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Preface

Several books have been devoted to the spectral theory and its applications.
However, this volume is very special as compared with the previous ones. For
example, the perturbation approach has been, for a long time, extensively studied
and considered as one of the most useful methods used in order to study some
mathematical and applied problems.

The main idea is that, if we know something about the solution for an easier
problem, lying “close” to the one we are studying, then we can say something about
our problem, provided that the difference or the perturbation is sufficiently weak.

In view of more advanced applications, especially the ones dealing with com-
plicated evolutional problems in Physics, Chemistry, Technology, Biology, etc.,
where the natural setting doesn’t involve single operators but operator matrices
and polynomial operator pencils, the concept of compact perturbations is very often
used, and it was shown that they were not sufficient for handling such problems. The
main advantage of this book is the detailed description of the ways showing how the
compactness condition can be relaxed, in a very general Banach space setting, so
that the previously impossible problems become suddenly solvable. The method of
extending results is not unique. That is why we have to devote a lot of space in order
to describe the different extensions of the classical notions, and to demonstrate how
they specifically work in different applications.

More precisely, it is well known that the essential spectrum of an operator A
consists of those points of the spectrum which cannot be removed from the spectrum
by the addition to A of a compact operator. The most powerful result obtained in my
thesis is that, in L1-spaces, the essential spectrum of an operator A is nothing else
but the largest subset of the spectrum of A which remains invariant under weakly
compact perturbations of A. This unexpected result has opened many prospects to
develop innovative ways leading to a rigorous study of the Fredholm theory and in
the whole book, we give an account of the recent research on the spectral theory
by presenting a wide panorama of techniques including the weak topology, which
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contributes to an extra insight to the classical results and enables us to solve concrete
problems from transport theory arising in their natural setting (L1-spaces). The main
topics include:

• Riesz theory of polynomially compact operators.
• Time behavior of solutions for an abstract Cauchy problem on Banach spaces.
• Fredholm theory and characterization of essential spectra by means of measure

of noncompactness, demicompact operator, measure of weak noncompactness,
and graph measures.

• S -essential spectra and essential pseudospectra.
• Spectral theory of block operator matrices.
• Spectral graph theory.
• Applications in mathematical physics and biology.

We do hope that this book will be very useful for researchers, since it represents
not only a collection of a previously heterogeneous material, but also an innovation
through several extensions.

Of course, it is impossible for a single book to cover such a huge field of
research. In making personal choices for inclusion of material, we tried to give
useful complementary references in this research area, hence probably neglecting
some relevant works. We would be very grateful to receive any comments from
readers and researchers, providing us with some information concerning some
missing references.

We would like to thank Salma Charfi for the improvement she has made in
the introduction of this book. So, we are indebted to her. We would like to thank
Nedra Moalla for the improvements she has made concerning the spectral mapping
theorem. We would also like to thank Aymen Ammar for the improvements he
has made throughout this book. So, we are very grateful to him. Concerning the
chapter related to graph theory, we were fortunate to have the help of Hatem
Baloudi, who assisted in the preparation of this chapter. So, we are indebted to
him. We would like to thank Professor Sylvain Golénia for his generous permission
to integrate, in this book, the results of Hatem Baloudi dealing with the graph
theory. Moreover, we would like to mention that the thesis work results, performed
under my direction, by my former students and presently colleagues Nedra Moalla,
Afif Ben Amar, Faiçal Abdmouleh, Boulbeba Abdelmoumen, Salma Charfi, Ines
Walha, Bilel Krichen, Omar Jedidi, Sonia Yengui, Aymen Ammar, Naouel Ben Ali,
Rihab Moalla, Hatem Baloudi, Mohammed Zerai Dhahri, and Bilel Boukettaya, the
obtained results have helped us in writing this book. Last but not least, we would like
to thank Ridha Damak for improving the English of all chapters of this book. Finally,
we apologize in case we have forgotten to quote any author who has contributed,
directly or indirectly, to this work.

Sfax, Tunisia Aref Jeribi
June 2015



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Spectral Theory and Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Time Behavior of Solutions to an Abstract Cauchy

Problem on Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Fredholm Theory and Essential Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 S -Essential Spectra and Essential Pseudospectra . . . . . . . . . . . . . . . . . 13
1.5 Spectral Theory of Block Operator Matrices . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Spectral Graph Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Applications in Mathematical Physics and Biology. . . . . . . . . . . . . . . 18
1.8 Outline of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Closed and Closable Operators. . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Adjoint Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 Elementary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.4 Fredholm Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.6 Relatively Boundedness and Relatively

Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.7 Sum of Closed Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.8 Strictly Singular and Strictly Cosingular Operators . . . . 32
2.1.9 Fredholm and Semi-Fredholm Perturbations . . . . . . . . . . . 33
2.1.10 Dunford–Pettis Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Basics on Bounded Fredholm Operators . . . . . . . . . . . . . . . 37
2.2.2 Gap Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.3 Semi-Regular and Essentially Semi-Regular

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.4 Basics on Unbounded Fredholm Operators. . . . . . . . . . . . . 48

ix



x Contents

2.2.5 Quasi-Inverse Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2.6 Basics on Unbounded Browder Operators . . . . . . . . . . . . . . 53

2.3 Positive Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.1 Positive Operator on Lp-Spaces . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.2 Positive Operator on Banach Lattice . . . . . . . . . . . . . . . . . . . . 58

2.4 Integral Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.1 Integral Operator on Lp-Spaces. . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.2 Integral Operator on L1-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.3 Cauchy’s Type Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5 Semigroup Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.1 Strongly Continuous Semigroup . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.2 The Hille-Yosida Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.6 The Essential Spectral Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.7 Borel Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.8 Baire Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.9 Banach Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.10 Measure of Noncompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.10.1 Measure of Noncompactness of a Bounded Subset . . . . 77
2.10.2 Measure of Noncompactness of an Operator . . . . . . . . . . . 80

2.11 Measure of Weak Noncompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.12 Graph Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.12.1 Graph Measure of Noncompactness . . . . . . . . . . . . . . . . . . . . 86
2.12.2 Graph Measure of Weak Noncompactness . . . . . . . . . . . . . 87
2.12.3 Seminorm Related to Upper

Semi-Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.13 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.14 Schur Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.15 Generalities about graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.15.1 Unoriented Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.15.2 Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.15.3 Bipartite Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.15.4 Subgraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3 Fredholm Operators and Riesz Theory for Polynomially
Compact Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.1 Riesz Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.1.1 Some Results on Polynomially Compact Operators . . . 101
3.1.2 Generalized Riesz Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.2 First and Second Kind Operator Equation . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.3 Spectral Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.4 Localization of Eigenvalues of Polynomially Compact

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.5 Polynomially Riesz Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.6 Some Results on Polynomially Fredholm Perturbation . . . . . . . . . . . 118



Contents xi

4 Time-Asymptotic Description of the Solution
for an Abstract Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.1 Abstract Cauchy Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.1.1 Compactness Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.1.2 The Remainder Term of the Dyson–Philips

Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.2 Time Behavior of Solutions for an Abstract Cauchy

Problem (4.0.1) on Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3 Time Behavior of Solutions for an Abstract Cauchy

Problem (4.0.1) on Lp-Spaces (1 < p < 1) . . . . . . . . . . . . . . . . . . . . . 136

5 Fredholm Theory Related to Some Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.1 Fredholm Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 Fredholm Theory by Means of Noncompactness Measures . . . . . . 145
5.3 Fredholm Theory by Means of Non-strict

Singularity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4 Fredholm Theory by Means of Demicompact Operator . . . . . . . . . . 150

5.4.1 Demicompactness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4.2 S -Demicompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5 Fredholm Theory by Means of Weak Noncompactness
Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.6 Fredholm Theory with Finite Ascent and Descent . . . . . . . . . . . . . . . . 164
5.7 Stability of Semi-Browder Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.7.1 Convergence to Zero Compactly . . . . . . . . . . . . . . . . . . . . . . . . 167

6 Perturbation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.2 Fredholm and Semi-Fredholm Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.3 Semi-Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.4 Fredholm Inverse Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.5 Fredholm Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.6 Some Perturbation Results for Matrix Operators . . . . . . . . . . . . . . . . . . 187
6.7 Some Fredholm Theory Results for Matrix Operators . . . . . . . . . . . . 191

7 Essential Spectra of Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.1 Definitions and Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.2 The Jeribi Essential Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.2.1 Relationship Between Jeribi and Schechter
Essential Spectra on L1-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2.2 Relationship Between Jeribi and Schechter
Essential Spectra on Banach Space
Satisfying the Dunford–Pettis Property . . . . . . . . . . . . . . . . . 199

7.2.3 Other Characterization of the Schechter
Essential Spectrum by the Jeribi Essential
Spectrum on Lp-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200



xii Contents

7.3 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.4 Essential Spectra of the Sum of Two Bounded Linear

Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.4.1 By Means of Fredholm and Semi-Fredholm

Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7.4.2 By Means of Fredholm Inverse . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.4.3 By Means of Demicompact Operators . . . . . . . . . . . . . . . . . . 214

7.5 Unbounded Linear Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.5.1 Essential Spectra for the Sum of Closed

and Bounded Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.5.2 Essential Spectra for the Product of Closed

and Bounded Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.5.3 Invariance of the Essential Spectra. . . . . . . . . . . . . . . . . . . . . . 221
7.5.4 Characterization of the Rakoc̆ević and
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Chapter 1
Introduction

This book is devoted to some recent mathematical developments which cover
several topics including Cauchy problem, Fredholm operators, spectral theory,
and block operator matrices, both dealing with linear operators. Of course, these
topics play a crucial role in many branches of mathematics and also in numerous
applications as they are intimately related to the stability of the underlying physical
systems.

One of the objectives of this book is the study of the classical Riesz theory
of polynomially compact operators, in order to establish the existence results of
the second kind operator equations, hence allowing to describe the spectrum,
multiplicities, and localization of the eigenvalues of polynomially compact oper-
ators. Fredholm theory and perturbation results are also widely investigated. The
description of the large time behavior of solutions to an abstract Cauchy problem on
Banach spaces without restriction on the initial data is studied. Further, the essential
state of the art of research and essential pseudo-spectra of closed, densely defined,
and linear operators subjected to additive perturbations is outlined. The spectral
theory of block operator matrices is of major interest, since it describes coupled
systems of partial differential equations of mixed order and type. For this reason,
an important part of this book is devoted to develop essential spectra of 2 � 2 and
3�3 block operator matrices. Based on the spectral graph theory (which is an active
research area), we are interested in the study of the adjacency matrix and the discrete
Laplacian acting on forms. Most of the results of this book are motivated by physical
transport problems for which we address our applications at the end of the book.

Now, let us describe its contents.

© Springer International Publishing Switzerland 2015
A. Jeribi, Spectral Theory and Applications of Linear Operators
and Block Operator Matrices, DOI 10.1007/978-3-319-17566-9_1
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2 1 Introduction

1.1 Spectral Theory and Cauchy Problem

As it is well known for the second kind operator equations

�' � A' D f (1.1.1)

in Banach spaces, the existence and uniqueness of a solution can be established by
the Neumann series, provided that A

�
is a contraction, i.e., kAk < j�j. The basic

theory for the second kind operator equation (1.1.1) with a compact linear operator
A on X was developed by F. Riesz [294] and originated by I. Fredholm’s work on
the second kind integral equations [113]. In [171, 254], A. Jeribi and N. Moalla
extended this analysis to the polynomially compact operator A in the more general
setting of normed spaces. Such an extension provided some solutions for several
physical problems. In fact, if A is a polynomially compact operator on a normed
space X , i.e., there exists a nonzero complex polynomial P.z/ D Pp

rD0 arzr
satisfying P.A/ 2 K.X/ (the set of compact operators), and if � 2 C with
P.�/ ¤ 0, then we have two cases:
if the homogeneous equation

�' � A' D 0 (1.1.2)

only has the trivial solution ' D 0 then, for all f 2 X , the non-homogeneous
equation (1.1.1) has a unique solution ' 2 X which depends continuously on f .

If the homogeneous equation (1.1.2) has a nontrivial solution, then the non-
homogeneous equation (1.1.1) is either unsolvable or its general solution is of the
following form

' D Q' C
mX

kD1
˛k'k;

where '1; : : : ; 'm are linearly independent solutions of the homogeneous equation,
˛1; : : : ; ˛m represent arbitrary complex numbers, and Q' denotes a particular solution
of the non-homogeneous equation (1.1.1).

The structure of polynomially compact operators was described by F. Gilfeather
[117] and by Y. M. Han et al. [146] in the context of Hilbert spaces. F. Gilfeather
showed that every polynomially compact operator on a Banach space is the finite
direct sum of translates of operators which have the property that the finite power of
the operator is compact. Moreover, the spectrum of these operators can be described.
This analysis was widely developed by V. I. Istrateescu in [156].

It is well known that, if X is a complex Banach space, and if A 2 K.X/, then
A and A� (the dual of A) are Riesz operators, with �.A�/ D �.A/ (see [191]).
Furthermore, N. Dunford and J. T. Schwartz showed in [101] that, for any eigenvalue
� 2 �.A/nf0g, we have mult.A; �/ < 1 and mult.A; �/ D mult.A�; �/, where
mult.:; :/ represents the algebraic multiplicity.
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Let us notice that, if A is a Riesz operator on X , then A is a generalized Riesz
operator on X . One of the purposes of the Chap. 2 is to prove that a polynomially
compact operator is also a generalized Riesz operator.

Let A 2 PK.X/, i.e., there exists a nonzero complex polynomial P.z/ DPp
rD0 arzr satisfyingP.A/ 2 K.X/. In [171], A. Jeribi and N. Moalla expressed the

multiplicity of a nonzero eigenvalue of P.A/ according to the one of the eigenvalues
of the operator A, and proved that, if B 2 L.Y / such that A and B are related
operators, then B is a generalized Riesz operator and mult.A; �/ D mult.B; �/
for all � 2 �.A/nf0; z1; : : : ; zkg, where z1; : : : ; zk are the zeroes of the minimal
polynomial of A.

In [84], J. R. Cuthbert considered a class of C0-semigroups .T .t//t�0 satisfying
the property of being near the identity, which means that, for some values of t ,
T .t/�I 2 K.X/. Cuthbert’s result asserts that, if .T .t//t�0 is a C0-semigroup with
an infinitesimal generator A, then the following conditions are equivalent:

(i) ft > 0 such that T .t/ � I is compactg D�0;1Œ,
(ii) A is compact, and

(iii) �.� � A/�1 � I is compact for some (and then, for all) � > w,

where w denotes the type of .T .t//t�0. Cuthbert’s result was extended by several
authors. Their aim was to study other strongly continuous families of operators such
as cosine or resolvent families of operators (see [151, 235, 240]). For example, in
the paper [218], the authors have shown that the assertions (i), (ii), and (iii) remain
equivalent for strongly continuous semigroups .T .t//t�0 near the identity, which
explains the existence of t0 > 0, such that T .t0/�I 2 I.X/, where I.X/ represents
any arbitrary, closed, and proper two-sided ideal of the algebra L.X/ belonging to
F.X/ (the set of Fredholm perturbations). Let us remark that, in all these works,
the generator A is either compact or belongs to an ideal of L.X/ contained in
F.X/. The general case was considered in [155], where A was a Riesz operator,
not necessarily belonging to F.X/. We say that an operator A 2 L.X/ belongs to
PI.X/, if there exists a nonzero complex polynomial p.:/, such that the operator
p.A/ 2 I.X/. In [225], the results obtained in [84, 155], and [218] were extended
to semigroups for which there exists a nontrivial polynomial p.:/ 2 CŒz� such that,
for some t > 0, p.T .t// 2 I.X/. As opposed to the previous results, in this case,
the infinitesimal generator of the semigroup is not necessarily a Riesz operator.

In [229], the authors characterized the class of polynomially Riesz strongly
continuous semigroups on a Banach space X . In particular, their main results assert
that the generators of such semigroups are either polynomially Riesz (then bounded)
or there exist two closed, infinite-dimensional, and invariant subspaces X0 and X1
ofX withX D X0˚X1, such that the part of the generator inX0 is unbounded with
a resolvent of Riesz type, whereas its part in X1 is a polynomially Riesz operator.

In Chap. 2 of his thesis [351], M. Yahdi discussed the topological complexity of
some subsets of L.X/, under the assumptions that X is a separable Banach space
and L.X/ is endowed with the strong operator topology. In particular, M. Yahdi
showed that the families of stable, ergodic, and power-bounded operators constitute
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some Borel subsets of L.X/, whereas the set of superstable operators is coanalytic.
We should notice that other results in this direction may be found in Chap. 4 of
Yahdi’s work.

In [227], the authors have firstly obtained more results in the spirit of those
obtained in [351]. Secondly, they applied these new results in order to derive the
topological complexity of some subsets of L.X/ equipped with the strong operator
topology and also to discuss the properties of strongly continuous semigroups in
Banach spaces under some hypotheses. In fact, they presented a characterization of
strongly continuous semigroups .T .t//t�0 under the assumption that, for all t > 0,
�e4.T .t// D f�.t/g on Banach spaces with separable duals, where �e4.:/ represents
the Wolf essential spectrum. We notice that the semigroups satisfying this condition
were already discussed in [84, 218].

In the papers [84, 218, 226, 227], the various conditions ensuring the uni-
form continuity of strongly continuous semigroups and groups were discussed.
The common results of these works deal with groups such that, for all real t ,
�e4.T .t// (representing the spectrum of T .t/ in the Calkin algebra) is a finite set;
therefore, ft 2 R such that �1e4.T .t// ¤ Tg is equal to R, where �1e4.T .t// WDn
�

j�j such that � 2 �e4.T .t//
o

and T denote the unit circle of C. In particular,

ft 2 R such that �1e4.T .t// ¤ Tg has a nonempty interior. In [228], the authors
used a weak form of the last observation in order to get a characterization of the
uniform continuity of strongly continuous groups. More precisely, they proved that
a strongly continuous group .T .t//t2R on a Banach space is uniformly continuous
if, and only if, ft 2 R such that �1.T .t// ¤ Tg is non-meager, where �1.T .t// WDn
�

j�j such that � 2 �.T .t//
o
. In particular, they showed that this result holds true if

the spectrum is replaced by smaller versions of the spectrum.

1.2 Time Behavior of Solutions to an Abstract Cauchy
Problem on Banach Spaces

Let us first notice that the time-dependent linear transport equations arise in a num-
ber of diverse applications in biology, chemistry, and physics [150, 275, 296, 336].
These equations can be formulated, in a Banach space X , as the following Cauchy
problem

8
<

:

@ 

@t
D A WD T C F 

 .0/ D  0;
(1.2.3)

where T W D.T / � X �! X denotes the infinitesimal generator of a C0-semigroup
of bounded linear operators .U.t//t�0 acting onX . Moreover, F is a bounded linear
operator on X and  0 2 X . Since A WD T C F is a bounded perturbation of
T , according to the classical perturbation theory, then it generates a C0-semigroup
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.V .t//t�0 which solves the Cauchy problem (1.2.3) (see [35, 276]) and which is
given by the Dyson–Phillips expansion

V.t/ D
n�1X

jD0
Uj .t/CRn.t/;

where U0.t/ D U.t/, Uj .t/ D
Z t

0

U.s/FUj�1.t � s/ ds; j D 1; 2; : : : and the nth

order remainder term Rn.t/ can be expressed by

Rn.t/ D
Z

s1C���Csn�t; si�0
U.s1/F : : : U.sn/FV.t � s1 � � � � � sn/ ds1 : : : dsn:

As it is well known, the solution  .t/ of the problem (1.2.3) exists and is
unique for all  0 2 D.A/. When dealing with the time-asymptotic behavior of
 .t/, a useful technique (called the semigroup approach) consists in studying the
asymptotic spectrum of V.t/ (for more information and a discussion of the recent
results, we may refer to [262, Chap. 2]). It is based on the existence of a compact
nth order remainder term, Rn.t/, of the Dyson–Phillips expansion. Indeed, if some
remainder term Rn.t/ is compact, then �.V .t//

Tf˛ 2 C such that j˛j > e�tg
consists of, at most, isolated eigenvalues with finite algebraic multiplicities and
therefore, according to the spectral mapping theorem for the point spectrum, for
any � > �, we have �.A/

TfRe� � �g consists of several finitely isolated
eigenvalues f�1; : : : ; �ng. Let ˇ1 D supfRe�; � 2 �.A/; Re� < �g, and let
ˇ2 D minfRe�j ; 1 � j � ng. The solution of the problem (1.2.3) satisfies the
following equation

�
�
�
�
�
 .t/ �

nX

iD1
e�i t eDi tPi 0

�
�
�
�
�

D o.eˇ
�t / with ˇ1 < ˇ

� < ˇ2; (1.2.4)

where  0 2 D.A/, Pi and Di denote, respectively, the spectral projection and the
nilpotent operator associated with �i , i D 1; 2; : : : ; n. The success of this method
is related to the possibility of computing some remainder terms of the Dyson–
Phillips series and also to the possibility of discussing their compactness properties.
Unfortunately, in some applications, it may happen that the unperturbed semigroup
.U.t//t�0 is not explicit (this is the case for the streaming operator for general
boundary conditions [210]) and therefore, this approach does not work.

An alternative way to discuss the time structure of  .t/ (called the resolvent
approach) is the one initiated by I. Vidav [328] (in a particular case) and developed
by M. Mokhtar–Kharroubi [261] (in an abstract setting). In [232], J. Lehner and
M. Wing determined the long-time behavior of  .t/ and expressed  .t/ as an
inverse Laplace transform of .��T �F /�1 0. This technique was systematized in
an abstract setting by M. Mokhtar–Kharroubi [261] who has shown that, under the
following conditions
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.A1/ W There exists an integer m such that Œ.� � T /�1F �m is compact for Re�>�;
where � is the type of fU.t/; t � 0g:

.A2/ W There exists an integer m such that
lim

jIm�j!C1
kŒ.� � T /�1F �mk D 0 uniformly on

f� 2 C such that Re� � !g .! > �/;

z

we deduce that �.A/
Tf� 2 C such that Re� > �g consists, at most, of discrete

eigenvalues with finite algebraic multiplicities and �.A/
Tf� 2 C such that Re� �

!; ! > �g D f�i ; i D 1; : : : ; ng is finite. Moreover, for any initial data  0 2
D.A2/, the solution of the Cauchy problem (1.2.3) satisfies the following equation

�
�
�
�
�
 .t/ �

nX

iD1
e�i t eDi tPi 0

�
�
�
�
�

D o.eˇ
�t / with ˇ1 < ˇ

� < ˇ2; (1.2.5)

where ˇ1 D supfRe� such that � 2 �.A/ and Re� < !g, ˇ2 D minfRe�i ; 1 � i �
ng, Pi andDi denote, respectively, the spectral projection and the nilpotent operator
associated with �i ; i D 1; 2; : : : ; n. Clearly, the weakness of this approach lies in
the fact that, unlike (1.2.4), the quantity

 .t/ �
nX

iD1
e�i t eDi tPi 0

can be evaluated only if the initial data  0 is in D.A2/. This analysis (1.2.5) was
applied by M. Mokhtar–Kharroubi in [261] in order to study the asymptotic behavior
of solutions to a transport equation with vacuum boundary conditions in bounded
geometry. K. Latrach also applied this analysis in [213] for the study of solutions
to one-dimensional transport equation for a large class of boundary conditions.
In [166], A. Jeribi studied the spectral analysis of a class of unbounded, linear
operators, originally proposed by M. Rotenberg. He gave a spectral decomposition
of solutions into an asymptotic term and a transient one which will be estimated for
smooth initial data. In [174], A. Jeribi et al. studied the time-asymptotic of solutions
of Rotenberg’s model of cell populations with general boundary conditions in Lp-
spaces (p � 1). In [177], A. Jeribi, S. Ould Ahmed Mahmoud, and R. Sfaxi studied
the time-asymptotic of solutions to a transport equation with Maxwell boundary
condition in L1-space. In [312], D. Song has pointed out that, if the conditions
.A1/ and .A2/ are fulfilled and if X is a B-convex (resp. Hilbert) space, then the
requirement  0 2 D.A2/ is unnecessary and (1.2.5) holds true for any initial data
 0 in D.A/ (resp. in X ). Recently, in [313], D. Song studied the time-dependent
neutron transport equations with reflecting boundary conditions and considered two
typical geometries (slab geometry and spherical geometry) in the setting of Lp
including L1. His work was mainly devoted to eliminate such conditions imposed
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on the initial distribution for time-dependent transport equation with reflecting
boundary conditions under very general assumptions. In [166, 169, 174, 177, 222],
under adequate assumptions, the authors proved that, for one-dimensional transport
equations concerning a large class of boundary conditions in Lp spaces (p 2
�1;C1Œ), (1.2.5) holds true for any initial data  0 belonging to D.A/. In [4], B.
Abdelmoumen, A. Jeribi, and M. Mnif followed the investigation started in the
works [166, 174, 177, 213, 220, 222, 223, 312, 313] concerning the time-asymptotic
of solutions to the Cauchy problem of one-dimensional transport equations for
a sizable class of anisotropic scattering operators and a variety of boundary
conditions. They showed that the solution  .t/ possesses a nice behavior on Lp
spaces, p 2 Œ1;C1Œ, independently of the geometry of such spaces, and also
satisfies an asymptotic expansion similar to (1.2.5), without restriction on the initial
data, even for p D 1. Their strategy consisted in proving that, under adequate
assumptions, and for all r 2 Œ0; 1Œ, we have

lim
jIm�j!1

jIm�jrkK.� � TH/�1Kk D 0 uniformly on a half plane;

where TH (resp. K) is the advection (resp. collision) operator, and in using the
inverse Laplace transform.

The analysis in [261] was clarified and refined later on by B. Abdelmoumen,
A. Jeribi, and M. Mnif [1, 4] who showed that the result (1.2.5) is satisfied even
if  0 2 D.A/. Their strategy consisted in replacing the assumption .A2/ by the
following one:

.A3/

8
<̂

:̂

(i) There exist an integer m; and a real r0 > 0; for ! > �; there exists C.!/ such
that jIm�jr0kŒ.�� T /�1F �mk is bounded on f� 2 C; Re� � !; jIm�j � C.!/g:

(ii) There exists a real c such that k.�� A/�1k is bounded on f� 2 C; Re� � cg:

S. Charfi, A. Jeribi, and N. Moalla applied the last analysis in [77] in order to
describe the time-asymptotic behavior of the solution to a one-velocity transport
operator with Maxwell boundary conditions considered in a homogeneous medium
with a spherical symmetry and an isotropic scattering. Another application to
a transport operator with a diffuse reflection boundary condition was given by
S. Charfi in [75].

Recently, in [3, 157], B. Abdelmoumen, O. Jedidi, and A. Jeribi performed an
improvement of the first condition of assumption .A3/ which was replaced by the
following:

8
<

:

There exists a real r0 > 0; for ! > �; there exists C.!/ such that
kIm�jr0k.� � T /�1Bm

� F.� � A/�1k is bounded on
f� 2 C such that Re� � !; and jIm�j � C.!/g;
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where B� WD F.� � T /�1. Their results were also applied in order to characterize
the time-asymptotic behavior of the transport operator introduced by M. Rotenberg
[296].

Motivated by problems in transport theory, a perturbation technique for studying
the spectrum of V.t/ was initiated by I. Vidav [329]. His analysis was clarified and
refined later on by J. Voigt [331] who showed that, if

.A4/

�
there exist m; n 2 N such that .Rn.t/B/m is
compact for large t and for all B 2 L.X/;

then �.V .t//
Tf˛ 2 C such that j˛j > ewtg consists of, at most, isolated

eigenvalues with finite algebraic multiplicity. Within the framework of positive
semigroups, the author in [260] has shown the existence of several connections
between the assumptions .A1/ and .A4/. In particular, the spectral analysis of the
perturbed semigroup V.t/ is possible with assumptions of type .A1/. In [215], the
author generalized and extended some of the results obtained in [260] to general
Banach space contexts. Indeed, he proved that, if there exists n 2 N, n ¤ 0 such
that
8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

F

nY

iD1

�
.� � T /�1U.ti /F

�
is compact for all n-tuples .t1; : : : ; tn/; ti > 0;

.t1; : : : ; tn/ �! F

nY

iD1
.U.ti /F / and is continuous in the uniform topology,

then the remainder RnC1.t/ of order nC 1 in the Dyson–Phillips expansion V.t/ DP1
jD0 Uj .t/ is compact. This shows that the spectral analysis of the perturbed

semigroup V.t/ is also possible on general Banach spaces (without the constraint of
positivity).

1.3 Fredholm Theory and Essential Spectra

The concept of Fredholm operators is one of the attempts to understand the
classical Fredholm theory of integral equations. Special types of these operators
were considered by many authors and treated in the works of F. V. Atkinson [39],
I. C. Gohberg [119–121, 125], and B. Yood [353]. These papers considered bounded
operators. Generalizations to unbounded operators were given by M. G. Krein and
M. A. Krasnoselskii [196], B. Sz. Nagy [267], R. Kress [197], and I. C. Gohberg
[122]. More complete treatments were given by P. Aiena [17], I. C. Gohberg and
G. Krein [123], and T. Kato [185]. A general historical account of the theory of
Fredholm operators was done in [123]. Further important contributions were due to
M. Schechter [300] who gave a simple and unified treatment of this theory which
covered all the basic points while avoiding some of the involved concepts already
used by previous authors.
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These studies of Fredholm theory and perturbation results are of a great
importance in the description of the essential spectrum. This set is not as widely
known as other parts of the spectrum, in particular, eigenvalues. Nevertheless, in
several applications, information about it is interesting for various reasons. In fact,
if the whole spectrum lies in a half-plane, then the stability of a physical system
is guaranteed. Moreover, near the essential spectrum, numerical calculations of
eigenvalues become difficult. Hence, they have to be treated analytically. If the
essential spectrum of a closed linear operator is empty, and if its resolvent set
is nonempty, then the spectrum consists only of isolated eigenvalues with a finite
algebraic multiplicity which accumulate, at most, at 1.

It is well known that, if A is a self-adjoint operator on a Hilbert space, then
the essential spectrum of A is the set of limit points of the spectrum of A (with
eigenvalues counted according to their multiplicities), i.e., all points of the spectrum,
except some isolated eigenvalues of finite multiplicity (see, for example, [347, 348]).
Irrespective of whether A is bounded or not on a Banach space X , there are
many ways to define the essential spectrum, most of them are enlargement of the
continuous spectrum. Hence, several definitions of the essential spectrum may be
found in the literature (see, for example, [144, 299]) or in the comments in [302,
Chap. 11, p. 283] which coincide for self-adjoint operators on Hilbert spaces.

The concept of essential spectra was introduced and studied by several math-
ematicians. We can cite H. Weyl, T. Kato, M. Schechter, F. E. Browder, and
R. Mennicken (see, for instance [66, 110, 158, 159, 185, 248, 302, 342]). Further
important contributions concerning essential spectra and their applications to
transport operators were due to A. Jeribi and his collaborators (see [1, 9, 12, 20,
55, 57, 61, 74, 162–165, 167, 170, 172, 198, 256, 335, 352]).

When dealing with the essential spectra of closed, densely defined, and linear
operators on Banach spaces, one of the main problems consists in studying the
invariance of the essential spectra of these operators subjected to various kinds of
perturbation. In a Banach space X , the Schechter essential spectrum of the operator
A 2 C.X/ is defined by

�e5.A/ D
\

K2K.X/
�.ACK/;

where K.X/ stands for the ideal of all compact operators on X .
One of the main questions in the study of the Schechter essential spectrum of

closed and densely defined linear operators on Banach spacesX consists in showing
what are the required conditions for K 2 L.X/ such that, for A 2 C.X/; �e5.A C
K/ D �e5.A/. If K is a compact operator on Banach spaces, then �e5.A C K/ D
�e5.A/.

In [160, 168, 219], the Jeribi essential spectrum was defined by the set

�j .A/ WD
\

K2W�.X/

�.ACK/;
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where W�.X/ stands for each one of the sets W.X/ and S.X/ and where W.X/

(resp. S.X/) denotes the set of all weakly compact (resp. strictly singular) operators
on X which contains the set of compact operators. At first sight, �j .A/ and �e5.A/
seem to be not equal. However, in L1-spaces, it was proved in A. Jeribi’s thesis
[160] that �j .A/ D �e5.A/. This result was entirely unexpected. That is why, we
have decided to investigate this important and new characterization, hence leading
to several studies dealing with the stability of the essential spectra. In fact, if K
is strictly singular on Lp-spaces, then �e5.A C K/ D �e5.A/ (see [221]). If K
is weakly compact on Banach spaces which possess the Dunford-Pettis property,
then �e5.A C K/ D �e5.A/ (see [214]). If K 2 L.X/ and .� � A/�1K is strictly
singular (resp. weakly compact) onLp-spaces p > 1 (resp. on Banach spaces which
possess the Dunford-Pettis property), then �e5.ACK/ D �e5.A/ (see [161, 162]).
In [163], A. Jeribi extended this analysis of the Schechter essential spectrum to the
case of general Banach spaces, and he proved that �e5.A C K/ D �e5.A/ for all
K 2 L.X/ such that .� � A/�1K 2 I.X/, where I.X/ is an arbitrary two-sided
ideal of L.X/ satisfying K.X/ � I.X/ � F.X/. In [164], A. Jeribi made an
extension of his work [163], where a detailed treatment of the Schechter essential
spectrum of closed, densely defined, and linear operators A subjected to additive
perturbationsK, such that .��A/�1K orK.��A/�1 belonging to arbitrary subsets
of L.X/ (where X denotes a Banach space) contained in the ideal of Fredholm
perturbations. His strategy consisted mainly in considering the class of A-closable
operator K (not necessarily bounded) which is contained in the set AJ .X/, and in
proving that �e5.ACK/ D �e5.A/ for all K in any subset of operators in AJ .X/,
where AJ .X/ designates the set of A-resolvent Fredholm perturbations which zero
index. More precisely, let A 2 C.X/, then �e5.ACK/ D �e5.A/ for all K 2 C.X/
such thatK isA-bounded andK.��A�K/�1 2 J .X/ for all � 2 �.ACK/, where
J .X/ designates the set of bounded operators A such that I C A has a zero index.
A detailed treatment of the Schechter essential spectrum of closed, densely defined,
and linear operators A subjected to additive perturbations contained in the set of
A-Fredholm perturbations is given in this book. In [170], A. Jeribi and M. Mnif
expressed the Schechter essential spectrum in terms of n-strictly power-compact
operators onX and a spectral mapping theorem for the Schechter essential spectrum
is also derived. In fact, these results have extended and improved several known ones
in the literature (see [11, 45, 158, 159, 161–164, 167, 168, 214, 216, 221, 224]).

Many spectral and basic properties about essential spectra were given in [5,
12, 14, 24, 60] in order to establish the criteria for both the sum and the product
of some essential spectra. Moreover, a characterization of approximate point and
defect essential spectra by means of semi-Fredholm perturbation operators was
investigated by A. Jeribi and N. Moalla in [172]. Moreover, a treatment of the
invariance of such essential spectra by the sets of A-Fredholm, upper A-semi-
Fredholm and lower A-semi-Fredholm perturbations was performed by A. Jeribi
in [164]. H. Baloudi and A. Jeribi have considered in [45] the sum of two bounded
linear operators defined on a Banach space and have presented some new and quite
general conditions to investigate their essential spectra.
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It is worth noticing that the measures of noncompactness and weak non-
compactness were introduced respectively by K. Kuratowski [203] and F. S. De
Blasi [90] and have been successfully applied in topology, functional analysis,
and operator theory in Banach spaces. They were also used in the studies of
functional equations, ordinary and partial differential equations, fractional partial
differential equations, integral and integro-differential equations, optimal control
theory, and in the characterization of compact operators between Banach spaces
(see [18, 37, 38, 46, 47, 97, 104, 132, 207, 253, 289]). In [5, 7, 8], B. Abdelmoumen,
A. Dehici, A. Jeribi, and M. Mnif also gave some results concerning a certain
class of semi-Fredholm and Fredholm operators via the concept of measures of
noncompactness and weak noncompactness. Further, they applied their obtained
results in order to prove the invariance of the Schechter essential spectrum on
Banach spaces, hence establishing a fine description of the Schechter essential
spectrum of closed, densely defined, and linear operators. In the paper [255],
N. Moalla has used the notion of measure of non-strict-singularity to give some
results on Fredholm operators and she has established a fine description of the
Schechter essential spectrum of a closed densely defined linear operator.

New measures called, respectively, graph measure of noncompactness and graph
measure of weak noncompactness were defined by B. Abdelmoumen, A. Jeribi, and
M. Mnif in [1, 6] in order to discuss the incidence of some perturbation results
on the behavior of essential spectra of such closed, densely defined, and linear
operators on Banach spaces. These new notions of measure were defined in a
Banach space X , in the following way: for T 2 C.X/, if � (resp. �) is a measure
of noncompactness (resp. measure of weak noncompactness) in X , the following
notations are considered in [1, 6]:

H� denotes the set of all T 2 C.X/ satisfying : for all An being bounded and
closed in XT such that AnC1 � An, if lim

n!C1 �.An/ D 0 and lim
n!C1 �.T .An// D

0, then
TC1
nD0 An ¤ ;.

H� denotes the set of all T 2 C.X/ satisfying : for all An being bounded
and weakly closed in XT such that AnC1 � An, if lim

n!C1�.An/ D 0 and

lim
n!C1�.T .An// D 0, then

TC1
nD0 An ¤ ;.

For T 2 H� , new measures were constructed in [1, 6] and defined as follows :

�T W MXT �! RC
A �! �T .A/ D �.A/C �.T .A//;

where MXT denotes the set of all bounded in XT WD .D.T /; k:kT / (which is
a Banach space endowed with the graph norm k:kT WD k:k C kT .:/k). It was
shown that �T is a measure of noncompactness in XT called graph measure of



12 1 Introduction

noncompactness associated with T and �. If X� C X� ı T is dense in .XT /�, then
for a measure of weak noncompactness � and T 2 H�, the map

�T W MXT �! RC
A �! �T .A/ D �.A/C �.T .A//

is a measure of weak noncompactness in XT called graph measure of weak
noncompactness associated with T and �.

W. V. Petryshyn has proved in [280] that I � K is a Fredholm operator
and i.I � K/ D 0 for every condensing operator K. By using the concept of
demicompact operators, W. Chaker, A. Jeribi, and B. Krichen in [73] extended the
result to a class of bounded operators K which ensures that �K is demicompact
for every � 2 .0; 1�. This class contains the classes of power-compact operators,
n-strictly power-compact operators, condensing operators, and demicompact 1-
set-contraction operators. Their obtained results were used in order to establish
a fine description of the Schechter essential spectrum of closed, densely defined,
and linear operators, and to investigate the essential spectrum of the sum of two
bounded linear operators defined on a Banach space by means of the essential
spectrum of each of the two operators. Recently, B. Krichen introduced in [199] the
concept of S -demicompactness with respect to a closed, densely defined, and linear
operator, as a generalization of the class of demicompact operators introduced by
W. V. Petryshyn in [280] and established some new results in Fredholm theory.
Moreover, he applied the obtained results for discussing the incidence of some
perturbation results on the behavior of relative essential spectra of unbounded linear
operators acting on Banach spaces. He also gave a characterization of the relative
Schechter’s and approximate essential spectrum.

In [2], the authors have investigated the stability in the set of Fredholm
perturbations under composition with bounded operators. They have introduced the
concept of a measure of non-Fredholm perturbations which allowed them to give
a general approach to the question of obtaining perturbation theorems for semi-
Fredholm operators. Finally, they have proved some localization results about the
Wolf, the Schechter, and the Browder essential spectra of bounded operators on a
Banach space X .

The concept of semi-regularity, and essentially semi-regularity among the var-
ious concepts of regularity, originated from the classical treatment of perturbation
theory owing to T. Kato and its development has greatly benefited from the work of
many authors in the last years, such as M. Mbekhta and A. Ouahab [246], V. Müller
[263], V. Rakocevic̀ [286], M. Berkani, and A. Ouahab [62]. Let us recall that an
operator A is said to be semi-regular if R.A/ is closed and N.An/ � R.A/, for all
n � 0 (see [246]), where R.A/ and N.A/ denote the range and the null space of
A, respectively. This concept leads naturally to the semi-regular spectrum �se.A/,
which is an important subset of the ordinary spectrum, defined as the set of all
� 2 C for which � � A is not semi-regular and its essential version �es.A/ is the
set of all � 2 C for which � � A is not essentially semi-regular. The semi-regular
spectrum was first introduced by C. Apostol [31] for operators on Hilbert spaces



1.4 S -Essential Spectra and Essential Pseudospectra 13

and successively studied by several authors mentioned above in the more general
context of operators acting on Banach spaces. An operator A is called a Kato type
operator, if we can write A D A1 ˚A0 where A0 is a nilpotent operator and A1 is a
semi-regular one. In 1958, T. Kato proved that a closed semi-Fredholm operator is of
Kato type. J. P. Labrousse [205] studied and characterized a new class of operators
(named quasi-Fredholm operators) in the case of Hilbert spaces, and he proved that
this class coincides with the set of Kato type operators and the Kato decomposition
becomes a characterization of the quasi-Fredholm operators. However, in the case
of Banach spaces, the Kato type operator is also quasi-Fredholm, but the converse
is not true. The study of such a class of operators leads to a new important part of
the ordinary spectrum (called the Kato spectrum �k.A/) which represents the set of
all complex � such that � � A is not a Kato type operator. In [61], M. Benharrat,
A. Ammar, A. Jeribi, and B. Messirdi studied some properties of the semi-regular,
essentially semi-regular, and the operators of Kato type on a Banach space. They
have also shown that the essentially semi-regular spectrum of closed, densely
defined linear operator is stable under commuting compact perturbation and its Kato
spectrum is stable subjected to additive commuting nilpotent perturbations.

1.4 S -Essential Spectra and Essential Pseudospectra

Several mathematical and physical problems lead to operator pencils, �S � T

(operator-valued functions of a complex argument) (see for example, [243, 310]).
Recently, the spectral theory of operator pencils attracted the attention of many
mathematicians. Mainly, the completeness of the root vectors and the asymptotic
distributions of characteristic values were considered. In [40], F. V. Atkinson,
H. Langer, R. Mennicken, and A. A. Shkalikov proposed a method for dealing with
the spectral theory related to pencils of the form L0 � �M , where L0 and M are
2 � 2 block operator matrices acting on a Banach space and where M is invertible.
Then, the authors applied their techniques to a problem occurring in magnetohydro-
dynamics (see [233]) where the entries of L0 were ordinary differential operators
andM was the identity operator. These entries were completely able to characterize
the essential spectrum of the operator L0. In the same book [233], the authors also
considered a problem wherein the entries of L0 were partial differential operators
acting on a rectangular domain in R

2 with coefficients having singularities at one
edge of the boundary, and some properties of the essential spectrum of L0 were
proved. In [176], A. Jeribi, N. Moalla, and S. Yengui gave a characterization of
the essential spectrum of the operator pencil in order to extend many known results
in the literature.

Inspired by [176], F. Abdmouleh, A. Ammar, and A. Jeribi in [13] pursued
the study of the S -essential spectra and investigated the S -Browder, the S -upper
semi-Browder, and the S -lower semi-Browder essential spectra of bounded linear
operators on a Banach space X and they introduced the S -Riesz projection.
Moreover, they extended the results of F. Abdmouleh and A. Jeribi [12] to various
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types of S -essential spectra. In fact, they gave the characterization of the S -essential
spectra of the sum of two bounded linear operators.

Historically, the concept of pseudo-spectra was introduced independently by
J. M. Varah [327], H. Landau [208], L. N. Trefethen [322], and E. B. Davies [88].
This concept was especially due to L. N. Trefethen, who developed this idea for
matrices and operators, and who applied it to several highly interesting problems.
This notion of pseudo-spectra arised as a result of the realization that several
pathological properties of highly non-self-adjoint operators were closely related.
These include the existence of approximate eigenvalues far from the spectrum, the
instability of the spectrum even under small perturbations. The analysis of pseudo-
spectra has been performed in order to determine and localize the spectrum of
operators, hence leading to many applications of the pseudo-spectra. For example, in
aeronautics, eigenvalues may determine whether the flow over a wing is laminar or
turbulent. In ecology, eigenvalues may determine whether a food web will settle into
a steady equilibrium. In electrical engineering, they may determine the frequency
response of an amplifier or the reliability of a national power system. Moreover,
in probability theory, eigenvalues may determine the convergence rate of a Markov
process and, in other fields, we can find the eigenvalues allowing us to examine their
properties.

Inspired by the notion of pseudo-spectra, A. Ammar and A. Jeribi in their works
[20–23], thought to extend these results for the essential spectra of closed, densely
defined, and linear operators on a Banach space. They declared the new concept
of the pseudo-essential spectra of closed, densely defined, and linear operators on
a Banach space. Because of the existence of several essential spectra, they were
interested to focus their study on the pseudo-Browder essential spectrum. This
set was shown to be characterized in the way one would expect by analogy with
the essential numerical range. As a consequence, the authors in [21] located the
pseudo-Browder essential spectrum between the essential spectra and the essential
numerical range.

F. Abdmouleh, A. Ammar and A. Jeribi devoted their study to the Browder
essential spectrum and they extended the notion of pseudo-spectra to Browder
essential spectrum in a Banach space X (see [10]). For A 2 C.X/ and for every
" > 0, they defined the pseudo-Browder essential spectrum in the following way

�e6;".A/ D �e6.A/
[n

� 2 C such that kRb.A; �/k > 1

"

o
;

where �e6.:/ is the Browder essential spectrum and Rb.:; :/ is the resolvent of
Browder.

The aim of this concept was to study the existence of eigenvalues far from the
Browder essential spectrum and also to search the instability of the Browder essen-
tial spectrum under every perturbation. Their study of the pseudo-Browder essential
spectrum enabled them to determine and localize the Browder essential spectrum of
a closed, densely defined linear operator on a Banach space.
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1.5 Spectral Theory of Block Operator Matrices

Many problems in mathematical physics are described by the system of partial or
ordinary differential equations or linearizations thereof. In applications, the time
evolution of a physical system is governed by block operator matrices. Hence, the
spectral theory of these matrices plays a crucial role. During the last years, F. V.
Atkinson, H. Langer, R. Mennicken, and A. A. Shkalikov (see [40, 309]) studied
the Wolf essential spectrum of operators defined by a block operator matrix

A0 WD
�
A B

C D

�

(1.5.6)

which acts on the product X � Y of Banach spaces. An account of the research and
a wide panorama of methods to investigate the spectrum of block operator matrices
were presented by C. Tretter in [323–325]. In general, the operators occurring in
A0 are unbounded and A0 doesn’t need to be closed or to be a closable operator,
even if its entries are closed. However, under some conditions, A0 is closable and
its closure A can be determined.

In the theory of unbounded block operator matrices, the Frobenius-Schur factor-
ization is a basic tool in order to study the spectrum and various spectral properties.
This was first recognized by R. Nagel in [265, 266] and, independently and under
slightly different assumptions, later in [40]. In fact, F. V. Atkinson, H. Langer,
R. Mennicken, and A. A. Shkalikov in [40] were concerned with the Wolf essential
spectrum, and they considered the situation where the domains satisfy the conditions
D.A/ � D.C / and D.B/ � D.D/. Moreover, the compactness was assumed for
the operators .� � A/�1 (see [40]) or C.� � A/�1 and ..� � A/�1B/� (see [309])
for some (and hence, for all) � 2 �.A/, whereas in [86], it was only assumed that
.��A/�1 for � 2 �.A/ belongs to a nonzero two-sided closed ideal I.X/ � F.X/
of L.X/. In [20, 55, 56, 74, 172, 173, 335], A. Jeribi et al. extended these results to
a large class of operators, described their essential spectra, and applied these results
for describing the essential spectra of two-group transport operators with general
boundary conditions in Lp-spaces. In [50], A. Bátkai, P. Binding, A. Dijksma,
R. Hryniv, and H. Langer considered a 2�2 block operator matrix and described its
essential spectrum under the assumption that D.A/ � D.C /, that the intersection
of the domains of the operators B andD is sufficiently large, and that the domain of
the operator matrix is defined by an additional relation of the form 	Xx D 	Y y

between the two components of its elements. Moreover, they supposed that the
operator C.A1 � �/�1 is compact for some (and hence for all) � 2 �.A1/, where
A1 WD AjD.A/TN .	X /. However, in classical transport theory in L1-spaces, this
operator is only weakly compact. Recently, S. Charfi, A. Jeribi, and I. Walha
[76, 79, 335] extended the results of A. Bátkai, P. Binding, A. Dijksma, R. Hryniv,
and H. Langer [50], and they were concerned with the investigation of various
essential spectra. Moreover, the use of the Browder resolvent and the lower-upper
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factorization given by J. Lutgen in [239] allowed them to formulate and to give some
supplements to many results already presented by A. Bátkai, P. Binding, A. Dijksma,
R. Hryniv, and H. Langer in [50] and by S. Charfi, A. Jeribi, and R. Moalla [78].

Systems of linear evolution equations as well as linear initial value problems with
more than one set of initial data lead, in a natural way, to an abstract Cauchy problem
involving an operator matrix defined on a product of n Banach spaces. In [175, 335],
A. Jeribi, N. Moalla, and I. Walha treated a 3�3 block operator matrix on a product
of Banach spaces. They considered the following block operator matrix

0

@
A B C

D E F

G H L

1

A ; (1.5.7)

where the entries of the matrix are generally unbounded operators. The
operator (1.5.7) is defined on .D.A/

T
.D/

T
.G// � ..B/

T
.E/

T
.H// �

..C /
T
.F /

T
.L//. Notice that this operator doesn’t need to be closed. It was

shown that, under certain conditions, this block operator matrix defines a closable
operator and its essential spectra are determined. In [59, 198], A. Ben Amar,
A. Jeribi, and B. Krichen, and in [20, 25], A. Ammar, A. Jeribi, and N. Moalla
have studied the spectral properties of a 3 � 3 block operator matrix (1.5.7) with
unbounded entries and with a domain consisting of vectors satisfying certain
relations between their components.

1.6 Spectral Graph Theory

The paper written by L. Euler and published in 1736 is regarded as the first paper
in the history of graph theory [63]. Euler’s formula relating the number of edges,
vertices, and faces of a convex polyhedron was studied and generalized by Cauchy
(see [70]) and S. Huillier (see [154]) and is at the origin of topology.

More than one century after Euler’s paper on the bridges of Konigsberg and
while Listing introduced topology, A. Cayley was let, by the study of particular
analytical forms arising from differential calculus, to examine a particular class
of graphs, namely the tree (see [71]). This study has had many implications in
theoretical chemistry. The involved techniques mainly concerned the enumeration
of graphs having particular properties. Then, the enumerative graph theory started
from both the results of A. Cayley and those published by Polya between 1935 and
1937 and their generalization by De Bruijn in 1959. A. Cayley linked his results on
trees with contemporary studies dealing with chemical composition (see [72]). The
fusion of the ideas coming from mathematics and chemistry is at the origin of a part
of the standard terminology in graph theory. The term graph was first introduced by
Sylvester in a paper published in 1878 in Nature, where he made an analogy between
quantic invariants and co-variants of algebra and molecular diagram (see [182]).
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The first textbook on graph theory was written by D. Konig and published in
1936 (see [149]). Another book written by F. Harary and published in 1969 was
considered, all over the world, as the fundamental textbook on the subject (see
[114]) which enabled mathematicians, chemists, electrical engineers, and social
scientists to get in touch with each other. F. Harary donated all the royalties to
set up the Polya Prize. In 1969, H. Heesch published a method for solving the
problem using computers (see [317]). A computer assistance proof produced in
1976 by K. Appel and W. Haken made fundamental use of the notion of discharging
which was developed by K. Appel and W. Haken (see [32, 33]). The proof involved
checking the properties of 1936 configurations by computer, and was not fully
accepted by that time due to its complexity. A simple proof considering only 633
configurations was provided 20 years later by N. Robertson, D. Sanders, P. Seymour,
and R. Thomas (see [295]).

Graphs constitute some useful tools which can be used to model several types of
relations and processes in physical, biological (see [245]), social, and information
systems. Several practical problems can be represented by using graphs. For exam-
ple, in computer science, graphs are used to represent communication networks data
organization, etc. Graph theory is also used in physics and in chemistry for the
study of molecules. In condensed matter physics, the three-dimensional structure of
complicated simulated atomic structures can be studied quantitatively by gathering
statistics and graph-theoretic properties related to the topology of the atoms. In
chemistry, a graph makes a natural model for a molecule, where the vertices
represent the atoms and the edges represent the bonds. This approach is especially
used in computer processing of molecular structures, ranging from chemical editors
to database searching.

In statistical physics, graphs can represent local connections between the interact-
ing parts of a system, as well as the dynamics of a physical process in such systems.
Graphs are also used to represent the micro-scale channels of porous media, in
which the vertices represent the pores and the edges represent the smaller channels
connecting the pores. Graph theory is also widely used in sociology as a way, for
example, to measure the actors prestige or to explore the rumor spread, notably
through the use of social network analysis software. Under the umbrella of social
networks, there are several types of graphs. Acquaintance and friendship graphs
describe whether or not people know each other. Influence graphs model whether or
not certain people can influence the behavior of others. Finally, collaboration graphs
model whether two people can work together in a particular way, such as acting
together in a movie. In mathematics, graphs are useful in geometry and certain parts
of topology such as knot theory. Algebraic graph theory has close links with group
theory. A graph structure can be extended by assigning a weight to each edge of
the graph. Graph weights, or weighted graphs, are used to represent structures in
which pairwise connections have some numerical values. For example, if a graph
represents a road network, the weights could represent the length of each road.

The spectral graph theory is an active research area. The results on spectral
theory of discrete Laplacians can be found e.g. in [80, 82, 129, 257]. The search
condition for a Laplacian operator is essentially self-adjoint and is a classic problem
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of mathematical physics. Several definitions of Laplacians on graphs have been
proposed such as Laplacians quantum graphs (see [69, 109, 202]), combinatorial
Laplacians (see, [82, 131, 181]), or physical Laplacians (see, [337]). In [44],
H. Baloudi, S. Golénia, and A. Jeribi considered the discrete Laplacian acting on
forms and we discuss the question of the self-adjoint extension.

The results on spectral theory of the standard discrete Laplacian acting on
0-forms, 
0, can be found in [129, 130, 188, 345, 346]. By definition, a symmetric
operator is essentially self-adjoint, if it has a unique self-adjoint extension. In
[131, 250, 251, 282, 345], the authors have studied the uniqueness of a self-adjoint
extension of 
0. In particular, it was shown that the operator 
0 is essentially
self-adjoint on Cc0 .G/, when the graph G is simple. In [29], it was shown that the
Laplacian 
 D 
0 ˚ 
1 is essentially self-adjoint (so, 
0 and 
1 are essentially
self-adjoint), when the graph G is �-complete, where 
1 is the discrete Laplacian
acting on 1-forms. In contrast, there exists a locally finite tree such that 
1 is not
essentially self-adjoint, see [44] for a concrete example. In [44], the authors gave
the sufficient conditions for the Laplacian 
1 to be essentially self-adjoint and also
studied the unboundedness of the Friedrichs extension 
F

1 of 
1.

1.7 Applications in Mathematical Physics and Biology

Spectral theory of transport operators is a classical theme in transport theory since
the pioneering papers of J. Lehner and M. Wing [231, 232] and K. Jorgens [179] in
the late 1980s.

The literature devoted to this topic is huge (see, e.g., [209] and the references
quoted there). Roughly speaking, one can say that some aspects of the general theory
are, now, quite well known (see [184, Chap. 12]). We can cite the contributions
of K. Jorgens [179], I. Vidav [328, 329], J. Voigt [332, 333], I. Marek [242],
and others on spectral properties of perturbed strongly continuous semigroups on
Banach spaces (and Banach lattices) (for more information, see [184, Chap. 12]).

New results on the general theory are given in [260, 261], F. Andreu, J. Martinez,
J. M. Mazon [26] and A. Ben Amar, A. Jeribi, and M. Mnif [58].

The general theory is based on compactness arguments which are already present
in the literature devoted to particular models of the neutron transport equation
(see, e.g., the references cited in [209]). However, it seems that more general
compactness results are quite recent (see J. Voigt [333], G. Greiner [139], P. Takac
[316], L. W. Weis [339], A. Palczewski [274], and the systematic analysis of the
compactness by M. Mokhtar–Kharroubi [260, 261]). At the same time, the transport
equation was considered in different fields of mathematical physics in order to
describe the transport processes of particles. In particular, it was investigated accord-
ing to different boundary conditions. We may recall the works by N. Angelescu,
N. Marinescu, and V. Protopopescu [27, 28], A. Belleni-Morante [53], G. Borgioli
and S. Totaro [65], and the work by A. Corciovei and V. Protopopescu [83] on
linear transport equations with diffuse reflections. Nevertheless, all these papers
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only deal with particular models. For a general setting, we may mention the work
by R. Beals and V. Protopopescu [51], the Habilitationsschrift by J. Voigt [332], and
also the monograph by W. Greenberg, C. Van der Mee, and V. Protopopescu [138,
Chaps. 11, 12, and 13].

Inspired by [261], K. Latrach [211] made a systematic compactness analysis for
the transport equation in a one-dimensional context where the general boundary
conditions showing the relationship between the incoming and the outcoming fluxes
are modeled by four boundary operators. The known classical boundary conditions
(vacuum boundary, specular reflections, periodic, diffuse reflections, generalized
and mixed type boundary conditions [27, 28, 53, 65, 83, 231] are special examples
of [211]). In fact, the existence and uniqueness theory are well known in a general
context (see [138, Chaps. 11, 12, and 13] or [51]), hence the main goal of [211]
is to analyze in detail the compactness of the relevant operators by using some
techniques of [261], i.e., density and comparison arguments. Then, the spectral
theory of the transport equation is a simple consequence of the compactness results
and the general theory (cf. [331, 333] and [184, Chap. 12]).

These results in transport theory received a major attention during the last
decades (see, for example, the works [92, 93, 261, 262, 312, 313, 357] and the
references therein) and has benefited from many engineering, physics, and applied
mathematics works and had strong connections with the spectral theory of non-self-
adjoint operators, positive operators, semigroup theory, etc.

Asymptotic behavior in transport theory is of major interest, since it is closely
related to the stability of systems. It is related to compactness problems in
perturbation theory. When dealing with general boundary conditions (including
periodic boundary conditions, specular reflections, diffuse reflections, generalized
or mixed type boundary conditions), much progress has been made in the recent
years in terms of understanding the spectral features of some transport operators. In
this book, we investigate the spectral properties of the semigroup governing these
operators. As applications, we treat the time-asymptotic description of the solution
of a Cauchy problem given by a transport equation, a one-velocity transport operator
with Maxwell boundary condition and a transport operator with a diffuse reflection
boundary condition.

We also address our study to the question of the stability of the essential spectra
of transport operator with general boundary conditions where an abstract boundary
operator relates the incoming and the outgoing fluxes. Sufficient conditions are
given in terms of boundary and collision operators, ensuring the stability of the
essential spectra. These results will enable us to describe many essential spectra for
transport operator arising in growing cell populations, for neutron transport operator,
and for singular neutron transport operator.

The authors A. Ben Amar, A. Jeribi, and M. Mnif in [58] have been concerned
with the spectral analysis of transport operator with general boundary conditions
in L1-setting. They have investigated this subject using results from the theory of
positive linear operators, irreducibility, and regularity of the collision operator. Their
basic problems were dealing with the notions of essential spectra, spectral bound,
and leading eigenvalues.
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These characterizations are extended to two-group transport operators governed
by 2 � 2 block operator matrices in order to also describe various essential spectra
as well as systems of ordinary differential operators, delay differential equations,
�-rational Sturn–Liouville problem, multi-dimensional transport equations, the two-
group radiative transfer equations in a channel, and finally the three-group transport
equation.

1.8 Outline of Contents

Our book consists of 13 chapters.
In Chap. 2, we recall some definitions, notations, and basic informations on both

bounded and unbounded Fredholm Operators. We also introduce the concept of
quasi-inverse operator, semigroup theory, measure of noncompactness, measure of
weak noncompactness, and graph measures.

In Chap. 3, we develop the classical Riesz theory, and establish a characterization
of a class of bounded Fredholm operators on a Banach space which is developed
in order to present some general existence results of the second kind operator
equations. The obtained results are used to describe the Riesz theory of compact
operators in the more general setting of polynomially compact operators. For this
class of operators, the analysis of the spectrum, multiplicities, and localization of
the eigenvalues are given.

Chapter 4 is devoted to study the time-asymptotic behavior of the solution
to an abstract Cauchy problem. As the time-asymptotic structure (t ! 1) of
evolution transport problems is related to compactness results, we concentrate
ourselves to study this property in the first part of this chapter in order to give a
nice characterization of the time-asymptotic behavior of the solution to an abstract
Cauchy problem acting on Banach spaces without restriction on the initial data.

Chapter 5 deals with the elegant interaction between Fredholm theory and
some measures. In the first section, we develop the classical theory of Fredholm
operators and in the following sections of this chapter, we examine this theory
by means of measure of noncompactness, demicompact operator, measure of weak
noncompactness, and graph measures. We also study the Fredholm theory with finite
ascent and descent as well as the stability of semi-Browder operators.

In Chap. 6, we focus on the study of spectral theory and perturbation results
originating from Fredholm theory. We will also introduce, in the first section,
some definitions and basics related to Fredholm operators. The next part contains
some results related to semi-Fredholm perturbations, Fredholm inverse operator,
quasi-inverse operator, and finally, some results on perturbation theory of operator
matrices are investigated in the last section.

Chapter 7 is devoted to the analysis of the essential spectra of linear operators.
First, we give some basic definitions and notations related to this subject and then,
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we establish the essential spectra of the sum of two bounded linear operators as
well as their characterization by means of Fredholm inverse and demicompact
operators. We study the essential spectra of unbounded operators and we develop
some invariance aspects of Kato spectrum by commuting nilpotent perturbation as
well as Schechter’s essential spectrum and finally, we study the stability of essential
spectra under polynomially compact operator perturbations. We also treat Borel
mapping, spectral mapping theorem and we give a characterization of polynomially
Riesz continuous semigroups.

The aim of Chap. 8 is to develop the concept of essential pseudospectra of
linear operators. We concentrate ourselves exclusively on the characterization of
pseudo-Browder essential spectrum and on the conditions of its stability. Properties
and invariance of Pseudo-Jeribi and Pseudo-Schechter essential spectra of linear
operators by means of both Fredholm operators and measures of noncompactness
are also studied.

Chapter 9 focuses on S -essential spectra which extend the notion of the essential
spectra. In fact, we try to give some definitions and preliminary results. A charac-
terization of S -essential spectra and S -Browder essential spectrum is presented.
We also study the S -essential spectra of the sum of bounded, linear operators.
S -essential spectra by means of demicompact operators and characterizations of
the relative Schechter’s and approximate essential spectra are investigated.

In Chap. 10, we exclusively focus on the study of essential spectra of 2� 2 block
operator matrices on Banach spaces. The first section gives a characterization of the
essential spectra in the case where the resolvent of the operatorA, defined in (1.5.6),
is a Fredholm perturbation. Then, in the second section, we treat the case where
the operator A is closed. The third section examines the case where the operator
A is closable. In each section, we give sufficient conditions which guarantee the
closedness of the block operator matrix, and we describe various essential spectra.
The fourth section contains a study of relative boundedness for block operator
matrices. The stability of the Wolf essential spectrum of some matrix operators
acting in Friedrichs module is investigated in the fifth section. The last section is
devoted to study the M -essential spectra of operator matrices.

Chapter 11 contains an extension of the results of Chap. 10 in order to character-
ize many essential spectra of 3 � 3 block operator matrices. In fact, we study their
closability and we describe their closure in the case where the operator A is closed
and also in the case where the operator A is closable. Block operator matrices using
Browder resolvent and also perturbations of unbounded Fredholm linear operators
are studied.

Chapter 12 gives some elementary properties of the discrete Laplacian defined on
a locally finite graph. Next, we discuss the question of essentially self-adjointness.
Finally, we study the Laplacian acting on forms in the case of oriented graph.

Finally, Chap. 13 concentrates on a selection of applications in mathematical
physics and biology to which the results of the preceding chapter are applied. In the
first section, we give the time-asymptotic description of the solution to a transport
equation. Then, in the second section, we treat the time-asymptotic behavior of
the solution to a Cauchy problem given by a one-velocity transport operator
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with Maxwell boundary condition. The third section contains the time asymptotic
behavior of the transport operator with a diffuse reflection boundary condition.
Next, we are concerned with the description of the essential spectra for transport
operator arising in growing cell populations. Some applications of the regularity and
irreducibility on transport theory are also investigated as well as essential spectra for
singular neutron transport operator, systems of ordinary differential operators, two-
group transport operators, elliptic problems with �-dependant boundary conditions
delay differential equations, a �-rational Sturn–Liouville problem, two-group radia-
tive transfer equations in a channel, and the three-group transport equations.



Chapter 2
Fundamentals

The aim of this chapter is to introduce the basic concepts, notations, and elementary
results which are used throughout the book. Moreover, the results in this chapter
may be found in most standard books dealing with operator theory and functional
analysis (see [101, 126, 264, 302, 354]).

2.1 Basic Properties

2.1.1 Closed and Closable Operators

Let X and Y be two Banach spaces. A mapping A which assigns to each element x
of a set D.A/ � X a unique element y 2 Y is called an operator (or transformation).
The set D.A/ on which A acts is called the domain of A. The operator A is called
linear, if D.A/ is a subspace of X , and if A.�x C ˇy/ D �Ax C ˇAy for all scalars
�, ˇ and all elements x, y in D.A/. The operator A is called bounded, if there is
a constant M such that kAxk � Mkxk, x 2 X . The norm of such an operator is
defined by

kAk D sup
x¤0

kAxk
kxk :

The graph G.A/ of a linear operator A on D.A/ � X into Y is the set
f.x;Ax/ such that x 2 D.A/g in the product space X � Y . Then, A is called a
closed linear operator when its graph G.A/ constitutes a closed linear subspace of
X �Y . Hence, the notion of a closed linear operator is an extension of the notion of
a bounded linear operator. A sequence .xn/n � D.A/ will be called A-convergent
to x 2 X , if both .xn/n and .Axn/n are Cauchy sequences and xn ! x. A linear
operatorA on D.A/ � X into Y is said to be closable, ifA has a closed extension. It
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is equivalent to the condition that the graph G.A/ is a submanifold (or subspace) of
a closed linear manifold (or space) which is at the same time a graph. It follows that
A is closable if, and only if, the closure G.A/ of G.A/ is a graph. We are thus led
to the criterion: A is closable if, and only if, no element of the form .0; x/, x ¤ 0

is the limit of elements of the form .x;Ax/. In other words, A is closable if, and
only if, .xn/n 2 D.A/, xn ! 0 and Axn ! x imply x D 0. When A is closable,
there is a closed operator A with G.A/ D G.A/. A is called the closure of A. It
follows immediately that A is the smallest closed extension of A, in the sense that
any closed extension of A is also an extension of A. Since x 2 D.A/ is equivalent
to .x; Ax/ 2 G.A/, x 2 X belongs to D.A/ if, and only if, there exists a sequence
.xn/n that is A-convergent to x. In this case we have Ax D lim

n!1 Axn. By C.X; Y /,
we denote the set of all closed, densely defined linear operators from X into Y , and
by L.X; Y / the Banach space of all bounded linear operators from X into Y . By an
operator A fromX into Y , we mean a linear operator with a domain D.A/ � X . We
denote byN.A/ its null space, and R.A/ its range. We define the generalized kernel
of a closed operatorA byN1.A/ WD S

n2NN.An/. We define the generalized range
of a closed operator A by R1.A/ WD T

n2NR.An/.

2.1.2 Adjoint Operator

Let A 2 L.X; Y /. For each y0 2 Y � (the adjoint space of Y ), the expression y0.Ax/
assigns a scalar to each x 2 X . Thus, it is a functional F.x/. Clearly F is linear. It is
also bounded since jF.x/j D jy0.Ax/j � ky0kkAxk � ky0kkAkkxk. Thus, there is
an x0 2 X� (the adjoint space of X ) such that

y0.Ax/ D x0.x/; x 2 X: (2.1.1)

This functional is unique, for any other functional satisfying (2.1.1) would have
to coincide with x0 on each x 2 X . Thus, (2.1.1) can be written in the form

y0.Ax/ D A�y0.x/: (2.1.2)

The operator A� is called the adjoint of A, depending on the mood one is in.
IfA, B are bounded operators defined everywhere, it is easily checked that .BA/� D
A�B�. We just follow the definition of adjoint for bounded operator (see (2.1.2)) for
defining the adjoint of unbounded operator. By an operator A from X into Y , we
mean a linear operator with a domain D.A/ � X . We want A�y0.x/ D y0.Ax/,
x 2 D.A/. Thus, we say that y0 2 D.A�/ if there is an x0 2 X� such that

x0.x/ D y0.Ax/; x 2 D.A/: (2.1.3)
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Then we define A�y0 to be x0. In order that this definition make sense, we need
x0 to be unique, i.e., that x0.x/ D 0 for all x 2 D.A/ should imply that x0 D 0.
Thus is true if D.A/ is dense in X . To summarize, we can define A� for any linear
operator from X into Y provided D.A/ is dense in X . We take D.A�/ to be the
set of those y0 2 Y � for which there is an x0 2 X� satisfying (2.1.3). This x0 is
unique, and we set A�y0 D x0. If A, B are only densely defined, D.AB/ need not
be dense, and consequently, .BA/� need not exist. If D.BA/ is dense, it follows that
D.A�B�/ � D..BA/�/ and .BA/�z0 D A�B�z0, for all z0 2 D.A�B�/. Let N be a
subset of a normed vector space X . A functional x0 2 X�, is called an annihilator
of N if x0.x/ D 0, x 2 N . The set of all annihilators of N is denoted by N ı. The
subspace N ı is closed. For any subset R of X�, we call x 2 X an annihilator of
R if x0.x/ D 0, x0 2 R. We denote the set of such annihilators of R by ıR. The
subspace ıR is closed. If M is a closed subspace of X , then ı.M ı/ D M .

Theorem 2.1.1 ([302, Theorem 3.7]). Let X and Y be two normed vector spaces
and A 2 L.X; Y /. Then

(i) R.A/ı D N.A�/.
(ii) A necessary and sufficient condition thatR.A/ DıN.A�/ is thatR.A/ be closed

in Y . }
Definition 2.1.1. .i/ A densely defined operator A on a Hilbert space is called

symmetric, if A � A�; that is, if D.A/ � D.A�/ and A' D A�' for all
' 2 D.A/. Equivalently, A is symmetric if, and only if, hA'; i D h';A i
for all '; 2 D.A/:

.ii/ A is called self-adjoint if A� D A, that is, if, and only if, A is symmetric and
D.A/ D D.A�/.

.iii/ A symmetric operatorA is called essentially self-adjoint, if its closureA is self-
adjoint. If A is closed, a subset D � D.A/ is called a core for A, if AjD D A.

}

2.1.3 Elementary Results

Lemma 2.1.1 ([302, Lemma 4.14, p. 93]). If x0
1; : : : ; x

0
m are linearly independent

vectors in X�, then there are vectors x1; : : : ; xm in X , such that

x0
j .xk/ D ıjk WD

(
1 if j D k

0 if j ¤ k
1 � j; k � m: (2.1.4)

Moreover, if x1; : : : ; xm are linearly independent vectors in X , then there are
vectors x0

1; : : : ; x
0
m in X�, such that (2.1.4) holds. }
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Lemma 2.1.2 ([302, Lemma 5.2, p. 102]). Let X1 be a closed subspace of a
normed vector space X , and let M be a finite-dimensional subspace, such that
M
T
X1 D f0g. Then, X2 D X1 ˚ M is a closed subspace of X . Moreover, the

operator P defined by Px D x for x 2 M , Px D 0 for x 2 X1 is in L.X2/. }
We will recall a simple lemma due to Riesz [294].

Lemma 2.1.3 ([302, Lemma 4.7]). Let M be a closed subspace of a normed
vector space X . If M is not the whole of X , then for each number � sat-
isfying 0 < � < 1, there is an element x� 2 X , such that kx�kD1 and
dist .x� ;M/WD inf

x2M kx� � xk � � . }
We will use a simple consequence of Hahn–Banach theorem.

Lemma 2.1.4 ([302, Theorem 2.9]). Let M be a subspace of a normed vector
space X , and suppose that x0 is an element of X , satisfying d D dist.x0;M/ > 0.
Then, there is a bounded linear functional F onX , such that kF k D 1, F.x0/ D d ,
and F.x/ D 0 for x 2 M . }
Lemma 2.1.5 ([123, p. 190]). If M and N are subspaces of X and dimM >

dimN , then there exists an m 2 M such that 1 D kmk D dist.m;N /. }
Lemma 2.1.6 ([302, Lemma 5.1]). Let N be a finite-dimensional subspace of a
normed vector space X . Then, there is a closed subspace X0 of X , such that

(i) X0
T
N D f0g, and

(ii) for each x 2 X , there exist an x0 2 X0 and x1 2 N , such that x D x0 C x1.
This decomposition is unique. }

Lemma 2.1.7 ([302, Lemma 5.6]). Let X be a normed vector space, and suppose
that X D N ˚ X0, where X0 is a closed subspace and N is finite-dimensional. If
X1 is a subspace of X containing X0, then X1 is closed. }
Lemma 2.1.8 ([302, Lemma 5.3]). Let X be a normed vector space, and let R
be a closed subspace, such that Rı is of finite dimension n. Then, there is an n-
dimensional subspace M of X , such that X D R˚M . }

2.1.4 Fredholm Operators

By an operator A from X into Y , we mean a linear operator with a domain D.A/ �
X . If A 2 C.X; Y /, then ˛.A/ denotes the dimension of the kernel N.A/, and
ˇ.A/ denotes the codimension of R.A/ in Y . The classes of Fredholm, upper semi-
Fredholm and lower semi-Fredholm operators from X into Y are, respectively, the
following:

ˆ.X; Y / WD fA 2 C.X; Y / W ˛.A/ < 1; R.A/ closed in Y; ˇ.A/ < 1g;
ˆC.X; Y / WD fA 2 C.X; Y / W ˛.A/ < 1; R.A/ closed in Y g; and
ˆ�.X; Y / WD fA 2 C.X; Y / W ˇ.A/ < 1; R.A/ closed in Y g:



2.1 Basic Properties 27

ˆ˙.X; Y / denotes the set ˆ˙.X; Y / WD ˆC.X; Y /
S
ˆ�.X; Y /. The set

of bounded Fredholm operators from X into Y is defined by ˆb.X; Y / D
ˆ.X; Y /

T
L.X; Y /. For an operator A 2 ˆC.X; Y / or ˆ�.X; Y /, its index

is i.A/ WD ˛.A/ � ˇ.A/. If X D Y , the sets L.X; Y /, C.X; Y /, ˆ.X; Y /,
ˆC.X; Y /, ˆ�.X; Y /, ˆ˙.X; Y /, and ˆb.X; Y / are replaced, respectively, by
L.X/, C.X/, ˆ.X/, ˆC.X/, ˆ�.X/, ˆ˙.X/, and ˆb.X/. Let ˆ�C.X/ D fA 2
ˆC.X/ such that i.A/ � 0g, and ˆC� .X/ D fA 2 ˆ�.X/ such that i.A/ � 0g.
We denote ˆ0.X/ by ˆ0.X/ WD fA 2 ˆb.X/; such that i.A/ D 0g. A complex
number � is in ˆA, ˆCA, ˆ�A or ˆ˙A, if � � A is in ˆ.X/, ˆC.X/, ˆ�.X/ or
ˆ˙.X/, respectively. A complex � is inˆ0A, if ��A 2 ˆ.X/ and i.��A/ D 0. Let
S 2 L.X; Y /. A complex number � is in ˆCA;S , ˆ�A;S , ˆ˙A;S or ˆA;S , if �S � A
is in ˆC.X; Y /, ˆ�.X; Y /, ˆ˙.X; Y / or ˆ.X; Y /, respectively. Let ˆbC.X; Y /
and ˆb�.X; Y / denote the sets ˆC.X; Y /

T
L.X; Y /, and ˆ�.X; Y /

T
L.X; Y /,

respectively. IfX D Y , thenˆbC.X; Y / andˆb�.X; Y / are replaced, respectively, by
ˆbC.X/ and ˆb�.X/. The subset of all compact operators of L.X; Y / is designated
by K.X; Y /. If X D Y , then K.X; Y / is replaced by K.X/.
Definition 2.1.2. Let W be a linear subspace of X . We say that a linear operator
A W W �! Y is an invertible modulo compact operator, if there is a linear operator
L W Y �! X such that I � AL and I � LA are compact, where I represents the
identity operator. L is called an inverse of A modulo compact operator. }
Remark 2.1.1. Clearly, ifL1 andL2 are the inverses ofAmodulo compact operator,
then there exists a compact operator K such that L1 D L2 CK. }
Lemma 2.1.9 ([185, Lemma 332]). If A is a closed linear operator on a Banach
space X with ˇ.A/ < 1, then A has a closed range. }

Let us recall the following closed range theorem of S. Banach:

Theorem 2.1.2 ([354, Theorem p. 205]). Let X and Y be two Banach spaces, and
A a closed linear operator defined in X into Y such that D.A/ D X . Then, the
following propositions are all equivalent:

(i) R.A/ is closed in Y .
(ii) R.A�/ is closed in X�.

(iii) R.A/ı D N.A�/.
(iv) R.A�/ DıN.A/. }

It is easy to see that a bounded operator defined on the whole Banach space X is
closed. The inverse is also true and follows from the closed graph theorem which is
the following theorem.

Theorem 2.1.3. IfX , Y are Banach spaces, and A is a closed linear operator from
X into Y , with D.A/ D X , then A 2 L.X; Y /. }
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2.1.5 Spectrum

Definition 2.1.3. Let A be a closable linear operator in a Banach space X . The
resolvent set and the spectrum of A are, respectively, defined as

�.A/ D f� 2 C such that � � A is injective and .� � A/�1 2 L.X/g;
�.A/ D Cn�.A/

and the point spectrum, continuous, and the residual spectrum are defined as

�p.A/ D f� 2 C such that � � A is not injectiveg;
�c.A/ D f� 2 C such that � � A is injective; R.� � A/ D X; R.� � A/ ¤ Xg;
�r .A/ D f� 2 C such that � � A is injective, R.� � A/ ¤ Xg:

}
Remark 2.1.2. Note that, if �.A/ ¤ ;, then A is closed. In fact, if � 2 �.A/, then
.� � A/�1 is closed, which is also valid for � � A. Then, according to the closed
graph theorem (see Theorem 2.1.3), we deduce that �.A/ D f� 2 C such that � �
A is bijectiveg and hence, �.A/ D �p.A/

S
�c.A/

S
�r.A/. }

Proposition 2.1.1 ([35, Proposition 2.5, p. 67]). Let .A;D.A// be a closed,
densely defined, and linear operator with a nonempty resolvent set �.A/. For each
�0 2 �.A/, we have �..�0 � A/�1/ D .�0 � �.A//�1. }
Lemma 2.1.10. Let X be a Banach space, A 2 L.X/ and let X D X0 ˚ X1 be
a topological decomposition of X such that A.X0/ � X0 and A.X1/ � X1. If A0
and A1 denote, respectively, the restrictions of A to X0 and X1 (so A0 2 L.X0/ and
A1 2 L.X1/), then

(i) A 2 ˆb.X/ if, and only if, A0 2 ˆb.X0/ and A1 2 ˆb.X1/.
(ii) �.A/ D �.A0/

S
�.A1/. }

Proof. (i) It is easy to notice that N.A/ D N.A0/˚ N.A1/ and R.A/ D R.A0/˚
R.A1/. This gives the desired result.

(ii) The proof is trivial. Q.E.D.

Definition 2.1.4. Let A 2 C.X/. We say that �0 2 �p.A/ is the leading eigenvalue
of A if �0 2 R and, for every � 2 �.A/, Re� � �0. }
Definition 2.1.5. A set K � L.X/ is called collectively compact, if the set
K.BX/ WD fKx such that K 2 K; x 2 BXg has a compact closure, where BX
denotes the open unit ball of X and BX its closure. }
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Proposition 2.1.2. Let us assume that An ! A and K � L.X/ is collectively
compact. Then, k.An � A/Kk ! 0 uniformly for every K 2 K. }
Proof. Since K.BX/ is compact, .An � A/Kx ! 0 uniformly for K 2 K and
x 2 BX . Q.E.D.

Definition 2.1.6. An operator A 2 L.X; Y / is said to be weakly compact, if A.B/
is relatively weakly compact in Y , for every bounded subset B � X . }

The family of weakly compact operators from X into Y is denoted by W.X; Y /.
If X D Y , the family of weakly compact operators on X , W.X/ WD W.X;X/, is a
closed two-sided ideal of L.X/ containing K.X/ (cf. [101, 126]).

Definition 2.1.7. Let X and Y be Banach spaces, and let S and A be linear
operators from X into Y . S is called relatively weakly compact with respect to
A .or A-weakly compact), if D.A/ � D.S/ and, for every bounded sequence
xn 2 D.A/ such that .Axn/n is bounded, the sequence .Sxn/n contains a weakly
convergent subsequence. }
Definition 2.1.8. Let A 2 L.X/. A is called a power-compact operator, if there
exists m 2 N

� satisfying Am 2 K.X/. }

2.1.6 Relatively Boundedness and Relatively Compactness

Definition 2.1.9. Let X , Y , andZ be Banach spaces, and let A and S be two linear
operators from X into Y and from X into Z, respectively.

(i) S is called relatively bounded with respect to A .or A-bounded/, if D.A/ �
D.S/ and there exist two constants aS � 0, and bS � 0, such that

kSxk � aSkxk C bSkAxk; x 2 D.A/: (2.1.5)

The infimum ı of all bS that (2.1.5) holds for some aS � 0 is called relative
bound of S with respect to A (or A-bounded of S ).

(ii) S is called relatively compact with respect to A (or A-compact), if D.A/ �
D.S/ and for every bounded sequence .xn/n 2 D.A/ such that .Axn/n � Y is
bounded, the sequence .Sxn/n � Z contains a convergent subsequence. }

Remark 2.1.3. The inequality (2.1.5) is equivalent to kSxk2 � a2kxk2 C b2kAxk2
for all x 2 D.A/, where a D

q
a2S C aSbS and b D

q
b2S C aSbS . }

Lemma 2.1.11. If S is A-bounded with an A-bound ı < 1, then S is .A C S/-
bounded with an A-bound � ı

1�ı . }
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Proof. First of all, it should be mentioned thatACS is well defined as D.ACS/ D
D.S/

T
D.A/ D D.A/ � D.S/. The fact that S is A-bounded, there exist aS � 0,

and ı � bS < 1 such that, for all x 2 D.A/, we have

kSxk � aSkxk C bSkAxk
D aSkxk C bSkAx C Sx � Sxk
� aSkxk C bSkAx C Sxk C bSkSxk:

Since bS < 1, it follows that

kSxk � aS

1 � bS kxk C bS

1 � bS k.AC S/xk; x 2 D.A/:

Q.E.D.

Let A 2 C.X; Y /. The graph norm of A is defined by kxkA D kxk C kAxk; x 2
D.A/. From the closedness of A, it follows that D.A/ endowed with the norm
k:kA is a Banach space. Let us denote by XA, the space D.A/ equipped with
the norm k:kA. Clearly, the operator A satisfies kAxk � kxkA and consequently,
A 2 L.XA;X/. Let J W X �! Y be a linear operator on X . If D.A/ � D.J /, then
J will be called A-defined. If J is A-defined, we will denote by OJ its restriction
to D.A/. Moreover, if OJ 2 L.XA; Y /, we say that J is A-bounded. We can easily
check that, if J is closed (or closable), then J is A-bounded.

Proposition 2.1.3. If A is closed and B is closable, then D.A/ � D.B/ implies
that B is A-bounded. }
Proof. If A is a closed operator, then D.A/ equipped with the graph norm is a
Banach space. If we suppose that D.A/ � D.B/ and .B;D.B// is closable, then
D.A/ � D.B/. Because the graph norm on D.A/ is stronger than the norm induced
from X , the operator B , considered as an operator from D.A/ into X is everywhere
defined and closed. On the other hand, B jD.A/ D B , hence B W D.A/ �! X is
bounded by the closed graph theorem (see Theorem 2.1.3) and thusB isA-bounded.
Q.E.D.

Definition 2.1.10. We say that an operator J is A-closed, if xn ! x, Axn ! y,
Jxn ! z for .xn/n � D.A/ implies that x 2 D.J / and Jx D z. An operator J will
be called A-closable, if xn ! 0, Axn ! 0, Jxn ! z implies z D 0. }
Remark 2.1.4.

(i) If J is bounded, then J is A-bounded.
(ii) If J is closed, then J is A-closed.

(iii) If J is closable, then J is A-closable.
(iv) If A is closed, then J is A-closed if, and only if, J is A-closable if, and only

if, J is A-bounded. }
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2.1.7 Sum of Closed Operators

In general, the sum of closable or closed operators is not closable or closed, respec-
tively. However, closability and clossedness are stable under relatively bounded
perturbations with relative bound < 1. For the stability of bounded invertibility,
an additional condition is required.

Theorem 2.1.4. Let A and S be linear operators from X into Y such that D.S/ 	
D.A/, and kSxk � akxk C bkAxk, x 2 D.A/, for some constants a and b with
b < 1. Then, A is closed if, and only if, AC S is closed. }
Proof. Let x 2 D.A/. We have kAxk D k.AC S � S/xk � k.AC S/xk C kSxk.
Then, .1�b/kAxk � k.ACS/xkCakxk, x 2 D.A/. Hence, if .xn/n � D.ACS/ D
D.A/ such that xn ! x and .ACS/xn !  , then there existsN0 2 N such that, for
all n; m � N0, we have .1�b/kA.xn�xm/k � akxn�xmkCk.ACS/.xn�xm/k.
Therefore, .Axn/n is a Cauchy sequence in the Banach space Y . Thus, .Axn/n ! '.
Since A is closed, x 2 D.A/ and Ax D '. Moreover, Sxn D .AC S/xn � Axn !
 � '. However, we have kS.xn � x/k � .akxn � xk C bkA.xn � x/k/ ! 0,
showing that Sx D  � '. Hence, .AC S/x D  and x 2 D.AC S/. Conversely,
by using the same above reasoning, we find the result. Q.E.D.

The following result may be found in [321].

Theorem 2.1.5. Let S , A, and B be three linear operators such that D.A/ �
D.S/ � D.B/, such that

(i) there exist two constants a1 and b1 > 0, such that kSxk � a1kxk C b1kAxk,
x 2 D.A/,

(ii) there exist two constants a2 and b2 > 0, such that b1.1C b2/ < 1, and

kBxk � a2kxk C b2kSxk; x 2 D.S/:

Then, A is closed if, and only if, AC S C B is closed. }
Proof. Let x 2 D.A/. We have

k.AC S C B/xk � kAxk C kSxk C kBxk
� kAxk C a1kxk C b1kAxk C a2kxk C b2kSxk
D .1C b1/kAxk C .a1 C a2/kxk C b2.a1kxk C b1kAxk/:

So,

k.AC S C B/xk � .a1 C a2 C a1b2/kxk C .1C b1 C b1b2/kAxk: (2.1.6)
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Similarly, for all x 2 D.A/, we have

k.S C B/xk � kSxk C kBxk
� a1kxk C b1kAxk C a2kxk C b2kSxk
D b1kAxk C .a1 C a2/kxk C b2.a1kxk C b1kAxk/:

Hence,

k.S C B/xk � .a1 C a2 C a1b2/kxk C b1.1C b2/kAxk: (2.1.7)

Now, by combining Eqs. (2.1.6) and (2.1.7), for all x 2 D.A/, we get

k.AC S C B/xk � kAxk � k.S C B/xk
� kAxk � .a1 C a2 C a1b2/kxk � b1.1C b2/kAxk
D �.a1 C a2 C a1b2/kxk C Œ1 � b1.1C b2/�kAxk:

So,

kAxk � ˛�1�k.AC S C B/xk C ˇkxk
	
; (2.1.8)

where ˛ D 1�b1.1Cb2/ .0 < ˛ < 1/ and ˇ D a1Ca2Ca1b2 .ˇ > 0/. Let .xn/n be
a sequence in D.ACS CB/ D D.A/ such that xn ! x and .ACS CB/xn !  .
Then, by using Eq. (2.1.8), there exists N1 2 N such that, for all n; m � N1, we
have kAxn � Axmk � ˛�1.k.A C S C B/.xn � xm/k C ˇkxn � xmk/. So, .Axn/n
is a Cauchy sequence in the Banach space Y and therefore, there exists y 2 Y such
that Axn ! y. Since A is closed, then x 2 D.A/ and Ax D y. From Eq. (2.1.6), it
follows that

k.ACSCB/.xn�x/k �
�
.a1Ca2Ca1b2/kxn�xkC.1Cb1Cb1b2/kA.xn�x/k

	
! 0

which, by letting n ! C1, implies that .A C S C B/xn ! .A C S C B/x. So,
 D .A C S C B/x, and A C S C B is closed. Conversely, a same reasoning as
before leads to the result. Q.E.D.

2.1.8 Strictly Singular and Strictly Cosingular Operators

Definition 2.1.11. LetX and Y be two Banach spaces. An operatorA 2 L.X; Y / is
called strictly singular if, for every infinite-dimensional subspace M , the restriction
of A to M is not a homeomorphism. }

Let S.X; Y / denote the set of strictly singular operators from X into Y .
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The concept of strictly singular operators was introduced by T. Kato in his
pioneering paper [185] as a generalization of the notion of compact operators. For
a detailed study of the properties of strictly singular operators, we may refer to
[126, 185]. For our own use, let us recall the following four facts. The set S.X; Y /
is a closed subspace of L.X; Y /. If X D Y , S.X/ WD S.X;X/ is a closed two-
sided ideal of L.X/ containing K.X/. If X is a Hilbert space, then K.X/ D S.X/
and the class of weakly compact operators on L1-spaces (resp. C.K/-spaces with
K being a compact Haussdorff space) is, nothing else but, the family of strictly
singular operators on L1-spaces (resp. C.K/-spaces) (see [277, Theorem 1]).

Let X be a Banach space. If N is a closed subspace of X , we denote by XN the
quotient map X �! X=N . The codimension of N , denoted codim(N ), is defined
as the dimension of the vector space X=N .

Definition 2.1.12. Let X and Y be two Banach spaces and let S 2 L.X; Y /. S is
called strictly cosingular from X into Y , if there exists no closed subspace N of Y
with codim.N / D 1, such that YNS W X �! Y=N is surjective. }

Let CS.X; Y / denote the set of strictly cosingular operators from X into Y .
This class of operators was first introduced by Pelczynski [277]. It constitutes
either a closed subspace of L.X; Y /, which is CS.X/ WD CS.X;X/, or a closed
two-sided ideal of L.X/, if X D Y (cf. [330]). A Banach space is said to be
decomposable, if it is the topological direct sum of two closed infinite-dimensional
subspaces. A Banach space is said to be hereditarily indecomposable (in short H.I.
space), if it does not contain any decomposable subspace. The class of hereditarily
indecomposable Banach spaces was first introduced and investigated by Gowers and
Maurey in [135]. One of the main related facts to this class is the following result
due to Gowers and Maurey [135].

Lemma 2.1.12. If X is a complex H.I. Banach space, then every operator in L.X/
can be written in the form �C S , where � 2 C and S 2 S.X/. }

2.1.9 Fredholm and Semi-Fredholm Perturbations

Definition 2.1.13. Let X and Y be two Banach spaces, and let F 2 L.X; Y /. F is
called a Fredholm perturbation, if U CF 2 ˆ.X; Y / whenever U 2 ˆ.X; Y /. F is
called an upper (resp. lower) Fredholm perturbation, if U C F 2 ˆC.X; Y / (resp.
U C F 2 ˆ�.X; Y /) whenever U 2 ˆC.X; Y / (resp. U 2 ˆ�.X; Y /). }

The sets of Fredholm, upper semi-Fredholm and lower semi-Fredholm perturba-
tions, are, respectively, denoted by F.X; Y /, FC.X; Y /, and F�.X; Y /. In general,
we have

K.X; Y / � FC.X; Y / � F.X; Y /
K.X; Y / � F�.X; Y / � F.X; Y /:
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If X D Y , we may write F.X/, FC.X/ and F�.X/ instead of F.X;X/,
FC.X;X/ and F�.X;X/, respectively. In Definition 2.1.13, if we replaceˆ.X; Y /,
ˆC.X; Y /, and ˆ�.X; Y / by ˆb.X; Y /, ˆbC.X; Y /, and ˆb�.X; Y /, we obtain
the sets Fb.X; Y /, FbC.X; Y /, and Fb�.X; Y /. These classes of operators were
introduced and investigated in [124]. In particular, it was shown that Fb.X; Y / is a
closed subset of L.X; Y / and Fb.X/ WD Fb.X;X/ is a closed two-sided ideal of
L.X/. In general, we have

K.X; Y / � FbC.X; Y / � Fb.X; Y / (2.1.9)

K.X; Y / � Fb�.X; Y / � Fb.X; Y /: (2.1.10)

In [123], it was shown that Fb.X/ and FbC.X/ WD FbC.X;X/ are closed two-
sided ideals of L.X/. It is worth noticing that, in general, the structure ideal of L.X/
is extremely complicated. Most of the results on ideal structure deal with the well-
known closed ideals which have arisen from applied work with operators. We can
quote, for example, compact operators, weakly compact operators, strictly singular
operators, strictly cosingular operators, upper semi-Fredholm perturbations, lower
semi-Fredholm perturbations, and Fredholm perturbations. In general, we have

K.X/ � S.X/ � FbC.X/ � Fb.X/ � J .X/; and (2.1.11)

K.X/ � CS.X/ � Fb�.X/ � Fb.X/ � J .X/;

where Fb�.X/ WD Fb�.X;X/, and where J .X/ denotes the set

J .X/ D ˚
F 2 L.X/; such that 1 2 ˆ0F



:

Remark 2.1.5. J .X/ is not an ideal of L.X/ (since I 62 J .X/). }
If X is isomorphic to an Lp-space with 1 � p � 1 or to C.†/ where † is a
compact Hausdorff space, then

K.X/ � S.X/ D FbC.X/ D Fb�.X/ D CS.X/ D Fb.X/: (2.1.12)

Definition 2.1.14. A subspace N � X is said to be complemented, if there exists a
closed subspace M � X , such that N ˚M D X . }

A Banach space X is said to be an h-space if each closed infinite-dimensional
subspace of X contains a complemented subspace isomorphic to X . Any Banach
space isomorphic to an h-space, c, c0 and lp (1 � p < 1) are h-spaces. In [343,
Theorem 6.2], R. J. Whitley proved that, ifX is an h-space, then S.X/ is the greatest
proper ideal of L.X/. This implies that

K.X/ � FbC.X/ D S.X/ D Fb.X/;

K.X/ � Fb�.X/ � S.X/ D Fb.X/:
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We say that X is weakly compactly generating (w.c.g.), if the linear span of
some weakly compact subsets is dense in X . For more details and results, see [94].
In particular, all separable and all reflexive Banach spaces are w.c.g., as well as
L1.�; d�/, if .�;�/ is � -finite. In [338], it was proved that, ifX is a w.c.g. Banach
space, then FC.X/ D S.X/ and F�.X/ D CS.X/.
Remark 2.1.6. Let .�;†;�/ be a positive measure space. Since the spaces
Lp.�; d�/ with 1 � p < 1 are w.c.g., then we can deduce, from what precedes,
that

K.Lp.�; d�// � FC.Lp.�; d�//
\

F�.Lp.�; d�//: }

We say that X is subprojective if, for every given closed infinite-dimensional
subspaceM ofX , there exist a closed and finite-dimensional subspaceN contained
in M , and a continuous projection from X onto N . Clearly, any Hilbert space is
subprojective. The spaces c0, lp , (with 1 � p < 1), and Lp (with 2 � p < 1)
are also subprojective [343]. We say that X is superprojective, if every subspace V
having infinite-codimension inX is contained in a closed subspaceW , which has an
infinite-codimension in X , and such that there exists a bounded projection from X

intoW . The spaces lp (1 < p < 1) and Lp (1 < p � 2) are superprojective [343].
Let X be a w.c.g. Banach space. It was proved in [306] that, if X is superprojective
(resp. subprojective), then S.X/ � CS.X/ (resp. CS.X/ � S.X/). Accordingly,
we have the following result:

Proposition 2.1.4. Let X be a w.c.g. Banach space. Then,

(i) If X is superprojective, then S.X/ � FC.X/
T

F�.X/.
(ii) If X is subprojective, then CS.X/ � FC.X/

T
F�.X/. }

2.1.10 Dunford–Pettis Property

Definition 2.1.15. Let X be a Banach space. The space X is said to have the
Dunford–Pettis property (in short DP property) if, for each Banach space Y , every
weakly compact operator T W X �! Y takes weakly compact sets in X into norm
compact sets of Y . }

The Dunford–Pettis property, as defined above, was explicitly defined by
Grothendieck [143] who undertook an extensive study about it and also about some
related properties. It is well known that any L1-space has the DP property [100].
Moreover, if� is a compact Hausdorff space, then C.�/ has the DP property [143].
For further examples, we may refer to [95] or [101, p. 494, 479, 508, and 511]. Let
us notice that the DP property is not conserved under conjugation. However, if X is
a Banach space whose dual has the DP property, then X has also the DP property
(see, e.g., [143]). For more information, we may refer to Diestel’s paper [95] which
contains a real survey of the Dunford-Pettis property, as well as some related topics.
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Remark 2.1.7. It was proved in [214, Proposition 3.1] that, if X is a Banach space
with the DP property, then W.X/ � F�.X/

T
FC.X/. }

Lemma 2.1.13.

(i) If X has the DP property, then W.X/W.X/ � K.X/.
(ii) Let .�;†;�/ be a positive measure space and let p > 1. If X is isomorphic to

one of the spaces Lp.�;†; d�/, then S.X/S.X/ � K.X/. }
Proof. (i) Let T1 and T2 2 W.X/. If U is a bounded subset of X , then T1.U /

is relatively weakly compact. Accordingly, since X has the DP property, then
T2.T1.U // is a relatively compact subset of X . That is, T2T1 2 K.X/.

(ii) The proof is given in [252, Theorem 1.b]. Q.E.D.

2.2 Basic Notions

In this section, we give a brief listing of the functional analysis properties in a
normed vector space. For the proofs of the statements given below, and for further
information, the reader may refer to Schechter [302] and Muller [264].

Proposition 2.2.1 ([116, Proposition 3.2, p. 374]). Let X , Y , and Z be three
Banach spaces, and let A W X �! Y be a closed operator, with a closed range
and a dimN.A/ < 1 and let also C W Z �! X be a closed operator. Then, AC is
a closed operator. }
Theorem 2.2.1 ([302, Theorem 3.12]). Let X and Y be two Banach spaces, and
let A be a one-to-one closed linear operator from X into Y . Then, a necessary and
sufficient condition for R.A/ to be closed in Y is that, kxk � CkAxk, x 2 X

holds. }
Theorem 2.2.2 ([301, Theorem 2.12, p. 9]). Let X and Y be two Banach spaces.
If A is a closed linear operator from X into Y , and if B is A-compact, then

(i) kBxk � c.kAxk C kxk/; x 2 D.A/,
(ii) kAxk � c.k.AC B/xk C kxk/; x 2 D.A/,

(iii) AC B is a closed operator, and
(iv) B is .AC B/-compact. }
Theorem 2.2.3 ([324, Theorem 2.2.14]). Suppose that D.A/ � D.C /, �.A/ ¤ ;,
and that, for some (and hence, for all) � 2 �.A/, the operator .A � �/�1B is
bounded on D.B/. Then,

A WD
�
A B

C D

�

(2.2.1)

is closable (closed, respectively) if, and only if, D � � � C.A � �/�1B is closable
(closed, respectively) for some (and hence, for all) � 2 �.A/. }
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Theorem 2.2.4 ([324, Theorem 2.2.23]). Suppose that D.C / � D.A/, C is
boundedly invertible, and that C�1D is bounded on D.D/. Then, A, given
in (2.2.1), is closable (closed, respectively) if, and only if, B � .A��/C�1.D��/
is closable (closed, respectively) for some (and hence, for all) � 2 C. }
Theorem 2.2.5 ([152, Theorem 4.17.4]). Let �.�/ be a character of the real line
and set F� WD f�.�/ such that 0 � � � �g and F D T

� F � . There are two
alternatives: either F D f1g, in which cases �.�/ is a continuous character and
�.�/ D eiˇ� , or else F contains the unit circle and �.�/ is non-measurable. }

Let A be a closed linear from X into Y . Then N.A/ is a closed subspace of X
and hence the quotient space QX WD X=N.A/ is a Banach space with respect to the
norm

k Qxk D dist.x;N.A// WD inf fkx � yk such that y 2 N.A/g :

Since N.A/ � D.A/, the quotient space D. QA/ WD D.A/=N.A/ is contained in QX .
Defining QAx D Ax for every Qx 2 D. QA/, it follows that QA is a well-defined closed
linear operator with D. QA/ � QX and R. QA/ D R.A/. Since QA is one-to-one, the
inverse QA�1 exists on R.A/. The reduced minimal modulus of A is defined by

Q�.A/ WD
8
<

:

inf
x…N.A/

kAxk
dist.x;N.A//

if A ¤ 0;

1 if A D 0:

(2.2.2)

The reduced minimum modulus measures the closedness of the range of operators,
in the following sense.

Lemma 2.2.1 ([186, Theorem IV.5.2]). Let A be a closed linear operator with a
domain D.A/ � X . Then, R.A/ is closed if, and only if, Q�.A/ D k QA�1k�1 > 0. }

The function Q�.:/ is not continuous. In fact, let An D
�
1 0

0 1
n

�

and let A D
�
1 0

0 0

�

. Then, An ! A, Q�.An/ D 1
n

, and Q�.A/ D 1.

2.2.1 Basics on Bounded Fredholm Operators

Theorem 2.2.6 ([302, Theorem 5.4, p. 103]). Let X and Y be two Banach spaces,
and let A 2 ˆb.X; Y /. Then, there is a closed subspace X0 of X , such that X D
X0 ˚N.A/ and a subspace Y0 of Y of dimension ˇ.A/ such that Y D R.A/˚ Y0.
Moreover, there is an operator A0 2 L.Y;X/, such that N.A0/ D Y0, R.A0/ D X0,
A0A D I on X0, and AA0 D I on R.A/. In addition, A0A D I � F1 on X , and
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AA0 D I � F2 on Y , where F1 2 L.X/ with R.F1/ D N.A/ and F2 2 L.Y / with
R.F2/ D Y0. }
Theorem 2.2.7 ([299]). Let A 2 L.X; Y / and B 2 L.Y;Z/, where X , Y , and
Z are Banach spaces. If A and B are Fredholm operators, upper semi-Fredholm
operators, lower semi-Fredholm operators, then BA is a Fredholm operator, an
upper semi-Fredholm operator, a lower semi-Fredholm operator, respectively, and
i.BA/ D i.B/C i.A/. }
Theorem 2.2.8 ([264, Theorem 14, p. 160]). Let X and Y be two Banach spaces.
Let A 2 L.X; Y /. The following conditions are equivalent:

(i) A 2 ˆbC.X; Y / and R.A/ is complemented.
(ii) There exist S 2 L.Y;X/ and F 2 F0.X/ such that SA D ICF , where F0.X/

stands for the ideal of finite rank operators.
(iii) There exist S 2 L.Y;X/ and K 2 K.X/ such that SA D I CK. }
Theorem 2.2.9 ([264, Theorem 15, p. 160]). Let X and Y be two Banach spaces.
Let A 2 L.X; Y /. The following conditions are equivalent:

(i) A 2 ˆb�.X; Y / and N.A/ is complemented.
(ii) There exist S 2 L.Y;X/ and F 2 F0.Y / such that AS D I C F .

(iii) There exist S 2 L.Y;X/ and K 2 K.Y / such that AS D I CK. }
Theorem 2.2.10 ([302, Theorem 5.13, p. 110]). Let X , Y , and Z be three Banach
spaces. Assume that A 2 L.X; Y / and B 2 L.Y;Z/ are such that BA 2 ˆb.X;Z/.
Then, A 2 ˆb.X; Y / if, and only if, B 2 ˆb.Y;Z/. }
Theorem 2.2.11 ([302, Theorem 5.14, p. 111]). Let X , Y , and Z be three Banach
spaces. Assume that A 2 L.X; Y / and B 2 L.Y;Z/ are such that BA 2 ˆb.X;Z/.
If ˛.B/ < 1, then A 2 ˆb.X; Y / and B 2 ˆb.Y;Z/. }
Theorem 2.2.12 ([302, Theorem 5.16, p. 114]). Let X , Y , and Z be three Banach
spaces. Assume that A 2 L.X; Y / and B 2 L.Y;Z/ are such that BA 2 ˆb.X;Z/.
If ˇ.A/ < 1, then A 2 ˆb.X; Y / and B 2 ˆb.Y;Z/. }
Theorem 2.2.13 ([264, Theorem 5, p. 156]). Let X , Y , and Z be three Banach
spaces, A 2 L.X; Y / and B 2 L.Y;Z/. Then,

(i) if A 2 ˆb�.X; Y / and B 2 ˆb�.Y;Z/, then BA 2 ˆb�.X;Z/.
(ii) if A 2 ˆbC.X; Y / and B 2 ˆbC.Y;Z/, then BA 2 ˆbC.X;Z/.

(iii) if A 2 ˆb.X; Y / and B 2 ˆb.Y;Z/, then BA 2 ˆb.X;Z/. }
Theorem 2.2.14 ([264, Theorem 6, p. 157]). Let X , Y , and Z be three Banach
spaces, A 2 L.X; Y / and B 2 L.Y;Z/.

(i) If BA 2 ˆbC.X;Z/, then A 2 ˆbC.X; Y /.
(ii) If BA 2 ˆb�.X;Z/, then B 2 ˆb�.Y;Z/.

(iii) If BA 2 ˆb.X;Z/, then B 2 ˆb�.Y;Z/ and A 2 ˆbC.X; Y /. }
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Lemma 2.2.2 ([230, Lemma 4.3]). Let X and Y be Banach spaces. An operator
A 2 L.X; Y / is inˆbC.X; Y / if, and only if, ˛.A�K/ < 1 for allK 2 K.X; Y /. }
Theorem 2.2.15 ([302, Theorem 5.11, p. 109]). Assume that A 2 ˆb.X; Y /.
Then, there is an � > 0 such that, for any B 2 L.X; Y / satisfying kBk < �,
one has AC B 2 ˆb.X; Y /, i.AC B/ D i.A/, and ˛.AC B/ � ˛.A/. }
Theorem 2.2.16 ([302, Theorem 5.5, p. 105]). Let A 2 L.X; Y /. Suppose that
there exist A1, A2 2 L.Y;X/, F1 2 K.X/, and F2 2 K.Y / such that A1A D I �F1
on X and AA2 D I � F2 on Y . Then A 2 ˆb.X; Y /. }
Lemma 2.2.3 ([230, Lemma 4.5]). Let X and Y be Banach spaces. If A 2
ˆbC.X; Y / (resp. ˆb�.X; Y /, ˆb.X; Y /), then there exist an � > 0 such that B 2
ˆbC.X; Y / (resp. ˆb�.X; Y /, ˆb.X; Y /) with i.B/ D i.A/, for all B 2 L.X; Y /
satisfying kB � Ak < �. }
Theorem 2.2.17 ([264, Theorem 7]). LetX be a Banach space, and letA 2 L.X/.
Then, A can be expressed as A D S CK, where S; K 2 L.X/, K is compact and
S is invertible if, and only if, A is Fredholm with i.A/ D 0. }
Theorem 2.2.18 ([264, Theorem 4, p. 170]). If A 2 L.X; Y / is semi-Fredholm
and S 2 L.X; Y / satisfies kSk < Q�.A/, where Q�.A/ is the reduced minimum
modulus of A given in (2.2.2). Then A C S is semi-Fredholm, i.A C S/ D i.A/,
˛.AC S/ � ˛.A/ and ˇ.AC S/ � ˇ.A/.

Lemma 2.2.4 ([302, Lemma 5.19]). LetA1; : : : ; An be n operators in L.X/ which
commute, and suppose that their product A D A1 : : : An is in ˆb.X/. Then, each
Ak is in ˆb.X/. }
Lemma 2.2.5. Assume that A 2 L.X/ and that there exist operators B0, B1 2
L.X/ such that B0A and AB1 are in ˆb.X/. Then, A 2 ˆb.X/. }
Proof. By referring to Theorem 2.2.6, there are operators A0, A1 2 L.X/ such that
A0B0A� I and AB1A1 � I are in K.X/. This implies that A 2 ˆb.X/ by using the
Theorem 2.2.16. Q.E.D.

Theorem 2.2.19 ([264]). Let A 2 L.X/ and B 2 L.X/. If AB 2 ˆb.X/ and
BA 2 ˆb.X/, then A 2 ˆb.X/ and B 2 ˆb.X/. }
Lemma 2.2.6 ([217, Lemma 2.2]). Let F 2 L.X/. Then, the following statements
hold.

(i) F 2 FbC.X/ if, and only if, ˛.A � F / < 1 for each A 2 ˆbC.X/.
(ii) F 2 Fb�.X/ if, and only if, ˇ.A � F / < 1 for each A 2 ˆb�.X/.

(iii) F 2 Fb.X/ if, and only if, ˛.A � F / < 1 or ˇ.A � F / < 1 for each
A 2 ˆb.X/. }
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We will make use of a simple lemma due to Yood [353].

Lemma 2.2.7 ([353, Corollary 6.2]). If A 2 L.X/ has a zero index, then ˛.An/ D
˛.AnC1/ if, and only if, ˇ.An/ D ˇ.AnC1/. }

IfA 2 L.X/, we define the ascent ofA, asc.A/, and the descent ofA, desc.A/, by

asc.A/ WD min
˚
n 2 N such that N.An/ D N.AnC1/



;

and

desc.A/ WD min
˚
n 2 N such that R.An/ D R.AnC1/



:

First, we will recall the following result due to Taylor [319].

Proposition 2.2.2 ([319, Theorem 3.6]). Let A 2 L.X/. If asc.A/ and desc.A/
are finite, then asc.A/ D desc.A/. }
Lemma 2.2.8 ([136]). Suppose that A and B are commuting bounded linear
operators on the Banach space X . If A � B is compact and A is onto, then B
has finite descent. }
Lemma 2.2.9. Let A be a bounded linear operator on a Banach space X . If A 2
ˆb.X/, with asc.A/ and desc.A/ being finite, then i.A/ D 0. }
Proof. Since asc(A) and desc(A) are finite, and by applying Proposition 2.2.2, there
exists an integer k such that asc.A/ D desc.A/ D k. Hence, N.Ak/ D N.AkCn/
and R.Ak/ D R.AkCn/, for all n 2 N. Therefore, i.Ak/ D i.AkCn/. However,
A 2 ˆb.X/. Then, Theorem 2.2.7 implies that i.Ak/ D ki.A/ D i.AkCn/ D
.k C n/i.A/, for all n 2 N. Hence, i.A/ D 0. Q.E.D.

Lemma 2.2.10. Let A 2 L.X/. If ˛.A/ < 1, then A has finite ascent if, and only
if, N1.A/

T
R1.A/ D f0g. }

Proof. Suppose that A has ascent k and let x 2 N1.A/
T
R1.A/. Then, we have

x 2 N.Ak/
T
R1.A/, so there is y 2 X such that Akx D 0 and x D Aky. Then

A2ky D 0, hence Aky D x D 0. Thus N1.A/
T
R1.A/ � N.Ak/

T
Ak.X/ D

f0g. Conversely, suppose that N1.A/
T
R1.A/ D f0g. An.X/ is decreasing

and N.A/ is finite dimensional, therefore the decreasing sequence N.A/
T
An.X/

terminates. Thus, there is an integer k such thatN.A/
T
Ak.X/ D N.A/

T
R.A/ �

N1.A/
T
R1.A/ � N.Ak/

T
Ak.X/ D f0g. Now, if AkC1x D 0, then Akx 2

N.A/
T
Ak.X/ D f0g, so Akx D 0. Thus N.Ak/ D N.AkC1/ and A has finite

ascent. Q.E.D.

Theorem 2.2.20 ([128, Theorem 3]). Let X be a Banach space and let A be a
closed linear operator acting in X . Let B 2 L.X/ such that D.A/ � D.AB/ and
BAx D ABx for all x 2 D.A/. Then, the space N1.A C B/

T
R1.A C B/ is

constant, i.e., N1.AC B/
T
R1.AC B/ D N1.A/

T
R1.A/. }
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Two important classes of operators in Fredholm theory are given by the classes
of semi-Fredholm operators which possess finite ascent or finite descent. We will
distinguish two classes of operators: the class of all upper semi-Browder operators
on a Banach space X which is defined by BbC.X/ D ˚

A 2 ˆbC.X/ such that asc
.A/ < 1


and the class of all lower semi-Browder operators which is defined
by Bb�.X/ D ˚

A 2 ˆb�.X/ such that desc.A/ < 1

. The class of all Browder

operators (also known, in the literature, as Riesz–Schauder operators) is defined by
Bb.X/ D BbC.X/

T
Bb�.X/.

Theorem 2.2.21 ([287, Theorem 1]). Suppose that A, K 2 L.X/ and AK D KA.
Then

(i) If A 2 ˆbC.X/, asc.A/ < 1 and K 2 FbC.X/, then asc.ACK/ < 1.
(ii) If A 2 ˆb�.X/, desc.A/ < 1 and K 2 Fb�.X/, then desc.ACK/ < 1. }
Theorem 2.2.22. Let A 2 L.X/ such that 0 2 �.A/. Then, for all � ¤ �, we have
A � .� � �/ 2 Bb.X/ if, and only if, 1

��� � A�1 2 Bb.X/. }
Proof. We note that

A � .� � �/ D .� � �/
�
A�1 � 1

� � �
	
A: (2.2.3)

Now, let us suppose that 1
��� �A�1 2 Bb.X/. Since 0 2 �.A/ we have A 2 Bb.X/.

Now, by applying Eq. (2.2.3), we infer that A � .� � �/ 2 Bb.X/. Conversely,
assume that A � .� � �/ 2 Bb.X/. Then, the product on the right-hand side of
Eq. (2.2.3) is in Bb.X/. Besides, 0 2 �.A/ implies that A 2 Bb.X/. Then, .A�1 �
1

���/ 2 Bb.X/. Q.E.D.

Corollary 2.2.1. Let A 2 L.X/ such that 0 2 �.A/. Then, for all � ¤ 0, we have
A � � 2 Bb.X/ if, and only if, 1

�
� A�1 2 Bb.X/. }

Proof. It is an obvious consequence of Theorem 2.2.22. Q.E.D.

Definition 2.2.1. LetA 2 L.X/. We say thatA is Kato’s operator, ifR.A/ is closed
and N.A/ � R1.A/. }
Theorem 2.2.23 ([264, Theorem 10, p. 180]). Let X be a Banach space. Let A 2
L.X/ be upper semi-Browder (lower semi-Browder, Browder) if, and only if, there
exists a decomposition X D X1 ˚ X2 such that dimX1 < 1, A.Xi/ � Xi (i D
1; 2) AjX1 is nilpotent and AjX2 is bounded below (onto, invertible, respectively). }
Theorem 2.2.24 ([264, Theorem 19, p. 185]). Let X be a Banach space. Let A 2
L.X/ be upper semi-Browder (lower semi-Browder, Browder, respectively), and let
B 2 L.X/ with BA D AB and

maxfjzjW z … fz2ˆB such that i.z�B/D0 and all scalars near z are in �.B/gg D 0:

Then,ACB is upper semi-Browder (lower semi-Browder, Browder, respectively). }
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Definition 2.2.2. An operator A in L.X/ is called quasi-nilpotent if lim
n!1 kAnk 1

n D
0, this is equivalent to the condition that �.A/ D f0g. }
Definition 2.2.3. An operator A 2 L.X/ is called a Riesz operator, if it satisfies the
following conditions

(i) for all � 2 C
�; .� � A/ is a Fredholm operator on X ,

(ii) for all � 2 C
�; .� � A/ has a finite ascent and a finite descent, and

(iii) all � 2 �.A/nf0g are eigenvalues of a finite multiplicity, and have no
accumulation points, except possibly zero. }

Let R.X/ denote the class of all Riesz operators. It is worth noticing that there
are many characterizations of Riesz operators. Ruston has characterized R.X/ as
being the class of asymptotically quasi-compact operators, i.e., those A 2 L.X/,
for which

lim
n!1

�

inf
K2K.X/ kA

n �Kk
� 1
n

D 0; (2.2.4)

(cf. [67, 68], and [340]). We recall that the Riesz operators satisfy the Riesz–
Schauder theory of compact operators and that R.X/ is not an ideal of L.X/ [68].
Moreover, by using (2.2.4), we get the following result established independently
by Caradus [67] and West [340].

Proposition 2.2.3. Let X be a Banach space, and let A and S be two commuting
operators of L.X/. We have

(i) If A 2 R.X/, then AS 2 R.X/.
(ii) If A and S are in R.X/, then AC S 2 R.X/. }
Theorem 2.2.25 ([288, Corollary 2]). Suppose that A 2 L.X/, that B is a Riesz
operator and that AB D BA. Then,

(i) If A 2 BbC.X/, then AC B 2 BbC.X/.
(ii) If A 2 Bb�.X/, then AC B 2 Bb�.X/. }

2.2.2 Gap Topology

The gap between two linear subspacesM and N of a normed space X is defined by
the following formula

ı.M;N / D sup
x2M; kxkD1

dist.x;N /; (2.2.5)

in the case where M ¤ f0g. Otherwise we define ı.f0g; N / D 0 for any subspace
N . Moreover, ı.M; f0g/ D 1 ifM ¤ f0g, as shown from the definition (see (2.2.5)).
We can also define Oı.M;N / D max fı.M;N /; ı.N;M/g. Sometimes, the latter is
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called the symmetric or maximal gap between M and N in order to distinguish it
from the former. The gap ı.M;N / can be characterized as the smallest number ı
such that dist.x;N / � ıkxk, for all x 2 M . For the properties of ı.�; �/ and Oı.�; �/
we may refer to [186, p. 197, 200, 201].

Remark 2.2.1.

(i) The gap measures the distance between two subspaces, and it is easy to see the
following:

(a) ı.M;N / D ı.M;N / and Oı.M;N / D Oı.M;N /,
(b) ı.M;N / D 0 if, and only if, M � N ,
(c) Oı.M;N / D 0 if, and only if, M D N .

(ii) Let us notice that Oı is a metric on the set U.X/ of all linear, closed subspaces
of X and the convergence Mn ! N in U.X/ is obviously defined by
Oı.Mn;N / ! 0. Moreover, .U.X/; Oı/ is a complete metric space.

(iii) The gap between two closed subspaces M and N is introduced by Krein and
Krasnoselskii in [195]. }

Definition 2.2.4. Let X and Y be two Banach spaces and let T , S be two closed
linear operators acting from X into Y . Let us define ı.T; S/ D ı.G.T /;G.S// and
Oı.T; S/ D bı.G.T /;G.S//, where G.T / (resp. G.S// is the graph of T (resp. S ).
Oı.T; S/ is called the gap between S and T . }

Remark 2.2.2. (i) ı.G.T /;G.S// D sup

�

inf
y2D.S/

�
kx � yk2 C kTx � Syk2

	 1
2

�

.

x 2 D.T /
kxk2 C kTxk2 D 1

(ii) The function Oı.�; �/ defines a metric on C.X; Y / which called the gap metric,
and the topology induced by this metric is called the Gap topology or Kato
topology. }

Theorem 2.2.26 ([186]). Let T and S be two closed densely defined linear opera-
tors acting from X into Y. Then, we have

(i) ı.T; S/ D ı.S�; T �/ and Oı.T; S/ D Oı.S�; T �/.
(ii) If T and S are invertible, then ı.S�1; T �1/ D ı.S; T / and Oı.S�1; T �1/ D

Oı.S; T /.
(iii) Let A 2 L.X; Y /. Then,bı.S C A; T C A/ � 2.1C kAk2/bı.S; T /.
(iv) Let T be Fredholm (resp. semi-Fredholm). If Oı.S; T / < Q�.T /.1C Œ Q�.T /�2/� 1

2 ,
then S is Fredholm (resp. semi-Fredholm), ˛.S/ � ˛.T /, and ˇ.S/ � ˇ.T /.
Furthermore, there exists b > 0 such that Oı.S; T / < b implies i.S/ D i.T /.

(v) Let T 2 L.X; Y /. If S 2 C.X; Y / and Oı.S; T / < .1 C kT k2/� 1
2 , then S is

bounded (so that D.S/ is closed). }
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Remark 2.2.3. LetX be a Hilbert space, and let S , T be two essentially self-adjoint
.in particular, self-adjoint/ linear operators in X . Then, Oı.T; S/ D ı.S; T / D
ı.T; S/. }
Theorem 2.2.27 ([85, Theorem 2.3]). If T 2 L.X; Y /, then we have ı.T; 0/ D
ı.0; T / Dbı.T; 0/ D kT kp

1CkT k2 . }
Definition 2.2.5. Let S and T be two closable operators. We define the gap between
T and S by ı.T; S/ D ı.T ; S/. We can also define the symmetric gap between S
and T by Oı.T; S/ D Oı.T ; S/ D maxfı.G.T /;G.S//; ı.G.S/;G.T /�g: }

2.2.3 Semi-Regular and Essentially Semi-Regular Operators

Definition 2.2.6. Let A 2 L.X/.
(i) A is said to be semi-regular, if R.A/ is closed and N.A/ � R.An/, for all

n 2 N.
(ii) A is said to be essentially semi-regular ifR.A/ is closed and there exists a finite

dimensional subspace F , such that N.A/ � R.An/C F , for all n 2 N. }
Now, let V0.X/ WD fA 2 L.X/ such that A is semi-regularg and let

V.X/ WD fA 2 L.X/ such that A is essentially semi-regularg. It is well known that
ˆbC.X/

S
ˆb�.X/ � V.X/, and that V0.X/ and V.X/ are neither semigroups nor

open or closed subsets of L.X/. From Shomoeger paper [303], we get int.V.X// D
ˆbC.X/

S
ˆb�.X/ and int.V0.X// WD ˚

A 2 ˆ˙.X/
T

L.X/ such that ˛.A/ D
0 or ˇ.A/ D 0



. Trivial examples of semi-regular operators are surjective operators

as well as injective ones with a closed range, Fredholm and semi-Fredholm
operators with a jump equal to zero. Some other examples of semi-regular operators
may be found in Mbekhta and Ouahab [246] and Labrousse [205].

Definition 2.2.7. An operator A 2 L.X/ is called a essentially semi-regular
perturbation, if K CA is essentially semi-regular for every essentially semi-regular
operator K commuting with A. }

We denote Fe.X/ by Fe.X/ D fA 2 L.X/; A C K 2 V.X/ for all K 2
V.X/; AK D KAg. Examples of essentially semi-regular perturbation operators
are the compact operators, operators with a finite rank, Riesz operators, quasi-
nilpotent operators, nilpotent operators, and a sufficiently small perturbation of all
semi-regular operators. A semi-regular operator A has a closed range.

Definition 2.2.8. Let X , Y be Banach spaces and let A 2 L.X; Y /. We define the
injectivity modulus of A (sometimes also called the minimum modulus) by

j.A/ D inffkAxk such that x 2 X; kxk D 1g:

}
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If A 2 L.X/ is one-to-one, then clearly Q�.A/ D j.A/.

Lemma 2.2.11. Let A 2 L.X; Y /. Then Q�.A/ D j.A0/, where A0 W X=N.A/ �!
R.A/, Qx WD x CN.A/ �! A0 Qx D Ax. }
Proof. We have j.A0/ D inffkA0.x C N.A//k such that kx C N.A/kX=N.A/ D
1g D inffkAxk such that dist.x;N.A// D 1g D Q�.A/. Q.E.D.

The notion of the reduced minimum modulus is motivated by the following
characterization:

Theorem 2.2.28. Let A 2 L.X; Y /. Then R.A/ is closed if, and only if, Q�.A/ > 0.
}
Proof. The statement is clear if A D 0. If A ¤ 0, then R.A/ D R.A0/, and
A0.x CN.A// D Ax and R.A0/ is closed if, and only if, j.A0/ > 0. Q.E.D.

Theorem 2.2.29. Let A 2 L.X; Y /. Then Q�.A/ D Q�.A�/. }
Proof. By Theorem 2.2.28, Q�.A/ D 0 if, and only if, Q�.A�/ D 0. Let Q�.A/ > 0, so
R.A/ is closed. We have A D JA0Q, where Q W X �! X=N.A/ is the canonical
projection, A0 W X=N.A/ �! R.A/ is one-to-one and onto and J W R.A/ �!
Y is the natural embedding. The corresponding decomposition for A� is A� D
Q�A�

0 J
�. We have Q�.A/ D j.A0/ D kA�1

0 k�1 D kA��1
0 k�1 D j.A�

0 / D Q�.A�/.
Q.E.D.

The following theorem gives several equivalent definitions of the semi-regular
operators.

Theorem 2.2.30 ([246, Theorem 4.1]). Let A 2 L.X; Y / and �0 2 C. The
following statements are equivalent:

(i) �0 � A is semi-regular.
(ii) Q�.�0 � A/ > 0 and the mapping � �! Q�.� � A/ is continuous at �0.

(iii) Q�.�0 � A/ > 0 and the mapping � �! N.� � A/ is continuous at �0 in the
gap topology.

(iv) R.��A/ is closed in a neighborhood of �0 and the mapping � �! R.��A/
is continuous at �0 in the gap topology. }

Let .M;N / be a pair of closed subspaces of X . A is said to be decomposed
according toX D M˚N , ifA.M/ � M , andA.N/ � N . WhenA is decomposed
as above, the pair AM , AN of A in M , N , respectively, can be defined: AM is an
operator in the Banach space M with D.AM / D M such that AMx D Ax 2 M ,
and AN is similarly defined. In this case, we write A D AM ˚ AN .

Definition 2.2.9. (i) An operator A 2 L.X; Y / is said to be of Kato type of order
d 2 N if, there exist a pair of closed subspaces .M;N / of X such that A D
AM ˚ AN , where AM is semi-regular and AN is nilpotent of order d (i.e.,
.AN /

d D 0).
(ii) An operator A is said to be of Kato type if, there exists d 2 N such that A is a

Kato type of order d . }
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Clearly, every semi-regular operator is of Kato type with M D X and N D f0g
and a nilpotent operator has a decomposition with M D f0g and N D X . Every
essentially semi-regular operator admits a decomposition .M;N / such that N is a
finite-dimensional vector space.

Definition 2.2.10. Let X and Y be two Banach spaces and let A 2 L.X; Y /.
(i) An operator B 2 L.Y;X/ is called g1-inverse of A, if Au D ABAu for all

u 2 X .
(ii) An operator B 2 L.Y;X/ is called g2-inverse .or generalized inverse/ of A, if

Au D ABAu for all u 2 X , and Bv D BABv for all v 2 Y . }
We denote G1.A/ and G2.A/ by

G1.A/ WD ˚
B 2 L.Y;X/ such that B is g1-inverse of A



;

G2.A/ WD ˚
B 2 L.Y;X/ such that B is g2-inverse of A



:

Remark 2.2.4.

(i) The relation .g2-inverse/ is symmetric.
(ii) If A is a one-sided inverse of B , then B is a generalized inverse of A.

(iii) G2.A/ � G1.A/. }
Lemma 2.2.12 ([206, Lemma 1.3]). LetA 2 L.X; Y / and letB 2 G1.A/. Then,

(i) AB is a projection of Y onto R.A/, and N.AB/ D N.B/.
(ii) BA is a projection of X onto R.B/, and N.BA/ D N.A/. }
Remark 2.2.5. Let A 2 L.X; Y / and let B 2 G2.A/. Then, D.B/ D N.B/˚R.A/

and D.A/ D N.A/˚R.B/. }
Corollary 2.2.2 ([206, Corollary 1.7]). Let A 2 L.X; Y / and B 2 G1.A/. Then
X D N.B/˚R.A/. }
Lemma 2.2.13 ([246, Lemma 2.4]). Let A 2 L.X; Y /. If A is semi-regular, then
R1.A/ is closed and A.R1.A// D R1.A/. }
Lemma 2.2.14. Let A 2 L.X/. If A is semi-regular, then An is semi-regular for
every n 2 N. }
Proof. Since A is regular, then Q�.An/ � Q�.A/n > 0. So, B D An has a closed
range. Furthermore, N.B/ � R1.A/ D R1.B/. We conclude that An is semi-
regular. Q.E.D.

Theorem 2.2.31 ([263]). Let A; S 2 L.X/, such that AS D SA. If AS is semi-
regular (resp. essentially semi-regular), then both A and S are semi-regular (resp.
essentially semi-regular). }

The product of two commuting semi-regular operators need not be semi-regular
in general (see [263]). The following two theorems give some cases where the
converse of Theorem 2.2.31 is true.
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Theorem 2.2.32 ([263]). Let A, S , C , D 2 L.X/ be mutually commuting
operators such that AC C SD D I . Then, AS is semi-regular if, and only if, both
A and S are semi-regular. }
Theorem 2.2.33 ([263]). Let A; S 2 L.X/ such that AS D SA and S is invertible.
If A is semi-regular, then AS is also semi-regular. }

Let us denote by X=V the quotient space induced by a closed subspace V of X .
Recall the following interesting characterization of the bounded semi-regular (resp.
the essentially semi-regular) operators.

Theorem 2.2.34 ([192]). A 2 L.X/ is a semi-regular (resp. essentially semi-
regular) operator if, and only if, there exists a closed subspace V of X , such that
A.V / D V and the operator OA W X=V �! X=V induced by A is bounded below
(resp. upper semi-Fredholm). }
Theorem 2.2.35. Let A 2 L.X/ and let us assume that A is of Kato type of order
d with a pair .M;N / of closed subspaces of X. Then

(i) R1.A/ D A.R1.A// D R1.AM /. Moreover, R1.A/ is closed.
(ii) For every non-negative integer n � d , we have N.A/

T
R.An/ D

N.A/
T
M D N.A/

T
R.Ad /.

(iii) For every non-negative integer n � d , we have R.A/CN.An/ D A.M/˚N

is closed. }
Proof.

(i) Since A D AM ˚ AN , it is clear that An D AnM ˚ AnN for every n 2 N and
hence as AN is nilpotent of degree d , we deduce that R.An/ D R.AnM / for
n � d and then R1.A/ D R1.AM /. Moreover, since AM is semi-regular, we
infer from Lemma 2.2.14 that AnM is also semi-regular, in particular R.AnM / is
closed for all n 2 N and hence, R1.AM / is closed.

(ii) Let n � d . Then, N.A/
T
R.An/ D N.A/

T
R.AnM / � N.A/

T
R.AM/ �

N.A/
T
M D N.AM/. Since AM is semi-regular, then we have N.AM/ �

N.A/
T
R.AnM / D N.A/

T
R.An/. Hence .ii/ holds.

(iii) Let n � d . Clearly, N ˚ N.AnM / D N.An/ so that N � N.An/ and hence,
R.AM/ ˚ N � R.A/ C N.An/. Conversely, N.An/ D N.A/ D N.AnM / ˚
N.AnN / D N.AnM / ˚ N � R.AM/ ˚ N; and, by using the semi-regularity
of AM , it follows that R.A/ D R.AM/ ˚ R.AN / � R.AM/ ˚ N . Hence,
R.A/CN.An/ � R.AM/˚N . Consequently, R.A/CN.An/ D A.M/˚N

if n � d . Now, let ‰ W .m; n/ 2 M �N �! ‰.m; n/ D mC n. Clearly, ‰ is
a topological isomorphism and ‰.R.AM/;N / D R.AM/˚N , where R.AM/
is closed in M and hence, .R.AM/;N / is closed. Q.E.D.

Proposition 2.2.4. Let A 2 L.X/, B 2 G2.A/, and T 2 L.X/ commuting with A
and B . If R.T / is closed, then R.TA/ is also closed. }
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Proof. Let .yn/n � R.TA/ such that yn ! y. There exists xn 2 X , with yn D TAxn.
Since A D ABA, TABAxn D AB.TAxn/ and since AB is a bounded operator, we
obtain ABy D y. By using Lemma 2.2.12, we infer that there exists x 2 D.A/ such
that y D Ax. Let zn D BAxn � BABTAxn. Then, Tzn D BABTAxn � TBABTAxn D
BAByn � TBAByn. Since AB is bounded, it follows from Lemma 2.2.12 that .Tzn/n
converges to By � TBy. The fact that R.T / is closed, there exists z 2 X such that
Tz D By � TBy, which implies that AT.z C BAx/ D y. Hence, y 2 R.TA/. Q.E.D.

Theorem 2.2.36. Let A 2 L.X/, and let B 2 G2.A/ where T is essentially semi-
regular commuting with A and B . If N.TA/ � N.T / and A is surjective, then TA is
essentially semi-regular. }
Proof. R.T / is closed. Then, by using Proposition 2.2.4, we deduce that R.TA/
is closed. T is essentially semi-regular, which implies that there exists a finite-
dimensional subspace F , such that N.TA/ � N.T / � T

n2NR.T n/ C F .
Since A is surjective, then

T
n2NR.T n/ � T

n2NR..TA/n/ and hence, N.TA/ �T
n2NR..TA/n/C F . Q.E.D.

Corollary 2.2.3. Let A 2 L.X/, and let B 2 G2.A/, where T is semi-regular
commuting with A and B . If N.TA/ � N.T / and A is surjective, then TA is semi-
regular. }
Corollary 2.2.4. LetA 2 L.X/, and let B 2 G2.A/, where T is semi-regular (resp.
essentially semi-regular) commuting with A and B . If 0 2 �.A/, then TA is semi-
regular (resp. essentially semi-regular). }

Sometimes it happens that the spectrum �.A/ of a closed operator A contains a
bounded part †0 separated from the rest †00 in such a way that a rectifiable, simple
closed curve 	 (or, more generally, a finite number of such curves) can be drawn so
as to enclose an open set containing †0 in its interior and †00 in its exterior. Under
such a circumstance, we have the following decomposition theorem given by Kato
in [186].

Theorem 2.2.37. Let �.A/ be separated into two parts †0 and †00 in the way
described above. Then we have a decomposition of A according to a decomposition
X D M 0 ˚M 00 of the space in such a way that the spectra of the parts AM 0 , AM 00

coincide with †0 and †00, respectively, and AM 0 2 L.M 0/. }

2.2.4 Basics on Unbounded Fredholm Operators

Theorem 2.2.38 ([302, Theorem 7.1, p. 157]). Let X and Y be Banach spaces,
andA 2 ˆ.X; Y /. Then, there is an operatorA0 2 L.Y;X/, such thatN.A0/ D Y0,
R.A0/ D X0

T
D.A/, A0A D I on X0

T
D.A/, and AA0 D I on R.A/. There are

operators F1 2 L.X/, F2 2 L.Y /, such thatA0A D I �F1 on D.A/, AA0 D I �F2
on Y , R.F1/ D N.A/, N.F1/ D X0, and R.F2/ D Y0, N.F2/ D R.A/. }
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Theorem 2.2.39 ([302, Corollary 7.6, p. 160]). Let X and Y be Banach spaces.
Assume that A 2 ˆ.X; Y /, and that W is continuously embedded in X in such a
way that D.A/ is dense in W . Then, A 2 ˆ.W; Y / with N.A/ and R.A/ being the
same. }
Theorem 2.2.40 ([302, Theorem 7.3, p. 157]). Let X and Y be Banach spaces. If
A 2 ˆ.X; Y / and B 2 ˆ.Y;Z/, then BA 2 ˆ.X;Z/ and i.BA/ D i.B/C i.A/. }
Theorem 2.2.41 ([302, Theorem 7.12, p. 162]). Let X , Y , and Z be Banach
spaces. If A 2 ˆ.X; Y / and B is a densely defined closed linear operator from
Y into Z such that BA 2 ˆ.X;Z/, then B 2 ˆ.Y;Z/. }
Theorem 2.2.42 ([302, Theorem 7.14, p. 164]). Let X , Y , and Z be Banach
spaces and letA be a densely defined closed linear operator fromX into Y . Suppose
that B 2 L.Y;Z/ with ˛.B/ < 1 and BA 2 ˆ.X;Z/. Then, A 2 ˆ.X; Y /. }
Theorem 2.2.43 ([302, Theorem 7.32, p. 175]). Let X , Y , and Z be Banach
spaces. If A 2 ˆC.X; Y /, B 2 ˆC.Y;Z/ and D.BA/ is dense in X , then
BA 2 ˆC.X;Z/. }
Theorem 2.2.44 ([302, Theorem 5.10]). Let A 2 C.X; Y /. If A 2 ˆ.X; Y / and
K 2 K.X; Y /, then ACK 2 ˆ.X; Y / and i.ACK/ D i.A/. }
Theorem 2.2.45 ([302, Theorem 7.9, p. 161]). Let X and Y be Banach spaces.
For A 2 ˆ.X; Y /, there is an � > 0 such that, for every T 2 L.X; Y / satisfying
kT k < �, one has AC T 2 ˆ.X; Y /, i.AC T / D i.A/ and ˛.AC T / � ˛.A/. }
Theorem 2.2.46 ([302, Theorem 7.35, p. 178]). Let X , Y , Z be Banach spaces,
and assume that A is a densely defined, closed linear operator from X into Y such
thatR.A/ is closed in Y and ˇ.A/ < 1. Let B be a densely defined linear operator
from Y into Z. Then .BA/� D A�B�. }
Lemma 2.2.15 ([302, Lemma 7.36, p. 178]). If A, B satisfy the hypotheses
of Theorem 2.2.46 and x is any element in D.A/, then there is a sequence
.xn/n � D.A/ such that Axn ! Ax in Y and xn ! x in X . Consequently, D.BA/
is dense in X . }
The following lemma is well known for bounded upper semi-Fredholm operators.
The proof is a straightforward adaptation of the proof of Theorem 3.9 in [353].

Lemma 2.2.16. Let A 2 ˆC.X/. Then, the following statements are equivalent

(i) i.A/ � 0.
(ii) A can be expressed in the form A D U CK, where K 2 K.X/ and U 2 C.X/

is an operator with a closed range and ˛.U / D 0. }
Lemma 2.2.17 ([301, Lemma 4.6, p. 16]). If 0 2 �.A/, then � ¤ 0 is in ˆA if,
and only if, 1

�
2 ˆA�1 and i.A � �/ D i.A�1 � ��1/. }
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Theorem 2.2.47 ([186, Theorem 5.26, p. 238]). Let X and Y be Banach spaces.
Suppose that A is a semi-Fredholm operator and B is an A-compact operator from
X into Y , then AC B is also semi-Fredholm with i.AC B/ D i.A/. }

A consequence of Theorem 2.2.47 is the following:

Theorem 2.2.48 ([302, Theorem 7.26, p. 172]). ˆACK D ˆA for all K which are
A-compact, and i.ACK � �/ D i.A � �/ for all � 2 ˆA. }
Theorem 2.2.49 ([185, Theorem 5.31, p. 241]). Let X and Y be Banach spaces.
Let A 2 C.X; Y / be semi-Fredholm and let S be an A-bounded operator from X

into Y . Then, �S C A is semi-Fredholm and ˛.�S C A/, ˇ.�S C A/ are constant
for a sufficiently small j�j > 0. }
Proposition 2.2.5. Let A 2 C.X; Y / and let S be a non-null bounded linear
operator from X into Y . Then, we have the following results:

(i) ˆA;S is open.
(ii) i.�S � A/ is constant on any component of ˆA;S .

(iii) ˛.�S �A/ and ˇ.�S �A/ are constant on any component of ˆA;S , except on
a discrete set of points on which they have larger values. }

Proof.

(i) Let �0 2 ˆA;S . Then, according to Theorem 2.2.45, there exists � > 0 such
that, for all � 2 C with j�j < �

kSk , the operator �0S � �S � A is a Fredholm
operator, i.�0S��S�A/ D i.�0S�A/ and ˛.�0S��S�A/ � ˛.�0S�A/.
Consider � 2 C such that j���0j < �

kSk . Then, �S�A is a Fredholm operator,
i.�S � A/ D i.�0S � A/ and ˛.�S � A/ � ˛.�0S � A/. In particular, this
implies that ˆA;S is open.

(ii) Let �1 and �2 be any two points in ˆA;S which are connected by a smooth
curve 	 whose points are all in ˆA;S . Since ˆA;S is an open set, then for each
� 2 	 , there exists an " > 0 such that, for all � 2 C, j� � �j < ", � 2 ˆA;S
and i.�S � A/ D i.�S � A/. By using the Heine–Borel theorem, there exists
a finite number of such sets which cover 	 . Since each of these sets overlaps
with, at least, another set and since i.�S �A/ is constant on each one, we see
that i.�1S � A/ D i.�2S � A/.

(iii) Let �1 and �2 be any two points in ˆA;S which are connected by a smooth
curve 	 whose points are all in ˆA;S . Since ˆA;S is an open set, then for each
� 2 	 , there is a sufficiently small " > 0 such that, for all � 2 C, j���j < ",
� 2 ˆA;S and by using Theorem 2.2.49, ˛.A C �S/ and ˇ.A C �S/ are
constant for all� 2 C, 0 < j���j < ". By referring to Heine–Borel’s theorem,
there is a finite number of such sets which cover 	 . Since each of these sets
overlaps with, at least, another set, we see that ˛.�S CA/ and ˇ.�S CA/ are
constant for all � 2 	 , except for a finite number of points of 	 . Q.E.D.

Proposition 2.2.6. The index map is locally constant and continuous in norm. }
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Proof. Let F be a Fredholm operator. By using Theorem 2.2.38, there exist an
operatorG and a compact operatorK such that FG D ICK. It suffices to show that,
if A is a Fredholm operator with kA � F k < 1

kGk , then i.F / D i.A/. Indeed, the
operator .A�F /GCI is invertible, since its distance from the identity is less than 1.
Thus, i.A/C i.G/ D i.AG/ D i..A � F C F /G/ D i..A � F /G C I CK/ D 0.
Hence, i.A/ D �i.G/ D i.F /. Q.E.D.

2.2.5 Quasi-Inverse Operator

Let A be a closed operator on a Banach space X , with the property that ˆA ¤ ;.
If f .�/ is a complex-valued analytic function of a complex variable, we denote by

.f / the domain of analyticity of f .

Definition 2.2.11. By R01.A/ we mean the family of all analytic functions f .�/
with the following properties:

(i) CnˆA � 
.f /,
(ii) 
.f / contains a neighborhood of 1 and f is analytic at 1. }
Definition 2.2.12. A bounded operator B is called a quasi-inverse of the closed
operator A if R.B/ � D.A/, AB D I C K1, and BA D I C K2, where K1,
K2 2 K.X/. }

If A is a closed operator such that ˆA is not empty, then by using Proposi-
tion 2.2.5 .i/,ˆA is open. Hence, it is the union of a disjoint collection of connected
open sets. Each of them, ˆi.A/, will be called a component of ˆA. In each ˆi.A/,
a fixed point �i is chosen in a prescribed manner. Since ˛.�i �A/ < 1, R.�i �A/
is closed and ˇ.�i � A/ < 1, then there exist a closed subspace Xi and a
subspace Yi , such that dimYi D ˇ.�i � A/ satisfying X D N.�i � A/ ˚ Xi
and X D Yi ˚ R.�i � A/. Now, let P1i be the projection of X onto N.�i � A/

along Xi and let P2i be the projection of X onto Yi along R.�i � A/. P1i and P2i
are bounded finite rank operators. It is shown in [300] that .�i � A/jD.A/TXi has a
bounded inverse Ai , where Ai W R.�i �A/ �! D.A/

T
Xi . Let Ti be the bounded

operator defined by

Tix WD Ai.I � P2i /x (2.2.6)

satisfying Ti .�i �A/ D I �P1i on D.A/ and .�i �A/Ti D I �P2i on X . Hence,
Ti is a quasi-inverse of .�i �A/. Moreover, when � 2 ˆi.A/ and �1

���i 2 �.Ti /, the
operator

R0
�.A/ WD Ti Œ.� � �i /Ti C I ��1 (2.2.7)
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is shown in [307] to be a quasi-inverse of .� � A/. In fact, R0
�.A/ is defined and

analytic for all � 2 ˆA except for, at most, an isolated set, ˆ0.A/, having no
accumulation point in ˆA.

Definition 2.2.13. A set D in the complex plane is called a Cauchy domain, if the
following conditions are satisfied:

(i) D is open,
(ii) D has a finite number of components, of which the closures of any two are

disjoint,
(iii) the boundary ofD is composed of a finite positive number of closed rectifiable

Jordan curves, of which any two are unable to intersect. }
Theorem 2.2.50 ([318, Theorem 3.3]). Let F and 
 be point sets in the plane.
Let F be closed, 
 be open and F � 
. Suppose that the boundary B.
/ of 
 is
nonempty and bounded. Then, there exists a Cauchy domain D, such that:

(i) F � D,
(ii) D � 
,

(iii) the curves forming B.D/ are polygons, and
(iv) D is unbounded if 
 is unbounded. }
Definition 2.2.14. Let f 2 R01.A/. The class of operators F.A/ will be defined
as follows: B 2 F.A/ if B D f .1/C 1

2i

R
CB.D/ f .�/R

0
�.A/d�, where f .1/ WD

lim
�!1 f .�/ and D is an unbounded Cauchy domain such that CnˆA � D, D �

.f /, and the boundary of D, B.D/, does not contain any points of ˆ0.A/. }
Theorem 2.2.51 ([307, Theorem 7]). Let B1, B2 2 F.A/. Then B1 � B2 D K,
K 2 K.X/. }
Definition 2.2.15. Let f 2 R01.A/. By f .A/ we mean an arbitrary operator in the
set F.A/. }
Theorem 2.2.52 ([307, Theorem 9]). Let f .�/ and g.�/ be in R01.A/. Then
f .A/:g.A/ D .f:g/.A/CK, K 2 K.X/. }
Definition 2.2.16. Let A 2 L.X/. By R0.A/ we mean the family of all analytic
functions, f .�/, such that CnˆA � 
.f /. }
Definition 2.2.17. Let f 2 R0.A/. The class of operators F�.A/ will be defined
as follows: B 2 F�.A/ if B D 1

2i

R
CB.D/ f .�/R

0
�.A/d�, where D is a bounded

Cauchy domain such that CnˆA � D, D � 
.f /, and B.D/ does not contain any
points of ˆ0.A/. }
Definition 2.2.18. Let f 2 R0.A/. By f �.A/ we mean an arbitrary operator in the
set F�.A/. }
Theorem 2.2.53 ([307, Theorem 12]). Let B1, B2 2 F�.A/. Then B1 � B2 D K,
K 2 K.X/. }
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Theorem 2.2.54 ([307, Theorem 13]). Let A 2 L.X/, and let f .�/ D 1. Then,
f �.A/ D I CK, K 2 K.X/. }
Theorem 2.2.55 ([307, Theorem 14]). Let A 2 L.X/, and let f .�/ D �. Then,
f �.A/ D ACK, K 2 K.X/. }
Lemma 2.2.18 ([307, Lemma 7.4]). Let �i 2 ˆ0i .A/ (ˆ0i .A/ being the set of all
� 2 ˆi.A/ such that �1

���i 2 �.Ti / and Ti is defined in Eq. (2.2.6)). Let D be a

bounded Cauchy domain with the following: D � ˆi.A/, �i 2 D, and no other
points of ˆ0.A/ are contained in D. Then, 1

2i

R
CB.D/ R

0
�.A/d� D K 2 K.X/. }

Lemma 2.2.19 ([308, Lemma 1.1]). Let A 2 C.X/, such that ˆA is not empty,
and let n be a positive integer. Then, for each � 2 ˆAnˆ0.A/, there exists a
subspace V� dense in X and depending on � such that, for all x 2 V�, we have
R0
�.A/x 2 D.An/. }

2.2.6 Basics on Unbounded Browder Operators

For A 2 C.X/ we denote by D.An/ D fx 2 D.A/ such that Ax; : : : ; An�1x 2
D.A/g and we define An on this domain by the equation Anx D A.An�1x/, where
n is any positive integer and A0 D I . It is simple to verify that fN.Ak/gk forms
an ascending sequence of subspaces. Suppose that for some k, N.Ak/ D N.AkC1/;
we shall then write asc.A/ for the smallest value of k for which this is true, and
call the integer asc.A/, the ascent of A. If no such integer exists, we shall say that
A has infinite ascent. In a similar way, fR.Ak/gk forms a descending sequence;
the smallest integer for which R.Ak/ D R.AkC1/ is called the descent of A and
is denoted by desc.A/. If no such integer exists, we shall say that A has infinite
descent.

Lemma 2.2.20 ([341]). Let X be a Banach space and A 2 C.X/. If ˛.A/ < 1,
then asc.A/ < 1 if, and only if, N1.A/

T
R1.A/ D f0g. }

Definition 2.2.19. Let X be a Banach space, A and B 2 C.X/. We say that A
commutes with B if D.B/ D D.A/, Ax 2 D.B/ whenever x 2 D.B/, and BAx D
ABx for x 2 D.B2/. }
Definition 2.2.20. Let X be a Banach space, A and B 2 C.X/. We say that A and
B are mutually commuting operators if A commutes with B and B commutes with
A, i.e., we have D.B/ D D.A/, Ax 2 D.B/ whenever x 2 D.B/, Bx 2 D.A/
whenever x 2 D.A/, and BAx D ABx for x 2 D.A/. }
Definition 2.2.21. Let X be a Banach space. We say that an operator A 2 C.X/
commutes with itself if A maps D.A/ into D.A/. }
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Lemma 2.2.21 ([183]). Let X be a Banach space, A and B 2 C.X/. Suppose that
A commutes with B . Then for n 2 N

�, we have D.B/ � D.A/, BnAmx D AmBnx

for all x in D.BnC1/ and m 2 N
�. }

We close this section by the following results due to Fakhfakh and Mnif [111].

Lemma 2.2.22. Let X be a Banach space, A and B 2 C.X/. If A and B are
mutually commuting operators, then Ap and Bk are mutually commuting operators
for every p, k 2 N

�. }
Proof. Since A and B are mutually commuting operators, then it follows from
Lemma 2.2.21 that Bk commutes with A for every k 2 N

� and Ap commutes
with B for every p 2 N

�. Thus, D.A/ D D.B/ D D.Ap/ D D.Bk/. It
is clear that Apx 2 D.Bk/ for all x 2 D.Bk/ and Bkx 2 D.Ap/ for all
x 2 D.Ap/. Finally, according to the hypothesis and using Lemma 2.2.21, we infer
that ApBkx D BkApx for all x 2 D.ApC1/ D D.Ap/. Q.E.D.

Lemma 2.2.23. Let X be a reflexive Banach space, A 2 C.X/ and B D A C K,
whereK 2 K.X/. If A and B are mutually commuting operators and A� commutes
with itself, then A�p and B�k are mutually commuting operators for every p,
k 2 N

�. }
Proof. Since K 2 L.X/ it is easy to show that B� D .A C K/� D A� C K�.
Then D.B�/ D D.A�/. From Theorem 2.2.46 and Lemma 2.2.15, A� and B� 2
C.X�/. Let f 2 D.B�/ D D.A�/, u 2 D.B/ D D.A/ and h D B�f . So,
B�f ı A.u/ D h ı A.u/ D h.A.u// D f ı B.A.u// D f ı A ı B.u/ D g ı B.u/,
where g D f ı A D A�f . Therefore, B�f 2 D.A�/ since A�f 2 D.B�/ for
all f 2 D.B�/. On the other hand, we will check that B�A�f D A�B�f for
all f 2 D.A�/. Indeed, let f 2 D.A�/ D D.B�/ and u 2 D.B/ D D.A/. So,
B�.A�f /.u/ D .A�f /ıB.u/ D f ıAıB.u/ D f ıB ıA.u/ D .B�f /ıA.u/ D
A�.B�f /.u/. This implies thatA� andB� are mutually commuting operators. Now,
by Lemma 2.2.22 we conclude thatA�p and B�k are mutually commuting operators
for every p, k 2 N

�. This ends the proof. Q.E.D.

Remark 2.2.6. Let X be a reflexive Banach space, A 2 C.X/ and B D A C K,
where K 2 K.X/ such that A and B are mutually commuting operators and A�
commutes with itself. Then,

(i) by Lemma 2.2.22 we infer that D.A/ D D.B/ D D.Ap/ D D.Bk/ D
D.ApBk/ D D.BkAp/ for every p, k 2 N

�,
(ii) and by Lemma 2.2.23 we deduce that D.A�/ D D.B�/ D D.A�p/ D

D.B�k/ D D.A�pB�k/ D D.B�kA�p/ for every p, k 2 N
�. }

Remark 2.2.7. LetX be a Banach space, A and B 2 C.X/. If A and B are mutually
commuting operators, then A� � and B � � are mutually commuting operators for
every � 2 C. }
Definition 2.2.22. Let X be a Banach space, A and B 2 C.X/. We say that A is an
extension of B if D.B/ � D.A/, and Ax D Bx for x 2 D.B/. }
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Definition 2.2.23. Let X be a Banach space, A and B 2 C.X/. We say that A is a
k-dimensional extension of B if A is an extension of B , and D.A/ D D.B/ ˚ Y ,
where Y is a subspace of dimension k. }
Lemma 2.2.24 ([67]). Let X be a Banach space, A 2 C.X/. Then, for any non
negative integer k, .Ak/� is an extension of .A�/k . }
Lemma 2.2.25. Let X be a reflexive Banach space, A 2 C.X/ and B D A C K,
whereK 2 K.X/. If A and B are mutually commuting operators and A� commutes
with itself, then

(i) D.A�pB�k/ is dense in X�, and
(ii) .BkAp/� is an extension of A�pB�k . }
Proof.

(i) The result follows from Remark 2.2.6, Theorem 2.2.46 and Lemma 2.2.15.
(ii) From Lemma 2.2.24, we have .Ap/� is an extension of A�p and .Bk/� is an

extension of B�k . Therefore, it is easy to see that .Ap/�.Bk/� is an extension
of A�pB�k . Moreover, by Theorem 2.2.47 and Remark 2.2.6 .i/ we infer that
.BkAp/� is an extension of .Ap/�.Bk/�. Then .BkAp/� is an extension of
A�pB�k . This completes the proof. Q.E.D.

Definition 2.2.24. Let X be a Banach space and A 2 C.X/ such that all its iterates
are densely defined. We say that A is of finite type if, for each k, .Ak/� is a finite
dimensional extension of A�k . }
Definition 2.2.25. Let X be a Banach space, A and B 2 C.X/ such that for all k,
p, BkAp is densely defined. We say that .B;A/ is of finite type if, for each k, p,
.BkAp/� is a finite dimensional extension of A�pB�k . }
Lemma 2.2.26. Let X be a Banach space, A 2 C.X/ and B D A C K, where
K 2 K.X/ such that A and B are mutually commuting operators. Let Y be a
closed subspace of D.A/ satisfying A.Y / � Y and B.Y / � Y . If AjY is onto, then
BjY has finite descent. }
Proof. It is clear that AjY is a closed operator since A 2 C.X/. Then, from the
closed graph theorem we get AjY and BjY are bounded operators. According to the
hypothesis A and B are mutually commuting operators, it follows that AjY and BjY
are commuting bounded operators. Moreover, AjY �BjY 2 K.Y /. Indeed, let .xn/n
a bounded sequence of Y � X , then .Kxn/n admits a subsequence which converge
in X . Moreover, .Kxn/n 2 Y and Y is a closed subspace of X . Therefore, .Kxn/n
admits a subsequence which converge in Y . This implies, by the use of Lemma 2.2.8
that desc.BjY / < 1. Q.E.D.

Lemma 2.2.27 ([67]). Let X be a Banach space, A 2 C.X/. Then for any k 2 N,
˛.Ak/ � asc.A/˛.A/, and ˇ.Ak/ � desc.A/ˇ.A/. }
An operator A 2 C.X/ is called upper semi-Browder if A 2 ˆC.X/, and
asc.A/ < 1. A is called lower semi-Browder if A 2 ˆ�.X/, and desc.A/ < 1.
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Let BC.X/ (respectively B�.X/) denote the set of upper (respectively lower) semi-
Browder operators. The class of all Browder operators is defined by B.X/ D
BC.X/

T
B�.X/.

2.3 Positive Operator

2.3.1 Positive Operator on Lp-Spaces

In this section, we recall some facts about positive operators on Lp-spaces. Let �
be an open subset of Rm,m � 1, and let Ep WD Lp.�/, 1 � p < 1, be the Banach
space of equivalence classes of measurable functions on � whose p’th power is
integrable. Its dual space is Eq where q D p

p�1 . The positive cone EC
p;0 of Ep

is given by EC
p;0 WD ff 2 Ep such that f .x/ � 0 � a:e: x 2 �g. The set of

strictly positive elements in Ep is denoted by EC
p WD ff 2 Ep such that f(x) > 0

� a:e: x 2 �g. Note that EC
p coincides with the set of quasi-interior points of Ep ,

i.e., EC
p WD ff 2 EC

p;0 such that hf; f 0i > 0 8f 0 2 EC
q;0nf0gg, where h:; :i is the

duality pairing.

Definition 2.3.1. We say that A 2 L.Ep/ is positive on Ep , if A.EC
p;0/ � EC

p;0.

A is called strictly positive, if A.EC
p;0nf0g/ � EC

p . }
Definition 2.3.2. A positive operator T 2 L.Ep/ is called � -order continuous
whenever it follows from fn # 0 in Ep that Tf n # 0 in Ep . }
Definition 2.3.3. A positive operator T 2 L.Ep/ is called band irreducible, if T
leaves no band in Ep invariant except f0g and Ep itself. }
Definition 2.3.4. An operator A 2 L.Ep/ is called irreducible if, for all f 2
EC
p;0nf0g, there exists n 2 N

� such that Anf 2 EC
p . }

For notions not explained in the text, we refer the reader to the books of Zaanen
[355], Schaefer [298] and Aliprantis, Burkinshow [19]. Consider two positive
operators A and B in L.Ep/. It is well known that, if A and B satisfy A � B

(i.e., B � A is positive), then r� .A/ � r� .B/ where r� .A/ is the spectral radius of
A. The next result due to Marek [241, Theorem 4.4] provides sufficient conditions
under which the latter inequality is strict. More precisely:

Theorem 2.3.1. Let A and B be two positive operators in L.Ep/ satisfying A � B

and A 6D B . If A is not quasi-nilpotent, B is irreducible and power-compact (i.e.,
Bn is compact for some integer n � 1), then r� .A/ < r�.B/. }

The next two results are also required below. The following one is established in
[193, p. 67].



2.3 Positive Operator 57

Theorem 2.3.2. Let A 2 L.Ep/ be a positive compact operator satisfying 9' � 0,
' 6D 0 and ˛ > 0 such that A' � ˛'. Then, A has an eigenvalue �0 � ˛ with a
corresponding non-negative eigenfunction. }
Corollary 2.3.1. Let A 2 L.Ep/ be a positive, compact, and non-quasi-nilpotent
operator. Then, r� .A/ is an eigenvalue of A with a corresponding non-negative
eigenfunction. }
Proof. Let � 2 C be an eigenvalue ofA such that j�j D r� .A/. We haveA.'/ D �'

with ' 6D 0. This implies that j�j j'j � A.j'j/. It follows, from Theorem 2.3.2, that
there exists �0 � j�j D r� .A/, which completes the proof. Q.E.D.

For the theory of positive operators on general Banach lattices (resp. Lp-spaces),
we may refer to [193] or [249] (resp. [356]).

Proposition 2.3.1. Let .�;†;�/ be a � -finite, positive measure space and let S ,
T be two bounded linear operators on Lp.�; d�/ with p � 1. If 0 � S � T , then
the following assertions hold:

(i) the set of all weakly compact operators is a norm-closed subset of
L.L1.�; d�//,

(ii) if T is weakly compact on L1.�; d�/, then S is also weakly compact, and
(iii) if p > 1 and T is compact, then S is compact on Lp.�; d�/. }

Part .ii/ of Proposition 2.3.1 is a consequence of Dunford–Pettis theorem. The
part .iii/ of Proposition 2.3.1 is due to Dodds and Fremlin [96] in a general Banach
lattice E, such that E and E� have order continuous norms.

Theorem 2.3.3 ([258]). Let D � C be a domain such that � � ��;C1Œ� D. Let
N.�/ be a holomorphic family with a compact value such that N.�/ is positive if
� 2����;C1Œ, and lim

�!1 kN.�/k D 0. If r� .N.�// is a decreasing function in the

large sense on � � ��;C1Œ, then it is a strictly decreasing function. }
Corollary 2.3.2 ([258]). Let Tn be a sequence of positive compact operators in
L.Lp.�// such that Tn converges to T . Then r� .Tn/ converges to r� .T /. }

We begin by the following important result which is contained in [142, Theorems
4.13 and 3.14].

Theorem 2.3.4. Let K be an irreducible positive kernel operator on a Banach
function space L such that the spectral radius r� .K/ of K is a pole of the resolvent
.��K/�1. Then, r� .K/ is an eigenvalue ofK of algebraic multiplicity one, and the
corresponding eigenspace is spanned by a strictly positive function. }
It is well known that for K as in Theorem 2.3.4 the assumption that r� .K/ is a pole
of the resolvent .� � K/�1 is satisfied if some power of K is a compact operator.
In this case Theorem 2.3.4 is known as the theorem of Jentzsh and Perron [142,
Theorem 5.2].
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2.3.2 Positive Operator on Banach Lattice

In the beginning of this section we give some definitions and results concerning
some operators with resolvent positive which will be used in the sequel.

