There are overlaps. Otherwise Vol.S/ < 1
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Fig. 1.14 Picture proof of
part 2 of Minkowski’s
fundamental lemma in two
dimensions

Next we need another lemma.

Lemma 1.4.2 (Vectors That Can Be First Columns of Elements of). GL.n;Z//.
A vector a D t.a1; : : : ; an/ 2 Z

n can be made the first column of a matrix in
GL.n;Z/ if and only if the greatest common divisor gcd.a1; : : : ; an/ equals one.

Proof.

)
This direction is clear upon expanding the determinant of A by its first column a.

(
Suppose that a 2 Z

n has gcd.a1; : : : ; an/ D 1. We need to obtain a matrix U in
GL.n;Z/ such that Ua D t.1; 0; : : : ; 0/. For then a is the first column of U�1.

Our goal can be attained by multiplying our column vector a on the left by
combinations of matrices giving rise to the elementary row operations on the vector.
These operations are essential for elementary divisor theory which is basic for ideal
theory in number fields and for the fundamental theorem of abelian groups.

These elementary row operations are:

(i) changing the order of rows,
(ii) multiplying any row by C1 or �1,
(iii) adding an integral multiple of any row to any other row.

Operations (i) and (ii) allow us to assume that a1 is positive and the smallest
nonzero entry of the vector a. We can use operation (iii) to replace any nonzero
entry aj, for j > 1, by its remainder upon division by a1. In this way, we can cause
all the entries a2; : : : ; an to lie in the interval Œ0; a1/. Either all the aj are zero for
j � 2, or there is a smallest positive entry aj; j � 2. Use operation (i) to put this aj in
the first row and continue in this way. The final result is a vector t.m; 0; : : : ; 0/, with
m > 0. Thus a D m

�
U�1� t.1; 0; : : : ; 0/. Since the greatest common divisor of the

entries in the vector a is one, it follows that m D 1 and the proof of Lemma 1.4.2 is
complete.
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The preceding lemma has even been established in an analogous situation in
which Z is replaced by FŒX1; : : : ;Xn� for fields F, proving a conjecture of Serre
(see Bass [40]).

Our main goal is to produce a fundamental domain for Pn=GL.n;Z/ and study
its properties. That is, we want to find a (nice) subset D of Pn having the following
two properties:

(i) Pn D
[

A2GL.n;Z/

DŒA�I

(ii) Y;W 2 D, with W D YŒA� for some A 2 GL.n;Z/, with A ¤ ˙I implies that Y
must lie in the boundary @D of D.

Given Y 2 Pn, we will also want a procedure for finding a matrix A 2 GL.n;Z/
such that YŒA� lies in the fundamental domain D. Such a procedure is called a
reduction algorithm. We will also call the fundamental domain a set of reduced
matrices.

In this section we will discuss Minkowski’s fundamental domain which is a
convex, closed subset of Pn, bounded by a finite set of hyperplanes through the
origin. The domain was found by Minkowski who was motivated by the work
of mathematicians such as Lagrange, Gauss, Seeber, and Hermite. Minkowski’s
fundamental domain Mn is defined as follows:

Mn D
�

Y D .yij/ 2 Pn

ˇ̌
ˇ̌YŒa� � ykk; if a 2 Z

n; gcd.ak; : : : ; an/ D 1

yk;kC1 � 0; for all k

�
:

(1.185)

The domain in (1.185) appears to be bounded by an infinite number of hyperplanes.
We will show in Theorem 1.4.1 that a finite number of inequalities actually suffices
to give the region. We say Y 2 Mn is Minkowski-reduced.

By Lemma 1.4.2, it is easily seen that Mn has the alternative definition:

Mn D
�

Y 2 Pn

ˇ
ˇ̌
ˇ
YŒa� � ykk if .e1e2 � � � ek�1a	 � � � 	/ 2 GL.n;Z/
yk;kC1 � 0; for all k

�
: (1.186)

Here ek denotes the kth element in the standard basis for R
n; i.e., ek is a vector

with all its entries 0 except for the kth entry which is 1. To see (1.186), note that
Lemma 1.4.2 implies that the condition on the vector a in (1.186) is equivalent to
asking that the greatest common divisor gcd.ak; : : : ; an/ D 1.

Exercise 1.4.4. (a) Prove that

M2 D fY 2 P2 j 0 � 2y12 � y11 � y22 g : (1.187)

(b) Note that restricting to the determinant one surface

SM2 D fW 2 M2 j jWj D 1g :
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does not change the form of the inequalities in (1.187). We have a mapping
which identifies the Poincaré upper half plane H and SP2 given by

z 7�! Wz D
�

y�1 0
0 y

�	
1 �x
0 1



2 SP2; for z D x C iy 2 H

as we saw in Volume I, Exercise 3.1.9. Show that Wz 2 SM2 is equivalent
to the inclusion of z in the left half of the fundamental domain for SL.2;Z/nH
pictured in Figure 3.14 of Section 3.3 of Volume I or Figure 1.16 of this Volume.
It is not the whole fundamental domain because GL.2;Z/=SL.2;Z/ has order

2 and the nontrivial coset comes from the matrix

��1 0
0 1

�
:

Hints. To see that M2 is actually given by (1.187), you must first show that if
ek; k D 1; 2, denotes the standard basis of R2, as usual, then

y11 � y22 comes from YŒe2� D y22 � y11

since the greatest common divisor of the entries of e2 is 1. Similarly

y11 � 2y12 comes from Y

	
1

�1



D y11 � 2y12 C y22 � y22:

To see that it suffices to use only the inequalities in (1.186) coming from the
vectors a D e2 and t.�1; 1/, you need to use the fact that for any vector a 2 Z

n we
have for Y in the set defined by (1.187):

YŒa� � y11
�
a21 � ja1a2j C a22

� D y11
n
.ja1j � ja2j/2 C ja1a2j

o
:

This is greater or equal to y11 if gcd.a1; a2/ D 1. And if a2 D ˙1, we see that if Y
satisfies the inequalities in (1.187):

YŒa� D y11a
2
1 C 2y12a1a2 C y22a

2
2 � y22:

Exercise 1.4.5 (Successive Minima). Show that Y 2 M2 is equivalent to saying
that Y satisfies the following inequalities:

y12 � 0I

Y

	
1

0



D y11 D mY D min

˚
YŒa�

ˇ̌
a 2 Z

2 � 0� D N1I

Y

	
0

1



D y22 D min

�
YŒa�

ˇ̌
ˇ̌ a D

�
a1
a2

�
2 Z

2;

ˇ̌
ˇ̌ 1 a1
0 a2

ˇ̌
ˇ̌ D a2 ¤ 0

�
D N2:

We call N1 and N2 the first and second successive minima of Y respectively.
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Similar ideas to those of Exercise 1.4.5 work for GL.n;Z/ with n D 3, as was
found by Seeber [541] in 1831 and Gauss [205, Vol. II, p. 188]. That is, Y 2 M3 is
equivalent to requiring that ykk be the minimum of the values YŒa�; a 2 Z

3 such that
a is linearly independent of the standard basis vectors e1; : : : ; ek�1, for k D 1; 2; 3

as well as requiring yk;kC1 � 0; as usual.
For n � 5 reduction by successive minima is not possible because successive

minima do not necessarily occur at vectors ak which give matrices .a1a2 � � � an/ in
GL.n;Z/.

We note here that Minkowski was probably inspired not only by the work of
Gauss and Seeber, but also by that of Hermite [291, Vol. I, pp. 94–164]. However,
with Minkowski, the theory progressed by a quantum leap. Minkowski [453, Vol. II,
pp. 51–100] proved all of the following theorem as well as part of the Minkowski-
Hlawka Theorem in Section 1.4.4. His proofs have been rewritten by many eminent
mathematicians. See the references mentioned earlier for alternative treatments. The
following theorem gives an explicit finite list of inequalities for Minkowski-reduced
matrices when n D 2; 3; 4:

Theorem 1.4.1 (The Minkowski Fundamental Domain). Let Mn denote the
Minkowski fundamental domain defined by formula (1.185). This domain has the
following properties.

(1) For any Y in Pn, there exists a matrix A in GL.n;Z/ such that YŒA� lies in the
Minkowski domain Mn.

(2) Only a finite number of inequalities are necessary in the definition of Mn.
Thus Mn is a convex cone through the origin bounded by a finite number of
hyperplanes.

(3) If Y and YŒA� both lie in the Minkowski domain Mn, and A is an element of
GL.n;Z/ distinct from ˙I, then Y must lie on the boundary @Mn. Moreover,
Mn is bounded by a finitely number of images MnŒA�, for A in GL.n;Z/. That
is Mn \ .MnŒA�/ ¤ ;, for only finitely many A 2 GL.n;Z/.

(4) When n D 2; 3; 4, we have

Mn D ˚
Y 2 Pn

ˇ̌
yk;kC1 � 0I YŒa� � ykk; if ak D 1 and aj D 0 or ˙ 1; for all k

�
:

The fundamental domains M5 and M6 were determined explicitly by
Minkowski [453, Vol. I, pp. 145–148, 154, 218] and M7 was found by Tammela
[590]. These domains require more inequalities.

Proof. (1) Suppose Y 2 Pn is given. We need to find some A 2 GL.n;Z/ such that
YŒA� 2 Mn. To find A we locate the columns a.j/ of A D .a.1/ � � � a.n// as follows.
First choose a.1/ so that

Y

a.1/

� D min fYŒa� j a 2 Z
n � 0g :

Such a vector a.1/ 2 Z
n � 0 must exist because if c is the smallest eigenvalue of Y ,

we have the inequality:
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cIŒx� � YŒx�; for all x 2 R
n:

This implies the finiteness of the set of a 2 Z
n such that YŒa� is less than any given

bound.
Now if a.1/ minimizes YŒa.1/�, it follows that the greatest common divisor of the

entries of a.1/ must be one. By Lemma 1.4.2, then a.1/ is the first column of a matrix
in GL.n;Z/. So there exists a vector b 2 Z

n such that the n � 2 matrix .a.1/ b/ is
the first two columns of a matrix in GL.n;Z/. This means that there exists some a.2/

in Z
n such that .a.1/ a.2// can be completed to a matrix in GL.n;Z/ and Y


a.2/

�
is

minimal.
Continue inductively to obtain the matrix A D �

a.1/a.2/ � � � a.n/
�

in GL.n;Z/. The
column a.k/ in Z

n is defined by requiring that the n � k matrix .a.1/ � � � a.k// can be
completed to a matrix in GL.n;Z/ and that

Y

a.k/

� D min
˚
YŒb�

ˇ̌ �
a.1/ � � � a.k�1/ b 	 � � � 	� 2 GL.n;Z/

�
:

And lastly we require that

ta.k�1/Ya.k/ � 0; for all k D 2; : : : ; n:

This last requirement is possible, since we can always multiply a.k/ by �1, if
necessary.

Now we must show that if A D .a.1/ � � � a.n// is constructed as above, then W D
YŒA� must lie in the Minkowski domain Mn. To see this, note that (1.186) is an
equally good definition of the Minkowski domain. That is, W is Minkowski-reduced
(assuming wk;kC1 � 0) if

WŒc� � wkk when .e1 � � � ek�1 c 	 � � � 	/ 2 GL.n;Z/:

Here, as usual, ej denotes the standard basis vector in R
n, with all entries 0 but the

jth which is 1. To complete the proof that W 2 Mn, observe that

A .e1 � � � ek�1 c	 � � � 	/ D .a.1/ � � � a.k�1/ d 	 � � � 	/;

if Ac D d. And

WŒc� D YŒd� � YŒa.k/� D wkk; (1.188)

by the construction of A. This concludes the proof that W 2 Mn. Conversely, note
that if W is in Mn, then we also have the inequality (1.188).
(4) The case n D 2 was Exercise 1.4.4. Suppose now that n D 2; 3, or 4 and set

M�
n D

n
Y 2 Pn

ˇ̌
ˇ yk�1;k � 0; YŒa� � ykk; if ak D 1; aj D 0 or ˙ 1;

for j ¤ k; 1 � k � n
o
:
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Clearly Mn � M�
n . To show the reverse inclusion, we need to prove that Y 2 M�

n
and m 2 Z

n with gcd.mk; : : : ;mn/ D 1 imply that YŒm� � ykk. We can assume by
induction and changing signs that all the mj are positive.

Among the numbers m1; : : : ;mn, let mt be the last occurrence of the minimum.
Define vectors u and w in R

n by:

ui D
�

mt; when i ¤ t;
0; i D tI

and wi D 1, for all i. Then we have the following equality (proved in the following
exercise):

YŒm� � YŒm � u� D m2
t .YŒw� � ytt/C 2

X

i¤t

.mi � mt/mt

X

j¤t

yij: (1.189)

Now Y 2 M�
n implies that YŒw� � ytt, and if n � 4; Y 2 M�

n implies that we have
the following (again proved in the following exercise)

X

j¤t

yij � 0; if i ¤ t: (1.190)

It follows from (1.189) and (1.190) that YŒm� � YŒm � u�. Since m � u has smaller
entries than m, the proof of part (4) of Theorem 1.4.1 is completed by induction on
the norm of m.
(2) and (3). These proofs will appear later in this section after some preliminaries.

Exercise 1.4.6. (a) Prove formula (1.189).
(b) Prove formula (1.190) if n � 4: Show that the inequality fails if n � 5:

The following proposition gives some inequalities for Minkowski-reduced
matrices.

Proposition 1.4.1 (Other Properties of Minkowski’s Fundamental Domain).

(a) If Y 2 Mn, then the entries of Y satisfy the following inequalities:

y11 � y22 � � � � � ynn

and

jyijj � yii=2; if 1 � i < j � n:

(b) If Y 2 Mn; then Y satisfies the inequality:

kny11 � � � ynn � jYj � y11 � � � ynn;
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where kn is a positive constant (depending only on n and not on Y). The right-
hand inequality actually holds for any matrix Y in Pn.

(c) If Y 2 Mn, let Y0 denote the diagonal matrix formed by taking the diagonal out
of Y W

Y0 D

0

B
@

y11 0
: : :

0 ynn

1

C
A :

Then there is a positive constant �n such that

��1
n Y0Œx� � YŒx� � �nY0Œx�; for all x 2 R

n:

The constant �n depends only on n and not on Y or x.
(d) Suppose that Y 2 Pn has Iwasawa decomposition Y D DŒT� given by

D D

0

B
@

d1 � � � 0
:::

: : :
:::

0 � � � dn

1

C
A and T D

0

B
@

1 � � � tij
:::

: : :
:::

0 � � � 1

1

C
A ; with dj > 0:

Then

di=diC1 � �n and jtijj � �n;

for a positive constant �n depending only on n and not on Y.

Proof. (a) Let ei denote the standard basis vectors of R
n; i D 1; : : : ; n. From

formula (1.185) defining Mn, we have

yii D YŒei� � YŒeiC1� D yiC1;iC1

and

yii ˙ 2yij C yjj D YŒei ˙ ej� � YŒej� D yjj; if 1 � i < j � n:

The inequalities in part (a) are an easy consequence.
(b) The inequality jYj � y11 � � � ynn, for Y 2 Pn, is easily proved by induction on n.

To do so, use the partial Iwasawa decomposition:

Y D
�

V 0

0 w

�	
I q
0 1



; for V 2 Pn�1; w > 0; q 2 R

n�1:
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Then w D ynn � VŒq� which implies that w � ynn. It follows that

jYj D jVj w � jVj ynn:

Note also that V is the upper left-hand corner of the matrix Y to complete the
proof of the right-hand inequality in (b).

We will have to work harder to prove the left-hand inequality in (b)
(cf. Freitag [185], Siegel [562, pp. 44–46], Maass [426, pp. 124–127], and
Minkowski [453, Vol. II, pp. 63–67]). We shall follow an approach of Van der
Waerden [638]. Let N1; : : : ; Nn denote the n successive minima of Y 2 Pn;
i.e.,

N1 D YŒa1� D mY D min fYŒa� j a 2 Z
n � 0g ;

and; given Ni D YŒai�; for i D 1; : : : ; k � 1;
Nk D min fYŒa� j a 2 Z

nI a1; : : : ; ak�1; a linearly independent g :
(1.191)

It is clear that Y 2 Mn implies that Nk � ykk, for k D 1; : : : ; n and N1 D y11.
We need two inequalities for Y 2 Mn:

N1N2 � � � Nn � cn
n jYj; with cn D 4

�
�
�
1C n

2

�2=n
as in (1.182),

ykk � ıkNk; where ık D 1; for k � 4 and ık D �
5
4

�k�4
; k � 4:

)

(1.192)

These inequalities will be proved in Lemma 1.4.3. They imply that the
constant kn in part (b) is given by the following expression:

kn D
8
<

:

.�
4
/n�.1C n

2
/�2; if n � 4;

.�
4
/n. 4

5
/pn�.1C n

2
/�2; if n � 4;

9
=

;
(1.193)

with

pn D .n � 3/.n � 4/
2

:

This completes the proof of (b).

(c) The inequality to be proved says that the eigenvalues of W D Y
h
Y�1=2
0

i
are

bounded above and below by constants independent of Y: Call these eigenvalues
1; : : : ; n. Since

1 C � � � C n D Tr.W/ D n;

it is clear that j < n, for all j.
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Using part (b), one has

1 � � � n D jWj D jYj = .y11 � � � ynn/ � kn > 0:

It follows that j > knn1�n, for all j. This completes the proof of part (c).
(d) First we need to recall Exercise 1.1.13, which gave formulas for di and tij in

terms of the entries of the matrix Y:

di D jYij
jYi�1j and tij D Y .1; : : : ; i � 1; i j 1; : : : ; i � 1; j/

jYij :

Here Yi denotes the upper left-hand i � i corner of the matrix Y and Y.	j	/
stands for the subdeterminant of Y obtained by using the indicated rows and
columns of Y .

Now to prove part (d), use part (b) to see that since Yi 2 Mi, as is
demonstrated in Exercise 1.4.7, we have the following inequalities:

di

diC1
D jYij jYij

jYi�1j jYiC1j � .y11 � � � yii/
2

ki�1kiC1.y11 � � � yi�1;i�1/2 yii yiC1;iC1
� 1

ki�1kiC1

and

ˇ̌
tij
ˇ̌ D jY .1; : : : ; i � 1; i j 1; : : : ; i � 1; j/j

jYij � iŠ y11 � � � yii

2ki y11 � � � yii
D iŠ

2ki
:

This completes the proof of Proposition 1.4.1.
�

Exercise 1.4.7. Prove that if Y lies in the Minkowski domain Mn and Yi denotes
the upper left-hand i � i corner of Y , then Yi lies in the Minkowski domain Mi.

Before returning to the proof of Theorem 1.4.1, we need to prove the lemma
which was used in the proof of part (b) of Proposition 1.4.1. The results in the
Lemma should be compared with those in Gruber and Lekkerkerker [251], Lagarias,
Lenstra and Schnorr [382], and Siegel [566].

Lemma 1.4.3 (More Inequalities for Minkowski-Reduced Matrices).

(i) Minkowski’s Inequality for the Product of the Successive Minima. Let the
successive minima Nk of Y 2 Mn be defined by (1.191). Then

N1N2 � � � Nn � cn
n jYj ;

where

cn D 4

�
�
�
1C n

2

�2=n
;

as defined in (1.182).
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(ii) Mahler’s Inequality Relating the Diagonal Entries of a Minkowski-Reduced
Matrix and the Successive Minima. If Y 2 Mn then

ykk � ık Nk; k D 1; 2; : : : ; n;

where ık D 1 for k � 4 and ık D .5=4/k�4, for k � 4.

Proof. (i) (Cf. Minkowski [453, Section 51] and Van der Waerden [639].) Suppose
that

Nk D YŒak� with A D .a1 � � � an/ 2 Z
n�n having rank n:

And let YŒA� D DŒT� be the Iwasawa decomposition with:

D D

0

B
@

d1 � � � 0
:::

: : :
:::

0 � � � dn

1

C
A ; di > 0; and T D

0

B
@

1 � � � tij
:::
: : :

:::

0 � � � 1

1

C
A : (1.194)

Form the matrix

Y# D

0

B
@

d1=N1 � � � 0
:::

: : :
:::

0 � � � dn=Nn

1

C
A ŒT� :

Part (i) will follow from formula (1.182) if we can show that, if mY# is the
minimum of Y#Œa� over a 2 Z

n � 0, then mY# is greater than or equal to one.
To see this, let

T D t.�1 � � � �n/ with the � j being column vectors in R
n: (1.195)

It follows that if x is a column vector in Z
n � 0, then

Y#Œx� D d1
N1

�
t�1x

�2 C � � � C dn

Nn

�
t�nx

�2
:

Let t�kx be the last of the t� jx’s that is not zero. Then because

t�k D t.0; : : : ; 0; 1
k
; tk;kC1; : : : ; tkn/;

we know that x must be linearly independent of e1; : : : ; ek�1. It follows that

Y#Œx� � 1

Nk

�
d1
�

t�1x
�2 C � � � C dn

�
t�nx

�2� D 1

Nk
YŒx� � 1;

by the definition of Nk.
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(ii) See Mahler [432], Weyl [666, Vol. III, pp. 719–757], Remak [503], and Van der
Waerden [639]. Clearly ı1 D 1. We will show that

ık D max

�
1;
1

4
ı1 C � � � C 1

4
ık�1 C 1

4

�
; (1.196)

which leads quickly to the desired formula for ık. This is Remak’s formula for
the constants involved.

Thus we want to use mathematical induction to show that ykk � ıkNk, with
ık given by formula (1.196). Suppose that YŒa� D Nk with

a D
�

a1
ma2

�
; m 2 Z

C; a1 2 Z
k�1; a2 2 Z

n�kC1; gcd .a2/ D 1:

Write

Y D
�

Y1 0
0 W

�	
Ik�1 B
0 In�kC1



:

Since m D 1 implies that Nk � ykk, we may assume that m � 2. Then

Nk D YŒa� D Y1 Œa1 C Bma2�C W Œma2� � 4W Œa2� ;

which implies WŒa2� � Nk
4
: Therefore

ykk � Y

	
c
a2



D Y1 Œc C Ba2�C W Œa2� � Y1 Œc C Ba2�C Nk

4
: (1.197)

Write Y D DŒT� with D;T as in (1.194) and (1.195). Then we can choose
c 2 Z

k�1 so that

Y1 Œc C Ba2� � 1

4
.d1 C � � � C dk�1/: (1.198)

To see this, let x D c C Ba2 and note that, using (1.195), Y1Œx� equals

Y1Œx� D
k�1X

jD1
dj
�

t� jxj
�2
; (1.199)

for

t� jxj D xj C tj;jC1xjC1 C � � � C tj;k�1xk�1:
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We can choose the entries of c 2 Z
k�1 so that all the terms t� jxj in the for-

mula (1.199) are forced to lie in the interval Œ� 1
2
;C 1

2
�. Thus we obtain (1.198).

It follows from the inequalities (1.197) and (1.198) that:

ykk � Y

	
c
a2



� 1

4
.d1 C � � � C dk�1/C Nk

4

� 1

4
.y11 C � � � C yk�1;k�1/C Nk

4

� 1

4
.ı1N1 C � � � C ık�1Nk�1 C Nk/;

by induction, since di � yii (using the analogous formula to (1.199) for YŒx�
with x D ei). This completes the proof of (ii).

�

We continue the intermission in the proof of Theorem 1.4.1 with a discussion
of the Iwasawa coordinates (1.194) and certain domains related directly to these
coordinates. In the next subsection we will make even greater use of these
coordinates in obtaining a fundamental domain.

We define a Siegel set of matrices to be given by the following expression,
assuming that u and v are positive numbers and Y D DŒT� as in (1.194):

Sv;u D
�

Y D D ŒT� 2 Pn

ˇ̌
ˇ̌ di

diC1
� v;

ˇ̌
tij
ˇ̌ � u; all i; j

�
: (1.200)

Siegel [562, p. 49] makes great use of these sets. The name “Siegel set” appears
for example in Borel’s article in Borel and Mostow [68, pp. 20–25], Borel [65], and
Goldfeld [230]. Borel defines a fundamental set to be a subset S of Pn possessing
the following two properties:

(a)
[

A2GL.n;Z/

SŒA� D Pn; and

(b) S \ SŒA� ¤ ;, for only finitely many A 2 GL.n;Z/.

One can show that the Siegel set Sv;u is a fundamental set when v D 4
3

and u D 1
2

(see Exercise 1.4.8 below and Borel [65, p. 34] who uses the Bruhat decomposition
to prove property .b//. But note that, for example, when n D 2, if one restricts to
the determinant one surface, a Siegel set corresponds to a rectangle in the upper half
plane and is thus not a fundamental domain.

Exercise 1.4.8. (a) Show that Sv;u defined by (1.200) satisfies property (a) of a
fundamental set if v � 4

3
and u � 1

2
.

(b) Use part (a) to show that the Euclidean volume of

fY 2 Sv;u j jYj � 1g

is finite.
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Hint. See Borel [65, p. 14] or Raghunathan [496, pp. 160–161].

Part (d) of Proposition 1.4.1 shows that Mn � Sv;u for some large constants v
and u. In order to obtain a reverse inclusion, we need to replace Mn by a related set
whose definition does not involve the inequalities yk;kC1 � 0. To do this, again
motivated by Proposition 1.4.1, we define a set also considered by Siegel [562,
p. 49]:

Ra D
�

Y 2 Pn

ˇ̌
ˇ̌ ykk

ykC1;kC1
< a;

ˇ̌
yij

ˇ̌
< ayii; y11 � � � ynn < a jYj ; all i; j

�
:

(1.201)
The proof of part (d) of Proposition 1.4.1 shows that given a > 0, there are positive
numbers v and u such that Ra � Sv;u.

One can also show that given v and u, there is a positive number a depending
on v and u such that Sv;u � Ra. To see this, suppose that Y 2 Sv;u, with Iwasawa
coordinates given by (1.194); that is:

ykj D dktkj C
k�1X

hD1
dhthkthj; for 1 � k � j � n: (1.202)

We shall assume that v > 1. Clearly:

jykjj � ˚
u C vk�1u2.k � 1/� dk � �ykk; if � D u C vn�1u2.n � 1/; (1.203)

since dk � ykk (as is seen by setting k D j in (1.202)). Also

ykk � �v ykC1;kC1 and y11 � � � ynn � �njYj:

This completes the proof that Sv;u � Ra, for some a D a.v; u/.

Exercise 1.4.9 (Some Finiteness Results).

(a) Show that there are only finitely many integral matrices of determinant d in
Minkowski’s fundamental domain Mn:

(b) Let S 2 Ra as defined in (1.201) and suppose that S has the block matrix
decomposition

S D
�

S1 S12
tS12 S2

�
:

Show that the matrix S�1
1 S12 has all of its elements bounded in absolute value

by a constant depending only on n and a:
(c) Show that Mn � Ra for some value of a: Can one prove that Ra is contained

in a finite union of images of Mn for sufficiently small a?
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Hints. (a) See Freitag [185, p. 36]. Use the boundedness of the product of the
diagonal entries in such an integral matrix.

(b) See Siegel [562, p. 51]. Use the Iwasawa decomposition:

S D DŒT� D
�

D1 0

0 D2

�	
T1 T12
0 T2



;

and write the matrix of interest in terms of the Di; Ti; T12.

Now finally we turn again to the proof of Theorem 1.4.1.

Proof of Part (2) of Theorem 1.4.1. (See Minkowski [453, Vol. II, pp. 67–68] or
Hancock [260, Vol. II, pp. 787–788].)

We know from (1.202) and (1.203) that if Y 2 Mn and Y has the Iwasawa
decomposition Y D DŒT� given in (1.194), then

yii � di � �iyii; (1.204)

with �i positive and independent of Y . Moreover the tij are bounded. As in (1.195)
we set T D t.�1; : : : ; �n/. Then, if a 2 Z

n, define

� j.a/ D t� ja D aj C tj;jC1ajC1 C � � � C tjnan; (1.205)

and note that

YŒa� D
nX

jD1
dj �

2
j .a/:

It is easily seen that a finite set of a 2 Z
n (independent of Y 2 Mn) satisfy the

following inequalities (see Exercise 1.4.10) with � j D � j.a/ in (1.205):

�1�
2
1 <

1

4
; �2�

2
2 <

2

4
; : : : ; �n�

2
n <

n

4
: (1.206)

Exercise 1.4.10. (a) Prove that the a 2 Z
n satisfying (1.206) form a finite set

independent of the particular Y 2 Mn:

(b) Compute the �i in formula (1.204) as a function of v and u such that Mn � Sv;u
for the Siegel set defined in (1.200). Show that we can take �i to be greater than
or equal to �iC1 for all i D 1; 2; : : : ; n � 1:

Hint. (a) The triangular nature of the transformation � j.a/ in (1.205) allows one
to bound the entries of a recursively.

Now we prove that to put Y in Mn we need only the inequalities YŒa� � ykk with
a 2 Z

n determined by the inequalities (1.206) and assuming that a has the property
that gcd.ak; : : : ; an/ D 1. This list of vectors a includes a D ej and a D ei ˙ ej.
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We know that these inequalities are all that are needed to obtain formula (1.204)
which is:

yhh � dh � �nyhh:

Suppose that b 2 Z
n with gcd.bj; : : : ; bn/ D 1. In order that b not satisfy (1.206),

there must exist an index h � n such that

�h �
2
h.b/ � h=4:

Let h � n denote the largest such index. So b satisfies the inequalities in (1.206)
except for those corresponding to the indices j D 1; : : : ; h. Then, since dh � �hyhh,
we have

YŒb� � dh�
2
h.b/C � � � C dn�

2
n.b/

� yhh
h
4

C dhC1�2hC1.b/C � � � C dn�
2
n.b/:

�
(1.207)

Here if h D n, the last n � h terms will be nonexistent, of course.
Now form

b�
1 ; : : : ; b

�
h such that

ˇ̌
� j.b

�/
ˇ̌ � 1=2;

by subtracting integers from b1; : : : ; bh. And set

b�
hC1 D bhC1; : : : ; b�

n D bn:

Now gcd.b�
j ; : : : ; b

�
n / D 1. Therefore, making use of (1.207), we have:

YŒb�� � 1

4
.d1 C � � � C dh/C dhC1�2hC1.b/C � � � C dn�

2
n.b/

� 1

4
.y11 C � � � C yhh/C dhC1�2hC1.b/C � � � C dn�

2
n.b/

� 1

4
hyhh C dhC1�2hC1.b/C � � � C dn�

2
n.b/ � YŒb�:

Finally

YŒb� � YŒb�� � yjj

since b� satisfies all the inequalities in (1.206). This completes the proof of part (2)
of Theorem 1.4.1, as it is now clear that Mn is a convex cone through the origin
which is bounded by a finite number of hyperplanes through the origin. �

Exercise 1.4.11. In the definition (1.185) of Mn, call those inequalities “boundary
inequalities” which occur with equality. These boundary inequalities imply all the
other inequalities. Prove this.
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Hint. Suppose that Y0 2 Mn and Y0 satisfies only strict inequalities. Let Y1 62 Mn

satisfy all the boundary inequalities. Consider the line segment joining Y0 and Y1;
i.e., the points Yt D .1 � t/Y0 C tY1, for 0 � t � 1. Let

u D l:u:b: ft 2 Œ0; 1� j yt 2 Mn g :

Show that Yu must satisfy a boundary inequality and then deduce a contradiction,
using the linearity of the inequalities in the Y’s. Note that we use the finiteness of
the number of inequalities needed to define Mn here, but see Weyl [666, Vol. III,
p. 743] for a modification and a reformulation of Minkowski’s proof of part (2) of
Theorem 1.4.1.

Proof of Part (3) of Theorem 1.4.1. It is easy to see that Y;W D YŒA� 2 Mn, for
A 2 GL.n;Z/; A ¤ ˙I, implies that Y lies in the boundary of Mn. For suppose
that A is diagonal, with diagonal entries a1; : : : ; an. Then there must be a first sign
change, say between ak and akC1. It follows that wk;kC1 D �yk;kC1. Then wk;kC1 � 0

and yk;kC1 � 0 imply that yk;kC1 D 0 and thus Y must lie on the boundary of Mn.
If A is not diagonal, there is a first column of A, say ak, such that ak ¤ ˙ek, for

ek the standard kth basis vector for Rn. Then the kth column of A�1 has the same
property. Call it bk. Suppose that

ak D t.˛1; : : : ; ˛n/ and bk D t.ˇ1; : : : ; ˇn/:

Then

gcd.˛k; : : : ; ˛n/ D 1 D gcd.ˇk; : : : ; ˇn/:

So it follows that

ykk � YŒak� D wkk and wkk � WŒbk� D ykk:

Thus we must have ykk D YŒak� and Y lies on the boundary of Mn.
To complete the proof of part (3) of Theorem 1.4.1, we need to show that Y and

YŒA� both lie in Mn for at most a finite number of A 2 GL.n;Z/. Again we shall
follow Minkowski [453, Vol. II, p. 70] or Hancock [260, Vol. II, pp. 790–794].

Suppose that Y and W D YŒA� both lie in Mn for A 2 GL.n;Z/. Write A D
.a1 � � � an/ with aj 2 Z

n. Then YŒaj� D wjj. Suppose that ahk is the last nonzero entry
of ak. Then using (1.204) and Exercise 1.4.10 (b), we find that:

wkk � yhh � dh � �hyhh � �nyhh:

Claim. For each j, we have wjj � �nyjj and yjj � �nwjj.

Proof of Claim. Suppose that wjj < �nyjj for some j. Then

w11 � w22 � � � � � wjj < �nyjj � �nyjC1;jC1 � � � � � �nynn:
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So no quantity ahk.h D j; j C 1; : : : ; nI k D 1; : : : ; j/ can be the last not equal to
zero. This means that the numbers ahk; h D j; : : : ; nI k D 1; : : : ; j, must all be zero
which implies that the determinant of A is zero, a contradiction, proving the claim.

If wkk � �nykC1;kC1, for k D 1; : : : ; n � 1, then we can easily bound the elements
of ak. For then we have:

y11 � �nw11 � �2ny22 � �3nw22 � � � �
� �2k�1

n wkk � �2k
n ykC1;kC1 � � � � :

It follows that wkk=y11 � �1�2k
n . We know that there is a positive constant c such

that

cy11
takak � cY0Œak� � YŒak� D wkk:

from part (c) of Proposition 1.4.1. Thus ak has bounded norm.
Next suppose that j is the largest index such that

wj�1;j�1 < �nyjj:

The considerations in the proof of the claim show that

A D
�

A1 A12
0 A2

�
with A1 2 GL.j � 1; Z/:

Induction says that A1 has bounded entries, since

YŒA� D
�

Y1 	
	 	

�	
A1 A12
0 A2



D
�

Y1ŒA1� 	
	 	

�
:

The hypothesis on j implies that if j < n, then

wkk � �nykC1;kC1; for k D j; : : : ; n � 1:

Thus we have for k D j; : : : ; n, the inequality:

yjj � �2k�2j
n ykk � �2k�2jC1

n wkk:

It follows that if k � j and Y D DŒT� with D and T as usual in the Iwasawa
decomposition (1.194), then if � i.x/ is defined by (1.205), for x 2 R

n, we have the
following inequality (making use of (1.204)):

wkk D YŒak� D
nX

iD1
di�

2
i .a/ � �nyjj

�
�2j .ak/C � � � C �2n.ak/

�
:
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Therefore

��.2k�2jC2/
n � �2j .ak/C � � � C �2n.ak/; for k D j; : : : ; n;

which implies that the matrix A2 has bounded entries. To see this, argue as in part
(a) of Exercise 1.4.10.

It only remains to show that the matrix A12 has bounded entries. Since W 2 Mn,
we know that for k D j; : : : ; n; xi 2 Z, we have

WŒx� � wkk; if x D t.x1; : : : ; xj�1; ıkj; : : : ; ıkn/:

Here ıki denotes the Kronecker delta; i.e., it is 1 if k D i and 0 otherwise. Our
inequality means that

YŒAx� � YŒak� with Ax D t.x�
1 ; : : : ; x

�
j�1; ajk; : : : ; ank/ D a�;

for an arbitrary vector .x�
1 ; : : : ; x

�
j�1/ 2 Z

j�1. We can choose this arbitrary vector to

insure that j� i .a
�/j � 1

2
, for i D 1; : : : ; j � 1. This implies that

d1�
2
1.a

�/C � � � C dn �
2
n.a

�/ � d1�
2
1.ak/C � � � C dn �

2
n.ak/

and

1

4
.d1 C � � � C dj�1/ � d1�

2
1.ak/C � � � C dj�1�2j�1.ak/:

Thus �2i .ak/ is bounded for i D 1; : : : ; j � 1, which implies that the entries of A12
are bounded, completing the proof of part (3) of Theorem 1.4.1, and thus the entire
proof of Theorem 1.4.1—at last. �

Thus we have finished the discussion of the basic properties of the Minkowski
fundamental domain Mn for GL.n;Z/. We tried to follow Minkowski’s own
reasoning in many places, despite the fact that we found it rather tortuous. In the
next section we consider another sort of fundamental domain for the GL.n;Z/.
The discussion will be much simpler. And in the last section we will look at the
formula for the Euclidean volume of the subset of Mn consisting of all matrices of
determinant less than or equal to one. Before this, let’s consider a few miscellaneous
geometric questions related to Mn.

Exercise 1.4.12 (Edge Forms). Minkowski defined an edge form Q in Mn to be
a reduced form such that Q D Y C W with Y;W 2 Mn implies that Y is a positive
scalar multiple of W: Show that an edge form must be on an edge of Mn. Define
an equivalence relation between edge forms Y;W by saying that Y is equivalent to
W if there is a positive real number c such that Y D cW: Show that there are only
finitely many equivalence classes of edge forms. Show finally that every Y in Mn

has an expression as a linear combination of edge forms with nonnegative scalars.
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Hint. See Minkowski [453, Vol. II, p. 69] or Hancock [260, Vol. II, pp. 790–791].

Exercise 1.4.13 (The Determinant One Surface).

(i) Suppose that Y and W lie in the determinant one surface SPn and Y ¤ W: If
t 2 .0; 1/; show that tY C .1 � t/W is in Pn with determinant greater than one.

(ii) Show that the determinant one surface in Mn is everywhere convex as seen
from the origin; i.e., the surface lies on the side of the tangent plane away from
the origin.

Hint. See Minkowski [453, Vol. II, p. 73] or Hancock [260, Vol. II, pp. 794–797].
Use the fact that there is a k 2 SL.n;R/ such that both YŒk� and WŒk� are diagonal.
You will also need the inequality below which holds for positive real numbers
a1; : : : ; an; b1; : : : ; bn:

 
nY

iD1
.ai C bi/

!1=n

�
 

nY

iD1
ai

!1=n

C
 

nY

iD1
bi

!1=n

;

with equality only if ai=bi D aiC1=biC1, for all i D 1; : : : ; n � 1.

Extreme forms Y 2 Pn are defined to be forms for which the first minimum
mY jYj�1=n takes on a local maximum value. Recall that the problem of finding the
densest lattice packings of spheres in Euclidean space seeks to find the Y with global
maximum value of mY jYj�1=n. Korkine and Zolotareff [366] found these extreme
forms in low dimensions .n D 4; 5/. They used a reduction theory which makes use
of the Iwasawa decomposition (see the next subsection and Ryskov and Baranovskii
[523]). Minkowski [453, Vol. II, p. 76] shows that an extreme form of Mn must be
an edge form. The proof uses Exercise 1.4.13 on the convexity of the determinant
one surface in the fundamental domain. Minkowski finds representatives of the
classes of positive edge forms with mY D 2 for n D 2; 3; 4 [453, p. 79] and claims
that they are all extreme. Elsewhere [453, p. 218] he considers the cases n D 5 and
6. The inequivalent positive edge forms with mY D 2, for n D 2; 3; 4, are:

�
2 1

1 2

�
0

@
2 1 1

1 2 1

1 1 2

1

A

0

BB
@

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

1

CC
A

0

BB
@

2 0 0 1

0 2 0 1

0 0 2 1

1 1 1 2

1

CC
A :

Korkine and Zolotareff [366] also proved the following results.

(i) If fn denotes the number of distinct vectors a 2 Z
n � 0 (modulo ˙I/ such that

YŒa� D mY for an extreme form Y , then

n.n C 1/=2 � fn � .3n � 1/=2:
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(ii) The representations of the minimum mY of an extreme form Y determine Y
completely, up to multiplication by a positive scalar.

Voronoi [636] gives an algorithm for finding all extreme forms and worked out
the cases n D 3; 4; 5. Barnes [36] carried out the computation in the case n D 6.
Voronoi’s methods have also turned out to be useful in resolving the singularities of
compactifications of the fundamental domain (see Ash et al. [30, pp. 145–150] and
Namikawa [472, pp. 85–112]). Important in this work is the Voronoi map which is
defined to be

V W Rn ! Closure.Pn/

x 7! V.x/ D x tx:

Note that V.x/ is positive semi-definite, since V.x/Œa� D .txa/2 � 0 for any a 2 R
n.

The Voronoi points are the points x in Z
n with relatively prime coordinates. The

Voronoi cell or polyhedron….n/ is the closure of the convex hull of the set of V.x/
such that x is a Voronoi point. See Ryskov and Baranovskii [523, pp. 40 ff.] for more
details on Voronoi’s theory.

Exercise 1.4.14 (Hermite–Mahler). Show that a subset of Minkowski’s funda-
mental domain has compact closure if mY (the first minimum defined by (1.191))
is bounded from below and the determinant jYj is bounded from above. In the
language of lattices, this says that the minimum separation of the lattice points is
bounded from below and the volume of the fundamental parallelepiped is bounded
from above.
Hint. Use parts (a) and (b) of Proposition 1.4.1.

The theory of smooth compactifications involves finding GL.n;Z/-invariant cone
decompositions of the closure of Pn. For n � 3, this comes from the following
exercise.

Exercise 1.4.15. Define the fundamental cone by

C0 D
8
<

:
X 2 R

n�n

ˇ̌
ˇ
ˇ̌
ˇ

tX D X; xij � 0; all i ¤ j;
nX

i;jD1
xij � 0

9
=

;
:

Show that the closure of Pn is a union of images C0ŒA� over A in GL.n;Z/, when
n � 3. According to Mumford: “This illustrates the interesting fact that only in
4 space or higher do lattice packing problems and related geometry of numbers
problems get interesting” (see Ash et al. [30, p. 146]).

Exercise 1.4.16. (a) Use Theorem 1.4.1 to show that GL.n;Z/ is finitely gener-
ated. In fact, show that the A 2 GL.n;Z/ such that Mn \ .MnŒA�/ ¤ ;
generate GL.n;Z/:
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(b) Prove that GL.n;Z/ is generated by the matrices which give rise to the
elementary row and column operations; i.e., by the matrices of the following
three forms:

(i) diagonal with ˙1 as the entries,
(ii) permutation matrices,

(iii) upper triangular matrices with ones on the diagonal and all elements above
the diagonal equal to 0 except one which is equal to 1.

Minkowski [453, Vol. II, p. 95] showed that if H.d/ is the number of integral
Y 2 Pn of determinant d and inequivalent modulo GL.n;Z/, then

lim
x!1

 

x�.nC1/=2
XX

dD1
H.d/

!

D Euclidean Volume fY 2 Mn j jYj � 1g :

Note that H.d/ is finite by Exercise 1.4.9.

1.4.3 Grenier’s Fundamental Domain

We begin with Figure 1.15. What do you see? The fact that I see bears should not
prevent you from seeing other sorts of creatures. I explain this sort of figure later in
the section as coming from a projection of Hecke points in Grenier’s fundamental
domain.

Here we consider a fundamental domain and reduction algorithm discussed by
Grenier [241, 242] and pictured for SL.3;Z/ in Gordon et al. [237]. Grenier’s

Fig. 1.15 GL.3/ ink blot test
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method is analogous to that used by Siegel for Sp.n;Z/ in Siegel [565, Vol. II,
pp. 105–113, 298–317] (see also Maass [426] and Gottschling [238]). As we have
noted earlier, we should perhaps call the fundamental domain the HKZ domain for
Hermite, Korkine, and Zolotareff. A more recent reference is Jorgenson and Lang
[334]. Papers using the domain include Brenner and Sinton in the volume dedicated
to Serge Lang [233, pp. 69–109], S. Catto et al. [102], Goldfarb [229], Sarnak and
Strömbergsson [530], W. Schmidt [535], Eric Stade and Dorothy Wallace [574].

We need to consider another fundamental domain than Minkowski’s for the
reasons that follow. Recall that Minkowski’s fundamental domain for GL.3;Z/ is:

M3 D
8
<

:
Y D .yij/ 2 P3

ˇ̌
ˇ̌
ˇ̌

y11 � y22 � y33; 0 � y12 � 1
2
y11

0 � y23 � 1
2
y22; jy13j � 1

2
y11

Y Œe�� y33; e D ˙e1 ˙ e2 ˙ e3

9
=

;
:

Here the ej are the standard basis vectors for R
3. Suppose Y has the Iwasawa

decomposition:

Y D
0

@
y1 0 0

0 y2 0

0 0 y3

1

A

2

4
1 x1 x2
0 1 x3
0 0 1

3

5

D
0

@
y1 y1x1 y1x2
y1x1 y1x21 C y2 y1x1x2 C y2x3
y1x2 y1x1x2 C y2x3 y1x22 C y2x23 C y3

1

A :

(1.208)

Thus if Y lies in Minkowski’s fundamental domain, we find that:

0 � x1 � 1

2
; jx2j � 1

2
; 0 � y1x1x2 C y2x3 � 1

2

�
y1x

2
1 C y2

�
:

If follows that:

�
�
1

4

�
y1
y2

� x3 � 1

2
C
�
3

8

�
y1
y2
: (1.209)

This means that Minkowski’s fundamental domain has only an approximate box
shape as Y approaches the boundary; e.g., as y1=y2 ! 0. We prefer an exact box
shape; that is, we prefer to see the inequality 0 � x3 � 1

2
, particularly when

computing the integrals of Eisenstein series over truncated fundamental domains
(a necessary prelude to generalizing the Selberg trace formula to SL.3;Z//.

Grenier [241, 242] describes a fundamental domain for GL.n;Z/ which makes
essential use of the Iwasawa coordinates. Moreover, Grenier’s domain has an exact
box shape at the boundary. And Grenier gives a reduction algorithm to move Y in
Pn into this fundamental domain via a “highest point method.” See also Korkine
and Zolotareff [365] for this fundamental domain using Iwasawa coordinates and
successive minima. The method goes back to Hermite. We will (perhaps evilly)
stick to our earlier nomenclature.
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N.V. Novikova (aka N.V. Zaharova) [475] found exact boundaries of the domain
for n � 8: R.A. Pendavingh and S.H.M. Van Zwam say in [483]: “It is unfortunate
that the proofs were omitted from her [Novikova’s] paper, as it appears to be a
significant challenge to determine these irredundant sets. We were only able to
verify her claims for n � 4: For n 2 f5; 6g we find sufficient sets that are
slightly larger, and for larger n the sets we compute are much smaller: : :.” Here we
restrict ourselves to n D 3 and will not spend time worrying whether our domains
are the same as Novikova’s. Instead we attempt to visualize the five-dimensional
domain using Hecke points. See Figures 1.18, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24,
and 1.25. Other references for fundamental domains are: Ryskov [521], Ryskov and
Baranovskii [523], Siegel [565, Vol. II, pp. 105–113, 298–317], and B.A. Venkov
[628]. We will say a little more about some of these other methods at the end of the
section.

Before defining Grenier’s fundamental domain, we need to fix a set of partial
Iwasawa coordinates for Y 2 Pn given by

Y D
�
v 0

0 W

�	
1 tx
0 In�1



; for v > 0; W 2 Pn�1; x 2 R

n�1: (1.210)

Next let us consider how the action of a matrix in GL.n;R/ affects the v-coordinate.
Suppose

M D
�

a tb
c D

�
; for a 2 Z; b; c 2 Z

n�1; D 2 Z
.n�1/�.n�1/:

If YŒM� D Y� has partial Iwasawa coordinates v�; W�, and x�, then we find that

v� D vŒa C txc�C WŒc�:

We want to think of the coordinate v as the reciprocal of the height of Y . This agrees
with the idea of height in the case n D 2 which was used in Section 3.4 of Volume I
to put a point into the fundamental domain for SL.2;Z/ by the highest point method.
Thus we want Y to have coordinate v such that

v � vŒa C txc�C WŒc�

for any a; c forming the first column of a matrix in GL.n;Z/. It is thus natural to
make the following definition.

Grenier’s fundamental domain for GL.n;Z/ is defined to be the set Fn of Y in
Pn satisfying the following three inequalities:

(1) v � vŒa C txc�C WŒc�, for a 2 Z; c 2 Z
n�1 � 0, and

M D
�

a tb
c D

�
2 GL.n;Z/I
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(2) W 2 Fn�1, the fundamental domain for GL.n � 1;Z/;
(3) 0 � x1 � 1

2
; jxij � 1

2
, for i D 2; : : : ; n � 1.

Note that for n D 2, this fundamental domain is just the same as Minkowski’s.
But for n � 3, it differs. In particular, it puts the x-variables into a “box” shape (see
Exercise 1.4.19 below). The fundamental domain Fn was considered by Hermite
also Korkine and Zolotareff (see Cassels [100, p. 259]). But Cassels notes that it
doesn’t appear that anyone (before Grenier) managed to show that the domain is a
more reasonable one to use than Minkowski’s (especially for those wishing to do a
trace formula for GL.3;Z//; since it is defined by inequalities more similar to those
that worked in the case n D 2 than those giving Minkowski’s domain. However,
as we noted earlier, the cryptography community has been successfully using the
reduction theory attached this domain for lattices rather than quadratic forms.

We take the discussion of the following results from Grenier [241, 242].

Theorem 1.4.2. Fn is a fundamental domain for GL.n;Z/.

Before proving this result we need a lemma.

Lemma 1.4.4. If Y is in Grenier’s fundamental domain Fn and v;W are as
in (1.210) with v the upper left-hand entry of Y (and the inverse height of Y), then
if wjj is the jth diagonal entry in W, we have the inequality:

wjj � 3v

4
:

Proof. If Y is in Fn, then we know that v � vŒa C txc�C WŒc� for any a 2 Z; c 2
Z

n�1 that can be made the first column of a matrix in GL.n;Z/. Take a D 0 and
c D ej, the jth element of the standard basis of Rn�1. Then

v � vx2j C wjj � 1

4
v C wjj:

The result follows.

Proof (of Theorem 1.4.2). We need to show two properties of Fn:

(1) For any Y 2 Pn, there is a matrix M 2 GL.n;Z/ such that YŒM� 2 Fn;
(2) For Y and YŒM� both in Fn with M ¤ ˙I; Y must be on the boundary of Fn

We proceed by induction on n. The case n D 2 is already done. So assume that
Fn�1 is a fundamental domain for GL.n � 1;Z/.
(1) To prove property (1), suppose Y 2 Pn is given with partial Iwasawa decompo-

sition (1.210). If M 2 GL.n;Z/ has first column given, as usual, by t.ac/, for
a 2 Z, c 2 Z

n�1; then YŒM� has its upper left corner v� D v Œa C txc�CWŒc�. It
is easily seen that there are only finitely many a and c forming the first column
of a matrix M in GL.n;Z/ such that v� stays less than any given bound. Thus
we may choose a and c so that v� is minimal.
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Then locate D� in GL.n � 1;Z/ so that WŒD�� 2 Fn�1 by the induction
hypothesis. This means that we want to set

M1 D M

�
1 0

0 D�
�

2 GL.n;Z/;

in order to say that YŒM1� satisfies the first two prerequisites for being a member
of Fn. Next we can put the x-coordinates of YŒM1� in the desired intervals by
acting on it by:

N D
�˙1 tb�
0 I

�
:

Thus YŒM1N� 2 Fn and we’re done with the proof of (1).
(2) To prove property (2), we use induction again. The case n D 2 is done. Now

assume that the case of Fn�1 is proved. And suppose that both Y and Y� D YŒM�
lie in Fn for M 2 GL.n;Z/. Then Y� has partial Iwasawa decomposition

Y� D
�
v� 0

0 W�
�	

1 tx�
0 In�1



; for v� > 0; W� 2 Pn�1; x� 2 R

n�1:

We know that in terms of the inverse heights, since Y�ŒM�1� D Y:

v � v

a C txc

�C WŒc� D v� and similarly v� � v:

Thus we see that v D v� D v Œa C txc�C WŒc�. If c ¤ 0, this equality puts Y
on the boundary of Fn because it is close to something outside of Fn. If c D 0,
the equality means that v D va2 and thus a D ˙1 and

M D
�˙1 tb
0 D

�
and D 2 GL.n � 1;Z/:

Then W� D WŒD� and W both lie in Fn�1 and the induction hypothesis implies
that W lies on the boundary of Fn�1 and thus Y is on the boundary of Fn unless
D D ˙I. In the latter case, by looking at the effect of M on the x’s, we see that:

x and ˙ x ˙ b 2
	
�1
2
;
1

2


n�1
; with x1; ˙x1 ˙ b1 � 0:

Since b 2 Z
n�1, we see that either:

xi D ˙1

2
and bi D ˙1; i D 2; : : : ; n � 1I x1 D 1

2
; b1 D 1
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or

xi ¤ ˙1

2
and bi D 0; i D 1; : : : ; n � 1:

If all the bi D 0 and if M ¤ ˙I, it follows that x1 D 0 and Y must lie on the
boundary of Fn.

Theorem 1.4.3 (Grenier). Fn has a finite number of boundary inequalities, which
can be explicitly given for small values of n.

Proof. Once more we use induction on n. We already know the case n D 2 and
now we assume the result for Fn�1. We need to show that only a finite number of
inequalities of the form

v � v Œa C txc�C WŒc�;

� 8 a; c forming the 1st column
of a matrix in GL.n;Z/;

are necessary to place Y in Fn. Using the partial Iwasawa coordinate decomposi-
tion (1.210), we know that W 2 Fn�1 and so we can write

W D
�
v0 0

0 W 0
�	

1 tx0
0 In�2



; v0 > 0; W 0 2 Fn�1; x0 2

	
�1
2
;
1

2


n�1
:

By the induction hypothesis there are only finitely many inequalities:

v0 � v0 a0 C tx0c0�C W 0Œc0�

which must be considered. Why?
And clearly

WŒc� D v0 c1 C tx0c0�C W 0 c0� with tc0 D .c2; : : : ; cn/:

So we now have a finite number of vectors c. Given the bounds on the xi, this leads
to a finite number of a.

To describe what is happening more explicitly, continue the partial Iwasawa
decompositions until you reach the full Iwasawa decomposition and obtain:

v Œa C txc�C WŒc� D v .a C txc/2 C v0 .c1 C tx0c0/2 C � � �
Cv.n�2/ �cn�2 C x.n�2/cn�1

�2 C v.n�1/c2n�1:

By repeated application of Lemma 1.4.4, we know that

v.j/ � � jv; for � D 3

4
:



198 1 The Space Pn of Positive n � n Matrices

Thus

v

a C txc

�C WŒc�

�v
n�

aC txc
�2 C �

�
c1C tx0c0�2 C � � � C �n�2 �cn�2Cx.n�2/cn�1

�2 C �n�1c2n�1
o
:

This means that we need to only consider the a and c such that

�
a C txc

�2 C �
�
c1 C tx0c0�2 C � � � C �n�1c2n�1 � 1:

Since the xj’s are bounded by 1
2

in absolute value, this bounds the a’s and c’s.

One can go on to determine the exact list of inequalities for small values of n.
See Grenier [241, 242] for the cases n � 5. See Novikova [475] for n � 8; also
Pendavingh and Van Zwam [483].

Exercise 1.4.17. Show that on the determinant one surface, Grenier’s fundamental
domain SF3 for SL.3;Z/ is the set of Y 2 SP3 with partial Iwasawa coordinates
given by

W D
�

w 0

0 1=w

�	
1 x3
0 1



;

Y D Y.v;w; x/ D
�
v 0

0 v�1=2W

�	
1 .x1; x2/
0 I2



; x D .x1; x2; x3/;

and satisfying the following inequalities:

0 � x1 � 1

2
; jx2j � 1

2
; 0 � x3 � 1

2
;

1 � w�2 C x23;

v � v.a C txc/2 C v�1=2WŒc� for

�
a D 0; tc D .1; 0/; .0; 1/; .1;�1/;
a D 1; tc D .�1; 1/:

Hint. See Grenier [241, 242] or Gordon et al. [237]. Note that GL.3;Z/=SL.3;Z/
has order 2 and the nontrivial coset is represented by �I which does nothing to an
element Y 2 SP3, so the fundamental domain for SL.3;Z/ is the same as that for
GL.3;Z/.
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Setting t�2 D v�3=2w, the explicit inequalities for SF3 are:

(i) 1 � .1 � x1 C x2/2 C t�2f.1 � x3/2 C w�2g
(ii) 1 � .x1 � x2/2 C t�2f.1 � x3/2 C w�2g
(iii) 1 � x21 C t�2
(iv) 1 � x22 C t�2.x23 C w�2/
(v) 1 � x23 C w�2
(vi) 0 � x1 � 1

2

(vii) 0 � x3 � 1
2

(viii) � 1
2

� x2 � 1
2
:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(1.211)

Note that inequalities (iii) (v), (vi), and (vii) say that x3 C iw�1 and x1 C it�1 lie in
the fundamental domain for GL.2;Z/nH which is half that for SL.2;Z/nH; given
in Exercise 3.3.1 of Volume I.

Exercise 1.4.18. Suppose Y 2 P3: Write the full Iwasawa decomposition Y D
D ŒT� ; where D is positive diagonal having entries di on the diagonal, T upper
triangular with 1’s on the diagonal and entries tij above the diagonal. Show that,
using the notation of the preceding exercise, t2 D d1=d2 and w2 D d2=d3:

Exercise 1.4.19. (a) Show that w � 1 and t � 1 for t�2 D v�3=2w, plus
inequalities (vi)–(viii) from (1.211) imply that the point Y D Y.v;w; x/ with
Iwasawa coordinates given in Exercise 1.4.17 must lie in the fundamental
domain SF3. That is, in this case, we do not need all of the inequalities (1.211).
This shows that Grenier’s fundamental domain does have an exact box shape
at infinity, unlike Minkowski’s fundamental domain (cf. (1.209)). Note that, in
general,

Y 2 SF3 implies that w and t are both � 2=
p
3:

(b) In the case of GL.3;Z/, compare the Grenier fundamental domain with the
Siegel set Sv; u defined in formula (1.200) of Section 1.4.2. In particular, show
that for the 3 � 3 case we have:

SF3 � S4=3;1=2 \ SP3

and

S1;1=2 \ SP3 \ fY D Y.v;w; x/ j x1; x3 � 0g � SF3:

Here Y.v;w; x/ is defined in Exercise 1.4.17. This is a similar situation to that
which occurred for GL.2;Z/.
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Boundary identifications for the fundamental domain SF3 come from complet-
ing the t.a c/ in Exercise 1.4.17 to matrices in SL.3;Z/, a process which can be
carried out as follows:

T1 D
0

@
1 1 0

0 1 0

0 0 1

1

A ; T2 D
0

@
1 0 1

0 1 0

0 0 1

1

A ; T3 D
0

@
1 0 0

0 1 1

0 0 1

1

A ;

S1 D
0

@
0 0 1

1 0 0

0 1 0

1

A ; S2 D
0

@
0 1 0

0 0 1

1 0 0

1

A ; S3 D
0

@
0 1 0

1 0 �1
�1 0 0

1

A ;

S4 D
0

@
1 0 0

�1 1 0

1 0 1

1

A ; S5 D
0

@
1 0 0

0 0 1

0 �1 0

1

A ;

U1 D
0

@
�1 0 0

0 �1 0

0 0 1

1

A ; U2 D
0

@
1 0 0

0 �1 0

0 0 �1

1

A :

9
>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>;

(1.212)

Note. This gives more than enough generators for SL.3;Z/= f˙Ig, but we do not
appear to be able to get rid of any of the inequalities in (1.211) (cf. Exercise 1.4.16).

Grenier’s reduction algorithm is a “highest point method” where the height of Y
is 1=v, for v D the entry y11. Korkine and Zolotareff [365] view it as a method of
successive minima. The algorithm goes as follows.

Grenier’s Reduction Algorithm

Here we use the matrices defined by (1.212) and the coordinates from Exer-
cise 1.4.17.

Step I. Set S0 D I and pick j to minimize the v-coordinate of YŒSj�, for j D
0; 1; 2; 3; 4. Then replace Y by YŒSj�.

Step II. Let W.Y/ denote the element of SP2 defined by the equations in
Exercise 1.4.17. Put W.Y/Œı� in SF2 using ı 2 GL.2;Z/. That is, we
make w and x3 satisfy inequalities (v) and (vii) in (1.211). Replace Y by
YŒ� � for

� D
�˙1 0

0 ı

�
2 SL.3;Z/:

Here � D S5; U1, or .T3/n for some n 2 Z.



1.4 Fundamental Domains for Pn=GL.n;Z/ 201

Step III. Translate the x1; x2-coordinates of Y in Exercise 1.4.17 by applying � D
.Tj/p to Y , for p D �

1
2

� xj
˘
; j D 1; 2. Here bxc denotes the floor of xI

i.e., the greatest integer � x.
Step IV. Make x1 � 0 by replacing Y by YŒU2�, if necessary.

Keep performing Steps I–IV until the process stabilizes.

Historical Note. Jeff Stopple suggested that we use this last test; i.e., see whether
the process has repeated itself to stop the program. This idea is useful since it allows
us not to test all the inequalities at each step, as some might be tempted to do. On
the other hand one might worry that the program would get into an infinite loop.
This does not happen if one is careful in writing the code. However, one must be
rather cautious because there can be great loss of precision due to subtraction and
division. Thus we found that we had to use double precision when performing the
algorithm in BASIC on the UCSD VAX in the 1980s.

Note that in obtaining the matrices Sj; j D 1; 2; 3; 4; 5, we completed the
matrices t.a c/ from Exercise 1.4.17 to 3 � 3 matrices in SL.3;Z/. This can be
done in a number of ways—each differing by matrices of the form

�
1 tq
0 R

�

with q 2 Z
2 and R 2 Z

2�2. The choice of Sj will affect the reduction algorithm, but
not the final result that the algorithm does send a point into the fundamental domain.

Exercise 1.4.20. Write a program to carry out Grenier’s reduction algorithm.

Let us now consider the results of some computer experiments we did with Dan
Gordon and Doug Grenier which were published in Gordon et al. [237]. Our aim
was understanding what SF3 looks like.

First recall that we saw in Figure 3.39 from Section 3.5, Vol. I, and in
Exercise 3.6.19, Vol. I, that one can use Hecke operators to help us visualize
the fundamental domain for SL.2;Z/ in the Poincaré upper half plane. Now we
would like to do something similar to visualize Grenier’s fundamental domain
SF3. Before attempting that, let us look at Figure 1.16 which is a picture of the
standard fundamental domain for SL.2;Z/. Then look at Figure 1.17 which consists
of images of the point z D 0:4i under matrices from the Hecke operator for the prime
p D 7919, this time making the transformation z D x C iy 7�! x C i=y. Figure 1.17
was constructed using Mathematica on a PC with a similar program to that used to
create Figure 3.39 in Volume I except that we applied the map z D xCiy 7�! xCi=y
rather than the map z 7�! �1=z.

Since SF3 is five-dimensional, we take the easy way out and look at graphs of
two coordinates from the five coordinates .t;w; x1; x2; x3/ from Exercise 1.4.17. So
there are ten possible graphs. The most interesting is that of .w; v/ showing the
shape of the cuspidal region, where v or w approaches 0.
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Fig. 1.16 The standard
fundamental domain SF2 for
SL.2;Z/

3.0

2.5

2.0

1.5

1.0

0.5

0.0

−0.4 −0.2 0.0 0.2 0.4

We quickly see that from (1.211), as in Exercise 1.4.13, that

t;w � 2.3�1=2/ Š 1:154701: (1.213)

Therefore

v � 4=3 Š 1:333333:

Hecke operators for �3 D GL.3;Z/ will be discussed in Section 1.5. Here we
need to only consider the simplest aspects of the theory. For �3 D GL.3;Z/; f W
SP3=�3 ! C and m 2 Z

C, define the Hecke operator Tm by:

Tmf .Y/ D
X

A2Mm=�3

f .YŒA�0/ (1.214)
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Fig. 1.17 Images of Hecke points .z0 C j/=p; 0 � j � p � 1, in the fundamental domain for
SL.2;Z/, with z0 D 0:4i and p D 7919. The fundamental domain is transformed by the map
z D x C iy 7�! x C i=y

where

Mm D ˚
A 2 Z

3�3 ˇ̌ jAj D m
�

and

Y0 D jYj�1=3 Y 2 SP3:

It is easily seen (as in Lemma 1.4.6 which follows) that one can take representa-
tives of Mm=�3 of the form

0

@
d1 d12 d13
0 d2 d23
0 0 d3

1

A ; di > 0;

3Y

iD1
di D m; 0 � dij < di: (1.215)
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Maass [414] studied Hecke operators for the Siegel modular group Sp.n;Z/ in
1951. We are imitating his version of the theory. It is a theory which is basic to the
study of automorphic forms on higher rank symmetric spaces G=K and it connects
with many questions in representation theory, p-adic group theory, combinatorics,
and number theory. Applications of Hecke operators to numerical integration on
spheres are given by Lubotzky et al. [409, 410].

It is not hard to see that the Hecke operators for SL.3;Z/ have the following
properties:

(i) TnTm D Tmn; if gcd.m; n/ D 1;

(ii)
X

r�0
Tpr Xr D .I � TpX C Œ.Tp/

2 � Tp2 �X
2 � p3X3/�1; for p D prime

It follows that L-functions associated with eigenforms f of the Hecke operators must
have Euler products. We will discuss all these things in Section 1.5.

Here we graph points for the Hecke operator Tp; p D prime. We use only the
matrices

M.pI a; b/ D p�1=3
0

@
p a b
0 1 0

0 0 1

1

A ; 0 � a; b � p � 1: (1.216)

The other matrices in Tp do not appear to be necessary. Moreover, we will restrict
b so that b 
 5a C 163 (mod p). This will restrict the number of points to p rather
than p2 points.

Figures 1.18, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24, and 1.25 show plots of pairs of
Iwasawa-type coordinates of �3-images of Hecke points in the fundamental domain
SF3 or in the union of fundamental domains obtained by letting the x-coordinates
run between � 1

2
and C 1

2
. This allows us to produce more pleasing symmetric

pictures than those in Gordon et al. [237]. By “Hecke points” we mean points of
the form

Y0ŒM.pI a; b/�; 0 � a; b � p � 1; (1.217)

for M.pI a; b/ as in (1.216), p D 3001, and fixed Y0 with its Iwasawa coordinates,
as in Exercise 1.4.17, given by:

.v;w; x1; x2; x3/ D .:7815; :6534; :2123; :0786; :3312/: (1.218)

In Figure 1.18, the graph shows t versus w, where t D v3=4w�1=2. Note that t
is the square root of the quotient of the first two diagonal entries in the Iwasawa
decomposition of Y: The coordinate w is the square root of the quotient of the
last two diagonal entries in the Iwasawa decomposition of Y . And we have seen
in (1.211) that t and w play a more similar role than v and w, the variables
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1.16

w

0 t 1.16

Fig. 1.18 The .t;w/ coordinates of SL.3;Z/-images of Hecke points Y0ŒM.pI a; b/� in the
fundamental domain SF3 for SL.3;Z/ using the notation (1.216), with Y0 defined in (1.217),
(1.218), and p D 3001. Here b � 5a C 163.mod p/

1.16t

x10 .52-.52

Fig. 1.19 The .x1; t/ coordinates of SL.3;Z/-images of Hecke points Y0ŒM.pI a; b/� in the union
of the projection of the fundamental domain SF3 for SL.3;Z/ and its mirror image under the
reflection across the t-axis. We use the notation (1.216), with Y0 defined in (1.217), (1.218), and
p D 3001. Here b � 5a C 163.mod p/

we graphed in Gordon et al. [237]. Moreover, if Y D DŒT� is the Iwasawa
decomposition of Exercise 1.4.18, then t2 and w2 are the simple roots d1=d2 and
d2=d3; respectively. Roots will be discussed later. See Chapter 2.

Figures 1.19 and 1.20 show plots of the coordinates .x1; t/ and .x3;w/ of Hecke
points for the prime p D 3001. These are the variables in copies of the fundamental
domain of SL.2;Z/ in the Poincaré upper half plane. The figures do give a good
approximation to Figure 1.17, as expected.
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1.16w

x30 .52-.52

Fig. 1.20 The .x3;w/ coordinates of SL.3;Z/-images of Hecke points Y0ŒM.pI a; b/� in the union
of the projection of the fundamental domain SF3 for SL.3;Z/ and its mirror image under reflection
across the w-axis. We use the notation (1.216), with Y0 defined in (1.217), (1.218), and p D 3001.
Here b � 5a C 163.mod p/

0-.5 .5

x1

x2.5

Fig. 1.21 The .x1; x2/ coordinates of SL.3;Z/-images of Hecke points Y0ŒM.pI a; b/� in the union
of the projection of the fundamental domain SF3 for SL.3;Z/ and its mirror image under reflection
across the x2-axis. We use the notation (1.216), with Y0 defined in (1.217), (1.218), and p D 3001.
Here b � 5a C 163.mod p/

Figures 1.21 and 1.22 give plots of .x1; x2/ and .x1; x3/, respectively. The plots
look like randomly placed points in Œ� 1

2
; 1
2
�2.

Figures 1.23, 1.24, and 1.25 are plots of .x2; t/; .x3; t/, and .x2;w/. The result
should be compared with Figures 1.19 and 1.20. If we do so, we see that the top
curves of Figures 1.23, 1.24, and 1.25 cannot be those of Figures 1.19 and 1.20. The
variables in Figures 1.23, 1.24, and 1.25 are less closely related.
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0-.5 .5

x1

x3.5

Fig. 1.22 The .x1; x3/ coordinates of SL.3;Z/-images of Hecke points Y0ŒM.pI a; b/� in the union
of the projection of the fundamental domain SF3 for SL.3;Z/ and its mirror images under
reflections across the x1 and x3 axes. We use the notation (1.216), with Y0 defined in (1.217),
(1.218), and p D 3001. Here b � 5a C 163.mod p/

0-.52 .52x2

t  1.16

Fig. 1.23 The .x2; t/ coordinates of SL.3;Z/-images of Hecke points Y0ŒM.pI a; b/� in the
fundamental domain SF3 for SL.3;Z/ using the notation (1.216), with Y0 defined in (1.217),
(1.218), and p D 3001. Here b � 5a C 163.mod p/
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0-.52 .52x3

t     1.16

Fig. 1.24 The .x3; t/ coordinates of SL.3;Z/-images of Hecke points Y0ŒM.pI a; b/� in the union
of the projection of the fundamental domain SF3 for SL.3;Z/ and its mirror image under reflection
across the t-axis. We use the notation (1.216), with Y0 defined in (1.217), (1.218), and p D 3001.
Here b � 5a C 163.mod p/

0-.52 .52x2

w     1.16

Fig. 1.25 The .x2;w/ coordinates of SL.3;Z/-images of Hecke points Y0ŒM.pI a; b/� in the
fundamental domain SF3 for SL.3;Z/ using the notation (1.216), with Y0 defined in (1.217),
(1.218), and p D 3001. Here b � 5a C 163.mod p/
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These figures should also be compared with those in Gordon et al. [237] where,
for example, the points were plotted as points. Here we are plotting small cross
marks.

One might complain that our graphs still do not give a real five-dimensional
feeling for the fundamental domain. We hope to make “SF3 THE MOVIE” some
day, making use of motion and color. This would be a non-Euclidean analogue of
Banchoff’s movie of a rotating four-dimensional cube. For you may view our region
SF3 as a five-dimensional non-Euclidean crystal. It would also be nice to produce a
figure representing the tessellation of the five-dimensional space SP3 corresponding
to SL.3;Z/ images of SF3. These would be five-dimensional analogues of pictures
that inspired the artist M.C. Escher. Such graphs could be obtained by plotting
images of boundary curves under matrices generated by Si;Ti;Ui appearing in
Grenier’s reduction algorithm.

Figures 1.18, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24, and 1.25 were obtained in the
late 1980s with my equipment at the time—a Fujitsu printer using an Atari 1040ST
with Snapshot and Degas Elite to process the points computed on the UCSD VAX
computer. If I were a good person I would update these figures. But I have to say
that the old Atari programs were much easier to use that what I am using now on
my PC. I could write a Mathematica program to do this but it would take more time
than I have to translate all those goto statements and loops into proper Mathematica.
It would be a good exercise though.

Using Mathematica we have managed to produce a movie of the 3D coordinates
.x1; x2; x3/ for a matrix in SF3 as the y-values move around at the “bottom” of
their heights. Here y1 D w�1 and y2 D t�1 (or vice versa). The main part of the
Mathematica Program for the movie described at the end of the last paragraph is:

haro[t_, w_] := haro[t, w] =
RegionPlot3D[

(1 - x1 + x2)^2 + t^2*((1 - x3)^2 + w^2) >= 1
&& (x1 - x2)^2 + t^2*((1 - x3)^2 + w^2) >= 1
&& x1^2 + t^2 >= 1
&& x2^2 + t^2*(x3^2 + w^2) >= 1
&& x3^2 + w^2 >= 1,

{x1, 0, .5}, {x2, -.5, .5}, {x3, 0, .5},
Mesh->None,PlotStyle->Directive[Opacity[0.5],Pink,

Specularity[White, 20]], PlotPoints -> 60]



210 1 The Space Pn of Positive n � n Matrices

0.5
0.0

-0.5

0.4

0.2 0.2

0.4

0.0
0.0

0.2
0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

0.2

0.4

0.0
0.0

0.2
0.4

0.5
0.0

-0.5

Fig. 1.26 We use the Mathematica command haro[y1,y2] repeatedly with .y1; y2/ running
through the following table of values with y1 D t�1; y2 D w�1 from (1.211), the rows
corresponding to the rows in the figure, likewise the columns.

.:92; :92/ .:94; :94/ .:96; :96/ .:98; :98/ .1; 1/

.1; :98/ .1; :96/ .1; :94/ .1; :92/ .:96; :92/

.:94; :92/ .:92; :94/ .:92; :96/ .:92; :98/ .:92; 1/

Since a book cannot at present contain a movie, we have put various frames of
the movie in Figure 1.26. It shows a bridge being built out of nothing, then turning
into a solid block, shrinking, then growing again. There is an actual movie on my
website.

There are various ways of understanding why the Hecke points should be dense
in SF3. One could imitate an argument of Zagier using Eisenstein series (see page
314 of Volume I for the SL.2;Z/-version of the argument) to show that the image of
a horocycle CY becomes dense in SF3 as Y approaches the boundary of SP3. Here,
by a horocycle we mean the set:

CY D fYŒn� j n is upper triangular with 1 on the diagonalg:

Patrick Chiu [105] proves the following result. Suppose

S.p/ D
8
<

:

0

@
p a b
0 1 c
0 0 1

1

A

ˇ̌
ˇ̌
ˇ
ˇ

0 � a; b; c � p � 1; and either
a D b D c D 0, or b D c D 0,

or a D 0

9
=

;
:
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If� is a bounded set in the fundamental domain for SL.3;Z/; then there is a number
N� such that for all primes p > N�; the Hecke points S.p/ cover � with covering
radius " D Ap�1=10; where A is an absolute constant. Covering radius " means any
point is in a ball centered at a point of S.p/ of radius ". Chiu uses the spectral
resolution of the differential operators on the fundamental domain, known results
on the Ramanujan conjecture for estimates of Hecke eigenvalues for Maass cusp
forms for SL.3;Z/. We discuss the Ramanujan conjecture in §1.5.4.

Chiu’s result is also related to standard results in ergodic theory for connected
noncompact simple Lie groups G with finite center (e.g., G D SL.3;R// saying
that if H is a closed noncompact subgroup of G and � is an (irreducible) discrete
subgroup of G (e.g., � D SL.3;Z// then H acts ergodically on G=� . Here we are
closest to looking at an equally spaced finite set of points in

H D
8
<

:

0

@
1 x y
0 1 0

0 0 1

1

A

ˇ̌
ˇ
ˇ̌
ˇ

x; y 2 R

9
=

;
:

For we are looking at points for Tp acting on a fixed Y0 2 SP3 via

Y0

2

4

0

@
p 0 0

0 1 0

0 0 1

1

A

0

@
1 a=p b=p
0 1 0

0 0 1

1

A

3

5 ;

with 0 � a; b � p � 1. For the ergodic theory result, see Zimmer [676, p. 19
ff.]. Burger and Sarnak [91, Thm. 5.2] suggested that Hecke point equidistribution
results should follow from Marina Ratner’s measure classification theorem [499].

Ultimately one would hope to be able to use the points M.pI a; b/ from (1.216)
to generalize the computations of Maass wave forms for SL.2;Z/ by Stark [577]
given as Table 3.10 of Section 3.5 of Volume I. This would require programs for the
computation of matrix argument K-Bessel or Whittaker functions. See §1.5.4 for a
discussion of recent computations of Maass forms for GL.3/.

