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Preface

“Mathematical science is the queen of sciences, and arithmetic is the queen of math-
ematics”, Gauss said. Indeed, number theory is the study of whole numbers, also
called positive integers, the first ones we learn at school. Thus, the theory of num-
bers deals with problems that are often both easy to understand and very hard to
solve. For instance, one of the most famous number theory problems is Fermat’s
last theorem, abbreviated as FLT, stating that the Fermat equation xn + yn = zn,
where x, y, z are positive integers and n � 3 is an integer, has no solution. This
proof came from Andrew Wiles in 1995, after more than 350 years of efforts from
many mathematicians, such as Ernst Kummer, Sophie Germain, André Weil, Jean-
Pierre Serre, Gerd Faltings, Kenneth Ribet and Yves Hellegouarch.

The author’s initial aim was simply to have his book entitled Thèmes d’Arithméti-
que, published in 2006 by Ellipses eds, translated into English. But things turned out
differently as what you are holding here is an extended, more complete version of
the French edition. Not only have the chapters doubled in size but many exercises,
all of them with complete solutions, have been added and, more importantly, the sec-
tions called Further Developments included in each chapter have been significantly
enlarged.

Each chapter is divided into three parts. The course itself is suitable for under-
graduates. As for the exercises, they either illustrate the course or are designed as
springboards for approaching other related topics. Finally, the section Further De-
velopments introduces trickier notions and even occasionally topics that researchers
are familiar with. Many results are proved and whenever the proof goes beyond the
scope of the book, the reader is cross-referred to the standard sources and refer-
ences in the subject area. The book includes among other things an almost exhaus-
tive exposition of the recent discrete Hardy–Littlewood method developed by Enrico
Bombieri, Martin Huxley, Henryk Iwaniec, Charles Mozzochi and Nigel Watt, ap-
plications of Vaughan’s famous identity, a historico-mathematical introduction to
the class field theory together with a detailed illustration of the contribution of an-
alytic tools to the tricky problems of algebraic number theory, such as obtaining
upper bounds for class numbers or lower bounds for discriminants and regulators of
algebraic number fields.
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vi Preface

The first two chapters are intended to supply the main basic tools an undergrad-
uate student should have a good grasp of to acquire the necessary grounding for
subsequent work. The emphasis is on summation formulae such as Abel and Euler–
MacLaurin summations that are unavoidable in modern number theory.

Chapter 3 is devoted to the study of prime numbers, from the beginning with
Euclid’s work to modern analysis relating the distribution of primes to the non-
trivial zeros of the Riemann zeta-function. A fairly complete account of Cheby-
shev’s benchmarking method is given, along with totally explicit estimates for the
usual prime number functions.

Chapter 4 extends the analysis of the previous chapter by dealing with multiplica-
tive functions. A large number of these are given, their average order most of the
time being studied in detail through the Möbius inversion formula and through some
basic results in summation methods. A complete study of the Dirichlet series from
an arithmetic viewpoint is supplied. Furthermore, some estimates for other types of
summation are investigated, such as multiplicative functions over short segments or
additive functions. Finally, a brief account of Selberg’s sieve and the large sieve is
also given.

The study of the local law of a certain class of multiplicative functions requires
counting the number of points with integer coordinates very near smooth plane
curves. The aim of Chap. 5 is to provide some nice results of the theory in a very
intricate, but elementary1 way. The methods of Martin Huxley and Patrick Sargos
and Michael Filaseta and Ognian Trifonov are completely investigated to show how
some clever combinatorial ideas, introduced in the 1950s essentially by Heini Hal-
berstam, Klaus Roth and Hans-Egon Richert, and in the 1970s by Sir Henry Peter
Francis Swinnerton-Dyer, may lead to very good results which appear to be well
beyond the scope of any current exponential-sums method.

As can be seen with the famous Dirichlet divisor problem, many questions in
analytic number theory reduce to estimate certain exponential sums. Chapter 6 is
devoted to the theory of such sums, following the lines of van der Corput’s method,
eventually leading to its A- and B-processes and, after some rearrangements by Eric
Phillips, to the exponent-pairs method, systematically used nowadays. Historically,
three methods were developed independently in the 1920s: among other things,
Hermann Weyl treated exponential sums with polynomials, Johannes Gualtherus
van der Corput extended Weyl’s ideas to quasi-monomial functions combining the
Poisson summation formula and the stationary phase method, and Ivan Matveevich
Vinogradov’s work dealt with counting the number of solutions of certain tricky
Diophantine systems. This chapter could be viewed as an analytic equivalent to
Chap. 5.

Finally, Chap. 7 is an introduction to algebraic number theory, which arose from
both a generalization of the arithmetic in Z and the necessity to solve certain Dio-
phantine equations. Although the idea of using a larger field than Q was already
known at that time, the theory really took off in the 19th century, and among the

1Note that the word “elementary” means only that the complex analysis is not used.



Preface vii

founding fathers the names of Ernst Kummer, Richard Dedekind, David Hilbert,
Leopold Kronecker and Hermann Minkowski may be mentioned. The chapter is
aimed at showing that the ideal numbers were the right tool to restore unique fac-
torization. Furthermore, the reader is invited to compare the major results, such as
the fundamental theorem of ideal theory or the zero-free region of the Dedekind
zeta-function, with the corresponding ones from Chap. 3.

Olivier BordellèsAiguilhe, France
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Notation

General Notation

Z, Q, R, C are respectively the sets of integers, rational numbers, real numbers and
complex numbers. If a ∈ Z, we may also adopt the notation Z�a of all integers
n � a. When a = 1, the corresponding set is usually denoted1 by N. Finally, if p is
a prime number, Fp is the finite field with p elements.

Letters n, m and a, b, c, d , k, l, r , . . . refer to integers, whereas p indicates a
prime number.

a | b means a divides b, i.e. there exists k ∈ Z such that b = ka. Similarly, a � b

means a does not divide b.
a | b∞ means p | a =⇒ p | b.
pk ‖ n means pk | n and pk+1

� n.
P +(n) is the greatest prime factor of n ∈ Z�2, with the convention P +(1) = 1.

This symbol is sometimes abbreviated as P(n).
(a, b) and [a, b] are respectively the greatest common divisor and the least com-

mon multiple of a and b. We set the gcd and lcm of three positive integers in the
same way, as for instance

(a, b, c) = (
(a, b), c

)

and extend this definition by induction to a finite number of positive integers.
For any positive integer n, the number n! = 1 × 2 × · · · × n is the factorial of n,

with the convention that 0! = 1.
For any x ∈R, [x] is the integer part2 of x, the unique integer verifying

x − 1 < [x]� x

1This is a difference between Anglo-Saxon countries and France where the symbol N denotes the
set of non-negative integers, sometimes denoted by N0 in the UK and the US. The aim of the
notation Z�a is then to avoid any risk of confusion, so that in this book N = Z�1 and Z�0 is the
set of non-negative integers.
2Some authors also use the floor and the ceiling functions, denoted respectively by �x� and �x	,
but there will be no need to make such a distinction in this book.
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xii Notation

Fig. 1 Function ψ

and �x	 is the nearest integer to x. The notation {x} means the fractional part of x

defined by {x} = x − [x]. Hence, for any x ∈R, we have

0 � {x} < 1.

We will also make use of the functions

ψ(x) = {x} − 1

2
and ψ2(x) =

∫ x

0
ψ(t)dt = ψ(x)2

2
− 1

8
.

The function ψ , see Fig. 1, called the first Bernoulli function, is an odd, 1-periodic
function and then admits a Fourier series development. Since ψ2(0) = ψ2(1) = 0,
the function ψ2 is also 1-periodic and then bounded. Furthermore, it is not difficult
to check that

∣∣ψ(x)
∣∣� 1

2
and − 1

8
�ψ2(x) � 0.

The distance of a real number x to its nearest integer is written ‖x‖. Hence we
have

‖x‖ = min

(
1

2
+ ψ(x),

1

2
− ψ(x)

)
.

logx is the natural logarithm and ex or expx is the exponential function. It is also
convenient to define the functions e(x) = e2πix and ea(x) = e(x/a) = e2πix/a .

If E is a finite set of integers, |E | is the number of elements belonging to E .

Sums and Products

If N � 1 is any integer, we set

N∑

n=1

f (n) = f (1) + f (2) + · · · + f (N)
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whilst
∑

p�N

f (p) = f (2) + f (3) + f (5) + · · ·

where the latest summation runs through prime numbers p � N . The two sums are
related thanks to the following characteristic function of primes

1P(n) = 1 +
[

2 − τ(n)

n

]
=

{
1, if n is prime

0, otherwise

where τ(n) counts the number of positive divisors of n (see Chap. 4), so that

∑

p�N

f (p) =
N∑

n=2

1P(n)f (n).

If x � 1 is a real number, then by convention

∑

n�x

f (n) =
[x]∑

n=1

f (n) and
∑

p�x

f (p) =
∑

p�[x]
f (p).

Certain sums run through some special subsets of Z. For instance

∑

d|N
f (d)

means that the sum is taken over the positive divisors of N , e.g.

∑

d|15

f (d) = f (1) + f (3) + f (5) + f (15) and
∑

p|15

f (p) = f (3) + f (5).

These examples are also valid for the products. For instance

∏

p�x

f (p) = f (2) × f (3) × f (5) × · · ·

where the product runs through all prime numbers p � [x].
It is important to note that, in all cases, the index p means a sum or a product

running through prime numbers exclusively.

Functions

Let a < b be real numbers and k be a non-negative integer. The notation f ∈
Ck[a, b] means that f is a real-valued function k-times differentiable on [a, b] and



xiv Notation

f (k) is also continuous on [a, b]. By convention, f (0) = f , f (1) = f ′, f (2) = f ′′
and f (3) = f ′′′.

Let x �−→ f (x) and x �−→ g(x) be functions defined for all sufficiently large x

and a, b > 0.

 Landau. f (x) = O(g(x)), also sometimes written as g = O(f ), means that g >

0 and that there exist a real number x0 and a constant c0 > 0 such that, for all
x � x0, we have

∣
∣f (x)

∣
∣ � c0g(x).

For instance, f (x) = O(1) means that f is bounded for all x ∈ [x0,+∞[.
 Vinogradov. f (x) � g(x) is equivalent to f (x) = O(g(x)).
 Titchmarsh. a � b means that there exist c2 � c1 > 0 such that c1b � a � c2b.

If a, b represent two functions f and g, then f � g is equivalent to f � g and
g � f .

 Landau. f (x) = o(g(x)) for x −→ x0 means that g �= 0 and

lim
x→x0

f (x)

g(x)
= 0.

 Landau. f (x) ∼ g(x) for x −→ x0 means that g �= 0 and

lim
x→x0

f (x)

g(x)
= 1.

An asymptotic estimate for the function f is a relation of the shape f (x) ∼ g(x).
An asymptotic formula for f means a relation of the form f (x) = g(x) + O(r(x)),
or equivalently f (x) − g(x) = O(r(x)), where g(x) is called the main term and
O(r(x)) is an error term. Obviously, such a relation is only meaningful if the error
term r(x) is of smaller order than g(x). Otherwise, this relation is equivalent to
f (x) = O(r(x)), so that the estimate is only an upper bound.

It is important to understand the difference between f � g and f ∼ g. The first
relation is less precise than the second one but can be used in a larger range. For
instance, the Chebyshev estimates from Corollary 3.45 assert that

π(x) � x

logx

for all x � 5 while the Prime Number Theorem (Theorem 3.85), which was proved
some forty years later, implies that

π(x) ∼ x

logx

as soon as x −→ ∞.
Finally, it should be mentioned that the constants implied in some error terms

of the form f (x) � g(x) depend sometimes on extra parameters. For instance, it is
proven in Exercise 2 in Chap. 3 that

τ(n) � nε
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where the implied constant depends on ε > 0. This means that, for all ε > 0, there
exists a constant c(ε) > 0 depending on ε > 0 such that, for all n � 1, we have
τ(n) � c(ε)nε . Such a situation3 is sometimes denoted by

τ(n) �ε nε.

3It can be shown that c(ε) = exp(21/ε/ log 2ε) is admissible.
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Chapter 1
Basic Tools

1.1 Euclidean Division

Some results depend on the following axiom.

Axiom 1.1 Any non-empty subset S of Z�0 contains a smallest element. Further-
more, if S is upper bounded, then it contains also a greatest element.

This result will enable us to get the Euclidean division between two non-negative
integers, and thus to study the arithmetic properties of integers.

Theorem 1.2 Given non-negative integers a and b with b � 1, there exists a unique
couple (q, r) of natural numbers such that

a = bq + r and 0 � r < b.

q is the quotient and r is the remainder obtained when b is divided into a.

Proof Let S be the set defined by

S = {a − nb : n ∈ Z and a − nb � 0}.
The set S is clearly a subset of Z�0 and S �= ∅ since a ∈ S. Using Axiom 1.1 we
infer that S contains a smallest element denoted by r . Thus, r is a non-negative
integer and we call q the integer satisfying r = a − bq .

Let us show that r < b. If r = a − bq � b, then a − b(q + 1) � 0 so that a −
b(q +1) ∈ S, and therefore r = a−bq � a−b(q +1) since r is the smallest element
in S. The latest inequality easily gives 1 � 0 which is obviously impossible. We thus
proved that r < b.

To show the uniqueness, suppose there exists another pair (q ′, r ′) of integers such
that q �= q ′, r �= r ′ and a = bq ′ + r ′ with 0 � r ′ < b. Since a = bq + r , we deduce
that b(q ′ − q) = r − r ′, and then b|q ′ − q| = |r − r ′|, and thus b � |r − r ′| since
q �= q ′ implies that |q ′ −q|� 1. But the inequalities 0 � r < b and 0 � r ′ < b imply
that |r − r ′| < b giving a contradiction. The proof is complete. �

O. Bordellès, Arithmetic Tales, Universitext,
DOI 10.1007/978-1-4471-4096-2_1, © Springer-Verlag London 2012
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Remark 1.3 One can compute q and r . In Q, we have

a

b
= q + r

b

and the inequalities 0 � r
b

< 1 imply q � a
b

< q + 1 so that

q =
[
a

b

]
and r = a − bq = a − b

[
a

b

]
.

Remark 1.4 There exists a version of the Euclidean division in Z. The result is
similar to that of Theorem 1.2, except that the condition 0 � r < b must be replaced
by 0 � r < |b|. We leave the details to the reader.

Remark 1.5 The particular case r = 0 is interesting in itself. We will say that b

divides a denoted by b | a. Thus, b | a is equivalent to the existence of an integer q

such that a = bq . Recall that one of the most important properties is the following

{
a | b
a | c =⇒ a | (ax + by) (x, y ∈ Z).

Lemma 1.6 Let a, b ∈C and n be a positive integer. Then

an − bn = (a − b)

n−1∑
k=0

akbn−k−1.

In particular, if a, b ∈ Z, then (a − b) | (an − bn).

Proof Indeed, the right-hand side is equal to

n−1∑
k=0

ak+1bn−k−1 −
n−1∑
k=0

akbn−k = an +
n−1∑
k=1

akbn−k −
n−1∑
k=1

akbn−k − bn = an − bn

as required. �

Proposition 1.7 For all |x| < 1 we have

∞∑
k=0

xk = 1

1 − x
. (1.1)

Proof This is well known and left to the reader. �
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1.2 Binomial Coefficients
This subject is well known and proofs and examples can easily be found in any book
of combinatorial theory. We only recall here the main properties required.

Definition 1.8 Let n ∈ N and k ∈ {0, . . . , n}. The binomial coefficient
(
n
k

)
is defined

by the formula (
n

k

)
= n!

k!(n − k)! .

Together with well-known results such as Newton’s formula

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk

valid for all a, b ∈ C, it may be useful to have at our disposal some basic estimates
for binomial coefficients.

Proposition 1.9 Let n � 2 be an integer.

(i) For all integers k ∈ {1, . . . , n}, we have

nk

kk
�

(
n

k

)
� nk

k! .

(ii) For all integers k ∈ {1, . . . , n − 1}, we have

e−1/8

√
2

πn
× nn

kk(n − k)n−k
�

(
n

k

)
� 1√

π
× nn

kk(n − k)n−k
.

(iii) We have

e−1/8 4n

√
πn

�
(

2n

n

)
� 4n

√
πn

.

Proof

� The first bounds follow easily from

(
n

k

)
= 1

k!
k−1∏
j=0

(n − j)� nk

k! and

(
n

k

)
=

k−1∏
j=0

(
n − j

k − j

)
�

(
n

k

)k

.

� The remaining inequalities are immediate consequences of the following Stirling
type estimates [Bee69]

√
2πn

(
n

e

)n

e
1

12n+1 � n!� √
2πn

(
n

e

)n

e
1

12n (1.2)

valid for all n ∈N. �
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Remark 1.10 With a little more work, it can be proved that

e−1/8
√

n

2πk(n − k)
× nn

kk(n − k)n−k
�

(
n

k

)
�

√
n

2πk(n − k)
× nn

kk(n − k)n−k

for all integers k ∈ {1, . . . , n − 1}, which is indeed stronger than Proposition 1.9(ii)
since √

2

πn
�

√
n

2πk(n − k)
� 1√

π
.

1.3 Integer and Fractional Parts

Proposition 1.11 Let x, y ∈R. The following assertions hold.

(i) [x] = x + O(1). More precisely, one can write x = [x] + θ with θ ∈ [0,1[.
(ii) Let n ∈ Z. Then [x + n] = [x] + n and {x + n} = {x}.

(iii) [x] + [y] � [x + y]� [x] + [y] + 1.
(iv) Suppose x � 0. Then ∑

n�x

1 = [x].

(v) Let d ∈ N and suppose x � 0. Then [ x
d
] is the number of multiples of d which

are not greater than x.
(vi) Let a < b be real numbers. Then the number of integers in the interval [a, b]

is

[b − a] or [b − a] + 1.

(vii) Let 0 � δ < 1
2 be any small real number. Then

{
[x + δ] − [x] = 1 ⇐⇒ {x}� 1 − δ,

[x] − [x − δ] = 1 ⇐⇒ {x} < δ.

We deduce that

[x + δ] − [x − δ] =
⎧⎨
⎩

1, if ‖x‖ < δ,

0, if ‖x‖ > δ,

0 or 1, if ‖x‖ = δ.

Proof

(i) It is sufficient to note that x = [x] + {x} with 0 � {x} < 1.
(ii) Since [x + n] = x + n + θ1 and [x] = x + θ2 with −1 < θi � 0, we have

[x + n] − ([x] + n
) = θ1 − θ2
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so that |[x + n] − ([x] + n)| < 1 and we conclude by noting that [x + n] −
([x] + n) ∈ Z. For the second equality, we have

{x + n} = x + n − [x + n] = x − [x] = {x}.
(iii) Using (ii) we have on the one hand

[x] + [y] = [[x] + y
]
� [x + y].

On the other hand, if x = [x] + θ1 and y = [y] + θ2 with 0 � θi < 1, then we
have

[x + y] = [[x] + [y] + θ1 + θ2
] = [x] + [y] + [θ1 + θ2] � [x] + [y] + 1

since 0 � θ1 + θ2 < 2 implies [θ1 + θ2] = 0 or 1.
(iv)

∑
n�x 1 = [x] if x � 1 by convention. If 0 � x < 1, then

∑
n�x 1 = 0.

(v) If 0 � x < 1, then there is no multiple of d which is � x and [x/d] = 0 in
this case. Now suppose x � 1. An integer m � x is a multiple of d if and
only if there exists a positive integer k such that m = kd � x. Therefore we
must count all integers k between 1 and x/d . Using (iv) we conclude that this
number is

∑
n�x/d

1 =
[

x

d

]
.

(vi) The number of integers in [a, b] is

∑
a�n�b

1 =
∑
n�b

1 −
∑
n<a

1 =
{ [b] − [a], if a �∈ Z,

[b] − a + 1, if a ∈ Z.

Now using (ii), if a ∈ Z then [b] − a + 1 = [b − a] + 1. If a �∈ Z, let us set
a = [a]+θ1, b = [b]+θ2 and b−a = [b−a]+θ3 with 0 � θ1 < 1 and θ1 �= 0.
We thus get

[b − a] − ([b] − [a]) = θ2 − θ1 − θ3 ∈]−2,1[
and since [b − a] − ([b] − [a]) ∈ Z we conclude that [b − a] − ([b] − [a]) ∈
{−1,0}.

(vii) Using (iii) we get

0 � [x + δ] − [x] � δ + 1 <
3

2

and then [x + δ] − [x] ∈ {0,1}. Furthermore, [x + δ] − [x] = 1 if and only
if there exists an integer n such that x < n � x + δ, and in this case we have
n = [x + δ], which is equivalent to

{x} = x − [x] = x − (n − 1)� x − (x + δ − 1) = 1 − δ.
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The computations for [x] − [x − δ] are similar. Finally, if ‖x‖ < δ, then either
{x} < δ or {x} > 1 − δ and thus

[x + δ] − [x − δ] = [x + δ] − [x] + [x] − [x − δ] = 1.

In the same way, if ‖x‖ > δ, then δ < {x} < 1− δ so that [x + δ]− [x − δ] = 0.
If ‖x‖ = δ, then either {x} = δ or {x} = 1 − δ and thus [x + δ] − [x − δ] = 0
in the first case and [x + δ] − [x − δ] = 1 in the second case.

The proof is complete. �

1.4 Rolle, Mean Values and Divided Differences

The following result will be used in Chap. 5.

Theorem 1.12

(i) (Rolle 1) Let x0 < x1 and F ∈ C1[x0, x1] such that F(x0) = F(x1). Then there
exists a real number t ∈]x0, x1[ such that F ′(t) = 0.

(ii) (Mean-value theorem) Let x0 < x1 and f ∈ C1[x0, x1]. Then there exists a real
number t ∈]x0, x1[ such that

f (x1) − f (x0) = f ′(t)(x1 − x0).

(iii) (Rolle 2) Let k be a positive integer, x0 < x1 < · · · < xk be real numbers and
F ∈ Ck[x0, xk] such that F(x0) = F(x1) = · · · = F(xk). Then there exists a
real number t ∈]x0, xk[ such that F (k)(t) = 0.

(iv) (Divided differences) Let k be a positive integer, x0 < x1 < · · · < xk be real
numbers and f ∈ Ck[x0, xk]. Set P(x) = bkx

k + · · · + b0 the unique polyno-
mial of degree � k such that P(xi) = f (xi) for i = 0, . . . , k. Then there exists
a real number t ∈]x0, xk[ such that

bk = f (k)(t)

k! .

Proof

(i) Since F is continuous on the interval [x0, x1], we have F([x0, x1]) = [m,M]
for some real numbers m and M . If m = M , then F is a constant function on
[x0, x1] and then F ′(x) = 0 for all x ∈ [x0, x1]. If m < M , and since F(x0) =
F(x1), at least one of the two extrema m or M is attained at a point t ∈]x0, x1[.
The function F being differentiable at this point, we then know that F ′(t) = 0.

(ii) We use (i) with the function

x �−→ F(x) = f (x) − (x − x0)f (x1) − (x − x1)f (x0)

x1 − x0
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which satisfies all the hypotheses with

F ′(x) = f ′(x) − f (x1) − f (x0)

x1 − x0

and F(x0) = F(x1) = 0.
(iii) We use induction on k � 1, the case k = 1 being the proposition (i). Sup-

pose the result is true with k replaced by k − 1. We use (i) applied to
each interval [xi, xi+1] which implies that F ′ possesses k zeros yi such that
xi < yi < xi+1 for i = 0, . . . , k − 1. The induction hypothesis applied to F ′
implies that there exists a point t ∈]y0, yk−1[ such that (F ′)(k−1)(t) = 0. Since
]y0, yk−1[⊂]x0, xk[, we then find a point t ∈]x0, xk[ such that F (k)(t) = 0.

(iv) We use (iii) applied to the function x �−→ F(x) = f (x) −P(x) by noting that
P(k)(x) = k! bk .

This proves the theorem. �

Remark 1.13 The polynomial P is called a Lagrange polynomial and straightfor-
ward computations give

P(x) =
k∑

j=0

(
k∏

i=0
i �=j

x − xi

xj − xi

)
f (xj ).

Its leading coefficient bk is called the divided difference of f at the points
x0, x1, . . . , xk and is usually denoted by f [x0, x1, . . . , xk]. One can show that

bk =
k∑

j=0

f (xj )∏
0�i�k,i �=j (xj − xi)

= A∏
0�i<j�k(xj − xi)

(1.3)

with

A =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
x0 x1 · · · xk

...
...

. . .
...

xk−1
0 xk−1

1 · · · xk−1
k

f (x0) f (x1) · · · f (xk)

∣∣∣∣∣∣∣∣∣∣∣
and therefore it is important to note that A ∈ Z as soon as xj ∈ Z and f (xj ) ∈ Z.

Thus proposition (iv) shows that there exists a real number t ∈]x0, xk[ such that

k∑
j=0

f (xj )∏
0�i�k,i �=j (xj − xi)

= f (k)(t)

k! . (1.4)
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This generalizes the mean-value theorem seen in (ii) since the left-hand side is equal
to

f (x1) − f (x0)

x1 − x0

when k = 1. The case k = 2 can be written as

f (x2)(x1 − x0) − f (x1)(x2 − x0) + f (x0)(x2 − x1)

(x1 − x0)(x2 − x0)(x2 − x1)
= f ′′(t)

2
.

1.5 Partial Summation

This is the famous integration by parts for sums.

Theorem 1.14 Let x � 0 be any real number, a ∈ Z�0 and let f : [a, x] −→ C and
g ∈ C1[a, x].
(i) We have

∑
a�n�x

f (n)g(n) = g(x)
∑

a�n�x

f (n) −
∫ x

a

g′(t)
( ∑

a�n�t

f (n)

)
dt.

(ii) If x � 2, then

∑
p�x

f (p)g(p) = g(x)
∑
p�x

f (p) −
∫ x

2
g′(t)

(∑
p�t

f (p)

)
dt.

Proof

(i) For any integer n ∈ [a, x] and any real number t ∈ [a, x] we set

1n(t) =
{

1, if n � t,

0, otherwise.

Then we have
∫ x

a

1n(t)g
′(t) dt =

∫ x

n

g′(t)dt = g(x) − g(n)

and therefore multiplying by f (n) we get

f (n)g(n) = f (n)g(x) −
∫ x

a

1n(t)f (n)g′(t)dt
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and summing over n ∈ {a, . . . , [x]} we obtain

∑
a�n�x

f (n)g(n) = g(x)
∑

a�n�x

f (n) −
∫ x

a

g′(t)
( ∑

a�n�x

1n(t)f (n)

)
dt

and we easily see that
∑

a�n�x

1n(t)f (n) =
∑

a�n�t

f (n).

(ii) This readily follows from (i) by using the following function

1P(n) =
{

1, if n is a prime number,
0, otherwise.

The formula (i) with a = 2 gives

∑
p�x

f (p)g(p) = g(x)
∑

2�n�x

1P(n)f (n) −
∫ x

2
g′(t)

( ∑
2�n�t

1P(n)f (n)

)
dt

= g(x)
∑
p�x

f (p) −
∫ x

2
g′(t)

(∑
p�t

f (p)

)
dt

as asserted.

The proof is complete. �

Remark 1.15 The partial summation formula is also called the Abel summation for-
mula since a proof of Theorem 1.14 can be achieved by using the following dis-
crete version of (i) discovered by Abel. If m < n are any non-negative integers and
(ak), (bk) are any sequences of complex numbers, then we have

n∑
k=m+1

akbk = bn

n∑
k=m

ak − bm+1am −
n−1∑

k=m+1

(bk+1 − bk)

k∑
h=m

ah

which can be proved by using the obvious identity ak = sk − sk−1 where sj =∑j
h=m ah for all m � j � n, so that

n∑
k=m+1

akbk =
n∑

k=m+1

bk(sk − sk−1) =
n∑

k=m+1

bksk −
n−1∑
k=m

bk+1sk

implying the asserted result. One can deduce from this equality the following useful
bound ∣∣∣∣∣

n∑
k=m+1

akbk

∣∣∣∣∣ �
{
2 max

(|bm+1|, |bn|
) + Vm,n

}
max

m�k�n

∣∣∣∣∣
k∑

h=m

ah

∣∣∣∣∣
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where

Vm,n =
n−1∑

k=m+1

|bk+1 − bk|

and if (bk) is a monotone sequence of positive real numbers, then

∣∣∣∣∣
n∑

k=m+1

akbk

∣∣∣∣∣� 2 max(bm+1, bn) max
m�k�n

∣∣∣∣∣
k∑

h=m

ah

∣∣∣∣∣.

Remark 1.16 Within the context of the Riemann–Stieltjes integral (see Sect. 1.7),
the partial summation is nothing but the formula of integration by parts. Indeed,
using (1.5), we can write

∑
a�n�x

f (n)g(n) = f (a)g(a) +
∫ x

a

g(t)d

( ∑
a<n�t

f (n)

)

= f (a)g(a) +
[
g(t)

∑
a<n�t

f (n)

]x

a

−
∫ x

a

g′(t)
( ∑

a<n�t

f (n)

)
dt

= g(x)
∑

a�n�x

f (n) −
∫ x

a

g′(t)
( ∑

a�n�t

f (n)

)
dt

+ f (a)
(
g(a) − g(x)

) + f (a)
(
g(x) − g(a)

)

= g(x)
∑

a�n�x

f (n) −
∫ x

a

g′(t)
( ∑

a�n�t

f (n)

)
dt

which is the result of Theorem 1.14.

As an example, here is a simplified version of the well-known Stirling formula.

Corollary 1.17 Let n � 2 be an integer. Then

log(n!) = n logn − n + 1 + R1(n)

with 0 � R1(n) < logn.

Proof Since

log(n!) =
n∑

k=1

logk
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we get, using Theorem 1.14 with f (t) = 1, g(t) = log t , a = 1 and x = n

log(n!) = logn

n∑
k=1

1 −
∫ n

1

1

t

(∑
k�t

1

)
dt

= n logn −
∫ n

1

[t]
t

dt

= n logn −
∫ n

1

t − {t}
t

dt

= n logn − n + 1 +
∫ n

1

{t}
t

dt

and using 0 � {t} < 1 we obtain

0 �
∫ n

1

{t}
t

dt <

∫ n

1

dt

t
= logn

which is the desired result. �

1.6 Harmonic Numbers

Definition 1.18 Let x0 be a real number and f be a bounded integrable function
on the interval [x0,+∞[. The integral of f is said to converge on [x0,+∞[ if the
function F defined on [x0,+∞[ by

F(x) =
∫ x

x0

f (t)dt

has a finite limit as x tends to +∞. In this case, the limit is denoted by
∫ +∞

x0

f (t)dt.

Examples 1.19
∫ +∞

1

dt

tα
= 1

α − 1
(α > 1),

∫ +∞

e

dt

t (log t)α
= 1

α − 1
(α > 1),

∫ +∞

0
e−λt dt = 1

λ
(λ > 0),

∫ +∞

0
e−(λt)2

dt =
√

π

2λ
(λ > 0).
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There is a complete theory of the improper integral, but this book is not meant
to deal with this theory. We leave the details to the reader who may refer to any
undergraduate textbook in analysis. We only mention the following rule that could
be taken as an axiom.

Rule 1.20 (Riemann–Bertrand rule) Let x0 � 1 be any real number and f be a
bounded integrable function on [x0,+∞[. If there exist two real numbers C1 > 0
and α > 1 such that the following inequality holds

∣∣f (t)
∣∣� C1

tα
(t � x0)

then the integral of f converges on [x0,+∞[. The same conclusion holds if there
exist two real numbers C2 > 0 and β > 1 such that

∣∣f (t)
∣∣ � C2

t (log t)β
(t � x0 � 2).

Since
n∑

k=1

1

k
�

∫ n

1

dt

t
= logn

the sequence (un) defined by

un =
n∑

k=1

1

k
− logn

is non-negative, and since

un+1 − un = 1

n + 1
− log

(
1 + 1

n

)
� 0

we infer that (un) is non-increasing, and then converges.

Definition 1.21 We call the Euler–Mascheroni constant, or more simply the Euler
constant, the real number γ defined by

γ = lim
n→+∞

(
n∑

k=1

1

k
− logn

)
.

This number was introduced for the first time by Euler in 1734 who used the
letter C. The symbol γ , now unanimously adopted, might have been first used by
Lorenzo Mascheroni in 1790. An approximation of γ is

γ ≈ 0.577 215 664 901 532 . . . .
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It is almost paradoxical to notice that although many formulae involving γ are
known, we do not know much about γ itself. In particular, the problem of the irra-
tionality of γ still remains open. However, by using a representation as a continued
fraction, it has been proved that if γ is a rational number p/q , then the integer q

must possess at least 242 080 digits. The number γ is perhaps slightly less famous
than π or e, but plays an important part in number theory.

Theorem 1.22 Let n be a positive integer. Then

n∑
k=1

1

k
= logn + γ + R2(n)

with 0 � R2(n) < 1
n

.

Proof We use partial summation with f (t) = 1 and g(t) = 1
t

which gives

n∑
k=1

1

k
= 1

n

n∑
k=1

1 +
∫ n

1

1

t2

(∑
k�t

1

)
dt

= 1 +
∫ n

1

t − {t}
t2

dt

= logn + 1 −
∫ n

1

{t}
t2

dt.

Now since 0 � {t} < 1, we have {t}/t2 � 1/t2 and the Riemann–Bertrand Rule 1.20
implies that the last integral converges on [1,+∞[. We deduce that

n∑
k=1

1

k
− logn = 1 −

∫ +∞

1

{t}
t2

dt +
∫ +∞

n

{t}
t2

dt

and by making n −→ +∞ we get

γ = 1 −
∫ +∞

1

{t}
t2

dt

which gives
n∑

k=1

1

k
− logn = γ +

∫ +∞

n

{t}
t2

dt

and the inequalities 0 � {t} < 1 give

0 �
∫ +∞

n

{t}
t2

dt <

∫ +∞

n

dt

t2
= 1

n

which concludes the proof. �
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The number

Hn =
n∑

k=1

1

k

is called nth harmonic number and can be encountered in many branches of mathe-
matics. A lot of properties have been discovered for Hn, but at the present time the
question of a closed formula remains open. However, we shall see in Chap. 3 that
Hn is allied to the famous Riemann hypothesis through a very elegant inequality
due to Lagarias.

1.7 Further Developments

1.7.1 The Riemann–Stieltjes Integral

In what follows, a < b are two real numbers.
The usual Riemann integral can be generalized in the following way. Let f and

g be two real-valued functions defined on the interval [a, b]. We denote by 	 a
subdivision of [a, b] by the points a = x0 < x1 < · · · < xn = b and the norm of 	 is
defined by

N(	) = max
0�k�n−1

(xk+1 − xk).

A tagged subdivision of [a, b] is a pair (	, ξ) where 	 = {x0, . . . , xn} is a subdivi-
sion of [a, b] and ξ = {ξ1, . . . , ξn−1} with ξk ∈ [xk, xk+1].

We call Riemann–Stieltjes sum of f with respect to g for the tagged subdivision
(	, ξ) of [a, b] the sum S	(f,g) given by

S	(f,g) =
n−1∑
k=0

f (ξk)
(
g(xk+1) − g(xk)

)
.

Definition 1.23 If the limit limN(	)→0 S	(f,g) exists independently of the man-
ner of subdivision and of the choice of the number ξk , then this limit is called the
Riemann–Stieltjes integral of f with respect to g from a to b and is denoted by

∫ b

a

f (x)dg(x).

Note that this integral reduces to the Riemann integral if g(x) = x. This definition
easily extends to complex-valued functions by setting

∫ b

a

f (x)dg(x) =
∫ b

a

Ref (x)d
(
Reg(x)

) −
∫ b

a

Imf (x)d
(
Img(x)

)

+ i

(∫ b

a

Ref (x)d
(
Img(x)

) +
∫ b

a

Imf (x)d
(
Reg(x)

))
.
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We do not precisely determine the pairs (f, g) for which the Riemann–Stieltjes
integral exists, and the reader interested in this subject should refer to [Wid46].
However, the following class of functions plays an important role in number theory.

Definition 1.24 A function g defined on [a, b] is of bounded variation on [a, b] if
there exists M > 0 such that, for all subdivisions a = x0 < x1 < · · · < xn = b we
have

n−1∑
k=0

∣∣g(xk+1) − g(xk)
∣∣� M.

The smallest number M satisfying this inequality is called the total variation of g

in [a, b] and is denoted by V[a,b](g) or V b
a (g).

It can be shown that a real-valued function of bounded variation on [a, b] is the
difference of two non-decreasing bounded functions. Furthermore, if f and g are of
bounded variation on [a, b], then so are f + g and fg and we have

V b
a (f + g) � V b

a (f ) + V b
a (g),

V b
a (fg) � sup

x∈[a,b]
∣∣f (x)

∣∣ × V b
a (g) + sup

x∈[a,b]
∣∣g(x)

∣∣ × V b
a (f ).

Finally, if g ∈ C1[a, b], then we have

V b
a (g) =

∫ b

a

∣∣g′(x)
∣∣dx.

A sufficient condition of the existence of the Riemann–Stieltjes integral is given
by the following result.

Proposition 1.25 If f is continuous on [a, b] and if g is of bounded variation on
[a, b], then the integral

∫ b

a
f (x)dg(x) exists.

The usual properties of the Riemann–Stieltjes integral are similar to those of the
Riemann integral. We list some of them in the following proposition.

Proposition 1.26 Let f , f1, f2 be continuous functions on [a, b] and g, g1, g2 be
functions of bounded variation on [a, b].

(i) For all constants α1, α2, β1, β2, we have

∫ b

a

{
α1f1(x)+α2f2(x)

}
d
{
β1g1(x)+β2g2(x)

} =
2∑

i,j=1

αiβj

∫ b

a

fi(x)dgj (x).

(ii) For any a, b, c ∈R we have
∫ b

a

f (x)dg(x) =
∫ c

a

f (x)dg(x) +
∫ b

c

f (x)dg(x).
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(iii) We have
∣∣∣∣
∫ b

a

f (x)dg(x)

∣∣∣∣ �
∫ b

a

∣∣f (x)
∣∣dV x

a (g) � sup
x∈[a,b]

∣∣f (x)
∣∣ × V b

a (g).

(iv) Suppose f1 is of bounded variation on [a, b], f2 and g bounded on [a, b]. Then
∣∣∣∣
∫ b

a

f1(x)f2(x)dg(x)

∣∣∣∣ � (∣∣f1(b)
∣∣ + V b

a (f1)
)

sup
t∈[a,b]

∣∣∣∣
∫ t

a

f2(x)dg(x)

∣∣∣∣
provided that the integrals exist.

The differential dV x
a (g) is sometimes abbreviated |dg(x)|, so that (iii) can be

rewritten in the form ∣∣∣∣
∫ b

a

f (x)dg(x)

∣∣∣∣ �
∫ b

a

∣∣f (x)
∣∣∣∣dg(x)

∣∣.
One of the main weaknesses of the Riemann–Stieltjes integral is that the integral

∫ b

a

f (x)dg(x)

does not exist if f and g have a common discontinuity in ]a, b[. Nevertheless, if f

is continuous, this integral is often used in number theory to express various sums
in terms of integrals. In particular, the Riemann–Stieltjes integral provides a natural
context for Abel’s summation seen in Sect. 1.5. More precisely, suppose a < b are
real numbers and f is continuous on [a, b]. Then we have

∑
a<n�b

f (n)g(n) =
∫ b

a

f (x)d

( ∑
a<n�x

g(n)

)
. (1.5)

Note that there is some freedom in the interval of integration, since the left end-
point can be any number in [[a], [a] + 1[ and the right endpoint can be chosen in
[[b], [b] + 1[, without changing the value of the integral. However, one must be
careful in choosing these endpoints of integration. For instance, we have

n∑
k=1

1

k
= 1 +

n∑
k=2

1

k
= 1 +

∫ n

1

1

x
d

( ∑
k�x

1

)
= 1 +

∫ n

1

d[x]
x

.

In view of (1.5), the Abel summation formula is nothing but the integration by
parts for the Riemann–Stieltjes integral.

Proposition 1.27 (Integration by parts) If f is of bounded variation and g is con-
tinuous on ]a, b[, then the integral

∫ b

a
f (x)dg(x) exists and we have

∫ b

a

f (x)dg(x) = f (b)g(b) − f (a)g(a) −
∫ b

a

g(x)df (x).
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Proof We choose an arbitrary subdivision 	 of [a, b] and numbers ξk ∈ [xk, xk+1].
For convenience we set ξ−1 = a and ξn = b, so that we have a subdivision � of
[a, b] such that

ξ−1 = a � ξ0 � x1 � ξ1 � x2 � ξ2 � · · ·� xn−1 � ξn−1 � xn = ξn = b.

Since

ξk+1 − ξk �

⎧⎨
⎩

x1 − a, if k = −1,

xk+2 − xk, if 0 � k � n − 2,

b − xn−1, if k = n − 1,

we have N(�) � 2N(	). Using Abel’s summation as in Remark 1.15, we get

S	(f,g) = f (ξ0)
(
g(x1) − g(a)

) +
n−1∑
k=1

f (ξk)
(
g(xk+1) − g(xk)

)

= f (ξ0)
(
g(x1) − g(a)

) + f (ξn−1)

n−1∑
k=1

(
g(xk+1) − g(xk)

)

−
n−2∑
k=1

(
f (ξk+1) − f (ξk)

) k∑
j=1

(
g(xj+1) − g(xj )

)

= f (ξ0)
(
g(x1) − g(a)

) + f (ξn−1)
(
g(b) − g(x1)

)

−
n−2∑
k=1

(
f (ξk+1) − f (ξk)

)(
g(xk+1) − g(x1)

)

= f (ξ0)
(
g(x1) − g(a)

) + f (ξn−1)
(
g(b) − g(x1)

)

−
n−1∑
k=2

g(xk)
(
f (ξk) − f (ξk−1)

) + g(x1)
(
f (ξn−1) − f (ξ1)

)

= f (b)g(b) − f (a)g(a) −
n∑

k=0

g(xk)
(
f (ξk) − f (ξk−1)

)

= f (b)g(b) − f (a)g(a) − S�(g,f ).

Since N(�) � 2N(	), the sum on the right-hand side tends to
∫ b

a
g(x)df (x) as

N(	) tends to 0, which concludes the proof. �

The proof shows that Abel’s summation and integration by parts are closely re-
lated, and more precisely that the latter depends on the former. Conversely, one can
prove that Abel’s summation can be recovered from Proposition 1.27 (see [MV07]).
The following example is very useful.
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Examples 1.28 (Harmonic numbers) For all x � 1, we have

∑
n�x

1

n
= logx + γ − ψ(x)

x
+ O

(
1

x2

)
.

Proof Using (1.5) and Proposition 1.27, we get

∑
n�x

1

n
= 1 +

∫ x

1

d[t]
t

= 1 +
∫ x

1

dt

t
−

∫ x

1

dψ(t)

t

= 1 + logx − ψ(x)

x
+ ψ(1) −

∫ x

1

ψ(t)

t2
dt

= 1

2
+ logx − ψ(x)

x
−

∫ x

1

d(ψ2(t))

t2

= 1

2
+ logx − ψ(x)

x
− ψ2(x)

x2
− 2

∫ x

1

ψ2(t)

t3
dt.

Now since |ψ2(t)| � 1/8, the last integral converges by Rule 1.20, so that we get

∑
n�x

1

n
= logx + 1

2
− 2

∫ ∞

1

ψ2(t)

t3
dt − ψ(x)

x
− ψ2(x)

x2
+ 2

∫ ∞

x

ψ2(t)

t3
dt.

Since γ = lim
x→∞(

∑
n�x

1
n

− logx), by letting x −→ ∞ we get

γ = 1

2
− 2

∫ ∞

1

ψ2(t)

t3
dt

and therefore

∑
n�x

1

n
= logx + γ − ψ(x)

x
− ψ2(x)

x2
+ 2

∫ ∞

x

ψ2(t)

t3
dt

and we conclude by the estimate

∣∣∣∣−ψ2(x)

x2
+ 2

∫ ∞

x

ψ2(t)

t3
dt

∣∣∣∣� 1

8x2
+ 1

4

∫ ∞

x

dt

t3
= 1

4x2

as required. �
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1.7.2 The Euler–MacLaurin Summation Formula

Let f be a function of bounded variation on [a, b]. Then using (1.5) and Proposi-
tion 1.27 we get

∑
a<n�b

f (n) =
∫ b

a

f (x)d[x] =
∫ b

a

f (x)dx −
∫ b

a

f (x)dψ(x)

=
∫ b

a

f (x)dx + f (a)ψ(a) − f (b)ψ(b) +
∫ b

a

ψ(x)df (x)

so that we have by Proposition 1.26 (iii)

∑
a<n�b

f (n) =
∫ b

a

f (x)dx + f (a)ψ(a) − f (b)ψ(b) + O
(
V b

a (f )
)

(1.6)

and if f ∈ C1[a, b] then we get the following more accurate identity

∑
a<n�b

f (n) =
∫ b

a

f (x)dx + f (a)ψ(a) − f (b)ψ(b) +
∫ b

a

f ′(x)ψ(x)dx (1.7)

which is usually called the Euler summation formula. If f has derivatives of higher
orders, this can be generalized by integrating by parts repeatedly. The process makes
some polynomials appear, often denoted by Bk(x) and called the Bernoulli polyno-
mials. These polynomials can be defined by induction by first setting B0(x) = 1
and, for all k ∈ N, by putting

d

dx
Bk(x) = kBk−1(x).

Thus, apart from the constant term, Bk(x) is determined by this differential equation.
The constant term, still denoted by Bk and called the kth Bernoulli number, is given
by the additional following condition

∫ 1

0
Bk(x)dx = 0 (k � 1)

which is equivalent to Bk+1(1) − Bk+1(0) = 0 for all positive integers k, so that we
have

Bk(1) = Bk(0) = Bk (k � 2).

One can prove by induction that, for all k � 0, we have

Bk(x) =
k∑

j=0

(
k

j

)
Bjx

k−j .



20 1 Basic Tools

Table 1.1 Bernoulli numbers
k 0 1 2 4 6 8 10

Bk 1 − 1
2

1
6 − 1

30
1

42 − 1
30

5
66

Either one of these formulae can be used to discover inductively some properties
of the Bernoulli numbers and polynomials. For instance, if k is odd, then we have
Bk = 0 for all k � 3 and Bk(x) = −Bk(1 − x) for all k � 1. If k is even, then
Bk(x) = Bk(1 − x) for all k � 0. Table 1.1 gives the first values of Bk .

The repeated integration by parts of the Euler summation formula gives the func-
tions Bk({x}), usually called the Bernoulli functions. These functions are periodic
of period 1 and, for all k � 2, they are continuous since Bk(0) = Bk(1). Also note
that

B1
({x}) = {x} − 1

2
= ψ(x) and B2

({x}) = 2ψ2(x) + 1

6
.

The periodicity of the functions Bk({x}) enables us to consider their expansions in
Fourier series. When k � 2, the series is absolutely convergent and Bk({x}) is con-
tinuous, so that the series converges uniformly to Bk({x}). For k = 1, the function
ψ(x) has a jump discontinuity at the integers, but is also of bounded variation in
[0,1] so that the partial sums of its Fourier series converges to ψ(x) when x �∈ Z.
The usual computations from Fourier analysis provide the following result.

Proposition 1.29 (Fourier series expansions) If x �∈ Z, we have

ψ(x) = −
∞∑

h=1

sin(2πhx)

πh
.

When x ∈ Z, the series converges to 0. Furthermore, for all k ∈ N, we have uni-
formly in x

B2k+1
({x}) = 2(−1)k+1(2k + 1)!

∞∑
h=1

sin(2πhx)

(2πh)2k+1
,

B2k

({x}) = 2(−1)k+1(2k)!
∞∑

h=1

cos(2πhx)

(2πh)2k
.

These formulae are of great use. For instance, taking x = 0 in the second identity
above provides the following result discovered by Euler.

Proposition 1.30 (Zeta-function at even integers) For all integers k � 1, we have

ζ(2k) = (−1)k+122k−1π2k B2k

(2k)!
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where

ζ(σ ) =
∞∑

n=1

1

nσ
(σ > 1).

Hence ζ(2k) is a rational multiple of π2k . For example, ζ(2) = π2/6 and ζ(4) =
π4/90. It is interesting to note that no similar formula is known for ζ(2k + 1),
although it has been proved that it is not a rational multiple of π2k+1. One can also
notice that, since 1 < ζ(2k) < 1 + 41−k , we have for all k � 1

(2k)!
22k−1π2k

< |B2k| <
(
1 + 41−k

) (2k)!
22k−1π2k

.

Starting from (1.7) and using induction and the properties of the Bernoulli polyno-
mials seen above, we get the following important result.

Theorem 1.31 (Euler–MacLaurin summation formula) Let a < b be real numbers,
k ∈N and f ∈ Ck[a, b]. Then we have

∑
a<n�b

f (n) =
∫ b

a

f (x)dx +
k∑

j=1

(−1)j

j !
(
Bj

({b})f (j−1)(b) − Bj

({a})f (j−1)(a)
)

−Rf (x)

where

Rf (x) = (−1)k

k!
∫ b

a

Bk

({x})f (k)(x)dx.

In practice, it can be interesting to have at our disposal some simpler versions.
Along with identity (1.7), we will prove the following corollary.

Corollary 1.32 (Euler–MacLaurin summation formula of order 2) Let x � 1 be a
real number and f ∈ C2[1,+∞[. Then we have

∑
n�x

f (n) =
∫ x

1
f (t)dt + f (1)

2
− ψ(x)f (x) + ψ2(x)f ′(x) −

∫ x

1
ψ2(t)f

′′(t)dt.

Furthermore, if f ′′(t) has a constant sign on [1,+∞[ and if limt→∞ f ′(t) = 0,
then there exists a constant γf such that

∑
n�x

f (n) =
∫ x

1
f (t)dt +γf −ψ(x)f (x)+ 1

2

{
ψ(x)2f ′(x)+

∫ ∞

x

ψ(t)2f ′′(t)dt

}
.
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Proof The first identity follows from (1.7) and an integration by parts. Indeed, by
(1.7), we have

∑
n�x

f (n) = f (1) +
∑

1<n�x

f (n)

= f (1) +
∫ x

1
f (t)dt + ψ(1)f (1) − ψ(x)f (x) +

∫ x

1
f ′(t)dψ2(t)

=
∫ x

1
f (t)dt + f (1)

2
− ψ(x)f (x) + ψ2(x)f ′(x) − ψ2(1)f ′(1)

−
∫ x

1
ψ2(t)f

′′(t)dt

which is the asserted result since ψ2(1) = 0. For the second identity, suppose that
f ′′ � 0 and fix a real number ε > 0. Since limt→∞ f ′(t) = 0, there exists a real
number A = A(ε) > 0 such that, for all t � A, we have |f ′(t)| � ε. Now let z >

y � A be two real numbers. Since f ′′ � 0 and is continuous, we have

∣∣∣∣
∫ z

y

ψ2(t)f
′′(t)dt

∣∣∣∣� 1

8

∫ z

y

f ′′(t)dt = f ′(z) − f ′(y)

8
� ε

4

so that the integral ∫ ∞

1
ψ2(t)f

′′(t)dt

converges by Cauchy’s theorem. Setting

γf = f (1)

2
−

∫ ∞

1
ψ2(t)f

′′(t)dt

and using the first identity above, we therefore get

∑
n�x

f (n) =
∫ x

1
f (t)dt + γf − ψ(x)f (x) + ψ2(x)f ′(x) +

∫ ∞

x

ψ2(t)f
′′(t)dt

and we conclude the proof with ψ2(t) = ψ(t)2

2 − 1
8 . The case f ′′ � 0 is similar. �

1.8 Exercises

1 Let a, b be positive integers. In the Euclidean division of a by b, the quotient
q and the remainder r satisfy r � q . Show that, in the Euclidean division of a by
b + 1, we get the same quotient.
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2 Let a, q be positive integers. We denote by Sq the set of positive integers b such
that q is the quotient of the Euclidean division of a by b. Show that

a∑
q=1

|Sq | = a.

3 Let m,n ∈ Z \ {0}. Show that

(i) [ n
m

] � n+1
m

− 1.
(ii) If m � n, then [ n

m
] � n−1

m
.

(iii) Suppose 1 � m � n. Then

[
n

m

]
−

[
n − 1

m

]
=

{
0, if m � n,

1, if m | n.

4 Let x � 1 be a real number and f be any complex-valued function. Let g ∈
C1[1, x] be a complex-valued function. Suppose that

g(x)
∑
n�x

f (n) −→ 0

as x tends to +∞. Using partial summation, show that

∞∑
n=1

f (n)g(n) = −
∫ ∞

1
g′(t)

(∑
n�t

f (n)

)
dt

in the sense that if either side converges, then so does the other one, to the same
value. Deduce that we also have

∑
n>x

f (n)g(n) = −g(x)
∑
n�x

f (n) −
∫ ∞

x

g′(t)
(∑

n�t

f (n)

)
dt.

5 Let (an) be a sequence of complex numbers such that |an| � 1 and suppose there
exists a positive real number M such that

∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣ �M (n � 1).

Prove that ∣∣∣∣∣
∞∑

n=1

an

n

∣∣∣∣∣ � logM + 1.
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6 If f ∈ C1[a, b] where a < b ∈ R, then the following inequality due to Sobolev

∣∣f (x)
∣∣ � 1

b − a

∫ b

a

∣∣f (t)
∣∣dt +

∫ b

a

∣∣f ′(t)
∣∣dt

valid for any real number x ∈ [a, b], plays an important part in analytic number
theory where it was used by Gallagher in the theory of the so-called large sieve (see
Lemma 4.76 and Theorem 4.77). This exercise proposes a discrete version of this
inequality.

Let N be a positive integer and a1, . . . , aN be any complex numbers. Show that
for any n ∈ {1, . . . ,N} the following inequality holds

|an| � 1

N

∣∣∣∣∣
N∑

k=1

ak

∣∣∣∣∣ +
N−1∑
k=1

|ak+1 − ak|.

7 Let x � 2 be any real number, f ∈ C1[2,+∞[ and

θ(x) =
∑
p�x

logp

be the (first) Chebyshev prime number function (see Chap. 3). Prove that

∑
p�x

f (p) = f (x)θ(x)

logx
−

∫ x

2
θ(t)

d

dt

(
f (t)

log t

)
dt.

8 In what follows, x � 2 is a sufficiently large real number. We define the logarith-
mic integral by

Li(x) =
∫ x

2

dt

log t
.

(a) Prove that

x

logx
+

∫ x

2

dt

(log t)2
= Li(x) + 2

log 2
.

(b) We set

π(x) =
∑
p�x

1

the prime number counting function (see Chap. 3). Suppose that we have at our
disposal the following upper bound

∣∣θ(x) − x
∣∣� R(x)
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where R is an integrable, non-decreasing function satisfying
√

x logx � R(x) <

x for all x � 2. Using the result of Exercise 7, show that

∣∣π(x) − Li(x)
∣∣ <

5R(x)

logx
.
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Chapter 2
Bézout and Gauss

2.1 Bachet–Bézout’s Theorem

Let a be a positive integer. In this section, we denote by D(a) (resp. M(a)) the set
of positive divisors (resp. multiples) of a.

Theorem 2.1 Let a, b be any positive integers.

(i) The set D(a, b) = D(a) ∩ D(b) has a greatest element d called the greatest
common divisor of a and b denoted by d = (a, b).

(ii) The set M(a, b) = M(a) ∩ M(b) has a smallest element m called the least
common multiple of a and b denoted by m = [a, b].

Proof We only prove (i). The set D(a, b) is a non-empty subset of Z�0 since it
contains 1 and is upper bounded by min(a, b). We conclude the proof by appealing
to Axiom 1.1. �

Definition 2.2 Two positive integers a and b are said to be coprime, or relatively
prime, if and only if (a, b) = 1.

Examples 2.3 (6,15) = 3 and [6,15] = 30. The integers 25 and 14 are coprime and
[25,14] = 350.

Remark 2.4 Theorem 2.1 shows at once that (b, a) = (a, b) and [b, a] = [a, b]. We
obviously have (a, b) | [a, b]. We also extend Theorem 2.1 to all integers by setting

(a, b) = (|a|, |b|) and [a, b] = [|a|, |b|]

so that, for any integers a, b ∈ Z \ {0}, we will always have

(a, b) � 1 and [a, b]� 1.

Also, we set (a,0) = |a| and [a,0] = 0 so that (a,1) = 1, [a,1] = |a| and, if a | b

then (a, b) = |a| and [a, b] = |b| for all a, b ∈ Z.

O. Bordellès, Arithmetic Tales, Universitext,
DOI 10.1007/978-1-4471-4096-2_2, © Springer-Verlag London 2012
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The following result gives essential information about the gcd.

Theorem 2.5 Let a, b be any integers and d be a positive integer. Then d = (a, b)

if and only if d | a, d | b and there exist integers u, v such that d = au + bv.

Proof Suppose first that d = (a, b) so that obviously d | a and d | b. Now define the
set E by

E = {
ax + by : (x, y) ∈ Z

2 and ax + by � 1
}
.

Clearly E ⊂ Z�0 and E �= ∅ since |a| or |b| is an element of E. By Axiom 1.1,
we infer that E contains a smallest element δ � 1 and we set (u, v) ∈ Z

2 such that
δ = au + bv. Let us prove that δ = d . If we had δ � a, the Euclidean division of δ

into a would give

a = δq + r and 0 < r < δ

and then we would have

r = a − δq = a − q(au + bv) = a(1 − qu) + b(−qv)

which implies that r ∈ E, and then r � δ, which contradicts the inequality r < d .
Hence we have δ | a, and we prove δ | b in a similar way. Now let c be another
positive integer dividing a and b. We then have c | (au + bv) = δ, and thus c � δ,
which proves that d = δ = au + bv. Conversely, since d | a and d | b, we infer
that d � (a, b). On the other hand, since (a, b) | a and (a, b) | b, we have (a, b) |
(au + bv) = d which implies that (a, b) � d , so that d = (a, b), and the proof is
complete. �

As a corollary we get at once the important Bachet–Bézout theorem.

Corollary 2.6 (Bachet–Bézout) Let a, b be any integers. Then a and b are coprime
integers if and only if there exist integers u, v such that au + bv = 1.

Remark 2.7 The integers u and v, called Bézout’s coefficients of a and b, are not
unique since we can write

au + bv = a(u + kb) + b(v − ka) (k ∈ Z).

Theorem 2.5 provides a useful criterion for the gcd.

Corollary 2.8 Let a, b be integers and d be a positive integer. Then

d = (a, b) ⇐⇒
{

(i) d | a, d | b
(ii) c | a, c | b =⇒ c | d.

Proof The sufficient condition is obvious. Conversely, if d = (a, b), then d satis-
fies (i) and Theorem 2.5 provides integers u, v such that d = au+ bv, so that if c | a
and c | b, then c | (au + bv) = d as required. �
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2.2 The Euclidean Algorithm

The computation of the gcd can be achieved by using the following observation
discovered by Euclid.

Theorem 2.9 Given a, b, k ∈ Z \ {0} we have

(a, b) = (a, b + ka).

Proof If d1 = (a, b) and d2 = (a, b + ka), then it is easy to see that d1 | a and
d1 | b imply that d1 | a and d1 | (b + ka) so that d1 | d2. Conversely, since d2 | a and
d2 | (b + ka), we infer that d2 | a and d2 | (b + ka − ka) = b so that d2 | d1. This is
the desired result since d1, d2 � 1. �

Now let a � b be positive integers for which we want to compute their gcd. By
making use of the former result, we could proceed in the following way.

(i) If b | a then (a, b) = b. Otherwise, the Euclidean division of r0 = a by r1 = b

provides two unique integers q1 and r2 such that a = bq1 + r2 and 0 < r2 < b,
and Theorem 2.9 with k = −q1 gives

(a, b) = (b, a − bq1) = (b, r2).

(ii) If r2 | b then (a, b) = (b, r2) = r2. Otherwise, the proof proceeds as before so
that we get two unique integers q2 and r3 such that

(b, r2) = (r2, r3).

(iii) And so on . . .

This algorithm, derived by Euclid, gradually constructs a strictly decreasing se-
quence of natural integers (rk). Hence there exists a non-negative integer n such that
rn �= 0 and rn+1 = 0 and we get

(a, b) = (b, r2) = (r2, r3) = · · · = (rn−1, rn) = (rn,0) = rn.

With a little more work, one can even estimate the number of divisions required
in this algorithm to obtain the gcd. The following result is a version of a theorem
proved by Lamé.

Proposition 2.10 (Lamé) Let 1 � b � a be integers. Then the number of divisions
necessary to compute (a, b) in the Euclidean algorithm does not exceed

[
logb

log�

]
+ 1

where � = 1+√
5

2 is the golden ratio.
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Proof The proof uses the Fibonacci numbers Fn and their connection with the
golden ratio. Recall that � is the positive solution of the equation x2 = x + 1 and
that Fibonacci numbers are the terms of the Fibonacci sequence (Fn) defined by

{
F0 = 0, F1 = 1

Fn+2 = Fn+1 + Fn (n � 0).

An easy induction shows that the following lower bound

Fn � �n−2 (2.1)

holds for any positive integer n. Now consider the Euclidean algorithm with n � 2
steps written as

r0 = r1q1 + r2 0 < r2 < r1

r1 = r2q2 + r3 0 < r3 < r2
...

...

rn−2 = rn−1qn−1 + rn 0 < rn < rn−1

rn−1 = rnqn

(with a = r0 and b = r1). Let us prove by induction that

rn−k � Fk+2 (k = 1, . . . , n). (2.2)

Note first that qn � 2 since rn−1 = qnrn and rn < rn−1 and therefore

rn−1 = rnqn � qn � 2 = F3

so (2.2) is true for k = 1. It is also true for k = 2 since

rn−2 = rn−1qn−1 + rn � rn−1 + rn � 2 + 1 = 3 = F4.

Now suppose that (2.2) is true for some k. We have

rn−k−1 = rn−kqn−k + rn−k+1 � rn−k + rn−k+1

and by induction hypothesis we get

rn−k−1 � Fk+2 + Fk+1 = Fk+3

which proves (2.2). We now use (2.2) with k = n − 1 to get

b = r1 � Fn+1

and (2.1) implies then that

n � logb

log�
+ 1

which completes the proof. �
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Example 2.11 Let us show how the Euclidean algorithm could be used to get a gcd
and Bézout’s coefficients associated to it. Let d = (18 459,3 809). We have

4 1 5 2

18 459 3 809 3 223 586 293
3 223 586 293 0

where the quotients are written in the first line and the remainders are in the second
and third lines. We then obtain d = 293. We also have

⎧
⎨

⎩

18 549 = 3 809 (4) + 3 223
3 809 = 3 223 (1) + 586
3 223 = 586 (5) + 293

which we can rewrite as
⎧
⎨

⎩

18 459 + 3 809 (−4) + 3 223 (−1) = 0 ×6
3 809 (1) + 3 223 (−1) + 586 (−1) = 0 ×(−5)

3 223 (1) + 586 (−5) = 293 ×1

which immediately gives

18 459 × (6) + 3 809 × (−29) = 293.

2.3 Gauss’s Theorem

The following result is fundamental.

Theorem 2.12 (Gauss) Let a, b, c be any integers. Then

a | bc

(a, b) = 1

}
=⇒ a | c.

Proof Since (a, b) = 1, using Bachet–Bézout’s theorem we have integers u, v such
that au + bv = 1. Multiplying both sides of this identity by c and using the fact that
there exists k ∈ Z such that bc = ka, we get

c = acu + bcv = acu + kav = a(cu + kv)

which is the desired result since cu + kv ∈ Z. �

This result has, along with Bachet–Bézout’s theorem, a lot of consequences. The
following proposition summarizes some of them.

Proposition 2.13 Let n, r be positive integers and a, b, c, a1, a2, . . . , ar , k be any
integers.
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(i) (ka, kb) = |k|(a, b) and [ka, kb] = |k|[a, b].
(ii) If d = (a, b) and a = da′ and b = db′, then (a′, b′) = 1.

(iii) (a, b) × [a, b] = |ab|.
(iv) (a, b) = 1 ⇒ (a, bc) = (a, c).
(v) (an, bn) = (a, b)n and [an, bn] = [a, b]n.

(vi)

a | c
b | c

(a, b) = 1

⎫
⎬

⎭
=⇒ ab | c.

More generally, we have

a1 | b, . . . , ar | b
i �= j =⇒ (ai, aj ) = 1

}
=⇒ a1 · · ·ar | b.

(vii) Suppose (a, b) = 1 and k � 1. If ab = ck for some positive integer c, then
there exist positive integers r , s such that a = rk and b = sk .

(viii) Suppose 1 � k < n. Then

n

(n, k)
|
(

n

k

)
.

Proof Without loss of generality, we prove the theorem by considering that a, b, c

and a1, a2, . . . , ar , k are positive integers.

(i) We set d = (a, b). Clearly we have kd | (ka, kb) since kd | ka and kd | kb.
By Theorem 2.5, there exist integers u, v such that d = au + bv so that kd =
u(ka) + v(kb) and therefore, using Theorem 2.5 again, we infer that kd =
(ka, kb).

Next we set m = [a, b] and M = [ka, kb]. km is a common multiple of ka

and kb so that km � M . Conversely, since ka | M and kb | M , we deduce that
the integer M/k is a common multiple of a and b, and thus M/k � m, which
gives M � km, and therefore M = km.

(ii) We have d = (a, b) = (da′, db′) = d(a′, b′) so that (a′, b′) = 1.
(iii) Suppose first that (a, b) = 1. We obviously have [a, b] � ab since these two

numbers are common multiples of a and b. On the other hand, since a | [a, b],
there exists a positive integer q such that [a, b] = qa. Since b | [a, b] = qa

and (a, b) = 1, Gauss’s theorem implies that b | q , so that b � q and thus
ab � qa = [a, b]. Hence we proved that [a, b] = ab as soon as (a, b) = 1.
Now if (a, b) = d > 1, we set a = da′ and b = db′ with (a′, b′) = 1. We then
have

[a, b] = [
da′, db′] = d

[
a′, b′] = da′b′ = ab

d
= ab

(a, b)

giving the asserted result.
(iv) We set d = (a, c) and D = (a, bc). Clearly, d | D. Conversely, since D | a and

D | bc, we have D | ac and D | bc so that D | (ac, bc) = c × (a, b) = c, and
thus D | d .
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(v) We first note that (iii) implies by induction that (a, b) = 1 =⇒ (a, bn) = 1 and
similarly (bn, a) = 1 =⇒ (bn, an) = 1, so that we have

(a, b) = 1 =⇒ (
an, bn

) = 1.

Now set d = (a, b) and a = da′, b = db′ with (a′, b′) = 1. We get

(
an, bn

) = (
dna′n, dnb′n) = dn

(
a′n, b′n) = dn = (a, b)n.

Next we use (iii)

[
an, bn

] = anbn

(an, bn)
=

(
ab

(a, b)

)n

= [a, b]n.

(vi) There exists a positive integer q such that c = qa and then we get

b | qa

(a, b) = 1

}
=⇒ b | q

by Gauss’s theorem. Thus, q = hb for some positive integer h and then c =
qa = hba so that ab | c. The second assertion follows by an easy induction.

(vii) Let d = (a, c). First, we have dk | ck = ab and since (d, b) = ((a, c), b) =
(c, (a, b)) = (c,1) = 1, we have (dk, b) = 1 and Gauss’s theorem implies that
dk | a. On the other hand, if we set a = da′ and c = dc′ so that (a′, c′) = 1,
then the equality ab = ck is equivalent to a′b = dk−1c′k , so that a′ | dk−1c′k
and since (a′, c′k) = 1, we have a′ | dk−1 by Gauss’s theorem again, so that
a | dk . Hence we get a = dk and b = (c/d)k .

(viii) We set d = (n, k) and n = dn′, k = dk′ with (n′, k′) = 1. We have

k′
(

n

k

)
= n′

(
n − 1

k − 1

)

and the binomial coefficient of the right-hand side is an integer since n, k � 1,
therefore we have

n′ | k′
(

n

k

)
.

Since (n′, k′) = 1, Gauss’s theorem implies that

n′ |
(

n

k

)

which is the desired result.

The proof is complete. �
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2.4 Linear Diophantine Equations

In this section, a, b, n are any integers satisfying ab �= 0 and we set d = (a, b). Any
equation of the form ax + by = n with (x, y) ∈ Z

2 is called a linear Diophantine
equation. The aim of this section is the resolution of such equations. We begin with
an important observation.

Lemma 2.14 Let a, b,n ∈ Z such that ab �= 0 and set d = (a, b). Then the Dio-
phantine equation ax + by = n has a solution in Z

2 if and only if d | n.

Proof If n = 0 then d | n and (x, y) = (0,0) is a solution. Now suppose n �= 0. We
also define (u, v) ∈ Z

2 such that d = au + bv. Suppose first that the equation has
at least one solution (x, y) ∈ Z

2. Since d | a and d | b, we get d | (ax + by) = n.
Conversely, suppose d | n. Set x0 = nu/d and y0 = nv/d . Note that (x0, y0) ∈ Z

2

and we have

ax0 + by0 = anu + bnv

d
= n

d
(au + bv) = n.

Thus, the pair (x0, y0) = ( nu
d

, nv
d

) is solution of the equation. �

The solutions are completely determined by the following result.

Proposition 2.15 Let a, b,n ∈ Z such that ab �= 0 and set d = (a, b). Suppose that
d | n and let (x0, y0) be a particular solution of the Diophantine equation ax +by =
n. Then the solutions are given by the following formulae

⎧
⎪⎨

⎪⎩

x = x0 + kb

d

y = y0 − ka

d

(k ∈ Z).

Proof Define a = da′, b = db′ and n = dn′ so that (a′, b′) = 1. The equation is
equivalent to a′x + b′y = n′. Let (x, y) be a solution distinct from (x0, y0). From

a′x + b′y = a′x0 + b′y0

we get

a′(x − x0) = b′(y0 − y) (2.3)

with y − y0 ∈ Z, so that b′ | a′(x − x0). Since (a′, b′) = 1, Gauss’s theorem implies
that

b′ | (x − x0)

so that there exists k ∈ Z such that x = x0 + kb′. Replacing x − x0 by kb′ in (2.3)
gives y = y0 −ka′. Conversely, we check that the pairs (x, y) = (x0 +kb′, y0 −ka′)
with k ∈ Z are solutions of the equation. �



2.5 Congruences 35

Example 2.16 Solve in Z
2 the equation

18 459x + 3 809y = 879.

Answer Set d = (18 459,3 809). Using Example 2.11 we know that d = 293 and
since 879 = 3×293, Lemma 2.14 implies that this equation has at least one solution
in Z

2. It is equivalent to 63x + 13y = 3 and we have seen in Example 2.11 that
63(6) + 13(−29) = 1, so that the pair (x0, y0) = (18,−87) is a particular solution
of the equation. Let (x, y) ∈ Z

2 be a solution. We have

63x + 13y = 63(18) + 13(−87) ⇐⇒ 63(x − 18) = 13(−y − 87)

so that 13 | 63(x − 18). Since (63,13) = 1, Gauss’s theorem implies that 13 | (x −
18), and hence there exists k ∈ Z such that x = 18+13k. This gives y = −87−63k.
Conversely, we check that the pairs (18 + 13k,−87 − 63k) are solutions of the
equation. Thus, the set of solutions is

S = {(18 + 13k, −87 − 63k) : k ∈ Z}.

Example 2.17 (Money changing problem) In how many ways can we obtain a sum
of $34 with only $2 coins and $ 5 bills?

Answer We have to count the number of solutions in (Z�0)
2 of the equation 2x +

5y = 34. Using Proposition 2.15 we get

x = 2 + 5k and y = 6 − 2k (k ∈ Z)

as solutions in Z
2. The condition (x, y) ∈ (Z�0)

2 holds if and only if −2/5 � k � 3,
which gives k ∈ {0,1,2,3}, and hence the equation has four solutions in (Z�0)

2, and
thus there are four ways to get $34 with only $2 coins and $5 bills.

2.5 Congruences

Introduced by Gauss, congruences are a very efficient tool in number theory. In what
follows, n is a positive integer.

Definition 2.18 Let a, b be any integers and let n be a positive integer. We say that a

is congruent to b modulo n, and we write a ≡ b (modn), if and only if n | (a −b). If
n � (a − b), we say that a and b are incongruent modulo n and write a �≡ b (modn).

Examples 2.19

1. 42 ≡ 0 (mod 2), 42 ≡ 10 (mod 2), 42 �≡ 15 (mod 2), 42 ≡ 120 (mod 2).
2. 10 ≡ 1 (mod 9) and 10 ≡ −1 (mod 11).
3. n is even (resp. odd) if and only if n ≡ 0 (mod 2) (resp. n ≡ 1 (mod 2)).
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4. If the decimal representation of a positive integer n is n = arar−1 · · ·a0 with
0 � ai � 9 (for i = 0, . . . , r) and ar �= 0, then, for any integer k ∈ {1, . . . , r + 1}
we have

n ≡ ak−1 · · ·a0
(
mod 10k

)
.

5. For any integers a, b, we have a ≡ b (mod 1).

Remark 2.20 Given a fixed integer a, there is no unicity of the integer b such that
a ≡ b (modn) since this relation means nothing but that there exists k ∈ Z such that
a = b + kn. Thus, we can choose b depending on the result aimed at. In particular,
it is of great interest to take b as the remainder of the Euclidean division of a by
n. Indeed, we have in this case 0 � b < n, i.e. a reduction phenomenon. Let us also
mention that the relation a ≡ 0 (modn) means n | a, and it is not hard to see that,
if a ≡ b (modn), then for any positive divisor d of n, we also have a ≡ b (modd).
The following theorem summarizes the main properties of congruences.

Proposition 2.21 Let a, b, c, d, x, y ∈ Z and n, d be positive integers.

(i)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a ≡ a (modn) (reflexivity)

a ≡ b (modn) ⇐⇒ b ≡ a (modn) (symmetry)

a ≡ b (modn)

b ≡ c (modn)

}
=⇒ a ≡ c (modn) (transitivity).

In other words, congruence is an equivalence relation.
(ii) If a ≡ b (modn) and c ≡ d (modn), then we have

ax + cy ≡ bx + dy (modn) and ac ≡ bd (modn).

(iii) If m is a positive integer, then we have

a ≡ b (modn) =⇒ am ≡ bm (modn).

(iv) (Gauss’s theorem) Here is a congruence version of Theorem 2.12.

ac ≡ bc (modn)

(c,n) = 1

}
=⇒ a ≡ b (modn).

(v) (Generalization of Gauss’s theorem) We set d = (c, n). Then we have

ac ≡ bc (modn) ⇐⇒ a ≡ b (modn/d).

Proof We leave the proofs of (i) and (ii) to the reader as an exercise. They directly
derive from the definition.
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(iii) Using Lemma 1.6 we know that (a − b) divides (am − bm) so if n | (a − b),
then n | (am − bm).

(iv) The system can be written as

{
n | (a − b)c

(c, n) = 1

so that Gauss’s theorem immediately yields n | (a − b).
(v) We set d = (c, n) and c = dc′, n = dn′ so that (c′, n′) = 1. Suppose first that

ac ≡ bc (modn). Then there exists k ∈ Z such that ac − bc = kn and so ac′ −
bc′ = kn′. Thus we have

{
n′ | (a − b)c′

(c′, n′) = 1

and Gauss’s theorem then implies that n′ | (a − b). Conversely, if (n/d) |
(a −b), then

(nc/d) = nc′ | c(a − b)

and since n | nc′, we obtain n | c(a − b).

The proof is complete. �

Example 2.22 Find the remainder of the Euclidean division by 7 of

A =
10∑

k=1

1010k

.

Answer 102 = 2 + 7 × 14 and hence 102 ≡ 2 (mod 7), and thus1

106 = (
102)3 ≡ 23 ≡ 8 ≡ 1 (mod 7).

On the other hand, for every integer k � 2, we have

3 | (4k−1 − 1
)

by using Lemma 1.6, and hence 6 divides 4(4k−1 −1), and so 4k ≡ 4 (mod 6). Since
10 ≡ 4 (mod 6), we deduce that 10k ≡ 4 (mod 6) for k � 2. The congruence being

1We could also use Fermat’s little theorem. See Theorem 3.15.
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also true for k = 1, we have

A =
10∑

k=1

1010k =
10∑

k=1

104+6h

≡
10∑

k=1

104 ≡
10∑

k=1

4

≡ 10 × 4 ≡ 3 × 4 ≡ 5 (mod 7).

Example 2.23 Let a, b ∈ Z and n be a positive integer such that a ≡ b (modn).
Prove that

an ≡ bn (modn2).

Answer Using Lemma 1.6 we get

an − bn = (a − b)

n−1∑

k=0

akbn−k−1

and we know that a − b ≡ 0 (modn) and

n−1∑

k=0

akbn−k−1 ≡
n−1∑

k=0

an−1 ≡ nan−1 ≡ 0 (modn).

Example 2.24 Prove that 13 | (270 + 370).

Answer We have 26 = 5 × 13 − 1 and 33 = 2 × 13 + 1, hence 26 ≡ −1 (mod 13)

and 33 ≡ 1 (mod 13). Writing 70 = 11 × 6 + 4 and 70 = 3 × 23 + 1 we obtain

270 + 370 = 211×6+4 + 33×23+1 ≡ −24 + 3 ≡ −13 ≡ 0 (mod 13).

Example 2.25 Solve the Diophantine equation 2m − 3n = n where m, n are non-
negative integers such that n �≡ 5 (mod 8).

Answer (0,0) is the only solution when m = 0 and there is no solution when m = 1.
Furthermore, if m � 1, then n = 2m − 3n ≡ 1 (mod 2) so that one may suppose that
m� 2 and n� 1 is an odd integer satisfying n �≡ 5 (mod 8) by assumption. Writing
n = 2k + 1 for some k ∈ Z�0, we infer that k �≡ ±2 (mod 8) and therefore

3n + n = 3 × 9k + 2k + 1 ≡ 4 + 2k �≡ 0 (mod 8).

Now let m and n be two solutions with m � 2 and n � 1 is odd such that n �≡ 5
(mod 8). By the argument above we get 8 � 2m, so that m � 2, and then m = 2,
giving n = 1. Therefore, under the above hypotheses, the equation has two solutions,
namely the pairs (0,0) and (2,1).
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Our next goal is to count the number of solutions of the equation

ax ≡ b (modn).

Here we mean the number of integer solutions x such that

ax ≡ b (modn) and 0 � x � n − 1.

Lemma 2.14 and Proposition 2.15 then immediately give

Proposition 2.26 Let a, b ∈ Z and n be a positive integer. We set d = (a,n). Then
the congruence

ax ≡ b (modn)

has a solution if and only if d | b. Furthermore, if x0 is a particular solution, then
there are exactly d solutions given by

x0 + kn

d
with 0 � k � d − 1.

In particular, if (a,n) = 1, then the congruence ax ≡ b (modn) has exactly one
solution.

An important application of this result is the so-called Chinese remainder theo-
rem which treats several congruences simultaneously. The name of this result comes
from the fact that a 2-congruence version was discovered by the Chinese mathemati-
cian Sun Tse (1st century AD). Suppose we have a system of congruences

⎧
⎪⎨

⎪⎩

x ≡ a1 (modn1)
...

...

x ≡ ak (modnk)

where a1, . . . , ak ∈ Z and n1, . . . , nk are positive integers. The following result is
very useful.

Theorem 2.27 (Chinese remainder theorem) Suppose that the positive integers
n1, . . . , nk are pairwise coprime, i.e. for every pair (i, j) ∈ {1, . . . , k}2 such that
i �= j , we have (ni, nj ) = 1. Then the system

⎧
⎪⎨

⎪⎩

x ≡ a1 (modn1)
...

...

x ≡ ak (modnk)

has a unique solution modulo n1 · · ·nk .
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Proof The proof is constructive, meaning that we construct a solution and then show
that it is unique. We set n = n1 · · ·nk and, for every integer i = 1, . . . , k, we define
n′

i = n/ni . Obviously we have n′
i ∈ N and (ni, n

′
i ) = 1. Proposition 2.26 implies

that there exist integers n′′
i such that n′

in
′′
i ≡ 1 (modni). We then set

x = a1n
′
1n

′′
1 + · · · + akn

′
kn

′′
k .

We notice that if i �= j , then n′
j ≡ 0 (modni) and thus

x ≡ ain
′
in

′′
i ≡ ai (modni) (i = 1, . . . , k).

Suppose now that the system has two solutions x and y. Then x − y ≡ 0 (modni)

for every i = 1, . . . , k. Since the integers ni are pairwise coprime, Proposition 2.13
(vi) implies that x − y ≡ 0 (modn), which completes the proof. �

Example 2.28 Solve the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 4 (mod 7)

x ≡ 5 (mod 11)

Answer Note that the modules are pairwise distinct prime numbers, and then are
trivially pairwise coprime. We have n = 2310 and the computations are summarized
in Table 2.1 so that

x = 1155 + 3080 + 4158 + 1320 + 1050 ≡ 1523 (mod 2310).

Remark 2.29

1. Let a, n be coprime integers. It will be shown in Theorem 4.12 that

aϕ(n) ≡ 1 (modn)

where ϕ is Euler’s totient function. It follows that x = aϕ(n)−1 is a solution of the
equation ax ≡ 1 (modn) and thus one may take n′′

i = (n/ni)
ϕ(ni )−1. Therefore

Table 2.1 Calculations of
the n′

i
n′

1 n′
2 n′

3 n′
4 n′

5

1155 770 462 330 210

n′′
1 n′′

2 n′′
3 n′′

4 n′′
5

1 2 3 1 1
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an explicit formula for the system of Theorem 2.27 in terms of ni and ai can be
derived as follows

x ≡
k∑

i=1

(
n

ni

)ϕ(ni )

ai (modn1 · · ·nk).

2. An important particular case, often used in some recreational mathematics, is
when we have a1 = · · · = ak = a, where the whole computational machinery is
not needed. The trivial solution x ≡ a (modn1 · · ·nk) is guaranteed to be the only
one by Theorem 2.27.

3. When the moduli are not pairwise coprime, some potential sets of remainders
may be ruled out. For instance, the system

{
x ≡ 2 (mod 6)

x ≡ 3 (mod 4)

has no solution in Z, otherwise there would exist (h, k) ∈ Z
2 such that 6h =

1 + 4k, and hence 2h ≡ 1 (mod 4), contradicting Proposition 2.26. A necessary
and sufficient condition for a solution to exist is

ai ≡ aj

(
mod(ni, nj )

)

for all i, j ∈ {1, . . . , k}2. In this case, all solutions are congruent modulo
[n1, . . . , nk].

2.6 Further Developments

2.6.1 The Ring (Z/nZ,+,×)

A ring (R,+,×) is a non-empty set endowed with two binary operations, usually
denoted by + and ×, such that (R,+) is an abelian group with identity element de-
noted by 0, the operation × being left- and right-distributive over +. If the operation
× also has an identity element, often denoted by 1, then the ring is called a unitary
ring. An element a ∈ R, where R is unitary, is a unit of R if there exists b ∈ R such
that ab = ba = 1. Such a b is then unique and is called the inverse of a. Finally,
an element a ∈ R is called a zero divisor if there exists b ∈ R \ {0} not necessarily
unique such that ab = 0, and if R is unitary, neither a nor b are units.

Now let n be a positive integer. The set of residue classes modulo n, often de-
noted by 0, 1, . . . , n − 1, is a unitary abelian ring, denoted by Z/nZ, endowed with
the binary operations + and × defined by x + y = x + y and x × y = x × y (one
can check that they are indeed well-defined). The basic result is then the following
theorem.
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Theorem 2.30 The ring Z/nZ is a disjoint union Z/nZ = E ∪ F where E, resp.
F , is the set of units, resp. zero divisors, of Z/nZ. Furthermore, x ∈ Z/nZ is a unit
if and only if (x,n) = 1.

Proof Let d = (x,n). Suppose first that x is a unit and define y = (x)−1. We then
have xy ≡ 1 (modn) and then there exists k ∈ Z such that xy − 1 = kn. Thus
we have d | (xy − kn) = 1 and then d = 1. Conversely, suppose that d = 1. By
Bachet–Bézout’s theorem there exist u,v ∈ Z such that xu + vn = 1. Therefore
xu ≡ 1 (modn) and then x is a unit in Z/nZ. If d > 1, we set x = dx′, n = dn′ with
(x′, n′) = 1. Then we have

n′x = dn′x′ = nx′ ≡ 0 (modn)

so that x is a zero divisor in Z/nZ. Conversely, a zero divisor cannot be a unit, and
then d > 1. �

Euler’s totient function is the function ϕ which counts the number of units in
Z/nZ, with the convention that ϕ(1) = 1. Theorem 2.30 has then the following
immediate application.

Theorem 2.31 Let n be a positive integer. Then ϕ(1) = 1 and, for every integer
n � 2, ϕ(n) is the number of positive integers m � n such that (m,n) = 1. In other
words, we have

ϕ(n) =
∑

m�n
(m,n)=1

1.

We shall find this important function again in Chap. 4.
Finally, note that Lemma 3.4 tells us that if n = p is prime, then Z/pZ does

not have any zero divisor, and then the set of units of Z/pZ is (Z/pZ)∗ =
{1, . . . , p − 1}. Thus, for every prime number p, we have ϕ(p) = p − 1. More gen-
erally, group theory tells us that, if n = p

α1
1 · · ·pαr

r is the factorization of n into
prime powers, then we have the following isomorphism of cyclic groups

Z/nZ  Z/p
α1
1 Z⊕Z/p

α2
2 Z⊕ · · · ⊕Z/pαr

r Z

which induces the group isomorphism

(Z/nZ)∗  (
Z/p

α1
1 Z

)∗ ⊕ (
Z/p

α2
2 Z

)∗ ⊕ · · · ⊕ (
Z/pαr

r Z
)∗

whence we deduce that

ϕ(n) = ϕ
(
p

α1
1

)
ϕ
(
p

α2
2

) · · ·ϕ(
pαr

r

)

characterizing the multiplicativity of Euler’s totient function. We shall prove this
again in Chap. 4 by using purely arithmetic arguments.
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2.6.2 Denumerants

Let k, n be positive integers and Ak = {a1, . . . , ak} be a finite set of pairwise rela-
tively prime positive integers.2 The aim of this section is to study the number Dk(n)

of solutions of the Diophantine equation

a1x1 + · · · + akxk = n

where the unknowns are (x1, . . . , xk) ∈ (Z�0)
k . The number Dk(n) is called the

denumerant of n with respect to k and to the set Ak . When a1 = · · · = ak = 1, this
denumerant will be denoted by D(1,...,1)(n) where the vector (1, . . . ,1) is supposed
to have k components.

Exercise 10 deals with the case k = 2 where it is shown that

D2(n) =
[

n

ab

]
+ r

where r = 0 or r = 1 and for which it is convenient to rename the coefficients a,
b instead of a1, a2. Thus, if n < ab, there is at most one solution. The Frobenius
problem deals with the largest number n for which this equation is not soluble, and
it can be proved that this number is given by

n = ab − a − b.

By using the theory of generating functions, several authors derived some formulae
for the exact value of D2(n). The following lines borrow the ideas essentially from
[Tri00]. Expanding the generating function into partial fractions and comparing the
coefficients of zn in each side gives3

D2(n) = n

ab
+ 1

2

(
1

a
+ 1

b

)
+ 1

a

a−1∑

k=1

ea(nk)

1 − ea(−bk)
+ 1

b

b−1∑

k=1

eb(nk)

1 − eb(−ak)
(2.4)

where ea(x) = e2πix/a . Note that the sums are periodic in n, the first one with period
a and the second one with period b, and since (a, b) = 1, the sum of these two sums
is periodic of period ab, and then the expression of D2(n) is essentially determined
modulo ab. Now define a′ and b′ to be integers satisfying

⎧
⎪⎪⎨

⎪⎪⎩

1 � a′ � b

1 � b′ � a

aa′ ≡ −n (modb)

bb′ ≡ −n (moda).

(2.5)

2When k = 1, this obviously means A1 = {1}.
3See Exercise 11 for another proof of this identity.
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Note that

{
1 − ea(−bk)

} b′−1∑

j=0

ea(−bjk) = 1 − ea

(−b′bk
) = 1 − ea(nk)

hence we get

ea(nk)

1 − ea(−bk)
= 1

1 − ea(−bk)
−

b′−1∑

j=0

ea(−bjk)

and using the formulae

a−1∑

k=1

ea(−mk) =
{

a − 1, if a | m
−1, otherwise

valid for positive integers a, m, and

a−1∑

k=1

1

1 − ea(−mk)
= a − 1

2

valid for positive integers a, m such that (a,m) = 1, we then obtain

a−1∑

k=1

ea(nk)

1 − ea(−bk)
=

a−1∑

k=1

1

1 − ea(−bk)
−

b′−1∑

j=0

a−1∑

k=1

ea(−bjk)

= a − 1

2
− (a − 1) +

b′−1∑

j=1

1

= b′ − a + 1

2

and the same is true for the second sum, so that we finally get

D2(n) = n

ab
− 1 + a′

b
+ b′

a
.

Note that by (2.5) both a and b divide n+aa′ +bb′, so that n+aa′ +bb′ is divisible
by ab by Proposition 2.13 (vi). Furthermore, since n + aa′ + bb′ � n + a + b, we
infer that the number on the right-hand side above is indeed a non-negative integer.
We can then state the following result.

Theorem 2.32 Let a, b � 1 be coprime integers and define positive integers a′, b′
as in (2.5). Then the number D2(n) of solutions in non-negative integer pairs (x, y)
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of the equation ax + by = n is given by

D2(n) = n

ab
− 1 + a′

b
+ b′

a
.

Note that the following four properties characterize uniquely D2(n).

D2(n + kab) = D2(n) + k (k � 0).

D2(n) = 1 if ab − a − b < n < ab.

D2(n) +D2(m) = 1 if m + n = ab − a − b (m,n � 0).

D2(n) = 1 if n = ax0 + by0 < ab − a − b (x0, y0 � 0).

See [BR04, BZ04, Shi06, Wil90] for more details.
Another formula, discovered by Popoviciu [Pop53] in 1953, is given in Exer-

cise 11.
In the general case k � 3, a similar method involving the generating function can

be used, leading to the asymptotic formula

Dk(n) = nk−1

(k − 1)! a1 · · ·ak

+ O
(
nk−2)

as n −→ ∞, but computations become harder as soon as the number of unknowns
increases. On the other hand, a strong upper bound can be derived in a more ele-
mentary way by taking into account the following observation. Since

a1x1 + · · · + akxk = n ⇐⇒ a1x1 + · · · + ak−1xk−1 = n − akxk

we obtain xk � [n/ak] and thus

Dk(n) =
n/ak∑

j=0

Dk−1(n − jak). (2.6)

The aim is then to prove the following result.

Theorem 2.33 For every positive integer k we set

sk =
{

0, if k = 1

a2 + a3 + · · · + ak

2
, if k � 2

and

rk =
{

1, if k = 1
a2 · · ·ak, if k � 2
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with s2 = a2. Then

Dk(n) � (n + sk)
k−1

(k − 1)! rk .

Furthermore, if a1 = · · · = ak = 1, then

D(1,...,1)(n) =
(

k + n − 1

n

)
.

The proof uses induction and the following lemma.

Lemma 2.34 For every real number x � 0 and every integer k � 2 we have

∑

0�j�x

(x − j)k−1 � 1

k

(
x + 1

2

)k

.

Proof We shall in fact prove the slightly stronger following inequality

∑

0�j�x

(x − j)k−1 � xk

k
+ xk−1

2
+ (k − 1)xk−2

8

since we easily see using Newton’s formula that

1

k

(
x + 1

2

)k

= xk

k
+ xk−1

2
+ (k − 1)xk−2

8
+ positive terms

� xk

k
+ xk−1

2
+ (k − 1)xk−2

8
.

By partial summation with a = 0, f (t) = 1 and g(t) = (x − t)k−1 we get

∑

0�j�x

(x − j)k−1 = (k − 1)

∫ x

0
(x − t)k−2([t] + 1

)
dt

and since [t] = t − ψ(t) − 1/2, we obtain

∑

0�j�x

(x − j)k−1 = (k − 1)

(∫ x

0
(x − t)k−2

(
t + 1

2

)
dt −

∫ x

0
(x − t)k−2ψ(t) dt

)

and integrating by parts gives

∑

0�j�x

(x − j)k−1 = xk

k
+ xk−1

2
− (k − 1)

([
ψ2(t)(x − t)k−2]x

0

+ (k − 2)

∫ x

0
(x − t)k−3ψ2(t) dt

)
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= xk

k
+ xk−1

2
− (k − 1)(k − 2)

∫ x

0
(x − t)k−3ψ2(t) dt

� xk

k
+ xk−1

2
+ (k − 1)(k − 2)

8

∫ x

0
(x − t)k−3 dt

= xk

k
+ xk−1

2
+ (k − 1)xk−2

8

which completes the proof of the lemma. �

Proof of Theorem 2.33 By induction on k, the case k = 1 being immediate since

D1(n) � 1 = n1−1

(1 − 1)! = (n + s1)
1−1

(1 − 1)!r1
.

Now suppose k � 2. We let the case k = 2 in Exercise 10, and suppose the inequality
is true for some k � 2. Using (2.6), induction hypothesis and Lemma 2.34 we get

Dk+1(n) =
n/ak+1∑

j=0

Dk(n − jak+1)

� 1

(k − 1)! rk
n/ak+1∑

j=0

(n − jak+1 + sk)
k−1

�
ak−1
k+1

(k − 1)! rk
(n+sk)/ak+1∑

j=0

(
n + sk

ak+1
− j

)k−1

�
ak−1
k+1

k! rk
(

n + sk

ak+1
+ 1

2

)k

= (n + sk+1)
k

k! rk+1

which is the desired result. The last part of the theorem may be treated similarly,
using the well-known identity (see [Gou72, identity 1.49])

n∑

j=0

(
k + j − 1

j

)
=

(
k + n

n

)

in the induction argument. �

2.6.3 Generating Functions

We saw in the last section that it was essential to study the generating function of a
sequence to get some information about the sequence itself. Let (un) be a sequence.
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The generating function of (un) is the function F(z) formally defined by

F(z) =
∑

n�0

unz
n.

If F(z) can be written as an elementary function of z, then the comparison of the
coefficients of zn can give a closed formula for un. Nevertheless, we must notice
that such a series could either be studied formally or must be taken as a function of
the complex variable z. In the latter case, convergence problems must be studied.
Generating functions are the main tools in combinatorial theory, where results from
complex analysis are frequently used (see [Odl95] or [Wil90]). For example, if F(z)

is analytic in the open disc |z| < R, then, for any r with 0 < r < R and any non-
negative integer n we have

|un| � r−n max|z|=r
|F(z)|

by Cauchy’s theorem.
For a wide class of generating functions, the saddle point method enables us

to obtain more accurate estimates. To this end, we first pick up the concept of H-
function from [Odl95]. A generating function F(z) = ∑

n�0 unz
n is said to be an H-

function, or Hayman’s function, if F(z) is analytic in |z| < R for some 0 < R � ∞,
real when z ∈] − R,R[ and satisfies

max|z|=r

∣∣F(z)
∣∣ = F(r)

for some R0 < r < R. Furthermore, let

a(z) = zF ′(z)
F (z)

and b(z) = za′(z)

and let r �−→ δ(r) be a function defined in the range ]R0,R[ and satisfying 0 <

δ(r) < π in this range. Suppose that

� Uniformly for |θ | < δ(r), we have

F
(
reiθ

) ∼ F(r)eiθa(r)− 1
2 θ2b(r) and F

(
reiθ

) = o

(
F(r)√
b(r)

)

as r −→ R.
� limr→R b(r) = ∞.

It can be shown [Odl95] that if P(z) = anz
n + · · · + a0 ∈ R[z] and if F(z) and

G(z) are H-admissible in |z| < R, then eF(z), F(z)G(z) and F(z) + P(z) are H-
admissible in |z| < R. Furthermore, if an > 0, then P(F(z)) is H-admissible in
|z| < R.

Now we may state one of the main results of the saddle point theory.
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Theorem 2.35 Let F(z) = ∑
n�0 unz

n be an H-function and set

a(z) = zF ′(z)
F (z)

and b(z) = za′(z).

For all n ∈ Z�0, let zn be the solution of a(zn) = n such that R0 < zn < R. Then,
for n −→ ∞, we have

un ∼ F(zn)

zn
n

√
2πb(zn)

.

For example, with un = 1/n! we have F(z) = ez, R = ∞ and a(z) = b(z) = z so
that zn = n, and we obtain the following version of Stirling’s formula

n! ∼
(

n

e

)n√
2πn.

In addition to (1.1) which is the simplest example of a generating function with un =
1, it must be interesting to take the following series into account, which generalizes
Newton’s formula.

For any positive integer k and any real number |x| < 1 we have

∞∑

j=0

(
k + j − 1

j

)
xj = 1

(1 − x)k
. (2.7)

As an example, let us try to find a closed formula for the generating function of the
denumerant Dk(n) seen above. Using (1.1) we have formally

1

(1 − za1)(1 − za2) · · · (1 − zak )
=

∑

x1�0

za1x1
∑

x2�0

za2x2 · · ·
∑

xk�0

zakxk

=
∑

x1,..., xk�0

za1x1+···+akxk

=
∑

n�0

(
∑

x1,..., xk�0
a1x1+···+akxk=n

1

)

zn

=
∑

n�0

Dk(n)zn

so that the generating function of Dk(n) is given by

F(z) =
k∏

i=1

1

1 − zai
. (2.8)
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Now let us show with an example how this series could be used. We take k = 3 and
A3 = {1,2,3} so that D3(n) counts the number of non-negative integer solutions of
the equation x + 2y + 3z = n. The generating function of D3(n) is then

F(z) = 1

(1 − z)(1 − z2)(1 − z3)

and partial fractions expansion theory gives

1

(1 − z)(1 − z2)(1 − z3)
= 1

6(1 − z)3
+ 1

4(1 − z)2
+ 17

72(1 − z)

+ 1

8(1 + z)
+ 1

9

(
1

1 − z/ρ
+ 1

1 − z/ρ2

)

where ρ = e3(1) = e2πi/3. Using (2.7) we obtain

∑

n�0

D3(n)zn =
∑

n�0

zn

{
1

6

(
n + 2

n

)
+ 1

4

(
n + 1

n

)
+ 17

72

+ (−1)n

8
+ 1

9

(
ρ−n + ρ−2n

)}

and comparing the coefficients of zn in each side gives

D3(n) = 1

6

(
n + 2

n

)
+ 1

4

(
n + 1

n

)
+ 17

72
+ (−1)n

8
+ 1

9

(
ρ−n + ρ−2n

)

= 6n2 + 36n + 47

72
+ (−1)n

8
+ 2

9
cos

(
2πn

3

)
.

Thus we can check the values of D3(n) according to the residue class modulo 6 of

n which we summarize in Table 2.2, and then we have D3(n) = (n+3)2

12 + εn where
|εn| � 1

3 so that

D3(n) =
⌊

(n + 3)2

12

⌉

where �x� is the nearest integer to x.

Table 2.2 Values of D3(n)

n mod 6 0 ±1 ±2 3

D3(n)
n2 + 6n + 12

12

(n + 1)(n + 5)

12

(n + 2)(n + 4)

12

(n + 3)2

12
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2.7 Exercises

1 Let a, b, n, x, y, z, t be any positive integers.

(a) Prove that if (a, b) = 1, then (a + b, a − b) = 1 or 2.
(b) Show that if (a, b) = 1, then (a + b, ab) = 1.
(c) Prove that a | b ⇐⇒ an | bn.
(d) Suppose that |xt − yz| = 1. Prove that (a, b) = (ax + by, az + bt).

2 (Thue’s lemma) The aim of this exercise is to provide a proof of the following
result.

Lemma (Thue) Let a > 1 be an integer and p � 3 be a prime number such that
p � a. Then the equation au ≡ v (modp) has a solution (u, v) ∈ Z

2 such that

{
1 � |u| < √

p,

1 � |v| < √
p.

(a) Let S = {0, . . . , [√p]} and define a map f : S2 −→ {0, . . . , p − 1} by

f (u, v) ≡ au − v (modp).

Show that f is not injective.
(b) We denote by (u1, v1) and (u2, v2) two pairs such that (u1, v1) �= (u2, v2) and

f (u1, v1) = f (u2, v2), and set u = u1 − u2 and v = v1 − v2.
� Check that au ≡ v (modp) and that |u| < √

p and |v| < √
p.

� Show that u �= 0, and then v �= 0.

3 (Euclidean algorithm revisited) Let a > b be positive integers and let (rk) be the
sequence of remainders of the divisions in the Euclidean algorithm with r0 = a and
r1 = b

r0 = r1q1 + r2 0 < r2 < r1

r1 = r2q2 + r3 0 < r3 < r2
...

...

rk−1 = rkqk + rk+1 0 < rk+1 < rk
...

...

rn−1 = rnqn rn = (a, b).

We define the sequences (sk) and (tk) so that, for k = 1, . . . , n we have

{
s0 = 1 s1 = 0 sk+1 = −qksk + sk−1
t0 = 0 t1 = 1 tk+1 = −qktk + tk−1
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(a) Prove that rk = ska + tkb (k = 0, . . . , n + 1).
(b) Prove that sk = (−1)k|sk| and tk = (−1)k+1|tk| (k = 0, . . . , n + 1). Deduce that

|sk+1| = qk|sk| + |sk−1|
|tk+1| = qk|tk| + |tk−1|

for k = 1, . . . , n.
(c) Deduce that

a = |tk|rk−1 + |tk−1|rk

for k = 1, . . . , n + 1.

4 (Infinite sequence of coprime integers (Edwards)) Let u1 be an odd integer and
(un) be the sequence of integers defined by un = u2

n−1 − 2 for any n � 2.

(a) Prove that un is odd for every integer n � 1.
(b) Deduce that (un,un−1) = 1 for every integer n � 2.
(c) Show that, for any integer n � 3, we have

un − 2 = u2
n−2u

2
n−3 · · ·u2

1(u2 − 2).

(d) Deduce that for any integers n � 3 and r = 2, . . . , n − 1, we have

(un,un−r ) = 1.

5 Solve the following equations and system:

12 825x + 9 450y = 2 025 (x, y ∈ Z�0)

5(x + y)2 = 147[x, y] (x, y ∈ Z�0){
3x ≡ 1 (mod 5)

5x ≡ 2 (mod 7)
(x ∈ Z).

6 Let a, b be positive integers and set d = (a, b). We consider a Cartesian coor-
dinate system with origin O and x- and y-axis. The rectangular coordinates x, y

of a point M will be denoted by M〈x, y〉. An integer point is a point with integer
coordinates.

(a) Define A〈a, b〉. Prove that the number N1 of integer points on the segment ]OA]
is d .
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(b) Define B〈a,0〉. Prove that the number N2 of integer points inside the right-
angled triangle OAB is4

N2 = 1

2
(ab − a − b − d) + 1.

7 (Oloa) Fermat’s last theorem states that the Diophantine equation xn + yn = zn

has no non-trivial solutions (x, y, z) ∈ N
3 as soon as n � 3. This was finally proved

by Wiles and Taylor in 1995. Does the equation xn + yn = zn+1 possess any non-
trivial positive integer solutions for every positive integer n?

8 Let n be a non-negative integer.

(a) Prove that n2 ≡ 0,1 or 4 (mod 8). Deduce that an integer congruent to 7 modulo
8 cannot be written as the sum of three squares.

(b) Prove that n3 ≡ ±1 or 0 (mod 9). Deduce that an integer congruent to 4 modulo
9 cannot be written as the sum of three cubes.

(c) Solve the Diophantine equation
√

x3 + y3 + z3 = 2005 where x, y, z are posi-
tive integers.

9 Show that 641 | (232 + 1).

10 Let a < b be positive integers such that b − a = m2 for some positive integer
m. The aim of this exercise is to study the difference x − y of the solutions (x, y) ∈
(Z�0)

2 of the Diophantine equation

ax2 + x = by2 + y.

(a) Prove that x > y and that

(x − y)
{
1 + b(x + y)

} = (mx)2

(x − y)
{
1 + a(x + y)

} = (my)2.

(b) Prove that

x − y = (b − a, x − y) × (x, y)2.

(c) Provide some sufficient conditions so that x − y may be a square.

4One can make use of Pick’s formula which states that the number Nint inside a convex integer
polygon P is given by

Nint = area(P) − N∂P

2
+ 1

where N∂P is the number of integer points on the edges of the polygon.
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11 Let a, b be positive integers such that (a, b) = 1 and let n be a positive inte-
ger. Define D2(n) to be the number of non-negative integer solutions x, y of the
Diophantine equation ax + by = n.

(a) Use Bachet–Bézout’s theorem to prove that D2(n) = [ n
ab

] + r where r = 0 or
r = 1.

(b) Use Theorem 2.32 with its notation to prove that

r = 0 ⇐⇒ aa′ + bb′ � ab

r = 1 ⇐⇒ aa′ + bb′ > ab.

12 (Beck & Robins) Let a, b be positive integers such that (a, b) = 1 and let n be
a positive integer. Define D2(n) to be the number of non-negative integer solutions
x, y of the Diophantine equation ax + by = n and set a, b to be positive integers
such that aa ≡ 1 (modb) and bb ≡ 1 (moda). In 1953, Popoviciu [Pop53] proved
the following very elegant formula

D2(n) = n

ab
+ 1 −

{
nb

a

}
−

{
na

b

}

where {x} is the fractional part of x. The aim of this exercise is to provide an analytic
proof of this formula. Recall that ea(k) = e2πik/a (k ∈ Z�0) and define the complex-
valued function f by

f (z) = 1

zn+1(1 − za)(1 − zb)
.

(a) Recall that

a−1∑

j=0

xj =
a−1∏

j=1

(x − ea(j)). (2.9)

Prove that, for positive integers a, k, we have

a−1∑

j=1

1

1 − ea(j)
= a − 1

2

a∏

j=1
j �=k

1

ea(k) − ea(j)
= ea(k)

a
.

(b) Use the generating function F(z) of D2(n) to prove that

Res
z=0

f (z) = D2(n)

and compute the residues at all non-zero poles of f .
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(c) Prove that

lim
R→∞

1

2πi

∫

|z|=R

f (z)dz = 0

and deduce the identity (2.4).
(d) Check that if b = 1 then we have

D2(n) = n

a
−

{
n

a

}
+ 1.

Deduce that

1

a

a−1∑

k=1

1

ea(kn)(1 − ea(k))
= 1

2

(
1 − 1

a

)
−

{
n

a

}
.

(e) By noticing that

a−1∑

k=1

1

ea(kn)(1 − ea(kb))
=

a−1∑

k=1

1

ea(knb)(1 − ea(k))

finalize the proof of Popoviciu’s identity.
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Chapter 3
Prime Numbers

The study of prime numbers is one of the main branches of number theory. The
literature, very abundant, goes back to Pythagoras and, above all, to Euclid who was
the first to show there are infinitely many prime numbers. One can notice now that
Euclid’s ideas can be used and generalized to prime numbers belonging to certain
arithmetic progressions (see Sect. 3.6).

Every integer n � 2 has at least two distinct divisors, namely 1 and n itself. So
it would be convenient to study the “minimalist” integers for this relation. We call a
prime number every positive integer p � 2 for which the number of distinct divisors
is exactly two. A positive integer which is not prime is said to be composite. Let us
notice that the least prime number is the only positive integer which is both prime
and even

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71 . . .

This very fruitful idea does not belong solely to the branch of number theory. The
reader knowing finite group theory will certainly have noticed the analogy between
prime numbers and the so-called simple groups.1 Thus, it is not surprising to notice
that these areas of mathematics do really interlace. For example, the decomposition
of a positive integer into prime powers (see Theorem 3.3) also exists in finite group
theory, under a slightly different form, and is called the Jordan–Hölder theorem
which states that given a finite group G, there exists a sequence

G=G0 ⊃G1 ⊃ · · · ⊃Gr−1 ⊃Gr = {eG}

of subgroups Gi of G such that Gi+1 is a normal subgroup of Gi and the group
Gi/Gi+1 is simple for i = 0, . . . , r − 1. This decomposition is unique, apart from
the order of the subgroups. On the other hand, if G is abelian with |G| = p

α1
1 · · ·pαrr ,

1A non-trivial group G is said to be simple if it has no normal subgroup other than {eG} and G

itself, where eG is the identity element of G.
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then

G�H1 ⊕ · · · ⊕Hr (3.1)

where the Hi are the pi -Sylow subgroups of G with |Hi | = p
αi
i . This shows how

algebra and arithmetic can be related.
Euclid noticed very early that these prime numbers had some interesting proper-

ties. Indeed, he established the following basic result which is of great importance.

Proposition 3.1 Every integer n� 2 has a prime factor. Furthermore, if n is com-
posite, then it has a prime factor p satisfying p �√

n.

Proof We suppose that n is composite, otherwise there is nothing to prove. Let
D∗(n) be the set of proper divisors of n, i.e. positive integers d | n such that d �= 1
and d �= n. Since n is composite, we have D∗(n) �=∅ so by Axiom 1.1 this set has a
smallest element p. This integer p is prime, otherwise it has a proper divisor which
is also a proper divisor of n, and hence is smaller than p, giving a contradiction with
the fact that p is the smallest element of D∗(n). Since there exists k ∈ N such that
n= kp and that p ∈ D∗(n), we thus have k �= 1 and k �= n, so that k ∈ D∗(n), and
hence k � p and then n= kp � p2, which concludes the proof. �

What follows is easy to check, so we leave the proof to the reader.

Proposition 3.2 Let p, q be prime numbers and k, n be positive integers. Then

(i) p | q ⇐⇒ p = q .
(ii) p � n⇐⇒ (n,p)= 1.

(iii) Suppose 1 � k < p. Then p divides
(
p
k

)
.

3.1 The Fundamental Theorem of Arithmetic

Theorem 3.3 Every integer n� 2 either is prime, or can be written as a product of
prime factors in only one way, apart from the order of the factors. More precisely,
we have

n=
r∏

i=1

p
αi
i

where pi are prime numbers and αi are non-negative integers (i = 1, . . . , r). The
exponents αi are the pi -adic valuations of n, also denoted by vpi (n).

The unicity of this result is the trickiest point. The following lemma is required.

Lemma 3.4 Let a, b,n, a1, . . . , an be positive integers and p be a prime number.
Then
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(i) p | ab=⇒ p | a or p | b.
(ii) p | a1 · · ·an =⇒ p | ai for some i ∈ {1, . . . , n}.

(iii) p | an =⇒ p | a.

Proof (ii) follows from (i) by induction and (iii) follows from (ii) by setting a1 =
· · · = an = a. Now to show (i), suppose that p � a. Hence (a,p) = 1 and since
p | ab, Gauss’s theorem implies that p | b, which is the desired conclusion. �

Now we are in a position to prove Theorem 3.3.

Proof of Theorem 3.3

� Let S be the set of composite integers � 2 which cannot be written as a product
of prime factors and suppose that S �=∅. Using Axiom 1.1, we infer that S has a
smallest element denoted by m. Since m is not a prime number, we have m= ab

with a > 1 and b > 1. Since a < m, b < m and m is the smallest element of S,
we have a, b �∈ S, and then one can write a and b as a product of prime factors,
and hence m = ab can also be written as a product of prime factors, giving a
contradiction. Therefore we have proved that S =∅.

� Suppose that

n=
r∏

i=1

p
αi
i =

s∏

j=1

q
βj
j

with pi , qj prime numbers and r , s, αi , βj non-negative integers. Using Lem-
ma 3.4 we infer that every factor pi is a factor qj , and hence in particular we
have r = s, and, without loss of generality, we might suppose that pi = qi for
i = 1, . . . , r . Finally, if we had αi < βi for some integer i ∈ {1, . . . , r}, then the
number n/pαii would have two decompositions, one of which involves pi whilst
the other does not. This is impossible by the argument above. By symmetry we
cannot have αi > βi either. Thus we have αi = βi for all i. �

There are a lot of applications of Theorem 3.3. We must first introduce a useful
notion.

Definition 3.5 Given integers n, k � 2, we say that:

(i) n is k-free if, for every prime divisor p of n, we have vp(n) < k. When k = 2,
we also say that n is squarefree.

(ii) n is k-full if, for every prime divisor p of n, we have vp(n)� k. When k = 2,
we also say that n is square-full.

Examples 3.6

1. Every prime number is k-free for any integer k � 2, and the numbers 6, 10, 15,
21 are squarefree.

2. Every square is square-full, and so are the numbers 108 and 12 500.
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3. If n is k-free, then n is l-free for every integer l � k. Similarly, if n is k-full, then
n is l-full for every integer 2 � l � k.

4. By convention, 1 is both k-free and k-full for each integer k � 2.

The following result summarizes some applications of Theorem 3.3.

Corollary 3.7 Let n� 2 be an integer which has the decomposition

n=
r∏

i=1

p
αi
i

where r is a positive integer, pi are prime numbers and αi are non-negative inte-
gers.

(i) Let d be a positive integer. Then we have

d | n ⇐⇒ d =
r∏

i=1

p
βi
i with 0 � βi � αi.

Furthermore, if the αi are positive integers and if τ(n) and ω(n) respectively
count the number of positive divisors and the number of distinct prime factors
of n (see Chap. 4), then we have

ω(n)= r

τ (n)= (α1 + 1)(α2 + 1) · · · (αr + 1)

2ω(n) � τ(n).

(ii) Let m=∏r
i=1 p

βi
i be a positive integer. Then we have

(n,m)=
r∏

i=1

p
min(αi ,βi )
i and [n,m] =

r∏

i=1

p
max(αi ,βi )
i .

These formulae can be generalized by induction to (n1, . . . , nk) and [n1,

. . . , nk].
(iii) Suppose (n,m)= 1. Then every divisor d of mn can be written as d = ab with

a |m, b | n and (a, b)= 1.
(iv) Let k � 2 be an integer. Then every integer n � 2 can be written in a unique

way as

n= qmk

where q is k-free.
(v) Every square-full number n� 2 can be written in a unique way as

n= a2b3

where b is squarefree.
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Proof

(i) First, let d be a divisor of n, which we can clearly suppose to be> 1 and written
as

d =
r∏

i=1

p
βi
i

for some non-negative integers βi . Since d | n, there exists an integer k =∏r
i=1 p

γi
i with γi ∈N such that n= kd . This implies that

r∏

i=1

p
αi
i =

r∏

i=1

p
βi+γi
i

and Theorem 3.3 implies that αi = βi + γi � βi . Conversely, if

d =
r∏

i=1

p
βi
i

with 0 � βi � αi , then

n=
r∏

i=1

p
αi
i = d

r∏

i=1

p
αi−βi
i

and since αi − βi � 0, we have d | n.
The equality ω(n) = r needs no explanation. On the other hand, d =∏r
i=1 p

βi
i divides n if and only if 0 � βi � αi , so that we have αi + 1 possible

choices for vpi (n), and therefore the number of divisors is (α1 +1) · · · (αr +1).
Finally, since αi � 1, we have

τ(n)= (α1 + 1) · · · (αr + 1)� 2r = 2ω(n).

(ii) We set

d =
r∏

i=1

p
min(αi ,βi )
i and m=

r∏

i=1

p
max(αi ,βi )
i .

Using (i) we have d | n and d |m. Furthermore, if c=∏r
i=1 p

γi
i is another com-

mon divisor of n and m, then γi � min(αi, βi) and hence c | n. Thus we proved
that d = (m,n). Next, using the identity max(αi, βi)= αi + βi − min(αi, βi),
we get the desired formula for [m,n].

(iii) Since (m,n)= 1 one can write

n= p
α1
1 · · ·pαrr and m= p

αr+1
r+1 · · ·pαr+sr+s
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with r , s positive integers, αi ∈ N and primes pi being pairwise distinct. Thus
we get

mn= p
α1
1 · · ·pαrr pαr+1

r+1 · · ·pαr+sr+s
and using (i) we infer that every divisor d of mn can be written as

d = p
β1
1 · · ·pβrr pβr+1

r+1 · · ·pβr+sr+s

with 0 � βi � αi . We then choose a = p
βr+1
r+1 · · ·pβr+sr+s and b= p

β1
1 · · ·pβrr .

(iv) We write

n=
r∏

i=1

p
αi
i =

∏

αi�k

p
αi
i

∏

αi<k

p
αi
i .

For every integer i such that αi � k, the Euclidean division of αi by k gives
a unique pair (hi, βi) of non-negative integers such that αi = βi + hik with
0 � βi < k, and hence

n=
( ∏

αi�k

p
βi
i

∏

αi<k

p
αi
i

)( ∏

αi�k

p
hi
i

)k

and therefore we have proved that the decomposition exists. To show its unicity,
suppose that we have n = q1m

k
1 = q2m

k
2 with qi being k-free and let p be a

prime number. Then

vp(q1)+ kvp(m1)= vp(q2)+ kvp(m2)

and hence

k | (vp(q1)− vp(q2)
)

and since the qi are k-free, we get vp(q1)= vp(q2). We conclude that q1 = q2
and m1 =m2.

(v) Let n = ∏r
i=1 p

αi
i be a square-full number, so that αi � 2 for i = 1, . . . , r .

Thus, for every αi , there exists a unique integer βi such that
{
αi = βi + 2hi
βi ∈ {2,3} with hi =

[
αi − 2

2

]
∈ Z�0

and then

n=
(

r∏

i=1

p
hi
i

)2 r∏

i=1

p
βi
i =

(
r∏

i=1

p
hi
i

∏

βi=2

pi

)2 ∏

βi=3

p3
i

which proves the existence of the decomposition. To show its unicity, suppose
that we have n = a2

1b
3
1 = a2

2b
3
2 with bi being squarefree and let p be a prime
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number. Then

2
(
vp(a1)− vp(a2)

)= 3
(
vp(b2)− vp(b1)

)

and Gauss’s theorem implies that

2 | (vp(b2)− vp(b1)
)

which implies that vp(b1)= vp(b2) since the bi are squarefree, and hence b1 =
b2 and a1 = a2.

The proof is complete. �

Remark 3.8 More generally, one can show that every k-full integer n � 2 can be
expressed in a unique way as

n= ak1a
k+1
2 · · ·a2k−1

k

where a2 · · ·ak is squarefree and (ai, aj ) = 1 for all integers 2 � i < j � k. For
example, the cube-full integer n = 28 × 37 × 54 × 113 × 1932 can be written in a
unique way as

n= (2 × 3 × 11 × 199)3 × (3 × 5)4 × (2 × 19)5.

Example 3.9 Prove that every integer n� 1 can be written in a unique way as n=
2em where m is odd.

Answer If n = 1, then we have e = 0 and m = 1. If n � 3 is odd, then e = 0 and
m= n. Now suppose that n� 2 is even. We get

n= 2epα1
1 · · ·pαrr

with pi being odd primes. We deduce that the integer m= p
α1
1 · · ·pαrr is odd.

Example 3.10 Let n be a positive integer. Show that τ(n) is odd if and only if n is a
square.

Answer We can clearly suppose n� 2 written as n=∏r
i=1 p

αi
i . If n is not a square,

there exists an integer i ∈ {1, . . . , r} such that αi is odd and then we get αi + 1 ≡ 0
(mod 2), and hence

τ(n)= (α1 + 1) · · · (αi + 1) · · · (αr + 1)≡ 0 (mod 2).

Conversely, if n is a square, then all valuations αi are even, and then αi + 1 ≡ 1
(mod 2) for every integer i ∈ {1, . . . , r}, so that

τ(n)=
r∏

i=1

(αi + 1)≡ 1 (mod 2).
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Example 3.11 Prove there exists a polynomial P ∈ Z[X] such that, for m values of
the variable x, P(x) is a prime number distinct from the former.

Answer It suffices to choose P = X + (X − p1)(X − p2) · · · (X − pm) where pk
is the kth prime.

Example 3.12 Show that, if P ∈ Z[X] is a non-constant polynomial, then there exist
infinitely many integers x such that |P(x)| is not a prime number.

Answer We set

P =
n∑

j=0

ajX
j

with n ∈ N and aj ∈ Z, an �= 0. Suppose there exists x0 ∈ N such that |P(x0)| = p0
with p0 prime. Since n � 1, we have limx→∞ |P(x)| = +∞. In particular, there
exists x1 > x0 such that |P(x)|>p0 as soon as x � x1. On the other hand, for every
integer m such that x0 +mp0 � x1, we have

P(x0 +mp0)=
n∑

j=0

aj (x0 +mp0)
j

≡
n∑

j=0

ajx
j

0 (modp0)

≡ p0 ≡ 0 (modp0)

and hence |P(x0 +mp0)| = kp0 for some non-negative integer k. The inequality
∣∣P(x0 +mp0)

∣∣>p0

implies that k > 1 and hence |P(x0 +mp0)| is composite.

3.2 Euclid’s Theorem

We give three proofs of the famous Euclid’s theorem which states that there are
infinitely many primes. The first one, discovered by Euclid (300 BC), uses a very
clever argument but remains elementary. Euler (1707–1783) chose an analytic ar-
gument, and his proof gave birth to what we call today analytic number theory.
Finally, the third proof comes from the work of Erdős (1913–1996) who used some
very clever combinatorial ideas. These three mathematicians, considered to be ge-
niuses, made remarkable and extensive work in a lot of domains of mathematics,
and are in fact inescapable in number theory. In order to pay tribute to their talent,
let us call these proofs the three E.



3.2 Euclid’s Theorem 65

Theorem 3.13 There are infinitely many prime numbers.

Proof (Euclid) Suppose that the set of prime numbers is finite, say P = {p1,p2, . . . ,

pn}. We let M = p1p2 · · ·pn. Without loss of generality, we may suppose that M is
composite. Since M + 1 � 2, it has a prime factor q , and since (M,M + 1)= 1, we
have q �= pi for all i = 1, . . . , n. Hence we found a prime number not lying in P ,
giving a contradiction. �

Proof (Euler) Euler noticed that Theorem 3.3 implies the following estimate. For
every positive integer n, we have

n∑

k=1

1

k
�
∏

p�n

(
1 − 1

p

)−1

. (3.2)

Indeed, using (1.1) with x = 1/p, we first get

(
1 − 1

p

)−1

=
∞∑

k=0

1

pk

and expanding the product
∏

p�n(1 + 1/p + 1/p2 + 1/p3 + · · · ) gives through
Theorem 3.3 the important equality

∏

p�n

(
1 − 1

p

)−1

=
∑

P+(k)�n

1

k
.

Since every integer k � n obviously satisfies the condition P+(k)� n, we have

∑

P+(k)�n

1

k
�
∑

k�n

1

k

giving (3.2). Now using

∑

k�n

1

k
>

∫ n

1

dt

t
= logn

and the inequality

− log(1 − x)� x + x2

2(1 − x)

valid for 0 � x < 1, we obtain

log logn < log
∏

p�n

(
1 − 1

p

)−1

= −
∑

p�n

log

(
1 − 1

p

)
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�
∑

p�n

1

p
+ 1

2

∑

p�n

1

p(p− 1)

�
∑

p�n

1

p
+ 1

2

∞∑

k=2

1

k(k − 1)
=
∑

p�n

1

p
+ 1

2

so that

∑

p�n

1

p
> log logn− 1

2
(3.3)

and hence we deduce that the series
∑

p 1/p is divergent, which implies that there
are infinitely many primes. �

Proof (Erdős) N is a fixed positive integer. Using Corollary 3.7 (iv) we infer that
every positive integer n� N can be expressed in a unique way as n= qm2 with q
squarefree, i.e.

n= p
α1
1 · · ·pαrr m2 with αi ∈ {0,1}.

Thus we can count such integers in the two following ways. First, there are exactly
N integers n between 1 and N . On the other hand, there are 2r possible choices for
the valuations αi , and since

m� n1/2 �N1/2

we deduce that there are at most N1/2 possible choices for m, and hence there are
at most 2rN1/2 integers n. Therefore we get

N � 2rN1/2

which gives

r � logN

log 4

and making N −→ ∞ gives the stated result. �

Remark 3.14 We will see a better estimate than (3.3) in Corollary 3.50. Also, one
can ask for a possible generalization of Euclid’s theorem. For example, are there
infinitely many prime numbers p in arithmetic progressions p ≡ a (modq) where
a, q are positive integers such that (a, q)= 1? In fact, this is true and the answer is
given by Dirichlet’s theorem (Theorem 3.63). But how to prove it? A first attempt
was to generalize Euclid’s argument, but it can be proved that this method cannot
treat all the cases (see Proposition 3.66). The answer will come from a generaliza-
tion of Euler’s analytic method. Let us notice that the same idea was used by Viggo
Brun in 1918 [Bru19] to show that the series of inverses of twin primes, i.e. primes
p such that p + 2 is also prime, converges (Theorem 3.79). Nobody knows yet if
there are infinitely many twin primes.
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3.3 Fermat, Lagrange and Wilson

3.3.1 Important Tools for Primes

Theorem 3.15 (Fermat’s little theorem) Let a ∈ Z and p be a prime number such
that p � a. Then we have

ap−1 ≡ 1 (modp).

It is equivalent to say that, for all a ∈ Z and prime number p, then we have

ap ≡ a (modp).

Proof The numbers a,2a, . . . , (p − 1)a are p − 1 multiples of a all distinct mod-
ulo p. Indeed, if there exist integers 1 �m,n < p such that ma ≡ na (modp), then
Gauss’s theorem implies that m ≡ n (modp) since p � a. Since 1 � m,n < p, we
get m= n. Thus, if p is prime such that p � a and if m �= n such that 1 �m,n < p,
then ma �≡ na (modp). Therefore the p − 1 multiples of a above are all congruent
to 1,2,3, . . . , p− 1 modulo p in a certain order, and then

a × 2a × 3a × · · · × (p− 1)a ≡ 1 × 2 × 3 × · · · × (p− 1) (modp)

so that

ap−1(p− 1)! ≡ (p− 1)! (modp).

Note that ((p − 1)!,p) = 1 since (p − 1)! = ∏p−1
k=1 k and k < p implies that

(k,p)=1. We then conclude the proof by appealing to Gauss’s theorem.
The second statement follows easily. Indeed, if ap−1 ≡ 1 (modp), then ap ≡ a

(modp). Conversely, if p � a, then Gauss’s theorem implies that ap−1 ≡ 1 (modp).
Thus, there is equivalence if p � a. If p | a, then ap ≡ a ≡ 0 (modp). �

Remark 3.16 The converse of Fermat’s little theorem is untrue in general. For exam-
ple, 2341 ≡ 2 (mod 341), but 341 = 11×31 is composite. This leads to the following
notion. A composite number n > 1 is a pseudoprime if 2n ≡ 2 (modn). Thus, 341
is a pseudoprime. In the same way, a Carmichael number is a composite number
n > 1 such that an ≡ a (modn) for every integer a. The least Carmichael num-
ber is 561 = 3 × 11 × 17. In 1994, Alford, Granville and Pomerance showed that
there are infinitely many Carmichael numbers (see [AGP94]) by establishing that
C(x) > x2/7, where C(x) is the counting function of Carmichael numbers.

Theorem 3.17 (Lagrange)

(i) Let P ∈ Z[X] be a non-zero polynomial with degree n and p be a prime number.
Then either the congruence

P(x)≡ 0 (modp)

has at most n incongruent zeros modulo p or p divides each coefficient of P .
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(ii) Let P ∈ Z[X] be a monic polynomial with degree n and p be a prime number.
Suppose that the congruence P(x)≡ 0 (modp) has at most n incongruent zeros
a1, . . . , an modulo p. Then we have

P ≡ (X− a1) · · · (X− an) (modp).

Proof

(i) We prove the assertion by induction. The result is true for n= 0. Let N ∈N and
suppose the proposition is true for every integer n <N . Let P ∈ Z[X] such that
degP = N . If there is no solution, then the desired conclusion follows for P .
So we suppose that the congruence P(x)≡ 0 (modp) has at least a solution a.
Therefore, there exists a polynomial Q ∈ Z[X] with degree N − 1 such that

P(X)=Q(X)(X− a)+ kp

for some integer k. Since P(X)≡Q(X)(X − a) (modp), Lemma 3.4 implies
that

P(b)≡ 0 (modp) ⇐⇒ Q(b)≡ 0 (modp) or a ≡ b (modp).

Since degQ=N − 1, induction hypothesis implies that either there are at most
N − 1 integers b such that Q(b) ≡ 0 (modp), or each coefficient of Q is di-
visible by p. We deduce that either there are at most N integers b such that
P(b)≡ 0 (modp) or p divides each coefficients of P .

(ii) We set Q = P − (X − a1) · · · (X − an). We have degQ � n − 1 since P is
monic. Furthermore, the congruence Q(x) ≡ 0 (modp) has the n incongruent
solutions a1, . . . , an modulo p. Using (i) we infer that p divides each coefficient
of Q.

The proof is complete. �

Remark 3.18 The condition p prime number is crucial. For instance, the congruence
x2 −1 ≡ 0 (mod 8) has four incongruent solutions modulo 8 which are 1, 3, 5 and 7.
And yet the reader will have noticed that the leading coefficient and the moduli are
coprime. Sierpiński [Sie64] proved that, for a composite moduli m, the case m= 4
only works.

If P ∈ Z[X] is a non-zero polynomial with degree n such that the leading
coefficient is relatively prime to 4, then the congruence P(X)≡ 0 (mod 4) has
at most n incongruent solutions modulo 4.

Theorem 3.19 (Wilson)

(i) If p is a prime number then we have (p− 1)! ≡ −1 (modp).
(ii) If n� 2 satisfies (n− 1)! ≡ −1 (modn) then n is prime.
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Proof

(i) Let p be a prime number and set P =Xp−1 −1. Using Fermat’s and Lagrange’s
theorems we get

P ≡ (X− 1)(X− 2) · · · (X− (p− 1)
)
(modp).

We get the desired result by evaluating P(0).
(ii) Suppose now that n | (n− 1)!+ 1. If n is composite, then there exists an integer

d verifying 1 < d < n and d | (n− 1)! + 1. Since d � n− 1, then d | (n− 1)!
and therefore d | 1, giving a contradiction.

The proof is complete. �

Remark 3.20 We thus proved the following equivalence.

An integer n > 1 is a prime number if and only if (n− 1)! ≡ −1 (modn)

which gives a primality test from a theoretical point of view. Unfortunately this test
is ineffective if n is too large. Nevertheless one can notice that, since

(n− 1)! = (n− 2)!(n− 1)≡ −(n− 2)! (modn)

one can deduce that an integer n > 1 is prime if and only if (n− 2)! ≡ 1 (modn).
Dickson [Sie64] generalized this criterion in the following way.

An integer n > 1 is a prime number if and only if there exists an integer m< n

such that

(m− 1)! (n−m)! ≡ (−1)m (modn).

Example 3.21 Prove that 11 × 31 × 61 | (2015 − 1).

Answer Since 11, 31 and 61 are primes, it is sufficient to show that 2015 −1 is divis-
ible by these three numbers. By Fermat’s little theorem, we have 210 ≡ 1 (mod 11)
and since 10 ≡ −1 (mod 11), we get

2015 ≡ 25 × 210 × 1015 ≡ −25 ≡ 1 (mod 11)

since −25 = 1 − 3 × 11. Another application of Fermat’s little theorem implies that
415 = 230 ≡ 1 (mod 31), and since 53 = 1 + 4 × 31, we get

2015 = 415 × (53)5 ≡ 1 (mod 31).

Finally, since 34 ≡ 20 (mod 61) and 360 ≡ 1 (mod 61) by Fermat’s little theorem we
get

2015 = 360 ≡ 1 (mod 61).
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Example 3.22 Let p �= q be two distinct prime numbers. Show that

pq−1 + qp−1 ≡ 1 (modpq).