Definition 2.3.5. An operator A on a Banach lattice E is called resolvent positive
[34] if there exists w 2 R such that .w;1/ � �.A/ and .� � A/�1 is a positive
operator for all � > w, i.e., .� � A/�1' 2 EC, for all ' 2 EC and for all � > w,
where EC is the positive cone of E. }
In the sequel we denote by s.A/ WD supfRe� such that � 2 �.A/g the spectral
bound of the operator A.

Definition 2.3.6. A real � is called the leading eigenvalue of an operator A on a
Banach lattice X , if � D s.A/, where � is an eigenvalue and at least one of the
corresponding eigenvectors is positive. }

In [141] the following extension of the famous Jentzsch–Perron theorem is
proved.

Theorem 2.3.5 ([141]). Let E be a Banach lattice. Let T be a positive � -ordered
continuous, band irreducible, power-compact operator on E. Then, the spectral
radius r� .T / of T is strictly positive and r� .T / is an eigenvalue of T of algebraic
multiplicity one. }
We will also need the following crucial result which is a particular form of Marek
theorem given in [259].

Theorem 2.3.6 ([259, Theorem 0]). LetO1 andO2 be two positive power-compact
operators on the Banach lattice E. We suppose that O1 � O2 (i.e., O1 � O2 � 0).
If the spectral radius r� .O1/ of O1 is strictly positive and there exists N 2 N such
that ON

2 is a strictly positive operator, then r� .O2/ > r�.O1/ if O2 ¤ O1. }
If A is an unbounded linear operator with domain D.A/, we define

D.A/C WD fx 2 D.A/; such that x � 0g:

Lemma 2.3.1 ([105, Lemma 2–3]). If A is a positive resolvent operator, then the
following conditions hold true.

(i) s.A/ 2 �.A/ whenever �.A/ ¤ ;.
(ii) s.A/ D inff� 2 �.A/TR such that .� � A/�1 � 0g.

(iii) The resolvent is monotone decreasing, more precisely, 0 � .� � A/�1 � .� �
A/�1 for all � � � > s.A/. }

The following perturbation result for resolvent positive operators is due to Voigt,
see [334, Theorem 1.1].

Lemma 2.3.2. Let A be a positive resolvent operator on a Banach lattice E and
let B be a linear operator on E satisfying D.A/ � D.B/ and Bx � 0 for all
x 2 D.A/C. Then, for � > s.A/ the following conditions are equivalent.
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(i) r� .B.� � A/�1/ < 1.
(ii) � 2 �.AC B/ and .� � A � B/�1 � 0.

If these conditions are satisfied, then AC B has a positive resolvent, where s.AC
B/ < � and .� � A/�1 � .� � A � B/�1. }
Theorem 2.3.7 ([96, Theorem 4.5]). Let E and F be Banach lattices, and let 0 �
T W E �! F be compact. If E� and F have order continuous norms, then every S
such that 0 � S � T is compact. }

2.4 Integral Operator

2.4.1 Integral Operator on Lp-Spaces

The objective of this section is to introduce a class of integral operators F . The
scattering kernel �.:; :; :/ defines a linear operator F by

8
<

:

F W Lp.D � V / �! Lp.D � V /
 �!

Z

V

�.x; v; v0/ .x; v0/ dv0; (2.4.1)

where .x; v/ 2 D � V with D and V are open of R
N , N � 1. Observe that

the operator F acts only on the variables v0. So, x may be viewed merely as a
parameter inD. Hence, we may consider F as a function F.:/ W x 2 D �! F.x/ 2
L.Lp.V; dv//. Notice that, if there exists a compact subset C � L.Lp.V; dv/ such
that F.x/ 2 C a.e. on D, then

F.:/ 2 L1.D;L.Lp.V; dv///: (2.4.2)

Let  2 Lp.D � V /. It is easy to see that .F /.x; v/DF.x/ .x; v/ and,
then by using (2.4.2), we have

R
V

j.F /.x; v/jp dv � kF.:/ kL1.D;L.Lp.V;dv///
R
Vj .x; v/jp dv and therefore,

R
D

R
V

j.F /.x; v/jp dvdx � kF.:/kL1.D;L.Lp.V;dv///R
D

R
V

j .x; v/jp dvdx: This leads to the estimate

kF kL.Lp.D�V // � kF.:/kL1.D;L.Lp.V;dv///: (2.4.3)

Lemma 2.4.1. We suppose that the operator F , defined in (2.4.1), satisfies in
Lp.D � V; dxdv/; p 2 Œ1;C1Œ, the following:

(i) the function F.:/ is strongly measurable,
(ii) there exists a compact subset C � L.Lp.V; dv// such that F.x/ 2 C a.e. on

D, and
(iii) F.x/ 2 K.Lp.V; dv// a.e.,
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then F can be approximated in the uniform topology, by a sequence .Fn/n2N of
linear operators with kernels of the form

Pn
iD1 �i .x/�i .v/ˇi .v0/, where �i .:/ 2

L1.D; dx/, �i .:/ 2 Lp.V; dv/ and ˇi .:/ 2 Lq.V; dv/, . 1
p

C 1
q

D 1/. }
Proof. Let C� D C

T
K.Lp.V; dv//. By using .ii/ and .iii/, C� is a nonempty and

closed subset of C. Then, C� is a compact set of L.Lp.V; dv//. Let " > 0, then there
exist F1; : : : ; Fm such that .Fi /i � C� and C � S

1�i�m
B.Fi ; "/, whereB.Fi ; "/ is the

open ball in L.Lp.V; dv//, centered at Fi and with a radius ". Let C1 D B.F1; "/,
C2 D B.F2; "/nC1; : : : ; Cm D B.Fm; "/n S

1�i�m�1
Ci . Clearly, Ci

T
Cj D ;

if i ¤ j and C� � S

1�i�m
Ci . Let 1 � i � m and let us denote by Ii the set

F �1.Ci / D fx 2 D such that F.x/ 2 Cig. Hence, we have Ii
T
Ij D ; if i ¤ j

and D D S

1�i�m
Ii . Now, let us consider the following step function from D

into L.Lp.V; dv//, defined by S.x/ D Pm
iD1 �Ii .x/Fi , where �Ii .:/ denotes the

characteristic function of Ii . Obviously, S.:/ satisfies the hypotheses .i/, .ii/, and
.iii/. Then, by using (2.4.2), we get F � S 2 L1.D;L.Lp.V; dv///. Moreover, an
easy calculation leads to kF � SkL1.D;L.Lp.V;dv/// � ". Now, by using (2.4.3), we
obtain kF � SkL.Lp.D�V // � kF � SkL1.D;L.Lp.V;dv/// � ". Hence, we infer that
the operator F may be approximated (for the uniform topology) by operators of the
form U.x/ D Pn

iD1 �i .x/Fi , where �i .:/ 2 L1.D; dx/ and Fi 2 K.Lp.V; dv//.
Moreover, each compact operator Fi 2 K.Lp.V; dv// is a limit (for the norm
topology) of a sequence of finite rank operators because Lp.V; dv/ .1 � p < 1/

admits a Schauder’s basis. This ends the proof. Q.E.D.

Remark 2.4.1. The regularity of the collision operator allows us to choose �i .:/,
�i .:/ and ˇi .:/, i 2 f1; : : : ; ng, as measurable simple functions. }
Definition 2.4.1. An operator integral in the form (2.4.1) is said to be regular, if it
satisfies the assumptions .i/, .ii/, and .iii/ of Lemma 2.4.1. }
Definition 2.4.2. Let X be a Banach space. f .�/ 2 Hp.˛;X/, p fixed, 1 � p <

1, if

(i) f .�/ is a function on complex numbers into X which is holomorphic for � >
˛.

(ii) sup�>˛
�R C1

�1 kf .� C i�/kpd�
	 1
p
< 1.

(iii) lim
�!˛

f .� C i�/ exists for almost all values of � and lim
�!˛

f .� C i�/ 2
BpŒ.�1;C1/; X�, where BpŒ.�1;C1/; X� is the set function x.s/ W
.�1;1/ �! X is strongly measurable in .�1;1/ and

R C1
�1 kx.s/kpd� <

1. }
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Theorem 2.4.1 ([152, Theorem 6.6.1]). Let f .�/ 2 Hp.˛;X/ where ˛ � 0. Let

� > ˛ and ˇp0 > 1, where 1
p

C 1
p0

D 1. Then, aˇ.�/ D 1
2i

R �Ci1
��i1 e����ˇf .�/d�

defines a continuous function on .0;1/ into X and f .�/ D �ˇ
R1
0
e���aˇ.�/d� ,

the integral being absolutely convergent for � > ˛. }
Theorem 2.4.2 ([194, Theorem 3.10 page 57]). Let A be a continuous linear
operator acting from L˛0 into Lˇ0 and from L˛1 into Lˇ1 (0 � ˛0, ˇ0, ˛1, ˇ1 � 1).
Let A be compact as an operator from L˛0 into Lˇ0 . Then, for any � 2 .0; 1/, A is
compact as an operator from L˛.�/ into Lˇ.�/, where ˛.�/ D .1 � �/˛0 C �˛1, and
ˇ.�/ D .1 � �/ˇ0 C �ˇ1. }
Theorem 2.4.3 ([180, Theorem 11.6, p. 275]). For two measure spaces .X;A; �/,
.Y;B; �/ and p, q 2 Œ1;1�, we consider linear operators from Lq.Y;B; �/ into
Lp.X;A; �/, which can be represented as an integral in the form Kf .x/ DR
Y
�.x; y/f .y/d�.y/ for all f 2 Lq.Y;B; �/. For p 2 Œ1;1/, q 2 .1;1� and

1
p

C 1
q

D 1, if �.:; :/ satisfies the condition

( Z

X

�Z

Y

j�.x; y/jq d�.y/
� p
q

d�.x/

)

< C1;

then K is a compact operator from Lq.Y;B; �/ into Lp.X;A; �/. }

2.4.2 Integral Operator on L1-Spaces

Let � be a bounded, smooth, and open subset of RN (N � 1), and let d� and d�
be two positive Radon measures on R

N with a common support V . Let

K 2 L.L1.� � V; dxd�.v//; L1.� � V; dxd�.v///

be given by

8
<

:

K W L1.� � V; dxd�.v// �! L1.� � V; dxd�.v//

 �!
Z

V

�.x; v; v0/ .x; v0/ d�.v0/; (2.4.4)

where the kernel �.:; :; :/ is measurable. Note that

dx ˝ d� � ess sup
.x;v0/2��V

Z

V

j�.x; v; v0/jd�.v/ D kKk < 1: (2.4.5)

We have the following definition.
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Definition 2.4.3. Let K be the integral operator defined by (2.4.4). Then, K is said
to be regular if f�.x; :; v0/ such that .x; v0/ 2 � � V g is a relatively weak compact
subset of L1.V; d�/. }
Remark 2.4.2. The Definition 2.4.3 asserts that for every x 2 �

f 2 L1.V / �!
Z

V

�.x; v; v0/f .v0/ d�.v0/ 2 L1.V /

is a weakly compact operator and this weak compactness holds collectively in
x 2 �. }

The class of regular operators satisfies the following approximate property given
in [236].

Theorem 2.4.4. LetK 2 L.L1.��V; dxd�.v//; L1.��V; dxd�.v///, introduced
in (2.4.4), be a regular and nonnegative operator. Then, there exist .Km/m �
L.L1.� � V; dxd�.v//; L1.� � V; dxd�.v/// such that

(i) 0 � Km � K defined for any m 2 N.
(ii) For any m 2 N; Km is dominated by a rank-one operator in L.L1.V; d�.v//;

L1.V; d�.v///.
(iii) lim

m!C1 kK �Kmk D 0. }
Proof. According to Definition 2.4.3, the operator K already defined in (2.4.4)
and satisfying (2.4.5) and f�.x; :; v0/ such that .x; v0/ 2 � � V g is a relatively
weak compact subset of L1.V; d�/. According to Takac’s version of Dunford–Pettis
criterion, we have

lim
m!1 sup

.x;v0/2��V

Z

Sm.x;v0/

�.x; v; v0/d�.v/ D 0; (2.4.6)

where Sm.x; v0/ WD fv 2 V such that kvk � mgSfv 2 V such that �.x; v; v0/ �
mg, .x; v0/ 2 � � V . For any m 2 N, let us define

Km W ' 2 L1.��V; dxd�.v// �!
Z

V

�m.x; v; v
0/'.x; v0/ d�.v0/ 2 L1.��V; dxd�.v//

with �m.x; v; v0/ D inff�.x; v; v0/;m�Bm.v/g .x; v; v0/ 2 ��V �V , where �Bm.:/
denotes the characteristic function of the set fv 2 V such that kvk � mg. Clearly,
we have 0 � Km � K. Moreover, we can easily check that

kK �Kmk � .dx ˝ d�/ � ess sup
.x;v0/2��V

Z

V

j�.x; v; v0/ � �m.x; v; v0/jd�.v/:



2.4 Integral Operator 63

Besides, for any .x; v0/ 2 � � V , the construction of �m.x; :; v0/ yields the
following:

Z

V

j�.x; v; v0/ � �m.x; v; v0/jd�.v/

D
Z

f�.x;v;v0/�m�Bm.v/g
j�.x; v; v0/ � �m.x; v; v0/jd�.v/

�
Z

f�.x;v;v0/�m�Bm.v/g
�.x; v; v0/d�.v/:

Hence, according to (2.4.6), we have lim
m!1 kK � Kmk D 0. Finally, it is

easy to see that, for any ' 2 L1.� � V; dxd�.v//, ' � 0, Km'.x; v/ �
m�Bm.v/

R
V
'.x; v0/d�.v0/ which proves the second assertion and achieves the

proof. Q.E.D.

Remark 2.4.3. Let us make precise the point (ii) of Theorem 2.4.4. This asserts
that, for any m 2 N, there exists a nonnegative fm 2 L1.V; d�.v// such that, for
any ' 2 L1.� � V; dxd�.v//, ' � 0, Km'.x; v/ � fm.v/

R
V
'.x; v0/ d�.v0/. }

Theorem 2.4.5 ([101, Corollary 11, p. 294]). Let .S;†;�/ be a positive mea-
sure space. If a set K in L1.S;†;�/ is weakly sequentially compact, then
lim�.E/!0

R
E
f .s/�.ds/ D 0 uniformly for f 2 K. If �.S/ < 1, then conversely

this condition is sufficient for a bounded setK to be weakly sequentially compact. }

2.4.3 Cauchy’s Type Integral

Let X be a Banach space and let A be a bounded linear operator in L.X/. We will
define a function f .A/ of A by Cauchy’s type integral

f .A/ D .2i/�1
Z

C

f .�/.� � A/�1d�;

where C is a circumference of sufficiently small radius.
For this purpose, we denote by F.A/ the family of all complex-valued functions

f .�/ which are holomorphic in some neighborhood of the spectrum �.A/ of A, the
neighborhood doesn’t need to be connected, and can depend on the function f .�/.
Let f 2 F.A/, and let an open set U 	 �.A/ of the complex plane be contained in
the domain of holomorphy of f , and suppose that the boundary @U of U consists
of a finite number of rectifiable Jordan curves, oriented in a positive sense. Then,
the bounded linear operator f .A/ will be defined by

f .A/ D .2i/�1
Z

@U

f .�/.� � A/�1d�;
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and the integral on the right may be called a Dunford’s integral. By using Cauchy’s
integral theorem, the value f .A/ depends only on the function f and the operator
A, but not on the choice of the domain U .

Theorem 2.4.6 (N. Dunford). If f and g are in F.A/, and if ˛ and ˇ are complex
numbers, then

(i) f̨ C ˇg is in F.A/ and f̨ .A/C ˇg.A/ D . f̨ C ˇg/.A/.
(ii) f:g is in F.A/ and f .A/:g.A/ D .f:g/.A/. }
Proof.

(i) Is clear.
(ii) Let U1 and U2 represent an open neighborhood of �.A/ whose boundaries @U1

and @U2 consist of a finite number of rectifiable Jordan curves, and assume that
U1 C @U1 � U2 and that U2 C @U2 is contained in the holomorphic domain of
f and g. Then, by virtue of both the resolvent equation and Cauchy’s integral
theorem, we get

f .A/g.A/ D �.42/�1
Z

@U1

f .�/.�� A/�1d�:

Z

@U2

g.�/.�� A/�1d�

D �.42/�1
Z

@U1

Z

@U2

f .�/g.�/.�� �/�1

.�� A/�1 � .�� A/�1

�
d�d�

D .2i/�1
Z

@U1

f .�/.�� A/�1:

�

.2i/�1
Z

@U2

.�� �/�1g.�/d�

�

d�

� .2i/�1
Z

@U2

g.�/.�� A/�1:

�

.2i/�1
Z

@U1

.�� �/�1f .�/d�

�

d�

D .2i/�1
Z

@U1

f .�/g.�/.�� A/�1d�

D .f:g/.A/:

Q.E.D.

Let us recall the spectral mapping theorem:

Corollary 2.4.1. If f is in F.A/, then f .�.A// D �.f .A//. }
Proof. Let � 2 �.A/, and let us define the function g by g.�/ D .f .�/ �
f .�//=.� � �/. According to Theorem 2.4.6, f .�/ � f .A/ D .� � A/g.A/.
Hence, if .f .�/ � f .A// has a bounded inverse B , then g.A/B would be the
bounded inverse of .� � A/. Thus, � 2 �.A/ implies that f .�/ 2 �.f .A//.
Conversely, let � 2 �.f .A//, and assume that � 2 f .�.A//. Then the function
g.�/ D .f .�/ � �/�1 must belong to F.A/ and so, by using the preceding
theorem (Theorem 2.4.6), g.A/.f .A/ � �/ D I , which contradicts the assumption
� 2 �.f .A//. Q.E.D.
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2.5 Semigroup Theory

2.5.1 Strongly Continuous Semigroup

Let X be a Banach space. A family .T .t//t�0 in L.X/ is called a one-parameter
semigroup of bounded linear operators inX , if T .0/ D I , and T .sCt / D T .s/T .t/,
s; t � 0. Here, I stands for the identity operator. If, in addition, the function
t �! T .t/ is continuous with respect to the strong operator topology of L.X/,
i.e., t �! T .t/x is continuous on Œ0;C1/ for every x 2 X , then .T .t//t�0 is
called a strongly continuous semigroup, or also C0-semigroup. For the generator
.A;D.A// of a strongly continuous semigroup .T .t//t�0 on a Banach space X , we
have the identities (see [106, Eqs (3.16) and (3.17), p. 277])

�p.T .t//nf0g D et�p.A/ (2.5.1)

�r.T .t//nf0g D et�r .A/

for all t � 0. A semigroup .T .t//t�0 is said to be of Riesz type, if T .t/ is a Riesz
operator for all t 2�0;1Œ.

Theorem 2.5.1 ([152, Theorem 16.3.6]). A semigroup .T .t//t�0 can be embedded
in one-parameter strongly continuous group of bounded linear operators on
.�1;C1/ if, and only if, 0 2 �.T .t// for some t > 0. }
Theorem 2.5.2 ([276, Theorem 2.2]). Let

�
T .t/

�
t�0 be a C0-semigroup. Then,

there are constants w � 0 and M � 1, such that kT .t/k � Mewt for 0 � t < 1. }
Let w.T / denote the type of the semigroup

�
T .t/

�
t�0 defined by:

w.T / D inffw > 0 such that 9 Mw satisfies jjT .t/jj � Mwe
wt 8t � 0g:

Let .T .t//t�0 be a C0-semigroup on a Banach space X with a generator A.
The growth bound w.T .t// of .T .t//t�0 is given by

wD inf
n
! such that sup

t>0

e�!tkT .t/k < 1
o
:

Theorem 2.5.3 ([34, Theorem 2.5]). Let A be a densely defined resolvent positive
operator inX . If there exist �0 > s.A/ and c > 0 such that k.�0�A/�1'k � ck'k,
8' 2 XC, then A is the generator of a positive C0-semigroup on X , and s.A/ D
w.A/ where s.A/ (resp. w.A/) denotes the spectral bound of A (resp. the type of the
C0-semigroup generated by A). }
Theorem 2.5.4 ([339]). Let .T .t//t�0 be a positive C0-semigroup on Lp.�; d�/,
1 < p < 1, with a generator A. Then, the spectral bound s.A/ equals the growth
bound w.T .t//. }
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Theorem 2.5.5 ([276, Theorem 3.2]). Let T .t/ be a C0-semigroup. If T .t/ is
compact for t > t0, then T .t/ is continuous in the uniform operator topology for
t > t0. }
Theorem 2.5.6 ([339, Corollary 2.3]). Let .�;�/ be a measure space and let t 2
� �! Tt 2 L.X; Y / be a strongly integrable function, i.e., Tx D R

�
Ttxd�.t/

exists for all x 2 X as a Bochner integral and
R
�

kTtkd�.t/ < 1. If �-almost all
Tt are compact, then T is compact. }

2.5.2 The Hille-Yosida Theorem

Let T .t/ be a C0-semigroup. From Theorem 2.5.2, it follows that there are constants
w � 0 and M � 1 such that kT .t/k � Mewt for t � 0. If w D 0, T .t/ is called
uniformly bounded, and if, moreover M D 1, then it is called a C0-semigroup of
contractions.

Theorem 2.5.7 ([276, Theorem 3.1(Hille-Yosida)]). A linear (unbounded) opera-
tor A is the infinitesimal generator of a C0-semigroup of contractions T .t/, t � 0

if, and only if,

(i) A is closed and D.A/ D X , and
(ii) the resolvent set �.A/ of A contains RC and, for every � > 0, we have

k.� � A/�1k � 1

�
:

}
From Theorem 2.5.7, we can deduce the following corollary.

Corollary 2.5.1 ([276, Corollary 3.8]). A linear operator A is the infinitesimal
generator of a C0-semigroup satisfying kT .t/k � ewt if, and only if,

(i) A is closed and D.A/ D X , and
(ii) the resolvent set �.A/ of A contains the ray f� such that Im� D 0; � > wg

and, for such a �, we have k.� � A/�1k � 1
��w . }

Theorem 2.5.8 ([276, Theorem 1.1 p. 76]). LetX be a Banach space, and letA be
the infinitesimal generator of a C0-semigroup T .t/ onX , satisfying kT .t/k � Mewt.
If B is a bounded linear operator on X , then A C B is the infinitesimal generator
of a C0-semigroup .S.t//t�0 on X , satisfying kS.t/k � Me.wCMkBk/t . }

We recall the following result owing to Phillips (cf. [281]).

Proposition 2.5.1. Let .T .t//t�0 be a C0-semigroup on a Banach space X . Let us
assume that there exists an unbounded, open, and connected set � � C, such that
0 2 � and �.T .t//

T
� D ; for t belonging to some interval �a; bŒwith 0 � a < b.

Then, the infinitesimal generator of .T .t//t�0 is bounded. }
Theorem 2.5.9 ([35, Theorem 3.3, p. 70]). Let T .t/ be a strongly continuous
semigroup on a Banach space X , and assume that the spectrum �.A/ of the
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generator A can be decomposed into the disjoint union of two nonempty, closed
subsets �1 and �2. If �1 is compact, then there exists a unique corresponding spectral
decompositionX D X1˚X2 such that the restricted semigroup T1.t/ has a bounded
generator. }
Theorem 2.5.10 ([81, p. 164]). Let .T .t//t�0 be a positive C0-semigroup on X
with a generator A. Then,

.� � A/�1 D
Z 1

0

e��tT .t/dt; Re� > s.A/; (2.5.2)

where (2.5.2) exists as a norm convergent improper integral. }
Theorem 2.5.11 ([186, Eq. (1.17), p. 480]). Let .T .t//t�0 be a C0-semigroup on
X with a generator A. If A 2 C.X/, the negative real axis belongs to the resolvent
set of A, and the resolvent .A C �/�1 satisfies the inequality k.A C �/�1k � 1

�
.

Then, .I C t
n
A/�n converges strongly to T .t/, for all t � 0. }

Theorem 2.5.12 ([106, p. 276]). Let .T .t//t�0 be a strongly continuous semigroup
with a generator A on a Banach space X . The following spectral inclusion holds
et�.A/ � �.T .t// for t � 0. Moreover, if e�0t is an isolated eigenvalue of T .t/,
then �0 is an isolated eigenvalue of A and ma.�0; A/ � ma.e

�0t ; T .t// where
ma.�0; A/ and ma.e

�0t ; T .t// denote, respectively, the algebraic multiplicities of
�0 and e�0t . }

We recall the Gohberg–Shmul’yan’s theorem:

Theorem 2.5.13 ([184, Theorem 11.4]). Let G be an open connected subset of C,
and let fC.�/ such that � 2 Gg be a holomorphic operator-valued function from
G to the space of compact operators. If I � C.�/ is boundedly invertible for some
� 2 G, then I �C.�/ is boundedly invertible for all � 2 G, except at a discrete set
of points f�k W k D 1; 2; : : :g, each �k is a pole of .I � C.�//�1. }

Let T 2 C.X/ and A 2 L.X/. We call A resolvent compact relative to �T if, for
some positive integer n, ..� C T /�1A/n is compact for all � 2 G, where G is the
component of the resolvent set �.�T / that contains a right half-plane.

Corollary 2.5.2 ([184, Corollary 11.6]). Let T be a Hille–Yosida operator, and let
A be a bounded linear operator that is resolvent compact relative to �T . Let G be
the component of the resolvent set �.�T / that contains a right half-plane. Then,
�C T C A is boundedly invertible for all � 2 G, except at a discrete set of points
f�k such that k D 1; 2; : : :g, each �k is a pole of .� C T C A/�1 and also an
eigenvalue of T C A with a finite (algebraic) multiplicity. }

We recall the following result due to Kato [185].

Lemma 2.5.1. If .Tn/n converges strongly to T , then .Tnu/n converges strongly to
Tu uniformly for all u of a compact subset S of X . }
Proof. We may assume that T D 0, otherwise, we only have to consider Tn � T

instead of Tn. As for every compact subset of a metric space, S is totally bounded,
that is, for any " > 0, there is a finite number of elements uk 2 S such that each
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u 2 S lies within a distance " of some uk . Since Tnuk ! 0, n ! 1, there are
positive numbers nk such that kTnukk < " for n > nk . Then, for any u 2 S , we
have kTnuk � kTn.u � uk/kCkTnukk � .M C1/" if n > maxnk , where uk is such
that ku � ukk < " and M is an upper bound of kTnk (M is finite). Q.E.D.

Let Y be an arbitrary real or complex Banach space, and let Y � denote its dual
space. For each x 2 Y , we define P.x/ D fx� 2 Y � such that kx�k2 D kxk2 D
hx; x�ig. Let x 2 Y , P.x/ be nonempty according to Hahn–Banach theorem. A
linear operator A, with both the domain and the range in Y , is called dissipative
if, for every x 2 D.A/, there exists x� 2 P.x/, such that RehAx; x�i � 0. Let
.�;†;�/ be a measure space, and let Y D Lp.�;†;�/ with 1 � p < 1,
P.0/ D f0g and, for 0 ¤ u 2 Y , P.u/ has solely one element, that is, P.u/ D
fkuk2�pjujp�2ug for 1 < p < 1. For p D 1, in order to show the dissipativity
of the operator A, it is sufficient to show that RehAu; s0.u/i � 0 for all u 2 D.A/,
where

s0.u/.x/ D
8
<

:

u.x/

ju.x/j kuk when u.x/ ¤ 0;

0 when u.x/ D 0:

Theorem 2.5.14 ([152, Theorem 4.17.2]). If �.�/ satisfies �.� C �/ D �.�/�.�/

and �.0/ D 1 non-trivially, and if j�.�/j is bounded in some interval Œ�1; �2�, then
j�.�/j D e˛� for some real number ˛. }

2.6 The Essential Spectral Radius

Let T be a closed operator on a Banach space X , and let 
 � �.T / be open. An
operatorB onX will be called T -power-compact on
 ifB is T -bounded, and there
is n 2 N such that .B.� � T /�1/n is compact for all � 2 
. If 
0 � �.T / is open
and connected, and
0T
 ¤ ;, then B will also be T -power-compact on
0. This
follows from the facts that
 3 � �! .B.��T /�1/n is holomorphic, that the set of
compact operators is closed in L.X/, and the Hahn–Banach theorem. The operator
B on X will be called strictly power-compact if B 2 L.X/, and there is n 2 N such
that .BA/n is compact for all A 2 L.X/. Let T be a closed, densely defined linear
operator on X . We recall that � 2 C is an eigenvalue of finite algebraic multiplicity
of T if � is an isolated point of �.T / and is a pole of the resolvent .� � T /�1 of
T with degenerate associated spectral projection P , n D dimR.P / is the algebraic
multiplicity of �. Let B 2 L.X/. The essential spectral radius of B is defined by

re.B/ WD sup
˚j�j; � 2 �.B/; but � is not an eigenvalue of finite algebraic multiplicity



:

Let .U.t//t�0 be a strongly continuous semigroup on X . Then, r� .U.t// D etw for
every t > 0, where r� .:/ denotes the spectral radius and w is the type of .U.t//t�0,
that is w D lim

t!1
1

t
log kU.t/k D inf

t>0

1

t
log kU.t/k. Moreover, there exists we 2

Œ�1;w� such that re.U.t// D etwe .t > 0/. The real number we is called the



2.6 The Essential Spectral Radius 69

essential type of .U.t//t�0. Let us recall a known result about the essential type of
perturbed C0-semigroups on Banach spaces. We define the “essential resolvent set”

�6.T / D �.T /
[

f� 2 �.T / such that � is an eigenvalue of finite algebraic multiplicityg:

We recall some basic tools by Ribaric and Vidav [293].

Theorem 2.6.1. Let A.z/ be an analytic function in the punctured disc 0 < jzj < r ,
and let its values be bounded, and linear operators on a Banach space X . Suppose
A.z/ can be written as the sum A.z/ D A1.z/C A2.z/, where .i/ A1.z/ is analytic
for 0 < jzj < r , has at z D 0 at most a pole, and is such that the ranges of A1.z/ lie
in a finite dimensional subspace Y � X , and .ii/ A2.z/ is analytic for jzj < r and is
such that ŒA2.0/��1 exists. Then, one of the following two possibilities must hold:

(a) � D 0 is an eigenvalue for all operators A.z/ in a neighborhood of z D 0, or
(b) the inverse ŒA.z/��1 exists in a neighborhood of z D 0 and has there the same

properties as A.z/. }
Proof. Since ŒA2.0/��1 exists and A2.z/ is analytic at z D 0, ŒA2.z/��1 D U.z/
exists in a neighborhood of the point z D 0 and is analytic there. Thus, we may write
in the following form A.z/ D ŒI C A1.z/U.z/�A2.z/, where the product A1.z/U.z/
is a degenerate operator with its range in Y . The determinant w.z/ WD detŒI C
A1.z/U.z/� is analytic in some neighborhood of z D 0, and has at most a pole at z D
0. If w.z/ D 0, all operators A1.z/U.z/ have the eigenvalue � D �1. If e.z/ ¤ 0 is a
corresponding eigenvector, then f .z/ D U.z/e.z/ ¤ 0 is an eigenvector of A.z/ for
the eigenvalue � D 0. Hence, we have case .a/. If w.z/ ¤ 0, then in a neighborhood
of z D 0, V.z/ D I � ŒI C A1.z/U.z/��1 exists, and V.z/X � Y , the point z D 0

being, at most, a pole of V.z/. Furthermore, ŒA.z/��1 D U.z/ŒI C V.z/�, and the
point z D 0 is, at most, a pole for U.z/V .z/. If we expand U.z/V .z/ in a Laurent
series, we have U.z/V .z/ D B1.z/C B 0.z/, where B1.z/ is the sum of the constant
terms and of the terms with negative powers of z, and B 0.z/ denotes the remainder
of the series, B 0.z/ is regular at z D 0, and B 0.0/ D 0. All coefficients in B1.z/
are degenerate operators. Hence, there exists a finite dimensional subspace Y1 � X

such that B1.z/X � Y1. If we write B2.z/ D U.z/ C B 0.z/, we have ŒA.z/��1 D
B1.z/ C B2.z/, where B2.0/ D U.0/ and ŒB2.0/��1 D ŒU.0/��1 D A2.0/. Hence,
B1.z/ and B2.z/ have the same properties as A1.z/ and A2.z/, respectively. Q.E.D.

Corollary 2.6.1. Let A.z/ be an essentially meromorphic function in a region D of
the complex z plane. Then, either .i/ � D 1 is an eigenvalue for all operators A.z/,
z 2 D, or .ii/ the operator ŒI � A.z/��1 exists for almost all z 2 D, the function
I � ŒI � A.z/��1 being essentially meromorphic in D. }
Proof. Let z0 be any point of D. Without loss of generality, we may assume that
z0 D 0. Let us expand A.z/ in a Laurent series

A.z/ D
1X

nD�m0
znAn; 0 � m0 < 1; (2.6.1)
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where m0 D 0 if A.z/ is regular at z D 0. By assumption, A�1; : : : ; A�m0 are
degenerate operators. Since A.z/ is compact for any z 2 D, one can infer from
(2.6.1) that the coefficients An are also compact operators. Therefore, � D 1 is
either an isolated point of the spectrum of A0 and has a finite algebraic multiplicity,
or it belongs to the resolvent set �.A0/. Let P be the associated eigenprojection
(where P D 0 if � D 1 and is not an eigenvalue). Now, we may write A1.z/ DPnD�1

nD�m0 AnznC PA0, A2.z/ D A0� PA0�I CP1
nD1 Anzn so that A1.z/CA2.z/ D

A.z/� I , and apply Theorem 2.6.1. In case .i/ all operators A.z/ in a neighborhood
of z D 0 have the eigenvalue � D 1. In case .ii/, ŒI � A.z/��1 exists and I � ŒI �
A.z/��1 is essentially meromorphic in this neighborhood. This holds for any point
z0 2 D. Hence, the sets of points where .i/, respectively .ii/, occur, are both open.
Due to the connectedness of D, one of these sets must be empty. Q.E.D.

Theorem 2.6.2 ([314]). If T .z/ is an analytic L.X/-valued function for z 2 � �
C, if T n.z/ is compact for some n � 1, and if .I � T n.z// is somewhere invertible,
then .I � T .z//�1 is a meromorphic L.X/-valued function. Here we assume that�
is open and connected. }

We are now ready to present the concept of essential resolvent set introduced by
Voigt [331].

Theorem 2.6.3. Let A be a closed operator in X and let � be a component of
�6.T /. Let the operator B be A-power-compact on �

T
�.T /, and let I � .B.� �

A/�1/n be invertible in L.X/ for some � 2 �
T
�.T / (n from the definition of

A-power-compact). Then, � � �6.T C B/, and B is .T C B/-power-compact on
�
T
�.T C B/. }

Proof. By the definition of �6.T /, .��A/�1 is a degenerate-meromorphic operator
function on � (i.e., .� � A/�1 is holomorphic, except at isolated points, where
.��A/�1 has poles, and the coefficients of the main part are degenerate). It follows
that B� WD B.� � A/�1 is degenerate-meromorphic on �, and therefore so is Bn

� .
Also, Bn

� is a compact operator of the exceptional set. Now, Corollary 2.6.1 implies
that either I�Bn

� is nowhere invertible on�, or I�Bn
� is invertible, except at a set of

isolated points, and .I � Bn
�/

�1 is degenerate-meromorphic. The hypothesis of our
theorem excludes the first alternative. From I�Bn

� D .I�B�/.ICB�C: : :CBn�1
� /,

we conclude that

.I � B�/�1 D .I C B� C : : :C Bn�1
� /.I � Bn

�/
�1

is degenerate-meromorphic on �, and so is

.� � A � B/�1 D .� � A/�1.I � B�/�1: (2.6.2)

This shows that the points of �
T
�.AC B/ are eigenvalues of finite algebraic

multiplicity, � � �6.AC B/. Also, Eq. (2.6.2) implies B 0
� WD B.� � A � B/�1 D

B�.I � B�/
�1, and therefore .B 0

�/
n D Bn

�.I � B�/
�n is compact for those � 2

�
T
�.A/ for which I � B� is invertible. Q.E.D.
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We note that Theorem 2.6.3 is not symmetric with respect to A and ACB , since
there is nothing that would tell us that I � .B.��A�B/�1/n is invertible for some
� 2 �T �.AC B/. The following corollary is given in [331].

Corollary 2.6.2. Let A be a closed operator, and let � be a component of �6.A/.
Let B be A-power-compact on �

T
�.A/, and let kB.�j � A/�1k ! 0 .j ! 1/

for some sequence .�j /j in �
T
�.A/. Then, �j 2 �.A C B/ for j large enough,

and kB.�j � A � B/�1k ! 0 .j ! 1/. Furthermore, � is a component of
�6.AC B/. }
Proof. Formula (2.6.2) implies �j 2 �.ACB/, if kB�j k < 1, and B 0

�j
D B�j .I �

B�j /
�1 D P1

kD1 Bk
�j

. So, kB 0
�j

k � P1
kD1 kB�j kk ! 0 .j ! 1/. Let us denote by

�0 the component of �6.AC B/ containing �. Now, Theorem 2.6.3, when applied
to AC B and �B , implies �0 � �6.A/, and therefore �0 D �. Q.E.D.

Corollary 2.6.3. Let A, B 2 L.X/, and let B be A-power-compact on the
unbounded component of �.A/. Then, the unbounded components of �6.A/ and
�6.AC B/ are the same, especially re.A/ D re.AC B). }
Proof. This follows immediately from Corollary 2.6.2, since k.� � A/�1k ! 0 for
j�j ! 1. Q.E.D.

2.7 Borel Mappings

Let X be a Banach space. An operator T 2 L.X/ is called a left topological divisor
of zero (briefly, left TDZ) in L.X/, if there exists a sequence .xn/n of vectors such
that kxnk D 1 and Txn ! 0 as n ! 1. Let T .X/ denote the set

T .X/ WD foperators in L.X/ which are left TDZg: (2.7.1)

On L.X/, we can consider its strong topology which is the coarsest topology
for which the maps 'x W L.X/ �! X , 'x.T / D Tx, are continuous for all
x 2 X . Equipped with this topology, L.X/ is a topological vector space, denoted
by Ls.X/. We denote the subset of L.X/ consisting of all invertible operators on X
by Inv.X/. Let C be the field of complex numbers, and letK.C/ be the collection of
all nonempty compact subsets of C. ForK andK 0 inK.C/, we define the Hausdorff
distance dH.K;K 0/ betweenK andK 0 by dH.K;K 0/ D max.ı.K;K 0/; ı.K 0; K//,
where ı.K;K 0/ D supx2K dist.x;K 0/. In this book, K.C/ will be endowed with
this metric. The set Inv.X/ may be written in the following form

Inv.X/ D fT 2 L.X/ : 0 … �.T /g D ��1.fK 2 K.C/ such that 0 … Kg/:
(2.7.2)

A topological space is said to be Polish, if it is separable and there is a complete
metric determining its topology. Note that R, C, Rn, and C

n are Polish spaces. For
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other examples and the properties of this class of spaces, see, for example, [187].
For a later use, we recall that, if a topological space X is Polish, then K.X/ is also
Polish (see [187, Theorem 4.25]). Accordingly, K.C/ is a Polish space. Let X be
a Polish space. A subset A of X is called analytic if there is a Polish space Y and
a continuous function f W Y �! X with f .Y / D A. A subset C of X is called
coanalytic ifXnC is analytic. The class of coanalytic subsets ofX is denoted by…1

1.
We say that a topological space is a standard Borel’s space, if it is a topological space
whose Borel’s structure (but not necessarily the topological structure) is similar to
the one of a Polish space. We will make use of the next result (cf. [187, p. 80]).

Proposition 2.7.1. If X is a separable Banach space, then Ls.X/ is a standard
Borel’s space. }

We recall the following result due to Raymond [290].

Proposition 2.7.2. Let X be a standard Borel space and let Y be a Polish space.
If � � X � Y is a Borel set for the product structure and, for every x 2 X ,
Cx D fy 2 Y such that .x; y/ 2 �g is aK� set (a countable union of compact sets)
in Y , then PX.�/ (the range of the first projection of �) is a Borel set in X . }

Let Z be a topological space. For any subset A of Z, let

d.A/ D fx 2 A such that x is an accumulation point of Ag:

The map, which assigns to each subset A of Z the set d.A/, is called the Cantor-
Bendixson derivative. Obviously, d.A/ is closed. The set R.X/ may be written in
the following form

R.X/ D .� ı d/�1.f0g/: (2.7.3)

Proposition 2.7.3. (i) The topology ofK.C/ is generated by two families of open
sets in K.C/:

T 1 D fK 2 K.C/ such that K � U g and T 2 D fK 2 K.C/ such that K
\
U ¤ ;g

for any open set U in C.
(ii) The Borel structure of K.C/ is generated by each of these two families.

(iii) The Cantor-Bendixson derivative d W K.C/ �! K.C/ is a Borel map. }
The following results may be found in [227].

Lemma 2.7.1. 
 WD f.K; �/ 2 K.C/ � C such that � 2 Kg is a closed set in
K.C/ � C. }
Proof. Let .K0; �0/ … 
. Then, there exist two open sets U and V , such that K0 �
U , �0 2 V and U

T
V D ;. Hence, fK 2 K.C/ such that K � U g � V is

open in K.C/ � C, contains .K0; �0/ and does not intersect 
 (because
SfK 2
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K.C/ such that K � U gTV D ;). So, .K.C/� C/n
 is open and therefore, 
 is
closed. Q.E.D.

Let  W Ls.X/ �! K.C/, and let U be an open set in C. Let PLs .X/ W Ls.X/ �
U �! Ls.X/ be the projection and let �U; WD f.T; �/ 2 L.X/�U such that � 2
 .T /g. Note that

PL.X/.�U; / D fT 2 L.X/ W 9� 2 U such that � 2  .T /g
D fT 2 L.X/ such that  .T /

\
U ¤ ;g:

For every T 2 L.X/, we have

 .T /
\
U D f� 2 U such that � 2  .T /g

D f� 2 U such that .T; �/ 2 �U; g: (2.7.4)

Lemma 2.7.2. Let  W Ls.X/ �! K.C/. Then,  is a Borel map if, and only if,

 WD f.T; �/ 2 L.X/ � C such that � 2  .T /g is a Borel set in Ls.X/ � C. }
Proof. Let  W Ls.X/ �! K.C/ be a Borel map. Then,  � I W Ls.X/ � C �!
K.C/�C, . �I /.T; �/ D . .T /; �/, is also a Borel map, and we have
 D . �
I /�1.f.K; �/ 2 K.C/ � C such that � 2 Kg/. Accordingly,  being Borel, implies
that 
 is a Borel set (see Lemma 2.7.1). To prove the converse, it is sufficient, by
Proposition 2.7.3 .ii/, to show that  �1.fK 2 K.C/ such that K

T
U ¤ ;g/ is a

Borel set in Ls.X/, for every open set U in C. Since every open set in C is a K�

set, so is f� 2 U such that .T; �/ 2 �U; g (see Eq. (2.7.4)). Moreover, for every
open set U in C, we have �U; D 
 

T
.Ls.X/ � U/. Since 
 is a Borel set (by

hypothesis) and Ls.X/ � U is open, it follows that �U; is Borel. Now, the use of
Proposition 2.7.2 achieves the proof. Q.E.D.

Let n 2 Z, and set ˆn.X/ D fU 2 ˆb.X/ such that i.U / D ng.

Lemma 2.7.3. Let A 2 L.X/ be a fixed operator satisfying i.A/ D �n, where
n 2 Z. Then, ˆn.X/ D fT 2 L.X/ such that AT 2 ˆ0.X/g, where ˆ0.X/ is the
set ˆn.X/ with n D 0. }
Proof. To prove this, let us first observe that, according to Atkinson’s theorem, we
have ˆn.X/ � fT 2 L.X/ such that AT 2 ˆ0.X/g. Now, let T 2 L.X/ be such
that AT 2 ˆ0.X/ and considerB 2 L.X/ such that BA D ICF , where F 2 F0.X/
with i.B/ D �i.A/ D n and BAT D T C FT (B exists because A 2 ˆb.X/). Since
AT 2 ˆ0.X/ and B 2 ˆb.X/, we have T 2 ˆb.X/, and i.T / D i.BAT/ D
i.B/C i.AT/ D n. This shows that T 2 ˆn.X/. Q.E.D.
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2.8 Baire Measurable Functions

Let X be a topological space, and let K.X/ be the family of all nonempty compact
subsets of X . The topology on K.X/ is generated by the sets of the form fK 2
K.X/ such that K � U g and fK 2 K.X/ such that K

T
U ¤ ;g, U being open

in X . It is called the Vietoris topology [187]. We recall that, for a metric space X ,
the Vietoris topology is induced by the Hausdorff metric on K.X/ [187]. Let M be
the set of all meager subsets of a topological space X . We say that A, B � X are
equal modulo M, A Š B , if the symmetric difference A4 B D .AnB/T.BnA/
belongs to M. This defines an equivalence relation that respects complementation,
countable unions, and intersections. Let X and Y be topological spaces. A function
f W X �! Y is Baire measurable if, for any open subset B of Y , the inverse image
of B , f �1.B/, satisfies f �1.B/ Š A for some open set A � X .

Theorem 2.8.1 ([187, Theorem 8.38]). Let X and Y be two topological spaces
and let f W X �! Y be Baire measurable. If Y is second countable, there is a
set G � X that is a countable intersection of dense and open sets, such that fjG is
continuous. In particular, if X is Baire, f is continuous on dense Gı set. }

Let T denote the unit circle of C. For U � Cnf0g, we define U 1 (a subset of T)
by

U 1 D
�

z

jzj such that z 2 U
�

:

We recall some results about Baire measurable functions. These results can be
found in [228].

Lemma 2.8.1. Let ' be a homomorphism from R into T such that ' ¤ 1. If V is a
nonempty open subset of T, then '�1.V / is non-meager. }
Proof. From Theorem 2.2.5, it follows that '.R/ is dense in T. Since T is separable,
there is a sequence .tn/n of R such that f'.tn/ such that n 2 Ng D T. Thus, we can
write T D S

n2N '.tn/V . However, T is compact. So, there exists m 2 N such that
T D S

1�j�m '.tj /V and consequently, R D '�1.T/ D S
1�j�m '�1.'.tj /V /.

This implies that there exists j 2 N with 1 � j � m such that '�1.'.tj /V / is non-
meager. Nevertheless, '�1.'.tj /V / D ft 2 R such that '.t/ 2 '.tj /V g D ft 2
R such that '.t � tj / 2 V g D tj C '�1.V /. Accordingly, '�1.V / is non-meager.

Q.E.D.

Lemma 2.8.2. Let ' be a homomorphism from R into T, and let V be a nonempty
open subset of T. If ' is not continuous, then '�1.V / is dense in R. }
Proof. Since ' is not continuous, by applying Theorem 2.2.5, we deduce that the
image of each interval of R is dense in T. So, if a 2 R, then for all " > 0,
'.�a � "; aC "Œ/ D T. Therefore, there exists t 2�a � "; aC "Œ such that '.t/ 2 V .

Q.E.D.
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Lemma 2.8.3. Assume that ' is a discontinuous homomorphism from R into T. If
U and V are nonempty open subsets of R and T, respectively, then '�1.V /

T
U is

non-meager. }
Proof. Since T is a topological group with unit 1, there exists a nonempty open
subset V 0 of V and a neighborhood V1 of 1 in T such that V �1

1 V 0 � V . Moreover,
Lemma 2.8.2 implies that there exists a sequence .an/n � '�1.V1/ such that the set
fa0; a1; : : : ; an; : : :g is dense in R. This leads to R D S

n2N.an C U/ and therefore,
the use of Lemma 2.8.1 shows that '�1.V 0/ D S

n2NŒ'�1.V 0/
T
.an C U/� is non-

meager. Now, by using the fact that a countable union of meager sets is also meager,
we infer that there exists n 2 N such that '�1.V 0/

T
.an C U/ is non-meager. Note

that we have

'�1.V 0/
\
.an C U/ D ft 2 an C U such that '.t/ 2 V 0g

D ft C an; t 2 U such that '.an/'.t/ 2 V 0g:

Now, making use of the inclusion V �1
1 V 0 � V , we can write '�1.V 0/

T

.an C U/ � an C ft 2 U such that '.t/ 2 .'.an//
�1V 0g. Hence, the set

ft 2 U such that '.t/ 2 V g D U
T
'�1.V / is non-meager. Q.E.D.

Theorem 2.8.2. Let � W R �! K.T/ be a Baire measurable function and let ' be
a homomorphism from R into T. Assume that '.t/ 2 �.t/ for all t 2 R, and that
ft 2 R such that �.t/ ¤ Tg is non-meager. Then, '.:/ is continuous. }
Proof. Since � is Baire measurable, by using Theorem 2.8.1, there exists a meager
subset M of R such that �jRnM is continuous. Let t0 2 RnM such that �.t0/ ¤ T

(such a real exists by hypothesis). Since �.t0/ 2 K.T/ and since T is a regular
topological space, there exist two open subsets U and V ¤ ; of T such that �.t0/ �
U and U

T
V D ;. However, fK 2 K.T/ such that K � U g is an open subset of

K.T/, so by the continuity of �jRnM , there exists ˛ > 0 such that �.t/ � U for all
t 2�t0 � ˛; t0 C ˛Œ

T
.RnM/. Accordingly, for all t 2�t0 � ˛; t0 C ˛Œ

T
.RnM/, we

have �.t/
T
V D ;. Thus, '.t/ … V . Hence, the set '�1.V /

T
�t0 � ˛; t0 C ˛Œ is

contained in M and therefore, it is meager. So, according to Lemma 2.8.3, '.:/ is
necessarily continuous. Q.E.D.

We end this section by the following elementary lemma of which we omit the
proof.

Lemma 2.8.4. Let X be a Banach space, A 2 L.X/, and let Y be a A-invariant
closed subspace of X . Then, �1.A/ � �1.AjY /, where �1.:/ denotes the
unbounded connected component of �.:/. If 0 2 �1.A/, then �1.AjY / � �1.A/,
where

�1.A/ WD
�
�

j�j such that � 2 �.A/
�

:

}
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2.9 Banach Module

In this section, we recall some definitions and we give some lemmas which will be
needed in the sequel.

Definition 2.9.1.

(i) Let H be a Banach space. We say that Banach subalgebra M of L.H/ is
nondegenerate, if the linear subspace ofH generated by the elements Mu, with
M 2 M and u 2 H , is dense in H .

(ii) An approximate unit in a Banach algebra M � L.H/ is a net fJngn such that
kJnk � C for a constant C and all n and kMJn �Mk D 0, for all M 2 M.

(iii) A Banach module is a couple .H;M/ consisting of a Banach space H and a
nondegenerate Banach subalgebra M of L.H/which has an approximate unit.
If H is a Hilbert space, we say that H is a Hilbert module. }

The distinguished subalgebra M will be called multiplier algebra of H and,
when required by the clarity of the presentation, we will denote it M.H/ (see,
for example, [112, p. 404]). A rigged Hilbert space is a pair .H;K/ where H is a
Hilbert space, and K is a dense subspace, such that K is given a topological vector
space structure, for which the inclusion map i is continuous. The specific triple
.K;H;K�/ is often called the “Gelfand triple.”

Definition 2.9.2. A couple .K;H/, consisting of a Hilbert moduleH and a Hilbert
space K such that K � H continuously and densely, will be called a Friedrichs
module. If M.H/ � K.K;H/, we say that .K;H/ is a compact Friedrichs
module. }

In the context of this definition, we always identify H with its adjoint space,
which gives us a Gelfand triple K � H � K�. If .K;H/ is a compact Friedrichs
module then, each operator M from M.H/ can be extended to a compact operator
M W H �! K�, and we will have M.H/ � K.K;H/

T
K.H;K�/.

Definition 2.9.3. Let H and K be Banach spaces.

(i) If K is a Banach module, we define Bl
0.H;K/ as the closed linear subspace

norm generated by the operators MT with T 2 L.H;K/ and M 2 M.K/.
(ii) IfH is a Banach module, then one can similarly define Br

0 .H;K/ as the closed
linear subspace norm generated by the operators TM with T 2 L.H;K/ and
M 2 M.H/. We say that an operator in Bl

0.H;K/ (resp. Br
0 .H;K/) is left

(resp. right) vanishes at infinity. }
Definition 2.9.4. Let H and K be Banach modules and let S 2 L.H;K/. We say
that S is left decay preserving if, for each M 2 M.H/, we have SM 2 Bl

0.H;K/.
We say that S is right decay preserving if, for each M 2 M.K/, we have
MS 2 Br

0 .H;K/. We say that S is decay preserving, if S is left and right decay
preserving. }
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We denote these classes of operators by Bl
q.H;K/, B

r
q .H;K/, and Bq.H;K/.

These classes represent closed subspaces of L.H;K/. The following theorem
follows from the Cohen–Hewitt theorem [112, V-9.2].

Theorem 2.9.1. Let H be a Banach space, let K be a Banach module, and let
S 2 L.H;K/. Then S 2 Bl

0.H;K/ if, and only if, S D MT for some M 2 M.K/

and T 2 L.H;K/. }
Let .K;H/ be a Friedrichs couple and let K � H � K� be the Gelfand triple
associated with it. To an operator S 2 L.K;K�/, we associate an operator OS
acting in H according to the rules D. OS/ D S�1.H/ and OS D SjD. OS/

. Due to the

identification K�� D K, the operator S� is an element of L.K;K�/. So, cS� makes
sense.

Lemma 2.9.1 ([115, Lemma 2.4]). If S � z W K �! K� is bijective for some
z 2 C, then OS is a closed, densely defined operator, and we have . OS/� D cS� and
z 2 �. OS/. Moreover, the domains D. OS/ and D. OS�/ are dense subspaces of K. }
Remark 2.9.1. Let .K;H/ be a compact Friedrich module. It is easy to prove that,
if R 2 Bl

0.H/ WD Bl
0.H;H/ and RH � K, then R 2 K.H/. }

Proposition 2.9.1 ([115, Proposition 1.2]). The space Bl
q has the following prop-

erties:

(i) if S 2 Bl
q.H;K/ and T 2 Bl

q.L;K/, then ST 2 Bl
q.L;K/, and

(ii) if H and K are reflexive and S 2 Bl
q.H;K/, then S� 2 Bl

q.K
�;H�/. }

If A and B are closed operators acting in a Banach space H , and if there is
z 2 �.A/

T
�.B/ such that .A � z/�1 � .B � z/�1 is a compact operator, then we

say that B is a compact perturbation of A.

2.10 Measure of Noncompactness

The notion of measure of noncompactness turned out to be a useful tool in some
topological problems, in functional analysis, and in operator theory (see [18, 47, 97,
253, 289]).

2.10.1 Measure of Noncompactness of a Bounded Subset

In order to recall the measure of noncompactness, let .X; k:k/ be an infinite-
dimensional Banach space. We denote by MX the family of all nonempty and
bounded subsets of X , while NX denotes its subfamily consisting of all relatively
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compact sets. Moreover, let us denote the convex hull of a set A � X by conv.A/.
Let us recall the following definition.

Definition 2.10.1 ([47]). A mapping � W MX �! Œ0;C1Œ is said to be a measure
of noncompactness in the space X , if it satisfies the following conditions:

(i) The family Ker.�/ WD fD 2 MX such that �.D/ D 0g is nonempty, and
Ker.�/ � NX .

For A;B 2 MX , we have the following
(ii) If A � B , then �.A/ � �.B/.

(iii) �.A/ D �.A/.
(iv) �.conv.A// D �.A/.
(v) �.�AC .1 � �/B/ � ��.A/C .1 � �/�.B/; for all � 2 Œ0; 1�.

(vi) If .An/n2N is a sequence of sets from MX such that AnC1 � An; An D
An .n D 1; 2; : : :/ and lim

n!C1�.An/ D 0, then A1 WD T1
nD1 An is nonempty

and A1 2 Ker.�/. }
The family Ker.�/, described in Definition 2.10.1 .i/, is called the kernel of the

measure of noncompactness �.

Definition 2.10.2. A measure of noncompactness � is said to be sublinear if, for
all A;B 2 MX , it satisfies the two following conditions:

(i) �.�A/ D j�j�.A/ for � 2 R (� is said to be homogenous), and
(ii) �.AC B/ � �.A/C �.B/ (� is said to be subadditive). }
Definition 2.10.3. A measure of noncompactness � is referred to as a measure with
maximum property if max.�.A/; �.B// D �.A

S
B/. }

Definition 2.10.4. A measure of noncompactness � is said to be regular if
Ker.�/ D NX , sublinear and has a maximum property. }

For A 2 MX , the most important examples of measures of noncompactness
[253] are

• Kuratowski measure of noncompactness

�.A/ D inff" > 0 W A may be covered by a finite number of sets of diameter � "g:

• Hausdorff measure of noncompactness

�.A/ D inff" > 0 W Amay be covered by a finite number of open balls of radius � "g:

Note that these measures � and � are regular. The relations between these measures
are given by the following inequalities, which were obtained by Danes [87]: �.A/ �
�.A/ � 2�.A/, for any A 2 MX . The following proposition gives some frequently
used properties of the Kuratowski’s measure of noncompactness.

Proposition 2.10.1. Let A and A0 be two bounded subsets of X . Then, we have the
following properties.
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(i) �.A/ D 0 if, and only if, A is relatively compact.
(ii) If A � A0, then �.A/ � �.A0/.

(iii) �.AC A0/ � �.A/C �.A0/.
(iv) For every ˛ 2 C, �.˛A/ D j˛j �.A/. }

Let us notice that, throughout the book, we are working on two spaces, for
example X and Y with their respective measures �X.:/ and �Y .:/. However, and
in order to simplify our reasoning, �X.:/ and �Y .:/ will be simply called �.:/. Of
course, the reader will be able to link �.:/ either to �X.:/ or to �Y .:/.

Definition 2.10.5. LetX and Y be Banach spaces, let �.:/ be a Kuratowski measure
of noncompactness, and let S , A be two linear operators from X into Y bounded on
its domains such that D.A/ � D.S/. The operator S is called � -relatively bounded
with respect to A .or A-� -bounded/, if there exist constants aS � 0 and bS � 0,
such that

�.S.D// � aS�.D/C bS�.A.D//; (2.10.1)

where D is a bounded subset of D.A/. The infimum of the constants bS which
satisfy (2.10.1) for some aS � 0 is called the A-� -bound of S . }

In general, the sum of closable or closed operators is not closable or closed,
respectively. However, we have the following.

Theorem 2.10.1. If S is A-� -bounded with a bound< 1 and if S and A are closed,
then AC S is closed. }
Proof. S is A-� -bounded with a bound < 1, implies that there exist aS � 0 and
bS � 0 such that bS < 1 and �.S.D// � aS�.D/CbS�.A.D//; D � D.A/. Then,

�..S C A/.D// � �aS�.D/C .1 � bS/�.A.D//: (2.10.2)

Let .xn/n � D.A/ such that xn ! x and .S C A/xn ! y. Then, x 2 D.A/ and
.S CA/x D y. Indeed, xn ! x and Axn ! y implies that fxng and f.S CA/.xn/g
are relatively compact and hence, �.fxng/ D �.f.S C A/xng/ D 0. Then, by using
Eq. (2.10.2), we get �.Afxng/ D 0, and there exists a subsequence .xnk / such that
Axnk ! ˛. Since A is closed and xnk ! x, it follows that x 2 D.A/, and Ax D ˛.
Since S is closed and Sxnk ! y � ˛, then x 2 D.A/ and .S C A/x D y. Q.E.D.

Lemma 2.10.1. If S is A-� -bounded with a bound ı< 1, then S is .A C S/-� -
bounded with a bound < ı

1�ı . }
Proof. S is A-� -bounded with a bound ı< 1, implies that there exist aS and bS � 0

such that ı � bS < 1 and, for D � D.A/, we get

�.S.D// � aS�.D/C bS�.A.D//;

� aS�.D/C bS�..S C A � S/.D//;
� aS�.D/C bS�..S C A/.D//C bS�.S.D//:
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Since bS < 1, we obtain �.S.D// � aS
1�bS �.D/C bS

1�bS �..S C A/.D//. Hence, S

is .AC S/-� -bounded with an .AC S/-bound < ı
1�ı . Q.E.D.

2.10.2 Measure of Noncompactness of an Operator

2.10.2.1 Kuratowski and Hausdorff Measures of Noncompactness

Definition 2.10.6 ([204]).

(i) Let T W D.T / � X �! X be a continuous operator and let �.:/ be the
Kuratowski measure of noncompactness in X . Let k � 0. T is said to be k-set-
contraction if, for any bounded subset A of D.T /, T .A/ is a bounded subset
of X and �.T .A// � k�.A/. T is said to be condensing if, for any bounded
subset A of D.T / such that �.A/ > 0, T .A/ is a bounded subset of X and
�.T .A// < �.A/.

(ii) Let T W D.T / � X �! X be a continuous operator, �.:/ being the Hausdorff
measure of noncompactness in X , and k � 0. T is said to be k-ball-contraction
if, for any bounded subset A of D.T /, T .A/ is a bounded subset of X and
�.T .A// � k�.A/. }

Remark 2.10.1. It is well known that:

(i) If k < 1, then every k-set-contraction operator is condensing.
(ii) Every condensing operator is 1-set-contraction. }

Let T2L.X/. We define �.T /, by �.T /WD inffk such that T is k-set-contractiong,
and �.T /, by �.T / WD inffk such that T is k-ball-contractiong.

In the following lemma, we give some important properties of �.T / and �.T /.

Lemma 2.10.2 ([37, 102]). Let X be a Banach space and T 2 L.X/. We have the
following:

(i) 1
2
�.T / � �.T / � 2�.T /.

(ii) �.T / D 0 if, and only if, �.T / D 0 if, and only if, T is compact.
(iii) If T; S 2 L.X/, then �.ST/ � �.S/�.T / and �.ST/ � �.S/�.T /.
(iv) If K 2 K.X/, then �.T CK/ D �.T / and �.T CK/ D �.T /.
(v) �.T �/ � �.T / and �.T / � �.T �/, where T � denotes the dual operator of T .

(vi) If B is a bounded subset of X , then �.T .B// � �.T /�.B/. }

2.10.2.2 Measure of Noncompactness in a Cartesian Product

In [47, Theorem 3.3.2], the authors construct the measures of noncompactness in a
cartesian product of a given finite collection of Banach spaces. More precisely, we
have:

Lemma 2.10.3 ([47, Theorem 3.3.2]). Let E1; : : : ; En be a finite collection
of Banach spaces, and let �1; : : : ; �n be the measures of noncompactness in
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E1; : : : ; En, respectively. Assume that the function F W .Œ0;C1Œ/n �! Œ0;C1Œ is
convex and that F.x1; : : : ; xn/ D 0 if, and only if, xi D 0 for i D 1; : : : ; n. Then,
�.x/ D F.�1.1.x//; : : : ; �n.n.x/// defines a measure of noncompactness in
E1 �E2 � : : : �En, where i .x/ denotes the natural projection of x into Ei . }
According to the previous lemma (Lemma 2.10.3), for � being a measure of
noncompactness in a Banach space X , for all A 2 MXn , the quantity �.A/ D
max.�.1.A//; : : : ; �.n.A/// defines a measure of noncompactness in Xn. For
T 2 L.Xn/, let us consider the measure of noncompactness of T , denoted by �.T /,

�.T / D sup

�
�.T .A//

�.A/
such that A 2 MXn and �.A/ > 0

�

:

We start with the following preliminary result which is fundamental for our
purpose.

Proposition 2.10.2. Let X be a Banach space, and let L D �
Lij
�
1�i;j�n be

a matrix operator, where Lij 2 L.X/, 8 1 � i; j � n. Then, �.L/ �
max1�i�n

�Pn
jD1 �.Lij/

	
. }

Proof. For all A 2 MXn , we have A � 1.A/ � 2.A/ � : : : � n.A/. Hence,
L.A/ � L.1.A/ � 2.A/ � : : : � n.A//. If we denote by Ai WD i .A/; i D
1; : : : ; n, then

�.L/ D sup

�
�.L.A//

�.A/
such that A 2 MXn and �.A/ > 0

�

� sup

8
<

:

�.L
�
Aj
�
1�j�n/

max
1�j�n �.Aj /

such that �.Aj / > 0; 8j D 1; : : : ; n

9
=

;

� sup

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

max
1�i�n �

0

@
nX

jD1
LijAj

1

A

max
1�j�n �.Aj /

such that �.Aj / > 0; 8j D 1; : : : ; n

9
>>>>>>=

>>>>>>;

� sup

8
<

:
max
1�i�n

nX

jD1

�.LijAj /

�.Aj /
such that �.Aj / > 0; 8j D 1; : : : ; n

9
=

;

� max
1�i�n

0

@
nX

jD1
�.Lij/

1

A :

Q.E.D.
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2.10.2.3 Measure of Non-strict Singularity

We end this part by the following definition concerning the measure of non-strict
singularity (see [285]). The measure of non-strict singularity of A 2 L.X; Y / is
defined by q.A/ D �ŒA.BX/�. It is proved in [230] that

(i) q.A/ � kAk,
(ii) q.A/ D 0 if, and only if, A 2 K.X; Y /, and

(iii) q.ACK/ D q.A/, for all K 2 K.X; Y /.
Definition 2.10.7. For A 2 L.X; Y /, set gM .A/ D inf

N�M q.AjN /, and g.A/ D
sup
M�X

gM .A/, where M and N represent two infinite-dimensional subspaces of X ,

and where AjN denotes the restriction of A to the subspace N . }
The semi-norm g is a measure of non-strict singularity which was introduced by

Schechter in [299]. We recall the following result established in [289].

Proposition 2.10.3. For A 2 L.X; Y /, we have the following:

(i) A 2 S.X; Y / if, and only if, g.A/ D 0.
(ii) A 2 S.X; Y / if, and only if, g.AC T / D g.T /, for all T 2 L.X; Y /.

(iii) If Z is a Banach space and B 2 L.Y;Z/, then g.BA/ � g.B/g.A/. }
We can easily notice the following relationship between the measure of non-strict

singularity g and the measure of noncompactness q.

Proposition 2.10.4. For A 2 L.X; Y /, we have g.A/ � q.A/. }
Proof. This result follows immediately from [289, Theorem 1], [299, Theo-
rem 2.10] and [230, Theorem 3.1]. Q.E.D.

2.11 Measure of Weak Noncompactness

The measure of weak noncompactness has many applications in topology, functional
analysis, the theory of differential equations and integral equations (see, for
example, [37, 38, 46, 104, 132, 207]). This notion was introduced by De Blasi [90].
In order to recall this notion, we denote by X a Banach space, and by WX the
subfamily of MX consisting of all relatively weakly compact sets. There exists an
axiomatic approach in defining the measure of weak noncompactness [49]. Let us
recall the following definition:

Definition 2.11.1 ([48]). Let X be a Banach space. A function � W MX �!
Œ0;C1Œ is said to be a measure of weak noncompactness in X if, for all A;B 2
MX , it satisfies the following conditions:

(i) �.A/ D 0 ” A 2 WX .
(ii) A � B H) �.A/ � �.B/.
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(iii) �.conv.A// D �.A/.
(iv) �.A

S
B/ D maxf�.A/; �.B/g.

(v) �.AC B/ � �.A/C �.B/.
(vi) �.�A/ D j�j�.A/; � 2 R. }

A measure of weak noncompactness in the above sense is said to be regular.
Let us recall that each measure of weak noncompactness also satisfies the Cantor
intersection condition (see [49, Theorem 5]): If Xn 2 WX , Xn D Xn and XnC1 �
Xn for n D 1; 2; : : : and, if lim

n!C1�.Xn/ D 0, then X1 D TC1
nD1 Xn ¤ ;. As an

example of a regular measure in a Banach space X , we have the measure of weak
noncompactness defined by De Blasi in the following formula:

!.A/ D infft > 0 W 9 C 2 WX such thatA � CCtBXg; 8A 2 MX : (2.11.1)

This function satisfies several useful properties [90]. For example, !.BX/ D 1

whenever X is nonreflexive, and !.BX/ D 0 otherwise. However, for any measure
of weak noncompactness � and for every A 2 MX , the following inequality holds
(see [49, Theorem 4]):

�.A/ � �.BX/!.A/: (2.11.2)

In order to define another example of measure of weak noncompactness (cf.
[200]), let .xn/ be a sequence in X . We say that .yn/ is a sequence of successive
convex combinations (in short scc) for .xn/, if there exists a sequence of integers
0 D p1 < p2 < : : : such that yn 2 convfxigpnC1

iDpnC1 for each n. Similarly,
the vectors u1, u2 are said to be a pair of scc for .xn/, if u1 2 convfxigpiD1
and u2 2 convfxig1

iDpC1 for some integer p � 1. The notion of scc was used
in [201] in order to define a measure of weak noncompactness � which is a
counterpart for the weak topology of the separation measure of noncompactness
(see [18, 42]). By the convex separation of .xn/, we mean the number csep.xn/ D
inffku1 � u2k such that u1; u2 is a pair of scc for .xn/g. For each A 2 MX , we put

�.A/ D supfcsep.xn/ such that .xn/ � conv.A/g: (2.11.3)

The proof of the following theorem may be found in [201].

Theorem 2.11.1. Let X be a Banach space and A 2 MX . Then,

�.A/ D supflim
n

lim
k
Fn.xk/ � lim

k
lim
n
Fn.xk/ W .xn/ � conv.A/;

.Fn/ � BX� and the limits existg
D sup dist.x��; convxn/;

where the second supremum is taken over all sequences .xn/n in conv.A/ and all
w�-cluster points x�� 2 X�� of .xn/n. }
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From Theorem 2.11.1 and [38, Corollary 5], we deduce that � is not equivalent to
!, even though �.A/ � !.A/, for all A 2 MX . Moreover, these measures coincide
in the space c0.X/ WD f.xi /i2N� ; xi 2 X; 8i 2 N

� such that lim
i!C1 kxik D 0g

endowed by the norm k.xi /k D maxfkxik such that i 2 N
�g (see [201]). In the

following theorem, we recall the relationship between ! and � in the Lebesgue
space L1.�/.

Theorem 2.11.2 ([201, Theorem 2.5]). Let � be a finite measure, andA 2 ML1.�/.
Then �.A/ D 2!.A/. }

2.12 Graph Measures

Let X be a Banach space, and T 2 C.X/. Similarly to the notion of the graph norm
k:kT in XT WD .D.T /; k:kT /, we define a new measure of noncompactness and
weak noncompactness called, respectively, a graph measure of noncompactness and

a graph measure of weak noncompactness. The symbol A (resp. A
T

) stands for the

closure of A in X (resp. in XT ), while the symbol A
!

(resp. A
!T

) stands for the
weak closure of A in X (resp. in XT ).

Lemma 2.12.1. Let X be a Banach space, T 2 C.X/, and let A � XT .

(i) If x 2 AT ; then x 2 A and Tx 2 T .A/.
(ii) If A is compact in XT ; then A is compact in X . }
Proof.

(i) Let x 2 A
T

, then there exists .xp/p � A such that lim
p!C1 kxp � xkT D 0.

Hence, lim
p!C1 kxp � xk D 0, and lim

p!C1 kTxp � Txk D 0, which implies that

x 2 A and Tx 2 T .A/.
(ii) Let .xn/n � A

T
. Then, there exists x�.n/ � A

T
such that x�.n/ ! x in XT

(when n ! C1). Hence, x�.n/ converges to x in X . Q.E.D.

Remark 2.12.1. Notice that MXT � MX . Indeed, let A 2 MXT . Then, there exists
M � 0 such that, for all x 2 A; kxkXT D kxk C kTxk � M . Hence, kxk � M . }
Lemma 2.12.2. Let X be a Banach space and T 2 C.X/. For A in MX (resp. A
in MXT ). Then,

(i) X� CX� ı T � .XT /
�.

(ii) If x 2 A!T , then x 2 A! and Tx 2 T .A/! .
(iii) Moreover, if we suppose that X� C X� ı T is dense in .XT /�, then for any

A 2 MXT , we have A; T .A/ 2 WX H) A 2 WXT .
(iv) If A is weakly compact in XT ; then A is weakly compact in X . }
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Proof.

(i) Let f1; f2 2 X� and f D f1 C f2 ı T . Then, f is linear on D.T / and, for all
x 2 D.T /, the estimate

jf .x/j � jf1.x/j C jf2 ı Txj
� kf1kkxk C kf2kkTxk
� max.kf1k; kf2k/kxkT

leads to f 2 .XT /�.

(ii) For x 2 A!T , there exists a net .x˛/˛ � A such that, for all f 2 X�
T ; f .x˛/ !

f .x/, when ˛ ! C1. By .i/, for all f 2 X�; f .x˛/ ! f .x/ and f ı
T .x˛/ ! f ı Tx, when ˛ ! C1. So, x 2 A! and Tx 2 T .A/! .

(iii) Let .xn/n � A, then by .ii/; .xn/n � A
!

and .Txn/n � TA
!

. SinceA
!

and TA
!

are weakly compact in X , then there exists a subsequence .x�.n//n such that
x�.n/ * x in X and Tx�.n/ * y in X , when n ! C1. We claim that x�.n/ *
x in XT when n ! C1. To do this, let f 2 .XT /

�. Since X� C X� ı T is
dense in .XT /�, then there exists .fm D f1;m C f2;m ı T /m � X� C X� ı T
such that kf1;m C f2;m ı T � f k.XT /� ! 0 when m ! C1. For all m 2 N,
we have f1;m.x�.n// ! f1;m.x/ and f2;m ı Tx�.n/ ! f2;m.y/, when n ! C1.
Moreover,

jf .x�.n//� f .x/j � jf .x�.n//� fm.x�.n//j C jfm.x�.n//� fm.x/j C jfm.x/� f .x/j
� kf � fmk.XT /� kx�.n/kT C jfm.x�.n//

� fm.x/j C kf � fmk.XT /� kxkT :

Since x�.n/ * x and Tx�.n/ * y, then there exists M > 0 such that
max.kx�.n/kT ; kxkT / � M . Let " > 0. There exists m0 2 N such that, for
m � m0, we have kf �fmk.XT /� � 1

3M
". So, form � m0, we have jf .x�.n//�

f .x/j � 2
3
"Cjfm.x�.n//�fm.x/j. Since fm.x�.n// ! fm.x/ when n ! C1,

then there exists n0 2 N such that, for n � n0, jfm.x�.n//�fm.x/j � "
3
. Hence,

for m � m0 and n � n0, we have jf .x�.n// � f .x/j � 2
3
" C 1

3
" D ". Thus,

f .x�.n// ! f .x/ when n ! C1, which proves our claim.

(iv) Let .xn/n � A
!T

. Then, there exists x�.n/ * x in XT when n ! C1. Hence,
for all f 2 .XT /�, f .x�.n// ! f .x/. The result follows from .i/. Q.E.D.

Remark 2.12.2. If XT is reflexive, then X� C X� ı T is dense in .XT /�. Indeed,
let x�� 2 .XT /

�� such that, for all f �
1 ; f

�
2 2 X�; x��.f �

1 C f �
2 ı T / D 0. Since

x�� 2 .XT /
��, then x�� D Jx with x 2 XT , where J is the canonical injection

betweenX andX��. So, x��.f �
1 Cf �

2 ıT / D 0 if, and only if, f �
1 .x/Cf �

2 ıTx D 0.
From [302, Theorem 3:1], there exists f �

1 ; f
�
2 2 X� such that f �

1 .x/ D kxk and
f �
2 ıTx D kTxk. This leads to kxkT D 0 and so, x D 0. By applying [302, Corollary
3:2], we get X� CX� ı T is dense in .XT /�. }
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2.12.1 Graph Measure of Noncompactness

Let X be a Banach space, let T be in C.X/, and let � be a measure of non-
compactness in X . We define H� the set of all T 2 C.X/ satisfying: for all An
be bounded and closed in XT such that AnC1 � An, if lim

n!C1 �.An/ D 0 and

lim
n!C1 �.T .An// D 0. Then,

TC1
nD0 An ¤ ;. The set H� is nonempty. Indeed, let

T be injective in C.X/ such that T .F / is closed in X for all F being closed in
XT . Let An be bounded and closed in XT satisfying AnC1 � An. Suppose that

lim
n!C1 �.An/ D 0 and lim

n!C1 �.T .An// D 0. Since T .An/ is bounded and closed

in X , then
TC1
nD0 T .An/ ¤ ;. The fact that T is injective, then

TC1
nD0 T .An/ D

T .
TC1
nD0 An/. Hence,

TC1
nD0 An ¤ ;. If T 2 L.X/, then k:kT and k:k are equivalent

and therefore, T 2 H� . Indeed, let An be bounded and closed in XT . Then, An is
bounded and closed in X . Now, if lim

n!C1 �.An/ D 0 and lim
n!C1 �.T .An// D 0,

then
TC1
nD0 An ¤ ;. Now, we are ready to state and prove the following.

Theorem 2.12.1. Let X be a Banach space, let � be a measure of noncompactness
in X and let T be in H� . We define a function �T W MXT �! RC by �T .A/ D
�.A/C�.T .A//, 8A 2 MXT . Assume that � is homogeneous. Then, �T is a measure
of noncompactness in XT called a graph measure of noncompactness associated
with � and T . }
Proof. First, since � is homogeneous, then f0g 2 Ker.�/. Hence, f0g 2 Ker.�T /
and therefore, Ker.�T / ¤ ;. For A 2 MXT , there exists k > 0 such that, for all
x 2 A; kxk C kTxk � k, and T .A/ is a bounded set in X . So, �T is well defined.
Moreover, for all A;B 2 MXT , we have

(i) If �T .A/ D 0, then A and T .A/ are compact in X . Let .xn/n be a sequence

in A
T

. By using Lemma 2.12.1 .i/, .xn/n � A and .Txn/n � T .A/. Hence,
there exists a subsequence .x�.n//n such that x�.n/ ! x and Tx�.n/ ! y (when
n ! C1). Since T 2 C.X/, then Tx D y. Hence, kx�.n/ � xkT D kx�.n/ �
xk C kTx�.n/ � Txk ! 0 .when n ! C1/, which implies that A

T
is compact

in XT .
(ii) IfA � B , then T .A/ � T .B/. Hence, �.A/ � �.B/ and �.T .A// � �.T .B//.

Thus, �T .A/ � �T .B/.

(iii) Since conv.A/
T � conv.A/, then �.conv.A/

T
/ � �.conv.A// D �.A/.

Moreover, A � conv.A/
T

. Then, �.A/ � �.conv.A/
T
/ and therefore, �.A/ D

�.conv.A/
T
/. Since T .A/ � T .conv.A/

T
/, then �.T .A// � �.T .conv.A/

T
//.

Besides, by using Lemma 2.12.1 .i/, T .conv.A/
T
/ � conv.T .A// and

therefore, �.T .conv.A/
T
// � �.T .A//. Thus, �.T .A// D �.T .conv.A/

T
//.

Hence,
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�T .conv.A/
T
/ D �.conv.A/

T
/C �.T .conv.A/

T
//

D �.A/C �.T .A//

D �T .A/:

(iv) Let � 2 Œ0; 1�. Then, we have

�T .�AC .1 � �/B/ D �.�AC .1 � �/B/C �.�T .A/C .1 � �/T .B//
� ��.A/C .1 � �/�.B/C ��.T .A//C .1 � �/�.T .B//
� ��T .A/C .1 � �/�T .B/:

(v) LetAn be a bounded closed subset inXT such thatAnC1 � An for n D 1; 2; : : :

and lim
n!C1 �T .An/ D 0. Since T 2 H� , then

TC1
nD0 An ¤ ;. Q.E.D

2.12.2 Graph Measure of Weak Noncompactness

Let X be a Banach space, let T be in C.X/, and let � be a measure of weak
noncompactness inX . We define H� as the set of all T 2 C.X/ satisfying: allAn are
bounded and weakly closed in XT such that AnC1 � An, if lim

n!C1�.An/ D 0 and

lim
n!C1�.T .An// D 0. Then,

TC1
nD0 An ¤ ;. The set H� is nonempty. Indeed, let T

be injective in C.X/ such that T .F / is weakly closed in X for all F being weakly
closed in XT . Let An be bounded and weakly closed in XT such that AnC1 � An.
Suppose that lim

n!C1�.An/ D 0 and lim
n!C1�.T .An// D 0. Since T .An/ is bounded

and weakly closed inX , then
TC1
nD0 T .An/ ¤ ;. Moreover, since T is injective, then

TC1
nD0 T .An/ D T .

TC1
nD0 An/ and therefore,

TC1
nD0 An ¤ ;. Now, we are ready to

state and prove the following.

Theorem 2.12.2. Let X be a Banach space, let � be a measure of weak noncom-
pactness in X , and let T 2 H�. We define a function �T W MXT �! RC by
�T .A/ D �.A/ C �.T .A//, 8A 2 MXT . Assume that � is homogeneous. If
we suppose that X� C X� ı T is dense in .XT /�, then �T is a measure of weak
noncompactness inXT , called a graph measure of weak noncompactness associated
with � and T . }
Proof. For A 2 MXT , there exists k > 0 such that, for all x 2 A; kxk C kTxk � k,
T .A/ is a bounded set in X . So, �T is well defined. Moreover, for all A;B 2 MXT ,
we have

(i) If �T .A/ D 0, then A
!

and T .A/
!

are weakly compact in X . By applying
Lemma 2.12.2 .iii/, we deduce that A is relatively weakly compact in XT .

(ii) If A � B , then T .A/ � T .B/. Therefore, �.A/ � �.B/ and �.T .A// �
�.T .B//. Thus, �T .A/ � �T .B/.
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(iii) Arguing as in the proof of Theorem 2.12.1, we have

�T .conv.A/
T
/ D �.conv.A/

T
/C �.T .conv.A//

T
/

D �.A/C �.T .A//

D �T .A/:

(iv) Let � 2 Œ0; 1�. Then, we have

�T .�AC .1 � �/B/ D �.�AC .1 � �/B/C �.�T .A/C .1 � �/T .B//
� ��.A/C .1 � �/�.B/C ��.T .A//C .1 � �/�.T .B//
� ��T .A/C .1 � �/�T .B/:

(v) Let An be a bounded and weakly closed subset in XT such that AnC1 � An
for n D 1; 2; : : : and lim

n!C1�T .An/ D 0. Then, lim
n!C1�.An/ D 0 and

lim
n!C1�.T .An// D 0 and therefore

TC1
nD0 An ¤ ;, because T 2 H�. Q.E.D.

Remark 2.12.3. Notice that �T is not necessarily a measure with the maximum
property. So, �T is not regular. However, if � is sublinear, then �T is also
sublinear. }

2.12.3 Seminorm Related to Upper Semi-Fredholm
Perturbations

Let X be a Banach space. Given �.:/ the Kuratowski measure of noncompactness,
we define, for T 2 L.X/, the nonnegative quantities associated with T by

ı.T / D inf

�
�.T .A//

�.A/
such that A 2 MX and �.A/ > 0

�

: (2.12.1)

Definition 2.12.1. For T 2 L.X/, we define the nonnegative quantity:

'.T / D supfı.T C S/ such that ı.S/ D 0g: (2.12.2)

}
In what follows, we give some fundamental properties satisfied by '.:/ already

given in [2].

Proposition 2.12.1.

(i) '.T / D 0 if, and only if, T 2 FbC.X/.
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(ii) '.T C S/ D '.S/, for all T 2 FbC.X/.
(iii) '.�T / D j�j'.T /.
(iv) ı.T / � '.T / � �.T /.
(v) '.T / � �.S/ � '.T C S/ � '.T /C �.S/.

(vi) '.T / � kT kFb
C
.X/ � kT kK.X/, where kT kK.X/ D inffkT �

Kk such that K 2 K.X/g and kT kFb
C
.X/ D inffkT � Kk such that K 2

FbC.X/g.
(vii) '.ST/ � '.T /ı.S/, for all S 2 L.X/.

(viii) If '.T / D 0, then, for all S 2 L.X/, '.ST/ D '.TS/ D 0. }
Proof.

(i) It follows immediately from the fact that ı.T / > 0 if, and only if, T 2
ˆbC.X/.

(ii) Due to the fact that for T 2 FbC.X/, ı.S/ D 0 if, and only if, ı.T CS/ D
0.

(iii)–.v/ Follow from the definition of '.:/ and the fact that ı.T / � �.T /.
(vi) Deduction of .ii/ and .iv/.

(vii) Let S , S1 2 L.X/. According to Theorem 2.2.14, we have ı.S1/ D 0

H) ı.SS1/ D 0. Moreover, we have ı.ST C SS1/ D ı.S.T C S1// �
ı.T C S1/ı.S/. Hence,

sup
ı.SS1/D0

ı.ST C SS1/ � sup
ı.S1/D0

ı.T C S1/ı.S/

and therefore, '.ST/ � '.T /ı.S/.
(viii) The fact that FbC.X/ is a two-sided ideal of L.X/ together with .i/ gives

immediately the assertion .viii/. Q.E.D.

Remark 2.12.4. The assertion .viii/ of Proposition 2.12.1 is equivalent to say that
FbC.X/ is a two-sided ideal of L.X/. Moreover by .v/ of Proposition 2.12.1,
j'.T / � '.S/j � �.T � S/ � kT � Sk. This implies that the measure '.:/
is continuous. Hence, it follows from .i/ of Proposition 2.12.1, that FbC.X/ is
closed. }

2.13 Quadratic Forms

Let H be a Hilbert space. One consequence of the Riesz lemma is that, there
is a one-to-one correspondence between bounded quadratic forms and bounded
operators, that is, any sesquilinear map q W H � H �! C which satisfies
jq.';  /j � Mk'kk k is of the form q.';  / D h';A i for some bounded
operator A. As one might expect, the situation is more complicated if one removes
the boundedness restriction. It is the relationship between unbounded forms and
unbounded operators.
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Definition 2.13.1. Let H be a Hilbert space. A quadratic form is a map q W Q.q/�
Q.q/ �! C, where Q.q/ is a dense linear subset ofH called the form domain, such
that q.:;  / is conjugate linear and q.'; :/ is linear for '; 2 Q.q/. If q.';  / D
q. ; '/, then we say that q is symmetric. If q.'; '/ � 0 for all ' 2 Q.q/, then q is
called positive. Moreover, if q.'; '/ � �Mk'k2 for some M , then we say that q is
semi-bounded. }
It is clear that if q is semi-bounded, then it is automatically symmetric, provided
that H is complex.

Definition 2.13.2. Let q be a semi-bounded quadratic form. q is called closed, if
Q.q/ is complete under the norm k kC1 D p

q. ; /C .M C 1/k k2. If q is
closed and ifD � Q.q/ is dense in Q.q/ in the k:kC1 norm, thenD is called a form
core for q. }
Definition 2.13.3. Let H be a Hilbert space. An operator B 2 L.H/ is called
positive if hB'; 'i � 0 for all ' 2 H . We write B � 0 if B is positive and, B � A

if A � B � 0. }
Theorem 2.13.1 ([292, Theorem VIII.15]). If q is a closed semi-bounded
quadratic form, then q is the quadratic form of a unique self-adjoint operator. }
Let us recall the Friedrichs extension theorem.

Theorem 2.13.2 ([292, Theorem X.23]). Let A be a positive symmetric operator
and let q.';  / D h';A i for all '; 2 D.A/. Then, q is a closable quadratic
form, and its closure Oq is the quadratic form of a unique self-adjoint operator OA.
OA represents a positive extension of A, and the lower bound of its spectrum is the

lower bound of q. Moreover, OA is the only self-adjoint extension of A whose domain
is contained in the form domain of Oq. }
Proof. Let h'; iC1 WD q.';  / C h'; i. Then, h:; :iC1 is an inner product on
D.A/. Hence, we can complete D.A/ under h:; :iC1 in order to obtain a Hilbert space
HC1. Clearly, q can be extended to a closed form Oq on HC1. However, in order to
show that Oq is a closed form on H , we must demonstrate that HC1 is a subset of
H . For this purpose, let i W D.A/ �! H be the identity map. Since k'k � k'kC1,
i is bounded and then, it can be extended to a bounded map Oi W HC1 �! H of a
norm less than or equal to one. In order to verify that HC1 � H , we have to show
that Oi is injective. Suppose that Oi.'/ D 0. Then, there exists .'n/n 2 D.A/, so that
k' � 'nkC1 ! 0 and kOi.'n/k D k'nk ! 0. Hence, k'kC1 D lim

n;m!1h'n; 'miC1 D
lim
n!1 lim

m!1.h'm;A'ni C h'm; 'ni/ D 0 since 'n 2 D.A/ and k'mk ! 0, then Oi is

injective. Notice that the proof that Oi is well-defined uses only the positiveness of
q, whereas the proof that Oi is one-to-one uses the hypothesis that q arises from an
operator. Since Oq is closed and symmetric, by using Theorem 2.13.1, then there is
a unique self-adjoint operator OA, so that D. OA/ � Q. Oq/ and Oq.';  / D h'; OA i, if
' 2 Q. Oq/ and  2 D. OA/. Now, let us suppose that ' 2 D.A/. Then, by using the
continuity of Oq, we deduce that hA'; i D Oq.';  / D h'; OA i. Since this holds
for all  2 D. OA/, we conclude that ' 2 D. OA�/ D D. OA/ and OA�' D OA' D A'.
Thus, OA is the extension of A. The same proof shows that, if Ae is any symmetric
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extension of A with D.Ae/ � Q. Oq/, then OA is the extension of Ae . Hence, if Ae is
self-adjoint, then OA D Ae . The easy proof of the statement about the spectrum of A
is left to the reader. Q.E.D.

Theorem 2.13.3 ([292, Theorem VIII]). Let T be a symmetric operator on a
Hilbert space H . Then, the following are equivalent.

(i) T is essentially self-adjoint.
(ii) N.T � ˙ i/ D f0g, where i 2 D �1.

(iii) R.T ˙ i/ are dense. }
Theorem 2.13.4 ([292, Theorem X.37]). Let N be a self-adjoint operator with
N � I . Let A be a symmetric operator with a domain D which is a core for N .
Suppose that

(i) For some c and all ' 2 D, we have kA'k � ckN'k.
(ii) For some d and all ' 2 D, we have jhA';N'i � hN';A'ij � dkN 1

2 'k2.
Then, A is essentially self-adjoint onD, and its closure is essentially self-adjoint on
any other core for N . }

2.14 Schur Test

Let X and Y be two measurable spaces .such as Rn/. Let T be an integral operator
with a nonnegative Schwartz kernel �.x; y/, x 2 X , y 2 Y and Tf .x/ DR
Y
�.x; y/f .y/dy. Suppose that, there exist two functions p.x/ > 0 and q.x/ > 0,

and two numbers ˛, ˇ > 0 such that

Z

Y

�.x; y/q.y/dy � ˛p.x/ (2.14.1)

for almost all x, and

Z

X

�.x; y/p.x/dx � ˇq.y/ (2.14.2)

for almost all y. Such functions, namely p.x/ and q.x/ are called the Schur test
functions. By [145], T can be extended to a continuous operator T W L2 �! L2
with the operator norm, and we have kT k � p

˛ˇ. In fact, by using the Cauchy-
Schwartz inequality, as well as the inequality (2.14.1), we get

jTf .x/j2 D
ˇ
ˇ
ˇ
ˇ

Z

Y

�.x; y/f .y/dy

ˇ
ˇ
ˇ
ˇ

2

�
�Z

Y

�.x; y/q.y/dy

��Z

Y

�.x; y/.f .y//2

q.y/
dy

�
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� ˛p.x/

Z

Y

�.x; y/.f .y//2

q.y/
dy:

By integrating the above relation in x, by using Fubini’s theorem, and by applying
the inequality (2.14.2), we get

kTf k2 � ˛

Z

Y

� Z

X

p.x/�.x; y/dx
	 .f .y//2

q.y/
dy

� ˛ˇ

Z

Y

.f .y//2dy

D ˛ˇkf k2:

We deduce that kTf k � p
˛ˇkf k for any f 2 L2.Y /.

Theorem 2.14.1 ([305]). Suppose that T satisfies (2.14.1) and (2.14.2), for
p.x/ D q.x/ D 1. Then

kT k �
�

sup
x2X

Z

Y

j�.x; y/jdy

� 1
2

 

sup
y2Y

Z

X

j�.x; y/jdx

! 1
2

: }

2.15 Generalities about graphs

2.15.1 Unoriented Graph

Let V be a countable set and E W V � V �! Œ0;C1�. We assume that E.x; y/ D
E.y; x/, for all x, y 2 V . We say that G D .E ;V/ is an unoriented weighted graph
with vertices V and weights E . We say that there is a loop in x 2 V , if E.x; x/ > 0.
A graphG is simple, if it has no loops and E has its values in f0; 1g. We shall say that
E is bounded from below, if inffE.x; y/ such that x; y 2 V and E.x; y/ ¤ 0g > 0.
The vertices x, y 2 V , with E.x; y/ > 0, are called neighbors and, we denote this
relationship by x 
 y. We say that G WD .E ;V/ is connected if, for any x, y 2 V ,
there exists a x � y path i.e., there is a finite sequence x0, x1,. . . , xn 2 V such that
x D x0, y D xn and xj 
 xjC1, for all 0 � j � n � 1. The degree of x 2 V is, by
definition,

dG.x/ WD jNG.x/j; (2.15.1)

where NG.x/ WD fy 2 E such that x 
 yg, and jNG.x/j is the cardinal of NG.x/.
We denote by �.A/ WD dimN.A� � i/ 2 N

SfC1g the deficiency indices of the
symmetric operator A. A graph G is locally finite, if dG.x/ is finite for all x 2 V .
Let G D .E ;V/ be a connected, locally finite graph. We endow V with the metric
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�V defined by

�V.x; y/ WD inffn 2 N such that there exists an x � y path of length ng:
(2.15.2)

In the sequel, we assume that: all graphs are locally finite, connected with no
loops.

2.15.2 Tree

In this section, we define a certain family of trees. It is convenient to choose a root
in the tree. Due to its structure, one can take any point of V . We denote it by x. We
define the family of spheres .Sn/n2N by S0 D fxg and SnC1 D NG.Sn/nSn�1. Note
that, if n 2 N; x 2 Sn and y 
 x, then, y 2 Sn�1

S
SnC1. We write x > y, if

y 2 Sn�1 and we also write x < y, if y 2 SnC1. The offspring of an element x is
given by off.x/ WD jfy W y 
 x; y > xgj.
Definition 2.15.1. A simple tree G D .E ;V/ with an offspring sequence .bn/n is a
simple tree with a root, such that bn D off.x/, for all x 2 Sn and n 2 N. }
Example 2.15.1.

Example of tree with b0 D 3 and b1 D 2
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Example of tree with b0 D 6 and b1 D 2

2.15.3 Bipartite Graph

Definition 2.15.2. A simple graph G D .E ;V/ is called bipartite, if its vertex set
can be partitioned into two disjoint subsets V D V1

S
V2, such that every edge has

the form e D .a; b/, where a 2 V1 and b 2 V2. }
Example 2.15.2.

G is bipartite

Example 2.15.3.
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G is not bipartite

Theorem 2.15.1 ([190]). A graphG D .E ;V/ is bipartite if, and only if, it does not
have an odd length cycle. }
Proof. Let us fix a vertex v 2 V . Let us define two sets of vertices

A D fw 2 V such that 9 odd length path from v to wg
and

B D fw 2 V such that 9 even length path from v to wg:

These sets provide a bipartition. If there is an odd length cycle, a vertex will be
present in the path set. Q.E.D.

Definition 2.15.3. A complete bipartite graph Km;n is a bipartite graph for which
each vertex set is adjacent to another one. }
Example 2.15.4.
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A complete graph K5;6
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Example 2.15.5.

A complete graph K2;11
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2.15.4 Subgraph

Definition 2.15.4. A subgraph G0 D .E 0;V 0/ of a graph G D .E ;V/ is a graph
whose vertex set is a subset of that of G, and whose adjacency relation is a subset
of that of G restricted to this subset, i.e., V 0 � V and E 0 D E jV 0�V 0 : }
Example 2.15.6.

A graph G D .E ;V/
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A subgraph G0 D .E 0;V 0/ of G



Chapter 3
Fredholm Operators and Riesz Theory
for Polynomially Compact Operators

In this chapter, we study the spectral theory of polynomially compact operator
on a Banach space. First, we give some preliminary results concerning Fredholm
operators which are developed in order to analyze the spectrum of polynomially
compact operator on a Banach space. Second, we give some results on multiplicities
and localization of the eigenvalues of polynomially compact operators. Finally, we
present some results dealing with the polynomially Riesz operators.

3.1 Riesz Theory

3.1.1 Some Results on Polynomially Compact Operators

Let X be a Banach space. We denote by P.X/ the set defined by

P.X/ D
n
A 2 L.X/ such that there exists a nonzero complex polynomial

P.z/ WD
pX

rD0

arz
r satisfying P.1/ ¤ 0; P.1/ � a0 ¤ 0 and P.A/ 2 K.X/

o
:

Definition 3.1.1. We say that an operator A 2 L.X/ is polynomially compact if
there is a nonzero complex polynomialP.z/ such that the operatorP.A/ is compact.

}
If PK.X/ denotes the set of polynomially compact operators on X , then P.X/ �
PK.X/.
Remark 3.1.1. Notice that in the definition of the set P.X/, we are only concerned
with polynomials P.:/ satisfying the conditions P.1/ ¤ 0 and P.1/ � a0 ¤ 0.
It seems that these hypotheses cannot be dropped. Indeed, let A D I (the identity
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operator) and take P.z/ D 1 � z. Clearly P.1/ D 0 and P.A/ 2 K.X/ (A 2
PK.X/), but the results discussed below are false for F D I �A D 0 because it is
not a Fredholm operator. }

We start our investigation with the following lemmas, which constitute a
preparation for the proofs of the results of this section.

Lemma 3.1.1. Let A 2 P.X/ and set F D I � A. Then,

(i) dimŒN.F /� < 1.
(ii) R.F / is closed.

(iii) codimŒR.F /� < 1. }
Proof.

(i) Since A 2 P.X/, there exists P ¤ 0 such that P.A/ 2 K.X/ with
P.z/ D Pp

rD0 arzr , where ar 2 C, r D 0; 1; : : : ; p. Let x 2 N.F /,
then Ax D x and therefore x 2 N.I � P.1/�1P.A//. This shows that
N.F / � N.I � P.1/�1P.A//. Moreover, the identity I restricted to N.I �
P.1/�1P.A// is equal to P.1/�1P.A/ and consequently is compact. Hence,
N.I � P.1/�1P.A// is finite dimensional and therefore dimŒN.F /� < 1.

(ii) Since F commutes with I , Newton’s binomial formula gives

Ar D .I � F /r D I C
rX

jD1
.�1/jC j

r F
j

and therefore,

P.A/ D P.1/I C
pX

rD1
ar

0

@
rX

jD1
.�1/jC j

r F
j

1

A : (3.1.1)

Let E be a closed complement for N.F /, so that X D N.F / ˚ E. Thus,
we obtain two linear continuous maps FjE W E �! X and AjE W E �! X ,
the restrictions of F and A for E. It is clear that the kernel of FjE is f0g. To
conclude, it is sufficient to show that FjE.E/ D F.E/ D F.X/ is closed. For
this, it suffices to show that the map .FjE/�1 W F.E/ �! E is continuous.
By linearity, it even suffices to prove that .FjE/�1 is continuous at 0. Suppose
that this is not the case. Then, we can find a sequence .xn/n in E such that
Fxn ! 0, but .xn/n does not converge to 0. Selecting a suitable subsequence,
we can assume, without loss of generality, that kxnk � � > 0 for all n. Then,
1

kxnk � 1
�

for all n and consequently, F. xnkxnk / also converges to 0. Furthermore,
xnkxnk has norm 1 and hence, some subsequence of P.A/. xnkxnk / converges. It

follows from (3.1.1) that xnkxnk has a converging subsequence to an element y
in E, verifying kyk D 1 and

P.A/.y/ D P.1/y: (3.1.2)
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Moreover, the equation Ar D A � AF � A2F � : : : � Ar�1F allows us to

write in the form P.A/ D a0I C .P.1/�a0/ACPp
rD1 ar

�Pr
jD1 Aj

	
F and

so, we get P.A/.y/ D P.1/A.y/. Since P.1/ � a0 ¤ 0, the use of (3.1.2)
gives A.y/ � y D 0, which implies that y 2 N.F /. This contradicts the fact
E
T
N.F / D f0g (because kyk D 1) and completes the proof of .ii/.

(iii) If F.X/ does not have a finite codimension, we can find a sequence of closed
subspaces F.X/ D M0 � M1 � M2 � : : : � Mn � : : : such that, each Mn is
closed and of codimension 1 in MnC1 just by adding one-dimensional spaces
to F.X/ inductively. By Riesz’s lemma (Lemma 2.1.3), we can find in each
Mn an element xn such that kxnk D 1 and kxn � yk � 1

2
for all y in Mn�1.

Then, Eq. (3.1.1) together with the fact that X 	 R.F / 	 R.F 2/ 	 : : : 	
R.F n/ 	 : : : gives, for all k < n,

kP.A/xn � P.A/xkk

D jP.1/j
�
�
�
�
�
�
xn � xk C

pX

rD1

ar

P.1/

0

@
rX

jD1
.�1/jC j

r F
j .xn � xk/

1

A

�
�
�
�
�
�

� jP.1/j
2

because xk �Pp
rD1

ar
P.1/

�Pr
jD1.�1/jC j

r F
j .xn � xk/

	
2 Mn�1. This proves

that the sequence .P.A/xn/n cannot have a convergent subsequence, which
contradicts the compactness of P.A/. Q.E.D.

Lemma 3.1.2. Let A 2 P.X/ and set F D I �A. Then, F is a Fredholm operator
and i.F / D 0. }
Proof. The first part of the lemma follows from Lemma 3.1.1. To complete the
proof, it suffices to show that dimŒN.F /� D dimŒR.F /ı�. To do this, note first
that the operator dual F � of F is given by F � D I � � A�. The use of both
Schauder’s theorem and Lemma 3.1.1 .i/ gives dimŒN.F �/� < 1. Accordingly,
using the relation R.F / DıN.F �/ (see Theorem 2.1.1), we only need to prove that
dimŒN.F /� D dimŒN.F �/�. Now, let us consider the case where dimN.F �/ D 0,
i.e., N.F �/ D f0g. The fact that R.F / is closed, we see, by Theorem 2.1.1,
that R.F / Dı N.F �/ D X . We claim that N.F / D f0g. Indeed, suppose
that N.F / ¤ f0g. So, there is an x1 ¤ 0 in X such that Fx1 D 0. Since
R.F / D X , then there is an x2 2 X such that Fx2 D x1. So, we can find an
element xn 2 X such that Fxn D xn�1. Now, F n is a bounded operator with
kF nk � kF kn. This implies thatN.F n/ is a closed subspace ofX . Additionally, we
have N.F / � N.F 2/ � : : : � N.F n/ � : : : ; and what is more, these spaces are
actually increasing, because F nxn D F n�1.Fxn/ D F n�1xn�1 D : : : D Fx1 D 0,
and F n�1xn D F n�2.Fxn/ D F n�2xn�1 D : : : D Fx2 D x1 ¤ 0. Hence, we
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can apply the Riesz lemma (Lemma 2.1.3) in order to find a zn 2 N.F n/ such that
kznk D 1 and dist.zn; N.F n�1// > 1

2
. Since P.A/ is compact, then .P.A/zn/n has

a convergent subsequence. For all k < n,

kP.A/zn � P.A/zkk D jP.1/j
�
�
�
�
�
�

zn � zk C
pX

rD1

ar

P.1/

0

@
rX

jD1
.�1/jC j

r F
j .zn � zk/

1

A

�
�
�
�
�
�

� jP.1/j
2

because F n�1
�

zk �Pp
rD1

ar
P.1/

�Pr
jD1.�1/jC j

r F
j .zn � zk/

		
D 0. This proves

that the sequence .P.A/zn/n cannot have a convergent subsequence, which contra-
dicts the compactness of P.A/. Hence, dimN.F / D 0. Inversely, if N.F / D f0g,
then R.F �/ D N.F /ı D X� where X� is the dual of X . Since F � D I � �A�, and
knowing thatA� is a polynomially compact operator onX�, the just given argument
implies that N.F �/ D f0g. Hence, we have shown that dimN.F / D 0 if, and only
if, dimN.F �/ D 0. Now, suppose that dimN.F / D n > 0 and dimN.F �/ D
m > 0. Let x1; : : : ; xn, x0

1; : : : ; x
0
m span N.F / and N.F �/, respectively. We claim

the existence of a functional x0
0 as well as an element x0 such that

x0
0.xj / D 0; 1 � j < n; x0

0.xn/ ¤ 0; (3.1.3)

and x0
j .x0/ D 0; 1 � j < m; x0

m.x0/ ¤ 0. Indeed, let M be the subspace
spanned by x1; : : : ; xn�1. The element xn is not in this finite dimensional subspace.
This implies that dist.xn;M/ > 0. Then, by Lemma 2.1.4, there is an x0

0 2 X�
such that kx0

0k D 1, x0
0.xn/ D dist.xn;M/, and x0

0.x/ D 0 for x 2 M . This proves
the claim. Let K0x D x0

0.x/x0, x 2 X . Then, K�
0 x

0 D x0.x0/x0
0, x

0 2 X 0. Set
F1 D F �K0. We claim that dimN.F1/ D n�1, dimN.F �

1 / D m�1. Suppose that
x 2 N.F1/. Then, Fx D K0x D x0

0.x/x0. Now, x0 is not in R.F / DıN.F �/ (see
Theorem 2.1.1), since it does not annihilate x0

m. Hence, we must have x0
0.x/ D 0,

and consequently Fx D 0. Since x 2 N.F /, then x D Pn
jD1 ˛j xj . Therefore, and

using (3.1.3), x0
0.x/ D Pn

jD1 ˛j x0
0.xj / D ˛nx

0
0.xn/ D 0, showing that ˛n D 0.

Hence, x is of the form

x D
n�1X

jD1
˛j xj : (3.1.4)

Conversely, every element of the form (3.1.4) is in N.F1/. This follows from the
fact that it is in N.F / and satisfies x0

0.x/ D 0. This shows that dimN.F1/ D
n � 1. Suppose x0 2 N.F �

1 /, i.e., F �x0 D K�
0 x

0 D x0.x0/x0
0. But x0

0 is not
in R.F �/ D N.F /ı, since it does not annihilate xn. Hence, x0.x0/ D 0, and
consequently, F �x0 D 0. Thus, x0 D Pm

jD1 ˇj x0
j and x0.x0/ D Pm

jD1 ˇj x0
j .x0/ D

ˇmx
0
m.x0/ D 0. Showing that ˇm D 0. Hence, x0 is of the form

x0 D
m�1X

jD1
ˇj x

0
j : (3.1.5)
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Conversely, every functional of the form (3.1.5) is in N.F �
1 /, since it is in N.F �/

and N.K�
0 /. This completes the proof of the claim. Observing that F1 D I � .AC

K0/, and ACK0 is a polynomially compact operator. Thus, we have an operator F1
of the same form as F with the dimensions of its null space and that of its adjoint
exactly one less than those of F , F �, respectively. If m and n are both greater than
one, we can repeat the process and reduce dimN.F1/ and dimN.F �

1 / each by one.
Continuing in this way, we eventually reach an operator QF D I � QK, where QK
is polynomially compact and either dimN. QF / D 0 or dimN. QF �/ D 0. Then, it
follows from what we have proved that they must both be equal to zero. Hence,
m D n, and the proof of lemma is complete. Q.E.D.

Using Lemma 3.1.2 we have the following inclusions K.X/ � P.X/ � J .X/.
If the space X is a Banach space which either satisfies the Dunford–Pettis property
or is isomorphic to one of the spaces Lp.˝/ p > 1, then by using Lemmas 2.1.13
and 3.1.2, we have the following inclusions K.X/ � S.X/ � J .X/.
Theorem 3.1.1. If A 2 P.X/ and F D I � A, then there is an integer n � 1 such
that N.F n/ D N.F k/ for all k � n. }
Proof. If there is an integer k such that N.F k/ D N.F kC1/. If j > k and x 2
N.F jC1/, then F j�kx 2 N.F kC1/ D N.F k/, showing that x 2 N.F j /. So,
N.F j / D N.F jC1/ for all j > k. If N.F k/ is a proper subspace of N.F kC1/ for
all k > 1. Then, using Lemma 2.1.3 for all k 2 N

�, there exists xk 2 N.F k/ such
that kxkk D 1 and d.xk;N.F k�1// � 1

2
. Moreover, since A 2 P.X/, then there

exists a nonzero complex polynomial P.z/ WD Pp
rD0 arzr satisfying P.1/ ¤ 0,

P.1/ � a0 ¤ 0 and P.A/ 2 K.X/. Now, using Eq. (3.1.1), we get for all j < k,

kP.A/xk � P.A/xj k D jP.1/j
�
�
�
�
�
xk � xj C

pX

rD1

ar

P.1/

 
rX

lD1

.�1/lC l
r F

l .xk � xj /
!�
�
�
�
�
:

Since j � k�1, then xj �Pp
rD1

ar
P.1/

�Pr
lD1.�1/lC l

r F
l .xk � xj /

� 2 N.F k�1/
and therefore, kP.A/xk �P.A/xj k � jP.1/j

2
> 0. This contradicts the compactness

of P.A/. This achieves the proof. Q.E.D.

Definition 3.1.2. Let � 2 C be an eigenvalue of A 2 L.X/, the value

dim
[

n2N
N Œ.� � A/n� 2 N

[
fC1g

is called the algebraic multiplicity and denoted by mult.A; �/. }
Clearly, if mult.A; �/ < 1, then .� � A/ has a finite ascent. If A 2 L.X/, we

consider the quantities r.A/ D lim
n!C1˛.An/ and r 0.A/ D lim

n!C1ˇ.An/. Let A 2
P.X/. If F D I �A, then for each integer n, the operator F n 2 ˚b.X/ and ˛.F n/
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are finite. From the inclusionN.F n/ � N.F nC1/, it follows that ˛.F n/ � ˛.F nC1/
and consequently, ˛.F n/ approaches either a finite limit or 1. The following result
excludes the second eventuality.

Proposition 3.1.1. Let A 2 P.X/ and set F D I � A. Then, asc.F / D
desc.F / < 1. }
Proof. We first prove that asc.F / < 1. To do this, it suffices to show that there
exists an integer k such that N.F k/ D N.F kC1/. If N.F k/ ¤ N.F kC1/ for all
k 2 N

�, then we have N.F / ¦ N.F 2/ ¦ : : : ¦ N.F k/ ¦ : : : From Riesz’s lemma
(Lemma 2.1.3), it follows that, for all k 2 N

� there exists xk 2 N.F k/ such that
kxkk D 1 and dist.xk;N.F k�1// � 1

2
. Moreover, sinceA 2 P.X/, then there exists

a nonzero complex polynomial P.z/ WD Pp
rD0 arzr satisfying P.1/ ¤ 0, P.1/ �

a0 ¤ 0 and P.A/ 2 K.X/. Now, arguing as in the proof of Theorem 3.1.1, we show
that .P.A/xk/k has no convergent subsequence. This contradicts the compactness of
P.A/. Accordingly, we have asc.F / < 1. Besides, since F is a Fredholm operator
with i.F / D 0 (Lemma 3.1.2), the use of Lemma 2.2.7 completes the proof. Q.E.D.

3.1.2 Generalized Riesz Operator

It is well known that if X is a complex Banach space and A 2 K.X/, then A
and A� are Riesz operators, with �.A�/ D �.A/ (see [191]). Furthermore, for
any eigenvalue � 2 �.A/nf0g, we have mult.A; �/ < 1 and mult.A; �/ D
mult.A�; �/.

Definition 3.1.3. An operatorA 2 L.X/will be called a generalized Riesz operator
if there exists E (a finished part of C) such that

(i) For all � 2 CnE; .� � A/ is a Fredholm operator on X ,
(ii) For all � 2 CnE; .� � A/ has a finite ascent and a finite descent, and

(iii) All � 2 �.A/nE are eigenvalues of finite multiplicity, and have no accumula-
tion point except possibly points of E. }

Note that, if A is a Riesz operator on X , then A is a generalized Riesz operator
on X . It is one of the purposes of this section to prove that a polynomially compact
operator is a generalized Riesz one.

Theorem 3.1.2. Let A 2 PK.X/, i.e., there exists a nonzero complex polynomial
P.z/ D Pp

rD0 arzr satisfying P.A/ 2 K.X/. Let � 2 C with P.�/ ¤ 0 and set
F WD � � A. Then, F is a Fredholm operator on X with both finite ascent and
descent. }
Proof. Let � 2 C with P.�/ ¤ 0. We have the following P.�/ � P.A/ DPp

kD1 ak.�k � Ak/. Moreover, for any k 2 f1; : : : ; pg, �k � Ak D .� �
A/
Pk�1

iD0 �iAk�1�i . This allows us to write

P.�/ � P.A/ D .� � A/Q.A/ D Q.A/.� � A/; (3.1.6)
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where Q.A/ D Pp

kD1 ak
Pk�1

iD0 �iAk�1�i . Let n 2 N. Using Eq. (3.1.6), we have
the following .P.�/ � P.A//n D .� � A/nQ.A/n D Q.A/n.� � A/n. Hence,
N Œ.� � A/n� � N Œ.P.�/ � P.A//n�, and R Œ.� � A/n� 	 R Œ.P.�/ � P.A//n�,
for all n 2 N. This implies

[

n2N
N Œ.� � A/n� �

[

n2N
N Œ.P.�/ � P.A//n� (3.1.7)

and

\

n2N
R Œ.� � A/n� 	

\

n2N
R Œ.P.�/ � P.A//n� : (3.1.8)

Besides, since P.�/ ¤ 0 and P.A/ 2 K.X/ therefore, from the same
reasoning as Lemma 3.1.1 and Proposition 3.1.1, we show that P.�/ � P.A/

is a Fredholm operator on X with both finite ascent and descent. So, the right-
hand sides of (3.1.7) and (3.1.8) are really only finite union and intersections. It
follows, from Proposition 2.2.2, that asc.P.�/ � P.A// D desc.P.�/ � P.A//,
let n0 be this quantity. Since P.�/I commutes with P.A/, Newton’s binomial
formula gives .P.�/ � P.A//n0 D Pn0

kD0.�1/kC k
n0
.P.�//n0�kP.A/k D

.P.�//n0 � S where S D P.A/
Pn0

kD1.�1/k�1C k
n0
P.�/n0�kP.A/k�1 is a

compact operator on X . Since P.�/ ¤ 0 and S is a Riesz operator, we
have dim

S
n2NNŒ.P.�/ � P.A//n� D dimNŒ.P.�/ � P.A//n0 � < 1 and

codim
T
n2NR Œ.P.�/ � P.A//n� D codimR Œ.P.�/ � P.A//n0 � < 1. Using both

Eqs. (3.1.7) and (3.1.8), we have the following dim
S
n2NN Œ.� � A/n� < 1

and codim
T
n2NR Œ.� � A/n� < 1. This implies that asc.� � A/ < 1 and

desc.��A/ < 1. We also have dimN.��A/ < 1 and codimR.��A/ < 1. To
prove that R.��A/ is closed, we may assume that .��A/ is injective. Otherwise,
the finite dimensional space N.� � A/ would have a closed complement M in X
and X D N.��A/˚M . Define S W M �! X by S WD .��A/jM the restriction
of .��A/ toM . SinceR.S/ D R.��A/ and S is injective, we just replace .��A/
by S in the following. Let .xn/n2N be a sequence in X such that

.� � A/.xn/ ! y as n ! 1: (3.1.9)

Using Eqs (3.1.6) and (3.1.9), we infer that

ŒP.�/ � P.A/�.xn/ ! Q.A/y as n ! 1: (3.1.10)

We claim that .xn/n2N is bounded. Indeed, if .xn/n2N is unbounded, selecting a
suitable subsequence .x .n// 2 Xnf0g such that

jjx .n/jj � n: (3.1.11)
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Let Qxn D x .n/
jjx .n/jj , then by Eqs (3.1.9) and (3.1.11), we have

.� � A/ Qxn ! 0 as n ! 1: (3.1.12)

It follows, from Eqs (3.1.6) and (3.1.12), that

ŒP.�/ � P.A/� Qxn ! 0 as n ! 1: (3.1.13)

Furthermore, . Qxn/n has a norm 1 and hence, some subsequences of P.A/ Qxn
converge. It follows from Eq. (3.1.13) that . Qxn/ has a converging subsequence . Qxnk /
to an element Qz

P.�/
in X verifying jj Qz

P.�/
jj D 1. So, .� � A/ Qxnk converges to

.� � A/ Qz
P.�/

. Hence, using Eq. (3.1.12), we infer that .� � A/ Qz
P.�/

D 0, which
implies that Qz 2 N.� � A/. This contradicts that N.� � A/ D f0g (because
jjQzjj D jP.�/j ¤ 0) and concludes the proof of the claim. Since P.A/ 2 K.X/
and .xn/ is bounded, we infer that there is a subsequence .x'.n//n2N of .xn/
such that P.A/.x'.n// ! z 2 X as n ! 1. So, it follows from Eq. (3.1.10),
that x'.n/ ! 1

P.�/
.z CQ.A/y/ as n ! 1 and by Eq. (3.1.9), we have y D

.� � A/
h

1
P.�/

.z CQ.A/y/
i
. This proves that y 2 R.� � A/, and completes the

proof. Q.E.D.

As an immediate consequence of Theorem 3.1.2:

Corollary 3.1.1. Assume that the hypotheses of Theorem 3.1.2 hold. Then, F WD
� � A is an operator of index zero. }
Remark 3.1.2. The hypotheses of Theorem 3.1.2 are optimal. In fact, let A D �I

and take P.z/ D � � z with � 2 C. Clearly, P.�/ D 0 and P.A/ 2 K.X/ (i.e.,
A 2 PK.X/), but the last results are false for F WD � � A D 0 because it is not a
Fredholm operator. }

3.2 First and Second Kind Operator Equation

Theorem 3.2.1. Let A 2 PK.X/, i.e., there exists a nonzero complex polynomial
P.z/ D Pp

rD0 arzr satisfying P.A/ 2 K.X/. Let � 2 C with P.�/ ¤ 0 and set
F WD ��A. If F is injective, then the inverse operator F �1 D .��A/�1 W X �! X

exists and is bounded. }
By assumption, the operator F is injective, that is, N.F / D f0g. Therefore,

asc.F / D 0 and by Proposition 2.2.2, we conclude that F.X/ D X , that is, the
operator F is surjective. Hence, the inverse operator F �1 D .� � A/�1 W X �! X

exists. Assume that F �1 is not bounded. Then, there exists a sequence .fn/n with
kfnk D 1 and the sequence 'n WD F �1fn is not bounded. Let us define gn WD fn

k'nk ,

 n WD 'n
k'nk , for all n 2 N. Then, gn ! 0 as n ! 1, and k nk D 1. Since

� n � A n D gn; (3.2.1)
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then we have

P.A/ n D P.�/ n �
pX

kD1
ak

 
k�1X

iD0
�iAk�1�i gn

!

: (3.2.2)

Since P.A/ is compact, we can choose a subsequence . n.k//k such that
�
P.A/ n.k/

�
k

!  2 X as k ! 1. Using Eq. (3.2.2), we notice that n.k/ !  

P.�/

as k ! 1. This implies that k k D jP.�/j. Using Eq. (3.2.1), we show that
 2 N.F /. Hence,  D 0 which contradicts P.�/ 6D 0. Q.E.D.

We can rewrite Theorem 3.2.1 in terms of the solvability of the second kind
operator equation as follows.

Corollary 3.2.1. Let A 2 PK.X/, i.e., there exists a nonzero complex polynomial
P.z/ D Pp

rD0 arzr satisfying P.A/ 2 K.X/. Let � 2 C such that P.�/ ¤ 0. If the
homogeneous equation �' � A' D 0 has only the trivial solution ' D 0, then for
all f 2 X , the non-homogeneous equation �' � A' D f has a unique solution
' 2 X which depends continuously on f . }
Theorem 3.2.2. Let A 2 PK.X/, i.e., there exists a nonzero complex polynomial
P.z/ D Pp

rD0 arzr satisfying P.A/ 2 K.X/. Let � 2 C such that P.�/ ¤ 0 and
assume that ��A is not injective. Then, the null spaceN.��A/ is finite dimensional
and the range .� � A/.X/ 6D X is a proper closed subspace. }
Proof. Since ��A is not injective, then N.��A/ 6D f0g. This means that asc.��
A/ > 0. Hence, applying Proposition 2.2.2, we conclude that .� � A/.X/ 6D X .
Q.E.D.

Corollary 3.2.2. Assume that the hypotheses of Corollary 3.2.1 hold. If the homo-
geneous equation �'�A' D 0 has a nontrivial solution, then the non-homogeneous
equation �' � A' D f is either unsolvable or its general solution is of the form
' D Q' C Pm

kD1 ˛k'k , where '1; : : : ; 'm are linearly independent solutions of the
homogeneous equation, ˛1; : : : ; ˛m are arbitrary complex numbers, and Q' denotes
a particular solution of the non-homogeneous equation. }
Theorem 3.2.3. Let A 2 PK.X/, i.e., there exists a nonzero complex polynomial
Q.z/ D Pp

rD0 arzr satisfying Q.A/ 2 K.X/. Let � 2 C such that Q.�/ ¤ 0

and set F WD � � A. Then, the projection P W X �! N
�
F asc.F /� defined by

the decomposition X D N
�
F asc.F /� ˚ F asc.F /.X/ is compact, and the operator

F � P D � � A � P is bijective. }
Proof. Let n0 D asc.F /, then F n0 2 ˚b.X/. Since F 2 ˚b.X/, then the
null space N .F n0/ is of a finite dimension. It is easy to verify that k kn0 WD

inf
�2F n0 .X/ k C �k defines a norm on N.F n0/. In particular, the fact that k kn0 D
0 implies that  D 0 since the range F n0.X/ is closed by Theorem 2.2.7.
Since all the norms are equivalent on a finite dimensional linear space, we infer
that there exists a positive number c such that k k � c inf

�2F n0 .X/ k C �k for
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all  2 N.F n0/. Then, for all ' 2 X , we have P' 2 N.F n0/, and therefore
kP'k � c inf

�2F n0 .X/ kP' C �k � ck'k since ' � P' 2 F n0.X/. Hence, P is

bounded. Moreover, P is a compact operator since it has a finite dimensional range
P.X/ D N.F n0/. Besides, the operator A C P 2 PK.X/ since A 2 PK.X/ and
P 2 K.X/. Let ' 2 N.F � P /, that is, F' � P' D 0. Since P' 2 N .F n0/,
then F n0C1' D 0. Therefore, ' 2 N

�
F n0C1� D N .F n0/ and P' D ', which

implies F' D '. From this, and by iteration, we show that ' D F n0' D 0. Hence,
N.F �P / D f0g. Now, applying Theorem 3.2.1 to the operatorACP , we conclude
that F � P is surjective and the proof is completed. Q.E.D.

3.3 Spectral Analysis

Lemma 3.3.1. Let P.:/ be a nonzero complex polynomial, P.z/ D Pp
rD0 arzr and

z1; : : : ; zp its zeros. If .˛n/n is a sequence of complex numbers such that .P.˛n//n
converges to zero. Then, we can choose a subsequence .˛nk /k of .˛n/n converging
to zi for some i 2 f1; : : : ; pg: }
Proof. Let us write P.z/ D ap.z � z1/.z � z2/ : : : .z � zp/. Then, P.˛n/ can be
written in the form P.˛n/ D ap.˛n � z1/.˛n � z2/ : : : .˛n � zp/. Assume that, for
all subsequences .˛nk /k of .˛n/n and for all i 2 f1; : : : ; pg, the sequence .˛nk /k
does not converge to zi . Since the sequence .˛n/n does not converge to z1, then
there is a subsequence .˛'1.n//n and "1 > 0 such that j˛'1.n/ � z1j > "1. Similarly,
since .˛'1.n//n does not converge to z2, then there is a subsequence .˛'2'1.n//n and
"2 > 0 such that j˛'2'1.n/ � z2j > "2. Continuing in the same way, we can find
"p > 0 and 'p such that j˛'p'p�1:::'1.n/ � zpj > "p . Let  .n/ D 'p'p�1 : : : '1.n/.
Then, we have j.˛ .n/ � z1/.˛ .n/ � z2/ : : : .˛ .n/ � zp/j > "1"2 : : : "p , 8n 2 N.
Hence, jP.˛ .n//j > japj"1"2 : : : "p > 0, 8n 2 N. This contradicts the fact that
P.˛ .n// ! 0 as n ! C1. Q.E.D.

Definition 3.3.1. For a polynomially compact operator A, the nonzero polynomial
P.:/, of last degree such that P.A/ is compact, will be called the minimal
polynomial of A. }

Now, we may formulate the results of the Riesz theory in terms of spectral
analysis.

Theorem 3.3.1. Let X be an infinite dimensional Banach space, A 2 PK.X/ and
P.:/ denotes the minimal polynomial of A. Let P.z/ D Pp

rD0 arzr and z1; : : : ; zp
its zeros. Then, � D z1; : : : ; zp belongs to the spectrum �.A/ and �.A/nfz1; : : : ; zpg
consists of, at most, a countable set of eigenvalues with no accumulation points,
except possibly � D z1; : : : ; zp: }
Proof. Suppose that there is i 2 f1; : : : ; pg such that zi 2 �.A/, then .zi � A/�1
exists and is bounded. Moreover, P.A/ can be written P.A/ D ap.�1/p.z1 �
A/ : : : .zp � A/. Let Q.:/ be the following polynomial Q.z/ D ap.�1/p
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.z1 � z/ : : : .zi�1 � z/.ziC1 � z/ : : : .zp � z/. Hence, Q.A/ D .zi � A/�1P.A/.
Since P.A/ 2 K.X/ and .zi � A/�1 is bounded, then Q.A/ 2 K.X/. This
contradicts the fact that P is the minimal polynomial of A. Therefore, for all
i 2 f1; : : : ; pg, zi belongs to the spectrum �.A/. If � 6D fz1; : : : ; zpg, we will
discuss two cases. First, if N.� � A/ D f0g, then by Theorem 3.2.1, the operator
.� � A/�1 exists and is bounded. Second, if N.� � A/ 6D f0g, then � is an
eigenvalue. Therefore, each � 6D fz1; : : : ; zpg is either in the resolvent set of
A or represents an eigenvalue of A. It remains to show that, for each R > 0,
there exists only a finite number of eigenvalues � with � 62 Sp

kD1D.zk; R/
where D.zk; R/ is the disc with the center zk and the radius R. Assume, in the
contrary, that there exists a sequence .�n/n of distinct eigenvalues satisfying
�n 62 Sp

kD1D.zk; R/. Let us choose some eigenelements 'n, such thatA'n D �n'n,
and let us define the finite dimensional subspaces Un WD spanf'1; : : : ; 'ng. It is easy
to verify that the eigenelements corresponding to distinct eigenvalues are linearly
independent. Hence, we have Un�1 ¦ Un and, by the Riesz lemma (Lemma 2.1.3),
we can choose a sequence . n/n of elements  n 2 Un such that k nk D 1

and k n �  k � 1
2
, for all  2 Un�1. Writing  n D Pn

kD1 ˛nk'k we get

P.�n/ n � P.A/ n D Pn�1
kD1

Pp
rD0 ar .�rn � �rk/˛nk'k 2 Un�1. Therefore, for

m < n, we have

P.A/ n � P.A/ m D P.�n/ n � .P.�n/ n � P.A/ n C P.A/ m/

D P.�n/. n �  /,

where  WD P.�n/ n�P.A/ nCP.A/ m
P.�n/

2 Un�1. Hence,

kP.A/ n � P.A/ mk D jP.�n/j k n �  k
� jP.�n/j

2

� 1

2
inf jP.�n/j.

Combining the fact that, for all i 2 f1; : : : ; pg, j�n � zi j > r , and Lemma 3.3.1,
we conclude that inf jP.�n/j > 0, and the sequence .P.A/ n/n does not contain a
convergent subsequence, which contradicts the compactness of P.A/. Q.E.D.

Remark 3.3.1. Let A 2 PK.X/ i.e., there exists a nonzero complex polynomial
P.z/ D Pp

rD0 arzr satisfying P.A/ 2 K.X/ and let � 2 �.A/ such that P.�/ ¤ 0.
Then, using Eq. (3.1.7), we have mult.A; �/ � mult.P.A/; P.�// < 1. }

We end this part by the following corollary.

Corollary 3.3.1. Let X be an infinite dimensional Banach space, A 2 PK.X/ and
set P.:/ as the minimal polynomial of A. Let P.z/ D Pp

rD0 arzr and z1; : : : ; zp its
zeros. Then, A is a generalized Riesz operator with E D fz1; : : : ; zpg. }
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3.4 Localization of Eigenvalues of Polynomially Compact
Operators

In this section, we give some results about multiplicities and localization of the
eigenvalues of polynomially compact operators.

Proposition 3.4.1. Let A 2 PK.X/, i.e., there exists a nonzero complex polyno-
mial P.z/ D Pp

rD0 arzr satisfying P.A/ 2 K.X/. The multiplicity of nonzero
eigenvalues � of P.A/ satisfies

mult.P.A/; �/ D P

�2�.A/
P.�/D�

mult.A; �/

and, for all � 2 �.A/ with P.�/ ¤ 0, we have mult.A; �/ D mult.A�; �/. }
Proof. Let � 2 �.P.A//nf0g. By the spectral mapping theorem, we have
�.P.A// D P.�.A//. Then, we can find � in �.A/ such that P.�/ D �. So,
using Remark 3.3.1, we have mult.P.A/; �/ < 1 and mult.A; �/ < 1. However,
the number of values of � distinct as P.�/ D � is finite. Then, by Eq. (3.1.7), we
obtain

S

�2�.A/
P.�/D�

[

n2N
N Œ.� � A/n� �

[

n2N
N Œ.� � P.A//n�: (3.4.1)

Combining the fact that� D P.�/ ¤ 0 and Theorem 3.1.2, we have asc.��A/<1
and

[

n2N
N Œ.� � A/n� D N Œ.� � A/n�� (3.4.2)

where n� D asc.� � A/. Using Eqs (3.4.1) and (3.4.2), we have

S

�2�.A/
P.�/D�

N Œ.� � A/n�� �
[

n2N
N Œ.� � P.A//n�: (3.4.3)

Let p1.�/ D .�1 � �/n�1 and p2.�/ D .�2 � �/n�2 . Since �1 ¤ �2, the
polynomials p1, p2 are relatively prime, and hence there exist two polynomials
q1.�/ and q2.�/, such that q1.�/p1.�/ C q2.�/p2.�/ D 1. So, for x 2 X , we
have

q1.A/p1.A/x C q2.A/p2.A/x D x: (3.4.4)
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In particular, if x 2 N Œ.�1�A/n�1 �TN Œ.�2�A/n�2 �, we see that p1.A/x D
p2.A/x D 0. Hence, from Eq. (3.4.4), x D 0. So, N Œ.�1�A/n�1 �T
N Œ.�2�A/n�2 � D f0g. Therefore, Eq. (3.4.3) leads to

P

�2�.A/
P.�/D�

mult.A; �/ � mult.P.A/; �/:

Since mult.P.A/; �/ < 1, then asc.��P.A// < 1. Let n0 D asc.��P.A//
and

Y WD
[

n2N
N Œ.� � P.A//n� D N Œ.� � P.A//n0 � :

Define A0 WD AjY W Y �! Y as the restriction of A to Y . Let �0 2 �.A0/

be the eigenvalue of A0 and choose y 2 Y as an eigenvector partner to �0, i.e.,
Œ.� � P.A//n0 �y D 0 and Ay D �0y. Since P.A/ and P.�0/I commute, we have

ŒP.�0/ � ��n0y D ŒP.�0/ � P.A/C P.A/ � ��n0y

D
n0X

kD0
C k
n0
ŒP.�0/ � P.A/�kŒP.A/ � ��n0�ky

D ŒP.A/ � ��n0y

C
n0X

kD1
C k
n0
ŒP.A/ � ��n0�k ŒP.�0/ � P.A/�ky: (3.4.5)

Thus, ŒP.�0/ � ��n0 y D 0 with y ¤ 0. Hence, P.�0/ D �. Since Y is a finite
dimensional space, then by Jordan decomposition theorem, we have

Y D ˚
�2�.A0/

N Œ.� � A0/p� � D ˚
�2�.A0/

[

n2N
N Œ.� � A0/n�

where p� designates the multiplicity of � in the characteristic polynomial of A0. We
can deduce

Y � ˚
�2�.A/
P.�/D�

[

n2N
N Œ.� � A/n� ;

since each � 2 �.A0/ belongs to �.A/ and satisfies P.�/ D �. We conclude

mult.P.A/; �/ � P

�2�.A/
P.�/D�

mult.A; �/:
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This proves that

mult.P.A/; �/ D P

�2�.A/
P.�/D�

mult.A; �/:

In order to complete the proof, we will verify that mult.A; �/ D mult.A�; �/ for
� 2 �.A/ and P.�/ ¤ 0. Let p D asc.� � A/. By Theorem 3.1.2, Corollary 3.1.1
and Theorem 2.2.7, the operator .� � A/p is shown to be a Fredholm operator with
index zero. So,

mult.A; �/ D dimN Œ.� � A/p�
D codimR Œ.� � A/p�
D dimN Œ.� � A�/p�
D mult.A�; �/:

This completes the proof. Q.E.D.

Remark 3.4.1.

(i) Let A be a generalized Riesz operator and set � 2 �.A/nE (where E is the set
introduced in Definition 3.1.3). Let Y WD S

n2NN Œ� � A�n. In Eq. (3.4.5), if
we consider P.z/ D z, we have �.AjY / D f�g.

(ii) Let A be a generalized Riesz operator. We denote by .�n.A//n2N the sequence
of eigenvalues of A. Then, it can be ordered in the following way: the
eigenvalues are nonincreasing in absolute values, i.e., j�n.A/j � j�nC1.A/j,
and each eigenvalue is repeated as often as its multiplicity. For k 2 N, if there
are less than k eigenvalues in �.A/nE, then we let �k.A/ D : : : D �kC1.A/ D
: : : D 0. The order may not be unique, we choose a fixed order of this kind. }

Proposition 3.4.2. Let A be a generalized Riesz operator, and set .�n.A//n2N the
sequence of eigenvalues of A, ordered following the general rule of Remark 3.4.1.
Let n 2 N with �n.A/ 62 E (whereE is the set introduced in Definition 3.1.3). Then,
there is a n-dimensional subspace Xn of X , invariant under A, such that AjXn , the
restriction of A to Xn, has precisely �1.A/; : : : ; �n.A/ as its eigenvalues. }
Proof. Let �1; : : : ; �l represent the different eigenvalues appearing in the sequence
�1.A/,. . . , �n.A/, we have �l D �n.A/ and

l�1X

kD1
mult.A; �k/ < n �

lX

kD1
mult.A; �k/; (3.4.6)

since each eigenvalue is repeated as often as its multiplicity. Let p WD n �Pl�1
kD1 mult.A; �k/, then by Eq. (3.4.6), 0 < p � mult.A; �l/. For all j 2

f1; : : : ; lg, let Yj WD S
n2NN


.�j I � A/n�. Then, we have A.Yj / � Yj and

Yi
T
Yj D f0g for i ¤ j , since the eigenvalues �1; : : : ; �l are different. We
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also have k WD dimYl D mult.A; �l/ < 1. Then, by the Jordan decomposition
theorem, Yl has a basis of vectors e1; : : : ; ek such that AjYl W Yl �! Yl has a matrix
representation with basis e1; : : : ; ek which is block diagonal sum of matrix of the
form

0

B
B
@

�l 1

: :

: 1

�l

1

C
C
A ;

since �.AjYl / D f�lg by Remark 3.4.1. Thus, for all i 2 f1; : : : ; kg; A.ei / 2
spanfe1; : : : ; eig. Let Y 0

l WD spanfe1; : : : ; epg and defineXn WD ˚l�1
jD1Yj ˚Y 0

l . Then,
Xn is invariant underA, since Y 0

l and Yj for all j 2 f1; : : : ; l�1g are invariant under

A. We have dimXn D Pl�1
kD1 mult.A; �k/ C p D n and AjXn has as eigenvalues

precisely �1.A/; : : : ; �n.A/, thus completes the proof. Q.E.D.

Definition 3.4.1. Let X and Y be two Banach spaces. Two operators A 2 L.X/
and B 2 L.Y / are related if there are two operators S 2 L.X; Y / and T 2 L.Y;X/
such that A D TS and B D ST . }
Lemma 3.4.1. Let A 2 PK.X/ and set P.z/ D Pp

kD0 akzk , the minimal
polynomial of A, z1; : : : ; zp its zeros. Let B 2 L.Y / such that A and B are related.
Then, B 2 PK.Y / and f0; z1; : : : ; zpg D f0; �1; : : : ; �qg, where �1; : : : ; �q are the
zeros of Q.:/, the minimal polynomial of B . }
Proof. For all k 2 N, we have BkC1 D SAkT . Then, BP.B/ D SP.A/T . Thus,
B 2 PK.Y / and Q.:/ the minimal polynomial of B , divide the polynomial Q1.:/,
where Q1.z/ D zP.z/. We conclude that f�1; : : : ; �qg � f0; z1; : : : ; zpg. Similarly,
for all k 2 N, AkC1 D TBkS yields fz1; : : : ; zpg � f0; �1; : : : ; �qg. It follows that
f0; z1; : : : ; zpg D f0; �1; : : : ; �qg. Q.E.D.

We close this section with the following result.

Theorem 3.4.1. Let X , Y be two infinite dimensional Banach spaces. Let A 2
PK.X/ and set P.z/ D Pp

kD0 akzk , the minimal polynomial of A, z1; : : : ; zp its
zeros. Let B 2 L.Y / such that A and B are related. Then, A and B are generalized
Riesz operators with �.A/nf0; z1; : : : ; zpg D �.B/nf0; z1; : : : ; zpg and, for all � 2
�.A/nf0; z1; : : : ; zpg, we have mult.A; �/ D mult.B; �/. }
Proof. Let � 2 �.A/nf0; z1; : : : ; zpg and set ' 2 N.� � B/. Then, .� � B/' D 0

and .� � A/T ' D 0, since TB D AT . Thus, T ' D 0 and B' D 0, which
implies that ' D 0, since ' 2 N.� � B/ and � ¤ 0. It follows that .� � B/

is injective. Let Q.:/ be the minimal polynomial of B . By Lemma 3.4.1, we have
Q.�/ ¤ 0. So, using Theorem 3.2.1, we deduce that .��B/�1 exits and is bounded.
Thus, � 2 �.B/. Similarly, � 2 �.B/nf0; z1; : : : ; zpg which yields � 2 �.A/. Now,
let � 2 �.A/nf0; z1; : : : ; zpg and set n WD max.asc.� � A/; asc.� � B//. Since
.� � A/nT D T .� � B/n, then we can define the operator H by
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8
<

:

H W N Œ.� � B/n� �! N Œ.� � A/n�
' �! 1

�n
T ':

Similarly, since S.� � A/n D .� � B/nS , then we can define the operator K by
8
<̂

:̂

K W N Œ.� � A/n� �! N Œ.� � B/n�
' �!

 

S

nX

kD1
C k
n .�1/k�1�n�kAk�1

!

':

Let ' 2 N Œ.� � B/n�. Since SAkT D BkC1, we have

KH' D 1

�n

 
nX

kD1
C k
n .�1/k�1�n�kSAk�1T

!

'

D 1

�n

 
nX

kD1
C k
n .�1/k�1�n�kBk

!

'

D � 1

�n
Œ.� � B/n � �nI � '

D ':

Hence,K is an onto operator. So, dimN Œ.� � B/n� � dimN Œ.� � A/n�. Similarly,
we consider

8
<

:

QH W N Œ.� � A/n� �! N Œ.� � B/n�
' �! 1

�n
S':

Since .� � A/nT D T .� � B/n, then we can define

8
<̂

:̂

QK W N Œ.� � B/n� �! N Œ.� � A/n�
' �!

 

T

nX

kD1
C k
n .�1/k�1�n�kBk�1

!

':

Let ' 2 N Œ.� � A/n�. Since TBkS D AkC1, we have

QK QH' D 1

�n
T

 
nX

kD1
C k
n .�1/k�1�n�kBk�1S

!

'

D 1

�n

 
nX

kD1
C k
n .�1/k�1�n�kAk

!

'

D � 1

�n
Œ.� � A/n � �nI � '

D ':
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Hence, QK is an onto operator. So, dimN Œ.� � A/n� � dimN Œ.� � B/n�.
Hence, we have dimN Œ.� � A/n� D dimN Œ.� � B/n�, and then mult.A; �/ D
mult.B; �/. Q.E.D.

3.5 Polynomially Riesz Operators

We say that A 2 L.X/ is polynomially Riesz operator if there exists a nonzero
complex polynomial p.:/, such that the operator p.A/ 2 R.X/. The set of polyno-
mially Riesz operators will be denoted byPR.X/. If p.:/ is the nonzero polynomial
of the least degree and leading coefficient 1, such that p.A/ 2 PR.X/, it will be
called the minimal polynomial of A. If A belongs to PR.X/, then there exists a
nonzero polynomial p.:/, such that p.A/ 2 R.X/. So, �.p.A// must be finite or
countable with zero as the only possible accumulation point. Moreover, the nonzero
points of �.p.A// are isolated and the corresponding spectral projections are all
finite dimensional. According to the spectral mapping theorem, the only possible
accumulation points of �.A/ are contained in the set of roots of p.:/. Let �i be a
root of p.:/ and assume that �i … �.A/. Set q.z/ D .z � �i /

�1p.z/. Obviously,
deg.q/ < deg.p/. Besides, since q.A/ D .A � �i /

�1p.A/ D p.A/.A � �i /
�1, by

applying Proposition 2.2.3, we deduce that q.A/ 2 PR.X/. The following results
can be found in [229].

Proposition 3.5.1. Let A 2 L.X/, assume that ˝ ¤ ; is a connected open subset
of C such that �.A/ � ˝, and let f W ˝ �! C, f ¤ 0 be an analytic function. If
f .A/ 2 R.X/, then A 2 PR.X/. }
Proof. Obviously, f has only a finite number of zeros on �.A/, say �1; : : : ; �m.
Hence, f .z/ D .

Qm
iD1.z � �i /

˛i /�.z/, where ˛i is the order of the �i zero and
�.z/ ¤ 0 is an analytic function on a neighborhood of �.A/. Set #.z/ D 1=�.z/.
Clearly, # is analytic on a neighborhood of �.A/, and

Qm
iD1.z��i /˛i D f .z/#.z/ D

#.z/f .z/. Therefore,
Qm
iD1.A � �i /

˛i D f .A/#.A/ D #.A/f .A/. Since f .A/ 2
R.X/, and according to Proposition 2.2.3,

Qm
iD1.A��i /˛i belongs to R.X/ which

ends the proof. Q.E.D.

Proposition 3.5.2. Let .T .t//t�0 be a C0-semigroup on a Banach space X with an
infinitesimal generator A. Let n be an integer, and let ' be a function defined from
its domain into C

n, that is, ' W D.'/ � R �! C
n, t �! .'1.t/; : : : ; 'n.t//. Set

DC.'/ WD D.'/
T
�0;1Œ. Assume that '.:/ is continuous and, for all t 2 DC.'/,

'i .t/ ¤ 0 and
Qn
iD1.T .t/ � 'i .t// 2 R.X/. If DC.'/ ¤ ;, then the set I WD

fIm� such that � 2 �p.A/g is bounded. }
Proof. In order to prove this, we will proceed by contradiction. If I is unbounded,
then there exists a sequence .ak/k in I such that akC1 > ak and lim

k!1 ak D
C1 or akC1 < ak and lim

k!1 ak D �1. The treatment of these two cases

is the same. Hence, we restrict ourselves to the first one. Thus, there exists a
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sequence .�k/k , such that �k 2 �p.A/ and ak D Im�k . So, et�k 2 �p.T .t//

and arg.et�k / D tak C 2m for some m 2 Z. Since 'i .t/, i D 1; : : : ; n

represent the only possible accumulation points of �p.T .t//, then for all ˛ >

0,

(

k 2 N such that sup
1�i�n

jet�k � 'i .t/j > ˛
)

is finite. So, for all " satisfying

0 < " < 1=2,
˚
k 2 N such that sup1�i�n; m2Z jtak � arg.'i .t//C 2mj > "

2



is

finite, i.e.,
˚
k 2 N such that tak … S1�i�n; m2Z


arg.'i .t//C2m� "

2
; arg.'i .t// C

2m C "
2

�

is finite. Let t0 > 0 be a fixed point, such that the intervals are disjoint

or identical in the set G" D S
1�i�n; m2Z


arg.'i .t0//C 2m � "

2
; arg.'i .t0// C

2m C "
2

�
. We also choose a determination of arg.'i .t0// such that none of 'i .t0/

is on the half-axis of discontinuity of arg.:/. This is possible, since they are in finite
number and also different from zero. Clearly, the complement ofG" in R is a reunion
of open intervals. Hence, G" is closed. Let ı > 0 be such that jt � t0j < ı implies
jarg.'i .t// � arg.'i .t0//j < "

2
for i D 1; 2; : : : ; n (use the continuity of 'i .:/ and

arg.:/ at 'i .t0//. Then, for all t 2�t0 � ı; t0 C ıŒ, fk 2 N such that tak … G"g is
finite and, for all t 2�t0 � ı; t0 C ıŒ, there is Nt 2 N such that k � Nt implies

tak 2 G", (or t 2 1
ak
G") and �t0 � ı; t0 C ıŒ� S

N2N
�T

k�N 1
ak
G"

	
. Using the

Baire category theorem allows us to conclude that there exists N 2 N, such thatT
k�N 1

ak
G" has a nonempty interior. Accordingly, there are a and b in �0;1Œ with

a < b and �a; bŒ� T
k�N 1

ak
G". However, �a; bŒ would be contained in one of the

connected components of
T
k�N 1

ak
G". Consequently, b � a � 2"

ak
for every k 2 N,

which leads to a contradiction because ak ! 1 as k ! 1. This completes the
proof. Q.E.D.

3.6 Some Results on Polynomially Fredholm Perturbation

Definition 3.6.1. An operator A 2 L.X/ is said to be polynomially Fredholm
perturbation if there exists a nonzero complex polynomial P such that P.A/ is a
Fredholm perturbation. }
We denote by PF.X/ the set of polynomially Fredholm perturbation defined by

PF.X/ W D
n
A 2 L.X/ such that there exists a nonzero complex polynomial

P.z/ D
pX

nD0
anzn satisfing P.A/ 2 Fb.X/

o
:

Lemma 3.6.1. Let P be a complex polynomial and � 2 C such that P.�/ ¤ 0.
Then, for all A 2 L.X/ satisfying P.A/ 2 Fb.X/, the operator P.�/ � P.A/ is a
Fredholm operator on X with finite ascent and descent. }
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Proof. Put B D P.�/ � P.A/ D P.�/
�
I � P.A/

P.�/

	
D P.�/.I � F /, where F D

P.A/

P.�/
2 Fb.X/. Let C D I � F , then B D P.�/C . It is clear that C C F 2 Bb.X/

and so we can write C D C C F � F , where C C F 2 Bb.X/ and F 2 Fb.X/.
Moreover, we have .C CF /F D F.C CF /. By using Theorem 2.2.21, we deduce
that C 2 Bb.X/ and therefore, B 2 Bb.X/. Q.E.D.

Theorem 3.6.1. Let A 2 PF.X/, i.e., there exists a nonzero complex polynomial
P.z/ D Pn

iD0ai zi satisfying P.A/ 2 Fb.X/. Let � 2 C, with P.�/ ¤ 0. Then,
� � A is a Fredholm operator on X with index zero and with finite ascent and
descent. }
Proof. The proof follows immediately from Theorem 3.1.2. Q.E.D.



Chapter 4
Time-Asymptotic Description of the Solution
for an Abstract Cauchy Problem

In this chapter, we give a description of the large time behavior of solutions to an
abstract Cauchy problem on Banach spaces without restriction on the initial data.
Let X be a Banach space and let T W D.T / � X �! X be the infinitesimal
generator of a C0-semigroup of bounded linear operators .U.t//t�0 acting on X .
We consider the Cauchy problem

8
<

:

@ 

@t
D A WD T C F 

 .0/ D  0;
(4.0.1)

where F is a bounded linear operator on X and  0 2 X .

4.1 Abstract Cauchy Problem

Consider Eq. (4.0.1) in the Banach space X . Since A WD T C F is a bounded
perturbation of T , by the classical perturbation theory (Theorem 2.5.8), it generates
a C0-semigroup .V .t//t�0 which solves the Cauchy problem (4.0.1) and is given by
the Dyson–Phillips expansion series (the finite iteration of the Duhamel formula)

V.t/ D
n�1X

jD0
Uj .t/CRn.t/;

© Springer International Publishing Switzerland 2015
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where U0.t/ D U.t/, Uj .t/ D
Z t

0

U.s/FUj�1.t � s/ ds; j D 1; 2; : : : and the nth

order remainder term Rn.t/ can be expressed by

Rn.t/ D
1X

jDn
Uj .t/

D
Z

s1C���Csn�t; si�0
U.s1/F : : : U.sn/FV.t � s1 � : : : � sn/ ds1 : : : dsn:

Proposition 4.1.1 ([331]). With the notation introduced above, suppose that there
exist an integer n and a sequence .tk/k in Œ0;1/, tk ! 1, such that Rn.tk/ is
strictly power-compact for all k 2 N. Then, re.V .t// � r� .U.t// for all t � 0,
where .V .t//t�0 is the C0-semigroup generated by T C F . }
Proof. Let w be the type of .U.t//t�0, r� .U.t// D etw .t > 0/, and let w0

e be
such that re.V .t// D etw

0

e . Let w < w0 < w00, then there exists M � 0 such that
kU.t/k � Metw

0

.t � 0/. It follows that kUj .t/k � MjC1etw0 tj

j Š
.t � 0; j 2

N
�/; and

�
�
�
Pn�1

jD0 Uj .t/
�
�
� � etw

0

pn�1.t/; where pn�1.t/ D Pn�1
jD0 M

jC1

j Š
t j is a

polynomial of degree n � 1. From w0 < w00, it follows that
�
�
�
Pn�1

jD0 Uj .tk/
�
�
� �

etkw0

pn�1.tk/ � etkw00

for a large k, and now, Corollary 2.6.3 implies etkw0

e D
re.V .tk// D re

�Pn�1
jD0 Uj .tk/

	
� etkw00

, w0
e � w00: Since this is true for any

w00 > w, we obtain w0
e � w, as asserted. Q.E.D.

For more details related to the results of this section, we may refer to [215].

4.1.1 Compactness Results

Lemma 4.1.1. The following two statements are equivalent:

(i) The operator U.t/F is compact on X for every t > 0.
(ii) The map .0;C1/ 3 t �! U.t/F is continuous in the uniform topology and

.� � T /�1F is compact on X for some (every) � 2 �.T /. }

Proof. From Theorem 2.5.2, it follows that there are constants w � 0 and M � 1

such that kU.t/k � Mewt for t � 0. Assume that the operator U.t/F is compact
on X for every t > 0. Since F is bounded and using Theorem 2.5.5, we get the
continuity of the map .0;C1/ 3 t �! U.t/F in the uniform topology. Now, we
may prove the second part of the assertion. Indeed, from the boundedness of F , it
follows from Theorem 2.5.10, that .� � T /�1F D R1

0
e��tU.t/F dt, for Re� > w

and the integral exists in the uniform operator topology. Let ı > 0, Re� > w and
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W.�; ı/ D R1
ı
e��tU.t/F dt. Since U.t/F is compact for every t > 0, the use of

Theorem 2.5.6 implies the compactness of W.�; ı/. Hence, the estimate

k.� � T /�1F �W.�; ı/k D
�
�
�
�
�

Z ı

0

e��tU.t/F dt

�
�
�
�
�

� ıMkF k ! 0 as ı ! 0

shows the compactness of .� � T /�1F . Now, the resolvent identity gives the
compactness of .� � T /�1F for every � 2 �.T /. Conversely, let t > 0. Since
U.t/F is bounded, we may write �.� � T /�1U.t/F D R1

0
�e��sU.t C s/F ds

for every � > w. Further, the use of the relation
R1
0
�e��sds D 1 leads to

�.� � T /�1U.t/F � U.t/F D R1
0
�e��sŒU.t C s/F � U.t/F �ds. Let � > w.

Then, for every ı > 0, we have

k�.� � T /�1U.t/F � U.t/F k

�
Z 1

0

�e��skU.t C s/F � U.t/F kds

D
Z ı

0

�e��skU.t C s/F � U.t/F kds

C
Z 1

ı

�e��skU.t C s/F � U.t/F kds

� sup
0�s�ı

kU.t C s/F � U.t/F k

C�MkF kewt

.� � w/�1e�.��w/ı C ��1e��ı� :

Therefore, for every ı > 0, we get lim
�!C1 k�.� � T /�1U.t/F � U.t/F k �

sup
0�s�ı

kU.t C s/F � U.t/F k. Since ı > 0 is arbitrary, we have

lim
�!C1 k�.� � T /�1U.t/F � U.t/F k D 0: (4.1.1)

Finally, the compactness of U.t/F (t > 0) follows from Eq. (4.1.1) and the
commutativity of the operators .� � T /�1 and U.t/. Q.E.D.

Theorem 4.1.1. Suppose that the map U.:/F W .0;1/ �! L.X/; t �! U.t/F is
continuous in the uniform topology and that, for some (every) � 2 �.T /, .��T /�1F
is compact. Then, V.t/ � U.t/ D R t

0
U.t � s/FV.s/ds is compact on X . }

Proof. The result is immediate if t D 0. Now, suppose that t > 0. Clearly,
Lemma 4.1.1 implies the compactness of U.t/F . Accordingly, the operator
U.s/FV.t � s/ is also compact for every s 2 .0; t �. Therefore, using Duhamel
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formula and applying Theorem 2.5.6, one concludes the compactness of V.t/�U.t/
for every t > 0. Q.E.D.

Corollary 4.1.1. Suppose that the map FU.:/ W .0;1/ �! L.X/; t �! FU.t/ is
continuous in the uniform topology and that, for some (every) � 2 �.T /, F.��T /�1
is compact. Then, V.t/ � U.t/ D R t

0
V .t � s/FU.s/ds is compact on X . }

Corollary 4.1.2. Assume that the hypotheses of Theorem 4.1.1 are satisfied. Then,
the map .0;C1/ 3 t �! R1.t/F is continuous in the uniform topology. }
Proof. By virtue of the hypotheses, it is sufficient to show the continuity of the map
.0;C1/ 3 t �! V.t/F in the uniform topology. To do this, we first observe that
Lemma 4.1.1 and Theorem 4.1.1 imply the compactness of U.t/F and R1.t/F for
all t > 0. Therefore, V.t/F is compact for all t > 0. Proceeding as in the first part
of the proof of Lemma 4.1.1 we obtain the continuity of the map .0;C1/ 3 t �!
V.t/F in the uniform topology, which completes the proof. Q.E.D.

4.1.2 The Remainder Term of the Dyson–Philips Expansion

Lemma 4.1.2. Let n � 1 be a fixed integer and suppose that, for all � > w,
the operator F

Qn
iD1

�
.� � T /�1U.ti /F

�
is compact for all n-tuples .t1; : : : ; tn/,

ti > 0 and the map .t1; : : : ; tn/ �! F
Qn
iD1 .U.ti /F / is continuous in the uniform

topology. Then, the operator F
Qn
iD1 .U.ti /F / is compact on X for all n-tuples

.t1; : : : ; tn/, ti > 0 with i D 1; : : : ; n. }
Proof. For the sake of simplicity, we will only consider the case n D 2. The general
case can be treated similarly. Let � > w (� 2 �.T /), we can write

�2F.� � T /�1U.t1/F.� � T /�1U.t2/F � FU.t1/FU.t2/F

D �2
Z 1

0

Fe��tU.t C t1/dt
Z 1

0

Fe��sU.s C t2/Fds � FU.t1/FU.t2/F

D �2
Z 1

0

Z 1

0

e��.tCs/FU.t C t1/FU.s C t2/Fdtds

� �2
Z 1

0

Z 1

0

e��.tCs/FU.t1/FU.t2/Fdtds

D �2
Z 1

0

Z 1

0

e��.tCs/ ŒFU.t C t1/FU.s C t2/F � FU.t1/FU.t2/F � dtds:

Let ı > 0. Writing J.t; s; t1; t2/ D �2e��.tCs/ ŒFU.t C t1/FU.s C t2/F � FU.t1/
FU.t2/F �, we have

Z 1

0

Z 1

0

J.t; s; t1; t2/dtds
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D
Z ı

0

Z ı

0

J.t; s; t1; t2/dtds C
Z ı

0

dt
Z 1

ı

J.t; s; t1; t2/ds

C
Z 1

ı

dt
Z ı

0

J.t; s; t1; t2/ds C
Z 1

ı

Z 1

ı

J.t; s; t1; t2/dtds:

Putting

I1 D
Z ı

0

Z ı

0

J.t; s; t1; t2/dtds;

I2 D
Z ı

0

dt
Z 1

ı

J.t; s; t1; t2/ds;

I3 D
Z 1

ı

dt
Z ı

0

J.t; s; t1; t2/ds; and

I4 D
Z 1

ı

Z 1

ı

J.t; s; t1; t2/dtds

we get
R1
0

R1
0
J.t; s; t1; t2/dtds D I1 C I2 C I3 C I4. Using the estimate

kI1k �
Z ı

0

Z ı

0

�2e��.tCs/kFU.t C t1/FU.s C t2/F � FU.t1/FU.t2/F kdsdt

� sup
0�t;s�ı

kFU.t C t1/FU.s C t2/F � FU.t1/FU.t2/F k
 Z ı

0

�e��tdt

!2

� sup
0�t;s�ı

kFU.t C t1/FU.s C t2/F � FU.t1/FU.t2/F k:

Next,

kI2k �
Z ı

0

Z 1

ı

�2e��.tCs/kFU.t C t1/FU.s C t2/F � FU.t1/FU.t2/F kdsdt

�
Z 1

ı

�e��s sup
0�t�ı

kFU.t C t1/FU.s C t2/F

�FU.t1/FU.t2/F kds
�R ı

0
�e��tdt

	
:

Obviously, the estimate

sup
0�s�ı

kFU.t C t1/FU.s C t2/F � FU.t1/FU.t2/F k

� kF k3M2ew.t1Ct2CtCı/ C kF k3M2ew.t1Ct2/

D kF k3M2ew.t1Ct2/ 1C ew.tCı/�



126 4 Time-Asymptotic Description of the Solution for an Abstract Cauchy Problem

and
R1
ı
e��t ew.tCı/dt D ewı e�.��w/ı

��w leads to

kI2k �
Z 1

ı

�e��tkF k3M2ew.t1Ct2CtCı/dt C
Z 1

ı

�e��tkF k3M2ew.t1Ct2/dt:

Since
R1
ı
�e��tdt D e��ı , we obtain:

kI2k � kF k3M2ew.t1Ct2/
�

e��ı C e�ı.��2w/

� � w

�

: (4.1.2)

Note that I3 is similar to I2. Then, it satisfies the estimate (4.1.2). Now, let us
consider I4. It is easy to see that

kI4k � kF k3M2

�Z 1

ı

Z 1

ı

�2e��.tCs/ew.t1Ct2CtCs/dtds

C
Z 1

ı

Z 1

ı

�2e��.tCs/ew.t1Ct2/dtds

�

:

Hence, from the relation

Z 1

ı

Z 1

ı

�2e��.tCs/kF k3M2ew.t1Ct2CtCs/dtds

D kF k3M2ew.t1Ct2/
�Z 1

ı

�e�.��w/sds

�2

D kF k3M2ew.t1Ct2/
�

�

� � w

�2
e�2.��w/ı

and

Z 1

ı

Z 1

ı

�2e��.tCs/kF k3M2ew.t1Ct2/dtds D kF k3M2ew.t1Ct2/
�Z 1

ı

�e��sds

�2

D kF k3M2ew.t1Ct2/e�2�ı

it follows that

kI4k � kF k3M2ew.t1Ct2/
�

e�2�ı C �2e�2.��w/ı

.� � w/2

�

: (4.1.3)

Since ı > 0 is arbitrary, we have kI1k D 0. Moreover, the estimates (4.1.2)
and (4.1.3) imply lim

�!1 kIik D 0, i D 2; 3; 4. Consequently, we have

lim
�!1 k�2F.��T /�1U.t1/F.��T /�1U.t2/F �FU.t1/FU.t2/F k D 0: (4.1.4)
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Now, the use of the compactness of F.�� T /�1U.t1/F.�� T /�1U.t2/F , together
with Eq. (4.1.4), gives the compactness of FU.t1/FU.t2/F . This completes the
proof. Q.E.D.

Theorem 4.1.2. Under the assumptions of Lemma 4.1.2, the remainder term
RnC1.t/ of the Dyson–Phillips expansion is compact on X , for all t � 0. }
Proof. For t D 0, the result is obvious. Let t > 0. By Lemma 4.1.2, we have the
compactness of FU.t1/FU.t2/ : : :FU.tn/F on X . Hence, the integrand of RnC1.t/,
t > 0 is compact on X . Now, the use of Theorem 2.5.6 ends the proof. Q.E.D.

Corollary 4.1.3. Assume that the hypotheses of Theorem 4.1.2 are satisfied. Then,
we have �.V .t//

Tf� 2 C such that j�j > etwg consists of (at most) isolated
eigenvalues with finite algebraic multiplicities. }
Proof. Clearly, the hypotheses of Theorem 4.1.2 imply the compactness of RnC1.t/
for all t � 0 and n � 1. Therefore, for all B 2 L.X/ and m � 1, .BRnC1.t//m is
compact onX . Now, the use of Proposition 4.1.1 gives the desired assertion. Q.E.D.