More general Hecke point equidistribution results are to be found in Laurent
Clozel, Hee Oh, and Emmanuel Ullmo [113], Alex Eskin and Hee Oh [171], and
Hee Oh [478]. In particular, Eskin and Oh find a short ergodic theory proof of the
equidistribution of Hecke points for Lie groups G such as SL.n;R/ and subgroups
� such as SL.n;Z/: To state their result, we need some notation. We say that two
subgroups A and B of G are commensurable if A \ B has finite index in both A and
B: Define the commensurator group of � by

Comm .�/ D ˚
g 2 G

ˇ̌
� & g�g�1 are commensurable with each other

�
:

Note that Margulis [433, Chapter IX, Thm. 6.5] has proved that ŒComm .�/ W �� D
1 characterizes arithmetic �: Define the degree of a 2 Comm .�/ by

deg .a/ D # .�n�a�/ D 
� W � \ �

a�1�a
��
:
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Then the theorem of Eskin and Oh [171] says that for any bounded continuous
function f on �nG and for any x 2 �nG and any sequence faig of elements of
Comm(�/ such that

lim
i!1 deg .ai/ D 1;

we have

1

deg .ai/

X

�2�n�ai�

f .�x/ !
Z

�nG

f .g/ dg; as i ! 1:

At this point, there are various natural questions.

Questions.

(1) Exercise 1.4.16 gives generators of GL.n;Z/. What happened to Poincaré’s gen-
erators and relations theorems in this context (cf. Exercise 3.3.1 in Volume I)?

(2) Is there some way of visualizing the tessellation of SPn produced by writing

SPn D
[

�2�n

SFnŒ��‹

Perhaps we should take a hint from topology and look at retracts (cf. Ash [28]).
(3) In the classical case of SL.2;Z/, the reduction algorithm for putting a point

z 2 H into the standard fundamental domain, using a sequence of translations
and flips, is the same as the algorithm for finding a continued fraction expansion
of a real number. Thus Grenier’s algorithm for putting a matrix Y 2 SPn into
SFn by some combination of matrices from those listed after Exercise 1.4.19
gives an analogue of a continued fraction algorithm. This should be compared
with the continued fraction algorithms of Ferguson and Forcade [179] and other
work mentioned in the introduction to Section 1.1.

(4) There is an analogue for GL.n;Z/ of the method of perpendicular bisectors
which writes the fundamental domain D for a discrete subgroup � of GL.n;R/
as follows, for a point W 2 Pn such that W ¤ WŒ�� if � 2 � and � ¤ ˙I:

D D fY 2 Pn j d.Y;W/ � d.Y;WŒ� �/; for all � 2 �g :

Here d denotes the distance obtained from the Riemannian structure. See Siegel
[565, Vol. II, pp. 298–301]. Why can (and should) we choose the point W as
stated?

Siegel [565, p. 310] notes: “The application of the general method
. . . [given above] would lead to a rather complicated shape of the frontier of
[boundary of the fundamental domain] F.” However, the method does lead to
the standard fundamental domain for SL.2;Z/ if the point W in the Poincaré
upper half plane is chosen to be 2i, for example.
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B.A. Venkov [628] considers a related domain defined for a fixed H 2
Pn by:

fY 2 Pn j Tr.YH/ � Tr.YHŒ��/ for all � 2 �g :

When the point H is such that H D HŒ�� implies � D ˙I, then this Venkov
domain is a fundamental domain for GL.n;Z/ D � . See also Ryskov [521].

The question here is to compare all these domains with those of
Minkowski and Grenier.

(5) One should relate our fundamental domain to that which would be obtained if
one replaced � D GL.n;Z/ by integral matrices with arbitrary nonzero deter-
minant. The question concerns the relationship between Minkowski reduction
and reduction by successive minima. Or one could consider replacing � by
� \ .A�A�1/, where A is some integral matrix of positive determinant d. This
has something to do with Hecke operators.

(6) One should consider compactifications of the fundamental domain. See Borel
and Ji [67], Goresky [236], Jorgenson and Lang [334].

(7) What geodesics of Pn, if any, induce dense geodesics on the fundamental
domain for Pn=GL.n;Z/?

Recall that in 1835 Jacobi showed that a line with irrational slope in R
2

induces a densely wound line in the torus R2=Z2. Weyl [666] further developed
the theory in 1916. Artin [26, pp. 499–504] showed in 1924 that almost all
geodesics in the Poincaré upper half plane will induce densely wound lines
in the standard fundamental domain for SL.2;Z/. See Figure 1.27. In fact,
geodesics are typically dense in the unit tangent bundle for the SL.2;Z/ case.
However, the geodesic flow is not ergodic on the unit tangent bundle in higher
rank (cf. Mautner [438, pp. 419–421]). This still leaves open the question of
density in the fundamental domain for the higher rank case. Perhaps it is more
sensible to look for .n � 1/-dimensional totally geodesic submanifolds. See
Zimmer [676, especially pp. 18–19].

One can ask analogous questions about “horocycles” (i.e., conjugates of
the group N of upper triangular matrices with ones on the diagonal). This sort
of question was already considered in connection with our pictures of images
of Hecke points in the fundamental domain SF3.

The next exercise gives the finiteness of the volume of SFn. In the next section
we will obtain an exact formula for the volume.

Exercise 1.4.21 (Finiteness of the Volume of the Fundamental Domain in the
Determinant One Surface).

(a) Show that, if W 2 SPn and

W D
�

u 0

0 u�1=.n�1/V

�	
1 q
0 In�1



; for u > 0; V 2 SPn�1; q 2 R

n�1;
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Fig. 1.27 Geodesics in fundamental domains

then

dW D u�1Cn=2 du dV dq:

See Exercise 1.1.32 in §1.1.6.
(b) Use part (a) to show that

Vol.SFn/ � constant Vol.SFn�1/:

(c) Conclude that the volume of SO.n/nSL.n;R/=SL.n;Z/ is finite.

1.4.4 Integration over Fundamental Domains

Next we turn to integral formulas on fundamental domains D for Pn=GL.n;Z/. Here
we will often take D to be the Minkowski domain Mn. Define the determinant one
surface in the fundamental domain to be SD D D\SPn. Recall Exercise 1.1.23 of
Section 1.1.4 which gave the relation between the GL.n;R/-invariant measure
d�n on Pn and an SL.n;R/-invariant measure dW on the determinant one
surface SPn:
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Y D t1=nW; Y 2 Pn; t D jYj > 0; W 2 SPn; d	n.Y/ D t�1dt dW;
(1.219)

where the ordinary Euclidean volume element dY on Pn is related to the invariant
measure d	n.Y/ by:

d	n.Y/ D jYj�.nC1/=2dY: (1.220)

Exercise 1.4.22. Compute the Jacobian of the change of variables Y D t1=nW, from
Y 2 Pn to t > 0 and W 2 SPn, using all but one of the entries of W D Y0 above or
on the diagonal (e.g., leave out wnn).
Answer.

jdY=d.t;W/j D .nt/�1t.nC1/=2:

It follows from the preceding Exercise that formula (1.219) normalizes measures
“wrong” by throwing away the factor of 1=n. This does not really matter.

If we set G D SL.n;R/; � D SL.n;Z/, the quotient space G=� has a G-invariant
volume element dg, which is unique up to a positive constant multiple (see Lang
[388] or Weil [659, pp. 42–45]). Therefore we can normalize dg to obtain:

Z

SPn=SL.n;Z/

f .W/ dW D
Z

G=�

f
�

tgg
�

dg: (1.221)

Our first goal is to compute the volume of the fundamental domain in the
determinant one surface. We know that this volume is finite by Exercise 1.4.21 of
the preceding section.

Lemma 1.4.5. The Euclidean volume of the set of matrices in Mn having determi-
nant less than or equal to one is related to the SL.n;R/-invariant volume of SMn

(obtained using the measure dW in (1.219)) as follows:

Euclidean VolfY 2 Mn j jYj � 1g D 2Vol.SMn/=.n C 1/:

Proof. By formulas (1.219) and (1.220), we have:

Z

jYj�1
Y2Mn

dY D Vol.SMn/

1Z

tD0
t.n�1/=2 dt :

This clearly gives the stated formula. �
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Our plan is to determine Vol.SMn/ using an inductive procedure which derives
from work of Minkowski [453, Vol. II, pp. 80–94], Siegel [565, Vol. III, pp. 39–
46], and Weil [662, Vol. I, pp. 339–358]. Weil writes [662, Vol. I, p. 561] that he
was able to use his simplification of Siegel’s work on this subject to calculate the
Tamagawa number, which gives the adelic formulation of Siegel’s main theorem on
quadratic forms. The determination of Vol.SMn/ is closely related to the following
proposition.

Proposition 1.4.2 (Siegel’s Integral Formula in the Geometry of Numbers). Let
G D SL.n;R/; � D SL.n;Z/, and f W Rn ! C be an integrable function. Then we
have the following equalities:

1

Vol.G=�/

Z

g2G=�

X

a2Zn�0
f .ga/ dg D

Z

Rn

f .x/ dx;

�.n/

Vol.G=�/

Z

g2G=�

X

a2Zn�0
gcd.a/D1

f .ga/ dg D
Z

Rn

f .x/ dx:

Here dx denotes Lebesgue measure on R
n; dg is a G-invariant measure on G=� ,

the vectors a 2 Z
n � 0 are column vectors, and ga denotes the column vector that

results from multiplying a by the n � n matrix g on the left.

Proof (Weil [662, Vol. I, pp. 339–358]). The main idea is to use the following
integration formula which holds for a unimodular locally compact topological group
G with closed unimodular subgroup G1. Here “unimodular” means that right and left
Haar measures coincide. The integral formula in question is:

Z

G=G1

0

@
Z

G1

f .gg1/ dg1

1

A dg D c
Z

G

f .g/ dg; (1.222)

where c is a positive constant, dg and dg1 are Haar measures on G and G1,
respectively, dg is a G-invariant measure on G=G1. References for this result are
Helgason [273, 282], Lang [388], and Weil [659, p. 45]. Formula (1.222) can be
extended to non-unimodular G and G1—provided that the modular functions of G
and G1 are equal on G1. The modular function ı is defined in formula (2.37) in
Chapter 2. It relates right and left Haar measures.

Two applications of formula (1.222) are required to prove Siegel’s integral
formula. There are, in fact, two quotients in Siegel’s integral formula. The obvious
quotient is G=� and the other is Rn � 0 Š G=H, where H is the subgroup:

H D fg 2 G j ge1 D e1 g ; (1.223)
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and e1 is the standard unit basis vector in R
n; i.e., e1 D t.1; 0; : : : ; 0/. Note that the

elements of H have the form:

�
1 	
0 	

�
:

The mapping that identifies G=H with R
n � 0 is:

G=H ! R
n � 0

gH 7! ge1 D the first column of g:

Now let � D H \ � . Suppose that f W G=H ! C satisfies the hypotheses of the
proposition. Then

c
Z

G=H

f .x/ dx D
Z

G=�

0

B
@
Z

�=�

f .gy/ dy

1

C
A dg; (1.224)

for some positive constant c (independent of f ). To see this, note that

Z

G=H

0

B
@
Z

H=�

f .gh/ dh

1

C
A dg D c1

Z

G=�

f .g/ dg;

Z

G=�

0

B
@
Z

�=�

f .ga/ da

1

C
A dg D c2

Z

G=�

f .g/ dg;

for some positive constants c1 and c2.
Next observe that from Lemma 1.4.2,

�=� D fa 2 Z
n j gcd.a/ D 1g : (1.225)

So (1.224) says that:

c
Z

Rn

f .x/ dx D
Z

G=�

X

a2Zn

gcd.a/D1

f .ga/ dg:

This implies, by change of variables, that if t > 0, we have:

ct�n
Z

Rn

f .x/ dx D
Z

G=�

X

a2Zn

gcd.a/D1

f .tga/ dg:
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Now sum over t D 1; 2; 3; : : : and obtain:

c�.n/
Z

Rn

f .x/ dx D
Z

G=�

X

a2Zn�0
f .ga/ dg: (1.226)

The proof of Siegel’s integral formula is completed by showing that c�.n/ D
Vol.G=�/. Weil’s proof of this fact uses the Poisson summation formula (see
Theorem 1.3.2 of Volume I). Let c� D c�.n/ and V D Vol.G=�/. From (1.226)
it follows that:

Vf .0/C c�
Z

Rn

f .x/ dx D
Z

G=�

X

a2Zn

f .ga/ dg: (1.227)

And Poisson tells us that, for g 2 G, and, for suitable f :

X

a2Zn

f .ga/ D
X

a2Zn

bf .tg�1a/;

wherebf denotes the Fourier transform of f over Rn. Note that

bf .0/ D
Z

Rn

f .y/ dy:

Therefore

Vf .0/C c�bf .0/ D
Z

G=�

X

a2Zn

bf
�

tg�1a
�

dg D
Z

G=�

X

a2Zn

bf .ga/ dg: (1.228)

Replace f bybf in formula (1.227) or formula (1.228) to find that

Vbf .0/C c�f .0/ D Vf .0/C c�bf .0/;

which says that .V � c�/
�

f .0/ �bf .0/
�

D 0. Since we can easily find a function

f .x/ such that f .0/ ¤bf .0/, it follows that V D c�, and we’re finished with the proof
of Siegel’s integral formula.

Corollary 1.4.1. Suppose that f W R
C ! C is suitably chosen for convergence.

Then

1

Vol .SMn/

Z

SMn

X

a2Zn�0
f .WŒa�/ dW D

Z

Rn

f
�

txx
�

dx:
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Proof. This corollary follows immediately from (1.221) and Proposition 1.4.2 in
the case n is odd, since then SPn=SL.n;Z/ D SPn=GL.n;Z/ D SMn because
GL.n;Z/=SL.n;Z/ has representatives I;�I, both having no effect on W 2 SPn.
However, one has to make a more complicated argument when n is even. In that
case suppose that I; � represent GL.n;Z/=SL.n;Z/. Then note that

SMn [ SMnŒ��

is a fundamental domain for SL.n;Z/. Thus, for even n,

Vol .SPn=SL.n;Z// D 2Vol .SPn=GL.n;Z// :

And, setting �0 D SL.n;Z/ and � D GL.n;Z/, we have

Z

SPn=�0

X

a2Zn�0
f .WŒa�/ dW D 2

Z

SPn=�

X

a2Zn�0
f .WŒa�/ dW:

The reason for this is the fact that

X

a2Zn�0
f .WŒa�/ D

X

a2Zn�0
f .WŒ�a�/

for any � 2 GL.n;Z/.

There are many applications of the integral formulas in Proposition 1.4.2 and
their generalizations. For example, they give integral tests for the convergence
of Eisenstein series. They also imply the existence of quadratic forms with large
minima; i.e., the existence of dense lattice packings of spheres in R

n. This result
is usually called the Minkowski-Hlawka theorem in the geometry of numbers. But
before discussing these applications, let us compute the exact volume of SMn.

Theorem 1.4.4 (Volume of the Fundamental Domain).

(1) Using the normalization of measures, given in (1.219), we have

Vol.SMn/ D
nY

kD2
ƒ.k=2/; ƒ.s/ D ��s�.s/�.2s/:

(2) EuclideanVolume fY 2 Mn j jYj � 1g D 2 Vol.SMn/=.n C 1/.

Proof. (2) Note that part (2) is an easy consequence of Lemma 1.4.5.
(1) By Corollary 1.4.1 and the formula for the surface area of the unit sphere in
Exercise 1.4.2 of Section 1.4.1, we have the following sequence of equalities for
suitable f W RC ! C:
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�n=2

�.n=2/

Z

r>0

f .r/ rn=2�1 dr D
Z

Rn

f
�

txx
�

dx

D �.n/

Vol .SMn/

X

a2Zn

gcd.a/D1

Z

SMn

f .WŒa�/ dW

D �.n/

Vol .SMn/

X

.a �/2�=�\H

Z

SPn=�

f .WŒa�/ dW

if � D GL.n;Z/, and

H D
�
1 	
0 	

�
:

Therefore if f W RC ! C is suitably chosen for convergence, we have:

�n=2

�.n=2/

Z

r>0

f .r/r.n=2/�1 dr D �.n/

Vol.SMn/

Z

WD.wij/

W2SPn=�\H

f .w11/ dW: (1.229)

It follows from Exercises 1.4.23 and 1.4.24 below and Exercise 1.4.21 of
Section 1.1.4 that the integral appearing on the right-hand side of formula (1.229)
can be rewritten as:

Z

SPn=�n\H

f .w11/ dW D
Z

V 2 Pn�1=�n�1
t jVj � 1; h 2 Œ0; 1�n�1

f
�
.t jVj/�1

n t
�
.t jVj/ 1�n

2 tn�1 dV dt dh:

(1.230)
Upon setting U D t1=.n�1/V , formula (1.230) becomes:

Z

SPn=�n\H

f .w11/ dW D
Z

jUj�1
U2Mn�1

0<t

f

�
jUj�

1
n t

�
jUj

1�n
2 t

n
2�1

dt dU:

Therefore if we substitute x D tjUj�1=n and use formulas (1.219) and (1.220), we
obtain:
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Z

SPn=�n\H

f .w11/dW D
Z

jUj�1
U2Mn�1

0<t

f .x/jUj1�
n
2 x

n
2�1

dt dU

D Vol.SMn�1/
Z

x>0

f .x/x
n
2�1

dx:

Thus we have proved:

Z

SPn=�n\H

f .w11/ dW D Vol.SMn�1/
Z

x>0

f .x/x
n
2�1

dt: (1.231)

If f .x/x�1Cn=2 is positive and integrable over .0;1/, then (1.229) and (1.231)
combine to give:

Vol.SMn/ D Vol.SMn�1/��n=2�.n=2/�.n/:

The theorem follows by induction, using the case n D 2 which was obtained in
Chapter 3 of Volume I. �

Now we need to do the exercises used in the proof.

Exercise 1.4.23. Use formula (1.219) to show that if f W SPn ! C is integrable,
then

Z

W2SPn

f .W/dW D
Z

Y2PnjYj�1

f
�jYj�1=nY

� jYj�.n�1/=2 dY;

where dY is as in (1.220).
Hint. Let h.t1=nW/ D t�Œ0; 1�.t/f .W/, for t > 0; W 2 SPn in formula (1.219), where

�Œ0; 1�.t/ D
�
1; if t 2 Œ0; 1�;
0; otherwise:

Exercise 1.4.24. Use the partial Iwasawa decomposition

Y D
�

t 0
0 V

�	
1 th
0 I



; t > 0; V 2 Pn�1; h 2 R

n�1;

to obtain an explicit fundamental domain for Pn=� \ H, with H as it was defined
just before formula (1.229).
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Three corollaries of Siegel’s integral formula (Proposition 1.4.2) can now be
derived quite easily.

Corollary 1.4.2 (The Minkowski-Hlawka Theorem I). There is a matrix Y 2 Pn

such that the first minimum mY (defined in (1.178) of Section 1.4.1) satisfies:

mY > knjYj1=n; with kn D n

2�e
;

for n sufficiently large.

Proof. Consider a ball Bn � R
n of radius

kn D
� n

2�e

�1=2
:

Then

Vol.Bn/ D
� n

2�e

�n=2 �n=2

�.1C n=2/
:

Stirling’s formula implies that Vol.Bn/ tends to zero as n goes to infinity. This is
rather surprising, since the radius is blowing up. See the note below for a related
paradox.

Now let

�Bn
D
�
1; for x 2 Bn;

0; otherwise:
(1.232)

If this function is plugged into Siegel’s integral formula and V D Vol.G=�/, we
obtain:

Vol.Bn/ D 1

V

Z

G=�

X

a2Zn�0
�Bn

.ga/ dg: (1.233)

When n is sufficiently large, formula (1.233) makes it clear that, since Vol.Bn/ ! 0,
as n ! 1; we must have:

X

a2Zn�0
�

Bn
.ga/ < 1

for some g 2 G D SL.n;R/. This means that .tgg/ Œa� > k2n for some g and all a in
Z

n � 0. Set Y D tgg to finish the proof. �

Corollary 1.4.3 (The Minkowski-Hlawka Theorem II). If dL from (1.179) is the
density of space occupied by spheres of equal radii centered at points of the lattice
L; then
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dL � �.n/

2n�1 :

Proof (Siegel [566, pp. 152–154]). Suppose the lattice L is such that the first
minimum mYL of a quadratic form YL corresponding to L is maximal. We know
such L exists and mYL D kak2 for some a 2 L � 0: Why?

Let rL D p
mL and BL D fx 2 R

n j kxk � rLg : By the choice of rL we know
that BL \ L ¤ f0g : If �BL

is as in formula (1.232) and L D P˚
Zwi set

�L.g/ D
X

aDP aiwi
gcd.ai/D1

�BL
.a/ :

Then �L.g/ � 2: Why? Recall that if a 2 BL, then so is ˙pa; for any p between 0
and 1.

Therefore, if vn.1/ denotes the volume of the unit sphere in R
n, by Siegel’s

integral formula (Prop. 1.4.2), we have

rn
Lvn.1/ D �.n/

Vol .G=�/

Z

G=�

�L.g/ dg � 2�.n/:

Using formula (1.180), we see that dL D �mYL
4

� n
2 vn.1/ D � rL

2

�n
vn.1/: The

corollary follows. �

Note. There is a mind-boggling paradox associated with balls in high dimensional
spaces (cf. Hamming [258, pp. 168–170]). In n-dimensional space, consider a
hypercube having a side of length 4 and centered at the origin. Put 2n unit spheres in
each corner of this cube such that each sphere touches all its n neighboring spheres.
The distance from the origin to the center of one of these spheres is

p
n. Thus we

can put a sphere of radius
p

n � 1 inside all the unit spheres at the corners. See
Figure 1.28 for the case n D 3. When n � 10, this inner sphere reaches outside the
cube, since

p
10 � 1 > 2. Weird.

Our next corollary is a result that we already know, but the proof will be easily
generalized to more complicated Eisenstein series.

Corollary 1.4.4 (Integral Test Proof of the Convergence of Epstein’s Zeta
Function). The Epstein zeta function

Z.Y; s/ D
X

a2Zn�0
YŒa��s

converges absolutely for Re s > n=2; Y 2 Pn.
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Fig. 1.28 The picture in 3d
becomes a paradox in 10d

Proof. Siegel tells us that:

1

Vol.SMn/

Z

W2SMn

X

a2Zn�0
WŒa��1

WŒa��s dW D
Z

x2Rn
txx�1

.xx/�s dx:

The integral on the right is easily evaluated as

�n=2�.n=2/�1.s � n=2/�1;

if Re s > n=2. Then Fubini’s theorem says that the series being integrated converges
for almost all W in SMn. The series differs from Epstein’s zeta function Z.W; s/ by
at most a finite number of terms. Thus Z.W; s/ converges for Re s > n=2 and almost
all W in SMn. In order to deduce the convergence of Z.Y; s/ for all Y in Pn, note
that there is a positive constant c depending on Y such that

cIŒa� � YŒa� � c�1IŒa�; for all a in R
n:

Corollary 1.4.5 (The Vanishing of Epstein’s Zeta Function in .0; n=2/).
For all s with 0 < Re s < n=2;

Z

SMn

Z.W; s/ dW D 0:
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It follows that for any s 2 .0; 1/ there exist Y 2 Pn such that Z.Y; s/ > 0. Similarly
there are Y 2 Pn such that Z.Y; s/ < 0, or such that Z.Y; s/ D 0.

Proof. Use the incomplete gamma expansion of Epstein’s zeta function (Theo-
rem 1.4.1 of Volume I):

2��s�.s/Z.Y; s/

D jYj�1=2
s � n

2

� 1

s
C

X

a2Zn�0

n
G.s; �YŒa�/C jYj�1=2G

�n

2
� s; �Y�1Œa�

�o
;

where the incomplete gamma function is:

G.s; a/ D
Z

t�1
ts�1 exp.�at/ dt; for Re a > 0:

Note that we can use this expansion to see that Z.W; s/ is integrable over the
fundamental domain SMn provided that 0 < Re s < n=2.

Now apply Siegel’s integral formula to see that:

2

Vol.SM/

Z

W2SMn

��s�.s/Z.W; s/ dW

D 1

s � n
2

� 1

s
C
Z

Rn

n
G
�
s; � txx

�C G
�n

2
� s; � txx

�o
dx:

Use the definition of G.s; a/ to write the integral over x in R
n on the right-hand side

of this equality as a double integral over x and t. Then make the change of variables
y D t1=2x to see that if Re s < n=2, then we have, for example,

Z

Rn

G
�
s; � txx

�
dx D 1

n
2

� s
:

This completes the proof. �

When n D 2, Corollary 1.4.5 gives the orthogonality of the Eisenstein series
and the constants in the spectral decomposition of the Laplacian on L2.H=SL.2;Z/
(see Lemma 3.7.1 in Volume I). When n D 2 or 3 there are explicit criteria on Y
which tell, for example, whether Z.Y; .n � 1/=2/ is positive or negative (see Terras
[601]). More general results, showing Z.Y; nu=2/ > 0 if the first minimum mY �
nu=.2�e/, for u 2 .0; 1/ and n sufficiently large, can be found in Terras [603]. See
Sarnak and Strömbergsson [530] for more information on minima of Epstein zetas
and connections with densest lattice packings L of spheres in R

n and heights of tori
R

n=L; where L is a lattice in R
n.
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In our studies of Eisenstein series we will need more general integral formulas
than the one given in Proposition 1.4.2. The following proposition gives an example
which was stated by Siegel [565, Vol. III, p. 46].

Proposition 1.4.3 (Siegel’s Integral Formula, Part II, A Generalization). Let
G D SL.n;R/; � D SL.n;Z/ and if 1 � k < n, let h W Rn�k ! C be integrable.
Then

1

Vol.G=�/

Z

G=�

X

N2Zn�k

rk.N/Dk

h.gN/ dg D
Z

Rn�k

h.x/ dx:

Proof (of Proposition 1.4.3. A Beginning). We imitate the proof that we gave for
Proposition 1.4.2. Let H D Hk be the subgroup of G consisting of matrices of the
form:

�
Ik 	
0 	

�
;

where Ik denotes the k � k identity matrix. Consider an integrable function f W
G=H ! C. Then as before, we have the integral formula:

Z

G=H

f .g/ dg D c
Z

G=�

Z

a2�=�\H

f .ga/ dg:

Note that

G=H Š ˚
x 2 R

n�k
ˇ̌

rank x D k
�

+ Sn;k: (1.234)

The complement in R
n�k of the set Sn;k on the right in (1.234) has measure 0. Note

also that

�=� \ H Š ˚
A1 2 Z

n�k
ˇ̌

A1 can be completed to a matrix in �
�
:

It follows that we have the formula below upon replacing f .x/ by f .xB/ with B in
Z

k�k:
Z

G=�

X

.A �/2�
f .gAB/ dg D cjBj�n

Z

Rn�k

f .x/ dx: (1.235)

Now sum over B in Z
n�k of rank k modulo GL.k;Z/; i.e., B in a complete set of

representatives for the equivalence relation:

B � C iff B D CU; for some U in GL.k;Z/:
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The matrices B are the right greatest common divisors of the matrices AB
essentially. Siegel has described the theory of matrix gcd’s and other such concepts
in his long paper on the theory of quadratic forms in Vol. I of his collected works
(see Siegel [565, Vol I, pp. 331–332]). The generalization of concepts from number
theory (such as that of class number) to simple algebras (like Q

n�n) is described in
Deuring [135] and the end of Weil [661] to some extent.

We need several lemmas to continue the proof. First we want to show that for
�k D GL.k;Z/:

X

A2SL.n;Z/=Hk

X

B2Zk�k=�k

f
�
gA tB

� D
X

N2Zn�k rkk

f .gN/: (1.236)

Here Hk is defined to be the following subgroup of SL.n;R/:

Hk D
�

g 2 G D SL.n;R/

ˇ̌
ˇ̌ g D

�
Ik 	
0 	

��
: (1.237)

We will finish the proof of Proposition 1.4.3 later in this section—after a couple of
lemmas.

Lemma 1.4.6 (A Decomposition for n�k Integral Rank k Matrices). If 1 � k <
n and N 2 Z

n�k has rank k, then N has the unique expression:

N D A tB; with .A 	/ 2 SL.n;Z/=Hk; A 2 Z
n�kI B 2 Z

k�k=GL.k;Z/; rank B D k:

Here Hk is as defined in (1.237).

Proof.

(a) Existence of the Decomposition.
Since GL.n;Z/ consists of matrices generated by those corresponding to ele-
mentary row and column operations (as described in the proof of Lemma 1.4.2
in §1.4.2), there is a diagonal integral k � k matrix D such that

N D U

�
D
0

�
V; for U 2 GL.n;Z/; V 2 GL.k;Z/:

Set U D .A 	/, with A in Z
n�k. Note that by changing V we can put U in

SL.n;Z/. Then

N D ADV and we can set tB D DV:

Then reduce B mod GL.k;Z/ on the right and modify A to preserve the equality
N D A tB. This proves the existence of the decomposition.
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(b) Uniqueness of the Decomposition.
Suppose that

A tB D A0 tB0:

Then let U D .A 	/; U0 D .A0 	/ be matrices in SL.n;Z/. It follows that

U

�
tB
0

�
D U0

�
tB0
0

�
:

Now write

�
U0��1 U D

�
P Q
R S

�
:

It follows that

P tB D tB0 and R tB D 0:

Since B is invertible, R D 0. So P is in GL.k;Z/ and then B D B0 so that P D I.
But then

�
U0��1 U is in the subgroup Hk:

Then .A0 	/ and .A 	/ are equivalent modulo Hk. This completes the proof.

�

Next we want to prove a result which was mentioned already in Section 1.4.1,
namely the factorization formula (1.174) for the zeta function of the simple algebra
of n � n rational matrices.

Lemma 1.4.7 (A Factorization of the Analogue of the Dedekind Zeta Function
for the Simple Algebra of All n � n Rational Matrices). If Re s > k, we have
the following factorization of the matrix analogue of Riemann’s zeta function into a
product of ordinary Riemann zeta functions:

�
Qk�k.s/ D

X

B2Zk�k

rk k=�

jBj�s D
k�1Y

jD0
�.s � j/:

Here � D GL.k;Z/.

Proof. We need a system of representatives for equivalence classes modulo
GL.k;Z/ of k � k integral matrices B having rank k. That is, we need a complete set
of representatives for the equivalence relation on Bi 2 Z

k�k of rank k defined by:
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B1 � B2 iff B1 D B2� for � in GL.k;Z/: (1.238)

The complete set of representatives we choose is the following set of upper
triangular matrices:

0

B
@

d11 d1k

: : :

0 dkk

1

C
A ; (1.239)

where dij 2 Z, for all i; j; dii > 0, for all i, and 0 � dij < dii.
To prove this, note that if B in Z

k�k has rank k, then there exists a matrix U in
GL.k;Z/ such that

BU D
�

a c
0 D

�
; with a 2 Z

C; D 2 Z
.k�1/�hk�1/:

To see this, you must solve k � 1 homogeneous linear equations in k unknowns.
These equations can be solved with relatively prime integers. Those integers can
then be made the first column of a matrix in GL.k;Z/ by Lemma 1.4.2 from
Section 1.4.1. Moreover, we can insure that c is reduced modulo a. Induction
finishes the proof that we can choose the representatives for B as given above.
And it is not hard to see that, in fact, any pair of distinct upper triangular matrices
from (1.239) are inequivalent modulo GL.n;Z/ in the sense of (1.238).

But then

�
Qk�k.s/ D

X

B2Zk�k rkk=�

jBj�s D
X

dii>0

kY

iD1
dk�i�s

ii :

Interchange sum and product to see that the term on the right in this last formula is
indeed the product of Riemann zeta functions. Thus Lemma 1.4.6 is proved. �

Note. Formula (1.239) for a complete set of representatives of the equivalence
relation defined on the rank k matrices in Z

k�k by right multiplication by matrices in
GL.n;Z/ is the generalization to k � k matrices of formula (3.117) of Section 3.6.4
of Volume I, a formula which was important in the theory of Hecke operators. We
will use formula (1.239) again when we study Hecke operators for GL.n/ in the next
section.

Proof (of Proposition 1.4.3. The End). First note that Lemma 1.4.6 implies (1.236).
Then (1.235) and (1.236) combine to give:

Z

G=�

X

N2Zn�k rk k

f .gN/ dg D c�
Z

Rn�k

f .x/ dx; (1.240)
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where

c� D �
Qk�k.n/c; V D Vol.G=�/; G D SL.n;R/; � D SL.n;Z/:

Our problem is to determine the constant in Siegel’s integral formula by showing
that c� D V: It is natural to try to imitate Weil’s argument from the proof of
Proposition 1.4.2. If we do that, our formula (1.240) plus Poisson summation yields:

.c� � V/
�
bf .0/ � f .0/

�
D

k�1X

jD1

Z

G=�

X

N2Zn�k rk j

�
bf .gN/ � f .gN/

�
dg:

The claim is that this is zero. But it is not at all obvious from staring at the right-hand
side—unless you see something I don’t. Perhaps this will be a useful result when
we try to analytically continue Eisenstein series using Riemann’s method of theta
functions and find that terms of lower rank give divergent integrals. Anyway that
fact makes one worry slightly about this whole procedure, doesn’t it? So, it seems
better to try to find a new argument which does not use Poisson summation.

Let us imitate the argument given by Siegel in his original paper for the case
k D 1. Note that by the definition of the integral, for g 2 G and suitable f :

Z

Rn�k

f .x/ dx D lim
h!0C

8
<

:
hnk

X

N2Zn�k rk k

f .hgN/

9
=

;
:

To see this, think of what happens if you multiply the points N in the lattice Zn�k by
a small positive number h. You will get points in a grid with a very small mesh such
that each individual hypercube has volume hnk.

Integrate the preceding formula over g in G=� and obtain:

V
Z

Rn�k

f .x/ dx D lim
h!0C

8
<̂

:̂
hnk

Z

G=�

X

N2Zn�k rk k

f .hgN/ dg

9
>=

>;

D lim
h!0C hnkc�

Z

Rn�k

f .hx/ dx; using (1.240);

D c�
Z

Rn�k

f .x/ dx; as jd.hx/=dxj D hnk:

This completes the proof that c� D V and thus finishes (at last) the proof of Siegel’s
second integral formula. �



1.4 Fundamental Domains for Pn=GL.n;Z/ 231

Next we combine the integral formulas of Siegel (Proposition 1.4.3) and Wishart
(which was formula (1.105) in Section 1.2.4).

Corollary 1.4.6 (Siegel Plus Wishart). Under our usual hypotheses on the func-
tion f ; we have:

1

Vol.SPn=GL.n;Z//

Z

SPn=GL.n;Z/

X

N2Zn�k

rk.N/Dk

f .WŒN�/ dW D cn;k

Z

Pk

f .Y/ jYjn=2 d	k:

Here d	k is the invariant volume element on Pk and cn;k is the constant in Wishart’s
integral formula; i.e.,

cn;k D
nY

jDn�kC1
� j=2�.j=2/�1:

Proof. Use an argument similar to that given in proof of Corollary 1.4.1. �

Exercise 1.4.25 (A Generalization of the Minkowski-Hlawka Theorem I). For
Y 2 Pn; define the following generalization of the first minimum mY in (1.178) if
1 � k � n by:

mY;k D min
˚ jYŒA�j ˇ̌ A 2 Z

n�k; rank A D k
�
:

Prove that if k is fixed 1 � k < n; n is sufficiently large (depending on k), and
r < .n=.2�e//k, there exists a matrix Y 2 Pn such that

mY;k > r jYjk=n :

Hint. Imitate the proof of Corollary 1.4.2.

Exercise 1.4.26 (Convergence of Koecher’s Zeta Function by an Integral Test).
Show that Koecher’s zeta function Zk;n�k.Y; s/ defined by formula (1.173) in
Section 1.4.1 will converge absolutely for Re s > n=2. Imitate the proof of
Corollary 1.4.4.
Hint. The only new idea that is required is the following. There is a positive
constant c such that if YŒA� is in Minkowski’s fundamental domain Mk, then
jYŒA�j � c jIŒA�j.

Similarly, there is a positive constant c� such that if YŒA� 2 Mk then jYŒA�j �
c� jIŒA�j. Here c and c� depend on Y and not on A. You also need to know that the
set of matrices A 2 Z

n�k modulo GL.k;Z/ such that jIŒA�j � 1 is finite. This follows
from Exercise 1.4.9(a) in Section 1.4.2.

Koecher’s zeta function is another Eisenstein series for GL.n;Z/ and thus its
analytic continuation is of interest to us. We will consider that problem later and
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find that our integral formulas are useful in this regard. The analytic continuation of
Eisenstein series for GL.n/ is much harder than that of Epstein’s zeta function.

But we will even want to consider more general Eisenstein series than Koecher’s
zeta function. Such Eisenstein series are associated with parabolic subgroups of
GL.n/. Suppose that

n D n1 C � � � C nq; with ni 2 Z
C;

is a partition of n. Then the (standard) parabolic subgroup P D P.n1; : : : ; nq/ of
GL.n/ is defined to be the group of matrices U with block form:

0

BBBBB
@

U1 	 � � � 	 	
0 U2 � � � 	 	
:::

:::
: : :

:::
:::

0 0 � � � Uq�1 	
0 0 � � � 0 Uq

1

CCCCC
A
; with Uj in GL.nj/: (1.241)

Koecher’s zeta function is an Eisenstein series associated with a maximal parabolic
subgroup (the case q D 2).

When n D 2 there is only one such standard parabolic subgroup, but for general
n there are many such subgroups—as many as there are partitions of n, a number
denoted by p.n/. The partition function p.n/ has been much studied by number
theorists. It is a very rapidly increasing function of n. Some examples are:

p.10/ D 42; p.100/ D 190; 569; 292; p.200/ D 3; 972; 999; 029; 388:

These are asymptotic and exact formulas for p.n/ when n is large, thanks to the
work of Rademacher, Hardy, Littlewood, and Ramanujan, as well as the fact that
p.n/ is the nth Fourier coefficient of a modular form of weight � 1

2
, namely �.z/�1

from formula (3.69) in Section 3.4 of Volume I.
We will develop one version of the general integral formula in some exercises.

Exercise 1.4.27 (Siegel’s Integral Formula for a Maximal Parabolic Subgroup
P.k; n � k/).

(a) Suppose that P D P.k; n � k/ is the maximal parabolic subgroup defined
in (1.241) and that we have an integrable function f W Pk=�k ! C, with
�k D GL.k;Z/. Show that

Z

SMn

X

.A �/2�n=P
A2Zn�k

f .WŒA�/ dW D Vol.SMn�k/

Z

Mk

f .X/ jXjn=2 d	k.X/:

(b) Assuming the necessary integrability conditions on the following functions:
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f1 W Pk=�k ! C; f2 W RC ! C;

show that, defining

f .Y/ D f1.Y1/f2.jYj/; for Y D
�

Y1 	
	 	

�
; with Y1 2 Pk;

we have
Z

Mn

X

.A�/2�n=P
A2Zn�k

f .YŒA�/ d	n.Y/

D Vol.SMn�k/

Z

t>0

f2.t/ t�k=2�1 dt
Z

Mk

f1.X/jXjn=2 d	k.X/:

Hints.

(a) Summing over .A 	/ 2 GL.n;Z/=P.k; n � k/ is the same as summing over A
mod GL.k;Z/, where A 2 Z

n�k and A fits into a matrix in GL.n;Z/. So we find
from similar arguments to those that gave us Corollary 1.4.6 and Lemma 1.4.7
that:

Z

SMn

X

.A�/2�n=P
A2Zn�k

f .WŒA�/ dW D c
Z

Mk

f .X/ jXjn=2 d	k.X/:

Here

c D cn;kVol.SMn�k/

k�1Y

jD0
�.n � j/�1;

where cn;k is the constant in Wishart’s integral formula (see corollary 1.4.6 to
Proposition 1.4.3). Now the formula for Vol.SMn/ in Theorem 1.4.2 and the
formula for cn;k in Corollary 1.4.6 finish this part of the exercise.

(b) Start with part (a) of the exercise and replace f .X/ by f2.t/f1.t1=nX/. Then
integrate with respect to t�1dt over t > 0 to get the result.

Exercise 1.4.28 (An Integral Formula for an Arbitrary Parabolic Subgroup).
Suppose that

f .Y/ D
qY

jD1
fj.jYjj/; where Yj 2 PNj ; Nj D n1 C � � � C nj;
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and

Y D
�

Yj 	
	 	

�
:

Prove that if �n D GL.n;Z/ and the parabolic subgroup is P D P.n1; : : : ; nq/, then

Z

Mn

P

A2�n=P
f .YŒA�/ d	n.Y/

D Vnq

Z

tq>0

fq.tq/t
.�k=2/�1
q dtq

q�1Y

jD1
Vnj

Z

tj>0

fj.tj/t
.ej=2/�1
j dtj;

where Vi D Vol.SMni/; k D Nq�1, and ej D nj C njC1.
Hint. The case q D 2 comes from part (b) of Exercise 1.4.27. To prove the general
result, use induction on q and write A 2 GL.n;Z/=P, as

A D BC; with B D .B1 	/ 2 GL.n;Z/=Q; B1 2 Z
n�k; Q D P.k; nq/; k D Nq�1;

C D
�

D 	
0 	

�
2 Q=P; D 2 GL.k;Z/=P�; P� D P.n1; : : : ; nq�1/:

Note that if A D .A1 	/ with A1 2 Z
n�k, then A1 D B1D. Thus

Z

Mn

X

A2�n=P

f .YŒA�/ d	n.Y/

D Vnq

Z

tq>0

fq.tq/t
.�k=2/�1
q dtq

Z

Mk

fq�1.jYj/jYjn=2
P

D2�k=P�

q�1Q

jD1

fj
�ˇˇ.YŒD�/j

ˇ
ˇ� d	k.Y/:

The proof is completed by induction.

Exercise 1.4.29 (Another Integral Formula for Arbitrary Parabolic Sub-
groups). Suppose that Y has the partial Iwasawa decomposition:

Y D

0

B
@

V1 � � � 0
:::

: : :
:::

0 � � � Vq

1

C
A

2

6
4

0

B
@

In1 � � � Rij
:::

: : :
:::

0 � � � Inq

1

C
A

3

7
5 ; with Vj 2 Pnj ; Rij 2 R

ni�nj ;

and consider a function g.Y/ D h.V1; : : : ; Vq/, satisfying suitable integrability
conditions. Show that if P D P.n1; : : : ; nq/ and � D GL.n;Z/, then:
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Z

Mn

X

A2�=P

g.YŒA�/ d	n.Y/

D
qY

jD1
Vol.SMnj/

Z

Vj2Mnj

h.V1; : : : ; Vq/
ˇ̌
Vj

ˇ̌fj d	nj
.Vj/;

where fj D .n � Nj � Nj�1/=2.
Hint. Actually you should not try to compute the constant in this formula until later.
Up to the computation of the constant, the formula follows from:

Z

Pn=�

X

�=P

D c
Z

Pn=P

and the Jacobian of the partial Iwasawa decomposition (see Maass [426, pp. 149–
150] or Varadarajan [623, p. 293]):

d	n.Y/ D
qY

jD1
jVjjfj d	nj

.Vj/
Y

1�i�k�q

dRik;

where fj is as given in the problem and dRij is ordinary Lebesgue measure on ni � nj

matrix space.

The preceding exercises are based on what can be viewed as an analogue of the
integral formula involved in the Rankin–Selberg method (i.e., formula (3.127) in
Section 3.6 of Volume I).

1.5 Maass Forms for GL.n;Z/ and Harmonic Analysis
on Pn=GL.n;Z/

. . . and the manuscript was becoming an albatross about my neck. There were two
possibilities: to forget about it completely, or to publish it as it stood; and I preferred the
second.

From Langlands [392, Preface]
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1.5.1 Analytic Continuation of Eisenstein Series by the Method
of Inserting Larger Parabolic Subgroups

In order to do harmonic analysis on Pn=GL.n;Z/, as in the case n D 2, we
need to study Maass forms or automorphic forms for �n D GL.n;Z/ and, in
particular, obtain the analytic continuation of the Eisenstein series which form
the continuous spectrum of the GL.n;R/-invariant differential operators on the
fundamental domain. Selberg [543–545] had already noticed this in the 1950s and
the methods we will develop are probably similar to the unpublished methods of
Selberg. We will discuss two of Selberg’s methods in this and the next section. These
methods are also discussed by Maass [426]. There is a third unpublished method of
Selberg which makes more use of functional analysis (see Shek-Tung Wong [671]).
For other points of view, see the books by Langlands [392] and Osborne and Warner
[482] (cf. Langlands [395]) which discuss the analytic continuation of more general
Eisenstein series. A more recent reference is Jorgenson and Lang [334].

We define a Maass form—also known as a modular or automorphic form—v

for GL.n;Z/ D � to be a function v W Pn ! C such that:

.1/ v is an eigenfunction of all the invariant differential operators L in D.Pn/;
i.e., Lv D �Lv, for some eigenvalue �L;

.2/ v is �-invariant; i.e., v.YŒA�/ D v.Y/; for all Y 2 Pn; A 2 �;

.3/ v has at most polynomial growth at infinity; i.e.,
jv.Y/j � Cjps.Y/j; for some s 2 C

n and C > 0:

9
>>>>>=

>>>>>;

(1.242)

We shall use the notation A.�; �/ for the space of Maass forms or automorphic
forms for a given eigenvalue system �.

Note that Goldfeld [230] uses slightly different language since he also demands
that Maass forms be cuspidal in the sense of the definition in formula (1.243) below
for all k. Definition (1.242) is clearly a generalization of the concept of Maass wave
form which appeared in Section 3.5 of Volume I. Maass considers these automorphic
forms in [426, Section 10] and he calls them “grossencharacters.” That name can be
explained by the fact that Hecke grossencharacters play the same role in harmonic
analysis for GL.1/ over a number field that forms in A.�; �/ play for harmonic
analysis on Pn=� (see Hecke [268, pp. 215–234, 249–287], Jacquet and Langlands
[324], Stark [575], and Weil [660]).

Motivated by the study of representations of semisimple Lie groups, Harish-
Chandra has given a much more general definition of automorphic form (see Borel’s
lecture in Borel and Mostow [68, pp. 199–210]). This definition includes (1.242)
above as well as the concept of Siegel modular form for Sp.n;Z/ which was
introduced by C.L. Siegel in his work on quadratic forms. See Chapter 2 of this
volume.

Another motivation for the study of Maass forms for GL.n/ is the need to study
various kinds of L-functions with many gamma factors in their functional equations.
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For L-functions corresponding to Maass forms for GL.n/ will indeed have lots of
gamma factors and will have an Euler product if they are eigenforms for the algebra
of Hecke operators for GL.n/. See Sections 1.5.2 and 1.5.4 which follow, also Bump
[83] or Goldfeld [230]. An adelic treatment of this subject is part of the Langlands
theory (see Gelbart [209], Godement and Jacquet [228], Goldfeld [230], Goldfeld
and Hundley [232] or Jacquet et al. [325]). Langlands has conjectured that there is a
reciprocity law generalizing the Artin reciprocity law which says that each Artin L-
function corresponding to an n-dimensional representation of a Galois group of an
extension of number fields is the L-function for some automorphic representation of
GL.n/. See Langlands [389–395], Arthur [24], Casselman [98], Gelbart [209], and
Goldfeld [230, last chapter]. In fact, Artin L-functions do have functional equations
involving multiple gamma functions as well as Euler products and this certainly
gives good evidence for Langlands’ conjecture. A good reference for Artin L-
functions is Lang [386].

Booker [60] provides a nice survey on L-functions of number theory, with an
emphasis on those corresponding to GL.3;Z/: He notes that many number theorists
have considered the Selberg class of L-functions; i.e., those with Euler product,
analytic continuation, and functional equation (and one hopes, someday, to add the
Riemann hypothesis on the location of poles). Not every favorite Dirichlet series
in this volume is in the Selberg class. For example, the Epstein zeta function does
not usually have an Euler product. We will say more about the L-functions for
Maass forms f for GL.3;Z/ in Sections 1.5.2 and 1.5.4. These are analogues of
the L-functions corresponding to Maass wave forms f on the Poincaré upper half
plane, assuming f is an eigenform of all the Hecke operators. Such L-functions
are in the Selberg class as are Dedekind zeta functions, Dirichlet L-functions, Artin
L-functions, the L-functions corresponding to holomorphic modular forms on H
which are eigenforms of the Hecke operators, the Hasse–Weil L-functions of elliptic
curves, and many more. A survey on L-functions by Iwaniec and Sarnak [321] gives
much more information on what is known and what is conjectured.

There are other sorts of L-functions with Euler products and multiple gamma
factors in their functional equations—the analogues of the Rankin–Selberg L-
functions studied in formula (3.125) of Volume I. These Rankin–Selberg type
L-functions have applications to the problem of proving a Ramanujan conjecture
for cusp forms for GL.n;Z/ (cf. Vol. I, formula (3.87) for the case n D 2 and
Section 1.5.4 of this volume). Some references are: Bump and Friedberg [86], Elliott
et al. [164], Friedberg [190], Goldfeld [230], Jacquet and Shalika [326], Jacquet
et al. [325], Moreno and Shahidi [461, 462], Novodvorsky and Piatetski-Shapiro
[476], Piatetski-Shapiro [487], and Shahidi [550].

In the preceding section we needed to go backwards in time to commune with
Minkowski. The present section unfortunately still demands a time machine that
will carry us into the future. Lacking this item, the section will be incomplete.

References for this section include Arthur [24, 25], Ash [28], Baily [32], Bern-
stein and Gelbart [47], Borel and Casselman [66], Borel and Mostow [68], Bump
[83, 84], Casselman [98], Flicker [182], Gelbart [209], Gelbart and Jacquet [210],
Gelfand et al. [214], Godement [225, 227], Godement and Jacquet [228], Goldfeld
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[230], Goldfeld and Hundley [232], Harish-Chandra [262], Hejhal et al. [272],
Jacquet [323], Jacquet et al. [325], Jacquet and Shalika [326, 327], Kazhdan and
Patterson [344], Langlands [389–395], Maass [414, 426], Ramanathan [497, 498],
Sarnak and Shahidi (Eds.) [529], Selberg [543–546], Tamagawa [587–589], A.B.
Venkov [627], and Dorothy Wallace [642–650]. There are websites devoted to
Langlands, Sarnak, and Selberg at the Institute for Advanced Study, Princeton. The
volume [31] containing proceedings from the conference in honor of Selberg should
also be mentioned. This does bring up some unpleasant memories for me. When not
invited to this conference, I changed fields.

In earlier sections, we saw how to build up the eigenfunctions of the G-invariant
differential operators in D.Pn/ by integrating power functions over orthogo-
nal, abelian, and nilpotent subgroups of GL.n;R/, as in formulas (1.60), (1.67),
and (1.70) of Section 1.2. The powers s in ps.Y/ provide a way of indexing
the eigenvalues of an invariant differential operator L 2 D.Pn/ via Lps.Y/ D
�L.s/ps.Y/. We shall use this sort of indexing when we speak of the dimensionality
of the spectrum components. For inversion of the Helgason–Fourier transform on
Pn, the spectrum needed was n-dimensional (see Theorem 1.3.1 of Section 1.3.1).
The inverse transform required integration over a product of n lines: Re sj D
� 1
2
; j D 1; 2; : : : ; n � 1, and Re sn D .n � 1/=4. We shall see that life is

much more complicated in Pn=GL.n;Z/, since there are also discrete and lower
dimensional spectra. However, the basic method of constructing GL.n;Z/-invariant
eigenfunctions in the highest dimensional part of the spectrum is analogous to the
construction of spherical and K-Bessel functions. That is, one must sum power
functions over GL.n;Z/ modulo a parabolic subgroup—perhaps including lower
rank cusp forms in the mix. But it is not so simple for general n as it was for n D 2

in Section 3.7 of Volume I. In the following discussion, we will sometimes consider
only the case of GL.3;Z/ in order to simplify the formulas.

Before defining Eisenstein series, we need to consider another sort of Maass
form for GL.n;Z/—the cusp form. A Maass cusp form is a Maass form f 2
A.�; �/; � D GL.n;Z/, with the property that for any k with 1 � k � n � 1,
we have:

Z

X2.R=Z/k�.n�k/

f

�
Y

	
I X
0 I


�
dX D 0; for all Y 2 Pn: (1.243)

This just signifies the vanishing of the constant terms in a bunch of Fourier
expansions of f .Y/ as a periodic function of the X-variable in partial Iwasawa
coordinates (see page 268 of Volume I). We shall write AC.�; �/ for the space
of Maass cusp forms.

If we knew enough about Fourier expansions for GL.n/, we should be able to
show that a cusp form is bounded in the fundamental domain. See Goldfeld [230],
or the article of Borel and Jacquet in the volume of Borel and Casselman [66, p. 192]
or Harish-Chandra [262]. More information on Fourier expansions can be found in
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Sections 1.5.3 and 1.5.4, Bump [83], Goldfeld [230], or Goldfeld and Hundley [232,
Vol. II, p. 29]. Note that Goldfeld [230] drops the word “cusp” and calls these things
“Maass forms” on GL.n/.

The cusp forms and constants form the discrete spectrum of the GL.n;R/-
invariant differential operators on the fundamental domain. It can be proved, using
a method of Gelfand and Piatetski-Shapiro, that cusp forms exist (cf. Section 1.5.5
and Theorem 3.7.2 in Volume I or Godement’s article in Borel and Mostow [68,
pp. 225–234]). We will not be able to give any explicit examples of cusp forms,
just as we could not give any examples for the case n D 2 in Section 3.5 of
Volume I. Recently people have computed computer approximations to cusp forms
for SL.n;Z/, for n D 3 and 4. See Section 1.5.4. There are adelic examples
of cusp forms belonging to congruence subgroups of GL.3;Z/ corresponding via
generalizations of Hecke’s correspondence to Hecke L-functions of cubic number
fields (see Jacquet et al. [325]). There are also cuspidal examples corresponding
via Hecke theory to Rankin–Selberg L-functions for GL.2;Z/ (see Gelbart and
Jacquet [210] and Moreno and Shahidi [461]). Ash [28] and Ash et al. [29] compute
cohomology of SL.3;Z/ using Hecke operators and methods of algebraic topology
and differential geometry. They show the existence of cusp forms for SL.3;Z/which
come from the DeRham cohomology of the fundamental domain and are analogous
to holomorphic automorphic forms of weight 2. See also Lee and Schwermer [399],
Lee and Szczarba [400], Schwermer [539, 540], and Soulé [571, 572]. Donnelly
[138] finds an upper bound for the dimension of the space of cusp forms.

There are also papers proving an SL.3;Z/-analogue of the Weyl law for SL.2;Z/
to be found in Theorem 3.7.5 of Volume I (see Stephen D. Miller [447] or Eric Stade
and Dorothy Wallace [574]). More recently Werner Müller [469] proved Weyl’s
law for the cusp forms for the congruence subgroup � D �.N/ of SL.n;Z/ by
translating the problem to the adeles, then making use of Arthur’s trace formula
plus the heat kernel. Results of Donnelly [138], Jacquet et al. [325], Luo et al. [413],
Colette Mœglin and Jean-Loup Waldspurger [455, 456], Werner Müller and Birgit
Speh [470] are used. Lapid and Müller [396] obtain the Weyl law for the cusp forms
for the congruence subgroup � D �.N/ of SL.n;Z/ with an error estimate. Müller
proves that if dn is the dimension of the Riemannian manifold �nSL.n;R/=SO.n/
and the eigenvalues of the Laplacian for L2.�nSL.n;R/=SO.n// are denoted �0 <
�1 � �2 � � � � ; then we have the Weyl law:

#
˚
j
ˇ̌
�j � x

� � 1

�
�
1C dn

2

�Vol .�nSL.n;R/=SO.n//
� x

4�

�dn=2

; as x ! 1:

Lindenstrauss and Venkatesh [405] generalize the result to certain semisimple
groups of the sort considered in Chapter 2 of this Volume.

One might expect that the existence of the analogue of odd cusp forms would
not be so hard to prove. One would hope to imitate Exercise 3.7.6 from Volume I,
replacing sin .2�nx/ with a product of sin .2�nxi/ for all the x-variables. Unfortu-
nately it is shown in Goldfeld [230, pp. 162–163] that no odd cusp forms exist for
GL.3;Z/: Translating into our language, let
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Y D
0

@
y1 0 0

0 y2 0
0 0 y3

1

A ; X D
0

@
1 x1 x2
0 1 x3
0 0 1

1

A ; ı D
0

@
ı1 0 0

0 ı2 0

0 0 ı3

1

A ; ıi 2 f1;�1g :

Then if ' is a Maass form for GL.3;Z/; we have

' .Y ŒıXı�/ D ' .Y ŒX Œı��/ ; and X Œı� D
0

@
1 ı1ı2x1 ı1ı3x2
0 1 ı2ı3x3
0 0 1

1

A :

It follows that ' must be an even function of each xi: Note that det ı D ı1ı2ı3 and
thus the matrix ı may not be in SL.3;Z/: However you can take any one of the
ıi D 1 and then let the other two ıj be �1. Thus Goldfeld has proved that any
Maass form for SL.3;Z/ must be even in each xi: We will say more about cusp
forms in § 1.5.4.

Now we direct our attention to Eisenstein series. We will consider the methods
that Selberg and Maass used to continue these series. Before giving our first
definition of Eisenstein series, we need to recall some notation concerning the
determinant one surface SPn in Pn. If Y 2 Pn, we write

Y D t1=nW; t D jYj > 0; W D Y0 2 SPn: (1.244)

Clearly, one can define Maass forms on SPn=�n; �n D GL.n;Z/, as in (1.242). We
will denote the space of Maass forms on the determinant one surface in Pn by
A0.�n; �/: See Exercise 1.5.1 below for the relationship between the Laplacian on
Pn and the Laplacian on SPn.

Now we give our first definition of an Eisenstein series. Suppose that v is a Maass
form on a lower rank determinant one surface; i.e., let

v 2 A0.GL.m;Z/; �/; 1 � m < n; Re s > n=2 and Y 2 Pn.

Then we define the Eisenstein series Em;n�m.v; sjY/ D E.v; sjY/ with lower rank
Maass form v by:

E.v; sjY/ D
X

AD.A1 �/2�n=P.m;n�m/

jY ŒA1�j�s v
�

Y ŒA1�
0
�
: (1.245)

Here A1 2 Z
n�m; �n D GL.n;Z/, and P.m; n�m/ is the parabolic subgroup defined

in formula (1.241) of the preceding section.
Note that Exercise 1.4.26 of Section 1.4.4 says that the series in (1.245) converges

whenever v is bounded. To see that the series in (1.245) converges when v is an
integrable function on the fundamental domain SMm Š SPm=GL.m;Z/, use the
integral formula of Exercise 1.4.27 in Section 1.4.4 and imitate Exercise 1.4.26 of
that same section. We can thus compare the series (1.245) with the integral:



1.5 Maass Forms for GL.n;Z/ and Harmonic Analysis on Pn=GL.n;Z/ 241

Z

SMn

X

.A �/2�n=P
jYŒA�j�1

f .YŒA�/ d	n.Y/ D Vol.SMn�m/

Z

X2Mm;jXj�1

f .X/jXjn=2 d	m.X/;

where f .X/ D jXj�sv
�
X0
�
. Then formula (1.219) in the preceding section says this

last integral is:

Vol.SMn�m/

Z

X2SMm

v.W/ dW
Z

t�1
tn=2�s�1 dt;

which converges for Re s > n=2, if v is integrable on the fundamental domain
SMm. One can obtain a similar domain of convergence assuming that v is bounded
by a power function.

Exercise 1.5.1. Why is the Eisenstein series defined in (1.245) an eigenfunction of
all the GL.n;R/-invariant differential operators in D.Pn/? Compute the eigenvalue
of the Laplacian acting on (1.245) as a function of s and of the eigenvalue of the
Laplacian acting on v.
Hint. Maass [426, p. 73] gives formulas for the Laplacian in partial Iwasawa
coordinates:

Y D
�

F 0

0 H

�	
I X
0 I



; F 2 Pm; H 2 Pn�m; X 2 R

m�.n�m/:

Maass finds that for functions of the form u.Y/ D f .F/h.H/ the invariant differential
operators look like:

Tr

 �
Y
@

@Y

�k
!

D Tr

 �
F
@

@F
C n � m

2
I

�k
!

C Tr

 �
H
@

@H

�k
!

�1
2

k�1X

jD1
Tr

 �
F
@

@F
C n � m

2
I

�j
!

Tr

�
H
@

@H

�k�1�j
1

A :

We proved the special case m D 1 in formula (1.54) of Section 1.2.1. Now in the
case under consideration in this exercise our function is

u.Y/ D jFj�sv
�
F0
�
; where F0 D jFj�1=mF 2 SPm:

So the only term of interest in the formula for the Laplacian in partial Iwasawa
coordinates is the first term.
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One must also relate the Laplacian on the space Pm and that on the determinant
one surface SPm. Writing Y D t1=mW, for Y 2 Pm; t D jYj > 0, W 2 SPm, one
can show that�Y D m.t@=@t/2C�W , where�W is the Laplacian on the determinant
one surface induced by the arc length ds2W D Tr..W�1dW/2/.

When the Maass form v is identically equal to one, the Eisenstein series (1.245)
is a quotient of Koecher zeta functions defined in formula (1.173) of the preceding
section; i.e.,

Zm;n�m.Y; s/ D Zm;0.I; s/E.1; sjY/: (1.246)

To see this, we need the following lemma.

Lemma 1.5.1 (A Decomposition of the Matrices in the Sums Defining Eisen-
stein Series). The quotient Zn�m rank m=�m, which means the n�m rank m integral
matrices in a complete set of matrices inequivalent under right multiplication by
matrices in �m D GL.m;Z/, for 1 � m < n, can be represented by matrices
A D BC, where

B 2 Z
n�m; .B 	/ 2 GL.n;Z/=P.m; n � m/;

C 2 Z
m�m rank m=GL.m;Z/:

Proof. First note that by elementary divisor theory, there are matrices U 2 �n and
V 2 �m such that

A D U

�
D
0

�
V; with D diagonal m � m and nonsingular:

Suppose that U D .U1 	/ with U1 2 Z
n�m. Then A D U1DV and U1 may be taken

modulo GL.m;Z/, by throwing the difference into DV . The existence of the stated
decomposition follows quickly.

To see the uniqueness of the decomposition, suppose

B2C2 D B1C1W; for some W 2 �n

with

Vi D .Bi 	/ 2 �n=P.m; n � m/ and Ci 2 Z
m�m rank m=�m; i D 1; 2:

Then

V2

�
C2
0

�
D V1

�
C1W
0

�
implies V�1

1 V2

�
C2
0

�
D
�

C1W
0

�
:
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Let

Z D V�1
1 V2 2 �n and Z D

�
X 	
Y 	

�
;

so that XC2 D C1W; YC2 D 0, which means that Y must vanish. If Y D 0, there are
2 cases. If V1 is not equivalent to V2 modulo P.m; n � m/; we have a contradiction.
If V1 is equivalent to V2 modulo P.m; n � m/; we may assume V1 D V2: This gives
C2 D C1W and W D I, to complete the proof of the lemma. �

Formula (1.246) follows immediately from Lemma 1.5.1. After we have studied
Hecke operators for GL.n;Z/, we will be able to prove a similar result for a
general Eisenstein series of the form (1.245) (see formula (1.278) below). Recall that
Lemma 1.4.7 of the previous section expressed Koecher’s zeta function Zm;0.I; s/ as
a product of Riemann zeta functions. Thus formula (1.246) is quite analogous to the
formula in part (c) of Exercise 3.5.1 in Section 3.5.1 of Volume I — a result which
writes the Eisenstein series for GL.2;Z/ as a quotient of Epstein’s zeta function
divided by Riemann’s zeta function.

Exercise 1.5.2. In formula (1.245) for the Eisenstein series Em;n�m.s; 'jY/, let n D
3; m D 2, and ' 2 A0.GL.2;Z/; � D u.u � 1//; i.e., ' is a Maass wave form
for GL.2;Z/ as in Section 3.5 of Volume I. Suppose, in particular, that ' is an
Eisenstein series: '.z/ D Eu.z/; z 2 H, defined in Equation (3.81) of Section 3.5
of Volume I. Recall the standard identification of the upper half plane H with SP2

given in Exercise 3.5.1 of Volume I. Then show that

E.Eu; sjY/ D
X

.Ci �/DC2�3=P.3/
Ci2Z3�i

YŒC1�
�u jYŒC2�j�sCu=2;

where P.3/ D P.1; 1; 1/ is the minimal parabolic subgroup of �3 D GL.3;Z/ con-
sisting of all upper triangular matrices with ˙1 on the diagonal (see formula (1.241)
of the preceding section). Use an integral test argument similar to the ones given
after formula (1.245) above and Exercise 1.4.28 of the preceding section to see
that the series on the right-hand side of this formula converges for Re u > 1 and
Re.s � u=2/ > 1. Note also that Eu is integrable if 0 < Re u < 1.
Hint. We can write the sum over �3=P.1; 1; 1/ in the right-hand side of the formula
to be demonstrated as a double sum over �3=P.2; 1/ and over P.2; 1/=P.1; 1; 1/.
The latter sum can be identified as a sum over matrices of block form:

�
�2=P.1; 1/ 0
0 ˙1

�
:
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This shows that the right-hand side of the formula looks like:

X

.A1 �/2�3=P.2;1/

jYŒA1�j�sCu=2
X

.b �/2�2=P.1;1/

YŒA1�Œb�
�u;

which is E.Eu; sjY/.
Motivated somewhat by the preceding exercise, we define Selberg’s Eisenstein

Series for a Parabolic Subgroup P D P.n1; : : : ; nq/ to be a function of Y 2 Pn

and s 2 C
q given by:

EP.sjY/ D
X

.Aj �/DA2�n=P

Aj2Zn�Nj

qY

jD1

ˇ̌
YŒAj

ˇ̌�sj (1.247)

with Nj D n1 C � � � C nj. We will also write

En1;:::;nq.sjY/ D EP.sjY/:

The integral test coming from Exercises 1.4.28 and 1.4.29 of the preceding section
generalizes to show that the series above converges absolutely for

Re sj > .nj C njC1/=2; j D 1; 2; : : : ; q � 1:

Exercise 1.5.3. Prove the last statement about the region of convergence of the
series (1.247).

Since Selberg proved all the basic properties of the functions (1.247), there is
good reason for calling EP.sjY/ “Selberg’s Eisenstein series.” Some authors (e.g.,
Maass [426] and Christian [110]) call (1.247) “Selberg’s zeta function.” This is
confusing since there is another function which has been given that name (namely,
the zeta function in formula (3.184) of Volume I).

It is also possible to create Eisenstein series involving Maass forms vj 2
A0.GL.nj;Z/; �j/ by summing a function f .Y/ defined by

f .Y/ D
qY

jD1
jQjjrjv.Q0

j /;

where

Y D

0

B
BB
@

Q1 0 � � � 0

0 Q2 � � � 0
:::

:::
: : :

:::

0 � � � � � � Qq

1

C
CC
A

2

6
66
4

In1 	 � � � 	
0 In2 � � � 	
:::

:::
: : :

:::

0 � � � � � � Inq

3

7
77
5
;
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and the Qj are positive nj � nj matrices. The Eisenstein series is then:

EP.f jY/ D
X

�2�n=P

f .YŒ��/: (1.248)

Here �n D GL.n;Z/ and the parabolic subgroup is P D P.n1; : : : ; nq/. Our integral
tests will show that this series converges for Re rj sufficiently large, assuming that
the Maass forms vj are bounded by power functions or are integrable over the
fundamental domain for GL.nj;Z/. In the present subsection we will be studying
the special case that all of the vj are identically 1.

We need to study the analytic continuation, functional equations, residues,
Fourier expansions, etc., of these Eisenstein series for GL.n;Z/. We will be
interested in two methods for analytic continuation of Eisenstein series.

The first method is that of inserting larger parabolic subgroups between
the modular group �n D GL.n;Z/ and the parabolic subgroup P.n1; : : : ; nq/. An
example of this method has already appeared in Exercise 1.5.1. The method is also
discussed by Maass [426, pp. 275–278]. Maass attributes the idea to Selberg, who
announced results of the sort we shall discuss in several places (see Selberg [543–
546]). The method was also used by Langlands [392, Appendix I]. Other references
are Terras [593, 594].

A second method for continuing Eisenstein series is the method of theta
functions which goes back to Riemann. Many complications occur, as we shall
see in the next section. Again, this method was developed by Selberg, who did not
publish his proofs. Selberg did explain this method to various people (including
the present author when she was a graduate student in 1969). It is developed in
some detail in Maass [426, Section 16] and Terras [593, 594]. The main idea that
eliminates the exploding integral is that of making use of differential operators
chosen to annihilate the singular terms in the theta series. See also Siegel [565,
Vol. III, pp. 328–333].

Other methods of obtaining analytic continuations of Eisenstein series are
explained in Harish-Chandra [262], Kubota [377], Langlands [392], Selberg [546],
and Wong [671]. These methods are more function-theoretic and apply in a more
general context. The method of Wong [671] was outlined by Selberg in a talk
with the author and Carlos Moreno in 1984. These methods make use of the
Fourier expansion of the Eisenstein series, a topic which we will discuss in a
later section. There are also adelic methods (see Jacquet’s talk in Borel and
Casselman [66, Vol. II, pp. 83–84] and Helen Strassberg [583]). And there is a
method which uses Eisenstein series for the Siegel modular group (see Arakawa
[18]). See also Christian [110] for the analytic continuation of Eisenstein series
for congruence subgroups. And Diehl [136] obtains a relation between Eisenstein
series for GL.n;Z/ and Sp.n;Z/ by methods similar to those of Lemma 1.5.2 and
Exercise 1.5.9 below. Other references are Feryâl Alayont [4, 5]. Here it is noted
that Selberg’s third method of analytic continuation has been further developed by
Bernstein in an unpublished manuscript.
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More recently a new field has appeared—the field of multiple Dirichlet series.
An introduction to the subject is to be found in Bump’s paper beginning the volume
edited by Bump et al. [88].

There are other sorts of Eisenstein series, created using the heat kernel by
Jorgenson and Lang [335]. The introduction contains a brief history of the subject
and the authors’ attempts to find a treatment of the subject which is accessible to
nonexperts.

Many complications arise in higher rank symmetric spaces. For example, there
are lots of real variables as well as complex variables in the Eisenstein series, and
the trace formula becomes horrendous. This make everyone is a bit grumpy—except
perhaps E. Frenkel [188]. Frenkel seems to find joy in his movie involving writing
his formulas on a woman’s naked body. Well, our GL.3/ fundamental domain movie
may not provide as much entertainment but it does make me less grumpy about the
intricacies of GL.n/ Maass forms. Shimura’s autobiography may give the reader
some more insight into the grumpiness inherent in the field. For example, Shimura
has the following comment about one of our heroes C.L. Siegel [557, p. 190]:

: : :we have to know what kind of a man Siegel was. Of course, he established himself as
one of the giants in the history of mathematics long ago. He was not known, however, for
his good-naturedness.

Now we begin the discussion of the method of inserting larger parabolic
subgroups to continue Selberg’s Eisenstein series (1.247). We are restricting our
attention here to Eisenstein series with the maximal number of complex variables
and no lower rank Maass forms. We shall use the notation P.n/ for the minimal
parabolic subgroup P.1; : : : ; 1/ of �n D GL.n;Z/; i.e., P.n/ consists of all upper
triangular matrices in �n. And we define, for Y 2 Pn; s 2 C

n, Selberg’s Eisenstein
Series Associated with P.n/ by:

E.n/.sjY/ D
X

�2�n=P.n/

p�s.YŒ��/; if Re sj > 1; j D 1; : : : ; n � 1: (1.249)

First we generalize Exercise 1.5.1.
Note that Goldfeld [230, Ch. 10] names these and the rest of the GL.n;Z/-

Eisenstein series for Langlands. It seems to me that Selberg was the first to study
them and thus I am sticking with my terminology. However, Langlands [392]
showed how to do the theory for general reductive groups. Selberg only published
summaries of the results and Langlands himself said: “I myself now have difficulty
finding my way through it.” See [392, p. 284]. This manuscript of Langlands was
circulated in partially blue dittoed pages in the early years of my study of this
subject. The introduction to the memoir [335] of Jorgenson and Lang details the
difficulties of reading expositions of the theory of Eisenstein series. I am following
their dictum of trying to write for the nonexpert.
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Lemma 1.5.2 (Relations Between E.n/ and E.2/). When Re sk > 1; k D
1; 2; : : : ; n � 1, we have the following formula for the Selberg Eisenstein series
defined in (1.249), for each i D 1; 2; : : : ; n � 1:

E.n/.sjY/ D
X

V2�n=P�

i
VD.Vk �/;Vk2Zn�k

E.2/.sijT/
nY

jD1
j¤1

jYŒVj�j�sj ;

if P�
i D P.1; : : : ; 1; 2; 1; : : : ; 1/ with the 2 in the ith position. Here R 2 P2 is

defined by the partial Iwasawa decomposition given below (see Exercise 1.1.11 of
Section 1.1.3):

YŒViC1� D
�

YŒVi�1� 0

0 R

�	
Ii�1 Q
0 I2



; i D 2; : : : ; n � 1I

and

YŒV2� D R; when i D 1:

Then T 2 P2 is defined by:

T D jYŒVi�1�jR; if i D 2; : : : ; n � 1I
T D R D YŒV2�; if i D 1:

Finally the determinant of T is given by:

jTj D
8
<

:

jYŒVi�1�j jYŒViC1�j; if i D 2; : : : ; n � 2I
jYŒV2�j; if i D 1I
jYŒVn�2�j jYj; if i D n � 1:

Proof. Observe that U 2 �n=P.n/ can be expressed uniquely as U D VW, with
V 2 �n=P

�

i and W 2 P
�

i =P.n/. Moreover, W can be chosen to have the form:

W D
0

@
Ii�1 0 0

0 W� 0
0 0 In�i�1

1

A ; W� 2 �2=P.2/: (1.250)

Here i always denotes our fixed index. If i D 1, the top row and first column
in (1.250) are not present and if i D n � 1, the bottom row and last column are
absent. Next we write:

V D .Vk 	/; Vk 2 Z
n�k; k D 1; 2; : : : ; nI (1.251)

ViC1 D .Vi�1 V
�

i /; V
�

i 2 Z
n�2:
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Then, according to Exercise 1.5.4 below, we have:

jYŒ.VW/j�j D jYŒVj�j; for W as in (1.250); j ¤ iI (1.252)

and

jYŒ.VW/i�j D RŒW�
1 � jYŒVi�1�j; (1.253)

where R is defined in the lemma being proved and W
�

1 2 Z
2 is defined by

W
� D .W

�

1 	/; for W
�

as in (1.250). (1.254)

The lemma follows immediately. �

Exercise 1.5.4. Use the definitions in Lemma 1.5.2.

(a) Show that a complete set of representatives for W 2 P
�

i =P.n/ can be expressed
in the form (1.250).

(b) Prove formula (1.252).
(c) Prove formula (1.253).

Hints. You can do part (a) by multiplying matrices in the appropriate block form.
Part (b) follows from the remark that

Y

	
.A B/

�
C
0

�

D YŒAC�; for A 2 R

n�k; B 2 R
n�.n�k/; C 2 R

k�k; 0 2 R
.n�k/�k

where 0 denotes a matrix of zeros. Part (c) is proved using partial Iwasawa
decompositions to obtain:

YŒ.VW/i� D Y

	
ViC1

�
Ii�1 0

0 W
�

i

�


D
�

YŒVi�1� 0

0 R

�	�
Ii�1 Q
0 I2

��
Ii�1 0

0 W
�

1

�


D
�

YŒVi�1� 0

0 RŒW
�

1 �

�	
Ii�1 X
0 1



:

It is now possible to begin the process of analytic continuation of the Selberg
Eisenstein series E.n/ to a meromorphic function of s 2 C

n by utilizing the
analytic continuation of E.2/ which was obtained in Section 3.5 of Volume I, using
Theorem 1.4.1 in Volume I.

Lemma 1.5.3 (First Step in the Analytic Continuation of Selberg’s Eisenstein
Series with n Complex Variables). If E.n/ denotes the Selberg Eisenstein series
defined in (1.249), set
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ƒ.s/ D ��s�.s/�.2s/ and ƒi.sjY/ D 2ƒ.si/E.n/.sjY/;

for i D 1; 2; : : : ; n � 1. Then ƒi.sjY/ can be analytically continued to the region
Di pictured in Figure 1.29. Moreover, ƒi.sjY/ satisfies the functional equation:
ƒi.sjY/ D ƒi.s0jY/, where

s0
j D

8
<

:

sj; j ¤ i; i ˙ 1;

1 � si; j D i;
si˙1 C si � 1

2
; j D i ˙ 1:

The only poles of ƒi in the region Di occur when si D 0 or 1. Moreover,

E.n/.sjY/
ˇ̌

siD0
D EP�

i
.s1; : : : ; si�1; siC1; : : : ; snjY/;

with Ep denoting, as usual, the Eisenstein series associated with the parabolic
subgroup P D P

�

i of Lemma 1.5.2. If s�
j D sj for j ¤ i ˙ 1, s�

i˙1 D si˙1 C si
2

,
then

Res E.n/.sjY/
ˇ
ˇ

siD1
D

EP
�

1
.s�
1 ; : : : ; s

�
i�1; s�

iC1; : : : ; s�
n jY/

2ƒi.1/
:

Here 2ƒi.1/ D �=3 which is the volume of the fundamental domain for SL.2;Z/
acting on the Poincaré upper half plane.