Answer Since p �= q are primes, Fermat’s little theorem yields pq−1 + qp−1 ≡ 1
(modp) and pq−1 + qp−1 ≡ 1 (modq) and we conclude by using Proposi-
tion 2.13 (vi).

Example 3.23 Show that for every positive integer n, the numbers (22(28n+1)+1)2 +
4 are composite.

Answer Using Fermat’s little theorem we get 228 ≡ 1 (mod 29) so that 22(28n+1) ≡
4 (mod 29) and thus

(
22(28n+1) + 1

)2 + 4 ≡ 52 + 4 ≡ 0 (mod 29).

3.3.2 Multiplicative Order

Fermat’s little theorem implies the following notion.

Theorem 3.24 (Multiplicative order) Let a ∈ Z and p be a prime number such
that (a,p) = 1. Then the set of positive integers n satisfying an ≡ 1 (modp) has
a smallest element, denoted by ordp(a) and called the multiplicative order of a
modulo p.

Proof The set in question is a non-empty subset of Z�0 since p− 1 belongs to this
set by Fermat’s little theorem. �

The following result gives a characterization of the multiplicative order of a pos-
itive integer.

Theorem 3.25 Let a ∈ Z and p be a prime number such that p � a. Then an ≡ 1
(modp) if and only if ordp(a) divides n. In particular, we have

ordp(a) | (p− 1). (3.4)

Furthermore, if an ≡ am (modp) then ordp(a) divides n−m.
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Proof Set δ = ordp(a). If n= kδ then

an = (aδ)k ≡ 1 (modp).

Conversely, let S = {n ∈ N : an ≡ 1 (modp)}. By Theorem 3.24, δ is the smallest
element in S . The Euclidean division of n by δ supplies a unique pair (q, r) of
positive integers such that n= qδ + r and 0 � r < δ. We then get

1 ≡ an ≡ ar
(
aδ
)q ≡ ar (modp).

Hence, if r � 1, we infer that r ∈ S and thus r � δ which contradicts the inequality
r < δ. This implies that r = 0 and then δ | n. (3.4) follows at once from Fermat’s
little theorem. Finally, suppose for example that n >m. Since

an − am = am
(
an−m − 1

)≡ 0 (modp)

Lemma 3.4 implies that

am ≡ 0 (modp) or an−m − 1 ≡ 0 (modp).

Since p � a the first congruence is never achieved. Hence we obtain an−m ≡ 1
(modp) and therefore we have δ divides n − m according to the previous state-
ment. �

Example 3.26 Determine ord101(2).

Answer Let δ = ord101(2). Using (3.4) we get δ | 100. Since 210 ≡ 14 (mod 101)
and 225 ≡ 10 (mod 101), we obtain δ = 100.

Example 3.27 Let p be an odd prime number. Prove that every prime divisor of
2p − 1 is of the shape 1 + 2kp for some positive integer k.

Answer Let q be a prime divisor of 2p − 1 and δ = ordq(2). Thus we have 2p ≡ 1
(modq) and hence δ | p. Since δ �= 1, otherwise we have 2 ≡ 1 (modq) which is
impossible, we get δ = p, and then using (3.4) we have p | (q−1). Thus there exists
a positive integer h such that q = 1+ph. Furthermore, q is odd since 2p −1 is odd,
and hence ph is even, and therefore h is even since p is odd, and then there exists a
positive integer k such that q = 1 + 2kp.

Example 3.28 Let p be a prime number. Prove that, if d | (p− 1), then the congru-
ence xd ≡ 1 (modp) has exactly d solutions.

Answer Using Lagrange’s theorem we know that this congruence has at most d
solutions. Let us prove that it has at least d solutions. Suppose there are < d incon-
gruent solutions modulo p. Since

xp−1 − 1 = (xd − 1
)
P(x)
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where P ∈ Z[x] has degree p−1−d , a ∈ Z is solution of the equation xp−1 −1 ≡ 0
(modp) if and only if a is solution of xd − 1 ≡ 0 (modp) or P(x) ≡ 0 (modp).
Lagrange’s theorem implies that the congruence P(x)≡ 0 (modp) has at most p−
1−d solutions. Hence xp−1 −1 ≡ 0 (modp) has< d+p−1−d = p−1 solutions,
which contradicts Fermat’s little theorem.

3.3.3 Primitive Roots and Artin’s Conjecture

Let p be a prime number satisfying p �= 2 and p �= 5. The decimal expansion of
1/p is then purely periodic. For example

1

7
= 0.142857 142857 . . . and

1

11
= 0.09 09 09 . . .

We shall have a look at the length of the period of the decimal expansion of 1/p.
Since p � 10, Theorem 3.24 implies that δ = ordp(10) is well-defined. Hence there
exists an integer q such that 10δ = 1 + qp. Therefore we have using (1.1)

1

p
= q

10δ − 1
= q

∞∑

k=1

10−δk

so that the length of the period of the decimal expansion of 1/p is equal to δ =
ordp(10). In particular, this length2 divides p − 1 by (3.4). Therefore one can ask
when the period of the decimal expansion of 1/p has its maximal length, in other
words when ordp(10)= p− 1. This leads to the following definition.

Definition 3.29 Let p be a prime number. An integer g is a primitive root modulo p
if ordp(g)= p− 1.

The examples above show that 10 is a primitive root modulo 7, but is not a
primitive root modulo 11.

There are essentially three questions about primitive roots. First of all, for which
prime number p does there exist a primitive root modulo p? The next result provides
a complete answer to this question.

Proposition 3.30 Let p be a prime number. Then there exists a primitive root mod-
ulo p.

Proof We shall construct a possible candidate in the following way. Let δ1, δ2, . . . , δr
be all the possible orders modulo p of the numbers 1,2, . . . , p − 1 and we define

2This problem has a long history as it goes back at least to J. H. Lambert in 1769 (see [Dic05,
Chap. VI]).
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m= [δ1, . . . , δr ] written as the product

m= p
α1
1 · · ·pαss .

For each prime power pαii , there is some δj divisible by it, and hence there ex-
ists k such that pi � k and δj = p

αi
i k. Since δ1, . . . , δr are the orders modulo p of

1,2, . . . , p − 1, there exists an element xi of order pαii k, and then the order of the
element yi = xki is pαii . It follows that the order modulo p of the number y1 · · ·ys is
equal to m, so that m | (p − 1) by (3.4). On the other hand, the polynomial xm − 1
has p − 1 roots modulo p since 1,2, . . . , p − 1 are roots. Using Example 3.28, we
deduce that m= p− 1, and the number y1 · · ·ys is a primitive root modulo p. �

Another proof will be supplied in Chap. 4 as a consequence of the Möbius inver-
sion formula (see Theorem 4.13).

In view of this result, we may ask the following questions.

1. For a fixed prime p, how many primitive roots are there?
2. For a fixed integer a, for how many primes will a be a primitive root?

For the first question, it can be shown that the number of primitive roots modulo
a fixed prime p is equal to ϕ(p − 1), where ϕ is Euler’s totient defined in Theo-
rem 2.31.

The second question above is far more difficult. Let us first see this with an
example, where we ask whether 2 is a primitive root modulo p. With the help of
tables of primitive roots, one can see, among primes p � 100, that

a. 2 is a primitive root modulo 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83.
b. 2 is not a primitive root modulo 7, 17, 23, 31, 41, 43, 47, 71, 73, 79, 89, 97.

Since each list contains 12 elements, one can think that the probability that 2 is a
primitive root modulo p is 50%. In fact, extending the list, one should see that this
probability could approach a number closer to 37%. More precisely, in 1927, Emil
Artin formulated the following conjecture.

Let a be a non-zero integer such that a �= ±1. If a is not a square, then there
are infinitely many prime numbers p such that a is a primitive root modulo p.

This conjecture comes from the following more precise statement also given by
Artin.

Let a be a non-zero integer such that a �= ±1 and h be the largest integer
such that a = ah0 with a0 ∈ Z. If Na(x) is the number of primes p � x such
that a is a primitive root modulo p, then

Na(x)=Ah

x

logx
+ o

(
x

logx

)
,

where

Ah =
∏

p�h

(
1 − 1

p(p− 1)

)∏

p|h

(
1 − 1

p− 1

)
. (3.5)
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Note that the product above is equal to zero when h is even. Hence, the condition
that a is not a square is necessary for the number of prime numbers p, such that
a is a primitive root modulo p, to be infinite. When h is odd, then the product is a
positive rational multiple of the so-called Artin constant

A=A1 =
∞∑

n=1

μ(n)

nϕ(n)
=
∏

p

(
1 − 1

p(p− 1)

)
≈ 0.373 955 813 619 . . .

where μ is the Möbius function.3 Artin’s conjecture is known to be true as soon as
a very difficult hypothesis is proved (see below), but the latter hypothesis is likely
to be out of reach for several generations of researchers.

Unconditionally, there is no known number a for which the set S(a) of prime
numbers p, such that a is a primitive root modulo p, is known to be infinite. Never-
theless, improving on fundamental work by Gupta and Ram Murty [GM84], Heath-
Brown [HB86] succeeded in showing that there are at most two “bad” prime num-
bers a such that S(a) is finite, and also at most three “bad” squarefree numbers a
such that S(a) is finite. Furthermore, he proved that the set S of integers for which
Artin’s conjecture does not hold is rather thin by establishing the following estimate

∑

n�x
n∈S

1 � (logx)2.

Let us turn our attention for a while to the heuristic arguments that led to Artin’s
conjecture. A necessary and sufficient condition for a to be a primitive root mod-
ulo p is

a(p−1)/q �≡ 1 (modp) for all primes q dividing p− 1.

Indeed, the condition is clearly sufficient by Definition 3.29. It is also necessary
by using the following argument. Suppose that a(p−1)/q �≡ 1 (modp) for all primes
q | (p− 1) and that a is not a primitive root modp. Then a(p−1)/k ≡ 1 (modp) for
some integer k > 1 such that k | (p − 1), which in turn implies that a(p−1)/r ≡ 1
(modp) for some prime divisor r of k, resulting in a contradiction.

Hence the heuristic idea is that a is a primitive root modp if the two following
events do not occur simultaneously for any prime q

E1 : a(p−1)/q ≡ 1 (modp).

E2 : p ≡ 1 (modq).

Now by Dirichlet’s theorem (Theorem 3.61), the probability ofE2 is equal to 1/(q−
1), while the probability of E1 is equal to 1/q if q � h and to 1 if q | h, since, in the
first case, we note that a(p−1)/q is a solution of the equation xq ≡ 1 (modp) and
we want a solution congruent to 1 (modq) amongst the q expected roots, whereas

3See Example 4.2.
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in the second case we always have a(p−1)/q = a
h(p−1)/q
0 ≡ 1 (modp). Therefore, if

we assume that these events are independent, then the probability that both occur is

1

q(q − 1)
if q � h and

1

q − 1
if q | h

leading to the product (3.5).
Artin’s conjecture is one of the richest problems in number theory, notably

on account of the connexion between algebraic number theory and analytic num-
ber theory. It can be shown that the two conditions a(p−1)/q ≡ 1 (modp) and
p ≡ 1 (modq) are equivalent to the fact that p splits completely4 in normal ex-
tensions Kq = Q(ζq, a

1/q) of Q, where ζq = eq(1) is a qth primitive root of unity.
In the 1930s, great efforts were made to prove this conjecture. In 1935, Erdős tried
in vain to combine infinitely many q . Finally, using a special form of Chebotarëv’s
density theorem with a sharp error-term only accessible under the extended Riemann
hypothesis for the number fields Kq , Hooley [Hoo67] succeeded in proving a some-
what modified conjecture. Indeed, in 1957, Derrick H. Lehmer and his wife Emma
numerically tested Artin’s conjecture on a computer and found that the naive heuris-
tic approach described above may be wrong in some cases. Artin then introduced
a correction factor to explain these discrepancies,5 and the corrected conjectured
density under ERH finally turns out to be

∞∑

n=1

μ(n)

[Kn :Q]

where [Kn : Q] is the degree6 of the number field Kn =Q(ζn, a
1/n). If the discrimi-

nant7 dK2 of the quadratic field K2 =Q(
√
a) is even, then the function n �−→ [Kn :

Q] is multiplicative and the expression above reduces to the product Ah given in
(3.5), but when dK2 is odd, then, for all squarefree n divisible by dK2 , we have

[Kn : Q] = 1

2

∏

p|n
[Kp : Q]

so that the function n �−→ [Kn : Q] is no longer multiplicative. Hooley derived the
following expression

∞∑

n=1

μ(n)

[Kn :Q] =
{

1 −μ
(|dK2 |

) ∏

p|dK2

([Kp :Q] − 1
)−1
}
Ah

4See Definition 7.101.
5“So I was careless but the machine caught up with me”. This is how Artin concluded the fourth
letter dated January 28, 1958 to Emma Lehmer, explaining that his conjecture may be false if a is
a prime number satisfying a ≡ 1 (mod 4).
6See Definition 7.42.
7See Definition 7.58.
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when dK2 is odd. The reader interested in Artin’s primitive root conjecture should
refer to the very fruitful presentation [Ste03] of this subject.

We now end this section with a curious observation concerning decimal ex-
pansions of 1/p when p > 5 is a prime number. In 1836, Midy (see [Dic05])
proved that if this decimal expansion has even period 2d and writing 1/p =
0.(A1A2)(A1A2) . . . , where the blocks Ai have d digits each, then A1 + A2 =
10d − 1. This result has recently been generalized in [GS05] where it is shown
that, if the decimal expansion of 1/p has period kd with k > 1, and writing
1/p = 0.(A1 . . .Ak)(A1 . . .Ak) . . . where the blocks Ai have d digits each, then
there exists an integer r = r(p, k)� 1 such that A1 + · · · +Ak = r(10d − 1). Fur-
thermore, we have r = 1 when k = 2, k = 3 or p = 2k − 1 is a Mersenne prime.

3.3.4 Some Applications of Primitive Roots

We begin with a first result which has its own interest in itself.

Lemma 3.31 Let p be a prime number and g a primitive root modp. Then 1, g, g2,

. . . , gp−2 are incongruent modulo p, and hence are congruent to 1,2, . . . , p− 1 in
a certain order.

Proof It suffices to show that, if 0 � i < j � p − 2, then p � (gj − gi). Suppose
the contrary. Then we have p | gi(gj−i − 1), and hence p | (gj−i − 1) by Gauss’s
theorem, otherwise p divides gp−1 contradicting the equality gp−1 ≡ 1 (modp).
By using Theorem 3.25, we have (p − 1) | (j − i) contradicting the fact that 0 <
j − i < p− 1. �

Definition 3.32 Let p be a prime number and n � 2 be an integer. An integer a
is said to be an nth power residue modp if the congruence xn ≡ a (modp) has a
solution in {1, . . . , p− 1}. When n= 2, a is a quadratic residue modp.

It is clear that 0 is an nth power residue modp for every prime p and integer
n � 2. On the other hand, if a is an nth power residue modp, then so is every
integer congruent to a (modp). The following result gives a useful criterion and
also the number of incongruent nth power residues modp.

Proposition 3.33 Let n � 2 be an integer, p be a prime number and set d =
(n,p−1).

(i) Let a be an integer satisfying p � a. Then a is an nth power residue modp if
and only if a(p−1)/d ≡ 1 (modp).

(ii) The number of non-zero integers which are nth power residues modp is given
by (p− 1)/d .

Proof Let p be a prime and g be a primitive root modp.
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(i) If an integer a is such that p � a and is an nth power residue modp, then there
exists a number x such that p � x and a ≡ xn (modp), so that we have

a(p−1)/d ≡ (xn)(p−1)/d ≡ (xp−1)n/d ≡ 1 (modp)

by Fermat’s little theorem.
Conversely, suppose that a(p−1)/d ≡ 1 (modp). By Lemma 3.31, there exists

an integer k ∈ {0, . . . , p−2} such that a ≡ gk (modp), and hence gk(p−1)/d ≡ 1
(modp), which implies that (p − 1) | k(p − 1)/d since g is a primitive root
modp. Therefore we have d | k, so that k = dh for some h ∈ Z�0. By Theo-
rem 2.5, there exist two non-negative integers u, v such that d = nu− v(p− 1),
so that we get k = dh= nhu− vh(p − 1). By the use of the relation gp−1 ≡ 1
(modp), we get

a ≡ a
(
gp−1)vh ≡ gkgvh(p−1) ≡ gnhu ≡ (ghu)n (modp)

and therefore a is an nth power residue modp.
(ii) If a is an nth power residue modp, then a(p−1)/d ≡ 1 (modp), hence using

Lagrange’s theorem, there are at most (p − 1)/d non-zero nth power residues
modp.

On the other hand, the numbers gn, g2n, . . . , gn(p−1)/d are (p − 1)/d non-
zero incongruent nth power residues modp. Indeed, set n= dh and p− 1 = dk

with (h, k) = 1, and let 1 � i < j � k be two integers. Since (p,g) = 1, if
gin ≡ gjn (modp), then g(j−i)n ≡ 1 (modp), so that (p − 1) | n(j − i) and
hence k | (j − i) by Gauss’s theorem, contradicting the fact that 1 � i < j � k.
Furthermore, it is clear that the equation xn ≡ gjn (modp) has the solution
x = gj .

The proof is complete. �

Example 3.34 Let p = 7 and n= 2, so that d = 2. The number g7 = 3 is the smallest
primitive root mod 7, so that the three quadratic residues mod 7 are 1, 2 and 4.

Example 3.35 Prove that, if p ≡ 3 (mod 4), then −1 is not a quadratic residue
modp.

Answer Suppose there exists a number x such that x2 ≡ −1 (modp). We then have

xp−1 = (x2)(p−1)/2 ≡ (−1)(p−1)/2 ≡ −1 (modp)

which contradicts Fermat’s little theorem.8

Example 3.36 Use Example 3.35 to show that the Diophantine equation y2 = x3 +
11 has no solution in Z

2.

8See also the remark in the solution to Exercise 18.
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Answer Suppose there is a solution pair (x, y) ∈ Z
2. Then we have y2 ≡ x3 − 1

(mod 4), and since 0 and 1 are the unique squares modulo 4, we get x3 ≡ 1 or 2
(mod 4), and then x ≡ 1 (mod 4) since 2 is not a cube modulo 4. Note that, if y2 =
x3 + 11, then

y2 + 16 = x3 + 27 = (x + 3)
(
x2 − 3x + 9

)

and since x ≡ 1 (mod 4), this gives x3 − 3x + 9 ≡ 3 (mod 4). Hence there exists a
prime number p ≡ 3 (mod 4) dividing y2 + 16. If a is the unique integer such that
4a ≡ 1 (modp), then the relation y2 + 16 ≡ 0 (modp) implies that (ay)2 ≡ −1
(modp). This contradicts the result of Example 3.35. Thus, the Diophantine equa-
tion y2 = x3 + 11 has no solution in Z

2.

3.4 Elementary Prime Numbers Estimates

Between the years 1850 and 1875, a great number of estimates involving some
functions of prime numbers were discovered by a few mathematicians including
Chebyshev and Mertens. These results are the cornerstones of the whole research
on primes which eventually led to the Prime Number Theorem in 1896. Although
these estimates were not sufficient to show the PNT, they were, and still are, often
used in many problems in number theory.

3.4.1 Chebyshev’s Functions of Primes

We begin with a result which goes back to Legendre and gives a nice application of
the integer part of a number.

Theorem 3.37 (Legendre) Let p be a prime number and n be a positive integer.
The p-adic valuation of n! is given by

vp(n!)=
∞∑

k=1

[
n

pk

]
.

Note that the sum is in fact finite, since the integer part vanishes as soon as
k > logn/ logp.

First proof It rests on the fact that, if m � n, then every multiple of m not greater
than n divides n!.

Let p be a prime number. If p � n, then there are [n/p] multiples of p not greater
than n by Proposition 1.11. Similarly, if p2 � n, then there are [n/p2] multiples
of p2 not greater than n, and so on. We conclude the proof by adding all these
multiples. �
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Second proof It rests on the fact that the p-adic valuation of a product is the sum of
the p-adic valuations. Thus we get

vp(n!)= vp(1 × · · · × n)=
n∑

m=1

vp(m)=
n∑

m=1

vp(m)∑

k=1

1 =
∞∑

k=1

n∑

m=1
vp(m)�k

1

and we conclude the proof by noticing that the inner sum counts the number of
multiples of pk not greater than n which is equal to [n/pk] by Proposition 1.11. �

Example 3.38 Show that the number of zeros at the end of the decimal expansion
of n! is given by

∞∑

k=1

[
n

5k

]
.

Answer It follows from the fact that we can write n! = 10v5(n!) ×m with 10 � m,
so that the desired number is equal to v5(n!). Legendre’s theorem then gives the
asserted result.

The following functions are of constant use in analytic number theory.

Definition 3.39

1. The von Mangoldt function 
 is defined by


(n)=
{

logp, if n= pα for some prime p and α ∈N

0, otherwise.

2. The first Chebyshev function θ is defined for x � 2 by

θ(x)=
∑

p�x

logp

while it is convenient to set θ(x)= 0 for 0< x < 2.
3. The second Chebyshev function � is defined for x � 2 by

�(x)=
∑

n�x


(n)

while it is convenient to set �(x)= 0 for 0< x < 2.
4. The prime counting function π is defined by

π(x)=
∑

p�x

1

while it is convenient to set π(x)= 0 for 0< x < 2.

We will make use of the next lemma.
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Lemma 3.40

(i) For all x > 0, we have

θ(x)��(x)� θ(x)+ π(
√
x) logx.

(ii) For all x � 2 and all a > 1, we have

θ(x)

logx
� π(x)� aθ(x)

logx
+ π

(
x1/a).

Proof

(i) One may suppose x � 2. We first have

�(x)− θ(x)=
∑

pα�x

logp−
∑

p�x

logp =
∑

p�√
x

[logx/ logp]∑

α=2

logp

so that �(x)� θ(x). On the other hand

�(x)− θ(x) =
∑

p�√
x

[logx/ logp]∑

α=2

logp �
∑

p�√
x

logp

[
logx

logp

]
�
∑

p�√
x

logx

= π(
√
x) logx.

(ii) We have

π(x)=
∑

p�x

1 =
∑

p�x

logp

logp
� 1

logx

∑

p�x

logp = θ(x)

logx
.

For 2 � T < x, we also have

π(x)=
∑

p�T

1 +
∑

T<p�x

1 = π(T )+
∑

T<p�x

logp

logp
� π(T )+ θ(x)

logT

and the choice of T = x1/a implies the asserted estimate.

The proof of the lemma is complete. �

The von Mangoldt function satisfies an important identity which is what we shall
call later a convolution identity (see Chap. 4).

Lemma 3.41

(i) For all positive integers n, we have
∑

d|n

(d)= logn.
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(ii) For all x � 1, we have

∑

d�x


(d)

[
x

d

]
= x logx − x + 1 +R(x)

where 0 �R(x)� logx.

Proof

(i) The identity is clear for n= 1. Suppose n= 2 written as

n= p
α1
1 · · ·pαkk

with distinct primes pi and positive integers αi . By the definition of the von
Mangoldt function, it is sufficient to consider in the above sum the divisors d of
n written as d = p

βi
i with 1 � βi � αi for i = 1, . . . , k. Thus we get

∑

d|n

(d)=

k∑

i=1

αi∑

βi=1

logpi =
k∑

i=1

logpαii = logn.

(ii) One may suppose x > 1. We use (i) to obtain
∑

n�x

logn=
∑

n�x

∑

d|n

(d).

We will now interchange the summations. This process is of frequent use in an-
alytic number theory (see Proposition 4.17). By setting n= kd for some integer
k, we get

∑

n�x

logn=
∑

d�x


(d)
∑

k�x/d

1 =
∑

d�x


(d)

[
x

d

]

and the estimate follows by using Corollary 1.17.

The proof is complete. �

3.4.2 Chebyshev’s Estimates

One of the main goals of Chebyshev was the proof of the Prime Number Theorem
which can be stated as

π(x)∼ x

logx

as x −→ ∞. Although Chebyshev did not reach this estimate, his work in this di-
rection was crucial and Chebyshev’s ideas are still often used. The following two
results are fundamental.
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Lemma 3.42 For all x � 1, we have

θ(x)� x log 4.

Proof We first prove by induction that, for all positive integers n, we have

θ(n)� n log 4. (3.6)

This inequality is clearly true for n ∈ {1,2,3} and we notice that, if n� 4 is even,
we have

θ(n)= θ(n− 1)� 4n−1 < 4n.

Hence one may suppose that n � 3 is odd and set n = 2m + 1 with m a positive
integer. The idea is to use the fact that the product

∏

m+1<p�2m+1

p

divides the binomial coefficient
(2m+1

m

)
. To see this, it suffices to observe that a

prime p such that m+ 1 < p � 2m+ 1 divides (2m+ 1)! because of p � 2m+ 1,
but does not divide m! (m+ 1)! because of p >m+ 1, so that

∏

m+1<p�2m+1

p divides (2m+ 1)! =m! (m+ 1)! ×
(

2m+ 1

m

)

and since the product is coprime to m!(m + 1)! by the arguments above, Gauss’s
theorem then gives the desired assertion.

Taking logarithms, we then get

∑

m+1<p�2m+1

logp � log

(
2m+ 1

m

)
.

Using Proposition 1.9 (iii) we get

θ(2m+ 1)− θ(m+ 1)=
∑

m+1<p�2m+1

logp � log

(
2m+ 1

m

)
� log

(
4m
)=m log 4

and the induction hypothesis applied to θ(m+ 1) gives

θ(2m+ 1)�m log 4 + (m+ 1) log 4 = (2m+ 1) log 4

which concludes the proof of (3.6). The lemma follows from

θ(x)= θ
([x])� [x] log 4 � x log 4.

The proof is complete. �
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A better upper bound was proved in [Han72] where the author showed that n log 4
could be replaced by n log 3 in (3.6).

Lemma 3.43 For all x � 1537, we have

θ(x) >
x

log 4
.

Proof The proof follows the lines of Chebyshev’s work.
We first notice that the function f defined by

f (x)= [x] −
[
x

2

]
−
[
x

3

]
−
[
x

5

]
+
[
x

30

]

is periodic of period 30, and that f (30 − x) = 1 − f (x) for x �∈ Z. An inspection
of its values when x ∈ [1,15[ allows us to infer that f (x) only takes the values 0
or 1 if x �∈ Z. Since f is continuous on the right, we also have f (x)= 0 or 1 when
x ∈ Z. By periodicity, we infer that f (x)= 0 or 1 for all x ∈R. Hence we get

�(x) �
∑

n�x


(n)f

(
x

n

)

=
∑

n�x


(n)

([
x

n

]
−
[
x

2n

]
−
[
x

3n

]
−
[
x

5n

]
+
[
x

30n

])

=
∑

n�x


(n)

[
x

n

]
−
∑

n�x/2


(n)

[
x

2n

]
−
∑

n�x/3


(n)

[
x

3n

]

−
∑

n�x/5


(n)

[
x

5n

]
+
∑

n�x/30


(n)

[
x

30n

]

where we used the fact that [x/kn] = 0 as soon as n > x/k for k ∈ {2,3,5,30}, and
using the second estimate of Lemma 3.41, we deduce that

�(x) � x logx − x + 1 −
(
x

2
log

x

2
− x

2
+ 1 + log

x

2

)

−
(
x

3
log

x

3
− x

3
+ 1 + log

x

3

)
−
(
x

5
log

x

5
− x

5
+ 1 + log

x

5

)

+
(
x

30
log

x

30
− x

30
+ 1

)

= x log
(
27/1533/1051/6)− 3 logx + log 30 − 1.

We conclude the proof by using the first estimate of Lemma 3.40. �

Note that log(27/1533/1051/6)≈ 0.921 29 . . . which is a very good lower bound.
It was sufficient to allow Chebyshev to prove Bertrand’s famous postulate.
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Corollary 3.44 (Bertrand’s postulate) Let n be a positive integer. Then the interval
]n,2n] contains a prime number.

Proof We check numerically the result for n ∈ {1, . . . ,768} and we suppose n �
769. Using Lemmas 3.42 and 3.43, we get

∑

n<p�2n

logp = θ(2n)− θ(n) > n

(
2

log 4
− log 4

)
> 0

which implies the desired result. �

Now we are able to get good upper and lower bounds for the function π .

Corollary 3.45 (Chebyshev’s estimates) For all x � 5, we have

1

log 4

x

logx
< π(x) <

(
2 + 1

log 4

)
x

logx
.

Proof We first check the inequalities

1

log 4

n+ 1

logn
< π(n) <

(
2 + 1

log 4

)
n

log(n+ 1)

for all integers n ∈ {5, . . . ,1537} which imply the validity of the inequalities of the
corollary for all x ∈ [5,1357], so that we may suppose x � 1537.

The left-hand side follows directly from the lower bound of the second estimate
of Lemma 3.40 and from the lower bound of Lemma 3.43.

Using Lemma 3.40 with a = 3/2 and Lemma 3.42, we get

π(x)� 3x log 4

2 logx
+ x2/3

and the inequality logx < 3e−1.55x1/3, valid for all x � 1537, implies that

π(x) <
3x log 4

2 logx
+ 3e−1.55x

logx
<

(
2 + 1

log 4

)
x

logx

as required. �

Remark 3.46 The method of Lemma 3.43 also provides an upper bound for �(x),
and hence for π(x). For instance, it is easy to see that the function f defined in the
proof of the lemma satisfies the properties that f (t)= 1 for all 1 � t < 6, and hence

∑

n�x


(n)f

(
x

n

)
�

∑

x/6<n�x


(n)=�(x)−�

(
x

6

)
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and similar computations allow us to get the following bound

�(x)−�

(
x

6

)
� x log

(
27/1533/1051/6)+ 2 logx + 1 − log 30.

Now replacing x successively by x/6, x/62, . . . , x/6k where k = [logx/ log 6] and
summing all the resulting inequalities gives

�(x)� (x − 1)

(
6

5
log
(
27/1533/1051/6)

)
+ (logx)2

log 6
− log 5 − 1

log 6
logx < 1.1186x

as soon as x � 2273 (see the survey [BV09] for instance). Therefore one may won-
der whether there exist optimal linear combinations of quantities [x/n] to get better
positive numbers c1 < c2 such that

c1x <�(x) < c2x (x � x0)?

Diamond and Erdős [DE80] showed that the answer is yes, and even provided some
constants arbitrarily close to 1. Thus, could Chebyshev really prove the PNT forty-
five years before Hadamard and de la Vallée Poussin, and without using complex
analysis? Unfortunately not, since Diamond and Erdős needed the PNT to provide
the constants c1, c2. But Chebyshev’s ideas played a key part in modern analytic
number theory.

Corollary 3.45 allows us to slightly improve on the estimates of Lemma 3.40.

Corollary 3.47

(i) For all x � 25, we have

�(x) < θ(x)+
(

4 + 1

log 2

)√
x

π(x) <
3

2 logx

{
θ(x)+

(
2 + 1

log 4

)
x2/3

}
.

(ii) For all x � 1, we have

�(x) < 2x.

(iii) Let pn be the nth prime number. Then, for all integers n� 3, we have

n

2
logn < pn < 2n logn.

Proof

(i) Follows directly from Corollary 3.45 and Lemma 3.40, the second estimate
being used with a = 3/2.
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(ii) The inequality is first numerically checked for all integers n ∈ [1,100], and
follows from Lemma 3.42 and (i) otherwise.

(iii) We first check the inequalities for n ∈ {3, . . . ,337} and suppose n � 338 so
that pn � 2273. The proof rests on the fact that π(pn)= n.
� For the lower bound, we use the second upper bound of (i) above,

Lemma 3.42, the inequality x2/3 < x/13 valid for all x � 2273 and the
trivial inequality pn > n, which imply that

n= π(pn) <
3pn

2 logpn

{
log 4 + 1

13

(
2 + 1

log 4

)}
<

2pn
logpn

<
2pn
logn

giving the asserted lower bound for pn.
� For the upper bound, we begin by using the inequality

logx

x1−log 2
<

1

log 4

valid for all x � 2273. Applied with x = pn and using the lower bound of
Corollary 3.45, we get

logpn

p
1−log 2
n

<
1

log 4
<
π(pn) logpn

pn
= n logpn

pn

which implies that pn < n1/ log 2, and therefore logpn <
logn
log 2 . Thus, we get

n= π(pn) >
1

log 4

pn

logpn
>

pn

2 logn

which implies the desired upper bound.

This concludes the proof of the corollary. �

3.4.3 An Alternative Approach

In [Nai82], M. Nair had the idea to use dn = [1,2, . . . , n] to get lower bounds for
the function π . This estimate rests on the following result.

Lemma 3.48 For all integers n� 2, we have dn � 2n−2.

Proof The inequality is clearly true for n ∈ {2,3} so that we suppose n� 4. Let

In =
∫ 1

0
xn(1 − x)n dx.
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We first notice that 0 < In � 4−n since 0 < x(1 − x)� 1/4 for all 0 < x < 1. Now
using Newton’s formula, we get

In =
n∑

k=0

(
n

k

)
(−1)k

∫ 1

0
xn+k dx =

n∑

k=0

(
n

k

)
(−1)k

n+ k + 1

so that In is a rational number whose denominator is a divisor of d2n+1. We deduce
that d2n+1 × In is a positive integer, which implies that for all integers n � 1, we
have

1 � d2n+1 × In � 4−nd2n+1

and hence

d2n+1 � 22n and d2n+2 � d2n+1 � 22n

which implies the asserted inequality. �

Now using Corollary 3.7 (ii), we have dn = p
α1
1 · · ·pαkk , where the prime numbers

pi are distinct and satisfy pi � n and each exponent αi is the larger power of pi � n,
so that

αi =
[

logn

logpi

]
� logn

logpi

and therefore

dn �
∏

p�n

plogn/ logp =
∏

p�n

n= nπ(n)

so that

π(n)� logdn
logn

.

Using Lemma 3.48 we get

π(n)� (n− 2) log 2

logn
.

3.4.4 Mertens’ Theorems

Around 1875, Mertens proved two fundamental results on asymptotics for some
prime number functions.

Theorem 3.49 (First Mertens’ theorem) For all x � 2, we have

∑

p�x

logp

p
= logx +O(1).
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First proof Let n= [x]. By Theorem 3.37 we have

log(n!)=
∑

p�n

logp
∞∑

k=1

[
n

pk

]

=
∑

p�n

logp

[
n

p

]
+
∑

p�n

logp
∞∑

k=2

[
n

pk

]

= n
∑

p�n

logp

p
+O

(
θ(n)

)+O

(

n
∑

p�n

logp
∞∑

k=2

1

pk

)

and the use of (1.1), Corollary 1.17 and Lemma 3.42 gives

∑

p�n

logp

p
= log(n!)

n
+O

(
θ(n)

n

)
+O

(∑

p�n

logp

p(p− 1)

)

= 1

n

(
n logn+O(n)

)+O(1)= logn+O(1)

and we conclude the proof with

∑

p�x

logp

p
=
∑

p�[x]

logp

p
= log[x] +O(1)= logx +O(1)

as required. �

Second proof We first notice that

∑

d�x


(d)

d
=
∑

p�x

logp

p
+
∑

pα�x
α�2

logp

pα

and the second sum is

�
∑

p�√
x

logp
∞∑

α=2

1

pα
=
∑

p�√
x

logp

p(p− 1)
=O(1)

so that
∑

p�x

logp

p
=
∑

d�x


(d)

d
+O(1).

Now appealing to Lemma 3.41 and Corollary 3.47 (ii) we get

x logx +O(x)=
∑

d�x


(d)

[
x

d

]
= x

∑

d�x


(d)

d
+O

(
�(x)

)= x
∑

d�x


(d)

d
+O(x)
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and hence
∑

d�x


(d)

d
= logx +O(1)

which concludes the proof. �

By partial summation, it is fairly easy to prove that Theorem 3.49 implies the
following result.

∑

p�x

1

p
= log logx +B +O

(
1

logx

)
(3.7)

where B = 1 − log log 2 + ∫∞
2 t−1(log t)−2R(t)dt and |R(t)| � 1. This estimate

shows that (3.3) is very close to the right order of magnitude of the sum of the
reciprocals of prime numbers. Mertens studied more carefully this sum in order
to get a more manageable expression of the constant B , called today the Mertens
constant.

Corollary 3.50 For all x � e, we have

∑

p�x

1

p
= log logx +B +O

(
1

logx

)

where B = γ +∑p{log(1 − 1
p
)+ 1

p
} ≈ 0.261 497 212 8 . . . is the Mertens constant.

Proof Let h > 0.

� The starting point is Euler’s formula from Proposition 3.52

∏

p

(
1 − 1

p1+h

)−1

=
∞∑

n=1

1

n1+h .

Comparing the sum to an integral, we infer

∞∑

n=1

1

n1+h =
∫ ∞

1

dt

t1+h +O(1)= 1

h
+O(1)

so that

∏

p

(
1 − 1

p1+h

)−1

= 1

h
+O(1)

and taking logarithms of both sides we get

∑

p

1

p1+h +
∑

p

∞∑

α=2

1

αpα(1+h) =
∑

p

log

(
1 − 1

p1+h

)−1

= log

(
1

h

)
+O(h)
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as h−→ 0, so that

∑

p

1

p1+h = log

(
1

h

)
−
∑

p

∞∑

α=2

1

αpα(1+h) +O(h). (3.8)

� Let X > x � e be large real numbers. By (1.5), Proposition 1.27 and (3.7), we
have

∑

x<p�X

1

p1+h =
∫ X

x

1

th
d

( ∑

x<p�t

1

p

)

= 1

Xh

∑

x<p�X

1

p
+ h

∫ X

x

1

t1+h

( ∑

logx<n�log t

1

n
+O

(
1

logx

))
dt

= 1

Xh
log

(
logX

logx

)
+ h

∫ X

x

( ∑

logx<n�log t

1

n

)
dt

t1+h +O

(
1

logx

)

= 1

Xh
log

(
logX

logx

)
+ h

∑

logx<n�logX

1

n

∫ X

en

dt

t1+h +O

(
1

logx

)

= 1

Xh
log

(
logX

logx

)
+

∑

logx<n�logX

e−nh −X−h

n
+O

(
1

logx

)

=
∑

logx<n�logX

e−nh

n
+O

(
1

logx

)

so that

∑

p>x

1

p1+h =
∑

n>logx

e−nh

n
+O

(
1

logx

)

= − log
(
1 − e−h)−

∑

n�logx

e−nh

n
+O

(
1

logx

)

= − log
(
1 − e−h)−

∑

n�logx

1

n
+
∑

n�logx

1 − e−nh

n
+O

(
1

logx

)

= − log
(
1 − e−h)− log logx − γ +O(h logx)+O

(
1

logx

)
.

� Now combining (3.8) with this estimate we get

∑

p�x

1

p1+h = log

(
1 − e−h

h

)
+ log logx + γ −

∑

p

∞∑

α=2

1

αpα(1+h) +O(h logx)
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+O

(
1

logx

)

and letting h −→ 0 and noticing that
∑

p

∑∞
α=2

1
αpα

= −∑p{log(1 − 1
p
)+ 1

p
}

we obtain the asserted result. �

Mertens discovered the identity

∑

p

∞∑

α=2

1

αpα
=

∞∑

n=2

μ(n) log ζ(n)

n

which enabled him to compute B very accurately.
From Corollary 3.50 we readily get Mertens’ second theorem.

Corollary 3.51 (Mertens’ second theorem) For all x � e, we have

∏

p�x

(
1 − 1

p

)
= e−γ

logx

{
1 +O

(
1

logx

)}
.

Proof We have

log
∏

p�x

(
1 − 1

p

)−1

=
∑

p�x

log

(
1 − 1

p

)−1

=
∑

p�x

1

p
+
∑

p�x

{
log

(
1 − 1

p

)−1

− 1

p

}

and using the inequalities

log

(
1 − 1

p

)−1

− 1

p
� 1

2p(p− 1)
� 1

p2

the estimate
∑

p>x

1

p2
� 1

x logx

and Corollary 3.50, we infer that

log
∏

p�x

(
1 − 1

p

)−1

=
∑

p�x

1

p
−
∑

p

{
log

(
1 − 1

p

)
+ 1

p

}
+O

(
1

x logx

)

= log logx + γ +O

(
1

logx

)

and the use of eh = 1 +O(h) for all h−→ 0 finally gives

∏

p�x

(
1 − 1

p

)−1

= eγ logx

{
1 +O

(
1

logx

)}

which is easily seen to be equivalent to the form given in the corollary. �
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3.5 The Riemann Zeta-Function

3.5.1 Euler, Dirichlet and Riemann

Considered as one of the first analytic number theorists, Euler noticed that the func-
tion

σ �−→
∞∑

n=1

1

nσ

well-defined for all σ > 1, could carry some important arithmetic information, in
particular concerning the distribution of primes. Indeed, using Theorem 3.3, Euler
showed the following fundamental result.

Proposition 3.52 (Euler) For all σ > 1, we have

∏

p

(
1 − 1

pσ

)−1

=
∞∑

n=1

1

nσ
.

Proof Let N be a positive integer and σ > 1 be a real number. Expanding the prod-
uct

∏

p�N

(
1 − 1

pσ

)−1

=
∏

p�N

(
1 + 1

pσ
+ 1

p2σ
+ 1

p3σ
+ · · ·

)

and using Theorem 3.3, we obtain

∏

p�N

(
1 − 1

pσ

)−1

= 1 + 1

nσ1
+ 1

nσ2
+ 1

nσ3
+ · · ·

where each integer ni is such that all its prime factors are �N , so that

∏

p�N

(
1 − 1

pσ

)−1

=
∑

P+(n)�N

1

nσ
.

Since every integer n�N satisfies this property, we infer that
∣∣∣∣∣

∞∑

n=1

1

nσ
−
∏

p�N

(
1 − 1

pσ

)−1
∣∣∣∣∣
=
∣∣∣∣∣

∞∑

n=1

1

nσ
−

∑

P+(n)�N

1

nσ

∣∣∣∣∣
�
∑

n>N

1

nσ
.

We conclude the proof by noting that the latter sum tends to 0 as N tends to ∞. �

Euler used to work with Proposition 3.52 principally as a formal identity and
mainly for integer values of σ . Later, Dirichlet based some of his work upon Euler’s
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product formula but used it with σ > 1 as a real variable, and proved rigorously that
this result is true in ]1,∞[.

Riemann, who was one of Dirichlet’s students, was certainly influenced by his
use of Euler’s product formula and, as one of the founders of the theory of functions,
would naturally consider σ as a complex variable, renamed s = σ + it ∈C. Since

∑

p�x

1

|ps | =
∑

p�x

1

pσ

both sides of Proposition 3.52 converge for every complex s such that σ > 1. This
leads to the following definition.

Definition 3.53 (Riemann zeta-function) The Riemann zeta-function ζ(s) is de-
fined for all complex numbers s = σ + it such that σ > 1 by

ζ(s)=
∞∑

n=1

1

ns
=
∏

p

(
1 − 1

ps

)−1

.

The product representation, called the Euler product, enables us to see that
ζ(s) �= 0 in the half-plane σ > 1. Furthermore, since

∣∣
∣∣
∑

p�x

logp

ps − 1

∣∣
∣∣�

∑

p�x

logp

p1+ε − 1

for all s = σ + it ∈ C such that σ � 1 + ε, we infer that the series of the left-
hand side is uniformly convergent in this half-plane, and this allows us to take the
logarithmic derivative of both sides of Definition 3.53 and justifies the change of the
order of summations, which gives

−ζ ′(s)
ζ(s)

=
∑

p

logp

ps − 1
=
∑

p

∞∑

α=1

logp

pαs
=

∞∑

α=1

∑

p

logp

pαs

and hence we get

−ζ ′(s)
ζ(s)

=
∞∑

n=1


(n)

ns
. (3.9)

The series in (3.9) converges absolutely and uniformly in the half-plane σ � 1 + ε

for all ε > 0, so that (3.9) holds for σ > 1 by analytic continuation.
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3.5.2 The Gamma and Theta Functions

� Euler defined the Gamma function for all real numbers σ > 0 as

�(σ)=
∫ ∞

0
xσ−1e−x dx

the convergence of the integral being ensured by the estimates xσ−1e−x ∼ xσ−1

when x −→ 0 and xσ−1e−x = o(e−x/2) when x −→ ∞. Clearly, we have
�(σ) > 0 for all σ > 0, �(1) = 1 and integrating by parts gives the recursion
�(σ + 1)= σ�(σ) for all σ > 0. In particular, we get by induction the identity
�(n)= (n− 1)! for all positive integers n.

Let s = σ + it ∈ C. Since |xs | = xσ , the integral above defines an analytic
function � in the half-plane σ > 0, which still satisfies the functional equation
�(s+ 1)= s�(s) for σ > 0, as can be seen by repeating an integration by parts. For
−1< σ < 0, we set �(s)= s−1�(s + 1) so that the function � has a simple pole at
s = 0. Similarly in the range −2< σ <−1, we define �(s)= s−1(s+1)−1�(s+2)
which gives a simple pole at s = −1. Continuing in this way, we see that the func-
tional equation extends � to a meromorphic function on C, which is analytic except
for simple poles at s = 0,−1,−2,−3, . . . One may check that the residue at the
pole −n is given by (−1)n/n!.

Let us mention the following useful formulae [Tit39, 4.41]. For any s ∈ C we
have9

1

�(s)�(1 − s)
= sinπs

π

and10

�(s)= π−1/22s−1�

(
s

2

)
�

(
s + 1

2

)
. (3.10)

Stirling’s formula may be generalized as follows [Tit39, 4.42].

Theorem 3.54 (Complex Stirling’s formula) For any s ∈C, we have

log�(s)=
(
s − 1

2

)
log s − s + log

√
2π +O

(|s|−1)

as |s| −→ ∞ and uniformly for | arg s| � π − δ (δ > 0), where the complex loga-
rithm is chosen by taking the principal value of its argument. This implies in partic-
ular that, if σ ∈ [σ1, σ2] is fixed, then

∣∣�(σ + it)
∣∣= |t |σ−1/2e−π |t |/2

√
2π
(
1 +O

(|t |−1))

when |t | � t0, the constant implied in the error-term depending on σ1 and σ2.

9This identity is called the reflection formula.
10This identity is called the duplication formula.
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We will see later that most of the Dirichlet series arising in analytic number
theory satisfy functional equations of the same shape,11 namely as in Theorem 4.58
where products of Gamma functions appear. Theorem 3.54, showing that �(s) tends
to zero exponentially fast as |t | −→ ∞ in vertical strips, is then used to shift the
contours of integration. This enables us to get important results which are out of
reach by other methods, as in Theorem 7.178.

� Replacing x by πn2x in the integral defining � gives

π−s/2�

(
s

2

)
n−s =

∫ ∞

0
xσ/2−1e−n2πx dx (3.11)

for all σ > 0. The purpose is to sum both sides of this equation. To this end, we
define the following two functions. For all x > 0, we set

ω(x)=
∞∑

n=1

e−n2πx and θ(x)= 2ω(x)+ 1 =
∑

n∈Z
e−n2πx.

The function g : t �−→ e−t2π satisfies
∫
R g(t)dt = 1. This implies that its Fourier

transform is

ĝ(u)= e−πu2
.

Set f : t �−→ e−t2πx . Using the transposition formula stating that the Fourier
transform of t �−→ g(αt) is the function u �−→ |α|−1ĝ(u/α) for all real numbers
α �= 0, we obtain with α = x1/2

f̂ (u)= x−1/2e−u2π/x.

Then Lemma 6.27 implies the following result: for all x > 0, we have

θ

(
1

x

)
= x1/2θ(x). (3.12)

Now we may return to (3.11). Summing this equation over n and interchanging
the sum and integral, we get for all σ > 1

π−s/2�

(
s

2

)
ζ(s)=

∫ ∞

0
xσ/2−1ω(x)dx.

The process is justified since the sum and integral converge absolutely in the
half-plane σ > 1. Splitting the integral at x = 1 and substituting 1/x for x in the
first integral yields

π−s/2�

(
s

2

)
ζ(s)=

∫ ∞

1
xσ/2−1ω(x)dx +

∫ ∞

1
x−σ/2−1ω

(
1

x

)
dx

11The set of these functions is now called the Selberg class.
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and using (3.12) in the form

ω

(
1

x

)
= x1/2ω(x)+ x1/2 − 1

2

finally gives

π−s/2�

(
s

2

)
ζ(s)= −1

s
+ 1

s − 1
+
∫ ∞

1
ω(x)

(
xs/2 + x(1−s)/2)dx

x
(3.13)

for all σ > 1.

3.5.3 Functional Equation

The computations made above eventually lead to the functional equation of the Rie-
mann zeta-function. Thus, Riemann’s idea to consider s as a complex variable is
very fruitful. However, it is interesting to note that Riemann did not think of a
piece-by-piece extension of the function represented by

∑∞
n=1 n

−s in the way that
analytic continuation is usually used today, but rather searched a formula which re-
mains valid for all s (see [Edw74] for instance). The following result, whose real
version was conjectured and partially proved by Euler, is fundamental.

Theorem 3.55 (Functional equation) It is customary to set

ξ(s)= π−s/2�(s/2)ζ(s).

Then the function ξ(s) can be extended analytically in the whole complex plane to
a meromorphic function having simple poles at s = 0 and s = 1, and satisfies the
functional equation ξ(s)= ξ(1 − s).

Thus the Riemann zeta-function can be extended analytically in the whole com-
plex plane to a meromorphic function having a simple pole at s = 1 with residue 1.
Furthermore, for all s ∈ C \ {1}, we have

ζ(s)= 2sπs−1 sin

(
πs

2

)
�(1 − s)ζ(1 − s).

Proof

� Let x � 1 be a real number and s = σ + it with σ > 1. By (1.7) with a = 1, b= x

and f (x)= x−s , we get

∑

n�x

1

ns
= 1

2
+ 1 − x1−s

s − 1
− ψ(x)

xs
− s

∫ x

1

ψ(u)

us+1
du (3.14)
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so that making x −→ ∞ we obtain

ζ(s)= 1

2
+ 1

s − 1
− s

∫ ∞

1

ψ(u)

us+1
du. (3.15)

Since |ψ(x)| � 1
2 , the integral converges for σ > 0 and is uniformly convergent

in any finite region to the right of the line σ = 0. This implies that it defines
an analytic function in the half-plane σ > 0, and therefore (3.15) extends ζ to
a meromorphic function in this half-plane, which is analytic except for a simple
pole at s = 1 with residue 1. Also notice that (3.15) can be written in the shape

ζ(s)= s

s − 1
− s

∫ ∞

1

{u}
us+1

du

and since lim|s|→∞ s/(s − 1)= 1, we deduce that

∣∣ζ(s)
∣∣� |s|

as |s| −→ ∞.
� By (3.13), we have for σ > 1

ξ(s)= −1

s
+ 1

s − 1
+
∫ ∞

1
ω(x)

(
xs/2 + x(1−s)/2)dx

x
.

Since ω(x)� e−πx as x −→ ∞, we infer that the integral is absolutely conver-
gent for all s ∈ C whereas the left-hand side is a meromorphic function on σ > 0.
This implies that
a. The identity (3.13) is valid for all σ > 0.
b. The function ξ(s) can be defined by this identity as a meromorphic function

on C with simple poles at s = 0 and s = 1.
c. Since the right-hand side of (3.13) is invariant under the substitution s ←→

1 − s, we get ξ(s)= ξ(1 − s).
d. The function s �−→ s(s − 1)ξ(s) is entire on C. Indeed, if σ > 0, the factor

s − 1 counters the pole at s = 1, and the result on all C follows from the
functional equation.

� It remains to show that the functional equation can be written in the form

ζ(s)= 2sπs−1 sin

(
πs

2

)
�(1 − s)ζ(1 − s).

Since ξ(s)= ξ(1 − s), we have

�(s/2)ζ(s)= πs−1/2�

(
1 − s

2

)
ζ(1 − s)
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and multiplying both sides by π−1/22s−1�( 1+s
2 ) and using (3.10) we obtain

�(s)ζ(s)= (2π)s−1�

(
1 − s

2

)
�

(
1 + s

2

)
ζ(1 − s).

Now the reflection formula implies that

ζ(s)= (2π)s−1
(

sinπs

sin(π(1 + s)/2)

)
�(1 − s)ζ(1 − s)

and the result follows from the identity sinπs = 2 sin(πs2 ) sin(π2 (1 + s)). The
proof is complete. �

Remark 3.56 We may deduce the following basic consequences for the Riemann
zeta-function.

1. ζ(s) has simple zeros at s = −2,−4,−6,−8, . . . Indeed, since the integral in
(3.13) is absolutely convergent for all s ∈ C and since ω(x) > 0 for all x, we
have

ξ(−2n)= 1

2n
− 1

2n+ 1
+
∫ ∞

1
ω(x)

(
x−n + xn+1/2)dx

x
> 0

for all positive integers n. The result follows from the fact that �(s/2) has simple
poles at s = −2n.

These zeros are the only ones lying in the region σ < 0. They are called trivial
zeros of the Riemann zeta-function.

2. For all 0< σ < 1, we have ζ(σ ) �= 0. Indeed, since for all σ > 0

ζ(s)= s

s − 1
− s

∫ ∞

1

{x}
xs+1

dx

we infer that, for all 0< σ < 1, we get
∣∣∣∣ζ(σ )− σ

σ − 1

∣∣∣∣< σ

∫ ∞

1

dx

xσ+1
= 1

which implies that ζ(σ ) < 1 + σ/(σ − 1) for all 0< σ < 1. Hence ζ(σ ) < 0 for
all 1

2 � σ < 1, and the functional equation implies the asserted result.

The functional equation is very important, but also may be insufficient in some
applications for it does not express ζ(s) explicitly. The following tool will be useful
to get some estimates of ζ(s) in the critical strip, especially when σ is close to 1.

Theorem 3.57 (Approximate functional equation) We have uniformly for x � 1 and
s ∈C \ {1} such that σ > 0

ζ(s)=
∑

n�x

1

ns
+ x1−s

s − 1
+R0(s;x)
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with

R0(s;x)= ψ(x)

xs
− s

∫ ∞

x

ψ(u)

us+1
du

and hence
∣
∣R0(s;x)

∣
∣� |s|

σxσ
.

Proof Follows by subtracting (3.14) from (3.15). �

3.5.4 Estimates for |ζ(s)|

In this section, we set τ = |t | + 3 for all t ∈R.

� The next lemma gives inequalities for |ζ(s)| near the right of the line σ = 1.

Lemma 3.58 For all σ > 1 and t ∈R, we have

1

σ − 1
< ζ(σ) <

σ

σ − 1

and
∣∣∣∣−

ζ ′

ζ
(σ + it)

∣∣∣∣� −ζ ′

ζ
(σ ) <

1

σ − 1
.

Furthermore, for all σ > 1 and t ∈R, we have

1

ζ(σ )
�
∣∣ζ(σ + it)

∣∣� ζ(σ ) <
1

σ − 1
+ 0.64

where the last estimate is valid for all 1< σ < 1.12

Proof We start with
∫ ∞

1

du

uσ
< ζ(σ ) <

∫ ∞

1

du

uσ
+ 1

giving the first line of inequalities and the second line follows from Abel’s summa-
tion which implies that

−ζ ′(σ ) =
∞∑

n=1

logn

nσ
=

∞∑

n=1

log

(
1 + 1

n

) ∞∑

h=n+1

1

hσ
<

∞∑

n=1

1

n

∫ ∞

n

du

uσ

=
∞∑

n=1

n1−σ

n(σ − 1)
= ζ(σ )

σ − 1
.
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For the next result, we first have

∣∣ζ(σ + it)
∣∣�

∞∑

n=1

1

nσ
= ζ(σ )

and

1

|ζ(σ + it)| =
∣∣∣∣
∏

p

(
1 − 1

pσ+it

)∣∣∣∣�
∏

p

(
1 + 1

pσ

)
�

∞∑

n=1

1

nσ
= ζ(σ ).

Now using (3.15) and integrating by parts we get

ζ(σ )= 1

σ − 1
+ 1

2
− σ(σ + 1)

∫ ∞

1

ψ2(u)

uσ+2
du

and using 0 � −ψ2(u)� 1
8 and σ < 1.12 we get the asserted result. �

� Using Theorem 3.57, we are in a position to estimate |ζ(s)| near the left of the
line σ = 1.
� For σ � 2, we have trivially

∣∣ζ(s)
∣∣� ζ(σ )� ζ(2)= π2

6
.

� For 1 − c/ log τ � σ < 2 for some 0 � c < 1
3 , we use Theorem 3.57 with

x = τ . Note that τ 1−σ � ec and, for all n� τ , we also have n−σ � ecn−1, so
that12

∣∣ζ(s)
∣∣ �

∑

n�τ

1

nσ
+ τ−σ

(
1 + |s|

σ

)
� ec

∑

n�τ

1

n
+ ec

τ

(
2 + τ

σ

)

� ec(log τ + 3)� 4ec log τ.

In particular, we have |ζ(1 + it)| � 4 log τ for all t ∈R.
� For σ = 0 and t �= 0, we have from the functional equation

∣∣ζ(it)
∣∣= π−1 sinh

(
πt

2

)∣∣�(1 − it)
∣∣∣∣ζ(1 − it)

∣∣

and Theorem 3.54 implies that
∣∣�(1 − it)

∣∣� τ 1/2e−πτ/2

so that by above we get

ζ(it)� τ 1/2 log τ.

12The constraint c < 1
3 ensures that σ > 1

2 for τ � 3.
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This inequality also holds for t = 0 since it can be shown that ζ(0)= − 1
2 .

� For 0 < σ < 1 and t > 0, we use the Phragmén–Lindelöf principle, which
may be stated as follows.

Let a < b be real numbers and suppose that f : C −→ C is a
continuous, bounded function in the strip a � σ � b, and analytic in
a < σ < b. If, for all t ∈R, we have

∣∣f (a + it)
∣∣�A and

∣∣f (b+ it)
∣∣� B

then, for all s such that a < σ < b, we have

∣∣f (s)
∣∣�
(
Ab−σBσ−a)1/(b−a).

Applied here with the above estimates this result gives

ζ(s)� τ (1−σ)/2 log τ

for all 0< σ < 1.
� By differentiation of the equation of Theorem 3.57, for s ∈ C satisfying 1 −
c/ log τ � σ < 2, we get

ζ ′(s)= −
∑

n�x

logn

ns
− x1−s logx

s − 1
− x1−s

(s − 1)2
+R1(s;x)

with
∣∣R1(s;x)

∣∣� |s|
σxσ

(
logx + σ−1)<

|s|
σxσ

(logx + 2).

Proceeding as before and using the easy inequality

∑

n�τ

logn

n
� (log τ)2

2
+ 0.11

we obtain |ζ ′(σ + it)| � 9ec(log τ)2.

We may summarize these estimates in the following result.

Theorem 3.59 Let 0 � c < 1
3 , t ∈R and set τ = |t | + 3. Uniformly in σ , we have

ζ(σ + it)�
{

1, if σ � 2

τ (1−σ)/2 log τ, if 0 � σ � 1.

Furthermore, in the region 1 − c/ log τ � σ < 2, we have
∣∣ζ(σ + it)

∣∣� 4ec log τ and
∣∣ζ ′(σ + it)

∣∣� 9ec(log τ)2.
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More elaborate techniques can be used to improve on this result, as will be seen
in Chap. 6. It is customary to denote by μ(σ) the lower bound of numbers α such
that, for all |t |� 1, we have

ζ(σ + it)� |t |α.
From the theory of Dirichlet series, it may be proved [Tit39, §9.41] that this function
is never negative, non-increasing and convex downwards, and hence continuous. By
above, we get μ(σ)= 0 for all σ > 1 and using the functional equation, it may be
shown that μ(σ)= 1

2 − σ for all σ < 0. These equalities also hold by continuity for
σ = 1 and σ = 0 respectively. However, the exact value of μ(σ) in the critical strip
is still unknown. The simplest possible hypothesis is that the graph of this function
consists of two straight lines y = 1

2 − σ if σ � 1
2 and y = 0 if σ � 1

2 . This is known
as the Lindelöf hypothesis and is then equivalent to the statement that

ζ

(
1

2
+ it

)
� tε

for all ε > 0 and t � 3. The best value to date is due to Huxley [Hux05] who proved
that we have13

ζ

(
1

2
+ it

)
� t32/205+ε.

3.5.5 A Zero-Free Region

It can be shown [Tit51, §3.7] that a weak version of the Prime Number Theorem,
i.e. π(x)∼ x/ logx when x −→ ∞, follows from the next result, which goes back
to Hadamard and de la Vallée Poussin (1896).

Theorem 3.60 For all t ∈ R, we have ζ(1 + it) �= 0. Furthermore, if τ = |t | + 3,
we have

∣
∣ζ(1 + it)

∣
∣>

1

221 184(log τ)7
.

Proof Since 1 is a pole of ζ , we suppose that 1 + it0 is a zero or order m of ζ(s) for
some t0 �= 0, so that there exists � �= 0 such that

lim
σ→1+

ζ(σ + it0)

(σ − 1)m
= �.

13See Exercise 7 in Chap. 6.
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Let σ > 1 and t ∈ R. Using (3.9), we have

Re
(
3 log ζ(σ )+ 4 log ζ(σ + it)+ log ζ(σ + 2it)

)

=
∞∑

n=1


(n)

nσ logn

(
3 + 4 cos(t logn)+ cos(2t logn)

)

= 2
∞∑

n=1


(n)

nσ logn

(
1 + cos(t logn)

)2 � 0

which implies that
∣∣ζ(σ )3ζ(σ + it)4ζ(σ + 2it)

∣∣� 1.

Therefore we get
∣∣(σ − 1)3ζ(σ )3(σ − 1)−4mζ(σ + it0)

4ζ(σ + 2it0)
∣∣� (σ − 1)3−4m.

Now making σ −→ 1+ gives a contradiction, since the left-hand side tends to a
finite limit, whereas the right-hand side tends to ∞ if m� 1.

For the lower bound of |ζ(1 + it)|, we proceed as follows. The inequality above
and the estimates of Lemma 3.58 and Theorem 3.59 give for 1< σ < 2

1

|ζ(σ + it)| � ζ(σ )3/4
∣∣ζ(σ + 2it)

∣∣1/4
< (32)1/4(σ − 1)−3/4(log τ)1/4,

so that by Theorem 3.59 we get for 1< σ < 2

∣∣ζ(1 + it)
∣∣�
∣∣ζ(σ + it)

∣∣− 9(σ − 1)(log τ)2

> (32 log τ)−1/4(σ − 1)3/4 − 9(σ − 1)(log τ)2

and the choice of σ = 1 + 663 552−1(log τ)−9 gives the stated result. �

The proof given above follows essentially the lines of de La Vallée Poussin’s.
Hadamard’s argument, also exploiting the link between ζ(1 + it0) and ζ(1 + 2it0),
is similar in principle. The trigonometric polynomial used above may be replaced
by any trigonometric polynomial P(θ)=∑M

m=0 am cos(mθ) satisfying am � 0 and
P(θ)� 0, which implies that, for σ > 1, we have

Re

(
M∑

m=0

am

∞∑

n=1


(n)

nσ+imt

)

� 0.

Since ζ(s) �= 0 for σ � 1, we infer that, apart from the trivial ones, the function ζ(s)
has all its zeros in the so-called critical strip 0< σ < 1. It is customary to call these
zeros the non-trivial zeros of ζ(s) and they are denoted by ρ = β + iγ . Since the
Riemann zeta-function is real on the real axis, we have ζ(s)= ζ(s) by the reflexion
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principle, so that, if ρ is a zero of ζ(s), then so is ρ. By the functional equation, we
deduce that 1 − ρ and 1 − ρ are also zeros of ζ(s).

For a stronger form of the Prime Number Theorem with an estimate of the error-
term (see Sect. 3.7), a larger zero-free region to the left of the line σ = 1 and some
fine estimates of ζ(s) in this region are needed. This is the purpose of the next result.

Theorem 3.61 Set τ = |t |+ 3. The Riemann zeta-function has no zero in the region

σ � 1 − 1

555 6379(log τ)9
and t ∈ R

in which we also have the estimates

∣∣ζ(σ + it)
∣∣>

1

442 368(log τ)7
and

∣∣∣∣−
ζ ′

ζ
(σ + it)

∣∣∣∣< 555 6379(log τ)9.

Proof Let 0 � c < 1
3 be the constant appearing in Theorem 3.59 and let s be a

complex number such that 1 − c/ log τ � σ < 2. From

ζ(1 + it)− ζ(σ + it)=
∫ 1

σ

ζ ′(u+ it)du

and Theorems 3.59 and 3.60, we get

∣∣ζ(σ + it)
∣∣ �
∣∣ζ(1 + it)

∣∣− 9ec(1 − σ)(log τ)2

>
1

221 184(log τ)7
− 9ec(1 − σ)(log τ)2

so that if σ � 1 − 3 981 312−1e−c(log τ)−9, we infer

∣∣ζ(σ + it)
∣∣>

1

442 368(log τ)7

and by Theorem 3.59 we also obtain

∣∣
∣∣−

ζ ′

ζ
(σ + it)

∣∣
∣∣< 9e1/3 × 442 368 × (log τ)9 < 555 6379(log τ)9

as required. �

We will now prove that the function −ζ ′(s)/ζ(s) has an analytic continuation to
the line σ = 1.

Proposition 3.62 The function −ζ ′(s)/ζ(s) has an analytic continuation to σ = 1
with only a simple pole at s = 1 with residue 1.
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Proof By (3.14), we have (s − 1)ζ(s)= sϕ(s) for all σ > 0, where

ϕ(s)= 1 − (s − 1)
∫ ∞

1

{x}
xs+1

dx

so that ϕ(s) is analytic in the half-plane σ > 0. We deduce that, for all σ > 1, we
have

−(s − 1)
ζ ′(s)
ζ(s)

= 1 − ϕ(s)+ sϕ′(s)
ζ(s)

−→
s→1+ 1

as required. �

3.6 Prime Numbers in Arithmetic Progressions

Let a and q be two positive integers. The question of the infinity of the prime num-
bers p ≡ a (modq) arises naturally. First note that we may suppose that (a, q)= 1,
otherwise the terms of the sequence (qn + a) are all divisible by (a, q). Thus the
condition (a, q)= 1 is necessary to this problem. Dirichlet’s tour de force was pre-
cisely to show that this hypothesis is also sufficient. The purpose of this section is to
provide a proof of Dirichlet’s theorem.

Theorem 3.63 (Dirichlet) Let a, q be positive coprime integers. Then there are
infinitely many prime numbers p such that p ≡ a (modq).

3.6.1 Euclid vs Euler

Let us go back in time. Before Euler, there were many attempts to generalize Eu-
clid’s method to the problem of primes in some fixed arithmetic progressions. The
following lemma shows that the method works for at least two of them.

Lemma 3.64

(i) There are infinitely many prime numbers p such that p ≡ 3 (mod 4).
(ii) There are infinitely many prime numbers p such that p ≡ 1 (mod 4).

Proof

(i) Suppose the contrary and let P4,3 = {p1, . . . , pn} the finite set of all prime num-
bers p such that p ≡ 3 (mod 4). Set M = 4p1 · · ·pn − 1. If M is prime, then we
get a prime number of the type M ≡ 3 (mod 4) such that M >pn. Suppose now
that M is composite. Then there exists at least an odd prime divisor p of M of
the form p ≡ 3 (mod 4), otherwise all prime factors of M are ≡ 1 (mod 4) since
M is odd, and we have M ≡ 1 (mod 4) which is not the case. On the other hand,
we have p �∈ P4,3, otherwise we have p |M + 1. Thus we have found a prime
number p such that p ≡ 3 (mod 4) and p �∈P4,3, leading to a contradiction.
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(ii) Suppose the contrary and let P4,1 = {p1, . . . , pn} the finite set of all prime num-
bers p such that p ≡ 1 (mod 4). Set M = 4(p1 · · ·pn)2 + 1. If M is prime, then
we get a prime number of the type M ≡ 1 (mod 4) such that M >pn. Suppose
that M is composite and let p be a prime factor of M . Since M is odd, we have
p �= 2 and also p �∈ P4,1, otherwise it divides M − 1. Since p | M , we have
4(p1 · · ·pn)2 ≡ −1 (modp) and hence −1 is a quadratic residue modulo p.
By Example 3.35, we infer that p ≡ 1 (mod 4). Thus we have found a prime
number p such that p ≡ 1 (mod 4) and p �∈P4,1, leading to a contradiction.

The proof is complete. �

This argument may be generalized to certain arithmetic progressions.

Proposition 3.65 Let q be an odd prime number. Then there are infinitely many
prime numbers p such that p ≡ 1 (modq).

Proof

� Let a > 1 be an integer such that q | a and set M = 1 + a + a2 + · · · + aq−1. Let
p be a prime divisor of M . Note that p � a, otherwise we have M ≡ 1 (modp)
which contradicts p | M . Hence p �= q . Using Lemma 1.6, we get p | (aq − 1)
and hence ordp(a) divides q . Since q is prime, we infer that ordp(a) = 1 or q .
If ordp(a) = 1, then we get M ≡ q (modp) and hence q ≡ 0 (modp) which is
impossible, since p and q are two distinct prime numbers. Therefore ordp(a)= q

and then q | (p− 1) by Theorem 3.25. In other words, we have proved that

p ≡ 1 (modq).

� Suppose that there are finitely many primes p1, . . . , pn such that pi ≡ 1 (modq).
Consider the integer a = qp1 · · ·pn which is a multiple of q . By above, the integer
M = 1 + a + · · · + aq−1 has a prime divisor p such that p ≡ 1 (modq) and also
p �= pi otherwise we have p | (M − 1), giving a contradiction. �

The proofs above use a Euclidean argument, in the sense that we have at our
disposal a polynomial P ∈ Z[X] with degree > 0 and whose integer values have
prime divisors, almost all lying in some arithmetic progressions. For instance, The-
orem 3.13 uses the polynomial P = X + 1, Lemma 3.64 uses the polynomials
P =X − 1 and P =X2 + 1 respectively and Proposition 3.65 uses the cyclotomic
polynomial �q =Xq−1 +Xq−2 + · · · + 1 (see Chap. 7, Sect. 7.2.9).

One may wonder whether such arguments may be generalized to all arithmetic
progressions. The following curious result, due to Schur (1912) for the sufficient
condition and Ram Murty (1988) for the necessary condition, shows that such a
proof cannot exist for all cases.

Proposition 3.66 Let a, q be positive coprime integers. Then there exists a Eu-
clidean proof for the sequence a (modq) if and only if a2 ≡ 1 (modq).
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For instance, Euclid’s argument may be used to show the infinity of the set of
primes such that p ≡ 8 (mod 9) but cannot be used to prove that there are infinitely
many prime numbers p such that p ≡ 7 (mod 9).

Thus, a new idea is needed. Around 1837, Dirichlet succeeded in using a gen-
eralization of Euler’s proof of Theorem 3.13 and some group-theoretic tools. More
precisely, Dirichlet proved the divergence of the series

∑

p≡a (modq)

1

p

by discovering a clever expression for the characteristic function

1q,a(n)=
{

1, if n≡ a (modq)
0, otherwise

(3.16)

(see Proposition 3.68) and showing

lim
σ→1+

∑

p

1q,a(p)
pσ

= ∞.

An alternative way is to estimate partial sums of the above series. Let us examine
this in the following example taking q = 4 and a = 1. Dirichlet used the function
14,1 defined for all odd positive integers n by

14,1(n)= 1

2

(
1 + sin

(
nπ

2

))
.

One may readily check that, for all odd n, we have

14,1(n)=
{

1, if n≡ 1 (mod 4)
0, if n≡ 3 (mod 4).

Thus, for all N > 1, we get

∑

p�N
p≡1 (mod 4)

1

p
=

∑

3�p�N

14,1(p)

p
= 1

2

∑

3�p�N

1

p
+ 1

2

∑

3�p�N

sin(πp/2)

p
.

By Corollary 3.50, the first sum tends to ∞ when N −→ ∞. We will prove in
Theorem 3.73 that the series

∑

p

sin(πp/2)

p

converges, which establishes the divergence of the initial series

∑

p≡1 (mod 4)

1

p
.
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3.6.2 Dirichlet Characters

Dirichlet introduced the characters which was the main tool in the proof of his
theorem. Although these characters may be defined on any finite abelian group, we
may restrict ourselves here to the so-called Dirichlet characters as extensions over
Z \ {0} of homomorphisms of the multiplicative group (Z/qZ)∗.

Definition 3.67 Let q be a positive integer. A Dirichlet character modulo q is a
map χ : Z \ {0} −→ C satisfying the following rules for all a, b ∈ Z \ {0}.

(i) χ(a)= χ(a (modq))
(ii) χ(ab)= χ(a)χ(b)

(iii) χ(a)= 0 if (a, q) > 1.

In fact, (i) and (ii) mean that these characters are homomorphisms of the mul-
tiplicative group (Z/qZ)∗ and (iii) extends these maps to Z \ {0}. We shall make
frequent use of the q-periodicity of the characters. One can prove that the set of
Dirichlet characters modulo q is a group isomorphic to the multiplicative group
(Z/qZ)∗ of the units of the ring Z/qZ. In particular, there are ϕ(q) Dirichlet char-
acters modulo q . The identity element of this group is called the principal, or trivial,
character modulo q and is usually denoted by χ0. Thus, χ0 is defined for all a ∈ Z

by

χ0(a)=
{

1, if (a, q)= 1
0, otherwise.

Let χ be a Dirichlet character modulo q . We define χ by χ(a)= χ(a). Clearly, χ
is also a Dirichlet character modulo q called the conjugate character of χ . It is also
not difficult to see that, if (a, q) = 1, then χ(a) is a ϕ(q)th root of unity. Indeed,
denoting by a the residue class of the integer a in (Z/qZ)∗, we have

(
χ(a)

)ϕ(q) = χ
(
aϕ(q)

)= χ(1)= 1.

Dirichlet succeeded in proving that a suitable linear combination of these characters
provides the desired characteristic functions 1q,a .

Proposition 3.68 Let a, q be positive coprime integers and define 1q,a(n) as

1q,a(n)=
{

1, if n≡ a (modq)
0, otherwise.

For all positive integers n we have

1q,a(n)= 1

ϕ(q)

∑

χ (modq)

χ(a)χ(n)

where the summation is taken over all Dirichlet characters modulo q .
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Proof

� Suppose first that a = 1. If n≡ 1 (modq), then we have by Definition 3.67 (i)
∑

χ (modq)

χ(n)=
∑

χ (modq)

χ(1)=
∑

χ (modq)

1 = ϕ(q).

Now assume that n �≡ 1 (modq) and (n, q)= 1. Then there exists a character χ1
such that χ1(n) �= 1. When χ ranges over all Dirichlet characters modulo q , so
does the character χ1χ and hence

∑

χ (modq)

χ(n)=
∑

χ (modq)

(χ1χ)(n)= χ1(n)
∑

χ (modq)

χ(n)

which implies that
∑

χ (modq) χ(n)= 0 as required.

� Suppose that a �= 1 and let a−1 be the inverse of a in (Z/qZ)∗. From the relations
χ(a)χ(a)= 1 and χ(a)χ(a−1)= χ(1)= 1, we infer that χ(a)= χ(a−1). Hence

∑

χ (modq)

χ(a)χ(n)=
∑

χ (modq)

χ
(
a−1n

)=
{

1, if a−1n≡ 1 (modq)
0, otherwise

by above, which completes the proof. �

This result thus provides an expression of the partial sums that we wish to esti-
mate.

Corollary 3.69 Let a, q be positive coprime integers and N > 1 be an integer. Then
we have

∑

p�N
p≡a (modq)

1

p
= 1

ϕ(q)

∑

p�N
(p,q)=1

1

p
+ 1

ϕ(q)

∑

χ �=χ0

χ(a)
∑

p�N

χ(p)

p
.

Proof By Proposition 3.68 we get

∑

p�N
p≡a (modq)

1

p
=
∑

p�N

1q,a(p)
p

= 1

ϕ(q)

∑

χ (modq)

χ(a)
∑

p�N

χ(p)

p

and we split the first sum according to χ = χ0 or χ �= χ0, leading to the asserted
result. �

It is fairly easy to see the first sum of Corollary 3.69 tends to ∞ as N −→ ∞
since it only differs from the sum

∑
p�N 1/p of a finite number of terms. The

crucial point is then to show that the series

∑

p

χ(p)

p
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converges for all χ �= χ0, implying the divergence of the series

∑

p≡a (modq)

1

p
.

It should also be mentioned that the result of Corollary 3.69 may be easily general-
ized to any complex-valued arithmetic function f in the following form.

∑

n�x
n≡a (modq)

f (n)= 1

ϕ(q)

∑

n�x
(n,q)=1

f (n)+ 1

ϕ(q)

∑

χ �=χ0

χ(a)
∑

n�x

χ(n)f (n). (3.17)

The next result uses the periodicity of the characters to bound partial sums of
non-principal Dirichlet characters.

Proposition 3.70 For all non-principal Dirichlet characters χ modulo q and all
non-negative integers M <N , we have

∣∣∣∣∣

N∑

n=M+1

χ(n)

∣∣∣∣∣
� ϕ(q).

Proof Let K = q[(N −M − 1)/q]. As in Proposition 3.68, one may check that, for
all χ �= χ0, we have

∑

a (modq)

χ(a)= 0

and hence, by periodicity, we get

M+K∑

n=M+1

χ(n)=
K/q∑

j=1

M+jq∑

n=M+1+(j−1)q

χ(n)=
K/q∑

j=1

M+q∑

n=M+1

χ(n)= 0.

The interval ]M + K,N ] contains at most q integers n1, . . . , nr with r � q and
denoting by ni the residue class of the integer ni in (Z/qZ)∗, we obtain

∣∣∣∣
∣

N∑

n=M+1

χ(n)

∣∣∣∣
∣
�

r∑

i=1
(ni ,q)=1

∣∣χ(ni)
∣∣�

∑

n�q
(n,q)=1

1 = ϕ(q)

as asserted. �

Using Abel’s summation as in Remark 1.15 and the trivial bound ϕ(q)� q , we
may readily deduce the following useful consequence.

Corollary 3.71 Let F ∈ C1[1,+∞[ be a decreasing function such that F > 0 and
F(x) −→ 0 as x −→ ∞. For all non-principal Dirichlet characters χ modulo q
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and all real numbers x � 1, we have
∣∣∣∣
∑

n>x

χ(n)F (n)

∣∣∣∣� 2qF(x).

We end this section with the following definitions. A Dirichlet character is called
real if its values are real, i.e. χ(n) ∈ {−1,0,1}. Otherwise a character is complex. A
character is said to be quadratic if it has order 2 in the character group, i.e. χ2 = χ0
and χ �= χ0. Thus a quadratic character is real, and a real character is either principal
or quadratic.

3.6.3 Dirichlet L-Functions

It is remarkable that Dirichlet had the idea to introduce generating series of his char-
acters nearly sixty years before the analytic proofs of the Prime Number Theorem
and the Prime Number Theorem for Arithmetic Progressions given by Hadamard
and de La Vallée Poussin. Not less remarkable is the fact that the infinity of the
set of prime numbers in an arithmetic progression is essentially due to the non-
vanishing of these generating series at s = 1. This very fruitful idea proved to be
one of the most crucial points in almost all problems in number theory, whose treat-
ments mimic Dirichlet’s work.

Definition 3.72 (L-functions) Let χ be a Dirichlet character modulo q � 2. The
L-function, or L-series, attached to χ is the Dirichlet series of χ , i.e. for all s =
σ + it ∈C such that σ > 1, we set

L(s,χ)=
∞∑

n=1

χ(n)

ns
.

As in Proposition 3.52, it may be shown that, for all σ > 1 and all x � 2, we have

∏

p�x

(
1 − χ(p)

pσ

)−1

=
∑

P+(n)�x

χ(n)

nσ
.

Let s = σ + it ∈ C. Since

∑

p�x

∣∣∣∣
χ(p)

ps

∣∣∣∣=
∑

p�x

1

pσ

both sides of the above identity converge absolutely for all complex s such that
σ > 1 and therefore, as in Definition 3.53, we have

L(s,χ)=
∏

p

(
1 − χ(p)

ps

)−1

(3.18)
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for all s ∈C such that σ > 1. Note also that

L(s,χ0)=
∞∑

n=1
(n,q)=1

1

ns
= ζ(s)

∏

p|q

(
1 − 1

ps

)
(3.19)

and if χ �= χ0, then the series converges for all σ > 0 by Corollary 3.71. This result
is the best possible since the terms in the series do not tend to 0 when σ = 0.

3.6.4 The Convergence of the Series
∑

p χ(p)p−1

In this section we intend to prove the main tools which enable us to show Dirich-
let’s theorem. There are many ways to get the desired result. We choose a rather
elementary proof which is due to Shapiro. It has the advantage of relating Dirich-
let’s theorem to quadratic fields, another area in which Dirichlet showed his talent
(see Chap. 7).

Theorem 3.73 If χ �= χ0 is a non-principal Dirichlet character modulo q satisfying
L(1, χ) �= 0, then the series

∑

p

χ(p)

p

converges.

Proof LetN � 2 be an integer. The idea is to estimate the sum
∑

n�N n
−1χ(n) logn

in two different ways.

� By Lemma 3.41 (i) we have

∑

n�N

χ(n) logn

n
=
∑

n�N

χ(n)

n

∑

d|n

(d).

Interchanging the order of summation (see also Chap. 4) and using Defini-
tion 3.67 (ii), we get

∑

n�N

χ(n) logn

n
=
∑

d�N


(d)
∑

n�N
d|n

χ(n)

n

=
∑

d�N


(d)
∑

k�N/d

χ(kd)

kd

=
∑

d�N

χ(d)
(d)

d

∑

k�N/d

χ(k)

k
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= L(1, χ)
∑

d�N

χ(d)
(d)

d
−
∑

d�N

χ(d)
(d)

d

∑

k>N/d

χ(k)

k
.

Since L(1, χ) �= 0, we infer that

∑

d�N

χ(d)
(d)

d
= 1

L(1, χ)

{∑

n�N

χ(n) logn

n
+
∑

d�N

χ(d)
(d)

d

∑

k>N/d

χ(k)

k

}
.

(3.20)

Using Corollary 3.71 we get
∣∣∣∣
∑

d�N

χ(d)
(d)

d

∑

k>N/d

χ(k)

k

∣∣∣∣�
2q

N

∑

d�N


(d)= 2q�(N)

N

and Corollary 3.47 (ii) gives
∣∣∣∣
∑

d�N

χ(d)
(d)

d

∑

k>N/d

χ(k)

k

∣∣∣∣< 4q.

Inserting this bound in (3.20) provides the estimate
∣∣∣∣
∑

d�N

χ(d)
(d)

d

∣∣∣∣<
1

|L(1, χ)|
(∣∣∣∣
∑

n�N

χ(n) logn

n

∣∣∣∣+ 4q

)
. (3.21)

� By partial summation we get

∑

n�N

χ(n) logn

n
= χ(2) log 2

2
+

∑

3�n�N

χ(n) logn

n

= χ(2) log 2

2
+ logN

N

∑

3�n�N

χ(n)

+
∫ N

3

log t − 1

t2

( ∑

3�n�t

χ(n)

)
dt

so that using Proposition 3.70 we obtain

∣∣∣∣
∑

n�N

χ(n) logn

n

∣∣∣∣�
log 2

2
+q

(
logN

N
+
∫ N

3

log t − 1

t2
dt

)

= log 2

2
+ q log 3

3
< q.

Inserting this bound in (3.21) gives
∣∣∣∣
∑

d�N

χ(d)
(d)

d

∣∣∣∣<
5q

|L(1, χ)| . (3.22)
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� We have

∑

p�N

χ(p) logp

p
=
∑

d�N

χ(d)
(d)

d
−
∑

p�N

logp
[logN/ logp]∑

α=2

χ(pα)

pα

and the second sum is bounded since

∣∣∣∣∣

∑

p�N

logp
[logN/ logp]∑

α=2

χ(pα)

pα

∣∣∣∣∣
�
∑

p�N

logp
[logN/ logp]∑

α=2

1

pα
�
∑

p

logp

p(p− 1)
< 1

where we used a result from [Rn62] in the last inequality. Now by partial sum-
mation we get

∑

p�N

χ(p)

p
= 1

logN

∑

p�N

χ(p) logp

p
+
∫ N

2

(∑

p�t

χ(p) logp

p

)
dt

t (log t)2

so that by above we obtain

∣∣∣∣
∑

p�N

χ(p)

p

∣∣∣∣<
1

logN

(∣∣∣∣
∑

d�N

χ(d)
(d)

d

∣∣∣∣+ 1

)

+
∫ N

2

(∣∣∣∣
∑

d�t

χ(d)
(d)

d

∣∣∣∣+ 1

)
dt

t (log t)2

and estimate (3.22) provides
∣∣∣
∣
∑

p�N

χ(p)

p

∣∣∣
∣<

1

log 2

(
5q

|L(1, χ)| + 1

)

which completes the proof.
�

3.6.5 The Non-vanishing of L(1,χ)

By Theorem 3.73, the non-vanishing of L(1, χ) for all χ �= χ0 is the main point of
the proof of Dirichlet’s theorem. Once again, there are many ways to show this. For
complex Dirichlet characters, one may mimic and adapt the proof of Theorem 3.57
as follows.

Theorem 3.74 For all complex characters χ modulo q , we have L(1 + it, χ) �= 0
for all t ∈ R.
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Proof If χ �= χ0, the function L(s,χ) is analytic for σ > 0. On the other hand, by
(3.19), the function L(s,χ0) is analytic in this half-plane except for a simple pole at
s = 1 with residue ϕ(q)/q . Using (3.18), we deduce that in either case a logarithm
of L(s,χ) is given by

∞∑

n=2

χ(n)
(n)

ns logn
=
∑

p

∞∑

α=1

χ(p)α

αpαs

for σ > 1. Furthermore, for all characters χ , one may write

χ(n)= χ0(n)e
iω(n)

where ω :N −→ [0,2π[. Now let σ > 1 and t ∈ R. Setting θ(n, t)= ω(n)− t logn,
we have

Re
(
3 logL(σ,χ0)+ 4 logL(σ + it, χ)+ logL

(
σ + 2it, χ2))

=
∞∑

n=2
(n,q)=1


(n)

nσ logn

{
3 + 4 cos θ(n, t)+ cos

(
2θ(n, t)

)}

= 2
∞∑

n=2
(n,q)=1


(n)

nσ logn

{
1 + cos θ(n, t)

}2 � 0

which implies that
∣∣L(σ,χ0)

3L(σ + it, χ)4L
(
σ + 2it, χ2)∣∣� 1.

Now suppose that 1 + it0 is a zero of order m � 1 of L(s,χ) for some t0 ∈ R, so
that there exists � �= 0 such that

lim
σ→1+

L(σ + it0, χ)

(σ − 1)m
= �.

By above we infer that
∣∣(σ − 1)3L(σ,χ0)

3(σ − 1)−4mL(σ + it0, χ)
4L
(
σ + 2it0, χ

2)∣∣� (σ − 1)3−4m.

Since χ2 �= χ0, the functionL(s,χ2) is continuous at all points on the line σ = 1 and
thus does not have a pole at s = 1. Therefore letting σ −→ 1+ gives a contradiction
as in Theorem 3.57. �

It should be mentioned that this proof extends to the case of real characters,
proving in this case that L(1 + it, χ) �= 0 for all t ∈ R \ {0}. The difficult point is
thus a proof of L(1, χ) �= 0 for all quadratic Dirichlet characters. Once again, there
exist many proofs, almost all related to certain results from algebraic number theory.
Before stating the theorem, we shall make use of the following definition.
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Definition 3.75 Let χ be a Dirichlet character modulo q . The conductor of χ is the
smallest positive integer f | q such that there exists a Dirichlet character χ� modulo
f satisfying

χ = χ0χ
�. (3.23)

A Dirichlet character χ modulo q is said to be primitive if the conductor f of
χ is such that f = q . In (3.23), the character χ� is then primitive and uniquely
determined by χ . We will say that χ� induces χ or that χ is induced by χ�.

Example 3.76

� It is noteworthy that each Dirichlet character modulo q is induced by a unique
primitive Dirichlet character modulo a divisor of q . Furthermore, a character χ is
imprimitive if and only if there exists d | q with d < q such that, for all positive
integers a, b satisfying (a, q)= (b, q)= 1 and a ≡ b (modd), we have χ(a) =
χ(b). This implies that the principal character χ0 modulo q > 1 is imprimitive,
by taking d = 1.

� There is only one primitive character modulo 4 defined for all odd positive inte-
gers n by

χ4(n)= (−1)(n−1)/2.

� There are two primitive characters14 modulo 8 defined for all odd positive inte-
gers n by

χ8(n)= (−1)(n
2−1)/8 and χ4χ8(n)= (−1)(n−1)/2+(n2−1)/8.

� If q = pα is a prime power, the only real primitive characters of conductor q
are χ4, χ8, χ4χ8 and χp . Every real primitive character can be obtained as the
product of these characters. This implies that the conductor of a real primitive
character is of the form 1, m, 4m or 8m where m is a positive odd squarefree
integer.

� Lemma 7.107 gives another useful characterization of the real primitive charac-
ters.

� Let χ be a Dirichlet character modulo q induced by χ�. Then we have for σ > 1

L(s,χ)=
∏

p

(
1 − χ0χ

�(p)

ps

)−1

=
∏

p�q

(
1 − χ�(p)

ps

)−1

= L
(
s,χ�

)∏

p|q

(
1 − χ�(p)

ps

)

14It is noteworthy that the Dirichlet characters χ4, χ8 and χ4χ8 are the characters attached to the

quadratic fields Q(
√−1), Q(

√
2) and Q(

√−2) respectively. See Chap. 7.
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and if χ �= χ0, we get

L(1, χ)= L
(
1, χ�

)∏

p|q

(
1 − χ�(p)

p

)
. (3.24)

We are now in a position to prove the following result.

Theorem 3.77 For all quadratic characters χ modulo q , we have L(1, χ) �= 0.

First proof By (3.24), we may suppose that χ is primitive since the Euler product
of the right-hand side is non-zero. By Lemma 7.107, the real primitive characters
modulo q are of the form (χ(−1)q/n) and (7.26) and the fact that the class number
is a positive integer give the asserted result. �

Second proof As above, we may suppose that χ is real primitive, and hence is the
character attached to a quadratic number field K. Following [Mon93], for all t ∈
[0,1[, let

f (t)=
∞∑

n=1

χ(n)tn

1 − tn

be the Lambert series associated to χ . By [PS98, Theorem VIII-65] and Proposi-
tion 7.131 (see also Example 4.11), we have

f (t)=
∞∑

n=1

(∑

d|n
χ(d)

)
tn =

∞∑

n=1

νK(n)t
n

where the function νK is defined in Definition 7.117. This implies that f (t)−→ ∞
as t −→ 1−. Now suppose that L(1, χ)= 0. Then we have

−f (t)=
∞∑

n=1

(
1

n(1 − t)
− tn

1 − tn

)
χ(n)=

∞∑

n=1

anχ(n).

Observe that we have

(1 − t)(an − an+1)= 1

n
− 1

n+ 1
− tn

1 + · · · + tn−1
+ tn+1

1 + · · · + tn

= 1

n(n+ 1)
− tn

(1 + · · · + tn−1)(1 + · · · + tn)

and using the arithmetic-geometric mean inequality we get for all 0 � t < 1

n−1∑

j=0

tj � n

n−1∏

j=0

tj/n = nt(n−1)/2 � ntn/2
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and
n∑

j=0

tj � (n+ 1)tn/2

so that

(1 − t)(an − an+1)�
1

n(n+ 1)
− tn

n(n+ 1)tn
= 0

and hence the sequence (an) is non-increasing and tends to 0. By Corollary 3.71 we
get

∣∣− f (t)
∣∣� (2q + 1)a1 = 2q + 1

contradicting the unboundedness of f on [0,1[. �

Now we may conclude this section.

Proof of Theorem 3.63 Theorems 3.73, 3.74 and 3.77, along with Corollary 3.69,
give the complete proof of Dirichlet’s theorem. �

3.7 Further Developments

3.7.1 Sieves

Let n � 2 be a fixed integer. The well-known sieve of Eratosthenes asserts that an
integer m ∈]√n,n] which is not divisible by any prime number p � √

n is prime.
Let Pn be the set of prime numbers p � n and Sn be the set of positive integers
m� n which are not divisible by all prime numbers � √

n. We then have

Pn ⊆ Sn ∪ {1, . . . ,√n}
and hence

π(n)� |Sn| + [√n].
More generally, let r � 2 be an integer. We define π(n, r) to be the number of
positive integers m� n which are not divisible by prime numbers � r (hence |Sn| =
π(n, [√n])). Similar arguments as above give

π(n)� π(n, r)+ r. (3.25)

One may bound π(n, r) by appealing to the inclusion-exclusion principle which
generalizes the well-known formula

|A∪B| = |A| + |B| − |A∩B|.
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There exist many statements of this result, but in number theory we often use the
following one.

Proposition 3.78 Consider N objects and r properties denoted by p1, . . . , pr .
Suppose that N1 objects satisfy the property p1, N2 objects satisfy the property
p2, . . . ,N12 objects satisfy the properties p1 and p2, . . . ,N123 objects satisfy the
properties p1, p2 and p3, and so on. Then, the number of objects which satisfy none
of those properties is equal to

N −N1 −N2 − · · · −Nr +N12 +N13 + · · · +Nr−1,r −N123 −N124 − · · ·

For instance, the identity max(a, b)= a + b− min(a, b) can be generalized into
the following one

max(a1, . . . , ar )=a1 + · · · + ar − min(a1, a2)− · · · − min(ar−1, ar )

+ · · · ± min(a1, . . . , ar ).

Applied to π(n, r) and using Proposition 1.11 (v), we get

π(n, r)= n−
∑

p�r

[
n

p

]
+

∑

p1<p2�r

[
n

p1p2

]
−

∑

p1<p2<p3�r

[
n

p1p2p3

]
+ · · · (3.26)

Since x − 1< [x] � x, we obtain

π(n, r) < n−
∑

p�r

n

p
+

∑

p1<p2�r

n

p1p2
+ · · · +

∑

p�r

1 +
∑

p1<p2�r

1 + · · ·

= n−
∑

p�r

n

p
+

∑

p1<p2�r

n

p1p2
+ · · · +

(
π(r)

1

)
+
(
π(r)

2

)
+ · · ·

= n
∏

p�r

(
1 − 1

p

)
+ 2π(r) − 1.

Now inserting this bound in (3.25) implies that

π(n) < n
∏

p�r

(
1 − 1

p

)
+ 2π(r) + r − 1.

Using the inequalities log(1 − x)� −x and (3.2), we get

∏

p�r

(
1 − 1

p

)
� exp

(
−
∑

p�r

1

p

)
<

e1/2

log r
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so that

π(n) <
ne1/2

log r
+ 2r + r − 1.

Choosing r = 1 + [logn] with n� 7 implies that

π(n) <
3n

log logn
.

This is a weaker result than Corollary 3.45, but the ideas developed above are very
fruitful and eventually gave birth to an efficient new branch in number theory called
sieves methods. Nevertheless, it is interesting to note that this inequality is sufficient
to assert that the prime numbers rarefy, i.e. π(n)= o(n) as n−→ ∞.

Let us adopt a more arithmetical point of view. The Möbius function is one of
the most important functions in number theory, and we will prove in Chap. 4 the
following convolution identity

∑

d|n
μ(d)=

{
1, if n= 1
0, otherwise

and hence the characteristic function of the integers n having no prime factor less
than a parameter z� 2 and lying in a set P of primes is given by

∑

d|(n,Pz)
μ(d)

where Pz =∏p∈P, p�z p. This sum could be identified with the sieve of Eratos-
thenes.

Now let A be a finite set of integers. It is customary to denote

S(A,P; z)=
∑

n∈A
(n,Pz)=1

1

so that by above we get

S(A,P; z)=
∑

d|Pz
μ(d)Ad (3.27)

where

Ad =
∑

n∈A
d|n

1. (3.28)

Assume that, for all positive integers d , we have

Ad = Xρ(d)

d
+ rd (3.29)
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where X > 0, ρ(d) � 0 is multiplicative and the remainder term satisfies |rd | �
ρ(d). Inserting this estimate into (3.27) implies that

S(A,P; z)=X
∑

d|Pz

μ(d)ρ(d)

d
+
∑

d|Pz
μ(d)rd =X

∏

p�z

(
1 − ρ(p)

p

)
+
∑

d|Pz
μ(d)rd .

Suppose we want to count the number of prime numbers in an interval ]x, x + y]
with x, y ∈ Z�0. We take A =]x, x + y] ∩Z, P the set of all primes, and since

Ad =
∑

x<n�x+y
d|n

1 = y

d
+
{
x

d

}
−
{
x + y

d

}

we have X = y, ρ(d)= 1 which gives with z= √
x and setting P = P√

x

π(x + y)− π(x)= y
∏

p�x1/2

(
1 − 1

p

)
+
∑

d|P
μ(d)

({
x

d

}
−
{
x + y

d

})

and using Corollary 3.51 gives

π(x + y)− π(x)= (1 + o(1)
)2ye−γ

logx
+
∑

d|P
μ(d)

({
x

d

}
−
{
x + y

d

})
.

A crude estimate of the remainder term then shows that it is larger than the main
term, partly because of the fact that as z increases, the factors of Pz become very
large and their number too. It seems to be very difficult to take account of some
cancellations of the summands. This is the limitation of the sieve of Eratosthenes.

In 1915, Brun [Bru15] came up with a simple, but very efficient idea. Suppose
that we have at our disposal a function g such that

∑

d|n
μ(d)�

∑

d|n
g(d).

Then by repeating the computations above, we get

S(A,P; z)�X
∏

p|Pz

(
1 − ρ(p)

p

)
+O

(∑

d|Pz

∣∣g(d)rd
∣∣
)
.

The problem is then to find a suitable function g which is easier to handle than the
Möbius function, and to minimize the right-hand side of this inequality. Moving
from the classic world of exactness to the world of inequalities, Brun proved that

∑

d|(n,Pz)
ω(d)�2k+1

μ(d)�
∑

d|(n,Pz)
μ(d)�

∑

d|(n,Pz)
ω(d)�2k

μ(d)
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for all integers n, k � 0 and all z � 2, where ω(n) is the usual additive arithmetic
function counting the number of distinct prime factors of n. This implies that

∑

d|Pz
ω(d)�2k+1

μ(d)Ad � S(A,P; z)�
∑

d|Pz
ω(d)�2k

μ(d)Ad (3.30)

for all integers k � 0 and all z � 2. These inequalities, named Brun’s pure sieve,
are related to the so-called Bonferroni’s inequalities stating that, if A1, . . . ,An are
subsets of a finite set S, then we have

2k+1∑

j=0

(−1)j Sj � |A1 ∩ · · · ∩An| �
2k∑

j=0

(−1)j Sj

for all integers k � 0, where Aj is the complement of Aj in S and

Sh =
∑

{i1,...,ih}∈{1,...,n}
|Ai1 ∩ · · · ∩Aih |.

Let us try Brun’s ideas on the example of twin primes. We call a twin prime every
prime p such that p + 2 is also a prime number. Let π2(x) be the number of twin
primes less than x. In this problem, we work with P the set of all primes, A =
{n(n+ 2) : 1 � n < x − 2} so that Ad is the number of solutions of the congruence
n(n+2)≡ 0 (modd) with d squarefree. Writing d = 2ed ′ with d ′ odd and e ∈ {0,1}
and applying the Chinese remainder theorem, we deduce that (3.29) holds with X =
x and the strongly multiplicative function ρ defined by ρ(2)= 1 and ρ(p)= 2 for
all odd prime numbers p, and we have rd � ρ(d). Now if p is a twin prime less
than x, then either p � z or the number n(n+ 2) has no prime factor � z, and hence

π2(x)� S(A,P; z)+ z.

Using (3.30) we get

π2(x)�
∑

d|Pz
ω(d)�2k

μ(d)Ad + z

= x
∑

d|Pz
ω(d)�2k

μ(d)ρ(d)

d
+ z+O

(
∑

d|Pz
ω(d)�2k

μ2(d)ρ(d)

)

= x
∑

d|Pz

μ(d)ρ(d)

d
+ z+O

(
∑

d|Pz
ω(d)�2k

μ2(d)ρ(d)+ x
∑

d|Pz
ω(d)>2k

μ2(d)ρ(d)

d

)

= x

2

∏

3�p�z

(
1 − 2

p

)
+ z+O

(
∑

d|Pz
ω(d)�2k

μ2(d)ρ(d)+ x
∑

d|Pz
ω(d)>2k

μ2(d)ρ(d)

d

)

.
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Using μ2(d)ρ(d)� 2ω(d) gives

∑

d|Pz
ω(d)�2k

μ2(d)ρ(d)�
∑

d�z2k

2ω(d) � 2ek z2k log z

and

∑

d|Pz
ω(d)>2k

μ2(d)ρ(d)

d
� 1

4k
∑

d|Pz

μ2(d)ρ(d)2ω(d)

d
� 1

4k
∑

d�z2k

4ω(d)

d
� (2e2k)4

4k
(log z)4

for all z� 2, where we used Example 4.29. By Corollary 3.51 we have

x

2

∏

3�p�z

(
1 − 2

p

)
� 2x

∏

p�z

(
1 − 1

p

)2

� x

(log z)2

and choosing k = [logx/ log(z3)] and z= exp( logx
20 log logx ) implies that

π2(x)� x

(
log logx

logx

)2

.

By partial summation, we obtain Brun’s theorem [Bru19].

Theorem 3.79 (Brun) The sum of reciprocals of twin primes converges.

Iwaniec [Iwa77] proved that, under certain circumstances, the sieve of Eratos-
thenes yields an asymptotic formula for S(A,P; z). Let 0 � κ < 1

2 and assume the
following hypotheses with A,B,C,D � 1.

(i) For all 2 �w < z, we have

−A�
∑

w�p<z

ρ(p)− κ

p
� B.

(ii) maxn∈A |n| � CX.
(iii) |rd | �Dρ(d).
(iv) 0 � ρ(p)/p � 1 −B−1 for all p ∈P .

Define the function f by f (u) = u−κ for all 0 < u � 1 and, for all u > 1, by the
continuous solution of the differential-difference equation

uf ′(u)+ κf (u)= κf (u− 1).

It can be shown that f (u)= e−κγ �(1 − κ)+O(e−u) as u−→ ∞.
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Theorem 3.80 (Iwaniec) Under the assumptions (i)–(iv), we have

S(A,P; z)= eκγX

�(1 − κ)

∏

p|Pz

(
1 − ρ(p)

p

)

×
{
f

(
logx

log z

)
+O

(
A(logx/ log z+ 1)

1 − 2κ
(log z)2κ−1

)}
.

3.7.2 Other Approximate Functional Equations for ζ(s)

According to the periodicity of the function ψ , the error-term of Theorem 3.57 is
expected to be small. Using the techniques of exponential sums from Chap. 6, we
may prove the following result bearing out this conjecture.

Theorem 3.81 (Approximate functional equation) Let σ0 > 0. We have uniformly
for x � 1, σ � σ0 and |t | � πx

ζ(s)=
∑

n�x

1

ns
+ x1−s

s − 1
+O

(
x−σ ).

Proof Let y > x � 1 be real numbers and s = σ + it ∈ C satisfying the hypotheses
of the theorem. We have

ζ(s)=
∑

n�x

1

ns
+
∑

x<n�y

1

ns
+
∑

n>y

1

ns
.

By (1.7), we infer

∑

n>y

1

ns
= y1−s

s − 1
− y−s

2
− s

∫ ∞

y

ψ(u)

us+1
du= y1−s

s − 1
− y−s

2
+O

(|s|y−σ ).

For the second sum, we use partial summation from Theorem 1.14 which gives

∑

x<n�y

1

ns
=
∑

x<n�y

n−σ n−it = y−σ ∑

x<n�y

n−it + σ

∫ y

x

( ∑

x<n�u

n−it
)

du

uσ+1
.

Now Lemma 6.28 is applied with f (v) = −(2π)−1t logv to estimate the sums.
Since |t | � πx, we have |f ′(v)| < 1

2 for all x < v � u � y, so that in this case
Lemma 6.28 may be written in the following simpler form

∑

x<n�u

n−it =
∑

x<n�u

e
(
f (n)

)=
∫ u

x

e
(
f (v)

)
dv +O(1)= u1−it − x1−it

1 − it
+O(1).
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Hence we get

∑

x<n�y

1

ns
= y1−s − y−σ x1−it

1 − it
+O

(
y−σ )

+ σ

∫ y

x

{
u1−it − x1−it

uσ+1(1 − it)
+O

(
1

uσ+1

)}
du

= y1−s

1 − it
− x1−s

1 − it
+ σ

1 − it

∫ y

x

u−s du+O
(
x−σ )

= y1−s

1 − s
− x1−s

1 − s
+O

(
x−σ ).

Therefore we obtain

ζ(s)=
∑

n�x

1

ns
− x1−s

1 − s
− y−s

2
+O

(|s|y−σ )+O
(
x−σ )

and letting y −→ ∞ gives the asserted result. �

However, it should be noticed that this result has the disadvantage that ζ(s) is
approximated by a sum of length � |t | which is difficult to deal with in many appli-
cations. Hardy and Littlewood provided another tool that works with some shorter
sums.

Theorem 3.82 (Hardy–Littlewood’s approximate functional equation) Let x, y, t >
c > 0 such that 2πxy = t and set �(s)= 2sπs−1 sin(πs/2)�(1 − s) so that ζ(s)=
�(s)ζ(1 − s) by the functional equation.15 We have uniformly in σ ∈ [0,1]

ζ(s)=
∑

n�x

1

ns
+�(s)

∑

n�y

1

n1−s +O
(
x−σ + t1/2−σ yσ−1).

In [Ivi85], Ivić derived an analogous equation for the function ζ(s)2 which is the
Dirichlet series of the divisor function τ(n) counting the number of divisors of n
(see Chap. 4).

Theorem 3.83 (Approximate functional equation for ζ(s)2) Let x, y, t > c > 0
such that (2π)2xy = t2 and �(s) as in Theorem 3.82. We have uniformly in
σ ∈]0,1[

ζ(s)2 =
∑

n�x

τ (n)

ns
+�(s)2

∑

n�y

τ (n)

n1−s +O
(
x1/2−σ log t

)
.

15Some authors use the symbol χ instead of �, but we keep this symbol for the Dirichlet characters
in this book.
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Obviously, these two results are also valid for t < 0 with t replaced by |t | in the
error-term. Ivić’s proof of Theorem 3.83 relies on the use of the important Voronoï
summation formula [Vor04] which may be stated as follows.

Let 0 < a < b be real numbers which are not integers, f ∈ C2[a, b] and
Y0, K0 are Bessel functions of the second and third kind. Then we have

∑

a�n�b

τ (n)f (n)=
∫ b

a

f (x)(logx + 2γ )dx +
∞∑

n=1

τ(n)

∫ b

a

f (x)α(nx)dx

where

α(x)= 4K0(4π
√
x)− 2πY0(4π

√
x).

These functions may have the following integral representations valid for x > 0.

K0(x)=
∫ ∞

0
cos(x sinh t)dt

and

Y0(x)= − 2

π

∫ ∞

0
cos(x cosh t)dt.

3.7.3 The Prime Number Theorem

The proof of the Prime Number Theorem was first given independently by
Hadamard and de La Vallée Poussin in 1896. Not only did they provide a proof
of the estimate

π(x)∼ x

logx

as x −→ ∞, but they also gave a quite accurate error-term which has only been
slightly improved up to now. The strategy follows the lines of estimating some com-
binatorial objects, for which one usually computes their generating series giving in
return some information by the use of some extraction theorems. The following tool
is the basic result of the theory.

Theorem 3.84 (Truncated Perron summation formula) Let f (n) be any complex
numbers with Dirichlet series F(s) =∑∞

n=1 f (n)n
−s . Assume that F(s) is abso-

lutely convergent in the half-plane σ > σa for some σa ∈ R. Then for all real num-
bers x,T � 4 such that x �∈ Z and all complex numbers s such that σ � σa , we
have

∑

n�x

f (n)

ns
= 1

2πi

∫ κ+iT

κ−iT
F (s + u)xu

u
du
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+O

{

x−σ ∑

x/2<n<2x

∣∣f (n)
∣∣min

(
1,

x

T |n− x|
)

+ xκ

T

∞∑

n=1

|f (n)|
nσ+κ

}

where κ = σa − σ + 1/ logx.

Many proofs exist in the literature (see [MV07, Ten95, Tit51] for instance). In
practice, the second sum in the error-term is a Dirichlet series often easy to bound,
whereas the first term can be handled as follows. Suppose first that, for all positive
integers n, we have

∣∣f (n)
∣∣� B(n) (3.31)

where B(n) is a positive non-decreasing function. Split the sum into three subsums

∑

x/2<n<2x

∣∣f (n)
∣∣min

(
1,

x

T |n− x|
)

=
∑

x/2<n�x−1

+
∑

x−1<n<x+1

+
∑

x+1�n<2x

and take 1 for the minimum in the second sum and the other term in the two other
sums, and hence, for all x � 4 such that x �∈ Z, we get

∑

x/2<n<2x

∣∣f (n)
∣∣min

(
1,

x

T |n− x|
)

�
(
x

T

∑

x/2<n�x−1

1

x − n
+ x

T

∑

x+1�n<2x

1

n− x
+ 1

)
B(2x)

�
(
x logx

T
+ 1

)
B(2x).

If in addition we have for some α > 0

∞∑

n=1

|f (n)|
nσ

� 1

(σ − σa)α
(σ > σa) (3.32)

then, under the hypotheses of Theorem 3.84 with 4 � T � x logx, we get

∑

n�x

f (n)

ns
= 1

2πi

∫ κ+iT

κ−iT
F (s+u)xu

u
du+O

{
xσa−σ

T
(logx)α +B(2x)

x1−σ logx

T

}
.

(3.33)

The idea is to apply (3.33) to von Mangoldt’s function 
(n). By (3.9), we know that
its Dirichlet series is the function −ζ ′(s)/ζ(s) whose main property is to have an
analytic continuation on the line σ = 1 by Proposition 3.62. We have σa = α = 1,
B(n)= logn and therefore we get with s = 0, 4 � T � x, x �∈ Z and κ = 1+1/ logx

�(x)= 1

2πi

∫ κ+iT

κ−iT
−ζ ′(s)
ζ(s)

xs

s
ds +O

(
x(logx)2

T

)
. (3.34)
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The strategy is then to apply Cauchy’s theorem to treat the integral of (3.34) taken
over a rectangle surrounding the point 1. Since the residue at this point is known by
Proposition 3.62, it remains to evaluate the integral on the three other sides of the
rectangle. This strategy is successful only if we have at our disposal estimates of the
function in a region to the left of the line σ = 1. This is done by Theorem 3.61.

Set α � 555 6379−1 and λ= 1 − α(log 2T )−9. Let R be the rectangle with ver-
tices κ ± iT and λ ± iT . By Theorem 3.61 and Proposition 3.62, the function
−ζ ′(s)/ζ(s) has a simple pole with residue 1 at s = 1, and is otherwise analytic
within R. We integrate over R in the anticlockwise direction and by Cauchy’s
residue theorem, we get

1

2πi

∫

R
−ζ ′(s)
ζ(s)

xs

s
ds = x.

If H1 and H2 are the two horizontal sides and V is the other vertical side of R, we
deduce that

�(x)= x − 1

2πi

(
2∑

j=1

∫

Hj

−ζ ′(s)
ζ(s)

xs

s
ds +

∫

V
−ζ ′(s)
ζ(s)

xs

s
ds

)

+O

(
x(logx)2

T

)
.

Now using Theorem 3.61, we get
∣∣∣∣

∫

Hj

−ζ ′(s)
ζ(s)

xs

s
ds

∣∣∣∣� (logT )9
∫ κ

λ

xσ

|σ + iT | dσ � (logT )9

T

∫ κ

λ

xσ dσ

� x

T
(logx)8

for j ∈ {1,2}, and
∣∣∣∣

∫

V
−ζ ′(s)
ζ(s)

xs

s
ds

∣∣∣∣� xλ(logT )9
∫ T

−T
dt√

λ2 + t2
� xλ(logx)10

so that we get

�(x)= x +O
(
x(logx)10(T −1 + x−α/ log9(2T ))).

We choose T = 1
2 exp{(α logx)1/10} which implies that the error-term is

� x(logx)10 exp
{−(α logx)1/10}� x exp

(−α(logx)1/10)

for x sufficiently large since 0< α < 1. By Corollary 3.47, we deduce that

θ(x)= x +O
{
x exp

(−α(logx)1/10)}

and using Exercise 8 in Chap. 1 we infer that, for all x sufficiently large, we have

π(x)= Li(x)+O
{
x exp

(−α(logx)1/10)}.
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We may state the above result in the following theorem called the Prime Number
Theorem (PNT).

Theorem 3.85 (Prime Number Theorem) There exists an absolute constant α ∈
]0,1[ such that, for x −→ ∞, we have

π(x)= Li(x)+O
{
x exp

(−α(logx)1/10)}.

Note that by repeated integration by parts we get for a fixed positive integer N

Li(x)= x

logx
+ x

N−1∑

k=1

k!
(logx)k+1

+O

(
x

(logx)N+1

)

which allows us to have at our disposal several more or less precise versions of the
PNT. For instance, for x −→ ∞, the estimate

π(x)= x

logx
+ x

(logx)2
+O

(
x

(logx)3

)

is useful in many applications.
With more work and using tools from complex analysis,16 one may prove that

there is an absolute constant c > 0 such that ζ(s) �= 0 in the region σ � 1 − c/ log τ ,
which enables us to replace the exponent 1

10 in Theorem 3.85 by 1
2 .

I.M. Vinogradov’s method of exponential sums (see Theorem 6.42) allows us to
get estimates of ζ(s) in the form

∣
∣ζ(s)

∣
∣�AtB(1−σ)3/2

(log t)2/3 (3.35)

for all s = σ + it ∈ C such that 1
2 � σ � 1 and t � 3. This in turn implies the best

zero-free region for ζ(s) up to now which was obtained by Korobov and I.A. Vino-
gradov, who proved that there exists an absolute constant c0 > 0 such that ζ(s) has
no zero in the region

σ � 1 − c0

(log |t |)2/3(log log |t |)1/3
and |t | � 3 (3.36)

giving the best error-term in the PNT to date, namely

π(x)= Li(x)+O
{
x exp

(−c1(logx)3/5(log logx)−1/5)} (3.37)

with 0 < c1 < 1 being absolute. In fact, any order of magnitude of ζ(s) in a certain
domain implies a zero-free region as may be seen in the next result devised by
Landau (see [MV07, Tit51]).

16Such as Jensen’s inequality or Borel–Carathéodory’s lemma.
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Theorem 3.86 Let θ(t) and φ(t) be positive functions such that θ(t) is decreasing,
φ(t) is increasing and e−φ(t) � θ(t) � 1

2 . Assume that ζ(s) � eφ(t) in the region
σ � 1 − θ(t) and t � 2. Then the following assertions hold.

(i) There exists an absolute constant c0 > 0 such that ζ(s) has no zero in the region

σ � 1 − c0
θ(2t + 1)

φ(2t + 1)
.

(ii) In the region σ � 1 − (c0/2)θ(2t + 2)φ(2t + 2)−1, we have

1

ζ(s)
� θ(2t + 2)

ϕ(2t + 2)
and

ζ ′

ζ
(s)� θ(2t + 2)

ϕ(2t + 2)
.

The link between (3.36) and (3.37) is underscored by the following result proved
by Ingham. For all x � 2, we set

�1(x)= π(x)− Li(x)

�2(x)=�(x)− Li(x)=
∞∑

n=1

π(x1/n)

n
− Li(x)

�3(x)= θ(x)− x and �4(x)=�(x)− x.

Theorem 3.87 Let ϕ(t) be a positive decreasing function of t � 0, having a contin-
uous derivative and satisfying the following hypotheses

0< ϕ(t)� 1

2
, lim

t→∞ϕ′(t)= 0 and ϕ(t)� (log t)−1.

Assume that ζ(s) has no zero in the region σ � 1 − ϕ(|t |). Let ε ∈]0,1[ and define

ω(x;ϕ)= min
t�1

(
ϕ(t) logx + log t

)
.

Then, for i ∈ {1, . . . ,4}, we have

�i(x)� x exp

{
1

2
(ε− 1)ω(x;ϕ)

}
.

In particular, if ϕ(t)= c0(log(t + 3))−β with β > 0, then if ζ(s) �= 0 in the region

σ � 1 − c0

(log(|t | + 3))β

then we have

�i(x)� x exp
{−c1(logx)1/(β+1)}.
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The PNT enables us to improve on estimates for some functions of prime num-
bers by proceeding as follows. Let x � 2 be a large real number and f ∈ C2[2, x].
Similarly as in Chap. 1, one has

∑

p�x

f (p)=
∫ x

2−
f (u)dπ(u)

= f (x)π(x)−
∫ x

2
f ′(u)Li(u)du−

∫ x

2
f ′(u)

(
π(u)− Li(u)

)
du

=
∫ x

2

f (u)

logu
du+ f (2)Li(2)+ f (x)

(
π(x)− Li(x)

)

−
∫ x

2
f ′(u)

(
π(u)− Li(u)

)
du

and if the integral

∫ ∞

2
f ′(u)

(
π(u)− Li(u)

)
du

converges, then we get

∑

p�x

f (p)=
∫ x

2

f (u)

logu
du+cf +f (x)

(
π(x)−Li(x)

)+
∫ ∞

x

f ′(u)
(
π(u)−Li(u)

)
du

with

cf = f (2)Li(2)−
∫ ∞

2
f ′(u)

(
π(u)− Li(u)

)
du.

For instance, with the latest version (3.37) of the PNT we get

∑

p�x

1

p
= log logx +B +O

{
exp
(−c1(logx)3/5(log logx)−1/5)}

∑

p�x

logp

p
= logx −E +O

{
exp
(−c1(logx)3/5(log logx)−1/5)}

∏

p�x

(
1 − 1

p

)
= e−γ

logx
+O

{
exp
(−c1(logx)3/5(log logx)−1/5)}

for some absolute constant c1 > 0, where B ≈ 0.261 497 212 . . . is the Mertens con-
stant and E ≈ 1.332 582 275 . . .
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3.7.4 The Riemann–von Mangoldt Formula and the Density
Hypothesis

We have seen that the non-trivial zeros ρ = β+ iγ of the Riemann zeta-function are
of crucial importance in the distribution of prime numbers. Let σ ∈ [0,1] and T � 1
be real numbers. It is customary to define

N (σ,T )= ∣∣{ρ = β + iγ : β � σ and |γ |� T }∣∣=
∑

β�σ
|γ |�T

1

and

N (T )= ∣∣{ρ = β + iγ : β ∈]0,1[ and 0< γ � T }∣∣

If T = γ , then we set N (T )= 1
2 (N (T +)+N (T −)).

The first important result was conjectured by Riemann and proved by von Man-
goldt. For a proof, see [Ivi85, MV07, Ten95, Tit51].

Theorem 3.88 (Riemann–von Mangoldt formula) We have

N (T )= T

2π
log

T

2π
− T

2π
+ 7

8
+ S(T )+O

(
1

T

)

with

S(t)= 1

π
arg ζ

(
1

2
+ it

)

where the argument is defined by continuous variation of s in ζ(s) starting at s = 2,
then vertically to s = 2 + it and then horizontally to s = 1

2 + it . Furthermore, we
have S(t)=O(log t).

This implies in particular that

N (T + 1)−N (T )=O(logT ) (3.38)

and using partial summation, we also get

∑

ρ
|γ |�T

1

|ρ| �
∫ T

1

logu

u
du+ logT � (logT )2. (3.39)

Similarly, since N (γn − 1) < n�N (γn + 1), we infer that, for n−→ ∞, we have

γn ∼ 2πn

logn
.
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Table 3.1 Zero density estimates

(A(σ),D) ( 3
2−σ ,5) ( 3

3σ−1 ,44) ( 12
5 ,9)

Range of validity 1
2 � σ � 3

4
3
4 � σ � 1 1

2 � σ � 1

Author Ingham (1940) Huxley (1972) Huxley–Ingham–Ivić

By adapting the method to theL-functions attached to primitive Dirichlet characters,
one may also show that

N (T ,χ)= T

2π
log

qT

2π
− T

2π
+O(logqT ) (3.40)

where χ is a primitive Dirichlet character modulo q > 1 and N (T ,χ) is the number
of zeros ρ = β + iγ of L(s,χ) in the rectangle 0< β < 1 and 0< γ � T .

Let us now have a look at estimates of the form

N (σ,T )� T A(σ)(1−σ)(logT )D (3.41)

for some A(σ)� 0 and D � 0. In view of Theorem 3.88, we must have A(σ)� 2.
In many applications, such as the gaps between consecutive primes, the results that
we may get using the Lindelöf or the Riemann hypothesis can be obtained via a
weaker conjecture, namely the density hypothesis stating that, for all 1

2 � σ � 1 and
T � 3, we have A(σ)� 2 so that

N (σ,T )� T 2(1−σ) logT .

A great deal of effort has been made to establish estimates of the form (3.41). We
may summarize the main results in Table 3.1.

3.7.5 Explicit Formula

Let us return to (3.34). Instead of integrating over a rectangle containing only 1,
suppose we integrate over a contour that proceeds by straight lines from κ − iT to
κ + iT to −(2K + 1)+ iT to −(2K + 1)− iT with K � 1 integer. In the interior
of this contour, the integrand has poles at s = 1, at zeros ρ of ζ(s) and at the trivial
zeros s = −2k. Since xs decays quickly as σ −→ −∞, one may expect that we can
pull the contour to the left and thus get a totally explicit formula for ψ(x). In order
to show this rigorously, we first need an important result.

Proposition 3.89 Let s = σ + it with −1 � σ � 2 and t not equal to an ordinate of
a zero of ζ(s). Set τ = |t | + 3. Then we have

−ζ ′

ζ
(s)= 1

s − 1
−
∑

ρ
|t−γ |�1

1

s − ρ
+O(log τ).
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Proof Set F(s)= s(s − 1)ξ(s)= s(s − 1)π−s/2�(s/2)ζ(s). F(s) is an entire func-
tion of order 1, so that by the Hadamard factorization theorem, there exist suitable
constants a, b such that

F(s)= ea+bs
∏

ρ

(
1 − s

ρ

)
es/ρ

where the product runs through all zeros ρ = β + iγ of F(s) which are exactly the
non-trivial zeros of ζ(s). The logarithmic differentiation provides

F ′

F
(s)= b+

∑

ρ

(
1

s − ρ
+ 1

ρ

)
(3.42)

where the sum is absolutely convergent. Taking s = 0 gives b = F ′(0)/F (0), and
using Theorem 3.55 gives F(s)= F(1 − s), so that

b= F ′(0)
F (0)

= −F ′(1)
F (1)

= −b−
∑

ρ

(
1

ρ
+ 1

1 − ρ

)
.

Now if ρ is a zero of F(s), so are ρ and 1−ρ. Using this observation in the equation
above we get

b= −1

2

∑

ρ

(
1

ρ
+ 1

ρ

)
.

Therefore (3.42) becomes

F ′

F
(s)= 1

2

∑

ρ

(
1

s − ρ
+ 1

s − ρ

)
.

Now using the definition of F gives

F ′

F
(s)= 1

s
+ 1

s − 1
− logπ

2
+ ζ ′

ζ
(s)+ 1

2

�′

�

(
s

2

)

and by logarithmically differentiating the function equation �(s + 1) = s�(s) we
obtain

�′

�
(s + 1)= 1

s
+ �′

�
(s)

so that

F ′

F
(s)= 1

s − 1
− logπ

2
+ ζ ′

ζ
(s)+ 1

2

�′

�

(
s

2
+ 1

)

and hence

−ζ ′

ζ
(s)= 1

s − 1
− logπ

2
+ 1

2

�′

�

(
s

2
+ 1

)
− 1

2

∑

ρ

(
1

s − ρ
+ 1

s − ρ

)
. (3.43)
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By logarithmically differentiating the Hadamard product of �(s) and denoting tem-
porarily C ≈ 0.5772 . . . the Euler–Mascheroni constant, we get using Theorem 1.22

�′

�
(s)= −1

s
−C −

∞∑

n=1

(
1

n+ s
− 1

n

)
= logN − 1

s
−

N∑

n=1

1

n+ s
+O

(|s|N−1)

for all positive integers N > |s|, and by Corollary 1.32 with f (t) = (t + s)−1 and
letting N −→ ∞ we infer for all s such that |s| � δ and | arg s|< π − δ (with δ > 0)

�′

�
(s)= log s − 1

2s
+O

(|s|−2)

and therefore the Gamma-term in (3.43) is � log τ . Applying this estimate and
(3.43) to s and to 2 + it and subtracting gives

−ζ ′

ζ
(s)= 1

s − 1
− 1

2

∑

ρ

(
1

s − ρ
− 1

2 + it − ρ
+ 1

s − ρ
− 1

2 + it − ρ

)
+O(log τ)

= 1

s − 1
−
∑

ρ

(
1

s − ρ
− 1

2 + it − ρ

)
+O(log τ).

By (3.38) we have

∑

ρ
|t−γ |�1

1

2 + it − ρ
�

∑

ρ
|t−γ |�1

1 � log τ.

Now let k ∈N and consider the zeros ρ satisfying k < |γ − t |� k + 1. Since

∣∣∣
∣

1

s − ρ
− 1

2 + it − ρ

∣∣∣
∣=

2 − σ

|(s − ρ)(2 + it − ρ)| �
3

|γ − t |2 � 3

k2

we infer that such zeros contribute

� k−2

(
∑

ρ
t+k<γ�t+k+1

1 +
∑

ρ
t−k−1�γ<t−k

1

)

� k−2 log(τ + k)

by (3.38). Summing over k gives the asserted result. �

In fact, such a result is also a consequence of a more general tool due to Borel
and Carathéodory which may be stated as follows.17

17This exposition is due to Ramaré [Ram11].



136 3 Prime Numbers

Let s0 ∈C and F be an analytic function in the disc |s− s0| �R satisfying
in this disc the bound |F(s)| �M and such that |F(s0)| �m. Then, for all s
such that |s − s0|�R/4, we have

∣∣∣∣
F ′(s)
F (s)

−
∑

|ρ−s0|�R/2

1

s − ρ

∣∣∣∣�
8

R
log

(
M

m

)

where the sum runs through the zeros ρ of F such that |ρ − s0|�R/2.

Using this result with F(s)= ζ(s), s0 = 1 + it0 for some t0 � 4, R = 2, a bound
|ζ(s)| � |s|3/2 for −1 � σ � 2 and the lower bound of Theorem 3.61, we get for all
s such that |s − 1 − it0| � 1

2

−ζ ′

ζ
(s)= −

∑

|ρ−1−it0|�1

1

s − ρ
+O(log t0).

Note that the first term in the identity of Proposition 3.89 is significant only for
|t | � 1. This result enables us to get a finer estimate of −ζ ′(s)/ζ(s) in a larger
region than that of Theorem 3.61.

Corollary 3.90 For every real number T � 2, there exists T ′ ∈ [T ,T +1] such that,
uniformly for −1 � σ � 2, we have

−ζ ′

ζ

(
σ + iT ′)=O

(
log2 T

)
.

Proof Indeed, by (3.38), the number of zeros ρ such that γ ∈ [T ,T +1] is � logT .
Subdividing the interval into � logT equal parts of length c/ logT for some c > 0
chosen so that the number of parts exceeds the number of zeros, we deduce that there
is a part that contains no zeros by the Dirichlet pigeon-hole principle. Hence for T ′
lying in this part, we must have |T ′ − γ | � 1/ logT . We infer that each summand
in Proposition 3.89 is � logT and since there are � logT summands by (3.38), we
get the stated estimate. �

It should also be noticed that, using an asymmetric form of the functional equa-
tion of ζ(s), it can be proved that for σ � −1, we have

−ζ ′

ζ
(s)=O

(
log(|s| + 1)

)
(3.44)

provided that circles of radii 1
4 around the trivial zeros s = −2k are excluded (see

[MV07, Lemma 12.4]).
We are now in a position to prove Landau’s explicit formula for �(x).
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Theorem 3.91 (Landau) Let T0 � 2 be a real number. Uniformly for T � T0, we
have

�(x)= x −
∑

|γ |�T

xρ

ρ
− log 2π − 1

2
log

(
1 − 1

x2

)
+O

(
x

T
(logxT )2 + logx

)
.

Proof We may suppose that x �∈ Z. Let T ′ be the number supplied by Corollary 3.90,
K be a large positive integer and call R the rectangle with vertices κ− iT ′, κ+ iT ′,
−(2K + 1)+ iT ′ and −(2K + 1)− iT ′. By (3.43), we see that −ζ ′(s)/ζ(s) has a
simple pole at s = −2k with residue −1. Since the residue at s = 1 is equal to 1, we
get by Cauchy’s residue theorem

1

2πi

∫

R

−ζ ′(s)
ζ(s)

xs

s
ds = x −

∑

|γ |�T ′

xρ

ρ
−

∑

1�k<K+1/2

x−2k

−2k
− ζ ′

ζ
(0).

It can be shown that ζ ′(0)/ζ(0)= log 2π . By (3.34), we get

�(x)=x −
∑

|γ |�T ′

xρ

ρ
+

∑

1�k<K+1/2

x−2k

2k
− log 2π −

2∑

j=1

IHj
− IV

+O

(
x(logx)2

T ′ + logx

)

where IHj
denotes the integrals taken over the two horizontal sides and IV is the in-

tegral taken over the vertical side. Using Corollary 3.90, (3.44) and the easy estimate
T ′ � T , we obtain

IHj
�
∫ κ

−2K−1

∣∣∣∣−
ζ ′

ζ

(
σ + iT ′)

∣∣∣∣
xσ

|σ + iT ′| dσ

�
∫ −1

−2K−1
xσ

log |σ + iT ′|
|σ + iT ′| dσ + (logT )2

∫ κ

−1

xσ

|σ + iT ′| dσ

� (logT )2

T

∫ κ

−2K−1
xσ dσ � x(logT )2

T

for j ∈ {1,2} and

IV �
∫ T ′

−T ′

∣∣∣∣−
ζ ′

ζ
(−2K − 1 + it)

∣∣∣∣
x−2K−1

| − 2K − 1 + it | dt � x−2K−1T

2K + 1
log(KT )

and letting K −→ ∞ completes the proof. �
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This result has been slightly improved by Goldston [Gol83] where it is proved
that the error-term xT −1(logxT )2 may be replaced by

x

T
logx log logx.

3.7.6 The Prime Number Theorem for Arithmetic Progressions

Let a, q � 1 be integers such that (a, q)= 1. It is customary to define the function

π(x;q, a)=
∑

p�x
p≡a (modq)

1.

By Theorem 3.63, we have limx→∞ π(x;q, a) = ∞ and hence the question of its
order of magnitude arises naturally. We expect the prime numbers to be well dis-
tributed in the ϕ(q) reduced residue classes modulo q . Therefore, applying the
method of the former section to the function

�(x,χ)=
∑

n�x


(n)χ(n)

where χ is a non-principal Dirichlet character modulo q and to its Dirichlet series
−L′

L
(s,χ), we get

π(x;q, a)= Li(x)

ϕ(q)
+Oq

(
xe−c0(q)

√
logx)

for some constant 0< c0(q) < 1 depending on q , the constants implied in the error-
term depending also on q . This dependence makes this result useless in practice.
A great deal of effort has been made to prove some efficient estimates where the
constants do not depend on the modulus. One of the most important results in the
theory is called the Siegel–Walfisz–Page theorem or Siegel–Walfisz theorem.