4.2 Time Behavior of Solutions for an Abstract Cauchy
Problem (4.0.1) on Banach Spaces

We suppose the following conditions:

.A1/ W There exists an integer m such that Œ.��T /�1F �m is compact for Re�>�;
where � is the type of fU.t/; t � 0g

and

.A2/ W There exists an integer m such that
lim

jIm�j!C1
kŒ.� � T /�1F �mk D 0 uniformly on f� 2 C such that

Re� � !g .! > �/:

Lemma 4.2.1. We assume that .A1/ and .A2/ are satisfied for some m. Then,

(i) �.A/
Tf� 2 C such that Re� > �g consists of, at most, isolated eigenvalues

with finite algebraic multiplicities.
(ii) If ! > �, then �.A/

Tf� 2 C such that Re� � !g is finite.
(iii) If! > �, then k.��A/�1k is uniformly bounded in f� 2 C such that Re� � !g

for large jIm�j. }
Proof.

(i) This result was obtained by Vidav [328]. First, let us notice that
the function � �! Œ.� � T /�1F �m is regular analytic in the half-
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plane Re� > � and its values Œ.� � T /�1F �m are, by assump-
tion .A1/, compact operators. Since, by Corollary 2.5.1, we have
kŒ.� � T /�1F �mk � kF kmk.� � T /�1km � kF km

.Re���/m ; Œ.� � T /�1F �m tends
to zero if Re� ! 1. Therefore, 1 is not an eigenvalue for all operators
Œ.� � T /�1F �m. Hence, applying Shmul’yan theorem we infer that
ŒI � ..� � T /�1F /m��1 exists as a bounded everywhere defined operator
for all � in the half-plane Re� > �, except for a discrete set of
values �k , where the function ŒI � ..� � T /�1F /m��1 has a pole. Since
ŒI � .� � T /�1F ��1 D Pm�1

kD0 Œ.� � T /�1F �kŒI � ..� � T /�1F /m��1, the
function ŒI � .��T /�1F ��1 has a similar behavior as ŒI � ..��T /�1F /m��1
in the half-plane Re� > �. Let � be such that ŒI � .� � T /�1F ��1 exists. Put
R� D ŒI � .� � T /�1F ��1.� � T /�1 and A� D � � A D � � T � F . We
remark that

.� � T /�1A� � I � .� � T /�1F (4.2.1)

since the operator on the right is everywhere defined and on the left is not.
Hence, we obtain R�A� � I . Now it is well known that the existence
of ŒI � .� � T /�1F ��1 implies the existence of ŒI � F.� � T /�1��1.
Since ŒI � .� � T /�1F ��1.�I � T /�1 D .� � T /�1ŒI � F.� � T /�1��1,
we have A�R� D I . Hence A�1

� exists for such a � as a bounded everywhere
defined operator and is equal to R�. Consequently, the resolvent .� � A/�1 D
R� D ŒI � .� � T /�1F ��1.� � T /�1 is an analytic function of � in the half-
plane Re� > �with the exception of a discrete set of values �k , whereR� has a
pole. Any pole �k of R� is an eigenvalue of A. A corresponding eigenfunction
 satisfies, according to (4.2.1), the equation ..�k � T /�1F / D  , or
..�k � T /�1F /m D ..�k � T /�1F / D  . The operator ..�k � T /�1F /m,
being compact, the space of solutions of this equation is finite dimensional.
This implies that the space of eigenfunctions of A corresponding to the
eigenvalue X is finite dimensional too.

(ii) Let a 2�0; 1Œ. By .A2/ there exists C D C.w/ such that kŒ.� � T /�1F �mk �
a < 1 in the region R.w/ WD f� 2 C such that Re� � ! and jIm.�/j � C.w/g.
It follows that

r� ..� � T /�1F / � a
1
m < 1 if � 2 R.w/; (4.2.2)

where r� .:/ denotes the spectral radius. But � is an eigenvalue of A if, and
only if, 1 is an eigenvalue of .� � T /�1F , so R.w/ contains no eigenvalue.
Moreover, the general semigroup theory shows that k.� � T /�1F k ! 0 as
Re.�/ ! 0 uniformly with respect to jIm.�/j. Thus, the point spectrum of A
in the region f� 2 C such that Re� � !g is confined in a compact subregion
and, then it is necessarily finite since it is discrete. This proves .ii/.

(iii) Let us consider the problem � � A D � � T � F D ' (Re� > �).
It is equivalent to  � .� � T /�1F D .� � T /�1'. If � 2 R.w/, then
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using (4.2.2), we have .I � .�� T /�1F /�1 D P1
nD0..�� T /�1F /n and thus

.��A/�1 D P1
nD0..�� T /�1F /n.�� T /�1 for � 2 R.w/. Besides, for each

n, there are two (unique) integers p and q such that n D mp C q (q < m).
Hence,

1X

nD0
k..� � T /�1F /nk D

1X

pD0; 0�q<m
k..� � T /�1F /mpCqk

�
1X

pD0; 0�q<m
k..� � T /�1F /qkk..� � T /�1F /mkp

� max
0�q<m k..� � T /�1F /qk

1X

pD0
k..� � T /�1F /mkp

D max
0�q<m k..� � T /�1F /qk 1

1 � k..� � T /�1F /mk
� max

0�q<m k..� � T /�1F /qk 1

1 � a

because kŒ.� � T /�1F �mk � a < 1 for � 2 R.w/. Let w0 > � be such
that w0 < w. By the general semigroup theory, there exists M.w0/ such that
k.� � T /�1k � M.w0/

Re��w0
for Re� > w0, so, k.� � T /�1k � M.w0/

w�w0
if Re� � w.

Therefore, for � 2 R.w/, we have the following k.I � .� � T /�1F /�1k �
max0�q<m M.w0/qkF kq

.w�w0/q
1
1�a . Finally, for � 2 R.w/, we have

k.� � A/�1k D k.I � .� � T /�1F /�1.� � T /�1k
� max

0�q<m
M.w0/qkF kq
.w � w0/q

M.w0/
.1 � a/.w � w0/

:

This ends the proof of .iii/. Q.E.D.

Now, let us introduce the following hypothesis

.A3/

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.i/ There exists an integer m; a real r0 > 0; for ! > �; there exists C.!/
such that
jIm�jr0kŒ.��T /�1F �mk is bounded on f�2C;Re��!; jIm�j �C.!/g:

.ii/ There exists a real c such that k.� � A/�1kis bounded on f� 2 C;

Re� � cg:

Proposition 4.2.1. Assume that .A1/ and .A3/.i/ hold true. Then,

(i) �.A/
Tf� 2 C such that Re� > �g consists, at most, of discrete eigenvalues

with finite algebraic multiplicities.
(ii) If ! > �, then the set �.A/

Tf� 2 C such that Re� � !g is finite.
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(iii) If ! > �, then there exists C.!/ > 0 such that k.� � A/�1k is bounded on

f� 2 C such that Re� � ! and jIm�j � C.!/g:

}
Proof. Using the hypothesis .A3/.i/, there exists a constant C > 0, such that kŒ.��
T /�1F �mk � C

jIm�jr0 . So, lim
jIm�j!C1

kŒ.� � T /�1F �mk D 0. Then, the items .i/, .ii/

and .iii/ follow immediately from Lemma 4.2.1. Q.E.D.

Assume that .A1/ and .A3/.i/ hold true. Then, from Proposition 4.2.1, the
eigenvalues f�1; �2; : : : ; �n; �nC1; : : :g of A lying in the half plane Re� > �, can be
ordered in such a way that the real part decreases [186], i.e., Re�1 > Re�2 > � � � >
Re�nC1 > � � � > � and f� 2 C such that Re� > �gnf�n; n D 1; 2; : : :g � �.A/,
where �.A/ is the resolvent set of A. Let Pi andDi denote respectively, the spectral
projection and the nilpotent operator associated with �i , i D 1; 2; : : : ; n. Then,
P D P1 C � � � C Pn is the spectral projection of the compact set f�1; �2; : : : ; �ng.
Hence, according to the spectral decomposition theorem corresponding to the sets
f�1; �2; : : : ; �ng and �.A/nf�1; �2; : : : ; �ng (see [35, pp. 68–70]), V.t/ splits as
V.t/ D QV .t/ C Pn

iD1 e�i t eDi tPi , where QV .t/ WD V.t/.I � P /. . QV .t//t�0 is a
C0-semigroup on the Banach space .I � P /X with generator QA WD A.I � P /. We
first establish the following lemma:

Lemma 4.2.2. If the hypotheses .A1/ and .A3/ hold true, then

(i) For any " > 0, k.� � A/�1.I � P /k is bounded on f� 2 C such that Re� �
Re�nC1 C "g.

(ii) For all q 2 f0; : : : ; m � 1g, kŒ.� � T /�1F �qk is bounded on f� 2
C such that Re� � Re�nC1 C "g. }

Proof.

(i) Let " > 0. From Proposition 4.2.1.iii/, there exists a constant a > 0 such
that k.� � A/�1.I � P /k is bounded on f� 2 C such that Re� � Re�nC1 C
" and jIm�j � ag. Since �. QA/ D �.A/nf�1; �2; : : : ; �ng and the function � �!
k.� � QA/�1k is continuous on �. QA/, k.� � QA/�1k is bounded on the compact
set f� 2 C such that Re�nC1 C " � Re� � c and jIm�j � ag. This holds also
true for k.� � A/�1.I � P /k. Indeed,

k.� � A/�1.I � P /k D k.� � A/�1.I � P /.I � P /k
D k.� � QA/�1.I � P /k
� k.� � QA/�1k:

Furthermore, by hypothesis .A3/.ii/, there exists M 0 > 0 such that k.� �
A/�1.I � P /k � k.� � A/�1k � M 0 on f� 2 C such that Re� � cg.
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Consequently, these assertions show that k.� � A/�1.I � P /k is bounded on
f� 2 C such that Re� � Re�nC1 C "g.

(ii) By the general semigroup theory, for ! > �, there existsM.!/ such that k.��
T /�1k � M.!/

Re��! for Re� > !. So, k.� � T /�1k � M.!/

Re�nC1C"�! for Re� >

Re�nC1 C " > !. Therefore, for all q 2 f0; : : : ; m � 1g, kŒ.� � T /�1F �qk ��
M.!/

Re�nC1C"�!
	q kF kq . Finally, for all q 2 f0; : : : ; m � 1g, kŒ.� � T /�1F �qk is

bounded on f� 2 C such that Re� � Re�nC1 C "g. This completes the proof of
the lemma. Q.E.D.

Now, we are ready to prove the main result of this section.

Theorem 4.2.1. If the hypotheses .A1/ and .A3/ are true, then for any " > 0,
there exists M > 0 such that kV.t/.I � P /k � Me.Re�nC1C"/t , 8t > 0, where
P D P1 C � � � CPn is the spectral projection of the compact set f�1; �2; : : : ; �ng.}
Proof. For every " > 0, there exists QM � 1 such that kU.t/k � QMe.�C"/t , for all
t � 0. By the Dyson–Phillips expansion, the semigroup .V .t//t�0 generated by A
can be written in the form V.t/ D PC1

jD0 Uj .t/, where U0.t/ D U.t/, Uj .t/ D
R t
0
U.s/FUj�1.t � s/ ds; 8j 2 N

�. From [276] or Theorem 2.5.10, for any � such
that Re� > �, one can write

Z C1

0

e��tUk.t/ dt D .� � T /�1ŒF .� � T /�1�k ;  2 X; k 2 N (4.2.3)

and

kUk.t/k � e.�C"/t QMkC1kF kk t
k

kŠ
; k 2 N: (4.2.4)

For r0 > 0, there exists an integer p > 0, such that r0p > 1. Let k0 be an integer
such that 2k0 C2 D pm Cq, where q 2 f0; : : : ; m�1g. SetW.t/ D V.t/.I �P /�P2k0C1

kD0 Uk.t/. It is easy to see that t �! W.t/ is strongly continuous for t � 0.
For every  2 X , we have

W.t/.I � P / D V.t/.I � P / �
2k0C1X

kD0
Uk.t/.I � P / : (4.2.5)

The use of Eqs. (4.2.3) and (4.2.5) gives

Z C1

0

e��tW.t/.I � P / dt D .� � A/�1.I � P / 

�
2k0C1X

kD0
.� � T /�1ŒF .� � T /�1�k.I � P / :
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Moreover, .� � A/�1 D PC1
kD0.� � T /�1ŒF .� � T /�1�k . So,

Z C1

0

e��tW.t/.I � P / dt

D
C1X

kD2k0C2
.� � T /�1ŒF .� � T /�1�k.I � P / 

D .� � T /�1ŒF .� � T /�1�2k0C1F.� � A/�1.I � P / :

Let " > 0 and set ˇn;" D Re�nC1 C ". For every � with Re� > ˇn;" � "
2
, define

f .�/ WD .� � T /�1ŒF .� � T /�1�2k0C1F.� � A/�1.I � P / : (4.2.6)

Hence, kf .�/k � kŒ.� � T /�1F �2k0C2kk.� � A/�1.I � P /kk k, which implies
that kf .�/k � kŒ.��T /�1F �mkpkŒ.��T /�1F �qkk.��A/�1.I �P /kk k. From
both Lemma 4.2.2 and hypothesis .A3/.i/, we deduce that there exists C > 0 such
that

kf .�/k � C

jIm�jr0p (4.2.7)

uniformly on f� 2 C such that Re� > ˇn;" � "
2
g. From Theorem 2.4.1, it follows

that g.t/ D 1
2i

R �Ci1
��i1 et�f .�/ d�, � > maxf0; ˇn;"g and t � 0 is a continuous

function, such that
Z C1

0

e�t�g.t/ dt D f .�/: (4.2.8)

By virtue of the uniqueness of the Laplace integral, Eqs. (4.2.6) and (4.2.8) imply
that W.t/.I � P / D g.t/. Since � �! f .�/ is analytic in the region f� 2
C such that Re� > ˇn;" � "

2
g, the integral path in the right-hand side of Eq. (4.2.8)

can be shifted to Re� D ˇn;", i.e.,

g.t/ D 1

2i
lim

y�!C1

"Z ˇn;"Ciy

ˇn;"�iy
et�f .�/ d�C

Z �

ˇn;"

et.xCiy/f .x C iy/ dx

C
Z ˇn;"

�

et.x�iy/f .x � iy/ dx

#

:
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From Eq. (4.2.7), and using the Lebesgue dominated convergence theorem, the
second and the third terms of the above equation tend to zero. Then,

g.t/ D 1

2i

Z ˇn;"Ci1

ˇn;"�i1
et�f .�/ d�

D W.t/.I � P / : (4.2.9)

We have

kW.t/.I � P / k � 1

2
etˇn;"

Z C1

�1
kf .ˇn;" C iy/k dy:

From Eqs. (4.2.7) and (4.2.9), we deduce that

kW.t/.I � P /k � C1e
tˇn;" ; (4.2.10)

where C1 is a positive constant. From Eqs. (4.2.4), (4.2.5), and (4.2.10), we get

kV.t/.I � P /k � kW.t/.I � P /k C
2k0C1X

kD0
kUk.t/.I � P /k

�C1etˇn;" C
2k0C1X

kD0
e.�C"/t QMkC1kF kk t

k

kŠ

� Met.Re�nC1C"/;

where M D supt�0
�
C1 C e.��Re�nC1/t

P2k0C1
kD0 QMkC1kF kk tk

kŠ

	
. This completes the

proof. Q.E.D.

We have the following proposition:

Proposition 4.2.2. Let Q be a complex polynomial satisfying Q.0/ D 0 and
Q.1/ ¤ 0. Assume that .� � T /�1Q.B�/ is compact in Rw WD f� 2
C such that Re� � wg (w > w.U /), where B� WD F.� � T /�1 and w.U / denote
the type of the semigroup

�
U.t/

�
t�0. Then, �.A/

Tf� 2 C such that Re� > w.U /g
consists, at most, of a countable set of isolated points �k . Each �k is an eigenvalue
of finite multiplicity and is a pole for the resolvent .� � A/�1: }
Proof. Let n 2 N

�. We suppose that the polynomialQ is written asQ.X/ D a1XC
a2X

2 C a3X
3 C � � � C anX

n, where a1; a2; : : : ; an 2 C. The function � �! Q.B�/

is regular and analytic in the half-plane Re� > w.U / and its values Q.B�/ are,
by assumption, compact operators. Since, for any � > Re�, we have jjQ.B�/jj �
a1kF k
��w.U / C a2kF k2

.��w.U //2
C � � � C ankF kn

.��w.U //n . So, Q.B�/ ! 0 if Re� ! C1. Therefore,

� D Pn
iD1 ai ¤ 0 is not an eigenvalue for Q.B�/. Hence, Smul’yan’s theorem in

[311] is applied. Then, except for a discrete set of values �k 2 Rw, the operator
� �Q.B�/ has a bounded, everywhere defined inverse, while

�
� �Q.B�/

��1
has
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a pole at each of the points �k . Moreover, we have � � Q.B�/ D a1.I � B�/ C
a2.I � B2

�/C � � � C an.I � Bn
�/. Then,

�
� �Q.B�/

��1

D 
a1.I � B�/C a2.I � B2

�/C � � � C an.I � Bn
�/
��1

D 
.I � B�/

�
a1I C a2.I C B�/C � � � C an.I C B� C � � � C Bn�1

� /
� ��1

:

So,

a1I C a2.I C B�/C � � � C an.I C B� C � � � C Bn�1

� /
� �
�I � Q.B�/

��1 D
.I �B�/�1. Let � be such that .I �B�/�1 exists. Let R� WD .��T /�1.I �B�/�1.
Let us writeA� WD ��A D ��T�F . We haveA�R� D .��A/���T�F ��1 D I .
In the same way, we have R�A� D I . Hence, A�1

� exists for such a � as a bounded,
everywhere defined operator, and is equal to R�. Consequently, the resolvent
.� � A/�1 D R� is an analytic function of � in the half-plane Re� > w.U / with
the exception of a discrete set of values �k , where R� has a pole. Any pole �k of
R� is an eigenvalue of A. A corresponding eigenfunction ' satisfies the equation

B�k' D '. The equation
�
� �Q.B�k /

�
' D 0 implies

Q.B�k /

�
' D '. The operator

Q.B�k / being compact, the space of solutions of this equation is finite dimensional.
This implies that the space of eigenfunctions of A corresponding to the eigenvalue
�k is finite dimensional too. Q.E.D.

From Proposition 4.2.2, we deduce that the eigenvalues �1; �2; : : : ; �n; �nC1; : : :
of A lying in the half plane Re� > w.U /, can be ordered in such a way that the real
part decreases [186, p. 109], i.e., Re�1 > Re�2 > � � � > Re�nC1 > � � � > w.U /
and f� 2 C such that Re� > w.U /gnf�n; n D 1; 2 : : :g � �.A/, where �.A/ is the
resolvent set of A. Let Pi and Di denote respectively, the spectral projection and
the nilpotent operator associated with �i ; i D 1; 2; : : : ; n. We have the following
theorem:

Theorem 4.2.2. Assume that there exists m 2 N such that

.� � T /�1F

�m
is

compact for all � with Re� > w.U / and there exists a real r0 > 0, for w > w.U /,
there exists C.w/ such that jIm�jr0 ˇˇˇˇ.� � T /�1Bm

� F.� � A/�1
ˇ
ˇ
ˇ
ˇ is bounded on

f� 2 C such that Re� � w; jIm�j � C.w/g, where B� WD F.��T /�1, and assume
that the conditions of Proposition 4.2.2 are satisfied. Then, for any " > 0, there
exists M > 0 such that kV.t/.I � P /k � M e.Re�nC1C"/t for all t > 0, where
P D P1 C � � � CPn is the spectral projection of the compact set f�1; �2; : : : ; �ng. }
Proof. Let " > 0 and set ˇn;" D Re�nC1 C ". For every � with Re� > ˇn;" � "

2
, let

us define f .�/ WD .� � T /�1Bm
� F.� � A/�1.I � P / , where B� D F.� � T /�1.

From the hypotheses, it follows that there exists � > 0 such that:

kf .�/k � �

jIm�jr0 (4.2.11)



4.2 Time Behavior of Solutions for an Abstract Cauchy Problem (4.0.1). . . 135

uniformly on f� 2 C such that Re� > ˇn;" � "
2
g. According to Theorem 2.4.1, the

function g.t/ D 1
2i

R �Ci1
��i1 e�tf .�/d�, � > max.0; ˇn;"/, t � 0 is continuous and

Z C1

0

e��tg.t/dt D f .�/: (4.2.12)

Moreover, let W.t/ D V.t/.I � P / � Pm
kD0 Uk.t/. It is easy to see that t �!

W.t/ is strongly continuous for t � 0. For every  2 X , we have:

W.t/.I � P / D V.t/.I � P / �
mX

kD0
Uk.t/.I � P / : (4.2.13)

From Theorem 2.5.10 [152, 276], for any � such that Re� > !.U /, one can write

Z C1

0

e��tUk.t/ dt D .� � T /�1Bk
� ;  2 X; k 2 N (4.2.14)

and

kUk.t/k � e.!.U /C"/t QMkC1kF kk t
k

kŠ
; k 2 N; (4.2.15)

where QM � 1 such that kU.t/k � QMe.!.U /C"/t , for all t � 0. Hence, the use of
Eqs. (4.2.13) and (4.2.14) leads to

R C1
0

e��tW.t/.I � P / dt D .� � A/�1.I �
P / �Pm

kD0.��T /�1Bk
� .I �P / . Since .��A/�1 D PC1

kD0.��T /�1Bk
� , then

Z C1

0

e��tW.t/.I � P / dt D
C1X

kDmC1
.� � T /�1Bk

� .I � P / 

D .� � T /�1Bm
� F.� � A/�1.I � P / :

Hence,

f .�/ D
Z C1

0

e��tW.t/.I � P / dt: (4.2.16)

By virtue of the uniqueness of the Laplace integral, Eqs. (4.2.12) and (4.2.16)
imply that W.t/.I � P / D g.t/. Since � �! f .�/ is analytic in the region
f� 2 C such that Re� > ˇn;" � "

2
g, the integral path in the right-hand side of

Eq. (4.2.12) can be shifted to Re� D ˇn;", i.e.,
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g.t/ D 1

2i
lim

y!C1

"Z ˇn;"Ciy

ˇn;"�iy
et�f .�/ d�C

Z �

ˇn;"

et.xCiy/f .x C iy/ dx

C
Z ˇn;"

�

et.x�iy/f .x � iy/ dx

#

:

From Eq. (4.2.11), and using the Lebesgue dominated convergence theorem, the
second and the third terms of the above equation tend to zero. Then,

g.t/ D 1

2i

Z ˇn;"Ci1

ˇn;"�i1
et�f .�/ d�: (4.2.17)

We have kg.t/k � 1
2
etˇn;"

R C1
�1 kf .ˇn;"C iy/k dy. From Eqs. (4.2.11) and (4.2.17),

we deduce that

kg.t/k � 1

2

�

jIm�nC1jr0 e
ˇn;"t : (4.2.18)

Finally, from Eqs. (4.2.13), (4.2.15) and (4.2.18), we get

kV.t/.I � P /k � kW.t/.I � P /k C
mX

kD0
kUk.t/.I � P /k

� 1

2

�

jIm�nC1jr0 e
tˇn;" C

mX

kD0
e.!.U /C"/t QMkC1kF kk t

k

kŠ

� Meˇn;"t ;

where M D supt�0
�
1
2

�

jIm�nC1jr0 C e.!.U /�Re�nC1/t
Pm

kD0 QMkC1kF kk tk
kŠ

	
. This

completes the proof. Q.E.D.

4.3 Time Behavior of Solutions for an Abstract Cauchy
Problem (4.0.1) on Lp-Spaces (1 < p < 1)

Let .˝;˙;�/ be a positive measure space. Consider Eq. (4.0.1) in the setting of
Lp.˝/ (1 < p < 1). In addition to .A1/ and .A3/, it is further assumed that

.A4/ W �.A/Tf� 2 C such that Re� > �g and the algebraic multiplicity of every
point �i 2 �.A/Tf� 2 C such that Re� > �g as well as the projection
subspace corresponding to �i ; do not change with respect to p 2 .1;1/;
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.A5/ W .V .t//t�0; the C0-semigroup generated by A in Lp; does not change with
respect to p 2 .1;1/: Furthermore, the growth bound of V.t/ is equal to
s.A/; the spectral bound of A in Lp; and s.A/ keeps the same for every
p 2 .1;1/:

From Proposition 4.2.1, d WD s.A/ � supfRe� such that � 2 �.A/ and � ¤
s.A/g > 0. Denoting by P0 the projection operator corresponding to
f� such that Re� D s.A/ and � 2 �.A/g, then for any " 2 .0; d/, it follows
from Theorem 4.2.1 that

kV.t/.I � P0/k2 � Me.s.A/�"/t ; 8t > 0; (4.3.1)

where k:k2 is the norm in the space L2. On the other hand, from .A5/, it can be
shown that

kV.t/.I � P0/kp � kV.t/kp C kV.t/P0kp � M 0e.s.A/CQ"/t ; (4.3.2)

for any p 2 .1;1/ ande" > 0, where k:kp is the norm in the space Lp . By virtue
of the Riesz–Thorin interpolation theorem, it is not difficult to obtain the following
theorem, given in [91], from Eqs. (4.3.1) and (4.3.2).

Theorem 4.3.1. In the setting of Lp (1 < p < 1), if .A1/, .A3/–.A5/ are
satisfied, then for any initial distribution 0 2 Lp , the “solution” .t/ of Eq. (4.0.1)
is given by  .t/ D V.t/ 0, and kV.t/.I � P0/kp � Me.s.A/�"/tk 0kp , where P0
is the projection operator corresponding to f� 2 �.A/ such that Re� D s.A/g,
" 2 .0; 2dp�1/ (if p � 2) or " 2 .0; 2d.1 � p�1//) (if p < 2), d D s.A/ �
supfRe� such that � 2 �.A/ and � ¤ s.A/g. }
Remark 4.3.1. Theorem 4.3.1 indicates that if �.A/

Tf� 2 C such that Re� > �g
is not empty, then the asymptotic behavior of the solution  .t/ of Eq. (4.0.1) can be
exactly determined by s.A/. }
Corollary 4.3.1. For any constant " 2 .0; 2dp�1/ .if p � 2) or " 2
.0; 2d.1 � p�1// (if p < 2), the spectrum of V.t/ outside the disc˚
� 2 C such that j�j � e.s.A/�"/t



consists of finite isolated eigenvalue of V.t/

with finite algebraic multiplicity. }



Chapter 5
Fredholm Theory Related to Some Measures

The theory of measures of noncompactness and measures of weak noncompactness
has many applications in topology, functional analysis, and operator theory. In this
chapter, we consider one axiomatic approach to this notion which includes the
most important classical definitions. We give some results concerning a certain
class of semi-Fredholm and Fredholm operators via the concept of measures of
noncompactness and measures of weak noncompactness.

5.1 Fredholm Operators

First, let us prove the following theorem.

Theorem 5.1.1. Let A 2 C.X; Y /. Suppose that there exist A1;A2 2 L.Y;X/,
F1 2 J .X/ and F2 2 J .Y / such that A1A D I � F1 on D.A/ and AA2 D I � F2
on Y . Then A 2 ˆ.X; Y /. }
Proof. In view of the inclusion N.A/ � N.A1A/, we have ˛.A/ � ˛.I � F1/.
Moreover, R.A/ 	 R.AA2/ D R.I � F2/ and therefore, R.A/ı � R.I � F2/

ı.
Accordingly, we have ˇ.A/ � ˛.I � � F �

2 /. When combined with the fact that
˛.I � �F �

2 / D ˇ.I �F2/, this implies that ˛.A/ < 1 and ˇ.A/ < 1. To complete
the proof, it is sufficient to show that R.A/ is closed. In fact, since ˇ.I �F2/ < 1,
then there is a finite dimensional subspace X1 of X such that X D R.I �F2/˚X1
(Lemma 2.1.8). Since R.A/ 	 R.I � F2/, and from Lemma 2.1.7, we deduce that
R.A/ is closed in X . Q.E.D.

Corollary 5.1.1. Let A in L.X/ and suppose that there exist A1, A2 2 L.X/,
and F1; F2 2 PK.X/, i.e., there exist two nonzero complex polynomials P.z/ DPp

rD0 arzr and Q.z/ D Pn
rD0 brzr satisfying the compactness of both P.F1/ and

Q.F2/. Let � and � 2 C such that P.�/ ¤ 0, Q.�/ ¤ 0 and A1A D � � F1 on X
and AA2 D � � F2 on X . Then, A 2 ˆb.X/. }
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Proof. Using the fact that N.A/ � N.A1A/, we infer that ˛.A/ � ˛.� � F1/.
Moreover, R.A/ 	 R.AA2/ D R.� � F2/. Using Theorem 3.1.2, we have ˛.A/ <
1 and ˇ.A/ < 1. To complete the proof, it is sufficient to show that R.A/ is
closed. In fact, by combining Theorem 3.1.2 with the compactness of Q.F2/, we
deduce that ˇ.� � F2/ < 1. Hence, there is a finite dimensional subspace X1 of
X such that X D R.� � F2/˚ X1 (Lemma 2.1.8). Since R.A/ 	 R.� � F2/, and
from Lemma 2.1.7, we deduce that R.A/ is closed in X . Q.E.D.

Now, let us denote ˆ�.X/ by ˆ�.X/ WD fF 2 ˆb.X/ such that r.F / <

1 and r 0.F / < 1g; where r.F / D lim
n!1˛.F n/ and r 0.F / D lim

n!1ˇ.F n/.

It is easy to verify that, if A satisfies the hypotheses of Theorem 3.1.2, then
F WD � � A 2 ˆ�.X/: The next result provides a characterization of the elements
of ˆ�.X/.

Theorem 5.1.2. Let F 2 L.X/. Then, F 2 ˆ�.X/ if, and only if, there exist n 2
N

�, U 2 L.X/, and A 2 PK.X/, � 2 C with P.�/ ¤ 0 such that UF n D F nU D
� � A. }
Proof. If r.F / < 1, then there must be an integer m � 1 for which the conclusion
of Theorem 3.1.1 must hold. To see this, note that ˛.F k/ is a nondecreasing
sequence of integers bounded from above. Similarly, if r 0.F / < 1 there must
be an integer n > 1 such that N.F �k/ D N.F �n/ for k � n. If both r.F / < 1
and r 0.F / < 1, then we deduce the existence of two integers m and n such that
N.F k/ D N.Fm/ 8k � m and N.F �k/ D N.F �n/ 8k � n: Let j D max.m; n/.
Then, ˛.F k/ D ˛.F j /, and ˇ.F k/ D ˇ.F j / for all k > j . Hence, i.F k/ D
˛.F k/ � ˇ.F k/ D ˛.F j / � ˇ.F j / D i.F j / for all k > j , but i.F k/ D ki.F /.
Then, .k � j /i.F / D 0 for all k > j . So, i.F / D 0. However, if this is the
case, we must also have m D n. In order to prove that N.F n/

T
R.F n/ D f0g, let

x 2 N.F n/
T
R.F n/. Hence, F nx D 0 and there is an x1 2 X such that x D F nx1.

Then, F 2nx1 D 0 and x1 2 N.F 2n/ D N.F n/. Consequently, x D F nx1 D 0. This
proves N.F n/

T
R.F n/ D f0g. Let x1; : : : ; xs constitute a basis for N.F n/. Then,

by Lemma 2.1.4, there are bounded linear functionals x0
1; : : : ; x

0
s , which annihilate

R.F n/ and satisfy

x0
j .xk/ D ıjk; 1 � j; k � s: (5.1.1)

Let

Vx D
nX

kD1
x0
k.x/xk: (5.1.2)

The operator F n C V 2 ˆb.X/ and i.F n C V / D 0 (since V is of finite rank)
(Theorem 2.2.44). Let x 2 N.F nCV /. Then, Vx 2 N.F n/

T
R.F n/. Thus, Vx D 0

and x 2 N.F n/. Moreover, Vx D 0 implies x0
k.x/ D 0 for each k [see Eq. (5.1.2)],

and this can only happen if x D 0 [see Eq. (5.1.1)]. So, F n C V has a bounded



5.1 Fredholm Operators 141

inverse E. Besides, since R.V / � N.F n/ and R.F n/ � N.V /, then we have
F nV D VFn D 0. Hence, .F n C V /V D V.F n C V / D V 2; showing that V D
EV2 D V 2E. Since VE D EV2E D EV , we have EFn D F nE D I � EV and
EV is compact. This proves the necessary part of the theorem. Conversely, denoting
F n by QF and using Corollary 5.1.1, we conclude that QF 2 ˆb.X/. Using both
Theorem 3.1.2 and Proposition 2.2.2, we infer that there exists an integer k WD
asc.� � A/ D desc.� � A/, such that N


.� � A/j � D N


.� � A/k� 8j � k and

R

.� � A/j � D R


.� � A/k� ; 8j � k: Thus, 8j � k; N. QF j / � N.U QF j / �

N

.� � A/j � D N


.� � A/k�, sinceU and QF commute. Hence, ˛. QF j / is bounded

from above. This shows that r.F / D r. QF / < 1. Similarly, R. QF j / 	 R.U QF j / 	
R

.� � A/j � D R


.� � A/k� ; 8j � k: Hence, ˇ. QF j / is bounded. This gives

r 0.F / D r 0. QF / < 1. To complete the proof, it is sufficient to show that F 2
ˆb.X/. This follows from both Corollary 5.1.1 and Lemma 2.2.4. Q.E.D.

Corollary 5.1.2. Let F 2 ˆb.X/. If one of the two conditions is satisfied

(i) i.F / � 0 and r.F / < 1, or
(ii) i.F / � 0 and r 0.F / < 1.

Then, there exist n � 1, U 2 L.X/, and A 2 PK.X/, such that UFn D F nU D
I � A: }
Definition 5.1.1. Let A1; : : : ; An be operators in L.X/. We say that A1; : : : ; An is
a symmetric family if A�.1/ : : : A�.n/ D A1 : : : An, for every permutation �: }
In the following theorem, we prove that the index of each operator is equal to zero.

Theorem 5.1.3. Let A1; : : : ; An be a symmetric family in L.X/. Suppose that their
product A D A1 : : : An 2 ˆb.X/; with asc.A/ and desc.A/ being finite. Then, each
Aj 2 ˆb.X/ and i.Aj / D 0 for all j; 1 � j � n: }
Proof. By Lemma 2.2.4, we have Aj 2 ˆb.X/ for all j with 1 � j � n. Now, we
prove that i.Aj / D 0 for all j; with 1 � j � n: In fact,

N.Akj / � N.Ak1 : : : A
k
n/ D N.Ak/ for all j; with 1 � j � n and k 2 N: (5.1.3)

Since A 2 ˆb.X/, then Ak 2 ˆb.X/ and ˛.Ak/ < 1 for all k 2 N: So,
asc.A/ < 1; then ˛.Aasc.A// D ˛.Aasc.A/Ck/ for all k 2 N. By Eq. (5.1.3) we have
˛.Akj / � ˛.Ak/ for all k 2 N: Therefore, ˛.Aasc.A/Ck

j / � ˛.Aasc.A// for all j; with

1 � j � n and k 2 N. If we suppose that ˛.Akj / < ˛.A
kCp
j / for all k 2 N; and that

p 2 Nnf0g, a contradiction follows from the fact that ˛.Akj / � ˛.Aasc.A// and

˛.A
kCp
j / � ˛.Aasc.A// for all k 2 N; and p 2 Nnf0g. Then, there exists an

integer k0 such that N.Ak0j / D N.A
k0Cp
j / for all p 2 N: Therefore,

asc.Aj / < 1 for all j; with 1 � j � n: (5.1.4)
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By using a similar reasoning as before, we show that

desc.Aj / < 1 for all j; with 1 � j � n: (5.1.5)

We have Aj 2 ˆb.X/ for all j; with 1 � j � n. Combining Eqs. (5.1.4), (5.1.5)
and Lemma 2.2.9, we deduce that i.Aj / D 0 for all j , with 1 � j � n: Q.E.D.

Corollary 5.1.3. Let A1; : : : ; An be a symmetric family in L.X/: Let K 2
PK.X/ i.e., there exists a nonzero complex polynomial P.z/ D Pp

rD0 arzr
satisfying P.K/ 2 K.X/. Let � 2 C with P.�/ ¤ 0. If their product A WD
A1 : : : An D � � K; then each Aj .1 � j � n/ is a Fredholm operator on X of
index zero. }
Proof. This corollary follows immediately from Theorems 3.1.2 and 5.1.3. Q.E.D.

Remark 5.1.1. If A 2 ˆb.X/, then asc(A)< 1 and desc(A)< 1 if, and only if,
r.A/ < 1 and r 0.A/ < 1: }
In view of Remark 5.1.1, the following corollary is a trivial consequence of
Theorem 5.1.3.

Corollary 5.1.4. LetA1; : : : ; An be a symmetric family in L.X/. Suppose that their
product A D A1 : : : An 2 ˆb.X/; r.A/ and r 0.A/ being finite. Then, each Aj 2
ˆb.X/ and i.Aj / D 0 for all j; with 1 � j � n: }
Proposition 5.1.1. Let A 2 L.X/. The operator A is essentially semi-regular if,
and only if, there exists a closed subspace V � X such that A.V / D V and
the operator OA W X=V �! X=V induced by A is an upper semi-Fredholm
operator. }
Proof. Let A 2 L.X/ be essentially semi-regular and set V D R1.A/. Then, there
exist d 2 N and a pair of closed subspaces .M;N / of X such that A D AM ˚ AN ,
with AM is semi-regular and AN is nilpotent of order d where dimN < 1. We
deduce that V D R1.AM / � M and A.V / D AM.V / D V . If x D m C n

satisfies Ax 2 V , then AMm 2 V so that m 2 V . Thus, x 2 N C V and N. OA/ �
N C V . Hence, dimN. OA/ < 1. Let Q W X �! X=V be the canonical projection.
Since V � R.A/ and R. OA/ D ˚

Ax C V such that x 2 V

 D QR.A/ is closed.

Thus, OA is an upper semi-Fredholm operator. Conversely, let V � X be a closed
subspace such that A.V / D V and the operator OA W X=V �! X=V induced by A
is upper semi-Fredholm. We first prove that R.A/ is closed. Let Q W X �! X=V

be the canonical projection. If y 2 X and Qy 2 R. OA/, then y 2 R.A/ C V �
R.A/C F since V � R.A/. Thus, R.A/ is a subspace of finite codimension of the
closed space Q�1.R. OA//, so R.A/ is closed. Further, V � R1.A/. If Ax D 0, then
OA.x C V / D 0, i.e., Qx 2 N. OV /. Thus, N.A/ � Q�1.N. OA// � V C F �
R1.A/C F . Q.E.D.

Theorem 5.1.4. Let A 2 L.X/ be essentially semi-regular and let K 2 K.X/
commute with A. Then, ACK is essentially semi-regular. }
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Proof. Let A 2 L.X/ be essentially semi-regular and let K be a compact operator
commuting with A. Let V D R1.A/. Since A.V / D V , by using Lomonosov’s
theorem, K.V / � V and hence, we can define the operators OA W X=V �! X=V

and OK W X=V �! X=V induced by A and K, respectively. Then, both OK and OA
have the same property and consequently, OA C OK is upper semi-Fredholm. Thus,
according to Proposition 5.1.1, ACK is essentially semi-regular. Q.E.D.

The results appearing in the remaining part of this section may be found in [218].

Proposition 5.1.2. Let t0 > 0 and let .U.t//t�0 be aC0-semigroup onX . IfU.t0/ 2
ˆbC.X/, then ˛.U.t// D 0 for all t � 0. }
Proof. First, we show that U.t0/ is injective. Since ˛.U.t0// < 1, then 0 is an
eigenvalue with a finite multiplicity ofU.t0/. Let x ¤ 0 be an eigenvector associated
with 0. Let us put t1 D t0=2. Then, U.t0/x D U.t1/U.t1/x D 0 and hence, 0 is
an eigenvalue of U.t1/. Proceeding by induction, we define a sequence .tn/n with
tn ! 0 as n ! 1 such that 0 is an eigenvalue of U.tn/, for all n 2 N. For n � 0, we
define the sets ^n D N.U.tn//

Tfx 2 X such that kxk D 1g: Clearly, the inclusion
N.U.s// � N.U.t//, for s � t , and the compactness of ^0 imply that .^n/n is a
decreasing sequence (in the sense of the inclusion) of nonempty compact subsets
of X . Thus,

T1
nD0 ^n ¤ ;. If x 2 T1

nD0 ^n, then

kU.tn/x � xk D kxk D 1; 8n � 1: (5.1.6)

Since tn ! 0 as n ! 1, (5.1.6) contradicts the strong continuity of .U.t//t�0. This
shows that N.U.t0// D f0g, that is, ˛.U.t0// D 0. Let 0 � t � t0. The inclusion
N.U.t// � N.U.t0// implies that ˛.U.t// D 0. Now, let us assume that t > t0
and x 2 N.U.t//. Then, there exists an integer n such that nt0 > t . Therefore,
U.nt0/x D U.nt0 � t /U.t/x D 0. As a result, we have x D 0 and consequently,
N.U.t// D f0g for all t > t0. Q.E.D.

Proposition 5.1.3. Let t0 > 0 and let .U.t//t�0 be aC0-semigroup onX . IfU.t0/ 2
ˆb�.X/, then ˇ.U.t// D 0 for all t � 0. }
Proof. In order to prove this proposition, we will proceed by duality. Let .U �.t//t�0
be the dual semigroup of .U.t//t�0. Since ˇ.U.t// D ˛.U �.t//, then it is sufficient
to show that ˛.U �.t// D 0 for all t � 0. By hypothesis, we have ˛.U �.t0// < 1.
Let x� be an element of N.U �.t0//. Arguing as in the proof of Proposition 5.1.2,
we construct a sequence .tn/n with tn ! 0 as n ! 1, such that 0 is an
eigenvalue of U �.tn/ and then, we obtain, for all n 2 N, a decreasing sequence
†n D N.U �.tn//

Tfx� 2 X� such that kx�k D 1g of nonempty compact subsets
of X�. We deduce that

T1
nD0 †n ¤ ;. Let x� 2 T1

nD0 †n. Then, for all n 2 N, we
have

jhU �.tn/x� � x�; xij D jhx�; xij 8x 2 X: (5.1.7)
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By using the fact that .U �.t//t�0 is continuous in the weak� topology at t D 0, we
may conclude that

lim
t!0

jhU �.tn/x� � x�; xij D 0 8x 2 X: (5.1.8)

By combining (5.1.7) and (5.1.8), we get hx�; xi D 0 for all x 2 X . This shows that
x� D 0 and hence ˛.U �.t0// D 0. Arguing as above, we show that ˛.U �.t// D 0

for all t � 0. Q.E.D.

Proposition 5.1.4. Let t0 > 0 and let .U.t//t�0 be aC0-semigroup onX . IfU.t0/ 2
ˆb.X/, then i.U.t// D 0 for all t � 0. }
Proof. This follows from Propositions 5.1.2 and 5.1.3. Q.E.D.

Proposition 5.1.5. Let t0 > 0 and let .U.t//t�0 be aC0-semigroup onX . IfU.t0/ 2
ˆbC.X/, then U.t/ 2 ˆbC.X/ for all t � 0. }
Proof. By Proposition 5.1.2, it is sufficient to show that R.U.t// is closed in X
for all t � 0. Let us assume that U.t0/ 2 ˆbC.X/. Then, ˛.U.t0// < 1 and
ˇ.U.t0// D 1 (if ˇ.U.t0// < 1 the proof is contained in Proposition 5.1.3).
Let U �.t0/ be the dual operator of U.t0/. Obviously, U �.t0/ 2 ˆb�.X/ and
consequently, ˇ.U �.t0// < 1. Hence, ˇ.U �.t// < 1 for all t � 0. Now, by
applying Kato’s lemma (Lemma 2.1.9), we deduce thatR.U �.t// is closed inX� for
all t � 0. This, together with the closed range theorem of Banach (Theorem 2.1.2),
implies that R.U.t// is closed in X for all t � 0. Q.E.D.

Proposition 5.1.6. Let t0 > 0 and let .U.t//t�0 be aC0-semigroup onX . IfU.t0/ 2
ˆb�.X/, then U.t/ 2 ˆb�.X/ for all t � 0. }
Proof. Now, let us assume that U.t0/ 2 ˆb�.X/. Then, ˇ.U.t0// < 1 and
˛.U.t0// D 1 (if ˛.U.t0// < 1, the proof is contained in Proposition 5.1.2).
From Proposition 5.1.3, it follows that ˇ.U.t// < 1 for all t � 0. Again, by using
Kato’s lemma (Lemma 2.1.9), we show that R.U.t// is closed in X for all t � 0,
which completes the proof. Q.E.D.

Proposition 5.1.7. Let t0 > 0 and let .U.t//t�0 be aC0-semigroup onX . IfU.t0/ 2
ˆb.X/, then U.t/ 2 ˆb.X/ for all t � 0. }
Proof. Now, if U.t0/ 2 ˆb.X/, then ˛.U.t0// < 1 and ˇ.U.t0// < 1. From
Propositions 5.1.5 and 5.1.6, we deduce that R.U.t// is closed in X for all t � 0.
This ends the proof. Q.E.D.

Theorem 5.1.5. A C0-semigroup .U.t//t�0 can be embedded in a C0-group on X
if, and only if, there exists t0 > 0 such that U.t0/ 2 ˆb.X/. }
Proof. The proof follows immediately from both Proposition 5.1.7 and
Theorem 2.5.1. Q.E.D.

We denote by O the set O D ft > 0 such that U.t/ � I 2 Fb.X/g: Note that,
if O ¤ ;, then the C0-semigroup .U.t//t�0 can be embedded in a C0-group on
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X (it suffices to write U.t0/ D I C ŒU.t0/ � I � for some t0 2 O and to apply
Theorem 5.1.5). Observe that the relation .U.t/� I /.U.s/� I / D .U.tC s/� I /�
.U.s/ � I / � .U.t/ � I / implies that

s 2 O; t 2 O H) s C t 2 O; s 2 O; t … O H) s C t … O:

It follows from these relations that O is the intersection of an additive subgroup of
real number with the positive real line. Therefore, O may be in one of the following
forms:

(i) O D�0;1Œ,
(ii) O D fnx; for some x > 0 and n D 1; 2; : : :g,

(iii) O is a dense subset of �0;1Œ with empty interior.

Remark 5.1.2. The following examples taken from [84] show that all the three types
of sets may occur, the above classification of O-sets is not empty, and sets of type (ii)
can arise from semigroups having bounded or unbounded infinitesimal generators.
In fact, take X D l1, the Banach space of absolutely convergent sequences. The
space K.X/ is the sole closed two-sided proper ideal of L.X/, that is, K.X/ D
Fb.X/.

1. Let .U.t//t�0 be the C0-semigroup given by U.t/ D I for all t � 0. Clearly, for
all t > 0, U.t/ � I 2 K.X/. Accordingly, O D�0;1Œ and A D 0.

2. (a) Assume that U.t/ D diagfeit; e�it; eit; e�it; : : :g for all t � 0. In this case,
we have O D f2n; n D 1; 2; 3; : : :g and A D diagfi;�i; i;�i; : : :g, the
infinitesimal generator of .U.t//t�0 is bounded.

(b) Suppose now that U.t/ D diagfeit; e2it; e3it; e4it; : : :g for all t � 0. Here, we
have also O D f2n; n D 1; 2; 3; : : :g but A D diagfi; 2i; 3i; 4i; : : :g, the
infinitesimal generator of .U.t//t�0 is unbounded.

3. The C0-semigroup .U.t//t�0 with U.t/ D diagfeit; e2Šit; e3Šit; e4Šit; : : :g for all
t � 0 provides an example of O-set of type (iii). }

5.2 Fredholm Theory by Means of Noncompactness
Measures

We start our investigation with the following lemma.

Lemma 5.2.1. Let X be a Banach space, T 2 L.X/ and P;Q are two complex
polynomials satisfying Q divides P � 1. Let M � X and let A D fx 2
BX such that Q.T /.x/ 2 M g, where BX denote the closed unit ball of X: If
M is compact and �.P.T // < 1, then A is compact or empty, where �.:/ is the
Kuratowski measure of noncompactness in X . }
Proof. Let us assume that A is not empty. According to the hypothesis ensuring
Q divides P � 1, we infer that there exists a complex polynomial H such that
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P D HQ C 1. Consider x 2 A and z 2 M such that Q.T /.x/ D z. Then, we get
H.T /Q.T /.x/ C x D H.T /.z/ C x, which implies x D P.T /x � H.T /.z/:
Since a continuous image of a compact set by a continuous operator is also
compact, it follows that QA D f�H.T /.z/ such that z 2 M g is compact as well.
Obviously, A � P.T /A C QA. Then, using the regularity of � , we get �.A/ �
�.P.T /A/ C �. QA/ � �.A/�.P.T //: Since �.P.T // < 1, then �.A/ D 0:

Consequently, by using Proposition 2.10.1 and the fact thatA is closed, we infer that
A is compact. Q.E.D.

Theorem 5.2.1. Let X be a Banach space, T 2 L.X/ and P , Q are two complex
polynomials satisfying the fact that Q divides P � 1.

(i) If �.P.T // < 1 then, Q.T / 2 ˆbC.X/.
(ii) If �.P.T // < 1

2
, then Q.T / 2 ˆb.X/. }

Proof.

(i) First, let us prove that ˛.Q.T // < 1. To do so, it is sufficient to establish
that the set N.Q.T //

T
BX is compact. The result follows from Lemma 5.2.1

with M D f0g: In order to complete the proof of (i), we will check that
R.Q.T // (the range of Q.T /) is closed. Indeed, since N.Q.T // is finite
dimensional, then by Lemma 2.1.6, there exists a closed infinite dimensional
subspace Y in X such that X D N.Q.T // ˚ Y . We claim that there exists
ı > 0 satisfying ıkQ.T /.x/k � kxk for every x 2 Y: Now, let us assume
the contrary. For every n 2 N; there exists xn 2 Y satisfying kxnk D 1

and kQ.T /.xn/k � 1
n
: Hence, Q.T /.xn/ ! 0 (when n ! C1/: From

Lemma 5.2.1 with M D fQ.T /.xn/ such that n 2 NgSf0g; it follows that the
sequence .xn/n2N admits a subsequence .xnk /k2N which converges to x0 2 Y:

Clearly, kx0k D 1 and Q.T /.x0/ D 0, which is a contradiction. This proves
the claim. Using Theorem 2.2.1, it is easy to conclude that R.Q.T // is closed.
This ends the proof of (i).

(ii) Assume that �.P.T // < 1
2
: Combining the assertion (i) with (v) of

Lemma 2.10.2, one has �.P.T /�/ � 2�.P.T // < 1; where P.T /�
stands for the dual of the operator P.T /. Arguing as in the proof of (i),
we get ˛.Q.T /�/ D ˇ.Q.T // < 1: This completes the proof of the
theorem. Q.E.D.

As a consequence of Theorem 5.2.1, we have

Corollary 5.2.1. Let X be a Banach space, T 2 L.X/ and let P be a complex,
non-constant polynomial satisfying P.0/ D 1.

(i) If �.P.T // < 1, then T 2 ˆbC.X/:
(ii) If �.P.T // < 1

2
, then T 2 ˆb.X/:

(iii) If �.I C T / < 1, then T 2 ˆb.X/: }
Proof. (i)–(ii) Since P.0/ D 1, then Q.z/ WD z divides .P.z/ � 1/ and the results
of (i) and (ii) are deduced from Theorem 5.2.1.
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(iii) If �.ICT / < 1, then lim
k!C1.�.ICT //k D 0. So, there exists k0 2 N

� such that

.�.ICT //k0 � 1
2
: Using Lemma 2.10.2 (iii), we deduce that �..ICT /k0/ � 1

2
: So,

the result is an immediate consequence of Theorem 5.2.1 (ii) with P.z/ WD .1Cz/k0

and Q.z/ WD z: Q.E.D.

Corollary 5.2.2. Let X be a Banach space and T 2 L.X/.
(i) If �.T m/ < 1; for some m > 0; then .I � T / is a Fredholm operator with

i.I � T / D 0.
(ii) Assume that �.T / � 1 and there exists a complex polynomial P.z/ WD a0 C

a1z C � � � C anzn such that .1 � z/ divides .P.z/ � 1/ and max0�k�n jakj <
1

2.nC1/.�.T //n : Then, .I � T / 2 ˆb.X/ and i.I � T / D 0. }
Proof.

(i) If �.T m/ < 1, then lim
k!C1.�.T

m//k D 0: Arguing as in the proof of

Corollary 5.2.1 (iii), there exists k0 2 N
� such that �.T mk0 / � 1

2
: So, applying

Theorem 5.2.1 (ii) with P.z/ WD zmk0 and Q.z/ WD 1 � z, we conclude that
Q.T / WD .I � T / 2 ˆb.X/: Then, we notice that for t 2 Œ0; 1�, we have
�..tT/mk0 / < 1

2
and therefore, .I � tT/ is a Fredholm operator on X . Moreover,

since the index is constant on any component of ˆb.X/ (see Proposition 2.2.5
(ii)) and Œ0; 1� is compact, we have i.Q.T // D i.I � tT/ D i.I / D 0:

(ii) Let t 2 Œ0; 1�. We have

�.P.tT// �
nX

kD0
tkjakj�.T /k

� .nC 1/.�.T //n
�

max
0�k�n jakj

�

<
1

2
:

Now, using Theorem 5.2.1 (ii), we infer that, for all t 2 Œ0; 1�, .I�tT/ 2 ˆb.X/:
Then, arguing as in the proof of the first assertion (i), one sees that, for all
t 2 Œ0; 1�, i.I � T / D i.I � tT/ D i.I / D 0: Q.E.D.

As a consequence of Corollaries 5.1.3 and 5.2.2 (i), we have the following:

Corollary 5.2.3. LetA1; : : : ; An be operators on a Banach spaceX which mutually
commute. If their product A WD A1 : : : An D � � K, where K 2 L.X/ such
that �.Km/ < j�jm and r.A/ and r 0.A/ are finite, then each Aj .1 � j � n/

is a Fredholm operator on X of zero index. }
Theorem 5.2.2. Let X be a Banach space, T 2 L.X/; a 2 C

� and let P , Q
be two complex polynomials, such that Q divides P � a. If �.P.T // < jaj, then
Q.T / 2 ˆb.X/. }
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Proof. Since Q divides P
a

� 1 and �.
P.T /

a
/ < 1; then by Theorem 5.2.1

(i), we get Q.T / 2 ˆbC.X/. Furthermore, there exists k0 2 N
� such

that .�.P.T /
a
//k0 < 1

2
: According to Lemma 2.10.2 (iii), we deduce that

�..
P.T /

a
/k0/ < 1

2
: Combining the assertions (i) and (v) of Lemma 2.10.2 one

has �..P.T /
a

�
/k0/ � 2�..

P.T /

a
/k0/ < 1: Hence, �..P.T /

a

�
/k0/ < 1: Since Q divides

.P
a
/k0 � 1; then ˛.Q.T /�/ D ˇ.Q.T // < 1 andQ.T / 2 ˆb.X/ which completes

the proof of theorem. Q.E.D.

Corollary 5.2.4. Let X be a Banach space, T 2 L.X/; � 2 C
�, P.z/ DPn

kD0 akzk , a nonzero complex polynomial satisfying P.�/ ¤ 0 and let jP j.z/ WDPn
kD0 jakjzk:

(i) If �.P.T // < jP.�/j, then .� � T / is a Fredholm operator.
(ii) If jP j.�.T // < jP.�/j, then .� � T / is a Fredholm operator with zero

index. }
Proof.

(i) Let � 2 C
� such that P.�/ ¤ 0: We have

P.�/ � P.z/ D
nX

kD1
ak.�

k � zk/

D .� � z/

 
nX

kD1
ak

k�1X

rD0
�rzk�r�1

!

:

Then, .� � z/ divides P.�/ � P.z/: Applying Theorem 5.2.2 with a WD P.�/,
we get .� � T / 2 ˆb.X/:

(ii) Let t 2 Œ0; 1�. We have the following

�.P.tT// �
nX

kD0
jakjt k�.T k/

� jP j.�.T //:
If jP j.�.T // < jP.�/j, then �.P.tT// < jP.�/j. Applying (i), we get
.� � tT/ 2 ˆb.X/ for all t 2 Œ0; 1�: Moreover, from Proposition 2.2.5, the
index is constant on any component of ˆb.X/, since Œ0; 1� is connect, we infer
that i.� � tT/ D i.I / D 0: Q.E.D.

5.3 Fredholm Theory by Means of Non-strict
Singularity Measures

Our purpose here is to establish some results required in the sequel given by
N. Moalla in [255].
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Proposition 5.3.1. Let A 2 L.X/. If g.An/ < 1 for some integer n � 1; then
I �A 2 ˆb.X/ with i.I �A/ D 0, where g.:/ is a measure of non-strict singularity
introduced in Definition 2.10.7. }
Proof. We start with the case n D 1. For this, let us suppose that I � A … ˆbC.X/.
Then, there is an infinite dimensional subspace M of X such that .I � A/jM , the
restriction of I�A toM , is compact (see Lemma 2.2.2). Consequently, it is a strictly
singular operator. This result, combined with the use of Proposition 2.10.3 (ii),
allows us to conclude that g.I jM/ D g.AjM/ < 1: However, this is in contradiction
to the fact that g.I jM/ D 1; since M is infinite dimensional. Hence we must have
I � A 2 ˆbC.X/. The same reasoning holds for I � �A, where 0 � � � 1. Using
the constancy of the index (Proposition 2.2.5), we have i.I � A/ D i.I / D 0:

Therefore, I �A 2 ˆb.X/ and i.I �A/ D 0. This completes the proof of the case
n D 1. For n > 1, we have

.I � A/B D B.I � A/ D I � An; (5.3.1)

where B D An�1CAn�2C� � �CI: Using the case n D 1, we have I �An 2 ˆb.X/
and i.I � An/ D 0. In view of Lemma 2.2.5 or Theorem 2.2.19, and Eq. (5.3.1)
implies that I � A 2 ˆb.X/. The remaining part of the proof of this case is the
same as in the proof related to the case n D 1. Q.E.D.

Theorem 5.3.1. Let A 2 L.X/.
(i) Let P ,Q be two complex polynomials satisfyingQ divides P�1. If g.P.A// <

1; then Q.A/ 2 ˆb.X/:
(ii) Assume that g.A/ � 1 and there exists a complex polynomial P.z/ DPn

kD0 akzk such that 1 � z divides P.z/ � 1, and
Pn

kD0 jakj < 1
.g.A//n

: Then,

I � A 2 ˆb.X/ and i.I � A/ D 0: }
Proof.

(i) According to the hypothesis ensuring Q divides P � 1; there exists a complex
polynomial H such that P � 1 D QH. Since g.P.A// < 1, then it follows
from Proposition 5.3.1 that Q.A/H.A/ D H.A/Q.A/ is a Fredholm operator.
Hence, Q.A/ 2 ˆb.X/.

(ii) Let � 2 Œ0; 1�, we have

g.P.�A// �
nX

kD0
jakj�k.g.A//k

� .g.A//n
nX

kD0
jakj

< 1:
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Using (i), we infer that, for all � 2 Œ0; 1�, I � �A 2 ˆb.X/: Since the index is
constant on any component of ˆb.X/ (Proposition 2.2.5), we can deduce that,
for all � 2 Œ0; 1�; i.I � �A/ D i.I � A/ D i.I / D 0. Q.E.D.

Corollary 5.3.1. Let A 2 L.X/.
(i) Assume that g.A/ < 1, there exists a complex polynomialQ satisfyingQ.0/ ¤

0 and a complex polynomial P.z/ D Pn
kD0 akzk such that Q divides P � 1. IfPn

kD0 jakj < 1; then Q.A/ 2 ˆb.X/ and i.Q.A// D 0:

(ii) Let P be a complex and non-constant polynomial satisfying P.0/ D 1. If
g.P.A// < 1; then A 2 ˆb.X/:

(iii) Let P be a complex polynomial such that P.1/ ¤ 0: If g.P.A// < jP.1/j,
then I � A 2 ˆb.X/: }

Proof.

(i) It follows immediately from the fact that
Pn

kD0 jakj < 1 and g.A/ < 1 that
g.P.�A// < 1, for all � 2 Œ0; 1�: Hence, and from Theorem 5.3.1 (i), we
deduce that Q.�A/ 2 ˆb.X/, for all � 2 Œ0; 1�: The use of Proposition 2.2.5
enables us to conclude that i.Q.A// D i.Q.0/I / D 0.

(ii) Since P.0/ D 1; the complex polynomial Q.z/ D z divides P � 1 and the
result follows from Theorem 5.3.1 (i).

(iii) The result of this assertion also follows from Theorem 5.3.1 (i), since the
polynomial 1 � z divides the polynomial 1 � P

P.1/
. Q.E.D.

5.4 Fredholm Theory by Means of Demicompact Operator

The concept of demicompactness was introduced in order to discuss the fixed points.
Further examples of demicompact operators were introduced by W. V. Petryshyn
[279], in particular, we cite compact operator, or the operator T with closed range
and for which T �1 exists and is continuous. Fore more details and references on this
subject, see [36, 273, 279].

5.4.1 Demicompactness

Definition 5.4.1 ([279]). An operator T W D.T / � X �! X is said to be
demicompact if, for every bounded sequence .xn/n in D.A/ such that xn � Txn !
x 2 X , there is a convergent subsequence of .xn/n. }
Definition 5.4.2. An operator T W D.T / � X �! X is said to be demicontinuous
if .xn/n ! x .xn, x 2 D.T // strongly in X implies Txn ! Tx weakly in X . }
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Remark 5.4.1. Let X be a Banach space.

(i) Every compact operator T W D.T / � X �! X is demicompact.
(ii) It is well known that every condensing operator is demicompact.

Let X be a Hilbert space.
(iii) Every operator T W D.T / � X �! X which satisfies either the condition

RehTx � Ty; x � yi � akx � yk2; a < 1 (5.4.1)

or the condition RehTx � Ty; x � yi � akTx � Tyk2; a < 1 is demicompact.
(iv) Every operator T W D.T / � X �! X for which .I � T /�1 exists and

is continuous on its range R.I � T / (and, in particular, demicontinuous
operators T for which (5.4.1) is valid with a < 1 or for which the inequality
jhTx � Ty; x � yij � bkx � yk2, 0 < b < 1 is valid for all x and y in X ) is
demicompact. }

Lemma 5.4.1. Let T W D.T / � X �! X be a closed linear operator. If 1 2 �.T /,
then T is demicompact. }
Proof. Let .xn/n be a bounded sequence of D.T / such that .I � T /xn ! y:

Since 1 2 �.T /, we deduce that .xn/n converges to .I � T /�1y. So, T is
demicompact. Q.E.D.

Remark 5.4.2. �I is a demicompact operator. }
Lemma 5.4.2. Let T W D.T / � X �! X be a closed linear operator. If T is a
1-set-contraction, then �T is demicompact for each � 2 Œ0; 1/. }
Proof. Obviously for � D 0, �T is demicompact. We suppose that � 2 .0; 1/. Let
.xn/n be a bounded sequence of D.T / such that yn WD .I � �T /xn ! y. Let �.:/
be the Kuratowski measure of noncompactness inX , and suppose that �.fxng/ ¤ 0.
Since fxng � fyng C f�Txng, it follows that

�.fxng/ � �.fyng/C ��.fTxng/
� ��.fxng/
< �.fxng/;

which is impossible. It follows that �.fxng/ D 0. Hence, fxng is relatively compact,
and there is a convergent subsequence .xni /i of .xn/n. Q.E.D.

Lemma 5.4.3. Let T 2 L.X/ be a power-compact operator. Then, for every � 2
.0; 1�, �T is demicompact. }
Proof. Let T 2 L.X/ and m 2 N

� such that T m is a compact operator. Let .xn/n
be a bounded sequence of X such that yn WD .I � �T /xn ! y. Then, xn is given
by xn D �mT mxn CPm�1

kD0 �kT kyn: Since T m is a compact operator and .yn/n is
a convergent sequence, there exists a convergent subsequence of .xn/n. Q.E.D.
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Lemma 5.4.4. Let T 2 L.X/. If �.T m/ < 1, for some m 2 N
�, then for

every � 2 .0; 1�, �T is demicompact, where �.:/ is the Kuratowski measure of
noncompactness in X . }
Proof. Let T 2 L.X/ and m 2 N

� such that �.T m/ < 1. Let .xn/n be a bounded
sequence of X such that yn WD .I � �T /xn ! y. Similarly as in Lemma 5.4.3, we
have

�.fxng/ � �m�.fT mxng/
� �m�.T m/�.fxng/:

Since � 2 .0; 1� and �.T m/ < 1, we have �.fxng/ D 0. Then, there exists a
convergent subsequence of .xn/n. Q.E.D.

Lemma 5.4.5. Let T 2 C.X/ and T0 2 L.X/ such that T0.I �T / D I �K, where
K is a demicompact operator on X . Then T is demicompact. }
Proof. Let .xn/n be a bounded sequence of D.T / such that .I � T /xn ! y: Since
T0 2 L.X/, we have T0.I �T /xn ! T0y:Moreover, .I �K/xn D T0.I �T /xn !
T0y: According to the fact that K is demicompact, we deduce the result. Q.E.D.

Lemma 5.4.6. Let T 2 C.X/. If .I � T / is a Fredholm operator on X , then T is
demicompact. }
Proof. Since .I � T / 2 ˆ.X/, then by using Theorem 2.2.38, there exists T0 2
L.X/ such that T0.I � T / D I �K1, where K1 2 K.X/: Let .xn/n be a bounded
sequence of D.T / such that .I�T /xn ! y: So, T0.I�T /xn D .I�K1/xn ! T0y:

Now, arguing as in the proof of Lemma 5.4.5, we show that .xn/n has a convergent
subsequence. Q.E.D.

Theorem 5.4.1. Let T 2 C.X/. If T is demicompact, then .I � T / is an upper
semi-Fredholm operator on X . }
Proof. We first show that N.I � T / is finite dimensional. Let S WD fx 2 D.T /
such that .I � T /x D 0 and kxk D 1g and let .xn/n be a bounded sequence of S .
Since T is demicompact, there exists a subsequence .xni /i of .xn/n which converges
to x 2 X . Hence, and from the continuity of the norm and the closedness of T , it
follows that x 2 D.T /, x � Tx D 0 and kxk D 1. Consequently, ˛.I � T / is
finite. Now, we claim that R.I �T / is closed. Applying Lemma 2.1.6, we can write
D.T / D N.I �T /˚W , whereW D D.T /

T
X0.W is a closed subspace of D.T /

with respect to the graph norm, then it is a Banach space. In view of Theorem 2.2.1,
it is sufficient to prove that there is a constant � > 0 such that, for every x 2 W ,
kTxk � �kxkT where k:kT is the graph norm (i.e., kxkT D kxk C kTxk). If not,
there exists a sequence .xn/n of W , such that kxnkT D 1 and k.I � T /xnk ! 0.
Since T is demicompact, there exists a subsequence .xni /i of .xn/n which converges
to x 2 X . Moreover, .I � T / is closed. Then, .I � T /x D 0, which implies x D 0.
This contradicts the continuity of the norm. Q.E.D.
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Theorem 5.4.2. Let T 2 C.X/. If �T is demicompact for each � 2 Œ0; 1�, then
.I � T / is a Fredholm operator of index zero. }
Proof. Since �T is demicompact for each � 2 Œ0; 1�, Theorem 5.4.1 implies
that .I � �T / is an upper semi-Fredholm operator on X . Using the stability
results for semi-Fredholm operators, the index i.I � �T / is continuous in � (see
Proposition 2.2.6). Since it is an integer, including infinite values, it must be constant
for every � 2 Œ0; 1�. Showing that i.I ��T / D i.I �T / D i.I / D 0, we conclude
that .I � T / is a Fredholm operator of index zero. Q.E.D.

Corollary 5.4.1. If T satisfies the hypothesis of Theorem 5.4.2, then .I � �T / is a
Fredholm operator of index zero for every � 2 .0; 1�. }
Corollary 5.4.2. Let T 2 C.X/. If T is demicompact 1-set-contraction, then .I �
T / is a Fredholm operator of index zero. }
Proof. The proof follows from both Lemma 5.4.2 and Theorem 5.4.2. Q.E.D.

Theorem 5.4.3. Let T W D.T / � X �! Y be a densely defined closed linear
operator. Suppose that there are linear bounded operators T1 W Y �! X , T2 W
Y �! X , A1 W X �! X and A2 W Y �! Y with A1 demicompact and A2
demicompact 1-set-contractive such that

(i) T1T D I � A1 on D.T /,
(ii) TT2 D I � A2 on Y .

Then, T is a Fredholm operator. }
Proof. Since N.T / � N.T1T /, we have ˛.T / � ˛.T1T / D ˛.I � A1/. But,
˛.I �A1/ < 1. In fact, we shall consider S D fx 2 N.I �A1/ such that kxk D 1g
and prove that S is a compact set inN.I�A1/. Let .xn/n be any sequence in S , then
.xn/n � N.I �A1/ and xn �A1xn D 0 for each n. Since A1 is demicompact, there
is a subsequence .xnj /j of .xn/n such that xnj ! x0 2 X as nj ! 1. Clearly,
kx0k D 1, i.e., x0 2 S . This proves that S is a compact set in N.I � A1/ and,
consequently ˛.I �A1/ < 1. Thus ˛.T / < 1. First note that R.T / 	 R.TT2/ D
R.I �A2/. Now, .I �A2/ is Fredholm. Hence by Lemma 2.1.7, R.T / is closed and
of finite codimension. Q.E.D.

Theorem 5.4.4. Let T W D.T / � X �! Y be a Fredholm operator. Suppose
that F W X �! Y is any bounded linear operator such that �GF and �FG
are demicompact 1-set-contractive for some operator G which is an inverse of T
modulo compact operator. Then T C F is a Fredholm operator with i.T C F / D
i.T /. }
Proof. First note that, by Remark 2.1.1 we have that �T0F and �FT0 are
demicompact 1-set-contractive for all T0 which is an inverse of T modulo compact
operator. Since T is a Fredholm operator, by Theorem 2.2.38, there is a bounded
linear operator T0 W Y �! X such that T0T D I � F1 on D.T / and TT0 D I � F2
on Y , where F1 and F2 are compact operators. This implies that T0 is an inverse of
T modulo compact operator. Now, T0.T C F / D I � F1 C T0F D I � L1, on
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D.T CF / and .T CF /T0 D I �F2 C FT0 D I �L2 on Y where L1 D F1 �T0F
and L2 D F2 � FT0. Since �T0F and �FT0 are demicompact 1-set-contractive and
F1 and F2 are compact, we have that L1 and L2 are demicompact 1-set-contractive
operators. Clearly, D.T C F / is dense in X . Therefore, by Theorem 5.4.3, T C F

is a Fredholm operator. It remains to prove that i.T C F / D i.T /. Since T is
closed, one can make D.T / into a Banach space XT by equipping it with the
graph norm kxkXT WD kxk C kTxk. Moreover, XT is continuously embedded in
X and D.T / D XT . Hence, T 2 ˆb.XT ; Y / by Theorem 2.2.39. So, there is a
bounded linear operator U W Y �! XT such that UT D I � K1 on D.T / and
TU D I � K2 on Y , where K1 and K2 are compact with R.K1/ D N.T / (see
Theorem 2.2.38). In addition, U 2 ˆb.Y;XT /. Thus, applying Theorem 2.2.40 we
have that i ŒU.T CF /� D i.U /C i.T CF /. Let T1 be the operator K1 � UF. If we
consider T1 as an operator from X into X , T1 is demicompact and 1-set-contractive.
Then, by Corollary 5.4.2 and Remark 5.4.1 (ii) we conclude that I � T1 2 ˆ.X/

with i.I � T1/ D 0. Now,

i ŒU.T C F /� D i.I � T1/: (5.4.2)

Assuming this for the moment, we see that i.T C F / D �i.U /. Theorem 2.2.40
still yields i.UT/ D i.U /C i.T /. Since i.UT/ D i.I �K1/ D 0, we have i.T / D
�i.U /. Then i.T C F / D i.T /. Therefore, it remains only to prove (5.4.2). Since
R.K1/ D N.T / � D.T / and UF is an operator from X into D.T /, we have that

R.T1/ � D.T /: (5.4.3)

It is clear that NŒU.T C F /� � N.I � T1/. Conversely, if x 2 N.I � T1/, then
x D T1x 2 D.T / by (5.4.3), and hence,

NŒU.T C F /� D N.I � T1/: (5.4.4)

Since I � T1 2 ˆ.X/ and XT is dense in X , there is a finite dimensional subspace
X1 of X such that

X D R.I � T1/˚X1; X1 � D.T /: (5.4.5)

Hence

XT D ŒR.I � T1/
\
XT �˚X1: (5.4.6)

It is clear thatRŒU.TCF /� � R.I�T1/TXT . Conversely, if z 2 R.I�T1/TXT ,
then z D x � T1x 2 XT for some x 2 X . In view of (5.4.3), x 2 D.T /. Hence z D
U.T CF /x. Thus, R.I �T1/TXT D RŒU.T CF /�. Combining this with (5.4.6),

XT D RŒU.T C F /�˚X1: (5.4.7)
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It follows from (5.4.5) and (5.4.7) that

ˇŒU.T C F /� D dimX1 D ˇ.I � T1/: (5.4.8)

(5.4.4) and (5.4.8) imply (5.4.2). Q.E.D.

Remark 5.4.3.

(i) It is important to observe that, Theorem 5.4.4 is valid when GF and FG
are condensing operators because condensing operators are demicompact and
1-set-contractive (see Remark 2.10.1).

(ii) When F is compact, Theorem 5.4.4 is also valid (this is the classic result of
perturbation theory of Fredholm operators).

(iii) When T is the identity operator, we need �F to be demicompact
1-set-contractive in order to guarantee the validity of Theorem 5.4.4.

(iv) As a consequence of Theorem 5.4.4 we deduce the following classic result
whose perturbation operator is not necessarily compact. }

Corollary 5.4.3. For T 2 ˆ.X; Y / there is an � > 0 such that for every linear
operator A W X �! Y satisfying kAk < � one has T C A 2 ˆ.X; Y / and i.T C
A/ D i.T /. }
Proof. Since T 2 ˆ.X; Y / there is a bounded linear operator T0 W Y �! X

such that T0 is an inverse of T modulo compact operator. We take � D kT0k�1,
then kT0Ak � kT0kkAk < 1 and similarly, kAT0k < 1. Since a bounded linear
operator L is kLk-set-contractive, T0A and AT0 are k-set-contractive with k < 1

and, consequently, T0A and AT0 are condensing. Then, by Remark 5.4.3, A satisfies
the hypothesis of Theorem 5.4.4. Q.E.D.

5.4.2 S -Demicompactness

Let us introduce the following definition introduced by B. Krichen in [199].

Definition 5.4.3. Let X be a Banach space, and let A W D.A/ � X �! X , S W
D.S/ � X �! X be densely defined linear operators with D.A/ � D.S/. A
is called S -demicompact (or relative demicompact with respect to S ) if, for every
bounded sequence .xn/n in D.A/ such that Sxn � Axn ! x 2 X , and for some x in
X , there exists a convergent subsequence of .xn/n. }
When D.A/ lies in a finite dimensional subspace of X , the condition of the relative
demicompactness is automatically satisfied. As examples of S -demicompact oper-
ators, we cite operators A such that .S � A/�1 exists and is continuous on its range
R.S � A/. We also notice that if S is invertible and S�1A is compact, then A is an
S -demicompact operator.
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Remark 5.4.4. Obviously, every compact operator is demicompact. However, a
compact operator is not necessarily S -demicompact when S is not invertible. }
Let X be a Banach space. The following results of this section give a sufficient con-
dition for an operator to be upper semi-Fredholm using S -demicompact operators
given by B. Krichen in [199].

Theorem 5.4.5. Let A W D.A/ � X �! X , S W D.S/ � X �! X be densely
defined closed linear operators with D.A/ � D.S/ such that .S � A/ is closed. If
A is S -demicompact, then .S � A/ is an upper semi-Fredholm operator. }
Proof. First, let us prove that N.S � A/ is finite dimensional. Let …1 WD fx 2
D.A/ such that .S � A/x D 0 and kxk D 1g and let .xn/n be a sequence of
…1. Since A is S -demicompact, there exists a subsequence .xni /i of .xn/n which
converges to x 2 X . Hence, and from the continuity of the norm and the closedness
of S � A, it follows that x 2 D.A/, Sx � Ax D 0 and kxk D 1. Then, ˛.S � A/

is finite. Now, we claim that R.S � A/ is closed. Applying Lemma 2.1.6, there
exists a closed subspace X0 of X such that D.A/ D N.S � A/ ˚ .D.A/

T
X0).

In view of Theorem 2.2.1, it is sufficient to prove that there is a constant � > 0

such that, for every x 2 D.A/
T
X0, kSx � Axk � �kxkS�A. If not, there exists a

sequence .xn/n of D.A/
T
X0 such that kxnkS�A D 1 and k.S�A/xnk ! 0. Since

A is S -demicompact, there exists a subsequence .xni /i of .xn/n which converges to
x 2 X . Since .S � A/ is closed, .S � A/x D 0, and then x D 0, which contradicts
the continuity of the norm. Q.E.D.

Remark 5.4.5.

(i) Note that in the assumption of Theorem 5.4.5, the operators S and A need
not to be bounded. However, if S is relatively bounded with respect to A with
A-bound < 1, then the operator S �A is closed if, and only if, A is closed (see
Theorem 2.1.4).

(ii) It is noted that if S is an A-bounded operator with a relative bound lower than
one, the family fS � �Ag0���1 of operators in C.X/ is continuous in the gap
topology. }

Lemma 5.4.7. Let A W D.A/ � X �! X , S W D.S/ � X �! X be densely
defined linear operators with D.A/ � D.S/ and A is closed, such that S is nonzero
and is relatively bounded with respect toA withA-bound< 1. If for each � 2 Œ0; 1�,
the operator S��A is closed and�A is S -demicompact, then .S�A/ is a Fredholm
operator and i.S � A/ D i.S/. }
Proof. Since �A is S -demicompact for each � 2 Œ0; 1�, and using Theorem 5.4.5,
we deduce that .S � �A/ is an upper semi-Fredholm operator on X . Using the fact
that S is relatively bounded with respect to A with A-bound < 1, the Remark 5.4.5
combined with the stability results for semi-Fredholm operators allow us to infer
that the index i.S � �A/ is continuous in � (see Proposition 2.2.6). Since it is an
integer, including infinite values, it must be constant for every � 2 Œ0; 1�. Hence,
i.S � �A/ D i.S � A/ D i.S/. Q.E.D.
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From the definition, it may not be easy to recognize a Fredholm operator when one
sees such an operator. A useful tool in this connection is the following result.

Theorem 5.4.6. Let A W D.A/ � X �! X , S W D.S/ � X �! X be
densely defined closed linear operators. Suppose that there are bounded operators
S1; S2; A1 and A2 with D.A/ � D.S/, A1 is S -demicompact and �A2 is
S -demicompact for any � 2 Œ0; 1�, such that S1A D S � A1 on D.A/, and
AS2 D S � A2 on D.S/. Then, A is a Fredholm operator. }
Proof. We first show that ˛.A/ < C1. Since N.A/ � N.S1A/, we have
˛.A/ � ˛.S � A1/ < C1. In fact, we will consider …1 D fx 2 D.A/ such that
.S � A1/x D 0 and kxk D 1g and prove that …1 is a compact set in N.S � A1/.
Let .xn/n be any sequence in…1. Then, .S �A1/xn D 0 and kxnk D 1. Since A1 is
S -demicompact, there exists a subsequence .xni /i of .xn/n such that xni ! x 2 X
as ni ! 1. Clearly, N.S � A1/ is closed and so x 2 …1. This proves that …1

is a compact set in N.S � A1/ and consequently, ˛.A/ < C1. Now, notice that
R.A/ 	 R.AS2/ 	 R.S �A2/. From Lemmas 2.1.7 and 5.4.7, it follows that R.A/
is closed and finite codimension and so, A is a Fredholm operator. Q.E.D.

It was shown, in Lemma 5.4.3, that if T 2 L.X/ is a power-compact operator,
then for every � 2 Œ0; 1/, �T is demicompact. The following result provides
sufficient conditions to ensure that an operator A satisfies the characteristic that
�A is S -demicompact for every � 2 Œ0; 1�.
Theorem 5.4.7. Let A W D.A/ � X �! X , S W D.S/ � X �! X be densely
defined closed linear operators with D.A/ � D.S/ such that S�A is closed and let
us assume that, for some � 2 �.S/ (hence for all such �), the operator is closable
and its closure .S � �/�1A is 1-set contraction and there exists m 2 N

� such that
.S � �/�1Am is compact and .S � �/�1 is a k.�/-set contraction operator with
mj�jk.�/ < 1. Then, for every � 2 Œ0; 1/, the operator �A is S -demicompact. }
Proof. Obviously for � D 0, �A is S -demicompact. Let m 2 N

� and � 2 �.S/

such that .S � �/�1Am is a compact operator. Take � 2 .0; 1/ and .xn/n a bounded
sequence of D.A/, such that yn WD .S � �A/xn ! y: Note first that xn can be
written as

xn D .S � �/�1yn C .S � �/�1.�A � �/xn
D .S � �/�1yn C �.S � �/�1Axn � �.S � �/�1xn:

Then,

xn � �m.S � �/�1Amxn D
m�1X

kD0
�k.S � �/�1Ak.xn � �.S � �/�1Axn/

D
m�1X

kD0
�k.S � �/�1Ak �.S � �/�1yn � �.S � �/�1xn

�
:



158 5 Fredholm Theory Related to Some Measures

It follows that

xn D �m.S � �/�1Amxn C ‡.�; S/yn � �‡.�; S/xn; (5.4.9)

where ‡.�; S/ D Pm�1
kD0 �k.S � �/�1Ak.S � �/�1: Since .S � �/�1Am is

a compact operator, there exists a subsequence .x'.n//n � D.A/ such that

.S � �/�1Amx'.n/ converges. Let us suppose that �.fx'.n/g/ ¤ 0. Then, using
the hypotheses and Eq. (5.4.9), we deduce that

�.fx'.n/g/ � j�jk.�/�.fx'.n/g/C j�j.m � 1/k.�/�.fx'.n/g/
< �.fx'.n/g/

which is impossible. It follows that �.fx'.n/g/ D 0. Hence, fx'.n/g is rela-
tively compact and, then there is a convergent subsequence of .xn/n and �A is
S -demicompact. Q.E.D.

Theorem 5.4.8. Let A W D.A/ � X �! X , S W D.S/ � X �! X be densely
defined closed linear operators with D.A/ � D.S/ such that S � A is closed and,
for some � 2 �.S/, there exists m 2 N

� such that .S � �/�1Am is compact and
.S � �/�1 is a k.�/-set contraction operator with mj�jk.�/ < 1. Then, for any
� 2 Œ0; 1/, the operator �AC � is S -demicompact. }
Proof. Obviously for� D 0,�AC� is S -demicompact. We suppose that�2 .0; 1/.
Let .xn/n be a bounded sequence of D.A/, such that yn W D .S � �A � �/xn !y.
Suppose that �.fxng/ ¤ 0. Since fxng � f.S � �/�1yng C f�.S � �/�1Axng, it
follows that

�.fxng/ � �.f.S � �/�1yng/C ��.f.S � �/�1Axng/
� ��.fxng/
< �.fxng/

which is impossible. It follows that �.fxng/ D 0. Hence, fxng is relatively compact,
and there is a convergent subsequence .xni /i of .xn/n. Q.E.D.

5.5 Fredholm Theory by Means of Weak
Noncompactness Measures

In order to give an axiomatic approach to the notion of measure of weak noncom-
pactness of operators, let us recall this definition.
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Definition 5.5.1. Let X and Y be two Banach spaces, and let � be a measure of
weak noncompactness in Y . We define the function

 � W L.X; Y / �! Œ0;C1Œ

T �!  �.T / D �.T .BX//;

where  � is called a measure of weak noncompactness of operators associated
with �: }
From this definition, we can directly obtain the following proposition:

Proposition 5.5.1. Let X and Y be two Banach spaces, let � be a measure of
weak noncompactness in Y , and let  � be a measure of weak noncompactness of
operators associated with �: For all S; T 2 L.X; Y /; and we have

(a)  �.T / D 0 if, and only if, T is weakly compact (regularity),
(b)  �.S C T / �  �.S/C  �.T / (algebraic semi-additivity),
(c)  �.�S/ D j�j �.S/; 8� 2 R (semi-homogeneity), and
(d)  �.S C K/ D  �.S/; 8K 2 W.X; Y / (invariance under a weak

compactness). }
Proof. Using, respectively, the assertions (i), (v), and (vi) in Definition 2.11.1, we
can easily prove, respectively, the properties (a), (b), and (c).

(d) Let K be a weakly compact operator. Using the properties (a) and (b),
we get  �.S C K/ �  �.S/. Furthermore,  �.S/ D  �.S C K � K/ �
 �.S CK/: Q.E.D.

Definition 5.5.2. Let X be a Banach space, let � be a measure of weak noncom-
pactness in X , and let  � be a measure of weak noncompactness of operators
associated with �:  � is said to be algebraic semi-multiplicative if, for all S; T 2
L.X/, we have

 �.ST/ �  �.S/ �.T /:

}
Proposition 5.5.2. Let X be a Banach space, let � be a measure of weak non-
compactness in X and let  � be a measure of weak noncompactness of operators
associated with �: If �.S.D// � �.S.BX//�.D/; for every S 2 L.X/ and
D 2 MX , then  � has the algebraic semi-multiplicative property. }
Proof.  �.ST/ D �.ST.BX// �  �.S/�.T .BX// �  �.S/ �.T /: Q.E.D.

Definition 5.5.3. LetX and Y be two Banach spaces, let � (resp. ��) be a measure
of weak noncompactness in Y (resp. in X�) and let  � (resp.  �� ) be a measure of
weak noncompactness of operators associated with � (resp. to ��). . �;  ��/ is
said to have the adjoint-equivalent property, if there exist a; b 2 RC, such that
a ��.S�/ �  �.S/ � b ��.S�/ for all S 2 L.X; Y /: }
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Let us recall some examples of measures of weak noncompactness of operators
[37, 133]. For X and Y being Banach spaces and T 2 L.X; Y /; we denote by

• ‚!.T / D !.T .BX//; where ! is the measure of weak noncompactness of De
Blasi in the space Y [see (2.11.1)].

• 	�.T / D �.T .BX//; where for A 2 MY ; �.A/ D supfcsep.xn/ such that
.xn/ � conv.A/g [see (2.11.3)].

Remark 5.5.1.

(i) ‚! has the algebraic semi-multiplicative property. Indeed, let A be a bounded
set in X . Then, for each " > 0, there exists 0 < t � !.A/ C " such
that A � C C tBX and C is a weakly compact operator. Then, A �
C C .!.A/C "/BX . Applying the operator T and using the assertions (i), (ii),
(v), and (vi) in Definition 2.11.1, we get !.T .A// � !.A/!.T .BX//: Finally,
from Proposition 5.5.2, ‚! has the algebraic semi-multiplicative property.

(ii) For general Banach spaces, .‚!;‚!�/ doesn’t have the adjoint-equivalent
property (cf. [38, Theorem 4, p. 371]). }

We have the following proposition.

Proposition 5.5.3. .	� ; 	��/ has the adjoint-equivalent property. }
Proof. Let X and Y be two Banach spaces. For each T 2 L.X; Y /; we have
the corresponding operator R.T / W X��=X �! Y ��=Y given by the formula
R.T /.x�� C X/ D T ��x�� C Y; for every x�� 2 X��: Then, from [200,
Lemma 3.1], we have

kR.T /k D supfdist.T ��x��; Y / such that dist.x��; X/ � 1g
D supfdist.T ��x��; Y / such that kx��k � 1g

and kR.T /k D 0 if, and only if, T is weakly compact (see [101, p. 482]). From
[133, Proposition 1:3], kR.T /k has the adjoint-equivalent property. More precisely,
we have

1

2
kR.S/k � kR.S�/k � 2kR.S/k; for all S 2 L.X; Y /: (5.5.1)

Moreover, from [200, Theorem 3:2], we deduce that kR.:/k and 	�.:/ are equivalent
by the following inequality

1

2
	�.S/ � kR.S/k � 	�.S/; for all S 2 L.X; Y /: (5.5.2)

Using the above inequalities (5.5.1) and (5.5.2), we get 1
4
	��.S�/ � 	�.S/ �

4	��.S�/, for all S 2 L.X; Y /; which implies that .	� ; 	��/ has the adjoint-
equivalent property. Q.E.D.
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Definition 5.5.4. Let X and Y be two Banach spaces. For S 2 L.X; Y /; we define
the W-quotient-norm of T by kSkW WD inf fkS �Kk such that K 2 W.X; Y /g. }
Proposition 5.5.4. Let X be a Banach space, let S 2 L.X/; let � be a measure
of weak noncompactness in X and let  � be a measure of weak noncompactness of
operators associated with �: Then,

(i)  �.S/ � kSk �.BX/;

(ii)  �.S/ � kSkW �.BX/; and
(iii)  �.S/ � ‚!.S/ �.BX/: }
Proof.

(i) Since S.BX/ � kSkBX , then  �.S/ � kSk�.BX/:

(ii) For all K 2 W.X/, we have  �.S CK/ � kS CKk�.BX/: Since  �.S C
K/ D  �.S/ (see Proposition 5.5.1 .d/), then  �.S/ � kSkW �.BX/:

(iii) From the inequality (2.11.2), we have �.A/ � �.BX/!.A/; for all A 2 MX :

The result follows if A D S.BX/: Q.E.D.

Definition 5.5.5. Let X and Y be two Banach spaces. An operator T W X �! Y is
called a Dunford-Pettis operator (for short property DP operator) if T maps weakly
compact sets onto compact sets. }
Lemma 5.5.1. Let P and Q be two complex polynomials satisfying Q divides
.P � 1/ and �.:/ be a measure of weak noncompactness in X satisfies

�.P.T /.A// � ‰�.P.T //�.A/; for every A 2 MX; (5.5.3)

where ‰� be a measure of weak noncompactness of operators associated with �.
Let A D fx 2 BX such thatQ.T /x� Kx 2 M g, whereM � X , andK 2 K.X/. If
M is weakly compact and ‰�.P.T // < 1, then A is relatively weakly compact or
empty. }
Proof. Assume that A is not empty. According to the fact that Q divides .P � 1/,
there exists a complex polynomial R such that P D RQ C 1. Consider x 2 A and
z 2 M such thatQ.T /.x/�K.x/ D z. Then, we getR.T /Q.T /.x/�R.T /K.x/C
x D R.T /.z/ C x, which implies x D P.T /.x/ � R.T /.z/ � R.T /K.x/: Since
a continuous image of a weakly compact set by a continuous operator is also
weakly compact, it follows that QA D f�R.T /.z/ such that z 2 M g is weakly
compact as well. Obviously, A � P.T /A C QA � R.T /K.A/ and �. QA/ D
�.R.T /K.A// D 0: So, using both Definition 2.11.1 (ii) and (v) and Eq. (5.5.3), we
get �.A/ � �.P.T /A/ � �.A/‰�.P.T //: Since ‰�.P.T // < 1, then �.A/ D 0:

Consequently, by using Definition 2.11.1, we infer that A 2 WX . Q.E.D.

Now, we are ready to state and prove the following theorem.

Theorem 5.5.1. Let X be a Banach space, T 2 L.X/, let � (resp. ��) be a
measure of weak noncompactness in X (resp. in X�), and let ‰� (resp. ‰�� ) be
a measure of weak noncompactness of operators associated with � (resp. to ��).
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Let P andQ be two complex polynomials satisfying the fact thatQ divides .P �1/,
P.T / being a DP operator, and �.:/ satisfies the Eq. (5.5.3).

(i) If ‰�.P.T // < 1, then Q.T / 2 ˆbC.X/.
(ii) Moreover, let us suppose that .P.T //� is a DP operator, and

��.P.T /�.D// � ‰��.P.T /�/��.D/; for every D 2 MX� : (5.5.4)

If ‰�.P.T // < 1 and ‰��.P.T /�/ < 1, then Q.T / 2 ˆb.X/.
(iii) Suppose that ��.:/ satisfies the Eq. (5.5.4), that .P.T //� is a DP operator

and, . �;  ��/ has the adjoint-equivalent property. If ‰�.P.T // < 1, then
Q.T / 2 ˆb.X/. }

Proof.

(i) By using Lemma 2.2.2, it is sufficient to prove that, for any compact operator
K 2 K.X/; ˛.Q.T / � K/ < 1. To do so, we only need to establish that
the set N.Q.T / � K/

T
BX is compact. Applying Lemma 5.5.1 with M D

f0g; we show that N.Q.T / �K/
T
BX is weakly compact and is included in

P.T /.N.Q.T / � K/
T
BX/: Using the fact that P.T / is a DP operator, we

ensure that N.Q.T / � K/
T
BX is compact. This ends the proof of the first

part of the theorem.
(ii) Assume that‰��.P.T /�/ < 1: Proceeding as in the proof of (i), and according

to the hypotheses, we get ˛.Q.T /�/ D ˇ.Q.T // < 1: This completes the
proof of (ii).

(iii) Suppose that there exists a 2 R
�C such that, for all S 2 L.X/;  ��.S�/ �

a �.S/: If ‰�.P.T // < 1, then lim
k!C1Œ‰�.P.T //�

k D 0: So, there

exists k0 2 N
� such that Œ‰�.P.T //�k0 < 1

a
: From Eq. (5.5.3) and using

Proposition 5.5.2, we deduce the following  �.P.T /
k0/ < 1

a
: Hence,

 �� Œ.P.T /�/k0 � < 1: Since Q divides P k0 � 1, then applying (i), we get
Q.T /� 2 ˆbC.X�/ which implies that Q.T / 2 ˆb�.X/: Furthermore, since
‰�.P.T // < 1, then Q.T / 2 ˆbC.X/: This completes the proof of the
theorem. Q.E.D.

As a consequence of Theorem 5.5.1, we have

Corollary 5.5.1. Let X be a Banach space and let T 2 L.X/: Suppose that
�.:/ and ��.:/ satisfy Eqs. (5.5.3) and (5.5.4), respectively, with P D zm .m 2
N

�/ and let us suppose that . �;  ��/ has the adjoint-equivalent property. If
 �.T

m/ < 1 and T m is a DP operator, then .I � T / is a Fredholm operator with
i.I � T / D 0: }

Proof. Applying Theorem 5.5.1 (i) with P.z/ D zm andQ.z/ D 1� z; we conclude
that .I � T / 2 ˆbC.X/: Next, note that for t 2 Œ0; 1�, we have  �..tT/m/ < 1 and
.tT/m is a DP operator. Then, .I � tT/ 2 ˆbC.X/. Moreover, by the continuity of
the index on ˆbC.X/, we get i.I � T / D i.I � tT/ D i.I / D 0: Hence, .I � T / 2
ˆb.X/, which completes the proof. Q.E.D.
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As a consequence of Theorem 5.5.1, we have

Corollary 5.5.2. Let X be a Banach space, T 2 L.X/, and let P and Q be two
complex polynomials such that Q divides .P � 1/ and P.T / is a DP operator.
Suppose that �.:/ satisfies Eq. (5.5.3) with P.z/ D zm .m 2 N

�/. If  �.T m/ < 1,
then .I � T / is a Fredholm operator and i.I � T / D 0: }
Proof. By using Theorem 5.5.1, we deduce that .I � T / 2 ˆbC.X/. Next, let us
notice that for t 2 Œ0; 1�, we have . �.tT//n0 < 1 and .tT/m is a DP operator.
Then, .I � tT/ 2 ˆbC.X/. Now, by the continuity of the index on ˆbC.X/, we get
i.I � T / D i.I � tT/ D i.I / D 0: Hence, .I � T / 2 ˆb.X/. Q.E.D.

The following corollary is an immediate consequence of Remark 5.5.1 (i), Proposi-
tion 5.5.3, and Theorem 5.5.1 (iii).

Corollary 5.5.3. Let X be a Banach space and let T 2 L.X/. Suppose that there
exist two complex polynomials P and Q satisfying Q divides .P � 1/ and P.T / is
a DP operator.

(i) If ‚!.P.T // < 1, then Q.T / 2 ˆbC.X/.
(ii) If 	�.P.T // < 1, then Q.T / 2 ˆb.X/. }
Corollary 5.5.4. Let X be a Banach space and let T 2 L.X/. Suppose that there
exist two complex polynomials P and Q satisfying the fact that Q divides .P � 1/,
P.T / and P.T /� being DP operators.

(i) Let .�;†; �/ be an arbitrary positive measure space and suppose that X D
L1.�/: If ‚!.P.T // <

1
2
, then Q.T / 2 ˆb.X/:

(ii) Suppose that, for any index set I ,X D l1I : If‚!.P.T // < 1 and kP.T /kW <

1, then Q.T / 2 ˆb.X/: }
Proof.

(i) Since 	�.P.T // D 2‚!; then 	�.P.T // < 1: The result follows from
Corollary 5.5.3.

(ii) From [37, Theorem 5:2], we have ‚!�.P.T /�/ D kP.T /�kW D kP.T /kW :
The result follows from Theorem 5.5.1 (i). Q.E.D.

Remark 5.5.2. The result of Corollary 5.5.4 (ii) holds for any Banach space X
having the extension property, i.e., for each T 2 L.M;X/ there exists an operator
S 2 L.Y;X/ such that T D SJM and kT k D kSk: Here, M is a closed subspace
of an arbitrary Banach space Y and JM W M �! E is the canonical injection
(see [37]). }
Corollary 5.5.5. Let .�;†; �/ be an arbitrary positive measure space, let X D
L1.�/ and let T 2 L.X/. Suppose that there exists a complex polynomial
P satisfying P.0/ D 1. Assume that P.T / and P.T /� are DP operators. If
‚!.P.T // <

1
2
, then T 2 ˆb.X/: }
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Proof. Since P.0/ D 1, then Q.z/ D z divides .P.z/ � 1/ and the result follows
from Corollary 5.5.4. Q.E.D.

5.6 Fredholm Theory with Finite Ascent and Descent

The following results may be found in [2].

Theorem 5.6.1. Let T , S be two bounded operators on X . If '.T / < ı.S/, then
T C S 2 ˆbC.X/ and i.T C S/ D i.S/, where '.:/ [resp. ı.:/] is introduced
in (2.12.2) [resp. (2.12.1)]. }
Proof. Suppose that ı.T C S/ D 0. Then ı.S/ D ı.T � .T C S// < '.T /. Hence,
if '.T / < ı.S/, then ı.T C S/ > 0 and therefore T C S 2 ˆbC.X/. Let t 2 Œ0; 1�,
then '.tT/ < ı.S/, and so, by what we have just proved, tT C S 2 ˆbC.X/. Thus,
by the continuity of the index on ˆbC.X/, we get i.T C S/ D i.S/. Q.E.D.

Theorem 5.6.2. Let T , S be two commuting bounded operators on X . Let '.T / <
ı.S/. If asc.S/ < 1, then asc.T C S/ < 1. }
Proof. For t 2 Œ0; 1�, we have '.tT/ < ı.S/, then, by Theorem 5.6.1, tT C S 2
ˆbC.X/. Since S and T are commuting, then according to Theorem 2.2.20, we have

N1.tT C S/
T
R1.tT C S/ D N1.sT C S/

T
R1.sT C S/; for all s in some

open disk with center t . Hence, N1.tT C S/
T
R1.tT C S/ is locally constant

function of t on the interval Œ0; 1�. This yields that for all t 2 Œ0; 1�, we have
N1.tT C S/

T
R1.tT C S/ D N1.S/

T
R1.S/: Now, since asc.S/ < 1,

then from Lemma 2.2.10, N1.S/
T
R1.S/ D N1.S/

T
R1.S/ D f0g: Hence,

N1.T C S/
T
R1.T C S/ D f0g: Thus, we have N1.T C S/

T
R1.T C S/ D

f0g; and again by Lemma 2.2.10, it follows that asc.T C S/ < 1. Q.E.D.

Theorem 5.6.3. Let T , S be two commuting bounded operators onX . Suppose that
there exists n 2 N

� such that '.T n/ < ı.Sn/, then we get

(i) If S 2 BbC.X/, then T C S 2 BbC.X/.
(ii) If S 2 Bb.X/, then T C S 2 Bb.X/. }
Proof.

(i) Let t 2 Œ0; 1�. Since '..tT/n/ < ı.Sn/, by Theorem 5.6.1, tT C S 2 ˆbC.X/.
Arguing as in the proof of Theorem 5.6.2, we get the result.

(ii) Since S 2 Bb.X/, then i.S/ D 0. Arguing as in the proof of Theorem 5.6.1,
we get i.T C S/ D 0. Moreover, Theorem 5.6.2 yields asc.T C S/ < 1.
According to Lemma 2.2.7, we get desc.T C S/ < 1. Q.E.D.
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5.7 Stability of Semi-Browder Operators

The reader interested in the results of this section may also refer to [111] which
constitutes the real basis of our work.

Lemma 5.7.1. Let X be a Banach space, A 2 C.X/ such that �.A/ ¤ ; and
D.Ap/ D X for all p 2 N. If A 2 ˆ�.X/ and desc.A/ < 1, then Ap 2 ˆ�.X/
for every p 2 N. }
Proof. Since A is a closed operator with a non-empty resolvent set, then we can
deduce that Ap is a closed operator. From Lemma 2.2.27, it follows that ˇ.Ap/ �
desc.A/ˇ.A/. So, ˇ.Ap/ < 1 for every p. Finally, the use of Lemma 2.1.9 gives
R.Ap/ is a closed subspace. Q.E.D.

Lemma 5.7.2. Let X be a reflexive Banach space, A 2 C.X/ and B D A C K

where K 2 K.X/ such that A and B are mutually commuting operators and
A� commutes with itself. If A 2 ˆ�.X/, then A�pB�k 2 ˆC.X�/ for every p,
k 2 N

�. }
Proof. Let A 2 ˆ�.X/, then by Theorem 2.2.46 and Lemma 2.2.15, A� 2
ˆC.X�/. Hence, applying Remark 2.2.6 (ii) and Theorem 2.2.43, we get A�p 2
ˆC.X�/. On the other hand, by Theorem 2.2.47, we deduce that B 2 ˆ�.X/.
Then a similar reasoning as above shows that B�k 2 ˆC.X�/. Finally, using
Lemma 2.2.25 (i) together with Theorem 2.2.43 we infer that A�pB�k 2 ˆC.X�/.

Q.E.D.

Lemma 5.7.3. Let X be a reflexive Banach space, A 2 C.X/ and B D A C K

whereK 2 K.X/. If A and B are mutually commuting operators and A� commutes
with itself, then .B;A/ is of finite type if, and only if, .A;B/ is of finite type. }
Proof. Reasoning in the same way as the proof of Lemma 2.2.25 (ii), we can prove
that .ApBk/� is an extension of B�kA�p . On the other hand, D..BkAp/�/ D
D..ApBk/�/. Indeed, let f 2 D..BkAp/�/ then there is g 2 X� such that g.u/ D
f ı BkAp.u/ for all u 2 D.BkAp/ D D.ApBk/. The use of Lemma 2.2.22 makes
us conclude that g.u/ D f ı ApBk.u/ for all u 2 D.BkAp/ D D.ApBk/. So, f 2
D..ApBk/�/. A similar reasoning as above gives D..ApBk/�/ � D..BkAp/�/.
Now, since D.A�pB�k/ D D.B�kA�p/ and D..BkAp/�/ D D..ApBk/�/, we get
.ApBk/� is a finite dimensional extension of B�kA�p . Therefore, .A;B/ is of finite
type. Proceeding as the proof above, we establish that if .A;B/ is of finite type, then
.B;A/ is of finite type. Q.E.D.

Theorem 5.7.1. Let X be a reflexive Banach space, A 2 C.X/ and B D A C K

where K 2 K.X/ such that A and B are mutually commuting operators and A�
commutes with itself. Assume that �.A/ ¤ ;, �.ACK/ ¤ ;, and .B;A/ is of finite
type. If A 2 ˆ�.X/, then desc.A/ < 1 if, and only if, desc.ACK/ < 1. }
Proof. Let A 2 ˆ�.X/ such that desc.A/ D p < 1. Then, by Lemma 5.7.1 and
the fact that A commutes with itself we deduce that R.Ap/ is a closed subspace of
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D.A/. On the other hand, from Lemma 2.2.22 and the fact that desc.A/ D p < 1
we show that B.R.Ap// � R.Ap/ and A.R.Ap// � R.Ap/. Since the restriction
of A to R.Ap/ is onto, therefore by Lemma 2.2.26, the restriction of B to R.Ap/
has finite descent. So that there is an integer k for which

R.Bm/ 	 R.BmAp/ D R.BkAp/ (5.7.1)

for all m � k. Now, it suffices to prove that for all m 2 N ˇ.Bm/ � N , where
N 2 N

�. Indeed, according to the hypothesis .B;A/ is of finite type, we can write

N..BkAp/�/ D N.A�pB�k/˚ F; (5.7.2)

where F is a subspace of finite dimension. On the other hand, from Lemma 5.7.2
we have ˛.A�pB�k/ < 1. Therefore, by Eq. (5.7.2) together with Theorem 2.1.1
we deduce that ˇ.BkAp/ < 1. Then, by Eq. (5.7.1) ˇ.Bm/ � ˇ.BmAp/ D
ˇ.BkAp/ D N < 1 for all m 2 N. Conversely, let A 2 ˆ�.X/ such that
desc.A C K/ < 1. So, B 2 ˆ�.X/ and desc.B/ < 1. Set QK D �K, then
clearly B and B C QK are mutually commuting operators, B� commutes with
itself, �.B/ ¤ ; and by Lemma 5.7.3 .B C QK;B/ D .A;B/ is of finite type.
Hence, applying the reasoning above for the operators B and B C QK, we get
desc.B C QK/ D desc.A/ < 1. Q.E.D.

Corollary 5.7.1. Let X be a reflexive Banach space, A 2 C.X/ and B D A C K

where K 2 K.X/ such that A and B are mutually commuting operators and A�
commutes with itself. Assume that �.A/ ¤ ;, �.ACK/ ¤ ;, and .B;A/ is of finite
type. Then A 2 B�.X/ if, and only if, ACK 2 B�.X/. }
Proof. We first claim that if A 2 B�.X/, then A C K 2 B�.X/. Indeed, let A 2
B�.X/ thus A 2 ˆ�.X/, and desc.A/ < 1. Using Theorem 2.2.47 together with
Theorem 5.7.1, we obtain thatACK 2 B�.X/. A similar reasoning gives ifACK 2
B�.X/, then A 2 B�.X/. Q.E.D.

Theorem 5.7.2. Let X be a Banach space and A 2 C.X/ such that A commutes
with itself and �.A/ ¤ ;. Let K 2 K.X/ such that K commutes with A and �.AC
K/ ¤ ;. If A 2 ˆC.X/, then asc.A/ < 1 if, and only if, asc.ACK/ < 1. }
Proof. Let A 2 ˆC.X/ such that asc.A/ < 1. According to the hypothesis
A is a closed operator with non-empty resolvent set, we get that Ap is a closed
operator. Therefore, N.Ap/ is a closed subspace. Thus, N1.A/ D N1.A/ since
asc.A/ D p < 1. Using Lemma 2.2.20 we infer that N1.A/

T
R1.A/ D

N1.A/
T
R1.A/ D f0g. Now, set A� D A C �K, where � 2 Œ0; 1�. Then, by

Theorem 2.2.47 A� 2 ˆC.X/ for each � 2 Œ0; 1�. From Theorem 2.2.20, there
exists " D ".�/ such that

N1.A�/
\
R1.A�/ D N1.A�/

\
R1.A�/
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for all � in the open disc S.�/ with center � and radius ". Therefore,
N1.A�/

T
R1.A�/ is a locally constant function of � on the interval Œ0; 1�.

Or every locally constant function on a connected set like Œ0; 1� is constant, then we
conclude that N1.ACK/

T
R1.ACK/ D f0g. Thus, N1.ACK/

T
R1.AC

K/ D f0g and again by Lemma 2.2.20 it follows that asc.ACK/ < 1. Conversely,
let A 2 ˆC.X/ such that asc.A C K/ < 1. So, A C K 2 ˆC.X/ and
asc.ACK/ < 1. Set QK D �K, then clearly QK D �K commutes with ACK and
A C K commutes with itself. Thus, we can apply the reasoning above and deduce
that asc.ACK C QK/ D asc.A/ < 1. This completes the proof. Q.E.D.

Corollary 5.7.2. Let X be a Banach space and A 2 C.X/ such that A commutes
with itself and �.A/ ¤ ;. Let K 2 K.X/ such that K commutes with A and �.AC
K/ ¤ ;. Then, A 2 BC.X/ if, and only if, ACK 2 BC.X/. }
Proof. Reasoning in the same way as the proof of Corollary 5.7.1. Q.E.D.

5.7.1 Convergence to Zero Compactly

In this section we present properties of the nullity, deficiency, and index of operators
of the form T CKn, where T is a semi-Fredholm operator andKn converge to zero
compactly. The results of this section may be found in [127].

Definition 5.7.1. A sequence .Kn/n of bounded linear operators mapping from X

into Y is said converge to zero compactly if Knx ! 0 for all x 2 X , and fKnxng is
relatively compact for every bounded sequence .xn/n � X: }
Remark 5.7.1.

(i) Clearly, kKnk ! 0 implies Kn converge to zero compactly.
(ii) If

S
n�1fKnx such that kxk � 1g is relatively compact, then fKnxng is

relatively compact for every bounded sequence .xn/n � X . In this case fKng
is called collectively compact.

(iii) The assumption .Kn/n converge to zero compactly does not even imply that
the sequence .K�

n /n converges strongly. The following simple example taken
from [30] confirms this. Take X D Y D l2. Define Knx D xne1 where
x D P1

iD1 xi ei , .ei /i the usual set of unit vectors. Then K�
n e1 D en does

not converge in l2. }
We recall the following results due to S. Gohberg [123].

Lemma 5.7.4. If .An/n, a sequence of bounded linear operators on X with range
in Y , converges strongly to zero, then .kAnk/n is bounded and .An/n converges to
zero uniformly on totally bounded sets. }
Lemma 5.7.5. Let T be a closed linear operator with domain D.T / � X and
range R.T / a closed subspace of Y . If .yn/n is a bounded sequence in R.T /, then
there exists a bounded sequence .xn/n such that Txn D yn. }
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Proof. This follows readily from yn D Tvn and kynk D kTvnk �
Q�.T /dist.vn; R.T //. Q.E.D.

Lemma 5.7.6. Let T be a closed linear operator with domain D.T / � X and
range R.T / a closed subspace of Y . If ˛.T / < 1 and .xn/n is a bounded sequence
such that .Txn/n converges, then .xn/n has a convergent subsequence. }
Proof. Since R.T / is closed, Txn ! Tx and therefore xn C R.T / D QT �1Txn !
QT �1Tx D xCR.T / inX=R.T /. Thus there exists zn 2 R.T / such that xnCzn ! x.

Since .zn/n is bounded in finite dimensional spaceR.T /, it, and therefore .xn/n, has
a convergent subsequence. Q.E.D.

Lemma 5.7.7. Let T be a closed linear operator with domain D.T / � X and
range R.T / a closed subspace of Y . Let .Kn/n be a sequence of bounded linear
operators such that Kn converge to zero compactly. If ˛.T / < 1 and R.T / is
complemented in X by a closed subspace M , then there exists a p and c > 0 such
that for n � p, TM C Kn is one-to-one and Q�.TM C Kn/ � c, where TM is the
restriction of T to M

T
D.T /. }

Proof. Suppose f Q�.TMCKn/g has a subsequence converging to zero. For simplicity,
let Q�.TM C Kn/ ! 0. There exists fmng � M such that kmnk D 1 and .T C
Kn/mn ! 0. Since Kn converge to zero compactly, fKnmng, and therefore fTmng,
has a convergent subsequence. Thus by Lemma 5.7.6, .mn/n has a convergent
subsequence and by Lemma 5.7.4, fKnmng, and therefore .Tmn/n has a subsequence
converging to zero. This is impossible since TM has a bounded inverse. This
argument also shows that TM CKn is one-to-one for sufficiently large n; otherwise,
a sequence .mn/n with the above properties would obviously exist which leads to a
contradiction. Q.E.D.

Lemma 5.7.8. Let T be a closed linear operator with domain D.T / � X and
range R.T / a closed subspace of Y . Let D.T / be dense in X . Let .Kn/n be a
sequence of bounded linear operators such that Kn converge to zero compactly. If
R.T / is complemented in Y by a closed subspaceW , then there exists a p and c > 0
such that for n � p, T �CK�

n is one-to-one onW ı D fy0 2 Y � such that y0W D 0g
and Q�.T �

0 CK�
n / � c, where T �

0 is the restriction of T � to W ıTD.T �/. }
Proof. Y D R.T / ˚ W and Y 0 D R.T /ı ˚ W ı. Suppose Q�.T �

0 C K�
n / has a

subsequence converging to zero. For simplicity, let Q�.T �
0 CK�

n / ! 0. There exists
.y0
n/n � W ı such that 1 D ky0

nk and .T � C K�
n /y

0
n ! 0. Choose yn so that

1 D kynk and y0
nyn � 1

2
. Now yn D Tvn C wn, wn 2 W and .Tvn/n is bounded

since R.T / is closed and complemented byW . Hence by Lemma 5.7.5, there exists
a bounded sequence .xn/n such that Txn D Tvn. Furthermore, y0

nv ! 0 for all
v 2 Y . To see this, y0

nTx D .T � CK�
n /y

0
n.x/� y0

nKnx ! 0. Since y0
n is inW ı and

R.T / is complemented by W , y0
nv ! 0 for all v 2 Y . Now

1

2
� y0

nyn D .T � CK�
n /y

0
n.xn/ � y0

nKnxn: (5.7.3)
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Since .xn/n is bounded, fKnxng is totally bounded which, together with the
observation that y0

nv ! 0 for all v 2 Y , implies that fy0
nKnxng converges to zero.

Therefore (5.7.3) cannot hold since .T � C K�
n /y

0
n ! 0. The above argument also

shows that T � C K�
n is one-to-one on W ı for all sufficiently large n; otherwise, a

sequence .y0
n/n with the above properties would obviously exist which leads to a

contradiction. Q.E.D.

Theorem 5.7.3. Let T be a closed linear operator with domain D.T / � X and
range R.T / a closed subspace of Y . Let .Kn/n be a sequence of bounded linear
operators such that Kn converge to zero compactly. Suppose ˛.T / < 1. Then,
there exists a p such that

(i) T CKn has a closed range and ˛.T CKn/ � ˛.T /, n � p.
(ii) ˛.T C Kn/ D ˛.T /, n � p if, and only if, inf

n�p Q�.T C Kn/ > 0. In this case,

X D M ˚ R.T C Kn/, n � p, where R.T / is complemented by the closed
subspace M . }

Proof.

(i) X D M ˚ R.T / for some closed subspace M . Let p and c > 0 be as in
Lemma 5.7.7 and n � p. Then .T CKn/M is closed by Lemma 2.2.1 and the
finite dimensionality of R.T / implies R.T CKn/ D .T CKn/M CKnR.T /

is closed. Moreover, by Lemma 5.7.7, M
T
R.T C Kn/ D f0g. Hence X D

M ˚R.T / 	 M ˚R.T CKn/ which implies ˛.T CKn/ � ˛.T /.
(ii) Suppose ˛.T C Kn/ D ˛.T /, n � p. Then X D M ˚ R.T C Kn/ and for

x D mn C zn, mn 2 M , zn 2 R.T CKn/, we have by Lemma 5.7.7 that

k.T CKn/xk D k.T CKn/mnk
� c kmnk
� c dist.mn;R.T CKn//

D c dist.x;R.T CKn//:

Thus Q�.T CKn/ � c > 0, n � p. Conversely, suppose Q�.T CKn/ � c > 0,
n � p, but that ˛.T C Kn/ ¤ ˛.T /. Then, from (i), ˛.T C Kn/ < ˛.T /. By
Lemma 2.1.5, there exists .zn/n � R.T / such that 1 D kznk D dist.zn; R.T C
Kn//. Hence for n � p,

0 < c D c dist.zn; R.T CKn// � k.T CKn/znk D kKnznk: (5.7.4)

Since R.T / is finite dimensional, .zn/n has a convergent subsequence and
therefore by Lemma 5.7.4, fKnzng has a subsequence converging to zero,
contradicting (5.7.4). Q.E.D.

Theorem 5.7.4. Let T be a closed linear operator with domain D.T / � X and
range R.T / a closed subspace of Y . Let .Kn/n be a sequence of bounded linear
operators such that Kn converge to zero compactly. If R.T / is complemented in
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Y (by a closed subspace) and T is densely defined, there exists a p such that for
n � p, ˛.T � CK�

n / � ˛.T �/. If ˇ.T / < 1, then there exists a p such that

(i) T CKn has closed range with ˇ.T CKn/ � ˇ.T /, n � p.
(ii) ˇ.T CKn/ D ˇ.T /, n � p, implies inf

n�p Q�.T CKn/ > 0. }

Proof. LetW and p be chosen as in Lemma 5.7.8 with n � p. Then Y � D R.T /ı˚
W ı D R.T �/˚W ı. Since T �CK�

n is one-to-one onW ı, Y � 	 R.T �CK�
n /˚W ı.

Thus ˛.T � CK�
n / � ˛.T �/.

(i) By replacing X by D.T /, if necessary, we may assume T is densely defined.
Since ˇ.T / < 1, there exists a p and W as in Lemma 5.7.8. For n � p,
.T � CK�

n /W
ı is closed by preliminary Lemma 2.2.1. Since ˛.T �/ D ˇ.T / <

1, .T � CK�
n /Y

� D .T � CK�
n /W

ı CK�
n R.T

�/ is closed; i.e., T � CK�
n has

a closed range and therefore T CKn has a closed range. Thus by what we have
already shown, ˇ.T CKn/ D ˛.T � CK�

n / � ˛.T �/ D ˇ.T /, n � p.
(ii) Suppose ˇ.T � C K�

n / D ˇ.T / < 1 or equivalently ˛.T � C K�
n / D ˛.T �/,

n � p, with p and c chosen as in Lemma 5.7.8. Then Y � D R.T �/˚W ı D
R.T � CK�

n /˚W ı. Thus for y0 D z0
n C w0

n, z0
n 2 R.T � CK�

n /, w0
n 2 W ı, we

have k.T � CK�
n /y

0k D k.T � CK�
n /w

0
nk � c kw0

nk � c dist.y0; R.T � CK�
n //:

Hence Q�.T CKn/ D Q�.T � CK�
n / � c, n � p. Q.E.D.

Theorem 5.7.5. Let T be a closed linear operator with domain D.T / � X and
range R.T / a closed subspace of Y . Let T be a Fredholm operator. Let .Kn/n be
a sequence of bounded linear operators such that Kn converge to zero compactly.
Then Q�.T CKn/ is bounded away from zero for all sufficiently large n if, and only
if, ˛.T CKn/ D ˛.T / and ˇ.T CKn/ D ˇ.T / for all sufficiently large n. }
Proof. By replacingX by D.T /, if necessary, we may assume T is densely defined.
Y D R.T / ˚ W , W finite dimensional. Suppose Q�.T C Kn/ � c > 0 for all but
a finite number of n but that ˇ.T C Kn/ ¤ ˇ.T / for infinitely many n. Then
by Theorem 5.7.4 (i), ˇ.T C Kn/ < ˇ.T / for infinitely many n. For simplicity,
suppose ˇ.T C Kn/ < ˇ.T / and Q�.T C Kn/ � c for n � p, where p is chosen
so that Lemma 5.7.8 holds. Thus there exists yn 2 R.T C Kn/

T
W , kynk D 1.

Since kynk is bounded and Q�.T C Kn/ � c > 0 it follows that there exists a
bounded sequence .xn/n such that yn D .T CKn/xn. Now .yn/n has a convergent
subsequence since W is finite dimensional; say yn0 ! y 2 W . Since .Kn0xn0/n0

has a convergent subsequence, so does .Txn0/n0 . Thus by Lemmas 5.7.6 and 5.7.4,
.xn0/n0 has a convergent subsequence and .Kn0xn0/n0 has subsequence .Kn00xn00/n00

converging to zero. Hence y D limyn00 D lim Txn00 2 R.T /, which shows that y
is in R.T /

T
W D f0g. This is impossible since kyk D 1. The rest of the theorem

follows from Theorem 5.7.3. Q.E.D.

Theorem 5.7.6. Let T be a closed linear operator with domain D.T / � X and
range R.T / a closed subspace of Y . Let T be a semi-Fredholm operator. Let .Kn/n
be a sequence of bounded linear operators such thatKn converge to zero compactly.
There exists a p such that for n � p, T CKn is semi-Fredholm, ˛.T CKn/ � ˛.T /,
ˇ.T CKn/ � ˇ.T /, and i.T CKn/ D i.T /. }
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Proof. The first three conclusions are contained in Theorems 5.7.3 and 5.7.4. There
exists a p such that for all � 2 Œ0; 1� and n � p, TC�Kn is semi-Fredholm. If this is
not the case, there exists a subsequence .Kn0/n0 and a sequence �n 2 Œ0; 1� such that
T C �nKn0 is not semi-Fredholm. This is impossible by Theorems 5.7.3 and 5.7.4
since �nKn0 converge to zero compactly. Given n � p, defineˆ on Œ0; 1�with values
in the set of extended integers with the discrete topology byˆ.�/ D i.TC�Kn/. By
Proposition 2.2.6, ˆ.:/ is continuous, and since Œ0; 1� is connected, ˆ.:/ is constant.
In particular i.T / D ˆ.0/ D ˆ.1/ D i.T CKn/. Q.E.D.



Chapter 6
Perturbation Results

In this chapter, we present preliminary notions and results on which this book is
based, namely, the known properties of Fredholm operators in a Banach space,
and some results on semi-Fredholm perturbations, Fredholm inverse, and quasi-
Fredholm operator on Banach spaces.

6.1 Definitions and Notations

Let J be an arbitrary A-bounded operator. Hence, we can regard A and J as
operators from XA into Y . They will be denoted by OA and OJ respectively, and they
belong to L.XA; Y /. Furthermore, we have ˛. OA/ D ˛.A/, ˇ. OA/ D ˇ.A/, R. OA/ D
R.A/, ˛. OAC OJ / D ˛.ACJ /, ˇ. OAC OJ / D ˇ.ACJ /, andR. OAC OJ / D R.ACJ /.

Definition 6.1.1. Let X and Y be two Banach spaces, A 2 C.X; Y / and let J be
an A-defined linear operator on X . We say that J is A-compact (resp. A-weakly
compact, A-strictly singular, A-strictly cosingular) if OJ 2 K.XA; Y / (resp. OJ 2
W.XA; Y /, OJ 2 S.XA; Y /, OJ 2 CS.XA; Y /). }
Let AK.X; Y /, AW.X; Y /, AS.X; Y /, and ACS.X; Y / denote, respectively, the
sets of A-compact, A-weakly compact, A-strictly singular, and A-strictly cosingular
on X . If X D Y we write AK.X/, AW.X/, AS.X/, and ACS.X/ for AK.X;X/,
AW.X;X/, AS.X;X/, and ACS.X;X/ respectively.

Remark 6.1.1. If J is A-defined and compact (resp. weakly compact, strictly
singular, strictly cosingular), then J is A-compact (resp. A-weakly compact,
A-strictly singular, A-strictly cosingular). }
Definition 6.1.2. Let X and Y be two Banach spaces, A 2 C.X; Y /, and let F
be an arbitrary A-defined linear operator on X . We say that F is an A-Fredholm
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174 6 Perturbation Results

perturbation if OF 2 Fb.XA; Y /. F is called an upper (resp. lower) A-Fredholm
perturbation if OF 2 FbC.XA; Y / (resp. OF 2 Fb�.XA; Y //. }
The sets of A-Fredholm, upper A-semi-Fredholm, and lower A-semi-Fredholm
perturbations are denoted by AF.X; Y /, AFC.X; Y /, and AF�.X; Y / respectively.
If X D Y we write AF.X/, AFC.X/, and AF�.X/ for AF.X;X/, AFC.X;X/,
and AF�.X;X/ respectively.

Definition 6.1.3. Let X and Y be two Banach spaces, A 2 C.X; Y /, and let
F W X �! Y be an arbitrary A-defined linear operator. We say that F is an
unbounded A-Fredholm perturbation if OF 2 F.XA; Y /. F is called an unbounded
upper (resp. unbounded lower) A-Fredholm perturbation if OF 2 FC.XA; Y / (resp.
OF 2 F�.XA; Y //. }

Let UAF.X; Y /;UAFC.X; Y /, and UAF�.X; Y / designate the sets of unbounded
A-Fredholm, unbounded upper A-Fredholm, and unbounded lower A-Fredholm
perturbations, respectively. If X D Y , we write UAF.X/, UAFC.X/, and
UAF�.X/ for UAF.X;X/, UAFC.X;X/, and UAF�.X;X/ respectively.

Remark 6.1.2. As a consequence of Definition 6.1.3 and the inclusions (2.1.9)
and (2.1.10), we haveAK.X; Y / � UAFC.X; Y / � UAF.X; Y /, andAK.X; Y / �
UAF�.X; Y / � UAF.X; Y /. }
Proposition 6.1.1. Let X and Y be two Banach spaces, and A 2 C.X; Y /. The
following statements are satisfied:

(i) F.X; Y / � UAF.X; Y /,
(ii) FC.X; Y / � UAFC.X; Y /, and

(iii) F�.X; Y / � UAF�.X; Y /. }
Proof. (i) Let F 2 F.X; Y / and B 2 ˆ.XA; Y /. Since XA is continuously
embedded in X and is dense in X , by using Theorem 2.2.39 we have B 2 ˆ.X; Y /.
So, F C B 2 ˆ.X; Y /. By using Theorem 2.2.39, we get OF C B 2 ˆ.XA; Y /.
Hence, F 2 UAF.XA; Y /.

The proofs of (ii) and (iii) may be achieved in a similar way as (i). Q.E.D.

6.2 Fredholm and Semi-Fredholm Operators

Let T be a bounded linear operator from X into Y . The reduced minimum modulus
of T will be characterized by the equation

Q�.T / D
�

inffkTxk such that dist.x;N.T // D 1g if T ¤ 0;

0 if T D 0:
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Theorem 6.2.1. Let S , T , and K three operators such that D.T / � D.S/ �
D.K/. If there exist a constant ˛1 such that kS'k � ˛1

�k'k C kT 'k�, ' 2 D.T /,
if there exist a constant ˇ1 such that ˛1.1 C ˇ1/ < 1, .1 C ˇ1/ < Q�. QT / and
kK'k � ˇ1

�k'k C kS'k�, ' 2 D.T /, and, if T 2 ˆ.X; Y /, then the sum
T C S CK 2 ˆ.X; Y / which satisfies the following properties ˛.T C S CK/ �
˛.T /, ˇ.T C S CK/ � ˇ.T /, and i.T C S CK/ D i.T /. }
Proof. First using Theorem 2.1.5 it follows that T C S CK is closed operator. Let
T1, S1, and K1 be the restrictions of the operators T , S , and K to XT . Obviously,
T1 is Fredholm linear operator and S1 C K1 W XT �! Y is a bounded linear
operator. Consequently, T1 C S1 C K1 is a Fredholm operator as kS1 C K1kT �
.ˇ1 C ˛1.1C ˇ1// � Q�. QT / D Q�. QT �/ (see Theorem 2.2.29). The rest of the proof is
a consequence of Theorem 2.2.18. Q.E.D.

6.3 Semi-Fredholm Perturbations

In the beginning of this section, let us prove some results for semi-Fredholm
perturbations.

Proposition 6.3.1. Let X , Y , and Z be three Banach spaces.

(i) If the set ˆb.Y;Z/ is not empty, then

E1 2 FbC.X; Y / andA 2 ˆb.Y;Z/ imply AE1 2 FbC.X;Z/

E1 2 Fb�.X; Y / andA 2 ˆb.Y;Z/ imply AE1 2 Fb�.X;Z/:

(ii) If the set ˆb.X; Y / is not empty, then

E2 2 FbC.Y;Z/ andB 2 ˆb.X; Y / imply E2B 2 FbC.X;Z/

E2 2 Fb�.Y;Z/ andB 2 ˆb.X; Y / imply E2B 2 Fb�.X;Z/:

}
Proof.

(i) Since A2ˆb.Y;Z/, and using Theorem 2.2.6, it follows that there exist
A0 2L.Z; Y / and K 2K.Z/ such that AA0 D I �K. From Lemma 3.1.2,
we get AA0 2ˆb.Z/. Using Theorem 2.2.10, we have A0 2ˆb.Z; Y /,
and so A0 2ˆbC.Z; Y / and A0 2ˆb�.Z; Y /. Let J 2ˆbC.X;Z/ (resp.
ˆb�.X;Z/), using Theorem 2.2.13, we deduce that A0J 2ˆbC.X; Y / (resp.
ˆb�.X; Y /). This implies that .E1 C A0J /2ˆbC.X; Y / (resp. ˆb�.X; Y /).
So, A.E1 C A0J / 2 ˆbC.X;Z/ (resp. ˆb�.X;Z/). Now, using the relation
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AE1 C J � KJ D A.E1 C A0J / together with the compactness of the operator
KJ, we get .AE1 C J / 2 ˆbC.X;Z/ (resp. ˆb�.X;Z//. This implies that
AE1 2 FbC.X;Z/ (resp. Fb�.X;Z/).

(ii) The proof of (ii) is obtained in a similar way as the proof of (i). Q.E.D.

Theorem 6.3.1. Let X , Y , and Z be three Banach spaces.

(i) If the set ˆb.Y;Z/ is not empty, then

E1 2 FbC.X; Y / andA 2 L.Y;Z/ imply AE1 2 FbC.X;Z/

E1 2 Fb�.X; Y / andA 2 L.Y;Z/ imply AE1 2 Fb�.X;Z/:

(ii) If the set ˆb.X; Y / is not empty, then

E2 2 FbC.Y;Z/ andB 2 L.X; Y / imply E2B 2 FbC.X;Z/

E2 2 Fb�.Y;Z/ andB 2 L.X; Y / imply E2B 2 Fb�.X;Z/:

}
Proof.

(i) Let C 2 ˆb.Y;Z/ and � 2 C. Let A1 D A � �C and A2 D �C . For a
sufficiently large �, and using Lemma 2.2.3 or Theorem 2.2.15, we have A1 2
ˆb.Y;Z/. From Proposition 6.3.1 (i), it follows that A1E1 2 FbC.X;Z/ (resp.
Fb�.X;Z/) andA2E1 2 FbC.X;Z/ (resp. Fb�.X;Z/). This implies thatA1E1C
A2E1 D AE1 is an element of FbC.X;Z/ (resp. Fb�.X;Z/).

(ii) The proof may be achieved in a similar way as (i). It is sufficient to replace
Proposition 6.3.1 (i) by Proposition 6.3.1 (ii). Q.E.D.

Corollary 6.3.1. Let X be a Banach space. Then, Fb�.X/ is a closed two-sided
ideal of L.X/. }
Theorem 6.3.2. Let X and Y be two Banach spaces. Then, Fb.X; Y / D
F.X; Y /. }
Proof. Clearly, F.X; Y / � Fb.X; Y / (because ˆb.X; Y / � ˆ.X; Y /). In order
to prove the opposite inclusion, let F 2 Fb.X; Y /. If A 2 ˆ.X; Y /, then by
Theorem 2.2.38, there exist A0 2 L.Y;X/ and K 2 L.Y / of finite rank, such
that

AA0 D I �K on Y: (6.3.1)

Hence,

.AC F /A0 D I �K C FA0 D I CE: (6.3.2)
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According to Theorem 2.2.39, the fact that A 2 ˆ.X; Y / implies that OA 2
ˆb.XA; Y /. Also, (6.3.1) implies that AA0 is a Fredholm operator. Then, by
applying Theorem 2.2.41, we get A0 2 ˆb.Y;XA/. Similarly, since A0 2 L.Y;X/,
and using Theorem 6.3.1 (ii), we conclude that E 2 Fb.Y /. This, together
with (6.3.2), implies that .A C F /A0 2 ˆb.Y /. Since A0 2 ˆb.Y;XA/ it follows,
from Theorem 2.2.41, that OA C OF 2 ˆb.XA; Y /. Now, by using Theorem 2.2.39,
we notice that A C F 2 ˆ.X; Y /. This shows that F 2 F.X; Y /, which ends the
proof. Q.E.D.

Open question: In contrast to the result of Theorem 6.3.2, whether or not
FC.X; Y / (resp. F�.X; Y /) is equal to FbC.X; Y / (resp. Fb�.X; Y /) seems to
be unknown? �

Corollary 6.3.2. Let X be a Banach space and A 2 C.X/. Then, UAF.X/ D
AF.X/. }
Proposition 6.3.2. Let X , Y , and Z be three Banach spaces. If ˆb.Y;Z/ is not
empty, then E1 2 FC.X; Y / and A 2 ˆb.Y;Z/ imply AE1 2 FC.X;Z/. }
Proof. Since A 2 ˆb.Y;Z/, it follows, by using Theorem 2.2.6, that there exist
A0 2 L.Z; Y / and a finite rank operator K on Z, such that AA0 D I � K. Using
Lemma 3.1.2, we have AA0 2 ˆb.Z/. By using Theorem 2.2.10, we get A0 2
ˆb.Z; Y / and so A0 2 ˆbC.Z; Y /. Let J 2 ˆC.X;Z/. Since D.A0J / D D.J /
and is dense in X , then by using Theorem 2.2.43, we have A0J 2 ˆC.X; Y /. This
implies that .E1 C A0J / 2 ˆC.X; Y /. So, A.E1 C A0J / 2 ˆC.X;Z/. We claim
that KJ is .AE1 C J /-compact. Indeed, let x 2 D.J /. We have

kJxk D k.AE1 C J /x � AE1xk
� k.AE1 C J /xk C kAE1xk
� k.AE1 C J /xk C kAk kE1k kxk
� max.1; kAk kE1k/ .k.AE1 C J /xk C kxk/ :

Hence, using the last inequality, we have

kKJxk � kKk kJxk
� max.1; kAk kE1k/kKk .k.AE1 C J /xk C kxk/ :

So, KJ is .AE1CJ /-compact, which proves the claim. Now, using the relation AE1C
J � KJ D A.E1 CA0J /, KJ being .AE1 CJ /-compact and using Theorems 2.2.47
and 2.2.2, one sees that .AE1CJ / 2 ˆC.X;Z/. This implies that AE1 2 FC.X;Z/
and completes the proof. Q.E.D.

Proposition 6.3.3. Let X , Y , and Z be three Banach spaces, T 2 L.X; Y / and
S 2 C.Z;X/. If T 2 ˆb.X; Y / and S 2 ˆ�.Z;X/, then TS 2 ˆ�.Z; Y /. }
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Proof. According to Proposition 2.2.1, the operator TS is closed. Let N1 D
R.S/

T
N.T /. Since N.T / is finite dimensional, then we have N.T / D N1 ˚

N2, for some finite dimensional subspace N2. Obviously, R.S/
T
N2 D f0g.

Furthermore, R.S/ ˚ N2 is closed, because R.S/ is closed and dimN2 < 1 (see
Lemma 2.1.2). Next, we prove that there exists a finite dimensional subspace N3,
such that

.R.S/˚N2/˚N3 D X: (6.3.3)

Put X0 D R.S/ ˚ N2 and let k D dimX=X0. Note that k � codimR.S/ < 1.
If k D 0, then we take N3 D f0g in (6.3.3). Assume k > 0. Since X0 is closed, X
is not entirely contained in X0. So, there exists a vector x1 2 X such that x1 62 X0.
Put X1 D X0 ˚ span fx1g. Then, X1 is closed and dim X=X1 D k � 1. Thus, we
can repeat the above reasoning for X1 in place of X0. Proceeding in this way, we
find k steps vectors x1; : : : ; xk in D.T / such that X D X0 ˚ span fx1; : : : ; xkg. Put
N3 D span fx1; : : : ; xkg and (6.3.3) is fulfilled. The space N3 is isomorphic to the
quotient space R.T /=R.TS/ under the map u �! ŒTu�, by virtue of (6.3.3). Indeed,
if x 2 X , then (6.3.3) implies that x D SzCvCu, where z 2 D.S/; v 2 N2 � N.T /

and u 2 N3. It follows that Sz D x � v � u 2 D.T / and T .Sz/ D Tx � Tu,
which shows that ŒTx� D ŒTu�. Furthermore, if ŒTu� D Œ0� for u 2 N3, then u 2
R.S/ C N.T / D R.S/ ˚ N2, and hence, u D 0. So, u �! ŒTu� has the desired
properties, and then

ˇ.TS/ D ˇ.T /C dimN3: (6.3.4)

Now, (6.3.4) shows that R.TS/ is closed (see Lemma 2.1.9). Q.E.D.

Proposition 6.3.4. Let X , Y , and Z be three Banach spaces. If ˆb.Y;Z/ is not
empty, E1 2 F�.X; Y / and A 2 ˆb.Y;Z/. Then, AE1 2 F�.X;Z/. }
Proof. Since A 2 ˆb.Y;Z/, and using Theorem 2.2.6, it follows that there exist
A0 2 L.Z; Y / and a finite rank operator K on Z such that AA0 D I � K. Using
Lemma 3.1.2, we have AA0 2 ˆb.Z/. According to Theorem 2.2.10, we get A0 2
ˆb.Z; Y / and so, A0 2 ˆbC.Z; Y /. Let J 2 ˆ�.X;Z/. By Proposition 6.3.3, we
have A0J 2 ˆ�.X; Y /. This implies that .E1 C A0J / 2 ˆ�.X; Y /. So, A.E1 C
A0J / 2 ˆ�.X;Z/. Now, arguing as in the proof of Proposition 6.3.2, we prove that
KJ is .AE1 CJ /-compact. Next, using the relation AE1 CJ � KJ D A.E1 CA0J /,
KJ being .AE1CJ /-compact and according to Theorems 2.2.47 and 2.2.2, one sees
that .AE1 C J / 2 ˆ�.X;Z/. This implies that AE1 2 F�.X;Z/. Q.E.D.

Theorem 6.3.3. LetX , Y , andZ be three Banach spaces. Ifˆb.Y;Z/ is not empty,
then

A 2 L.Y;Z/ and E1 2 FC.X; Y / imply AE1 2 FC.X;Z/

A 2 L.Y;Z/ and E1 2 F�.X; Y / imply AE1 2 F�.X;Z/:

}
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Proof. Let C 2 ˆb.Y;Z/ and � 2 C. Setting A1 D A � �C and A2 D �C . For
a sufficiently large �, and using Theorem 2.2.15, we have A1 2 ˆb.Y;Z/. From
Proposition 6.3.2 (resp. Proposition 6.3.4), it follows that A1E1 2 FC.X;Z/ (resp.
F�.X;Z/) and A2E1 2 FC.X;Z/ (resp. F�.X;Z/). This implies that A1E1 C
A2E1 D AE1 is an element of FC.X;Z/ (resp. F�.X;Z/). Q.E.D.

Proposition 6.3.5. Let X , Y , and Z be three Banach spaces. If ˆb.Y;Z/ is not
empty, E1 2 F.X; Y / and A 2 ˆb.Y;Z/. Then, AE1 2 F.X;Z/. }
Proof. Since A 2 ˆb.Y;Z/, and referring to Theorem 2.2.6, it follows that there
exist A0 2 L.Z; Y / and a finite rank operator K on Z, such that AA0 D I �
K. Using Lemma 3.1.2, we have AA0 2 ˆb.Z/. By using Theorem 2.2.10, we
get A0 2 ˆb.Z; Y /. Let J 2 ˆ.X;Z/. According to Theorem 2.2.40, we have
A0J 2 ˆ.X; Y /. This implies that .E1 C A0J / 2 ˆ.X; Y /. So, A.E1 C A0J / 2
ˆ.X;Z/. Now, arguing as in the proof of Proposition 6.3.2, we prove that KJ is
.AE1 C J /-compact. Then, using the relation AE1 C J � KJ D A.E1 C A0J /, KJ
being .AE1 C J /-compact and referring to Theorems 2.2.47 and 2.2.2, we notice
that .AE1 C J / 2 ˆ.X;Z/. This implies that AE1 2 F.X;Z/. Q.E.D.

Theorem 6.3.4. LetX , Y , andZ be three Banach spaces. Ifˆb.Y;Z/ is not empty,
then

A 2 L.Y;Z/ and E1 2 F.X; Y / imply AE1 2 F.X;Z/:

}
Proof. Let C 2 ˆb.Y;Z/ and � 2 C. Setting A1 D A � �C and A2 D �C . For a
sufficiently large �, and using Theorem 2.2.15, we have A1 2 ˆb.Y;Z/. It follows,
from Proposition 6.3.5, that A1E1 2 F.X;Z/ and A2E1 2 F.X;Z/. This implies
that A1E1 C A2E1 D AE1 is an element of F.X;Z/. Q.E.D.

Theorem 6.3.5. Let X be a Banach space and let I.X/ denote an arbitrary
nonzero two-sided ideal of L.X/ contained in F.X/. Let A 2 C.X/ be such that
�.A/ ¤ ;. Then .��A/�1 2 I.X/ for some � 2 �.A/ if, and only if, the embedding
of D.A/ into X is in I.X/. }
Proof. Let � 2 �.A/ such that .��A/�1 2 I.X/. The operator ��A W D.A/ �! X

is an isomorphism, when the domain D.A/ of the operator A is equipped with the
graph norm. By using the fact that .� � A/�1 2 I.X/ and writing the embedding
j of D.A/ into X as j WD .� � A/�1.� � A/ with D.j / WD D.A/, we deduce that
j 2 I.X/. Inversely, let � 2 �.A/. We can write .� � A/�1 D j ı .� � A/�1,
where j W D.A/ �! X is in I.X/. Then, .� � A/�1 is in I.X/ as the compose of
a continuous map .� � A/�1 and a map j in I.X/. Q.E.D.

Lemma 6.3.1. LetA 2 C.X; Y / and let J W X �! Y be a linear operator. Assume
that J 2 UAF.X; Y /. Then,

(i) if A 2 ˆ.X; Y /, then AC J 2 ˆ.X; Y / and i.AC J / D i.A/.
Moreover,
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(ii) if A 2 ˆC.X; Y / and J 2 UAFC.X; Y /, then A C J 2 ˆC.X; Y / and
i.AC J / D i.A/,

(iii) if A 2 ˆ�.X; Y / and J 2 UAF�.X; Y /, then A C J 2 ˆ�.X; Y / and
i.AC J / D i.A/,

(iv) if A 2 ˆ˙.X; Y / and J 2 UAFC.X; Y /
T

UAF�.X; Y /, then A C J 2
ˆ˙.X; Y / and i.AC J / D i.A/. }

Proof. Since A 2 C.X; Y / and J 2 UAF.X; Y / hence, as mentioned above, we
can regard A and J as operators from XA into Y . They will be denoted by OA and OJ
respectively. These operators belong to L.XA; Y /, and we have

�
˛. OA/ D ˛.A/; ˇ. OA/ D ˇ.A/; R. OA/ D R.A/; ˛. OAC OJ / D ˛.AC J /;

ˇ. OAC OJ / D ˇ.AC J / and R. OAC OJ / D R.AC J /:

(6.3.5)

(i) Assume that A 2 ˆ.X; Y /. Then, using (6.3.5), we infer that OA 2 ˆb.XA; Y /.
Hence it follows, from Theorem 2.2.6, that there A0 2 L.Y;XA/ and K 2 K.XA/
such that:

A0 OA D I �K: (6.3.6)

This leads to

A0. OAC OJ / D I �K C A0 OJ
D I �Q: (6.3.7)

Now, from (6.3.6), it follows that A0 OA 2 ˆb.XA/ and i.A0 OA/ D 0. Hence, the use
of Theorem 2.2.10, together with Atkinson’s theorem (Theorem 2.2.40), implies
that A0 2 ˆb.Y;XA/, and

i. OA/ D �i.A0/: (6.3.8)

Moreover, since OJ 2 UAF.X; Y / and A0 2 L.Y;XA/, then applying Theo-
rem 6.3.4, we get A0 OJ 2 Fb.XA/. Using the fact that K.XA/ � Fb.XA/, we
infer that Q 2 Fb.XA/. Therefore, using (2.1.11) and (6.3.7), we get A0. OAC OJ / 2
ˆb.XA/ and i ŒA0. OAC OJ /� D 0. Since A0 2 ˆb.Y;XA/, and using Theorem 2.2.10
together with Atkinson’s theorem (Theorem 2.2.40), it follows that . OA C OJ / 2
ˆb.XA; Y / and

i. OAC OJ / D �i.A0/: (6.3.9)

Now, using Eqs. (6.3.5), (6.3.8) and (6.3.9), we have i.A C J / D i.A/ which
completes the proof of (i). Notice that the first part of the assertion (ii), (iii), and
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(iv) is immediate. Let A 2 ˆC.X; Y / and J 2 UAFC.X; Y /. In order to prove that
i.AC J / D i.A/, we discuss two cases.

1st case. If A 2 ˆC.X; Y /nˆ.X; Y /, then i.A/ D �1. Hence, i.A C J / D
�1. Otherwise, A C J 2 ˆ.X; Y / and therefore, A 2 ˆC.X; Y / since J 2
UAFC.X; Y / � F.X; Y /, which is contradictory.

2nd case. If A 2 ˆ.X; Y /, then the result of (ii) follows from the assertion (i).

Statements (iii) and (iv) can be checked in the same way as (ii). Q.E.D.

Remark 6.3.1. Note that the result of Lemma 6.3.1 (iii) remains true if we suppose
that Y is a reflexive space (because if Y is not a reflexive space, we don’t guarantee
that A� is densely defined), and if we consider J � 2 UAFC.Y �; X�/. In fact,
let A 2 ˆ�.X; Y /. Applying Theorem 2.2.46 and Theorem 2.1.2, we infer that
A� 2 ˆC.Y �; X�/. Moreover, J � 2 UAFC.Y �; X�/ implies that A� C J � 2
ˆC.Y �; X�/. This, together with the fact that ˛.A� C J �/ D ˇ.AC J / (use again
Theorem 2.1.2) leads to the result. }

6.4 Fredholm Inverse Operator

Lemma 6.4.1. Let A 2 ˆ.X/;B 2 L.X/, and F 2 F.X/. Suppose that ABjV D
FjV where V is a dense subspace of X . Then, B 2 Fb.X/. }
Proof. Since A 2 ˆ.X/, then by using Theorem 2.2.38, there exists A0 2 L.X/
such that A0A D I � K1, where K1 2 K.X/. Hence, A0ABjV D A0FjV ; .I �
K1/BjV D F1jV , where F1 2 F.X/. So, we get BjV D .K1B C F1/jV . Now, using
the fact that the operators B and K1B C F1 are bounded and that the subspace V is
dense, we deduce by continuity that B D K1B C F1. Hence, it is clear that B is a
Fredholm perturbation. Q.E.D.

Lemma 6.4.2. Let A 2 C.X/; B 2 L.X/; � 2 ˆAnˆ0.A/ and � 2 ˆBnˆ0.B/.
If there exist a positive integer n and a Fredholm perturbation F1, such that
B W D.An/ �! D.A/ and ABx D BAx C F1x; for all x 2 D.An/, then there
exists a Fredholm perturbation F depending analytically on � and �, such that
R0
�.A/R

0
�.B/ D R0

�.B/R
0
�.A/C F . }

Proof. Using Lemma 2.2.19, we infer that there exists a subspace V� dense in X
such that for all x 2 V�, we have R0

�.A/x 2 D.An/. Now, let x 2 V�. Then, we
have .��A/BR0

�.A/x D ŒB.��A/�F1�R0
�.A/x D ŒB.I�K1/�F1R0

�.A/�x, where
K1 2 K.X/. Set F2 D �F1R0

�.A/ 2 F.X/ and F3 D �BK1 CF2 2 F.X/. Hence,
we get .��A/BR0

�.A/x D BxCF3x. Moreover, .��A/R0
�.A/Bx D .I �K1/Bx D

Bx �K2x; where K2 D K1B 2 K.X/. This enables us to conclude that

.� � A/ŒBR0
�.A/ �R0

�.A/B�x D .F3 CK2/x

D F4x; (6.4.1)
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where F4 2 F.X/. In fact, Eq. (6.4.1) holds for all x 2 V�. Then, the use
of Lemma 6.4.1 allows us to conclude that BR0

�.A/ � R0
�.A/B D F5, where

F5 2 F.X/. Moreover,

.� � B/ŒR0
�.B/R

0
�.A/ �R0

�.A/R
0
�.B/�

D .I �K3/R
0
�.A/ � .� � B/R0

�.A/R
0
�.B/

D R0
�.A/ �K4 � 

R0
�.A/.� � B/C F5

�
R0
�.B/

D R0
�.A/ �K4 �R0

�.A/.I �K5/C F6

D �K4 CK6 C F6

D F7;

where Ki 2 K.X/ for i D 3; 4; 5; 6 and Fi 2 F.X/ for i D 6; 7. Hence,
R0
�.B/R

0
�.A/�R0

�.A/R
0
�.B/ D F , where F 2 F.X/. Therefore, R0

�.B/R
0
�.A/ D

R0
�.A/R

0
�.B/ C F . Furthermore, the analyticity of F in � and � is deduced from

the analyticity of R0
�.B/ and R0

�.A/. Q.E.D.

Definition 6.4.1. Let X and Y be two Banach spaces.

1. Let T 2 L.X; Y /.
(i) T is said to have a left Fredholm inverse, if there exist Tl 2 L.Y;X/ and

K 2 K.X/ such that TlT D IX � K: Tl is called a left Fredholm inverse
of T .

(ii) T is said to have a right Fredholm inverse, if there exists Tr 2 L.Y;X/ such
that IY � TTr 2 K.Y /: Tr is called a right Fredholm inverse of T .

(iii) T is said to have a Fredholm inverse, if there exists a map which is both a
left and a right Fredholm inverse of T .

2. Let T 2 C.X; Y /. T is said to have a left Fredholm inverse (resp. right Fredholm
inverse, Fredholm inverse), if OT has a left Fredholm inverse (resp. right Fredholm
inverse, Fredholm inverse). }

Remark 6.4.1. Let X and Y be two Banach spaces.

(i) If A 2 C.X; Y / has a left Fredholm inverse, then there are maps Rl 2 L.Y;X/
and K 2 K.X/, such that IX CK extends RlA.

(ii) IfA 2 C.X; Y / has a right Fredholm inverse, then there is a mapRr 2 L.Y;X/,
such that Rr.Y / � D.A/ and ARr � IY 2 K.Y /. }

We will denote ˆl.X; Y / and ˆr.X; Y / by:

ˆl.X; Y / WD fT 2 C.X; Y /; such that T has a left Fredholm inverseg
ˆr.X; Y / WD fT 2 C.X; Y /; such that T has a right Fredholm inverseg:
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According to the classical theory of Fredholm operators (see for example [185]),
ˆ.X; Y / D ˆr.X; Y /

T
ˆl.X; Y /. If X D Y , the sets ˆl.X;X/ and ˆr.X;X/

are replaced respectively by ˆl.X/ and ˆr.X/. We will denote by ˆbl .X; Y /

(resp. ˆbr .X; Y /) the set of bounded operators which have a left (resp. a right)
Fredholm inverse. From Theorems 2.2.8 and 2.2.9, it follows that ˆbl .X; Y / D
fT 2 ˆbC.X; Y / such that R.T / is complementedg and ˆbr .X; Y / D fT 2
ˆb�.X; Y / such that N.T / is complementedg: We may notice the following inclu-
sions ˆb.X; Y / � ˆbl .X; Y / � ˆbC.X; Y / and ˆb.X; Y / � ˆbr .X; Y / �
ˆb�.X; Y /. An operator A 2 C.X; Y / is a left (resp. right) Weyl if A has a left
(resp. right) Fredholm inverse and i.A/ � 0 (resp. i.A/ � 0). We use Wl .X; Y /

(resp. Wr .X; Y /) to denote the set of all left (resp. right) Weyl operators. If
X D Y , the sets Wl .X;X/ and Wr .X;X/ are replaced respectively by Wl .X/ and
Wr .X/. Let �.:/ be the Kuratowski measure of noncompactness in X . We denote
by P� .:/ the set defined by

P� .X/ D fA 2 L.X/ such that �.Am/ < 1; for some m > 0g: (6.4.2)

Definition 6.4.2. Let A and B be two operators in L.X; Y /. We denote
by FȦB.Y;X/ the set of left or right Fredholm inverses R˙ of A satisfying
BR˙ 2 P� .X/ or R˙B 2 P� .X/ depending on whether A 2 ˆbC.X; Y / or A 2
ˆb�.X; Y /. }
We have the following theorem.

Theorem 6.4.1. Let X and Y be two Banach spaces, and let A and B be two
operators in L.X; Y /. Then,

(i) If A 2 ˆb.X; Y / and R 2 L.Y;X/ is a Fredholm inverse of A, such that
RB 2 P� .X/, then AC B 2 ˆb.X; Y / and i.AC B/ D i.A/.

(ii) If A 2 ˆbC.X; Y / and Rl 2 L.Y;X/ is a left Fredholm inverse of A, such
that BRl 2 P� .Y /, then AC B 2 ˆbC.X; Y / and i.AC B/ D i.A/.

(iii) If A 2 ˆb�.X; Y / and Rr 2 L.Y;X/ is a right Fredholm inverse of A, such
that RrB 2 P� .X/, then AC B 2 ˆb�.X; Y / and i.AC B/ D i.A/.

(iv) If A 2 ˆb˙.X; Y / and FȦB.Y;X/ ¤ ;, then AC B 2 ˆb˙.X; Y /. }
Proof.

(i) Since R is a Fredholm inverse of A, there exists F 2 F0.Y / such that

AR D I � F on Y: (6.4.3)

From Eq. (6.4.3), it follows that the operator ACB can be written in the form

AC B D AC .AR C F /B D A.IX C RB/C FB: (6.4.4)
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Using the fact that RB 2 P� .X/, together with Corollary 5.2.2 (i), we get

IX C RB 2 ˆb.X/ and i.IX C RB/ D 0: (6.4.5)

Now, applying Theorem 2.2.40 and Eq. (6.4.5), we obtain A.IX C RB/ 2
ˆb.X; Y / and i.A.IX C RB// D i.A/. Next, FB 2 F0.X; Y /, and using
Eq. (6.4.4), we deduce that AC B 2 ˆb.X; Y / and i.AC B/ D i.A/.

(ii) Rl is a left Fredholm inverse of A, then there exists F 2 F0.Y /, such that

RlA D I � F on X: (6.4.6)

From Eq. (6.4.6), it follows that the operator ACB can be written in the form

AC B D AC B.RlAC F / D .BRl C IY /AC BF: (6.4.7)

Using the fact that BRl 2 P� .Y /, and applying Corollary 5.2.2 (i), we have
BRl C IY 2 ˆb.Y / and i.BRl C IY / D 0. Now, using the fact that A 2
ˆbC.X; Y /, BF 2 K.X; Y /, Theorem 2.2.13 and Lemma 6.3.1, we infer that
AC B 2 ˆbC.X; Y /. Moreover, combining Theorem 2.2.7 and Eq. (6.4.7), we
get i.AC B/ D i.A/.

(iii) If Rr is a right Fredholm inverse of A, then there exists F 2 F0.Y /, such that
ARr D I�F on Y . Consequently,ACB D ACB.ARrCF / D A.ARrCIX/C
FB. Now, arguing as in (ii), we get ACB 2 ˆb�.X; Y / and i.ACB/ D i.A/.

(iv) The statement (iv) is an immediate consequence of the items (ii) and (iii).
Q.E.D.

Remark 6.4.2.

(i) The results of Theorem 6.4.1 remain valid if we suppose that A 2 C.X/ and B
is an A-bounded operator on X . Clearly, applying Theorem 6.4.1, we prove the
statements for OA 2 L.XA;X/ and OB 2 L.XA;X/ and applying Eq. (6.3.5), we
achieve the desired results.

(ii) If we replace P� .X/ by J .X/ where J .X/ D fA 2 L.X/ such that 1 2 ˆ0Ag,
then we can prove the same results as in Theorem 6.4.1. }

For T 2 C.X; Y /, we denote by Gl .T / (resp. Gr .T /) the set of left (resp. right)
Fredholm inverses of T . A complex number � is inˆlT orˆrT , if ��T is inˆl.X/
or ˆr.X/, respectively. The following theorem deals with the problem of stability
in the class of Fredholm operators.

Theorem 6.4.2. Let X be a Banach space, T 2 C.X/ and let S be a T -bounded
operator on X . Consider � (resp. �XT ) as a measure of noncompactness in X (resp.
in XT ). Then, the following statements hold.

(i) If Tl 2 Gl .T / and �XT ..Tl OS/m/ < c, for some m 2 N
� and c 2 Œ0; 1�, then

T C S 2 ˆl.X/ and i.T C S/ D i.T /.
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(ii) If Tr 2 Gr .T / and �..STr /m/ < c, for some m 2 N
� and c 2 Œ0; 1�, then

T C S 2 ˆr.X/ and i.T C S/ D i.T /.
(iii) If QT 2 Gl .T /

T
Gr .T /; �XT .. QT OS/m/ < c and �..S QT /n/ < c0, for some

m; n 2 N
� and c; c0 2 Œ0; 1�, then T C S 2 ˆ.X/ and i.T C S/ D i.T /. }

Proof. (i) According to the hypotheses, there exists K1 2 K.XT /, such that Tl. OS C
OT / D Tl OS C IXT � K1. Since �XT ..Tl OS � K1/

n/ D �XT ..Tl
OS/n/ < 1, then by

Corollary 5.2.2 (i), Tl. OS C OT / 2 ˆb.XT / and i.Tl OS C IXT / D 0. Now, by using
Theorem 2.2.6, there exist A0 2 L.XT / and K 0 2 K.XT / such that A0Tl. OS C
OT / D IXT � K 0, which implies that OS C OT 2 ˆl.XT ;X/. Moreover, we have
i.Tl . OS C OT // D i.Tl / C i. OS C OT / D 0. Hence, i. OS C OT / D �i.Tl / D i. OT /.
Finally, the result follows from Eq. (6.3.5).

Arguing as in the proof of (i), we prove (ii). Finally, the proof of (iii) is an obvious
deduction from (i) and (ii). Q.E.D.

6.5 Fredholm Perturbations

Definition 6.5.1. Let X and Y be two Banach spaces. We say that Y is essentially
stronger than X and write X � Y , if there exists R 2 ˆbl .X; Y /. }
Remark 6.5.1.

(i) It is clear that, for X a Banach space, X � X .
(ii) Let X1, X2, X3 be three Banach spaces such that X1 � X2 � X3. Then, there

exists R1 2 ˆbC.X1;X2/ and R2 2 ˆbC.X2;X3/ with R.R1/ complemented in
X2 and R.R2/ complemented in X3. By Theorem 2.2.8, there exists Si such
that SiRi D IXi C Ki with Ki 2 K.Xi /, i D 1; 2. Hence, .S1S2/.R2R1/ D
IX1 C K1 C S1K2R1. Thus, by Theorem 2.2.14, R2R1 2 ˆbC.X1;X3/ with
R.R2R1/ complemented in X3 which implies that X1 � X3.

(iii) To deduce that “�” is not antisymmetric, we notice that W. T. Gowers showed
in [134] that there is a Banach space Z that is isomorphic to Z ˚ Z ˚ Z but
not isomorphic to Z ˚Z. }

The following results of this section may be found in [2].

Lemma 6.5.1. Let X and Y be two Banach spaces. If X � Y , then X� � Y �. }
Proof. If X � Y , then there exist R 2 ˆbC.X; Y / and S 2 ˆb�.Y;X/, such
that SR D IX C K, with K 2 K.X/. This implies that R�S� D IX� C K�.
Since R� 2 ˆb�.Y �; X�/, S� 2 ˆbC.X�; Y �/ and K� 2 K.X�/, then we
get X� � Y �. Q:E:D:

Theorem 6.5.1. Let .X1;X2/ and .Y1; Y2/ be two couples of Banach spaces
satisfying X1 � Y1, and let U 2 L.X2; Y2/ and V 2 L.Y1; X1/. Suppose that
ˆb.X1;X2/ ¤ ;. If S 2 Fb.X1;X2/, then USV 2 Fb.Y1; Y2/. }
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Proof. Remark that the result is trivial if ˆb.Y1; Y2/ D ;. So, let us assume that
ˆb.Y1; Y2/ ¤ ;. Since X1 � Y1 and ˆb.X1;X2/ ¤ ;, this yields X2 � Y2. Hence,
there existsRi 2 ˆbC.Xi ; Yi / and a closed subspaceZi such that Yi WD R.Ri/˚Zi ,
i D 1; 2. Without loss of generality, we can suppose that R1 and R2 are injective.
For i D 1; 2 denote the following invertible operator Ri0 W Xi �! R.Ri/, x �!
Ri0.x/ D Ri.x/. By Theorem 2.2.8, there exists R0

i 2 L.Yi ; Xi / such that R0
iRi D

IXi C Ki , with Ki 2 K.Xi /. We can choose R0
1 as follows R0

1 W Y1 D R.R1/ ˚
Z1 �! X1, y D .y1; z1/ �! R�1

10 .y1/. Hence,

8
<

:

R2SR0
1 W Y1 D R.R1/˚Z1 �! Y2 D R.R2/˚Z2;

y D .y1; z1/ �! .R20SR�1
10 .y1/; 0/ D

�
R20SR�1

10 0

0 0

��
y1
z1

�

:

Since S 2 Fb.X1;X2/, then R20SR�1
10 2 Fb.R.R1/; R.R2//. First, we claim that

R2SR0
1 2 Fb.Y1; Y2/. Consider an arbitrary element L WD

�
A B

C D

�

2 ˆb.Y1; Y2/.