Proof. We can write

E.2/.sijT/ D jTj�si=2E.2/.sijT0/

where

T0 D jTj�1=2T 2 SP2:

Substitute the incomplete gamma expansion of E.2/.sijT0/ from Theorem 1.4.1 in
Volume I into the expression for E.n/ given in Lemma 1.5.2. This leads to the formula

ƒi.sjY/ D EP�

i
.s�jY/

si � 1 � EP�

i
.s�jY/
si

C†3 C†4; (1.255)

where EP�

i
.s�jY/ D EP�

i
.s�
1 ; : : : ; s

�
i�1; s�

iC1; s�
n /, with s� as defined in the Lemma,

and

†3 D
X

V2�n=P�

i

Y

j¤i

jYŒVj�j�s�

j

Z 1

1

x�si
X

a2Z2�0
expf��x.T0/�1Œa�g dx;
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†4 D
X

V2�n=P�

i

Y

j¤i

jYŒVj�j�s�

j

Z 1

1

xsi�1 X

a2Z2�0
expf��xT0Œa�g dx:

For any positive ", we can easily bound the terms †3 and †4 in formula (1.255)
by ƒi.jY/, where

j D
8
<

:

Re sj; for j ¤ i ˙ 1; or i;
Re sj C 1

2

˚
Re sj � j Re sij � .1C "/

�
; for j D i ˙ 1;ˇ̌

Re sj

ˇ̌C 1C "; for j D i:

Here we are using the fact that

.T0/�1
	

a1
a2



D T0

	�a2
a1



;

which implies that the sums over a 2 Z
2 � 0 in †3 and †4 are the same.

Define the region

Di D ˚
s 2 C

n
ˇ̌
Re si � 0;Re sj � 3

2
; j ¤ i

�

[ ˚s 2 C
n
ˇ̌
Re si � 0;Re sj � 3

2
; j ¤ i; i ˙ 1;Re.si˙1 C si/ � 3

2

�
:

(1.256)

It follows that E.n/ can be analytically continued to the region Di with the
indicated functional equation, poles, residues, and behavior at si D 0. Note that the
transformation s ! s0, which appears in the functional equation, maps the region
in Figure 1.29 above the lines L1; L2; L3, into itself. In particular, s ! s0 takes the
line L1 to L3 and fixes L2. �

Fig. 1.29 Real parts of si and
si˙1 for the region Di of
analytic continuation of the
Selberg Eisenstein series E.n/
defined by formula (1.256).
The original region of
analyticity for E.n/ is that
above line L3. We can enlarge
the region Di to that which
lies above the lines L1;L2;L3,
but this would lead to more
complicated equations. Here
the line L1 has the equation
Re.si˙1 C si/ D 3

2

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 1 2 3 4-2 -1

Re s i

Re s i±1

L3

L2

L1
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Note that the formulas for values of Eisenstein series at si D 0 are much simpler
than the formulas for the residues at si D 1. It has often been noticed by number
theorists that zeta and L-functions have simpler behavior to the left of the line fixed
by the functional equation. For example, the Riemann zeta function has rational
values at negative odd integers (cf. Exercise 3.5.7 of Volume I), while the values at
positive even integers are more complicated, involving powers of � .

Note also that the zeros of ƒ.si/ can produce poles of

E.n/.sjY/ D ƒi.sjY/=2ƒ.si/:

Thus the zeros of the Riemann zeta function are of interest to us here. Actually
they will lie to the left of the line Re si D 1

2
, which is the line of interest for our

continuation to reach the spectrum of the GL.n;R/-invariant differential operators.
This happens because ƒ.si/ involves �.2si/ not �.si/.

Exercise 1.5.5. Prove all the statements made in the proof of Lemma 1.5.3.
Hint. You can use Theorem 2.5.10 in Hörmander [306], which says that every
function holomorphic on a connected tube in C

n; n � 2, can be continued to a
function holomorphic on the convex hull of the connected tube. A tube� � C

n has
the form � D f z 2 C

n j Re s 2 !g for some set ! in R
n.

Selberg noticed that the situation in Lemma 1.5.3 is clarified by introducing new
variables z 2 C

n (cf. Proposition 1.2.1 and formula (1.49) of Section 1.2.1):

sj D zjC1 � zj C 1
2
; j < n; sn D �zn C 1

2
;

zj D �.sn C sn�1 C � � � C sj/C .n � j C 1/=2:

�
(1.257)

Note that the z-variables are closely related to the r-variables in part (4) of
Theorem 1.2.3.

Exercise 1.5.6. (a) Show that if z.s/ is given by formula (1.257) and if s ! s0
denotes the transformation appearing in the functional equation of E.n/ in
Lemma 1.5.3, then z0 D z.s0/ is the transformation � i of the z-variables which
permutes zi and ziC1, while leaving the rest of the zj fixed for j ¤ i; i C 1.

(b) Relate the z-variables of (1.257) with the r-variables in part 4 of Theorem 1.2.3.
Hint. For example,

z0
i�1 D � �sn C sn�1 C � � � C �

siC1 C si � 1
2

�C .1 � si/C �
si�1 C si � 1

2

��C n�iC2
2

D �.sn C � � � C si�1/C n�iC2
2

D zi�1:

The rest of the calculations are easier.

Exercise 1.5.7. Show that in terms of the z-variables the domain Di in Figure 1.29
contains the following region, after setting xj D Re zj:
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Ri D
�

z 2 C
n

ˇ̌
ˇ̌ xjC1 � xj � 1; j ¤ i; xiC1 � xi � �1

2

�

[
�

z 2 C
n

ˇ̌
ˇ̌ xjC1 � xj � 1; j ¤ i; i ˙ 1; xi�2 � xi � 1;

xiC1 � xi�1 � 1; xi � xiC1 � � 1
2

�
:

Note that the second set in the union is the image of the first under the transformation
� i of Exercise 1.5.6 which permutes zi and ziC1, leaving the rest of the variables
fixed.

Now, as Selberg observed, we have the generators of the group of permutations
of the variables z1; : : : ; zn (i.e., the Weyl group of GL.n/). Thus we should be able
to obtain nŠ functional equations for the Eisenstein series E.n/, if we include the
identity E.n/ D E.n/ as a functional equation. Moreover, we will be able to continue
E.n/ as a meromorphic function in the complex space C

n.

Theorem 1.5.1 (Selberg The Analytic Continuation and Functional Equations
of Selberg’s Eisenstein Series). Let '.s/ D �.s/�.2s/ and define (using (1.257)):

„.zjY/ D �pE.n/.z.s/jY/
Y

1�i<j�n

'

�
zj � zi C 1

2

�
;

if

p D �2
nX

jD1
jzj:

Then

E.n/.z.s/jY/
Y

1�i<j�n

�
zj � zi � 1

2

�
�

�
2

�
zj � zi C 1

2

��

can be continued to a holomorphic function for all z 2 C
n. And „.zjY/ satisfies the

nŠ functional equations

„.�.z/jY/ D „.zjY/

for every permutation � of n elements. Here

�.z/ D .z�.1/; : : : ; z�.n// if z D .z1; : : : ; zn/:

Proof. Let us compute„.� i.z// for � i D .i i C 1/, the transposition of i and i C 1.
The power of � in „.� i.z// is:
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p D �2
nX

jD1
jzj C 2.ziC1 � zi/: (1.258)

The product of the '’s in „.� i.z// is:

'
�
zi � ziC1 C 1

2

�

'
�
ziC1 � zi C 1

2

�
Y

1�i<j�n

'

�
zj � zi C 1

2

�
: (1.259)

Thus Lemma 1.5.3 completes the proof that „.� .z/ jY/ D „.zjY/ for all � of
the form � D � i D .i i C 1/. Since these permutations generate the symmetric
group of permutations of n elements, it follows that „.zjY/ is invariant under all
permutations of the entries of z 2 C

n. Thus, in fact, the function „.zjY/ behaves
like the spherical function hs.Y/ (see Theorem 1.2.3).

Next we claim that E.n/ can be continued as a meromorphic function in the region

B� D
n[

kD1
Bk; (1.260)

where, writing xj D Re zj,

Bk D ˚
z 2 C

n
ˇ̌

xjC1 � xj > 2; j ¤ k; k � 1; xkC1 � xk�1 > 2
�
: (1.261)

Here, we simply drop inequalities that do not make sense; e.g., for n D 3, we have

B1 D ˚
z 2 C

3 j x3 � x2 > 2
�
:

To prove that we can continue E.n/ to the region (1.260), first continue E.n/ to
B1. To do this, note that if z 2 B1, there is a permutation � of n elements such that
�.z/ 2 Ri, the region considered in Exercise 1.5.7. For suppose

xj < x1 � xjC1; for some j D 2; : : : ; n:

Then either xjC1 � x1 > 1 or x1 � xj > 1, otherwise xjC1 � xj � 2, contradicting
the definition of B1.

If xjC1 � x1 > 1, then z 2 ��1.Rj�1/, where Rj�1 is defined in Exercise 1.5.7 and

� D
�
1 2 � � � j � 1 j
2 3 � � � j 1

�
D .12/.23/ � � � .j � 1 j/:

Here we use the standard notation for permutations:

� D
�

1 2 � � � n
�.1/ �.2/ � � � �.n/

�
:
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We did not list integers that are fixed and .i j/ denotes the transposition that
interchanges i and j, leaving the other integers fixed. To see that z 2 ��1.Rj�1/,
note that the following inequalities say that �z with Re zj D xj lies in the first subset
in the definition of Rj�1 given in Exercise 1.5.7:

x3 � x2 � 1; : : : ; xj � xj�1 � 1; x1 � xj � 0; xjC1 � x1 � 1; : : : ; xn � xn�1 � 1:

And, similarly, if x1 � xj > 1, then z 2 ��1.Rj/, since the following inequalities
say that �z with Re zj D xj lies in the first subset of Rj defined in Exercise 1.5.7:

x3 � x2 � 1; : : : ; xj � xj�1 � 1; x1 � xj � 1; xjC1 � x1 � 0; : : : ; xn � xn�1 � 1:

The functional equations of „.zjY/ allow us to continue it to B1. And

E.n/.zjY/
nY

jD2

�
zj � z1 � 1

2

�
�

�
2

�
zj � zi C 1

2

��

is holomorphic in B1. For example, the only poles of

�
�
2
�
zjC1 � zj

�C 1
�

E.n/.zjY/

in the region Rj of Exercise 1.5.7 occur when zjC1�zj D 1
2
. This gives zjC1�z1 D 1

2

in

��1.Rj/ D .j � 1 j/ � � � .23/.12/Rj D ��1.j j C 1/Rj:

Now, in order to continue E.n/ to the domain Bk, use the fact that

Bk D .k k � 1/Bk�1:

So we can use the functional equations of „.zjY/ to continue E.n/ to Bk. We find
also that

E.n/.zjY/
Y

1�i<j�n

�
zj � zi � 1

2

�
�

�
2

�
zj � zi C 1

2

��

is holomorphic in the region B�.
To complete the analytic continuation of E.n/, we need to use a theorem from

several complex variables mentioned in Exercise 1.5.5. This insures that the function
can always be continued to the convex hull of any region in which it is holomorphic
(see Theorem 2.5.10 in Hörmander [306]). Thus it suffices to show that B� is
connected with convex hull Cn. This is proved in Exercise 1.5.8. �
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Exercise 1.5.8. Show that B� defined in (1.260) is a connected set and then show
that B� has Cn as its convex hull.
Hint. You can show that n independent lines through the same point lie in the set

b� D ˚
x 2 R

n
ˇ
ˇ xj D Re zj; z 2 B� � :

You can take, for example, the lines

�i D fx 2 R
n j x D 3.1; 2; : : : ; n/C tei; t 2 Rg ;

with ei D .0; : : : ; 0; 1
i
; 0; : : : ; 0/, the ith element of the standard basis of Rn. This

follows from the fact that the definition of Bi does not restrict the ith coordinate at
all.

This completes our discussion of the analytic continuation of E.n/.sjY/ by the
method of inserting larger parabolic subgroups. It is possible to generalize our
formula relating E.n/ and E.2/, as the following exercises show.

Exercise 1.5.9 (More General Decompositions Associated with Two Parabol-
ics). Let P D P.n1; : : : ; nq/ be any parabolic subgroup of �n D GL.n;Z/. Show
that, in the region where the Dirichlet series for E.n/ converges absolutely, we have:

E.n/.sjY/ D
X

V2�n=P

qY

iD1
jYŒVNi �j�si E.ni/ . sNi�1C1; : : : ; sNi�1; 0 j Ti/ ;

for Ni D n1 C � � � C ni; V D .Vj 	/; Vj 2 Z
n�j, and Ri 2 Pni ; defined by the partial

Iwasawa decomposition:

YŒVNi � D
�

YŒVNi�1 � 0

0 Ri

�	
INi�1 Q
0 Ini



and Ti D jYŒVNi�1 �j Ri:

Hints (Terras [593]). Note that we can imitate the proof of Lemma 1.5.2. Write
U 2 �n=P.n/ uniquely as U D VW with V 2 �n=P; W 2 P=P.n/:

W D

0

B
@

W
�

1 � � � 0
:::
: : :

:::

0 � � � W
�

q

1

C
A ; Wi 2 �ni=P.ni/:

Then if Ni�1 < j < Ni, we have

ˇ̌
YŒVWj�

ˇ̌ D jYŒVNi�1 �j
ˇ̌
ˇRiŒ.W

�

i /j�Ni�1 �
ˇ̌
ˇ :
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Exercise 1.5.10. Extend Exercise 1.5.9 to relate the Eisenstein series EP to E�
P if

P� � P are two parabolic subgroups of GL.n;Z/. Show that this implies that:

EP
�
sN1 ; : : : ; sNq jY

� j
sNjD 0

if Nj¤ Mi

D EP�.sM1 ; : : : ; sMq�
jY/;

where

Nik D
ikX

˛D1
n˛ D Mk D

kX

ˇD1
mˇ;

if P D P.n1; : : : ; nq/ and P� D P.m1; : : : ; mq�/.
Hint (Terras [593]). Use induction on q.

Exercise 1.5.11. Compute

Res
sjD 1;

j D 1; : : : ; n

E.n/.sjY/:

Answer.

21�n Vol.SPn=GL.n;Z//�1:

Exercise 1.5.11 is useful when one seeks to generalize Zagier’s argument of
Exercise 3.6.17 of Volume I, in order to show that the Hecke points (as seen in
Figures 1.18, 1.19, 1.20, 1.21, 1.22, 1.23, 1.24, and 1.25 of Section 1.4.3) actually
become dense in the fundamental domain for SL.3;Z/ (actually the figures show a
union of 22 copies of the fundamental domain in which all x-variables run between
� 1
2

and C 1
2
).

The analytic continuation given in Theorem 1.5.1 began with a very concrete
formula for E.2/—the incomplete gamma expansion found in Section 1.4 of
Volume I. But the proof of Theorem 1.5.1 ended in a rather existential way—using
the result from several complex variables which extends holomorphic functions of
more than one complex variable in a connected tube domain to the convex hull of
the domain.
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1.5.2 Hecke Operators and Analytic Continuation
of L-Functions Associated with Maass Forms
by the Method of Theta Functions

Let us now begin the discussion of the second method of analytically continuing
Eisenstein series—the method of theta functions. In order to relate Eisenstein
series and theta functions, we need a generalization of formula (1.246), and thus
a generalization of Lemma 1.5.1 in the preceding section. This will require a
discussion of Hecke operators for GL.n;Z/. We will mostly restrict our attention
here to Eisenstein series of the form (1.245), although the method can be generalized
much further.

Suppose that f W SPn=GL.n;Z/ ! C. Then for any positive integer m, the mth
Hecke operator Tm is defined by:

Tmf .Y/ D
X

A2„m

f .YŒA�0/; for Y 2 Pn; Y0 D jYj�1=nY 2 SPn: (1.262)

Here „m denotes any complete system of representatives for Mm=GL.n;Z/, where

Mm D fA 2 Z
n�nj jAj D mg :

According to formula (1.239) in the proof of Lemma 1.4.7 in Section 1.4.4, we can
take

„m D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

0

BBB
@

d1 d12 � � � d1n

0 d2 � � � d2n
:::
:::
: : :

:::

0 0 � � � dn

1

CCC
A

ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ̌
ˇ

dj > 0 j D 1; : : : ; n;
dij D 0; if i > j;
0 � dij < di; if i < j;
mQ

iD1
di D m:

9
>>>>=

>>>>;

: (1.263)

Note that the scalar matrices A D ˛I; ˛ 2 Z � 0; cancel out when one computes
.YŒA�0/ in (1.262). Observe also that we have indeed generalized the Hecke
operators given in formula (3.119) of Section 3.6.5, Volume I, although here we
use a slightly different normalization in that we do not multiply by m�1=2. We have
already considered some of the history of Hecke operators in Section 3.6, Vol. I.
Maass [414] studied Hecke operators for the Siegel modular group Sp.n;Z/. A good
reference for the Hecke ring of a general group is Shimura [554, Ch. 3], where
there is an exposition of work of Tamagawa [589] connecting Hecke operators with
combinatorial results about lattices as well as p-adic convolution operators and a
p-adic version of Selberg [543]. Hecke operators for Sp.n;Z/ and SL.n;Z/ are also
considered by Andrianov [9–14] and Freitag [185]. Other references for the Hecke
ring of GL.n/ over p-adic number fields are Macdonald [428] and Satake [532].
Another general reference is Krieg [371]. See also Goldfeld [230].
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The Hecke operator (1.262) appears in many calculations associated with the
GL.n;Z/. For example, set the function f .Y/ 
 1 identically for all Y 2 SPn. Then,
from formulas (1.262) and (1.263), we have:

X

m�1
Tmf .Y/m�s D

X

A2Zn�n=�n
A¤0

jAj�s D Zn;0

�
I;

s

2

�
D

n�1Y

jD0
�.s � j/;

where �n D GL.n;Z/ and Zn;0.Y; s/ is Koecher’s zeta function from formula (1.173)
of Section 1.4.1. Solomon [570] considers generalizations of such results and
connections with combinatorics. Operators like Tm are also intrinsic to formulas akin
to (1.278) below connecting Eisenstein series such as (1.245) defined as sums over
GL.n;Z/ and zeta functions defined as sums over rank m matrices in Z

n�m. These
zeta functions are higher dimensional Mellin transforms of the non-singular terms
in a theta function (see formula (1.246)) and we will be able to use a modification
of Riemann’s method of theta functions to obtain an analytic continuation of these
zeta functions for GL.n;Z/. Thus it is formula (1.278) and our search for analytic
continuations of Eisenstein series that motivate our study of Hecke operators here.

The basic properties of Hecke operators for GL.n;Z/ are contained in the
following theorem.

Theorem 1.5.2 (Hecke Operators for GL.n;Z/).

(1) The Hecke operator Tm maps Maass forms on the determinant one surface,
i.e., f 2 A0.GL.n;Z/; �/—as defined in (1.242) and after formula (1.244) of
the preceding section—to Maass forms with the same eigenvalue system; i.e.,
Tmf 2 A0.GL.n;Z/; �/.

(2) The Hecke operator Tm is a Hermitian operator with respect to the inner
product:

.f ; g/ D
Z

SPn=GL.n;Z/

f .W/g.W/ dW;

dW D the SL.n;R/-invariant measure on SPn; as defined in .1:219/:

(3) The ring of Hecke operators is commutative and thus has a set of simultaneous
eigenfunctions which span the space of all Maass forms for GL.n;Z/.

(4) If gcd.k;m/ D 1, then TkTm D Tkm. When the group is GL.3;Z/, one has the
following formal power series in the indeterminate X for any prime p:

X

r�0
Tpr Xr D �

I � TpX C 
.Tp/

2 � Tp2
�

X2 � p3X3
��1

:

(5) Suppose that f 2 Ao.GL.n;Z/; �/ is an eigenfunction for all the Hecke
operators; i.e., Tmf D umf , for some um 2 C. Form the Dirichlet series:
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Lf .s/ D
X

m�1
umm�s:

This series converges for Re s > n=4 if f is integrable on the fundamental
domain SMn. Moreover, Lf can be analytically continued to a meromorphic
function of s with functional equation:

ƒ.f ; s/ D ��ns Lf �.2s/�n.r.f ; s// D ƒ.f �; n=2 � s/;

where f �.W/ D f .W�1/; r D r.f ; s/ 2 C
n is defined via Proposition 1.2.4 of

Section 1.2.3 and the formula:

�
��jYjsf .Y0��

jYjsf .Y0/ D �.pr.Y//

pr.Y/
; for any � 2 D.Pn/;

with D.Pn/ Dthe algebra of GL.n;R/-invariant differential operators on Pn

and pr.Y/ the power function defined in (1.41) of Section 1.2.1. Here �n.r/ is
the gamma function defined in (1.44) of Section 1.2.1. For GL.3;Z/ it follows
that Lf .s/ has the Euler product:

Lf .s/ D
Y

p prime

�
1 � upp�s C 

.up/
2 � up2

�
p�2s � p3�3s

��1
:

The Euler product in part (5) of Theorem 1.5.2 should be compared with that
obtained by Bump [83] using Fourier expansions of Maass forms as sums of
Whittaker functions. See also Section 1.5.4 and Goldfeld [230].

Theorem 1.5.2 gives an analogue of much of Theorem 3.6.4 of Volume I.
However, the converse result for part (5) is missing. See Goldfeld [230, Chapter 7]
for a classical version of the converse theorem for SL.3;Z/: Converse theorems have
been obtained adelically for GL.3/ (see Jacquet et al. [325]). One would expect to
need more than one complex variable s in order to be able to invert the Mellin
transform over Pn=� that leads to Lf .s/. Jacquet, Piatetski-Shapiro, and Shalika
find that one needs to twist by Maass forms for GL.n � 2;Z/ for a GL.n/ converse
theorem. When n D 3; one twists by a Dirichlet character � W .Z=qZ/� ! T,
which is a group homomorphism from the multiplicative group of a.mod q/; with
gcd.a; q/ D 1 into the multiplicative group of complex numbers of norm 1:

There are many other sorts of Hecke operators and attached Dirichlet series
that produce results similar to those which we have stated here. See the references
mentioned earlier for some examples.

We will see that the analytic continuation result in (5) is similar to that which we
need for the Eisenstein series (1.245).

We break up the proof of Theorem 1.5.2 into the various parts with the proof
of Parts (1) and (3) being given as exercises. Mostly we can imitate the arguments
given by Maass [414] for the Siegel modular group Sp.n;Z/.
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Exercise 1.5.12. Prove part (1) of Theorem 1.5.2.
Hint. Imitate the proof of the analogous result for SL.2;Z/ to be found in
Section 3.6 of Volume I.

Proof of Part (2) of Theorem 1.5.2. One need to only imitate the proof of the
analogous result for SL.2;Z/ which was part (4) of Theorem 3.6.4 in Volume I.
If � D GL.n;Z/; m 2 Z; m � 1; and A 2 Mm, the set of n � n integer matrices of

determinant m, write hA.W/ D f
�
.WŒA�/0

�
. Note that hA remains invariant under

the congruence subgroup:

�.m/ D fB 2 � j B 
 I.mod m/g: (1.264)

For B 2 �.m/ and A 2 Mm imply that A�1BA 2 � . To see this, observe that

A�1 D .1=m/ t.adj A/ 2 .1=m/Zn�n:

Here adj A denotes the adjoint matrix of A whose ij entry is the determinant of the
matrix obtained from A by crossing out the ith row and jth column. Thus mA�1BA 2
Z

n�n and mA�1BA is congruent to mA�1A D mI and thus to 0 modulo m. So A�1BA
is an integral matrix of determinant one.

Since the fundamental domain SPn=�.m/ consists of Œ� W �.m/� D #.�=�.m//
copies of SPn=� (see Exercise 1.5.13 below), one has the following equalities, with
„m as in (1.263):

.Tmf ; g/ D
X

A2„m

1

Œ� W �.m/�
Z

W2SPn=�.m/

f .
�
WŒA�/0

�
g.W/ dW

D
X

A2„m

1

Œ� W A�1�.m/A�

Z

X2SPn=A�1�.m/A

f .X/g
�
.XŒA�1�/0

�
dX

D .f ;Tmg/:

The second equality is obtained by substituting X D .WŒA�/0 and noting that
Œ� W �.m/� D Œ� W A�1�.m/A�. This completes the proof of part (2) of Theorem
1.5.2. �

Exercise 1.5.13. Show that the index Œ� W �.m/� D #.�=�.m// is finite, for
� D GL.n;Z/ and �.m/ as defined by (1.264).

Exercise 1.5.14. Prove part (3) of Theorem 1.5.2.
Hint. This is proved by Shimura [554, Ch. 3] using the existence of the anti-
automorphism X 7! tX of GL.n;Z/
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Proof of Part (4) of Theorem 1.5.2. To see that TkTm D Tkm if gcd.k;m/ D 1, one
need only multiply the matrices below:

B D

0

BBB
@

d1 d12 � � � d1n

0 d2 � � � d2n
:::
:::
: : :

:::

0 0 � � � dn

1

CCC
A

0

BBB
@

c1 c12 � � � c1n

0 c2 � � � c2n
:::
:::
: : :

:::

0 0 � � � cn

1

CCC
A

D

0

B
BB
@

d1c1 d1c12 C c2d12 � � � d1c1n C d12c2n C � � � C d1ncn

0 d2c2 � � � d2c2n C � � � C d2ncn
:::

:::
: : :

:::

0 0 � � � dncn

1

C
CC
A
:

For if dij runs through a complete set of representatives mod di and cij runs through
a complete set of representatives mod ci, then consider the i; j-entry in the product
above for i < j:

bij D dicij C di;iC1ciC1;j C � � � C dijcj:

Inductively we can assume that the terms dij0 with j0 < j and Ci0j with i0 > i are
fixed. Thus what remains is

dicij C dijcj C a fixed number:

This gives a complete set of representatives modulo djcj.
Next we consider the proof of the formula which implies the Euler product for

the L-function in part (5) which corresponds to an eigenform of the Hecke operators
for GL.3;Z/. The proof which follows involves only matrix multiplication but
clearly becomes more complicated for GL.n;Z/ with n > 3. See Exercises 1.5.15
and 1.5.16 for connections with other methods of obtaining such Euler product
formulas as well as Shimura [554] and Freitag [185]. See also Goldfeld [230].

Observe that if „m is as in (1.263),

TkTmf .Y/ D
X

A2„m

X

B2„k

f
�
YŒBA�0

�
:

It will be helpful to set up the following notation. Suppose that S is a subset of
Mm (the set of all n � n integral matrices of determinant m) and let T.S/ denote the
operator:

T.S/f .Y/ D
X

A2S

f .YŒA�0/: (1.265)
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The formal power series identity in part (4) derives from the following two
formulas, which are easily checked by multiplying the matrix representatives of
the operators involved. The first formula is:

Tpr Tp D TprC1 C T.Sr
1/C T.Sr

2/; (1.266)

where

Sr
1 D

8
<

:

0

@
pe p.a1 mod pe/ a2 mod pe

0 pf C1 a3 mod pf C1
0 0 pg

1

A

ˇ̌
ˇ
ˇ̌
ˇ

e � 1I f ; g � 0I e C f C g D r

9
=

;
;

Sr
2 D

8
<

:

0

@
pe a1 mod pe p.a2 mod pe/

0 pf p.a3 mod pf /

0 0 pgC1

1

A

ˇ̌
ˇ
ˇ̌
ˇ

e � 1 or f � 1

g � 0I e C f C g D r

9
=

;
:

The second formula is:

Tpr Œ.Tp/
2 � Tp2 � D p3Tpr�1 C TprC1Tp C TprC2 ; for r � 1: (1.267)

To prove formula (1.266), use the following calculations:

0

B
@

pe a1 mod pe a2 mod pe

0 pf a3 mod pf

0 0 pg

1

C
A

0

B
@

p b1 mod p b2 mod p

0 1 0

0 0 1

1

C
A D

0

B
@

peC1 c1 mod peC1 c2 mod peC1

0 pf c3 mod pf

0 0 pg

1

C
A ;

0

@
pe a1 mod pe a2 mod pe

0 pf a3 mod pf

0 0 pg

1

A

0

@
1 0 0

0 p b3 mod p
0 0 1

1

A D
0

@
pe p.c1 mod pe/ c2 mod pe

0 pf C1 c3 mod pf C1
0 0 pg

1

A ;

0

@
pe a1 mod pe a2 mod pe

0 pf a3 mod pf

0 0 pg

1

A

0

@
1 0 0

0 1 0

0 0 p

1

A D
0

@
pe c1 mod pe p.c2 mod pe/

0 pf p.c3 mod pf /

0 0 pgC2

1

A :

The first set of matrices gives TprC1 , except for the e C 1 D 0 terms. The second set
of matrices gives all of the e D 0 terms of TprC1 except the terms with e D 0 and
f C 1 D 0, and it also gives Sr

1. The third set of matrices gives the e D f D 0 terms
in TprC1 plus Sr

2.
To prove (1.267), use formula (1.266) with r D 1 to see that

.Tp/
2 � Tp2 D T.R1/C T.R2/C T.R3/;
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where

R1 D
8
<

:

0

@
p p.b1 mod p/ b2 mod p
0 p b3 mod p
0 0 1

1

A

9
=

;
;

R2 D
8
<

:

0

@
p b1 mod p p.b2 mod p/
0 1 0

0 0 p

1

A

9
=

;
;

R3 D
8
<

:

0

@
1 0 0

0 p p.b3 mod p/
0 0 p

1

A

9
=

;
:

Then compute the matrix products to find that Tpr T.Rj/ D T.Qj/, where

Q1 D
8
<

:

0

@
peC1 p.a1 mod peC1/ a2 mod peC1
0 pf C1 a3 mod pf C1
0 0 pg

1

A

9
=

;
;

Q2 D
8
<

:

0

@
peC1 a1 mod peC1 p.a2 mod peC1/
0 pf p.a3 mod pf /

0 0 pgC1

1

A

9
=

;
;

Q3 D
8
<

:

0

@
pe p.a1 mod pe/ p.a2 mod pe/

0 pf C1 p.a3 mod pf C1/
0 0 pgC1

1

A

9
=

;
:

Now T.Q1/ gives T.SrC1
1 / from (1.266). And T.Q2/ gives the e C 1 ¤ 0 part of

T.SrC1
2 / in (1.266). The e D 0 part of T.Q3/ gives the remainder of T.SrC1

2 /. The
e � 1 part of T.Q3/ gives p3Tpr�1 , since

0

@
pe�1 a1 mod pe a2 mod pe

0 pf a3 mod pf C1
0 0 pg

1

A

D
0

@
pe�1 b1 mod pe�1 C pe�1.c1 mod p/ b2 mod pe�1 C pe�1.c2 mod p/
0 pf b3 mod pf C pf .c3 mod p/
0 0 pg

1

A

D
0

@
pe�1 b1 mod pe�1 b2 mod pe�1
0 pf b3 mod pf

0 0 pg

1

A

0

@
1 c1 mod p c2 mod p
0 1 c3 mod p
0 0 1

1

A :

This completes the proof of part (4) of Theorem 1.5.2. �
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Exercise 1.5.15. Read Shimura [554, Ch. 3] for another discussion of Hecke
operators. If A 2 Z

n�n has rank n, one considers the double coset decomposition:

�A� D
[

B2SA

B� (disjoint):

Here SA is a set of representatives for �A�=� , with � D GL.n;Z/.
Then one can prove a result due to Tamagawa which says that for prime p:

X

r�0
Tpr Xr D

0

@
nX

jD0
.�1/jpj.j�1/=2T.SAj/X

j

1

A

�1

;

where X is an indeterminate and the n � n diagonal matrix Aj has n � j ones on the
diagonal.

Aj D

0

BBBBBB
BBB
@

1 � � � 0 0 � � � 0
:::
: : :

:::
:::

:::

0 � � � 1 0 � � � 0
0 � � � 0 p � � � 0
:::

:::
:::
: : :

:::

0 � � � 0 0 � � � p

1

CCCCCC
CCC
A

:

and we use the notation T.SA/ in (1.265). Show that when � D GL.3;Z/, Tama-
gawa’s formal power series above is the same as ours in part (4) of Theorem 1.5.2.
In particular, show that

.Tp/
2 � Tp2 D pT.SA2 /:

Exercise 1.5.16. Langlands [390] defines a Hecke operator TA corresponding to a
matrix A 2 Q

n�n with jAj > 0 by:

TAf .Y/ D
X

�2�=�\.A�A�1/

f
�
.YŒ�A�/0

�
;

for f W SPn=� ! C; � D GL.n;Z/, where Y0 D jYj�1=nY 2 SPn for Y 2 Pn.
Show that this definition agrees with that in Exercise 1.5.15.
Hint. Does

X

ı2�A�=�

f
�
YŒı�0

� D
X

�2�=�\.A�A�1/

f
�
YŒ�A�0

�
‹

Bump [83] notes that these operators are no longer self adjoint.
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Exercise 1.5.17. Check the Euler product for GL.3;Z/ in part (5) of Theorem 1.5.2
by letting f be the form that is identically one everywhere. Then

L1.s/ D
X

m�1
Tm.1/m

�s D Z3;0
�

I;
s

2

�
D

2Y

jD0
�.s � j/;

where Z3;0.I; s=2/ is Koecher’s zeta function from (1.173) of Section 1.4.1 and
the factorization into a product of Riemann zeta functions is formula (1.174) of
Section 1.4.1. Show that if you substitute the Euler product for Riemann’s zeta
function (see Exercise 1.4.4 in Volume I) into this formula for L1.s/, you obtain
the Euler product given in part (5) of Theorem 1.5.2.

Remarks on Part (5) of Theorem 1.5.2 We will prove part (5) in a slightly
more general situation in order to obtain the analytic continuation of the Eisenstein
series (1.245) simultaneously. The idea is to imitate Riemann’s method of theta
functions which gave the analytic continuation of Epstein’s zeta function (see the
proof of Theorem 1.4.1 of Volume I). However the sailing is not so smooth here
because when k > 1 there are many singular terms in the sum defining the theta
function 
.Y;X/, for Y 2 Pn; X 2 Pk; 1 � k � n, from (1.172) in Section 1.4.1.
These terms come from matrices A 2 Z

n�k of rank less than k. When k D 1 the only
such term comes from the zero vector, but when k > 1 there are an infinite number
of these terms to deal with.

This problem has led to gaps in many papers—gaps coming from the sub-
traction of divergent integrals. We might call this the curse of the higher rank
Eisenstein series. There was even a gap of this kind in Siegel’s first paper on
the computation of the volume of the fundamental domain SMn (Siegel [565,
Vol. I, pp. 459–468]). Such gaps also appear in Koecher’s paper [359] on the
analytic continuation of his zeta function and other Dirichlet series associated with
Siegel modular forms. Käte Hey’s thesis [294] on zeta functions of central simple
algebras has a similar gap. Siegel makes the following remark at the beginning
of his paper that fills the gap (Siegel [565, Vol. III, p. 328]): “Die Korrektur des
Fehlschlusses ist dann keineswegs so einfach, wie man zunächst in Gedanken an die
Renormalisierung in physikalischen Untersuchungen glauben möchte, und benötigt
genauere Abschätzungen unendlicher Reihen.”6 We will not follow Siegel’s method
here, for it does not seem to give the complete analytic continuation (just the
continuation beyond the first pole at s D n=2). Siegel’s method does, however, allow
the computation of the residue at s D n=2 of Koecher’s zeta function Zm;n�m.Y; s/
defined in formula (1.173) of Section 1.4.1. Another reference for Siegel’s method
is Maass [426, Section 16]. Instead we follow a method due to Selberg which makes
use of invariant differential operators to annihilate the lower rank terms in the theta

6The correction of the wrong deduction is then by no means so simple, as one should like to believe
to begin with when thinking of renormalization in the physics literature, and it necessitated more
exact estimates of infinite series.
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function, generalizing Exercises 1.4.9 and 1.4.10 of Volume I. Other references for
Selberg’s method are Maass [426, Section 16] and Terras [593, 602, 604]. There
are also other ways of accomplishing the analytic continuation, as we mentioned in
Section 1.5.1, but we will not discuss them here. In considering Selberg’s method
we will ignore a perhaps nasty problem: Could the differential operators actually
annihilate the automorphic forms?

Proof of Part (5) of Theorem 1.5.2. In order to prove part (5) and complete the
proof of Theorem 1.5.2, we need the theta function from formula (1.172) of
Section 1.4.1, with 1 � k � n:


.Y;X/ D
X

A2Zn�k

expf��Tr.YŒA�X/g; for Y 2 Pn and X 2 Pk: (1.268)

For 0 � r � k; we set


 r.Y;X/ D
X

A2Zn�k

rank ADr

expf��Tr.YŒA�X/g: (1.269)

Before proceeding with the proof, we must beg the reader to do the following
exercises.

Exercise 1.5.18 (The Transformation Formula of the Theta Function). Show
that if the theta function is defined by (1.268), then


.Y;X/ D jYj�k=2jXj�n=2
.Y�1;X�1/:

Hint. Imitate the proof of Exercise 1.4.6 in Volume I, using the Poisson summation
formula.

Exercise 1.5.19 (A Gamma Integral Associated with a Maass Form for GL.n/).
Suppose that f is a Maass form on the determinant one surface; i.e., that f 2
A0.GL.n;Z/; �/, where

�.f .Y0/jYjs/
f .Y0/jYjs D �pr.Y/

pr.Y/
D ��.r/ with r D r.f ; s/ 2 C

n;

for all invariant differential operators � 2 D.Pn/. Here pr.Y/ is a power function
as in formula (1.41) of Section 1.2.1. Use Proposition 1.2.4 of Section 1.2.3 and the
definition of the gamma function �k in formula (1.44) of Section 1.2.1 to prove that:

Z

X2Pk

exp
˚�Tr

�
Y�1X

��
f .X0/ jXjs d	k.X/ D �k.r.f ; s//f .Y

0/jYjs:
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There is another discussion of this result in Maass [426, Section 7]. Related
results were obtained in Exercise 1.2.4 of Section 1.2.1 and in formula (1.108) of
Section 1.2.4.

We will write �k D GL.k;Z/ and hope that the context will make it clear that
this is not the gamma function. Defining

ƒ.f ; sjY/ D
Z

X2Mk

f .X0/ jXjs 
 k.Y;X/ d	k.X/; (1.270)

it follows from Exercise 1.5.19 that

ƒ.f ; sjY/ D 2

Z

Pk

X

A2Zn�k rank k=�k

expf��Tr.YŒA�X/g f .X0/ jXjs d	k.X/

D 2��ks �k.r.f ; s//
X

A2Zn�k rank k=�k

jYŒA�j�s f �.YŒA�0/ :

Here f �.W/ D f .W�1/. The factor 2 comes from the fact that

[

A2�k

MkŒA�

represents each point of Pn exactly twice (see part (3) of Theorem 1.4.1 in
Section 1.4.2).

Now suppose that f .W/ is an eigenfunction of all the Hecke operators. Then

ƒ.f ; sjY/ D
�
2��ns�n.r.f ; s//Lf �.2s/jYj�sf �.Y0/; if k D nI
2��ks�k.r.f ; s//Lf �.2s/Ek;n�k.f �; sjY/; if 1 � k < n:

(1.271)

The formula for k D n is clear. That for 1 � k < n will be proved in Corollary 1.5.1.
Only the case k D n is needed for Theorem 1.5.2. Here Ek;n�k.f �; sjY/ is the
Eisenstein series of formula (1.245).

Exercise 1.5.20. Show that if f is an integrable function on SMk satisfying the rest
of the hypotheses of part (5) of Theorem 1.5.2, then the associated L function Lf .2s/
converges for Re s > n=2.
Hint. Use a similar argument to that which was used to prove the convergence of
the Eisenstein series (1.245).

Next we want to consider some differential operators on Pk. As in Section 1.1.5,
we write the matrix operator

@=@X D
�
1

2
.1C ıij/

@

@xij

�
; if X D .xij/ 2 Pk: (1.272)
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See formula (1.29) in Section 1.1.5. Now define the determinant operator

@X D det.@=@X/: (1.273)

This is a departure from Section 1.1.5, in which we only considered traces of matrix
operators. However @X did appear in Section 1.2.5. The property of @X that endears
it to us is:

@X expŒTr.XY/� D jYj expŒTr.XY/�: (1.274)

This means that the operator @X annihilates the singular terms 
 r.Y;X/ in (1.269)
when r < k. But @X is not GL.n;R/-invariant. To obtain such an operator, consider
Selberg’s differential operators:

Da D jXja@XjXj1�a; a 2 R: (1.275)

Let �.X/ D X�1 for X 2 Pk and D� f D D.f ı�/ ı��1, for a differential operator D
and a function f W Pk ! C. We know from Theorem 1.2.1 that D� is the conjugate
adjoint D

�
. This allows you to do part (b) of the following exercise.

Exercise 1.5.21. (a) Show that Da defined by (1.275) is indeed a GL.k;R/-
invariant differential operator on Pk; i.e., Da 2 D.Pk/.

(b) Show that if Da is as in (1.275) and if �.X/ D X�1, then

D�
a D D�

a D .�1/kDa� ; where a� D 1 � a C .k C 1/=2:

Hint. For part (b), use integration by parts to find the adjoint of Da.

Exercise 1.5.22. (a) Let Da be as defined in (1.275). Set

D D DaD1 for a D .k � n C 1/=2:

Show that

.D1Da/
� jXjn=2 D jXjn=2DaD1:

(b) Use part (a) to show that if we write 
.Y;X/ D 
Y.X/, then

D
Y.X/ D jYj�k=2jXj�n=2.D
Y�1

/.X�1/:

Exercise 1.5.22 shows that the differentiated theta function D
Y.X/ satisfies
the same transformation formula as 
Y.X/ itself. By formula (1.274) however, the
differentiated theta function is missing all the lower rank terms; i.e.,

D
Y.X/ D D
Y
k .X/:

Note that one should really show that D
Y does not vanish. We certainly did this for
the special case of Riemann’s zeta function in Exercises 1.4.8–1.4.10 of Volume I.
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See also Exercise 1.5.24 below for the case of Koecher’s zeta function. Are we still
under the curse of the higher rank Eisenstein series?

Exercise 1.5.23. Let D be as defined in Exercise 1.5.22 and ��
D.r.f ; s// as defined

in Exercise 1.5.19. Show that

�D�.r.f ; s// D �D�

�
r
�

f �;
n

2
� s
��
;

with f �.X/ D f .X�1/ and D� D the adjoint of D.

It is now possible to complete the proof of part (5) of Theorem 1.5.2 by writing:

ƒ.f ; sjY/ �D�.r.f ; s// D
Z

Mk

D
Y.X/ jXjs f .X0/ d	k.X/:

Break the fundamental domain into two parts according to whether the determi-
nant is greater than one or not. This gives:

ƒ.f ; sjY/ �D�.r.f ; s// D
Z

X2MkjXj�1

C
Z

X2MkjXj�1

In the second integral replace X by X�1 to see that:

ƒ.f ; sjY/ �D�.r.f ; s//

D
Z

X2MkjXj�1

�
jXjsf .X0/D
Y.X/C jYj�k=2jXjn=2�sf �.X0/D
Y�1

.X/
�

d	k.X/:

It is clear from this formula that we have the analytic continuation of ƒ.f ; sjY/ to
all values of s along with the functional equation:

ƒ.f ; s j Y/ D jYj�k=2ƒ
�

f �;
n

2
� s

ˇ̌
ˇ Y�1� ; (1.276)

using Exercises 1.5.22 and 1.5.23. Set n D k and Y D I to obtain the functional
equation in part (5) of Theorem 1.5.2, thus completing the proof of that theorem. �

Exercise 1.5.24 (The Eigenvalue for Koecher’s Zeta Function).

(a) Let the differential operator D1 be defined by (1.275) and the polynomial h.s/
be defined by

D�
1 jXjs D .�1/kh.s/jXjs; for X 2 Pk; s 2 C:
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Show that

h.s/ D
k�1Y

jD0

�
s � j

2

�
:

(b) Use part (a) to show that if @X is defined by (1.273) then

@XjXjs D h.s C .k � 1/=2/jXjs�1:

(c) Let D be the operator defined in Exercise 1.5.22 and let ��
D.r.f ; s// be the

eigenvalue defined in Exercise 1.5.19. Suppose that f is the Maass form that
is identically one. Show that

��
D.r.1; s// D h.s/h.n=2 � s/:

Hint. Compare with Exercise 1.2.31 of Section 1.2.5. We find that:

.�1/k�k.0; : : : ; 0; s/h.s/ D
Z

Pk

expf�Tr.X/g D�
1 jXjs d	k.X/

D
Z

Pk

.D1 expf�Tr.X/g/ jXjs d	k.X/

D .�1/k�k.0; : : : ; 0; s C 1/:

Now we can consider the analytic continuation of the Eisenstein series defined
in formula (1.245).

Corollary 1.5.1 (Analytic Continuation and Functional Equation of the Eisen-
stein Series Ek;n�k.f ; sjY/).

Suppose that f 2 A0.GL.k;Z/; �/ is a Maass form on the determinant one
surface such that f is integrable over the fundamental domain SMk and let f be
an eigenfunction of the Hecke operators Tm for all positive integers m. Suppose
also that Lf .s/ is the L-function associated with f in part (5) of Theorem 1.5.2.
Then the Eisenstein series Ek;n�k.f ; sjY/; 1 � k < n, defined in formula (1.245)
of Section 1.5.1 has analytic continuation to all s 2 C as a meromorphic function.
Moreover it satisfies the functional equation below, using the notation of part (5) of
Theorem 1.5.2:

ƒ.f ; sjY/ D 2��ks�k.r.f ; s//L
�
f .2s/Ek;n�k

�
f �; sj Y

�

D jYj�k=2ƒ
�

f �;
n

2
� s
ˇ̌
ˇY�1� ;

where f �.W/ D f .W�1/.
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Proof. The only chore that remains is the proof of (1.271) when 1 � k < n. To do
this, we need to show that the zeta function defined by:

Z.f ; sjY/ D
X

A2Zn�k rank k=GL.k;Z/

jYŒA�j�s f .YŒA�0/; Res > n=2; (1.277)

has the factorization

Z.f ; sjY/ D Lf .2s/ E.f ; sjY/: (1.278)

Use Lemma 1.5.1 in Section 1.5.1 to see that summing over rank k matrices A 2
Z

n�k modulo GL.k;Z/ is equivalent to summing A D BC over

B 2 Z
n�k; .B 	/ 2 GL.k;Z/=P.k; n � k/;

C 2 Z
k�k; rank k=GL.k;Z/:

Here P.k; n � k/ is the parabolic subgroup defined in formula (1.241) of Sec-
tion 1.4.4. It follows that

Z.f ; sjY/ D
X

B;C

jYŒBC�j�s f .YŒBC�0/

D
X

B

jYŒB�j�s
X

r�1
r�2s

X

jCjDr

f ..YŒB�0/ŒC�0/;

which completes the proof of (1.278). The corollary follows from the proof of part
(5) of Theorem 1.5.2. In particular, the functional equation of the Eisenstein series
is formula (1.276).

Remarks. (1) The method of analytic continuation using differentiated theta func-
tions is magical (and perhaps problematic in general), and it does not appear
to allow one to find the residues of the zeta function (1.277) at s D n=2, for
example. For this, one must investigate the divergent integrals, as Siegel did in
[565, Vol. III, pp. 328–333]. There is also an approach using Fourier expansions
of Maass forms (see Terras [601]) and we will consider this method in the next
section (see (1.308)–(1.310) and Exercise 1.5.35 in Section 1.5.3).

(2) The gamma factors �k.r.f ; s// appearing in the functional equations of the
Dirichlet series Lf .2s/ resemble those in the functional equations of Hecke L-
functions with grossencharacter (see Hecke [268, pp. 215–234, 249–287]). Of
course, for proper congruence subgroups of GL.2/, this fact allowed Maass
[417] to prove the existence of nonholomorphic cusp forms. For GL.n;Z/, one
must generalize Theorem 1.5.5 to congruence subgroups and prove some kind
of a converse theorem in order to obtain results similar to those of Maass.
Jacquet et al. [325] manage this in the language of representations of the
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adelic version of GL.3/ and thus prove the existence of an adelic automorphic
representation of GL.3/ corresponding to L-functions for cubic number fields.

(3) There is a problem with the method of analytic continuation which was
presented in this section since we don’t know where Lf .2s/ vanishes. In the case
of Epstein’s zeta function, the L-function was Riemann’s zeta function. For a
general Maass form f for GL.n;Z/ there is much less known about Lf than there
is about Riemann’s zeta function. The main reference producing a nonvanishing
theorem for the adelic version of L-functions associated with Maass forms for
GL.n/ is the paper of Jacquet and Shalika [327]. See also Goldfeld [230].

(4) We should perhaps say something about the more general Eisenstein series
defined by (1.248). Let us consider the case when q D 2 and the parabolic
subgroup is maximal. When n D n1 C n2 write:

Y D aŒu� with a D
�

a1.Y/ 0

0 a2.Y/

�
; ai.Y/ 2 Pni ; i D 1; 2;

u D
�

In1 X
0 In2

�
; X 2 R

n1�n2 :

(1.279)

Let fi 2 A.GL.ni;Z/; �i/; i D 1; 2; Y 2 Pn; n D n1 C n2, and define the
Eisenstein series:

En1;n2 .f1; f2jY/ D
X

A2GL.n;Z/=P.n1;n2/

f1.a1.YŒA�//f2.a2.YŒA�//: (1.280)

If fi.Y/ D jYjr1' i.Y
0/, with ' i 2 A0.GL.ni;Z/; �i/, the series (1.280) will

converge if ' i is integrable on SMni and Re ri is sufficiently large. For one
can use an integral test based on the integral formula in Exercise 1.4.27 of
Section 1.4.4. In order to obtain an analytic continuation similar to that given in
Corollary 1.5.1, one must relate the Eisenstein series (1.280) to a zeta function:

Zn1;n2 .f1; f2jY/ D
X

A2Zn�n rank n=P.n1;n2/

f1.a1.YŒA�//f2.a2.YŒA�//: (1.281)

Exercise 1.5.25. Suppose that the Maass forms fi in (1.280) can be written:

fi.W/ D jWjri' i.W
0/; with ' i 2 A0.GL.ni;Z/; �i/; ri 2 C;

with Re ri sufficiently large for convergence of the Eisenstein series. Assume that
the Maass forms ' i are eigenfunctions of all the Hecke operators for GL.ni;Z/.
Let L'i

.s/ be the L function associated with such a Maass form as in part (5) of
Theorem 1.5.2. Show that

Z.f1; f2jY/ D E.f1; f2jY/ L'1.2r1/ L'2.2r2/:
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Hint. You need an analogue of Lemma 1.5.1 in Section 1.5.1 to be able to write a
rank n matrix A 2 Z

n�n modulo P.n1; n2/ in the form A D BC with

B 2 GL.n;Z/=P.n1; n2/;

C D
�

C1 D
0 C2

�
; Ci 2 Z

ni�ni rank ni=GL.ni;Z/:

(5) There are many generalizations of the zeta functions and Eisenstein series
considered here. For example, Maass [420] deals with functions generalizing
Z.f ; sjY/ by adding a spherical function u W R

n�k ! C. See also Maass
[421, 422] and Christian [111]. In introducing these Maass zeta functions,
Maass was motivated by the problem of studying the number of representations
of a positive matrix T 2 Pk in the form T D SŒG� for G 2 Z

n�k, with n > k
and S 2 Pn fixed. Maass wanted to study the zeta functions for GL.n/ with the
additional variable coming from spherical functions for Rn�k in order to employ
a method analogous to that used by Hecke for similar problems in algebraic
number fields. The last theorem in the paper of Maass [420] gives the analytic
continuation and functional equations of these zeta functions. Jorgenson and
Lang [335] consider heat kernel Eisenstein series.

The Eisenstein series (1.245) are eigenfunctions of the Hecke operators (1.262).
The following proposition gives an explicit expression for the eigenvalue.

Proposition 1.5.1 (Eigenvalues for the Action of Hecke Operators on Eisenstein
Series). Using the definitions (1.245) of the Eisenstein series E.'; sjY/ and (1.262)
for the Hecke operator T.n/k D Tk, we have:

T.n/k E.'; sjY/ D u.n/k E.'; sjY/;

where

u.n/k D k2ms=n
X

tjk
dn�m

�
k

t

�
tn�m�2s u.m/t :

Here T.m/t ' D u.m/t ' and

where the dj are all nonnegative integers.

dr.�/ D
X

�Dd1��� dr

dr�1
1 dr�2

2 � � � dr�1
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Proof. Let us change our notation slightly from (1.262) and let M.n/
k denote the set of

all n � n matrices of determinant k. Clearly we need representatives of M.n/
k modulo

P.m; n � m/. One can write A 2 M.n/
k as A D BC, with

B D .B1 	/ 2 �n=P.m; n � m/;

C D
�

F H
0 G

�
2 M.n/

k ; F 2 Z
m�m; G 2 Z

.n�m/�.n�m/:

Here P.m; n � m/ is the maximal parabolic subgroup defined in formula (1.241) of
Section 1.4.4.

It follows that the sum over A 2 M.n/
k =P.m; n � m/ is the same as the double sum

over

.B1 	/ 2 �n=P.m; n � m/ and F 2 M.m/
t =�m;

G 2 M.n�m/
k=t =�n�m; H mod F;

for all divisors t of k. The notation “H mod F” denotes a complete set of representa-
tives for the equivalence relation:

H � H0 , H0 D FU C H; for some U 2 Z
m�.n�m/:

The number of H mod F is easily seen to be jFjn�m D tn�m. The number of G 2
M.n�m/

k=t =�n�m is dn�m.k=t/, using the definition of dr.�/ to be found in the statement
of the proposition.

Putting all this together and setting P D P.m; n � m/, we see that

T.n/k Em;n�m.'; sjY/ D P

B2M
.n/
k =�n

X

AD.A1 �/2�n=P
A12Zn�m

'
�

Y ŒBA1�
0
� ˇ̌

Y

k�1=nBA1

�ˇ̌�s

D k2ms=n
X

.A1 �/2M
.n/
k =P

A12Zn�m

'
�

Y ŒA1�
0
�

jY ŒA1�j�s

D k2ms=n
X

.B1 �/2�n=P
B12Zn�m

X

t=k

dn�m
�

k
t

�
tn�m�2s ut '

�
Y ŒB1�

0
�

jY ŒB1�j�s :

This is easily seen to be equal to u.n/k Em;n�m.'; sjY/. �

The next exercise shows that the Eisenstein series (1.280) always satisfy a trivial
functional equation.
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Exercise 1.5.26 (Trivial Functional Equation of the Eisenstein Series). Con-
sider the Eisenstein series (1.280). Define f �.Y/ D f .Y�1/. Prove that

Ek;n�k.f1; f2jY/ D En�k;k
�
f �
2 ; f

�
1 jY�1� :

There is a similar argument relating Eisenstein series for the parabolic subgroup
P.n1; : : : ; nq/ to those for the associated parabolic subgroup P.n�.1/; : : : ; n�.q//,
for any permutation � of q elements.
Hint. If Y is expressed in the form

Y D
�

a1 0

0 a2

�	
In1 X
0 In2



;

then we have

Y�1
�
0 I
I 0

�
D
�

a�1
2 0

0 a�1
1

�	
In2

tX
0 In1



:

Next note that if

! D
�
0 I
I 0

�
;

and we set � D t! t��1!, then � runs through �n=P.k; n � k/ as fast as � runs
through �n=P.n � k; k/.

The functional equation in Exercise 1.5.26 does not extend the domain of
convergence. See Exercise 1.5.39 below for a similar result.

1.5.3 Fourier Expansions of Eisenstein Series

Generalities on Fourier Expansions of Eisenstein Series

Next we plan to study Fourier expansions of Maass forms for GL.n;Z/ using
methods modeled on those of Siegel [565, Vol. II, pp. 97–137]. Before proceeding
further, the reader should review the Fourier expansions of Maass wave forms for
SL.2;Z/ in Exercise 3.5.3 of Volume I. The main results in the present section are
Fourier expansions of Eisenstein series for GL.n/ given in Theorems 1.5.3–1.5.5
from the papers Terras [606] and Kaori Imai (Ota) and Terras [318]. Similar results
are obtained in Terras [596], Takhtadzhyan and Vinogradov [586], and Proskurin
[494]. These results should also be compared with those of Bump [83] and Goldfeld
[230] and we will do so in Section 1.5.4.

Why look at Fourier expansions of Maass forms for GL.n/? There are many
reasons beyond simple curiosity. We will see in Section 1.5.5 that harmonic analysis
on the fundamental domain SPn=GL.n;Z/ requires knowledge of the “constant
term” in the Fourier expansion of Eisenstein series just as it did for SL.2;Z/ in
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Lemma 3.7.1 of Volume I. We will discuss the constant term in a rather simple-
minded way. A more elegant theory of the constant term has been developed (see
Arthur’s talk in Borel and Casselman [66, Vol. I, pp. 253–274], Harish-Chandra
[262], and Langlands [392]) as well as Section 1.5.4. Of course the constant term
will not be a constant in our case. It was not even a constant in the case of Maass
wave forms for SL.2;Z/.

There are also reasons for considering the “nonconstant terms” in these Fourier
expansions. For example, we saw in Section 3.6 of Volume I that, in the case
of SL.2;Z/, a knowledge of the exact form of the nonconstant terms was useful
in our quest to understand Maass’s extension of Hecke’s correspondence between
modular forms and Dirichlet series (Theorem 3.6.2, Vol. I). In particular, the Fourier
expansion of the Eisenstein series for SL.2;Z/, given in Exercise 3.5.4, Vol. I, has
had many applications in number theory. Many of these applications stem from
the Kronecker limit formula (to be found in Exercise 3.5.6, Vol. I). Hecke [268,
pp. 198–207] noticed that the Fourier expansion of Epstein’s zeta function (see
Proposition 1.5.2 below) gives a Kronecker limit formula for zeta functions of
number fields. See Theorem 1.4.2 of Vol. I and Bump and Goldfeld [89]. However
the analogue of the Dedekind eta function �.z/ has yet to be completely understood
for GL.n/; n > 2. Efrat [153] obtains an analogue of j�.z/j which is a harmonic
Maass form for SL.3;Z/ of weight 1

2
and considers the consequences for cubic

number fields. Bill Duke and Özlem Imamoglu [148] consider analogues of j�.z/j
for GL.n/. Siegel [563] found that Hecke’s result could be generalized to Hecke
L-functions with grossencharacter. Takhtadzhyan and Vinogradov [586] have also
announced applications of Fourier expansions of Eisenstein series for GL.3/ to the
theory of divisor functions.

There has, in fact, been much work on Fourier expansions of Maass forms
for general discrete groups � acting on symmetric spaces X D KnG such that
the fundamental domain X=� has “cusps.” For example, Siegel considered X D
SU.n/nSp.n;R/ and � D Sp.n;Z/, the Siegel modular group. In this case, X can
be identified with the Siegel upper half space Hn; consisting of X C iY; with X
and Y real n � n symmetric matrices and positive Y; to be considered in Chapter 2.
Siegel obtained the Fourier expansions of holomorphic Eisenstein series (see Siegel
[565, Vol. II, pp. 97–137], Baily [32, pp. 228–240], and Chapter 2). Baily [32,
p. 238] uses the rationality and bounded denominators of the Fourier coefficients
in these expansions to show that the Satake compactification of X=� is defined
over the field of rational numbers as an algebraic variety. Fourier expansions of
non-holomorphic Eisenstein series for Sp.n;Z/ have been obtained by Maass [426,
Section 18]. The arithmetic parts of both the holomorphic and non-holomorphic
Eisenstein series are “singular series” or divisor-like functions (see the discussion
in Exercise 3.5.4, Vol. I). The non-arithmetic or analytic part in the holomorphic
case is expf�Tr.NY/g, for Y 2 Pn; N a nonnegative symmetric half-integral n � n
matrix. Here “half-integral” means that 2nij 2 Z, when i ¤ j and nii 2 Z. And N
“nonnegative” means that NŒx� � 0 for all x 2 R

n. In the non-holomorphic case, the
non-arithmetic part is a matrix analogue of a confluent hypergeometric function of
the sort which was studied in Section 1.2.2. We will obtain similar results for GL.n/.
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It is also possible to obtain Fourier expansions of Eisenstein series for congruence
subgroups of SL.2;OK/, where OK is the ring of integers of a number field. This
will be discussed in the next chapter. Such Fourier expansions have been used by
number theorists to study Gauss sums and elliptic curves for example (see Kubota
[376], Heath-Brown and Patterson [267], and Goldfeld et al. [231]).

Many authors take an adelic representation-theoretic approach to the subject of
Fourier expansions for GL.n/. See, for example, Jacquet et al. [325]—a paper which
makes use of Whittaker models for representations. Stark [578] indicates a way to
bridge the gap between the classical and adelic points of view. See also Rhodes
[510].

From our earlier study of the case of SL.2/, in view of work of Harish-
Chandra and Langlands, we should be willing to believe that the spectral measure
in the spectral resolution of the Laplacian on L2.SPn=GL.n;Z// comes from
the asymptotics and functional equations of the Eisenstein series. Knowing the
asymptotic behavior of the Eisenstein series as the argument Y�Pn approaches the
boundary of the fundamental domain is the same as knowing the “constant term” in
the Fourier expansion. Let us attempt to find a simple-minded way of obtaining this
constant term in the region where the Dirichlet series defining EP.'; sjY/ converges.
That is we want to find a generalization of the method we had in mind for part (b)
of Exercise 3.5.2 of Volume I.

As our first example, consider the Eisenstein series Em;n�m.'; sjY/ defined in
formula (1.245) of Section 1.5.1. Let Y 2 Pn have partial Iwasawa decomposition:

Y D
�

V 0

0 W

�	
I X
0 I



; V 2 Pm; W 2 Pn�m; X 2 R

m�.n�m/:

Recall that the Eisenstein series Em;n�m.'; sjY/ was defined in formula (1.245) of
Section 1.5.1 as:

Em;n�m.'; sjY/ D
X

AD.A1�/��n=P

'
�

Y ŒA1�
0
�

jY ŒA1�j�s ; for Re s > n=2;

where �n D GL.n;Z/ and P D P.m; n � m/. Here we assume that the Maass form
' 2 A0.GL.m;Z/; �/ is bounded on the determinant one surface of the fundamental
domain. Write

A1 D
�

B
C

�
; B 2 Z

m�m; so that YŒA� D VŒB C XC�C WŒC�:

If W approaches infinity in the sense that the diagonal entries in its Iwasawa
decomposition all approach infinity, then it is not too hard to see that when Re s >
n=2, the term jYŒA�j�s must approach zero unless C D 0. It follows that A 2 P and
so A D I. Thus we find that for fixed s with Res > n=2

Em;n�m.'; sjY/ � '
�
V0
� jVj�s;
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as W goes to infinity in the sense described above. When s is not in the region of
convergence of the Dirichlet series, the functional equation can add in other terms to
this asymptotic formula—a phenomenon that we saw already in the case of SL.2;Z/
in Section 3.5 of Volume I.

The preceding example is a little too simple-minded perhaps. So let us try to
be a little more explicit about the approach to the boundary of the fundamental
domain while attempting to consider the more general Eisenstein series defined by
formula (1.280) in Section 1.5.2. We also want to relate all this to the theory of
roots, parabolic subgroups, and Bruhat decompositions.

These considerations lead us to examine the possible ways of approaching the
boundary of our fundamental domain. For concreteness, let us consider only the
case of GL.4/. In this case we can write

Y D AŒn�; where A D

0

BB
@

a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4

1

CC
A and n D

0

BB
@

1 	 	 	
0 1 	 	
0 0 1 	
0 0 0 1

1

CC
A :

The ways of approaching the boundary of SP4=GL.4;Z/ can be described by
subsets of the set of quotients ai=aj; i < j, which are allowed to approach
zero. These quotients are the multiplicative version of “roots” to be discussed in
Chapter 2. See Figure 1.30 for a diagram of the various sets of roots giving ways of
approaching the boundary, as well as the corresponding parabolic subgroups.

The general theory of parabolic subgroups says that they correspond to sets J of
simple roots ˛i.a/ D ai=aiC1 (see Borel’s article in Borel and Mostow [68, pp. 1–
19]) via:

\

˛2J

ker ˛ D SJ; PJ D Z.SJ/N; (1.282)

Fig. 1.30 Subgroups of GL.4/ and ways to approach the boundary of P4=GL.4;Z/. Arrows
indicate containment
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where N is the nilpotent or unipotent subgroup of upper triangular matrices with
ones on the diagonal and Z.SJ/ denotes the centralizer of SJ . Let W be the Weyl
group of all permutation matrices in K (cf. Exercise 1.5.30 below). Denote by wi the
Weyl group element (which is almost the n � n identity matrix except for a 2 � 2

matrix on the diagonal at row i):

wi D

0

BBB
BBBBBB
BBBB
@

1 � � � 0 0 0 0 � � � 0
:::
: : :

:::
:::
:::
::: � � � :::

0 � � � 1 0 0 0 � � � 0
0 � � � 0 0 1 0 � � � 0
0 � � � 0 �1 0 0 � � � 0
0 � � � 0 0 0 1 � � � 0
::: � � � ::: :::

:::
:::
: : :

:::

0 � � � 0 0 0 0 � � � 1

1

CCC
CCCCCC
CCCC
A

;

where there are i � 1 ones on the

diagonal, then a 2 � 2 matrix,

�
0 1

�1 0
�

then .n � i � 1/ ones on the diagonal,
with the other entries being 0.

(1.283)

This matrix represents the permutation that interchanges i and i C 1, leaving all else
fixed. Then set

WJ D the group generated by the wi for ˛i 2 J:

One can show that PJ D BWJB, where B is the Borel or minimal parabolic
subgroup B D P.1; 1; : : : ; 1/, using the notation (1.241) from Section 1.4.4. The
Bruhat decomposition of GL.n;R/ corresponding to parabolic subgroups PJ and
PJ0 , is:

GL.n;R/ D
[

w2WJnW=WJ0

PJwPJ0 .disjoint/: (1.284)

This result was discussed by Curtis [127]. We will consider only some special cases
in what follows (see Exercises 1.5.29 and 1.5.36 as well as Lemma 1.5.5 below).

Now let’s look at some simple examples of (1.282).

Example 1.5.1. P.3; 1/ corresponds to the group generated by w1;w2 and the set

J D fa1=a2; a2=a3g

of simple roots.
The roots in Figure 1.30 which correspond to the parabolic subgroup P.3; 1/ are

fa1=a4; a2=a4; a3=a4g. The complement of this set is the set formed from roots in
J and products of roots in J.
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Example 1.5.2. P.2; 2/ corresponds to the group generated by w1 and w3 and the
set

J D fa1=a2; a3=a4g

of simple roots.
Now the roots in Figure 1.30 which correspond to P.2; 2/ form the set

fa1=a3; a1=a4; a2=a3; a2=a4g which is the complement of J.

Now we want to know how the Eisenstein series E2;2 behaves as Y approaches
the boundary in the direction corresponding to the parabolic subgroup P.2; 2/. We
use the notation:

Ai D
�

ai 0

0 aiC1

��
1 xi

0 1

�
; i D 1; 3I

Y D I

	�
A1 0

0 A3

��
I2 X3
0 I2

�

:

Regard again the Eisenstein series E2;2.f1; f2jY/ in (1.280) with fi.W/ D
jWjrivi.W0/; vi 2 A0 .GL.ni;Z/; �i/. It will be shown that for Re .r1 � r2/ > 2,
there is the following asymptotic formula:

E2;2.f1; f2jY/ � f1.A1/f2.A3/; as A1A
�1
3 ! 0: (1.285)

Here “A1A�1
3 ! 0” means that a1=a3; a1=a4; a2=a3; a2=a4 all approach zero.

To prove (1.285), note that upon setting

a D
�

A1 0

0 A3

�
; n0 D

�
I2 X3
0 I2

�
;

� D
�
�11 �12
�21 �22

�
; � ij 2 Z

2�2;

then Y D IŒan� and

YŒ� � D IŒan�� D IŒana�1a�a�1a�

D I

" 
I2 A1X3A�1

3

0 I2

! 
A1�11A

�1
1 A1�12A

�1
3

A3�21A
�1
1 A3�22A

�1
3

!

a

#

:

The first matrix in the last bracket approaches the identity as A1A�1
3 approaches

zero (see the discussion following for more details). In order for the 2nd matrix in
brackets to remain finite (as well as the corresponding term in the Eisenstein series),
the block entry �21 must vanish. Thus � must be in P.2; 2/. So we must be looking at
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a term of the Eisenstein series which corresponds to the coset of the identity matrix.
To see this in more detail, note that

A1X3A
�1
3 D

�
1 0

x1 1

��
a1 0

0 a2

�
X4

�
a�1
3 0

0 a�1
4

��
1 0

�x3 1

�
;

where

X4 D
�

u v

y z

�
D
�
1 x1
0 1

�
X3

�
1 �x3
0 1

�
:

It follows that

A1X3A
�1
3 D

�
1 0

x1 1

� a1ua�1
3 a1va�1

4

a2ya�1
3 a2za�1

4

!�
1 0

�x3 1

�
:

This certainly approaches zero as a1=a3; a1=a4; a2=a3; a2=a4 all approach zero.
Similarly, each entry in A3�21A

�1
1 must approach infinity unless �21 vanishes. Note

that the corresponding term of the Eisenstein series involves

ˇ̌
ˇ̌I
	

A1.�11 C X3�21/A
�1
1

A3�21A
�1
1


ˇ̌
ˇ̌
r2�r1

:

So we are looking at a term jIŒB�C IŒC�js, where Re s < 0, and the eigenvalues of
B remain bounded while those of C become infinite unless �21 vanishes. Therefore
this term goes to zero unless �21 is zero and then � D I. So we obtain (1.285).

To complete the discussion of E2;2, one should note that if we let Y approach the
boundary in a direction dictated by some other parabolic subgroup such as P.3; 1/,
then we will see it approach zero, under the hypothesis that v2 is a cusp form. For
example, consider the behavior of E2;2 as Y approaches the boundary in the direction
corresponding to P.3; 1/; i.e., as ai=a4 ! 0, for i D 1; 2; 3. Note that we can let
ai=a4 approach zero so that the quotients:

a1
a3

D a1=a4
a3=a4

and
a2
a3

D a2=a4
a3=a4

both approach zero. This puts us in the situation that we just encountered, except
that, in addition, we are letting a3=a4 approach zero. Now if v2 is a cusp form

v2.A
0
3/ ! 0 as a3=a4 ! 0;



282 1 The Space Pn of Positive n � n Matrices

because

A03 D
�p

a3=a4 0

0
p

a4=a3

� �
1 x2
0 1

�
:

The usual discussions of the asymptotics of Eisenstein series involve the
computation of integrals like the following integral which represents the zeroth
Fourier coefficient of Em;n�m with respect to P.m; n � m/:

Z

X2.R=Z/m�.n�m/

Em;n�m

�
f

ˇ̌
ˇ̌ Y

	
I X
0 I


�
dX:

See, for example, Langlands [392] and Goldfeld [230], plus Section 1.5.4. The
general result obtained by Langlands says that the constant term for EP involves
a sum over the Weyl group WJ associated with P D PJ by (1.282). The terms in
this sum are of the sort obtained in (1.285) multiplied by factors appearing in the
functional equations of the Eisenstein series. In order to connect the two methods,
one must understand the asymptotic behavior of the terms in the Fourier expansions
of the Eisenstein series.

It would also be interesting to clarify the connection between the various notions
of approach to the boundary of the fundamental domain and the compactifications
of the fundamental domain that have been considered by authors such as Satake
[532], Baily and Borel [33], Borel and Serre [69], and Ash et al. [30]. See also
Freitag [185] and Goresky [236]. To create a compactification, Satake adjoins to a
fundamental domain Fn for GL.n;Z/ a union of lower rank fundamental domains
Fm and defines approach of Y 2 Fn to an element V� of the lower rank fundamental
domain Fm if

Y D
�

V 0

0 W

�	
I X
0 I



; V 2 Pm; W 2 Pn�m; X 2 R

m�.n�m/; (1.286)

and V approaches V� while W approaches infinity in the sense that the diagonal part
in the Iwasawa decomposition of W goes to infinity.

It would also be useful to clarify the connections with the truncations used by
Langlands and Arthur [25] in the continuous spectrum integrals of Eisenstein series
appearing in the trace formula. See Section 1.5.4.

We will discuss several methods of obtaining Fourier expansions. The first
method comes from Terras [595, 606] and goes back to the paper of Chowla and
Selberg [107] which makes use of theta functions. The other methods are analogous
to that used by Siegel [565, Vol. II, pp. 97–137] for Sp.n;Z/ and come from Kaori
Imai (Ota) and Terras [318].

First note that, for any Maass form f 2 A.GL.n;Z/; �/, the function f .Y/ must
be a periodic function of each entry of the matrix X when Y has the partial Iwasawa
decomposition (1.286) above. Therefore f .Y/ must have a Fourier expansion:
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f .Y/ D
X

N2Zn�.n�m/

cN.V;W/ expf2� i Tr.tNX/g: (1.287)

Many authors have obtained such expansions. The case that jYj D 1; n D 2, is
considered in Exercise 3.5.3, Volume I. Here we are mainly motivated by the work
of Siegel [565, Vol. II, pp. 97–137] and Maass [426] for Sp.n;Z/. See also Freitag
[185].

The terms cN.V;W/ in the Fourier expansion (1.287) always have two parts. For
Eisenstein series, one part is arithmetic—either a singular series (for an Eisenstein
series defined as a sum over �n=P) or a divisor-type function (for an Eisenstein series
defined as a sum over rank m matrices in Z

n�m=�m). When n D 2, the arithmetic
part of the kth Fourier coefficient of the Eisenstein series is:

ks
X

0<tjk
t1�2s D ks�1�2s.k/; (1.288)

where � s denotes the divisor function. The singular series version of this is:

X

c>0;d mod c
gcd .d;c/D1

c�2s exp.2� ikd=c/ D �1�2s.k/= �.2s/: (1.289)

We found in Terras [596] (see Exercise 1.5.36) that the arithmetic part of the term
corresponding to N 2 Z

m�.n�m/ of rank m in Em;n�m.1; sjY/ is essentially the
singular series:

X

R2.Q=Z/m�m

�.R/�2s exp
˚
2� i Tr

�
tR N

��
: (1.290)

Here �.R/ is the product of the reduced denominators of the elementary divisors
of R. Siegel [565, Vol. II, pp. 97–137] obtains an analogous result for holomorphic
Eisenstein series for Sp.n;Z/. Maass [426, Section 18] does the non-holomorphic
case for Sp.n;Z/. Lower rank terms are more complicated to describe. For example,
the “most singular” term listed in Maass [426, p. 307] required quite a long
computation. We will find here that the arithmetic part of Fourier expansions of
E.'; sjY/ cannot be separated out so easily for general ' 2 A0.�m; �/.

The terms in the Fourier expansion (1.287) of a Maass form f 2 A0.�n; �/ will
have a second part which is analytic—a matrix argument confluent hypergeometric
function. For GL.n;Z/ one obtains analogues either of K-Bessel or Whittaker
functions. We work mostly with K-Bessel functions because we are attempting
to stay close to the Siegel-type Fourier expansions. We should caution the reader
that most researchers use a slightly different formulation (see Jacquet [323], Bump
[83], Goldfeld [230], Proskurin [494]). We will discuss the connections between the
K-Bessel function expansions and the Whittaker function expansions in Section
1.5.4. See also Grenier [243].
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As we mentioned, the Fourier expansion (1.287) is analogous to that for Siegel
modular forms. Koecher [359] proved that in the definition of holomorphic Siegel
modular forms for Sp.n;Z/, one needs no hypothesis on the behavior of the form at
infinity when n � 2 to rule out terms expf�Tr.NY/g, where N is not nonnegative.
See also Maass [426, pp. 185–187] and Chapter 2. It would be interesting to know
whether a similar phenomenon occurs for GL.n;Z/—ruling out the analogues of I-
Bessel functions in Fourier expansions (1.287) without explicitly assuming the third
hypothesis in the definition (1.242) of Maass form for GL.n;Z/.

I. Method of Chowla and Selberg

This method is a generalization of that of Chowla and Selberg [107]. See Volume I,
p. 263. In Proposition 1.5.2 we consider the method for the special case of Epstein’s
zeta function. Then in Theorem 1.5.3 we consider only the terms of maximal rank
in Fourier expansions of Eisenstein series Em;n�m with respect to the parabolic
subgroup P.m; n � m/.