Theorem 3.92 (Siegel–Walfisz) Let a, q � 1 be coprime integers.

(i) For all A > 0, there exists c1(A) > 0 not depending on q such that, for all
q � (logx)A, we have

π(x;q, a)= Li(x)

ϕ(q)
+OA

(
xe−c1(A)

√
logx).

(ii) For all A> 0 and all q � 1, we have

π(x;q, a)= Li(x)

ϕ(q)
+OA

(
x

(logx)A

)
.
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Obviously, if we define the Chebyshev type functions

θ(x;q, a)=
∑

p�x
p≡a (modq)

logp and �(x;q, a)=
∑

n�x
n≡a (modq)


(n)

similar estimates hold for these functions, namely

θ(x;q, a)
�(x;q, a)

}
= x

ϕ(q)
+OA

(
xe−c1(A)

√
logx)

in the first case, and

θ(x;q, a)
�(x;q, a)

}
= x

ϕ(q)
+OA

(
x

(logx)A

)

in the second case.
The proof of Theorem 3.92 rests on an explicit formula for �(x,χ) similar to

that of Theorem 3.91, namely

�(x,χ)=E0(χ)x −
∑

|γ |�T

xρ

ρ
+O

(
x

T
(logqx)2 + x1/4 logx

)

where

E0(χ)=
{

1, if χ = χ0
0, otherwise

which implies using Proposition 3.68

�(x;q, a)= x

ϕ(q)
+

∑

χ (modq)

∑

|γ |�T

xρ

ρ
+O

(
x

T
(logqx)2 + x1/4 logx

)
.

The other important tool is the knowledge of a zero-free region for the function
L(s,χ). The arguments generalize those of the function ζ(s), except that there is
an unforeseen difficulty in connection with the possible existence, still unproven,
of an exceptional zero β1 ∈ R near the point 1 of a function L(s,χ) attached to a
quadratic Dirichlet character. More precisely, we have the following result.

Theorem 3.93 (Zero-free region for L-functions) Let q ∈N and τ = |t | + 3. There
exists an absolute constant c0 > 0 such that if χ is a Dirichlet character modulo q ,
then the function L(s,χ) has no zero in the region

σ � 1 − c0

log(qτ)

unless χ is a quadratic character, in which case L(s,χ) has at most one, necessarily
real, zero β1 < 1 in this region. This zero is called exceptional.
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At the present time, we do not know much more about this exceptional zero.
Nevertheless, Landau, Page and Siegel provided some very important results, show-
ing in particular that such a zero occurs at most rarely. We summarize their main
discoveries in the next theorem.

Theorem 3.94 Let q be a positive integer and τ = |t | + 3.

(i) (Landau). There exists an absolute constant c1 > 0 such that the function∏
χ (modq) L(s,χ) has at most one zero in the region

σ � 1 − c1

log(qτ)
.

If such a zero β1 exists, then it is necessarily real and associated to a quadratic
character χ1. This character is called the exceptional character.

(ii) (Page). If χ is a Dirichlet character modulo q , then L(σ,χ) �= 0 in the region

σ � 1 − c2

q1/2(log(q + 1))2

where c2 > 0 is an effectively computable absolute constant.
(iii) (Siegel). Let χ be a quadratic Dirichlet character modulo q . For all ε > 0,

there exists a non-effectively computable constant cε > 0 such that

L(1, χ) >
cε

qε
.

This implies that, if χ is a quadratic character modulo q , then L(σ,χ) �= 0 in
the region

σ � 1 − cε

qε
.

The proof relies on the following lemma due to Estermann providing the lower
bound of certain Dirichlet series at s = 1, which may have its own interest (for a
proof, see [MV07, Was82]).

Lemma 3.95 (Estermann) Let f (s) be an analytic function in the disc |s − 2| � 4
3

satisfying the bound |f (s)| �M in this disc. Assume that, for all σ > 1, we have

f (s)ζ(s)=
∞∑

n=1

an

ns

with a1 � 1 and an � 0 for all n. Finally, suppose that there exists α ∈ [ 26
27 ,1[ such

that f (α)� 0. Then we have

f (1)� 1 − α

4M4(1−α) .
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In the proof of Theorem 3.94, one usually considers a primitive quadratic char-
acter χ1 modulo q1 such that the associated Dirichlet L-function has a real zero
β1 � 1−ε/4 and one applies Lemma 3.95 to the function f (s)= L(s,χ)L(s,χ1)×
L(s,χχ1) where χ �= χ1 is a primitive quadratic character. This implies that f (1)�
c1(ε)q

−ε and since f (1)� L(1, χ)(logqq1)
2, the result of Theorem 3.94 (iii) fol-

lows for primitive characters. It may be extended to imprimitive Dirichlet characters
by using (3.24).

It should be noticed that we have no way of estimating the size of the smallest
possible modulus q1, so that the constant cε of Siegel’s theorem is ineffective when
ε < 1

2 . All attempts at providing a value to cε for a sufficiently small ε > 0 have
been unsuccessful.

There are slightly more accurate versions of Theorem 3.92 where the error-term
is similar to that of the PNT.

Let a, q be positive integers such that (a, q)= 1 and assume that there is an
exceptional real Dirichlet character χ1 modulo q and β1 is the concomitant
zero. Then there exists a constant c0 > 0 such that

π(x;q, a)= Li(x)

ϕ(q)
− χ1(a)Li(xβ1)

ϕ(q)
+O

(
x e−c0

√
logx). (3.45)

The term containing β1 can be removed if the exceptional zero does not exist.

In practice, especially when an upper bound is sufficient, the Brun–Titchmarsh
inequality (see Theorems 4.73 and 4.80) is often used because of its larger range of
validity.

3.7.7 Explicit Estimates

In the last decade, several explicit bounds for (3.35), (3.36) and (3.37) were dis-
covered. The best results until now were obtained by Ford [For02b, For02a] which
proved respectively for (3.35), (3.36) and (3.37) the following estimates.

� For all s = σ + it ∈ C such that 1
2 � σ � 1 and t � 3, we have

∣∣ζ(s)
∣∣� 76.2 t4.45(1−σ)3/2

(log t)2/3.

� ζ(s) has no zero in the region

σ � 1 − 1

57.54 (log |t |)2/3(log log |t |)1/3
and |t |� 3.

� The PNT can be written as follows.

π(x)= Li(x)+O
{
x exp

(−0.2098 (logx)3/5(log logx)−1/5)}.
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In another direction, one may consider zero-free regions of the type

σ � 1 − 1

R log(|t |/d) and |t | � t0 (3.46)

trying to get the lowest positive real number R in order to increase the region. Such
zero-free regions are generally determined with the help of the real part of the func-
tion −ζ ′(s)/ζ(s). There are two classical ways to deal with this real part.

1. The global one. Used by de La Vallée Poussin in 1899, the formula has the form

Re

(
−ζ ′

ζ
(s)

)
= 1

2
Re

(
�′

�
(s − 1)

)
− logπ

2
+ Re

(
1

s − 1

)
−
∑

ρ

Re

(
1

s − ρ

)

where the sum runs through all non-trivial zeros ρ of the Riemann zeta-function.
2. The local one. Used by Landau, the formula takes the form

Re

(
−ζ ′

ζ
(s)

)
= −

∑

ρ
|s−ρ|�c/ log |t |

Re

(
1

s − ρ

)
+O(log |t |).

In [Kad05], an intermediate way is considered with circles of radius � 1. The main
tools are then the knowledge of more and more zeros of ζ(s) lying on the critical
line σ = 1

2 and Weil type explicit formulae as follows. Let r > 0 and f ∈ C2[0, r]
with compact support in [0, r[ and satisfying f (r) = f ′(0) = f ′(r) = f ′′(r) = 0.
We denote F(s) the Laplace transform of f , i.e.

F(s)=
∫ r

0
e−stf (t)dt

and set F2 the Laplace transform of f ′′. One can prove the following formula.

For all complex numbers s, we have

Re

( ∞∑

n=1


(n)

n
f (logn)

)

= f (0)

{
Re

(
1

2

�′

�

(
s

2
+ 1

))
− logπ

2

}

+ ReF(s − 1)−
∑

ρ

ReF(s − ρ)+ Re

(
F2(s)

s2

)

+ 1

2π

∫ ∞

−∞
Re

(
�′

�

(
1

4
+ it

2

))

× Re

(
F2(s − 1/2 − it)

(s − 1/2 − it)2

)
dt.
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With an appropriate choice of f , it is proved in [Kad05] that ζ(s) has no zero in the
region

σ � 1 − 1

5.7 log |t | and |t |� 3.

This region supersedes the above region given by Ford as long as |t | � e9400 and the
method may be generalized to zero-free regions of L-functions, as it can be seen in
[Kad02] where it is proved that the functions L(s,χ) never vanish in the region

σ � 1 − 1

6.4355 log(max(q, qτ))

except for at most one of them which should be real and vanishes at most once in
this region.

In [Rn75, Lemma 8], the authors established the following effective version of
Theorem 3.91.

Proposition 3.96 Let x > 1, 0 < δ < 1 − x−1 be real numbers and R, d be real
numbers satisfying (3.46). Set

E(x)=�(x)−
{
x − log 2π − 1

2
log

(
1 − 1

x2

)}
.

Then we have

∣∣E(x)
∣∣�
(
2 + 2δ−1 + δ

)(
x
∑

γ>A

F(γ )+ 0.0463
√
x

)
+ xδ

2

with

F(u)= 1

u2
exp

(
− logx

R log(u/d)

)

and A is the unique solution of the equation

N (A)= A

2π
log

(
A

2π

)
− A

2π
+ 7

8

where N (A) is the number of zeros ρ = β + iγ of ζ(s) such that 0< γ �A.

Rosser and Schœnfeld showed that one can take R ≈ 9.6459 . . . , d = 17 and with
the knowledge of non-trivial zeros on the critical line at that time, they were able to
take A≈ 1 894 438.512 . . . The sum is treated by partial summation which enables
us to estimate integrals of the form

∫ ∞

A

F(u) log

(
u

2π

)
du
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Table 3.2 Rosser &
Schoenfeld’s explicit bounds Inequality Validity

θ(x) < 1.000 081x x > 0

θ(x) > 0.75x x � 36

x
logx � π(x)� 1.25 506x

logx
lower bound: x � 17

upper bound: x > 1

|θ(x)− x|< 8.686x
(logx)2

x > 1

|ψ(x)− x|< 8.686x
(logx)2

x > 1

which in turn may be written as combinations of Bessel functions of the second
kind. After using fine estimates of these quantities and choosing δ appropriately, we
arrive at the following explicit result.

Theorem 3.97 (Rosser and Schœnfeld) Define

ε(x)= 0.110 123

(
1 + 3.001 5√

logx

)
(logx)3/8 exp

(
−
√

logx

R

)

with R ≈ 9.6459 . . . Then, for all x > 0, we have

θ(x)− x ��(x)− x � xε(x)

and for all x � 39.4, we have

�(x)− x � θ(x)− x � −xε(x).

For instance, the next result summarizes some of the estimates the authors ob-
tained with Theorem 3.97.

Corollary 3.98 The following estimates hold (see Table 3.2) in the specified range
of validity.

The usual functions of prime numbers may be handled as in the previous section
(see [Rn62]).

Corollary 3.99 The following estimates hold (see Table 3.3) in the specified range
of validity. pn is the n-th prime number, γ ≈ 0.5772 . . . is the Euler–Mascheroni
constant, B ≈ 0.261 497 212 . . . is the Mertens constant and E ≈ 1.332 582 275 . . .

The lower bound for pn is due to Dusart [Dus98].
Explicit estimates for the functions π(x;q, a), θ(x;q, a) and �(x;q, a) have

been established by McCurley [McC84], Ramaré and Rumely [RR96] and Dusart
[Dus01]. In the second paper, the authors showed an analogue of Proposition 3.96
for �(x;q, a). This result is refined in the third paper, where the following estimates
are proved.
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Table 3.3 Explicit bounds for usual functions of prime numbers

Inequality Validity

n(logn+ log logn− 1)� pn � n(logn+ log logn)
lower bound: n� 2

upper bound: n� 6

logx −E − 1
2 logx <

∑
p�x

logp
p

< logx −E + 1
logx x � 32

log logx +B − 1
2(logx)2

<
∑

p�x
1
p
< log logx +B + 1

(logx)2
x > 1

eγ logx
(

1 − 1
2(logx)2

)
<
∏

p�x

(
1 − 1

p

)−1
< eγ logx

(
1 + 1

(logx)2

)
x > 1

Theorem 3.100 (Dusart) Let q be a positive integer and define

ε(x)=
(
q2 logx

Rϕ(q)2

)1/4

exp

(
−
√

logx

R

)

where R ≈ 9.6459 . . . is as in Theorem 3.97. Then, for all x > x0(q) where x0(q) is
an effectively computable constant, we have

∣∣∣∣�(x;q, a)− x

ϕ(q)

∣∣∣∣< xε(x).

The same inequality holds with �(x;q, a) replaced by θ(x;q, a).

In fact, Dusart’s result is slightly more accurate and makes use of a constant
C1(q) in the function ε(x) which is quite complicated to define. We use here the
fact that, under the conditions of the theorem, we always have C1(q)� 9.14. Dusart
then gave some applications of Theorem 3.100. For instance, if a ∈ {1,2}, then we
have

π(x;3, a) <
0.55x

logx
(x � 229 869)

and

π(x;3, a) >
x

2 logx
(x � 151).

Also
∣∣∣∣θ(x;3, a)− x

2

∣∣∣∣<
0.262x

logx
(x � 1531).

3.7.8 The Piatetski-Shapiro Prime Number Theorem

A great deal of effort has been made in the search for other types of sequences
containing infinitely many prime numbers, and several problems still remain open.
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For instance, it is yet not known whether there are infinitely many primes of the form
n2 + 1, and we do not know if there are infinitely many Mersenne primes, i.e. of the
form 2n − 1, or Fermat primes, i.e. of the form 22n + 1. However, in 1953, Piatetski-
Shapiro supplied an example of a sequence sparser than the sequence (qn + a)

by studying the distribution of prime numbers of the form [nc], where 1 < c < c0
is a fixed real number. This sequence is somewhat the simplest generalization of
polynomials with non-integer degrees. Clearly, there are no prime numbers in the
sequence n2, but it is generally believed that 2 is the correct upper bound in this
problem.

It is customary to denote by πc(x) the number of positive integers n � x such
that [nc] is a prime number. Piatetski-Shapiro proved that, if 1 < c < c0 = 12

11 ≈
1.0909 . . . , then we have for x −→ ∞

πc(x)∼ x

c logx
.

The best result to date in this problem is due to Rivat and Sargos [RS01] who showed
that, using latest estimates in exponential sums of type I and II (see Chap. 6), if
1< c < c0 = 2817

2426 ≈ 1.16 117 . . . , then we have for x −→ ∞

πc(x)∼ x

c logx
.

3.7.9 The Riemann Hypothesis

The following quotation is attributed to Hilbert.

If I were to awaken after having slept for a thousand years, my first question
would be: Has the Riemann hypothesis been proven?

This shows the crucial importance of what has proved to be one of the most dif-
ficult problems in mathematics. In 1859, in his benchmarking Memoir, Bernhard
Riemann formulated his conjecture, called today the Riemann hypothesis, which
makes a very precise connection between two seemingly unrelated objects. There
exist many great old unsolved problems in mathematics, but none of them has the
stature of the Riemann hypothesis. This is probably due to the large number of ways
in which this conjecture may be formulated. This is also certainly due to the person-
ality of Riemann, a true genius ahead of his time and one of the most extraordinary
mathematical talents. Finally, the Riemann hypothesis was highlighted at the 1900
International Congress of Mathematicians, in which Hilbert raised 23 problems that
he thought would shape the next centuries. In 2000, the Clay Mathematics Institute
listed seven hard open problems and promised a one million-dollar prize. Curiously,
any disproof of the Riemann hypothesis does not earn the prize.

Riemann’s formulation of his conjecture does not make arithmetic statements
appear directly. We have seen that the non-trivial zeros of ζ(s) are all in the strip
0 < σ < 1, and by the functional equation, if there is a zero in 0 < σ � 1

2 , there is
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also a zero in the region 1
2 � σ < 1. Therefore, the following conjecture represents

the “best of all possible worlds” for the zeros of the Riemann zeta-function.

Conjecture 3.101 (Riemann, 1859) All non-trivial zeros of ζ(s) are on the critical
line σ = 1

2 .

Numerical computations have been made since 1859. It was Riemann himself
who calculated the first zero of ζ(s) on the critical line, whose imaginary part is
≈ 14.13 (see [Tit51] for instance). The usual way is the use of the Hardy function
Z(t), also sometimes called the Riemann–Siegel function, defined in the following
way. First set for t ∈ R

ϑ(t)= arg

(
π−it/2�

(
1

4
+ it

2

))

where the argument is defined by continuous variation of t starting with the value 0
at t = 0, and let

Z(t)= eiϑ(t)ζ

(
1

2
+ it

)
.

The functional equation of ζ(s) implies that Z(t) = Z(t) so that Z(t) is a real-
valued function for t ∈ R and we have

∣∣Z(t)
∣∣=
∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣.

Therefore, if Z(t1) and Z(t2) have opposite signs, ζ(s) has a zero on the critical
line between 1

2 + it1 and 1
2 + it2. Using Theorem 3.82 at s = 1

2 + it with x = y =√|t |/(2π) and multiplying out by eiϑ(t), we deduce that for N = [√|t |/(2π)] we
have

Z(t)= eiϑ(t)
N∑

n=1

1

n1/2+it + e−iϑ(t)
N∑

n=1

1

n1/2−it +O
(
t−1/4)

= 2
N∑

n=1

cos(ϑ(t)− t logn)√
n

+O
(
t−1/4)

which is a concise form of the Riemann–Siegel formula. Siegel discovered this iden-
tity among Riemann’s private papers in 1932. It enables us to get an improvement
over Euler–MacLaurin’s summation formula in approximating values of ζ(s). More
precise formulae exist (see [Ivi85, Tit51]) that aid computations and add to the em-
pirical evidence for the Riemann hypothesis. The best result up to now is due to
Gourdon [Gou04] who found out that the 1013 first zeros of ζ(s) are on the critical
line.

The minimal necessary condition for the Riemann hypothesis was proved by
Hardy in 1914 [Har14].
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Theorem 3.102 (Hardy) There are infinitely many zeros of ζ(s) on the critical line.

There exist several proofs of this result (see [Tit51]), all of which rely on the
consideration of moments of the form

∫
tnf (t)dt . A useful tool is then the following

lemma due to Fejér.

Let a > 0 be a real number and n be a positive integer. The number of sign
changes in the interval ]0, a[ of a continuous function f is at least the number
of sign changes of the sequence

f (0),
∫ a

0
f (t)dt,

∫ a

0
tf (t)dt, . . . ,

∫ a

0
tnf (t)dt.

Proof of Theorem 3.102 Recall the function

ω(x)=
∞∑

n=1

e−n2πx

of the functional equation (3.13). One can show [Tit51] that
∫ ∞

0
ξ

(
1

2
+ it

)
cos(xt)dt = π

(
2e−x/2ω

(
e−2x)− ex/2).

Putting x = −iy gives
∫ ∞

0
ξ

(
1

2
+ it

)
cosh(yt)dt = 2π

{
eiy/2

(
ω
(
e2iy)+ 1

2

)
− cos

y

2

}
.

By Theorem 3.59, we have ζ( 1
2 + it) � |t |1/4 so that ξ( 1

2 + it) � |t |1/4e−π |t |/4

and hence the above integral may be differentiated with respect to y any number of
times provided that y < π/4. We then get

∫ ∞

0
ξ

(
1

2
+ it

)
t2n cosh(yt)dt

= 2π

{
d2n

dy2n

(
eiy/2

(
ω
(
e2iy)+ 1

2

))
+ (−1)n+12−2n cos

y

2

}
.

Now using (3.12) one can prove that the first term on the right-hand side tends to 0
as y tends to π/4 for a fixed integer n, and thus

lim
y→π/4

∫ ∞

0
ξ

(
1

2
+ it

)
t2n cosh(yt)dt = (−1)n+121−2nπ cos

π

8
.

Let m be a large positive integer. From above we infer that, if am > 0 is large enough
and ym is close enough to π/4, the integral

∫ am

0
ξ

(
1

2
+ it

)
t2n cosh(ymt)dt
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has the same sign as (−1)n+1 for n= 0,1, . . . ,m. By Fejér’s theorem, we infer that
ξ( 1

2 + it) has at least m changes of sign in ]0, am[, as required. �

It is customary to define N0(T ) to be the number of zeros ρ = 1
2 + iγ with

0< γ < T , so that the Riemann hypothesis may be written as

N (T )= N0(T )

for all T > 0. Hardy’s theorem states that N0(T ) −→ ∞ as T −→ ∞ and his
method yields

N0(T ) > CT

for some constant C > 0.
The second important result was given by Selberg who proved that a positive

proportion of zeros lies on the critical line and more precisely that

N0(T ) > CT logT

for T sufficiently large. Selberg’s method could be used to yield an effective estimate
of C, but this value was not made specific until 1974 when Levinson found an
explicit estimate of this constant by proving that at least 1/3 of the zeros lie on the
critical line (see [Ivi85, Chap. 10]). The best result to date is due to Bui, Conrey and
Young [BCY11] who proved that more than 41% of the zeros lie on the critical line,
slightly improving the previous record due to Conrey who showed in 1989 that at
least 2/5 of the zeros of ζ are on the critical line.

3.7.10 Some Consequences of the Riemann Hypothesis

� The first corollary of the Riemann hypothesis is to provide the best error-term in
the Prime Number Theorem. Indeed, suppose that all the zeros of ζ(s) have real
parts equal to 1

2 . By (3.39), we then have for all T � 2

∣∣∣∣
∑

|γ |�T

xρ

ρ

∣∣∣∣� x1/2(logT )2

so that by Theorem 3.91 we get

�(x)= x +O

(
x1/2(logT )2 + x

T
(logxT )2 + logx

)

and choosing T = x1/2 we obtain

�(x)= x +O
(
x1/2(logx)2

)
.
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This implies that

θ(x)= x +O
(
x1/2(logx)2

)

and

π(x)= Li(x)+O
(
x1/2 logx

)

by Exercise 8 in Chap. 1. In fact, one can prove that the Riemann hypothesis is
equivalent to the estimate

�(x)= x +O
(
x1/2+ε)

for all ε > 0 (see [Ten95]).
� Perhaps one of the most arithmetic formulations of the Riemann hypothesis can

be made with the Möbius function. This function μ(n) has already been studied
above in the sieves section, and will be defined in Chap. 4 where we shall see that
the Dirichlet series attached to this function is ζ(s)−1. We need here the sum-
matory function M(x) of μ(n), called the Mertens function, and hence defined
by

M(x)=
∑

n�x

μ(n).

It can be proved that the PNT is equivalent to the estimate

M(x)= o(x)

for x −→ ∞, and that the Riemann hypothesis is equivalent to

M(x)=O
(
x1/2+ε) (3.47)

for all ε > 0. Indeed, this estimate implies by partial summation the convergence
of the series

∑∞
n=1μ(n)n

−s = ζ(s)−1 in the half-plane σ > 1
2 , and hence ζ(s)

has no zero in this half-plane, which is the Riemann hypothesis. Conversely, if
the Riemann hypothesis is true, then Littlewood proved that, for all ε > 0, we
have

ζ

(
1

2
+ ε+ it

)−1

� |t |ε

and Theorem 3.84 gives (3.47). Several authors improved on the necessary con-
dition. The best result to date is due to Soundararajan [Sou09] who proved that,
if the Riemann hypothesis is true, then the estimate

M(x)� x1/2 exp
{
(logx)1/2(log logx)14}

holds for large x. It has long been believed that the Mertens conjecture stating
that, for all n ∈ N, the inequality

∣∣M(n)
∣
∣< n1/2
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would be true. In 1885, Stieltjes announced he had found a proof of the weaker
bound M(n)� n1/2 but he died without publishing his result, and no proof was
found in his papers posthumously. We know now that Mertens’ conjecture is
false since Te Riele and Odlyzko [OtR85] showed that

lim sup
n→∞

M(n)√
n

> 1.06 and lim inf
n→∞

M(n)√
n

<−1.009.

These bounds were subsequently improved to 1.218 and −1.229 respectively
[KtR06], and it is also known that the smallest number for which the Mertens
conjecture is false is exp(1.59 × 1040), improving on a previous result of Pintz
[Pin87].

� The Riemann hypothesis also relies on arithmetic functions. For instance, let
σ(n) be the sum of the positive divisors of n (see Chap. 4). Robin proved that, if
the inequality

σ(n) < eγ n log logn

holds for all n� 5041, then the Riemann hypothesis is true. On the other hand,
Lagarias showed that the Riemann hypothesis is equivalent to the elegant in-
equality

σ(n)� eHn logHn +Hn

where Hn =∑n
k=1 k

−1 is the nth harmonic number.
� The Riemann hypothesis implies the Lindelöf hypothesis, so that we have for all

ε > 0 and t � t0 > 0

ζ

(
1

2
+ it

)
� tε

if the Riemann hypothesis is true. Furthermore, it also implies the best error-term
in the Dirichlet divisor problem (see Chap. 6), namely

∑

n�x

τ (n)= x(logx + 2γ − 1)+O
(
x1/4+ε)

for all ε > 0, where τ(n) is the number of divisors of n and γ is the Euler–
Mascheroni constant.

� In 1977, Redheffer [Red77] introduced the matrix Rn = (rij ) ∈ Mn({0,1}) de-
fined by

rij =
{

1, if i | j or j = 1

0, otherwise

and has shown that

detRn =M(n)
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where M(n) is the Mertens function.18 Hence by above the Riemann hypothesis
is equivalent to the estimate

|detRn| =O
(
n1/2+ε)

for all ε > 0. This bound remains unproven, but Vaughan [Vau93] showed that
1 is an eigenvalue of Rn with (algebraic) multiplicity n− [logn/ log 2] − 1, that
Rn has two “dominant” eigenvalues λ± such that |λ±| � n1/2, and that the other
eigenvalues satisfy λ� (logn)2/5. However, it seems to be very difficult to ex-
tract more information from the eigenvalues of Rn by using tools from matrix
analysis. For instance, Hadamard’s inequality, which states that

|detM|2 �
n∏

i=1

‖Li‖2
2

for all matrices M ∈ Mn(C), where Li is the ith row of M and ‖. . .‖2 is the
Euclidean norm on C

n, gives

(
M(n)

)2 � n

n∏

i=2

(
1+
[
n

i

])
= 2n−[n/2]n

[n/2]∏

i=2

(
1+
[
n

i

])
� 2n−[n/2]

(
n+ [n/2]

n

)

which is very far from the trivial bound |M(n)| � n.
� In another direction, the authors in [BC09] investigated the following integer

upper triangular matrix. For all integers i, j � 1, set mod(j, i) to be the remain-
der in the Euclidean division of j by i. Let Tn = (tij ) ∈ Mn(Z) be the upper
triangular matrix of size n such that

tij =

⎧
⎪⎪⎨

⎪⎪⎩

mod(j,2)− 1, if i = 1 and 2 � j � n

mod(j, i + 1)− mod(j, i), if 2 � i � n− 1 and 1 � j � n

1, if (i, j) ∈ {(1,1), (n,n)}
0, otherwise.

For instance with n= 8, we have

T8 =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

1 −1 0 −1 0 −1 0 −1
0 2 −1 1 1 0 0 2
0 0 3 −1 −1 2 2 −2
0 0 0 4 −1 −1 −1 3
0 0 0 0 5 −1 −1 −1
0 0 0 0 0 6 −1 −1
0 0 0 0 0 0 7 −1
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

One can prove the following result [BC09, Corollary 2.6].

18See Exercise 21 in Chap. 4.
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Theorem 3.103 Let σn be the smallest singular value of Tn. If the estimate σn �
n−1/2−ε holds for all ε > 0, then the Riemann hypothesis is true.

This criterion is probably at least as tricky to show as the Riemann hypothesis
itself. However, it is interesting to note that this result is in accordance with the
heuristic proofs concerning the smallest singular value19 of a random matrix of
size n. For instance, it is shown in [RV08a, RV08b] that this singular value has
a high probability of satisfying the estimate σn � n−1/2. More precisely, let A ∈
Mn(R) whose entries are i.i.d centered random variables with unit variance and
fourth moment bounded by B . Let σn be the smallest singular value of A. The
authors show that, for all ε > 0, there exist K1,K2 > 0 and positive integers n1, n2,
depending polynomially only on B and ε, such that

P

(
σn >K1n

−1/2)� ε (n� n1)

and

P

(
σn <K2 n

−1/2)� ε (n� n2)

where P(E) is the probability of the event E.
But we have plenty of examples in number theory showing that, from a heuristic

argument to a rigorous proof, the way is very long and hard.

3.7.11 The Mean Square of the Riemann Zeta-Function

Another approach for bounding ζ( 1
2 + it) rests on the study of the integral

I1(T )=
∫ T

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣

2

dt.

Indeed, in view of the following inequalities

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣

2

�
{∫ t+(log t)2

t−(log t)2

∣∣∣∣ζ
(

1

2
+ iu

)∣∣∣∣

2

du+ 1

}

log t

� {
I1
(
t + log2 t

)− I1
(
t − log2 t

)+ 1
}

log t

� {
E
(
t + log2 t

)−E
(
t − log2 t

)+ (log t)3
}

log t

where E(t) is the error-term in the asymptotic formula

I1(T )= T

(
log

T

2π
+ 2γ − 1

)
+E(T )

19The singular values σ1 � · · · � σn � 0 of a matrix A ∈ Mn(C) are the square-roots of the eigen-
values of the hermitian positive semidefinite matrix AA∗, where A∗ is the hermitian adjoint of A.
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proved in 1918 by Hardy and Littlewood, we see that any estimate of the form
E(t)� tα implies the bound

ζ

(
1

2
+ it

)
� tα/2(log t)1/2.

Numerous bounds have been provided by many authors for E(t). For instance,
Ingham proved in 1926 that E(t) � t1/2 log t whereas Balasubramanian obtained
in 1978 the bound E(t) � t346/1067+ε . The best result till now is due to Huxley
[Hux05] who showed that

E(t)� t131/416+ε.

More generally, set

Ik(T )=
∫ T

0

∣
∣
∣
∣ζ
(

1

2
+ it

)∣∣
∣
∣

2k

dt.

The long-standing conjecture is that Ik(T ) ∼ T Pk2(logT ) where Pk2 is a polyno-
mial of degree k2. So far asymptotic formulae have been only proved for the cases
k = 1 and k = 2. Ivić considers kth moments of E(t) in short intervals to deduce
bounds for Ik(T ) in the following way. Assume that the integral

∫ 3T

T/3

{∣∣E(t + 2G)−E(t − 2G)
∣∣k + ∣∣E(t +G/2)−E(t −G/2)

∣∣k}dt

is bounded by estimates of the form

�ε T
α+εGβ

where α = α(k) > 0, β = β(k)� k−1 and T ε �G=G(T )� T 1/3. Then we have

I1+k−β(T )�ε T
1+α+ε.

Another way to get bounds for I1(T ) is the use of the following result, which relies
on the techniques of exponential sums we shall see in Chap. 6. It is due to Heath-
Brown who used Atkinson’s formula (see [Ivi85]). It should be mentioned that Ivić’s
proof [Ivi85] does not deal with this formula.

Theorem 3.104 Let T � 1, T ε �G� T 1/2−ε and define

fT (n)= (2π)−1
{

2T sinh-1
(√

πn

2T

)
+
√
π2n2 + 2πnT

}

and

S(x)=
∑

K�n�K+x
(−1)nτ (n)e

(
fT (n)

)
.
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Then uniformly in G, we have

1

G

∫ T+G

T−G

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣

2

dt

� T −1/4
∑

K=2k

T 1/3�K�TG−2(logT )2

e−G2K/T

K1/4
max

0�u�K

∣∣S(u)
∣∣+ logT .

3.7.12 Additive Characters and Gauss Sums

The Dirichlet characters modulo q are characters from the multiplicative groups
(Z/qZ)∗ to the multiplicative group C

∗ of non-zero complex numbers, and are thus
called multiplicative characters. The dual concept of additive characters is defined
in a similar way. Let a, q be positive coprime integers with 1 � a � q and consider
the primitive qth roots of unity eq(a). From the well-known identity

∑

k (modq)

(
eq(a)

)k = 0

we get

1

q

∑

k (modq)

eq(−ka)eq(kn)=
{

1, if n≡ a (modq)

0, otherwise
(3.48)

which is the analogue of Proposition 3.68. Thus the characteristic function of the
integers n ≡ a (modq) may be written as a linear combination of the sequence
(eq(kn)). These functions are called additive characters since they are characters
from the additive groups (Z/qZ,+) to the multiplicative group C

∗.
Let f be an arithmetic function of period q . Multiplying both sides of (3.48) by

f (n) and summing over n running through a complete residue system modulo q ,
we obtain

f (a)=
∑

k (modq)

eq(ka)

q

∑

n(modq)

f (n)eq(−kn).

The function

f̂ (k)= 1

q

∑

n(modq)

f (n)eq(−kn)

is called the finite Fourier transform of f , and we thus have

f (n)=
∑

k (modq)

f̂ (k)eq(kn).
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For all q-periodic arithmetic function f , we have

1

q

q∑

n=1

∣∣f (n)
∣∣2 =

q∑

k=1

∣∣f̂ (k)
∣∣2

which is the analogue of Plancherel’s formula for functions f ∈ L2(R) or Parser-
val’s formula for functions f ∈ L2(R/Z).

It may be interesting to deal with a discrete inner product of the multiplicative
character χ and the additive character eq . To this end, we define the sum

τ(χ)=
∑

a (modq)

χ(a)eq(a).

This is called the Gauss sum of χ and is an important tool connecting additive num-
ber theory and multiplicative number theory. One of its most important properties
is to express any primitive Dirichlet character as a linear combination of additive
characters.

Theorem 3.105 Let χ be a primitive Dirichlet character modulo q . For all positive
integers n, we have

χ(n)= 1

τ(χ)

∑

a (modq)

χ(a)eq(na).

It can be proved that, for all primitive characters χ modulo q , we have |τ(χ)| =√
q . This result may be used to estimate twisted exponential sums of the form

∑

N<n�2N

χ(n)e
(
f (n)

)

arising in many problems in number theory (see [Bor10] for instance).

3.7.13 Incomplete Character Sums

In many applications the bound of Proposition 3.70 may be not sufficient. The next
result provides a nearly best possible estimate for these character sums (for a proof,
see [MV07, Theorem 9-18], for instance).

Theorem 3.106 (Pólya–Vinogradov inequality) For all non-principal Dirichlet
characters χ modulo q and all integers M and N with N � 1, we have

∣∣∣∣
∑

M<n�M+N
χ(n)

∣∣∣∣�
√

3q logq.
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If N � q1/2, the Pólya–Vinogradov inequality is weaker than the trivial bound
provided by the triangle inequality. In the early 1960s, Burgess [Bur63, Bur86] dis-
covered another method to estimate character sums whose bound depends on the
length of the range of summation.

Theorem 3.107 (Burgess) For all non-principal primitive Dirichlet characters χ
modulo q , all real numbers 0 < ε < 1 and all integers M and N with N � 1, we
have

∑

M<n�M+N
χ(n)�N1−1/rq

r+1
4r2 +ε

for r ∈ {1,2,3}.
The proof uses in a crucial way the Riemann hypothesis for curves over finite

fields which was proved by Weil [Wei48a, Wei48b], implying that for prime p and
Dirichlet character χ modulo p of order d , then

∣∣∣∣
∣

p∑

x=1

χ
(
P(x)

)
∣∣∣∣
∣
� (m− 1)

√
p

where P ∈ Fp[X] is not a d th power of a polynomial and m is the number of dis-
tinct roots of P . Applying Theorem 3.107 with r = 1, we recover a slightly weaker
version of the Pólya–Vinogradov inequality. Hence this result generalizes Theo-
rem 3.106.

For incomplete Gauss sums, Burgess [Bur89] obtained the following result.

Theorem 3.108 (Burgess) For all non-principal Dirichlet characters χ modulo q

and all integers a � 0, M and N with 1 �N < q , we have
∑

M<n�M+N
χ(n)eq(an)�N2/3q1/8(logq)2.

If q = pα is a prime power with p > 3, Burgess [Bur92] showed that the term
N2/3q1/8 may be replaced by N3/4q1/12. This improves on Theorem 3.108 as long
as N � q1/2.

A Kloosterman sum is a character sum of the form

q∑

n=1
(n,q)=1

eq(an+ bn)

where a, b, q are positive integers and n is defined by n× n ≡ 1 (modq). Weil’s
bound for such sums states that

∣∣∣∣∣

q∑

n=1
(n,q)=1

eq(an+ bn)

∣∣∣∣∣
� τ(q)

√
dq
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where d = (b, q) and τ(q) is the number of divisors of q . For incomplete Klooster-
man sums, we have the following estimate due to Hooley.

Theorem 3.109 (Hooley) For all real numbers 0 < ε < 1, all integers 1 � a < b

and m,q � 1 with d = (m,q), we have

b∑

n=a
eq(m · n)� q1/2+εd1/2 + dq−1(b− a).

3.8 Exercises

1 Is the integer 345 + 456
a prime number?

2 Show that, for each integer n� 33, we have π(n)� n
3 .

3 Let k � 2 be an integer. Show that the number of prime numbers in the sequence

62 + 2, 72 + 2, . . . , (6k)2 + 2

is < k.

4

(a) Show that the series
∑

p
1

p logp is convergent.

(b) Using Exercise 7 in Chap. 1 and Corollary 3.98, prove that20 ∑
p

logp
p2 < 1

2 .

5 (Putnam, 1977) Let p be a prime number and a � b be non-negative integers.
Show that

(
pa

pb

)
≡
(
a

b

)
(modp).

6 Let p be a prime number. Determine the number of positive integer solutions of
the Diophantine equation

1

x
+ 1

y
= 1

p
.

20One may also use the inequality

∑

p�100

logp

p2
< 0.484

evaluated using the PARI/GP system.
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7 Determine the prime numbers p such that p2−1
8 is also a prime number.

8 Solve the Diophantine equation

x + y + z+ xy + yz+ zx + xyz= 2009

where 1< x < y < z are integers.

9 Let a be a positive integer such that (a,10)= 1.

(a) Show that a8 ≡ 1 (mod 10) and that, for all non-negative integers k, we have
a8×10k ≡ 1 (mod 10k+1). Deduce that

a800 000 001 ≡ a (mod 109).

(b) Determine a non-negative integer x such that the decimal expansion of x3 ends
with 123 456 789.

10 Prove that, for all integers a � 1, k � 0 and all primes p � a, we have

ap
k+1 ≡ ap

k

(modpk+1).

11

(a) Let n ∈ N and p � 5 be a prime number such that p | (n2 + n+ 1). Show that
ordp(n)= 3 and deduce that p ≡ 1 (mod 6).

(b) Show that there are infinitely many prime numbers of the form p ≡ 1 (mod 6).

12 Let n ∈ N. Show that, for all primes p � n, we have

n− p

p− 1
− logn

logp
< vp(n!)� n− 1

p− 1

and deduce that

vp(n!)= n

p− 1
+O(logn).

13 Show that n ∈ N is a difference of two squares if and only if n �≡ 2 (mod 4).
Deduce the values of n for which n! is a difference of two squares.

14 Let P ∈ Z[X] be a polynomial of degree n� 1. Show that if there exist at least
2n+ 1 distinct integers m such that |P(m)| is prime, then P is irreducible21 over Z.

Are the polynomials P1 = X4 − X3 + 2X − 1 and P2 = X4 − 4X2 − X + 1
irreducible over Z?

21See Definition 7.21 and Proposition 7.28.
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15 Using Dirichlet’s theorem (Theorem 3.63) and the sequence 7 + 15n, show that
there exist infinitely many prime numbers p not lying in a pair of twin prime num-
bers (q, r).

16 Let n� 3 be an integer and 1 = d1 < d2 < · · ·< dk = n be all the divisors of n
in increasing order. Show that

k∑

j=2

dj−1dj < n2.

17 Let n ∈ N.

(a) Let a, b be two positive coprime integers and P = cnX
n + · · · + c1X + c0 ∈

Z[X]. Show that, if a/b is a root of P , then a | c0 and b | cn.
(b) Deduce that if P is a monic integer polynomial, then the roots of P are either

integer or irrational.
(c) Use the preceding question to show that, if p is a prime number, then

√
p �∈Q.

18 (Serret’s algorithm) This exercise uses the notation and results of Exercises 2
and 3 in Chap. 2.

Part A. The purpose of this section is to show that if p is a prime number, then p is
a sum of two squares if and only if either p = 2 or p ≡ 1 (mod 4).

(a) Let p be an odd prime number such that p = a2 + b2 for some a, b ∈ Z. Show
that p ≡ 1 (mod 4).

(b) Let p be a prime number such that p ≡ 1 (mod 4) and define x < p such that

x ≡
(
p− 1

2

)
! (modp).

Prove that x2 ≡ −1 (modp).
(c) Using Exercise 2 in Chap. 3, show that p can be expressed as a sum of two

squares.

Part B. Let x > 1 be an integer, p > x be a prime number such that p ≡ 1 (mod 4)
and let (rk) be the finite sequence of remainders in the Euclidean algorithm associ-
ated to p and x.

(a) Explain why there exists a positive integer k such that rk−1 >
√
p � rk .

(b) Using Exercise 3 in Chap. 2, show that the pair (u, v) = (tk, rk) satisfies the
conditions of Thue’s lemma.

(c) Express p = 9733 as a sum of two squares.

19 Let n ∈ N. Determine an asymptotic formula for
∏

p p
[n/p].
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20 Let σ > 1 be a real number and N be a positive integer. Show that

∞∑

n=N

1

nσ
� ζ(σ )

Nσ−1

and if N � 3, then
∞∑

n=N

logn

nσ
� ζ(σ ) logN

Nσ−1
.

21 (Unitary divisors) Let n ∈ N. A divisor d of n is called a unitary divisor
if (d,n/d) = 1. The unitary greatest common divisor of m and n is denoted by
(m,n)∗.

(a) Show that (m,n)∗ is a unitary divisor of (m,n).

(b) Let p be a prime number. Show that (pe,pf )∗ =
{
pe or pf , if e=f
1, otherwise.

(c) Set n = p
e1
1 · · ·perr and d = p

f1
1 · · ·pfrr a divisor of n with 0 � fi � ei . Prove

that d is a unitary divisor of n if and only if either fi = 0 or fi = ei . Deduce the
number of unitary divisors of n.

Example Provide the unitary divisors of 3024 and 6615.

(d) Set n= p
e1
1 · · ·perr and m= p

f1
1 · · ·pfrr with ei, fi ∈ Z+. Prove that

(m,n)∗ = p
g1
1 · · ·pgrr with gi =

{
ei or fi, if ei = fi

0, otherwise.

Example Compute (6615,3024)∗.
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Chapter 4
Arithmetic Functions

4.1 Definition and Fundamental Examples

Definition 4.1 An arithmetic function is a map f : N −→ C, i.e. a sequence of
complex numbers, although this viewpoint is not very useful.

Example 4.2 We list the main arithmetic functions the reader may encounter in his
studies in analytic number theory. In what follows, k � 1 is a fixed integer.

� The function e1 defined by1 e1(n) =
{

1, if n=1

0, otherwise.

� The constant function 1 defined by 1(n) = 1.
� The kth powers Idk(n) = nk . We also set Id1 = Id.
� The function ω defined by ω(1) = 0 and, for all n � 2, ω(n) counts the number

of distinct prime factors of n.
� The function � defined by �(1) = 0 and, for all n � 2, �(n) counts the number

of prime factors of n, including multiplicities.
� The Möbius function μ defined by μ(1) = 1 and, for all n � 2, by

μ(n) =
{

(−1)ω(n), if n is squarefree
0, otherwise.

This is one of the most important arithmetic functions of the theory.
� The Liouville function λ defined by λ(n) = (−1)�(n).
� The Dirichlet–Piltz divisor function τk defined by2 τ1 = 1, and for k � 2 and

n � 1, by

τk(n) =
∑
d|n

τk−1(d).

1Some authors also use the notation δ or i.
2Some authors also use the notation dk .

O. Bordellès, Arithmetic Tales, Universitext,
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It is customary to denote τ2 by τ and hence

τ(n) =
∑
d|n

1

so that τ(n) counts the number of divisors of n.
� The Hooley divisor function �k defined by �1 = 1, and for k � 2 and n � 1, by

�k(n) = max
u1,...,uk−1∈R

∑
d1d2 ···dk−1|n

eui <di�eui+1

1.

It is customary to denote �2 by �.
� The function τ(k) defined to be the number of k-free divisors of n (k � 2). Note

that τ(2) = 2ω.
� The function γk defined to be the greatest k-free divisor of n (k � 2). The function

γ2 is sometimes called the core, or squarefree kernel, of n.
� The divisor function σk defined by

σk(n) =
∑
d|n

dk.

It is customary to denote σ1 by σ . Also note that σ0 = τ .
� The Euler totient function ϕ defined by

ϕ(n) =
∑
m�n

(m,n)=1

1.

� The Jordan totient function ϕk defined by

ϕk(n) =
∑

(m1,...,mk)∈Zk+,mi�n

(m1,...,mk,n)=1

1.

Note that ϕ1 = ϕ.
� The Dedekind function � defined by

�(n) = n
∏
p|n

(
1 + 1

p

)
.

� The function μk defined to be the characteristic function of the set of k-free num-
bers (k � 2). Note that μ2 = μ2.

� The function sk defined to be the characteristic function of the set of k-full num-
bers3 (k � 2).

3There is no official notation for this function in the literature. For instance, Ivić [Ivi85] uses the
notation fk .



4.2 Additive and Multiplicative Functions 167

Table 4.1 Values of the
τ -function n 1007 1008 1009 1010 1011 1012 1013 1014

τ(n) 4 30 2 8 4 12 2 12

� The functions τ (e) and σ (e) are respectively defined to be the number and the sum
of exponential divisors.

Recall that if n = p
α1
1 · · ·pαr

r and d = p
β1
1 · · ·pβr

r is a divisor of n, then d is
called an exponential divisor if βi | αi for all i ∈ {1, . . . , r}.

� The function β defined by β(1) = 1 and, for all n � 2, β(n) is the number of
square-full divisors of n.

� The function a(n) defined to be the number of non-isomorphic abelian groups of
order n.

� Let K/Q be an algebraic number field. The function νK is defined by νK(1) = 1
and, for all n� 2, νK(n) is the number of non-zero integral ideals of OK of norm
equal to n (see Chap. 7).

� The generalized von Mangoldt functions �k defined by

�k(n) =
∑
d|n

μ(d)

(
log

n

d

)k

.

Note that, by Lemma 3.41 and Möbius inversion formula (Theorem 4.13), we
have �1 = �.

� The Dirichlet characters χ(n) modulo q .

Clearly, sums and products of arithmetic functions are still arithmetic functions.
It should also be mentioned that the behavior of such functions can be erratic, as we
can see in Table 4.1 showing values taken by τ at certain consecutive integers.

Hence the idea is to study these functions on average, i.e. to get estimates for the
sums ∑

n�x

f (n).

This is the aim of this chapter. In view of this purpose, we first need some definitions.

4.2 Additive and Multiplicative Functions

Definition 4.3 Let f be an arithmetic function.

� f is multiplicative if f (1) �= 0 and if, for all positive integers m, n such that
(m,n) = 1, we have

f (mn) = f (m)f (n). (4.1)
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� f is completely multiplicative if f (1) �= 0 and if the condition f (mn) =
f (m)f (n) holds for all positive integers m, n.

� f is strongly multiplicative if f is multiplicative and if f (pα) = f (p) for all
prime powers pα .

The condition f (1) �= 0 is a convention to exclude the zero-function of the set
of multiplicative functions. Furthermore, it is easily seen that, if f and g are multi-
plicative, then so are fg and f/g (with g �= 0 for the quotient).

The dual notion of additivity is similar.

Definition 4.4 Let f be an arithmetic function.

� f is additive if, for all positive integers m, n such that (m,n) = 1, we have

f (mn) = f (m) + f (n). (4.2)

� f is completely additive if the condition f (mn) = f (m) + f (n) holds for all
positive integers m, n.

� f is strongly additive if f is additive and if f (pα) = f (p) for all prime pow-
ers pα .

Similarly, f is said to be sub-multiplicative if, for all positive coprime integers
m, n, we have

f (mn) � f (m)f (n)

and f is said to be super-multiplicative if, for all positive coprime integers m, n, we
have

f (mn) � f (m)f (n).

The notions of sub-additivity and super-additivity are defined in a similar way, as
well as the notions of completely sub-multiplicative, sub-additive, super-multiplica-
tive and super-additive.

In order to show that a given function is multiplicative or additive, one can use
the relations (4.1) or (4.2). However, one often needs to know that a function is
multiplicative or additive precisely in order to use (4.1) or (4.2). The following
result is then a useful criterion.

Lemma 4.5 Let f be an arithmetic function.

(i) f is multiplicative if and only if f (1) = 1 and for all n = p
α1
1 · · ·pαr

r where the
pi are distinct primes, we have

f (n) =
r∏

k=1

f
(
p

αk

k

)
. (4.3)



4.2 Additive and Multiplicative Functions 169

(ii) f is additive if and only if f (1) = 0 and for all n = p
α1
1 · · ·pαr

r where the pi

are distinct primes, we have

f (n) =
r∑

k=1

f
(
p

αk

k

)
. (4.4)

Proof The two proofs are similar, so that we only show (i). Assume first that f

satisfies f (1) = 1 and (4.3). Let n = p
α1
1 · · ·pαr

r and m = q
β1
1 · · ·qβr

r be two positive
coprime integers. Using (4.3) and the fact that pi �= qj we get

f (nm) = f
(
p

α1
1 · · ·pαr

r q
β1
1 · · ·qβr

r

)=
r∏

k=1

f
(
p

αk

k

) r∏
k=1

f
(
q

βk

k

)= f (n)f (m)

and hence f satisfies (4.1). Since f (1) = 1 �= 0, we infer that f is multiplicative.
Conversely, let f be a multiplicative function. Using (4.1) with m = n = 1 gives

f (1) = f (1)f (1) so that f (1) = 1 since f (1) �= 0. Now let n1, . . . , nk be pairwise
coprime integers. By induction using (4.1), we get

f (n1 · · ·nk) = f (n1) · · ·f (nk).

Thus, if n = p
α1
1 · · ·pαr

r where the pi are distinct primes, we infer that f satisfies
(4.3) as required. �

Example 4.6 In Example 4.2, the functions ω and � are additive, the first one
strongly, the second one completely. All the other functions, except the Hooley divi-
sor function �k and the generalized von Mangoldt function �k , are multiplicative.

� The functions e1, 1, Idk , λ and the Dirichlet characters are completely multiplica-
tive.

� It is easily seen that, for all positive integers m, n, we have

ω(mn) = ω(m) + ω(n) − ω
(
(m,n)

)
since in the sum ω(m) + ω(n), the prime factors of (m,n) have been counted
twice. This implies easily the additivity of ω.

� The functions μk and sk are clearly multiplicative.
� Now let us have a look at the Möbius function. Using its definition, we have

μ(1) = 1 and, for all prime powers pα , we also have

μ
(
pα
)=
{−1, if α = 1

0, otherwise

so that, if n = p
α1
1 · · ·pαr

r where the pi are distinct primes, we have

μ
(
p

α1
1

) · · ·μ(pαr
r

)=
{

(−1)r , if α1 = · · · = αr = 1
0, otherwise



170 4 Arithmetic Functions

and hence μ(p
α1
1 ) · · ·μ(p

αr
r ) = μ(n). Therefore, the μ-function is multiplicative

by Lemma 4.5.
� The multiplicativity of the function νK will be established in Proposition 7.118.
� It has been shown in Corollary 3.7 (i) that the function τ is multiplicative.
� In order to prove the multiplicativity of the function τ(k), let us write uniquely n

in the form n = ab where (a, b) = 1 and μk(a) = sk(b) = 1 with a = p
α1
1 · · ·pαr

r

and b = p
αr+1
r+1 · · ·pαs

s where the pi are distinct primes, and consider the product

r∏
i=1

(
1 + pi + · · · + p

αi

i

)×
s∏

i=r+1

(
1 + pi + · · · + pk−1

i

)
.

Each term in the expansion of this product is a k-free divisor of n and, conversely,
each k-free divisor of n is a term in the expansion of this product. This implies

τ(k)(n) = τ(a)kω(b)

and therefore τ(k) is multiplicative.
� Let n be uniquely written in the form n = ab where (a, b) = 1 and μ2(a) =

s2(b) = 1 with a = p
α1
1 · · ·pαr

r and b = p
αr+1
r+1 · · ·pαs

s where the pi are distinct
primes and αi ∈ {0,1} for i = 1, . . . , r and αi � 2 for i = r + 1, . . . , s. A divisor
d = p

β1
1 · · ·pβs

s of n is square-full if and only if d = 1 or d | b. This is equivalent
to βi = 0 or 2 � βi � αi for i = r + 1, . . . , s. Therefore we get

β(n) =
s∏

i=r+1

αi

and hence β is multiplicative.
� Let n be uniquely written in the form n = p

α1
1 · · ·pαs

s . A divisor d = p
β1
1 · · ·pβs

s

is an exponential divisor of n if and only if βi | αi . We readily deduce that

τ (e)(n) =
s∏

i=1

τ(αi)

and hence τ (e) is multiplicative.
� Let G be an abelian group of order n = p

α1
1 · · ·pαs

s . From (3.1), we have the
decomposition

G � H1 ⊕ · · · ⊕ Hs

where Hi is the pi -Sylow subgroup of G of order p
αi

i , which implies that

a(n) =
s∏

i=1

a
(
p

αi

i

)
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so that the function a is multiplicative by Lemma 4.5. Furthermore, let G be an
abelian group of order pα . Then G may be factorized in the form

G � G1 ⊕ · · · ⊕ Gr

for some positive integer r , where the Gi �= {eG} are cyclic subgroups of G of
order pβi for some βi | α by Lagrange’s theorem (Theorem 7.1 (i)). We infer that
the number of abelian groups of order pα is equal to the number of decomposi-
tions of the form

α = β1 + · · · + βr

i.e. the number of unrestricted partitions of α. Denoting by P(α) this number, we
finally get

a(n) =
s∏

i=1

P(αi).

� The multiplicativity of the other functions is not obvious. We shall see another
tool which will prove to be very useful in this problem.

4.3 The Dirichlet Convolution Product

Definition 4.7 Let f and g be two arithmetic functions. The Dirichlet convolution
product of f and g is the arithmetic function f � g defined by

(f � g)(n) =
∑
d|n

f (d)g

(
n

d

)
=
∑
d|n

f

(
n

d

)
g(d).

It should be noticed that the second equality above follows from the fact that the
map d −→ d ′ such that dd ′ = n is one-to-one.

Example 4.8 We have �k = μ � logk , τ = 1 � 1 and by induction

τk = 1 � · · · � 1︸ ︷︷ ︸
k times

.

Also σk = Idk �1. We shall see later that other arithmetic functions may be written
as a convolution product of two simpler arithmetic functions. This will be a powerful
tool to get estimates for averages of these functions.

The next result shows that this operation behaves well.

Lemma 4.9 The Dirichlet convolution product is commutative, associative and has
an identity element which is the function e1. Furthermore, if f (1) �= 0, then f is
invertible.



172 4 Arithmetic Functions

Proof The commutativity follows at once from Definition 4.7. Now let f , g and h

be three arithmetic functions and n be a positive integer. We have

(
(f � g) � h

)
(n) =

∑
d|n

(f � g)(d)h

(
n

d

)
=
∑
d|n

∑
δ|d

f (δ)g

(
d

δ

)
h

(
n

d

)

and

(
f � (g � h)

)
(n) =

∑
d|n

f (d)(g � h)

(
n

d

)
=
∑
d|n

f (d)
∑

δ|(n/d)

g(δ)h

(
n

dδ

)
.

Setting d ′ = dδ in the last inner sum gives

(
f � (g � h)

)
(n) =

∑
d ′|n

∑
d|d ′

f (d)g

(
d ′

d

)
h

(
n

d ′

)
= ((f � g) � h

)
(n)

establishing the associativity. We also have obviously

(e1 � f )(n) =
∑
d|n

e1(d)f

(
n

d

)
= f (n).

Finally, we prove the invertibility by constructing by induction the inverse g of an
arithmetic function f satisfying f (1) �= 0. The function g is the inverse of f if and
only if (f � g)(1) = 1 and (f � g)(n) = 0 for all n > 1. This is equivalent to

⎧⎪⎨
⎪⎩

f (1)g(1) = 1∑
d|n

g(d)f

(
n

d

)
= 0 (n � 2).

Since f (1) �= 0, we have g(1) = f (1)−1 by the first equation. Now let n > 1 and
assume that we have proved that there exist unique values g(1), . . . , g(n−1) satisfy-
ing the above equations. Since f (1) �= 0, the second equation above is equivalent to

g(n) = − 1

f (1)

∑
d|n
d �=n

g(d)f

(
n

d

)

which determines g(n) in a unique way by the induction hypothesis, and this def-
inition of g(n) shows that the equations above are satisfied, which completes the
proof. �

Therefore the condition f (1) �= 0 is necessary and sufficient to the invertibility
of f . By Lemma 4.5, we infer that every multiplicative function is invertible.

The next result is of crucial importance.

Theorem 4.10 If f and g are multiplicative, then so is f � g.
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Proof Let f and g be two multiplicative functions and let m, n be positive integers.
By Corollary 3.7 (iii), each divisor d of mn can be written uniquely in the form
d = ab with a | m, b | n and (a, b) = 1 so that

(f � g)(mn) =
∑
d|mn

f (d)g

(
mn

d

)
=
∑
a|m

∑
b|n

f (ab)g

(
mn

ab

)

and since f and g are multiplicative and (a, b) = (m/a,n/b) = 1, we infer that

(f � g)(mn) =
∑
a|m

∑
b|n

f (a)f (b)g

(
m

a

)
g

(
n

b

)
= (f � g)(m)(f � g)(n)

as required. �

This result enables us:

1. to show that a given arithmetic function is multiplicative by writing it as a product
of at least two multiplicative functions;

2. to show by multiplicativity several arithmetic identities.

Example 4.11

1. Since τ = 1 � 1 and 1 is multiplicative, we deduce that τ is multiplicative. The
same conclusion obviously holds for τk .

2. We intend to prove the following identity

∑
d|n

μ(d) =
{

1, if n = 1

0, if n > 1
(4.5)

i.e.

μ � 1 = e1. (4.6)

Now since μ and 1 are multiplicative, so is the function μ � 1 by Theorem 4.10
and hence (4.6) is true for n = 1. Besides, it is sufficient to prove (4.6) for prime
powers by Lemma 4.5, which is easy to check. Indeed, for all prime powers pα ,
we have

(μ � 1)
(
pα
)=

α∑
j=0

μ
(
pj
)= μ(1) + μ(p) = 1 − 1 = 0

as asserted.
3. Let us have a look at Euler’s totient function. By (4.5), we have

∑
d|(m,n)

μ(d) =
{

1, if (m,n) = 1

0, otherwise
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so that using Proposition 1.11 (v) we have

ϕ(n) =
∑
m�n

(m,n)=1

1 =
∑
m�n

∑
d|(m,n)

μ(d) =
∑
d|n

μ(d)
∑
m�n
d|m

1 =
∑
d|n

μ(d)

[
n

d

]

=
∑
d|n

μ(d)
n

d

and therefore

ϕ = μ � Id . (4.7)

We first deduce that ϕ is multiplicative by Theorem 4.10. Furthermore, if pα is a
prime power, then ϕ(pα) counts the number of integers m � pα such that p � m,
and hence ϕ(pα) is equal to pα minus the number of multiples of p less than pα ,
so that by Proposition 1.11 (v) we get

ϕ
(
pα
)= pα −

[
pα

p

]
= pα − pα−1 = pα

(
1 − 1

p

)

which gives using Lemma 4.5

ϕ(n) = n
∏
p|n

(
1 − 1

p

)
. (4.8)

4. Let k � 2 be an integer and let us prove the following identity
∑
dk |n

μ(d) = μk(n) (4.9)

i.e.

μk = fk � 1 (4.10)

where

fk(n) =
{

μ(d), if n = dk

0, otherwise.

Since fk is clearly multiplicative, we deduce that fk �1 is also multiplicative. We
easily check (4.10) for n = 1. For all prime powers pα , we have

(fk � 1)
(
pα
)= 1 +

α∑
j=1

fk

(
pj
)

= 1 +
{

0, if α < k

μ(p), if α � k
=
{

1, if α < k

0, otherwise
= μk

(
pα
)

and therefore (4.10) holds by Lemma 4.5.
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5. By Example 4.8, we have σ = Id�1 and hence σ is multiplicative. Now let us
prove the following identity

σ = τ � ϕ. (4.11)

(4.11) is true for n = 1 and if pα is a prime power, then we have

(τ � ϕ)
(
pα
)=

α∑
j=0

ϕ
(
pj
)
τ
(
pα−j

)

= α + 1 +
(

1 − 1

p

) α∑
j=1

pj (α − j + 1)

= pα+1 − 1

p − 1
= σ
(
pα
)

establishing (4.11).
6. Let d ∈ Z \ {0,1} be squarefree and K = Q(

√
d) be a quadratic field with dis-

criminant dK. By Lemma 7.107, the Dirichlet character χ defined by χ(n) =
(dK/n), where (a/b) is the Kronecker symbol, is the quadratic character associ-
ated to K. Now Proposition 7.131 implies

νK = χ � 1. (4.12)

7. Let us prove the convolution identity

τ(k) = 1 � μk. (4.13)

(4.13) is easy for n = 1. Since the two functions are multiplicative, it suffices to
check this identity for prime powers. Now

(1 � μk)
(
pα
)=

α∑
j=0

μk

(
pj
)=
{

α + 1, if α < k

k, if α � k.
= τ(k)

(
pα
)

as required.
8. For all prime powers pα , we have

(f � μ)
(
pα
)= f

(
pα
)− f

(
pα−1).

We end this section with the next result which generalizes Theorem 3.15.

Theorem 4.12 (Euler–Fermat) Let a, n be positive integers such that (a,n) = 1.
Then

aϕ(n) ≡ 1 (modn).
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Proof Write n = p
α1
1 · · ·pαr

r where the pi are distinct primes. By Proposition 2.13
(vi), it suffices to show

aϕ(n) ≡ 1
(
modp

αi

i

)
for i ∈ {1, . . . , r}. Now by (4.8) we have

aϕ(n) = a
∏r

i=1 p
αi−1
i (pi−1)

and hence the result follows if

bpα−1(p−1) ≡ 1
(
modpα

)

holds for all integers b,α � 1 and all primes p � b. Using Exercise 9 in Chap. 3 with
a = b and k = α − 1 gives

bpα ≡ bpα−1 (
modpα

)

which is equivalent to the preceding congruence by Proposition 2.21 (v), which
concludes the proof. �

It should be mentioned that one can also prove this result by mimicking the proof
of Theorem 3.15. More generally, Euler–Fermat’s theorem is a direct consequence
of Lagrange’s theorem (Theorem 7.1 (i)) which implies that, if G is any finite group
of order |G| and identity element eG, then, for all a ∈ G, we have

a|G| = eG.

Theorem 4.12 then follows at once by applying this result with G = (Z/nZ)∗ since,
by Theorem 2.30, we have

(a,n) = 1 ⇐⇒ a ∈ (Z/nZ)∗

and |(Z/nZ)∗| = ϕ(n).

4.4 The Möbius Inversion Formula

The identity (4.6) may be seen as an arithmetic form of the inclusion-exclusion
principle, and then is the starting point of Brun’s sieve (3.30). On the other hand,
this identity means algebraically that the Möbius function is the inverse of the func-
tion 1 for the Dirichlet convolution product. One can exploit this information in the
following way. Suppose that f and g are two arithmetic functions such that

g = f � 1.
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By Lemma 4.9, we infer that

g = f � 1 ⇐⇒ g � μ = f � (1 � μ) = f.

This relation is called the Möbius inversion formula, and is a key part in the esti-
mates of average orders of certain multiplicative functions. Let us summarize this
result in the following theorem.

Theorem 4.13 (Möbius inversion formula) Let f and g be two arithmetic functions.
Then we have

g = f � 1 ⇐⇒ f = g � μ

i.e. for all positive integers n

g(n) =
∑
d|n

f (d) ⇐⇒ f (n) =
∑
d|n

g(d)μ

(
n

d

)
.

Our first application is a second proof of Proposition 3.30 stating that, for each
prime number p, there exists a primitive root modulo p.

Proof of Proposition 3.30 One can suppose that p � 3. If d | (p − 1), let N(d)

be the number of elements of a reduced residue system modulo p having an order
equal to d . For each divisor δ of d , a solution of the congruence xδ ≡ 1 (modp) is
also a solution of xd ≡ 1 (modp). By Example 3.28, this congruence has exactly d

solutions, so that ∑
δ|d

N(δ) = d

or equivalently

N � 1 = Id .

By the Möbius inversion formula and (4.7), we get N = μ� Id = ϕ and hence N(p−
1) = ϕ(p − 1), so that there are ϕ(p − 1)� 1 primitive roots modulo p. �

Our second application concerns the number of monic irreducible polynomials
of degree n in Fp[X].

Proposition 4.14 Let p be a prime number, n be a positive integer and Nn,p be the
number of monic irreducible polynomials of degree n in Fp[X]. Then we have

Nn,p = 1

n

∑
d|n

μ(d)pn/d .
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Proof Let P ∈ Fp[X] be a monic polynomial. Since P may be factorized uniquely
as a product of monic irreducible polynomials in Fp[X], we have

∑
P∈Fp [X]
P monic

T degP =
∏

Q∈Fp [X]
Q monic irreducible

(
1 + T degQ + T 2 degQ + · · · )

=
∏

Q∈Fp [X]
Q monic irreducible

(
1 − T degQ

)−1

=
∞∏

d=1

(
1 − T d

)−Nd,p .

Since the number of monic polynomials of degree n in Fp[X] is equal to pn, we
deduce that

∞∑
n=1

pnT n =
∞∏

d=1

(
1 − T d

)−Nd,p

and taking logarithms of both sides gives

log(1 − pT ) =
∞∑

d=1

Nd,p log
(
1 − T d

)=
∞∑

d=1

Nd,p

∞∑
δ=1

δ−1T dδ

and hence

∞∑
n=1

n−1pnT n =
∞∑

d=1

Nd,p

∞∑
δ=1

δ−1T dδ =
∞∑

n=1

n−1T n
∑
d|n

dNd,p

and comparing the coefficients of T n implies that

pn =
∑
d|n

dNd,p.

Now Theorem 4.13 gives the asserted result. �

The Möbius inversion formula may also be used to count the number of primitive
Dirichlet characters modulo q . We shall actually prove the following slightly more
general result.

Proposition 4.15 Let q � 2 be an integer and k ∈N such that (k, q) = 1. Then

∑�

χ (modq)

χ(k) =
∑

d|(q,k−1)

ϕ(d)μ(q/d)
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where the star indicates a summation over primitive Dirichlet characters. In partic-
ular, the number ϕ�(q) of primitive Dirichlet characters modulo q is given by

ϕ�(q) = (ϕ � μ)(q).

Hence ϕ� is multiplicative and there is no primitive Dirichlet character modulo 2m

where m is an odd positive integer.

Proof Let k ∈ N such that (k, q) = 1. Since each Dirichlet character modulo q is
induced by a unique primitive Dirichlet character modulo a divisor of q , we have

∑
d|q

∑�

χ (modd)

χ(k) =
∑

χ (modq)

χ(k) = 1q,1(k)ϕ(q) =
{

ϕ(q), if k ≡ 1 (modq)

0, otherwise

where we used Proposition 3.68 in the second equality. Now by Theorem 4.13 we
get

∑�

χ (modq)

χ(k) =
∑
d|q

1d,1(k)ϕ(d)μ(q/d) =
∑

d|(q,k−1)

ϕ(d)μ(q/d)

as required. Taking k = 1 gives the formula for ϕ�(q) and hence ϕ� is multiplicative
by Theorem 4.10. Furthermore, ϕ�(2) = ϕ(2) − ϕ(1) = 1 − 1 = 0 and therefore by
multiplicativity, for all odd positive integers m, we get ϕ�(2m) = ϕ�(2)ϕ�(m) = 0
as asserted. �

Example 4.16

1. By Lemma 3.41 (i), one has log = ��1 and hence � = μ� log by Theorem 4.13
as asserted in Example 4.2.

2. Let us prove that ∑
d|n

ϕ(d) = n

and
∑
d|n

μ(d)

d
=
∏
p|n

(
1 − 1

p

)
.

Indeed, from (4.7) and Theorem 4.13, we get Id = ϕ �1 which is the first identity.
For the second one, we have using (4.7)

∑
d|n

μ(d)

d
= 1

n

∑
d|n

μ(d)
n

d
= (μ � Id)(n)

n
= ϕ(n)

n

which implies the asserted result.
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4.5 Summation Methods

In this section, we intend to provide some tools to estimate sums of the form

S(x) =
∑
n�x

(f � g)(n) =
∑
n�x

∑
d|n

f (d)g(n/d)

with x � 1. The first idea which comes to mind is to interchange the order of summa-
tion, which amounts to rearranging the terms of the sum favoring the factorization
by the terms f (1), f (2), . . . We thus get

S(x) =
∑
d�x

f (d)
∑
n�x
d|n

g(n/d).

Making the change of variable n = kd in the inner sum and noticing that n � x and
d | n is equivalent to k � x/d , we finally obtain

S(x) =
∑
d�x

f (d)
∑

k�x/d

g(k).

We may thus state the following result.

Proposition 4.17 Let x � 1 be a real number and f and g be two arithmetic func-
tions. Then ∑

n�x

(f � g)(n) =
∑
d�x

f (d)
∑

k�x/d

g(k).

Example 4.18

1. Since τ = 1 � 1, we get using Proposition 4.17 and the easy equality [x] = x +
O(1)

∑
n�x

τ (n) =
∑
d�x

∑
k�x/d

1 =
∑
d�x

[
x

d

]
= x

∑
d�x

1

d
+ O(x) = x logx + O(x).

We shall see later how to improve on this result.
2. Since σ = 1 � Id, we get using Proposition 4.17

∑
n�x

σ (n) =
∑
d�x

∑
k�x/d

k = 1

2

∑
d�x

[
x

d

]([
x

d

]
+ 1

)

and using [x] = x + O(1) we obtain

∑
n�x

σ (n) = x2

2

∑
d�x

1

d2
+ O

(
x
∑
d�x

1

d

)
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and since

∑
d�x

1

d2
=

∞∑
d=1

1

d2
−
∑
d>x

1

d2
= ζ(2) + O

(
1

x

)

where we used Exercise 19 in Chap. 3, we finally get

∑
n�x

σ (n) = x2ζ(2)

2
+ O(x logx). (4.14)

3. Since μ � 1 = e1, we get using Proposition 4.17

1 =
∑
n�x

(μ � 1)(n) =
∑
d�x

μ(d)
∑

k�x/d

1 =
∑
d�x

μ(d)

[
x

d

]

so that

∑
n�x

μ(n)

[
x

n

]
= 1 (4.15)

which is a very important identity. A variant of this identity may be obtained as
follows.

∑
n�x+y

μ(n)

([
x + y

n

]
−
[
x

n

])
=
∑

n�x+y

μ(n)

[
x + y

n

]
−
∑

n�x+y

μ(n)

[
x

n

]

= 1 −
∑
n�x

μ(n)

[
x

n

]
−

∑
x<n�x+y

μ(n)

[
x

n

]

= 1 − 1 = 0

since in the last sum we have [x/n] = 0. This implies that

∑
x<n�x+y

μ(n) = −
∑
n�x

μ(n)

([
x + y

n

]
−
[
x

n

])
.

Set N = [x]. Using (4.15) we get

N
∑
n�N

μ(n)

n
=
∑
n�N

μ(n)

[
N

n

]
+
∑
n�N

μ(n)

{
N

n

}
= 1 +

∑
n�N−1

μ(n)

{
N

n

}

so that ∣∣∣∣
∑
n�x

μ(n)

n

∣∣∣∣� 1

N

(
1 +

∑
n�N−1

μ(n)

{
N

n

})
� 1 + N − 1

N
= 1.
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4. Using Proposition 4.35, we shall see that the Dirichlet series of the Möbius func-
tion is ζ(s)−1 which is absolutely convergent in the half-plane σ > 1. This im-
plies in particular that, for all integers k � 2, we have

∞∑
n=1

μ(n)

nk
= 1

ζ(k)
. (4.16)

Using Proposition 4.17, one may provide another proof of (4.16). It is first
easily seen that the series of the left-hand side converges by Rule 1.20, since
|μ(n)|/nk � 1/nk . Now applying Proposition 4.17 with f (n) = μ(n)/nk and
g(n) = 1/nk we get for all positive integers N

1 =
∑
n�N

(f � g)(n) =
∑
d�N

μ(d)

dk

∑
m�N/d

1

mk

=
∑
d�N

μ(d)

dk

∞∑
m=1

1

mk
−
∑
d�N

μ(d)

dk

∑
m>N/d

1

mk

= ζ(k)
∑
d�N

μ(d)

dk
− R(N)

with
∣∣R(N)

∣∣� ∑
d�N

1

dk

∑
m>N/d

1

mk
.

Now using Exercise 19 in Chap. 3, we obtain

∑
m>N/d

1

mk
� ζ(k)

(
d

N

)k−1

and thus
∣∣R(N)

∣∣� ζ(k)

Nk−1

∑
d�N

1

d
� ζ(k) log(eN)

Nk−1

and hence
∑
d�N

μ(d)

dk
= 1

ζ(k)
+ O

(
logN

Nk−1

)

giving (4.16) by letting N −→ ∞.
5. Using (4.9), Proposition 4.17, the estimate [x] = x + O(1), (4.16) and Exer-

cise 19 in Chap. 3, we get
∑
n�x

μk(n) =
∑
n�x

∑
dk |n

μ(d) =
∑

d�x1/k

μ(d)
∑

k�x/dk

1
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=
∑

d�x1/k

μ(d)

[
x

dk

]
= x

∑
d�x1/k

μ(d)

dk
+ O

(
x1/k

)

= x

∞∑
d=1

μ(d)

dk
− x

∑
d>x1/k

μ(d)

dk
+ O

(
x1/k

)

= x

ζ(k)
+ O

(
x
∑

d>x1/k

1

dk

)
+ O

(
x1/k

)

= x

ζ(k)
+ O

(
x1/k

)
.

One may improve on Proposition 4.17 by inserting a parameter which may be
optimized. This is indeed a very fruitful idea leading to the next result, called the
Dirichlet hyperbola principle.

Proposition 4.19 (Dirichlet hyperbola principle) Let 1 � T � x be real numbers
and f and g be two arithmetic functions. Then

∑
n�x

(f � g)(n) =
∑
n�T

f (n)
∑

k�x/n

g(k) +
∑

k�x/T

g(k)
∑

n�x/k

f (n)

−
∑
n�T

f (n)
∑

k�x/T

g(k).

Proof Splitting the sum of the right-hand side of Proposition 4.17 gives

∑
n�x

(f � g)(n) =
∑
d�T

f (d)
∑

k�x/d

g(k) +
∑

T <d�x

f (d)
∑

k�x/d

g(k)

and
∑

T <d�x

f (d)
∑

k�x/d

g(k) =
∑

k�x/T

g(k)
∑

T <d�x/k

f (d)

=
∑

k�x/T

g(k)

( ∑
d�x/k

f (d) −
∑
d�T

f (d)

)

as required. �

Historically, it was Dirichlet who discovered this principle when he succeeded in
improving the error-term in the sum

∑
n�x

τ (n).
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Fig. 4.1 Dirichlet hyperbola
principle

The name comes from the following observation. Since, by above,

∑
n�x

τ (n) =
∑
d�x

[
x

d

]

we are led to count the number of integer points (m,n) with 1 � m� x lying under
the hyperbola mn = x.

Dirichlet used the symmetry of the hyperbola to deduce that the number of in-
teger points is equal to that of the interior of the square [1,

√
x]2 plus twice the

number of integer points (m,n) such that
√

x < m � x, see Fig. 4.1. This gives

∑
n�x

τ (n) = [√x]2 + 2
∑

√
x<m�x

[
x

m

]

= [√x]2 + 2
∑
m�x

[
x

m

]
− 2

∑
m�√

x

[
x

m

]

= [√x]2 + 2
∑
n�x

τ (n) − 2
∑

m�√
x

[
x

m

]

and therefore we get

∑
n�x

τ (n) = 2
∑

m�√
x

[
x

m

]
− [√x]2. (4.17)

It is easily seen that using Proposition 4.19 with f = g = 1 gives (4.17), so that
this result generalizes the geometric method of Dirichlet. We are now in a position
to show the following estimate which is the first result in the so-called Dirichlet
divisor problem.
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Corollary 4.20 (Dirichlet) For x sufficiently large, we have
∑
n�x

τ (n) = x(logx + 2γ − 1) + O(
√

x).

Proof Using (4.17), the estimate [x] = x + O(1) and Theorem 1.22, we get

∑
n�x

τ (n) = 2x
∑

m�√
x

1

m
+ O(

√
x) − (√x + O(1)

)2

= 2x
(
log

√
x + γ + O

(
x−1/2))− x + O(

√
x)

= x logx + x(2γ − 1) + O(
√

x)

as asserted. �

For a presentation of the Dirichlet divisor problem and related problems, see the
introduction in Chap. 6. For more information about this problem, see [Bor09].

The next result provides another application of the Dirichlet hyperbola principle.

Corollary 4.21 Let χ be a non-principal Dirichlet character modulo q . For each
real number x � q1/2 sufficiently large, we have

∑
n�x

(χ � Id)(n) = x2L(2, χ)

2
− x

∑
n�x2/3q1/6

χ(n)

n
ψ

(
x

n

)
+ O

(
x2/3q1/6 logq

)
.

Proof Let T satisfy 1 � T � x. Using Proposition 4.19, we get
∑
n�x

(χ � Id)(n) =
∑
n�T

χ(n)
∑

k�x/n

k +
∑

n�x/T

n
∑

k�x/n

χ(k) −
∑
n�T

χ(n)
∑

n�x/T

n

= 1

2

∑
n�T

χ(n)

[
x

n

]([
x

n

]
+ 1

)
+ O

{ ∑
n�x/T

n

∣∣∣∣
∑

k�x/n

χ(k)

∣∣∣∣
}

+ O

{( ∑
n�x/T

n

)∣∣∣∣
∑
n�T

χ(n)

∣∣∣∣
}
.

Now the use of the Pólya–Vinogradov inequality (Theorem 3.106) and the estimate

[
x

n

]([
x

n

]
+ 1

)
= x2

n2
− 2x

n
ψ

(
x

n

)
+ O(1)

gives

∑
n�x

(χ � Id)(n) = x2

2

∑
n�T

χ(n)

n2
− x

∑
n�T

χ(n)

n
ψ

(
x

n

)
+ O

(
x2T −2q1/2 logq + T

)
.
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Now we have ∑
n�T

χ(n)

n2
= L(2, χ) −

∑
n>T

χ(n)

n2

and, as in Corollary 3.71, we get by Abel’s summation and the Pólya–Vinogradov
inequality the estimate ∣∣∣∣

∑
n>T

χ(n)

n2

∣∣∣∣� 2
√

3q logq

T 2

so that the choice of T = x2/3q1/6 gives the asserted result. �

When χ is a quadratic character modulo q , and thus is the Dirichlet character
attached to the quadratic field K = Q(

√
d) where d = χ(−1)q by Lemma 7.107, it

can be proved that

(χ � Id)(n) =
n∑

i=1

νK
(
(i, n)

)

(see Definition 7.117 and Exercise 10) so that Corollary 4.21 is used in the problem
of the composition of the gcd and the multiplicative function νK (see [Bor10]).

4.6 Tools for Average Orders

4.6.1 Introduction

Let f be an arithmetic function. By an average order of f , we mean finding an
asymptotic formula of the form

∑
n�x

f (n) = g(x) + O
(
R(x)

)

where the main term g(x) lies in the set of usual functions (polynomials, logarithms,
etc) and the error-term R(x) satisfies R(x) = o(g(x)) for x sufficiently large. Under
these conditions, we shall say that the function x �−→ x−1g(x) is an average order
of f on [1, x] for x sufficiently large. For instance, by Corollary 4.20, the function
x �−→ logx + 2γ − 1 is an average order of the divisor function τ on [1, x] for x

sufficiently large.
One of the most important problems in number theory is to find the smallest error-

term admissible in the above asymptotic estimate. This problem is sometimes open,
as for instance in the PNT, where the best error-term to date (3.37) is presumably
far from the conjectured remainder term given by the Riemann hypothesis.

In this section, we consider a certain class of arithmetic functions satisfying the
following hypotheses. We shall say that f ∈M if f is a non-negative multiplicative
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function such that for all x � 1, we have

1

x

∑
p�x

f (p) logp � a (4.18)

∑
p�x

∞∑
α=2

f (pα) logpα

pα
� b (4.19)

where a, b > 0 are independent of x. The purpose of this section is to provide a
proof of the following important result.

Theorem 4.22 Let f be a non-negative multiplicative function satisfying (4.18) and
(4.19). Then, for all x � 1, we have

∑
n�x

f (n) � eb(a + b + 1)
x

log ex
exp

(∑
p�x

f (p)

p

)
.

In other words, only knowing the values of f ∈ M at prime numbers is sufficient
to determine an upper bound which in many cases proves to be of the right order of
magnitude.

It should be mentioned that M is not empty. Indeed, the function 1 is positive,
completely multiplicative and using Lemma 3.42 or Corollary 3.98 and (2.7) with
k = 2 and x = 1/p we get

1

x

∑
p�x

1(p) logp = θ(x)

x
� log 4

and

∑
p�x

∞∑
α=2

1(pα) logpα

pα
=
∑
p�x

(2p − 1) logp

p(p − 1)2
� 6

∑
p�x

logp

p2
< 3

where we used the inequality

∑
p�x

logp

p2
<

1

2
(4.20)

from Exercise 4.(b) in Chap. 3, so that one may take (a, b) = (log 4,3). The reader
may also check that the functions 2ω and τ lie in M since one can take (a, b) =
(log 16,6) for the first one and (a, b) = (log 16,14) for the second one. The next
result provides a useful sufficient condition for a function f to lie in M.

Lemma 4.23 Let f be a multiplicative function satisfying the Wirsing condi-
tions, i.e.

0 � f
(
pα
)
� λ1λ

α−1
2 (4.21)
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for all prime powers pα and some real numbers λ1 > 0 and 0 � λ2 < 2. Then
f ∈M with

(a, b) =
(

λ1 log 4,
λ1λ2(4 − λ2)

(2 − λ2)2

)
.

Proof We will use the inequality

1

p − λ2
� 2

p(2 − λ2)
(4.22)

which readily comes from the fact that λ2 < 2 � p. Note first that f is non-negative
by multiplicativity. Furthermore, we have

1

x

∑
p�x

f (p) logp � λ1θ(x)

x
� λ1 log 4

by Lemma 3.42. Next we have, using (2.7), (4.22) and (4.20),

∑
p�x

∞∑
α=2

f (pα) logpα

pα
� λ1

∑
p�x

logp

∞∑
α=2

α

p

(
λ2

p

)α−1

= λ1λ2

∑
p�x

(2p − λ2) logp

p(p − λ2)2

� λ1λ2(4 − λ2)

2 − λ2

∑
p�x

logp

p(p − λ2)
� λ1λ2(4 − λ2)

(2 − λ2)2

as asserted. �

Lemma 4.23 enables us to increase the number of arithmetic functions lying
in M.

Lemma 4.24 The following arithmetic functions lie in M:

e1, 1, μk, sk, β, a, kω, τ(k), τ (e) and τk.

Proof All these functions are non-negative multiplicative by Example 4.6. Further-
more, if f is such that 0 � f (n) � 1, then the Wirsing conditions (4.21) are obvi-
ously satisfied, and this is the case for the first four arithmetic functions. We have

β
(
pα
)=
{

1, if α ∈ {0,1}
α, if α � 2

and hence β(pα) � max(1, α), so that the Wirsing conditions are readily satisfied.
By [Krä70], we have P(α) � 5α/4 so that

a
(
pα
)
� 51/4(51/4)α−1
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and therefore the function a satisfies (4.21) with λ1 = λ2 = 51/4. Since

kω(pα) = k

kω satisfies (4.21) with λ1 = k and λ2 = 1. Similarly, since τ (e)(pα) = τ(α) and

τ(k)

(
pα
)=
{

k, if α � k

α + 1, if α < k

we easily see that these two functions satisfy (4.21). Finally, τk(p
α) is the number

of solutions of the equation x1 · · ·xk = pα , and setting xi = pβi for some βi ∈ Z�0,
we see that we have to count the number of solutions in (Z�0)

k of the Diophantine
equation

k∑
i=1

βi = α

whose number of solutions is equal to D(1,...,1)(α) = (k+α−1
α

)
by Theorem 2.33,

where D(1,...,1) is the denumerant defined in Chap. 2. Therefore4

τk

(
pα
)=
(

k + α − 1

α

)
(4.23)

and hence

1

x

∑
p�x

τk(p) logp = kθ(x)

x
� k log 4.

Using (2.7) we get

∞∑
α=2

ατk(p
α)

pα
= k

p

{(
1 − 1

p

)−k−1

− 1

}

and the inequality

(1 − x)−k � 1 + kx + k(k + 1)2k+1x2

valid for all 0 � x � 1
2 , implies that

∞∑
α=2

ατk(p
α)

pα
� k(k + 1)2k+2

p2

4It is noteworthy that τk(p
α) = D(1,...,1)(α) where the vector (1, . . . ,1) has k components. See

also Proposition 7.118.
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so that

∑
p�x

logp

∞∑
α=2

ατk(p
α)

pα
� k(k + 1)2k+2

and therefore τk ∈ M. �

4.6.2 Auxiliary Lemmas

Lemma 4.25 Let n ∈ N. For all x � n, we have

log(ex) � logn + x

n
.

Proof Indeed, the function x �−→ logn + x/n − log(ex) is non-decreasing on
[n,+∞[ and vanishes at x = n. �

Lemma 4.26 Let x � 1 be a real number and f be a positive multiplicative function
satisfying (4.19). Then

∑
n�x

f (n)

n
� eb exp

(∑
p�x

f (p)

p

)
.

Proof Expanding the product

∏
p�x

(
1 +

∞∑
α=1

f (pα)

pα

)

and using Theorem 3.3 and the multiplicativity, we infer that this product is equal to

∑
P+(n)�x

f (n)

n
.

Since each positive integer n� x satisfies the condition P +(n) � x and since f � 0,
we get

∑
n�x

f (n)

n
�
∏
p�x

(
1 +

∞∑
α=1

f (pα)

pα

)
� exp

(∑
p�x

∞∑
α=1

f (pα)

pα

)

= exp

(∑
p�x

f (p)

p
+
∑
p�x

∞∑
α=2

f (pα)

pα

)
� eb exp

(∑
p�x

f (p)

p

)

where we used (4.19). �
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4.6.3 The Proof of Theorem 4.22

We are now in a position to prove Theorem 4.22. But instead of dealing with the
sum of the theorem, we shall estimate the sum∑

n�x

f (n)g(n)

with a suitable choice of the weight g(n) which makes the treatment of the new
sum easier. The function g is often chosen among the functions logn or (N/n)β for
some real β > 0. This last choice is called Rankin’s trick and proves to be a very
fruitful idea.

We will choose here the function g(n) = logn on account of its complete addi-
tivity. Hence, if n = p

α1
1 · · ·pαr

r , then

logn =
r∑

i=1

logp
αi

i

and therefore∑
n�x

f (n) logn =
∑

pα�x

∑
k�x/pα

p�k

f
(
kpα
)

logpα =
∑

pα�x

∑
k�x/pα

p�k

f (k)f
(
pα
)

logpα.

Interchanging the summations and neglecting the condition p � k gives
∑
n�x

f (n) logn �
∑
k�x

f (k)
∑

pα�x/k

f
(
pα
)

logpα. (4.24)

We split the inner sum into two subsums according to either α = 1 or α � 2 and,
in the second subsum, we use the fact that pα � x/k is equivalent to 1 � x/(kpα)

which gives
∑

pα�x/k

f
(
pα
)

logpα =
∑

p�x/k

f (p) logp +
∑

pα�x/k
α�2

f
(
pα
)

logpα

� ax

k
+ x

k

∑
pα�x/k

α�2

f (pα) logpα

pα
� (a + b)x

k

where we used (4.18) and (4.19). Reporting this estimate in (4.24) we get

∑
n�x

f (n) logn � (a + b)x
∑
k�x

f (k)

k
. (4.25)

By Lemma 4.25, we infer

∑
n�x

f (n) � 1

log ex

∑
n�x

f (n) logn + x

log ex

∑
k�x

f (k)

k
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and combining this inequality with (4.25) we get

∑
n�x

f (n) � (a + b + 1)
x

log ex

∑
k�x

f (k)

k

and we conclude the proof by using Lemma 4.26. �

Example 4.27 Theorem 4.22 enables us to get several bounds for average orders of
usual arithmetic functions. The sole tool we need is Corollary 3.50 used under the
weaker form

∑
p�x 1/p � log logx. We leave the details to the reader.

1. Let k � 2. We have ∑
n�x

sk(n) � x

logx
.

2. The estimate ∑
n�x

f (n) � x

holds with f = β , f = a, f = τ (e) and f = μk (k � 2).
3. Let k � 2. We have ∑

n�x

τ(k)(n) � x logx.

4. Let k � 1. The estimate ∑
n�x

f (n) � x(logx)k−1

holds with f = kω and f = τk .

It should be noticed that almost all these bounds are of the right order of magni-
tude. Indeed, we saw in Example 4.18 that

∑
n�x

μk(n) = x

ζ(k)
+ O

(
x1/k

)
.

Further, it can be shown that (see [SW00, Wu95, Sur71] respectively)
∑
n�x

a(n) = A1x + A2x
1/2 + A3x

1/3 + O
(
x55/219(logx)7)

∑
n�x

τ (e)(n) = B1x + B2x
1/2 + O

(
x1057/4785+ε

)

∑
n�x

τ(k)(n) = x

ζ(k)

(
logx + 2γ − 1 − k

ζ ′

ζ
(k)

)
+ O

(
xνk
)
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where Ai =∏∞
j=1,j �=i ζ(

j
i
), and

B1 =
∏
p

(
1 +

∞∑
α=2

τ(α) − τ(α − 1)

pα

)
and B2 =

∏
p

(
1 +

∞∑
α=5

τ̃ (α)

pα/2

)

with

τ̃ (α) = τ(α) − τ(α − 1) − τ(α − 2) + τ(α − 3) (4.26)

for α � 5, and

νk =
{

1/k, if k ∈ {2,3}
131/416 + ε, if k � 4.

Furthermore we shall see in Exercise 13 that

∑
n�x

τk(n) = x(logx)k−1

(k − 1)! + O
(
x(logx)k−2)

and using Theorem 4.55 with κ = k ∈ Z�2 we get

∑
n�x

kω(n) = x(logx)k−1

(k − 1)!
∏
p

(
1 − 1

p

)k(
1 + k

p − 1

)
+ O

(
x(logx)k−3/2).

Only the function sk is overestimated, since using Corollary 3.7 (v) we shall prove
in Exercise 14 that ∑

n�x

sk(n) � x1/2.

4.6.4 A Second Theorem

The following result provides a much stronger explicit upper bound of the average
order subject to restricting the class of multiplicative functions by setting a supple-
mentary condition on f .

Theorem 4.28 Let f be a multiplicative function satisfying the Wirsing conditions
(4.21) and

f
(
pα
)
� f

(
pα−1) (4.27)

for all primes p and α ∈ N. Then we have

∑
n�x

f (n) � x
∏
p�x

(
1 − 1

p

)(
1 +

∞∑
α=1

f (pα)

pα

)
.
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Proof By Example 4.11, the condition (4.27) implies that g = f �μ � 0. Hence we
have by Proposition 4.17

∑
n�x

f (n) =
∑
n�x

(g � 1)(n) =
∑
d�x

g(d)

[
x

d

]
� x

∑
d�x

g(d)

d

with

∑
d�x

g(d)

d
�
∏
p�x

(
1 +

∞∑
α=1

g(pα)

pα

)

and we conclude by using g(pα) = f (pα) − f (pα−1). �

Example 4.29

1. If k � 1, the function kω obviously satisfies (4.27) since kω(pα) = k for all prime
powers pα . Theorem 4.28 gives

∑
n�x

kω(n) � x
∏
p�x

(
1 + k − 1

p

)
� x exp

(
(k − 1)

∑
p�x

1

p

)

and Corollary 3.99 implies that
∑
n�x

kω(n) � x exp
{
(k − 1)(log logx + 1)

}= ek−1x(logx)k−1

for all x � 4.
2. By (4.23), we easily see that τk satisfies (4.27), so that using (2.7) we get

∑
n�x

τk(n) � x
∏
p�x

(
1 − 1

p

)1−k

.

Now the explicit upper bound of the second Mertens theorem provided by Corol-
lary 3.99 implies that

∑
n�x

τk(n) <
(
2eγ
)k−1

x(logx)k−1

for all x � e.
3. By (4.13), we have τ(k) � μ = μk � 0, so that τ(k) satisfies (4.27) and thus we get

∑
n�x

τ(k)(n) � x
∏
p�x

(
1 − 1

p

)(
1 +

k−1∑
α=1

α + 1

pα
+ k

∞∑
α=k

1

pα

)

= x
∏
p�x

(
1 − 1

p

)−1(
1 − 1

pk

)
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= x

ζ(k)

∏
p�x

(
1 − 1

p

)−1 ∏
p>x

(
1 − 1

pk

)−1

� 2eγ

ζ(k)

∏
p>x

(
1 − 1

pk

)−1

x logx

as soon as x � e, where we used Corollary 3.99 again.
4. Let P(α) be the number of unrestricted partitions of α. It is proved in [Gup78]

that, for all α � 1, we have P(α) � P(α − 1) so that the function a satisfies
(4.27). Theorem 4.28 provides the bound

∑
n�x

a(n)� x
∏
p�x

(
1 − 1

p

)(
1 +

∞∑
α=1

P(α)

pα

)

and the combinatorial identity

1 +
∞∑

α=1

P(α)xα =
∞∏

j=1

1

1 − xj

valid for |x| < 1, implies

∑
n�x

a(n)� x
∏
p�x

∞∏
j=2

(
1 − 1

pj

)−1

� x

∞∏
j=2

ζ(j).

5. Using Exercise 3, we have β � μ = s2 and hence β satisfies (4.27). We get

∑
n�x

β(n) � x
∏
p�x

(
1 − 1

p

)(
1 + 1

p
+

∞∑
α=2

α

pα

)

= x
∏
p�x

(
1 − 1

p2

)−1(
1 − 1

p3

)−1(
1 − 1

p6

)

� x
ζ(2)ζ(3)

ζ(6)

∏
p>x

(
1 − 1

p6

)−1

.

4.7 Further Developments

4.7.1 The Ring of Arithmetic Functions

Lemma 4.9 tells us that the set A of arithmetic functions with addition and Dirichlet
convolution product � is a unitary commutative ring with identity element e1. It
is also an integral domain (see Chap. 7). To see this we may proceed as follows.
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Define a map N : A −→ Z�0 by setting N(0) = 0 and, if f �= 0, then N(f ) is the
smallest non-negative integer n such that f (n) �= 0. Observe that, if f,g ∈ A, then
N(f � g) = N(f )N(g), and thus, if f �= 0 and g �= 0 are such that N(f ) = a and
N(g) = b, then we have (f � g)(n) = 0 for all n < ab, for if n < ab and d | n, then
either d < a or n/d < b. Furthermore, we also have (f � g)(ab) = f (a)g(b) �= 0,
so that A is an integral domain. One can also prove that this ring is a UFD (see
Definition 7.12).

One may lose the integrity property with a slight change in the convolution prod-
uct. For instance define the unitary convolution product by

(f � g)(n) =
∑
d|n

(d,n/d)=1

f (d)g

(
n

d

)
.

Then it can be shown [Siv89] that the unitary ring (A,+,�) is not an integral do-
main.

One may wonder whether the ring (A,+, �) is nœtherian (see Definition 7.9).
Let p1 < p2 < . . . be the increasing sequence of the prime numbers and, for all
positive integers k, define the subsets Sk of A as follows

Sk = {f ∈A : f (n) = 0 for all n such that (n,p1 · · ·pk) = 1
}
.

Then the sets Sk are pairwise distinct ideals of A since (f −g)(n) = f (n)−g(n) =
0 for all n such that (n,p1 · · ·pk) = 1 and, for all f,g ∈ Sk and all h ∈ A, we have

(f � h)(n) =
∑
d|n

f (d)h

(
n

d

)
= 0

since if d | n and (n,p1 · · ·pk) = 1, then (d,p1 · · ·pk) = 1. Now one may check
that

{0} = S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sk ⊆ Sk+1 ⊆ · · ·
and ⋃

k∈Z�0

Sk =A

and hence the ring (A,+, �) is not nœtherian. One may prove that this ring is also
not artinian by considering the sequence of pairwise distinct ideals Tk of A defined
by

Tk = {f ∈ A : f (n) = 0 for all n such that �(n) < k
}
.

4.7.2 Dirichlet Series—The Formal Viewpoint

We have seen in Chap. 2 that the concept of generating function may be fruitful
to capture the information of a sequence. In view of the multiplicative properties
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of certain arithmetic functions, we use Dirichlet series rather than power series in
analytic number theory.

Definition 4.30 Let f be an arithmetic function. The formal Dirichlet series of a
variable s associated to f is defined by

L(s,f ) =
∞∑

n=1

f (n)

ns
.

As always for formal mathematical objects, we ignore here convergence problems,
and L(s,f ) is the complex number equal to the sum when it converges.

For instance, L(s, e1) = 1 and L(s,1) = ζ(s).
The following proposition reveals the importance of the Dirichlet convolution

product.

Proposition 4.31 Let f , g and h be three arithmetic functions. Then

h = f � g ⇐⇒ L(s,h) = L(s,f )L(s, g).

Proof We have

L(s,f )L(s, g) =
∞∑

k,d=1

f (k)g(d)

(kd)s
=

∞∑
n=1

1

ns

∑
d|n

f

(
n

d

)
g(d) =

∞∑
n=1

(f � g)(n)

ns

which completes the proof. �

The next result may be considered as a generalization of Euler’s proof of Theo-
rem 3.13.

Proposition 4.32 Let f be an arithmetic function. Then f is multiplicative if and
only if

L(s,f ) =
∏
p

(
1 +

∞∑
α=1

f (pα)

psα

)
.

The above product is called the Euler product of L(s,f ).

Proof Expanding the product proves that it is equivalent to the conditions f (1) = 1
and f (n) = f (p

α1
1 ) · · ·f (p

αr
r ) for all n = p

α1
1 · · ·pαr

r and use Lemma 4.5 to com-
plete the proof. �
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4.7.3 Dirichlet Series—Absolute Convergence

If we wish to deal with convergence problems, we need to have at our disposal some
tools to determine precisely the region of convergence of a Dirichlet series. Recall
that for power series

∑
n�0 f (n)sn, the domain of convergence is a disc on the

boundary of which the behavior of the sum is a priori undetermined. For Dirichlet
series, there is an analogous result, except that the domain of absolute convergence
is a half-plane.

Proposition 4.33 For each Dirichlet series F(s), there exists σa ∈ R ∪ {±∞},
called the abscissa of absolute convergence, such that F(s) converges absolutely
in the half-plane σ > σa and does not converge absolutely in the half-plane σ < σa .

Proof Let S be the set of complex numbers s at which F(s) converges absolutely.
If S = ∅, then put σa = +∞. Otherwise define

σa = inf{σ : s = σ + it ∈ S}.
By the definition of σa , F(s) does not converge absolutely if σ < σa . On the other
hand, suppose that F(s) is absolutely convergent for some s0 = σ0 + it0 ∈ C and let
s = σ + it such that σ � σ0. Since∣∣∣∣f (n)

ns

∣∣∣∣=
∣∣∣∣f (n)

ns0

∣∣∣∣× 1

nσ−σ0
�
∣∣∣∣f (n)

ns0

∣∣∣∣
we infer that F(s) converges absolutely at any point s such that σ � σ0. Now by the
definition of σa , there exist points arbitrarily close to σa at which F(s) converges
absolutely, and therefore by above F(s) converges absolutely at each point s such
that σ > σa . �

It follows in particular that the series F(s) defines an analytic function in the half-
plane σ > σa . Note that, by abuse of notation, this function is still denoted by F(s).

Proposition 4.33 implies at once that if |f (n)| � logn, then the series F(s) is
absolutely convergent in the half-plane σ > 1, and hence σa � 1.

At σ = σa , the series may or may not converge absolutely. For instance, ζ(s)

converges absolutely in the half-plane σ > σa = 1 but does not converge on the
line σ = 1. On the other hand, the Dirichlet series associated to the function f (n) =
1/(log(en))2 has also σa = 1 for the abscissa of absolute convergence, but converges
absolutely at σ = 1.

The partial sums
∑

x<n�y f (n) and the Dirichlet series F(s) are strongly related
to each other. The next result shows that if we are able to estimate the order of mag-
nitude of

∑
x<n�y f (n), then a region of absolute convergence of F(s) is known.

Proposition 4.34 Let F(s) =∑∞
n=1 f (n)n−s be a Dirichlet series. Assume that for

all 0 < x < y, we have ∣∣∣∣
∑

x<n�y

f (n)

∣∣∣∣� Myα
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for some α � 0 and M > 0 independent of x and y. Then F(s) converges absolutely
in the half-plane σ > α. Furthermore, we have in this half-plane

∣∣F(s)
∣∣� M|s|

σ − α
and

∣∣∣∣
∑

x<n�y

f (n)

ns

∣∣∣∣� M

xσ−α

( |s|
σ − α

+ 1

)
.

Proof Set A(x) =∑n�x f (n) and S(x, y) = A(y) − A(x). By partial summation
we have ∑

x<n�y

f (n)

ns
= S(x, y)

ys
+ s

∫ y

x

S(x,u)

us+1
du

and by hypothesis we have |S(x, y)/ys | � Myα−σ , so that S(x, y)/ys tends to 0 as
y −→ ∞ in the half-plane σ > α. Therefore if one of

∑
n�1

f (n)

ns
or s

∫ ∞

1

A(u)

us+1
du

converges absolutely, then so does the other, and the two quantities converge to the
same limit. But since ∣∣∣∣A(u)

us+1

∣∣∣∣� M

uσ−α+1

we infer that the integral converges absolutely for σ > α by Rule 1.20, and hence
F(s) is absolutely convergent in this half-plane. Therefore for all σ > α, we get

∞∑
n=1

f (n)

ns
= s

∫ ∞

1

A(u)

us+1
du

and hence
∣∣F(s)

∣∣� M|s|
∫ ∞

1

du

uσ−α+1
= M|s|

σ − α

and similarly
∣∣∣∣
∑

x<n�y

f (n)

ns

∣∣∣∣� M

yσ−α
+ M|s|

∫ ∞

x

du

uσ−α+1
� M

xσ−α

( |s|
σ − α

+ 1

)

as required. �

We have seen in Proposition 4.31 that the product of two Dirichlet series is of
great importance in the theory of arithmetic functions. The next result gives the
domain of absolute convergence of this product.

Proposition 4.35 Let f and g be two arithmetic functions with associated Dirichlet
series F(s) and G(s). Set h = f �g and let H(s) be the associated Dirichlet series.
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If F(s) and G(s) are absolutely convergent at a point s0, then H(s) converges
absolutely at s0 and we have H(s0) = F(s0)G(s0).

Proof From Proposition 4.31, we have

F(s0)G(s0) =
∞∑

n=1

h(n)

ns0
= H(s0)

where the rearrangement of the terms in the double sums is justified by the absolute
convergence of the two series F(s) and G(s) at s = s0. Furthermore, we have

∞∑
n=1

∣∣∣∣h(n)

ns0

∣∣∣∣�
( ∞∑

n=1

∣∣∣∣f (n)

ns0

∣∣∣∣
)( ∞∑

n=1

∣∣∣∣g(n)

ns0

∣∣∣∣
)

proving the absolute convergence of H(s0). �

In 1885/7, Stieltjes proved the following stronger results.

Proposition 4.36 (Stieltjes) Let F(s) and G(s) be two Dirichlet series.

(i) If F and G converge at the point σ0 ∈ R and if they converge absolutely at
σ0 + c where c � 0, then the series F(s)G(s) converges at σ0 + c

2 .
(ii) If F and G converge at the point σ0 ∈ R, then the series F(s)G(s) converges at

σ0 + 1
2 .

Using Proposition 4.35 with h = e1 gives the following result.

Proposition 4.37 Let f be an arithmetic function such that f (1) �= 0 and let F(s)

be its associated Dirichlet series. Let f −1 be the convolution inverse of f , i.e. the
arithmetic function such that f � f −1 = e1 and let G(s) be the associated Dirichlet
series of f −1. Then

G(s) = 1

F(s)

at every point s where F(s) and G(s) converge absolutely.

For instance, this proposition enables us to get the Dirichlet series of the Möbius
function. Indeed, by (4.6), we have μ−1 = 1 and hence, for all σ > 1, we have

∞∑
n=1

μ(n)

ns
= 1

ζ(s)

as stated in Example 4.18.
We end this section with two examples of computation of abscissa of the absolute

convergence.
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Proposition 4.38 Let f be an arithmetic function and F(s) be its associated
Dirichlet series with abscissa of absolute convergence σa .

(i) If |f (n)| � Mnα for some real numbers M > 0 and α � 0, then σa � α + 1.
(ii) We have

σa � lim sup
n→∞

(
1 + log |f (n)|

logn

)
.

Proof

(i) Follows from Proposition 4.34 since we have∣∣∣∣
∑
n�x

f (n)

∣∣∣∣�M
∑
n�x

nα � Mxα+1.

(ii) Set

L = lim sup
n→∞

(
1 + log |f (n)|

logn

)

and we may suppose that L < ∞. Fix a small real number ε > 0 and let σ > L.
Hence σ � L + ε and therefore there exists a large positive integer n0 = n0(ε)

such that, for all n � n0, we have

1 + log |f (n)|
logn

< L� σ − ε

and hence, for all n � n0, we get
∣∣∣∣f (n)

ns

∣∣∣∣< nσ−1−ε

nσ
= 1

n1+ε

so that F(s) is absolutely convergent in the half-plane σ > L.

The proof is complete. �

4.7.4 Dirichlet Series—Conditional Convergence

This is one of the most important differences between power series and Dirichlet
series. For power series, the regions of convergence and absolute convergence are
identical, except possibly for the boundaries. For Dirichlet series, there may be a
non-trivial region, in the form of a vertical strip, in which the series converges but
does not converge absolutely. However, we shall see that the width of this strip does
not exceed 1.

Proposition 4.39 For each Dirichlet series F(s), there exists σc ∈ R ∪ {±∞},
called the abscissa of convergence, such that F(s) converges in the half-plane
σ > σc and does not converge in the half-plane σ < σc. Furthermore, we have

σc � σa � σc + 1.
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Proof

� Suppose first that F(s) converges at a point s0 = σ0 + it0 and fix a small real
number ε > 0. By Cauchy’s theorem, there exists x0 = x0(ε) � 1 such that, for
all y > x � x0, we have ∣∣∣∣

∑
x<n�y

f (n)

ns0

∣∣∣∣� ε.

Let s = σ + it ∈ C such that σ > σ0. Using Proposition 4.34 with s replaced by
s − s0 and α = 0, we get

∣∣∣∣
∑

x<n�y

f (n)

ns

∣∣∣∣� ε

( |s − s0|
σ − σ0

+ 1

)

so that F(s) converges by Cauchy’s theorem.
� Now we may proceed as in Proposition 4.33. Let S be the set of complex numbers

s at which F(s) converges. If S = ∅, then put σc = +∞. Otherwise define

σc = inf{σ : s = σ + it ∈ S}.
By the definition of σc, F(s) does not converge if σ < σc. On the other hand, there
exist points s0 with σ0 being arbitrarily close to σc at which F(s) converges. By
above, F(s) converges at any point s such that σ > σ0. Since σ0 may be chosen
as close to σc as we want, it follows that F(s) converges at any point s such that
σ > σc.

� The inequality σc � σa � σc + 1 remains to be shown. The left-hand side is obvi-
ous. For the right-hand side, it suffices to show that if F(s0) converges for some
s0, then it converges absolutely for all s such that σ > σ0 + 1. Now if F(s) con-
verges at some point s0, then f (n)/ns0 tends to 0 as n −→ ∞. Thus there exists a
positive integer n0 such that, for all n � n0, we have |f (n)/ns0 | � 1. We deduce
that, for any s, we have |f (n)/ns |� nσ0−σ so that F(s) is absolutely convergent
in the half-plane σ > σ0 + 1 as required. �

As in the case of absolute convergence, the behavior of the series on the line
σ = σc is a priori undetermined. Furthermore, although there exist series such that
σc = +∞ (take f (n) = n! for instance) or σc = −∞ (take f (n) = 1/n!), these ex-
treme cases do not appear in almost all number-theoretic applications in which we
shall have σc ∈ R and σa ∈ R. Hence we must deal with half-planes of absolute
convergence, of convergence and with a strip in which the series converges condi-
tionally but not absolutely.

The inequality σc � σa � σc + 1 is sharp. Indeed,

1. If f (n) � 0, then the absolute convergence and the conditional convergence of
F(s) are equivalent at any point s ∈R. But since the regions of convergence and
absolute convergence are half-planes, we infer that in the case of non-negative
coefficients, we have σc = σa .
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2. On the other hand, if f (n) = χ(n) �= χ0(n) is a non-principal Dirichlet character,
then we have seen in Chap. 3 that σc = 0, and we clearly have σa = 1.

The next result is an easy consequence of partial summation techniques.

Proposition 4.40 Let σ0 > 0. If the series
∑∞

n=1 f (n)n−σ0 converges, then as
N −→ ∞, we have

N∑
n=1

f (n) = o
(
Nσ0
)
.

Proof We first prove the following lemma due to Kronecker.

Let (αn) be a sequence of complex numbers such that
∑

n�1 αn converges,
and let (βn) be an increasing sequence of positive real numbers such that
βn −→ ∞. Then as N −→ ∞

N∑
n=1

αnβn = o(βN).

Let Rn =∑k>n αk . By assumption, we have Rn = o(1) as n −→ ∞, and by Abel’s
summation as in Remark 1.15 we get

N∑
n=1

αnβn =
N∑

n=1

βn(Rn − Rn+1)

= βN

N∑
n=1

(Rn − Rn+1) −
N−1∑
n=1

(βn+1 − βn)

n∑
h=1

(Rh − Rh+1)

= R1β1 − RN+1βN +
N−1∑
n=1

Rn+1(βn+1 − βn).

Since (βn) increases to infinity with n, we get βn+1 − βn > 0 and
∑∞

n=1(βn+1 −
βn) = ∞, so that as N −→ ∞

N−1∑
n=1

|Rn+1|(βn+1 − βn) = o

(
N−1∑
n=1

(βn+1 − βn)

)
= o(βN)

as required. Now Proposition 4.40 follows at once by applying Kronecker’s lemma
with αn = f (n)n−σ0 and βn = nσ0 . �

4.7.5 Dirichlet Series—Analytic Properties

It has been seen above that a Dirichlet series F(s) defines an analytic function in
its half-plane of absolute convergence. The next result proves much better: F(s)
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Fig. 4.2 The disc D

defines in fact an analytic function in its half-plane of conditional convergence,
which enables us to apply the powerful tools from complex analysis to arithmetic
functions. The proof makes use of Weierstrass’s double series theorem.5

Theorem 4.41 A Dirichlet series F(s) =∑∞
n=1 f (n)n−s defines an analytic func-

tion of s in the half-plane σ > σc, in which F(s) can be differentiated termwise so
that, for all positive integers k, we have

F (k)(s) =
∞∑

n=1

(−1)k(logn)kf (n)

ns

for all s = σ + it such that σ > σc.

Proof Let s1 = σ1 + it1 such that σ1 > σc and we consider the disc D with s1 as
center and of radius r contained entirely in the half-plane σ > σc. We will show
that F(s) converges uniformly in D. Fix ε > 0. We must prove that there exists
n0 = n0(ε) ∈ N, independent of s ∈ D, such that for all N � n0, we have

∣∣∣∣
∑
n>N

f (n)

ns

∣∣∣∣� ε

for all s ∈ D. To this end, we choose s0 = σ0 + it0 such that t0 = t1 and σc < σ0 <

σ1 − r , see Fig. 4.2.
Since F(s) converges at s0, the partial sums are bounded at this point in absolute

value by M > 0. Using Proposition 4.34 with s replaced by s − s0 and α = 0, we
get for all s ∈ D and N1 > N

∣∣∣∣
∑

N<n�N1

f (n)

ns

∣∣∣∣� 2M

Nσ−σ0

( |s − s0|
σ − σ0

+ 1

)
� 2M

Nσ1−σ0−r

(
σ1 − σ0 + r

σ1 − σ0 − r
+ 1

)
.

The right-hand side is independent of s and tends to 0 as N −→ ∞, which ensures
the existence of n0. By Weierstrass’s double series theorem, we deduce that F(s) is

5See [Tit39, Theorem 2.8].
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analytic in D, and term-by-term differentiation is allowed there. Since s1 is arbitrary,
the asserted result follows. �

The next result implies that, if F(s) =∑∞
n=1 f (n)n−s and G(s) =∑∞

n=1 g(n)n−s

having the same abscissa of convergence σc, then f (n) = g(n) for all n ∈N.

Proposition 4.42 Let F(s) =∑∞
n=1 f (n)n−s be a Dirichlet series with abscissa of

convergence σc. If F(s) = 0 for all s such that σ > σc, then f (n) = 0 for all n ∈N.

Proof Suppose the contrary and let k be the smallest positive integer such that
f (k) �= 0. Let

G(s) = ks
∞∑

n=k

f (n)

ns

defined for σ > σc. By assumption we have G(s) = 0 in this half-plane. On the
other hand, if σ > σc, we have

G(s) = f (k) +
∞∑

n=k+1

f (n)

(
k

n

)s

so that allowing s to become infinite along the real axis, we obtain

lim
σ→∞G(σ) = f (k)

and thus we get f (k) = 0, giving a contradiction. �

This result enables us to show arithmetic identities of the form f (n) = g(n)

by considering their Dirichlet series F(s) and G(s) and by showing that, for σ

sufficiently large, we have F(s) = G(s). For instance, using Proposition 4.32, one
may check that the Dirichlet series of the Euler totient function ϕ is given by

ζ(s − 1)

ζ(s)
= ζ(s − 1) × 1

ζ(s)
.

Now ζ(s − 1) is the Dirichlet series of Id and ζ(s)−1 is that of μ, and hence ζ(s −
1)/ζ(s) is the Dirichlet series of μ � Id. Since both series converge for σ > 2, we
get ϕ = μ � Id by Proposition 4.42 as already proved in (4.7).

Another important problem is the investigation of the behavior of a Dirichlet
series F(s) on vertical lines. The following result shows that F(σ + it) cannot
increase more rapidly than |t | as |t | −→ ∞.

Proposition 4.43 Let F(s) =∑∞
n=1 f (n)n−s be a Dirichlet series with abscissa

of convergence σc and let σ1 > σc. Then, uniformly in σ such that σ � σ1 and as
|t | −→ ∞, we have

F(σ + it) = o(|t |).
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Furthermore, for any ε > 0 and σc < σ � σc + 1 and as |t | −→ ∞, we have

F(σ + it) = O
(|t |1−(σ−σc)+ε

)
.

Proof Let σ0 ∈ R such that σc < σ0 < σ1. Using Proposition 4.34 with s replaced
by s − σ0 and α = 0, we get for all x � 1 and σ > σ0∣∣∣∣

∑
n>x

f (n)

ns

∣∣∣∣� M

xσ−σ0

( |σ − σ0 + it |
σ − σ0

+ 1

)
� M

xσ−σ0

( |t |
σ − σ0

+ 2

)

for some M > 0, and hence for all σ � σ1, we get
∣∣∣∣F(σ + it)

t

∣∣∣∣� 1

|t |
{∑

n�x

|f (n)|
nσ

+ M

xσ−σ0

( |t |
σ − σ0

+ 2

)}

� 1

|t |
∑
n�x

|f (n)|
nσ1

+ M

xσ1−σ0

(
2

|t | + 1

σ1 − σ0

)

where the right-hand side is independent of σ ∈ [σ1,+∞[. This inequality implies
that

lim sup
|t |→∞

∣∣∣∣F(σ + it)

t

∣∣∣∣� M

xσ1−σ0(σ1 − σ0)

and since the left-hand side is independent of x, letting x −→ ∞ gives

lim sup
|t |→∞

∣∣∣∣F(σ + it)

t

∣∣∣∣= 0

uniformly in σ � σ1, implying the first asserted result.
For the second one, since σc + 1 + ε > σa by Proposition 4.39, we infer that

F(σc + 1 + ε) = O(1).

By above, we also have F(σc +ε+ it) = O(|t |) so that the asserted estimate follows
from the Phragmén–Lindelöf principle seen in Chap. 3. �

We know that a function defined by a power series has a singularity on the circle
of convergence. The situation is rather different for Dirichlet series which need have
no singularity on the axis of convergence. For instance, it may be shown that the
function η(s) =∑∞

n=1(−1)n+1n−s is entire although we easily see that σc = 0.
However, if the coefficients of F(s) are real non-negative, then the next result, due
to Landau, shows that the series does have a singularity on the axis of convergence.

Theorem 4.44 (Landau) Let F(s) =∑∞
n=1 f (n)n−s be a Dirichlet series with ab-

scissa of convergence σc ∈ R and suppose that f (n) � 0 for all n. Then F(s) has a
singularity at s = σc.
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Proof Without loss of generality, we may assume that σc = 0 and suppose that the
origin is not a singularity of F(s). Thus the Taylor expansion of F(s) about a > 0

F(s) =
∞∑

k=0

(s − a)k

k! F (k)(a) =
∞∑

k=0

(s − a)k

k!
∞∑

n=1

(−1)k(logn)kf (n)

na

must converge at some point s = b < 0 so that the double series

∞∑
k=0

∞∑
n=1

((a − b) logn)kf (n)

nak!

must converge, and then may be summed in any order since each term is non-
negative. But interchanging the summation implies that this sum is equal to

∞∑
n=1

f (n)

na

∞∑
k=0

((a − b) logn)k

k! =
∞∑

n=1

f (n)

nb

which does not converge by Proposition 4.39 since b < 0 = σc, giving a contradic-
tion. �

For instance, the Riemann zeta-function ζ(s) has a singularity at σc = 1, as we
already proved in Theorem 3.55. In fact, this result proves much more, telling us
that this singularity is a pole.

Landau’s theorem is often used in its contrapositive form.

Corollary 4.45 Let F(s) =∑∞
n=1 f (n)n−s be a Dirichlet series with abscissa of

convergence σc < ∞ and suppose that f (n) � 0 for all n. If F(s) can be analyti-
cally continued to the half-plane σ > σ0, then F(s) converges for σ > σ0.

By the previous results, we infer that a Dirichlet series converges uniformly on
every compact subset of the half-plane of convergence. The next result, due to Cahen
and Jensen, shows that it also converges uniformly in certain regions which extend
to infinity.

Proposition 4.46 (Cahen–Jensen) If the Dirichlet series F(s) = ∑∞
n=1 f (n)n−s

converges at s0, then it converges uniformly on every domain C(s0, θ), sometimes
called the Stolz domain, see Fig. 4.3, defined by

C(s0, θ) =
{
s ∈ C : ∣∣arg(s − s0)

∣∣� θ <
π

2

}
.

Proof The map s �−→ s + s0 transforms F(s) into a Dirichlet series of the same
shape where the coefficient an is replaced by the coefficient ann

−s0 , so that we may
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Fig. 4.3 Stolz domain

assume that s0 = 0 without loss of generality. Let ε > 0. By Cauchy’s theorem, there
exists N0 = N0(ε) ∈N such that, for all N1 > N > N0, we have

∣∣∣∣
∑

N<n�N1

f (n)

∣∣∣∣� ε cos θ

2

since the series converges at 0. Hence using Proposition 4.34 with α = 0 and M =
ε
2 cos θ , we get if σ > 0

∣∣∣∣
∑

N<n�N1

f (n)

ns

∣∣∣∣� ε cos θ

2Nσ

( |s|
σ

+ 1

)
� ε|s| cos θ

σNσ

and we conclude the proof by noticing that, if s ∈ C(0, θ), then σ > 0 and
|s| cos θ � σ . �

Among other things, this result implies that, if F(s) converges at s0, then

lim
s→s0

F(s) = F(s0)

provided that s remains inside C(s0, θ) as it approaches its limit. When s0 is off the
axis of convergence, this result is clearly a consequence of Theorem 4.41, but when
s0 is on that axis, then the limit above is the analogue of Abel’s theorem for power
series.

Finally, it should be mentioned that explicit formulae do exist for σc and σa , but
they are not much used in number theory. For instance, Cahen proved that, if the
series

∑
n�1 f (n) diverges, then

σc = lim sup
N→∞

log |∑N
n=1 f (n)|

logN
= inf

{
σ0 :

N∑
n=1

f (n) = O
(
Nσ0
)}

.
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If the series
∑

n�1 f (n) converges, then6

σc = lim sup
N→∞

log |∑n>N f (n)|
logN

.

This should be compared to Hadamard’s formula for the radius R of convergence
of the power series

∑∞
n=1 ann

s given by

R−1 = lim sup
n→∞

|an|1/n.

4.7.6 Dirichlet Series—Multiplicative Aspects

In this section, we will now focus on the Dirichlet series F(s) =∑∞
n=1 f (n)n−s

with multiplicative coefficients f (n). The first result is of crucial importance.

Theorem 4.47 Let f be a multiplicative function satisfying

∑
p

∞∑
α=1

∣∣f (pα
)∣∣< ∞. (4.28)

Then the series
∑

n�1 f (n) is absolutely convergent and we have

∞∑
n=1

f (n) =
∏
p

(
1 +

∞∑
α=1

f
(
pα
))

.

Proof Let us first notice that (4.28) implies the convergence of the product

∏
p

(
1 +

∞∑
α=1

∣∣f (pα
)∣∣
)

.

Now let x � 2 be a real number and set

P(x) =
∏
p�x

(
1 +

∞∑
α=1

∣∣f (pα
)∣∣
)

.

The convergence of the series
∑∞

α=1 |f (pα)| enables us to rearrange the terms when
we expand P(x) and since |f | is multiplicative, we deduce as in Euler’s proof of
Theorem 3.13 that

P(x) =
∑

P+(n)�x

∣∣f (n)
∣∣.

6This result is due to Pincherle.
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Since each integer n � x satisfies the condition P +(n) � x, we infer that
∑
n�x

∣∣f (n)
∣∣� P(x).

Since P(x) has a finite limit as x −→ ∞, the above inequality implies that the left-
hand side is bounded as x −→ ∞, proving the absolute convergence of the series∑

n�1 f (n). The second part of the theorem follows from the inequality

∣∣∣∣∣
∞∑

n=1

f (n) −
∏
p�x

(
1 +

∞∑
α=1

f
(
pα
))∣∣∣∣∣�

∑
n>x

∣∣f (n)
∣∣

and the fact that the right-hand side tends to 0 as x −→ ∞. �

Applying this theorem to absolutely convergent Dirichlet series readily implies
the next result which is an analytic version of Proposition 4.32.

Corollary 4.48 Let f be a multiplicative function with Dirichlet series F(s) =∑∞
n=1 f (n)n−s and s0 be a complex number. Then the three following assertions

are equivalent.

(i)

∑
p

∞∑
α=1

|f (pα)|
ps0α

< ∞. (4.29)

(ii) The series F(s) is absolutely convergent in the half-plane σ > σ0.
(iii) The product

∏
p

(
1 +

∞∑
α=1

f (pα)

psα

)

is absolutely convergent in the half-plane σ > σ0.

If one of these conditions holds, then we have for all σ > σ0

F(s) =
∏
p

(
1 +

∞∑
α=1

f (pα)

psα

)
. (4.30)

In particular, if σa is the abscissa of absolute convergence of F(s), then (4.30) holds
for all σ > σa .

We list in Table 4.2 several arithmetic functions f with their Dirichlet series F

and some convolution identities often used. The number � is the infimum of the real
parts of the non-trivial zeros ρ = β + iγ of ζ such that 1

2 � β < 1. The Riemann
hypothesis is � = 1

2 .
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Table 4.2 Table of Dirichlet series of certain multiplicative numbers

f Convolution F(s) σc σa

e1 Identity element 1 −∞ −∞
1 1 � μ = e1 ζ(s) 1 1

μ μ � 1 = e1 ζ(s)−1 � 1

λ λ � μ2 = e1
ζ(2s)
ζ(s)

� 1

μk μk � μ = fk
ζ(s)
ζ(ks)

1 1

sk sk � μ = gk

∏2k−1
j=k ζ(js) × Gk(s)

ζ((2k+2)s)
1
k

1
k

β β � μ = s2
ζ(s)ζ(2s)ζ(3s)

ζ(6s)
1 1

a a � μ = h
∏∞

j=1 ζ(js) 1 1

τ (e) τ (e) � μ = κ ζ(s)ζ(2s)P (s) 1 1

τ(k) τ(k) = 1 � μk
ζ(s)2

ζ(ks)
1 1

kω (k + 1)ω = μ2k
ω � 1 ζ(s)kHk(s) 1 1

τk

τk = τk−1 � 1
ζ(s)k 1 1

Id×τ = σ � ϕ

ϕ
ϕ = μ � Id ζ(s−1)

ζ(s)
2 2

σ = ϕ � τ

Idk

Idk = σk � μ
ζ(s − k) k + 1 k + 1

Id = ϕ � 1

σk

σk = Idk �1
ζ(s)ζ(s − k) k + 1 k + 1

σ = τ � ϕ

�k �k = μ � logk (−1)k
ζ (k)(s)
ζ(s)

1 1

χ �= χ0 χ × log×(μ � 1) = 0 L(s,χ) 0 1

νK
νK = χ � 1

ζK(s) 1 1
if K is a quadratic field

In this table, we have

� fk(n) =
{

μ(m), if n=mk

0, otherwise.

� gk(n) =
{

μ(a), if n=ab, (a,b)=1, μ2(a)=sk(b)=1
0, otherwise.

� G2(s) = 1 and, for k � 3, Gk(s) is a Dirichlet series absolutely convergent in the
half-plane σ > (2k + 3)−1. For all k � 2, Hk(s) is a Dirichlet series absolutely
convergent in the half-plane σ > 1

2 .

� P(s) =∏p(1 +∑∞
α=5

τ̃ (α)
psα ) where τ̃ (α) is defined in (4.26).
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� h is the multiplicative function defined by h(p) = 0 and h(pα) = P(α) − P(α −
1) and κ is the multiplicative function defined by κ(p) = 0 and κ(pα) = τ(α) −
τ(α − 1).

4.7.7 The Von Mangoldt Function of an Arithmetic Function

The von Mangoldt function � may be generalized in the following way.

Definition 4.49 Let f be a complex-valued arithmetic function such that f (1) �= 0.
The von Mangoldt function �f attached to f is implicitly defined by the equation

�f � f = f × log .

We obviously have �1 = � and by Proposition 4.31 we have formally

∞∑
n=1

�f (n)

ns
= −F ′(s)

F (s)

where F(s) is the Dirichlet series of f .

Example 4.50 In Table 4.3, we set v(n) =
{

α, if n=pα

0, otherwise.

We now summarize the main properties of the function �f . The reader is referred
to [LF67] for the proofs.

Proposition 4.51 Let f , g be complex-valued arithmetic functions such that f (1) �=
0 and g(1) �= 0, p be a prime number, α ∈ N and λ1 � 1 and 1 � λ2 < 2 be real
numbers.

(i) �f �g = �f + �g .
(ii) f is multiplicative if and only if �f is supported on prime powers.

(iii) If f is multiplicative, then �f (pα) = cf (pα) logp with cf (p) = p and for all
α � 2

cf

(
pα
)= αf

(
pα
)−

α−1∑
j=1

cf

(
pj
)
f
(
pα−j

)
.

Table 4.3 Von Mangoldt functions of certain arithmetic functions

f e1 1 μ μ2 2ωμ (−1)ω τk ϕ σ

�f 0 � −� (−1)v−1� −2v� (1 − 2v)� k� (Id−1)� (Id+1)�
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This implies that

�f

(
pα
)= logpα

α∑
j=1

(−1)j

j

∑
k1+···+kj =α

f
(
pk1
) · · ·f (pkj

)
.

Furthermore, if f is multiplicative supported on squarefree numbers, then

�f

(
pα
)= (−1)α−1(f (p)

)α logp.

(iv) If f is multiplicative such that |f (n)| � 1, then

∣∣�f

(
pα
)∣∣� (2α − 1

)
logp

and if f is multiplicative such that 0 � f (pα)� λ1λ
α
2 , then

∣∣�f

(
pα
)∣∣� (2λ1λ2)

α logp.

(v) If f (n) = g(n)h(n) with g multiplicative and h completely multiplicative, then

�f (n) = �g(n)h(n).

One of the main uses of the von Mangoldt function �f associated to a multi-
plicative function f is to determine the average order of f (n)/n via the following
result proved by Iwaniec and Kowalski in [IK04].

Theorem 4.52 Let f be a complex-valued multiplicative function and κ > − 1
2 such

that
∑
n�x

�f (n)

n
= κ logx + O(1)

and
∑
n�x

|f (n)|
n

� (logx)|κ|.

Then we have

∑
n�x

f (n)

n
= (logx)κ

�(κ + 1)

∏
p

(
1 − 1

p

)κ
(

1 +
∞∑

α=1

f (pα)

pα

)
+ O

(
(logx)|κ|−1).

For instance, using the table in Example 4.50, we get for all k ∈ N

∑
n�x

τk(n)

n
= (logx)k

k! + O
(
(logx)k−1).
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4.7.8 Twisted Sums with the Möbius Function

The Möbius function μ has a particular status in number theory, mostly on account
of its link with the PNT and the Riemann hypothesis (Chap. 3). Furthermore, μ is
not positive and hence does not satisfy the hypotheses of Theorems 4.22 and 4.28.

The aim of this section is to show how to handle sums of the form∑
n�x

μ(n)f (n)

where f is a multiplicative function taking small values at prime numbers. When
f = 1, the PNT is equivalent to estimates of the shape

∑
n�x

μ(n) � x

(log e2x)A
(4.31)

for all A > 0. There even exist explicit bounds of this form. For instance, it is shown
in [Mar95] that, for all x > 1, we have∣∣∣∣

∑
n�x

μ(n)

∣∣∣∣� 762.7x

(logx)2

and for the logarithmic mean value it is proved that
∣∣∣∣
∑
n�x

μ(n)

n

∣∣∣∣< 726

(logx)2
.

When f = μ, we have the following inequalities

logx

ζ(2)
+ 0.832 11 <

∑
n�x

μ2(n)

n
<

logx

ζ(2)
+ 1.165 471.

We intend to show the following result.

Theorem 4.53 Let f be a real-valued multiplicative function such that 0�f (p)�1
for all prime numbers p. Then we have for all x � e

∑
n�x

μ(n)f (n) � x

logx
exp

(∑
p�x

1 − f (p)

p

)
.