It follows, by Atkinson theorem, that there exists L0 WD
�
A0 B0
C0 D0

�

2 ˆb.Y2; Y1/

and K 2 K.Y2/ such that LL0 D I CK on Y2. Then

.LCR2SR0
1/L0 D I CK CR2SR0

1L0

DKC
�
I R20SR�1

10 B0
0 I

��
I CR20SR�1

10 A0 0

0 I

�

:

Notice that ˆb.X1;X2/ ¤ ; implies ˆb.R.R1/; R.R2// ¤ ;. So, R20SR�1
10 2

Fb.R.R1/; R.R2//, yields thatR20SR�1
10 A0 2 Fb.R.R2//. Thus, ICR20SR�1

10 A0 2
ˆb.R.R2// which implies that

�
I CR20SR�1

10 A0 0

0 I

�

is a Fredholm operator.

Observing that

�
I R20SR�1

10 B0
0 I

�

is invertible, with inverse

�
I �R20SR�1

10 B0
0 I

�

, we

get .L C R2SR0
1/L0 2 ˆb.Y2/. Hence, .L C R2SR0

1/ 2 ˆb.Y1; Y2/ and therefore
R2SR0

1 2 Fb.Y1; Y2/. Our claim is proved. Now, since R0
iRi D IXi C Ki ,

then USV D U.R0
2R2 � K2/S.R

0
1R1 � K1/V D UR0

2.R2SR0
1/R1V C K 0, with

K 0 2 K.Y1; Y2/. Finally, the result follows by Theorem 6.3.1, since UR0
2 2 L.Y2/

and R1V 2 L.Y1/. Q.E.D.

Definition 6.5.2. Let X and Y be two Banach spaces. We denote Fb
l .X; Y /

and Fb
r .X; Y / by Fb

l .X; Y / D fF 2 L.X; Y / such that T C F 2
ˆbl .X; Y / whenever T 2 ˆbl .X; Y /g and Fb

r .X; Y / D fF 2 L.X; Y / such that TC
F 2 ˆbr .X; Y / whenever T 2 ˆbr .X; Y /g. }
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IfX D Y , then the set Fb
l .X;X/ (resp. Fb

r .X;X/) will be denoted by Fb
l .X/ (resp.

Fb
r .X/). In the following equalities, we give the results proved by A. Lebow and M.

Schechter [230, Theorem 2.7] Fb
l .X/ D Fb

r .X/ D F.X/.
Theorem 6.5.2. Let .X1;X2/ and .Y1; Y2/ be two couples of Banach spaces
satisfying X1 � Y1, and let U 2 L.X2; Y2/ and V 2 L.Y1; X1/. Suppose that
ˆbl .X1;X2/ ¤ ;. If S 2 Fb

l .X1;X2/, then USV 2 Fb
l .Y1; Y2/. }

Proof. The proof is analogous to the proof of Theorem 6.5.1. Q.E.D.

Theorem 6.5.3. Let .X1;X2/ and .Y1; Y2/ be two couples of Banach spaces
satisfying X1 � Y1, and let U 2 L.X2; Y2/ and V 2 L.Y1; X1/. Suppose that
ˆbr .X1;X2/ ¤ ;. If S 2 Fb

r .X1;X2/, then USV 2 Fb
r .Y1; Y2/. }

Proof. The proof is analogous to the proof of Theorem 6.5.1. Q.E.D.

Corollary 6.5.1. Let .X1;X2/ and .Y1; Y2/ be two couples of Banach spaces such
that X1 � Y1. Assume that ˆb.X1;X2/ ¤ ;. If Fb.Y1; Y2/ D K.Y1; Y2/, then
Fb.X1;X2/ D K.X1;X2/. }
Proof. Since Xi � Yi , i D 1; 2, then there exists R1 2 ˆbC.X1; Y1/ and R2 2
ˆbC.X2; Y2/ with R.R1/ complemented in Y1 and R.R2/ complemented in Y2. By
Theorem 2.2.8, there exists R0

i such that R0
iRi D IXi C Ki with Ki 2 K.Xi /,

i D 1; 2. Let T 2 Fb.X1;X2/. The use of Theorem 6.5.1 leads to R2TR0
1 2

Fb.Y1; Y2/ D K.Y1; Y2/. Thus, R0
2R2TR0

1R1 D T C K2T C K2TK1 2 K.X1;X2/
and therefore T 2 K.X1;X2/. Q.E.D.

Corollary 6.5.2. Let .X1;X2/ and .Y1; Y2/ be two couples of Banach spaces such
that X1 � Y1. Assume that ˆb.X1;X2/ ¤ ;. If Fb.Y1; Y2/ D S.Y1; Y2/, then
Fb.X1;X2/ D S.X1;X2/. }
Proof. The proof is similar to the proof of Corollary 6.5.1. Q.E.D.

Corollary 6.5.3. Let X be a Banach space satisfying X � Lp.�; d�/, for some
p � 1, then Fb.X/ D S.X/ D CS.X/. }
Proof. By Eq. (2.1.12) we have Fb.Lp.�; d�// D S.Lp.�; d�//. Since X �
Lp.�; d�/, then by Corollary 6.5.2, we get Fb.X/ D S.X/. Now, consider F 2
Fb.X/, then F � 2 Fb.X�/. Since X � Lp.�; d�/, then by Lemma 6.5.1, X� �
L�
p.�; d�/ D Lq.�; d�/ for some q � 1. Again by Corollary 6.5.2, Fb.X�/ D

S.X�/. Hence F � 2 S.X�/, and therefore F 2 CS.X/. This yields Fb.X/ �
CS.X/, and we get the result since we have CS.X/ � Fb.X/. Q.E.D.

6.6 Some Perturbation Results for Matrix Operators

In this section, we will establish some perturbation results for matrix operators
acting on a product of Banach spaces X1 and X2. The following two lemmas are
fundamental.
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Lemma 6.6.1. Let A 2 L.X1/, B 2 L.X2/ and consider the 2� 2 operator matrix

MC WD
�
A C

0 B

�

where C 2 L.X2;X1/. Then,

(i) If A 2 ˆb.X1/ and B 2 ˆb.X2/, then MC 2 ˆb.X1 � X2/ for every C 2
L.X2;X1/.

(ii) If A 2 ˆbC.X1/ and B 2 ˆbC.X2/, then MC 2 ˆbC.X1 � X2/ for every C 2
L.X2;X1/.

(iii) If A 2 ˆb�.X1/ and B 2 ˆb�.X2/, then MC 2 ˆb�.X1 � X2/ for every C 2
L.X2;X1/. }

Proof.

(i) Let us write MC in the form

MC D
�
I 0

0 B

��
I C

0 I

��
A 0

0 I

�

: (6.6.1)

Since A 2 ˆb.X1/ and B 2 ˆb.X2/, then

�
A 0

0 I

�

and

�
I 0

0 B

�

are both

Fredholm operators. So,MC is a Fredholm operator, since

�
I C

0 I

�

is invertible

for every C 2 L.X2;X1/.
(ii) and (iii) can be checked in the same way as (i). Q.E.D.

Remark 6.6.1. Using the same reasoning as in the proof of Lemma 6.6.1, we can
show that:

(i) If A 2 ˆb.X1/ and B 2 ˆb.X2/, then

MD WD
�
A 0

D B

�

is a Fredholm operator on X1 �X2 for every D 2 L.X1;X2/.
(ii) If A 2 ˆbC.X1/ and B 2 ˆbC.X2/, then MD 2 ˆbC.X1 � X2/ for every D 2

L.X1;X2/.
(iii) If A 2 ˆb�.X1/ and B 2 ˆb�.X2/, then MD 2 ˆb�.X1 � X2/ for every D 2

L.X1;X2/. }
Lemma 6.6.2. Let A 2 L.X1/, B 2 L.X2/ and consider the 2� 2 operator matrix

MC WD
�
A C

0 B

�

, where C 2 L.X2;X1/.

(i) If MC 2 ˆbC.X1 �X2/, then A 2 ˆbC.X1/.
(ii) If MC 2 ˆb�.X1 �X2/, then B 2 ˆb�.X2/. }
Proof. The result is immediately deduced from Eq. (6.6.1). Q.E.D.
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Remark 6.6.2.

(i) Immediately from the last Lemma 6.6.2, it follows that, if MC 2 ˆb.X1 �X2/,
then A 2 ˆbC.X1/ and B 2 ˆb�.X2/.

(ii) Using the same reasoning as in the proof of Lemma 6.6.1, we can show that

if the operator

�
A 0

D B

�

is in ˆb.X1 � X2/ for some D 2 L.X1;X2/, then

A 2 ˆb�.X1/ and B 2 ˆbC.X2/. }

Theorem 6.6.1. Let F WD
�
F11 F12
F21 F22

�

, where Fij 2 L.Xj ;Xi /, with i; j D 1; 2.

Then, F 2 Fb.X1 �X2/ if, and only if, Fij 2 Fb.Xj ;Xi /, with i; j D 1; 2. }
Proof. In order to prove the second implication, let us consider the following
decomposition:

F D
�
F11 0

0 0

�

C
�
0 F12
0 0

�

C
�
0 0

F21 0

�

C
�
0 0

0 F22

�

:

It is sufficient to prove that if Fij 2 Fb.Xj ;Xi /, with i; j D 1; 2, then each
operator in the right side of the previous equality is a Fredholm perturbation on
X1 � X2. For example, we will prove the result for the first operator. The proofs

for the other operators will be similarly achieved. Consider L D
�
A B

C D

�

2

ˆb.X1 � X2/ and let us denote QF WD
�
F11 0

0 0

�

. From Theorem 2.2.6, it follows

that there exist L0 D
�
A0 B0
C0 D0

�

2 L.X1 � X2/ and K D
�
K11 K12

K21 K22

�

2
K.X1 � X2/, such that LL0 D I � K on X1 � X2. Then, .L C QF /L0 D
I �K C QFL0 D

�
I �K11 C F11A0 �K12 C F11B0

�K21 I �K22

�

. Since F11 2 Fb.X1/, and

using Theorem 6.3.1, we will have I � K11 C F11A0 2 ˆb.X1/. This, together
with the fact that I � K22 2 ˆb.X2/, allows us to deduce, from Lemma 6.6.1 (i),

that .L C QF /L0 �
�

0 0

�K21 0

�

is a Fredholm operator on X1 � X2. The fact that

K21 is a compact operator and L0 2 ˆb.X1 � X2/ leads, by Theorem 2.2.10, to
LC QF 2 ˆb.X1 �X2/.

Conversely, assume thatF 2 Fb.X1�X2/. We will prove thatF11 2 Fb.X1/. Let

A 2 ˆb.X1/ and let us define the operator L1 WD
�
A �F12
0 I

�

. From Lemma 6.6.1

(i), it follows that L1 2 ˆb.X1 � X2/. Hence, F C L1 D
�
AC F11 0

F21 I C F22

�

2
ˆb.X1 �X2/. The use of Remark 6.6.2 (ii) leads to

AC F11 2 ˆb�.X1/: (6.6.2)
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In the same way, we may consider the Fredholm operator

�
A 0

�F21 I
�

. Using

Remarks 6.6.1 (i) and 6.6.2 (i), it is easy to deduce that

AC F11 2 ˆbC.X1/: (6.6.3)

From Eqs. (6.6.2) and (6.6.3), it follows that F11 2 Fb.X1/. In the same way, we
can prove that F22 2 Fb.X2/. Now, we have to prove that F12 2 Fb.X2;X1/ and
F21 2 Fb.X1;X2/. For this, let us consider A 2 ˆb.X2;X1/ and B 2 ˆb.X1;X2/.
Then,

�
0 A

B 0

�

2 ˆb.X1 � X2/. Using the facts that F11 2 Fb.X1/, that F22 2
Fb.X2/, as well as the result of the second implication, we can deduce that F C��F11 0

0 �F22
�

2 Fb.X1 �X2/. Hence,

�
0 AC F12

B C F21 0

�

2 ˆb.X1 �X2/. So,

AC F12 2 ˆb.X2;X1/ and B C F21 2 ˆb.X1;X2/. Q.E.D.

Theorem 6.6.2. Let F WD
�
F11 F12
F21 F22

�

, where Fij 2 L.Xj ;Xi /, with i; j D 1; 2.

Then,

(i) If Fij 2 Fb
l .Xj ;Xi /, for all i; j D 1; 2, then F 2 Fb

l .X1 �X2/.
(ii) If Fij 2 Fb

r .Xj ;Xi /, for all i; j D 1; 2, then F 2 Fb
r .X1 �X2/. }

Proof.

(i) Using the same notations as in the proof of Theorem 6.6.1, we get:

L0.LC QF / D I �K C L0 QF D
�
I �K11 C A0F11 �K12

�K21 C C0F11 I �K22

�

:

Since F11 2 Fb
l .X1/, and using Theorem 6.3.1, we can deduce that I �K11 C

A0F11 2 ˆbl .X1/. So, there exist a bounded operator H 2 L.X1/ and K0 2
K.X1/, such that H.I �K11 C A0F11/ D I �K0. Therefore,

�
H 0

0 I

�

L0.LC QF / D I �
�
K0 HK12

K21 K22

�

C
�

0 0

C0F11 0

�

:

Using both Theorems 6.3.1 and 6.6.1, we deduce that

�
0 0

C0F11 0

�

2 Fb.X1 �

X2/ and so,

�
H 0

0 I

�

L0.L C QF / 2 ˆb.X1 � X2/. Hence, there exist L1 2

L.X1 �X2/ and QK 2 K.X1 �X2/, such that L1

�
H 0

0 I

�

L0.LC QF / D I � QK,

which implies that QF 2 Fb
l .X1 �X2/.

(ii) We prove this assertion in the same way as in (i). Q.E.D.
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Open question: The following questions remain open:

(i) F WD
�
F11 F12
F21 F22

�

2 FbC.X1 � X2/ if, and only if, Fij 2 FbC.Xj ;Xi /, 8i; j D
1; 2?

(ii) F 2 Fb�.X1 �X2/ if, and only if, Fij 2 Fb�.Xj ;Xi /, 8i; j D 1; 2? �

6.7 Some Fredholm Theory Results for Matrix Operators

The following result is fundamental for our purpose.

Proposition 6.7.1. Let T D
�
T1 0

0 T2

�

be in C.X �X/. Then,

(i) T l 2 Gl .T / if, and only if, there exist B 2 L.X;XT1/ and C 2 L.X;XT2/
such that

T l D
�
T l1 B

C T l2

�

;

where T li 2 Gl .Ti /, with i D 1; 2, C OT1 2 K.XT1 ; XT2/ and B OT2 2
K.XT2 ; XT1/.

(ii) T r 2 Gr .T / if, and only if, there exist B 2 L.X;XT1/ and C 2 L.X;XT2/
such that

T r D
�
T r1 B

C T r2

�

;

where T ri 2 Gr .Ti /, with i D 1; 2 and OT2C , OT1B 2 K.X/.
(iii) QT 2 Gl .T /

T
Gr .T / if, and only if,

QT D
� QT1 K1

K2
QT2
�

;

where Ki 2 K.X;XTi / and QTi 2 Gl .Ti /
T

Gr .Ti /, with i D 1; 2. }
Proof.

(i) Suppose that T l D
�
T l1 B

C T l2

�

, where T li 2 Gl .Ti /, with i D 1; 2, C OT1 2
K.XT1 ; XT2/ and B OT2 2 K.XT2 ; XT1/. Then, it is easy to verify that T l OT D
IXT1�XT2 �K, whereK 2 K.XT1 �XT2/. Conversely, consider T l D

�
A B

C D

�

such that T l OT D IXT � K, where K D
�
K1 K3

K2 K4

�

2 K.XT1 �XT2/. We
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necessarily have A OT1 D IXT1 � K1; D OT2 D IXT2 � K4; C OT1 D K2 and

B OT2 D K3. Hence, A 2 Gl .T1/ and D 2 Gl .T2/. Arguing as in the proof of
(i), we can prove (ii).

(iii) Suppose that QT D
� QT1 K1

K2
QT2
�

, where QTi 2 Gl .Ti /
T

Gr .Ti / and Ki is

a compact operator in K.X;XTi /, i D 1; 2. Applying (i) and (ii), we

get QT 2 Gl .T /
T

Gr .T /. Conversely, consider QT D
�
A B

C D

�

such that

QT OT D IXT1�XT2 � K and OT QT D IX�X � K 0, where K D
�
K1 K3

K2 K4

�

and K 0 D
�
K 0
1 K

0
3

K 0
2 K

0
4

�

are compact operators. We necessarily have A OT1 D
IXT1 � K1; OT1A D IXT2 � K 0

1 and C OT1 D K2. Then A 2 Gl .T1/
T

Gr .T1/.
Furthermore, CT1A D C.I � K/ D K2A is a compact operator and
therefore, C is also compact. With the same argument, we show that D 2
Gl .T2/

T
Gr .T2/ and B is compact in L.X;XT1/. Q.E.D.

Lemma 6.7.1. Let A 2 C.X/. Then, for all S and T being invertible in L.X/, such
that R.T / � D.A/ and R.A/ � D.S/, we have Gl .SAT/ D T �1Gl .A/S�1 and
Gr .SAT/ D T �1Gr .A/S�1. }
Proof. It is easy to see that, if A0 2 Gl .A/, then the operator P WD T �1A0S�1
belongs to Gl .SAT/, which implies that T �1Gl .A/S�1 � Gl .SAT/. Conversely, let
P 2 Gl .SAT/, then PSAT D I � K, where K 2 K.X/. Thus, TPS 2 Gl .A/ and
therefore, P 2 T �1Gr .A/S�1. With the same argument, we show that Gr .SAT/ D
T �1Gr .A/S�1. Q.E.D.

Proposition 6.7.2. Let T D
�
T1 T3
T4 T2

�

be in L.X �X/. Then,

(i) Suppose there exists T li 2 Gl .Ti /, with i D 1; 2, such that T l1 T3 and T l2 T4 are

compact operators. Then, T l D
�
T l1 B

C T l2

�

2 Gl .T /, where CT i and BTj are

compact operators (with respectively i D 1; 3 and j D 2; 4).
(ii) Suppose there exists T ri 2 Gr .Ti /; i D 1; 2 such that T4T r1 and T3T r2 are

compact operators. Then, T r D
�
T r1 B

C T r2

�

2 Gr .T /, where TiC and TjB are

compact (with respectively i D 1; 3 and j D 2; 4).
(iii) Suppose there exists QTk 2 Gl .Tk/

T
Gr .Tk/, with k D 1; 2 such that, for

i D 1; 2 and j D 3; 4, QTiTj ; Tj QTi are compact. Then, QT D
� QT1 K1

K2
QT2
�

2
Gl .T /

T
Gr .T /, where Ki are compact operators (with i D 1; 2). }

Proof. (i)–(ii) It is easy to verify that T l OT D IXT �K and OT T r D IXT �K 0, where
K, K 0 2 K.XT /. The assertion (iii) is a direct consequence of (i) and (ii). Q.E.D.



Chapter 7
Essential Spectra of Linear Operators

In this chapter, we investigate the essential spectra of the closed, densely defined
linear operators on Banach space.

7.1 Definitions and Notations

It is well known that, if A is a bounded self-adjoint operator on a Hilbert space, the
essential spectrum is the set of all points of the spectrum of A that are not isolated
eigenvalues of finite algebraic multiplicity (see, for example, [153, 292, 347]).
Irrespective of whether A is bounded or not on a Banach space X , there are several
definitions of the essential spectrum, most of which constitute an enlargement of the
continuous spectrum. Let us define the following sets

�e1.A/ WD f� 2 C such that � � A 62 ˆC.X/g WD CnˆCA;

�e1l .A/ WD f� 2 C such that � � A … ˆl.X/g WD CnˆlA;

�e2.A/ WD f� 2 C such that� � A 62 ˆ�.X/g WD Cnˆ�A;

�e2r .A/ WD f� 2 C such that � � A … ˆr.X/g WD CnˆrA;

�e3.A/ WD f� 2 C such that � � A 62 ˆ˙.X/g WD Cnˆ˙A;

�e4.A/ WD f� 2 C such that � � A 62 ˆ.X/g WD CnˆA;
�e5.A/ WD

\

K2K.X/
�.ACK/;

�e6.A/ WD Cn�6.A/;
�e7.A/ WD

\

K2K.X/
�ap.ACK/;
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�e7l .A/ WD f� 2 C such that � � A 62 Wl .X/g;
�e8.A/ WD

\

K2K.X/
�ı.ACK/;

�e8r .A/ WD f� 2 C such that � � A 62 Wr .X/g;
�pa.A/WDf� 2 C such that ��A is not one-to-one with closed rangeg;

where �6.A/ WD f� 2 �5.A/ such that all scalars near � are in �.A/g with �5.A/ WD
f� 2 ˆA such that i.� � A/ D 0g, �ap.A/ WD

�

� 2 C such that inf
kxkD1; x2D.A/

k.� � A/xk D 0g and �ı.A/ WD f� 2 C such that � � A is not surjectiveg.
�e1.:/ and �e2.:/ are the Gustafson and Weidman’s essential spectra [144]. �e3.:/
is the Kato’s essential spectrum [185]. �e4.:/ is the Wolf’s essential spectrum
[144, 299, 347]. �e5.:/ is the Schechter’s essential spectrum [144, 299, 302] and
�e6.:/ denotes the Browder’s essential spectrum [144, 299]. �e7.:/ was introduced
by Rakoc̆ević in [284] and designated the essential approximate point spectrum
and �e8.:/ is the essential defect spectrum and was introduced by Schmoeger [304],
�ap.:/ is the approximate point spectrum and �pa.:/ is the approximate point
essential spectrum. Let us notice that all these sets are closed and, in general,
we have �e1.A/

T
�e2.A/ D �e3.A/ � �e4.A/ � �e5.A/ � �e6.A/, �e5.A/ D

�e7.A/
S
�e8.A/, �e1.A/ � �e7.A/ and �e2.A/ � �e8.A/. However, ifX is a Hilbert

space and A is self-adjoint, then all these sets coincide.

Remark 7.1.1.

(i) If � 2 �c.A/ (the continuous spectrum of A), then R.� � A/ is not closed
(otherwise � 2 �.A/ see [302, Lemma 5.1 p. 179]). Therefore, � 2 �ei.A/,
i D 1; : : : ; 6. Consequently, we have �c.A/ � T6

iD1 �ei.A/. If the spectrum of
A is purely continuous, then �.A/ D �c.A/ D �ei.A/ i D 1; : : : ; 6.

(ii) �e5.ACK/ D �e5.A/ for all K 2 K.X/.
(iii) Let E0 be a core of A, i.e., a linear subspace of D.A/ such that

the closure AjE0 of its restriction AjE0 equals A. Then, �ap.A/ WD�

� 2 C such that inf
kxkD1; x2E0

k.� � A/xk D 0

�

.

(iv) Set Q̨ .A/ WD inffkAxk such that x 2 D.A/ and kxk D 1g. Whenever E0 is
a core of A, then Q̨ .A/ WD inffkAxk such that x 2 E0 and kxk D 1g holds.
Using this quantity we obtain �ap.A/ D f� 2 C such that Q̨ .� � A/ D 0g. }

Proposition 7.1.1 ([302, Theorem 5.4, p. 180]). Let X be a Banach space and
let A 2 C.X/. Then, � 62 �e5.A/ if, and only if, � 2 ˆ0A, where ˆ0A D f� 2
ˆA such that i.� � A/ D 0g. }
It is well known that

�e6.A/ D �.A/n�d .A/; (7.1.1)
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where �d .A/ stands for the set of all isolated eigenvalues of Awith a finite algebraic
multiplicity.

Remark 7.1.2. Let A 2 L.X/. If � is an isolated point of �.A/, then either
� 2 �d .A/ or � 2 �e5.A/ (it suffices to consider the spectral decomposition of
A associated with f�g and �.A/nf�g). }
Let A 2 L.X/. Let us notice that, by using Remark 7.1.2, we may write �e6.A/ D
�e4.A/

S
d.�.A//, where d represents the Cantor–Bendixson derivative. The sets

ˆb.X/ and ˆ0.X/ may be written, respectively, in the following forms

ˆb.X/ D fA 2 L.X/ : 0 … �e4.A/g D ��1
e4 .fK 2 K.C/ such that 0 … Kg/

(7.1.2)

ˆ0.X/ D fA 2 L.X/ : 0 … �e5.A/g D ��1
e5 .fK 2 K.C/ such that 0 … Kg/:

(7.1.3)

Moreover,

�e4.A/ D
\

k2Z
f� 2 C such that � � A … ˆk.X/g; (7.1.4)

where ˆk.X/ D fA 2 ˆb.X/ such that i.A/ D kg. It is well known that the
approximate point spectrum and T .X/ introduced in (2.7.1) are connected in the
following way �ap.A/ D f� 2 C such that A 2 T .X/g. Let A 2 L.X/, we define

�k.A/ WD f� 2 C such that � � A is not of Kato typeg;
�se.A/ WD f� 2 C such that � � A is not semi-regularg;
�es.A/ WD f� 2 C such that � � A is not essentially semi-regularg:

�k.:/ is the Kato’s spectrum, �se.:/ is the semi-regular spectrum, and �es.:/ is the
essentially semi-regular spectrum. Let us notice that all these sets are closed and,
in general, we have �k.A/ � �es.A/ � �e1.A/

T
�e2.A/ D �e3.A/ � �e4.A/ �

�e5.A/ � �e6.A/, and �k.A/ � �es.A/ � �se.A/. IfX be a separable Banach space,
then by definition,

�ap.A/ D
�

� 2 C such that inf
kxkD1; x2X

k.� � A/xk D 0

�

D
�

� 2 C W for all n 2 N; there is x 2 SX such that k.� � A/xk < 1

n

�

;
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where SX denote the unit sphere of X . Let D be a countable and dense subset of SX
(which exists by separability). Clearly, there exists x 2 SX such that k.��A/xk <
1=n if, and only if, there exists x 2 D such that k.� � A/xk < 1=n. This leads to

�ap.A/ D
�

� 2 C W for all n 2 N; there is x 2 D such that k.� � A/xk < 1

n

�

:

Following the notations of Lemma 2.7.2, we may write


�ap D f.A; �/ 2 L.X/ � C such that � 2 �ap.A/g

D
�

.A; �/ 2 L.X/ � C W for all n 2 N; there is x 2 D such that

k.� � A/xk < 1

n

�

D
\

n2N

[

x2D
Ax;n;

where Ax;n D f.A; �/ 2 L.X/ � C such that k.� � A/xk < 1=ng. Let us recall
that �.A/ D �ap.A/

S
�com.A/, where the compression spectrum of A is defined by

�com.A/ WD f� 2 C such that .� � A/X is not dense in Xg. So, 
� D 
�ap

S
C ,

where

C WD f.A; �/ 2 L.X/ � C such that � 2 �com.A/g: (7.1.5)

Let us observe that, by definition,

C D f.A; �/ 2 L.X/ � C such that .� � A/X is not dense in Xg

D
�

.A; �/ 2 L.X/ � C W 9n 2 N and y 2 X with ky � .A � �/xk

>
1

n
for all x 2 X

�

:

Let us recall that the compression spectrum of A may also be defined by

�com.A/ D f� 2 C such that � � A is a right divisor of zerog:

Let Z.X/ denote the set of right divisors of zero in L.X/ and let Zc.X/ D
L.X/nZ.X/. Clearly, we have Zc.X/ D fA 2 L.X/ such that 0 … �com.A/g.
Let T c.X/, the complement of T .X/ in Ls.X/. Let us observe that

T c.X/ D fA 2 L.X/ such that 0 … �ap.A/g: (7.1.6)
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Let T 2 L.X/ and set �A.T / D f� 2 C such that �A � T is not invertibleg.
In general �A.T / is not compact but only closed. Let q 2 N, and set �Aq .T / WD
�A.T /

T
B.0; q/ (where B.0; q/ D f� 2 C such that j�j � qg). Hence, T �!

�Aq .T / defines a map from L.X/ into K.C/. Note that


�Aq .T /
D
n
.T; �/ 2 L.X/ � C such that � 2 �Aq .T /

o

D
�

.T; �/ 2 L.X/ � C W j�j � q and 9.xk/k � SX with lim
k!1

k.�A � T /xkk D 0

�

[n
.T; �/ 2 L.X/ � C such that j�j � q and .�A � T /.X/ ¤ X

o

D
�

.T; �/ 2 L.X/ � B.0; q/ W 8r 2 N; 9x 2 SX such that k.�A � T /xk < 1

r

�

[n
.T; �/ 2 L.X/ � B.0; q/ W 9y 2 X; 9r 2 N such that 8x 2 X;

ky � .�A � T /xk � 1

r

o
:

Let us notice that

�1 WD
�

.T; �/ 2 L.X/ � B.0; q/ W 8r 2 N; 9x 2 SX such that k.�A � T /xk < 1

r

�

D
�

.T; �/ 2 L.X/ � C W 8r 2 N; 9x 2 SX such that k.�A � T /xk < 1

r

� \

.L.X/ � B.0; q//

D
 
\

r2N

[

x2X

OA;x;r

!
\
.L.X/ � B.0; q// ; (7.1.7)

where OA;x;r D
�

.T; �/ 2 L.X/ � C such that k.�A � T /xk < 1

r

�

. Similarly,

�2 WD
n
.T; �/ 2 L.X/ � B.0; q/ W 8y 2 D; 9r 2 N such that 8x 2 X;

ky � .�A � T /xk � 1

r

o

D
0

@
\

y2D

[

r2N

\

x2X
FA;x;y;r

1

A
\
.Ls.X/ � B.0; q// ; (7.1.8)

where FA;x;y;r D ˚
.T; �/ 2 L.X/ � C such that k.�A � T /x � yk � 1

r



represents

a closed subset of Ls.X/ � C and D is a countable and dense subset of X .
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7.2 The Jeribi Essential Spectrum

It is important to notice that the unexpected results obtained in this section are
fundamental for the study of the essential spectra described in this book. In fact,
these ideas have opened new research areas.

Definition 7.2.1. Let X be a Banach space and let A 2 C.X/. The Jeribi essential
spectrum is defined by

�j .A/ WD
\

K2W�.X/

�.ACK/;

where W�.X/ stands for each one of the sets W.X/ and S.X/. }
Remark 7.2.1.

(i) Since K.X/ � W�.X/, then

�j .A/ � �e5.A/: (7.2.1)

(ii) In general, K.X/ is strictly included in W�.X/.
(iii) Let us notice that, according to Theorem 1 in [277], we have W.L1.�; d�// D

S.L1.�; d�//, where .�;†;�/ be an arbitrary positive measure space.
If 1 < p < 1, Lp.�; d�/ is reflexive and then, L.Lp.�; d�// D
W.Lp.�; d�//. Moreover, from [124, Theorem 5.2] we deduce that
K.Lp.�; d�//   S.Lp.�; d�//   W.Lp.�; d�// with p ¤ 2. For p D 2,
we have K.L2.�; d�// D S.L2.�; d�// D W.L2.�; d�//:

(iv) Let X be a reflexive Banach space. Then, L.X/ D W.X/. So, the Jeribi
essential spectrum is the smallest essential spectrum in the sense of the
inclusion of the other essential spectra, already defined in the beginning of
this chapter, in a particular reflexive Banach space.

}
Open question: Is the inclusion (7.2.1) strict? �

Open question: Is there any relationship between the Jeribi essential spectrum and
the other essential spectra, already defined in the beginning of this chapter? �

In this section, we can only give a partial answer to this question which is related
to particular spaces. This partial answer has led to a new characterization which was
entirely unexpected. That is why, we have decided to investigate this important and
new characterization, hence leading to several studies dealing with the stability of
the essential spectra. In fact, our motivation for this book was essentially based on
this reasoning framework.
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7.2.1 Relationship Between Jeribi and Schechter Essential
Spectra on L1-Spaces

In this section, we are concerned with the study of the essential spectrum on
L1-spaces. In particular, we prove the equality in the sense of the inclusion of the
sets �j .A/ and �e5.A/, where A is a closed, densely defined, and linear operator.
The analysis is essentially based on the results obtained in Chaps. 3, 5, and 6.

Theorem 7.2.1. Let .�;†;�/ be an arbitrary positive measure space. Let A be a
closed, densely defined, and linear operator on L1.�; d�/. Then, we have �j .A/ D
�e5.A/. }
Proof. From K.L1.�; d�// � W�.L1.�; d�//, we infer that �j .A/ � �e5.A/. In
order to conclude, it suffices to show that �e5.A/ � �j .A/. For this purpose, suppose
that � … �j .A/. Then, there exists F 2 W�.L1.�; d�// such that � 2 �.AC F /.
This implies that � 2 ˆACF and i.��A�F / D 0. Since F 2 W�.L1.�; d�// we
have .� � A � F /�1F 2 W�.L1.�; d�//. Hence, by using Lemma 2.1.13.i/, we
get


.� � A � F /�1F �2 2 K.L1.�; d�//. Now, by representing ��A as ��A D

.� � A � F /ŒI C .� � A � F /�1F �, and by using Theorem 2.2.40, together with
Lemma 3.1.2, we obtain � 2 ˆA and i.� � A/ D 0. Now Proposition 7.1.1 gives
the wanted inclusion and achieves the proof. Q.E.D.

Remark 7.2.2.

(i) Theorem 7.2.1 provides a unified definition of the Schechter essential spectrum
on L1-spaces.

(ii) At first sight, �j .A/ and �e5.A/ seem to be not equal. However, in L1-spaces,
it was proved in Theorem 7.2.1 that �j .A/ D �e5.A/. This result was entirely
unexpected. That is why, we have decided to investigate this important and new
characterization. All results concerning the essential spectra in this book are
based on the proof of Theorem 7.2.1. }

7.2.2 Relationship Between Jeribi and Schechter Essential
Spectra on Banach Space Satisfying the Dunford–Pettis
Property

Corollary 7.2.1. If X satisfies the Dunford–Pettis property, and if A is a closed,
densely defined, and linear operator on X , then we have �j .A/ D �e5.A/. }
Proof. The proof can be checked in the same way as in the proof of
Theorem 7.2.1. Q.E.D.

Remark 7.2.3. If X satisfies the Dunford–Pettis property, and if A is a closed,
densely defined, and linear operator on X , then �e5.A C K/ D �e5.A/ for all
K 2 W.X/. }



200 7 Essential Spectra of Linear Operators

7.2.3 Other Characterization of the Schechter Essential
Spectrum by the Jeribi Essential Spectrum on Lp-Spaces

Let .�;†;�/ be an arbitrary positive measure space.

Theorem 7.2.2. Let A be a closed, densely defined, and linear operator on
Lp.�; d�/, and let p 2 Œ1;1/. In the case where W�.Lp.�; d�// D
S.Lp.�; d�//, we have

�e5.A/ D �j .A/:

}
Proof. From K.Lp.�; d�// � S.Lp.�; d�//, we infer that �j .A/ � �e5.A/. In
order to conclude, it suffices to show that �e5.A/ � �j .A/. For this purpose, let
us suppose that � … �j .A/. Then, there exists F 2 S.Lp.�; d�// such that � 2
�.ACF /. This implies that � 2 ˆACF and i.��A�F / D 0. Since S.Lp.�; d�//
is a two-sided ideal of Lp.�; d�/, we have .� � A � F /�1F 2 S.Lp.�; d�//.
Hence, by using Lemma 2.1.13.ii/, we get


.� � A � F /�1F �2 2 K.Lp.�; d�//.

By using the equality ��A as ��A D .��A�F /ŒI C .��A�F /�1F �, together
with Atkinson’s theorem (Theorem 2.2.40), we get � 2 ˆA and i.� � A/ D 0.
Finally, the use of Proposition 7.1.1 gives the wanted inclusion and achieves the
proof. Q.E.D.

Remark 7.2.4.

(i) Theorem 7.2.2 provides a unified definition of the Schechter essential spectrum
on Lp-spaces, p 2 Œ1;1/.

(ii) �e5.ACK/ D �e5.A/ for all K 2 S.Lp.�; d�//. }

7.3 Auxiliary Results

First, let us prove the following theorem.

Theorem 7.3.1. Let A 2 C.X/ such that �.A/ is not empty.

(i) If Cn�e4.A/ is connected, then �e4.A/ D �e5.A/, �e2.A/ D �e8.A/, �e1l .A/ D
�e7l .A/, and �e2r .A/ D �e8r .A/.

(ii) If Cn�e5.A/ is connected, then �e5.A/ D �e6.A/. }
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Proof.

.i/ Since the inclusion �e4.A/ � �e5.A/ is known, it is sufficient to show that
�e5.A/ � �e4.A/, which is equivalent to ŒCn�e4.A/�T �e5.A/ D ;. Suppose
that

ŒCn�e4.A/�
\
�e5.A/ ¤ ;;

and let �0 2 ŒCn�e4.A/�T �e5.A/. Since �.A/ ¤ ;, then there exists �1 2 C

such that �1 2 �.A/ and consequently, �1 � A 2 ˆ.X/ and i.�1 � A/ D
0. Moreover, since Cn�e4.A/ is connected, and from Proposition 2.2.5.ii/,
it follows that i.� � A/ is constant on any component of ˆA. Therefore,
i.�1 � A/ D i.�0 � A/ D 0. In this way, we see that �0 62 �e5.A/, which
is a contradiction. This proves that ŒCn�e4.A/�T �e5.A/ D ;, and completes
the proof of the first assertion of .i/.

It is easy to check that �e1.A/ � �e7.A/. For the second inclusion, we take
� 2 Cn�e1.A/. Then, � 2 ˆCA D ˆA

S
.ˆCAnˆA/. Hence, we will discuss these

two cases:

First case If � 2 ˆA, then i.A � �/ D 0. Indeed, let �0 2 �.A/. Then, �0 2
ˆA and i.A � �0/ D 0. From Proposition 2.2.5.ii/, it follows that i.A � �/ is
constant on any component of ˆA, hence leading to �.A/ � ˆA. Consequently,
i.A � �/ D 0 for all � 2 ˆA. This shows that � 2 Cn�e7.A/.

Second case If � 2 .ˆCAnˆA/, then ˛.A � �/ < 1 and ˇ.A � �/ D C1.
Consequently, i.A � �/ D �1 < 0. Hence, we obtain the second inclusion
from the above two cases. By following the same reasoning, we get the third
equality.

Since the inclusion �e1l .A/ � �e7l .A/ Œresp. �e2r .A/ � �e8r .A/� is known, it
suffices to show that �e7l .A/ � �e1l .A/ Œresp. �e8r .A/ � �e2r .A/� which is
equivalent to ŒCn�e1l .A/�T �e7l .A/ D ; .resp. ŒCn�e2r .A/�T �e8r .A/ D ;/. Let
�0 2 Cn�e1l .A/ Œresp. Cn�e2r .A/�. We discuss two cases.

First case If �0 2 ˆlAnˆA .resp. ˆrAnˆA/, then i.A � �0/ D �1 < 0 .resp. C
1 > 0/. In this way we see that �0 62 �e7l .A/ Œresp. �e8r .A/�.

Second case �0 2 ˆA. Since �.A/ is not empty, then there exists �1 2 C such
that �1 2 �.A/ and consequently A� �1 2 ˆ.X/ and i.A� �1/ D 0. Moreover,
ˆA is connected, it follows from Proposition 2.2.5 that i.A � �/ is constant on
any component of ˆA. Therefore i.A��1/ D i.A��0/. In this way we see that
�0 62 �e7l .A/ Œresp. �e8r .A/�.

.ii/ Since the inclusion �e5.A/ � �e6.A/ is known, it is sufficient to show that
�e6.A/ � �e5.A/ which is equivalent to ŒCn�e5.A/�T �e6.A/ D ;. In fact, let
us suppose the following ŒCn�e5.A/�T �e6.A/ ¤ ;. Then, there exists �0 2 C,
such that �0 2 Cn�e5.A/ and �0 2 �e6.A/. Let � 2 Cn�e5.A/. Since Cn�e5.A/
is connected, and using Proposition 2.2.5.iii/, it follows that ˛.��A/ D ˛.�0�
A/ and ˇ.��A/ D ˇ.�0�A/. We claim that � 2 �e6.A/. In fact, if � 2 �6.A/,
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then there exists a neighborhood V� of � such that V�nf�g � �.A/. Since
Cn�e5.A/ is connected, there exists �1 2 Cn�e5.A/ such that �1 2 V�nf�g �
�.A/. Hence, ˛.�1�A/ D ˇ.�1�A/ D 0 and so, ˛.�0�A/ D ˇ.�0�A/ D 0.
In this way, we see that �0 2 �.A/ � �6.A/, which is contrary to the properties
of �0. This proves the claim and shows that Cn�e5.A/ � �e6.A/. Hence, ; ¤
�.A/ � �5.A/ � �e6.A/ � �.A/ which is a contradiction. This shows that
ŒCn�e5.A/�T �e6.A/ D ; and completes the proof of the theorem. Q.E.D.

Remark 7.3.1. Let A 2 L.X/.
(i) If Cn�e4.A/ is connected, then �e4.A/ D �e5.A/, �e1.A/ D �e7.A/, �e2.A/ D

�e8.A/, �e1l .A/ D �e7l .A/, and �e2r .A/ D �e8r .A/.
(ii) If Cn�e5.A/ is connected, then �e5.A/ D �e6.A/. }
Theorem 7.3.2. Let A 2 C.X/. If 0 2 �.A/, then for all � 2 C , � ¤ 0 we have

(i) � 2 �ei.A/ if, and only if, 1
�

2 �ei.A
�1/, for i D 1; 2; 3; 4; 5; 7; 8; 1l; 2r; 7l;

8r .
(ii) If Cn�e5.A/ and Cn�e5.A�1/ are connected, then � 2 �e6.A/ if, and only if,

1
�

2 �e6.A�1/. }
Proof.

.i/ Using Lemma 2.2.17, we deduce that � 2 �ei.A/ if, and only if, 1
�

2 �ei.A
�1/

for i D 4; 5. Moreover, for � ¤ 0, we can write A � � D ��.A�1 � ��1/A.
Since A is one-to-one and onto, then ˛.A � �/ D ˛.A�1 � ��1/ and
R.A � �/ D R.A�1 � ��1/. This shows that � 2 ˆCA (resp. ˆ�A) if, and
only if, 1

�
2 ˆCA�1 (resp. ˆ�A�1 ) and we have i.A � �/ D i.A�1 � ��1/.

Therefore, we infer that � 2 �ei.A/ if, and only if, 1
�

2 �ei.A
�1/ for

i D 1; 2; 3; 4; 5; 7; 8; 1l; 2r; 7l; 8r .
.ii/ The sets Cn�e5.A/ and Cn�e5.A�1/ are connected. �.A/ and �.A�1/ are not

empty sets. So, applying Theorem 7.3.1.ii/, we deduce that � 2 �e6.A/ if, and
only if, 1

�
2 �e6.A�1/. Q.E.D.

Proposition 7.3.1.

(i) Let A 2 L.X/. If 0 2 �.A/, then for all � 2 C , � ¤ 0 we have � … �k.A/ if,
and only if, ��1 … �k.A�1/.

(ii) Let A 2 L.X/ and let � 2 �.A/. Then

� 2 �se.A/ if, and only if, � ¤ � and .� � �/�1 2 �se..� � A/�1/;
� 2 �es.A/ if, and only if, � ¤ � and .� � �/�1 2 �es..� � A/�1/:

}
Proof.

.i/ Let 0 2 �.A/. The resolvent identity implies that

� � A D ��.A�1 � ��1/A: (7.3.1)
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If � … �k.A/, then there exists a pair of closed and .��A/-invariant subspaces
.M;N / of X such that .� � A/M is semi-regular and .� � A/N is nilpotent.
Hence ..A�1 � ��1/A/M is semi-regular and ..A�1 � ��1/A/N is nilpotent.
This shows that .A�1 � ��1/M is semi-regular and .A�1 � ��1/N is nilpotent.
Conversely, if ��1 … �k.A�1/, then A�1���1 is of Kato type commuting with
A (which is invertible). From Eq. (7.3.1), it follows that � � A is of Kato type.

.ii/ Let us start from the identity .��A/�1� .���/�1 D �.���/�1.��A/.��
A/�1. Since .� � A/�1 is a bounded invertible operator commuting with A, it
follows, from both Theorems 2.2.31 and 2.2.33, that .��A/�1 � .�� �/�1 is
semi-regular if, and only if, .� � A/ is semi-regular. Q.E.D.

Proposition 7.3.2. Let A 2 C.X/. Then,

(i) � … �e7.A/ if, and only if, � � A 2 ˆC.X/ and i.� � A/ � 0.
(ii) � … �e8.A/ if, and only if, � � A 2 ˆ�.X/ and i.� � A/ � 0.

(iii) If A is a bounded linear operator, then �e8.A/ D �e7.A
�/, where A� stands

for the adjoint operator. }
Proof.

.i/ Let � 2 ˆCA such that i.��A/ � 0. Then, by using Lemma 2.2.16, ��A can
be expressed in the form ��A D U CK, where K 2 K.X/ and U 2 C.X/ is
an operator with a closed range and ˛.U / D 0. Hence, by using Theorem 2.2.1,
there exists a constant c > 0 such that kUxk � ckxk, for all x 2 D.A/. Thus,
� … �ap.A C K/ and therefore, � … �e7.A/. Conversely, if � … �e7.A/, then
there exists K 2 K.X/, such that inf

kxkD1; x2D.A/
k.� � A �K/xk > 0. The use

of Theorem 2.2.1 leads to ��A�K 2 ˆC.X/ and ˛.��A�K/ D 0. Hence,
and from Lemma 6.3.1, it follows that ��A 2 ˆC.X/ and i.��A/ � 0. This
completes the proof of .i/.

The proof of .ii/ is a straightforward adoption of the proof of .i/.

.iii/ This assertion is immediately deduced from .i/ and .ii/. Q.E.D.

Proposition 7.3.3. Let A 2 C.X/. Then,

(i) �c.A/ � �e7.A/
T
�e8.A/, and

(ii) �r.A/ � �e8.A/. }
Proof.

.i/ Let � 2 �c.A/. Then, R.� � A/ is not closed, otherwise � 2 �.A/. Thus, by
using Proposition 7.3.2, � 2 �e7.A/T �e8.A/, which proves .i/.

.ii/ Let us consider � 2 �r.A/. Then, ˇ.� � A/ ¤ 0 and hence, i.� � A/ < 0,
since ��A is one to one. This implies, by the use of Proposition 7.3.2.ii/, that
� 2 �e8.A/. Q.E.D.
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7.4 Essential Spectra of the Sum of Two Bounded
Linear Operators

7.4.1 By Means of Fredholm and Semi-Fredholm
Perturbations

The following theorem shows the relation between the essential spectra of the sum
of the two bounded linear operators and the essential spectra of each of these
operators, where their products are Fredholm or semi-Fredholm perturbations on
a Banach space X .

Theorem 7.4.1. Let A and B be two bounded linear operators on a Banach
space X .

(i) If AB 2 Fb.X/, then �ei.A C B/nf0g � Œ�ei.A/
S
�ei.B/� nf0g,

i D 4; 5. Furthermore, if BA 2 Fb.X/, then �e4.A C B/nf0g D
Œ�e4.A/

S
�e4.B/� nf0g: Moreover, if Cn�e4.A/ is connected, then

�e5.AC B/nf0g D
h
�e5.A/

[
�e5.B/

i
nf0g: (7.4.1)

(ii) If the hypotheses of .i/ are satisfied, and if Cn�e5.A C B/, Cn�e5.A/
and Cn�e5.B/ are connected, then �e6.ACB/nf0g D Œ�e6.A/

S
�e6.B/� nf0g:

(iii) If AB 2 FbC.X/, then �ei.A C B/nf0g � Œ�ei.A/
S
�ei.B/� nf0g, i D 1; 7.

Besides, if BA 2 FbC.X/, then

�e1.AC B/nf0g D
h
�e1.A/

[
�e1.B/

i
nf0g: (7.4.2)

Moreover, if Cn�e4.A/ is connected, then

�e7.AC B/nf0g D
h
�e7.A/

[
�e7.B/

i
nf0g: (7.4.3)

(iv) If AB 2 Fb�.X/, then �ei.AC B/nf0g � Œ�ei.A/
S
�ei.B/� nf0g, i D 2; 8. If,

further, BA 2 Fb�.X/, then

�e2.AC B/nf0g D
h
�e2.A/

[
�e2.B/

i
nf0g: (7.4.4)

Moreover, if Cn�e4.A�/ is connected, then

�e8.AC B/nf0g D
h
�e8.A/

[
�e8.B/

i
nf0g: (7.4.5)
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(v) If AB 2 FbC.X/
T

Fb�.X/, then

�e3.AC B/nf0g �
h�
�e3.A/

[
�e3.B/

	[�
�e1.A/

\
�e2.B/

	

[�
�e2.A/

\
�e1.B/

	i
nf0g:

Besides, if BA 2 FbC.X/
T

Fb�.X/, then

�e3.AC B/nf0g D
h�
�e3.A/

[
�e3.B/

	[�
�e1.A/

\
�e2.B/

	

[�
�e2.A/

\
�e1.B/

	i
nf0g:

(vi) If AB 2 Fe.X/, then we have Œ�es.A/
S
�es.B/�n f0g � �es.ACB/n f0g, and

Œ�se.A/
S
�se.B/� n f0g � �se.AC B/ n f0g.

(vii) Let A, B , C , D 2 L.X/ be mutually commuting operators such that AC C
BD D I . If AB 2 Fe.X/, then we have Œ�es.A/

S
�es.B/� n f0g D �es.A C

B/ n f0g, and Œ�se.A/
S
�se.B/� n f0g D �se.AC B/ n f0g. }

Proof. For � 2 C, we can write

.A � �/.B � �/ D AB � �.AC B � �/; (7.4.6)

and

.B � �/.A � �/ D BA � �.AC B � �/: (7.4.7)

.i/ Let � 62 �e4.A/
S
�e4.B/

Sf0g. Then, .A � �/ 2 ˆb.X/ and .B � �/ 2
ˆb.X/. Theorem 2.2.40 ensures that .A � �/.B � �/ 2 ˆb.X/. Since AB 2
Fb.X/, and applying Eq. (7.4.6), we have .ACB ��/ 2 ˆb.X/. Hence, � 62
�e4.AC B/, and we obtain

�e4.AC B/nf0g �
h
�e4.A/

[
�e4.B/

i
nf0g: (7.4.8)

Let � 62 �e5.A/S �e5.B/
Sf0g. Then, by using Proposition 7.1.1, we get .A�

�/ 2 ˆb.X/, i.A � �/ D 0, .B � �/ 2 ˆb.X/ and i.B � �/ D 0 and
therefore, Theorem 2.2.40 gives .A � �/.B � �/ 2 ˆb.X/ and i..A �
�/.B � �// D 0. Moreover, since AB 2 Fb.X/, we can apply both
Eq. (7.4.6) and Lemma 6.3.1.i/, hence ensuring that .ACB��/ 2 ˆb.X/ and
i.AC B � �/ D 0. Again, by applying Proposition 7.1.1, we infer that � 62
�e5.AC B/ and, then

�e5.AC B/nf0g �
h
�e5.A/

[
�e5.B/

i
nf0g: (7.4.9)
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In order to prove the inverse inclusions of Eqs. (7.4.8) and (7.4.9), let us
suppose that � 62 �e4.ACB/

Sf0g. Then, .ACB��/ 2 ˆb.X/. Since AB 2
Fb.X/ and BA 2 Fb.X/, then by using Eqs. (7.4.6) and (7.4.7), we have

.A � �/.B � �/ 2 ˆb.X/ and .B � �/.A � �/ 2 ˆb.X/: (7.4.10)

Equation (7.4.10) and Theorem 2.2.19 show clearly that .A � �/ 2
ˆb.X/ and .B � �/ 2 ˆb.X/. Therefore, � 62 �e4.A/

S
�e4.B/. This

proves that Œ�e4.A/
S
�e4.B/� nf0g � �e4.A C B/nf0g. Hence, �e4.A C

B/nf0g D Œ�e4.A/
S
�e4.B/� nf0g. It remains to prove the following

Œ�e5.A/
S
�e5.B/� nf0g � �e5.A C B/nf0g. Let � 62 �e5.A C B/

Sf0g.
Then, by using Proposition 7.1.1, we have .AC B � �/ 2 ˆb.X/ and i.AC
B � �/ D 0. Since AB 2 Fb.X/ and BA 2 Fb.X/, it is easy to
deduce that .A � �/ 2 ˆb.X/ and .B � �/ 2 ˆb.X/. Again, the use of
Eqs. (7.4.6), (7.4.10), Theorem 2.2.40 and Lemma 6.3.1.i/ allows us to have

i Œ.A��/.B ��/� D i.A��/C i.B ��/ D i.ACB ��/ D 0: (7.4.11)

Since A is a bounded linear operator, we get �.A/ ¤ ;. As Cn�e4.A/ is
a connected set, and from Remark 7.3.1, we deduce that �e4.A/ D �e5.A/.
Using the last equality and the fact that .A � �/ 2 ˆb.X/, we deduce that
i.A � �/ D 0. It follows, from Eq. (7.4.11), that i.B � �/ D 0. We conclude
that � 62 �e5.A/

S
�e5.B/ and hence, we have Œ�e5.A/

S
�e5.B/� nf0g �

�e5.AC B/nf0g. So, we prove Eq. (7.4.1).
.ii/ The sets Cn�e5.A C B/, Cn�e5.A/ and Cn�e5.B/ are connected.

Since A and B are bounded operators, we deduce that �.A/, �.B/ and
�.A C B/ are not empty sets. So, using Theorem 7.3.1, we show that
�e5.A C B/ D �e6.A C B/, �e5.A/ D �e6.A/ and �e5.B/ D �e6.B/.
Hence, Eq. (7.4.1) gives �e6.AC B/nf0g D Œ�e6.A/

S
�e6.B/� nf0g.

.iii/ Suppose that � 62 �e1.A/S �e1.B/
Sf0g. Then, .A � �/ 2 ˆbC.X/ and .B �

�/ 2 ˆbC.X/. Using Theorem 2.2.13.ii/, we have .A� �/.B � �/ 2 ˆbC.X/.
Since AB 2 FbC.X/, we can apply both Eq. (7.4.6) and Lemma 6.3.1.ii/, in
order to get .AC B � �/ 2 ˆbC.X/. So, � 62 �e1.AC B/. Therefore,

�e1.AC B/nf0g �
h
�e1.A/

[
�e1.B/

i
nf0g: (7.4.12)

Now, suppose that � 62 �e7.A/
S
�e7.B/

Sf0g. Then, by using Proposi-
tion 7.3.2.i/, we have .A��/ 2 ˆbC.X/, i.A��/ � 0, .B��/ 2 ˆbC.X/ and
i.B��/ � 0. Using Theorems 2.2.7 and 2.2.13.ii/, we obtain .A��/.B��/ 2
ˆbC.X/ and i Œ.A � �/.B � �/� � 0. Since AB 2 FbC.X/, and applying
Eq. (7.4.6) and Lemma 6.3.1.ii/, we deduce that .A C B � �/ 2 ˆbC.X/
and i.A C B � �/ � 0. Again, the use of Proposition 7.3.2.i/ clearly shows
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that � 62 �e7.AC B/. Hence,

�e7.AC B/nf0g �
h
�e7.A/

[
�e7.B/

i
nf0g: (7.4.13)

Now, it remains to prove the inverse inclusions of Eqs. (7.4.12) and (7.4.13).
For this purpose, let us suppose that � 62 �e1.A C B/

Sf0g. Then, .A C
B � �/ 2 ˆbC.X/. Since AB 2 FbC.X/ and BA 2 FbC.X/, then by using
Eqs. (7.4.6), (7.4.7) and Lemma 6.3.1.ii/, we get

.A � �/.B � �/ 2 ˆbC.X/; .B � �/.A � �/ 2 ˆbC.X/: (7.4.14)

Combining Eq. (7.4.14) and Theorem 2.2.14.i/, we conclude that .A � �/ 2
ˆbC.X/ and .B � �/ 2 ˆbC.X/. Hence, � 62 �e1.A/

S
�e1.B/. Therefore,

Œ�e1.A/
S
�e1.B/� nf0g � �e1.A C B/nf0g. This proves Eq. (7.4.2). Now, it

remains to prove that Œ�e7.A/
S
�e7.B/� nf0g � �e7.AC B/nf0g. In order to

achieve this, let � 62 �e7.ACB/Sf0g. Then, by using Proposition 7.3.2.i/, we
deduce that .ACB��/ 2 ˆbC.X/ and i.ACB��/ � 0. Since AB 2 FbC.X/
and BA 2 FbC.X/, a similar reasoning as before leads to .A��/ 2 ˆbC.X/ and
.B��/ 2 ˆbC.X/. Again, using Eqs. (7.4.6), (7.4.14) and Lemma 6.3.1.ii/, we
have the following i Œ.A � �/.B � �/� D i.A C B � �/ � 0. Let �0 2
�.A/. Then, .A � �0/ 2 ˆb.X/ and i.A � �0/ D 0. Since �.A/ �
Cn�e4.A/, then �0 2 Cn�e4.A/ which is connected. By using Propo-
sition 2.2.5.ii/, we have i.A � �/ is constant on any component of ˆA.
Hence, i.A � �/ D 0, for all � 2 Cn�e4.A/. By applying Theorem 2.2.7,
it is clear that i Œ.A � �/.B � �/� D i Œ.A � �/� C i Œ.B � �/� � 0, which
leads to i Œ.B � �/� � 0. According to Proposition 7.3.2.i/, we conclude
that � 62 �e7.A/S �e7.B/. Then, Œ�e7.A/

S
�e7.B/� nf0g � �e7.ACB/nf0g,

hence leading to Eq. (7.4.3).
.iv/ The proof of Eq. (7.4.4) may be achieved in the same way as in the

proof of .iii/ for Eq. (7.4.2). Now, let us prove this equality �e8.A C
B/nf0g D Œ�e8.A/

S
�e8.B/� nf0g. Let A and B be two bounded operators.

Applying Proposition 7.3.2.iii/, we have �e8.A/ D �e7.A
�/, �e8.B/ D

�e7.B
�/ and �e8.AC B/ D �e7.A

� C B�/. Applying .iii/ for Eq. (7.4.3), we
get �e7.A� C B�/nf0g D Œ�e7.A

�/
S
�e7.B

�/� nf0g. Therefore, we prove
Eq. (7.4.5).

.v/ Since the following equalities �e3.A/ D �e1.A/
T
�e2.A/, �e3.B/ D

�e1.B/
T
�e2.B/ and �e3.A C B/ D �e1.A C B/

T
�e2.A C B/ are

known, AB 2 FbC.X/
T

Fb�.X/ and BA 2 FbC.X/
T

Fb�.X/, then by using
Eqs. (7.4.2) and (7.4.4), we deduce that

�e3.AC B/nf0g D
h�
�e3.A/

[
�e3.B/

	[�
�e1.A/

\
�e2.B/

	

[�
�e2.A/

\
�e1.B/

	i
nf0g:
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.vi/ If � 62 �es.A C B/ n f0g, then A C B � � is essentially semi-regular. Since
AB 2 Fe.X/, then using Eq. (7.4.6) .A��/.B��/ is essentially semi-regular.
From Theorem 2.2.31, it follows that .A��/ and .B ��/ are both essentially
semi-regular operators. Then, � 62 Œ�se.A/

S
�se.B/� n f0g. For the case of

semi-regular operators, we may use the same proof.
.vii/ The proof is ensured by using Theorem 2.2.32. Q.E.D.

Remark 7.4.1. It is easy to see that the condition "n.f0g/" cannot be dropped in
Theorem 7.4.1. Indeed, let H be a Hilbert space of infinite dimension, and let A D
diagfI; 0g, B D diagf0; I g be diagonal operators in the space H ˚ H: Then
�e4.A/ D �e4.B/ D f0; 1g while �e4.AC B/ D f1g:

Recall that an operator T 2 L.X/ is called a left .resp. right/ divisor of zero if
TS D 0 (resp. ST D 0) for some nonzero operators S 2 L.X/.
Proposition 7.4.1. Let T 2 L.X/ be a left .resp. right/ divisor of zero, i.e., TS D 0

(resp. ST D 0) for S 2 L.X/. Then,


�es.T /

[
�es.S/

� n f0g D �es.T C S/ n f0g;

�se.T /

[
�se.S/

� n f0g D �se.T C S/ n f0g;

�k.T /

[
�k.S/

� n f0g D �k.T C S/ n f0g;

�e4.T /

[
�e4.S/

� n f0g D �e4.T C S/ n f0g;

and
�
�se.T / n �e4.S/

�S 
�se.S/ n �e4.T /

�� n f0g is, at most, countable. }
We recall the following lemma (see [359, Theorem 7 and 8] and [358, Corollary 2]).

Lemma 7.4.1. Let A 2 L.X/ and let E 2 R.X/.
(i) If A 2 ˆbC.X/ and AE � EA 2 FbC.X/, then A C E 2 ˆbC.X/ and

i.ACE/ D i.A/.
(ii) If A 2 ˆb�.X/ and AE �EA 2 Fb�.X/, then ACE 2 ˆb�.X/ and i.ACE/ D

i.A/.
(iii) If A 2 ˆbl .X/ Œresp:Wl .X/; ˆ

b
r .X/; Wr .X/� and AE � EA 2 Fb.X/, then

ACE 2 ˆbl .X/ Œresp. Wl .X/; ˆ
b
r .X/; Wr .X/�. }

Remark 7.4.2. Let X be a Banach space. It is easy to see that ˆb.X/ D
ˆbl .X/

T
ˆbr .X/ and ˆ0.X/ D Wl .X/

T
Wr .X/

T
L.X/. So, it follows,

immediately, from Lemma 7.4.1 that, if A 2 ˆb.X/ Œresp. ˆ0.X/� and
AE � EA 2 Fb.X/, then ACE 2 ˆb.X/ Œresp. ˆ0.X/�. }
Lemma 7.4.2 ([17, Theorem 1.54, p. 32]). Let A 2 L.X/ and let B 2 L.X/.

(i) If A 2 ˆbl .X/ and B 2 ˆbl .X/, then BA 2 ˆbl .X/.
(ii) If A 2 ˆbr .X/ and B 2 ˆbr .X/, then BA 2 ˆbr .X/.

(iii) If BA 2 ˆbl .X/, then A 2 ˆbl .X/.
(iv) If BA 2 ˆbr .X/, then B 2 ˆbr .X/. }
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Theorem 7.4.2. Let A and B be two bounded linear operators on a Banach space
X such that AB is a Riesz operator.

(i) If AB � BA 2 FbC.X/, then

�e1.AC B/nf0g D
h
�e1.A/

[
�e1.B/

i
nf0g (7.4.15)

and �e7.A C B/nf0g � Œ�e7.A/
S
�e7.B/� nf0g. If, further, ˆA and ˆB are

connected, then

�e7.AC B/nf0g D
h
�e7.A/

[
�e7.B/

i
nf0g:

(ii) If AB � BA 2 Fb�.X/, then �e2.AC B/nf0g D Œ�e2.A/
S
�e2.B/� nf0g and

�e8.AC B/nf0g �
h
�e8.A/

[
�e8.B/

i
nf0g:

Moreover, if ˆA and ˆB are connected, then �e8.A C B/nf0g D
Œ�e8.A/

S
�e8.B/�nf0g.

(iii) If AB � BA 2 FbC.X/
T

Fb�.X/, then

�e3.AC B/nf0g D
h�
�e3.A/

[
�e3.B/

	[�
�e1.A/

\
�e2.B/

	

[�
�e2.A/

\
�e1.B/

	i
nf0g:

(iv) If AB � BA 2 Fb.X/, then �ei .A C B/nf0g D Œ�ei .A/
S
�ei .B/� nf0g; i D

1l; 2r; 4. and �ei .AC B/nf0g � Œ�ei .A/
S
�ei .B/� nf0g; i D 5; 7l; 8r . If,

further, ˆA is connected, then

�e5.AC B/nf0g D
h
�e5.A/

[
�e5.B/

i
nf0g: (7.4.16)

Moreover, ifˆB is connected, then �ei .ACB/nf0g D Œ�ei .A/
S
�ei .B/� nf0g;

i D 7l; 8r .
(v) If the hypotheses of .iv/ are satisfied and if Cn�e5.AC B/ is connected, then

�e6.AC B/nf0g D
h
�e6.A/

[
�e6.B/

i
nf0g:

}
Proof. Let � 2 C. Using Eqs. (7.4.6) and (7.4.7), we have

AB .AC B � �/ � .AC B � �/AB D A .BA � AB/C .AB � BA/ B (7.4.17)
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and

BA .AC B � �/ � .AC B � �/BA D .BA � AB/ AC B .AB � BA/ : (7.4.18)

.i/ Let � 62 �e1.A/
S
�e1.B/

Sf0g, then .A � �/ 2 ˆbC.X/ and .B �
�/ 2 ˆC.X/. Using Theorem 2.2.13.ii/, we have .A � �/ .B � �/ 2
ˆbC.X/. Since AB � BA 2 FbC.X/, we can apply Eq. (7.4.17), we infer that
�AB .AC B � �/ � � .AC B � �/AB 2 FbC.X/. Also, since AB 2 R.X/,
then by Lemma 7.4.1.i/ and Eq. (7.4.6), .A C B � �/ 2 ˆbC.X/. So, � 62
�e1.AC B/. Therefore

�e1.AC B/nf0g �
h
�e1.A/

[
�e1.B/

i
nf0g: (7.4.19)

Now, suppose that � 62 �e7.A/
S
�e7.B/

Sf0g, then .A � �/ 2 ˆbC.X/,
i.A � �/ � 0; .B � �/ 2 ˆbC.X/ and i.B � �/ � 0. Using Theo-
rem 2.2.13.ii/ and Theorem 2.2.7, we have .A � �/ .B � �/ 2 ˆbC.X/ and
i Œ.A � �/ .B � �/� � 0. Since AB � BA 2 FbC.X/, then by Eq. (7.4.17), it
is clear that �AB .AC B � �/ � � .AC B � �/AB 2 FbC.X/. Also, since
AB 2 R.X/, then by Lemma 7.4.1.i/ and Eq. (7.4.6), .AC B � �/ 2 ˆbC.X/
and i .AC B � �/ � 0. In this way we see that � 62 �e7.A C B/ whence
�e7.AC B/nf0g � Œ�e7.A/

S
�e7.B/� nf0g. To prove the inverse inclusion of

Eq. (7.4.19). Suppose � 62 �e1.A C B/
Sf0g then .A C B � �/ 2 ˆbC.X/.

Since AB � BA 2 FbC.X/, then by Eqs. (7.4.17) and (7.4.18), we have
�AB .AC B � �/ � � .AC B � �/AB 2 FbC.X/ and �BA .AC B � �/ �
� .AC B � �/BA 2 FbC.X/. Also, since AB 2 R.X/ and BA 2 R.X/,
then by Eqs. (7.4.6), (7.4.7) and Lemma 7.4.1.i/, we have .A � �/ .B � �/ 2
ˆbC.X/ and .B � �/ .A � �/ 2 ˆbC.X/. Again, using Theorem 2.2.14, we
have .A � �/ 2 ˆC.X/ and .B � �/ 2 ˆbC.X/. Hence � 62 �e1.A/S �e1.B/.
Therefore Œ�e1.A/

S
�e1.B/� nf0g � �e1.A C B/nf0g. This proves that

Eq. (7.4.15). Now, it remains to prove the following Œ�e7.A/
S
�e7.B/� nf0g �

�e7.AC B/nf0g. Let � 62 �e7.AC B/
Sf0g then .AC B � �/ 2 ˆbC.X/ and

i.AC B � �/ � 0. Since AB � BA 2 FbC.X/; AB 2 R.X/ and BA 2 R.X/,
a similar reasoning as before, it is clear that .A� �/ 2 ˆbC.X/ and .B � �/ 2
ˆbC.X/. Let �0 2 �.A/ and �1 2 �.B/, then .A � �0/ 2 ˆb.X/; .B � �1/ 2
ˆb.X/; i.A��0/ D 0 and i.B��1/ D 0. SinceˆA andˆB are connected, by
Proposition 2.2.5, we have i.A � �/ is constant on any component of ˆA and
i.B��/ is constant on any component ofˆB , then i.A��/ D i.A��0/ D 0

for all � 2 ˆA and i.B � �/ D i.B � �1/ D 0 for all � 2 ˆB . On the
other hand, for �2 2 ˆCAnˆA and �3 2 ˆCBnˆB , i.A � �2/ D �1 and
i.B � �3/ D �1. So, i.A � �/ � 0 and i.B � �/ � 0. This proved that
� 62 �e7.A/S �e7.B/ whence Œ�e7.A/

S
�e7.B/� nf0g � �e7.AC B/nf0g.

.ii/ The proof may be checked in the same way as the proof of .i/.
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.iii/ Since the equalities �e3.A/ D �e1.A/
T
�e2.A/; �e3.B/ D �e1.B/

T
�e2.B/

and �e3.A C B/ D �e1.A C B/
T
�e2.A C B/ are known,

AB 2 R.X/;BA 2 R.X/ and AB � BA 2 FbC.X/
T

Fb�.X/ then, by .i/
and .ii/ we deduce that

�e3.AC B/nf0g D
h�
�e3.A/

[
�e3.B/

	[�
�e1.A/

\
�e2.B/

	

[�
�e2.A/

\
�e1.B/

	i
nf0g:

.iv/ Let � 62 �ei .A/
S
�ei .B/

Sf0g; i D 1l; 2r; 4. Then, .A � �/ 2 ˆbl .X/

[resp.ˆbr .X/,ˆ
b.X/� and .B��/ 2 ˆbl .X/ [resp.ˆbr .X/,ˆ

b.X/�. Therefore
Lemma 7.4.2 and Theorem 2.2.13 give .A � �/ .B � �/ 2 ˆbl .X/ [resp.
ˆbr .X/, ˆ

b.X/]. Since AB � BA 2 Fb.X/. Then by Eq. (7.4.17), we have
�AB.ACB��/��.ACB��/AB 2 Fb.X/. By Eq. (7.4.6), Lemma 7.4.1.iii/
and Remark 7.4.2, it is clear that .ACB��/ 2 ˆbl .X/ [resp.ˆbr .X/,ˆ

b.X/�.
So, � 62 �ei .AC B/; i D 1l; 2r; 4. This proved that

�ei .AC B/nf0g �
h
�ei .A/

[
�ei .B/

i
nf0g; i D 1l; 2r; 4: (7.4.20)

Let � 62 �ei .A/
S
�ei .B/

Sf0g; i D 5; 7l; 8r . Then .A � �/ 2 ˆb.X/

[resp.ˆbl .X/,ˆ
b
r .X/�, i.A��/ D 0 (resp. � 0, � 0), .B��/ 2 ˆb.X/ [resp.

ˆbl .X/,ˆ
b
r .X/� and i.B��/ D 0 (resp. � 0, � 0). Using Theorem 2.2.40 and

Lemma 7.4.2, we have .A � �/ .B � �/ 2 ˆb.X/ [resp. ˆbl .X/, ˆ
b
r .X/] and

i Œ.A � �/.B � �/� D 0 (resp. � 0; � 0/. Moreover, since AB�BA 2 Fb.X/.
Then by Eq. (7.4.17), we have �AB .AC B � �/ � � .AC B � �/AB 2
Fb.X/. Also, since AB 2 R.X/, then by Eq. (7.4.6), Remark 7.4.2 and
Lemma 7.4.1, we have .A C B � �/ 2 ˆb.X/ [resp. ˆbl .X/, ˆ

b
r .X/� and

i.AC B � �/ D 0. In this way we see that � 62 �ei .AC B/; i D 5; 7l; 8r ,
whence

�ei .AC B/nf0g �
h
�ei .A/

[
�ei .B/

i
nf0g; i D 5; 7l; 8r: (7.4.21)

To prove the inverse inclusions of Eqs. (7.4.20) and (7.4.21). Suppose
� 62 �ei .A C B/

Sf0g; i D 1l; 2r; 4, then .A C B � �/ 2
ˆbl .X/ Œresp.ˆbr .X/; ˆ

b.X/�. Since AB � BA 2 Fb.X/, then by Eqs. (7.4.17)
and (7.4.18), it is clear that �AB.ACB ��/��.ACB ��/AB 2 Fb.X/ and
�BA.AC B � �/ � �.AC B � �/BA 2 Fb.X/. Also, since AB 2 R.X/ and
BA 2 R.X/, then by Eqs. (7.4.6), (7.4.7), Lemma 7.4.1 and Remark 7.4.2, we
have .A� �/.B � �/ 2 ˆbl .X/ Œresp. ˆbr .X/; ˆ

b.X/� and .B � �/.A� �/ 2
ˆbl .X/ Œresp. ˆbr .X/; ˆ

b.X/�. So, by Lemma 7.4.2 and Theorem 2.2.14,
it is clear that .A � �/ 2 ˆbl .X/ Œresp. ˆbr .X/; ˆ

b.X/� and .B � �/ 2
ˆbl .X/ Œresp. ˆbr .X/; ˆ

b.X/�. Therefore � 62 �ei .A/S �ei .B/, i D 1l; 2r; 4.
This proved that Œ�ei .A/

S
�ei .B/� nf0g � �ei .A C B/nf0g, i D 1l; 2r; 4.
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Now, it remains to prove that Œ�ei .A/
S
�ei .B/� nf0g � �ei .ACB/nf0g; i D

5; 7l; 8r . Suppose � 62 �e5.A C B/
Sf0g, then .A C B � �/ 2 ˆb.X/ and

i.AC B � �/ D 0. Since AB � BA 2 Fb.X/; AB 2 R.X/ and BA 2 R.X/,
a similar reasoning as before it is clear that .A � �/ 2 ˆb.X/ and .B � �/ 2
ˆb.X/. Again, we can apply Eq. (7.4.6), Theorem 2.2.40 and Remark 7.4.2 we
have i Œ.A � �/ .B � �/� D i .A � �/ C i .B � �/ D 0. Since A is bounded
linear operator, we get �.A/ ¤ ;. As, ˆA we have i.A � �/ D 0. Again,
it is clear that i.B � �/ D 0 . We conclude � 62 �e5.A/

S
�e5.B/ whence

Œ�e5.A/
S
�e5.B/� nf0g � �e5.A C B/nf0g. So, we prove Eq. (7.4.16). Since

ˆA and ˆB are connected then, by using Theorem 7.3.1.i/, we get �e1l .A/ D
�e7l .A/, �e2r .A/ D �e8r .A/, �e1l .B/ D �e7l .B/ and �e2r .B/ D �e8r .B/.
Therefore, Œ�e8r .A/

S
�e8r .B/� nf0g � �e2r .ACB/nf0g � �e8r .ACB/nf0g

and
h
�e7l .A/

[
�e7l .B/

i
nf0g � �e1l .AC B/nf0g � �e7l .AC B/nf0g:

.v/ This assertion follows immediately from Theorem 7.3.1 and Eq.
(7.4.16). Q.E.D.

Remark 7.4.3. It follows, immediately, from Lemma 7.4.1 and Remark 7.4.2 that,
if AB 2 R.X/ and AB � BA 2 FbC.X/

S
Fb�.X/

S
Fb.X/, then BA 2 R.X/. }

7.4.2 By Means of Fredholm Inverse

Theorem 7.4.3. Let X be a Banach space and let A and B be two operators
in L.X/. Then, the following statements hold:

(i) Assume that, for each � 2 ˆA, there exists a Fredholm inverseA� of ��A such
that A�B 2 P� .X/ [see (6.4.2)]. Then, �e4.A C B/ � �e4.A/ and �e5.A C
B/ � �e5.A/.

(ii) If the hypothesis of .i/ is satisfied, and if Cn�e5.A/ and Cn�e5.A C B/ are
connected, then �e6.AC B/ � �e6.A/.

(iii) Assume that, for each � 2 ˆCA, there exists a left Fredholm inverse A�l of
��A such that BA�l 2 P� .X/. Then, �e1.ACB/ � �e1.A/ and �e7.ACB/ �
�e7.A/.

(iv) Assume that, for each � 2 ˆ�A, there exists a right Fredholm inverse A�r of
��A such thatA�rB 2 P� .X/. Then, �e2.ACB/ � �e2.A/ and �e8.ACB/ �
�e8.A/.

(v) Assume that, for each � 2 ˆ˙A, the set F.̇��A/B.X/ ¤ ;. Then, �e3.ACB/ �
�e3.A/. }
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Proof.

.i/ Suppose that � 62 �e4.A/ [resp. � 62 �e5.A/], then � 2 ˆA [resp. by Proposi-
tion 7.1.1 we have � 2 ˆA and i.� � A/ D 0]. Applying Theorem 6.4.1.i/
to the operators � � A and � � A � B , we prove that � 2 ˆACB and
i.��A/ D i.��ACB/. Therefore, � 62 �e4.ACB/ [resp. � 62 �e5.ACB/].
We obtain �e4.AC B/ � �e4.A/ and

�e5.AC B/ � �e5.A/: (7.4.22)

.ii/ The sets Cn�e5.A C B/ and Cn�e5.A/ are connected. Since A and B are
bounded operators, we deduce that �.A/ and �.A C B/ are not empty sets.
So, using Theorem 7.3.1 allows us to get �e5.A C B/ D �e6.A C B/ and
�e5.A/ D �e6.A/. Moreover, Eq. (7.4.22) gives

�e6.AC B/ � �e6.A/:

.iii/ Suppose that � 62 �e1.A/ [resp. � 62 �e7.A/], then � 2 ˆCA [resp. by
Proposition 7.3.2.i/, we get � � A 2 ˆbC.X/ and i.� � A/ � 0]. By
applying Theorem 6.4.1.ii/ to the operators � � A and � � A � B , we
prove that � 2 ˆC.ACB/ and i.� � A/ D i.� � A C B/. This proves
that � 62 �e1.AC B/ [resp. � 62 �e7.AC B/]. We find �e1.AC B/ � �e1.A/

and �e7.AC B/ � �e7.A/.
.iv/ By using a similar proof as in .iii/, by replacing �e1.:/, �e7.:/, and ˆbC.X/ by

�e2.:/, �e8.:/, andˆb�.X/, respectively, and by combining Proposition 7.3.2.ii/
and Theorem 6.4.1.iii/, we get �e2.A C B/ � �e2.A/ and �e8.A C B/ �
�e8.A/.

.v/ Let � 62 �e3.A/. Then, � 2 ˆ˙A. Since the set F.̇��A/B.X/ ¤ ;, and applying
Theorem 6.4.1.iv/ to the operators ��A and ��A�B , we have � 2 ˆ˙.ACB/.
Therefore,

�e3.AC B/ � �e3.A/:

Q.E.D.

Remark 7.4.4.

(i) The results of Theorem 7.4.3 remain valid if we suppose that A 2 C.X/ and B
is an A-bounded operator on X .

(ii) If we replace P� .X/ by J .X/, where J .X/ D fA 2 L.X/ such that 1 2 ˆ0Ag,
then we can prove the same results of Theorem 7.4.3. }
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7.4.3 By Means of Demicompact Operators

Theorem 7.4.4. Let A 2 L.X/ and B 2 L.X/. If for every � 2 ˆCA, there exists
A�l .resp. A�r/ a left .resp. right/ Fredholm inverse of .��A/ such that BA�l .resp.
A�rB/ is demicompact, then �e1.AC B/ � �e1.A/. }
Proof. Let � 2 C. If A�l is a left Fredholm inverse of .� � A/, then there exists a
compact operator K 2 K.X/, such that A�l.��A/ D I �K: Hence, we can write

� � A � B D .I � BA�l /.� � A/ � BK: (7.4.23)

In the same way, if there exists A�r , a right Fredholm inverse of .� � A/, then we
can write

� � A � B D .� � A/.I � A�rB/ �K 0B; (7.4.24)

where K 0 2 K.X/. Let � … �e1.A/. Then, .� � A/ 2 ˆbC.X/. Let A�l (resp.
A�r ) be the left (resp. the right) Fredholm inverse of .� � A/. Then, Eq. (7.4.23)
[resp. Eq. (7.4.24)] holds. Since BA�l (resp. A�rB) is demicompact, Theorem 5.4.1
implies that .I�BA�l / 2 ˆbC.X/ [resp. .I�A�rB/ 2 ˆbC.X/]. Hence, by applying
Theorem 2.2.7 to Eq. (7.4.23) [resp. Eq. (7.4.24)], we get .I � BA�l /.� � A/ 2
ˆbC.X/ [resp. .� � A/.I � A�rB/ 2 ˆbC.X/]. Since BK 2 K.X/ � FbC.X/ [resp.
K 0B 2 K.X/ � FbC.X/], .� � A � B/ 2 ˆbC.X/, hence � … �e1.A C B/. We
conclude that �e1.AC B/ � �e1.A/. Q.E.D.

Let X be a Banach space. We define the set ƒX by

ƒX D fJ 2 L.X/ such that �J is demicompact for every � 2 Œ0; 1�g:
(7.4.25)

Theorem 7.4.5. Let A 2 L.X/ and B 2 L.X/.
(i) If for every � … �ej .A/, where j 2 f2; 3; 4; 5; 7; 8g, there exists A�l .resp. A�r/

a left .resp. right/ Fredholm inverse of .� � A/ such that BA�l 2 ƒY .resp.
A�rB 2 ƒX/. Then

�ej .AC B/ � �ej .A/: (7.4.26)

(ii) If the hypothesis of .i/ is satisfied for the case of j D 5, and if ˆ0A and ˆ0ACB
are connected, then �e6.AC B/ � �e6.A/. }

Proof.

.i/ We use Eq. (7.4.23) [resp. Eq. (7.4.24)] in the same manner for the different
cases. That is why, we will give the proof of only one of them which
corresponds to j D 8. Let � … �e8.A/. Then, .� � A/ 2 ˆb�.X/ and
i.��A/ � 0. LetA�l be the left Fredholm inverse of .��A/. Then, Eq. (7.4.23)
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holds. Since BA�l 2 ƒY , .I � BA�/ 2 ˆb.X/ and i.I � BA�l / D 0, then using
both Theorem 2.2.7 and Eq. (7.4.23), we have .� � A � B/ 2 ˆb�.X/ and
i.��A�B/ � 0. Consequently, � … �e8.ACB/, which allows us to conclude
that �e8.AC B/ � �e8.A/.

.ii/ The sets ˆ0A and ˆ0ACB are connected. Since A and B are bounded operators,
we deduce that �.A/ and �.ACB/ are nonempty sets. Using Theorem 7.3.1.ii/,
we get �e5.A/ D �e6.A/ and �e5.A C B/ D �e6.A C B/. So, the inclu-
sion (7.4.26) holds for the case of j D 5, which completes the proof. Q.E.D.

Theorem 7.4.6. Let A 2 L.X/ and B 2 L.X/. If the following assertions hold:

(i) For every � 2 ˆC.ACB/nf0g, there exists H�l .resp. H�r/ a left .resp. right/
Fredholm inverse of .� � A � B/, such that ���1ABH�l .resp. ���1H�rAB/
is demicompact.

(ii) For every � 2 ˆC.ACB/nf0g, there exists G�l .resp. G�r/ a left .resp. right/
Fredholm inverse of .��A�B/, such that ���1BAG�l .resp. ���1G�rBA/ is
demicompact. Then, Œ�e1.A/

S
�e1.B/�nf0g � Œ�e1.AC B/�nf0g: }

Proof. Let � 2 Cn f0g. If there exists H�l a left Fredholm inverse of .� � A � B/,
then H�l.� � A � B/ D I �K where K 2 K.X/. Thus, using Eq. (7.4.6) we have
.� � A/.� � B/ D �.� � A � B/C ABH�l .� � A � B/C ABK, and we conclude
that

.� � A/.� � B/ D �.I C ��1ABH�l /.� � A � B/C ABK: (7.4.27)

In the same manner, we can write

.� � B/.� � A/ D �.I C ��1BAH�l /.� � A � B/C BAK: (7.4.28)

If there exists H�r a right Fredholm inverse of .� � A � B/, we can write

.� � A/.� � B/ D �.� � A � B/.I C ��1H�rAB/CK 0AB; (7.4.29)

and

.� � B/.� � A/ D �.� � A � B/.I C ��1H�rBA/CK 0BA; (7.4.30)

whereK 0 2 K.X/. Let � 2 ˆC.ACB/nf0g, and letH�l andG�l be the left Fredholm
inverses of .� � A � B/, such that ���1ABH�l and ���1BAG� are demicompact.
Applying Theorem 5.4.1, we deduce that .I C ��1ABH�l / and .I C ��1BAG�l /

are upper semi-Fredholm operators on X . Using Theorem 2.2.7, Eqs. (7.4.27) and
(7.4.28), we prove that .� � A/.� � B/ and .� � B/.� � A/ are both upper semi-
Fredholm operators. Theorem 2.2.14 completes the proof for the first case. For
the other cases, the same arguments have been used, and it is sufficient to replace
Eq. (7.4.27) by Eq. (7.4.29) and Eq. (7.4.28) by Eq. (7.4.30). Q.E.D.
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Theorem 7.4.7. Let A 2 L.X/ and B 2 L.X/. If the following assertions hold:

(i) For every � 2 ˆACBnf0g, there exists H�l .resp. H�r/ a left .resp. right/
Fredholm inverse of .� � A � B/, such that ���1ABH�l 2 ƒX .resp.
���1H�rAB 2 ƒX/.

(ii) For every � 2 ˆACBnf0g, there exists G�l .resp. G�r/ a left .resp. right/
Fredholm inverse of .� � A � B/ such that ���1BAG�l 2 ƒX .resp.
���1G�rBA 2 ƒX/.

Then, Œ�e4.A/
S
�e4.B/�nf0g � Œ�e4.AC B/�nf0g: }

Proof. It is sufficient to replace Theorem 5.4.1 by Theorem 5.4.2 in the proof of
Theorem 7.4.6. Q.E.D.

In a similar way, we prove the following theorem.

Theorem 7.4.8. Let A 2 L.X/ and B 2 L.X/. If the following assertions hold:

(i) For every � 2 ˆ�.ACB/nf0g, there exists H�l .resp. H�r/ a left .resp. right/
Fredholm inverse of .� � A � B/, such that ���1ABH�l 2 ƒX .resp.
���1H�rAB 2 ƒX/.

(ii) For every � 2 ˆ�.ACB/nf0g, there exists G�l .resp. G�r/ a left .resp. right/
Fredholm inverse of .� � A � B/, such that ���1BAG�l 2 ƒX .resp.
���1G�rBA 2 ƒX/.

Then, Œ�e2.A/
S
�e2.B/�nf0g � Œ�e2.AC B/�nf0g: }

7.5 Unbounded Linear Operators

7.5.1 Essential Spectra for the Sum of Closed and Bounded
Linear Operators

Theorem 7.5.1. Let A 2 C.X/ and B 2 L.X/. Suppose that there exist a positive
integer n and F 2 F.X/, such that B W D.An/ �! D.A/ and ABx D BAx C
Fx; for all x 2 D.An/. Then,

(i) �e4.AC B/ � �e4.A/C �e4.B/. If �e4.A/ is empty, then �e4.A/C �e4.B/ is
also an empty set.

(ii) If, in addition Cn�e4.A/, Cn�e4.B/, and Cn�e4.AC B/ are connected and if
�.A/ and �.AC B/ are nonempty sets, then �e5.AC B/ � �e5.A/C �e5.B/.

(iii) Moreover, if Cn�e5.A/, Cn�e5.B/, and Cn�e5.AC B/ are connected and if
�.A/ and �.ACB/ are nonempty sets, then �e6.ACB/ � �e6.A/C�e6.B/:}

Proof.

.i/ First, it is clear that the theorem is trivially true if we suppose that
�e4.A/C �e4.B/ constitutes the entire complex plane. Hence, let us assume
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that �e4.A/ C �e4.B/ is not the entire plane. Second, we fix a point � such
that � … �e4.A/ C �e4.B/ and we define the operator A1 as A1 WD � � A.
Hence, it is easy to verify that if � 2 �e4.B/, the element � � � will be in
ˆA which is equivalent to say that � 2 ˆA1 . In the following, we will find
a Cauchy domain D such that R0

�.A1/ and R0
�.B/ are analytic on B.D/, the

boundary of D where R0
�.:/ is defined in (2.2.7). In fact, �e4.A/ is closed

and �e4.B/ is compact. Then, there exists an open set U 	 �e4.B/ such that
B.U /, the boundary of U , is bounded and when � 2 U; .� � �/ 2 ˆA.
Therefore, �e4.B/ � U � ˆA1 . Using Theorem 2.2.50, we infer that
there exists a bounded Cauchy domain D, such that �e4.B/ � D � U .
Note that ˆ0.A1/ [resp. ˆ0.B/] does not accumulate in ˆA1 [resp. ˆB ].
So, we can choose D such that R0

�.A1/ and R0
�.B/ are analytic on B.D/.

We also claim that R0
�.A1/ is of the form TC.�/ where C.�/ is a bounded

operator-valued analytic function of � and T is a fixed bounded operator,
such that T W X �! D.A1/ D D.A/. Now, let us define the following
operators M1 and M2 as follows M1 D � 1

2i

R
CB.D/ R

0
�.A1/R

0
�.B/d� and

M2 D � 1
2i

R
CB.D/ R

0
�.B/R

0
�.A1/d�. In order to prove this assertion, we

will show that � 2 ˆACB . Hence, it is sufficient to find two Fredholm
perturbations F1 and F2, such that .� � B � A/M1 D I C F1 and
M2.� � B �A/ D I C F2 on D.A/. Now, writing the operator � � B �A as
follows .� � B � A/ D .� � � � A/ C .� � B/ D �.� � A1/ C .� � B/,
we get

.� � B � A/M1 D � 1

2i

Z

CB.D/
�.� � A1/R0

�.A1/R
0
�.B/d�

� 1

2i

Z

CB.D/
�.� � B/R0

�.A1/R
0
�.B/d�:

(7.5.1)

Obviously, .� � A1/R
0
�.A1/ D I C F, where F is a bounded finite rank

operator depending analytically on �. Then, the first integral of the above
equality is of the following form � 1

2i

R
CB.D/ �.I C F/R0

�.B/d�. Using

Theorem 2.2.54, we deduce that 1
2i

R
CB.D/ R

0
�.B/d� D I C K1, where

K1 2 K.X/. Moreover, we also mention that
R

CB.D/ �.I C F/R0
�.B/d�

is a compact operator. Hence, we infer that the first integral of (7.5.1) is
of the form I C K2, where K2 2 K.X/. Applying Lemma 6.4.2, we get
R0
�.A1/R

0
�.B/ D R0

�.B/R
0
�.A1/ C F , where F is a Fredholm perturbation.

Then, the second integral of the same equality is equal to � 1
2i

R
CB.D/ �.� �

B/R0
�.B/R

0
�.A1/d� � 1

2i

R
CB.D/.� � B/Fd�. Since

R
CB.D/ R

0
�.A1/d� is

compact (see Lemma 2.2.18), then a same reasoning as in the first part
allows us to write � 1

2i

R
CB.D/ �.� � B/R0

�.B/R
0
�.A1/d� D I CK3, where

K3 2 K.X/. Using the fact that 1
2i

R
CB.D/.� � B/Fd� is also a Fredholm

perturbation, we have .� � B � A/M1 D I C F1, F1 2 F.X/. By a similar
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argument, we obtainM2.� �B�A/ D I CF2, where F2 2 F.X/. Therefore,
.� � B � A/ 2 ˆ.X/, and we deduce that �e4.AC B/ � �e4.A/C �e4.B/.

.ii/ This assertion follows immediately from Theorem 7.3.1.i/.
.iii/ The proof of this assertion holds from Theorem 7.3.1.ii/. Q.E.D.

7.5.2 Essential Spectra for the Product of Closed and Bounded
Linear Operators

Theorem 7.5.2. Let A 2 C.X/ and B 2 ˆb.X/. Let B W D.A/ �! D.A/ and
suppose that there exists F 2 F.X/ such that ABx D BAx C Fx; for all x 2 D.A/.
Then, BA is closable and

(i) �e4.BA/ � �e4.A/�e4.B/ and �e4.AB/ � �e4.A/�e4.B/.
(ii) If, in addition, Cn�e4.BA/, Cn�e4.AB/, Cn�e4.A/, Cn�e4.B/ are connected,

and if �.A/, �.BA/, and �.AB/ are nonempty sets, then �e5.BA/ �
�e5.A/�e5.B/ and �e5.AB/ � �e5.A/�e5.B/.

(iii) Moreover, if Cn�e5.BA/, Cn�e4.AB/, Cn�e5.A/, Cn�e5.B/ are connected, and
if �.A/, �.BA/, and �.AB/ are nonempty sets, then �e6.BA/ � �e6.A/�e6.B/

and �e6.AB/ � �e6.A/�e6.B/. }
Proof.

.i/ Since the operator F is bounded and the restriction of the operator AB on D.A/
is closable, then BA is closable. Furthermore, it is clear that 0 … �e4.B/ and
�e4.B/ is not empty. So, the theorem is trivially true if �e4.A/ D C, and we
will assume, in the following, that �e4.A/ ¤ C. Now, let � be a fixed point
not in �e4.B/�e4.A/. In what follows, we will show that � 2 ˆBA. Observing
that �e4.A/ is closed, �e4.B/ is compact and 0 … �e4.B/, we infer that there
exists an open set U , with a bounded boundary B.U /, containing �e4.B/ and
satisfying that 0 … U and .� � �A/ 2 ˆ.X/; 8� 2 U . Let D be a bounded
Cauchy domain, such that �e4.B/ � D � U . Writing .� � �A/ as follows:

.� � �A/ D ��

�
1

�
� 1

�
A

�

D �

�

�

� � 1

�
A

�

; � D 1

�

and taking D0 as the image of D under the map � D 1
�

, we can assume

that R0
�.A1/ is analytic in � on B.D0/, where A1 WD 1

�
A. This assumption

holds true, thanks to the fact that 8� 2 D, 1
�

2 ˆA1 and that the operator
R0
�.A1/ is analytic in � throughout ˆA1 except for, at most, an isolated set

having no accumulation in ˆA1 . Let us define the following operators M1

and M2 as follows: M1 D � 1
2i

R
CB.D0/

1
��
R0
�.A1/R

0
1
�

.B/d� and M2 D
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� 1
2i

R
CB.D0/

1
��
R0

1
�

.B/R0
�.A1/d�. Since R.M1/ � D.A/, the operator .� �

BA/M1 is well defined, and we have.� � BA/M1 D .� � BA/M1. Moreover,

.� � BA/ D .� � B�A1/
D �B.� � A1/ � ��B C �I

D �B.� � A1/C �.I � �B/:

Then,

.� � BA/M1 D � 1

2i

Z

CB.D0/

�
1

�
B.� � A1/R0

�.A1/R
0
1
�

.B/

C
�
1

�
� B

�

R0
�.A1/R

0
1
�

.B/

�

d�:

On the one hand, the first part of the integrand can be written as follows:

Z

CB.D0/

1

�
B.��A1/R0

�.A1/R
0
1
�

.B/d� D
Z

CB.D0/

1

�
B.ICK1.�//R

0
1
�

.B/d�

D
Z

CB.D0/

1

�
BR0

1
�

.B/d�CK2

D
Z

CB.D/
1

�
BR0

�.B/d�CK2;

where Ki 2 K.X/; i D 1; 2. On the other hand, since 0 … D hence, using
Theorems 2.2.52, 2.2.54, and 2.2.55, we get 1

2i

R
CB.D/

1
�

BR0
�.B/d�DICK3,

where K3 2 K.X/. Note that the second part of the integrand can also be
written as:

Z

CB.D0/

�
1

�
� B

�

R0
�.A1/R

0
1
�

.B/d�

D
Z

CB.D0/

�
1

�
� B

�h
R0

1
�

.B/R0
�.A1/C F1

i
d�

D
Z

CB.D0/

ŒI CK4.�/�R
0
�.A1/d�C F2

D
Z

CB.D0/

R0
�.A1/d�C F3;

where K4 2 K.X/ and Fi 2 F.X/, with i D 1; 2; 3. We claim that
R0
�.A1/ is analytic in D0 except for, at most, a finite number of points. Then, by

using Lemma 2.2.18, we deduce that 1
2i

R
CB.D0/

R0
�.A1/d� D K5 2 K.X/.
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Therefore, .� � BA/M1 D I C F4, where F4 2 F.X/. Now, we can easily
check that D.BA/ � D.AB/ and BAx D ABx C Fx 8x 2 D.BA/. Hence,

.� � BA/ D �B.� � A1/C �.I � �B/
D �.� � A1/B C �.I � �B/C F5;

where F5 2 F.X/. Then,

M2.� � BA/

D 1

2i

Z

CB.D0/

1

��
R0

1
�

.B/R0
�.A1/ Œ�.� � A1/B C �.I � �B/C F5� d�

D � 1

2i

Z

CB.D0/

1

�
R0

1
�

.B/ .I CK6/Bd� �

1

2i

Z

CB.D0/

1

��

�
R0
�.A1/R

0
1
�

.B/ � F1
	
.�.I � �B/C F5/ d�

D
�
1

2i

Z

CB.D/
1

�
R0
�.B/d�

�

B CK7 �

1

2i

Z

CB.D0/

R0
�.A1/R

0
1
�

.B/

�
1

�
� B

�

d�C F6

D I C F7 � 1

2i

Z

CB.D0/

R0
�.A1/.I CK8/d�

D I C F8;

where Ki 2 K.X/, with i D 6; 7 and Fi 2 F.X/, with i D 6; 7; 8.
Therefore, we conclude that .� � BA/ 2 ˆ.X/, and the proof of the first
inclusion is completed. Now, in order to show that �e4.AB/ � �e4.B/�e4.A/,
we will prove that .� � AB/ 2 ˆ.X/. Since R.M1/ � D.A/ and ABx D
BAx�Fx for all x 2 D.A/, we obtain .��AB/M1 D .��BACF /M1 D .��
BA/M1C FM1 D I CF4CF9 D I CF10, where Fi 2 F.X/, with i D 9; 10.
Furthermore, we have M2.� � AB/ D M2 Œ�.� � A1/B C �.I � �B/� D
I C F11, where F11 2 F.X/. Hence, .� � AB/ 2 ˆ.X/ and, we deduce
that �e4.AB/ � �e4.A/�e4.B/.

.ii/ The proof of this assertion holds from Theorem 7.3.1.i/.
.iii/ This assertion follows immediately from Theorem 7.3.1.ii/. Q.E.D.
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7.5.3 Invariance of the Essential Spectra

Theorem 7.5.3. Let A 2 C.X/ and let J be an operator on X . The following
statements are satisfied.

(i) If J 2 UAF.X/, then �ei.A/ D �ei.ACJ /; i D 4; 5. Moreover, if Cn�e5.A/ is
connected and neither �.A/ nor �.ACJ / is empty, then �e6.A/ D �e6.ACJ /.
Besides,

(ii) if J 2 UAFC.X/, then �e1.A/ D �e1.AC J /,
(iii) if J 2 UAF�.X/, then �e2.A/ D �e2.AC J /, and
(iv) if J 2 UAFC.X/

T
UAF�.X/, then �e3.A/ D �e3.AC J /. }

Proof. The items .ii/, .iii/, .iv/ and the first part of .i/ for i D 4 are obtained
immediately by using Lemma 6.3.1. So, they are omitted. Next, we prove the
statement .i/ for i D 5. If � 62 �e5.A/ then, by using Proposition 7.1.1, � 2 ˆA
and i.� � A/ D 0. Since J 2 UAF.X/, and applying Lemma 6.3.1.i/, we deduce
that � 2 ˆACJ and i.� � A � J / D 0 and therefore, � 62 �e5.A C J /. Thus,
�e5.A C J / � �e5.A/. Similarly, if � 62 �e5.A C J /, then using Lemma 6.3.1.i/
and arguing as above, we get �e5.A/ � �e5.AC J /. Q.E.D.

Corollary 7.5.1. Let X be a Banach space and A 2 C.X/. The following
statements are satisfied.

(i) If �e5.A/ or �e6.A/ is empty, then �.A C J / D �p.A C J /, for every J 2
UAF.X/.

(ii) If �e1.A/ is empty, then �.A C J / D �p.A C J /
S
�r.A C J /, for every

J 2 UAFC.X/.
(iii) If �e2.A/ is empty, then �.A C J / D �p.A C J /

S
�r.A C J /, for every

J 2 UAF�.X/.
(iv) If �e3.A/ is empty, then �.A C J / D �p.A C J /

S
�r.A C J /, for every

J 2 UAFC.X/
T

UAF�.X/.
(v) If �e4.A/ is empty, then �.A C J / D �p.A C J /

S
�r.A C J /, for every

J 2 UAF.X/. }
Proof. This corollary follows immediately from Theorem 7.5.3 and from the facts

that �c.A/ �
6T

iD1
�ei.A/, and �r.A/ � �e5.A/ � �e6.A/: Q.E.D.

The following result may be found in [217].

Proposition 7.5.1. Let A 2 C.X/. If �e6.A/ D �e5.A/, then for each J 2 F.X/,
there is, at most, a countable set U of complex numbers, such that �e6.AC �J / D
�e6.A/ for � … U . If Cn�e6.A/ consists of a finite number of components, then U is
discrete. }
Proof. Let � be a complex number. Since �J 2 F.X/, and applying Theorem 7.5.3,
we get �e5.A C �J / D �e5.A/ D �e6.A/. Let † be an arbitrary component of
Cn�e6.A/ D �6.A/ and let �0 be any point of †. By definition of �6.:/, there is
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a neighborhood of �0, V�0 , such that V�0nf�0g � �.A/. Let �1 2 V�0nf�0g �
�.A/. Then, by using Lemma 6.3.1.i/ for all � , �1 2 ˆ0AC�J . Now, by applying
Lemma 6.3.1.i/, we conclude that, for � is not in a discrete set U , ˛.�1�A��J / D
ˇ.�1 � A � �J / D 0, i.e., �1 2 �.AC �J /. Since † � ˆAC�J , it cannot contain
any point of the set �e6.AC �J /. Since Cn�e6.A/ consists of, at most, a countable
number of components, the proof is complete. Q.E.D.

In general, Theorem 7.5.3 cannot be directly used in applications (see Chap. 13).
So, we give, in the following theorem (see [217]), some practical criteria which
guarantee the invariance of the various essential spectra by Fredholm and semi-
Fredholm perturbations.

Theorem 7.5.4. Let A;B 2 C.X/ and let � 2 �.A/
T
�.B/. The following

statements are satisfied.

(i) If .��A/�1�.��B/�1 2 Fb.X/, then �ei.A/ D �ei.B/; i D 4; 5:Moreover,
(ii) if .� � A/�1 � .� � B/�1 2 FbC.X/, then �e7.A/ D �e7.B/ and �e1.A/ D

�e1.B/,
(iii) if .� � A/�1 � .� � B/�1 2 Fb�.X/, then �e8.A/ D �e8.B/ and �e2.A/ D

�e2.B/, and
(iv) if .� � A/�1 � .� � B/�1 2 FbC.X/

T
Fb�.X/, then �e3.A/ D �e3.B/.

(v) If A, B 2 L.X/ and .��A/�1 � .��B/�1 is a compact operator commuting
with A or B , then, �e6.A/ D �e6.B/. }

Proof. Without loss of generality, we may assume that � D 0. Hence, 0 2 �.A/

and therefore, ��A D ��.��1 �A�1/A, � ¤ 0. Since A is one-to-one and onto,
then ˛.��A/ D ˛.��1 �A�1/ and R.��A/ D R.��1 �A�1/. This shows that
� 2 ˆCA (resp. ˆ�A) if, and only if, ��1 2 ˆCA�1 (resp. ˆ�A�1 ). Similarly, we
have � 2 ˆA if, and only if, ��1 2 ˆA�1 .

.i/ If A�1 � B�1 2 Fb.X/, then using Lemma 6.3.1.i/, we conclude that ˆA D
ˆB and i.� � A/ D i.� � B/ for all � 2 ˆA.

.ii/ and .iii/ If A�1 � B�1 2 FbC.X/ [resp. Fb�.X/], then using Lemma 6.3.1.ii/
[resp. Lemma 6.3.1.iii/], we conclude that ˆCA D ˆCB (resp. ˆ�A D ˆ�B/
and i.��A/ D i.��B/, for each � 2 ˆCA (resp. ˆ�A/. This concludes the
proof of .ii/ [resp. .iii/].

.iv/ Using .ii/; .iii/ and Lemma 6.3.1.iv/, we have ˆ�A
S
ˆCA D ˆ�B

S
ˆCB .

This ends the proof of .iv/.
.v/ Without loss of generality, we suppose that � D 0. Hence, 0 2 �.A/

T
�.B/

from the fact that A�1 � B�1 D K, where K 2 K.X/. Since KB D BK, then
�e6.A

�1/ D �e6.B
�1 CK/ D �e6.B

�1/. Now, if we apply Corollary 2.2.1 to
both A and B , we notice that �e6.A/ D �e6.B/. Q.E.D.

Corollary 7.5.2. Let A 2 C.X/ and let J be an A-bounded operator on X , and
also assume that there is a complex number � 2 �.A/, such that r� .J.��A/�1/ < 1
where r� .A/ is the spectral radius of A. Then,

(i) If J.� � A/�1 2 Fb.X/, then �ei.A/ D �ei.AC J /; i D 4; 5:
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(ii) If J.� � A/�1 2 FbC.X/, then �e1.A/ D �e1.AC J /:

(iii) If J.� � A/�1 2 Fb�.X/, then �e2.A/ D �e2.AC J /:

(iv) If J.� � A/�1 2 FbC.X/
T

Fb�.X/, then �e3.A/ D �e3.AC J /. }
Proof. Let � 2 �.A/. Since J is A-bounded, and according to Remark 2.1.4.iv/,
J.� � A/�1 is a closed linear operator defined on all X and therefore, bounded
by the closed graph theorem (see Theorem 2.1.3). Moreover, the assumption
r� .J.��A/�1/ < 1 implies that � 2 �.AC J / and .��A� J /�1 � .��A/�1 DP

n�1.� � A/�1ŒJ.� � A/�1�n. Clearly, if J.� � A/�1 2 Fb.X/ [resp. FbC.X/,
Fb�.X/, FbC.X/

T
Fb�.X/], then the closedness of Fb.X/ [resp. FbC.X/, Fb�.X/,

FbC.X/
T

Fb�.X/] and the use of Theorem 6.3.4 (resp. Theorem 6.3.3) imply that
.� � A � J /�1 � .� � A/�1 2 Fb.X/ [resp. FbC.X/, Fb�.X/, FbC.X/

T
Fb�.X/].

Now, the items .i/–.iv/ follow immediately from Theorem 7.5.4. Q.E.D.

Let A 2 C.X/. A complex number � is in ˆ�CA, ˆC
�A, ˆlA, ˆrA, WlA or WrA if

� � A is in ˆ�C.X/, ˆC� .X/, ˆl.X/, ˆr.X/, Wl .X/ or Wr .X/, respectively. A is
said to be a Weyl operator if A is Fredholm operator having index 0. We first prove
the following useful stability result.

Theorem 7.5.5. Let A 2 C.X/ and B 2 C.X/. If there exists �0 2 �.A/
T
�.B/

such that .A � �0/
�1 � .B � �0/

�1 2 R.X/, then the following statements are
satisfied.

(i) If .A � �0/�1 .B � �0/�1 � .B � �0/�1 .A � �0/�1 2 FbC.X/, then �ei .A/ D
�ei .B/, i D 1; 7.

(ii) If .A � �0/�1 .B � �0/�1 � .B � �0/�1 .A � �0/�1 2 Fb�.X/, then �ei .A/ D
�ei .B/, i D 2; 8.

(iii) If .A � �0/�1 .B � �0/�1� .B � �0/�1 .A � �0/�1 2 FbC.X/
T

Fb�.X/, then
�e3.A/ D �e3.B/.

(iv) If .A � �0/�1 .B � �0/�1 � .B � �0/�1 .A � �0/�1 2 Fb.X/, then �ei .A/ D
�ei .B/, i D 1l; 2r; 4; 5; 7l; 8r .

(v) If the hypothesis of .iv/ is satisfied and if Cn�e5.A/ and Cn�e5.B/ are
connected, then �e6.A/ D �e6.B/. }

Proof. Let R 2 R.X/ such that .A � �0/�1 D .B � �0/�1 CR. Then,

R.B � �0/�1 � .B � �0/�1R D .A � �0/�1.B � �0/�1 � .B � �0/�1.A � �0/�1:

.i/ Since .A � �0/
�1.B � �0/

�1 � .B � �0/
�1.A � �0/

�1 2 FbC.X/, applying
Lemma 7.4.1.i/, we find that ˆC.A��0/�1 D ˆC.B��0/�1 and ˆ�

C.A��0/�1 D
ˆ�

C.B��0/�1 . Again, applying Theorem 7.3.2 we infer that ˆCA D ˆCB and
ˆ�CA D ˆ�CB .

.ii/ A similar reasoning as before.
.iii/ Since the equalities �e3.A/D�e1.A/T �e2.A/ and �e3.B/ D �e1.B/

T
�e2.B/

are known and .A � �0/
�1.B � �0/

�1 � .B � �0/
�1.A � �0/

�1 2
FbC.X/

T
Fb�.X/, then by .i/ and .ii/ we deduce that �e3.A/ D �e3.B/.
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.iv/ Since .A � �0/
�1.B � �0/

�1 � .B � �0/
�1.A � �0/

�1 2 Fb.X/, then by
Lemma 7.4.1.iii/, Remark 7.4.2 and Theorem 7.3.2.i/, we have �ei .A/ D
�ei .B/, i D 1l; 2r; 4; 5; 7l; 8r .

.v/ The sets Cn�e5.A/ and Cn�e5.B/ are connected. So, using Theorem 7.3.1, we
deduce that �e5.A/ D �e6.A/ and �e5.B/ D �e6.B/. So, .iv/ gives �e6.A/ D
�e6.B/. Q.E.D.

Theorem 7.5.6. Let A; B 2 L.X/ and let � 2 �.A/T �.B/. If .� � A/�1 � .� �
B/�1 is a compact operator commuting with A or B , then �es.A/ D �es.B/. }
Proof. By using Theorem 5.1.4, we infer that �es..��A/�1/ D �es..��B/�1/ and,
according to Proposition 7.3.1, we have �es.A/ D �es.B/. Q.E.D.

By virtue of the Proposition 7.3.1, we have

Theorem 7.5.7. Let T , S 2 L.X/, and let � 2 �.T /
T
�.S/. Suppose that one of

the following conditions holds

(i) .� � T /�1 � .� � S/�1 is a quasi-nilpotent operator commuting with T or S .
(ii) If there exists " > 0, such that

�
�.� � T /�1 � .� � S/�1�� < ".

Then �i .T / D �i .S/; i D se; es. }
Theorem 7.5.8. Let X be a Banach space satisfying the Dunford–Pettis property.
LetA 2 L.X/ and letB be a positive bounded operator onX . If for some � 2 �.A/,
r� Œ.��A/�1B� < 1, and the operators .��A/�1B 1

2 and B
1
2 .��A/�1 are weakly

compact on X , then �es.AC B/ D �es.A/. }
Proof. Let � 2 �.A/ such that r� Œ.��A/�1B� < 1, then � 2 �.ACB/ and we have
.� � A � B/�1 � .� � A/�1 D .� � A/�1PC1

nD1ŒB.� � A/�1�n. All terms of this
series contain the term .��A/�1B.��A/�1. Besides, .��A/�1B.��A/�1 D .��
A/�1B 1

2 B
1
2 .��A/�1 is a composition of two weakly operators on the Banach space

X which satisfy the Dunford–Pettis property. From Lemma 2.1.13.i/, it follows that
.� � A/�1B.� � A/�1 is a compact operator commuting with .� � A/�1. Hence,
.� � A � B/�1 � .� � A/�1 is a compact operator. Theorem 7.5.6 implies that
�es.AC B/ D �es.A/. Q.E.D.

In the following results, we will compare between the essentially semi-regular
spectrum of A and AC B , where A is the generator of a one-parameter semigroup
and B is a small perturbation.

Theorem 7.5.9. Let A; B 2 L.X/ such that A is a generator of a C0-semigroup
.T .t//t�0 on X . Then, �es.AC B/ D �es.A/. }
Proof. There exists a norm j:j on X such that kxk � jxj � Mkxk for x 2
X , jT .t/j � ewt and

�
�.A � �/�1�� � 1

��w for Re� > w. Thus, for � >

w C jBj the bounded operator B.A � �/�1 satisfies jB.A � �/�1j < 1 and
therefore, jI � B.A � �/�1j < 1 is invertible for � > w C jBj. Now, let
Q D .A � �/�1ŒI � B.A � �/�1� D .A � �/�1PC1

nD0ŒB.A � �/�1�n: Then, .� �
A � B/Q D ŒI � B.A � �/�1/��1 � B.A � �/�1ŒI � B.A � �/�1/��1 D I , and
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Q.� � A � B/x D .A � �/�1.� � A � B/x

C
C1X

nD1
.A � �/�1ŒB.A � �/�1�n.� � A � B/x

D x � .A � �/�1Bx C
C1X

nD1
.A � �/�1ŒB.A � �/�1�nx

�
C1X

nD2
.A � �/�1ŒB.A � �/�1�nx;

Then, Q.� � A � B/x D x. Therefore, the resolvent of A C B exists for
� > w C jBj and it is given by Q. Moreover, j.� � A � B/�1j D j.A �
�/�1

PC1
nD1ŒB.A � �/�1�nj � 1

.��w�jBj/ . Since j.A��/�1�.B�A��/�1j � 1
.��w/C

1
.��w�jBj/ , then we have the following lim

Re�!1 j.A � �/�1 � .B � A � �/�1j D 0,

and hence, from Theorem 7.5.7, we get �es.AC B/ D �es.A/. Q.E.D.

We also have the following useful stability result for the Gustafson, Weidmann,
Rakoc̆ević, and Schmoeger essential spectra.

Theorem 7.5.10. Let A, B 2 C.X/. Assume that there are A0, B0 2 L.X/ andK1,
K2 2 K.X/, such that

AA0 D I �K1 (7.5.2)

BB0 D I �K2: (7.5.3)

(i) If 0 2 ˆATˆB and A0 � B0 2 FbC.X/

resp: A0 � B0 2 Fb�.X/

�
, then

�e1.A/ D �e1.B/ Œresp: �e2.A/ D �e2.B/� : (7.5.4)

Moreover, if i.A/ D i.B/, then �e7.A/ D �e7.B/ Œresp: �e8.A/ D �e8.B/�.
(ii) If 0 2 ˆATˆB and A0 � B0 2 FbC.X/

T
Fb�.X/, then �e3.A/ D �e3.B/: }

Proof. Let � be a complex number, Eqs. (7.5.2) and (7.5.3) imply

.� � A/A0 � .� � B/B0 D K1 �K2 C �.A0 � B0/: (7.5.5)

.i/ If � 62 �e1.B/ Œresp: �e2.B/�, then .� � B/ 2 ˆC.X/ Œresp: ˆ�.X/�.
Let XB D .D.B/; k:kB/ be a Banach space for the graph norm k:kB . It is clear
that B 2 L.XB;X/. We can regard B as an operator from XB into X . This
will be denoted by OB . Using Eq. (6.3.5) we can show that �� OB 2 ˆbC.XB;X/
[resp. ˆb�.XB;X/]. Besides, since K2 2 K.X/, Eq. (7.5.3), Lemma 3.1.2 and
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Theorem 2.2.42 imply that B0 2 ˆb.X;XB/ and consequently, .� � OB/B0 2
ˆbC.X/


resp: ˆb�.X/

�
. Since A0 �B0 2 FbC.X/


resp: Fb�.X/

�
andK1 �K2

is compact, then by using Eq. (7.5.5) and Lemma 6.3.1.ii/, we can prove that
.� � OA/A0 2 ˆbC.X/


resp: ˆb�.X/

�
, and

i..� � OA/A0/ D i..� � OB/B0/: (7.5.6)

Using a similar reasoning as before, the combination of Eqs. (7.5.2), (7.5.3),
Lemma 3.1.2 and Theorem 2.2.42 shows that A0 2 ˆb.X;XA/. By referring
to Theorem 2.2.6, we can write

A0S D I � F on XA; (7.5.7)

where S 2 L.XA;X/ and F 2 K.XA/. By using Eq. (7.5.7), we have

.� � OA/A0S D .� � OA/ � .� � OA/F: (7.5.8)

Since S 2 ˆb.XA;X/, and using Eq. (7.5.8) and Theorem 2.2.43, we show that
.� � OA/A0S 2 ˆbC.XA;X/ [resp. using Theorem 2.2.13.i/, we show that
.� � OA/A0S 2 ˆb�.XA;X/]. Applying Lemma 6.3.1.ii/, we can prove
that .� � OA/ 2 ˆbC.XA;X/ [resp. applying Lemma 6.3.1.iii/ we prove
that .� � OA/ 2 ˆb�.XA;X/]. By using Eq. (6.3.5), we have .� � A/ 2
ˆC.X/ [resp. ˆ�.X/]. Hence, � 62 �e1.A/ [resp. �e2.A/], and consequently
�e1.A/ � �e1.B/ Œresp: �e2.A/ � �e2.B/�. The inverse inclusion follows by
symmetry and the proof of Eq. (7.5.4) is complete. Now, we prove �e7.A/ D
�e7.B/ Œresp: �e8.A/ D �e8.B/�. If � 62 �7.B/ [resp: �e8.B/], then by Proposi-
tion 7.3.2, .��B/ 2 ˆC.X/ and i.��B/ � 0 (resp.ˆ�.X/ and i.��B/ � 0).
By the first result, we have .� � A/ 2 ˆC.X/ [resp. ˆ�.X/]. Since K1,
K2 2 K.X/, then by using Eqs. (7.5.2), (7.5.3) and Theorem 2.2.40, we have
i.A/ C i.A0/ D i.I � K1/ D 0, i.B/ C i.B0/ D i.I � K2/ D 0, since
i.A/ D i.B/, then i.A0/ D i.B0/. Using Eqs. (6.3.5), (7.5.6), Lemma 6.3.1
and Theorem 2.2.40, we can write i.� � A/ C i.A0/ D i.� � B/ C i.B0/.
Therefore, i.� � A/ � 0 (resp. i.� � A/ � 0). We conclude that � 62 �e7.A/

[resp. �e8.A/]. Therefore, we prove the inclusion �e7.A/ � �e7.B/ [resp.
�e8.A/ � �e8.B/]. The opposite inclusion follows by symmetry. Therefore,
�e7.A/ D �e7.B/ [resp. �e8.A/ D �e8.B/].

.ii/ We know that �e3.A/ D �e1.A/
T
�e2.A/, and using .i/, we have �e1.A/ D

�e1.B/ and �e2.A/ D �e2.B/. Therefore, �e3.A/ D �e3.B/. Q.E.D.
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7.5.4 Characterization of the Rakoc̆ević and Schmoeger
Essential Spectra

We give a characterization of the essential approximate point spectrum (resp.
the essential defect spectrum) by means of upper (resp. lower) semi-Fredholm
operators. Now, we are ready to express the first result of this section.

Theorem 7.5.11. Let X be a Banach space and A 2 C.X/ with a nonempty
resolvent set. Then,

(i) �e7.A/ D
\

K2DA.X/

�ap.ACK/,

where DA.X/ WD fK 2 C.X/ such that K is A-bounded and K.� � A/�1 2
FbC.X/; for some � 2 �.A/g.

(ii) �e8.A/ D
\

K2Fb
�
.X/

�ı.ACK/: }

Proof.

.i/ Since K.X/ � DA.X/, we infer that
T
K2DA.X/

�ap.A C K/ � �e7.A/:

Conversely, let � … T
K2DA.X/

�ap.A C K/, then there exists K 2 DA.X/,
such that

inf
kxkD1; x2D.A/

k.� � A �K/xk > 0:

The use of Theorem 2.2.1 enables us to conclude that � � A � K 2 ˆC.X/.
Since Y WD R.� � A � K/ is a closed subspace of X , then Y itself is also a
Banach space with the same norm. Therefore, .�� OA� OK/�1 2 L.Y;XA/. Let
� 2 �.A/ such that K.� � A/�1 2 FbC.X/. Then, we have

OK.�� OA� OK/�1 D OK.�� OA/�1ŒI C .���C OK/.�� OA� OK/�1�; (7.5.9)

where I denotes the embedding operator which maps every x 2 Y onto the
same element inX . Since .���C OK/ 2 L.XA;X/, and OK.�� OA/�1 2 FbC.X/,
then from Theorem 6.3.1.ii/ and Eq. (7.5.9), it follows that

OK.� � OA � OK/�1 2 FbC.Y;X/: (7.5.10)

Clearly, N.I/ D f0g and R.I/ D Y . So, I 2 ˆbC.Y;X/ and i.I/ � 0.
Therefore, we can deduce, from (7.5.10) and Lemma 6.3.1, that

IC OK.�� OA� OK/�1 2 ˆbC.Y;X/ and i.IC OK.�� OA� OK/�1/ � 0: (7.5.11)
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This allows us to write �� OA in the form �� OA D .I C OK.�� OA� OK/�1/.��
OA� OK/ and, by using (7.5.11) and Theorem 2.2.7, we get �� OA 2 ˆbC.XA;X/

and i.� � OA/ � 0. Now, using Eq. (6.3.5), we infer that � � A 2 ˆC.X/ and
i.� � A/ � 0. Finally, the use of Proposition 7.3.2 shows that � … �e7.A/,
which proves the assertion .i/.

.ii/ Since K.X/ � Fb�.X/, then
T
K2Fb

�
.X/ �ı.A C K/ � �e8.A/. It remains to

demonstrate that �e8.A/ � T
K2F�.X/

�ı.A C K/. To do this, we consider

� … T
K2Fb

�
.X/ �ı.A C K/. Then, there exists F 2 Fb�.X/ such that � …

�ı.AC F /. Thus, � � A � F is surjective. Hence, � � A � F 2 ˆ�.X/ and
i.��A�F / D ˛.��A�F / � 0. Therefore, by using Lemma 6.3.1.iii/, we
deduce that ��A 2 ˆ�.X/ and i.��A/ D i.��A� F / � 0. We conclude
the proof by using Proposition 7.3.2. Q.E.D.

Remark 7.5.1.

(i) From Theorem 7.5.11, it follows immediately that �e7.A C K/ D �e7.A/ for
all K 2 DA.X/ and �e8.ACK/ D �e8.A/, for all K 2 Fb�.X/.

(ii) Let A 2 C.X/. If �e8.A/ D ;, then for all K 2 F�.X/, �.A C K/ D
�p.ACK/. }

Corollary 7.5.3. Let X be a Banach space and let M.X/ be any subset of L.X/.
Then

(i) If K.X/ � M.X/ � DA.X/, then,

�e7.A/ D
\

K2M.X/

�ap.ACK/:

(ii) If K.X/ � M.X/ � Fb�.X/, then

�e8.A/ D
\

K2M.X/

�ı.ACK/:

}
Remark 7.5.2. It follows immediately, from Corollary 7.5.3, that

(i) �e7.ACK/ D �e7.A/ for allK 2 M.X/, such that K.X/ � M.X/ � DA.X/.
(ii) �e8.A C K/ D �e8.A/ for all K 2 M.X/, such that K.X/ � M.X/ �

Fb�.X/. }
In the next theorem, we will give a characterization of �e8.�/ by means ofA-bounded
perturbations.

Theorem 7.5.12. Let X be a Banach space and A 2 C.X/ with a nonempty
resolvent set. Then,
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�e8.A/ D
\

K2HA.X/

�ı.ACK/;

where HA.X/ WD fK 2 C.X/; such that K is A-bounded and ..� � A/�1 OK/� 2
FbC..XA/�/; for some � 2 �.A/g: }
Proof. Let O WD T

K2HA.X/
�ı.ACK/. We infer that O � �e8.A/: Indeed, ifK is a

compact operator on X , then OK 2 K.XA;X/. Hence, ..��A/�1 OK/� 2 K..XA/�/,
since .� � A/�1 2 L.X;XA/. Using the fact that K..XA/�/ � FbC..XA/�/,
it follows that K.X/ � HA.X/. Conversely, let � … O. Then, there exists
K 2 HA.X/, such that � � A � K is surjective. Thus, � � A � K 2 ˆ�.X/ and
ˇ.��A�K/ D 0. Therefore, �� OA� OK 2 ˆb�.XA;X/. Hence, �� . OA/� � . OK/� 2
ˆbC.X�; .XA/�/ and ˛.��. OA/��. OK/�/ D 0. Now, by following the same reasoning
as in the proof of Theorem 7.5.11.i/, we deduce that � � . OA/� 2 ˆbC.X�; .XA/�/
and i.� � . OA/�/ � 0. This, together with Eq. (6.3.5), allows us to conclude
that � � A 2 ˆ�.X/ and i.� � A/ � 0. Finally, the result follows from
Proposition 7.3.2. Q.E.D.

7.6 Invariance of the Kato Spectrum by Commuting
Nilpotent Perturbation

We start by gathering some results, which will be used to demonstrate that the Kato
spectrum of an operator is stable by a commuting nilpotent perturbation. We begin
this section by the following results:

Proposition 7.6.1. Let A 2 L.X/ and let Q be a nilpotent operator commuting
with A. Then, A C Q is a nilpotent operator if, and only if, A is a nilpotent
operator. }
Proof. Let us assume that A is a nilpotent operator. Let r; s be the non-negative
integers such that Ar D 0 ¤ Ar�1 and Qs D 0 ¤ Qs�1. Let m D max.r; s/. Then,

.ACQ/2m D C0
2mA

2mC� � �CCm
2mQ

mAmCCmC1
2m QmC1Am�1C� � �CC2m

2mQ
2m D 0:

Hence,ACQ is a nilpotent operator. For the converse statement, we use the relation
A D .ACQ/ �Q. Q.E.D.

Lemma 7.6.1. Let A 2 L.X/. A is a Kato type operator if, and only if, there exists
a closed subspace V of X such that A.V / D V and the operator OA W X=V �!
X=V induced by A is a direct sum of a bounded below operator and a nilpotent
operator. }
Proof. If A is semi-regular, we use Theorem 2.2.34 by taking the zero operator as
the nilpotent operator. If A is a nilpotent operator, we take V D f0g. Now, suppose
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that A is neither semi-regular, nor nilpotent with admits a Kato decomposition
.M;N /. Then, set V D R1.A/. It is well known, according to Theorem 2.2.35,
that V is closed, V � M and A.V / D V . Furthermore, X=V D M=V ˚ N=V ,
OA.M=V / � M=V and OA.N=V / � N=V . Let us denote by OA1 (resp. OA2) the

restriction of OA on M=V (resp. N=V ). Then, we have OA D OA1 ˚ OA2. Since AN is a
nilpotent operator, then OA2 is also a nilpotent operator and by using Theorem 2.2.34,
OA1 is bounded below because AM is semi-regular. Conversely, let V be a closed

subspace of X with A.V / D V and OA is decomposed according to X=V D
M=V˚N=V and the parts OA1 and OA2 are bounded below and nilpotent, respectively,
where M , N are two closed subspaces of X . The fact that A.V / D V , allows us to
prove easily that .M;N / is a Kato decomposition ofA and hence,A is an operator of
Kato type. Q.E.D.

We recall a result due to Kordula and Muller [192].

Theorem 7.6.1. LetQ, A 2 L.X/, QA D AQ, and let A be a quasi-nilpotent. Then
�se.ACQ/ D �se.A/ and �es.ACQ/ D �es.A/. }
Now, we show that the operators of Kato type are stable under commuting nilpotent
perturbations.

Theorem 7.6.2. Let A 2 L.X/, and let AQ D QA, whereQ is a nilpotent operator
on X . Then �k.ACQ/ D �k.A/. }
Proof. Let A be an operator of Kato type and let Q be a nilpotent operator
commuting with A. If A is semi-regular, we apply the Theorem 7.6.1, and if A
is a nilpotent operator we apply Proposition 7.6.1. Now, let us suppose that A is
neither semi-regular nor nilpotent. Let us denote V D R1.A/, A1 D AV and
OA W X=V �! X=V induced by A. Clearly Q.V / � V , so that we can define

the operators Q1 D QV and OQ W X=V �! X=V induced by Q. Obviously,
Q1 and OQ are nilpotent operators. Further, A1Q1 D Q1A1 and OA OQ D OQ OA.
By using the stability of �ap.A/ and �ı.A/ under nilpotent perturbation, we have
�ı.A1 C Q1/ D �ı.A1/, �ap. OA C OQ/ D �ap. OA/ and �. OA C OQ/ D �. OA/. Hence,
0 … �ı.A1 CQ1/ and so, .ACQ/.V / D V . By using Lemma 7.6.1, OA D OA1 ˚ OA2,
where OA1 is bounded below and OA2 is a nilpotent operator. Hence, �ap. OA C OQ/ D
�ap. OA/ D �ap. OA1/S �ap. OA2/ and �. OAC OQ/ D �. OA/ D �. OA1/S �. OA2/. Moreover,
�ap. OA2/ D �. OA2/ D f0g and 0 … �ap. OA1/ � �. OA1/. This implies that �. OA/ and
hence �. OA C OQ/ is separated in two disjoint parts �. OA1/ and �. OA2/. By using
Theorem 2.2.37, we have a decomposition of OA (and hence of OA C OQ) according
to the decomposition of X=V in such a way that �.. OA C OQ/M=V / D �. OA1/
and �.. OA C OQ/N=V / D �. OA2/, where M , N are two closed subspaces of X .
Thus . OA C OQ/N=V is a nilpotent operator and �ap.. OA C OQ/M=V / D �ap. OA1/, i.e.,
. OAC OQ/M=V is bounded below. This shows that OAC OQ is a direct sum of bounded
below operator and a nilpotent operator. Then by using Lemma 7.6.1, we deduce
that ACQ is an operator of Kato type. Q.E.D.

Theorem 7.6.3. Let A;B 2 L.X/. If � 2 �.A/T �.B/, such that .��A/�1�.��
B/�1 is a nilpotent operator commuting with A and B , then �k.A/ D �k.B/. }
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Proof. The assumptions of Theorem 7.6.2 imply that �k..� � A/�1/ D �k..� �
B/�1/ and by using Theorem 7.3.2, we have �k.A/ D �k.B/. Q.E.D.

7.7 Invariance of Schechter’s Essential Spectrum

7.7.1 Characterization of Schechter’s Essential Spectrum

Definition 7.7.1. Let X be a Banach space, A 2 C.X/, �.A/ 6D ; and let F be
an A-defined linear operator on X . We say that F is an A-resolvent Fredholm
perturbation if .� � OA/�1 OF 2 Fb.XA/ for some � 2 �.A/. }
Let ARF.X/ designate the set of A-resolvent Fredholm perturbations.

Remark 7.7.1. In the definition of the set ARF.X/, we may notice the following:
If an operator satisfies the required condition for a fixed � 2 �.A/, then it satisfies
it for every � 2 �.A/. }
Let I denote the imbedding operator which maps every x 2 XA onto the same
element x 2 XACF . Clearly, we have N.I/ D f0g and R.I/ D XACF . Let
J .XA;XACF / the set

J .XA;XACF / WD ˚
F 2 L.XA;XACF / such that I � F 2 ˆb.XA;XACF / and

i.I � F / D 0


:

Definition 7.7.2. Let X be a Banach space, A 2 C.X/, and let F be an A-defined
linear operator on X and �.ACF / 6D ;. We say that F is an A-resolvent Fredholm
perturbation with zero index, if .� � OA � OF /�1 OF 2 J .XA;XACF / for all � 2
�.AC F /. }
Let AJ .X/ designate the set of A-resolvent Fredholm perturbations with zero
index.

Remark 7.7.2.

(i) For all � 2 �.A/, the operator .� � OA/�1 2 L.X;XA/. In fact, let x 2 X and
let y D .� � A/�1x. From the estimate

kykA D kyk C k OAyk
D kyk C k�y � xk
D k.� � OA/�1xk C k�.� � OA/�1x � xk
�
�
1C .1C j�j/k.� � OA/�1k

	
kxk;

it follows that .� � OA/�1 2 L.X;XA/.
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(ii) If F is an A-Fredholm perturbation, then F is also an A-resolvent Fredholm
perturbation. In fact, if F 2 AF.X/, then OF 2 Fb.XA;X/. By using
Remark 7.7.2.i/, we have .� � OA/�1 2 L.X;XA/ and Theorem 6.3.4 gives
.� � OA/�1 OF 2 Fb.XA/. This proves that F 2 ARF.X/.

(iii) For all � 2 �.ACF /, the operator .�� OAC OF /�1 2 L.X;XACF /. In fact, let
x 2 X and let y D .� � AC F /�1x. From the estimate

kykACF D kyk C k. OAC OF /yk
D kyk C k�y � xk
D k.� � OA � OF /�1xk C k�.� � OA � OF /�1x � xk
�
�
1C .1C j�j/k.� � OA � OF /�1k

	
kxk;

it follows that

.� � OA � OF /�1 2 L.X;XACF /: (7.7.1)

(iv) If F is an A-resolvent Fredholm perturbation, then F is an A-resolvent
Fredholm perturbation with zero index. In fact, the estimate

kI.x/kXACF
D kxkACF � kxk C kAxkX C kFxkX

� �
1C kF kL.XA;X/

� kxkXA; 8x 2 XA

leads to I 2 ˆb.XA;XACF / and i.I/ D 0. Let � 2 �.A/. Then, we have

.�� OA� OF /�1 OF D ŒI C .�� OA� OF /�1.���C OF /�.�� OA/�1 OF : (7.7.2)

Since .� � �C OF / 2 L.XA;X/, and applying (7.7.1), we infer that .� � OA �
OF /�1.� � � C OF / 2 L.XA;XACF / and therefore, I C .� � OA � OF /�1.� �
�C OF / 2 L.XA;XACF /. By using (7.7.2), we deduce that F is an A-resolvent
Fredholm perturbation, and from Proposition 6.3.1.i/, we infer that .� � OA �
OF /�1 OF 2 Fb.XA;XACF /. This proves that F 2 AJ .X/.

.v/ As a consequence of Definition 7.7.2, Remark 7.7.2.ii/, .iv/ and the inclusions
in [124, p. 69], we deduce that

AK.X/ � AS.X/ � AFC.X/ � AF.X/ � ARF.X/ � AJ .X/; and

AK.X/ � ACS.X/ � AF�.X/ � AF.X/ � ARF.X/ � AJ .X/:

The inclusion AS.X/ � AFC.X/ [resp. ACS.X/ � AF�.X/] was estab-
lished in [186] (resp. [330]). }

Let X be a fixed Banach space. Let A 2 C.X/, and let J be an A-bounded operator
on X . Let � 2 �.A/. Since J is A-bounded, then J.� � A/�1 is a closed linear
operator defined on all elements of X and therefore, bounded by the closed graph
theorem (see Theorem 2.1.3). We have the following result:
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Theorem 7.7.1. Let X be a Banach space and let A 2 C.X/. Then,

�e5.A/ D
\

K2DA.X/

�.ACK/;

where DA.X/ D fJ 2 C.X/ such that J is A-bounded and J.� � A/�1 2
Fb.X/ for some � 2 �.A/g. }
Proof. Since K.X/ � DA.X/, we infer that

T
K2DA.X/

�.A C K/ � �e5.A/.
Conversely, let � … T

K2DA.X/
�.A C K/. Then, there exists J 2 DA.X/ such

that � 2 �.AC J /. Hence, � 2 ˆ.ACJ / and i.� � A � J / D 0. Let � 2 �.A/. We
have

J.� � A � J /�1 D J.� � A/�1ŒI C .� � �C J /.� � A � J /�1�: (7.7.3)

By using (7.7.3) and the fact that Fb.X/ is a two-sided ideal of L.X/, we
infer that J.� � A � J /�1 2 Fb.X/. Applying Lemma 6.3.1, we infer that
I C J.� � A � J /�1 is a Fredholm operator and i.I C J.� � A � J /�1/ D 0.
Using the equality � � A D .I C J.� � A � J /�1/.� � A � J /, together with
Atkinson’s theorem (Theorem 2.2.40), we get � 2 ˆA and i.� � A/ D 0. Finally,
the use of Proposition 7.1.1 shows that � … �e5.A/, which completes the proof of the
theorem. Q.E.D.

Remark 7.7.3. For all K 2 DA.X/, �e5.ACK/ D �e5.A/. }
We close this section by the following result:

Theorem 7.7.2. Let X be a Banach space, A 2 C.X/, and let I.X/ be any subset
of operators satisfying the condition K.X/ � I.X/ � ARF.X/. Then,

�e5.A/ D
\

J2I.X/
�.AC J /:

}
Proof. Set O WD

\

J2I.X/�.A C J /. We first claim that �e5.A/ � O. Indeed, if

� … O, then there exists J 2 I.X/ such that � 2 �.A C J /. Let x 2 X and
y D .� � A � J /�1x. From the following estimate

kykACJ D kyk C k. OAC OJ /yk
D kyk C kx � �yk
D k.� � OA � OJ /�1xk C kx � �.� � OA � OJ /�1xk
�
�
1C .1C j�j/k.� � OA � OJ /�1k

	
kxk;
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it follows that

.� � OA � OJ /�1 2 L.X;XACJ /: (7.7.4)

Let I denote the imbedding operator which maps every x 2 XA onto the same
element x 2 XACJ . Clearly, we have N.I/ D f0g and R.I/ D XACJ . So, the
following estimate

kI.x/kXACJ
D kxkACJ � kxk C kAxkX C kJxkX

� �
1C kJ kL.XA;X/

� kxkXA; 8x 2 XA

leads to I 2 ˆb.XA;XACJ / and i.I/ D 0. Let � 2 �.A/. We have

.� � OA � OJ /�1 OJ D ŒI C .� � OA � OJ /�1.� � �C OJ /�.� � OA/�1 OJ : (7.7.5)

Since .� � � C OJ / 2 L.XA;X/, and applying (7.7.4), we deduce that .� � OA �
OJ /�1.���C OJ / 2 L.XA;XACJ / and therefore, I C .�� OA� OJ /�1.���C OJ / 2
L.XA;XACJ /. By using (7.7.5), J 2 I.X/ � ARF.X/ and Theorem 6.3.4, we
infer that .� � OA � OJ /�1 OJ 2 Fb.XA;XACJ /. By using Lemma 6.3.1, we get

IC.�� OA� OJ /�1 OJ 2 ˆb.XA;XACJ / and i.IC.�� OA� OJ /�1 OJ / D 0: (7.7.6)

Moreover, since � 2 �.AC J /, it follows, from Eq. (6.3.5), that

.� � OA � OJ / 2 ˆb.XACJ ; X/ and i.� � OA � OJ / D 0: (7.7.7)

Hence, writing � � OA in the form � � OA D .� � OA � OJ /.I C .� � OA � OJ /�1J /,
and using (7.7.6), (7.7.7) as well as Atkinson’s theorem (Theorem 2.2.40), we get
�� OA 2 ˆb.XA;X/ and i.�� OA/ D 0. Now, using (6.3.5), we infer that � 2 ˆA and
i.� � A/ D 0. Finally, the use of Proposition 7.1.1 shows that � … �e5.A/, which
proves the claim. Besides, since K.X/ � I.X/, we infer that O � �e5.A/, which
completes the proof of the theorem. Q.E.D.

7.7.2 Invariance by Means of Demicompact Operators

In this section, we will give a refinement of the definition of the Schechter’s essential
spectrum. For this purpose, letX be a Banach space and A 2 C.X/. We define these
two sets ‡A.X/ and ‰A.X/ by:
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‡A.X/ D fK 2 L.X/ such that 8� 2 �.ACK/;�.� � A �K/�1K 2 ƒXg;
‰A.X/DfK is A-bounded such that 8� 2 �.ACK/;�K.� � A �K/�1 2 ƒXg;

where ƒX is the set defined in (7.4.25).

Theorem 7.7.3. For each A 2 C.X/, we have

�e5.A/ D
\

K2‡A.X/
�.ACK/ D

\

K2‰A.X/
�.ACK/:

}
Proof. Note that, if A 2 C.X/, then K is an A-bounded operator and � 2
�.A C K/. Hence, A.� � A � K/�1 is a closed linear operator defined on X ,
and therefore bounded. We first claim that �e5.A/ � T

K2‡A.X/ �.A C K/ [resp.
�e5.A/ � T

K2‰A.X/ �.A C K/]. Indeed, if � … T
K2‡A.X/ �.A C K/ [resp. � …T

K2‰A.X/ �.ACK/], then there exists K 2 ‡A.X/ [resp. K 2 ‰A.X/] such that
�.��A�K/�1K 2 ƒX (resp:�K.��A�K/�1 2 ƒX ) whenever � 2 �.ACK/.
Hence, by applying Theorem 5.4.2, we get ŒI C .� � A � K/�1K� 2 ˆb.X/

and i ŒI C .� � A � K/�1K� D 0 (resp. ŒI C K.� � A � K/�1� 2 ˆb.X/ and
i ŒI C K.� � A � K/�1� D 0). Moreover, we have � � A D .� � A � K/ŒI C
.� � A �K/�1K� [resp. � � A D ŒI CK.� � A �K/�1�.� � A �K/]. Then, by
using Theorem 2.2.40, one gets .� � A/ 2 ˆ.X/ and i.� � A/ D 0. By applying
Proposition 7.1.1, we conclude that � … �e5.A/, which proves our claim. For the
inverse inclusion, since K.X/ � ‡A.X/ [resp. K.X/ � ‰A.X/], we infer thatT
K2‡A.X/ �.ACK/ � �e5.A/ [resp.

T
K2‰A.X/ �.ACK/ � �e5.A/]. Q.E.D.

Corollary 7.7.1. Let A 2 C.X/, and let E.X/ be a subset of ‡A.X/ Œresp. ‰A.X/�
containing K.X/. Then,

�e5.A/ D
\

K2E.X/
�.ACK/:

}
Proof. Since E.X/�‡A.X/, we obtain

T
K2‡A.X/ �.ACK/ � T

K2E.X/ �.ACK/.
Applying Theorem 7.7.3, we get �e5.A/ � T

K2E.X/ �.ACK/. Moreover, since
K.X/ � E.X/, we have

T
K2E.X/ �.ACK/ � �e5.A/, which completes the

proof of the first assertion. For the second one, it is sufficient to replace ‡A.X/ by
‰A.X/. Q.E.D.

Corollary 7.7.2. Let A 2 C.X/, and let HA.X/ be a subset of ‡A.X/ Œresp.
‰A.X/�, containing K.X/. If, for all K, K 0 2 HA.X/, K ˙ K 0 2 HA.X/, then
for every K 2 HA.X/, we have �e5.A/ D �e5.ACK/. }
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Proof. We denote � 0.A/ by � 0.A/ D T
K2HA.X/

�.ACK/. From Corollary 7.7.1,
we have �e5.A/ D � 0.A/. Furthermore, for each K 2 HA.X/, we have
HA.X/ C K D HA.X/. Then, � 0.A C K/ D � 0.A/. Hence, we get the desired
result. Q.E.D.

7.7.3 Invariance by Means of Noncompactness Measure

The purpose of this subsection is to give a refinement of the definition of Schechter’s
essential spectrum by means of noncompactness measure. In order to do this, let X
be a Banach space and let n 2 N

�. We have the following:

Theorem 7.7.4. Let X be a Banach space and let n 2 N
�. For each A 2 C.X/, we

have

�e5.A/ D
\

K2GnA.X/
�.ACK/;

where GnA.X/D
�

K 2 L.X/ W � �.��A �K/�1K�n�<1
2

for all � 2 �.ACK/
�

.

}
Proof. First, we claim that �e5.A/ � T

K2GnA.X/ �.A C K/. Indeed, if � …
T
K2GnA.X/ �.A C K/, then there exists K 2 GnA.X/ such that � 2 �.A C

K/. So, � 2 �.A C K/ and �
�
.� � A �K/�1K�n� < 1

2
. Hence, apply-

ing Corollary 5.2.2.i/, we get the following

I C .� � A �K/�1K� 2 ˆb.X/

and i

I C .� � A �K/�1K� D 0. Moreover, we have � � A D .� � A �

K/

I C .� � A �K/�1K�. Then, .� � A/ 2 ˆ.X/ and i.� � A/ D 0. Finally,

the use of Proposition 7.1.1 shows that � … �e5.A/, which proves our claim.
Besides, since K.X/ � GnA.X/, we infer that

T
K2GnA.X/ �.ACK/ � �e5.A/ which

completes the proof of the theorem. Q.E.D.

Corollary 7.7.3. Let n 2 N
�, A 2 C.X/, and let H.X/ be any subset of L.X/

satisfying K.X/ � H.X/ � GnA.X/. Then,

�e5.A/ D
\

K2H.X/
�.ACK/:

}
Proof. Since H.X/ � GnA.X/, then

T
K2GnA.X/ �.AC K/ � T

K2H.X/ �.AC K/.
Using Theorem 7.7.4, we get �e5.A/ � T

K2H.X/ �.A C K/. Moreover, the
inclusion K.X/ � H.X/ leads to

T
K2H.X/ �.ACK/ � �e5.A/, which completes

the proof. Q.E.D.
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Corollary 7.7.4. Let A 2 C.X/. Let us consider IA.X/ included in GnA.X/,
containing the subspace of all compact operators K.X/ and satisfying : 8K;K 0 2
IA.X/;K ˙ K 0 2 IA.X/. Then, for each K 2 IA.X/, we have �e5.A/ D
�e5.ACK/: }
Proof. Let us define � 0

W .A/ by � 0
W .A/ D T

K2IA.X/ �.A C K/. From Corol-
lary 7.7.3, we have �e5.A/ D � 0

W .A/. Furthermore, for each K 2 IA.X/, we
have IA.X/CK D IA.X/. Then, � 0

W .ACK/ D � 0
W .A/. Consequently, for each

K 2 IA.X/, we get �e5.A C K/ D � 0
W .A C K/ D � 0

W .A/ D �e5.A/, which
completes the proof. Q.E.D.

7.7.4 Invariance of the Schechter’s Essential Spectrum
in Dunford–Pettis Space

In this section, we will establish the invariance of the Schechter’s essential spectrum
in a Banach space X which satisfies the Dunford–Pettis property. In what follows,
we will assume that A 2 C.X/ and satisfies the hypothesis .B/, that is,

.B/
�
.i/ For all R 2 L.X/; there exists � 2 R such that ��;C1Œ� �.ACR/:

.ii/ �5.A/ is a connected set of C:

Remark 7.7.4. Let A 2 C.X/. If A generates a C0-semigroup and �5.A/ is a
connected set, then A satisfies the hypothesis .B/. }
Definition 7.7.3. An operator R 2 L.X/ is called A-regular if, for all
� 2 �.A/; R.� � A/�1R is weakly compact and �5.A C R/ is a connected
set of C. }
The set of all A-regular operators is denoted RA.X/. We start by giving some
lemmas, remarks, and propositions which are useful for the proof of the main result
of this section.

Lemma 7.7.1. Assume that R is A-regular. Then, for all � 2 �.A C
R/
T
�.A/; R.� � A �R/�1R is weakly compact. }

Proof. The result is directly deduced from the resolvent identity:

R.� � A �R/�1R �R.� � A/�1R D R.� � A �R/�1R.� � A/�1R:

Q.E.D.

Remark 7.7.5.

(i) If R is A-regular, then for all � 2 �.A C R/
T
�.A/,


.� � A �R/�1R�4 is

compact.
(ii) If �5.A/ is a connected set of C, then K.X/ � RA.X/. }
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Lemma 7.7.2. Let � be an open and connected set of C, let Y be a Banach
space and let f W � �! L.Y / be an analytic operator. We define K.f / D
f� 2 � such that f .�/ is compactg. Then, K.f / D � or K.f / does not have
an accumulation point in �. }
Proof. Let E D f� 2 � such that � is an accumulation point of K.f / in �g. If
� 2 E, then there exists .�n/n 2 K.f /, such that �n converges to �. Since f
is continuous, then f .�n/ converges to f .�/. As f .�n/ is compact, then f .�/
will also be compact, which gives E � K.f /. Let � 2 K.f / be fixed and let
us choose r > 0, such that B.�; r/ � �. Since f is analytic in B.�; r/, then
f .z/ D P

n�0 An.z � �/n, where .An/n are bounded operators and independent
of z. We have two possibilities:

(a) An is compact for all n 2 N, then B.�; r/ � K.f /. So, each point z 2 B.�; r/
is an accumulation point of K.f /. We deduce that B.�; r/ � E and � 2 ı

E.
(b) There exists a smaller integer m, such that Am is not compact. In this case, for

z 2 B.�; r/, we can write f .z/ D Pm�1
kD0 Ak.z � �/k C .z � �/mg.z/, where

g.z/ D PC1
kD0 AmCk.z � �/k . Furthermore g.�/ is not compact, and using the

continuity of g, we get a neighborhood V.�/ of � included in B.�; r/, such
that g.�/ is not compact for all � 2 V.�/. Indeed, suppose that for all n > 0,
there exists �n 2 B.�; 1

n
/ such that g.�n/ is compact. Since lim

n!C1�n D � and

since g is continuous, then g.�/ is compact, contradicting the fact that g.�/
is not compact. So, f .�/ is not compact for all � 2 V.�/. Hence, � is an
isolated point of K.f /. Let � 2 E, the first possibility holds, and then E is
open. Let F D �nE. From the definition of E, it follows that F is open. Since
� D E

S
F , with E

T
F D ; and � is a connected set of C, then E D �. In

this case, K.f / D �, or E D ;. Hence, K.f / does not have an accumulation
point in �. Q.E.D.

Remark 7.7.6. It should be observed that the result of Lemma 7.7.2 remains valid
if we replace K.f / by K1.f / D f� 2 � such that f .�/ is weakly compactg. }
Lemma 7.7.3. If O is an open and connected set of C, and if F is a set of isolated
points of O , then O 0 WD OnF is a connected set of C. }
Proposition 7.7.1. Let R 2 L.X/.

(i) If �5.ACR/ is a connected set, then for allK compact operators, �.ACRCK/
is a connected set.

(ii) If R is A-regular, then for all K compact operators, �.AC R CK/
T
�.AC

R/
T
�.A/ has an accumulation point.

(iii) If R is A-regular and �.A C R/ is a connected set of C, then for all � 2
�.ACR/;


.� � A �R/�1R�4 is compact. }

Proof.

.i/ For all K compact operators, we have �5.A C R/ D �5.A C R C K/. Since
�5.ACR/ is a connected set, then from Theorem 7.3.1.ii/, we have Cn�6.AC
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RCK/ D �e5.ACRCK/ D �e5.ACR/, where �6.ACRCK/ denotes the set
of those � 2 �5.ACRCK/, such that all scalars near � are in �.ACRCK/.
The result follows from both Lemma 7.7.3 and the following identity

�.ACRCK/ D ŒCn�e6.ACRCK/� nf� 2 �.ACRCK/; � is an
isolated eigenvalue of finite algebraic multiplicityg:

.ii/ It is sufficient to show that �.AC R C K/
T
�.AC R/

T
�.A/ is nonempty

because all points of every open nonempty set are accumulation points. Since
A satisfies the hypothesis .B/, there exist �1, �2 and �3 2 R such that
��1;C1Œ� �.A/, ��2;C1Œ� �.A C R/ and ��3;C1Œ� �.A C R C K/.
If we take � D maxf�1; �2; �3g, we necessarily have ��;C1Œ� �.A C R C
K/

T
�.A C R/

T
�.A/. Then, the set �.A C R C K/

T
�.A C R/

T
�.A/

has an accumulation point.

.iii/ Let E D
n
� 2 �.ACR/ such that


.� � A �R/�1R�4 is compact

o
. From

Lemma 7.7.1, we have �.A C R/
T
�.A/ � E. Applying the assertion

.ii/; �.A C R/
T
�.A/ has an accumulation point. Finally, according

to Lemma 7.7.2, E D �.A C R/. This completes the proof of the
proposition. Q.E.D.

Lemma 7.7.4. Let K be a compact operator and assume that R is A-regular.
Then,

(i) For all � 2 �.ACK/
T
�.A/; R.� � A �K/�1R is weakly compact.

(ii) For all � 2 �.ACRCK/;

.� � A �R �K/�1R�4 is compact. }

Proof.

(i ) Using the resolvent equation, we get the following identity

R.� � A �K/�1R D R.� � A �K/�1K.� � A/�1RCR.� � A/�1R:

Since R.��A�K/�1K.��A/�1R is compact and R.��A/�1R is weakly
compact, then R.� � A �K/�1R is weakly compact.

.ii/ For � 2 �.ACRCK/
T
�.A/, we have

.� � A �R �K/�1R
D .� � A/�1RC .� � A �R �K/�1.RCK/.� � A/�1R
D A1 C A2 C A3;

where A1 D .� � A/�1R; A2 D .� � A � R � K/�1R.� � A/�1R, and
A3 D .� � A � R �K/�1K.� � A/�1R. Hence,


.� � A �R �K/�1R�4 D

.A1 C A2 C A3/
4 D P34

jD1 Qj . For each j 2 f1; : : :; 34g, the operator

Qj is compact and, then

.� � A �R �K/�1R�4 is compact. Let E 0 D
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n
� 2 �.ACRCK/ such that


.� � A �R �K/�1R�4 is compact

o
. We

have �.A C R C K/
T
�.A/ � E 0. By Proposition 7.7.1.ii/, E 0 has

an accumulation point in �.A C R C K/. By using Proposition 7.7.1.i/,
�.A C R C K/ is a connected set. Finally, by using Lemma 7.7.2,
E 0 D �.ACRCK/. Q.E.D.

Lemma 7.7.5. Let us assume that R is A-regular. Let JA.X/ be a subgroup of
.L.X/;C/, such that JA.X/ � RA.X/, and let

IA.X/ D fRCK 2 L.X/; such that K is compact and R 2 JA.X/g:

We have

(i) K.X/ � IA.X/ � G4A.X/.
(ii) 8.R1 C K1/; .R2 C K2/ 2 IA.X/, and we have .R1 C K1/ ˙ .R2 C K2/ 2

IA.X/. }
Proof.

.i/ Since the null operator Qo 2 JA.X/, then K.X/ � IA.X/. Let RCK 2 IA.X/
and let � 2 �.ACRCK/. We have


.� � A �R �K/�1.RCK/

�4

D 
.� � A �R �K/�1RC .� � A �R �K/�1K�4 D

24X

jD1
Pj ;

where each Pj is a product of four factors constituted from the operators
.� � A �R �K/�1R and .� � A �R �K/�1K. According to Lemma 7.7.4,
P1 D 

.� � A �R �K/�1R�4 is compact. For j 2 f2; : : :; 24g, the operator
K appears, at least, one time in the expression of Pj . So, Pj is compact. Hence,

.� � A �R �K/�1.RCK/

�4
is compact for all � 2 �.ACRCK/.

.ii/ It is clear that 8.R1 CK1/; .R2 CK2/ 2 IA.X/, and we have

.R1 CK1/˙ .R2 CK2/ D .R1 ˙R2/C .K1 ˙K2/ 2 IA.X/:

Q.E.D.

A consequence of Lemma 7.7.5 and Corollary 7.7.4, we have the following.

Theorem 7.7.5. Let JA.X/ be a subgroup of .L.X/;C/ such that JA.X/ �
RA.X/. Then, for all R 2 JA.X/, �e5.ACR/ D �e5.A/. }
Corollary 7.7.5. Let R 2 L.X/ such that, for all n 2 Z; nR is A-regular. Then,

�e5.ACR/ D �e5.A/: }
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Proof. Let JA.X/ D fnR; n 2 Zg. We have JA.X/ � RA.X/ and, for all
R1; R2 2 JA.X/; R1 ˙ R2 2 JA.X/. Then, by using Theorem 7.7.5, we have
�e5.ACR/ D �e5.A/. Q.E.D.

7.7.5 Invariance Under Perturbation of Polynomially
Compact Operators

In this section, we will establish some characterization and invariance of the
Schechter essential spectrum in a Banach space X . For this purpose, let A 2 C.X/,
let S be an A-bounded operator on X , and let � 2 �.A C S/. Since S is
A-bounded, then S.� � A � S/�1 (resp. S.� � A/�1) is a closed linear operator
defined on all elements of X and hence, bounded by the closed graph theorem (see
Theorem 2.1.3). Let A 2 C.X/. We define the three following sets:

• P1K.X/ D
n
A 2 L.X/ such that there exists a nonzero complex polynomial

P.z/ D
pX

kD0
akzk satisfying P.

1

n
/ ¤ 0; 8n 2 Z

� and P.A/ 2 K.X/
o
.

• SA.X/ D
n
S 2 C.X/ such that S is A-bounded and S.� � A � S/�1 2

P1K.X/; for all � 2 �.AC S/
o
.

• QA.X/ D
n
S 2 C.X/ such that S is A-bounded and there exists a nonzero

complex polynomial P.z/ D
pX

kD0
akzk satisfying P.�1/ ¤ 0 and

jP j �� �S.� � A � S/�1�� < jP.�1/j; for all � 2 �.AC S/
o
,

where jP j.z/ D
pX

kD0
jakjzk and �.:/ is the Kuratowski’s measure of non-

compactness.

Remark 7.7.7. Observe that, for A 2 C.X/, we have K.X/ � SA.X/
T

QA.X/.
Indeed, let K 2 K.X/. If we take P.z/ D z, then for all � 2 �.ACK/; P.K.� �
A �K/�1/ 2 K.X/; jP j �� �K.� � A �K/�1�� D 0 < jP.�1/j. }
In what follows, we say that an operator A 2 C.X/ satisfies the hypothesis .C/, if

.C/

8
<

:

.i/ For all R 2 C.X/; such that R is A-bounded, there exists � 2 R;

��;C1Œ� �.ACR/:

.ii/ �5.A/ is a connected set of C:
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We start with the following proposition, which is fundamental for our purpose and
gives a new characterization of the Schechter’s essential spectrum in a Banach
space X .

Proposition 7.7.2. Let A 2 C.X/. Then,

�e5.A/ D
\

S2QA.X/
S

SA.X/

�.AC S/:

}
Proof. Since K.X/ � QA.X/

S
SA.X/, we infer that

T
S2QA.X/

S
SA.X/ �.A C

S/ � �e5.A/. Moreover, we claim the opposite inclusion. Indeed, suppose that
� … T

S2QA.X/
S

SA.X/ �.A C S/. Then, there exists S 2 QA.X/
S

SA.X/, such
that � 2 �.AC S/. We have two possibilities:

.i/ If S 2 QA.X/, then there exists a nonzero complex polynomial P
satisfying P.�1/ ¤ 0 and jP j �� �S.� � A � S/�1�� < jP.�1/j.
Applying Corollary 5.2.4, we get I C S.� � A � S/�1 2 ˆb.X/ and
i
�
I C S.� � A � S/�1� D 0.

.ii/ If S 2 SA.X/, then there exists a nonzero complex polynomial P satisfying
P. 1

n
/ ¤ 0; 8n 2 N

� and P.S.� � A � S/�1/ is a compact operator on X .
Since P.�1/ ¤ 0, then from Theorem 3.1.2 and Corollary 3.1.1, we deduce
that I CS.��A�S/�1 2 ˆb.X/ and i.I CS.��A�S/�1/ D 0. For each of
the above cases, using the equality ��A D ŒI CS.��A�S/�1�.��A�S/,
together with Atkinson’s theorem (Theorem 2.2.40), one gets � � A 2 ˆ.X/

and i.� � A/ D 0. Finally, the use of Proposition 7.1.1 shows that � … �e5.A/
and so, �e5.A/ � T

S2QA.X/
S

SA.X/ �.AC S/. Q.E.D.

Arguing as in the proof of Corollary 7.7.2, we get

Corollary 7.7.6. Let A 2 C.X/ and let us consider H including in SA.X/,
containing the subspace of all compact operators K.X/ and satisfying : 8K;K 0 2
H; K ˙K 0 2 H. Then, for each K 2 H, we have �e5.A/ D �e5.ACK/: }
In order to give the main result of this section, we will establish a useful lemma.

Lemma 7.7.6. Let A 2 C.X/ satisfying the hypothesis .C/, and let S be an
A-bounded operator onX , such that �5.ACS/ is a connected set. Then, we have

(i) If S 2 SA.X/, then for all K compact operators, S CK 2 SA.X/.
(ii) If S 2 SA.X/, then for all p 2 Z

�; pS 2 SA.X/. }
Proof.

.i/ LetK 2 K.X/ and let � 2 �.ACS CK/
T
�.ACS/. We have the following

identity S.��A�S �K/�1 D S.��A�S/�1 CS.��A�S �K/�1K.��
A� S/�1. Since S.��A� S �K/�1K.��A� S/�1 is a compact operator,
then for all k 2 N

�, we have
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S.� � A � S �K/�1�k D 

S.� � A � S/�1�k CKk; (7.7.8)

where Kk is a compact operator. According to Eq. (7.7.8), and for all nonzero
complex polynomials, P.z/ D Pp

kD1 akzk; P.S.� � A � S � K/�1/ D
P.S.��A�S/�1/CK 0, whereK 0 D Pp

kD1 akKk is a compact operator. Then,
P
�
S.� � A � S �K/�1� 2 K.X/ if, and only if, P

�
S.� � A � S/�1� 2

K.X/. Hence, for all � 2 �.A C S C K/
T
�.A C S/, we have S.� �

A � S � K/�1 2 P1K.X/ if, and only if, S.� � A � S/�1 2 P1K.X/. Let
S 2 SA.X/ andK 2 K.X/. We will prove that SCK 2 SA.X/. To do this, let
G D ˚

� 2 �.AC S CK/ such that S.� � A � S �K/�1 2 P1K.X/


. We

have �.AC S CK/
T
�.AC S/ � G. According to Proposition 7.7.1.ii/, G

has an accumulation point and �.ACSCK/ is a connected set of C. Applying
Lemma 7.7.2, we get G D �.AC S CK/. So, S CK 2 SA.X/.