Proposition 1.5.2 (Fourier Expansions of Epstein’s Zeta Function). Let
Z1;n�1.1; sjY/ be Epstein’s zeta function, defined for Re s > n=2 and Y 2 Pn

by:

Z1;n�1.1; sjY/ D 1

2

X

a2Zn�0
YŒa��s:

Here we use the notation (1.277) in Section 1.5.2 rather than (1.173) of Sec-
tion 1.4.1. If Y has the partial Iwasawa decomposition (1.286), then we have the
following Fourier expansion of the normalized Eisenstein series:

ƒ1;n�1.1; sjY/ + 2��s�.s/Z1;n�1.1; sjY/
D ƒ1;m�1.1; sjV/C 1pjVjƒ1;n�m�1

�
1; s � m

2

ˇ̌
W
�

C 2pjVj
X

0 ¤ b 2Zm

0 ¤ c 2Zn�m

e2� i tbXc
�

V�1Œb�
WŒc�

� 2s�m
4

Ks� m
2

�
2�
p

V�1Œb�WŒc�
�
:

Here Ks.y/ is the usual K-Bessel function defined by the formula in Exercise 3.2.1
on p. 166 of Volume I.

Proof (Compare Epstein [169], Terras [595]). We know that (as in part (a) of
Exercise 1.4.7 on p. 65 of Volume I):

ƒ1;n�1.1; sjY/ D
Z

t>0
ts�1
1.Y; t/ dt;
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where


1.Y; t/ D
X

0¤a2Zn

expf��YŒa�tg:

Write

a D
�

b
c

�
; with b 2 Z

m:

Then YŒa� D VŒb C Xc�C WŒc�. We can split the sum defining 
1 into two parts—
that consisting of terms with c D 0 and the rest. The part of the sum with c D 0

gives ƒ1;m�1.1; sjV/. The rest of the terms have c ¤ 0 and thus b is summed over
all of Zm and we can apply Poisson summation to obtain:

X

b2Zm

expf��VŒb C Xc�tg D jVj�1=2t�m=2
X

b2Zm

exp
˚
2� i tbXc � �V�1Œb�t�1

�
:

Substitute this into our integral and obtain the result, since the b D 0 term gives

jVj�1=2ƒ1;n�m�1.1; s � m=2jW/

and the rest of the terms come from summing over nonzero b and c:

jVj�1=2 exp
˚
2� i tbXc

� Z

t>0

ts�1�m=2 exp
˚��.V�1Œb�t�1 C WŒc�t/

�
dt:

The integral is easily evaluated in terms of the ordinary K-Bessel function to
complete the proof. �

Exercise 1.5.27. (a) Prove that if Y has the partial Iwasawa decomposition (1.286)
with v > 0, W 2 Pn�1; X 2 R

1�.n�1/ in the case m D 1, and if Re s > n=2,
then

E1;n�1.1; sjY/ � v�s;

as W approaches infinity in the sense that the diagonal elements in the Iwasawa
decomposition of W all approach infinity.

(b) Use Proposition 1.5.2 to deduce the functional equation of Epstein’s zeta
function.

(c) Use Proposition 1.5.2 to find an analogue of the Kronecker limit formula from
Exercise 3.5.6 on p. 264 of Volume I.

Hint. See Terras [595] and Efrat [153].

Theorem 1.5.3 (Highest Rank Terms in the Fourier Expansion of an Eisen-
stein Series). Consider the Eisenstein series Em;n�m.'; sjY/ defined in (1.245)
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of Section 1.5.1 in the special case that ' is Selberg’s Eisenstein series; i.e.,
'.W/ D E.m/.rjW/; r 2 C

n�1, as defined in (1.249) of Section 1.5.1. Suppose
that m < n=2. Then when N 2 Z

m�m is non-singular, the Nth Fourier coefficient in
the expansion (1.287) of the normalized Eisenstein series

ƒ.'; sjY/ D 2��ms�m.r.'; s//L'�.2s/Em;n�m.'
�; sjY/

as in (1.271) and Exercise 1.5.19 of Section 1.5.2 is:

2jVj�m=2
X

DjZ
D2Zm�m=�m

p�r.IŒD�/
X

a2P.m/n�m

Km
��r; s � m=2

ˇ̌
�W


tN ta

�
; �V�1 a�1� � ;

where “DjN” means that there is a matrix C in Z
.n�m/�m such that N D D tC. This

says that each elementary divisor in D divides the corresponding elementary divisor
in N:

Proof (Terras [606]). The proof will be similar to that of Proposition 1.5.2. Begin
with formulas (1.270) and (1.271) for the normalized Eisenstein series:

ƒ.f ; sjY/ D
Z

H2Mm

'.H0/jHjs
m.Y;H/ d	m.H/: (1.291)

Since we have the partial Iwasawa decomposition (1.286), we find that the partial
theta function can be written in the following way for B 2 Z

m�m:


m.Y;H/ D
X

0

B
@

B
C

1

C
A2Zn�m ; rank m

exp

�
��Tr

�
Y

	
B
C



H

��

D
X

0

B
@

B
C

1

C
A2Zn�m ; rank m

expf��Tr.VŒB C XC�H C WŒC�H/g:

The terms of maximal rank in the Fourier expansion of Em;n�m correspond to
the matrices C of rank m in Z

.n�m/�m. We shall not consider the other terms here.
For such terms B is summed over the full lattice Z

m�m and we can use Poisson
summation on B. This leads to the following formula for the terms with C of rank m
in 
m.Y;H/:

jHj�m=2jVj�m=2
X

B2Zm�m

exp
˚
2� iTr

�
tBXC

� � �Tr
�
V�1ŒB�H�1�� :
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Substitute this into (1.291) to find that the terms with C of rank m are:

jVj�m=2
X

B 2Zm�m rank m=�m

C 2Z.n�m/�m rank m=�m

exp
˚
2� iTr

�
C tBX

��
I
�
'; s � m

2

ˇ
ˇ
ˇ �WŒC�; �V�1ŒB�

�
;

(1.292)
where for F;G 2 Pm; s 2 C:

I.'; sjF;G/ D
Z

H2Pm

jHjs ' �H0
�

exp
˚�Tr.FH C GH�1/

�
d	m.H/: (1.293)

From Lemma 1.5.4 below, we see that (1.292) is equal to

2jVj�m=2
X

B 2Zm�m rank m=�m

C 2Z.n�m/�m rank m

exp
˚
2� iTr

�
C tBX

��

�
X

u2P.m/n�m

Km

�
�r; s � m

2

ˇ̌
ˇ �W


C tu

�
; �V�1ŒBu�1�

�
:

To finish this proof, we need to make use of another kind of Hecke operator to
move the B around to be next to C in

I
�
'; s

ˇ̌
�WŒC�; �V�1ŒB�

�
:

These Hecke operators are associated with a matrix N 2 Z
m�.n�m/ and defined for

f W Pm ! C by;

TNf .Y/ D
X

B 2Zm�m=�m

N D B tC; for some
C 2Z.n�m/�m

f .YŒB�/: (1.294)

Then we have exercise 1.5.28 below to finish the proof of Theorem 1.5.3. �

Lemma 1.5.4. Suppose A;B 2 Pm; r 2 C
m;Re ri > 1: If E.m/.rjY/ is the Eisenstein

series (1.247), in Section 1.5.1, we have the following expression for the integral
from formula (1.293) above involving K-Bessel functions from formula (1.61) of
Section 1.2.2:



288 1 The Space Pn of Positive n � n Matrices

I
�

E.m/.rj	/; s
ˇ̌
F;G

� D
Z

H2Pm

jHjs E.m/.rjH/ exp
n
�Tr

�
FH C GH

�1
�o

d	m.H/

D 2
X

u2P.m/n�m

Km

�
�r C .0; s/

ˇ̌
ˇF


tu
�
;G
h
u

�1
i�
:

Proof. Let N be the nilpotent subgroup of GL.n;R/ consisting of all upper
triangular matrices with ones on the diagonal. We find that

2

Z

H2Pm

E.m/.rjH/ exp
˚�Tr.FH C GH�1/

�
d	m.H/

D
Z

Y2Pm=�m

X

���m=�m\N

p�r.YŒ� �/
X

�2�m

exp
n
�Tr

�
FYŒ� �C G.YŒ� �/

�1
�o

d	m.Y/

D
Z

Y2Pm=N

p�r.Y/
Z

n2N=N\�m

X

�2�m

exp
n
�Tr

�
FYŒn��C G.YŒn��

�1
�o

dn d	m.Y/:

Here the factor of “2” comes from the order of the center of �m. On the other hand,

Km.�rjA;B/ D
Z

Y2Pm=N

p�r.Y/
Z

n2N

exp
n
�Tr .AYŒn�C B.YŒn�/

�1
o

dn d	m.Y/:

Thus it suffices to show the easily verified identity:

Z

n2N=N\�m

X

�2�m

exp
n
�Tr .FYŒn��C G.YŒn��/

�1

/
o

dn

D
X

u2�m\Nn�m

Z

n2N

exp
n
�Tr

�
F


tu
�

YŒn�C G
h
u

�1
i
.YŒn�/

�1
�o

dn:

This completes the proof of the lemma. �

Exercise 1.5.28. (a) Show that if TN is as in formula (1.294), for N 2 Z
m�.n�m/ of

rank m (assuming that m > n � m),

TNE.m/.rjY/ D aN.r/E.m/.rjY/;
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where

aN.r/ D
X

DjN
D2Zm�m=�m

p�r.IŒD�/:

Here DjN means that there is a matrix C 2 Z
.n�m/�m such that N D D tC.

(b) Use part (a) to finish the proof of Theorem 1.5.3.

It would be interesting to use similar methods to find the lower rank Fourier
coefficients and to deal with the case that ' is a cusp form rather than an Eisenstein
series, but we shall not do that here.

Now let us consider other methods for finding Fourier expansions of Eisenstein
series.

II. Methods of Imai and Terras [318] and Terras [596]

The prerequisite for Fourier expansions of Eisenstein series using the method of
Siegel (see Baily [32, pp. 228–240], Maass [426, pp. 300–308], Siegel [565, Vol. II,
pp. 97–137], and Terras [596]) is the Bruhat decomposition or some related matrix
decomposition.

Exercise 1.5.29 (The Bruhat Decomposition of SL.n;Q/ with Respect to
P.n � 1; 1/).

Let P.n � 1; 1/ D P � G D SL.n;Q/ be defined as in (1.241) of Section 1.4.4
by:

P D
� �

A b
0 c

�
2 G

ˇ̌
ˇ̌ A 2 GL.n � 1;Q/; b 2 Q

n�1; c 2 Q � 0
�
:

Show that we have the following disjoint union:

SL.n;Q/ D P [ .P�P/;

where

� D
0

@
0 0 1

0 In�2 0

�1 0 0

1

A :

Hint. Note that a matrix

�
E F
g h

�
2 SL.n;Q/ with E 2 Q

.n�1/�.n�1/; h 2 Q;

lies in P�P if and only if the rank of g is one.
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The result of Exercise 1.5.29 should be compared with the general Bruhat
decomposition (1.284). Next let us consider another view of the Weyl group W of
all permutation matrices in K. Define the following subgroups of K D O.n/:

M D the centralizer of A in K D ˚
k 2 K

ˇ̌
kak�1 D a; for all a 2 A

�
;

M0 D the normalizer of A in K D ˚
k 2 K

ˇ̌
kak�1 2 A; for all a 2 A

�
:

�

(1.295)

Here A is the group of all positive diagonal n�n matrices, as usual. The Weyl group
W of GL.n/ can then be defined to be

W D M0=M: (1.296)

We can identify W with the group of permutations of n elements, as the following
exercise shows.

Exercise 1.5.30. (a) Show that M defined by (1.295) consists of all diagonal
matrices with entries ˙1 (see the definition of the boundary of G=K in (1.19)
of Section 1.1.4).

(b) Show that M0 in (1.295) consists of all matrices such that each row or column
has exactly one nonzero entry equal to ˙1.

(c) Show that the Weyl group of GL.n;R/ can be identified as the group of
permutations of n elements.

Exercise 1.5.31. Show that formula (1.284) agrees with the decomposition in
Exercise 1.5.29 when n D 3.
Hint. When P D P.2; 1/, what is J? You need to look at

0

@
b1 b2 b3
0 b4 b5
0 0 b6

1

A

0

@
g1 g2 g3
h1 h2 h3
0 0 j3

1

A :

To put this matrix into B D P.1; 1; 1/, the Borel or minimal parabolic subgroup,
requires the ability to interchange the rows of g’s with the row’s of h0s. So J
corresponds to the permutation matrix w1 in the notation (1.283).

What is WJnW=WJ? Clearly representatives are the permutation matrices corre-
sponding to the identity and the transposition (13).

Lemma 1.5.5 (The Bruhat Decomposition for the Minimal Parabolic or Borel
Subgroup B D P.1; : : : ; 1/).

Let k denote any field. Then we have the disjoint union:

GL.n; k/ D
[

w2W

BwB;

where W is the Weyl group of all permutation matrices.
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Proof. Note that given g 2 GL.n; k/, there is an element b 2 B such that the first
nonzero entry in each row of the matrix bg must occur in a different position for
each row. Thus we can find an element w 2 W to put the rows of wbg in the correct
order to form an element of B. �

Exercise 1.5.32. Use Lemma 1.5.5 to obtain part of Lemma 1.3.2 of Section 1.3.3
which says that G D SL.n;R/ has the form:

G D .NB/ [ .something lower dimensional/;

where N denotes the subgroup of all lower triangular matrices with ones on the
diagonal and B is the Borel or minimal parabolic subgroup of all upper triangular
matrices in G.
Hint. Note that

0

BB
BBB
@

0 � � � 1
:::

�
�

�
:::

1 � � � 0

1

CC
CCC
A

N

0

BB
BBB
@

0 � � � 1
:::

�
�

�
:::

1 � � � 0

1

CC
CCC
A

D N:

Lemma 1.5.6 (Coset Representatives à la Bruhat). Suppose that P D P.n�1; 1/.
The cosets in SL.n;Z/=P can be represented by

S�
1 [ S�

2 ;

where S�
1 D fIg and

S�
2 D

8
<

:

 
tA

�1
0

0 1

!

nq�pq

ˇ̌
ˇ̌
ˇ
ˇ

A 2 SL.n � 1;Z/=P.1; n � 2/
q D e=f ; f � 1; gcd.e; f / D 1

e; f 2 Z

9
=

;
;

with

nq D
0

@
1 0 q
0 In�2 0

0 0 1

1

A ; � D
0

@
0 0 1

0 In�2 0

�1 0 0

1

A ; pq D
0

@
f 0 g
0 In�2 0

0 0 1=f

1

A ;

if eg 
 1.mod f /; 0 � g < f .

Proof (Kaori Imai (Ota)). The general idea is to use the method of Baily [32] and
Terras [596]. This requires Exercises 1.5.29 and 1.5.33. We shall write PQ when
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we wish to consider the parabolic subgroup in SL.n;Q/ and PZ when we want the
parabolic subgroup of SL.n;Z/. Define

T W PQ ! .SL.n;Z/ \ PQ�PQ/=PZ;

by T.p/ D p�p0.mod PZ/, for p 2 PQ. Here p0 is chosen in PQ to put p�p0 in
SL.n;Z/. This is possible by Exercise 1.5.33.

Then matrix multiplication shows �p D p0� is equivalent to:

p D
0

@
a 0 0

c D e
0 0 g

1

A ; with D 2 Q
.n�2/�.n�2/:

So define

P�
Q

D
8
<

:
p D

0

@
a 0 0

c D 0

0 0 g

1

A

ˇ̌
ˇ̌
ˇ̌ p 2 SL.n;Q/; D 2 Q

.n�2/�.n�2/
9
=

;
:

Finding the coset representatives for SL.n;Z/=PZ is the same as reducing p 2 PQ

modulo P�
Q

. Representatives for PQ=P�
Q

are:

�
tA�1 tA�1c
0 1

�
; A 2 SL.n � 1;Z/=P.1; n � 1/Z; c D

�
q
0

�
; q 2 Q:

The equality p�p0 D p1�p0
1 with p; p1; p0; p0

1 2 PQ implies p�1
1 p 2 P�

Q
. Thus if

p D
�

tA�1 0

0 1

�
nq;

then T.p/ D p�p0 gives a complete set of representatives for

SL.n;Z/ \ .PQ�PQ/=PZ:

Finally it must be proved that if q D e=f ; f > 1; gcd.e; f / D 1, then

p0 D
0

@
f 0 g
0 In�2 0

0 0 1=f

1

A ; with eg 
 1.mod f /:

To see this, write

tA�1 D
�

a b
c D

�
; D 2 Z

.n�2/�.n�2/:
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Then

�
tA�1 0

0 1

�
0

@
1 0 q
0 In�2 0

0 0 1

1

A

0

@
0 0 1

0 In�2 0

�1 0 0

1

A p0

D
0

@
�ae b a.�qg C 1=f /
�ce d c.�qg C 1=f /
�f 0 �g

1

A :

Clearly the matrix on the right lies in SL.n;Z/, assuming that q D e=f is as stated
in the lemma. According to Exercise 1.5.29, the proof of Lemma 1.5.6 is now
complete. �

Exercise 1.5.33. Show that SL.n;Q/ D SL.n;Z/BQ, where BQ D P.1; 1; : : : ; 1/Q
is the minimal parabolic or Borel subgroup of upper triangular matrices in SL.n;Q/.
Hint. Use induction. First observe that for A 2 SL.n;Q/ there is a matrix U 2
SL.n;Z/ such that the first n � 1 elements in the last row of UA vanish. For
n � 1 homogeneous linear equations in n unknowns with rational coefficients have
relatively prime integral solutions. Recall Lemma 1.4.2 of Section 1.4.2.

Kaori Imai (Ota) used Lemma 1.5.6 to give the Fourier expansion of E2;1.f ; sjY/
by a method like the third method of Exercise 3.5.4, Vol. I for the Eisenstein series
in the case of GL.2;Z/. Now we want to consider a decomposition that leads to an
analogue of the second method in that same exercise from Volume I.

Exercise 1.5.34 (Coset Representatives sans7 Bruhat). Show that the cosets of
Z

n�.n�1/ rank .n � 1/=GL.n � 1;Z/ can be represented by S1 [ S2, where

S1 D
� �

B
0

� ˇ̌
ˇ̌ B 2 Z

.n�1/�.n�1/ rank .n � 1/=GL.n � 1;Z/
�
;

S2 D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

�
B
tc

�

ˇ
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

B D HD; H 2 GL.n � 1;Z/ = tP ;

dj > 0; j D 2; : : : ; n

dij mod dj; j D 2; : : : ; n;

tc D .c10 � � � 0/; c1 > 0

D D

0

BBB
@

d1 � � � 0
:::
: : :
:::

dij � � � dn�1

1

CCC
A

9
>>>>>=

>>>>>;

:

Here tP denotes the lower triangular subgroup of GL.n � 1;Z/. The point of the
inequalities on the lower triangular matrix D in S2 is that d1 is an arbitrary integer
while d2; : : : ; dn are all positive integers and the dij can be taken to lie between 0
and dj � 1.

7Without.
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Hint. Write A 2 Z
n�.n�1/ of rank .n � 1/ as

A D
�

B
tc

�
with B in Z

.n�1/�.n�1/ and c 2 Z
n�1:

If c D 0, then A lies in the set of representatives S1. Otherwise there is a matrix W
in GL.n � 1;Z/ such that

AW D
�

b1 B2
c1 0

�
with c1 > 0; B2 2 Z

.n�1/�.n�2/; b1 2 Z
n�1:

Moreover we can write:

�
b1 B2
c1 0

�
D
�

b0
1 B0

2

c0
1 0

��
x y
V W

�
if and only if x D 1 and y D 0 2 Z

n�1:

So we need to take A D
�

B
tc

�
modulo the subgroup of GL.n � 1;Z/ of matrices of

the form

�
1 0

v W

�
:

Thus W must be in GL.n�2;Z/. It must be shown that this puts A in S2. Elementary
divisor theory writes B 2 Z

.n�1/�.n�1/ in the form B D HD with H in GL.n � 1;Z/

and

D D
�

d1 0

d12 D2

�
;

with d1 in Z and with a lower triangular, non-singular D2 in Z
.n�2/�.n�2/. And we

can reduce H modulo the lower triangular group tP.

Next we use the preceding matrix decompositions to obtain some explicit Fourier
expansions for Eisenstein series E2;1 from Kaori Imai (Ota) and Terras [318]. Let
' 2 A0.SL.2;Z/; �/ have the Fourier expansion:

'.U/ D ˛0 k1;1.1 � rjU; 0/C ˛0
0 k1;1.rjU; 0/C

X

n¤0
˛nk1;1.rjU; n/; (1.297)

if

U D
�

y 0

0 1=y

�	
1 0

x 1



; y > 0; x 2 R;
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and k1;1.rjU; a/ denotes the k-Bessel function defined in formula (1.60) of Sec-
tion 1.2.2. Formula (1.297) is just a restatement of Exercise 3.5.3 of Volume I, using
the notation of Section 1.2.2.

Theorem 1.5.4 (Kaori Imai (Ota)). Let 'r 2 A0.SL.2;Z/; r.r � 1// be a cusp
form having Fourier expansion (1.297) with Fourier coefficients ˛k; k ¤ 0, and
˛0 D ˛0

0 D 0. Then when

Y D
�

U 0

0 w

�	
I2 X
0 1



; U 2 P2; w D jUj�1; x 2 R

2;

we have the following Fourier expansion of the Eisenstein series E2;1.'r; sjY/
defined in (1.245)

E2;1.'r; sjY/ D jUj�s'r.U
0/

C
X

exp
˚
2� i txAm

�
cf .n/ ˛k f 1�2s�r k2;1

�
s � r

2
; r
ˇ̌
ˇU.A;w/;m

�
;

where the sum runs over k 2 Z � 0; n 2 Z; f � 1; A 2 SL.2;Z/=P.1; 1/,

m D
�

n
�kf

�
; U.A;w/ D

�
U


tA�1� 0

0 w

�
;

and P.1; 1/ is the minimal parabolic subgroup of SL.2;Z/. Here cf .n/ is Ramanu-
jan’s sum:

cf .n/ D
X

0<e<f
gcd.e; f /D1

exp.2� ine=f /;

and k2;1 is the Bessel function from (1.60) in Section 1.2.2.

Proof. Set

eY D Y

	
tA�1 0

0 1



D
�eU 0

0 ew

�	
I2 ex
0 1



: (1.298)

It is easily seen that

eU D U


tA�1� ; eU�1 D U�1ŒA�; ew D w; (1.299)

Qx D
�
ex1
ex2

�
D tAx D

�
ta1x
ta2x

�
; if A D .a1a2/:
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Using Lemma 1.5.6 with n D 3, we are led to compute YŒ.nq�pq/1�, where the
subscript “1” means that we must take the first two columns of the 3 � 3 matrix
nq�pq. Recall that q D e=f and

.nq�pq/1 D
0

@
�qf 0

0 1

�f 0

1

A :

So we set

Y# D eYŒ.nq�pq/1� D eU
	�f .q C Qx1/ 0

�f Qx2 1



C
�

wf 2 0

0 0

�
:

In order to use the Fourier expansion (1.297), we must set

Y# D jY#j1=2
�

y 0

0 y1=2

�	
1 0

x 1



D
 

	 	
x
ˇ̌
Y#
ˇ̌1=2

=y
ˇ̌
Y#
ˇ̌1=2

=y

!

(1.300)

and

eU D
�

t 0

0 v

�	
1 0

p 1



D
�	 	
vp v

�
: (1.301)

It follows that

Y# D
�

t 0

0 v

�	�f .q C Qx1/ 0

�f fp.q C Qx1/C Qx2g 1



C
�

f 2w 0

0 0

�
:

Putting all this together, we find that

ˇ̌
Y#
ˇ̌ D vf 2

˚
t.q C Qx1/2 C w

�
; y D

q
f 2

v

p
t.q C Qx1/2 C w;

x D �f fp.q C Qx1/C Qx2g :

By Lemma 1.5.6, q runs over all of the field of rational numbers. So we break
this sum up into a sum over q 2 Q=Z and a sum over n 2 Z. Then use Poisson
summation on the variable n to see that

E2;1.'r; sjY/ D jUj�s'r.U
0/C

X

A;k;q;n

˛kT.s; rjA; k; q; n/;

where the sum is over A 2 SL.2;Z/=P.1; 1/; k ¤ 0; q 2 Q=Z; q D e=f ; f �
1; gcd.e; f / D 1; n 2 Z, and
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T D T.s; rjA; k; q; n/

D
Z

z2R

�
vf 2

˚
t.z C q C Qx1/2 C w

���s
�

f 2

v
ft.z C q C Qx1/2 C wg

�.1�r/=2

� k1;1

�
r

ˇ̌
ˇ̌ I2;

kfp
v

p
t.z C q C Qx1/2 C w

�

� exp .�2� ikf fp.z C q C Qx1/C Qx2g � 2� inz/ dz:

Next let u D .t=w/1=2.z C q C Qx1/ and use part (5) of Theorem 1.2.2 of
Section 1.2.2 to obtain:

T D exp f2� i.nq C nQx1 � kf Qx2/g f �2sC1�rv�s�.1�r/=2t�1=2w�sC.2�r/=2

� k2;1
�
s � r

2
; r
ˇ̌
I3;
�
.kpf C n/

pw
t ;�kf

pw
v

��
:

Now the last argument of k2;1 is the vector:

p
w

�
t�1=2 0

0 v�1=2
��

1 �p
0 1

��
n

�kf

�
D p

wM

�
n

�kf

�
; with

M D
�

t�1=2 0

0 v�1=2
��

1 �p
0 1

�
:

And tMM D eU�1 D U�1ŒA�. Part (4) of Theorem 1.2.2 in Section 1.2.2 says that if
tm D .n;�kf /:

k2;1
�

s � r

2
; r
ˇ̌
ˇ I3;

p
wMm

�
D ps�r=2;r�3=2.U�1ŒA�/ k2;1

�
s

ˇ̌
ˇ
ˇ

�
U


tA�1� 0
0 w

�
;m

�
:

Next note that

v�s�.1�r/=2w�sC.2�r/=2t�1=2 D ps�r=2;r�3=2.U�1ŒA�/�1:

Thus the power functions cancel and we find that

T D exp f2� i .nq C nQx1 � kf Qx2/g f �2sC1�r k2;1

�
s � r

2
; r

ˇ
ˇ̌
ˇ

�
U


tA�1� 0
0 w

�
;m

�
:

This completes the proof of Theorem 1.5.4. �

Next we want to use Exercise 1.5.34 to obtain an alternate Fourier expansion.

Theorem 1.5.5. Let 'r 2 A0.SL.2;Z/; r.r � 1// be a cusp form having Fourier
expansion (1.297) with Fourier coefficients ˛k; k ¤ 0, and ˛0 D ˛0

0 D 0. Suppose
that
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Y D
�

U 0

0 w

�	
I2 x
0 1



; U 2 P2; w D jUj�1; x 2 R

2:

Then the Eisenstein series E2;1.'r; sjY/ defined by (1.245) has the following Fourier
expansion with respect to the parabolic subgroup P.2; 1/ � GL.3;Z/:

L'r
.2s/E2;1.'r; sjY/ D L'r

.2s/'r.U
0/jUj�s

CP
˛k c2�2s�rdr�2s

2 exp .2� i txAm/ k2;1

�
s � r

2
; r

ˇ̌
ˇ
ˇ

�
U


tA�1� 0
0 w

�
;m

�

where tm D c.d1; k=d2/ 2 Z
2 and the sum is over A 2 SL.2;Z/=P.1; 1/; c >

0; d1 2 Z; 0 < d2jk; k ¤ 0. The parabolic subgroup P.1; 1/ of SL.2;Z/ consists
of the upper triangular matrices of determinant one. The L function L'r

.2s/ is
the one that is associated with 'r by part (5) of Theorem 1.5.2 in Section 1.5.2
(see also (1.278) in Section 1.5.2). Here k2;1 is the Bessel function from (1.60) in
Section 1.2.2.

Proof. Everything goes as it did in Theorem 1.5.4, except that we use Exer-
cise 1.5.34 rather than Lemma 1.5.6. Define eY as in (1.298) and (1.299). Using
Exercise 1.5.34 we must set

Y# D eY
	

D
tg



; where

8
<

:

tg D .c 0/; c > 0; D D
�

d1 0

d12 d2

�
;

d1 2 Z; d2 > 0; d12 mod d2:

9
=

;
(1.302)

Suppose that eU is again given by (1.301). Then

Y# D
�

t 0

0 v

�	
d1 C Qx1c 0

p.d1 C Qx1c/C d12 C Qx2c d2



C
�

wc2 0
0 0

�
:

We compute
ˇ̌
Y#
ˇ̌
; x; y in (1.300) to be:

ˇ̌
Y#
ˇ̌ D .vd22/

˚
t.d1 C Qx1c/2 C wc2

�
;

y D
p

t.d1CQx1c/2Cwc2p
vd2

; x D p.d1CQx1c/Cd12CQx2c
d2

:

)

(1.303)

Since Exercise 1.5.34 says that the sum defining

Z.'r; sjY/ D L'r
.2s/E.'r; sjY/

in (1.277) and (1.278) runs over all d1 2 Z, we can use Poisson summation to find
that:

Z.'r; sjY/ D L'r
.2s/'r.U

0/jUj�s C
X

˛kT.s; rjA; c;D; k/;
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where the sum is over:

D D
�

d1 0

d12 d2

�
; d1 2 Z; d2 > 0; d12 mod d2;

A 2 SL.2;Z/=P.1; 1/; c > 0, and k ¤ 0. We define

T D T.s; rjA; c;D; k/ DZ

z2R
exp

n
2� i

�
k

d2
.p.z C Qx1c/C d12 C Qx2c/ � zd1

�o �
vd22ft.z C Qx1c/2 C wc2g��s

�
�

t.zCx1c/2Cwc2

vd22

� 1�r
2

k1;1

�
r

ˇ̌
ˇ̌ I2; k

r
t.zCQx1c/2Cwc2

vd22

�
dz:

(1.304)
Now use the fact that

X

0�d12<d2

expf2� ikd12=d2g D
�
0 if d2 − k
d2 if d2jk

�
+ �.d2; k/: (1.305)

Therefore

T D �.d2; k/.vd22/
�s�.1�r/=2 expf2� i.pQx1 C Qx2/kc=d2g

Z

z2R
expf�2� iz.d1 � kp=d2/g

�.t.z C Qx1c/2 C wc2/�sC.1�r/=2 k1;1

�
r

ˇ̌
ˇ̌ I2; k

r
t.zCQx1c/2Cwc2

vd22

�
dz:

As in the proof of Theorem 1.5.4, set u D .wc2=t/�1=2.z C Qx1c/ and use part
(5) of Theorem 1.2.2 of Section 1.2.2 to obtain the following formula for T defined
by (1.304):

T D �.d2; k/d
�2sCr�1
2 c�2s�rC3=2 expf2� ic.d1 Qx1 C Qx2k=d2/g

�v�s�.1�r/=2w1�s�r=2t�1=2 k2;1
�

s � r
2
; r
ˇ̌
ˇI3;

p
w
�

cp
t

�
kp
d2

� d1
�
; kcp

vd2

��
:

Set M D
�

t�1=2 0

0 v�1=2
��

1 �p
0 1

�
. Then tMM D QU�1 and if we set tm D

c.d1; k=d2/, part (4) of Theorem 1.2.2 of Section 1.2.2 says that:

T D �.d2; k/d
r�2s�1
2 c2�2s�r exp

˚
2� i txAm

�
k2;1

 

s � r

2
; r

ˇ
ˇ
ˇ
ˇ̌

 
U�1  tA�1� 0

0 w

!

;m

!

:

For, again the power functions of eU�1 cancel. This completes the proof of
Theorem 1.5.5.
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Next we consider the case that 'r in E2;1.'r; sjY/ is itself an Eisenstein series.
By Exercise 1.5.2 in Section 1.5.1, using the notation of (1.245) and (1.249) in that
section, we know that:

E2;1.Er; sjY/ D E.3/.r; s � r=2; 0jY/: (1.306)

Instead of considering the Eisenstein series itself, we obtain the Fourier expansion
of the zeta function Z2;1.'r; sjY/ of formula (1.277) in Section 1.5.2, where
'r D ��r�.r/Z1;1.1; rjY/ and Z1;1.1; rjY/ is Epstein’s zeta function from Propo-
sition 1.5.2. Of course, the Eisenstein series E2;1 is related to the zeta function Z2;1
by formula (1.278) in Section 1.5.2.

Theorem 1.5.6 (Fourier Expansion of Selberg’s Eisenstein Series for GL.3;Z/).
Suppose that 'r.W/ D ��r�.r/Z1;1.1; rjW/ where Z1;1 denotes Epstein’s zeta

function for GL.2;Z/ from Proposition 1.5.2. If

Y D
�

U 0

0 w

�	
I2 x
0 1



; U 2 P2; w > 0; x 2 R

2;

the Fourier expansion of the normalized Eisenstein series E2;1.'r; sjY/ defined
by (1.245) in Section 1.5.2 as a periodic function of x 2 R

2 is:

��.s�r=2/�.s � r=2/��.s�.1�r/=2/�.s � .1 � r/=2/Z2;1.'r; sjY/
D c.s; r/C c..6 � 2s � 3r/=4; s � r=2/C c..3C 3r � 2s/=4; s � .1 � r/=2/

C
X

kD0
A;c;d1¤0;d2

˛0
0c
2�2s�rdr�2s

2 exp
˚
2� i txAm

�

� k2;1

�
s � r

2
; r

ˇ̌
ˇ̌
�

U


tA�1� 0

0 w

�
; �m

�

C
X

kD0
A;c;d1¤0;d2

˛0c
1�2sCrd1�r�2s

2 exp
˚
2� i txAm

�

� k2;1

�
s � 1 � r

2
; 1 � r

ˇ
ˇ̌
ˇ

�
U


tA�1� 0

0 w

�
; �m

�

C
X

k¤0
A;c;d1;d2

˛kc2�2s�rdr�2s
2 exp

˚
2� i txAm

�

� k2;1

�
s � r

2
; r

ˇ̌
ˇ
ˇ

�
U


tA�1� 0

0 w

�
; �m

�
:
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Here the zeta function Z2;1 is defined by (1.277) in Section 1.5.2 and relates to
the Eisenstein series E2;1 via (1.278) in that section. And we define the following
quantities:

˛0 D ƒ.s; r/

�
B

�
1

2
;
1

2
� r

�
; ˛0 D ƒ.s; r/

�
B

�
1

2
; r � 1

2

�
;

B.x; y/ D �.x/�.y/=�.x C y/; the beta function;

˛k D ƒ.s; r/�1�2r.k/=�.2r/;

ƒ.s; r/ D ��.s�r=2/�.s � r=2/��.s�.1�r/=2/�.s � .1 � r/=2/;

c.s; r/ D ƒ.r/ƒ.s � r=2/ƒ.s � .1 � r/=2/Er.U
0/jUj�s;

ƒ.r/ D ��r�.r/�.2r/;

Er.U
0/ D the Eisenstein series for GL.2;Z/ defined in formula .3:81/

in Section 3:5 of Volume I:

The three sums in the formula above are over A 2 SL.2;Z/=P.1; 1/, where P.1; 1/
is the subgroup of upper triangular matrices of determinant one, c > 0; d1 2 Z

(with d1 ¤ 0 in the first two sums), d2 > 0; d2jk; k 2 Z ( k ¤ 0 in the third sum).
And the vector m 2 Z

2 is defined by tm D c.d1; k=d2/. Here k2;1 denotes the Bessel
function from formula (1.60) in Section 1.2.2.

Proof. The proof is the same as that of Theorem 1.5.5 except that ˛0 and ˛0
0 are

not zero. We need to use formula (1.297) with the Fourier coefficients given by
Exercise 3.5.4 of Volume I. The constant term in the Fourier expansion of:

��.s�r=2/�.s � r=2/��.s�.1�r/=2/�.s � .1 � r/=2/Z2;1.'r; sjY/

is:

ƒ.s; r/jUj�sE.rjU0/L'r
.2s/C ˛0k2;1.s � .1 � r/=2/jI3; 0/

�
X

A;c;d2

d�2sC1�r
2 c�2sC1Cr jUj3.1�r/=4Cs=2�3=2 U�1Œa1��sC.1�r/=2

C˛0
ok2;1.s � r=2; rjI3; 0/

X

A;c;d2>0

dr�2s
2 c2�2s�r jUj3r=4Cs=2�3=2 U�1Œa1��sCr=2:

The computation of Harish-Chandra’s c-function (i.e., the calculation after
formula (1.155) in Section 1.3.3) shows that

k2;1.s � r=2; rjI3; 0/ D B

�
1

2
;

r

2
C s � 1

�
B

�
1

2
; r � 1

2

�
: (1.307)
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In order to compute the L-function corresponding to the form 'r, recall that
Exercise 3.5.4, Vol. I, showed that the nth Fourier coefficient of 'r is:

cn D 4��r�.r/�.2r/jnjr�1=2�1�2r.n/:

The theory of Hecke operators for SL.2;Z/, to be found in part (5) of Theorem 3.6.4
of Volume I, shows that if Tk denotes the kth Hecke operator for SL.2;Z/ and

Tk'r D uk'r; k � 1;

then (since our Hecke operators Tk are k1=2 times those of Section 3.6, Vol. I):

un D cn

c1
n1=2 D nr�1�2r.n/:

Thus

L'r
.2s/ D

X

n�1
n�2sun D

X

n�1

X

0<djn
nr�2sd1�2r

D
X

m�1

X

d�1
.md/r�2sd1�2r D �.2s � r/�.2s C r � 1/:

This shows that the first part of the constant term is indeed c.s; r/. The third part of
the constant term is:

ƒ.s; 1 � r/ B
�
1
2
; r
2

C s � 1� B
�
1
2
; r � 1

2

�
�.2s � r/ �

�
2s C 3

2
� r
�

�jUj�.3=2�s=2�3r=4/E.s � r=2jU0/
ı

B
�
1
2
; r � 1

2

�

D c..6 � 2s � 3r/=4; s � r=2/:

So the second part of the constant term must be:

c..3 � 2s C 3r/=4; s � .1 � r/=2/:

The rest of the proof of Theorem 1.5.6 proceeds as in Theorem 1.5.5. �

Exercise 1.5.35 (Remarks on the Constant Term). Let Er.U/ be the Eisenstein
series for GL.2;Z/ defined in formula (3.81) of Section 3.5, Volume I. Recall that
by Exercise 1.5.1,

E2;1.Er; sjY/ D E.3/.r; s � r=2; 0jY/;

using definitions (1.245) and (1.249) in Section 1.5.1. Consider Selberg’s change of
variables (1.257) in Section 1.5.1:

r D z2 � z1 C 1

2
; s � r=2 D z3 � z2 C 1

2
:
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Show that the three parts of the constant term in the Fourier expansion of
E2;1.Er; sjY/ in Theorem 1.5.6 correspond to the permutations .1/, .23/, and .13/
of the z-variables. This is a special case of a very general phenomenon described by
Langlands [392]. See also Section 1.5.4.

Exercise 1.5.36 (Another Bruhat Decomposition and Its Consequences).

(a) Suppose that n � 2m and P D P.m; n � m/. Show that we have the following
disjoint union (Bruhat decomposition):

SL.n;Q/ D
m[

rD0
PQ� rPQ; with � r D

0

BB
@

0 0 Ir 0

0 Im�r 0 0

�Ir 0 0 0

0 0 0 In�m�r

1

CC
A :

(b) Obtain a complete set of representatives for .SL.n;Z/ \ .PQ� rPQ//=PZ of the
form p� rp0 where � r is as in part (a),

p D
�

tA�1 0

0 B

�
0

BB
@

Ir 0 U 0

0 Im�r 0 0

0 0 Ir 0

0 0 0 In�m�r

1

CC
A ;

U 2 Q
r�r; A 2 SL.m;Z/=P.r;m � r/; B 2 SL.n � m;Z/=P.r; n � m � r/. The

element p0 2 PQ is fixed, once p is.
(c) Use part (b) to obtain the Fourier expansion of the Eisenstein series

Em;n�m.1; sjY/ with respect to P.m; n � m/. Here the Maass form f in
A0.GL.m;Z/; �/ is chosen to be identically one in formula (1.245) of
Section 1.5.1.

Hint (Terras [596]). If

Y D
�

V 0

0 W

�	
I Q
0 I



; V 2 Pm; W 2 Pn�m; Q 2 R

m�.n�m/;

the Fourier coefficient corresponding to N 2 Z
m�.n�m/ of rank r; 0 < r � m,

involves the Bessel function Kr or kr;r from §1.2.2, plus the singular series

�.C; s/ D
X

R2Qr�r=Zr�r

�.R/�2s exp.2� i Tr
�

tRC
�
/;

where �.R/ denotes the product of the reduced denominators of the elementary
divisors of R. This is an analogue of the singular series appearing in the Fourier
coefficients of Eisenstein series for the Siegel modular group (see Siegel [565,
Vol. II, pp. 97–137]).
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Next let us consider another application of these Fourier expansions—an applica-
tion to the analytic continuation of Eisenstein series Em;n�m.f ; sjY/ for Maass forms
f 2 A0.GL.m;Z/; �/ . See Jacquet and Shalika [326] for a similar adelic argument.
According to formulas (1.270) and (1.271) in Section 1.5.2, we have:

ƒm;n�m.f ; sjY/ D ƒ.f ; sjY/ D 2��ms�m.r.f ; s//L�
f .2s/Em;n�m.f �; sjY/

D
Z

X2Mm;jXj�1


m.Y;X/ f .X0/jXjs d	m C
Z

X2Mm;jXj�1


m.Y;X�1/ f �.X0/jXj�s d	m:

Therefore, by the transformation formula of theta (from Exercise 1.5.18 in Sec-
tion 1.5.2), we see that

ƒm;n�m.f ; sjY/ D
Z

X2Mm;jXj�1

m.Y;X/ f .X0/jXjs d	m

CjYj�m=2

Z

X2Mm;jXj�1


m.Y�1;X/ f �.X0/jXjn=2�s d	m C
m�1P
kD0

Ik.f ; sjY/;

9
>>>>>>=

>>>>>>;

(1.308)
where

Ik.f ; sjY/ D
Z

X2Mm;jXj�1

�
jYj� m

2 jXj n
2�s f �.X0/ 
k.Y

�1;X/ � jXjs f .X0/ 
k.Y;X/
�

d	m:

(1.309)
The term I0.f ; sjY/ is no problem:

I0.f ; sjY/ D
(
0; if f is orthogonal to the constants

jYj�m=2
�

n
2

� s
��1 � s�1; if f is identically 1:

(1.310)
To study Ik, for 0 < k < m, we need the following exercise.

Exercise 1.5.37 (Study of the Integrals Occurring in the Analytic Continuation
of Eisenstein Series by the Method of Theta Functions Terras [604]).

(a) Show that we can express every rank k matrix A 2 Z
n�m, for 1 � k � m � 1,

uniquely in the form:

A D B tC; B 2 Z
n�k; rank k;

.C 	/ 2 GL.m;Z/=P.k;m � k/; C 2 Z
m�k:
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(b) Obtain the Jacobian of the following change of variables for Y 2 Pn:

t�1=nY D
�

u�1T 0

0 uV

�	
I Q
0 I



; u > 0; T 2 SPp;

V 2 SPq; Q 2 R
p�q; n D p C q:

Answer. d	n.Y/ D .2pq=n/u�pq�1t�1dt du dT dV: Compare Exercise 1.4.21 of
Section 1.4.3.

(c) Rewrite the integral Ik.f ; sjY/ in (1.309) using parts (a) and (b).
(d) Now suppose that f 2 A0.GL.m;Z/; �/ has the Fourier expansion:

f .W/ D
X

N2Zk�.m�k/

AN;f
�
u�1T; uV

�
exp

˚
2� i Tr

�
tNQ

��
;

if W is expressed as in part (b). Show that

m
2k.m�k/ Ik.f ; sjY/

D
Z

T;V;t;u

�
A0;f �

�
u�1T; uV

�
tn=2�s jYj�m=2

� P

B2Zn�k rank k

exp
˚��Tr

�
Y�1ŒB�t1=mu�1T

��

�A0;f .u�1T; uV/ t�s
P

B2Zn�k rank k

exp
˚�� Tr.YŒB�t�1=mu�1T

�
!

�u�� t�1 du dt dT dV;

where � D k.m � k/ C 1 and the integral is over T 2 SMk; V 2 SMm�k,
t � 1; u � 0.

(e) What hypotheses on f are necessary to justify the preceding arguments? Be
careful. It was just this sort of divergent integral problem that led to gaps in
many papers, as we mentioned in the remarks on part (5) of Theorem 1.5.2 in
Section 1.5.2.

(f) In the special case n D 3; m D 2; f .X/ D Er.X/; X 2 SP2, the Eisenstein
series from formula (3.81) of Section 3.5, Volume I and Exercise 1.5.2 of
Section 1.5.1, let

E2;1.Er; sjY/ D E.3/.r; s � r=2; 0jY/
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be continued as above and show that then the integral I1 is:

I1.Er; sjY/ DjYj�1ƒ3.Y�1; 1 � r/

s � 1 � r=2
� ƒ3.Y; 1 � r/

s C .r � 1/=2 C c.r/jYj�1ƒ3.Y�1; r/
s C .r � 3/=2

� c.r/ƒ3.Y; r/

s � r=2
;

where ƒ3.Y; r/ D ƒ.r/Er.Y/; c.r/ D ƒ.1 � r/=ƒ.r/; ƒ.r/ D ��r�.r/�.2r/.
(g) What happens when f .X/ 2 A0.GL.m;Z/; �/ is a cusp form?

This ends our discussion of Fourier expansions of Maass forms for GL.n;Z/.
Many questions remain. In particular, we have certainly not obtained the most
general sorts of Fourier expansions. One would also like to build up a Hecke
correspondence by making use of the Fourier expansions. In this regard, note that we
already have the Mellin transform of the K-Bessel functions from Exercise 1.2.18
in Section 1.2.2. However it is not useful to attempt to do the Mellin transforms of
the k-Bessel functions in the following exercise.

Exercise 1.5.38 (Mellin Transforms That Diverge).

(a) Show that the following integral diverges in general

Z

t>0

tr k1;1

�
s

ˇ̌
ˇ
ˇ

�
t 0
0 1

�
; n

�
dt:

(b) Do the same for
Z

U2M2

jUj�r f .U0/ k2;1

�
s

ˇ
ˇ̌
ˇ

�
U 0

0 w

�
; n

�
exp.�Tr.U// dU:

when r 2 C; f 2 A0.GL.2;Z/; �/.

The next exercise should be compared with Exercise 1.5.26 in Section 1.5.2.

Exercise 1.5.39 (Another Functional Equation for Eisenstein Series).

(a) Use part (4) of Proposition 1.2.1 of Section 1.2.1 to show that Selberg’s
Eisenstein series E.n/.sjY/ defined by (1.249) of Section 1.5.1 satisfies the
functional equation:

E.n/.sjY�1/ D E.n/.s
�jY/; s� D

0

@sn�1; : : : ; s1;�
nX

jD1
sj

1

A ; for s 2 C
n:

(b) Apply Exercise 1.5.10 of Section 1.5.1 to the Eisenstein series Ek;n�k.1; skjY/,
in the notation (1.245), to show that this Eisenstein series is essentially a
specialization of E.n/.sjY/ arrived at by setting all but one variable equal to
zero; more specifically,



1.5 Maass Forms for GL.n;Z/ and Harmonic Analysis on Pn=GL.n;Z/ 307

Ek;n�k.1; sjY/ D E.n/.sjY/

ˇ̌
ˇ̌
ˇ̌
ˇ̌ sjD 0

8 j ¤ k

:

(c) Show that the Eisenstein series Ek;n�k.1; sjY/ satisfies the functional equation:

Ek;n�k.1; sjY�1/ D jYjsEn�k;k.1; sjY/:

In particular, this means that if Zk;n�k.1; sjY/ denotes Koecher’s zeta function,
using the notation (1.277) of Section 1.5.2 rather than (1.173) of Section 1.4.1,
then the following equality holds:

Z2;1.1; sjY/ D �.2s � 1/�.2s/jYj�sE1;2.1; sjY�1/

D �.2s � 1/jYj�sZ1;2.1; sjY�1/:

Thus, in this special case, Koecher’s zeta function is just a product of Riemann
and Epstein zeta functions. Use this result to check the formula obtained in part
(f) of Exercise 1.5.37.

Hint. (c) You will need to take the limit of the quantity

r.r � 1/ƒ2;1.Er; sjY/

in (1.308) and Exercise 1.5.37 as r approaches zero. In particular, this leads to the
formula:

lim
r!0

r.r � 1/ƒ.r/I1.Er; sjY/
D jYj�1ƒ1;2.1;1jY/

s�1 � ƒ1;2.1;1jY/
s�1=2 C ƒ.1/jYj�1

s�3=2 � ƒ.1/

s :

Thus Exercise 1.5.37 gives the analytic continuation of Koecher’s zeta function and
agrees with formula (3.16) in Koecher [359].

The last exercise in this section shows that one must be careful in obtaining the
analytic continuation of Koecher’s zeta function.

Exercise 1.5.40 (Double Poles). Consider the special case of Koecher’s zeta func-
tion Zm;0.1; sjY/, in the notation of (1.277) in Section 1.5.2—a case in which the
zeta function factors into a product of Riemann zeta functions as in (1.174) of
Section 1.4.1. Then form the normalized function from (1.271) of Section 1.5.2:

ƒm;0.1; sjY/ D 2��ms�m.s/Zm;0.1; sjY/ D 2jYj�s
m�1Y

jD0
ƒ.s � j=2/;
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where ƒ.s/ D ��s�.s/�.2s/: Show that ƒm;0.1; sjY/ has simple poles at s D
0;m=2 and has double poles at s D 1

2
; 1; 3

2
; : : : ; m�2

2
; m�1

2
.

This exercise demonstrates that Koecher [359] formula (3.16) is incorrect, in
general, as Koecher’s formula says that only simple poles occur. Another reference
on the location of poles of Eisenstein series is Feit [175]. Other references on L-
functions and Eisenstein series are: Böcherer [54], Duke [144], Garrett [203], and
Goldfeld [230].

Remarks on Maass Cusp Forms

Recall that in Section 1.5.1 we defined a Maass form f 2 A0.GL.n;Z/; �/ (where
A0 means f lives on SPn/ to be a cusp form if for every k D 1; : : : ; n � 1:

ak
0.Y/ D

Z

X2.R=Z/k�.n�k/

f

�
Y

	
I X
0 I


�
dX D 0; for all Y 2 Pn: (1.311)

Thus a cusp form has a zero constant term for each one of the Fourier expan-
sions (1.287) with respect to maximal parabolic subgroups P.k; n � k/; 1 � k �
n � 1.

A reader familiar with the definition of cusp form for the Siegel modular group
might ask whether our definition implies that all of the Fourier coefficients aN.U;V/
vanish for N 2 Z

k�.n�k/ not of maximal rank in (1.287).
Another question raised by Siegel’s approach to the definition of cusp form is

that of defining cusp forms for GL.n;Z/ to be those that are in the kernel of some
analogue of the Siegel ˆ-operator which we will consider in Section 2.2 below.
In [243], Grenier defines a �-operator. Assume that f 2 A0.�n; �/; where �n D
GL.n;Z/= f˙Ig and the eigenvalues of the invariant differential operators on f agree
with those of the power function p�s: If this is so, we write � D �.s/: Note that we
can write the power function for W 2 SPn�1; v > 0; x 2 R

n�1 as:

p�s

�
v�1 0

0 v1=.n�1/W

�
D vs1C�1 p�s0 .W/ ; where

if ts D .s1; : : : ; sn�1/; ts0 D .s2; : : : ; sn�1/ then �1 D 1
n�1

n�1X

kD2
.n � k/ sk:

The Grenier �-operator is defined by:

.f j�/.W/ D lim
v!1 v�s1��1 f

��
v�1 0

0 v1=.n�1/W

�	
1 tx
0 In�1


�
;

for W 2 SPn�1; v > 0; x 2 R
n�1: (1.312)
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Grenier’s �-operator is an analogue of Siegel’sˆ-operator defined in formula (2.57)
of Section 2.2. Grenier proves that it maps f 2 A0.�n; �.s// to f j� 2
A0.�n�1; �.s0//: To do this, he obtains the Fourier expansion of f 2 A0.�n; �/

with respect to the parabolic subgroup P.1; n � 1/ from the Whittaker–Fourier
expansion of Bump to be discussed in Section 1.5.4 and then uses properties of
K-Bessel functions. Grenier also begins a discussion of Maass–Selberg relations
for Maass forms f ; g 2 A0.�n; �/: Sadly, these investigations were not continued,
as far as I know.

Siegel would define f to be cuspidal if f j� D 0 (see Chapter 2, Maass [426,
pp. 187–198] or Freitag [185]). Does the analogous statement hold for the Grenier
�-operator and Maass cusp forms?

Sadly we leave these questions open but we do say a bit more about cusp forms
and their Fourier and Fourier–Whittaker expansions in the next section.

1.5.4 Update on Maass Cusp Forms for SL.3;Z/

and L-Functions Plus Truncating Eisenstein Series

Maass Cusp Forms for SL.3;Z/ and L-Functions

First we want to sketch some of the work on cusp forms for SL.3;Z/ that has
occurred since I was writing the old edition. Indeed some of the things mentioned
here were done earlier but in adelic language, which I never managed to translate.
Most of these things here could be done for SL.n;Z/ but we stick to n D 3 for
simplicity. We mostly follow Dorian Goldfeld [230] in this section since he provides
a translation from adelic to classical language as well as proofs of many of the earlier
results of authors such as Jacquet, Piatetski-Shapiro, and Shalika.

Adelic computations involve infinite vectors with real, complex, and p-adic
entries for each prime p: You will not find Mathematica programs to do this.
Goldfeld’s book [230] includes Mathematica programs to do many things, such as
computing Whittaker functions. Moreover, Goldfeld’s has summed up our view in
the following quotation.

In line with the philosophy of understanding by simple example, we have avoided the
use of adeles, and as much as possible the theory of representations of Lie groups. This
very explicit language appears particularly useful for analytic number theory where precise
growth estimates of L-functions and Maass forms play a major role. (from Goldfeld [230,
pp. xi–xii].)

It is a bit difficult to sync with Goldfeld’s notation as he replaces Y 2 SP3 with
z 2 T3 the group of upper triangular matrices with positive diagonal entries:

z.x; y/ D
0

@
1 x2 x3
0 1 x1
0 0 1

1

A

0

@
y1y2 0 0
0 y1 0
0 0 1

1

A : (1.313)
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Since the determinant of g is not 1, the map T3 ! SP3 is

z D z.x; y/ 7�! �
z tz
�0
: (1.314)

Here we use our notation Y0 D jYj�1=3 Y; for Y 2 P3: Note that this map takes the
left GL.n;R/ action on z 2 T3 to the right action of GL.n;R/ on SP3:

However there is still a problem with formula (1.314), if we want to use our
usual Iwasawa decomposition in the definition of power functions. Thus we make
use of a Weyl group element which will change the x-variables from upper to lower
triangular, and vice versa. The Weyl group element is

! D
0

@
0 0 1

0 �1 0
1 0 0

1

A : (1.315)

This matrix .z tz/0 Œ!� has our usual Iwasawa decomposition with diagonal part
equal to

�
y�4=3
1 y�2=3

2 ; y2=31 y�2=3
2 ; y2=31 y4=32

�
:

Our power function is

ps

��
ztz
�0
Œ!�
�

D
�

y�2=3
1 y�4=3

2

�s2 �
y�4=3
1 y�2=3

2

�s1 D y�.2s2C4s1/=3
1 y�.4s2C2s1/=3

2 D ya
1y

b
2;

where a D �2
3
.s2 C 2s1/ and b D �2

3
.2s2 C s1/. Goldfeld replaces the power

function ps.Y/ with his function

I�.z/ D
Y

1�i;j�2
y

bij�j

i ; where b D
�
1 2

2 1

�
: (1.316)

So I�.z/ D y�1C2�21 y2�1C�22 : It follows that �2
3

s2 D �1 and �2
3

s1 D �2; if we make
the identification (1.314) and throw in the Weyl group element to identify Goldfeld’s
z 2 T3 with our .z tz/0 Œ!� 2 SP3.

Goldfeld defines f to be a Maass form for SL.3;Z/ of type � if f is SL.3;Z/-
invariant and the differential operators in D.SP3/ share the same eigenvalues with
f as the power function I� in formula (1.316). Goldfeld also assumes that his Maass
form f is cuspidal. Here we do not always make that assumption.

In the case of a Maass cusp form for SL.3;Z/ of type �, Bump (see Goldfeld
[230, p. 160]) obtains the Whittaker–Fourier expansion:
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f .z/ D
X

�2P.1;1/nSL.2;Z/

X

m1�1

X

m2¤0

A .m1;m2/

jm1m2j

� W

0

@

0

@
jm1m2j 0 0

0 m1 0

0 0 0

1

A
�
� 0

0 1

�
zI �;  �

1;
m2jm2j

�

1

A ; z 2 T3: (1.317)

Here A .m1;m2/ 2 C and W.sjY; r/ denotes the Jacquet–Whittaker function
defined for the character .a;b/ of N (the group of upper triangular real 3�3matrices
with 1’s on the diagonal)

 .a;b/

0

@

0

@
1 u2 u3
0 1 u1
0 0 1

1

A

1

A D exp .2� i .au1 C bu2// ;

by:

W
�
zI �;  .a;b/

� D
Z

u2N

I�.!uz/ .a;b/ .u/du; with du D du1du2du3; (1.318)

where the Weyl group element ! is as defined in formula (1.315). Compare our
definition of Whittaker functions at the end of Section 1.2.2.

The expansion (1.317) should be compared with the Fourier expansions (1.287).
The Whittaker–Fourier expansion is obtained by starting with our usual sort of
expansion (1.287) for the parabolic subgroup P.2; 1/:

f .Y/ D
X

r2Z2
fr.Y/; where fr.Y/ D

Z

x2R2
f

�
Y

	
I2 X
0 1


�
exp

��2� i trx
�

dx:

This means that

fr

�
Y

	
I2 X
0 1


�
D exp

�
2� i trx

�
fr.Y/; for all x 2 R

2:

Then note that for A 2 SL.2;Z/ and r 2 R
2, we have:

f tAr

�
Y

	
A 0

0 1


�
D fr.Y/: (1.319)

If r 2 Z
2, then there is a matrix A 2 SL.2;Z/ such that tAr D t.0;m/ for some

positive integer m. Furthermore, if a 2 Z, one has

fr

0

@Y

2

4
1 a 0
0 1 0

0 0 1

3

5

1

A D f t.r1;r2�r1a/.Y/: (1.320)
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This shows that when r1 D 0, the coefficient fr must be invariant under

Y 7! Y

2

4
1 a 0

0 1 0

0 0 1

3

5 ; for a 2 Z:

Thus one can find the Fourier expansion with respect to the x12 variable in N, the
group of upper triangular matrices with ones on the diagonal. That takes us from
Bessel to Whittaker functions. It is the multiplicity one theorem of Shalika [552]
which says that the resulting functions must be multiples of Whittaker functions.
See Goldfeld [230, p. 155]. A summary of work on Maass forms for GL.3/ in the
language of Bump [83] can also be found in Friedberg [189].

Exercise 1.5.41. Give the relation between the Jacquet–Whittaker function (1.318)
and that of the k2;1-Bessel function from formula (1.60) of Section 1.2.2. Deduce the
K-Bessel expansion of f 2 A0 .SL.3;Z/; �/ from the Fourier–Whittaker expansion
of f : See Grenier [243].

Once you have the Whittaker–Fourier expansion (1.317) of a Maass cusp
form for SL.3;Z/, then you can define the Godement–Jacquet L-function for
Re s > 2 by:

Lf .s/ D
X

n�1

A.1; n/

ns
; (1.321)

as in Goldfeld [230, p. 174]. It can be proved that if f is a Maass cusp form for
GL.3;Z/ of type �, then the Godement–Jacquet L-function can be extended to a
holomorphic function of all s 2 C and satisfies a functional equation

G.�; s/Lf .s/ D G.e�; 1 � s/Lef .1 � s/; (1.322)

where

G.�; s/ D ��3s=2�
� sC1�2�1��2

2

�
�
� sC�1��2

2

�
�
� s�1C�1C2�2

2

�
;

G.e�; s/ D ��3s=2�
� sC1��1�2�2

2

�
�
� s��1C�2

2

�
�
� s�1C2�1C�2

2

�
:

9
=

;
(1.323)

Here the dual Maass formef is defined by ef .z/ D f
�
! tz�1 !

�
with ! defined

by (1.315):Goldfeld [230, p. 161] shows thatef is a Maass form of typee� D .�2; �1/ :

It turns out that if A.m1;m2/ are the Whittaker–Fourier coefficients of f ; then
A.m2;m1/ are the Whittaker–Fourier coefficients of ef : Bump (see also Goldfeld)
has a method of obtaining the functional equations (1.322) by using those for the
Eisenstein series with the same �-type.
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Exercise 1.5.42. Suppose that ! is defined by (1.315) and Yz D .I Œtz�/0 ; for z D
z.x; y/ from (1.313). Supposeez D ! tz�1!: Show that Yez D .Yz/

�1 Œ!� :

Mellin transforms of Whittaker functions are used by Goldfeld to prove the
multiplicity one theorem (see [230, p. 155]). I would expect that this idea would
work for K-Bessel multiplicity one as well. The use of Mellin transforms of Maass
forms to obtain functional equations for the L-functions attached to Maass forms as
presented in Goldfeld’s book seems a bit more complicated than that which we have
presented. See Goldfeld [230, Ch. 6]. Bump [83] and Bump and Friedberg [85] give
more information on Mellin transforms of Whittaker functions.

Grenier [243] notices that one can look at the Whittaker–Fourier expansion in
a different way since the Whittaker function is the Fourier transform of the k2;1-
Bessel function, this means that one can start with the Whittaker–Fourier expansion
of a Maass form for GL.3;Z/ and proceed to derive an ordinary Fourier expansion
of Maass forms for SP3 in K2-Bessel functions. This would give a simpler Mellin
transform approach to the functional equations of L-functions.

The Bump–Goldfeld version of Hecke operators is essentially the same as ours.
So we won’t bother to summarize. It’s the Fourier coefficients that differ.

It in addition to being a Maass cusp form for SL.3;Z/; f is an eigenform of all the
Hecke operators, then, assuming f is not the 0-form, by multiplying f by a constant,
we may assume that the Whittaker–Fourier coefficient A.1; 1/ D 1: It follows that
Tnf D A.n; 1/f for all n D 1; 2; : : :. From this and the multiplicative properties
of the Hecke operators one obtains an Euler product for the Godement–Jacquet
L-function which is similar to our earlier Euler product Theorem 1.5.2:

Lf .s/ D
Y

p prime

�
1 � A.1; p/p�s C A.p; 1/p�2s � p�3s

��1
: (1.324)

See Goldfeld [230, p. 174].
The converse theorem in Hecke theory was proved by Jacquet, Piatetski-Shapiro

and Shalika [325] in 1979. One must twist by primitive Dirichlet characters mod q
for all positive integers q. See Goldfeld [230, p. 195 ff] for a proof of Goldfeld and
Meera Thillainatesan.

It is possible to use the converse theorem and Rankin–Selberg L-functions
to obtain the Gelbart–Jacquet lift of a cuspidal Maass wave form for SL.2;Z/
(which is a Hecke eigenform) to a Maass form for SL.3;Z/ which is self-dual of
type .2�f =3; 2�f =3/. See Goldfeld [230, Ch 7]. Here � D �f means that �f D
.�.� � 1//f : This does not give an explicit SL.3;Z/-example until one has an
explicit example for a Maass form for SL.2;Z/:

The Ramanujan conjecture for a Maass cusp form f for SL.3;Z/ which is
eigen for all the Hecke operators says that if we factor the polynomial in the Euler
product (1.324),
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�
1 � A.1; p/x C A.p; 1/x2 � x3

� D
3Y

iD1

�
1 � ˛p;ix

�
; then all

ˇ̌
˛p;i

ˇ̌ D 1:

(1.325)

Equivalently this gives a bound on the Whittaker–Fourier coefficients jA.p; 1/j � 3:

A related conjecture is the Selberg eigenvalue conjecture which says that if f is
a Maass cusp form of type � for SL.3;Z/ then Re �i D 1

3
; for i D 1; 2. Both

conjectures are still open for the case we are discussing. See [230, p. 384] for a
discussion of the Luo et al. [412, 413] result from the late 1990s which gives a
bound on the ˛p;i in formula (1.325) of the form

ˇ̌
˛p;i

ˇ̌ � pe; where e D 1
2

� 1
10
:

A similar result is obtained for the �i: Sarnak discusses progress on the Ramanujan
conjecture for general groups in [528].

Why is one interested in all this? Much of the interest comes from the Langlands
conjectures which basically say that all the number theorists’ L-functions in the
Selberg class come from GL.n/. This would hopefully end up proving things like
the Artin conjecture on the holomorphicity of nontrivial Artin L-functions. See
[230, last chapter].

Now we want to consider the computational results for Maass cusp forms for
SL.3;Z/:As with SL.2;Z/Maass forms, there are only computer approximations—
no explicit examples. In his thesis, Stephen D. Miller [446] found a region with no
Maass cusp forms f of type �:He writes the power function, for t 2 T3; as '	.IŒt�/ D
t2	1�11 t2	22 t2	3C13 with the eigenvalue � of� such that j�j D �

	21 C 	22 C 	23
��1=2:

He finds that j�j > 80: Using some representation theory about the irreducible
subspaces of L2.�nG/ coming from cusp forms and a description of the unitary dual
from Birgit Speh [573], he gets the fact that 	1 C	2 C	3 D 0, also f	ig D f�	ig :
There are 2 possible cases—either the 	j are all imaginary and add to 0 or 2 of
the 	j are not imaginary and the 3rd 	j is imaginary. The first case is called the
tempered case and the 2nd the non-tempered. Selberg’s eigenvalue conjecture says
that cusp forms are tempered. In the tempered case then 	1 D iy1; 	2 D iy2 and
	3 D �i.y1 C y2/: By the explicit formula for the Rankin–Selberg L-function of
f with a carefully chosen set of kernel functions, Miller obtains a figure for the
excluded region for the tempered unitary .y1; y2/ pairs.

More recently David Farmer, Sally Koutsoliotas & Stefan Lemurell [172] have
done numerical computations of L-functions of Maass cusp forms which are
eigenforms of the Hecke operations for SL.3;Z/: They find a slightly larger
excluded region using the method of approximate functional equations for the L-
functions. See Figure 1.31 in which the black region is that of Stephen D. Miller’s
thesis. They found more than 2000 spectral parameters .y1; y2/ and associated
Dirichlet coefficients. These are on the web at

http://www.LMFDB.org/L/degree3.

Other references for such computations are Ce Bian [49] and Borislav
Mezhericher [445]. In his thesis, Bian looked at the L-functions twisted by a
Dirichlet character and confirmed the Ramanujan conjecture for the computed

http://www.LMFDB.org/L/degree3
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Fig. 1.31 From Farmer et al.
[172], this figure shows the
parameters in the functional
equation of the L-functions
for cuspidal Maass
eigenforms for SL.3;Z/ as
purple dots. The black region
is Miller’s region containing
no such parameters [446].
The purple region also
contains no parameters,
assuming the Ramanujan
conjecture
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Maass cusp forms. Bian also checked whether Whittaker–Fourier coefficients
satisfy the Sato-Tate or Wigner semi-circle distribution for the first Gelbart–Jacquet
lift of a Maass cusp form for SL.2;Z/: He looked as well at the distribution of
the Fourier coefficients of a non-Gelbart–Jacquet lift and compared it with the
distribution of the absolute trace on SU.3/ with respect to Haar measure. See
Figure 3 of Bian’s paper which is an earlier version of Figure 1.32 below. In both
cases, the agreement between the conjectural and computed histograms is good.

Andrew R. Booker, who was Bian’s thesis advisor, notes in [60] that Bian’s data
passes three tests for Maass cusp forms on GL.3;Z/—at least to computer precision.
Test 1 checks whether the Whittaker–Fourier coefficients are multiplicative. Test 2
asks for the check provided by Figure 1.32, which was just emailed to me by Booker
in August, 2015. The non-lift is the same as that appearing in Figure 3 of [49]
and Figure 2 of [60]. The lift comes from the first Maass cusp form for SL.2;Z/:
Figure 1.32 shows that the data from a non-lift Maass cusp form matches Langlands’
conjecture on the distribution of the Fourier coefficients A.p; 1/ for prime p: This
figure simultaneously shows that the data from lifts have distributions ruled by the
underlying GL.2;Z/ Maass form. Test 3 asks that the L-function obey the Riemann
hypothesis. Booker notes that Michael Rubinstein numerically verified the Riemann
hypothesis for the first few zeros of the L-functions corresponding to Bian’s data
while at an American Institute of Mathematics meeting in 2008.

Mezhericher [445] uses the Fourier expansions of Maass forms. For this, he
develops his own algorithms to compute the Whittaker functions.

Kowalski and Ricotta [369] obtain a central limit theorem for the Whittaker–
Fourier coefficients of Maass forms using Voronoi summation formulas. Krötz and
Opdam [372] use knowledge of the holomorphic extension of eigenfunctions of the
invariant differential operators to the crown domain of the symmetric space to show
that Maass cusp forms have exponential decay.
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Fig. 1.32 The top figure is a histogram for the first 2312 values jA.p; 1/j for Bian’s first Maass
cusp form for SL.3;Z/ compared with the conjectural distribution. The lower figure is a similar
comparison for the first Gelbart–Jacquet lift. The figures were based on Bian’s thesis and were
provided by Andrew Booker

Langlands’ Inner Product Formulas for Truncated Eisenstein Series

Now we wish to address the Langlands formulas for inner products of truncated
Eisenstein series for SL.3;Z/. Finding a non-adelic discussion of these results
which is not so general and obscured with notation from representation theory is
difficult. We have been looking at Paul Garrett’s articles on his website [204],
Feryâl Alayont [4, 5], and Stephen D. Miller [446, 447]. Other references are
Robert P. Langlands [392], James Arthur [21, 22], and Colette Mœglin and Jean-
Loup Waldspurger [455, 456].
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For � D GL.3;Z/ there are three parabolics: P0 D P.1; 1; 1/; P1 D P.2; 1/;
and P2 D P.1; 2/: Then we say that P1 and P2 are associated (writing P1 � P2/
and P0 is self-associate. If P D P.n1; n2/ is a maximal parabolic subgroup of

G D GL.3;R/, MP the Levi subgroup of matrices of the form

�
m1 0

0 m2

�
; with

mi 2 GL.ni;R/; and NP the nilpotent or unipotent subgroup of matrices of the form�
In1 	
0 In2

�
; then we have the Langlands decomposition of the parabolic subgroup

along with a decomposition of G itself:

P D NPMP and G D PK; for K D O.3/: (1.326)

Given a function f on G which is left P\�-invariant, we can form the incomplete
theta series (alias a Poincaré or Eisenstein series) as in Volume I, page 321:

TPf .g/ D
X

�2�\Pn�
f .�g/:

As we saw on pages 322–323 of Volume I, these incomplete theta series have
some important relations with the constant coefficient operator and the Eisenstein
series. Here we only sketch a few similar results. It would be useful to do more.
We leave that to the poor abused reader.

Again given a function f on G which is left NP \ �-invariant, we can form the
constant term

cPf .g/ D
Z

NP\�nNP

f .ng/dn: (1.327)

Suppose that fi are Maass cusp forms for GL.ni;Z/; meaning that when ni D 1;

then fi is identically 1. The Eisenstein series are special incomplete theta series of
the form

TP' D EP
'.g/ D

X

�2Pn�
'.�g/; where '.nmk/ D km1kn2s km2k�n1s f1 .m1/ f2 .m2/ :

One finds that if say P D P1 D P.2; 1/ and Q D P2 D P.1; 2/ (or vice versa),
then the constant terms for P and Q are:

cPTP' D ' and cQTP' D �s': (1.328)

Here �'s denotes the quotient of L-functions and gamma functions appearing in the
functional equation of the Eisenstein series for the maximal parabolic subgroup

EP
'.g/ D �'s EQ

'w ; (1.329)
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where

'w.nmk/ D km1kn2.1�s/ km2k�n1.1�s/ f1 .m1/ f2 .m2/ D '
�
wmw�1� km2kn1

km1kn2 :

(1.330)
Here w is a Weyl group element which exchanges MP1 and MP2 : We can take w D !

from formula (1.315).
Now we can define the truncation operators ƒA; for A large and positive, and

again with respect to the maximal parabolic subgroups. First define a height
function and corresponding truncation set, using the decomposition (1.326):

hP.g/ D km1kn2

km2kn1 ; if g D nmk and SA
P D ˚

g 2 G
ˇ̌

hP.g/ � A
�
:

Define for a left
�
NP \ ��-invariant function F

cA
PF D .cPF/ � 1SA

P
;

where 1S denotes the indicator function of S. Then if P D P1 D P.2; 1/ and
Q D P2 D P.1; 2/; the truncation operator is

ƒAEP
' D EP

' � TP
�

cA
PEP

'

�
� TQ

�
cA

QEP
'

�
: (1.331)

Langland’s inner product formula involves a second truncated Eisenstein series
EP
 with  defined as follows using the decomposition (1.326), assuming the hi are

Maass cusp forms for GL.ni;Z/;

 .nmk/ D km1kn2r km2k�n1r h1 .m1/ h2 .m2/ :

The Langlands inner product formula is then

D
ƒAEP

' ;ƒ
AEP

 

E
D hf ; hi AsCr�1

s C r � 1 C hf w; hwi �'s � r
A.1�s/C.1�r/�1

.1 � s/C .1 � r/ � 1 :
(1.332)

Here hf ; hi is the inner product on GL.n1/�GL.n2/ mod the center for f .m1;m2/ D
f1 .m1/ f2 .m2/ and h defined similarly. See Garrett [204] for a proof of (1.332). In the
case of a self-associate parabolic subgroup P the number of terms in the Langland’s
inner product formula is the square of the order of the Weyl group W.P;P/; which
is 36 for P.1; 1; 1/.

This formula is the analogue of the Maass–Selberg relations for SL.2;Z/ and has
been used by Stephen D. Miller [447] in his pre-trace formula proof of the Weyl
law for cusp forms for SL.3;Z/. He also had to use the analogous formula for the
minimal parabolic P0 D P.1; 1; 1/ with its 36 terms. Other uses are in the proof
of the analytic continuation of Eisenstein series. See Feryâl Alayont [4]. There is
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reputed to be a manuscript of Bernstein on this subject. Hopefully one could use
the result along with the analogue for P0 to prove a trace formula for SL.3;Z/.
But the number of Langlands inner product terms for SL.3;Z/, plus the number of
orbital integrals associated with the conjugacy classes in SL.3;Z/ have kept us from
working on this in our old age. So in the next section we still do not tell you what
the trace formula for SL.3;Z/ is. Sorry. You can find adelic versions of the trace
formula in Arthur’s papers [21–23, 25].

Deitmar and Pavey [132] obtain a prime geodesic theorem for rank 1 closed
geodesics in the fundamental domain for a discrete cocompact subgroup � of
SL.4;R/ with the goal of applying the result to the asymptotics of class numbers
of quartic number fields.