Proof Let g = μf � 1. By Theorem 4.10, g is multiplicative and, for all prime pow-
ers pα , we have

g
(
pα
)= 1 +

α∑
j=1

μ
(
pj
)
f
(
pj
)= 1 − f (p).
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Hence by assumption on f we infer that 0 � g(pα) � 1 and, using multiplicativity,
we get 0 � g(n) � 1. Using the Möbius inversion formula, Proposition 4.17, the
bound (4.31) with A = 2 and partial summation, we get
∑
n�x

μ(n)f (n) =
∑
n�x

(g � μ)(n) =
∑
d�x

g(d)
∑

k�x/d

μ(k)

� x
∑
d�x

g(d)

d log2(e2x/d)

�
∑
d�x

g(d) + x

∫ x

1

log(x/t)

t2(log e2x/t)3

(∑
d�t

g(d)

)
dt

�
∑
d�x

g(d) + x

(∫ √
x

1
+
∫ x

√
x

)
log(x/t)

t2(log e2x/t)3

(∑
d�t

g(d)

)
dt.

In the first integral, we use the trivial inequality
∑
d�t

g(d) � t

while in the second integral and the first sum, we use Theorem 4.22 which gives

∑
d�t

g(d) � t

log(et)
exp

(∑
p�t

g(p)

p

)
� t

log(et)
exp

(∑
p�x

1 − f (p)

p

)

for any 1 � t � x, and therefore

∑
n�x

μ(n)f (n) � x

logx
exp

(∑
p�x

1 − f (p)

p

)
+ x

(logx)2

� x

logx
exp

(∑
p�x

1 − f (p)

p

)

as required. �

4.7.9 Mean Values of Multiplicative Functions

In view of the erratic behavior of most multiplicative functions, the question of the
existence of a mean value of such functions arises naturally. Since higher prime
powers pα with α ∈ Z�2 are quite rare, one may wonder how the values of f at the
prime numbers influence the behavior of f in general. The interest in this problem
increased as Erdős and Wintner [Erd57] formulated the following conjecture:

Any multiplicative function assuming only the values −1 and +1 has a
mean value.
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On the other hand, comparing the bounds obtained in Example 4.29 with the
asymptotic formulae given afterwards in Example 4.27, one may wonder whether
the quantity

∏
p�x

(
1 − 1

p

)(
1 +

∞∑
α=1

f (pα)

pα

)

of Theorem 4.28 would be close to the right mean value of multiplicative functions
f provided that f (p) is sufficiently close to 1. This product is sometimes called the
heuristical value for the mean x−1∑

n�x f (n).
The search for accurate asymptotic formulae for average orders really began in

the early 1960s with the following satisfactory result due to Wirsing [Wir61].

Theorem 4.54 (Wirsing) Let f be a positive multiplicative function satisfying the
Wirsing conditions (4.21) and

∑
p�x

f (p) logp = κx + o(x)

for some κ > 0. Then we have as x −→ ∞
∑
n�x

f (n) = (1 + o(1)
)e−γ κ

�(κ)

x

logx

∏
p�x

(
1 +

∞∑
α=1

f (pα)

pα

)
.

Wirsing’s ideas are similar to those of Theorem 4.22, using equalities instead
of inequalities and making also use of the Hardy–Littlewood–Karamata tauberian
theorem, although he used elementary arguments in his original paper of 1961. In
the same paper, Wirsing also deduced theorems for complex-valued multiplicative
functions, but these results neither contained the PNT nor settled the Erdős–Wintner
conjecture.

Six years later, Wirsing was able to settle this conjecture, proving in an ele-
mentary, but tricky way that if f is a real-valued multiplicative function such that
|f (n)| � 1, then f has a mean value. The following year, Halász [Hal68] ex-
tended Wirsing’s results by establishing the Wirsing conjecture stating that, if f

is a complex-valued multiplicative function such that |f (n)| � 1, then there exist
κ = κf ∈C, a ∈R and a slowly varying function7 L with |L(u)| = 1, so that

∑
n�x

f (n) = κ L(logx)x1+ia + o(x)

7A slowly varying function is a non-zero Lebesgue measurable function L : [x0,+∞[−→ C for
some x0 > 0 for which

lim
x→∞

L(cx)

L(x)
= 1

for any c > 0.
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as x −→ ∞. The proof involves contour integration using an asymptotic for-
mula for the Dirichlet series

∑∞
n=1 f ∗(n)n−s , where f ∗ is a completely multi-

plicative function associated with f . Various authors [PT78, Skr74, Tul78] subse-
quently improved on Halász’s theorem by partly removing the unpleasant constraint
|f (n)| � 1.

In the 1970s and 1980s, the Russian school, led by Kubilius, proved asymptotic
formulae with effective error-terms. For instance, Kubilius [Kub71] showed the fol-
lowing result.

Theorem 4.55 (Kubilius) Let f be a complex-valued multiplicative function such
that there exists a constant κ ∈ C, independent of p, with |κ| � c1 and such that

∑
p

|f (p) − κ| logp

p
< c2 and

∑
p

∞∑
α=2

|f (pα)| logpα

pα
< c3.

Then for any x � 20, we have

∑
n�x

f (n) = x(logx)κ−1

�(κ)

∏
p

(
1− 1

p

)κ
(

1+
∞∑

α=1

f (pα)

pα

)
+O

(
xRκ (x)(logx)|κ|/2−1)

where

Rκ (x) =

⎧⎪⎨
⎪⎩

(1 − |κ|)−1/2, if |κ| < 1 − (log logx)−1

(log logx)1/2, if ||κ| − 1|� (log logx)−1

(|κ| − 1)−1/2(logx)(|κ|−1)/2, if |κ| > 1 + (log logx)−1.

The implied constant depends only on c1, c2, c3 and �(κ)−1 = 0 for κ = 0,−1,

−2, . . .

Concerning the logarithmic mean value
∑

n�x f (n)/n, Martin [Mar02] proved
the following precise estimates using some ideas developed by Iwaniec.

Theorem 4.56 (Martin) Let f be a complex-valued positive multiplicative function
satisfying

∑
p�x

f (p) logp

p
= κ logx + O(1)

where κ = σκ + itκ ∈C is such that t2
κ < 2σκ + 1. Assume also that

∑
p

|f (p)| logp

p

∞∑
α=1

|f (pα)|
pα

+
∑
p

∞∑
α=2

|f (pα)| logpα

pα
< ∞
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and
∏
p�x

(
1 + |f (p)|

p

)
� (logx)λ

for all x � 2 and some real number 0 � λ < σκ + 1. Then we have

∑
n�x

f (n)

n
= (logx)κ

�(κ + 1)

∏
p

(
1 − 1

p

)κ
(

1 +
∞∑

α=1

f (pα)

pα

)
+ O

(
(logx)λ−1)

and if q ∈N, we also have

∑
n�x

(n,q)=1

f (n)

n
= (logx)κ

�(κ + 1)

(
ϕ(q)

q

)κ∏
p

(
1 − 1

p

)κ
(

1 +
∞∑

α=1

f (pα)

pα

)

+ O

{(
1 +

∑
p|q

|f (p)| logp

p

)
(logx)λ−1

}
.

In the case of positive multiplicative functions, the statement is simpler.

Corollary 4.57 Let f be a positive multiplicative function such that f (n) � nλ for
some λ < 1

2 and satisfying

∑
p�x

f (p) logp

p
= κ logx + O(1)

where κ > 0. Then uniformly in x � 2, we have

∑
n�x

f (n)

n
= (logx)κ

�(κ + 1)

∏
p

(
1 − 1

p

)κ
(

1 +
∞∑

α=1

f (pα)

pα

)
+ O

(
(logx)κ−1).

Let us apply this result to the function f (n) = n/S(n) where S(n) =∑n
i=1(i, n)

is the so-called Pillai function. Using Exercise 11, we have S = ϕ � Id, so that S

is multiplicative and since (i, n) � 1, we clearly get 0 � f (n) � 1 for all n � 1.
Furthermore, we have using Theorem 3.49

∑
p�x

f (p) logp

p
=
∑
p�x

logp

p

(
1

2
+ 1

4p − 2

)
= 1

2

∑
p�x

logp

p
+O(1) = logx

2
+O(1)

so that the conditions of Corollary 4.57 are satisfied with κ = 1/2, and using �( 3
2 ) =√

π

2 , we get the asymptotic formula

∑
n�x

1

S(n)
= 2√

π

∏
p

(
1 − 1

p

)1/2
(

1 +
∞∑

α=1

1

S(pα)

)√
logx + O

(
(logx)−1/2)
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for all x � 2. Note that, since ϕ = μ � Id, we get S = μ � Id� Id = μ � (Id×τ) (see
also Exercise 12) so that

S
(
pα
)= (α + 1)pα − αpα−1.

In [FI05], the authors have another approach to this problem. They consider
a complex-valued multiplicative function f verifying the Ramanujan condition
f (n) � nε and whose Dirichlet series F(s) satisfies the following properties.

1. F(s) is holomorphic in the half-plane σ > 1, and has analytic continuation to the
whole complex plane where it is holomorphic except possibly for a pole at s = 1,
not necessarily simple.

2. F(s) satisfies the functional equation in the half-plane σ > 1

F(1 − s) = wγ (s)G(s)

where w is the so-called root-number such that |w| = 1, G(s) =∑∞
n=1 g(n)n−s

with g(n) � nε and γ (s) is holomorphic in the half-plane σ > 1
2 having the

shape

γ (s) = (π−mD
)s−1/2

m∏
j=1

�

(
s + κj

2

)
�

(
1 − s + κj

2

)−1

where D � 1 is an integer called the conductor of F(s), m ∈ N is the degree of
F(s), κ1, . . . , κm are the spectral parameters of F(s), i.e. complex numbers such
that Reκj � 0.

We may now state the main result of [FI05].

Theorem 4.58 (Friedlander–Iwaniec) With the above hypotheses and for any x �√
D and all ε > 0, we have

∑
n�x

f (n) = Res
s=1

(
F(s)xss−1)+ Oε,κj

(
D

1
m+1 x

m−1
m+1 +ε

)

where the implied constant depends only on ε and the spectral parameters
κ1, . . . , κm.

The strength of this result lies in the fact that the error-term depends only on ε and
the spectral parameters κ1, . . . , κm. We may apply it to the multiplicative function
νK studied in Chap. 7, where K is an algebraic number field of degree d � 1. It is
shown in Corollary 7.119 (iii) that

νK(n) � τd(n) � nε.

Furthermore, the Dirichlet series of νK is the Dedekind zeta-function ζK(s) (see
Definition 7.121), and using Theorem 7.123 (ii) and the duplication formula (3.10),
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we infer that ζK(s) satisfies the following functional equation

ζK(1 − s) = (π−d |dK|)s−1/2
(

�

(
s

2

)
�

(
1 − s

2

)−1)r1+r2

×
(

�

(
s + 1

2

)
�

(
2 − s

2

)−1)r2

ζK(s)

where (r1, r2) is the signature and dK is the discriminant of K. Hence the function
νK satisfies the conditions of the above result with w = 1, G(s) = ζK(s), D = |dK|,
m = d and

κj =
{

0, if 1 � j � r1 + r2

1, if 1 � j � r2.

Applying Theorem 4.58 we readily get the following important result.

Corollary 4.59 (Ideal Theorem) Let K be an algebraic number field of degree d

and discriminant dK. For all x � |dK|1/2 and all ε > 0, we have

∑
n�x

νK(n) = κKx + Oε

(|dK| 1
d+1 x

d−1
d+1 +ε

)

where κK is given by (7.21) and the implied constant depends only on ε.

This result was first proved by Landau in [Lan27, Satz 210], but with an unspec-
ified constant in the error-term. Both proofs start using the same tools, namely The-
orem 3.84 and contour integration methods, but Friedlander and Iwaniec next used
the stationary phase (see Lemma 6.29) to estimate some integrals more precisely.
They provided a result in a much stronger form than the one given in Theorem 4.58
above, with a supplementary term à la Voronoï as in [Vor04]. The trivial estimate of
this term gives Theorem 4.58.

4.7.10 Lower Bounds

Lower bounds for sums
∑

n�x f (n) are not surprisingly harder to obtain than upper
bounds. The next result provides a lower bound for the logarithmic mean value on
squarefree numbers.

Proposition 4.60 Let f be a positive multiplicative function satisfying 0 � f (p) �
λ < 1 for all primes p. Then

∑
n�x

μ2(n)f (n)

n
� (1 − λ)

∏
p�x

(
1 + f (p)

p

)
.
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Note that we have

∑
n�x

μ2(n)f (n)

n
�

∑
P+(n)�x

μ2(n)f (n)

n
=
∏
p�x

(
1 + f (p)

p

)

so that the result above is of the right order of magnitude.

Proof We have

0 �
∏
p�x

(
1 + f (p)

p

)
−
∑
n�x

μ2(n)f (n)

n
=

∑
n>x

P+(n)�x

μ2(n)f (n)

n

and using logn > logx in the right-hand side implies that

∏
p�x

(
1 + f (p)

p

)
−
∑
n�x

μ2(n)f (n)

n
<

∑
n>x

P+(n)�x

μ2(n)f (n)

n

logn

logx

= 1

logx

∑
n>x

P+(n)�x

μ2(n)f (n)

n

∑
p|n

logp

� 1

logx

∑
p�x

f (p) logp

p

∑
k�x/p

P+(k)�x

μ2(k)f (k)

k

� λ

logx

∑
p�x

logp

p

∑
P+(k)�x

μ2(k)f (k)

k

= λ

logx

∑
p�x

logp

p

∏
p�x

(
1 + f (p)

p

)

and Corollary 3.99 in the form

∑
p�x

logp

p
< logx

completes the proof. �

Let us state without proof the next result, which is a consequence of a theorem
due to Barban (see [SS94]).

Proposition 4.61 Let f be a positive multiplicative function such that f (p)� λ1 >

0 for all primes p � p0 and 0 � f (pα) � λ2 for all prime powers pα , where λ1 > 0
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and λ2 > 0. Then we have

∑
n�x

f (n) � x exp

(∑
p�x

f (p) − 1

p

)
.

Lemma 4.69 below provides another lower bound using elementary means of a
certain class of multiplicative functions.

4.7.11 Short Sums of Multiplicative Functions

By short sums, we mean sums having the shape
∑

x<n�x+y

f (n)

where x � 1, y > 0 are real numbers such that y = o(x) as x −→ ∞. Compared to
the case of long sums, there are fewer results for such sums in the literature. In par-
ticular, there is no known asymptotic formula for the case of positive multiplicative
functions satisfying the Wirsing conditions (4.21). The first very important theorem
is due to Shiu [Shi80] and provides only an upper bound.

Theorem 4.62 (Shiu) Let f be a positive multiplicative function, δ > 0, 0 < ε,
θ < 1

2 and 0 < a < q be two positive coprime integers. Assume that

(i) there exists λ1 = λ1(δ) > 0 such that f (n) � λ1n
δ for all n � 1

(ii) there exists λ2 > 0 such that f (pα)� λα
2 for all prime powers pα .

Then, for x � 1 sufficiently large and uniformly in a, q and y such that q < y1−θ

and xε � y � x, we have

∑
x<n�x+y
n≡a (modq)

f (n) � y

ϕ(q) logx
exp

(∑
p�x

p�q

f (p)

p

)
.

The implied constant depends on λ1, λ2 and ε.

This result has turned out to be very useful. One may easily check that all the
functions of Lemma 4.24 satisfy conditions (i) and (ii) of Shiu’s theorem. In order
to apply this result to them, the following lemma will be useful.

Lemma 4.63 Let q � 2 be an integer. For all x � max(e, q), we have

∑
p�x

p�q

1

p
< log

(
2eγ ϕ(q)

q
logx

)
.



4.7 Further Developments 223

Proof On the one hand, we have

∏
p�x

p�q

(
1 − 1

p

)−1

= exp

(∑
p�x

p�q

1

p
+
∑
p�x

p�q

∞∑
α=2

1

αpα

)
� exp

(∑
p�x

p�q

1

p

)

and on the other hand, since q � x, we also have

∏
p�x

p�q

(
1 − 1

p

)−1

=
∏
p�x

(
1 − 1

p

)−1 ∏
p�x
p|q

(
1 − 1

p

)
= ϕ(q)

q

∏
p�x

(
1 − 1

p

)−1

and we use Corollary 3.99 to conclude the proof. �

With this lemma at our disposal, Shiu’s theorem implies at once the following
estimates.

Corollary 4.64 Let xε � y � x, (a, q) = 1 and q < y1−θ as in Theorem 4.62. Then
we have for x sufficiently large the following estimates.

(i) Let k � 2. We have ∑
x<n�x+y
n≡a (modq)

sk(n) � y

ϕ(q) logx
.

(ii) The estimate ∑
x<n�x+y
n≡a (modq)

f (n) � y

q

holds with f = β , f = a, f = τ (e) and f = μk (k � 2).
(iii) Let k � 2. We have

∑
x<n�x+y
n≡a (modq)

τ(k)(n) � ϕ(q)

q2
y logx.

(iv) Let k � 1. The estimate

∑
x<n�x+y
n≡a (modq)

f (n) � y

q

(
ϕ(q)

q
logx

)k−1

holds with f = kω and f = τk .

Once again, only the first bound is overestimated. We shall see in Chap. 5 how
to get some improvements on this problem.
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The idea of the proof of Shiu’s theorem is a combination of sieve methods (see
the Selberg sieve below), estimates of particular parts of sums as in Theorem 4.22
and a method used earlier by Wolke, whose ideas go back to Erdős, starting with a
decomposition of each integer n ∈]x, x + y] as follows

n = ab = (pα1
1 · · ·pαr

r

)(
p

αr+1
r+1 · · ·pαs

s

)

with a � yθ/10 < ap
αr+1
r+1 . The original sum is then split into four classes according to

1. P −(b) > yθ/20

2. P −(b) � yθ/20 and a � yθ/20

3. P −(b) � logx log logx and a > yθ/20

4. logx log logx < P −(b) � yθ/20 and a > yθ/20.

Shiu’s theorem was later generalized in two directions. First, Nair proved an analo-
gous estimate for sums of the shape

∑
x<n�x+y

f
(∣∣P(n)

∣∣)

where P ∈ Z[X] is an integer polynomial having non-zero discriminant and no fixed
prime divisors, and f is a multiplicative function satisfying the same conditions as
in Shiu’s theorem. Then, Nair and Tenenbaum [NT98] weakened the property of
multiplicativity by showing the next result.

Theorem 4.65 (Nair–Tenenbaum) Let f be a positive arithmetic function, 0 < δ �
1, d ∈ N, 0 < ε < 1

8d2 , c0 > 0 and P = adXd + · · · + a0 ∈ Z[X] be irreducible. Let
ρ(n) be the number of solutions of the congruence P(x) ≡ 0 (modn). Assume that
ρ(p) < p for all primes p and that there exist λ1, λ2 � 1 such that, for all positive
coprime integers m, n, we have

f (mn) � min
(
λ1m

εδ/3, λ
�(m)
2

)
f (n).

Then, for x � c0 max{|a0|, . . . , |ad |}δ and uniformly in x4d2ε � y � x, we have

∑
x<n�x+y

f
(∣∣P(n)

∣∣)� y
∏
p�x

(
1 − ρ(p)

p

)∑
n�x

ρ(n)f (n)

n
.

In particular, if 0 < ε < 1
2 and x � c0, we have uniformly in xε � y � x

∑
x<n�x+y

f (n) � y
∏
p�x

(
1 − 1

p

)∑
n�x

f (n)

n
.

This result enables us to treat short sums of non-necessarily multiplicative func-
tions. In [NT98], the example of the Hooley’s �k-function is given. This function
is obviously not multiplicative, but by Exercise 8 we see that it satisfies the condi-
tion of Theorem 4.65. Furthermore, the following result is proved in [HT88, Theo-
rem 70].
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Proposition 4.66 (Hall–Tenenbaum) For all integers k � 2 and real numbers
x > eee

, we set

εk(x) =
√

log log logx

log logx

{
k − 1 + 30

log log logx

}
.

Then we have ∑
n�x

�k(n) � x(logx)εk(x).

A partial summation gives at once

∑
n�x

�k(n)

n
� (logx)1+εk(x)

so that using Theorem 4.65 and the second Mertens theorem (Corollary 3.51), we
get ∑

x<n�x+y

�k(n) � y(logx)εk(x)

for 0 < ε < 1
2 , x � c0 and uniformly in xε � y � x.

With k = 2 and noticing that, for all N ∈ N, we have

∑
N<n�2N

([
x + y

n

]
−
[
x

n

])
=

∑
N<d�2N

∑
x<dk�x+y

1

=
∑

x<n�x+y

∑
d|n

N<d�2D

�
∑

x<n�x+y

�(n)

we infer the bound

∑
N<n�2N

([
x + y

n

]
−
[
x

n

])
� y(logx)ε2(x) = y(logx)o(1) (4.32)

for 0 < ε < 1
2 , x � c0 and uniformly in xε � y � x and N ∈ N. This is the best

result to date for the left-hand side (see also Exercise 9 in Chap. 5).

4.7.12 Sums of Sub-multiplicative Functions

Halberstam and Richert [HR79] proved the next result, which is a generalization of
Theorem 4.22 to sub-multiplicative functions and provides an improvement of the
constants appearing in this result.
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Theorem 4.67 Let f be a non-negative sub-multiplicative function such that
f (1) = 1 and satisfying the Wirsing conditions (4.21). Assume that, for all x � 2,
we have

∑
p�x

f (p) logp � κx + O

(
x

(logx)2

)

for some constant κ > 0. Then

∑
n�x

f (n) � κx

logx

(
1 + O

(
1

logx

))∑
n�x

f (n)

n
.

The sum of the right-hand side may be estimated by Theorem 4.56 or Corol-
lary 4.57, or by using the usual inequality

∑
n�x

f (n)

n
�
∏
p�x

(
1 +

∞∑
α=1

f (pα)

pα

)
.

For instance, applying Theorem 4.67 to the function fq defined by

fq(n) =
{

1, if (n, q) = 1

0, if (n, q) > 1

where q is a fixed positive integer such that P +(q) � x, we get using Corollary 3.51

∑
n�x

(n,q)=1

1 � eγ ϕ(q)

q
x

(
1 + O

(
1

logx

))
.

4.7.13 Sums of Additive Functions

The average orders of additive functions are in general easier to estimate than those
of multiplicative functions.

Proposition 4.68 Let f be an additive function and x � 2 be a real number. Then

∑
n�x

f (n) = x
∑
p�x

f (p)

p
+ x

∑
pα�x

∞∑
α=2

f (pα) − f (pα−1)

pα

+ O

(∑
pα�x

∞∑
α=1

∣∣f (pα
)− f

(
pα−1)∣∣

)
.
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Proof Let g = f � μ. By Exercise 6, g is supported on prime powers. Furthermore,
since f is additive, we have g(p) = f (p). Hence, by Proposition 4.17, we have

∑
n�x

f (n) =
∑
n�x

(g � 1)(n) =
∑
d�x

g(d)

[
x

d

]

=
∑
p�x

g(p)

[
x

p

]
+
∑
pα�x
α�2

g
(
pα
)[ x

pα

]

= x
∑
p�x

f (p)

p
+ O

(∑
p�x

∣∣f (p)
∣∣)+ x

∑
pα�x
α�2

g(pα)

pα
+ O

(∑
pα�x
α�2

∣∣g(pα
)∣∣)

and we conclude by using g(pα) = f (pα) − f (pα−1). �

For instance with f = ω, using a weak form of the PNT, we get

∑
n�x

ω(n) = x log logx + Bx + O

(
x

logx

)

where B ≈ 0.261 49 . . . is the Mertens constant from Corollary 3.50.

4.7.14 The Selberg’s Sieve

The sieves of Eratosthenes and Brun have been studied in Chap. 3. The aim of this
section is to introduce another powerful tool developed by Atle Selberg in the late
1940s. We first recall the specific notation in sieve methods.

Let z � 2 be a real number, P be a set of primes, Pz =∏p∈P, p�z p and A be a
finite set of integers such that, for all d | Pz, we have

∑
n∈A
d|n

1 = Xρ(d)

d
+ rd

with X > 0, ρ is a non-negative multiplicative function and rd is a remainder term
satisfying |rd | � ρ(d). We set

S(A,P; z) =
∑
n∈A

(n,Pz)=1

1.

Instead of using Bonferroni-like inequalities (3.30), Selberg observed that if λ :
N−→ R is any function such that λ(1) = 1 then, for all n, we have

∑
d|n

μ(d)�
(∑

d|n
λ(d)

)2

(4.33)
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and squaring out the inner sum implies that

S(A,P; z)�
∑
n∈A

( ∑
d|(n,Pz)

λ(d)

)2

=
∑
d|Pz

Ad

∑
[d1,d2]=d

λ(d1)λ(d2).

Using (3.29), we get

S(A,P; z)� X
∑
d|Pz

ρ(d)

d

∑
[d1,d2]=d

λ(d1)λ(d2)+O

(∑
d|Pz

|rd |
∑

[d1,d2]=d

∣∣λ(d1)λ(d2)
∣∣).

Assume 1 � ρ(d) < d for d | Pz. Since ρ is multiplicative, we have

ρ(d1)ρ(d2) = ρ
(
(d1, d2)

)
ρ
([d1, d2]

)

and setting φ(d) = d/ρ(d) and f = μ � φ we get

∑
d|Pz

ρ(d)

d

∑
[d1,d2]=d

λ(d1)λ(d2) =
∑

d1,d2|Pz

λ(d1)λ(d2)

[d1, d2] ρ
([d1, d2]

)

=
∑

d1,d2|Pz

(
λ(d1)λ(d2)(d1, d2)

d1d2
× ρ(d1)ρ(d2)

ρ((d1, d2))

)

=
∑

d1,d2|Pz

λ(d1)λ(d2)φ((d1, d2))

φ(d1)φ(d2)
.

Now by the Möbius inversion formula, we have φ = f � 1 and hence

∑
d|Pz

ρ(d)

d

∑
[d1,d2]=d

λ(d1)λ(d2) =
∑

d1,d2|Pz

∑
δ|(d1,d2)

f (δ)λ(d1)λ(d2)

φ(d1)φ(d2)

=
∑
δ|Pz

f (δ)

(∑
d|Pz
δ|d

λ(d)

φ(d)

)2

.

We have then proved the estimate

S(A,P; z) �X
∑
d|Pz

f (d)

(∑
δ|Pz
d|δ

λ(δ)

φ(δ)

)2

+ O

( ∑
d1,d2|Pz

∣∣λ(d1)λ(d2)r[d1,d2]
∣∣) (4.34)

for all z � 2, if (3.29) holds with 1 � ρ(d) < d for d | Pz, and where λ : N −→ R

satisfies λ(1) = 1. This leads to an optimization problem of a quadratic form which
was solved by Selberg. Note that by (4.33) we have the freedom to choose any
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function λ we like, subject only to the constraint λ(1) = 1. We begin by setting

yd =
∑
δ|Pz
d|δ

λ(δ)

φ(δ)
. (4.35)

For all positive integers d | Pz, we have by the Möbius inversion formula

∑
n|Pz
d|n

μ

(
n

d

)
yn = λ(d)

φ(d)

so that

λ(d) = φ(d)
∑
n|Pz
d|n

μ

(
n

d

)
yn (4.36)

which implies in particular that the linear transformation (4.35) is invertible. From
(4.35) and (4.36), we have

λ(d) = 0 for d > z ⇐⇒ yd = 0 for d > z

which we may suppose for convenience. Since φ(d) = d/ρ(d), we get φ(1) = 1.
By (4.36), the condition λ(1) = 1 may be written as

∑
n|Pz
n�z

μ(n)yn = 1. (4.37)

Hence we set about minimizing the quadratic form
∑
d|Pz
d�z

f (d)y2
d (4.38)

subject to (4.37). Let

Mz =
∑
d|Pz
d�z

1

f (d)
.

Using (4.37) and the fact that d | Pz =⇒ μ2(d) = 1, we have

∑
d|Pz
d�z

1

f (d)

(
f (d)yd − μ(d)

Mz

)2

=
∑
d|Pz
d�z

f (d)y2
d − 2

Mz

∑
d|Pz
d�z

μ(d)yd + 1

M2
z

∑
d|Pz
d�z

μ2(d)

f (d)

=
∑
d|Pz
d�z

f (d)y2
d − 1

Mz
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which implies that (4.38) is minimized when yd = M−1
z μ(d)/f (d), the minimum

being equal to M−1
z . Note that (4.37) is satisfied with this choice of yd . By (4.36),

we infer that the choice of λ(d) ensuring the minimum of (4.38) is given by

λ(d) = φ(d)

Mz

∑
n | Pz
d | n
n � z

{
μ

(
n

d

)
× μ(n)

f (n)

}
= φ(d)

Mz

∑
m|(Pz/d)
m�z/d

μ(m)μ(md)

f (md)

= φ(d)

Mz

∑
m | Pz

(m,d) = 1
m � z/d

μ(m)μ(md)

f (md)
= φ(d)μ(d)

f (d)Mz

∑
m | Pz

(m,d) = 1
m � z/d

μ2(m)

f (m)

where we used the equivalence

m | (Pz/d) ⇐⇒
{

m | Pz

(m,d) = 1.

The above sum may be estimated with the following useful tool.

Lemma 4.69 Let f be a positive multiplicative function, x � 2 be a real number
and k be a positive integer. Then

∏
p|k

(
1 + f (p)

)−1∑
n�x

μ2(n)f (n) �
∑
n�x

(n,k)=1

μ2(n)f (n)

�
∏
p|k

(
1 + f (p)

)−1 ∑
n�kx

μ2(n)f (n).

Proof Each positive integer n may be uniquely written as n = d1d2 with d1 | k and
(d2, k) = 1, and hence (d1, d2) = 1. Since f is multiplicative, we get for all y � 1

∑
n�y

μ2(n)f (n) =
∑
d1�y

d1|k

μ2(d1)f (d1)
∑

d2�y/d1
(d2,k)=1

μ2(d2)f (d2).

Now since f is positive, using the identity above with y = kx gives

∑
n�kx

μ2(n)f (n) =
∑
d1|k

μ2(d1)f (d1)
∑

d2�kx/d1
(d2,k)=1

μ2(d2)f (d2)

�
∑
d1|k

μ2(d1)f (d1)
∑
d2�x

(d2,k)=1

μ2(d2)f (d2)
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and with y = x we get

∑
n�x

μ2(n)f (n) �
∑
d1|k

μ2(d1)f (d1)
∑
d2�x

(d2,k)=1

μ2(d2)f (d2)

and the identity ∑
d1|k

μ2(d1)f (d1) =
∏
p|k

(
1 + f (p)

)

completes the proof. �

Thus, for all d | Pz and d � z, we get

∑
m | Pz

(m,d) = 1
m � z/d

μ2(m)

f (m)
�
∏
p|d

(
1 + 1

f (p)

)−1 ∑
m|Pz
m�z

μ2(m)

f (m)
= f (d)

φ(d)
× Mz

and hence |λ(d)| � 1 for all d | Pz such that d � z. Therefore, using |rd | � ρ(d) and
ρ(d)� 1 for d | Pz, we infer that the error-term of (4.34) is bounded by

∑
d1,d2|Pz

|λ(d1)λ(d2)|ρ(d1)ρ(d2)

ρ((d1, d2))
�
∑

d1,d2|Pz

ρ(d1)ρ(d2) � z2

(∑
d|Pz
d�z

ρ(d)

d

)2

� z2
∏
p|Pz

(
1 + ρ(p)

p

)2

� z2
∏
p�z

(
1 − ρ(p)

p

)−2

.

Finally, using 1 � ρ(d) < d , we have

∑
d|Pz
d�z

μ2(d)ρ(d)

ϕ(d)
�
∑
d|Pz
d�z

μ2(d)ρ(d)

d

∏
p|d

(
1 − ρ(p)

p

)−1

=
∑
d|Pz
d�z

μ2(d)ρ(d)

df (d)

<
∑
d|Pz
d�z

μ2(d)

f (d)
= Mz.

Putting all together we have proved Selberg’s upper bound sieve.

Theorem 4.70 (Selberg) Let z � 2 be a real number, P be a set of primes, Pz =∏
p∈P, p�zp and A be a finite set of integers such that, for all d | Pz, we have

∑
n∈A
d|n

1 = Xρ(d)

d
+ rd
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with X > 0, ρ is a multiplicative function such that 1 � ρ(d) < d and |rd | � ρ(d).
Set

S(A,P; z) =
∑
n∈A

(n,Pz)=1

1.

Then we have

S(A,P; z) � X

(∑
d|Pz
d�z

μ2(d)ρ(d)

ϕ(d)

)−1

+ z2
∏
p�z

(
1 − ρ(p)

p

)−2

.

In order to have a bound for the sum of the main term, the following lemma will
be useful.

Lemma 4.71 Let z � 2 be a real number and k ∈ N. Then

∑
n�z

(n,k)=1

μ2(n)

ϕ(n)
>

ϕ(k)

k
log z.

Proof The lower bound of Lemma 4.69 first gives

∑
n�z

(n,k)=1

μ2(n)

ϕ(n)
� ϕ(k)

k

∑
n�z

μ2(n)

ϕ(n)
.

Now each positive integer n can be uniquely written as n = qd with q squarefree
and d | q∞. Note also that

∑
d|q∞

1

d
=
∏
p|q

(
1 + 1

p
+ 1

p2
+ · · ·

)
=
∏
p|q

(
1 − 1

p

)−1

= q

ϕ(q)
.

Therefore we get

log z <
∑
n�z

1

n
�
∑
q�z

μ2(q)

q

∑
d|q∞

1

d
=
∑
q�z

μ2(q)

ϕ(q)

which concludes the proof. �

When ρ(d) = 1, the above results yield a useful estimate.

Corollary 4.72 With the notation of Theorem 4.70 assuming ρ(d) = 1 and |rd |� 1
for all d | Pz, we have

S(A,P; z) <
X

log z

∏
p�z
p �∈P

(
1 − 1

p

)−1

+ z2.
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Proof Set

Qz =
∏
p�z
p �∈P

p.

When ρ(d) = 1, then φ(d) = d and hence f (d) = ϕ(d), so that we have by
Lemma 4.71

Mz =
∑
d�z

(Qz,d)=1

μ2(d)

ϕ(d)
>

ϕ(Qz)

Qz

log z =
∏
p�z
p �∈P

(
1 − 1

p

)
log z.

Furthermore, since |λ(d)|� 1 and |rd | � 1 for all d | Pz, we infer that the error-term
in (4.34) is bounded by z2, concluding the proof. �

One of the most famous applications of Selberg’s sieve is Brun–Titchmarsh’s
theorem.

Theorem 4.73 (Brun–Titchmarsh) Let a, q be positive coprime integers and set

π(x;q, a) =
∑
p�x

p≡a (modq)

1.

Assume that x > q . Then

π(x;q, a)� 6x

ϕ(q) log(x/q)
.

Proof If 1 < x/q � 20, then the trivial estimate implies

π(x;q, a)� 2x

q
� 6x

ϕ(q) log(20)
� 6x

ϕ(q) log(x/q)

so we may suppose that x/q > 20. Let z � 2 be a real number and we take P the set
of primes p � q and A the set of numbers n � x such that n ≡ a (modq). We then
have

π(x;q, a)� S(A,P; z) + z.

Now if (d, q) = 1, then ∑
n∈A
d|n

1 = x

qd
+ rd

with |rd | � 1, so that Selberg’s sieve may be used with X = x/q and ρ(d) = 1 if
(d, q) = 1. Therefore by Corollary 4.72 we get

π(x;q, a)� x

ϕ(q) log z
+ z2 + z
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and choosing z = (x/q)1/2 log−1/2(x/q) gives the asserted result, using z >

(x/q)1/4 in the first term. �

For an extensive account on sieve methods, the reader is referred to [Bom74,
HR11].

4.7.15 The Large Sieve

The large sieve was invented by Ju.V. Linnik in 1941 [Lin41] while investigating
the distribution of quadratic non-residues (see Example 4.79). In a series of papers
beginning in the late 1940s, Renyi was the first to systematically study the large
sieve and to prove that each large even number 2k may be expressed in the form
2k = p + Pk where ω(Pk) � k. Subsequently, values of k were given by several
authors until Chen proved that k = 2 is admissible. The large sieve always played a
key part.

The large sieve remained in the area of a few specialists until 1965 when major
contributions were made by Roth and then by Bombieri. They paved the way for the
recognition that these results rely on an underlying analytic inequality dealing with
trigonometric polynomials. The analytic principle of the large sieve was formulated
explicitly one year later by Davenport and Halberstam. For an account of the theory
of the large sieve, we may refer the reader to [Bom74, FI10, Mon78].

Nowadays, the large sieve is one of the most powerful tools in multiplica-
tive number theory. Roughly speaking, it may be regarded as Fourier analysis of
arithmetic progressions, both from the additive and multiplicative points of view.
Hence the usual tools from Fourier analysis (quasi-orthogonal systems, Bessel’s
and Hilbert’s inequalities, etc) are the main ingredients of the large sieve.

The analytic additive form of the large sieve can be described as follows. Let
M ∈ Z, N be a positive integer, (an) be a sequence of arbitrary complex numbers
supported on the interval ]M,M + N ] and let

S(α) =
∑

M<n�M+N

ane(nα)

be a trigonometric polynomial. Let δ > 0 and assume that α1, . . . , αR are δ-well
spaced, i.e. for all r �= s ∈ {1, . . . ,R}, we have

‖αr − αs‖ � δ. (4.39)

The large sieve is an inequality of the shape

R∑
r=1

∣∣S(αr)
∣∣2 � �(N,δ)

M+N∑
n=M+1

|an|2. (4.40)
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Since |S| is 1-periodic, one may assume that 0 < α1 < α2 < · · · < αR � 1 with
δ � R−1, and since

∣∣∣∣∣
M+K+N∑

n=M+K+1

an−Ke(nα)

∣∣∣∣∣=
∣∣e(Kα)S(α)

∣∣= ∣∣S(α)
∣∣

we see that the parameter M is irrelevant, and hence we are interested in determining
how �(N,δ) depends on N and δ.

The next lemma is a version of Parseval’s well-known identity.

Lemma 4.74 (Parseval’s identity) We have

∫ 1

0

∣∣S(t)
∣∣2 dt =

∑
M<n�M+N

|an|2.

Proof Squaring out we get

∣∣S(t)
∣∣2 =

∑
M<n�M+N

|an|2 +
∑

n1 �=n2

an1an2 e
(
(n1 − n2)t

)

and the result follows from the identity

∫ 1

0
e(kt)dt =

{
1, if k = 0

0, otherwise

which concludes the proof. �

We first observe that �(N,δ) cannot be too small. If an = e(−nα1), then
∣∣S(α1)

∣∣2 = N2 = N
∑

M<n�M+N

|an|2

and hence �(N,δ) � N . Now assume that the αr are equally spaced so that δ =
R−1. By periodicity and Lemma 4.74, we have

∫ 1

0

R∑
r=1

∣∣S(αr + t)
∣∣2 dt = R

∫ 1

0

∣∣S(t)
∣∣2dt = R

∑
M<n�M+N

|an|2

so that for some values of t we have

R∑
r=1

∣∣S(αr + t)
∣∣2 � R

∑
M<n�M+N

|an|2

and therefore �(N,δ) � [δ−1] > δ−1 − 1. The following optimal result, attributed
to Selberg, shows that we may take �(N,δ) to be barely larger than is required by
the above observation.
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Theorem 4.75 (Large sieve) Under the hypothesis (4.39), the inequality (4.40)
holds with

�(N,δ) = N + δ−1 − 1.

A possible proof uses generalizations of Bessel’s and Hilbert’s inequalities. We
shall see that one can prove a weaker version of this result, although sufficiently
strong to be used in many applications, with the following quicker and elegant ideas
due to Gallagher. We start with a useful lemma.

Lemma 4.76 (Gallagher) Let f ∈ C1[a, b] with a < b. Then

∣∣∣∣f
(

a + b

2

)∣∣∣∣� 1

b − a

∫ b

a

∣∣f (t)
∣∣dt + 1

2

∫ b

a

∣∣f ′(t)
∣∣dt.

Proof An integration by parts provides for all x ∈ [a, b]
∫ b

x

t − b

b − a
f ′(t)dt +

∫ x

a

t − a

b − a
f ′(t)dt = f (x) − 1

b − a

∫ b

a

f (t)dt

and the result follows by noticing that, if x = a+b
2 , then | t−b

b−a
| � 1

2 in the first integral

and | t−a
b−a

| � 1
2 in the second one. �

We are now in a position to prove Gallagher’s version of the large sieve [Gal67].

Theorem 4.77 (Gallagher) Under the hypothesis (4.39), the inequality (4.40) holds
with

�(N,δ) = πN + δ−1.

Proof Lemma 4.76 with a = αr − δ/2 and b = αr + δ/2 implies that

∣∣f (αr)
∣∣� 1

δ

∫ αr+δ/2

αr−δ/2

∣∣f (t)
∣∣dt + 1

2

∫ αr+δ/2

αr−δ/2

∣∣f ′(t)
∣∣dt

and taking f (α) = S(α)2 we get

∣∣S(αr)
∣∣2 � 1

δ

∫ αr+δ/2

αr−δ/2

∣∣S(t)
∣∣2 dt +

∫ αr+δ/2

αr−δ/2

∣∣S(t)S′(t)
∣∣dt.

By (4.39), the intervals Ir =]αr − δ/2, αr + δ/2[ do not overlap modulo 1, meaning
that if r �= s, then no point of Ir differs by an integer from another point of Is . Hence
summing over r we obtain

R∑
r=1

∣∣S(αr)
∣∣2 � 1

δ

∫ 1

0

∣∣S(t)
∣∣2 dt +

∫ 1

0

∣∣S(t)S′(t)
∣∣dt.
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Now by Lemma 4.74 we have
∫ 1

0

∣∣S(t)
∣∣2 dt =

∑
M<n�M+N

|an|2

and using Cauchy–Schwarz’s inequality (integral analogue of Lemma 6.17) and Par-
seval’s identity again, we get

∫ 1

0

∣∣S(t)S′(t)
∣∣dt �

(∫ 1

0

∣∣S(t)
∣∣2 dt

)1/2(∫ 1

0

∣∣S′(t)
∣∣2 dt

)1/2

=
( ∑

M<n�M+N

|an|2
)1/2( ∑

M<n�M+N

|2πnan|2
)1/2

� 2π
(

max
M<n�M+N

|n|
) ∑

M<n�M+N

|an|2.

This gives

R∑
r=1

∣∣S(αr)
∣∣2 � {δ−1 + 2π

(
max

M<n�M+N
|n|
)} ∑

M<n�M+N

|an|2

and we conclude the proof by noticing that, since �(N,δ) is independent of M ,
we may suppose that M = −[ 1

2 (N + 1)] so that maxM<n�M+N |n| � N/2 as re-
quired. �

The arithmetic version of the large sieve often takes the following form. Consider
a finite set P of prime numbers and, for all p ∈ P , let �p be a subset of Fp of residue
classes to sieve out. The main purpose of sieve methods is to provide an estimate of

∑
n∈S(N,P,�p)

an

where (an) is any sequence of complex numbers and S(N,P,�p) is the so-called
sifted set

S(N,P,�p) = {n ∈]M,M + N ] ∩Z : n (modp) �∈ �p for all p ∈ P
}
.

We apply Theorem 4.75 or Theorem 4.77 with αr = a/q for some integers a, q such
that 1 � a � q � Q and (a, q) = 1. (4.39) is then satisfied with δ = Q−2 since, for
r �= s, we have

‖αr − αs‖ =
∥∥∥∥a

q
− a′

q ′

∥∥∥∥=
∥∥∥∥aq ′ − a′q

qq ′

∥∥∥∥� 1

qq ′ �
1

Q2

where the inequality ‖n/m‖ � m−1 with (m,n) = 1 comes from Exercise 3 (i)
and (ii) in Chap. 1. Using Theorem 4.75 we get
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∑
q�Q

q∑
a=1

(a,q)=1

∣∣∣∣S
(

a

q

)∣∣∣∣
2

�
(
N − 1 + Q2) ∑

M<n�M+N

|an|2.

Now [IK04, Lemma 7.15] states that, for all positive integers q , we have

q∑
a=1

(a,q)=1

∣∣∣∣S
(

a

q

)∣∣∣∣
2

� μ(q)2
∏
p|q

(
1 − ρ(p)

p

)−1∣∣∣∣
∑

n∈S(N,P,�p)

an

∣∣∣∣
2

where, for all primes p ∈P , we set

ρ(p) = |�p| (4.41)

and hence we obtain the following useful result.

Corollary 4.78 (Arithmetic large sieve) Let (an) be any complex-valued sequence
supported on ]M,M + N ]. For all positive integers Q, set

L = L(Q) =
∑
q�Q

μ(q)2
∏
p|q

(
1 − ρ(p)

p

)−1

(4.42)

where ρ(p) is defined in (4.41). If ρ(p) < p for all primes p ∈P , then for all Q� 1
we have ∣∣∣∣

∑
n∈S(N,P,�p)

an

∣∣∣∣
2

� N − 1 + Q2

L

∑
M<n�M+N

|an|2.

In particular, we have

∑
n∈S(N,P,�p)

1 � N − 1 + Q2

L
.

It is important to keep in mind the following examples given in [Bom74] (with
M = 0).

Example 4.79

1. Sieve of Eratosthenes. P is the set of primes p �
√

N and �p = {0}.
2. Twin primes. P is the set of primes p �

√
N and �p = {0,2}.

3. Linnik’s example on the least quadratic non-residue.

P =
{
p �

√
N :
(

n

p

)
= 1 for all n � Nε

}

and �p = {h : (h/p) = −1}.
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A more elaborate large sieve inequality enables the authors in [MV73] to prove
the most elegant version of the Brun–Titchmarsh theorem.

Theorem 4.80 (Montgomery and Vaughan) Let x, y � 2 be real numbers and a, q

be positive integers such that (a, q) = 1 and y > q . Then

π(x + y;q, a) − π(x;q, a) <
2y

ϕ(q) log(y/q)
.

This is a powerful version of Brun–Titchmarsh’s inequality which may replace
Siegel–Walfisz–Page’s theorem (Theorem 3.92) in many cases. The factor 2 is of
great importance in number theory. More precisely, if the Siegel zero β1 exists in
(3.45), then it is very close to 1 since we may have

1 − c1

logq
� β1 < 1.

On the other hand, it is proved in [Mot79] that if the estimate

π(x;q, a)� (2 − ε) x

ϕ(q) log(x/q)
(4.43)

holds for x � qc2 , where ε > 0 is an absolute constant, then

β1 � 1 − c3ε

logq

and hence (4.43) enables us to disprove the existence of this exceptional zero. (4.43)
also implies that

π(x;q, a) = {1 + O
(
e−c4ε logx/ logq

)} x

ϕ(q) logx

as long as x � qc2 , and thus the constant 2−ε will be automatically reduced to 1+ε

for all x larger than a sufficiently high power of q .
Vaughan [Vau73] obtained the following useful lower bound for L, in which only

a lower estimate of the average values of ρ(p) is sufficient. For all Q ∈ N, we have

L� max
m∈N

exp

(
m log

(
1

m

∑
p�Q1/m

ρ(p)

p

))
. (4.44)

This allows us to get the following effective version of Corollary 4.78.

Corollary 4.81 Along with the notation of Corollary 4.78, let β > 0.

(i) Suppose that there exists a constant c0 > 0 such that, for all sufficiently large R,
we have ∑

p�R

ρ(p)

p
> c0(log logR)β.
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Then there exists a constant c1 > 0 such that for all sufficiently large N , we
have ∑

n∈S(N,P,�p)

1 <
N

exp(c1(log logN)β)
.

(ii) Suppose that there exists a constant c2 > 0 such that, for all sufficiently large R,
we have ∑

p�R

ρ(p)

p
> c2(logR)β.

Then there exists a constant c3 > 0 such that for all sufficiently large N , we
have ∑

n∈S(N,P,�p)

1 <
N

exp(c3(logN)β/(β+1))
.

4.8 Exercises

1 Prove that

(a) τ(n) � 2
√

n.
(b) σ(n) < n(log

√
n + 2 + log 2).

(c) For all composite integers n ∈ N, we have ϕ(n)� n − √
n.

2 Let f be a multiplicative function satisfying

lim
pα→∞f

(
pα
)= 0.

Show that

lim
n→∞f (n) = 0.

Deduce that, for all ε > 0 and n ∈ N, we have τ(n) � nε .

3 Prove the following identities.

(a)
∑

d|n τ 3(d) = (
∑

d|n τ (d))2.
(b)

∑
d|n β(d)μ(n/d) = s2(n).

(c)
∑

d|n σk(d)μ(n/d) = nk .

(d)
∑

d|n μ2(d)kω(d) = (k + 1)ω(n).

4 Let k be a positive integer.

(a) Prove that for all n ∈N, we have

�k(n) = �k−1(n) logn + (�k−1 � �)(n).
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(b) Prove that for all m,n ∈N such that (m,n) = 1, we have

�k(mn) =
k∑

j=0

(
k

j

)
�j(m)�k−j (n).

5 In [Gou72, identity 3.93], one may find the following result.

n∑
j=0

(2j
j

)(2n−2j
n−j

)
(2j − 1)(2n − 2j − 1)

=
⎧⎨
⎩

1, if n = 0
−4, if n = 1
0, if n � 2.

With the help of this identity, determine the multiplicative function f such that
μ = f � f .

6 Let f be an additive function and g be a multiplicative function. Prove that, for
all m,n ∈ N such that (m,n) = 1, we have

(f � g)(mn) = (f � g)(m)(g � 1)(n) + (f � g)(n)(g � 1)(m).

Deduce that, if n �= pα , then (f � μ)(n) = 0.

7 Let n be a positive integer.

(a) Prove that

nn+1

ζ(n + 1)
� ϕ(n)σ

(
nn
)
� nn+1.

(b) Deduce the nature of the series
∑

n�1 f (n) where

f (n) = n

ϕ(n)
− σ(nn)

nn
.

8 Prove that for all integers m, n not necessarily coprime, we have

�k(mn)� τk(m)�k(n).

9 (Realizable sequences and Perrin sequences) This exercise first requires the fol-
lowing definitions.

(i) Let E be a non-empty set and F : E −→ E be any map. Let n ∈ Z�0. An
element x ∈ E is said to be n-periodic by f if

Fn(x) = x

where F 0 = Id and Fn = F ◦ · · · ◦ F (n times). We define Pern(F ) to be the
set of n-periodic points by F and Per∗n(F ) to be the set of points having the
smallest n-period by F . Finally, we call the orbit of x ∈ E the set

Ox = {Fk(x) : k ∈ Z�0
}
.
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(ii) A sequence (un) of non-negative integers is said to be realizable if there exist a
set E and a map F : E −→ E such that, for all n ∈N, we have

un = ∣∣Pern(F )
∣∣.

It can be shown that the following sequences are realizable.

(i) The sequence (un) defined by un = an where a is a fixed positive integer.
(ii) The sequence (un) defined by un = Tr(An) where A is a fixed square matrix

with non-negative integer entries.

1. General properties.
(a) Prove that, if x ∈ Pern(F ), then the smallest period of x divides n.
(b) Deduce that, if Per∗n(F ) is a finite set, then we have

∣∣Pern(F )
∣∣=∑

d|n

∣∣Per∗d(F )
∣∣

and ∣∣Per∗n(F )
∣∣=∑

d|n

∣∣Per∗d(F )
∣∣μ(n/d).

(c) Show that, if x ∈ Per∗n(F ), then Ox = {x,F (x),F 2(x), . . . ,F n−1(x)} and
that |Ox | = n.

(d) Prove that, if x ∈ Per∗n(F ), then Ox ⊆ Per∗n(F ).
(e) For all x, y ∈ Per∗n(F ), define

x ∼ y ⇐⇒ x ∈Oy.

Check that this is an equivalence relation and deduce that, if Per∗n(F ) is a
finite set, then we have ∣∣Per∗n(F )

∣∣≡ 0 (modn).

(f) Deduce that, if u = (un) is a realizable sequence, then u � μ� 0 and

(u � μ)(n) ≡ 0 (modn).

2. Applications.
(a) Prove that, for all positive integers a, we have

∑
d|n

adμ(n/d) ≡ 0 (modn).

(b) Prove that, for each square matrix A with non-negative integer entries, we
have ∑

d|n
Tr
(
Ad
)
μ(n/d) ≡ 0 (modn).

(c) Deduce Fermat’s little theorem for integer matrices.
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Let p be a prime number and A be a square matrix with integer
entries. Then

Tr
(
Ap
)≡ Tr(A) (modp).

3. Perrin sequences. Let (un) be the sequence defined by u0 = 3, u1 = 0, u2 = 2
and

un = un−2 + un−3

for all n� 3.
(a) Let A be the matrix

A =
⎛
⎝0 0 1

1 0 1
0 1 0

⎞
⎠ .

Prove that, for all n ∈ Z�0, we have un = Tr(An).
(b) Deduce that, for all primes p, we have p | up .

10 Prove that
∑
n�x

ϕ(n) = x2

2ζ(2)
+ O(x logx).

11 (Cesáro, 1885) Let f be an arithmetic function. Show that

n∑
i=1

f
(
(i, n)

)= (f � ϕ)(n).

12 The Pillai function S(n) is defined by

S(n) =
n∑

i=1

(i, n).

Let θ be the exponent in the Dirichlet divisor problem,8 i.e. the smallest positive
real number θ such that the asymptotic estimate

∑
n�x

τ (n) = x(logx + 2γ − 1) + O
(
xθ+ε

)

holds for all ε > 0 and x � 1. The aim of this exercise is to prove the following
result.

∑
n�x

S(n) = x2

2ζ(2)

(
logx + 2γ − 1

2
− ζ ′(2)

ζ(2)

)
+ O

(
x1+θ+ε

)
. (4.45)

8The best inequalities to date for θ are 1
4 � θ � 131

416 . See Chap. 6.
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(a) Prove that, for all ε > 0 and z � 1, we have

∑
n�z

nτ(n) = z2 log z

2
+ z2

(
γ − 1

4

)
+ O

(
zθ+1+ε

)
.

(b) Using Exercise 11 and (4.7) check that S = μ � (τ × Id).
(c) Prove (4.45).

13 Let k be a fixed positive integer. For all x � 1, define

Sk(x) =
∑
n�x

τk(n).

(a) Prove that

x

∫ x

1

Sk(t)

t2
dt < Sk+1(x) � x

∫ x

1

Sk(t)

t2
dt + Sk(x).

(b) Using induction, deduce that

x

k−1∑
j=0

(−1)k+j+1 (logx)j

j ! + (−1)k <
∑
n�x

τk(n) � x

k−1∑
j=0

(
k − 1

j

)
(logx)j

j ! .

(c) Deduce that

∑
n�x

τk(n)� x(logx + k − 1)k−1

(k − 1)! .

(d) Using induction, prove that for all k � 2

∑
n�x

τk(n) = x(logx)k−1

(k − 1)! + O
(
x(logx)k−2).

(e) For all k,n ∈N, let τ �
k (n) be the kth strict divisor function of n, i.e. the number

of choices of n1, . . . , nk satisfying n = n1 · · ·nk with nj � 2. Prove that, for any
x � 1, we have

∑
n�x

τ �
k (n) � x(logx)k−1

(k − 1)! .

14 Using Corollary 3.7 (v), prove that, for all x � 1, we have

∑
n�x

s2(n) < 3
√

x
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and deduce by partial summation that

∑
n>x

s2(n)

n
<

6√
x

.

15 Let f be a multiplicative function such that |f (p) − 1| � p−1 for all primes p

and |(f � μ)(pα)| � 1 for all prime powers pα with α � 2. Prove that

∑
n�x

f (n) = x
∏
p

(
1 − 1

p

)(
1 +

∞∑
α=1

f (pα)

pα

)
+ O

(
x1/2).

16 Prove that
∑
n�x

β(n) = x
ζ(2)ζ(3)

ζ(6)
+ O

(
x1/2).

17 Prove that

∑
n�x

ϕ(n)γ2(n)

n2
= x

∏
p

(
1 − 1

p

)(
1 + 1

p + 1

)
+ O

(
x1/2).

18 (S. Selberg) For all x � 1, define

S(x) =
∑
n�x

μ(n)

nτ(n)
.

(a) Show that

S(x) = 1

x

(∑
n�x

2−ω(n) +
∑
n�x

μ(n)

τ(n)

{
x

n

})
.

(b) Using Theorem 4.22, deduce that there exist c0 > 0 and x0 � e such that, for all
x � x0, we have

0 < S(x) < c0(logx)−1/2.

19 (Hall and Tenenbaum) For all x � 2 and k ∈ N, define

Nk(x) =
∑
n�x

�(n)=k

1.

The aim of this exercise is to prove the following bound.

Nk(x) � k2−kx logx. (4.46)
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(a) Let t ∈ [1,2[. Using f = t� � μ and Proposition 4.17, prove that

∑
n�x

t�(n) � x logx

2 − t
.

(b) Prove (4.46).

20 (Alladi, Erdős and Vaaler) Let n,a � 2 be integers with n squarefree and λ � 0
be a real number. Let f be a multiplicative function such that, for all primes p, we
have

0 � f (p) � λ <
1

a − 1
. (4.47)

The aim of this exercise is to show the following inequality.

∑
d|n

f (d)�
(

1 + λ

1 + λ − aλ

) ∑
d|n

d�n1/a

f (d). (4.48)

1. (a) Let p be a prime factor of n. Show that

∑
d|n

f (d) =
∑

d|(n/p)

f (d) +
∑

k|(n/p)

f (kp)

and then

∑
k|(n/p)

f (k) =
(

1

1 + f (p)

)∑
d|n

f (d). (4.49)

(b) Deduce that

∑
d|n

f (d) logd =
(∑

d|n
f (d)

)(∑
p|n

f (p) logp

1 + f (p)

)

and then

∑
d|n

f (d) logd � λ logn

1 + λ

(∑
d|n

f (d)

)
. (4.50)

2. Prove that

∑
d|n

f (d)
log(n1/a/d)

log(n1/a)
�
∑
d|n

d�n1/a

f (d)

and conclude with (4.50).
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21 (Redheffer) Let Rn = (rij ) ∈Mn({0,1}) be the matrix defined by

rij =
{

1, if i | j or j = 1

0, otherwise.

Show that

detRn = M(n)

where M(n) =∑n
k=1 μ(k) is the Mertens function.

22 Let t > 0.

1. Prove that, for all n ∈N, we have
∑
d|n

tω(d) � (1 + t)�(n).

2. Let k ∈N. Show that

∑
d|n

ω(d)�k

tω(d) �
k∑

j=0

(
�(n)

j

)
tj .

23 Let N ∈N. Prove that
∑
n�N

(τ � μ � �)(n) = log(N !).
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Chapter 5
Integer Points Close to Smooth Curves

5.1 Introduction

5.1.1 Squarefree Numbers in Short Intervals

Let x, y be two real numbers satisfying 2 � y � x. We intend to get an asymptotic
formula for the sum

∑

x<n�x+y

μ2(n).

First, the trivial bound provides

∑

x<n�x+y

μ2(n) �
∑

x<n�x+y

1 = [x + y] − [x] � y + 1

and Shiu’s theorem (Theorem 4.62) gives no further improvement. It was seen in
Example 4.18 that

∑

n�x

μ2(n) = x

ζ(2)
+ O(

√
x)

and therefore one may ask for an asymptotic result having the shape

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O(

√
y). (5.1)

At the present time, (5.1) remains unproven. The long-sum result above immediately
yields

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O(

√
x) (5.2)
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so that this estimate is useless if y � √
x. At this point we may formulate our

problem more precisely: we ask for the smallest exponent θ ∈ [0, 1
2 ] such that the

asymptotic formula

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
xθ (logx)β + y1/2) (5.3)

holds for some real number β � 0. One may weaken this problem by ignoring the
logarithmic term and look for estimates of the shape

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
xθ+ε + y1/2)

valid for all ε > 0 and x sufficiently large. The minimal value θ = 0 would give a
slightly weaker version of (5.1). Furthermore, (5.3) has another consequence: there
exist constants c0 > 0 and 0 < c1 < 1 such that

∑

x<n�x+y

μ2(n)� y

ζ(2)
− c0x

θ (logx)β − c0y
1/2 � c1y − c0x

θ (logx)β

if y is sufficiently large. Therefore, if y > c2x
θ (logx)β for some constant c2 >

c0c
−1
1 , we get

∑

x<n�x+y

μ2(n) > 0

which means that the interval ]x, x + y] contains a squarefree integer.
The determination of minimal gaps between squarefree numbers is a long-

standing problem in multiplicative number theory. It was introduced by Fogels
[Fog41] in 1941 who proved that θ = 2

5 is an admissible value in this problem,
and then Roth [Rot51], Richert [Ric54], Graham and Kolesnik [GK91] and Filaseta
and Trifonov [FT92] successively improved on the value of θ . The best value to date
is given in [FT92] in which the authors proved that, if y � c0x

1/5 logx, then the in-
terval ]x, x + y] contains a squarefree integer. We shall see their method, based
entirely upon elementary arguments, in Sect. 5.4.

Let us have a closer look at the details of the computations. If we use point by
point the method of Example 4.18, we get

∑

x<n�x+y

μ2(n) =
∑

x<n�x+y

∑

d2|n
μ(d)

=
∑

d�√
x+y

μ(d)
∑

x/d2<k�(x+y)/d2

1

=
∑

d�√
x+y

μ(d)

([
x + y

d2

]
−

[
x

d2

])
.
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We have
x + y

d2
− x

d2
= y

d2

which prompts us to split the above sum into three parts as follows.

∑

x<n�x+y

μ2(n) =
( ∑

d�2
√

y

+
∑

2
√

y<d�√
x

+
∑

√
x<d�√

x+y

)
μ(d)

([
x + y

d2

]
−

[
x

d2

])

= S1 + S2 + S3.

� For S1, the usual estimate [t] = t + O(1) is sufficient and gives

S1 = y
∑

d�2
√

y

μ(d)

d2
+ O(

√
y) = y

ζ(2)
+ O(

√
y).

� For S3, the trivial estimate is sufficient and gives

|S3| �
∑

√
x<d�√

x+y

1 �
√

x + y − √
x + 1 � yx−1/2 + 1 � √

y

since y � x. Hence we obtain

∑

x<n�x+y

μ2(n) = y

ζ(2)
+

∑

2
√

y<d�√
x

μ(d)

([
x + y

d2

]
−

[
x

d2

])
+ O(

√
y).

It remains to estimate this sum. The triangle inequality gives (5.2). Observe that,
since y/d2 < 1/4, the difference

[
x + y

d2

]
−

[
x

d2

]

is equal to 1 or 0 depending on the fact that there is either an integer between x/d2

and (x + y)/d2 or not. Hence, to have a chance to do better than the trivial estimate,
we must take these cancellations into account. The idea is then

1. to split the interval ]2√
y,

√
x] into O(logx) dyadic subintervals of the form

]N,2N ] which gives

|S2| � max
2
√

y<N�√
x

∑

N<d�2N

([
x + y

d2

]
−

[
x

d2

])
logx

2. to estimate the number of points with integer coordinates, also called integer
points,1 lying near the curve of the function f (u) = x/u2 with N < u� 2N .

This chapter is devoted to providing results counting integer points close to suf-
ficiently regular plane curves.

1Some authors also use the vocable lattice points.
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5.1.2 Definitions and Notation

� In what follows, N � 4 is a large integer and δ and c0 are small positive real
numbers. We will always suppose that

0 < δ <
1

4
. (5.4)

Note that the constant c0 may take different values according to the section in
which it appears.

� The notation ‖t‖ means the distance from the real number t to its nearest integer
denoted by �t�. Some properties of this function are investigated in Exercises 1
and 2.

� x, y are large real numbers satisfying 2 � y � x, except in the examples where
we impose the following more restricted range

16 � y <

√
x

4
. (5.5)

� The set Sk . Let k ∈ N. We shall say that f ∈ Sk if and only if f ∈ Ck[N,2N ]
such that there exist λk > 0 and ck � 1 such that, for all x ∈ [N,2N ], we have

λk �
∣∣f (k)(x)

∣∣ � ckλk

which also may be denoted using Titchmarsh–Vinogradov’s notation by
|f (k)(x)| 	 λk .

For instance, the functions f : u 
−→ x/u2 and g = f −1 : u 
−→ (x/u)1/2 lie
in Sk for all k with

λk ck

f
(

(k+1)!
2k+2

)
x

Nk+2 2k+2

g
(

(2k−1)!!
2k+1/2

)
x1/2

Nk+1/2 2k+1/2

where (2k − 1)!! = 1 × 3 × 5 × · · · × (2k − 1).
� Finally, we shall need the following integer.

Definition 5.1 Let f : [N,2N ] −→ R be any map and δ be a real number satisfying
(5.4). We define

S(f,N, δ) = {
n ∈ [N,2N ] ∩Z : ∥∥f (n)

∥∥ < δ
}

and R(f,N, δ) = |S(f,N, δ)|.

We shall always make use of the following lemma.
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Lemma 5.2 Let f : [N,2N ] −→R be any map, δ be a real number satisfying (5.4)
and (δn) be a sequence of real numbers supported on [N,2N ] such that 0 � δn < δ.
Then we have

∑

N�n�2N

([
f (n) + δn

] − [
f (n) − δn

])
�R(f,N, δ)

�
∑

N�n�2N

([
f (n) + δ

] − [
f (n) − δ

])
.

Proof We appeal to Proposition 1.11 (vii) which implies that
∑

N�n�2N

([
f (n) + δn

] − [
f (n) − δn

])

=
∑

N�n�2N
‖f (n)‖<δn

1 +
∑

N�n�2N
‖f (n)‖=δn

([
f (n) + δn

] − [
f (n) − δn

])

�
∑

N�n�2N
‖f (n)‖�δn

1 �R(f,N, δ)

=
∑

N�n�2N

([
f (n) + δ

] − [
f (n) − δ

]) −
∑

N�n�2N
‖f (n)‖=δ

([
f (n) + δ

] − [
f (n) − δ

])

�
∑

N�n�2N

([
f (n) + δ

] − [
f (n) − δ

])

as asserted. �

It should be noticed that the trivial estimate gives

R(f,N, δ) �N + 1. (5.6)

This inequality must be kept in mind whenever we obtain a new estimate for
R(f,N, δ).

5.1.3 Basic Lemma in the Squarefree Number Problem

With the definitions and notation of the previous section, we may state the basic
result we shall use to estimate the number of squarefree integers in short intervals.

Lemma 5.3 Let x, y satisfy (5.5) and 2
√

y �A < B � 2
√

x. Then

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
(R1 + R2) logx + A

)
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where R1 = R1(A,B) and R2 = R2(B) are defined by

R1 = max
A<N�B

R
(

x

n2
,N,

y

N2

)
and R2 = max

N�2x/B2
R

(√
x

n
,N,

y√
Nx

)
.

Proof By the computations made in the previous sections, we have

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ S2 + O(

√
y)

with

S2 =
∑

2
√

y<d�√
x

μ(d)

([
x + y

d2

]
−

[
x

d2

])
.

Inserting the parameters A and B and estimating the first sum trivially, we get

|S2| �
( ∑

2
√

y<d�A

+
∑

A<d�B

+
∑

B<d�√
x

)([
x + y

d2

]
−

[
x

d2

])

�A +
∑

A<d�B

([
x + y

d2

]
−

[
x

d2

])
+

∑

B<d�√
x

∑

x/d2<k�(x+y)/d2

1

= A +
∑

A<d�B

([
x + y

d2

]
−

[
x

d2

])
+

∑

B<d�√
x

∑

k

x<kd2�x+y

1

and interchanging the summations gives

|S2|� A +
∑

A<d�B

([
x + y

d2

]
−

[
x

d2

])
+

∑

k�(x+y)/B2

∑

√
x/k<d�√

(x+y)/k

1

� A +
∑

A<d�B

([
x + y

d2

]
−

[
x

d2

])
+

∑

k�2x/B2

([√
x + y

k

]
−

[√
x

k

])
.

Now for k ∈ [N,2N ] and using (5.5), we have
√

x + y

k
−

√
x

k
� y

2
√

Nx
<

y√
Nx

<
1

4

and splitting the sums into O(logx) subintervals ]N,2N ] gives the asserted re-
sult. �

Remark 5.4

1. If we choose B = x1/3, then two sums have a range of the same order of mag-
nitude. Also note that the functions u 
−→ x/u2 and u 
−→ √

x/u are inverse.
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Hence one may expect that R1(A,x1/3) and R2(x
1/3) have the same order of

magnitude. Indeed they have by [Hux96, Lemma 3.1.1], so that Lemma 5.3 en-
ables us to reduce the range of summation.

Choosing A = 4
√

y and using (5.6) to estimate R1 and R2 trivially, we get at
once

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
x1/3 logx

)

if x, y satisfy (5.5). Hence there exists c0 > 0 such that, if c0x
1/3 logx � y <

x1/2/4, the interval ]x, x + y] contains a squarefree number.
2. Lemma 5.3 may easily be generalized to the problem of r-free numbers in short

intervals, with r � 2. In this case, we have for all (4y)1/r � A < B � x1/r

∑

x<n�x+y

μr(n) = y

ζ(r)
+ O

(
(R1 + R2) logx + A

)

where

R1 = max
A<N�B

R
(

x

nr
,N,

y

Nr

)
and

R2 = max
N�2x/Br

R
((

x

n

)1/r

,N,
y

N1/rx1−1/r

)
.

The proof is exactly the same as in Lemma 5.3, so we leave the details to the
reader.

3. The problem of square-full numbers in short intervals is quite similar in nature
to that of the squarefree number problem, except with the following major dif-
ference. In [Shi80], the author proved that there exist infinitely many positive
integers n such that there is no square-full number between n2 and (n + 1)2. It
follows that, if y <

√
x, the interval ]x, x+y] may contain no square-full number

at all. On the other hand, since there is a square in the interval ]x, x + 2
√

x + 1]
for all x � 0, it follows that there exists a constant c0 > 0 such that, for all x � 1,
the interval ]x, x +c0

√
x] contains a square-full integer. Thus, the maximum size

of gaps between square-full numbers is known and one may ask for the distri-
bution of square-full numbers in intervals ]x, x + y] with y >

√
x and the ratio

yx−1/2 being as small as possible.
In Exercise 6, a basic lemma similar to Lemma 5.3 is established where it is

shown that, if 16x1/2(logx)3 � y � 4−3x(logx)−1, then

∑

x<n�x+y

s2(n) = ζ(3/2)

2ζ(3)

y√
x

+ O

{
(R1 + R2) logx + y√

x logx

}

where

R1 = max
L<N�(2x)1/5

R
(√

x

n3
,N,

y√
xN3

)
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and

R2 = max
L<N�(2x)1/5

R
((

x

n2

)1/3

,N,
y

(Nx)2/3

)

with L = L(x, y) = y(x logx)−1/2. Once again, the number of integer points
close to two inverse curves thus appears.

5.1.4 Srinivasan’s Optimization Lemma

We end this section with a useful optimization lemma due to Srinivasan [Sri62,
Lemma 4], which generalizes the following well-known situation. Suppose we have
an estimate of the shape

E(H) � AHa + BH−b

where A,B,a, b > 0 and H > 0 is a parameter at our disposal. Choosing H to
equalize both terms, we get

E(H) � (
AbBa

) 1
a+b

and this is best possible apart from the value of the implied constant.

Lemma 5.5 (Srinivasan) Let

E(H) =
m∑

i=1

AiH
ai +

n∑

j=1

BjH
−bj

where m,n ∈ N and Ai , Bj , ai and bj are positive real numbers. Suppose that
0 � H1 � H2. Then

min
H1�H�H2

E(H) � (m + n)

{
m∑

i=1

n∑

j=1

(
A

bj

i B
ai

j

) 1
ai+bj +

m∑

i=1

AiH
ai

1 +
n∑

j=1

BjH
−bj

2

}
.

This inequality corresponds to the best possible choice of H in the interval
[H1,H2]. Srinivasan pointed out that the case H1 = 0 and H2 = ∞ was already
shown by van der Corput in 1922.

5.2 Criteria for Integer Points

5.2.1 The First Derivative Test

The first result we will establish concerns the functions f ∈ S1 and follows from the
classical mean-value theorem. It is only useful when λ1 is very small, and hence is
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rather restrictive. However, it will turn out to be the starting point of more elaborate
estimates.

Theorem 5.6 (First derivative test) Let f ∈ C1[N,2N ] such that there exist λ1 > 0
and c1 � 1 such that, for all x ∈ [N,2N ], we have

λ1 �
∣∣f ′(x)

∣∣ � c1λ1. (5.7)

Then

R(f,N, δ) � 2c1Nλ1 + 4c1Nδ + 2δ

λ1
+ 1.

In practice, the implied constant c1 is useless, so using Titchmarsh–Vinogradov’s
notation, this result may be rewritten as follows. If

∣∣f ′(x)
∣∣ 	 λ1

then we have

R(f,N, δ) � Nλ1 + Nδ + δ

λ1
+ 1.

Proof If 4c1δ � 1, then 4c1Nδ + 1 � N + 1 � R(f,N, δ) by (5.6). Similarly, if
2c1λ1 � 1, then 2c1Nλ1 + 1 � N + 1 � R(f,N, δ). Therefore we may suppose
that max(4c1δ, 2c1λ1) < 1. Let n and n + a be any integers in S(f,N, δ). Using
the mean-value theorem, we will prove that either

a >
1

2c1λ1
= a1 (5.8)

or

a <
2δ

λ1
= a2. (5.9)

We postpone the proof of these inequalities and assume that either (5.8) or (5.9)
holds. Note that the condition max(4c1δ, 2c1λ1) < 1 implies a1 > max(1, a2). Sub-
dividing the interval [N,2N ] into s = [N/a1]+ 1 subintervals I1, . . . ,Is of lengths
� a1, two elements of S(f,N, δ) ∩ Ij have a distance � a2, and hence lie in an
interval of length � a2. Using Proposition 1.11 (v), we infer that

∣∣S(f,N, δ) ∩ Ij

∣∣� a2 + 1

and thus

R(f,N, δ) �
(

N

a1
+ 1

)
(a2 + 1) = 2c1Nλ1 + 4c1Nδ + 2δ

λ1
+ 1.

The rest of the text is devoted to the proof of the inequalities (5.8) and (5.9).
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Since n,n + a ∈ S(f,N, δ), there exist two integers m1 and m2 and two real
numbers δ1 and δ2 such that

f (n) = m1 + δ1,

f (n + a) = m2 + δ2

with |δi | < δ for i ∈ {1,2}. Thus there exist m3 ∈ Z and δ3 ∈R such that

f (n + a) − f (n) = m3 + δ3

with |δ3| < 2δ. By the mean-value theorem, there exists t ∈]n,n + a[ such that

f (n + a) − f (n) = af ′(t).

Since n + a ∈ S(f,N, δ), we have n + a � 2N and thus t ∈ [N,2N ]. Hence there
exist t ∈ [N,2N ], m ∈ Z and δ3 such that |δ3| < 2δ < 1

2 satisfying

af ′(t) = m + δ3.

Now two cases may occur.

� m �= 0. Since m ∈ Z, we have |m| � 1 and then using (5.7)

ac1λ1 � a
∣∣f ′(t)

∣∣ � |m| − |δ3| > 1 − 1

2
= 1

2

which gives (5.8).
� m = 0. Then we have using (5.7) again

aλ1 � a|f ′(t)| = |δ3| < 2δ

which gives (5.9) as required. �

We use Lemma 5.3 with A = x1/3 and B = 2x1/2. By (5.5), we have A > 2y1/2

and hence
∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
R1

(
x1/3,2x1/2) logx + x1/3)

and the use of Theorem 5.6 and (5.5) implies that

R1
(
x1/3,2x1/2) � max

x1/3<N�2x1/2

(
x

N2
+ y

N
+ y√

x
+ 1

)
� x1/3

and thus
∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
x1/3 logx

)

and hence this result does not improve on the trivial estimate of Remark 5.4 in that
problem.
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5.2.2 The Second Derivative Test

The next result, coming from a combinatorial argument, will enable us to pass from
the first derivative to the second derivative of f . In this section, δ is supposed to
verify the inequalities

0 < δ <
1

8
.

Lemma 5.7 (Reduction principle) Let f : [N,2N ] −→ R be any map, A be a real
number satisfying 1 � A� N and, for all integers a ∈ [1,A], we define on [N,2N −
a] the function �af by

�af (x) = f (x + a) − f (x).

Then

R(f,N, δ) � N

A
+

∑

a�A

R(�af,N,2δ) + 1.

Proof For all a ∈N, define

S(a) = {
n ∈ [N,2N ] ∩Z : n and n + a are consecutive in S(f,N, δ)

}
.

� We first prove that

R(f,N, δ) � N

A
+

∑

a�A

∣∣S(a)
∣∣ + 1. (5.10)

Each integer of S(f,N, δ), except the largest one, has a successive element and
then lies in only one subset S(a), so that

R(f,N, δ) =
∞∑

a=1

∣∣S(a)
∣∣ + 1 =

∑

a�A

∣∣S(a)
∣∣ +

∑

a>A

∣∣S(a)
∣∣ + 1

with A ∈R satisfying 1 �A � N . Now if S(f,N, δ) = {n1 � n2 � · · ·� nk} and
if we set

d1 = n2 − n1, d2 = n3 − n2, . . . , dk−1 = nk − nk−1

then, for all a ∈ N, |S(a)| is the number of indexes j ∈ {1, . . . , k − 1} such that
dj = a and thus

∞∑

a=1

a
∣∣S(a)

∣∣ =
k−1∑

j=1

dj =
k−1∑

j=1

(nj+1 − nj ) = nk − n1 �N
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since nk � 2N and n1 � N . Therefore

N �
∞∑

a=1

a
∣∣S(a)

∣∣�
∑

a>A

a
∣∣S(a)

∣∣� A
∑

a>A

∣∣S(a)
∣∣

which implies (5.10).
� Now let n ∈ S(a). Then n and n + a are consecutive in S(f,N, δ), so that

∥∥�af (n)
∥∥ = ∥∥f (n + a) − f (n)

∥∥ �
∥∥f (n + a)

∥∥ + ∥∥f (n)
∥∥ < 2δ

and hence n ∈ S(�af,N,2δ), which gives

∣∣S(a)
∣∣ �R(�af,N,2δ).

Inserting this bound in (5.10) gives the asserted result. �

Let f ∈ S2. By the mean-value theorem, we have |(�af )′(x)| 	 aλ2. We may
apply Theorem 5.6 to �af and use the previous lemma to go back to f . These ideas
provide the following criterion.

Theorem 5.8 (Second derivative test) Let f ∈ C2[N,2N ] such that there exist λ2 >

0 and c2 � 1 such that, for all x ∈ [N,2N ], we have

λ2 �
∣∣f ′′(x)

∣∣ � c2λ2 (5.11)

and

Nλ2 � c−1
2 . (5.12)

Then

R(f,N, δ) � 6
{
(3c2)

1/3Nλ
1/3
2 + (12c2)

1/2Nδ1/2 + 1
}
.

In practice, one may use this result in the following way. If

∣∣f ′′(x)
∣∣ 	 λ2 and Nλ2 � 1

then

R(f,N, δ) � Nλ
1/3
2 + Nδ1/2 + 1.

Proof If λ2 � (3c2)
−1, then (3c2)

1/3Nλ
1/3
2 � N + 1 � R(f,N, δ) by (5.6). Sim-

ilarly, if δ � (12c2)
−1, then (12c2)

1/2Nδ1/2 + 1 � N + 1. Henceforth we assume
that

0 < λ2 < (3c2)
−1 and 0 < δ < (12c2)

−1. (5.13)
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Let A ∈ R such that 1 �A �N . For all x ∈ [N,2N ] and all a ∈ [1,A]∩Z such that
x + a ∈ [N,2N ], the mean-value theorem gives

(�af )′(x) = f ′(x + a) − f ′(x) = af ′′(t)

for some t ∈]x, x + a[. Since ]x, x + a[⊆ [N,2N ], (5.11) implies that, for all x ∈
[N,2N ] and all a ∈ [1,A] ∩Z such that x + a ∈ [N,2N ], we have

aλ2 �
∣∣(�af )′(x)

∣∣ � c2aλ2.

Therefore, using Lemma 5.7 and Theorem 5.6 we get

R(f,N, δ) � N

A
+

∑

a�A

(
2c2Naλ2 + 8c2Nδ + 4δ

aλ2
+ 1

)
+ 1

and (5.12) implies that 1 � c2Naλ2 and

4c2Nδ � 4δλ−1
2 � 4δ(aλ2)

−1

for all a � 1, so that

R(f,N, δ) � N

A
+

∑

a�A

(3c2Naλ2 + 12c2Nδ) + 1

� N

A
+ 3c2A

2Nλ2 + 12c2NAδ + 1.

Now Lemma 5.5 implies that

R(f,N, δ) � 3N
{
(3c2λ2)

1/3 + 3c2λ2 + (12c2δ)
1/2 + 12c2δ

} + 6

and the proof is achieved with the use of (5.13). �

Example 5.9 We use Lemma 5.3 with A = 2x1/4 and B = x1/3. By (5.5), we have
A > 2y1/2 and hence

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

{
R1

(
2x1/4, x1/3) logx + R2

(
x1/3) logx + x1/4}.

The condition (5.12) is satisfied by the two functions in their respective ranges of
summation, and Theorem 5.8 gives

R1
(
2x1/4, x1/3) � max

2x1/4<N�x1/3

((
xN−1)1/3 + y1/2) � x1/4

R2
(
x1/3) � max

N�2x1/3

(
(Nx)1/6 + y1/2(N3x−1)1/4) � x2/9 + y1/2
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and thus
∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
x1/4 logx

)
.

Thus there exists a constant c0 > 0 such that, if c0x
1/4 logx � y < x1/2/4, the in-

terval ]x, x + y] contains a squarefree number.

5.2.3 The kth Derivative Test

We now intend to generalize the results of the previous sections. To this end, we
need a generalization of the mean-value theorem. The first idea is to use the Taylor–
Lagrange formula which generalizes Theorem 1.12 (ii) by providing more terms if
f has higher derivatives. This was done by Konyagin in [Kon98] where the author
also used properties of lattices. In what follows, we rather focus on a generalization
of the mean-value theorem in the number of points that a function may interpolate.
Thus, the divided differences are the main tools in this section.

We first start with a very easy lemma.

Lemma 5.10 Let n = x + y ∈ Z with x, y ∈R such that |y| < |x|. Then |x| > 1
2 .

Proof Since |y| < |x|, we have n �= 0 and hence 1 � |n| � |x| + |y| < 2|x| as as-
serted. �

We are now in a position to show the main result of this section.

Theorem 5.11 Let k � 1 be an integer and f ∈ Ck[N,2N ] such that there exist
λk > 0 and ck � 1 such that, for all x ∈ [N,2N ], we have

λk �
∣∣f (k)(x)

∣∣ � ckλk. (5.14)

Assume also that

(k + 1)! δ < λk. (5.15)

If αk = 2k (2ck)
2

k(k+1) , then

R(f,N, δ) � αkNλ
2

k(k+1)

k + 4k.

As usual, this result is mostly used in the following form. If
∣∣f (k)(x)

∣∣ 	 λk and δ � λk

then

R(f,N, δ) � Nλ
2

k(k+1)

k + 1.
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Proof If λk � 1
2 , then

αkNλ
2

k(k+1)

k + 1 � N + 1 �R(f,N, δ)

so that we may suppose that λk < 1
2 . We generalize the proof of Theorem 5.6 in the

following way. Take k + 1 consecutive points n < n + a1 < n + a2 < · · · < n + ak

in S(f,N, δ) and we will prove that

ak � 2k α−1
k λ

− 2
k(k+1)

k . (5.16)

Assume first that (5.16) is true. Taking each (k + 1)th element of S(f,N, δ), we
may construct a subset T of S(f,N, δ) such that any two distinct elements of T

differ by more than dk = 2k α−1
k λ

− 2
k(k+1)

k and therefore

R(f,N, δ) � (k + 1)(|T | + 1)� 2k

(
N

dk

+ 2

)

giving the asserted result.
The rest of the text is devoted to the proof of (5.16).
By definition, there exist integers m0, . . . ,mk and real numbers δ0, . . . , δk such

that

f (n + aj ) = mj + δj

with a0 = 0 and |δj | < δ for all j ∈ {0, . . . , k}. Using (1.4), there exists t ∈]n,n +
ak[ such that

k∑

j=0

mj + δj∏
0�i�k,i �=j (aj − ai)

= f (k)(t)

k! (5.17)

and by (1.3) and what follows, if P = bkX
k + · · · + b0 is the Lagrange polynomial

interpolating the points (n + aj ,mj ), then we have

bk =
k∑

j=0

mj∏
0�i�k,i �=j (aj − ai)

= Ak

Dk

(5.18)

for some Ak ∈ Z and where Dk = ∏
0�i<j�k(aj − ai) > 0. Hence by (5.17) we get

bk = f (k)(t)

k! −
k∑

j=0

δj∏
0�i�k,i �=j (aj − ai)

and then

k!Ak = k!Dk bk = Dkf
(k)(t) − k!Dk

k∑

j=0

δj∏
0�i�k,i �=j (aj − ai)

= x + y.
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Now the condition |δj | < δ implies

|y| < k!Dk δ

k∑

j=0

1∏
0�i�k,i �=j |aj − ai | � (k + 1)!Dk δ

where we used the fact that |aj − ai | � 1 for all i �= j , and using (5.14) and (5.15)
we get

|y| < Dk λk � Dk

∣∣f (k)(t)
∣∣ = |x|.

Lemma 5.10 gives |x| > 1
2 and the bounds Dk � a

k(k+1)
2

k and (5.14) imply

1

2
< Dk

∣∣f (k)(t)
∣∣ � a

k(k+1)
2

k ckλk = λk

2

(
(2k)−1akαk

) k(k+1)
2

which implies (5.16), concluding the proof. �

This result does generalize Theorem 5.6, but the proof highlights the following
weakness. The lower bound |aj − ai | � 1 may probably be improved in many spe-
cial cases. This would enable us to decrease the upper bound for |y| and then to
have a condition less restrictive than (5.15). For instance, in the squarefree number
problem, (5.15) requires to estimate R1 and R2 of Lemma 5.3 in the range

N <
1

8

(
x

y

)1/3

which does not allow us to cover all the range of summation.

5.3 The Theorem of Huxley and Sargos

By the remark above, establishing a kth derivative criterion free from condition
(5.15) arises naturally. This was done by Huxley and Sargos in [HS95] who proved
the important result we shall see in this section. This turns out to be rather difficult,
and several tools are needed in the proof. We first state the main result and then
provide the proof in several steps. We shall essentially follow the line of [HS95],
but our exposition may differ in certain minor points.2

Theorem 5.12 (Huxley–Sargos) Let k � 3 be an integer and f ∈ Ck[N,2N ] such
that there exist λk > 0 and ck � 1 such that, for all x ∈ [N,2N ], we have

λk �
∣∣f (k)(x)

∣∣ � ckλk. (5.19)

2For instance, the authors did not make use of Gorny’s inequality but proved a Landau–Hadamard–
Kolmogorov like result similar to (5.20) using divided differences.
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Let δ be a real number satisfying (5.4). Then

R(f,N, δ) � αkNλ
2

k(k+1)

k + βkNδ
2

k(k−1) + 8k3
(

δ

λk

)1/k

+ 2k2(5e3 + 1
)

where

αk = 2k2c
2

k(k+1)

k and βk = 4k2(5e3c
2

k(k−1)

k + 1
)
.

As for the previous results, this inequality is used as

R(f,N, δ) � Nλ
2

k(k+1)

k + Nδ
2

k(k−1) +
(

δ

λk

)1/k

+ 1

under the sole hypothesis (5.19), where the implied constants depend only on k

and ck .
We shall make use of the following additional notation

Cδ = {
(x, y) ∈ [N,2N ] ×R : ∣∣y − f (x)

∣∣ < δ
}
.

5.3.1 Preparatory Lemmas

The first tool is an easy enumeration principle.

Lemma 5.13 Let S be a finite set of integers with length �N . If one can recover S

by pairwise distinct intervals I and if L(I) is the length of I , then

|S| � N max
I

( |S ∩ I|
L(I)

)
+ 2 max

I
|S ∩ I|.

Proof Let I1, . . . ,IJ be such a covering of S where we suppose that h �= j =⇒
Ih ∩ Ij = ∅ and, if 2 � j � J − 1, then Ij ⊆ S. We have

|S| �
J∑

j=1

|S ∩ Ij | =
J−1∑

j=2

{
L(Ij ) × |S ∩ Ij |

L(Ij )

}
+ |S ∩ I1| + |S ∩ IJ |

� max
1�j�J

( |S ∩ Ij |
L(Ij )

) J−1∑

j=2

L(Ij ) + 2 max
1�j�J

|S ∩ Ij |

� N max
1�j�J

( |S ∩ Ij |
L(Ij )

)
+ 2 max

1�j�J
|S ∩ Ij |

where in the last inequality we used the fact that the intervals are pairwise distinct. �
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The next tool belongs to a certain class of inequalities, called the Landau–
Hadamard–Kolmogorov inequalities. In 1913, E. Landau proved that, if I is an
interval with length � 2 and f ∈ C2(I ) satisfies the conditions |f (x)| � 1 and
|f ′′(x)| � 1 on I , then |f ′(x)| � 2 and the constant 2 is the best possible. This
was generalized by Hadamard who showed that, if a ∈R and L > 0, then

sup
a�x�a+L

∣∣f ′(x)
∣∣ � 2

L
sup

a�x�a+L

∣∣f (x)
∣∣ + L

2
sup

a�x�a+L

∣∣f ′′(x)
∣∣.

The generalization to higher orders of derivative was established by several math-
ematicians. In 1930, L. Neder proved that, if a ∈ R, L > 0 and f ∈ Ck[a, a + L],
then, for all j ∈ {1, . . . , k − 1}, we have

sup
a�x�a+L

∣∣f (j)(x)
∣∣ � (2k)2k

Lj
sup

a�x�a+L

∣∣f (x)
∣∣ + Lk−j sup

a�x�a+L

∣∣f (k)(x)
∣∣. (5.20)

This result would be sufficient for our proof of Theorem 5.12 but, for the sake of
completeness, we mention the following improvement due to Gorny [Gor39].

Lemma 5.14 (Gorny) Let k � 2 be an integer, a ∈ R, L > 0 and f ∈ Ck[a, a + L]
such that, for all x ∈ [a, a + L], we have

∣∣f (x)
∣∣ �M0 and

∣∣f (k)(x)
∣∣ �Mk

with M0 < ∞ and Mk < ∞. Then, for all x ∈ [a, a + L] and j ∈ {1, . . . , k − 1}, we
have

∣∣f (j)(x)
∣∣ < 4

(
e2k/j

)j
M

1−j/k

0

{
max

(
Mk, k!M0L

−k
)}j/k

.

In practice, we will use this result in the following form.
∣∣f (j)(x)

∣∣ < 4e(ek/j)j
{
kj+1M0L

−j + ej−1M
1−j/k

0 M
j/k
k

}
. (5.21)

Let us finally mention the following elegant version of Kolmogorov’s inequality
which can be found in [Man52, Théorème 6.3.III].

Let f ∈ Ck(R) such that M0 = supx∈R |f (x)| < ∞ and Mk =
supx∈R |f (k)(x)| < ∞. Then, for all j ∈ {0, . . . , k} and all x ∈ R, we have

∣∣f (j)(x)
∣∣ � 2M

1−j/k

0 M
j/k
k .

To end this section, we shall need the next technical tool to calculate the implied
constants appearing in Theorem 5.12.

Lemma 5.15 Let k � 3 be an integer and a > e(k − 1) be a real number. Then

k−1∑

j=1

(
a

j

)2j

� e2k

(
a

k

)2k−2

.
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Proof Since a > e(k − 1), the function x 
−→ (a/x)2x is increasing as soon as 1 �
x � k − 1 and then

k−1∑

j=1

(
a

j

)2j

� (k − 1)

(
a

k − 1

)2k−2

and we conclude the proof with

k − 1

k
×

(
a

k − 1
× k

a

)2k−2

= exp

{
(2k − 3) log

(
1 + 1

k − 1

)}

� exp

(
2k − 3

k − 1

)
� e2

as asserted. �

5.3.2 Major Arcs

In this section, we take the notation above. Besides, we recall that �x� is the nearest
integer to x.

Definition 5.16

1. A major arc associated to f (k) is a maximal set A = {n1, . . . , nJ } of consec-
utive points of S(f,N, δ), where J � k + 1 is an integer, such that, for all
j ∈ {1, . . . , J }, we have

⌊
f (nj )

⌉ = P(nj )

where P ∈ Q[X] is the Lagrange polynomial of degree < k interpolating the
points (nj , �f (nj )�). The equation y = P(x) is called the equation of A. We set
CP the curve with equation y = P(x).

2. Let q be the smallest positive integer such that P ∈ 1
q
Z[X]. Then q is called the

denominator of A.

The first result gives a bound for the number of connected components of the set
Cδ ∩ CP .

Lemma 5.17 The set Cδ ∩ CP has at most k connected components.

Proof Let f̃ ∈ Ck(R) be the function defined by f̃ (x) = f (x) for x ∈ [N,2N ],
f̃ (k)(x) = f (k)(N) if x �N and f̃ (k)(x) = f (k)(2N) if x � 2N , so that

∣∣f̃ (k)(x)
∣∣ 	 λk

for all x ∈ R. Similarly, the set C̃δ is the analogue of Cδ for the function f̃ .
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Since the behaviors of f̃ and P at infinity are different, the set C̃δ ∩ CP is
bounded, and hence each connected component of this set, not reduced to a sin-
gleton, has two extremities satisfying P(x) = f (x) ± δ.

Now assume that there exist k + 1 connected components of C̃δ ∩ CP , not re-
duced to a singleton. Then the equation P(x) = f (x) + δ, say, has k + 1 solutions
α0 < · · · < αk . Since the polynomials P(X) and P(X) − δ have the same leading
coefficient, we get by (1.4)

0 = P (k)(t1)

k! =
k∑

j=0

P(αj )∏
0�i�k,i �=j (αj − αi)

=
k∑

j=0

P(αj ) − δ∏
0�i�k,i �=j (αj − αi)

=
k∑

j=0

f (αj )∏
0�i�k,i �=j (αj − αi)

= f (k)(t2)

k! �= 0

for some t1, t2 ∈]α0, αk[, giving a contradiction. �

This result leads to the following slight refinement of Definition 5.16.

Definition 5.18 Among the connected components of the set Cδ ∩ CP , choose the
one having the largest number of points (nh+j , �f (nh+j )�) for all j ∈ {1, . . . , l}
with l > k. Then the set

A= {nh+1, . . . , nh+l}
is called a proper major arc extracted from A. The length of A is the number

L = nh+l − nh+1.

For convenience, we introduce the following numbers

ak = 36e−2k
(
2e3)k

ck and bk = 20e3 k2c
2

k(k−1)

k (5.22)

so that βk = bk + 4k2.
The next result summarizes the basic properties of the major arcs.

Lemma 5.19 Let A be a major arc associated to f (k) and A be the proper major
arc taken from A with denominator q , length L and equation y = P(x).

(i) We have

L � 2k

(
δ

λk

)1/k

.
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(ii) We have

|A|� 2kLq
− 2

k(k−1) .

(iii) If q � (akδ)
−1, then the distance d between each point of S(f,N, δ) \ A and

A satisfies

d > L(akqδ)−1/k

where ak is defined in (5.22).

Proof

(i) Set A= {nh, . . . , nh +L} and define g(x) = f (x)−P(x). Let αj = nh +jL/k

for j ∈ {0, . . . , k}. Using (1.4) we get

f (k)(t)

k! = g(k)(t)

k! =
k∑

j=0

g(αj )∏
0�i�k,i �=j (αj − αi)

=
(

k

L

)k k∑

j=0

g(αj )∏
0�i�k,i �=j (j − i)

for some t ∈]α0, αk[ and taking account of the bound |g(αj )| � δ and (5.19),
we obtain

λk

k! � δ

(
k

L

)k k∑

j=0

1

(k − j)!j ! = δ

k!
(

k

L

)k k∑

j=0

(
k

j

)
= 2kδ

k!
(

k

L

)k

which gives the required bound.
(ii) Let n1 < · · · < nk be k points lying in A. By the Lagrange interpolation for-

mula of Remark 1.13, we have

P(x) =
k∑

j=1

(
k∏

i=1
i �=j

x − ni

nj − ni

)
P(nj )

and hence q divides
∏

1�i<j�k(nj − ni) � (nk − n1)
k(k−1)

2 so that

L� nk − n1 � q
2

k(k−1)

implying the asserted estimate.
(iii) Take n ∈ S(f,N, δ) \ A and n0 ∈ A. Without loss of generality, one may as-

sume that n > n0 and set d = n − n0 and m = �f (n)�. Since m �= P(n), we
have

∣∣P(n) − m
∣∣� 1

q
� 1

3q
+ 2δ
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since q � (akδ)
−1 � (3δ)−1 and thus, taking up again the function g(x) =

f (x) − P(x) defined in (i), we get

∣∣g(n) − g(n0)
∣∣�

∣∣g(n)
∣∣ − ∣∣g(n0)

∣∣ �
∣∣g(n)

∣∣ − δ

= ∣∣P(n) − f (n)
∣∣ − δ

�
∣∣P(n) − m

∣∣ − ∣∣f (n) − m
∣∣ − δ

� 1

3q
+ 2δ − δ − δ = 1

3q
.

On the other hand, the Taylor–Lagrange formula yields

g(n) − g(n0) =
k−1∑

j=1

g(j)(n0)
dj

j ! + g(k)(t)
dk

k!

for some t ∈]n0, n[ and hence, using (5.19) and (5.21) applied to the function
g with M0 = δ and Mk = ckλk , we get

∣∣g(n) − g(n0)
∣∣ < 4eδ

k−1∑

j=1

(
ke

j

)j
dj

j !
{
kj+1L−j + ej−1

(
ckλk

δ

)j/k}
+ ckλkd

k

k!

and using (i) in the form
(

λk

δ

)1/k

� 2k

L

along with the easy inequality j ! > e(j/e)j gives

∣∣g(n) − g(n0)
∣∣ < 4eδ

k−1∑

j=1

(
ke

j

)j 1

j !
{
kj+1 + c

j/k
k e−1(2ek)j

}(
dL−1)j

+ (2k)kck δ dk

k!Lk

� 4δ
(
dL−1 + (

dL−1)k−1)
k−1∑

j=1

(
ke

j

)2j{
k + c

j/k
k e−1(2e)j

}

+ (2e)ke−1ck δ
(
dL−1)k

� 4δ
(
dL−1 + (

dL−1)k−1)(
k + ck2k−1ek−2)

k−1∑

j=1

(
ke

j

)2j

+ (2e)ke−1ck δ
(
dL−1)k
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< 2k+2ek−2ck δ
(
dL−1 + (

dL−1)k−1)
k−1∑

j=1

(
ke

j

)2j

+ (2e)ke−1ck δ
(
dL−1)k

where we used ck2k−1ek−2 � 2k−1ek−2 > k. Now Lemma 5.15 implies that

∣∣g(n) − g(n0)
∣∣ < 4e−2k

(
2e3)k

ck δ
(
dL−1 + (

dL−1)k−1)

+ (2e)ke−1ck δ
(
dL−1)k

= 9−1ak δ
(
dL−1 + (

dL−1)k−1) + (2e)ke−1ck δ
(
dL−1)k

� 9−1ak δ
(
dL−1 + (

dL−1)k−1 + (
dL−1)k)

.

Combining with the above inequality, we then get

q−1 < 3−1ak δ
(
dL−1 + (

dL−1)k−1 + (
dL−1)k)

so that

1 < ak qδ max
(
dL−1,

(
dL−1)k−1

,
(
dL−1)k)

and hence

d > Lmin
{
(akqδ)−1, (akqδ)−

1
k−1 , (akqδ)−1/k

}

and the inequality (qδ)−1 � ak implies the statement of the lemma.

The proof is complete. �

We are now in a position to estimate the contribution of the points coming from
the major arcs.

Lemma 5.20 Let R0 be the contribution of the points coming from the major arcs
associated to f (k) to the number R(f,N, δ). Then

R0 � bkNδ
2

k(k−1) + 8k3
(

δ

λk

)1/k

+ 10e3k2

where bk is defined in (5.22).

Proof Let M0 be the set of major arcs and Qk > 0 be the real number defined by

Qk = (akδ)
−1

where ak is given in (5.22).
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Write M0 = M1 ∪ M2 where M1 is the set of major arcs with denomina-
tor > Qk and M2 = M0 \M1. For i ∈ {1,2}, let

Si =
⋃

A∈Mi

A and Ri = |Si |.

Using Lemma 5.17, we infer that R0 � k(R1 + R2).

� Estimate of R1. Take 2k − 1 consecutive points of S1. One may take k consecu-
tive points n1, . . . , nk from the same proper major arc with denominator q > Qk .

As in Lemma 5.19 (ii), we deduce that nk − n1 � q
2

k(k−1) > Q
2

k(k−1)

k so that

R1 �2k
(
NQ

− 2
k(k−1)

k +1
)
<10e3k

(
N(ckδ)

2
k(k−1) +1

)=bk(2k)−1Nδ
2

k(k−1) +10e3k.

� Estimate of R2. Without loss of generality, we may assume that Qk � 1, other-
wise S2 = ∅. Let A1, . . . ,AJ be the ordered sequence of proper major arcs with
denominator qj � Qk . For each proper major arc Aj , we set nj and Lj its first
point and length, and define

dj = Lj (akqj δ)
−1/k

and Ij = [nj ,nj +dj ]. We claim that Ij contains Aj and does not contain Aj+1.
Indeed, observe that:
� Aj is lying in an interval of length Lj and since qj � Qk , we have

dj � Lj (akQkδ)
−1/k = Lj

so that Ij contains Aj .
� Assume that there exists an element of Aj+1 belonging to Ij . Then the

distance d between this element and Aj satisfies d � dj , contradicting
Lemma 5.19 (iii).

Therefore the intervals Ij are pairwise distinct, and using Lemma 5.13 with S =
S2 we get

R2 � N max
j

|Aj |
dj

+ 2 max
j

|Aj |.

Now by Lemma 5.19 (ii) and the choice of dj , we have

|Aj |
dj

� 2kLjq
− 2

k(k−1)

j L−1
j (akqj δ)

1/k = 2k(akδ)
1/kq

k−3
k(k−1)

j

and since qj � Qk = (akδ)
−1 and k � 3, we obtain

|Aj |
dj

� 2k(akδ)
2

k(k−1) < 10e3 k (ckδ)
2

k(k−1) = bk(2k)−1δ
2

k(k−1)
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for j ∈ {1, . . . , J }, and therefore

R2 � bk(2k)−1Nδ
2

k(k−1) + 4k max
j

Lj � bk(2k)−1Nδ
2

k(k−1) + 8k2
(

δ

λk

)1/k

by Lemma 5.19 (i) and (ii). The proof is complete. �

5.3.3 The Proof of Theorem 5.12

We first need to estimate the contribution of the points of S(f,N, δ) which do not
come from major arcs. The proof of the next result, which provides such an estimate,
is similar to that of Theorem 5.11.

Lemma 5.21 Let N � n0 < · · · < nk � 2N be k + 1 points of S(f,N, δ) which do
not lie on the same algebraic curve of degree < k. Then

nk − n0 > min
(
(ckλk)

− 2
k(k+1) , 2−1δ

− 2
k(k−1)

)
.

Proof As in the proof of Theorem 5.11, there exist integers m0, . . . ,mk and real
numbers δ0, . . . , δk such that

f (nj ) = mj + δj

with |δj | < δ for all j ∈ {0, . . . , k}. We take up again the number

Dk =
∏

0�h<i�k

(ni − nh) > 0

and if P = bkX
k + · · · + b0 is the Lagrange polynomial interpolating the points

(nj ,mj ), then we have

bk =
k∑

j=0

mj∏
0�i�k,i �=j (nj − ni)

= Ak

Dk

where Ak ∈ Z is analogous to the number in (5.18). Reasoning exactly in the same
way as in the proof of Theorem 5.11, we get

k!Ak = Dkf
(k)(t) − k!Dk

k∑

j=0

δj∏
0�i�k,i �=j (nj − ni)

.

Now since the points (nj ,mj ) do not all lie on the same algebraic curve of degree
< k, we have bk �= 0 and hence |Ak|� 1, and using |δj | < δ and (5.19) we get
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k!� k!|Ak| < ckλk Dk + k! δ Dk

k∑

j=0

1∏
0�i�k,i �=j |nj − ni |

= ckλk Dk + k! δ
k∑

j=0

∏

0�h<i�k
h�=j, i �=j

(ni − nh)

� ckλk (nk − n0)
k(k+1)

2 + (k + 1)! δ (nk − n0)
k(k−1)

2

implying that

nk − n0 > min

((
k!
2

) 2
k(k+1)

(ckλk)
− 2

k(k+1) , (2k + 2)
− 2

k(k−1) δ
− 2

k(k−1)

)

which is slightly better than the asserted lower bound. �

We are now in a position to prove our main result.

Proof of Theorem 5.12 Let S0 be the set of the points of S(f,N, δ) coming from
the major arcs and T0 = S(f,N, δ) \ S0. By Lemma 5.20, we have

|S0| = R0 � bkNδ
2

k(k−1) + 8k3
(

δ

λk

)1/k

+ 10e3k2

where bk is given in (5.22). Now let G = {n0, . . . , nk2} be a set of k2 +1 consecutive
ordered points of T0. Since G is not contained in any major arc, one may find an
integer j ∈ {k, . . . , k2} such that the j + 1 points (ni,mi) do not lie on the same
algebraic curve of degree < k. By Lemma 5.21, we have

nk2 − n0 � nj − n0 � nk − n0 > min
(
(ckλk)

− 2
k(k+1) , 2−1δ

− 2
k(k−1)

)

implying that

|T0| � 2k2(N(ckλk)
2

k(k+1) + 2Nδ
2

k(k−1) + 1
)

and we conclude the proof using R(f,N, δ) � |T0| + |S0|. �

5.3.4 Application

We return to the squarefree number problem and intend to use Theorem 5.12 in
order to bound the sum S2. To this end, suppose first that y � x4/9 and we use
Lemma 5.3 with A = 2x2/9 and B = x1/3. We take up again the estimate of R2(x

1/3)

we obtained in Example 5.9, namely

R2
(
x1/3) � x2/9 + yx−2/9.
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Furthermore, we use Huxley–Sargos’s result with k = 3 for R1(2x2/9, x1/3) which
gives

R1
(
2x2/9, x1/3) � max

2x2/9<N�x1/3

{
(Nx)1/6 + (Ny)1/3 + N

(
yx−1)1/3}

� x2/9 + x1/9y1/3.

Thus, if y � x1/3, we get

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
x2/9 logx

)

so that there exists a constant c0 > 0 such that, if c0x
2/9 logx � y < x1/2/4, the

interval ]x, x + y] contains a squarefree number.

5.3.5 Refinements

The refinements of Theorem 5.12 have been made in several directions.

� First, it has been shown that this result also holds for k = 2 (see [BS94, HS95]).
Furthermore, subject to an additional hypothesis which is satisfied by most of
the functions arising in the usual problems, one can prove the following result
[BS94].

Theorem 5.22 (Branton–Sargos) Let f ∈ C2[N,2N ] such that there exist λ1 > 0
and λ2 > 0 such that, for all x ∈ [N,2N ], we have

∣∣f ′(x)
∣∣ 	 λ1 and

∣∣f ′′(x)
∣∣ 	 λ2.

Then

R(f,N, δ) � Nλ
1/3
2 + Nδ + λ1

(
δ

λ2

)1/2

+ δ

λ1
+ 1.

� In Theorem 5.12, Nλ
2

k(k+1)

k is the main term, also sometimes called the smooth-
ness term, and the others are the secondary terms. It is very difficult to improve
on the main term, and the quantity (δλ−1

k )1/k is quasi-optimal. Thus, one may

wonder whether the term Nδ
2

k(k−1) may be improved, since, when δ is small, it
increases rapidly as k grows. In [HS06], the authors dealt with this problem. By
generalizing the method of [BS94], using a k-dimensional version of the reduc-
tion principle (Lemma 5.7) and a new divisibility relation on the divided dif-
ferences discovered by Filaseta and Trifonov [FT96], they proved the following
result.
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Theorem 5.23 (Huxley–Sargos) Let k � 3 be an integer and f ∈ Ck[N,2N ] such
that there exist λk−1 > 0 and λk > 0 such that, for all x ∈ [N,2N ], we have

∣∣f (k−1)(x)
∣∣ 	 λk−1,

∣∣f (k)(x)
∣∣ 	 λk and λk−1 = Nλk. (5.23)

Then the following upper bounds hold.

(i) For all k � 3, we have

R(f,N, δ) � Nλ
2

k(k+1)

k + Nδ
2

(k−1)(k−2) + N(δλk−1)
2

k2−k+2 +
(

δ

λk−1

) 1
k−1 + 1.

(ii) For k = 3, we have

R(f,N, δ) � Nλ
1/6
3 + Nδ2/3 + N

(
δ3λ3

)1/12 +
(

δ

λ2

)1/2

+ 1.

(iii) For all k � 4 and ε > 0, we have

R(f,N, δ) � {
Nλ

2
k(k+1)

k + N(δλk−1)
2

k2−k+2 + Nδ
4

k2−3k+6

+ N
(
δ2N−1λ−1

k−1

) 2
k2−3k+4

}
Nε +

(
δ

λk−1

) 1
k−1 + 1.

(iv) For all k � 5, we have

R(f,N, δ) � Nλ
2

k(k+1)

k + Nδ
2

(k−1)(k−2) +
(

δ

λk−1

) 1
k−1 + 1.

� It can easily be seen that Theorem 5.11 is a simple consequence of Theorem 5.12,
since the conditions δ � λk � 1 imply that the main term dominates all the
others. The purpose of the next result is to provide an estimate analogous to that
of Theorem 5.11 but with a hypothesis more flexible than (5.15).

Proposition 5.24 Let f ∈ C∞[N,2N ] such that there exists T � 1 such that, for
all x ∈ [N,2N ] and all j ∈ Z�0, we have

∣∣f (j)(x)
∣∣ 	 T

Nj
(5.24)

and

Nδ � T � δ−1. (5.25)

Then, for all k � 1, we have

R(f,N, δ) � T
2

k(k+1) N
k−1
k+1 .
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Note that, using (5.24), Huxley–Sargos’s result may be stated as

R(f,N, δ) � T
2

k(k+1) N
k−1
k+1 + Nδ

2
k(k−1) + N

(
δT −1)1/k (5.26)

for all k � 2 and note that the term N(δT −1)1/k is dominated by the term Nδ
2

k(k−1) as
soon as k � 3. Hence Proposition 5.24 shows that the conditions (5.25) are sufficient
to remove this term.

Proof We use induction, the case k = 1 being clearly true by Theorem 5.6 in which
the conditions (5.25) enable us to eliminate the secondary terms. Now suppose that
the result is true for some k � 1. By induction hypothesis and (5.26) used with k +1
instead of k, we get

R(f,N, δ) � min
(
E, T

2
k(k+1) N

k−1
k+1

)

where

E = max
(
T

2
(k+1)(k+2) N

k
k+2 , Nδ

2
k(k+1) , N

(
δT −1) 1

k+1
) = max(e1, e2, e3)

say. The result follows at once if E = e1. The cases E = e2 and E = e3 are treated
using the following inequality for means: if x, y � 0 and 0 � a � 1, then

min(x, y) � xay1−a.

� Case E = e2. We choose a = 1
k+2 which gives

min
(
e2, T

2
k(k+1) N

k−1
k+1

)
� T

2
(k+1)(k+2) N

k
k+2 (T δ)

2
k(k+1)(k+2) � T

2
(k+1)(k+2) N

k
k+2

by (5.25).
� Case E = e3. We choose a = 2

k+2 which gives

min
(
e3, T

2
k(k+1) N

k−1
k+1

)
� T

2
(k+1)(k+2) N

k
k+2

(
NδT −1) 2

(k+1)(k+2) � T
2

(k+1)(k+2) N
k

k+2

by (5.25). The proof is complete. �

Example 5.25 We return to the squarefree number problem. Taking account of
(5.25) we get if y � x1/3

max
(xy)1/4<N�x1/3

R
(

x

n2
,N,

y

N2

)
+ max

y<N�2x1/3
R

(√
x

n
,N,

y√
Nx

)
� x

k2−k+2
3k(k+1)

for all k � 3. With k = 3 we get the bound � x2/9.

� The main term in the case k = 2 was improved by Huxley [Hux96], Huxley and
Trifonov [HT96] and then Trifonov [Tri02], who extended an earlier work by



278 5 Integer Points Close to Smooth Curves

Swinnerton-Dyer that we will see in Sect. 5.4. The basic idea in this method
is that the integer points close to the curve form a convex polygonal line. The
Dirichlet pigeon-hole principle is then applied to the determinant formed with the
coordinates of consecutive vertices. For an exhaustive exposition of Swinnerton-
Dyer’s method, the reader may refer to [Hux96]. We provide below one of the
many versions of the theorem proved by the author (see [Hux99]).

Theorem 5.26 (Huxley) Let f ∈ C3[N,2N ] such that there exist C � 1, 0 < λ2 �
C−1 and λ3 > 0 such that, for all x ∈ [N,2N ], we have

C−1λ2 �
∣∣f ′′(x)

∣∣ � Cλ2, C−1λ3 �
∣∣f ′′′(x)

∣∣ � Cλ3 and λ2 = Nλ3. (5.27)

Then

R(f,N, δ) �{
N9/10λ

3/10
2 + N4/5λ

1/5
2 + Nλ

3/8
2 δ1/8 + N7/8λ

1/4
2 δ1/8

+ N6/7(λ2δ)
1/7 + Nλ

1/5
2 δ2/5}(logN)2/5 + Nδ + (

δλ−1
2

)1/2 + 1.

The implied constant depends only on C.

Example 5.27 Assume y � x2/5.

� Theorem 5.26 implies for all N � 2x1/4 that

(logN)−2/5R
(

x

n2
,N,

y

N2

)
� (

xN−1)3/10 + x1/5 + (
x3yN−6)1/8 + (xy)1/7

+ (
xy2N−3)1/5 + yN−1 + N

(
yx−1)1/2

so that

max
x2/7<N�x1/3

R
(

x

n2
,N,

y

N2

)
� x3/14(logx)2/5.

Furthermore, using Theorem 5.23 (ii) we get

R
(

x

n2
,N,

y

N2

)
� (Nx)1/6 + (

y2N−1)1/3 + (
xy3N

)1/12 + N
(
yx−1)1/2

so that

max
4
√

y<N�x2/7
R

(
x

n2
,N,

y

N2

)
� x3/14.

Therefore

max
4
√

y<N�x1/3
R

(
x

n2
,N,

y

N2

)
� x3/14(logx)2/5. (5.28)
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� Theorem 5.26 implies for all N � 3x1/5 that

(logN)−2/5R
(√

x

n
,N,

y√
Nx

)
� (Nx)3/20 + (

N3x
)1/10 + y

(
Nx−1)1/2

+ (xy)1/8 + (
xy2N3)1/16 + (

N3y
)1/7

+ (
x−1y4N3)1/10 + N

(
yx−1)1/2

so that

max
3x1/5<N�8x1/3

R
(√

x

n
,N,

y√
Nx

)
� x1/5(logx)2/5

since y � x2/5. Furthermore, using the trivial estimate (5.6) we have

max
N�3x1/5

R
(√

x

n
,N,

y√
Nx

)
� x1/5.

Therefore

max
N�8x1/3

R
(√

x

n
,N,

y√
Nx

)
� x1/5(logx)2/5. (5.29)

Using Lemma 5.3 with A = 4
√

y and B = x1/3, we then get assuming y � x2/5

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
x3/14(logx)7/5).

We infer that there exists a constant c0 > 0 such that, if c0x
3/14(logx)7/5 � y <

x1/2/4, the interval ]x, x + y] contains a squarefree number.

A slight improvement of this estimate can be obtained via the following result
due to Trifonov [Tri02].

Theorem 5.28 (Trifonov) Let f ∈ C3[N,2N ] such that there exist C � 1, 0 < λ2 �
1 and λ3 > 0 such that, for all x ∈ [N,2N ], we have

C−1λ2 �
∣∣f ′′(x)

∣∣ � Cλ2, C−1λ3 �
∣∣f ′′′(x)

∣∣ � Cλ3 and λ2 = Nλ3 (5.30)

and

Nλ2 � 1 and Nδ2 � C−1. (5.31)

Then, for all ε > 0, we have

R(f,N, δ) � {
N43/54λ

4/27
2 + N4/5λ

4/25
2 + N9/10δ4/15 + N12/13δ4/13

+ N6/7λ
2/7
2 + Nλ2 + N(λ2δ)

1/4}Nε + λ2(Nδ)5/2.

The implied constant depends only on C and ε.
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Example 5.29 We apply this result to the function f : u 
−→ x/u2 of the squarefree
number problem. First, the conditions (5.31) are fulfilled as soon as

max
(
x1/4,4y2/3) �N � 2−1x1/3.

We assume then that y � 8−1x3/8 and use Lemma 5.3 with A = 4
√

y and B =
2−1x1/3. We split the range of R1 into three parts.

� For 4
√

y < N � x13/48, we use Theorem 5.23 (iii) with k = 4 giving

R
(

x

n2
,N,

y

N2

)
� x1/10N2/5 + (xy)1/7 + (

Ny2)1/5 + N
(
y2x−1)1/4

+ N
(
yx−1)1/3

and hence

max
4
√

y<N�x13/48
R

(
x

n2
,N,

y

N2

)
� x5/24

as long as y � 8−1x3/8.
� For x13/48 < N � x41/136, we use Theorem 5.28 giving for all ε > 0

R
(

x

n2
,N,

y

N2

)
� {

N11/54x4/27 + (Nx)4/25 + N11/30y4/15 + (Ny)4/13

+ (
xN−1)2/7 + xN−3 + (

xyN−2)1/4}
Nε + x

(
y5N−13)1/2

and hence

max
x13/48<N�x41/136

R
(

x

n2
,N,

y

N2

)
� x57/272+ε

as long as y � x101/272.
� For x41/136 < N � 2−1x1/3, we use Theorem 5.26 giving as in Example 5.27

max
x41/136<N�x1/3

R
(

x

n2
,N,

y

N2

)
� x57/272(logx)2/5

as long as y � x127/272.

Hence we get for all ε > 0

max
4
√

y�N�2−1x1/3
R

(
x

n2
,N,

y

N2

)
� x57/272+ε (5.32)

and taking account of (5.29) and Lemma 5.3, we infer that

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
x57/272+ε

)
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if y � x101/272. Hence there exists a constant c0 > 0 such that, if c0x
57/272+ε � y <

x1/2/4, the interval ]x, x + y] contains a squarefree number.

5.4 Further Developments

5.4.1 The Method of Filaseta and Trifonov—Introduction

The exponent 57
272 ≈ 0.209 558 . . . obtained in Example 5.29 is a very good result

which is not attainable by current exponential sum results (see Chap. 6). The bound
(5.29) shows that any improvement must come from estimates of integer points
close to the curve of the function f : u 
−→ x/u2. Using divided differences and the
polynomial identity (5.34) which takes the particular structure of f into account, we
will prove the following theorem, due to Filaseta and Trifonov [FT92, FT96], which
supersedes each previous result.

Theorem 5.30 (Filaseta–Trifonov) Let x � 1 and δ satisfying (5.4) be real numbers
and N be an integer such that 4 � N � x1/2. Assume that there exists a small real
number c0 > 0 such that

Nδ � c0. (5.33)

Then for x sufficiently large

R
(

x

n2
,N, δ

)
� x1/5 + x1/15δN5/3.

The authors combined the divided difference techniques with the following iden-
tity

(X + Y)2P(X,Y ) − X2Q(X,Y ) = Y 3 (5.34)

where P,Q ∈ Z[X,Y ] are the homogeneous polynomials in two variables defined
by

P(X,Y ) = −2X + Y and Q(X,Y ) = −2X − 3Y. (5.35)

Note that the identity (5.34) has to be used with Y being small compared to X.
In what follows, x, δ and N are as stated in Theorem 5.30 and f is the func-

tion supported on [N,2N ] and defined by f (u) = x/u2. The constant c0 appearing
in (5.33) is sufficiently small, say c0 < 600−1. When I is an interval of R, the
notation |I| always means |I ∩ Z|. Finally, one may assume that (5.33) is always
satisfied.

The next tool is similar to Lemma 5.10 and the proof, which is left to the reader,
is analogous.
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Lemma 5.31 Let n = x + y ∈ Z with x, y ∈R. Then

(i) If |x| � 1
2 and |y| < 1

2 , then n �= 0.
(ii) If |x| � 1

2 and |y| < 1
2 , then n = 0.

5.4.2 The Method of Filaseta and Trifonov—The Basic Result

The first step in Filaseta–Trifonov’s method is the following construction of a subset
of S(f,N, δ) in which the elements are not too close to each other.

Lemma 5.32 There exists a subset T of S(f,N, δ) satisfying the following two
properties.

(i) R(f,N, δ) � 4(|T | + 1).
(ii) Any two consecutive elements of T differ by > (2x)−1/3N4/3.

Proof If N < x1/4, then one may take T = S(f,N, δ) because we have in this case
x−1/3N4/3 < 1. Now suppose that N � x1/4 and let a, b ∈ N and n, n + a and
n + a + b be three consecutive elements of S(f,N, δ) such that

1 � a, b � (2x)−1/3N4/3.

We will show that there are only two possibilities for the choice of b. The result will
then follow by taking each 4th element of S(f,N, δ).

By definition, there exist non-zero integers mi and real numbers δi such that

f (n) = m1 + δ1,

f (n + a) = m2 + δ2,

f (n + a + b) = m3 + δ3

with |δi | < δ for i ∈ {1,2,3}. In fact, each integer mi is positive since, for all u ∈
[N,2N ], we have f (u) � x/(4N2) � 1/4 and δ � c0N

−1. Also note that, by (5.34),
we get

f (n)P (n, a) − f (n + a)Q(n,a) = xa3

n2(n + a)2
� xa3

N4
� 1

2
.

On the other hand, we have

f (n)P (n, a) − f (n + a)Q(n,a) = m1P(n,a) − m2Q(n,a) + ε

with

|ε| < δ
(∣∣P(n,a)

∣∣ + ∣∣Q(n,a)
∣∣)� 4δ(n + a)� 8Nδ � 8c0 <

1

2
.
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Hence by Lemma 5.31, we obtain

m1P(n,a) − m2Q(n,a) = 0. (5.36)

Similarly we also have

m2P(n + a, b) − m3Q(n + a, b) = 0,

m1P(n,a + b) − m3Q(n,a + b) = 0

and eliminating m3 we get

m2P(n + a, b)Q(n,a + b) − m1P(n,a + b)Q(n + a, b) = 0

which gives

3b2(m1 − m2) + κ1b + 2κ2 = 0 (5.37)

where

κ1 = a(5m1 + 3m2) − 4n(m1 − m2),

κ2 = a2(m1 + 3m2) − an(m1 − 5m2) − 2n2(m1 − m2).

If m1 = m2, then by (5.36) we have P(n,a) = Q(n,a) and then −2n + a = −2n −
3a, so that a = 0 which is impossible since a � 1. Therefore m1 �= m2 and (5.37) is
a quadratic equation in b, concluding the proof. �

We deduce at once the following result.

Corollary 5.33 If Nδ � c0 and 4 � N � x1/2, then

R
(

x

n2
,N, δ

)
� 10

(
x

N

)1/3

.

Furthermore, if x2/5 � N � x1/2, then

R
(

x

n2
,N, δ

)
� 10x1/5.

Note that this result is equivalent to Proposition 5.24 used with k = 2 except with
the condition Nδ � 1 instead of (5.25).

5.4.3 The Method of Filaseta and Trifonov—Higher Divided
Differences

By Corollary 5.33, it is now sufficient to assume

22/3x1/5 � N < x2/5 (5.38)
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and we set

R = (
2−1N4x−1)1/3 and A = 2−1/3Nx−1/5.

By (5.38), we have R < A � N1/2. We take up again the subset T of Lemma 5.32
in which any two consecutive elements differ by > R. As in Lemma 5.7, we will
use the following subsets of T . For a ∈]R,A] ∩Z, we define

T (a) = {n ∈N : n and n + a are consecutive in T }.
By (5.10) we have

|T | � N

A
+

∑

R<a�A

∣∣T (a)
∣∣. (5.39)

The next tool will enable us to get an upper bound for |T (a)|.

Lemma 5.34 Let a ∈]R,A] ∩Z and I be a subinterval of [N,2N ] satisfying

|I| � 16−1N5x−1a−3.

Then of each three consecutive elements in T (a) ∩ I , there are two consecutive
elements that differ by

> 6−1(ax)−1/3N5/3.

Proof Let n, n + b and n + b + d be three consecutive elements of T (a) ∩ I with
b, d ∈ N. Hence the six integers n, n+ a, n+ b, n+ a + b, n+ b + d , n+ a + b + d

are all lying in [N,2N ]. Since a > R, observe also that

|I| � 16−1N5x−1a−3 < 16−1N5x−1R−3 = N

8
.

Consider the six integers m1, . . . ,m6 and real numbers δ1, . . . , δ6 satisfying |δi | < δ

and defined by

f (n) = m1 + δ1,

f (n + a) = m2 + δ2,

f (n + a + b) = m3 + δ3,

f (n + b) = m4 + δ4,

f (n + b + d) = m5 + δ5,

f (n + a + b + d) = m6 + δ6

and we set Fa(n) = −�af (n) = f (n) − f (n + a) and

D1 = dFa(n) − (b + d)Fa(n + b) + bFa(n + b + d).



5.4 Further Developments 285

Observe that, with the notation of Remark 1.13, we have

D1

bd(b + d)
= Fa[n,n + b,n + b + d]

so that by (1.4) there exists a real number t ∈]n,n + b + d[⊆ [N,2N ] such that

D1 = bd(b + d)

2! F ′′
a (t) = bd(b + d)

3ax(2t + a)(2t2 + 2at + a2)

t4(t + a)4
.

Hence D1 > 0 and, since t, t + a ∈ [N,2N ], we get

D1 � bd(b + d)
3ax(2N + a)(2N2 + 2aN + a2)

(2N)8
� bd(b + d)

ax

25N5
.

Recall that n + b and n + b + d are consecutive in T (a) ∩ I and hence min(b, d)�
a > R and then

D1 � (b + d)
R3x

25N5
= b + d

50N

so that

b + d � 50ND1. (5.40)

Now set

E1 = d(m1 − m2) − (b + d)(m4 − m3) + b(m5 − m6) ∈ Z.

Using the definition of the integers m1, . . . ,m6 and the function Fa , we get

E1 = d
(
Fa(n) + δ1 − δ2

) − (b + d)
(
Fa(n + b) + δ4 − δ3

)

+ b
(
Fa(n + b + d) + δ5 − δ6

)

= dFa(n) − (b + d)Fa(n + b) + bFa(n + b + d) + d(δ1 − δ2)

− (b + d)(δ4 − δ3) + b(δ5 − δ6)

= D1 + R1

with |R1| < 4δ(b + d). By (5.40) and using (5.33) with c0 < 600−1, we obtain

4δ(b + d)� 200NδD1 <
D1

3

and therefore

|E1 − D1| < D1

3

which implies that E1 �= 0. Since E1 ∈ Z, we infer that |E1| � 1 and since

|E1|� D1 + |R1| < 4D1

3
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we get

D1 >
3

4
.

One may obtain an upper bound for D1 in a similar way, since a � A� N1/2 �N/2
and t ∈ [N,2N ] imply

D1 � bd(b + d)
3ax(4N + N/2)(8N2 + 2 × 2N2)

N8
= 162bd(b + d)

ax

N5
.

Combining both these estimates we get

bd(b + d) >
N5

216ax

so that either b or d is > 6−1(ax)−1/3N5/3 as asserted. �

5.4.4 The Method of Filaseta and Trifonov—Epilog

We are now in a position to prove Theorem 5.30. To this end, we pick up from
Lemma 5.34 the interval I and the integers m1, . . . ,m4 and define

Ga(n) = P(n,a)f (n) − Q(n,a)f (n + a),

D2 = −�bGa(n) = Ga(n) − Ga(n + b),

E2 = P(n,a)m1 − Q(n,a)m2 − P(n + b, a)m4 + Q(n + b, a)m3 ∈ Z.

As in the proof of Lemma 5.34, we have D2 = E2 + R2 and using (5.33) we have
again |R2| � 20Nδ < 1

2 . By (1.4), there exists a real number t ∈]n,n + b[ such that

D2 = −bG′
a(t) = 2a3xb

(
t−2(t + a)−3 + t−3(t + a)−2).

Since t, t + a ∈ [N,2N ] we obtain as above

16−1ba3xN−5 � |D2| � 4ba3xN−5 (5.41)

and since b � |I| � 16−1N5x−1a−3, we get

|D2| � 1

4
.

By Lemma 5.31, we infer that E2 = 0 which implies that |D2| = |R2| � 20Nδ and
using (5.41) we get

b � a−3x−1N5|D2| � a−3x−1N6δ.
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Thus, any two elements of T (a) ∩ I are lying in a sub-interval J of I satisfying

|J | � a−3x−1N6δ.

Now by Lemma 5.34, of each three consecutive elements in T (a)∩I , there are two
consecutive elements that differ by � (ax)−1/3N5/3 so that

∣∣T (a) ∩ I
∣∣ � |J |

(ax)−1/3N5/3
+ 1 � x−2/3δa−8/3N13/3 + 1.

We saw that |I| � N/8. Subdividing [N,2N ] into s = [N/(16−1N5x−1a−3)] + 1
distinct sub-intervals I1, . . . ,Is with lengths � 16−1N5x−1a−3, we get

|T (a)| �
(

N

N5x−1a−3
+ 1

)(
x−2/3δa−8/3N13/3 + 1

)

� (
xa3N−4 + 1

)(
x−2/3δa−8/3N13/3 + 1

)

� xa3N−4 + (Nax)1/3δ

where we used the fact that a > R = (2x)−1/3N4/3, implying that 1 < 2xa3N−4, in
the last inequality. Using (5.39) we obtain

|T | � NA−1 +
∑

R<a�A

(
xa3N−4 + (Nax)1/3δ

)

� NA−1 + x
(
AN−1)4 + (

NA4x
)1/3

δ

and the choice of A = 2−1/3Nx−1/5 gives

|T | � x1/5 + x1/15δN5/3. (5.42)

Let us summarize all the results obtained above.

� If 4 � N � 22/3x1/5, we use the trivial bound (5.6) giving

R
(

x

n2
,N, δ

)
� N + 1 � x1/5.

� If 22/3x1/5 < N < x2/5, Lemma 5.32 (i) and (5.42) give

R
(

x

n2
,N, δ

)
� |T | + 1 � x1/5 + x1/15δN5/3.

� If x2/5 � N � x1/2, Corollary 5.33 provides

R
(

x

n2
,N, δ

)
� x1/5.

The proof of Theorem 5.30 is complete. �
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5.4.5 The Method of Filaseta and Trifonov—Application

Applying Theorem 5.30 to the gaps between squarefree integers gives the following
consequence.

Corollary 5.35 Let x, y be real numbers satisfying (5.5). Then we have
∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

{(
x1/5 + yx−1/60) logx + y1/2}.

Proof Let c0 be the constant in (5.33) and set c1 = c−1
0 . We consider two cases.