.ii/ Let P.z/ D Pp
iD0 ai zi be a nonzero complex polynomial satisfying P. 1

n
/ ¤ 0,

for all n 2 Z
�, and let P.S.� � A � S/�1/ 2 K.X/, for all � 2 �.A C S/.

We consider Q.z/ WD .1 � .1 � p/z/pP..1 � .1 � p/z/�1z/. Then, Q.1
n
/ ¤

0, for all n 2 Z
�. In what follows, we claim that, for all � 2 �.A C pS/,

Q.S.� � A � pS/�1/ 2 K.X/. From the hypothesis .C/, there exist ˛1 and
ˇ1 2 R, such that �˛1;C1Œ� �.ACS/ and �ˇ1;C1Œ� �.AC pS/. If we take
�1 D maxf˛1; ˇ1g, we necessarily have ��1;C1Œ� �.A C S/

T
�.A C pS/.

Let !1 > �1. Then, for all � 2 R and satisfying � � !1, we have


I � .1 � p/S.� � A � pS/�1� I C .1 � p/S.� � A � S/�1�

D 
I C .1 � p/S.� � A � S/�1� I � .1 � p/S.� � A � pS/�1� D I:

Hence, ŒI � .1�p/S.��A� pS/�1� is invertible in L.X/. Let � 2 Œ!1;C1Œ.

We have the following identity S.��A� S/�1 D S.��A� pS/�1
h
I � .1�

p/S.� � A � pS/�1
i�1

. Since

h
I � .1 � p/S.� � A � pS/�1

i
S.� � A � pS/�1

D S.� � A � pS/�1
h
I � .1 � p/S.� � A � pS/�1

i
;

then for all k 2 N, we have

h
S.��A� S/�1

ik D
h
S.��A� pS/�1

ikh
I � .1�p/S.��A� pS/�1

i�k
:

Since, for all � 2 �.A C S/; P.S.� � A � S/�1/ 2 K.X/, then for all � 2
Œ!1;C1Œ; Q.S.��A�pS/�1/ 2 K.X/. The fact that �.ACpS/ is a connected
set of C and Œ!1;C1Œ� �.ACpS/, we infer, from Lemma 7.7.2, thatQ.S.��



244 7 Essential Spectra of Linear Operators

A�pS/�1/ 2 K.X/, for all � 2 �.ACpS/. This proves the claim and completes
the proof of the lemma. Q.E.D.

The next result proves the invariance of the Schechter’s essential spectrum on
Banach spaces by means of polynomially compact perturbations.

Theorem 7.7.6. Let A 2 C.X/ satisfying the hypothesis .C/, and let S 2 SA.X/
such that, for all p 2 Z; �5.A C pS/ is a connected set of C. Then, �e5.A/ D
�e5.AC S/. }
Proof. Let S 2 SA.X/ such that, for all p 2 Z; �5.AC pS/ is a connected set of C.
Let us define the following set IA;S .X/ D fK C pS such that K 2 K.X/g. It is
obvious that K.X/ � IA;S .X/. According to Lemma 7.7.6, IA;S .X/ � SA.X/. It is
easy to show that, for allK 2 IA;S .X/; IA;S .X/˙K D IA;S .X/. For S 2 IA;S .X/,
we have

�e5.AC S/ D
\

K2IA;S .X/
�.AC S CK/

D
\

K�S2IA;S .X/
�.ACK/

D
\

K2IA;S .X/
�.ACK/

D �e5.A/;

which completes the proof. Q.E.D.

For A 2 C.X/ and satisfying the hypothesis .C/, we define the following set

MA.X/ DfS 2 C.X/ W S is A-bounded and S.� � A/�1 2 P1K.X/;
for all � 2 �.A/g:

Remark 7.7.8. We may notice that, if we take P.z/ D z, then for all � 2
�.A/; P.K.� � A/�1/ 2 K.X/ and therefore, K.X/ � MA.X/. }
Applying Theorem 7.7.6, we have

Corollary 7.7.7. Let S 2 MA.X/ such that, for all p 2 Z; �5.A C pS/ is a
connected set of C. Then �e5.A/ D �e5.AC S/. }
Proof. It is sufficient to prove that MA.X/ � SA.X/. For this, let S 2 MA.X/.
Since A satisfies the hypothesis .C/, there exist �1 and �2 2 R such that ��1;C1Œ�
�.A/ and ��2;C1Œ� �.A C S/. If we take � D maxf�1; �2g, then ��;C1Œ�
�.AC S/

T
�.A/. Let ! > �, then 8� 2 R and satisfying � � !, we have


I C S.� � A � S/�1� I � S.� � A/�1�
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D 
I � S.� � A/�1� I C S.� � A � S/�1� D I:

Hence, ŒI CS.��A�S/�1� is invertible in the algebra of bounded linear operators
on X . Let �0 D f� 2 �.AC S/

T
�.A/ such that � � !g and let � 2 �0. We have

the following identity S.��A/�1 D ŒI CS.��A�S/�1��1S.��A�S/�1. Since

h
I C S.��A� S/�1

i
S.��A� S/�1 D S.��A� S/�1

h
I C S.��A� S/�1

i
;

then for all k 2 N, we have ŒS.� � A/�1�k D ŒI C S.� � A � S/�1��kŒS.� � A �
S/�1�k . Let P.z/ D Pp

kD0 akzk satisfying P. 1
n
/ ¤ 0, for all n 2 Z

�, and ap ¤ 0

such that P.S.� � A/�1/ 2 K.X/, and let Q.z/ WD Pp

kD0 ap�k.1 C z/kzp�k D
.1 C z/pP

�
z
1Cz

	
. Then, for all n 2 Z, Q.1

n
/ ¤ 0 and Q.S.� � A � S/�1/ is

a compact operator. According to the hypothesis .C/.i/; �0 has an accumulation
point. Applying Lemma 7.7.2, we getQ.S.��A�S/�1/ 2 K.X/; 8� 2 �.ACS/,
which completes the proof. Q.E.D.

7.7.6 Invariance by Means of Weak Noncompactness Measure

The purpose of this subsection is to give a new characterization and to study the
invariance of Schechter’s essential spectrum on Banach spaces. In order to do this,
let � (resp. ��) be a measure of weak noncompactness in a Banach space X (resp.
in X�). Moreover, let ‰� (resp. ‰�� ) be a measure of weak noncompactness of
operators associated with �. Besides, let A 2 C.X/, let K be an A-bounded
operator on X and let � 2 �.A C K/. Since K is A-bounded and according to
Remark 2.1.4.iv/,K.��A�K/�1 is a closed linear operator defined on all elements
of X and therefore, bounded by the closed graph theorem (see Theorem 2.1.3). For
n 2 N

�, we define the left spectrum of A by

�nl .A/ D
\

K2Dn
A.X/

�.ACK/;

where

Dn
A.X/ D

n
K 2 C.X/ such that K is A-bounded and, for all � 2 �.ACK/;

K.��A�K/�1�n is a DP operator and  �

�
K.��A�K/�1�n�<1

o
:

In what follows, we suppose that the inequalities (5.5.3) and (5.5.4) hold true with
the operator K.� � A � K/�1 and the complex polynomial P.z/ D zn. Moreover,
suppose that . �;  ��/ satisfies the adjoint-equivalent property. Now, we are ready
to state and prove the following theorem.
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Theorem 7.7.7. Let n 2 N
�. For each A 2 C.X/, we have

(i) �e5.A/ D
\

K2Dn
A.X/

�.ACK/.

(ii) �e5.A/ D
\

K2Un
A.X/

�.ACK/, where UnA.X/ is a subset of C.X/ (not necessarily

an ideal one) satisfying K.X/ � UnA.X/ � Dn
A.X/.

(iii) Let InA.X/ be a subset of C.X/, such that InA.X/ C K D InA.X/ for all K 2
InA.X/. If K.X/ � InA.X/ � Dn

A.X/, then �e5.A/ D �e5.ACK/ for each K
in InA.X/. }

Proof.

.i/ First, we claim that �e5.A/ � T
K2Dn

A.X/
�.A C K/. Indeed, if � …

T
K2Dn

A.X/
�.A C K/, then there exists K 2 Dn

A.X/ such that � 2
�.A C K/. So, � 2 �.A C K/,


K.� � A �K/�1�n is a DP operator and

 �
�
K.� � A �K/�1�n� < 1. Hence, by applying Corollary 5.5.1, we

get

I CK.� � A �K/�1� 2 ˆb.X/ and i


I CK.� � A �K/�1� D 0.

Moreover, we have � � A D 
I CK.� � A �K/�1� .� � A �K/. Then, by

applying Atkinson’s theorem (Theorem 2.2.40), we get .� � A/ 2 ˆ.X/ and
i.� � A/ D 0. Finally, the use of Proposition 7.1.1 shows that � … �e5.A/,
which proves our claim. Besides, since K.X/ � Dn

A.X/, we infer thatT
K2Dn

A.X/
�.ACK/ � �e5.A/, which completes the proof.

.ii/ The result is immediately deduced from .i/.
.iii/ Let us denote � 0n

l .A/ by � 0n
l .A/ D T

K2InA.X/ �.ACK/. By applying .ii/, we
get �e5.A/ D � 0n

l .A/. Furthermore, for K 2 InA.X/, we have InA.X/ C K D
InA.X/. Then,

� 0n
l .ACK/ D

\

K02InA.X/
�.ACK CK 0/

D
\

K02InA.X/CK
�.ACK 0/

D � 0n
l .A/:

Hence, for each K 2 InA.X/, we get �e5.ACK/ D � 0n
l .ACK/ D � 0n

l .A/ D
�e5.A/, which completes the proof. Q.E.D.

Corollary 7.7.8. Let A 2 C.X/. We consider InA.X/ as a subgroup of .L.X/;C/
satisfying K.X/ � InA.X/ � Dn

A.X/. Assume that �e5.A/ D ;. Then, for all K 2
InA.X/, we have �.A C K/ D �p.A C K/, where �p.A C K/ denotes the point
spectrum of ACK. }
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Proof. We have �.A C K/ D �c.A C K/
S
�r.A C K/

S
�p.A C K/. If

�e5.A/ D ;, then from Theorem 7.7.7.iii/, �e5.A C K/ D ;. Furthermore, by
using Proposition 7.3.3, Remark 7.1.1, and Theorem 7.7.7.iii/, we have

�c.ACK/
[
�r.ACK/ �

\

R2InA.X/
�.ACK CR/ D �e5.ACK/:

Hence, �c.ACK/ D �r.ACK/ D ;. Finally, �.ACK/ D �p.ACK/. Q.E.D.

Definition 7.7.4. Let � � �.A/ and let n 2 N
�. An A-bounded operator R on X

will be called nA-power weakly compact on�, if ŒR.��A/�1�n is weakly compact
for all � 2 �. }
Proposition 7.7.3. Let n 2 N

�, let A 2 C.X/ satisfying the hypothesis .C/, and
let R be an A-bounded operator on X and nA-power weakly compact on �.A/. If
�.A C R/ is a connected set of C, then R is n.A C R/-power weakly compact on
�.ACR/. }
Proof. According to the hypothesis .C/.i/, there exist �1 and �2 such that
��1;C1Œ� �.A/ and ��2;C1Œ� �.A C R/. If we take � D maxf�1; �2g, then
��;C1Œ� �.A C R/

T
�.A/. So, there exists ! � � such that, for all � 2 R

satisfying � � !,
�
I � ŒR.� � A/�1�n� is invertible in L.X/. Since we have

I � ŒR.� � A/�1�n

D 
I �R.� � A/�1�

h
I CR.� � A/�1 C � � � C �

R.� � A/�1�n�1i
;

then for all � 2 R satisfying � � !,
�
I �R.� � A/�1� is invertible in L.X/.

Moreover, for all � 2 �.A C R/
T
�.A/, we have


R.� � A �R/�1�n D


R.� � A/�1�n I �R.� � A/�1��n. Then, for all � 2�!; C1Œ; ŒR.� � A �
R/�1�n 2 W.X/. Let

En D
n
� 2 �.ACR/ such that


R.� � A �R/�1�n 2 W.X/

o
:

We have �!; C1Œ� En. Applying Lemma 7.7.2, we get En D �.A C R/, which
completes the proof. Q.E.D.

In what follows, we define

Hn
A.X/ D fR 2 C.X/ such that R is A-bounded and nA-power weakly compact

on �.A/; �.ACR/ is a connected set and, for all � 2 �.ACR/;

ŒR.� � A �R/�1�n is a DP operatorg:

Theorem 7.7.8. Let n 2 N
� and let A 2 C.X/ satisfying the hypothesis .C/. Then,

we have
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�e5.A/ D
\

K2Hn
A.X/

�.ACK/:

}
Proof. According to the hypothesis .C/.ii/ and using Proposition 7.7.1.i/, we
deduce that �.A C K/ is a connected set of C for all K 2 K.X/. Moreover,
since K.X/ � Hn

A.X/, we have
T
K2Hn

A.X/
�.A C K/ � �e5.A/. Furthermore,

by applying Proposition 7.7.3, we get Hn
A.X/ � Dn

A.X/. Finally, the result follows
directly from Theorem 7.7.7.ii/. Q.E.D.

Remark 7.7.9. If X has the DP property, then we can replace the hypothesis
ensuring that ŒR.� � A � R/�1�n is a DP operator by the fact of being weakly
compact. }
Now, we are ready to state and prove the main result of this section:

Theorem 7.7.9. Let n 2 N
�, A 2 C.X/ satisfying the hypothesis .C/, and let R

be an A-bounded operator on X and nA-power weakly compact on �.A/ such that,
for all p 2 Z; �.A C pR/ is a connected set of C and, for all K 2 K.X/, for all
� 2 �.AC K C R/; ŒR.� � A � K � pR/�1�n is a DP operator. Then, �e5.A/ D
�e5.ACR/. }
Proof. We define InA;R.X/ D fKC pR; such thatK 2 K.X/ and p 2 Zg. First, we
remark that InA;R.X/ contains K.X/, and we have InA;R.X/ C K 0 D InA;R.X/, for
all K 0 2 InA;R.X/. Furthermore, for all � 2 �.A/ and for all p 2 Z, we have


.pR CK/.� � A/�1�n D 

pR.� � A/�1 CK.� � A/�1�n

D 
pR.� � A/�1�n CK1;

where K1 is a compact operator. Since pR is nA-power weakly compact on �.A/,
then .pRCK/ is also weakly compact. By applying Proposition 7.7.1, �.ACKCpR/
is a connected set. Moreover, since ŒR.� � A � K � pR/�1�n is a DP operator
for all � 2 �.A C K C R/, we deduce that InA;R.X/ � Hn

A.X/. Finally, since
Hn
A.X/ � Dn

A.X/, then the result follows from Theorem 7.7.7.iii/. Q.E.D.

Remark 7.7.10. In Theorem 7.7.9, if X has the DP property, then we can replace
the hypothesis ensuring that ŒR.� � A � pR/�1�n is a DP operator by the fact of
being weakly compact. }
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7.8 Stability of the Essential Spectra

7.8.1 By Means of Measure of Weak Noncompactness

In what follows, let us consider � (resp. ��) as the measure of weak noncompact-
ness inX (resp. inX�) and  � (resp.  �� ) as the measure of weak noncompactness
of the operators associated with � (resp. to ��). Assume that  � (resp.  �� ) has the
algebraic semi-multiplicative property. We give the following notations:

• If A 2 ˆC.X/ and if J is an A-bounded operator on X , we denote by GC
J;A.X/

the set of left Fredholm inverses Al of A satisfying:

8
ˆ̂
<

ˆ̂
:

� Al 2 L.X;XA/:
For some n 2 N

�;
� .JAl /n is a DP operator in L.X/;
�  �..JAl /n/ < 1:

The first result of this section is the following:

Theorem 7.8.1. Let X be a Banach space, let A 2 C.X/, and let J be an
A-bounded operator on X . Then, the following statements hold.

(i) If A 2 ˆC.X/ and GC
J;A.X/ ¤ ;, then AC J 2 ˆC.X/.

(ii) If, for each � 2 ˆCA, we have GC
J;A��.X/ ¤ ;, then �e1.A C J / �

�e1.A/. }
Proof.

.i/ Let Al be a left Fredholm inverse of A. Then, there exists K 2 K.X/ such that
I �K extends AlA. Moreover, we have

OAC OJ D OAC OJ .Al OACKjXA/

D .I C OJAl/ OAC OJKjXA
D .I C JAl / OAC OJKjXA:

By applying Theorem 5.5.1.i/, we get I C JAl 2 ˆC.X/. Finally, since OA 2
ˆC.XA;X/ and OJKjXA 2 K.XA;X/, then using Lemma 6.3.1.ii/, we conclude
that OAC OJ 2 ˆC.XA;X/.

.ii/ First, for each � 2 C; J is .A � �/-bounded. Indeed,

8x 2 X; k OJxk � k OJ k.kxk C kAxk/
� k OJ k.kxk C k.A � �/xk C j�jkxk/
� k OJ k.1C j�j/.kxk C k.A � �/xk/:
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Then, OJ 2 L .XA��; X/. By applying .i/ to the operator A��, we get ˆCA �
ˆC.ACJ /. Now, the result follows if we translate it in terms of an essential
spectrum. Q.E.D.

Theorem 7.8.2. Let X be a Banach space, A 2 C.X/ and let J be an A-bounded
operator on X . Assume that . �;  ��/ has the adjoint-equivalent property. Then,
the following assertions hold.

(i) If A 2 ˆ.X/ and GC
J;A.X/ ¤ ;, then AC J 2 ˆ.X/ and i.AC J / D i.A/.

(ii) If, for each � 2 ˆA, we have GC
J;A��.X/ ¤ ;, then �e4.A C J / � �e4.A/

and �e5.A C J / � �e5.A/. Moreover, if Cn�e5.A/ is connected and �.A/ nor
�.AC J / is empty, then �e6.AC J / � �e6.A/. }

Proof.

.i/ Let Al be a left Fredholm inverse of A. Then, there existsK 2 K.X/, such that
I �K extends AlA. Since  �..JAl /n/ < 1, then by Theorem 5.5.1.i/, we get
I C JAl is a Fredholm operator with a zero index. Using Atkinson’s theorem
(Theorem 2.2.40), we get .ICJAl / OA 2 ˆb.XA;X/ and i..ICJAl / OA/ D i. OA/.
The fact that OAC OJ D .ICJAl / OAC OJKjXA and OJKjXA 2 K.XA;X/, allows us
to deduce that OAC OJ 2 ˆb.XA;X/ and i. OAC OJ / D i. OA/. Finally, the results
follow from (6.3.5).

.ii/ Applying .i/ to the operator A � �, we get ˆA � ˆ.ACJ / and i.� � A �
J / D i.� � A/. The results follow if we translate them in terms of essential
spectra. Finally, the use of Theorem 7.3.1.ii/ leads to �e5.A/ D �e6.A/ and
�e5.AC J / D �e6.AC J /, which completes the proof. Q.E.D.

7.8.2 By Means of the Graph Measure of Weak
Noncompactness

In what follows, for XA being a Banach space and for A 2 H�, we make the
following hypotheses

.D/ W
� � X� CX� ı A is dense in .XA/�:

� X�� CX�� ı A� is dense in .X�
A�/

�:

We consider �A (resp. ��
A� ) as the graph measure of weak noncompactness in XA

(resp. in X�
A� ) and  �A (resp.  ��

A�

) as the measure of weak noncompactness of
operators associated with �A (resp. to ��

A� ). Assume that  �A (resp.  ��

A�

) has the
algebraic semi-multiplicative property. We give the following notations :

• If A 2 ˆ�.X/ and if J is an A-bounded operator on X , we denote by G�
J;A.XA/

the set of right Fredholm inverses Ar of A satisfying:
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8
ˆ̂
<̂

ˆ̂
:̂

� Ar 2 L.X;XA/:
For some n 2 N

�;
� .ArJ /n is a DP operator in L.XA/;
�  �A

�
.Ar OJ /n

	
< 1:

Theorem 7.8.3. Let X be a Banach space, A 2 H� satisfying the hypothesis .D/
and let J be an A-bounded operator on X . Suppose that . �A;  ��

A�

/ has the
adjoint-equivalent property. Then, the following statements hold.

(i) If A 2 ˆ�.X/ and G�
J;A.XA/ ¤ ;, then AC J 2 ˆ�.X/.

(ii) If A 2 ˆ.X/ and G�
J;A.XA/ ¤ ;, then AC J 2 ˆ.X/ and i.AC J / D i.A/.

(iii) If, for each � 2 ˆ�A, we have G�
J;A��.XA/ ¤ ;, then �e2.AC J / � �e2.A/.

(iv) If, for each � 2 ˆA, we have G�
J;A��.XA/ ¤ ;, then �e4.A C J / � �e4.A/

and �e5.AC J / � �e5.A/. Moreover, if Cn�e5.A/ is connected and �.A/ nor
�.AC J / is empty, then �e6.AC J / � �e6.A/. }

Proof.

.i/ Let Ar be a right Fredholm inverse of A. Then, there exists K 2 K.X/, such
that AAr D I � K on X . Besides, we have kArxkA D kArxk C kAArxk �
.kArk C kI �Kk/ kxk. Then, Ar 2 L.X;XA/ and therefore, Ar OJ 2 L.XA/.
Moreover, we have OAC OJ D OAC. OAAr CK/ OJ D OA.IXA CAr OJ /CK OJ . Since
 �A..Ar

OJ /n/ < 1 for some n 2 N
�, then from Corollary 5.5.1, we deduce that

IXA C Ar OJ is a Fredholm operator with a zero index. Now, if A 2 ˆ�.X/,
then from Lemma 6.3.1, the fact that OA 2 ˆ�.XA;X/ and K OJ 2 K.XA;X/,
we conclude that OAC OJ 2 ˆ�.XA;X/ and the results follow from (6.3.5).

.ii/ Arguing as in the proof of .i/, we deduce that IXA C Ar OJ is a Fredholm
operator with a zero index. Using Atkinson’s theorem (Theorem 2.2.40), we

get OA.IXA C Ar OJ / 2 ˆ.XA;X/ and i
� OA.IXA C Ar OJ /

	
D i. OA/. Since

K OJ 2 K.XA;X/, we deduce that OAC OJ 2 ˆ.XA;X/ and i. OAC OJ / D i. OA/.
Finally, the results follow from (6.3.5).

.iii/ Since OJ 2 L .XA��; X/ and applying .i/ to the operatorsA��, we getˆ�A �
ˆ�.ACJ /. The results follow if we translate them in terms of essential spectra.

.iv/ Applying .ii/ to the operator A��, we get ˆA � ˆ.ACJ / and i.��A�J / D
i.� � A/. The results follow if we translate in terms of essential spectrum.
Finally, arguing as in the proof of Theorem 7.8.2, we get �e6.A C J / �
�e6.A/. Q.E.D.

By using Theorem 7.8.1 as well as Theorem 7.8.3, we have the following corollary.

Corollary 7.8.1. Let X be a Banach space, A 2 H� satisfying the hypothesis
.D/, and let J be an A-bounded operator on X . Suppose that . �A;  ��

A�

/ has
the adjoint-equivalent property. Then, the following statements hold.

(i) If A 2 ˆ˙.X/, GC
J;A.X/ ¤ ; and G�

J;A.XA/ ¤ ;, then AC J 2 ˆ˙.X/.
(ii) If, for each � 2 ˆ˙A, we have GC

J;A.X/ ¤ ; and G�
J;A.XA/ ¤ ;, then
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�e3.AC J / � �e3.A/: }

7.8.3 By Measure of Non-upper Semi-Fredholm Perturbations

Recall the w-essential spectral radius rw.T / WD maxfj�j such that ��T … ˆb.X/g,

defined for T 2 L.X/. We have rw.T / D lim
n!1 kT nk 1

n

K.X/. The following results

may be found in [2]. By Theorem 5.6.1 and Proposition 2.12.1, we can deduce:

Corollary 7.8.2. rw.T / D lim
n!1.'.T

n//
1
n . }

Proof. From Proposition 2.12.1.vi/ it follows rw.T / � lim
n!1.'.T

n//
1
n . To prove the

opposite inequality, let � 2 C be such that j�j > .'.T n// 1n for some n 2 N, then by
Theorem 5.6.1, it follows that �� T 2 ˆb.X/. Hence rw.T / � .'.T n//

1
n for every

n 2 N. Q.E.D.

For T 2 L.X/, define ı0.T / to be the limit of the sequence .ı.T n//
1
n . As an

application of Theorem 5.6.1, we prove some localization results about the essential
spectra �e4.:/, �e5.:/ and �e6.:/ of bounded operators on X . We use D.0; r/ for the
disc with center 0 and radius r and D.0; r/ for the closure of D.0; r/. We write
C Œr1; r2� D D.0; r2/nD.0; r1/, for r1 � r2.

Corollary 7.8.3. Let T be a bounded operator on X , we have �e5.T / �
D.0; rw.T //. }
Proof. Let n 2 N

� and suppose that j�jn > '.T n/, then, by Theorem 5.6.1, we
have � � T 2 ˆb.X/ and i.� � T / D 0. Hence, if j�j > rw.T /, then � … �e5.T /.
Q.E.D.

Corollary 7.8.4. Let T be a bounded operator on X , we have

(i) If T 2 ˆb�.X/, then �e4.T / � C Œı0.T /; rw.T /�.
(ii) If 0 … �e5.T /, then �e5.T / � C Œı0.T /; rw.T /�. }
Proof. Notice that if ı.T / D 0, then ı0.T / D 0 and the results are all trivial.
Suppose that ı.T / > 0. For j�j < ı0.T /, there exists n 2 N

� such that j�jn <
ı.T n/. Then, by Theorem 5.6.1, we have � � T 2 ˆbC.X/ and i.� � T / D i.T /.
Hence, we get easily .i/ and .ii/. Q.E.D.

Corollary 7.8.5. Let T be a bounded operator on X , we have �e6.T / �
D.0; rw.T //. }
Proof. For j�j > rw.T /, there exists n 2 N

� such that j�jn > '.T n/. By
Theorem 5.6.3, we have � � T 2 Bb.X/. The result follows since we can choose n
arbitrary large. Q.E.D.

Corollary 7.8.6. Let T be a bounded operator on X . If 0 … �e6.T /, then �e6.T / �
C Œı0.T /; rw.T /�. }
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Proof. Since 0 … �e6.T /, then T 2 ˆb.X/ and hence ı.T / > 0. For j�j < ı0.T /,
there exists n 2 N

� such that j�jn < ı.T n/. Theorem 5.6.3 implies that � � T 2
Bb.X/ since T 2 Bb.X/. Q.E.D.

7.8.4 Generalized Convergence

Definition 7.8.1. Let .Tn/n2N be a sequence of closable linear operators from X

into Y and let T be a closable linear operator from X into Y . .Tn/n2N is said to
converge in the generalized sense to T , if Oı.Tn; T / converges to 0 as n ! 1. }
Now, let us study some basic properties of the convergence in the generalized sense.

Theorem 7.8.4. Let .Tn/n2N be a sequence of closable linear operators from X

into Y and let T be a closable linear operator from X into Y . Then, we have

(i) The sequence Tn converges in the generalized sense to T if, and only if, TnCS

converges in the generalized sense to T C S , for all S 2 L.X; Y /.
(ii) Let T 2 L.X; Y /. Tn converges in the generalized sense to T if, and only if,

Tn 2 L.X; Y / for a sufficiently larger n and Tn converges to T .
(iii) Let Tn converge in the generalized sense to T . Then, T �1 exists and T �1 2

L.Y;X/ if, and only if, T �1
n exists and T �1

n 2 L.Y;X/ for a sufficiently larger
n and T �1

n converges to T �1. }
Proof.

.i/ Let S 2 L.X; Y /. Then,

Oı.Tn C S; T C S/ D Oı.Tn C S; T C S/

D Oı.Tn C S; T C S/:

By using Theorem 2.2.26.iii/, we have Oı.Tn C S; T C S/ � 2.1 C
kSk2/ Oı.Tn; T /. Hence,

Oı.Tn C S; T C S/ � 2.1C kSk2/ Oı.Tn; T /: (7.8.1)

In other terms, Oı.Tn; T / D Oı �Tn C S � S; T C S � S� and so,

Oı.Tn; T / � 2.1C kSk2/ Oı.Tn C S; T C S/: (7.8.2)

If Tn converges in the generalized sense to T , then Oı.Tn; T / ! 0. So, by
using (7.8.1), we deduce that Oı.Tn CS; T CS/ ! 0. Then, Tn CS converges
in the generalized sense to T C S . Conversely, if Tn C S converges in the
generalized sense to T C S , and according to (7.8.2), we have Oı.Tn C S; T C
S/ ! 0 as n ! 1. Hence, Tn converges in the generalized sense to T .
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.ii/ Let us assume that Tn converges in the generalized sense to T and that T 2
L.X; Y /. Let n0 2 N be such that Oı.T; Tn/ < 1p

1CkT k2 holds for all n � n0.

Suppose that x 2 D.Tn/, where n � n0 is fixed. First, we show that

k.T � Tn/xk � ı.Tn; T /.1C kT k2/ 12 : (7.8.3)

Indeed, k.T � Tn/xk � kTy � Tnxk C kT kkx � yk; 8y 2 X . By using the
Cauchy–Schwarz inequality, we deduce that k.T �Tn/xk � .kx�yk2CkTy�
Tnxk2/ 12 .1C kT k2/ 12 . So, we have

k.T � Tn/xk �
�

inf
y2X

�
kx � yk2 C kTy � Tnxk2

	 1
2

��
1C kT k2

	 1
2
:

(7.8.4)
Hence, the inequality (7.8.3) follows immediately by using both (7.8.4) and
Remark 2.2.2.i/. Now, let x 2 D.Tn/, such that kxk2 C kTnxk2 D 1. So, it is
easy to prove that

1 � .1C kT k2/ 12 kxk C k.T � Tn/xk:

Let x 2 D.T n/ such that kxk � 1. Then, we have

k.T � Tn/xk �
 

1C kT k2
1 �p

1C kT k2ı.Tn; T /
ı.Tn; T /

!

kxk: (7.8.5)

Since this inequality is homogeneous in x, then (7.8.5) is also true for any x 2
D.Tn/. The fact that ı.Tn; T / D ı.Tn; T / D ı.Tn; T / and D.Tn/ � D.Tn/,
allows us to conclude that

k.T � Tn/xk �
 

1C kT k2
1 �p

1C kT k2ı.Tn; T /
ı.Tn; T /

!

kxk;8x 2 D.Tn/:

(7.8.6)

By virtue of (7.8.6), the operator Tn is bounded on D.Tn/. This implies that
D.Tn/ is closed. Hence, D.Tn/ D D.Tn/ D X , Tn 2 L.X; Y /, and

kTn � T k �
 

1C kT k2
1 �p

1C kT k2ı.Tn; T /

!

ı.Tn; T /; 8n � n0: (7.8.7)

So, the relation (7.8.7) implies that Tn converges to T . Conversely, we suppose
that Tn converges to T . So, T is bounded. Now, we can write Oı.Tn; T / D
Oı..Tn � T /C T; 0C T /. This implies that

bı.Tn; T / � 2.1C kT k2/bı�Tn � T; 0�:
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Theorem 2.2.27 leads to the following inequality Oı.Tn; T / � 2.1 C
kT k2/ kTn�T kp

1CkTn�T k2 . As a result, Tn converges in the generalized sense to T .

.iii/ Now, let us argue by contradiction. We assume that there exists x 2 D.Tn/
such that kxk D 1 and Tnx D 0, for all n 2 N. In other words, since Tn
converges in the generalized sense to T , then there exists N 2 N such that
Oı.Tn; T / < 1p

1CkT�1k2 , 8n � N . So, there exists ı > 0 such that Oı.Tn; T / <
ı < 1p

1CkT�1k2 . Since .x; 0/ 2 G.Tn/, then there exists y 2 D.T / such that

kx � yk2 C kTnx � Tyk2 < ı2. Hence, we have

1 D kxk2 � .kx � yk C kyk/2 � .kx � yk C kT �1kkTyk/2; (7.8.8)

and, by using both the Schwarz inequality and (7.8.8), we infer that 1 � ı2.1C
kT �1k2/ < 1 which is a contradiction. So, T �1

n exists for a sufficiently larger
n and, by virtue of (7.8.7), we deduce that T �1

n 2 L.Y;X/, and

kT �1 �T �1
n k �

 
1C kT �1k2

1 �p
1C kT �1k2ı.T �1

n ; T �1/

!

ı.T �1
n ; T �1/: (7.8.9)

By using Theorem 2.2.26.ii/, and also the estimation (7.8.9), we infer that

kT �1 � T �1
n k �

 
1C kT �1k2

1 �p
1C kT �1k2ı.Tn; T /

!

ı.Tn; T /: (7.8.10)

According to (7.8.10), we also emphasize that T �1
n converges to T �1. Con-

versely, the reasoning is analogous to the proof of .ii/, where it suffices to
replace T and Tn by T �1 and T �1

n , respectively. Q.E.D.

As a straightforward consequence of Theorem 7.8.4.iii/, we can easily obtain the
following result.

Corollary 7.8.7. Let .Tn/n2N be a sequence of closable linear operators on X and
let T be a closable linear operator on X , such that �.T / ¤ ;. Assume that Tn
converges in the generalized sense to T , and let � 2 C arbitrarily. Then, .i/ � 2
�.T / if, and only if, .ii/ there exists n� 2 N such that � 2 �.Tn/ for all n > n� and
fk� � Tnk�1 W n � n�g is bounded.

Either .i/ or .ii/ implies the following .iii/ k.� � T /�1 � .� � Tn/
�1k ! 0 for

a sufficiently large n. }
Remark 7.8.1.

(i) We should notice that the case fTngn2N is a sequence of bounded operators.
Then, by using [118], we have �.fTng/ D f� 2 C; 9n� 2 N; m� > 0 W � 2
�.Tn/ and k.� � Tn/

�1k � m�; 8n � n�g and �
�fTng

� D Cn�.fTng/.
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Moreover, if Tn converges to T , then by using [148, Lemma 2.1], we have
�.fTng/ D �.T /.

(ii) Let T have a nonempty resolvent set. If Tn has a compact resolvent according
to Corollary 7.8.7, then T has a compact resolvent.

(iii) We mention that the converse of (ii) is not true (see [186, Remark. IV.
2.27]). }

Theorem 7.8.5. Let fTngn2N be a sequence of closed linear operators, and let T
be a closed linear operator mapping on X , such that 0 2 �.T / and Tn converges in
the generalized sense to T .

(i) If U � C is open and 0 2 U , then there exists n0 2 N such that, for every
n � n0, we have

�e5.Tn/ � �e5.T /C U : (7.8.11)

In particular, ı.�e5.Tn/; �e5.T // D 0, 8n � n0.
(ii) There exist " > 0 and n 2 N such that, for all kSk < ", we have �e5.Tn C S/ �

�e5.T /CU , for all n � n0. In particular, ı.�e5.Tn CS/; �e5.T // D ı.�e5.T C
S/; �e5.T //. }

Proof.

.i/ First, by using Theorem 7.8.4.iii/, we have 0 2 �.Tn/ for a sufficiently large n
and T �1

n converges to T �1. We have to prove the existence of n0 2 N, such that
8n � n0, we have

�e5.T
�1
n / � �e5.T

�1/C U : (7.8.12)

In order to prove (7.8.12), we will proceed by contradiction. Assume that
the assertion does not hold. Then, by studying a subsequence (if necessary),
we may assume that, for each n, there exists �n 2 �e5.Tn/ such that �n 62
�e5.T

�1/ C U . Since .�n/ is bounded, we may assume that lim
n!C1�n D �,

which implies that � 62 �e5.T
�1/ C U . By using the fact that 0 2 U , we have

� 62 �e5.T �1/. Therefore, ��T �1 2 ˆb.X/ and i.��T �1/ D 0. Sinceˆb.X/
is an open multiplicative semigroup, and by using Theorem 7.8.4, we deduce
that Oı.�n � T �1

n ; � � T �1/ ! 0 as n ! 1. Let ı WD Q�.� � T �1/ > 0. Then,
there exists N 2 N such that, for all n � N , we have Oı.��1

n � Tn; � � T �1/ �
ıp
1Cı . By using Theorem 2.2.26.iv/, we infer that �n � T �1

n 2 ˆb.X/ and

i.�n � T �1
n / D i.� � T �1/ D 0. Then, we obtain �n … �e5.T

�1
n /, which is a

contradiction. Hence, (7.8.12) holds. Now, if � 2 �e5.Tn/, then 1
�

2 �e5.T �1
n /.

By using (7.8.12), we have

1

�
2 �e5.T �1/C U : (7.8.13)
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Since U is an arbitrary neighborhood of 0, then (7.8.13) implies that 1
�

2
�e5.T

�1/. Now, we claim that � 2 �e5.T /C U . In fact, let us assume that � 62
�e5.T /CU . The fact that 0 2 U implies that � 62 �e5.T / and so, 1

�
62 �e5.T �1/

which is a contradiction. So, � 2 �e5.T / C U . This implies that (7.8.11)
holds. Since U is an arbitrary neighborhood of 0 and by using Eq. (7.8.11),
we have �e5.Tn/ � �e5.T /, for all n � n0. Hence, Remark 2.2.1.i/ gives
ı.�e5.Tn/; �e5.T // D ı.�e5.Tn/; �e5.T // D 0; 8n � n0.

.ii/ Let S 2 L.X/ such that kSk < 1
kT�1k D "1. Let An D TnCS and A D T CS .

By using Theorem 7.8.4.i/, An D TnCS converges in the generalized sense to
A D T CS . We will establish that 0 2 �.T CS/. In fact, since kST�1k < 1, the
Neumann series

P1
kD0.�ST�1/k converges and equals .I C ST�1/�1. In other

words, k.I C ST�1/�1k < 1
1�kSkkT�1k . It follows that .T C S/�1 D T �1.I C

ST�1/�1. In view of the above, 0 2 �.TCS/. Now, by applying .i/ toAn andA,
we conclude that there exists n0 2 N such that �e5.Tn C S/ � �e5.T C S/CU ,
for all n � n0. Let � 62 �e5.T /. Then, � � T 2 ˆ.X/ and i.� � T / D 0. By
applying Theorem 2.2.45, there exists "2 > 0 such that, for kSk < "2, one has
� � T � S 2 ˆ.X/ and i.� � T � S/ D i.� � T / D 0. This implies that
� 62 �e5.T C S/. In view of the above, and if we take " D min."1; "2/, we have
for all kSk < ", there exist n0 2 N such that �e5.Tn C S/ � �e5.T /C U , for
all n � n0. Since U is an arbitrary neighborhood of the origin, then we have
ı.�e5.Tn C S/; �e5.T // D 0 D ı.�e5.T C S/; �e5.T //. Q.E.D.

Remark 7.8.2. Let T , S 2 L.X/ and let Tn 2 Fb.X/. If Tn converges in
the generalized sense to T , then there exists n0 2 N such that 8n � n0,Oı.�e5.Tn C S/; �e5.T C S// D 0. Indeed, according to Theorem 7.8.4.ii/, Tn
converges to T and so, T 2 Fb.X/. Hence, Oı.�e5.TnCS/; �e5.TCS// D Oı.�e5.S/;
�e5.S// D 0. }

7.8.5 Convergence to Zero Compactly

Definition 7.8.2. A sequence .Tn/n2N of bounded linear operators mapping on X
is said to converge to zero compactly if for all x 2 X , Tnx ! 0 and .Tnxn/ is
relatively compact for every bounded sequence .xn/n � X . }
Remark 7.8.3. Clearly, Tn converges to 0 implies Tn converges to zero
compactly. }
Proposition 7.8.1. Let .Tn/n2N be a sequence of bounded linear operators and let
T 2 L.X/ such that Tn � T converges to zero compactly. Then,

(i) if Tn 2 Fb.X/, then T 2 Fb.X/,
(ii) if Tn 2 FbC.X/, then T 2 FbC.X/, and

(iii) if Tn 2 Fb�.X/, then T 2 Fb�.X/. }
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Proof.

.i/ Let A 2 ˆb.X/. Using the fact that Tn�T converges to zero compactly, and by
virtue of Theorems 5.7.3 and 5.7.4, there exists n0 2 N such thatA�.Tn�T / 2
ˆb.X/ for all n � n0. Since Tn 2 Fb.X/, we have A� .Tn�T /CTn 2 ˆb.X/
for all n � n0. This shows that T 2 Fb.X/.

The proofs of .ii/ and .iii/ are similar to the previous one. Q.E.D.

Theorem 7.8.6. Let .Tn/n2N be a sequence of bounded linear operators on X and
let T be a bounded linear operator on X .

(i) If Tn � T converges to zero compactly, U � C is open and 0 2 U , then there
exists n0 2 N such that �e5.Tn/ � �e5.T / C U , for all n � n0. In particular
ı
�
�e5.Tn/; �e5.T /

� D 0, for all n � n0.
(ii) If Tn converges to zero compactly, then there exists n0 2 N such that �e5.T C

Tn/ � �e5.T / for all n � n0. In particular ı
�
�e5.T C Tn/; �e5.T /

� D 0, for all
n � n0. }

Proof.

.i/ Assume that the assertion fails. Then by passing to a subsequence, it may be
assumed that, for each n, there exists �n 2 �e5.Tn/ such that �n 62 �e5.T /CU .
Since .�n/n is bounded, we may assume that lim

n!C1�n D � which implies that

� 62 �e5.T /C U . Using the fact that 0 2 U , we have � 62 �e5.T / and therefore,
��T 2 ˆb.X/ and i.��T / D 0. LetFn D �n��CT�Tn. SinceFn converges
to zero compactly, writing �n�Tn D ��T CFn, and using Theorem 5.7.6, we
infer that, there exists n0 2 N such that for all n � n0, we have �n�Tn 2 ˆ.X/
and i.�n � Tn/ D i.� � T C Fn/ D i.� � T / D 0. So, �n 62 �e5.Tn/, which
is a contradiction. So, �e5.Tn/ � �e5.T / C U , for all n � n0. Since U is an
arbitrary neighborhood of the origin we have �e5.Tn/ � �e5.T / for all n � n0.
Now, applying Remark 2.2.1.i/–.b/ we have ı

�
�e5.Tn/; �e5.T /

� D 0, for all
n � n0.

.ii/ Let � 62 �e5.T /. Then, � � T 2 ˆb.X/ and i.� � T / D 0. Since Tn converges
to zero compactly and by applying Theorem 5.7.6, there exists n0 2 N, such
that � � .T C Tn/ 2 ˆb.X/ for all n � n0. Hence, � 62 �e5.T C Tn/. Since
U is an arbitrary neighborhood of the origin we have �e5.Tn/ � �e5.T / for all
n � n0. Now, applying Remark 2.2.1.i/ we have ı

�
�e5.T C Tn/; �e5.T /

� D 0,
for all n � n0. Q.E.D.

Corollary 7.8.8. Let T be a closed linear operator on X , and let .Tn/n2N be a
sequence of closed linear operators on X . If, for some � 2 �.Tn/

T
�.T /, .� �

Tn/
�1 � .� � T /�1 converges to zero compactly, then there exists n0 2 N such that

�e5.Tn/ � �e5.T /, for all n � n0. }
Proof. Without loss of generality, we suppose that � D 0. Then, T �1

n D T �1 C Fn
where Fn converges to zero compactly. By applying Theorem 7.8.6.ii/, we have
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�e5.T
�1
n / D �e5.T

�1 C Fn/ � �e5.T
�1/ for all n � n0: (7.8.14)

Let � 2 �e5.Tn/, then 1
�

2 �e5.T �1
n /. By (7.8.14), we have 1

�
2 �e5.T �1/ and hence,

� 2 �e5.T /. So, �e5.Tn/ � �e5.T /. Q.E.D.

We close this section by the following example. Let

l2 D
8
<

:
.xj /j�1 such that xj 2 C and

C1X

jD1
jxj j2 < 1

9
=

;
:

.i/ Let An be a sequence defined by

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

An W D.An/ � l2 �! l2

D.An/ D
8
<

:
.xj /j�1 such that

C1X

jD1
j 2jxj j2 < 1

9
=

;

Anej D
�

jej ; j ¤ n;

�nej ; j D n:

Then, An converges in the generalized sense to A0. In fact, by using
[269, Remark 1.6], we have k.i ˙ An/

�1 � .i ˙ A0/
�1k D ˇ

ˇ 1
iCn � 1

i�n
ˇ
ˇ D

2n
1Cn2 ! 0 (where i D p�1/. Now, since An is closed, we can recall

Proposition 7.8.4.i/ in order to conclude that Oı.An; A0/ ! 0. Consequently,
An converges in the generalized sense to A0.

.ii/ We consider that the operators Tn and T in L.l2 ˚ l2/ are defined by

Tn WD
 
.An C i/�1 0

0 1
nC1 .I � U

2
/

!

and T WD
�
.A0 C i/�1 0

0 0

�

;

where U 2 L.l2/ is the forward unilateral shift defined by

�
U W l2 �! l2

.x0; x1; x2; : : :/ �! .0; x0; x1; x2; : : :/;

in terms of the standard basis in l2 that is Uej D ejC1 and kU k D 1. By
referring to [103, pp. 70–71], we know that

kTn � T k D max

(

k.i C An/
�1 � .i C A0/

�1k;
�
�
�
�
�

I � U
2

nC 1

�
�
�
�
�

)

� max

�
2n

1C n2
;

3

2.nC 1/

�

! 0; (7.8.15)
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Oı.Tn; T / ! 0: (7.8.16)

Hence, Tn converges in the generalized sense to T and by using both
Corollary 7.8.7 and Remark 7.8.1, we have �.fTng/ D �..A0Ci/�1/S˚

0

 D

f 1
�

such that �� i 2 �.A0/gSf0g. In other words, by using (7.8.15), we have
Tn�T converges to zero compactly. Hence, according to Theorem 7.8.6, there
exists n0 2 N such that �e5.Tn/ � �e5..A0 C i/�1/

S˚
0



for all n � n0.
.iii/ T is not invertible, T �1

n exists and

T �1
n WD

�
An C i 0

0 .nC 1/.I � U
2
/�1

�

:

However, T �1
n is not convergent. In fact, let us suppose, by contradiction,

that there exists A such that T �1
n converges in the generalized sense to A.

Hence, ı.T �1
n ;A/ ! 0 and there exists n0 2 N such that, for all n � n0,

we have Oı.A; T �1
n / < 1p

1CkTnk2 . Using the same reasoning as in the proof

of Theorem 7.8.4.iii/, we have A as an invertible operator. According to
Theorem 2.2.26.ii/, we infer that Oı.A; T �1

n / D Oı.A�1; Tn/ ! 0. Together
with (7.8.16), A�1 D T . This implies that T �1 D A constitutes is a
contradiction to the fact that T is not invertible. Q.E.D.

7.9 Borel Mappings

We recall some results about Borel mapping which can also be found in [227].

Theorem 7.9.1. Let X be a Banach space. If X is separable, then �ap W Ls.X/ �!
K.C/, T �! �ap.T /, is a Borel map. }
Proof. Let D be a countable and dense subset of SX . By using the definition of
the strong operator topology, .T; �/ �! .� � T /x is continuous from Ls.X/ � C

into X . Therefore, Ax;n is an open set in Ls.X/ � C (for every x 2 D, n 2 N)
and hence, 
�ap is a Borel set in Ls.X/ � C. Now, the result follows from
Lemma 2.7.2. Q.E.D.

Theorem 7.9.2. Let X be a Banach space. If X is separable, then � W Ls.X/ �!
K.C/, T �! �.T /, is a Borel map. }
Proof. In order to prove that the map T �! �.T / is a Borel one, it suffices to
establish that C , given in (7.1.5), is a Borel set. Let D be a countable and dense
subset of X . We can see that

C D
�

.T; �/ 2 L.X/ � C W 9n 2 N and y 2 D with ky � .T � �/xk

>
1

n
for all x 2 D

�

:
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Hence, we can write

C D
[

n2N

[

y2D

\

x2D

�

.T; �/ 2 L.X/ � C such that ky � .T � �/xk > 1

n

�

:

As in Theorem 7.9.1, by using the continuity for the strong operator topology, we
conclude that C is a Borel set. The result follows from Lemma 2.7.2. Q.E.D.

Theorem 7.9.3. Let X be a Banach space. If X and X� (the dual space of X ) are
separable, then �e4 W Ls.X/ �! K.C/, T �! �e4.T /, is a Borel map. }
Proof. Using Eq. (7.1.7),�1 is an open subset of Ls.X/�C. Then,�1 is a Borel set.
Using Eq. (7.1.8), �2 is a Borel set of Ls.X/ � C. Accordingly, 
�Aq

D �1

S
�2

is a Borel set. Then, for all q 2 N and A 2 Ls.X/ fixed, T �! �Aq .T / is a
Borel map from Ls.X/ into K.C/. Let us set �A0;q.T / D f� 2 C such that �A �
T … ˆ0.X/gTB.0; q/ (�A0;q.T / being a compact subset of C). Hence, �A0;q.T / D
T
F2F0.X/

�Aq .T C F / D T
F2Fd

0 .X/
�Aq .T C F /, where Fd

0 .X/ is a countable and
dense subset of F0.X/ (the set of finite rank operators onX with its norm topology).
So, T �! �A0;q.T / is a Borel map. By using Lemma 2.7.3 and Eq. (7.1.4), we may
write �e4.T / D T

k2Zf� 2 C such that Ak.� � T / … ˆ0.X/g, where, for all k, Ak
is a fixed operator with i.Ak/ D �k. Hence,

�e4.T /
\
B.0; q/ D

\

k2Z
.f� 2 C such that Ak.� � T / … ˆ0.X/g

\
B.0; q//

D
\

k2Z
�
Ak
0;q .AkT /:

Since the map T �! AkT is continuous from Ls.X/ into Ls.X/ and since
T �! �

Ak
0;q .T / defines a Borel map for all q and k in N, we deduce that T �!

�e4.T /
T
B.0; q/ is a Borel map. This shows that 
�e4 D S

q2N
�e4.T /
T
B.0;q/,

which is Borel. Now, using Lemma 2.7.2 gives the result. Q.E.D.

Let D be a countable and dense subset of F0.X/. We can easily show that

�e5.T / D
\

F2F0.X/

�.T C F / D
\

F2D
�.T C F /

and


�e5 D f.T; �/ 2 L.X/ � C such that � 2 �e5.T /g

D
(

.T; �/ 2 L.X/ � C such that � 2
\

F2D
�.T C F /

)
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D
\

F2D
f.T; �/ 2 L.X/ � C such that � 2 �.T C F /g

D
\

F2D
f.T 0 � F; �/ 2 L.X/ � C such that � 2 �.T 0/g; (7.9.1)

where T 0 D T C F .

Theorem 7.9.4. Let X be a Banach space. If X and X� are separable, then �e5 W
Ls.X/ �! K.C/, T �! �e5.T /, is a Borel map. }
Proof. Let D be a countable and dense subset of F0.X/. Using Eq. (7.9.1), we have

�e5 D T

F2D.
� � .F; 0//. Clearly, for every F 2 D, the translation by .�F; 0/
of the Borel set 
� is a Borel set in Ls.X/ � C. As a result, 
�e5 is a Borel set and
therefore, �e5.:/ is a Borel map. Q.E.D.

Theorem 7.9.5. Let X be a Banach space. If X and X� are separable, then �e6 W
Ls.X/ �! K.C/, T �! �e6.T /, is a Borel map. }
Proof. First, let us notice that, 
�e6 D 
�e4

S

dı� , where d represents the

Cantor–Bendixson derivative. By using Theorem 7.9.3, we know that
�e4 is a Borel
set. Moreover, by applying Lemma 2.7.2 and Proposition 2.7.3.iii/, we notice that

dı� is a Borel set in Ls.X/ � C. Then, 
�e6 is also Borel. This gives the desired
result. Q.E.D.

Remark 7.9.1. Obviously, in the case where L.X/ is endowed with the operator
norm topology, the spectrum and essential spectrum are known to be upper
semicontinuous (hence Borel) but, in general, not continuous. }
As an immediate consequence of Theorems 7.9.1–7.9.5, we have the following
corollary.

Corollary 7.9.1. Let X be a Banach space. If X is separable, then T .X/, Inv.X/,
and R.X/ are Borel subsets of Ls.X/. Moreover, if X� is separable, then ˆb.X/
and ˆ0.X/ are also Borel subsets of Ls.X/. }
Proof. Let us consider the set T .X/. Since the set of Borel sets is closed under
complementation, it is sufficient to prove that T c.X/ is Borel. For this purpose,
using Eq. (7.1.6), T c.X/ may be written as follows: T c.X/ D ��1

ap .fK 2
K.C/ such that 0 … Kg/. However, the set fK 2 K.C/ such that 0 … Kg is
open in K.C/. Then, by applying Theorem 7.9.1 we conclude that T c.X/ is Borel.
Arguing as above, and using Eqs. (2.7.2), (7.1.2), (7.1.3), and Theorems 7.9.2–7.9.4,
we deduce that Inv.X/, ˆb.X/, and ˆ0.X/ are Borel subsets of Ls.X/. Now, in
order to prove that R.X/ is a Borel subset of Ls.X/, it suffices to use Eq. (2.7.3)
and invokes the Borel character of the functions �.:/ and d.:/ [cf. Theorem 7.9.2
and Proposition 2.7.3.iii/], where d.:/ is the Cantor–Bendixson derivative. Q.E.D.
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If X� is separable, then Fb.X/ is a coanalytic subset of Ls.X/. Evidently, here
we use the fact that ˆb.X/ is a Borel subset of Ls.X/ if X� is separable cf.
Corollary 7.9.1. Making use of this observation, our objective here is to describe
the topological complexity of some subsets of Ls.X/ for particular Banach spaces.
Since the separability of the dual space X� is required, from the classes of spaces
mentioned below, we use only Banach spaces with this property. If X is a h-space,
then the ideal of strictly singular operators S.X/ is the greatest proper ideal of
L.X/. So, we have S.X/ D Fb.X/. This shows that S.X/ is a coanalytic subset
of Ls.X/ for any h-space X with separable dual. This holds true, in particular, for
the spaces c, c0 and lp (1 < p < 1). In [68], it is proved that if X is subprojective,
then S.X/ D Fb.X/. Accordingly, for any subprojective Banach space X with
separable dual, S.X/ is a coanalytic subset of Ls.X/. This holds true, in particular,
for the spaces c0, lp (1 < p < 1) and Lp (2 � p < 1). Let .�;†;�/ be a
positive measure space. It follows from Lemma 2.1.13.ii/ that S.Lp.�; d�// D
Fb.Lp.�; d�// with 1 < p < 1 (in fact, this also holds for p D 1 and 1). This
implies that the set of strictly singular operators is a …1

1 subset of Ls.Lp.�; d�//
for 1 < p < 1. Note that the identity S.Lp.�; d�// D Fb.Lp.�; d�// is not
specific to Lp-spaces. In fact, it is also fulfilled for C.„/ (the Banach space of
continuous scalar-valued functions on„ with the supremum norm) provided that„
is a compact Hausdorff space. So, the conclusion above is also valid for S.C.„//
provided that„ is countable. Recall that there are many separable Banach spacesX
for which L.X/ has only one proper nonzero closed two-sided ideal. Indeed, Calkin
proved that if X is a separable Hilbert space, then K.X/ is the unique proper closed
two-sided ideal of L.X/. Gohberg et al. in [124] established the same result for the
spaces lp , 1 � p < 1, and c0. Accordingly, if X is separable Hilbert space or one
of the spaces lp , 1 < p < 1, or c0, then K.X/ D Fb.X/ and therefore K.X/ is a
…1
1 subset of Ls.X/. Corollary 7.9.1 asserts that, if X is a separable Banach space,

then T .X/ and Inv.X/ are Borel subsets of Ls.X/, and if X� is separable, then
ˆ0.X/ and ˆb.X/ satisfy the same property.

Let DX denote a countable and dense subset of separable Banach space X . If
T 2 L.X/, then 0 … �com.T / is equivalent to the fact that, for all n 2 N

� and
x 2 DX , there exists y 2 X such that kTy � xk < 1=n. So,

fT 2 L.X/ W 0 … �com.T /gD
\

n2N�

\

x2DX

[

y2X

�

T 2 L.X/ such that kTy�xk<1
n

�

:

This shows that Zc.X/ is a countable intersection of open subsets of
Ls.X/. Therefore, Zc.X/ is a Gı subset of Ls.X/. Using Eq. (7.1.6),
it is not difficult to observe that T 2 T c.X/ if, and only if, T 2S
n2N�fU 2 L.X/ such that 8x 2 SX; kUxk � 1=ng, or equivalently

T 2 S
n2N�

T
x2SX

˚
U 2 L.X/ such that kUxk � 1

n



. Accordingly, T c.X/ is a

countable union of closed sets, that is, an F� subset of Ls.X/. Now, let us consider
the set of Weyl operators. It is not difficult to observe that T 2 ˆ0.X/ if, and only
if, 0 … �e5.T / if, and only if, 0 … TF2F0.X/

�.T C F /. So,



264 7 Essential Spectra of Linear Operators

ˆ0.X/ D
8
<

:
T 2 L.X/ such that 0 …

\

F2F0.X/

�.T C F /

9
=

;
:

Let D be a countable and dense subset of F0.X/. Arguing as in the proof of
Theorem 7.9.4, we notice that

ˆ0.X/ D
(

T 2 L.X/ such that 0 …
\

F2D
�.T C F /

)

D fT 2 L.X/ W 9Fn 2 D such that 0 2 �.T C Fn/g
D fT 2 L.X/ W 9Fn 2 D such that T C Fn is invertibleg
D
[

F2D
fT 2 L.X/ such that T C F 2 Inv.X/g :

Let us denote by TF the translation from L.X/ into itself which assigns to each
T the operator T C F . Then, we may write ˆ0.X/ D S

F2D T �1
F .Inv.X//. The

following proposition gives more details about the topological structure of these
sets given in [227].

Proposition 7.9.1. If X is a separable Banach space, then T .X/ is a Gı subset of
Ls.X/, Z.X/ is anF� subset of Ls.X/, and Inv.X/ is a Borel subset of Ls.X/ of the
form F�nF� . Moreover, if X� is separable, then ˆ0.X/ and ˆb.X/ are countable
unions of Borel subsets of Ls.X/ of the form F�nF� . }
Proof. Concerning the sets T .X/ and Z.X/ are proved before. Let DX denote a
countable and dense subset of X . Now, let us notice that

Inv.X/ D fT 2 L.X/ such that 0 … �ap.T /g
\

fT 2 L.X/ such that 0 … �com.T /g:

Consequently, Inv.X/ D T c.X/
T

Zc.X/ D T c.X/nZ.X/, which proves the
statement for Inv.X/. Now, by using the continuity of TF and the fact that Inv.X/ D
T c.X/nZ.X/, we get ˆ0.X/ D S

F2D T �1
F .T c.X//nT �1

F .Z.X//, where D be
a countable and dense subset of F0.X/ which ends the proof for ˆ0.X/. When
dealing with the set of Fredholm operators, we can write ˆb.X/ D S

n2Zˆn.X/.
According to Lemma 2.7.3, ˆn.X/ D fT 2 L.X/ such that AnT 2 ˆ0.X/g for
each n 2 Z, where An is a fixed operator satisfying i.An/ D �n. Let CA [with
A 2 L.X/] denote the map from L.X/ into itself defined by CA.T / D AT . By using
the continuity of CA and the fact that ˆn.X/ D C�1

An
.ˆ0.X// for each n 2 Z, we

deduce that ˆb.X/ D S
n2Z C�1

An
.ˆ0.X//, which completes the proof. Q.E.D.
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7.10 Spectral Mapping Theorem

In order to make the spectral mapping theorems true in the case of closed,
unbounded, and linear operators, we shall include the point at infinity to the essential
spectra. So, we will consider the following extended spectra

8A 2 C.X/; Q�ei.A/ D �ei.A/
[

f1g; i D 1; 2; 4; 5; 6; 7; 8:

The aim of this section is to discuss a spectral mapping theorem for Q�e5.�/, Q�e7.�/,
and Q�e8.�/ in a special case which occurs in some applications.

Theorem 7.10.1 ([137, Theorem 7 (a)]). Let A be a closed, unbounded, and
linear operator with a nonempty resolvent set, and let f be a complex-valued
function that is locally holomorphic on the extended spectrum of A, �.A/

Sf1g.
Then, Q�ei.f .A// D f . Q�ei.A//, i D 1; 2; 4; 6, and, Q�e5.f .A// � f . Q�e5.A//. }
The following result provides a spectral mapping theorem for the Schechter’s
essential spectrum in a special case which occurs in some applications. Let us recall
that the spectral mapping theorem holds true for the Wolf essential spectrum (see
Theorem 7.10.1). However, a counter-example given in [137, p. 23] shows that,
in general, it is false for Q�e5.:/. In fact, let A be such that i.I C A/ D �1 and
i.I � A/ D 1. Then i..I C A/.I � A// D 0, so that 0 … �e5.f .A//, where f is
f .�/ D .1C �/.1 � �/. However, ˙1 2 �e5.A/ and, then 0 2 f .�e5.A//.
Theorem 7.10.2. Let I.X/ be any nonzero two-sided ideal of L.X/ satisfying
K.X/ � I.X/ � Fb.X/, and let A1 and A2 be two elements of C.X/ such that
.��A1/�1�.��A2/�1 2 I.X/ for some � 2 �.A1/T �.A2/. If �e4.A1/ D �e5.A1/,
and if f is a complex-valued function that is locally holomorphic on the extended
spectrum of A, �.A/

Sf1g, then f . Q�e5.Ak// D Q�e5.f .Ak//, k D 1; 2. }
Proof. For k D 1, the result follows from both the hypotheses �e4.A1/ D
�e5.A1/ and Theorem 7.10.1. Now, let’s consider the case k D 2. The inclusion
Q�e5.f .A2// � f . Q�e5.A2// follows from Theorem 7.10.1. It remains to show that
f . Q�e5.A2// � Q�e5.f .A2//. Let � 2 f . Q�e5.A2//. Then, there exists � 2 Q�e5.A2/,
such that � D f .�/. Hence, using the hypothesis �e4.A1/ D �e5.A1/ as well
as Theorem 7.5.4.i/, for i D 4, we show that � 2 Q�e4.A2/. Next, applying
Theorem 7.10.1 for the Wolf essential spectrum, we obtain f .�/ 2 Q�e4.f .A2//.
Since Q�e4.f .A2// � Q�e5.f .A2//, we infer that f .�/ 2 Q�e5.f .A2//, which
completes the proof. Q.E.D.

Theorem 7.10.3 ([285, Theorem 3.3]). Let A 2 L.X/ and let f be an analytic
function defined on a neighborhood of �.A/. Then, �e7.f .A// � f .�e7.A//: }
The results of the following theorem were established, respectively, by V. Rakočević
(Theorem 7.10.3) and Schmoeger [304, Theorem 3] for bounded linear operators.
Using the same method as the one developed in [137, p. 30], we can express the
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theorem for closed, unbounded, and linear operators. For a better convenience of
the reader, we include a proof.

Theorem 7.10.4. Let A 2 C.X/ with a nonempty resolvent set, and let f
be a complex-valued function that is holomorphic on an open set containing
�.A/

Sf1g. Then, Q�e7.f .A// � f . Q�e7.A// and, Q�e8.f .A// � f . Q�e8.A//. }
Proof. Let ˇ be a fixed point in �.A/ and let’s define the function  by

 W CSf1g �! C
Sf1g

� �!  .�/ D
8
<

:

.� � ˇ/�1 if � ¤ ˇ

 .ˇ/ D 1
 .1/ D 0:

Let T D  .A/ and let’s choose � ¤ ˇ;� D  .�/:WritingA�� D A�ˇ�.��ˇ/,
we get .A � �/T D ��1.� � T / on X . Since R.T / D D.A � �/, then

R.� � T / D R.A � �/: (7.10.1)

Also, since T is one-to-one map of X onto D.A � �/, then

˛.A � �/ D ˛.� � T /: (7.10.2)

Note that 0 2 �e7.T / because R.T / D D.A/ cannot be closed when A is
unbounded. Therefore, using Eqs. (7.10.1) and (7.10.2), it is easy to verify that
 is one-to-one map of Q�e7.A/ onto �e7.T /. Now, let’s define the function g by
g.�/ D f ı  �1.�/. Then, g is holomorphic on a neighborhood of �.T / and
g.T / D f .A/. Hence, from Theorem 7.10.3, it follows that

Q�e7.f .A// D Q�e7.g.T //
� g. Q�e7.T //
D f ı  �1. Q�e7.T //
D f . Q�e7.A//:

This proves the result for Q�e7.�/. Concerning Q�e8.�/, the result can be deduced in the
same way. Q.E.D.

Let us recall that the spectral mapping theorem holds true for Q�e1.�/ and Q�e2.�/ (see
Theorem 7.10.1). However, a counter-example given in [289] shows that, in general,
it is false for Q�e7.�/. The following result provides a spectral mapping theorem for the
essential approximate point spectrum and the essential defect spectrum in a special
case which occurs in some applications.

Proposition 7.10.1. Let A1 and A2 be two elements of C.X/, such that .� �
A1/

�1 � .� � A2/
�1 2 FbC.X/ [resp. 2 Fb�.X/] for some � 2 �.A1/

T
�.A2/.

If �e7.A1/ D �e1.A1/ Œresp. �e8.A1/ D �e2.A1/�, and if f is a complex-valued
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function holomorphic on an open set containing �.A/
Sf1g, then Q�e7.f .Ak// D

f . Q�e7.Ak//, k D 1; 2 .resp. Q�e8.f .Ak// D f . Q�e8.Ak//, k D 1; 2/. }
Proof. For k D 1, the result follows from both the hypothesis �e7.A1/ D �e1.A1/

and Theorem 7.10.1. For the case k D 2, the inclusion Q�e7.f .A2// � f . Q�e7.A2//
follows from Theorem 7.10.4. It remains to show that f . Q�e7.A2// � Q�e7.f .A2//.
To do so, we consider � 2 f . Q�e7.A2//. Then, there exists � 2 Q�e7.A2/ such that
� D f .�/. Hence, from Theorem 7.5.4 and the hypothesis �e7.A1/ D �e1.A1/,
it follows that � 2 Q�e1.A2/. Now, applying the spectral mapping theorem for
Q�e1.�/ (Theorem 7.10.1), we obtain f .�/ 2 Q�e1.f .A2// � Q�e7.f .A2//: Thus,
� 2 Q�e7.f .A2//. This proves the result for Q�e7.�/. Concerning Q�e8.�/, the result can
be proved in the same way. Q.E.D.

7.11 A Characterization of Polynomially Riesz Strongly
Continuous Semigroups

7.11.1 Polynomially Fredholm Perturbations

LetX be a Banach space. We say that an operatorA 2 L.X/ belongs to PFb.X/, if
there is a nonzero complex polynomial p.z/, such that the operator p.A/ 2 Fb.X/.
In view of the good ordered of the positive integers, the minimal polynomial of A
can be made unique by specifying the value of the coefficient related to the term
with a large degree. Let A 2 PFb.X/. The nonzero polynomial p.z/ of the least
degree and leading coefficient 1 such that p.A/ 2 Fb.X/ will be called the minimal
polynomial of A.

Remark 7.11.1. Let A 2 PFb.X/ and let p.z/ be the minimal polynomial of
A. If �i is a root of p.z/ and �i … �.A/, then q.A/ 2 PFb.X/, where
q.z/ D .z � �i /

�1p.z/. Let deg.p/ [resp. deg.q/] denote the degree of p.z/ [resp.
q.z/]. Obviously, deg.q/ <deg.p/. This contradicts the minimality of p.z/. Hence,
�i 2 �.A/ and therefore, all roots of p.z/ belong to �.A/. }
Let us notice that, if A 2 PFb.X/, then there exists a polynomial p.:/ ¤ 0 such
that p.A/ 2 Fb.X/. Hence, p.A/ is a Riesz operator and, then �e6.p.A// D f0g.
Moreover, if dim.X/ D 1, then we also have ; ¤ �e4.p.A// � �e6.p.A// D f0g.
Consequently, �e4.p.A// D �e6.p.A// D f0g. Moreover, according to the spectral
mapping theorem, we have

�e4.p.A// D p.�e4.A// D f0g and �e6.p.A// D p.�e6.A// D f0g: (7.11.1)

The following result can be found in [229].

Proposition 7.11.1. LetA 2 L.X/. IfA 2 PFb.X/, then there exists a polynomial
p.:/ ¤ 0 such that �e6.A/ D �e4.A/ � f� 2 C such that p.�/ D 0g. }
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Proof. Since A 2 PFb.X/, there exists a polynomial p.:/ ¤ 0 such that
p.A/ 2 Fb.X/. So, by using Eq. (7.11.1), we deduce that �e4.A/ � �e6.A/ �
f� such that p.�/ D 0g. Therefore, �e6.A/ is a finite set, and all elements in
�.A/n�e6.A/ are isolated points in �.A/. We still have to show that �e6.A/ �
�e4.A/. Indeed, let �0 2 �e6.A/. We can write �.A/ D �0

S
�1 where �0 and �1

are clopen subsets of �.A/ and �e6.A/
T
�0 D f�0g. So, we have a decomposition

of A according to the decomposition X D X0 ˚ X1 of the space in such a way
that the spectra of the parts of A in X0 and X1, i.e., A0 and A1 coincide with
�0 and �1, respectively. Consequently, for any � 2 �0, � � A1 2 ˆb.X1/, and
by using Lemma 2.1.10.i/, we have �e4.A0/ D �0

T
�e4.A/ � �e6.A/

T
�0 D

f�0g. Since X0 is not finite-dimensional, then �e4.A0/ ¤ ; and therefore,
�e4.A0/ D �e4.A/

T
�0 D f�0g. Hence, �0 2 �e4.A/ and consequently, �e4.A/ D

�e6.A/. Q.E.D.

7.11.2 Polynomially Riesz Operator

If A 2 PR.X/, then �e4.A/ is necessarily finite, say f�1; : : :; �ng, and p.z/ D .z �
�1/: : :.z��n/ is the nonzero polynomial of the least degree and leading coefficient 1
such that p.A/ 2 R.X/. It will be called the minimal polynomial of A. Conversely,
let p.z/ D .z � �1/: : :.z � �n/ be the minimal polynomial (in the sense defined
above) of A. Arguing as above, we notice that each �i 2 �e4.A/ and so, �e4.A/ D
f�1; : : :; �ng. This leads to the following characterization of the set of polynomially
Riesz operators.

Proposition 7.11.2. Let X be a Banach space. An operator A 2 L.X/ belongs to
PR.X/ if, and only if, �e4.A/ is finite, say, �e4.A/ D f�1; : : :; �ng. Moreover, the
minimal polynomial of A can be written in the form p.z/ D .z � �1/: : :.z � �n/. }
Let us notice that, if A 2 PR.X/, then p.A/ 2 R.X/, where p.:/ is the minimal
polynomial of A, and therefore, �e6.p.A// D f0g. Moreover, if dim.X/ D 1,
we also have ; ¤ �e4.p.A// � �e6.p.A// D f0g. Consequently, �e4.p.A// D
�e6.p.A// D f0g. Besides, and according to the spectral mapping theorem, we have

�e4.p.A// D p.�e4.A// D f0g and �e6.p.A// D p.�e6.A// D f0g: (7.11.2)

All results of this section belong to [229].

Proposition 7.11.3. Let A 2 L.X/. If A 2 PR.X/, then except for a finite set, the
spectrum of A consists of isolated points representing some eigenvalues with a finite
algebraic multiplicity. }
Proof. Since A 2 PR.X/, there exists a polynomial p.:/ ¤ 0 such that
p.A/ 2 R.X/. So, it is sufficient to prove that �e6.A/ D �e4.A/ �
f� such that p.�/ D 0g. For this purpose, let us first observe that (7.1.1) and (7.11.2)
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imply �e4.A/ � �e6.A/ � f� such that p.�/ D 0g. Consequently, �e6.A/ is a
finite set, and all elements in �.A/n�e6.A/ are isolated points in �.A/. It remains
to demonstrate that �e6.A/ � �e4.A/. Indeed, let �0 2 �e6.A/. We can write
�.A/ D �0

S
�1, where �0 and �1 represent two clopen subsets of �.A/ and

�e6.A/
T
�0 D f�0g. Then, we have a decomposition of A according to the

decomposition X D X0 ˚ X1 of the space, in such a way that the spectra of the
parts of A in X0 and X1, i.e., A0 and A1, coincide with �0 and �1, respectively.
Consequently, for any � 2 �0, � � A1 2 ˆb.X1/, and by using Lemma 2.1.10.i/,
we have �e4.A0/ D �0

T
�e4.A/ � �e6.A/

T
�0 D f�0g. Since X0 is not finite-

dimensional, then �e4.A0/ ¤ ; and therefore, �e4.A0/ D �e4.A/
T
�0 D f�0g.

Accordingly, �0 2 �e4.A/ and, then �e4.A/ D �e6.A/ which ends the proof. Q.E.D.

Proposition 7.11.4. Let A 2 PR.X/, such that the minimal polynomial p.:/ of A
satisfies p.�1/ ¤ 0. Then, I C A 2 ˆb.X/ and i.I C A/ D 0. }
Proof. Since p.A/ 2 R.X/, �e6.P.A// D f0g. By using the hypothesis that
p.�1/ ¤ 0, we infer that p.�1/ … �e6.p.F //. Next, by applying the spectral map-
ping theorem for the Browder essential spectrum (Theorem 7.10.1), we conclude
that �1 … �e6.A/, i.e., �1 2 �6.A/. This completes the proof. Q.E.D.

Proposition 7.11.5. Let .T .t//t�0 be a C0-semigroup on a Banach space X with
an infinitesimal generator A, and let n be an integer. Let ' be a function defined
from its domain into C

n, that is, ' W D.'/ � R �! C
n, t �! .'1.t/; : : :; 'n.t//.

Set DC.'/ WD D.'/
T
�0;1Œ. Let us assume that '.:/ is continuous and, for all

t 2 DC.'/, 'i .t/ ¤ 0 and
Qn
iD1.T .t/ � 'i .t// 2 R.X/. If DC.'/ ¤ ;, then

.T .t//t�0 can be embedded in a C0-group on X . }
Proof. By hypothesis, there exists t0 > 0 such that T .t0/ 2 PR.X/. Let
pt0.z/ D Qn

iD1.z � 'i .t0// be the minimal polynomial of T .t0/. Then, pt0.T .t0// DQn
iD1.T .t0/�'i .t0// 2 R.X/. By writing T .t0/ in the form T .t0/ D IC.T .t0/�I /,

we notice that pt0.T .t0// D Qn
iD1..T .t0/ � I / � .'i .t0/ � 1/I / D Npt0.T .t0/ � I /,

where Npt0.z/ D Qn
iD1.z � .'i .t0/ � 1//. Clearly, Npt0.�1/ D Qn

iD1.�'i .t0// ¤ 0.
Therefore, T .t0/ � I 2 PR.X/ such that, the minimal polynomial Npt0.:/ of
T .t0/ � I satisfies Npt0.�1/ ¤ 0. From Proposition 7.11.4, it follows that T .t0/ D
I C .T .t0/ � I / is a Fredholm operator and i.T .t0// D 0. Now, the use of
Theorem 5.1.5 leads to the desired result. Q.E.D.

Proposition 7.11.6. Let .T .t//t�0 be a C0-semigroup on a Banach space X with
an infinitesimal generator A, and let n be an integer. Let ' be a function defined
from its domain into C

n, that is, ' W D.'/ � R �! C
n, t �! .'1.t/; : : :; 'n.t//.

Set DC.'/ WD D.'/
T
�0;1Œ. Let us assume that '.:/ is continuous and, for all

t 2 DC.'/, 'i .t/ ¤ 0 and
Qn
iD1.T .t/ � 'i .t// 2 R.X/. If DC.'/ contains a set

with a nonempty interior, then A is bounded on X . }
Proof. By using the various hypotheses, there exists a continuous function ' W
D.'/ � R �! C

n, t �! .'1.t/; : : :; 'n.t// (with n � 2) such that, for
all t 2 DC.'/, we have 'i .t/ ¤ 0 and

Qn
iD1.T .t/ � 'i .t// 2 R.X/, i.e.,

for all t 2 DC.'/, we have T .t/ 2 PR.X/. According to Proposition 7.11.3,
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the spectrum of T .t/ consists of eigenvalues with a finite algebraic multiplicity,
possibly accumulating at the points 'i .t/, i D 1; : : :; n. Therefore, by using the
spectral mapping theorem for the point spectrum [see Eq. (2.5.1)], we deduce that
�.T .t//nf'i .t/; i D 1; : : :; ng D fe�t such that � 2 �p.A/g. According to
Proposition 3.5.2, we know that I WD fIm� such that � 2 �p.A/g is bounded. Let
M WD supfjIm�j such that � 2 �p.A/g. We will construct an open set satisfying
the hypotheses of Proposition 2.5.1. For this purpose, let us first observe that, if
� 2 �p.A/ and t 2 Œ0; 

2M
�, then jarg.e�t /j � 

2
. So, for t 2 Œ0; 

2M
�, we

have et�p.A/ D �p.T .t// � fz such that Re.z/ � 0g. Moreover, according to
Proposition 7.11.5, the semigroup .T .t//t�0 can be embedded in a C0-group, that is,

QT .t/ D
�
T .t/ if t � 0;

T .�t / if t � 0:

Hence, for each x 2 X , the map t 2 Œ0; 
2M
� �! T .�t /x is continuous. Then, there

exists Mx � 0 such that kT .�t /xk � Mx , for all t 2 Œ0; 
2M
�. Therefore, by using

the Banach–Steinhaus theorem, there exists M 0 � 0, such that kT .�t /k � M 0 for
all t 2 0; 

2M

�
. Since T .�t / D T .t/�1, we deduce that kT .t/�1xk � M 0kxk and,

then

kT .t/xk � 1

M 0 kxk for all x 2 X: (7.11.3)

Let � be such that j�j < 1
M 0

. From (7.11.3), we infer that, if t 2 Œ0; 
2M
�,

then k.T .t/ � �/xk � �
1
M 0

� j�j� kxk and consequently, � … �p.T .t//. So, for
t 2 Œ0; 

2M
�, we have �p.T .t// � ˚

z 2 C such that Re.z/ � 0 and jzj � 1
M 0



. Recall

that, by hypothesis, and for t > 0 (use Proposition 7.11.3), we have the following
�.T .t// D �p.T .t//

S
�e4.T .t// � �p.T .t//

Sf'1.t/; : : :; 'n.t/g. Let t0 2�0; 
2M
Œ

and let " > 0 be given. Then, there exists ı > 0 such that �t0 � ı; t0 C ıŒ��0; 
2M
Œ

and jt � t0j < ı imply that j'i .t/�'i .t0/j � " for all i 2 f1; : : :; ng. So, jt � t0j < ı
implies that �.T .t// � S.t0; "/, where

S.t0; "/ WD
�

z 2 C such that Re.z/ � 0 and jzj � 1

M 0

� [

 
[

1�i�n
fz 2 C such that jz � 'i .t0/j � "g

!

:

This shows that, for a small enough " > 0, the complement of the set S.t0; "/ in
C is an unbounded, open, and connected set � with 0 2 �. Now, by applying
Proposition 2.5.1, we conclude that A 2 L.X/, which ends the proof. Q.E.D.

Proposition 7.11.7. Let .T .t//t�0 be a C0-semigroup on a Banach spaceX and let
t0 > 0. If 0 2 �e4.T .t0//, then 0 2 �e4.T .t// for all t > 0. }
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Proof. Let t0 > 0 be such that 0 2 �e4.T .t0//. If, for some t > 0, 0 … �e4.T .t//,
then T .t/ is a Fredholm operator. Hence, by using Propositions 5.1.2 and 5.1.3,
we deduce that T .t/ is invertible for all t � 0. This contradicts the fact that 0 2
�e4.T .t0//. Therefore, for all t > 0, 0 2 �e4.T .t//. Q.E.D.

Proposition 7.11.8. Let .T .t//t�0 be a C0-semigroup on a Banach spaceX and let
t0 > 0. If T .t0/ 2 R.X/, then .T .t//t�0 is a C0-semigroup of Riesz type. }
Proof. Let t > 0. If t > t0, then T .t/ D T .t0/T .t � t0/. Since T .t0/ and T .t �
t0/ commute, the use of Proposition 2.2.3 implies that T .t/ 2 R.X/. Now, let us
assume that t < t0. There exists n 2 N

� such that t0
n
< t . Hence, T .t/ D T . t0

n
/T .t�

t0
n
/. Since T .t0/ 2 R.X/ and T .t0/ D ŒT . t0

n
/�n, then the spectral mapping theorem

shows that T . t0
n
/ is also a Riesz operator. Now, using the fact that T . t0

n
/ and T .t� t0

n
/

commute, together with Proposition 2.2.3, we deduce that T .t/ 2 R.X/. Q.E.D.

Proposition 7.11.9. Let X be a Banach space and assume that X D X1 ˚ X2,
A 2 L.X/ with A.X1/ � X1, A.X2/ � X2. Let A1 D AjX1 2 L.X1/ and A2 D
AjX2 2 L.X2/. Then, �e4.A/ D �e4.A1/

S
�e4.A2/. }

Proof. The proof is trivial. Q.E.D.

Proposition 7.11.10. Let X be a Banach space and assume that X D X1 ˚ X2,
A 2 L.X/ with A.X1/ � X1, A.X2/ � X2. Let A1 D AjX1 2 L.X1/ and
A2 D AjX2 2 L.X2/. If � is an isolated point of �.A1/ such that � … �.A2/,
then P�.A/.X/ D P�.A1/.X1/, where P�.A/ [resp. P�.A1/] denotes the spectral
projection associated with f�g for A (resp. A1) in L.X/ [resp. L.X1/]. }
Proof. Let � ¤ 0 be an isolated point of �.A1/. Then, there exists a spectral
decomposition of the space X1, that is, X1 D Y1 ˚ Y2 and Y1 D P�.A1/X1
(where P�.A1/ denotes the spectral projection associated with the spectral set
f�g). Accordingly, �.A1jY1/ D f�g, and �.A1jY2/ D �.A1/nf�g. Let us also
notice that X D Y1 ˚ .Y2 ˚ X2/, AY1 D A1Y1 � Y1 and A.Y2 ˚ X2/ �
Y2 ˚X2. Now, by applying the first assertion to the operators AjY2˚X2 and AjY2 , we
get �.AjY2˚X2/ D �.A2/

S
�.AjY2/. However, �.AjY2/ D �.A1jY2/ D �.A1/nf�g

and �.A/ D �.A2/
S
�.A1/, so �.AjY2˚X2/ D �.A/nf�g. Accordingly, �.AjY1/ D

�.A1jY1/ D f�g. This leads to Y1 D R.P�.A// [the range of the spectral projection
associated with the spectral set f�g of �.A/], which completes the proof. Q.E.D.

Theorem 7.11.1. Every Riesz operator is demicompact operator. }
Proof. Let A be a Riesz operator. We have �e4.A/ D f0g. So, I � A is a Fredholm
operator. Now, the result follows from Lemma 5.4.6. Q.E.D.

Lemma 7.11.1. Let .T .t//t�0 be a C0-semigroup on a Banach space X with an
infinitesimal generator A. If A 2 R.X/, then T .t/ � I 2 R.X/. }
Proof. Let t > 0 and assume that A 2 R.X/. Clearly, the operator T .t/ � I may
be written in the following form T .t/�I D etA �I D P1

kD1 t
kAk

kŠ
D Ag.A/, where

g.:/ is the entire function g.z/ D P1
kD0 t

kC1zk

.kC1/Š . Since A and g.A/ commute, then
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T .t/ � I D Ag.A/ D g.A/A. Since A is of Riesz type, using Proposition 2.2.3
implies that T .t/ � I 2 R.X/. Q.E.D.

Lemma 7.11.2. Let .T .t//t�0 be a C0-semigroup on a Banach space X with an
infinitesimal generator A. If .A � �/ 2 R.X/ for some � 2 C, then T .t/ � e�t 2
R.X/. }
Proof. Let us suppose that .A � �/ 2 R.X/ for some � 2 C. Notice that the
operator T .t/ � e�t can be written as follows T .t/ � e�t D e�t .e��tT .t/ � I / D
e�t .e��t etA � I / D e�t .et.A��/ � I /. Since .A � �/ 2 R.X/, and using the result
of Lemma 7.11.1, we get .et.A��/ � I / 2 R.X/ and therefore, T .t/� e�t 2 R.X/.

Q.E.D.

Lemma 7.11.3. Let .T .t//t�0 be a C0-semigroup on a Banach space X with an
infinitesimal generator A and let n be an integer. Let ' be a function defined from
its domain into C

n, that is, ' W D.'/ � R �! C
n, t �! .'1.t/; : : :; 'n.t//. Let

us assume that '.:/ is continuous and, for all t 2 DC.'/, we have 'i .t/ ¤ 0 andQn
iD1.T .t/� 'i .t// 2 R.X/. If the operator A belongs to PR.X/, then DC.'/ D

�0;1Œ. }

Proof. Let us suppose that p.z/ D .z � �1/: : :.z � �n/ is the minimal polynomial
of A. Then, p.A/ D .A � �1/: : :.A � �n/ 2 R.X/. This implies that �e6.A/ D
f�1; : : :; �ng. Hence, we can write �.A/ D �1

S
�2
S
: : :
S
�n where �i for

1 � i � n are clopen sets in �.A/ such that �i 2 �i for i D 1; : : :; n and
�i
T
�j D ; if i ¤ j . Let .Xi /1�i�n and .Ai /1�i�n be the spectral subspaces

and the restrictions of A associated with this decomposition, respectively. The fact
that the sets Xi , i D 1; : : :; n, are stable by A implies that they are also invariant
by etA. Let etA

jXi be the restriction of etA to Xi . Obviously, etA
jXi 2 L.Xi / and

etA
jXi D etAi . Now, let us consider the problem separately for each subspace Xi ,
i D 1; : : :; n. OnXi , we can write p.A/ D .Ai��i /Qi¤j .Ai��j /. For each j ¤ i ,
�j … �.Ai / and so, the operator

Q
i¤j .Ai ��j / is invertible in L.Xi /. Accordingly,

.Ai � �i / D p.Ai /
�Q

i¤j .A � �j /
	�1 2 L.Xi /: Moreover, the spectral mapping

theorem implies that �.p.Ai // D p.�.Ai // D fp.�/ such that � 2 �.Ai /g. Hence,
�.p.Ai // consists of eigenvalues with a finite algebraic multiplicity, accumulating
to p.�i / D 0. So, p.Ai / 2 R.Xi /. This, combined with the fact that p.Ai /

and
�Q

i¤j .A � �j /
	�1

commute, implies, thanks to Proposition 2.2.3, that .Ai �
�i / 2 R.Xi /. Moreover, for each i 2 f1; : : :; ng, we have

Qn
jD1.etAi � e�j t / D

.etAi � e�i t /
Q
j¤i .etAi � e�j t /. Since

Q
j¤i .etAi � e�j t / is invertible on Xi and

etAi � e�i t 2 R.Xi / (use the fact that .Ai � �i / 2 R.Xi / and Lemma 7.11.2),
again by using Proposition 2.2.3, we deduce that

Qn
jD1.etA

jXi � e�j t / D Qn
jD1.etA �

e�j t /jXi 2 R.Xi /. Next, notice that the operator
Qn
iD1.etA � e�i t / can be written in

the form
Pn

iD1Oi where Oi D Ji
hQn

jD1.etA � e�j t /jXi
i
Pi , with Ji W Xi �! X

representing the canonical embedding and Pi W X �! Xi denoting the spectral
projection associated with the clopen subset �i . Clearly, OiOj D OjOi D 0
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for i ¤ j . Moreover, by using Proposition 7.11.10, we notice that each Oi ,
i D 1; : : :; n, belongs to R.X/. Now, by applying Proposition 2.2.3, we get
�0;1Œ� D.'/. Q.E.D.

Theorem 7.11.2. Under the assumptions of Lemma 7.11.3, the following condi-
tions are equivalent.

(i) There are two constants a, b 2�0;1Œ, a < b such that �a; bŒ� DC.'/.
(ii) DC.'/ D�0;1Œ.

(iii) The operator A belongs to PR.X/.
(iv) .�.� � A/�1 � I / belongs to PR.X/ for every � 2 �.A/.
(v) .�.� � A/�1 � I / belongs to PR.X/ for some � 2 �.A/. }

Proof.

.i/ ) .iii/ From Proposition 7.11.6, we deduce that A 2 L.X/. So, it remains
to verify that A belongs to PR.X/. For this purpose, let t 2�a; bŒ and write
T .t/ D etA. Let pt .z/ D Qn

iD1.z � 'i .t//. By using the various hypotheses, we
know that pt .etA/ D Qn

iD1.etA � 'i .t// 2 R.X/. Accordingly, ft .A/ 2 R.X/
where ft .:/ represents the entire function z �! pt .e

tz/. Then, Proposition 3.5.1
implies that A 2 PR.X/.

.iii/ ) .ii/ see Lemma 7.11.3.

.ii/ ) .i/ It is trivial.

.iii/ ) .iv/ First, let us notice that, by using the spectral mapping theorem, and
for any � 2 �.A/, we have �1 2 �.�.� � A/�1 � I /. Now, let us consider
the function f� defined by f� W Cnf�1g �! C, z �! � � �

zC1 . Clearly,
A D f�.�.� � A/�1 � I /. By hypothesis, there exists p.:/ 2 CŒz�nf0g such
that p.A/ 2 R.X/. Hence, .p ı f�/.�.� � A/�1 � I / 2 R.X/. Next, by
applying Proposition 3.5.1, we conclude that .�.� � A/�1 � I / 2 PR.X/ for
every � 2 �.A/.

.iv/ ) .v/ It is trivial.

.v/ ) .iii/ Let � 2 �.A/ be such that .�.� � A/�1 � I / 2 R.X/ and let us
denote by g� the function defined by g� W Cnf�g �! C, z �! �

��z � 1. Since
g�.A/ D �.� � A/�1 � I , using Proposition 3.5.1 implies that A 2 PR.X/.

Q.E.D.

Theorem 7.11.3. Let .T .t//t�0 be a C0-semigroup on a Banach space X with an
infinitesimal generator A and let n � 2 be an integer. Let ' be a function defined
by its domain into C

n, that is, ' W D.'/ � R �! C
n, t �! .'1.t/; : : :; 'n.t//.

Suppose that '.:/ is continuous, there exist i0 2 f1; : : :; ng and t0 2 DC.'/ such
that 'i0.t0/ D 0 and, for all t 2 DC.'/, we have

Qn
iD1.T .t/ � 'i .t// 2 R.X/.

Then, there exist two closed subspaces of X , namely X0 and X1, such that X D
X0 ˚ X1 and, for all t � 0, T .t/Xi � Xi , i D 0; 1. Moreover, .T .t/jX1/t�0 is a
C0-semigroup on X1 which can be embedded in a C0-group. Besides, .T .t/jX1/t�0
and its generator AjX1 satisfy the assertions .i/–.v/ of Theorem 7.11.2. }
Proof. The hypotheses say that there is a function ' W D.'/ � R �! C

n,
t �! .'1.t/; : : :; 'n.t// such that, for all t 2 DC.'/, we have

Qn
iD1.T .t/�'i .t// 2
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R.X/. By recalling the characterization of polynomially Riesz operators (Proposi-
tion 7.11.2) and Proposition 7.11.3, we have �e4.T .t// D f'i .t/; i D 1; : : :; ng
and �.T .t//n�e4.T .t// consist of eigenvalues with a finite algebraic multiplicity.
Since 'i0.t0/ D 0 for some i0 2 f1; : : :; ng, say i0 D n, and from Lemma 2.1.10.ii/,
we deduce that 'n.t/ D 0 for all t > 0. This implies that 0 2 �e4.T .t// for all
t > 0. Consequently, �e4.T .t// D f0; '1.t/; : : :; 'n�1.t/g with 'i .t/ ¤ 0 for all t 2
DC.'/ and i D 1; : : :; n�1. Let �0 and �1 constitute a partition of �.T .t0//, such that
�0
T
�e4.T .t0// D f0g. Therefore, there exist two closed subspaces, namely X0 and

X1, which reduce T .t0/, that is,X D X0˚X1. Clearly, for all t > 0, T .t/ commutes
with T .t0/ and hence, with also the associated spectral projectors. So, T .t/Xk �
Xk , k D 0; 1 and, then .T .t/jXk /t�0 is aC0-semigroup onXk ,A.D.A/

T
Xk/ � Xk

and so AjXk is the generator of .T .t/jXk /t�0. Since 0 … �e4.T .t0/jX1/, and from
Proposition 7.11.7, we infer that 0 … �e4.T .t/jX1/ for all t > 0. Besides, and
using Proposition 7.11.9, we notice that �e4.T .t// D �e4.T .t/jX0/

S
�e4.T .t/jX1/

and therefore, �e4.T .t/jX1/ D f'1.t/; : : :; 'n�1.t/g. This shows that .T .t/jX1/t�0
satisfies the hypotheses of Theorem 7.11.2 and �0;1Œ� D.'/. As a result, the
statement .ii/ follows from Propositions 7.11.5, 7.11.6 and Theorem 7.11.2. Q.E.D.

Theorem 7.11.4. Assume that the hypotheses of Theorem 7.11.3 hold. Then,
.T .t/jX0/t�0 is a C0-semigroup of Riesz type on X0, i.e., T .t/jX0 2 R.X0/ for all
t > 0. Its generator AjX0 is unbounded on X0 and, for any � 2 �.AjX0/, we have
.� � AjX0/�1 2 R.X0/. }
Proof. Let us notice that since 0 2 �e4.T .t0/jX0/, it follows, from Proposi-
tion 7.11.7, that 0 2 �e4.T .t/jX0/ for all t > 0. In order to demonstrate that
.T .t/jX0/t�0 is a Riesz C0-semigroup, it is sufficient to prove that �e4.T .t/jX0/ D
f0g for all t > 0. For this purpose, let � ¤ 0 be such that � 2 �e4.T .t/jX0/ for
some t > 0. So, we can write X0 D Z1 ˚ Z2 with dim.Zj / D 1, j D 1; 2 and
�e4.T .t/jZ2/ D f�g. Obviously, 0 … �e4.T .t/jZ2/. So, by using Proposition 7.11.7,
we have 0 … �e4.T .t0/jZ2/. Moreover, by applying Proposition 7.11.9, we show that
�e4.T .t0/jX0/ D �e4.T .t0/jZ1/

S
�e4.T .t0/jZ2/ D f0g. Hence, �e4.T .t0/jZ2/ D ;,

which contradicts the fact that dimZ2 D 1. Consequently, � … �e4.T .t/jX0/,
which proves that T .t/jX0 is a Riesz operator for all t > 0. This ends the
proof. Q.E.D.

7.12 A Spectral Characterization of the Uniform Continuity
of Strongly Continuous Groups

Let .T .t//t2R be a strongly continuous group on a Banach space X . Accordingly,
the set �1.T .t// may be defined for each t 2 R. In the following, �.T / denotes
the set

�.T / WD ft 2 R such that �1.T .t// ¤ Tg:
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Remark 7.12.1. Let .T .t//t2R be the translation group on the space L2.R/, that is,

.T .t/f /.s/ D f .t C s/; t; s 2 R

for all f 2 L2.R/. Its generator is the unbounded operator Af WD f 0 whose domain
is given by D.A/ D ff 2 L2.R/ such that f is absolutely continuous and f 0 2
L2.R/g. By using the fact that �.A/ D iR and the inclusion et�.A/ � �.T .t//, we
notice that �.T .t// D T for all t 2 Rnf0g and �.T / D f0g. }
The following results come from [228].

Lemma 7.12.1. Let X be a Banach space, and let .T .t//t2R be a strongly
continuous group on X . If .T .t//t2R is uniformly continuous, then �.T / has a
nonempty interior. }
Proof. According to the hypothesis, there exists ˛ > 0 such that kT .t/ � Ik < 1

for all t 2� � ˛; ˛Œ. This implies that �.T .t// � B.1;
p
2/. Hence, �1.T .t// �

B.1;
p
2/
T

T. Therefore, �.T / contains .�˛; ˛/ and, then has a nonempty
interior. Q.E.D.

Lemma 7.12.2. Let X be a Banach space, and let .T .t//t2R be a strongly
continuous group on X . If �.T / has a nonempty interior, then �.T / is non-meager.
}
Proof. From the Baire category theorem, we deduce the result. Q.E.D.

Let .T .t//t2R be a strongly continuous group onX . According to Theorem 7.9.2, we
know that the map from L.X/ into K.C/, which assigns to each element of L.X/
its spectrum, is Borel where L.X/ and K.C/ are equipped, respectively, with the
strong operator topology and the Hausdorff topology. The map t �! �.T .t// from
R into K.C/ is also Borel (thanks to the strong continuity of .T .t//t2R). Moreover,
the map K �! K1 from K.Cnf0g/ into K.T/ is continuous [187, Exercise 4.29
.vi/]. So, by composition, we infer that the function t �! �1.T .t// is Borel from
R intoK.T/ and therefore, is Baire measurable. Let AT be a maximal commutative
subalgebra of L.X/ containing the set fT .t/ such that t 2 Rg and let us denote by
cAT the character space (or the spectrum) of AT . Note that, for each  2 cAT , we
have Q' .t/ WD  .T .t// 2 �.T .t//. It is obvious that Q' .t C t 0/ D Q' .t/ Q' .t 0/ for
all t , t 0 2 R, and j Q' .t/j � kT .t/k. Clearly, j Q' .:/j is bounded on each compact
subset of R and therefore, according to Theorem 2.5.14, it is continuous. Let us

define the function ' by ' W R �! T, t �! ' .t/ D Q' .t/
j Q' .t/j . Accordingly,

Q' .:/ is continuous if, and only if, ' .:/ is continuous. Clearly, for all t , t 0 2 R,
' .t C t 0/ D ' .t/' .t

0/, ' .t/ 2 �1.T .t// and then, it is a character of R.

Lemma 7.12.3. Let X be a separable Banach space, and let .T .t//t2R be a
strongly continuous group on X . If �.T / is non-meager, then .T .t//t2R is uniformly
continuous. }



276 7 Essential Spectra of Linear Operators

Proof. Since the function t �! �1.T .t// from R into K.T/ is Baire measurable,
and since the set ft 2 R such that �1.T .t// ¤ Tg is non-meager, Theorem 2.8.2
implies that, for all  2 cAT , ' .:/ is continuous and consequently, Q' .:/ is also
continuous. Now, by using [152, Theorem 16.5.1], we conclude that .T .t//t2R is
uniformly continuous. Q.E.D.

Lemma 7.12.4. Let X be a Banach space, assume that X is not separable, and
let .T .t//t2R be a strongly continuous group on X . If �.T / is non-meager, then
.T .t//t2R is uniformly continuous. }
Proof. If .T .t//t2R is not uniformly continuous, then there exist ı > 0 and a real
sequence .tn/n such that tn ! 0 as n ! 1 and kT .tn/ � Ik > ı. So, there exists a
sequence .xn/n of vectors in X such that kxnk D 1 and kT .tn/xn � xnk > ı for all

n 2 N. Now, let us set Y WD span
�S

n2NfT .t/xn; t 2 Rg�. Clearly, Y is .T .t//t2R-
invariant and separable because each orbit is .T .t//t2R-invariant and separable. So,
in view of the vectors xn, we infer that there exist ı > 0 and a real sequence .tn/n
such that tn ! 0 as n ! 1 and kTjY .tn/ � IY k > ı. This shows that .TjY .t//t2R
is not continuous in norm. By using the first part of the proof, we conclude that
ft 2 R such that �1.TjY .t// ¤ Tg is meager. However, Lemma 2.8.4 implies that

�.T .t// D ft 2 R such that �1.T .t// ¤ Tg � ft 2 R such that �1.TjY .t// ¤ Tg:

Accordingly, �.T .t// is also meager, which ends the proof. Q.E.D.

The following theorem is a consequence of Lemmas 7.12.1–7.12.4:

Theorem 7.12.1. Let X be a Banach space, and let .T .t//t2R be a strongly
continuous group on X . The following assertions are equivalent

(i) .T .t//t2R is uniformly continuous,
(ii) �.T / has a nonempty interior,

(iii) �.T / is non-meager. }
Lemma 7.12.5. Let X be a Banach space and B 2 L.X/. If 0 … �.B/, then
�1.B/ ¤ T if, and only if, �1�.B/ ¤ T, where ��.:/ stands for each one of the sets
�pa.:/ and �e3.:/. }
Proof. The inclusion �e3.B/ � �.B/ and �pa.B/ � �.B/ imply that �1.B/ ¤ T

H) �1e3.B/ ¤ T and �1pa.B/ ¤ T. Conversely, let us first assume that �1e3.B/ ¤ T

and let S be a sector of the complex plane satisfying �e3.B/
T
S D ;. Hence, S is

contained in the unbounded component of Cn�e3.B/ and, then �.B/
T
S consists

of isolated eigenvalues of a finite algebraic multiplicity with no accumulation point.
Hence, �.B/

T
S is finite and its projection onto T cannot fill the whole segment

S
T

T. For �pa.:/, it suffices to observe that the inclusions �pa.B/ � �.B/ and
@�.B/ � @�pa.B/ imply that the unbounded components of Cn�.B/ and Cn�pa.B/

are the same. This together with the fact that 0 … �.B/ shows that �1pa.B/ D �1.B/

which ends the proof. Q.E.D.
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The next corollary is an immediate consequence of Theorem 7.12.1 and
Lemma 7.12.5.

Corollary 7.12.1. Let X be a Banach space, and let .T .t//t2R be a strongly
continuous group on X . The following assertions are equivalent

(i) .T .t//t2R is uniformly continuous,
(ii) ft 2 R such that �1�.T .t// ¤ Tg has a nonempty interior,

(iii) ft 2 R such that �1�.T .t// ¤ Tg is non-meager. }
Remark 7.12.2. It is worth noticing that the results of Lemma 7.12.5 and Corol-
lary 7.12.1 remain valid for all essential spectra containing �e3.:/. }
Remark 7.12.3. Let .T .t//t2R be a strongly continuous group on a Banach spaceX
such that, for all t 2 R, �e4.T .t// is finite. Since ft 2 R such that �1e4.T .t// ¤ Tg
is non-meager, Remark 7.12.2 implies that .T .t//t2R is uniformly continuous. }
Corollary 7.12.2. Let X be a Banach space, and let .T .t//t�0 be a strongly
continuous semigroup on X . Moreover, let us set C WD ft > 0 such that T .t/ � I 2
Fb.X/g. If the interior of C is nonempty, then .T .t//t�0 can be embedded in a
uniformly continuous group .T .t//t2R on X . }
Proof. For t0 2 C, we can write T .t0/ D I C .T .t0/ � I /, which shows that
T .t0/ 2 ˆb.X/. By applying Theorem 5.1.5, we may conclude that .T .t//t�0
can be embedded into a strongly continuous group .T .t//t2R on X . Moreover,
for each t 2 C, we have �e4.T .t// D f1g. Now, the result follows from
Remark 7.12.2. Q.E.D.

Another consequence of Corollary 7.12.1 is the following result established by
Rabiger and Ricker in [283] for strongly continuous groups on hereditarily inde-
composable Banach spaces.

Corollary 7.12.3. If X is a H.I. Banach space, then any strongly continuous group
.T .t//t2R on X is uniformly continuous. }
Proof. Obviously, since .T .t//t2R is a group, each T .t/ is invertible and, then
T .t/ D �tI C St where �t ¤ 0 and St is a strictly singular operator. Accordingly,

for each t 2 R, �1e4.T .t// D
n
�tj�t j
o
. Now, the use of Remark 7.12.3 ends the

proof. Q.E.D.

Let A be a subset of R. If A is unbounded, then there exists a sequence .�n/n of
elements of A such that lim

n!1 j�nj D C1. Let us define on l2 the operator S by

D.S/ D
(

.˛n/n 2 l2 such that
1X

nD0
j�nj2j˛nj2 < 1

)

; S ..˛n/n/ D .�n˛n/n:

It is clear that S is a self-adjoint and unbounded operator on l2. According to
Stone’s theorem [276], iS generates a strongly continuous group on l2, given



278 7 Essential Spectra of Linear Operators

by eitS..˛n/n/ D .eit�n˛n/n. Hence, for each t 2 R, we have �.eitS/ D
feit�n W n 2 Ng � feitx W x 2 Ag which implies that ft 2 R W �1.eitS/ ¤
Tg D ft 2 R W �.eitS/ ¤ Tg 	 ft 2 R W feitx W x 2 Ag ¤ Tg. Let us
recall that the operator iS is unbounded. Therefore, the last inclusion combined with
Theorem 7.12.1 implies that ft 2 R such that feitx W x 2 Ag ¤ Tg is meager. So,
we have the following

Corollary 7.12.4. Let A be a subset of R. The following assertions are equivalent

(i) A is not bounded,

(ii)
n
t 2 R such that feitx such that x 2 Ag ¤ T

o
is meager. }

7.13 Some Results on Strongly Continuous Semigroups
of Operators

A very interesting discussion (including illustrations examples) about the applica-
tion to strongly continuous semigroups of operators can be found in [227]. In this
section, we are dealing with strongly continuous semigroups .T .t//t�0 defined on
complex infinite-dimensional Banach spaces X and satisfying the condition

.E/ �e4.T .t// D f�.t/g for all t > 0:

The following results of this section are given in [227].

7.13.1 Arbitrary Banach Spaces

Let X be a complex infinite-dimensional Banach space and let .T .t//t�0
be a strongly continuous semigroup on X and satisfying .E/. Clearly, if t ,
t 0 2 Œ0;1/, and since T .t/ and T .t 0/ commute, then we have �e4.T .t/T .t 0// �
�e4.T .t//�e4.T .t

0//. This implies that

�.t C t 0/ D �.t/�.t 0/: (7.13.1)

In the following, we denote by �.:/ the map from Œ0;1/ into C which assigns to
each t 2 Œ0;1/ the value �.t/ 2 �e4.T .t//.
Lemma 7.13.1. If X� is separable, and if hypothesis .E/ holds true, then �.:/ is a
Borel map. }
Proof. If U is an open set of C, then ��1.U / D ft 2 Œ0;1/ such that f�.t/g �
U g. Since t �! T .t/ is continuous from Œ0;1/ into Ls.X/ and since T .t/ �!
�e4.T .t// is a Borel map from Ls.X/ into K.C/, by composition the map t �!
f�.t/g is Borel from Œ0;1/ into K.C/. Let us notice that ��1.U / is the inverse
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image under t �! f�.t/g of the set fK 2 K.C/ such that K � U g. However, this
set is open in K.C/. Therefore, ��1.U / is a Borel subset of Œ0;1/. Q.E.D.

Remark 7.13.1. The separability hypothesis onX� is required in order to guarantee
the Borel character of the function T �! �e4.T / from Ls.X/ into K.C/ (cf.
Theorem 7.9.4). }
Lemma 7.13.2. Let us assume that hypothesis .E/ is satisfied. Then, only one of
the following two statements holds:

(i) There exists t0 > 0 such that �.t0/ D 0 (and therefore �.t/ D 0 for all t 2
�0;1Œ).

(ii) There exists ˛ 2 C such that �.t/ D e˛t for all t 2 Œ0;1/. }
Proof.

.i/ Let t0 > 0 be such that �.t0/ D 0. By using (7.13.1), we notice that
Œ�.t0=n/�

n D �.t0/ D 0 for every n 2 Nnf0g. Hence, �.t0=n/ D 0. Now,
let t 2�0;1Œ. Then, there exists n 2 Nnf0g such that t0=n � t . Hence,
�.t/ D �.t0=n/�.t � t0=n/ D 0. Therefore, �.:/ � 0 on �0;1Œ.

.ii/ It is well known that any nontrivial Borel solution of the functional Eq. (7.13.1)
can be written in the form �.t/ D e˛t for some ˛ 2 C. So, by using the
preceding assertion, it is sufficient to show the existence of a real t0 > 0 such
that �.t0/ ¤ 0 in order to get �.t/ ¤ 0 for all t 2�0;1Œ. Q.E.D.

Remark 7.13.2. Actually, the second item of Lemma 7.13.2 remains valid if we
only assume the measurability of �.:/ (see [152, pp. 144–145]). Hence, for such
�.:/, measurability also implies continuity and hence, �.:/ admits an obvious
extension to R. }
Proposition 7.13.1. Let .T .t//t�0 be a strongly continuous semigroup on a Banach
space X with an infinitesimal generator A. Let us assume that X� is separable and
that hypothesis .E/ is satisfied. Then, there are two alternatives: either .T .t//t�0 is
a semigroup of Riesz type and A is unbounded with nonempty resolvent set and with
a resolvent of Riesz type, or else .T .t//t�0 is embeddable in a uniformly continuous
group and there exists ˇ 2 C such that A � ˇ is a Riesz operator. }
Proof. Obviously, if �.t0/ D 0 for some t0 > 0, then by using Lemma 7.13.2.i/,
�.t/ D 0 for all t > 0 and therefore, �e4.T .t// D f�.t/g D f0g for all
t 2�0;1Œ. This proves that .T .t//t�0 is a semigroup of Riesz type. Moreover,
for all t 2�0;1Œ, �e4.T .t// D f0g implies that T .t/ is not invertible. Thus,
according to Theorem 5.1.5, .T .t//t�0 cannot be embedded in a C0-group and so, A
is necessarily unbounded. By using the Hille–Yosida theorem (cf. Theorem 2.5.7),
the domain of A, namely D.A/, is dense in X and �.A/ ¤ ;. Let � 2 �.A/.
Then, the range of .� � A/�1 is the domain of A. So, .� � A/�1 is closed and
has a dense range. If we assume that its range is closed, then we should have
D.A/ D X and therefore, A would be bounded. Consequently, 0 2 �e4..��A/�1/.
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In order to prove that .��A/�1 is a Riesz operator, it remains to show that all other
elements of its spectrum are isolated eigenvalues with a finite algebraic multiplicity.
Let us notice that every 0 ¤ � 2 �.T .t// is an isolated eigenvalue with a finite
algebraic multiplicity. So, if�0 2 �.A/ and et�

0

is an eigenvalue of T .t/with a finite
algebraic multiplicity, then by using Theorem 2.5.12, �0 is an eigenvalue of A with
a finite algebraic multiplicity. Now, let �00 ¤ 0 be any element of �..� � A/�1/.
Then, � � 1=�00 2 �.A/ and represents an isolated eigenvalue by applying the
preceding considerations. Hence, �00 is an eigenvalue of .� � A/�1 with a finite
algebraic multiplicity. So, .��A/�1 is a Riesz operator. Now, the resolvent identity,
the fact that .� � A/�1 and .� � A/�1 commute for all � and � in �.A/, and
also Proposition 2.2.3 show that the resolvent of A is of Riesz type. Now let us
suppose that there exists t > 0 such that �.t/ ¤ 0. By applying Lemma 7.13.2,
.ii/ we conclude that �.t/ ¤ 0 for all t > 0. By using both Lemma 7.13.2 and
Remark 7.13.2, we deduce that the function t �! �.t/ is continuous. This proves
that .T .t//t�0 satisfies the hypotheses of Propositions 7.11.5 and 7.11.6 for n D 1

and �.:/ D '.:/. Moreover, since D.�/ (the domain of �.:/) contains �0;1Œ, by
applying Propositions 7.11.5 and 7.11.6, we infer that .T .t//t�0 can be embedded
in a strongly continuous group on X and A 2 L.X/. Q.E.D.

7.13.2 Hereditarily Indecomposable Banach Spaces

The aim of this subsection is to prove the following result which gives a charac-
terization of strongly continuous semigroups on complex H.I. Banach spaces with
separable duals.

Proposition 7.13.2. Let X be a complex H.I. Banach space, and let .T .t//t�0 be
a strongly continuous semigroup on X with a generator A. If X� is separable,
then there are two alternatives: either .T .t//t�0 is a semigroup of strictly singular
operators whose generatorA is unbounded with a strictly singular resolvent, or else
.T .t//t�0 is embeddable in a uniformly continuous group (so, its generator A has
the form ˇ C S with ˇ ¤ 0 and S being strictly singular). }
Proof. Let R 2 L.X/ be a Riesz operator on X . From Lemma 2.1.12, we infer that
R D ˇ C S for some ˇ 2 C and S 2 S.X/. Then, according to Theorem 7.5.3.i/,
we have �e4.R/ D �e4.ˇI / D fˇg. However, �e4.R/ D f0g (because dimX D
1), so ˇ D 0, that is, R 2 S.X/. This shows that R.X/ D S.X/. Hence, in
order to prove Proposition 7.13.2, it is sufficient to show that the hypotheses of
Proposition 7.13.1 are satisfied. Indeed, by applying Lemma 2.1.12, we get T .t/ D
�.t/I C S.t/, where �.t/ 2 C and S.t/ 2 S.X/ for all t > 0. By applying again
Theorem 7.5.3.i/, we infer that �e4.T .t// D �e4.�.t/I / D f�.t/g. This together
with the separability of X� shows that the condition .E/ holds, which completes the
proof. Q.E.D.
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Let us note that if X is a separable H.I. space, it follows from the above proof that
S.X/ and R.X/ coincide. This fact does not require the separability of X�. Now,
the use of Corollary 7.9.1 allows us to get the following corollary.

Corollary 7.13.1. If X is a separable H.I. space, then S.X/ is a Borel subset of
Ls.X/. }



Chapter 8
Pseudo-Spectra

In this chapter, we study the essential pseudo-spectra of densely closed, linear
operators in the Banach space.

8.1 Pseudo-Spectrum of Linear Operator

Let us start by giving the definition of the pseudo-spectrum of densely closed linear
operator A for every " > 0,

�".A/ WD �.A/
[n

� 2 C such that k.A � �/�1k > 1

"

o
:

The pseudo-spectrum is the open subset of the complex plane bounded by the "�1
level curve of the norm of the resolvent.

Theorem 8.1.1. Let A 2 C.X/. The following three conditions are equivalent.

(i) � 2 �".A/.
(ii) There exists a bounded operator D such that kDk < " and � 2 �.ACD/.

(iii) Either � 2 �.A/ or k.� � A/�1k < "�1. }
Proof. .i/ ) .ii/ If � 2 �.A/, we may putD D 0. Otherwise, let f 2 D.A��/,

kf k D 1 and k.A � �/f k < ". Let � 2 X� satisfy k�k D 1 and �.f / D 1.
Then, let us define the rank one operator D W X �! X by Dg WD ��.g/.A �
�/f: We see immediately that kDk < " and .A � �CD/f D 0.

.ii/ ) .iii/ We derive a contradiction from the assumption that � … �.A/ and
k.A � �/�1k � "�1. Let B W X �! X be the bounded operator defined by
the norm convergent series B WD P1

nD0.A � �/�1
��D.A � �/�1�n D .A �

�/�1.I CD.A��/�1/�1: It is immediate from these formulae that B is one-one
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with a range equal to D.A � �/. We also see that B.I C D.A � �/�1/f D
.A � �/�1f , for all f 2 X . Putting g D .A � �/�1f , we conclude that B.A �
�CD/g D g for all g 2 D.A � �/. The proof that .A � �CD/Bh D h for all
h 2 X is similar. Hence, A � �CD is invertible, with an inverse B .

.iii/ ) .i/ We assume for nontriviality that � … �.A/. There exists g 2 X such
that k.A � �/�1gk > "�1kgk. Putting f WD .A � �/�1g, we see that k.A �
�/f k < "kf k. Q.E.D.

Remark 8.1.1. From Theorem 8.1.1, it follows immediately that

�".A/ D
[

kDk<"
�.ACD/:

}
Let A 2 C.X/ and " > 0. We define the "-pseudo-spectrum of A by

†".A/ WD �.A/
[n

� 2 C such that k.A � �/�1k � 1

"

o
WD Cn�".A/:

It is well known that the mapping T �! �.T / from the set L.X/ of all bounded
linear operators on X into the set of all compact subsets of C equipped with
the Hausdorff metric is not continuous. More precisely, let .Tn/n be a sequence
in L.X/ converging to T 2 L.X/ with respect to the operator norm. Then,
lim
n

dist.�.Tn/; �.T // D 0 but lim
n

dist.�.T /; �.Tn// D 0 does not hold in general.

However the following assertion is true.

Theorem 8.1.2. Let .Tn/n be a sequence of bounded linear operators on the
Banach space X which converges with respect to the operator norm to the operator
T . Then, to every pair ."1; "2/ of real numbers with 0 � "1 < "2, there exists
n."1; "2/ 2 N such that †"1.T / � †"2.Tn/ holds for all n � n."1; "2/. }
Proof. Let n."1; "2/ be such that kT � Tnk < "2 � "1 holds for all n � n."1; "2/.
Assume that � 2 �"2.Tn/, where n � n."1; "2/ is fixed. Then k.T�Tn/.��Tn/�1k �
kT �Tnkk.��Tn/�1k < "2�"1

"2
D 1� "1

"2
. Therefore the series

P1
kD0Œ.��Tn/�1.T �

Tn/�
k converges to .I � .� � Tn/�1.T � Tn//�1. This in turn implies that � � T D

.� � Tn/.I � .� � Tn/�1.T � Tn// is invertible and moreover,

k.� � T /�1k � k.� � Tn/�1kk.I � .� � Tn/�1.T � Tn//�1k

< k.� � Tn/�1k 1

1 � .1 � "1
"2
/

� 1

"1

hence � 2 �"1.T /. So, �"2.Tn/ � �"1.T / for all n � n."1; "2/ which proves the
assertion. Q.E.D.
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8.1.1 Approximation of "-Pseudo-Spectrum

In order to obtain the strongest possible results we have to refine the notion of the
"-pseudo-spectrum of an operator .A;D.A// defined on the Banach space X . For it
turns out that the part �.A/n�ap.A/ cannot always be approximated in the general
case. For " � 0, we define the "-approximate spectrum �";ap.:/ by �";ap.A/ D f� 2
C such that Q̨ .� � A/ � "g, where Q̨ .:/ is given in Remark 7.1.1 .iv/. In particular
�0;ap.A/ D �ap.A/ as well as �";ap.A/ � †".A/. We denote the norm on Fn by k:k
as usual. The following results, given in this section, come from [349].

Theorem 8.1.3. Let A 2 C.X/. Then, �";ap.A/ is always closed. }
Proof. Let � … �";ap.A/. Then, Q̨ .� � A/ DW ı > ". Now, let � 2 C satisfy
j� � �j < ı � ". Then

Q̨ .� � A/ D inffk.� � A/xk such that kxk D 1 and x 2 D.A/g
� inffjk.� � A/xk � j� � �jkxkj such that kxk D 1 and x 2 D.A/g
> ":

So, the complement of �";ap.A/ is open. Q.E.D.

Let X1 be a dense linear subspace of the Banach space X , let .Fn/ be a sequence of
Banach spaces and for each n letPn W X1 �! Fn be a not necessarily bounded linear
mapping. If lim

n
kPnxk D kxk holds for every x in X1, then .X;X1; .Fn/; .Pn// is

called a discrete approximation scheme. A sequence .xn/n 2 Q
n2N Fn converges

discretely to x 2 X1 if lim
n!1 kxn�Pnxk D 0 holds. Then, we write x D d � lim xn.

Let now .A;D.A// be a closed densely defined linear operator on X and let
X0 � X1 be a core of A such that A.X0/ � X1 holds. For each n, let .An;D.An//
be a densely defined operator on Fn such that Pn.X1/ � D.An/. We say that
the sequence .An/ approximates A discretely if for all x 2 X0 the sequence
.AnPnx/n converges discretely to Ax, i.e., lim

n
kAnPnx � PnAxk D 0 holds for all

x 2 X0.
Theorem 8.1.4. Let .X;X1; .Fn/; .Pn// be a fixed discrete approximation scheme.
Moreover, let the sequence .An/ of densely defined linear operators .An;D.An//
on the Banach space Fn approximate discretely the closed densely defined lin-
ear operator .A;D.A// on X . Then, for every pair ."1; "2/ of real numbers
with 0 � "1 < "2, �"1;ap.A/ � lim infn�"2;ap.An/ D S1

nD1
T
k�n �"2;ap.Ak/

holds. }
Proof. For the sake of convenience we set "1 D �, "2 D ". Let � 2 ��;ap.A/ be
arbitrary. Choose ˇ > 0 such that " � � � 2ˇ > 0 and set � D 1 � �C2ˇ

"
. By

hypothesis, there exists a core X0 of A with A.X0/ � X1. Then, there exists x 2 X0
of norm 1 such that k.� � A/xk < � C ˇ=2. Again by hypothesis, there exists
n0 such that for all n � n0, jkPnxk � kxkj < � , kPnAx � AnPnxk < ˇ, and
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kPn.� � A/xk < �C ˇ. Then for all n � n0 we obtain

k�Pnx � AnPnxk � k�Pnx � PnAxk C kPnAx � AnPnxk
D kPn.� � A/xk C kPnAx � AnPnxk
< �C 2ˇ:

Now kxk D 1 implies 1 � � < kPnxk < 1 C � . Dividing the inequalities above
by kPnxk we get k.��An/.Pnx=kPnxk/k � " which implies � 2 �";ap.An/ for all
n � n0. Q.E.D.

Theorem 8.1.5. Assume in addition to the hypotheses of Theorem 8.1.4 that,
there exists M > 0 such that k.� � An/

�1k � M dist.�; �.An//�1 holds
for all � 2 �.An/ and for all n. Then, for every compact subset K � C,
lim
n!1 dist.�ap.A/

\
K; �.An// D 0. }

Proof. Assume that the assertion fails. Then, there exists a ı > 0, a compact set
K � C and a sequence .�nk /k in �ap.A/

T
K with dist.�nk ; �.Ank // � ı > 0 for

all k. Since K is compact there exists a subsequence .�n0

k
/k converging to a point

z 2 �ap.A/
T
K since �ap.A/ is closed. By applying Theorem 8.1.4 with "1 D 0

and "2 D " D ı
2.1C2M/

we obtain n0 such that z 2 †".An/ for all n � n0. Moreover,
there exists k0 with jz � �n0

k
j < " for all k � k0. This implies z … �.An0

k
/. But then,

M dist.z; �.An0

k
//�1 � k.z � An0

k
/�1k � 1

"
yields M" � dist.z; �.An0

k
//. Hence,

there exists �n0

k
2 �.An0

k
/ with jz � �n0

k
j < 2"M for all k � k1 � k0. This in turn

implies j�n0

k
� �n0

k
j � j�n0

k
� zj C jz � �n0

k
j < .1 C 2M/" D ı

2
for k � k1, a

contradiction to dist.�n0

k
; �.An0

k
// � ı. Q.E.D.

We end this section by the following examples:

.i/ As for " D 0 also for " > 0 it may happen that �";ap.A/ ¤ †".A/ holds as
the following example shows. In fact, Let E D l2.N/ and let S be the right
shift on E given by

.Sf /.k/ WD
�
0; k D 1

f .k � 1/ k � 2:

Since S is an isometry onE, it is easily checked that Q̨ .��S/ � 1�j�j holds
for all � with 0 � j�j � 1. Moreover, �ap.S/ D f� 2 C such that j�j D 1g
and for 0 < " < 1 we obtain †".S/n�";ap.S/ 	 f� 2 C such that j�j <
1 � "g, the latter set being a subset of the residual spectrum �r.S/ D f� 2
�.S/ such that Q̨ .� � S/ > 0g of S . Set Fn D C

n and Pn W E �! Fn,
f �! .f .1/; : : :; f .n//. LetAn.x/ D .xn; x1; : : :; xn�1/. Then,An is unitary
hence normal, and thus we can apply Theorem 8.1.5 with M D 1 to obtain
lim dist.�ap.S/; �.An// D 0. However, the residual spectrum �.S/n�ap.S/

cannot be approximated by �.An/.
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.ii/ Uniform convergence. Let X be a Banach space, set E D E1 D L.X/, the
Banach algebra of all bounded operators on X , set Fn D E and Pn D I . For
T 2 L.X/, we consider the multiplication operator A D MT W U �! TU.
Then, the sequence .Tn/ converges to T with respect to the operator norm if,
and only if, .An/ D .MTn/ approximates A discretely.

.iii/ Pointwise (strong) convergence. Here E D E1 D Fn and Pn D I for all n.
A sequence .An/n of bounded operators An converges strongly to A if, and
only if, .An/n approximates A discretely.

.iv/ Let E be a given Banach space and let .Fn/n be an increasing sequence
of closed linear subspaces with F1 WD S

n Fn dense in E. Moreover,
assume that each Fn is the range of a bounded projection Pn such that
supn.kPnk/ < 1 as well as PnCkPn D Pn for k � 0. Let .A;D.A// be
a closed densely defined operator on E such that for all n AjFn DW An maps
D.A/

T
Fn DW D.An/ into Fn and moreover that .An;D.An// is densely

defined and closable on Fn and finally that D.A/
T
F1 is a core of A. Then

setting E1 D F1, E0 D D.A/
T
F1 we obtain that the sequence .An/n

approximates A discretely.
.v/ Let E D L2.Œ0; 1�/, E1 D ff 2 E such that f continuous; f .0/ D

f .1/g, Fn D C
n with the scalar product hx; yi D 1

n

Pn
kD1 xkyk , Pnf D

.f . 1
n
/; : : :; f . n

n
//, E0 D ff 2 E1 such that f 0 2 E1g, and finally let

Af D f 0 with boundary condition f .0/ D f .1/. For Anx D n.x2 �
x1; : : :; xn � xn�1; x1 � xn/ the sequence .An/n approximates A discretely.
Then, �ap.A/ D �.A/ D 2iZ and the approximating operators An are nor-
mal with �.An/ D fn.exp.2 ik=n/�1/ such that 0 � k � n�1g. We obtain
2iZ � lim infn†".An/. Moreover, we have lim dist.�.A/

T
K; �.An// D 0

as follows also directly from 2 ik D lim
n!1n.exp.2 ik=n/ � 1/ for each

fixed k.
.vi/ Same as .v/ up to the An. Here we take Anx D n.x2 � x1; : : :; xn � xn�1; 0/.

Then An D n.Nn � Qn/, where Qn is the projection onto the first .n � 1/

coordinates and Nn
n D 0. Hence, �.An/ D f�n; 0g. Theorem 8.1.5 does not

apply since there is noM satisfying the hypothesis of this theorem. However,
2iZ � lim infn†".An/ as follows from Theorem 8.1.4. It can also easily be
deduced directly by verifying k.2 ik � An/ek;nk D O.n�1=2/ where ek;n D
.exp. 2 ikl

n
//lD1;:::;n for fixed k 2 Z.

.vii/ The spaces are the same as in .v/. Af D f 0 � f with boundary condition
f .0/ D f .1/, Anx D n.x2 � x1; : : :; xn � xn�1; x1 � xn/ � x.

.viii/ Let X D l2.N/ and let T be the left shift given by .Tf /.k/ D f .k C 1/. Let

.Anf /.k/ WD
�
f .k C 1/; k � n � 1
0 else:

Then, .An/n converges pointwise to T , but �.An/ D f0g. Nevertheless f� 2
C such that j�j � 1g D �ap.T / D �.T / � lim infn�";ap.An/ for all " > 0.
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8.1.2 Approximation of the Spectrum

In this section we turn to the problem of when
T
">0

T
n�1

S
k�n �";ap.Ak/ � �ap.A/

holds where the sequence .An/n approximates A. Let .rn/n be an arbitrary sequence
of positive real numbers converging to 0. Then

\

">0

\

n�1

[

k�n
�";ap.Ak/ D

\

n�1

[

k�n
�rn;ap.Ak/ (8.1.1)

is easily seen to hold. So, in the following proofs we prefer the right-hand side
description of this set because it contains only two set theoretical operations.
Let E D .Gn/n be a sequence of Banach spaces. Then, l1.E/ is the subspace
of all norm bounded sequences of the cartesian product

Q
n Gn. Equipped with

the norm k.xn/k WD supfkxnk such that n 2 Ng, l1.E/ is a Banach space.
Now, let U be an arbitrary free ultrafilter on N. Then, c0;U .E/ D f.xn/n 2
l1.E/ such that limU kxnk D 0g is a closed subspace of l1.E/. The quotient space
is called the ultraproduct EU of E with respect to U . If � D .xn/n is in l1.E/
then kO�k D k� C c0;U .E/k D limU kxnk holds. Let U 2 U be arbitrary. Then
O� is determined already by the subsequence .xn0/n02U , a fact which we will use
tacitely in the sequel. Now, let .Tn/n be a uniformly bounded sequence of operators
Tn 2 L.Gn/. Then by QT � D .Tnxn/n there is defined a bounded linear operator QT
on l1.E/ for which c0;U .E/ is an invariant subspace. The operator OT on the quotient
space EU is called the ultraproduct of .Tn/with respect to U . Let U 2 U be arbitrary.
Similarly, to the fact in the previous paragraph, OT does not depend on indices not in
U . In particular, OT does not depend on the first n0 operators. More generally, if the
sequence is only defined for n 2 U , then we may fill up it with arbitrary bounded
operators .Tn/n…U obtaining always the same operator OT . Let .E;E1; .Fn/; .Pn//
be a given approximation scheme. Let FU be the ultraproduct of .Fn/n with respect
to a given free ultrafilter U on N. Since lim kPnyk D kyk holds by hypothesis for
all y 2 E1 we obtain an isometry VU W E1 �! FU by VU .y/ D 1.Pny/n. Since E1
is dense in E, VU can be uniquely extended to an equally denoted isometry on E.
Let the closed densely defined operator .A;D.A// on E be discretely approximated
by the sequence .An/n of bounded linear operators An on Fn. If this sequence is
uniformly bounded then we obtain easily OAVU jE0 D VUAjE0 . The results, given in
this section, come from [349].

Theorem 8.1.6. Let .E;E1; .Fn/; .Pn// be a given approximation scheme. Let
.A;D.A// be discretely approximated by the sequence ..An;D.An///n. Moreover,
assume that A as well as all An are surjective, and that lim infn!1 Q̨ .An/ > 0.
Then, there exists n0 2 N such that for all n � n0, An is bijective. Moreover, A�1

n

is bounded, the sequence .A�1
n /n�n0 is uniformly bounded, and A�1 exists and is

discretely approximated by .A�1
n /n�n0 . Finally, VUA�1 D 1.A�1

n /VU holds for every
free ultrafilter U on N. }



8.1 Pseudo-Spectrum of Linear Operator 289

Proof. There exists � > 0 and n0 2 N such that Q̨ .An/ � � for all n � n0.
Since all An are surjective, An is bijective for n � n0 and kA�1

n k � 1
�

holds for

all these n. Let U be a free ultrafilter on N. Then, the operator B D 1.A�1
n /n�n0

is well defined on FU and kBk � 1
�
. Assume now that, there exists x0 2 E0,

kx0k D 1 with kAx0k < ı D min.1; �/=2. By hypothesis the following assertions

hold: kVU .x0/k D 1, kVU .Ax0/k D kAx0k < ı, VU .Ax0/ D .AnPnx0/
b
n. But then

k.AnPnx0/bnk D kVU .Ax0/k < ı. This in turn implies k..AnPnx0/=kPnx0k/bnk <
2ı, a contradiction to Q̨ .An/ � � � 2ı for all n � n0. So, Q̨ .A/ � ı, since
E0 is a core of A. Since A is surjective, A�1 exists and is bounded with norm �
1=ı. Moreover, A.E0/ is dense in E. For if y 2 E is arbitrary, then .A�1y; y/ is
contained in the graph G.A/ of A. But since E0 is a core G.A/ D G.AjE0/ and
the assertion follows. Now, let z 2 A.E0/ be arbitrary and set y D A�1z. Then

VU z D VUAy D .AnPny/
b
n. This implies BVU z D .A�1

n .AnPny//
b
n D VUA

�1z for
all z 2 A.E0/. Since this latter space is dense in E the final equality follows from
the continuity of B , VU and A�1. Finally, in order to prove that A�1 is discretely
approximated by the sequence .A�1

n /n we have to specify a core E2 � E1 of A�1
with A�1.E2/ � E1. But since A.E0/ is dense it may serve as such a core. Q.E.D.

Assume that for every m < n, there exists a linear isometric embedding Sn;m from
Fm into Fn. Moreover, let the sequence ..An;D.An///n approximate the closed
densely defined operator .A;D.A//. To every n, let Gn be a core of An and as
before let E0 be a core of A with A.E0/ � E1.

Theorem 8.1.7. In addition to the assumptions made in the previous paragraph,
let the following condition be satisfied: For all k 2 N and for all z 2 Gk , there
exists y 2 E0 and an unbounded sequence .tn/n such that Ptny D Stn;kz for all tn
as well as lim

n!1 kAtnStn;kz � Stn;kAkzk D 0. Then,
T
">0

T
n�1

S
k�n �";ap.Ak/ �

�ap.A/. }
Proof. We use Eq. (8.1.1) with rn D 1=n. Assume that the assertion fails. Then,
there exists � 2 T

n�1
S
k�n �rn;ap.Ak/, with Q̨ .� � A/ D ı > 0. By hypothesis,

there exists a sequence .kn/n with kn � n and Q̨ .� � Akn/ � rn. To each n, there
exists xkn 2 Gkn of norm 1 such that k.� � Akn/xknk � 2rn. Choose n0 such
that rn < ı=3 for all n � n0. Fix n1 � n0 and choose an ultrafilter U with
ftn such that n 2 Ng 2 U where .tn/n is the sequence for the element z D xkn1
as required in the hypothesis. By assumption, there exists an element y in E0 with
Ptny D Stn;kn1 .z/ for all n 2 N. Again, by hypothesis lim

n!1 kStn;kn1 .Akn1 .z// �
Atn.Stn;kn1 .z//k D 0 holds. Since Stn;kn1 .z/ D Ptny, we obtain 5.Sn;kn1Akn1 z/ D
4.AnSn;kn1 z/ D .2AnPny/ D VUAy. Notice that we have tacitly made use of the

fact that elements in the ultraproduct do not depend on values xn, An, etc. for
indices n not contained in ftm such that m 2 Ng. Because .E;E1; .Fn/; .Pn// is
an approximation scheme, we have kVUyk D kyk D kSn;kn1 zk D kzk D 1.
Since Sn;kn1 are isometries, we obtain 2rn1 � k.� � Akn1 /zk D k.�Stn;kn1 z �
Stn;kn1Akn1 /zk � jk�Ptny�AtnStn;kn1 zk�kAtnStn;kn1 z�Stn;kn1Akn1 zkj for all n. This
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inequality yields 2rn1 � k�VUy�VUAyk D kVU .��A/yk � Q̨ .��A/ D ı > 3rn1 ,
a contradiction. Q.E.D.

A sequence .xn/n 2 Q
Fn is called discretely compact (or d -compact for short)

if, for every " > 0, there exists a finite set Y."/ � E1 depending on " such that
lim sup

n

dist.xn; Pn.Y."/// < ". Discretely compact sequences can be described as

follows:

Lemma 8.1.1. Let .xn/n be a discretely compact sequence. Then, to every free
ultrafilter U , there exists y 2 E such that VUy D 1.xn/n: }
Proof. Let U be a fixed free ultrafilter. By hypothesis to every r 2 N, there exists
a finite set Y.r/ in E1 depending on r such that lim supn dist.xn; Pn.Y.r/// < 2�r .
Since U is an ultrafilter and Y.r/ is finite, there exists some yr 2 Y.r/ such that
fn 2 N such that kxn �Pnyrk < 2�rg 2 U . This in turn implies k.xn/n � VUyrk <
2�r . Let p 2 N be arbitrary. Since VU is an isometry, we obtain that kyrCp � yrk �
kVU .yrCp/� b.xn/k C kb.xn/� VU .yr /k < 2�rC1, hence .yr / is a Cauchy sequence.

If y D limyr , then obviously VUy D 1.xn/n. Q.E.D.

Let .A;D.A// be discretely approximated by the sequence ..An;D.An///. We say
that the approximation is discretely compact, if .An/n is uniformly bounded and,
for every bounded sequence .xn/n, the sequence .Anxn/n is d -compact. .An/n is
called inverse d -compact, if the sequence .xn/n is d -compact whenever .Anxn/n is
bounded.

Lemma 8.1.2. Let .An/n be inverse d -compact. Then lim inf
n!1 Q̨ .An/ > 0. If,

moreover, A and all An are surjective, then there exists n0 2 N such that all An
are bijective and the approximation of A�1 by .A�1

n /n�n0 is discretely compact. }
Proof. If the assertion fails then to every k 2 N, there exists nk � k and xnk with
kxnkk D 1 and kAnkxnkk < 2�k . Set

yn D
�
0 n … fnk such that k 2 Ng
2kxnk n D nk for some k 2 N:

Then, .yn/n is unbounded hence not d -compact though .Anyn/ is bounded. Now,
let all An be surjective. By Theorem 8.1.6, there exists n0 such that for all n � n0,
An is bijective. Moreover, A�1

n is bounded and the sequence .A�1
n /n�n0 is uniformly

bounded and approximates A�1 discretely. Finally, let .xn/n be bounded and set
yn D A�1

n xn. Then, .An.yn//n�n0 is bounded; hence, .yn/n is discretely compact
by hypothesis. So, the assertion follows. Q.E.D.

Let now T 2 L.E/ with T .E/ � E1 and let .Tn/n be a uniformly bounded
sequence of operators Tn 2 L.Fn/. Since E1 may serve as a core of T the discrete
approximation of T by .Tn/n can be defined unambiguously.
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Proposition 8.1.1. Let T , .Tn/n be as above. Assume that .Tn/n approx-
imates T discretely and moreover that .Tn/ is discretely compact. ThenT
">0

T
n�1

S
k�n �";ap.Tk/ � �p.T /

Sf0g. }
Proof. Again we use Eq. (8.1.1) with rn D 1=n. Let 0 ¤ � 2 Tn�1

S
k�n �rn;ap.Tk/

be arbitrary. Then there exists a sequence .kn/n with kn � n and � 2 �rn;ap.Tkn/.
This in turn implies the existence of a normalized vector xkn 2 Fkn with k.� �
Tkn/xknk � 2rn. Set xl D 0 for l … fkn such that n 2 Ng. Let U be an ultrafilter
containing fkn such that n 2 Ng. Then for � D .xn/n we obtain kO�k D 1 as well
as 0 ¤ � O� D OT O� . Since by hypothesis the sequence .Tnxn/n is discretely compact
by Lemma 8.1.1 there exists y 2 E with OT O� D .Tnxn/n D VUy which in turn
gives � O� D VUy. All together we obtain �VUy D � OT O� D OT .� O�/ D OT VUy D
VUTy, where the last equation holds since .Tn/n approximates T . Because VU is an
isometry this latter equation yields �y D Ty. Q.E.D.

In most cases the spaces Fn are finite-dimensional so that �ap.Tn/ D �p.Tn/ holds
in the following proposition.

Proposition 8.1.2. Under the assumptions of Proposition 8.1.1

lim
n!1 dist.�ap.Tn/; �p.T /

[
f0g/ D 0

holds. }
Proof. Assume that the assertion does not hold. Then, there exists ı > 0 and a
sequence .kn/n with kn � n and moreover to every n a �kn 2 �ap.Tkn/ such that
inffj�kn � �j such that � 2 �p.T /

Sf0gg � ı. Since .Tn/n is uniformly bounded
.�kn/ is bounded. Set �l D 0 for l … fkn such that n 2 Ng and let U be a free
ultrafilter containing fkn such that n 2 Ng. Since .�n/n is bounded, it converges
along U . Set � D limU �n. Then, j�j � ı > 0. For every n, we choose a
normalized vector xkn 2 Fkn with k.�kn � Tkn/xknk < 2�n. We set xl D 0 for l …
fkn such that n 2 Ng. Let � D .xn/n. Then, we obtain � O� D OT O�. By Lemma 8.1.1
there exists y 2 E with OT O� D VUy. As in the proof of the Proposition 8.1.1, we
obtain � 2 �p.T /, a contradiction to dist.�kn ; �p.T /

Sf0g/ � ı. Q.E.D.

Theorem 8.1.8. Let ..An;D.An///n be an inverse d -compact sequence of
operators approximating discretely the closed densely defined operator .A;D.A//
in E. Assume that A as well as all An are surjective and that A.E0/ � E1 is
dense in E. Then, for every compact set K ¤ ; in C, limn dist.�ap.An/

T
K;

�p.A// D 0. }
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Proof. By Lemma 8.1.2, the sequence .An/n satisfies the hypotheses of Theorem
8.1.6 and moreover, the inverse operators A�1

n which exist from some n0 on form a
discretely compact approximation of A�1. Hence, by Proposition 8.1.2

lim
n!1 dist.�ap.A

�1
n /; �p.A

�1/
[

f0g/ D 0 (8.1.2)

holds. By the spectral mapping theorem �ap.An/ D f 1
�

such that � 2 �ap.A
�1
n /g and

�p.A/ D f 1
�

such that � 2 �p.A
�1/g. If the assertion does not hold, there exists a

sequence .�nk /k with �nk 2 �ap.Ank /
T
K and

dist.�nk ; �p.A// � ı > 0 (8.1.3)

for all k. Since K is compact w.l.o.g. we assume that .�nk /k converges to some
� 2 K. Because 1

j�nk j � kA�1
nk

k and this latter sequence is bounded � ¤ 0 holds.

Since . 1
�nk
/k converges to 1

�
, it follows by Eq. (8.1.2) that 1

�
2 �p.A

�1/ hence,

� 2 �p.A/, a contradiction to the inequality (8.1.3). Q.E.D.

We end this section by the following example. Let H be a separable, infinite
dimensional Hilbert space over R with orthonormal basis .en/n. Let E be the space
of uniformly continuous complex valued bounded functions on H equipped with
the supremum norm. For each n, let Qn denote the orthogonal projection of H
onto the span Hn of e1; : : :; en and set Fn D ff 2 E such that f D f ı Qng.
Then, Pn W E �! Fn, f �! f ıQn is a projection of norm 1, and moreover Fn is
isometrically isomorphic to the space of all bounded uniformly continuous functions
on R

n. So, we identify these two spaces. Then, the isometry Sn;m whose existence is
required in Theorem 8.1.7 is nothing else than the inclusion mapping. Let .�n/n be a
positive summable sequence and set An D Pn

kD1 �k @
2

@x2k
. Then, .An/n approximates

the infinite dimensional Laplacian
P1

kD1 �k @
2

@x2k
. In order to apply Theorem 8.1.7, we

set D.An/ D Gn, E0 D S
D.An/ and E1 D E. Moreover, if z 2 Gk , then we take

.tn/n D .n/n�k and y D z. Then, all the assumptions made in Theorem 8.1.7 are
satisfied. We show that

T
n�1

S
k�n �1=n;ap.Ak/ D f� 2 C such that Re� � 0g:

Let � 2 C with Re� WD � < 0 be arbitrary. Then, the function gm.x/ D
exp

�
�
2m

Pm
jD1

x2j
�j

�

is of norm 1 and a short calculation shows .� � Am/gm.x/ D

� �2

m2
gm.x/

Pm
jD1

x2j
�j

. The inequality t exp
�
�

2m
t
� � 2m

��e for all t � 0 which is

proved by elementary calculus shows ˛.��Am/ � k.��Am/gmk � 2j�j2
jRe�jem which

in turn proves that � 2 �1=n;ap.Am/ for m > 2nj�j2
jRe�je . So, Theorem 8.1.7 implies

f� 2 C such that Re� < 0g � T
n�1

S
k�n �1=n;ap.Ak/ � �ap.A/: Finally, we apply

Theorem 8.1.4: An is known to be the generator of a contraction semigroup. The
Hille-Yosida theorem implies k.� � An/

�1k � .Re�/�1 for all � with Re� > 0

independently of n. So, � 2 �".An/ for Re� > ". Theorem 8.1.4 then implies
�ap.A/ � f� 2 C such that Re� � 0g.
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8.2 Pseudo-Browder’s Essential Spectrum

8.2.1 Extending the Resolvent to a Browder Resolvent �b.:/

Let A be a closed operator in a complex Banach spaceX with a nonempty resolvent
set. In what follows, we will denote by �d .A/ the set of isolated points � of the
spectrum, such that the corresponding Riesz projectors

P� D � 1

2i

Z

j���jD"
.A � �I /�1d�

(with a sufficiently small ") are finite dimensional. It is well known that �e6.A/ D
�.A/n�d .A/

�
see [239]

�
. Another part of the spectrum, which is generally larger

than �ei.A/, i D 1; : : :; 5 is �.A/n�d .A/, and was investigated by Browder in [66].
We will also use this terminology here and the notation �e6.A/ WD �.A/n�d .A/,
�6.A/ D Cn�e6.A/. The largest open set on which the resolvent is finitely
meromorphic is precisely �6.A/ D �.A/

S
�d .A/, the points of �d .A/ being poles

of finite rank, i.e., around each of these points there is a punctured disk in which the
resolvent has a Laurent expansion whose main part has only several finite nonzero
terms, the coefficients in these being of finite rank. For � 2 �6.A/, let P� (or
P�.A/) denote the corresponding (finite rank) Riesz projector with a range and a
kernel denoted by R� and K�, respectively. Since D.A/ is P�-invariant, we may
define the operator A� WD .A � �/.I � P�/ C P� with a domain D.A/ or, with
respect to the decomposition X D K� ˚ R�, A� D .A � �/jK� ˚ I . We have
just cut off the finite dimensional part of A � � in the Riesz decomposition. Since
�..A � �/jK�/ D �.A � �/nf0g, A� has a bounded inverse, called the “Browder
resolvent”, which we denote byRb.A; �/, i.e.,Rb.A; �/ WD ..A��/jK�/�1˚I with

respect toX D K�˚R� or, alternatively,Rb.A; �/ WD �
.A � �/jK�

��1
.I�P�/CP�

for � 2 �6.A/. Clearly, this extends the usual resolvent R.A; �/ WD .A � �/�1
from �.A/ to �6.A/ and retains many of its important properties. For example, since
P�A� D P� on D.A/ and A�P� D P� on X , it follows that P�Rb.A; �/ D P� D
Rb.A; �/P�, and we also have the “resolvent identity”. The following result is due
to J. Lutgen [239].

Lemma 8.2.1. Let A be a closed operator in a complex Banach space X with a
nonempty resolvent set. For �; � 2 �6.A/; we have the resolvent identity

Rb.A; �/�Rb.A;�/ D .���/Rb.A; �/Rb.A;�/CRb.A; �/SA.�; �/Rb.A;�/;

where

SA.�; �/ WD .A � .�C 1// P� � .A � .�C 1// P�: (8.2.1)
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The operator defined by MA.�;�/ WD Rb.A; �/SA.�; �/Rb.A;�/ is a finite rank
operator with dimR.MA.�; �// D dimR.P�/ C dimR.P�/ in the case � ¤ �.
Moreover, the Browder resolvents commute; hence, the function MA.:; :/ is skew-
symmetric, i.e., MA.�;�/ D �MA.�; �/. }
Proof. The identity follows just by substituting the difference of the equalities for
A� and A� into the equality Rb.A; �/�Rb.A;�/ D Rb.A; �/.A� �A�/Rb.A;�/.
Since SA.�; �/ WD .A � .�C 1// P� � .A � .�C 1// P� is a finite rank operator
(with R.SA.�; �// � R� C R�/, the product Rb.A; �/SA.�; �/Rb.A;�/ D
MA.�;�/ is also of finite rank. From � ¤ �, it follows that P�P� D P�P� D 0

and thus, SA.�; �/ D SA.�; �/.P� C P�/. Since R.Rb.A;�// D D.A/ 	
R�CR� D R.P�CP�/, it follows thatR.SA.�; �/Rb.A;�// 	 R.SA.�; �/.P�C
P�// D R.SA.�; �//. Hence, the ranges of SA.�; �/ and SA.�; �/Rb.A;�/ are
the same and SA.�; �/ and Rb.A; �/SA.�; �/Rb.A;�/ have also the same rank,
since Rb.A; �/ is injective, i.e., dimR.SA.�; �// D dimR.MA.�; �//. Since
dim.R� CR�/ D dim.R�/C dim.R�/ D dimR.P�/C dimR.P�/, it is sufficient
to show that R.SA.�; �// D R� C R�. We have seen that R.SA.�; �/jR�CR�/ D
R.SA.�; �// � R� C R�. Since R� C R� is finite dimensional, we only need
to show that the restriction of SA.�; �/ is injective in order to make the last
inclusion an equality. Denoting A1 WD AjR� , A2 WD AjR� , we have �.A1/ D f�g,
�.A2/ D f�g. Hence, A1 � .� C 1/ and A2 � .� C 1/ are injective, which
implies the injectivity of SA.�; �/jR�CR� . Using the spectral set � WD f�;�g of
�.A/ and the corresponding decomposition X D K� ˚ R� D K� ˚ R� ˚ R�,
induced by the Riesz projector P� D P� C P�, which completely reduces A as
A D A0˚A1˚A2 (A0 WD AjK� ), we haveRb.A; �/ D .A0��/�1˚I˚.A2��/�1
and Rb.A;�/ D .A0 � �/�1 ˚ .A1 � �/�1 ˚ I , and the claimed commutativity
follows from that of the usual resolvents. The skew-symmetry is proved simply by
exchanging � and � in the resolvent identity, adding the result to the original form
and using the commutativity. Q.E.D.

The following result is due to J. Lutgen [239].

Lemma 8.2.2. LetX and Y be two complex Banach spaces,A be a closed operator
in X with a nonempty resolvent set, B W Y �! X , and C W X �! Y linear
operators. Then,

(i) Rb.A;�/B is continuous for some � 2 �6.A/ if, and only if, it is continuous
for all such �, and this is the case if, and only if, D.B�/ 	 D.A�/, where A
and B are considered as densely defined operators from D.A/ intoX and from
D.B/ into X , respectively.

(ii) C is A-bounded if, and only if, CRb.A; �/ is bounded for some (or every)
� 2 �6.A/:

(iii) If B and C satisfy the conditions .i/ and .ii/; respectively, and if B is densely
defined, then CMA.�; �/; MA.�; �/B and CMA.�; �/B are operators of finite
rank for any �; � 2 �6.A/: }
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Proof. From the resolvent identity, we have, for any �, � 2 �6.A/,

Rb.A; �/B D Rb.A;�/B C .� � �/Rb.A; �/Rb.A;�/B CMA.�;�/B;

(8.2.2)

CRb.A; �/ D CRb.A; �/ � .� � �/CRb.A; �/Rb.A;�/ � CMA.�; �/: (8.2.3)

Since SA.:; :/ is bounded, the equivalence in .i/ is clear from Eq. (8.2.2). Moreover,
since Rb.A; �/SA.�; �/Rb.A;�/B has a finite-dimensional range, it is clear that
MA.�;�/B is of finite rank if B is densely defined, and this is one part of .iii/.
For the second equivalence in .i/ fix � 2 �6.A/, and consider the densely defined
operators A, A� W D.A/ �! X , B W D.B/ �! X and their conjugates
with domains in X�. Using standard properties of adjoint operators we obtain the
equalities .Rb.A;�/B/� D B�Rb.A;�/� D B�.A�

�/
�1. If the product on the left is

bounded, then the product on the right is everywhere defined, i.e., D.A�
�/ � D.B�/.

On the other hand, if this inclusion holds, then the adjoint on the left is everywhere
defined which implies boundedness of Rb.A;�/B . Since D.A�

�/ D D.A�/ due to
the boundedness of P�, .i/ is proved. In .ii/, if CRb.A; �/ is bounded for some �,
then clearly CRb.A; �/SA.�; �/Rb.A;�/ is also bounded for any �, and it follows,
from Eq. (8.2.3), that CRb.A; �/ is bounded for any �. The well-known fact that
C is A-bounded if, and only if, C.A � �/�1 is bounded for some � 2 �.A/, now
implies .ii/ and, in this case, CRb.A; �/SA.�; �/Rb.A;�/ is of finite rank. The
last part of .iii/ is also clear, since CRb.A; �/SA.�; �/Rb.A;�/B will again be
continuous and densely defined with a finite-dimensional range. Q.E.D.

8.2.2 Definition of the Pseudo-Browder Essential Spectrum

The purpose of this section is to give some properties of the pseudo-Browder
essential spectrum of closed, densely defined linear operators on a Banach space
X . Let us start by defining the pseudo-Browder essential spectrum. Let A 2 C.X/
and let A� WD .A��/.I �P�/CP� with a domain D.A/. Then, for � 2 �6.A/, the
operator A� is invertible where A�1

� WD Rb.A; �/ D �
.A��/jK�

��1�
I �P�

�CP�:

For � 2 �d .A/ and b 2 X , we consider the operator equation defined by

A�x WD 
.A � �/.I � P�/C P�

�
x D b: (8.2.4)

The existence of a solution and its uniqueness are guaranteed by � 2 �6.A/. Then,
we have x D A�1

� b WD Rb.A; �/b: Let us discuss the stability of solutions of the
operator Eq. (8.2.4) under perturbations of b or A: We will perturb Eq. (8.2.4) in
the following way


.A � �/.I � P�/ C P�

� Qx D b C r; where 0 < krk < ":

Hence, for � 2 �6.A/, we have Qx D Rb.A; �/.b C r/: We deduce that k Qx � xk D
kRb.A; �/rk � k.Rb.A; �/kkrk � kRb.A; �/k": Then, Qx is equivalent of x, if
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kRb.A; �/rk is small, for example, if kRb.A; �/rk is not too big kRb.A; �/k � 1
"
:

Therefore, the above considerations motivate one to define �6;".A/ by

�6;".A/ D �6.A/
\n

� 2 C such that kRb.A; �/k � 1

"

o
:

Definition 8.2.1. Let A 2 C.X/ and " > 0. The pseudo-Browder essential spec-
trum of A is defined by �e6;".A/ D �e6.A/

S˚
� 2 C such that kRb.A; �/k > 1

"



:

}

8.2.3 Pseudo-Browder’s Essential Spectrum of Linear
Operators

We give the following result.

Theorem 8.2.1. Let A 2 C.X/, "1, "2 and " > 0. Then,

(i) If "1 < "2, then �e6.A/ � �e6;"1 .A/ � �e6;"2 .A/:

(ii) If �d .A/ D ;, then �e6;".A/ D �".A/. }
Proof. .i/ Let � 2 �6.A/, such that kA�1

� k > 1
"1
: Hence, since "1 < "2, we have

kA�1
� k > 1

"2
: This proves that �e6;"1 .A/ � �e6;"2 .A/:

.ii/ Let A 2 C.X/, such that �d .A/ D ;: So, in the same way, we can deduce, from
�e6.A/ D �.A/n�d .A/, that �e6.A/ D �.A/: This implies that �e6;".A/ D
�".A/: Q.E.D.

Corollary 8.2.1. LetA 2 C.X/; B 2 L.X/, " > 0 and "1 > 0, such that 0 2 �.B/:
Then

(i) �e6.B�1A/ � �e6; "
kBk

.B�1A/ � �e6;"kB�1k.B�1A/:
(ii) �e6.B�1A/ � �e6;"1 .B

�1A/
T
�e6;".B

�1A/ � �e6;"1C".B�1A/:
(iii) If 0 < " < 1, then �e6.B�1A/ � �

e6; "
2

kBk

.B�1A/ � �e6;"kB�1k.B�1A/: }

Proof. .i/ The fact that "kB�1k � "
kBk D "kB�1kkBk�"

kBk D ".kB�1kkBk�1/
kBk � 0

allows us to deduce that "
kBk � "kB�1k: Applying Theorem 8.2.1 .i/, we get

�e6; "
kBk

.B�1A/ � �e6;"kB�1k.B�1A/:
.ii/ Let � 2 �e6;"1 .B

�1A/
T
�e6;".B

�1A/. Since max."1; "/ < "1 C "; and
applying Theorem 8.2.1 .i/, we have �e6;"1 .B

�1A/ � �e6;"1C".B�1A/ and
�e6;".B

�1A/ � �e6;"1C".B�1A/.
.iii/ If 0 < " < 1, then "2 < ", which implies that "2

kBk < "kB�1k.

Therefore, by using Theorem 8.2.1 .i/, we have �
e6; "

2

kBk

.B�1A/ � �e6;"kB�1k
.B�1A/: Q.E.D.
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8.2.4 Characterization of the Pseudo-Browder Essential
Spectrum

In this section, we give a characterization of the pseudo-Browder essential spectrum
of closed, densely defined linear operators on a Banach space X: Our first result is
the following.

Theorem 8.2.2. Let A 2 C.X/ and " > 0. Then, � 2 �e6;".A/n�e6.A/ if, and only
if, there exists x 2 D.A/, such that

kA�xk < "kxk: (8.2.5)

}
Proof. Let � 2 �e6;".A/n�e6.A/. Then, kA�1

� k > 1
"
. Consequently, we infer that

supy2X; y¤0
kA��1yk

kyk > 1
"
: Therefore, there exists a nonzero y 2 X , such that

kA�1
� yk > 1

"
kyk: Putting x D A�1

� y: This leads to Eq. (8.2.5). The converse is
similar. Q.E.D.

Theorem 8.2.3. Let A 2 C.X/ and " > 0. Then,

�e6;".A/D �e6.A/
[n

� 2 C such that kA�xk < "; for some x 2 D.A/ and kxk D 1
o
:

}
Proof. Let � 2 �e6;".A/. There are two possible cases:

1stcase : If � 2 �e6.A/, then � 2 �e6.A/
Sf� 2 C such that kA�xk <

"; for some x 2 D.A/ and kxk D 1g:
2ndcase : If � 2 �e6;".A/n�e6.A/, then kA�1

� k > 1

"
. Moreover,

kA��1k D sup
y2X; y¤0

kA��1yk
kyk

D sup
x2D.A/; x¤0

kxk
kA�xk

D sup
x2D.A/; kxkD1

1

kA�xk
D 1

inf
x2D.A/; kxkD1

kA�xk

>
1

"
:
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So, inf
x2D.A/; kxkD1

kA�xk < ": Conversely, let � 2 ˚
� 2 C such that kA�xk <

"; for some x 2 D.A/ and kxk D 1


, then there exists x 2 D.A/ such that

kxk D 1 and kA�xk < ", and we get kA�xk < "kxk: Now, by applying
Theorem 8.2.2, we infer that � 2 �e6;".A/: Q.E.D.

Theorem 8.2.4. Let A 2 C.X/ and " > 0. Then,

�e6.A/
[n

� 2 C W 9.xn/n 2D.A/ such that kxnk D 1; lim
n!1

kA�xnk < "
o

� �e6;".A/:

}
Proof. Let yn D A�xnkA�xnk implies kynk D 1. We have kA�1

� k � lim
n!1 kA�1

� ynk D
lim
n!1

�kA�xnk
��1

. Recall that lim
n!1 kA�xnk < ", so that kA�1

� k > 1
"
: From Defini-

tion 8.2.1, we deduce that �e6.A/
S˚

� 2 C W 9.xn/n 2 D.A/ such that kxnk D
1; lim

n!1 kA�xnk � "

 � �e6;".A/: Q.E.D.

Theorem 8.2.5. Let A 2 L.X/ and " > 0. Then, �e6;".A/ D
[

kDk<"; ADDDA

�e6

.ACD/: }
Proof. Let � 2 �e6;".A/. There are two possible cases:

1stcase : If � 2 �e6.A/, then it is sufficient to take D D 0:

2ndcase : If � 2 �e6;".A/n�e6.A/, then � 2 �6.A/ such that kA�1
� k > 1

"
: First,

if � 2 �.A/, then A�1
� D .A � �/�1. By applying Theorem 8.2.2, there exists

f such that kf k D 1 and k.A � �/f k < ". Let  2 X� (dual of X ) such that
k k D 1 and .f / D 1. We suppose that Dg D � .g/.A��/f: It is easy to see
that DA D AD, kDk < ", and .ACD��/f D .A��/f �.A��/f D 0:Hence,
ACD � � is not invertible. Therefore, � 2 �.ACD/ D �e6.ACD/: Second,
if � 2 �d .A/, there exists an "1 > 0 such that the disc f� 2 C such that 0 <
j� � �j < 2"1gT �.A/ D f�g: Consider the operator QA� introduced in [50] by
QA� D AC "1

1CkP�kP�;where P� is the Riesz projection corresponding to �: Then,

f� 2 C such that 0 < j� � �j < "1g � �.A/
T
�. QA�/: Let � 2 �. QA�/T �.A/

such that kA��k < ". Then, there exists an "2 > 0 such that kA��k C "2 D ":

Let us consider the operator QA
�

D AC "3
1CkP�kP�; where "3 D min

�
"2
2
; "1
�
:We

have k QA
�

� �k < kA � �k C "3 < kA � �k C "1 < ". Moreover, �e6.A/ �
�e6. QA

�
/. Then, �e6;".A/ D �e6;". QA

�
/: Hence, there exists D such that kDk < "

andD QA
�

D QA
�
D. Therefore, �e6;".A/ � �e6;". QA

�
/ D �e6.ACD/: Conversely,

we assume that there existsD such that kDk < ", AD D DA and � 2 �e6.ACD/.
In order to prove that � 2 �e6;".A/, we suppose that � … �e6;".A/, hence � 2
�6;".A/. Therefore, � 2 �6.A/

Tf� 2 C such that kRb.A; �/k < "g. We notice
the existence of two cases:
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1stcase : If �6.A/ D �.A/: Let S W X �! X be defined by

S WD
C1X

nD0
.A � �/�1

�
�D.A � �/�1

	n
:

Since kD.A��/�1k < ", then we can write S D .A��/�1�ICD.A��/�1��1.
So, there exists f 2 X such that S

�
I C D.A � �/�1

��1
f D .A � �/�1f: Let

g D .A � �/�1f . We can show that S.A � � C D/g D g for all g 2 D.A/:
Similarly, we can prove that .A � � C D/Sh D h for all h 2 X . Therefore
A � �CD is invertible, which is absurd.

2ndcase : If � 2 �.A/n�d .A/, then � is a discrete point of finite multiplicity. Let
QA D AC "P�, then �. QA/ ¤ ;. Moreover, we have DA D AD and DP� D P�D.