1.5.5 Remarks on Harmonic Analysis on the Fundamental
Domain

Recall that the Euclidean Poisson summation formula for a Schwartz function f W
R

n=Zn ! C says:

f .x C a/ D
X

a2Zn

bf .a/ exp
�
2� i tax

�
;

wherebf denotes the Fourier transform on R
n defined by

bf .a/ D
Z

y2Rn

f .y/ exp
��2� i tay

�
dy:

We have seen in Section 1.4 of Volume I that there are many applications. For
example, setting f .x/ D exp.�YŒx�/ for Y 2 Pn, we obtain the transformation
formula for the theta function. This transformation formula allows one to prove the
analytic continuation and functional equation of Epstein’s zeta function. It also gives
information about the asymptotics of the fundamental solution of the heat equation
on R

n=Zn.
In Theorem 3.7.3 of Volume I, we found an analogue of Poisson summation for

functions on the fundamental domain for SL.2;Z/ in the Poincaré upper half plane.
Now we want to examine a generalization of this result to GL.n;Z/. The result we
seek to prove follows easily from the generalization of the Roelcke–Selberg spectral
decomposition of the Laplacian to GL.n;Z/, a result stated by Arthur [25]. For a
proof of this highly nontrivial theorem, one needs the discussion of Langlands [392]
or Harish-Chandra [262], or Osborne and Warner [482]. Some of the basics are to
be found in the preceding subsection. Other references are Goldfeld [230] as well as
Jorgenson and Lang [334]. Here we suppose for simplicity that f lies in C1

c .SPn/

and that f is O.n/-invariant. This implies that the Helgason–Fourier transform bf
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defined in (1.121) of Section 1.3.1 is independent of the rotation variable k 2 O.n/.
Thus we can writebf as a function of s 2 C

n alone:

bf .s/ D
Z

Y2Pn

f .Y/ ps .Y/ d	n.Y/: (1.333)

Poisson summation for �n D GL.n;Z/ says:

P

�2�n=f˙Ig
f .IŒa�b�1�/ D

X

m�0
bf .sm/wm.IŒa�/wm.IŒb�/

CP

P

X

v2A.P/

�P

Z

r2CjPj�1

Re rDconstant

bf .sP.v; r//EP.v; rjIŒa�/EP.v; rjIŒb�/ dr:

9
>>>>=

>>>>;

(1.334)
Here the sum over P runs over all nonassociated parabolic subgroups P D
P.n1; : : : ; nq/ as in (1.241) and we write jPj D q. We say that two parabolic
subgroups P.n1; : : : ; nq/ and P.m1; : : : ;mq/ are associated if the mj are a
permutation of the ni. The sum over m � 0 corresponds to a sum over the discrete
spectrum of the G-invariant differential operators in D.SPn/ on L2.SPn=�n/; �n D
GL.n;Z/. We will use the notation:

A.GL.n// D fwmjm � 0g (1.335)

to represent an orthonormal basis of L2.SPn=�n/ consisting of eigenfunctions
of D.SPn/. We will let w0 be the constant function. This may be viewed as a
residue of an Eisenstein series. There will also be cusp forms as defined in (1.311)
of Section 1.5.3. Thus A.GL.n// has both “cuspidal” and “residual” parts. It is
somewhat confusing to refer to the corresponding parts of the spectrum as the
“cuspidal spectrum” and the “residual spectrum” since the term “residual spectrum”
has a different meaning in spectral theory. See, for example Reed and Simon
[501, pp. 188, 194] where it is proved that self-adjoint operators have no residual
spectrum in the sense of functional analysis. So let us just say that the spectrum has
“cuspidal” and “non-cuspidal” components. The “non-cuspidal” part has proved to
be problematical for higher rank versions of the trace formula, as we noted at the
end of the last subsection.

To continue with the definitions of the terms in (1.334), now suppose that we
are given the parabolic subgroup P D P.n1; : : : ; nq/ and write the corresponding
partial Iwasawa decomposition of Y 2 SPn as:

Y D

0

B
@

a1 � � � 0
:::
: : :

:::

0 � � � aq

1

C
A

2

6
4

In1 � � � 	
:::
: : :

:::

0 � � � Inq

3

7
5 ; aj 2 Pnj : (1.336)
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Here

qY

jD1

ˇ̌
aj

ˇ̌ D 1; assuming jYj D 1:

If nj > 1, we have a nonempty discrete spectrum A.GL.nj// as in (1.335). We define

A
�
P.n1; : : : ; nq/

� D ˚
v D �

v1; : : : ; vq
� ˇ̌
vj 2 A

�
GL

�
nj
���

; (1.337)

where if nj D 1, we write A.GL.1// D f1g.
As in (1.248) of Section 1.5.1, the Eisenstein series in the continuous spectrum

are given by:

EP.v; rjY/ D
X

�2�n=P

'.YŒ��/; (1.338)

for

'.Y/ D
qY

jD1
vj
�
a0j
� ˇ̌

aj

ˇ̌�rj
; rj 2 C;

with v D �
v1; : : : ; vq

� 2 A.P/; Re rj suitably restricted for convergence of (1.338).
As usual, we are using the notation:

a0j D ˇ̌
aj

ˇ̌�1=nj aj 2 SPnj :

Actually, since the determinant of Y is 1, we have only q � 1 independent r-
variables. So we just integrate over the first q � 1 of them. Also, we must
continue the Eisenstein series outside of the region of convergence of (1.338) to
reach the spectrum of the invariant differential operators. Since, EP.v; rjY/ is an
eigenfunction of all the G-invariant differential operators on SPn, it determines, as
in Proposition 1.2.4 of Section 1.2.3, a vector of powers sP.v; r/ D s 2 C

n to put
in the Helgason–Fourier transformbf .s.r// in (1.333). That is, EP and p�s have the
same eigenvalues for the G-invariant differential operators L:

LEP.v; rjY/ D �LEP.v; rjY/ and LpDs D �Lp�s for all L 2 D.SPn/;

(1.339)
where ps.Y/ denotes the power function defined in (1.41) of Section 1.2.1. Finally,
the �P in formula (1.334) denotes a positive constant.

The proof of Poisson’s summation formula comes from the spectral decomposi-
tion of the G-invariant differential operators on L2.SPn=GL.n;Z// plus Selberg’s
basic lemma that eigenfunctions of G-invariant differential operators are eigenfunc-
tions of G-invariant integral operators (Proposition 1.2.4 of Section 1.2.3). We spell
out the details later in the section.
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One of the first applications of the Poisson summation formula is to study an
analogue of the circle problem on the asymptotics of the number of lattice points in
a circle in R

2 of radius x as x approaches infinity. In our case the statistical function is

#
˚
� 2 GL.n;Z/

ˇ̌
Tr.t��/ � x

�
; (1.340)

and one should obtain the asymptotic character of this function as x approaches
infinity. In order to imitate the discussion for n D 2 that appears in pages 334–337
of Volume I, it is necessary to study the Helgason–Fourier transform of the function
exp.�p Tr.Y// for p > 0 and Y in SPn. When n D 2, this is a K-Bessel function
(though it looks like a gamma function). We have not carried out the details for
GL.n/. Results have been obtained by many authors, going back to Delsarte in the
1940’s for cocompact subgroups. Results for general compact KnG=� are obtained
by Bartels [38]. The case of G D SL.2;C/, coming from imaginary quadratic fields
is considered by Elstrodt et al. [168]. We will say more about this in Chapter 2.

The Poisson summation formula can also be used to study the cusp forms
themselves. Stephen D. Miller [446] uses this to obtain a pre-trace formula for
cocompact � as well as SL.3;Z/ and then deduce a Weyl law as we noted earlier.

We should also mention that the spectral decomposition of the GL.n;R/-invariant
differential operators on SPn=GL.n;Z/ can be used to obtain a converse theorem
for an analogue of Hecke’s correspondence that takes place between Siegel modular
forms and Dirichlet series in several variables. This is worked out for Sp.2;Z/ by
Kaori Imai (Ota) [317], extending work of Koecher [359] and Maass [426]. We will
say a little more about the subject of Hecke’s correspondence for Siegel modular
forms in Chapter 2. Weissauer [663] obtains a very general converse theorem for
congruence subgroups of Sp.n;Z/. Bill Duke and Özlem Imamoglu [146] obtain
a lifting of certain holomorphic cusp forms on the upper half plane to Siegel cusp
forms using Kaori Imai’s converse theorem.

After this brief introduction, let us attempt to understand the discrete spectrum
better. To do this we need to develop an analogue of Theorem 3.7.2 on p. 331 of
Volume I which gave the existence of a complete orthonormal set of cusp forms for
SL.2;Z/. So we define:

L20 .SPn=GL.n;Z// D
�

h 2 L2.SPn=GL.n;Z//

ˇ
ˇ̌
ˇ

ak
0.Y/ D 0; for almost all

Y 2 SPn; 1 � k � n � 1
�
;

(1.341)

where ak
0.v/ is defined by (1.311) in § 1.5.3 as the 0th Fourier coefficient of h

with respect to P.k; n � k/. Gelfand and Piatetski-Shapiro have proved the GL.n/-
analogue of Theorem 3.7.2, Volume I. Let us give a sketch of Godement’s proof of
this result (see Borel and Mostow [68, pp. 225–234]). The argument is very close
to the one we gave in Volume I, but it is complicated by the non-abelian nature of
the nilpotent subgroup N � G D SL.n;R/, where N consists of upper triangular
matrices with ones on the diagonal.
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We want to prove the compactness of the convolution operators Ch; defined
in (1.342) below, acting on L20.SPn=SL.n;Z//; for h W SPn ! C infinitely
differentiable with compact support. We identify functions on SPn with functions

on G D SL.n;R/ via f
�
.IŒg�/0

�
D f .g/ for all g 2 G and write the convolution

operator as in (1.24) of Section 1.1.4:

Chf .a/ D
Z

b2GDSL.n;R/

h.ab�1/ f .b/ db: (1.342)

Theorem 1.5.7 (Gelfand and Piatetski-Shapiro). The convolution operator Ch

defined in (1.342) gives a compact operator on the space of square integrable
functions on the fundamental domain with vanishing constant terms; i.e.,
on L20.SPn=GL.n;Z// defined in (1.341).

Proof. This discussion follows a similar path to that laid out in the proof of
Theorem 3.7.2 in Volume I. Here we will consider only the case that n D 3.

Just as for n D 2, it suffices, by the Theorem of Arzelà and Ascoli (see
Kolmogorov and Fomin [362]) to show that if f 2 L20.SPn=SL.n;Z//;

jChf .a/j � k kf k2 ; for some positive constant k;

where

kf k22 D
Z

SP3=�3

jf .W/j2dW; �3 D GL.3;Z/:

We assume that h.b/ D h.b�1/ so that:

Chf .x/ D
Z

SP3

f .W/h
�
W

x�1�� dW

D
Z

SP3=NZ

f .W/
X

n2NZ

h
�
W

nx�1�� dW;

where NZ denotes the integral upper triangular 3 � 3 matrices with ones on the
diagonal.

Now apply ordinary Poisson summation as stated at the beginning of this section
to rewrite the sum over NZ. You find that this sum is equal to:

X

R2NZ

bh.R/; where bh.R/ D
Z

n2NR

h
�
W

nx�1�� exp

0

@2� i
X

1�j<k�3
njkrjk

1

A dn:

Here NR denotes the real 3� 3 upper triangular matrices with ones on the diagonal.
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We may assume that h lies in a Dirac delta sequence at the identity, in particular,
that h is K D O.3/ bi-invariant. Write the Iwasawa decomposition of x 2 G as
x D kav, where k 2 K D O.3/; v 2 NR, and a is positive diagonal with jth diagonal
entry aj. We want to bound Chf .x/ as ai=aiC1 approaches zero for i D 1; 2. Let

W D bŒt� D
0

@
b1 0 0

0 b2 0

0 0 b3

1

A

2

4
1 t12 t13
0 1 t23
0 0 1

3

5 ; for bj > 0:

Then

bh.R/ D
Z

n2NR

h
�
b

tnv�1a�1�� exp

0

@2� i
X

j<k

njkrjk

1

A dn:

Next change variables via m D tnv�1; n D t�1mv. Recall that

t D
0

@
1 t12 t13
0 1 t23
0 0 1

1

A implies t�1 D
0

@
1 �t12 t12t23 � t13
0 1 �t23
0 0 1

1

A

and

0

@
1 m12 m13

0 1 m23

0 0 1

1

A

0

@
1 v12 v13
0 1 v23
0 0 1

1

A D
0

@
1 m12 C v12 m13 C v13 C m12v23
0 1 m23 C v23
0 0 1

1

A :

From this, we see that, if n D t�1mv and we use the same notation for entries of n
as for entries of t, then we obtain:

n12 D �t12 C m12 C v12;

n23 D �t23 C m23 C v23;

n13 D �t13 C m13 C v13 C m12v23 C t12t23 � t12.m23 C v23/:

It follows that, with the nij as above:

bh.R/ D
Z

m2NR

h
�
b

ma�1�� exp f2� i .r12n12 C r13n13 C r23n23/g dm:
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Then we must change variables via n D ama�1, with Jacobian:

˛.a/ D
Y

i<j

aj=ai:

This gives:

bh.R/ D ˛.a/
Z

n2NR

h
�
b

a�1n

��
exp f2� iT.n/g dn;

where

T.n/ D r12

�
a2
a1

n12 � t12 C v12

�
C r23

�
a3
a2

n23 � t23 C v23

�

Cr13

�
v13 C a2

a1
n12v23 C a3

a1
n13 � t12

�
a3
a2

n23 C v23

�
C t12t23 � t13

�
:

It will be easier if we approximate h by functions such that:

h .bŒt�/ D h0.b/h12.t12/h13.t13/h23.t23/:

Then we have:

bh.R/ D ˛.a/h0
�
b

a�1�� exp f2� i L.r; v; t/g bh12

�
a2
a1
.r12 C r13v23/

�

�bh13
�

a3
a1

r13

�
bh23

�
a3
a2
.r23 � r13t12/

�
;

where

L.r; v; t/ D r12 .v12 � t12/C r13 .v13 � t12v23 C t12t23 � t13/C r23 .v23 � t23/ :

If R D .r12; r13; r23/ D 0, then the fact that f 2 L20.SPn=SL.n;Z// says that the
integral over tij 2 Œ0; 1� is zero. Thus we need to only consider R ¤ 0.

Since h is infinitely differentiable with compact support (i.e., h 2 C1
c /, we

can apply differential operators to h and stay in C1
c . But then we can obtain the

following bound:

X

R¤0
bh.R/ � ˛.a/h0.bŒa

�1�/Z.W.a; v; t/; s/;

where Z.W; s/ is Epstein’s zeta function from Section 1.4 of Volume I and its first
argument is the positive matrix:
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W.a; v; t/ D I

2

4
a2=a1 v23a2=a1 0

0 a3=a1 0

0 �t12a3=a2 a3=a2

3

5 :

Here s is any sufficiently large integer. Epstein’s zeta function can in turn be bounded
by

max.ı�s
1 ; ı

�s
2 ; ı

�s
3 /

X

R2Z3�0
Y.v; t/ŒR��s;

where ı1 D a2=a1; ı2 D a3=a1; ı3 D a3=a2, and

Y.v; t/ D I

2

4
1 v23 0

0 1 0

0 �t12 1

3

5 :

Since v and t can be assumed to be bounded, our only problem is to deal
with h0

�
b

a�1�� for ai=aiC1 near zero. But, because h0 has compact support,

h0
�
b

a�1�� ¤ 0 implies

c1 <
bi

biC1
aiC1
ai

< c2:

If we assume that the quotient ai=aiC1 is sufficiently near zero, then

bi=biC1 < c;

for as small a constant c as we like.
Thus we have bounded jChf .x/j by a constant multiplied by the product of some

powers of ai=aiC1 and the following integral, if x D kav, as above:

Z

jtijj�1=2

Z

bi�cbiC1

f .bŒt�/ db1 db1 db2 dt12 dt13 dt23:

To complete the proof of the bound on Chf .x/, one must note that when c D 1,
the domain of integration in the integral above must lie in the fundamental domain
SF3 of Section 1.4.3. For this, see Exercise 1.4.19 of Section 1.4.3. Therefore the
desired inequality follows from the Cauchy–Schwartz inequality. �

There is another question one might raise at this point, as Kaori Imai (Ota)
pointed out to me. Our discussion of the discreteness of the spectrum of the cusp
forms for SL.3;Z/ used the vanishing of the integral defined by:



1.5 Maass Forms for GL.n;Z/ and Harmonic Analysis on Pn=GL.n;Z/ 327

Z Z Z

tij2Œ0;1�
f .YŒt�/ dt12 dt13 dt23; t D

0

@
1 t12 t13
0 1 t23
0 0 1

1

A : (1.343)

The definition of cusp form given in (1.311) requires the vanishing of both of the
integrals below:

Z Z

tij2Œ0;1�
f .YŒt�/ dt12 dt13; t D

0

@
1 t12 t13
0 1 0

0 0 1

1

A ;

Z Z

tij2Œ0;1�
f .YŒt�/ dt13 dt23; t D

0

@
1 0 t13
0 1 t23
0 0 1

1

A :

9
>>>>>>>=

>>>>>>>;

(1.344)

Note that (1.344) implies (1.343) but the converse is not clear.
Next let us say a little more about the proof of (1.334). Note that we saw

in Section 1.5.3 for a special case that if P and Q are nonassociated parabolic
subgroups of GL.n/, then:

EP.v; rjY/ �
qY

jD1
vj
�
a0j
� ˇ̌

aj

ˇ̌�rj
; as Y ! @SFn;

in the direction of P. Here @SFn denotes the boundary of the fundamental domain
SFn for SPn=GL.n;Z/. However, because P and Q are nonassociated parabolic
subgroups and if v is a cusp form:

EQ.v; rjY/ � 0;

as Y approaches the boundary of the fundamental domain in the direction corre-
sponding to Q. One expects that this implies that EP and EQ are orthogonal provided
that P and Q are nonassociated and at least one of the Eisenstein series has a
cusp form floating around in it. An argument similar to that of Exercise 1.5.37,
Section 1.5.3 should work here provided that one has proved the vanishing of the
0th Fourier coefficient of EQ with respect to the parabolic subgroup P.

Of course, if P and Q are associated parabolic subgroups, then one can see that
EP and EQ are really the same function after a trivial change of variables. See (1.329)
in the preceding section or Exercise 1.5.26 in Section 1.5.2.

Thus it appears likely that a generalization of the principle of asymptotics and
functional equations from Section 1.3 should lead to the spectral resolution of the G-
invariant differential operators on L2.SPn=GL.n;Z//. One could attempt to imitate
the approach given for Theorem 3.7.1 in Volume I for SL.2;Z/, using incomplete
theta series attached to the nonassociated parabolic subgroups. We will not go into
this here beyond what was said in the preceding subsection. We would, for example,
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need to see that someone orthogonal to all the Eisenstein series EP for all P must
be in L20 and thus in the span of the discrete spectrum A.GL.n//. The ultimate result
would be that any g 2 L2.SPn=GL.n;Z// has the spectral decomposition:

g.Y/ D
X

w2A.GL.n//

.g;w/w.Y/

C
X

P

X

v2A.P/

�P

Z

r2Cq�1

Re rjDconstant

.g;EP/ EP.v; rjY/ dr;

9
>>>>=

>>>>;

(1.345)

where .f ; g/ is the inner product on L2.SPn=GL.n;Z// with respect to the G-
invariant measure. We use the notation of (1.334)–(1.339) above. See Langlands
[392], Harish-Chandra [262], Osborne and Warner [482], and Arthur’s lecture in
Borel and Casselman [66, Vol. I, pp. 253–274]. The proof of formula (1.345) by
Meera Thillainatesan is in Goldfeld [230, p. 324 ff].

In order to derive the Poisson summation formula (1.334) from (1.345), one must
use Selberg’s basic lemma which says that eigenfunctions of G-invariant differential
operators are eigenfunctions of G-invariant integral operators (see Proposition 1.2.4
in Section 1.2.3). This shows that if we write f .IŒa�/ D f .a/ for all a 2 G and

g.a/ D
X

�2�n=˙I

f .a�b�1/; with f as in (1.334),

then by Proposition 1.2.4 of Section 1.2.1, since we are assuming that f .a/ D
f .a�1/, we have:

.g;EP/ D
Z

a2G=�n

X

�2�n=˙I

f
�
a�b�1� EP.IŒa�/ da

D
Z

G

f
�
ab�1� EP.IŒa�/ da

D
Z

G

f
�
ba�1� EP.IŒa�/ da D Cf .EP/.b/ Dbf .sP/ EP.IŒb�/:

Here sP D sP.v; r/ is chosen as in (1.339). A similar argument applies to the discrete
spectrum terms in (1.334). This completes our very sketchy discussion of Poisson
summation for GL.n;Z/.

The main application of the Poisson summation formula (1.334) is to the trace
formula. If we are looking at a discrete subgroup � of GL.n;R/ acting on SPn

without fixed points and so as to have a compact fundamental domain, then the trace
formula is easily obtained, since (1.334) then involves no continuous or residual
spectrum. See Mostow [466] for an example of such a group � . In what follows we
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give a sketchy discussion of the Selberg trace formula, imitating what we said in the
last part of Section 3.7 in Volume I. Another reference for Selberg’s trace formula
is Hejhal [269].

Stage 1.

Z

KnG=�

X

�2�=f˙Ig
f
�
b�b�1� dg D

X

m�0
bf .sm/ : (1.346)

Formula (1.346) is obtained by integrating (1.334) and using the orthonormality
of the various elements of the spectrum of the G-invariant differential operators
on SPn=GL.n;Z/.
If the fundamental domain for � is not compact, divergent integrals arise on the
left in (1.346) and must be cancelled against integrals from components of the
continuous spectrum, as in the case of SL.2;Z/ in Section 3.7 of Volume I. This
is reminiscent of renormalization methods in quantum field theory. There are
even problems showing that one can take the trace. Some references are Arthur
[21–25], A.B. Venkov [627], Dorothy Wallace [642–650], and Warner’s paper in
the volume of Hejhal et al. [272, pp. 529–534].
Stage 2. Let f�g D ˚

a�a�1 ˇ̌ a 2 �=˙ I
� D the conjugacy class of � in �=˙I.

And let �� be the centralizer of � in � . Then it is easily shown, as in (3.162) of
Section 3.7, Volume I, that

X

m�0
f .sm/ D

X

f�g
cf .�/; (1.347)

where the sum on the right is over all distinct conjugacy classes f�g in �= ˙ I,
and the orbital integral is:

cf .�/ D
Z

KnG=��

f
�
b�b�1� db: (1.348)

Stage 3. Now one needs to evaluate orbital integrals. If � is in the center of G,
this is easy, since it is clear that:

cf .�/ D f .�/ Vol.KnG=�/; for � in the center of �:

This can be evaluated in terms of bf .s/ using the inversion formula from
Theorem 1.3.1 in Section 1.3.1.
Next suppose that � is hyperbolic; i.e., � is conjugate in G D SL.n;R/ to a
matrix with n distinct real eigenvalues di none of which equal one. Let us assume
for simplicity that n D 3. In this case, one finds that the orbital integral for � can
be replaced by one in which the argument of f has the following form:
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0

B
@

y1 0 0

0 y2 0

0 0 y3

1

C
A

0

B
@
1 x1 x3
0 1 x2
0 0 1

1

C
A

0

B
@

d1 0 0

0 d2 0

0 0 d3

1

C
A

0

B
@
1 x1 x3
0 1 x2
0 0 1

1

C
A

�10

B
@
1=y1 0 0

0 1=y2 0

0 0 1=y3

1

C
A

D
0

B
@

d1 x1y1.d2 � d1/=y2 x3y1.d3 � d1/=y3 C x1x2y1.d1 � d2/=y3
0 d2 x2y2.d3 � d2/=y3
0 0 d3

1

C
A :

Now look at the fundamental domain KnG=�� for the centralizer of � . We
can assume that we have conjugated everything so that �� consists of diagonal
matrices with diagonal entries cj; j D 1; 2; 3. The cj must be units in a totally
real cubic number field. The elements of KnG are represented by matrices of the
form:

0

@
y1 0 0

0 y2 0

0 0 y3

1

A

0

@
1 x1 x3
0 1 x2
0 0 1

1

A ; y3 D 1

y1y2
:

Then � acts on g by multiplying the yj by cj. So we can take the yj in a
fundamental domain for this action. From number theory (Dirichlet’s theorem
on units in algebraic number fields which was mentioned in Section 1.4 of
Volume I), one knows that there is a compact fundamental domain for the
action of the c’s on the y’s. The volume of this compact fundamental domain
is measured by what number theorists call a regulator. See of Section 1.4 of
Volume I for the definition and properties of the regulator.
Now make a change of variables in the orbital integral via:

u1 D x1y1 .d2 � d1/ =y2; u2 D x2y2 .d3 � d2/ =y3;

u3 D x3y1 .d3 � d1/ =y3 C x1x2y1 .d1 � d2/ =y3:

You obtain

H.d/
Z

y mod c
u2R3

f

0

@
d1 u1 u3
0 d2 u2
0 0 d3

1

A y�3
1 y�2

2 dy du;

where

H.d/ D
Y

i<j

ˇ̌
di � dj

ˇ̌�1
:
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Thus we end up with the Harish transform of f over N as in the hint to
Exercise 1.3.3 in Section 1.3.1. The Helgason–Fourier transform (1.333) is a
composition of Mellin transforms over the y-variables and the Harish-transform
over the x-variables. See Dorothy Wallace [644] for more details on this
calculation.
Since we have seen that units in cubic number fields appear in these formulas, one
expects to generalize Sarnak’s result (Theorem 3.7.6 in Volume I) to cubic and
higher degree totally real number fields once the full trace formula for SL.n;Z/
is worked out in excruciating detail.
We should also note that there will be other sorts of orbital integrals, for example,
from loxodromic elements of SL.n;Z/with mixed eigenvalues (not all real), none
of which are equal to each other or to ˙1. Wallace computes the contribution
to the trace formula for SL.3;Z/ from loxodromic conjugacy classes in [649].
She notes that: “For SL.4;Z/ and higher dimensional groups, : : : there are many
more kinds of terms that, for the purposes of computing anything, must be
distinguished from each other.”
Stage 4. In this stage one must deal with the problems which arise when the
fundamental domain for � is not compact. The orbital integrals for parabolic
� 2 � (i.e., � some of whose eigenvalues are 1) require truncation, as do the
inner products of continuous spectrum terms. We will not say more about this,
beyond what was said in the preceding subsection. One needs to truncate and use
the Langlands inner product formula. Dorothy Wallace [650] has a version of the
result. There may be some terms missing. This is a constant problem with higher
rank Selberg trace formulas. There are just too many terms. For an example, one
has only to read Howard Resnikoff’s review in Math. Reviews, Vol. 53 #2841, of
a paper computing dimensions of spaces of Siegel modular forms.

As is the case in Dorothy Wallace’s calculations in [650], it is likely that one must
use the trace formula for SL.n � 1;Z/ in order to prove that the cancellation occurs
and we get a trace formula for SL.n;Z/. Even when n D 3, complicated calculations
are needed, to obtain an explicit useful result. Many very large sheets of paper are
required.

Of course, we should mention that various cases of the trace formula have already
been worked out; for example in the case of discrete or discontinuous group actions
on the quaternionic upper half space SL.2;C/=SU.2/, or actions on products of
upper half planes, or actions on Siegel’s upper half space which is the quotient
Sp.n;R/=SU.n/. See Chapter 2 for more information on such examples. References
for this and related topics are: Arakawa [18], Arthur [21–25], Christian [109],
Efrat [152], Eie [160], Elstrodt et al. [165–168], Gangolli and Warner [199, 200],
Godement [226], Hashimoto [264], Hejhal et al. [272, pp. 253–276], Langlands
[389–395], Mennicke [442, 443], Morita [463], Müller [469], Petra Ploch [489],
Sarnak [526], Selberg [543, 545, 546] Shimizu [553], Tanigawa [591], A.B. Venkov
[627], Marie-France Vignéras [630–632], Dorothy Wallace [642–650], Warner
[656], and Zograf [677].
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Langlands [389] has obtained information on dimensions of spaces of automor-
phic forms by noting that since it is not too hard to compute some of the terms
in the trace formula, e.g., the identity and hyperbolic terms, then one can make
use of a good vanishing result for the remaining terms or a way of showing them
asymptotically negligible. See Langlands’ talk in Borel and Mostow [68, pp. 251–
257] and Warner’s discussion of the Selberg principle [655, Vol. II, p. 370] as well
as Section 2.2.3.

Adelic versions of the trace formula have also been obtained. See Arthur [21–25],
and Flicker [182]. There is also a trace formula for NR=NZ, where N is the nilpotent
group of 3 � 3 upper triangular matrices with ones on the diagonal (see Osborne’s
second paper in Hejhal et al. [272, pp. 375–385]). It would be natural to use this
result in our derivation of the trace formula for SL.3;Z/, but, so far as I know, no
one has done this. Finally there are twisted trace formulas, which are needed for
base change and the work of Langlands [394] on Artin’s conjecture.

Let us just close this section by saying that if you want more exercises, you
could try to translate anything in Section 3.7 in Volume I over to GL.n;Z/. Many
have slaved on this project. But there is still much to do.

1.5.6 Finite and Other Analogues

Finite analogues of the results in this chapter have been studied but not as
exhaustively as the finite upper half planes in §3.3.8 of Vol. I. For example, one
might hope to write down the trace formula for GL.n;Fq/. In this setting, the trace
formula would require one to understand the character table of GL.n;Fq/: I could
only find the character tables for n D 3 and 4 in print, when writing [609]. Of
course you can use the computer software GAP to give you these character tables
for explicit finite fields. In a less ambitious vein, one can simply look for analogues
of finite upper half planes, finite upper half plane graphs, and finite Eisenstein series
considered in Volume I. Let us sketch what we know about this work.

In attempting to find analogues of finite upper half plane graphs, Nancy Tufts
Allen [6] considered Cayley graphs attached to the group G of matrices of the form

0

@
y x z
0 1 0

0 0 1

1

A D .y; x; z/; for x; y; z in the finite field Fp; y ¤ 0;

where p is a prime greater than 3. The vertices of the graph are the elements of
G: The edges in the graph are between an element g in G and an element gs, for
s in the edge set S. Here, for fixed ı; a; c which are nonzero elements of the finite
field Fp; the edge set S D Sp.ı; a; c/ consists of elements .y; x; z/ 2 G such that
x2Ccz2 D ayCı.y�1/2. Call this graph Xp.ı; a; c/. Allen asks whether these graphs
are Ramanujan as defined in Vol. I, p. 93. She finds that there is much evidence for
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her conjecture that the graphs Xp.ı; a; c/ are Ramanujan if
�

�c
p

�
D
�

a.a�4ı/
p

�
D 1;

where
�

a
p

�
denotes the Legendre symbol. Allen also generalizes these graphs to

analogous subgroups of GL.n;Fp/ and shows that for n > 3; the analogous graphs
are not Ramanujan.

A hypergraph X D X.V;E/ consists of a vertex set V D V.X/ and an edge
set E D E.X/ such that each element of E.X/ is a nonempty subset of V.X/. The
hypergraphs considered here are .d; r/-regular and finite. This means that any given
edge contains r elements of V.X/ and each vertex of X is contained in d edges. For a
Cayley graph r D 2: The adjacency matrix of a hypergraph X is a jVj � jVj matrix
with diagonal entries Ax;x D 0, for x 2 V; and off-diagonal entries

Ax;y D # fe 2 E j x; y 2 Eg ; for x; y 2 V with x ¤ y:

Winnie Li and Patrick Solé [404] have defined a finite connected .d; r/-regular
hypergraph X to be a Ramanujan hypergraph if every eigenvalue � of A, � ¤
d.r � 1/; satisfies

j� � .r � 2/j � 2
p
.d � 1/.r � 1/:

María Martínez [434] has found hypergraphs attached to a finite upper half-space
for GL.n;Fq/. Martínez proceeds as follows. She replaces the finite upper half plane
with the finite upper half space H3

q defined using a root 
 of an irreducible cubic

polynomial 
3 C a
2 C b
 C c D 0; where a; b; c 2 Fq: Then H3
q consists of

vectors

Z D
0

@
W1

W2

1

1

A ;
where W1;W2 2 Fq .
/ ;

W1;W2; 1 linearly independent over Fq

The action of GL.n;Fq/ on points in H3
q is that from viewing these points as

elements of projective 2-space. That is gZ D gZ
�

1
.gZ/3

�
; where .gZ/3 denotes the

third component of the vector gZ: For Z 2 H3
q; define det Z D det˛Z ; where

˛Z D
0

@
u11 u12 u13
u21 u22 u23
0 0 1

1

A if Z D
0

@
u11


2 C u12
 C u13
u21


2 C u22
 C u23
1

1

A :

Let Nx D NFq.
/=Fq denote the norm in the finite field extension Fq .
/ =Fq.
Martínez replaces the point-pair invariant for points in the finite upper half plane
with a point-triple invariant
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k.Z1;Z2;Z3/ D
�

N .det .Z1 Z2 Z3//

det.Z1/ det.Z2/ det.Z3/

�2
for Z1;Z2;Z3 2 H3

q:

Martínez defines the hypergraph H3
q.a/ to have vertex set H3

q and a hyperedge
between Z1;Z2;Z3 2 H3

q if k .Z1;Z2;Z3/ D a2: Then she shows that for small p
these hypergraphs are indeed Ramanujan. Martínez also considers the analogues for
GL.n;Fq/:

María Martínez, Harold Stark, and I found other Ramanujan hypergraphs
associated with GL.n;Fq/ (see [435]). For example we considered the subgroup
A.1; n � 1/ of GL.n;Fq/ defined by

A.1; n � 1/ D
� �

1 tb
0 c

�ˇ̌
ˇ
ˇ c 2 GL.n � 1;Fq/; b 2 F

n�1
q

�
:

Then let

An
q D GL.n;Fq/=A.1; n � 1/ Š F

n
q � f0g :

The identification here sends a coset gA.1; n � 1/ to the first column of g. The Mn
q

space is defined for n � 3 as

Mn
q D

� �
1

x

� ˇ̌
ˇ̌ x 2 F

n�1
q

�
:

An element g 2 A.1; n � 1/ acts on a column vector v 2 Mn
q by v 7! tgv; where

tg denotes the transpose of g: Define the n-point invariant function

D.x1; : : : ; xn/ D det .x1 : : : xn/
2 :

It is easily seen that D.gx1; : : : ; gxn/ D D.x1; : : : ; xn/ if det g D ˙1:
The ˛-hypergraph ˛n

q.a/ has as its vertex set An
q and an edge between

x1; : : : ; xn 2 An
q (assumed to be pairwise distinct) if D.x1; : : : ; xn/ D a2: We proved

that, for n � 3 and a ¤ 0; the hypergraph ˛n
q.a/ is Ramanujan only when n D 3 and

q D 2; 3; 4 or when n D 4 and q D 2:

The �-hypergraph 	n
q.a/ has vertex set Mn

q and an edge between the n distinct
elements x1; : : : ; xn 2 Mn

q if the n-point invariant D.x1; : : : ; xn/ D a2: We found
that, for a ¤ 0; these hypergraphs are Ramanujan only if n D 3; for all q; or if
n D 4; but then only when q D 2:

Winnie Li [402] has found many examples of finite hypergraphs associated
with finite quotients of the Bruhat–Tits building of GL.n;F/ over a local field F.
Examples of local fields F include the field of p-adic numbers, Qp, which is the
completion of the rationals at the prime p: Another example is the completion of
Fp.x/ at some prime (i.e., irreducible) polynomial in FpŒx�. Much more is known
for the 2nd example and it is this second type of field that Winnie Li considers.
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We briefly sketch some of her results. Let X D PGL.n;F/=PGL.n;OF/ be the
Bruhat–Tits building associated with PGL.n;F/ D GL.n;F/=Z; where Z is the
center of GL.n;F/: It is assumed that F is a non-Archimedean local field with q
elements in its residue field. One can view points x 2 X as equivalence classes of
rank n lattices Lx over OF: Suppose that � is the uniformizer of F: To obtain a
hypergraph, one says that the points x1; : : : ; xn 2 X are in a hyperedge if the points
xi can be represented by lattices Lxi such that

Lx1 � Lx2 � � � � Lxn � �Lx1 :

One can also view X as a finite simplicial complex. Hecke operators Ai; i D
1; : : : ; n � 1, act on functions on X by convolution with the indicator function of the
PGL.n;OF/ double coset of the diagonal matrix with diagonal .�; : : : ; �; 1; : : : ; 1/;
where � occurs i times. The operator spectrum of Ai acting on L2.X/ is known.
See Macdonald [428]. Suppose that � is a discrete subgroup of PGL.n;F/ such
that �nX is finite. Then we can view �nX as a hypergraph with operators Ai

giving analogues of the Laplacian or Hecke operators. The general definition of
a Ramanujan hypergraph (or complex) covered by X asks that the nontrivial
eigenvalues of the operators Ai, i D 1; : : : ; d � 1, lie in the spectrum of Ai

acting on L2.X/. Since for n > 2, the Ai’s are normal but not necessarily self-
adjoint, it follows that these spectra are subsets of C not R. Li [403] uses the
multiplicative group D of a division algebra of dimension n2 over a function
field to construct for each prime power q and positive integer n � 3, an infinite
family of Ramanujan .q C 1/-regular n-hypergraphs. She proves her result using
results of Laumon, Rapoport, and Stuhler on the Ramanujan conjecture for adelic
automorphic representations of D, by suitably choosing two division algebras and
comparing their trace formulae. Alex Lubotzky, Beth Samuels & Uzi Vishne [411]
prove similar results to those of Winnie Li differently, using work of Lafforgue, who
generalized the Ramanujan conjecture from GL.2/ to GL.n/ over fields of positive
characteristic. At the end of their paper very explicit examples are given. Note also
that, in order to prove the Ramanujanicity of their examples, they need the global
Jacquet–Langlands correspondence from adelic division algebras to adelic GL.n/
for function fields such as Fp.x/. In an earlier related paper, Cristina Ballantine [35]
constructed finite 3-hypergraphs as quotients of the building attached to PGL3 over
the archimedian field of p-adic numbers, Qp, and proved that they are Ramanujan
using representation theory.

Chris Storm [580] has generalized the Ihara zeta function of a graph to
hypergraphs. Recall that the Ihara zeta is a graph theory analogue of Selberg’s
zeta. See my book [611] for more information on Ihara zetas. Storm proves that
for .d; r/-regular hypergraphs, a modified Riemann hypothesis is true if and only if
the hypergraph is Ramanujan in the sense of Winnie Li and Patrick Solé. He notes
the connection between a hypergraph X D X.V;E/ and its associated bipartite graph
B. The bipartite graph has vertices indexed by V and E: The vertices v 2 V and
e 2 E are adjacent if v 2 e: Storm shows that the zeta function of the hypergraphcan
be represented in terms of the Ihara zeta function of the bipartite graph. But
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he also shows that there are infinitely many hypergraphs whose generalized zeta
function is never the Ihara zeta function of a graph. Ren et al. [504] have applied
zeta functions of hypergraphs to the processing of visual information extracted
from images. The main reason for using such methods according to them “is that
hypergraph representations allow nodes to be multiply connected by edges, and can
hence capture multiple relationships between features.” They look at some data
that appears to show that the zeta function method is superior to the method of
computing Laplacian spectra. Deitmar and Hoffman [131] study an analogue of the
Ihara zeta function of PGL.3/ and find a determinant formula for it.

The study of automorphic forms/representations over global function fields such
as Fp.x/ seems to be much easier than that over global number fields such as
Q. For example, consider the Fp.x/-analogue of Riemann’s zeta function, for
whom the Riemann hypothesis is proved. See Rosen [515] for more information
on function fields and their zeta functions. The function field analogue of the
Langlands correspondence was proved for GL.2/ by Drinfeld (see [139–142]) and
for GL.n/ by Lafforgue [381]. Frenkel [187] discusses the Langlands program for
both number fields and function fields. Such results have led to something called
“the geometric Langlands program” in which Fp.x/ is replaced by C.x/: This is of
interest to physicists such as Witten working on quantum field theory. See Witten’s
interview [480]. This connects with work on string theory, supermanifolds and
supertrace formulas. See Alice Rogers [513] and Christian Grosche [245].



Chapter 2
The General Noncompact Symmetric Space

“These things will become clear to you,” said the old man gently, “at least,” he added with
a slight doubt in his voice, “clearer than they are at the moment.”

From The Hitchhiker’s Guide to the Galaxy, by Douglas Adams, Pocket Books,
NY, 1981. Reprinted by permission of The Crown Publishing Group.

2.1 Geometry and Analysis on G=K

2.1.1 Symmetric Spaces, Lie Groups, and Lie Algebras

Volume I [612] and the first chapter of this tome considered various examples
and applications of symmetric spaces X, along with harmonic analysis on X and
X=� for discrete groups � of isometries of X. Here we consider some aspects
of analysis on a general noncompact symmetric space X D G=K. Our discussion
will be very sketchy. The main goal is to lay the groundwork for extension of
the results of the preceding chapters to other symmetric spaces which are of
interest for applications; in particular, the Siegel upper half space Hn [which can
be identified with Sp.n;R/=U.n/] and hyperbolic three space Hc [which can be
viewed as SL.2;C/=SU.2/]. We will also be interested in the fundamental domains
Hn=Sp.n;Z/ for the Siegel modular group as well as the fundamental domain
Hc=SL.2;ZŒi�/ for the Picard modular group. It is possible to generalize just about
everything we did in the earlier chapters for such examples; e.g., the Selberg trace
formula. And our main motivations for doing so come from number theory. Because
it is time consuming and sometimes not so enlightening to do each of these examples
separately, we have decided to present some results on the general symmetric space.
Those interested in number theoretic applications may find this equally tedious and
attempt to jump to the next section. But I think it is useful to know what a general

© Springer Science+Business Media New York 2016
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Iwasawa decomposition is, for example, in order to find the right coordinates to use
in solving a given problem on the symmetric space. Of course, others will say that
the discussion which follows is neither sufficiently general, detailed, nor rigorous.
We refer those characters to the texts of other authors which are listed below.

Some topics in physics that lead one to study these other symmetric spaces are:
quantum statistical mechanics and quantum field theory (see Hurt [312], Frenkel
[187], and Ooguri’s interview of Witten [480]), particle physics (see Wybourne
[672, Ch. 21]), coherent states (see Hurt [312], Monastyrsky and Perelomov [457],
and Perelomov [484]), boson fields (see Shale [551] and Cartier’s article in Borel
and Mostow [68, pp. 361–386]), solitons (see Dubrovin et al. [143], McKean and
Trubowitz [440], Lonngren and Scott [407], and Novikov [474]), rotating tops (see
Sofya Kovalevskaya [aka Sonya Kovalevsky] [368], Linda Keen [345], Pelageya
Kochina [358], and Cooke [124]), and string theory (see Polyakov [491]).

Many branches of number theory steer one into these realms; e.g., the theory
of quadratic forms (see Siegel [561–565]) and algebraic number theory (see Hecke
[268] and Siegel [563]). The study of the ring ZŒi� of Gaussian integers and similar
rings for various algebraic number fields leads one to think that anything one can
do for Z should be generalizable to ZŒi�. In particular, we will see that the theory of
Maass wave forms for SL.2;Z/ has an analogue for SL.2;ZŒi�/. This leads to some
interesting formulas for the Dedekind zeta function of Q.i/, among other things.
See the Corollaries to Theorem 2.2.1 in Section 2.2 which follows. There is also an
analogue of Selberg’s trace formula (see the last section in this volume or Elstrodt
et al. [168]).

Finally electrical engineering has many applications of these symmetric spaces
as well (see Blankenship [51] and Helton [284–286]). We saw in Section 3.1 of
Volume I that 2-port microwave circuits lead to quantities in SL.2;R/. Similarly,
more complicated circuits lead to higher rank Lie groups.

References for this section include: Baily [32], Barut and Raçzka [39],
Broecker and tom Dieck [81], Chevalley [104], Yvonne Choquet-Bruhat, Cécile
DeWitt-Morette, & Margaret Bleick [106], Dieudonné [137], Gangolli [195–198],
Harish-Chandra [262, 263], Helgason [273–282], Hermann [289, 290], Hua [308],
Loos [408], Maass [426], Piatetski-Shapiro [485], Sagle and Walde [524], Séminaire
Cartan [547], Siegel [561–565], Varadarajan [623–625], Wallach [651–653], Warner
[655], and Wybourne [672].

We will assume that the reader has had a decent course in multivariable calculus.
Our favorite books for this are Lang [385, 388]. The notions of differential, tangent
space, matrix exponential, Taylor’s formula are all covered there. You may also need
to refer to a book like that of Sagle and Walde [524] for more details on various
arguments. The true story of everything is found in Helgason’s big green books.
Varadarajan [623] is also useful, for example, as a source for all the details of the
root space calculations.

Élie Cartan obtained the basic theory of symmetric spaces between 1914
and 1927. Then, beginning in the 1950s, Harish-Chandra, Helgason, and others
developed harmonic analysis and representation theory on these spaces and their
Lie groups of isometries.
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A symmetric space M is a connected Riemannian manifold (as in the discussion
at the beginning of Chapter 2, Volume I) such that at each point P 2 M there is a
geodesic-reversing isometry

sP W M ! MI

i.e., sP preserves the Riemannian metric and flips geodesics about the fixed point P.
Our first goal is to produce a multitude of examples of symmetric spaces. We

always start with a Lie group G; i.e., a real analytic manifold which is also a group
such that the mapping

G � G ! G
.g; h/ 7! gh�1 (2.1)

is analytic. We will only consider Lie groups of real or complex matrices here. As
we have said earlier, it is often useful to replace R or C with a finite field, or a local
field such as Qp; the field of p-adic numbers. Mostly, we will avoid doing this.

The Lie algebra g of a Lie group G is the tangent space to G at the identity,
once it has been provided with an additional operation called “the Lie bracket.” It
is traditional that the Lie algebra is written as the lowercase German letter (fraktur)
corresponding to the uppercase Latin letter which is the group. The fraktur letters
used here should be recognizable—except k, which is k.

The Lie bracket operation is defined by identifying the Lie algebra

g D Te.G/ D the tangent space to G at the identity e 2 G;

with the space of left-invariant vector fields on G. These vector fields are first order
differential operators on G (with real analytic coefficients) which commute with
left translation. This identification is achieved by making use of the left translation
Lg.x/ D gx, for x; g 2 G. If QX is a left-invariant vector field, then

QXg D dLg.X/; for g 2 G; X 2 g:

Here dLg denotes the differential of left multiplication on G. Now we define the Lie
bracket of two left invariant vector fields QX; QY by;

Œ QX; QY� D QX QY � QY QX;

which is also a left invariant vector field; i.e., the bracket of two first order
differential operators is actually a first order and not a second order differential
operator. Write ŒX;Y� for the corresponding bracket of elements X;Y in the Lie
algebra g.
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What makes g a Lie algebra? The answer is that the bracket can be shown to
have the following defining properties of such an algebra:

(1) ŒX;Y� is a bilinear map of g � g into g;
(2) ŒX;Y� D �ŒY;X�;
(3) ŒX; ŒY;Z��C ŒY; ŒZ;X��C ŒZ; ŒX;Y�� D 0 (Jacobi’s identity).

Then one defines subalgebra, ideal, homomorphism, isomorphism, etc., for Lie
algebras in the usual way (see the references). For example, an ideal a � g is a
vector subspace a of g such that Œa; g� � a.

Exercise 2.1.1. Prove that if G D GL.n;R/, then the corresponding Lie algebra
can be identified with the vector space R

n�n of all n � n real matrices with bracket
defined by

ŒA;B� D AB � BA; for A;B 2 R
n�n:

Here AB denotes the usual matrix product. Thus gl.n;R/ is identified with R
n�n:

Hint. See Dieudonné [137, Vol. VI, pp. 145–146] or Sagle and Walde [524, pp. 117–
118]. The vector space R

n�n can certainly be identified with the tangent space
to GL.n;R/, since GL.n;R/ is an open subset of R

n�n. In fact, using the matrix
exponential, we can make the identification as follows. Suppose A 2 R

n�n; g 2
GL.n;R/; and f W GL.n;R/ ! C. Then

. QAf /.g/ D d

dt
f .g exp tA/

ˇ̌
ˇ̌
tD0

:

One has for A;B 2 R
n�n and g 2 GL.n;R/:

. QA QBf /.g/ D @2

@t @s
f .g exp tA exp sB/

ˇ̌
ˇ̌
tDsD0

:

Use the chain rule to see that at g D e this is f 00
e .A;B/C f 0

e .AB/. If you interchange
A and B and then subtract, the second order terms cancel and you get f 0

e .AB � BA/.
This shows that the identification of g with R

n�n does preserve brackets.

There is a representation of any (real) Lie algebra g in gl.n;R/, where n D
dimR g. This representation is called the adjoint representation defined as follows,
thinking of gl.n;R/ as the space of linear transformations of g into itself:

ad W g ! gl.n;R/; n D dimR g;

.ad X/Y D ŒX;Y�; for X;Y 2 g:
(2.2)

Exercise 2.1.2. Show that the adjoint representation defined by (1.1) above does
indeed preserve brackets; i.e., Œad X; ad Y� D adŒX;Y�.
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The Killing form of a Lie algebra g is defined to be the bilinear form:

Bg D B.X;Y/ D Tr.ad X ad Y/; for X;Y 2 g: (2.3)

A Lie algebra is called semisimple if the Killing form B is nondegenerate; i.e.,
B.X;Y/ D 0 for all Y 2 g implies X D 0. A Lie algebra g is simple if it is
semisimple, and if, in addition, it has no ideals but f0g and itself.

Example 2.1.1 (GL.n;R/).
Since matrices of the form aI; a 2 R, commute with n � n matrices, it is clear

that ad.aI/ D 0 and thus that B.aI;Y/ D 0 for all Y 2 R
n�n. Thus gl.n;R/ Š R

n�n

is not semisimple.

It will be useful to compute the Killing form for gl.n;R/. One can do this as
follows. Let Eij be the n � n matrix with i; j entry equal to one and the rest zero. Let
H be the diagonal matrix with ith diagonal entry hi. Then ad.H/Eij D .hi � hj/Eij.
Therefore

B.H;H/ D Tr.adH ad H/ D
nX

i;jD1
.hi � hj/

2 D 2n Tr.H2/ � 2.Tr H/2:

Note that it suffices to compute the Killing form on diagonal matrices. For the map
X 7! gXg�1, with g 2 GL.n;R/ and X 2 gl.n;R/, leaves the Killing form invariant.
Moreover matrices conjugate to a diagonal matrix are dense in gl.n;R/.

Exercise 2.1.3. (a) Show that if � is a Lie algebra automorphism of g, then

B.X;Y/ D B.�X; �Y/; for all X;Y 2 g:

(b) Show that

B.X; ŒY;Z�/ D B.Y; ŒZ;X�/ D B.Z; ŒX;Y�/; for all X;Y;Z 2 g:

There is an analogue of the matrix exponential for any Lie group G. It is,
appropriately enough, called the exponential map and it maps the Lie algebra into
the Lie group such that if X 2 g; g 2 G, and f W G ! C is infinitely differentiable,
then

QXgf D d

dt
f .g exp tX/jtD0 : (2.4)

For matrix groups the matrix exponential is the Lie group exponential map. For
general Lie groups, the existence of exp W g ! G comes from standard results in
ordinary differential equations.
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Let us list a few properties of exp. The curve

R ! G
t 7! exp.tX/; for X 2 g;

is a one-parameter subgroup of G; i.e., exp.0/ D e, the identity in G, and

exp.tX/ exp.sX/ D exp.t C s/X; for all real numbers s; t: (2.5)

Taylor’s formula for G says that:

f .g exp X/ D
X

n�0

1

nŠ
. QXnf /.g/; for g 2 G; X 2 g; (2.6)

where f is a real analytic function on G. The exponential map allows one to relate
multiplication on the Lie group with bracket on the Lie algebra via:

exp tX exp tY D exp

�
t.X C Y/C 1

2
t2ŒX;Y�C O.t3/

�
; (2.7)

for X;Y 2 g, and t 2 R. It is possible to continue the expansion inside the braces
in (2.7) and the result is called the Campbell–Hausdorff formula.

Exercise 2.1.4. Prove formula (2.7).
Hint. First consider the case of GL.n;R/. The same sort of proof works in general
using Taylor’s formula (2.6).

It is possible to compute the differential of exp and obtain:

.d exp/X Y D .dLexp X/e

�
1 � e�ad X

ad X

�
.Y/; for X;Y 2 g: (2.8)

Formula (2.8) implies in particular that the mapping from X to exp X is a diffeo-
morphism from an open neighborhood of 0 in g onto an open neighborhood of the
identity e in G.

Let us prove (2.8) in the case of matrix exp. First note that

lim
t!0
.eXCtY � eX/=t D lim

t!0

X

n�0

1

nŠt
f.X C tY/n � Xng

D
X

n�0

1

.n C 1/Š

˚
XnY C Xn�1YX C � � � C YXn

�
:

Beware that XY ¤ YX, in general, so that you cannot blindly use the binomial
theorem. However, it is possible to be clever (although that is unworthy of a Vulcan),
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since right and left multiplication by X do commute as operators. Define RXY D YX
and LXY D XY . Observe that adX D LX � RX . The three operators RX; LX , and ad
X will commute. Thus we can apply the binomial theorem to obtain:

Rm
X D .LX � ad X/m D

mX

kD0

�
m
k

�
Lm�k

X .�ad X/k:

This allows us to write:

XnY C Xn�1YX C � � � C YXn D
nX

iD0
Xi

n�iX

kD0

�
n � i

k

�
Xn�i�k.�ad X/kY

D
nX

kD0

n�kX

iD0

�
n � i

k

�
Xn�k.�ad X/kY;

upon reversing sums. It is an exercise in the properties of binomial coefficients to
show that

n�kX

iD0

�
n � i

k

�
D
�

n C 1

k C 1

�
: (2.9)

Therefore

.d exp/XY D
X

n�0

1

.n C 1/Š

nX

kD0

�
n C 1

k C 1

�
Xn�k.�ad X/kY

D
X

k�0

X

n�k

1

.k C 1/Š.n � k/Š
Xn�k.�ad X/kY

D
X

k�0

X

r�0

1

.k C 1/ŠrŠ
Xr.�ad X/kY

D eX
X

k�0

1

.k C 1/Š
.�ad X/kY:

This completes the proof of (2.8) in the case of the matrix exponential. The general
result is proved in a similar way (see Helgason [275]).

Exercise 2.1.5. Prove formula (2.8) for a general Lie group.

One of the most important tools in Lie group theory is the dictionary that allows
one to translate between Lie groups and Lie algebras. We list a few results from the
dictionary. For the proofs, see references such as Helgason’s big green books, Sagle
and Walde [524], or Varadarajan [623].
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For each Lie group G with Lie algebra g and for each Lie subalgebra h of g, there
is a unique connected Lie subgroup H of G with Lie algebra h. However, H may not
have the induced topology; e.g., consider the densely wound line in the torus:

R ! .R=Z/2 D T
2

t 7! .eit; eiat/; when a 2 R is irrational.

If f W G1 ! G2 is a Lie group homomorphism of connected Lie groups, then the
differential .df /e W g1 ! g2 is a Lie algebra homomorphism. Moreover, we have the
following relations between images and kernels:

Lie Algebra .f .G1// D .df /e g1;
Lie Algebra .ker f / D ker.df /e:

If � W g1 ! g2 is a Lie algebra homomorphism and G1;G2 are connected
Lie groups with Lie algebras g1; g2, respectively, and if, in addition, G1 is simply
connected, then there exists a unique Lie group homomorphism f W G1 ! G2 such
that .df /e D �.

The hypothesis that G1 be simply connected cannot be removed in the preceding
result. For example, R=Z and R have the same Lie algebra. But the identity mapping
of R onto itself cannot be the differential of a Lie group homomorphism from R=Z

to R.

Exercise 2.1.6. (a) Show that the exponential map g ! G need not be onto.
(b) Show that exp:gl.n;C/ ! GL.n;C/ is onto.

Hints.

(a) Take G D SL.2;R/ and consider

A D
�

r 0
0 1=r

�
for r < �1:

If A D exp.X/, consider the eigenvalues of X.
(b) Use the Jordan canonical form.

The final dictionary entry that we list here concerns a closed subgroup H of a Lie
group G. Then H must have the induced topology and

Lie Algebra .H/ D h D fX 2 g j exp.tX/ 2 H; for all t 2 Rg: (2.10)

Formula (2.10) provides a quick way to compute Lie algebras. For example, since
det.eX/ D eTrX , for matrices X, it follows that the Lie algebra sl.n;R/ consists of
all n � n real matrices of trace zero. As we said, we use the notation that the Lie
algebra of a group G is in lowercase German Fraktur letters so that sl.n;R/ is the
Lie algebra of SL.n;R/. One can show that the Killing form of sl.n;R/ is:
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Bsl.n;R/.X;Y/ D 2nTr.XY/; for X;Y 2 sl.n;R/:

Therefore sl.n;R/ is a semisimple Lie algebra. In fact, it is actually a simple Lie
algebra.

Exercise 2.1.7. (a) Verify the comments made in the last paragraph.
(b) Find the Lie algebra of the symplectic group1:

Sp.n;R/ D ˚
g 2 R

2n�2n
ˇ̌

tgJng D Jn
�
; for Jn D

�
0 In

�In 0

�
:

(c) Find the Lie algebra of the Lorentz-type group

O.p; q/ D ˚
g 2 R

n�n j tgIp;qg D Ip;q
�
;

where n D p C q, and

Ip;q D
�

Ip 0

0 �Iq

�
:

Hint. The answer to part (b) is given in formula (2.12).

There is an analogue of the adjoint representation on the group level, denoted
Ad. To obtain it, proceed as follows. If g 2 G, define

Int.g/x D gxg�1; for all x 2 G and Ad.g/ D .d Int.g//e; where e is the identity of G:
(2.11)

Then we have a commutative diagram:

g
Ad.g/! g

exp # # exp

G
Int.g/! G:

It can be proved that .d Ad/eX D adX, for all X 2 g. Thus we have another
commutative diagram:

g
ad! gl.g/

exp # # matrix exp

G
Ad! G:

1Beware! Some authors write Sp.2n;F/ instead of Sp.n;F/.
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If G is a matrix group already, then the matrix Ad.g/ is the matrix of Int.g/, since
Int.g/x is a linear function of x. If g is semisimple, then the kernel of ad is f0g and
the kernel of Ad is the center of G, which must then be discrete.

Exercise 2.1.8. Prove that .d Ad/eX D adX, for all X 2 g.

It is possible to classify all the simple Lie algebras over the complex numbers.
Except for a finite number of exceptional Lie algebras, the simple Lie algebras
over C are in the following list (with Jn as in Exercise 2.1.7 above):

an D sl.n C 1;C/; n � 1I
bn D so.2n C 1;C/ D ˚

X 2 C
.2nC1/�.2nC1/ ˇ̌ tX D �X

�
; n � 2I

cn D sp.n;C/ D ˚
X 2 C

.2n/�.2n/
ˇ̌

tXJn C JnX D 0
�

D
� �

A B
C � tA

� ˇ̌
ˇ
ˇ A;B;C 2 R

n�n;B;C symmetric

�
; n � 3I

dn D so.2n;C/ D ˚
X 2 C

.2n/�.2n/
ˇ̌

tX D �X
�
; n � 4:

9
>>>>>>>=

>>>>>>>;

(2.12)

The indices n are restricted because in low dimensions some strange things happen;
e.g., d1 and d2 are not simple, since d1 is abelian and d2 Š a1 ˚ a1. Also a1 Š b1 Š
c1; b2 Š c2; d3 Š a3. These things can be proved using Dynkin diagrams. You
can find the details in Varadarajan [623]. The Lie groups corresponding to the Lie
algebras in this list are SL.n;C/, the special linear group of n�n complex matrices of
determinant one, SO.n;C/, the special orthogonal group of n � n complex matrices
g of determinant one such that tgg D I, and Sp.n;C/, the complex symplectic group
of .2n/�.2n/matrices g with the property that tgJng D Jn, for Jn as in Exercise 2.1.7
above. We should perhaps note again that some authors write Sp.2n;C/ instead of
Sp.n;C/: This is rather confusing.

Cartan’s classification of symmetric spaces makes use of the preceding classi-
fication of complex simple Lie algebras. It also uses the surprising, but simple,
observation that the group I.M/ of isometries of a symmetric space M acts
transitively on M. To see this fact, it helps to recall the Hopf–Rinow theorem
in differential geometry (see Helgason [273, p. 56]) which says that if M is a
Riemannian manifold, then the following are equivalent:

(a) M is a complete metric space;
(b) each maximal geodesic �.t/ in M can be extended to all t 2 R;
(c) each bounded closed subset of M is compact.

If M is a complete Riemannian manifold, then any two points P;Q in M can be
joined by a geodesic whose length is the metric space distance between P and Q.
To see that a symmetric space M must be complete, note that if a point P lies on
the geodesic � of M and sP denotes the geodesic-reversing isometry at P, then sP�

is an extension of � . Thus each maximal geodesic of a symmetric space must have
domain the set of all real numbers. Then to see that the group I.M/ of isometries of
M acts transitively on M, note that if P and Q are in M, then the geodesic-reversing
isometry at the midpoint of the geodesic connecting P to Q will exchange P and Q.
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It is possible to prove that I.M/ is a Lie group such that the connected component
of the identity in I.M/ still acts transitively on M (see Helgason [273, Ch. 4]). Let
G be the connected component of the identity in I.M/. Now fix a point o to be
called the origin of the symmetric space M. And let K denote the subgroup of G
consisting of elements which fix o. Then K is compact and we can identify M with
G=K. Suppose next that so denotes the geodesic-reversing isometry at the origin.
Now consider the map:

� W G !G

g 7! sogso:

Note that � is an involutive automorphism of G (i.e., � is an automorphism in the
sense of Lie groups such that �2 is the identity). Moreover, setting

K� D fg 2 G j �g D gg

and

.K� /o D the connected component of the identity in K� ;

we have

.K� /o � K � K� :

This means that K and K� have the same Lie algebra.
Now consider the consequences of the preceding remarks about symmetric

spaces and Lie groups of isometries on the Lie algebras of these groups, using the
dictionary relating Lie groups and Lie algebras. One sees that:

.d�/e W g ! g

is an involutive Lie algebra automorphism which fixes k, the Lie algebra of K.
Moreover, the eigenspace decomposition of .d�/e on g is:

g D k ˚ p;

where k D fX 2 g j .d�/eX D X g and p D fX 2 g j .d�/eX D �X g; that is, k is
the space of eigenvectors corresponding to the eigenvalue C1 while p consists of
eigenvectors corresponding to the eigenvalue �1.

If � W G=K ! M is the natural identification, then .d�/o maps k to f0g and
identifies p with the tangent space To.M/.

To proceed further with the classification of symmetric spaces, one must reduce
to semisimple Lie algebras, using the following result of E. Cartan (see Helgason
[273, Ch. 5]).
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Symmetric Space Decomposition Suppose that M is a simply connected symmet-
ric space. Then M is a product:

M D Me � Mc � Mn;

where Me is of Euclidean type, Mc is compact with semisimple Lie group of
isometries, and Mn is noncompact with semisimple Lie group of isometries having
a Lie algebra with a Cartan decomposition described below.

We say that a semisimple Lie algebra is of compact type if its Killing form is
negative definite (see Helgason [273, p. 122]).

A Cartan decomposition of a noncompact semisimple Lie algebra g is a vector
space direct sum decomposition g D k˚p such that the Killing form of g is negative
definite on k and positive definite on p. Also the mapping 
 W g ! g with 
.XCY/ D
X � Y , for X 2 k and Y 2 p, must be an automorphism of g. We call 
 the Cartan
involution.

Example 2.1.2. Consider the simple Lie algebra sl.n;R/ of all trace zero n � n real
matrices. Set

so.n/ D fskew-symmetric n � n real matricesg

and

pn D fsymmetric n � n real matrices of trace 0g :

Clearly we have the direct sum decomposition:

sl.n;R/ D so.n/˚ pn;

with Cartan involution 
.X/ D �tX. The Killing form on sl.n;R/ is B.X;Y/ D
2nTr.XY/, and it is easy to see that this is negative definite on so.n/ and positive
definite on pn. It is also easy to check that the Cartan involution preserves the Lie
bracket in sl.n;R/, which is ŒX;Y� D XY � YX.

Exercise 2.1.9. Prove all the claims made in the preceding example.

There is a mirror image of the Cartan decomposition on the Lie group level:

G D KP;

where P D exp p. For the example above, we have

SL.n;R/ D SO.n/ SPn; (2.13)

where, as usual, SPn denotes the positive n � n real matrices of determinant one.
The proof of (2.13) is easy (see Exercise 1.1.5 of Section 1.1.2).



2.1 Geometry and Analysis on G=K 349

We have not given more than a rough sketch of the preceding arguments on
classification of symmetric spaces because we are more interested in studying the
examples. Thus we will give more attention to the question: How does one obtain
symmetric spaces out of Cartan decompositions of semisimple Lie algebras?
Suppose that g D k ˚ p is a Cartan decomposition of the semisimple Lie algebra g
with Cartan involution 
 . Let G be a connected real semisimple Lie group with Lie
algebra g, and let K be a Lie subgroup of G having Lie algebra k. Then G=K has a
unique analytic manifold structure such that the mapping of p into G=K defined by
sending X to .exp X/K is a diffeomorphism. If g is of noncompact type, it can be
proved that K is closed, connected, and equal to the fixed point set of an involutive
automorphism t W G ! G such that .dt/e is the Cartan involution 
 . Such a map t
clearly exists if G is simply connected (making use of the dictionary between group
and algebra). But one does not really have to assume that G is simply connected in
the noncompact case. Moreover K is compact if and only if the center of G is finite
and then K is a maximal compact subgroup of G. For proofs of these results, see
Helgason [273, Ch. 6].

To make G=K a symmetric space, we use the Killing form B of g. Let � W
G ! G=K be defined by �.g/ D gK. Define the Riemannian metric Q on G=K
by translating the Killing form on the space p:

QgK..d�/g QXg; .d�/g QYg/ D B.X;Y/; for all X;Y 2 p: (2.14)

Here QX denotes the left invariant vector field corresponding to X 2 p. The metric
Q is well defined because the Killing form is invariant under Ad .k/, for k 2 K. It
is clear that the metric is positive from the definition of the Cartan decomposition.
And it is easily seen that the metric is G-invariant.

The geodesic-reversing isometry so at the origin o, which is the coset K in G=K,
is obtained from the involutive automorphism t W G ! G as follows:

so W G=K ! G=K

gK 7! t.g/K:

Translate by elements of G to obtain the geodesic-reversing isometries at other
points of G=K.

Example 2.1.3. The Riemannian structure on SL.n;R/=SO.n/ obtained from (2.14)
above is just the same as that defined in Chapter 1 of this volume. To see this, first
note that one has an identification:

SL.n;R/=SO.n/ ! SPn

gSO.n/ 7! g tg:

The action of g 2 SL.n;R/ on Y 2 SPn is given by ag.Y/ D YŒtg�. The differential
is .dag/I D ag since ag.Y/ is a linear function of Y . So we find that if Y D g tg, for
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g 2 SL.n;R/, and if u; v are in TY.SPn/, the tangent space to SPn at the point Y ,
then:

QY.u; v/ D 2n Tr
�
.dag/

�1
I u � .dag/

�1
I v

� D 2n Tr
�
g�1u tg�1 � g�1v tg�1�

D 2n Tr.Y�1uY�1v/:

This is exactly the Riemannian structure of Chapter 1 of this volume.

Before considering more examples, let us record a few more general facts.
Suppose again that we have a Cartan decomposition g D k ˚ p of a semisimple
noncompact Lie algebra over the real numbers. Assume that the Lie group QG is
the universal covering group of G. Then there is a unique involutive automorphism
Qt W QG ! QG such that the differential .dQt/e is 
 , the Cartan involution. It can be
proved that the center QZ of QG is contained in QK, where QK is the analytic subgroup
of QG with Lie algebra k (see Helgason [273, p. 216]). Now G is a quotient QG=N for
some N � QZ. Thus Qt induces an involution automorphism of G. Setting K D QK=N,
we have:

G=K Š . QG=N/=. QK=N/ Š QG= QK:

So the symmetric space G=K is independent of the choice of Lie group G with Lie
algebra g. So we may assume that G is simply connected whenever we need this.
Furthermore, it can be proved that all the K’s are conjugate (see Helgason [273,
p. 256]). Note, however, that the K’s need not be semisimple.

The preceding arguments fail for symmetric spaces of compact type. For
example, the center of G need not lie in K; e.g., consider G D SU.n/; K D SO.n/.
Also K need not be connected; e.g., SO.3/=K D P

2, the real projective plane, with K
the subgroup of SO.3/ leaving a line through the origin invariant. Finally, the Cartan
involution need not correspond to an automorphism of G in the compact case.

Another difference between compact and noncompact symmetric spaces is that
the noncompact ones are topologically (though not geometrically) identifiable
with the Euclidean space p. However, the compact symmetric spaces are not
topologically trivial (see Greub et al. [244]). This fact makes the compact and
noncompact symmetric spaces very different. However, there is a duality between
the two types, as we shall see.

2.1.2 Examples of Symmetric Spaces

Now we intend to manufacture many examples of symmetric spaces by exploring
the connection between real forms of complex simple Lie algebras and Cartan
decompositions of real Lie algebras.
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A real form g of a complex simple Lie algebra gc is defined by the equality of
the complexification of g with gc; i.e.,

gc D g ˝R C D g ˚ ig:

It is possible to list the real forms g of gc by listing the conjugations of gc. By a
conjugation of gc, we mean a mapping C W gc ! gc which is conjugate linear,
bracket preserving, and such that C2 is the identity. See Helgason [273, Chs. 3, 10]
or Loos [408, Vol. II, Ch. VII].

It can also be shown that any complex semisimple Lie algebra gc has a compact
real form u; i.e., the Killing form of u is negative definite. Then to make a list of
symmetric spaces of noncompact type coming from complex simple Lie algebras gc,
one must follow through the following plan of action.

Plan for Construction of Noncompact Symmetric Spaces of Type III

I. List the conjugations ; i.e., involutive automorphisms of gc. The fixed points
will be real forms of gc. One of these real forms u will be compact.

II. For the noncompact real forms g of gc, the Cartan decomposition is:

g D .g \ u/˚ .g \ i u/:

Note that the Killing form of g has the correct behavior on the decomposition
since u is compact; i.e., the Killing form is negative definite on u. Furthermore,
if � is the conjugation of gc corresponding to the compact real form u, then
the restriction of � to g is 
 , the Cartan involution corresponding to this Cartan
decomposition.

III. Form the symmetric space G=K by taking Lie groups G � K with Lie algebras
g; k, respectively. Here k D g \ u.

Type a Examples

I. Real Forms of sl.n;C/:

1. sl.n;R/=normal real form = fixed points of the conjugation �.X/ D X.
2. su.n;R/=compact real form = fixed points of the conjugation �.X/ D � tX.
3. su.p; q/=fixed points of the conjugation �.X/ D �Ip;q

tX Ip;q, where

Ip;q D
�

Ip 0

0 �Iq

�
; n D p C q:



352 2 The General Noncompact Symmetric Space

4. su�.2m/=fixed points of the conjugation �.X/ D JmXJ�1
m , where

Jm D
�
0 Im

�Im 0

�
; n D 2m .for even n/:

II. Cartan Decompositions of Noncompact Real Forms of sl.n;C/:

1. sl.n;R/ D so.n/˚ pn, where

so.n/ D fX 2 sl.n;R/ j tX D �X g ;
pn D fX 2 sl.n;R/ j tX D X g :

The Cartan involution is 
.X/ D � tX; X 2 sl.n;R/.
2. su.p; q/ D k ˚ p, where

k D
� �

A 0
0 B

� ˇ̌
ˇ̌ A 2 u.p/; B 2 u.q/; Tr.A C B/ D 0

�
;

p D
� �

0 Z
tZ 0

� ˇˇ̌
ˇ Z 2 C

p�q

�
:

The Cartan involution is 
.X/ D Ip;qXIp;q; X 2 su.p; q/.
3. su�.2m/ D k ˚ p, where

k D sp.m;C/ \ u.2m/ + sp.m/ (by definition);

p D su�.2m/ \ .i u.2m//:

The Cartan involution is 
.X/ D �Jm
tXJ�1

m .

III. The Noncompact Symmetric Spaces Corresponding to the Noncompact
Real Forms.

1. SL.n;R/=SO.n/.
2. SU.p; q/=S.Up � Uq/, where n D p C q and

SU.p; q/ D ˚
g 2 SL.n;C/

ˇ̌
tgIp;qg D Ip;q

�
;

U.p/ D ˚
g 2 C

p�p
ˇ̌

tgg D Ip
� D the unitary group;

S.Up � Uq/ D
�

g 2 SL.n;C/

ˇ̌
ˇ̌ g D

�
A 0
0 B

�
; A 2 U.p/;B 2 U.q/

�
:

3. SU�.2n/=Sp.n/, where

SU�.2n/ D ˚
g 2 SL.2n;C/

ˇ̌
g D JngJ�1

n

�
;

Sp.n/ D Sp.n;C/ \ U.2n/;
Sp.n;C/ D ˚

g 2 C
2n�2n

ˇ̌
tgJng D Jn

� D the complex symplectic group:
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IV. The Corresponding Compact Symmetric Spaces.

4. SU.n/=SO.n/.
5. SU.p C q/=S.Up � Uq/.
6. SU.2n/=Sp.n/.

Type c Examples

I. Real Forms of sp.n;C/:

1. sp.n;R/ Dnormal real form=fixed points of the conjugation �.X/ D X.
2. sp.n/ Dcompact real form=fixed points of the conjugation �.X/ D � tX. Note

that sp.n/ D sp.n;C/ \ u.2n/.
3. sp.p; q/ D fixed points of the conjugation �.X/ D �Kp;q

tXKp;q, where

Kp;q D

0

BB
@

Ip 0 0 0

0 �Iq 0 0

0 0 Ip 0

0 0 0 �Iq

1

CC
A ; p C q D n:

II. Cartan Decompositions of Noncompact Real Forms of sp.n;C/:

1. sp.n;R/ D k ˚ p, where

k D
� �

A B
�B A

� ˇ̌
ˇ̌ A;B 2 R

n�n; B D tB; A D � tA

�
Š u.n/;

p D ˚
X 2 sp.n;R/

ˇ̌
X D tX

�
:

To see that k Š u.n/, map

�
A B

�B A

�
2 k to A C iB 2 u.n/:

The Cartan involution is 
.X/ D � tX.
2. sp.p; q/ D k ˚ p, where

k D

8
ˆ̂<

ˆ̂
:

0

BB
@

X11 0 X13 0

0 X22 0 X24
�X13 0 X11 0

0 �X24 0 X22

1

CC
A

ˇ
ˇ̌
ˇ̌
ˇ̌
ˇ

X11 2 u.p/; X22 2 u.q/
X13 2 C

p�p; tX13 D X13
X24 2 C

q�q; tX24 D X24

9
>>=

>>;

Š sp.p/ � sp.q/:

The Cartan involution is 
.X/ D Kp;qXKp;q.
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III. The Corresponding Noncompact Symmetric Spaces.

1. Sp.n;R/=U.n/.
Here G D Sp.n;R/ is the symplectic group defined in Exercise 2.1.7

while U.n/ is really the subgroup K D G \ O.2n/ which is isomorphic to
the unitary group

U.n/ D ˚
g 2 C

n�n
ˇ
ˇ tgg D I

�
;

by part (b) of Lemma 2.1.1 below.
There are two equivalent but rather different ways to view this symmetric

space. The first is as the space P�
n of positive symplectic 2n � 2n real

matrices.
The second version of Sp.n;R/=U.n/ is the Siegel upper half space Hn

defined by:

Hn D ˚
Z 2 C

n�n
ˇ
ˇ tZ D Z; Im Z 2 Pn

�
:

This example is the most important one for the rest of this book. We will
discuss the various identifications of Sp.n;R/=U.n/ below. Sometimes the
space Hn is called the “Siegel upper half plane,” despite the fact that it is
definitely not two-dimensional for n > 1. We must also apologize for our
abusive use of the letter H. In Volume I, H was the Poincaré upper half
plane. Now it should be H1: Then there is the Helgason–Fourier transform.
Help! I need more alphabets!

2. Sp.p; q/=Sp.p/ � Sp.q/.
Here Sp.p; q/ D ˚

g 2 SL.p C q;C/
ˇ̌

tgKp;qg D Kp;q
�
, where, as before

Kp;q D

0

BB
@

�Ip 0

Iq

�Ip

0 Iq

1

CC
A :

Exercise 2.1.10. Check the computations for the type A and C noncompact sym-
metric space examples above.

This is just about all the examples of symmetric spaces that we shall discuss.
In particular, we are avoiding the exceptional Lie groups and their symmetric
spaces. Table 2.1 lists some other examples of symmetric spaces. We will also be
interested in the symmetric space SL.2;C/=SU.2/, which can be identified with
the quaternionic upper half space or hyperbolic 3-space. It is considered at the end
of this section. It is the symmetric space of a complex Lie group considered as a
real group. We do not discuss compact symmetric spaces here, except to note that
there is a duality between symmetric spaces U=K0 of compact type and symmetric
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spaces G=K of noncompact type. This duality is obtained on the Lie algebra level
by writing

g D k ˚ p

and

u D k ˚ ip;

where u is a compact real form of the complexification of g. See Helgason [273,
Ch. 5] for more details. Helgason [273, p. 321] gives a global duality result for
bounded symmetric domains (which will be defined below) allowing them to be
viewed as open submanifolds of a compact Hermitian space. This is the Borel
embedding theorem (see Borel [61, 62]). Such results can be applied to compute
dimensions of spaces of automorphic forms via the Hirzebruch–Riemann–Roch
theorem (see Hirzebruch [297, pp. 162–165] and Section 2.2.3). Healy [266]
provides an example of the implications of this duality for harmonic analysis on
SU.2/ and hyperbolic 3-space.

Example 2.1.4 (The Duality Between Compact and Noncompact Symmetric
Spaces).

This example shows that hyperbolic geometry is dual to spherical geometry. We
begin with the two Cartan decompositions:

sl.2;R/ D so.2/˚ p2; su.2/ D so.2/˚ ip2;

where

p2 D ˚
X 2 R

2�2 ˇˇ tX D X; Tr X D 0
�
:

The symmetric space SL.2;R/=SO.2/ can be viewed as the hyperbolic upper half
plane of Chapter 3, Vol. I, while SU.2/=SO.2/ can be viewed as the sphere S2 in R

3,
which is the symmetric space considered in Chapter 2, Vol. I.