� Case 16 � y � x1/4. We may write

∑

2
√

y<n�√
x

([
x + y

n2

]
−

[
x

n2

])

=
( ∑

2
√

y<n�c1x
1/4

+
∑

c1x
1/4<n�√

x

)([
x + y

n2

]
−

[
x

n2

])

= �1 + �2.

We use Theorem 5.23 (i) with k = 4 for �1 and Theorem 5.30 for �2 which gives

�1 � max
2
√

y<N�c1x
1/4

(
x1/10N2/5 + (Ny)1/3 + (xy)1/7 + N

(
yx−1)1/3) logx

� (
x1/5 + x1/12y1/3 + (xy)1/7) logx � x1/5 logx

since y � x1/4, and

�2 � max
c1x

1/4<n�√
x

(
x1/5 + x1/15yN−1/3) logx � (

x1/5 + yx−1/60) logx.

� Case x1/4 < y < x1/2/4. We now have

∑

2
√

y<n�√
x

([
x + y

n2

]
−

[
x

n2

])
=

( ∑

2
√

y<n�c1y

+
∑

c1y<n�√
x

)([
x + y

n2

]
−

[
x

n2

])

and Theorem 5.23 (i) with k = 4 applied to the first sum implies that it contributes

� (
x1/10y2/5 + (xy)1/7 + y2/3 + y4/3x−1/3) logx � yx−1/60 logx

where we used the fact that x1/4 < y < x1/2/4, and the second sum contributes

� (
x1/5 + x1/15y2/3) logx � (

x1/5 + yx−1/60) logx

since y > x1/4. Applying Lemma 5.3 with A = 2
√

y and B = √
x concludes the

proof. �
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5.4.6 The Method of Filaseta and Trifonov—Generalization

The computations made above may be generalized to the case of the function
u 
−→ x/ur where r � 2 is a fixed integer, which enables us to treat the r-free
number problem. To this end, we need to have at our disposal two homogeneous
integer polynomials Pr−1(X,Y ) and Qr−1(X,Y ) with total degree r − 1 analogous
to (5.35) in order to generalize (5.34). It may be proved [FT96] that the polynomials

Pr−1(X,Y ) = r

(
2r − 1

r

) r−1∑

j=0

(−1)r−1+j

(
r − 1

j

)
(X + Y)r−1−j Y j

2r − j − 1
,

Qr−1(X,Y ) = r

(
2r − 1

r

) r−1∑

j=0

(−1)r−1
(

r − 1

j

)
Xr−1−jY j

2r − j − 1

with r � 1, have the desired properties and satisfy the identity

(X + Y)rPr−1(X,Y ) − XrQr−1(X,Y ) = Y 2r−1. (5.43)

Similarly, in order to prove the analogue of Lemma 5.34 using divided differences
of the second order, the following polynomials

Pr−2(X,Y ) = (r − 1)

(
2r − 2

r − 1

) r−2∑

j=0

(−1)r+j

(
r − 2

j

)
(X + Y)r−2−j Y j

(2r − j − 3)(2r − j − 2)
,

Qr−2(X,Y ) = (r − 1)

(
2r − 2

r − 1

) r−2∑

j=0

(−1)r
(

r − 2

j

)
Xr−2−jY j

(2r − j − 3)(2r − j − 2)

with r � 2, are homogeneous integer polynomials of total degree r − 2 and satisfy
the identity

(X + Y)rPr−2(X,Y ) − XrQr−2(X,Y ) = Y 2r−3(2X + Y). (5.44)

The polynomial identities (5.43) and (5.44) are very difficult to show, and may be
replaced by the theory of Padé approximants (see [FT96]) which allows us to define
r as a rational number. Adapting the proof above to the general case, Filaseta and
Trifonov proved the following result.

Theorem 5.36 (Filaseta–Trifonov) Let r � 2 be an integer, x � 1 and δ satisfying
(5.4) be real numbers and N be an integer such that 4 � N � x1/r . Assume that
there exists a small real number cr > 0, depending only on r , such that

Nr−1δ � cr .
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Then for x sufficiently large

R
(

x

nr
,N, δ

)
� x

1
2r+1 + x

1
6r+3 δ Nr−1/3.

We shall see in Exercise 3 that the method may be adapted to the function u 
−→√
x/u and, more generally, to the function u 
−→ (x/u)1/r where r � 2. The reader

can check that the following dual result holds.

Theorem 5.37 Let r � 2 be an integer, x � 1 and δ satisfying (5.4) be real numbers
and N be an integer such that 4 � N � x. Assume that there exists a small real
number cr > 0, depending only on r , such that

Nr−1δ � cr .

Then for x sufficiently large

R
((

x

n

)1/r

,N, δ

)
� (

Nr2−1x
) 1

r(2r+1) + x
1

3r(2r+1) δ N
r−1/6− r+2

6r(2r+1) .

5.4.7 Counting Integer Points on Smooth Curves

Using Theorem 5.11 and letting δ −→ 0, we infer that the number of integer points
lying on the arc of the curve y = f (x) with N < x � 2N is

� Nλ
2

k(k+1)

k + 1.

Historically, this number was first investigated by Jarnik who proved that a strictly
convex arc y = f (x) with length L has at most

� 3

(2π)1/3
L2/3 + O

(
L1/3)

integer points and this is a nearly best possible result under the sole hypothesis
of convexity. However, Swinnerton-Dyer and Schmidt proved independently that if
f ∈ C3[0,N ] is such that |f (x)| � N and f ′′′(x) �= 0 for all x ∈ [0,N], then the
number of integer points on the arc y = f (x) with 0 � x � N is � N3/5+ε . This
result was generalized by Bombieri and Pila who showed the following result.

Proposition 5.38 (Bombieri–Pila) Let N � 1, k � 4 be integers and define K =(
k+2

2

)
. Let I be an interval with length N and f ∈ CK(I) satisfying |f ′(x)| � 1,

f ′′(x) > 0 and such that the number of solutions of the equation f (K)(x) = 0 is
� m. Then there exists a constant c0 = c0(k) > 0 such that the number of integer
points on the arc y = f (x) with x ∈ I is

� c0(m + 1)N1/2+3/(k+3).



5.5 Exercises 291

The ideas of Bombieri and Pila have recently been extended by Huxley [Hux07]
to counting the number of integer points which are very close to regular curves. The
function is supposed to be C5 and, along with the usual non-vanishing conditions
of the derivatives on [N,2N ], the proof also requires lower bounds of the following
determinants

D1(f ;x) =
∣∣∣∣
f ′′′(x) 3f ′′(x)

f (4)(x) 4f ′′′(x)

∣∣∣∣ ,

D2(f ;x) = 1

2f ′′(x)

∣∣∣∣∣∣

f ′′′(x) 3f ′′(x) 0
f (4)(x) 4f (3)(x) 6f ′′(x)2

f (5)(x) 5f (4)(x) 20f ′′(x)f ′′′(x)

∣∣∣∣∣∣
.

Proposition 5.39 (Huxley) Assume that f ∈ C5[N,2N ] such that there exist real
numbers C,T � 1 such that

|f (j)(x)| � Cj+1j ! × T

Nj
(j = 1, . . . ,5),

|f (j)(x)| � j !
Cj+1

× T

Nj
(j = 2,3),

∣∣D1(f ;x)
∣∣� 144C−8 × T 2

N6
,

∣∣D2(f ;x)
∣∣� 4320C−12 × T 3

N9
.

Let δ be a real number satisfying (5.4). Then we have

R(f,N, δ) � (NT )4/15 + N
(
δ11T 9)1/75

.

The implied constant depends only on C.

The main term is a very good result, since Theorem 5.8 only gives (NT )1/3

and Theorem 5.26 provides the bound (NT )3/10. On the other hand, the secondary
term is too large, and thus useless in many applications. In this direction, the author
proved that this term may be improved subject to some additional non-vanishing
conditions of certain quite complicated determinants.

5.5 Exercises

1 Show that the function x 
−→ ‖x‖ is bounded, even, periodic of period 1 and that
we have

∣∣‖x‖ − ‖y‖∣∣� |x − y| and ‖x + y‖ � ‖x‖ + ‖y‖.
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2 Prove that, for all x ∈ R, we have 2‖x‖� | sin(πx)| � π‖x‖.

3 This exercise is the analogue of Lemma 5.32 for the function f : u 
−→ (x/u)1/2.
The aim is to show the following estimate.

Let x � 1 and δ satisfying (5.4) be real numbers and N be an integer such
that 4 � N � x. Assume that there exists a small real number c0 > 0 such that
Nδ � c0. Then

R
(√

x

n
,N, δ

)
� (Nx)1/6.

One may use the polynomials

P(X,Y ) = 4X + Y and Q(X,Y ) = 4X + 3Y.

(a) Show that there exists a subset T of S(f,N, δ) satisfying the following two
properties.
(i) R(f,N, δ) � 4(|T | + 1).

(ii) Any two consecutive elements of T differ by > 22/3x−1/6N5/6.
(b) Deduce the desired result.

4 Using Theorem 5.30, show that for 16 � y < x1/2/4, the following asymptotic
formula holds.

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
x1/15y2/3 logx

)
.

5 Let r � 2 be an integer and x, y be real numbers such that 4r � y < x1/r . By
adapting the proof of Corollary 5.35 with the use of Theorem 5.36 instead of Theo-
rem 5.30, show that

∑

x<n�x+y

μr(n) = y

ζ(r)
+ O

{(
x

1
2r+1 + yx

− 1
6r(2r+1)

)
logx + y1/r

}
.

6 This exercise deals with the problem of square-full numbers in short intervals.
Let x � 1035 be a large real number and y be a real number satisfying

16x1/2(logx)3 � y � 4−3x(logx)−1. (5.45)

Set L = L(x, y) = y(x logx)−1/2.

(a) Splitting the sum into two subsums, show that

∑

L<b�(x+y)1/3

([√
x + y

b3

]
−

[√
x

b3

])
� (R1 + R2) logx + L
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where

R1 = max
L<B�(2x)1/5

R
(√

x

b3
,B,

y√
xB3

)

and

R2 = max
L<A�(2x)1/5

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)
.

(b) Deduce that we have

∑

x<n�x+y

s2(n) = ζ(3/2)

2ζ(3)

y

x1/2
+ O

{
(R1 + R2) logx + L

}
.

(c) Using Theorem 5.22 and 5.23 (i), show that

∑

x<n�x+y

s2(n) = ζ(3/2)

2ζ(3)

y

x1/2
+ O

{
x2/15 logx + y

(x logx)1/2

}
.

(d) Using Theorem 5.26 to estimate R1 and R2 in some specific ranges and using
Theorem 5.23 (i) in the complementary ranges, show that, if (5.45) is replaced
by

x37/60(logx)3 � y � 4−3x(logx)−1 (5.46)

then we have the following improvement

∑

x<n�x+y

s2(n) = ζ(3/2)

2ζ(3)

y

x1/2
+ O

{
x1/8(logx)7/5 + y

(x logx)1/2

}
.

7 Let x � 1 and δ satisfying (5.4) be real numbers, r � 2 and N � 4 be integers
satisfying

xε � 2r+1Nrδ � 2x

3
for all ε > 0. Using Theorem 4.62 or Theorem 4.65, show that

R
(

x

nr
,N, δ

)
�r,ε Nrδ.

8 This exercise provides a variant of Theorem 5.30, from which we take up all the
notation. Furthermore, assume that

Nδ � c0, N <
(
c−1

0 x
)1/3 and N2δ � 4x−1. (5.47)

We set

A = 2−1/3N2/3(xδ)−1/6. (5.48)
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(a) Check that this choice of A is admissible in the proof of Theorem 5.30, i.e. using
(5.47) check that

R < A� N

2
.

(b) Deduce that, if (5.47) holds, then

R
(

x

n2
,N, δ

)
� x1/5 + (

N2δx
)1/6 + (

xδ−2N−4)1/3 + (
xδ7N11)1/9

.

(c) Prove that, if x1/5 � y � x1/3, then

∑

x<n�x+y

μ2(n) = y

ζ(2)
+ O

(
x1/9y4/9(logx)7/5)

and check that this error-term is better than that of Exercise 4 apart from the
logarithmic power.

9 Let x, y be real numbers satisfying x1/3 � y � x. Using Theorem 5.22 or other-
wise, prove that

max
4y<N�x

∑

N<n�2N

([
x + y

n

]
−

[
x

n

])
� y.

This is a slight improvement of (4.32) but in the restricted range x1/3 � y � x.

10 Let a � 2 be an integer and f ∈ C∞[N,2N ] such that there exists T � 1 such
that, for all x ∈ [N,2N ] and all j ∈ Z�0, we have

∣∣f (j)(x)
∣∣ 	 T

Nj
(5.49)

and

Nδ � T � Na. (5.50)

By mimicking the proof of Proposition 5.24, show that, for all k � 2a, we have

R(f,N, δ) � T
2

k(k+1) N
k−1
k+1 + Nδ

1
a(2a−1) .

This implies in particular that, if k � 4 and Nδ � T � N2, then

R(f,N, δ) � T
2

k(k+1) N
k−1
k+1 + Nδ1/6.
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Chapter 6
Exponential Sums

6.1 Introduction

The function ψ : x �−→ ψ(x) = x − [x] − 1
2 appears in most problems in number

theory. The reason is quite simple: when we look at asymptotics for average orders
of classical arithmetic functions, the summations are often taken over some sub-
sets of the set of divisors of some integer n, and when interchanging the order of
the summations, integer parts, and hence the function ψ , arise. For instance, let us
consider the number τ(n) of divisors of n. By (4.17), we first have

∑

n�x

τ (n) = 2
∑

d�√
x

[
x

d

]
− [√x]2.

Now replacing each integer part by ψ and using the estimate

∑

d�x

1

d
= logx + γ − ψ(x)

x
+ O

(
1

x2

)

obtained in Example 1.28, we get

∑

n�x

τ (n) = 2
∑

d�√
x

(
x

d
− ψ

(
x

d

)
− 1

2

)
−
(√

x − ψ(
√

x) − 1

2

)2

= 2x
∑

d�x

1

d
− 2

∑

d�√
x

ψ

(
x

d

)
− x − ψ(

√
x)2 + 1

4
+ 2ψ(

√
x)

√
x

= x(logx + 2γ − 1) − 2
∑

d�√
x

ψ

(
x

d

)
+ O(1).
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The error-term in this problem is usually denoted by �(x), so that

�(x) =
∑

n�x

τ (n) − x(logx + 2γ − 1) = −2
∑

d�√
x

ψ

(
x

d

)
+ O(1).

In fact, with a little more work, one can prove [BBR12] that

∣∣�(x)
∣∣� 2

∣∣∣∣
∑

d�√
x

ψ

(
x

d

)∣∣∣∣+
1

2
.

Using the trivial bound |ψ(x)| � 1/2 enables us to recover Corollary 4.20. The
Dirichlet divisor problem is about the smallest exponent θ ∈ [0,1[ for which the
following estimate

∑

n�x

τ (n) = x(logx + 2γ − 1) + O
(
xθ (logx)β

)

holds for some β � 0. By Corollary 4.20 or the computations made above, the pair
(θ,β) = (1/2,0) is admissible. Hardy showed in [Har16] that �(x) cannot be a
o(x1/4), in other words we necessarily have θ � 1/4 (with some β > 0).

It is surmised that θ = 1/4 is the right value in the Dirichlet divisor problem,
which is supported by the following mean-value result

∫ T

1
�(x)2 dx = ζ(3/2)4

36ζ(2)ζ(3)
T 3/2 + O

(
T (logT )5)

due to Tong [Ton56]. However, no one has been in a position to prove it until now,
although this conjecture is a consequence of the Lindelöf hypothesis, and hence
of the Riemann hypothesis. The best result to date is due to Huxley [Hux03] who
showed that the pair

(θ,β) =
(

131

416
,

26 947

8320

)

is admissible (see Theorem 6.43). Note that 131/416 ≈ 0.314 903 84 . . . so that we
are still far from the conjectured value, but this problem gradually gets harder and
harder. For example, to reach this value, Huxley used a new method called the dis-
crete Hardy–Littlewood method (see Sect. 6.6), which is a tricky mixture of several
known methods and new ones.

Similarly, the Dirichlet–Piltz divisor problem is about the smallest exponent θk ∈
[0,1[ for which the following estimate

∑

n�x

τk(n) = xPk−1(logx) + O
(
xθk (logx)βk

)

holds for some βk � 0, where Pk−1(X) is a polynomial of degree k − 1 in X

and whose coefficients depend on k. By Dirichlet’s hyperbola principle (Proposi-
tion 4.19), we get
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∑

n�x

τk(n) = x
∑

d�x1−1/k

τk−1(d)

d
+

∑

m�x1/k

∑

d�x/m

τk−1(d)

− x1/k
∑

d�x1−1/k

τk−1(d) + O

( ∑

x1−1/k

τk−1(d)

)

and by induction one can prove that the pair

(θk, βk) =
(

1 − 1

k
,0

)

is admissible. Using contour integration methods, Hardy and Littlewood showed
that θk = k−1

k+2 is admissible as soon as k � 4. As for the function τ , one can show

that θk � k−1
2k

with some βk > 0, and one conjectures this is the right value in this
problem. The Lindelöf hypothesis implies that conjecture.1 For more information
on this subject, the reader should refer to [Bor09, Ivi85].

Now let us return to the function ψ . This function is odd and 1-periodic, and
hence permits a Fourier series expansion. By Proposition 1.29, the series

−
∞∑

h=1

sin(2πhx)

πh
= −

∑

h∈Z\{0}

e(hx)

2πih

converges to ψ(x) if x ∈ R \Z and to 0 if x ∈ Z. Unfortunately, the convergence is
not uniform, so that it would be better to work with partial sums of this series, or
more generally with trigonometric polynomials. The following result, due to Vaaler
[Vaa85], is a useful answer to this question.

Theorem 6.1 (Vaaler) For all real numbers x � 1 and all integers H � 1, we have

ψ(x) = −
∑

0<|h|�H




(
h

H + 1

)
e(hx)

2πih
+RH (x)

where 
(t) = πt(1 − |t |) cot(πt) + |t | for 0 < |t | < 1 and

∣∣RH (x)
∣∣� 1

2H + 2

∑

|h|�H

(
1 − |h|

H + 1

)
e(hx).

Note that 0 < 
(t) < 1 for 0 < |t | < 1 and, using Exercise 3, we have

∑

|h|�H

(
1 − |h|

H + 1

)
e(hx) = 1

H + 1

∣∣∣∣∣

H∑

h=0

e(hx)

∣∣∣∣∣

2

1The Dirichlet–Piltz divisor problem can be generalized to number fields where it is usually called
the General divisor problem It was originally investigated by Hasse and Suetuna [HS31], and the
asymptotics are of the same order of magnitude as in the rational case.



300 6 Exponential Sums

so that the sum in the error-term is a non-negative real number. Using this with
x = f (n) and summing over ]N,2N ] we get the following inequality.

Corollary 6.2 Let H , N be positive integers and f : [N,2N ] −→ R be any func-
tion. Then we have

∣∣∣∣
∑

N<n�2N

ψ
(
f (n)

)∣∣∣∣�
N

2H + 2
+
(

1 + 1

π

) H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e
(
hf (n)

)∣∣∣∣.

Proof Using Theorem 6.1 we get

∑

N<n�2N

ψ
(
f (n)

) = −
∑

0<|h|≤H




(
h

H + 1

)
1

2πih

∑

N<n�2N

e
(
hf (n)

)

+
∑

N<n�2N

RH

(
f (n)

)

where 
 and RH are defined in Theorem 6.1, and hence

∣∣∣∣
∑

N<n�2N

ψ
(
f (n)

)∣∣∣∣� |�1| + |�2|

with

|�1|�
∑

0<|h|�H

1

2π |h|
∣∣∣∣
∑

N<n�2N

e
(
hf (n)

)∣∣∣∣=
1

π

H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e
(
hf (n)

)∣∣∣∣

and

|�2| � 1

2H + 2

∑

|h|�H

(
1 − |h|

H + 1

) ∑

N<n�2N

e
(
hf (n)

)

= N

2H + 2
+ 1

H + 1

H∑

h=1

(
1 − h

H + 1

)
Re

( ∑

N<n�2N

e
(
hf (n)

))

� N

2H + 2
+

H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e
(
hf (n)

)∣∣∣∣

which implies the asserted result. �

Remark 6.3 One can also work directly with the partial sums of the Fourier series
of the function ψ with the following asymptotic formula. For all positive integers



6.2 Kusmin–Landau’s Inequality 301

H , we have (see [MV81] for instance)

ψ(x) = −
∑

0<|h|�H

e(hx)

2πih
+ O

{
min

(
1,

1

H‖x‖
)}

where ‖x‖ is the distance from x to its nearest integer. The two results are equiva-
lent, but Vaaler’s theorem is often more useful in applications.

6.2 Kusmin–Landau’s Inequality

The first result in exponential sums is the following estimate which was of interest
to mathematicians including van der Corput, Kusmin, Landau, Karamata and Tomic
(see [Mor58]). We begin by proving the original result, and then provide some more
practical versions we shall be able to use later.

We first start with a technical lemma.

Lemma 6.4 Let M ∈N and x1, . . . , xM be pairwise distinct complex numbers. Then

2
M∑

n=1

xn = x1

(
x1 + x2

x1 − x2
+ 1

)
+

M−1∑

n=2

xn

(
xn + xn+1

xn − xn+1
− xn−1 + xn

xn−1 − xn

)

+ xM

(
1 − xM−1 + xM

xM−1 − xM

)
.

Proof If we set x0 = xM+1 = 0 and Tn = xn+xn+1
xn−xn+1

for n = 0, . . . ,M then the right-
hand side above is equal to

M∑

n=1

xn(Tn − Tn−1).

We use Abel’s summation as in Remark 1.15 which gives

M∑

n=1

xn(Tn − Tn−1) = xM

M∑

n=1

(Tn − Tn−1) −
M−1∑

n=1

(xn+1 − xn)

n∑

k=1

(Tk − Tk−1)

= xM(TM − T0) −
M−1∑

n=1

(xn+1 − xn)(Tn − T0)

and using T0 = −1, TM = 1 and (xn+1 − xn)Tn = −(xn + xn+1) we get

M∑

n=1

xn(Tn − Tn−1) = 2xM +
M−1∑

n=1

(xn + xn+1) −
M−1∑

n=1

(xn+1 − xn) = 2
M∑

n=1

xn

as required. �
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We are now in a position to prove the main result of this section.

Theorem 6.5 (Kusmin–Landau’s inequality) Let M ∈ N and f : [1,M] −→ R be
a function such that there exists λ1 ∈R such that

0 < λ1 � f (2) − f (1) � · · ·� f (M) − f (M − 1)� 1 − λ1. (6.1)

Then we have
∣∣∣∣∣

M∑

n=1

e
(±f (n)

)
∣∣∣∣∣�

2

πλ1
.

Proof Let SM :=∑M
n=1 e(f (n)). We use Lemma 6.4 with xn = e(f (n)) and the fact

that

e(x) + e(y)

e(x) − e(y)
= 1 + e(y − x)

1 − e(y − x)
= i cotπ(y − x)

so that

2SM = e
(
f (1)

){
1 + i cotπ

(
f (2) − f (1)

)}

+ e
(
f (M)

){
1 + i cotπ

(
f (M) − f (M − 1)

)}

+ i

M−1∑

n=2

e
(
f (n)

){
cotπ

(
f (n + 1) − f (n)

)− cotπ
(
f (n) − f (n − 1)

)}
.

Now since the function x �−→ cot(πx) is strictly decreasing in ]0,1[ and by the use
of (6.1), we infer that

2|SM | � 1

sinπ(f (2) − f (1))
+ 1

sinπ(f (M) − f (M − 1))

+
M−1∑

n=2

∣∣cotπ
(
f (n + 1) − f (n)

)− cotπ
(
f (n) − f (n − 1)

)∣∣

= 1

sinπ(f (2) − f (1))
+ 1

sinπ(f (M) − f (M − 1))

+ cotπ
(
f (2) − f (1)

)− cotπ
(
f (M) − f (M − 1)

)

= cot

(
π

2

(
f (2) − f (1)

))+ tan

(
π

2

(
f (M) − f (M − 1)

))

� cot

(
πλ1

2

)
+ tan

(
π

2
(1 − λ1)

)
= 2 cot

(
πλ1

2

)

and we conclude the proof by using the inequality cotx � 1/x valid for 0 <

x�π/2. �
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Corollary 6.6 Let N < N1 � 2N be positive integers and f ∈ C1[N,N1] such that
f ′ is non-decreasing and there exists a real number λ1 > 0 such that, for all x ∈
[N,N1], we have

k + λ1 � f ′(x) � k + 1 − λ1 (k ∈ Z). (6.2)

Then we have
∣∣∣∣
∑

N<n�N1

e
(±f (n)

)∣∣∣∣�
2

πλ1
.

Proof Since e(f (n)) = e(f (n) − kn), we may suppose that k = 0. Define the func-
tions g and h by

g(x) = f (x + N) (1 � x �N1 − N),

h(x) = g(x) − g(x − 1) (2 � x �N1 − N).

Since g′(x) = f ′(x + N), the function g′ is non-decreasing and we have λ1 �
g′(x) � 1 − λ1. Furthermore, since h′(x) = g′(x) − g′(x − 1) � 0, the function
h is non-decreasing. Hence we have

λ1 � g(2) − g(1) � · · ·� g(N1 − N) − g(N1 − N − 1)� 1 − λ1

so that g satisfies the hypothesis of Theorem 6.5, and we get

∣∣∣∣
∑

N<n�N1

e
(
f (n)

)∣∣∣∣=
∣∣∣∣∣

N1−N∑

n=1

e
(
g(n)

)
∣∣∣∣∣�

2

πλ1

which concludes the proof. �

Here is the version that we shall use in practice.

Corollary 6.7 Let N < N1 � 2N be positive integers and f ∈ C1[N,N1] such that
f ′ is non-decreasing and there exist real numbers c1 � 1 and 0 < λ1 � (c1 + 1)−1

such that, for all x ∈ [N,N1], we have

λ1 � f ′(x) � c1λ1. (6.3)

Then the conclusion of Corollary 6.6 still holds.

Proof The result follows directly from Corollary 6.6 since the hypothesis 0 < λ1 �
(c1 + 1)−1 implies that c1λ1 � 1 − λ1 so that (6.2) is satisfied with k = 0. �

Example 6.8 We use Corollary 6.7 on Dirichlet’s divisor problem in the following
way. We have

∣∣�(x)
∣∣� 2

∣∣∣∣
∑

n�√
x

ψ

(
x

n

)∣∣∣∣+
1

2
(6.4)
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and splitting the interval [1,
√

x] into dyadic subintervals of the type ]N,2N ] gives

∣∣�(x)
∣∣� max

1�N�√
x

∣∣∣∣
∑

N<n�2N

ψ

(
x

n

)∣∣∣∣
logx

log 2
+ 1

2

since there are at most logx/ log 4 such subintervals. Now using Corollary 6.2 we
get for all integers H � 1

∣∣�(x)
∣∣� max

1�N�√
x

{
N

2H + 2
+ 2

H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e

(
hx

n

)∣∣∣∣

}
logx

log 2
+ 1

2
.

Now to estimate the exponential sum, Corollary 6.7 could a priori be used with λ1 =
hx(4N2)−1 and c1 = 4, but the condition λ1 � 5−1 forces to suppose N �

√
2Hx,

which is in contradiction with the range 1 � N � √
x of the sum. Thus, we cannot

apply Kusmin–Landau’s inequality in this way to the Dirichlet divisor problem.

6.3 Van der Corput’s Inequality

Kusmin–Landau’s inequality is sharp under the sole hypothesis (6.3) but, as can be
shown in Example 6.8, the condition λ1 � (c1 + 1)−1 is too restrictive to be really
used efficiently in usual problems of number theory. In the 1920s, van der Corput
established a very useful inequality which can be considered as the starting point of
crucial theorems supplying estimates for exponential sums.

Theorem 6.9 (van der Corput’s inequality) Let N < N1 � 2N be positive integers
and f ∈ C2[N,N1] such that there exist real numbers c2 � 1 and λ2 > 0 such that,
for all x ∈ [N,N1], we have

λ2 � f ′′(x) � c2λ2. (6.5)

Then
∣∣∣∣
∑

N<n�N1

e
(±f (n)

)∣∣∣∣�
4√
π

(
c2Nλ

1/2
2 + 2λ

−1/2
2

)
.

Remark 6.10 The condition (6.5) will prove to be much more useful than (6.3). It
also should be mentioned that the proof of the theorem will make the following
slightly stronger result appear.

Let N < N1 � 2N be positive integers and f ∈ C2[N,N1] such that there
exists a real number λ2 >0 such that, for all x ∈[N,N1], we have f ′′(x)�λ2.
Then

∣∣∣∣
∑

N<n�N1

e
(±f (n)

)∣∣∣∣�
4√
πλ2

(
f ′(N1) − f ′(N) + 2

)
.

In practice, we shall make no use of such an improvement.
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There are many methods to show Theorem 6.9. The one we will introduce here is
the discrete analogue of the proof of the second derivative test for integrals, also
proved by van der Corput (see Lemma 6.26). We shall propose other proofs in
Sect. 6.6 and Exercise 2. See also [GK91, Mon94].

We begin with an intermediate result.

Lemma 6.11 Let N < N1 � 2N be positive integers and f ∈ C2[N,N1] such that
there exists a real number λ2 ∈]0,π−1[ such that, for all x ∈ [N,N1], we have
f ′′(x) � λ2. Assume also that, for all x ∈]N,N1[, we have f ′(x) �∈ Z. Then

∣∣∣∣
∑

N<n�N1

e
(±f (n)

)∣∣∣∣�
4√
πλ2

.

Proof Let t ∈]0, 1
2 [ be a parameter at our disposal. Since f ′(x) �∈ Z for all x ∈

]N,N1[, there exist u,v ∈ R and non-negative integers M1,M2 such that

u = f ′(N) and v = f ′(N1)

f ′(M1) = [u] + t and f ′(M2) = [u] + 1 − t.

We now split the sum into three subsums

∑

N<n�N1

e
(
f (n)

)=
∑

N<n�M1

e
(
f (n)

)+
∑

M1<n�M2

e
(
f (n)

)+
∑

M2<n�N1

e
(
f (n)

)

and estimate the first and third sums trivially. The mean-value theorem (Theo-
rem 1.12) implies the existence of a real number c ∈]N,2N [ such that

∣∣∣∣
∑

N<n�M1

e
(
f (n)

)∣∣∣∣� max(M1 − N,1) = max

(
f ′(M1) − f ′(N)

f ′′(c)
,1

)

� max

( [u] + t − u

λ2
,1

)
� max

(
t

λ2
,1

)
.

Similarly, we have

∣∣∣∣
∑

M2<n�N1

e
(
f (n)

)∣∣∣∣� max

(
v − ([u] + 1) + t

λ2
,1

)
� max

(
t

λ2
,1

)

since [u] � u � v � [u] + 1. The second sum is estimated using Corollary 6.6.
Since f ′ is non-decreasing and, in the interval [M1,M2], we have [u]+ t � f ′(x) �
[u] + 1 − t , Corollary 6.6 applies and gives

∣∣∣∣
∑

M1<n�M2

e
(
f (n)

)∣∣∣∣�
2

πt
.
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Hence we get
∣∣∣∣
∑

N<n�N1

e
(±f (n)

)∣∣∣∣� 2 max

(
t

λ2
,1

)
+ 2

πt

and the asserted estimate follows from taking t =
√

λ2π−1 since λ2 < π−1. �

We are now able to prove van der Corput’s inequality.

Proof of Theorem 6.9 If λ2 � π−1, then we have

4Nλ
1/2
2√
π

� 4N

π
> N � N1 − N �

∣∣∣∣
∑

N<n�N1

e
(
f (n)

)∣∣∣∣

so that we may suppose that λ2 < π−1. We pick up the numbers u and v from the
proof of Lemma 6.11 and set

[u,v] ∩Z = {m + 1, . . . ,m + K}
where m ∈ Z and K ∈ N, and we define for all integers k ∈ {1, . . . ,K + 1} the
intervals

Jk =]m + k − 1,m + k] ∩ [u,v].
Lemma 6.11 implies that

∣∣∣∣
∑

N<n�N1

e
(
f (n)

)∣∣∣∣�
K+1∑

k=1

∣∣∣∣
∑

n∈Jk∩Z
e
(
f (n)

)∣∣∣∣�
4(K + 1)√

πλ2

and we have by the mean-value theorem

K − 1 � v − u = f ′(N1) − f ′(N) � c2(N1 − N)λ2 � c2Nλ2

which concludes the proof. �

When the function f is sufficiently smooth, one can improve on the secondary
term in van der Corput’s inequality with the use of Corollary 6.7. The following
result is the practical version of this inequality that we shall use in most of the
applications.

Corollary 6.12 Let N < N1 � 2N be positive integers and f ∈ C2[N,N1] such
that there exist real numbers c1, c2 � 1 and λ1, λ2, s1 > 0 such that, for all x ∈
[N,N1], we have

λ1 �
∣∣f ′(x)

∣∣� c1λ1, λ2 �
∣∣f ′′(x)

∣∣� c2λ2 and λ1 = s1(N1 − N)λ2. (6.6)
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We set c = 4π−1/2{c2 + 2s1(c1 + 1)}. Then

∣∣∣∣
∑

N<n�N1

e
(
f (n)

)∣∣∣∣� cNλ
1/2
2 + 2

πλ1
.

Proof If λ1 � (c1 + 1)−1, then we apply Corollary 6.7. Suppose that λ1 > (c1 +
1)−1. Since λ1 = s1(N1 − N)λ2, we can write

2s1(c1 + 1)Nλ
1/2
2 � 2s1(c1 + 1)(N1 − N)λ

1/2
2 = 2(c1 + 1)λ1λ

−1/2
2 > 2λ

−1/2
2

so that by Theorem 6.9 we get

∣∣∣∣
∑

N<n�N1

e
(
f (n)

)∣∣∣∣�
4√
π

(
c2Nλ

1/2
2 + 2λ

−1/2
2

)

<
4√
π

(
c2Nλ

1/2
2 + 2s1(c1 + 1)Nλ

1/2
2

)= cNλ
1/2
2

which implies the asserted result. �

Example 6.13 We return to the Dirichlet divisor problem in which we assume that
x � 416. We first split the sum (6.4) into the ranges [1,6x1/3] and ]6x1/3, x1/2],
then estimate the sum trivially in the first one and use the splitting argument seen in
Example 6.8 for the second sum. Since there are at most logx/ log 64 subintervals
of the form ]N,2N ] in ]6x1/3, x1/2], (6.4) becomes for all integers H � 1

∣∣�(x)
∣∣� 6x1/3 + max

6x1/3<N�√
x

{
N

2H + 2
+ 2

H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e

(
hx

n

)∣∣∣∣

}
logx

log 8
+ 1

2
.

Corollary 6.12 may be applied with N1 = 2N , λ1 = hx(4N2)−1, c1 = 4, λ2 =
hx(4N3)−1, c2 = 8, s1 = 1 so that c = 72π−1/2 which gives

∣∣∣∣
∑

N<n�2N

e

(
hx

n

)∣∣∣∣�
36√
π

(
hx

N

)1/2

+ 8N2

πhx

and therefore we get

H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e

(
hx

n

)∣∣∣∣�
36√
π

(
x

N

)1/2 H∑

h=1

1

h1/2
+ 8N2

πx

H∑

h=1

1

h2

� 72√
π

(
Hx

N

)1/2

+ 8ζ(2)N2

πx
.
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We finally get

∣∣�(x)
∣∣� 6x1/3 + max

6x1/3<N�√
x

{
N

2H + 2
+ 144√

π

(
Hx

N

)1/2

+ 8πN2

3x

}
logx

log 8
+ 1

2

and the choice of H = [6−1Nx−1/3] gives for all x � 416
∣∣�(x)

∣∣< 24x1/3 logx.

We may state the following result.

Theorem 6.14 (Voronoï, van der Corput) For all x � 416, we have
∑

n�x

τ (n) = x(logx + 2γ − 1) + O
(
x1/3 logx

)
.

Remark 6.15 Theorem 6.14 was rediscovered by van der Corput using his method
of exponential sums, but it was first shown by Voronoï [Vor03] in an elementary way,
since theorems for exponential sums did not exist at the time. Voronoï improved on
Dirichlet’s hyperbola principle (Proposition 4.19) by considering triangles instead
of rectangles under the hyperbola mn = x in Dirichlet’s method. He was then able
to prove the following estimate.

Lemma 6.16 (Voronoï) For all real numbers x,T � 1, we have

∣∣�(x)
∣∣� 19

12

∑

n�T

τ (n)+
(√

x

4T
+

√
T

6

)∑

n�T

τ (n)

n1/2
+ 3x1/4

4

∑

n�T

τ (n)

n3/4
+ T

6
+
√

x

T
+ 7

4
.

Estimating the sums
∑

n�T τ (n)n−1/2 and
∑

n�T τ (n)n−3/4 by partial summa-
tion (Theorem 1.14) and choosing the parameter T optimally, Voronoï deduced that

∣∣�(x)
∣∣< 3x1/3 logx

for all x � 308. Unfortunately, his method did not seem to produce better exponents
than 1/3, whereas van der Corput’s was to show great promise.

6.4 The Third Derivative Theorem

6.4.1 Weyl’s Shift

Cauchy–Schwarz’s (or Cauchy–Bunyakovski–Schwarz’s) inequality, which plays
an important role in many branches of modern mathematics, is one of the most
famous results in inequalities theory. For a survey of this inequality and related re-
sults, the reader should refer to [Dra03].
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Lemma 6.17 (Cauchy–Schwarz’s inequality) Let M be a positive integer and
a1, . . . , aM and b1, . . . , bM be two finite sequences of arbitrary complex numbers.
Then we have

∣∣∣∣∣

M∑

m=1

ambm

∣∣∣∣∣

2

�
M∑

m=1

|am|2
M∑

m=1

|bm|2.

Proof A possible proof of this inequality rests on Cauchy–Binet’s identity for com-
plex numbers

M∑

m=1

xmym

M∑

m=1

zmtm −
M∑

m=1

xmtm

M∑

m=1

zmym = 1

2

M∑

m=1

M∑

n=1

(xmzn −xnzm)(ymtn −yntm)

which is a generalization of Lagrange’s identity, applied with xm = am, ym = am,
zm = bm and tm = bm (for m = 1, . . . ,M), so that we get at once

M∑

m=1

|am|2
M∑

m=1

|bm|2 −
∣∣∣∣∣

M∑

m=1

ambm

∣∣∣∣∣

2

= 1

2

M∑

m=1

M∑

n=1

|ambn − anbm|2 � 0

as required. �

In analytic number theory, this inequality is often used to separate certain func-
tions for which better results are obtained when they are summed individually.

The next tool is a device based upon the following observation. Suppose that N

is a positive integer and aN+1, . . . , a2N are N arbitrary complex numbers. If we set
for all n ∈ Z

αn =
{

an, if n ∈ {N + 1, . . . ,2N},
0, otherwise

(6.7)

then we have for all integers h

∑

N<n�2N

an =
∑

n∈Z
αn =

∑

n∈Z
αn+h. (6.8)

Equality (6.8) is called Weyl’s shift. It allows a great flexibility with the indices of
the sums. For instance, for all positive integer H , we can write

∑

N<n�2N

an = 1

H

H∑

h=1

∑

n∈Z
αn+h

and interchanging the summations we infer that

∑

N<n�2N

an = 1

H

2N−1∑

n=N−H+1

H∑

h=1

αn+h. (6.9)
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6.4.2 Van der Corput’s A-Process

The following inequality, discovered by van der Corput, is a very clever application
of Weyl’s shift and Cauchy–Schwarz’s inequality. Often called the A-process, it is a
first result given by van der Corput by which the problem of estimating a given expo-
nential sum with a function f (n) is replaced by estimating another exponential sum
with the (upper) finite difference �hf (n) = f (n + h) − f (n) of f . Since �hf (n)

is of the same order of magnitude as hf ′(n), one may expect some improvement in
the estimates.

Lemma 6.18 (van der Corput’s A-process) Let N be a positive integer and
aN+1, . . . , a2N be arbitrary complex numbers. For all integers H ∈ {1, . . . ,N}, we
have

∣∣∣∣
∑

N<n�2N

an

∣∣∣∣
2

� 2N

H + 1

∑

N<n�2N

|an|2 + 4N

H + 1

H∑

h=1

∣∣∣∣
∑

N<n�2N−h

anan+h

∣∣∣∣.

Proof Let SN be the sum on the left-hand side. By (6.9), we have

|SN | = 1

H + 1

∣∣∣∣∣

2N−1∑

n=N−H

H+1∑

h=1

αn+h

∣∣∣∣∣

where the numbers αn are defined in (6.7), and by Cauchy–Schwarz’s inequality, we
infer that

|SN |2 � N + H

(H + 1)2

2N−1∑

n=N−H

∣∣∣∣∣

H+1∑

h=1

αn+h

∣∣∣∣∣

2

.

Squaring out the modulus we obtain

|SN |2 � N + H

(H + 1)2

2N−1∑

n=N−H

H+1∑

i=1

H+1∑

j=1

αn+iαn+j .

We now change the variables in the following way. Set i = j +h with 1 � i � H +1,
so that 1 − h � j �H + 1 − h with |h| = |i − j | � H . This gives

|SN |2 � N + H

(H + 1)2

2N−1∑

n=N−H

∑

|h|�H

H+1−h∑

j=1−h

αn+h+j αn+j

and using Weyl’s shift (6.8) we get

|SN |2 � N + H

(H + 1)2

∑

n∈Z

∑

|h|�H

H+1−h∑

j=1−h

αn+hαn
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= N + H

(H + 1)2

∑

|h|�H

∑

N<n�2N−h

(H + 1 − |h|)αn+hαn

= N + H

H + 1

∑

|h|�H

(
1 − |h|

H + 1

) ∑

N<n�2N−h

αn+hαn.

We then separate the case h = 0 from the other values, which gives

|SN |2 � N + H

H + 1

∑

N<n�2N

|αn|2 + N + H

H + 1

∑

|h|�H
h�=0

(
1 − |h|

H + 1

) ∑

N<n�2N−h

αn+hαn

= N + H

H + 1

∑

N<n�2N

|αn|2 + N + H

H + 1

{
H∑

h=1

(
1 − h

H + 1

) ∑

N<n�2N−h

αn+hαn

+
H∑

h=1

(
1 − h

H + 1

) ∑

N<n�2N+h

αn−hαn

}

and the use of Weyl’s shift (6.9) again on the last sum gives

|SN |2 � N + H

H + 1

∑

N<n�2N

|αn|2 + N + H

H + 1

{
H∑

h=1

(
1 − h

H + 1

) ∑

N<n�2N−h

αn+hαn

+
H∑

h=1

(
1 − h

H + 1

) ∑

N<n�2N−h

αnαn+h

}

= N + H

H + 1

∑

N<n�2N

|αn|2

+ 2(N + H)

H + 1
Re

{
H∑

h=1

(
1 − h

H + 1

) ∑

N<n�2N−h

αn+hαn

}

� N + H

H + 1

∑

N<n�2N

|an|2 + 2(N + H)

H + 1

H∑

h=1

∣∣∣∣
∑

N<n�2N−h

an+han

∣∣∣∣

and the bound H � N gives the asserted result. �

6.4.3 Main Results

The A-process will allow us to work with a function of the same order of magnitude
of the derivative of the initial function. Applying van der Corput’s inequality from
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Theorem 6.9 to this function may then give a criterion depending on the order of
magnitude of the third derivative of the initial function. More precisely, we will
show the following result.

Theorem 6.19 (Third derivative criterion) Let N ∈N and f ∈ C3[N,2N ] such that
there exist real numbers c2, c3 � 1 and λ2, λ3, s2 > 0 such that, for all x ∈ [N,2N ],
we have

λ2 �
∣∣f ′′(x)

∣∣� c2λ2, λ3 �
∣∣f ′′′(x)

∣∣� c3λ3 and λ2 = s2Nλ3. (6.10)

We set c = 4π−1/2{c3 + 2s2(c2 + 1)} and suppose that (π/8)s2c
−2 � 1. Then we

have
∣∣∣∣
∑

N<n�2N

e
(
f (n)

)∣∣∣∣� 61/2c1/3Nλ
1/6
3 + 81/2c1/3(s2π)−1/2λ

−1/3
3 log1/2(eN).

Proof We set SN = ∑
N<n�2N e(f (n)). We first notice that if λ3 � c−2, then

c1/3Nλ
1/6
3 � N and if λ3 � c−2N−3, then

81/2c1/3(s2π)−1/2λ
−1/3
3 �

(
8π−1c2s−1

2

)1/2
N � N

because of (π/8)s2c
−2 � 1. Therefore we may suppose that

c−2N−3 < λ3 < c−2. (6.11)

By van der Corput’s A-process applied with an = e(f (n)), for all integers H ∈
{1, . . . ,N}, we have

|SN |2 � 2N2

H + 1
+ 4N

H + 1

H∑

h=1

∣∣∣∣
∑

N<n�2N−h

e
(
�hf (n)

)∣∣∣∣

where we set �hf (n) = f (n + h) − f (n). The conditions (6.10) imply that

�1 �
∣∣(�hf )′(x)

∣∣� c2�1, �2 �
∣∣(�hf )′′(x)

∣∣� c3�2 and �1 = s2N�2

with �j = hλj+1 for j ∈ {1,2}. We may apply Corollary 6.12 which gives

|SN |2 � 2N2

H + 1
+ 4N

H + 1

H∑

h=1

(
cN(hλ3)

1/2 + 2

πhλ2

)

� 2N2

H + 1
+ 4cN2(Hλ3)

1/2 + 8 log eN

πs2(H + 1)λ3

where we used λ2 = s2Nλ3 and the bound H � N . Now the choice of H =
[(c2λ3)

−1/3] gives the asserted result. Note that the conditions (6.11) ensure that
1 � H � N . �
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As for Corollary 6.12, we may improve on the secondary term in Theorem 6.19
if we suppose that f is sufficiently smooth, a condition that appears frequently in
applications.

Corollary 6.20 Let N be a positive integer and f ∈ C3[N,2N ] such that there exist
real numbers c1, c2, c3 � 1 and λ1, λ2, λ3, s1, s2 > 0 such that, for all x ∈ [N,2N ],
we have

λj �
∣∣f (j)(x)

∣∣� cjλj (j = 1,2,3) and λj = sjNλj+1 (j = 1,2). (6.12)

We set

c = 4π−1/2{c3 + 2s2(c2 + 1)
}
,

κ1 = 4π−1/2{c2
(
s1(c1 + 1)

)−1/2 + 2
(
s1(c1 + 1)

)1/2}
,

κ2 = 61/2c1/3 + 81/2c1/3(s1π
−1(c1 + 1)

)1/2

and κ = max(κ1, κ2). Suppose that (π/8)s2c
−2 � 1 and N � s1s2(c1 +1) log3(eN).

Then we have
∣∣∣∣
∑

N<n�2N

e
(
f (n)

)∣∣∣∣� κ Nλ
1/6
3 + 2

πλ1
.

Proof If λ1 � (c1 + 1)−1, then we apply Corollary 6.7. If

(c1 + 1)−1 < λ1 � (c1 + 1)−1 log(eN)

then we apply Corollary 6.12. In view of λ2 = s−1
1 N−1λ1, we have

(
s1(c1 + 1)

)−1
N−1 < λ2 �

(
s1(c1 + 1)

)−1
N−1 log(eN)

so that
∣∣∣∣
∑

N<n�2N

e
(
f (n)

)∣∣∣∣�
(
4π−1/2{c2 + 2s1(c1 + 1)

})
Nλ

1/2
2 + 2

πλ1

� κ1(N log eN)1/2 + 2

πλ1
.

But we also have N3λ3 = (s1s2)
−1Nλ1 > (s1s2(c1 + 1))−1N � log3(eN) so that

(N log eN)1/2 �Nλ
1/6
3 .

Finally, if λ1 > (c1 + 1)−1 log(eN), then the equality λ1 = s1s2N
2λ3 implies that

λ
−1/3
3 log1/2(eN) �

(
s1s2(c1 + 1)

)1/2
Nλ

1/6
3

and we use Theorem 6.19 to conclude the proof. �
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Example 6.21 We will apply this result to the Dirichlet divisor problem. As in Ex-
ample 6.13, we first split the sum (6.4) into the ranges [1,2x1/4] and ]2x1/4, x1/2],
estimate the sum trivially in the first one and use the splitting argument seen in
Example 6.8 for the second sum. We get for all integers H � 1

|�(x)| � 2x1/4 + max
2x1/4<N�√

x

{
N

2H + 2
+ 2

H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e

(
hx

n

)∣∣∣∣

}
logx

log 4
+ 1

2
.

Corollary 6.20 may be applied with λ1 = hx(4N2)−1, c1 = 4, λ2 = hx(4N3)−1,
c2 = 8, s1 = 1, λ3 = 3hx(8N4)−1, c3 = 16, s2 = 2/3, so that

c = 112π−1/2, κ1 = 72(5π)−1/2 ≈ 18.1665 . . .

and

κ2 = 211/6(7π−2)1/3
(
√

3π + 2
√

5) ≈ 23.96 . . .

which gives for all N � 2200

∣∣∣∣
∑

N<n�2N

e

(
hx

n

)∣∣∣∣< 21
(
hxN2)1/6 + 8N2

πhx

so that

∣∣�(x)
∣∣� 2x1/4 + max

2x1/4<N�√
x

{
N

2H + 2
+ 252

(
HxN2)1/6 + 8πN2

3x

}
logx

log 4
+ 1

2
.

The choice of H = [(N4x−1)1/7] then gives

∣∣�(x)
∣∣< 3x1/4 + max

2x1/4<N�√
x

{
183
(
xN3)1/7 + 7N2

x

}
logx < 184x5/14 logx

for x � 22004, and hence Corollary 6.20 is worse than van der Corput’s inequality
in this problem if we use it in the whole range ]x1/4, x1/2]. In fact, the function
N �−→ (xN3)1/7 gives a better result as long as x1/4 < N < x4/9. For instance, with
the help of the computations above, we infer that, for x sufficiently large, we have

∑

n�x2/5

ψ

(
x

n

)
 x11/35 logx

which is a good result since Corollary 6.12 only gives

∑

n�x2/5

ψ

(
x

n

)
 x1/3 logx

but Corollary 6.20 does not allow us to recover the whole range of summation.
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6.5 Applications

We will use the previous results to give explicit upper bounds for sums of the ψ -
function. Van der Corput’s inequality implies the first following estimate.

Corollary 6.22 Let N be a positive integer and f ∈ C2[N,2N ] such that there exist
real numbers c1, c2 � 1 and λ1, λ2, s1 > 0 such that, for all x ∈ [N,2N ], we have

λj �
∣∣f (j)(x)

∣∣� cjλj (j = 1,2) and λ1 = s1Nλ2. (6.13)

Set c as in Corollary 6.12 and κ = 3
2 (2c(1 + π−1))2/3. Then

∣∣∣∣
∑

N<n�2N

ψ
(
f (n)

)∣∣∣∣< κ Nλ
1/3
2 + 2λ−1

1 .

Proof If λ2 � κ−3, then κNλ
1/3
2 � N , so that we may suppose

0 < λ2 < κ−3. (6.14)

Using Corollaries 6.2 and 6.12 we get

∣∣∣∣
∑

N<n�2N

ψ
(
f (n)

)∣∣∣∣�
N

2H + 2
+
(

1 + 1

π

) H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e
(
hf (n)

)∣∣∣∣

� N

2H + 2
+
(

1 + 1

π

)(
cNλ

1/2
2

H∑

h=1

1

h1/2
+ 2

πλ1

H∑

h=1

1

h2

)

<
N

2H + 2
+
(

2κ

3

)3/2

N(Hλ2)
1/2 + 2

λ1

where we used
∑H

h=1 h−2 �
∑∞

h=1 h−2 = ζ(2) = π2/6. The choice of H =
[3(2κ)−1λ

−1/3
2 ] gives the desired result. Note that hypothesis (6.14) implies that

H � 1. �

The third derivative theorem implies the following result.

Corollary 6.23 Let N ∈ N and f ∈ C3[N,2N ] such that there exist real numbers
c1, c2, c3 � 1 and λ1, λ2, λ3, s1, s2 > 0 such that, for all x ∈ [N,2N ], we have

λj �
∣∣f (j)(x)

∣∣� cjλj (j = 1,2,3) and λj = sjNλj+1 (j = 1,2). (6.15)

Set c and κ as in Corollary 6.20, ν = 7
2 (2κ(1 + π−1))6/7 and suppose that

(π/8)s2c
−2 � 1 and N � s1s2(c1 + 1) log3(eN). Then

∣∣∣∣
∑

N<n�2N

ψ
(
f (n)

)∣∣∣∣< ν Nλ
1/7
3 + 2λ−1

1 .
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Proof The proof is exactly the same as in Corollary 6.22, except that we use Corol-
lary 6.20 instead of Corollary 6.12. We leave the details to the reader. �

6.6 Further Developments

6.6.1 The mth Derivative Theorem

Theorems 6.9 and 6.19 can be generalized to functions having derivatives of higher
orders. More precisely, one can prove by induction the following result.

Theorem 6.24 (mth derivative test) Let m � 2 be an integer, N < N1 � 2N be
positive integers and f ∈ Cm[N,N1] such that there exists a real number λm > 0
such that, for all x ∈ [N,N1], we have

∣∣f (m)(x)
∣∣� λm.

Then we have
∑

N<n�N1

e
(
f (n)

) Nλ
1/(2m−2)
m + N1−22−m

λ
−1/(2m−2)
m .

As in Corollaries 6.12 and 6.20, one may improve on the secondary term if f is
sufficiently smooth with the help of Kusmin–Landau’s inequality.

Corollary 6.25 (Improved mth derivative test) Let m � 2, N � 1 be integers and
f ∈ Cm[N,2N ] such that there exist real numbers T � 1 and 1 � c0 � · · · � cm

such that T � N and, for all x ∈ [N,2N ] and all j ∈ {0, . . . ,m}, we have

T

Nj
�
∣∣f (j)(x)

∣∣� cj

T

Nj
. (6.16)

Then we have
∑

N<n�2N

e
(
f (n)

) c
4/2m

m T 1/(2m−2)N1−m/(2m−2)

where the implied constants are absolute.

For instance, using the same method as in Examples 6.13 and 6.21, we get from
Corollary 6.25 used with m = 4 the following estimate

∑

N<n�2N

ψ

(
x

n

)
 x1/15N2/3

for all N � √
x, which is worse than Corollary 6.20. Hence we need a new idea to

get further improvements. This is the aim of the next section.
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6.6.2 Van der Corput’s B-Process

The integral analogues of Theorem 6.5 and Lemma 6.11 exist and have also been
proved by van der Corput. We put them together for the sake of clarity.

Lemma 6.26 (1st and 2nd derivative tests for integrals) Let f be a real-valued
function defined on an interval [a, b].
(i) Suppose f ∈ C1[a, b] such that f ′ is monotone and there exists λ1 > 0 such

that, for all x ∈ [a, b], we have f ′(x) � λ1. Then
∣∣∣∣∣

∫ b

a

e
(
f (x)

)
dx

∣∣∣∣∣�
2

πλ1
.

(ii) Suppose f ∈ C2[a, b] such that there exists λ2 > 0 such that, for all x ∈ [a, b],
we have f ′′(x) � λ2. Then

∣∣∣∣∣

∫ b

a

e
(
f (x)

)
dx

∣∣∣∣∣�
4
√

2√
πλ2

.

Proof

(i) We use the following result due to Ostrowski (see [Bul98] for instance).

Let F be a real-valued monotone integrable function on [a, b] and G

be a complex-valued integrable function on [a, b]. Then we have
∣∣∣∣∣

∫ b

a

F (x)G(x)dx

∣∣∣∣∣�
∣∣F(a)

∣∣ max
a�t�b

∣∣∣∣∣

∫ t

a

G(x)dx

∣∣∣∣∣+
∣∣F(b)

∣∣ max
a�t�b

∣∣∣∣∣

∫ b

t

G(x)dx

∣∣∣∣∣.

Applying this with F(x) = 1/(2πf ′(x)) which is monotone and G(x) =
2πf ′(x)e(f (x)), we get
∣∣∣∣∣

∫ b

a

e
(
f (x)

)
dx

∣∣∣∣∣�
1

2πλ1

(
max

a�t�b

∣∣[ie
(
f (x)

)]t
a

∣∣+ max
a�t�b

∣∣[ie
(
f (x)

)]b
t

∣∣
)

� 1

2πλ1
× 4 = 2

πλ1
.

(ii) Let δ > 0 be a parameter to be chosen later and write [a, b] = E ∪F where E =
{x : |f ′(x)| < δ} and F = {x : |f ′(x)| � δ}. Since f ′′ > 0, the set E consists of
at most one interval and F consists of at most two intervals. If E = [c, d], then
(d − c)λ2 � |f ′(d) − f ′(c)| � 2δ so that

∣∣∣∣
∫

E

e
(
f (x)

)
dx

∣∣∣∣� d − c � 2δ

λ2
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and using (i) we have
∣∣∣∣
∫

F

e
(
f (x)

)
dx

∣∣∣∣�
4

πδ
.

Therefore
∣∣∣∣∣

∫ b

a

e
(
f (x)

)
dx

∣∣∣∣∣�
2δ

λ2
+ 4

πδ

and the choice of δ = (2π−1λ2)
1/2 gives the desired result.

The proof is complete. �

Besides proving the A-process (Lemma 6.18), van der Corput provided another
tool for estimating exponential sums called the B-process. This result relies on a
truncated Poisson summation formula and the method of the stationary phase. The
Poisson formula, which is a useful tool in harmonic analysis, allows us to replace
an exponential sum by an integral, which may be estimated by the stationary phase.
We first state without proof one of the many versions of this theorem (see [MV07]
for instance).

Lemma 6.27 (Poisson summation) Let f be a continuous function on R such that∫
R

|f (x)|dx exists and is finite. Then we have

∑

k∈Z
f (k) = lim

K→∞
∑

|k|�K

f̂ (k)

where f̂ (t) = ∫
R

f (x) e(−tx)dx.

For our purpose, it will be more useful if we have at our disposal a truncated
version of Lemma 6.27. We state here the following two results without proof (see
[Mon94]).

Lemma 6.28 (Truncated Poisson summation) Let f ∈ C1[a, b] such that f ′ is in-
creasing on [a, b] and put α = f ′(a) and β = f ′(b). Then we have

∑

a�n�b

e
(
f (n)

)=
∑

α−1�k�β+1

∫ b

a

e
(
f (x) − kx

)
dx + O

(
log(β − α + 2)

)
.

The range of summation in the sum of the right-hand side may be restricted
to [α − 1

4 , β + 1
4 ], say, without changing the error-term (see [Hux96]). Lem-

mas 6.26 and 6.28 allow us to recover the van der Corput inequality. Indeed, using
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Lemma 6.26 (ii) in the integral above, we get with the hypothesis of Theorem 6.9

∑

N<n�2N

e
(
f (n)

) (
f ′(2N) − f ′(N) + 1

)
λ

−1/2
2 + log

(
f ′(2N) − f ′(N) + 2

)

 Nλ
1/2
2 + λ

−1/2
2 + log(Nλ2 + 2)  Nλ

1/2
2 + λ

−1/2
2

since Nλ
1/2
2 + λ

−1/2
2 � 2N1/2 � log(Nλ2 + 2) if N is sufficiently large.

The next result is an effective version of the method of the stationary phase.

Lemma 6.29 (Stationary phase) Let g ∈ C4[a, b] and suppose that there exists x0 ∈
]a, b[ such that g′(x0) = 0. We also suppose that there exist λ2, λ3, λ4 > 0 such that,
for all x ∈ [a, b], we have

g′′(x) � λ2,
∣∣g′′′(x)

∣∣� λ3 and
∣∣g(4)(x)

∣∣� λ4.

Then we have

∫ b

a

e
(
g(x)

)
dx = e(g(x0) + 1/8)√

g′′(x0)
+ O

(
E1(x0) + E2

)

where

E1(x0) = min

(
1

λ2(x0 − a)
,λ

−1/2
2

)
+ min

(
1

λ2(b − x0)
, λ

−1/2
2

)
,

E2 = (b − a)
{
λ−2

2 λ4 + λ−3
2 λ2

3

}
.

Combining Lemmas 6.28 and 6.29 gives van der Corput’s B-process.

Theorem 6.30 (B-process) Let N ∈ N, a � b � a + N and f ∈ C4[a, b] such that
there exist c2 � 1 and λ2, λ3, λ4 > 0 such that, for all x ∈ [a, b], we have

λ2 � f ′′(x) � c2λ2,
∣∣f ′′′(x)

∣∣� λ3 and
∣∣f (4)(x)

∣∣� λ4.

We set α = f ′(a) and β = f ′(b) and for each integer k ∈ [α,β], let xk be defined
by f ′(xk) = k. Then we have

∑

a�n�b

e
(
f (n)

)=
∑

α�k�β

e(f (xk) − kxk + 1/8)√
f ′′(xk)

+ O(R1 + R2)

where

R1 = λ
−1/2
2 + log(Nλ2 + 2) and R2 = N2{λ−1

2 λ4 + λ−2
2 λ2

3

}
.
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Proof If λ2 � N−2, then R1 � N , so that we may suppose that λ2 > N−2. By
Lemma 6.26 we have as above

∫ b

a

e
(
f (x) − kx

)
dx  λ

−1/2
2 (6.17)

uniformly in k and β − α = f ′(b) − f ′(a)� c2Nλ2 so that by Lemma 6.28 we get

∑

a�n�b

e
(
f (n)

)=
∑

α�k�β

∫ b

a

e
(
f (x) − kx

)
dx + O(R1).

If β − α � 1, then the theorem is proved by (6.17). If β − α > 1, then the sum on
the right-hand side is non-empty. We may use Lemma 6.29 to estimate each integral,
which gives

∑

a�n�b

e
(
f (n)

) =
∑

α�k�β

e(f (xk) − kxk + 1/8)√
f ′′(xk)

+ O

{ ∑

α�k�β

(
E1(xk) + E2

)}

+ O(R1).

Now k − α = f ′(xk) − f ′(a) � c2λ2(xk − a) and similarly β − k � c2λ2(b − xk)

so that

E1(xk) � min

(
c2

k − α
,λ

−1/2
2

)
+ min

(
c2

β − k
,λ

−1/2
2

)
.

Furthermore, since
∑

α�k�β 1 = [β − α] or [β − α] + 1 and since β − α > 1, we
have

Nλ2

2
� β − α

2
�

∑

α�k�β

1 � β − α + 1 � 2c2Nλ2

and therefore

∑

α�k�β

(
E1(xk) + E2

) λ
−1/2
2 +

∑

α+1�k�β

1

k − α
+

∑

α�k�β−1

1

β − k
+

∑

α�k�β

E2

 λ
−1/2
2 + log(β − α) + Nλ2E2  R1 + R2

as required. �

Note that if we estimate trivially the exponential sum in Theorem 6.30, we re-
cover Theorem 6.9. Thus, van der Corput’s inequality follows from the B-process
and the triangle inequality.

One may state the B-process in another form if we introduce the function sf
defined by

sf (y) = f ◦ (f ′)−1
(y) − y

(
f ′)−1

(y) (6.18)
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for all functions f sufficiently smooth and monotone on [a, b] and all y ∈ [α,β],
where α = f ′(a) and β = f ′(b). With this notation, it is easy to see that, for all
integers k, we have sf (k) = f (xk) − kxk where xk is defined in Theorem 6.30, so
that van der Corput’s B-process may be rewritten in the following form.

Corollary 6.31 (B-process version 2) Let N ∈N, a � b � a + N and f ∈ C4[a, b]
satisfying the hypotheses of Theorem 6.30. We set α = f ′(a) and β = f ′(b) and
for each integer k ∈ [α,β], let xk be defined by f ′(xk) = k. The function sf being
defined in (6.18), we have

∑

a�n�b

e
(
f (n)

)= e

(
1

8

) ∑

α�k�β

e(sf (k))
√

f ′′ ◦ (f ′)−1(k)
+ O(R1 + R2)

where the remainder terms Ri are defined in Theorem 6.30.

It could be interesting to have some properties of the function sf . For instance,
one can see that, if f ∈ Ck[a, b] for k ∈ {1,2,3} and f ′ is monotone, then sf ∈
Ck[α,β] and if f ′′ �= 0 when k � 2, we have

(sf )′(y) = −(f ′)−1
(y), (sf )′′(y) = −1

f ′′ ◦ (f ′)−1(y)
and

(sf )′′′(y) = f ′′′ ◦ (f ′)−1(y)

(f ′′ ◦ (f ′)−1(y))3
.

6.6.3 Exponent Pairs

The A- and B-processes can be systematized in an algorithmic type procedure
which was developed by van der Corput and later simplified by Phillips. To make
things more accurate, we start by giving a definition of a class of function on which
the process may apply. In practice, this class contains almost all functions that we
may encounter in the usual problems of number theory. Roughly speaking, we need
to work with functions satisfying hypotheses of the type (6.16) and possibly the log-
arithm function for the problem of the Riemann-zeta function in the critical strip.

Definition 6.32 Let N � 1 and r � 2 be integers, T � 1, σ > −1 and 0 < ε < 1
2 be

real numbers. A function f belongs to the class F(T ,N; r, σ, ε) if f ∈ Cr(I) such
that I ⊆ [N,2N ] and, for all x ∈ I , we have

f (x) =
⎧
⎨

⎩
±T Nσ

xσ
+ u(x), if σ �= 0,

±T logx + u(x), if σ = 0
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where u ∈ Cr(I) is a remainder function satisfying

|u(j)(x)| �
{

ε (σ )j T N−j , if σ �= 0,

ε (j − 1)!T N−j , if σ = 0

for all x ∈ I and j ∈ {1, . . . , r}, and where the Pochhammer symbol (σ )j is defined
by

(σ )j =
{

1, if j = 0,

σ (σ + 1) · · · (σ + j − 1), if j � 1.

A function belonging to the class F(T ,N; r, σ, ε) with σ �= 0 is called a monomial
function.

We summarize in the next result the basic properties of this class of functions.

Lemma 6.33 Let N � 1 and r � 2 be integers, T � 1, σ > −1 and ε > 0 be real
numbers.

(i) Let f ∈ F(T ,N; r, σ, ε), 1 � h � 2εN
σ+r

be an integer and define the function
�hf (x) = f (x + h) − f (x). Then

�hf ∈F
(
hT N−1,N; r − 1, σ + 1,2ε

)
.

(ii) If gσ (x) = −T (Nx−1)σ with σ �= 0 or if g0(x) = T logx, then, for all ε > 0
and all integers r � 2, we have

sgσ ∈ F
(

T ,T N−1; r,− σ

σ + 1
, ε

)
.

Proof We will make use of the following result which is a particular case of an
inequality by Ostrowski (see [NP04] for instance).

Let a < b be real numbers and f ∈ C1[a, b] such that there exists λ1 > 0
such that, for all x ∈ [a, b], we have |f ′(x)| � λ1. Then

∣∣∣∣∣(b − a)f (a) −
∫ b

a

f (t)dt

∣∣∣∣∣�
(b − a)2λ1

2
.

(i) Let f ∈F(T ,N; r, σ, ε) and we set T = hT N−1. We have

�hf (x) = ±hT Nσ

xσ+1
+Rh,σ (x) = ±TNσ+1

xσ+1
+Rh,σ (x)

where

Rh,σ (x) = ±T Nσ

(∫ x+h

x

dt

tσ+1
− h

xσ+1

)
+ �hu(x)
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so that for all j ∈ {1, . . . , r − 1} we have, using Ostrowski’s inequality

∣∣R(j)
h,σ (x)

∣∣� (σ + 1)j T Nσ

∣∣∣∣∣

∫ x+h

x

dt

tσ+j+1
− h

xσ+j+1

∣∣∣∣∣+
∫ x+h

x

|u(j+1)(t)|dt

� (σ + 1)j

2
hT N−j−1(σ + j + 1)

(
hN−1)+ ε (σ + 1)j hT N−j−1

� ε (σ + 1)j TN−j

(
σ + j + 1

σ + r
+ 1

)
� 2ε (σ + 1)j TN−j .

(ii) Easy computations from the definition (6.18) give

sgσ (y) = −(σ 1
σ+1 + σ− σ

σ+1
)T (T N−1)−

σ
σ+1

y− σ
σ+1

and

sg0(y) = −T log
(
eyT −1).

The proof is complete. �

We are now in a position to define the exponent pairs.

Definition 6.34 (Exponent pairs) Let k and l be real numbers satisfying

0 � k � 1

2
� l � 1.

The pair (k, l) is called an exponent pair if, for all σ > −1, there exist an integer
r � 2 and 0 < ε < 1

2 such that, for all N ∈ N, all real numbers T � 1 and all f ∈
F(T ,N; r, σ, ε), the estimate

∑

a<n�b

e
(
f (n)

) T kNl−k + NT −1

holds, with [a, b] ⊆ [N,2N ].

Note that the pair (0,1) is an exponent pair by the triangle inequality and is called
the trivial exponent pair. By Corollary 6.12, the pair ( 1

2 , 1
2 ) is an exponent pair, and

by Corollary 6.20 the pair ( 1
6 , 2

3 ) is also an exponent pair. Furthermore, there is no
need to ever take l > 1 in an exponent pair, otherwise we would get an estimate
worse than the one provided by the triangle inequality. Similarly, there is no need
to take k > 1

2 , for then (k, l) would provide a weaker result than the pair ( 1
2 , 1

2 ).
More generally, the reader should refer to [GK91] where an interesting explanation
is given about the hypotheses 0 � k � 1

2 � l � 1 appearing in this definition.
The term NT −1, which comes from Kusmin–Landau’s inequality, is here to pre-

vent the case where the order of magnitude of the function in the interval [N,2N ] is
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very small compared to N . However, we shall mostly have T � N , so that NT −1

is absorbed by the main term T kNl−k . Thus, the exponent pair ( 1
2 , 1

2 ) tells us that
the exponential sum is bounded by the square-root of the order of magnitude of the
function in [N,2N ], which is an interesting result. But it would be more efficient
to have the bound

∑
a<n�b e(f (n))  N1/2+ε instead of T 1/2. Unfortunately, this

conjecture, called the exponent pair conjecture, still remains unproven. Note that
this conjecture would solve Dirichlet’s divisor problem.

Using Corollary 6.2 along with exponent pairs gives the following useful result.

Corollary 6.35 Let f ∈ F(T ,N; r, σ, ε) and (k, l) be an exponent pair. Then we
have

∑

a<n�b

ψ
(
f (n)

) (
T kNl

) 1
k+1 + NT −1

with [a, b] ⊆ [N,2N ].

Proof If N � T
k

1+k−l , then we have

(
T kNl

) 1
k+1 � N � b − a �

∣∣∣∣
∑

a<n�b

ψ
(
f (n)

)∣∣∣∣

so that we may suppose that N > T
k

1+k−l . Using Corollary 6.2 and Definition 6.34,
we get for any positive integer H

∑

a<n�b

ψ
(
f (n)

) NH−1 + (HT )kNl−k + NT −1

and the choice of H = [(T −kN1+k−l )
1

k+1 ] gives the asserted result. �

Lemma 6.33 implies that in a certain sense the exponent pairs are compatible
with the A- and B-processes. As shown by the next result, this compatibility has the
advantage of producing some new exponent pairs from older ones. For the proof,
we refer the reader to [GK91, Mon94].

Theorem 6.36 (Exponent pairs by A- and B-processes) Let (k, l) be an exponent
pair. Then

A(k, l) =
(

k

2k + 2
,

1

2
+ l

2k + 2

)
and B(k, l) =

(
l − 1

2
, k + 1

2

)

are exponent pairs.

This theorem shows the great usefulness of the exponent pairs, for one may com-
bine the A- and B-processes successively to produce exponent pairs from the pair
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(0,1). For instance, setting Aj and Bj to symbolize the A- and B-processes applied
j times respectively, we have

BA3(BA2)2B(0,1) =
(

97

251
,

132

251

)
(6.19)

so that ( 97
251 , 132

251 ) is an exponent pair. Note that B2(k, l) = (k, l), which is not sur-
prising since the Poisson summation formula is one of the ingredients of the B-
process.

Using (6.19) in Corollary 6.35 gives the following improvement in the Dirichlet
divisor problem.

∑

N<n�2N

ψ

(
x

n

)
 x97/348N35/348 + N2x−1

so that, for x sufficiently large, we have

∑

n�√
x

ψ

(
x

n

)
 x229/696 logx.

Note that 229
696 ≈ 0.329 022 988 . . . Compared to the conjectured value 1/4, this es-

timate represents a saving of a little more than 5% in comparison to the bound
provided by van der Corput’s inequality (Example 6.13).

The search for the best exponent pair to a given estimate implies a difficult opti-
mization problem which was investigated by Graham and Kolesnik in [GK91]. For
the Dirichlet divisor problem, the authors proved that the best exponent accessible
by this method is 0.329 021 356 85 . . . which is slightly better than the exponent
above.

6.6.4 An Improved Third Derivative Theorem

The question whether the exponents 1/3 and 1/7 in Corollaries 6.22 and 6.23 can
be increased arises naturally. Concerning the first one, a counter-example, given
by Grekos [Gre88], shows that this exponent cannot be improved. In [RS03], the
authors investigate the problem of the second exponent. Their idea is to estimate the
following exponential sum with a parameter

1

H

∑

H<h�2H

∣∣∣∣
∑

n∈Ih

e

(
h

H
f (n)

)∣∣∣∣

where H , N are large positive integers and Ih is any subinterval of ]N,2N ] which
may depends on h for all h ∈ [H,2H ]. The non-trivial treatment of this sum rests
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on bounds of quadruple exponential sums and the use of the so-called spacing lem-
mas, which, in Huxley’s terminology, are tools for estimating certain Diophantine
systems. Their main result may be stated as follows.

Theorem 6.37 Let H , N be large positive integers, Ih be any subinterval of ]N,2N ]
which may depends on h for all h ∈ [H,2H ] and f ∈ C3[N,2N ] such that there
exists a real number λ3 > 0 such that, for all x ∈ [N,2N ] we have

|f ′′′(x)| � λ3.

Then, for all ε > 0, we have

1

H

∑

H<h�2H

∣∣∣∣
∑

n∈Ih

e

(
h

H
f (n)

)∣∣∣∣ N1+ελ
1/6
3 H−1/9 + N1+ελ

1/5
3 + N3/4+ε + λ

−1/3
3 .

We now use this tool along with Corollary 6.2 in the following way. Suppose
first that N−19/3 � λ3 < 1. Splitting the interval [1,H ] into O(logH) subintervals
of the form [H1,2H1], we get

∑

N<n�2N

ψ
(
f (n)

) N

H
+

H∑

h=1

1

h

∣∣∣∣
∑

N<n�2N

e
(
hf (n)

)∣∣∣∣

 N

H
+ max

1�H1�H

∑

H1<h�2H1

1

h

∣∣∣∣
∑

N<n�2N

e
(
hf (n)

)∣∣∣∣ logH

 N

H
+ max

1�H1�H

1

H1

∑

H1<h�2H1

∣∣∣∣
∑

N<n�2N

e
(
hf (n)

)∣∣∣∣ logH

 N

H
+ max

1�H1�H

(
N1+ε(H1λ3)

1/6H
−1/9
1 + N1+ε(H1λ3)

1/5

+ N3/4+ε + (H1λ3)
−1/3) logH

 N

H
+ (N1+ε

(
Hλ3

3

)1/18 + N1+ε(Hλ3)
1/5

+ N3/4+ε + λ
−1/3
3

)
logH

and choosing H = [λ−3/19
3 ] gives

∑

N<n�2N

ψ
(
f (n)

) Nε
(
Nλ

3/19
3 + N3/4 + λ

−1/3
3

)

the second term being absorbed by the first one, and logH � logN  Nε since
λ3 � N−19/3. If λ3 � 1, then Nλ

3/19
3 � N and if λ3 < N−19/3, then λ

−1/3
3 > N19/9

so that we may state the following result.
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Corollary 6.38 Let f ∈ C3[N,2N ] such that there exists a real number λ3 > 0
such that, for all x ∈ [N,2N ] we have |f ′′′(x)| � λ3. Then, for all ε > 0, we have

∑

N<n�2N

ψ
(
f (n)

) Nε
(
Nλ

3/19
3 + N3/4 + λ

−1/3
3

)
.

Applied to the Dirichlet divisor problem, this result implies that

∑

N<n�2N

ψ

(
x

n

)
 Nε

(
x3/19N7/19 + N3/4 + N4/3x−1/3)

so that, for x sufficiently large, we get

∑

n�x2/5

ψ

(
x

n

)
 x29/95+ε

which is better than the previous one obtained by the third derivative test, but once
again this result does not allow us to recover the whole range of summation.

6.6.5 Double Exponential Sums

In [Vor04], Voronoï derived a very elegant formula for the remainder term �k(x)

of the Dirichlet–Piltz divisor problem. Later, some mathematicians obtained a trun-
cated version of this formula which may be written in the case k = 2 as

�(x)  x1/4
∣∣∣∣
∑

n�R

τ(n)

n3/4
e(2

√
nx)

∣∣∣∣+ x1/2+εR−1/2 + xε

for all ε > 0, where R � 1 is a parameter at our disposal such that R  xA for some
A > 0. Using the fact that τ(n) =∑d|n 1 we get

�(x)  x1/4
∣∣∣∣
∑

d�R

∑

k�R/d

e(2
√

kdx)

(kd)3/4

∣∣∣∣+ x1/2+εR−1/2 + xε.

Splitting the domain d � R, kd � R into O(log2 R) subdomains of the form
[M,2M] × [N,2N ] with M , N positive integers such that MN � R gives

�(x)  x1/4 max
M�R,N�R

MN�R

∣∣∣∣
∑

M�m�2M

∑

N�n�2N

e(2
√

mnx)

(mn)3/4

∣∣∣∣ log2 R + x1/2+εR−1/2 + xε

and using Abel’s summation we get

�(x)  x1/4R−3/4 max
M,N�R
MN�R

max
M�M1�2M

N�N1�2N

∣∣∣∣
∑

M�m�M1

∑

N�n�N1

e(2
√

mnx)

∣∣∣∣ log2 R

+ x1/2+εR−1/2 + xε.
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Hence we have here a double exponential sum to deal with instead of the function ψ .
Note that the trivial estimate of this double sum and the choice of R = x1/3 enable
us to recover Theorem 6.14 with x1/3+ε instead of x1/3 logx. The theory of multiple
exponential sums was developed nearly at the same time as the simple exponential
sums. In [Kol85], Kolesnik establishes the following result.

Lemma 6.39 Let X > 0 be a real number and M,N,R � 1 be integers such that
M � N and MN � R, and let D ⊆ [M,2M] × [N,2N ]. Let α,β ∈ R \Z such that
α + β �= 3,4,13/3 and (α − 4)2 + β(α − 3) �= 0. Then, for all ε > 0, we have

∑

(m,n)∈D
e

(
X

(
m

M

)α(
n

N

)β)
 R145/173+εX11/173 + R168/197+εX11/197

+ R263/230+εX−22/230 + R21/26+εX1/13

+ R255/302+εX9/151.

Using this result with α = β = 1/2 and X = 2
√

MNx � √
Rx we get

�(x)  x195/692R83/692+ε + x219/788R103/788+ε + x93/460R159/460+ε

+ x15/52R5/52+ε + x169/604R75/604+ε + x1/2+εR−1/2

and we choose R so that the first and the last terms are equal, which gives R =
x151/429 and therefore

�(x)  x139/429+ε.

We have 139
429 ≈ 0.324 009 32 . . . This bound is slightly better than the one obtained

with exponent pairs. The proof of Lemma 6.39 involves very complicated mathe-
matics, this is the reason why the research then took a new turn.

6.6.6 The Discrete Hardy–Littlewood Method

The idea to adapt Hardy–Littlewood’s circle method for exponential integrals to ex-
ponential sums first appeared in [BI86] in which the authors obtained an improve-
ment in the problem of bounding ζ( 1

2 + it). The method was later used by Iwaniec
and Mozzochi [IM88] to treat the Dirichlet divisor problem and the Gauss circle
problem, which are similar by nature. This method is one of the trickiest in expo-
nential sum theory. The proof is far beyond the scope of this book,2 but one can
systematize the ideas in the following six steps.

2For a complete exposition of this subject, the reader should refer to [GK91, Hux96].
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In what follows, let f ∈ Cr [N/2,2N ] with r � 4 and the derivatives satisfying
van der Corput type hypotheses as in (6.16) so that there exist ci � 1 and T � 1
such that, for all x ∈ [N/2,2N ], we have

T

Nj
�
∣∣f (j)(x)

∣∣� cj

T

Nj
(j = 1, . . . , r).

We also suppose that c3T � N3. The purpose is to get an estimate for the exponen-
tial sum

S =
∑

N�n�2N

e
(
f (n)

)
.

Step 1. Major and Minor Arcs

As in the original circle method (see [IK04] for a complete exposition), the interval
[N,2N ] is covered by [N/M] + 1 intervals Ik = [N + (k − 1)M,N + kM[ where
M is a positive integer chosen so that M � N/10, M2T � 2c3N

3 and M4T � N4.
Let R be the integer such that

(R − 1)2MT < 2c3N
3 � R2MT

so that R2 � M and suppose that R � M , since this is the range where this method
really works. The role of R is to give the right order of magnitude of q when we
approximate the real number f ′′(x)/2 by a rational number a/q . With the two pa-
rameters defined above, we have ensured that, for all x ∈ [N/2,2N ],

M−3  f ′′′(x)  M−2 and f (4)(x)  M−4.

The problem is then to find a point in Ik such that the derivatives of f at this point
are rational numbers, in order to expand f (x) in a Taylor series about this point.
Since Ik has length M , as x runs through Ik , f ′′(x)/2 runs through an interval Jk of
length � MT N−3 � R−2. Choose a rational a/q = ak/qk in Jk with (a, q) = 1 for
which q is minimal. If q � R2/M , we call Ik or Jk a major arc, otherwise a minor
arc. Having chosen a/q , we pick the integer n0 = n

(k)
0 ∈ Ik for which f ′′(n0)/2 is

the closest to a/q . Since f ′′ is strictly monotone, we have |n0 − x0| � 1 where x0
is the unique solution of the equation f ′′(x)/2 = a/q . Hence we have

∣∣∣∣
f ′′(n0)

2
− a

q

∣∣∣∣�
c3T

2N3
�

4c2
3

M2
.

Next we choose a rational approximation b/s to qf ′(n0) such that
∣∣∣∣
b

s
− qf ′(n0)

∣∣∣∣� qM−1 and s � max
(
1,Mq−1)



330 6 Exponential Sums

which is always possible by Dirichlet’s approximation theorem, and set

g(x) = f (n0) + bx

qs
+ ax2

q
+ μx3

where μ = 1
6f ′′′(n0). This polynomial g(x) is the function which is used to approx-

imate f (x + n0). The values of m such that n0 + m lies in Ik belong to an interval
[M1,M2] such that M1 � M , M2 � 3M and M2 − M1 � M , and writing

∑

M1�m�M2

e
(
f (n0 + m)

)=
∑

M1�m�M2

e
(
f (n0 + m) − g(m)

)
e
(
g(m)

)

and using the fact that

f ′(n0 + x) − g′(x) = f ′(n0) − b

qs
+ x

(
f ′′(n0) − 2a

q

)
+ x3

6
f (4)(n0 + θx)

where 0 < θ < 1, we get using the estimates above

f ′(n0 + x) − g′(x)  M−1

for all x  M such that n0 + x ∈ [N/2,2N ], so that by partial summation we get

∑

M1�m�M2

e
(
f (n0 + m)

) max
M1�M3�M2

∣∣∣∣
∑

M3�m�M2

e
(
g(m)

)∣∣∣∣.

For each k we have a different polynomial g(m) = gk(m) and different limits
M

(k)
3 ,M

(k)
2 . Also note that we have bounded S by the sum of the moduli of  N/M

shorter sums of length � M . Since the best result one can hope for these sums is
 M1/2, the best estimate we could obtain for S would be

S 
(

N

M

)
M1/2  N

M1/2
. (6.20)

Step 2. Gauss Sums

The sum

∑

M3�m�M2

e
(
g(m)

)= e
(
f (n0)

) ∑

M3�m�M2

e

(
μm3 + am2

q
+ bm

qs

)

may be viewed as an incomplete Gauss sum perturbed by the factor e(μm3). Gauss
sums are usually defined as sums of additive or multiplicative characters. In our
problem, the quadratic Gauss sum

G(a,b;q) =
∑

m(modq)

eq

(
am2 + bm

)
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plays a key part since

∑

M3�m�M2

e

(
μm3 + am2

q
+ bm

qs

)
= 1

qs

∑

k (modqs)

G(as, b + k;qs)

×
∑

M3�m�M2

e

(
μm3 − km

qs

)
.

Gauss sums have some interesting properties. For instance, if b + k = ds for some
integer d and if q is odd, then

G(as, b + k;qs) = s eq

(−4a d2)G(a,0;q)

otherwise the sum is zero. If q is even, there is a slight variation in this identity
which does not really affect the result. The notation α means the integer β satisfying
αβ ≡ 1 (modq). Since |G(a,0;q)| = √

q if q is odd and (a, q) = 1, we get by
[Hux96, Lemma 5.4.5]
∣∣∣∣

∑

M3�m�M2

e
(
g(m)

)∣∣∣∣=
1√
q

∣∣∣∣
∑

d (modq)

eq

(−4a d2) ∑

M3�m�M2

e

(
μm3 − m

q

(
d− b

s

))∣∣∣∣

if q is odd, which we shall suppose from now on.

Step 3. Poisson Summation

One may apply the truncated Poisson summation formula of Lemma 6.28 along
with a computation about a special integral called the Airy integral and the use of
Lemma 6.26. This process replaces the sums over d and m above by

∣∣∣∣
∑

M3�m�M2

e
(
g(m)

)∣∣∣∣ =
1√
q

∣∣∣∣
∑

h

(
q

12h1μ

)1/4

eq

(−4a h2) e
(

− 2

μ1/2

(
h1

3q

)3/2)∣∣∣∣

+ O

(
q + R√

q
logM

)

for μ > 0, where h is an integer variable, h1 = h − b/s and the sum is such that

3μqM2
3 � h1 � 3μqM2

2 .

For μ < 0 we use −g(m). Since R2 � N3(MT )−1, the size of each summand is


(

q

μh1

)1/4


(

q

μ2M2q

)1/4

� (μM)−1/2 � R

and the length of the range of summation is � 18μqM2 < 144c2
3qMR−2. Hence

the trivial estimate on the sum over h is  Rq−1/2 times the number of terms. On
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major arcs, we have qMR−2 � 1 and one can prove [HW88] that the number of
major arcs with Q � q < 2Q is  NQ2(MR2)−1 + 1. Thus, dividing the major
arcs into ranges Q � q < 2Q where Q is a power of 2 such that Q � R2/M , we
infer that the major arcs contribute


∑

Q=2α�R2/M

R

Q1/2

(
NQ2

MR2
+ 1

)
logM


(

N

MR
· R3

M3/2
+ R

)
logM


(

N

M1/2
+ R

)
logM

to the sum S, where we used the inequality R � M . Taking (6.20) into account, this
estimate is nearly a best possible result.

Step 4. The Large Sieve on Minor Arcs

We now look for the contribution of the minor arcs for which q > R2/M . The use of
the large sieve corresponds to Vinogradov’s mean-value theorem in the continuous
case (see Lemma 6.41). The sum over h above is first tidied with some analytic tools
like partial sums by Fourier transforms, Hölder’s inequality, etc. Sums of bilinear
forms of the type

∑

M3�m�M2

e
(
g(m)

) Rq−1/2
∑

H

∫ 1/2

−1/2
K(t)

∣∣∣∣
∑

H�h<2H

e
(−x(h) · y(t)

)∣∣∣∣dt

+ q1/2 logM

thus appear, where H runs over all powers of 2 covering the range of h in the
summation above, K(t) is a kernel function satisfying

∫ 1/2

−1/2
K(t)dt  logM

and the vectors x(h) and y(t) have respectively integer and rational coordinates in
four dimensions, the first one corresponding to h and the second one to the minor
arc Jk . After some rearrangements, the sum is treated with the following inequality
called the double large sieve inequality.

Let x(1), . . . ,x(K) and y(1), . . . ,y(L) be real vectors in h dimensions satis-
fying

∣∣x(k)
i

∣∣� Xi

2
and

∣∣y(l)
i

∣∣� Yi

2
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for i = 1, . . . , h, k = 1, . . . ,K and l = 1, . . . ,L. Let ai = Xi/(1 + XiYi) and
bi = 1/Xi . Then we have

∣∣∣∣∣

K∑

k=1

L∑

l=1

e
(
x(k) · y(l)

)
∣∣∣∣∣

2

�
(

π

2

)4h

A(a)B(b)

h∏

i=1

(XiYi + 1)

where

A(a) =
∑

k

∑

j

h∏

i=1

max

(
0,1 −

∣∣∣∣
x(k)
i − x(j)

i

ai

∣∣∣∣

)
,

B(b) =
∑

l

∑

j

h∏

i=1

max

(
0,1 −

∣∣∣∣
y(l)
i − y(j)

i

bi

∣∣∣∣

)
.

Step 5. Semicubical Powers of Integers

This is the trickiest point of the method. The numbers A(a) and B(b) require to
count the number of solutions of a system of four Diophantine inequalities involving
semicubical powers of eight integer unknowns. This is done using very complicated
combinatorial arguments (see [BI86, GK91]).

Step 6. Final Step

The final step rests on counting the points indexed by the minor arcs. One has to
count the number of coincidences of the points y, i.e. to count the number of Dio-
phantine inequalities with rational unknowns. The numbers M and R are then cho-
sen optimally.

This method enables us to get some new exponent pairs which are not attainable
by any successive A- and B-processes. In [HW88], Huxley and Watt were able to
get the exponent pair ( 9

56 + ε, 1
2 + 9

56 + ε). They gradually improved their estimates
by getting the pairs

(k, l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2

13
+ ε,

35

52
+ ε

)
(1987),

(
89

570
+ ε,

1

2
+ 89

570
+ ε

)
(1996),

(
32

205
+ ε,

1

2
+ 32

205
+ ε

)
(2005)

the last two exponent pairs being obtained by Huxley [Hux96, Hux05].
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In [Hux03], Huxley used the ideas exposed above and added some refinements,
notably bounding the number of integer points near a specific smooth curve (as in
Chap. 5), to estimate the following double exponential sum

∑

H<h�2H

ah

∑

N<n�2N

bne
(
hf (n)

)

where (ah) and (bn) are of bounded variation. Using Corollary 6.2, he then deduced
the following result.

Theorem 6.40 (Huxley) Let r � 5, N � 1 be integers and f ∈ Cr [N,2N ] such that
there exist real numbers T � 1 and 1 � c0 � · · ·� cr such that, for all x ∈ [N,2N ]
and all j ∈ {0, . . . , r}, we have

T

Nj
�
∣∣f (j)(x)

∣∣� cj

T

Nj
.

Then we have
∑

N<n�2N

ψ
(
f (n)

) (NT )131/416(logNT )18 627/8320.

Applied to the Dirichlet divisor problem, this gives the best known result up to
now namely

�(x)  x131/416(logx)26 947/8320.

Corollary 6.22 with van der Corput’s theory gives under the same hypotheses
∑

N<n�2N

ψ
(
f (n)

) (NT )1/3

if T � N . We have 1/3 ≈ 0.33 . . . and 131/416 ≈ 0.314 903 84 . . . which shows the
extreme difficulty in getting some new improvements—this is actually the case with
every problem in analytic number theory.

6.6.7 Vinogradov’s Method

Let us move on now to another divisor problem and suppose we want to estimate
the sum

∑
n�x σ (n). As in Chap. 4, we have

∑

n�x

σ (n) = 1

2

∑

d�x

[
x

d

]([
x

d

]
+ 1

)

= 1

2

∑

d�x

(
x

d
− ψ

(
x

d

)
− 1

2

)(
x

d
− ψ

(
x

d

)
+ 1

2

)
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= 1

2

∑

d�x

(
x2

d2
− 2x

d
ψ

(
x

d

)
+ ψ

(
x

d

)2

− 1

4

)

= x2

2

∑

d�x

1

d2
− x

∑

d�x

1

d
ψ

(
x

d

)
+ O(x)

= x2ζ(2)

2
− x2

2

∑

d>x

1

d2
− x

∑

d�x

1

d
ψ

(
x

d

)
+ O(x)

= x2ζ(2)

2
− x

∑

d�√
x

1

d
ψ

(
x

d

)
− x

∑
√

x<d�x

1

d
ψ

(
x

d

)
+ O(x).

We apply (1.6) to the second sum with f (t) = t−1ψ(x/t), a = √
x and b = x. Since

V b
a (f )  1 + x−1/2 we have

∑
√

x<d�x

1

d
ψ

(
x

d

)
=
∫ x

√
x

1

t
ψ

(
x

t

)
dt + ψ(x)

2x
+ ψ(

√
x)2

√
x

+ O(1)

=
∫ √

x

1

ψ(u)

u
du + O(1)  1

so that

∑

n�x

σ (n) = x2ζ(2)

2
− x

∑

n�√
x

1

n
ψ

(
x

n

)
+ O(x).

The trivial estimate on the sum gives

∣∣∣∣
∑

n�√
x

1

n
ψ

(
x

n

)∣∣∣∣�
1

2

∑

n�√
x

1

n
 logx (6.21)

so that we get the asymptotic formula

∑

n�x

σ (n) = x2ζ(2)

2
+ O(x logx).

If we intend to improve on the error-term, the use of previous results such as Corol-
lary 6.35 can help to reduce the interval of summation. Indeed, using Abel’s sum-
mation and Corollary 6.35 with the exponent pair (6.19), we get

∑

a(x)<n�√
x

1

n
ψ

(
x

n

)
 max

a(x)<N�√
x

∣∣∣∣
∑

N<n�2N

1

n
ψ

(
x

n

)∣∣∣∣ logx
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 max
a(x)<N�√

x
N−1 max

N�N1�2N

∣∣∣∣
∑

N<n�N1

ψ

(
x

n

)∣∣∣∣ logx

 max
a(x)<N�√

x
N−1 max

N�N1�2N

(
x97/348N35/348 + N2x−1) logx

 max
a(x)<N�√

x

(
x97/348N−313/348 + Nx−1) logx  1

where a(x) = x97/313(logx)348/313 ≈ x0.279(logx)1.112. However, this method does
not enable us to cover the whole range of summation.

From 1934 to 1937, Vinogradov created another tool to deal with exponential
sums which may supersede Weyl–van der Corput’s method when the orders of the
derivatives of the function are large. We sketch below the ideas underlying this
method, but we omit the proofs. For more information about Vinogradov’s work,
see [For02, Mon94, Vin54].

Let k be a large integer, say k � 5, and f ∈ Ck+1[N,2N ] such that there exists a
real number λk+1 ∈ [N−2,N−1] such that, for all x ∈ [N,2N ], we have

∣∣∣∣
f (k+1)(x)

(k + 1)!
∣∣∣∣� λk+1.

Let H be a positive integer satisfying H � N/2 and Hk+1λk+1  1. Using Weyl’s
shift (6.9) with an = e(f (n)) and Taylor’s series expansion we get

∣∣∣∣
∑

N<n�2N

e
(
f (n)

)∣∣∣∣�
1

H

∑

N−H<n<2N

∣∣∣∣
∑

h�H

e
(
f (n + h)

)∣∣∣∣+ H

= 1

H

∑

N−H<n<2N

∣∣∣∣
∑

h�H

e
(
Qn(h) + un(h)

)∣∣∣∣+ H

where

Qn(h) = hf ′(n) + · · · + hk

k! f (k)(n) and

un(h) = f (n) + 1

k!
∫ h

0
(h − t)kf (k+1)(n + t)dt.

Since Hk+1λk+1  1, the total variation of un(h) is  1, so that using Abel’s sum-
mation we get

∑

N<n�2N

e
(
f (n)

) 1

H

∑

n∼N

∣∣∣∣
∑

h∼H

e
(
Qn(h)

)∣∣∣∣+ H
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and writing f (j)(n)/j ! = [f (j)(n)/j !] + {f (j)(n)/j !} we have

∑

N<n�2N

e
(
f (n)

) 1

H

∑

n∼N

∣∣∣∣
∑

h∼H

e
(
Pn(h)

)∣∣∣∣+ H

where Pn(h) = h{f ′(n)} + h2{f ′′(n)/2} + · · · + hk{f (k)(n)/k!}. The first step in
Vinogradov’s method is to prove the following estimate

∑

N<n�2N

e
(
f (n)

) N

H

(
Hk(k+1)/2B(H)Jk,b(H)N−2) 1

2b + H (6.22)

where b is a fixed positive integer, B(H) is the number of pair (n,n′) such that

∣∣∣∣
f (k)(n)

k! − f (k)(n′)
k!

∣∣∣∣� H−k and

∣∣∣∣

{
f (k−1)(n)

(k − 1)!
}

−
{

f (k−1)(n′)
(k − 1)!

}∣∣∣∣� H 1−k

and Jk,b(H) is the Vinogradov integral defined by

Jk,b(H) =
∫ 1

0
· · ·
∫ 1

0

∣∣∣∣
∑

h�H

e
(
a1h + · · · + akh

k
)∣∣∣∣

2b

da1 · · ·dak.

One can get an upper bound for B(H) in the following way. Set n′ = n+� with |�| �
L  N for some L ∈ Z�0. Then the first condition implies that (k + 1)|�|λk+1 �
H−k . Taking L � (λk+1H

k)−1 and taking the inequality |{a} − {b}|� ‖a − b‖ into
account, we get

B(H)  Card

{
(n, �) : 0 � |�| � L, N/2 < n � 2N, ‖��f

(k−1)(n)

(k − 1)! ‖�H 1−k

}

 N +
∑

0<|�|�L

R
(

��f
(k−1)(n)

(k − 1)! ,N,2H 1−k

)

 N +
∑

0<|�|�L

(
N |�|λk+1 + NH 1−k + (|�|λk+1H

k−1)−1 + 1
)

where we used Theorem 5.6. Now since NLλk+1 NH 1−k and (|�|λk+1H
k−1)−1 �

H we get

B(H)  N + N

H 2k−1λk+1
+ logN

λk+1Hk−1

and the choice of H = [λ−1/(2k−1)

k+1 ] gives

B(H)  N logN (6.23)
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where we used the fact that N2λk+1 � 1. Note that from the hypotheses above we
have

N
1

2k−1  H  N
2

2k−1 and Hk+1λk+1  N− k−2
2k−1 .

The next result, which gives a non-trivial upper bound for Jk,b(H), lies at the heart
of Vinogradov’s method.

Lemma 6.41 (Vinogradov’s mean-value theorem) Set ε = e−b/k2
. Then

Jk,b(H)  H 2b−(1−ε)k(k+1)/2.

The proof relies on the observation that Jk,b(H) counts the number of integer
solutions of the following system of Diophantine equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h1 + · · · + hb = h′
1 + · · · + h′

b,

h2
1 + · · · + h2

b = h′2
1 + · · · + h′2

b,
...

...
...

hk
1 + · · · + hk

b = h′k
1 + · · · + h′k

b

with 1 � hi, h
′
i � H . Indeed, expanding the power in the integrand of Jk,b(H) and

exchanging the order of summation and integration, we get

Jk,b(H) =
∑

h,h′

k∏

j=1

(∫ 1

0
e
{(

h
j

1 + · · · + h
j
b − h′j

1 − · · · − h′j
b

)
aj

}
daj

)

where h = (h1, . . . , hb) and h′ = (h′
1, . . . , h

′
b) run independently over {1, . . . ,H }b .

Hence the integral vanishes unless h
j

1 +· · ·+h
j
b = h′j

1 +· · ·+h′j
b for all 1 � j � k.

Note that Lemma 6.41 is nearly the best possible result since one can show that

Jk,b(H) � H 2b−k(k+1)/2.

If b is large compared to k2, say b � ck2 logk for some c � 1, then the bound is
quasi-optimal.

Now putting (6.23) and Lemma 6.41 into (6.22) we get

∑

N<n�2N

e
(
f (n)

) N1− 1
2b H

εk(k+1)
4b logN + H

 N1− 1
2b λ

− εk(k+1)
4b(2k−1)

k+1 logN + λ
− 1

2k−1
k+1

 N1− r(b,k)
2b logN + N

2
2k−1

where

r(b, k) = 1 − e−b/k2 k(k + 1)

2k − 1
.
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Taking b = k2 log k with k � 5 then gives

∑

N<n�2N

e
(
f (n)

) N
1− 1

6k2 log k logN.

We can state the following result.

Theorem 6.42 (Vinogradov) Let k � 5 be an integer and f ∈ Ck+1[N,2N ] such
that there exists a real number λk+1 ∈ [N−2,N−1] such that, for all x ∈ [N,2N ],
we have

∣∣∣∣
f (k+1)(x)

(k + 1)!
∣∣∣∣� λk+1.

Then
∑

N<n�2N

e
(
f (n)

) N
1− 1

6k2 log k logN.

In [Wal63], Walfisz was able to get a non-trivial upper bound for the sum (6.21).
For large N , he used a van der Corput type estimate as in Corollary 6.25, and for
smaller ones he used a Vinogradov type result. Afterwards, Karacuba [Kar71, Pet98]
obtained a refined estimate using similar ideas as in Vinogradov’s work which con-
tains both methods. Applying this result to the function f (n) = T/n, Pétermann
and Wu showed in [PW97] that, if e200 � N < N1 � 2N and T � N2, then there
exists c0 > 0 such that we have

∑

N<n�N1

e

(
T

n

)
 N exp

(
−c0

(logN)3

(logT N−1)2

)
.

Applying this in Corollary 6.2 we obtain with e200 � N < N1 � 2N and N � x1/2

∑

N<n�N1

ψ

(
x

n

)
 NH−1 + N exp

(
−c0

(logN)3

(logHxN−1)2

)
logH.

Set c = 15(4c0)
−1/3 and w(x) = ec(logx)2/3

. Choosing H = [exp{(logN)3/(logx)2}]
gives for all w(x)� N � x1/2

∑

N<n�N1

ψ

(
x

n

)
 N(logN)3

(logx)2
exp

(
−c1

(logN)3

(logx)2

)

with c1 = 64c0/81 and where we have used the bounds N � w(x) and H � x1/8.
An application of Abel’s summation yields

∑

N<n�N1

1

n
ψ

(
x

n

)
 (logN)3

(logx)2
exp

(
−c1

(logN)3

(logx)2

)
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for w(x) � N � x1/2 and a similar argument to that used in the proof of [PW97,
Lemma 2.3] finally gives

∑

w(x)<n�x1/2

1

n
ψ

(
x

n

)
 (logx)2/3.

Since we have trivially

∑

n�w(x)

1

n
ψ

(
x

n

)


∑

n�w(x)

1

n
 (logx)2/3

we may state the following result (compare to (4.14)).

Theorem 6.43 (Walfisz) For all x � 2 sufficiently large, we have

∑

n�x

σ (n) = x2ζ(2)

2
+ O

(
x(logx)2/3).

A similar method was used to get the following improvement for the average
order of Euler’s totient function (compare to Exercise 10 in Chap. 4).

Theorem 6.44 (Walfisz) For all x � 2 sufficiently large, we have

∑

n�x

ϕ(n) = x2

2ζ(2)
+ O

(
x(logx)2/3(log logx)4/3).

6.6.8 Vaughan’s Identity and Twisted Exponential Sums

The sums
∑

p�x e(f (p)) and
∑

n�x μ(n)e(f (n)) frequently arise in number the-
ory. For instance, if we intend to get an estimate for

∑
N<n�2N μ(n)ψ(f (n)), we

may use the asymptotic formula of Remark 6.3 which implies that, for any positive
integer H , we have

∑

N<n�2N

μ(n)ψ
(
f (n)

) = − 1

2πi

∑

0<|h|�H

1

h

∑

N<n�2N

μ(n)e
(
hf (n)

)

+ O

{ ∑

N<n�2N

min

(
1,

1

H‖f (n)‖
)}

(6.24)

so that we need to have at our disposal bounds for sums of the type
∑

N<n�2N

μ(n)e
(
hf (n)

)
. (6.25)
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For the error-term of (6.24), it can be shown [MV81] that the minimum admits a
Fourier series expansion. Nevertheless, it is sometimes simpler to use the following
lemma.

Lemma 6.45 Let N � 1 and H � 4 be integers, and f : [N,2N ] −→ R be any
function. We set K = [logH/ log 2]. Then we have

∑

N�n�2N

min

(
1,

1

H‖f (n)‖
)

< 24NH−1 + 2
K−2∑

k=0

2−kR
(
f,N,2kH−1).

Proof We have

∑

N�n�2N

min

(
1,

1

H‖f (n)‖
)

=
∑

N�n�2N

‖f (n)‖<H−1

1 + 1

H

∑

N�n�2N

‖f (n)‖�H−1

1

‖f (n)‖

= R
(
f,N,H−1)+ 1

H

∑

N�n�2N

‖f (n)‖�H−1

1

‖f (n)‖ .

Since

{
n ∈ [N,2N ] ∩Z : ‖f (n)‖ � H−1}

⊆
K⋃

k=1

{
n ∈ [N,2N ] ∩Z : 2k−1H−1 � ‖f (n)‖ < 2kH−1}

we get

∑

N�n�2N

‖f (n)‖�H−1

1

‖f (n)‖ �
K∑

k=1

∑

N�n�2N

2k−1H−1�‖f (n)‖<2kH−1

1

‖f (n)‖

� (N + 1)
(
21−K + 22−K

)
H +

K−2∑

k=1

∑

N�n�2N

2k−1H−1�‖f (n)‖<2kH−1

1

‖f (n)‖

� 6 × 2−K(N + 1)H + 2H

K−2∑

k=1

2−k
∑

N�n�2N

‖f (n)‖<2kH−1

1

< 12(N + 1) + 2H

K−2∑

k=1

2−kR
(
f,N,2kH−1)
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since 2−K < 2H−1. Thus we get

∑

N�n�2N

min

(
1,

1

H‖f (n)‖
)

< R
(
f,N,H−1)+ 24NH−1

+ 2
K−2∑

k=1

2−kR
(
f,N,2kH−1)

which implies the desired result. �

In the case of the function f (n) = x/n with x � 1 being a large real number,
Shiu’s result may be used to get a quasi-optimal estimate.3

Lemma 6.46 Let x � 1 be a real number, N � 1 and 4 � H � x be integers. Then,
for all ε > 0, we have

∑

N�n�2N

min

(
1,

1

H‖x/n‖
)

ε NH−1xε.

Proof Using Lemma 6.45 we get

∑

N�n�2N

min

(
1,

1

H‖x/n‖
)

 NH−1 +
[logH/ log 2]−2∑

k=0

2−kR
(

x

n
,N,

2k

H

)

and interchanging the summations we obtain using Lemma 5.2

R
(

x

n
,N,

2k

H

)
�

∑

N�n�2N

([
x

n
+ 2k

H

]
−
[
x

n
− 2k

H

])

�
∑

x−2k+1NH−1<m�x+2k+1NH−1

∑

d|m
N�d�2N

1

�
∑

x−2k+1NH−1<m�x+2k+1NH−1

τ(m)

ε 2kNH−1xε

where we used Theorem 4.62 in the last estimate. This implies the asserted result. �

It is obvious that the equality (6.24) still holds for all bounded sequences (an) of
complex numbers instead of μ(n). Furthermore, with f (n) = x/n, if we replace the

3One may slightly improve on this result by using Hooley’s �-function instead of the τ -function,
and making use of Theorem 4.65 instead of Shiu’s theorem.
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Möbius function by any sequence (an) of complex numbers satisfying an  nε in
(6.24), then the error-term of Lemma 6.46 is only affected by a factor xε if N � x.
We may therefore state the following useful result which generalizes Corollary 6.2
in the case of the function f (n) = x/n.

Proposition 6.47 Let ε > 0, x � 1 be real numbers, N � 1, H � 4 be integers
satisfying max(N,H) � x, and (an) be a complex-valued sequence supported on
[N,2N ] such that, for all n ∈ {N, . . . ,2N}, we have an  nε . Then we have

∑

N<n�2N

anψ

(
x

n

)
 NH−1x2ε +

∑

h�H

1

h

∣∣∣∣
∑

N<n�2N

ane

(
hx

n

)∣∣∣∣.

Another long-standing problem in number theory is to ask whether there is a
prime number in the interval I =]x, x + x1/2] for large x. Even if we assume the
Riemann hypothesis, it seems to be extremely difficult to answer this question. As
an approximation, Ramachandra [Ram69] suggested the problem of showing that
there is n ∈ I having a large prime factor p with p > xφ and φ being as large as
possible. We may proceed as follows. Let P(n) be the greatest prime factor of n

and, for all positive integers d , set

N(d) =
∑

n∈I
d|n

1.

The starting point is the following easy estimate. Interchanging the summations and
using the convolution identity � � 1 = log, we get
∑

d�x

N(d)�(d) =
∑

x<n�x+x1/2

∑

d|n
�(d) =

∑

x<n�x+x1/2

logn = x1/2 logx + O
(
x1/2).

Now note that N(d) � 1 for all d > x1/2 so that, using Chebyshev’s estimate of
Lemma 3.42, we get for all ε > 0

∑

x3/5−ε<d�x
d not prime

N(d)�(d) =
∑

α�2

∑

x3/5−ε<pα�x

N
(
pα
)

logp

�
∑

p�x1/2

logp +
∑

α�3

∑

pα�x

logp

� x1/2 log 4 + x1/3 logx  x1/2

for large x. Similarly, using N(d) = x1/2d−1 + O(1), we get

∑

d�x1/2−ε

N(d)�(d) = x1/2
∑

d�x1/2−ε

�(d)

d
+ O

(
�
(
x1/2−ε

))

=
(

1

2
− ε

)
x1/2 logx + O

(
x1/2)
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where we used Chebyshev’s estimates of Corollary 3.47 and Lemma 3.42. We then
have at this step

x1/2 logx + O
(
x1/2) =

∑

d�x

N(d)�(d)

=
∑

d�x1/2−ε

N(d)�(d) +
∑

x1/2−ε<d�x3/5−ε

N(d)�(d)

+
∑

x3/5−ε<d�x
d not prime

N(d)�(d) +
∑

x3/5−ε<p�xφ

N(p) logp

+
∑

xφ<p�x

N(p) logp

=
(

1

2
− ε

)
x1/2 logx + �2 + �3

+
∑

xφ<p�x

N(p) logp + O
(
x1/2)

where

�2 =
∑

x1/2−ε<d�x3/5−ε

N(d)�(d) and �3 =
∑

x3/5−ε<p�xφ

N(p) logp

so that

∑

xφ<p�x

N(p) logp =
(

1

2
+ ε

)
x1/2 logx − �2 − �3 + O

(
x1/2).

The next step is to show the following estimate

�2 = 1

10
x1/2 logx + O

(
x1/2) (6.26)

and to find the largest exponent φ such that the upper bound

�3 <
2

5
x1/2 logx (6.27)

holds, so that we shall have

∑

xφ<p�x

N(p) logp >
1

2
ε x1/2 logx

for x sufficiently large, which yields the existence of a prime p satisfying p > xφ

such that N(p) = 1, so that there exists an integer n ∈ I such that P(n) > xφ .
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The estimate (6.26) has been proved in [Liu93, Har07] using the following argu-
ments. Since

N(d) = x1/2

d
− ψ

(
x + x1/2

d

)
+ ψ

(
x

d

)

it is sufficient to show that, for all positive integers N such that x1/2 < N � x3/5−ε ,
we have

∑

N<d�2N

�(d)f (d)  x1/2

logx
(6.28)

where

f (d) = ψ

(
x + x1/2

d

)
− ψ

(
x

d

)
.

The estimate (6.27) is shown in [BH09] with φ = 0.7428, and also in [Har07] with
the slightly weaker value φ = 0.74, by using sieve techniques, and more precisely
the Rosser–Iwaniec sieve and an alternative sieve.

To treat the sums (6.25) and (6.28), and to get fine estimates for (6.27), one can
make use of Vaughan’s ingenious identities based upon some decompositions of
certain formulae involving the Riemann zeta-function (see [MV81]). Let U � 1 be
a real number and set

F(s) =
∑

n�U

�(n)

ns
and G(s) =

∑

n�U

μ(n)

ns
.

We have for σ > 1

−ζ ′(s)
ζ(s)

= F(s) − ζ(s)F (s)G(s) − ζ ′(s)G(s) +
(

−ζ ′(s)
ζ(s)

− F(s)

)(
1 − ζ(s)G(s)

)
.

For σ > 1, these functions can be expanded as Dirichlet series and Proposition 4.42
implies that

�(n) = a1(n) + a2(n) + a3(n) + a4(n)

where

a1(n) =
{

�(n), if n� U,

0, otherwise,
a2(n) = −

∑

mdr=n
m,d�U

�(m)μ(d),

a3(n) =
∑

kd=n
d�U

μ(d) logk and a4(n) = −
∑

mk=n
m>U,k>U

�(m)

(∑

d|k
d�U

μ(d)

)
.
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Multiplying throughout by f (n) and summing we get

∑

N<n�2N

�(n)f (n) =
4∑

i=1

∑

N<n�2N

ai(n)f (n).

Similarly, by using

1

ζ(s)
= 2G(s) − G(s)2ζ(s) +

(
1

ζ(s)
− G(s)

)(
1 − ζ(s)G(s)

)

we get

μ(n) = b1(n) + b2(n) + b3(n)

where

b1(n) =
{

2μ(n), if n �U,

0, otherwise,
b2(n) = −

∑

mdr=n
m,d�U

μ(m)μ(d)

and

b3(n) = −
∑

mk=n
m>U,k>U

μ(m)

(∑

d|k
d�U

μ(d)

)

so that

∑

N<n�2N

μ(n)f (n) =
3∑

i=1

∑

N<n�2N

bi(n)f (n).

Later, Heath-Brown [HB82] generalized Vaughan’s identities by providing some
formulae which are more flexible. One usually bounds the sums with a1(n) and
b1(n) trivially. The other sums involve the so-called sums of type I and type II in
Vaughan’s terminology which may be defined in the following way. We consider
integers M,N,R,R′ � 1 such that R < R′ � 2R. If f : [R,R′] −→ C is any func-
tion, it is convenient to call sums of type I (related to f ) the sums

SI =
∑

M < m� 2M

∑

N < n� 2N

R < mn� R′

amf (mn)

and sums of type II (related to f ) the sums

SII =
∑

M < m � 2M

∑

N < n � 2N

R < mn �R′

ambnf (mn)

where am,bn are complex numbers supported respectively on [M,2M] and [N,2N ]
and satisfying am ε mε and bn ε nε .
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By using Vaughan’s or Heath-Brown’s identities, one may prove the following
useful result (see [Bak07]).

Proposition 6.48 Let S > 0 be a positive real number and suppose that the follow-
ing estimates

SI  S for N � R1/2,

SII  S for R1/3  N  R1/2

hold for all sums of type I and type II. Then we have

∑

R<n�R′
μ(n)f (n)  S(log 3R)5.

A similar result holds for the sum (6.28). For instance, using Heath-Brown’s
identity, the authors in [RS01] proved the following proposition.

Proposition 6.49 Let k � 4 be an integer, (2k)−1 � α � 1/6 be a real number and
S > 0 be a positive real number. Suppose that MN � R and that the following
estimates

SI  S for N � R(1−α)/2 and for R2α < N � R1/3,

SII  S for Rα � N � R2α

hold for all sums of type I and type II. Then we have for all ε > 0
∑

R<n�R′
�(n)f (n) k,ε SRε.

One may notice that Vaughan’s identity for the function � is in a certain sense a
rearrangement of the convolution identity � = −μ log�1. Harman [Har07] points
out that the genesis of these identities lies in approximating infinite series by finite
sums. Such considerations were certainly around in the 1930s, when Vinogradov
adapted the sieve of Eratosthenes–Legendre by replacing a sum over primes by dou-
ble sums. But it is noteworthy that Vaughan’s rearrangement was not used until the
1960s–70s. It also should be mentioned that these identities do not work if f is mul-
tiplicative. Indeed, we have in this case, supposing f completely multiplicative and
neglecting the multiplicative condition R < mn � R′ for the sake of simplicity,

SII =
( ∑

M<m�2M

amf (m)

)( ∑

N<n�2N

bnf (n)

)

so that the new sums are not easier to deal with than the original sum. In fact, one
generally uses these identities with f (n) = e(g(n)) or f (n) =∑h∼H e(g(h,n)) for
some real-valued function g.
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One can prove that the condition R < mn � R′ can be removed from sums SI

and SII at a cost of a factor logR (see [Bak86, Lemma 15] or [RS01] for instance).
Over the last two decades, many authors have provided some non-trivial bounds for
sums of type I and type II (see [Bak86, Bak94, Bak07, CZ98, CZ99, CZ00, FI89,
GR96, KRW07, Liu94, Liu95, LW99, RS06, SW00, Wu93, Wu02, Zha99] among
a lot of references). As an example, we prove an analogue of the third derivative
theorem for sums of type II.

Theorem 6.50 Let f ∈ C3([M,2M] × [N,2N ]) such that there exists λ3 > 0 such
that, for all (x, y) ∈ [M,2M] × [N,2N ], we have

∣∣∣∣
∂

∂x

∂2

∂y2
f (x, y)

∣∣∣∣� λ3.

Let (am) and (bn) be two complex-valued sequences supported respectively on
[M,2M] and [N,2N ] satisfying |am|� 1 and |bn|� 1. Then we have

∑

M<m�2M

∑

N<n�2N

ambne
(
f (m,n)

) MNλ
1/6
3 + MN3/4 + M1/2N

+ M3/4N1/2λ
−1/4
3 .

Proof We may suppose λ3  1 otherwise the estimate is trivial. Let SM,N be the
sum on the left-hand side and

SM(n) =
∑

M<m�2M

ame
(
f (m,n)

)

so that

SM,N =
∑

N<n�2N

bnSM(n).

Let H be a positive integer such that H � M . By Cauchy–Schwarz’s inequality we
have

|SM,N |2 � N
∑

N<n�2N

∣∣bnSM(n)
∣∣2 � N

∑

N<n�2N

∣∣SM(n)
∣∣2

and van der Corput’s A-process (Lemma 6.18) gives

∣∣SM(n)
∣∣2 � 2M2

H
+ 4M

H
Re

{∑

h�H

(
1 − h

H

) ∑

M<m�2M−h

am+hame
(
�hf (m,n)

)}

where

�hf (m,n) = f (m + h,n) − f (m,n).
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We infer that

|SM,N |2  (MN)2

H
+ MN

H

∑

h�H

∑

M<m�2M

∣∣∣∣
∑

N<n�2N

e
(
�hf (m,n)

)∣∣∣∣

and since
∣∣∣∣

∂2

∂y2
�hf (x, y)

∣∣∣∣� hλ3

for all (x, y) ∈ [M,2M]×[N,2N ], using van der Corput’s inequality (Theorem 6.9)
we get

|SM,N |2  (MN)2

H
+ MN

H

∑

h�H

∑

M<m�2M

{
N(hλ3)

1/2 + (hλ3)
−1/2}

 (MN)2

H
+ (MN)2(Hλ3)

1/2 + M2N(Hλ3)
−1/2

so that

|SM,N |  MNH−1/2 + MN(Hλ3)
1/4 + MN1/2(Hλ3)

−1/4

and Lemma 5.5 gives the asserted result plus a secondary term MNλ
1/4
3 which is

absorbed by the main term since λ3  1. �

6.6.9 Explicit Estimates for �(x)

Since Voronoï’s paper [Vor03], there have been so far few explicit estimates for the
remainder term �(x) in the Dirichlet’s divisor problem. This was investigated in
[BBR12] where a modified version of Lemma 6.16 was used to get the following
estimates.

Theorem 6.51 (Berkane, Bordellès and Ramaré) We have

∣∣�(x)
∣∣�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.961
√

x, if x � 1,

0.482
√

x, if x � 1981,

0.397
√

x, if x � 5560,

0.764x1/3 logx, if x � 9995.

Furthermore, these estimates are sharp in view of

∣∣�(1980)
∣∣> 0.5

√
x,

∣∣�(5559)
∣∣> 0.4

√
x and

∣∣�(9994)
∣∣> 0.8x1/3 logx.
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6.7 Exercises

1 Let x, y,α,β ∈R and M < N be integers.

(a) Show that 4‖x − y‖� |e(x) − e(y)| � 2π‖x − y‖.
(b) Show that

∣∣∣∣∣

N∑

n=M+1

e(αn + β)

∣∣∣∣∣� min

(
N − M,

1

2‖α‖
)

.

2 Let N < N1 � 2N be large integers and f : [N,N1] −→ R be a function satisfy-
ing the hypotheses of Theorem 6.9 with λ2 � 10−2 and let δ ∈]0,1/10] be a small
real number. Suppose also that f ′ is non-decreasing.

(a) Splitting the sum into two subsums, show that
∑

N<n�N1

e
(±f (n)

)R
(
f ′,N, δ

)+ (Nλ2 + 1)δ−1.

(b) Using Theorem 5.6 and choosing δ optimally, deduce another proof of van der
Corput’s inequality.

3 Let a ∈R and H ∈ N. Show that
∣∣∣∣∣

H−1∑

h=0

e(ha)

∣∣∣∣∣

2

=
∑

|h|�H−1

(H − |h|)e(ha).

4 Let f : [N,2N ] −→R be any function and δ ∈]0, 1
4 [. Set K = [(8δ)−1]+ 1. The

purpose of this exercise is to prove the following result.

For all positive integers H � K , we have

R(f,N, δ) � 4N

H
+ 4

H

H−1∑

h=1

∣∣∣∣
∑

N�n�2N

e
(
hf (n)

)∣∣∣∣. (6.29)

One should compare this inequality to Corollary 6.2.

(a) Let n ∈ [N,2N ] ∩ Z such that ‖f (n)‖ < δ. Prove that, for all integers h such
that |h| < H , we have

Re
{
e
(
hf (n)

)}
�

√
2

2
.

(b) Prove that

R(f,N, δ) � 2

H 2

∑

N�n�2N
‖f (n)‖<δ

∣∣∣∣∣

H−1∑

h=0

e
(
hf (n)

)
∣∣∣∣∣

2

and show (6.29) by using Exercise 3.
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5 Use (6.29) to prove the following result.

Let f be a function satisfying the hypotheses of Definition 6.32 and let
(k, l) be an exponent pair. Suppose that N � 8T . Then we have

R(f,N, δ)  Nδ + (T kNl
) 1

k+1 + T kNl−k. (6.30)

6 Apply the previous exercise to the squarefree number and square-full number
problems from Chap. 5.

7 Let s = σ + it ∈ C such that 1
2 � σ � 1 and t � 3, and ζ(s) be the Riemann

zeta-function.

(a) Show that ζ(σ + it)  |∑n�t n
−σ−it | + t1−2σ log t .

(b) Let (k, l) be an exponent pair such that l − k � 1
2 . Prove that

ζ(σ + it)  t
k(1−σ)
1+k−l log t.

Deduce that, for all ε > 0, we have ζ( 1
2 + it)  t32/205+ε .
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Chapter 7
Algebraic Number Fields

7.1 Introduction

Algebraic number theory came from the necessity to solve certain Diophantine
equations for which the classical tools borrowed from arithmetic in Z were not suf-
ficient enough to provide a satisfying answer. For instance, the Fermat equation
xn + yn = zn where x, y, z are positive integers and n � 3 is an integer, can be
factored using a primitive nth root of unity ζn = en(1) as

zn =
n−1∏

i=0

(
x + ζ i

ny
)
.

The right-hand side makes numbers appear which are of the form x + ζ i
ny. These

numbers do not belong to Q, but lie in a larger set which may be viewed as an
extension of Q, contained in C, and obtained by adjoining the number ζn to Q. This
new set thus obtained is denoted by Q(ζn) and its elements can be written in the
form

n−1∑

i=0

aiζ
i
n with ai ∈ Q.

One can prove that such a set is a field, called a cyclotomic field, which belongs
to the sets named algebraic number fields. Note that ζn is a root of the algebraic
polynomial Xn − 1 but not a root of Xd − 1 for any d < n.

Another example is the set Q(
√−5) whose elements are of the form a + b

√−5
with a, b ∈ Q. This set is also a field, called an imaginary quadratic field, and has
a subset of algebraic integers denoted by Z[√−5] whose elements are of the form
a + b

√−5 with a, b ∈ Z. One can prove that Z[√−5] is a ring and is the analogue
of Z in Q. As shown in Definition 7.6, one can supply this ring with arithmetic tools.
For instance, if α,β ∈ Z[√−5], we say that α divides β , written α | β , if there exists
γ ∈ Z[√−5] such that β = αγ . A unit is an element which divides 1, an irreducible
is an element π such that any factorization π = αβ implies that α or β is a unit and

O. Bordellès, Arithmetic Tales, Universitext,
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a prime is an element π such that if π | αβ , then π | α or π | β . One can show that
3, 7, 1 ± 2

√−5 are irreducibles in Z[√−5] (see Exercise 1), but since

21 = 3 × 7 = (1 + 2
√−5)(1 − 2

√−5)

we see that in this ring the unique factorization of the elements into irreducibles
is false. One says that Z[√−5] is not a unique factorization domain (UFD). In Z,
both notions of irreducibles and primes coincide so that Z is a UFD. Thus, such a
generalization of Z and Q requires a more careful approach.

This problem lies at the heart of algebraic number theory. Lamé thought that,
if x and y are chosen in Z so that x + y and x + ζ i

ny have no common factors in
Z[ζn] for any 0 < i � n−1, then the Fermat equation has a solution only if there are
zi ∈ Z such that x + ζ i

ny = zn
i for all 0 � i � n − 1. This was actually his argument

when he addressed a meeting of the Académie des Sciences on March 1, 1847 and
where he announced he had solved Fermat’s Last Theorem.1 Liouville said that the
assumption that allows equation x + ζ i

ny = zn
i to follow in the argument is that

Z[ζn] is a UFD for all n. But on April 28, 1847, Kummer proved that this is not the
case in general, and later Cauchy showed that the first counterexample occurs for
n = 23. This led Kummer to invent what he called ideal numbers to restore unique
factorization and get what we now call the Fundamental Theorem of Ideal Theory
that we shall see in the next section.2

7.2 Algebraic Numbers

7.2.1 Rings and Fields

In this chapter, the reader is supposed to be familiar with the notions of groups and
subgroups. For a nice introduction to these subjects, see [GG04]. Let us only quote
two of the most important basic results in the theory of finite groups.

Theorem 7.1 Let G be a finite group of order |G|.
(i) (Lagrange). Let H be a subgroup of G. Then H is a finite group and we have

|G| = (G : H) × |H |
where (G : H) is the index of H in G. In particular, |H | divides |G|.

(ii) (Cauchy). Let p be a prime divisor of |G|. Then G has an element of order p.

1The FLT states that the Fermat equation has no solution in positive integers x, y, z as soon as
n� 3. This was finally proved by Wiles in 1995.
2For an interesting account of the history of the birth of the ideal theory in the late 19th century,
the reader is referred to [Mol99, ST02].
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Recall3 that (R,+,×) is a ring if the three following rules occur.

R1. (R,+) is an abelian group.
R2. The binary operation × is associative and has an identity element, usually de-

noted by 1R or 1.
R3. Multiplication is left- and right-distributive over addition.

If multiplication is commutative, then the ring is said to be a commutative ring.4 If
a ring has no zero-divisor, then it is called an integral domain. An element a ∈ R

is a unit if there exists b ∈ R such that ab = 1. Such an element b, which is then
unique, is called the inverse of a, generally denoted by a−1. A field K is a non-zero
ring such that every non-zero element in K is a unit. The notions of subrings and
subfields can be defined in a similar manner, and one can check that a set S ⊂ R is
a subring of a ring R if 1R ∈ S and if a + b,−a, ab ∈ S for all a, b ∈ S. Similarly,
a set k ⊂ K is a subfield of a field K if 1K ∈ k and if a + b,−a, ab, a−1 ∈ k for all
a, b ∈ k such that a �= 0.

Let R be a ring. The set of the units of R is a multiplicative group denoted by R∗.
If K is a field, we then have K

∗ =K \ {0} and this group is usually denoted by K
×.

The characteristic of a ring R or a field is the non-negative integer defined by

char(R) = min{n ∈N : n1R = 0}.

If no such integer exists, then we set char(R) = 0. It may be proved that, if R is a
finite ring, then char(R) > 0 and divides |R| and if R is an integral domain, then
char(R) = 0 or is equal to a prime number. In the latter case, we have the important
identity

(a + b)p = ap + bp

valid for all a, b ∈ R.
Let R, L be two rings. A homomorphism f from R to L is a map f : R −→ L

such that, for all x, y ∈ R, we have f (x + y) = f (x) + f (y), f (xy) = f (x)f (y)

and f (1R) = 1L. An isomorphism is a bijective homomorphism. The kernel and
image of a homomorphism are defined in the usual way

kerf = {
x ∈ R : f (x) = 0

}
and Imf = {

f (x) ∈ L : x ∈ R
}
.

The important concept of ideal will play a key part in this chapter. An ideal of a
commutative ring R is a non-empty subset a of R such that

I1. (a,+) is an additive subgroup of R.
I2. r ∈ R and a ∈ a imply that ra ∈ a.

3See Sect. 2.6 in Chap. 2.
4It should be mentioned that in this chapter we only consider unitary commutative rings unless
explicitly stated to the contrary.
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Let R be a ring and S a subset of R. One can check that the intersection
⋂

a ideal
S⊆a

a

is still an ideal of R, called the ideal generated by S and denoted by (S). It is a
classical exercise to verify that we have

(S) =
{

n∑

i=1

aisi : n ∈N, si ∈ S, ai ∈ R

}
.

If S = {s1, . . . , sr} is finite, then one may deduce from above that

(S) = (s1, . . . , sr ) = {a1s1 + · · · + arsr : ai ∈ R}
which may be denoted by (S) = Rs1 + · · · + Rsr . Since R is commutative, one
usually writes (S) = s1R + · · · + srR. Such ideals a = (s1, . . . , sr ) are said to be
finitely generated.

If S = {s} has only one element, we shall say that (S) = (s) is a principal ideal.
Hence a principal ideal a of R is of the form a = (s) = Rs = sR = {rs : r ∈ R} for
some s ∈ R. This leads to the following definition.

Definition 7.2 (PID) An integral domain in which all the ideals are principal is
called a Principal Ideal Domain, abbreviated in PID for convenience.

The concept of quotient ring is also needed (see [Bou70]).

Definition 7.3 (Quotient ring) Let R be a commutative ring and a be an ideal of R.
The quotient ring R/a is defined by

R/a = {r + a : r ∈ R}.
with addition (r + a)+ (s + a) = (r + s)+ a, multiplication (r + a)(s + a) = rs + a

and identity element 1R + a. Furthermore, the ideals of R/a are of the form b/a

where b is an ideal of R such that b ⊃ a.

We have the useful isomorphism theorems.

Theorem 7.4 (Isomorphism theorems) Let R, L be commutative rings.

(i) Let f : R −→ L be a ring homomorphism. Then R/kerf 
 Imf .
(ii) Let a1 ⊂ a2 be two ideals of R. Then R/a2 
 (R/a1)/(a2/a1).

Proof

(i) Set K = kerf which is an ideal in R, and define the (additive) group homomor-
phism f̃ : R/K −→ Imf by f̃ (r + K) = f (r). One may check that f̃ is well-
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defined and is a surjective ring homomorphism. Furthermore, if f̃ (r + K) = 0,
then r ∈ K so that f̃ is also injective, and hence is a ring isomorphism.