Hence, QAD D D QA. Therefore, �e6. QACD/ D �e6.AC"P�CD/ D �e6.ACD/:
Consequently � 2 �e6. QACD/ and k. QA � �/�1k < ". Using a similar reasoning
to the first case, we deduce that � 2 �e6;".A/. Q.E.D.

8.2.5 Stability of the Pseudo-Browder’s Essential Spectrum

The aim of this section is the investigation of the stability of the pseudo-Browder’s
essential spectrum under Riesz operator perturbations satisfying some conditions.

Theorem 8.2.6. Let " > 0; A 2 L.X/ and R 2 R.X/ such that RA D AR: If
kRk < "

2
, then there exists "1 > 0, such that �e6;"1 .ACR/ D �e6;".A/: }

Proof. �e6;".A/ D �e6.A/
S˚

� 2 C such that k.A � �/�1k > 1
"



or as R 2 R.X/

and RA D AR: So, from Theorem 2.2.25, it follows that �e6.AC R/ D �e6.A/: Let
� 62 ˚

� 2 C such that k.A � �/�1k > 1
"



implies k.A � �/�1k � "�1. Hence, we

will discuss these two following cases:

1stcase : If A� WD A � � (i.e., �d .A/ D ;), thus writing AC R � � in the form
A C R � � D �

A � �
��
I C .A � �/�1R

�
; together with k.A � �/�1Rk �

k.A� �/�1kkRk � 1
2
; we deduce that I C .A� �/�1R is an invertible operator

and, we can write that .A C R � �/�1 D �
I C .A � �/�1R

��1
.A � �/�1 and

�
IC.A��/�1R��1 D PC1

nD0.�1/n

.A � �/�1R�n :However, RA D AR implies

that
�
I C .A � �/�1R

��1 D PC1
nD0.�1/n


.A � �/�1�n Rn: Since k�I C .A �

�/�1R
��1k � PC1

nD0 k.A � �/�1knkRkn � PC1
nD0

� kRk
"

	n
, therefore, we have

k�IC.A��/�1R��1k � "
"�kRk : This shows that k.ACR��/�1k � k.A��/�1k"

"�kRk :

Consequently, k.ACR � �/�1k � 1
"�kRk ; it is sufficient to take "1 D " � kRk:

2ndcase : If � 2 �d .A/, then there exists ı > 0 such that the disc
f� 2 C such that j� � �j � 2ıg does not contain points of �.A/ different from �;
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and the Riesz projection P� of A corresponding to � is of finite rank. Let us con-
sider the operator QA WD A C ıP�: Then, f� 2 C such that 0 < j� � �j < ıg �
�. QA/: So,

�e6;". QA/ D
[˚

�e6. QACD/ such that kDk < " and QAD D D QA
;

it follows, fromD.ACıP�/ D .ACıP�/D, that DA D AD: Then, .DCA/P� D
P�.D C A/. Moreover, P� is of finite rank. This shows that �e6. QA C D/ D
�e6.ACD/: Obviously,

[˚
�e6. QACD/ such that kDk < " and QAD D D QA


D
[˚

�e6.ACD/ such that kDk < " and AD D DA


:

This leads us to the conclusion that �e6;". QA/ D �e6;".A/: Let R 2 R.X/, such
that RA D AR and kRk < "

2
, then QAR D R QA. Now, by applying the first part

of this proof but for QA, we deduce that there exists "1 > 0 such that �e6;"1 . QA C
R/ � �e6;". QA/: Moreover, AR D RA. Then, RP� D P�R implies .D C A C
R/P� D P�.D C A C R/. Hence, �e6;". QA C R/ D �e6;".A C R/: This shows
that �e6;"1 .A C R/ D �e6;"1 .

QA C R/ � �e6;"1 .A C R/ D �e6;".A/. This leads
us to the conclusion that there exists �e6;"1 .A C R/ � �e6;".A/: Conversely, let
� 62 ˚

� 2 C such that k.ACR/�1� k > 1
"1



implies k.AC R/�1� k � "�1

1 . There
are two possible cases:

1stcase : If .ACR/� D ACR� �: Thus, A� � D �
ACR� ���I � .ACR�

�/�1R
�
, and writing k.ACR��/�1Rk � k.ACR��/�1kkRk � "

2."�kRk/ < 1;
implies that I � .A C R � �/�1R is an invertible operator and we have .A �
�/�1 D �

I � .A C R � �/�1R
��1
.A C R � �/�1: The fact that

�
I � .A C

R � �/�1R
��1 D PC1

nD0
�
.A C R � �/�1R

�n
and knowing that RA D AR,

implies that k�I � .A C R � �/�1R
��1k D

�
�
�
PC1

nD0

.ACR � �/�1�n Rn

�
�
� �

PC1
nD0 k.A C R � �/�1knkRkn: Then, k�I � .A C R � �/�1R

��1k < "1
"1�kRk :

Consequently, k.A � �/�1k � 1
"1�kRk D 1

"�kRk�kRk � 1
"
. Q.E.D.

2nd case : Let � 2 �d .A/. Writing A� in the form A� D .A� C R/.I � .A� C
R/�1R/ and using the same reasoning as in the proof of 1st case, we get the
desired result.

8.3 Pseudo-Jeribi and Pseudo-Schechter Essential Spectra

Let " > 0 and A 2 C.X/. The pseudo-Jeribi essential spectrum is defined by
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�j;".A/ WD
\

K2W�.X/

�".ACK/:

The pseudo-Schechter essential spectrum is defined by

�e5;".A/ WD
\

K2K.X/
�".ACK/:

Remark 8.3.1. It follows that

(i) �j;".A/ � �e5;".A/ � �".A/.
(ii)

T
">0 �j;".A/ D �j .A/ and

T
">0 �e5;".A/ D �e5.A/.

(iii) If "1 < "2, then �j .A/ � �j;"1 .A/ � �j;"2.A/ and �e5.A/ � �e5;"1 .A/ �
�e5;"2 .A/.

(iv) �j;".ACK/ D �j;".A/ for all K 2 W�.X/ and �e5;".ACK/ D �e5;".A/ for
all K 2 K.X/. }

8.3.1 By Means of a Fredholm and Semi-Fredholm
Perturbations

The following theorem gives a characterization of the pseudo-Schechter essential
spectrum by means of a Fredholm operator.

Theorem 8.3.1. Let X be a Banach space, " > 0 and A 2 C.X/. Then, � 62
�e5;".A/ if, and only if, for allD 2 L.X/ such that kDk < ", we have ACD�� 2
ˆ.X/ and i.ACD � �/ D 0: }
Proof. Let � 62 �e5;".A/. By using Theorem 8.1.1, we infer that there exists a
compact operator K on X , such that � 62 S

kDk<" �.A C K C D/: So, for all
D 2 L.X/ such that kDk < ", we have � 2 �.A C D C K/: Therefore,
A C D C K � � 2 ˆ.X/ and i.A C D C K � �/ D 0; for all D 2 L.X/
such that kDk < ". From Theorem 2.2.44, we deduce that for all D 2 L.X/ such
that kDk < ", we have ACD�� 2 ˆ.X/ and i.ACD��/ D 0: Conversely, we
suppose that, for all D 2 L.X/ such that kDk < ", we have .ACD � �/ 2 ˆ.X/
and i.A C D � �/ D 0. Without loss of generality, we may assume that � D 0.
Let n D ˛.ACD/ D ˇ.ACD/;

˚
x1; : : :; xn



being the basis for N.ACD/ and˚

y0
1; : : :; y

0
n



being the basis for the N..A C D/�/. By using Lemma 2.1.1, there

are functionals x0
1; : : :; x

0
n in X� (the adjoint space of X ) and elements y1; : : :; yn,

such that x0
j .xk/ D ıjk and yj .yk/ D ıjk; 1 � j; k � n; where ıjk D 0 if

j ¤ k and ıjk D 1 if j D k. The operator K is defined by Kx D Pn
kD1 x0

k.x/yk ,
x 2 X . Clearly, K is a linear operator defined everywhere on X . It is bounded,

since kKxk � kxk
�Pn

kD1 kx0
kkkykk

	
: Moreover, the range of K is contained in a

finite-dimensional subspace of X . Then, K is a finite rank operator in X . So, K is a



302 8 Pseudo-Spectra

compact operator in X: We prove that

N.ACD/
\
N.K/ D f0g and R.ACD/

\
R.K/ D f0g; (8.3.1)

for all D 2 L.X/ such that kDk < ": Let x 2 N.ACD/, then x D Pn
kD1 ˛kxk;

and therefore, xj .x/ D ˛j ; 1 � j � n: Moreover, if x 2 N.K/, then x0
j .x/ D 0;

with 1 � j � n: This proves the first relation in Eq. (8.3.1). The second inclusion
is similar. In fact, if y 2 R.K/, then y D Pn

kD1 ˛kyk; and hence, yj .y/ D ˛j ,
with 1 � j � n: However, if y 2 R.A C D/, then y0

j .y/ D 0, with 1 � j � n:

This gives the second relation in Eq. (8.3.1). Besides, K is a compact operator. We
deduce, from Theorem 2.2.44, that 0 2 ˆACKCD and i.A C D C K/ D 0: If
x 2 N.A C D C K/, then .A C D/x is in R.A C D/

T
R.K/. This implies that

x 2 N.ACD/
T
N.K/ and x D 0: Thus, ˛.ACD CK/ D 0. In the same way,

we can prove that R.ACD CK/ D X: Hence, 0 2 �.ACD CK/: This implies
that, for all D 2 L.X/ such that kDk < ", we have 0 62 �.A C D C K/: Also,
0 62 TK2 K.X/ �".ACK/. So, 0 62 �e5;".A/. Q.E.D.

Remark 8.3.2. It follows immediately, from Theorem 8.3.1 and Proposition 7.1.1,
that

�e5;".A/ D
[

kDk<"
�e5.ACD/:

}
Theorem 8.3.2. If X satisfies the Dunford-Pettis property, " > 0 and if A is a
closed, densely defined, and linear operator onX , then we have �j;".A/ D �e5;".A/:

}
Proof. Since K.X/ � W�.X/, we infer that �j;".A/ � �e5;".A/. Conversely, let
� 62 �j;".A/. Then, there exists F 2 W�.X/ such that � 62 �".A C F /. Thus, by
using Theorem 8.1.1 .ii/, we notice that � 2 �.A C D C F /, for all D 2 L.X/
such that kDk < ": So, A C D C F � � 2 ˆ.X/ and i.A C D C F � �/ D 0:

Since F 2 W�.X/ we have .� � A � D � F /�1F 2 W�.X/. Hence, by using
Lemma 2.1.13 .i/, we get


.� � A �D � F /�1F �2 2 K.X/. Now, by representing

� � A as � � A D .� � A � D � F /ŒI C .� � A � D � F /�1F �, and by using
Theorem 2.2.40, together with Lemma 3.1.2, we obtain � 2 ˆACD and i.� � A �
D/ D 0, for all D 2 L.X/ such that kDk < ". Finally, Theorem 8.3.1 shows that
� 62 �e5;".A/. Q.E.D.

Corollary 8.3.1. Let .�;†;�/ be an arbitrary positive measure space, and let A
be a closed, densely defined, and linear operator on Lp.�; d�/, " > 0 and let
p 2 Œ1;1/. In the case where W�.Lp.�; d�// D S.Lp.�; d�//, we have

�e5;".A/ D �j;".A/:
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}
Theorem 8.3.3. Let X be a Banach space, " > 0 and A 2 C.X/. Then,

�e5;".A/ WD
\

F2Fb.X/

�".AC F /:

}
Proof. Let O WD T

F2Fb.X/ �".AC F /. Since K.X/ � Fb.X/, we infer that O �
�e5;".A/. Conversely, let � 62 O. Then, there exists F 2 Fb.X/ such that � 62
�".AC F /. Thus, by using Theorem 8.1.1 .ii/, we notice that � 2 �.ACD C F /,
for all D 2 L.X/ such that kDk < ": So, A C D C F � � 2 ˆ.X/ and i.A C
D C F � �/ D 0: The use of Lemma 6.3.1 .i/ allows us to conclude that, for all
D 2 L.X/ such that kDk < "; ACD�� 2 ˆ.X/ and i.ACD��/ D 0: Finally,
Theorem 8.3.1 shows that � 62 �e5;".A/. Q.E.D.

Remark 8.3.3. (i) From Theorem 8.3.3, it follows that �e5;".A C F / D �e5;".A/

for all F 2 Fb.X/.
(ii) If X is a Banach space with the DP property, then W.X/ � Fb.X/. Thus,

the pseudo-Schechter essential spectrum is invariant under weakly compact
perturbations on this class of Banach spaces. }

Corollary 8.3.2. Let X be a Banach space and let I.X/ be any subset of L.X/. If
K.X/ � I.X/ � Fb.X/, then

�e5;".A/ D
\

J2I.X/
�".AC J /: }

Remark 8.3.4. The use of Corollary 8.3.2 implies that �e5;".ACJ / D �e5;".A/, for
all J 2 I.X/ such that K.X/ � I.X/ � Fb.X/, and for all J1, J2 2 I.X/, we
have J1 ˙ J2 2 I.X/. }
Theorem 8.3.4. Let " > 0, and let A and B be two elements of C.X/, such that
0 62 �e5.A/

S
�e5.B/. Let us assume the existence of two bounded operators A0

and B0 in the Banach space X , such that

AA0 D I � F1; (8.3.2)

BB0 D I � F2; (8.3.3)

where Fi 2 Fb.X/, with i D 1; 2. If the difference A0 � B0 2 Fb.X/, then

�e5;".A/ D �e5;".B/:

}
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Proof. Using Eqs. (8.3.2) and (8.3.3), we infer that, for any scalar �, we have

.ACD � �/A0 � .B CD � �/B0 D F2 � F1 C .D � �/.A0 � B0/: (8.3.4)

Let � 62 �e5;".A/, then A C D � � is a Fredholm operator and i.A C D � �/ D
0 for all D 2 L.X/, such that kDk < ": Since A C D is closed and D.A C
D/ D D.A/ endowed with the graph norm, is a Banach space denoted by XACD
and, using Theorem 2.2.39, we obtain 2ACD � � 2 ˆb.XACD;X/: Moreover,
F1 2 Fb.X/. Using Eq. (8.3.2), Lemma 3.1.2, and Theorem 2.2.42, we deduce that
A0 2 ˆb.X;XACD/. Thus,

.2ACD � �/A0 2 ˆb.X/: (8.3.5)

Now, if the difference A0 � B0 2 Fb.X/, and applying Eq. (8.3.4), we get

.ACD � �/A0 � .B CD � �/B0 2 Fb.X/:

Also, from Eq. (8.3.5), it follows that .2B CD � �/B0 2 ˆb.X/, and

i Œ.2B CD � �/B0� D i Œ.2ACD � �/A0� D 0: (8.3.6)

Since B 2 C.X/, using Eq. (8.3.3) and arguing as in the last part, we conclude
that B0 2 ˆb.X;XBCD/: Since .B CD � �/B0 is a Fredholm operator, the use of
Theorem 2.2.41 shows that 2B CD�� 2 ˆb.XBCD;X/. This implies thatB CD�
� is a Fredholm operator. Moreover, 0 62 �e5.A/S �e5.B/, then i.A/ D i.B/ D 0.
Therefore, using Eqs. (8.3.2), (8.3.3) and also Lemma 3.1.2 and Theorem 2.2.40,
we deduce that i.A0/ D i.B0/ D 0. This, together with Eq. (8.3.6), shows that
i.ACD��/ D i.BCD��/ D 0: Thus, � 62 �e5;".B/. This proves that �e5;".B/ �
�e5;".A/. The opposite inclusion can be obtained by symmetry. Q.E.D.

Theorem 8.3.5. Let X be a Banach space, " > 0, A and B being two elements
of C.X/. Let us assume that, for all bounded operators D such that kDk < ", the
operator B is .ACD/-compact. Then, �e5;".A/ D �e5;".AC B/. }
Proof. Let � 62 �e5;".A/. Then, for all D 2 L.X/ such that kDk < ", we have
A C D � � is a Fredholm operator and i.A C D � �/ D 0. Since B is
.ACD/-compact, and applying Theorem 2.2.47, we get � 2 ˆACBCD and
i.A C B C D � �/ D 0: Therefore, � 62 �e5;".A C B/. We conclude that
�e5;".ACB/ � �e5;".A/: Conversely, let � 62 �e5;".ACB/. Then, for allD 2 L.X/
such that kDk < " we deduce that A C B C D � � is a Fredholm operator and
i.ACBCD��/ D 0. Moreover, B is .ACD/-compact, and using Theorem 2.2.2,
we infer that B is .A C B C D/-compact. Then, by using Theorem 2.2.48, we
have � 2 ˆACD and i.A C D � �/ D 0: So, � 62 �e5;".A/: This proves that
�e5;".A/ � �e5;".AC B/: Q.E.D.
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Theorem 8.3.6. Let X be a Banach space, " > 0 and A 2 C.X/. If J 2 F.X/,
then

�e5;".A/ D �e5;".AC J /:

}
Proof. Let � … �e5;".A/. Then, � � A �D 2 ˆ.X/ and i.� � A �D/ D 0 for all
jjDjj < ": Hence, by using Lemma 6.3.1 .ii/, we have � � A � D � J 2 ˆ.X/

and i.� � A � D � J / D 0 for jjDjj < ": Therefore, � … �e5;".A C J /; i.e.,
�e5;".AC J / � �e5;".A/: In order to prove the opposite inclusion, it is sufficient to
proceed by symmetry: �e5;".A/ D �e5;".AC J � J / � �e5;".AC J /: Q.E.D.

The following theorem gives a relation between the pseudo-Schechter essential
spectrum of the sum of two bounded linear operators and the pseudo-Schechter
essential spectrum of each of these operators.

Theorem 8.3.7. Let A and B be two bounded linear operators on a Banach
space and " > 0. If, for all bounded operators D such that jjDjj < " and
A.B C D/ 2 Fb.X/, then �e5;".A C B/nf0g � Œ�e5.A/

S
�e5;".B/�nf0g: If,

further, .B CD/A 2 Fb.X/ and Cn�e4.A/ is connected, then �e5;".ACB/nf0g D
Œ�e5.A/

S
�e5;".B/�nf0g: }

Proof. For � 2 C, we can write

.� � A/.� � B �D/ D A.B CD/C �.� � A � B �D/; (8.3.7)

and

.� � B �D/.� � A/ D .B CD/AC �.� � A � B �D/: (8.3.8)

Let � 62 
�e5.A/

S
�e5;".B/

�nf0g: Then, .� � A/ 2 ˆb.X/, i.� � A/ D 0 and,
for all kDk < "; .� � B �D/ 2 ˆb.X/ and i.� � B �D/ D 0. It follows, from
Theorem 2.2.13 .iii/, that .��A/.��B�D/ 2 ˆb.X/ and i Œ.��A/.��B�D/� D
0. Since A.BCD/ 2 Fb.X/, and applying Eq. (8.3.7), we have .��A�B�D/ 2
ˆb.X/ and i.� � A � B �D/ D 0. Then, � 62 �e5;".AC B/: Therefore,

�e5;".AC B/nf0g � 
�e5.A/

[
�e5;".B/

�nf0g: (8.3.9)

Now, let us prove the inverse inclusion of Eq. (8.3.9). Suppose � 62 �e5;".ACB/nf0g.
Then, for all D 2 L.X/ such that kDk < ", we have .� � A � B �D/ 2 ˆb.X/

and i.� � A � B � D/ D 0. Since A.B C D/ 2 Fb.X/, .B C D/A 2 Fb.X/.
Then, by using Eqs. (8.3.7) and (8.3.8), we have .� � A/.� � B � D/ 2 ˆb.X/,
.� � B � D/.� � A/ 2 ˆb.X/ and i.� � A/ C i.� � B � D/ D 0. By applying
Theorem 2.2.19, it is clear that .� � A/ 2 ˆb.X/ and, for all kDk < ", we
have .��B �D/ 2 ˆb.X/. Moreover, Cn�e4.A/ is connected, then i.� � A/ D 0.
Therefore, � 62 �e5.A/

S
�e5;".B/: This proves that �e5;".A C B/nf0g D

�e5.A/
S
�e5;".B/

�nf0g: Q.E.D.
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8.3.2 By Means of Noncompactness Measure

Let us denote M"
n.X/ by

M"
n.X/ D

n
M 2 L.X/ W ��Œ.� � A �M �D/�1M �n

�
< 1

for all D 2 L.X/ such that kDk < " and � 2 �.ACM CD/
o
;

where �.:/ is the Kuratowski measure of noncompactness in X and n 2 N
�. Let

I.X/ be any subset of L.X/ such that K.X/ � I.X/ � M"
n.X/. If, for allK; K1 2

I.X/ such that K ˙ K1 2 I.X/, then we have �e5;".A/ D �e5;".A C K/. In what
follows, we will give a refinement of the definition of the pseudo-Schechter essential
spectrum. Let X be a Banach space and n 2 N

�. For each " > 0 and A 2 C.X/, we
denote by:

�n" .A/ D
\

K2M"
n.X/

�".ACK/:

Remark 8.3.5. Let M 2 K.X/, then .� � A �M �D/�1M 2 K.X/. So, �.Œ
�
� �

A �M �D/�1M �n
� D 0 and therefore, K.X/ � M"

n.X/: }
Theorem 8.3.8. Let X be a Banach space, " > 0 and A 2 C.X/. Then,

�e5;".A/ D
\

M2M"
n.X/

�".ACM/: }

Proof. We first claim that �e5;".A/ � �n" .A/. Indeed, if � 62 �n" .A/, then
there exists M 2 M"

n.X/ such that, for D 2 L.X/ verifying kDk < "

and � 2 �.A C M C D/, we have �
�
Œ.� � A � M � D/�1M �n

�
< 1: So,

lim
k!C1 �

�
Œ� � A �M �D/�1M �n

�k D 0: Then, there exists k0 2 N
�, such that

�
�
Œ� � A � M � D/�1M �n

�k0
< 1

2
: By using Lemma 2.10.2 .iii/, we deduce

that�
�
Œ� � A �M �D/�1M �nk0

�
< 1

2
: Applying Theorem 5.2.1 .ii/, P.z/ D znk0

andQ.z/ D 1�z, we conclude thatQ.A/ D 
IC.��A�M �D/�1M � 2 ˆb.X/:

Now, let t 2 Œ0; 1�. We have �
�
t .� � A � M � D/�1M/nk0

�
< 1

2
; which implies

that I C t .� � A � M � D/�1M is a Fredholm operator on X . It follows, from
Proposition 2.2.5 and the compactness of Œ0; 1�, that i

�
Q.A/

� D i
�
I C t .� � A �

M � D/�1M
� D 0: We can write .� � A � D/ D .� � A � D � M/

�
I C .� �

A � D � M/�1M
�
: Therefore, for all D 2 L.X/ such that kDk < ", we have

.� � A � D/ 2 ˆ.X/ and i.� � A �D/ D 0: Finally, the use of Theorem 8.3.1
shows that � 62 �e5;".A/. Conversely, since K.X/ � M"

n.X/ (see Remark 8.3.5), we
infer that �n" .A/ � �e5;".A/. Q.E.D.
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Theorem 8.3.9. Let X be a Banach space, " > 0, A 2 C.X/ and let I.X/ be any
subset of L.X/. If K.X/ � I.X/ � M"

n.X/, then

(i) �e5;".A/ D
\

M2I.X/
�".ACM/:

(ii) Moreover, if for all K; K1 2 I.X/, we have K ˙ K1 2 I.X/. Then, for each
K 2 I.X/, we have �e5;".A/ D �e5;".ACK/. }

Proof. .i/ Let O WD T
M2M"

n.A/
�".ACM/. Since I.X/ � M"

n.X/, then we have
O � T

M2I.X/ �".A C M/: Using Theorem 8.3.8, we get �e5;".A/ �T
M2I.X/ �".A C M/: Moreover, since K.X/ � I.X/, we infer thatT
M2I.X/ �".ACM/ � �e5;".A/:

.ii/ Let �I
" .A/ WD T

M2I.X/ �".A C M/. From .i/, we deduce that �I
" .A/ D

�e5;".A/. Furthermore, for M 2 I.X/, we have K C I.X/ D I.X/: Then,
�I
" .A C K/ D �I

" .A/. Therefore, for all K 2 I.X/, we get �e5;".A C K/ D
�I
" .ACK/ D �I

" .A/ D �e5;".A/: Q.E.D.

Remark 8.3.6. Let " > 0 and A 2 C.X/. Then,
T
M2P� .X/ �".ACM/ � �e5;".A/;

where P� .X/ is the set introduced in (6.4.2). }
We have the following:

Theorem 8.3.10. Let " > 0, and let A and B be two operators in L.X/. Assume
that, for all D 2 L.X/ such that kDk � " and, for all � 2 ˆACD , there exists a
Fredholm inverse A"� of ACD�� such that A"�B 2 P� .X/. Then, �e5;".ACB/ �
�e5;".A/: }
Proof. Suppose that � 62 �e5;".A/. Then, by using Theorem 8.3.1, we deduce that,
for all D 2 L.X/ such that kDk � ", we have � 2 ˆACD and i.ACD � �/ D 0.
Since A"� is a Fredholm inverse of ACD��, then there existsK 2 K.X/ such that

.� � A �D/A"� D I �K: (8.3.10)

From Eq. (8.3.10), it follows that the operator ACDCB � � can be written in the
form

��A�D�B D ��A�D�
�
.��A�D/A"�CK

	
B D .��A�D/.I�A"�B/�KB:

(8.3.11)

Using the fact that A"�B 2 P� .X/, there exists n 2 N such that �
�
.A"�B/

n
�
< 1.

Then, lim
k!1 �

�
.A"�B/

n
�k D 0: Hence, there exists k0 2 N

� such that

�
�
.A"�B/

n
�k0

< 1
2
: By using Lemma 2.10.2 .iii/; we deduce that �

�
.A"�B/

nk0
� � 1

2
.

Now, by applying Theorem 5.2.1 .ii/ with P.z/ D znk0 and Q.z/ D 1 � z, we
conclude that

I � A"�B 2 ˆb.X/: (8.3.12)
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Arguing as in the proof of Theorem 8.3.8 that i.I � A"�B/ D 0, and by using
Theorem 2.2.7, we have

.��A�D/.I �A"�B/ 2 ˆb.X/ and i
�
.��A�D/.I �A"�B/

� D 0: (8.3.13)

By applying Eqs. (8.3.11), (8.3.12) and (8.3.13), we get .��A�D�B/ 2 ˆb.X/
and i.� � A �D � B/ D 0 for all D 2 L.X/ such that kDk < ". This proves that
� 62 �e5;".AC B/. We find that �e5;".AC B/ � �e5;".A/: Q.E.D.

Theorem 8.3.11. Let " > 0 and A 2 C.X/. Assume that B is .A C D/-bounded
for all D 2 L.X/ such that kDk < " and, for all � 2 ˆACD , there exists a
Fredholm inverse A"� of ACD�� such that A"�B 2 P� .X/. Then, �e5;".ACB/ �
�e5;".A/: }
Proof. Clearly, 2ACD 2 L.XACD;X/ and OB 2 L.XACD;X/. Moreover, it is not
difficult to see that
8
<̂

:̂

˛.1ACD/ D ˛.ACD/; ˇ.1ACD/ D ˇ.1ACD/ and R.1ACD/ D R.ACD/;
˛.2ACD C OB/ D ˛.ACD C B/; and
ˇ.2ACD C OB/ D ˇ.ACD C B/ and R.2ACD C OB/ D R.ACD C B/:

Hence, if A C D � � belongs to ˆ.X/, and using Theorem 2.2.39, we obtain
2ACD � � 2 ˆb.XACD;X/: Finally, the use of Theorem 8.3.10 completes the
proof. Q.E.D.



Chapter 9
S -Essential Spectra

In this chapter, we give a characterization of S-essential spectra of linear operator A
on a Banach space X .

9.1 Definitions and Preliminary Results

Let X be a Banach space. Let S be a bounded operator on X , such that S ¤ 0. For
A 2 C.X/, we define the S -resolvent set of A by �S.A/ WD f� 2 C such that �S �
A has a bounded inverseg; and the S -spectrum of A by �S.A/ D Cn�S.A/: Note
that �S.A/ is not necessarily bounded. In fact, it suffices to see the following
examples, where �S.A/ can be discrete or the whole complex plane:

.i/ Let A D
�
2 2

0 3

�

and S D
�
1 0

0 0

�

. In this case, �S.A/ D f2g:

.ii/ Let A D
�
1 2

0 3

�

and S D
�
0 1

0 0

�

, then �S.A/ D ; and �S.A/ D C:

.iii/ Let A D
�
1 2

0 0

�

and S D
�
1 0

0 0

�

, then �S.A/ D C and �S.A/ D ;:

In this chapter, we are concerned with the following S-essential spectra:

�e1;S .A/ WD ˚
� 2 C such that �S � A … ˆC.X/


 WD CnˆCA;S ;

�e2;S .A/ WD ˚
� 2 C such that �S � A … ˆ�.X/


 WD Cnˆ�A;S ;

�e3;S .A/ WD ˚
� 2 C such that �S � A … ˆ˙.X/


 WD Cnˆ˙A;S ;

�e4;S .A/ WD ˚
� 2 C such that �S � A 62 ˆ.X/
 WD CnˆA;S ;

�e5;S .A/ WD Cn�5;S .A/;
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�e6;S .A/ WD Cn�6;S .A/;
�e7;S .A/ WD

\

K2K.X/
�ap;S .ACK/;

�e8;S .A/ WD
\

K2K.X/
�ı;S .ACK/;

where �5;S .A/ WD f� 2 ˆA;S such that i.�S � A/ D 0g; �6;S .A/ WD f� 2 �5;S .A/
such that all scalars near � are in �S.A/g,

�ap;S .A/ WD
�

� 2 C such that inf
kxkD1; x2D.A/

k.�S � A/xk D 0

�

; and

�ı;S .A/ WD ˚
� 2 C such that �S � A is not surjective



:

They can be ordered as �e3;S .A/ WD �e1;S .A/
T
�e2;S .A/ � �e4;S .A/ � �e5;S .A/ �

�e6;S .A/:

Remark 9.1.1. .i/ �e5;S .A/ D �e4;S .A/
S˚

� 2 C such that i.�S � A/ ¤ 0


:

.ii/ Note that if S D I , we find the usual definition of the essential spectra of a
closed densely defined linear operator introduced in Chap. 7.

.iii/ Note that, even if S is invertible, we don’t have �ei .A/ D �ei;S .A/, i D
1; : : : ; 6. For example, if X is a finite dimension space and S is an invertible
operator, such that �.S/nf1g is not empty, then �S.S/ D f1g, which implies
that �S.S/ ¤ �.S/. }

One of the main questions in the study of the S -essential spectra of closed densely
defined linear operators consists in showing when the different notions of the
essential spectrum coincide, and in studying their invariance by some class of
perturbations.

Lemma 9.1.1. Let A 2 C.X/ and S 2 L.X/, such that �S.A/ is not empty.

.i/ If Cn�e4;S .A/ is connected, then �e4;S .A/ D �e5;S .A/:

.ii/ If Cn�e5;S .A/ is connected, then �e5;S .A/ D �e6;S .A/:

.iii/ If ˆA;S is connected, then �e1;S .A/ D �e7;S .A/ and �e2;S .A/ D �e8;S .A/: }
Proof. .i/ Since the inclusion �e4;S .A/ � �e5;S .A/ is known, it is sufficient

to show that �e5;S .A/ � �e4;S .A/ which is equivalent to Cn�e4;S .A/ �
Cn�e5;S .A/. Let �0 2 Cn�e4;S .A/. Since �S.A/ ¤ ;, then there exists �1 2 C

such that �1 2 �S.A/ and consequently �1S�A 2 ˆ.X/ and i.�1S�A/ D 0:

Hence, �1 2 Cn�e5;S .A/ which is a subset of Cn�e4;S .A/. Since Cn�e4;S .A/
is connected, and from Proposition 2.2.5 .ii/, it follows that i.�S � A/ D 0

for all � 2 Cn�e4;S .A/. In this way, we see that �0 2 Cn�e5;S .A/.
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.ii/ Since the inclusion �e5;S .A/ � �e6;S .A/ is known, it is sufficient to show that
�e6;S .A/ � �e5;S .A/. We have the set Cn�e5;S .A/ ¤ ;, since it contains points
of �S.A/. Since ˛.�S �A/ and ˇ.�S �A/ are constant on any component of
ˆS;A except possibly on a discrete set of points where they have large values
(see Proposition 2.2.5). Then, Cn�e5;S .A/ � Cn�e6;S .A/ which is equivalent
to �e6;S .A/ � �e5;S .A/ and so, we have the equality.

.iii/ It is easy to check that �e1;S .A/ � �e7;S .A/. For the second inclusion, we take
� 2 Cn�e1;S .A/. Then, � 2 ˆCA;S D ˆA;S

S
.ˆCA;SnˆA;S /: Hence, we will

discuss the following two cases:

• If � 2 ˆA;S , then i.A��S/ D 0: Indeed, let �0 2 �S.A/; then �0 2 ˆA;S
and i.A��0S/ D 0: It follows, from Proposition 2.2.5 .ii/, that i.A��S/
is constant on any component of ˆA;S . Therefore, �S.A/ � ˆA;S and, then
i.A � �S/ D 0 for all � 2 ˆA;S : This shows that � 2 Cn�e7;S .A/:

• If � 2 .ˆCA;SnˆA;S /; then ˛.A � �S/ < 1 and ˇ.A � �S/ D C1:

So, i.A � �S/ D �1 < 0: Thus, from the above reasoning, we can get
�e7;S .A/ � �e1;S .A/: Similarly, we obtain the second equality. Q.E.D.

Theorem 9.1.1. Let A be a closed, densely defined linear operator on X and J 2
L.X/. Then,

.i/ if J 2 Fb.X/, then �ei;S .A/ D �ei;S .A C J /; with i D 4; 5: Moreover, if
Cn�e5;S .A/ is connected and neither �S.A/ nor �S.A C J / is empty, then
�e6;S .A/ D �e6;S .AC J /:

.ii/ If J 2 FbC.X/, then �e1;S .A/ D �e1;S .AC J /:

.iii/ If J 2 Fb�.X/, then �e2;S .A/ D �e2;S .AC J /:

.iv/ If J 2 FbC.X/
T

Fb�.X/, then �e3;S .A/ D �e3;S .AC J /: }
Proof. .i/ Let � 2 C. By using Lemma 6.3.1 .i/, we get the equivalence �S �A 2

ˆ.X/ if, and only if, �S � A � J 2 ˆ.X/. Moreover, i.�S � A � J / D
i.�S �A/. Hence, we obtain �ei;S .A/ D �ei;S .AC J /, with i D 4; 5: By using
Theorem 7.5.3, the proofs of the items .ii/, .iii/, .iv/ are immediate. So, they
are omitted. Q.E.D.

9.2 Characterization of S-Essential Spectra

In this section, we give the characterization of different S-essential spectra of
bounded linear operators on a Banach space X: Let S be a bounded operator on
X , such that S ¤ 0 and let A 2 L.X/. A complex number � is in BCA;S , B�A;S or
BA;S if �S�A is in BbC.X/, Bb�.X/ or Bb.X/ respectively. An operatorA 2 L.X/ is
called left (resp. right) essentially invertible, if there exist S 2 L.X/ andK 2 K.X/
such that SA D I CK (resp. AS D I CK). We consider the following S -essential
spectra
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�eB;S .A/ WD ˚
� 2 C such that �S � A … Bb.X/


 WD CnBA;S ;
�eBC;S .A/ WD ˚

� 2 C such that �S � A … BbC.X/

 WD CnBCA;S ;

�eB�;S .A/ WD ˚
� 2 C such that �S � A … Bb�.X/


 WD CnB�A;S ;

�e9;S .A/ WD ˚
� 2 C such that �S � A is not left essentially invertible



;

�e10;S .A/ WD ˚
� 2 C such that �S � A is not right essentially invertible



;

�e11;S .A/ WD
\

K2K.X/
�l;S .ACK/;

�e12;S .A/ WD
\

K2K.X/
�r;S .ACK/;

where �l;S .A/ WD ˚
� 2 C such that �S � A is not left invertible



; and �r;S .A/ WD˚

� 2 C such that �S � A is not right invertible


: Our first result is the following

theorem.

Theorem 9.2.1. Let S and A be two bounded linear operators on a Banach
space X: Then,

.i/ �e5;S .A/ D
\

K2K.X/
�S .ACK/:

.ii/ �e7;S .A/ D �e1;S .A/
S˚

� 2 C such that i.�S � A/ > 0
:
.iii/ �e8;S .A/ D �e2;S .A/

S˚
� 2 C such that i.�S � A/ < 0
:

.iv/ �e11;S .A/ D �e9;S .A/
S˚

� 2 C such that i.�S � A/ > 0
:
.v/ �e12;S .A/ D �e10;S .A/

S˚
� 2 C such that i.�S � A/ < 0
: }

Proof. .i/ Let � … �e5;S .A/. By Remark 9.1.1 .i/, � 62 �e4;S .A/
Sf� 2

C such that i.�S � A/ ¤ 0g: Then, .�S � A/ 2 ˆb.X/ and i.�S � A/ D 0.
By applying Theorem 2.2.17, there exists K 2 K.X/ such that �S � A �K is
invertible. Then, � 2 �S.A C K/: This shows that � 62 T

K2K.X/�S .A C K/:

Then, we have

\

K2K.X/
�S .ACK/ � �e5;S .A/: (9.2.1)

In order to prove the inverse inclusion of Eq. (9.2.1), suppose that � 62T
K2K.X/�S .ACK/. Then, there existsK 2 K.X/ such that � 2 �S.ACK/. Hence,

�S � A �K 2 ˆb.X/ and i.�S � A �K/ D 0: Now, the operator �S � A can be
written in the following form �S�A D �S�A�KCK: SinceK 2 K.X/; and using
Lemma 6.3.1 .i/, we get �S �A 2 ˆb.X/ and i.�S �A/ D i.�S �A�K/ D 0:

We conclude that � 62 �e4;S .A/
Sf� 2 C such that i.�S � A/ ¤ 0g. Hence,
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�e5;S .A/ � T
K2K.X/ �S .ACK/: The proof of the assertions .ii/, .iii/, .iv/ and .v/

may be checked in the same way as in the proof of .i/. Q.E.D.

Corollary 9.2.1. Let S and A be two bounded linear operators on a Banach
space X: Then,

.i/ � 62 �e7;S .A/ if, and only if, �S � A 2 ˆbC.X/ and i.A � �S/ � 0:

.ii/ � 62 �e8;S .A/ if, and only if, �S � A 2 ˆb�.X/ and i.A � �S/ � 0: }
Proof. The proof of the corollary is immediately deduced from Theorem 9.2.1.

Q.E.D.

Proposition 9.2.1. Let S and A 2 L.X/ such that S ¤ A. Then,

.i/ If ˛.S/ < 1, then �e4.A/ � �e4;S .SA/.
.ii/ If ˇ.S/ < 1, then �e4.A/ � �e4;S .AS/.
.iii/ If S 2 ˆb.X/, then �e4.A/ D �e4;S .AS/ D �e4;S .SA/: }
Proof. .i/ Let � 62 �e4;S .SA/. Then, .�S � SA/ 2 ˆb.X/ which implies that

S.��A/ 2 ˆb.X/: Since ˛.S/ < 1, then by using Theorem 2.2.11, we infer
that .� � A/ 2 ˆb.X/ implies that � 62 �e4.A/: Therefore,

�e4.A/ � �e4;S .SA/: (9.2.2)

.ii/ Let � 62 �e4;S .AS/: Then, .�S � AS/ 2 ˆb.X/, which implies that .��A/S 2
ˆb.X/: Since ˇ.S/ < 1, then by using Theorem 2.2.12, we conclude that
.� � A/ 2 ˆb.X/. Hence, � 62 �e4.A/: Consequently,

�e4.A/ � �e4;S .AS/: (9.2.3)

.iii/ Let � 62 �e4.A/: Then, .� � A/ 2 ˆb.X/ since S 2 ˆb.X/. Then, by using
Theorem 2.2.13, we conclude that .��A/S 2 ˆb.X/ and S.��A/ 2 ˆb.X/:
Then, � 62 �e4;S .AS/ and � 62 �e4;S .SA/: Therefore �e4;S .SA/ � �e4.A/ and
�e4;S .AS/ � �e4.A/: Hence, by using Eqs. (9.2.2) and (9.2.3), we conclude
that �e4.A/ D �e4;S .AS/ D �e4;S .SA/: Q.E.D.

9.3 The S -Browder’s Essential Spectrum

In this section, we investigate the S-Browder’s essential spectrum of a bounded
linear operator on a Banach space X: We begin with the following theorem.

Theorem 9.3.1. Let S and A be two bounded linear operators on a Banach
space X: Then,

�eB;S .A/ D �e4;S .A/
[

acc �S.A/;
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�eBC;S .A/ D �e1;S .A/
[

acc �S.A/;

�eB�;S .A/ D �e2;S .A/
[

acc �S.A/;

where acc �S.A/ stands for the accumulation S-spectrum of A: }
Proof. Let � 62 �eB;S .A/. Then, .�S �A/ 2 Bb.X/, and the use of Theorem 2.2.23
proves the existence of a decomposition X D X1 ˚ X2 such that dimX1 <

C1; �S � AjX1 is nilpotent and �S � AjX2 is invertible. So, for all � ¤ � closed
enough to �; �S �A is invertible, then � 2 �S.A/: Thus, � is not an accumulation
point of �S.A/: Moreover, �S � AjX1 is a finite-dimensional nilpotent. So, we get
� 62 �e4;S .A/ and, then � 62 �e4;S .A/S acc �S.A/: Consequently,

�e4;S .A/
[

acc �S.A/ � �eB;S .A/: (9.3.1)

In order to prove the inverse inclusion of Eq. (9.3.1), let us suppose � 62
�e4;S .A/

S
acc �S.A/. Then, .�S � A/ 2 ˆb.X/. Let X D X1 ˚ X2 be the

Kato decomposition of �S � A, so .�S � A/jX1 is a finite-dimensional nilpotent
and .�S � A/jX2 is a Kato operator. By hypothesis, �S � A is invertible for all �
sufficiently close to �; � ¤ � and so .�S �A/jX2 is invertible. Then, .�S �A/jX2
is a Kato operator, .�S � A/jX2 is also invertible. Thus, .�S � A/ 2 Bb.X/,
consequently � 62 �eB;S .A/: Therefore, �eB;S .A/ � �e4;S .A/

S
acc �S.A/: The

statements for the upper semi-Browder’s and lower semi-Browder’s spectrum can
be proved similarly. Q.E.D.

Proposition 9.3.1. Let A; S and B 2 L.X/ such that re.B/ WD fjzj such that z …
�e6.B/g D 0 and B commute with S and A: Then,

.i/ �eB;S .A/ D �eB;S .AC B/:

.ii/ �eBC;S .A/ D �eBC;S .AC B/:

.iii/ �eB�;S .A/ D �eB�;S .AC B/: }
Proof. .i/ Let � 62 �eB;S .A/. Then, .�S � A/ 2 Bb.X/. Since, AB D BA and

SB D BS then B.�S �A/ D .�S �A/B; and the use of Theorem 2.2.24 gives
�S � A � B 2 Bb.X/: Hence, � 62 �eB;S .AC B/: Therefore,

�eB;S .AC B/ � �eB;S .A/: (9.3.2)

The opposite inclusion of Eq. (9.3.2) follows by symmetry. It is sufficient to
replace A and B by AC B and �B:

.ii/ Let � 62 �eBC;S .A/, thenA��S 2 BbC.X/: Since, AB D BA and SB D BS, then
B.�S�A/ D .�S�A/B: The use of Theorem 2.2.24 implies that �S�A�B 2
BbC.X/; hence � 62 �eBC;S .AC B/, which implies that

�eBC;S .AC B/ � �eBC;S .A/: (9.3.3)
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The opposite inclusion of Eq. (9.3.3) follows by symmetry. The statement .iii/
can be checked in the same way from the assertion .ii/: Q.E.D.

Remark 9.3.1. If K 2 K.X/ or K is quasi-nilpotent and K commutes with S and
A, then we have �eB;S .A/ D �eB;S .A C K/; �eB�;S .A/ D �eB�;S .A C K/; and
�eBC;S .A/ D �eBC;S .ACK/: }
Theorem 9.3.2. Let A; S 2 L.X/ and QK.X/ D ˚

K 2 K.X/ such that KA D
AK and KS D SK



: Then,

�eB�;S .A/ WD
\

K2 QK.X/
�ı;S .ACK/;

�eBC;S .A/ WD
\

K2 QK.X/
�ap;S .ACK/;

�eB;S .A/ WD
\

K2 QK.X/
�S .ACK/:

}
Proof. Let � 2 �eB�;S .A/. Then, by using Remark 9.3.1, � 2 �eB�;S .ACK/ for all
K 2 QK.X/; since �eB�;S .ACB/ � �ı;S .ACK/ forK 2 QK.X/: Therefore, we have
�eB�;S .A/ � T

K2 QK.X/ �ı;S .ACK/: Conversely, let � 62 �eB�;S .A/: So, �S � A is
lower semi-Browder. Applying Theorem 2.2.23, there exists a decomposition X D
X1 ˚ X2 such that dimX1 < C1; AXi � Xi .i D 1; 2/; �S � AjX1 is nilpotent
and �S � AjX2 is onto. We consider the operator K defined by K D I ˚ 0 is
even a finite rank operator commuting with A and S such that �S � A � K is
onto. Also, there exists K 2 QK.X/ such that � 62 �ı;S .A C K/ which implies that
� 62 T

K2 QK.X/ �ı;S .A C K/: Therefore,
T
K2 QK.X/ �ı;S .A C K/ � �eB�;S .A/: The

statements for the upper semi-Browder and lower semi-Browder’s spectrum can be
proved similarly. Q.E.D.

Let A be a bounded linear operator on X and let �0 be an isolated point of �S.A/:
For an admissible contour 	�0 ,

P�0;S D � S

2i

I

	�0

.A � �S/�1 d�;

is called the S-Riesz integral for A; S and �0.

Proposition 9.3.2. Let A; S 2 L.X/ and �0 is an isolated point of �S.A/. Let
P�0;S be the S-Riesz integral for A; S , and �0. Then,

.i/ P�0;S is a projection.
.ii/ If 0 2 �.S/ and AS�1 D S�1A; then N.A � �0S/ � R.P�0;S /:

.iii/ If the hypotheses of .ii/ are satisfied, if X is a Hilbert, and if A and S are
self-adjoint, then P�0;S is the orthogonal projection onto N.A � �0S/: }
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Proof. .i/ Let 	�0 and Q	�0 be two admissible contours for defining P�0;S : Let us
suppose that 	�0 is contained in the interior of the region bounded by Q	�0 : In
view of the S-resolvent identity, we obtain

P 2
�0;S

D S

.2i/2

I

	�0� Q	�0
.A � �S/�1S.A � �S/�1d� d�

D S

.2i/2

I

	�0

d�

I

Q	�0


.A � �S/�1 � .A � �S/�1�

� � � d�

D S

.2i/2

I

	�0

.A � �S/�1
I

Q	�0

1

� � � d� d�

� S

.2i/2

I

	�0

I

Q	�0

1

� � �.A � �S/�1d� d�: (9.3.4)

By applying the residue theorem [244] to the first integral in Eq. (9.3.4), we get

I

	�0

.A � �S/�1
I

Q	�0

1

� � �d�d� D �2i
I

	�0

.A � �S/�1d�: (9.3.5)

For the second integral in Eq. (9.3.4), let us observe that

I

	�0

I

Q	�0

1

� � �.A��S/�1 d�d� D
I

Q	�0
.A��S/�1

I

	�0

1

� � � d� d� D 0;

since the integrals are absolutely convergent and 1
��� is analytic and inside

	�0 : In order to complete the proof, and from Eq. (9.3.5), it follows that
P 2
�0;S

D P�0;S :

.ii/ Let f 2 N.A��0S/, then for � ¤ �0; .A��S/�1f D .�0S ��S/�1f:We
show that

P�0;Sf D � S

2i

I

	�0

.A � �S/�1f d�

D � S

2i

I

	�0

.�0S � �S/�1f d�
D f:

So, f 2 R.P�0;S /:
.iii/ Since the operators A D A� and S D S�; then ..A��S/�1/� D .A��S/�1.

Let us choose r > 0 such that 	�0 D ˚
� 2 C such that j� � �0j D r



is an

admissible contour and take � D �0 C rei� . Then,

P�0;S D � S

2

I 

�
.A � .�0 C rei� /S/�1 rd�
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and

P �
�0;S

D � S

2

I 

�
..A � .�0 C rei� /S/�1/� rd�

D � S

2

I 

�
.A� � .�0 C rei� /S/�1 rd�

D � S

2

I 

�
.A � .�0 C re�i� /S/�1 rd�:

Upon repartitioning with �1 D �� , we easily find that

P �
�0;S

D � S

2

I 

�
.A � .�0 C rei�1 /S/�1 rd�1 D P�0;S :

Finally, we must show thatN.A��S/ D R.P�0;S /;which, by part .ii/ requires
that we show that N.A � �S/ 	 R.P�0;S /: We compute the following

.A � �0S/P�0;S D � S

2i

I

	�0

.A � �0S/.A � �S/�1 d�

D � S

2i

I

	�0

.A � �0S C �S � �S/.A � �S/�1 d�

D � S

2i

I

	�0

.�S � �0S/.A � �S/�1 d�

D � S

2i

I

	�0

.� � �0/.AS�1 � �/�1 d�:

Let U�0 denote the interior of 	�0 on U�0nf�0g; the operator .� � �0/

.AS�1 � �/�1 is an analytic operator valued function and satisfies the bound

j� � �0jjj.AS�1 � �/�1jj � j� � �0j
dist.�; �.AS�1//

;

where dist.x; y/ is the distance between x and y:Now, we take the diameter of
	�0 small form standard results that .�� �0/.AS�1 � �/�1 extends to analytic
function on U�0 and hence, by Cauchy’s theorem, we get

� S

2i

I

	�0

.� � �0/.AS�1 � �/�1 d� D 0:

This establishes that N.A � �S/ 	 R.P�0;S /: Q.E.D.

The S-discrete spectrum of A, denoted �dS .A/; is just the set of isolated points
� 2 C of the spectrum such that the corresponding S-Riesz projectors P�;S
are finite-dimensional. Another part of the spectrum, which is generally larger
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than �e6;S .A/, is �S.A/n�dS .A/. We will also use this terminology here and the
notation �e6;S .A/ D �S.A/n�dS .A/ and �6;S .A/ D Cn�e6;S .A/: The largest
open set on which the resolvent is finitely meromorphic is precisely �6;S .A/ D
�dS .A/

S
�S.A/: For � 2 �6;S .A/; let P�;S .A/ (or P�;S ) denote the corresponding

(finite rank) S-Riesz projector with a range and a kernel denoted by R�;S and
K�;S . Since P�;S is invariant, we may define the operator A�;S D .A � �S/.I �
P�;S / C P�;S ; with respect to the decomposition X D K�;S ˚ R�;S and A�;S D
..A � �S/jK�;S /˚ I: We have just cut off the finite-dimensional part of A � �S in
the S-Riesz decomposition. Since �

�
.A � �S/jK�;S

� D �.A � �S/nf0g; A�;S has
a bounded inverse, denoted by Rb;S .A; �/ and called the “S-Browder’s resolvent”,
i.e., Rb;S .A; �/ D ..A � �/jK�;S /�1 ˚ I with respect to X D K�;S ˚ R�;S : Or,
alternatively Rb;S .A; �/ D �

.A � �S/jK�;S /�1.I � P�;S / C P�;S for � 2 �6;S .A/:

This clearly extends the usual resolventRS.A; �/ from �S.A/ to �6;S .A/ and retains
many of its important properties.

Proposition 9.3.3. Let A and S 2 L.X/. Then, for �; � 2 �6;S .A/, we have:

Rb;S .A; �/ �Rb;S .A; �/
D .� � �/Rb;S .A; �/SRb;S .A; �/CRb;S .A; �/N.�; �/Rb;S .A; �/;

where N.:; :/ is a finite rank operator with the following expression

N.�; �/ D
h�
A � .�S C 1/

�
P�;S � �

A � .�S C 1/
�
P�;S

i
:

}
Proof. We have Rb;S .A; �/ � Rb;S .A; �/ D Rb;S .A; �/

h
A�;S � A�;S

i
Rb;S .A; �/.

So,

A�;S � A�;S D 
.A � �S/.I � P�;S /C P�;S

� � 
.A � �S/.I � P�;S /C P�;S

�

D 
.A � .�S C 1// P�;S � .A � .�S C 1// P�;S

�C .� � �/S:

Therefore,

Rb;S .A; �/ �Rb;S .A; �/ D .� � �/Rb;S .A; �/SRb;S .A; �/

CRb;S .A; �/
h
.A � .�S C 1// P�;S

� .A � .�S C 1// P�;S

i
Rb;S .A; �/: Q.E.D.
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9.4 S -Essential Spectra of the Sum of Bounded
Linear Operators

The following theorem gives a relation between the S-essential spectra of the sum of
two bounded linear operators and the S-essential spectra of each of these operators
where their products are Fredholm or semi-Fredholm perturbations in X:

Theorem 9.4.1. Let S; A, and B be three bounded linear operators on a Banach
space X such that S ¤ A and S ¤ B:

.i/ If AB 2 Fb.X/; ˛.S/ < 1 and SA D AS; then �e4;S .A C B/nf0g �
Œ�e4;S .A/

S
�e4;S .B/� nf0g:Moreover, if BA 2 Fb.X/; ˇ.S/ < 1 and SB D

BS; then we have �e4;S .AC B/nf0g D Œ�e4;S .A/
S
�e4;S .B/� nf0g:

.ii/ If the hypotheses of .i/ are satisfied and ˇ.S/ D ˛.S/; then �e5;S .A C
B/nf0g � Œ�e5;S .A/

S
�e5;S .B/� nf0g:Moreover, if Cn�e4;S .A/ is connected,

then

�e5;S .AC B/nf0g D
h
�e5;S .A/

[
�e5;S .B/

i
nf0g: (9.4.1)

.iii/ If the hypotheses of .ii/ are satisfied, and if Cn�e5.A C B/, Cn�e5;S .A/
and Cn�e5;S .B/ are connected, then �e6;S .AC B/nf0g D Œ�e5;S .A/

S
�e5;S

.B/� nf0g:
.iv/ If AB 2 FbC.X/, ˛.S/ < 1, �S.A/ ¤ ; and SA D AS, then we

have �e1;S .A C B/nf0g � Œ�e1;S .A/
S
�e1;S .B/� nf0g: Besides, if BA 2

FbC.X/ and R.S/ is closed in X; then

�e1;S .AC B/nf0g D
h
�e1;S .A/

[
�e1;S .B/

i
nf0g: (9.4.2)

.v/ If the hypotheses of .iv/ are satisfied, and ˇ.S/ � ˛.S/; then �e7;S .A C
B/nf0g � Œ�e7;S .A/

S
�e7;S .B/� nf0g: Moreover, if ˆA;S is connected, and

BS D SB, then

�e7;S .AC B/nf0g D
h
�e7;S .A/

[
�e7;S .B/

i
nf0g: (9.4.3)

.vi/ If AB 2Fb�.X/ and BS D SB; then �e2;S .A C B/nf0g � Œ�e2;S .A/
S
�e2;S

.B/� nf0g: Besides, if BA 2 Fb�.X/ and S 2 ˆb�.X/; then

�e2;S .AC B/nf0g D
h
�e2;S .A/

[
�e2;S .B/

i
nf0g: (9.4.4)

.vii/ If the hypotheses of .iv/ are satisfied and ˇ.S/ � ˛.S/; then �e8;S .A C
B/nf0g � Œ�e8;S .A/

S
�e8;S .B/� nf0g: If, further, ˆA;S is connected, then

�e8;S .AC B/nf0g D
h
�e8;S .A/

[
�e8;S .B/

i
nf0g:
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.viii/ If AB 2 FbC.X/
T

Fb�.X/, ˛.S/ < 1 and S commutes with A and B , then

�e3;S .AC B/nf0g �
� h
�e3;S .A/

[
�e3;S .B/

i[h
�e1;S .A/

\
�e2;S .B/

i

[h
�e2;S .A/

\
�e1;S .B/

i 	
nf0g:

Moreover, if BA 2 FbC.X/
T

Fb�.X/, ˇ.S/ < 1 and R.S/ is closed in X ,
then

�e3;S .AC B/nf0g D
� h
�e3;S .A/

[
�e3;S .B/

i[h
�e1;S .A/

\
�e2;S .B/

i

[h
�e2;S .A/

\
�e1;S .B/

i 	
nf0g:

}
Proof. For � 2 C, we can write

.�S � A/.�S � B/ D AB C �.�S2 � AS � SB/; (9.4.5)

and

.�S � B/.�S � A/ D BA C �.�S2 � SA � BS/: (9.4.6)

.i/ Let � 62 �e4;S .A/S �e4;S .B/
Sf0g. Then, .�S�A/ 2 ˆb.X/ and .�S�B/ 2

ˆb.X/. Theorem 2.2.40 gives .�S � A/.�S � B/ 2 ˆb.X/. Since AB 2
Fb.X/, by applying Eq. (9.4.5), we have .�S2 � AS � SB/ 2 ˆb.X/. Hence,
S.�S � A � B/ 2 ˆb.X/: Since ˛.S/ < 1, then by using Theorem 2.2.11,
we conclude that .�S � A � B/ 2 ˆb.X/. Therefore, � 62 �e4;S .A C B/:

Consequently,

�e4;S .AC B/nf0g �
h
�e4;S .A/

[
�e4;S .B/

i
nf0g: (9.4.7)

In order to prove the inverse inclusion of Eq. (9.4.7), let us suppose � 62
�e4;S .A C B/

Sf0g; then .�S � A � B/ 2 ˆb.X/: Since S 2 ˆb.X/ and
SB D BS; we have S.�S �A�B/ 2 ˆb.X/ and .�S �A�B/S 2 ˆb.X/:
Since AB 2 Fb.X/; BA 2 Fb.X/; ˛.S/ < 1 and ˇ.S/ < 1, then by using
Eqs. (9.4.5) and (9.4.6), we have

.�S � A/.�S � B/ 2 ˆb.X/ and .�S � B/.�S � A/ 2 ˆb.X/: (9.4.8)

By applying Theorem 2.2.19, it is clear that .�S � A/ 2 ˆb.X/ and
.�S � B/ 2 ˆb.X/. Therefore, � 62 �e4;S .A/S �e4;S .B/: This proves that

h
�e4;S .A/

[
�e4;S .B/

i
nf0g � �e4;S .AC B/nf0g:
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.ii/ Let � 62 Œ�e5;S .A/S �e5;S .B/� nf0g. Then, .�S �A/ 2 ˆb.X/, i.�S �A/ D
0, .�S � B/ 2 ˆb.X/ and i.�S � B/ D 0: Using Theorem 2.2.40, we
infer that .�S � A/.�S � B/ 2 ˆb.X/ and i..�S � A/.�S � B// D 0.
Moreover, since AB 2 Fb.X/, we can apply Eq. (9.4.5) and Lemma 6.3.1
which ensure that S.�S � A � B/ 2 ˆb.X/ and i.S.�S � A � B// D 0:

Since ˛.S/ D ˇ.S/ < 1, then the use of Theorems 2.2.40 and 2.2.42 gives
.�S � A � B/ 2 ˆb.X/ and i.S/

„ƒ‚…
D0

Ci.�S � A � B/ D 0: Therefore, � 62

�e5;S .AC B/. Hence,

�e5;S .AC B/nf0g �
h
�e5;S .A/

[
�e5;S .B/

i
nf0g: (9.4.9)

In order to prove the inverse inclusion of Eq. (9.4.9), let � 62 �e5;S .A C
B/nf0g. Then, .�S � A � B/ 2 ˆb.X/ and i.�S � A � B/ D 0. Since
AB 2 Fb.X/; BA 2 Fb.X/ and ˛.S/ D ˇ.S/ < 1; it is easy to show
that .�S � A/ 2 ˆb.X/ and .�S � B/ 2 ˆb.X/. Moreover, by applying
Eqs. (9.4.5) and (9.4.8), Theorem 2.2.40, and Lemma 6.3.1 .i/, we have

i Œ.�S � A/.�S � B/� D i.�S � A/C i.�S � B/
D i.S/C i.�S � A � B/
D i.�S � A � B/
D 0:

(9.4.10)

Since A is a bounded linear operator, we get �.A/ ¤ ;. Besides, Cn�e4;S .A/
is connected. This, together with Lemma 9.1.1 .i/, allows us to deduce that
�e4;S .A/ D �e5;S .A/: Using the last equality and the fact that .�S � A/ 2
ˆb.X/, we deduce that i.�S � A/ D 0: From Eq. (9.4.10), it follows
that i.�S � B/ D 0. We conclude that � 62 �e5;S .A/

S
�e5;S .B/. Hence,

Œ�e5;S .A/
S
�e5;S .B/� nf0g � �e5;S .AC B/nf0g: So, we prove Eq. (9.4.1).

.iii/ The sets Cn�e5;S .AC B/, Cn�e5;S .A/ and Cn�e5;S .B/ are connected. Since
A andB are bounded operators, we deduce that �S.A/, �S.B/ and �S.BCA/
are not empty sets. So, by using Lemma 9.1.1 .ii/; we obtain �e5;S .ACB/ D
�e6;S .A C B/, �e5;S .A/ D �e6;S .A/ and �e5;S .B/ D �e6;S .B/: Therefore,
Eq. (9.4.1) gives

�e6;S .AC B/nf0g D
h
�e6;S .A/

[
�e6;S .B/

i
nf0g:

.iv/ Suppose that � 62 �e1;S .A/
S
�e1;S .B/

Sf0g, then .�S � A/ 2 ˆbC.X/ and
.�S�B/ 2 ˆbC.X/. By using Theorem 2.2.13, we have .�S�A/.�S�B/ 2
ˆbC.X/. Since AB 2 FbC.X/, we can apply Eq. (9.4.5) and Lemma 6.3.1 .ii/,
and we have S.�S � A � B/ 2 ˆbC.X/. Since ˛.S/ < 1, R.S/ is closed,
and S 2 L.X/, then .�S � A � B/ 2 ˆbC.X/: So, � 62 �e1;S .A C B/.
Therefore, �e1;S .ACB/nf0g � �e1;S .A/

S
�e1;S .B/

Sf0g: Suppose that � 62
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�e1;S .ACB/
Sf0g. Then, .�S �A�B/ 2 ˆbC.X/. Since S 2 ˆbC.X/, then

S.�S�A�B/ 2 ˆbC.X/, and .�S�A�B/S 2 ˆbC.X/: Since AB 2 FbC.X/
and BA 2 FbC.X/, and by applying Eqs. (9.4.5), (9.4.6) and Lemma 6.3.1 .ii/,
we have

.�S � A/.�S � B/ 2 ˆbC.X/; .�S � B/.�S � A/ 2 ˆbC.X/: (9.4.11)

By using Eq. (9.4.11) and Theorem 2.2.14 .i/, it is clear that .�S � A/ 2
ˆbC.X/ and .�S�B/ 2 ˆbC.X/:Hence, � 62 �e1;S .A/S �e1;S .B/. Therefore,
Œ�e1;S .A/

S
�e1;S .B/� nf0g � �e1;S .AC B/nf0g: This proves Eq. (9.4.2).

.v/ Now, suppose that � 62 �e7;S .A/
S
�e7;S .B/

Sf0g, then by using Corol-
lary 9.2.1, we have .�S �A/ 2 ˆbC.X/, i.�S �A/ � 0, .�S �B/ 2 ˆbC.X/
and i.�S � B/ � 0: By using Theorem 2.2.13 and Theorem 2.2.7, we
have .�S � A/.�S � B/ 2 ˆbC.X/ and i Œ.�S � A/.�S � B/� � 0:

Since AB 2 FbC.X/, by using Eq. (9.4.5) and Lemma 6.3.1, we deduce
that S.�S � A � B/ 2 ˆbC.X/ and i.S.�S � A � B// � 0: Then,
i.S/C i.�S � A � B/ � 0: Since ˇ.S/ � ˛.S/, then i.�S � A � B/ � 0.
Again, by using Corollary 9.2.1 .ii/, it is clear that � 62 �e7;S .A/. Hence,

�e7;S .AC B/nf0g � �e7;S .A/
[
�e7;S .B/

[
f0g: (9.4.12)

Now, it remains to prove the inverse inclusion of Eq. (9.4.12). Let � 62
�e7;S .ACB/nf0g, then .�S�A�B/ 2 ˆbC.X/ and i.�S�A�B/ � 0. Since
AB 2 FbC.X/, BA 2 FbC.X/ and S 2 ˆbC.X/; using a similar reasoning as
before leads to the following .�S � A/ 2 ˆbC.X/, .�S � B/ 2 ˆbC.X/; and
i..�S � A/.�S � B// D i.�S � A/C i.�S � B/ � 0: Let �0 2 �S.A/, we
have �0S � A 2 ˚b.X/ and i.�0S � A/ D 0. Since �S.A/ � Cn�e4;S .A/,
we have �0 2 Cn�e4;S .A/ D ˚A;S which is connected. By using Proposition
2.2.5 .i i/, we have i.�S �A/ is constant on any component of ˚A;S . Hence,
i.�S � A/ D 0 for all � 2 �e4;S .A/. So, i.�S � A/C i.�S � B/ � 0. This
implies that i.�S�B/ � 0; and we find that � 62 �e7;S .A/S �e7;S .B/. Hence,
Œ�e7;S .A/

S
�e7;S .B/� nf0g � �e7;S .AC B/nf0g: This proves Eq. (9.4.3).

.vi/ The proof of .vi/ may be checked in the same way as the proof of .iv/. It is
sufficient to replace ˚bC.X/ and �e1;S .:/ by ˚b�.X/ and �e2;S .:/ respectively.

.vii/ The proof of .vii/ may be checked in the same way as the proof of .v/.
.viii/ Since the equalities �e3;S .A/ D �e1;S .A/

T
�e2;S .A/, �e3;S .B/ D

�e1;S .B/
T
�e2;S .B/; and �e3;S .ACB/ D �e1;S .ACB/

T
�e2;S .ACB/ are

known, AB 2 FbC.X/
T

Fb�.X/ and BA 2 FbC.X/
T

Fb�.X/, then by using
Eqs. (9.4.2) and (9.4.4), we deduce that

�e3;S .AC B/nf0g D
h
�e3;S .A/

[
�e3;S .B/

i[h
�e3;S .A/

\
�e3;S .B/

i

[h
�e2;S .A/

\
�e1;S .B/

i
nf0g: Q.E.D.
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Theorem 9.4.2. Let S , A, and B be three bounded linear operators on a Banach
space X such that S ¤ A, and S ¤ B:

.i/ If AB 2 Fb.X/, then �ei;S2 .AS C SB/nf0g D Œ�ei;S .A/
S
�ei;S .B/� nf0g, with

i D 4; 5: If, further, BA 2 Fb.X/; SA D AS and BS D SB, then �e4;S2.AS C
SB/nf0g D �e4;S2.SA C BS/nf0g D Œ�e4;S .A/

S
�e4;S .B/� nf0g: Moreover, if

Cn�e4;S .A/ is connected, then �e5;S2.AS C SB/nf0g D �e5;S2.SA C BS/ D
Œ�e5;S .A/

S
�e5;S .B/� nf0g:

.ii/ If the hypotheses of .i/ is satisfied and, if Cn�e5;S2.AS C SB/, Cn�e5;S .A/ and
Cn�e5;S .B/ are connected, then �e6;S2.AS C SB/nf0g D �e6;S2.SA C BS/ D
Œ�e6;S .A/

S
�e6;S .B/� nf0g:

.iii/ If AB 2 FbC.X/, then �ei;S2 .AS C SB/nf0g � Œ�ei;S .A/
S
�ei;S .B/� nf0g, with

i D 1; 7: If, further, BA 2 FbC.X/; SA D AS and BS D SB, then �e1;S2.AS C
SB/nf0g D Œ�e1;S .A/

S
�e1;S .B/� nf0g: Moreover, if ˆA;S is connected and

�S.A/ ¤ ;, then �e7;S2.AS C SB/nf0g D Œ�e7;S .A/
S
�e7;S .B/� nf0g:

.iv/ If AB 2 Fb�.X/, then �ei;S2 .AS C SB/nf0g � Œ�ei;S .A/
S
�ei;S .B/� nf0g, with

i D 2; 8: If, further, BA 2 Fb�.X/; SA D AS and BS D SB, then �e2;S2.AS C
SB/nf0g D Œ�e2;S .A/

S
�e2;S .B/� nf0g: Moreover, if ˆA;S is connected and

�S.A/ ¤ ;, then �e8;S2.AS C SB/nf0g D Œ�e8;S .A/
S
�e8;S .B/� nf0g:

.v/ If AB 2 FbC.X/
T

Fb�.X/, then

�e3;S2.AS C SB/nf0g �
h
�e3;S .A/

[
�e3;S .B/

i[h
�e1;S .A/

\
�e2;S .B/

i

[h
�e2;S .A/

\
�e1;S .B/

i
nf0g:

Moreover, if BA 2 FbC.X/
T

Fb�.X/; SA D AS and BS D SB, then �e3;S2

.AS C SB/nf0g D Œ�e3;S .A/
S
�e3;S .B/�

S
Œ�e1;S .A/

T
�e2;S .B/�

S
�e2;S .A/

T

�e1;S .B/
�nf0g: }

Proof. The proof of theorem is a straightforward adoption of the proof of Theo-
rem 9.4.1. Q.E.D.

9.5 S -Essential Spectra by Means of Demicompact
Operators

Let X be a Banach space and A 2 C.X/. We define the sets F l
A.X/ and F r

A.X/ by:

F l
A.X/ D fAl 2 L.X;XA/ such that Al is a left Fredholm inverse of Ag;

F r
A.X/ D fAr 2 L.X;XA/ such that Ar is a right Fredholm inverse of Ag:

Theorem 9.5.1. Let A 2 C.X/ and S 2 L.X/ such that S ¤ 0, and let J
be an A-bounded linear operator on X . If, for every � 2 ˆCA;S , there exists
A�l 2 F l

�S�A.X/ such that the operator JA�l is demicompact, then �e1;S .AC J / �
�e1;S .A/. }
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Proof. First, for each � 2 C, J is an .A � �S/-bounded linear operator on X .
Indeed,

8x 2 X; k OJxk � k OJ k.kxk C kAxk/
� k OJ k.kxk C k.A � �S/xk C j�jkSxk/
� k OJ k.1C j�jkSk/.kxk C k.A � �S/xk/:

Let � 2 C and A�l 2 F l
�S�A.X/, then there exists a compact operator K 2 K.XA/,

such that A�l.� OSjXA � OA/CK D IXA . Hence, we can write

� OSjXA � OA � OJ D .I � OJA�l /.� OSjXA � OA/ � OJK: (9.5.1)

Let � … �e1;S .A/, then .�S � A/ 2 ˆC.X/. Since JA�l is demicompact, and from
Theorem 5.4.5, it follows that .I � JA�l / 2 ˆC.X/. By applying Theorem 2.2.13
.ii/, Lemma 6.3.1 .ii/, Eq. (9.5.1) and using the fact that OJK 2 K.XA;X/, we
conclude that � OSjXA � OA � OJ 2 ˆbC.XA;X/. Hence � … �e1;S .AC J /. Q.E.D.

Theorem 9.5.2. Let A 2 C.X/ and S 2 L.X/ such that S ¤ 0 and let J be an
A-bounded linear operator on X . The following statements hold.

.i/ If, for every � 2 ˆA;S , there exists A�l 2 F l
�S�A.X/ such that the operator

�JA�l is demicompact for any � 2 Œ0; 1�, then �e4;S .A C J / � �e4;S .A/ and
�e5;S .AC J / � �e5;S .A/:

.ii/ If, for every � 2 ˆA;S , there exists A�l 2 F l
�S�A.X/ such that the operator

JA�l is demicompact, 1-set-contraction such that Cn�e5;S .A/ is connected and
the resolvent sets �S.A/ and �S.AC J / are not empty. Then, �e6;S .AC J / �
�e6;S .A/. }

Proof. .i/ Let � 2 C, and A�l 2 F l
�S�A.X/, then there exists a compact operator

K 2 K.XA/, such that A�l.� OSjXA � OA/ C K D IXA: Hence, we can write
� OSjXA � OA � OJ D .I � OJA�l /.� OSjXA � OA/ � OJK: Let � … �e4;S .A/, then
.�S �A/ 2 ˆ.X/. Since �JA�l is demicompact for each � 2 Œ0; 1�, it follows,
from Theorem 5.4.2, that .I � JA�l / 2 ˆ.X/. By applying Atkinson’s theorem
(Theorem 2.2.40) and using the fact that OJK 2 K.XA;X/, we conclude that
� OSjXA � OA � OJ 2 ˆb.XA;X/. Hence, � … �e4;S .AC J /.

.ii/ This statement is an application of Theorem 7.3.1 .ii/. Q.E.D.

Remark 9.5.1. In particular, Theorem 9.5.2 remains true if we replace the assump-
tion �JA�l is demicompact for any � 2 Œ0; 1� in .i/ by JA�l is demicompact and
1-set-contraction. }
Theorem 9.5.3. Let A, B , and S 2 L.X/, such that S ¤ 0.

.i/ If, for every � 2 ˆC.ACB/;Snf0g, there exists A�l 2 F l
�S�A�B.X/ such that

the operator �1
�
.ŒA; S� � AB/A�l is S -demicompact for any � 2 Œ0; 1/, then

we have �e4;S .A C B/nf0g � .�e4;S .A/
S
�e4;S .B//nf0g; where ŒA; S� WD

AS � SA.
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.ii/ Moreover, if there exists B�l 2 F l
�S�A�B.X/, such that �1

�
.ŒB; S� � BA/B�l

is S -demicompact for any � 2 Œ0; 1/, then �e4;S .A C B/nf0g D
.�e4;S .A/

S
�e4;S .B//nf0g. }

Proof. .i/ Let � 2 C
�. If there exists a left inverse modulo compact operator of

.�S �A�B/, called A�l , then A�l.�S �A�B/ D I �K, whereK 2 K.X/.
Hence, we have

.�S � A/.�S � B/ D �S.�S � A � B/C‚�.A;B/

D �S.�S � A � B/C‚�.A;B/K

C‚�.A;B/A�l .�S � A � B/

D �.S C 1

�
‚�.A;B/A�l /.�S � A � B/C‚�.A;B/K;

where ‚�.A;B/ D AB � �ŒA; S�. Let � … .�e4;S .A/
S
�e4;S .B//nf0g. Then,

.�S � A/ 2 ˆb.X/ and .�S � B/ 2 ˆb.X/. It follows, from Theorem 2.2.40,
that .�S�A/.�S�B/ 2 ˆb.X/. Since�1

�
.ŒA; S��AB/A�l is S -demicompact,

it follows, from Lemma 5.4.7, that S C 1
�
‚�.A;B/A�l is a Fredholm operator

and using the fact that ‚�.A;B/K is compact, we conclude, together with
Theorem 2.2.41, that .�S � A � B/ 2 ˆb.X/. Hence, � … �e4;S .AC B/.

.ii/ Conversely, if � … �e4;S .A C B/, then arguing as above, we deduce that the
operators .�S � A/.�S � B/ 2 ˆb.X/ and .�S � B/.�S � A/ 2 ˆb.X/.
According to Theorem 2.2.19, we conclude that .�S �A/ 2 ˆb.X/ and .�S �
B/ 2 ˆb.X/ and hence, � … .�e4;S .A/S �e4;S .B//nf0g. Q.E.D.

9.6 Characterization of the Relative Schechter’s
and Approximate Essential Spectra

Throughout this section, we denote by DC.X/ the class of demicompact, 1-set
contraction linear operators. We will give a refinement of the relative Schechter’s
essential spectrum and the relative approximate essential spectrum definition. For
this, let X be a Banach space, T 2 C.X/ and S 2 L.X/ such that S ¤ 0. We define
these sets �L

S;T .X/ and �R
S;T .X/ by:

�LS;T .X/ D fK 2 L.X/ such that 8� 2 �S .T CK/;�.�S � T �K/�1K 2 DC.X/g:
�RS;T .X/ D fK 2 L.X/ such that 8� 2 �S .T CK/;�K.�S � T �K/�1 2 DC.X/g:

We have the following theorem.

Theorem 9.6.1. For any T 2 C.X/ and S 2 L.X/, such that S ¤ 0, we have

�e5;S .T / D
\

K2�RS;T .X/
�S .T CK/ D

\

K2�LS;T .X/
�S .T CK/:

}
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Proof. It is obvious that K.X/ � �L
S;T .X/ and K.X/ � �R

S;T .X/. We infer thatT
K2�RS;T .X/ �S .T CK/ � �e5;S .T / and

T
K2�RS;T .X/ �S .T CK/ � �e5;S .T /: Note

that, if T 2 C.X/, and if K is a T -bounded operator and � 2 �S.T C K/, then
according to Remark 2.1.4 .iv/, T .�S�T �K/�1 is a closed linear operator defined
on X , and therefore bounded. We claim that �e5;S .T / � T

K2�LS;T .X/ �S.T C K/

(resp. �e5;S .T / � T
K2�RS;T .X/ �S .T CK//: Indeed, if � … TK2�LS;T .X/ �S .T CK/

(resp. � … T
K2�RS;T .X/ �S .T C K/), then there exists K 2 �L

S;T .X/ (resp. K 2
�R
S;T .X/) such that �.�S � T � K/�1K 2 DC.X/ (resp. �K.� � T � K/�1 2

DC.X/) whenever � 2 �S.T C K/. Hence, by applying Corollary 5.4.2, we get
ŒI C .�S � T � K/�1K� 2 ˆb.X/ and i ŒI C .�S � T � K/�1K� D 0; (resp.
ŒI CK.�S � T �K/�1� 2 ˆb.X/ and i ŒI CK.�S � T �K/�1� D 0). Moreover,
we have �S � T D .�S � T � K/ŒI C .�S � T � K/�1K�, (resp. �S � T D
ŒI C K.�S � T � K/�1�.�S � T � K/). Then, by using Theorem 2.2.40, we get
.�S �T / 2 ˆ.X/ and i.�S �T / D 0: By applying Proposition 7.1.1, we conclude
that � … �e5;S .T /, which proves our claim. Q.E.D.

Let T 2 C.X/ with �S.T / ¤ ;. We define the S -upper spectrum of T by

�C;S .T / D
\

K2�LS;T .X/
�ap;S .T CK/:

Theorem 9.6.2. For any T 2 C.X/ and S 2 L.X/, such that S ¤ 0, we have

�
C;S .T / D �e7;S .T /:

}
Proof. Since K.X/ � �L

S;T .X/, we infer that �
C;S .T / � �e7;S .T /. Conversely,

let � … �
C;S .T /, then there exists K 2 �L

S;T .X/ such that inf
kxkD1;x2D.T /

k.�S �
T /xk > 0. The use of Theorem 2.2.1 and Lemma 6.3.1 allows us to conclude that
�S�T�K 2 ˆC.X/ and i.�S�T�K/ � 0. Since Y WD R.�S�T�K/ is a closed
subset ofX , it is itself a Banach space with the same norm. Therefore, �S� OT �K 2
L.Y;XT /. Now, let us notice that �S � OT D �S � OT � K C K D .I C K.�S �
OT �K/�1/.�S � OT �K/. Since the operator �K.�S � OT �K/�1 is demicompact,
1-set contraction, we infer, by using Corollary 5.4.2, that I CK.�S � OT �K/�1 is
a Fredholm operator and i.I CK.�S � OT �K/�1/ D 0. Using Theorem 2.2.7, we
conclude that �S � OT 2 ˆbC.XT ;X/ and i.�S � OT / D i.�S � OT �K/ � 0. Hence,
� … �e7;S .T /. Q.E.D.

Remark 9.6.1. Note that Theorems 9.6.1 and 9.6.2 remain true if we replace DC.X/
by a larger class, that of operators K such that �K is demicompact for any � 2
Œ0; 1�. }



Chapter 10
Essential Spectra of 2 � 2 Block Operator
Matrices

LetX and Y be Banach spaces. In the product spaceX�Y , we consider an operator
formally defined by a matrix

L0 WD
�
A B

C D

�

: (10.0.1)

In general, the operators occurring in the representation of L0 are unbounded. The
operator A acts on the Banach space X and has the domain D.A/, D is defined on
D.D/ and acts on the Banach space Y , and the intertwining operator B (resp. C )
is defined on the domain D.B/ (resp. D.C /) and acts from Y into X (resp. from
X into Y ). One of the problems in the study of such operators is that in general L0
is not closed or even closable, even if its entries are closed. The aim of this chapter
is to present some hypotheses which should allow the block operator matrix L0 to
be closable. For this purpose, it is interesting to present the suitable conditions for
the entries A, B , C , and D. These conditions are mainly based on the Frobenius–
Schur decomposition ofL0. Then, our reasoning will be mainly based on the specific
properties of the first entry A, hence allowing us to get a closable block matrix
operator L0. It is interesting to notice that this reasoning based on A could also
be applied for the other entries, namely B , C , or D. In fact our approach is based
on three situations. In the first one, the resolvent of the operator A is a Fredholm
perturbation. In the second situation, the operator A is closed, whereas this same
operator is closable in the third situation. After that, we will give the essential spectra
of the closure of the operator L0.
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10.1 Case Where the Resolvent of the Operator A

Is a Fredholm Perturbation

10.1.1 Frobenius–Schur’s Decomposition

First, we will search the Frobenius–Schur’s decomposition of the operator L0

defined in (10.0.1). For this purpose, let

�
x

y

�

2 D.L0/ and � 2 C. Then,

.L0 � �/
�
x

y

�

D
�
0

0

�

if, and only if,

�
A � � B

C D � �
��

x

y

�

D
�
0

0

�

:

This leads to the following system:
�
.A � �/x D �By
Cx C .D � �/y D 0:

(10.1.1)

Suppose that �.A/ is nonempty and let � 2 �.A/. Then, the first equation of the
system (10.1.1) gives x D �.A � �/�1By. Consequently, the second equation
of (10.1.1) becomes

� C.A � �/�1By C .D � �/y D 0: (10.1.2)

From Eq. (10.1.2), we must assume that D.A/ � D.C /. Then, Eq. (10.1.2) becomes

.D � C.A � �/�1B � �/y D 0:

Now, let us decompose the operator L0 � � into the following form

L0��I D
�

I 0

F.�/ I

��
A � � 0

0 D � C.A � �/�1B � �
��

I QG.�/
0 I

�

(10.1.3)

where F.�/ and QG.�/ are unknown. If we suppose that D.B/ � D.D/, then D.D�
C.A � �/�1B/ D D.B/. As a necessary condition, let us seek QG.�/ and F.�/
satisfying the equality (10.1.3). In fact,
�
A � � B

C D � �
��

x

y

�

D
�

I 0

F.�/ I

��
A � � .A � �/ QG.�/
0 D � C.A � �/�1B � �

��
x

y

�

:

The above equality leads to the first equation .A��/xC.A��/ QG.�/y D .A��/xC
By: Then, .A��/ QG.�/y D By, and hence QG.�/ D .A��/�1B . The second equation
givesF.�/.A��/xC.F.�/.A��/ QG.�/CD�C.A��/�1B��/y D CxC.D��/y:
Under the action of x, let F.�/ D C.A � �/�1. In our decomposition (10.1.3), we
must ensure that the operators

�
I 0

F.�/ I

�
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and

�
I QG.�/
0 I

�

are invertible with bounded inverses on the whole space X � Y . If we assume that
C is densely defined and constitutes a closable operator from X into Y , then, for all
� 2 �.A/, C.A��/�1 is closable with a domain equal toX . Using the closed graph
theorem (see Theorem 2.1.3), we infer that F.�/ D C.A � �/�1 is bounded. For
QG.�/, if we assume that B is densely defined and constitutes a closable operator

from Y into X and, for � 2 �.A/, .A � �/�1B is bounded on its domain D.B/,
then D..A � �/�1B/ D D.B/ D Y . Hence, we must choose G.�/ D .A � �/�1B
instead of QG.�/ in the decomposition (10.1.3), such that

�
I G.�/

0 I

�

is defined on X � Y . Now, let us check the sufficient condition. For � 2 �.A/, let
us consider the operator

Z.�/ D
�

I 0

F.�/ I

��
A � � 0

0 D � C.A � �/�1B � �
��

I G.�/

0 I

�

:

Now, we have to show that Z.�/ D L0 � �. For this purpose, we have to prove that
Z.�/ D L0 � � on D.L0/ and D.Z.�// � D.L0/.

Let

�
x

y

�

2 D.L0 � �/, where

D.L0 � �/ WD
��

x

y

�

2 X � Y such that D.B/ � D.D/ and D.A/ � D.C /
�

:

We observe that

�
I 0

F.�/ I

��
A � � 0

0 D � C.A � �/�1B � �
��

I G.�/

0 I

��
x

y

�

D
�

.A � �/x C .A � �/G.�/y
F.�/.A � �/x C .F.�/.A � �/G.�/CD � C.A � �/�1B � �/y

�

D
 

.A � �/x C .A � �/.A � �/�1By
Cx C C.A � �/�1By C .D � C.A � �/�1B � �/y

!

:
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Since y 2 D.B/, we deduce that .A � �/�1By D .A � �/�1By and we obtain

Z.�/
�
x

y

�

D
�
.A � �/x C By
Cx C .D � �/y

�

D
�
A � � B

C D � �
��

x

y

�

:

This proves that Z.�/ D L0 � � on D.L0/ and L0 � � � Z.�/. Now, we shall
verify the inclusion D.Z.�// � D.L0/. In fact, the domain of D.Z.�// is given by

D.Z.�// WD
��

x

y

�

2 X � Y such that x CG.�/y 2 D.A/

and y 2 D.D � C.A � �/�1B/
�

D
(�

x

y

�

2 X � Y such that

�
x

y

�

2
�
I G.�/

0 I

��1
.D.A/ � D.B//

)

:

Since

�
I G.�/

0 I

��1
D
�
I �G.�/
0 I

�

;

we infer that

D.Z.�// WD
��

x

y

�

2 X � Y such that
x D x1 �G.�/y1

y D y1
with x1 2 D.A/

and y1 2 D.B/
�

:

observing that x D x1 � QG.�/y1 D x1 � .A � �/�1By1 2 D.A/, we conclude that�
x

y

�

2 D.L0/ and D.Z.�// � D.L0/. So, Z.�/ D L0 � �. Since

�
I G.�/

0 I

�

and

�
I 0

F.�/ I

�

are invertible with bounded inverses on X � Y , we infer that L0 � � is closable if,
and only if,

�
A � � 0

0 D � C.A � �/�1B � �
�

is closable if, and only if, A � � and D � C.A � �/�1B � � are closable.
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Let us collect all the assumptions:

.H1/ A is a densely defined operator on X with a nonempty resolvent set �.A/.

.H2/ B and C are densely defined and constitute two closable operators from Y

into X and from X into Y , respectively, and D.C / 	 D.A/.
.H3/ For some � 2 �.A/, the operator .A � �/�1B is bounded on its domain

D.B/.
.H4/ D.B/ � D.D/.
.H5/ For some � 2 �.A/, the operatorD�C.A��/�1B is closable. We denote

its closure by S.�/.

Now, for a better understanding of these hypotheses, let us make some related
comments.

Remark 10.1.1.

.i/ Using the fact that D.C / 	 D.A/ and also the closed graph theorem (see
Theorem 2.1.3), we deduce that, for each � 2 �.A/, the operator F.�/ WD
C.A � �/�1 is defined on X and is bounded.

.ii/ If the hypothesis .H3/ holds for some � 2 �.A/, then it holds for all � 2
�.A/. Indeed, let�0 2 �.A/ be such that the operator .A��0/�1B is bounded.
Then, for an arbitrary � 2 �.A/, the relation

.A��/�1B D .A��0/�1BC .���0/.A��/�1.A��0/�1B (10.1.4)

shows that .A � �/�1B is also bounded.
.iii/ We denote the closure of .A � �/�1B by G.�/. Then, the relation (10.1.4)

implies

G.�/ D G.�0/C .� � �0/.A � �/�1G.�0/:

.iv/ The fact that � 2 �.A/ implies that the operator C.A � �/�1 is defined
everywhere on X and hence that the operator C.A � �/�1B is defined on
D.B/.

.v/ According to the assumption .H4/, the operatorD�C.A��/�1B is defined
on D.B/.

.vi/ If the hypothesis .H5/ holds for some � 2 �.A/, then it holds for all � 2
�.A/.

.vii/ The following operator L0 is defined by

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

L0 W D.L0/ � X � Y �! X � Y
�
x1
x2

�

�! L0

�
x1
x2

�

D
�

Ax1 C Bx2
Cx1 C Dx2

�

D.L0/ D D.A/ � D.B/:
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The operator L0 can be factored in the Frobenius–Schur’s sense:

L0 � �I D
�

I 0

F.�/ I

��
A � � 0

0 D � C.A � �/�1B � �
��

I G.�/

0 I

�

:

}

10.1.2 Closability and Closure of the Block Operator Matrix

The closability of the operator L0 is given by the following theorem.

Theorem 10.1.1. Let the hypotheses .H1/–.H5/ be satisfied and let � 2 �.A/.
Then, L0 is closable and its closure L is given by the relation

L D �I C
�

I 0

F.�/ I

��
A � � 0

0 S.�/ � �
��

I G.�/

0 I

�

or, spelled out

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

L W D.L/ � X � Y �! X � Y
�
x1
x2

�

�! L

�
x1
x2

�

D
�
A.x1 CG.�/x2/ � �G.�/x2
C.x1 CG.�/x2/C S.�/x2

�

D.L/ D
n�
x1
x2

�

2 X � Y such that x1 CG.�/x2 2 D.A/ and x2 2 D.S.�//
o
:

}
Proof. We observe that for bounded, everywhere defined operators R, T , having
bounded, everywhere defined inverses, and a linear operator S , the operator RST is
closable if, and only if, S is closable. In this case, the relationship RST D RST

also holds for the closures. Now, the result follows directly from Remark 10.1.1
.vii/. Q.E.D

Remark 10.1.2. Using the hypotheses .H2/ and .H3/, we infer that, for �; �0 2
�.A/, the difference

�
D � C.A � �/�1B���D � C.A � �0/�1B

� D .�0��/C.A��/�1.A��0/�1B
(10.1.5)

constitutes a bounded operator. Therefore, if the operator D � C.A � �/�1B is
closable for some � 2 �.A/ then, it is closable for all � 2 �.A/. Since the operator
L is the closure of L0, it does not depend on the choice of the point � 2 �.A/ in its
above description. }
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From now, I.X/ will denote an arbitrary nonzero two-sided closed ideal of L.X/,
satisfying the condition

K.X/ � I.X/ � Fb.X/; (10.1.6)

where K.X/ stands for the ideal of compact operators. We conclude this section
with the following hypotheses:

.H6/ For some � 2 �.A/, the resolvent .A � �/�1 2 I.X/.

.H7/ For some � 2 �.A/, the operator F.�/G.�/ WD C.A � �/�2B 2 I.Y /.
Remark 10.1.3. Let us notice that the six assumptions .H1/–.H6/ do not imply
.H7/, even if the operator C.A � �/�1B is bounded. In fact, let us consider the
Hilbert spaceH D HC˚H�, whereHC andH� constitute two separable infinite-
dimensional Hilbert spaces. Let .eC

k /k and .e�
k /k be the orthonormal bases in HC

and H�, respectively. Now, let us define the operators A, B , and C with the joint
domain

D.A/ D D.B/ D D.C /

D
(

x 2 H W x D
1X

kD1
.xC
k e

C
k C x�

k e
�
k /;

1X

kD1
k2.jxC

k j2 C jx�
k j2/ < 1

)

by the following equations

AeC
k D ke�

k ; BeC
k D ke�

k ; CeC
k D eC

k ;

Ae�
k D keC

k ; Be�
k D eC

k ; Ce�
k D ke�

k ;

where k D 1; 2; : : :. Then, A�1 is compact, B and C are closable, A�1B and
CA�1B are bounded, but CA�2B is not compact since CA�2BeC

k D e�
k for all

natural numbers k. }

10.1.3 Essential Spectra of L

In this section, we present some results dealing with the essential spectra of the
operator L. We begin with the following starting result which is fundamental for
our purpose. The next result will describe the sufficient condition under which the
six assumptions .H1/–.H6/ imply the assumption .H7/.

Theorem 10.1.2. Under the assumptions .H1/–.H6/, the condition .H7/ is satis-
fied if, and only if, the operator S.�/ admits the representation

S.�/ D S0 CM.�/ .� 2 �.A// (10.1.7)
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with a closed operator S0 (which is independent of �) and an operator M.�/ 2
I.Y /. In this case, S0 can be chosen to be S.�0/ for any �0 2 �.A/, and M.�/
depends holomorphically on � in �.A/. }
Proof. If .H7/ is satisfied, the use of Eq. (10.1.5) allows us to write S.�/ in the
following form

S.�/ D S.�0/C .�0 � �/F.�/G.�0/
D S.�0/C .�0 � �/F.�0/G.�0/C .�0 � �/2F.�0/.A � �/�1G.�0/:

By combining the assumptions .H6/ and .H7/ and Theorem 6.3.1, we can deduce
that the representation (10.1.7) follows with S0 D S.�0/. Conversely, Eq. (10.1.7)
implies that

S.�/ � S0 D .M.�/ �M.�0//jD.S0/: (10.1.8)

Moreover, we have

S.�/ � S.�0/ D .�0 � �/F.�/G.�0/jD.S0/: (10.1.9)

Hence, using Eqs. (10.1.8) and (10.1.9), we can deduce that

F.�/G.�0/ D .�0 � �/�1.M.�/ �M.�0//:
If � ! �0, then the operator F.�/G.�0/ tends to F.�0/G.�0/ in the operator
norm topology, which means that .�0 � �/�1.M.�/ � M.�0// also converges to
F.�/G.�0/ in the operator norm topology. Furthermore, .M.�/�M.�0// 2 I.Y /
and I.Y / is a closed sided ideal of L.Y /. So, F.�0/G.�0/ 2 I.Y /, which
completes the proof. Q.E.D

For � 2 �.A/, we introduce the following matrix operators which will be needed
for the sequel:

G.�/ WD
�

I 0

F.�/ I

�

;

D.�/ WD
�
A � � 0

0 S0 CM.�/ � �
�

and;

F.�/ WD
�
I G.�/

0 I

�

:

The following remark will be useful for the proof of the next theorem.

Remark 10.1.4. .a/ Using Theorems 10.1.1 and 10.1.2, we can write the operator
L in the following form:

L � �I D G.�/D.�/F.�/: (10.1.10)
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.b/ If � 2 �.A/ then,

.i/ ˛.A � �/ D ˇ.A � �/ D 0,
.ii/ ˛.D.�// D ˛.S0 CM.�/ � �/, and
.iii/ ˇ.D.�// D ˇ.S0 CM.�/ � �/. }

Theorem 10.1.3. Let us assume that the hypotheses .H1/–.H7/ hold. Then,

.i/ �ei.L/ D �ei.S0/ with i D 4; 5: Moreover, if Cn�e5.L/ is a connected set and
neither �.S0/ nor �.S.�// is empty, then �e6.L/ D �e6.S0/:

.ii/ If I.Y / � FC.Y /, then �e1.L/ D �e1.S0/:

.iii/ If I.Y / � F�.Y / or ŒI.Y /�� � FC.Y �/, then �e2.L/ D �e2.S0/:

.iv/ If I.Y / � FC.Y /
T

F�.Y /, then �e3.L/ D �e3.S0/. }
Proof.

.i/ First, let us assume that � 2 �.A/. It is clear that F.�/ is a bijection from D.L/
onto D.D.�// D D.A/�D.S0/ and G.�/ is also a bijection from X � Y onto
X � Y . Therefore,

˛.L � �/ D ˛.D.�// (10.1.11)

and,

ˇ.L � �/ D ˇ.D.�//: (10.1.12)

By using Remark 10.1.4 .b/ .ii/–.iii/, and taking into account (10.1.11)
and (10.1.12), we get

˛.L � �/ D ˛.S0 CM.�/ � �/ (10.1.13)

and,

ˇ.L � �/ D ˇ.S0 CM.�/ � �/: (10.1.14)

SinceM.�/ 2 I.Y /, then the numbers ˛.L��/ and ˇ.L��/ are finite if, and
only if, ˛.S0 ��/ and ˇ.S0 ��/ are finite. Consequently, L�� is a Fredholm
operator if, and only if, S0 � � is also a Fredholm operator. If this is the case,
then i.L � �/ D i.S0 � �/. Let � 62 �.A/. By using hypothesis .H6/, the
spectrum ofA is discrete. Therefore, � is an isolated eigenvalue ofA. LetP� be
the Riesz projection associated with �. Then, � 2 �.A�/ where A� constitutes
the finite-dimensional perturbation of A, given by A� WD A.I � P�/ C ıP�;

ı ¤ �: Now, for � 2 �.A�/, we have D � C.A� � �/�1B D S0 C M�.�/;

where the operator S0 is introduced in (10.1.7), and the operator M�.�/ is an
operator in I.Y /. Now, let L.�/ be the closure of the operator

�
A� B

C D

�

:

SinceL.�/ is a finite-dimensional perturbation ofL, thenL��I is a Fredholm
operator on X � Y if, and only if, L.�/ � �I is also a Fredholm operator
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on X � Y . Now, with the first part of the present proof, we conclude that � 2
�ei.L.�// if, and only if, � 2 �ei.S0/ with i D 4; 5. Let us prove the statement
for i D 6. From the case i D 5, it follows that Cn�e5.L/ D Cn�e5.S0/. This
set contains points belonging to �.S0/ and �.L/. Accordingly, since ˛.��S0/
and ˇ.�� S0/ (resp. ˛.��L/ and ˇ.��L/) are constant on any component
of ˆS0 (resp. ˆL) except possibly on a discrete set of points where they have
larger values (see Proposition 2.2.5 .iii/), it cannot contain points of �e6.S0/
or �e6.L/. This, together with the inclusions �e5.S0/ � �e6.S0/ and �e5.L/ �
�e6.L/, leads to �e5.S0/ D �e6.S0/ and �e5.L/ D �e6.L/, which completes
the proof of .i/.

.ii/ Let � 2 �.A/. Using the fact that I.Y / � FC.Y / and also Lemma 2.2.6 .i/,
we deduce that ˛.S0 C M.�/ � �I/ is finite if, and only if, ˛.S0 � �I/ is
finite. Hence, by referring to Eq. (10.1.13), we deduce that ˛.L� �I/ is finite
if, and only if, ˛.S0 ��I/ is finite. Now, let � 62 �.A/. Since FC.X/ � F.X/
then, by using hypothesis .H6/, we infer that � is an isolated eigenvalue of A.
For the remaining part of the proof of .ii/, it may be done in a similar way as
for .i/. This completes the proof of .ii/.

.iii/ If I.Y / � F�.Y /, then the proof is the same as in .ii/. It is sufficient to use
both Eq. (10.1.14) and Lemma 2.2.6 .ii/. If ŒI.Y /�� � FC.Y �/, the result
follows from the fact that ˛.S�

0 CM.�/� � �I/ D ˇ.S0 CM.�/ � �I/.
.iv/ The assertion .iv/ follows directly from combining .ii/ and .iii/. Q.E.D

Now, we may deduce the following corollary.

Corollary 10.1.1. If the operator D is everywhere defined and bounded and if, for
some and hence for all�0 2 �.A/,C.A��0/�1B is bounded, then S0 can be chosen
as being equal to S0 D D�C.A � �0/�1B: In particular, under these assumptions,
�ei.L/ ¤ ; with i D 1; : : :; 6 if dim.Y / D 1. }

10.1.4 Sufficient Conditions

In the applications (see Chap. 13), the hypotheses .H3/, .H6/ and the boundedness
of the operator C.A��/�1B are not easy to verify. That is why, we will give some
sufficient conditions which imply the above assumptions which are easier to check.
For this purpose, we start by introducing the following definition.

Definition 10.1.1. The resolvent of the operator A is said to have a ray
of minimal growth, if there exist some � 2 Œ0; 2/ such that �� WD˚
� 2 C such that � D tei� ; t 2 R

C
 � �.A/; and there is a positive constant
M such that

k.A � �/�1k � M

1C j�j holds for all � 2 �� : (10.1.15)

}
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Remark 10.1.5. Let A 2 C.X/. The domain D.A/ of A is equipped with the graph
norm topology, i.e., kxk1 D kxk C kAxk, hence, D.A/ is a Banach space. Let
X1;1 denote .D.A/; k:k1/. If A is an operator whose resolvent has a ray of minimal
growth, then the intermediate spaces X1;� D D.A�/, 0 � � � 1 between X and
X1;1 D D.A/ with the norm kxk� D kxk C kA�xk are well defined and the same
thing holds for the intermediate spaces X�

1;� between X�
1;1 D D.A�/ and X�. }

Proposition 10.1.1. If the operators A and B have the properties .H1/ and .H2/,
then the assumption .H3/ holds if, and only if, D.B�/ 	 D.A�/. }
Proof. If .H3/ holds, then for � 2 �.A/, and according to the rules concerning the
adjoint operators, we obtain

..A � �/�1B/� D B�.A� � �/�1 (10.1.16)

since .A � �/�1 is a bounded operator on X . As the operator on the left-hand
side is bounded on X�, the same holds for the operator on the right-hand side.
Hence, D.B�/ 	 D.A�/. Conversely, this inclusion implies the boundedness of the
operator on the right-hand side of (10.1.16). Hence also ..A � �/�1B/�� and thus
.A � �/�1B is bounded, and the boundedness of .A � �/�1B follows. Q.E.D

Lemma 10.1.1. Let the conditions .H1/, .H2/ and .H6/ be satisfied and let us
assume that the resolvent of A has a ray of minimal growth. Furthermore, assume
that for some � 2 .0; 1/, the inclusions

D.B�/ 	 D..A�/� / WD D..A�/�/ (10.1.17)

and

D.C / 	 D.A1�� / (10.1.18)

hold. Then, the conditions .H3/ and .H7/ are also fulfilled and the operator
C.A � �/�1B is bounded for � 2 �.A/. }
Proof. From the properties of fractional powers, it follows that X�

1;� 	 X�
1;1 D

D.A�/ for any � 2 Œ0; 1/. Moreover, the embedding of X�
1;1 into X�

1;� is a Fredholm
perturbation since 0 2 �.A/ by (10.1.15), and A�1 2 I.X/ (see Theorem 6.3.5).
Using Proposition 10.1.1, we conclude that .H3/ holds if, and only if, D.B�/ 	
D.A�/. Hence, .H3/ is derived from (10.1.17). Now, let us write the operator
CA�1B in the following form:

CA�1B D CA�.1��/A��B: (10.1.19)

The operator CA�.1��/ is bounded on X according to (10.1.18). Furthermore, the
operator A��B is bounded on D.B/ by using (10.1.17) and Proposition 10.1.1.
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Hence, the boundedness of the operator CA�1B follows from (10.1.19). Finally, by
writing CA�2B D CA�.1��/A�1.A��B/, the hypothesis .H7/ follows from both
the fact that A�1 2 I.X/ and Theorem 6.3.4. Q.E.D

Let X be a Banach space and let T be a closed operator on X . By 
0.T /, we
denote the maximal open subset of C, where the resolvent .T � �/�1 is finitely
meromorphic, i.e., it is meromorphic on 
0.T / and all the coefficients in the main
parts of the Laurent expansions at the poles are of finite rank.

Remark 10.1.6. 
0.T / is the union of all components w of ˆT for which
w
T
�.T / ¤ ; (see [124, Lemma 2.1]). }

Using representation (10.1.10), we can prove the following result:

Corollary 10.1.2. Under the six assumptions .H1/–.H6/, the set 
0.L/ is the
union of all components w ofˆS0 such that, for some � 2 w, the operator S.�/��
maps Y bijectively onto itself. }
Now, we give a sufficient condition for the fact that 
0.L/ contains the unbounded
component of 
.S0/, denoted by 
0

ext.S0/.

Corollary 10.1.3. Let the conditions .H1/, .H2/, and .H6/ hold. Assume that
the resolvent of A has a ray of minimal growth. Moreover, let us assume that, for
some � 2 .0; 1/, the inclusions (10.1.17) and (10.1.18) hold and the operator D
is bounded. Then, the inclusion 
0.L/ 	 
0

ext.S0/ holds. In particular, if 
.S0/ is
simply connected, then the equality 
0.L/ D 
0.S0/ holds. }
Proof. Let � 2 �� , 0 < � < 1, and consider the following identity:

S.�/ � � D ��C S.0/C 
CA�.1��/� �.A � �/�1�

h
A��B

i
:

By using Lemma 10.1.1, the operators S.0/, CA�.1��/, and A��B are everywhere
defined and bounded. Hence, the operator S.�/ � � has a bounded inverse for all
� 2 �� with a sufficiently large j�j. By using Corollary 10.1.2, the unbounded
component 
0

ext.S0/ of 
.S0/ is a component of 
0.L/. Q.E.D

10.2 Case Where the Operator A Is Closed

In what follows, we will assume that X D Y and the following conditions hold.

.I1/ The operator A is a closed, densely defined linear operator on X with a
nonempty resolvent set �.A/.

.I2/ The operator B is a densely defined linear operator on X and, for some
(hence for all) � 2 �.A/; the operator .A � �/�1B is closable. (In particular, if
B is closable, then .A � �/�1B is also closable).
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.I3/ The operator C satisfies D.A/ � D.C / and, for some (hence for all) � 2
�.A/; the operator C.A � �/�1 is bounded. (In particular, if C is closable, then
C.A � �/�1 is bounded).

.I4/ The lineal D.B/
T

D.D/ is dense in X and, for some (hence for all) � 2
�.A/, the operatorD�C.A��/�1B is closable, and its closure will be denoted
by S.�/.

Remark 10.2.1.

.i/ From the closed graph theorem (see Theorem 2.1.3), it follows that the operator
G.�/ WD .A � �/�1B is bounded on X:

.ii/ We emphasize that neither the domain of S.�/ nor the property of being
closable depends on �: Indeed, from the Hilbert’s identity, it follows that

S.�/ D S.�/C .� � �/F.�/G.�/; (10.2.1)

where F.�/ WD C.A��/�1; �; � 2 �.A/: Since the operators F.�/ and G.�/
are bounded, then the difference S.�/ � S.�/ is bounded. Therefore, neither
the domain of S.�/ nor the property of being closable depends on �: }

10.2.1 Closability and Closure of the Block Operator Matrix

Arguing as in the proof of Theorem 10.1.1, we have the following result which
describes the closure of the operator L0.

Theorem 10.2.1. Let the conditions .I1/–.I3/ be satisfied and the lineal M WD
D.B/

T
D.D/ be dense in X: Then, the operator L0 is closable if, and only if,

the operator S.�/, � 2 �.A/; is closable in X: Moreover, the closure L of L0 is
given by

L D � � U.�/V.�/W.�/

WD � �
�

I 0

F.�/ I

��
� � A 0

0 � � S.�/
��

I G.�/

0 I

�

(10.2.2)

or, spelled out
8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

L W D.L/ �X �X �! X �X
�
x

y

�

�! L

�
x

y

�

D
�
A.x CG.�/y/ � �G.�/y
C.x CG.�/y/C S.�/y

�

D.L/ D
��

x

y

�

2 X �X such that x CG.�/y 2 D.A/; y 2 D.S.�//
�

:

}
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Note that, in view of Remark 10.2.1 .ii/, the description of the operator L does not
depend on the choice of the point � 2 �.A/: For � 2 �.A/;we will denote byM.�/
the operator

M.�/ WD
�

0 G.�/

F.�/ F.�/G.�/

�

:

Lemma 10.2.1. Let I.X/ be any nonzero two-sided ideal of L.X/ satisfy-
ing (10.1.6). If F.�/ 2 I.X/, for some � 2 �.A/; then F.�/ 2 I.X/ for all
� 2 �.A/: }
Proof. Let �0 2 �.A/; such that F.�0/ 2 I.X/: We have

F.�/ D F.�0/

I C .� � �0/.A � �/�1� ;

for all � in �.A/: By using the ideal property of I.X/; this implies that
F.�/ 2 I.X/: Q.E.D

10.2.2 Essential Spectra

Lemma 10.2.2. Let I.X/ be a nonzero two-sided ideal of L.X/ satisfying (10.1.6).
If F.�/ 2 I.X/, for some � 2 �.A/; then

.i/ �ei.S.�//; i D 4; 5 does not depend on �:
.ii/ If I.X/ � FC.X/, then �e1.S.�// does not depend on �:
.iii/ If I.X/ � F�.X/ or ŒI.X/�� � FC.X�/, then �e2.S.�// does not depend

on �:
.iv/ If I.X/ � FC.X/

T
F�.X/, then �e3.S.�// does not depend on �: }

Proof. The proof of this lemma follows directly from Eq. (10.2.1) and Theo-
rem 7.5.3. Q.E.D

Now, we are ready to express the first result of this section.

Theorem 10.2.2. Let the matrix operator L0 satisfy conditions .I1/–.I4/; and let
I.X/ be any nonzero two-sided ideal of L.X/ satisfying (10.1.6). If, for some � 2
�.A/; the operator F.�/ 2 I.X/, then

.i/ IfM.�/ 2 F.X�X/, for some� 2 �.A/, then �e4.L/ D �e4.A/
S
�e4.S.�//

and, �e5.L/ � �e5.A/
S
�e5.S.�//: Moreover, if Cn�e4.A/ is a connected

set, then �e5.L/ D �e5.A/
S
�e5.S.�//: Moreover, if Cn�e5.L/ is connected,

�.L/ ¤ ;, Cn�e5.S.�// is connected and �.S.�// ¤ ;; then �e6.L/ D
�e6.A/

S
�e6.S.�//:

.ii/ If I.X/ � FC.X/ and the operatorM.�/ 2 FC.X �X/, for some � 2 �.A/;
then

�e1.L/ D �e1.A/
[
�e1.S.�//:
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.iii/ If I.X/ � F�.X/ and the operator M.�/ 2 F�.X �X/, then

�e2.L/ D �e2.A/
[
�e2.S.�//:

.iv/ If I.X/ � FC.X/
T

F�.X/ and the operator M.�/ 2 FC.X �
X/

T
F�.X �X/, for some � 2 �.A/, then

�e3.L/ D �e3.A/
[
�e3.S.�//

[
Œ�e2.A/

\
�e1.S.�//�

[
Œ�e1.A/

\
�e2.S.�//�:

}
Proof.

.i/ Let � 2 �.A/ be such that M.�/ 2 F.X � X/ and set � 2 C: If we write
� � L D � � LC .� � �/ and using relation (10.2.2), we have

� � L D
�

I 0

F.�/ I

��
� � A 0

0 � � S.�/
��

I G.�/

0 I

�

� .� � �/M.�/

WD U.�/ QV .�/W.�/ � .� � �/M.�/: (10.2.3)

Since M.�/ 2 F.X � X/, then � � L is a Fredholm operator if, and only if,
U.�/ QV .�/W.�/ is a Fredholm operator. Now, let us notice that the operators
U.�/ and W.�/ are bounded and have bounded inverses. Hence, the operator
U.�/ QV .�/W.�/ is a Fredholm operator if, and only if, QV .�/ has this property
if, and only if, � � A and � � S.�/ are Fredholm operators on X: Therefore,

�e4.L/ D �e4.A/
[
�e4.S.�//: (10.2.4)

The use of Lemma 6.3.1 .i/ and Eq. (10.2.3) shows that, for � 2 ˆL, we have

i.� � L/ D i.� � A/C i.� � S.�//: (10.2.5)

From Eqs. (10.2.4) and (10.2.5), it follows immediately that �e5.L/ �
�e5.A/

S
�e5.S.�//. Now, suppose that Cn�e4.A/ is connected. By using

assumption .I1/; �.A/ is nonempty. Let �0 2 �.A/ then, �0 � A 2 ˆ.X/

and i.�0 � A/ D 0: Since �.A/ � Cn�e4.A/ and i.� � A/ is constant on any
component ofˆA, then i.��A/ D 0 for all � 2 Cn�e4.A/: From Eqs. (10.2.4)
and (10.2.5), it follows that

�e5.L/ D �e5.A/
[
�e5.S.�//: (10.2.6)
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Moreover, let us assume that Cn�e5.L/ is connected. We know that the set
�5.L/ WD Cn�e5.L/ contains points of �.L/, which is a nonempty set. Since
˛.��L/ and ˇ.��L/ are constant on any component ofˆL, except possibly
on a discrete set of points at which they have large values (see Proposition 2.2.5
.iii/), then �5.L/ � �6.L/ WD Cn�e6.L/: This, together with the inclusion
�e5.L/ � �e6.L/, leads to �e5.L/ D �e6.L/: Since Cn�e4.A/ is connected,
then we deduce that �e5.A/ D �e4.A/: So, Cn�e5.A/ is connected. Using the
same reasoning as before, we show that �e5.A/ D �e6.A/: The condition that
Cn�e5.S.�// is connected leads to �e5.S.�// D �e6.S.�// and, the result of
the assertion .i/ follows from Eq. (10.2.6).

.ii/ Let � 2 �.A/ be such that M.�/ is an upper semi-Fredholm perturbation.
Then, from Eq. (10.2.3), we have � � L 2 ˆC.X � X/ if, and only if,
U.�/ QV .�/W.�/ 2 ˆC.X � X/ if, and only if, � � A and � � S.�/ are
in ˆC.X/ since the operators U.�/ and W.�/ are bounded and have bounded
inverses. Then, the result of .ii/ follows directly.

.iii/ The proof of this assertion may be checked in the same way as in the proof
of .ii/.

.iv/ This assertion is an immediate consequence of .ii/ and .iii/: Q.E.D

Remark 10.2.2.

.i/ If X is a w.c.g. Banach space and superprojective (resp. subprojective), then
the ideal I.X/ D S.X/ (resp. I.X/ D CS.X/) satisfies the conditions of
Theorem 10.2.2 (see Proposition 2.1.4). Also, if we take X as a Banach space
with the DP property and I.X/ D W.X/ (see Remark 2.1.7) or, if we consider
the ideal K.Xp/ in the Lp spaces, 1 � p � 1.

.ii/ The ideal of finite rank operators F0.X/ is the minimal subset of L.X/ for
which the conditions of Theorem 10.2.2 are valid regardless of the Banach
spaces.

.iii/ It is noted that, in Theorem 10.1.3, we suppose that the operator .A � �/�1 2
I.X/ but, in our case, we only suppose that C.A � �/�1 2 I.X/, which is a
weaker condition, and we usually obtain the same result. So, Theorem 10.2.2
may be regarded as an extension of Theorem 10.1.3 for a larger class of
operators.

.iv/ If F.�/ andG.�/ are in K.X/, for some� 2 �.A/; thenM.�/ 2 K.X�X/ �
F.X �X/:

.v/ Let X D L1.�; d�/ where .�;†;�/ is a positive measure space. If F.�/
and G.�/ are in W.X/; for some � 2 �.A/; then M.�/ 2 W.X � X/ �
F.X �X/:

.vi/ If the operators A; B; C , and D are everywhere defined and bounded, the
hypothesis of Theorem 10.2.2 .iii/ can be replaced by ŒI.X/�� � FC.X�/
and ŒM.�/�� 2 FC.X� � X�/, for some � 2 �.A/: Indeed, it is sufficient
to write the relation (10.2.3) for the adjoint. Hence, .� � L/� D � � L� D
W.�/�Œ QV .�/��U.�/��.���/ŒM.�/��:Now, using the fact that ˛.��L�/ D
ˇ.� � L/ and ˛.Œ QV .�/��/ D ˇ. QV .�// (cf. [126, 185]) and, arguing as in the
proof of Theorem 10.2.2 .ii/, we can easily derive the result.
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.vii/ Assume that the operatorL acts on the product of Banach spacesX�X:Using
Lemma 10.2.1, we can verify that, if F.�/ 2 Fb.X/, for some � 2 �.A/; then
F.�/ 2 Fb.X/ for all � 2 �.A/ and �ei.S.�//; i D 4; 5 does not depend on
�: Therefore, it can be shown that the result of Theorem 10.2.2 .i/ remains
valid if F.�/ 2 Fb.X/ and M.�/ 2 F.X �X/: }

10.2.3 Particular Cases

Let �.:/ be the Kuratowski measure of noncompactness in X . Now, we are ready to
state and prove the first result of this section.

Theorem 10.2.3. Let � 2 �.A/, and let � 2 D.�; 1/ WD f� 2 C such that
j� � �j < 1g.

.i/ Suppose that there exists Al� 2 Gl .��A/, Sl�.�/ 2 Gl .��S.�// satisfying
�.Al�G.�// <

1
2

and �.Sl�.�/F.�// < 1: If �.G.�// < 1
2
, then � � L 2

ˆl.X �X/ and i.� � L/ D i. QV .�//:
.ii/ Suppose that there exists Ar� 2 Gr .� � A/, Sr�.�/ 2 Gr .� � S.�//

satisfying �.F.�/Ar�/ < 1, �.Sr�.�/F.�// < 1 and �.G.�/Sr�.�// � 1
2
.

If �.G.�// < 1
2
, then � � L 2 ˆr.X �X/ and i.� � L/ D i. QV .�//:

.iii/ Suppose that the hypotheses of .i/ and .ii/ hold true. Then, ��L 2 ˆ.X �
X/ and i.� � L/ D i. QV .�//: }

Proof.

.i/ Let T� WD U.�/ QV .�/W.�/ and V l
� D

�
Al� K1

K2 S
l
�.�/

�

such that K1 and K2 are

compact operators. According to Proposition 6.7.1 .i/, V l
� 2 Gl . QV .�//: By

using Lemma 6.7.1, we get T l� D W.�/�1V l
�U.�/

�1 2 Gl .T�/: Moreover, we
have

T l�M.�/ D
�
K1F.�/ �G.�/Sl�.�/F.�/ Al�G.�/ �G.�/K2G.�/

Sl�.�/F.�/ K2G.�/

�

:

Now, the fact that the measure of noncompactness �.:/ is semi-multiplicative
and from Proposition 2.10.2, we get �.T l�M.�// � maxŒ�.G.�//�.Sl�.�/
F.�// C �.Al�G.�//; �.S

l
�.�/F.�//�: According to the hypotheses and the

fact that j� � �j < 1, we deduce that �..� � �/T l�M.�// < 1: Finally, the
results follow from Theorem 6.4.2 .i/:

.ii/ Let V r
� D

�
Ar� K1

K2 S
r
�.�/

�

be such that K1 and K2 are compact operators.

According to Proposition 6.7.1 .ii/, V r
� 2 Gr . QV .�//: By using Lemma 6.7.1,

we have T r� D W.�/�1V r
� U.�/

�1 2 Gr .T�/: Moreover, we have
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M.�/T r� D
�
G.�/K2 �G.�/Sr�.�/F.�/ G.�/Sr�.�/
F.�/Ar� � F.�/K1F.�/ F.�/K1

�

:

Now, by using Proposition 2.10.2, we get �.M.�/T r� / � maxŒ�.G.�//
�.Sr�.�/F.�//C�.G.�/Sr�.�//; �.F.�/Ar�/�: Finally, the results follow from
Theorem 6.4.2 .ii/:

.iii/ The proof of .iii/ is an immediate deduction from .i/ and .ii/. Q.E.D

Notice that Theorem 10.2.3 can be interpreted in terms of essential spectra as
follows:

Corollary 10.2.1. Let � 2 �.A/.
.i/ Suppose that, for each � 2 C such that ��A 2 ˆl.X/ and ��S.�/ 2 ˆl.X/,

we have �.Al�G.�// <
1
2

and �.Sl�.�/F.�// < 1: If �.G.�// < 1
2
, then

�e1l .L/ � �e1l .A/
[
�e1l .S.�//

[
.CnD.�; 1// :

.ii/ Suppose that, for each � 2 C such that ��A 2 ˆr.X/ and ��S.�/ 2 ˆr.X/,
we have �.F.�/Ar�/ < 1, �.Sr�.�/F.�// < 1 and �.G.�/Sr�.�// � 1

2
. If

�.G.�// < 1
2
, then

�e2r .L/ � �e2r .A/
[
�e2r .S.�//

[
.CnD.�; 1// :

.iii/ Suppose that, for each � 2 ˆATˆS.�/, the hypotheses .i/ and .ii/ hold true.
Then,

�e4.L/ � �e4.A/
[
�e4.S.�//

[
.CnD.�; 1//

and

�e5.L/ � �e5.A/
[
�e5.S.�//

[
.CnD.�; 1// :

}
Without maintaining the assumption �.G.�// < 1

2
, if we suppose that the operators

Al�G.�/ and Sl�.�/F.�/ are compact, then the results of Theorem 10.2.3 remain
valid. So, we can deduce the following:

Corollary 10.2.2. Let � 2 �.A/.
.i/ Suppose that, for each � 2 C such that � � A 2 ˆl.X/ and � � S.�/ 2

ˆl.X/, we have Al�G.�/ and Sl�.�/F.�/ are compact. Then �e1l .L/ �
�e1l .A/

S
�e1l .S.�//:

.ii/ Suppose that, for each � 2 C such that � � A 2 ˆr.X/ and � � S.�/ 2
ˆr.X/, we have Sr�.�/F.�/, G.�/S

r
�.�/, and F.�/Ar� are compact. Then,

�e2r .L/ � �e2r .A/
S
�e2r .S.�//:
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.iii/ Suppose that, for each � 2 ˆATˆS.�/, the hypotheses .i/ and .ii/ hold true.
Then, �e4.L/ � �e4.A/

S
�e4.S.�// and �e5.L/ � �e5.A/

S
�e5.S.�//: }

Remark 10.2.3. .i/ If the hypotheses of statement .iii/ of Corollaries 10.2.1
and 10.2.2 hold true for some � 2 ˆA

T
ˆS.�/, then they also hold true for

each ˛ 2 ˆA
T
ˆS.�/. Indeed, suppose, for example, for � 2 ˆA

T
ˆS.�/;

there exists A0
� and K1; K2 are two compact operators satisfying A0

�A� D
I CK1 on D.A�/, A�A0

� D I CK2 on X , and A0
�G.�/ is a compact operator.

Let ˛ 2 ˆA
T
ˆS.�/, then there exists A0̨ and K3; K4 are two compact

operators satisfying A0̨ A˛ D I CK3 on D.A˛/, and A˛A0̨ D I CK4 on X .
Hence, A0

�A˛A
0̨ G.�/ is a compact operator. Now, since A0

�A˛ 2 ˆ.X/, then
A0̨ G.�/ is compact.

.ii/ If F.�/ and G.�/ are compact operators, then we get �e5.L/ D
�e5.A/

S
�e5.S.�//: Moreover, we obtain �e1l .L/ D �e1l .A/

S
�e1l .S.�//

and �e2r .L/ D �e2r .A/
S
�e2r .S.�//: Indeed, we have � � L D

U.�/ QV .�/W.�/�.���/M.�/. SinceM.�/ is compact, then ��L 2 ˆl.X/
(resp. � � L 2 ˆl.X/) if, and only if, U.�/ QV .�/W.�/ 2 ˆl.X/

(resp. U.�/ QV .�/W.�/ 2 ˆr.X/) if, and only if, QV .�/ 2 ˆl.X/ (resp.
QV .�/ 2 ˆr.X/). }

In the remaining part of this section, we will study the inverse inclusion in
Corollary 10.2.2. For this, we suppose that

L D
�
A B

C B

�

2 L.X �X/:

Theorem 10.2.4. Let � 2 �.A/, and let � 2 D.�; 1/.

.i/ Suppose that there exist Al� 2 Gl .� � A/; Dl
� 2 Gl .� � D/ satisfying

�.Al�G.�// < 1 and �.Dl
�F.�// <

1
2
: If �.G.�// < 1, then QV .�/ 2 ˆl.X/

and i.� � L/ D i. QV .�//:
.ii/ Suppose that there exist Ar� 2 Gr .� � A/; Dr

� 2 Gr .� � D/ satisfying
�.G.�/Dr

�/ < 1 and �.F.�/Ar�/ <
1
2
: If �.F.�// < 1

2
, then QV .�/ 2 ˆr.X/

and i.� � L/ D i. QV .�//:
.iii/ Suppose that the hypotheses of .i/ and .ii/ hold true. Then, 0 2

ˆ QV .�/ and i.� � L/ D i. QV .�//: }
Proof.

.i/ Let us consider Ll� D
�
Al� K1

K2 D
l
�

�

such that K1 and K2 are compact operators.

According to Proposition 6.7.2 .i/, Ll� 2 Gl .� � L/: Moreover, we have

Ll�M.�/ D
�
K1F.�/ A

l
�G.�/CK1F.�/G.�/

Dl
�F.�/ K2G.�/CDl

�F.�/G.�/

�

:
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Now, the fact that the measure of noncompactness �.:/ is semi-multiplicative
and applying Proposition 2.10.2, we get �.Ll�M.�// � maxŒ�.Al�G.�//;
�.Dl

�F.�//C �.Dl
�F.�//�.G.�//�: According to the hypotheses and to the

fact that j� � �j < 1, we deduce that �..� � �/Ll�M.�// < 1: Finally, the
results follow from Theorem 6.4.2 .i/.

.ii/ LetLr� D
�
Ar� K1

K2 D
r
�

�

be such thatK1 andK2 are compact operators. According

to Proposition 6.7.2 .ii/, Lr� 2 Gr .� � L/: Besides, we have

M.�/Lr� D
�

G.�/K2 G.�/Dr
�

F.�/Ar� C F.�/G.�/K2 F.�/K1 C F.�/G.�/Dr
�

�

:

Now, by using Proposition 2.10.2, we get �.M.�/Lr�/ � maxŒ�.G.�/Dr
�/;

�.F.�/Ar�/ C �.F.�//�.G.�/Dr
�/�: Finally, the results follow from Theo-

rem 6.4.2 .ii/:
.iii/ The proof of .iii/ is an immediate deduction from .i/ and .ii/. Q.E.D

Without maintaining the assumption �.G.�// < 1 and �.F.�// < 1
2
, if we suppose

that the operators Al�G.�/, D
l
�F.�/ and Sl�.�/F.�/ are compact, then the results

of Theorem 10.2.4 remain valid. So, according to Corollary 10.2.2, we can deduce
the following:

Corollary 10.2.3. Let � 2 �.A/.
.i/ Suppose that, for each � 2 C such that � � A 2 ˆl.X/, � � S.�/ 2 ˆl.X/

and ��D 2 ˆl.X/, we notice thatAl�G.�/, andDl
�F.�/ are compact. Then,

�e1l .L/ D �e1l .A/
S
�e1l .S.�//:

.ii/ Suppose that, for each � 2 C such that � � A 2 ˆr.X/, � � S.�/ 2 ˆr.X/

and ��D 2 ˆr.X/, we notice thatG.�/Dr
�, and F.�/Ar� are compact. Then,

�e2r .L/ D �e2r .A/
S
�e2r .S.�//:

.iii/ Suppose that, for some � 2 ˆA
T
ˆS.�/

T
ˆD , the hypotheses .i/

and .ii/ hold true. Then �e4.L/ D �e4.A/
S
�e4.S.�// and �e5.L/ D

�e5.A/
S
�e5.S.�//: Moreover, if Cn�e5.L/ is connected, �.L/ ¤ ; and

�.S.�// ¤ ;, then �e6.L/ D �e6.A/
S
�e6.S.�//: }

10.3 Case Where the Operator A Is Closable

Let Z be a Banach space, we consider the linear operators 	X from X into Z and
	Y from Y intoZ. Therefore, we define the operator A0 in the Banach spaceX �Y
as follows:

A0 WD
�
A B

C D

�
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D.A0/ WD
��

x

y

�

such that x 2 D.A/; y 2 D.D/
\

D.B/ and 	Xx D 	Y y

�

:

In what follows, we will assume that the following conditions hold:

.J1/ The operator A is densely defined and closable.
D.A/; the domain of closure A of A, coincides with the Banach space XA which
is contained in X .

.J 2/ D.A/ � D.	X/ � XA and 	X is bounded as a mapping from XA into Z.

.J 3/ The set D.A/
T
N.	X/ is dense in X and the resolvent set of the restriction

A1 WD AjD.A/TN.	X / is not empty, i.e., �.A1/ ¤ ;:
.J 4/ D.A/ � D.C / � XA and C is A1-bounded.

Remark 10.3.1. From .J 3/, it follows that A1 is a closed operator in the Banach
space XA with a nonempty resolvent set. For � 2 �6.A1/; let P� denote the
corresponding finite rank Riesz projector with a range and a kernel denoted by R�
andN�; respectively. LetA1� be the operator defined byA1� WD .A1��/.I �P�/C
P� because D.A1/ is P�-invariant, A1� has the same domain of A1 with respect to
the decomposition X D R� ˚ N�; we can write A1� D .A1 � �jN�/ ˚ I: Since
�.A1 � �jN�/ D �.A1 � �/nf0g; A1� has a bounded inverse denoted by Rb.A1; �/
and called the Browder resolvent. This clearly extends the usual resolvent .A1��/�1
from �.A1/ to �6.A1/: }

10.3.1 Closability and Closure of the Block Operator Matrix

Lemma 10.3.1. Under the assumptions .J1/–.J 3/, for any � 2 �6.A1/; the
following decomposition holds:

D.A/ D D.A1/˚N.A�/; (10.3.1)

where A� is the operator defined on D.A/ by A� WD .A � �/.I � P�/C P�: }
Proof. Let � 2 �6.A1/: It is clear that the sum (10.3.1) is contained in D.A/. Then,
we have D.A1/

T
N.A�/ D N.A1�/: Since the operator A1� is invertible then,

N.A1�/ D f0g, and we get D.A1/
T
N.A�/ D f0g: For any f 2 D.A/; let g D

Rb.A1; �/A�f 2 D.A1/: Then, f �g 2 N.A�/ and f D gCf �g 2 D.A1/C
N.A�/. Q.E.D

Lemma 10.3.2. Under the assumptions .J1/–.J 3/, for any � 2 �6.A1/; the
restriction 	� WD 	X jN.A�/ is injective, and R.	�/ D 	X.N.A�// D 	X.D.A// WD
Z1 does not depend on �: }
Proof. Let � 2 �6.A1/: The injectivity of the operator 	� follows from the fact that
N.	�/ WD N.A�/

T
N.	X/ D N.A1�/ D f0g: From the definition of the operator

	�, we deduce that this range coincides with 	X.N.A�//: Therefore, from .J 3/, it
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follows that 	X.D.A1// D f0g. Hence, the use of Lemma 10.3.1 combined with the
linearity of the operator 	X , allows us to conclude that 	X.N.A�// D 	X.D.A//:
Hence, R.	�/ does not depend on �: Q.E.D

In what follows, and for � 2 �6.A1/; the inverse of the operator 	�, denoted K�,
will play an important role K� WD �

	X jN.A�/
��1 W Z1 �! N.A�/ � X: In other

words, K�z D x means that x 2 D.A/ and,

A�x D 0; (10.3.2)

	Xx D z: (10.3.3)

Lemma 10.3.3. If �1, �2 2 �6.A1/; then K�1 � K�2 D Rb.A1; �1/Œ.�1 � �2/ C
SA1.�1; �2/�K�2 ; where SA1.:; :/ is the finite rank operator defined in (8.2.1). If K�

is closable for, at least, one � 2 �6.A1/, then it is closable for all such �; and the
above relation holds, with K�j replaced by the closures K�j ; j D 1; 2. }
Proof. Let z 2 Z1 and set x D x1 � x2 where xj D K�j z, with j D 1; 2: The use
of Eq. (10.3.2) shows that

A�1x D � A�1x2
D � Œ.A � �1/.I � P�1/C P�1� x2

D � Œ.A � �2/.I � P�1/C .�2 � �1/.I � P�1/C P�1� x2

D Œ.A � .�1 C 1//P�1 � .A � .�2 C 1//P�2 C .�1 � �2/� x2
D Œ.A1 � .�1 C 1//P�1 � .A1 � .�2 C 1//P�2 C .�1 � �2/� x2
D Œ.�1 � �2/C SA1.�1; �2/� x2:

Therefore, and from Eq. (10.3.3), we deduce that 	Xx D 	Xx1�	Xx2 D 0:Hence,
x 2 D.A1/ and x D Rb.A1; �1/ Œ.�1 � �2/C SA1.�1; �2/� x2: This allows us to
conclude that K�1 �K�2 D Rb.A1; �1/ Œ.�1 � �2/C SA1.�1; �2/�K�2 : So,

K�2 �K�1 D �Rb.A1; �2/ Œ.�1 � �2/C SA1.�1; �2/�K�1 :

Hence, Œ.�1 � �2/C SA1.�1; �2/�K�1 D A1�2Rb.A1; �1/ Œ.�1 � �2/C SA1.�1; �2/�

K�2 : Since the operator SA1.:; :/ is of finite rank and since A1�2Rb.A1; �1/ is
bounded and boundedly invertible, K�1 is closable if K�2 is similar. In such a case,
their closures K�j ; j D 1; 2 satisfy the same relations. Q.E.D

Concerning the operatorsK�; D; 	Y , and B , we prescribe the following conditions:

.J 5/ For some (hence, for all) � 2 �6.A1/; the operator K� is bounded as a
mapping from Z into X .

.J 6/ The operator D is densely defined and closed.
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.J 7/ D.	Y / 	 D.D/
T

D.B/; the set Y1 D fy such that y 2 D.D/
T

D.B/
and	Y y 2 Z1g is dense in Y and, the restriction of 	Y to this set, is bounded as
an operator from Y into Z.

.J 8/ For some (and hence, for all, see Lemma 8.2.2 .i/) � 2 �6.A1/; the operator
Rb.A1; �/B is closable and its closure Rb.A1; �/B is bounded.

Remark 10.3.2. We will denote by

.i/ 	X the extension of 	X by continuity to XA D D.A/. It is a bounded operator
from XA into Z.

.ii/ 	
0

Y the extension of 	Y jY1 by continuity to all elements of Y .
.iii/ K� the extension of K� to the closure Z1 of Z1, with respect to the norm of

Z: Without loss of generality, we assume that Z1 D Z: We can easily verify
that the operator K� is also bounded as a mapping from Z1 to XA: }

In the space Y; and for � 2 �6.A1/; let us consider the operator M� WD D C
CK�	Y �C�B where C� WD CRb.A1; �/: The operatorM� is defined on the set Y1;
which is dense in Y according to .J 7/.

Remark 10.3.3. For any �1 and �2 2 �6.A1/; it follows, from the resolvent identity,
that M�1 �M�2 D C�1 Œ.�2 � �1/ � SA1.�1; �2/� Œ�K�2	Y CRb.A1; �2/B� : From
Lemma 8.2.2 .ii/, we immediately deduce that C� is bounded. Therefore, we
observe that 	Y is bounded on this domain by assumption (J7), that K� is bounded
by assumption (J5), that R.K�/ � D.A/ � D.C / and finally SA1.:; :/ is of finite
rank. Now, using .J 8/, we infer that, if M� is closable as an operator in Y for some
� 2 �6.A1/, then it is closable for all � 2 �6.A1/: We also emphasize that the
domain of M� does not depend on �: Indeed, the difference

M�1 �M�2 D C�1 Œ.�2 � �1/ � SA1.�1; �2/�
h
�K�2	

0

Y CRb.A1; �2/B
i

(10.3.4)

is a bounded operator. }
Lemma 10.3.4. For � 2 �6.A1/ and x 2 D.A/, we have A�x D A1�.I �K�	X/x

and, the operator I �K�	X is the projection from D.A1/ parallel to N.A�/: }
Proof. Let x 2 D.A/. Then, we have x D .I � K�	X/x C K�	Xx: The first
summand belongs to D.A1/ because x1 D .I � K�	X/x 2 D.A/ and 	Xx1 D
	Xx � 	XK�	Xx D 0: Therefore, it is clear that the second summand belongs to
N.A�/: Now, we may apply Lemma 10.3.1 in order to get the result. Q.E.D

For each � 2 �6.A1/; we define the bounded, lower and upper triangular operator
matrices

T1.�/ D
�
I 0

C� I

�

; T2.�/ D
 
I �K�	

0

Y CRb.A1; �/B

0 I

!

;
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the finite rank operator-matrix

N.�/ D
�
ŒA1 � .�C 1/� P� 0

0 0

�

and the diagonal operator-matrix

D0.�/ D
�
A1� 0

0 M� � �
�

with the domain D.A1/ � Y1:
Theorem 10.3.1. Let us assume that the conditions .J1/–.J 8/ are satisfied. Then,
A0 is closable in X � Y if, and only if, the operator M� WD D C CK�	Y � C�B

is closable for some � 2 �6.A1/; or equivalently, for all � 2 �6.A1/: Moreover, the
closure A of A0 is given by the relation

A WD A0 D �I C T1.�/D.�/T2.�/C N.�/; (10.3.5)

where D.�/ WD D0.�/ D
�
A1� 0

0 M� � �
�

with the domain D.A1/ � D.M�/: }

Proof. Let � 2 �6.A1/: We will show that A0 � �I D G�, where

G� D
�
I 0

C� I

��
A1� 0

0 M� � �
��

I �K�	Y CRb.A1; �/B

0 I

�

C
�
ŒA1 � .�C 1/� P� 0

0 0

�

:

In order to get this equality, we will prove that D.G�/ � D.A0/ and A0 ��I D G�:
First, we notice that D.G�/ consists of the elements of the form

�
x

y

�

D
�
x0 �K�	Y y CRb.A1; �/By

y

�

;

where x0 and y run through D.A1/ D D.A/
T
N.	X/ and D.M�/ respectively.

Therefore, x 2 D.A/; y 2 D.D/
T

D.B/ and 	Xx D 	X.K�	Y y/ D 	Y y:

Hence,

�
x

y

�

2 D.A0/ and D.G�/ � D.A0/: Second, let

�
x

y

�

2 D.A0/, i.e.,

x 2 D.A/; y 2 D.D/
T

D.B/ and 	Xx D 	Y y: We have

G�
�
x

y

�

D
�
A1� 0

C M� � �
��

.I �K�	X/x CRb.A1; �/By

y

�

C
�
ŒA1 � .�C 1/� P�x

0

�

:
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Using Lemma 10.3.4, we get

G�
�
x

y

�

D
�

A�x C By
C.x �K�	Xx CRb.A1; �/By/C .M� � �/y

�

C
�
ŒA1 � .�C 1/� P�x

0

�

D
�
.A � �/x C By
Cx C .D � �/y

�

D .A0 � �I/
�
x

y

�

:

Therefore, A0 � �I D G�: Finally, it is easy to check that T1.�/ and T2.�/ are
bounded and also have bounded inverses. Then, from the factorization of A0 � �I ,
we deduce that A0 is closable in X � Y if, and only if, M� is closable as a mapping
in Y: Moreover, if M� is closable and M� denotes its closure, then for the closure
A of A0, we get

A WD A0 D �I C T1.�/

�
A1� 0

0 M� � �
�

T2.�/C N.�/:

Q.E.D

10.3.2 Essential Spectra of A

Lemma 10.3.5. Let us assume that, for some (and hence, for all) � 2 �6.A1/; the
operator M� is closable and that the set ˆb.Y;X/ is not empty. Then,

.i/ If C� 2 Fb.X; Y /, then �ei.M�/; i D 4; 5 does not depend on �:
.ii/ If C� 2 FbC.X; Y /, then �e1.M�/ does not depend on �:
.iii/ If C� 2 Fb�.X; Y /, then �e2.M�/ does not depend on �:
.iv/ If C� 2 FbC.X; Y /

T
Fb�.X; Y /, then �e3.M�/ does not depend on �:

.v/ If C� 2 FbC.X; Y / for some � 2 �6.A1/, then C� 2 FbC.X; Y / for all � 2
�6.A1/; and �e7.M�/ does not depend on the choice of �:

.vi/ If C� 2 Fb�.X; Y / for some � 2 �6.A1/, then C� 2 Fb�.X; Y / for all � 2
�6.A1/; and �e8.M�/ does not depend on the choice of �: }

Proof.

.i/ Since the operator SA1.�; �/ is of finite rank, and from both Eq. (10.3.4)

and the assumption .J 8/, it follows that Œ.� � �/ C SA1.�; �/�
h
�K�	

0

Y C
Rb.A1; �/B

i
2 L.Y;X/: Using the fact that C� 2 Fb.X; Y /, together
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with Theorem 6.3.1 .ii/, we infer that C�Œ.� � �/ C SA1.�; �/�
h
�K�	

0

YC
Rb.A1; �/B

i
2 Fb.Y /: Therefore, from Eq. (10.3.4) and Theorem 7.5.3 .i/,

we can deduce that �ei.M�/ D �ei.M�/, with i D 4; 5: This proves the
statement of .i/:

.ii/ Since C� 2 FbC.X; Y /; (resp. Fb�.X; Y /), and using both Theorem 6.3.1 .i/
and Eq. (10.3.4), it follows that M� � M� 2 FbC.Y / (resp. Fb�.Y //: The
use of Theorem 7.5.3 .ii/ (resp. .iii/) shows that �e1.M�/ D �e1.M�/; (resp.
�e2.M�/ D �e2.M�//. Hence, the assertions .ii/ and .iii/ hold.

.iv/ The use of the items .ii/ and .iii/ enables us to prove this assertion.
.v/ Let �0 2 �6.A1/ such that C�0 2 FbC.X; Y /: From the resolvent identity, we

have C� � C�0 D C�0 Œ.� � �0/C SA1.�; �0/� Rb.A1; �/ for all � 2 �6.A1/:

Hence, by writing C� in the form C� D C�0ŒI C ..� � �0/ C SA1.�; �0//

Rb.A1; �/� and by using Proposition 6.3.1 .ii/, we deduce that C� 2 FbC.X; Y /
and the difference

M� �M�0 D C� Œ.�0 � �/ � SA1.�; �0/�
h
�K�0	

0

Y CRb.A1; �0/B
i

belongs to FbC.Y; Y /: Now, the use of Theorem 7.5.11 .i/ and Remark 7.5.1
allows us to conclude that �e7.M�/ does not depend on the choice of �:

.vi/ This assertion can be proved in the same way as for .i/: Q.E.D

Now, we are ready to express the main results of this section.

Theorem 10.3.2. Let the assumptions .J1/–.J 8/ hold. Assume that the operator
M� is closable for some� 2 �6.A1/ and that the setˆb.Y;X/ is not empty. Then,

.i/ If for some� 2 �6.A1/; the operatorC� 2 Fb.X; Y /, then �ei.A/
T
�6.A1/ D

�ei.M�/
T
�6.A1/, with i D 4; 5. Moreover, if Cn�e5.A/ and Cn�e5.M�/ are

connected, and if �.A/ and �.M�/ are nonempty, then �e6.A/
T
�6.A1/ D

�e6.M�/
T
�6.A1/:

.ii/ If for some � 2 �6.A1/; the operator C� 2 FbC.X; Y /, then �e1.A/
T

�6.A1/ D �e1.M�/
T
�6.A1/, and �e7.A/

T
�6.A1/ D �e7.M�/

T
�6.A1/:

.iii/ If for some � 2 �6.A1/; the operator C� 2 Fb�.X; Y /, then �e2.A/
T

�6.A1/ D �e2.M�/
T
�6.A1/, and �e8.A/

T
�6.A1/ D �e8.M�/

T
�6.A1/:

.iv/ If for some � 2 �6.A1/; the operator C� 2 FbC.X; Y /
T

Fb�.X; Y /; then
�e3.A/

T
�6.A1/ D �e3.M�/

T
�6.A1/: }

Proof. .i/ Let � 2 �6.A1/. Then, � belongs to the union of �.A1/ and the discrete
spectrum of A1. So, we will discuss two cases:

First case: If � 2 �.A1/, then the Schur-Frobenius factorization given by
Theorem 10.3.1 can be written as follows:

A��I D
�

I 0

C.A1 � �/�1 I
��

A1 � � 0

0 M� � �
� 

I �K�	
0

Y C .A1 � �/�1B
0 I

!

:

(10.3.6)
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Obviously, the external factors

�
I 0

C.A1 � �/�1 I
�

and

 
I �K�	

0

Y C .A1 � �/�1B
0 I

!

are bounded and also have bounded inverses. Hence, by using Eq. (10.3.6), we
can conclude that A � � is a Fredholm operator if, and only if, M� � � is also
a Fredholm operator and, in this case, i.A � �/ D i.M� � �/: Now, using
Lemma 10.3.5, we can deduce that � 2 �ei.A/, with i D 4; 5 if, and only if,
� 2 �ei.M�/; with i D 4; 5: So, we infer that

�ei.A/
\
�.A1/ D �ei.M�/

\
�.A1/; with i D 4; 5:

Second case: If � belongs to the discrete spectrum of A1; then there exists " > 0
such that the disc f� 2 C such that j� � �j � 2"g does not contain points of
�.A1/ different from � and the Riesz projection P� of A1 corresponding to �
is of finite rank. Now, let us consider the operator QA1 WD A1 C "P�: Then,
f� 2 C such that j� � �j < "g � �6.A1/

T
�6. QA1/: Until further, we fix

� 2 �6.A1/
T
�6. QA1/. Now, we consider the operator matrix QA0 which is the

finite rank perturbation of A0 defined as follows:

QA0 WD
� QA B

C D

�

WD A0 C "

�
P� 0

0 0

�

;

where QA WD AC "P�: In the following, the closure of QA0 will be denoted by QA
and satisfies

QA WD A C "

�
P� 0

0 0

�

:

Clearly, QA is a finite rank perturbation of A. So, A � � is a Fredholm operator
on X � Y if, and only if, QA � � is a Fredholm operator on X � Y as well.
Therefore, i. QA � �/ D i.A � �/: Then, we conclude that �ei. QA/ D �ei.A/;
with i D 4; 5: In the following, we are going to apply the result of the first part
of this proof for the operator QA: For � 2 �6. QA1/; let us consider the operator
QK�, which is defined as K� with A replaced by QA: Hence, QK�z D x means that
x 2 D. QA/; QA�x D 0 and 	Xx D z: After this, we construct the perturbation of
M�; defined by QM� WD D C C QK�	Y � CRb. QA1; �/B:We can easily check that
the operator QM� is closable and we will denote its closure by OM�. Moreover, it
is clear that CRb. QA1; �/ 2 Fb.X; Y /. So, by applying Lemma 10.3.5, we infer
that QM� is closable for all � 2 �6. QA1/ and �ei. OM�/ does not depend on � (with
i D 4; 5). In what follows, we are going to show that the difference of OM� �M�

is of finite rank. This difference QM� �M� can be written in the following form
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QM��M� D C Œ QK��K��	Y �C ŒRb. QA1; �/�Rb.A1; �/�B: It remains to prove
that QK� � K� and that the closure of C ŒRb. QA1; �/ � Rb.A1; �/�B is of finite
rank. In fact, on the one hand, if we take z 2 Z1 and we put Qx D QK�z; x D K�z;
we obtain 	X. Qx � x/ D 0 and, A�. Qx � x/ D �"P� Qx: From these two latter
relations, we infer that Qx�x 2 D.A1/ and Qx�x D �"Rb.A1; �/P� Qx: So, QK� �
K� D �"Rb.A1; �/P� QK� which is a finite rank operator. On the other hand, the
closure of the right side of C ŒRb. QA1; �/ � Rb.A1; �/�B D "C�P�Rb. QA1; �/B
is of finite rank. Then, our aim is established, and we deduce that �ei. OM�/ D
�ei.M�/; with i D 4; 5: Now, for � 2 �6. QA1/, we infer, from the first part of this
proof, that �ei. QA/ D �ei. OM�/; i D 4; 5: Finally, we may deduce that �ei.A/ D
�ei.M�/; i D 4; 5: Moreover, if we assume that Cn�e5.A/ and Cn�e5.M�/ are
connected, �.A/ ¤ ; and �.M�/ ¤ ;, we get �e5.A/ D �e6.A/ and �e5.M�/ D
�e6.M�/: Hence, the proof of this assertion is achieved.

.ii/, .iii/ and .iv/ can be checked in the same way as for the proof of .i/. Q.E.D

We will denote by Q.�/ the operator defined as follows

Q.�/ WD
 

0 C�

�K�	
0

Y CRb.A1; �/B C�

h
�K�	

0

Y CRb.A1; �/B
i

!

:

Theorem 10.3.3. Let the matrix operator A0 satisfy the assumptions .J1/–.J 8/:
If, for some � 2 �6.A1/; the operator M� is closable and the set ˆb.Y;X/ ¤ ;;
then

.i/ If, for some� 2 �.A1/, the operatorsC� 2 Fb.X; Y / and Q.�/ 2 Fb.X�Y /;
then �e4.A/ D �e4.A1/

S
�e4.M�/, and �e5.A/ � �e5.A1/

S
�e5.M�/:

Moreover, if Cn�e4.A1/ is connected, then �e5.A/ D �e5.A1/
S
�e5.M�/:

Besides, if Cn�e5.A/ and Cn�e5.M�/ are connected, �.A/ ¤ ; and
�.M�/ ¤ ;; then �e6.A/ D �e6.A1/

S
�e6.M�/:

.ii/ If, for some � 2 �6.A1/, the operators C� 2 FbC.X; Y / and Q.�/ 2 FbC.X �
Y /; then �e1.A/ D �e1.A1/

S
�e1.M�/:

.iii/ If, for some � 2 �6.A1/, the operators C� 2 Fb�.X; Y / and Q.�/ 2 Fb�.X �
Y /; then �e2.A/ D �e2.A1/

S
�e2.M�/:

.iv/ If, for some � 2 �6.A1/, the operators C� 2 FbC.X; Y /
T

Fb�.X; Y / and
Q.�/ 2 FbC.X � Y /TFb�.X � Y /; then

�e3.A/ D �e3.A1/
[
�e3.M�/

[
Œ�e1.A1/

\
�e2.M�/�

[
Œ�e2.A1/

\
�e1.M�/�:

.v/ If, for some � 2 �6.A1/; the operator C� 2 FbC.X; Y / and the operator
Q.�/ 2 FC.X; Y /; then �e7.A/ � �e7.A1/

S
�e7.M�/: In the addition, if we
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suppose that the sets ˆA; ˆA1 and ˆM�
are connected and the sets �.M�/

and �.A/ are not empty, then �e7.A/ D �e7.A1/
S
�e7.M�/:

.vi/ If, for some � 2 �6.A1/; the operator C� 2 Fb�.X; Y / and the operator
Q.�/ 2 Fb�.X; Y /; then �e8.A/ � �e8.A1/

S
�e8.M�/: In the addition, if

we suppose that the setsˆA; ˆA1 andˆM�
are connected and the sets �.M�/

and �.A/ are not empty, then �e8.A/ D �e8.A1/
S
�e8.M�/: }

Proof.

.i/ Let � 2 �6.A1/ be such that Q.�/ 2 Fb.X � Y / and let � 2 C: Using the
representation (10.3.5), we can write the following relation:

A � � D .A � �/C .� � �/
D T1.�/D.�/T2.�/C N.�/C .� � �/
D T1.�/V.�/T2.�/C N.�/

C .� � �/Q.�/C T1.�/

�
Œ�C 1 � A1�P� 0

0 0

�

T2.�/

D T1.�/V.�/T2.�/C .� � �/Q.�/C W.�/; (10.3.7)

D T1.�/V.�/T2.�/C .� � �/Q.�/ � P.�/C N.�/: (10.3.8)

where

V.�/ WD
�
A1 � � 0

0 M� � �
�

;

W.�/ WD
0

@
0 Œ�C 1 � A1�P�

h
�K�	

0

Y CRb.A1; �/B
i

C�Œ�C 1 � A1�P� C�Œ�C 1 � A1�P�
h
�K�	

0

Y CRb.A1; �/B
i

1

A ;

and

P.�/ WD
0

@
ŒA1 � .�C 1/� P� ŒA1 � .�C 1/� P�

h
�K�	

0

Y CRb.A1; �/B
i

C� ŒA1 � .�C 1/� P� C� ŒA1 � .�C 1/� P�

h
�K�	

0

Y CRb.A1; �/B
i

1

A :

Let us notice that the operator P� is of finite rank and the operators K�; 	
0

Y

and Rb.A1; �/B are bounded. Hence, we deduce that the matrix operator
W.�/ is of finite rank. Using the fact that Q.�/ 2 Fb.X � Y /, we infer
that A � � is a Fredholm operator if, and only if, T1.�/V.�/T2.�/ has also
this property. Since the operators T1.�/ and T2.�/ are bounded and also have
bounded inverses, we claim that A � � is a Fredholm operator if, and only if,
the operators A1 �� andM� �� have also the same characteristic. Therefore,

�e4.A/ D �e4.A1/
[
�e4.M�/: (10.3.9)
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For � 2 ˆA, we infer that

i.A � �/ D i.A1 � �/C i.M� � �/: (10.3.10)

Clearly, the use of Eqs. (10.3.9) and (10.3.10) shows that �e5.A/ �
�e5.A1/

S
�e5.M�/: Conversely, let � … �e5.A/ and suppose that Cn�e4.A1/

is connected. By using the assumption .J 3/, �.A1/ is nonempty. So, let
� 2 �.A1/. Then, A1 �� 2 ˆ.X/ and i.A1 ��/ D 0: The fact that i.A1 ��/
is constant on any connected component of ˆA1 (see Proposition 2.2.5) and
knowing that �.A1/ � Cn�e4.A1/; lead to the following i.A1 � �/ D 0 for all
� 2 Cn�e4.A1/. In this case, from Eq. (10.3.10), it follows that i.M���/ D 0.
Now, the use of Eqs. (10.3.9) and (10.3.10) allows us to conclude that

�e5.A/ D �e5.A1/
[
�e5.M�/: (10.3.11)

By using the assumption .J 3/ and the fact that Cn�e4.A1/ is connected, we
show from Theorem 7.3.1 .i/ that �e4.A1/ D �e5.A1/: So, Cn�e5.A1/ is
connected. This condition leads to �e5.A1/ D �e6.A1/ (see Theorem 7.3.1
.ii/). Moreover, the fact that Cn�e5.A/ (resp. Cn�e5.M�/) is connected and
�.A/ ¤ ; (resp. �.M�/ ¤ ;), together with Theorem 7.3.1 .ii/, enable us
to deduce that �e5.A/ D �e6.A/ (resp. �e5.M�/ D �e6.M�/). Now, using
the relation (10.3.11) and arguing as above, we can easily derive the result for
�e6.:/:

.ii/ Let � 2 �6.A1/ be such that Q.�/ is an upper semi-Fredholm perturbation.
Note also that the matrix operator W.�/ is of finite rank. Then, the stability
theorem for Fredholm operator implies from Eq. (10.3.7) that A�� is an upper
semi-Fredholm operator inX�Y if, and only if, the product T1.�/V.�/T2.�/
has also this property. Since the operators T1.�/ and T2.�/ are bounded and
also have bounded inverses, then it follows that the product T1.�/V.�/T2.�/
is an upper Fredholm operator if, and only if, V.�/ has the same property.
Hence, we infer that A � � 2 ˆC.X � Y / if, and only if, A1 � � 2 ˆC.X/
and M� � � 2 ˆC.Y /. Then, the result follows for the Gustafson’s essential
spectrum.

.iii/ A similar reasoning to .ii/ achieves the proof for the Weidmann’s essential
spectrum. Indeed, it is sufficient to derive easily the result for the lower semi-
Fredholm operator.

.iv/ This assertion is an immediate consequence of assertions .ii/ and .iii/.
.v/ Let � 2 C: Since T1.�/ and T2.�/ are bounded and have bounded inverses,

N.�/ and P.�/ are finite rank matrix operators and Q.�/ 2 FC.X; Y /;
therefore, and for the same reasons as the proof of Theorem 10.3.2, it follows
from Eq. (10.3.8) that .A��I/ is an upper semi-Fredholm operator if, and only
if, V.�/ has this property and i.A��I/ D i.A1��I/Ci.M���/: This shows
that �e7.A/ � �e7.A1/

S
�e7.M�/: Since ˆA, ˆA1 , and ˆM�

are connected,

and the sets �.M�/ and �.A/ are not empty, then, using Theorem 7.3.1 .i/,
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we get �e7.A/ D �e1.A/, �e7.A1/ D �e1.A1/ and �e7.M�/ D �e1.M�/: Now,
the result follows from Theorem 10.2.2 .ii/ and the proof of .v/ is completed.

A similar reasoning to .v/ allows to reach the result for .vi/. Q.E.D

In the following, for an arbitrary fixed �0 2 �6.A1/, let A1;�0 be the block diagonal
matrix defined as

A1;�0 WD
 
A1 0

0 D C C

K�0	Y �Rb.A1; �0/B

�

!

D
�
A1 0

0 M�0

�

:

Theorem 10.3.4. Let the assumptions .J1/–.J 8/ hold. Assume that �6.A1/
T

�6.D/ ¤ ;, Y1 is a core of D and Y2 D fy such that y 2 D.B/
T

D.	Y / and
	Y y 2 Z1g is dense in Y . If for some (and hence for all) � 2 �6.A1/T �6.D/, we
have:

.i/ The operator C Œ�K�	Y CRb.A1; �/B� is bounded on Y2,
.ii/ Rb.D;�/CRb.A1; �/ 2 Fb.X; Y /, and

.iii/ Œ�K�	
0

Y CRb.A1; �/B�Rb.D;�/ 2 Fb.Y;X/

then, for every �0 2 �6.A1/ with �.A/
T
�.A1/

T
�.M�0/ ¤ ;, the difference

between the resolvents .A � �/�1 � .A1;�0 � �/�1 2 Fb.X � Y / for � 2
�.A/

T
�.A1/

T
�.M�0/, in particular �ei.A/ D �ei.A1/

S
�ei.M�0/, for i D

4; 5. Moreover, if Cn�e5.A/, Cn�e5.A1/, and Cn�e5.M�0/ are connected, then
�e6.A/ D �e6.A1/

S
�e6.M�0/. }

Proof. First, let �0 2 �.A1/ and � 2 �.A/
T
�.A1/

T
�.M�0/ ¤ ;. Using

Eq. (10.3.5), we get

.A � �I/�1 � .A1;�0 � �I/�1

D

0

B
B
B
B
@

�h
�K�	

0

Y C .A1 � �/�1B
i

.M� � �/�1C.A1 � �/�1
�

h
K�	

0

Y � .A1 � �/�1B
i
.M� � �/�1

�.M� � �/�1C.A1 � �/�1 .M� � �/�1 � .M�0 � �/�1

1

C
C
C
C
A
:

It remains to show that all entries of this block matrix operator are Fredholm
perturbations. For the left lower corner, we observe that

.M� � �/�1C.A1 � �/�1

D 
.M� � �/�1 � .D � �/�1�C.A1 � �/�1 C .D � �/�1C.A1 � �/�1

D .M� � �/�1ŒD �M��.D � �/�1C.A1 � �/�1 C .D � �/�1C.A1 � �/�1
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D .M� � �/�1
h
�CK�	Y C C.A1 � �/�1B

i
.D � �/�1C.A1 � �/�1

C .D � �/�1C.A1 � �/�1:

Hence, the operator
�
M� � ���1 C.A1 � �/�1 2 Fb.X; Y /: In the same way, we

can write the right upper corner as follows:

h
K�	

0

Y � .A1 � �/�1B
i
.M� � �/�1

D
h
K�	

0

Y � .A1 � �/�1B
i
.D � �/�1

C
h
K�	

0

Y � .A1 � �/�1B
i 
.M� � �/�1 � .D � �/�1�

D
h
K�	

0

Y � .A1 � �/�1B
i
.D � �/�1

C ŒK�	
0

Y � .A1 � �/�1B�.D � �/�1.D �M�/.M� � �/�1

D
h
K�	

0

Y � .A1 � �/�1B
i

.D � �/�1
h
I � .CK�	Y C C.A1 � �/�1B/.M� � �/�1

i
:

We conclude that the operator
h
K�	

0

Y � .A1 � �/�1B
i
.M� � �/�1 2 Fb.Y;X/:

This, together with the fact that C.A1 � �/�1 is bounded because of the inclusion
D.A1/ � D.C /, implies that the left upper corner is also a Fredholm perturbation.
Finally, for the right lower corner, the resolvent identity for A1 and Lemma 10.3.3
shows that

.M� � �/�1 � .M�0 � �/�1

D .M� � �/�1.M�0 �M�/.M�0 � �/�1

D .� � �0/.M� � �/�1C.A1 � �/�1
h
K�0	

0

Y � .A1 � �0/�1B
i

� .M�0 � �/�1

This relation, together with Theorem 6.3.1, enables us to conclude that

�
M� � ���1 � .M�0 � �/�1 2 Fb.Y /:

Hence, by using Theorem 7.5.4, we deduce that �ei.A/ D �ei.A1/
S
�ei.M�0/, for

i D 4; 5:Moreover, if we suppose that Cn�e5.A/, Cn�e5.A1/, and Cn�e5.M�0/ are
connected, together with the fact that �.A/, �.A1/ and �.M�0/ are not empty, we
infer from Theorem 7.3.1 .ii/ that �e6.A/ D �e6.A1/

S
�e6.M�0/: Now, if �0 2

�d .A1/, then there exists " > 0 such that the disc f� 2 C such that j� � �0j � 2"g
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does not contain points of �.A1/ different from �0; and the Riesz projection P�0
of A1 corresponding to �0 is of finite rank. Let us consider the operator QA1 WD
A1 C "P�0: Then, f� 2 C such that 0 < j� � �0j < "g � �6.A1/

T
�6. QA1/: Until

further notice, we fix � 2 �6.A1/
T
�6. QA1/: We define the operator QA0 like the

operator A0 but with A replaced by QA WD AC "P�0 . Hence,

QA0 D
� QA B

C D

�

D A0 C "

�
P�0 0

0 0

�

;

and for the closure of QA0, we obtain

QA D A C "

�
P�0 0

0 0

�

:

It is clear that QA is a finite rank perturbation of A: Therefore, �ei. QA/ D �ei.A/ with
i D 4; 5: In the following, we will apply the obtained result of the first part of this
proof for the operator QA: Let us consider the operator QM� WD D C C QK�	X �
CRb. QA1; �/B which is the perturbation of M�; for � 2 �6. QA1/: Here, QK�; � 2
�6. QA1/; is the operator defined as K� with A replaced by QA: Hence, QK�z D x

means that x 2 D. QA/; QA�x D 0 and 	Xx D z: Then, the operator QK� is well
defined for � 2 �6. QA1/: The difference QK� � K� is of finite rank. Indeed, take
z 2 Z1 and put Qu D QK�z; u D K�z, then Qu � u satisfies the relations 	X.Qu � u/ D 0,
and A�.Qu � u/ D . QA� � "P�0/Qu D �"P�0 Qu: This implies that Qu � u 2 D.A1/ and
Qu � u D �"Rb.A1; �/P�0 Qu; so that

QK� �K� D �"P�0Rb.A1; �/ QK�: (10.3.12)

We deduce, from this difference and from the fact that K� is a closed operator, that
QK� is also a closed operator. We denote its closure by OK�: We can also see that

the closure of the difference CRb.A1; �/B � CRb. QA1; �/B is of finite rank. Indeed,
CRb.A1; �/B � CRb. QA1; �/B D "CRb.A1; �/P�0Rb. QA1; �/B: Using the last two
results, we can easily check that the difference QM� �M� is of finite rank. Since the
operator M� is closable in Y , we infer that its perturbation QM� is closable in Y as
well, and we will denote its closure by OM�: Since OM� � M� is of finite rank, then
�ei. OM�/ D �ei.M�/, with i D 4; 5: Now, using the following relations:

Rb.D; �/CRb.A1; �/ �Rb.D; �/CRb. QA1; �/ D "Rb.D; �/CRb.A1; �/P�0Rb. QA1; �/;
Rb.A1; �/BRb.D; �/ �Rb. QA1; �/BRb.D; �/ D "Rb.A1; �/P�0Rb.