The Siegel upper half space Hn is a Hermitian symmetric space; i.e., a
symmetric space with a complex structure, invariant under each geodesic-reversing
symmetry. It turns out that the Hermitian symmetric spaces of the compact
or noncompact type have non-semisimple maximal compact subgroups K (see
Helgason [273, p. 281] or Loos [408, Vol. II, p. 161]). Such is indeed the case for
G D Sp.n;R/; K D U.n/. It also turns out that the Hermitian symmetric spaces
of noncompact type are the bounded symmetric domains D in complex n-space.
Here symmetric means that for every z 2 D there is a biholomorphic involutive map
on D having z as an isolated fixed point (see Helgason [273, pp. 311–322] or Loos
[408, Vol. II, p. 164]). Koecher [361] found a way of constructing all the Hermitian
symmetric spaces from Jordan algebras. We shall see in Exercise 2.1.11 that the
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Siegel upper half space is identifiable with a bounded symmetric domain, namely
the generalized unit disc:

Dn D ˚
W 2 C

n�n
ˇ̌

tW D W; I � WW 2 Pn
�
: (2.15)

The identification map is the generalized Cayley transform:

˛ W Hn ! Dn

Z 7! .Z � iI/.Z C iI/�1: (2.16)

Exercise 2.1.11 (The Cayley Transform). Show that W D .Z � iI/.Z C iI/�1
maps Z 2 Hn into W in the generalized unit disc defined by

Dn D ˚
W 2 C

n�n j tW D W; I � WW 2 Pn
�
:

This mapping allows us to view the symmetric space of the symplectic group as
a bounded symmetric domain. What is the image of Pn; viewing Y 2 Pn as the
element iY 2 Hn?

Cartan proved in 1935 that there are only six types of irreducible homogeneous
bounded symmetric domains (see Helgason [278, p. 518]). Here irreducible means
that the corresponding Lie group is simple. It is possible to generalize many
results from analysis and number theory to these classical domains (see Hua [308],
Piatetski-Shapiro [485], and Siegel [564], [565, Vol. II, pp. 274–369]).

We could also have differentiated between the three types of symmetric spaces
M according to their sectional curvature. The sectional curvature is defined as
�g.R.u; v/u; v/, where g is the Riemannian metric for M;R is the curvature tensor,
and u; v are orthonormal tangent vectors in TP.M/, the tangent space to M at a
point P. For a symmetric space, the curvature tensor at the origin is:

Ro.X;Y/Z D �ŒŒX;Y�;Z�; for X;Y;Z 2 p

(see Helgason [273, p. 180]).
Then one has the classification of types of symmetric spaces M by sectional

curvature (see Helgason [273, p. 205]):

M is of noncompact type , the sectional curvature of M is � 0I
M is of compact type , the sectional curvature of M is � 0I
M is of Euclidean type , the sectional curvature of M is D 0:

It is possible to prove the conjugacy of all maximal compact subgroups of
noncompact semisimple real Lie groups G using Cartan’s fixed point theorem,
which says that if a compact group K1 acts on a simply connected Riemannian
manifold of negative curvature such as G=K, there must be a fixed point. And
x�1K1x � K means xK is fixed. See Helgason [273, p. 75] for more details on
Cartan’s theorem.
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Table 2.1 Irreducible Riemannian symmetric spaces of types I
and III for the non-exceptional groups

Noncompact Compact

AI SL.n;R/=SO.n/ SU.n/=SO.n/

AII SU�.2n/=Sp.n/ SU.2n/=Sp.n/

AIII SU.p; q/=S
�
Up � Uq

�
SU.p C q/=S

�
Up � Uq

�

BDI SOo.p; q/=SO.p/ � SO.q/ SO.p C q/=SO.p/ � SO.q/

DIII SO�.2n/=U.n/ SO.2n/=U.n/

CI Sp.n;R/=U.n/ Sp.n/=U.n/

CII Sp.p; q/=Sp.p/ � Sp.q/ Sp.p C q/=Sp.p/ � Sp.q/

The grand finale of the classification theory is the listing of the four types of
irreducible symmetric spaces given in Helgason [273, Ch. 9] and [278, pp. 515–
518]. Once more, irreducible means that the corresponding Lie group is simple.
The Four Types of Irreducible Symmetric Spaces are:

I. G=K, where G is a compact connected simple real Lie group and K is the
subgroup of points fixed by an involutive automorphism of G.

II. G is a compact, connected simple Lie group provided with a left and right
invariant Riemannian structure unique up to constant factor.

III. G=K where G is a connected noncompact simple real Lie group and K is
the subgroup of points fixed by an involutive automorphism of G (a maximal
compact subgroup).

IV. G=U, where G is a connected Lie group whose Lie algebra is a simple Lie
algebra over C viewed as a real Lie algebra, and U is a maximal compact
subgroup of G.

The irreducible symmetric spaces of types I and III which come from
non-exceptional Lie groups are in Table 2.1. In this table SO�.2n/ D
fg 2 SO.2n;C/ j tgJng D Jn g ; where Jn is defined in part (4) of the list of
real forms of sl.n;C/ and SOo.p; q/ is the identity component of SO.p; q/ D˚
g 2 SL.n;R/

ˇ̌
tgIp;qg D Ip;q

�
, where n D p C q and Ip;q is defined in part (3) of

the list of real forms of sl.n;C/.

2.1.3 Cartan, Iwasawa, and Polar Decompositions, Roots

From now on, our emphasis will be upon the symmetric space Sp.n;R/=U.n/.
Our first task is to study the various realizations of this space. We begin with the
realization as the space of positive symplectic matrices:

Sp.n;R/=U.n/ Š P�
n D fY 2 Sp.n;R/ j Y 2 P2ng: (2.17)
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The proof of (2.17) involves the global or group level Cartan decomposition. Let
g be a noncompact semisimple (real) Lie algebra with Cartan decomposition g D
k ˚ p. Suppose that K and G are the corresponding connected Lie groups with Lie
algebras k and g, respectively. Then we have the global Cartan decomposition:

G D KP; P D exp p;

and G is diffeomorphic to K � p. Note that G and K are Lie groups but P is not. The
main idea of the proof of (2.17) is to use the Adjoint representation of G to deduce
the Cartan decomposition of G from that for GL.n;R/, which is:

GL.n;R/ D O.n/ � Pn (2.18)

(see Exercise 1.1.5 of Section 1.1.2). Proofs of the general Cartan decomposition
can be found in Helgason [273, p. 215] or Loos [408, Vol. I, p. 156]. We shall only
consider the special case of interest.

Lemma 2.1.1 (The Cartan Decomposition for the Symplectic Group).

(a) The Cartan decomposition for G D Sp.n;R/ comes from the Cartan decompo-
sition (2.18) for GL.2n;R/ by taking intersections; i.e.,

G D Sp.n;R/ D K � P�
n ; with P�

n D P2n \ G and K D O.2n/ \ G:

(b) The maximal compact subgroup K of G given in part .a/ can be identified
with the unitary group U.n/ D fg 2 C

n�n j tgg D Ig. It follows also that the
symmetric space G=K D Sp.n;R/=U.n/ can be identified with P�

n .

Proof. (a) See Helgason [273, p. 345] and [278, p. 450].
Observe that (2.18) says that g 2 G can be written as g D up with u 2 O.2n/

and p 2 P2n. We need to show that both u and p lie in Sp.n;R/. To see this,
note that p2 D tgg. Moreover, g 2 G implies that tg�1 and tg both also lie in
G (a situation really brought about by the existence of an involution of G with
differential the Cartan involution of g). Thus p2 2 G.

Now we must show that p2 2 G implies that p lies in G. To do this, note that
G is a pseudoalgebraic group, meaning that there is a finite set of polynomials

fj 2 CŒX1; : : : ;X4n2 �

such that a matrix g lies in G if and only if g is a root of all the fj. Now there is
a rotation matrix k 2 O.2n/ such that

k�1p2k D

0

B
@

eh1 0
: : :

0 eh2n

1

C
A :
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And k�1Gk is also a pseudoalgebraic group. Thus the diagonal matrices

k�1p2rk D

0

B
@

erh1 0
: : :

0 erh2n

1

C
A

satisfy a certain set of polynomial equations for any integer r. But if an
exponential polynomial

F.t/ D
BX

jD1
cj exp.bjt/

vanishes for all integers t, then it must vanish for all real numbers t as well.
Thus, in particular, p must lie in the group G, as will all elements

pt D exp.tX/; for t 2 R; if p2 D exp.2X/:

But then p 2 G implies that u D gp�1 2 G. This completes the proof of part
(a)—except to show the uniqueness of the expression g D up and the fact that
G is diffeomorphic to K � p. We leave these proofs as an exercise.

(b) To see that K is isomorphic to U.n/, proceed as follows. First recall that we
have K D G \ O.2n/. Thus if J D Jn is as defined in Exercise 2.1.7, then

M D
�

A B
C D

�
2 K , JM D MJ and tMJM D J

, C D �B; D D A; tAB D tBA and tAA C tBB D I:

The last statement is equivalent to saying that A C iB 2 U.n/. Thus the
identification of K and U.n/ on the group level is the same as that on the Lie
algebra level which was discussed when we listed the Cartan decompositions
corresponding to noncompact real forms of sp.n;C/. In fact,

�

�
A B

�B A

�
D A C iB

defines a mapping which preserves matrix multiplication as well as addition.
The map � identifies K with U.n/. A good reference for these things
is Séminaire Cartan [547, Exp 3]. The proof of Lemma 2.1.1 is now
complete. �

Exercise 2.1.12. Fill in all the details in the proof of Lemma 2.1.1.

Note that most calculations are far easier on the Lie algebra level than on the
group level. For an example of the difference between the algebra and the group,
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note that it is clear that sp.n;R/ is contained in sl.2n;R/, but it is not obvious that
Sp.n;R/ is contained in SL.2n;R/, though it is true.

Exercise 2.1.13. Prove the last statement.
Hint. Show that Sp.n;R/ is connected. See Chevalley [104, p. 36] for the useful
result which says that H and G=H connected implies G connected, where H is a
closed subgroup of the topological group G.

Next we seek to generalize the Iwasawa decomposition from Exercise 1.2.12 in
Section 1.1.3:

G D GL.n;R/ D KAN; (2.19)

where K is the compact group O.n/; A is the abelian group of positive diagonal
matrices in G, and N is the nilpotent group of upper triangular matrices in G
with ones on the diagonal. In order to obtain such an Iwasawa decomposition for
any noncompact semisimple (real) Lie group G, one must discuss the root space
decomposition of the Lie algebra of G. We do not give a detailed discussion of root
spaces, except for several examples. The details for the general case can be found in
Helgason [273, 278] or Loos [408].

Some definitions are needed to discuss the root space decomposition of the Lie
algebra g of G. Define a to be a maximal abelian subspace of p. Here p comes
from the Cartan decomposition of g. Then for any real linear functional (root)
˛ W a ! R, define the root space:

g˛ D fX 2 g j .ad H/X D ˛.H/X; for all H 2 ag :

If g˛ ¤ f0g, then we say that the linear functional ˛ is a restricted root. Let ƒ
denote the set of all nonzero restricted roots. When we are considering a normal
real form such as sl.n;R/, the restricted roots are restrictions of roots of the
complexification of g.

Next set m equal to the centralizer of a in k, where k comes from the Cartan
decomposition of g; i.e.,

m D fX 2 k j ŒX; a� D 0g :

In fact, m will always be zero for normal or split real forms such as sp.n;R/.
Finally, the root space decomposition of the real noncompact semisimple Lie

algebra g is:

g D a ˚ m ˚
X

˛2ƒ
˚ g˛:

To prove the validity of this decomposition, consider the positive definite bilinear
form F on g defined as follows, using the Killing form B and the Cartan involution

 of g:
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F.X;Y/ D �B.X; 
Y/; for X;Y 2 g: (2.20)

If X 2 p, then adX is symmetric with respect to F and thus is a diagonalizable
linear transformation of g. Therefore the commuting family of all the adX for X 2 a
is simultaneously diagonalizable with real eigenvalues. It remains to show that the
eigenspace corresponding to the zero functional is:

g0 D .g0 \ k/˚ .g0 \ p/ D m ˚ a:

This comes from the definitions.
Note that if g is sl.n;R/ or sp.n;R/, then m D f0g and restricted roots are the

same as the roots of the complexifications sl.n;C/ and sp.n;C/ restricted to the
normal real form.

One can define the set of positive restricted rootsƒC as a subset ofƒ such that
ƒ is the disjoint union of ƒC and �ƒC. We will soon see how to find such sets of
positive roots in our favorite cases.

We need to use the positive roots to construct a certain nilpotent Lie subalgebra n
of g. By definition, a Lie algebra n is said to be nilpotent if the lower central series
nk defined by

n0 D n; n1 D Œn; n�; nkC1 D Œn; nk�

terminates; i.e., nk D f0g, for some k.
Suppose that ƒC denotes the chosen set of positive roots of g. Define the

nilpotent Lie subalgebra n of g by:

n D
X

˛2ƒC

˚ g˛:

We can also define the opposite nilpotent subalgebra n of g by:

n D
X

˛2ƒC

˚ g�˛:

To prove that n is nilpotent, it suffices to know the following simple facts about
roots.

Simple Facts About Roots

(1) ƒC is a finite set;
(2) Œg˛; gˇ� � g˛Cˇ;
(3) ˛; ˇ 2 ƒC implies that ˛ C ˇ is either a positive root or not a root at all.

Furthermore, if 
 denotes the Cartan involution of g D k˚p, then 
 interchanges
the nilpotent algebra n and its opposite n; i.e., 
n D n. To see this, note that 
.X/ D
�X for all X in a � p and 
 preserves the Lie bracket.
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From the preceding considerations, it is easy to obtain the Iwasawa decomposi-
tion of the noncompact real semisimple Lie algebra:

g D k ˚ a ˚ n:

For clearly, one has g D n ˚ m ˚ a ˚ n. And k ˚ a ˚ n is a direct sum, since

X C H C Y D 0; for X 2 k; H 2 a; Y 2 n;

implies that

0 D 
.X C H C Y/ D X � H C 
.Y/:

Subtract the two equations to see that 2H C Y � 
.Y/ D 0. This implies that H D 0

by the fact that the root space decomposition is a direct sum. Thus Y D 
.Y/ D 0

and X D 0.
To complete the proof of the Lie algebra Iwasawa decomposition, we need to

only show that the dimensions are correct. It suffices to look at the following
mapping:

m ˚ n ! k; 1 � 1; onto
X C Y 7! X C Y C 
.Y/; for X 2 m; Y 2 n:

Next we want to consider three examples: sl.n;R/, sp.n;R/, and su.3; 1/. The
first two examples are split or normal, so that m D f0g, the restricted roots are
restrictions of complex roots of the complexification, and all the roots spaces are
one-dimensional real vector spaces.

Three Examples of Iwasawa Decompositions of Real Semisimple Lie
Algebras

Example 2.1.5 (sl.n;R/).
Recall that the Cartan decomposition is sl.n;R/ D k ˚ pn, where

k D so.n/ D ˚
X 2 R

n�n j tX D �X
�
;

pn D ˚
X 2 R

n�n j tX D X; Tr X D 0
�
:

One can show that a maximal abelian subspace of pn is:

a D fH 2 R
n�n j H is diagonal of trace 0g :

Next let Eij for 1 � i; j � n denote the matrix with 1 in the i; j place and 0’s
elsewhere. Then set ei.H/ D hi if H is a diagonal matrix with hi as its ith diagonal
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entry. Let ˛ij D ei � ej. Then ŒH;Eij� D ˛ij.H/Eij and we find the root space
decomposition involves the

g˛ij D REij with ƒC D ˚
˛ij j 1 � i < j � n

�
:

Thus

n D
X

1�i<j�n

˚
REij D the upper triangular real n�n matrices with 0 on the diagonal:

It follows that the Lie algebra analogue of the Iwasawa decomposition of
SL.n;R/ coming from (2.19) says:

sl.n;R/ D so.n/˚ a ˚ n;

with so.n/ denoting the skew symmetric n�n real matrices, a equal to the n�n real
diagonal trace zero matrices, and n equal to the upper triangular n � n real matrices
with zeros on the diagonal.

Example 2.1.6 (sp.n;R/).
Recall that sp.n;R/ consists of matrices

.A;B;C/ +
�

A B
C � tA

�
;

with A;B;C 2 R
n�n and B;C symmetric. We found the Cartan decomposition had:

k D f.A;B;�B/ j B symmetric, A skew symmetricg;
p D f.A;B;B/ j A;B symmetricg :

A calculation shows that a maximal abelian subspace of p is:

a D f.H; 0; 0/ j H is real n � n diagonalg :

Suppose that the Eij; 1 � i < j � n, are as in Example 2.1.5. Set Gpq D EpqCEqp,
for 1 � p � q � n. Then, if we abuse notation and write H D .H; 0; 0/, we have

ŒH; .Eij; 0; 0/� D .ei � ej/.H/.Eij; 0; 0/;

ŒH; .0;Gpq; 0/� D .ep C eq/.H/.0;Gpq; 0/;

ŒH; .0; 0;Gpq/� D �.ep C eq/.H/.0; 0;Gpq/:

It follows that we can takeƒCD ˚
ei�ej j1� i < j � n

� [ ˚
epCeq j1� p � q � n

�
.

Thus
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n D
X

1�i<j�n

˚
R.Eij; 0; 0/C

X

1�p�q�n

˚
R.0;Gpq; 0/

D f.A;B; 0/ j A upper triangular, 0 on diagonal, B symmetricg :

So the Iwasawa decomposition is:

sp.n;R/ D k ˚ a ˚ n;

where

k D f.A;B;�B/ j B symmetric, A skew-symmetricg ;
a D f.H; 0; 0/ j H diagonalg ;
n D f.A;B; 0/ j A upper triangular with 0 on the diagonal, B symmetricg :

Example 2.1.7 ( su.3; 1/).
First recall that

su.3; 1/ D ˚
X 2 sl.4;C/

ˇ̌ �I3;1
tX I3;1 D X

�

where

I3;1 D

0

BB
@

1 0

1

1

0 �1

1

CC
A :

The corresponding Lie group is SU.3; 1/ D fg 2 SL.4;C/ j tgI3;1g D I3;1 g.
One sees easily that

su.3; 1/ D ˚
.A; b; c/

ˇ̌
A 2 u.3/; b 2 R; c 2 C

3�1; TrA C ib D 0
�
;

where

.A; b; c/ D
�

A c
tc ib

�
:

We saw that the Cartan decomposition of su.3; 1/ involves

k D f.A; b; 0/ j A 2 u.3/; b 2 R; TrA C ib D 0g ;
p D ˚

.0; 0; c/
ˇ
ˇ c 2 C

3�1 � :
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A maximal abelian subspace of p is a D R.0; 0; e1/ where e1 D t.1; 0; 0/. Note that
.0; 0; ie1/ does not commute with .0; 0; e1/. You need to multiply matrices to check
these things (see Exercise 2.1.14 below). Similarly you can show that:

m D

8
ˆ̂<

ˆ̂:

0

B
B
@

ib 0 0 0

0 u1 u2 0
0 u3 u4 0
0 0 0 ib

1

C
C
A

ˇ̌
ˇ̌
ˇ̌
ˇ̌

b 2 R; U D
�

u1 u2
u3 u4

�
2 u.2/; TrU C 2ib D 0

9
>>=

>>;
:

To prove this, one must show that the matrices of m centralize a and that nothing
else in k does the same trick. Once again, this is checked by multiplying matrices.
Thus we have come upon an example of a nonzero and rather fat m. The root space
decomposition of su.3; 1/ is rather complicated. We find roots � such that 2� is also
a root. Such things cannot happen for complex semisimple Lie algebras. And one
finds root spaces g� of dimension greater than one over R.

The positive roots of su.3; 1/ are ƒC D f�; 2�g, where �..0; 0; e1// D 1. And
the root space decomposition of su.3; 1/ is:

su.3; 1/ D a ˚ m ˚ g� ˚ g�� ˚ g2� ˚ g�2�
dimR a D 1; dimR m D 4; dimR g� D dimR g�� D 4;

dimR g2� D dimR g�2� D 1:

To see this, note that

2

66
4

0

BB
@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1

CC
A ;

0

BB
@

0 a b 0

�a 0 0 c
�b 0 0 d
0 c d 0

1

CC
A

3

77
5 D

0

BB
@

0 c d 0

�c 0 0 a
�d 0 0 b
0 a b 0

1

CC
A D k

0

BB
@

0 a b 0

�a 0 0 c
�b 0 0 d
0 c d 0

1

CC
A

implies that k D ˙1 and that ka D c; kb D d: Thus, if k D 1, we find that g� is
four-dimensional over R:

g� D

8
ˆ̂<

ˆ̂:

0

BB
@

0 a b 0

�a 0 0 a
�b 0 0 b
0 a b 0

1

CC
A

ˇ̌
ˇ̌
ˇ̌
ˇ̌
.a; b/ 2 C

2

9
>>=

>>;
:

If k D �1; we find that again g�� is four-dimensional over R W

g�� D

8
ˆ̂<

ˆ̂:

0

BB
@

0 a b 0

�a 0 0 �a
�b 0 0 �b
0 �a �b 0

1

CC
A

ˇ̌
ˇ
ˇ̌
ˇ̌
ˇ

.a; b/ 2 C
2

9
>>=

>>;
.
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Recalling what it means to be in su.3; 1/, we see that it remains to deal with

g2� D R

0

BB
@

i 0 0 �i
0 0 0 0

0 0 0 0

i 0 0 �i

1

CC
A and g�2� D R

0

BB
@

i 0 0 i
0 0 0 0

0 0 0 0

�i 0 0 �i

1

CC
A :

The nilpotent Lie algebra n is then:

n D g� ˚ g2� D

8
ˆ̂<

ˆ̂:

0

BB
@

ic a b �ic
�a 0 0 a
�b 0 0 b

ic a b �ic

1

CC
A

ˇ̌
ˇ̌
ˇ̌
ˇ
ˇ

a; b 2 C; c 2 R

9
>>=

>>;
:

Exercise 2.1.14. (a) Check the calculations in the preceding three examples.
(b) Perform the analogous calculation to that of part (a) in the case of the Lorentz

algebra so.3; 1/.

Our next goal is to understand the group level Iwasawa decomposition of a
noncompact semisimple connected real Lie group G with finite center:

G D KAN;

where K;A;N are connected Lie subgroups of G with Lie algebras k; a; n, respec-
tively. G is actually diffeomorphic to the product K � A � N. The exponential maps
k onto the compact group K. And exp is a diffeomorphism which maps a onto
the abelian group A while taking addition to multiplication. The exponential is a
diffeomorphism of n onto the nilpotent group N. Recall that the exponential does not
in general map g onto G, nor is exp a diffeomorphism in general (see Exercise 2.1.6).
For a proof that the exponential map is onto for abelian, nilpotent, and compact Lie
groups, see Helgason [273, pp. 229, 56–58, 188–189].

In our discussion of the group level Iwasawa decomposition, we shall only
consider the special case of the symplectic group. The proof of the global Iwasawa
decomposition in the general case uses the Adjoint representation (see Helgason
[273, 278] or Loos [408]).

Recall the following definition:

Sp.n;R/ D the symplectic group D ˚
g 2 SL.2n;R/

ˇ̌
tgJng D Jn

�
;

where

Jn D
�
0 In

�In 0

�
:
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It follows that

Sp.n;R/ D
� �

A B
C D

� ˇ̌
ˇ̌ tAC D tCA; tBD D tDB; tAD � tCB D In

�
:

(2.21)
And Lie subgroups of Sp.n;R/ which correspond to the Lie subalgebras k; a; n
in the Iwasawa decomposition g D k ˚ a ˚ n are:

K�
n D

� �
A B

�B A

� ˇ̌
ˇ̌ A C iB 2 U.n/

�
;

A�
n D

� �
H 0

0 H�1
� ˇ̌
ˇ̌ H positive diagonal

�
;

N�
n D

� �
A B
0 tA�1

� ˇ̌
ˇ̌ A upper triangularI A tB D B tA

�
:

9
>>>>>>>=

>>>>>>>;

(2.22)

We have seen that the symmetric space associated with Sp.n;R/ is:

Sp.n;R/=K�
n Š P�

n D P2n \ Sp.n;R/ (2.23)

(see Lemma 2.1.1). Now we wish to find (along with the Iwasawa decomposition)
another realization of this symmetric space—Siegel’s upper half space:

Hn D ˚
Z 2 C

n�n j tZ D Z; Im Z 2 Pn
�
: (2.24)

Observe that we can define the following actions of G D Sp.n;R/ on the three
versions of the symmetric space:

action of g 2 G on G=K is ag.xK/ D gxK for x 2 GI
action of g 2 G on P�

n is bg.Y/ D YŒg� D tgYg for Y 2 P�
n I

action of g 2 G on Hn is cg.Z/ D .AZ C B/.CZ C D/�1

for g D
�

A B
C D

�
Z 2 Hn:

9
>>>>>=

>>>>>;

(2.25)

Exercise 2.1.15. (a) Prove formula (2.21).
(b) Check that chg.Z/ D ch.cg.Z// in formula (2.25).

The following lemma will allow us to identify all the versions of the symmetric
space associated with the symplectic group. To see this, study the following diagram
of mappings:

Sp.n;R/=K�
n ! P�

n ! Hn

gK�
n 7! g tg 7! X C iY:

�
(2.26)

Here X;Y come from the partial Iwasawa decomposition of S 2 P�
n :
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S D
�

Y 0

0 Y�1
�	

I 0

X I



; for X D tX 2 R

n�n; Y 2 Pn: (2.27)

Lemma 2.1.2 below gives the existence and uniqueness of this decomposition for
every positive symplectic matrix. There is an equivalent Iwasawa decomposition
obtained by applying matrix inverse to formula (2.27):

S D
�

Y�1 0

0 Y

�	
I �X
0 I



; for X D tX 2 R

n�n; Y 2 Pn: (2.28)

Exercise 2.1.16. (a) Show that the composition of the two maps in (2.26) takes
gK�

n with

g D
�

A B
C D

�

to .Ai C B/.Ci C D/�1 in Hn.
(b) Show also that the maps in (2.26) preserve the group actions in (2.25). More

precisely, define i1 . tgKn/ D IŒg� for g 2 G and define i2.S/ D X C iY; for S
with partial Iwasawa decomposition (2.27). Prove that

i1 ı ag D b tg ı i1 and i2 ı b tg D cg ı i2:

(c) Suppose that Z� D cg.Z/ D .AZ C B/.CZ C D/�1 for Z 2 Hn and g as in part
(a). Show that the imaginary part of Z� is Y� D Yf.CZ C D/�1g, where Y is the
imaginary part of Z and YfWg D tWYW. Here W is the matrix obtained from
W by complex conjugation of all the entries of W: Then show that Z� 2 Hn.

(d) Show that the Jacobian j@Z�=@Zj D jCZ C Dj�n�1.
Hints. See Maass [426, p. 33].

(a) Note that

Z D .Ai C B/.Ci C D/�1

D .Ai C B/
�� tCi C tD

� �� tCi C tD
��1

.Ci C D/�1 :

(c) Note that cg.W/ � cg.Z/ D .W tC C tD/�1 .W � Z/.CZ C D/�1. To find Y�,
let W D Z.

Lemma 2.1.2 (Iwasawa Decomposition for the Symplectic Group). Here we use
the notation (2.21)–(2.28).

(a) Every positive symplectic matrix has the partial Iwasawa decomposition given
in (2.27) or (2.28). Thus the mappings in (2.26) are identifications of the three
differentiable manifolds.
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(b) The Iwasawa decomposition of G D Sp.n;R/ says that

G D K�
n A�

n N�
n ; with K�

n ;A
�
n ;N

�
n as in (2.22).

Proof. (a) We know from (2.19) that we can write S 2 P�
n as:

S D
�

A 0

0 B

�	
I X
0 I



with A;B 2 Pn; X 2 R

n�n:

Since S is symplectic, it follows that for Jn as defined in Exercise 2.1.7, we have
SJnS D Jn. Thus JnSJn D �S�1.

The only way for JnSJn to be equal to �S�1 when S has the given partial
Iwasawa decomposition is that

A D B�1 and X D tX:

This is easily seen using again the fact that J2n D �I. For

JnSJn D Jn

 
I 0
tX I

!

JnJn

 
A 0

0 B

!

JnJn

 
I X
0 I

!

Jn D �
 

B 0

0 A

!"
I 0

�X I

#

:

(b) Use part (a). This allows one to write S 2 P�
n as

S D
�

A 0

0 A�1
�	

I B
0 I



; for A 2 Pn; B D tB 2 R

n�n:

Then express A as A D HŒQ� with H positive diagonal and Q upper triangular
with 1’s on the diagonal. This is possible by the Iwasawa decomposition for
GL.n;R/. Thus

Y D
�

H 0

0 H�1
�	

Q QB
0 tQ�1



;

which is the full Iwasawa decomposition of Y 2 P�
n . This translates to the

Iwasawa decomposition for an element of the symplectic group using the Cartan
decomposition (Lemma 2.1.1), completing the proof of Lemma 2.1.2.

�

Exercise 2.1.17. Show that the Killing form on g D sp.n;R/ is

B.X;Y/ D 4.n C 1/Tr.XY/:

Hint. Use the root space decomposition of g.
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The Riemannian metric on Sp.n;R/=K�
n Š P�

n is given by:

QY.u; v/ D Tr.Y�1uY�1v/;

for Y 2 P�
n ; u; v 2 TY.P�

n / D the tangent space to P�
n at Y (see (2.14) and the

analogous result for SL.n;R//. Here we have dropped the constant in the Killing
form of Exercise 2.1.17. Using the notation of formula (1.11) in Section 1.1.3, if
dY D .dyij/ 2 TY.P�

n /; Y 2 P�
n , then the arc length on P�

n is

ds2 D Tr.Y�1dY Y�1dY/: (2.29)

We want to show that the geodesics for this metric come from matrix exp and
thus that P�

n is a totally geodesic submanifold of P2n. We can use partial Iwasawa
coordinates from Lemma 2.1.2 for this purpose. Now W 2 P�

n has partial Iwasawa
decomposition

W D
�

V 0

0 V�1
�	

I X
0 I



; V 2 Pn; X D tX 2 R

n: (2.30)

Just as in Exercise 1.1.14 of Section 1.1.3, we obtain the following formula for the
arc length on P�

n in partial Iwasawa coordinates (2.30):

ds2 D Tr
��

V�1dV
�2 C �

V d.V�1/
�2 C 2

�
V�1� �tdX

�
V�1 dX

�
: (2.31)

Exercise 2.1.18. Prove formula (2.31). Then note that d.V�1/ D �V�1 dV V�1
and use this to show that the arc length on P�

n can be expressed as follows using
partial Iwasawa coordinates (2.30):

ds2 D 2 Tr
��

V�1dV
�2 C �

V�1 dX
�2�

:

Show that the action of G D Sp.n;R/ on P�
n leaves the arc length invariant.

Using Exercise 2.1.18 we find that the arc length on the Siegel upper half space
Hn is:

ds2 D 2 Tr
�
V�1dZ V�1dZ

�
; if Z D U C iV 2 Hn: (2.32)

This is indeed the arc length considered by Siegel [565, Vol. II, p. 276].
Before proceeding to the study of geodesics in P�

n or Hn, we need to consider
the analogue of polar coordinates in these spaces.

Lemma 2.1.3 (The Polar Decomposition of a Noncompact Semisimple Real
Lie Group). Let G be a noncompact connected real semisimple Lie group with
connected Lie subgroups K and A, as in the Cartan and Iwasawa decompositions.
Then G has the polar decomposition:
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G D KAK:

Proof. First we show that if the Lie algebra g of G has Cartan decomposition g D
k ˚ p and Iwasawa decomposition g D k ˚ a ˚ n, then

p D Ad.K/a; (2.33)

where the Adjoint representation Ad is defined in formula (2.11). To prove (2.33),
choose H in a so that its centralizer in p is a; i.e., take H 2 a such that ˛.H/ ¤ 0

for all roots ˛ 2 ƒ. Set K� equal to AdGK and suppose that X is in p. Now there is
an element k0 in K� such that

B.H;Ad.k0/X/ D Min fB.H;Ad.k/X/ j k 2 K�g :

Suppose that T 2 k. Then the derivative at t D 0 of the following function f .t/ of
the real variable t must be 0 by the first derivative test:

f .t/ D B.H;Ad.exp tT/ Ad.k0/X/:

This implies using the fact that the derivative of Ad is ad:

B.H; .adT/.Ad.k0/X// D 0 for all T in k:

Thus (by Exercise 2.1.3)

B.T; ŒH;Ad.k0/X�/ D 0 for all T in k:

Since Œp; p� � k, and B is negative definite on k, it follows that ŒH;Ad.k0/X� D 0

which says that Ad.k0/X 2 a, by the definition of H. The proof of Lemma 2.1.3 is
completed by observing that (2.33) implies

exp p D exp.Ad.K//a D Int.K/.exp a/ D
[

k2K

kAk�1:

Lemma 2.1.3 follows from this equality and Lemma 2.1.1. �

Next we consider some examples.

Examples of the Polar Decomposition

Example 2.1.8 (GL.n;R/ D O.n/AnO.n/, Where An Consists of All Positive
Diagonal Matrices).

This is equivalent (via the Cartan decomposition) to saying that for any positive
matrix Y in Pn, there is an orthogonal matrix k in O.n/ and a positive diagonal
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matrix a in An such that Y D k�1ak. Thus the polar decomposition is just the
spectral theorem for positive definite symmetric matrices, as we noted already in
formula (1.22) of Section 1.1.4.

The next question is: How unique are the a and k in the polar decomposition
of Y in Pn? We saw in the paragraph after Exercise 1.1.24 of Section 1.1.4 that these
coordinates give a .2nnŠ/-fold covering of Pn, since the entries of a are unique up to
the action of the Weyl group of permutations of the diagonal entries and the matrices
in O.n/ that commute with all the diagonal matrices must themselves be diagonal
with entries ˙1.

Example 2.1.9 (Euler Angle Decomposition of the Compact Group SO.3/).
A reference is Hermann [289, pp. 30–39]. Set G D SO.3/,

k D
�

SO.2/ 0

0 1

�
:

The Cartan decomposition of g D k ˚ p is:

so.3/ D
�
so.2/ 0

0 0

�
˚
� �

0 c
� tc 0

� ˇˇ̌
ˇ c 2 R

2

�
:

Then we can take the maximal abelian subspace of p to be

a D R

0

@
0 0 1

0 0 0

�1 0 0

1

A :

And

exp

8
<

:
t

0

@
0 0 1

0 0 0

�1 0 0

1

A

9
=

;
D
0

@
cos t 0 sin t
0 1 0

� sin t 0 cos t

1

A :

which is easily seen by writing out the series for the matrix exponential. Thus the
Euler angle decomposition of g in SO.3/ is:

0

@
cos u sin u 0

� sin u cos u 0

0 0 1

1

A

0

@
cos t 0 sin t
0 1 0

� sin t 0 cos t

1

A

0

@
cos v sin v 0

� sin v cos v 0

0 0 1

1

A :

The three Euler angles are u; t; v. Thus any rotation in 3-space is a product of three
rotations about two axes.

Example 2.1.10 (The Dual Noncompact Group to SO.3/ Is the Lorentz Group
SO.2; 1/).
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The group SO.2; 1/ again has an Euler angle decomposition that is well known
to physicists. You need two angular variables and one real variable. One finds that
the maximal abelian subalgebra a of p is:

a D R

0

@
0 0 1

0 0 0

1 0 0

1

A :

Then

exp

8
<

:
t

0

@
0 0 1

0 0 0

1 0 0

1

A

9
=

;
D
0

@
cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

1

A :

For SO.3; 1/, these matrices are called “Lorentz boosts” (see Misner et al. [454,
p. 67]). The A-part of this group does not get wound up like the A-part of the compact
group in Example 2.1.9.

Example 2.1.11 (Euler Angles for U.3; 1/).
The physicist Wigner [668] considers this example, for which KAK is:

�
A 0

0 u

�
0

BB
@

cosh t 0 0 sinh t
0 0 0 0

0 0 0 0

sinh t 0 0 cosh t

1

CC
A

�
B 0

0 v

�
;

for A;B in U.3/ and u; b in iR.

Example 2.1.12 (SU.2/ Has Euler Angles: .0 � 
 � �; 0 � ' � 2�; 0 �  �
4�/).

 
exp.i'=2/ 0

0 exp.�i'=2/

! 
cos.
=2/ sin.
=2/

� sin.
=2/ cos.
=2/

! 
exp.i =2/ 0

0 exp.�i =2/

!

:

Exercise 2.1.19. Fill in the details of the derivations of polar decompositions in
Exercises 2.1.9–2.1.12. How unique are these decompositions?

Example 2.1.13 (The Symplectic Group Sp.n;R/).
The polar decomposition of Sp.n;R/ says:

Sp.n;R/ D K�
n A�

n K�
n ;
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where

K�
n D O.2n/ \ Sp.n;R/ Š U.n/;

A�
n D A2n \ Sp.n;R/ D fpositive diagonal symplectic matricesg:

How unique is this decomposition? This time it is not legal to permute all the 2n
entries of the diagonal matrix in A�

n because the matrix has to remain symplectic.
The matrix looks therefore like

�
H 0

0 H�1
�

with H D

0

B
@

a1 0
: : :

0 an

1

C
A ; aj positive:

Certainly it is legal to permute all the aj. One can also send aj to a�1
j . The group

generated by such transformations of the elements of A�
n is the Weyl group of

Sp.n;R/, which has order nŠ2n. If we define A�C
n to be the set of diagonal matrices

of the form:

�
H 0

0 H�1
�

with H D

0

B
@

a1 0
: : :

0 an

1

C
A

such that 1 � a1 � a2 � � � � � an, then the polar decomposition

P�
n D A�C

n ŒK�
n �

is unique, up to the action of M�
n D the centralizer of A�

n in K�
n , which has order 2n.

2.1.4 Geodesics and the Weyl Group

In order to discuss the uniqueness of the general polar decomposition, one needs
to discuss the Weyl group for a general semisimple noncompact real Lie group.
However, let us postpone this until we have obtained the geodesics in the symmetric
space for the symplectic group.

Theorem 2.1.1 (Geodesics in the Symmetric Space of the Symplectic Group).

(a) A geodesic segment in P�
n of the form T.t/, for 0 � t � 1, with T.0/ D I and

T.1/ D Y 2 P�
n has the expression:

T.t/ D expftBŒU�g; for 0 � t � 1;
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provided that Y has polar decomposition from Lemma 2.1.3 with

Y D exp BŒU�; for U 2 O.n/ and

B D
�

H 0

0 �H

�
with H D

0

B
@

h1 0
: : :

0 hn

1

C
A ; hj 2 R; 1 � j � n:

The length of the geodesic segment is:

0

@2
nX

jD1
h2j

1

A

1=2

:

(b) Consider the geodesic through Z0 and Z1 in Hn. Set

.Z1;Z0/ D .Z1 � Z0/.Z1 � Z0/
�1.Z1 � Z0/.Z1 � Z0/

�1:

A given pair of points Z0;Z1 in Hn can be transformed by the same matrix M 2
Sp.n;R/ into another pair of points W0;W1 in Hn if and only if the matrices
.Z0;Z1/ and .W0;W1/ have the same eigenvalues.

If r1; : : : ; rn are the eigenvalues of the matrix .Z0;Z1/, then the symplectic
distance between Z1 and Z0 is:

s.Z0;Z1/ D p
2

0

@
nX

jD1
log2

1C p
rj

1 � p
rj

1

A

1=2

:

Proof. See Maass [426, p. 39].

(a) The proof proceeds exactly as in the proof of Theorem 1.3.1 of Section 1.1.3.
In the partial Iwasawa decomposition (2.30) of T.t/, we only decrease the arc
length by taking X to be identically zero. Then by Exercise 2.1.18,

ds2 D 2Tr
��

V�1 dV
�2�

;

and we know from Theorem 1.3.1 of Section 1.1.3 that this arc length is
minimized by taking V to be diagonal. The rest of part (a) is immediate.

(b) Note that if Wj D �
AZj C B

� �
CZj C D

��1
, for j D 0; 1,

�
A B
C D

�
2 Sp.n;R/;
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then

.W1;W0/ D �
Z1

tC C tD
��1

.Z1;Z0/
�
Z1

tC C tD
�
: (2.34)

Using part (a), we need to only observe that with H as in part (a), we have

.iH; iI/ D .H � I/2.H C I/�2:

The eigenvalues of .iH; iI/ are rj D .hj � 1/2.hj C 1/�2. Thus

hi D 1C p
rj

1 � p
rj
:

This completes the proof of Theorem 2.1.1.

�

It is possible to generalize Theorem 2.1.1 to all noncompact real symmetric
spaces.

Exercise 2.1.20. Prove formula (2.34) which was used in the proof of part (b) of
Theorem 2.1.1.
Hint. First show that

W1 � W0 D �
Z1

tC C tD
��1

.Z1 � Z0/ .CZ0 C D/�1 :

Theorem 2.1.2. Suppose that G is a connected noncompact real semisimple Lie
group.

(a) A geodesic in G=K which passes through gK has the form:

�X.t/ D g exp.tX/K; for some X 2 p; with t 2 R:

Here the Cartan decomposition of the Lie algebra g of G is g D k˚ p, and K is
a connected Lie subgroup of G with Lie algebra k.

(b) Geodesics of G=K have the form �X.t/, for all t 2 R, using the notation of part
(a). This means that G=K is a complete Riemannian manifold. Moreover, any
two points of G=K can be joined by a geodesic segment of length equal to the
Riemannian distance between the points.

(c) A geodesic through the origin K in G=K has the form

�.t/ D k exp.tX/K for some k 2 K; X 2 a; with t 2 R:

Here the Iwasawa decomposition of g is g D k ˚ a ˚ n.

Proof. (a) Let g0K and g1K be two cosets in G=K. Apply the transformation
ag�1

o
from (2.25)to transform these cosets to K and .g�1

0 g1/K. Now we have
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the polar decomposition (Lemma 2.1.3): g�1
0 g1 D k1ak2, with ki 2 K and

a 2 A. So the transformation ak�1
1

sends these cosets to K and aK. Thus we
have reduced the proof to the case that �.t/ is a geodesic with �.0/ D K and
�.1/ D aK, with a 2 A. Write

�.t/ D a.t/n.t/K; using the Iwasawa decomposition.

We want to show that n.t/ D e, the identity in G. Then we would be reduced to
the known result that straight lines in the Euclidean space a are the geodesics.

The Riemannian structure on G=K comes from the Killing form B of
formula (2.14). If � W G ! G=K with �.g/ D gK and �.t/ D w.t/K, with
w.t/ 2 G; w.t/ D a.t/n.t/, then

Q�.t/.�
0.t/; � 0.t//DB

��
.d�/w.t/.dLw.t//e

��1
� 0.t/;

�
.d�/w.t/.dLw.t//e

��1
� 0.t/

�
;

with Lg.x/ D gx. Since � D � ı w, we have

Q�.t/.�
0.t/; � 0.t// D B

�
dL�1

w.t/w
0.t/; dL�1

w.t/w
0.t/
�
:

Now, we can calculate the differential of multiplication w.t/ D a.t/n.t/ as
follows—using Exercise 2.1.21 below:

w0.t/ D .dL/w.t/
�

Ad.n.t//�1dL�1
a.t/

�
a0.t/

�C dL�1
n.t/

�
n0.t/

��
: (2.35)

Thus

Q�.t/.�
0.t/; � 0.t// D B

�
Ad.n.t//�1dL�1

a.t/.a
0.t//C dL�1

n.t/.n
0.t//; same

�

D B
�

dL�1
a.t/.a

0.t//C Ad.n.t//dL�1
n.t/.n

0.t//; same
�

D Qa.t/
�
a0.t/; a0.t//C Qn.t/.n

0.t/; n0.t/
�
;

since

0 D 2B
�

dL�1
a.t/.a

0.t//;Ad.n.t//dL�1
n.t/.n

0.t//
�
;

because the first argument of the Killing form lies in a and the second lies in n:
See Exercise 2.1.22 below. Thus the distance is only made smaller by setting
n.t/ D e. It follows that we are reduced to the computation of the geodesics
in the space a. The Killing form gives a metric on a which is equivalent to the
usual Euclidean metric. So the geodesics in a are straight lines and the geodesics
in A D exp a through e are of the form exp.tX/; t 2 R, for some X 2 a. This
completes the proof of part (a) of Theorem 2.1.2.
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(b) This is proved in Helgason [273, p. 56] using part (a).
(c) This follows from part (1) and the polar decomposition (Lemma 2.1.3).

�

Exercise 2.1.21 (The Differential of Multiplication). Suppose that the Lie alge-
bra g can be decomposed into a direct sum of subalgebras

g D m ˚ h

and let G � M;H be the corresponding connected Lie subgroups. If the map ˛ W
M � H ! G is defined by ˛.m; h/ D mh, show that the differential is:

.d˛/.m;h/ .dLmX; dLhY/ D .dLmh/
�
Ad

�
h�1�X C Y

�
; for X 2 m; Y 2 h:

Hint. Define Lm � Lh W M � H ! M � H by .Lm � Lh/.x; y/ D .mx; hy/, for
x 2 M; y 2 H. Then

˛ ı .Lm � Lh/ D Lmh ı ˛ ı .Int.h�1/ � I/:

Thus you can use formula (2.7) relating multiplication on G and Lie bracket on g to
show that:

.d˛/.e;e/.X;Y/f D df

dt
.exp tX exp tY/

ˇ̌
ˇ
ˇ
tD0

D .X C Y/f :

Exercise 2.1.22. Suppose that g has the Iwasawa decomposition g D k˚a˚n and
Cartan involution 
 . Consider the form F.X;Y/ D �B.X; 
Y/ for X;Y 2 g from
formula (2.20) in Section 2.1.3. Then F is a positive definite bilinear form on g.
Show that

X 2 k ) ad X is skew symmetricI
X 2 a ) ad X is diagonalI
X 2 n ) ad X is upper triangular with 0 on the diagonal:

Hint. (See Wallach [651, p. 166] or Helgason [273, p. 223].) You need to take an
ordered set of positive roots: ˛1; ˛2; : : : ; ˛m. Then form an orthonormal basis of g
by taking orthonormal bases of

g˛m ; : : : ; g˛1 ; a ˚ m; 
.g˛1/; : : : ; 
.g˛m/:

You need to use properties of the roots such as the fact that: Œg˛; gˇ� � g˛Cˇ .

Next we consider the Weyl group of the symmetric space. See (1.296) of
Section 1.5.3 for the definition in the case of GL.n;R/. As usual, suppose that G
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is a noncompact real semisimple Lie group with the standard definitions of K; a,
etc. Define the following subgroups of K:

M D the centralizer of a in K D fk 2 K j Ad.k/ja D identityg ;
M0 D the normalizer of a in K D fk 2 K j Ad.k/a � ag :

�
(2.36)

Both M and M0 are closed subgroups of K. The Weyl group of G=K is defined to be
W D M0=M. Note that W is independent of the choice of a, by the conjugacy of all
maximal abelian subspaces of p (see the proof of Lemma 2.1.3). These definitions
can also be made in the case that G is compact (see Helgason [273, p. 244]).

Theorem 2.1.3 (The Weyl Group).

(1) The Weyl group is a finite group contained in the orthogonal group in GL.a/
with respect to the inner product on a defined by the Killing form of g.

(2) The Weyl group permutes the restricted roots. Define a Weyl chamber to be a
connected component of

 

a �
[

˛2ƒ
˛�1.0/

!

; for ˛ 2 ƒ:

Note that ˛�1.0/ is a hyperplane in a. The Weyl group also permutes the Weyl
chambers. Moreover the action of the Weyl group on the Weyl chambers is
simply transitive.

(3) For � 2 ƒ, define s� W a ! a by

s�.H/ D H � 2.�.H/=�.H�//H�; where H� 2 a

is defined by

B.H;H�/ D �.H/; for all H 2 a:

Then s� is the reflection in the hyperplane ��1.0/. The Weyl group is generated
by these reflections s�, for � 2 ƒ.

Proof. We shall only prove part (1). For the other parts of the theorem, see Helgason
[273, Ch. 7] or Wallach [651, pp. 77, 168]. By the Lie group/Lie algebra dictionary,

the Lie algebra of M D Lie.M/ D m D fX 2 k j ad Xja D 0g :

If we can show that M0 has the same Lie algebra as M, then it will follow that the
quotient M0=M is both discrete and compact (thus finite). Suppose that T is in the
Lie algebra of M0. Then write out the root space decomposition of T:
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T D Y C
X

�2ƒ
X�; for Y 2 m ˚ a; X� 2 g�:

It follows that for all H 2 a

ŒH;T� D
X

�.H/X� 2 a implies that ŒH;T� D 0:

Here we have used the fact that the sum in the root space decomposition is direct.
To see that the group M0=M permutes the restricted roots is easy. To see that

the reflections s� come from some Ad.k/; k 2 K, is harder. To see that the s�
generate the Weyl group is even harder. Note that we cannot claim that the s�, with
� from a system of simple roots, generate the Weyl group. A system of simple
roots has the property that any root is a linear combination of simple roots with
integer coefficients that are either all positive or all negative (with r D dim a
elements). Such simple root systems do give generators of the Weyl group in the
case of complex semisimple Lie algebras. However, real Lie algebras are somewhat
different, as we will see in the following examples. �

Exercise 2.1.23. (a) Why is it reasonable to call a Lie algebra “semisimple” if the
Killing form is nondegenerate? What is the connection with the standard notion
that an algebraic object is semisimple if it is a direct sum of simple objects?

(b) Why do we call a semisimple Lie algebra “compact” if its Killing form is
negative definite? What is the connection with compact Lie groups? Can we
drop the hypothesis that the Lie algebra be semisimple?

(c) Recall that we said a Lie algebra is “nilpotent” if all sufficiently long brackets
must vanish. What is the connection with the usual idea of a nilpotent linear
transformation (such as adX)?

Hints.

(a) See Helgason [273, pp. 121–122].
(b) See Helgason [273, pp. 120–122]. Think about R and R=Z.
(c) See Helgason [273, pp. 135–137].

Examples of Weyl Groups

Example 2.1.14 (GL.n;R/).
Since Ad D Int for matrix groups, we have:

M D ˚
k 2 O.n/

ˇ
ˇ kXk�1 D X; for any diagonal matrix X

�
;

M0 D ˚
k 2 O.n/

ˇ
ˇ kXk�1 is diagonal; for any diagonal matrix X

�
:

It follows that

M D fdiagonal matrices with entries C 1 or � 1g;
M0 D fmatrices with each row or column having exactly one non � 0 entry of ˙ 1g :
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Thus the Weyl group of GL.n;R/ is the group of all permutations of n objects as we
also saw in Exercise 1.5.30 of Section 1.5.3.

Example 2.1.15 ( Sp.n;R/). Here

K D
� �

A B
�B A

� ˇ̌
ˇ̌ A C iB 2 U.n/

�
;

a D
� �

H 0

0 �H

� ˇ̌
ˇ̌ H n � n real diagonal

�
;

M D
� �

A 0

0 A

� ˇ̌
ˇ̌ A diagonal n � n; entries ˙ 1

�
;

M0 D
� �

A B
�B A

� ˇ̌
ˇ̌ A C B is in the M0 for GL.n;R/

�
:

It follows that the Weyl group W D M0=M contains all permutations of entries
of H in

�
H 0

0 �H

�
in a;

as well as all possible changes of sign. So it has 2n times nŠ elements. For example,
let n D 3 and

A D
0

@
0 1 0

1 0 0

0 0 0

1

A ; B D
0

@
0 0 0

0 0 0

0 0 1

1

A ; k D
�

A B
�B A

�
; H D

0

@
h1 0 0

0 h2 0

0 0 h3

1

A ;

a D
�

H 0

0 �H

�
; then Ad.k/a D

�
H0 0

0 �H0
�
;

where

H0 D
0

@
h2 0 0

0 h1 0

0 0 �h3

1

A :

Exercise 2.1.24. Check the results stated in Example 2.1.15 above for Sp.n;R/.

Example 2.1.16 (SU.2; 1/).
For this example,

K D
� �

U 0

0 t

� ˇ̌
ˇ̌ U 2 U.2/; t D .det U/�1

�
;
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a D R

0

@
0 0 1

0 0 0

1 0 0

1

A ;

M D
8
<

:
k D

0

@
ei˛ 0 0

0 eiˇ 0

0 0 ei˛

1

A

ˇ̌
ˇ̌
ˇ̌ det k D 1

9
=

;
;

M0 D
8
<

:
k D

0

@
ei˛ 0 0

0 eiˇ 0

0 0 ˙ei˛

1

A

ˇ̌
ˇ̌
ˇ̌ det k D 1

9
=

;
:

So the Weyl group has only two elements. The entries of the diagonal matrices in
M0 are supposed to be of complex norm 1.

Exercise 2.1.25. Verify the results stated in Example 2.1.16 for SU.2; 1/.

Now that we have described the Weyl group, it is possible to discuss the
nonuniqueness of the polar decomposition. The precise result is that if we
set a0 D fH 2 a j �.H/ ¤ 0; for all � 2 ƒg ; A0 D exp a0, and define the map
f W .K=M/�A0 ! G=K by f .kM; a/ D .ka/K, then the map f is #W to 1, regular, and
onto an open submanifold of G=K whose complement in G=K has lower dimension
(see Helgason [273, p. 381] or [278, p. 402] or Wallach [651]).

One should also consider the relation between the structure theory for g a
noncompact semisimple real Lie algebra and that for the complexification gc D
g ˝R C. The same question could be asked for the compact real form of gc. As
an example, consider SU.2; 1/ again. The Cartan subalgebra or maximal abelian
subalgebra h of su.2; 1/ containing a is:

h D
8
<

:

0

@
a 0 b
0 c 0

b 0 a

1

A

ˇ̌
ˇ̌
ˇ
ˇ

a; c 2 iR; b 2 R

9
=

;
:

Clearly the complexification of h is a Cartan subalgebra of the complexification of g.
This shows that much is missing from the complexification of a. One can show that
the restricted roots are really restrictions of roots of the complexified Lie algebra
(see Helgason [273, Ch. 6]). Again, some roots from the complexification may be
missing in the real version of the Lie algebra.

2.1.5 Integral Formulas

Our next topic is integral formulas for noncompact semisimple real Lie groups. First
perhaps we should discuss the Haar measures in G;A;N, and K. See our earlier
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comments on this subject in Chapter 2 of Vol. I and Chapter 1 of this Volume. More
details about Haar measures can be found in Helgason [273, Chapter 10]. Because
Haar measure is unique up to a positive scalar multiple, we can define the modular
function ı W G ! R

C by the formula (assuming dg D left Haar measure):

Z
f .gs�1/dg D ı.s/

Z
f .g/dg: (2.37)

For the left-hand side of the equality is a left G-invariant integral for fixed s. Thus
it must be a positive constant times the Haar integral of f . It follows easily that ı
is continuous, ı.st/ D ı.s/ı.t/, and d.gs/ D ı.s/dg. Thus the modular function
relates right and left Haar measure. By definition, a unimodular group has ı D 1

identically. Furthermore, it is easy to see that d.g�1/ D ı.g�1/dg. If G is a Lie
group, one also has d.s�1gs/ D d.gs/ D ı.s/dg. Thus det.Ad.s�1// D ı.s/, for all
s in G.

We prove that compact, semisimple, and nilpotent Lie groups are all unimodular.
Suppose first that K is compact. Then ı maps K onto a compact subgroup of RC
which must contain only one element, since otherwise powers would approach 0
or infinity. Suppose next that G is semisimple. Then Ad .s/ leaves the Killing form
invariant for s in G. But the Killing form of a semisimple group is nondegenerate
and thus equivalent to

Ip;q D
�

Ip 0

0 �Iq

�
; for some p; q:

If tgIp;qg D Ip;q, the determinant of g must have absolute value 1. Finally suppose
that N is nilpotent and connected. Then

det.Ad.n// D exp.Tr.ad.log n/// D 1;

for n 2 N, since ad .log n/ is a nilpotent linear transformation.

Proposition 2.1.1 (The Integral Formula for the Iwasawa Decomposition).
Define m� D dimR g� and

J.a/ D
Y

0<�2ƒC

exp.m��.log a//;

for a 2 A. Then

Z

A

Z

N

Z

K
f .ank/ da dn dk D

Z

G
f .g/ dg;

where all the measures are left-invariant (and thus right-invariant) Haar measures
on G;A;N;K. However, changing the order gives:



384 2 The General Noncompact Symmetric Space

Z

K

Z

A

Z

N
f .kan/J.a/ dk da dn D

Z

G
f .g/ dg:

Proof. In order to compute the Jacobian of the Iwasawa decomposition, we proceed
as in Exercise 1.1.20 of Section 1.1.4. Thus we need the differential of Int.a/n D
ana�1, for n 2 N and a 2 A. We know that the differential of Int.a/ is Ad.a/, by
definition. Thus if a D exp H for H 2 a, we find that:

det.Ad.a// D det.exp.adH// D exp .Tr.adH//

D exp.
X

�2ƒC

m��.H// D
Y

�2ƒC

exp .m��.H// ;

which is simply J.a/, as defined in the proposition, since H D log a. Here we have
used the fact that:

n D
X

�2ƒC

˚ g�; g� D fX 2 g j adH.X/ D �.H/X; for all H 2 ag :

Note that Int.a/ W N ! N for any a 2 A.
The rest of the argument is really the same as that of Exercise 1.1.20 in

Section 1.1.4, but we shall repeat it for completeness. First observe that the left
Haar measures on G and K can be normalized so that if dg denotes the G-invariant
measure on the symmetric space G=K, then the following equality prevails:

Z

G

f .g/ dg D
Z

gDgK2G=K

Z

k2K

f .gk/ dk dg:

Now G=K can be identified with AN. Thus we need to only show

Z

A

Z

N
f .an/ dn da

gives a left AN-invariant integral on AN. Let a1 2 A and n1 2 N. Then we have

Z

A

Z

N
f .a1n1an/ dn da D

Z

A

Z

N
f .a1an2n/ dn da; if n2 D a�1n1a:

Since both da and dn are left invariant, the last integral is just

Z

A

Z

N
f .an/ dn da:

This completes the proof of the first integral formula in the proposition.
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Now we are ready to prove the second version of the integral formula for
the Iwasawa decomposition. Using the differential of Int.a/ and the first integral
formula, we get:

Z

G
f .g/ dg D

Z

N

Z

A

Z

K
f .nak/J.a/�1 dk da dn:

Now replace f .g/ by f .g�1/. This will reverse orders on the right-hand side and
produce

Z

N

Z

A

Z

K
f .k�1a�1n�1/J.a/�1 dk da dn:

Finally the fact that G;N;A;K are all unimodular leads to the second integral
formula for the Iwasawa decomposition. �

Examples

(1) G D GL.n;R/:

J.a/ D
Y

1�i<j�n

ai

aj
D

nY

iD1
an�2iC1

i :

(2) G D Sp.n;R/:

J.a/ D
Y

1�i<j�n

ai

aj

Y

1�i�j�n

aiaj D
nY

iD1
a2.nC1�i/

i :

In order to be more precise, we need to fix the invariant volumes on the symmetric
spaces.

Invariant Volume Elements on the Symmetric Spaces of GL.n;R/ and
Sp.n;R/

(1) We found in formula (1.16) of Section 1.1.4 that the GL.n;R/-invariant volume
element on Pn is:

d	n D jYj�.nC1/=2 Y

1�i�j�n

dyij; if Y D .yij/ 2 Pn:
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(2) Next we want to find the invariant volume element on the Siegel upper half
space Hn. The argument following (1.16) of Section 1.1.4 can be imitated to
show that the Sp.n;R/-invariant volume on Hn is:

d	�
n .Z/ D jYj�.nC1/ Y

1�i�j�n

dxij dyij; if Z D X C iY 2 Hn;

with

X D .xij/ and Y D .yij/:

Let us prove this last formula. As in the case of GL.n;R/, it suffices to find the
Jacobian of the action of a diagonal symplectic matrix on Hn. So observe that the
image of X C iY 2 Hn under the matrix

�
a 0

0 a�1
�

2 Sp.n;R/; a D

0

B
@

a1 0
: : :

0 an

1

C
A ;

is aZa D ZŒa� D XŒa� C iYŒa�, according to (2.25). Thus the Jacobian of the
transformation is:

Y

1�i�j�n

aiaj

Y

1�i�j�n

aiaj D jaj2.nC1/:

This shows that the measure d	�
n is Sp.n;R/-invariant.

Our next goal is to work out the integral formula for polar coordinates. First we
need a Lemma.

Lemma 2.1.4 (The Integral Formula for Exp Restricted to p in the Cartan
Decomposition). There is a positive constant c such that:

Z

G=K

f .x/ dx D c
Z

p

f .exp Y/J.Y/ dY;

where

J.X/ D det

 
sinh adX

adX

ˇ̌
ˇ̌
p

!

; for X 2 p:

Proof. First recall our calculation of the differential of exp in formula (2.8) or see
Helgason [273, p. 95] for the general result. Observe that if X;Y 2 p, then
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.d exp/XY D .dLexp X/e ı
8
<

:

X

n�0

1

.2n C 1/Š
.�adX/2n

9
=

;
Y:

For Œk; p� � p and Œp; p� � k follow from the properties of the Cartan involution.
Therefore

.adX/2nC1Y 2 k and .adX/2nY 2 p:

Since k \ p D 0, we have the vanishing of the sum of the odd powers of adX in the
series expression for the differential of exp.

We can write X 2 p in the form

X D Y C
X

�2ƒC

.X� � 
X�/; Y 2 a;

for X� in a basis for g�. Note also that H 2 a; X� 2 g� implies that

.adH/ .X� � 
X�/ D �.H/ .X� C 
X�/ ; if X� 2 g�:

It follows that

.adH/2 .X� � 
X�/ D .�.H//2 .X� � 
X�/ :

Thus the differential at H has determinant

ˇ̌
.d exp jp/H

ˇ̌ D ˇ̌
eH
ˇ̌ Y

0<�2ƒ

sinh�.H/

�.H/
;

proving Lemma 2.1.4. This shows, in particular, that exp is a diffeomorphism when
restricted to p: �

Proposition 2.1.2 (The Integral Formula for Polar Coordinates). Suppose that
the root space g� has dimension m� for any restricted root �. Then there is a positive
constant c such that if dg denotes the Haar measure on G, then

Z

G
f .g/ dg D c

Z

K

Z

A

Z

K
f .k1ak2/D.a/ dk1 da dk2;

where

D.a/ D
Y

0<�2ƒ
jsinh .�.log a//jm� ; for a 2 A:

Proof. A reference for the proof is Helgason [273, Ch. 10]. The main step is the
preceding lemma. Then one uses the fact that p DAd.K/a from Lemma 2.1.3.
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Observe first that X 2 k has the representation:

X D Y C
X

�2ƒC

.X� C 
X�/; with Y 2 m; X� 2 g�;

where m and g� are from the root space decomposition of g (see Helgason [273,
p. 224]).

Define f W K � A ! P by f .k; a/ D kak�1 D p. Suppose that Y 2 k; H 2 a. Then

.df /.k;a/.Y;H/ D lim
t!0

1

t

˚
f .ketY ; aetH/ � f .k; a/

�

D lim
�!0

1

t

˚
ketYaetHe�tYk�1 � kak�1�

D k

�
lim
t!0

1

t

�
etYaetHe�tY � a

��
k�1:

Now suppose that a D exp.H0/ for H0 2 a. Then the object inside the last
limit is:

etYeH0CtHe�tY � eH0 D exp
�
H0 C tH C tŒY;H0 C tH�C o.t2/

� � exp H0

D exp
�
H0 C t.H C ŒY;H0�/C o.t2/

� � exp H0:

Use the chain rule to evaluate the derivative of the preceding quantity with respect
to t at t D 0 and obtain:

.d exp/H0 .H C ŒY;H0�/ :

Take a basis of p coming from a and vectors X� � 
X� and a basis of k coming
from m and vectors X� C 
X�; with X� in the root spaces g�. One sees that for
Y D X� C 
X�, the preceding is:

.d exp/H0 .H � �.H0/.X� � 
X�// :

Finally use the formula for the differential of exp; along with the fact that the odd
powers of .adH0/ vanish, once again. This yields:

.d exp/H0 .H C ŒX� C 
X�;H0�/

D eH0

8
<

:
H � �.H0/

X

n�0

1

.2n C 1/Š
�.H0/

2n .X� � 
X�/

9
=

;

D eH0 fH � sinh�.H0/.X� � 
X�/g :

This completes our discussion of Proposition 2.1.2. �
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If G is a real noncompact semisimple Lie group, K a compact subgroup coming
from the Cartan decomposition of G, the boundary of G=K can be defined as
K=M. The group M was defined in (2.36). And we can identify this boundary with
G=B, if B is the Borel or minimal parabolic subgroup B D MAN, as in (1.19) of
Section 1.1.4. Furstenberg [194] and Moore [459] show that G=B is a “maximal
boundary” in a certain probabilistic sense.

Example 2.1.17 (G D SL.n;R/).
Here B D MAN consists of all upper triangular matrices of determinant one. We

can identify G=B as the flag manifold:

Fn D f.V1; : : : ;Vn�1/ j Vi is a vector subspace of Rn; dimR Vi D i; Vi � ViC1 g :

The action of g 2 G on Fn is g.V1; : : : ;Vn�1/ D .gV1; : : : ; gVn�1/. This action is
easily seen to be transitive. To calculate the stability group of a point, let ei 2 R

n

denote the column vector with ith coordinate one and the rest zero. Then set V0
i D

Re1 ˚ � � � ˚ Rei. Then g fixes V0
i , for all i, means g 2 B. See Exercise 1.3.11 of

Section 1.3.6.

Exercise 2.1.26. Show that the Jacobian of the action of g 2 G on the boundary
G=MAN Š K=M is given by the following integral formula:

Z

K=M

f .k/ dk D
Z

kDkM2K=M

f .g.k//J.a.gk//�1 dk;

where a.g/ is the A-part of the KAN-Iwasawa decomposition of g; and J.a/ is the
Jacobian of the Iwasawa decomposition in Proposition 2.1.1. Here dk is any K-
invariant measure on K=M.

It is also possible to show (using the Bruhat decomposition of G described
in Section 1.5.3 for GL.n/) that if N denotes the opposite nilpotent subgroup
corresponding to the Lie subalgebra n,

n D
X

0>˛2ƒ
g˛;

then NMAN is an open subset of G with lower dimensional complement. See
Lemma 1.3.2 of Section 1.3.3 for a proof of this result when G D SL.n;R/. This
allows us to identify K=M with N as far as integration is concerned. In Section 1.3,
we applied such a result to obtain the asymptotics of spherical functions. For more
information on boundaries and compactifications of symmetric spaces, see Gérardin
[216], Helgason [273–282], Koranyi [364], and the references mentioned when we
defined the boundary of Pn.
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This concludes our discussion of the basic integral formulas for symmetric
spaces. Next let us consider differential operators on the symmetric space G=K when
G is a noncompact real semisimple Lie group.

2.1.6 Invariant Differential Operators

Let ' be a diffeomorphism of a manifold M. We say that a differential operator D
on M is invariant under ' if D commutes with '; i.e., if D.f ı'/ D .Df /ı', for all
infinitely differentiable functions f on M. For each g 2 G, we have a diffeomorphism
ag of the symmetric space G=K defined by ag.xK/ D .gx/K, for g; x 2 G. Define
D.G=K/ to be the set of all differential operators on G=K which are ag-invariant for
all g 2 G. So D.G=K/ is the algebra of invariant differential operators on G=K.
The Laplacian will, of course, be such an operator. In general, however, there will be
invariant differential operators on G=K which are not polynomials in the Laplacian,
just as for Pn (see Theorem 1.1.2 of Section 1.1.5). The following theorem is proved
in Helgason [273, p. 432]). We will not prove it here.

Theorem 2.1.4 (Harish-Chandra and Chevalley). Suppose that G is a noncom-
pact real semisimple Lie group with dimR a D r Drank of G=K. Then the algebra
D.G=K/ of all invariant differential operators on G=K is a commutative algebra. In
fact, it is a polynomial ring with r algebraically independent generators.

There is a close relation between D.G=K/ and D.G/ D the left-invariant
differential operators on G or the universal enveloping algebra of G (see Helgason
[273, Ch. 10]).

Question. Can one relate the G-invariant differential operators D.G=K/ for the
following chain of inclusions of totally geodesic submanifolds?

Pn ! Hn ! P�
2n � P2n;

Y 7! iY 7!
�

Y 0
0 Y�1

�
:

We know, for example, that the arc length on Hn is given by:

ds2 D 2Tr
��

Y�1dY
�2 C �

Y�1dX
�2�

; for Z D X C iY 2 Hn:

Therefore the Laplacian on Hn must be a sum of the Laplacian on Pn plus a
term involving only differentiation with respect to X-variables. If follows that for
functions of the Y-variable alone, the Laplacian on Hn coincides with that on Pn,
disregarding constants.

Let G be a noncompact real semisimple Lie group, as usual. A function
u W G=K ! C is called harmonic if Du D 0 for any operator D 2 D.G=K/
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such that D annihilates constants. This definition was made by Godement [223].
Furstenberg [194] shows that, in fact, a bounded solution of �u D 0 on G=K
is automatically harmonic. Other references for potential theory (i.e., the study of
harmonic functions) on symmetric spaces are Helgason [275] and Koranyi [364].

Theorem 2.1.5 (Godement’s Mean Value Theorem). Suppose u W G=K ! C is
infinitely differentiable. Then u is harmonic if and only if

Z

k2K
u.gkhK/ dk D u.gK/; for all g; h 2 G:

Proof (Helgason [275, pp. 42–43]).
) Let u be harmonic and

F.h/ D
Z

K
u.gkhK/ dk:

We want to show that F.h/ D F.e/ D u.gK/; e D identity of G. Since F satisfies
an elliptic partial differential equation with analytic coefficients, it follows, by a
theorem of Bernstein, that F is analytic (see John [332, pp. 57, 142]). Now it suffices
to show that

.DF/.e/ D 0;

for every left invariant differential operator D on the Lie group G such that D
annihilates the constants.

To show that DF vanishes at the identity, we must merely relate differential
operators in D.G=K/ with those in D.G/. This is done in detail in Helgason [273,
Ch. 10]. We merely sketch the process. Let us use the following notation for a
diffeomorphism ' of G:

D' f D D.f ı '/ ı '�1; if D 2 D.G/:

Then for D 2 D.G/ write

D#f D
Z

K
DRk f dk; if Rkx D xk for x 2 G:

Now it can be shown that D# is a differential operator which is invariant under
all the Rk; k 2 K and thus gives rise to an operator QD in D.G=K/. And we find that
by hypothesis:

.DF/.e/ D .D#F/.e/ D
Z

K
. QDu/.gkK/ dk D 0:
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( Assume that u has the mean value property stated in the theorem and that D 2
D.G=K/ annihilates constants. As usual, set ag.hK/ D ghK, for g; h in G. Thus

Z

k2K
u.agk.x// dk D u.gK/; if x 2 G=K:

Apply D to both sides of this equation considered as functions of x 2 G=K to obtain

Z

k2K
.Du/.agk.x//dk D 0;

since D and ag commute. Take x to be the coset K in G=K to see that Du D 0: �

Theorem 2.1.6 ((Furstenberg) (Poisson Integral Formula)). Let us suppose
u: G=K ! C is a bounded harmonic function. Then there is a bounded measurable
functionbu W K=M ! C such that

u.gK/ D
Z

k2K=M
bu.g.k// dk; for all g 2 G: (2.38)

Here dk is the unique K-invariant measure on the boundary K=M such that

Z

K=M
dk D 1:

And conversely, given bu, as above, the function u on G=K defined by (2.38) is
harmonic. We can rewrite formula (2.38) as:

u.x/ D
Z

k2K=M
bu.k/P.x; k/ dk;

where Poisson’s kernel P.x; k/ is:

P.gK; kM/ D d
�
g�1 �k

��
=dk D J�1 �a

�
g�1k

��
: (2.39)

Here J denotes the Jacobian of the Iwasawa decomposition from Proposition 2.1.1
and a.g/ is the A-part of the KAN Iwasawa decomposition of g 2 G.

Proof. Sketch (See Helgason [275, pp. 42–52].)
) We need to know that the Borel subgroup B D MAN has the following fixed
point property. Suppose that B acts continuously on a locally convex topological
vector space by linear transformations leaving a nonempty compact convex set
invariant. Then B has a fixed point in the convex set. Assuming this result, suppose
u W G=K ! C is bounded and harmonic. Define the set
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Qu D
8
<

:
w 2 L1.G/

ˇ̌
ˇ
ˇ̌
ˇ

jjwjj1 D l:u:b: fjw.h/j j h 2 Gg � jjujj1

u.gK/ D R
K w.gkh/dk; for all g; h 2 G

9
=

;
:

By Godement’s Mean Value Theorem, u ı � D Qu 2 Qu, where � W G ! G=K is
defined by �.g/ D gK.

Suppose that MAN leaves u1 in Qu fixed. Setbu.gMAN/ D u1.g/; for all g 2 G.
Thenbu has the required property.
( Ifbu is as described in the theorem, then u defined by (2.38) is easily shown to
have the mean value property. �

Exercise 2.1.27. Prove this last statement; i.e., the ( of Theorem 2.1.6.

Another standard result in potential theory generalizes as follows.

Theorem 2.1.7. Suppose that F is continuous on the boundary of G=K and that
P.x; b/ DPoisson’s kernel from (2.39). Set

u.gK/ D
Z

K=M
P.gK; k/F.k/ dk; for g 2 G:

Then u has boundary values given by F; i.e.,

lim
t!1 u ..k exp tH/K/ D F.kM/; for k 2 K; H 2 aC;

where aC is a fixed Weyl chamber in a (from the Iwasawa decomposition).

Proof (Helgason [275, pp. 47–48]). First one must identify the boundary K=M
(up to set of measure 0) with N the Lie subgroup of G corresponding to the Lie
subalgebra

n D
X

˛2ƒ�

˚ g˛;

where the Weyl chamber is

aC D fH 2 a j ˛.H/ < 0 if ˛ 2 ƒ�g :

Set at D exp.tH/, for t 2 R. Write k.g/ D the K-part in the KAN Iwasawa
decomposition of g 2 G and obtain:

Z

K=M
F.at.k// dk D

Z

N
F.k.Int.at/n/M/

dk

dn
dn;
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since atnMAN D atna�1
t MAN. Set n D exp

P
˛<0 X˛ , for X˛ 2 g˛ . Then

Int .exp tH/ n D exp

 

Ad.exp tH/
X

˛<0

X˛

!

D exp

 

eadtH
X

˛<0

X˛

!

D exp

 
X

˛<0

et˛.H/

!

X˛ ! e; as t ! 1;

where e denotes the identity, because ˛.H/ < 0 if H 2 aC: �

2.1.7 Special Functions and Harmonic Analysis on Symmetric
Spaces

It is now possible to discuss various types of special functions on the symmetric
space KnG of a noncompact real semisimple Lie group G. We shall view G as acting
on the right in order to remain close to the notation that we used in Section 1.2.
The basic eigenfunction of the invariant differential operators on KnG is the power
function p.Kg/ defined as follows. Let � W a ! C be a linear functional over R; i.e.,
� 2 a�. For g 2 G, with Iwasawa decomposition g D kan, write H.g/ D log a 2 a.
Then define the power function

p�.Kg/ D exp.�.H.g//: (2.40)

The power function is indeed an eigenfunction for all the G-invariant differential
operators D 2 D.KnG/. The proof is the same as that for Proposition 1.2.1 of
Section 1.2.1. We know that if t D a1n1, for a1 2 A; n1 2 N, we have

p�..Kx/t/ D p�.Kx/p�.Kt/;

since x D kan implies that xa1 D kana1 D kaa1.a�1
1 na1/ with a�1

1 na1 2 N. Then,
if D 2 D.KnG/; t 2 AN, and Ky D .Kx/t,

Dp�.Ky/ D .Dp�/.Kxt/ D .Dp�.Kx//p�.Kt/:

Set x D e D the identity, to complete the proof that the power function is indeed an
eigenfunction for all the invariant differential operators on KnG.

Define a spherical function of KnG to be a function f W KnG ! C such
that f .K/ D 1 and such that f is a K-invariant eigenfunction of all the invariant
differential operators in D.KnG/.

Spherical functions can be built up out of power functions as in Theorem 1.2.3 of
Section 1.2.3. The following theorem is proved in Helgason [273, Ch. 10]. In fact,
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the proof that we gave in Section 1.2.3 generalizes. It is also possible to extend the
rest of the Theorem 1.2.3 of Section 1.2.3 to KnG.