(ii) Define the (additive) group homomorphism f : R/a1 −→ R/a2 by f (r +a1) =
r + a2. Since a1 ⊂ a2, we infer that this map is well-defined and clearly surjec-
tive with kernel kerf = a2/a1. One may check that a2/a1 is an ideal in R/a1
and that f is a ring homomorphism. The result then follows by (i).

The proof is complete. �

One can define two operations on the ideals of a ring R. First, the sum of two
ideals a and b is by definition

a+ b= {a + b : a ∈ a, b ∈ b}
so that a+ b is the ideal generated by a and b. If a+ b = (1) = R, then a and b are
said to be coprime. The product of a and b is the ideal generated by all the products
ab with a ∈ a and b ∈ b so that

ab =
{∑

i

aibi : ai ∈ a, bi ∈ b

}
.

This product is commutative, associative and has the identity element (1) = R. Also,
it is clear from the definition that, for all ideals a,b of R, we have

ab ⊆ a∩ b⊆ a+ b.

Furthermore, if a and b are coprime, then

ab= a∩ b.

Indeed, since a and b are coprime, there exist a ∈ a and b ∈ b such that a + b = 1.
Let c ∈ a ∩ b. Then c = ca + cb with ca ∈ ab and cb ∈ ab, so that a ∩ b ⊆ ab. One
can easily extend this result by induction, showing that if a1, . . . ,an are pairwise
coprime ideals of R, then

n⋂

i=1

ai = a1 · · ·an.

One may generalize the concept of congruence in the following way:

if a is an ideal of R, we shall write x ≡ y (moda) to mean x − y ∈ a.

We are now in a position to prove the following version of the Chinese remainder
theorem we shall need.

Proposition 7.5 (Chinese remainder theorem) Let R be a ring, n ∈ N and
a1, . . . ,an be pairwise coprime ideals of R. Then

R/a1 · · ·an 
 R/a1 ⊕ · · · ⊕ R/an.
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Therefore, given any r1, . . . , rn ∈ R, there exists some α ∈ R, unique modulo
a1 · · ·an, such that

⎧
⎪⎨

⎪⎩

α ≡ r1 (moda1),
...

α ≡ rn (modan).

Proof Define the ring homomorphism

F : R −→ R/a1 ⊕ · · · ⊕ R/an,

r �−→ (r + a1, . . . , r + an).

� We have

kerF = {r ∈ R : r ∈ ai for i = 1, . . . , n} =
n⋂

i=1

ai = a1 · · ·an

since the ideals a1, . . . ,an are pairwise coprime, and Theorem 7.4 (i) implies that

R/a1 · · ·an 
 ImF.

� It remains to show that F is surjective. To this end, we first prove that, for i ∈
{1, . . . , n}, the vector

vi = (a1, . . . ,ai−1,1 + ai ,ai+1, . . . ,an)

is in ImF . To see this, for i ∈ {1, . . . , n}, put

bi =
∏

j �=i

aj .

Since ai and bi are coprime, there exist xi ∈ ai and yi ∈ bi such that xi +yi = 1 and
hence

F(yi) = F(1 − xi) = (a1, . . . ,ai−1,1 + ai ,ai+1, . . . ,an) = vi

implying the desired assertion. Now, for all r1, . . . , rn ∈ R, we deduce that

F

(
n∑

i=1

riyi

)
= (

F1(r1), . . . ,Fn(rn)
)

where the projections Fi : R −→ R/ai are surjective, concluding the proof. �

One can define arithmetic tools in commutative integral rings in the following
way. Let R be an integral domain and a, b ∈ R. We shall say that a divides b,
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written a | b, if there exists c ∈ R such that b = ca. This is clearly equivalent to
write (b) ⊆ (a). Hence

a | b ⇐⇒ (b) ⊆ (a). (7.1)

We also need the following concepts.

Definition 7.6 Let R be a ring and a, b ∈ R.

(i) a and b are associate, written a ∼ b, if there exists a unit u ∈ R∗ such that
b = ua. Hence we have

a ∼ b ⇐⇒ a | b and b | a ⇐⇒ (a) = (b).

Furthermore, u is a unit if and only if (u) = (1) = R.
(ii) a is irreducible if a is not a unit and the factorization a = bc implies that b is

a unit or c is a unit.
(iii) a is a prime if, for all b, c ∈ R, we have a | bc =⇒ a | b or a | c.

It is important to know whether the elements of an integral domain can be fac-
torized into products of irreducible elements. A first tool is the following result
introducing the Norm map.

Lemma 7.7 (Norm map) Let R be an integral domain and suppose there exists a
map N : R −→ N, called a norm map, such that, for all a, b ∈ R, we have N(ab) =
N(a)N(b) and N(a) = 1 ⇐⇒ a ∈ R∗. Then every element of R can be written as a
product of irreducible elements.

Proof Let b ∈ R. We proceed by induction on N(b). If b is irreducible, then we
have nothing to prove, so assume that b is not irreducible. Then b = ac with a �∈ R∗
and c �∈ R∗. Hence we have N(b) = N(a)N(c) with max(N(a),N(c)) < N(b). If
a and b are irreducible, then we are done. Otherwise, their norms are smaller than
N(b) and we conclude the proof by using the induction hypothesis. �

Example 7.8 Let � �= 0 or 1 be a squarefree integer and consider R = Z[√�]. We
define a map N : R −→ N such that N(a +b

√
�) = |a2 −�b2| (a, b ∈ Z). We have

N
(
(a + b

√
�)(c + d

√
�)

) = ∣∣(ac + bd�)2 − (ad + bc)2�
∣∣

= ∣∣(a2 − �b2)(c2 − �d2)∣∣

= N(a + b
√

�)N(c + d
√

�)

and if u = a + b
√

� is a unit then there is v ∈ R such that uv = 1. Therefore we
have

1 = N(1) = N(uv) = N(u)N(v)
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which implies that N(u) = 1 and N(v) = 1 since N is a positive integer-valued
function. We deduce that N is a norm map, and hence every element of Z[√�] can
be written as a product of irreducible elements by Lemma 7.7.

A second tool is the concept of nœtherian ring.

Definition 7.9 An integral domain R is a nœtherian ring if every ideal of R is
finitely generated.

One can characterize the nœtherian rings with the following three equivalent as-
sertions (for a proof, see [AW04a, EM99, ST02] for instance).

Lemma 7.10 Let R be an integral domain. The following conditions are equiva-
lent.

(i) R is a nœtherian ring.
(ii) Every ascending chain of ideals of R stops, i.e. given an ascending chain of

ideals

a1 ⊆ a2 ⊆ · · · ⊆ ar ⊆ · · ·
there exists an integer n for which an = an+k for all k � 0.

(iii) Every non-empty set of ideals of R has a maximal element, i.e. an ideal which
is not properly contained in every other ideal of the set.

The next result shows that nœtherian rings make factorization into irreducibles
always possible.

Proposition 7.11 Let R be a nœtherian ring. Then every element of R can be written
as a product of irreducible elements.

Proof Suppose that there exists an element a ∈ R \ R∗ which cannot be written
as a product of a finite number of irreducible elements of R. By assertion (iii) of
Lemma 7.10, a can be chosen so that (a) is maximal. By definition, a = bc where
b and c are not units, so that (a) ⊆ (b) by (7.1). If (b) = (a), then a and b are
associates and hence c is a unit by Definition 7.6 (i), which is not the case. We infer
that (a) � (b), and similarly we have (a) � (c). Since (a) is maximal, b and c can
necessarily be expressed as products of irreducible elements of R, which implies in
turn that a can also be written as a product of irreducible elements of R, giving a
contradiction. The proposition is proved. �

The distinction between irreducibles and primes must be well understood. If a is
a prime in R, then a is irreducible but the converse may not be true as we shall see
in the following example.

In R = Z[√−5], 3 is irreducible (see Exercise 1) but it is not a prime since we
have for instance 3 | (1 + 2

√−5)(1 − 2
√−5) but 3 � 1 + 2

√−5 and 3 � 1 − 2
√−5.
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In fact, this really is the core of the problem of unique factorization, for which the
failure of irreducibles to be primes is precisely the reason why unique factorization
fails. This motivates the following definition.

Definition 7.12 (UFD) An integral domain R in which factorizations into irre-
ducible elements are possible and all such factorizations are unique is called a
unique factorization domain, abbreviated to UFD.

We have the important following result which gives a strong sufficient condi-
tion to solve the problem of unique factorization (for a proof, see [AW04a, EM99,
GG04]).

Theorem 7.13 Let R be a ring. If R is a PID, then R is a UFD.

The Euclidean division plays an important role in the arithmetic of Z or K[X].
One can mimic this tool in more general integral domains in the following way.

Definition 7.14 (ED) An integral domain R is a Euclidean domain if it has a Eu-
clidean function, i.e. a map φ : R \ {0} −→ Z�0 such that, for all a, b ∈ R \ {0},
there exist q, r ∈ R such that a = bq + r and r = 0 or φ(r) < φ(b).

Z is an ED with φ(n) = |n| and, if K is a commutative field, K[X] is also an ED
with the Euclidean function φ(P ) = degP . Once again, one has a stronger sufficient
condition to solve the problem of unique factorization.

Theorem 7.15 Let R be a ring. If R is an ED, then R is a PID and hence R is a
UFD.

Proof Let a be an ideal of R, which we may suppose to be non-zero. Take an
element a ∈ a such that φ(a) is minimal among all the elements of a and let
b ∈ a. Since R is an ED, one can find q, r ∈ R such that b = qa + r and r = 0
or φ(r) < φ(a). Thus r = b − qa so that r ∈ a and therefore we cannot have
φ(r) < φ(a) since φ(a) is minimal. We infer that r = 0 and b = qa for some q ∈ R,
so that a is principal. �

7.2.2 Modules

The notion of vector space may be generalized in the concept of module, in which
the set of scalars is only supposed to be a ring.

Let R be a commutative ring with an identity element. An abelian group (M,+)

with the operation

R × M −→ M,

(r,m) �−→ r · m
is a R-module if, for all a, b ∈ R and all x, y ∈ M , the following four rules hold.
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M1. a · (b · x) = (ab) · x.
M2. (a + b) · x = a · x + b · x.
M3. a · (x + y) = a · x + a · y.
M4. 1R · x = x.

Example

1. If R is a field, then M is a vector space over R.
2. Let V be a vector space and R be the ring of all linear maps of V into itself. Then

V is an R-module.
3. Any abelian group is a Z-module.
4. An additive group consisting of 0 alone is a module over any ring.
5. Every ring R is an R-module.
6. Every ideal a of a ring R is an R-module.

The notion of sub-R-module can be defined in a similar way, and one may check
that, if M is an R-module and N is a non-empty subset of M , then N is a sub-R-
module of M if, for all a, b ∈ R and all x, y ∈ M , we have a · x + b · y ∈ N . The
concept of quotient module is defined as

M/N = {x + N : x ∈ M}
where N is a sub-R-module of M .

Suppose here that R is an integral domain. The set denoted by Mtors of M and
defined by

Mtors = {
x ∈ M : ∃ r ∈ R \ {0}, r · x = 0

}

is a sub-R-module of M and is called a torsion sub-R-module of M . We shall say
that M is torsion free if Mtors = {0} and M is a torsion module if Mtors = M .

The concept of module homomorphism is defined in the usual way and so are
the concepts of the kernel and of the image of such a homomorphism, which are
submodules. Replacing the ring by a module and the ideals by sub-R-modules, we
see that Theorem 7.4 may be generalized and adapted to the modules. For instance,
the proposition (ii) of Theorem 7.4 may be rewritten in the following form.

If N ⊆ M ⊆ P are three sub-R-modules of a module, then we have

(P/N)/(M/N) 
 P/M.

Similarly, one may define a nœtherian module in the same way as a nœtherian ring
and the assertions (ii) and (iii) of Lemma 7.10 are still valid if we replace “ring” by
“module” and “ideals” by “sub-R-modules”.

As for the rings, if S is a subset of a module M , the set (S)R , also sometimes
denoted by RS, of the finite sums

(S)R = RS =
{

n∑

i=1

risi : n ∈ N, ri ∈ R, si ∈ S

}
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is called a sub-R-module of M generated by S. If S = {s1, . . . , sr} is finite, we
say that (S)R is finitely generated. In particular, a module M is said to be finitely
generated if there exist a positive integer n and elements x1, . . . , xn ∈ M such that,
for all m ∈ M , there exist r1, . . . , rn ∈ R satisfying

m =
n∑

i=1

rixi .

A module M is said to be free if there exist a set I , finite or not, and elements (xi)i∈I

with xi ∈ M such that all m ∈ M can be uniquely written in the form

m =
∑

i∈I

rixi

with ri ∈ R. The set of elements (xi)i∈I is called a basis of M .
We give some properties of these notions without proof. The reader interested in

this subject could refer to [GG04, Sam71] for more information.

Proposition 7.16 Let R be a commutative ring with identity element.

(i) Let M be a finitely generated R-module. Then

M 
 Rn/N

where n ∈N and N is a sub-R-module of the free R-module Rn.
(ii) An R-module M is a nœtherian module if and only if every sub-R-module of

M is finitely generated.
(iii) Suppose that R is a PID. Then every sub-R-module of a finitely generated

module is finitely generated. In particular, every sub-R-module of Rn is finitely
generated and can be generated by at most n elements.

(iv) Suppose that R is a nœtherian ring. Then an R-module M is nœtherian if and
only if M is finitely generated.

(v) All bases of a free R-module M have the same number of elements, called the
rank of M , written rankM .

(vi) Suppose that R is a PID. Then every sub-R-module of a free R-module of rank
n is free of rank � n.

We now wish to focus on R = Z which is a PID. Recall that a Z-module is an
abelian group.

Definition 7.17

1. An abelian group G is said to be a finitely generated abelian group if G is finitely
generated as a Z-module, so that there exist n ∈ N and elements g1, . . . , gn ∈ G

such that, for all g ∈ G, there exist r1, . . . , rn ∈ Z such that

g =
n∑

i=1

rigi .
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2. We say that the elements g1, . . . , gn ∈ G are linearly independent over Z if

n∑

i=1

rigi = 0 =⇒ r1 = · · · = rn = 0.

3. A linearly independent set which generates G is called a Z-basis of G. If
{g1, . . . , gn} is such a basis, then every g ∈ G has a unique representation

g =
n∑

i=1

rigi (ri ∈ Z).

4. An abelian group G with a basis of n elements is called a free abelian group of
rank5 n.

Proposition 7.18 Let G be a free abelian group such that rankG = n.

(i) Let {e1, . . . , en} be a basis for G and set fi = ∑n
j=1 aij ej with aij ∈ Z. Then

{f1, . . . , fn} is a basis for G if and only if |det(aij )| = 1.
(ii) Let H be a subgroup of G. The group G/H is finite if and only if rankG =

rankH . In this case, if {e1, . . . , en} is a basis for G and {f1, . . . , fn} is a basis
for H such that fi = ∑n

j=1 aij ej with aij ∈ Z, then

(G : H) = ∣∣det(aij )
∣∣.

Proof

(i) If {f1, . . . , fn} is a basis for G, then there exist bij ∈ Z such that ei =∑n
j=1 bij fj . Set A = (aij ), B = (bij ) ∈ Mn(Z). Since fi = ∑n

j=1 aij ej , we
deduce that AB = In, and hence det(AB) = 1, so that detAdetB = 1, and we
conclude by noticing that detA,detB ∈ Z.

Conversely, if |detA| = 1, then the fi are Z-linearly independent and from
the well-known formula A−1 = (detA)−1Ã where Ã ∈ Mn(Z) is the adjoint
matrix, we deduce that A−1 = ±Ã, so that ei = ∑n

j=1 bijfj with A−1 = (bij ).
Hence the fi generate G, and thus {f1, . . . , fn} is a basis for G.

(ii) From the structure of subgroups of free abelian groups (see [Lan93] for in-
stance), H is free of rank m � n. Furthermore, there exist a basis {g1, . . . , gn}
for G and positive integers r1, . . . , rm such that {r1g1, . . . , rmgm} is a basis for
H . Hence G/H is the direct product of finite cyclic groups or orders r1, . . . , rm
and of Zn−m. We infer that H is finite if and only if n − m = 0 and we then
have in this case

(G : H) = |G/H | = r1 · · · rm = r1 · · · rn.

5By Proposition 7.16 (v), all bases of a finitely generated abelian group have the same number of
elements.
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Now write gi = ∑n
j=1 bij ej , fi = ∑n

j=1 cij rj gj and define A = (aij ), B =
(bij ), C = (cij ) and D = diag(r1, . . . , rn). Then we have

aij =
n∑

k=1

cikrkbkj

which may be written as A = CDB so that

|detA| = |detC detD detB| = |detD| = |r1 · · · rn| = |G/H |.
The proof is complete. �

7.2.3 Field Extensions

The polynomial X2 + 1 has no root in R but has roots ±i in C. Thus, working in
a field K, it may be interesting to work in a larger field L such that K is a subfield
of L. We then say that L is a field extension6 of K, written L/K.

A field extension L/K has a natural structure of vector space over K with vector
addition the addition in L and scalar multiplication the operation λv with λ ∈K and
v ∈ L.

Definition 7.19 Let L/K be a field extension.

(i) A K-basis of L is a basis of L as a vector space over K.
(ii) The dimension of the vector space L over K is called the degree of L/K and is

denoted by [L : K].
(iii) If [L :K] < ∞, then L/K is called a finite extension.

The degrees of field extensions have the property of being multiplicative as
shown in the next result (for a proof, see [GG04, ST02]).

Lemma 7.20 If k ⊆ K ⊆ L are fields such that L/k is a finite extension, then

[L : k] = [L : K] × [K : k].
Furthermore, if k and L are finite fields, then |L| = |k|[L:k].

Let L/K be a field extension and S be a subset of L. The concept of extension
generated by S, denoted by K(S), can be defined in the same way as that of ideal
generated or module generated by a subset, i.e. the intersection of all sub-extensions
of L/K containing S. One can check that K(S) is the subfield of L generated by

6More generally, suppose we have a homomorphism ϕ : K −→ L. Since these sets are fields, ϕ is
injective and one may identify K with its image ϕ(K), which is a subfield of L.
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K∪ S. If S = {α1, . . . , αn}, then K(S) is written K(α1, . . . , αn) and if S = {α}, then
K(S) = K(α) is called a simple sub-extension of L/K. One can prove (see [GG04]
for instance) that the extensions K(α1, . . . , αn) are characterized by

K(α1, . . . , αn) =
{

P(α1, . . . , αn)

Q(α1, . . . , αn)
: P,Q ∈ K[X1, . . . ,Xn], Q(α1, . . . , αn) �= 0

}
.

7.2.4 Tools for Polynomials

Polynomials with coefficients in Q play an important role in this chapter. The main
problem we shall have to deal with is to determine whether a given polynomial
P ∈ Q[X] is irreducible over Q or not. After defining this concept, we will provide
some useful irreducibility criteria.7

Definition 7.21

1. A polynomial P ∈ Z[X] is irreducible, or irreducible over Z, provided that P �=
±1 and whenever P = QR with Q,R ∈ Z[X], either Q = ±1 or R = ±1.

A polynomial not irreducible over Z and not 0, 1 or −1 is called reducible
over Z.

The polynomials 0, 1 and −1 are considered neither irreducible nor reducible
over Z.

2. A polynomial P ∈ Q[X] is irreducible, or irreducible over Q, provided that P

is not constant and whenever P = QR with Q,R ∈ Q[X], either degQ = 0 or
degR = 0.

A non-constant polynomial not irreducible over Q is called reducible over Q.
Constant polynomials are considered neither irreducible nor reducible over Q.

For instance, the polynomial X2 + 1 is irreducible over Z and Q and the polyno-
mial 5X + 5 is reducible over Z and irreducible over Q. These examples suggest an
important connection between irreducibilities over Z and Q. Gauss’s lemma implies
the following answer.

Gauss’s Lemma. If P ∈ Z[X] is irreducible over Z, then it is irreducible over Q.
Furthermore, if P ∈ Z[X] is irreducible over Q and if the gcd of its coefficients is
equal to 1, then P is irreducible over Z.

It follows that if P ∈ Z[X] is a reducible polynomial over Q, then there exist
Q,R ∈ Z[X] such that P = QR with degQ > 0 and degR > 0. This is sometimes
used to prove the irreducibility over Q of a polynomial P ∈ Z[X].

It should be pointed out that Definition 7.21 agrees with the algebraic concept of
irreducible element of a ring seen in Definition 7.6 (ii). Furthermore, the following
remarks, coming readily from the definition, can sometimes be of some help.

7We sometimes make use of the equality P = P (X) where the right-hand side is the composition
of the polynomial P with the polynomial X.
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1. If P ∈ Z[X] is such that P(0) �= 0 and if n = degP , then P(X) is irreducible if
and only if XnP (1/X) is irreducible.

2. Let P ∈ Z[X] and a ∈ Z. If P(X + a) is irreducible, then P(X) is irreducible.
3. If P ∈ Z[X] is an irreducible polynomial over Z, then P has no multiple roots.

Indeed, if there exists α ∈ C such that (X − α)2 divides P , then α is a com-
mon root of P and its formal derivative P ′, so that gcd(P,P ′) is a non-constant
polynomial of degree < degP dividing8 P .

The first useful irreducibility criterion, often referred to as Eisenstein’s criterion,
was first proved by Schönemann and shortly afterwards by Eisenstein.

Proposition 7.22 (Schönemann–Eisenstein) Let P = anX
n + · · · + a1X + a0 ∈

Z[X] with n ∈ N. Suppose that there exists a prime number p such that p � an,
p | ai for all i < n and p2

� a0. Then P is irreducible over Q.

Proof Suppose that P = QR with Q,R ∈ Z[X], r = degQ > 0 and s = degR > 0.
Since Fp is a commutative field, the ring Fp[X] is a UFD by the examples given
after Definition 7.14. Now we have

QR ≡ P ≡ anX
n (modp)

and since p � an, the leading coefficients of Q and R are not multiples of p, so that
there exists b, c ∈ Z such that

Q ≡ bXr (modp) and R ≡ cXs (modp).

Since r, s > 0, we get that p divides the constant terms of Q and R. This contradicts
that p2

� a0, which concludes the proof. �

Note that the condition “over Q” of the proposition cannot be removed. Indeed,
by using Eisenstein’s criterion with p = 5, we see that the polynomial P = 3X7 +
15X3 + 15 is irreducible over Q, but reducible over Z.

A polynomial is said to be monic if its leading coefficient is equal to 1. With
this definition, one may slightly simplify Proposition 7.22. Indeed, in this case, the
condition p � an is trivially true and the gcd of all the coefficients of the polynomial
is equal to 1. One may deduce the following consequence.

Corollary 7.23 Let P = Xn + an−1X
n−1 + · · · + a1X + a0 ∈ Z[X] be a monic

polynomial with n ∈ N. Suppose that there exists a prime number p such that p | ai

for all 0 � i � n − 1 and p2
� a0. Then P is irreducible over Z.

Example 7.24

1. Let p be a prime and m be an integer such that p � m. Then Xn−mp is irreducible
over Z.

8More generally, one can prove that if K is a field such that charK = 0, then P ∈ K[X] can be
written in the form P = Q2R if and only if P and P ′ have a common factor of degree > 0.
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2. Let p be a prime. Then the cyclotomic polynomial P = Xp−1 + Xp−2 + · · · +
X + 1 is irreducible over Z.

Indeed, it suffices to apply Corollary 7.23 to the polynomial

P(X + 1) = Xp−1 +
(

p

1

)
Xp−2 +

(
p

2

)
Xp−3 + · · · +

(
p

p − 1

)
.

The next criterion shows how the reduction modulo a prime of a polynomial may
be helpful. If p is a prime number and P ∈ Z[X], we write P ∈ Fp[X] its reduction
modulo p.

Proposition 7.25 (Reduction modulo p) Let P = anX
n + · · · + a1X + a0 ∈ Z[X]

and p be a prime number such that p � an. If P is irreducible over Fp , then P is
irreducible over Q.

Proof Suppose that P = QR with Q,R ∈ Z[X], r = degQ > 0 and s = degR > 0
and write br and cs the leading coefficients of Q and R. Since P = Q×R, we have
an ≡ brcs (modp). Since Fp is a field, the hypothesis p � an implies that br �≡ 0
(modp) and cs �≡ 0 (modp). Since P is irreducible over Fp , at least one of the two
polynomials Q or R has degree 0. Suppose that degQ = 0. Therefore degQ = 0,
and P is irreducible over Q. �

Once again, if P ∈ Z[X] is monic, one can slightly simplify this result.

Corollary 7.26 Let P = Xn +an−1X
n−1 +· · ·+a1X+a0 ∈ Z[X] be a monic poly-

nomial and p be a prime number. If P is irreducible over Fp , then P is irreducible
over Z.

For instance, the reduction mod 2 of the polynomial P = X3 + 46 246X2 −
9987X + 258 963 is given by P ≡ X3 + X + 1 (mod 2). Since X3 + X + 1 has
no roots in F2, it is irreducible over F2, and hence P is irreducible over Z.

One may be careful that the converse of this result is generally untrue. There even
exist irreducible polynomials over Q which are reducible over Fp for all primes p

as can be shown in the next result.

Lemma 7.27 Let a, b ∈ Z. Then the polynomial P = X4 + aX2 + b2 is reducible
over Fp for all primes p.

Proof If p = 2, there are only four polynomials of the form indicated, all re-
ducible. Suppose p > 2 is a prime number. One can choose an integer c such that
a ≡ 2c (modp) which readily gives

P ≡ (
X2 + c

)2 − (
c2 − b2)

≡ (
X2 + b

)2 − (2b − 2c)X2

≡ (
X2 − b

)2 − (−2b − 2c)X2 (modp).
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Hence the result follows from the fact that one of the numbers c2 − b2, 2b − 2c

or −2b − 2c is a quadratic residue modulo p. By Proposition 3.33, if x is not a
quadratic residue modulo p, then x(p−1)/2 ≡ −1 (modp) and therefore if two inte-
gers are not quadratic residues modulo p, then their product is a quadratic residue
modulo p. Now if 2b − 2c and −2b − 2c are not quadratic residues modulo p,
then (2b − 2c)(−2b − 2c) = 4(c2 − b2) is a quadratic residue modulo p, and so is
c2 − b2, which concludes the proof. �

For instance, the polynomial P = X4 + 1 is reducible over Fp for all primes p,
but it is irreducible over Z. Indeed, the only non-trivial real factors of P are the
polynomials X2 ± X

√
2 + 1 whose roots are (1 ± i)/2 and (−1 ± i)/2, but these

polynomials do not belong to Z[X].
The next result relates the irreducibility of polynomials with the prime numbers,

i.e. the irreducible elements of Z (see also Exercise 14 in Chap. 3).

Proposition 7.28 (Ore) Let P ∈ Z[X] be of degree n. If there exist at least n + 5
integers m such that |P(m)| is 1 or a prime number, then P is irreducible over Z.

Proof The starting point is the proof of the following assertion.

If Q ∈ Z[X] is of degree d � 1, then there exist at most d + 2

integers m such that Q(m) = ±1. (7.2)

First note that, if A,B ∈ Z[X] such that A(X) − B(X) = 2 and if a, b ∈ Z such
that A(a) = B(b) = 0, then a − b | 2. Now let α ∈ Z be the greatest solution of the
equation (Q(x)+ 1)(Q(x)− 1) = 0. The factor vanished by α has at most d integer
roots, and if β is an integer root of the other factor, then α � β and α − β | 2 by
the argument above applied with A(X) = Q(X) + 1 and B(X) = Q(X) − 1, so that
α − β = 1 or 2 which proves (7.2).

Now we may proceed as in Exercise 14 in Chap. 3 to show Proposition 7.28.
Suppose that P is not irreducible. Since P is not identically 0, 1 or −1, we have
P = QR with Q,R ∈ Z[X], Q �= ±1 and R �= ±1. Let r = degQ and s = degR.
By (7.2), there are at most r + 2 integers m such that Q(m) = ±1 and there are
at most s + 2 integers m such that R(m) = ±1. Now if |P(m)| = |Q(m)||R(m)|
is 1 or a prime, then either Q(m) = ±1 or R(m) = ±1, so that there are at most
r + s + 4 = n + 4 integers m such that |P(m)| is 1 or a prime, which proves the
proposition by contraposition. �

For instance, let P = X6 + 8X5 + 22X4 + 22X3 + 5X2 + 6X + 1. It may be
checked that |P(m)| is 1 or a prime for m ∈ {−10,−6,−5,−3,−2,−1,0,2,3,4,8}
so that P is irreducible9 over Z.

9The curve y2 = P (x) is an example of hyperelliptic curve of genus 2 whose jacobian was first
treated with a 2-descent method in [FPS97]. Using a refinement of a profound result due to
Chabauty and Coleman, it may be shown that this curve has only six rational points, i.e. the two
points at infinity and the points (0,±1) and (−3,±1).
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An irreducible polynomial P over Q such that degP � 2 has no roots in Q, but
the converse is untrue, since the polynomial (X2 + 1)(X2 + 2) has no roots in Q

but is reducible. On the other hand, if degP = 2 or 3, then P is irreducible over
Q if and only if it has no roots in Q, since any non-trivial factorization of P uses
polynomials of degree 1 which have a root in Q. These examples show that a link
between roots and irreducibility must exist. The next result is another example that
illustrates this subject.

Proposition 7.29 Let P ∈ Z[X] such that P �= ±1 and let m ∈ Z such that |P(m)|
is 1 or a prime number and such that P has no roots in the disc {z ∈ C : |z−m| � 1}.
Then P is irreducible over Z.

Proof Suppose that P = QR with Q,R ∈ Z[X], Q �= ±1 and R �= ±1. By as-
sumption, we have |Q(m)| = 1 or |R(m)| = 1. Without loss of generality, sup-
pose that |Q(m)| = 1. Since Q �= ±1, Q is not constant and we may write Q =
a
∏r

i=1(X − αi) with a ∈ Z \ {0}, r ∈ N and α1, . . . , αr are the roots of Q counted
to their multiplicity. Hence we have

1 = |Q(m)| = |a|
r∏

i=1

|m − αi |.

Since a is a non-zero integer, we have |a| � 1, so that there exists j ∈ {1, . . . , r}
such that |m − αj | � 1 and P(αj ) = Q(αj )R(αj ) = 0, which is impossible since P

has no roots in the disc {z ∈ C : |z − m| � 1}. The proof is complete. �

This result supposes that we have at our disposal some tools to locate the roots
of polynomials. The following lemma, due to Eneström and Kakeya (see [ASV79]
for instance), is a useful tool to do the job.

Lemma 7.30 Let P = anX
n + · · · + a1X + a0 ∈ R[X] such that ai > 0 for all

i ∈ {0, . . . , n}. Then the roots of P are contained in the annulus

min
0�i<n

(
ai

ai+1

)
� |z| � max

0�i<n

(
ai

ai+1

)
.

Example 7.31 Let P = Xp−1 +2Xp−2 +3Xp−3 +· · ·+ (p −1)X +p where p is a
prime number. By Lemma 7.30, all the roots of P are in the annulus 1+1/(p−1)�
|z| � 2. In particular, P has no roots in the disc {z ∈C : |z| � 1} and since |P(0)| =
p is prime, we infer that P is irreducible over Z by Proposition 7.29 applied with
m = 0.

The next result shows a more general context in which irreducibility and roots
are once again related.
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Proposition 7.32 Let P ∈ Z[X] be a monic polynomial for which P(0) �= 0. Sup-
pose further that P has exactly one root α with multiplicity 1 such that |α| � 1.
Then P is irreducible over Z.

Proof Suppose that P = QR with Q,R ∈ Z[X], Q �= ±1 and R �= ±1. Since P is
monic, degQ > 0 and degR > 0 and one may suppose that they are also monic.
Without loss of generality, suppose that R(α) = 0. Since P(0) �= 0, Q(0) is a non-
zero integer, so that |Q(0)| � 1 and one may write Q = (X − β1) · · · (X − βr) with
r ∈ N and β1, . . . , βr are the roots of Q satisfying |βi | < 1 for all 1 � i � r . There-
fore we get

1 �
∣∣Q(0)

∣∣ =
r∏

i=1

|βi | < 1

giving a contradiction. �

The well-known Rouché theorem from complex analysis also provides some con-
nections between irreducibility and roots. We state a particular version that will be
needed.

Lemma 7.33 Let P,Q ∈ C[X] such that, for all z ∈ C such that |z| = 1, the strict
inequality |P(z) + Q(z)| < |P(z)| + |Q(z)| holds. Then P and Q have the same
total number of roots, counting multiplicity, in the open disc {z ∈ C : |z| < 1}.
Example 7.34 Let P = X16 −8X15 −4X14 −2X13 −∑12

i=0 Xi and Q = (2X−1)P .
Thus

Q = 2X17 − 17X16 −
12∑

i=1

Xi + 1

and set R = 17X16. Then for all z ∈C such that |z| = 1, we have

∣∣Q(z) + R(z)
∣∣� 2|z|17 +

12∑

i=1

|z|i + 1 = 15 < 17 = |R(z)| � ∣∣Q(z)
∣∣ + ∣∣R(z)

∣∣

so that by Lemma 7.33 we infer that Q and R have the same total number of roots,
counting multiplicity, in the disc {z ∈ C : |z| < 1}, and thus Q has exactly 16 roots
in this disc. Since degQ = 17, this implies that Q has exactly one root α with
multiplicity 1 such that |α| � 1. We deduce that P has also exactly one root α with
multiplicity 1 such that |α| � 1. Furthermore, P is monic and P(0) = −1 so that
P satisfies all the hypotheses of Proposition 7.32, and hence P is irreducible over
Z. Note also that the condition monic cannot be removed in Proposition 7.32, since
the polynomial Q is indeed such that Q(0) �= 0 and has exactly one root α such that
|α| � 1, but Q is not irreducible over Z.

We end this section by providing some other irreducibility criteria and results
about polynomials.
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Proposition 7.35 Let P = Xn + an−1X
n−1 + · · · + a1X + a0 ∈ Z[X] be a monic

polynomial such that n� 1.

(i) (Dumas). Let p be a prime number such that p | a0, (vp(a0), n) = 1 and satis-
fying nvp(ai) � (n− i)vp(a0) for 1 � i � n− 1. Then P is irreducible over Z.

(ii) (Eisenstein generalized). Let p be a prime number and k ∈ {0, . . . , n} such
that p | ai for all 0 � i < k and p2

� a0. Then P has an irreducible factor of
degree � k.

(iii) (Perron). Suppose that a0 �= 0 and |an−1| > 1 + |a0| + · · · + |an−2|. Then P is
irreducible over Z.

(iv) (Filaseta). Suppose that ai are such that 0 � ai � 1015. If P(10) is a prime
number, then P is irreducible over Z.

(v) The nth cyclotomic polynomial �n is irreducible over Z for all positive inte-
gers n.

(vi) Almost all polynomials in Z[X] are irreducible over Q.

Definition 7.36 (Discriminant of a polynomial) Let R be an integral domain, P ∈
R|X], k be the quotient field of R, r � 2 be an integer and let P = a

∏r
i=1(X − αi)

be the factorization of P in an algebraic closure k of k. The discriminant of P is
defined by10

disc(P ) = ar+deg(P ′)−1
r∏

i=1

r∏

j=i+1

(αi − αj )
2.

The following examples are important in practice.

Example 7.37 Let p be an odd prime number, a, b, c ∈ Z and m � 2 be an integer.

1. disc(aX3 + bX2 + cX + d) = −4b3d + (bc)2 + 18abcd − 4ac3 − 27(ad)2.
2. disc(X4 − 2(a + b)X2 + (a − b)2) = {64ab(a − b)}2.
3. disc(X4 − 2bX2 + b2 − ac2) = (16ac2)2(b2 − ac2).
4. disc(Xm + aX + b) = (−1)m(m−1)/2{(−1)m−1(m − 1)m−1am + mmbm−1}.
5. disc(Xp−1 + · · · + X + 1) = (−1)(p−1)/2pp−2.

7.2.5 Algebraic Numbers

Let K/k be a field extension and α ∈K. Define the homomorphism

Fα : k[X] −→ K,

P �−→ P(α).

10This definition comes from the theory of resultants. The word “discriminant” indicates that
disc(P ) does not vanish if all the roots αi are distinct so that disc(P ) discriminates the roots
of P .



7.2 Algebraic Numbers 375

Since K is a field, the image ImFα , often denoted by k[α], is a subring of K and is
then an integral domain. By Theorem 7.4 (i), we have k[X]/kerFα 
 k[α] and since
k[α] is an integral domain, we infer that kerFα is a prime ideal by Lemma 7.80.
There are two cases.

1. kerFα = (0).
2. kerFα �= (0). In this case, since k is a field, the ring k[X] is a PID, so that we

deduce that kerFα is a maximal ideal,11 and is then of the shape kerFα = (Pα)

where Pα is an irreducible polynomial over k.

Definition 7.38

1. The number α is said to be algebraic over k if kerFα �= (0), otherwise α is called
transcendental over k. In other words, α is algebraic over k if there exists a non-
zero irreducible polynomial Pα over k such that α is a root of Pα . One may
choose this polynomial to be monic, in which case it is unique, and is called the
minimal polynomial of α over K, denoted by μα , and we have

k(α) 
 k[X]/(μα) and k(α) = k[α] = {
P(α) : P ∈ k[X]}.

2. The degree of μα is called the degree of α over K, written degα.
3. The extension K/k is an algebraic extension if every element of K is algebraic

over k, otherwise it is called a transcendental extension.
4. The field k is said to be algebraically closed if every non-constant polynomial of

k[X] has a root in k. An algebraic closure of a field k is an algebraic extension
k/k such that the field k is algebraically closed.

5. θ ∈ C is called an algebraic number if θ is algebraic over Q. The set of algebraic
numbers is Q. If θ is not an algebraic number, then it is called a transcendental
number.

Note that Q is countable. Indeed, it is the set of the roots of P ∈ Z[X]. We define
the following map

� : Z[X] −→ N,

P = ∑n
i=0 aiX

i �−→ N = degP +∑n
i=0 |ai |.

Given N ∈ N, there are only finitely many polynomials P such that �(P ) = N , so
that Z[X] is countable as a countable union of finite sets, and hence Q is countable.
The set of transcendental numbers is then uncountable and has no structure since
the sum or product of two transcendental numbers could be algebraic. For instance,
e is shown to be transcendental12 over Q but e − e = 0.

Let K/k be an extension and α ∈ K. It can easily be seen that, if α is algebraic
over k and if its minimal polynomial is of degree d , then [k(α) : k] = d and the set
{1, α, . . . , αd−1} is a k-basis of k(α).

11In a PID, every non-zero prime ideal is maximal. See [GG04, Théorème X.3.1] for instance.
12Hermite, 1873. In 1882, using essentially the same ideas, Lindemann proved that π is also tran-
scendental over Q and hence showed that squaring the circle is impossible.
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Example 7.39

1. The numbers i,
√

d with d ∈ Z\ {0,1} squarefree, 3
√

2, ρ = ζ3, θ = 4
√

5+√
5 are

algebraic over Q. Indeed, the minimal polynomials are respectively X2 +1, X2 −
d , X3 −2, X2 +X+1 since they are monic and have no roots in Q so that they are
irreducible over Z, and the minimal polynomial of θ is X4 − 10X2 − 20X + 20
since it is monic and irreducible over Z via Eisenstein’s criterion applied with
p = 5. We deduce that

[
Q(i) : Q] = 2,

[
Q(

√
d) : Q] = 2,

[
Q
( 3
√

2
) : Q] = 3,

[
Q(ρ) :Q] = 2 and

[
Q
( 4
√

5 + √
5
) : Q] = 4.

2. Let θ = 3
√

2 + ρ
3
√

4 = 3
√

2(1 + ρ
3
√

2). We have

θ3 = 2
(
1 + 3ρ

3
√

2 + 3ρ2 3
√

4 + 2
) = 6

(
1 + ρ

3
√

2 + ρ2 3
√

4
) = 6(1 + ρθ).

Hence θ3 − 6ρθ − 6 = 0. Since 2ρ = −1 +√−3, we get θ3 + 3θ − 6 = 3θ
√−3

from which we infer that (θ3 + 3θ − 6)2 = −27θ2 which means that θ is a root
of the polynomial

P = X6 + 6X4 − 12X3 + 36X2 − 36X + 36.

It can be readily checked that |P(m)| is prime whenever

m ∈ {−43,−37,−23,−13,−11,−5,−1,1,11,29,41}
so that P is irreducible over Z by Proposition 7.28. Since P is monic, it is the
minimal polynomial of θ and we get

[
Q
( 3
√

2 + ρ
3
√

4
) :Q] = 6.

3. Similarly, the number θ =
√

8 + 3
√

7 is a root of P = X4 −16X2 +1 and |P(m)|
is 1 or a prime number for m ∈ {−14,−12,−4,−2,0,2,4,12,14} so that P

is irreducible over Z by Proposition 7.28. Since P is monic, it is the minimal
polynomial of θ and we get

[
Q(

√
8 + 3

√
7) : Q] = 4.

The following result is an easy consequence of Bézout’s theorem in Q[X].

Lemma 7.40 Let α be an algebraic number and μα be the minimal polynomial
of α. If P ∈ Q[X] is such that P(α) = 0, then μα divides P .

Proof If μα does not divide P , then since μα is irreducible, we have gcd(μα,P ) =
1, so that there exist U,V ∈ Q[X] such that U(X)μα(X) + V (X)P (X) = 1. How-
ever, evaluating this identity at X = α gives a contradiction. �
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The next result relates finite and algebraic extensions.

Lemma 7.41 Let K/k be a field extension and θ ∈ K. Then k(θ) is a finite-
dimensional k-vector space if and only if θ is algebraic over k. In particular, every
finite extension is algebraic.

Proof k(θ) is a sub-k-vector space of K generated by 1, θ, θ2, . . . , θn, . . . If k(θ) is
a finite-dimensional k-vector space, then dimk(θ) = degμθ by above. Conversely,
if k(θ) is a finite-dimensional k-vector space with dimension n, then the vectors
1, θ, . . . , θn are k-linearly dependent so that there exist (a0, . . . , an) ∈ k

n+1 such
that anθ

n + an−1θ
n−1 + · · · + a0 = 0, and hence θ is a root of the non-zero polyno-

mial anX
n + an−1X

n−1 + · · · + a0, and therefore θ is algebraic over k. �

This result leads to the following definition.

Definition 7.42 An algebraic number field is a finite extension of Q, written K/Q.
The dimension of K as a Q-vector space is called the degree of K/Q and is denoted
by [K : Q].

Hence if K is an algebraic number field, then K = Q(α1, . . . , αn) for finitely
many algebraic numbers α1, . . . , αn, as for instance a Q-basis of the Q-vector space
K. The following result improves on this observation.

Lemma 7.43 If α,β are algebraic numbers, then there exists an algebraic number
θ such that

Q(α,β) = Q(θ).

Proof Let μα and μβ be the minimal polynomials of α and β . We want to show
that we can find q ∈Q such that θ = α +qβ and Q(α,β) = Q(θ). If such a q exists,
then clearly Q(θ) ⊆ Q(α,β). Set f (X) = μα(θ − qX) ∈Q(θ)[X]. Since

f (β) = μα(θ − qβ) = μα(α) = 0

we infer that β is a root of f . Now we choose q such that β is the only common
root of f and μβ . This can be done since only a finite number of choices of q are
thus ruled out. Therefore gcd(f,μβ) = a(X−β) with a ∈ C\{0}. Then a(X−β) ∈
Q(θ)[X] which implies that a, aβ ∈Q(θ) and so β ∈Q(θ). Now θ = α+qβ ∈ Q(θ)

which implies that α ∈ Q(θ) and hence Q(α,β) ⊆ Q(θ), so that Q(α,β) = Q(θ) as
required. �

This result may be generalized quite easily by induction to show that for a set
α1, . . . , αn of algebraic numbers, there exists an algebraic number θ such that

Q(α1, . . . , αn) = Q(θ).
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We deduce that any algebraic number field K can be written as13

K = Q(θ) (7.3)

for some algebraic number θ .

Definition 7.44 Let K = Q(θ) be an algebraic number field and μθ be the minimal
polynomial of the algebraic number θ , abbreviated to μ for convenience.

1. The polynomial μ is called a defining polynomial of K.
2. The roots of μ, which are all distinct since μ is irreducible, are called the conju-

gates of θ . Hence if degμ = n, then θ has n conjugates, including itself, some-
times denoted by θ = θ1, θ2, . . . , θn.

3. For i ∈ {1, . . . , n}, the field Ki = Q(θi) is called a conjugate field of K.
4. The homomorphism σi : K −→ C defined by σi(θ) = θi is injective and called

an embedding of K into C.
It has been seen above that the set {1, θ, . . . , θn−1} is a Q-basis for K = Q(θ).

Therefore if α = a0 + a1θ + · · · + an−1θ
n−1 ∈ K with ai ∈ Q, then for all i ∈

{1, . . . , n}, we get

σi(α) = a0 + a1θi + · · · + an−1θ
n−1
i .

5. If σi(K) ⊆ R which happens if and only if σi(θ) ∈ R, we say that σi is real,
otherwise σi is complex. Since complex conjugation is an automorphism of C, it
follows that σi is an embedding σj of K for some j . Hence σi is real if and only
if σi = σi and since σi = σi , the complex embeddings come in conjugate pairs.
We may enumerate in such a way that the system of all embeddings is

σ1, . . . , σr1︸ ︷︷ ︸
real

, σr1+1, σr1+1, . . . , σr1+r2, σr1+r2︸ ︷︷ ︸
complex

.

Then r1 + 2r2 = [K : Q] and the pair (r1, r2) is called the signature of K. One
may note that r1 and 2r2 are also respectively the number of real and complex
roots of μ.

6. The algebraic number field K is called a Galois number field, or normal number
field, if, for all α ∈ K, the minimal polynomial μα has all its roots in K. This is
equivalent saying that all the conjugate fields of K are identical to K.

The set of all embeddings of a Galois number field K is a group called the
Galois group of K and denoted by Gal(K/Q).

A Galois number field K is said to be abelian if Gal(K/Q) is abelian and
cyclic if Gal(K/Q) is cyclic.

From Galois theory, we know that, if K/Q is Galois, then |Gal(K/Q)| = [K :
Q] = n and the signature of K must be of the form (n,0) or (0, n/2).

13This result is sometimes called the theorem of the primitive element.



7.2 Algebraic Numbers 379

For instance, if d ∈ Z \ {0,1} is squarefree, then the number field K = Q(
√

d)

is a cyclic number field with Galois group Gal(K/Q) = {Id, σ } where Id is the
identity and σ(a + b

√
d) = a − b

√
d . On the other hand, the algebraic number field

K = Q(
3
√

2) is not Galois since the two conjugate fields Q(ρ
3
√

2) and Q(ρ2 3
√

2) are
distinct from K.

When K = Q(θ) is not Galois, one may define the Galois closure K
s , or normal

closure, of K to be the intersection of all subfields of Q which are Galois and contain
K. This is also the splitting field of μθ , i.e. the field obtained by adjoining to Q all
the roots of μθ . For instance, if K = Q(

3
√

2), then K
s = Q(

3
√

2, ρ).

7.2.6 The Ring OK

A number α ∈ C is an algebraic integer if there is a monic polynomial P ∈ Z[X]
such that P(α) = 0.

For instance,
√−2 is an algebraic integer since it is a root of X2 + 2 but 1/3

is not an algebraic integer. The number
√

2/3 is an algebraic number since it has
a root of 9X2 − 2, but it is not an algebraic integer. Indeed, assume the contrary.
Then there exists a monic polynomial P = Xn + ∑n−1

i=0 aiX
i with ai ∈ Z such that

P(
√

2/3) = 0. Clearing out the denominators we get

(
√

2)n + an−1 × 3 × (
√

2)n−1 + · · · + a0 × 3n = 0

which implies that 3 | 2n/2 if n is even and 3 | 2(n−1)/2 if n is odd, which is false in
either case. Hence

√
2/3 is not an algebraic integer.

If α is an algebraic number of degree n, then the set {1, α, . . . , αn−1} is a Q-basis
for Q(α). Thus one may think of the structure of Z[α] = {P(α) : P ∈ Z[X]} to try
to determine whether α is an algebraic integer. This is the idea underlined in the
following criterion.

Proposition 7.45 Let α ∈ C. The following assertions are equivalent.

(i) α is an algebraic integer.
(ii) The monic minimal polynomial μα lies in Z[X].

(iii) Z[α] is a finitely generated Z-module.
(iv) There exists a non-zero finitely generated Z-module M such that αM ⊆ M .

Proof

� (i) =⇒ (ii). Let P ∈ Z[X] be a monic polynomial such that P(α) = 0. By
Lemma 7.40, we have P = μαQ for some Q ∈ Q[X]. We write μα = (a/b)μ∗
with a, b ∈ Z and μ∗ ∈ Z[x] whose coefficients are coprime, and similarly
Q = (c/d)Q∗ with c, d ∈ Z and Q∗ ∈ Z[x] whose coefficients are also coprime.
We infer that bdP = acμ∗Q∗ and Gauss’s lemma implies that bd = ±ac, so
that P = ±μ∗Q∗. Therefore the leading coefficient of both μ∗ and Q∗ is ±1 and
since μ∗(α) = 0, we finally get μα = ±μ∗ ∈ Z[X].
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� (ii) =⇒ (iii). Let μα = Xn +an−1X
n−1 +· · ·+a0 ∈ Z[X]. It is sufficient to show

that {1, α, . . . , αn−1} generates Z[α] as a Z-module, i.e. for all m ∈ N, αm is a
linear combination of {1, α, . . . , αn−1}. The result is clear for m < n, so assume
m � n and suppose this holds for αj with j < m. Then we have

αm = αm−nαn = αm−n
(−a0 − a1α − · · · − an−1α

n−1) =
n−1∑

j=0

αj
(−αm−naj

)

and the result follows by induction hypothesis.
� (iii) =⇒ (iv). Obvious by choosing M = Z[α].
� (iv) =⇒ (i). Let m1, . . . ,mr be generators of M . Since αM ⊆ M , we obtain the

existence of aij ∈ Z, with (i, j) ∈ {1, . . . , r}2, such that, for all i ∈ {1, . . . , r}

αmi =
r∑

j=1

aijmj

holds. Set B ∈ Mr (Z) the matrix with entries bij = aij − αδij where δij = 1 if
i = j and 0 otherwise. Since M is non-zero, not all mi can vanish and we infer
that detB = 0. Expanding now this determinant gives an equation of the form
P(α) = 0 with P ∈ Z[X] monic.

The proof is complete. �

Remark 7.46 One may prove in a similar way the following more general situation.

Let α ∈ B where B is an integral domain and let A be a subring of B . The
following assertions are equivalent.

(i) α is a root of a monic minimal polynomial P ∈ A[X].
(ii) A[α] is a finitely generated A-module.

(iii) There exists a non-zero finitely generated A-module M such that
αM ⊆M .

Corollary 7.47 (The ring OK) Let K be an algebraic number field and define OK

to be the set of all algebraic integers in K. Then OK is a ring called the ring of
integers of K.

Proof By Proposition 7.45 we know that for α,β ∈ OK, one can choose non-zero
finitely generated Z-modules M , N satisfying αM ⊆ M and βN ⊆ N . The Z-
module MN is finitely generated and non-zero, and we have

(α ± β)MN ⊆ MN and (αβ)MN ⊆ MN

so that α ± β ∈OK and αβ ∈ OK by Proposition 7.45. �

The next result is a refinement of (7.3).
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Corollary 7.48 Let K be an algebraic number field. Then there exists θ ∈OK such
that

K = Q(θ).

Proof By (7.3) there exists an algebraic number α such that K = Q(α). Let

μα = Xn + an−1X
n−1 + · · · + a0 ∈ Q[X]

and choose d ∈ Z \ {0} such that dai ∈ Z for all i ∈ {0, . . . , n − 1}. Then the num-
ber dα is a root of a monic polynomial of Z[X] and hence dα ∈ OK by Proposi-
tion 7.45. Now it is clear that Q(dα) = Q(α), which completes the proof by choos-
ing θ =dα. �

Remark 7.49 The ring OK is the most important object of the theory for it contains
all the arithmetic information of K. However, one must be careful with the following
problem. Let K = Q(θ) with θ ∈ OK. Then Z[θ ] ⊆ OK but it may be possible that
Z[θ ] �= OK. For instance, K = Q(

√−3) is an algebraic number field and
√−3 is

an algebraic integer. But ρ = ζ3 ∈ K and since it is a root of X2 + X + 1, we have
ρ ∈OK, but ρ �∈ Z[√−3].

This leads to the following definition.

Definition 7.50 (Index) Let K = Q(θ) be an algebraic number field with θ ∈ OK.
The index of θ in OK is the number f = [OK : Z[θ ]].

The arithmetic structure of f plays an important role in certain results of the
theory. Dedekind provided the following criterion to determine whether a prime
number p is not a divisor of f (see [Coh93]).

Proposition 7.51 (Dedekind) Let K = Q(θ) be an algebraic number field with θ ∈
OK, p a prime number and f = [OK : Z[θ ]]. Suppose that the decomposition of
μθ ∈ Z[X] in Fp[X] is of the form

μθ =
g∏

i=1

P
ei

i

where g, ei � 1 are integers and P i is irreducible in Fp[X] for all i ∈ {1, . . . , g}.
Set

T (X) = 1

p

{
μθ(X) −

g∏

i=1

P
ei

i (X)

}
.

Then we have

p � f ⇐⇒ ei = 1 or P i � T in Fp[X] (1 � i � g).

Diaz y Diaz restated Dedekind’s criterion as follows (see [Coh00]).
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Proposition 7.52 (Diaz y Diaz) With the notation of Proposition 7.51, for all i ∈
{1, . . . , g}, let Ri be the remainder of the Euclidean division of μθ by Pi . Then we
have

p � f ⇐⇒ Ri �∈ p2
Z[X] for all i ∈ {1, . . . , g} such that ei � 2.

We will prove in Exercise 6 the following third criterion when the minimal poly-
nomial of θ is a p-Eisenstein, i.e. μθ satisfies the conditions of Corollary 7.23.

Proposition 7.53 Let K = Q(θ) be an algebraic number field of degree n with
θ ∈OK and write

μθ = Xn + an−1X
n−1 + · · · + a0 ∈ Z[X].

Let p be a prime number such that p | ai for all 0 � i � n − 1 and p2
� a0.

Then p � f .

7.2.7 Integral Bases

Let K = Q(θ) be an algebraic number field of degree n with θ ∈ OK. We denote
by θ1, . . . , θn the conjugates of θ and σ1, . . . , σn the embeddings of K in C. It is a
matter of fact that all the θi have the same minimal polynomial μθ . We first define
the following two numbers.

Definition 7.54 (Norm and trace) Let α ∈ K. The norm and trace of α are defined
by

NK/Q(α) =
n∏

i=1

σi(α) and TrK/Q(α) =
n∑

i=1

σi(α).

Since the σi are homomorphisms, we have clearly the following rules. Let
α,β ∈K.

1. NK/Q(αβ) = NK/Q(α)NK/Q(β) and TrK/Q(α + β) = TrK/Q(α) + TrK/Q(β).
2. NK/Q(1) = 1 and TrK/Q(1) = n.
3. For all q ∈Q, we have NK/Q(qα) = qnNK/Q(α) and TrK/Q(qα) = q TrK/Q(α).

The next result shows that the norm and trace are rational numbers.

Proposition 7.55 Let α ∈ K. Then NK/Q(α) ∈ Q and TrK/Q(α) ∈ Q. Furthermore,
if α ∈OK, then NK/Q(α) ∈ Z and TrK/Q(α) ∈ Z.

Proof We define the so-called characteristic polynomial of α

Cα =
n∏

i=1

(
X − σi(α)

) = Xn + bn−1X
n−1 + · · · + b0 (7.4)
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so that NK/Q(α) = (−1)nb0 and TrK/Q(α) = −bn−1. Hence it suffices to show that
Cα ∈Q[X]. We first note that, if α = Q(θ) for some Q ∈ Q[X], then σi(α) = Q(θi)

for all i ∈ {1, . . . , n}. Then we may write

Cα =
∏

i

(
X − Q(θi)

)

where the θi runs through all the roots of the minimal polynomial μθ of θ whose
coefficients are in Z. Expanding the product we see that the coefficients of Cα are
of the form R(θ1, . . . , θn) where R ∈ Q[X1, . . . ,Xn] is a symmetric polynomial.
Therefore we have Cα ∈ Q[X].

The second part of the proposition follows from the following assertion

Cα is a power of μα. (7.5)

Indeed, if (7.5) is true and if α ∈ OK, then μα ∈ Z[X] and Cα ∈ Z[X] by Gauss’s
lemma. The rest of the text is devoted to the proof of (7.5). Since μα is irreducible,
by factorizing Cα into irreducibles, we have Cα = μr

αP with μα and P are coprime
and both monic. If P is not constant, then there exists i ∈ {1, . . . , n} such that σi(α)

is a root of P and hence θi is a root of the polynomial P ◦ Q. By Lemma 7.40, we
infer that μθ | P ◦ Q, which implies in particular that P ◦ Q(θ) = 0 and thus

P(α) = P ◦ Q(θ) = 0

so that μα | P which is impossible since μα and P are coprime. We deduce that P

is constant and monic, so that P = 1 and then Cα = μr
α . �

Example 7.56 The norm and trace can sometimes be useful to determine the
ring of integers and the index of some algebraic number fields. For instance, let
K = Q(

√−5). This is an algebraic number field of degree 2 by Example 7.39 with
embeddings {Id, σ } where σ(a + b

√−5) = a − b
√−5 for all a, b ∈ Q. Hence if

α = a + b
√−5 ∈K, then

NK/Q(α) = a2 + 5b2 and TrK/Q(α) = 2a.

Assume now that α ∈ OK. By Proposition 7.55, we have 2a ∈ Z and a2 + 5b2 ∈ Z

which implies that the denominator of a, and hence also of b, is at most 2. Writing
a = c/2 and b = d/2, we must have (c2 + 5d2)/4 ∈ Z, or equivalently c2 + 5d2 ≡
0 (mod 4). Since all squares are ≡ 0 or 1 (mod 4), we infer that c and d are even,
and hence a, b ∈ Z. Therefore OK = Z[√−5] and f = 1.

It has been seen above that we can choose a Q-basis {α1, . . . , αn} of K as a vector
space over Q. Now since OK is a Z-module, we may ask for a Z-basis for OK.

Definition 7.57 (Integral bases) Let K be an algebraic number field of degree n and
OK be its ring of integers. Then a Z-basis of OK is called an integral basis for K.
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In other words, {α1, . . . , αm} is an integral basis if and only if αi ∈ OK and every
element of OK can be uniquely expressed in the form

m∑

i=1

aiαi with ai ∈ Z.

By Corollary 7.48, it follows that an integral basis is a Q-basis for K, so that we
have m = n.

Now one may wonder if such bases exist. If K = Q(θ), then a natural candidate
is {1, θ, . . . , θn−1} which is a Q-basis for K with θ ∈ OK and we may indeed take
this basis if OK = Z[θ ], but we have seen in Remark 7.49 that this equality may
be false. Thus we need more work to establish the existence of integral bases for
all algebraic number fields. One possible proof14 uses the following very important
invariant of K.

Definition 7.58 (Discriminants) Let K be an algebraic number field of degree n and
α1, . . . , αn ∈ K.

1. The discriminant of α1, . . . , αn is the number defined by

�K/Q(α1, . . . , αn) = (
det

(
σi(αj )

))2

where det denotes the determinant of the matrix with entries σi(αj ) in the ith
row and j th column.

2. If {α1, . . . , αn} is an integral basis for K, then �K/Q(α1, . . . , αn) is independent
of the choice of that basis. It is called the discriminant of K and is denoted by dK.

When (α1, . . . , αn) = (1, θ, . . . , θn−1), one may check that we have

�K/Q

(
1, θ, . . . , θn−1) =

n∏

i=1

n∏

j=i+1

(
σj (θ) − σi(θ)

)2 = disc(μθ ) (7.6)

by Definition 7.36, which explains the word “discriminant”. The next result provides
the first basic properties of the discriminants.

Proposition 7.59 Let K = Q(θ) be an algebraic number field of degree n with
θ ∈OK.

(i) Let α1, . . . , αn ∈K. Then we have

�K/Q(α1, . . . , αn) = det
(
TrK/Q(αiαj )

)
.

14See also [EM99] for another proof using the properties of sub-Z-modules of finitely generated
Z-modules.
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(ii) If {α1, . . . , αn} is a Q-basis for K, then �K/Q(α1, . . . , αn) ∈ Q. Furthermore,
if αi ∈ OK, then �K/Q(α1, . . . , αn) ∈ Z.

In particular, we have dK ∈ Z.
(iii) Let α1, . . . , αn ∈K. Then we have

�K/Q(α1, . . . , αn) = 0 ⇐⇒ the αi are Q-linearly dependent.

In particular, the discriminant of any Q-basis for K is a non-zero rational
number.

(iv) Let {α1, . . . , αn} and {β1, . . . , βn} be two Q-basis for K such that βi =∑n
j=1 aijαj with aij ∈ Q. Then we have

�K/Q(β1, . . . , βn) = (
det(aij )

)2
�K/Q(α1, . . . , αn).

Proof

(i) Consider the matrix M = (σi(αj )) ∈ Mn(C). Then we have MT M = (mij )

with

mij =
n∑

k=1

σk(αi)σk(αj ) = TrK/Q(αiαj )

and we conclude by using the facts that detMT = detM and det(AB) =
detAdetB .

(ii) This follows readily from (i) and Proposition 7.55.
(iii) If the αi are Q-linearly dependent, then so are the columns of the matrix

M defined in (i) since Q is invariant by the σi . Conversely, assume that
�K/Q(α1, . . . , αn) = 0. This implies that kerMT M �= {0} and since MT M has
entries in Q, there exists qi ∈ Q such that, for all j , TrK/Q(xαj ) = 0 with
x = ∑n

i=1 qiαi �= 0. If the αi are Q-linearly independent, they generate K as
a Q-vector space and we have TrK/Q(xy) = 0 for all y ∈ K with x �= 0. But
taking y = x−1 gives 0 = TrK/Q(1) = n which is impossible. Then the αi are
Q-linearly dependent.

(iv) Setting M = (σi(αj )), N = (σi(βj )) and A = (aij ), we infer that

�K/Q(β1, . . . , βn) = (detN)2 = (
detMAT

)2

= (detA)2(detM)2

= (
det(aij )

)2
�K/Q(α1, . . . , αn)

as asserted.

The proof is complete. �

Now we are in a position to answer the question of the existence of an integral
basis in any algebraic number field.
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Corollary 7.60 Let K = Q(θ) be an algebraic number field of degree n and let OK

be its ring of integers. Then OK has an integral basis. Furthermore, OK is a free
Z-module of rank n.

Proof By Corollary 7.48, there exists a Q-basis {α1, . . . , αn} for K with αi ∈ OK.
It remains to show that there exists such a basis which is a Z-basis for OK. By
Proposition 7.59 (ii) and (iii), the discriminants of such bases are in Z \ {0}. Thus
we may choose a basis {α1, . . . , αn} with αi ∈ OK and discriminant, abbreviated
here in �K/Q(α), such that |�K/Q(α)| is minimal. Suppose that this basis is not a
Z-basis for OK. Then there exists β ∈ OK such that β = ∑n

i=1 qiαi with qi ∈ Q

and at least one of these qi is not an integer. Without loss of generality, assume that
q1 �∈ Z and write q1 = [q1] + {q1} with 0 < {q1} < 1. The matrix

⎛

⎜⎜⎜⎝

{q1} q2 · · · qn

0 1 · · · 0
...

...
...

...

0 0 · · · 1

⎞

⎟⎟⎟⎠

is non-singular since detA = {q1} �= 0 so that {γ,α2, . . . , αn} is a Q-basis for K by
Proposition 7.59 (iii) where γ = β − [q1]α1, and using (iv) we get

∣∣�K/Q(γ,α2, . . . , αn)
∣∣ = {q1}2

∣∣�K/Q(α)
∣∣ <

∣∣�K/Q(α)
∣∣

which contradicts the minimality of |�K/Q(α)|. Hence as a Z-module, we get

OK = Zα1 ⊕Zα2 ⊕ · · · ⊕Zαn

which concludes the proof. �

7.2.8 Tools for OK

The determination of an explicit integral basis and of the discriminant of OK is not
an easy task. Our aim here is to collect some tools which can sometimes be helpful.

In what follows, K = Q(θ) is an algebraic number field of degree n with θ ∈ OK,
discriminant dK, signature (r1, r2). Let f = [OK : Z[θ ]] be the index of θ in OK

and μθ ∈ Z[X] be the minimal polynomial of K. For convenience, we denote by
�K/Q(θ) the discriminant of the Q-basis {1, θ, . . . , θn−1}.
Proposition 7.61

(i) Let {β1, . . . , βn} be a Q-basis for K such that βi ∈ OK. Then

�K/Q(β1, . . . , βn) = [OK : N ]2 × dK

where N = Zβ1 + · · · +Zβn. In particular, we have

disc(μθ ) = f 2 × dK.
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(ii) (Stickelberger). Let α1, . . . , αn ∈OK. Then �K/Q(α1, . . . , αn) ≡ 0 or 1 (mod 4).
(iii) (Kronecker). The sign of dK is (−1)r2 .
(iv) We have

�K/Q(θ) = (−1)n(n−1)/2NK/Q

(
μ′

θ (θ)
)
.

(v) Let {β1, . . . , βn} be a Q-basis for K such that βi ∈ OK. If �K/Q(β1, . . . , βn) is
squarefree, then {β1, . . . , βn} is an integral basis for K.

(vi) If disc(μθ ) is squarefree or if disc(μθ ) = 4D with D squarefree and D �≡ 1
(mod 4), then {1, θ, . . . , θn−1} is an integral basis for K and dK = disc(μθ ).

(vii) Suppose that, for any prime number p such that p2 | �K/Q(θ), the polynomial
μθ is a p-Eisenstein (see Proposition 7.53). Then we have

OK = Z[θ ].
(viii) Suppose that f > 1. Then there exists α ∈OK of the form

α = p−1(a0 + a1θ + · · · + an−1θ
n−1)

where p is a prime number such that p2 | �K/Q(θ) and ai ∈ Z such that 0 �
ai < p for all i ∈ {0, . . . , n − 1}.

Proof

(i) Let {α1, . . . , αn} be an integral basis for K. By Proposition 7.16 (vi), as a sub-
Z-module of the free Z-module OK, Z[θ ] is a free Z-module and thus has
a basis {γ1, . . . , γn} such that γi = ∑n

j=1 mijαj with mij ∈ Z. By Proposi-
tions 7.59 (iv) and 7.18 applied with G = OK and H = N , we have

�K/Q(γ1, . . . , γn) = (
det(mij )

)2 × dK = [OK : N ]2 × dK.

Now by Proposition 7.59 (ii), the discriminants �K/Q(β1, . . . , βn) and
�K/Q(γ1, . . . , γn) are integers and, with Proposition 7.59 (iv) again, we in-
fer that �K/Q(β1, . . . , βn) divides �K/Q(γ1, . . . , γn) and �K/Q(γ1, . . . , γn)

divides �K/Q(β1, . . . , βn) and their signs are equal, so that

�K/Q(γ1, . . . , γn) = �K/Q(β1, . . . , βn)

which gives the asserted result.
The assertion disc(μθ ) = f 2 × dK follows by applying this result to

{1, θ, . . . , θn−1} and using (7.6).
(ii) Expanding the determinant det(σi(αj )) and using the n! terms allows us to

write

det
(
σi(αj )

) = P − N

where P is the contribution of the terms corresponding to permutations of even
signature and N is the contribution of the terms corresponding to odd permu-
tations. Hence

�K/Q(α1, . . . , αn) = (P − N)2 = (P + N)2 − 4PN.
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Now since σi(P + N) = P + N and σi(PN) = PN we have P + N,PN ∈ Q

by Galois theory, and we have in fact P +N,PN ∈ Z since αi ∈ OK. The result
follows from the fact that a square is always congruent to 0 or 1 modulo 4.

(iii) By (7.6) and (i) we have

dK = f −2
∏

i<j

(
σj (θ) − σi(θ)

)2
.

Now a case-by-case examination shows that when conjugate terms are paired,
all the factors become positive except for

∏

r1<i�r1+r2

(
σi+r2(θ) − σi(θ)

)2

whose sign is (−1)r2 since σi+r2(θ) − σi(θ) is purely imaginary.
(iv) Writing μθ = ∏n

j=1(X − σj (θ)) we get

μ′
θ (x) =

n∑

j=1

μθ(x)

x − σj (θ)

and thus

μ′
θ

(
σi(θ)

) =
∏

j �=i

(
σi(θ) − σj (θ)

)
.

We deduce that

NK/Q

(
μ′

θ (θ)
) =

n∏

i=1

μ′
θ

(
σi(θ)

) =
n∏

i=1

∏

j �=i

(
σi(θ) − σj (θ)

)

=
n∏

i=1

n∏

j=i+1

(−(
σi(θ) − σj (θ)

)2)

= (−1)n(n−1)/2�K/Q(θ)

as asserted.
(v) Let {α1, . . . , αn} be an integral basis for K so that there exist aij ∈ Z satisfying

βi = ∑n
j=1 aijαj . By Proposition 7.59 (iv), we have

�K/Q(β1, . . . , βn) = (
det(aij )

)2
�K/Q(α1, . . . , αn)

and we infer that |det(aij )| = 1 since �K/Q(β1, . . . , βn) is squarefree. We con-
clude by using Proposition 7.18 (i).

(vi) If disc(μθ ) is squarefree, then we apply (v). If disc(μθ ) = 4D with D as stated
in the proposition, we first note that f 2 | 4D by (i) and (7.6), and hence f = 1
or f = 2 since D squarefree. If f = 2, then we have 4D = 4dK so that D =
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dK and hence dK �≡ 1 (mod 4), which contradicts (ii). Hence f = 1 and then
disc(μθ ) = dK.

(vii) By Proposition 7.53, we infer that f is not divisible by p for any prime p such
that p2 | �K/Q(θ). Using (i) we get f = 1 as asserted.

(viii) Since f > 1, there exist p | f and β ∈ OK/Z[θ ] of order p by Cauchy’s
theorem (Theorem 7.1 (i)), and thus pβ ∈ Z[θ ]. Since {1, θ, θ2, . . . , θn−1} is a
Z-basis for Z[θ ], we get pβ = b0 + b1θ + · · · + bn−1θ

n−1 with bi ∈ Z. Now
the Euclidean division of bi by p gives bi = pqi + ai with 0 � ai < p and
qi ∈ Z, so that the number α = β −∑n−1

i=0 qiθ
i ∈ OK satisfies the conditions of

the proposition. Furthermore, we have p | f so that p2 | �K/Q(θ) by (i).

The proof is complete. �

Example 7.62

1. Let K = Q(61/3). The polynomial P = X3 − 6 satisfies Eisenstein’s criterion
with respect to 2 and 3 and hence is irreducible over Z, so that P = μθ . We have
disc(P ) = −22 × 35 and the use of Proposition 7.61 (vii) implies that OK =
Z[θ ]. Therefore K is an algebraic number field of degree 3, called a pure cubic
field, signature (1,1) so that K is not Galois, discriminant dK = −22 × 35 and
{1, θ, θ2} is an integral basis for K.

2. Let θ be a root of the polynomial P = X4 + X + 1. We check that |P(m)| is
1 or a prime for m ∈ {−6,−3,0,1,2,5,6,9,11}, so that the polynomial P is
irreducible over Z by Proposition 7.28. Let K = Q(θ) be the corresponding al-
gebraic number field. Using Example 7.37, we obtain disc(P ) = 229. Since 229
is prime, we have OK = Z[θ ] and {1, θ, θ2, θ3} is an integral basis for K by
Proposition 7.61 (v). Hence K is an algebraic number field of degree 4, signature
(0,2), discriminant dK = 229 and OK = Z[θ ].

3. Let K = Q(
√

8 + 3
√

7) from Example 7.39. The minimal polynomial is

μθ = X4 − 16X2 + 1

whose discriminant is equal to

disc(P ) = (
16 × 7 × 32)2(82 − 7 × 32) = 28 × 34 × 72

by Example 7.37. Hence the only prime factors of f are 2, 3 or 7. Proposi-
tion 7.52 gives 2 � f , 3 | f and 7 � f so that f = 3 or f = 9. In particular f > 1,
so that using Proposition 7.61 (viii) we infer that there exists α ∈ OK of the form

α = 1

3

(
a + bθ + cθ2 + dθ3)

with integers 0 � a, b, c, d � 2. Since TrK/Q(α) = 4(a + 8c)/3 ∈ Z, this implies
that 3 | a + 8c so that (a, c) = (0,0), (1,1) or (2,2). In the first case we have

NK/Q(α) = 1

81

(
b4 + 32b3d + 258(bd)2 + 32bd3 + d4) ∈ Z
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which implies that (b, d) = (1,1). We verify that (θ + θ3)/3 ∈ OK. If (a, c) =
(1,1), then

NK/Q(α) = 1

81

(
b4 + 32b3d + b2(258d2 − 36

)+ b
(
32d3 − 576d

)+ d4

− 4572d2 + 324
)

and since NK/Q(α) ∈ Z, we get (b, d) = (0,0), (1,1) or (2,2). We check that
1
3 (1 + θ2) ∈ OK and let � be the discriminant of {1, θ, 1

3 (1 + θ2), 1
3 (θ + θ3)}.

Straightforward computations give � = 28 × 72. Hence |�| is minimal, so that
f = 9 and dK = � = 28 × 72 by Proposition 7.61 (i). Furthermore

{
1, θ,

1 + θ2

3
,
θ + θ3

3

}

is an integral basis for K.

The algebraic number field K is said to be monogenic, or to have a power basis, if
there exists α ∈ OK such that OK = Z[α]. The following example, due to Dedekind,
shows that there exist some algebraic number fields which cannot be monogenic.

Example 7.63 (Dedekind) Let K = Q(θ) be an algebraic number field where θ is
a root of the polynomial P = X3 − X2 − 2X − 8. One may check that disc(P ) =
−4 × 503 and that P is irreducible over Q by Exercise 12 in Chap. 3 for instance.
Let β = 1

2 (θ2 + θ). A simple calculation shows that β3 − 3β2 − 10β − 9 = 0 so that
β ∈OK and, using Definition 7.58, we have

�K/Q

(
1, θ, θ2) = −4 × 503 and �K/Q(1, θ, β) = 1

4
�K/Q

(
1, θ, θ2) = −503.

Since �K/Q(1, θ, β) is squarefree, we deduce that {1, θ, β} is an integral basis for K
by Proposition 7.61 (v). Now let α ∈ OK and set α = a + bθ + cβ with a, b, c ∈ Z.
We get

α2 = (
a2 + 6c2 + 8bc

)+ (
2c2 − b2 + 2ab

)
θ + (

2b2 + 3c2 + 2ac + 4bc
)
β

so that

�K/Q

(
1, α,α2) ≡ (bc)2(3c + b)2 (mod 2)

which is an even number in all cases. Hence this discriminant cannot be equal to
−503 which proves that OK has no integral basis of the form Z[α].

7.2.9 Examples of Integral Bases

In this section, we intend to study some examples of algebraic number fields often
used in the literature. The calculation of an integral basis for these fields requires
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both basic principles seen in the former sections and a touch of some arithmetic
technicality.

Quadratic Fields

Proposition 7.64 Let d ∈ Z \ {0,1} be a squarefree integer and K = Q(
√

d) be a
quadratic number field. We set

ω =
{

1
2 (1 + √

d), if d ≡ 1 (mod 4),√
d, otherwise.

Then

d Integral basis Discriminant Polynomial

d ≡ 1 (mod 4) (1,ω) d X2 − X + 1−d
4

d �≡ 1 (mod 4) (1,ω) 4d X2 − d

Proof We first look at the algebraic integers in K and let α ∈ K. Then there exist
a, b, c ∈ Z with (a, b, c) = 1 and c > 0 such that

α = a + b
√

d

c
.

If α ∈ OK, then TrK/Q(α) = 2a/c ∈ Z and NK/Q(α) = (a2 − db2)/c2 ∈ Z. If there
exists a prime p dividing both a and c, then from the norm we infer that p | b since
d is squarefree, which contradicts the fact that (a, b, c) = 1. Hence (a, c) = 1 and
the condition on the trace implies that c | 2.

� Suppose that d �≡ 1 (mod 4). If c = 2, then from the norm we deduce that a

and b have to be both odd and a2 − db2 ≡ 0 (mod 4). This implies that d ≡
1 (mod 4), giving a contradiction. Hence c = 1 and since �K/Q(1,

√
d) = 4d with

d squarefree, we infer that OK = Z[√d] in this case by Proposition 7.61 (vi).
� Suppose that d ≡ 1 (mod 4) and set f = [OK : Z[√d]]. If P = X2 − d , then

by assumption on d we get P ≡ (X + 1)2 (mod 2), and hence 2 | f by Propo-
sition 7.52. Since f 2 | disc(P ) = 4d , we also have f 2 | 4 since d is square-
free. Thus f = 2. Note that ω = 1

2 (1 + √
d) is a root of the polynomial

X2 − X − 1
4 (1 − d) ∈ Z[X] so that ω ∈ OK. Now �K/Q(1,ω) = d so that

OK = Z[ 1
2 (1 + √

d)] by Proposition 7.61 (v).

The proof is complete. �

Cyclotomic Fields

Let ζn = en(1) = e2iπ/n. Then the n numbers 1, ζn, ζ
2
n , . . . , ζ n−1

n are the nth roots of
unity, forming a regular n-gon in the complex plane. If (k, n) > 1, then ζ k

n is a root
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of unity or order n/(n, k) < n whereas if (n, k) = 1, then ζ k
n is not a root of lower

order, and is called a primitive nth root of unity. The number of these roots is then
ϕ(n) where ϕ is Euler’s totient function. We define the nth cyclotomic polynomial
to be the monic polynomial �n whose roots are the primitive nth root of unity so
that

�n =
n∏

i=1
(i,n)=1

(
X − ζ i

n

)
.

We have

Xn − 1 =
n∏

k=1

(
X − ζ k

n

) =
∏

d|n

n∏

k=1
(k,n)=n/d

(
X − ζ k

n

) =
∏

d|n

d∏

i=1
(i,d)=1

(
X − ζ

in/d
n

) =
∏

d|n
�d

so that we get by the Möbius inversion formula

�n =
∏

d|n

(
Xd − 1

)μ(n/d) (7.7)

and hence �n ∈ Z[X] for all n � 1. In particular, if n = p is a prime number, then

�p = Xp−1 + Xp−2 + · · · + X + 1.

The irreducibility over Z of �p has been proved in Example 7.24 and the irre-
ducibility in the general case has been stated in Proposition 7.35. We now intend to
show that �n is irreducible over Z for all positive integers n. A possible proof uses
the following lemma established by Schönemann.

Lemma 7.65 Let A = (X − a1) · · · (X − ar) ∈ Z[X] be a monic polynomial and let
p be a prime number. Set Ap = (X − a

p

1 ) · · · (X − a
p
r ). Then Ap = A in Fp[X].

We are now in a position to prove the irreducibility of �n.

Lemma 7.66 Let n be a positive integer. Then the polynomial �n is irreducible
over Z.

Proof We have clearly �n �= 0, ±1 if n � 1. Suppose that �n = PQ with P,Q ∈
Q[X] such that degP > 0. Gauss’s lemma implies in fact that P,Q ∈ Z[X]. Let p

be a prime number such that p � n and we define the polynomial R by

R =
∏

ζ∈ZP

(
X − ζp

)

where ZP is the set of the roots of P , so that R = P in Fp[X] by Lemma 7.65.
Note that if F = Xn − 1 and since nF(x) − xF ′(x) = −n, we have (F ,F ′) = 1
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if p � n, and therefore F is squarefree. Hence �n is squarefree by (7.7). Now we
have (Q,R) | R = P and (Q,R) | Q so that (Q,R)2 | PQ = �n, and therefore
(Q,R) = 1 since �n is squarefree. Hence (Q,R) = 1 and since R | �n, we infer
that R | P by Gauss’s theorem. Since these polynomials are monic and have the
same degree, we get R = P .

Now let ζ be a root of P . Then there exists a positive integer k such that (k, n) =
1 and ζ k is a root of �n. Write k = p1 · · ·pr where all the non-necessarily distinct
prime numbers pi satisfy pi � n. By the argument above applied r times, we see that
ζ k is also a root of P , and applying this with all the roots of �n, we deduce that
P = φn. Hence �n is irreducible over Z. �

Lemma 7.66 allows the following definition. The algebraic number field K =
Q(ζn) is called a cyclotomic field. Hence we have [K : Q] = ϕ(n). It can be shown
that K is monogenic (see [Was82]) so that OK = Z[ζn] for all n � 1. In what fol-
lows, the aim is to prove this result when n = p is a prime number.

Proposition 7.67 Let p be a prime number. Then Q(ζp) is monogenic.

Proof First note that since ζ2 = −1, we have Q(ζ2) = Q and since Q(ζ3) is a
quadratic field, we may suppose that p � 5. We write ζ instead of ζp for conve-
nience. The number λ = ζ − 1 plays an important part in the proof. Using Proposi-
tion 7.61 (iv) we get

�K/Q(λ) = �K/Q(ζ ) = (−1)(p−1)/2pp−2

as also stated in Example 7.37. Now μλ is a p-Eisenstein as seen in Example 7.24,
so that p � f by Proposition 7.53. Since f 2 × dK = (−1)(p−1)/2pp−2, we infer that
f = 1 and hence K is monogenic. �

The proof above shows that, if K = Q(ζp), then dK = (−1)(p−1)/2pp−2. More
generally, one can prove (see [Was82]) that, if K = Q(ζn), then

dK = (−1)ϕ(n)/2nϕ(n)
∏

p|n
p−ϕ(n)/(p−1). (7.8)

The next result shows that a cyclotomic field is an abelian algebraic number field.

Proposition 7.68 The algebraic number field K = Q(ζn) is abelian with Galois
group

Gal
(
Q(ζn)/Q

) 
 (Z/nZ)∗.

Proof Set K = Q(ζn). Since ζn is a primitive nth root of unity and since every nth
root of unity is a power of ζn, we deduce that the extension K/Q is normal. Since
�n is irreducible over Q and charQ = 0, we infer that the extension is separable, so
that K/Q is Galois. Now let σ ∈ Gal(Q(ζn)/Q). There exists an integer a = a(σ )
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coprime to n such that σ(ζn) = ζ
a(σ )
n . Since the residue class a of a(σ ) modulo n is

uniquely determined, one may define the map

Gal(Q(ζn)/Q) −→ (Z/nZ)∗,
σ �−→ a.

This map does not depend on the particular choice of the primitive nth root ζn.
Furthermore, one may check that it is a group homomorphism. If a = 1, then
σ(ζn) = ζn, so that σ = Id and the map is injective. We infer that Gal(Q(ζn)/Q)

is isomorphic to a subgroup of (Z/nZ)∗ and hence is abelian. Since Gal(Q(ζn)/Q)

and (Z/nZ)∗ have the same order, the result follows. �

Pure Cubic Fields

These are the fields of the form K= Q(m1/3) where m is 3-free and written as m =
ab2 with (a, b) = 1, a, b 2-frees and we assume that if 3 | m, then 3 | a and 3 � b.

Let θ = m1/3 which is a root of the polynomial P = X3 − m. We have

disc(P ) = −33 × m2 = −33 × a2 × b4 = f 2 × dK

so that writing dK = −3n × aα × bβ , we get f = 3(3−n)/2 × a(2−α)/2 × b(4−β)/2.
Hence n = 1 or 3, α = 0 or 2 and β = 0, 2 or 4. Since P is a p-Eisenstein for any
prime factor p of a, we have p | a =⇒ p � f by Proposition 7.53. In particular, if
3 | m, then 3 � f and 27a2 | dK. If 3 � a, then 3a2 | dK so that α � 2 in all cases.
Hence α = 2.

Now let λ = m̃1/3 with m̃ = a2b, which is a root of the polynomial Q = X3 −
a2b. Since

⎛

⎝
1
λ

λ2

⎞

⎠ = A

⎛

⎝
1
θ

θ2

⎞

⎠

with detA = −a �= 0, we deduce that disc(Q) = f 2 × dK. Now

disc(Q) = −33 × a4 × b2

which implies that β �= 4. Since Q is a p-Eisenstein for any prime factor p of b, we
have p | b =⇒ p � f and hence b2 | dK so that β � 2. Therefore β = 2. We then get

dK =
{

−27(ab)2, if 3 | m,

−3(ab)2 or − 27(ab)2, otherwise.

We consider the following three cases.

1. m �≡ ±1 (mod 9). Thus 9 � (m3 − m) so that the polynomial S = (X + m)3 − m

is a 3-Eisenstein. A root of S is θ − m and �K/Q(θ − m) = �K/Q(θ) =
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−33 × m2. Then 3 � f so that f = b. Since 1, θ, λ ∈ OK and �K/Q(1, θ, λ) =
b−2�K/Q(θ) = dK, we infer that

{
1, θ,

θ2

b

}

is an integral basis for K.
2. m̃ ≡ 1 (mod 9). Let ν = 1

3b
(b + abθ + θ2). One can observe that ν is a root of

the polynomial

R = X3 − X2 − m̃ − 1

3
X − (m̃ − 1)2

27
∈ Z[X]

so that ν ∈ OK. Since 3b ν ∈ Z[θ ], we infer that OK/Z[θ ] has an element of
order 3b, so that 3b | f by Theorem 7.1 and then f = 3b and dK = −3(ab)2.
Now �K/Q(1, θ, ν) = (3b)−2�K/Q(θ) = dK so that

{
1, θ,

b + abθ + θ2

3b

}

is an integral basis for K.
3. m̃ ≡ −1 (mod 9). This case can be treated as above, except that we make use of

� = 1
3b

(b + abθ − θ2) which is a root of the polynomial

S = X3 − X2 + m̃ + 1

3
X − (m̃ + 1)2

27
∈ Z[X]

instead of ν.

Also note that m̃ ≡ ±1 (mod 9) ⇐⇒ m ≡ ±1 (mod 9). We may sum up the discus-
sion in the following result.

Proposition 7.69 Let K = Q(m1/3) be a pure cubic field where m = ab2 is 3-free
with (a, b) = 1 and a, b 2-frees. Set θ = m1/3 ∈ OK and m̃ = a2b.

� If m �≡ ±1 (mod 9), then dK = −27(ab)2 and {1, θ, θ2

b
} is an integral basis for K.

� If m̃ ≡ ±1 (mod 9), then dK = −3(ab)2 and {1, θ, b+abθ±θ2

3b
} is an integral basis

for K.

Voronoï’s Method for Cubic Fields

We investigate algebraic number fields K = Q(θ) where θ is a root of the polyno-
mial P = X3 − aX + b ∈ Z[X] with a 2-free or b 3-free. Using Example 7.37, we
obtain disc(P ) = 4a3 − 27b2. In [Vor94], Voronoï devised a method to compute an
integral basis for K. A new proof of this method was given in [AW04b, AW04a] and
rests on the evaluation of dK which can be found in [LN83].
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Proposition 7.70 (Voronoï) Let K = Q(θ) be an algebraic number field where θ is
a root of the polynomial P = X3 − aX + b ∈ Z[X] with a 2-free or b 3-free.

� Suppose that a �≡ 3 (mod 9) or b2 �≡ a + 1 (mod 27) and let n2 be the largest
square dividing disc(P ) for which the system of congruences

{
x3 − ax + b ≡ 0 (modn2),

3x2 − a ≡ 0 (modn)

is solvable for x. Then an integral basis for K is given by

{
1, θ,

x2 − a + xθ + θ2

n

}
.

� Suppose that a ≡ 3 (mod 9) and b2 ≡ a + 1 (mod 27) and let n2 be the largest
square dividing disc(P )/729 for which the system of congruences

{
x3 − ax + b ≡ 0 (mod 27n2),

3x2 − a ≡ 0 (mod 9n)

is solvable for x. Then an integral basis for K is given by

{
1,

θ − x

3
,
x2 − a + xθ + θ2

9n

}
.

Examples

1. Let K = Q(θ) where θ is a root of the polynomial P = X3 − 8X − 57. Using
Example 7.37, we get disc(P ) = −52 × 23 × 149 so that n = 5 and x = 4 and

thus {1, θ, 8+4θ+θ2

5 } is an integral basis for K.
2. Let K = Q(θ) where θ is a root of the polynomial P = X3 − 12X + 65. Sim-

ilarly, we have 729−1 disc(P ) = −3 × 72 so that n = 7 and x = −5 and then

{1, θ+5
3 , 13−5θ+θ2

63 } is an integral basis for K.

Some Monogenic Algebraic Number Fields

It is a long-standing problem in algebraic number theory to determine whether an
algebraic number field K is monogenic. Indeed, the existence of an element θ ∈ OK

such that OK = Z[θ ] makes the study of arithmetic in K considerably easier. From
above we know that the quadratic fields and the cyclotomic fields are monogenic,
but, in the general case, this property is relatively rare.

Let K = Q(θ) be an algebraic number field of degree n and {1, α2, . . . , αn} be an
integral basis for K. There exists a form I (X2, . . . ,Xn) ∈ Z[X2, . . . ,Xn], called the
index form, of degree n(n − 1)/2 in n − 1 variables X2, . . . ,Xn such that

�K/Q(α2X2 + · · · + αnXn) = I (X2, . . . ,Xn)
2dK.
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Hence K is monogenic if and only if the index form equation

I (x2, . . . , xn) = ±1

has a solution in Z
n−1. The first effective upper bounds for the solutions of this

equation were derived by Győry [Győ76] by using Baker’s lower bounds for log-
arithmic forms. As a consequence, it follows that up to translation by elements of
Z, there exist only finitely many generators of power integral bases in an algebraic
number field.

In what follows, we provide some examples of monogenic algebraic number
fields of low degree.

� Degree 3. A cyclic cubic field is an algebraic number field K of degree 3 which is
Galois, the Galois group being necessarily isomorphic to the cyclic group C3 

Z/3Z. A profound result15 states that such a field is contained in a cyclotomic
field Q(ζfK) with fK minimal, called the conductor of K. In the case of cyclic
cubic fields, it can be shown that one can always write

fK = a2 + 27b2

4

with b > 0 and a ≡ 1 (mod 3) if fK ≡ 1 (mod 3), a = 3a′ with a′ ≡ 1 (mod 3)

otherwise. In [Gra74], the following necessary and sufficient condition is proved.

Proposition 7.71 With the notation above, K is monogenic if and only if the equa-
tion

bu
(
u2 − 9v2)+ av

(
u2 − v2) = 1

has solutions u,v ∈ Z.

� Degree 4. A biquadratic field is an algebraic number field K = Q(
√

dm,
√

dn)

with d , m, n squarefree, pairwise coprime such that dm,dn,mn �= 1, dm ≡
dn (mod 4), d > 0, m > n and if dm ≡ dn ≡ 1 (mod 4), then d < min(|m|, |n|).
Such fields are Galois with Galois group Gal(K/Q) 
 (Z/2Z)2. Define δ ∈
{0,1} such that mn ≡ (−1)δ (mod 4). Then we have the following proposition
[GT95].

Proposition 7.72 Let K = Q(
√

dm,
√

dn) be a biquadratic field with d , m ,n as
above.

� If dm ≡ dn ≡ 1 (mod 4), then K is not monogenic.
� If dm ≡ dn �≡ 1 (mod 4), then K is monogenic if and only if the following two

conditions are fulfilled.
(i) m − n = 22−2δd .

15See Sect. 7.5 and the Kronecker–Weber theorem.
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(ii) The equation 2δm(u2 − v2)2 − 2δn(u2 + v2)2 = 4s, where s = ±1, has solu-
tions u,v ∈ Z.

� Degrees 5 and 6. In a series of papers [ESW07, LSWY05, SWW06], the authors
consider some families of monic polynomials giving birth to infinitely many
algebraic number fields of degrees 5 and 6 whose ring of integers are monogenic.
The proofs rest on the following scheme.
a. Prove that the polynomials are irreducible over Z.
b. Determine the Galois groups.
c. Consider a subfamily of these polynomials, for instance those which have a

squarefree discriminant, use results from elementary number theory to show
that this subfamily contains infinitely many polynomials.

d. Prove that the algebraic number fields defined by these polynomials are
monogenic.

Proposition 7.73 Let m ∈ Z \ {1}.
� Let Pm = X5 − 2X4 + (m + 2)X3 − (2m + 1)X2 + mX + 1 such that the num-

ber 4m3 + 28m2 + 24m + 47 is squarefree. Then Pm is irreducible over Z,
Gal(Pm/Q) 
 D5 and the algebraic number fields defined by Pm are distinct
and monogenic.

� Let Pm = X6 + (2m+ 2)X4 + (2m− 1)X2 − 1 and assume that 4m2 + 2m+ 7 is
squarefree. Then Pm is irreducible over Z, Gal(Pm/Q) 
 A4 and the algebraic
number fields defined by Pm are distinct and monogenic.

� Let Pm = X6 −4X5 +2X4 −3mX3 +X2 +2X +1 and suppose that the number
729m3 + 522m2 + 1788m + 2648 is squarefree. Then Pm is irreducible over Z,
Gal(Pm/Q) 
 PSL(2,5) 
 A5 and the algebraic number fields defined by Pm

are distinct and monogenic.

Proof (Sketch) We only provide a sketch of the proof of the third case.
Suppose that Pm is not irreducible. Since Pm �= 0,±1 and

Pm ≡ (X − 1)
(
X5 − X3 − X2 − 1

)
(mod 3)

then we have Pm = QmRm where Qm,Rm ∈ Z[X] are monic polynomials such that
degQm = 1 and degRm = 5. The condition Pm(0) = 1 implies that Qm = X ± 1. If
Qm = X − 1, then we have 0 = Pm(1) = 3 − 3m contradicting the fact that m �= 1.
If Qm = X +1, then similarly we have 0 = Pm(−1) = 3m+7 contradicting the fact
that m is an integer. Hence Pm is irreducible over Z.

The factorization of Pm in F3[X] above shows that Gal(Pm/Q) contains a 5-
cycle so that 5 divides the order of Gal(Pm/Q). Since

disc(Pm) = (
729m3 + 522m2 + 1788m + 2648

)2

we have Gal(Pm/Q) ⊆ A6 by Lemma 7.140. Among the sixteen transitive sub-
groups of S6 which may be Galois groups of an irreducible polynomial of degree
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6, the only groups having order divisible by 5 and contained in A6 are PSL(2,5)

and A6. The final step is given by using a result of [Hag00] where a factorization
of a certain polynomial of degree 15 (see Theorem 7.148), along with the fact that
disc(Pm) is a square, ensures that Gal(Pm/Q) 
 PSL(2,5).

A theorem by Erdős [Erd53] implies that there are infinitely many integers m,
which are odd, such that δ(m) = 729m3 +522m2 +1788m+2648 is squarefree. Let
p be an odd prime factor of disc(Pm) = δ(m)2. Using Corollary 7.103, we infer that
p | dK. Since δ(m) is odd and squarefree, we get p > 2 and vp(disc(Pm)) = 2. If p |
f , then the relation disc(Pm) = f 2 × dK and the fact that p | dK give p3 | disc(Pm),
giving a contradiction with vp(disc(Pm)) = 2. Hence f = 1 and OK = Z[θ ]. �

7.2.10 Units and Regulators

This section investigates the multiplicative group O∗
K

of the units in the ring OK.
The structure of this group has been entirely determined by Dirichlet who proved
the following important theorem sometimes called Dirichlet’s unit theorem.

Theorem 7.74 (Dirichlet) Let K = Q(θ) be an algebraic number field with signa-
ture (r1, r2) and let θ ∈ OK. We denote by WK the subgroup of O∗

K
consisting of

roots of unity in OK. Then O∗
K

is a finitely generated abelian group with

rankO∗
K

= r1 + r2 − 1

and torsion subgroup equal to WK. More precisely, setting r = r1 + r2 − 1, there
exist units ε1, . . . , εr , called a system of fundamental units, such that every unit
ε ∈OK can be written uniquely in the form

ε = ζε
n1
1 · · · εnr

r

with ζ ∈ WK and n1, . . . , nr ∈ Z. The number r is called the Dirichlet rank of O∗
K

.
In other words, we have

O∗
K


 WK ×Z
r1+r2−1.

Example 7.75

1. Imaginary quadratic fields. Let K = Q(
√−d) be an imaginary quadratic field

with d > 0 squarefree. Hence (r1, r2) = (0,1) so that O∗
K


 WK. One may check
that

O∗
K

=
⎧
⎨

⎩

{±1,±i}, if d = 1,

{±1,±ρ,±ρ2}, if d = 3,

{±1}, otherwise.

2. Real quadratic fields. Let K = Q(
√

d) be an imaginary quadratic field with
d > 0 squarefree and d �= 1. Let σ : a + b

√
d �−→ a − b

√
d be the non-trivial
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embedding of K. Since (r1, r2) = (2,0), there exists a fundamental unit, denoted
by γd , such that

O∗
K

= {±γ k
d : k ∈ Z

}
.

The calculation of γd requires the theory of continued fractions in the follow-
ing way (see [Sam71] for instance). Let ω be the number stated in Propo-
sition 7.64 and assume that −σ(ω) has the continued fraction development
−σ(ω) = [a0, a1, . . . , at ]. If pt−1/qt−1 is the (t − 1)th convergent, then

γd = pt−1 + ωqt−1

and we also have NK/Q(γd) = (−1)t .

We do not prove Dirichlet’s unit theorem, but give the main ideas below. The
reader interested in this subject may refer to [EM99, FT91, Jan96, Neu10, Sam71,
ST02]. Our aim is to provide some useful facts about units and roots of unity of OK

and to define the so-called regulator of K.
A root of unity in K is a number ζ ∈ K such that there exists a positive integer m

such that ζm = 1. Hence ζ ∈OK. The following lemma will be useful.

Lemma 7.76 Let A > 0. The set S = {α ∈ OK : |σ1(α)| � A, . . . , |σn(α)| � A} is
finite.

Proof The characteristic polynomial (7.4) of α ∈ S belongs to Z[X] by (7.5) and
its coefficients are all symmetric functions in the σi(α) and hence are bounded. We
infer that there are only a finite number of possibilities for this polynomial, e.g.
(2A + 2)n

2
is such a bound. �

Proposition 7.77 Let K be an algebraic number field of degree n, signature (r1, r2)

and OK is the ring of integers of K. We set WK as in Theorem 7.74.

(i) ε is a unit in OK if and only if |NK/Q(ε)| = 1.
(ii) There are only finitely many roots of unity in K.

(iii) WK is a cyclic group of even order. Furthermore if r1 > 0, then |WK| = 2.
(iv) Let α ∈OK and μα be its minimal polynomial. If μα(m) = ±1 for some m ∈ Z,

then α − m is a unit in OK.

Proof

(i) If ε is a unit, then there exists λ ∈ OK such that λε = 1 so that NK/Q(ε) ×
NK/Q(λ) = 1 and these norms are integers. Conversely, if ε ∈ OK satisfies
NK/Q(ε) = ±1, then one can write

ε ×
(

±
n∏

i=2

σi(ε)

)
= 1

so that ε is a unit in OK as all terms are algebraic integers.
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(ii) Suppose that αm = 1. Then |α|m = 1 and hence |α| = 1 and similarly |σi(α)| =
1 for all i ∈ {1, . . . , n}. The result follows from Lemma 7.76.

(iii) Let α1, . . . , αk be the roots of unity in K. Since α
mi

i = 1 for some mi � 1,
we get αi = emi

(ni) for some 0 � ni � mi − 1. If we set m = m1 · · ·mk , then
each αi belongs to the cyclic group generated by em(1) and therefore WK is a
subgroup of this group, and hence is cyclic. Furthermore, since {−1,1} ⊆ WK,
then 2 divides |WK| by Lagrange’s theorem (see Theorem 7.1). Finally, if r1 >

0, then WK = {±1} since all other roots of unity are non-real.
(iv) If P(X) = μα(X + m), then P ∈ Z[X] is monic, satisfies P(0) = μα(m) =

±1 and P(α − m) = μα(α) = 0, so that the minimal polynomial of α − m ∈
OK divides P by Lemma 7.40, and thus has constant term ±1. We infer that
NK/Q(α − m) = ±1 and then α − m ∈ O∗

K
by (i).

The proof is complete. �

Dirichlet’s unit theorem can be proved by embedding the unit group in a logarith-
mic space. More precisely, if K is an algebraic number field of degree n, signature
(r1, r2) and embeddings σi , we may define a map

φ : K −→ R
r1 ×C

r2,

α �−→ φ(α)

with φ(α) = (σ1(α) . . . , σr1(α), σr1+1(α), . . . , σr1+r2(α)). The map φ is an injective
ring homomorphism and one can prove that, if {α1, . . . , αn} is a Q-basis for K, then
the vectors φ(α1), . . . , φ(αn) are R-linearly independent. This map enables us to
get a geometric representation of algebraic numbers.

Define the following map

L : K \ {0} −→ R
r1+r2,

α �−→ (δi log |σi(α)|)
where δi = 1 if i ∈ {1, . . . , r1} and δi = 2 if i ∈ {r1 + 1, . . . , r1 + r2}. This map is
called the logarithmic representation of K\ {0} and R

r1+r2 is the logarithmic space.
It is easy to check that L(αβ) = L(α) + L(β) for all α,β ∈ K \ {0}.

Now consider the restriction L : O∗
K

−→ R
r1+r2 . This abelian group homomor-

phism is not injective, but one may determine its kernel and image. Whereas the
first one is easily described as we will see below, the determination of ImL uses
the so-called geometry of numbers and more precisely a theorem by Minkowski
applied to certain discrete additive subgroups of Rr1+r2 . A discrete16 additive sub-
group of (Rr1+r2,+) generated by the m linearly independent vectors e1, . . . , em

is called a lattice of dimension m. Hence we need to pass from the multiplicative
group O∗

K
to an additive subgroup of Rr1+r2 , which is the reason why the logarithms

are used.

16A subset of Rr1+r2 is discrete if and only if it intersects every closed ball of center O in a finite
set.
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We may sketch the proof of Theorem 7.74. To this end, let ε ∈ O∗
K

.

� From the definition of L above, we immediately see that WK ⊆ kerL. Conversely,
since L(ε) = 0 ⇐⇒ |σi(ε)| = 1 for all i, we infer that kerL is a finite subgroup
of K \ {0} by Lemma 7.76. Hence kerL is cyclic and must consist entirely of
roots of unity. Therefore kerL 
 WK, a result proved by Kronecker.

� Now set L(α) = (L1(α), . . . ,Lr1+r2(α)). Then

r1+r2∑

i=1

Li(α) = log
∣∣NK/Q(α)

∣∣

and Proposition 7.77 (i) implies

r1+r2∑

i=1

Li(ε) = 0

so that ImL ⊆ H where H is the hyperplane of Rr1+r2 of equation x1 + · · · +
xr1+r2 = 0. We have dimH = r1 + r2 − 1. Now let η > 0 and let ‖ ‖2 be the
Euclidean norm on R

r1+r2 . Suppose that ‖L(ε)‖2 < η. This readily implies that
|σi(ε)| < eη for all i ∈ {1, . . . , r1} and |σi(ε)| < eη/2 for all i ∈ {r1 + 1, . . . , r1 +
r2}, so that the set of points σ(ε) such that ‖L(ε)‖2 < η is finite by Lemma 7.76,
and hence ImL is a lattice of dimension � r1 + r2 − 1.

Since WK is finite and O∗
K
/WK 
 ImL by Theorem 7.4 and since ImL is a

lattice, and then a free abelian group, we infer that O∗
K

is a finitely generated abelian
group of rank � r1 + r2 − 1. Using topological tools (see [FT91, Lemma 4.7 page
171]), one may prove that the rank is actually equal to r = r1 + r2 − 1.

The volume of the lattice ImL plays an important role in the theory and is called
the regulator of K. More precisely, we have the following definition.

Definition 7.78 (Regulator) Let K/Q be an algebraic number field of signature
(r1, r2) and r = r1 + r2 − 1 be the Dirichlet rank of O∗

K
. Let ε1, . . . , εr be a system

of fundamental units of O∗
K

and define the matrix U ∈ Mr,r+1(R) whose ith row is
the row-vector L(εi) for 1 � i � r . Let Ur be any r × r submatrix extracted from
U . The regulator of K is the number RK defined by

RK = |detUr |.

Note that the regulator is well-defined since changing a Z-basis of Zr into another
involves multiplication by a matrix of determinant ±1 by Proposition 7.18 (i).

Example 7.79 Let θ be a root of the polynomial P = X3 −X2 −11X−1. If P has a
rational root, then it must be ±1, but P(±1) �= 0 and hence P is irreducible over Z.
Define K = Q(θ) and hence θ ∈OK. The signature is (r1, r2) = (3,0) and therefore
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the Dirichlet rank of O∗
K

is r = 2. Since P(0) = −1, we have in fact θ ∈ O∗
K

. Now

(3 + θ)3 = θ3 + 9θ2 + 27θ + 27 = 10θ2 + 38θ + 28 = 2(θ + 1)(5θ + 14)

and we have NK/Q(1 + θ) = −8 and NK/Q(3 + θ) = 4 so that

64 = NK/Q

(
(3 + θ)3) = NK/Q

(
2(θ + 1)(5θ + 14)

) = −64 × NK/Q(5θ + 14).

Therefore NK/Q(5θ + 14) = −1 and hence 5θ + 14 ∈ O∗
K

by Proposition 7.77 (i).
If θ2 and θ3 are the conjugates of θ , we then have

U =
(

log |θ | log |θ2| log |θ3|
log |5θ + 14| log |5θ2 + 14| log |5θ3 + 14|

)

so that

RK =
∣∣∣∣det

(
log |θ | log |θ2|

log |5θ + 14| log |5θ2 + 14|
)∣∣∣∣ ≈ 11.926 5379 . . .

7.3 Ideal Theory

7.3.1 Arithmetic Properties of Ideals

Let R be a ring. A maximal ideal of R is an ideal a �= R such that there are no
ideals of R strictly between a and R, i.e. such that every ideal containing strictly
a is equal to R. A prime ideal of R is an ideal p �= R such that, for all x, y ∈ R

satisfying xy ∈ p, then either x ∈ p or y ∈ p; in other words, p is a prime ideal of R

if, whenever a and b are ideals of R such that ab⊆ p, then either a ⊆ p or b⊆ p.
The role of maximal ideals in a commutative ring is illustrated in Krull’s lemma

stating that, in a non-zero commutative ring R, every ideal a �= R is contained in a
maximal ideal of R.

Since R/(0) 
 R, we deduce that, if R is an integral domain, then the zero ideal
is prime by Lemma 7.80, so that a principal ideal (p) is prime if and only if p is
a prime number or zero. It may seem surprising that 0 is excluded from the list of
prime numbers whereas (0) is a prime ideal.

The next result is a characterization of prime and maximal ideals.

Lemma 7.80 Let R be a ring and a be an ideal of R.

(i) a is prime if and only if R/a is an integral domain.
(ii) a is maximal if and only if R/a is a field.

Proof

(i) Assume that a is prime. Then a �= R and hence R/a �= {0}. Let x, y ∈ R/a such
that x y = 0. We get xy = 0 so that xy ∈ a. By definition of a prime ideal,
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we have x ∈ a or y ∈ a so that x = 0 or y = 0 and hence R/a is an integral
domain.

Conversely, we have a �= R and if we suppose that xy ∈ a with x, y ∈ R,
then xy = 0 and then x y = 0. Since R/a is an integral domain, this implies that
x = 0 or y = 0, and therefore x ∈ a or y ∈ a so that a is prime.

(ii) Suppose that a is maximal. Then a �= R and hence R/a �= {0}. Let x �= 0 ∈ R/a.
We have x �∈ a and the ideal a+Rx is such that a+Rx � a, and hence a+Rx =
R since a is maximal. One may then write 1 = y + rx with y ∈ a and r ∈ R, so
that 1 = rx = r x which means that x is invertible and hence R/a is a field.

Conversely, we have a �= R. Let b be an ideal of R such that a ⊂ b ⊆ R and
let b ∈ b \ a. We then have b �= 0 and thus b is invertible, so that there exists
r ∈ R such that r b = 1 and hence rb = 1 + c with c ∈ a, so that 1 = rb − c ∈ b

which means that b= R, and therefore a is maximal.

The proof is complete. �

The following lemma is also needed in the sequel.

Lemma 7.81 Let K/Q be an algebraic number field of degree n. Let a be a non-
zero ideal in OK. Then OK/a is finite.

Proof By Corollary 7.60, OK is a free Z-module of rank n. Since the ideal a

is non-zero and Z is a PID, a is a free Z-module of rank r � n by Proposi-
tion 7.16 (vi). It remains to show that we actually have r = n. Let α �= 0 ∈ a. If
μα = Xr + ar−1X

r−1 + · · · + a0 ∈ Z[X], then we have

a0 = α
(−a1 − · · · − ar−1α

r−2 − αr−1)

and hence a0 ∈ a since −a1 −· · ·−ar−1α
r−2 −αr−1 ∈OK. Hence we get a0 �= 0 ∈ a

and a0 ∈ Z. Now let {θ1, . . . , θn} be an integral basis for K. Since a0θi ∈ a for all
i = 1, . . . , n, we deduce that a contains n Q-linearly independent elements, so that a
is a free sub-Z-module of rank n of OK and since (a0) ⊆ a ⊆ OK, the index (OK : a)
divides (OK : (a0)) = |a0|n and hence OK/a is finite. �

We deduce readily from Lemma 7.80 that every maximal ideal is a prime ideal,
but the converse is untrue in general, as it may be shown with the ring R = R[x, y]
and the prime ideal (x) which is not maximal since R/(x) 
 R[y] is not a field. This
leads to the following definition.

Definition 7.82 (Dedekind domain) Let R be an integral domain. R is a Dedekind
domain if R is nœtherian, integrally closed17 and such that every non-zero prime
ideal is maximal.

17A domain R is integrally closed means that if α/β is a root of a monic polynomial lying in R[X]
with α,β ∈ R, β �= 0, then α/β ∈ R.



7.3 Ideal Theory 405

The next result shows that the ring OK is the right tool to deal with.

Proposition 7.83 Let K/Q be an algebraic number field. Then OK is a Dedekind
domain.

Proof Let A be the set of all algebraic integers.

� The ring OK is an integral domain since A is an integral domain and OK = A∩K.
� The quotient field of OK is K. Indeed, if F is this quotient field, then it is clear

that F ⊆ K. Conversely, if α = a/b ∈ K where a is an algebraic integer and
b ∈ Z \ {0}, then a = αb ∈ K and hence a ∈ OK, so that α = a/b ∈ F.

� OK is a finitely generated Z-module and hence OK is nœtherian by Proposi-
tion 7.16 (iv).

� Let α ∈ K be a root of a monic polynomial P = Xn + an−1X
n−1 + · · · + a0 ∈

OK[X]. As a Z-module, Z[a0, . . . , an−1] is finitely generated since ai ∈ OK. Set
M = Z[a0, . . . , an−1, α]. Since P(α) = 0, we can write αn as a Z[a0, . . . , an−1]-
linear combination of αi for all 0 � i < n, so that as a Z-module, M is also finitely
generated. Since αM ⊆ M , we infer that α is integral over Z by Proposition 7.45,
and hence α ∈OK. Therefore OK is integrally closed.

� Let p be a non-zero prime ideal of OK. By Lemma 7.81, OK/p is finite. Since
p is prime, then OK/p is an integral domain by Lemma 7.80. Since a finite inte-
gral domain is a field, we infer that OK/p is a field, and therefore the ideal p is
maximal by Lemma 7.80. �

It follows in particular that OK is a nœtherian ring so that every element of OK

can be written as a product of irreducible elements by Proposition 7.11. We know
that such decompositions may not be unique, but this problem may be overcome
by considering ideals instead of elements of OK. It remains to define more specific
ideals which play the part of rational numbers.

7.3.2 Fractional Ideals

The study of the uniqueness of the factorization of ideals requires the behavior of
these ideals under multiplication to be known. It has been seen that this operation
has nearly all the properties needed, but inverses need not exist. One may overcome
this difficulty if we remember that ideals in OK are also sub-OK-modules of OK.
This gives birth to the concept of fractional ideal. Note that the following definition
may be generalized in Dedekind domains.

Definition 7.84 Let K/Q be an algebraic number field. A fractional ideal of OK is
a non-zero sub-OK-module a of K such that there exists α ∈OK, α �= 0, satisfying

αa ⊆ OK.
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The collection of fractional ideals of OK is denoted by I(K). The collection of
principal fractional ideals of OK is denoted18 by P(K). Hence

a ∈P(K) ⇐⇒ a = (a) = aOK (a ∈K).

Obviously, any non-zero ideal of OK is a fractional ideal by taking α = 1. In order
to underscore that the fractional ideal a is actually contained in OK, we will say that
a is an integral ideal.

We may define the multiplication of fractional ideals in the same way as we
did for ideals. This product is associative and commutative with identity element
(1) = OK. It remains to define the inverse of a fractional ideal of K and to show that
the set I(K) is a multiplicative abelian group.

We first generalize (7.1) by defining the notion of divisibility for integral ideals.
Let a,b be integral ideals. We shall say that a divides b, written a | b if and only if
a ⊇ b so that

a | b ⇐⇒ b⊆ a.

Furthermore, the following observation, coming directly from the definition of a
maximal ideal, will be often used.

Let p be a maximal ideal of OK and a be an integral ideal such that (1) |
a | p. Then

a = p or a = (1). (7.9)

The following first lemma will prove useful.

Lemma 7.85 Let a be an integral ideal. Then there exist prime ideals p1, . . . ,pr

such that

a | p1 · · ·pr .

Proof Let S be the set of integral ideals that do not satisfy the result of the lemma. If
S �= ∅ and since OK is a nœtherian ring, there exists an ideal b ∈ S which is maxi-
mal as an element of S. By assumption, b is not prime so that there exist α1, α2 ∈ OK

such that α1α2 ∈ b and α1 �∈ b and α2 �∈ b. Now set di = b+ (αi) for i ∈ {1,2}. Since
b is maximal as an element of S, we have di �∈ S and therefore both ideals contain a
product of prime ideals. We deduce that

d1d2 = b
2 + b(α1) + b(α2) + (α1α2) ⊆ b

and hence b �∈ S, giving a contradiction. �

18In fact, we should rather denote these sets respectively by I(OK) and P(OK), but we have
followed here the usual practice. Nevertheless, if R is any number ring, i.e. a domain for which
the quotient field K is an algebraic number field, then the collection of all fractional ideals, resp.
principal ideals, of R is denoted by I(R), resp. P(R). Similarly, the class group or Picard group of
R, which is an invariant of R, is denoted by Cl(R) or Pic(R) and is defined as in Definition 7.110
by Cl(R) = I(R)/P(R). When R is the ring of integers of an algebraic number field K, then
Cl(OK) depends only on K and is usually denoted by Cl(K). Hence the class group in the usual
sense may be viewed as an invariant of K.
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The next lemma is a technical tool.

Lemma 7.86 Let a be an integral ideal. If α ∈ K satisfies a | αa, then α ∈OK.

Proof As a finitely generated sub-Z-module of OK with rank n, let β1, . . . , βn be a
Z-basis of a. Since αa ⊆ a, there exists an integer matrix A = (aij ) ∈ Mn(Z) such
that, for all i ∈ {1, . . . , n}, we have

αβi =
n∑

j=1

aijβj

which may be written as

(A − αIn)

⎛

⎜⎝
β1
...

βn

⎞

⎟⎠ = 0

so that α is an eigenvalue of A and hence is an algebraic integer. �

The natural candidate for the inverse of a fractional ideal a will turn out to be

a
−1 = {α ∈K : αa ⊆ OK}.

We first check that a−1 ∈ I(K). It is obviously a non-zero sub-OK-module and
if x ∈ a with x �= 0, then xa−1 ⊆ OK as required. Also note that, if a | b, then
b−1 | a−1. In particular, if a �= 0 is an integral ideal, then

a
−1 | (1). (7.10)

We are now in a position to show the main result of this section.

Proposition 7.87 I(K) is an abelian multiplicative group, called the ideal group.

Proof It remains to show that, for all a ∈ I(K), we have

aa
−1 = (1). (7.11)

1. Let p be a prime ideal. By definition of p−1, we have (1) | p−1p and, using (7.10),
we get p−1p | p and therefore (1) | p−1p | p, so that by (7.9) either p−1p = p or
p−1p = (1). In the latter case, (7.11) holds for prime ideals, so suppose that p =
p−1p and let α ∈ p, α �= 0. By Lemma 7.85, there exist prime ideals p1, . . . ,pr

such that

p | (α) | p1 · · ·pr

with r minimal. If p � pi for all i, then we can choose for each i an element
ci ∈ pi such that ci �∈ p. But then the product of the ci is in p which is impossible
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since p is a prime ideal. Therefore there exists a prime ideal pi such that p | pi .
Without loss of generality, assume that p | p1. Since OK is a Dedekind domain,
p1 is maximal which implies that p = p1. Because r is minimal, (α) � p2 · · ·pr so
that there exists β ∈ p2 · · ·pr such that β �∈ (α). Then

(α) | pp2 · · ·pr | p(β)

which implies that a = β/α ∈ p−1. Since β �∈ (α), we get a �∈ OK. Now using
p = p−1p, we get p | ap and Lemma 7.86 implies that a ∈ OK, giving a contra-
diction. Therefore (7.11) is true for prime ideals.

2. Now we prove that (7.11) also holds for integral ideals. Suppose the contrary.
There exists a non-zero integral ideal a, taken maximal among all non-zero inte-
gral ideals, which does not have an inverse. Let p be a prime ideal such that p | a.
Multiplying both sides by p−1 implies that (1) | p−1a | a. Arguing as above,
a = p−1a gives a contradiction. By the maximality of a, we infer that p−1a has
an inverse b and hence p−1b is an inverse of a, leading to a contradiction. We
infer that (7.11) is also true for integral ideals.

3. Since every fractional ideal a can be written as a = db for some d ∈ K and
integral ideal b, we deduce from above that (7.11) is true for fractional ideals. �

It is noteworthy that the divisibility relation between integral ideals may be now
viewed as the divisibility relation in Z.

Let a,b be two non-zero integral ideals. Then a | b if and only if there exists
a suitable non-zero integral ideal c such that b= ac.

Indeed, if b = ac, then b ⊆ a. Conversely, if b ⊆ a, then we get ba−1 ⊆ aa−1 = OK

so that c = ba−1 is an integral ideal satisfying b = ac.

7.3.3 The Fundamental Theorem of Ideal Theory

We are now in a position to solve the problem of uniqueness in algebraic number
fields. The following result shows that Kummer’s favorite ideal numbers are the
right tools to generalize the arithmetic in Z.

Theorem 7.88 Let a be a non-zero integral ideal. Then a can be written as a product

a = p1 · · ·pr

of prime ideals of OK and this decomposition is unique up to order.19

19The zero ideal can also be written as a product of prime ideals, but the decomposition is not
unique. Hence the case of the zero ideal is almost always excluded in this book.
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Proof Let S be the set of non-zero integral ideals that cannot be written as a product
of non-zero prime ideals in OK. If S �= ∅ and since OK is a nœtherian ring, there
exists an ideal b ∈ S which is maximal as an element of S. Now let p be a non-zero
prime ideal such that p | b. If bp−1 = b, then we get p−1 = (1) by Proposition 7.87,
which is false. We deduce that b is strictly contained in bp−1 and hence bp−1 �∈ S.
We infer that there exist non-zero prime ideals p1, . . . ,pr such that bp−1 = p1 · · ·pr ,
and therefore we get b = p1 · · ·prp so that b �∈ S, leading to a contradiction. Hence
S =∅ and every non-zero integral ideal can be written as a product of prime ideals.

Now let a be a non-zero integral ideal and suppose that there exist non-zero prime
ideals p1, . . . ,pr and q1, . . . ,qs such that

a= p1 · · ·pr = q1 · · ·qs .

If p1 � qi for all i ∈ {1, . . . , s}, then there exist ci ∈ qi such that ci �∈ p1. By assump-
tion, the product of the ci is in p1 · · ·pr which is a subset of p1, and hence p1 is not a
prime ideal, giving a contradiction. Thus there exists i ∈ {1, . . . , s} such that p1 | qi ,
and without loss of generality, suppose that p1 | q1. Since q1 is maximal, we get
p1 = q1. By Proposition 7.87, we obtain p2 · · ·pr = q2 · · ·qs , and arguing as above
we show that p2 = q2. Repeating the argument enables us to prove that r = s and
pi = qi for all i ∈ {1, . . . , r} as required. �

Remark 7.89

1. The reader may have seen the analogy between the proofs of Theorems 3.3
and 7.88.

2. As a consequence of Theorem 7.88, one can readily see that fractional ideals can
also be written uniquely in the following form.

Let a ∈ I(K). Then there exist prime ideals p1, . . . ,pr and q1, . . . ,qs

such that

a= (p1 · · ·pr )(q1 · · ·qs)
−1

the decomposition being unique up to order.

3. As in the rational case, the fractional ideals can be uniquely written in the form

a = p
e1
1 · · ·pgeg

where pi are distinct prime ideals and ei ∈ Z\ {0} for all i ∈ {1, . . . , g}. The ideal
(1) = OK is regarded as the unique empty product of prime ideals. The integers
ei are the pi -adic valuations of a, sometimes denoted by vpi

(a). These valua-
tions have the same properties as the ordinary valuations of rational numbers. In
particular, if p is a prime ideal and a,b are non-zero fractional ideals of K, we
have

vp(ab) = vp(a) + vp(b),

vp(a+ b) = min
(
vp(a), vp(b)

)
,

vp(a∩ b) = max
(
vp(a), vp(b)

)
.
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Example 7.90 Let K = Q(
√−5) which we know is not a UFD since

6 = 2 × 3 = (1 + √−5)(1 − √−5).

Theorem 7.88 shows how to restore unique factorization. Set

p2 = (2,1 + √−5) = 2OK + (1 + √−5)OK

p3 = (3,1 + √−5) and p′
3 = (3,1 − √−5). One can check that these ideals are

prime and

(6) = p3p
′
3p

2
2.

7.3.4 Consequences of the Fundamental Theorem

Let K/Q be an algebraic number field of degree n and OK be its ring of integers.

Generators of Fractional Ideals

As a Z-module of rank n, any integral ideal can be generated by n elements of OK.
The purpose of this section is to prove that any fractional ideal can be generated as
an OK-module by at most two elements. We start with an application of the Chinese
remainder theorem.

Lemma 7.91 Let a and b be non-zero integral ideals. Then there exists α ∈ a such
that the ideals (α)a−1 and b are coprime.

Proof Using Theorem 7.88, we can write b = p
f1
1 · · ·pfg

g where pi are distinct prime
ideals and fi are non-negative integers. We set a = p

e1
1 · · ·peg

g c with b+ c = (1) and
ei are non-negative integers. For all i ∈ {1, . . . , g}, we pick up an element ai ∈
p
ei

i \ pei+1
i . Applying Proposition 7.5 with n = g + 1, R = OK, ai = p

ei+1
i for i ∈

{1, . . . , g} and ag+1 = c, we infer that there exists α ∈OK such that

α ≡ ai

(
modpei+1

i

)
and α ≡ 0 (mod c).

Since ai ∈ p
ei

i \ pei+1
i , we have α ≡ 0 (modpei

i ) and α �≡ 0 (modpei+1
i ) so that we

get (α) = ad with b+ d = (1) which concludes the proof. �

Proposition 7.92 Let a ∈ I(K). Then there exists α,β ∈K such that

a = (α,β) = αOK + βOK.
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Proof The zero ideal is generated by one element and if a ∈ I(K) is not an integral
ideal, then there exists d ∈ K such that da ∈ OK, and since a and da have the
same number of generators, we may suppose that a is a non-zero integral ideal. Let
β �= 0 ∈ a and set b = (β). By Lemma 7.91, there exists α ∈ a such that the ideals
(α)a−1 and b are coprime. Since α,β ∈ a, we have a | (α,β). Let p be a prime
divisor of (α,β) and e be its p-adic valuation. Since (α)a−1 and b are coprime, we
infer that pe

� (α)a−1 but since pe | (α) = (α)a−1a, we deduce that pe | a. Therefore
we have (α,β) | a and hence a = (α,β) as asserted. �

Unique Factorization

Theorem 7.13 asserts that if a ring R is a PID, then it is a UFD. We will prove that
if R is a ring of integers of an algebraic number field, then the converse is true.

Theorem 7.93 Let K/Q be an algebraic number field of degree n. Then OK is a
UFD if and only if it is a PID.

Proof The factorization of elements of OK into irreducibles exists by Proposi-
tion 7.11. Suppose that this factorization is unique. By Theorem 7.88, it suffices
to show that every prime ideal is principal. Let p be a prime ideal and α �= 0 ∈ p.
Let α = π1 · · ·πr be the decomposition of α into irreducibles in OK. Then (α) =
(π1) · · · (πr). Now every (π) is a prime ideal for if ab ∈ (π), then π | ab and by as-
sumption of unique factorization we get π | a or π | b and hence a ∈ (π) or b ∈ (π).
Therefore p divides a product of principal prime ideals and, by Theorem 7.88, we
infer that p is itself one of these principal prime ideals. �

7.3.5 Norm of an Ideal

Let a be a non-zero integral ideal. By Lemma 7.81, the order of OK/a is finite. This
leads to the following definition.

Definition 7.94 Let K/Q be an algebraic number field and let a be a non-zero
integral ideal. The norm of a is the integer defined by

NK/Q(a) = |OK/a|.

Example 7.95 Let K = Q(
√−6). By Proposition 7.64, we get OK = Z[√−6]. De-

fine the ideals a = (1 + √−6), b= (2,
√−6) and c = (3,

√−6).

1. Let α = a + b
√−6, β = c + d

√−6 ∈ Z[√−6]. We have α ≡ β (moda) if and
only if

a − c + (b − d)
√−6

1 + √−6
∈ Z[√−6].
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Since

a − c + (b − d)
√−6

1 + √−6
= a − c + 6(b − d)

7
+ b − d − a + c

7

√−6

we infer that α ≡ β (moda) ⇐⇒ a − c ≡ b − d (mod 7) so that NK/Q(a) = 7.
2. One may check that b = {2a + b

√−6 : a, b ∈ Z} so that a + b
√−6 ≡ c +

d
√−6 (modb) if and only if a ≡ c (mod 2) and hence NK/Q(b) = 2.

3. Similarly, we have c = {3a + b
√−6 : a, b ∈ Z} so that a + b

√−6 ≡ c +
d
√−6 (mod c) if and only if a ≡ c (mod 3) and hence NK/Q(c) = 3.

The norm of an integral ideal will in a way generalize the role of the integers.
The next result summarizes the most important properties of this operator.

Theorem 7.96 Let K/Q be an algebraic number field of degree n with discrimi-
nant dK.

(i) Let a be a non-zero integral ideal and {α1, . . . , αn} be a Z-basis for a. Then

�K/Q(α1, . . . , αn) = (
NK/Q(a)

)2
dK.

(ii) Let α �= 0 ∈OK. Then

NK/Q

(
(α)

) = ∣∣NK/Q(α)
∣∣.

(iii) Let a,b be non-zero integral ideals. Then

NK/Q(ab) = NK/Q(a)NK/Q(b).

Proof

(i) Let {θ1, . . . , θn} be an integral basis for K and assume that

αi =
n∑

j=1

aij θj

with aij ∈ Z for all i, j ∈ {1, . . . , n}. By Proposition 7.18, we have

NK/Q(a) = |OK/a| = ∣∣det(aij )
∣∣

and we conclude using Proposition 7.59 (iv).
(ii) Let {θ1, . . . , θn} be an integral basis for K. Then {αθ1, . . . , αθn} is a Z-basis

for (α). Writing αθi = ∑n
j=1 aij θj with aij ∈ Z, we have NK/Q(α) = det(aij ),

so that by Proposition 7.59 (iv), we get

�K/Q(αθ1, . . . , αθn) = NK/Q(α)2dK.



7.3 Ideal Theory 413

We conclude by using (i) which implies that

�K/Q(αθ1, . . . , αθn) = NK/Q

(
(α)

)2
dK

and the fact that NK/Q((α)) is a positive integer.
(iii) By Theorem 7.88 and induction on the number of factors, it is sufficient to

prove

NK/Q(ap) = NK/Q(a)NK/Q(p)

where p is a prime ideal. Since a | ap, using Theorem 7.4 (ii) applied with
R = OK, a1 = ap and a2 = a, we get

NK/Q(ap) = NK/Q(a) × |a/ap|.

It is therefore sufficient to prove that

|a/ap| = NK/Q(p). (7.12)

First notice that from Theorem 7.88 we deduce that ap is strictly contained in
a. Now we will prove that there is no ideal b strictly contained between a and
ap. Suppose the contrary. We then have a | b | ap and multiplying by a−1 gives
(1) | a−1b | p, and hence a−1b = (1) or a−1b = p by (7.9), so that b = a or
b= ap as required.

Now choose a ∈ a \ ap and define the map

Fa : OK −→ a/ap,

α �−→ aα + ap

Since there are no ideals between a and ap, this implies that a is generated
by a and ap, so that Fa is surjective. Furthermore, if α ∈ p, then aα ∈ ap and
hence Fa(α) = 0 + ap so that p ⊆ kerFa . Since p is maximal, we get kerFa is
either (1) or p. But Fa(1) = a + ap �= 0 + ap since a �∈ ap, so kerFa = p. By
Theorem 7.4 (i), we deduce that OK/p 
 a/ap proving (7.12).

The proof is complete. �

Thus the norm map is completely multiplicative, which is certainly its most im-
portant property. Note also that, for each non-zero integral ideal a, we have

NK/Q(a) ∈ a (7.13)

by applying Lagrange’s theorem (Theorem 7.1 (i)) to the additive group OK/a. Fur-
thermore, if σ : K −→ K is any field homomorphism, then

NK/Q(σa) = NK/Q(a). (7.14)
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For instance, let K = Q(
√−6) and take b = (2,

√−6) of Example 7.95. If σ is the
non-trivial embedding of K, we have σb = (2,−√−6) and hence by (7.14) and
Theorem 7.96 (iii) and (ii), we get

NK/Q(b)2 = NK/Q(bσb) = NK/Q(4,2
√−6,−2

√−6,−6) = NK/Q

(
(2)

)

= ∣∣NK/Q(2)
∣∣ = 4.

The next result provides some useful consequences of Theorem 7.96.

Corollary 7.97 Let K/Q be an algebraic number field of degree n.

(i) Let p be a non-zero integral ideal. If NK/Q(p) is a prime number, then p is a
prime ideal.

(ii) There are only finitely many integral ideals with a given norm.

Proof

(i) This follows from the complete multiplicativity of the norm.
(ii) If NK/Q(a) = m for some positive integer m, then a | (m) by (7.13). By unique-

ness of factorization, m has only finitely many factors.

The proof is complete. �

Example 7.98

1. Let K = Q(
√−10). By using the PARI/GP system, we get

(14) = p1p2p
2
3

where p1 = (7,2 + √−10), p2 = σp1 = (7,2 − √−10) and p3 = (2,
√−10).