QA1; �/BRb.D; �/

together with Eq. (10.3.12) and the fact that, for some � 2 �6.A1/
T
�6.D/,

the operators Rb.D; �/CRb.A1; �/ 2 Fb.X; Y / and
h
�K�	

0

Y CRb.A1; �/B
i

Rb.D; �/ 2 Fb.Y;X/, we can easily deduce that, for some � 2 �6.A1/
T
�6.D/;

we have Rb.D; �/CRb. QA1; �/ 2 Fb.X; Y / and,
h
� OK�	

0

Y CRb. QA1; �/B
i
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Rb.D; �/ 2 Fb.Y;X/: Hence, we infer the following �ei. OM�/ with i D 4; 5;

is independent of � 2 �6. QA1/: Now, applying the first part of this proof for
�0 2 �. QA1/, we see that �ei. QA/ D �ei.fA1/

S
�ei. OM�0/; with i D 4; 5. Then, we

get �ei.A/ D �ei. QA/ D �ei.A1/
S
�ei.M�0/; with i D 4; 5 for any �0 2 �6.A1/

as required, and the proof of the first part of the theorem is complete. Moreover,
if we assume that Cn�e5.A/, Cn�e5.A1/, and Cn�e5.M�0/ are connected, and
from Theorem 7.3.1 .ii/, we obtain �e5.A/ D �e6.A/, �e5.A1/ D �e6.A1/ and
�e5.M�0/ D �e6.M�0/: Hence, the proof of this assertion is complete. Q.E.D

Open question. In contrast to the result of Theorem 10.3.4, if we replace the
second item by CRb.A1; �/B or CRb.D;�/B are in Fb.X; Y /, can we get the same
result? �

10.3.3 The Operator A as an Infinitesimal Generator
of a Holomorphic Semigroup

Definition 10.3.1. An operator T in a Banach space generates a holomorphic
semigroup of a semiangle � 2 .0; 

2
/, if there exists ! 2 R, such that the sector

S.!; �/ WD
n
� 2 C such that j arg.� � !/j < 

2
C �

o
(10.3.13)

belongs to �.T / and, for each " 2 .0; �/, there is L" � 1, such that the resolvent of
T satisfies the following inequality k.T � �/�1k < L"j��!j in S.!; � � "/. }
The following results already given in [50].

Theorem 10.3.5. Let the assumptions .J1/–.J 8/ hold and, for some �0 2 �.A1/,
the operator M�0 is closable. Let us also assume that A1 and M�0 generate
holomorphic semigroups inX and Y , respectively, and, for some ! > 0, let S.!; �/
be a sector (10.3.13) corresponding to the operator A1. If the condition .J 4/ is
strengthened by

inf
�2S.!;�/ kC�k D 0; (10.3.14)

then the operator A generates a holomorphic semigroup in X � Y . }
Proof. From (10.3.6), we may deduce that, for � 2 �.A1/, the operator A � � is
boundedly invertible if, and only if,M��� has this same property and, in this case,
we have

.A��I/�1 WD
 
I K�	

0

Y � .A1 � �/�1B
0 I

!�
.A1 � �/�1 0

0 .M� � �/�1
��

I 0

�C� I
�

:

(10.3.15)
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Since the operators A1 and M�0 generate holomorphic semigroups, then there exist
constants L1 > 0, �1 2 .0; �/, and !1 > 0, such that the sector S.!1; �1/ belongs to
the resolvent set of both A1 and M�0 and that, for all � 2 S.!1; �1/, we have

k.A1 � �/�1k � L1

j�j ; k.M�0 � �/�1k � L1

j�j : (10.3.16)

Without loss of generality, we may assume that ! D !1. Let � 2 S.!; �1/. From
Eq. (10.3.16), we infer that

kA1.A1 � �/�1k D kI C �.A1 � �/�1k � L1 C 1: (10.3.17)

Now, let �1 2 �.A1/. Then, we have C� D C�1ŒA1.A1 � �/�1 � �1.A1 � �/�1�: By
using the inequalities (10.3.16) and Eq. (10.3.17) and, for j�j > j�1j, we have

kC�k � kC�1k.2L1 C 1/: (10.3.18)

Since kC�1k can be made arbitrarily small in view of condition (10.3.14), we notice
that

lim
j�j!1; �2S.!;�1/

kC�k D 0: (10.3.19)

By using the first inequality in (10.3.16), Lemma 10.3.3 and also (8.2.2), we

conclude that the operators .A1 � �/�1B and K�	
0

Y are uniformly bounded in
� 2 S.!; �1/. Therefore, the factors

 
I K�	

0

Y � .A1 � �/�1B
0 I

!

and

�
I 0

�C� I
�

in (10.3.15) are uniformly bounded in � 2 S.!; �1/. Moreover, by using
Eq. (10.3.4), we have

M� � � D.M�0 � �/ �I C .M�0 � �/�1.M� �M�0/
�

D.M�0 � �/
�
I C .M�0 � �/�1.� � �0/C�.K�0	

0

Y � .A1 � �0/�1B/
	
:

By using the second estimate in (10.3.16), we have sup
�2S.!;�1/

k.M�0 � �/�1.� �
�0/k < 1: Hence, by using Eq. (10.3.19), there exists an element r > 0, such that

�
�
�.M�0 � �/�1.� � �0/C�

�
K�0	

0

Y � .A1 � �0/�1B
	�
�
� <

1

2
(10.3.20)
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for all � 2 S.!; �1/, with j�j > r . So, the following operator

I C .M�0 � �/�1.� � �0/C�
�
K�0	

0

Y � .A1 � �0/�1B
	

is invertible, and the norm of its inverse is not greater than 2. Hence, for all � 2
S.!; �1/, with j�j > r , we have k�.M� � �/�1k � 2k�.M�0 � �/�1k � 2L1: So,
k�.A � �I/�1k is uniformly bounded for all � 2 S.! C r; �1/ and therefore, the
operator A generates a holomorphic semigroup in X � Y . Q.E.D

Remark 10.3.4. We can easily notice that the assumption (10.3.14) can be replaced
by the weaker condition that the infimum is less than a constant c chosen small
enough for the norm in (10.3.20) in order to be less than d , say, where d < 1. }
Proposition 10.3.1. Let us suppose that A1 generates a holomorphic semigroup
and let S.!; �/ be the corresponding sector. Then, (10.3.14) holds if the relative
A1-bound of C is zero. This is the case if C is A1-compact and either X is reflexive
or C (as originally defined, i.e., from X into Y ) is closable. }
Proof. The relative A1-boundedness condition implies that, for every b > 0, there
exists a > 0, such that

kCxk � akxk C bkA1xk (10.3.21)

for all x 2 D.A1/. By choosing x D .A1 � �/�1u in (10.3.21) with being � in the
sector S.!; �/ (as in the proof of Theorem 10.3.5) and by using (10.3.17), we obtain

kC�uk � ak.A1 � �/�1uk C bkA1.A1 � �/�1uk �
�

aL1
j�j C b.L1 C 1/

�

kuk:

The right-hand side can be made arbitrarily small if we choose a sufficiently small
b and then a large j�j. This leads to the first claim. For the remainder, we notice that
if C is A1-compact and ifX is reflexive or C is closable, then the relative A1-bound
of C is zero (see, e.g., [64, Theorem 2] or [106, Lemma III.2.16]). Q.E.D

10.4 Relative Boundedness for Block Operator Matrices

Let �.:/ be a measure of noncompactness. In order to ensure that A is closable or
closed, we need more refined assumptions on the strength of the entries with respect
to each other, where we consider the � -diagonally dominant and out � -diagonally
dominant. Let X and Y be Banach spaces. In the product space X �Y , we consider
an operator which is formally defined by a matrix

A D
�
A B

C D

�

; (10.4.1)
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where the entries are, in general, unbounded operators. A is acting on a Banach
space X; D is acting on a Banach space Y and B; C are acting between these
spaces. In general, the operator matrix in (10.4.1) defines a linear operator in X �Y
with a domain D.A/

T
D.C /�D.B/

T
D.D/which is not closed or closable, even

if its entries are closed or closable. Now, let us introduce the following definitions.

Definition 10.4.1. Let �.:/ be a measure of noncompactness. The block matrix
operator A is called

.i/ � -diagonally dominant, if C is A-� -bounded and B is D-� -bounded,
.ii/ off-� -diagonally dominant, if A is C -� -bounded and D is B-� -bounded. }
Definition 10.4.2. The block matrix operator A is called

.i/ � -diagonally dominant with bound ı, if C is A-� -bounded with bound ıC ; and
B is D-� -bounded with bound ıB; and ı D maxfıB; ıC g;

.ii/ off-� -diagonally dominant with bound ı, if A is C -� -bounded with bound ıA;
and D is B-� -bounded with bound ıD; and ı D maxfıA; ıDg: }

Proposition 10.4.1. Consider the block operator matrices

T D
�
A 0

0 D

�

and S D
�
0 B

C 0

�

:

If A is � -diagonally dominant with bound ı; then S is T -� -bounded with T -� -
bound ı: }
Proof. For D � D.S/, we get

�

��
0 B

C 0

��
1.D/

2.D/

��

D maxf�.C.1.D///; �.B.2.D///g:

According to the assumptions, there exist constants aB; aC ; bB; bC � 0 such that

�
�.B.2.D/// � aB�.2.D//C bB�.D.2.D///;

�.C.1.D/// � aC �.1.D//C bC �.A.1.D///:

Since �.2.D// � �.2/�.D/ and �.1.D// � �.1/�.D/; then

�
�.B.2.D/// � aB�.2/�.D/C bB�.D.2.D///;

�.C.1.D/// � aC �.1/�.D/C bC �.A.1.D///:
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Hence, we get

�

��
0 B

C 0

��
1.D/

2.D/

��

� maxfaB�.2/; aC �.1/g�.D/C maxfbB; bC g maxf�.A.1.D///; �.D.2.D///g
� maxfaB�.2/; aC �.1/g�.D/C maxfbB; bC g�

��
A 0

0 D

��
1.D/

2.D/

��

;

which completes the proof. Q.E.D

Remark 10.4.1. If A is off-� -diagonally dominant with bound ı; then T is S-� -
bounded with S-� -bound ı: }
Theorem 10.4.1. The block matrix operator A is closed if A is � -diagonally
dominant, �.A/ 6D ;, C and D are closed, .A � �/�1B is bounded on D.B/,
for some � 2 �.A/; and ..aC C j�jbC /�..A � �/�1/C bC /bB < 1: }
Proof. The block matrix operator A is � -diagonally dominant implies that there
exists aC ; aB; bC ; bB � 0, such that

�.C.A � �/�1B.D// � aC �..A � �/�1B.D//C bC �.A.A � �/�1B.D//
� .aC C bC j�j/�..A � �/�1/C bC /�.B.D//

� .aC C bC j�j/�..A � �/�1/C bC /.aB�.D/C bB�.D.D///:

So, C.A � �/�1B is D-� -bounded with D-bound < 1. Since D is closed, then, by
using Theorem 2.10.1,D�C.A��/�1B is also closed. According to Theorem 2.2.3,
we conclude that A is closed. Q.E.D

Theorem 10.4.2. The block matrix operator A is closed if A is � -diagonally
dominant, �.D/ 6D ;, A and B are closed, .D � �/�1C is bounded on D.C /,
for some � 2 �.D/; and ..aB C j�jbB/�..D � �/�1/C bB/bC < 1: }
Proof. The proof of Theorem 10.4.2 may be checked in a way which is similar to
the one in Theorem 10.4.1. Q.E.D

Theorem 10.4.3. The block matrix operator A is closed if A is � -diagonally
dominant with bound < 1: }
Proof. According to Theorem 2.10.1 and Proposition 10.4.1, we deduce that the
block matrix operator A is closed. Q.E.D

Corollary 10.4.1. The block matrix operator A is closed if A is off-� -diagonally
dominant with bound < 1: }
Proof. According to both Theorem 2.10.1 and Remark 10.4.1, we deduce that the
block matrix operator A is closed. Q.E.D
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Theorem 10.4.4. The block matrix operator A is closed, if A is off-� -diagonally
dominant, C is boundedly invertible, B; C�1D is bounded on D.D/; A is closed
and .aA�.C�1/C bA/bD < 1: }
Proof. As A is off-diagonally dominant, then there exists aA; aD; bA; bD � 0 such
that

�.AC�1.D � �/.D// � .aA�.C
�1/C bA/�.D.D//

� .aA�.C
�1/C bA/.aD�.D/C bD�.B.D//:

Then, AC�1.D � �/ is B-� -bounded with B-bound< 1: Since B is closed and
C�1D is bounded on D.D/, then, by using Theorem 2.10.1, B � AC�1.D � �/ is
closed. According to Theorem 2.2.4, we conclude that A is closed. Q.E.D

Theorem 10.4.5. The block matrix operator A is closed, if A is off-� -diagonally
dominant, B is boundedly invertible, B�1A is bounded on D.A/; D is closed and
.aD�.B

�1/C bD/bA < 1: }
Proof. The proof may be checked in a way which is similar to that in Theo-
rem 10.4.4. Q.E.D

Let Ai W D.Ai / � X �! Y; Bi W D.Bi / � Y �! X; Ci W D.Ci / � X �! Y

andDi W D.Di / � Y �! Y , i D 1; 2; be unbounded operators, such that D.A1/ �
D.A2/, D.B1/ � D.B2/, D.C1/ � D.C2/, D.D1/ � D.D2/; and we define the
block matrix operators by

A1 D
�
A1 B1
C1 D1

�

; A2 D
�
A2 B2
C2 D2

�

:

Theorem 10.4.6. Let us decompose the operator A1 in the following form A1 D
S C T , where

T D
�
A1 0

0 D1

�

and S D
�
0 B1
C1 0

�

:

If A2 and C2 are A1-weakly compact, and if B2 and D2 are D1-weakly compact,
then A2 is T -weakly compact. Moreover, if A1 is diagonally dominant with bound
< 1, then A2 is A1-weakly compact. }
Proof. Assume that tn D .xn; yn/n � D.T /, such that .tn/n and .T tn/n are
bounded sequences, we have shown that .A2tn/n contains a weakly convergent
subsequence. Since A2 and C2 are A1-weakly compact and since B2 and D2 are
D1-weakly compact, it is sufficient to show that .A1xn/n and .D1yn/n are bounded.
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Indeed, since .A1tn/n is bounded, then the sequences .A1xn/n and .D1yn/n are
bounded for n 2 N: Then, let us assume that .hn/n � D.A1/ such that .hn/n
and .A1hn/n are bounded sequences. We show that .A2hn/n contains a weakly
convergent subsequence. Since A2 is T -weakly compact, it is sufficient to show
that .T hn/n is bounded. According to Proposition 10.4.1, the assumption that A1

is diagonally dominant with bound< 1 implies that S is T -bounded with T -bound
< 1: Thus, there exists p 2 .0; 1� and aS ; bS � 0, such that

kShnk � aSkhnk C bSkT hnk
� aSkhnk C bS

�kA1hnk C kShnk
�

� aSkhnk C bSkA1hnk C bSkShnk:

Since bS< 1; then kShnk � aSkhnkCbSkA1hnk
1�bS ;which implies that .Shn/n is bounded

and then, .T hn D .A1 � S/hn/n is also bounded. Consequently, A2 is A1-weakly
compact. Q.E.D

Remark 10.4.2. The assumptions A2 and C2 are A1-weakly compact and B2; D2

are D1-weakly compact and A1 which is diagonally dominant with bound < 1 in
Theorem 10.4.6, can be replaced by

(i’) A2; C2 are C1-weakly compact and B2; D2 are B1-weakly compact,
(ii’) A1 is off-diagonally dominant with bound < 1

respectively, and we get the same conclusion. }
Lemma 10.4.1. Let S; T 2 C.X/; and assume that X has the DP property.
If S is T -weakly compact and kS.� � T /�1k < 1 for some (hence for all)
� 2 �.T /

T
�.S C T /, then �ei.S C T / D �ei.T /, with i D 1; 2; 3; 4; 5; 7 and 8:

Moreover, if s.T / < 1 and Cn�e5.T / of �e5.T / is connected, then �e6.S C T / D
�e6.T /. }
Proof. Let � 2 �.T /T �.S C T /: We recall that

.S C T � �/�1 D
h
.I C S.T � �/�1/.T � �/

i�1

D .T � �/�1.I C S.T � �/�1/:

Since kS.��T /�1k < 1, then .I CS.T ��/�1/�1 D P
n�0.S.T ��/�1/n: Hence,

.S C T � �/�1 D .T � �/�1
X

n�0
.S.T � �/�1/n

D .T � �/�1 C
X

n�1
.T � �/�1.S.T � �/�1/n:

Since, S.T � �/�1 is weakly compact and .T � �/�1 is bounded, for some (hence
for all) � 2 �.T /T �.S CT /; then .S CT ��/�1 � .T ��/�1 is weakly compact.



10.5 Stability of the Wolf Essential Spectrum of Some Matrix Operators. . . 367

Consequently, by using Theorem 7.5.4, we get �ei.S C T / D �ei.T /, with i D
1; 2; 3; 4 and 5:By using Theorem 7.5.4, we have �e6.SCT / D �e6.T /:According
to Remark 2.1.7, we have W.X/ � FC.X/

T
F�.X/ since X has the DP property.

Consequently, we conclude that �ei.S C T / D �ei.T /, with i D 7; 8; follows from
Theorem 7.5.4 and Lemma 6.3.1. Q.E.D

Theorem 10.4.7. Suppose that X � Y has the Dunford-Pettis property and A1 is
closed. If A2 is A1-weakly compact and kA2.A1��/�1k < 1, then �ei.A1CA2/ D
�ei.A1/, with i D 1; 2; 3; 4; 5; 7 and 8: Moreover, if s.A1/ < 1 and Cn�e5.A1/ is
connected, then

�e6.A1 C A2/ D �e6.A1/:

}
Proof. Since A2 is A1-weakly compact, kA2.A1��/�1k < 1; s.A1/ < 1 andX�
Y has the Dunford-Pettis property then, by using Lemma 10.4.1, we get �ei.A1 C
A2/ D �ei.A1/; with i D 1; 2; 3; 4; 5; 6; 7 and 8: Q.E.D

10.5 Stability of the Wolf Essential Spectrum of Some Matrix
Operators Acting in Friedrichs Module

Let .K;H/ be a compact Friedrichs module and let A1, A2, B1, B2, and C be five
closed operators acting in a Banach space H . In the product space H � H; we
consider two operators defined by a 2 � 2 block operator matrix

M1
C D

�
A1 C

0 B1

�

and M2
C D

�
A2 C

0 B2

�

:

The main purpose of this section is to establish the criteria which ensure that the
difference of the resolvent of M1

C and M2
C is compact. We suppose that D.Bi / �

D.C / and �.Ai /
T
�.Bi / is not empty. It is easy to show that if z 2 �.Ai /T �.Bi /,

z 2 �.M i
C /, with i D 1; 2, then we get

.M i
C � z/�1 D

�
.Ai � z/�1 �.Ai � z/�1C.Bi � z/�1

0 .Bi � z/�1
�

:

Now, for E 2 C.H/, we assume that the following conditions hold:

.K1/ D.E/ � K densely.

.K2/ D.E�/ � K:

.K3/ E can be extended to a continuous operator QE 2 L.K;K�/.
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Remark 10.5.1. If �.E/ is not empty and if E satisfies the assumptions .K1/–.K3/
then, for z 2 �.E/, .E � z/�1�H � K: So, we deduce that .E � z/�1 extends to
a unique continuous Rz.E/ operator K� �! H; which will be denoted, for the
moment, by .E � z/�1: }
Theorem 10.5.1. Suppose thatAi ,Bi , i D 1; 2 satisfy the assumptions .K1/–.K3/
and let us assume that �.A1/

T
�.A2/

T
�.B1/

T
�.B2/ is not empty. If D.Bi / �

D.C /; i D 1; 2; and if there exists a Banach module L such that the following
conditions are satisfied:

.i/ There are an operator S1 2 L.L;K�/ and an operator T1 2 Bl
0.K;L/

such that fA2 � fA1 D S1T1 and .A1 � z/�1S1 2 Bl
q.L;H/ for some z 2

�.A1/
T
�.A2/:

.ii/ There are an operator S2 2 L.L;K�/ and an operator T2 2 Bl
0.K;L/

such that fB2 � fB1 D S2T2 and .B1 � z/�1S2 2 Bl
q.L;H/ for some z 2

�.B1/
T
�.B2/;

then, M2
C is a compact perturbation of the operator M1

C . In particular, �e4.M1
C / D

�e4.M
2
C /: }

Proof. Let z 2 �.A1/T �.A2/
T
�.B1/

T
�.B2/: Then, z 2 �.M1

C /
T
�.M2

C / and

.M1
C � z/�1 � .M2

C � z/�1 D
�
R1.z/ R3.z/
0 R2.z/

�

;

whereR1.z/ D .A1�z/�1.A2�A1/.A2�z/�1; R2.z/ D .B1�z/�1.B2�B1/.B2�
z/�1 andR3.z/ D �R1.z/C.B2�z/�1�.A1�z/�1CR2.z/: It remains to demonstrate
that all entries of this block operator matrix are compact. Since A1 satisfies the
assumptions .K1/–.K3/, and by using Remark 10.5.1, we infer that .A1 � z/�1
can be extended to a unique continuous operator Rz.A1/ W K� �! H: Now, let
us notice that Rz.A1/.A1 � z/x D x for x 2 D.A1/: So, by using the density of
D.A1/ in K and the continuity Rz.A1/.fA1 � z/x D x for x 2 K, in particular
.A2 � z/�1 D Rz.A1/.fA1 � z/.A2 � z/�1. Moreover, we can write .A1 � z/�1 D
.A1 � z/�1.A2 � z/.A2 � z/�1 D Rz.A1/.fA2 � z/.A2 � z/�1: By using the last
two relations, we obtain R1.z/ D Rz.A1/.fA2 � QA1/.A2 � z/�1: It is easy to see
that R1.z/H � K: So, in order to prove that R1.z/ is a compact operator, we have
to show that R1.z/ 2 Bl

0.H/: Now, according to the factorization assumption, we
have R1.z/ D ŒRz.A1/S1�ŒT1.A2 � z/�1�: By using Theorem 2.9.1, we have T1 D
ME0 where M 2 M.L/ and E0 2 L.K;L/: Since Rz.A1/S1 2 Bl

q.L;H/; then
Rz.A1/S1M 2 Bl

0.L;H/ and Rz.A1/S1M D NE1 where N 2 M.H/ and E1 2
L.L;H/: Finally, we obtain R1.z/ D NŒE1E0.A2 � z/�1� where the first factor
is in M.H/ and the second is in Bl

0.H/: By Remark 2.9.1, we infer that R1.z/ 2
K.H/. A similar proof as before, we prove that R2.z/ D .B1 � z/�1.fB2 �fB1/.B2 �
z/�1 D ŒRz.B1/S2�ŒT2.B2�z/�1�, whereRz.B1/S2 2 Bl

q.L;H/ and T2.B2�z/�1 2
Bl
0.H;L/. Therefore, R2.z/ 2 K.H/: Let us observe that R3.z/ D �R1.z/C.B2 �

z/�1�.A1�z/�1CR2.z/. SinceR1.z/ andR2.z/ are compact operators, thenR3.z/ 2
K.H/: Q.E.D
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We may state the assumptions of the last theorem in a more general form. More
precisely, we have the following result:

Corollary 10.5.1. Suppose that Ai , Bi , i D 1; 2 satisfy the assumptions .K1/–
.K3/ and assume that �.A1/

T
�.A2/

T
�.B1/

T
�.B2/ is not empty. If D.Bi / �

D.C /, with i D 1; 2; and if there exists a set of families .Lk/kD1;:::;n (n 2 N
�) such

that the following conditions are satisfied:

.i/ fA2 � fA1 D Pn
kD1 S1;kT1;k where the operator S1;k 2 L.Lk;K�/, T1;k 2

Bl
0.K;Lk/ and Rz.A1/S1;k 2 Bl

q.Lk;H/ for some z 2 �.A1/T �.A2/:

.ii/ fB2 � fB1 D Pn
kD1 S2;kT2;k where the operator S2;k 2 L.Lk;K�/, T2;k 2

Bl
0.K;Lk/ and Rz.B1/S2;k 2 Bl

q.Lk;H/ for some z 2 �.B1/T �.B2/:

Then, M2
C is a compact perturbation of the operator M1

C and �e4.M
1
C / D

�e4.M
2
C /: }

Proof. The proof follows immediately from Theorem 10.5.1. Q.E.D

10.6 Wolf Essential Spectrum of Block Operator Matrix
Acting in Friedrichs Module

Let .J;H/ be a compact Friedrichs module. In the productH ˚H , we consider an
unbounded block operator matrix

A D
�
A B

C D

�

;

where A; B; C , and D are closable operators with dense domains D.A/, D.B/,
D.C /, D.D/ in H obtained as restrictions of some bounded operators J �! J �:
We always suppose that A with its natural domain D.A/ D .D.A/

T
D.C // ˚

.D.B/
T

D.D// is also densely defined. If �.A/ is not empty, the operator function
S defined by S.�/ D D � � � C.A � �/�1B is called a Schur complement of A:
Now, we assume that the following conditions hold:

.K4/ D.A/ � D.C / � J densely, D.D/ � D.B/ � J .

.K5/ D.D�/ � J and D.A�/ � J:

Theorem 10.6.1. Suppose that A; B; C , and D satisfy the assumptions .K4/ and
.K5/: If for some (and hence for all) � 2 �.A/T �.D/; we have

.i/ .A � �/�1B and C.A � �/�1B are bounded on D.B/,
.ii/ C , B extend to bounded operators QC ; QB 2 L.J; J �/;
.iii/ there exists �0 2 �.A/ with �.A/

T
�.A/

T
�.D � C.A � �0/�1B/ is not

empty, and
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.iv/ there are a Banach moduleK and operators S1; S2 2 L.K; J �/ and T1; T2 2
Bl
0.J;K/ such that QC D S1T1; QB D S2T2; .I C S.�/

�1
C.A � �/�1B/.D �

�/�1S1; .A � z/�1S2 2 Bl
q.K;H/; for all � 2 �.A/

T
�.A/

T
�.D �

C.A � �0/�1B/:
Then, �e4.A/ D �e4.A/

S
�e4.D � C.A � �0/�1B/: }

Proof. By using the second condition in .i/, S.�/ is closable for every � 2 �.A/

and S.�/ D D���C.A � �/�1B:According to Theorem 2.2.3, the block operator
matrix A is closable. Let

A1;�0 D
�
A 0

0 S.�0/C �0

�

:

Now, let �0 2 �.A/ and let � 2 C be such that � 2 �.A/
T
�.A/

T
�.D �

C.A � �0/�1B/ is not empty. Using Eq. (10.3.5), we deduce that

.A � �/�1 � .A1;�0 � �/�1

D
 
.A � �/�1B S.�/�1C.A � �/�1 �.A � �/�1B S.�/�1

�S.�/�1C.A � �/�1 S.�/
�1 � .S.�0/C �0 � �/�1

!

:

It remains to demonstrate that all entries of this block operator matrix are compact.

For this purpose, let R1 D S.�/
�1
C.A � �/�1: Then,

R1 D .D � �/�1C.A � �/�1 C .S.�/
�1 � .D � �/�1/C.A � �/�1

D .D � �/�1C.A � �/�1 C S.�/
�1
.D � � � S.�//.D � �/�1C.A � �/�1

D .D � �/�1C.A � �/�1 C S.�/
�1
C.A � �/�1B.D � �/�1C.A � �/�1

D .I C S.�/
�1
C.A � �/�1B/.D � �/�1C.A � �/�1:

Note that z 2 �.D/ if, and only if, z 2 �.D�/ and we have .D� � z/�1 D .D �
z/�1�: By using the assumption .K5/, .A � �/�1�H � J . So, .A � �/�1 can
be extended to a unique continuous operator R�.D/ W J � �! H: Since C can
be extended to a unique continuous QC D S1T1, then we can write R1 D Œ.I C
S.�/

�1
C.A � �/�1B/R�.D/S1�ŒT1.A��/�1�where the first factor is in Bl

q.K;H/

and the second factor is inBl
0.H;K/: So, the product of the two factors is inBl

0.H/:

The domain of D is included in J and hence, R1H � J: So, R1 2 K.H/: Let

R2 D .A � �/�1B S.�/�1C.A � �/�1 D .A � �/�1BR1: Since R1 2 K.H/, then

R2 2 K.H/: Now, we suppose thatR3 D S.�/
�1� .S.�0/C�0��/�1: Therefore,
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R3 D .�0 � �/S.�/�1.C.A � �/�1B � C.A � �0/�1B/.S.�0/C �0 � �/�1

D .� � �0/S.�/�1C.A � �/�1.A � �0/�1B.S.�0/C �0 � �/�1
D .� � �0/R1.A � �0/�1B.S.�0/C �0 � �/�1;

where R1 2 K.H/: So, R3 2 K.H/:
By using a similar reasoning as before, we prove that R4 WD .A � �/�1B

S.�/
�1 2 K.H/: Q.E.D

Corollary 10.6.1. Suppose that A, B , C , and D satisfy the assumptions .K4/ and
.K5/: Let .Kk/kD1;:::;n be a family of Banach modules (n 2 N

�). If, for some (and
hence for all) � 2 �.A/T �.D/; we have

.i/ .A � �/�1B and C.A � �/�1B are bounded on D.B/,
.ii/ C , B can extended to be bounded operators QC D Pn

kD1 S1;kT1;k and QB DPn
kD2 S1;kT2;k; where S1;k , S2;k 2 L.Kk; J

�/ and T1;k , T2;k 2 Bl
0.J;Kk/,

.iii/ there exists �0 2 �.A/ with �.A/
T
�.A/

T
�.D � C.A � �0/�1B/ is not

empty, and

.iv/ .I CS.�/
�1
C.A � �/�1B/.D��/�1S1;k , .A� z/�1S2;k 2 Bl

q.K;H/; for all

1 � k � n, � 2 �.A/T �.A/
T
�.D � C.A � �0/�1B/:

Then, �e4.A/ D �e4.A/
S
�e4.D � C.A � �0/�1B/: }

10.7 The M -Essential Spectra of Block Operator Matrices

The purpose of this section is to discuss the M -essential spectra of the 2� 2 matrix
operator L, the closure of L0 which acts on the Banach space X � Y where M is a
bounded operator, formally defined on the product space X � Y by a matrix

M D
�
M1 M2

M3 M4

�

and L0 is given by

L0 D
�
A B

C D

�

:

The operator A acts on the Banach space X and has the domain D.A/, whereas the
operatorD is defined on D.D/ and acts on the Banach space Y; and the intertwining
operator B (resp. C ) is defined on the domain D.B/ (resp. D.C /) and acts on the
Banach space X (resp. on Y ).



372 10 Essential Spectra of 2� 2 Block Operator Matrices

10.7.1 Closability and Closure of the Block Operator Matrix

In what follows, we will assume that the following conditions hold:

.L1/ The operator A is a closed, densely defined linear operator on X with a
nonempty M1-resolvent set �M1.A/.

.L2/ The operator B is a densely defined linear operator on X and, for some
(hence for all) � 2 �M1.A/, the operator .A � �M1/

�1B is closable. (In
particular, if B is closable, then .A � �M1/

�1B is also closable).
.L3/ The operator C satisfies the inclusion D.A/ � D.C / and, for some (hence

for all) � 2 �M1.A/, the operator C.A � �M1/
�1 is bounded.

.L4/ The lineal D.B/
T

D.D/ is dense in Y and, for some (hence for all) � 2
�M1.A/, the operator D � C.A � �M1/

�1B is closable and, we will denote the
closure of the operator D � .C � �M3/.A � �M1/

�1.B � �M2/ by S.�/.

Remark 10.7.1.

.i/ From the closed graph theorem, it follows that the operator G.�/ WD
.A � �M1/�1.B � �M2/ is bounded on Y .

.ii/ We emphasize that neither the domain of S.�/ nor the property of being
closable depends on �. Indeed, let us consider �;� 2 �M1.A/. Then, we have:

S.�/ � S.�/ D .� � �/ ŒM3G.�/C F.�/M2 C F.�/M1G.�/� ; (10.7.1)

whereF.�/ WD .C��M3/.A��M1/
�1. Since the operatorsF.�/ andG.�/ are

bounded, then the difference S.�/ � S.�/ is also bounded. Therefore, neither
the domain of S.�/ nor the property of being closable depends on �. }

Now, let us recall the following result which describes the closure of the operatorL0.

Theorem 10.7.1. Let the conditions .L1/–.L3/ be satisfied and let the lineal
D.B/

T
D.D/ be dense in X . Then, the operator L0 is closable if, and only if, the

operator D �C.A��M1/
�1B is closable on X , for some � 2 �M1.A/. Moreover,

the closure L of L0 is given by

L D �M C
�

I 0

F.�/ I

��
A � �M1 0

0 S.�/ � �M4

��
I G.�/

0 I

�

: (10.7.2)

}
Proof. Since M is bounded, it is easy to verify that the assumptions .L1/–.L4/
are also satisfied, if we replace L0 by L0 � �M . Then, the result follows from
Theorem 10.1.1 for .L0 � �M/ � 0:I . Q.E.D
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10.7.2 Essential Spectra of L

Lemma 10.7.1.

.i/ If M3 2 Fb.X; Y / and F.�/ 2 Fb.X; Y /, for some � 2 �M1.A/, then F.�/ 2
Fb.X; Y /, for all � 2 �M1.A/.

.ii/ If M2 2 Fb.Y;X/ and, if G.�/ 2 Fb.Y;X/, for some � 2 �M1.A/, then
G.�/ 2 Fb.Y;X/, for all � 2 �M1.A/.

.iii/ If F.�/,G.�/,M2 andM3 are Fredholm perturbations, for some � 2 �M1.A/,
then �ei;M4.S.�// does not depend on � 2 �M1.A/, for i D 1; : : :; 6. }

Proof. .i/ The result follows from the following identity

F.�/�F.�/ D .���/F.�/M1 �M3

�
.A��M1/

�1; for all � and � 2 �M1.A/:

.ii/ The result follows from this identity

G.�/�G.�/ D .���/.A� �M1/
�1M1G.�/�M2

�
; for all � and � 2 �M1.A/:

.iii/ The result of this assertion follows directly from Eq. (10.7.1). Q.E.D

Theorem 10.7.2. Let L0 be the 2 � 2 operator matrix satisfying the conditions
.L1/–.L4/. If M2 and M3 are Fredholm perturbations and if, for some (hence for
all) � 2 �M1.A/, F.�/ and G.�/ are Fredholm perturbations, then �e4;M .L/ D
�e4;M1.A/

S
�e4;M4.S.�// and, �e5;M .L/ � �e5;M1.A/

S
�e5;M4.S.�//: Moreover,

if Cn�e4;M1.A/ is connected, then �e5;M .L/ D �e5;M1.A/
S
�e5;M4.S.�//: Besides,

if Cn�e5;M .L/ is connected, �M .L/ ¤ ;, Cn�e5;M4.S.�// is connected and
�M4.S.�// ¤ ;, then �e6;M .L/ D �e6;M1.A/

S
�e6;M4.S.�//: }

Proof. Let � 2 �M1.A/ be such that the operators F.�/ and G.�/ are Fredholm
perturbations, and let � 2 C. Writing �M �L D �M �LC .���/M , and using
the relation (10.7.2), we have

�M � L D UV.�/W � .� � �/
�

0 M1G.�/ �M2

F.�/M1 �M3 F.�/M1G.�/

�

; (10.7.3)

where

U D
�

I 0

F.�/ I

�

;W D
�
I G.�/

0 I

�

and V.�/ D
�
�M1 � A 0

0 �M4 � S.�/
�

:

Since the operators F.�/, G.�/, M2 and M3 are Fredholm perturbations, then by
using Theorem 6.6.1, the second operator in the right-hand side of Eq. (10.7.3) is
also a Fredholm perturbation. Hence, �M � L is a Fredholm operator if, and only
if, UV.�/W is a Fredholm operator. Now, let us notice that the operators U and W
are bounded and also have bounded inverses. Consequently, the operator UV.�/W
is a Fredholm operator if, and only if, V.�/ has this property if, and only if, �M1�A
(resp. �M4 � S.�/) is a Fredholm operator on X (resp. on Y ) and
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i.�M � L/ D i.�M1 � A/C i.�M4 � S.�//: (10.7.4)

Therefore, �e4;M .L/ D �e4;M1.A/
S
�e4;M4.S.�//, and

�e5;M .L/ � �e5;M1.A/
[
�e5;M4.S.�//: (10.7.5)

Now, let us now suppose that Cn�e4;M1.A/ is connected. By using the condition
.L1/, �M1.A/ is not empty. Let ˛ 2 �M1.A/. Then, ˛M1 �A 2 ˆ.X/ and i.˛M1 �
A/ D 0. Since �M1.A/ � �4;M1.A/ and by using Proposition 2.2.5, we deduce that
i.�M1 �A/ is constant on any component of ˆM1;A. Then, i.�M1 �A/ D 0, for all
� 2 �4;M1.A/. From Eqs. (10.7.4) and (10.7.5), it follows immediately that

�e5;M .L/ D �e5;M1.A/
[
�e5;M4.S.�//: (10.7.6)

Moreover, let us assume that Cn�e5;M1.A/ is connected. Then, by using
Lemma 9.1.1 and Eq. (10.7.6), we have �e6;M .L/ D �e6;M1.A/

S
�e6;M4.S.�//:

Q.E.D

In the sequel and, for � 2 �M1.A/, we will denote by M.�/ the following operator

M.�/ D
�

0 M1G.�/ �M2

F.�/M1 �M3 F.�/M1G.�/

�

:

Theorem 10.7.3.

.i/ If the operator M.�/ 2 FC.X � Y /, for some � 2 �M1.A/, then

�e1;M .L/ D �e1;M1.A/
[
�e1;M4.S.�//:

.ii/ If the operator M.�/ 2 F�.X � Y /, for some � 2 �M1.A/, then

�e2;M .L/ D �e2;M1.A/
[
�e2;M4.S.�//:

.iii/ If M.�/ 2 FC.X � Y /TF�.X � Y /, for some � 2 �M1.A/, then

�e3;M .L/

D �e3;M1.A/
[
�e3;M4.S.�//

[
Œ�e2;M1.A/

[
�e1;M4.S.�//�

[
Œ�e1;M1.A/

[
�e2;M4.S.�//�:

}
Proof. The assertions .i/ and .ii/ follow immediately from Eq. (10.7.3), whereas
the assertion .iii/ is an immediate consequence of .i/ and .ii/. Q.E.D



Chapter 11
Essential Spectra of 3 � 3 Block Operator
Matrices

In this chapter, we are concerned with the essential spectra of operators defined by
a 3 � 3 block operator matrix

L0 WD
0

@
A B C

D E F

G H L

1

A ; (11.0.1)

where the entries of the matrix are in general unbounded operators. The opera-
tor (11.0.1) is defined on .D.A/

T
D.D/

T
D.G// � .D.B/TD.E/

T
D.H// �

.D.C /
T

D.F /
T

D.L//. Observe that this operator doesn’t need to be closed. The
aim of this chapter is to present some conditions which should allow the 3�3 block
operator matrix L0 to be closable. For this purpose, our reasoning will be based on
the specific properties of the first entry A (always satisfying the Frobenius–Schur
decomposition of L0). So, we will consider two cases. The first one is based on A
being closed whereas the second case deals with A being closable.

11.1 Case Where the Operator A Is Closed

11.1.1 The Operator L0 and Its Closure

The essential work in this section is to impose some conditions on the entries of
the operator L0 in order to establish its closedness. In the product of Banach spaces
X�Y �Z, we consider the operator L0 defined by (11.0.1) where the operatorA acts
on X and has a domain D.A/; the operator E acts on Y and has a domain D.E/;
and the operator L acts on Z and has a domain D.L/: The intertwining operator
B is defined on the domain D.B/ � Y into X; the operator H is defined on the
domain D.H/ � Y into Z; the operator C is defined on the domain D.C / � Z

© Springer International Publishing Switzerland 2015
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into X; the operator F is defined on the domain D.F / � Z into Y; the operator
D is defined on the domain D.D/ � X into Y; and the operator G is defined on
the domain D.G/ � X into Z: In what follows, we will consider the following
hypotheses:

.M1/ The operator A is a closed, densely defined linear operator on X , with a
nonempty resolvent set �.A/:

.M2/ The operator D (resp. G) verifies that D.A/ � D.D/ (resp. D.A/ �
D.G/) and, for some (hence for all) � 2 �.A/, the operator D.A � �/�1 (resp.
G.A � �/�1) is bounded.
Let F1.�/ WD D.A � �/�1, and F2.�/ WD G.A � �/�1:
• In particular, if D (resp. G) is closable, then from the closed graph theorem

(see Theorem 2.1.3), it follows that F1.�/ (resp. F2.�/) is bounded.

.M3/ The operator B (resp. C ) is densely defined on Y (resp. Z) and, for some
(hence for all)� 2 �.A/, the operator .A��/�1B (resp. .A��/�1C ) is bounded
on its domain.
Now, let G1.�/ WD .A � �/�1B , and G2.�/ WD .A � �/�1C :

.M4/ The lineal D.B/
T

D.E/ is dense in Y and, for some (hence for all) � 2
�.A/, the operator S1.�/ WD E �D.A � �/�1B is closed.

.M5/ D.C / � D.F /, and the operator F � D.A � �/�1C is bounded on its
domain, for some� 2 �.A/ and therefore, for all� 2 �.A/:We will also suppose
that there exists � such that � 2 �.A/T �.S1.�// and we will denote G3.�/ by

G3.�/ WD .S1.�/ � �/�1.F �D.A � �/�1C /:

• To explain this, let � 2 �.A/, such that F �D.A � �/�1C is bounded on its
domain. Then, for an arbitrary � 2 �.A/, we have

F �D.A � �/�1C D F �D.A � �/�1C C .� � �/F1.�/.A � �/�1C:

From the assumptions .M2/ and .M3/, it follows that the operator on the right-
hand side is bounded on its domain. Then, the boundedness of the operator F �
D.A � �/�1C does not depend on � 2 �.A/: We will denote G4.�/ by G4.�/ WD
F �D.A � �/�1C .

Remark 11.1.1. If the operators A and E generate C0-semigroups, and if the
operators D and B are bounded, then there exists � 2 C, such that � 2
�.A/

T
�.S1.�//: Indeed, it is well known that if the operators A and E generate

C0-semigroups, then there exist two constants M > 0 and w > 0, such that
k.� � T /�1k � M

Re��w , where T 2 fA;Eg for all � such that Re� > w. For
a fixed � 2 C chosen in such a way that Re� > w C ˛; where ˛ > 0; we consider
the following resolvent equation of S1.�/

.� �E CD.A � �/�1B/' D  : (11.1.1)
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Since � 2 �.E/, we deduce that, for Re� > w C ˛; Eq. (11.1.1) may be
transformed into ŒI C .� � E/�1D.� � A/�1B�' D .� � E/�1 : The fact that
k.��E/�1D.��A/�1Bk � M2kDkkBk

˛.Re��w/ allows us to conclude that lim
Re�!C1 k.��

E/�1D.��A/�1Bk D 0:Hence, there exists ˇ > wC˛ such that, for Re� > ˇ;we
have r� ..� � E/�1D.� � A/�1B/ < 1; where r� .:/ represents the spectral radius.
Hence for �; such that Re� > ˇ; we have � 2 �.A/ and � 2 �.S1.�//. Moreover,
we can write

.� � S1.�//�1 D
X

n�0
Œ.� �E/�1D.� � A/�1B�n.� �E/�1:

}
.M6/ The operator H satisfies the fact that D.B/ � D.H/ and, for some (hence

for all) � 2 �.A/T �.S1.�//, the operator .H �G.A� �/�1B/.S1.�/� �/�1
is bounded. Set

F3.�/ WD .H �G.A � �/�1B/.S1.�/ � �/�1:

.M7/ For the operator K; we will assume that D.C / � D.K/ and, for some
(hence for all) � 2 �.A/T �.S1.�//, the operator

L �G.A � �/�1C � ŒH �G.A � �/�1B�.S1.�/ � �/�1ŒF �D.A � �/�1C �

is closable. Let us denote by S2.�/ this operator, and by S2.�/ its closure.

Remark 11.1.2.

(i) From the Hilbert identity, we get for �;� 2 �.A/

S1.�/ � S1.�/ D .� � �/F1.�/.A � �/�1B:

Since the operator F1.�/ is bounded and .A��/�1B is bounded on its domain,
we deduce that neither the domain of S1.�/ nor the property of being closable
depends on the choice of �: Then,

S1.�/ � S1.�/ D .� � �/F1.�/G1.�/: (11.1.2)

(ii) Let � 2 �.A/T �.S1.�// and � 2 �.A/T �.S1.�//. Then,

S2.�/ � S2.�/
D.� � �/F2.�/.A � �/�1C � F3.�/ŒF �D.A � �/�1C �

C F3.�/ŒF �D.A � �/�1C �:
D.� � �/F2.�/.A � �/�1C � F3.�/ŒF �D.A � �/�1C �
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C F3.�/ŒF �D.A � �/�1C � .� � �/D.A � �/�1.A � �/�1C �
D.� � �/F2.�/.A � �/�1C C ŒF3.�/ � F3.�/�ŒF �D.A � �/�1C �

C .� � �/F3.�/F1.�/.A � �/�1C:

Since the operators Fi.:/, with i D 1; 2; 3 are bounded everywhere and since
the operators .A��/�1C and F �D.A��/�1C are bounded on their domains,
then the closedness of the operator S2.�/ does not depend on the choice of �:
Hence,

S2.�/ � S2.�/ D.� � �/F2.�/G2.�/C ŒF3.�/ � F3.�/�G4.�/
C .� � �/F3.�/F1.�/G2.�/: (11.1.3)

}
Now, we are able to establish the closedness of the operator L0.

Theorem 11.1.1. Let the hypotheses .M1/–.M6/ be satisfied. Then, the oper-
ator L0 is closable if, and only if, S2.�/ is closable on Z, for some � 2
�.A/

T
�.S1.�//: Moreover, the closure L of L0 is given by

L D��
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A

0

@
� � A 0 0

0 � � S1.�/ 0

0 0 � � S2.�/

1

A

0

@
I G1.�/ G2.�/

0 I G3.�/

0 0 I

1

A

(11.1.4)

or, spelled out,

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

L W D.L/ � X � Y �Z �! X � Y �Z

L

0

B
@

x

y

z

1

C
A D

0

B
@

AŒx CG1.�/y CG2.�/z�� �ŒG1.�/y CG2.�/z�
DŒx CG1.�/y CG2.�/z�C S1.�/Œy CG3.�/z�� �G3.�/z

GŒx CG1.�/y CG2.�/z�C ŒH �G.A� �/�1B�Œy CG3.�/z�C S2.�/z

1

C
A

D.L/ D
8
<̂

:̂

0

B
@

x

y

z

1

C
A 2 X � Y �Z such that

x CG1.�/ y CG2.�/ z 2 D.A/;
y CG3.�/ z 2 D.S1.�//

and z 2 D.S2.�//

9
>=

>;
:

}
Proof. For � 2 �.A/

T
�.S1.�//; the operator L0 can be factorized in the

Frobenius–Schur sense:

L0 D��
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A

0

@
� � A 0 0

0 � � S1.�/ 0

0 0 � � S2.�/

1

A

0

@
I G1.�/ G2.�/

0 I G3.�/

0 0 I

1

A :
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Under the assumptions of the theorem, the following operators

U WD
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A and W WD
0

@
I G1.�/ G2.�/

0 I G3.�/

0 0 I

1

A

are bounded and also boundedly invertible as mapping from X � Y � Z into X �
Y �Z: Hence, we deduce that L0 is closable in X � Y �Z if, and only if, S2.�/ is
closable as a mapping in Z: In this case, the closure L of L0 is given by:

L D��
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A

0

@
� � A 0 0

0 � � S1.�/ 0

0 0 � � S2.�/

1

A

0

@
I G1.�/ G2.�/

0 I G3.�/

0 0 I

1

A :

This achieves the proof of this theorem. Q.E.D.

Remark 11.1.3. From Remark 11.1.2, we notice that the description of the operator
L does not depend on the choice of the point � 2 �.A/T �.S1.�//: }

11.1.2 Essential Spectra of the Operator L

Having obtained the closure L of the operator L0; we will discuss its essential
spectra. As a first step, we will establish the following stability lemma.

Lemma 11.1.1. Let � 2 �.A/
T
�.S1.�//. If the sets ˆb.Y;X/;ˆb.Z;X/, and

ˆb.Z; Y / are not empty, then

.i/ If F1.�/ 2 Fb.X; Y /, F2.�/ 2 Fb.X;Z/, and F3.�/ 2 Fb.Y;Z/, then
�ei.S1.�// and �ei.S2.�//; i D 4; 5 don’t depend on �:

.ii/ If F1.�/ 2 FbC.X; Y /, F2.�/ 2 FbC.X;Z/, and F3.�/ 2 FbC.Y;Z/, then
�e1.S1.�// and �e1.S2.�// don’t depend on �:

.iii/ If F1.�/ 2 Fb�.X; Y /, F2.�/ 2 Fb�.X;Z/, and F3.�/ 2 Fb�.Y;Z/, then
�e2.S1.�// and �e2.S2.�// don’t depend on �:

.iv/ If F1.�/ 2 FbC.X; Y /
T

Fb�.X; Y /, F2.�/ 2 FbC.X;Z/
T

Fb�.X;Z/, and
F3.�/ 2 FbC.Y;Z/

T
Fb�.Y;Z/, then �e3.S1.�// and �e3.S2.�// don’t

depend on �: }
Proof. (i) Using the fact that F1.�/ 2 Fb.X; Y /, together with Theorem 6.3.1, we
infer that F1.�/G1.�/ 2 Fb.Y /: Therefore, from Eq. (11.1.2) and Theorem 7.5.3
(i), we can deduce that �ei.S1.�// D �ei.S1.�//, with i D 4; 5: So, �ei.S1.�//, with
i D 4; 5 does not depend on �: Since F2.�/ 2 Fb.X;Z/ and F3.�/ 2 Fb.Y;Z/;

it follows, from Theorem 6.3.1, that F2.�/G2.�/ C ŒF3.�/ � F3.�/�G4.�/ C
.� � �/F3.�/F1.�/G2.�/ 2 Fb.Z/: The use of this result, Eq. (11.1.3) and
Theorem 7.5.3 (i) leads to the following equation �ei.S2.�// D �ei.S2.�//, with
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i D 4; 5: A similar reasoning allows us to reach the results for both (ii) and (iii).
The assertion (iv) is an immediate consequence of the items (ii) and (iii). Q.E.D.

In the sequel, and for � 2 �.A/T �.S1.�//, we will denote byM.�/ the following
operator

M.�/ WD
0

@
0 G1.�/ G2.�/

F1.�/ F1.�/G1.�/ F1.�/G2.�/CG3.�/

F2.�/ F2.�/G1.�/C F3.�/ F2.�/G2.�/C F3.�/G3.�/

1

A ;

and for � 2 C, we will denote V.�/ the following operator

V.�/ WD
0

@
� � A 0 0

0 � � S1.�/ 0

0 0 � � S2.�/

1

A :

Now, we are able to describe the essential spectra of 3 � 3 block matrix operators.

Theorem 11.1.2. Let the block matrix operator L0 satisfy the hypotheses
.M1/–.M7/:

.i/ If, for some � 2 �.A/
T
�.S1.�//; F1.�/ 2 Fb.X; Y /; F2.�/ 2 Fb.X;Z/;

F3.�/ 2 Fb.Y;Z/ and M.�/ 2 F.X � Y � Z/; then �e4.L/ D
�e4.A/

S
�e4.S1.�//

S
�e4.S2.�//; and �e5.L/ � �e5.A/

S
�e5.S1.�//

S

�e5.S2.�//: Moreover, if Cn�e4.A/ and Cn�e4.S1.�// are connected, then
�e5.L/ D �e5.A/

S
�e5.S1.�//

S
�e5.S2.�//: In addition, if Cn�e5.L/ is

connected, �.L/ ¤ ;;Cn�e5.S2.�// is connected and �.S2.�// ¤ ;; then

�e6.L/ D �e6.A/
[
�e6.S1.�//

[
�e6.S2.�//:

.ii/ If F1.�/ 2 FbC.X; Y /, F2.�/ 2 FbC.X;Z/; F3.�/ 2 FbC.Y;Z/ and
M.�/ 2 FC.X � Y � Z/; for some � 2 �.A/

T
�.S1.�//, then �e1.L/ D

�e1.A/
S
�e1.S1.�//

S
�e1.S2.�//:

.iii/ If F1.�/ 2 Fb�.X; Y /, F2.�/ 2 Fb�.X;Z/; F3.�/ 2 Fb�.Y;Z/ and
M.�/ 2 F�.X � Y � Z/; for some � 2 �.A/

T
�.S1.�//, then �e2.L/ D

�e2.A/
S
�e2.S1.�//

S
�e2.S2.�//:

.iv/ If F1.�/ 2 FbC.X; Y /
T

Fb�.X; Y /; F2.�/ 2 FbC.X;Z/
T

Fb�.X;Z/;
F3.�/ 2 FbC.Y;Z/

T
Fb�.Y;Z/ and M.�/ 2 FC.X � Y � Z/

T
F�.X �

Y �Z/; for some � 2 �.A/T �.S1.�//, then

�e3.L/ D �e3.A/
[
�e3.S1.�//

[
�e3.S2.�//

[
Œ�e1.A/

\
�e2.S1.�//

\
�e2.S2.�//�

[
Œ�e2.A/

\
�e2.S1.�//

\
�e1.S2.�//�

[
Œ�e2.A/

\
�e1.S1.�//

\
�e2.S2.�//�:

}
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Proof. (i) Let � 2 �.A/T �.S1.�// be such that the operator M.�/ 2 F.X � Y �
Z/ and set � 2 C, then we can rewrite the representation (11.1.4) in the following
form:

� � L D .� � �/C .� � L/

WD UV.�/W C .� � �/M.�/: (11.1.5)

The remaining part of the proof may be checked in a similar way to that in
Theorem 10.2.2. It is sufficient to use Eq. (11.1.5). The details are therefore
omitted. Q.E.D.

Remark 11.1.4.

(i) If the operators Fi.�/ and Gi.�/, with i D 1; 2; 3 are compact operators,
for some � 2 �.A/

T
�.S1.�//; then M.�/ is a compact operator, and so

Fredholm perturbation.
(ii) Let X D Y D Z WD L1.�; d�/ where .�;†;�/ is a positive measure

space. If Fi.�/ and Gi.�/; i D 1; 2; 3 are in W.L1.�; d�//; for some � 2
�.A/

T
�.S1.�//; then M.�/ 2 W.L1.�; d�/�L1.�; d�/�L1.�; d�// �

F.L1.�; d�/ � L1.�; d�/ � L1.�; d�//: }

11.2 Case Where the Operator A Is Closable

Let X , Y , Z, and W be four Banach spaces. We consider the following linear
operators, A acting in X and has the domain D.A/, E acting in Y and has the
domain D.E/, L acting in Z and has the domain D.L/. The intertwining operator
B is defined on the domain D.B/ � Y into X , the operator C is defined on the
domain D.C / � Z into X , the operator D is defined on the domain D.D/ � X
into Y , the operator F is defined on the domain D.F / � Z into Y , the operator G
is defined on the domain D.G/ � X into Z, and the operator H is defined on the
domain D.H/ � Y into Z. We notice that the operators 	X go from X into W , 	Y
go from Y into W and 	Z go from Z into W . In the product of the Banach spaces
X � Y �Z, we define the operator L0 as follows:

D.L0/ D
8
<

:

0

@
x

y

z

1

A such that
x 2 D.A/
y 2 D.B/

T
D.E/

z 2 D.C /
T

D.F /
T

D.L/
and 	Xx D 	Y y D 	Zz

9
=

;

L0 D
0

@
A B C

D E F

G H L

1

A :
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11.2.1 Closability and Closure of the Operator L0

In what follows, we will consider the following hypotheses:

.N1/ The operator A is densely defined and closable.
It is noted that D.A/ equipped with the graph norm kxkA D kxk C kAxk can be
completed to a Banach space XA which coincides with D.A/, the domain of the
closure of A which is contained in X .

.N2/ D.A/ � D.	X/ � XA and 	X W XA �! W is a bounded mapping. Let us
denote by 	X the extension by continuity, which is a bounded operator from XA
into W .

.N3/ D.A/
T
N.	X/ is dense in X and the resolvent set of the restriction of A

to this set, A1 WD AjD.A/
T
N.	X /

is nonempty, i.e., �.A1/ ¤ ;.

Remark 11.2.1. From .N1/, .N3/, it follows that 	X.D.A1// D f0g and the
operator A1 is closed. Hence, D.A1/ is a closed subset of XA. }
.N4/ The operator B is densely defined and, for some � 2 �.A1/, (hence for all),

the operator .A1 � �/�1B is bounded on its domain.
To see this, let us take �, � 2 �.A1/. Then,

.A1 � �/�1B � .A1 � �/�1B D .� � �/.A1 � �/�1.A1 � �/�1B

and so, .A1 � �/�1B � .A1 � �/�1B D .� � �/.A1 � �/�1.A1 � �/�1B:
.N5/ D.A/ � D.D/ � XA and D is a closable operator from XA into Y .

The closed graph theorem (see Theorem 2.1.3) implies that, for � 2 �.A1/, the
operator D.A1 � �/�1 is bounded from X into Y:

.N6/ D.A/ � D.G/ � XA and G is a closable operator from XA into Z.
The closed graph theorem (see Theorem 2.1.3) implies that, for � 2 �.A1/, the
operatorG.A1��/�1 is bounded fromX intoZ. For every� 2 �.A1/, and under
the assumptions .N1/–.N3/, Lemma 10.3.1 gives the following decomposition
D.A/ D D.A1/ ˚ N.A � �/: It is easy to see that the restriction of 	X
to N.A � �/ is injective. Let us denote the inverse of 	X jN.A��/

by K� WD
.	X jN.A��//�1. By using Remark 11.2.1, we can write K� W 	X.D.A// �!
N.A � �/ � D.A/: For � 2 �.A1/, and under the assumptions .N1/–.N3/, we
have

.A � �/x D .A1 � �/.I �K�	X/x: (11.2.1)

.N7/ For some � 2 �.A1/, K� is bounded from 	X.D.A// into X and its
extension by continuity to 	X.D.A// is denoted by K�.
Since, for x 2 N.A � �/, kxkA D .1C �/kxk, then K� W 	X.D.A// �! XA

is bounded and, for z 2 	X.D.A//, we have AK�z D �K�z and 	XK�z D z:
In the following, let us denote S.�/ by S.�/ WD E C DK�	Y �D.A1 ��/�1B:
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The operator S.�/ is defined on the domain

Y1 D
n
y 2 D.B/

\
D.E/ such that 	Y y 2 	X.D.A//

o
: (11.2.2)

For some � 2 �.A1/, let us denote by S1.�/ the restriction of S.�/ to
Y1
T
N.	Y /, i.e., S1.�/ WD S.�/jY1TN.	Y /

:

.N8/ For some � 2 �.A1/, the operator S1.�/ is closed.
It is shown in Remark 11.1.1 that, if A1 and E generate each a C0-semigroup,
and if B and D are bounded then, there exists � 2 C such that � 2
�.A1/

T
�.S1.�//: Hence, for � 2 �.A1/

T
�.S1.�//, the set Y1 can be

decomposed as follows: Y1 D D.S1.�// ˚ N.S.�/ � �/: Indeed, let y 2
D.S1.�//

T
N.S.�/ � �/. Then, y 2 N.S1.�/ � �/ D f0g. Now, let us notice

that, for y 2 Y1, we can write y D aCy�a, where a D .S1.�/��/�1.S.�/�
�/y: It is easy to check that a 2 D.S1.�// and y � a 2 N.S1.�/ � �/: For
� 2 �.A1/T �.S1.�//; we define the inverse of 	Y by J� WD .	Y jN.S.�/��//�1 W
	Y .Y1/ �! N.S.�/ � �/ � Y1: Let us assume that, for some � 2 �.A1/, J�
is bounded from 	Y .Y1/ into Y , and its extension by continuity to 	Y .Y1/ is
denoted by J�.

.N9/ D.B/
T

D.E/ � D.	Y /, D.B/
T

D.H/ � D.	Y / and the set Y1 D fy 2
D.B/

T
D.E/ such that 	Y y 2 	X .D.A//g is dense in Y and the restriction of

	Y to Y1 is bounded as an operator from Y into W . Let us denote the extension

by continuity of 	Y jY1 to Y by 	
0

Y .
.N10/ L is densely defined and closed with a nonempty resolvent set, i.e.,
�.L/ ¤ ;:

.N11/ For some � 2 �.A1/ (hence for all), the operator .A1 ��/�1C is bounded
on its domain.

.N12/ D.C /
T

D.F /
T

D.L/ � D.	Z/ and the set:
Z1 WD fz 2 D.C /

T
D.F /

T
D.L/ such that 	Zz 2 	Y .Y1/g is dense in Z

and the restriction of 	Z to Z1 is bounded as an operator from Z into W . Let us

denote the extension by continuity of 	ZjZ1 to Z by 	
0

Z .
.N13/ For some � 2 �.A1/ (hence for all), the operator F �D.A1 � �/�1C is

closable and its closure F �D.A1 � �/�1C is bounded.

The essential work in this section is to prescribe some conditions on the entries of the
operator L0 in order to establish its closedness. First, we will search the Frobenius–

Schur’s decomposition of the operator L0. Let

0

@
x

y

z

1

A 2 D.L0/ and � 2 C:

.L0 � �/
0

@
x

y

z

1

A D 0 if, and only if,

0

@
A � � B C

D E � � F

G H L � �

1

A

0

@
x

y

z

1

A D 0:
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This is equivalent to the following system

8
<

:

.A � �/x C By C Cz D 0

Dx C .E � �/y C Fz D 0

Gx C Hy C .L � �/z D 0:

(11.2.3)

From the first equation of (11.2.3) and Eq. (11.2.1), we can deduce that .A1��/.I�
K�	X/xC By C Cz D 0: Then, x�K�	Y yC .A1 ��/�1By C .A1 ��/�1Cz D 0:

Hence,

x D 
K�	Y � .A1 � �/�1B�y � .A1 � �/�1Cz: (11.2.4)

From the second equation of (11.2.3), we have

E C DK�	Y �D.A1 � �/�1B ���

y C .F � .A1 � �/�1C /z D 0: Consequently,

.S.�/ � �/y C .F � .A1 � �/�1C /z D 0: (11.2.5)

Lemma 11.2.1. For some � 2 �.A1/
T
�.S1.�// and under assumptions .N7/,

.N9/, we have .S.�/ � �/y D .S1.�/ � �/.I � J�	Y /y; where the operator
I � J�	Y is the projection from Y1 on D.S1.�// parallel to N.S.�/ � �/: }
Proof. For every y 2 Y1, we can write y D .I � J�	Y /y C J�	Y y: Observe
that y 2 D.S1.�// because y1 D .I � J�	Y /y 2 D.S1.�// and y2 D J�	Y y 2
N.S.�/ � �/, then

.S.�/ � �/y D .S1.�/ � �/y1
D .S1.�/ � �/.y � y2/
D .S1.�/ � �/.I � J�	Y /y:

Q.E.D.

From Eq. (11.2.5), it follows that .S1.�/��/.I�J�	Y /yC.F�D.A��/�1C /z D
0, and y � J�	Zz C .S1.�/ � �/�1.F �D.A � �/�1C /z D 0: Hence,

y D ŒJ�	Z � .S1.�/ � �/�1.F �D.A � �/�1C /�z: (11.2.6)

The third equation of the system (11.2.3), together with Eq. (11.2.4), gives:

Gx C Hy C .L � �/z D 0

.GK�	Y �G.A1 � �/�1B/y �G.A1 � �/�1Cz C Hy C .L � �/z D 0

.H C GK�	Y �G.A1 � �/�1B/y C ŒL �G.A1 � �/�1C � ��z D 0:
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Let us denote by ‚.�/ the following operator ‚.�/ WD H C GK�	Y � G.A1 �
�/�1B: By using Eq. (11.2.6), we deduce that

ŒL�G.A1��/�1CC‚.�/.J�	Z�.S1.�/��/�1.F �D.A1��/�1C /���z D 0:

Set

S2.�/ D ŒL�G.A1��/�1CC‚.�/.J�	Z�.S1.�/��/�1.F �D.A1��/�1C /�:
(11.2.7)

Now, we can search Fi.�/ and Gi.�/ with i D 1; 2; 3 such that the operator

0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A

0

@
A1 � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

A

0

@
I G1.�/ G2.�/

0 I G3.�/

0 0 I

1

A

is equal to

0

@
A � � B C

D E � � F

G H L � �

1

A :

It follows that for

0

@
x

y

z

1

A 2 D.L0/

0

@
A1 � � 0 0

F1.�/.A1 � �/ S1.�/ � � 0

F2.�/.A1 � �/ F3.�/.S1.�/ � �/ S2.�/ � �

1

A

0

@
I G1.�/ G2.�/

0 I G3.�/

0 0 I

1

A

0

@
x

y

z

1

A

D
0

@
A � � B C

D E � � F

G H E � �

1

A

0

@
x

y

z

1

A : (11.2.8)

We can choose Fi.�/, i D 1; 2; 3 and Gi.�/, i D 1; 2; 3 for a necessary condition
as follows: .A1 � �/x C .A1 � �/G1.�/y C .A1 � �/G2.�/z D .A1 � �/.I �
K�	X/x C By C Cz: Then, for � 2 �.A1/, we have x C G1.�/y C G2.�/z D
x �K�	Y y C .A1 � �/�1By C .A1 � �/�1Cz: Let us take

G1.�/ WD �K�	Y C .A1 � �/�1B (11.2.9)

and

G2.�/ WD .A1 � �/�1C: (11.2.10)
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The second equation of (11.2.8) gives:

F1.�/.A1 � �/x C .F1.�/.A1 � �/G1.�/C S1.�/ � �/ y
C .F1.�/.A1 � �/G2.�/C .S1.�/ � �/G3.�//z

which must be equal to Dx C .E � �/y C Fz: Let us take

F1.�/ WD D.A1 � �/�1: (11.2.11)

From the third equation of (11.2.8), we have

F2.�/.A1 � �/x C .F2.�/.A1 � �/G1.�/C F3.�/.S1.�/ � �//y
C .F2.�/.A1 � �/G2.�/C F3.�/.S1.�/ � �/G3.�/
C S2.�/ � �/z D Gx C Hy C .L � �/z:

Take

F2.�/ WD G.A1 � �/�1: (11.2.12)

For the action on y, we choose GG1.�/C F3.�/.S1.�/��/�H D 0: Therefore,
for � 2 �.A1/T �.S1.�//, take F3.�/ D ŒHCGK�	Y �G.A1��/�1B�.S1.�/�
�/�1, i.e.,

F3.�/ D ‚.�/.S1.�/ � �/�1: (11.2.13)

Now, for the action on z, take

ŒF2.�/.A1 � �/G2.�/C F3.�/.S1.�/ � �/G3.�/C S2.�/ � � � LC �� D 0:

Then, G.A1 � �/�1C C‚.�/G3.�/ D L � S2.�/: From the expression of S2.�/
in (11.2.7), we can choose

G3.�/ D �J�	Z C .S1.�/ � �/�1.F �D.A1 � �/�1C /: (11.2.14)

Now, we can verify the sufficient condition. Let us denote by T� the operator defined
for every � 2 �.A1/T �.S1.�// by

T� WD
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A

0

@
A1 � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

A

0

@
I G1.�/ G2.�/

0 I G3.�/

0 0 I

1

A ;
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where Fi.�/; i D 1; 2; 3 and Gi.�/, i D 1; 2; 3 are the operators defined

in (11.2.9), (11.2.10), (11.2.11), (11.2.12), (11.2.13), and (11.2.14). Let

0

@
x

y

z

1

A 2

D.L0/. The first row in the product of T� gives:

.A1 � �/x C .A1 � �/G1.�/y C .A1 � �/G2.�/z
D .A1 � �/ŒI �K�	X�x C By C Cz

D .A � �/x C By C Cz:

The second row in the product of T� gives:

F1.�/.A1 � �/xCŒF1.�/.A1 � �/G1.�/C S1.�/ � ��y
CŒF1.�/.A1 � �/G2.�/C .S1.�/ � �/G3.�/�z

D Dx C .E � S.�//y C .S1.�/ � �/.y � J�	Y y/C Fz

D Dx C .E � S.�/C S1.�/ � �/y C Fz

D Dx C .E � �/y C Fz:

We can also show that the left side of the third row of T�, i.e.,

F2.�/.A1 � �/x C ŒF2.�/.A1 � �/G1.�/
C F3.�/.S1.�/ � �/�y C ŒF2.�/.A1 � �/G2.�/
C F3.�/.S1.�/ � �/G3.�/C S2.�/ � ��z

is equal to Gx C Hy C .L � �/z: It follows that T� is an extension of the operator
L0 � �, i.e., L0 � � � T�: Now, it remains to prove that D.T�/ � D.L0 � �/ D
D.L0/: Let us notice that

D.T�/ D
8
<

:

0

@
x0
y0
z0

1

A D
0

@
I �G1.�/ G1.�/G3.�/ �G2.�/
0 I �G3.�/
0 0 I

1

A

0

@
x

y

z

1

A ;

x 2 D.A1/
y 2 D.S1.�// D Y1

T
N.	Y /

z 2 D.S2.�// D Y2

9
=

;
;
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where Y2 WD fz 2 D.C /
T

D.F /
T

D.L/ such that 	Zz 2 	Y .Y1/g: Let

0

@
x0
y0
z0

1

A 2

D.T�/. Then,

8
<

:

x0 D x �G1.�/y C ŒG1.�/G3.�/ �G2.�/� z
y0 D y �G3.�/z
z0 D z:

Observe that z 2 Y2 � D.C /
T

D.F /
T

D.L/, y0 D y�G3.�/z 2 N.S.�/��/ �
Y1, Y1 � D.B/

T
D.E/ and x0 D x�G1.�/yC .G1.�/G3.�/�G2.�//z 2 D.A/:

Now, let us verify the boundary conditions: 	Xx D 	Y y D 	Zz

	Xx
0 D �	X ŒG1.�/.y �G3.�/z/�
D �	X ŒG1.�/y�
D �	X

�K�	Y y C .A1 � �/�1By
�

D �	X
�K�	Y y

�

D 	Y y

and

	Y y
0 D 	Y y � 	Y .G1.�/z/
D �	Y

�J�	Zz C .S1.�/ � �/�1.F �D.A � �/�1C /z�

D �	Y
�J�	Zz

�

D 	Zz:

Then, we claim that L0 � � � T�: In what follows, we will give some lemmas
which will be needed in the sequel.

Lemma 11.2.2. For every �; � 2 �.A1/

S1.�/ � S1.�/ D �.� � �/D.A1 � �/�1.A1 � �/�1B: (11.2.15)

}
Proof. Let �; � 2 �.A1/. Using Lemma 10.3.3, we have

S.�/ � S.�/
D 

E C DK�	Y �D.A1 � �/�1B� � 
E C DK�	Y �D.A1 � �/�1B�

D D.K� �K�/	Y �D 
.A1 � �/�1 � .A1 � �/�1�B



11.2 Case Where the Operator A Is Closable 389

D .� � �/D.A1 � �/�1K�	Y � .� � �/D.A1 � �/�1.A1 � �/�1B
D .� � �/D.A1 � �/�1 K�	Y � .A1 � �/�1B�

D �.� � �/F1.�/G1.�/:

For y 2 D.S1.�//, we have 	Y y D 0 and the relation (11.2.15) holds. Q.E.D.

From assumptions .N4/ and .N5/, the operatorD.A1 ��/�1 and .A1 ��/�1B are
bounded on their domains, then it follows that if S1.�/ is closed for some� 2 �.A1/
then it is closed for all such �. Assume that for some � 2 �.A1/T �.S1.�//; J� is
bounded from 	Y .Y1/ into Y and its extension by continuity to 	Y .Y1/ is denoted
by J�.

Lemma 11.2.3. If � 2 �.A1/
T
�.S1.�// and � 2 �.A1/

T
�.S1.�// and under

assumptions .N1/–.N3/, .N7/, .N8/, then J� D .S1.�/� �/�1.S1.�/� �/J�. }
Proof. Recall that J� D .	Y jN.S.�/��/ /�1 W W 	 	Y .Y1/ �! N.S.�/ � �/ � Y1:

Let w 2 	Y .Y1/ and set y D J�w and y0 D J�w, then

�
S.�/y D �y

	Y y D w
and

�
S.�/y0 D �y0
	Y y

0 D w:

Observe that .y � y0/ 2 N.	Y /
T
Y1 D D.S1.�//: Now observe the action of

.S1.�/��/ on y�y0: In fact, .S1.�/��/.y�y0/ D �.S1.�/��/y0 D �S1.�/y0C
�y0: Using Lemma 11.2.2, we infer that

.S1.�/ � �/.y � y0/ D � S1.�/ � .� � �/D.A1 � �/�1.A1 � �/�1B�y0 C �y0

D .� � �/y0 C .� � �/D.A1 � �/�1.A1 � �/�1By0:

So, by Lemma 11.2.2 we have

y � y0 D .S1.�/ � �/�1 .� � �/I C .� � �/D.A1 � �/�1.A1 � �/�1B�y0

D .S1.�/ � �/�1 Œ.� � �/I � S1.�/C S1.�/� y
0

D .S1.�/ � �/�1 Œ.S1.�/ � �/ � .S1.�/ � �/� y0

D 
.S1.�/ � �/�1.S1.�/ � �/ � I �y0:

It follows that J� � J� D Œ.S1.�/ � �/�1.S1.�/ � �/ � I �J� and so

J� D .S1.�/ � �/�1.S1.�/ � �/J�:

Q.E.D.

Since for � 2 �.A1/T �.S1.�// and � 2 �.A1/T �.S1.�//, the operator .S1.�/�
�/�1.S1.�/ � �/ is bounded and boundedly invertible, then J� is closable if, and
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only if, J� is such. Moreover J� D .S1.�/ � �/�1.S1.�/ � �/J � and so

J� � J � D 
.S1.�/ � �/�1.S1.�/ � �/ � I �J �:

Lemma 11.2.4. If the operator‚.�/ WD HCGK�	Y �G.A1��/�1B is closable
for some � 2 �.A1/, then it is closable for all such � 2 �.A1/. }
Proof. Let �; � 2 �.A1/. By Lemma 10.3.3, we have

‚.�/ �‚.�/ D G.K� �K�/	Y �G .A1 � �/�1 � .A1 � �/�1�B
D .� � �/G.A1 � �/�1K�	Y � .� � �/G.A1 � �/�1.A1 � �/�1B
D .� � �/G.A1 � �/�1 K�	Y � .A1 � �/�1B� ;

where 	Y is bounded on Y1 according to assumption .N9/. From the assumptions
.N4/, .N6/ and .N7/, it follows that the operators K�, .A1 � �/�1B and G.A1 �
�/�1 are bounded. Hence the right side of‚.�/�‚.�/ is bounded, and the lemma
is proved. Q.E.D.

In fact for the closure we have ‚.�/ � ‚.�/ D .� � �/G.A1 � �/�1h
K�	

0

Y � .A1 � �/�1B
i
: From hypothesis .N13/ follows that for every � 2

�.A1/
T
�.S1.�//,

J�	
0

Z � .S1.�/ � �/�1
�
F �D.A1 � �/�1C

	

is bounded as an operator from Z into W then

‚.�/.J �	
0

Z � .S1.�/ � �/�1
�
F �D.A1 � �/�1C /

	

is bounded everywhere. Now by assumption .N11/, the operator .A1 � �/�1C
is bounded everywhere, since G is closable then G.A1 � �/�1C is bounded
everywhere. By assumption .N10/, L is densely defined closed. Hence S2.�/ is
closable. In fact the next lemma show that the closedness of S2.:/ does not depend
of the choice of � 2 �.A1/T �.S1.�//:

Lemma 11.2.5. If, for some � 2 �.A1/
T
�.S1.�//, the operator S2.�/ is

closable, then it is closable for all such � 2 �.A1/T �.S1.�//. }
Proof. Let � 2 �.A1/

T
�.S1.�// and � 2 �.A1/

T
�.S1.�//. Using

Lemma 11.2.3, we can write:

S2.�/ � S2.�/
D � .� � �/F2.�/.A1 � �/�1C C‚.�/Œ.S1.�/ � �/�1.S1.�/ � �/J�	Z

� .S1.�/ � �/�1.F �D.A1 � �/�1C /�
�‚.�/ŒJ�	Z � .S1.�/ � �/�1.F �D.A1 � �/�1C /�:
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Using the resolvent identity, we find

S2.�/ � S2.�/
D � .� � �/F2.�/.A1 � �/�1C C ŒF3.�/.S1.�/ � �/ �‚.�/�J�	Z

� F3.�/ŒF �D.A1 � �/�1C � .� � �/D.A1 � �/�1.A1 � �/�1C �
C F3.�/.F �D.A1 � �/�1C /:

We deduce that

S2.�/ � S2.�/
D � .� � �/F2.�/.A1 � �/�1C C .F3.�/ � F3.�//.S1.�/ � �/ŒJ�	Z

� .S1.�/ � �/�1.F �D.A1 � �/�1C /�C .� � �/F3.�/F1.�/.A1 � �/�1C:
Since, on the one hand the operators Fi , i D 1; 2; 3 are bounded everywhere and
the operator .A1 � �/�1C is bounded on its domain, on the other hand .S1.�/� �/
is closed, and by assumptions .N12/ and .N13/, the operator ŒJ�	Z � .S1.�/ �
�/�1.F � D.A1 � �/�1C /� is bounded on its domain, then the closedness of the
operator S2.�/ does not depend of the choice of �. Q.E.D.

Denote by S2.�/ its closure, in fact we have

S2.�/ � S2.�/ D ŒF3.�/ � F3.�/� .S1.�/ � �/
�
h
J �	

0

Z � .S1.�/ � �/�1.F �D.A1 � �/�1C /
i

C .� � �/ ŒF3.�/F1.�/ � F2.�/� .A1 � �/�1C :
(11.2.16)

In what follows, we consider the operators defined by:

OG1.�/ W D �K�	
0

Y C .A1 � �/�1B
OG2.�/ W D .A1 � �/�1C
OG3.�/ W D �J �	0Z C .S1.�/ � �/�1.F �D.A1 � �/�1C /:

Now, we are ready to present the first main result of this section.

Theorem 11.2.1. Under the assumptions .N1/–.N13/; the operator L0 is closable
if, and only if, S2.�/ is closable for some � 2 �.A1/

T
�.S1.�//. In this case, the

closure L of L0 is given by

L D �I C G1.�/

0

@
A1 � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

AG2.�/;
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where G1.�/ D
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A and G2.�/ D
0

@
I OG1.�/ OG2.�/
0 I OG3.�/
0 0 I

1

A

or, spelled out,

D.L/ D
8
<

:

0

@
I � OG1.�/ OG1.�/ OG3.�/ � OG2.�/
0 I � OG3.�/
0 0 I

1

A

0

@
x

y

z

1

A ;

x 2 D.A1/
y 2 D.S1.�// D Y1

T
N.	.Y //

z 2 D.S2.�//Y2

9
=

;

L

0

@
x � OG1.�/y C . OG1.�/ OG3.�/ � OG2.�//z

y � OG3.�/z
z

1

A

D
0

@
A1x � � OG1.�/y C �. OG1.�/ OG3.�/ � OG3.�//z

F1.�/.A1 � �/x C S1.�/y � � OG3.�/z
F2.�/.A1 � �/x C F3.�/.S1.�/ � �/y C S2.�/z

1

A :

}
Proof. Let � 2 �.A1/T �.S1.�//. The lower-upper factorization sense is given by

L0 D �I C
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A

0

@
A1 � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

A

�
0

@
I OG1.�/ OG2.�/
0 I OG3.�/
0 0 I

1

A :

The external operators G1.�/ and G2.�/ are boundedly invertible. Hence, L0 �� is
closable if, and only if, S2.�/ is closable. Q.E.D.

11.2.2 Gustafson, Weidman, Kato, Wolf, Schechter, Browder,
Rakočević, and Schmoeger’s Essential Spectra of L

Having obtained the closure of the operator L0, we will discuss its essential spectra.
As a first step, we will establish the following stability lemma.
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Lemma 11.2.6. Let � 2 �.A1/
T
�.S1.�//. If the sets ˆb.Y;X/, ˆb.Z;X/, and

ˆb.Z; Y / are not empty, then

.i/ If F1.�/ 2 Fb.X; Y /, F2.�/ 2 Fb.X;Z/ and F3.�/ 2 Fb.Y;Z/, then
�ei.S1.�// and �ei.S2.�//, i D 4; 5 do not depend on the choice of �:

.ii/ If F1.�/ 2 FbC.X; Y /, F2.�/ 2 FbC.X;Z/ and F3.�/ 2 FbC.Y;Z/, then
�e1.S1.�// and �e1.S2.�// do not depend on the choice of �:

.iii/ If F1.�/ 2 Fb�.X; Y /, F2.�/ 2 Fb�.X;Z/ and F3.�/ 2 Fb�.Y;Z/, then
�e2.S1.�// and �e2.S2.�// do not depend on the choice of �:

.iv/ If F1.�/ 2 FbC.X; Y /
T

Fb�.X; Y /, F2.�/ 2 FbC.X;Z/
T

Fb�.X;Z/ and
F3.�/ 2 FbC.Y;Z/

T
Fb�.Y;Z/, then �e3.S1.�// and �e3.S2.�// do not

depend on the choice of the scalar �.
.v/ If F1.�/ 2 FbC.X; Y /, F2.�/ 2 FbC.X;Z/ and F3.�/ 2 FbC.Y;Z/, then

�e7.S2.�// does not depend on the choice of �:
.vi/ If F1.�/ 2 Fb�.X; Y /, F2.�/ 2 Fb�.X;Z/ and F3.�/ 2 Fb�.Y;Z/, then

�e8.S2.�// does not depend on the choice of �: }
Proof.

(i) Using Eq. (11.2.15), assumption .N4/, Lemma 6.3.1 and Theorem 6.3.1, we
infer that �ei.S1.�// D �ei.S1.�//, i D 4; 5. Hence, �ei.S1.�// does not

depend on �. By using the same above argument, we have
�
F2.�/G2.�/ C

F2.�/
h
K�	

0

Y � .A1 � �/�1
i
G3.�/

	
2 Fb.Z/ and

�
F3.�/.S1.�/ � �/ �

F3.�/.S1.�/ � �/
	
G3.�/ 2 Fb.Z/: From Eq. (11.2.16), Lemma 6.3.1 and

Theorem 6.3.1, we can deduce that �ei.S2.�// D �ei.S2.�//, with i D 4; 5.
A similar reasoning allows us to reach the results for (ii) and (iii).

(iv) This assertion is an immediate deduction from (ii) and (iii).
(v) Using Theorem 6.3.1, we deduce that the difference S2.�/�S2.�/ in (11.2.16)

is in FbC.Z/. Now, from Theorem 7.5.11 and Remark 7.5.1, we conclude that
�e7.S2.�// does not depend on the choice of �.

(vi) This assertion can be proved in a similar way as for (v). Q.E.D.

In what follows, and for � 2 �.A1/
T
�.S1.�//, we will denote by M.�/ the

following operator:

M.�/ WD
0

@
0 OG1.�/ OG2.�/

F1.�/ F1.�/ OG1.�/ F1.�/ OG2.�/C OG3.�/
F2.�/ F2.�/ OG1.�/C F3.�/ F2.�/ OG2.�/C F3.�/ OG3.�/

1

A :

Theorem 11.2.2. Under the hypotheses .N1/–.N13/; we have

.i/ If, for some � 2 �.A1/
T
�.S1.�//, F1.�/ 2 Fb.X; Y /, F2.�/ 2 Fb.X;Z/,

F3.�/ 2 Fb.Y;Z/ and M.�/ 2 F.X � Y � Z/, then �e4.L/ D
�e4.A1/

S
�e4.S1.�//

S
�e4.S2.�// and �e5.L/ � �e5.A1/

S
�e5.S1.�//

S

�e5.S2.�//: Moreover, if Cn�e4.A1/ and Cn�e4.S1.�// are connected, and
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�.S1.�// ¤ ;, then �e5.L/ D �e5.A1/
S
�e5.S1.�//

S
�e5.S2.�//: In

addition, if Cn�e5.L/ and Cn�e5.S2.�// are connected, and �.S2.�//, �.L/
are not empty, then �e6.L/ D �e6.A1/

S
�e6.S1.�//

S
�e6.S2.�//:

.ii/ If, for some � 2 �.A1/T �.S1.�//, F1.�/ 2 FbC.X; Y /, F2.�/ 2 FbC.X;Z/,
F3.�/ 2 FbC.Y;Z/ and M.�/ 2 FC.X � Y � Z/, then �e1.L/ D
�e1.A1/

S
�e1.S1.�//

S
�e1.S2.�//:

.iii/ If, for some � 2 �.A1/T �.S1.�//, F1.�/ 2 Fb�.X; Y /, F2.�/ 2 Fb�.X;Z/,
F3.�/ 2 Fb�.Y;Z/ and M.�/ 2 F�.X � Y � Z/, then �e2.L/ D
�e2.A1/

S
�e2.S1.�//

S
�e2.S2.�//:

.iv/ If, for some � 2 �.A1/
T
�.S1.�//, F1.�/ 2 FbC.X; Y /

T
Fb�.X; Y /,

F2.�/ 2 FbC.X;Z/
T

Fb�.X;Z/, F3.�/ 2 FbC.Y;Z/
T

Fb�.Y;Z/ and
M.�/ 2 FC.X � Y �Z/TF�.X � Y �Z/, then

�e3.L/ D �e3.A1/
[
�e3.S1.�//

[
�e3.S2.�//

[
Œ�e1.A1/

\
�e2.S1.�//

\
�e2.S2.�//�

[
Œ�e2.A1/

\
�e2.S1.�//

\
�e1.S2.�//�

[
Œ�e2.A1/

\
�e1.S1.�//

\
�e2.S2.�//�:

.v/ If, for some � 2 �.A1/
T
�.S1.�//, we have F1.�/ 2 FbC.X; Y /, F2.�/ 2

FbC.X;Z/,
F3.�/ 2 FbC.Y;Z/ and M.�/ 2 FC.X � Y �Z/, then

�e7.L/ � �e7.A1/
[
�e7.S1.�//

[
�e7.S2.�//:

Moreover, if the sets Cn�e4.A1/, Cn�e4.S1.�//, Cn�e4.S2.�//, and Cn�e4.L/
are connected and �.S1.�//, �.S2.�// and �.L/ are not empty, then

�e7.L/ D �e7.A1/
[
�e7.S1.�//

[
�e7.S2.�//:

.vi/ If, for some � 2 �.A1/
T
�.S1.�//, we have F1.�/ 2 Fb�.X; Y /, F2.�/ 2

Fb�.X;Z/, F3.�/ 2 Fb�.Y;Z/ and M.�/ 2 F�.X � Y �Z/, then

�e8.L/ � �e8.A1/
[
�e8.S1.�//

[
�e8.S2.�//:

Besides, if the sets Cn�e4.A1/, Cn�e4.S1.�//, Cn�e4.S2.�//, and Cn�e4.L/
are connected and �.S1.�//, �.S2.�// and �.L/ are not empty, then

�e8.L/ D �e8.A1/
[
�e8.S1.�//

[
�e8.S2.�//:
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}
Proof. Fix � 2 �.A1/T �.S1.�//. Then, for � 2 C, we have

L � �I
D .L � �I/C .� � �/I

D G1.�/

0

@
A1 � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

AG2.�/C .� � �/I

D G1.�/

0

@
A1 � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

AG2.�/ � .� � �/ŒG1.�/G2.�/ � I �

D G1.�/

0

@
A1 � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

AG2.�/ � .� � �/M.�/:

Since M.�/ is a Fredholm perturbation, and since G1.�/ and G2.�/ are invertible
and boundedly invertible, then L � �I is a Fredholm operator if, and only if,

0

@
A1 � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

A

is a Fredholm operator. It follows that �e4.L/ D �e4.A1/
S
�e4.S1.�//

S
�e4

.S2.�//: Moreover, we have

i.L � �I/ D i.A1 � �/C i.S1.�/ � �/C i.S2.�/ � �/: (11.2.17)

If i.L � �I/ ¤ 0, then one of the terms of (11.2.17) is nonzero. Hence,

�e5.L/ � �e5.A1/
[
�e5.S1.�//

[
�e5.S2.�//:

By using the assumption .N3/, we have �.A1/ ¤ ;. Since the set Cn�e4.A1/ is
connected, then by using Theorem 7.3.1, we can deduce that �e4.A1/ D �e5.A1/:

By using the same above argument, we can show that �e4.S1.�// D �e5.S1.�//

and i.S1.�/ � �/ D 0 for each � 2 Cn�e4.S1.�//: Let � 2 Cn�e5.L/.
Then, � 2 Cn�e4.A1/ and � 2 Cn�e4.S1.�// and also � 2 Cn�e4.S2.�//,
further i.L � �I/ D i.S2.�/ � �I/. Hence, � 2 Cn�e5.S2.�// and, then
�e5.L/ D �e5.A1/

S
�e5.S1.�//

S
�e5.S2.�//: Moreover, the fact that Cn�e5.L/

is connected and �.L/ ¤ ;, together with Theorem 7.3.1 (ii) allow us to deduce that
�e6.L/ D �e5.L/: To summarize, we have �e4.A1/ D �e5.A1/ and �e4.S1.�// D
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�e5.S1.�//. Then, Cn�e5.A1/ and Cn�e5.S1.�// are connected. By using the same
reasoning as for L, we show that �e5.A1/ D �e6.A1/ and �e5.S1.�// D �e6.S1.�//.
Knowing the fact that Cn�e5.S2.�// is connected, this allows us to get the same
previous result which is �e5.S2.�// D �e6.S2.�//. The result follows from the first
part of the proof.

The proof of the assertions .ii/, .iii/, and .iv/ may be checked in a similar way.
(v) Fix � 2 �.A1/

T
�.S1.�//. As in the proofs of Theorems 11.2.1 and 11.2.3,

we find �e7.L/ � �e7.A1/
S
�e7.S1.�//

S
�e7.S2.�//: Since Cn�e4.A1/,

Cn�e4.S1.�//, Cn�e4.S2.�//, and Cn�e4.L/ are connected and �.S1.�//,
�.S2.�// and �.L/ are not empty, the result follows from Theorem 7.3.1 (i)
together with Theorem 10.2.2.

The proof of (vi) is similar. Q.E.D.

In what follows, we will discuss the Rakočević and the Schmoeger’s essential
spectra. First, we have to prove again a stability lemma.

Theorem 11.2.3. Let us assume that .N1/–.N13/ are satisfied.

.i/ If, for some � 2 �6.A1/
T
�.S1.�//, we have F1.�/ 2 FbC.X; Y /, F2.�/ 2

FbC.X;Z/ and F3.�/ 2 FbC.Y;Z/, then �e7.L/
T
�6.A1/

T
�.S1.�// D

�e7.S2.�//
T
�6.A1/

T
�.S1.�//:

.ii/ If, for some � 2 �6.A1/
T
�.S1.�//, we have F1.�/ 2 Fb�.X; Y /, F2.�/ 2

Fb�.X;Z/ and F3.�/ 2 Fb�.Y;Z/, then �e8.L/
T
�6.A1/

T
�.S1.�// D

�e8.S2.�//
T
�6.A1/

T
�.S1.�//: }

Proof.

(i) We have:

�6.A1/
\
�.S1.�// D

h
�.A1/

[
�d .A1/

i\
�.S1.�//

D
h
�.A1/

\
�.S1.�//

i[h
�d .A1/

\
�.S1.�//

i
:

We notice the existence of two cases.

1st case: If � 2 �.A1/T �.S1.�//, it is clear that the external factors G1.�/ and
G2.�/ are bounded and also have bounded inverses. Therefore, L � �I is an
upper semi-Fredholm operator if, and only if, S2.�/ � � has the same property
and, in this case, i.L��I/ D i.S2.�/��/. Hence, �e7.L/ D �e7.S2.�//. Now,
by using Lemma 11.2.6, we deduce the result.

2nd case: If � 2 �d .A1/
T
�.S1.�//, then there exists an " > 0 such that, for

the disc D.�; 2"/, we have

D.�; 2"/nf�g � �.A1/
\
�.S1.�//: (11.2.18)

Let us denote QA1 WD A1 C "P�, where P� is the finite rank Riesz projection
of A1 corresponding to �. We can easily check that D.�; "/nf�g �
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�.A1/
T
�.S1.�//

T
�. QA1/: Indeed, set � 2 D.�; "/nf�g then j� � �j < ".

On N.P�/, the operator QA1 � � D A1 � � is invertible and has bounded inverse.
On R.P�/, we have QA1 � � D A1 � .� � "/: Observe that j.� � "/ � �j < 2" then
� � " 2 �.A1/

T
�.S1.�//, hence the restriction of QA1 � � on R.P�/ is invertible

and has bounded inverse, it follows that � 2 �. QA1/, then by the use of (11.2.18) we
deduce the result. Until further notice, we fix � 2 �.A1/

T
�.S1.�//

T
�. QA1/: Let

us denote

QL0 WD
0

@

QA B C

D E F

G H L

1

A D L0 C "

0

@
P� 0 0

0 0 0

0 0 0

1

A :

For the closure QL of QL0, we obtain

QL D L C "

0

@
P� 0 0

0 0 0

0 0 0

1

A :

Clearly, QL is a finite rank perturbation of L. Therefore, �e7. QL/ D �e7.L/ and
i. QL � �/ D i.L � �/. Next, we apply the obtained result of the first part of the
proof to the operator QL: Let us denote QS2.�/ by

QS2.�/ WD L�G. QA1��/�1C C Q‚.�/Œ QJ�	Z � . QS1.�/��/�1.F �D. QA1��/�1C /�:

Here, QK�, QJ�, Q‚.�/ and QS1.�/ are the operators defined as K�, J�, ‚.�/ and S1.�/
with A replaced by QA. Hence,

QK�w D x ” x 2 N. QA � �/; 	Xx D w

and

QJ�w D y ” y 2 N. QS.�/ � �/; 	Y y D w:

If S2.�/ is closable, then its perturbation QS2.�/ is also closable. Let us denote its
closure by OS2.�/. We claim the following: if the assumptions .N1/–.N13/ are
satisfied and S2.�/ is closable, then the operator OS2.�/ � QS2.�/ is of finite rank
and �e7. OS2.�// D �e7. QS2.�//: Indeed, let us first notice that

ŒF �D. QA1 � �/�1C �� ŒF �D.A1 � �/�1C � D �"D. QA1 � �/�1P�.A1 � �/�1C:

The assumptions .N5/ and .N11/ imply that this difference is of finite rank.
Moreover, we have

S1.�/ � QS1.�/ D .E C DK�	Y �D.A1 � �/�1B/
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�.E CD QK�	Y �D. QA1 � �/�1B/
D D.K� � QK�/	Y �D..A1 � �/�1 � . QA1 � �/�1/B:

Obviously, K� � QK� D "P�.A1 � �/�1 QK�. Therefore,

S1.�/ � QS1.�/ D "D.A1 � �/�1P�Œ QK�	Y C . QA1 � �/�1B�:

It follows that . QS1.�/��/�1�.S1.�/��/�1 D . QS1.�/��/�1ŒS1.�/� QS1.�/�.S1.�/�
�/�1: By applying the assumptions .N4/ and .N5/, we deduce that this difference
is of finite rank. Moreover, let us notice that

‰.�/ WD Q‚.�/ �‚.�/ D � "F2.�/P� QK�	Y � "G.A1 � �/�1P�. QA1 � �/�1B
D � "F2.�/P�Œ QK�	Y C . QA1 � �/�1B�:

By using the same argument, .N6/ implies that the operator ‰.�/ is of finite rank.
The operator Q‡.�/ WD QJ�	Z � . QS1.�/ � �/�1.F �D. QA1 � �/�1C / is bounded on
its domain (here ‡.�/ D �G3.�/). Hence,

Q‚.�/ Q‡.�/ �‚.�/‡.�/ D Œ‚.�/C‰.�/� Q‡.�/ �‚.�/‡.�/
D ‚.�/Œ Q‡.�/ �‡.�/�C‰.�/ Q‡.�/:

By hypotheses, S2.�/ is closable in Z. So, its perturbation QS2.�/ is closable and we
conclude that OS2.�/ � S2.�/ is of finite rank. Therefore, �e7. OS2.�// D �e7.S2.�//:

Now, by using Lemma 11.2.6, we deduce that �e7. OS2.�// is independent of
�. QA1/. Applying the first part of this proof for � 2 �. QA1/T �. QS1.�//, we find
�e7. QL/ D �e7. OS2.�//, and finally �e7.L/ D �e7. QL/ D �e7. OS2.�// D �e7. OS2.�// D
�e7.S2.�//:

(ii) The proof is similar as (i). Q.E.D.

11.3 Block Operator Matrices Using Browder Resolvent

11.3.1 The Operator A0 and Its Closure

Let X; Y; Z and W be Banach spaces. In this section, we consider the linear
operators 	X , 	Y , 	Z acting from X , Y , Z into W , respectively. Therefore, we
define in the Banach space X � Y �Z the operator A0 as follows:

A0 WD
0

@
A B C

D E F

G H L

1

A
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D.A0/ D
8
<

:

0

@
x

y

z

1

A :
x 2 D.A/
y 2 D.B/

T
D.E/

z 2 D.C /
T
D.F /

T
D.L/

; 	Xx D 	Y y D 	Zz

9
=

;
:

In what follows, we will assume that the following conditions hold:

(O1) The operator A is densely defined and closable.
It follows that D.A/, equipped with the graph norm kxkA D kxk C kAxk can be
completed to a Banach space XA which coincides with D.A/, the domain of the
closure of A in X .

.O2/ D.A/ � D.	X/ � XA and 	X W XA �! W is a bounded mapping. Denote
by 	X the extension by continuity which is a bounded operator from XA intoW .

.O3/ The set D.A/
T
N.	X/ is dense inX and the resolvent set of the restriction

A1 WD AjD.A/TN.	X / is not empty, i.e., �.A1/ ¤ ;:
Remark 11.3.1. It follows from .O3/ that A1 is a closed operator in the Banach
space XA with nonempty resolvent set. }
.O4/ D.A/ � D.D/ � XA and D is a closable operator from XA into Y .
.O5/ D.A/ � D.G/ � XA and G is a closable operator from XA into Z.

The closed graph theorem and the assumptions .O3/–.O5/ imply that for � 2
�b.A1/ the operators F1.�/ WD DRb.A1; �/ and F2.�/ WD GRb.A1; �/ are bounded
fromX into Y andX intoZ, respectively. LetA1� be the operator defined on D.A1/
byA1� WD .A1��/.I �P�/CP�;where P� is the finite rank Riesz projection ofA1
corresponding to �. Under the assumptions .O1/–.O3/, and using Lemma 10.3.1,
for any � 2 �b.A1/;we have the following decomposition D.A/ D D.A1/˚N.A�/;
where A� is the operator defined on D.A/ by A� WD .A � �/.I � P�/C P�: For
� 2 �b.A1/; we denote the inverse of 	X jN.A�/ by K� WD .	X jN.A�//�1. We can
write K� W 	X.D.A// �! N.A�/ � D.A/: For � 2 �b.A1/, and if assumptions
.O1/–.O3/ are satisfied, then A�x D A1�.I �K�	X/x:

.O6/ For some (hence for all) � 2 �b.A1/; the operator K� is bounded on its
domain.

.O7/ E is closable and densely defined linear operator. We denote by YE the
following Banach space YE WD �

D.E/; k:kE
�
:

.O8/ D.B/
T

D.E/ � D.	Y /, the set Y1 D
n
y 2 D.B/

T
D.E/ such that 	Y y 2

	X.D.A//
o

is dense in Y and the restriction of 	Y to Y1 is bounded as an operator

from Y into W: We denote the extension by continuity of 	Y jY1 to Y by 	
0

Y .

In the following, we denote by S.�/ the following operator S.�/ WD ECDK�	Y �
DRb.A1; �/B: For � 2 �b.A1/ the operator S.�/ is defined on Y1 and its restriction
to N.	Y /

T
Y1 will be denoted by S1.�/; i.e., S1.�/ WD S.�/jN.	Y /TY1 .
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Lemma 11.3.1. Let �; � 2 �b.A1/
S1.�/ � S1.�/ D .� � �/DRb.A1; �/Rb.A1; �/B

�DRb.A1; �/SA1.�; �/Rb.A1; �/B; (11.3.1)

where SA1.:; :/ is the finite rank operator defined in Eq. (8.2.1). }
Proof. Let �; � 2 �b.A1/. Using Lemma 8.2.1, we have

S.�/ � S.�/
D D.K� �K�/	Y �D ŒRb.A1; �/ �Rb.A1; �/� B
D DRb.A1; �/

h
.� � �/C SA1.�; �/

i
K�	Y

�D
h
.� � �/Rb.A1; �/Rb.A1; �/CRb.A1; �/SA1.�; �/Rb.A1; �/

i
B

D .� � �/DRb.A1; �/
h
K�	Y �Rb.A1; �/B

i

�
h
DRb.A1; �/SA1.�; �/

ih
�K�	Y CRb.A1; �/B

i
:

For y 2 D.S1.�//, we have 	Y y D 0 and the relation (11.3.1) holds. Q.E.D.

Remark 11.3.2. By assumptions .O4/ and .O5/, the operator F1.�/Rb.A1; �/B is
bounded on its domain. On the other hand, SA1.�; �/ is a finite rank operator, so if
S1.�/ is closed for some � 2 �b.A1/ then it is closed for all such �: }
.O9/ The operator S1.�/ is closed, densely defined in N.	Y /

T
Y1 with a

nonempty resolvent set, i.e., �.S1.�// ¤ ;:
.O10/ The operator H satisfies that D.B/ � D.H/ � YE and for some
.hence for all/ � 2 �b.A1/

T
�b.S1.�// the operator


H C GK�	Y �

GRb.A1; �/B
�
Rb.S1.�/; �/ is bounded.

Set ‰.�/ WD H C GK�	Y � GRb.A1; �/B and denote by F3.�/ WD
‰.�/Rb.S1.�/; �/:

.O11/ The operator B (resp. C ) is densely defined and for some (hence for all)
� 2 �b.A1/ the operator Rb.A1; �/B (resp. Rb.A1; �/C ) is bounded on its
domain. We will denote by G1.�/ WD �K�	Y C Rb.A1; �/B and G2.�/ WD
Rb.A1; �/C :

Lemma 11.3.2. If the operator ‰.�/ is closable for some � 2 �b.A1/, then it is
closable for all such � and for all � 2 �b.A1/ its closure satisfy:

‰.�/ �‰.�/ D.� � �/GRb.A1; �/
h
K�	

0

Y �Rb.A1; �/B
i

�
h
GRb.A1; �/SA1.�; �/

i
G1.�/:

}
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Proof. Let �; � 2 �b.A1/.

‰.�/ �‰.�/
D G.K� �K�/	Y �G

h
Rb.A1; �/ �Rb.A1; �/

i
B

D GRb.A1; �/
h
.� � �/C SA1.�; �/

i
K�	Y

�G
h
.� � �/Rb.A1; �/Rb.A1; �/CRb.A1; �/SA1.�; �/Rb.A1; �/

i
B

D .� � �/GRb.A1; �/
h
K�	Y �Rb.A1; �/B

i

�
h
GRb.A1; �/SA1.�; �/

i
G1.�/;

here 	Y is bounded on Y1 by assumption .O8/. From .O5/, .O6/ and .O11/ it
follows that the operators K�, Rb.A1; �/B and GRb.A1; �/ are bounded. Then

‰.�/ �‰.�/ D.� � �/GRb.A1; �/
h
K�	

0

Y �Rb.A1; �/B
i

�
h
GRb.A1; �/SA1.�; �/

i
G1.�/:

Q.E.D.

Lemma 11.3.3. For some � 2 �b.A1/
T
�b.S1.�// and under the assumptions

.O8/ and .O9/; we have the following decomposition Y1 D D.S1.�//˚N.S�.�//;

where S�.�/ WD .S.�/ � �/ .I �P 0

�/CP
0

� and P
0

� is the finite rank Riesz projection
of S.�/ corresponding to �. }
Proof. Let � 2 �b.A1/

T
�b.S1.�//: The operator S1�.�/ is invertible, then

N.S�.�// D f0g and we get D.S1.�//
T
N.S�.�// D f0g: Now, we set g D

Rb.S1.�/; �/S�.�/f 2 D.S1.�//, for any f 2 Y1. We can easily see that
f � g 2 N.S�.�// and f D g C f � g 2 D.S1.�//CN.S�.�//. Q.E.D.

For � 2 �b.A1/T �b.S1.�//; we define the inverse of 	Y by:

J� WD .	Y jN.S�.�///�1 W 	Y .Y1/ �! N.S�.�/ � Y1:

In other words J�w D y means that y 2 D.S1.�//; S�.�/y D 0 and 	Y y D w:
Assume that for some � 2 �b.A1/T �b.S1.�//; J� is bounded from 	Y .Y1/ into Y
and its extension by continuity to 	Y .Y1/ is denoted by J�.

Lemma 11.3.4. If � 2 �b.A1/T �b.S1.�// and � 2 �b.A1/T �b.S1.�//; then

J � � J� D Rb.S1.�/; �/
h
.� � �/C U.�; �/C V.�; �/

i
J�;
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where we define the finite rank operator U.:; :/ as

U.�; �/ WD
h
S1.�/ � .�C 1/

i
P

0

� �
h
S1.�/ � .�C 1/

i
P

0

�;

and the bounded operator V.:; :/ as

V.�; �/ D .� � �/
h
F1.�/Rb.A1; �/B

i
C F1.�/SA1.�; �/Rb.A1; �/B:

}
Proof. Let w 2 	Y .Y1/ and set y D y1 � y2 such that y1 D J�w and y2 D J�w:

Then, we have S1�.�/y D �S1�.�/y2 D
h

�S1.�/C�C
�
S1.�/� .�C1/

	
P

0

�

i
y2:

Using Lemmas 8.2.1 and 8.2.2, we infer that

S1�.�/y D
h

� S1.�/C �C .� � �/F1.�/Rb.A1; �/B

CF1.�/SA1.�; �/Rb.A1; �/B C
�
S1.�/ � .�C 1/

	
P

0

�

i
y2:

On the other hand, S1�.�/y2 D 0; then S1.�/y2 D
h
�C

�
S1.�/� .�C1/

	
P

0

�

i
y2:

A short computation, shows that:

S1�.�/y D
h
.� � �/C .� � �/F1.�/Rb.A1; �/B C F1.�/SA1.�; �/Rb.A1; �/B

C
�
S1.�/ � .�C 1/

	
P

0

� �
�
S1.�/ � .�C 1/

	
P

0

�

i
y2:

Since y 2 D.S1.�//; then this allow us to conclude that:

J� � J� D Rb.S1.�/; �/
h
.� � �/C .� � �/F1.�/Rb.A1; �/B

CF1.�/SA1.�; �/Rb.A1; �/B
C
�
S1.�/ � .�C 1/

	
P

0

� �
�
S1.�/ � .�C 1/

	
P

0

�

i
:

From the above expression of J� � J�; we get J� D Rb.S1.�/; �/S1�.�/J� D
S1�.�/Rb.S1.�/; �/J�: Since S1�.�/Rb.S1.�/; �/ is bounded and boundedly
invertible, then J� is closable for each � if J� is too and its closure satisfy

J � � J� D Rb.S1.�/; �/
h
.� � �/C U.�; �/C V.�; �/

i
J�: Q.E.D.

.O11/ L is densely defined and closed with nonempty resolvent set,
i.e., �.L/ ¤ ;:

.O12/ D.C /
T

D.F /
T

D.L/ � D.	Z/, the set

Z1 WD
n
z 2 D.C /

\
D.F /

\
D.L/ such that 	Zz 2 	Y .Y1/

o

is dense in Z and the restriction of 	Z to Z1 is bounded as an operator from Z

into W . Denote the extension by continuity of 	Z jZ1 into Z by 	
0

Z .
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.O13/ For some (and hence for all) � 2 �b.A1/, the operator F � DRb.A1; �/C
is closable and its closure F � DRb.A1; �/C is bounded and for � 2
�b.A1/

T
�b.S1.�//; set

G3.�/ WD �J�	Z CRb.S1.�/; �/.F � F1.�/C /:

.O14/ For some (hence for all) � 2 �b.A1/T �b.S1.�//; the operator

S2.�/ D L � F2.�/C C‰.�/
h
J�	Z �Rb.S1.�/; �/.F � F1.�/C /

i

is closable.

Lemma 11.3.5. If for some � 2 �b.A1/
T
�b.S1.�// the operator S2.�/ is

closable, then it is closable for all such �. }
Proof. Let � 2 �b.A1/

T
�b.S1.�// and � 2 �b.A1/

T
�b.S1.�//. Using the

resolvent identity we find

S2.�/ � S2.�/ D 
F2.�/ � F2.�/

�
C C 

‰.�/G3.�/ �‰.�/G3.�/
�

D .� � �/F2.�/G2.�/C F2.�/SA1.�; �/G2.�/

C‰.�/G3.�/ �‰.�/G3.�/
C.� � �/F2.�/ŒK�	Y �Rb.A1; �/B�G3.�/
�F2.�/SA1.�; �/G1.�/G3.�/

D .� � �/
�
F2.�/G2.�/C F2.�/ŒK�	Y �Rb.A1; �/B�G3.�/

	

CF3.�/S1�.�/.G3.�/ �G3.�//C F2.�/SA1.�; �/G2.�/

�F2.�/SA1.�; �/G1.�/G3.�/:

Since the operators Fi , i D 1; 2; 3 are bounded everywhere and the operators Gi ,
i D 1; 2; 3 are bounded on its domains and by assumptions .O13/ the operator
S2.�/ is closable and the closure does not depend on the choice of �: Q.E.D.

Denote the closure of S2.�/ by S2.�/. Then we have

S2.�/ � S2.�/ D .� � �/
�
F2.�/G2.�/C F2.�/ŒK�	

0

Y �Rb.A1; �/B�G3.�/
	

CF3.�/S1�.�/.G3.�/ �G3.�//C F2.�/SA1.�; �/G2.�/

�F2.�/SA1.�; �/G1.�/G3.�/:

Lemma 11.3.6. For some � 2 �b.A1/
T
�b.S1.�// and y 2 Y1, we have the

following S�.�/y D S1�.�/.I � J�	Y /y; where the operator I � J�	Y is the
projection from Y1 on D.S1�.�// parallel to N.S�.�//: }



404 11 Essential Spectra of 3� 3 Block Operator Matrices

Proof. Let y 2 Y1, then we have y D .I � J�	Y /y C J�	Y y: The first summand
belongs to D.S1.�// because y1 D .I � J�	Y /y 2 D.S1.�// and y2 D J�	Y y 2
N.S�.�//, then

.S.�/ � �/y D .S1.�/ � �/y1
D .S1.�/ � �/.y � y2/
D .S1.�/ � �/.I � J�	Y /y:

Q.E.D.

In the following we use these assumptions to show the closeness of the operator A0

and to describe the closure. The main idea is, as in the 2 � 2 case, a factorization
of the 3 � 3 matrix with a diagonal matrix of Schur complements in the middle
and invertible factors to the right and to the left. In the following we consider the
operators OGi.�/ D Gi.�/; i D 1; 2; 3:

Theorem 11.3.1. Under assumptions .O1/–.O13/; the operator A0 is closable if,
and only if, S2.�/ is closable for some � 2 �b.A1/

T
�b.S1.�//. In this case the

closure A of A0 is given by

A D �I C G1.�/

0

@
A1� 0 0

0 S1�.�/ 0

0 0 S2.�/ � �

1

AG2.�/C N.�/

where G1.�/ WD
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A ; G2.�/ D
0

@
I OG1.�/ OG2.�/
0 I OG3.�/
0 0 I

1

A

and N.�/ D
0

@


A1 � .�C 1/

�
P� 0 0

0
�
S1.�/ � .�C 1/

�
P

0

� 0

0 0 0

1

A

or, spelled out,

D.A/ D
8
<

:

0

@
I � OG1.�/ OG1.�/ OG3.�/ � OG2.�/
0 I � OG3.�/
0 0 I

1

A

0

@
x

y

z

1

A ;

x 2 D.A1/
y 2 Y1TN.	.Y //

z 2 Y2

9
=

;
;

A

0

@
x � OG1.�/y C . OG1.�/ OG3.�/ � OG2.�//z

y � OG3.�/z
z

1

A

D
0

@
A1�x � � OG1.�/y C �. OG1.�/ OG3.�/ � OG2.�//z

Dx C S1�.�/y � � OG3.�/z
Gx C‰.�/y C S2.�/z

1

A :

}
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Proof. Let � 2 �b.A1/T �b.S1.�// the lower-upper factorization sense

A0 D�I C
0

@
I 0 0

F1.�/ I 0

F2.�/ F3.�/ I

1

A

0

@
A1� 0 0

0 S1�.�/ 0

0 0 S2.�/ � �

1

A

0

@
I OG1.�/ OG2.�/
0 I OG3.�/
0 0 I

1

A

C
0

@
ŒA1 � .�C 1/�P� 0 0

0 .S1.�/ � .�C 1//P
0

� 0

0 0 0

1

A :

The external operators G1.�/ and G2.�/ are boundedly invertible and
0

@
ŒA1 � .�C 1/�P� 0 0

0 .S1.�/ � .�C 1//P
0

� 0

0 0 0

1

A

is a finite rank operator, hence A0 � � is closable if, and only if, S2.�/ is
closable. Q.E.D.

11.3.2 Rakočević and Schmoeger Essential Spectra of A

Having obtained the closure A of the operator A0, in this section we discuss its
essential spectra. As a first step we prove the following stability lemma.

Lemma 11.3.7.

.i/ If F1.�/ 2 FbC.X; Y /; F2.�/ 2 FbC.X;Z/ and F3.�/ 2 FbC.Y;Z/ then
�e7.S1.�// and �e7.S2.�// does not depend on the choice of �:

.ii/ If F1.�/ 2 Fb�.X; Y /; F2.�/ 2 Fb�.X;Z/ and F3.�/ 2 Fb�.Y;Z/ then
�e8.S2.�// and �e8.S1.�// does not depend on the choice of �: }

Proof.

(i) Let .�; �/ 2 .�b.A1//2; using Eq. (11.3.1) and Theorem 6.3.1 (i), we will have
�e7.S1.�// D �e7.S1.�//: This implies that �e7.S1.�// does not depend on �:
Now, let � 2 �b.A1/T �b.S1.�// then from Theorem 6.3.1 (i), we deduce that
the difference S2.�/� S2.�/ 2 FbC.Z/: Hence by Remark 7.5.1, we infer that
�e7.S2.�// does not depend on the choice of �.

(ii) This assertion can be proved in a similar way as (i). Q.E.D.

We will denote for � 2 �b.A/T �b.S1.�// by Q.�/ the following operator

Q.�/ WD
0

@
0 OG1.�/ OG2.�/

F1.�/ F1.�/ OG1.�/ F1.�/ OG2.�/C OG3.�/
F2.�/ F2.�/ OG1.�/C F3.�/ F2.�/ OG2.�/C F3.�/ OG3.�/

1

A :
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Theorem 11.3.2. Suppose that the assumptions .O1/–.O13/ are satisfied.

.i/ If for some � 2 �b.A1/
T
�b.S1.�//, we have F1.�/ 2 FbC.X; Y /, F2.�/ 2

FbC.X;Z/, F3.�/ 2 FbC.Y;Z/ and Q.�/ 2 FC.X � Y � Z/, then �e7.A/ �
�e7.A1/

S
�e7.S1.�//

S
�e7.S2.�//: If in the addition we suppose that the sets

ˆA; ˆA1; ˆS1.�/ andˆS2.�/ are connected and the sets �.S2.�// and �.L/ are

not empty, then �e7.A/ D �e7.A1/
S
�e7.S1.�//

S
�e7.S2.�//:

.ii/ If for some � 2 �.A1/
T
�.S1.�//, we have F1.�/ 2 Fb�.X; Y /, F2.�/ 2

Fb�.X;Z/, F3.�/ 2 Fb�.Y;Z/ and Q.�/ 2 F�.X � Y � Z/, then �e8.A/ �
�e8.A1/

S
�e8.S1.�//

S
�e8.S2.�//: If in the addition we suppose that the sets

ˆA; ˆA1; ˆS1.�/ and ˆS2.�/ are connected and the sets �.S2.�// and �.A/
are not empty, then �e8.A/ D �e8.A1/

S
�e8.S1.�//

S
�e8.S2.�//: }

Proof.

(i) Fix � 2 �b.A1/T �b.S1.�//. Then, for � 2 C we have

A � �I D G1.�/V.�/G2.�/C .� � �/Q.�/C P.�/C N.�/:

The matrices-operators V.�/ and P.�/ are defined by

V.�/ D
0

@
A � � 0 0

0 S1.�/ � � 0

0 0 S2.�/ � �

1

A ;

P.�/ D
0

@
P11 P12 P13
P21 P22 P23
P31 P32 P33

1

A ;

where

� P11 D ŒA1 � .�C 1/�P�;

� P12 D ŒA1 � .�C 1/�P� OG1.�/;
� P13 D ŒA1 � .�C 1/�P� OG2.�/;
� P21 D F1.�/ŒA1 � .�C 1/�P�;

� P22 D F1.�/ŒA1 � .�C 1/�P� OG1.�/C ŒS1.�/ � .�C 1/�P
0

�;

� F23 D F1.�/ŒA1 � .�C 1/�P� OG2.�/C ŒS1.�/ � .�C 1/�P
0

�F1.�/
OG3.�/;

� P31 D F2.�/ŒA1 � .�C 1/�P�;

� P32 D F2.�/ŒA1 � .�C 1/�P� OG1.�/C F3.�/ŒS1.�/ � .�C 1/�P
0

�;

� P33 D F2.�/ŒA1 � .�C 1/�P� OG2.�/C F3.�/ŒS1.�/ � .�C 1/�P
0

�
OG3.�/:

Since G1.�/ and G2.�/ are bounded and have bounded inverses, N.�/ and P.�/

are finite rank matrices operators and Q.�/ 2 FC.X � Y �Z/; therefore .A�
�I/ is an upper semi-Fredholm operator if only if V.�/ has this property and

i.A � �I/ D i.A1 � �/C i.S1.�/ � �/C i.S2.�/ � �/:
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This shows that �e7.A/ D �e7.A1/
S
�e7.S1.�//

S
�e7.S2.�//: Since

ˆA; ˆA1; ˆS1.�/ and ˆS2.�/ are connected and the sets �.S2.�// and �.A/
are not empty, then using Theorems 7.3.1 and 7.5.11, we completed the proof
of (i).

(ii) A same reasoning allows us to reach the result (ii). Q.E.D.

11.4 Perturbations of Unbounded Fredholm Linear
Operators

Let us denote by T , S , and K by

T WD
0

@
A 0 0

0 E 0

0 0 K

1

A ; S WD
0

@
0 B 0

0 0 F

G 0 0

1

A and K WD
0

@
0 0 C

D 0 0

0 H 0

1

A :

Then, it is clear that A D T C S C K:

11.4.1 The Operator A and Its Closure

Lemma 11.4.1.

.i/ If B is E-bounded with E-bound ı1; F is K-bounded with K-bound ı2, and
G is A-bounded with A-bound ı3, then S is T -bounded with T -bound ı D
maxfı1; ı2; ı3g.

.ii/ If C is F -bounded with F -bound ı1; D is G-bounded with G-bound ı2; and
H is A-bounded with A-bound ı3, then K is S-bounded with S-bound ı D
maxfı1; ı2; ı3g. }

Proof.

(i) Let " > 0: By using the assumptions and Remark 2.1.3, there exist constants
a1, a2, a3, b1, b2, b3 � 0 such that ı1 � b1 < ı1 C ", ı2 � b2 < ı2 C ",
ı3 � b3 < ı3 C " and

kBgk2 � a21kgk2 C b21kEgk2 for all g 2 D.E/ � D.B/;

kFhk2 � a22khk2 C b22kKhk2 for all h 2 D.K/ � D.F /;

kGf k2 � a23kf k2 C b23kAf k2 for all f 2 D.A/ � D.G/:

Hence, for .f; g; h/ 2 D.A/ � D.E/ � D.K/, we get
�
�
�
�
�
�

0

@
0 B 0

0 0 F

G 0 0

1

A

0

@
f

g

h

1

A

�
�
�
�
�
�

2

D kBgk2 C kFhk2 C kGf k2
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and

�
�
�
�
�
�

0

@
A 0 0

0 E 0

0 0 K

1

A

0

@
f

g

h

1

A

�
�
�
�
�
�

2

D kAf k2 C kEgk2 C kKhk2:

Then,

�
�
�
�
�
�

0

@
0 B 0

0 0 F

G 0 0

1

A

0

@
f

g

h

1

A

�
�
�
�
�
�

2

D kBgk2 C kFhk2 C kGf k2

� a23kf k2 C b23kGf k2 C a21kgk2

� �

�
�
�
�
�
�

0

@
f

g

h

1

A

�
�
�
�
�
�

2

C �

�
�
�
�
�
�

0

@
A 0 0

0 B 0

0 0 C

1

A

0

@
f

g

h

1

A

�
�
�
�
�
�

2

where � D maxfa1; a2; a3g2 and � D maxfb1; b2; b3g2. Since maxfb1; b2; b3g D
maxfı1 C "; ı2 C "; ı3 C "g D ı C ": This shows that S is T -bounded with
T -bound < ı:

(ii) The proof may be checked in the same way as the proof of .a/ Q.E.D.

Theorem 11.4.1. If D.E/ � D.B/, D.K/ � D.F /, D.A/ � D.G/,D.F / �
D.C /, D.G/ � D.D/, D.B/ � D.H/, and if

kB'k � a1k'k C b1kE'k for all ' 2 D.E/;
kF'k � a2k'k C b2kK'k2 for all ' 2 D.K/;
kG'k � a3k'k C b3kA'k for all ' 2 D.A/;
kC'k � a4k'k C b4kF'k for all ' 2 D.F /;
kD'k � a5k'k C b5kG'k2 for all ' 2 D.G/; and
kH'k � a6k'k C b6kB'k for all ' 2 D.B/;

such that maxfb1; b2; b3g
�
1C maxfa4; a5; a6g

�
< 1, then A is closed if, and only if,

A, E, and K are closed. }
Proof. Since D.T / D D.A/�D.E/�D.K/, D.S/ D D.G/�D.B/�D.F /, and
D.K/ D D.D/ � D.H/ � D.C /. Then, D.T / � D.S/ � D.K/: Moreover, we
have

kS'k2 � �21 k'k2 C �21 kT 'k2 ; ' 2 D.T /

kK'k2 � �22 k'k2 C �22 kS'k2 ; ' 2 D.S/
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where

�1 D max

�q
a21 C a1b1;

q
a22 C a2b2;

q
a23 C a3b3

�

;

�1 D max

�q
b21 C a1b1;

q
b22 C a2b2;

q
b23 C a3b3

�

;

�2 D max

�q
a24 C a4b4;

q
a25 C a5b5;

q
a26 C a6b6

�

;

�2 D max

�q
b24 C a4b4;

q
b25 C a5b5;

q
b26 C a6b6

�

:

From Remark 2.1.3, it follows that

kS'k � maxfa1; a2; a3g k'k C maxfb1; b2; b3g kT 'k ' 2 D.T /;
kK'k � maxfa4; a5; a6g k'k C maxfb4; b5; b6g kS'k ' 2 D.S/;

where maxfb1; b2; b3g
�
1 C maxfa4; a5; a6g

�
< 1: Now, by using Theorem 2.1.5,

we have A is closed if, and only if, T is closed if, and only if, A, E and K are
closed. Q.E.D.

Now, we introduce the following example. We defined the block operator matrices
A and B in L2.R3/˝ L2.R

3/˝ L2.R
3/ by

A D
0

@

 0 0

0 S0 C 2V 0

0 0 


1

A and B D
0

@
0 V 0

0 0 �V
V 0 0

1

A ;

where S0 the minimal Schrödinger operator defined in

C1
0 .R

3/ WD ˚
' 2 C1.R3/ W supp.'/ is bounded



;

where supp.'/ WD ˚
x 2 R

3 W '.x/ ¤ 0



and the potential V 2 L2;loc.R
3/ is

given by V.x/ WD � ˛

jxj for some constant ˛ > 0 (hydrogen atom with Coulomb

interaction). Let ' 2 L2.R3/ then

�
�
�V'

�
�
�
2 D ˛2

Z j'.x/j2dx

jxj2
� 4˛2

Z

jr'.x/j2dx:

It is not difficult to prove that

kV'k2 � 2˛2"k
'k2 C 2˛2

"
k'k2; for all ' 2 C1

0 .R
3/;
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can be formulated as the following inequality:

kV'k2 �
�
�

"

�2
k'k2 C �2k
'k2; for all ' 2 C1

0 .R
3/; (11.4.1)

where � D ˛
p
2", 0 < " < 1

4˛2
and ˛ > 0. Hence, one can check easily that, for all

' 2 C1
0 .R

3/

kV'k2 �
 

�

"
p
.1 � 2�2/

!2

k'k2 C
 p

2�p
1 � 2�2

!2

k.S0 C 2V /'k2: (11.4.2)

For each .'1; '2; '3/t 2 L2.R3/˝ L2.R
3/˝ L2.R

3/ we have

�
�
�
�
�
�

0

@
0 V 0

0 0 �V
V 0 0

1

A

0

@
'1
'2
'3

1

A

�
�
�
�
�
�

2

D kV'2k2 C k � V'3k2 C kV'1k2:

By (11.4.1) and (11.4.2) we observe that

�
�
�
�
�
�

0

@
0 V 0

0 0 �V
V 0 0

1

A

0

@
'1
'2
'3

1

A

�
�
�
�
�
�

2

� �2

�
�
�
�
�
�

0

@
'1
'2
'3

1

A

�
�
�
�
�
�

2

C�2 �k
'1k2 C k.S0 C V /'2k2 C k
'3k2
�
;

where, � D maxf �
"
; �
"
; �

"
p
.1�2�2/g and � D maxf�; �;

p
2�p

1�2�2 g. Now, applying

Lemma 11.4.1, we obtain B is A-bounded with A-bound < ı, where ı <
p
2�p

1�2�2 .

11.4.2 Index of A

Theorem 11.4.2. Let QT be the bijection associated with T . If we suppose
that the conditions of Theorem 11.4.1 are satisfied, and we suppose that
˛1.1 C ˇ1/ < 1 and .1 C ˇ1/ < �. QT / where the parameters ˛1 D
max fmaxfa1; a2; a3g;maxfb1; b2; b3gg and ˇ1 D max fmaxfa4; a5; a6g;
maxfb4; b5; b6gg : Then, if T is Fredholm operator, then the sum A is Fredholm
which satisfies ˛.A/ � ˛.T /, ˇ.A/ � ˇ.T / and i.A/ D i.A/C i.E/C i.K/: }
Proof. From Theorems 6.2.1 and 11.4.1, it follows that i.A/ D i.T /. Moreover,

0

@
A 0 0

0 E 0

0 0 K

1

A D
0

@
A 0 0

0 I 0

0 0 I

1

A

0

@
I 0 0

0 E 0

0 0 I

1

A

0

@
I 0 0

0 I 0

0 0 K

1

A

i.A/ D i.T / D i.A/C i.E/C i.K/: Q.E.D.
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Open question:

1. Can we extend the results obtained in Chaps. 10 and 11 for a block operator
matrix having the following form

A D

0

B
@

A11 � � � A1n
:::
: : :

:::

An1 � � � Ann

1

C
A ;

where n � 4?
2. Sufficient conditions are obtained for the Fredholomness of the algebraic con-

ditions of three linear operators (see Theorem 6.2.1). Such a result generalizes
some results for the linear operator, see for example in [124, Theorem 4.2, Chap.
XVII]. However, if A1 is a Fredholm linear operator and A2; A3; : : : ; An for
n � 4 are (possible unbounded) linear operators such that

D.A1/ � D.A2/ � : : :D.An�1/ � D.An/

kAkC1'k � ˛k

�
k'k C kAk'k

	
for k D 1; : : : n � 1 and ' 2 D.A1/:

It is not clear which additional conditions should be put on the linear operatorsAk
and the scalars ˛k for k D 1; : : : ; n, so that the algebraic

Pn
kD1 Ak is a Fredholm

linear operator. This question will be left as an open question. The answer to this
question could help in investigating some properties of an n � n matrix of linear
operators A, with n � 4? �



Chapter 12
Spectral Graph Theory

12.1 Line graph

The concept of the line graph of a given graph is so natural that it has been
independently discovered by many authors. Of course, each author gave it a different
name: It was called the interchange graph by Ore [272], derivative by H. Sachs
[297], derived graph by L. W. Beineke [52], edge-to-vertex dual by M. Reed
[291], coverning graph by G. Kirchhoff [189], and adjoint by V. Menon [247].
Various characterizations of line graphs were developed. We also introduce the
concept of total graph, which was first studied by M. Belzad [54]. This concept
has been discovered only once. That’s why, this concept has no other names.
The relationships between line graphs and total graphs are usually studied with
a particular emphasis on Eulerian and Hamiltonian graphs. Let V be a countable
set and E W V � V �! Œ0;C1Œ: We assume that E.x; y/ D E.y; x/, for all x,
y 2 V . Let eV WD f.x; y/ 2 V2 such that x 
 yg. The line graph of G is the graph
eG D .eE ;eV/, whereeE..x0; y0/; .x; y// D E.x0; y/1fy¤y0g.y/CE.x; y0/1fx¤x0g.x/,
where 1fy¤y0g.:/ denotes the characteristic function of fy ¤ y0g.

© Springer International Publishing Switzerland 2015
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Example 12.1.1.

A graph G

A line graph QG of a graph G

If x D .u; v/ is a line of G; then the degree of x in eG is clearly deG.x/ D dG.u/C
dG.v/�2, where dG.:/ is defined in (2.15.1). Given a graphG D .E ;V/, the set of 1-
cochains (or 1-forms) is given by C1.G/ WD ff W V � V �! C such that f .x; y/ D
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�f .y; x/ for all x; y 2 Vg. The subset of C1.G/ with finite support is denoted by
Cc1 .G/. The adjacency matrix AeG on eG is defined by

AeGf .x0; y0/ D
X

x	y0; x¤x0
E.x; y0/f .x; y0/C

X

y	x0; y¤y0
E.x0; y/f .x0; y/; f 2 Cc1 .G/:

It is complicated to prove that an adjacency matrix is bounded from below. The
construction in [129] allows to obtain graphs such that their adjacency matrix
is bounded from below but is not essentially self-adjoint. Let E WD f.x; y/ 2
V2 such that E.x; y/ ¤ 0g. Choosing an orientation consists in defining a partition
of E W E D ECS E�; .x; y/ 2 EC if, and only if, .y; x/ 2 E�. For z D .x; y/ 2 E ;
we denote zC D y and z� D x: The 0�cochains C0.G/ are scalar functions
on V : The set of 0-cochains with a finite support is denoted by Cc0 .G/. We define
the adjacency matrix on G by AGf .x/ D P

y	x E.x; y/f .y/. We associate to
G D .E ;V/ the complex Hilbert space

`2.E/ WD
8
<

:
f 2 C1.G/ such that kf k2 WD 1

2

X

x;y2V
E.x; y/jf .x; y/j2 < 1

9
=

;
:

The associated scalar product is given by hf; gi WD 1
2

P
x;y2V E.x; y/f .x; y/g.x; y/,

for f , g 2 `2.E/.

12.2 Operators on Graphs

The difference operator is defined as d W Cc0 .G/ �! Cc1 .G/, d.f /.x; y/ D f .y/ �
f .x/. The coboundary operator is, by definition, the formal adjoint of d , i.e., d� W
Cc1 .G/ �! Cc0 .G/, d�.f /.x/ D P

y2V E.y; x/f .y; x/. The Gauß-Bonnet operator

is defined on Cc0 .G/ ˚ Cc1 .G/ by D WD d C d� Š
�
0 d�
d 0

�

: This operator is of

Dirac type. The associated Laplacian is defined as 
 D D2 D 
0 ˚
1, where 
0

is the standard discrete Laplacian acting on 0-forms defined by


0.f /.x/ WD
X

y	x
E.x; y/.f .y/ � f .x//; with f 2 Cc0 .G/

and the so-called adjacency matrix: AG.f /.x/ WD P
y	x E.x; y/f .y/, with f 2

Cc0 .G/. The 
1 is the discrete Laplacian acting on 1-forms defined by


1.f /.x; y/ WD
X

z2V
E.x; z/f .x; z/C

X

z2V
E.z; y/f .z; y/; with f 2 Cc1 .G/:
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This operator is symmetric and thus closable. We denote its closure by 
1, its
domain by D.
1/; and its adjoint by 
�

1 :

12.3 Lower Local Complexity

Now, let us deal with bounded weights E and will restrict to the case E bounded
from below. Suppose also that dG is unbounded. Let �d .G/ be the filter generated
by fx 2 V; such that dG.x/ � ng, with n 2 N. We introduce the lower local
complexity of a graph G by:

Cloc.G/ WD lim inf
x!�d .G/

NG.x/

d2G.x/

D inf
\

(�
NG.x/

d2G.x/
; x 2 V and dG.x/ � n

�

; n 2 N

)

(12.3.1)

where NG.x/ D ]fx � trianglesg (]S denotes the numbers of elements in the set S )
and the x-triangle given by .x; y; z; x/ is different from the one given by .x; z; y; x/:
The sub-lower local complexity of a graph G is defined by

C sub
loc .G/ WD inf

fG0 �G; sup d
G

0 D1g
Cloc.G

0

/: (12.3.2)

Let us recall the following result obtained by S. Golénia.

Proposition 12.3.1 ([129, Proposition 3.2]). Let G D .E ;V/ be a locally finite
graph and letbAG be a self-adjoint extension of AG: Then,

.i/ If E is not bounded, then the spectrum of bAG is neither bounded from above
nor from below.

.ii/ In the sense of inclusion of graphs, we have

sup �.bAG/ � sup
G0�G

sup
x2V.G0/

0

@ 1
p
dG0.x/

X

y	x;y2G0

E.x; y/

C 1

2dG0.x/

X

y	x;y2G0

X

z	y;z	x;z2G0

E.y; z/

1

A :

In particular, if d is not bounded and E is bounded from below, then the
spectrum ofbAG is not bounded from above.

.iii/ Suppose that there exists C > 0, so that inf �.bAG/ � �C: Then, for all G0 �
G; we have
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1

C

0

@
X

y;x2V.G0/

E.x; y/

1

A

2

�
X

y	x;x;y2V.G0/

X

z	y;z	x;z2V.G0/

E.y; z/C CdG0.x/

(12.3.3)

for x 2 G0: In particular, when E is with a value in f0gSŒEmin; Emax�; with
0 < Emin � Emax < 1: Recalling Eqs. (12.3.1) and (12.3.2), one obtains

1

C

E2min

Emax
� C sub

loc .G/ � Cloc.G/: (12.3.4)

}
Proof. Let G0 be a subgraph of G. Fix x 2 V.G0/ and consider a real-valued
function f with support in fxgSNG0.x/. We have

hf;bAGf i D f .x/.AG0f /.x/C
X

y	x; y2G0

f .y/.AG0f /.y/

D 2f .x/.AG0f /.x/C
X

y	x; y2G0

f .y/
X

z	y; z	x z2G0

E.y; z/f .z/:

(12.3.5)

We first consider the case. There is a sequence .xn; yn/n of elements of V2, such
that E.xn; yn/ ! 1, when n goes to infinity. Take G0 D G and f D fn with
support in fxn; yng in (12.3.5). We get hfn;bAGfni D 2E.xn; yn/f .xn/f .yn/. Then,
choose f .yn/ D 1 and f .xn/ D ˙1 and let n tend to infinity. For the second
case, take f .x/ D 1 and f .y/ D dG0.x/�1=2 for y neighbor of x in G0. Noting
that kf k2 D 2, (12.3.5) establishes the result. Focus finally on the third point. Take
f .x/ D 1 and f .y/ D b for y neighbor of x inG0. Note that kf k2 D 1CdG0.x/b2.
Now, since hf;bAGf i � �Ckf k2, (12.3.5) entails:

2b
X

y	x; y2G0

E.x; y/C b2
X

y	x; y2G0

X

z	y; z	x z2G0

E.y; z/C C.1C dG0.x/b2/ � 0;

for all b 2 R. Thus, the discriminant of this polynomial in b is non-positive. This
gives directly (12.3.3). In turn, this infers:

1

C

E2min

Emax
� NG0.x/

d2
G0.x/

C 1

Emax

C

dG0.x/
:

The statement (12.3.4) follows right away by taking the limit inferior with respect
to the filter �d .G0/. Q.E.D.
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Consider G a simple graph. If a graph G has a subgraph, being
S
n�0 Sun for

some sequence .un/n that tends to infinity, then C sub
loc .G/ D 0. Here, Sn D .En;Vn/

denotes the star graph of order n, i.e., jVnj D n and there is x0 2 Vn so that
E.x; x0/ D 1 for all x ¤ x0 and E.x; y/ D 0 for all x ¤ x0 and y ¤ x0.

(12.3.6)

We recall the definition of Kn WD .En;Vn/ the complete graph of n elements: Vn
is a set of n elements and E.a; b/ D 1 for all a, b 2 Vn, so that a ¤ b. One has
NKn.x/=d

2
Kn
.x/ D .n � 1/.n � 2/=n2, for all x 2 Vn. Therefore, one can hope to

increase the lower local complexity by having a lot of complete graphs as subgraph.
More precisely, it is possible that Cloc.G/ is positive, whereas C sub

loc .G/ D 0.

Lemma 12.3.1 ([129]). Let M � 1. Given a sequence of graphs Gn D .En;Vn/,
for n 2 N. Choose xn 2 Vn. Let Gı WD .Eı;Vı/ WD S

n2NGn be the disjoint union
of fGngn. Set G WD .E ;V/ with V D Vı and with E.x; y/ WD Eı.x; y/, when there
is n 2 N so that x, y 2 Vn and where sup

n2N

X

m2N
E.xn; xm/ � M .

.i/ We have k.AG � AGı/f k � M sup
n;m

E.xn; xm/kf k, for all f 2 Cc
0 .G/ D

Cc
0 .G

ı/.
.ii/ The deficiency indices of AG are equal to �.AG/ D P

n2N �.AGn/.
.iii/ In particular, if Gn are all finite graphs, then AG is essentially self-adjoint on

Cc
0 .G/. }

Proof. We start with the first point. Observe that each xm has at most M neighbors
in .xn/n2N. Then,

k.AG � AGı/f k2 D
X

n2N
j..AG � AGı/f /.xn/j2

D
X

n2N

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

m2Nnfng
E.xn; xm/f .xm/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

� M
X

n2N

X

m2Nnfng
E2.xn; xm/jf .xm/j2

� M2 sup
n;m

E2.xn; xm/
X

n2N
jf .xn/j2:
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We turn to the second point. As we have a disjoint union, �.AGı/ DP
n2N �.AGn/. For a general symmetric operator H , we have the topological

direct sum D.H�/ D D.H/ ˚ N.H� C i/ ˚ N.H� � i/. To conclude, note that
D.AG/ D D.AGı/ and D.A�

G/ D D.A�
Gı/ from the first point. Q.E.D.

Lemma 12.3.2 ([129]). For each k, n 2 N
�, there is a finite graphKk;n and a point

xk;n 2 Kk;n so that:

.i/ We have lim
n!1N.xk;n/=d

2.xk;n/ D 1=.2k2/.

.ii/ The adjacency matrix AKk;n is bounded from below by �4k, in the form
sense. }

Proof. Consider first the graph given by the disjoint union Kı
k;n WD fxngS.Kn/

k ,
where xn is a point and Kn WD .En;Vn/ the complete graph of n elements, i.e., Vn is
a set of n elements and E.a; b/ D 1 for all a, b 2 Vn, so that a ¤ b, see (12.3.6).
Then connect xn with each vertices of .Kn/

k to obtainKk;n. Note thatK1;n�1 D Kn

and that the first point is fulfilled

In a canonical basis, the adjacency matrix of Kk;n is represented by the
.nk C 1/.nk C 1/ matrix:

M.Kk;n/ D

0

B
B
B
B
B
@

0 1 1 � � � 1

1 M.Kn/ 0 � � � 0

1 0 M.Kn/ � � � 0
::: 0 0

: : : 0

1 0 0 � � � M.Kn/

1

C
C
C
C
C
A

;
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where

M.Kn/ D

0

B
B
B
B
B
@

0 1 1 � � � 1
1 0 1 � � � 1
1 1 0 � � � 1
::: 1 1

: : : 1

1 1 1 � � � 0

1

C
C
C
C
C
A

:

Easily, the characteristic polynomial of Kn is �Kn.�/ D .��C n� 1/.��� 1/n�1.
Then we deduce that

�Kk;n.�/ D .�2 � .n � 1/� � nk/.��C n � 1/k�1.�� � 1/k.n�1/;

by replacing C1 by C1�.Pi�2 Ci /=.��Cn�1/ in the determinant ofM.Kk;n/��,
for instance. Here Ci denotes the i -th column. At last, the second point follows from
an elementary computation. Q.E.D.

We recall the S. Golénia theorem.

Theorem 12.3.1 ([129, Theorem 1.1]). Let G D .E ;V/ be a locally finite graph
such that dG is unbounded. LetbAG be a self-adjoint realization of the AG: Suppose
that E is bounded. Then, we have

.i/ bAG is unbounded from above.
.ii/ If C sub

loc .G/ D 0 and E is bounded from below, then bAG is unbounded from
below.

.iii/ For all " > 0; there is a connected simple graph G such that Cloc.G/ 2 f0; "g;
AG is essentially self-adjoint on Cc0 .G/ and is bounded from below. }

Proof. The two first points are proved in Proposition 12.3.1. Consider the last one.
Given " > 0, we choose k >

p
1=2". Given M D 2, we apply the Lemma 12.3.1

with Gn WD Kk;n, where the latter is constructed in Lemma 12.3.2 by taking
E.xn; xm/ 2 f0; 1g, in order to make the graph connected. We obtain a graphG such
that AG is essentially self-adjoint on Cc

0 .G/ and so that AG � �4k �M . Q.E.D.

Let G D .E ;V/ be a locally finite graph. Let Emin > 0 such that E.x; y/ 2
f0gSŒEmin;C1Œ, for all x, y 2 V . We denote by Emax the value such that E.x; y/ 2
f0gSŒEmin; Emax�, for all x, y 2 V .

Now, let us concentrate on unbounded operators. Since 
1 � 0; it has
a Friedrichs extension (see, Theorem 2.13.2). Let us recall its construction.
Consider the quadratic form on Cc1 .G/, Q.f; g/ WD hf;
1gi C hf; gi: Let
H1 be the completion of Cc1 .G/ under the norm associated with Q, i.e.,
kf k2Q D hf;
1f i C kf k2: The domain of the Friedrichs extension 
F

1 of

1 is given by D.
F

1 / WD ff 2 H1 such that Cc1 .G/ 3 g �! h
1g; f i C
hg; f i which can be extended to a continuous function on `2.E/g D H1

T
D.
�

1 /:

It is a self-adjoint extension of 
1; e.g., see Theorem 2.13.2.
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Definition 12.3.1. The graph G D .E ;V/ is �-complete, if there exists an
increasing sequence of finite sets .Bn/n, such that V D S

Bn and if there exist
some related functions �n satisfying the following three conditions:

.i/ �n 2 Cc0 .G/, 0 � �n � 1;

.ii/ v 2 Bn ) �n.v/ D 1; and
.iii/ 9C > 0 such that for all n 2 N and x 2 V , we have

P
e;eCDx E.e/jd�n

.e/j2 � C . }
The results obtained in the rest of this chapter are due to H. Baloudi, S. Golénia,

and A. Jeribi in [44].

12.4 On the Persson’s Lemma

12.4.1 Spectral Measure

Let C.X/ be the family of all continuous complex-valued functions on a compact
Hausdorff space, X; endowed with the norm kf k1 D supx2X jf .x/j:We recall the
Riesz–Markov theorem.

Theorem 12.4.1 ([292, Theorem IV.14]). Let X be a compact Hausdorff space
and C.X/ be the family of all continuous complex-valued functions on X . For any
positive linear functional ` onC.X/, there is a unique measure� onX with `.f / DR

fd�. }
We are now ready to introduce the measure we have anticipated so often before.
Let us fix A; be a bounded self-adjoint operator on a Hilbert space H . Let  2 H ,
then f �! h ; f .A/ i is a positive linear functional on C.�.A//: Thus, by the
Riesz–Markov Theorem 12.4.1, there is a unique measure � on the compact set
�.A/ with

h ; f .A/ i D
Z

�.A/

f .�/d� :

The measure � is called the spectral measure associated with the vector  : Let A
be a bounded self-adjoint operator and� be a Borel set of R: P� � ��.A/ is called
a spectral projection of A, where ��.:/ denotes the characteristic function on �.

12.4.2 Persson’s Lemma

Let A be an unbounded self-adjoint operator on Hilbert space H: We denote by
P� the spectral projection of A: For  2 D.A/; we denote by � .:/ the spectral
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measure associated with A and  : Let f be an unbounded complex valued Borel
function and

Df D
�

' such that
Z

R

jf .�/j2d�'.�/ < 1
�

:

Then, Df is dense in H and the operator f .A/ is defined on Df by h'; f .A/'i DR
�.A/

f .�/d�'.�/: Let G D .E ;V/ be a locally finite graph. Let S be a positive

operator defined on Cc1 .G/ � D.S/ � `2.E/: We define the quadratic form
Q.f; f / D hf; Sf i C hf; f i � kf k2, f 2 Cc

1 .G/.

Proposition 12.4.1. Let SF be a Friedrichs extension of S associated with
Q: Then, inf �e4.S

F / D lim
K!1 inf �.SF

EnK/: If Q is bounded above, then

sup �e4.S
F / D lim

K!1 sup �.SF
EnK/, where K is a finite set in E and limK!1

we will say K tend to E : }
Proof. Using Theorem 2.13.2, we infer that SF is a positive self-adjoint operator.
So, for all �0 < inf �e4.SF / the projection P��1;�0� is a finite rank operator. Thus
imply, for all " > 0, there exist a finite set K" such that for all K 	 K" � E we
have kP��1;�0�EKk < ", where EK is the projection of `2.E/ onto `2.EnK/: Let
�1 < �0 < inf �e4.SF / and ˇ > 0 such that �1 C ˇ < �0: Therefore, there exists a
finite set K1 � `2.E/ such that, for all finite site K 	 K1 we have kP��1;�0�'k2 �
�0�.�1Cˇ/
�0C1 < 1 for all ' 2 `2.E nK/ such that k'k D 1: On the other hand, we have

h'; SF'i D
Z

Œ0;C1�

xd�'.x/

� �0

� Z C1

�1
d�'.x/ �

Z �0

�1
d�'.x/

	

� �0
�1 C ˇ

�0 C 1

for all ' 2 `2.E n K1/ such that k'k D 1: Now, for all finite set E 	 K 	 K1

we can choice ' 2 `2.E n K/ such that k'k D 1 and inf �.SF
EnK/ �

h'; SF'i��0�.�1Cˇ/
�0C1 > �1. This shows that inf �e4.SF / � lim

K!1 inf �.SF
EnK/.

The opposite inequality is immediately because �e4.SF / D �e4.S
F
EnK/ � �.SF

EnK/
by Weyl theorem. Q.E.D.
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12.5 Essential Self-Adjointness

12.5.1 Unbounded Properties

We begin this subsection by the following result which give some elementary
unboundedness properties of the Laplacian operator 
1 defined on a locally finite
graph G D .E ;V/: Let 
F

1 be a Friedrichs extension of 
1:

Proposition 12.5.1. Let G D .E ;V/ be a locally finite graph.

.i/ If supx
P

yÏx E.x; y/ is finite, then 
F
1 is bounded.

.ii/ If supx
P

yÏx E.x; y/ D 1 and infx;y E.x; y/ > 0, then 
F
1 is unbounded. }

Proof. .i/ Take f 2 Cc1 .G/: We have

hf;
1f i D h
1f; f i
D kd�f k2

D
X

x

ˇ
ˇ
ˇ
X

y

E.x; y/f .x; y/
ˇ
ˇ
ˇ
2

�
X

x

�X

y

E.x; y/
	X

z

E.x; z/jf .x; z/j2

D
X

x

X

z

E.x; z/f .x; z/
X

y

E.x; y/f .x; z/

� Mkf k2

where M D supx
P

y E.x; y/ < 1: So, 
F
1 is bounded.

.ii/ Let x0, y0 2 V : It is clear that, ıx0;y0 � ıy0;x0 2 Cc1 .G/ and

�
�
�
�
�

ıx0;y0 � ıy0;x0p
E.x0; y0/

�
�
�
�
�

D 1

2E.x0; y0/
X

x;y

E.x; y/jıx0;y0 � ıy0;x0 j2

D 1

2E.x0; y0/
.E.x0; y0/C E.y0; x0//

D 1:
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Moreover,


1.ıx0;y0 � ıy0;x0/.a; b/
D
X

z

E.a; z/.ıx0;y0.a; z/ � ıy0;x0.a; z//C
X

z

E.z; b/.ıx0;y0.z; b/ � ıy0;x0.z; b//

D E.a; y0/.ıx0;y0.a; y0/ � ıy0;x0.a; y0//C E.a; x0/.ıx0;y0.a; x0/ � ıy0;x0.a; x0//
C E.x0; b/.ıx0;y0.x0; b/ � ıy0;x0.x0; b//
C E.y0; b/.ıx0;y0.y0; b/ � ıy0;x0.y0; b//

D E.x0; y0/
�
ıy0.b/ � ıx0.b/C ıx0.a/ � ıy0.a/

	
:

So, we can write

2

�
�
�
�
�

1

�ıx0;y0 � ıy0;x0p
E.x0; y0/

	
�
�
�
�
�

2

D
X

x;y

ˇ
ˇ
ˇ
ˇ
ˇ

1

�ıx0;y0 � ıy0;x0p
E.x0; y0/

	
.x; y/

ˇ
ˇ
ˇ
ˇ
ˇ

2

D
X

x;y

E.x; y/
ˇ
ˇ
ˇ
p
E.x0; y0/

�
ıy0.y/ � ıx0.y/

C ıx0.x/ � ıy0.x/
	ˇ
ˇ
ˇ
2

D
X

y

E.x0; y0/
�
E.x0; y/j1C ıy0.y/j2

C E.y0; y/j1C ıx0.y/j2
	

C
X

x¤x0; x¤y0

X

y

E.x; y/E.x0; y0/jıy0.y/ � ıx0.y/j2

� C
�
8C C

X

x

E.x; y0/C
X

y

E.x0; y/
	

where C D inf
x	y E.x; y/ > 0. Since supx

P
y E.x; y/ D C1. So, we can infer that

sup
x0	y0

�
�
�
1

�ıx0;y0 � ıy0;x0p
E.x0; y0/

	�
�
� D C1:

This proved that 
F
1 is unbounded. Q.E.D.

Using the Persson’s lemma (Proposition 12.4.1), we have the following result:
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Proposition 12.5.2. Let G D .E ;V/ be an infinite and locally finite graph and 
F
1

be a Friedrichs extension of 
1: Then inf �.
F
1 / � inf

x;y
E.x; y/ and inf �e4.
F

1 / �
inf

K�E;Kfini
inf

.x;y/2Kc
E.x; y/. In particular, 
1 is never with compact resolvent when G

is simple. }
Proof. Let x0, y0 2 V such that E.x0; y0/ ¤ 0: Then,*

ıx0;y0 � ıy0;x0p
E.x0; y0/

;
F
1

�ıx0;y0 � ıy0;x0p
E.x0; y0/

	
+

D 1

2E.x0; y0/
X

x;y

E.x; y/j
�
ıx0;y0 � ıy0;x0

	
.x; y/
1

�
ıx0;y0 � ıy0;x0

	
.x; y/j

D 1

2

X

x;y

E.x; y/
�
ıx0;y0 � ıy0;x0

	
.x; y/

�
ıy0.y/ � ıx0.y/C ıx0.x/ � ıy0.x/

	

D 1

2
E.x0; y0/

�
.1C 1/ � .�1 � 1/

	

D 2E.x0; y0/:

Using Proposition 12.4.1, we obtain the result. Q.E.D.

12.5.2 A Counter Example

Let G D .E ;V/ be a radial simple tree. We denote the origin by v and the spheres
by Sn D fx 2 V such that �V.v; x/ D ng. Let off.n/ WD jSnC1j

jSnj be the offspring of
the n-th generation.

Theorem 12.5.1. Let G D .E ;V/ be a radial simple tree. Suppose that

n �! off2.n/

off.nC 1/
2 `1.N/: (12.5.1)

Then, 
1 does not essentially self-adjoint on Cc1 .G/: }
Proof. We construct f 2 `2.E/ such that f 2 N.
�

1 C i/ and f is constant on Sn�
SnC1: We denote the constant value by Cn: Let kf kSn�SnC1

the `2-norm restricted
to Sn�SnC1; i.e., kf kSn�SnC1

D 1
2

P
.x;y/2Sn�SnC1

E.x; y/jf .x; y/j2: By induction,
we prove that jSn � SnC1j D Qn

iD1 off.i/: So, we have the following equation

.off.n/C 1 � i/Cn � CnC1off.nC 1/ � Cn�1 D 0:
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Therefore,

kf kSnC1�SnC2
D jCnC1j2

nC1Y

0

off.i/

� 2
joff.n/C 1 � i j2

off2.nC 1/

nC1Y

0

off.i/jCnj2 C 2
1

off2.nC 1/

nC1Y

0

off.i/jCn�1j2:

Let Un D Qn
iD0 off.i/jCnj2: We infer that

UnC1 � 2Un
joff.n/C 1 � i j2

off2.n/

off2.n/

off.nC 1/
C 2Un�1

off.n/

off.nC 1/
:

Since n �! off2.n/
off.nC1/ 2 `2.N/: Then, by induction, we prove that there is C 2 RC

such that supn
�Qn

0 off.i/jCnj2
� D C < C1: Then, we have

kf kSnC1�SnC2
� 2C

joff.n/C 1 � i j2
off2.n/

off2.n/

off.nC 1/
C 2C

off.n/

off.nC 1/
:

By .12.5.1/; we conclude that f 2 `2.E/: Using Theorem 2.13.3 we derive that 
1

is not essentially self-adjoint on Cc1 .G/. Q.E.D.

12.5.3 Nelson Commutator Theorem

Let G D .E ;V/ be a locally finite graph. For .x; y/ 2 E consider

M.x; y/ D 1C
X

z2V
.E.x; z/C E.z; y//:

Let M.Q/ be the operator of multiplication by M: i.e.,

M.Q/.f /.x; y/ D f .x; y/C
X

z2V
.E.x; z/C E.z; y//f .x; y/; f 2 `2.E/:

Using the Nelson commutator theorem, we prove the criterium a essential self-
adjointness for 
1.

Theorem 12.5.2. Let G D .E ;V/ be a locally finite graph. Suppose that

sup
x;y2V

X

z2V
E.x; z/jM.x; y/ � M.x; z/j2 < 1:

Then, 
1 is essentially self-adjoint on Cc1 .G/: }
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Proof. Take f 2 Cc1 .G/: We denote all constants, which are independent from f;

by the same letter C: We have

2k
1f k2 D
X

.x;y/2V2
E.x; y/

ˇ
ˇ
ˇ
X

z2V
E.x; z/f .x; z/C

X

z2V
E.z; y/f .z; y/

ˇ
ˇ
ˇ
2

� 2
�
I1.f /C I2.f /

�

where

I1.f / D
X

.x;y/2V2
E.x; y/

�ˇ
ˇ
ˇ
X

z2V
E.x; z/f .x; z/

ˇ
ˇ
ˇ
2	

and

I2.f / D
X

.x;y/2V2
E.x; y/

�ˇ
ˇ
ˇ
X

z2V
E.z; y/f .z; y/

ˇ
ˇ
ˇ
2	
:

Then,

I1.f / �
X

.x;y/2V2
E.x; y/

�X

t2V
E.x; t/

	�X

z2V
E.x; z/jf .x; z/j2

	

D
X

.x;y/2V2

�X

z2V
E.x; z/

	�X

t2V
E.x; t/

	
E.x; y/jf .x; y/j2

D
X

.x;y/2V2
E.x; y/

ˇ
ˇ
ˇ
X

z2V
E.x; z/f .x; y/

ˇ
ˇ
ˇ
2

�
X

.x;y/2V2
E.x; y/

�
1C

X

z

E.x; z/C E.z; y/
	2jf .x; y/j2

and similarly,

I2.f / �
X

.x;y/2V2
E.x; y/

�X

t2V
E.t; y/

	�X

z2V
E.z; y/jf .z; y/j2

	

D
X

.x;y/2V2

�X

z2V
E.z; y/

	�X

t2V
E.t; y/

	
E.x; y/jf .x; y/j2

D
X

.x;y/2V2
E.x; y/

ˇ
ˇ
ˇ
X

z2V
E.z; y/f .x; y/

ˇ
ˇ
ˇ
2

�
X

.x;y/2V2
E.x; y/

�
1C

X

z

E.x; z/C E.z; y/
	2jf .x; y/j2:
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Therefore, we obtain

k
1f k2 � 2
X

.x;y/2V2

E.x; y/
ˇ
ˇ
ˇ
�
1C

X

z2V

�
E.x; z/C E.z; y/

�	
f .x; y/

ˇ
ˇ
ˇ
2 D 4kM.Q/f k2:

Moreover,

2hf; Œ
1;M.Q/�f i D
X

x;y

f .x; y/Œf;M.Q/�f

D
X

.x;y/2V2
E.x; y/f .x; y/

X

z2V

�
E.x; z/

�
M.x; z/

�M.x; y/
�
f .x; z/C E.z; y/

�
M.z; y/

�M.x; y/
�
f .z; y/

	
;

where ŒA; B� WD AB � BA. Therefore,

j2hf; Œ
1;M.Q/�f ij

� 1

2

X

.x;y/2V2
E.x; y/jf .x; y/j2 C 1

2

X

.x;y/2V2
E.x; y/ �

�X

z2V
E.x; z/

ˇ
ˇM.x; z/

� M.x; y/
ˇ
ˇ
ˇ
ˇf .x; z/

ˇ
ˇC E.z; y/

ˇ
ˇM.z; y/ � M.x; y/

ˇ
ˇ
ˇ
ˇf .x; z/

ˇ
ˇ
	2

� J1.f /C J2.f /C J3.f /:

Then,

J1.f / D 1

2

X

.x;y/2V2

E.x; y/jf .x; y/j2

� 1

2

X

.x;y/2V2

E.x; y/
�
1C

X

z2V

�
E.x; z/C E.z; y/

�	jf .x; y/j2 D kM.Q/
1
2 f k2;

J2.f / D
X

.x;y/2V2

E.x; y/
�X

z2V
E.x; z/

ˇ
ˇM.x; z/ � M.x; y/

ˇ
ˇ
ˇ
ˇf .x; z/

ˇ
ˇ
	2

�
X

.x;y/2V2

E.x; y/
�X

t2V
E.x; t/

	�X

z2V
E.x; z/

ˇ
ˇM.x; z/ � M.x; y/

ˇ
ˇ2
ˇ
ˇf .x; z/

ˇ
ˇ2
	

D
X

.x;y/2V2

X

z2V
E.x; z/

�X

t2V
E.x; t/

	
E.x; y/

ˇ
ˇM.x; y/ � M.x; z/

ˇ
ˇ2
ˇ
ˇf .x; y/

ˇ
ˇ2

� CkM.Q/
1
2 f k2;
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since sup.x;y/2V2
P

z2V E.x; z/ jM.x; y/ � M.x; z/j2 < 1. Similarly, we obtain

J3.f / D
X

.x;y/2V2
E.x; y/

�X

z2V
E.x; z/

ˇ
ˇM.x; z/ � M.x; y/

ˇ
ˇ
ˇ
ˇf .x; z/

ˇ
ˇ
	2

�
X

.x;y/2V2

X

z2V
E.z; y/

�X

t2V
E.t; y/

	
E.x; y/

ˇ
ˇM.x; y/�M.z; y/

ˇ
ˇ2
ˇ
ˇf .x; y/

ˇ
ˇ2

� CkM.Q/
1
2 f k2:

Finally, we obtain jhf; Œ
1;M.Q/�f ij � CkM.Q/
1
2 f k2: So, we can apply

Theorem 2.13.4, the result follows. Q.E.D.