Theorem 2.1.8 (Harish-Chandra). A spherical function has the form

h�.Kg/ D
Z

K
p�.Kgk/ dk;

where � D i	�p;  D 1
2

P
˛>0 ˛. Moreover spherical functions hi	� are invariant

under the Weyl group acting on the	-variable. Here	 2 a� D the dual vector space
of a.

Harish-Chandra [263] obtained the asymptotics of the spherical function:

hi	�.exp H/ � e�.H/X

s2W

c.s	/eis	.H/; as H ! 1; H 2 aC;

c.	/ D
Z

N

exp f.�i	 � /.H.n//g dn:

9
>>>>>=

>>>>>;

(2.41)

Gindikin and Karpelevic [220] obtained the explicit formula for the c-function:

c.	/ D I.i	/=I./; where I.�/ D
Y

˛>0

B

�
1

2
m˛;

1

4
m˛=2 C .�; ˛/

.˛; ˛/

�
; � 2 a�;

(2.42)
where B is the beta function (not to be confused with the Killing form), m˛ D
dimR g˛;  D 1

2

P
˛>0 ˛. Here .�; ˛/ denotes the inner product on the dual space

a� induced by the Killing form of g restricted to a (a form which is automatically
positive definite).

This concludes what we have to say about spherical functions. It would be
interesting to look at analogues of Bessel and Whittaker functions for general
symmetric spaces, but we will not do this here.

The asymptotics and functional equations of the spherical functions h� are
sufficient to study the Helgason–Fourier transform of f W KnG ! C defined by:

Hf .�; k/ D
Z

x2KnG

f .x/p�.xk/ dx: (2.43)

Here � 2 .a�/c, the complexification of the dual vector space to a; k D kM 2
K=M; xg, for x 2 KnG and g 2 G, denotes the right action given by .Kh/g D K.hg/,
and dx denotes the G-invariant volume on the symmetric space KnG.

The inversion formula for this transform is due to Harish-Chandra and Helgason
(see Helgason [273–282]) and says that
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f .x/ D
Z

	2a�

Z

BDK=M

Hf .i	C ; k/ pi	C.xk/ jc.	/j�2 d	 dk; (2.44)

with a suitable normalization of the Euclidean measure on the real vector space
a�, which is the dual space to a. The proof of (2.44) is analogous to that of
Theorem 1.3.1 in Section 1.3. Helgason [282, Ch. IV] gives a detailed account of
the transform for K bi-invariant functions on G. Information on the history of the
subject can be found in the same place.

We leave it to the reader to note the remaining properties of the Helgason
transform, analogous to those listed in Theorem 1.3.1 in Section 1.3.

Example 2.1.18 (G D Sp.n;R/).
Recall our identifications in formula (2.26) in Section 2.1.3 of KnG and Hn with

P�
n via:

W D
�

Y 0

0 Y�1
�	

I X
0 I



; tX D X 2 R

n�n; Y 2 Pn:

Thus, the power function is:

ps.W/ D
nY

jD1
jYjjsj ; for W;Y as above; s 2 C

n:

Viewing Pn as the subset of P�
n consisting of the W with X D 0 in the partial

Iwasawa decomposition above, it follows that the power function on P�
n restricts to

the power function on Pn which was defined in Equation (1.41) of Section 1.2.1.

A possible analogue of the gamma function for P�
n is the Helgason–Fourier

transform of exp.�Tr.W//:

Z

P�

n

exp.�Tr.W//ps.W/ d	�
n .W/

D
Z

Y2Pn

Z

X 2Rn�n

X D tX

exp
˚�Tr

�
YCY�1CY�1 ŒX�

��
ps.Y/jYj�.nC1/=2 d	n.Y/ dX

D �n.nC1/=4Kn.s#jI; I/; s# D s � �
0; : : : ; 0; 1

2

�
;

where Kn denotes the K-Bessel function for Pn defined by formula (1.61) of
Section 1.2.2. We saw the case n D 1 of this result in formula (3.141) in
Section 3.7 of Volume I. The present formula should allow one to generalize (3.142)
of Section 3.7, Vol. I, to Sp.n;Z/ using the spectral resolution of the G-invariant
differential operators on L2.Hn=Sp.n;Z//.
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Example 2.1.19 ((The Heat Equation on K n G) (Gangolli [197, pp. 108–109])).
We want to find u.Kx; t/ such that

�
�u D ut; where � D the Laplacian for K n G;
u.Kx; 0/ D f .Kx/; for some given K-invariant function f on K n G:

Now, it can be shown that

�pi	�p D � f.	; 	/C .; /g pi	�:

Thus the same sort of argument that worked in § 1.3.4 shows that the heat kernel is

Gt.Kx/ D
Z

	2a�

exp .�f.	; 	/C .; /gt/ hi	�.Kx/ jc.	/j�2 d	

and

u.t;Kx/ D Gt 	 f ; where the convolution is over G:

Recall that convolution was defined in formula (1.24). Gangolli [197] shows that
Gt.Kx/ has the standard properties of the fundamental solution of the heat equation,
just as we saw for Pn in Exercise 1.3.8 of Section 1.3.4.

As we noted earlier, Ólafsson and Schlichtkrull [479] consider the holomorphic
extension of the heat transform Gt 	 f ; for f an L2 function on a general symmetric
space. The extension is to the complex crown of the symmetric space. Helgason’s
conjecture on eigenfunctions of the invariant differential operators being recon-
structible from their hyperfunction boundary values can be considered using the
crown of the symmetric space. See Gindikin [219].

Helgason [275, pp. 67–68] solves the wave equation on a symmetric space
using the Radon transform on K n G. He also discusses Huyghen’s principle for
a symmetric space. It is also shown by Helgason that eigenfunctions of D.G=K/
can be expressed as a Poisson integral over the boundary of the symmetric space.

2.1.8 An Example of a Symmetric Space of Type IV: The
Quaternionic Upper Half 3-Space

References for this example include Belinfante and Kolman [41], Bougerol [73],
Elstrodt et al. [165–168], Jauch [331], Kubota [373–375], Maass [426, Ch 1],
Mennicke [442, 443], Sarnak [526], and Marie-France Vignéras [633].

First we need a brief review of quaternions. See also Volume I, p. 218. The
quaternions, denoted H for Hamilton, form a division ring or noncommutative field:
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H D R ˚ Ri ˚ Rj ˚ Rk;

where ij D k D �ji; jk D i D �kj; ki D j D �ik; i2 D j2 D k2 D �1.
The reduced norm of a quaternion q D a C bi C cj C dk, with a; b; c; d real is
Nrd .q/ D qqc; with the conjugate qc D a � bi � cj � dk. The Euclidean length of
the quaternion thought of as a vector in R

4 is:

kqk D
p

a2 C b2 C c2 C d2 D
p

Nrd .q/;

All goes very much as with the complex numbers except that things do not commute.
It is possible to represent quaternions by complex 2 � 2 matrices via:

1 7!
�
1 0

0 1

�

i 7!
�
0 �i

�i 0

�
D �i�1

These matrices are � i times
the Pauli matrices �1; �2; �3
from quantum mechanics:

j 7!
�
0 1

�1 0
�

D �i�2

k 7!
�

i 0

0 �i

�
D �i�3:

One can view SU.2/ as the unit quaternions via such an identification. Thus
SU.2/ is simply connected. Call the preceding map from quaternions to matrices f .
Then we claim SU.2/ Š ff .q/ j kqk D 1g.

The group K D SU.2/ can be mapped onto SO.3;R/ via a homomorphism of
fundamental importance in the Dirac theory of electron spin. The map is given by
taking Q in SU.2/ to A D .aij/ in R

3�3 via aij D Tr.Q� i
tQ� j/=2: The map is onto

with kernel the center of SU.2/.
After this brief discussion of quaternions, we can give various descriptions of a

symmetric space that has been of interest to number theorists and physicists. The
space is

SL.2;C/=SU.2/:

It fits into type IV of Cartan’s classification of symmetric spaces. We can identify
this space as the space of positive Hermitian matrices of determinant one:

SPc
2 D ˚

Y 2 C
2�2 ˇˇ Y D tY; Y positive; jYj D 1

�
:

The identification is:

SL.2;C/=SU.2/ ! SPc
2;

gSU.2/ 7! g tg:
(2.45)
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Here, we define a positive Hermitian matrix Y to be a Hermitian matrix Y 2 C
n�n

such that Yfxg D t NxYx > 0 for all x 2 C
n � 0. These matrices are quite analogous

to ordinary positive matrices. We could rewrite Chapter 3 of Vol. I and Chapter 1
of this Volume in the Hermitian case, if we had the time. Mercifully Elstrodt et al.
[168] have done this and more.

By generalizing the Iwasawa decomposition, one sees that the coset representa-
tives g 2 SL.2;C/ for SL.2;C/=SU.2/ can be chosen to have the form:

g D
�p

t z=
p

t
0 1=

p
t

�
; z 2 C; t > 0; z D x C iy: (2.46)

This allows us to identify SL.2;C/=SU.2/with the quaternionic upper half space:

Hc D fz C kt D x C iy C kt j x; y 2 R; t > 0g : (2.47)

Thus the elements of Hc are quaternions with j-coordinate equal to zero and positive
k-coordinate. The mapping from SL.2;C/=SU.2/ to Hc sends gSU.2/ with g given
by (2.46) to z C kt.

The action of a matrix

g D
�

a b
c d

�
2 SL.2;C/

on an element q of the quaternionic upper half plane is:

g.q/ D .aq C b/.cq C d/�1 D q� with t� D tkcq C dk�2: (2.48)

Recall that it is all right to divide by quaternions (on one side or the other), but it is
not all right to interchange the order of multiplication.

The action of g 2 SL.2;C/ on Y 2 SPc
2 is

Y 7! Yfgg D tgYg: (2.49)

Using this action we identify our symmetric space as SU.2/nSL.2;C/; i.e., we
consider left rather than right cosets.

Exercise 2.1.28. Check that the three group actions are preserved in our identifica-
tions of SL.2;C/=SU.2/ with Hc and SPc

2.

Exercise 2.1.29. Show that the invariant arc length, volume element, and Laplacian
on Hc are given by:

ds2 D t�2.dx2 C dy2 C dt2/I
d	 D t�3 dx dy dtI
� D t2.@2=@x2 C @2=@y2 C @2=@t2/ � t@=@t:
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Exercise 2.1.30. (a) Show that a spherical function on SPc
2 has the form

h�.Y/ D 2 sin.�r=2/
� sinh r ; if Y D arŒk�;

ar D
�

exp.r=2/ 0

0 exp.�r=2/

�
; k 2 SU.2/ D K:

Here r is the geodesic radial coordinate in the polar coordinate decomposition
of Y in SPc

2.
(b) Show that if f is in L1.SPc

2=K/, then

Z

SPc
2

f .Y/d	 D
Z

R

f .ar/ sinh2 r dr:

(c) Use part (b) to show that the Helgason–Fourier transform for K-invariant
functions on SPc

2=K has the form:

bf .�/ D 2

�i

Z

R

exp.i�t=2/f .at/ sinh t dt:

(d) Use the inversion formula for the ordinary Euclidean Fourier transform from
Section 1.2 of Volume I to show that the spectral measure for Fourier inversion
on SPc

2 is:

j�j2
16

d�; where d� D Lebesgue measure on R:

(e) Find the fundamental solution for the heat equation on SPc
2.

Hint. See Bougerol [73], Karpelevich et al. [340], or Burridge and Papanicolaou
[92].

Exercise 2.1.30 shows that harmonic analysis on SL.2;C/ is far simpler than
that on SL.2;R/. This is an example of a general phenomenon (see Helgason [276,
p. 31] for the generalization of part (a) of Exercise 2.1.30). It would also be nice to
consider analogues of Bessel and Whittaker functions for Hc:

This completes our brief sketch of the theory of harmonic analysis on general
symmetric spaces. There are many applications, other than those mentioned so far.
For example, Resnikoff [506] considers the consequences of using the geometries
of the spaces .RC/3 or .RC � SL.2;R/=SO.2// as models for color perception.
An experiment is posed for distinguishing which geometry gives a more accurate
model. Other references for the general theory are Gurarie [254] and Wawrzyńczyk
[657].
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2.2 Geometry and Analysis on �nG=K

“Say what you know, do what you must, and whatever will be, will be.”

Sofya Kovalevskaya’s maxim from her paper [368] quoted in Pelageya Kochina
[358, p. 168]

2.2.1 Fundamental Domains

Our goal for the remainder of this volume is to give a very brief sketch of parts
of the story of harmonic analysis on �nG=K; and automorphic forms for certain
subgroups � of G acting discontinuously on the symmetric space X D G=K. This
means that for each x 2 X, the set of images of x under � has no limit point in X.
We will concentrate on two specific discontinuous groups: GL.n;OK/, where OK is
the ring of integers in an algebraic number field K,2 and the Siegel modular group
Sp.n;Z/. Here GL.n;OK/ is the modular group over an algebraic number field
which consists of n � n matrices � such that both � and ��1 have entries in OK . See
Section 1.4 of Volume I for the necessary definitions from algebraic number theory.
The group Sp.n;Z/ consists of all symplectic 2n � 2n integral matrices.

There are many reasons to study such discontinuous groups. Of course knowl-
edge of GL.n;OK/ and related groups leads to greater understanding of the
arithmetic of K itself. For example, there are applications to explicit class field the-
ory, distribution of Gauss sums, values of Dedekind zeta functions and L-functions,
asymptotics of units, elliptic curves, quadratic forms, and abelian varieties. Ref-
erences for these subjects include: Andrianov [13, 14], Bruinier et al. [82], Borel
and Casselman [66], Borel and Mostow [68], Elstrodt et al. [165–168], Freitag
[185, 186], Gelbart [208, 209], Goldfeld et al. [231], Heath-Brown and Patterson
[267], Hecke [268, pp. 21–114], Jacquet and Langlands [324], Klingen [355],
Kubota [373–376], Langlands [394], Maass [426], Mennicke [442, 443], Saito
[525], Sarnak [527], Séminaire Cartan [547], Shimura [555], Shintani [558–560],
Siegel [563, 565], Tunnell [620, 621], and Weil [660].

The Siegel modular group Sp.n;Z/ and kindred groups appear in many diverse
areas of physics, often via the connections with abelian integrals and Riemann theta
functions which arise in many theories from boson fields to solitons. See Cartier’s
article in Borel and Mostow [68, pp. 361–386], Cooke [124], Dubrovin et al. [143],
Linda Keen [345], Pelageya Kochina [358], Sofya Kovalevskaya [368], Gérard Lion
and Michèle Vergne [406], Lonngren and Scott [407], McKean and Trubowitz [440],
Monastyrsky and Perelomov [457], Mumford [471], Novikov [474], Perelomov
[484], Shale [551], and Wallach [652].

2Hopefully the beleaguered reader will not be too confused by our use of K for the maximal
compact subgroup of G as well as an algebraic number field.



402 2 The General Noncompact Symmetric Space

Theta functions also play a major role in the analytic theory of quadratic forms.
See Siegel [565, Vol. I, pp. 326–405, 410–443, 469–548] and Weil [662, Vol. 2,
pp. 1–157].

Here we seek to outline the foundations of a building which would ultimately
encompass the generalization of Sections 3.3–3.7 of Volume I to these new
discontinuous groups � . Our achievements will be pitiful compared with what is
required. In particular, we will not say much about extensions of Section 3.7 of
Volume I; i.e., the analogues of the non-Euclidean Poisson summation formula and
the Selberg trace formula. Such results have already found various arithmetic and
geometric applications, e.g., in computing dimensions of spaces of holomorphic
automorphic forms. There are also results on units in number fields over imaginary
quadratic fields and elliptic curves over imaginary quadratic fields. References for
such work include: Christian [109], Eie [160], Efrat [152], Elstrodt et al. [165–168],
Hashimoto’s article in Hejhal et al. [272, pp. 253–276], Hashimoto [264], Langlands
[389–395], Mennicke [442, 443], Morita [463], Müller [469], Petra Ploch [489],
Sarnak [527], Tanigawa [591], Marie-France Vignéras [630, 631], Yamazaki [673],
and Zograf [677].

General references for this section include: Andrianov [9–14], Baily [32], Hel
Braun [74–76], Bruinier et al. [82], Christian [108], Elstrodt et al. [168], Freitag
[185, 186], Gelfand, Graev, and Piatetski-Shapiro [214], Hecke [268], Hirzebruch
and Van der Geer [299], Klingen [355], Maass [426], Mennicke [442], Séminaire
Cartan [547], Shimura [554], Siegel [563–565], and Weil [658, 660, 662].

The following quote is from Van der Geer in [82, p. 182]:

The general theory of automorphic representations provides a generalization of the theory
of elliptic modular forms. But despite the obvious merits of this approach some of the
attractive explicit features of the g D 1 [i.e., SL.2;R/] theory are lost in the generalization.

Our first topic is fundamental domains KnG=� , for our favorite examples.

Example 2.2.1 (The Picard Modular Group).
Let K be the number field Q.i/ with ring of Gaussian integers

OK D ZŒi� D fx C iy j x; y 2 Zg :

Here i D p�1. The Picard modular group is defined to be

� D SL.2;OK/ D
�
� D

�
a b
c d

� ˇ̌
ˇ
ˇ a; b; c; d 2 OK ; det � D 1

�
:

The group SL.2;OK/ acts discontinuously on the quaternionic upper half space Hc

by fractional linear transformation defined by formula (2.48) in Section 2.1.8. An
equivalent version of this action from formula (2.49) in the same subsection gives
the action of � 2 SL.2;OK/ on a positive determinant one Hermitian matrix Y 2
SPc

2 via:

Y 7! Yf�g D t�Y�:



2.2 Geometry and Analysis on �nG=K 403

0.4
0.2

0.0
0.0

0.5

2.0

1.5

1.0

0.5

0.0

T

S

R

P

Q

-0.5

Fig. 2.1 A fundamental domain for SL.2;ZŒi�/ in the quaternionic upper half plane:

D D
8
<

:

jxj � :5; t > 0
xCiyCkt 0 � y � :5

x2Cy2Ct2 � 1

9
=

;
:

The labeled points are:

P D
�

�1
2
; 0;

p
3=2

�
;Q D

�
�1
2
;
1

2
; 1=

p
2

�
;

R D .0; 0; 1/; S D
�
1

2
; 0;

p
3=2

�
;T D

�
1

2
;
1

2
; 1=

p
2

�

A fundamental domain for the action of SL.2;OK/ on Hc was determined
by Picard [488] and is pictured in Figure 2.1. Various views of a tessellation
of hyperbolic 3-space Hc obtained by transforming this fundamental domain by
elements of � D SL.2;OK/ are shown in Figures 2.2, 2.3, 2.4, 2.5, and 2.6.
Figures 2.7 and 2.8 show Cayley transforms of this tessellation which are inside
of the unit sphere in 3-space. The figures are shown in stereo. If you stare at the two
versions of the picture, one for each eye, you should be able to see a 3D tessellation.
All of the tessellations were created by Mark Eggert using one of UCSD’s VAX
computers in the 1980s. Part of a tessellation obtained by taking a union of the
fundamental domain in Figure 2.1 with its image under y 7! �y can be found just
before the index of this volume.

As for SL.2;Z/ (see Exercise 3.3.1, Volume I), the sides of the fundamental
domain are mapped to each other by generators of � , which are in this case:
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Fig. 2.2 Tessellation of the quaternionic upper halfplane from SL.2;ZŒi�/ in stereo. It may help to
put a division between the two halves of this figure and those that follow, in order to produce the
3D effect. The figure was created by Mark Eggert using the UCSD VAX computer

Fig. 2.3 Tessellation of the quaternionic upper half plane from SL.2;ZŒi�/ in stereo. The figure
was created by Mark Eggert using the UCSD VAX computer

�
1 1

0 1

�
;

�
1 i
0 1

�
;

�
i 0
0 �i

�
;

�
0 �1
1 0

�
:

Given any imaginary quadratic number field K D Q.
p

D/, of discriminant
D > 0, one can consider SL.2;OK/; OK D the ring of algebraic integers in K,
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Fig. 2.4 Tessellation of the quaternionic upper half plane from SL.2;ZŒi�/ in stereo. The figure
was created by Mark Eggert using the UCSD VAX computer

Fig. 2.5 Tessellation of the quaternionic upper half plane from SL.2;ZŒi�/ in stereo. The figure
was created by Mark Eggert using the UCSD VAX computer

Fig. 2.6 Tessellation of the quaternionic upper half plane from SL.2;ZŒi�/ in stereo. The figure
was created by Mark Eggert using the UCSD VAX computer
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Fig. 2.7 Stereo tessellation of the unit sphere obtained by mapping the preceding tessellations of
the quaternionic upper half plane into the unit sphere by a Cayley transform. The mapping for this
figure and Figure 2.8 is

q 7! .q � k/.�kq C 1/�1:

The figure was created by Mark Eggert using the UCSD VAX computer

SL.2;OK/ D
�
� D

�
a b
c d

� ˇ̌
ˇ̌ a; b; c; d 2 OK ; det � D 1

�
:

This investigation was begun by Bianchi [50]. Humbert [310] showed that the
volume of the fundamental domain SL.2;OK/nHc is

jDK j3=2�K.2/

4�2
; where �K.s/ D the Dedekind zeta function of K

(see Section 1.4 of Volume I for the definitions of �K and the discriminant DK). The
geometry of the fundamental domain is thus closely associated with the arithmetic
of the number field K. In particular, the number of cusps of the fundamental domain
is equal to the class number of K, which was defined in Section 1.4 of Vol. I. We
will demonstrate this fact in Proposition 2.1.1.

Siegel gives two methods to prove formulas for the volume of fundamental
domains of this sort. See Siegel [565, Vol. I, pp. 464–465, Vol. II, pp. 330–331,
and Vol. III, pp. 39–46, 328–333]. One of Siegel’s methods is the one we used
in Theorem 1.4.4 of Section 1.4.4 to find the volume of the fundamental domain
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Fig. 2.8 Stereo tessellation of the unit sphere obtained by mapping the preceding tessellations of
the quaternionic upper half plane into the unit sphere by a Cayley transform. The figure was created
by Mark Eggert using the UCSD VAX computer

for GL.n;Z/ via Siegel’s integral formula. The other method involves finding the
residues of Eisenstein series like (1.174) in Section 1.4.1, using the method of theta
functions.

References for fundamental domains in quaternionic upper half space include:
Ahlfors [2], Elstrodt et al. [165–168], Humbert [309, 310], Kubota [373–376],
Mennicke [442, 443], Milnor [450], Sarnak [527], and Stark [575].

The next example to be considered is the analogue of Example 2.2.1 for real
quadratic fields K.

Example 2.2.2 (The Hilbert Modular Group).
Suppose that K is a real quadratic number field and K D Q.

p
D/ has positive

discriminant D; e.g., K D Q.
p
2/. Such a field has, as mentioned in Section 1.4 of

Volume I, two conjugations mapping K into the field of real numbers and denoted
x.1/; x.2/, for x 2 K. If x D a C b

p
d 2 K, with a; b 2 Q, then x.1/ D x and

x.2/ D a � b
p

D. Form the group

� D SL.2;OK/ D
�
� D

�
a b
c d

� ˇ̌
ˇ̌ a; b; c; d 2 OK ; det � D 1

�
:
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This is called the Hilbert modular group for the field K. Then � acts discontinu-
ously on the product H2 of two ordinary upper half planes via

�.z.1/; z.2// D .�.1/z.1/; � .2/z.2//; for z.j/ 2 H; (2.50)

and �.j/ denoting the matrix each of whose entries is obtained by taking the jth
conjugate of the corresponding entry of � 2 �; j D 1; 2. Here �.j/ acts on z.j/ by
fractional linear transformation as in Chapter 3 of Volume I.

Exercise 2.2.1. (a) Show that the action of � D SL.2;OK/, for a real quadratic
field K, on the ordinary upper half plane H via z 7! �z, for z 2 H, is not
discontinuous.

(b) Show that the action of � D SL.2;OK/, for a real quadratic field K, on H2

defined by (2.50) is discontinuous.
Hint. (a) Make use of the units in K; that is x 2 OK such that x�1 2 OK .

It is an easy matter to generalize to SL.2;OK/ where K is any totally real
algebraic number field K; i.e., a number field K such that every conjugation is
real-valued. Then the Hilbert modular group SL.2;OK/ acts discontinuously on Hm,
where m is the degree of K over Q.

The fundamental domains �nHm have been rather intensively studied. They are
2m-dimensional and complicated by the existence of units of infinite order in OK .
The formula for the volume of the fundamental domain is

2.�2�/m�K.�1/ D 2��mD3=2
K �K.2/;

where DK is the absolute value of the discriminant of K and �K.s/ is Dedekind’s
zeta function of K. See Klingen [351] for a proof of a much more general result.

References for these results include: Blumenthal [52], Harvey Cohn [116],
Freitag [186], Giraud [221], Gundlach [253], Hammond [259], Hirzebruch [296],
Hirzebruch and Van der Geer [299], Hirzebruch and Zagier [300, 301], Humbert
[309], Klingen [350–352], Maass [415, 416], Resnikoff [505], Shimizu [553],
Shimura [554], Siegel [563, 565], Thomas and Vasquez [613], and Weisser [665].
See our earlier comments on volumes of fundamental domains for the Picard type
groups.

Example 2.2.3 (The Modular Group over any Number Field).
Suppose that K is any number field, OK its ring of integers, and m its degree

over Q. Then, as in Section 1.4 of Volume I, K must be equal to Q.a/ for some
complex number a with minimal polynomial f .x/ and K is isomorphic to the
quotient QŒx� =..f .x// . So

K ˝Q R Š RŒx�=.f .x// Š
r1Cr2P

jD1
˚ Ej;

Ej Š
�
R; j D 1; : : : ; r1I
C; j D r1 C 1; : : : ; r1 C r2:

9
>>>>>=

>>>>>;

(2.51)
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Therefore we have m conjugations sending K into Ej by mapping x to x.j/, for j D
1; : : : ; r1, and mapping x to x.j/ or x.j/, for j D r1 C 1; : : : ; r1 C r2.

What is a positive matrix over a number field? We are actually seeking the
“infinite prime part” of an adelic symmetric space (see Cassels and Fröhlich [101],
Gelbart [208], Gelfand et al. [214], and Weil [658, 660, 662]).

Define a positive quadratic form Y over the number field K to be a vector

Y D �
Y.1/; : : : ;Y.r1Cr2/

�
;

with Y.j/ 2 Pn, for j D 1; : : : ; r1 and Y.j/ 2 Pc
n ; j D r1 C 1; : : : ; r1 C r2. Here

Pn is the symmetric space of positive real n � n matrices studied in Chapter 1 of
this volume, while Pc

n is the symmetric space of positive n � n Hermitian complex
matrices; i.e.,

Pc
n D ˚

Y 2 C
n�nj tY D Y; Y positive

� Š U.n/nGL.n;C/:

A complex Hermitian matrix Y is called positive if Yfxg D txYx > 0 for every
column vector x 2 C

n �0. Set PK
n D the space of positive quadratic forms over K.

Clearly this symmetric space will generalize the two preceding examples, if we
restrict to the determinant one subspace

SPK
n D ˚

Y 2 PK
n

ˇ̌ jY.j/j D 1; j D 1; : : : ; r1 C r2
�
:

Set

� D GL.n;OK/ D ˚
� 2 On�n

K j ��1 2 On�n
K

�
:

The action of the modular group GL.n;OK/ on Y 2 PK
n is given by:

Y 7! YfAg; with .Y fAg/fj/ D �
Y.j/

� ˚
A.j/
� D tA.j/Y.j/A.j/;

for j D 1; : : : ; r1 C r2:Here A.j/ denotes the matrix all of whose entries are the jth
conjugate of the corresponding entries in A.

There is a long history of looking only at the “infinite prime” part of the
symmetric space rather than the adelic version which includes an infinite number
of p-adic components, one for each finite prime p—a much more recent construct.
Some references are Hecke [268, pp. 21–55], Humbert [309, 310], Klingen [350–
352], Ramanathan [497, 498], Siegel [563], Weil [658], and Weyl [666, Vol. IV,
pp. 232–264]. Much of our discussion here was inspired by working with John
Hunter who considered number-theoretic applications of analogues of Siegel’s
integral formula (Proposition 2.1.2 of Section 1.4.4) for SL.n;OK/; K imaginary
quadratic. I regret that John’s death prevents publication of his thesis work (see
Hunter [311]).
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Exercise 2.2.2. Show that GL.n;OK/ consists of all matrices in On�n
K whose

determinant is a unit in OK .

Fundamental domains for PK
n =GL.n;OK/ were discussed by Humbert [309],

who generalized many of the results that we presented in Section 1.4 for the case
that K is the field of rational numbers. Siegel [565] obtains analogues of many of
the results of Section 1.4 in various places. For example, Siegel [565, Vol. I, p. 475]
gives an analogue of Lemma 1.4.2 of Section 1.4.2. And Siegel [565, pp. 464–465]
obtains a formula for the volume of the fundamental domain, in a paper which was
to be corrected later [565, Vol. III, pp. 328–333].

We choose not to rewrite all of Section 1.4 in this case. Instead we take up
some aspects of the theory when � D SL.2;OK/. In particular, we discuss a
result of Maass [416] correcting an error of Blumenthal [52]. This error also
appears in Hecke’s first paper (see Hecke [268, pp. 21–55 and the notes at the
end of the volume]). We want to show that the cusps of the fundamental domain
SPK

2 =SL.2;OK/ are in one-to-one correspondence with the ideal classes of K. The
cusps are the points of the fundamental domain which are equivalent to infinity
under the action of SL.2;K/. Thus they are elements of bK D K [ f1g.

Proposition 2.2.1 (The Cusp-Ideal Class Correspondence). The cusps of the
fundamental domain for SPK

2 =SL.2;OK/; K any number field, are in one-to-one
correspondence with the ideal class group IK of K.

Proof. See Siegel [563, p. 242]. Let h denote the class number of K. Choose fixed
integral ideals a1; : : : ; ah representing the ideal class group IK . We want to show that
the elements ofbK D K [f1g are divided into h equivalence classes by the action of

� D
�

a b
c d

�
2 SL.2;OK/ on x 2 bK defined by �.x/ D ax C b

cx C d
; �.1/ D a=c:

Suppose that x D p=s with p; s 2 OK . Here we write 1 D 1=0. Then define f .x/ to
be the integral ideal .p; s/ which is generated by p and s. Note that the ideal class of
f .x/ is well defined. For if x D p1=s1 D p2=s2, then a2 D ka1, for k D p2=p1, where
ai D f .pi=si/.

So there is an induced map f W bK=SL.2;OK/ ! IK , since if � 2 SL.2;OK/ and

� D
�

a b
c d

�
; then f .�.p=s// D .ap C bs; cp C ds/ � .p; s/:

The reverse inclusion must hold as well because the determinant of � is one.
The map f is onto, since every ideal in OK has at most two generators (see Pollard

[490]).
In order to show that f is one-to-one, you will probably first think of the following

argument. Suppose that f .p1=s1/ D kf .p2=s2/ for some k 2 K. If k D !=� , for
!; � 2 OK , then we see that

�.ap1 C bs1/ D !p2; and �.cp1 C ds1/ D !s2;
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for some

� D
�

a b
c d

�
2 GL.2;OK/:

It follows that

ap1 C bs1
cp1 C ds1

D p2
s2
:

This says that p1=s1 and p2=s2 are indeed equivalent modulo GL.2;OK/. But
unfortunately we need to know that they are equivalent modulo SL.2;OK/. The
difference between special and general linear groups over OK can be rather large,
thanks to the presence of lots of units.

Since our boat seems to have stopped moving, we take a different tack. This time
we follow Siegel’s argument. Suppose that a�1 denotes the inverse ideal to a. Then
aa�1 D OK D .1/ and thus

p1v1 � s1u1 D 1 and p2v2 � s2u2 D 1 for some ui; vi 2 a�1
i :

Set

Ai D
�

pi ui

si vi

�
; i D 1; 2;

and note that although Ai only has entries in K, the product A2A�1
1 is actually

in SL.2;OK/. For we have assumed that f .pi=si/ both equal a1, say. Thus if you
compute the first entry of A2A�1

1 , for example, you find it is p2v1 � u2s1, which
is in the ideal a2a

�1
1 C a1a�1

2 D OK , since a1 D a2. It is important that we
have chosen a fixed set of representatives of our ideal classes. But note here that
f .p1=s1/ D kf .p2=s2/, for k 2 K, implies that we can assume k D 1 by replacing
p2=s2 by .kp2/=.ks2/. To see that A2A�1

1 does indeed take p1=s1 to p2=s2, note that
Ai maps 1 to pi=si (acting by fractional linear transformation).

This completes the proof of Proposition 2.2.1. �

Lemma 2.2.1. The stabilizer in SL.2;OK/ of a cusp xi D pi=si for the fundamental
domain SPK

2 =SL.2;OK/ is defined by:

�xi D f� 2 SL.2;OK/ j �xi D xig:

Suppose that xi D Ai1 and that

Ai D
�

pi ui

si vi

�
2 SL.2;K/; with ai D .pi; si/; ui; vi 2 a�1

i ;
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for i D 1; 2; : : : ; h. Here the ideals a1; : : : ; ah represent the ideal class group IK.
And a�1 is the inverse ideal to a. Let UK denote the group of units in OK. Then the
stabilizer of a cusp has the form:

�xi D
�

Ai

�
w z
0 w�1

�
A�1

i

ˇ̌
ˇ
ˇ z 2 a�2

i ; w 2 UK

�
:

Proof. See Exercise 2.2.3 below. The result is clearly true for the infinite cusp. �

Exercise 2.2.3. Prove the formula for the stabilizer of the infinite cusp in
Lemma 2.2.1 above. Then deduce the result for an arbitrary cusp.
Hint. You can find the details in Siegel [563, p. 245]. If � stabilizes xi, then A�1

i �Ai

stabilizes infinity and therefore

A�1
i �Ai D

�
w z
0 w�1

�
:

To see that z must lie in a�2
i , just multiply out the matrices. And note that

.api C bsi/si D .cpi C dsi/pi if � D
�

a b
c d

�
:

But then it follows that w must be a unit, since, after division by a2i , we see that:

.api C bsi/

ai
D .pi/

ai
;

.cpi C dsi/

ai
D .si/

ai
:

You also have to multiply out the following matrices:

�
pi ui

si vi

��
w z
0 w�1

�
D
�

a b
c d

��
pi ui

si vi

�
;

to see that w is a unit.

Example 2.2.4 (The Siegel Modular Group).
The Siegel modular group Sp.n;Z/ is the group of all symplectic matrices with

integer entries. It acts discontinuously on Siegel’s upper half space Hn (or on the
space of positive symplectic matrices P�

n ) considered in Section 2.1.
Siegel [565, Vol. II, pp. 300–301] shows that a fundamental domain for

Sp.n;Z/nHn can be obtained by generalizing the method of perpendicular bisectors
from Exercise 3.3.6 of Volume I. That is, taking � D Sp.n;Z/, we consider the
domain:

Dn D fZ 2 Hn j d.Z;W/ � d.Z; �W/ for all � 2 �g:

Here W 2 Hn is chosen to be a point not fixed by � .
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As we quoted at the end of Section 1.4.3, Siegel [565, Vol. II, p. 309] said:
“The application of the general method [stated above]. . . would lead to a rather
complicated shape of the frontier [boundary] of F.” So Siegel goes on to consider
another fundamental domain for Sp.n;Z/nHn. Before we can say what this new
domain is, we need to make a definition. Call C;D 2 Z

n�n a coprime symmetric
pair if C tD D D tC and the matrices C and D are relatively prime in the sense that:
if for any matrix G 2 Q

n�n, the matrices GC and GD are both integral, then G must
be integral; i.e., in Z

n�n.

Exercise 2.2.4. Show that C;D 2 Z
n�n are a coprime symmetric pair if and only if

.C D/ can be completed to a matrix

�
A B
C D

�
2 Sp.n;Z/:

Now we can obtain Siegel’s fundamental domain DS
n for Sp.n;Z/nHn, as in

Siegel [565, Vol. II, p. 108], by finding an analogue of the highest point method
from Exercise 3.3.1 of Vol. I. For this, we need to recall from Exercise 2.1.16 of
Section 2.1 that if W D .AZ C B/.CZ C D/�1, then the imaginary part of W

is Y
n
.CZ C D/�1

o
if Y is the imaginary part of Z and YfAg D tAYA. We will

take the height of Z D X C iY 2 Hn to be the determinant jYj. So we see that
jWj D jYj kCZ C Dk�2. This concept of height leads to the following construction
for a fundamental domain by a highest point method.

The Siegel fundamental domain DS
n for Sp.n;Z/nHn is the set of Z 2 Hn such

that the following three statements hold (if we ignore boundary identifications):

(1) kCZ C Dk � 1; for all coprime symmetric pairs C;D with C ¤ 0I
(2) Y D Im Z 2 Mn D Minkowski’s fundamental domain for PnnGL.n;Z/I
(3) X D Re Z; X D �

xij
�
; with

ˇ̌
xij

ˇ̌ � 1=2; 1 � i; j � n:

9
=

;

(2.52)

Again there is a certain relation between Siegel’s fundamental domain and
matrices in Sp.n;Z/:

(1)

�
A B
C D

�
2 Sp.n;Z/ with C ¤ 0;

(2)

�
U 0

0 tU�1
�
; U 2 GL.n;Z/;

(3)

�
I N
0 I

�
; N D tN 2 Z

n�n.

In fact, Maass [426, § 11] shows that Sp.n;Z/ can be generated by matrices of
the form
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�
I N
0 I

�
; N D tN 2 Z

n�n and J D
�
0 �I
I 0

�
:

The Siegel fundamental domain DS
n can be shown to be closed, connected, and

bounded by finitely many algebraic hypersurfaces. Compactifications have been
studied and their singularities resolved (see Ash et al. [30], Chai [103], Van der Geer
in Bruinier et al. [82] and Namikawa [472]). Gottschling [238] found the explicit
list of (28) inequalities defining the fundamental domain DS

2 for Sp.2;Z/. As far as I
know, no one has written down the explicit inequalities for DS

n , when n is larger than
2. Other references for related facts are Christian [108], Freitag [185], Maass [426],
Séminaire H. Cartan [547], and Siegel [564, 565]. Van der Geer shows that there is a
canonical 1–1 correspondence between the set of isomorphism classes of principally
polarized abelian varieties of dimension n and the orbit space Sp.n;Z/nHn (see [82,
p. 202]).

The symplectic volume of the fundamental domain Sp.n;Z/nHn was com-
puted by Siegel [565, Vol. II, p. 279] to be:

2

nY

kD1
ƒ.k/; if ƒ.s/ D ��s�.s/�.2s/:

Setting Vn D Vol.DS
n/, it follows that

V1 D �

3
; V2 D �3

270
; V3 D �6

127575
; V4 D �10

200930625
:

Klingen [351] generalized this result to the Hilbert–Siegel modular group which
is defined for any totally real algebraic number field K by:

Sp.n;OK/ D ˚
� 2 On�n

K j t�J� D J
�
; J D

�
0 �In

In 0

�
:

It is possible to connect the volume of the fundamental domain for Sp.n;Z/ with
the Euler characteristic of the fundamental domain via the Gauss–Bonnet theorem
(see Siegel [565, Vol. II, p. 277, 331], Harder [261] and Klingen [351]). Harder’s
result is very general. However, the symmetric spaces involved do not include those
without complex structure like SPn for n > 2 or the quaternionic upper half plane.

Mathematicians have studied much more general arithmetic groups � and
their fundamental domains, including that for GL.n/ over a simple associative
algebra. Some references are: Borel [65], Hel Braun [75, 76], L. Cohn [120], Feit
[176], Krieg [370], Ramanathan [497, 498], Resnikoff and Tai [509], Siegel [565,
Vol. III, pp. 143–153; Vol. II, pp. 390–405], Weyl [666, Vol. IV, pp. 232–264], and
Weil [658]. Margulis [433] has characterized arithmetic subgroups of connected
noncompact Lie groups G of the sort we consider.
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Before we leave the subject of fundamental domains, let us give an example of
a discrete subgroup � of isometries of G=K such that �nG=K is compact. This
example comes from notes of D. Sullivan. Take

G D ˚
g 2 GL.n C 1;R/

ˇ̌
tg'g D '

�
;

where

' D

0

BBB
@

1 0
: : :

0 1

�p
2

1

CCC
A
:

Let � D G \ GL.n C 1;OL/ for L D Q

�p
2
�

. Now � is a discrete group of

isometries of G=K. We can identify G with the Lorentz-type group O.n; 1/ and G=K
with one sheet of the hyperboloid consisting of the set of points x 2 R

nC1 such that
'.x/ D �1.

It can be shown that the quotient �nG=K is compact. We sketch the proof. Note

that when L D Q

�p
2
�
; OL D Z

hp
2
i

which is not discrete in R. Thus we must

work harder than usual to show that � is actually a discrete subgroup of G. Note the
conjugations map:

OL ! R
2;

m C n
p
2 7!

�
m C n

p
2;m � n

p
2
�

for m; n 2 Z:

This induces a mapping which sends � discretely into GL.n C 1;R/2. Now � 2 �

leaves ' invariant and thus � 0 leaves '0 invariant where � 0 denotes the matrix formed
by conjugating all entries of � ; i.e., sending m C n

p
2 to m � n

p
2. Now

'0 D

0

BBB
@

1 0
: : :

0 1 p
2

1

CCC
A

and thus the matrices leaving '0 invariant form a compact group. It follows that � is
a discrete subgroup of G. Why?

To see that KnG=� is compact, one need to use some version of the Hermite–
Mahler compactness theorem in Exercise 1.4.14, Section 1.4.2.
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A similar example is G D fg 2 GL.4;R/ j tg�g D �g, where

� D

0

BB
@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �7

1

CC
A :

Let � D G \ GL.4;Z/. It is clear that � is discrete. To see that the fundamental
domain KnG=� is compact, identify KnG=� with a subset S of P4=GL.4;Z/ by
mapping Kg to IŒg�, as usual. Now to see S has compact closure, we need to only
show that Y 2 S implies jYj bounded above and mY D min

˚
YŒa�

ˇ̌
a 2 Z

4 � 0�
bounded below. The fact that mY is bounded from below comes from the fact that
� Œx� D 0 has no solution x 2 Z

4 � 0. For the neighborhood U of 0 defined by

U D ˚
x 2 R

4
ˇ
ˇ �Œx� � 1=2

�

contains no point of g.Z4 � 0/, for g 2 G.
To see that �Œx� ¤ 0 for x 2 Z

4 � 0, one looks at

x21 C x22 C x23 � 7t2 
 0 .mod 8/ :

Since any integer can be written as a sum of 4 squares, the quadratic form

' D x21 C � � � C x2n � 7t2

does vanish on Z
n � 0 when n is larger than 3. That’s why we took the form ' for

general n.
There are other references for examples in which KnG=� is compact; e.g., Borel

[65, p. 57]. Borel notes that if G is the orthogonal group of a quadratic form over Q
in n variables and � is a group of units of a lattice in Q

n, then GR=� is compact iff
the form F does not represent 0 over Q. Here Borel uses another sort of compactness
criterion. See also Borel [64], Mostow [466], and Mostow and Tamagawa [467]. The
last reference proves that if G is a semisimple algebraic matrix group defined over
the field Q and having no unipotent or parabolic elements other than the identity,
then G=GZ is compact. Elstrodt et al. [168] give many examples of � � G D
SL.2;C/:

2.2.2 Automorphic Forms

Having considered the analogue of Section 1.4 for the types of arithmetic groups in
Examples 2.2.1–2.2.4 above, we next begin the study of automorphic forms for these
arithmetic groups. The theory of holomorphic forms has received the most attention.
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This restricts us here to consideration of automorphic forms for the Hilbert modular
group SL.2;OK/, for a totally real field K, or the Siegel modular group Sp.n;Z/,
or the Hilbert–Siegel modular group. It is also possible to discuss non-holomorphic
automorphic forms on these symmetric spaces. Such forms satisfy some sort of
differential equation involving the invariant differential operators on the symmetric
space. Harish-Chandra made a very general definition of automorphic form on a Lie
group (see Borel’s article in Borel and Mostow [68, p. 199]). Let us begin with a
brief sketch of the holomorphic theory which models itself on that from Sections 3.4
and 3.6 of Volume I.

Example 2.2.5 (Holomorphic Hilbert Modular Forms).
Some references for holomorphic Hilbert modular forms are Blumenthal [52],

Bruinier’s article in [82], Freitag [186], Gundlach [253], Herrmann [292], Hirze-
bruch [296, 298], Maass [415, 416], Resnikoff [505], Shimura [554], Siegel [563],
Marie-France Vignéras [630–632], Van der Geer and Zagier [206], and Zagier
[674, 675].

Suppose that K is a totally real algebraic number field of degree m with ring of
integers OK . We say that a function f W Hm ! C is an (entire) Hilbert modular
form of weight k belonging to � D SL.2;OK/ if f has the following two properties,
assuming that m is greater than one:

(1) f .z/ is holomorphic on Hm;
(2) f .�z/ D N.cz C d/kf .z/, for all

� D
�

a b
c d

�
2 SL.2;OK/; z 2 Hm:

When f satisfies (1) and (2) we say that f is in M.SL.2;OK/; k/. The notation in (2)
means that for z D .z.1/; : : : ; z.m//, we have

�.z/ D �
�.1/z.1/; : : : ; � .m/z.m/

�
;

where �.j/ denotes the matrix obtained from � by conjugating each entry of � by
the jth conjugation of the number field K. Here �.j/ acts on z.j/ by fractional linear
transformation. And the norm Nz is defined by:

N .z/ D
mY

jD1
z.j/; for z 2 Hm: (2.53)

One can also look at forms with different weights for each conjugate. This is
considered in some of the references listed above but we will not go there.
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In analogy to our definition of the norm of z 2 Hm; we also define the trace as
follows:

Tr .z/ D
mX

jD1
z.j/; for z 2 Hm: (2.54)

Note that if z 2 K; instead of Hm; the norm and trace are the usual ones for the field
extension K=Q:

Of course, one might expect that, as in the case that m D ŒK W Q� D 1, we
should also require a Hilbert modular form to satisfy certain growth conditions at
the cusps of the fundamental domain. For the cusp at infinity, one would just require
that f .z/ be holomorphic at infinity. It was proved by Götzky [239] that this growth
condition is unnecessary when K D Q.

p
5/. Gundlach generalized Götzky’s result

to any totally real number field (see Siegel [563]).
Siegel [563] is a good reference for the basic facts about Hilbert modular forms.

For example, Siegel [563, p. 215] shows that a Hilbert modular form of weight k < 0
is identically zero, while a Hilbert modular form of weight 0must be a constant. The
argument is analogous to that of Hecke for SL.2;Z/ given in Volume I.

Exercise 2.2.5. Show that mk must be an even integer if M.SL.2;OK/; k/ is
nonzero.

Now to discuss Fourier expansions of Hilbert modular forms, we need to recall
the concept of different dK of a number field K (see Section 1.4 of Volume I).
The inverse different is the dual lattice to the lattice OK of the number field (cf.
pages 80–81 of Volume I). With the trace defined by (2.54), the duality is with
respect to the form Tr.˛ˇ/, and d�1 D fˇ 2 K j Tr.˛ˇ/ 2 Z for all ˛ 2 OKg.
Fourier expansions are sums running over this dual lattice. Suppose now that f is
in M .SL.2;OK/; k/. Then f .z/ is periodic under translations from elements of the
lattice OK , since matrices

�
1 a
0 1

�
are in SL.2;OK/ when a 2 OK :

It follows that f .z/ has a Fourier expansion at the infinite cusp of the form:

f .z/ D c.0/C
X

0	b2d�1
K

c.b/ exp f2� iTr .zb/g ;

where, for z 2 Hm and b a totally positive element of K; we define zb to be the
element of Hm with jth coordinate z.j/b.j/. The sum is over b in the inverse different
and such that 0 � b, which means that b is totally positive; i.e., all conjugates b.j/

are positive for j D 1; : : : ;m.
Fourier expansions at other cusps xj can be described using the matrices Aj such

that Aj1 D xj. One must also make use of the formula for the stabilizer of a cusp
in Lemma 2.2.1.
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Exercise 2.2.6. Show how to obtain the Fourier expansion at infinity of a Hilbert
modular form f .z/, making use of the Cauchy–Riemann equations to show that the
coefficients have the form c.b/ expf�2� Tr.yb/g, if z D x C iy 2 Hm.

One example of a Hilbert modular form is the Eisenstein series corresponding
to an integral ideal a in K defined by:

Ek.a; z/ D
X

c; d=UK

.c; d/ D a

N.cz C d/�k; k > 2:

The sum is over a complete system of representatives for pairs c; d which generate
the ideal a D .c; d/ under the equivalence relation:

.c; d/ � .uc; ud/ for a unit u 2 UK ; with Nu D C1:

The norm of cz C d is defined by (2.53).
In fact, the Eisenstein series Ek will vanish identically if k is odd and K has a unit

of norm �1. It is possible to use an integral test to obtain the convergence of Ek for
k > 2 (see Siegel [563]). Moreover, Siegel [563, p. 292] proves the vanishing of the
lead coefficient or constant term of the Fourier expansion of Ek.a; z/ with respect
to the cusp corresponding to an ideal b if b is not in the same ideal class as a. This
is to be expected when we recall that Proposition 2.2.1 gave the cusp-ideal class
correspondence. Thus one demonstrates the linear independence of the Eisenstein
series corresponding to ideals a1; : : : ; ah representing the ideal classes in the ideal
class group IK .

Define a cusp form to be a Hilbert modular form f such that f .z/ approaches
zero as z approaches any cusp of the fundamental domain. Let S .SL.2;OK/; k/ be
the vector space of cusp forms of weight k for SL.2;OK/. Suppose that the ideals
a1; : : : ; ah represent the ideal classes in the ideal class group of K: Then we have the
direct sum decomposition:

M.SL.2;OK/; k/ D
 

hX

iD1
˚
CEk.ai; z/

!

˚ S.SL.2;OK/; k/

(see Siegel [563, p. 294]).
It is also possible to define Poincaré series as in Vol. I, Section 3.4.7. Look at the

cusp p=s corresponding to the ideal a via Proposition 2.2.1 and let A 2 SL.2;K/
have the property that A.1/ D p=s. Define a Poincaré series by:

fk.a; �; z/ D
X

.c;d/Da

N.cz C d/�k exp f2� i Tr .��z/g :
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Here � is a totally positive element of the ideal a2d�1
K , where dK is the different of K.

The sum is over pairs of generators c; d of the ideal a such that

� D
�

a b
c d

�
D A�1�; for some � 2 SL.2;OK/; with A.1/ D p=q:

See Siegel [563, p. 230]). It can be shown that Poincaré series are cusp forms of
weight k. Maass has proved that the Poincaré series and Eisenstein series generate
the space M .SL.2;OK/; k/, for k � 2. The Poincaré series can vanish identically,
but not for large enough weights. See Siegel [563] for more information on the
subject, also Bruinier’s article in [82] and Freitag [186].

When m D ŒK W Q� is larger than one, a function f .z/ which is meromorphic on
Hm is called a Hilbert modular function if f .�z/ D f .z/ for all � 2 SL.2;OK/

and z 2 Hm. In the case that m D 1 and K D Q, we would add a further
requirement that f .z/ have at most a pole at the infinite cusp. This need not be
assumed when m � 2. A Hilbert modular function which is holomorphic in Hm

is automatically holomorphic at the cusps and thus must be a modular form of
weight zero and therefore a constant. For there are no isolated singularities in several
complex variables. Thus, when m � 2 there does not exist an analogue of the
elliptic modular invariant J.z/ from Section 3.4.3 of Volume I. This fact was first
noted by Götzky [239]. There are errors in Hecke’s early papers due to the lack of
knowledge of Götzky’s result. These early Hecke papers seek to solve Hilbert’s
12th problem which asks for an explicit construction of class fields (extension
fields having abelian Galois groups) over arbitrary algebraic number fields using
automorphic forms (see Hecke [268, p. 942]). Siegel [563] gives a proof that the
Hilbert modular functions form an algebraic function field of n variables.

Herrmann [292] investigated the theory of Hecke operators for Hilbert modular
forms. This theory has been extended to Picard modular groups by Styer [584].
Shimura [554] describes a very general theory of Hecke operators. Adelic versions
of Hecke theory also exist for quite general groups (see Jacquet and Langlands
[324], Gelbart [208], and Weil [660]). We leave it to the beleaguered reader to define
the Petersson inner product of two cuspidal Hilbert modular forms of weight k and
to obtain an analogue of Theorem 3.6.3 in Volume I for Hilbert modular forms.

The correspondence between Hilbert modular forms and Dirichlet series has been
much studied (see the preceding references and Stark [575]). The situation is much
like that investigated by Weil [662, Vol. III, pp. 165–172] for congruence subgroups
of SL.2;Z/. One must have functional equations for L-functions that have been
“twisted” by Hecke grossencharacters for K, in order to know that the corresponding
function f .z/; z 2 Hm; is a Hilbert modular form for SL.2;OK/.

Let us just consider the simplest example of Hecke theory over number fields.
Define the theta function corresponding to an ideal a of a totally real number field
K by:


.a; z/ D
X

a2a
exp

˚�� Tr
�
za2
��
:
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By slightly altering the proof of Theorem 1.4.2 in Volume I, we can view the ideal
class zeta functions (which occur as partial sums of the Dedekind zeta function)
of a totally real number field as Mellin transforms of this theta function (see Hecke
[268, p. 227]). Similarly Hecke obtained the analytic continuation of his L-functions
by showing them to be Mellin transforms of theta functions. Generalizations of this
theta function are considered by Eichler [159], Kloosterman [356], and Schoeneberg
[537]. These authors also look at the effect of Hecke operators on such theta
functions.

If � is a subgroup of SL.2;OK/ without elliptic fixed points, either the Selberg
trace formula or the Hirzebruch–Riemann–Roch theorem can be used to compute
the dimension of the space of Hilbert modular forms (see Ash et al. [30], Hirzebruch
[296–298], Langlands [389], and Shimizu [553], as well as Section 2.2.3). If, for
example, K is real quadratic, � of index a in SL.2;OK/=˙ I, and � acts freely on
H2, then, for k � 3, we have:

dimS.�; k/ D k.k � 2/
2

�K.�1/a C �; � D 1C dimS.�; 2/:

We will say more about the use of trace formulas to compute such dimensions at the
end of this chapter. See also Freitag [186].

Example 2.2.6 (Holomorphic Siegel Modular Forms).
Some references for this section are Andrianov [9–14], Baily [32], Böcherer

[54, 55], Hel Braun [74], Christian [108, 110], Eichler [157–159], Feit [175, 176],
Freitag [185], Garrett [202], Hoobler and Resnikoff [304], Igusa [315, 316], Kaori
Imai (Ota) [317], Kalinin [338], Karel [339], Klingen [350, 353–355], Maass [414,
419, 426], Morita [463], Resnikoff [507, 508], Shimura [556], Siegel [564, 565],
Tsao [616], Van der Geer’s article in Bruinier et al. [82], Weissauer [663, 664], and
Yamazaki [673].

We will say that a function f on Siegel’s upper half space Hn; n > 1, is a
holomorphic Siegel modular form of weight k and write f 2 M.Sp.n;Z/; k/ if
it satisfies the following two conditions:

(1) f is holomorphic on Hn;
(2) f .�Z/ D jCZ C Djk f .Z/; for all

� D
�

A B
C D

�
in Sp.n;Z/; Z 2 Hn:

Some people say that f 2 M.Sp.n;Z/; k/ is a Siegel modular form of genus n,
while others say f is a Siegel modular form of degree n: I have decided not to take
sides, probably because of a memory of the time that I looked up the German word
for genus in my dictionary.
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There are generalizations to vector valued Siegel modular forms transforming
according to a finite dimensional representation of GL.n;R/: See van der Geer’s
article in Bruinier et al. [82, p. 187].

One might expect to add a third condition that f must be bounded in the region
ImZ D Y � Y0 > 0, where Y � Y0 means that Y � Y0 lies in the closure of Pn.
Koecher shows that this third condition is unnecessary when n is bigger than one
(see Proposition 2.2.2 below and Maass [426, Section 13]).

Thus we have another analogue of the space of ordinary modular forms which
was studied in Section 3.4 of Volume I. It can be shown that when k is larger than
one, M .Sp.n;Z/; k/ ¤ 0 implies k 2 Z and nk 2 2Z. It can also be proved that
Siegel modular forms of negative weight must vanish while those of weight zero
must be constant.

Exercise 2.2.7. Prove the last statements.
Hint. See Klingen [355].

Next we want to consider Fourier expansions of Siegel modular forms. First
note that if X lies in the lattice of integral n � n symmetric matrices, then the dual
lattice with respect to the form Tr.TX/ consists of the n � n semi-integral symmetric
matrices T D .tij/. Here “semi-integral” means that tjj 2 Z and tij 2 1

2
Z, when i ¤ j.

If f is a Siegel modular form of weight k, then f .X C iY/ has period one in each
entry of the symmetric matrix X. This implies that f has a Fourier expansion:

f .Z/ D
X

0 �TD tT
T semi-integral

a.T/ exp f2� i Tr.TZ/g : (2.55)

Here T � 0 means that TŒx� � 0 for all x 2 R
n.

To see that the Fourier coefficient has the form a.T/ exp f2� i Tr.TZ/g, one must
use the fact f .Z/ satisfies the Cauchy–Riemann equations in each variable. The sum
is over semi-integral matrices because that is the dual lattice to Z

n�n with respect to
the form Tr.TX/.

There is also an expansion known as the Fourier–Jacobi expansion of Piatetski-
Shapiro which has proved to be useful. See van der Geer’s article in Bruinier et al.
[82, p. 196] and Freitag [184, p. 101].

Exercise 2.2.8. Prove what we just said about (2.55)
Hint. The sum is over nonnegative matrices T by Lemma 2.2.2 below.

Lemma 2.2.2. Let f 2 M.Sp.n;Z/; k/ have Fourier coefficients a.T/ as in (2.55)
above. Then f .Z/ is bounded in every domain Y � Y0 > 0 (for fixed Y0) if and only
if the Fourier coefficient a.T/ ¤ 0 implies that T � 0.

Proof. See Maass [426, pp. 183–184].
) Suppose that jf .Z/j � C.Y0/ in Y � Y0 > 0. Then
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a.T/ expf�2� Tr.TY/g D
Z

tXDX2Œ0;1�n�n

f .X C iY/ expf�2� i Tr.TX/g dX:

In order to show that a.T/ ¤ 0 implies that T � 0, use the above equality to
obtain the bound:

ja.T/j � C.Y0/ exp f2� Tr.TY/g :

If T is not � 0, then one can show that the right-hand side of this inequality can be
made arbitrarily small. Thus a.T/ must vanish when T is not � 0.
( Suppose the Fourier expansion of f .Z/ has the form

f .Z/ D
X

tT D T � 0

semi-integral

a.T/ exp f2� i Tr.TZ/g :

The convergence of the Fourier series implies that if Y � Y0 � aI > 0

jf .Z/j � C

�
1

2
Y0

�X

T�0
exp f��a Tr.T/g : (2.56)

The series on the right in (2.56) is easily seen to converge. �

Exercise 2.2.9. Fill in the details in the proof of Lemma 2.2.2 above.

Proposition 2.2.2 (Koecher). If f 2 M.Sp.n;Z/; k/, then f is bounded in any
domain Y � Y0 > 0. In particular, f is bounded in the fundamental domain DS

n
for Sp.n;Z/; which is defined in formula (2.52).

Proof. See Maass [426, pp. 185–187]. For n D 1, the result is part of the definition
of modular form. When n is larger than one, consider the Fourier expansion (2.55)
of f : Note that a .TŒU�/ D a.T/ for all U 2 GL.n;Z/. The main step in the proof of
Proposition 2.2.2 is the proof of the claim that when T is not � 0, then the number

c.T;�m/ D # fTŒU� j U 2 SL.n;Z/; Tr.TŒU�/ D �mg

is greater than or equal to one for infinitely many m � 1. Therefore a.T/ must
vanish in this case.

To prove this claim, observe that, upon setting U D I Cb td, with b; d 2 Z
n, such

that tbd D 0, we have

jUj D 1 and Tr .T ŒU�/ D Tr .T/C 2Tr
�
T b td

�C TŒb�
�

tdd
�
:



424 2 The General Noncompact Symmetric Space

If T were not � 0, then we could choose b 2 Z
n so that TŒb� < 0 and tbd D 0,

for any d 2 Z
n. And then c.T;�m/ must indeed be � 1 for infinitely many m. The

proof of Proposition 2.2.2 is completed using Lemma 2.2.2. �

An example of a Siegel modular form of even weight k in M.Sp.n;Z/; k/ is
given by the Eisenstein series:

Ek.Z/ D
X

C;D

jCZ C Dj�k ; for even k > n C 1;

where the sum is over coprime symmetric pairs C;D of matrices in Z
n�n modulo

the equivalence relation

.C D/ � .UC UD/; for U 2 GL.n;Z/:

Hel Braun [74] proved the convergence of the Eisenstein series in the stated region.
Hel Braun was a student of Siegel. She was one of the few women mathematics
professors in Germany during her life. I had the opportunity to meet her at an
Oberwohlfach meeting. She had much to say about Siegel. It would be interesting
to know more of her life. She only discusses the beginnings in her book [77].

See Freitag [185, pp. 66–67] for a convergence proof using a sort of integral test.
Freitag [185, p. 67] and Maass [426, Section 14] consider more general Eisenstein
series involving modular forms for Sp.r;Z/; r < n, which were introduced by
Klingen [353]. See Van der Geer’s article in Bruinier et al. [82, p. 194] for a
theorem of Hel Braun on the Klingen Eisenstein series and their behavior under the
Siegel ˆ-operator defined below in equation (2.57). Another reference is Klingen
[355, p. 68], who notes [355, p. 63] that “There is no reasonable way to introduce
Eisenstein series for odd weights.”

Siegel [565, Vol. II, p. 133] gives the Fourier expansion of the Eisenstein series
Ek (k even and > n C 1) for Sp.n;Z/ (see also Baily [32]). Let

TŒU� D
�

T1 0
0 0

�
for U 2 GL.n;Z/; T1 2 Z

r�r;

and set D.T/ D jT1j. The term corresponding to T in the Fourier expansion of Ek.Z/
is:

.�1/rk=22r.k�.r�1/=2/
r�1Y

jD0

�k�j=2

�.k � j=2/
D.T/k�.rC1/=2 X

tRDR2.Q=Z/r�r

e2� iTr.T1R/ �.R/�k:

Here �.R/ is the product of the reduced denominators of the elementary divisors
of R. An analogous result for Eisenstein series for GL.n;Z/ was discussed in
Exercise 1.5.36 of Section 1.5.3 (see also Terras [596]). Siegel used his main
theorem on quadratic forms to deduce the rationality of the coefficients of the
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Eisenstein series Ek for Sp.n;Z/. Baily [32, Ch. 12] gives another derivation. Similar
and more general results of this type are obtained by Karel [339] and Tsao [616].
Kaufhold [343] finds even more explicit results for Fourier coefficients of Eisenstein
series for Sp.2;Z/. When the Eisenstein series have rational coefficients and the
Eisenstein series generate the full field of automorphic or Siegel modular functions
(i.e., meromorphic functions satisfying condition (2) in the definition of Siegel
modular form and having weight k D 0) for Sp.n;Z/, then the algebraic variety
which is the Satake compactification of the fundamental domain Sp.n;Z/nHn is a
variety defined over Q (see Baily [32, p. 238]). More information on Eisenstein
series can be found in the references mentioned at the beginning of this discussion
of holomorphic Siegel modular forms. Some of the references consider non-
holomorphic Eisenstein series as well.

An example of a modular form for a congruence subgroup of Sp.n;Z/ is the
theta function defined for Q 2 Pn \ Z

n�n; Z 2 Hn; by:


.Z/ D
X

A2Zk�k

exp f� iTr .ZQ ŒA�/g :

The theta function in formula (1.172) of Section 1.4.1. is simply a restriction of
this symplectic theta function to Z D iY , Y 2 Pn. Eichler [156] shows that in the
special case n D 1 the theta function is a modular form for a congruence subgroup
of SL.2;Z/ by considering it as a special value of a theta function on Hk. Andrianov
and Maloletkin [15] generalize this result to any n—evaluating the 8th root of unity
involved when k is even. Stark [576] extends these results further by evaluating the
8th root of unity in a case that can be reached by theorems on matrix primes in
progressions (see also Styer [584]). Other references for theta functions are Freitag
[185] and Igusa [316].

Theta functions and zeta functions for indefinite quadratic forms have been
studied by many authors (see Koecher [360], Maass [418, 423, 425], Siegel [565,
Vol. I, pp. 410–443; Vol. II, pp. 41–96, 421–466; Vol. III, pp. 85–91, 105–142, 154–
177], Andrianov and Maloletkin [16], and Friedberg [190]).

It is possible to obtain examples of modular forms of various types by integrating
against theta functions of indefinite quadratic forms. For example, one can obtain
holomorphic Hilbert modular forms for a real quadratic field by integrating ordinary
holomorphic modular forms for SL.2;Z/ multiplied by an appropriate theta func-
tion. One can similarly lift Maass wave forms for SL.2;Z/. And one can replace real
by imaginary quadratic fields, etc. References for such constructions, often referred
to as “base change,” include Friedberg [190], Goldfeld [230], Kudla [378, 379],
Stark [579], Tsuyumine [618], Marie-France Vignéras [634], and Waldspurger
[641].

Theta functions have many other applications. There are, in fact, entire books
devoted to them (e.g., Igusa [316] and Mumford [471]). Siegel’s main theorem
on quadratic forms can be viewed as an equality between linear combinations
of theta functions and generalized Eisenstein series (see Siegel [565, Vol. I,
pp. 326–405, 410–443, 469–548]). Theta functions on the Siegel upper half space
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can be used to obtain an expression for the generalization of elliptic integrals
known as abelian integrals (see Siegel [564]). This leads to many applications in
physics. We have already mentioned the work of Sofya Kovalevskaya [368] and
Dubrovin et al. [143]. Other references for applications to the Korteweg–deVries
equation are McKean and Trubowitz [440] and Novikov [474]. Siegel’s work on
quadratic forms has been connected with quantum mechanics and representation
theory via the Segal–Shale–Weil representation (see Cartier’s talk in Borel and
Mostow [68, pp. 361–368], Gérard Lion and Michèle Vergne [406], Shale [551],
Weil [662, Vol. III, pp. 1–157], and Wallach [652]). The role of theta functions
in algebraic geometry and purely algebraic constructions of these functions are
discussed in Mumford [471] and Shafarevitch [549]. Connections with Jordan
algebras are pursued by Resnikoff [508]. Connections with knot theory and physics
are to be found in Gelca [211].

In order to discuss cusp forms, Siegel defined the ˆ-operator taking f 2
M .Sp.n;Z/; k/ to f jˆ 2 M .Sp.n � 1;Z/; k/ by:

f jˆ.W/ D lim
t!1f

�
W 0

0 it

�
; for W 2 Hn�1: (2.57)

A Siegel modular form f 2 M .Sp.n;Z/; k/ is said to be a cusp form if f jˆ
vanishes identically. Let S .Sp.n;Z/; k/ denote the space of Siegel cusp forms
of weight k. The Fourier expansion (2.55) of f 2 S .Sp.n;Z/; k/ can have no terms
corresponding to singular symmetric semi-integral matrices T . Here a singular T is
one with determinant equal to zero.

Exercise 2.2.10. Prove the last statement about cusp forms.
Hint. See Klingen [355].

There is an opposite concept to that of cusp form—the concept of singular form
which is a form in M .Sp.n;Z/; k/ whose Fourier coefficients a.T/ in (2.55) vanish
unless the T are singular matrices. Certain theta functions give examples. An integer
k � 0 is said to be a singular weight for Sp.n;Z/ if k < n=2: Maass [426] showed
singular forms have singular weights. Resnikoff [507] and Freitag [184] proved the
converse. See Klingen [355, Chapter 8].

Let us say a bit about dimensions of spaces of Siegel modular forms for Sp.n;Z/.
Christian showed that for nonvanishing forms to exist, the weights must be integers.
See Klingen [355, p. 43]. Moreover the weights must be nonnegative. See Klingen
[355, p. 47]. Finally any form of weight 0 is constant. See Klingen [355, p. 49].

It can be proved that there is a positive constant cn depending only on n such that

dimM .Sp.n;Z/; k/ � cnkn.nC1/=2:

See Eicher [157, 158], Freitag [185, p. 52], Klingen [355, p. 51], Maass [426,
p. 194], and Siegel [565, Vol. II, pp. 97–137]. The main principle needed to
prove such an inequality is that which gave us Theorem 3.5.4 in Volume I. This
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principle says: The vanishing of sufficiently many terms in the Fourier series of
f 2 M .Sp.n;Z/; k/ implies the vanishing of f itself. Freitag [185, p. 50] shows that
S .Sp.n;Z/; k/ vanishes in the following situations:

n D 1 k < 12
n D 2 k < 9
n D 3 k < 8
n D 4 k < 5

See the very last pages of this volume for more information.
It is possible to use the Selberg trace formula or the Hirzebruch–Riemann–

Roch theorem to give formulas for dimensions of spaces of Siegel cusp forms for
congruence subgroups of Sp.n;Z/ acting without elliptic fixed points. See Arakawa
[19], Christian [109], Hirzebruch [297, Appendix], Langlands [389], Morita [463],
Petra Ploch [489], and Yamazaki [673]. See also Eie [160] and Hashimoto [264]
for the case of Sp.n;Z/ for small n. Let us examine one such computation—that
of Arakawa [19] using the Selberg trace formula. One begins with the dimension
formula of Godement which writes the dimension of the space of cusp forms as
an integral of a sum over � . The identity and parabolic elements of � produce the
only nonzero contributions to the trace formula. Work of Shintani [559] is needed
to compute special values of zeta functions arising in the calculations. See the last
section of this book for a few more details and references.

The spaces M .Sp.2;Z/; k/were completely determined by Igusa [315]. See also
Freitag [183].

The Petersson inner product for weight k Siegel modular forms f ; g for � D
Sp.n;Z/; at least one of which is a cusp form, is defined by:

hf ; gi D
Z

�nHn

f .Z/g.Z/ det .Im .Z//k d	�
n ;

where d	�
n is the invariant volume element on Hn:

Hecke operators for Sp.n;Z/ were first systematically investigated by Maass
[414]. Let m be a positive integer and Jn as in the definition of Sp.n;Z/; define

Mn D ˚
g 2 Z

2n�2n
ˇ̌

tgJng D mJn
�
:

Then we will characterize the mth Hecke operator T.m/ by what it does to a form
f 2 M .Sp.n;Z/; k/ ; namely:

T.m/f .Z/ D mnk�n.nC1/=2 X

�D
0

@ 	 	
C D

1

A2Sp.n;Z/nMn

jCZ C Dj�k f .�Z/:
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It is possible to show that symplectic Hecke operators have similar properties to
those of Hecke operators for GL.n;Z/ which were obtained in Theorem 1.5.2 of
Section 1.5.2. The Euler products involved are more complicated though. Some
other references for these Hecke operators are Andrianov [9–14], Freitag [185], and
Shimura [554].

There are many sorts of Dirichlet series or L-functions associated with Siegel
modular forms f 2 M .Sp.n;Z/; k/. For simplicity, let us assume that f is a
cusp form. Then, given a Maass form v for GL.n;Z/ in A.GL.n;Z/; �/ as in
Section 1.5.1, we can consider the following Mellin transform:

M.f ; v/ D
Z

Y2Pn=GL.n;Z/

f .iY/v.Y/ d	n.Y/:

Suppose that f .Z/ has the Fourier expansion (2.55) above and that

v.Y/ D jYjs u.Yo/; for Yo D jYj�1=n Y 2 SPn; s 2 C:

Set

u�.W/ D u.W�1/:

As in the proof of part (5) of Theorem 1.5.2 of Section 1.5.2, we have:

M.f ; v/ D
X

T>0

Z

Y2Pn=GL.n;Z/

a.T/ exp f�2�Tr.TY/g v.Y/ d	n.Y/

D .2�/�s �n.r.u; s//
X

0<T=GL.n;Z/

a.T/ jTj�s u� .T/ ;

for some r.u; s/ 2 C
n: Thus it is natural to associate to f 2 S .Sp.n;Z/; k/ with

Fourier expansion (2.55) having Fourier coefficients a.T/, the Dirichlet series:

L.f ; v/ D
X

0<T=GL.n;Z/
T symmetric, semi-integral

a.T/v
�
T�1� :

Maass [426, Section 15] obtains the analytic continuation and functional equation
of L.f ; v/, even when f is not a cusp form. See the proof of part (5) of Theorem 1.5.2
of Section 1.5.2 for a discussion of a similar analytic continuation.

Harmonic analysis on Pn=GL.n;Z/ gives a converse to this Hecke correspon-
dence between f and L.f ; v/, as Kaori Imai (Ota) [317] shows when n D 2.
Weissauer [663] obtains a converse result for congruence subgroups of Sp.n;Z/,
for general n. It would be nice not to have to know that there are Dirichlet series
with functional equations for all the v in A.GL.n;Z/; �/. Just how many such v are
necessary is a very interesting question. Similar questions exist for Weil’s theory of
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the Hecke correspondence for congruence subgroups of SL.2;Z/ (see Section 3.6
of Volume I).

Andrianov [10–14] investigates various sorts of Dirichlet series associated with
eigenfunctions of Hecke operators. The language of adelic representation theory
leads to the same sort of results. See Piatetski-Shapiro’s talk in Borel and Casselman
[66, Vol. 1, pp. 185–188]. See also Piatetski-Shapiro [486]. Tamara Veenstra [626]
investigates L-functions corresponding to Siegel eigenforms of Hecke operators and
shows that the p-factors for almost all primes determine the L-function.

Bounds on Fourier coefficients of Siegel cusp forms are investigated by Kathrin
Bringmann [80]. The explicit action of the standard generators of the Hecke algebra
on Fourier coefficients of Siegel modular forms of half-integral weight is studied by
Lynne Walling [654].

Very general Poincaré series for �n D Sp.n;Z/ are considered by Klingen [355,
Ch. 6]. One example which was introduced by Maass is:

gk
n.Z; t/ D

X

‡nn�n

jCZ C Dj�k exp
�

t .Az C B/ .Ca C D/�1
�
; (2.58)

for k > 2n; kn 
 0.mod 2/; Z 2 Hn; and half integral positive t: Here ‡n is the

subgroup of matrices of the form

�˙In 	
0 ˙In

�
: Klingen [355, p. 90] notes the main

properties of the Maass Poincaré series; the most important being

(1) The Petersson inner product
˝
f ; gk

n.	; t/
˛

pulls out the tth Fourier coefficient of
a Siegel cusp form f of weight k multiplied by a constant and a power of t.

(2) The Maass Poincaré series (2.58) span the space S .Sp.n;Z/; k/ for a finite set
of values of t:

Example 2.2.7 (Eisenstein Series for GL.2;OK/).
References for this subject include: Asai [27], Efrat and Sarnak [154], Elstrodt

et al. [168], Fueter [191], Gelbart [208], Grosswald [250], Hecke [268], Hoffstein
[303], Hunter [311], Jacquet and Langlands [324], Mennicke [442], Mordell [460],
Ramanathan [497, 498], Sarnak [527], Siegel [565, Vol. I, pp. 173–179], Stark [579],
Tamagawa [587], Terras [597–600], and Weil [660].

Let K be an algebraic number field of degree m over Q. We use the notation
set up earlier during the discussion of the fundamental domain for GL.n;OK/. The
Epstein zeta function for GL.n;OK/ is defined for Y 2 PK

2 , a an ideal of K, and s
a complex number with Re s > 1, by:

Z.a;Y; s/ D
X

0¤b2a2=UK

N .Y fbg/�s : (2.59)

Here the norm N .Y fbg/ is defined by
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N .Y fbg/ D
r1Cr2Y

jD1

�
tb.j/Y.j/b.j/

�ej

; for ej D
�
1; j D 1; : : : ; r1;
2; j D r1 C 1; : : : ; r1 C r2:

(2.60)
The sum in (2.59) is over a complete system of nonzero column vectors in a2

inequivalent under the equivalence relation

tb D .b1; b2/ � .b1u; b2u/; for u 2 UK D the group of units of OK :

In order to prove the convergence of Epstein’s zeta function (2.59), one could
devise an integral test similar to that used in the case that K is the field of rational
numbers (see Corollary 1.4.4 in Section 1.4.4). Related methods are used by Siegel
[563, p. 290] and Godement in Borel and Mostow [68, p. 207]. It is also possible
to deduce the convergence from bounds on theta functions as in Ramanathan [498,
p. 54].

Exercise 2.2.11. Obtain the analytic continuation and functional equation of
Epstein’s zeta function for GL.2;OK/ in (2.59) by imitating Riemann’s proof
of the analytic continuation of �.s/ given in Section 1.4 of Volume I. See also
Hecke’s proof of the analytic continuation of the Dedekind zeta function in Lang
[386, pp. 255–258]. You will find that Z.a;Y; s/ has a simple pole at s D 1 and a
functional equation relating it to Z.a0;Y�1; 1� s/, where a0 D .adK/

�1 ; if dK is the
different of K.