Suppose that 14 lies in some integral ideal a. Then a | (14) so that by Theo-
rem 7.88 we get

a = p
e1
1 p

e2
2 p

e3
3

with e1, e2 ∈ {0,1} and e3 ∈ {0,1,2} and hence 14 belongs only to a finite num-
ber of ideals. Also by Theorem 7.96 (ii) we get NK/Q((14)) = |NK/Q(14)| =
142. Now how many ideals a have norm 14 ? This can only happen when a | (14)

by (7.13), so that by above we get

14 = NK/Q(a) = 7e1+e2 × 2e3

which implies that e1 + e2 = e3 = 1, giving two integral ideals. Note also that by
a similar argument we have only one ideal with norm 2 and two ideals with norm
7. Let νK(m) be the number of integral ideals with norm m. This example shows
that νK(2 × 7) = νK(2) νK(7). We shall return to this function in Sect. 7.3.

2. Let K = Q(ζ8) with defining polynomial �8 = X4 + 1. We have dK = 256 and
Theorem 7.105 below gives

(2) = p
4
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with p = (2,1 + ζ8). A similar argument shows that p is the only prime ideal
with norm 2. Let us prove that p is principal. It is first clear that p ⊆ (1 + ζ8).
Conversely, since

2 = (1 + ζ8)
2(ζ8 − ζ 2

8

)

we infer that (1 + ζ8) ⊆ p. Therefore p = (1 + ζ8) and then p is principal. We
will show later that OK is actually a PID.

7.3.6 Factorization of (p)

By definition, if p is a prime ideal in OK, then p ∩ Z is a prime ideal in Z, and
is therefore of the form (p) for some prime number p. This leads to the following
definition.

Definition 7.99 Let K/Q be an algebraic number field, p be a prime number and p

be a prime ideal of OK. We shall say that p lies above p, written p | p, if p∩Z = pZ.

When p lies above p, then p ∈ p so that p | (p) as ideals of OK, which explains
the notation. We also notice that, for any prime ideal p of OK, there exists a unique
prime number p such that p lies above p. Indeed, suppose that there is another prime
number q �= p such that p | q . We have p | (p)+ (q) = (1) which is impossible since
p is maximal.

To find prime ideals of OK, we need to factorize ideals generated by prime num-
bers. Pay careful attention to the fact that the ideal (p) is not in general a prime ideal
of OK. Theorem 7.105 below, due to Kummer for a particular case and extended by
Dedekind, relates the prime ideal factorization of (p) to the decomposition of μθ

into irreducible polynomials in Fp[X]. Kummer–Dedekind’s theorem holds for any
algebraic number field K = Q(θ) such that p does not divide the index f of θ .
We do not have a similar result in the case where p | f , but algorithms do exist
which perform the factorization of (p) in this case. However, recall that in practice
p2

� �K/Q(1, θ, . . . , θn−1) is sufficient to ensure that p � f and hence all but finitely
many prime numbers p are covered by this result.

We start with the following general situation.

Lemma 7.100 Let K/Q be an algebraic number field of degree n, let p be a prime
number and

(p) =
g∏

i=1

p
ei

i (7.15)

be the factorization of (p) into prime ideals.
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(i) There exist positive integers fi such that

NK/Q(pi ) = pfi and
g∑

i=1

eifi = n.

(ii) The index [OK/pi : Z/pZ] is finite and fi = [OK/pi : Z/pZ].

Proof

(i) First, since pi | (p), we get NK/Q(pi ) | NK/Q((p)) = pn, so that there exist
integers fi ∈ {1, . . . , n} such that NK/Q(pi ) = pfi . Furthermore, since p

ei

i +
p
ej

j = (1) for all i �= j , the Chinese remainder theorem implies that

OK/(p) 
 OK/p
e1
1 ⊕ · · · ⊕OK/p

eg
g

and hence, by Theorem 7.96, we get

pn = NK/Q

(
(p)

) = NK/Q

(
p
e1
1

) · · ·NK/Q

(
p
eg
g

) = NK/Q(p1)
e1 · · ·NK/Q(pg)

eg

which implies the asserted result.
(ii) The map

Z/pZ −→ OK/pi ,

a �−→ a + pi

is well-defined and one may check that it is a homomorphism. Now Z/pZ 
 Fp

is a finite field, and the same is true for OK/pi by Lemmas 7.80 and 7.81 and
the fact that pi is maximal. Hence the map is injective and [OK/pi : Z/pZ] is
the dimension of OK/pi considered as a Z/pZ-vector space. Furthermore, we
have

NK/Q(pi ) = |OK/pi | = p[OK/pi :Z/pZ]

by Lemma 7.20, and we conclude by using (i).

The proof is complete. �

Definition 7.101 Let K/Q be an algebraic number field of degree n, p be a prime
number and consider the factorization (7.15) of (p) into prime ideals.

1. (a) The integer ei is called the ramification index of pi over Z, denoted by
e(pi | p).

(b) The integer fi is called the inertial degree, or residue class degree, of pi over
Z, denoted by f (pi | p).

(c) The integer g is called the decomposition number of p over Z, denoted by gp .
2. (a) The prime number p is said to be ramified in OK if and only if there exists

some i ∈ {1, . . . , g} such that ei � 2. Similarly, the prime ideals pi such that
ei � 2 are called ramified prime ideals.
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(b) The prime number p is said to be unramified in OK if ei = 1 for all i ∈
{1, . . . , g}. Two cases are then possible.

p is inert

{
g = 1,

e1 = 1 f1 = n
(p) = p

p splits completely

{
g = n,

ei = fi = 1
(p) = p1 · · ·pn

Note that there are intermediate cases which do not deserve a special name. The
ramified primes are characterized by the following result.

Theorem 7.102 Let K/Q be an algebraic number field with discriminant dK and p

be a prime number. Then p is ramified in K if and only if p | dK. In particular, there
are ω(|dK|) ramified primes.

We do not supply here a proof of this theorem but, as often in algebraic number
theory, the result is more important than the proof itself. As a corollary, we provide
the following criterion (see also [AW04a, SWW06]).

Corollary 7.103 Let K = Q(θ) be an algebraic number field of degree n, discrimi-
nant dK, θ ∈OK and p be a prime number. Let μθ = Xn + an−1X

n−1 + · · · + a0 ∈
Z[X] be the minimal polynomial of θ . Suppose that p ‖ a0 and p | a1. Then p | dK.

Proof Suppose that p is not ramified. Then there exist distinct prime ideals
p1, . . . ,pg such that

(p) = p1 · · ·pg.

Since p ‖ a0, we get (a0) = p1 · · ·pg(b) for some b ∈ Z with p � b and hence pi � (b)

for all i ∈ {1, . . . , g}. Now NK/Q(θ) = (−1)na0 ≡ 0 (modp) so that there exists a
prime ideal p ∈ {p1, . . . ,pg} such that p | (θ). As p | (a1), we get

a0 = a0 − μθ(θ) = −a1θ − · · · − an−1θ
n−1 − θn

so that p2 | (a0) contradicting the assumption p ‖ a0. Hence p is ramified and we
conclude by using Theorem 7.102. �

In the case of Galois extensions, the result is simpler.

Proposition 7.104 Let K/Q be a Galois extension of degree n and p be a prime
number. Then the ramification indexes are all equal, say to ep , and the inertial
degrees are all equal, say to fp . Hence we have

(p) =
( gp∏

i=1

pi

)ep
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with epfpgp = n. Furthermore, Gal(K/Q) operates transitively on the prime ideal
above p, i.e. for all prime ideals pi , pj above p, there exists σ ∈ Gal(K/Q) such
that σ(pi ) = pj .

Now we state the main result of this section. The idea is to prove and use the fact
that, if p � f , then

OK/(p) 
 Fp[X]/(μθ ).

Theorem 7.105 (Kummer–Dedekind) Let K = Q(θ) be an algebraic number field
of degree n with θ ∈ OK, and p be a prime number such that p � f . Let μ ∈ Z[X]
be the minimal polynomial of θ and suppose that μ factorizes over Fp[X] as

μ =
g∏

i=1

Pi
ei

where the Pi are distinct monic irreducible polynomials in Fp[X]. Then we have

(p) =
g∏

i=1

p
ei

i

where the prime ideals pi are pairwise distinct and given by pi = (p,Pi(θ)) =
pOK + Pi(θ)OK where Pi is any lifting of Pi in Z[X]. We also have

NK/Q(pi ) = pdegPi .

Proof Let p be a prime number such that p � f .

� Step 1. We will prove that

OK/(p) 
 Fp[X]/(μ). (7.16)

Let {α1, . . . , αn} be an integral basis for K. Then {1, θ, . . . , θn−1} is a Z-basis
for Z[θ ] for which there exists a matrix A = (aij ) ∈ Mn(Z) such that θi−1 =∑n

j=1 aijαj for all i ∈ {1, . . . , n}. Since det(aij ) = ±f and p � f , we infer that

the reduction matrix A = (aij ) ∈ Mn(Fp) is invertible, and therefore induces an
isomorphism

OK/(p) 
 Z[θ ]/pZ[θ ].
Now since μ is irreducible over Z, we have Z[X]/(μ) 
 Z[θ ] which implies that

Z[θ ]/pZ[θ ] 
 Z[X]/(μ,p) 
 Fp[X]/(μ)

and hence (7.16) is proved.
� Step 2. Let (p) = q

k1
1 · · ·qkr

r given by Theorem 7.88 for some pairwise distinct
prime ideals qi and positive integers r and ki .
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� By Definition 7.3, the maximal ideals of OK/(p) are of the form q/(p) where
q is a prime ideal dividing (p). We infer that q ∈ {q1, . . . ,qr} and r is thus the
number of maximal ideals in OK/(p), which are then of the form qi/(p) for
all i ∈ {1, . . . , r}.

� Similarly, we infer that the maximal ideals of Fp[X]/(μ) are the ideals
(Pi)/(μ) and hence g counts the number of maximal ideals in Fp[X]/(μ).

Hence we have proved that r is the number of maximal ideals in OK/(p) and g

is that of maximal ideals in Fp[X]/(μ). By (7.16), we get r = g.
� Step 3. For all i ∈ {1, . . . , g}, let Pi be any lifting of Pi in Z[X] and set pi =

(p,Pi(θ)). Similarly as for (7.16), one can prove the following isomorphisms for
all i ∈ {1, . . . , g}

OK/pi 
 Z[θ ]/(p,Pi(θ)
)
Z[θ ] 
 Z[X]/(p,Pi(X)

)
Z[X] 
 Fp[X]/(Pi).

(7.17)

Since the polynomials Pi are irreducible over Fp[X], the ideals (Pi) are maximal.
Therefore (7.17) implies that the ideals pi are maximal, and hence are prime
ideals of OK. We also infer that NK/Q(pi ) = pdegPi . Furthermore, we have

p
e1
1 · · ·peg

g = (
p,P1(θ)

)e1 · · · (p,Pg(θ)
)eg ⊆ (

p,P1(θ)e1 · · ·Pg(θ)eg
)

and since μ ≡ P
e1
1 · · ·P eg

g (modp) and μ(θ) = 0, we get P1(θ)e1 · · ·Pg(θ)eg ∈
pZ[θ ] and hence

p
e1
1 · · ·peg

g ⊆ (p).

On the other hand, since pi = (p,Pi(θ)) ⊇ (p), we get pi | (p) for all i ∈
{1, . . . , g}. This implies that

(p) = p
a1
1 · · ·pag

g

for some non-negative integers ai satisfying ai � ei for all i ∈ {1, . . . , g}. Com-
paring the norms as in Lemma 7.100, we obtain

n = a1 degP1 + · · · + ag degPg

and by the Chinese remainder theorem we also have

Fp[X]/(μ) 

g⊕

i=1

Fp[X]/(Pi)
ei

implying that

n = e1 degP1 + · · · + eg degPg.

Setting di = degPi and summarizing the above results, we have finally obtained
ai � ei and a1d1 +· · ·+ agdg = e1d1 +· · ·+ egdg , which implies that ai = ei for
all i ∈ {1, . . . , g}. The proof is complete. �
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Remark The fact that pi = (p,Pi(θ)) is not really useful in practice. What is more
important yet is to know the nature of the prime ideals above p, e.g. whether they
are ramified or not.

7.3.7 Prime Ideal Decomposition in Quadratic Fields

The Legendre–Jacobi–Kronecker Symbol

The Legendre symbol was seen in Exercise 17 in Chap. 3 where it was defined in
the following way. Let p be an odd prime number and n be a positive integer. The
Legendre symbol (n/p) is defined by (n/p) = 0 if p | n, and otherwise

(
n

p

)
=

{
1, if n is residue quadratic mod p

−1, if n is not residue quadratic mod p.

Among the usual properties already proved in this exercise, the main theorem is the
quadratic reciprocity law. If p and q are distinct odd primes, then

(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

We also have the two complementary laws
(−1

p

)
= (−1)(p−1)/2 and

(
2

p

)
= (−1)(p

2−1)/8.

There are a lot of proofs in the literature. Nevertheless, it is noteworthy that the
Legendre symbol (n/p) is a real primitive Dirichlet character modulo p. In fact, we
have the following useful result (see [Coh07]).

Lemma 7.106 Let q � 2 be an integer and χ be a real primitive Dirichlet character
modulo q . If p is an odd prime, then

χ(p) =
(

χ(−1)q

p

)
.

As for all Dirichlet characters, the Legendre symbol may be generalized to
all integers by complete multiplicativity. More precisely, if m,n ∈ Z, the Jacobi–
Kronecker symbol, still denoted by (n/m), is defined in the following way.

� (n/1) = 1, (n/ − 1) = sgn(n), (−1/2) = 1, (−1/n) = (−1)(n−1)/2 if n � 1 is
odd, and

(
n

2

)
=

{
(−1)(n

2−1)/8, if 2 � n,

0, otherwise.
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� If m = ±p
e1
1 · · ·per

r , then

(
n

m

)
=

(
n

±1

) r∏

i=1

(
n

pi

)ei

where the (n/pi) are Legendre symbols. A generalized quadratic reciprocity law
still exists with this symbol. Let m,n ∈ Z \ {0} and set n = 2en1 and m = 2f m1
with n1,m1 odd. Then

(
n

m

)
= (−1)((m1−1)(n1−1)+(sgn(m)−1)(sgn(n)−1))/4

(
m

n

)
.

In particular, if D1,D2 are non-zero integers congruent to 0 or 1 modulo 4, then
(

D2

D1

)
= (−1)((sgn(D1)−1)(sgn(D2)−1))/4

(
D1

D2

)
.

Lemma 7.106 was generalized by Dirichlet for Kronecker symbols (see [Coh07,
Ros94]).

Lemma 7.107 Let χ be a real primitive Dirichlet character modulo q . Then D =
χ(−1)q is a discriminant of a quadratic field and

χ(n) =
(

D

n

)
.

Conversely, if D is a discriminant of a quadratic field, then the Kronecker symbol
defines a real primitive Dirichlet character modulo q = |D|.

Prime Ideal Decomposition of (p)

Let d ∈ Z \ {0,1} squarefree and K = Q(
√

d) be a quadratic field with discriminant
dK. By Proposition 7.64, {1,ω} is an integral basis for K where ω = 1

2 (dK + √
dK)

in every case. Applying Corollary 7.103 and Theorem 7.105, we get the following
result.

Proposition 7.108 Let p be a prime number and (dK/·) be a Kronecker symbol.
Then we have

(dK/p) Factorization of (p) Nature Remarks

−1 (p) = p Inert
1 (p) = p1p2 Completely split pi = (p,ω − dK±b

2 ) with b solution
of b2 ≡ dK (mod 4p)

0 (p) = p2 Totally ramified p= (p,ω) except when p = 2 and
dK = 16 where p= (p,1 + ω)
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The Conductor of a Quadratic Field

Proposition 7.109 Let d ∈ Z \ {0,1} squarefree and K = Q(
√

d) be a quadratic
field with discriminant dK. Then K is a subfield of Q(ζ|dK|).

Proof

� If dK is odd, we have dK = d ≡ 1 (mod 4). Write d = ±∏
i pi where pi

are pairwise distinct odd prime numbers. Define p∗
i = (−1)(pi−1)/2pi so that

p∗
i ≡ 1 (mod 4) and dK = ∏

i p
∗
i . Using quadratic Gauss sums, one can show

(see [Hin08, Proposition 4.1] for instance) that for all odd primes p

∑

j (modp)

(
j

p

)
ζ

j
p = √

p∗

which implies that Q(
√

p∗
i ) ⊂ Q(ζpi

). We infer that Q(
√

p∗
i ) ⊂ Q(ζ|dK|) and

hence each p∗
i is a square in Q(ζ|dK|), so that dK is also a square in Q(ζ|dK|).

Therefore K is a subfield of Q(ζ|dK|) in this case.
� If dK is even, we have dK = 4d with d ≡ 2,3 (mod 4). We may suppose that

d �= −1 since Q(
√−1) = Q(ζ4). Set d = ±2e

∏
i pi with e ∈ {0,1} and pi are

odd prime numbers and hence dK = ±2e
∏

i p
∗
i . As above, p∗

i is a square in
Q(ζ|dK|) and since 4 | dK and Q(

√−1) = Q(ζ4), −1 is also a square in Q(ζ|dK|).
Therefore dK is a square in Q(ζ|dK|) if e = 0. If e = 1, then 8 | dK and then
Q(ζ8) ⊂ Q(ζ|dK|), so that 2 is a square in Q(ζ|dK|), and hence dK is a square in
Q(ζ|dK|) in this case, as required. �

We say that |dK| is the conductor of Q(
√

d). Proposition 7.109 is a particular case
of the Kronecker–Weber theorem (see Theorem 7.154) stating that every abelian
extension K of Q is contained in a cyclotomic field Q(ζf ).

7.3.8 The Class Group

Let K/Q be an algebraic number field of degree n, ring of integers OK, signature
(r1, r2) and embeddings σ1, . . . , σn. Recall that I(K) is the abelian group of frac-
tional ideals of OK and P(K) is the subset of I(K) of principal ideals. In view
of (a)(b)−1 = (ab−1), we see that P(K) is a subgroup of I(K), and since I(K)

is abelian, we infer that P(K) is a normal subgroup of I(K), so that the quotient
group I(K)/P(K) is well-defined and abelian.

Definition 7.110 (Class group) The abelian quotient group I(K)/P(K) is called
the ideal class group of OK and is denoted20 by Cl(K).

20See footnote 18 for the notation.
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For a ∈ I(K), we write a the corresponding class in Cl(K). We have

a = (1) ⇐⇒ a = (a) = aOK.

Example In K = Q(
√

6), set p = (2,
√

6). We have NK/Q(p) = 2 so that p is not
principal. Since (2) = p2 by Theorem 7.105, we have p

2 = (1) and hence p has
order 2 in Cl(K).

The main result is the following fundamental finiteness theorem of Cl(K). The
finiteness of Cl(K) is one of the three important finiteness theorems in algebraic
number theory:

1. Cl(K) is finite.
2. O∗

K
is a finitely generated abelian group.

3. Given D > 0, the set of algebraic number fields K such that |dK| � D is finite.

Theorem 7.111 Let K/Q be an algebraic number field of degree n. The ideal class
group Cl(K) of K is a finite abelian group. Furthermore, Cl(K) is generated by the
classes of prime ideals p in OK such that NK/Q(p) � c for some c > 0.

This result leads to the following crucial definition.

Definition 7.112 (Class number) The order of Cl(K) is called the class number of
K and is denoted by hK.

The proof of Theorem 7.111 requires the following lemma.

Lemma 7.113

(i) There exists a constant cK > 0, called the Hurwitz constant and depending only
on K, such that in every non-zero integral ideal a there is a non-zero β such
that

∣∣NK/Q(β)
∣∣� cKNK/Q(a).

(ii) Every ideal class of K contains an integral ideal a such that NK/Q(a) � cK.

Proof

(i) Let {α1, . . . , αn} be an integral basis for K and set

cK =
n∏

j=1

(
n∑

i=1

|σj (αi)|
)

and r = [NK/Q(a)1/n]. The set

S = {a1α1 + · · · + anαn : ai ∈ Z, 0 � ai � r}
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has (r + 1)n elements and so |S| > NK/Q(a) = |OK/a|. The elements of S

cannot lie in distinct cosets of a in OK and therefore there are β1, β2 ∈ S such
that β1 �= β2 and β1 ≡ β2 (moda) by the Dirichlet pigeon-hole principle. Set
β = β1 − β2. Then β ∈ a \ {0} and is such that β = ∑n

i=1 biαi with |bi | � r .
Now we have

∣∣NK/Q(β)
∣∣ =

n∏

j=1

∣∣σj (β)
∣∣�

n∏

j=1

n∑

i=1

|bi |
∣∣σj (αi)

∣∣� cK rn � cKNK/Q(a)

as asserted.
(ii) Let b be a fractional ideal in the given ideal class. Without loss of generality,

one may assume that b−1 is an integral ideal. Choose an element β ∈ b−1 such
that |NK/Q(β)| � cKNK/Q(b−1) and set a = βb.
� Since β ∈ b−1 and bb−1 = OK, we deduce that a is an integral ideal.
� We have ab−1 = (β) so that

NK/Q(a)NK/Q

(
b

−1) = ∣∣NK/Q(β)
∣∣� cKNK/Q

(
b

−1)

which implies the desired result.

The proof is complete. �

Now we are in a position to prove Theorem 7.111.

Proof of Theorem 7.111 Let b be an ideal class in Cl(K). By Lemma 7.113, b
contains a non-zero integral ideal a such that NK/Q(a) � cK. From Corollary 7.97,
there are only finitely many integral ideals with a given norm so that there are only
finitely many choices for a. Since b = a, we infer that there are only finitely many
ideal classes b. �

Remark 7.114

1. The fractional ideals a such that OK ⊂ a and NK/Q(a) � cK represent all ideal
classes, but that does not imply that the number of ideal classes, i.e. hK, is
bounded above by cK since several fractional ideals containing OK may have
the same norm.

2. To get upper and lower bounds for hK is one of the highlights in algebraic number
theory, mainly because the class number is a sort of measure of the default of
principality of an algebraic number field. Indeed, if hK = 1, then I(K) = P(K)

and OK is a PID, and hence a UFD. Conversely, if OK is a UFD, it is also a PID
by Theorem 7.93, so that I(K) = P(K) and thus hK = 1. We will provide some
upper bounds using multiplicative methods in the next section.

3. The Hurwitz constant can be very large, and hence useless to help to compute
hK. One can improve on cK by using the following methods.
� The geometry of numbers enables us to obtain the Minkowski bound, i.e. every

ideal class of K contains an integral ideal a such that

NK/Q(a) � MK|dK|1/2 (7.18)
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with

MK =
(

4

π

)r2 n!
nn

. (7.19)

MK is called the Minkowski constant attached to K.
� Analytic methods may supersede the Minkowski constant (see Sect. 7.5).

4. The discussion above allows us to construct an algorithm to compute hK. Indeed,
to determine the representatives of the ideal classes, we only need to look at
the integral ideals with norms upper bounded by a fixed constant c. We infer
that every prime ideal dividing these integral ideals has a norm bounded by this
constant, and since the norm of a prime ideal is a power of a prime number, it
is then sufficient to look at the prime numbers bounded by the constant. Indeed,
forming all possible products of the prime ideals lying above p � c will yield all
ideals of norm � c. This gives the following algorithm.
� Given an algebraic number field K = Q(θ), determine its degree, signature,

discriminant and compute bK = MK|dK|1/2.
� Determine the prime ideal factorization of (p) for all primes p � bK.
� Find all dependence relations between the integral ideals having norm � bK.

A useful method is to compute NK/Q(θ + m) for some m ∈ Z and use those
values that only involve the primes p � bK.

It should also be noticed that, if every prime number p � bK factorizes into a
product of prime ideals, each of which is principal, then hK = 1.

Example 7.115

1. Let K = Q(
√

229). A defining polynomial of K is P = X2 −X−57, and we have
n = 2, (r1, r2) = (2,0), {1,ω} is an integral basis for K with ω = 1

2 (1 + √
229)

and dK = 229. We also have MK|dK|1/2 ≈ 5.351.
We factorize (2), (3) and (5) using Theorem 7.105 or Proposition 7.108 which

gives

(2) = p2, (3) = p3p
′
3 and (5) = p5p

′
5.

Furthermore, we have

(7 − ω) = p3p5 and (6 + ω) = p
′
3p

′
5.

We infer that p2 = (1), and

p3 · p5 = (1)

p3 · p′
3 = (1)

}
=⇒ p5 = p′

3 = (p3)
−1

and

p′
3 · p′

5 = (1)

p3 · p′
3 = (1)

}
=⇒ p′

5 = p3
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and thus all the ideal classes lie among the following three distinct classes (1) =
p2, p3 and (p3)

−1, so that hK = 3.
2. Let θ be a root of the polynomial P = X3 − X2 − 11X − 1. We have n = 3,

(r1, r2) = (3,0), dK = 1304 and MK|dK|1/2 ≈ 8.025.
It was seen in Example 7.79 that θ is a unit in K so that (θ) = (1). Further-

more, using Theorem 7.105, we get

(2) = p
2
2p

′
2, (3) = p3p

′
3, (5) = p5 and (7) = p7.

We also have

(1 − θ) = p2p
′
2p3, (1 + θ) = p2p

′2
2 , (2 + θ) = p

2
3 and (3 + θ) = p2p

′
2.

Using (1 − θ), (3 + θ) and (3) we get

p2 · p′
2 · p3 = (1)

p2 · p′
2 = (1)

}
=⇒ p3 = p′

3 = (1)

and using (1 + θ), (3 + θ) and (2) we get

p2 · p′
2

2 = (1)

p2 · p′
2 = (1)

}
=⇒ p2 = p′

2 = (1)

and since p5 = p7 = (1), we get hK = 1 and hence OK is a PID.

The following result is of great use in the theory of Diophantine equations.

Proposition 7.116 Let K be an algebraic number field with class number hK and
a be an integral ideal of K. Let p be a prime number such that p � hK. If ap is
principal, then a is principal.

Proof By Bézout’s theorem, we have uhK +pv = 1 for some u,v ∈ Z. By assump-
tion, we have a

p = (1) and by Lagrange’s theorem we infer that ahK = (1), so that

a = a
uhK+pv = (

a
hK

)u(
a
p
)v = (1)

which implies the asserted result. �

Example Let us have a look at Bachet’s Diophantine equation x2 + 5 = y3. Let
(x, y) ∈ Z

2 be a solution of this equation. One may assume that y is odd, otherwise
x is odd and we have x2 ≡ 3 (mod 4) which is impossible. One may also suppose
that x and y are coprime. Consider the quadratic field K = Q(

√−5). By Proposi-
tion 7.64, we have OK = Z[√−5]. In this ring, we have

(x + √−5)(x − √−5) = y3.
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Since y is odd and x and y are coprime, we infer that the ideals (x + √−5) and
(x − √−5) are coprime, and hence there exist two coprime integral ideals a and b

such that (x + √−5) = a3 and (x − √−5) = b3. Therefore a3 is principal. Using
the method of Example 7.115, one has hK = 2 so that a is principal by Proposi-
tion 7.116. By Example 7.75, the units in K are ±1 which are cubes, hence we
deduce that there exist a, b ∈ Z such that

x + √−5 = (a + b
√−5)3.

Equating imaginary parts implies that 3a2b − 5b3 = 1 and hence b | 1, so that b =
±1. This gives 3a2 − 5 = ±1 which is impossible in both cases. Hence Bachet’s
equation has no solution in Z

2.

7.3.9 The PARI/GP System

The package PARI/GP is one of the main programs designed to deal with computa-
tional algebraic number theory problems. We introduce here some functions which
enable us to compute the main invariants of algebraic number fields. In what fol-
lows, let K = Q(θ) be an algebraic number field with θ being a root of the monic
polynomial P ∈ Z[X].

1. One may enter P in the classical way.

Example P = x6 − x5 + 8 ∗ x4 − 8 ∗ x3 + 22 ∗ x2 − 22 ∗ x + 29.

2. poldisc(P ) and nfdisc(P ) respectively give disc(P ) and dK. One may use the
function factor to provide a decomposition in prime numbers of these invari-
ants.

Example disc(P ) = −53 × 75 × 134 and dK = −53 × 75. We infer that
f = 132.

3. nfbasis(P ) gives an integral basis for K.

Example Set α1 = 1, α2 = θ , α3 = θ2, α4 = θ3. Then {α1, α2, α3, α4, α5, α6}
is an integral basis for K with

α5 = θ4 + 5θ3 + 4θ2 + 2θ + 2

13
and α6 = θ5 + 5θ3 − 5θ2 + 5θ + 3

13
.

4. idealprimedec(nfinit(P ),p) and idealfactor(nfinit(P ), a) respectively pro-
vide the prime ideal factorizations of the ideal (p) and the fractional ideal a.

Example (3) = p3p
′
3 with p3 = (3,−α1 + α2 + 2α4 − 4α5) and p′

3 =
(3,−5α1 − α2 + 2α3 + 2α4 − 3α5 − α6). Furthermore, we also have
f (p3 | 3) = f (p′

3 | 3)=3.
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5. bnfclgp(P ) provides the class number and the class group. The given 3-
component vector provides hK, the structure of Cl(K) as a product of cyclic
groups of order mi and the generators of Cl(K) of respective orders mi .

Example hK = 2.

6. bnfreg(P ) provides the regulator of K.

Example RK ≈ 2.101 018 72 . . .

7. bnfclassunit(P ) provides the class group, the regulator and a system of fun-
damental units. The result of this function is a 10-component vector v. In par-
ticular, v2 is the signature, v3 is dK and f , v4 is an integral basis, v5 is hK
as in bnfclgp, v6 is RK as in bnfreg and v9 is a system of fundamental units
expressed as polynomials.

8. polgalois(P ) provides Gal(K/Q).

Example Gal(K/Q) 
 C6 
 Z/6Z.

9. rnfconductor(bnfinit(y),P ) provides the conductor fK of the abelian exten-
sion K/Q.

Example fK = 35 so that K ⊆ Q(ζ35) and K � Q(ζm) for m < 35. Fur-
thermore, since 35 = 5 × 7, the only primes that ramify in K are 5 and 7.

10. kronecker(x, y) provides the Kronecker symbol (x/y) of x, y ∈ Z.
11. polcyclo(n) gives �n.
12. polsubcyclo(n, d) gives cyclic subfields of degree d of Q(ζn) with d | ϕ(n).

Example P = polsubcyclo(35,6)[2] gives P = x6 − x5 + 8x4 − 8x3 +
22x2 − 22x + 29.

7.4 Multiplicative Aspects of the Ideal Theory

In what follows, K = Q(θ) is an algebraic number field of degree n and let OK be
its ring of integers. The purpose of this section is to use tools from analytic number
theory to get an answer to certain questions of algebraic number theory.

7.4.1 The Function νK

Definition 7.117 For all positive integers m, the function νK is defined by

νK(m) =
∑

NK/Q(a)=m

1.

Hence νK(m) is the number of non-zero integral ideals with norm m.
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The following result shows that νK is a multiplicative function. Besides, we shall
see later that this function is not really far from the usual Piltz–Dirichlet divisor
function τn. Hence we will be able to apply to νK the fundamental results from
Chap. 4.

Proposition 7.118 The function νK is multiplicative. Furthermore, for all prime
powers pα , we have

νK
(
pα

) =D(f1,...,fg)(α)

where D(f1,...,fg)(α) is the denumerant of α with respect to g and to the set
{f1, . . . , fg} of all inertial degrees of the prime ideals above p, i.e. the number
of non-negative integer solutions of the Diophantine linear equation f1x1 + · · · +
fgxg = α.

Proof

� Let a be an integral ideal of norm NK/Q(a) = bc with (b, c) = 1 and set a =∏
p p

ap and

b=
∏

p

(NK/Q(p),b)>1

p
ap and c =

∏

p

(NK/Q(p),c)>1

p
ap .

Then a= bc with NK/Q(b) = b and NK/Q(c) = c. Hence, if (b, c) = 1, any ideal
of norm bc can be uniquely written as the product of integral ideals of norm b

and of norm c respectively. This establishes the multiplicativity of νK.
� Let p be a prime number. By Lemma 7.100, we have

(p) =
g∏

i=1

p
ei

i

with 1 � g � n and e1f1 + · · · + egfg = n.
If a is a non-zero integral ideal satisfying NK/Q(a) = pα for some α ∈N, then

a | (pα) by (7.13) so that a = p
a1
1 · · ·pag

g for some (a1, . . . , ag) ∈ (Z�0)
g , and

comparing the norms we get f1a1 + · · · + fgag = α. Hence a induces a solution
(a1, . . . , ag) ∈ (Z�0)

g of the Diophantine equation f1x1 + · · · + fgxg = α, and
if b is another non-zero integral ideal such that NK/Q(b) = pα and inducing the

same solution, then proceeding similarly we infer that b = p
b1
1 · · ·pbg

g for some
(b1, . . . , bg) ∈ (Z�0)

g satisfying f1b1 + · · · + fgbg = α, and therefore bi = ai

for all i ∈ {1, . . . , g} so that b= a.
Conversely, if (a1, . . . , ag) ∈ (Z�0)

g is a solution of the equation f1x1 +· · ·+
fgxg = α, then a = p

a1
1 · · ·pag

g is a non-zero integral ideal satisfying NK/Q(a) =
pα by Theorem 7.96 (iii).

We have thus defined a one-to-one correspondence between the set of non-zero
integral ideals having a norm equal to pα and the set of the solutions in (Z�0)

g
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of the equation f1x1 + · · · + fgxg = α, completing the proof since these two sets
are finite. �

The following particular cases are easy.

Corollary 7.119 With the notation of Proposition 7.118, we have the following re-
sults.

(i) If K is Galois over Q, then

νK
(
pα

) =
{

τg(p
α/fp ), if fp | α,

0, otherwise.

(ii) If all the prime ideals above p are of degree 1, then νK(pα) = τg(p
α).

(iii) In every case, we have the inequality νK(m) � τn(m).

Proof

(i) If K is Galois over Q, then f1 = · · · = fg = fp by Proposition 7.104, so that

νK
(
pα

) =D(1,...,1)

(
α

fp

)
=

{
τg(p

α/fp ), if fp | α,

0, otherwise

by (4.23).
(ii) If fi = 1 for all i ∈ {1, . . . , g}, then νK(pα) =D(1,...,1)(α) = τg(p

α) by (4.23).
(iii) The two functions are multiplicative, so that it is sufficient to prove the inequal-

ity for prime powers. Now by (4.23) we get for all prime powers pα

νK
(
pα

)
�D(1,...,1)(α) = τg

(
pα

)
� τn

(
pα

)

as required.

The proof is complete. �

Remark 7.120

1. It should be noticed that from Corollary 7.119 (ii) we infer that νK(p) counts the
number of prime ideals above p with inertial degree 1.

2. The following special cases may be useful in practice. When g = 1, and then
ef = n, we have

νK(p) =
{

1, if f = 1,

0, otherwise
and νK

(
pα

) =
{

1, if n | α × e,

0, otherwise.

Hence if p is inert, so that e = g = 1, we get

νK
(
pα

) =
{

1, if n | α,

0, otherwise.
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7.4.2 The Dedekind Zeta-Function

As in the rational case, one may attach to an algebraic number field K a generating
function which contains all the arithmetic information of K.

Definition 7.121 Let K/Q be an algebraic number field. The Dedekind zeta-
function ζK of K is the Dirichlet series of the multiplicative function νK, so that
for all s = σ + it ∈C such that σ > 1, we have

ζK(s) =
∞∑

m=1

νK(m)

ms
=

∑

a

1

NK/Q(a)s
=

∏

p

(
1 − 1

NK/Q(p)s

)−1

where the second sum is taken over non-zero integral ideals, the product runs
through all prime ideals of OK and the last equality comes from Corollary 4.48.
The absolute convergence in the half-plane σ > 1 follows from the estimate

∑

NK/Q(p)�x

∣∣∣∣
1

NK/Q(p)s

∣∣∣∣� n
∑

p�x

1

pσ

if σ > 1 and x � 2. It should be noticed that ζK(s) has no zero in the region σ > 1
since none of the factors of the Euler product have any zeros therein.

Remark 7.122

1. We readily get ζQ(s) = ζ(s), so that the Dedekind zeta-function generalizes the
ordinary Riemann zeta-function.

2. If K is Galois over Q, then the Euler product simplifies

ζK(s) =
∏

p

(
1 − 1

pfps

)−gp

.

3. Using Corollary 7.119 (iii), we infer that for all real numbers σ > 1, we have

ζK(σ ) � ζ(σ )n. (7.20)

We shall see below that the function ζK(s) has an analytic continuation to a
meromorphic function in the whole complex plane with a simple pole at s = 1.
Therefore this inequality does not reflect the arithmetic nature of the Dedekind
zeta-function, since ζ(s)n has at s = 1 a multiple pole of order n.

4. It may be shown that if two algebraic number fields have the same Dedekind
zeta-function, then they have the same degree, the same signature and the same
discriminant (see [Coh93]).

5. One may define the Möbius function for K in the same way as in the rational
case. Let μK be the OK-arithmetic function defined by μK(OK) = 1 and, for all
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non-zero integral ideals a

μK(a) =
{

(−1)r , if a = p1 · · ·pr ,

0, otherwise.

One can prove that the Dirichlet series of μK is ζK(s)−1 and we also have for all
s ∈ C such that σ > 1

∣∣ζK(s)−1
∣∣� ζK(σ ).

In the sequel, the following specific notation is needed.
Let K/Q be an algebraic number field of degree n, signature (r1, r2), discrimi-

nant dK, class number hK, regulator RK and let wK be the number of roots of unity
contained in K (see Proposition 7.77). According to the usual practice, we set

�K(s) = �(s/2)r1�(s)r2 and AK = 2−r2π−n/2|dK|1/2

where �(s) is the usual Gamma-function. The function �K is sometimes called the
Gamma-function of 21

K.
The main properties of the Dedekind zeta-function generalize those of the Rie-

mann zeta-function. In particular, ζK(s) satisfies a functional equation and an ap-
proximate functional equation. The former was discovered by Hecke using n-
dimensional analytic methods analogous to the case of ζ . Using adelic Chevalley’s
language, Tate gave another proof of the functional equation in his thesis.22

Theorem 7.123 (Functional equation)

(i) The function ζK(s) can be extended analytically in the whole complex plane to
a meromorphic function having a simple pole at s = 1 with residue κK equal
to

κK = 2r1(2π)r2hKRK

wK|dK|1/2
. (7.21)

This identity is called the analytic class number formula.
(ii) For all s ∈C \ {1}, the function ξK(s) = As

K
�K(s)ζK(s) satisfies the following

functional equation23

ξK(s) = ξK(1 − s).

Furthermore, for all real numbers σ > 1, we also have

κK � (2π)r2σ(σ − 1)ξK(σ )|dK|−1/2. (7.22)

21The factor As
K
�K(s) is sometimes called the Euler factor of ζK(s).

22See [Lan94, Nar04, Neu10] for an exhaustive account of Hecke’s method and Tate’s work.
23Some authors [Coh93, Neu10] consider the “weighted” function 2r2ξK(s) instead.
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(iii) For all t ∈R, set τ = |t | + 3. We have

ζK(1 + it) �K log τ and ζK(it) �K τn/2 log τ.

By the Phragmén–Lindelöf principle, we infer that, for all 0 < σ < 1, we have

ζK(σ + it) �K τn(1−σ)/2 log τ.

(iv) In the region

σ � 1 − 1

c1n5

(
log log t

log t

)2/3

and t � 1.1

we have
∣∣ζK(s)

∣∣� ec2n
6|dK|2 log t

for some absolute constants c1, c2 > 0.

For a proof of (iv), see [Bar78, Lemma 15].
The next step is to get a zero-free region for the Dedekind zeta-function. As for

the Dirichlet L-functions, a Deuring–Heilbronn phenomenon appears for ζK(s). We
summarize in the following theorem the main results of this type and also provide
the analogue of (3.35) for ζK(s) which is used to get these zero-free regions. The
proofs can be found in [Bar78, Sta79]. The result (ii) below is a refinement of clas-
sical theorems by Landau [Lan27] and Sokolovskiǐ [Sok68].

Theorem 7.124 (Zero-free regions) Let s = σ + it ∈C and the constants c1, c3 > 0
and c2 > 1 be absolute.

(i) In the region 1 − 1/(n + 1)� σ � 1 and t � e, we have

∣∣ζK(s)
∣∣� ec1n

8|dK|2 t600n2{n(1−σ)}3/2
(log t)2/3.

(ii) The function ζK(s) has no zero in the region

σ � 1 − 1

c2n11|dK|3(log t)2/3(log log t)1/3
and t � 4.

(iii) The function ζK(s) has no zero in the region

σ > 1 − c3

log(|dK|(|t | + 2)n)
and t ∈R

except maybe for the exceptional zero of ζK(s). If the latter exists, then it is
real and simple.
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Remark 7.125 As in the rational case (see Theorem 3.82), an approximate func-
tional equation for ζK(s) has been stated in [CN63] where it is proved that, for
some H > 0, x, y > H satisfying xy = |dK|( |t |

2π
)n and c1 < x/y < c2, we have

ζK(s) =
∑

NK/Q(a)�x

1

NK/Q(a)s
+ A1−2s

K

�K(1 − s)

�K(s)

∑

NK/Q(a)�y

1

NK/Q(a)1−s

+ O
(
x1−σ−1/n logx

)
.

This implies that

ζK(s) � τn(1−σ)/2

for all 0 < σ < 1 where τ = |t | + 3.

The functional equation shows that ζK(s) may have trivial zeros at negative in-
tegers −m with m ∈ N. In fact, it can be shown that if m is even, then the order of
the possible zero is equal to r1 + r2, while for m odd the order equals r2. The Euler
product implies that all other zeros ρ = β + iγ satisfy 0 < β < 1 and are called
non-trivial zeros. Furthermore, we deduce that the only fields for which some of the
values of ζK(−m) can be non-zero are totally real fields. The next result shows that
these values are nevertheless rational numbers.

Theorem 7.126 (Siegel–Klingen) Let K/Q be a totally real algebraic number field,
i.e. r2 = 0. For all positive integers m, we have ζK(1 − 2m) ∈Q.

Combining this result with the functional equation and assuming K to be totally
real of degree n, we get for all m ∈N

ζK(2m) = qmπ2mnd
−1/2
K

for some qm ∈Q \ {0}.

7.4.3 Application to the Class Number

The problem of getting upper and lower bounds for the class number hK of an alge-
braic number field K has a long history. In particular, the search for quadratic fields
with class number one became in the early days one of the most important ques-
tions in algebraic number theory. For imaginary quadratic fields, the answer came
in 1966. For real quadratic fields, Gauss conjectured that there are infinitely many
such fields having class number one, but the question remains open (see Sect. 7.5).

One of the first ideas to get an upper bound for hK is the use of the functional
equation, in particular the inequality (7.22). Using (7.20) and choosing σ near 1
enables us to get very good upper estimates for hKRK. In particular, this approach
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enables Louboutin [Lou98] to get the following estimate,24 valid for all totally real
algebraic number fields of degree n� 2

hKRK � d
1/2
K

(
e logdK

4n − 4

)n−1

. (7.23)

But precise lower bounds for the regulator are needed, and such results are very
difficult to obtain in the general case. Nevertheless, it should be mentioned that non-
trivial lower bounds have been discovered, notably by Cusick [Cus84], Silverman
[Sil84], Friedman [Fri89] and Uchida [Uch94]. These estimates will be discussed in
Sect. 7.5.

Another way to estimate hK lies in Theorem 7.111 and the proof of Lemma 7.113.
Let bK be any positive real number such that every ideal class contains a non-zero
integral ideal a such that

NK/Q(a) � bK.

From Remark 7.114, we know that bK could be the Minkowski bound, and we infer
that

hK �
∑

NK/Q(a)�bK

1 =
∑

m�bK

νK(m).

It is therefore important to have at our disposal upper bounds for the average order
of νK which do not depend on the invariants of K. By Corollary 4.59, we get

∑

m�x

νK(m) = κKx + oK(x)

but κK contains hK. Another interesting result is the estimate [CN63]

∑

m�x

νK(m)2 �K x(logx)n−1

but the implied constant depends on the usual invariants of K. Using Corol-
lary 7.119 (iii) and Exercise 12 in Chap. 4, we get the following result.

Theorem 7.127 Let K/Q be an algebraic number field of degree n and class num-
ber hK. Let bK such that every ideal class contains a non-zero integral ideal a such
that NK/Q(a) � bK. Then we have

hK � bK

n−1∑

j=0

(
n − 1

j

)
(logbK)j

j ! � bK(logbK + n − 1)n−1

(n − 1)! .

24A proof is supplied in Exercise 11.
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In [Bor02], the function τn has been studied more carefully. This leads to the
following improvement.

Theorem 7.128 Let K/Q be an algebraic number field of degree n � 2 and class
number hK. Let bK � 6 such that every ideal class contains a non-zero integral ideal
a such that NK/Q(a) � bK. Then we have

hK � 2bK(logbK)n−1.

Applied with bK = MK|dK|1/2 where MK is the Minkowski constant (7.19), we
get

hK � 22−nMK|dK|1/2(logM2
K
|dK|)n−1

as soon as |dK| � 36M−2
K

.

7.4.4 Lower Bounds for |dK|
In 1881, Kronecker asked whether |dK| > 1 for all algebraic number fields K of
degree n � 2. This question remained open until 1890 when Minkowski created
the geometry of numbers and discovered the Minkowski bound (7.18). This lower
bound follows readily by using the fact that NK/Q(a) � 1 and the easy bounds r2 �
n/2 and nn/n! � 2n−1. By Theorem 7.102, we infer that every algebraic number
field K �= Q has at least a ramified prime number, which plays an important role
in the proof of the Kronecker–Weber theorem. Furthermore, Minkowski observed
that his method provides lower bounds tending to ∞ with the degree of K. More
precisely, using Stirling’s bounds (1.2) we see that, for all n� 3, we have

log |dK| �
(

2 + log
π

4

)
n + r1 log

4

π
− log 2πn − 1

6n
> n − 1. (7.24)

In the late 1960s and early 1970s, Stark [Sta75] used the functional equation and the
Hadamard factorization theorem to get a lower bound which eventually supersedes
the geometric methods. This is the purpose of the next result, in which the digamma
function �(σ) = �′(σ )/�(σ ) appears.

Proposition 7.129 Let K/Q be an algebraic number field of degree n, discriminant
dK and signature (r1, r2). For all real numbers σ > 1, we have

log |dK| � r1

(
logπ − �

(
σ

2

))
+ 2r2

(
log 2π − �(σ)

)− 2

σ
− 2

σ − 1
.

Proof We proceed as in Proposition 3.89. Define

FK(s) = s(s − 1)ξK(s) = s(s − 1)As
K
�K(s)ζK(s).
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FK(s) is an entire function of order 1, so that by the Hadamard factorization theo-
rem, there exist suitable constants a, b such that

FK(s) = ea+bs
∏

ρ

(
1 − s

ρ

)
es/ρ

where the product runs through all zeros ρ = β + iγ of FK(s) which are exactly the
non-trivial zeros of ζK(s). The logarithmic differentiation provides

F ′
K

FK

(s) = b +
∑

ρ

(
1

s − ρ
+ 1

ρ

)
(7.25)

where the sum is absolutely convergent. Taking s = 0 gives b = F ′(0)/F (0), and
using the functional equation of ζK(s) gives FK(s) = FK(1 − s), so that

b = F ′
K
(0)

FK(0)
= −F ′

K
(1)

FK(1)
= −b −

∑

ρ

(
1

ρ
+ 1

1 − ρ

)
.

Now if ρ is a zero of FK(s), so is ρ and since FK(s) = FK(1 − s), we infer that
1 − ρ is also a zero of FK. This gives

b = −1

2

∑

ρ

(
1

ρ
+ 1

ρ

)

and (7.25) becomes

F ′
K

FK

(s) = 1

2

∑

ρ

(
1

s − ρ
+ 1

s − ρ

)

so that, by the definition of FK(s), we get

log |dK| = r1

(
logπ − �

(
s

2

))
+ 2r2

(
log 2π − �(s)

) − 2

s
− 2

s − 1

+
∑

ρ

(
1

s − ρ
+ 1

s − ρ

)
− 2ζ ′

K

ζK
(s).

Now we have
∑

ρ

(
1

σ − ρ
+ 1

σ − ρ

)
= 2

∑

ρ

σ − β

|σ − ρ|2 > 0

and we have from the Euler product of Definition 7.121

−ζ ′
K

ζK
(σ ) =

∑

p

logNK/Q(p)

NK/Q(p)σ − 1
> 0

which concludes the proof. �
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Using this result along with Gautschi’s inequality, we get the following lower
bounds for |dK|.

Corollary 7.130 Let K/Q be an algebraic number field of degree n � 2 and dis-
criminant dK. Then we have

|dK| > max
(
en−1, e−8(2π)n

)
.

Furthermore, if n � 50, then |dK| > (2π)n.

Proof If K is a quadratic field, then |dK| � 3 > e, so that we may suppose that
n � 3. The inequality |dK| > en−1 has been seen in (7.24). By Gautschi’s inequality
[EGP00, Corollary 3], we have for all h > 0

�(1 + h) < log
(
h + e−γ

)
and �

(
1 + h

2

)
< log

(
h

2
+ e−γ−log 4

)
.

Using these inequalities in Proposition 7.129 with σ = 1 + h (h > 0), we get

log |dK| � r1

(
logπ − �

(
1 + h

2

))
+ 2r2

(
log 2π − �(1 + h)

)− 2

1 + h
− 2

h

> log

{(
4π

2h + e−γ

)r1
(

2π

h + e−γ

)2r2
}

− 2

1 + h
− 2

h

= log

{(
2π

h + e−γ

)n(2h + 2e−γ

2h + e−γ

)r1
}

− 2

1 + h
− 2

h

� n log

(
2π

h + e−γ

)
− 2

1 + h
− 2

h
.

Choosing h = √
2e−γ /n gives

log |dK| > n log 2π + f (n)

where

f (n) = γ n − 2
√

2eγ n

(
1 + 1√

2eγ n + 2

)
> −8

for all n � 2 implying that |dK| > e−8(2π)n. If n � 50, the trivial bound

1√
2eγ n + 2

<
1√

2eγ n

implies

log |dK| > n log 2π + γ n − 2
√

2eγ n − 2 > n log 2π

as asserted. �



7.4 Multiplicative Aspects of the Ideal Theory 439

Let us notice that the proof of Proposition 7.129 rests on the fact that, for all
σ > 1, we have

−ζ ′
K
(σ )

ζK(σ )
+ 1

2

∑

ρ

(
1

σ − ρ
+ 1

σ − ρ

)
> 0.

In [Odl76], Odlyzko showed that this quantity is in fact quite large and used this
to get substantial improvements on the estimates of Corollary 7.130. Later Serre,
Odlyzko and Poitou used Guinand’s and Weil’s explicit formulae to bound |dK| in
a somewhat much more elegant and efficient way than with Proposition 7.129, both
under ERH25 and unconditionally. For instance, one may prove [Poi77] without
ERH that

log |dK| � n(γ + log 4π) + r1 − 8.6n1/3.

7.4.5 The Dedekind Zeta-Function of a Quadratic Field

Let d ∈ Z \ {0,1} squarefree and K = Q(
√

d) be a quadratic field with discriminant
dK. According to Lemma 7.107, the Kronecker symbol (dK/·) is a real primitive
Dirichlet character. We define

LdK(s) =
∞∑

m=1

(dK/m)

ms

its associated Dirichlet L-series, which is absolutely convergent in the half-plane
σ > 0. Our aim is to prove the following factorization of ζK which may be viewed
as a sort of analytic translation of the quadratic reciprocity law.

Proposition 7.131 For all real numbers σ > 1, we have ζK(σ ) = ζ(σ )LdK(σ ).

Proof First note that using the Euler product of L-functions, we get

LdK(σ ) =
∏

p

(
1 − (dK/p)

pσ

)−1

=
∏

(dK/p)=1

(
1 − 1

pσ

)−1 ∏

(dK/p)=−1

(
1 + 1

pσ

)−1

.

Now using Remark 7.122 and Proposition 7.108, we get for σ > 1

ζK(σ ) =
∏

(dK/p)=1

(
1 − 1

pσ

)−2 ∏

(dK/p)=−1

(
1 − 1

p2σ

)−1 ∏

p|dK

(
1 − 1

pσ

)−1

25The Extended Riemann Hypothesis states that all non-trivial zeros of the Dedekind zeta-function
lie on the line σ = 1/2. It should be mentioned that ERH is sometimes called GRH, for Generalized
Riemann Hypothesis. However, GRH is referred to in this book as the conjecture asserting that the
Dirichlet L-functions have all their zeros lying on the line σ = 1/2. See Footnote 26.
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= LdK(σ )
∏

(dK/p)=1

(
1 − 1

pσ

)−1 ∏

(dK/p)=−1

(
1 − 1

pσ

)−1 ∏

p|dK

(
1 − 1

pσ

)−1

= LdK(σ )
∏

p

(
1 − 1

pσ

)−1

= ζ(σ )LdK(σ )

as required. �

Now letting σ −→ 1 in Proposition 7.131 and using the analytic class number
formula gives LdK(1) = κK which implies that

hK =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

LdK(1) d
1/2
K

2 log εK
, if d > 0,

LdK(1) |dK|1/2wK

2π
, if d < 0

(7.26)

where εK is the fundamental unit of K in the case of d > 0 and wK = 2, 4, 6 ac-
cording to whether dK < −4 or dK = −4, −3. This is the Dirichlet class number
formula for quadratic fields.

7.5 Further Developments

7.5.1 Euler Polynomials and Gauss Class Number Problems

Let P = X2 +X+41. One may readily check that P(n) is prime for n ∈ {0, . . . ,39}
but P(40) = 412 is not a prime number. This polynomial, discovered by Euler in
1772, was one of the first polynomials which can provide a finite subset of prime
numbers as long as n lies in a subset of non-negative integers. One may ask for a
polynomial giving all the prime numbers, but we know by Example 3.12 that such a
single-variable polynomial cannot exist. However, one may formulate the problem
in the following way: are there polynomials of the form Pq = X2 + X + q , with q

prime, such that Pq(n) is a prime number for all n ∈ {0, . . . , q − 2} ? The answer is
given by the following result.

Theorem 7.132 Let q be a prime number and Pq = X2 + X + q . Then, Pq(n) is a
prime number for all n ∈ {0, . . . , q − 2} if and only if q ∈ {2,3,5,11,17,41}.

In fact, this result is the consequence of two profound theorems. The first one
relates the values of q to the class number of the imaginary quadratic field K =
Q(

√
1 − 4q). More precisely, we have the following theorem (see [Gol85, Rib88]

and the references therein) which goes back to Rabinowitch.
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Theorem 7.133 Let q be a prime number, Pq = X2 +X +q and K = Q(
√

1 − 4q).
Then Pq(n) is a prime number for all n ∈ {0, . . . , q − 2} if and only if hK = 1.

In 1966/7, with two different methods, Baker [Bak66] and Stark [Sta67] discov-
ered all the imaginary quadratic fields with class number one, proving the following
result which easily implies Theorem 7.132.

Theorem 7.134 Let d < 0 squarefree and K = Q(
√

d). Then hK = 1 if and only if

d ∈ {−1,−2,−3,−7,−11,−19,−43,−67,−163}.

In Articles 303 and 304 of his Disquisitiones Arithmeticæ [Gau86], Gauss used
the language of binary quadratic forms to formulate several conjectures which re-
main open nowadays. Translated into the language of modern algebraic number
theory, i.e. Dedekind’s language, the two particular conjectures below can be stated
as follows, where K = Q(

√
d) is a quadratic field with class number denoted here

by h(d).

� In Article 303, Gauss conjectured that h(d) −→ ∞ as d −→ −∞. He also in-
cluded the following table

h(d) 1 2 3 4 5
Number of fields 9 18 16 54 25
Largest |d| 163 427 907 1555 2683

translated into a table of quadratic fields with small class numbers and he sur-
mised that this table is complete. Given any h ∈ N, the problem of finding all
imaginary quadratic fields of class number h is called Gauss’s class number h

problem for imaginary quadratic fields.
� For real quadratic fields, translated into modern language, Gauss surmised in Ar-

ticle 304 that there are infinitely many real quadratic fields with class number
one. This conjecture still remains open today, and we do not know if there are
infinitely many number fields of arbitrary degree having class number one, or
even just bounded.

The conjecture h(d) −→ ∞ as d −→ −∞ has a curious and interesting story
(see [Gol85] for more information). In 1918, Landau published the following result
which he attributed to a lecture given by Hecke.

Theorem 7.135 Let d < 0 and χ be an odd, real and primitive Dirichlet character
modulo |d|. If L(σ,χ) �= 0 for all real numbers σ > 1 − c1/ log |d|, then we have

h(d) >
c2|d|1/2

log |d| .
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We infer from this result that the GRH26 implies Gauss’s conjecture.
But in the 1930s, Deuring, Mordell and Heilbronn proved that the falsity of GRH

also implies Gauss’s conjecture. Hence this conjecture is true and was the first result
to be proved by assuming the truth and the falsity of GRH.

The flaw of this method is that the result is not effective, since if the GRH is
false, all constants depend on an unknown zero of L(s,χ), namely the Siegel’s zero,
located off the line σ = 1

2 (see Theorems 3.93 and 3.94). Refining this proof, in or-
der to work with Gauss’s class number one problem for imaginary quadratic fields,
Heilbronn and Linfoot proved that there are at most ten imaginary quadratic fields
with class number one, i.e. the nine fields of Theorem 7.134 plus possibly an un-
known field. The existence of this tenth imaginary UFD quadratic field reflects the
ineffectivity of the Deuring–Heilbronn phenomenon and would also contradict the
truth of the GRH. Then one can imagine that this problem led to intense research.

The solution of Gauss’s class number one problem was found by Baker [Bak66]
and Stark [Sta67], with completely different methods. Baker used an idea of Gelfond
and Linnik who proved that this problem could be solved if one had linear indepen-
dence of three logarithms, whilst Stark showed that a tenth imaginary quadratic field
cannot exist. At this point, it should be mentioned that fifteen years earlier, Heeg-
ner, a High School teacher, announced he had solved the class number one problem
[Hee52]. Unfortunately, his work contained some “gaps” in his proof and his paper
was dismissed at the time. As pointed out by Goldfeld [Gol85], Heegner died before
anyone really understood his discoveries.

The general solution to Gauss’s class number problem for imaginary quadratic
fields comes from another area in number theory. Goldfeld showed that if an elliptic
curve over Q having certain properties could exist, it would provide a lower bound
of h(d) sufficiently accurate to be effective, and then solve the conjecture. Gross and
Zagier discovered such an elliptic curve, and the method, called today the Goldfeld–
Gross–Zagier theorem, provides a solution to this long-standing problem.

Let us be more precise. To each elliptic curve E with minimal Weierstrass equa-
tion y2 = 4x3 −g2x −g3 and discriminant disc(E) = g3

2 −27g2
3 �= 0, one can define

a positive integer N , called the conductor of E, having the same prime factors as
disc(E) and dividing it, and also define an L-function, called the Hasse–Weil L-
function, by the Euler product

L(E, s) =
∏

p�disc(E)

(
1 − ap

ps
+ 1

p2s−1

)−1 ∏

p|disc(E)

(
1 − ap

ps

)−1

where ap = p + 1 − |E(Fp)| and |E(Fp)| is the number of points of E over Fp ,
including the point at infinity. It has been shown by Hasse that |ap| � 2

√
p, so

that the Euler product is absolutely convergent in the half-plane σ > 3
2 . One of

the most important results on elliptic curves over Q is a theorem proved by Wiles

26The Generalized Riemann Hypothesis, or GRH for short, asserts that the Dirichlet L-functions
have all their zeros lying on the line σ = 1/2.
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and other mathematicians27 stating that the function L(E, s) has an analytic con-
tinuation in the whole complex plane into a holomorphic function and satisfies a
functional equation. Another fundamental result is Mordell’s theorem stating that
the group E(Q) of rational points of E is a finitely generated abelian group. The
rank of this group is called the algebraic rank of E, in comparison to the analytic
rank of E which is defined as the order of vanishing of L(E, s) at s = 1. These two
ranks are related in one of the most famous conjectures in number theory.

Conjecture 7.136 (Birch & Swinnerton-Dyer) For all elliptic curves over Q, the
algebraic rank and the analytic rank are equal.

In recent decades, some progress has been made towards this conjecture. In par-
ticular, it can be proved that, if the analytic rank is equal to 0, respectively 1, then
the algebraic rank is equal to 0, respectively 1.

The Goldfeld–Gross–Zagier method enables us to prove the following result
[IK04, Theorem 23.2].

Theorem 7.137 There exists an absolute, effectively computable constant c > 0
such that for all imaginary quadratic fields K = Q(

√
d) with d < 0, we have

h(d) > c
∏

p|d

(
1 + 1

p

)−3(
1 + 2p1/2

p + 1

)−1

log |d|.

7.5.2 The Brauer–Siegel Theorem

The functional equation of ζK(s) and the inequality (7.22) imply that, for all σ > 1,
we have

κK � σ(σ − 1)2r2(1−σ)πr2−nσ/2|dK|(σ−1)/2�K(σ )ζK(σ ).

Alzer’s inequality [Alz00] states that

�(x) <

{
xx−1−γ , if x > 1,

xδ(x−1)−γ , if 0 < x < 1

where γ ≈ 0.5772 . . . is the Euler constant and δ = 1
2 (ζ(2) − γ ) ≈ 0.5338 . . . , so

that for all 1 < σ < 2 we get

�K(σ ) < (σ/2)r1{δ(σ/2−1)−γ } σ r2(σ−1−γ )

= σ r1{δ(σ/2−1)−γ }+r2(σ−1−γ ) 2−r1{δ(σ/2−1)−γ }

= σ (σ−1)(r1δ+r2)−γ (n−r2)−r1δσ/2 2−r1{δ(σ/2−1)−γ }

27Implying in particular, along with a result of Ribet, Fermat’s last theorem.
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and using inequality (7.20) along with ζ(σ ) � σ/(σ − 1) and following the ideas of
[Lou00], we may write

κK � |dK|(σ−1)/2

(σ − 1)n−1
F(σ)

with

F(σ) = σn+1+(σ−1)(r1δ+r2)−γ (n−r2)−r1δσ/2 2r2(1−σ)−r1{δ(σ/2−1)−γ } πr2−nσ/2.

Now we have for all σ � 1 and n � 4

2σ 2
(

F ′

F

)′
(σ ) = 2n(γ − 1) + r1δ(σ + 2) + 2r2(σ + 1 − γ ) − 2

= n
{
δσ + 2(δ + γ − 1)

}+ 2r2
{
σ(1 − δ) + 1 − 2δ − γ

}− 2

� n(3δ + 2γ − 2) + 2r2(2 − 3δ − γ ) − 2

� nγ − 2 > 0.

Since F is positive, this implies that F is convex on [1,+∞[ so that we have for
σ ∈ [1,2]

F(σ) � max
(
F(1),F (2)

)

with

F(1) = 2(n−2r2)(γ+δ/2) πr2−n/2 �
(

2γ+δ/2

√
π

)n

< 2(n−1)/2

F(2) = 2n+1−r2γ πr2−n � 2

(
21−γ /2

√
π

)n

< 2(n−1)/2

for all n � 3. Now we choose

σ = 1 + 2(n − 1)

log |dK| .

By Corollary 7.130, we have 1 < σ < 2 as soon as n � 3, and hence using the
inequality above, we get

κK <

(
e√
2

log |dK|
n − 1

)n−1

for n � 4. Using the class number formula (7.21), we infer the following result.

Proposition 7.138 Let K/Q be an algebraic number field of degree n � 4, discrim-
inant dK, class number hK, regulator RK and let wK be the number of roots of unity
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in K. Then we have

hKRK <
wK

2

(
2

π

)r2
(

e

2
√

2

log |dK|
n − 1

)n−1

|dK|1/2.

In particular, we have

hKRK � |dK|1/2(log |dK|)n−1.

It is natural to ask for lower bounds of κK. Hecke’s integral representation of
ζK(s) enables us to prove that, for 0 < β < 1 satisfying ζK(β) � 0, then we have
(see [Lan94, Nar04])

κK � β(1 − β)2−ne−4πn|dK|(β−1)/2. (7.27)

Using this inequality, one may show that, for all ε > 0, there exists cε > 0 such that,
for all algebraic number fields K Galois over Q, we have

κK � cε|dK|−ε. (7.28)

This implies that there exists a constant c1 > 0 such that, for all algebraic number
fields K Galois over Q, we have

| loghKRK| � c1 log |dK|1/2.

Using this lower bound with Proposition 7.138, we get the Brauer–Siegel theorem.

Theorem 7.139 (Brauer–Siegel) If K ranges over a sequence of algebraic number
fields of degree n Galois over Q for which n/ log |dK| tends to 0, then

loghKRK ∼ log |dK|1/2.

However, the lower bound (7.28) for all fields Galois over Q is ineffective. As
in Chap. 3, any attempt at improving it effectively or at providing a value of cε for
a sufficiently small ε > 0 has been unsuccessful. We have seen above that a pos-
sible exceptional zero of ζK(s) causes trouble in the effectiveness of this constant.
Stark [Sta74] also observed that algebraic number fields of small degrees, especially
quadratic fields, are a real obstacle to any improvement.

We end this section by pointing out that one may improve on (7.27) in some
special cases. For instance, if K/Q is a totally imaginary algebraic number field of
degree n� 4 and discriminant dK satisfying |dK| � 2683n, then Louboutin [Lou03]
showed that

κK � (1 − β)|dK|(β−1)/2

if ζK(β) � 0 for some 1 − 2/ log |dK|� β < 1.
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7.5.3 Computations of Galois Groups

The purpose of this section is to supply some usual tools from Galois theory
to help compute some Galois groups of Galois extensions. We refer the reader
to [Lan93, Pra04, Soi81] for more information and some proofs. We use group-
theoretic notation for the usual transitive subgroups of Sn, the symmetric group on
{1, . . . , n}. For instance An is the alternating group on {1, . . . , n}, Cn is the cyclic
group of order n, Dn is the dihedral group of order 2n which is the group of sym-
metries of a regular n-gon, and so on. For any positive integer n and prime number
p, PSL(n,p) means PSLn(Fp).

Let K/Q be a Galois extension of Q and P ∈ Z[X] be a defining polynomial
of K. Since P is irreducible, Gal(K/Q) 
 Gal(P/Q) is transitive considered as a
subgroup of Sn, i.e. for all i, j ∈ {1, . . . , n}, there exists σ ∈ Gal(P/Q) such that
σ(i) = j . The notation a ∈Q

2 means that a is a square in Q.
The first criterion enables us to check whether Gal(P/Q) ⊆ An or not.

Lemma 7.140 Gal(P/Q) ⊆ An if and only if disc(P ) ∈ Q
2.

Proof Since P is irreducible over Q, the roots θ1, . . . , θn of P are all distinct. By
Definition 7.36, we have disc(P ) = d2 with d �= 0 and

d =
∏

1�i<j�n

(θi − θj ).

If d is an algebraic integer, then, for all σ ∈ Gal(P/Q), we have σ(d) = ε(d)d

where ε(d) is the signature of σ .

� If σ ∈ An, then ε(d) = 1 and therefore σ(d) = d and we infer d ∈ Z from Galois
theory.

� If d ∈ Z, we have σ(d) = d because σ fixes Q. Since d �= 0, we get ε(d) = 1 and
thus σ ∈An.

The proof is complete. �

The next tool, due to Dedekind, relies on the factorization of P in Fp[X] for
some suitable prime number p.

Proposition 7.141 (Dedekind) Let P ∈ Z[X] and p � disc(P ) be a prime number.
Assume that in Fp[X] we have the factorization

P =
g∏

i=1

Pi

where Pi are irreducible polynomials over Fp . Then Gal(P/Q) contains a permu-
tation which is the product of distinct cycles σi of length degPi .
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For Galois groups over Fp , the following proposition, which is a particular case
of a result due to Frobenius, relies on the ramification of p in the corresponding
Galois extension.

Proposition 7.142 (Frobenius) Let K/Q be a Galois extension of Q of degree n

and P ∈ Z[X] be a defining monic irreducible polynomial of K. Let p � disc(P ) be
a prime number with inertial degree fp and assume that P is squarefree in Fp[X].
Then Gal(P /Fp) is the cyclic group of order fp .

The following tools are often useful in the determination of certain Galois groups.

Lemma 7.143

(i) Let H be a transitive subgroup of Sn. If H contains a transposition and a
(n − 1)-cycle, then H = Sn.

(ii) Let p be a prime number and H be a subgroup of Sp . If H contains a trans-
position and an element of order p, then H = Sp .

(iii) Let P ∈ Q[X] such that degP = p is a prime number. If P has exactly two
non-real roots, then Gal(P/Q) 
 Sp .

One may also notice the next lemma due to Jordan.

Lemma 7.144 (Jordan) Let H be a transitive subgroup of Sn. If H contains a p-
cycle for some prime number p satisfying n/2 < p < n − 2, then H contains An.

When the degree of P is small, it is easy to compute Gal(P/Q).

Lemma 7.145 Let P ∈Q[X] be irreducible.

(i) If P = X2 + pX + q , then Gal(P/Q) 
 C2.

(ii) If P = X3 + pX + q , then Gal(P/Q) 

{
A3
C3, if disc(P )∈Q2

S3, otherwise.

(iii) If P = X4 − 2bX2 + b2 − ac2 with a, b, c ∈ Q such that a �∈ Q
2 and a(b2 −

ac2) ∈Q
2, then

Gal(P/Q) 
 C4.

(iv) If P = X4 − 2(a + b)X2 + (a − b)2 with a, b ∈ Q \ {0} such that a, b, ab−1 �∈
Q

2, then

Gal(P/Q) 
 C2 × C2 = V4.

V4 is called the Klein 4-group.
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Resolvents

Let F ∈ Z[X1, . . . ,Xn], G be a subgroup of Sn and P ∈ Z[X] with roots α1, . . . , αn.
The stabilizer H of F in G is the group

H = {
σ ∈ G : F(Xσ(1), . . . ,Xσ(n)) = F(X1, . . . ,Xn)

}
.

The resolvent ResG(F,P ) associated with F and P is the polynomial defined by

ResG(F,P ) =
∏

σ∈G/H

(
X − F(ασ(1), . . . , ασ(n))

)

where the product ranges over |G/H | cosets representatives of G/H . When G =
Sn, we omit the subscript in the notation ResG(F,P ). By the fundamental theo-
rem on symmetric polynomials, the coefficients of ResG(F,P ) can be expressed as
polynomials over Q in the coefficients of P . If P is monic, then these coefficients
are algebraic integers, and hence rational integers. We also notice that ResG(F,P )

is independent of the ordering of the roots of P . An important special case is the
linear resolvent polynomial defined with

F(X1, . . . ,Xn) =
n∑

i=1

aiXi (ai ∈Q).

The resolvents are often used in computational algebra in order to construct algo-
rithms to compute Galois groups of polynomials. Most of these algorithms rest on
the following result (see [Coh93] for instance).

Proposition 7.146 If ResG(F,P ) has a simple root in Z, then Gal(P/Q) is conju-
gate under G to a subgroup of H .

In practice, one does not need to compute explicitly the resolvent. It suffices to
compute numerical approximations of the roots of P and determine numerically
F(ασ(1), . . . , ασ(n)). These approximations are in general accurate enough to guar-
antee that we can correctly recognize when ResG(F,P ) has a simple root in Z. Al-
gorithms up to degree 7 are detailed in [Coh93] where the choices of polynomials
F and corresponding systems of representatives of G/H are also given. It should be
noticed that, for polynomials of degree 7, one can use the following simple resolvent

R =
∏

1�i<j<k�7

(X − αi − αj − αk)

which is a polynomial of degree 35. It is an exercise in Galois theory to show that,
if R = R1R2 with Ri irreducibles such that degR1 = 7 and degR2 = 28, then

Gal(P/Q) 
 PSL(3,2) 
 PSL(2,7)

which is the unique simple group of order 168. For instance, this is the case for the
polynomial P = X7 − 7X3 + 14X2 − 7X + 1.
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Examples

� degP = 4. There are up to conjugacy five transitive subgroups of S4, i.e.

S4, A4, D4, V4, C4.

With F = X1X2 + X3X4 and G = S4, a system of representatives of G/H is
given by

G/H = {
Id, (12), (14)

}

and, if P = X4 + aX3 + bX2 + cX + d , we have

ResG(F,P ) = X3 − bX2 − (ac − 4d)X − (
a2d + 4bd + c2).

If ResG(F,P ) has no root in Z, then Gal(P/Q) 
 S4 or A4 by Proposi-
tion 7.146, and one can use Lemma 7.140 to determine precisely Gal(P/Q). If
ResG(F,P ) has a root in Z, then Gal(P/Q) 
 C4, V4 or D4. We have V4 ⊂ D4 ∩
A4 and hence if disc(P ) ∈Q

2, then Gal(P/Q) 
 V4, otherwise Gal(P/Q) 
 C4
or D4. One uses another resolvent to distinguish between the two.

When P = X4 + aX2 + b, we have the following more precise result.

Proposition 7.147 Let P = X4 +aX2 +b be irreducible over Q with roots ±α and
±β . We have

Gal(P/Q) 

⎧
⎨

⎩

C4, if αβ−1 − α−1β ∈Q

V4, if αβ ∈Q or α2 − β2 ∈Q

D4, otherwise.

� degP = 5. There are up to conjugacy five transitive subgroups of S5, i.e.

S5, A5, D5, M20 = 〈
(12345), (2354)

〉
, C5.

We have the inclusions C5 ⊂ D5 ⊂ A5 ∩ M20. One uses a first resolvent with
G = S5 and H = M20 so that

G/H = {
Id, (12), (13), (14), (15), (25)

}

and if ResG(F,P ) has no root in Z, then Gal(P/Q) 
 S5 or A5, and use again
Lemma 7.140 to determine precisely Gal(P/Q). If ResG(F,P ) has a root in Z

and disc(P ) �∈ Q
2, then Gal(P/Q) 
 M20, otherwise Gal(P/Q) 
 C5 or D5.

One uses again another resolvent to finalize the determination.
� degP = 6. There are up to conjugacy sixteen transitive subgroups of S6. This

case has been completely solved in [Hag00] where the author uses specializa-
tions of three resolvents of degrees 2, 10 and 15 denoted respectively by f2, f10
and f15. Now f2 is just the polynomial f2 = X2 −disc(P ) and the coefficients of
f10 and f15 are given in [Hag00], and hence are known. Furthermore, there are
twelve solvable subgroups of S6, i.e. the groups C2

3 �D4 and S4 × C2 and their
proper subgroups. As an example, let us give one of the results of this article.
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Theorem 7.148 Let P ∈ Z[X] be an irreducible polynomial of degree 6 with dis-
criminant D and set G = Gal(P/Q).

(i) G is solvable if and only one of the following statements holds.
� f10 has a rational root and then G ⊆ C2

3 �D4.
� f15 has a rational root with multiplicity �= 5.
� f15 has a rational root with multiplicity 5 and f10 is a product of quartic

and sextic irreducible polynomials.
(ii) Assume that G 
 C2

3 �D4, C2
3 �C4, D3 × D3 or C3 × D3. Then

G 
 C2
3 �C4 ⇐⇒ D ∈ Q

2.

(iii) If G is not solvable, then
� G 
 S6 if and only if f15 is irreducible over Q and D �∈ Q

2.
� G 
 A6 if and only if f15 is irreducible over Q and D ∈ Q

2.
� G 
 S5 
 PGL(2,5) if and only if f15 is reducible over Q and D �∈Q

2.
� G 
 A5 
 PSL(2,5) if and only if f15 is reducible over Q and D ∈ Q

2.

We end this section with a theorem due to Frobenius which is a particular case of
Chebotarëv’s density theorem (see [Nar04] for instance). We shall say that a subset
S of prime numbers has a Dirichlet density d , or analytic density d , if

∑
p∈S p−σ

∑
p p−σ

−→ d for σ ↓ 1.

Proposition 7.149 Let P ∈ Z[X] irreducible. Then the Dirichlet density of the set
of prime numbers satisfying p � disc(P ) for which P splits completely in Fp[X] is
equal to |Gal(P/Q)|−1.

Example 7.150

1. P = X5 +4X3 +7X2 +2X+9. Since P = X5 +X2 +1 is irreducible in F2[X],
we infer that P is irreducible over Z by Corollary 7.26. We also have disc(P ) =
2503 × 7759 so that Gal(P/Q) �A5 by Lemma 7.140. Furthermore, we have

P ≡ X(X + 1)
(
X3 + 2X2 + 2X + 2

)
(mod 3)

and

P ≡ (X + 1)
(
X4 + 2X3 + 3X2 + 3X + 3

)
(mod 5)

so that Gal(P/Q) 
 S5 using Table 5C of [Soi81].
2. P = X6 +2X5 +3X4 +4X3 +5X2 +6X+7. By Example 7.31, P is irreducible

over Z. We also have

P ≡ (X + 1)
(
X5 + 4X4 + 11X3 + 5X + 3

)
(mod 13)
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so that 5 | Gal(P/Q) by Proposition 7.141. Hence Gal(P/Q) lies among the
following four groups

PSL(2,5), PGL(2,5), A6, S6

which are the only transitive subgroups of S6 having an order divisible by 5.
Since

disc(P ) = −216 × 74

we have Gal(P/Q) �A6 by Lemma 7.140 and thus Gal(P/Q) �
 PSL(2,5),A6.
Since PGL(2,5) and S6 are non-solvable groups, we infer that Gal(P/Q) is not
solvable. One may compute the polynomial f15 of Theorem 7.148 and prove that
it is reducible. Since disc(P ) is not a square, we deduce from Theorem 7.148 that

Gal(P/Q) 
 PGL(2,5) 
 S5.

Note that using the PARI/GP system, one may check that, of the first 10 000
prime numbers distinct from 2 and 7, P splits completely relative to 78 of them,
which gives a proportion of 1/128. Proposition 7.149 says that this proportion
tends to 1/120.

7.5.4 The Prime Ideal Theorem and the Ideal Theorem

Let K/Q be an algebraic number field of degree n and πK(x) be the number of
prime ideals p in OK such that NK/Q(p) � x, i.e.

πK(x) =
∑

NK/Q(p)�x

1.

Note that πQ(x) = π(x) is the usual prime counting function.28 The so-called Ideal
Theorem, seen in Corollary 4.59, follows from classical contour integration meth-
ods. Similarly, this method may be also used to estimate πK(x) in the same way as
it was used in the rational case (see Theorem 3.85). The first version of the Prime
Ideal Theorem, or PIT, was proved by Landau in [Lan03]. Subsequently, the error-
term was gradually improved to an order of magnitude similar to that of (3.37) with
a Vinogradov–Korobov type zero-free region as it was seen in Theorem 7.124 (ii).
This gives the following result.

Theorem 7.151 (Prime Ideal Theorem) For x sufficiently large, we have

πK(x) = Li(x) + OK

{
x exp

(−cK(logx)3/5(log logx)−1/5)}

where the implied constant and cK > 0 depend on the usual invariants of K.

28See Definition 3.39.
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Effective versions of the PIT have been stated by many authors. For instance, we
quote the following estimate.

Theorem 7.152 (Effective Prime Ideal Theorem) For all x � ec0 n log2 √|dK|, we
have

∣∣πK(x) − Li(x)
∣∣� Li

(
xβ0

)+ c1 x exp

(
−c2

√
logx

n

)

where the constants ci are absolute and the term containing β0 is present if and only
if ζK(s) has an exceptional zero β0 in the region

1 − 1

4 log |dK| � σ < 1.

The analogue of Corollaries 3.50 and 3.51 in algebraic number fields does also
exist [Leb07].

Theorem 7.153 (Mertens theorems in number fields) There exist absolute constants
c0, . . . , c4 > 0 satisfying the following assertions.

(i) For all x � max(ec0 n log2 √|dK|, e1024 c−2
1 n log2(

√
n/c2)), we have

∑

NK/Q(p)�x

1

NK/Q(p)
= log logx + BK + RK(x)

with

BK = logκK + γ +
∑

p

{
log

(
1 − 1

NK/Q(p)

)
+ 1

NK/Q(p)

}

and
∣∣RK(x)

∣∣� c3

β0 logx

(
2 − β0

1 − β0

)
+ 2c4

logx

and the term containing β0 is present if and only if ζK(s) has an exceptional
zero β0 in the region

1 − 1

4 log |dK| � σ < 1.

(ii) For x sufficiently large, we have

∏

NK/Q(p)�x

(
1 − 1

NK/Q(p)

)−1

= κKeγ logx

{
1 + OK

(
1

logx

)}
.

It should be noticed that there are few explicit upper bounds for the sum∑
m�x νK(m) in the literature. However, using elementary means based upon the
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geometry of numbers, the authors [MO07] derived the following result. Let r be the
Dirichlet rank of O∗

K
and pick up fundamental units ε1, . . . , εr . Suppose that, for all

(i, j) ∈ {1, . . . , r}2, we have | log |σi(εj )|| � R. Then for all x � 4 we have

∑

m�x

νK(m) � CKκK x (7.29)

where CK = 2r2−r1n!(5γ eRr)n|dK|R−1
K

.

7.5.5 Abelian Extensions and the Kronecker–Weber Theorem

The study of cyclotomic fields arose naturally in the early days of algebraic number
theory owing to Fermat’s equation. In order to generalize, one may ask which are the
possible abelian extensions of Q, i.e. Galois extensions K/Q such that Gal(K/Q)

is abelian. Stated in this way, that question can certainly not be solved. But a great
achievement of the 19th century is in the next important result which generalizes
Proposition 7.109.

Theorem 7.154 (Kronecker–Weber) If K/Q is a finite abelian extension, then there
exists a positive integer f such that K ⊆Q(ζf ).

This result was first stated by Kronecker in 1853 who provided an incomplete
proof which reveals some difficulties with extensions of degree 2α for some α. In
1886, Weber gave the first proof but also had an error29 at 2. Both authors used the
theory of Lagrange resolvents. Later, Hilbert, and then Speiser, used ramification
theory to give a proof which is now often considered as the classic one. It is note-
worthy that Hilbert’s strategy works partly because Q does not have any proper un-
ramified abelian extension. Nowadays, many proofs do exist in the literature, mostly
based upon Hilbert’s method [Gre74], localization methods [Was82] or on the fact
that they are a simple consequence of results belonging to class field theory.

We shall not prove this result and refer the reader to [Mol99, Rib01] for proofs
using ramification theory. Nevertheless, it seems interesting to have a look at a par-
ticular case of Theorem 7.154 using the following lemma.

Lemma 7.155 (Reduction principle) Assume that Theorem 7.154 is true for abelian
number fields with prime power degrees. Then it is true for all abelian number fields.

Proof Let K/Q be an abelian number field with Galois group G = Gal(K/Q). Since
G is abelian and setting |G| = p

α1
1 · · ·pαr

r , we have by (3.1)

G 
 H1 ⊕ · · · ⊕ Hr

29This error remained unnoticed for about 90 years.
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where the Hi are the pi -Sylow subgroups of G and hence |Hi | = p
αi

i . Set

Ei =
⊕

j �=i

Hj .

The Ei are subgroups of G and let Ki be the fixed field of Ei . From Galois theory,
we have

[Ki : Q] = (G : Ei) = |Hi | = p
αi

i

and any automorphism that fixes the compositum K1 · · ·Kr fixes all of the Ki so
that

Gal(K/K1 · · ·Kr ) ⊆
r⋂

i=1

Ei = {0}

which implies that K = K1 · · ·Kr . Now by assumption there exists a primitive root
of unity ζi of order si such that Ki ⊆ Q(ζi) and hence

K = K1 · · ·Kr ⊆ Q(ζ1, . . . , ζr ) ⊆ Q(ζ[s1,...,sr ])

which concludes the proof. �

Now suppose that K/Q is a finite abelian extension satisfying

[K : Q] = pα and dK = pβ

for some odd prime number p and positive integers α and β .
Define L = Q(ζpα+1) with degree [L :Q] = ϕ(pα+1) = pα(p − 1) and

dL = (−1)p
α(p−1)/2ppα(p(α+1)−α−2).

Let F be the fixed field of the subgroup H of Gal(L/Q) of order p − 1 so that
[F : Q] = pα . Since p is odd, Gal(L/Q) is cyclic, then G/H is also cyclic and
hence F/Q is a cyclic number field. Furthermore, if q is a prime dividing dF, then
q ramifies in F and then ramifies in L, so that q = p and dF is a power of p.

We consider the compositum KF, see Fig. 7.1.
We have

[KF :Q] = [KF : F][F :Q] = [K :K∩ F][F :Q]
so that [KF :Q] is a power of p. As above, let q be a prime dividing dKF, and hence
q is ramified in KF, which implies that q is ramified in K or q is ramified in F, and
therefore q = p and dKF is a power of p. Next, it can be shown [Rib01] that KF is
a cyclic number field. We infer that the subgroup Gal(KF/K∩F) of Gal(KF/Q) is
cyclic. Now we have

Gal(KF/K∩ F) 
 Gal(K/K∩ F) ⊕ Gal(F/K∩ F)
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Fig. 7.1 The
compositum KF

and using [Rib01, Lemma 2 p. 277] we infer that one of the groups of the right-hand
side is trivial, so that either K = K∩F or F = K∩F. In the first case, we deduce that
K ⊆ F whereas the second case gives F ⊆ K, but since they have the same degree,
we get F= K in both cases and hence

K = F⊆ L = Q(ζpα+1).

Using Proposition 7.109 and Lemma 7.155, we get the following result.

Lemma 7.156 Let K = K1 · · ·Kr be an abelian number field such that either
[Ki : Q] = p

αi

i and dKi
= p

βi

i for some odd primes pi or [Ki : Q] = 2. Then K

is contained in a cyclotomic field.

7.5.6 Class Field Theory over Q

From the discussion above, it turns out that describing all abelian extensions of an
algebraic number field is a long-standing problem. In examining Abel’s work, Kro-
necker observed that certain abelian extensions of imaginary quadratic fields may be
generated by adjoining certain values of automorphic functions arising from elliptic
curves. Roughly speaking, let H = {s ∈ C : Im s > 0} be the Poincaré half-plane
and T be a subgroup of SL(2,Z). An automorphic function (for T ) is a mero-
morphic function f defined on H having a Fourier series expansion of the form
f (z) = ∑∞

n=N ane(nz) for some N ∈ Z, and satisfying

f

(
az + b

cz + d

)
= f (z)
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for all M = (
a b
c d

) ∈ T . For instance, the j -function defined on H by

j (z) = 1728g2(z)
3

g2(z)3 − 27g3(z)2
(7.30)

with

g2(z) =
∑

m,n

60

(m + nz)4
and g3(z) =

∑

m,n

140

(m + nz)6

and where the summations are over all ordered pairs of integers (m,n) �= (0,0), is an
automorphic function. It can be shown that if K = Q(

√−d) with d > 0 squarefree
such that d �≡ 3 (mod 4), then K(j (

√−d)) is an abelian extension30 of K.
Kronecker wondered whether all finite abelian extensions of imaginary quadratic

fields could be obtained in this way.31 The generalization of this problem was later
addressed by Hilbert in 1900 when he presented a series of 23 problems for the new
century at the International Congress of Mathematicians in Paris, and the general-
ization of Kronecker’s conjecture is Hilbert’s 12th problem.32

Historically, the class field theory began when Gauss tried to decide when the
congruence equation x2 − a ≡ 0 (modp) has a solution, where p � a is a prime.
The answer is given by his quadratic reciprocity law stating that, if p and q are
odd primes not dividing a and p ≡ q (mod 4a), then x2 − a ≡ 0 (modp) has a
solution if and only if x2 − a ≡ 0 (modq) has a solution. Hence, whether or not
the congruence x2 − a ≡ 0 (modp) has a solution depends only on the arithmetic
progression mod 4a to which p belongs.

Proposition 7.108 also shows that an odd prime p splits completely in a quadratic
field Q(

√
d) if and only if p � d and the congruence x2 − d ≡ 0 (modp) has a

solution.
Let K = Q(ζm) where m ∈N. It can be proved (see [Was82, Theorem 2.13]) that,

if p �= m is a prime number and f is the smallest positive integer such that pf ≡
1 (modm), then (p) = p1 · · ·pg with g = ϕ(m)/f . In particular, p splits completely
in Q(ζm) if and only if p ≡ 1 (modm).

All these examples above show that we have a decomposition theory in terms
of congruence conditions. Therefore, the purposes of class field theory over Q are
threefold:

1. Describe every finite abelian extension of Q in terms of the arithmetic of Q.
2. Canonically realize the abelian group Gal(K/Q) in terms of the arithmetic of Q.
3. Describe the decomposition of a prime in terms of the arithmetic of Q, i.e. by

giving congruence conditions.

30This is in fact the Hilbert class field of K. See Theorem 7.168.
31This is now referred to as Kronecker Jurgendtraum i.e. Kronecker’s dream of his youth. This was
completely proved by Takagi in 1920.
32Among the 23 problems introduced by Hilbert, some of them have been solved and others are
still open. Note that Hilbert’s 8th problem is the Riemann hypothesis.
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In what follows, we intend to state the main results of class field theory over Q

following [Gar81].

� Let p be a prime number and Fp be the field with p elements. By Fermat’s little
theorem (Theorem 3.15), the Frobenius map x ∈ Fp �−→ xp is nothing but the
identity. We generalize this concept to abelian number fields in the following
way.

Proposition 7.157 Let K/Q be an abelian extension with a defining monic polyno-
mial P ∈ Z[X] and let p be a prime number such that p � disc(P ). Then there exists
an element φ ∈ Gal(K/Q) such that the Frobenius map in Fp is the reduction of φ

modulo p. This element φ is called the Artin symbol and is denoted by (
K/Q

p
).

Example Let K = Q(θ) where θ is a root of the polynomial P = X3 − 3X − 1.
It can easily be checked that P is irreducible over Q since P has no integer root.
Since disc(P ) = 34 ∈ Q

2, we have Gal(K/Q) 
 A3 
 C3 by Lemma 7.140, so that
K/Q is cyclic, and let σ be a generator of Gal(K/Q). Since −θ2 + 2 and θ2 − θ − 2
are the two other roots of P , set σ(θ) = −θ2 + 2 so that σ 2(θ) = θ2 − θ − 2 and
Gal(K/Q) = {Id, σ, σ 2}. Now we have

θ2 ≡ −θ2 + 2 ≡ σ(θ) (mod 2)

and hence
(
K/Q

2

)
= σ.

Similarly, since

θ5 = θ3θ2 = (1 + 3θ)θ2 = θ2 + 3θ3 = θ2 + 9θ + 3 ≡ θ2 − θ − 2 ≡ σ 2(θ) (mod 5)

we have
(
K/Q

5

)
= σ 2.

One may continue in this way to determine other values for primes not dividing 3.
However, it seems more appropriate to look for a rule which can dictate the Artin
symbol for all primes p �= 3. This is the purpose of the Artin reciprocity law.

� Let K/Q be an abelian number field. By Theorem 7.154, there exists a positive
integer f such that K ⊆Q(ζf ). Such an integer is called an admissible modulus
or cycle of K.

Now let a = ∏
p|a pvp(a) ∈ N such that (a, f ) = 1 where f is an admissible

modulus of K. The Artin map is defined by
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ArtK/Q : (Z/fZ)∗ −→ Gal(K/Q)

a �−→
∏

p|a

(
K/Q

p

)vp(a)

.

Example Let m be a positive integer, K = Q(ζm) and let p � m be a prime num-
ber. By Proposition 7.157, we have (

Q(ζm)/Q
p

) = σp where, for all a ∈ N such that

(a,m) = 1, σa is defined by σa(ζm) = ζ a
m. Now if a = ∏

p pvp(a) ∈ N such that
(a,m) = 1, then

(
Q(ζm)/Q

a

)
=

∏

p

(
Q(ζm)/Q

p

)vp(a)

=
∏

p

σ
vp(a)
p = σa.

Furthermore, we also have
(
Q(ζm)/Q

a

)
(ζm) = ζm ⇐⇒ σa(ζm) = ζm ⇐⇒ ζ a

m = ζm ⇐⇒ a ≡ 1 (modm)

which is called the cyclotomic reciprocity law.

It can be proved that the Artin map is surjective. One of the main purposes of
the theory is then the study of the kernel denoted by IK,f . Using Gal(Q(ζf )/Q) 

(Z/fZ)∗, we have IK,f 
 Gal(Q(ζf )/K) and from Galois theory we have the cor-
respondence

Q(ζf ) ⊇ K ⊇ Q

� � �
Gal(Q(ζf )/Q(ζf )) ⊆ Gal(Q(ζf )/K) ⊆ Gal(Q(ζf )/Q)

� � �
{1} ⊆ IK,f ⊆ (Z/fZ)∗

so that K is the fixed field of IK,f . This proves the first result of class field theory
over Q.

Theorem 7.158 (Artin reciprocity) Let K/Q be an abelian number field with an
admissible modulus f . Then the following sequence is exact

1 −→ IK,f ↪→ (Z/fZ)∗ −→ Gal(K/Q) −→ 1

so that

Gal(K/Q) 
 (Z/fZ)∗/IK,f .

In other words, Theorem 7.158 realizes canonically Gal(K/Q) in terms of arith-
metic of Q and each abelian extension of Q is described in terms of arithmetic
of Q.
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� The minimal admissible modulus of K is called the conductor of K and is de-
noted by fK. Since K ⊆ Q(ζf ) ∩Q(ζfK) = Q(ζ(f,fK)), we infer that fK | f . We
have the following properties of the conductor [Gar81].

Lemma 7.159

(i) Let d ∈ Z be a squarefree number such that |d| > 1. Then |dK| is the conductor
of K = Q(

√
d).

(ii) Let K/Q be a cyclic extension with odd prime degree p. Then

fK = pθp1 · · ·pr

for some positive integer r , with θ ∈ {0,2} and pi are prime numbers satisfying
pi ≡ 1 (modp).

We have the following result on ramification.

Theorem 7.160 (Conductor-ramification theorem) Let K/Q be an abelian number
field with conductor fK and p be a prime number. Then p is ramified in K if and
only if p | fK.

This implies in particular that, if p is a prime number such that p � f , then p is
unramified in Q(ζf ). This may be generalized to any finite abelian extension of Q.

Theorem 7.161 (Decomposition theorem) Let K/Q be an abelian number field
with an admissible modulus f and let p � f . Then the order of p in (Z/fZ)∗/IK,f

is its inertial degree fp in K.

It is customary to denote by Spl(K/Q) the set of prime numbers which split
completely in K. Using epfpgp = [K : Q], we have

p ∈ Spl(K/Q) ⇐⇒ gp = [K : Q] ⇐⇒ ep = fp = 1

and applying Theorems 7.160 and 7.161 with f = fK, we get

p ∈ Spl(K/Q) ⇐⇒ p � fK and p ∈ IK,fK . (7.31)

We infer that

p ∈ Spl(K/Q) ⇐⇒ ∃a ∈ IK,fK : p ≡ a (modfK).

This clearly accomplishes the third goal of class field theory.

� Let K/Q be an abelian extension with an admissible modulus f . We define the
character group of K to be the group Xf (K) of characters χ of (Z/fZ)∗ such
that χ(a) = 1 for all a ∈ IK,f . We first extend χ in a Dirichlet character modulo
f , denoted again by χ , by setting χ(a) = 0 for all a such that (a, f ) > 1, and
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then to a primitive Dirichlet character. If χ ∈ Xf (K), we denote fχ its conduc-
tor. The character group Xf (K) satisfies the following properties (see [Nar04,
Proposition 8.4]).
a. Xf (K) 
 Gal(K/Q) and hence |Xf (K)| = [K : Q].
b. Xf (K) 
 (Z/fZ)∗ ⇐⇒ K= Q(ζf ) and Xf (K) = {χ0} ⇐⇒K = Q.
c. If r2 = 0, then every character of Xf (K) is even. If r1 = 0, then Xf (K) con-

tains the same number of even and odd characters, and the set of even char-
acters is the subgroup of Xf (K) equal to Xf (K+), where K

+ is the maximal
real subfield of K.

The next result is another highlight of class field theory.

Theorem 7.162 (Conductor-discriminant formula) Let K/Q be an abelian exten-
sion with admissible modulus f and character group Xf (K). Then fK = lcm{fχ :
χ ∈ Xf (K)} and

|dK| =
∏

χ∈Xf (K)

fχ .

In particular, we have fK | dK and hence we always have the following tower

Q ⊆ K ⊆ Q(ζfK) ⊆ Q(ζ|dK|).

7.5.7 The Class Number Formula for Abelian Extensions

The Dirichlet class number formula (7.26) for quadratic fields may be generalized
to any finite abelian extension of Q in the following way. Recall that, if p is a prime,
then fp and gp are respectively its inertial degree and decomposition number in K.

Theorem 7.163 (Class number formula) Let K/Q be an abelian number field with
conductor fK and character group XfK(K) denoted by X for convenience. Then

hKRK = ϕ(fK)

fK

|dK|1/2wK

2r1(2π)r2

∏

p|fK

(
1 − 1

pfp

)−gp ∏

χ∈X
χ �=χ0

L(1, χ).

In particular, if K/Q is cyclic with prime degree, then

hKRK = |dK|1/2wK

2r1(2π)r2

∏

χ∈X
χ �=χ0

L(1, χ).

Proof The starting point is the following identity sometimes called the product for-
mula for characters (see [Hin08, Lemme IV.4.3] for a proof).
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Let G be a finite abelian group and Ĝ be the group of characters of G. If
a ∈ G is an element of order r , then we have for all z

∏

χ∈Ĝ

(
1 − χ(a)z

) = (
1 − zr

)|G|/r
.

Let p � fK so that p is unramified in Q(ζfK). Applying the product formula with
z = p−σ where σ > 1, G = Gal(K/Q), a = p so that r = fp by Theorems 7.158
and 7.161, we get

∏

χ∈X

(
1 − χ(p)

pσ

)−1

=
(

1 − 1

pfpσ

)−gp

and multiplying out through all primes p such that p � fK, we obtain

∏

χ∈X

L(σ,χ) =
∏

p�fK

(
1 − 1

pfpσ

)−gp

so that

ζK(σ ) =
∏

p

(
1 − 1

pfpσ

)−gp

=
∏

p|fk

(
1 − 1

pfpσ

)−gp ∏

χ∈X

L(σ,χ).

Now splitting the second product into the cases χ = χ0 and χ �= χ0 and using

L(σ,χ0) = ζ(σ )
∏

p|fK

(
1 − 1

pσ

)

we get

ζK(σ )

ζ(σ )
=

∏

p|fK

(
1 − 1

pσ

)(
1 − 1

pfpσ

)−gp ∏

χ∈X
χ �=χ0

L(σ,χ).

By Corollary 3.71, the function L(s,χ) is analytic in the half-plane σ > 0 as long
as χ �= χ0. Hence letting σ −→ 1+ in the previous identity and taking the residues
of ζ(s) and ζK(s) at s = 1 into account gives the first asserted result. The second
proposition follows from the fact that if K/Q is cyclic with prime degree, then
fp = gp = 1 for all p | fK and hence

ϕ(fK)

fK

∏

p|fK

(
1 − 1

pfp

)−gp

= ϕ(fK)

fK

∏

p|fK

(
1 − 1

p

)−1

= 1

as required. �
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Remark 7.164 The class number formula may be expressed in a simpler form if we
use the primitive characters instead. It is shown in [Nar04, page 416] that, if p | fK,
then for all σ > 1, we still have

∏

χ∈X

(
1 − χ�(p)

pσ

)
=

(
1 − 1

pfpσ

)gp

where χ� is the primitive Dirichlet character that induces χ . This result along with
(3.24) implies that, for all σ > 1, we have

ζK(σ ) =
∏

p|fk

(
1 − 1

pfpσ

)−gp ∏

χ∈X

L(σ,χ)

=
∏

χ∈X

L
(
σ,χ�

) ∏

p|fk

(
1 − 1

pfpσ

)−gp ∏

χ∈X

(
1 − χ�(p)

pσ

)

=
∏

χ∈X

L
(
σ,χ�

) = ζ(σ )
∏

χ∈X
χ �=χ0

L
(
σ,χ�

)

and arguing as above we obtain

hKRK = |dK|1/2wK

2r1(2π)r2

∏

χ∈X
χ �=χ0

L
(
1, χ�

)

if K/Q is abelian, and where χ� is the primitive Dirichlet character that induces χ .

7.5.8 Primes of the Form x2 + ny2—Particular Cases

The class field theory over Q may be generalized to any finite abelian extension
L/K, but since the Kronecker–Weber theorem is only valid with the ground field Q,
the concept of admissible modulus must be rewritten.

The starting point is a generalization of the notion of prime ideals of an algebraic
number field in the following way. Let K be an algebraic number field of degree n.
An absolute value of K is a map | · | :K −→R satisfying

(i) |x| � 0 and |x| = 0 ⇐⇒ x = 0.
(ii) |xy| = |x||y|.

(iii) |x + y| � |x| + |y|.
If we replace the condition (iii) by the stronger condition

(iv) |x + y|� max(|x|, |y|)
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then the absolute value is said to be non-archimedean, and archimedean otherwise.
If | · |1 and | · |2 are two absolute values such that there exist constants 0 < c0 � c1
such that c0|x|1 � |x|2 � c1|x|1 for all x ∈ K, then the absolute values are equiva-
lent, and the set of equivalence classes is called the places of K. There are two types
of places.

� The finite places. If p is a prime ideal of OK and p is the prime below p, then
we define for all x ∈ K

|x|p = p−vp(x)/ep

where ep is the ramification index of p in K and vp(x) = vp(xOK). This absolute
value is non-archimedean and if p1 �= p2, then | · |p1 and | · |p2 are not equivalent.
Furthermore, any non-archimedean absolute value is equivalent to one of these.

� The infinite places. Let σ be one of the embeddings of K. Then we define for all
x ∈K

|x|σ = |σ(x)|.
If σ(K) ⊆ R, then the place is called real, complex otherwise. For a complex
place σ , the conjugate σ defines the same place. We infer that the number of
infinite places of K is given by r1 + r2. For instance, if K = Q, there is only one
infinite place, often denoted by ∞, given by |x|Id = |x| where the right-hand side
is the ordinary absolute value on Q.

It can be proved that there is no other place for a number field K, and therefore
there are infinitely many finite places and finitely many infinite places in K.

Let L/K be a finite extension unramified at all places, which is then equivalent
to the two following assertions. If P = Xn + an−1X

n−1 + · · · + a0 ∈ OK[X] is a
defining polynomial of L/K, then

(i) Every prime ideal of K is unramified in L, or equivalently the relative discrim-
inant DL/K is equal to OK.

(ii) Let σi be the embeddings of K in L. Then either σi(K) �⊆ R or σi(K) ⊆ R and
P σi has no non-real roots, where P σi = Xn + σi(an−1)X

n−1 + · · · + σi(a0).

Note that if r1 = 0, then no infinite place ramifies in L, so that L/K unramified at
all places is equivalent to the point (i) above. On the other hand, in the case r1 � 1,
we say that L/K is unramified outside ∞ if and only if the sole point (i) above is
satisfied.

Example The extension Q(ζ12)/Q(
√

3) is unramified outside ∞ since

D
Q(ζ12)/Q(

√
3)

= Z[√3]
but is not unramified since the two infinite places ramify in Q(ζ12). Indeed, we have

P = X2 − X
√

3 + 1

and the two infinite places of Q(
√

3) are {Id, σ } where σ(a + b
√

3) = a − b
√

3. We
have σi(Q(

√
3)) ⊆ R and the polynomials P σi have non-real roots.
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We have previously seen that Hilbert’s proof of the Kronecker–Weber theorem
works in part thanks to the fact that Q has no unramified abelian extension larger
than Q. It is certainly the reason why Hilbert focused on unramified abelian exten-
sions. However, it should be mentioned that, at that time, the word “unramified”
meant at finite places only, so that Hilbert’s class fields were studied in the narrow
sense, i.e. the Galois group is isomorphic to the narrow ideal class group, where
fractional ideals are identified if and only if their ratio is a principal ideal having a
totally positive generator.33

The next result, conjectured by Hilbert, is an important tool in class field theory.

Theorem 7.165 (Hilbert class field) Let K be a number field. Then there exists a
unique maximal unramified abelian extension of K denoted by K(1)/K, in the sense
that each unramified abelian extension of K is isomorphic to a sub-extension of
K(1). The extension K(1)/K is called the Hilbert class field of K and satisfies the
following properties.

(i) Gal(K(1)/K) 
 Cl(K) and therefore hK = [K(1) :K].
(ii) Let p be a prime ideal in K. Then p splits completely in K(1) if and only if p is

principal in K.
(iii) Every integral ideal of K becomes principal as an integral ideal of K(1).

Example The following extensions are examples of Hilbert’s class fields over their
ground fields.

Q(
√

2,
√

5)

2

Q(
√−23, α)

3

Q(
√−14,

√
2
√

2 − 1)

4

Q(θ,
√

u(5 − θ2))

2

Q(
√

10) Q(
√−23) Q(

√−14) Q(θ)

Here we have α3 = α − 1, θ3 = 11 and u = 89 + 40θ + 18θ2. The last example is
picked up from [Jan96].

Hilbert proved the existence of the Hilbert class field of K when K is a quadratic
field with class number 2. Hilbert’s student Furtwängler proved the point (i) in 1907
and the point (iii), called the capitulation property, in 1930.

The point (ii) may be generalized as follows.

Proposition 7.166 If p is a prime ideal of K and if f is the smallest power of p
such that pf is a principal ideal of K, then p splits into hK/f distinct prime ideals
of K(1) with degree f .

The next result studies the normality of the extension K(1)/Q.

33For a definition of totally positive numbers in algebraic number fields, see [Nar04, page 44].
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Lemma 7.167 If K/Q is Galois, then K(1)/Q is Galois.

Proof Considering K and K(1) in a fixed algebraic closure Q of Q, let σ ∈
Gal(Q/Q). Since K is Galois over Q, we have σ(K) = K. But σ(K(1)) is the
Hilbert class field of σ(K) = K, so that using the maximality of K(1), we infer
that σ(K(1)) = K(1) and hence K(1) is Galois over Q. �

One of the most beautiful applications of the Hilbert class field lies in the solution
to the following problem. Let n ∈N be a squarefree integer satisfying

n �≡ 3 (mod 4). (7.32)

We ask for necessary and sufficient conditions for a prime number p to be expressed
in the form p = x2 + ny2 for some integers x, y. We use the imaginary quadratic
field K = Q(

√−n) and notice that (7.32) and Proposition 7.64 imply that OK =
Z[√−n]. The theoretic solution to this problem is given by the following result.

Theorem 7.168 Let n ∈ N be a squarefree number satisfying (7.32). Let K =
Q(

√−n) and K(1) be the Hilbert class field of K. If p is an odd prime such that
p � n, then

p = x2 + ny2 ⇐⇒ p ∈ Spl
(
K(1)/Q

)
.

Proof First note that dK = −4n by (7.32) and Proposition 7.64, and hence since
p � n is odd, we infer that p � dK and therefore p is unramified in K.

� Assume that p = x2 + ny2. Then (p) = (x + √−ny)(x − √−ny) = pp, say.
Since p is unramified, we get p �= p. Conversely, if (p) = pp with p principal,
then p = (x + √−ny) for some integers x, y since OK = Z[√−n]. This implies
that (p) = (x2 + ny2), and then p = x2 + ny2. At this step, we have then proved

p = x2 + ny2 ⇐⇒ (p) = pp, p �= p and p principal.

� By Theorem 7.165 (ii), we get

p = x2 + ny2 ⇐⇒ (p) = pp, p �= p and p ∈ Spl
(
K(1)/K

)

which is in turn equivalent to the fact that p splits completely in K and that some
prime ideal of K dividing p splits completely in K(1). By Lemma 7.167, we
deduce that K(1) is Galois over Q which implies that the previous assertion is
equivalent to p splitting completely in K(1). �

Therefore, the problem is twofold. We first have to determine the Hilbert class
field of an imaginary quadratic field. The next elegant theorem gives an answer by
using the elliptic modular function j defined in (7.30).
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Theorem 7.169 Let n ∈ N be a squarefree number satisfying (7.32). Let K =
Q(

√−n) and K(1) be the Hilbert class field of K. Then

K(1) = K
(
j (

√−n)
)
.

However, it should be mentioned that in practice it is a very difficult matter to
compute these j -invariants, so that many authors provided results in certain partic-
ular cases. For instance, Herz [Her66] proved a quite general theorem giving any
unramified cyclic cubic extension of an imaginary quadratic field. Also for real
quadratic fields K with class number 2, it is known [CR00] that there exists a proper
divisor δ of dK satisfying δ ≡ 0,1 (mod 4) such that K(1) = K(

√
δ).

The second point to solve is to determine which primes split completely in
K(1)/Q. We might use (7.31), but the computation of IK(1),f is very often un-
easy. The following alternative tool provides a useful criterion in this direction (see
[Cox89, Proposition 5.29]).

Proposition 7.170 Let K be an imaginary quadratic field and L be a finite extension
of K which is Galois over Q. Then there exists an algebraic integer θ such that
L = K(θ) and if P ∈ Z[X] is the monic minimal polynomial of θ and p is a prime
such that p � disc(P ), then

p ∈ Spl(L/Q) ⇐⇒
(

dK

p

)
= 1 and P(x) ≡ 0 (modp) has an integer solution.

Example 7.171 Let p �= 5 be an odd prime number. We will prove that

p = x2 + 5y2 ⇐⇒ p ≡ 1 or 9 (mod 20).

Proof Let K = Q(
√−5). It is known that j (

√−5) = 282 880
√

5 + 632 000 so that
K(1) = K(

√
5) by Theorem 7.168. Using Theorem 7.169 and Proposition 7.170, we

get

p = x2 +5y2 ⇐⇒
(−20

p

)
= 1 and x2 −5 ≡ 0 (modp) has an integer solution

⇐⇒
(

5

p

)
=

(−5

p

)
= 1

where we used (−20/p) = (4/p) × (−5/p) = (−5/p). Now by the quadratic reci-
procity law and since p is odd, we infer that

(
5

p

)
= 1 ⇐⇒

(
p

5

)
= 1 ⇐⇒ p ≡ ±1 (mod 5).

Using (−5/p) = (−1/p) × (5/p) = (−1)(p−1)/2(5/p), we get
(−5

p

)
= 1 ⇐⇒ p ≡ 1, 3, 7, 9 (mod 20).
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Hence

p = x2 + 5y2 ⇐⇒ p ≡ ±1 (mod 5) and p ≡ 1, 3, 7, 9 (mod 20)

implying the stated result. �

7.5.9 Primes of the Form x2 + ny2—General Case

If the integer n is not squarefree or does not satisfy (7.32), then Z[√−n] need not be
the maximal order of Q(

√−n). We then look for a generalization of the Hilbert class
field, which will be given by class field theory. Let O be any order of an imaginary
quadratic field of conductor f and class group Cl(O). Then the existence theorem
from class field theory implies that there exists an abelian extension L/K, called a
ring class field of O, such that all primes of K ramified in L divide fOK and the
Artin map induces the following isomorphism

Gal(L/K) 
 Cl(O).

We first provide some information about orders in quadratic fields. In what follows,
K is a quadratic field.

1. An order in K is a free Z-module of rank 2 of K containing 1.
2. An order O has always a finite index f in OK, called the conductor of O. Fur-

thermore, if dO is the discriminant of O, then

dO = f 2dK

and if O = Z[√−n], then dO = −4n.
3. If I (O) is the set of invertible fractional ideals of the order O and P(O) is the

set of principal ideals of O, then Cl(O) = I (O)/P (O) is the ideal class group,
or Picard group, of O and hO = |Cl(O)| is the class number of O.

4. If O �OK, then O is not in general a Dedekind ring.

We summarize the main properties of orders of an imaginary quadratic field in the
next lemma.

Lemma 7.172 Let n ∈ N squarefree and K = Q(
√−n) with discriminant dK and

class number hK. Let O be any order of K with discriminant dO , class number hO
and conductor f .

(i) We have

hO = hK × f

[(OK)∗ :O∗]
∏

p|f

(
1 −

(
dK

p

)
1

p

)



468 7 Algebraic Number Fields

where the index [(OK)∗ :O∗] is given by

[
(OK)∗ :O∗] =

⎧
⎪⎨

⎪⎩

2, if n = 1

3, if n = 3

1, otherwise.

(ii) A representative of a class of invertible fractional ideals of O is given by

(
a,

−b + √
dO

2

)

with 0 < a �
√−dO/3, |b| � a � c where c = b2−dO

4a
∈ N is such that

(a, b, c) = 1. Furthermore, if b � 0, then either |b| = a or a = c.

The elliptic modular invariant j seen in (7.30) may be defined on orders of K in
the following way. For all τ ∈ H and orders (1, τ ), we set

j
(
(1, τ )

) = j (τ ).

It can be shown that, if O is any order in K, then j (O) ∈ R. Furthermore, if the
class of a has an order � 2 in Cl(O), then j (a) ∈ R (see [Cox89, Exercise 11.1]).

The next result generalizes Theorems 7.168 and 7.169.

Theorem 7.173 Let n be a positive integer, K = Q(
√−n) and O = Z[√−n] with

class number hO . Let a be any representative of a class of invertible fractional ideals
of O. Then the extension

L = K
(
j (a)

)

is the ring class field of O. Furthermore, if a1, . . . ,ahO are representatives of the
classes of invertible fractional ideals of O, then the polynomial

HO =
hO∏

k=1

(
X − j (ak)

) ∈ Z[X]

is a defining polynomial of L.

That result contains Theorem 7.169 since, if n is squarefree and satisfies (7.32),
then Z[√−n] = OK so that f = 1, dO = dK, hO = hK and

K
(
j (a)

) = K
(
j (OK)

) = K
(
j (

√−n)
) = K(1).

Let n ∈ N. Proceeding similarly as in Theorem 7.168 (see [Cox89, Theorem 9.4]),
one may prove that, if p � n is an odd prime, then

p = x2 + ny2 ⇐⇒ p ∈ Spl(L/Q)
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where L is the ring class field of the order Z[√−n] of Q(
√−n). Now applying

Proposition 7.170 and Theorem 7.173, we obtain the general solution to the problem
of detecting primes of the form x2 + ny2.

Corollary 7.174 Let n be a positive integer and p � n be an odd prime. With the
notation of Theorem 7.173, we have

p =x2 +ny2 ⇐⇒
(−n

p

)
= 1 and HO(x) ≡ 0 (modp) has an integer solution.

Example 7.175 We wish to determine which primes p can be expressed in the form
p = x2 + 11y2. We work in K = Q(

√−11) with dK = −11 and hK = 1. The order
O = Z[√−11] has discriminant dO = −44 and conductor f = √

44/11 = 2. Using
Lemma 7.172 (i), we get

hO = 1 × 2

1

∏

p|2

(
1 −

(−11

p

)
1

p

)
= 3.

By Lemma 7.172 (ii), representatives of the three classes of invertible fractional
ideals of O are given by

a1 = (1,
√−11), a2 = (3,−1 + √−11) and a3 = (3,1 + √−11).

Using PARI we infer that

HO = X3 − aX2 + bX − (
24 × 11 × 17 × 29

)3 (7.33)

where a = 24 ×1709×41 057 and b = 28 ×3×114 ×24 049. As in Example 7.171,
we have
(−11

p

)
=

(−1

p

)(
11

p

)
= (−1)(p−1)/2

(
11

p

)
=

{
(11/p), if p ≡ 1 (mod 4),

−(11/p), if p ≡ 3 (mod 4).

Now using the quadratic reciprocity law, if p and q are primes such that q ≡
3 (mod 4), then

(
q

p

)
= 1 ⇐⇒ p ≡ ±α2 (mod 4q)

for some odd integer α such that q � α. This implies that
(

11

p

)
= 1 ⇐⇒ p ≡ ±1,±5,±9,±25,±37 (mod 44)

so that
(−11

p

)
= 1 ⇐⇒ p ≡ 1,3,5,9,15,23,25,27,31,37 (mod 44).
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This gives the following result.

Corollary 7.176 Let p �= 11 be an odd prime number. Then p = x2 + 11y2 if and
only if

� p ≡ 1,3,5,9,15,23,25,27,31,37 (mod 44)

� the equation x3 − ax2 + bx − (24 × 11 × 17 × 29)3 ≡ 0 (modp) has an integer
solution, where a = 24 × 1709 × 41 057 and b = 28 × 3 × 114 × 24 049.

Remark 7.177 The theory predicts that the constant term of HO is indeed a perfect
cube, which happens if and only if 3 � dO . In this case, Gross and Zagier, improving
on an earlier work of Deuring, showed that, if p is a prime factor of the constant
term of HO , then (dO/p) �= 1 and either p = 3 or p ≡ 2 (mod 3). Furthermore, we
also have

p � 3|dO|
4

which explains why the prime factors of the constant term of HO are so small
in (7.33).

7.5.10 Analytic Methods for Ideal Classes

Let K/Q be an algebraic number field of degree n, signature (r1, r2), discriminant
dK and let ζK(s) be its Dedekind zeta-function. Recall that

�K(s) = �(s/2)r1�(s)r2 and AK = 2−r2π−n/2|dK|1/2

where �(s) is the usual Gamma-function. We have previously seen that bounds
for class numbers may require the computation of a minimal positive real num-
ber bK such that every ideal class contains a non-zero integral ideal a satisfying
NK/Q(a) � bK. From the work of Minkowski who created and used deep results
from the geometry of numbers, we know that bK = MK|dK|1/2 is admissible, where
the Minkowski constant MK is defined in (7.19). In the 1950s, Rogers, and later
Mulholland, improved on Minkowski’s bound using essentially the same ideas.

Stark’s work as previously seen in Proposition 7.129 was the starting point of
the resurgence of analytic methods in algebraic number theory. In the late 1970s,
using the functional equation, given below, of the partial Dedekind zeta-function
associated to a given ideal class and its conjugate class, Zimmert [Zim81] succeeded
in establishing an inequality which supersedes the previous results. The conjugate
class C� of an ideal class C is defined by CC� = D where D is the class of the
different34 of OK.

34The different of OK is the integral ideal DK/Q defined as the inverse of the fractional ideal
{
y ∈ K : TrK/Q(xy) ∈ Z for all x ∈ OK

}
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Let ζ(s,C) be the partial Dedekind zeta-function associated to the ideal class C
defined by

ζ(s,C) =
∑

a∈C

1

NK/Q(a)s
.

As for ζK(s), this function has a functional equation of a similar form (see [Lan94,
Neu10]).

Define ξK(s,C) = As
K
�K(s)ζ(s,C). Then this function is analytic except

for simple poles at s = 0, s = 1, and

ξK(s,C) = ξK
(
1 − s,C�

)
.

Now assume that the two Dirichlet series F(s) = ∑∞
n=1 f (n)n−s and G(s) =∑∞

n=1 g(n)n−s are such that f (n), g(n) � 0, have finite abscissas of convergence
and satisfy the following hypotheses.

1. F and G can be extended analytically in the whole complex plane to meromor-
phic functions having a simple pole at s = 1.

2. They satisfy the functional equation ξF (s) = ξG(1 − s) where

ξF (s) = (
2−bA

)s
�

(
s

2

)a−b

�(s)bF (s)

and similarly for ξG(s), for some positive real number A and integers a � b � 0.
3. The function s(s − 1)ξF (s) is entire of order 1.
4. The residues of F(s) and G(s) at s = 1 are equal to κ .

Using tools borrowed from complex analysis and contour integration methods, Zim-
mert proved the following general inequality.

For all real numbers x > 0, σ > 1 and 0 � α < σ − 1, we have

G(σ)

{
logx − 2

ξ ′
G

ξG

(σ) + G′

G
(σ) − 2

σ − α − 1

}

� 21−bπ(a−b)/2 Aκ

{
xσ G(2σ)

ξG(2σ)
t (σ,α) − xσ−1 G(2σ − 1)

ξG(2σ − 1)
t (σ − 1, α − 1)

}

(7.34)

where

t (σ,α) = α + 1

σ 2(2σ − α − 1)
.

called the codifferent. It can be proved that the ramified prime ideals of OK are the prime ideals
dividing DK/Q and NK/Q(DK/Q) = |dK|. In fact, much more is true. Indeed, let p be a prime
number and p be a prime ideal above p. If e is the ramification index e(p | p), then pe−1 | DK/Q.
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The starting point of the proof is the inequality

1

2πi

∫ 2+i∞

2−i∞
ξF (z)F (z + 2σ − 1)Rα,σ (z)

ξF (z + 2σ − 1)
xzdz � 0 (7.35)

valid for all x > 0, σ > 1 and where Rα,σ (z) is a certain rational function of z

depending on the parameters α and σ (and possibly on other parameters) and satis-
fying Rα,σ (x) > 0 for all x > 0. By the hypotheses above, one may shift the line of
integration of (7.35) from Re z = 2 to Re z = 1 − σ , and picking up the residues at
s = 0, s = 1 and at the poles of Rα,σ (z), and using the functional equation above,
Theorem 3.54 and estimates for ζK(s,C) in the spirit of Theorem 7.123, the inequal-
ity (7.34) follows after some tedious, but straightforward, computations.

We may apply (7.34) with

F(s) = ζ
(
s,C�

)
and G(s) = ζ(s,C)

so that a = r1 + r2, b = r2 and A = 2bAK, and choosing

x = G(2σ − 1)ξG(2σ)

ξG(2σ − 1)G(2σ)
× t (σ − 1, α − 1)

t (σ,α)
= AK × �K(2σ)

�K(2σ − 1)
× t (σ − 1, α − 1)

t (σ,α)

we get

logAK + G′

G
(σ) � 2

ξ ′
G

ξG

(σ)− log
�K(2σ)

�K(2σ − 1)
− log

t (σ − 1, α − 1)

t (σ,α)
+ 2

σ − α − 1
.

Note that

ξ ′
G

ξG

(σ) = logAK + �′
K

�K

(σ ) + G′

G
(σ)

and hence we obtain

−2
�′
K

�K

(σ )+ log
�K(2σ)

�K(2σ −1)
+ log

t (σ −1, α −1)

t (σ,α)
− 2

σ −α −1
� logAK+ G′

G
(σ).

Now let a0 be an ideal in C with smallest norm. Then for all σ > 1 we have

G′(σ ) = −
∑

a∈C

logNK/Q(a)

NK/Q(a)σ
�−G(σ) logNK/Q(a0)

and therefore

logNK/Q(a0) � logAK + 2
�′
K

�K

(σ ) − log
�K(2σ)

�K(2σ − 1)
− log

t (σ − 1, α − 1)

t (σ,α)

+ 2

σ − α − 1
.

Choosing α optimally implies Zimmert’s theorem in the following shape.
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Theorem 7.178 (Zimmert) Let σ > 1 be a real number. Then every ideal class
contains a non-zero integral ideal a such that

NK/Q(a) � |dK|1/2 exp

{
2

�′
K

�K

(σ ) − log
�K(2σ)

�K(2σ − 1)
− log

(
2r2πn/2)+ r(σ )

}

where

r(σ ) = 2s(σ )

σ (σ − 1)
+ 2 log

(
1 − 1

σ

)
+ log

(
(s(σ ) + σ)(s(σ ) − σ + 1)

(s(σ ) − σ)(s(σ ) + σ − 1)

)

and s(σ ) = √
3σ 2 − 3σ + 1.

Example 7.179 The following table supplies numbers CK > 1 such that every ideal
class contains a non-zero integral ideal a such that

NK/Q(a) � C−1
K

|dK|1/2.

The signatures (2,0) and (0,1) are due to Gauss and one has to suppose dK � 8 for
the real quadratic field case.

(r1, r2) (2,0) (0,1) (3,0) (1,1) (4,0) (2,1) (0,2) (5,0)

CK

√
8

√
3 4.636 3.355 14.45 9.749 6.792 50.21

(r1, r2) (3,1) (1,2) (6,0) (0,3) (8,0) (0,4) (10,0) (0,5)

CK 32.12 21.11 188.1 46.74 3088 385.5 58 540 3560

Choosing σ = 1+2n−1/2, Theorem 7.178 implies that every ideal class contains
a non-zero integral ideal a such that

NK/Q(a) � |dK|1/2e−r1 (γ+log 4)−2 r2 (γ+log
√

2π)+O(
√

n)

as n −→ ∞.
It can be checked (see [Fri89, (4.1)] for instance) that the inequality (7.35) still

holds if Rα,σ (z) belongs to the class of rational functions defined by

R(z) =
(

z

z + 2σ − 1

)a(
z + 1

z + 2σ

)b m∑

k=0

ak

rk∏

j=0

1

z + bjk

with σ > 1, m ∈ Z�0, ak, bjk � 0 and rk ∈ N. In [dlM01], the author refined Zim-
mert’s results for small degrees by taking another rational function in this class.

7.5.11 Lower Bounds for the Regulator

As can be seen in (7.23) or Proposition 7.138, a lower bound for RK is needed to
get a good estimate for the class number. In the 1930s, Remak [Rem32] provided
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such lower bounds depending on the degree n of K when this field is totally real, i.e.
r1 = n. Using the geometry of numbers, he proved that there exist constants c0 > 0
and c1 > 1 such that RK � c0c

n
1 . This was later improved by Pohst [Poh77] who

showed that, if K is totally real, then

RK > n−1/2�

(
n + 3

2

)−1(√
nπ

2
log�

)n−1

where � = 1+√
5

2 is the golden ratio.
In view of (7.23), one may ask for some bounds depending on the discriminant.

This was first achieved in the early 1950s by Remak [Rem52] who proved that if K
is not a totally complex quadratic extension of a totally real field,35 then there exists
a constant cn > 0 such that

RK � cn log
|dK|
nn

and for algebraic number fields without proper subfields, he showed that there exists
a constant Cn > 0 such that

RK � Cn

(
log

|dK|
nn

)r

where r = r1 + r2 − 1 is the Dirichlet rank of O∗
K

. This result was generalized
independently by Silverman [Sil84], Friedman [Fri89] and Uchida [Uch94], still
using the geometry of numbers. Their main theorems are summarized in the next
result.

Theorem 7.180 Let K be an algebraic number field of degree n � 2, signature
(r1, r2), discriminant dK, regulator RK and let r = r1 + r2 −1 be the Dirichlet rank
of O∗

K
.

(i) (Silverman–Friedman). Let ρ be the maximal Dirichlet rank of the unit groups
of all proper subfields of K. Then there exists an effectively computable absolute
constant c > 0 such that

RK >
c

n2n

(
log

|dK|
nn

)r−ρ

.

(ii) (Uchida). Let α > 1 and F be a maximal subfield of K such that |dF| < |dK|m−α

where m = [K : F]. If λ is the Dirichlet rank of O∗
F

, then there exist constants
cn, dn > 0 depending only on n such that

RK > cn(logdn|dK|)r−λ.

35Such fields are usually called CM-fields.
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Sharpening the constants in the above results is a very difficult problem as n

grows. However, for small degrees, there exist some optimal results. For n = 2, we
have the following easy lemma.

Lemma 7.181 Let d � 5 be a squarefree number and K = Q(
√

d) be a real
quadratic field. Then

RK � log

(√
d + √

d − 4

2

)
.

The equality occurs when d = 5.

Proof If εd = 1
2 (u1 + v1

√
d) is the fundamental unit of K, then εd is equal to the

fundamental solution of the equation u2 − dv2 = ±4, and hence

εd = u1 + v1
√

d

2
�

√
dv2

1 − 4 + v1
√

d

2

implying the asserted result since RK = log εd . �

For cubic and quartic fields, Cusick [Cus84] showed the following lower bounds.

1. If K is a cubic field with signature (3,0), then

RK � 1

16

(
log

dK

4

)2

and the constant 1
16 is sharp.

2. If K is a cubic field with signature (1,1), then

RK � 1

3
log

|dK|
27

.

3. If K is a quartic field with signature (4,0), then

RK � 1

80
√

10

(
log

dK

16

)3

.

4. If K is a quartic field with signature (0,2), then

RK � 1

4
log

dK

256
.

Finally, for a quintic cyclic number field K, Schoof and Washington [SW88] proved
that

RK � 1

6400

(
log

dK

16

)4

.
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The analytic tools can also be used to derive lower bounds for the regulator. Using
(7.34) applied with α = 0 and G the partial Dedekind zeta function associated to
the trivial class, Zimmert [Zim81] was able to prove that, for each algebraic number
field K with signature (r1, r2) and number of roots of unity wK, we have for all
σ > 1

RK

wK

� 2−(r1+1)σ (2σ − 1)�K(2σ) exp

(
−2σ

�′
K

�K

(σ ) − 3σ − 1

σ − 1

)

and he chose σ = 2 to get

RK

wK

� 0.02 e0.46 r1+0.2 r2 .

This implies in particular that the smallest regulator of an algebraic number field
is � 0.056 and that the smallest regulator of a totally real algebraic number field is
log�, i.e. the regulator of Q(

√
5).

Zimmert’s ideas were later extended by Friedman and Skoruppa. The former
showed in [Fri89] that the ratio RK/wK can be expressed as a sum of rapidly con-
vergent series

RK

wK

=
∑

a

f

(NK/Q(a)2

|dK|
)

+
∑

b

f

(NK/Q(b)2

|dK|
)

(7.36)

where a runs through the principal ideals of OK, b runs through the integral ideals
in the ideal class of the different of OK and f :]0,∞[−→ R is defined by

f (x) = 2−(r1+1)

2πi

∫ 2+i∞

2−i∞
ξK(s)ζK(s)−1(x|dK|)−s/2(2s − 1)ds.

This function is C∞, takes both positive and negative values, and, for all r1 +r2 � 2,
we have

lim
x→0+ f (x) = −∞.

However, studying more carefully the behavior of f , Friedman [Fri07] proved that
f (x) has a single simple zero and that this conclusion still holds for all derivatives
f (k) of f . This implies that

RK

wK

� f

(
1

|dK|
)

.

Indeed, assume that f (|dK|−1) > 0 otherwise the inequality is trivial, then by the
previous observations we infer that f (x) > 0 as long as x � |dK|−1, and the result
follows by dropping out all terms in (7.36) except the one corresponding to the ideal
(1) = OK.

Friedman pointed out that this bound is useful only when the discriminant lies in
a certain range, otherwise Zimmert’s bound gives better results. For instance, let K
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be the totally complex algebraic number field of degree 36 with discriminant dK =
318 × 40579 taken from [Coh00, § 12.2.2]. Friedman’s result provides RKw−1

K
>

27 839 whereas Zimmert’s bound only gives36 RKw−1
K

> 121, but we also have the
useless bound f (10−17d−1

K
) ≈ −3.6 × 107.

7.6 Exercises

1 Show that 3, 7, 1 ± 2
√−5 are irreducibles in Z[√−5].

2 Show that θ = 3
√

2 + 5
√

2 is algebraic over Q.

3 Let P = X3 − X + 1 and α be a root of P . Set β = 1
2α2−3α+2

. Determine the
minimal polynomial of β .

4 Show that Q(
√

5,
4
√

2) =Q(
√

5 + 4
√

2). Deduce [Q(
√

5,
4
√

2) :Q].

5 (Schur) Let n ∈N and set

Pn = Xn

n! + Xn−1

(n − 1)! + · · · + X + 1.

The aim of this exercise is to show the following result due to Schur.

Theorem 7.182 (Schur) Pn is irreducible over Q.

The proof will make use of the following generalization of Bertrand’s postulate
seen in Corollary 3.44 (see [Erd34] for instance).

Lemma 7.183 Let k � l be positive integers. Then at least one of the numbers
l + 1, l + 2, . . . , l + k is divisible by a prime number p > k.

Suppose that Fn = n!Pn is reducible over Q. Since Fn is monic, it must have an
irreducible monic factor Am ∈ Z[X] of degree m� n/2 defined by

Am = Xm + am−1X
m−1 + · · · + a0.