We have a simultaneous Iwasawa decomposition of the vector Y 2 PK
2

Y D
�
v 0

0 w

�	
1 q
0 1



; with v;w 2 Y 2 PK

1 ; q 2 R ˝Q K: (2.61)

This means that for 1 � j � r1 C r2;

Y.j/ D
�
v.j/ 0

0 w.j/

�	
1 q.j/

0 1



; with v.j/;w.j/ > 0;

q.j/ 2 Ej; Ej D
�
R; j D 1; : : : r1;
C; j D r1 C 1; : : : ; r1 C r2:

Clearly the Epstein zeta function Z.a;Y; s/ has the invariance property:

Z.a;Y; s/ D Z.a;Y f�g ; s/ for all � 2 GL.2;OK/;Y 2 PK
2 :

It follows that if we view Z.a;Y; s/ as a function of the q-variable in the Iwasawa
decomposition (2.61) of Y , we are looking at a function that is periodic modulo OK :

Thus we can obtain a Fourier expansion of Z.a;Y; s/ in the q-variable.
Let us eliminate the dependence on the ideal a by defining a new zeta summed

over classes C in the ideal class group IK :
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Z�.Y; s/ D
X

C2Ik

Nb2s Z.b;Y; s/; for b 2C: (2.62)

Here Nb denotes the norm of the ideal b; which is # .OK=b/ : Note that it does not
matter what ideal b 2C is chosen. Because the ideal class group IK is finite, so is
the sum in (2.62) provided that s ¤ 1.

Set

A D 2�r2��m=2D1=2
K ; DK D the absolute value of the discriminant of K;

and define Dedekind’s zeta function by

�K.s/ D
X

b
OK

Nb�s; for Re s > 1;

where the sum is over ideals b of OK : As proved in Section 1.4 of Volume I, the
functional equation of Dedekind’s zeta function is:

ƒK.s/ D As�
� s

2

�r1
�.s/r2�K.s/ D ƒK.1 � s/: (2.63)

Motivated by this functional equation, we define:

ƒ�.Y; s/ D A2s� .s/r1 �.2s/r2Z�.Y; s/:

Theorem 2.2.1 (Fourier Expansion of Epstein’s Zeta Function for K). Using
the notation of formulas (2.59)–(2.63), we have the Fourier expansion:

ƒ�.Y; s/ D Nv�sƒK.2s/C Nv� 1
2 Nw

1
2�sƒK.2s � 1/

C 2r1Cr2D
s� 1

2
K

Nv
1
2 NjYj� 1

4Cs=2

X

0¤u2d�1
K

jNujs� 1
2 �1�2s .udK/ e2� iTr.qu/

�
r1Cr2Y

jD1
Kej.s� 1

2 /

 

2�ej

r�
wu2
v

�.j/
!

;

where Ks.y/ is the ordinary K-Bessel function and for any ideal b � OK the function
� s.b/ is the divisor function:

� s.b/ D
X

cjb
Ncs:

Here cjb is equivalent to c � b:

Proof. See Terras [598, 599]. The idea is to generalize Exercise 3.5.4 in Volume I.
Set
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ƒ.a;Y; s/ D A2s� .s/r1 �.2s/r2Z.a;Y; s/:

Then, if Y has the Iwasawa decomposition (2.61), it follows that:

Y

�
a
b

�
D v fa C qbg C w fbg :

Thus

ƒ.a;Y; s/DNv�sƒK.a; 2s/CA2s� .s/r1 �.2s/r2
X

0¤b2a=UK
a2a

N .v faCqbg C w fbg/�s ;

if Re s > 1 and we define

ƒK.a; 2s/ D A2s� .s/r1 �.2s/r2
X

0¤b2a=UK

jNbj�2s :

The Poisson summation formula from Section 1.3 of Volume I or Weil [661,
p. 106] shows that the sum over a 2 a equals the sum of Fourier transforms over
c 2 a0 D .adK/

�1 which is the dual ideal to a. The Fourier transforms here are:

bf .b; c/ D
Z

x2K˝QR

N .v fa C qbg C w fbg/�s exp
��2� iTr

�
tcx
��

d	.x/;

where the measure d	.x/ is chosen so that

Z

x2K˝QR=a

d	.x/ D 1:

Now the ideal a has an integral basis, i.e.,

a D
mX

jD1
˚
Zwj and K ˝Q RD

mX

jD1
˚
Rwj:

So if

x D
mX

jD1
xjwj; xj 2 R;

we can take
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d	.x/ D
mY

jD1
dxj with dxj D Lebesgue measure on R:

We can also see that

K ˝Q R Š
r1Cr2X

jD1
˚ Ej; where Ej D

�
R; j D 1; : : : r1;
C; j D r1 C 1; : : : ; r1 C r2:

Therefore we can define the mapping:

T W K ˝Q R !
r1Cr2X

jD1
˚ Ej by T

0

@
mX

jD1
xjwj

1

A D y D �
y.1/; : : : ; y.r1Cr2/

�
;

where y.i/ D
mX

jD1
xjw

.i/
j :

(2.64)
The Jacobian of the map T is (Exercise)

ˇ̌
ˇ̌@y

@x

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌@ .y1; : : : ; yr1 ;Re yr1C1; Im yr1C1; : : : ;Re yr1Cr2 ; Im yr1Cr2 /

@ .x1; : : : ; xm/

ˇ̌
ˇ̌ D 2�r2D

1
2

KNa:

Therefore

bf .b; c/ DD
� 1
2

K Na�12r2

r1Cr2Y

jD1

Z

Ej

NEj=R

�
.v fa C qbg C w fbg/.j/

��s

� exp
�
�2� i TrEj=R

�
.cy/.j/

��
dy.j/:

Make the change of variables xj D
�
.w fbg/� 1

2 t .y C qb/
�.j/

;where v D t2; t.j/ > 0;

to see that:

bf .b; c/ D D
� 1
2

K Na�12r2 Nv� 1
2 N .w fbg/ 12�s exp .2� i Tr .cqb//

�
r1Cr2Y

jD1

Z

Ej

�
1C xjxj

��sej exp

�
�2� i TrEj=R

��c

t
.w fbg/ 12

�.j/
xj

��
dxj:

Define

Ij.a; s/ D
Z

Ej

.1C xx/�sej exp
��2� i TrEj=R .ax/

�
dx:
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By part (a) of Exercise 3.2.1 in Volume I, we find that for j D 1; : : : ; r1 :

Ij.a; s/ D
(
2�

1
2 �.s/�1 j�ajs� 1

2 Ks� 1
2
.2� jaj/ ; a ¤ 0;

�
�
1
2

�
�
�
s � 1

2

�
� .s/�1 ; a D 0:

For j D r1 C 1; : : : ; r1 C r2; we must compute:

Ij.a1 C ia2; s/ D
Z

x1Cix22C

�
1C x21 C x22

��2s
exp .�4� i .a1x1 � a2x2// dx

D k1;2 .2sjI; 2� .a1; a2// ;

where k1;2 is the function defined in formula (1.60) in Section 1.2.2. We can use part
(2) of Theorem 1.2.2 in Section 1.2.2 to see that in terms of the K-Bessel function
defined by (1.61) in Section 1.2.2, we have, for j D r1 C 1; : : : ; r1 C r2;

Ij.a1 C ia2; s/ D ��.2s/�1K1
�
1 � 2sj4�2 �a21 C a22

�
; 1
�
:

It follows then that for j D r1 C 1; : : : ; r1 C r2, we have the following formula when
a D a1 C ia2 2 C D Ej;

Ij.a; s/ D
8
<

:
22s�.2s/�1

�
�2
�
a21 C a22

��s� 1
2 K2s�1

�
4�

q
a21 C a22

�
; a D a1 C ia2 ¤ 0;

�� .2s � 1/ � .2s/�1 ; a D 0:

Substituting these results into the original Poisson sum leads to:

ƒ.a;Y; s/ D Nv�sƒK.a; 2s/C Nv
�
1
2 Nw

1
2�s

Na�1ƒK.a; 2s � 1/
CN jYj

1
4�

s
2 Nv

�
1
2 A2s�1Na�12r1C2sr2

�
X

0¤b2a=UK

0¤c2.adK /
�1

ˇ
ˇ̌Nc

Nb

ˇ
ˇ̌s� 1

2
e2� iTr.qbc/

r1Cr2Y

jD1
Kej.s� 1

2 /

�
2�ej

q
w.j/

v.j/

ˇ
ˇ̌
b.j/c.j/

ˇ
ˇ̌
�
:

To complete the proof of Theorem 2.2.1, suppose that C is an ideal class of K
and b 2C is as in formula (2.62). Note that the equation

ab DbOK

defines a one-to-one mapping from ideals a 2 C�1 onto elements b 2 bmod UK .
Set u D bc, for c 2 .bdK/

�1. Then define the map

L W .b=UK/ � .bdK/
�1 ! �

C�1� � .dK/
�1 by L .b; c/ D .a; u D bc/ :
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The map L is easily seen to be one-to-one. It is not onto, since the image consists of
.a; u/ such that a divides dKu.

Finally observe that

Nd2s�1
K

ˇ̌
ˇ̌Nc

Nb

ˇ̌
ˇ̌
s� 1

2

D Na1�2s jNujs� 1
2 :

This completes the proof of Theorem 2.2.1. �

We have corrected the following Corollaries after reading the observation of
Elstrodt et al. [168, p. 395]. We had made the mistake of thinking that e1 D 1: But
recall that Nv involves ve1

1 Of course in the case considered by Elstrodt, Grunewald,
and Mennicke e1 D 2 as the field K is imaginary quadratic.

Corollary 2.2.1 (Relations Between �K.s/ and �K.s � 1/). Set

Ms.z/ D Ks.z/C 2

e1
z

d

dz
Ks.z/

and

T.s; u/ D Me1s
�
2�e1

ˇ̌
u.1/

ˇ̌� r1Cr2Y

jD2
Kejs

�
2�ej

ˇ̌
u.j/
ˇ̌�
:

Then

.1 � s/ƒK .2s � 1/C sƒK.2s/

D �e12
r1Cr2�1Ds� 1

2

K

X

0¤u2.dK /
�1

jNujs� 1
2 �1�2s .udK/ T

�
s � 1

2
; u

�
:

Proof. This is the analogue of a generalization of part (b) of Exercise 3.5.7 of
Volume I.

Substitute

Y D
�
v 0

0 1

�
in Z� .Y; s/

and use the following functional equation:

Z�
��

v 0

0 1

�
; s

�
D Z�

��
1 0

0 v

�
; s

�
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plus Theorem 2.2.1 to deduce that

Nv�sƒK.2s/C Nv� 1
2 ƒK.2s � 1/

C 2r1Cr2D
s� 1

2
K

Nv
1
4Cs=2

X

0¤u2d�1
K

jNujs� 1
2 �1�2s .udK/

r1Cr2Y

jD1
Kej.s� 1

2 /

�
2�ej

ju.j/jp
v.j/

�

D ƒK.2s/C Nv
1
2�sƒK.2s � 1/

C 2r1Cr2D
s� 1

2
K

Nv�
1
4Cs=2

X

0¤u2d�1
K

jNujs� 1
2 �1�2s .udK/

r1Cr2Y

jD1
Kej.s� 1

2 /

�
2�ej

p
v.j/

ˇ
ˇ̌
u.j/
ˇ
ˇ̌�
:

Differentiate this equation with respect to v1 and set all vj D 1; j D 1; : : : ; r1 C r2
to finish the proof of Corollary 2.2.1. �

The following corollary gives upper bounds for the product of the class number
and the regulator, which should be compared with that obtained by Lang [386,
p. 261]. A lower bound is more difficult to obtain. See p. 74 of Volume I for the
definition of the regulator.

Corollary 2.2.2 (A Formula for the Product of the Class Number and the
Regulator).

Let K be any algebraic number field of degree m, with wK = the number of
roots of unity in K, RK = the regulator of K, hK = the class number of K, DK = the
absolute value of the discriminant, e1 D 1 if the field K has any real conjugate fields
and 2 otherwise, dK = the different, r2 = the number of complex conjugate fields, �K
= the Dedekind zeta function, T.s; u/ as defined in Corollary 2.2.1. Then

hKRK=wK D 2 .2�/�m DK�K.2/C e12
r2D

1
2

K

X

0¤u2d�1
K

jNuj 12 ��1 .udK/ T

�
1

2
; u

�
:

Proof. Let s approach 1 in Corollary 2.2.1. �

Exercise 2.2.12. Compute the Jacobian of the mapping T in formula (2.64).

Exercise 2.2.13. Complete the proof of Corollary 2.2.2.

Corollary 2.2.3. If K is a totally real algebraic number field, then, using the
notation of Corollary 2.2.2, we have:

hKRKD4 .2�/�m DK�K.2/��23�mD
1
2

K

X

0¤u2.dK /
�1

ˇ
ˇu.1/

ˇ
ˇ ��1 .udK/ e�2�.ju.1/jC���Cju.m/j/:

Proof. Since K 1
2
.z/ D .2z=�/�

1
2 e�z, we see that M1=2.z/ D �.2nz/

1
2 e�z: The result

follows easily then from Corollary 2.2.2. �
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When K D Q, Corollary 2.2.1 gives formulas relating �.2n/ and �.2n C 1/

(see Exercise 3.5.7 of Vol. I). Formulas of this sort have been studied by many
authors, without, however, leading to information on the rationality, irrationality,
algebraicity, or transcendence of �.2n C 1/; n D 1; 2; : : :. See Hunter [311].

Siegel [565, Vol. I, pp. 173–179] used the Fourier expansion of Eisenstein
series for GL.2;OK/ to obtain the analytic continuation and functional equation
of the Dedekind zeta function. Mordell [460, pp. 518 ff.] also derives the Fourier
expansion of the Eisenstein series for GL.2;OK/.

Hoffstein [303] has used Fourier expansions of Eisenstein series for
GL.2;OK/; K a real quadratic field, to study the real zeros of these series. Asai
[27] uses such Fourier expansions to generalize Kronecker’s limit formula (see
Exercise 3.5.6 in Vol. I). See also Zagier [674].

Grosswald [250] obtains results related to that in Corollary 2.2.1—formulas for
the Dedekind zeta function involving the Meijer’s G-function.

Our final goal in this section is to describe the relation between the Epstein
zeta function (2.59) and the Eisenstein series for SL.2;OK/. First recall that
Proposition 2.2.1 gave a correspondence between the cusps of SPK

2 =SL.2;OK/ and
ideal classes in the ideal class group IK :

bK=SL.2;OK/ $ IK

represented by cusps represented by ideals
x1; : : : ; xh a1; : : : ; ah:

The map was obtained by setting xi D pi=si with pi; si 2 OK ,

Ai D
�

pi ui

si vi

�
2 SL.2;K/; .pi; si/ D

�
the ideal generated
by pi and si

�
D ai;

xi D Ai1; ui; vi 2 a�1
i :

We showed in Lemma 2.2.1 that

�xi D f� 2 SL.2;OK/ j �xi D xi g

D
�

Ai

�
w z
0 w�1

�
A�1

i

ˇ̌
ˇ
ˇ z 2 a�2

i ; w 2 UK D units of OK

�
:

We can now define an Eisenstein series corresponding to the cusp xi

(cf. Kubota [377]):

Ei.Y; s/ D Na2s
i

X

�2SL.2;OK /=�xi

N ..v.Yf�Aig//�s ; for Re s > 1: (2.65)

Here we use the notation that if Y 2 PK
2 has Iwasawa decomposition (2.61), we

write v.Y/ for the v-coordinate of Y: It is also the upper left entry of Y . Now taking
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the v-part of Y f�Aig amounts to taking Yfgg, where g is the first column of �Ai.
Since such a g must generate ai, we find that

Ei.Y; s/ D Na2s
i

X

g2a2i =UK
entries of g generate ai

N .Y fgg/�s ; for Re s > 1: (2.66)

Exercise 2.2.14. Prove formula (2.66) for all Y 2 PK
2 . Then show that the

Eisenstein series Ei is dependent only on the ideal class containing the ideal ai,
and not on the choice of ai in that ideal class. Finally, prove that, if we define for an
ideal class C 2 IK the ideal class zeta function:

�.C; s/ D
X

c2C

Nc�s; for Re s > 1;

then we have a relation between Epstein’s zeta function (2.59) and the Eisenstein
series:

Z.OK ;Y; s/ D
hX

iD1
�.Ci; 2s/Ei.Y; s/;

using the notation Ci for the ideal class containing ai; i D 1; : : : ; h.

In order to generalize the relation obtained in Exercise 2.2.14 between
Z.OK ;Y; s/ and the vector of Eisenstein series Ei to Z.ai;Y; s/, we need a matrix
of ideal class zeta functions:

MK.s/ D .�.C.i; j/; 2s//1�i;j�h; (2.67)

where C.i; j/ is the ideal class containing the ideal aja
�1
i . Define also the column

vector of Epstein zeta functions:

EZ.Y; s/ D t .Z .a1;Y; s/ ; : : : ;Z .ah;Y; s// ; (2.68)

and the column vector of Eisenstein series:

EE.Y; s/ D t .E1.Y; s/; : : : ;Eh.Y; s// : (2.69)

Proposition 2.2.3 (The Relation Between Epstein’s Zeta Function and the
Eisenstein Series for SL.2 ;OK/). Using the notation (2.59), (2.65), (2.67)–(2.69),
we have the following equality for Res > 1:

EZ.Y; s/ D MK.s/EE.Y; s/:
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Proof. We have the following chain of equalities:

Z.ai;Y; s/ D Na2s
i

X

0¤g2a2i =UK

N.Yfgg/�s D Na2s
i

X

aijb

X

g2b2=UK
.g1;g2/Db

N.Yfgg/�s

D
X

aijb

�
Nb

Nai

��2s

Nb2s
X

g2b2=UK
.g1; g2/Db

N.Yfgg/�s:

Here the inner sum is over 2-vectors g with entries in the ideal b modulo the unit
group UK such that the entries of g generate the ideal b. Then set b=ai D c and
observe that c runs through all integral ideals in the ideal class C.i; j/ containing the
ideal aja

�1
i , to complete the proof. �

The formula in Proposition 2.2.3 raises certain questions.

Questions Arising from Proposition 2.2.3

(1) Is it possible to diagonalize the matrix MK.s/ using characters of the ideal class
group?

(2) What does this have to do with Hecke operators for GL.2;OK/?
(3) What does this have to do with the analogue of Siegel’s integral formula for

GL.n;OK/? See Proposition 1.4.2 of Section 1.4.4 for the integral formula when
K D Q.

Here we shall discuss only question 1. Hecke operators for these groups are
treated by Herrmann [292], Shimura [554], and Styer [584]. Siegel’s integral
formula for SL.n;OK/; K imaginary quadratic, is considered by Hunter [311]. See
also Elstrodt et al. [168] as well as Efrat and Sarnak [154].

The ideal class group IK is a finite abelian group of order h. LetbIK denote the
dual group of characters � W IK ! T, where T is the circle group of complex
numbers of norm 1; i.e.,

T D fz 2 C j jzj D 1g :

That is, � is a homomorphism of multiplicative groups. Then the dual group is:

bIK D f�1; : : : ; �hg :

We can diagonalize the matrix MK using Fourier transforms on IK . Suppose that
Ci is the ideal class containing the ideal ai, for i D 1; : : : ; h. Define

Z.Ci/ D Z.ai;Y; s/; E.Ci/ D E.ai;Y; s/; �.C/ D �.C; 2s/: (2.70)
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Our proof of Proposition 2.2.3 rested on the equation:

Z.Ci/ D
hX

jD1
�.Cj=Ci/E.Cj/: (2.71)

Now define convolution of functions f W IK ! C by:

.f 	 g/.Ci/ D h�1
hX

jD1
f
�
Ci=Cj

�
g.Cj/: (2.72)

Thus formula (2.71) says that

Z.C/ D h�.C�1/ 	 E.C/: (2.73)

As for the group of real numbers (see part (4) of Theorem 1.2.1 in Volume I), the
Fourier transform can be used to simplify this convolution equation. We define the
Fourier transform of a function

f W IK ! C

at the character � 2bIK by:

bf .�/ D h�1X

y2IK

f .y/�.y/: (2.74)

Since IK is a finite abelian group, there are no convergence problems. In fact,
the theory of Fourier transforms on finite abelian groups has many applications,
since it is just what is needed for the fast Fourier transform, an idea which has
speeded computation of such transforms immensely. See Terras [608, 609] for more
information on finite and fast Fourier transforms.

Proposition 2.2.4 (Some Properties of the Fourier Transform on IK).

(1) Convolution.

bf 	 g.�/ Dbf .�/ �bg.�/:

(2) Inversion.

f .x/ D
X

�2bIK

bf .�/�.x/; for all x 2 IK :
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Proof. (1) Note that

bf 	 g.�/ D h�2X

z2IK

X

y2IK

f .zy�1/g.y/�.z/

D h�2X

y2IK

g.y/
X

wDzy�12IK

f .w/�.wy/ Dbf .�/ �bg.�/:

(2) Observe that

h�1 X

�2bIK

�.x/
X

y2IK

f .y/�.y/ D
X

y2IK

f .y/h�1 X

�2bIK

�.xy�1/ D f .x/;

since we have:

h�1 X

�2bIK

�.xy�1/ D
�
0; x ¤ y;
1; x D yI and �.y/ D �.y/�1: (2.75)

�

Exercise 2.2.15. Prove formula (2.75) above.

For

x 2bIK ; Y 2 PK
2 ; s 2 C with Re s > 1;

define the zeta function:

Z.�;Y; s/ D
X

a

Na2s �.a/
X

0¤g2a2=UK

N .Yfgg/�s ; (2.76)

where the outer sum is over all ideals a of OK and the character � of the ideal class
group is regarded in the obvious way as a function of ideals. Then Z.�;Y; s/ is the
Fourier transform of Z.C/ (times h), where Z.C/ is defined in formula (2.70).

Similarly, define the Eisenstein series associated with � 2 bIK ; Y 2 PK
2 , and

s 2 C with Re s > 1 by:

E.�;Y; s/ D
X

a

Na2s �.a/
X

g2a2=UK
.g1; g2/Da

N .Yfgg/�s ; (2.77)

where the outer sum is over all ideals a of OK and the inner sum is over column
vectors g D t.g1; g2/ such that the ideal a is generated by g1 and g2 and the vectors
g form a complete set of representatives for the equivalence relation obtained from
multiplication by units. Then E.�;Y; s/ is h times the Fourier transform of E.C/
defined by (2.70).



442 2 The General Noncompact Symmetric Space

Proposition 2.2.5 (The Diagonalization of the Relation Between Epstein’s
Zeta Function and the Eisenstein Series for SL.2 ;OK/). Using the defini-
tions (2.76), (2.77) and setting

L.�; s/ D
X

a

�.a/Na�s; for Re s > 1;

with the sum running over all ideals a of OK, we have

Z.�;Y; s/ D L.�; s/E.�;Y; s/:

Proof. This is just the convolution property in Proposition 2.2.4 for the special case
of the functions from Proposition 2.2.3. �

Our discussion of nonholomorphic automorphic forms for GL.2;OK/ is now at
an end, although there still remains much to do if we wish to extend all of Chapter 3
of Volume I and Chapter 1 of this volume to GL.n;OK/. For we have not even
begun the theory of Hecke operators, the Hecke correspondence, the Selberg trace
formula. See Arthur [21–25], Bernstein and Gelbart [47], Frenkel [187], Gelbart
[208], Goldfeld and Hundley [232], Jacquet and Langlands [324], and Weil [660]
for a general adelic version of the subject. Many papers on automorphic forms are
reviewed in Math. Reviews. See also the collections of math. reviews in LeVeque
[401] and Guy [255] as well as a third volume compiled by the Math. Reviews staff
[436]. In the next section we seek to address some examples of higher rank trace
formulas.

2.2.3 Trace Formulas

In this final section we discuss special cases of the Selberg trace formula which can
be applied to the special cases of automorphic forms just discussed.

Trace Formula for Discrete � Acting on the Quaternionic Upper Half Plane

Let us give a brief sketch of the Selberg trace formula for cocompact discrete
subgroups � of G D SL.2;C/ or PSL.2;C/; following Elstrodt et al. [168], Define
� 2 � to be

parabolic if Tr .�/ 2 R and jTr .�/j D 2I
hyperbolic if Tr .�/ 2 R and jTr .�/j > 2I
elliptic if Tr .�/ 2 R and jTr .�/j < 2I
loxodromic otherwise.
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If � 2 � is hyperbolic or loxodromic, it is conjugate in G to a diagonal matrix
with diagonal entries a.�/ and its reciprocal. We may assume ja.�/j > 1: Define
the norm of hyperbolic or loxodromic � to be N.�/ D ja.�/j2 : Define N.�/ D 1

is � is elliptic.
Recall that the quaternionic upper half plane is

Hc D
n
z C kt D x C iy C kt jx; y 2 R; t > 0

o
;

with Laplacian � D t2.@2=@x2 C @2=@y2 C @2=@t2/ � t@=@t: Note that �t1Cs D�
s2 � 1� t1Cs: Thus it is natural to write the eigenvalue of �� acting on t1Cs in the

form � D 1�s2: Similarly the eigenvalue of �� acting on t1Cr can be written in the
form 	 D 1� r2: Let R� D .�� � �I/�1 denote the resolvent operator. This is not
trace class but R�R	 is trace class. Recall the resolvent equation .� � 	/R�R	 D
R� � R	:

Suppose that fengn�0 is a complete orthonormal set of eigenfunctions of � on
the (compact) fundamental domain of �: Write ��en D �nen with �n D 1 � s2n:
Here we may assume that sn D itn; with tn � 0; except for a finite number of n with
sn 2 Œ�1;C1�: Why? Recall the fact that �n � 0:

Elstrodt et al. [168] obtain a special case of the Selberg trace formula says
(assuming �nHc is compact):

.��	/Tr
�
R�R	

� D
X

n�0

�
1

s2�s2n
� 1

r2�r2n

�
D �vol.�nHc/

4�
.s � r/

C 1
2s

X

f�g
log.N.�0//

j".�/jˇˇˇTr.�/
2
�4

ˇ
ˇ
ˇ
N .�/�s � 1

2r

X

f�g
log.N.�0//

j".�/jˇˇˇTr.�/
2
�4

ˇ
ˇ
ˇ
N .�/�r :

The sums over f�g range over the noncentral conjugacy classes of �: The element
�0 is a hyperbolic or loxodromic element of the centralizer; Z.�/; of � in � having
minimal norm: The maximal finite subgroup in the centralizer of � is denoted
" .�/ : See Elstrodt et al. [168, p. 199]. They use the result to study the Selberg
zeta function for � and to prove the Weyl law for the asymptotic behavior of the
counting function

#
˚
n
ˇ
ˇ �n D 1 � s2n D 1C t2n; tn < T

� � vol .�nHc/

6�2
T3; as T ! 1:

Error terms are also obtained. See [168, p. 211]. Moreover Elstrodt, Grunewald,
and Mennicke consider the case that �nHc is finite volume but not compact. They
give examples of groups � such that �nHc is compact as well as noncompact finite
volume examples (see [168, Chapter 10]).

Sarnak [527] applies the Selberg trace formula for SL.2;OK/; K imaginary
quadratic of class number one, to extend his results on the asymptotics of units
in number fields.
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Özlem Imamoglu and Nicole Raulf [319] use the Selberg trace formula for � D
SL.2;OK/; K imaginary quadratic of class number one, to study the distribution of
Hecke eigenvalues for �: They assume that fengn�0 forms a complete orthonormal
set of eigenfunctions of � in L2 .�nHc/ and that, in addition Tpen D n.p/en; for
the Hecke operator Tp associated with the prime ideal p of OK : Since the class
number is one, p D vOK for some element v 2 OK : The element v is unique up to
multiplication by a unit in OK : The Hecke operator Tv associated with any nonzero
element v 2 OK is defined as a sum over SL.2;OK/nMv; where

Mv D ˚
A 2 O2�2

K

ˇ̌
det A D v

�
:

More explicitly

.Tvf / .z/ D 1

Nv

X

A2Mv=SL.2;OK /

f .Az/ :

The main result proved by Imamoglu and Raulf [319] is that the sequence of Hecke
eigenvalues fn.p/gn�1 is equidistributed according to the measure

d	p.x/ D
8
<

:

1
2�

�
1C 1

Np

� p
4�x2�

1C 1
Np

�2� x2
Np

; if jxj < 2;
0; otherwise:

This measure approaches an analogue of the Sato–Tate or semi-circle measure as
Np ! 1: To prove the result, they first use the trace formula to obtain a Weyl
law for powers of the Hecke eigenvalues. Then they use the method of moments to
obtain the main result.

Trace Formula for Discrete � Acting on Hm

If one wants to study groups such as the Hilbert modular group � D SL.2;OK/; K a
totally real number field, it helps to have a trace formula for �nHm; where m is the
degree of K over Q. See Efrat [152], Freitag [186], Müller [469], Shimizu [553],
and Zograf [677]. We consider here a special case of the trace formula which gives
rise to a formula for the dimension of the space of Hilbert cusp forms of weight 2
when K is real quadratic following Freitag [186].

For � 2 SL.2;R/m; write

� D

0

B
@�.1/; : : : ; � .k/„ ƒ‚ …

hyperbolic

; � .kC1/; : : : ; � .l/
„ ƒ‚ …

parabolic

; � .lC1/; : : : � .m/
„ ƒ‚ …

elliptic

1

C
A :



2.2 Geometry and Analysis on �nG=K 445

This means that after conjugation

�.i/ D
�
"i 0

0 1="i

�
; for i D 1; : : : ; kI

�.i/ D
�
1 ai

0 1

�
; for i D k C 1; : : : ; lI

�.i/ 2 SO.2;R/; for i D l C 1; : : : ;m:

One creates a self-reproducing kernel starting with (see Freitag [184, p. 74])

k.z;w/ D N

�
z � w

2i

�
D

mY

jD1

�
zj � wj

2i

��2
for z;w 2 Hm:

Then define for � 2 SL.2;R/m

k.�; z/ D
h

k.�z;z/
k.z;z/

ir
j.�; z/;

where j.�; z/ D N.cz C d/�2 D
mY

jD1

�
c.j/zj C d.j/

��2
;

for � D
�

a b
c d

�
2 SL.2;R/m:

Let ` denote the order of the kernel of the natural projection of � into
.SL.2;R/= f˙Ig/m : Define for an integer r � 2;

K.z;w/ D 1

`

X

�2�
k.�w; z/r j.�;w/r:

Freitag [186, p. 79] proves that

dimS .�; 2r/ D
�
2r � 1
4�

� Z

�nHm

K.z; z/

k.z; z/r
Ny�2dxdy:

One then writes the sum over � giving K.z; z/ as a sum over conjugacy classes
and finds that the only contribution comes from the central terms and the elliptic
terms, assuming �nHm compact. Assuming �nHm compact and � irreducible
(meaning that the restriction of each of the m projections of SL.2;R/m into SL.2;R/
is 1–1), the result is (cf. Freitag [184, p. 89]:

dimS .�; 2r/ D vol .�nHm/

.2r � 1/m C
X

a

Er.�; a/;
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where the sum over a is over a set of representatives of �-classes of elliptic fixed
points with

Er.�; a/ D 1

j�aj
X

�2�a
�¤identity

N
�r

1 � � ;

Here the stabilizer of a is �a D f� 2 � j �a D ag : An elliptic � is conjugate in

SL.2;C/ with a matrix

�
� 0

0 ��1
�
; �h D 1; for some h: If �nHm has cusps as is the

case for the Hilbert modular group, then there will also be terms corresponding to
the cusps � of the form L.�; �/; a Shimizu L-series. See [186, p. 110].

Putting this together for the case of the Hilbert modular group (for which the
fundamental domain does have cusps), one obtains the formula for the arithmetic
genus D g D 1C .�1/m dimS.�; 2/; m > 1. Freitag [186, p. 130] gives the result
for the Hilbert modular group for K D Q

�p
p
�
; where p is a prime. For example,

g D 1; if p D 2; 3; 5; and, if the prime p is greater than 5 and p 
 1 .mod 4/ ;

g D 1C dimS.SL.2;O
Q.

p
d//; 2/ D �K.�1/

2
C h.�4p/

8
C h .�3p/

6
;

where h.d/ is the class number of Q
�p

d
�
: Another reference is Hirzebruch [296].

Helen Grundman and Lisa E. Lippencott [252] have computed the arithmetic genus
for many examples of totally real degree 4 fields over Q.

It is also possible to compute dimensions of spaces of holomorphic cusp forms
using generalized Riemann–Roch theorems.

Trace Formula for � Acting on the Siegel Upper Half Space

Many people have used the trace formula to compute the dimension of the space of
holomorphic cusp forms of weight k for a subgroup � of Sp.n;R/. We mention only
a few: Arakawa [19], Christian [109], Eie [160], Hashimoto [264], Morita [463],
Tsushima [617], and Wakatsuki [640]. Yamazaki [673] obtained similar results
using the Riemann–Roch theorem. See also the review of Christian’s paper by
Resnikoff in Math. Reviews, 53 #2841. The method goes back to Selberg as well as
Godement’s Séminaire Cartan [547] lectures in which one uses a self-reproducing
or Bergman kernel in the trace formula. This is the same method used for Hilbert
modular forms. See Klingen [355, p. 76] for a discussion of the reproducing kernel.

Of course, one must also compute all the conjugacy classes of � as well as the
orbital integrals corresponding to each class. For example when n D 3 there are
300 conjugacy classes. It is not surprising that mistakes might be made. Anyway
if you read [Math.] Reviews in Number Theory, Vol. 2B, for the period 1984–1996,
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especially pages 576 and 586, you will find much heated discussion. Here we will
definitely not delve into the details of these computations, nor take sides in this war.

What is the kernel used in the trace formula to obtain the dimension of
S .Sp.n;Z/; k/ ; the space of Siegel cusp forms of weight k? Here we follow
Arakawa [19] and Hashimoto’s discussion in [272, pp. 253–276]. It starts out for

Z;W 2 Hn as k.Z;W/ D det
�

Z�W
2i

�
: See Klingen [355, p. 76] who uses the

Cayley transformation to transform the integrals from Hn to the generalized unit
disc:

Dn D ˚
W 2 C

n�n j tW D W; I � WW 2 Pn
�
:

which is a bounded domain. The Cayley transform is:

Hn ! Dn

Z 7! .Z � iI/.Z C iI/�1:

The self-reproducing formula on Dn involves the Bergman kernel and was studied
by Hua [308].

Then, in the usual way of trace formulas, following Godement [547], one gets
a self-reproducing kernel on the Hilbert space L2.�nHn; det.Im.W//kd	�/; using
the measure for the Petersson inner product. The self-reproducing kernel for the
weight k cusp forms has the following form, with j.�;Z/ D det.CZ C D/; if

� D
�

A B
C D

�
2 �;

K.Z;W/ D an.k/
X

�2�
det

 
Z � �W

2i

!�k

j.�;W/�k;

where an.k/ is a constant. Note that the kernel is the symplectic analogue of that
for the Hilbert modular group. Moreover, the trace of the kernel should give the
dimension of the space of Siegel cusp forms of weight k:

Next one must split � into conjugacy classes and evaluate orbital integrals for
each conjugacy class. See Wakatsuki [640, pp. 203–204]. There are seven basic
types: central, elliptic, hyperbolic, elliptic-hyperbolic, unipotent (or parabolic),
quasi-unipotent, hyperbolic-unipotent. What happens next is similar to what hap-
pened in the Hilbert modular case. One finds that the orbital integrals vanish unless
they correspond to � 2 � which are central, elliptic, unipotent, or quasi-unipotent.
Dumping factors are needed for the last two types of terms. The elliptic terms were
evaluated by Langlands in [389].

Let us just mention some results on dimensions of spaces of Siegel modular
forms of small weight for Sp.n;Z/; where n D 2: Some references are William
Duke and Özlem Imamoglu [147], Gerard van der Geer’s article in Bruinier et al.
[82], Jun-ichi Igusa [315], Helmut Klingen [355], and Martin Raum et al. [500],
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and Tsuymine [619]. If � D Sp.2;Z/; the ring of Siegel modular forms of even
weights is generated by the four Eisenstein series E4;E6;E10;E12: See Klingen [355,
p. 123]. Moreover the generators are algebraically independent. Thus, for even k;
the dimension of the space of Siegel modular forms M .Sp.2;Z/; k/ is the number
of nonnegative integer solutions .a; b; c; d/ of k D 4a C 6b C 10c C 12d: The first
cusp form occurs at weight 10. Breeding [78], Van der Geer in [82, p. 233] and
Wakatsuki [640, p. 249] give the following list of dimensions

dk.2/ D dimS .Sp.2;Z/; k/

of the space of Siegel cusp forms of even weight for Sp.2;Z/ W

k 10 12 14 16 18 20 22

dk.2/ 1 1 1 2 2 3 4

These authors also give more general tables for modular forms transforming
according to a representation of GL.2;C/ and for more general � � Sp.2;R/
such as congruence subgroups and quaternion groups. Wakatsuki notes that one can
use such dimension formulas to aid in understanding the Jacquet–Langlands–Ihara
correspondence for Sp.2;R/:

The dimensions of the spaces of Siegel cusp forms for Sp.3;Z/ were computed
by Eie and Lin [161] as well as Tsuyumine [619]. One finds for example that the
first time (for even k) that dimM .Sp.3;Z/; k/ � 2 is k D 10:

Tsuymine [619] gives a long table for

mdk.3/ D dimM .Sp.3;Z/; k/

as well as 34 generators of the ring of even weight modular forms for Sp.3;Z/:
He notes that the ring of Siegel modular forms for Sp.3;Z/ cannot be generated by
Eisenstein series. Instead he makes use of theta series known as theta constants. We
reproduce a bit of Tsuymine’s table here:

k 0 2 4 6 8 10 12 14 16 18 20

mdk.3/ 1 0 1 1 1 2 4 3 7 8 11

See Poor and Yuen [492] for dimensions of spaces of Siegel modular forms
of low weight for Sp.4;Z/. They find for example that dimS .Sp.4;Z/; 8/ D 1;

dimS .Sp.4;Z/; 12/ D 2; and that the dimensions in lower weights are 0. William
Duke and Özlem Imamoglu [147] find a multitude of results of this sort for small
weights and small n in Sp.n;Z/: There is a conjectural formula for dimensions of
spaces M .Sp.n;Z/; k/ in general. See T. Ibukiyama and H. Saito [314]. Wikipedia
has a long table of dimM .Sp.n;Z/; k/ going out to n D 9: For more information
on Siegel modular forms for Sp.n;Z/; n � 4, see the website: www.lmfdb.org.

www.lmfdb.org
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Applications of Siegel modular forms are discussed by A. Ghitza in [217]. Duke
[145] gives applications to coding theory. Applications to cryptography can be found
in Kirsten Eisenträger and Kristin Lauter [162] as well as Kristin Lauter and Tonghai
Yang [397].
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“Mathematics tries to replace reality with a dream of order. It is perhaps for this reason
that mathematicians are often such strange and socially inept people. To devote oneself
to mathematics is to turn away from the physical world and meditate about an ideal world
of thoughts. The striking thing is that these pure mathematical meditations can in fact
make fairly good predictions about messy matter. Eclipses are predicted; bridges are built;
computers function . . . . ”

From Rudy Rucker, Mind Tools, Houghton Mifflin, Boston, 1987, p. 156.



Index

A
A; a; abelian Lie group and its Lie algebra, 6,

84, 133, 360, 366
an; sl.n C 1;C/, Lie algebra of the special

linear group, 346
abelian integral, 162, 401, 426
AC.�; �/; space of Maass cusp forms, 238
A0.�; �/; space of Maass forms on determinant

one surface, 240
action of

G on G=K, 9, 10, 12, 29, 75, 118, 122, 349,
367, 399

G on boundary, 25, 126, 154, 389
adelic theory, 4, 5, 56, 70, 158, 216, 237, 245,

259, 272, 304, 319, 332, 409, 420, 429,
442

adjoint of a differential operator, 50, 110, 269
adjoint representation, 154, 340, 345, 358, 366
A.�; �/; space of Maass forms or automorphic

forms, 236, 238–240, 242, 244, 246,
258, 259, 266, 270, 272, 275–277,
282–284, 303, 306, 308–310, 312–315,
428

algebraic integer, 404
algebraic number field, 159, 171, 273, 330,

338, 401, 408, 417, 429, 436
analytic continuation, 55, 156, 231, 245, 252,

259, 271, 304, 318, 421, 428, 437
arc length, 8, 16, 27, 40, 242, 370, 375, 390,

399
arithmetic quantum chaos, 136
Arthur trace formula, 239, 319, 442
Artin conjecture, L-functions, and reciprocity,

5, 158, 237, 314, 332
Arzelà-Ascoli theorem, 323

associated parabolic subgroups, 275, 320, 327
asymptotics

Eisenstein series, 277, 280
K-Bessel functions, 60
number-theoretical quantities, 6, 139, 164,

232, 239, 322, 401, 443
spherical functions, 86, 93, 98, 111, 123,

128, 134, 395
asymptotics/functional equations principle,

108, 122, 277, 327, 395
automorphic form, 4, 159, 162, 204, 236, 266,

332, 355, 416, 420, 428, 442
automorphic function, 425

B
Babylonian reduction, 15
base change, 159, 332, 425
Bergman kernel, 446
Bessel function

I-Bessel function, 284
J-Bessel function, 56, 66, 96
K-Bessel function, 56, 65, 71, 283, 286,

287, 396, 431
k-Bessel function, 58, 61, 70, 130, 295, 306

beta function, 60, 110, 128, 301, 395
bn; so.2n C 1;C/; the Lie algebra of an

orthogonal group, 346
Borel or minimal parabolic subgroup, 279,

290, 293, 389, 392
boson field, 338, 401
boundary

fundamental domain, 173, 187, 193, 197,
277, 281, 327
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boundary (cont.)
symmetric space, 14, 24, 25, 39, 46, 93,

109, 119, 122, 126, 154, 389, 392, 397
bounded symmetric domain, 355
Bruhat decomposition, 279, 289, 303, 389
Bruhat-Tits building, 334

C
calculus of variations, 8
Campbell (-Baker)-Hausdorff formula, 84, 342
Cartan classification of symmetric spaces, 3,

20, 356, 357
Cartan decomposition, 348, 351–353, 358, 362,

371, 376, 386, 389
Cartan involution, 84, 348, 350, 352, 353, 358,

360, 378
Cartan subalgebra, 382
Cartan’s fixed point theorem, 356
Cauchy-Binet formula, 99, 147
Cauchy-Riemann equations, 419, 422
Cayley graph, 332
Cayley transform, 356, 403, 447
central limit theorem, 3, 98, 131, 135
centralizer, 279, 290, 329, 360, 371, 374, 379,

443
change of variables for Pn summary, 37–40
character, 57, 58, 69, 93, 159, 311, 314, 332,

440, 441
characteristic function of a random variable,

134
chi-square distribution, 95
Chowla-Selberg method of obtaining Fourier

expansions of Eisenstein series, 284
circle problem, 67, 322
class field, 401, 420
class number, 3, 4, 159, 171, 406, 410, 436,

443, 446
class one representation, 80
class one spherical functions, 74
classification

complex simple Lie algebras, 346
symmetric spaces, 356, 357

closed geodesic in fundamental domain, 159,
160

cn D sp.n;C/; the Lie algebra of the
symplectic group, 346

coding theory, 168, 449
coherent states, 3, 338
cohomology of arithmetic groups, 162, 239
color perception, 400
compact fundamental domain, 328, 330, 415,

416

compact Lie group, algebra, K; k, 350, 358,
360, 362, 366, 368, 370

compact operator, 323
compact real form of a complex semisimple

Lie algebra, 351, 355, 359, 382
compact symmetric space, 355–357
compact type Lie algebra, 348
compactification, 162, 191, 213, 276, 282, 389,

414, 425
complete Riemannian manifold, 346, 376
complexification of a Lie algebra, 67, 351, 355,

360, 362, 382
composition of random variables, 132
conditional distribution, 41
cone, 12, 175, 186, 191
confluent hypergeometric function, 56, 68, 69,

276, 283
congruence subgroup, 5, 158, 239, 245, 260,

271, 277, 322, 420, 425, 427, 428, 448
�.N/; congruence subgroup, 239
conjugacy class, 319, 329, 443, 445–447
conjugacy of all maximal compact subgroups,

356
conjugation of

a complex simple Lie algebra, 351, 353
an algebraic number field, 407–409, 415,

417, 445
quaternions, 398

constant term, 238, 275, 277, 282, 301, 302,
308, 317, 323, 419

continued fractions, 160
continuous spectrum, 236, 282, 321, 329, 331
converse theorem, 5, 158, 259, 271, 313, 322
convex hull, 115, 191, 251, 254, 256
convolution, 20, 28, 29, 33, 54, 75, 76, 79, 110,

114, 131, 133–135, 158, 257, 323, 335,
397, 440, 442

coprime symmetric pair, 413, 424
correlation, 41, 42, 96, 146
coset representatives for SL.n;Z/=P.n � 1; 1/,

291
coset representatives for non-singular k � k

integral matrices modulo GL.k;Z/, 229
coset representatives for rank n � 1 integral

n � .n � 1/ matrices modulo
GL.n � 1;Z/, 293

covariance, 40–42, 94, 133
crown of a symmetric space, 132, 155, 315
cryptography, 169, 195, 449
crystallography, 168, 169
cubic number field, 5, 158, 239, 272, 276, 330,

331
curse of the higher rank Eisenstein series, 265,

269
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curvature, 356
cusp form, 238, 281, 289, 295, 297, 306, 308,

310, 312–314, 327, 419, 426–428, 448
cusp of a fundamental domain, 276, 406,

410–412
cuspidal spectrum, 320

D
D.G=K/; D.Pn/; invariant differential

operators on symmetric space, 29, 30,
32, 33, 43, 45, 47, 50, 51, 54, 57, 58, 60,
70, 73, 74, 76, 77, 81, 89, 108, 110, 115,
154, 236, 238, 241, 259, 266, 390, 391,
397

decomposition for n � k integral rank k
matrices, 227

Dedekind eta function, 232, 276
Dedekind zeta function, 4, 55, 157, 228, 338,

401, 406, 421, 430, 436, 437
densely wound line in a torus, 213, 344
density function of a random variable, 132, 135
determinant one surface

SFn, 198–201, 204, 209, 210, 212–214,
326, 327

SMn, 214–216, 218, 221, 224, 225, 232,
235, 240, 259, 265, 272

SPc
2, 398, 400, 402, 410, 411, 437

SPK
n , 409

SPn, 2, 19, 25, 39, 40, 55, 111, 117, 118,
121, 123, 156, 190, 214, 240, 242, 258,
348

dictionary of Lie groups, Lie algebras, 343,
344, 347, 349, 379

different, 418, 420, 430, 436
differential of

action of G on G=K, 12, 349
exp, 342, 386–388
Int.g/, 384
multiplication, 377

differential operators on a symmetric space, see
D.G=K/; D.Pn/; invariant differential
operators on symmetric space

dimensions of spaces of automorphic forms,
239, 332, 355, 402, 421, 426, 427,
444–448

Dirac
delta function or distribution, 121, 132
sequence or family, 78, 111, 324
theory of electron spin, 398

Dirichlet character, 259, 313, 314
Dirichlet problem, 140

Dirichlet series twisted by character or modular
form, 158, 314, 420

Dirichlet series, Dirichlet L-function, 47,
158, 159, 246, 255, 258, 259, 265, 271,
276–278, 322, 420, 428, 429

Dirichlet unit theorem, 3, 171, 330
discrete spectrum, 239, 320–322, 328
discrete subgroup �; discontinuous action on

symmetric space, 331, 401, 402, 408,
412

discriminant of a number field, 171, 404, 407,
408, 431, 436

divisor function, 276, 283, 431
dn D so.2n;C/; Lie algebra of an orthogonal

group, 346
dual group or group of characters of a finite

abelian group, 439
dual lattice, 418, 422
dual Maass form, 312, 313
dual space of inequivalent irreducible unitary

representations of a group, 314, 439
dual vector space, 395, 396
duality between compact and non-compact

symmetric spaces, 355
duplication formula for gamma function, 107
Dynkin diagram, 168, 346

E
edge form, 189, 190
eigenfunctions of the Laplacian, 2, 29, 45, 76,

108, 154, 238, 320, 321, 328, 397, 443,
444

eigenvalue of the Laplacian, 122, 134, 140,
239, 241

eigenvalues of Hecke operators, 258, 273, 302
eigenvalues of random matrices, 3, 10, 11, 27,

133, 136–138, 142–144, 146, 151, 152
Eisenstein series, 240–248, 252, 258, 265, 267,

270, 272, 273, 275–278, 280–282, 284,
285, 287, 295, 298, 300, 302, 304, 306,
307, 312, 316–318, 320, 321, 327, 328,
332, 407, 419, 420, 424, 425, 429, 437,
438, 441, 442, 448

electrical engineering, 338
elementary row operations, elementary divisor

theory, 172, 192, 227, 242, 283, 286,
294, 303, 424

elliptic conjugacy class, 442–447
elliptic curve, 277, 401, 402
elliptic element of � , 443, 445–447
elliptic fixed point, 421, 427, 446
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elliptic partial differential equation, 77, 391
Epstein’s zeta function, 157, 159, 169, 223,

224, 232, 243, 265, 272, 276, 284, 285,
300, 307, 319, 325, 429–431, 437, 438,
442

ergodic theory, 211, 213
eta function, see Dedekind eta function
Euler angles, 26, 91, 92, 372, 373
Euler characteristic, 414
Euler differential operator, 87, 89
Euler product, 5, 158, 159, 204, 237, 259, 261,

265, 313, 428
Euler-Lagrange equation, 9
expectation or mean, 40–42, 94, 97, 102, 132,

137, 139
exp; exponential map, 340–344, 366, 386, 387
extreme form, 190, 191

F
face-centered cubic lattice, 168
factor analysis, 96
finite element method, 11
finite Euclidean plane graph, 151
finite upper half plane graph, 151
fixed point property, 356, 392
flag manifold, 155, 389
formal proof, 165
Fourier coefficient, 67, 69, 70, 162, 232, 276,

282, 283, 286, 289, 295, 297, 301–303,
308, 312–315, 322, 327, 422, 425, 426,
428, 429

Fourier expansions of automorphic forms,
56, 57, 69, 70, 73, 238, 271, 275–277,
282–284, 286, 289, 293–295, 297, 300,
301, 303–306, 308–312, 315, 418, 419,
422–424, 426, 428, 430, 431, 437

Fourier transform on
Euclidean space, 46, 66, 70, 150, 218, 319,

400, 432
finite abelian group, 440
symmetric space or Helgason-Fourier

transform, 47, 75, 97, 108–112, 114,
117, 118, 122, 130, 131, 134, 135, 238,
320, 321, 331, 395, 400

Fredholm determinant, 142, 143
Fredholm integral operator, 142, 145, 146, 148
functional equations, 4, 55, 65, 66, 70, 72, 108,

111, 115, 122, 124, 158, 236, 237, 245,
249–252, 254, 259, 269–271, 273–275,
277, 278, 282, 285, 306, 307, 312, 314,
317, 319, 327, 395, 420, 428, 430, 431,
435, 437

fundamental cone, 191

fundamental domain, 3–6, 8, 28, 140, 156, 163,
173, 175, 177, 180, 183, 184, 194, 195,
197–200, 204, 209–215, 219, 238, 239,
260, 265, 275, 278, 282, 319, 323, 327,
328, 330, 331, 337, 402, 403, 406, 408,
410–416, 418, 419, 423, 425, 429, 443,
446

fundamental set, 183
fundamental solution of the heat equation or

heat kernel, 131, 135, 319, 397, 400
Funk-Hecke theorem, 79

G
G; Lie group, usually semisimple or reductive,

noncompact with Lie algebra g, see Lie
group

G=K or KnG; symmetric space, see symmetric
space

�; discrete or discontinuous subgroup of G,
5, 6, 140, 154, 202, 204, 211–213, 215,
236, 238–240, 260, 322, 328, 337, 401,
402, 408, 409, 412, 414–416, 421, 427,
442–448

�; gamma function, 5, 40, 47–50, 55, 59, 60,
109, 130, 142, 157, 158, 239, 245, 260,
267, 270, 271, 277, 284, 286, 307, 312,
322, 414, 420, 424, 425, 427, 428, 431,
434, 448

Gaudin-Mehta distribution, 137, 142, 143
Gaudin-Mehta theorem, 143
Gauss sum, 277, 401
Gauss-Bonnet formula, 161, 414
Gaussian elimination, 15
Gaussian integers, 338, 402
Gelbart-Jacquet lift, 313, 315
Gelfand characterization of spherical functions,

79
Gelfand pair, 20
Gelfand-Naimark characterization of spherical

functions, 80
general linear group, GL.n;R/, 2, 7, 9, 19, 20,

32, 79
generators of discrete groups, 200, 212, 252,

380, 403
geodesic, curve minimizing distance, 2, 13,

17–19, 159, 160, 213, 339, 370, 374,
376, 390

geodesic-reversing isometry, 2, 19, 31, 50, 84,
339, 346, 349

geometric Langlands program, 336
Gindikin-Karpelevic formula for c-function,

395
Girko circle law, 152
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G D GL.n;R/; general linear group with Lie
algebra gl.n;R/, see general linear
group, GL.n;R/

GL.n;Z/; GL.n;OK/; modular group,
see modular group, Sp.n;Z/;
GL .n;OK/ ; SL .n;OK/

global field, 158
global function field, 336
global number field, 336
Godement’s mean value theorem, 391
Godement-Jacquet L-function, 312, 313
GOE level or eigenvalue spacing, 137, 138,

140, 141, 150, 151
Gram’s formula, 147, 148
Gram-Schmidt orthogonalization, 15, 48
Grassman variety, 155
Great Green Arkleseizure, 1
greatest common divisor of matrices, 227
Green’s functions or resolvent kernels, 27
Grenier’s fundamental domain, 194, 195,

197–200, 204, 206, 209, 210
Grenier’s reduction algorithm, 200
grossencharacter, 236, 271, 276, 420
group action, see action of
group representation, 44, 58, 70, 73, 74, 80, 90,

152, 158, 237, 272, 277, 314, 316, 335,
338, 345, 422, 426, 429, 448

GUE level or eigenvalue spacing, 138–140,
142–144, 146, 150

H
H; Poincaré or hyperbolic upper half plane, 2,

12, 14, 25, 28, 45, 73–75, 82, 111, 122,
131, 133, 136, 140, 154, 156, 159, 160,
174, 199, 201, 205, 212, 213, 243, 249,
319

H3
q; finite upper half space, 333

Hn; hyperbolic n-space, 408
Haar measure, 6–8, 22, 23, 28, 38, 40, 48,

49, 99, 102, 104, 105, 132, 216, 315,
382–384, 387

Hankel transform, 66
Harish-Chandra c-function, 69, 110, 111, 117,

122, 125, 128
Harish transform, 116, 331
Harish-Chandra’s integral formula for spherical

functions, 79, 395
Harish-Chandra, Chevalley, & Selberg theorem

on invariant differential operators, 32,
390

harmonic analysis on
Pn, 109
symmetric spaces, 109, 395

harmonic function, 25, 155, 391, 392
Hc; quaternionic upper half space, 331, 354,

399, 402, 403, 406, 407
heat equation, 131, 132, 135, 239, 319, 397,

400
heat kernel, 131, 132, 239, 246, 273, 397
Hecke correspondence between modular forms

and Dirichlet series, 306, 428, 429, 442
Hecke L-functions, 5, 159, 239, 271, 276
Hecke operators, 201, 202, 204, 213, 257–259,

264, 287, 288, 313, 335, 420, 421, 427,
429, 439, 444

H, Helgason-Fourier transform, 135
H, Helgason-Fourier transform, 46, 47, 75, 76,

93, 96, 97, 108–112, 114, 117, 118, 122,
130, 131, 134, 135, 238, 319, 321, 322,
331, 395, 396, 400

H0, Helgason-Fourier transform on
determinant 1 surface, 117

Hermite function or quantum mechanical
oscillator wave function, 144

Hermite polynomial, 144
Hermite-Mahler compactness theorem, 191,

415
Hermitian symmetric space, 355
highest point method, 4, 193, 194, 200, 413
Hilbert modular form, 417–421, 425, 444
Hilbert modular function, 420
Hilbert modular group, 408, 417, 444, 446, 447
Hilbert’s 12th problem, 420
Hilbert’s 18th problem, 4, 163
Hilbert-Siegel modular group, 414, 417
Hirzebruch-Riemann-Roch theorem, 355, 421,

427
Hn; Siegel upper half space, 276, 337,

354–356, 367, 368, 370, 375, 386, 390,
396, 412, 413, 421, 425, 427, 447

homogeneous space, G=H, 2, 10
Hopf-Rinow theorem, 346
horocycle, 210, 213
Huyghen’s principle, 132, 397
hyperbolic element of � , 159, 160, 329, 332,

443, 445, 447
hypergeometric function, 2, 56, 67–69, 96, 97,

276, 283
hypergraph, 333

I
I; Bessel function, see Bessel function
ideal class group, 410, 412, 419, 430, 437, 439,

441
ideal class zeta function, 421, 438
ideal in a Lie algebra, 340
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ideal in the ring of integers of a number field,
410–412, 419, 420, 429–432, 434

Ihara zeta function , 335
IK ; ideal class group of number field K, 410,

412, 419, 430, 431, 437, 439, 441
incomplete gamma function, 55, 95, 169, 225,

249, 256
incomplete theta series, 317, 327
independent random variables, 94, 132, 135
indicator function, 136, 171, 318, 335
Int.g/, 345, 346
integral basis of an ideal or Z-basis, 432
integral power function, 98, 102
integral test, 223, 231, 243, 244, 272, 419, 424,

430
invariant differential operator, see D.G=K/;

D.Pn/; invariant differential operators
on symmetric space

invariant integral operator, 28, 29
invariant vector field, 339
inversion formula for Helgason-Fourier

transform, 108, 109, 111, 121, 124, 136,
152, 238, 395, 400

inversion formula for Laplace transform, 46
involutive automorphism of a Lie group or Lie

algebra, 347, 349–351, 357
irreducible � , 211, 445
irreducible homogeneous bounded symmetric

domain, 356
irreducible representation, 58, 67, 69, 70, 80,

90, 93, 130, 158, 159, 314
irreducible symmetric space, 356, 357
Iwasawa decomposition, 10, 14–17, 21–24, 30,

33–37, 39, 41, 42, 44, 47, 51, 54, 55, 62,
64, 66, 83, 84, 116, 118, 119, 125, 155,
178, 181

J
J.z/; modular invariant, 420
J-Bessel, see Bessel function
Jacobi identity for Lie algebras, 340
Jacobi transformation, 15
Jacobian of

Z� D .AZ C B/.CZ C D/�1, 368
action of G on boundary of G=K, 25, 389
change of variables, 8
conjugation, 325
exp, 386
full Iwasawa decomposition, 22, 383, 385,

392
partial Iwasawa decomposition, 21
polar coordinates, 26, 133, 387
 W N ! K=M, 126

W D YŒg�, 20
Y D IŒT�, 24
Y D t1=nW, 215

Jordan algebra, 355
Jordan canonical form, 344

K
K; maximal compact subgroup of G with Lie

algebra k, 9, 349, 351, 352, 355, 357,
358, 398

K; algebraic number field, see algebraic
number field

K; Bessel function, see Bessel function
K-invariant random variable, 131–133, 135
Kepler conjecture, 165
Killing form, 341, 344, 348, 349, 351, 360,

369, 377, 379, 380, 383
Kirillov theory, 56, 58, 69, 154
Koecher zeta function, 157, 231, 232, 242, 243,

258, 265, 269, 307
Kontorovich-Lebedev inversion formula, 66,

111
Korteweg-de Vries equation, 163, 426
Kronecker limit formula, 276, 285
Kushner’s integral formulas, 100, 102, 104,

105

L
L-function, 5, 55, 72, 140, 158, 159, 204, 236,

237, 239, 251, 258, 261, 271, 276, 302,
308, 309, 312–314, 317, 401, 420, 421,
428, 429

Langlands conjecture on distribution of Fourier
coefficients of Maass cusp forms, 315

Langlands decomposition of parabolic
subgroup, 317

Langlands inner product formula for truncated
Eisenstein series, 318, 331

Langlands program, 5, 158, 237, 314, 332, 335
Laplace transform, 46, 47, 66, 97
Laplacian, 8, 9, 25, 29, 30, 33, 34, 36, 40, 55,

56, 70, 87, 98, 108, 122, 131, 134, 136,
140, 225, 239–241, 277, 319, 335, 336,
390, 397, 399, 443

lattice, 4, 8, 70, 163–166, 168–170, 190, 191,
195, 219, 225, 230, 257, 286, 322, 335,
416, 418, 422

lattice packing of spheres, 8, 163, 165, 166,
168, 169, 190, 191, 219

LDU factorization, 15
Leech lattice, 168
Legendre function, 75, 113
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Lie algebra, 83, 154, 339–351, 355, 357–362,
371, 376, 378–380, 382

Lie bracket, 83, 339, 348, 361, 378
Lie group, 2, 6, 7, 19, 40, 48, 67, 73, 83, 84, 93,

122, 131, 136, 153, 154, 168, 211, 236,
309, 338, 339, 341–344, 346–351, 354,
356–358, 360, 366, 370, 374, 376, 379,
380, 382, 389–391, 394, 414, 417

lifting of automorphic forms, 158, 322
likelihood function, 42
local field, 334
Lorentz-type group, O.p; q/; SO.p; q/, 345,

372, 415
loxodromic element of � , 331, 442, 443

M
M.�; k/, 417–419, 421–424
M; M0; centralizer and normalizer of a or A

in K and their Lie algebra m, 290, 360,
374, 379

Maass form, 57, 236, 238–240, 244–246, 258,
259, 266, 270, 272, 275–277, 282–284,
303, 304, 306, 308–310, 312–315

Maass form of type �, 310, 312, 314
Maass zeta function, 273
Maass-Selberg relations, 309, 318
Macdonald-Dyson conjecture, 48
Mahler’s inequality in the geometry of

numbers, 181
matrix of regression coefficients, 41
maximal boundary, 155, 389
maximum likelihood estimate, 42
mean, 40–42, 94, 95, 132, 137, 139
mean value theorem for harmonic functions,

391, 393
Mehler-Fock inversion formula, 111, 113
Mellin transform, 46, 71, 72, 116, 117,

157–159, 258, 259, 306, 313, 331, 421,
428

method of inserting larger parabolic subgroups,
236, 246, 249, 251, 255

mini-max principle, 11
minimal parabolic subgroup, see Borel or

minimal parabolic subgroup
Minkowski’s fundamental lemma in the

geometry of numbers, 170, 171
Minkowski’s inequality for successive minima,

180
Minkowski-Hlawka theorem in the geometry

of numbers, 165, 175, 222, 231
Minkowski-reduced matrix, 173, 175–177, 180
Mn; Minkowski’s fundamental domain,

173–175, 177, 180, 184–187, 189–191,

193, 214–216, 218, 219, 231, 234, 240,
259, 265, 267, 269, 270, 272, 286, 305

modular form, 5, 47, 58, 73, 158, 162, 232,
236, 276, 284, 312, 322, 331, 417–429,
444, 446–449

modular function associated with Haar
measure, 216, 383

modular group, Sp.n;Z/;
GL .n;OK/ ; SL .n;OK/, 3, 4, 69,
162, 204, 245, 257, 259, 276, 303, 308,
337, 401, 402, 407, 412, 414, 417, 420,
444, 446, 447

monomial symmetric function, 87
multiplicity one theorem, 70, 82, 312
multivariate statistics, 2, 40–42, 67, 94–96, 131
mY ; minimum of YŒa� 2 Pn over a 2 Z

n � 0,
163–165, 170, 179, 222, 225, 416

N
N:n; Nilpotent Lie group and its Lie algebra, 7,

38, 56, 58, 69, 119, 125, 154, 238, 279,
288, 322, 332, 360, 361, 366, 380, 383,
389

N; n opposite nilpotent group, Lie algebra, 82,
361, 389

nilpotent group trace formula, 332
norm in a field extension, 333
norm of a quaternion, 398
norm of an ideal, 431
norm of hyperbolic or loxodromic � 2 � , 443
norm of z 2 Hm, 417, 419
normal probability density, 40, 94, 131
normal real form of a complex semisimple Lie

algebra, 351, 353, 360–362
normalization of a power function, 50
normalizer, 290, 379
numerical integration, 168, 169, 204

O
O.n/; o.n/, orthogonal or rotation group and its

Lie algebra, 9, 10, 18, 22, 28, 38, 46, 48,
49, 65, 66, 72, 74, 77, 85, 90, 91, 93, 97,
99, 102, 104, 105, 109–112, 114, 118,
122, 123, 190, 290, 317, 319, 324, 354,
358, 360, 371

O.p; q/, see Lorentz-type group,
O.p; q/; SO.p; q/

OK ; ring of integers in an algebraic number
field K, 159, 277, 401, 402, 404,
408–411, 414, 417–421, 429–431, 437,
439, 441–444

one-parameter subgroup, 342
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orbit method, 154
orbital integral, 152, 154, 319, 329–331, 446,

447

P
P; p from the Cartan decomposition, 348, 350,

358
p-adic numbers, 27, 56, 152, 204, 257, 309,

335, 409
Painlevé ordinary differential equations,

142–144
Paley-Wiener theorem, 108, 111, 116, 124
parabolic element, 4, 416, 427, 442, 445, 447
parabolic subgroup, 58, 66, 125, 155, 232, 234,

238, 240, 243–247, 249, 255, 256, 271,
272, 274, 275, 278–281, 284, 290, 291,
293, 295, 298, 308, 309, 311, 317, 318,
320, 327, 389

parabolic term, 331
paradox associated with balls in high-

dimensional spaces, 223
partial correlation, 41, 42
partial covariance, 41
partial Iwasawa decomposition, 10, 14, 37, 51,

54, 66, 178, 194, 195, 197, 198, 221,
234, 238, 241, 247, 248, 255, 277, 282,
284–286, 320, 367–370, 375, 396

partitions, 14, 86–88, 232
Pauli matrices, 398
perpendicular bisectors method, 212, 403, 412,

420
Picard modular group, 402
Plancherel formula, spectral measure, 55, 58,

110, 136, 152, 154
Pn; space of positive real n � n symmetric

matrices, 1, 2
P�

n ; space of positive 2n � 2n symplectic
matrices, 354, 367

Pc
n ; positive n � n Hermitian matrices, 398, 409

PK
n : space of positive n � n matrices over

number field K, 409, 410
Poincaré series, 419, 420
Poincaré upper half plane, see H; Poincaré or

hyperbolic upper half plane
point-pair invariant, 29, 31, 54, 333
Poisson integral formula, 25, 392, 397
Poisson kernel, 25
Poisson level (or eigenvalue) spacing, 137,

140, 151
Poisson summation formula, 6, 75, 218, 230,

266, 285, 286, 296, 298, 319–323, 328,
402, 432

polar coordinates, 26, 27, 36, 38, 49, 370–374,
382, 387

poles of Koecher zeta function, 308
positive definite spherical function, 80
positive Hermitian matrix, 399
positive matrix, 1, 2
positive matrix over a number field, 409
positive restricted root, 361
potential theory, 391–393
power function, see ps; power function, see ps;

power function
probability density, 40, 94, 95, 131, 132, 135,

137, 139, 140, 142, 146, 147, 150, 151
prolate spheroidal wave function, 150
ps; power function, 44–46
pseudoalgebraic group, 358

Q
quadratic form, 1, 47, 161–163, 169, 170, 195,

216, 219, 227, 236, 338, 401, 402, 409,
416, 424–426

quadratic number field, 159, 402, 404, 407
quantum chaos, 136
quantum field theory, 329, 336, 338
quantum mechanical oscillator wave function

or Hermite function, 144
quantum mechanics, 3, 136, 163, 398, 426
quantum statistical mechanics, 47, 136, 338
quaternion, 397
quotient space, see homogeneous space, G=H

R
Radon transform, 8, 154, 397
Ramanujan conjecture, 211, 237, 313, 314, 335
Ramanujan graph, hypergraph, 332–335
Ramanujan hypergraph, 333
Ramanujan sum, 295
random matrix theory, 136, 140, 143, 144, 150
random regular graph, 151
rank of symmetric space, 390
Rankin-Selberg L-function, 237, 239, 313, 314
reductive group, 19, 158
regulator, 330, 436
reproducing kernel, 143, 445–447
resolvent operator, 443
restricted root, 360
Riemann hypothesis, 4, 139, 335
Riemann zeta function, 4, 5, 139, 146, 156,

157, 159, 161, 228, 229, 243, 251, 265,
307

Riemann’s method of theta functions, 230, 245,
257, 258, 265, 304, 407
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Riemann-Lebesgue lemma, 115, 154
Riemann-Roch theorem, 162, 355, 421, 427,

446
Riemannian manifold, 12, 13, 20, 29, 33, 34,

36, 136, 140, 212, 239, 339, 346, 349,
356, 357, 370, 376, 377

Riesz type integrals, 153
right spherical function, 44
Roelcke-Selberg spectral decomposition, 319
Roelcke-Selberg-Mellin inversion formula,

158
root, 168, 338, 360–362, 365, 369, 379, 380,

387, 388
root space decomposition, 360, 363, 365, 380
rotation group, see O.n/; o.n/, orthogonal or

rotation group and its Lie algebra

S
S.�; k/; space of cusp forms, 421
Satake compactification, 276, 282, 425
Sato-Tate distribution, see Wigner semi-circle

(or Sato-Tate) distribution
Schrödinger, 136, 137
Schwartz space, 111, 132, 154, 319
sectional curvature, 356
Segal-Shale-Weil representation, 163, 426
Selberg eigenvalue conjecture, 314
Selberg integral, 49, 142
Selberg principle, 332
Selberg trace formula, 4, 154, 159, 193, 329,

331, 332, 337, 402, 421, 427, 442–444
Selberg transform, 76
Selberg zeta function, 137, 443
Selberg’s basic lemma, 76, 321, 328
Selberg’s differential operators, 268
Selberg’s Eisenstein series, 244, 246–248, 252,

286, 300, 306
Selberg’s methods of analytic continuation of

Eisenstein series, 236, 245, 246, 248,
252, 265, 266, 284

self-reproducing kernel, 143, 146, 446, 447
semisimple Lie group, algebra, 3, 19, 33, 93,

122, 154, 236, 239, 341, 345–351, 355,
356, 358, 360, 362, 365, 366, 370, 374,
376, 379, 380, 382, 383, 389, 390, 394,
416

SFn; determinant one surface in Grenier
fundamental domain, see determinant
one surface

Siegel cusp form, 426, 427, 429, 447, 448
Siegel modular form, 421–424, 426–429,

447–449
Siegel modular function, 425

Siegel modular group, see Sp.n;Z/; Siegel
modular group

Siegel ˆ-operator, 424, 426
Siegel set, 183, 185, 199
Siegel’s main theorem on quadratic forms, 162,

163, 216, 227, 236, 338, 402, 424–426
simple associative algebra, 4, 157, 227, 228,

265, 414
simple Lie group, Lie algebra, 2, 19, 48, 168,

211, 341, 345, 346, 348, 350, 351, 357
simple root, 278–280, 380
simply connected Lie group, 344, 349, 350,

398
singular series, 283, 303
singular Siegel modular form, 426
singular value decomposition, 26
SL.n;C/; sl.n;C/; complex special linear

group, Lie algebra, 346, 351, 357, 361
SL.n;R/; sl.n;R/; special linear group,

Lie algebra, 19, 117, 122, 155, 211,
214–216, 219, 222, 226, 239, 329, 344,
346, 348, 349, 351, 352, 362, 363, 389

SL.n;Z/; modular group, 211, 214–216, 219,
226, 227, 239, 257, 291–293, 303, 309,
331, 423

SMn, see determinant one surface
SO.n/; so.n/, special orthogonal group, Lie

algebra, 19, 214, 346, 348–351, 362
SO.p; q/, 357
SO�.2n/, 357
solitons, 163, 338, 401
Sp.n/; compact symplectic group, 352
Sp.n;R/; sp.n;R/; symplectic group, Lie

algebra, 19, 67, 331, 337, 345, 346,
353–355, 357, 358, 360–364, 366–370,
373–375, 381, 386, 396

Sp.n;Z/; Siegel modular group, 4, 5, 67, 69,
158, 162, 163, 193, 204, 236, 245, 257,
259, 276, 282–284, 396, 401, 412–414,
417, 421–428, 447, 448

SPc
2; determinant one positive Hermitian 2� 2

matrices, 398–400
spectral resolution of differential operators,

Fourier analysis on fundamental
domain, 211, 277, 327, 328, 396

spectral theorem for a symmetric matrix, 10
sphere packing problem, 163–166, 168
spherical function, 73–82, 86, 89, 93, 96–98,

111, 113–115, 122–125, 127, 132, 136,
253, 273, 389, 394, 395, 400

spherical transform, 76, 111, 115
SPn, see determinant one surface
SPK

n ; determinant one surface in positive
matrix space over a number field, 409
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Stiefel manifold, 66
string theory, 336, 338
SU.n/; su.n/, special unitary group, Lie

algebra, 93, 276, 331, 350, 351
SU.p; q/; su.p; q/, 351, 352
SU�.2n/; su�.2n/, 352
subalgebra of a Lie algebra, 340
successive minima of a quadratic form, 174,

175, 179–181, 193, 200, 213
supermanifold, 336
supertrace formula, 336
surface area of unit sphere in R

n, 166
symmetric polynomials, 33, 54, 81
symmetric space, 2, 3, 9, 19, 20, 25, 33, 73, 76,

77, 83, 84, 93, 108, 109, 136, 154, 204,
276, 337, 339, 346–351, 354–358, 367,
378, 398, 401, 409

symplectic group, see Sp.n;R/; sp.n;R/;
symplectic group, Lie algebra

T
Taylor expansion, 77, 89, 101, 150, 342
tempered representation, 314
tessellation, 209, 212, 403
theta function, 4, 108, 157, 162, 163, 230, 245,

257, 258, 265, 266, 268, 271, 282, 286,
319, 401, 402, 407, 420, 421, 425, 426,
430

total differential, 30, 35
totally geodesic submanifold, 19, 160, 213,

370, 390
totally positive element of a number field, 418
totally real number field, 158, 160, 330, 331,

408, 414, 417, 418, 420, 436, 444, 446
trace formula for GL.n;Fq/, 332
trace formula for Hilbert modular group, 444
trace formula for Picard modular group, 443
trace formula for Siegel modular group, 446
trace of z 2 Hm, 418
triangular group, 39, 40, 44, 48, 61, 71, 80, 111,

309
truncation of the fundamental domain, 282,

318, 331
tube domain, 115, 251, 256
twisted trace formula, 332

U
U.n/; u.n/; unitary group and its Lie algebra,

352, 354, 358
U.p; q/; u.p; q/, 351
unimodular group, 383
unit disc, generalized, 25, 140, 356, 447

unit group in an algebraic number field, 3, 160,
171, 410, 412, 419, 439, 444

unit sphere in R
n; volume, 166

universal enveloping algebra, 390

V
Vandermonde determinant, 141, 145
volume element on

Pn, 20, 215
quaternionic upper half space Hc, 399
Siegel upper half space Hn, 386

volume of
fundamental domain for GL.n;Z/, 219
fundamental domain for Hilbert modular

group, 408
fundamental domain for Picard modular

group, 406
fundamental domain for Siegel modular

group, 414
O.n/, 48
unit sphere in R

n, 164
Voronoi

map, 191
points, 191
polyhedron, 166, 168, 191

W
wave equation, 3, 76, 132, 397
weakly symmetric space, 20, 31
weight of a modular form, 162, 232, 239, 276,

417–422, 424–427, 429, 444, 446–448
Weyl chacter formula, 93
Weyl chamber, 112, 379, 393
Weyl group, 27, 70, 252, 279, 282, 290, 318,

372, 374, 378–382, 395
Weyl law, 239, 318, 322, 443, 444
Whittaker function, 69, 70, 72, 82, 128, 130,

211, 259, 283, 309, 311–313, 315
Whittaker model, 56, 70, 277
Whittaker-Fourier expansion, 309–314
Wigner semi-circle (or Sato-Tate) distribution,

137, 142, 146, 147, 315
Wigner surmise, 137, 150
Wishart distribution, 94–97
Wishart’s integral formula, 95, 231, 233

Z
Z-basis, 163, 164, 167, 169
zeta function of

a hypergraph, 335
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an ideal class, see ideal class zeta function
Dedekind, see Dedekind zeta function
Epstein, see Epstein’s zeta function
Ihara, see Ihara zeta function
indefinite quadratic form, 425
Koecher, see Koecher zeta function
Maass, see Maass zeta function

Riemann, see Riemann zeta function
Selberg, see Selberg zeta function
simple algebra Q

n�n, 4
zeta function of Riemann at odd integer

argument, 161
zonal polynomial, 86–88, 96, 97
zonal spherical function, 74
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