1. Prove that each prime divisor of n(n − 1) · · · (n − m + 1) divides a0.
2. Let p be a prime factor of a0 and θ be a root of Am. Define K = Q(θ) so that

[K :Q] = m.
(a) Prove that there is some prime ideal p lying above p and dividing (θ).

36PARI/GP provides RKw−1
K

≈ 172 495.
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(b) Write (θ) = pαa and (p) = peb for some α, e ∈ N and integral ideals a and
b not divisible by p. Using the fact that Fn(θ) = 0, prove that there exists an
integer k ∈ {1, . . . , n} such that

vp

(
n! θk

k!
)
� vp(n!)

and using the identity vp(r!) = evp(r!), deduce that kα � evp(k!).
(c) Using Exercise 12 in Chap. 3, deduce that p � m.

3. Using Lemma 7.183, conclude the proof of Schur’s theorem.

6 This exercise provides a proof of Proposition 7.53 from which we take the nota-
tion. We set M = Z+Zθ + · · · +Zθn−1.

(a) Show that θn/p ∈ OK and that NK/Q(θ) �≡ 0 (modp2).
In what follows, we suppose that p | f .

(b) Explain why there exist α ∈ OK \ M and b0, . . . , bn−1 ∈ Z not all divisible by
p and such that

pα = b0 + b1θ + · · · + bn−1θ
n−1.

(c) Let j be the smallest index such that p � bj and set

β = α − 1

p

(
b0 + b1θ + · · · + bj−1θ

j−1).

Show that β ∈ OK and deduce that (bj θ
n−1)/p ∈ OK. Prove the contradiction

by taking the norm of this number.

7 Let P = X3 − 189X + 756 and θ be a root of P .

(a) Show that P is irreducible over Z and let K = Q(θ) be the corresponding alge-
braic number field.

(b) Determine an integral basis for K.
(c) Compute the Galois group Gal(K/Q) and the regulator RK of K.

8

(a) Factorize (3) in K =Q(
√−2).

Deduce the factorization of the principal ideal a = (1+2
√−2) and that there

exists no non-negative integer n such that (1 + 2
√−2)n = 3n.

(b) Show that arccos(1/3)/π �∈ Q.

9 Let a, b be two squarefree numbers such that a ≡ 1 (mod 3) and b ≡ 1 (mod 3).
Prove that the biquadratic field K=Q(

√
a,

√
b) is not monogenic.
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10 Let K be a cubic field such that dK < 0 and p be any prime number. It can be
shown [Has30] that the factorization of (p) in OK can be divided into the following
five different types.

Type I II III IV V
(p) pp′p′′ p pq p2q p3

Degree 1 3 1 and 2 1 1

Let α ∈N. Compute νK(pα) in each case.

11 The purpose of this exercise is to provide a proof of the inequality (7.23) follow-
ing Louboutin’s ideas [Lou98]. Let K/Q be a totally real algebraic number field of
degree n � 2, discriminant dK > 1 and class number hK.

(a) Set σ0 = 1 + 2n−2
logdK

. Prove that 1 < σ0 < 2.
(b) Let σ > 1. Using the bounds ζK(σ ) � ζ(σ )n � (σ/(σ − 1))n and writing the

inequality (7.22) in the form

κK �
d

(σ−1)/2
K

(σ − 1)n−1
fn(σ )

show that the function gn : σ �−→ 2σf ′
n(σ )

nfn(σ )
is convex on ]0,+∞[.

(c) Deduce that, for all σ ∈ [1,2], we have gn(σ ) � 0.
(d) Finalize the proof of (7.23).

12 In [Ram01], Ramaré proved that, if χ is a primitive even Dirichlet character of
conductor fχ , then

∣∣L(1, χ)
∣∣� 1

2
logfχ . (7.37)

Let K/Q be an abelian real number field of degree n, discriminant dK, class number
hK and regulator RK. With the help of (7.37) and the class number formula, show
that

hKRK � d
1/2
K

(
logdK

4n − 4

)n−1

thus improving the bound (7.23) by a factor en−1.

13 Determine the prime numbers p � 7 which can be expressed in the form p =
x2 + 15y2.
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Appendix
Hints and Answers to Exercises

A.1 Chapter 1

1. By assumption we have a = bq + r with q � r < b so that q(b + 1) � a <

b(q + 1). Now if a = q1(b + 1) + r1 with 0 � r1 < b + 1, we deduce that

q(b + 1)� q1(b + 1) + r1 < b(q + 1)

and hence

q − r1

b + 1
� q1 <

b

b + 1
(q + 1) + r1

b + 1

implying q − 1 < q1 < q + 1 and therefore q1 = q .

2. If 1 � q < a, let bq be the quotient of the Euclidean division of a by q . We
have

b ∈ Sq ⇐⇒
[
a

b

]
= q ⇐⇒ a

b
− 1 < q � a

b
⇐⇒ a

q + 1
< b � a

q

and since b ∈N, this is equivalent to bq+1 < b � bq . Hence we have

a∑
q=1

|Sq | =
a−1∑
q=1

|Sq | + 1 =
a−1∑
q=1

(bq − bq+1) + 1 = b1 − ba + 1 = a − 1 + 1 = a.

3. For (i), the Euclidean division of n by m gives n = qm+ r with 0 � r � m− 1
so that

n + 1

m
− 1 = q + r + 1

m
− 1 � q + m − 1 + 1

m
− 1 = q =

[
n

m

]
.
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For (ii), the proof is similar except that we use m � n =⇒ 1 � r � m − 1. The iden-
tity (iii) is obvious if m | n. Otherwise, we have by (i) and (ii)

0 �
[

n

m

]
−

[
n − 1

m

]
� 1 − 1

m
< 1

and we conclude the proof by noticing that the difference above is an integer.

4. The first identity follows from Theorem 1.14 (i) and letting x −→ ∞. The
second identity follows from

∑
n>x

f (n)g(n) =
∞∑

n=1

f (n)g(n) −
∑
n�x

f (n)g(n).

5. Using Theorem 1.14 (i) we get for all integers N > M

N∑
n=1

an

n
= 1

N

N∑
n=1

an +
∫ M

1

1

t2

(∑
n�t

an

)
dt +

∫ N

M

1

t2

(∑
n�t

an

)
dt.

By assumption, the first term on the right-hand side tends to 0 as N −→ ∞ and the
second integral converges by Rule 1.20 since |∑n�t an| � M . Hence we obtain

∣∣∣∣∣
∞∑

n=1

an

n

∣∣∣∣∣ �
∫ M

1

1

t2

∣∣∣∣∣
∑
n�t

an

∣∣∣∣∣dt +
∫ ∞

M

1

t2

∣∣∣∣∣
∑
n�t

an

∣∣∣∣∣dt

�
∫ M

1

dt

t
+ M

∫ ∞

M

dt

t2
= logM + 1

as asserted.

6. One may assume that N � 2. By Abel’s summation as stated in Remark 1.15,
we get

n−1∑
k=1

k

N
(ak+1 − ak) +

N−1∑
k=n

k − N

N
(ak+1 − ak)

=
N−1∑
k=1

k

N
(ak+1 − ak) −

N−1∑
k=n

(ak+1 − ak)

= 1

N

{
(N − 1)

N−1∑
k=1

(ak+1 − ak) −
N−2∑
k=1

k∑
j=1

(aj+1 − aj )

}
− aN + an

=
(

1 − 1

N

)
(aN − a1) − 1

N

N−2∑
k=1

(ak+1 − a1) − aN + an
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= an − a1 + aN

N
− 1

N

N−1∑
k=2

ak = an − 1

N

N∑
k=1

ak

so that

an = 1

N

N∑
k=1

ak +
N∑

k=1

�N(n, k)(ak+1 − ak)

where

�N(n, k) = 1

N
×

{
k, if 1 � k � n − 1,

k − N, if n� k � N

and the result follows from the trivial estimate |�N(n, k)| � 1.

7. This is an immediate consequence of Theorem 1.14 (ii) using

∑
p�x

f (p) =
∑
p�x

(
f (p)

logp
× logp

)
.

8.

(a) By integration by parts

Li(x) = x

logx
− 2

log 2
+

∫ x

2

dt

(log t)2

as required.
(b) Using Exercise 7 with f (x) = 1 and the previous question, we get

π(x) = θ(x)

logx
+

∫ x

2

θ(t)

t (log t)2
dt

= x

logx
+

∫ x

2

dt

(log t)2
+ θ(x) − x

logx
+

∫ x

2

θ(t) − t

t (log t)2
dt

= Li(x) + 2

log 2
+ θ(x) − x

logx
+

∫ x

2

θ(t) − t

t (log t)2
dt

and hence

∣∣π(x) − Li(x)
∣∣ � 2

log 2
+ R(x)

logx
+

∫ x

2

R(t)

t (log t)2
dt

with

∫ x

2

R(t)

t (log t)2
dt =

(∫ √
x

2
+

∫ x

√
x

)
R(t)

t (log t)2
dt
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<

√
x

(log 2)2
+ R(x)

∫ x

√
x

dt

t (log t)2

=
√

x

(log 2)2
+ R(x)

logx

� R(x)

logx

(
1 + 1

(log 2)2

)

and therefore

∣∣π(x) − Li(x)
∣∣ <

R(x)

logx

(
2 + 1

(log 2)2

)
+ 2

log 2
<

5R(x)

logx
.

A.2 Chapter 2

1.

(a) If d = (a, b), then d divides 2a and 2b, so that d divides 2(a, b) = 2.
(b) If d = (a, b), then d divides a(a + b) − ab = a2 and b(a + b) − ab = b2, so

that d divides (a2, b2) = 1.
(c) If b = ka for some integer k, then bn = knan and thus an | bn. Conversely,

assume that an | bn and set d = (a, b) and write a = da′ and b = db′ so that
(a′, b′) = 1. We have a′n | b′n and since (a′n, b′n) = (a′, b′)n = 1, we infer that
a′n = 1 and then a′ = 1. Thus a = d and therefore b = ab′, so that a | b.

(d) Set d = (a, b) and D = (ax + by, az + bt) with |xt − yz| = 1. We have clearly
d | D. Conversely, assuming ax + by � 0 and az + bt � 0, we have

D | ax + by

D | az + bt

}
=⇒ D | {X(ax + by) + Y(az + bt)

}

for all (X,Y ) ∈ Z
2. Taking X = t and Y = −y we obtain D | ±a and taking

X = z and Y = −x gives D | ±b, and hence D | d .

2.

(a) We have |S2| = ([√p] + 1)2 > p = |{0, . . . , p − 1}| so that f is not injective
by the Dirichlet pigeon-hole principle.

(b) We have f (u1, v1) = f (u2, v2) ⇐⇒ au1 −v1 ≡ au2 −v2 (modp) ⇐⇒ au ≡ v

(modp).
Furthermore, |u| = |u1 − u2|� [√p] <

√
p and similarly |v| < √

p.
If u = 0, then we have v ≡ 0 (modp) and hence v = 0 since |v| < √

p. This
is impossible in view of the condition (u1, v1) 
= (u2, v2).

If v = 0, then we have au ≡ 0 (modp) and since p � a and p is prime, then
we get u = 0 by Lemma 3.4, which is also impossible.
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3. Let us first notice that qk � 1 for all 1 � k < n and qn � 2.

(a) The identity is true when k = 0 and k = 1. Assume it is true for some 1 � k � n.
Then

rk+1 = rk−1 − rkqk

= sk−1a + tk−1b − qk(ska + tkb)

= a(sk−1 − qksk) + b(tk−1 − qktk)

= sk+1a + tk+1b

proving the asserted result by induction.
(b) We show the identity sgn(sk) = (−1)k by induction, where we set sgn(0) = ±1

by convention. The identity is true when k = 0 and k = 1. Assume it is true
for some 1 � k � n. Then sgn(sk+1) = sgn(−qksk + sk−1) and by induction
hypothesis we have

sgn(−qksk) = −sgn(sk) = (−1)k+1 = sgn(sk−1)

and hence sgn(sk+1) = (−1)k+1 as required. Similarly, we have sgn(tk) =
(−1)k+1. We conclude the proof using x = sgn(x)|x|.

For all k ∈ {1, . . . , n}, we then have

sk+1 = −qksk +sk−1 ⇐⇒ (−1)k+1|sk+1| = (−1)k+1qk|sk|+(−1)k−1|sk−1|
and simplifying by (−1)k+1 gives the desired result. The proof is analogous for
the identity

|tk+1| = qk|tk| + |tk−1|.
(c) Define the sequence (uk) by uk = |tk|rk−1 + |tk−1|rk for all k ∈ {1, . . . , n + 1}.

Using the previous questions, we get

uk+1 = |tk+1|rk + |tk|rk+1

= (
qk|tk| + |tk−1|

)
rk + |tk|(rk−1 − rkqk)

= |tk|rk−1 + |tk−1|rk = uk

and hence uk = u1 = |t1|r0 + |t0|r1 = a for all k ∈ {1, . . . , n + 1}, as asserted.

4.

(a) By induction.
(b) Set d = (un,un−1) so that d divides u2

n−1 − un = 2, and since un and un−1 are
odd, we get d = 1.

(c) By induction, the result being clearly true when n = 3 since

u3 − 2 = u2
2 − 4 = (u2 + 2)(u2 − 2) = u2

1(u2 − 2).
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Assume it is true with n replaced by n − 1. We have

un − 2 = u2
n−1 − 4

= (un−1 + 2)(un−1 − 2)

= u2
n−2(un−1 − 2)

and using induction hypothesis we get

un − 2 = u2
n−2u

2
n−3 · · ·u2

1(u2 − 2)

concluding the proof.
(d) For all r ∈ {2, . . . , n− 1}, define dr = (un,un−r ). We have dr | un and dr | un−r

so that dr divides

un − u2
n−ru

2
n−2 · · ·u2

n−r+1u
2
n−r−1 · · ·u2

1(u2 − 2) = 2

and we conclude the proof by using the fact that both un and un−r are odd.

5.

� The first equation is equivalent to 19x + 14y = 3 and has solutions

(9 + 14k,−12 − 19k) with k ∈ Z

by Proposition 2.15.
� Let (x, y) ∈ N

2 be a solution of the second equation and set d = (x, y) and x =
dx′ and y = dy′ so that (x′, y′) = 1. The equation is equivalent to 5d(x′ + y′)2 =
147x′y′ and hence (x′ + y′)2 divides 147x′y′. By Exercise 1(b), we have ((x′ +
y′)2, x′y′) = 1 and Theorem 2.12 implies that

(
x′ + y′)2 | 147 = 3 × 72

and therefore x′ + y′ | 7. Since x′ + y′ > 1, we get x′ + y′ = 7, implying that
5d = 3x′y′ and hence 5 | x′y′ by Theorem 2.12 since (3,5) = 1. This implies
that (x′, y′) ∈ {(2,5), (5,2)} and then d = 6, and

(x, y) ∈ {
(12,30), (30,12)

}
.

Conversely, one can check that these pairs are solutions of the equation.
� The system is equivalent to

{
x ≡ 2 (mod 5),

x ≡ 6 (mod 7)

and by Theorem 2.27, we infer that the solution of this system is x ≡ 27 (mod 35).



A.2 Chapter 2 489

6.

(a) Write a = da′ and b = db′ and thus (a′, b′) = 1. The line (OA) has equation
y = (b′/a′)x so that a point N〈x, y〉 is an integer point of the segment ]OA]
if and only if x, y � 1, x � a and a′y = b′x. Then a′ | b′x and Theorem 2.12
implies that a′ | x. Hence the number of integer points lying on the segment
]OA] is equal to the number of non-zero multiples of a′ which are � a, and this
number is in turn equal to [a/a′] = d by Proposition 1.11 (v).

(b) The result follows at once using Pick’s formula applied to the triangle OAB

with area(OAB) = ab/2 and N∂P = a + b + d by the previous question.

7. The answer is “no” as can be seen with the solution (x, y, z) = (2,2,2).

8.

(a) We have n ≡ k (mod 4) with k ∈ {0,±1,2} which implies that n2 ≡ k2 (mod 8)

with k2 ∈ {0,1,4}. We infer that the sum of three squares can only be congruent
to 0,1,2,4,5,6 modulo 8.

(b) Similarly, we have n ≡ k (mod 3) with k ∈ {0,±1} so that n3 ≡ k3 (mod 9)

with k3 ∈ {0,±1}. Thus the sum of three cubes can only be congruent to
0,1,2,3,6,7,8 modulo 9.

(c) Let (x, y, z) ∈ N
3 be a solution. We have x3 + y3 + z3 = 20052 ≡ 4 (mod 9)

contradicting the previous question. Thus the equation has no solution in N
3.

9.

� FIRST METHOD. We use 641 = 24 + 54 = 5 × 27 + 1 giving

232 = 24 × 228 = (
641 − 54) × 228

= 641 × 228 − (
5 × 27)4

= 641 × 228 − (641 − 1)4

= 641 × (
228 − 6413 + 4 × 6412 − 6 × 641 + 4

) − 1

and then

232 + 1 = 641 × 6 700 417.

� SECOND METHOD. We use 232 + 1 = 16 × 228 + 1 = (1 + 3 × 5)× (27)4 + 1 and
notice that 3 = 128 − 125 = 27 − 53 so that

232 + 1 = {
1 + 5 × (

27 − 53)} × (
27)4 + 1

= (
1 + 5 × 27 − 54) × (

27)4 + 1

= (
1 + 5 × 27) × 228 + 1 − (

5 × 27)4

= (
1 + 5 × 27) × 228 + {

1 − (
5 × 27)2}{1 + (

5 × 27)2}
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= (
1 + 5 × 27) × 228 + (

1 + 5 × 27)(1 − 5 × 27)(1 + (
5 × 27)2)

= (
1 + 5 × 27) × {

228 + (
1 − 5 × 27)(1 + (

5 × 27)2)}
= 641 × 6 700 417.

Remark Euler was the first to obtain this result, disproving the old conjecture stating
that the Fermat numbers Fn = 22n + 1 are all primes. Euler proved that 641 | F5
although Fn was already known to be prime for n ∈ {0, . . . ,4}. Currently, it is known
that Fn is composite for n ∈ {5, . . . ,19}. The largest known prime Fermat number
is F4 = 65 537 and the largest known composite Fermat number is F23 471. The
Fermat number whose complete prime factorization is known are F5,F6,F7,F8,F9
and F11. The smallest Fermat number for which no prime factor is known is F14.
Finally, the following questions are still open:

1. Do there exist infinitely many prime Fermat numbers?
2. Do there exist infinitely many composite Fermat numbers?
3. Is every Fermat number squarefree?

10. Let us first show that x > y. Indeed, if x = y, then a = b which is impossible
by assumption. If x < y, then we have

0 < by2 − ax2 = x − y < 0

giving a contradiction.

(a) Let us notice that

ax2 + x = by2 + y ⇐⇒ x − y = by2 − ax2

and hence

(x − y)
{
1 + b(x + y)

} = x − y + b
(
x2 − y2) = by2 − ax2 + bx2 − by2

= (b − a)x2 = (mx)2.

The second identity is similar.
(b) Define d = (x, y) and D = (b − a, x − y).

� Set x − y = DA and m2 = DB with (A,B) = 1. By the previous question,
we have

A
(
1 + b(x + y)

) = Bx2 and A
(
1 + a(x + y)

) = By2

so that A | (Bx2,By2) = Bd2. Since (A,B) = 1, Theorem 2.12 implies that
A | d2.

� On the other hand, since d2 | x2 and x2 | A(1 + b(x + y)), we deduce that

d2 | A(
1 + b(x + y)

)
.



A.2 Chapter 2 491

Suppose that (d2,1 + b(x + y)) > 1 and let p be a prime factor of this gcd.
Hence p divides x, y and 1 + b(x + y), so that p must divide 1 + b(x + y)−
b(x + y) = 1 which is impossible. Hence (d2,1 + b(x + y)) = 1 and using
Theorem 2.12 we get d2 | A.

� We thus have d2 = A and then

x − y = DA = Dd2 = (b − a, x − y) × (x, y)2

as required.
(c) x − y is not always a square as can be seen by taking (a, b, x, y) = (109,334,

7,4) or (a, b, x, y) = (3,199,8,1).
� Suppose that b = a + 1. Hence (b − a, x − y) = 1 and then x − y = (x, y)2.
� Now suppose that there exist integers m � 1 and n� 2 such that a = m2(n −

1) and b = m2n. Then

x − y = by2 − ax2 = m2(ny2 − (n − 1)x2)

and then m2 = b − a divides x − y so that (b − a, x − y) = b − a = m2 and
hence x − y = (md)2.

11.

(a) Since (a, b) = 1, there exist U,V ∈ Z such that aU + bV = 1 by Corollary 2.6.
Since a, b ∈ N, we have UV � 0, and without loss of generality, one may as-
sume that U � 0 and V � 0. Setting u = −U and v = V , we get two non-
negative integers u, v such that −au + bv = 1.

By Proposition 2.15, the solutions of the equation ax + by = n are given by
the pairs

(−un + bk, vn − ak) with k ∈ Z

and the non-negative solutions are obtained by solving the inequalities −un +
bk � 0 and vn − ak � 0 implying

un

b
� k � vn

a
.

Hence D2(n) is equal to the number of integers in the interval [un/b, vn/a] so
that

D2(n) =
[
vn

a
− un

b

]
+ r

and we conclude the proof with

vn

a
− un

b
= n(−au + bv)

ab
= n

ab
.
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(b) Using Theorem 2.31 we get

r = 0 ⇐⇒
[

n

ab

]
= n

ab
−1+ aa′ + bb′

ab
⇐⇒

{
n

ab

}
= 1− aa′ + bb′

ab

which is equivalent to

0 � 1 − aa′ + bb′

ab
< 1

giving the asserted result. The case r = 1 is similar.

12.

(a) The first identity is trivial if a = 1. If a � 2, it follows from the logarithmic
derivative of (2.9) and taking x = 1. For the second identity, we have

a∏
j=1
j 
=k

1

ea(k) − ea(j)
= ea

(−k(a − 1)
) a∏

j=1
j 
=k

1

1 − ea(j − k)

= ea(k)

a−1∏
h=1

1

1 − ea(h)
= ea(k)

a

where we used (2.9) with x = 1.
(b) By (2.8), we infer that F(z) = zn+1f (z) is the generating function of D2(n).

Therefore

f (z) = 1

zn+1

∞∑
k=0

D2(k)zk = D2(n)

z
+

∞∑
k=0
k 
=n

D2(k)zk−n−1

so that

Res
z=0

f (z) =D2(n).

The non-zero poles of f are respectively 1 (order 2), ea(k) (order 1) for all
1 � k � a − 1 and eb(k) (order 1) for all 1 � k � b − 1. Since

za − 1 =
a∏

j=1

(
z − ea(j)

)
and zb − 1 =

b∏
j=1

(
z − eb(j)

)

we get

Res
z=1

f (z) = G′(1)

where

G(z) = (z − 1)2f (z) = z−n−1
a−1∏
k=1

(
z − ea(k)

)−1
b−1∏
k=1

(
z − eb(k)

)−1
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so that

G′

G
(z) = −n + 1

z
−

a−1∑
k=1

1

z − ea(k)
−

b−1∑
k=1

1

z − eb(k)
.

Now (2.9) with x = 1 implies that G(1) = (ab)−1 and then we get using the
previous question

Res
z=1

f (z) = 1

ab

{
−n − 1 −

a−1∑
k=1

1

1 − ea(k)
−

b−1∑
k=1

1

1 − eb(k)

}

= 1

ab

{
−n − 1 − a − 1

2
− b − 1

2

}

= −a + b + 2n

2ab
.

Finally, for all k ∈ {1, . . . , a − 1}, we have using the previous question

Res
z=ea(k)

f (z) = 1

ea(kb) − 1
× 1

ea(k(n + 1))
×

a∏
j=1
j 
=k

1

ea(k) − ea(j)

= 1

a ea(kn)(ea(kb) − 1)

and similarly

Res
z=eb(k)

f (z) = 1

b eb(kn)(eb(ka) − 1)

for all k ∈ {1, . . . , b − 1}.
(c) Since lim|z|→∞ zf (z) = 0, Jordan’s (first) lemma implies that

lim
R→∞

1

2πi

∫
|z|=R

f (z)dz = 0

and Cauchy’s residue theorem then gives

D2(n) = a + b + 2n

2ab
+ 1

a

a−1∑
k=1

1

ea(kn)(1 − ea(kb))
+ 1

b

b−1∑
k=1

1

eb(kn)(1 − eb(ka))

(A.1)
which is similar to (2.4).

(d) If b = 1, then the equation is ax + y = n so that n/a � x and then

D2(n) =
∣∣∣∣
[

0,
n

a

]
∩Z

∣∣∣∣ =
[
n

a

]
+ 1 = n

a
−

{
n

a

}
+ 1.
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Replacing in (A.1) gives

n

a
−

{
n

a

}
+ 1 = a + 1 + 2n

2a
+ 1

a

a−1∑
k=1

1

ea(kn)(1 − ea(k))

so that

1

a

a−1∑
k=1

1

ea(kn)(1 − ea(k))
= a − 1

2a
−

{
n

a

}
.

(e) By above we get

1

a

a−1∑
k=1

1

ea(kn)(1 − ea(kb))
= 1

a

a−1∑
k=1

1

ea(kbn)(1 − ea(k))
= a − 1

2a
−

{
nb

a

}

and similarly

1

b

b−1∑
k=1

1

eb(kn)(1 − eb(ka))
= b − 1

2b
−

{
na

b

}

and therefore

D2(n) = a + b + 2n

2ab
+ a − 1

2a
−

{
nb

a

}
+ b − 1

2b
−

{
na

b

}

= n

ab
+ 1 −

{
nb

a

}
−

{
na

b

}
.

A.3 Chapter 3

1. Let A = 345 + 456
. Using Sophie Germain’s identity

m4 + 4n4 = (
m2 + 2mn + 2n2)(m2 − 2mn + 2n2)

with m = 344
and n = 43906, we get A = BC with B > 1 and C > 1, implying that

A is composite.

2. The inequality may be numerically checked for all n ∈ {33, . . . ,65} so that
we suppose that n � 66. Among the integers {2, . . . , n}, we remove the [n/2] − 1
even integers 
= 2 and the [n/3] − 1 integers 
= 3 multiples of 3. However, the [n/6]
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integers multiples of 6 have been removed twice, and removing the numbers 25, 35,
55 and 65, we get

π(n) � n −
([

n

2

]
− 1

)
−

([
n

3

]
− 1

)
+

[
n

6

]
− 4

and the inequalities x − 1 < [x] � x imply the asserted result.

3. This sequence has 6k − 5 integers. Furthermore, if n � 6 is even, then n2 + 2
is also even and then is composite. Similarly, if n ≡ ±1 (mod 6), then n2 + 2 ≡
3 (mod 6) and n2 + 2 is odd and composite. We infer that the number of primes in
the sequence is

� 6k − 5 − (3k − 2) − 2(k − 1) = k − 1 < k.

4.

(a) Let N � 2 be an integer. Using Theorem 1.14 (ii) and a weak version of Corol-
lary 3.50, we get

∑
p�N

1

p logp
= 1

logN

∑
p�N

1

p
+

∫ N

2

1

t (log t)2

(∑
p�t

1

p

)
dt

= log logN + O(1)

logN
+

∫ N

2

log log t + O(1)

t (log t)2
dt = O(1)

implying the asserted result.
(b) The sum is clearly convergent. By Exercise 7 in Chap. 1 and Corollary 3.98, we

have1

∑
p

logp

p2
=

( ∑
p�100

+
∑

p>100

)
logp

p2

=
∑

p�100

logp

p2
− θ(100)

104
+ 2

∫ ∞

100

θ(t)

t3
dt

< 0.484 − 0.0075 + 2.000 162
∫ ∞

100

dt

t2
<

1

2

as required.

1Exercise 7 in Chap. 1 is used in the following form. If f ∈ C1[2,+∞[ such that f (x)θ(x)/

logx −→ 0 as x −→ ∞, then

∑
p>x

f (p) = −f (x)θ(x)

logx
−

∫ ∞

x

θ(t)
d

dt

(
f (t)

log t

)
dt.
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5. By Theorem 3.37 we get

vp

{
(pa)!} =

∞∑
k=1

[
a

pk−1

]
= a + vp(a!)

so that

vp

{(
pa

pb

)}
= vp

{
(pa)!} − vp

{
(pb)!} − vp

{(
p(a − b)

)!}

= vp(a!) − vp(b!) − vp

(
(a − b)!) = vp

{(
a

b

)}

as required.

6. If (x, y) is a solution, set d = (x, y) and write x = dx′ and y = dy′ so that
(x′, y′) = 1. The equation is equivalent to dx′y′ = p(x′ +y′) and hence x′y′ divides
p(x′ + y′). Since (x′ + y′, x′y′) = 1 by Exercise 1 in Chap. 2, we infer that x′y′ | p
by Theorem 2.12, and thus

x′y′ = 1 or x′y′ = p

and hence (x′, y′) ∈ {(1,1), (1,p), (p,1)}. This implies that d = 2p if (x′, y′) =
(1,1) and d = p + 1 otherwise, so that we get

(x, y) ∈ {
(2p,2p),

(
p + 1,p(p + 1)

)
,
(
p(p + 1),p + 1

)}
.

Conversely, one easily checks that these pairs are solutions.

7. 2 and 3 are not solutions, but 5 is a solution. Suppose now that p � 7 is prime.
We then have (p − 1)(p + 1) = 23 × q with q � 7 prime. This implies that either q

divides p − 1 or q divides p + 1 by Lemma 3.4.

� If p − 1 = hq for some h ∈N then 8 = h(hq + 2), so that h | 8. We then get

h 1 2 4 8
q 6 1 0 
∈ N

and since q is prime, we see that this case does not provide any solution.
� Similarly, if p + 1 = kq then 8 = k(kq − 2), so that k | 8. We then get

k 1 2 4 8
q 10 3 1 
∈N

and since q is prime, q = 3 is the only admissible value, giving p = 5.
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8. Let (x, y, z) be a solution. Note that

x + y + z + xy + yz + zx + xyz + 1 = (x + y + xy + 1) + z(x + y + xy + 1)

= (x + y + xy + 1)(z + 1)

= (x + 1)(y + 1)(z + 1)

so that the equation is equivalent to (x + 1)(y + 1)(z+ 1) = 2010 = 2 × 3 × 5 × 67.
Furthermore, since x < y < z, this implies that (x + 1)3 < 2010 so that x � 11. We
deduce that x ∈ {2,4,5,9} and we obtain the triples

(2,4,133), (2,9,66) and (4,5,66).

Conversely, one easily checks that these triples are solutions.

9. Observe first that 2 � a and 5 � a since (a,10) = 1.

(a) Since a is odd, we have a8 ≡ 1 (mod 2). Furthermore, since 5 � a, Fermat’s little
theorem implies that a4 ≡ 1 (mod 5) and hence a8 ≡ 1 (mod 5). Finally, since
(2,5) = 1, one may apply Proposition 2.13 (vi) which gives a8 ≡ 1 (mod 10).

The congruence a8×10k ≡ 1 (mod 10k+1) can be proved by induction as in
Exercise 10.

Taking k = 8 and multiplying by a gives a800 000 001 ≡ a (mod 109).
(b) Since (123 456 789,10) = 1, we get by the previous question

123 456 789800 000 001 ≡ 123 456 789
(
mod 109)

so that if x = 123 456 789266 666 667, then x3 ≡ 123 456 789 (mod 109) as re-
quired.

10. We prove the congruence by induction, the case k = 0 being clear using Fer-
mat’s little theorem. Assume that the result is true for some k � 0. By Lemma 1.6,
we have

apk+2 − apk+1 = (
apk+1 − apk ) p∑

j=1

aj×pk(p−1).

By induction hypothesis, we have apk+1 − apk ≡ 0 (modpk+1) and since ap−1 ≡
1 (modp) by Fermat’s little theorem, we infer that

p∑
j=1

aj×pk(p−1) ≡ p ≡ 0 (modp)

so that p × pk+1 = pk+2 divides apk+2 − apk+1
, completing the proof.
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11.

(a) If n ≡ 1 (modp), then 0 ≡ n2 + n + 1 ≡ 3 (modp) which is impossible since
p � 5.

If n2 ≡ 1 (modp), then n ≡ ±1 (modp) by Lemma 3.4. Since n 
≡
1 (modp), we obtain n ≡ −1 (modp) and then 0 ≡ n2 + n + 1 ≡ 1 (modp)

giving a contradiction again.
Since n3 − 1 = (n − 1)(n2 + n + 1), we deduce that n3 ≡ 1 (modp) and

hence ordp(n) = 3.
We infer that 3 | (p − 1) by (3.4). If p = 1 + 3k for some even integer k, then

p ≡ 1 (mod 6). If p = 1 + 3(1 + 2h) = 2(2 + 3h) for some h ∈ N, then p is
composite, giving a contradiction. Hence p ≡ 1 (mod 6).

(b) Assume that the set of primes of the form p ≡ 1 (mod 6) is finite and write all
these primes as

p1 = 7 < p2 < · · · < pm.

Set M = (p1 · · ·pm)2 + p1 · · ·pm + 1 supposed to be composite without loss of
generality. Using the previous question, the prime factors of M are all congruent
to 1 modulo 6 and then there exists an index i ∈ {1, . . . ,m} such that pi | M ,
giving a contradiction since we also have pi | (M − 1).

12. Let p � n be a prime number and set N = [logn/ logp]. By Theorem 3.37
and the inequalities x − 1 < [x] � x, we get

n

N∑
k=1

1

pk
− N < vp(n!) � n

N∑
k=1

1

pk

so that

n

p − 1

(
1 − 1

pN

)
− N < vp(n!) � n

p − 1

(
1 − 1

pN

)

and using logn/ logp − 1 < N � logn/ logp gives

n

p − 1

(
1 − p

n

)
− logn

logp
< vp(n!) � n

p − 1

(
1 − 1

n

)

implying the asserted inequalities. This also may be written in the form

1

(p − 1) logn
�

n
p−1 − vp(n!)

logn
<

1

logp
+ p

(p − 1) logn

and since p � 2, we get

0 <

n
p−1 − vp(n!)

logn
<

1

log 2
+ 2

logn
= O(1)

as required.



A.3 Chapter 3 499

Remark Used with p = 5, this asymptotic formula shows that, if n is sufficiently
large, the decimal expansion of n! ends up with approximately n/4 zeros.

13. Since a square is congruent to 0 or 1 modulo 4, we see that a2 − b2 cannot be
congruent to 2 modulo 4. Conversely, let n 
≡ 2 (mod 4). Then either n is odd or it
is a multiple of 4. If n is odd, then

n =
(

n + 1

2

)2

−
(

n − 1

2

)2

is a difference of two squares. If 4 | n, then

n =
(

n

4
+ 1

)2

−
(

n

4
− 1

)2

is also a difference of two squares. Finally, if n � 4, then n! ≡ 0 (mod 4) and hence
n! can be expressed as a difference of two squares in this case. For instance, we
have 13 ! = 78 9122 −2882 = 112 2962 −79 8962. Furthermore, 2 ! ≡ 2 (mod 4) and
3 ! ≡ 2 (mod 4) so that neither 2 ! nor 3 ! can be expressed as a difference of two
squares.

14. The proof is the same as in Proposition 7.28. Suppose that P is not irreducible
over Z. Then P = QR for some Q,R ∈ Z[X] such that Q,R 
= ±1. Set d = degQ

and δ = degR so that n = d + δ. Since Q 
= ±1, each polynomial Q± 1 has at most
d roots. Therefore, there are at most d integers m such that Q(m) = 1 and at most d

integers m such that Q(m) = −1, so that there are at most 2d integers m such that
Q(m) = ±1. Similarly, there are at most 2δ integers m such that R(m) = ±1. Now
if |P(m)| = |Q(m)| × |R(m)| is prime, then either Q(m) = ±1 or R(m) = ±1. We
infer that there are at most 2d + 2δ = 2n integers m such that |P(m)| is prime, as
required.

The polynomials P1 and P2 are both irreducible over Z by applying this crite-
rion respectively with m ∈ {2,3,4,5,6,9,11,12,15} and m ∈ {3,5,8,9,12,14,15,

17,21}.

15. Since (7,15) = 1, the sequence 7 − 15k contains infinitely many primes by
Theorem 3.63. Now 7 − 15k + 2 = 3(3 + 5k) and 7 − 15k − 2 = 5(1 + 3k) and
hence these two numbers are composite. We deduce that the primes contained in the
sequence 7 − 15k cannot lie in a pair of twin primes.

16. The sequence (dj ) of the positive divisors of n is strictly increasing so that
dj � j for all j . Note also that djdk+1−j = n for all j ∈ {1, . . . , k} so that

dj = n

dk+1−j

� n

k + 1 − j
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and hence

k∑
j=2

dj−1dj �
k∑

j=2

n2

(k + 2 − j)(k + 1 − j)

= n2
k∑

j=2

(
1

k + 1 − j
− 1

k + 2 − j

)

= n2
(

1 − 1

k

)
< n2.

17.

(a) Since P(a/b) = 0 we get

cn

(
a

b

)n

+ cn−1

(
a

b

)n−1

+ · · · + c1

(
a

b

)
+ c0 = 0

so that

cna
n + cn−1a

n−1b + · · · + c1abn−1 + c0b
n = 0. (A.2)

This may be written as c0b
n = ha with

h = −cna
n−1 − cn−1a

n−2b − · · · − c1b
n−1 ∈ Z

so that a | c0b
n and since (a, b) = 1, Theorem 2.12 implies that a | c0.

Similarly, (A.2) may be written as cna
n = kb with

k = −cn−1a
n−1 − · · · − c1abn−2 − c0b

n−1 ∈ Z

and we conclude as above.
(b) By the previous question, if a/b is a root of a monic polynomial, then b = ±1.
(c) The roots of X2 − p are ±√

p. By above, these roots are either integer or irra-
tional, and since p is prime, we have

√
p 
∈ Z.

18.

Part A.

(a) This follows easily from the fact that a square is congruent to 0 or 1 modulo 4
and that p is odd.

(b) Using Theorem 3.19, we have

−1 ≡ (p − 1) ! ≡ 1 × 2 × · · · × p − 1

2
× p + 1

2
× · · · × (p − 1)

≡ 1 × 2 × · · · × p − 1

2
×

(
−p − 1

2

)
× · · · (−2) × (−1)
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≡ (−1)(p−1)/2
{(

p − 1

2

)
!
}2

≡
{(

p − 1

2

)
!
}2

≡ x2 (modp).

(c) Using Thue’s lemma, there exist two integers u, v such that⎧⎪⎨
⎪⎩

xu ≡ v (modp),

1 � |u| < √
p,

1 � |v| < √
p.

Hence

u2 + v2 ≡ u2 + x2u2 ≡ u2(x2 + 1
) ≡ 0 (modp)

so that p | (u2 + v2), and we also have

2 � u2 + v2 < 2p

implying that p = u2 + v2.

Remark We have then proved that, if p ≡ 1 (mod 4), then −1 is quadratic residue
modulo p. This is also true for p = 2 since −1 ≡ 12 (mod 2). By Example 3.35, the
converse is also true so that we may state the following result.

−1 is quadratic residue modulo p if and only if either p = 2 or p ≡ 1 (mod 4).

Part B.

(a) The sequence (rn) of the remainders is a strictly decreasing sequence of non-
negative integers and since p >

√
p > 1, we infer that there exists an index k

such that rk−1 >
√

p > rk .
(b) By Exercise 3 in Chap. 2, we have p = |tk|rk−1 + |tk−1|rk and hence

p � |tk|rk−1 > |tk|√p

so that |tk| < √
p. Since rk = skp + tkx, we get rk ≡ tkx (modp) and hence the

pair (tk, rk) satisfies the conditions of Thue’s lemma.
(c) 9733 is prime and satisfies 9733 ≡ 1 (mod 4). By above, we have 9733 = r2

k + t2
k

where the (rn) are the successive remainders in the Euclidean division of 9733
by x = 7024, and the index k is given by rk−1 >

√
9733 ≈ 98.7 > rk . Using

Exercise 3 in Chap. 2, we get

k 1 2 3 4 5 6
rk 7024 2709 1606 1103 503 97
qk 1 2 1 1 2 5
tk 1 −1 3 −4 7 −18

so that 9733 = r2
6 + t2

6 = 972 + 182.
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19. Using Lemma 3.42 and Theorem 3.49, we get

∏
p

p[n/p] =
∏
p�n

p[n/p] = exp

{∑
p�n

[
n

p

]
logp

}

= exp

{
n

∑
p�n

logp

p
+ O

(
θ(n)

)}

= exp
{
n logn + O(n)

}
.

20. Let σ > 1. We have

Nσ−1
∞∑

n=N

1

nσ
= Nσ−1

∞∑
j=1

(j+1)N−1∑
n=jN

1

nσ

= 1

N

∞∑
j=1

(j+1)N−1∑
n=jN

(
N

n

)σ

� 1

N

∞∑
j=1

(
N

jN

)σ (j+1)N−1∑
n=jN

1 = ζ(σ ).

The second inequality is similar.

21.

(a) Set d = (m,n) and d∗ = (m,n)∗. Since d∗ | m and d∗ | n, we have d∗ | d . Now
set

m = dm′ = d∗m′′,
n = dn′ = d∗n′′

with (m′, n′) = (d∗,m′′) = (d∗, n′′) = 1. Thus m′n′′ = m′′n′ and then m′ | n′m′′
hence m′ | m′′ using Theorem 2.12. Write m′′ = m1m

′. Since (d∗,m′′) = 1, we
have (d∗,m1) = 1. Thus, we have dm′ = d∗m′′ = d∗m1m

′, and then d = d∗m1
with (d∗,m1) = 1, showing that d∗ is a unitary divisor of d .

(b) Follows at once from the fact that the unitary divisors of pe are 1 and pe.
(c) If either fi = 0 or fi = ei then min(fi, ei − fi) = 0 and then

(d,n/d) = p
min(f1,e1−f1)

1 · · ·pmin(fr ,er−fr )
r = 1

so that d is a unitary divisor of n. Conversely, if d is a unitary divisor of n, then
(d,n/d) = 1 so that min(fi, ei − fi) = 0 for all i = 1, . . . , r which implies that
either fi = 0 or fi = ei .

Let n = p
e1
1 · · ·per

r . By above, there are exactly two possible choices for the
valuation of a prime pi . Thus, the number of unitary divisors of n is equal
to 2ω(n).
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Example

n Unitary divisors

6615 = 24 × 33 × 7 1,5,27,49,135,245,1323,6615

3024 = 33 × 5 × 72 1,7,16,27,112,189,432,3024

(d) Let n = p
e1
1 · · ·per

r and m = p
f1
1 · · ·pfr

r , d∗ = (m,n)∗ and set δ = p
g1
1 · · ·pgr

r

where gi are given in the exercise. By the previous question, δ is a unitary
common divisor of m and n, and then δ � d∗. Conversely, we have by above
d∗ = p

h1
1 · · ·phr

r where either hi = 0 or hi = min(ei, fi), and then d∗ � δ.

Example (6615,3024)∗ = 20 × 33 × 50 × 70 = 27.

A.4 Chapter 4

1.

(a) To each divisor d of n corresponds a unique divisor d ′ such that dd ′ = n. Hence
either d or d ′ must be � √

n so that

τ(n) � 2
∑
d|n

d�√
n

1 � 2
√

n.

(b) By Example 4.8, we have σ = 1 � Id and hence

σ(n) = (1 � Id)(n) =
∑
d|n

n

d
.

Now let t ∈ [1, n] be a parameter at our disposal and write

∑
d|n

1

d
=

∑
d|n
d�t

1

d
+

∑
d|n
d>t

1

d
�

∑
d�t

1

d
+ τ(n)

t
.

Now using the previous question we get

∑
d|n

1

d
� log t + 1 + 2

√
n

t

and choosing t = 2
√

n implies the asserted result.
(c) Since n is composite, it has a prime factor q such that q � √

n by Proposition 3.1
and hence

ϕ(n) = n
∏
p|n

(
1 − 1

p

)
� n

(
1 − 1

q

)
� n

(
1 − 1√

n

)

as required.
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2. The following ideas are due to Pólya (see [HW38] for instance). Fix a small
real number ε > 0. By assumption, the product

∏
pα

|f (pα)|�1

f
(
pα

)

is finite and set M its value. Furthermore, except for finitely many integers, each
integer n has at least a prime power pA such that

∣∣f (
pA

)∣∣ <
ε

|M| .

Thus

|f (n)| = ∣∣f (
p

α1
1 · · ·pA · · · )∣∣

= ∣∣f (
p

α1
1

)∣∣∣∣f (
p

α2
2

)∣∣ · · · ∣∣f (
pA

)∣∣ · · ·
< |M| × ε

|M| = ε.

This implies the asserted result since ε may be as small as we want. We apply now
this result to the positive multiplicative function

f (n) = τ(n)

nε
.

In view of the inequality

α + 1

pεα
� 2(1 + logpα)

pεα
−→

pα→∞ 0

we get

lim
pα→∞f

(
pα

) = lim
pα→∞

α + 1

pεα
= 0

and hence τ(n) = O(nε).

3. The method is similar for the four identities, this is why we only give the details
for the first one.

We have to show that τ 3 � 1 = (τ � 1)2. As in Example 4.11, we need to verify
this identity only for prime powers. Using the well-known identity

N∑
j=0

j3 =
(

N∑
j=0

j

)2
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we get

(
τ 3 � 1

)(
pα

) =
α∑

j=0

(j + 1)3 =
(

α∑
j=0

(j + 1)

)2

= (τ � 1)2(pα
)
.

4.

(a) We make use of the convolution identity �j = logj �μ and, by the Möbius
inversion formula, we also have logj = �j � 1 so that

�k(n) =
∑
d|n

μ(d) logk(n/d) =
∑
d|n

μ(d) logk−1(n/d) log(n/d)

= logn
∑
d|n

μ(d) logk−1(n/d) −
∑
d|n

μ(d) logd logk−1(n/d)

= �k−1(n) logn − (
logk−1 �μ log

)
(n)

and the identity μ � 1 = e1 together with the use of Lemma 4.9 implies that

logk−1 �μ log = (
logk−1 �μ

)
� (1 � μ log) = −(�k−1 � �)

giving the asserted identity.
(b) We proceed as in Theorem 4.10. Since (m,n) = 1 and using Newton’s formula,

we get

�k(mn) =
∑
a|m

∑
b|n

μ(ab) logk

(
mn

ab

)

=
∑
a|m

μ(a)
∑
b|n

μ(b)
(
log(m/a) + log(n/b)

)k

=
∑
a|m

μ(a)
∑
b|n

μ(b)

k∑
j=0

(
k

j

)
logj (m/a) logk−j (n/b)

=
k∑

j=0

(
k

j

)(∑
a|m

μ(a) logj (m/a)

)(∑
b|n

μ(b) logk−j (n/b)

)

=
k∑

j=0

(
k

j

)
�j(m)�k−j (n).

5. Define the multiplicative function f by f (1) = 1 and, for all prime powers

f
(
pα

) = −
(2α

α

)
4α(2α − 1)

.
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Then f � f is multiplicative by Theorem 4.10 and hence (f � f )(1) = 1 = μ(1).
Furthermore, for all primes p, we have

(f � f )(p) = 2p = −2

4
×

(
2

1

)
= −1 = μ(p)

and for all prime powers pα such that α � 2, we have

(f � f )
(
pα

) =
α∑

j=0

f
(
pj

)
f

(
pα−j

)

=
α∑

j=0

(
−

(2j
j

)
4j (2j − 1)

)(
−

(2α−2j
α−j

)
4α−j (2α − 2j − 1)

)

= 4−α
α∑

j=0

(2j
j

)(2α−2j
α−j

)
(2j − 1)(2α − 2j − 1)

= 0 = μ
(
pα

)

where we used [Gou72, identity 3.93], which concludes the proof.

6. We proceed as in Theorem 4.10 or in Exercise 4 above.

(f � g)(mn) =
∑
a|m

∑
b|n

f (ab)g

(
mn

ab

)

=
∑
a|m

∑
b|n

(
f (a) + f (b)

)
g

(
m

a

)
g

(
n

b

)

=
∑
a|m

f (a)g

(
m

a

)∑
b|n

g

(
n

b

)
+

∑
a|m

g

(
m

a

)∑
b|n

f (b)g

(
n

b

)

= (f � g)(m)(g � 1)(n) + (g � 1)(m)(f � g)(n)

as required. We apply this identity with g = μ and f any additive function. First,
(f � μ)(1) = f (1) = 0. If n = p

α1
1 p

α2
2 , we get using (4.6)

(f � μ)(n) = (f � μ)
(
p

α1
1

)
e1

(
p

α2
2

) + (f � μ)
(
p

α2
2

)
e1

(
p

α1
1

) = 0

and by induction this result is still true for all n = p
α1
1 · · ·pαr

r and r � 2. Note that
if f (pα) 
= f (pα−1), then (f � μ)(pα) 
= 0 by Example 4.11.

7.

(a) One may assume that n � 2 is expressed in the form n = p
α1
1 · · ·pαr

r with αj �
1. Then nn = p

nα1
1 · · ·pnαr

r and hence
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ϕ(n)σ
(
nn

) = n

r∏
j=1

(
1 − 1

pj

) r∏
j=1

(
p

nαj +1
j − 1

pj − 1

)

= n

r∏
j=1

pnαj

(
1 − 1

p
nαj +1
j

)

= nn+1
r∏

j=1

(
1 − 1

p
nαj +1
j

)

which implies the asserted upper bound by noticing that the product is � 1. For
the lower bound, we use αj � 1 which provides

ϕ(n)σ
(
nn

)
� nn+1

r∏
j=1

(
1 − 1

pn+1
j

)
� nn+1

∏
p

(
1 − 1

pn+1

)
= nn+1

ζ(n + 1)

as asserted.
(b) By the previous question, we first have f (n)� 0 and

f (n) � n

ϕ(n)
− nn+1

nnϕ(n)ζ(n + 1)
= n(ζ(n + 1) − 1)

ϕ(n)ζ(n + 1)
.

Now by Exercise 20 in Chap. 3, we get

ζ(n + 1) − 1 =
∞∑

k=2

1

kn+1
� ζ(n + 1)

2n

and the estimate

n

ϕ(n)
< eγ log logn + 2.51

log logn

valid for all n� 3 and which may be found in [Rn62], implies that

0 � f (n) < 2−n

(
eγ log logn + 2.51

log logn

)

for all n � 3, and hence the series
∑

n�1 f (n) converges. Using PARI/GP we
obtain

∞∑
n=1

(
n

ϕ(n)
− σ(nn)

nn

)
≈ 0.298 603 . . .

8. This is [HT88, Lemma 61.1].
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9.

1. (a) Let m be the smallest period of x. The Euclidean division of n by m gives
n = mq + r with 0 � r < m and then

x = Fn(x) = Fmq+r (x) = F r
((

Fm
)q

(x)
) = F r(x).

If r � 1, then r � m since m is the smallest positive integer k such that
Fk(x) = x, contradicting the inequality 0 � r < m. Hence r = 0 and thus
m | n.

(b) It is sufficient to show that

Pern(F ) =
⋃
d|n

Per∗d(F ). (A.3)

Note first that, since each point of E has at most a smallest period, the
union is disjoint. Furthermore, if d | n and Fd(x) = x for some x ∈ E, then
Fn(x) = (F d)n/d(x) = x so that

⋃
d|n

Per∗d(F ) ⊆ Pern(F ).

Conversely, if Fn(x) = x for some x ∈ E, then using the previous question
we infer that x has a smallest period d dividing n and therefore

Pern(F ) ⊆
⋃
d|n

Per∗d(F ).

The proof of (A.3) is thus complete and implies at once the first identity. The
second one follows by using the Möbius inversion formula.

(c) Let x have smallest period n. By definition of Ox , we have

{
x,F (x),F 2(x), . . . ,F n−1(x)

} ⊆ Ox.

Conversely, let Fk(x) ∈ Ox for some k ∈ Z�0. The Euclidean division of k

by n gives k = nq + r with 0 � r < n. Thus we have

Fk(x) = F r
((

Fn
)q

(x)
) = F r(x) ∈ {

x,F (x),F 2(x), . . . ,F n−1(x)
}

and then

Ox = {
x,F (x),F 2(x), . . . ,F n−1(x)

}
.

Finally, suppose there exist two integers 0 � i < j < n such that F i(x) =
Fj (x). Then we have

x = Fn(x) = Fn−i
(
F i(x)

) = Fn−i
(
Fj (x)

) = Fj−i
(
Fn(x)

)
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and hence Fj−i (x) = x, so that j − i is a period of x, so j − i � n, con-
tradicting the inequalities 0 � i < j < n. We infer that the elements of
{x,F (x),F 2(x), . . . ,F n−1(x)} are pairwise distinct and thus

|Ox | =
∣∣{x,F (x),F 2(x), . . . ,F n−1(x)

}∣∣ = n.

(d) Let x have smallest period n. By the previous question, it suffices to show
that Fk(x) has smallest period n for some k ∈ {0, . . . , n − 1}.

Since n is a period for x, we have Fn(F k(x)) = Fk(Fn(x)) = Fk(x) and
thus n is a period for Fk(x). Assume that m � n is the smallest period of
Fk(x). Then Fm(F k(x)) = Fk(x) and

Fn−k
{
Fm

(
Fk(x)

)} = Fn−k
(
Fk(x)

)

and then Fm(Fn(x)) = Fn(x) = x so that m is a period for x. This implies
that m� n and thus m = n, as required.

(e) We will only prove the symmetry, leaving the reflexivity and the transitivity
to the reader.

Let x ∈ Oy . By above, there exists an integer 0 � r < n such that x =
F r(y) and hence

y = Fn(y) = Fn−r
(
F r(y)

) = Fn−r (x)

showing that y ∈ Ox . Therefore the relation ∼ is symmetric.
The equivalence class of x is the set {y ∈ Per∗n(F ) : y ∈ Ox} = Ox since

Ox ⊆ Per∗n(F ). Since |Ox | = n, we deduce that, if Per∗n(F ) is a finite set,
then d divides |Per∗n(F )|.

(f) Let u = (un) be a realizable sequence. By definition, there exist a set E and
a map F : E −→ E such that un = |Per∗n(F )|. By the previous questions, we
have

∑
d|n

∣∣Per∗d(F )
∣∣μ(n/d) ≡ 0 (modn). (A.4)

2. We apply (A.4) to the sequences (i) and (ii). For Fermat’s little theorem for in-
teger matrices, we first restrict ourselves to matrices with non-negative integer
entries since each matrix has such a representative modulo p. The use of (A.4)
with n = p gives the desired result.

3. (a) Let P = X3 − X − 1. Since A is the companion matrix of P , A is diago-
nalizable in M3(C) and P is the minimal polynomial of A. Note that P is
also the characteristic polynomial of the sequence (un). Thus, if λ1, λ2 and
λ2 are the eigenvalues of A, then there exist three constants a, b, c ∈ C such
that, for all n ∈ Z�0, we have

un = aλn
1 + bλn

2 + cλ2
n
.
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The initial values of the sequence, together with the easy identities

Tr(A) = 0 = λ1 + λ2 + λ2 and Tr
(
A2) = 2 = λ2

1 + λ2
2 + λ2

2

provide the following Vandermonde system of equations

⎧⎨
⎩

a′ + b′ + c′ = 0,

a′λ1 + b′λ2 + c′λ2 = 0,

a′λ2
1 + b′λ2

2 + c′λ2
2 = 0

where a′ = a−1, b′ = b−1 and c′ = c−1. Since the eigenvalues are distinct,
this system has the unique solution (a′, b′, c′) = (0,0,0) and thus a = b =
c = 1. We deduce that, for all n ∈ Z+, we have

un = λn
1 + λn

2 + λ2
n = Tr

(
An

)
.

(b) By Fermat’s little theorem for integer matrices, we get for all primes p

up = Tr
(
Ap

) ≡ Tr(A) ≡ 0 (modp).

Remark The converse is untrue: Adam and Shanks [AS82] discovered that, if n =
5212, then n | un.

10. By the convolution identity ϕ = μ � Id and Proposition 4.17, we get

∑
n�x

ϕ(n) =
∑
d�x

μ(d)
∑

k�x/d

k = 1

2

∑
d�x

μ(d)

[
x

d

]([
x

d

]
+ 1

)

= 1

2

∑
d�x

μ(d)

{
x2

d2
+ O

(
x

d

)}

= x2

2

∞∑
d=1

μ(d)

d2
− x2

2

∑
d>x

μ(d)

d2
+ O

(
x

∑
d�x

1

d

)

= x2

2ζ(2)
+ O(x) + O(x logx) = x2

2ζ(2)
+ O(x logx)

where we used the bound of Exercise 20 in Chap. 3.

11. We have

n∑
i=1

f
(
(i, n)

) =
∑
d|n

f (d)
∑
k�n/d

(k,n/d)=1

1 =
∑
d|n

f (d)ϕ

(
n

d

)
= (f � ϕ)(n).
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12.

(a) By partial summation, we obtain

∑
n�z

nτ(n) = z
∑
n�z

τ (n) −
∫ z

1

(∑
n�t

τ (n)

)
dt

= z
{
z(log z + 2γ − 1) + O

(
zθ+ε

)}

−
∫ z

1

{
t (log t + 2γ − 1) + O

(
tθ+ε

)}
dt

= z2 log z

2
+ z2

(
γ − 1

4

)
+ O

(
z1+θ+ε

)

as asserted.
(b) Exercise 11 with f = Id implies that S = ϕ � Id and (4.7) gives

S = μ � Id� Id = μ � Id×(1 � 1) = μ � (Id×τ)

where we used the complete multiplicativity of the function Id.
(c) By above and Proposition 4.17, we have

∑
n�x

S(n) =
∑
d�x

μ(d)
∑

k�x/d

kτ (k)

=
∑
d�x

μ(d)

{
x2

d2

(
1

2
log

x

d
+ γ − 1

4

)
+ O

((
x

d

)1+θ+ε)}

= x2
{(

logx

2
+ γ − 1

4

) ∑
d�x

μ(d)

d2
−

∑
d�x

μ(d) logd

2d2

}

+ O

(
x1+θ+ε

∑
d�x

1

d1+θ+ε

)
.

Now using Exercise 20 in Chap. 3 we get as usual

∑
d�x

μ(d)

d2
=

∞∑
d=1

μ(d)

d2
+ O

(∑
d>x

1

d2

)
= 1

ζ(2)
+ O

(
1

x

)

and the use of Theorem 4.41 implies that

∑
d�x

μ(d) logd

d2
=

∞∑
d=1

μ(d) logd

d2
+ O

(
logx

x

)
= ζ ′(2)

ζ(2)2
+ O

(
logx

x

)
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so that

∑
n�x

S(n) = x2

ζ(2)

(
logx

2
+ γ − 1

4

)
− x2ζ ′(2)

2ζ(2)2
+ O

(
x1+θ+ε

)

= x2

2ζ(2)

(
logx + 2γ − 1

2
− ζ ′(2)

ζ(2)

)
+ O

(
x1+θ+ε

)
.

The best value for θ to date is given by Huxley in Theorem 6.40. We get for all
ε > 0

∑
n�x

S(n) = x2

2ζ(2)

(
logx + 2γ − 1

2
− ζ ′(2)

ζ(2)

)
+ O

(
x547/416+ε

)
.

13.

(a) Using τk+1 = τk � 1, we get with Proposition 4.17

Sk+1(x) =
∑
n�x

(τk � 1)(n) =
∑
d�x

τk(d)

[
x

d

]
(A.5)

and the inequalities x − 1 < [x] � x then give

x
∑
d�x

τk(d)

d
− Sk(x) < Sk+1(x) � x

∑
d�x

τk(d)

d

and using Theorem 1.14 we get

∑
d�x

τk(d)

d
= Sk(x)

x
+

∫ x

1

Sk(t)

t2
dt (A.6)

which concludes the proof.
(b) The inequalities are true for k = 1. Assume they are true for some positive

integer k. By the previous question and the induction hypothesis, we have

Sk+1(x) � x

k−1∑
j=0

(
k − 1

j

)
(logx)j

j ! + x

∫ x

1

1

t

(
k−1∑
j=0

(
k − 1

j

)
(log t)j

j !

)
dt

= x

k−1∑
j=0

(
k − 1

j

)
1

j !

{
(logx)j +

∫ x

1

(log t)j

t
dt

}

= x

k−1∑
j=0

(
k − 1

j

)
1

j !
{
(logx)j + (logx)j+1

j + 1

}
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= x

(
1 + (logx)k

k!
)

+ x

k−1∑
j=1

{(
k − 1

j

)
+

(
k − 1

j − 1

)}
(logx)j

j !

= x

(
1 + (logx)k

k!
)

+ x

k−1∑
j=1

(
k

j

)
(logx)j

j ! = x

k∑
j=0

(
k

j

)
(logx)j

j !

and

Sk+1(x) > x

k−1∑
j=0

(−1)k+j+1

j !
∫ x

1

(log t)j

t
dt + (−1)kx

∫ x

1

dt

t2

= x

k−1∑
j=0

(−1)k+j+1 (logx)j+1

(j + 1)! + (−1)k(x − 1)

= x

k∑
j=1

(−1)k+j+2 (logx)j

j ! + (−1)k+2x + (−1)k+1

= x

k∑
j=0

(−1)k+j+2 (logx)j

j ! + (−1)k+1

completing the proof.
(c) The result follows from the upper bound of the previous question and the in-

equality

1

j ! = 1

(k − 1)! ×
k−j−2∏

i=0

(i+j +1)� (k − j − 2 + j + 1)k−j−1

(k − 1)! = (k − 1)k−j−1

(k − 1)!

so that

Sk(x) � x

(k − 1)!
k−1∑
j=0

(
k − 1

j

)
(logx)j (k − 1)k−1−j = x(logx + k − 1)k−1

(k − 1)!

by Newton’s formula.

Remark One may proceed slightly differently by using the arithmetic-geometric
mean inequality which implies that, for all k � 3 and 0 � j � k − 3, we have

k−j−2∏
i=0

(i + j + 1) = (k − 1)

k−j−3∏
i=0

(i + j + 1)

� (k − 1)

(
1

k − j − 2

k−j−3∑
i=0

(i + j + 1)

)k−j−2
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= (k − 1)

(
k + j − 1

2

)k−j−2

� (k − 1)(k − 2)k−j−2

= k − 1

k − 2
(k − 2)k−j−1

since k � 3, and this inequality remains clearly true if j ∈ {k − 2, k − 1}, so that
for all k � 3, we get

Sk(x) � x(logx + k − 2)k−1

(k − 2)(k − 2)! .

It was proved in [Bor06] that the denominator may be replaced by (k − 1)!.
(d) The identity is true for k = 2 by Corollary 4.20. Suppose it is true for some

integer k � 2. By (A.5), (A.6) and induction hypothesis, we get

Sk+1(x) = x
∑
d�x

τk(d)

d
+ O

(
Sk(x)

)

= x

∫ x

1

Sk(t)

t2
dt + O

(
x(logx)k−1)

= x

∫ x

1

{
(log t)k−1

(k − 1)! + O
(
(log t)k−2)}dt

t
+ O

(
x(logx)k−1)

= x(logx)k

k! + O
(
x(logx)k−1)

completing the proof.
(e) Define

S�
k(x) =

∑
n�x

τ �
k (n)

and we prove the inequality by induction on k, the case k = 1 being clearly true
via

S�
1(x) = [x] − 1 < x.

Assume the inequality is true for some k ∈N. By induction hypothesis we have

S�
k+1(x) =

∑
2�n�x2−k

S�
k

(
x

n

)
� x

(k − 1)!
∑

2�n�x2−k

1

n

(
log

x

n

)k−1

.

Now when x < 2k+1, we have S�
k+1(x) = 0 and otherwise

S�
k+1(x)� x

(k −1)!
∫ x2−k

1

(
log

x

t

)k−1 dt

t
= x(logx)k

k! − x(k log 2)k

k! <
x(logx)k

k!
as required.
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14. Using Corollary 3.7 (v) we obtain

∑
n�x

s2(n) =
∑

a2b3�x
μ2(b)=1

1 =
∑

b�x1/3

μ2(b)
∑

a�(x/b3)1/2

1

� x1/2
∑

b�x1/3

μ2(b)

b3/2
� ζ(3/2) x1/2

ζ(3)
< 3x1/2

where we used Lemma 3.58 in the last inequality.
The second estimate follows from partial summation in the form of Exercise 4 in

Chap. 1. Indeed, using this and the above estimate, we get

∑
n>x

s2(n)

n
= − 1

x

∑
n�x

s2(n) +
∫ ∞

x

(∑
n�t

s2(n)

)
dt

t2
< 3

∫ ∞

x

dt

t3/2
= 6

x1/2

as asserted.

15. Define g = f �μ. Then g is multiplicative by Theorem 4.10, |g(p)| = |f (p)−
1| � p−1 and, for all prime powers pα with α � 2, we have |g(pα)| � 1, so that
|g(n)| � 1 for all n ∈N. Let x � 2 be a large real number. We have

∑
p�x

∞∑
α=1

|g(pα)|
pα

=
∑
p�x

|f (p) − 1|
p

+
∑
p�x

∞∑
α=2

|g(pα)|
pα

�
∑
p�x

1

p2
+

∑
p�x

∞∑
α=2

1

pα

� 3
∑
p�x

1

p2
<

3

2

by (4.20), so that the series
∑

d�1 g(d)/d converges absolutely by Theorem 4.47
and we have

1 +
∞∑

α=1

g(pα)

pα
= 1 +

∞∑
α=1

f (pα) − f (pα−1)

pα
=

(
1 − 1

p

)(
1 +

∞∑
α=1

f (pα)

pα

)
.

Using Theorem 4.13 and Proposition 4.17, we get

∑
n�x

f (n) =
∑
n�x

(g � 1)(n) =
∑
d�x

g(d)

[
x

d

]

= x
∑
d�x

g(d)

d
+ O

(∑
d�x

∣∣g(d)
∣∣)
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= x

∞∑
d=1

g(d)

d
+ O

(∑
d�x

∣∣g(d)
∣∣ + x

∑
d>x

|g(d)|
d

)

and by partial summation in the form of Exercise 4 in Chap. 1, we obtain

∑
d>x

|g(d)|
d

= − 1

x

∑
d�x

∣∣g(d)
∣∣ +

∫ ∞

x

(∑
d�t

∣∣g(d)
∣∣)dt

t2

and

∞∑
d=1

g(d)

d
=

∏
p

(
1 +

∞∑
α=1

g(pα)

pα

)
=

∏
p

(
1 − 1

p

)(
1 +

∞∑
α=1

f (pα)

pα

)

so that

∑
n�x

f (n) = x
∏
p

(
1 − 1

p

)(
1 +

∞∑
α=1

f (pα)

pα

)
+ R(x)

with

∣∣R(x)
∣∣ �

∑
d�x

∣∣g(d)
∣∣ + x

∫ ∞

x

(∑
d�t

∣∣g(d)
∣∣)dt

t2
.

It remains to estimate the sum
∑

d�x |g(d)|. To do this we use the unique decom-
position of each positive integer d in the form d = ab with μ2(a) = s2(b) = 1 and
(a, b) = 1. Also note that, for all squarefree numbers a, we have |g(a)| � a−1. Us-
ing Exercise 14, we obtain

∑
d�x

∣∣g(d)
∣∣ =

∑
a�x

μ2(a)
∣∣g(a)

∣∣ ∑
b�x/a

s2(b)
∣∣g(b)

∣∣

�
∑
a�x

μ2(a)

a

∑
b�x/a

s2(b)

< 3x1/2
∑
a�x

μ2(a)

a3/2
� 3ζ(3/2)x1/2

ζ(3)
.

Hence

∣∣R(x)
∣∣ � x1/2 + x

∫ ∞

x

dt

t3/2
� x1/2

completing the proof.

16. This is a direct application of Exercise 15 since β(p) = 1 and β � μ = s2.
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17. Again a direct application of Exercise 15 with f (n) = ϕ(n)γ2(n)/n2 since,
for all prime powers pα , we have

f (p) = 1 − 1

p
and (f � μ)

(
pα

) =
{

−1/p, if α = 1,

−p−α(p − 1)2, if α � 2.

18.

(a) Let g(n) = μ(n)/τ(n) and G = g � 1. By Theorem 4.10, G is multiplicative
and, for all prime powers pα , we have

G
(
pα

) = 1 +
α∑

j=1

g
(
pj

) = 1 − 1

τ(p)
= 1

2

so that, for all n ∈ N, we get

G(n) = 2−ω(n)

and hence using Proposition 4.17 we obtain

∑
n�x

G(n) =
∑
n�x

(g � 1)(n) =
∑
d�x

g(d)

[
x

d

]

= x
∑
d�x

g(d)

d
−

∑
d�x

g(d)

{
x

d

}

= xF(x) −
∑
d�x

g(d)

{
x

d

}

as required.
(b) Using the inequalities 0 � {x} < 1 we get

∣∣∣∣
∑
n�x

μ(n)

τ(n)

{
x

n

}∣∣∣∣ <
∑
n�x

μ2(n)

τ (n)
=

∑
n�x

μ2(n)

2ω(n)
�

∑
n�x

1

2ω(n)

so that
∑
n�x

1

2ω(n)
+

∑
n�x

μ(n)

τ(n)

{
x

n

}
> 0.

Furthermore, we also have

F(x) = ∣∣F(x)
∣∣ � 1

x

(∑
n�x

1

2ω(n)
+

∣∣∣∣
∑
n�x

μ(n)

τ(n)

{
x

n

}∣∣∣∣
)

<
2

x

∑
n�x

1

2ω(n)
.
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The function 2−ω satisfies the Wirsing conditions (4.21) with λ1 = 1/2 and λ2 =
1 so that we may apply Theorem 4.22 with (a, b) = (log 2,3/2) by Lemma 4.23.
This gives

∑
n�x

1

2ω(n)
� e3/2

(
5

2
+ log 2

)
x

log ex
exp

(
1

2

∑
p�x

1

p

)
.

By Corollary 3.99, we have

∑
p�x

1

p
< log logx + 1

2

as soon as x � 8 implying that

∑
n�x

1

2ω(n)
<

19x

(logx)1/2

and hence we finally get for all x � 8

0 < F(x) < 38 (logx)−1/2.

19.

(a) We have f (pα) = tα − tα−1 and using Theorem 4.13 and Proposition 4.17, we
get

∑
n�x

t�(n) =
∑
n�x

(f � 1)(n) =
∑
d�x

f (d)

[
x

d

]

� x
∑
d�x

f (d)

d
� x

∏
p�x

(
1 +

∞∑
α=1

tα − tα−1

pα

)

= x
∏
p�x

(
1 + t − 1

p − t

)
.

We treat the cases p = 2 and p � 3 separately which gives

∑
n�x

t�(n) � x

2 − t

∏
3�p�x

(
1 + t − 1

p − t

)

� x

2 − t

∏
3�p�x

(
1 + 1

p − 2

)

� x

2 − t
exp

( ∑
3�p�x

1

p − 2

)
� x logx

2 − t

as required.
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(b) We have

Nk(x) =
∑
n�x

�(n)=k

t−�(n)t�(n) � t−k
∑
n�x

t�(n) � t−kx logx

2 − t

and the choice of

t = 2k

k + 1

gives the asserted estimate.

20.

1. (a) Since n is squarefree, a positive integer d is a divisor of n if and only if either
d divides n/p or d | n is a multiple of p, so that

∑
d|n

f (d) =
∑

d|(n/p)

f (d) +
∑
d|n
p|d

f (d) =
∑

d|(n/p)

f (d) +
∑

k|(n/p)

f (kp).

Since f is multiplicative and k | (n/p) implies that (k,p) = 1, we infer that

∑
d|n

f (d) =
∑

d|(n/p)

f (d) + f (p)
∑

k|(n/p)

f (k) = (
1 + f (p)

) ∑
k|(n/p)

f (k)

giving (4.49).
(b) First note that f (d) � 0 for all divisors d of n necessarily squarefree. Thus,

using (4.49), we get

∑
d|n

f (d) logd =
∑
d|n

f (d)
∑
p|d

logp =
∑
p|n

logp
∑

k|(n/p)

f (kp)

=
∑
p|n

f (p) logp
∑

k|(n/p)

f (k)

=
∑
p|n

(
f (p) logp

1 + f (p)

∑
d|n

f (d)

)

=
(∑

d|n
f (d)

)(∑
p|n

f (p) logp

1 + f (p)

)

as required. Now the function t �−→ t/(1 + t) is increasing on [0, λ] and
since f (d)� 0 for all divisors d of n, we deduce that

∑
d|n

f (d) logd � λ

1 + λ

(∑
d|n

f (d)

)(∑
p|n

logp

)
= λ logn

1 + λ

(∑
d|n

f (d)

)
.
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2. First note that log(n1/a/d)� log(n1/a) and since f (d)� 0, we get

∑
d|n

d�n1/a

f (d)
log(n1/a/d)

log(n1/a)
�

∑
d|n

d�n1/a

f (d).

Note also that, if d > n1/a , then log(n1/a/d) < 0 and hence

∑
d|n

f (d)
log(n1/a/d)

log(n1/a)
�

∑
d|n

d�n1/a

f (d)
log(n1/a/d)

log(n1/a)
.

We infer that

∑
d|n

d�n1/a

f (d)�
∑
d|n

f (d)
log(n1/a/d)

log(n1/a)
=

∑
d|n

f (d) − a

logn

∑
d|n

f (d) logd

and using (4.50) gives

∑
d|n

d�n1/a

f (d)�
∑
d|n

f (d)

(
1 − λa

1 + λ

)

implying the desired estimate since λ < (a − 1)−1.

21. Let Sn = (sij ) and Tn = (tij ) be the matrices defined by

sij =
{

1, if i | j,
0, otherwise

and tij =

⎧⎪⎨
⎪⎩

M(n/i), if j = 1,

1, if i = j � 2,

0, otherwise.

We will prove the following result.

Lemma We have Rn = SnTn. In particular we have detRn = M(n).

Proof Set SnTn = (xij ). If j = 1 we have

xi1 =
n∑

k=1

siktk1 =
∑
k�n
i|k

M

(
n

k

)
=

∑
d�n/i

M

(
n/i

d

)
= 1 = ri1

by (4.15). If j � 2, then t1j = 0 and thus

xij =
n∑

k=2

siktkj = sij =
{

1, if i | j,
0, otherwise

= rij



A.4 Chapter 4 521

which is the desired result. The second assertion follows at once from

detRn = detSn detTn = detTn = M(n).

The proof is complete. �

22.

1. We may suppose n > 1. Let pα be a prime power. Using Bernoulli’s inequality,
we get (

tω � 1
)(

pα
) = 1 + αt � (1 + t)α = (1 + t)�(pα)

implying the first inequality by multiplicativity.
2. Write n = p

α1
1 · · ·pαr

r and, for each j ∈ {1, . . . , k}, let dj be a divisor of n with
ω(dj ) = j � k. The number of such divisors is at most equal to the number of
integers which are the products of j prime powers from the list

p1,p
2
1, . . . , p

α1
1 ,p2,p

2
2, . . . , p

α2
2 , . . . , pr ,p

2
r , . . . , p

αr
r .

Since this list contains �(n) elements, we infer that the number of divisors dj is
at most

(
�(n)

j

)
and hence

∑
d|n

ω(d)�k

tω(d) � 1 +
k∑

j=1

(
�(n)

j

)
tj =

k∑
j=0

(
�(n)

j

)
tj

as asserted. It is easy to see that this inequality generalizes the previous one and,
with a little more work, one can prove that

∑
d|n

ω(d)�k

tω(d) =
k∑

j=0

tj
∑

1�i1<i2<···<ij�ω(n)

αi1 · · ·αij .

23. This exercise follows readily from the convolution identities

τ = 1 � 1 and 1 � � = log

since then

τ � μ � � = 1 � 1 � μ � � = 1 � � = log

and ∑
n�N

(τ � μ � �)(n) =
∑
n�N

logn = log(N !).
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A.5 Chapter 5

1. We have 0 � ‖x‖ � 1/2, and the function ψ is odd and 1-periodic, implying
that the function ‖·‖ is even and 1-periodic. For the first inequality, it suffices to
suppose that |x|, |y| � 1

2 giving in this case

|‖x‖ − ‖y‖| = ||x| − |y|| � |x − y|.
The second inequality may be proved similarly, noticing that for all x ∈ R, there
exists a unique θx ∈] − 1

2 , 1
2 ] such that x = �x� + θx , so that by periodicity we get

‖x + y‖ = ‖θx + θy‖ showing that we may suppose that |x|, |y| � 1
2 , and we also

may restrict ourselves to 0 � x, y � 1
2 since the function ‖·‖ is even. In this case,

we finally have

‖x + y‖ =
{

x + y = ‖x‖ + ‖y‖, if 0 � x + y � 1
2 ,

1 − (x + y) � x + y = ‖x‖ + ‖y‖, if 1
2 � x + y � 1

as required.

2. The functions x �−→ | sin(πx)| and x �−→ ‖x‖ are both even and 1-periodic,
so that it suffices to prove the asserted inequality for all x ∈ [0, 1

2 ]. In this interval,
the inequality takes the shape

2x � sin(πx) � πx

which is well-known. For instance, if f is the function x �−→ sin(πx) − 2x, then
f ′′(x) = −π2 sin(πx) � 0 for all x ∈ [0, 1

2 ], so that f is concave on this interval
and therefore

f (x) � min
(
f (0), f (1/2)

) = 0

as required.

3.

(a) If N < x1/5, one may take T = S(f,N, δ) since then x−1/6N5/6 < 1. Now
suppose that N � x1/5 and let a, b ∈ N and n, n + a and n + a + b be three
consecutive elements of S(f,N, δ) such that

1 � a, b � 22/3x−1/6N5/6.

As in Lemma 5.32, we will show that there are only two possibilities for the
choice of b. The result will then follow by taking each 4th element of S(f,N, δ).

There exist non-zero integers mi and real numbers δi such that

f (n) = m1 + δ1,

f (n + a) = m2 + δ2,

f (n + a + b) = m3 + δ3
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with |δi | < δ for i ∈ {1,2,3}. In fact, each integer mi is positive since, for all
u ∈ [N,2N ], we have f (u) � √

x/
√

2N � 1/
√

2 and δ � c0N
−1. Using the

given polynomials P and Q, we get

f (n)P (n, a)−f (n+a)Q(n,a) =
(

x

n

)1/2

(4n + a) −
(

x

n + a

)1/2

(4n + 3a)

=
(

x

n

)1/2
(n+a)1/2(4n+a)−n1/2(4n+3a)

(n+a)1/2

= x1/2a3

n1/2(n + a)1/2D(n,a)

where

D(n,a) = (n + a)1/2(4n + a) + n1/2(4n + 3a)� 8N3/2

so that

0 < f (n)P (n, a) − f (n + a)Q(n,a)� x1/2a3

8N5/2
<

1

2
.

On the other hand, we have

f (n)P (n, a) − f (n + a)Q(n,a) = m1P(n,a) − m2Q(n,a) + ε

with

|ε| � 7δ(n + a)� 14Nδ <
1

2
.

Hence by Lemma 5.31, we obtain

m1P(n,a) − m2Q(n,a) = 0. (A.7)

Similarly we have

m2P(n + a, b) − m3Q(n + a, b) = 0,

m1P(n,a + b) − m3Q(n,a + b) = 0

and eliminating m3 we obtain

m2P(n + a, b)Q(n,a + b) − m1P(n,a + b)Q(n + a, b) = 0

implying that

3b2(m1 − m2) + κ1b + 2κ2 = 0 (A.8)

where

κ1 = a(7m1 − 15m2) − 16n(m1 − m2),

κ2 = a2(m1 − 3m2) − an(−20m1 + 28m2) − 16n2(m1 − m2).
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If m1 = m2, then by (A.7) we have P(n,a) = Q(n,a) and then 4n + a = 4n +
3a, so that a = 0 which is impossible since a � 1. Therefore m1 
= m2 and (A.8)
is a quadratic equation in b, concluding the proof.

(b) Hence we deduce that

R
(√

x

n
,N, δ

)
� |T | + 1 � N

x−1/6N5/6
+ 1 � (Nx)1/6.

4. We follow the proof of Corollary 5.35 from which we borrow the notation. If
16 � y � x1/5, then obviously

∣∣∣∣
∑

x<n�x+y

μ2(n) − y

ζ(2)

∣∣∣∣ < 3y � 3x1/15y2/3.

Suppose that x1/5 < y < x1/2/4. We may write

∑
2
√

y<n�√
x

([
x +y

n2

]
−

[
x

n2

])
=

( ∑
2
√

y<n�c−1
0 y

+
∑

c−1
0 y<n�√

x

)([
x +y

n2

]
−

[
x

n2

])

= �1 + �2

where c0 is the constant appearing in (5.33). We use Theorem 5.23 (i) with k = 4
for �1 and Theorem 5.30 for �2 which gives

�1 � (
x1/10y2/5 + y2/3 + (xy)1/7) logx � x1/15y2/3 logx

and

�2 � max
c−1

0 y<n�√
x

(
x1/5 + x1/15yN−1/3) logx � (

x1/5 + x1/15y2/3) logx

� x1/15y2/3 logx

since y > x1/5. This completes the proof since clearly y1/2 � x1/15y2/3.

5. The proof is exactly the same as that of Corollary 5.35 except that Theo-
rem 5.30 is replaced by Theorem 5.36 and Theorem 5.23 (i) is used with k = 2r

instead of k = 4. We omit the details.

6.

(a) Let L < T � (x + y)1/3 be any parameter at our disposal. We have

∑
L<b�(x+y)1/3

([√
x + y

b3

]
−

[√
x

b3

])
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=
( ∑

L<b�T

+
∑

T <b�(x+y)1/3

)([√
x + y

b3

]
−

[√
x

b3

])

=
∑

L<b�T

([√
x + y

b3

]
−

[√
x

b3

])
+

∑
T <b�(x+y)1/3

∑
x<a2b3�x+y

1

=
∑

L<b�T

([√
x + y

b3

]
−

[√
x

b3

])
+

∑
a�

√
x+y

T 3

∑
( x

a2 )1/3<b�(
x+y

a2 )1/3

1

=
∑

L<b�T

([√
x +y

b3

]
−

[√
x

b3

])
+

∑
a�

√
x+y

T 3

([(
x +y

a2

)1/3]
−

[(
x

a2

)1/3])

=
∑

L<b�T

([√
x + y

b3

]
−

[√
x

b3

])

+
(∑

a�L

+
∑

L<a�
√

x+y

T 3

)([(
x + y

a2

)1/3]
−

[(
x

a2

)1/3])

�
∑

L<b�T

([√
x + y

b3

]
−

[√
x

b3

])
+

∑
a�L

(
y

(ax)2/3
+ 1

)

+
∑

L<a�
√

x+y

T 3

([(
x + y

a2

)1/3]
−

[(
x

a2

)1/3])

�
∑

L<b�T

([√
x + y

b3

]
−

[√
x

b3

])
+ yx−2/3L1/3 + L

+
∑

L<a�
√

2x

T 3

([(
x + y

a2

)1/3]
−

[(
x

a2

)1/3])
.

Using (5.45), we get yx−2/3L1/3 < L and, for all A,B > L, we infer

y√
xB3

<
y√
xL3

= x1/4y−1/2(logx)3/4 � 1

4
,

y

(Ax)2/3
<

y

(xL)2/3
= (

x−1y logx
)1/3 � 1

4

as soon as x � 3. Now the choice of T = (2x)1/5 and the usual splitting argu-
ment provide the final result.
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(b) Using Corollary 3.7 (v) and the previous question, we have

∑
x<n�x+y

s2(n) =
∑

b�(x+y)1/3

μ2(b)
∑

√
x

b3 <a�
√

x+y

b3

1

=
(∑

b�L

+
∑

L<b�(x+y)1/3

)
μ2(b)

([√
x + y

b3

]
−

[√
x

b3

])

=
∑
b�L

μ2(b)

([√
x +y

b3

]
−

[√
x

b3

])
+ O

{
(R1 +R2) logx +L

}

and since √
x + y

b3
−

√
x

b3
= y

2
√

xb3
+ O

(
y2

(bx)3/2

)

we infer that

∑
b�L

μ2(b)

([√
x + y

b3

]
−

[√
x

b3

])

= y

2x1/2

∑
b�L

μ2(b)

b3/2
+ O

(
y2

x3/2
+ L

)

= y

2x1/2

∞∑
b=1

μ2(b)

b3/2
+ O

(
L + y

x1/2

∑
b>L

1

b3/2

)

= ζ(3/2)

2ζ(3)

y

x1/2
+ O

(
L + (

y2x−1 logx
)1/4)

= ζ(3/2)

2ζ(3)

y

x1/2
+ O(L)

where we used (5.45) which implies that L dominates all the other terms.
(c) To bound R2, we split the sum into two subsums estimating trivially in the

interval ]L,x2/15] and using Theorem 5.22 in the interval ]x2/15, (2x)1/5] giving

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)
� (Ax)1/9 +y

(
Ax−2)1/3 +(

x−1y3A−4)1/6 +Ayx−1

so that

max
x2/15<A�(2x)1/5

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)
� x2/15 + yx−3/5 + y1/2x−23/90.
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Now (5.45) gives

R2 � x2/15 + L

logx
.

We treat R1 by using Theorem 5.23 (i) with k = 3 giving

R
(√

x

b3
,B,

y√
xB3

)
� (

B3x
)1/12 + (

yB−1)1/4 + y(Bx)−1/2 + B
(
yx−1)1/2

so that

max
L<B�(2x)1/5

R
(√

x

b3
,B,

y√
xB3

)
� x2/15 + y1/2x−1/4(logx)1/4 + y1/2x−3/10

and using (5.45) implies also that

R1 � x2/15 + L

logx

concluding the proof.
(d) � Bounds for R2. In the range ]L, (64x)1/8], we use Theorem 5.23 (i) with

k = 3 giving

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)

� (
A7x

)1/18 + (
A2x−1y3)1/12 + y

(
x−2A

)1/3 + A
(
yx−1)1/2

so that

max
L<A�(64x)1/8

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)

� x5/48 + y1/4x−1/16 + yx−5/8 + y1/2x−3/8.

In the range ](64x)1/8, (2x)1/5], we use Theorem 5.26 implying that

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)

� {
(Ax)1/10 + (

A4x3)1/15 + y
(
Ax−2)1/3 + (

A−2xy3)1/24

+ (
A8x−1y3)1/21 + (

Ax−1y2)1/5 + A
(
yx−1)1/2}

(logA)2/5

so that

max
(64x)1/8<A�(2x)1/5

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)
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� {
x3/25 + yx−3/5 + x1/32y1/8 + x1/35y1/7

+ y2/5x−4/25 + y1/2x−3/10}(logx)2/5

and the lower bound of (5.46) implies that

R2 � x3/25(logx)2/5 + L

logx
.

� Bounds for R1. In the range ]L, (16x)1/6], we use Theorem 5.23 (i) with
k = 3 giving

R
(√

x

b3
,B,

y√
xB3

)
� (

B3x
)1/12 +(

yB−1)1/4 +y(Bx)−1/2 +B
(
yx−1)1/2

so that

max
L<B�(16x)1/6

R
(√

x

b3
,B,

y√
xB3

)

� x1/8(logx)1/8 + y1/2x−1/4(logx)1/4 + y1/2x−3/8.

In the range ](16x)1/6, (2x)1/5], we use Theorem 5.26 implying that

R
(√

x

b3
,B,

y√
xB3

)

� {(
xB−1)3/20 + (Bx)1/10 + y(Bx)−1/2 + (

xy2B−3)1/16

+ (By)1/7 + (
x−1y4B−3)1/10 + B

(
yx−1)1/2}

(logB)2/5

so that

max
(16x)1/6<B�(2x)1/5

R
(√

x

b3
,B,

y√
xB3

)

� {
x1/8 + yx−7/12 + x1/32y1/8 + x1/35y1/7

+ y2/5x−3/20 + y1/2x−3/10}(logx)2/5

and the lower bound of (5.46) implies that

R1 � x1/8(logx)2/5 + L

logx
.

The proof is complete.

Remark Splitting R1 into more parts and using Theorem 5.28 in the “critical” part,
the author [Tri02] proved that, under a more restricted range than (5.46), the expo-
nent 1/8 may be reduced to 19/154 ≈ 0.123 33 . . . Note that the result obtained for
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R2 above shows that we might expect to get the bound 3/25 = 0.12. However, this
estimate for R1 still remains open.

7. Let r � 2 be an integer and define the multiplicative function τ (r) by

τ (r)(n) =
∑
dr |n

1.

Clearly, we have τ (r)(pα) = 1 + [α/r] so that τ (r) satisfies the hypotheses of The-
orem 4.62. Furthermore, we have using Lemma 5.2

R
(

x

nr
,Nδ

)
�

∑
N�d�2N

([
x

dr
+ δ

]
−

[
x

dr
− δ

])
=

∑
N�d�2N

∑
x−dr δ<mdr�x+dr δ

1

�
∑

N�d�2N

∑
x−(2N)r δ�mdr�x+(2N)rδ

1 =
∑

x−(2N)r δ�n�x+(2N)r δ

∑
dr |n

N�d�2N

1

�
∑

x−(2N)r δ�n�x+(2N)rδ

τ (r)(n)

� 2r+1Nrδ

logx
exp

(∑
p�x

τ (r)(p)

p

)
+ xε �r,ε Nrδ

where we used Theorem 4.62 with the fact that r � 2, and Corollary 3.50.

8.

(a) Using respectively the inequalities δ−1 � c−1
0 N and N−1 > (c−1

0 x)−1/3, we get

A

R
= N−2/3x1/6δ−1/6 � c

−1/6
0 N−1/2 > c

−1/6
0

(
c−1

0 x
)−1/6

x1/6 = 1

and similarly using N � 2(xδ)−1/2, we obtain

N

2A
= 2−2/3N1/3(xδ)1/6 � (xδ)1/6(xδ)−1/6 = 1

so that

R < A� N

2
.

(b) Inserting this value of A in the proof of Theorem 5.30 we get

|T | � (
N2δx

)1/6 + (
xδ−2N−4)1/3 + (

xδ7N11)1/9

implying the asserted result.
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(c) For all c−1
0 y � N � (c−1

0 x)1/3, we infer that

R
(

x

n2
,N,

y

N2

)
� x1/5 + (xy)1/6 + (

xy−2)1/3 + (
xy7N−3)1/9

so that

max
c−1

0 y�N�(c−1
0 x)1/3

R
(

x

n2
,N,

y

N2

)
� x1/5 + (xy)1/6 + (

xy−2)1/3 + (
xy4)1/9

� (
xy4)1/9

since x1/5 � y � x1/3. Furthermore, it has been proved in Corollary 5.35 that

max
2
√

y�N�c−1
0 y

R
(

x

n2
,N,

y

N2

)
� x1/10y2/5 + (xy)1/7 + y2/3 + (

x−1y4)1/3

� (
xy4)1/9

since x1/5 � y � x1/3. Finally, by (5.29), we have

max
N�2c

2/3
0 x1/3

R
(√

x

n
,N,

y√
Nx

)
� x1/5(logx)2/5

if c0 is sufficiently small. Clearly y1/2 � (xy4)1/9, so that Lemma 5.3 with A =
2
√

y and B = (c−1
0 x)1/3 implies the asserted result. Note also that, since y �

x1/5, then

x1/15y2/3 �
(
xy4)1/9

.

9. Using Theorem 5.22 we get for all 4y < N � x

R
(

x

n
,N,

y

N

)
� x1/3 + y + (xy)1/2N−1 + N

(
yx−1)

so that

max
4y<N�x

R
(

x

n
,N,

y

N

)
� x1/3 + y + (

xy−1)1/2

and the second term dominates the others in view of y � x1/3.

10. We use induction on k, the case k = 2a coming from (5.26) and the fact
that k = 2a � 4. Assume that the estimate is true for some k � 2a. By induction
hypothesis and (5.26) used with k + 1 instead of k, we get R(f,N, δ) � min(E,F )

where

E = max
(
T

2
(k+1)(k+2) N

k
k+2 , Nδ

2
k(k+1) , N

(
δT −1) 1

k+1
) = max(e1, e2, e3)
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and

F = max
(
T

2
k(k+1) N

k−1
k+1 , Nδ

1
a(2a−1)

) = max(f1, f2)

say. The result is proved except in the cases min(e2, f1) and min(e3, f1). As in
Proposition 5.24, the following inequality

min(x, y)� xay1−a

with 0 � a � 1, is used.

� Case min(e2, f1). We choose a = k−2a
(k−a)(k+2)

∈ [0,1] which gives

R(f,N, δ) � T
2

(k+1)(k+2) N
k

k+2
(
T N−aδ1−2a/k

) 2
(k−a)(k+1)(k+2) � T

2
(k+1)(k+2) N

k
k+2

by (5.50) and the fact that k � 2a and δ < 1
4 .

� Case min(e3, f1). We choose a = 2
k+2 which gives

R(f,N, δ) � T
2

(k+1)(k+2) N
k

k+2
(
NδT −1) 2

(k+1)(k+2) � T
2

(k+1)(k+2) N
k

k+2

by (5.50) again. This completes the proof.

Using this result with a = 2 we get

R(f,N, δ) � T
2

k(k+1) N
k−1
k+1 + Nδ1/6

if Nδ � T � N2. This result is useful since the condition T � N2 (i.e. λ2 � 1) is
often satisfied in the usual applications.

A.6 Chapter 6
1.

(a) We have∣∣e(x) − e(y)
∣∣ = ∣∣e(y)

∣∣ × ∣∣e(x − y) − 1
∣∣ = ∣∣e(x − y) − 1

∣∣ = 2
∣∣ sinπ(x − y)

∣∣
and we conclude using Exercise 2 in Chap. 5.

(b) If α ∈ Z, then e(αn + β) = e(β) so that
∣∣∣∣∣

N∑
n=M+1

e(αn + β)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=M+1

1

∣∣∣∣∣ = N − M.

Assume that α 
∈ Z. Using the previous inequality we get
∣∣∣∣∣

N∑
n=M+1

e(αn + β)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=M+1

e(αn)

∣∣∣∣∣ = |e(Nα) − e(Mα)|
|e(α) − 1| � 2

4‖α‖ = 1

2‖α‖
as asserted.



532 Hints and Answers to Exercises

2.

(a) We have

∣∣∣∣
∑

N<n�N1

e
(±f (n)

)∣∣∣∣�
∣∣∣∣∣

∑
N<n�N1
‖f ′(n)‖<δ

e
(±f (n)

)∣∣∣∣∣ +
∣∣∣∣∣

∑
N<n�N1
‖f ′(n)‖�δ

e
(±f (n)

)∣∣∣∣∣

�R
(
f ′,N, δ

) +
∣∣∣∣∣

∑
N<n�N1
‖f ′(n)‖�δ

e
(±f (n)

)∣∣∣∣∣.

Since f ′ is non-decreasing and f ′(N1) − f ′(N) � Nλ2 by the mean-value
theorem, the interval f ′([N,N1]) has at most � Nλ2 + 1 integers by Proposi-
tion 1.11 (vi). It follows that the set {x ∈ [N,N1] : ‖f ′(x)‖ � δ} can be parti-
tioned in at most � Nλ2 + 1 subintervals, and the Kusmin–Landau inequality
(Corollary 6.7) applied on each of these intervals implies the asserted estimate.

(b) Applying Theorem 5.6 we get

∑
N<n�N1

e
(
f (n)

) � Nλ2 + Nδ + δλ−1
2 + Nλ2δ

−1 + δ−1 + 1

� Nλ2δ
−1 + Nδ + δλ−1

2 + δ−1

and choosing δ = λ
1/2
2 gives

∑
N<n�N1

e
(
f (n)

) � Nλ
1/2
2 + λ

−1/2
2

as required.

3. Squaring out we get

∣∣∣∣∣
H−1∑
h=0

e(ha)

∣∣∣∣∣
2

=
H−1∑
h1=0

e(h1a)

H−1∑
h2=0

e(−h2a) =
H−1∑
h1=0

H−1∑
h2=0

e
(
(h1 − h2)a

)
.

Now set h1 = h + k and h2 = k so that

{
0 � h1 � H − 1,

0 � h2 � H − 1
⇐⇒

{
0 � k �H − 1,

−h � k � H − 1 − h

⇐⇒
{

|h| � H − 1,

0 � k � H − 1 − |h|
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and hence
∣∣∣∣∣
H−1∑
h=0

e(ha)

∣∣∣∣∣
2

=
∑

|h|�H−1

H−1−|h|∑
k=0

e(ha) =
∑

|h|�H−1

(H − |h|)e(ha)

as required.

4. We may obviously assume that R(f,N, δ) 
= 0, otherwise the inequality (6.29)
is trivial.

(a) There exist m ∈ Z and δ0 ∈ R such that f (n) = m + δ0 with |δ0| < δ, so that

hf (n) = hm + hδ0 with |hδ0| < (H − 1)δ � (K − 1)δ � 1

8

and thus

Re
{
e
(
hf (n)

)} = cos
(
2πhf (n)

) = cos(2πhm + 2πhδ0) = cos(2πhδ0) >

√
2

2

since 2π |hδ0| < π/4.
(b) Summing the previous inequality over n and h running respectively through the

whole set S(f,N, δ) and the integers {0, . . . ,H − 1}, we obtain

HR(f,N, δ) �
√

2
∑

n∈S(f,N,δ)

Re

(
H−1∑
h=0

e
(
hf (n)

))

�
√

2
∑

n∈S(f,N,δ)

∣∣∣∣∣
H−1∑
h=0

e
(
hf (n)

)∣∣∣∣∣.

Applying the Cauchy–Schwarz inequality gives

R(f,N, δ) �
√

2

H

( ∑
n∈S(f,N,δ)

1

)1/2
( ∑

n∈S(f,N,δ)

∣∣∣∣∣
H−1∑
h=0

e
(
hf (n)

)∣∣∣∣∣
2)1/2

=
√

2

H
R(f,N, δ)1/2

( ∑
n∈S(f,N,δ)

∣∣∣∣∣
H−1∑
h=0

e
(
hf (n)

)∣∣∣∣∣
2)1/2

so that squaring out we get

R(f,N, δ) � 2

H 2

∑
n∈S(f,N,δ)

∣∣∣∣∣
H−1∑
h=0

e
(
hf (n)

)∣∣∣∣∣
2

� 2

H 2

∑
N�n�2N

∣∣∣∣∣
H−1∑
h=0

e
(
hf (n)

)∣∣∣∣∣
2

as asserted.
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Now using Exercise 3 we obtain

R(f,N, δ) � 2

H 2

∑
N�n�2N

∑
|h|�H−1

(H − |h|)e(hf (n)
)

and treating the cases h = 0 and h 
= 0 separately we get

R(f,N, δ) � 2(N + 1)

H
+ 2

H 2

∑
N�n�2N

∑
|h|�H−1

h
=0

(H − |h|)e(hf (n)
)

� 4N

H
+ 2

H

∑
N�n�2N

∑
|h|�H−1

h
=0

(
1 − |h|

H

)
e
(
hf (n)

)

= 4N

H
+ 2

H

H−1∑
h=1

(
1 − h

H

) ∑
N�n�2N

{
e
(
hf (n)

) + e
(−hf (n)

)}

� 4N

H
+ 4

H

H−1∑
h=1

Re

( ∑
N�n�2N

e
(
hf (n)

))

� 4N

H
+ 4

H

H−1∑
h=1

∣∣∣∣
∑

N�n�2N

e
(
hf (n)

)∣∣∣∣
completing the proof of (6.29).

5. By Definition 6.34 and the inequality (6.29), we get for all integers 1�H � δ−1

R(f,N, δ) � NH−1 + H−1
∑
h�H

(
(hT )kNl−k + N(hT )−1)

� NH−1 + (HT )kNl−k + NT −1 � NH−1 + (HT )kNl−k

since N � 8T . We conclude the proof by using Lemma 5.5.

6.

� Squarefree problem. Let x, y be real numbers satisfying (5.5). Using the exponent
pair (6.19), we get for all N � 2x1/3

R
(√

x

n
,N,

y√
Nx

)
� (

x97N167)1/696 + (
x97N−27)1/502 + y

(
Nx−1)1/2

so that

max
N�2x1/3

R
(√

x

n
,N,

y√
Nx

)
� x229/1044 + yx−1/3.
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Next we apply the transformation BA to Huxley’s exponent pair ( 32
205 + ε, 1

2 +
32
205 + ε) giving the exponent pair

(
269

948
+ ε,

269

474
+ ε

)

where the small real number ε > 0 need not have the same occurrence at each
computation. This implies for all 2

√
y < N � 2x1/3 and all ε > 0

R
(

x

n2
,N,

y

N2

)
� x269/1217+ε + (

xN−1)269/948+ε + yN−1

so that

max
x1/4<N�2x1/3

R
(

x

n2
,N,

y

N2

)
� x269/1217+ε + y1/2.

The exponent pair ( 1
6 , 2

3 ) provides the bound

R
(

x

n2
,N,

y

N2

)
� (

N2x
)1/7 + (Nx)1/6 + yN−1

for all 2
√

y < N � 2x1/3, so that

max
2
√

y<N�x1/4
R

(
x

n2
,N,

y

N2

)
� x3/14 + y1/2.

Hence using Lemma 5.3 with A = 2
√

y and B = x1/3 we get for all x, y satisfy-
ing (5.5) and ε > 0

∑
x<n�x+y

μ2(n) = y

ζ(2)
+ Oε

(
x269/1217+ε + y1/2).

� Square-full problem. We take up the notation of Exercise 6 in Chap. 5 and let x,
y be real numbers satisfying (5.45). Using the exponent pair (6.19), we get

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)
� (

x97A202)1/1044 + (
x97A−89)1/753 + y

(
Ax−2)1/3

so that

max
L<A�(2x)1/5

R
((

x

a2

)1/3

,A,
y

(Ax)2/3

)
� x229/1740 + yx−3/5.

Using (6.19) again, we get

R
(√

x

b3
,B,

y√
xB3

)
� (

x97B−27)1/696 + (
x97B−221)1/502 + y√

Bx
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so that

max
x59/313<B�(2x)1/5

R
(√

x

b3
,B,

y√
xB3

)
� x124/939 + yx−186/313.

The exponent pair BA2B(0,1) = ( 2
7 , 4

7 ) provides the estimate

R
(√

x

b3
,B,

y√
xB3

)
� (Bx)1/9 + (

xB−1)1/7 + y√
Bx

valid for all L < B � (2x)1/5, so that

max
x1/8<B�x59/313

R
(√

x

b3
,B,

y√
xB3

)
� x124/939 + yx−9/16.

Completing the proof with the trivial bound for R1 in the range ]L,x1/8] we
finally get for all x, y satisfying (5.45)

∑
x<n�x+y

s2(n) = ζ(3/2)

2ζ(3)

y

x1/2
+ O

(
x124/939 logx + L

)
.

7.

(a) This is [GK91, Lemma 2.11].
(b) Let 1 � T < t and let (k, l) be an exponent pair. We have

∣∣∣∣
∑
n�t

n−σ−it

∣∣∣∣�
∣∣∣∣
∑
n�T

n−σ−it

∣∣∣∣ +
∣∣∣∣

∑
T <n�t

n−σ−it

∣∣∣∣

�
∑
n�T

n−σ + max
T <N�t

∣∣∣∣
∑

N<n�2N

n−σ−it

∣∣∣∣ log t

�
∑
n�T

n−σ + max
T <N�t

N−σ max
N�N1�2N

∣∣∣∣
∑

N�n�N1

n−it

∣∣∣∣ log t

� T 1−σ + max
T <N�t

N−σ max
N�N1�2N

(
tkNl−k + Nt−1) log t

� T 1−σ + max
T <N�t

(
tkNl−k−σ + t−1N1−σ

)
log t.

Now since l − k � 1
2 and 1

2 � σ � 1, we deduce that k + σ � l. This implies
that ∑

n�t

n−σ−it � T 1−σ + tkT l−k−σ log t
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and the choice of T = t
k

1+k−l gives

∑
n�t

n−σ−it � t
k(1−σ)
1+k−l log t.

Note that 0 � k � 1
2 � l � 1 and l − k � 1

2 imply that 1
2 � 1 + k − l � 1. Using

the previous question, we get

ζ(σ + it) � (
t

k(1−σ)
1+k−l + t1−2σ

)
log t

and the second term is clearly absorbed by the first one. With σ = 1
2 this gives

for all t � 3

ζ

(
1

2
+ it

)
� t

k
2(1+k−l) log t

and Huxley’s exponent pair ( 32
205 + ε, 1

2 + 32
205 + ε) provides the bound

ζ

(
1

2
+ it

)
� t32/205+ε

for all t � 3 and ε > 0, which is the best result up to now.

A.7 Chapter 7

1. Let K = Q(
√−5). Suppose that 3 is not an irreducible so that 3 = rs with

NK/Q(r) 
= 1 and NK/Q(s) 
= 1. Since 9 = NK/Q(3) = NK/Q(r)NK/Q(s), we must
then have NK/Q(r) = NK/Q(s) = 3 and hence a2 + 5b2 = 3 for some a, b ∈ Z. This
implies that b = 0 and thus a2 = 3 which is impossible.

Similarly, if 7 = rs where neither r nor s is a unit, then we must have a2 +5b2 =
7, implying that either b = 0 and a2 = 7 or b = ±1 and a2 = 2, both cases being
impossible.

If 1 ± 2
√−5 = rs where neither r nor s is a unit, then

21 = NK/Q(1 ± 2
√−5) = NK/Q(r)NK/Q(s)

and hence either NK/Q(r) = 3 or NK/Q(s) = 3, which is impossible as was seen
above.

2. θ is algebraic over Q as sum of two algebraic numbers over Q. This gives the
answer to the exercise, but does not provide the minimal polynomial of θ .

To do this, one may use the following lemma, useful for small degrees (see
[Coh00, Proposition 2.1.7]).
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Lemma Let α,β be algebraic over Q and P,Q ∈ Q[X] such that P(α) = Q(β) =
0. Then the resultant

R = ResY

(
P(X),Q(Y − X)

)
satisfies R ∈Q[Y ] and R(α + β) = 0.

Proof We have clearly R ∈ Q[Y ]. Furthermore, R is equal to zero if and only if P

and Q have a common root. But R(α+β) is the resultant of P(X) and Q(α+β−X)

which have α as a common root, and hence R(α + β) = 0. �

Applying this result with P = X5 − 2 and Q = X3 − 2 we get

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 −2 0 0
0 1 0 0 0 0 −2 0
0 0 1 0 0 0 0 −2

−1 3Y −3Y 2 Y 3 − 2 0 0 0 0
0 −1 3Y −3Y 2 Y 3 − 2 0 0 0
0 0 −1 3Y −3Y 2 Y 3 − 2 0 0
0 0 0 −1 3Y −3Y 2 Y 3 − 2 0
0 0 0 0 −1 3Y −3Y 2 Y 3 − 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Y 15 − 10Y 12 − 6Y 10 + 40Y 9 − 360Y 7 − 80Y 6 + 12Y 5

− 1080Y 4 + 80Y 3 − 240Y 2 − 240Y − 40.

Furthermore, this polynomial is irreducible over Z by applying Ore’s criterion since
|P(m)| is prime for

m ∈ {−653,−579,−532,459,−447,−429,−427,−367,−337,−271,−81,−43

51,209,213,339,423,509,521,581}.

Hence deg(21/3 + 21/5) = 15.

3. P is irreducible over Z since degP = 3 and P has no rational root. Indeed, if P

has such a root, then it must be ±1 by using Exercise 17 in Chap. 3, and P(±1) = 1.
This implies that 2α2 −3α +2 
= 0 and then β is well-defined. Furthermore, [Q(α) :
Q] = 3 and {1, α,α2} is a Q-base of Q(α)/Q. Therefore there exist x, y, z ∈ Q such
that

1

2α2 − 3α + 2
= x + yα + zα2.

This may be written as (2α2 −3α+2)(x+yα+zα2) = 1 and expanding the product
and using the relations α3 = α − 1 and α4 = α2 − α we get

α2(2x − 3y + 4z) + α(−3x + 4y − 5z) + 2x − 2y + 3z − 1 = 0
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implying that x = z = 1 and y = 2, so that

1

2α2 − 3α + 2
= 1 + 2α + α2.

This gives β2 = 7α2 + 7α − 3 and β3 = 25α2 + 15α − 24, so that

β3 − 5β2 + 10β − 1 = 0.

One easily checks that the polynomial Q = X3 − 5X2 + 10X − 1 is irreducible over
Z, and hence Q is the minimal polynomial of β .

4. Set θ = √
5 + 4

√
2. We have obviously Q(θ) ⊆ Q(

√
5,

4
√

2). Conversely, since
(θ − √

5)4 = 2, expanding the product we get

θ4 + 30θ2 + 23 = √
5
(
4θ3 + 20θ

)

so that

√
5 = θ4 + 30θ2 + 23

4θ3 + 20θ

and hence
√

5 ∈ Q(θ). Thus

4
√

2 = θ − √
5 ∈ Q(θ,

√
5) ⊆Q(θ).

Therefore we get

Q
(√

5,
4
√

2
) ⊆Q

(√
5 + 4

√
2
)

as required. Now using the lemma of Exercise 2 we infer that θ is a root of the
polynomial

P = X8 − 20X6 + 146X4 − 620X2 + 529

and |P(m)| is prime for ±m ∈ {6,12,18,60,66,120,132} so that P is irreducible
over Z by Proposition 7.28. Hence

[
Q

(√
5 + 4

√
2
) : Q] = 8.

5. We first have

Fn = n!Pn =
n∑

k=0

n!
k!X

k.

1. Let p be a prime factor of n(n − 1) · · · (n − m + 1) = n!
(n−m)! . Therefore for all

0 � k � n−m, p divides (n!/k!) which is the coefficient of Xk in Fn(X), so that
Fn(X) mod p is divisible by Xn−m+1.
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If Fn = AmB with B ∈ Z[X] is monic such that degB = n−m, then Xn−m+1

divides Am × B in Fp[X]. Since degB = n − m, we get X | Am. This implies
that Am(0) = 0 as required.

2. a. First note that θ ∈OK since Am is monic. By the previous question, we get

NK/Q(θ) = ±a0 ≡ 0 (modp)

so that p |NK/Q((θ)).
b. Since Fn(θ) = 0, we have

−n! =
n∑

k=1

n! θk

k!

hence there exists an index k ∈ {1, . . . , n} such that

vp

(
n! θk

k!
)
� vp(n!).

Since

vp

(
n! θk

k!
)

= vp(n!) + kα − vp(k!) = vp(n!) + kα − evp(k!)

we get

kα − evp(k!) � 0.

c. By Exercise 12 in Chap. 3, we get

kα � e(k − 1)

p − 1

and hence

(p − 1)α � e(k − 1)

k
< e � m

so that

p <
m

α
+ 1 � m + 1

implying that p � m.
3. By the first question, all the prime factors of n,n − 1, . . . , n − m + 1 divide a0

and the previous question shows that each of these prime factors is � m. Thus
the numbers n,n − 1, . . . , n − m + 1 form a sequence of m consecutive inte-
gers all greater than m which have no prime factor greater than m, contradicting
Lemma 7.183.

Remark In [Col87], the author provided an elegant proof of Schur’s result based
upon the theory of Newton polygons for polynomials belonging to Qp[X]. Let us



A.7 Chapter 7 541

compute the discriminant of Pn. If α1, . . . , αn are the roots of Pn in an algebraic
closure of Q, we have by Definition 7.36

disc(Pn) = (n!)2−2n
∏

1�i<j�n

(αi − αj )
2.

We proceed as in the proof of Proposition 7.61 (iv). Writing Pn = (n!)−1 ∏n
i=1(X −

αi), we infer that

P ′
n

Pn

=
n∑

i=1

1

X − αi

so that

P ′
n = 1

n!
n∑

i=1

∏
j 
=i

(X − αj )

and thus for all i ∈ {1, . . . , n}, we get

n!P ′
n(αi) =

∏
j 
=i

(αi − αj ).

This implies that

n∏
i=1

n!P ′
n(αi) =

n∏
i=1

∏
j 
=i

(αi − αj )

=
n∏

i=1

∏
i<j

(−(αi − αj )
2)

= (−1)n(n−1)/2(n!)2n−2 disc(Pn).

Note that P ′
n = Pn−1 and Pn(X) = Pn−1(X) + xn/n! so that

P ′
n(αi) = Pn(αi) − αn

i

n! = −αn
i

n!
and hence

disc(Pn) = (−1)n(n−1)/2(n!)2−2n
n∏

i=1

(−αn
i

)

= (−1)n(n−1)/2+n(n!)2−2n

(
n∏

i=1

αi

)n

= (−1)n(n−1)/2+n(n!)2−2n
(
(−1)nn!)n

= (−1)n(n−1)/2(n!)2−n.
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We deduce that if n ≡ 2 or 3 (mod 4), then disc(Pn) < 0 and hence disc(Pn) is not
a square in Q. If n ≡ 0 (mod 4), then n − 2 is even and thus disc(Pn) is a square in
Q. Now assume that n ≡ 1 (mod 4). By Corollary 3.44, for all n � 2, there exists
a prime number p such that n/2 < p � n, so that vp(n!) = 1. This implies that
vp((n!)n) = n is odd, and thus (n!)n is not a square in Q if n ≡ 1 (mod 4) and n� 2.
Therefore disc(Pn) cannot be a square in Q in this case. Furthermore, it can be
proved that Gal(Pn/Q) contains a p-cycle for some prime number satisfying n/2 <

p < n − 2 (see [Col87] for instance). Using Lemma 7.144, we get the following
result due to Schur too.

Proposition (Schur) Let n ∈ Z�2. Then

Gal(Pn/Q) �
{
An, if n ≡ 0 (mod 4),

Sn, otherwise.

6.

(a) Since θn = −an−1θ
n−1 − · · · − a1θ − a0 and p | ai , we infer that θn/p ∈ M ⊆

OK and that NK/Q(θ) = a0 
≡ 0 (modp2) by assumption.
(b) Since p | f , we deduce that there is an element of order p in OK/M by Theo-

rem 7.1 (ii), so that there exists α ∈OK such that α 
∈ M and pα ∈ M . Hence

pα = b0 + b1θ + · · · + bn−1θ
n−1

where not all the bi are divisible by p, otherwise α ∈ M .
(c) β ∈ OK since both α and b0p

−1 + · · · + bj−1θj−1p−1 are in OK. This implies
that

βθn−j−1 = bj θ
n−1

p
+ θn

p

(
bj+1 + bj+2θ + · · · + bnθ

n−j−2)

is also in OK. Now by the first question θn/p ∈ OK and also bj+1 + bj+2θ +
· · · + bnθ

n−j−2 ∈OK, so that

bj θ
n−1

p
∈ OK.

By Proposition 7.55, we infer that the norm of this element must be an integer.
But

NK/Q

(
bj θ

n−1

p

)
=

(
bj

p

)n

NK/Q(θ)n−1 = bn
j an−1

0

pn

cannot be an integer since p � bj and p2
� a0.

7.

(a) P is irreducible over Z by Eisenstein’s criterion with p = 7.
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(b) Since 189 = 33 × 7 and 756 = 22 × 33 × 7, we have K = Q(α) where α = θ/3
is a root of Q = X3 − 21X + 28. We have disc(Q) = 22 × 34 × 72 and use
Proposition 7.70. The largest square n2 dividing disc(Q) for which the system
of congruences {

x3 − 21x + 28 ≡ 0 (modn2),

3x2 − 21 ≡ 0 (modn)

is solvable for x is given by n = 2 and we get x = 1, so that
{

1, α,
−1 + α + α2

2

}
=

{
1,

θ

3
,−1

2
+ θ

6
+ θ2

18

}

is an integral basis for K.
(c) Since disc(P ) is a square in Q, we get Gal(K/Q) � A3 � C3 by Lemma 7.145

(ii) or Lemma 7.140.
Since (r1, r2) = (3,0), we have O∗

K
� WK × Z

2 by Dirichlet’s unit theorem
(Theorem 7.74). Using Theorem 7.105 we get

(3) = p
3
3

with p3 = (3, θ/3 + 1) and using the PARI/GP system we obtain

(6 − θ) = p2p
4
3 and (12 − θ) = p

3
2p

3
3

with p2 = (2, θ). This implies that

(6 − θ)3 = (3)3(12 − θ)

and hence there exists a unit u such that (6−θ)3 = 27u(12−θ). Now expanding
(6 − θ)3 and using θ3 = 189θ − 756, we deduce that

18θ2 − 297θ + 972 = 27u(12 − θ)

so that

9(θ − 12)(2θ − 9) = 27u(12 − θ)

and then u = 3 − 2θ/3. Using PARI, the second unit is u′ = θ2/9 − 5θ/3 + 5 so
that

RK =
∣∣∣∣det

(
log |3 − 2θ/3| log |θ2/9 − 5θ/3 + 5|
log |3 − 2θ ′/3| log |θ ′2/9 − 5θ ′/3 + 5|

)∣∣∣∣ ≈ 12.594 188 956 . . .

8. Since −2 
≡ 1 (mod 4), we have dK = −8.

(a) � Since −8 ≡ 1 (mod 3), we get (−8/3) = (1/3) = 1 so that 3 splits completely
in K by Proposition 7.108 and then

(3) = p3 p3

where p3 = (1 + √−2) and p3 = (1 − √−2).
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� Since (1 − √−2)2 = −1 − 2
√−2, we infer that a= p3

2, so that the equality
(1 + 2

√−2)n = 3n contradicts Theorem 7.88.
(b) Suppose that arccos(1/3)/π ∈ Q. There exists (p, q) ∈ Z × Z�1 such that

(p, q) = 1 and

arccos

(
1

3

)
= pπ

q
.

Since

1 + 2
√−2 = 3ei arccos(1/3) = 3eipπ/q

we have

(1 + 2
√−2)2q = 32q

contradicting the previous question. Therefore, arccos(1/3)/π 
∈Q.

9. First note that, if k1 = Q(
√

a) and k2 = Q(
√

b), then by assumption on a and
b we get dki

≡ 1 (mod 3), so that 3 splits completely in k1 and in k2 by Proposi-
tion 7.108. This implies that 3 splits completely in K. Now assume that OK = Z[θ ]
for some θ ∈ K. Then K = Q(θ) and the minimal polynomial μ of θ is of degree
4. By the previous observation, we infer that the reduction μ in F3[X] can be ex-
pressed as a product of four distinct monic linear polynomials, which is impossible
since F3 has only three distinct elements.

10. We use Proposition 7.118.

� Type I. We have νK(pα) =D(1,1,1)(α) = (
α+2

2

)
.

� Type II. In this case, p is inert so that by Remark 7.120 we get

νK
(
pα

) =
{

1, if 3 | α,

0, otherwise.

� Type III. We have νK(pα) = D(1,2)(α) which can be computed by using Theo-
rem 2.32 or Popoviciu’s result of Exercise 12 in Chap. 2. For instance, applying
Popoviciu’s theorem with a = 1, b = 2 and n = α, we get a = 1 and thus

νK
(
pα

) = α

2
+ 1 −

{
α

2

}
=

{
(α + 2)/2 if α ≡ 0 (mod 2),

(α + 1)/2, if α ≡ 1 (mod 2).

� Type IV. We have νK(pα) =D(1,1)(α) = (
α+1

1

) = α + 1.
� Type V. We have g = 1 and thus we may use Remark 7.120, and since e = 3, we

get

νK
(
pα

) = 1.
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11.

(a) This is done in the proof of Proposition 7.138 using Corollary 7.130.
(b) We have fn(σ ) = σn+1π−nσ/2�(σ/2)n and hence

gn(σ ) = 2

n
− (logπ + γ )σ +

∞∑
k=1

(
σ

k
− σ

k + σ/2

)

and thus

g′′
n(σ ) = 8

∞∑
k=1

k

(σ + 2k)3
> 0

so that gn is convex on ]0,+∞[.
(c) For all σ ∈ [1,2], we deduce that

gn(σ ) � max
(
gn(1), gn(2)

)

= max

(
2 − γ − log(4π) + 2

n
, 2

(
1 − γ − logπ + 1

n

))

and since n� 2 we obtain

gn(σ ) � max
(
3 − γ − log(4π), 3 − 2(γ + logπ)

)
< 0.

(d) The previous question implies that fn is decreasing on [1,2] so that

fn(σ0)� fn(1) = 1.

Therefore

κK �
d

(σ0−1)/2
K

(σ0 − 1)n−1
=

(
e logdK

2n − 2

)n−1

and (7.21) gives then (7.23).

12. Since K is real, we have (r1, r2) = (n,0), wK = 2 and every character of
X(K) = X is even, so that the class number formula seen in Remark 7.164 can be
written in this case as

hKRK = d
1/2
K

2n−1

∏
χ∈X
χ 
=χ0

L
(
1, χ�

)

where χ� is the primitive even Dirichlet character that induces χ . Now using (7.37)
and the arithmetic-geometric mean inequality, we get

∏
χ∈X
χ 
=χ0

∣∣L(
1, χ�

)∣∣�
(

1

2n − 2

∑
χ∈X
χ 
=χ0

logfχ�

)n−1
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and the conductor–discriminant formula (Theorem 7.162) implies that

∏
χ∈X
χ 
=χ0

∣∣L(
1, χ�

)∣∣�
(

logdK

2n − 2

)n−1

as required.

13. We proceed as in Example 7.175. We have 15 ≡ 3 (mod 4), the or-
der O = Z[√−15] has discriminant −60 and conductor f = √

60/15 = 2. By
Lemma 7.172 (i), the class number of O is given by

hO = 2 × 2 ×
(

1 − 1

2

(−15

2

))
= 2

and, by Lemma 7.172 (ii), representatives of the two classes of invertible fractional
ideals of O are

(1,
√−15) and (3,

√−15)

and hence using PARI/GP we obtain

HO = X2 − (
33 × 53 × 10 968 319

)
X + (

32 × 5 × 29 × 41
)3

.

By Corollary 7.174, we infer that a prime p � 7 can be expressed in the form p =
x2 + 15y2 if and only if (−15/p) = 1 and the equation

x2 − (
33 × 53 × 10 968 319

)
x + (

32 × 5 × 29 × 41
)3 ≡ 0 (modp)

has a solution in Z.

References

[AS82] Adams W, Shanks D (1982) Strong primality tests that are not sufficient. Math Comput
39:255–300

[Bor06] Bordellès O (2006) An inequality for the class number. JIPAM J Inequal Pure Appl Math
7:87

[Coh00] Cohen H (2000) Advanced topics in computational algebraic number theory. GTM, vol
193. Springer

[Col87] Coleman R (1987) On the Galois groups of the exponential Taylor polynomials. Enseign
Math 33:183–189

[GK91] Graham SW, Kolesnik G (1991) Van der Corput’s method of exponential sums. London
math. soc. lect. note series, vol 126. Cambridge University Press, Cambridge

[Gou72] Gould HW (1972) Combinatorial identities. A standardized set of tables listing 500 bi-
nomial coefficients summations. Morgantown, West Virginia

[HT88] Hall RR, Tenenbaum G (1988) Divisors. Cambridge University Press, Cambridge
[HW38] Hardy GH, Wright EM (1938) An introduction to the theory of numbers. Oxford, London



References 547

[Rn62] Rosser JB, Schœnfeld L (1962) Approximate formulas for some functions of prime num-
bers. Ill J Math 6:64–94

[Tri02] Trifonov O (2002) Lattice points close to a smooth curve and squarefull numbers in short
intervals. J Lond Math Soc 65:309–319



 
     



Index

A
Abel summation formula, 9, 16
Abscissa of absolute convergence, 198, 201,

210
Abscissa of convergence, 201, 205, 207
Absolute convergence, 198–203, 210, 431
Absolute value, 204, 462, 463
Additive characters, 155, 156
Additive function, vi, 226, 241, 506
Admissible modulus, 457–460, 462
Algebraic closure, 374, 375, 465, 541
Algebraic integers, 355, 379–381, 391, 400,

405, 407, 446, 448, 466
Algebraic number fields, v, 167, 355, 377–381,

383–385, 390, 393, 395–399, 402, 405,
406, 408, 411, 415, 417, 423–427, 431,
434–436, 445, 452, 455, 462, 464, 474,
476

Algebraic numbers, 356, 374–379, 381, 401,
436

Algebraic rank of an elliptic curve, 443
Alladi, 246
Alternating group, 446
Analytic class number formula, 432, 440
Analytic rank of an elliptic curve, 443
Approximate functional equation, 98, 124,

125, 432, 434
Archimedean, 463
Arithmetic large sieve, 238
Artin, 73, 75
Artin map, 457, 458, 467
Artin reciprocity law, 457, 458
Artin symbol, 457
Associate, 361, 362
Automorphic functions, 455, 456
Average order, vi, 177, 186, 192, 193, 213,

216, 226, 297, 340, 435

B
Bachet–Bézout’s theorem, 27, 28, 31, 42, 54,

426
Bachet’s Diophantine equation, 426
Baker, A, 397, 441, 442, 480
Baker, R. C, 351
Barban, 221
Basis, 365–367, 383–391, 395, 396, 404, 412,

418, 421, 423, 425, 427, 428, 478, 543
Berkane, 349, 351
Bernoulli functions, 20
Bernoulli numbers, 19, 20
Bernoulli polynomial, 19, 21
Bertrand’s postulate, 83, 84, 477
Bézout’s coefficients, 28, 31
Biquadratic fields, 397, 478
Birch, 443
Birch & Swinnerton-Dyer conjecture, 443
Bonferroni’s inequalities, 122, 227
Bordellès, 161, 162, 247, 349, 351, 480, 546
Branton, 275, 295
Brauer–Siegel theorem, 443, 445
Brun, 66, 121–123, 161, 227
Brun–Titchmarsh inequality, 141, 233, 239
Brun’s pure sieve, 122
Burgess, 157, 162

C
Capitulation property, 464
Carmichael number, 67
Cauchy, 22, 48, 128, 137, 202, 208, 356, 389,

493
Cauchy–Binet’s identity, 309
Cauchy–Schwarz’s inequality, 237, 308–310,

348, 533
Characteristic, xiii, 107, 108, 120, 155, 166,

357

O. Bordellès, Arithmetic Tales, Universitext,
DOI 10.1007/978-1-4471-4096-2, © Springer-Verlag London 2012

549

http://dx.doi.org/10.1007/978-1-4471-4096-2


550 Index

Characteristic polynomial, 382, 400, 509
Chebotarëv’s density theorem, 75, 450
Chebyshev’s estimates, xiv, 81, 84, 343, 344
Chen, 234, 351
Chevalley, 432
Chinese remainder theorem, 39, 122, 359, 410,

416, 419
Class field theory, v, 453, 455–460, 462, 464,

467
Class group, 406, 422, 423, 428, 464, 467
Class number, v, 117, 423, 424, 426, 428,

432, 434–436, 440–442, 444, 464,
466–468, 470, 473, 479, 545,
546

Class number formula, 432, 440, 444, 460,
462, 479, 545

CM-fields, 474
Cohen, 480, 546
Complementary laws, 420
Completely additive function, 168, 506
Completely multiplicative function, vi, xviii,

xix, 122, 167–169, 172, 173, 177, 186,
187, 190, 193, 209, 210, 212–222,
224–227, 230, 232, 240, 241, 245, 246,
248, 347, 413, 429, 431, 504, 505,
529

Completely split, 421
Complex character, 114
Composite number, 67
Conditional convergence, 201, 202, 204
Conductor, 116, 219, 397, 422, 428, 442, 459,

460, 467, 469, 479, 546
Conductor-Discriminant formula, 460, 546
Conductor-Ramification theorem, 459
Congruences, 35, 36, 39, 67, 68, 71, 72, 122,

176, 177, 224, 359, 396, 456, 497, 543
Conjugate class, 470
Conjugate field, 378, 379
Conjugates, 378, 382, 403, 448, 463
Conrey, 149, 161
Coprime, 27, 28, 39–41, 44, 52, 68, 82, 105,

106, 108, 109, 138, 155, 160, 168, 169,
222, 224, 233, 241, 359, 360, 379, 383,
394, 397, 410, 411, 426, 427

Core, 166, 363
Critical strip, 98, 102, 103, 321
Cusick, 435, 475, 480
Cycle, 398, 446, 447, 457, 542
Cyclic cubic field, 397
Cyclic group, 42, 366, 397, 400, 401, 428, 446,

447
Cyclic number field, 379, 454, 475
Cyclotomic fields, 355, 391, 393, 396, 397,

422, 453, 455

Cyclotomic polynomial, 106, 370, 374, 392
Cyclotomic reciprocity law, 458

D
Davenport, 234
De La Vallée Poussin, 85, 102, 103, 111, 126,

142
Decomposition number, 416, 460
Decomposition theorem, 459
Dedekind, vii, 381, 390, 415, 441, 446
Dedekind domain, 404, 405, 408
Dedekind function, 166
Dedekind zeta-function, vii, 219, 431–433,

439, 470, 471
Defining polynomial, 378, 414, 425, 446, 463,

468
Degree of an algebraic number field, 219, 220,

382–384, 386, 389, 396, 398, 400, 401,
404, 410–412, 414–418, 422, 423, 428,
432, 435, 436, 438, 444, 445, 451, 462,
470, 474, 477, 479

Degree of an element, 367, 375, 377
Density hypothesis, 132, 133
Denumerant, 43, 49, 189, 429
Deuring, 442, 470
Deuring-Heilbronn phenomenon, 433, 442
Diaz y Diaz, 381, 382
Different, 57, 112, 206, 252, 268, 330, 441,

442, 470, 476, 479
Digamma function, 436
Dihedral group, 446
Dirichlet character, 108–112, 114–116, 125,

133, 138–141, 155–157, 167, 169, 175,
178, 179, 185, 186, 203, 420, 421, 439,
441, 459, 460, 462, 479, 545

Dirichlet class number formula, 440, 460
Dirichlet convolution product, 171, 176, 195,

197
Dirichlet divisor problem, vi, 151, 184, 185,

243, 298, 304, 307, 314, 325, 327, 328,
334

Dirichlet hyperbola principle, 183, 185
Dirichlet L-function, 141, 433, 439, 442
Dirichlet pigeon-hole principle, 136, 278, 424,

486
Dirichlet series, vi, 95, 102, 111, 125–127,

138, 140, 150, 182, 196–201, 203–207,
209–212, 217, 219, 345, 431, 432, 471

Dirichlet–Piltz divisor function, 165
Dirichlet’s approximation theorem, 330
Dirichlet’s theorem, vi, xviii, xix, 66, 74, 92,

93, 95, 102, 105, 107–112, 114–116,
118, 125–127, 133, 136, 138–141, 150,
151, 155-157, 160, 162, 165, 167, 169,



Index 551

171, 173, 175, 176, 178, 179, 18–186,
195–201, 203–207, 209–212, 217, 219,
243, 247, 248, 278, 295, 298, 299, 303,
304, 307, 308, 314, 324, 325, 327, 328,
330, 334, 345, 349, 351, 352, 399–403,
420, 421, 424, 429, 431–433, 439–442,
450, 453, 459, 460, 462, 471, 474, 479,
486, 543, 545

Dirichlet’s unit theorem, 399–401, 543
Discrete Hardy–Littlewood method, v, 298,

328
Discriminant of a polynomial, 374
Discriminant of an algebraic number field,

220, 386, 438, 442, 445
Divided differences, 6, 262, 264, 275, 281,

283, 289
Double large sieve inequality, 332
Dumas, 374
Duplication formula, 94, 219
Dusart, 144, 145, 162

E
ED, 363
Eigenvalue, 152, 153, 407, 509, 510
Eisenstein’s criterion, 369
Elliptic curve, 442, 443, 455
Embedding, 378, 400, 401, 414
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