12.5.4 Application on Schur Test

Proposition 12.5.3. Let G D .E ;V/ be a locally finite graph and let x0 2 V : For
x 2 V; the module of x is defined by jxj D �V.x0; x/, where �V.:; :/ is defined
in (2.15.2). Let

bi D sup

(
X

x;y

E.x; y/ such that jxj D i and jyj D i C 1

)

:

If
P

i2N 1
bi

D C1; then 
1 is essentially self-adjoint on Cc1 .G/: }

Proof. Let Oi D
n
.x; y/ 2 E such that sup.jxj; jyj/ D i

o
. For n 2 N; we consider

an.i/ WD

8
ˆ̂
<

ˆ̂
:

1; if i � n;

max

8
<

:
0; 1 � 1

n

iX

jDnC1

1

bj

9
=

;
; if i > n:

Set �n D P
i2N an.i/1Oi : Since �n is with finite support, �nD.
�

1 / � D.
1/ �
D.
�

1 /: Let f 2 D.
�
1 / and fn D �nf 2 Cc1 .G/:We have kfm �fnk C k
1.fm �

fn/k � k.�m � �n/f k C k.�m � �n/
�
1 f k C kŒ
�

1 ; �n�f k C kŒ
�
1 ; �m�f k: SinceP

j2N 1
bj

D C1; then an has finite support. This prove that �nf and �n
�
1 f

tend to f and 
�
1 f; respectively. The commutator operator Œ
�

1 ; �n� is defined on
D.
�

1 / and extends to a bounded operator, which we denote by Œ
�
1 ; �n�o:Note, that

we have

Œ��
1 ; �n�of .u; v/ D

X

.x;y/2E

2

E.u; v/ h1.u;v/; Œ�
�
1 ; �n�o1.x;y/if .x; y/



430 12 Spectral Graph Theory

Using the Schur test we have,

kŒ
�
1 ; �n�ok � sup

.u;v/2E

X

.x;y/2E

2

E.u; v/ jh1.u;v/; Œ

�
1 ; �n�o1.x;y/ij

D sup
.u;v/2E

X

.x;y/2E
jŒ
�

1 ; �n�o1.x;y//.u; v/j

D sup
.u;v/2E

X

.x;y/2E
jE.u; y/ıx.u/.�n.u; y/

� �n.u; v//C E.x; v/ıy.v/.�n.u; v/ � �n.x; v//j
� sup

.u;v/2E

�X

y2V
E.u; y/j�n.u; y/ � �n.u; v/j

C
X

x2V
E.x; v/j�n.x; v/ � �n.u; v/j

	

D sup
.u;v/2E

� X

y2V ; �V .u;y/D1
E.u; y/j�n.u; y/ � �n.u; v/j

C
X

x2V ; �V .x;v/D1
E.x; v/j�n.x; v/ � �n.u; v/j

	

D sup
.u;v/2E

� X

y2V ; �V .u;y/D1
E.u; y/jan.juj C 1/ � an.juj/j

C
X

x2V ; �V .x;v/D1
E.x; v/jan.jvj C 1/ � an.jvj/j

	

� 1

n
C 1

n
D 2

n
:

We conclude that .fn/n is a Cauchy sequence in D.
1/: Let g be its limit. Since
1

is closed, then g 2 D.
1/ and g D f: Q.E.D.

12.6 The Adjacency Matrix on Line Graph

12.6.1 Oriented Graph

An orientation of a graph G D .E ;V/ is a diagraph obtained from G by giving to
edge one of its two possible orientations, i.e., for x; y 2 V such that E.x; y/ ¤ 0;

we write x ! y or y ! x:
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Example 12.6.1.

Orientation by K2;4

We now change the `2-space. Above we had f .x; y/ D �f .y; x/: We set:

`2sym.E/ WD
(

f W V � V �! C W f .x; y/ D f .y; x/ and
X

x;y

E.x; y/jf .x; y/j2 < 1
)

;
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endowed which the scalar product hf; gi WD 1
2

P
x;y E.x; y/f .x; y/g.x; y/: We

now fix an orientation on G and relate `2 with `2sym. Let U W `2.E/ �! `2sym.E/
defined by .Uf /.x; y/ D sign.x; y/f .x; y/ where

sign.x; y/ WD
�
1 if x ! y;

�1 if y ! x:

Then U is a unitary map and .U�1f /.x; y/ D sign.x; y/f .x; y/: Therefore, for
x0; y0 2 V and f 2 `2.E/ we have

U
1U
�1f .x0; y0/ D

sign.x0; y0/
�X

x

E.x; y0/sign.x; y0/f .x; y0/C
X

y

E.x0; y/sign.x0; y/f .x0; y/
	
:

Example 12.6.2. Consider G D .E ;Z/ such that n ! nC 1, E.n; nC 1/ D E.nC
1; n/ D 1:

Now, we construct the graph QG D . QE ; QV / such that QV D f.n; nC1/ W n 2 Zg and

QE..n; nC 1/; .m;mC 1// WD
�
1; if m D nC 1 or m D n � 1;
0; otherwise:

Let f 2 `2sym.G/ and n 2 Z: Then,

.U
1U
�1/f .n; nC 1/ D sign.n; nC 1/
1.Uf /.n; nC 1/

D
X

z	n
sign.n; z/f .n; z/C

X

z	nC1
sign.z; nC 1/f .z; nC 1/

D 2f .n; nC 1/ � f .n; n � 1/ � f .nC 2; nC 1/

D 2f .n; nC 1/ � A QGf .n; nC 1/;

and

.U
1U
�1/f .n; nC 1/ D sign.n; nC 1/
1.Uf /.nC 1; n/

D �
X

z	nC1
sign.nC 1; z/f .nC 1; z/C

X

z	n
sign.z; n/f .z; n/

D 2f .n; nC 1/ � f .n; n � 1/ � f .nC 2; nC 1/

D 2f .n; nC 1/ � A QGf .nC 1; n/:

Then, we can infer that 
1 and 2I � A QG are unitarily equivalent.
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Example 12.6.3. Consider G D .E ; fk W k 2 Zg/ such that k ! .k C 1/;

E.k; .k C 1// D E..k C 1/; k/ D 1:

Now we construct the graph QG D . QE ; QV / such that QV D f.k; .k C 1// W k 2
Zg and

QE..n; .nC 1//; .m; .mC 1/// WD
�
1; if m D nC 1 or m D n � 1;
0; otherwise:

Let f 2 `2sym.G/ and n 2 Z: Then,

.U
1U
�1/f .n; .nC 1// D sign.n; .nC 1//
1.Uf /.n; .nC 1//

D
X

z	n
sign.n; z/f .n; z/

C
X

z	.nC1/
sign.z; .nC 1//f .z; .nC 1//

D 2f .n; .nC 1// � f .n; .n � 1//
�f ..nC 2/; .nC 1//

D 2f .n; .nC 1// � A QGf .n; .nC 1//

and

.U
1U
�1/f ..nC 1/; n/ D sign.n; .nC 1//
1.Uf /..nC 1/; n/

D �
X

z	.nC1/
sign..nC 1/; z/f ..nC 1/; z/

C
X

z	n
sign.z; n/f .z; n/

D 2f .n; .nC 1// � f .n; .n � 1//
�f ..nC 2/; .nC 1//

D 2f .n; .nC 1// � A QGf ..nC 1/; n/:

Then, we can infer that 
1 and 2I � A QG are unitarily equivalent.

Example 12.6.4. Let G D .E ;Z/ such that 2k ! 2k C 1 and 2k ! 2k � 1 for all
k 2 Z: Suppose that E.2k; 2k C 1/ D E.2k C 1; 2k/ D 1 for all k 2 Z:
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Let QG D . QE ; QV / such that QV D f.2k; 2kC1/; .2k; 2k�1/ W k 2 Zg and QE..2k; 2kC
1/; .2k�1; 2k// D QE..2k; 2kC1/; .2kC1; 2kC2// D QE..2k�1; 2k/; .2k�1; 2k�
2// D 1: Then, U
1U

�1f .2k; 2k C 1/ D 2f .2k; 2k C 1/C A QG.f /.2k; 2k C 1/

and U
1U
�1f .2k � 1; 2k/ D 2f .2k � 1; 2k/C A QG.f /.2k � 1; 2k/: This imply

that 
1 and 2I C A QG are unitarily equivalent.

12.6.2 Case of Bipartite Graph

In this section we study a bipartite graph. A bipartite graph is a graph whose vertices
can be partitioned into two subsets U and V such that no edge has both endpoint
in the same subset, and every possible edge that could connect vertices in different
subsets is part of the graph. A bipartite graph with partitions of size jU j D p and
jqj D n; is denoted by Km;n:

Remark 12.6.1. Let G D .E ;V/ be a bipartite graph. Then A QG is independent of
the orientation of G: }
Example 12.6.5.

A graph K2;4
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A line graph eK2;4

Example 12.6.6.

A bipartite graph G
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A line graph QG D K8

S
K4

Theorem 12.6.1. LetG D .E ;V/ be a bipartite graph. Then A QG � �2E.Q/ where
2E.Q/ is the operator of multiplication by 2E and A QG is the adjacency matrix on
line graph QG. In particular, if G is simple, then A QG is bounded from below. }
Proof. Let .x0; y0/ 2 QV and f 2 `2sym.E/: Then

U�1U
�1f .x0; y0/ D

X

x	y0
E.x; y0/f .x; y0/C

X

y	x0
E.x0; y/f .x0; y/

D 2E.Q/f .x0; y0/C AeGf .x0; y0/;

where .Uf /.x; y/ D sign.x; y/f .x; y/. Therefore, the Laplacian 
1 is unitarily
equivalent to that 2E.Q/ C A QG: If G is simple, then A QG � �2I since 
1 is
nonnegative operator. Q.E.D.

Example 12.6.7. Let n 2 N and we consider the bipartite graph K1;n: Then 
1 and
Q.2E/CAKn are unitarily equivalent whereKn is the complete graph of n elements.

A graph K1;8
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A complete graph eK1;8 D K8

We give the main result:

Proposition 12.6.1. Let G be a locally finite simple bipartite graph and bA QG be a
self-adjoint realization of A QG: Then C sub

loc .G/ > 0 or QE is unbounded from below. }
Proof. Since 
1 is nonnegative operator. Then A QG C 2I is nonnegative and this
show that A QG is bounded from below. Then using Theorem 12.3.1, the result
follows. Q.E.D.

We present the relationship between bipartite graphs and line graphs. We recall that
Cn (see, [278]) denotes the n-cycle graph i.e., V WD Z=nZ, where E.x; y/ D 1 if,
and only if, jx � yj D 1.

Proposition 12.6.2. LetG D .E ;V/ be a bipartite graph. ThenG ' QG if, and only
if, G 2 fZ; N; C2n W n 2 Ng: }
Proof. Suppose that G ' QG: Then, QG not contain x-triangles. If dG.x/ � 3; for
all x 2 V; then there exist a x-triangle of QG: So, dG.x/ � 2 for all x 2 V : The
conversely is trivial. This completes the proof. Q.E.D.

Let G D .E ;V/ be a locally finite graph. We recall that if E is bounded from
below, there exist Emin > 0 such that E is with values in f0gSŒEmin;1/: We have
the following Remark:

Remark 12.6.2. Let G D .V; E/ be a bipartite and QG D . QV; QE/: Using Proposi-

tion 12.3.1, we have
QE2min

2 QEmax
� N

QG
0 .x/

d
QG
0
.x/

C 2

QEmaxd
0

QG
.x/

, for all QG 0 � QG and x 2 QV 0

: In

particular, if QG is simple, then 1
10

� C sub
loc .

QG/: }
In the next Proposition, we present a characterization of the line graph of simple
locally finite tree.
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Proposition 12.6.3. Let H be a locally finite simple connected graph such that
dH ¤ 2: Then H is the edge graph of a locally finite simple tree if, and only
if, there exists a sequence of simple complete subgraph .Kn D .VKn; EKn//n such
that jVKi j ¤ 2, jVKi

T
VKj j � 1 for all i ¤ j; and satisfying the two following

assertions:

.i/ H D S
i Ki and for all x 2 H there exist a unique .i; j / 2 N

2, i ¤ j such
that fxg D VKi

T
VKj :

.ii/ The simple graph K D .fKi such that i 2 Ng; EK/ is a tree, where
EK.Ki ;Kj / D 1 if jKi

T
Kj j D 1 and 0 otherwise. }

Proof. Assume that .i/ and .ii/ are satisfied. We construct the locally finite simple
graph G D .E ;V/ as follows. Take V D fxi W i 2 N such that xi 62 S

j Vj g
and E.xi ; xj / D 1 if, and only if, jKi

T
Kj j D 1. Now, we consider the

function h W V QG �! V QK; h.xi ; xj / D .Ki ;Kj / where V QG is the vertices
of the edge graph QG and V QK is the vertices of the edge graph QK: Then h is
bijective. Moreover, we prove that QE..xi ; xj /; .xn; xm// ¤ 0 if, and only if,
fEK..Ki ;Kj /; .Kn;Km// ¤ 0. So, QG ' QK and we conclude that G is a tree.
Conversely, let G D .E ;V D fxi W i 2 Ng/ be a simple tree such that QG D H and
dG ¤ 2: Take Bi D .fxi ; y 2 V W y 
 xig; E/ and Ki WD eBi . Then Ki is complete
for all i 2 N: Therefore, we have QG WD S

i Ki and jVKi j ¤ 2 since dG ¤ 2:

By construction, .Ki /i satisfied the two assertion .i/ and .ii/: Q.E.D.
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Open question: Let eG be the line graph of a bipartite graph G. Can we determine
the relationship between the adjacency matrix A QG and the discrete Laplacian acting
on 1-forms, in the case where the graph G is not bipartite? �



Chapter 13
Applications in Mathematical Physics
and Biology

In this chapter, we apply the results of Chaps. 4, 6–11 to five examples: to radiative
transfer equations in a channel, to one-velocity transport operator with Maxwell
boundary condition, to transport equation in a sphere with a diffuse reflection
boundary condition, to transport operator with general boundary conditions, and
to a Rotenberg’s model in a cell of population. This chapter contains 11 sections.
However, it is worth mentioning that each section has its own equations, notations,
and symbols. In other words, the reader should remember that the same symbol
doesn’t have the same meaning or significance from one section to another.

13.1 Time-Asymptotic Description of the Solution
for a Transport Equation

On Lp spaces .p � 1/, we study the time-asymptotic behavior of solutions to the
initial boundary value problem [43]

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@ 

@t
.x; v; t/ D �v3 @ 

@x
.x; v; t/ � �.v/ .x; v; t/C

Z

K

�.x; v; v0/ .x; v0; t / dv0

D AH .x; v; t/

D TH .x; v; t/C F .x; v; t/

 .x; v; 0/ D  0.x; v/;
(13.1.1)

where K is the unit sphere of R3, v D .v1; v2; v3/ 2 K, x 2 .0; 1/, H denotes
the boundary operator relating the outgoing,  o; and the incoming fluxes,  i ;

F is the integral part of AH and TH WD AH � F . The boundary operator H

© Springer International Publishing Switzerland 2015
A. Jeribi, Spectral Theory and Applications of Linear Operators
and Block Operator Matrices, DOI 10.1007/978-3-319-17566-9_13
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describes how the incident energy at the boundary is reflected back inside the
domain. The function  .x; v; t/ represents the energy density having the position
x, the velocity v at time t � 0: �.:/ is a nonnegative, measurable, and almost
everywhere finite function on K and describes the collision frequency. �.:; :; :/ is a
measurable function which describes the scattering kernel. The boundary conditions
are modeled by  i D H. o/; where

H D
�
H11 H12

H21 H22

�

;  i D
�
 .0; v/; v3 > 0

 .1; v/; v3 < 0

�

;  o D
�
 .0; v/; v3 < 0

 .1; v/; v3 > 0

�

and Hij, i; j D 1; 2 are bounded operators on appropriate functional spaces.

13.1.1 Preliminaries and Notations

LetXp D Lp.D; dxdv/; whereD D Œ0; 1��K and p 2 Œ1;C1Œ. Let us define the
following sets representing the incoming and the outgoing boundary of the space
phase D

Di D Di
1

S
Di
2 D f0g �K1

Sf1g �K0

Do D Do
1

S
Do
2 D f0g �K0

Sf1g �K1;

for K0 D K
Tfv3 < 0g and K1 D K

Tfv3 > 0g: We introduce the following
boundary spaces

X�
p WD Lp.D

i ; jv3jdv/ 
 Lp.D
i
1; jv3jdv/˚ Lp.D

i
2; jv3jdv/

WD X�
1;p ˚X�

2;p

endowed with the norm

k ikX�

p
D
�
k i

1kpX�

1;p
C k i

2kpX�

2;p

	 1
p

D
�Z

K1

j .0; v/jpjv3j dv C
Z

K0

j .1; v/jpjv3j dv

� 1
p

and

XC
p WD Lp.D

o; jv3jdv/ 
 Lp.D
o
1; jv3jdv/˚ Lp.D

o
2; jv3jdv/

WD XC
1;p ˚XC

2;p
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endowed with the norm

k ok
X

C

p
D
�

k o
1kp

X
C

1;p

C k o
2kp

X
C

2;p

� 1
p

D
�Z

K0

j .0; v/jpjv3j dv C
Z

K1

j .1; v/jpjv3j dv

� 1
p

;

where 
 means the natural identification of these spaces. Let us introduce the
boundary operator H

8
ˆ̂
<

ˆ̂
:

H W XC
1;p ˚XC

2;p �! X�
1;p ˚X�

2;p

H

�
u1
u2

�

D
�
H11 H12

H21 H22

��
u1
u2

�

with j; k 2 f1; 2g, Hjk W XC
k;p �! X�

j;p , Hjk 2 L.XC
k;p; X

�
j;p/, defined such that,

on natural identification, the boundary conditions can be written as  i D H. o/.
Now, we define the streaming operator TH with a domain including the boundary
conditions
8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

TH W D.TH / � Xp �! Xp

 �! TH .x; v/ D �v3 @ 
@x
.x; v/ � �.v/ .x; v/

D.TH /

D
�

 2 Xp; v3 @ 
@x

2 Xp; jDi WD  i 2 X�

p ;  jDo WD  o 2 XC

p and  i D H. o/

�

;

where o D . o
1 ;  

o
2 /

> and i D . i
1;  

i
2/

>, with o
1 ;  

o
2 ;  

i
1 and i

2 are given by

8
ˆ̂
<

ˆ̂
:

 i
1.v/ D  .0; v/; v 2 K1

 i
2.v/ D  .1; v/; v 2 K0

 o
1 .v/ D  .0; v/; v 2 K0

 o
2 .v/ D  .1; v/; v 2 K1:

Remark 13.1.1 ([58]). The derivative of  in the definition of TH is meant in
distributional sense. Note that, if  2 D.TH /, then it is absolutely continuous with
respect to x. Hence the restrictions of  to Di and Do are meaningful. Note also

that D.TH / is dense in Xp because it contains C1
0 .

o

D/. }
Let ' 2 Xp and consider the resolvent equation for TH

.� � TH/ D '; (13.1.2)
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where � is a complex number and the unknown  must be sought in D.TH /. Let
� be the real defined by � WD ess- inff�.v/; v 2 Kg: Thus, for Re� > �� , the
solution of (13.1.2) is formally given by

 .x; v/ D  .0; v/ e
�
�
�.v/C�

jv3j

	
x C 1

jv3j
Z x

0

e
�
�
�.v/C�

jv3j

	
.x�x0/

'.x0; v/ dx0; v 2 K1

(13.1.3)

 .x; v/D .1; v/ e
�
�
�.v/C�

jv3j

	
.1�x/ C 1

jv3j
Z 1

x

e
�
�
�.v/C�

jv3j

	
.x0�x/

'.x0; v/ dx0; v 2K0;

(13.1.4)

where  .1; v/ and  .0; v/ are given by

 .1; v/ D  .0; v/ e
�
�
�.v/C�

jv3j

	

C 1

jv3j
Z 1

0

e
�
�
�.v/C�

jv3j

	
.1�x0/

'.x0; v/ dx0; v 2 K1

(13.1.5)

 .0; v/ D  .1; v/ e
�
�
�.v/C�

jv3j

	

C 1

jv3j
Z 1

0

e
�
�
�.v/C�

jv3j

	
x0

'.x0; v/ dx0; v 2 K0:

(13.1.6)

In order to clarify the analysis, let us introduce the following operators depending
on the parameter �

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

M� W X�
p �! XC

p ;M�u WD .MC
� u;M�

� u/; with

.MC
� u/.0; v/ WD u.0; v/ e

�
�
�.v/C�

jv3j

	

v 2 K1;

.M�
� u/.1; v/ WD u.1; v/ e

�
�
�.v/C�

jv3j

	

v 2 K0;

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

B� W X�
p �! Xp;B�u WD �K0.v/BC

� u C �K1.v/B�
� u; with

.BC
� u/.x; v/ WD u.0; v/ e

�
�
�.v/C�

jv3j

	
x

v 2 K1;

.B�
� u/.x; v/ WD u.1; v/ e

�
�
�.v/C�

jv3j

	
.1�x/

v 2 K0;
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8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

G� W Xp �! XC
p ;G�u WD .GC

� ';G
�
� '/; with

GC
� ' WD 1

jv3j
Z 1

0

e
�
�
�.v/C�

jv3j

	
.1�x/

'.x; v/ dx; v 2 K1;

G�
� ' WD 1

jv3j
Z 1

0

e
�
�
�.v/C�

jv3j

	
x
'.x; v/ dx; v 2 K0;

and

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

C� W Xp �! Xp;C�' WD �K0.v/CC
� ' C �K1.v/C�

� '; with

CC
� ' WD 1

jv3j
Z x

0

e
�
�
�.v/C�

jv3j

	
.x�x0/

'.x0; v/ dx0; v 2 K1;

C�
� ' WD 1

jv3j
Z 1

x

e
�
�
�.v/C�

jv3j

	
.x�x0/

'.x0; v/ dx0; v 2 K0;

where �K0.:/ and �K1.:/ denote, respectively, the characteristic functions of the sets
K0 and K1: A simple calculation shows that these operators are bounded on their
respective spaces. In fact, for Re� > �� , the norms of the operators M�, B�,

C�, and G� are bounded above, respectively, by e�Re��� , . 1
p.�CRe�/ /

1
p , 1

�CRe� and

. 1
�CRe� /

1
q , where q is the conjugate of p: In what follows, we will assume that the

boundary operator H satisfies the assumption

.P/

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

.i/ H D
�
0 H12

H21 0

�

;

.ii/ H12 D ˛J1 C ˇD1 and H21 D ˛J2 C ˇD2 where ˛ and ˇ 2 R
C;

J1 and J2 are compact while D1 and D2 are respectively given by
u.1; v/ �! .D1u/.0; v/ D u.0; v/; u.0; v/ �! .D2u/.1; v/ D u.1; v/;
.iii/ kHk � 1:

Note that D1 and D2 are given by

D1 W XC
2;p �! X�

1;p; u.1; v/ �! .D1u/.0; v/ D u.0; v/;

D2 W XC
1;p �! X�

2;p; u.0; v/ �! .D2u/.1; v/ D u.1; v/:

The boundary conditions are modeled by  i
1 D H12 

o
2 , and  i

2 D H21 
o
1 : Now,

using the above operators and the fact that  must satisfy the boundary conditions,
Eqs. (13.1.5) and (13.1.6) may be written as  o

2 D MC
� H12 

o
2 C GC

� '; and  o
1 D

M�
� H21 

o
1 C G�

� ': Moreover, since kM�̇ k � e�Re��� , we infer that, for all �
satisfying Re� > �� , the operators .I �M�

� H21/ and .I �MC
� H12/ are invertible.



446 13 Applications in Mathematical Physics and Biology

So, we have

 o
2 D �

I �MC
� H12

��1
GC
� ' D

X

n�0
.MC

� H12/
nGC

� ' (13.1.7)

and

 o
1 D �

I �M�
� H21

��1
G�
� ' D

X

n�0
.M�

� H21/
nG�

� ': (13.1.8)

Next, substituting (13.1.7) and (13.1.8) into (13.1.3) and (13.1.4), we get

 .x; v/ D BC
� H12.I �MC

� H12/
�1GC

� ' C CC
� '; v 2 K1;

 .x; v/ D B�
� H21.I �M�

� H21/
�1G�

� ' C C�
� '; v 2 K0:

Thus, the resolvent R.�; TH / WD .� � TH/�1 of TH is given by

.� � TH/�1 D �K1.v/RC.�; TH /C �K0.v/R�.�; TH /; (13.1.9)

where

RC.�; TH / D
X

n�0
BC
� H12.M

C
� H12/

nGC
� C CC

� (13.1.10)

and

R�.�; TH / D
X

n�0
B�
� H21.M

�
� H21/

nG�
� C C�

� : (13.1.11)

It is easy to see that R.�; T0/ WD C� is a positive operator on Xp , where T0 is
the operator TH with H D 0. The positivity of M�, B�, G�, and H implies the
positivity of R.�; TH /, i.e.,

R.�; TH / � R.�; T0/ � 0: (13.1.12)

13.1.2 Compactness and Generation Results

The objective of this section is to introduce a class of perturbation operatorsF which
are TH -compact. This class was already introduced and investigated in [261] for
vacuum boundary conditions. The scattering kernel �.:; :; :/ defines a linear operator
F by
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8
<

:

F W Xp �! Xp

 �!
Z

K

�.x; v; v0/ .x; v0/ dv0: (13.1.13)

The operator F satisfies in Xp WD Lp.Œ0; 1� � K; dxdv/; p 2 Œ1;C1Œ; the
assumptions .i/–.iii/ of Lemma 2.4.1.

Definition 13.1.1. A collision operator in the form (13.1.13) is said to be regular if
it satisfies the assumptions .i/–.iii/ of Lemma 2.4.1 for D WD Œ0; 1� and V WD K.}
Proposition 13.1.1. Assume that .i/–.iii/ of Lemma 2.4.1 hold true forD WD Œ0; 1�

and V WD K. Then for any � 2 C satisfying Re� > �� , the operator .�� TH/�1F
is compact on Xp for 1 < p < 1 and weakly compact on X1. }
Proof. Consider the case where 1 < p < C1. Let � be such that Re� > �� . In
view of (13.1.9), we have

.� � TH/�1F D �K1.v/RC.�; TH /F C �K0.v/R�.�; TH /F: (13.1.14)

In order to conclude, it suffices to show that RC.�; TH /F and R�.�; TH /F are
compact on Xp . We claim that GC

� F , CC
� F , G�

� F and C�
� F are compact on Xp .

By using Lemma 2.4.1, it suffices to prove the result for an operator whose kernel
is of the form �.x/�.v/ˇ.v0/, where �.:/ 2 L1.Œ0; 1�; dx/, �.:/ 2 Lp.K; dv/ and
ˇ.:/ 2 Lq.K; dv/, . 1

p
C 1

q
D 1/. Consider ' 2 Xp; we have

.GC
� F'/.v/ D �.v/

Z

K

Z 1

0

1

v3
e

� .�.v/C�/
jv3j

.1�x/
�.x/ˇ.v0/'.x; v0/ dx dv0; v 2 K1

DJ�U�';

where U� and J� denote the following bounded operators

U� W ' 2 Xp �!
Z

K

ˇ.v0/'.x; v0/ dv0 2 Lp..0; 1/; dx/

and

J� W  2 Lp..0; 1/; dx/ �!
Z 1

0

1

v3
e

� .�.v/C�/
jv3j

.1�x/
�.x/�.v/ .x/ dx 2 XC

1;p:
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Now, it is sufficient to show that J� is compact on Xp . This will follow from
Theorem 2.4.3 if we show that

Z

K1

�Z 1

0

ˇ
ˇ
ˇ
ˇ
1

v3
e

� .�.v/C�/
jv3j

.1�x/
�.x/�.v/

ˇ
ˇ
ˇ
ˇ

q

dx

� p
q

jv3j dv < 1

(J� is then a Hille–Tamarkin operator). Indeed, let us first observe that

Z 1

0

ˇ
ˇ
ˇ
ˇ
1

v3
e

� .�.v/C�/
jv3j

.1�x/
�.x/�.v/

ˇ
ˇ
ˇ
ˇ

q

dx � k�kq1
j�.v/jq
jv3jq

Z 1

0

e
�q .�CRe�/

jv3j
.1�x/ dx

� k�kq1
j�.v/jq

qjv3jq�1.� C Re�/
:

Hence,

Z

K1

�Z 1

0

ˇ
ˇ
ˇ
ˇ
1

v3
e

�
.�.v/C�/

jv3j
.1�x/

�.x/�.v/

ˇ
ˇ
ˇ
ˇ

q

dx

� p
q

jv3j dv � k�kp
1

.q.� C Re�//
p
q

Z

K1

j�.v/jp dv

D k�kp
1

k�kp
.q.� C Re�//

p
q

< 1:

A similar reasoning allows us to reach the same result for the operators CC
� F ,

G�
� F and C�

� F . This concludes the proof of the claim. By using Eqs. (13.1.10)
and (13.1.11), we show that RC.�; TH /F and R�.�; TH /F are compact. Now,
the proof follows from Eq. (13.1.14). For the case p D 1, let � be such that
Re� > �� . It suffices to show that RC.�; TH /F and R�.�; TH /F are weakly
compact on X1. We claim that G�F and C�F are weakly compact on X1. By using
Lemma 2.4.1, it is sufficient to prove the result for an operator whose kernel is of the
form �.x; v; v0/ D �.x/�.v/ˇ.v0/; where �.:/ 2 L1.Œ0; 1�; dx/, �.:/ 2 L1.K; dv/,
and ˇ.:/ 2 L1.K; dv/: Consider ' 2 X1. We have

.G�
� F'/.v/ D

Z

K

Z 1

0

1

jv3j�.x/�.v/e
�
�
�.v/C�

jv3j

	
x
ˇ.v0/ '.x; v0/ dxdv0; v 2 K0

D J�U�';

where U� and J� denote the following bounded operators

8
<

:

U� W X1 �! L1.Œ0; 1�; dx/

' �!
Z

K

ˇ.v/ '.x; v/ dv
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and
8
<̂

:̂

J� W L1.Œ0; 1�; dx/ �! XC
2;1

 �!
Z 1

0

1

jv3j�.x/�.v/e
�
�
�.v/C�

jv3j

	
x
 .x/ dx :

Now, it is sufficient to show that J� is weakly compact. To do so, let O be a
bounded set of L1.Œ0; 1�; dx/, and let  2 O. We have

R
E

jJ� .v/j jv3j dv �
k�k k k R

E
j�.v/j dv; for all measurable subsets E of K1. Next, by applying

Theorem 2.4.5, we infer that the set J�.O/ is weakly compact, since
limjEj!0

R
E

j�.v/j dv D 0; .� 2 L1.K; dv// where jEj is the measure of E. A
similar reasoning allows us to reach the same result for the operators GC

� F and
C�F . Q.E.D.

Lemma 13.1.1. Assume that .P/ holds true. Then, for all � such that Re� > �� ,
we have k.� � TH/�1k � 1

Re�C� : }
Proof. We define the streaming operator T 0

H W  2 D.TH / �! .TH C �/ : Let us
first show that T 0

H is dissipative on Xp for p 2 Œ1;1/. For this purpose, we treat
separately the case 1 < p < 1 and the case p D 1. Let 1 < p < 1 and consider
 2 D.TH /. We have

RehT 0
H ; j jp�2 i D Re

�Z

K

Z 1

0

j jp�2 
�

�v3 @ 
@x
.x; v/

�

dx dv

�

�
Z

K

Z 1

0

.�.v/ � �/j jp dx dv

D � 1

p

Z

K

Z 1

0

v3
@j jp
@x

dx dv �
Z

K

Z 1

0

.�.v/ � �/j jp dx dv

D 1

p

�

k ikpX�

p
� k okp

X
C

p

�

�
Z

K

Z 1

0

.�.v/ � �/j jp dx dv

� 0 .because kHk � 1/:

Now, let us consider the case where p D 1. Let  2 D.TH /. Then, we have

RehT 0
H ; s0. /i D � Re

�Z

K

Z 1

0

v3
@ 

@x
.x; v/s0. /.x; v/ dx dv

�

�
�Z

K

Z 1

0

.�.v/ � �/j j dx dv

�

k k

D
�

�
Z

K

Z 1

0

v3
@j j
@x

dx dv �
Z

K

Z 1

0

.�.v/ � �/j j dx dv

�

k k
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D
��

k ikX�

1
� k ok

X
C

1

	
�
Z

K

Z 1

0

.�.v/ � �/j j dx dv

�

k k

� 0 .because kHk � 1/:

We conclude that T 0
H is dissipative on Xp .1 � p < 1/. Now, for Re� C � > 0;

consider  2 D.TH / and let ' D � � TH . We have

.Re�C �/k k2 D .Re�C �/h ; �i
D Re


.�C �/h ; �i�

� Re
h.�C �/ ; �i � hT 0

H ; 
�i� .because T 0

H is dissipative/

D Reh'; �i � k'kk k:

Consequently, k k � k'k
�CRe� ; which completes the proof. Q.E.D.

Lemma 13.1.2. Assume that .P/ holds true. Then, f� 2 C such that Re� > kF k�
� C 1g � �.AH/ and, for all � such that Re� > kF k � � C 1, we have k.� �
AH/

�1k � 1: }
Proof. By using Lemma 13.1.1, we have k.��TH/�1F k � kF k

Re�C� < 1:Moreover,

.� � AH/�1 D ŒI � .� � TH/�1F ��1.� � TH/�1 and therefore,

k.� � AH/�1k � k.� � TH/�1k
C1X

kD0
k.� � TH/�1F kk

� 1

.Re�C �/.1 � kF k
Re�C� /

� 1: Q.E.D.

We end this section by the following result.

Proposition 13.1.2. Assume that .P/ holds true. If the boundary operator H
is nonnegative, then TH generates a strongly continuous semigroup .UH .t//t�0;
satisfying kUH.t/k � e��t : }
Proof. The result follows from Lemma 13.1.1 and Corollary 2.5.1. Q.E.D.

13.1.3 Auxiliary Lemmas

The purpose of this section is to establish some lemmas which will be used in the
next section. Let ! > 0, and set R! D f� 2 C such that Re� � �� C!g: Note that
if � 2 R! , then
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� � !

2
C Re� � !

2
> 0 (13.1.15)

and, for all s 2 .0;C1/, we have

�
�
v1; v2;

v3

s

	
� � C !

2
� !

2
> 0: (13.1.16)

We define C.r/ by C.r/ D f.v1; v2/ 2 R
2 such that v21 C v22 D 1 � r2g; which

represents the circle of radius
p
1 � r2 and center O . Let " > 0, for x 2 .0; 2/,

.v1; v2/ 2 C.0/ and u > 0, we consider

8
<

:

�v1;v2;x W .";C1/ �! RC
s �! 1

s
e�s.�.v1;v2; xs /��C !

2 /

and

(
'u W K1 �! R

v D .v1; v2; v3/ �! e
� .�.v/��C

!
2 /

v3
u
:

According to (13.1.16), 0 � �v1;v2;x.:/ 2 L1.";C1/ and 0 � 'u 2 L1.K
1/: We

denote by .%v1;v2;x;n.://n2N .resp: .Lu;n.://n2N/, an increasing sequence of nonnega-
tive step functions with compact support which converges to �v1;v2;x.:/ Œresp: 'u.:/�

almost everywhere. Notice that

�v1;v2;x.s/ � %v1;v2;x;n.s/ � 2

"
e� !

2 s: (13.1.17)

Let h be a measurable simple function on K and let A2 be the operator defined by

8
ˆ̂
<̂

ˆ̂
:̂

A2 W Lp.0; 1/ �! Lp.0; 1/

' �!
Z x

0

'.u/du
Z

C. x�u
s /

dv1dv2

Z C1

"

h.v1; v2;
x�u
s
/

s
e�s.�.v1;v2; x�u

s /C�/

�.x�s;x/.u/ds:

We introduce the sequence .A2;n/n2N of operators defined, for all n 2 N, by

8
ˆ̂
<̂

ˆ̂
:̂

A2;n W Lp.0; 1/ �! Lp.0; 1/

' �!
Z x

0

'.u/du
Z

C. x�u
s /

dv1dv2

Z C1

"

h
�
v1; v2;

x � u

s

	
e�s.�� !

2 C�/

�.x�s;x/.u/%v1;v2;x�u;n.s/ds:
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Lemma 13.1.3. We have the following

.i/ The sequence of operators .A2;n/n2N converges uniformly on R! to A2 in
L.Lp.0; 1//:

.ii/ kA2;nkp �
Z 1

0

dx

�Z

C.0/
dv1dv2

ˇ
ˇ
ˇ
ˇ

Z C1

"

h
�
v1; v2;

x

s

	
e� s.� � !

2 C�/�.x;C 1Œ.s/

%v1;v2;x;n.s/ds

ˇ
ˇ
ˇ
ˇ

�p

:

}
Proof.

.i/ Let ' 2 Lp.0; 1/. Then,

k.A2;n � A2/'kp

D
Z 1

0

dx
ˇ
ˇ
ˇ

Z x

0

'.u/du

Z

C. x�u
s /

dv1dv2

Z
C1

"

h
�
v1; v2;

x � u

s

	
e�s.��

!
2 C�/�.x�s;x/.u/

� f�v1;v2;x�u.s/� %v1;v2;x�u;n.s/gds
ˇ
ˇ
ˇ
p

�
Z 1

0

dx

 Z 1

0

j'.u/jdu

Z

C. xs /
dv1dv2

Z
C1

"

ˇ
ˇ
ˇh
�
v1; v2;

x

s

	ˇ
ˇ
ˇ e�s.��

!
2 CRe�/�.x;C1Œ.s/

� f�v1;v2;x.s/� %v1;v2;x;n.s/gds

!p

�
Z 1

0

dx

 Z 1

0

j'.u/jdu

Z

C.0/
dv1dv2

Z
C1

"

ˇ
ˇ
ˇh
�
v1; v2;

x

s

	ˇ
ˇ
ˇ e�s.��

!
2 CRe�/

� f�v1;v2;x.s/� %v1;v2;x;n.s/gds

!p

� k'kp sup jh.:; :; :/jp

�
Z 1

0

dx

 Z

C.0/
dv1dv2

Z
C1

"

e�s.��
!
2 CRe�/f�v1;v2;x.s/� %v1;v2;x;n.s/gds

!p

:

Applying Hölder’s inequality, we get

Z

C.0/
dv1dv2

Z C1

"

e�s.�� !
2 CRe�/f�v1;v2;x.s/ � %v1;v2;x;n.s/gds �

�Z

C.0/
dv1 dv2

� 1
q

�
"Z

C.0/
dv1 dv2

�Z C1

"

e�s.�� !
2 CRe�/f�v1;v2;x.s/ � %v1;v2;x;n.s/g ds

�p # 1
p

;
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which implies

k.A2;n � A2/'kp � k'kp sup jh.:; :; :/jp p
q

Z 1

0

dx
Z

C.0/
dv1dv2

�
�Z C1

"

e�s.�� !
2 CRe�/f�v1;v2;x.s/ � %v1;v2;x;n.s/gds

�p

:

Therefore,

kA2;n � A2kp � sup jh.:; :; :/jp p
q

Z 1

0

dx
Z

C.0/
dv1dv2

�
�Z C1

"

e�s.�� !
2 CRe�/f�v1;v2;x.s/ � %v1;v2;x;n.s/gds

�p

:

Using Eqs. (13.1.16) and (13.1.17) and applying two times the Lebesgue dominated
convergence theorem, we get lim

n!C1 kA2;n � A2k D 0 uniformly on R!: This

completes the proof of .i/.

.ii/ Let ' 2 Lp.0; 1/. We have

kA2;n'kp D
Z 1

0

dx
ˇ
ˇ
ˇ

Z x

0

'.u/du
Z

C. x�u
s /

dv1 dv2

�
Z C1

"

h
�
v1; v2;

x� u

s

	
e�s.�� !

2 C�/�.x�s;x/.u/%v1;v2;x�u;n.s/ds
ˇ
ˇ
ˇ
p

�
Z 1

0

dx
ˇ
ˇ
ˇ

Z 1�x

0

'.u/du
Z

C. xs /
dv1dv2

�
Z C1

"

h
�
v1; v2;

x

s

	
e�s.�� !

2 C�/�.x;C1Œ.s/%v1;v2;x;n.s/ ds
ˇ
ˇ
ˇ
p

:

We have

ˇ
ˇ
ˇ
ˇ

Z 1�x

0

'.u/du
Z

C. xs /
dv1dv2

Z C1

"

h
�
v1; v2;

x

s

	
e�s.�� !

2 C�/

�.x;C1Œ.s/%v1;v2;x;n.s/ds

ˇ
ˇ
ˇ
ˇ

p

�
� Z 1

0

j'.u/jdu
Z

C.0/
dv1dv2

ˇ
ˇ
ˇ
ˇ

Z C1

"

h
�
v1; v2;

x

s

	
e�s.�� !

2 C�/

�.x;C1Œ.s/%v1;v2;x;n.s/ds

ˇ
ˇ
ˇ
ˇ

�p
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� k'kp
� Z

C.0/
dv1dv2

ˇ
ˇ
ˇ
ˇ

Z C1

"

h
�
v1; v2;

x

s

	
e�s.�� !

2 C�/

�.x;C1Œ.s/%v1;v2;x;n.s/ds

ˇ
ˇ
ˇ
ˇ

�p
:

Therefore,

kA2;nkp �
Z 1

0

dx

�Z

C.0/
dv1dv2

ˇ
ˇ
ˇ
ˇ

Z C1

"

h
�
v1; v2;

x

s

	
e�s.�� !

2 C�/�.x;C1Œ.s/%v1;v2;x;n.s/ds

ˇ
ˇ
ˇ
ˇ

�p

:

This completes the proof of .ii/. Q.E.D.

Lemma 13.1.4. Let

V� W u 2 R �!
Z

K1

�.v/�.v/�.0;C1Œ.u/e
� .�.v/C�/

v3
u dv;

Vn;� W u 2 R �!
Z

K1

�.v/�.v/e
� .�C��

!
2 /

v3
u
Lu;n.v/�."n;C1Œ.u/ dv;

H� W u 2 R �!
Z

K1

1

v3
�.v/ˇ.v/e

� .�.v/C�/
v3

u
�.0;C1Œ.u/ dv;

and

Hn;� W u 2 R �!
Z

K1

1

v3
�.v/ˇ.v/e

� .�C��
!
2 /

v3
u
Lu;n.v/�."n;C1Œ.u/ dv;

where �.:/ 2 Lp.K/, �.:/ 2 Lq.K/ ( 1
p

C 1
q

D 1) and ."n/n2N is a sequence of
strictly positive numbers converging to zero. Then,

.i/ V�.:/ 2 Lq.R/:
.ii/ The sequence .Vn;�/n2N converges uniformly on R! to the function V�, in

Lq.R/.
.iii/ H� 2 Lq.R/:
.iv/ .Hn;�/n2N converges uniformly on R! to H�, in Lq.R/.

}
Proof.

.i/ Using Hölder’s inequality, we get

jV�.u/j � k�kLp
�Z

K1

j�.v/jq�.0;C1Œ.u/e
�q .�CRe�/

v3
u dv

� 1
q

:
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Now, making use of both Fubini’s theorem and the change of variable u D v3u0,
we get

Z

R

jV�.u/jq du � k�kqLp
Z

K1

j�.v/jq dv
Z C1

0

e�q.�CRe�/u0

du0

and therefore, kV�kLq.R/ � k�kLp k�kLq
Œq.�CRe�/�

1
q
< 1; which proves that V�.:/ 2 Lq.R/.

(ii) For all n 2 N, we have

j.Vn;� � V�/.u/j

D
ˇ
ˇ
ˇ
ˇ

Z

K1

�.v/�.v/e
� .�C��

!
2 /

v3
ufLu;n.v/�."n;C1Œ.u/ � 'u.v/�.0;C1Œ.u/g dv

ˇ
ˇ
ˇ
ˇ

�
Z

K1

j�.v/jj�.v/je� .�CRe��
!
2 /

v3
u ˇˇLu;n.v/�."n;C1Œ.u/ � 'u.v/�.0;C1Œ.u/

ˇ
ˇ dv:

According to Eqs. (13.1.15) and (13.1.16), for all v 2 K1, we get

j.Vn;� � V�/.u/jq � .2 sup j�.:/j sup j�.:/j/qe� q!u
v3 �Œ0;C1Œ.u/.vol.K1//q:

So, by using the Lebesgue dominated convergence theorem, we have

lim
n!C1 kVn;� � V�kqLq.R/

�
Z C1

0

lim
n!C1

�Z

K1

j�.v/�.v/je� !u
2v3 f'u.v/ � Lu;n.v/�."n;C1Œ.u/g dv

�q
du:

(13.1.18)

However, for each n 2 N and u > 0, we have

j�.v/�.v/je� !u
2v3 f'u.v/ � Lu;n.v/�."n;C1Œ.u/g � 2j�.v/�.v/j 2 L1.K1/:

Then, the convergence of .Lu;n.://n to 'u.:/; u > 0, the convergence of ."n/n to zero,
and the inequality (13.1.18), together with the continuity of the power function q,
allow us to deduce by a second application of the Lebesgue dominated convergence
theorem, that

lim
n!C1 kVn;� � V�k D 0 uniformly on R!:

(iii) Arguing as in the proof of .i/, we show that H� 2 Lq.R/:
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(iv) For all n 2 N; we have

j.Hn;� �H�/.u/j

D
ˇ
ˇ
ˇ
ˇ

Z

K1

1

v3
�.v/ˇ.v/e

� .�C��
!
2 /

v3
ufLu;n.v/�."n;C1Œ.u/ � 'u.v/�.0;1Œ.u/g dv

ˇ
ˇ
ˇ
ˇ

�
Z

K1

1

v3
j�.v/ˇ.v/je� .�CRe��

!
2 /

v3
u
ˇ
ˇ
ˇLu;n.v/�."n;C1Œ.u/�'u.v/�.0;1Œ.u/

ˇ
ˇ
ˇ dv

� 23supj�.:/ˇ.:/j
Z 1

0

1

v3
e

�! u
v3 �.0;C1Œ.u/ dv3:

Let I.u/ D R 1
0

1
v3
e

�! u
v3 dv3: The change of variables s D u

v3
gives I.u/ D

R C1
u

1
s
e�!s ds: We claim that I.:/ 2 L1.�0;C1Œ/. Indeed, we have I.:/ is

continuous on �0;C1Œ; I.u/ � 1
u! e

�!u on �0;C1Œ and I.u/ 
 � log.u/ at u D 0.
So, I.:/ 2 L1.�0;C1Œ/: However, for each n 2 N and u > 0, we have

1

v3
j�.v/ˇ.v/je� .�CRe��

!
2 /

v3
u
ˇ
ˇ
ˇLu;n.v/�."n;C1Œ.u/ � 'u.v/�.0;1Œ.u/

ˇ
ˇ
ˇ

� 2 sup j�.:/ˇ.:/j 1
v3
e

�! u
v3 2 L1.K1/:

Now, arguing as in the proof of (ii), we get the result. Q.E.D.

Lemma 13.1.5. Let p 2 Œ1;C1Œ and assume that the collision operator F is reg-
ular. If the boundary operator H satisfies the hypothesis .P/, then jIm�jkFC�̇ F k
is bounded on R!: }
Proof. According to Lemma 2.4.1 and Remark 2.4.1, it is sufficient to establish the
result for a one rank collision operator F of the form

8
<

:

F W Xp �! Xp

' �!
Z

K

�.x/�.v/ˇ.v0/'.x; v0/ dv0;

where �.:/ 2 L1.0; 1/, �.:/ and ˇ.:/ are measurable simple functions onK: Let ' 2
Xp , we have CC

� '.x; v/ D 1
v3

R x
0
e

� .�.v/C�/
v3

.x�x0/
'.x0; v/ dx0: The change of vari-

ables s D .x�x0/

v3
gives CC

� '.x; v/ D R C1
0

e�s.�.v/C�/'.x � v3s; v/�.0; xv3 /.s/ ds:

Now, let us consider the sequence of operators .CC
�;"n
/n2N, where CC

�;"n
'.x; v/ D

R C1
"n

e�s.�.v/C�/'.x � v3s; v/�.0; xv3 /.s/ ds: Clearly, in the operator topology, the

sequence .CC
�;"n
/n2N converges to CC

� and uniformly on R! when "n goes to
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zero. Hence, in order to prove the lemma, it suffices to show that, for " > 0,
jIm�jkFCC

�;"F k is bounded on R!: An easy calculation shows that

FCC
�;"F'.x; v/

D �.x/�.v/

Z

K

h.v00/ dv00
Z C1

"

�.x � v00
3 s/e

�s.�.v00/C�/�.0; x
v00

3
/.s/ ds

�
Z

K

ˇ.v0/'.x � v00
3 x

00; v0/ dv0;

where h.:/ D ˇ.:/�.:/: Let C.r/ be the circle of radius
p
1 � r2 and center O: We

have

FCC
�;"F'.x; v/

D �.x/�.v/

Z 1

0

dv00
3

Z

C.v00

3 /

h.v00/dv00
1dv00

2

Z C1

"

�.x� v00
3 s/e

�s.�.v00/C�/�.0; x
v00

3
/.s/ds

�
Z

K

ˇ.v0/'.x � v00
3 s; v

0/ dv0:

So, putting u D u.v00
3 / D x � v00

3 s, we get

FCC
�;"F'.x; v/

D �.x/�.v/

Z x

0

�.u/ du
Z

C. x�u
s /

dv00
1 dv00

2

Z C1

"

h.v00
1 ; v

00
2 ;

x�u
s
/

s
e�s.�.v00

1 ;v
00

2 ;
x�u
s /C�/

� �.x�s;x/.u/ ds
Z

K

ˇ.v0/'.u; v0/ dv0:

So, the operator FCC
�;"F may be decomposed as FCC

�;"F D A1A2A3; where

�
A1 W Lp.0; 1/ �! Xp

' �! �.x/�.v/'.x/;
8
ˆ̂
<̂

ˆ̂
:̂

A2 W Lp.0; 1/ �! Lp.0; 1/

' �!
Z x

0

'.u/du
Z

C. x�u
s /

dv1dv2

Z C1

"

h.v1; v2;
x�u
s
/

s

e�s.�.v1;v2; x�u
s /C�/�.x�s;x/.u/ds
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and
8
<

:

A3 W Xp �! Lp.0; 1/

' �! �.x/

Z

K

ˇ.v/'.x; v/ dv:

A1 andA3 are uniformly bounded onR! . According to Lemma 13.1.3.i/, it remains
to show that, for all n 2 N, we have jIm�jpkA2;nkp is bounded on R!: From
Lemma 13.1.3.ii/, we have

kA2;nkp �
Z 1

0

dx

�Z

C.0/
dv1dv2

ˇ
ˇ
ˇ
ˇ

Z C1

"

h
�
v1; v2;

x

s

	
e�s.�� !

2 C�/�.x;C1Œ.s/%v1;v2;x;n.s/ds

ˇ
ˇ
ˇ
ˇ

�p

:

Hence, in order to prove Lemma 13.1.5, we have to demonstrate that, for " > 0,
x 2 .0; 1/ and %v1;v2;x.:/ is a nonnegative step function with a compact support
satisfying %v1;v2;x.:/ � �v1;v2;x.:/ � 1

"
; and

jIm�jp
Z 1

0
dx

"Z

C.0/
dv1dv2

ˇ
ˇ
ˇ
ˇ
ˇ

Z C1

"
h
�
v1; v2;

x

s

	
e�s.�� !

2 C�/�.x;C1Œ.s/%v1;v2;x.s/ds

ˇ
ˇ
ˇ
ˇ
ˇ

#p

is bounded on R!: The map

�
Gv1;v2;x.:/ W .";C1/ �! R

s �! h.v1; v2;
x
s
/�.x;C1Œ.s/%v1;v2;x.s/;

is a simple function. Let .si /1�i�m denote a subdivision of its support satisfying
Gv1;v2;x.s/ D Gv1;v2;x.si /, for all s 2 Œsi ; siC1Œ, with i 2 f1; : : : ; m � 1g: Then,

Z C1

"

e�s.�� !
2 C�/Gv1;v2;x.s/ ds

D
"
m�1X

iD1
Gv1;v2;x.si /

Z siC1

si

e�s.�� !
2 C�/ ds

#

D
"

1

.� � !
2

C �/

m�1X

iD1
Gv1;v2;x.si /

�
e�si .�� !

2 C�/ � e�siC1.�� !
2 C�/	

#

:
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We have

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

ˇ
ˇ
ˇe�si .�� !

2 C�/ � e�siC1.�� !
2 C�/

ˇ
ˇ
ˇ � 2

ˇ
ˇ
ˇ
ˇ

1

� � !
2

� �
ˇ
ˇ
ˇ
ˇ � 1

jIm�j
jGv1;v2;x.si /j � 1

"
sup jh.:; :; :/j:

Therefore,

ˇ
ˇ
ˇ
ˇ

Z C1

"

e�s.�� !
2 C�/Gv1;v2;x.s/ ds

ˇ
ˇ
ˇ
ˇ � 2.m � 1/

"jIm�j sup jh.:; :; :/j:

This yields the following

jIm�jp
Z 1

0

dx

�Z

C.0/
dv1 dv2

ˇ
ˇ
ˇ
ˇ

Z C1

"

e�s.�� !
2 C�/Gv1;v2;x.s/ ds

ˇ
ˇ
ˇ
ˇ

�p

� jIm�jp
Z 1

0

dx

�
2.m � 1/
"jIm�j sup jh.:; :; :/j

�p

� 2p
�
.m � 1/

"
sup jh.:; :; :/j

�p
:

Finally, we have jIm�jkFCC
� F k is bounded on R!: A similar reasoning allows us

to reach the same result for the operator FC�
� F: This completes the proof of lemma.

Q.E.D.

Let n 2 N. Since the operators MC
� J1 and MC

� D1 do not commute, .MC
� H12/

n D
P2n

iD1 Ni , where each Ni is the product of n factors involving both MC
� J1 and

MC
� D1 except the term N2n D .MC

� D1/
n. If i 2 f1; : : : ; 2n � 1g, then the

operator J1 appears, at least, one time in the expression of Ni . So, there exists
k 2 f1; : : : ; n � 1g such that Ni D QiM

C
� J1.M

C
� D1/

k; where Qi is uniformly
bounded on R! . Now, we need to prove the following lemma:

Lemma 13.1.6. Let p 2 Œ1;C1Œ and assume that the collision operator F is
regular. If the boundary operator H satisfies the hypothesis .P/, then

.i/ for i 2 f1; : : : ; 2n � 1g, we have jIm�jkFBC
� H12NiG

C
� F k is bounded on R!:

.ii/ jIm�jkFBC
� H12P2nG

C
� F k is bounded on R!:

.iii/ jIm�jkFBC
� H12.M

C
� H12/

nGC
� F k and jIm�jkFB�

� H21.M
�
� H21/

nG�
� F k are

bounded on R!:

}



460 13 Applications in Mathematical Physics and Biology

Proof.

.i/ Let i 2 f1; : : : ; 2n�1g. We have kFBC
� H12NiG

C
� F k � kFBC

� H12kkNiGC
� F k:

According to the hypotheses, it is sufficient to prove that jIm�jkJ1.MC
� D1/

k

GC
� F k is bounded on R!: Since the operator J1 is compact, we only have

to establish the result for an operator of rank one, that is J1 W '.1; v/ �!
.J1'/.0; v/ D ˛.v/

R
K1 �.v

0/'.1; v0/v0
3 dv0; where ˛.:/ and �.:/ are measur-

able simple functions. Let ' 2 Xp . Then,

.J1.M
C

� D1/
kGC

� F'/.0; v/ D ˛.v/

Z

K1

�.v0/�.v0/ dv0

Z 1

0

e
�.kC1�x/.

�.v0/C�

v0

3
/
�.x/ dx

Z

K

ˇ.v00/'.x; v00/ dv00

D .B1B2B3'/.0; v/;

where
(
B1 W R �! X�

1;p

ı �! ˛.v/ı;

8
<

:

B2 W Lp.0; 1/ �! R

 �!
Z

K1

�.v/�.v/ dv
Z 1

0

e
�.kC1�x/. �.v/C�

v3
/
 .x/ dx

and
8
<

:

B3 W Xp �! Lp.0; 1/

 �! �.x/

Z

K

ˇ.v/ .x; v/ dv:

Clearly, we notice that B1, B2, and B3 are three bounded operators, and

kJ1.MC
� D1/

kGC
� F k � kB1kkB2kkB3k:

SinceB1 andB3 are independent of �, it suffices to prove that jIm�jkB2k is bounded
onR!: For this purpose, let  2 Lp.0; 1/ and let us denote by Q its trivial extension
to R. Then,

B2 D
Z

R

V�.k C 1 � x/ Q .x/ dx .V� is defined in Lemma 13.1.4/

D .V�  Q /.k C 1/:
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So, the use of Young’s inequality gives jB2 j � kV�  Q kL1.R/ �
kV�kLq.R/k Q kLp.R/. Since k Q kLp.R/ D k kLp.0;1/, then

kB2kq �
Z C1

0

ˇ
ˇ
ˇ
ˇ

Z

K1

�.v/�.v/e
� .�.v/C�/

v3
u dv

ˇ
ˇ
ˇ
ˇ

q

du:

According to Lemma 13.1.4, it is sufficient to prove that, for any " > 0,

jIm�jq
Z C1

"

ˇ
ˇ
ˇ
ˇ

Z

K1

�.v/�.v/e
� .�C��

!
2 /

v3
u
Lu.v/ dv

ˇ
ˇ
ˇ
ˇ

q

du

is bounded on R!; where u > 0 and Lu.:/ is a nonnegative step function defined on
K1 such that Lu.:/ � 'u.:/:We have K1 � P WD Œ�1; 1�2 � Œ0; 1�. We denote by Q�,
Q� , and QLu the functions:

Q�.v/ D
�
�.v/ if v 2 K1

0 if v 2 P nK1;

Q�.v/ D
�
�.v/ if v 2 K1

0 if v 2 P nK1

and

QLu.v/ D
�
Lu.v/ if v 2 K1

0 if v 2 P nK1:

For all u 2 Œ";C1Œ, the function Qhu W v 2 P �! Q�.v/ Q�.v/ QLu.v/ 2 C is a simple
function. Let ı be a subdivision of P , associated with Qh, and let P1; : : : ; PN be the
cells of ı. Then, Qh.u/ D ci for all v 2 Pi ; i 2 f1; : : : ; N g: We have
ˇ
ˇ
ˇ
ˇ

Z

P

Q�.v/ Q�.v/e� .�C��
!
2 /

v3
u QLu.v/ dv

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

Z

P

Qhu.v/e
� .�C��

!
2 /

v3
u dv

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ
ˇ

NX

iD1

Z

Pi

ci e
� .�C��

!
2 /

v3
u dv

ˇ
ˇ
ˇ
ˇ
ˇ

� sup jhu.:; :; :/j
NX

iD1

ˇ
ˇ
ˇ
ˇ

Z

Pi

e
� .�C��

!
2 /

v3
u dv

ˇ
ˇ
ˇ
ˇ :

We use the change of variables au W .v1; v2; v3/ �! .v1; v2;
u
�
/; then au.Pi / �

Œ�1; 1�2 � Œu;C1Œ and we get

ˇ
ˇ
ˇ
ˇ

Z

P

Q�.v/ Q�.v/e�

.�C��
!
2 /

v3
u QLu.v/ dv

ˇ
ˇ
ˇ
ˇ � sup jh.:; :; :/j

�
 

NX

iD1

ˇ
ˇ
ˇ
ˇ

Z

au.Pi /

u

�2
e�.�CRe��

!
2 /�ei.�Im�/dv1dv2d�

ˇ
ˇ
ˇ
ˇ

!

:
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Let

F�.u/ D
ˇ
ˇ
ˇ
ˇ

Z

au.Pi /

u

�2
e�.�CRe�� !

2 /�cos.�Im�/dv1dv2d�

ˇ
ˇ
ˇ
ˇ :

We have

F�.u/ � 4

ˇ
ˇ
ˇ
ˇ

Z C1

u

u

�2
e�.�CRe�� !

2 /�cos.�Im�/d�

ˇ
ˇ
ˇ
ˇ

� 4
ˇ
ˇ
ˇ

1

u Im�
e�.�CRe�� !

2 /usin.u Im�/

C 1

Im�

Z C1

u

 
2u

�3
C u

�2

�
� C Re� � !

2

	
!

e�.�CRe�� !
2 /�sin.�Im�/d�

ˇ
ˇ
ˇ

� 4
.2C e�1/

ujIm�j
�

because
�
� C Re� � !

2

	
e�.�CRe�� !

2 /� � 1

�
e�1	:

Let

G�.u/ D
ˇ
ˇ
ˇ
ˇ

Z

au.Pi /

u

�2
e�.�CRe�� !

2 /�sin.�Im�/d�

ˇ
ˇ
ˇ
ˇ :

In the same way, we prove that G�.u/ � 4
.2Ce�1/

ujIm�j : So,

ˇ
ˇ
ˇ
ˇ

Z

P

Q�.v/ Q�.v/e� .�C��
!
2 /

v3
u QLu.v/ dv

ˇ
ˇ
ˇ
ˇ

q

�
�
8N sup jh.:; :; :/j.2C e�1/

	q

uqjIm�jq :

This yields the following

Z C1

"

ˇ
ˇ
ˇ

Z

K1

Q�.v/ Q�.v/e� .�C��
!
2 /

v3
u QLu.v/ dv

ˇ
ˇ
ˇ
q

du

�
�
8N sup jh.:; :; :/j.2C e�1/

	q

jIm�jq
Z C1

"

du

uq

�
�
8N sup jh.:; :; :/j.2C e�1/

	q

jIm�jq.q � 1/"q�1 ;

which implies that

jIm�jq
Z C1

"

ˇ
ˇ
ˇ
ˇ

Z

K1

�.v/�.v/e
� .�C��

!
2 /

v3
u
Lu.v/ dv

ˇ
ˇ
ˇ
ˇ

q

du is bounded on R!:
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This completes the proof of .i/.

.ii/ Let ' 2 Xp: Then,

.FBC
� D1.M

C
� D1/

nGC
� F'/.x; v/

D �.x/�.v/

Z 1

0

dx0 �
Z

K1

1

jv0
3j
�.v0/�.v0/ˇ.v0/e

� .�.v0/C�/

jv0

3j

.nC1Cx�x0/
dv0

Z

K

ˇ.v00/'.x0; v00/ dv00

D E1E2E3'.x; v/;

where

�
E1 W Lp.0; 1/ �! Xp
' �! �.x/�.v/'.x/;

8
<

:

E2 W Lp.0; 1/ �! Lp.0; 1/

' �!
Z 1

0

'.x0/ dx0
Z

K1

1

v3
�.v/ˇ.v/e

� .�.v/C�/
v3

.nC1Cx�x0/ dv

and
8
<

:

E3 W Xp �! Lp.0; 1/

' �! �.x/

Z

K

ˇ.v/'.x; v/ dv:

Clearly, E1 and E3 are bounded and do not depend on �. Hence,
in order to prove the item .ii/, we only have to demonstrate that
jIm�jkE2k is bounded on R!: The operator E2 is bounded and the use of

Hölder’s inequality gives kE2k � 2
1
p kH�kLq.R/. According to Lemma 13.1.4,

it suffices to prove that, for any " > 0,

jIm�jq
Z C1

"

ˇ
ˇ
ˇ
ˇ

Z

K1

1

v3
�.v/ˇ.v/e

� .�C��
!
2 /

v3
u
Lu.v/ dv

ˇ
ˇ
ˇ
ˇ

q

du is bounded on R!;

where u > 0 and Lu.:/ is a nonnegative measurable simple function on K1,
satisfying Lu.:/ � 'u.:/. Arguing as in the proof of Lemma 13.1.6.i/, we get
the desired result.

.iii/ The result follows immediately from .i/ and .ii/. Q.E.D.
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Theorem 13.1.1. Let p 2 Œ1;C1Œ; let ! > 0 and set R! D f� 2
C such that Re� � �� C!g: Assume that the collision operator F is regular. If the
boundary operator H satisfies the hypothesis .P/, then jIm�jkF.� � TH/

�1F k is
bounded on R!: }
Proof. Let � 2 C such that Re� > ��: Using Eqs. (13.1.10) and (13.1.11), we have

kFRC.�; TH /F k � kFCC
� F k C

X

n�0
kFBC

� H12.M
C
� H12/

nGC
� F k (13.1.19)

and

kFR�.�; TH /F k � kFC�
� F k C

X

n�0
kFB�

� H21.M
�
� H21/

nG�
� F k: (13.1.20)

Now, the result follows from (13.1.19), (13.1.20), Lemmas 13.1.5, and 13.1.6.iii/.
Q.E.D.

13.1.4 Solution for the Cauchy Problem (13.1.1)

13.1.5 Generation Results

First, we recall that if the boundary operator H satisfies kHk � 1, then TH
generates a strongly continuous semigroup .UH .t//t�0 and, according to the
classical perturbation theory (Theorem 2.5.8), we also recall that AH generates a
C0-semigroup .V H .t//t�0 on Lp .

Lemma 13.1.7. The C0-semigroup .UH .t/t�0 and .U 0.t/t�0 satisfy the following
inequality

UH.t/ � U 0.t/ � 0; .t � 0/: }
Proof. For t D 0, the result is trivial. We fix t > 0. By using inequality (13.1.12),
it is obvious that, for all integers n such that n

t
> �� and for all  � 0, we

have

R
�
n
t
; TH

��n � 
R
�
n
t
; T0

��n � 0: Consequently, lim
n!1

h
R
�n

t
; TH

	in �
lim
n!1

h
R
�n

t
; T0

	in � 0: By using the exponential formula (see Theorem 2.5.11),

we deduce that

UH.t/ � U 0.t/ � 0; .t � 0/:

Q.E.D.
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Lemma 13.1.8. Using the same notations as previously, if the operator F is
positive, then V H.t/ � V 0.t/ � 0; (t � 0). }
Proof. Let � 2 �.AH/

T
�.A0/ such that r� ..� � TH/

�1F / < 1 (spectral radius).
Consequently, .� � AH/

�1 � .� � TH/
�1 D P

n�1Œ.� � TH/
�1F �n.� � TH/

�1:
The positivity of F and Eq. (13.1.12) imply Œ.� � TH/

�1F �n.� � TH/
�1 � Œ.� �

T0/
�1F �n.� � T0/

�1 � 0; and therefore, R.�;AH/ � R.�;A0/ � 0: To take into
account the last inequality, a similar reasoning to that of Lemma 13.1.7 yields the
desired result. Q.E.D.

13.1.6 Time-Asymptotic Behavior

We will prove that the solution  .t/ has a nice behavior on Lp-spaces, 1 �
p < C1, independently of the geometry of such spaces and we estimate the
norm k .t/ � Pn

iD1 e�i t eDi tPi 0k without restriction on the initial data  0. We
start with discussing the spectrum of the transport operator in the half plane f� 2
C such that Re� > ��g. Setting P.AH/ D �.AH/

Tf� 2 C such that Re� > ��g,
�p.AH/ the point spectrum of AH , �.AH/ the resolvent set of the operator AH , and
s.AH/ the spectral bound of AH : Firstly, we prove the following lemma:

Lemma 13.1.9. Let p 2 Œ1;C1Œ and assume that the collision operator F is
regular on Xp . If the hypothesis .P/ is satisfied, then

.i/ P.AH/ consists, at most, of discrete eigenvalues with finite algebraic multi-
plicities.

.ii/ If ! > 0, then the set �.AH/
T
R! is finite.

.iii/ If ! > 0, then there exists C.!/ > 0 such that k.� � AH/�1k is bounded on

f� 2 C such that Re� � ! and jIm�j � C.!/g: }

Proof. Let � be such that Re� > �� . Since F is regular, then using Lemma 2.1.13
and Proposition 13.1.1, we deduce that Œ.� � TH/

�1F �2 is compact on Xp , for 1 �
p < C1. Next, using Theorem 13.1.1, we get lim

jIm�j!C1
kŒ.� � TH/

�1F �2k D 0

uniformly on R!: Now, the items (i )–(iii) follow immediately from Lemma 4.2.1.
Q.E.D.

In the following lemma, we have two classical facts from the spectral theory of
transport operators required below (see [184, 261] or [328]).
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Lemma 13.1.10. Let p 2 Œ1;C1Œ, let � be such that Re� > � and assume that
the collision operator is regular on Xp . If the hypothesis .P/ is satisfied, then

.i/ � 2 �p.AH/ if, and only if, 1 2 �p..� � TH/
�1F / and the corresponding

eigen-subspaces are the same.
.ii/ � 2 �.AH/ if, and only if, 1 2 �..� � TH/�1F /: }
Proof.

.i/ It follows from the equality .� � TH/�1.� � AH/ D .I � .� � TH/�1F /:
.ii/ Let � 2 �.AH/ such that Re� > �� , then � 2 �p.AH/. Consequently, using

.i/, we get 1 2 �p..� � TH/
�1F / � �..� � TH/

�1F /: Conversely, since
.� � TH/

�1F is compact for 1 < p < C1 and weakly compact for p D 1,
if 1 2 �..� � TH/

�1F /, then 1 2 �p..� � TH/
�1F /. Now, the result follows

from .i/: Q.E.D.

Let p 2 Œ1;C1Œ, we denote by TH;p and AH;p the streaming operator and the
transport operator on the space Xp respectively. Now, we are prepared to establish
the following result:

Proposition 13.1.3. We also assume that the collision operator F is regular on Xp
for all p 2 Œ1;C1Œ. We also assume that the hypothesis .P/ is satisfied. Then,

.i/ P(AH;p) is independent of p.
.ii/ For each � 2 P.AH;p/ and m 2 N

�, the eigen-subspace NŒ.� � AH;p/
m� is

independent of p.

}
Proof.

.i/ Let � 2 G WD f� 2 C such that Re� > ��g: Since TH;p generates a strongly
continuous semigroup on Xp and F is bounded, then k.� � TH;p/

�1F k ! 0

as jRe�j ! C1: So, for � 2 G such that jRe�j is large enough, we
have

�
I � .� � TH;p/�1F

�
is boundedly invertible. If p > 1, then by using

Proposition 13.1.1, .��TH;p/�1F is compact. From the Gohberg–Shmul’yan’s
theorem (see Theorem 2.5.13), .I � .��TH;p/�1F / is boundedly invertible for
all � 2 G, except at a discrete set of points Sp WD f�k; k D 1; 2; : : :g: For each

k 2 f1; 2; : : :g, �k is a pole with a finite order of
�
I � .� � TH;p/�1F

��1
and

1 is an eigenvalue of .�k � TH;p/
�1F . We claim that Sp D P.AH;p/, for all

p > 1. Indeed, from Lemma 13.1.10, .i/ we have Sp � P.AH;p/. Conversely,
if �0 2 P.AH;p/, then we may use the product formula

.� � AH;p/�1 D .I � Œ.� � TH;p/�1F �/�1.� � TH;p/�1: (13.1.21)

Using Eq. (13.1.21), the non-invertibility of .�0 � AH;p/ gives the non-invertibility
of
�
I � .�0 � TH;p/�1F

�
, which implies that �0 2 Sp . So, Sp D P.AH;p/, for all

p > 1. If p D 1, then by using Lemma 2.1.13.i/, Œ.��TH;1/�1F �2 is compact for all
� 2 G. From the Gohberg–Shmul’yan’s corollary (see Corollary 2.5.2), .��AH;1/ is
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boundedly invertible for all � 2 G, except at a discrete set of points S1 WD f�k; k D
1; 2; : : :g: For each k 2 f1; 2; : : :g, �k is a pole of a finite order of .� � AH;1/

�1;
an eigenvalue of AH;1 with a finite algebraic multiplicity and 1 is an eigenvalue of
.�k � TH;1/

�1F: So, S1 D P.AH;1/: It remains to prove that Sp is independent of
p. In order to do it, it is sufficient to prove that Sp D S1, for all p > 1. It follows,
from (13.1.10) and (13.1.11), that

.I � .� � TH;p/�1F /�1 D .I � .� � T �1
H;1/F /

�1
jXp ; for any p � 1:

So, Sp � S1: Conversely, if �0 2 S1, then it is a pole of .I � .� � TH;1/
�1F /�1:

Then, we have the following expansion in the neighborhood of �0

.I � .� � TH;1/�1F /�1 D
nX

kD1

Ak

.� � �0/k C
C1X

kD0
.� � �0/kBk;

where n is the (finite) algebraic multiplicity of �0, Ak and Bk are bounded operators
and independent of �. For all  2 Xp , we have

.I � .� � TH;1/�1F /�1 D
nX

kD1

Ak 

.� � �0/k C
C1X

kD0
.� � �0/kBk :

Suppose that there exists p > 1 such that �0 … Sp . Then, Ak D 0, 8 2
Xp; 8k 2 f1; 2; : : : ; ng: SinceXp is dense inX1, thenAk D 0; 8k 2 f1; 2; : : : ; ng:
This implies that .I � .�� TH;1/�1F /�1 is analytic at �0, which is a contradiction.

.ii/ Since .� � AH;p/
�1 D .� � TH;p/

�1.I � Œ.� � TH;p/
�1F �/�1, the use of

Eqs. (13.1.9) and (13.1.13) shows that .� � AH;p/
�1 D .� � AH;1/

�1
jXp for any

� 2 GnS . Let � 2 S , � is then an eigenvalue of AH;p with a finite algebraic
multiplicity. Let us denote by P�;p the spectral projection associated with f�g.
Let ı > 0 be such that

f� 2 C such that 0 < j� � �j � ıg
\
P.AH;p/ D ;:

Then,

P�;p D 1

2i

Z

j���jDı
.� � AH;p/�1d�:
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Accordingly, for each � 2 P.AH;p/ D P.AH;1/, we have

P�;p D P�;1jXp : (13.1.22)

Let  2 Xp . Then, there is a sequence . n/n 2 C1
0 .Œ0; 1� �K/ such that  n !  

as n ! 1 inXp . SinceP�;p is a bounded operator onXp , thenP�;p n ! P�;p as
n ! 1 in Xp . This shows that P�;p.C1

0 .Œ0; 1��K// is a dense subset of R.P�;p/.
However, � 2 S D P.AH;p/. Then, R.P�;p/ is a finite-dimensional subset of Xp
and then,

R.P�;p/ D P�;p.C
1
0 .Œ0; 1� �K// for p � 1: (13.1.23)

It follows, from Eqs. (13.1.22) and (13.1.23), thatR.P�;p/ D R.P�;1/ for p � 1 and
� 2 P.AH;p/ D P.AH;1/. Now, observing that, for each k � 1, NŒ.� � AH;p/k� �
R.P�;p/ D R.P�;1/ and NŒ.� � AH;1/

k� � R.P�;1/ D R.P�;p/, we conclude that
NŒ.� � AH;p/k� D NŒ.� � AH;1/k� � Xp

T
X1 D Xp: This completes the proof.

Q.E.D.

From Proposition 13.1.2, TH generates a strongly continuous semigroup
.UH .t//t�0 on Xp (p � 1). Since the operator F is bounded, and from the
classical perturbation theory (see Theorem 2.5.8), it follows that AH D TH C F

also generates a strongly continuous semigroup .V H .t//t�0 on Xp given by the
Dyson–Phillips expansion Eq. (4.2.3). Assume that F is regular on Xp and that H
satisfies .P/. Then, from Lemma 13.1.9, the eigenvalues f�1; �2; : : : ; �n; �nC1; : : :g
of AH lying in the half plane Re� > �� , can be ordered in such a way that
the real part decreases, i.e., Re�1 > Re�2 > � � � > Re�nC1 > � � � > �� and
f� 2 C such that Re� > ��gnf�n; n D 1; 2 : : :g � �.AH/. Let Pi and Di

denote, respectively, the spectral projection and the nilpotent operator associated
with �i , i D 1; 2; : : : ; n. Then, P D P1 C � � � C Pn is the spectral projection of
the compact set f�1; �2; : : : ; �ng. Hence, according to the spectral decomposition
theorem corresponding to the sets f�1; �2; : : : ; �ng and �.AH/nf�1; �2; : : : ; �ng
(see [35, pp. 68–70]), V H.t/ splits as

V H.t/ D QV H.t/C
nX

iD1
e�i t eDi tPi ;

where QV H.t/ WD V H.t/.I � P /. Furthermore, . QV H.t//t�0 is a C0-semigroup on
the Banach space .I � P /Xp with a generator QAH WD AH.I � P /: Let

� WD s.AH/ � supfRe� such that � 2 �.AH/ and � ¤ s.AH/g:
Clearly, by using Lemma 13.1.9, we can see that � > 0. Let QP denote the projection
operator corresponding to f� 2 �.AH/ such that Re� D s.AH/g. According to
Proposition 13.1.3, this set consists of a finite number of eigenvalues, and then is
compact. Then, the spectral decomposition theorem (Theorem 2.5.9) can be applied.
Now, we are ready to prove the following.
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Theorem 13.1.2. Let p 2 Œ1;C1Œ. Assume that the condition .P/ holds and that
the collision operator F satisfies the hypotheses .i/–.iii/ of Lemma 2.4.1 for D WD
Œ0; 1� and V WD K. Then,

.i/ For each " > 0, there exists a positive constantM such that kV H.t/.I�P /k �
Me.Re�nC1C"/t , 8t > 0:

.ii/ Moreover, if F is positive and p 2�1;C1Œ, then there exists a positive constant
M 0 such that kV H.t/.I � QP /k � M 0e.s.AH /�"/t ; for any " 2 .0; 2�.1�p�1///
[resp. " 2 .0; 2�p�1/] if p 2�1; 2� (resp. p 2�2;C1Œ), where QP denotes the
projection operator corresponding to f� 2 �.AH/ such that Re� D s.AH/g,
and where s.AH/ represents the spectral bound of AH , and � WD s.AH/ �
supfRe� such that � 2 �.AH/ and � ¤ s.AH/g:

}
Proof.

.i/ For p � 1, the result follows immediately from Proposition 13.1.1,
Lemma 13.1.2, Theorems 13.1.1, and 4.2.1.

.ii/ According to Proposition 13.1.3, s.AH/ the spectral bound of AH keeps the
same value for every p 2 N

�. Moreover, the C0-semigroup .V H .t//t�0 is
positive (see Lemma 13.1.8) and does not change with respect to p 2 Œ1;C1Œ.
From Weis theorem (Theorem 2.5.4), the types of .V H .t//t�0 and s.AH/

coincide. Now, the result follows from Lemma 13.1.9, Proposition 13.1.3, Weis
theorem (Theorem 2.5.4) and Theorem 4.3.1 which holds for p 2�1;C1Œ.

Q.E.D

13.2 Time-Asymptotic Behavior of the Solution for a Cauchy
Problem Given by a One-Velocity Transport Operator
with Maxwell Boundary Condition

This section is devoted to describe the time-asymptotic behavior of the solution of
a one-velocity transport operator with Maxwell boundary condition on L1-spaces.
A practical way is given in order to study the behavior of the solution without
restriction on the initial data. In a homogeneous medium with spherical symmetry
and isotropic scattering, the one-particle distribution functionˆ.r; �; t/ satisfies the
following transport equation

@ˆ

@t
.r; �; t/ D ��@ˆ

@r
.r; �; t/ � 1 � �2

r

@ˆ

@�
.r; �; t/ �†ˆ.r; �; t/

Cc†

2

Z 1

�1
ˆ.r; �0; t /d�0
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with the following boundary condition of Maxwell type

j�jˆ.R;�; t/ D
Z 1

0

˛�0ˆ.R;�0; t /d�0 .�1 � � < 0; t � 0/

and with the initial data ˆ.r; �; 0/ D ˆ0.r; �/; where r 2 S D Œ0; R�, � 2 � D
Œ�1; 1�; t � 0 and R is the radius of the sphere. Both † and c are positive constants
and ˛ � 0 is the scattering coefficient on the boundary of the sphere.

13.2.1 Auxiliary Results

Let x D r�; y D r
p
1 � �2; .r 2 S;� 2 �/; then this transformation is one to

one from G WD Œ0; R� � Œ�1; 1� onto D WD ˚
.x; y/ 2 R

2 such that x2 C y2 � R2;

y � 0g. Hence, under the following isometry J

8
<̂

:̂

J W L1.G; r2drd�/ �! L1.D; ydxdy/

f .x; y/ D .Jˆ/.x; y/ D ˆ

 
p
x2 C y2;

x
p
x2 C y2

!

the transport equation, the Maxwell boundary condition and the initial data are
transformed into

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@f

@t
.x; y; t/ D �@f

@x
.x; y; t/ �†f .x; y; t/C c†

2r

Z r

�r
f
�
x0;

p
r2 � x02; t

	
dx0

y

R2
f
�
�
p
R2 � y2; y; t

	
D
Z R

0

˛y

R
p
R2 � y2

y0

R2
f
�p

R2 � y02; y0; t
	

dy0

f .x; y; 0/ D f0.x; y/;
(13.2.1)

where r D p
x2 C y2; .x; y/ 2 D and t � 0: Let X WD L1ŒD; ydxdy�

be the Banach space equipped with the norm k kX D R
D

j .x; y/jydxdy
and let Y WD L1ŒS;

y

R2
dy� be the Banach space equipped with the norm

k'kY D R
S

j'.y/j y
R2

dy: The boundary operator H is defined as:

8
<̂

:̂

H W Y �! Y

f �! Hf .y/ D
Z R

0

˛
p
R2 � y2 f .y

0/
y0

R
dy0:
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We introduce the following boundary spaces 	e WD
n
.
p
R2 � y2; y/; y � 0

o
and

	s WD
n
.�pR2 � y2; y/; y � 0

o
: We define the partial Sobolev space W by

W D
�

 2 X such that
@ 

@x
2 X

�

:

Proposition 13.2.1. Let  2 W . If  j	e 2 Y , then  j	s 2 Y and vice versa. }
Proof. Let  2 W such that  j	e 2 Y . We have

 
�p

R2 � y2; y
	

�  
�
�
p
R2 � y2; y

	
D
Z p

R2�y2

�
p
R2�y2

@ 

@x
.x; y/dx: (13.2.2)

This implies

j 
�
�
p
R2 � y2; y

	
j � j 

�p
R2 � y2; y

	
j C

Z p
R2�y2

�
p
R2�y2

ˇ
ˇ
ˇ
ˇ
@ 

@x
.x; y/

ˇ
ˇ
ˇ
ˇ dx:

Consequently, we have

Z R

0

j .�
p
R2 � y2; y/j y

R2
dy �

Z R

0

j .
p
R2 � y2; y/j y

R2
dy

C
Z

D

ˇ
ˇ
ˇ
ˇ
@ 

@x
.x; y/

ˇ
ˇ
ˇ
ˇ
y

R2
dxdy:

So, we have
�
� j	s

�
�
Y

� �
� j	e

�
�
Y

C 1
R2

�
�
�
@ 

@x

�
�
�
X
< 1: The converse may be proved

in a similar way, starting from a rearrangement of Eq. (13.2.2). This completes the
proof. Q.E.D.

Let us define W by W D ˚
 2 W such that  j	e 2 Y 
 : By using Proposi-

tion 13.2.1, we deduce that all functions in W have traces j	e and j	s belonging
to the boundary space Y . Next, we introduce the transport operator A˛ WD B˛ CK

where B˛ is the free streaming operator, namely

8
ˆ̂
<

ˆ̂
:

B˛ W D.B˛/ � X �! X

 �! B˛ .x; y/ D �@ 
@x
.x; y/ �† .x; y/

D.B˛/ D f 2 W such that j	s D H j	eg
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and K is the bounded operator given by

8
<

:

K W X �! X

 �! c†

2r

Z r

�r
 
�
x0;

p
r2 � x02; t

	
dx0:

We will study the time-asymptotic behavior of the solution of the initial boundary
value problem (13.2.1) which can be formulated in the following Cauchy problem:

8
<

:

@f

@t
D A˛f WD B˛f CKf

f .0/ D f0;
(13.2.3)

where f0 2 X WD L1ŒD; ydxdy�.

Theorem 13.2.1. Let ˛ > 1. Then, B˛ is the generator of a positive C0-semigroup
.U˛.t//t�0 on X . }
Proof. Let � > �0 and ' 2 XC the positive cone of X . Then, .�� B˛/�1' D  2
D.B˛/

T
XC. This implies the following equation .�C†/ .x; y/C @ 

@x
.x; y/ D

'.x; y/: After integrating this equation with respect to x and y, we obtain

.�C†/

Z R

0

Z p
R2�y2

�
p
R2�y2

 .x; y/ydxdy C
Z R

0

Z p
R2�y2

�
p
R2�y2

@ 

@x
.x; y/ydxdy

D
Z R

0

Z p
R2�y2

�
p
R2�y2

'.x; y/ydxdy:

This implies that .�C†/k kCR R
0

�
 .
p
R2 � y2; y/ �  .�pR2 � y2; y/

	
ydy D

k'k or, equivalently .�C†/k kCR2
�k j	sk � k j	ek

� D k'k: Therefore, using
the fact that  D .� � B˛/

�1', we deduce that k.� � B˛/
�1'k � 1

�C†k'k,
8� > �0. Now, the result is a consequence of both the last equation and
Theorem 2.5.3. Q.E.D.

Theorem 13.2.2. Let ˛ > 1. Then, the operator A˛ is the generator of a positive
C0-semigroup .V˛.t//t�0 on X . }
Proof. By using Theorem 13.2.1, we deduce that B˛ is a generator of a positive C0-
semigroup .U˛.t//t�0 on X . According to the perturbation theory, A˛ D B˛ CK is
the generator of a positive C0-semigroup .V˛.t//t�0 (Theorem 2.5.8) and the proof
is complete. Q.E.D.
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13.2.2 The Resolvent of the Operator B˛

The objective of this section is to determine the solution of the operator equation

.� � B˛/ D g; (13.2.4)

where g is a given function in X , � 2 C and  must belong to D.B˛/. For Re� >
�†, a straightforward calculation of (13.2.4) leads to

 .x; y/ D  .�
p
R2 � y2; y/e�.�C†/.xC

p
R2�y2/

C
Z x

�
p
R2�y2

e�.�C†/.x�x0/g.x0; y/dx0: (13.2.5)

Accordingly, for x D p
R2 � y2, we get

 .
p
R2 � y2; y/ D  .�

p
R2 � y2; y/e�2.�C†/

p
R2�y2

C
Z p

R2�y2

�
p
R2�y2

e�.�C†/.
p
R2�y2�x0/g.x0; y/dx0:

(13.2.6)

In order to clarify the analysis, let us introduce the following bounded operators:

(
M� W Y �! Y

f �! M�f .y/ D f .y/ e�2.�C†/
p
R2�y2 ;

(
R� W Y �! X

f �! .R�f /.x; y/ D f .y/ e�.�C†/.xC
p
R2�y2/:

The operators M� and R� are bounded and satisfy the following estimates

kM�k � 1; (13.2.7)

kR�k � R2

Re�C†
:

8
<̂

:̂

Q� W X �! Y

 �! .Q� /.x; y/ D
Z p

R2�y2

�
p
R2�y2

e�.�C†/.
p
R2�y2�x0/ .x0; y/dx0
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and finally,

8
<

:

P� W X �! X

 �! .P� /.x; y/ D
Z x

�
p
R2�y2

e�.�C†/.x�x0/ .x0; y/dx0:

A simple calculation shows that Q� and P� are bounded and satisfy the following
estimates

kQ�k � 1

R2
;

kP�k � 1

Re�C†
:

Proposition 13.2.2. The operators M�, R�, Q�, and P� are bounded for each � 2
C and depend analytically on � 2 C. }
Equations (13.2.5) and (13.2.6), in an abstract way, are given as the following
equation, in the space Y , by

 j	e D M�H j	e CQ�g: (13.2.8)

In order to pursue our analysis, we need the following proposition:

Proposition 13.2.3. H is a bounded operator with a norm kHk D ˛. Moreover, if
Re� > �†, then kM�Hk D ˛

2.Re�C†/R .1 � e�2R.Re�C†//. }

Proof. For any f 2 Y , we have kHf k D R R
0

y

R2

ˇ
ˇ
ˇ
ˇ
R R
0

˛p
R2�y2 f .y

0/ y
0

R
dy0
ˇ
ˇ
ˇ
ˇ dy: So,

kHf k D ˛
ˇ
ˇ
ˇ
R R
0
f .y0/ y

0

R2
dy0
ˇ
ˇ
ˇ : Hence, kHf k � ˛kf k: For Nf D 2 2 Y , we have

k Nf k D 1 and kH Nf k D ˛. Consequently, kHk D ˛. If Re� > �†, then for any
f 2 Y , we have

kM�Hf k D
Z R

0

y

R2

ˇ
ˇ
ˇ
ˇ
ˇ

Z R

0

˛
p
R2 � y2 e

�2.�C†/
p
R2�y2f .y0/

y0

R
dy0
ˇ
ˇ
ˇ
ˇ
ˇ
dy:

So,

kM�Hf k D ˛

2R.Re�C†/
.1 � e�2.Re�C†/R/

ˇ
ˇ
ˇ
ˇ

Z R

0

f .y0/
y0

R2
dy0
ˇ
ˇ
ˇ
ˇ :

This leads to the estimate kM�Hf k � ˛
2R.Re�C†/ .1 � e�2.Re�C†/R/kf k: Similarly,

for Nf D 2 2 Y , we have k Nf k D 1 and kM�Hf k D ˛
2R.Re�C†/ .1 � e�2.Re�C†/R/:



13.2 Time-Asymptotic Behavior of the Solution for a Cauchy Problem . . . 475

Hence,

kM�Hk D ˛

2R.Re�C†/
.1 � e�2.Re�C†/R/:

This completes the proof of proposition. Q.E.D.

Let

�0 WD
( �† if ˛ � 1

�†C ˛

2R
if ˛ > 1:

In view of Eq. (13.2.7) and Proposition 13.2.3, we have kM�Hk < 1 for all � 2 C

such that Re� > �0 and then using Eq. (13.2.8),  j	e is given by  j	e D .I �
M�H/

�1Q�g: Moreover, Eq. (13.2.5) can be written as follows  D R�H j	e C
P�g: Hence, we get  D R�H.I � M�H/

�1Q�g C P�g: Finally, the resolvent
of the operator B˛ can be expressed by R.�;B˛/ WD .� � B˛/

�1 D R�H.I �
M�H/

�1Q� C P�:

13.2.3 Generation Result

Lemma 13.2.1. Assume that ˛ � 1. Then, for all � such that Re� > �†, we have
k.� � B˛/�1k � 1

Re�C†: }
Proof. Let B 0̨ be the operator defined by:

8
<

:

B 0̨ W D.B˛/ � X �! X

 �! B 0̨ .x; y/ D �@ 
@x
.x; y/:

First, we will show that the operator B 0̨ is dissipative. To do this, we take  2
D.B˛/ and  � D S0 where S0 satisfies

S0 .x/ D
8
<

:

1 if  .x/ > 0
0 if  .x/ D 0

�1 if  .x/ < 0
(13.2.9)

and we will prove, in the following, that RehB 0̨ ; S0 i � 0:
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RehB 0̨ ; S0 i D Re

"

�
Z R

0

Z p
R2�y2

�
p
R2�y2

@ 

@x
.x; y/S0 .x; y/ydx dy

#

D �
Z R

0

Z p
R2�y2

�
p
R2�y2

@j .x; y/j
@x

ydx dy

DR2
�k j	sk � k j	ek

�

� 0 . kHk � 1/:

Now, let ' D .� � B˛/ . Then,

Re.�C†/k k2 D Re.�C†/h ; �i
D Re

�
.�C†/h ; �i�

� ReŒ.�C†/h ; �i � hB 0̨ ; �i� because B 0̨ is dissipative

D ReŒ�h ; �i � hB˛ ; �i�
D Reh'; �i
� k'k k k:

This implies that k k � k'k
Re�C†; and we obtain k.� � B˛/�1k � 1

Re�C†: Q.E.D.

Lemma 13.2.2. Assume that ˛ � 1. Then, we have f� 2 C such that Re� > kKk�
† C 1g � �.A˛/ and, for all � such that Re� > kKk � † C 1, we have k.� �
A˛/

�1k � 1: }
Proof. Let � 2 f� 2 C such that Re� > kKk�†C1g. Then, .��A˛/ is invertible
and we get .� � A˛/�1 D 

I � .� � B˛/�1K/
��1

.� � B˛/�1: Therefore, by using
Lemma 13.2.1, we have

k.� � A˛/�1k � k.� � B˛/�1k
1X

kD0
k.� � B˛/�1Kkk

� 1

.Re�C†/.1 � kKk
Re�C†/

� 1:

This completes the proof of the lemma. Q.E.D.

We end up this section by the following result.

Proposition 13.2.4. Assume that ˛ � 1. If the boundary operator H is nonneg-
ative, then B˛ generates a strongly continuous semigroup .U˛.t//t�0, satisfying
kU˛.t/k � e�†t : }
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Proof. In view of the positivity of the operator H and Lemma 13.2.1, together with
Corollary 2.5.1, we can immediately deduce the result. Q.E.D.

13.2.4 Asymptotic Behavior of the Solution

Lemma 13.2.3. For any complex number �, both KR�HQ� and .KP�/2 are weakly
compact operators on X . }
Proof. By making some computation, we know that KR�HQ� is the integral
operator

.KR�HQ�f /.x; y/ D
Z R

0

dy0
Z p

R2�y02

�
p
R2�y02

K˛;�.x; y; x
0; y0/f .x0; y0/dx0;

where

K˛;�.x; y; x
0; y0/D c†

2r

Z r

�r
e

�.�C†/
�p

R2�y2Cz2C
p
R2�y02Cz�x0

	
˛y0

R
p
R2 � r2 C z2

dz;

r D
p
x2 C y2:

Let us define

�
G W D�! X

.x0; y0/�! K˛;�.x; y; x
0; y0/:

Then, for Re� > �†, we have

max
.x0;y0/2D

kG.x0; y0/k

D max
.x0;y0/2D

kK˛;�.x; y; x
0; y0/k

�
Z R

0

ydy
Z p

R2�y2

�
p
R2�y2

0

@c†

2r

Z r

�r
˛y0e�.Re�C†/

�p
R2�r2Cz2C

p
R2�y02Cz�x0

	

R
p
R2 � r2 C z2

dz

1

Adx

�
Z R

0

ydy
Z p

R2�y2

�
p
R2�y2

 
c†

2
p
x2 C y2

Z p
x2Cy2

�
p
x2Cy2

˛R

R
p
R2 � r2 dz

!

dx

� ˛c†

Z R

�R
dx
Z p

R2�x2

0

ydy
p
R2 � x2 � y2 :
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For Re� < �†, and using a similar method, we deduce that

max
.x0;y0/2D

kG.x0; y0/k � ˛c†e�4.Re�C†/R
Z R

�R
dx
Z p

R2�x2

0

ydy
p
R2 � x2 � y2 :

So, for any �, we have

max
.x0;y0/2D

kG.x0; y0/k � C.�/; (13.2.10)

where C.�/ is a positive constant. Moreover, let E � D be measurable. Then,

Z

E

yjG.x0; y0/jdxdy �
Z

E

 
c†

2
p
x2 C y2

Z p
x2Cy2

�
p
x2Cy2

e4jRe�C†jR
p
R2 � r2 dz

!

ydxdy

�
Z

E

c†e4jRe�C†jR y
p
R2 � x2 � y2 dxdy:

Since 1p
R2�x2�y2 2 X , we have

lim
jEj!0

max
.x0;y0/2D

Z

E

yjG.x0; y0/jdxdy D 0: (13.2.11)

From Eqs. (13.2.10) and (13.2.11) and also Theorem 2.4.5, we deduce that KR�HQ�

is a weakly compact operator onX for each complex number �. A similar reasoning
allows us to reach the same result for the operator .KP�/2. Q.E.D.

Lemma 13.2.4.

.i/ If ˛.1�e
�2.�C†/R/

2.�C†/R ¤ 0, then

.I �M�H/
�1 D I C 2.�C†/

2.�C†/R � ˛.1 � e�2.�C†/R/
M�H:

.ii/ For any � 2 C, we have

M�HQ� D ˛.1 � e�2.�C†/R/
2.�C†/R

Q�: }
Proof.

.i/ In fact, .M�H/
2 D ˛.1�e�2.�C†/R/

2.�C†/R M�H: Hence, .i/ is valid.
.ii/ We can obtain this result by some direct computation.

Q.E.D.

The following theorem is a consequence of Lemmas 13.2.3, 13.2.4 and 2.1.13.
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Theorem 13.2.3. If ˛.1�e�2.�C†/R/

2.�C†/R ¤ 0, then the operator

K.� � B˛/�1

�4
is

compact. }
Let w > 0 and set Rw D f� 2 C such that Re� � �†C wg:
Theorem 13.2.4. If ˛ � 1, then for any r 2 Œ0; 1/; we have lim

jIm�j!1
jIm�jr

kŒK.� � B˛/�1�5k D 0 uniformly on Rw. }
Proof. The operator K.� � B˛/�1 is given by

K.� � B˛/�1 D KR�H.I �M�H/
�1Q� C KP�: (13.2.12)

By using Eq. (13.2.12) and Lemma 13.2.4, we deduce that


K.� � B˛/�1

�5

D l5L5 C l4L4AC l4L3AL C l3L3A2 C l4L2AL2 C l3L.LA/2

C l3L2A2LC l2L2A3 C l4LAL3 C l3LAL2AC l3L.AL/2 C l2.LA/2A

C l2LA2LA C l2LA3LC lLA4 C l4AL4 C l3AL3AC l3AL2AL

C l2AL2A2 C l3.AL/2LC l2A.LA/2 C l2ALA2LC lALA3 C l3A2L3

C l2A2L2AC l2A.AL/2 C lA2LA2 C l2A3L2 C lA3LA C lA4L

C l3LA2L2 C A5;

where L D KR�HQ�, A D KP� and l D 2.�C†/R
2.�C†/R�˛.1�e�2.�C†/R/

. Let us notice that

there is an analogy between the components of

K.� � B˛/�1

�5
. Then, it suffices to

show the result for the operator A5. By virtue of the compactness of the operator A4

(see Theorem 13.2.3), we deduce that the family fA4 W X �! X such that � 2 Rwg
is collectively compact. Hence, by using Proposition 2.1.2, we will show that the
family fjIm�jrA W X �! X such that � 2 Rwg converges strongly to zero as jIm�j
goes to infinity. Then, it remains to prove that 8r 2 Œ0; 1Œ, lim

jIm�j!C1
jIm�jrkA k D

0 uniformly on Rw; where

A D C†

2r

Z r

�r

 Z x1

�
p
R2�r2Cx21

e�.�C†/.x1�x2/ 
�

x2;

q
r2 � x21

�

dx2

!

dx1:

To do this, we firstly observe that the operator A may be decomposed as follows
A D C†A1A2A3; where

8
<

:

A1 W L1.S; rdr/ �! X

f �! A1f .x; y/ D 1

2
p
x2 C y2

f
�p

x2 C y2
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8
<

:

A2 W X �! L1.S; rdr/

f �! A2f .r/ D
Z r

�r
f
�

z;
p
r2 � z2

	
dz

and
8
<

:

A3 W X �! X

 �! A3 .x; y/ D
Z x

�
p
R2�y2

e�.�C†/.x�x0/ .x0; y/dx0:

Clearly, the operators A1 and A2 are uniformly bounded on Rw. Hence, we
will show that 8r 2 Œ0; 1Œ; lim

jIm�j!C1
jIm�jrkA3 k D 0 uniformly on Rw: Or

equivalently, 8r 2 Œ0; 1Œ, we have

lim
jIm�j!C1

jIm�jr
Z R

0

Z p
R2�y2

�
p
R2�y2

ˇ
ˇ
ˇ
ˇ
ˇ

Z x

�
p
R2�y2

e�.�C†/.x�x0/ .x0; y/dx0
ˇ
ˇ
ˇ
ˇ
ˇ
ydxdy D 0

uniformly on Rw: Since  2 L1.D; ydxdy/; it is sufficient to show the result for a
measurable simple function  inD. Now, using the change of variables s D x�x0,
it remains to prove that

limjIm�j!C1 jIm�jr
Z R

0
y

Z p
R2�y2

�p
R2�y2

ˇ
ˇ
ˇ
ˇ
ˇ

Z 2R

0
e�.�C†/s .x� s; y/�

Œ0;xCp
R2�y2�ds

ˇ
ˇ
ˇ
ˇ
ˇ
dxdy D 0:

To do this, let y 2 Œ0; R�, x 2
h
�pR2 � y2;pR2 � y2

i
, and let us consider the

map
(
'x;y W Œ0; 2R� �! R

s �!  .x � s; y/�
Œ0;xC

p
R2�y2�.s/:

It follows that 'x;y is a simple function. Let .si /1�i�m be the subdivision of its
support such that, 81 � i � m � 1, we have 'x;y.s/ D 'x;y.si / 8s 2 Œsi ; siC1Œ:
Then, we get

Z 2R

0

e�.�C†/s'x;y.s/ds D
m�1X

iD1

Z siC1

si

'x;y.si /e
�.�C†/sds

D
m�1X

iD1
'x;y.si /

� �1
�C†

e�.�C†/sds

�siC1

si

D 1

�C†

m�1X

iD1
'x;y.si /

�
e�.�C†/si � e�.�C†/siC1

�
:
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Hence,

ˇ
ˇ
ˇ
ˇ

Z 2R

0

e�.�C†/s'x;y.s/ds

ˇ
ˇ
ˇ
ˇ � 2.m � 1/

jIm�j sup j .:; :/j;

and

jIm�jr
Z R

0

y

Z p
R2�y2

�
p
R2�y2

ˇ
ˇ
ˇ
ˇ

Z 2R

0

e�.�C†/s .x � s; y/ �
Œ0;xC

p
R2�y2�ds

ˇ
ˇ
ˇ dxdy

� 4R3.m � 1/
3jIm�j1�r sup j .:; :/j:

This inequality allows us to reach the desired result. Q.E.D.

Since B˛ is the generator of a C0-semigroup .U˛.t//t�0 on X , and since K is
a bounded operator, then according to the classical perturbation theory (Theo-
rem 2.5.8), the operator A˛ D B˛ CK also generates a C0-semigroup .V˛.t//t�0 on
X . If the operatorH satisfies kHk � 1, then from Proposition 4.2.1, the asymptotic
spectrum P.A˛/ consists of, at most, discrete eigenvalues with finite algebraic
multiplicities f�1; �2; : : : ; �n; �nC1; : : :g which can be ordered in such a way that the
real part decreases [186], i.e., Re�1 > Re�2 > � � � > Re�n > Re�nC1 > � � � > �;

and f� 2 C such that Re� > �gnf�n; n D 1; 2; 3; : : :g � �.A˛/: By the same way
as in the proof of Theorem 4.2.1, we give the description of the asymptotic behavior
of the solution of the Cauchy problem (13.2.3) by the following theorem

Theorem 13.2.5. If ˛ � 1, then for any " > 0, there exists M > 0 such that

�
�
�
�
�
V˛.t/ �

nX

iD1
e�i t eDi tPi

�
�
�
�
�

� Me."CRe�nC1/t ; 8 t > 0:
}

13.3 The Time-Asymptotic Behavior of a Transport
Operator with a Diffuse Reflection Boundary Condition

As is well known, the stability of a given transport system is a quite important
and interesting topic in transport theory. Various methods have been developed
in order to investigate the asymptotic behavior of the time dependent solution
(see [138, 179, 184, 209, 232, 275]). In this section, we are concerned with the
time dependent transport equation in a sphere with a diffuse reflection boundary
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condition. For more details concerning the following results, the reader may refer
to [75], which constitutes the real basis of our present work. Let us suppose that
the region occupied by the reactor media is a sphere of radius R > 0, and let
G D Œ0; R� � Œ�1; 1� � .Vm; VM /; � D Œ�1; 1� � .Vm; VM /. Then, the weighted
L1-spaces L1.G; r2 dr d� dv/ and L1.�; j�vj d� dv/ with the following norms

kf k D
Z

G

jf .r; �; v/jr2 dr d� dv; f 2 L1.G; r2 dr d� dv/

kgk D
Z

�

jg.�; v/jjv�j d� dv; g 2 L1.�; jv�j d� dv/

constitute complex Banach spaces, where r is the distance from the center of the
sphere, v 2 .Vm; VM / is the speed of migrating particles, and � 2 Œ�1; 1� is the
cosine of the angle the particle velocity makes with the radius vector. The transport
operator A, with a diffuse boundary condition which is the summation of two
operators B andK, where B is the streaming operator, andK is a collision operator
defined by a scattering fission kernel �.:; :; :/, is given by

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�@f
@t
.r; �; v; t/ D Af .r; �; v; t/ D B f .r; �; v; t/CK f .r; �; v; t/

D �v�@f
@r
.r; �; v; t/ � v 1 � �2

r

@f

@�
.r; �; v; t/

�v†.r; �; v/f .r; �; v; t/C 1

2

Z VM

Vm

Z 1

�1
�.r; v; v0/

f .r; �0; v0; t /dv0d�0

�f .R;�; v; t/ 2 L1.�; j�vj d� dv/

�jv�jf .R;�; v; t/ D
Z VM

Vm

dv0
Z 1

0

˛.�; �0; v; v0/v0�0f .R;�0; v0; t /d�0

for � 2 Œ�1; 0/; and
�f .r; �; v; 0/ D f0.r; �; v/:

(13.3.1)

Here, f .r; �; v; t/ is the neutron distribution at time t , †.r; �; v/ represents the
total collision frequency, ˛.�;�0; v; v0/ is the diffuse coefficient on the boundary,
and f0.r; �; v/ represents the initial distribution. LetD D f.x; y; v/ such that x2C
y2 � R2; y � 0; Vm < v < VM g and S D Œ0; R� � .Vm; VM /. By virtue of
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the transformation [326], we have x D r�; y D r
p
1 � �2, and  .x; y; v; t/ D

f .r.x; y/; �.x; y/; v; t/. Equation (13.3.1) can be equivalently written as

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

�@ 
@t
.x; y; v; t/ D A .x; y; v; t/ D B .x; y; v; t/CK .x; y; v; t/

D �v @ 
@x
.x; y; v; t/ � v†

 q

x2 C y2;
x

p
x2 C y2

; v

!

 .x; y; v; t/

C 1

2r

Z VM

Vm

Z r

�r
�.r; v; v0/ 

�
z;
p
r2 � z2; v0; t

	
dv0dz

� 
�
˙pR2 � y2; y; v; t

	
2 Y

� vy

R2
 

�

�
q

R2 � y2; y; v; t
�

D
Z

S

y

R
p
R2 � y2 ˛

 

�
p
R2 � y2
R

;

p
R2 � y02
R

; v; v0
!

�v
0y0
R2

 

�q

R2 � y02; y0; v0; t
�

dy0dv0

� .r; �; v; 0/ D  0.r; �; v/:

(13.3.2)

Throughout this part, it is assumed that

.Q1/: †.r; �; v/ is a bounded, nonnegative, and measurable function defined on
G, and let

��
0 WD inf

.r;�;v/2Gfv†.r; �; v/g:

.Q2/: 0 < Vm < VM < C1:

.Q3/: ˛.�;�0; v; v0/ is a nonnegative, bounded, and measurable function
defined on

Œ�1; 0/ � .0; 1��.Vm; VM / � .Vm; VM /; such that

sup
.�0;v0/2.0;1��.Vm;VM /

�Z VM

Vm

Z 0

�1
˛.�; �0; v; v0/d�

�

� 1:

.Q4/ W k.r; v; v0/ is a real bounded and measurable function.

As it is mentioned above, the transport operator (13.3.2) can be formally written as
a first order Cauchy problem:

8
<

:

@ 

@t
D A WD B CK 

 .0/ D  0;
(13.3.3)

where  0 2 L1ŒD; y dx dy dv�.
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13.3.1 The Resolvent of the Operator B

Let us state precisely the functional setting of the problem. Let X WD
L1.D; y dx dy dv/ be the Banach space equipped with the norm

k'kX D
Z

D

j'.x; y; v/jy dx dy dv ' 2 X;

and let Y WD L1.S;
vy
R2

dy dv/ be the Banach space equipped with the norm

k kY D
Z

S

j .y; v/j vy

R2
dy dv  2 Y:

We denote by 	e and 	s the following boundary spaces defined by:

	e WD
n
.
p
R2 � y2; y; v/; y � 0; Vm < v < VM

o

and

	s WD
n
.�
p
R2 � y2; y; v/; y � 0; Vm < v < VM

o
:

We define the partial Sobolev space W by

W D
�

 2 X such that v
@ 

@x
2 X

�

:

Proposition 13.3.1. Let  2 W . If  j	e 2 Y , then  j	s 2 Y and vice versa. }
Proof. Let  2 W such that  j	e 2 Y . We have

 .
p
R2 � y2; y; v/ �  .�

p
R2 � y2; y; v/ D

Z p
R2�y2

�
p
R2�y2

@ 

@x
.x; y; v/ dx:

(13.3.4)

This implies that

j .�
p
R2 � y2; y; v/j � j .

p
R2 � y2; y; v/j C

Z p
R2�y2

�
p
R2�y2

ˇ
ˇ
ˇ
ˇ
@ 

@x
.x; y; v/

ˇ
ˇ
ˇ
ˇ dx:
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Consequently, we have

Z

S

ˇ
ˇ
ˇ .�

p
R2 � y2; y; v/

ˇ
ˇ
ˇ

vy

R2
dy dv �

Z

S

ˇ
ˇ
ˇ .

p
R2 � y2; y; v/

ˇ
ˇ
ˇ

vy

R2
dy dv

C
Z

D

ˇ
ˇ
ˇ
ˇ
@ 

@x
.x; y; v/

ˇ
ˇ
ˇ
ˇ

vy

R2
dx dy dv:

So, we have k j	skY � k j	ekY C VM
R2

�
�
�
@ 

@x

�
�
�
X
< 1: The converse may be proved

in a similar way, starting from a rearrangement of Eq. (13.3.4). This achieves the
proof. Q.E.D.

Let us define QW D ˚
 2 W such that  j	e 2 Y 
 :According to Proposition 13.3.1,

all functions  2 QW have traces  j	e and  j	s belonging to the boundary space Y .
We define the free streaming operator B by

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

B W D.B/ � X �! X

 �! B .x; y/ D �v @ 
@x
.x; y; v; t/ � v†

 
p
x2 C y2;

x
p
x2 C y2

; v

!

 .x; y; v; t/

D.B/ D ˚
 2 QW such that j	s D H. j	e /



;

where H is the boundary operator defined by

8
ˆ̂
<̂

ˆ̂
:̂

H W Y �! Y

f �! Hf .y; v/ D
Z

S

v0y0

vR
p
R2 � y2 ˛

 

�
p
R2 � y2
R

;

p
R2 � y02
R

; v; v0
!

f .y0; v0/dy0dv0

and we suppose that it satisfies the following hypothesis:

.Q5/: kHk � 1:

Let ' be a function in X and let us consider the resolvent equation for B , .� �
B/ D '; where � is a complex number and the unknown  must be sought in
D.B/. For any � 2 C, and in order to clarify our subsequent analysis, we introduce
the following operators

M.�; y; y0; v; v0/ D v0y0

Rv
p
R2 � y2 ˛

 

�
p
R2 � y2
R

;

p
R2 � y02
R

; v; v0
!

� exp

 

�
Z p

R2�y02

�
p
R2�y02


.�; z; y0; v0/dz

!

;

.y; v/ 2 S; .y0; v0/ 2 S;



486 13 Applications in Mathematical Physics and Biology

and

N.�; y; v; x0; y0; v0/

D y0

Rv
p
R2 � y2 ˛

 

�
p
R2 � y2
R

;

p
R2 � y02
R

; v; v0
!

� exp

 

�
Z p

R2�y02

x0


.�; z; y0; v0/dz

!

; .y; v/ 2 S; .x0; y0; v0/ 2 D;

where


.�; x; y; v/ WD 1

v

"

�C v†

 
p
x2 C y2;

x
p
x2 C y2

; v

!#

; .x; y; v/ 2 D:

Now, let us define the linear operators M�;H�;L�, and P�, for � 2 C, as follows:

8
<

:

M� W Y �! Y

 �! M� .y; v/ D
Z

S

M.�; y; y0; v; v0/ .y0; v0/dy0dv0;
8
<

:

H� W X �! Y

' �! H� .y; v/ D
Z

D

N.�; y; v; x0; y0; v0/ .x0; y0; v0/dx0dy0dv0;
8
<̂

:̂

L� W Y �! X

 �! L� .x; y; v/ D exp

 

�
Z x

�
p
R2�y2


.�; z; y; v/dz

!

 .y; v/

and

8
<

:

P� W X �! X

 �! P�'.x; y; v/ D
Z x

�p
R2�y2

1

v
exp

�

�
Z x

x0


.�; z; y; v/dz

�

'.x0; y; v/dx0:

It is shown in [350] that these operators are bounded on their respective spaces. In
fact, for Re� > ���

0 , the norms of the operators M�, H�, L�, and P� are bounded,

respectively, by 1, 1
R2

, R2

Re�C��

0
, and 1

Re�C��

0
. Moreover, for � such that Re� > ���

0 ,

the resolvent of the operator B is given by

.� � B/�1 D L�.I �M�/
�1H� C P�: (13.3.5)
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13.3.2 Compactness and Generation Results

Lemma 13.3.1. For any complex number �, the operators .KP�/2,H�, andM� are
weakly compact operators on X . }
Proof. Since the proof of the weak compactness of H� and M� is similar to that of
.KP�/2, we only have to prove the weak compactness of .KP�/2. Let us define the
operators V and Q as follows:

8
<

:

V W L1.D; y dx dy dv/ �! L1.S; r dr dv/

 �! V .r; v/ D 1

2

Z r

�r
 .z;

p
r2 � z2; v/dz

and

8
ˆ̂
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ˆ̂
:̂
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' �! Q'.x; y; v/ D 1
p
x2 C y2
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Vm

�
�p

x2 C y2; v; v0	

'
�p

x2 C y2; v0
	

dv0:

Then, V and Q are bounded linear operators. Obviously, K D QV , and

VP�Q W L1.S; r dr dv/ �! L1.S; r dr dv/

is a bounded linear operator for each � which can be represented by

VP�Q'.r; v/

D 1

2

Z r

�r

Z z

�p
R2�r2Cz2

1

v
e� R z

x0 
.�;z0;
p
r2�z2;v/dz0

� 1p
x02 C r2 � z2

Z VM

Vm

�.
p
x02 C r2 � z2; v; v0/'.

p
x02 C r2 � z2; v0/dv0dx0dz:

Taking into account the following change of variables r 0 D p
x02 C r2 � z2, v0 D v,

s D z � x0; we can write

VP�Q'.r; v/ D 1

2

Z VM

Vm

Z R

0

h.�; v; v0; r; r 0/ .r 0; v0/dv0dr0;
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where

h.�; v; v0; r; r 0/ D �.r 0; v; v0/
2v

Z rCr 0

jr�r 0j
1

s
e

� R 
2.r;r0 ;s/

1.r;r

0 ;s/

.�;z0;

p
r2�z2;v/dz

ds;


1.r; r
0; s/ D �r

02 � r2
2s

� s

2
;

and


2.r; r
0; s/ D �r

02 � r2
2s

C s

2
:

In what follows, we will show the weak compactness of VP�Q. To do this, let G�
be defined by

�
G� W S �! L1.S; rdrdv/
.r 0; v0/ �! G�.r

0; v0/ D h.�; v; v0; r; r 0/:

Hence,

G�.v
0; r 0/ D �.r 0; v; v0/

2v

Z rCr 0

jr�r 0j
1

s
e

� R 
2.r;r0 ;s/

1.r;r

0 ;s/

.�;z0;

p
r2�z2;v/dz

ds:

Let � D ˇ C i� . Then, e
� R 
2.r;r0 ;s/


1.r;r
0 ;s/


.�;z0;
p
r2�z2;v/dz D e

� R 
2.r;r0 ;s/

1.r;r

0 ;s/
1
v .ˇCv†.:;:;://dz

e� i�s
v :

Hence,

max
.v0;r 0/2S

kG�.v0; r 0/k

�
Z R

0

Z VM

Vm

j�.r 0; v; v0/j
2

Z rCr 0

jr�r 0j
1

s
e

� R 
2.r;r0 ;s/

1.r;r

0 ;s/
1
v .ˇCv†.:;:;://dz

r ds dr dv

�
Z R

0

Z VM

Vm

j�.r 0; v; v0/j
2

Z rCr 0

jr�r 0j
1

s
e� s

v .ˇC��

0 /r ds dr dv:

For ˇ > ���
0 ; we get

max
.v0;r 0/2S

kG�.v0; r 0/k �
Z R

0

Z VM

Vm

j�.r 0; v; v0/j
2

Z rCr 0

jr�r 0j
1

s
e

� s
VM

.ˇC��

0 /r ds dr dv

�
Z R

0

Z VM

Vm

j�.r 0; v; v0/j
2

Z rCr 0

jr�r 0j
1

s
r ds dr dv

� CR2

4
log.2R/.VM � Vm/;
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where C is a positive constant. By using a similar method for ˇ < ���
0 ; we get

max
.v0;r 0/2S

kG�.v0; r 0/k �
Z R

0

Z VM

Vm

j�.r 0; v; v0/j
2

Z rCr 0

jr�r 0j
1

s
e� .rCr0/

Vm
.ˇC��

0 /r ds dr dv

� C

Z R

0

Z VM

Vm

Z rCr 0

jr�r 0j
1

s
e� 2R

Vm
.ˇC��

0 /r ds dr dv

� CR2

4
log.2R/.VM � Vm/e� 2R

Vm
.ˇC��

0 /:

So, for any �, we have

max
.v0;r 0/2S

kG�.v0; r 0/k � C.R; �/; (13.3.6)

where C.R; �/ is a positive constant. Moreover, let E � S be measurable. Then,

Z

E

jG�.v0; r 0/jrdrdv �
Z

E

C

2vm

Z rCr 0

jr�r 0j
1

s
e� 2R

v jˇC��

0 jr ds dr dv:

Since
R rCr 0

jr�r 0j
1
s
e� 2R

v jˇC��

0 j ds 2 L1.S; rdrdv/; we have

lim
m.E/!0

Z

E

kG�.v0; r 0/krdrdv D 0: (13.3.7)

From (13.3.6), (13.3.7), and Theorem 2.4.5, we can deduce that VP�Q is weakly
compact for each �. This implies that .KP�/2 is weakly compact. Q.E.D.

Lemma 13.3.2. Let us assume that the assumptions .Q1/–.Q5/ hold true. Then,
for all � such that Re� > ���

0 , we have k.� � B/�1k � 1
Re�C��

0
: }

Proof. Let B 0 be the operator defined by:

8
<̂

:̂

B 0 W D.B/ � X �! X

 �! �v @ 
@x
.x; y; v/ �

�

v†

 
p
x2 C y2;

x
p
x2 C y2

; v

!

� ��
0

�

 .x; y; v/:

First, we will show that the operatorB 0 is dissipative. To do this, we take 2 D.B 0/
and  � D S0 , where S0 satisfies the Eq. (13.2.9) and we will prove, in the
following, that RehB 0 ; S0 i � 0:
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RehB 0 ; S0 i

D Re

 

�
Z VM

Vm

Z R

0

Z p
R2�y2

�
p
R2�y2

v
@ 

@x
.x; y; v/ydx dy dv

!

C
 

v†

 
p
x2 C y2;

x
p
x2 C y2

; v

!

� ��
0

!

 .x; y; v/S0 .x; y; v/ydx dy dv

D Re

 

�
Z VM

Vm

Z R

0

Z p
R2�y2

�
p
R2�y2

v
@

@x
.j j/ydx dy dv

!

C
 

v†

 
p
x2 C y2;

x
p
x2 C y2

; v

!

� ��
0 .x; y; v/j jydx dy dv

!

� R2
�k j	sk � k j	ek

�

� 0 .kHk � 1/:

Now, let ' D .� � B/ . Then,

Re.�C†/k k2 D Re.�C ��
0 /h ; �i

D Re
�
.�C†/h ; �i�

� ReŒ.�C†/h ; �i � hB 0 ; �i� because B 0 is dissipative

D ReŒ�h ; �i � hB ; �i�
D Reh'; �i
� k'k k k:

This implies that k k � k'k
Re�C��

0
; and we obtain k.� � B/�1k � 1

Re�C��

0
: Q.E.D.

Lemma 13.3.3. Let us assume that the assumptions .Q1/–.Q5/ hold true. Then,
the set f� 2 C such that Re� > kKk � ��

0 C 1g � �.A/ and, for all � such that
Re� > kKk � ��

0 C 1, we have k.� � A/�1k � 1: }
Proof. The proof is similar as the proof of Lemma 13.2.2. Q.E.D.

We end this section by the following result.

Proposition 13.3.2. Let us assume that the assumptions .Q1/–.Q5/ hold true. If
the boundary operator H is nonnegative, then B generates a strongly continuous
semigroup .U.t//t�0, satisfying kU.t/k � e���

0 t : }
Proof. In view of the positivity of the operator H and also Lemma 13.3.2, together
with Corollary 2.5.1, we can immediately deduce the result. Q.E.D.
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13.3.3 Asymptotic Behavior of the Solution

In this section, we assume that

.Q6/ W The boundary condition is of Maxwell type, that is ˛.�;�0; v; v0/ D
˛0vj�je� v2

2� ;where � D kT
m

,m is the mass of the migrating particles, k represents
the Boltzmann constant, T is the absolute temperature, and ˛0 represents the
adjustment coefficient on the boundary, such that 0 < ˛0 � 2

�
:

We also assume that

.Q7/ W The transport medium is homogeneous and isotropic, that is †.r; �; v/ D
†.v/:

It is easy to show that the condition .Q6/ secures the validation of the condition
.Q3/. So, all the results obtained above are valid under condition .Q6/. Further-
more, we have the following lemma:

Lemma 13.3.4. Let g.�/ be the entire function defined by

g.�/ D ˛0

R2

Z

S

vye� v2

2� e� 2.�Cv†.v//
v

p
R2�y2dy dv:

.i/ For any � 2 C, we have

M2
� D g.�/M�; M�H� D g.�/H�: (13.3.8)

.ii/ If g.�/ ¤ 1, then .I � M�/
�1 exists and is bounded. Moreover, we have the

following .I �M�/
�1 D I C 1

1�g.�/M�; and .��B/�1 D 1
1�g.�/L�H� C P�:

}
Proof.

.i/ By making some computation, we can obtain Eq. (13.3.8).

.ii/ If g.�/ ¤ 1, then I C 1
1�g.�/M� is a bounded linear operator. From

Eq. (13.3.8), it follows that .I �M�/
�
I C 1

1�g.�/M�

	
D I C 1

1�g.�/M� �M� �
g.�/

1�g.�/M� D I: Similarly,
�
I C 1

1�g.�/M�

	
.I �M�/ D I: Hence, .I �M�/

�1

exists and is equal to I C 1
1�g.�/M�. The remaining part of the proof is a

consequence of Eq. (13.3.5).

Q.E.D.



492 13 Applications in Mathematical Physics and Biology

In what follows, we will establish some lemmas that enable us to give the estimation
of the resolvent. Let w > 0 and set Rw D f� 2 C such that Re� � ���

0 C wg: For
v 2 .Vm; VM /, we consider

(
'v W Œ0; 2R� �! RC

s �! e� 1
v .v�.v/���

0 C w
2 /s :

Observing that, for all v 2 .Vm; VM /, we have v�.v/� ��
0 C w

2
� w

2
> 0: We claim

that 'v.:/ is a bounded, positive, and measurable function. We denote by .lv;n.://n2N
an increasing sequence of nonnegative step functions with a compact support which
converges to 'v.:/ almost everywhere. Now, we introduce the operator P by:

8
ˆ̂
<

ˆ̂
:

P W L1.D; y dx dy dv/ �! L1.D; y dx dy dv/
 �! P .x; y; v/

D
Z x

�
p
R2�y2

1

v
e� 1

v .�Cv†.v//.x�x0/ .x0; y; v/dx0

and the sequence .Pn/n2N of operators defined, for all n 2 N, by

8
<̂

:̂

Pn W L1.D; y dx dy dv/ �! L1.D; y dx dy dv/
 �! P .x; y; v/

D R x
�
p
R2�y2

1
v
e� 1

v .�C��

0 � w
2 /.x�x0/lv;n.x � x0/ .x0; y; v/dx0:

Lemma 13.3.5. The sequence of operators .Pn/n2N converges uniformly on Rw to
P in L.L1.D; y dx dy dv//. }
Proof. Let  2 L1.D; y dx dy dv/. Then, by using the change of variables s D
x � x0, we get

k.Pn � P / k

D
Z

D

ˇ
ˇ
ˇ
ˇ
ˇ

Z 2R

0

1

v
e� 1

v .�C��

0 � w
2 /s.lv;n � 'v/.s/�Œ0;pR2�y2�x0�

.s/ .x0; y; v/ds

ˇ
ˇ
ˇ
ˇ
ˇ
y dx0 dy dv

�
Z R

0

Z p
R2�y2

�p
R2�y2

Z 2R

0

1

v
e� 1

v .Re�C��

0 � w
2 /s.'v � lv;n/.s/j .x0; y; v/jdsy dx0 dy dv

� k k
Z 2R

0

1

v
e� 1

v .Re�C��

0 � w
2 /s.'v.s/ � lv;n.s//ds:

By applying the Lebesgue dominated convergence theorem, we get lim
n!C1k.Pn �

P / k D 0 uniformly onRw: This completes the proof of the lemma. Q.E.D.

Lemma 13.3.6. Let  .:/ be a measurable simple function in D and let l.:/ be a
nonnegative step function defined on Œ0; 2R� and satisfying lv.:/ � 'v.:/ � 1

Vm
.

Then, 8r 2 Œ0; 1Œ, we have
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lim
jIm�j!C1

jIm�jr
Z

D

ˇ
ˇ
ˇ
ˇ

Z 2R

0

1

v
e� 1

v .�C��

0 � w
2 /slv.s/ .x � s; y; v/�

Œ0;xC
p
R2�y2�.s/ds

ˇ
ˇ
ˇ
ˇ

� y dx0 dy dv D 0

uniformly on Rw: }
Proof. To do this, let y 2 Œ0; R�, x 2 Œ�pR2 � y2;pR2 � y2�, v 2 .Vm; VM / and
let us consider the map

(
'x;y;v W Œ0; 2R� �! R

s �! lv.s/ .x � s; y; v/�
Œ0;xC

p
R2�y2�.s/:

It follows that 'x;y;v is a simple function. Let .si /1�i�m be the subdivision of its
support such that 81 � i � m � 1. We have 'x;y;v.s/ D 'x;y;v.si / 8s 2 Œsi ; siC1Œ:
Then, we get

Z 2R

0

1

v
e� 1

v .�C��

0 � w
2 /s'x;y;v.s/ds

D
m�1X

iD1

Z siC1

si

1

v
'x;y;v.si /e

� 1
v .�C��

0 � w
2 /sds

D
m�1X

iD1
'x;y;v.si /

� �1
.�C ��

0 � w
2
/
e�.�C��

0 � w
2 /sds

�siC1

si

D �1
.�C ��

0 � w
2
/

m�1X

iD1
'x;y;v.si /

�
e�.�C��

0 � w
2 /si � e�.�C��

0 � w
2 /siC1

	
:

Hence,

ˇ
ˇ
ˇ
ˇ

Z 2R

0

e� 1
v .�C��

0 � w
2 /s'x;y;v.s/ds

ˇ
ˇ
ˇ
ˇ � 2.m � 1/

VmjIm�j sup j .:; :; :/j;

and

jIm�jr
Z

D

ˇ
ˇ
ˇ
ˇ

Z 2R

0

1

v
e�

1
v .�C��

0 �
w
2 /slv.s/ .x � s; y; v/ �

Œ0;xC

p
R2�y2�

.s/ds
ˇ
ˇ
ˇy dx0 dy dv

� 4R3.m � 1/.VM � Vm/
3jIm�j1�r sup j .:; :; :/j:

This inequality allows us to reach the desired result. Q.E.D.
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Theorem 13.3.1. If the boundary operator H satisfies the hypothesis .Q5/,
then for any r 2 Œ0; 1/; we have lim

jIm�j!1
jIm�jrkŒK.� � B/�1�5k D 0 uniformly

on Rw: }
Proof. By using Lemma 13.3.4, the operator K.� � B/�1 can be written as

K.� � B/�1 D 1

1 � g.�/KL�H� C KP�: (13.3.9)

From Eq. (13.3.9), we get


K.� � B/�1�5

D l5L5 C l4L4AC l4L3AL C l3L3A2 C l4L2AL2 C l3L.LA/2

C l3L2A2LC l2L2A3 C l4LAL3 C l3LAL2AC l3L.AL/2 C l2.LA/2A

C l2LA2LA C l2LA3LC lLA4 C l4AL4 C l3AL3AC l3AL2AL

C l2AL2A2 C l3.AL/2LC l2A.LA/2 C l2ALA2LC lALA3 C l3A2L3

C l2A2L2AC l2A.AL/2 C lA2LA2 C l2A3L2 C lA3LA C lA4L

C l3LA2L2 C A5;

where L D KL�H�, A D KP�, and l D 1
1�g.�/ . We claim that it suffices to show

the result for the operator A5, since there is an analogy between the components of

K.� � B/�1�5. The proof requires the following two steps.

Step 1. By virtue of Lemmas 13.3.1 and 2.1.13, the operator A4 is compact.
Hence, we deduce that the family fA4 W X �! X such that � 2 Rwg is bounded
in the space X and thus, it is relatively compact by the Heine–Borel’s theorem.
Hence, this family of operators is collectively compact.

Step 2. By referring to Proposition 2.1.2, we will show that the family

fjIm�jrA W X �! X such that � 2 Rwg

converges strongly to zero as jIm�j goes to infinity. Then, it remains to prove that
8r 2 Œ0; 1Œ, lim

jIm�j!C1
jIm�jrkA k D 0 uniformly on Rw; where

A D 1

2r

Z Vm

VM

Z r

�r
k.r; v; v0/

�Z z

�p
R2�r2Cz2

1

v0 e
� R z

x0

1
v0
.�Cv0†.v0//dz0

 .x0;
p
r2 � z2; v0/dx0

�

dv0 dz:
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To do this, we firstly observe that the operator A may be decomposed as follows
A D VQP; where V , P , andQ are the already defined operators. Since V andQ
are bounded uniformly on Rw, and taking into account Lemma 13.3.5, it remains
to show that 8r 2 Œ0; 1Œ; lim

jIm�j!C1
jIm�jrkPn k D 0 uniformly on Rw: Or

equivalently, 8r 2 Œ0; 1Œ,

lim
jIm�j!C1

jIm�jr
Z

D

ˇ
ˇ
ˇ
ˇ
ˇ

Z x

�
p
R2�y2

1

v
e� 1

v .�C��

0 � w
2 /.x�x0/lv;n.x � x0/ .x0; y; v/dx0

ˇ
ˇ
ˇ
ˇ
ˇ

� y dx dy dv D 0

uniformly on Rw: Since  2 L1.D; y dx dy dv/; it suffices to show the result
for a measurable simple function  in D. Now, using the change of variables
s D x � x0, it remains to prove that

lim
jIm�j!C1

jIm�jr
Z

D

ˇ
ˇ
ˇ
ˇ

Z 2R

0

1

v
e� 1

v .�C��

0 � w
2 /.s/lv;n.s/

��
Œ0;xC

p
R2�y2�.s/ .x � s; y; v/ds

ˇ
ˇ
ˇ
ˇy dx dy dv D 0:

Now, Lemma 13.3.6 allows us to reach the desired result.

Q.E.D.

In the remaining part of this section, we will give a description of the asymptotic
behavior of the solution to the Cauchy problem (13.3.3). Since B is an infinitesimal
generator of a C0-semigroup .U.t//t�0 acting on L1ŒD; y dx dy dv� and since
K is a bounded linear operator, then by using the classical perturbation theory
(Theorem 2.5.8), the operator A D BCK also generates a C0-semigroup .V .t//t�0
on X . We suppose that the operator H satisfies .Q5/: So, from Proposition 4.2.1,
the asymptotic spectrum P.A/ consists of, at most, discrete eigenvalues with finite
algebraic multiplicities f�1; �2; : : : ; �n; �nC1; : : :g which can be ordered in such
a way that the real part decreases [186], i.e., Re�1 > Re�2 > � � � > Re�n >
Re�nC1 > � � � > �; and f� 2 C such that Re� > �gnf�n; n D 1; 2; 3; : : :g � �.A/:

By applying Theorem 4.2.1, we obtain the description of the asymptotic behavior of
the solution of the transport operator with diffuse reflection boundary conditions.

Theorem 13.3.2. Let us assume that the hypotheses .Q1/–.Q7/ hold true. Then,
for any " > 0, there exists M > 0, such that

�
�
�
�
�
V.t/ �

nX

iD1
e�i t eDi tPi

�
�
�
�
�

� Me."CRe�nC1/t ; 8 t > 0:

}
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13.4 Essential Spectra of Transport Operator Arising
in Growing Cell Populations

In [296] Rotenberg proposed the following partial differential equation

@ 

@t
.�; v; t/ D �v @ 

@�
.�; v; t/ � �.�; v/ .�; v; t/C

Z c

0

r.�; v; v0/ .�; v0; t /dv0

D AK WD SK C B (13.4.1)

in order to describe the growth of cells of a population where SK denotes the
streaming operator and B stands for the collision operator (the integral part of AK).
In this model, the cells are distinguished by their degree of maturity � 2 Œ0; a�,
a > 0, and their maturation velocity v 2 Œ0; c�, c > 0. The degree of maturation
� is then defined so that � D 0 at the birth time and � D a at the death time.
Equation (13.4.1) describes the number density of cell population as a function of
the degree of maturation �, the maturation velocity v and time t . The function
r.:; :; :/ denotes the transition rate at which cells change their maturation velocity
from v to v0.

13.4.1 The Resolvent of the Operator SK

First, let us state precisely the functional setting of the problem. Let Xp the space
defined byXp WD Lp.Œ0; a��Œ0; c�; d�dv/where a > 0, c > 0 and 1 � p < 1. We
denote by X0

p and X1
p the following boundary spaces X0

p WD Lp.f0g � Œ0; c�; vdv/,
andX1

p WD Lp.fag�Œ0; c�; vdv/ endowed with their natural norms. In the sequel,X0
p

and X1
p will often be identified with Lp.Œ0; c�; vdv/. We define the partial Sobolev

space Wp by Wp D
n
 2 Xp such that v @ 

@�
2 Xp

o
: It is well known (see [89] or

[138]) that any  inWp has traces on the spatial boundary f0g and fag which belong
to the spacesX0

p andX1
p , respectively. They are denoted, respectively, by 0 and 1:

Let K be the following boundary operator

(
K W X1

p �! X0
p;

u �! Ku:

We define the free streaming operator SK by

8
ˆ̂
<

ˆ̂
:

SK W D.SK/ � Xp �! Xp

 �! SK .�; v/ D �v @ 
@�
.�; v/ � �.�; v/ .�; v/

D.SK/ D f 2 Wp such that  0 D K 1g;
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where the function �.:; :/ is bounded below and belongs to L1locŒ.0; a/ � .0; c/�.
Now, let us consider the resolvent equation for the operator SK ,

.� � SK/ D '; (13.4.2)

where ' is a given function of Xp , � 2 C and the unknown  must be sought in
D.SK/. Let � be the real defined by � D ess- inff�.�; v/; .�; v/ 2 Œ0; a� � Œ0; c�g:
For Re� > �� , the solution is formally given by

 .�; v/ D  .0; v/ e� 1
v

R �
0 .�C�.�0;v//d�0 C 1

v

Z �

0

e
� 1
v

R �
�0
.�C�.�;v//d�

'.�0; v/ d�0:
(13.4.3)

Accordingly, for � D a, we get

 .a; v/ D  .0; v/ e� 1
v

R a
0 .�C�.�0;v//d�0 C 1

v

Z a

0

e� 1
v

R a
�0 .�C�.�;v//d� '.�0; v/ d�0:

(13.4.4)
In the sequel, we will need the following operators

P� W X0
p �! X1

p; u �! .P�u/.0; v/ WD u.0; v/ e� 1
v

R a
0 .�C�.�0;v//d�0

;

Q� W X0
p �! Xp; u �! .Q�u/.0; v/ WD u.0; v/ e� 1

v

R �
0 .�C�.�0;v//d�0

;
8
<

:

…� W Xp �! X1
p;

' �! .…�'/.�; v/ WD 1

v

Z a

0

e� 1
v

R a
�0 .�C�.�;v//d� '.�0; v/ d�0;

and
8
<

:

„� W Xp �! Xp;

' �! .„�'/.�; v/ WD 1

v

Z �

0

e
� 1
v

R �
�0
.�C�.�;v//d�

'.�0; v/ d�0:

Clearly, for � satisfying Re� > �� , the operators P�,Q�,…�, and„� are bounded.
We can easily check that the norms of P� and Q� satisfy kP�k � e� a

c .Re�C�/

and kQ�k � .p .Re� C �//
� 1
p : Moreover, a simple calculation using the Hölder

inequality shows that k…�k � .Re� C �/
� 1
q and k„�k � .Re� C �/�1 where q

is the conjugate exponent of p, i.e., q D p

p�1 . Using the above operators and the
fact that  must satisfy the boundary conditions, (13.4.4) may be written abstractly
in the form

 1 D P�K 
1 C…�': (13.4.5)
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Similarly, Eq. (13.4.3) becomes

 D Q�K 
1 C„�': (13.4.6)

Throughout this section, we denote by �K the real

�K WD
( �� if r� .K/ � 1;

�� C c

a
log.r� .K// if r� .K/ > 1;

where r� .K/ is the spectral radius ofK. Clearly, the solution of Eq. (13.4.5) reduces
to the invertibility of the operator U.�/ WD I�P�K (which is the case if Re� > �K).
This leads to  1 D fU.�/g�1…�' where fU.�/g�1 D P

n�0.P�K/n: Together
with (13.4.6), this gives  D Q�KfU.�/g�1…�' C„�': Accordingly, for Re� >
�K , the resolvent of the operator SK may be written in the form

.� � SK/�1 D
X

n�0
Q�K.P�K/

n…� C„�: (13.4.7)

13.4.2 Spectral Properties of SK

The purpose of this section is to derive, under reasonable hypotheses about the
transition operatorK, a precise description of the spectrum of the streaming operator
SK . We will also discuss the influence of the transition operators on the leading
eigenvalue (when it exists). To do so, we will first consider the case of smooth
transition operators, i.e., K satisfies the assumption:

.R1/
�
K is a positive operator (in the lattice sense)
and some power of K is compact.

We recall the following result obtained by Vidav [328].

Theorem 13.4.1. Suppose that B.��SK/�1B is a compact operator on Xp for all
� in the open half-plane Re.�/ > �� , and that the intersection of the set �.AK/
with the strip �� < Re.�/ < kBk � � is not empty. Then, there exists a real
eigenvalue �0 of AK with a corresponding nonnegative eigenfunction. The half-
plane Re.�/ > �0 belongs to the resolvent set of AK . If p > 1, the nonnegative
eigenfunction is uniquely determined up to a positive constant factor. }
We define the sets U D f� 2 C such that Re� > ��g and P.SK/ D �.SK/

T
U:

Our first result is the following.
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Theorem 13.4.2. Let p 2 Œ1;C1/ and let us assume that the transition operator
K satisfies the hypothesis .R1/. Then,

.i/ P.SK/ consists of, at most, isolated eigenvalues with a finite algebraic
multiplicity.

.ii/ If P.SK/ 6D ;, then SK has a leading eigenvalue �.a/.
.iii/ P.SK/ 6D ; if, and only if, lim

�!�� r� .P�K/ > 1. Furthermore, if �.a/ exists,

then �� � �.a/ � �� C c
a

log.r� .K//: In particular, if �.�; v/ D � , then
P.SK/ 6D ; if, and only if, r� .K/ > 1 (regardless of a).

.iv/ If r� .K/ � 1, then P.SK/ D ; for all a.
.v/ If r� .K/ > 1, then P.SK/ 6D ;, at least, for a small a and �.a/ ! C1 as

a ! 0:

}
Proof. Let us first notice that if r� .P�K/ < 1 for all � 2 U, then I � P�K is
boundedly invertible. Hence, the solution of (13.4.5) can be written as  1 D .I �
P�K/

�1…�'; 8� 2 U: This shows that U � �.SK/ and, then P.SK/ D ;: Now,
we suppose that r� .P�K/ > 1 for some � 2 U. Clearly, for all � > �� , we have
P� � e� a

c .�C�/I , where I denotes the identity operator on Lp.Œ0; c�; vdv/ [here, we
make the identification X1

p 
 X0
p 
 Lp.Œ0; c�; vdv/]. Consequently,

P�K � e� a
c .�C�/K; 8� � ��: (13.4.8)

Moreover, by using .R1/, there exists N 2 N
� such that .K/N is compact.

Besides, (13.4.8) implies .P�K/N � .K/N 8� � �� . So, by applying the Dodds–
Fremlin comparison theorem for compact operators (see Theorem 2.3.7), we deduce
that .P�K/N is compact for � � �� . Next, using the analyticity of the operator
valued function U 3 � ! .P�K/

N [186, p. 365 ], we infer the compactness of
.P�K/

N for all � in U. Moreover, the inequality .P�K/NC1 � P�KKN implies that
k.P�K/NC1k � kP�K.K/N k: Since P�K ! 0 strongly as � ! C1, the use of
Lemma 2.5.1, together with the compactness of KN , implies that P�K .K/N ! 0

in the operator norm as � ! C1. This shows that k.P�K/NC1k ! 0 as � ! C1
and therefore,

r� ..P�K/
NC1/ ! 0 as � ! 1: (13.4.9)

From (13.4.9), together with Gohberg–Shmul’yan’s theorem (see Theorem 2.5.13),
it follows that .I�.P�K/NC1/�1 is a degenerate-meromorphic operator function on
U, (i.e., .I �.P�K/NC1/�1 is holomorphic on U except for a set S of isolated points
where .I�.P�K/NC1/�1 has poles and the coefficients of the main part have a finite
rank). From I �.P�K/NC1 D .I �P�K/ .ICP�KC� � �C.P�K/N /; we conclude
that .I�P�K/�1 D .ICP�KC� � �C.P�K/N / .I�.P�K/NC1/�1 is a degenerate-
meromorphic on U. So, if � … S , Eq. (13.4.5) becomes  1 D .I � P�K/

�1…�'.
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By inserting  1 into (13.4.6), we get  D .� � SK/
�1' where .� � SK/

�1 D
Q�K.I � P�K/

�1…� C „�. Thus, .� � SK/
�1 is degenerate-meromorphic on U

which completes the proof of .i/.

.ii/ If �0 2 P.SK/, then there exists ' 6D 0 such that P�0K' D '. Thus,
.P�0K/

N' D ' and therefore, j'j � j.Pˇ0K/N'j � .Pˇ0K/
N j'j where

ˇ0 D Re�0. This implies that

r� ..Pˇ0K/
N / � 1: (13.4.10)

Moreover, according to the analyticity arguments (see Theorem 2.3.3),
r� ..PˇK/

N / is a continuous and strictly decreasing function of ˇ in � �
�;C1Œ. Besides, by using the spectral mapping theorem (see Corollary 2.4.1),
there exists ˛.ˇ0/ 2 �.Pˇ0K/, such that .˛.ˇ0//N D r� ..Pˇ0K/

N /; i.e.,
˛.ˇ0/ D N

p
r� ..Pˇ0K/

N /: Hence, ˛.ˇ/ is also a continuous and strictly
decreasing function of ˇ in � � �;C1Œ. Moreover, (13.4.10) [resp. (13.4.9)]
shows that ˛.ˇ0/ � 1 (resp. lim

ˇ!C1˛.ˇ/ D 0). Accordingly, there exists (a

unique) � � ˇ0 such that ˛.�/ D 1, i.e., � D �.a/ which represents the
leading eigenvalue of SK .

.iii/ In order to prove this statement, we restrict ourselves to �.SK/
T
.��;C1/.

Hence, proceeding as in the proof of the second assertion, we deduce that the
leading eigenvalue �.a/ is characterized by

r� .P�.a/K/ D 1: (13.4.11)

Hence, �.a/ exists if, and only if, lim
�!�� r� .M�H/ > 1. If �.a/ exists,

using (13.4.8) and (13.4.11), we get 1 � e
a
c .�.a/��/r� .K/: Then �� � �.a/ �

�� C c
a

log.r� .K//: Now, let us assume that �.�; v/ D � . Then, P�� � I

and consequently, P��K � K, which completes the proof of .iii/.
.iv/ Similarly as in .iii/, we notice that P.��/K � K. Hence, if lim

�!�� r� .K/ � 1,

then lim
�!�� r� .P�K/ � 1. Then, the assertion is an immediate consequence

of .iii/.
.v/ Let � be an arbitrary real satisfying � > �� . Clearly, P� ! I strongly as

a ! 0. Now, using the compactness ofKN , we deduce that lim
a!0

k.P�K/NC1�
.K/NC1k D 0 and consequently, lim

a!0
r� .P�K/ D r� .K/ > 1: This shows

that, for a small enough r� .P�K/ > 1, �.a/ exists and �.a/ > �. Next, using
the fact that � is an arbitrary real in � � �;C1Œ, we infer that �.a/ ! 1
as a ! 0. Q.E.D.
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Let K be the operator defined by

K: WD h:; #i�; (13.4.12)

where � 2 X0
p and # 2 X1

q , and let � be a complex number such that Re� > �� .

The dual of the operator P�K is given by .P�K/� D K� QP�, where

QP� W X1
q �! X0

q ; u �! . QP�u/.0; v/ WD u.a; v/ e� 1
v

R a
0 .�C�.�0;v//d�0

(13.4.13)

and

K� W X0
q �! X1

q ; u �! .K�u/.0; v/ WD h�; ui#; (13.4.14)

where � and # represent the functions appearing in the expression of K. Let �0 be
the real defined by �0 WD �� C c

a
log.r� .K//:

Lemma 13.4.1. LetK be the operator defined in (13.4.12). If � belongs to the strip
�� < Re� � �0, then .K� QP�/ converges to 0, for the strong operator topology, as
jIm�j ! C1. }
Proof. Let ' 2 X1

q . From (13.4.13) and (13.4.14), it follows that

K� QP�' WD h�; P�'i# D
Z c

0

#.v/�.v0/e� 1
v0

R a
0 .�C�.�0;v0//d�0

'.a; v0/v0dv0:

Let .�n/n be a sequence of complex numbers such that �n D � C itn where � 2
� � �; �0� and tn ! C1 as n ! 1. Hence,

j.K� QP�n'/.a; v/j D
ˇ
ˇ
ˇ
ˇ

Z c

0

#.v/�.v0/e� 1
v0

R a
0 .�C�.�0;v0//d�0

e
ai
v0
tn'.a; v0/v0dv0

ˇ
ˇ
ˇ
ˇ :

By applying the Riemann–Lebesgue lemma, we deduce that

lim
n!1

ˇ
ˇ
ˇ
ˇ

Z c

0

#.v/�.v0/e� 1
v0

R a
0 .�C�.�0;v0//d�0

e
ai
v0
tn'.a; v0/v0dv0

ˇ
ˇ
ˇ
ˇ D 0 a.e. on fag � .0; c/:

Accordingly, lim
n!C1 j.K� QP�n'/.a; v/j D 0 a.e. on fag � .0; c/: Furthermore, for

every integer n, we have j.K� QP�n'/.a; v/j � R c
0

j#.v/j j�.v0/j j'.a; v0/jv0dv0 2
X1
q : Then, according to Lebesgue’s the dominated convergence theorem, we have

lim
n!C1 kK� QP�n'kX1q D 0: This proves the lemma. Q.E.D.

Lemma 13.4.2. Let K be the operator defined in (13.4.12). The family
fK�fP� such that � � < Re� � �0g is collectively compact. }
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Proof. Let Bq denote the unit ball of the space X1
q , and let . n/n2N be a sequence

in
S
�.K

� QP�Bq/, � 2 f� 2 C such that � � < Re� � �0g: Then, there exists a
sequence .'n/n2N in Bq such that  n D K� QP�n'n; n D 1; 2; : : : : It is clear that the
sequence .yn D QP�n'n/n2N is bounded in X0

q . So, from the compactness of K�, it

follows that . n D K�yn/n2N has a converging subsequence in
S
�.K

� QP�Bq/. This
completes the proof of lemma. Q.E.D.

Lemma 13.4.3. Let K be the operator defined in (13.4.12). Let � be in the strip
�� < Re� � �0. Then, lim

jIm�j!C1
r� .P� K/ D 0: }

Proof. In view of Lemmas 13.4.1, 13.4.2 and Proposition 2.1.2, we have the
following lim

jIm�j!C1
k.K� QP�/

2k D 0 uniformly on f� 2 C such that � � < Re� �
�0g: Therefore, since r� .K

� QP�/ � k.K� QP�/nk 1
n with n D 1; 2; : : : ; we conclude

that lim
jIm�j!C1

r� .K
� QP�/ D 0 uniformly on f� 2 C such that � � < Re� � �0g:

Next, the use of the equality r� .K� QP�/ D r� .P�K/ proves the lemma. Q.E.D.

Lemma 13.4.4. Let K be an arbitrary compact transition operator. Then, .I �
P�K/

�1 exists for � in the half-plane f� 2 C such that Re� > ��g with a
sufficiently large jIm�j. }
Proof. Notice that, if the transition operator K is compact, then there exists a
sequence of finite rank operators, which converges in the operator norm, to K.
Hence, it is sufficient to establish the result for a finite rank operator, that is,
K D Pn

kD1 Kk , Kk D h:; #ki�k where n 2 N, #k 2 X
q
1 , �k 2 X0

p and where q
denotes the conjugate exponent of p. Thus, we may restrict ourselves to a transition
operator of rank one which we also denote by K, namely, K: WD h:; #i� where
� 2 X0

p and # 2 X1
q . Clearly, if Re� > �0, then kP�Kk < 1 and consequently, the

half plane Re� > �0 is contained in �.SK/. So, we only have to establish the lemma
in the strip f� 2 C such that � � < Re� � �0g: Now, according to Lemma 13.4.3,
there exists M > 0 such that, for any � in the strip �� < Re� � �0 satisfying
jIm�j > M , we have r� .P�K/ < 1. This completes the proof of the lemma.Q.E.D.

Theorem 13.4.3. Let p 2 Œ1;1/ and let us assume that K is a nonnegative
compact transition operator. Then, the following statements hold:

.i/ P.SK/ is bounded and, for every � > 0; �.SK/
Tf� 2 C such that Re� >

�� C �g is finite.
.ii/ Assume that � 2 L1Œ.0; a/� .0; c/�. If r� .K/ > 1, then there exists a positive

constant � such that �.a/ � �k�kL1
C �

a
:

.iii/ Let �.�; v/ D � . If r� .K/ D 1, then �� 2 �p.SK/. }
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Proof.

.i/ As mentioned above, if Re� > �0 then, r� .P�K/ < 1 and therefore,
�.SK/

Tf� 2 C such that Re� > �0g D ;: Next, by using Lemma 13.4.4, we
conclude that there exists M > 0, such that P.SK/ � f� 2 C such that � � <
Re� � �0 and jIm�j � M g: This proves the boundedness ofP.SK/. Moreover,
for any � > 0 such that �� C � < �0; P.SK/

Tf� 2 C such that � � C � <

Re� � �0g is confined in a compact subset of the complex plane and then it is
necessarily finite since it is discrete.

.ii/ Let " 2 .0; c/ and let us define the operator K" by K" W u �! I" Ku,
where I" denotes the operator I" W u �! �.";c/u and �.";c/.:/ stands for the
characteristic function of ."; c/. Obviously, K" � K and kK" � Kk ! 0 as
" ! 0 (by using the compactness of K). Let '" be a positive eigenfunction
of K" associated with the eigenvalue r� .K"/. Let � > �� . It is clear that
P�K'" � P�K"'". Moreover, the fact that '".v/ D 0 if v 2 Œ0; "Œ implies that

P�'" � e
�a
�
�Ck�kL1

"

	

'": Similarly, P�K"'" � e
�a
�
�Ck�kL1

"

	

K"'": Hence,

P�K � e
�a
�
�Ck�kL1

"

	

K" and consequently,

r� .P�K/ � e
�a
�
�Ck�kL1

"

	

r� .K"/: (13.4.15)

Owing to the fact that r� .P�.a/K/ D 1, thus for � D �.a/, (13.4.15) becomes

1 � e
�a
�
�.a/Ck�kL1

"

	

r� .K"/:

Let " be small enough so that r� .K"/ > 1 (note that by using Corollary 2.3.2,
r� .K"/ ! r� .K/ > 1 as " ! 0). Then, �.a/ � �k�kL1

C "
a

log.r� .K"//: This
ends the proof. Q.E.D.

In the following, we denote by �.K/ the leading eigenvalue of the operator SK
(when it exists). Now, we may discuss the monotonicity properties of �.K/. To
do so, we consider two transition operators K1 and K2 satisfying K1 � K2 and
K1 6D K2.

Theorem 13.4.4. Let K1 and K2 be two transition operators satisfying .R1/. If
�.K1/ exists, then �.K2/ exists and �.K1/ � �.K2/. Moreover, if there exists an
integer m such that .P�.K1/K2/

m is strictly positive, then �.K1/ < �.K2/. }
Proof. By hypothesis, there exist two integers n1 and n2, such that .K1/

n1 and
.K2/

n2 are compact. Let n3 D max.n1; n2/. From (13.4.8), together with the Dodds–
Fremlin’s theorem (see Theorem 2.3.7), it follows that .P�K1/

n3 and .P�K2/
n3

are compact for all � belonging to � � �;1Œ. In particular, .P�.K1/K1/
n3 and

.P�.K1/K2/
n3 are positive compact operators on X1

p . As already seen in the proof
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of Theorem 13.4.2, � is an eigenvalue of SK if, and only if, 1 is an eigenvalue of
P�K. So, we conclude that

r� .P�.K1/K1/ � 1: (13.4.16)

Moreover, since K1 � K2 and K1 6D K2, then P�.K1/K1 � P�.K1/K2 and
P�.K1/K1 6D P�.K1/K2. This implies that r� .P�.K1/K1/ � r� .P�.K1/K2/. How-
ever, P�.K1/K2 is irreducible and power-compact, then using (13.4.16) and Theo-
rem 2.3.1, we infer that

r� ŒP�.K1/K2�
n3 > 1: (13.4.17)

Clearly, ŒP�K2�
n3 is an analytic operator-valued function whose values are compact

for all � > �� . Moreover, we have lim
�!1 kŒP�K2�

n3k D 0 (see the proof of

Theorem 13.4.2). Hence, the use of the analyticity arguments (see Theorem 2.3.3)
implies that the function � � �;C1/ 3 � ! r� .ŒP�K2�

n3/ is strictly decreasing.
This, together with (13.4.17), implies that there exists a unique � > �.K1/, such
that r� .ŒP�K2�

n3/ D 1. Now, the spectral mapping theorem yields � D �.K2/ and
the proof is complete. Q.E.D.

Now, let us consider the case of partly smooth transition operators:

.R2/
�
K D K1 CK2 with Ki � 0 i D 1; 2; K2 is either compact
if 1 < p < 1 or weakly compact if p D 1:

Theorem 13.4.5. Let p 2 Œ1; 1/ and suppose that the hypothesis .R2/ is satisfied.
Then, the following assertions hold:

.i/ �.SK/
Tf� 2 C such that Re� > �K1g consists of, at most, isolated

eigenvalues with a finite algebraic multiplicity.
.ii/ If �.SK/

Tf� 2 C such that Re� > �K1g 6D ;, then SK has a leading
eigenvalue �.a/.

.iii/ If lim
�!�K1

r� .P�K2/ > 1, then �.SK/
Tf� 2 C such that Re� > �K1g 6D ;.

}
Proof.

.i/ Let us again consider the problem (13.4.2), which is now equivalent to solving
in X1

p the following one

 1 D P�K1 
1 C P�K2 

1 C…�': (13.4.18)

Clearly, if � > �K1 , then the operator I � P�K1 is boundedly invertible and
(13.4.18) becomes  1 D F� 

1 C L�' where F� WD .I � P�K1/
�1P�K2

and L� WD .I � P�K1/
�1…�. As already mentioned, P� ! 0 strongly as
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� ! 1 for all p in Œ1;1/. For p 2 .1;1/, K2 is compact and therefore,
kP�K2k ! 0 as � ! 1 in the operator topology (use Lemma 2.5.1). Now,
let p D 1, and let �2 > �K1 . From the estimate .I�P�K1/

�1 � .I�P�2K1/
�1

(valid for � > �2), it follows that .F�/3 � .I � P�2K2/
�1P�K2.F�2/

2 for all
� > �2. Since K2 is weakly compact, by applying Lemma 2.1.13, we infer
that .F�2/

2 is compact. Using again Lemma 2.5.1, we get k.F�/3k � k.I �
P�2K1/

�1k kP�K2.F�1/
2k ! 0 as � ! 1: Since r� .F�/ � kF n

� k 1
n ; n D

1; 2; 3; : : :, we have r� .F�/ ! 0 as � ! C1 for all p 2 Œ1;1/. Now, by
applying the Gohberg–Shmul’yan’s theorem (see Theorem 2.5.13), we get the
desired result.

.ii/ This assertion follows from the fact that .� � SK/
�1 is positive for a large �

[see Eq. (13.1.12)].
.iii/ Let � > �K1. The estimate F� � P�K2 implies that r� .F�// � r� .P�K2/.

Hence, if lim
�!�K1

r� .P�K2/ > 1, then lim
�!�K1

r� .F�/ � lim
�!�K1

r� .P�K2/ > 1:

Moreover, since F 3
� is compact on X0

p , 1 � p < 1 [see the proof of (i )]

and satisfies lim
�!1 k.F�/3k ! 0, the use of the analyticity arguments (see

Theorem 2.3.3) and also the spectral mapping theorem shows that r� .F�/ is a
continuous and strictly decreasing function of � satisfying lim

�!C1 r� .F�/ D 0.

Therefore, there exists N� > �K1 such that r� .FN�/ D 1 which is the leading
eigenvalue. Q.E.D.

13.4.3 Generation Results

We are going to start with a well-known generation result in the case of contractive
transition operators (see [138]) which is a simple consequence of Hille–Yosida’s
Theorem.

Theorem 13.4.6. Assume that kKk < 1, then SK generates a C0-semigroup
fUK.t/; t � 0g satisfying kUK.t/k � e��t ; t � 0: }
For kKk � 1, as in [138, p. 478] we will make a suitable change of unknown,
such that the new equivalent problem involves a contractive boundary operator and
is governed by Theorem 13.4.6. For q > 0, we define the boundary multiplication
operator by

(
Mq W X1

p�! X1
p

'�! Mq'.1; v/ WD qa'.1; v/
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and the unbounded operator by

8
ˆ̂
<̂

ˆ̂
:̂

TKq W D.TKq / � Xp�! Xp

 �! TKq .�; v/ WD �v @ 
@�
.�; v/ � .�.�; v/C v log q/ .�; v/

D.TKq / D
n
 2 Wp such that  0 D KMq 

1
o
:

Let

� QMq W Xp�! Xp
'�! QMq'.�; v/ WD q�'.�; v/:

Remark 13.4.1. It is not difficult to verify that for 0 < q < 1; the operator QMq

defines a continuous bijection fromWp into itself. Moreover, some easy calculations
show that k QMqk � 1 and k QM�1

q k � q�a. }
The following lemma shows a relation between the operators TKq and SK .

Lemma 13.4.5. For a fixed 0 < q < 1, QM�1
q .D.SK// D D.TKq / and SK D

QMqTKq
QM�1
q : }

Proof. Let us take ' 2 D.SK/ and  D QM�1
q ', then  2 Wp , hence verifying

�
 0 D .q��'/0 D '0

 1 D .q��'/1 D q�a'1:

Then,  0 D KMq 
1 and  2 D.TKq /: Conversely, we similarly prove that if  2

D.TKq /, QMq 2 D.SK/: So, QM�1
q .D.SK// D D.TKq /: Next, for any ' 2 D.SK/,

we have

QMqTKq
QM�1
q ' D q�TKq .q

��'/

D q�
�

�v @
@�
.q��'/ � .�.�; v/C v log q/q��'

�

D �v @'
@�
.�; v/ � �.�; v/'

D SK': Q.E.D.

According to Lemma 13.4.5 and Remark 13.4.1, the following proposition holds.

Proposition 13.4.1. Let 0 < q < 1, then a C0-semigroup fVK.t/; t � 0g in Xp is
generated by the operator TKq if, and only if, SK is a generator of a C0-semigroup

fUK.t/; t � 0g in Xp given by UK.t/ D QMqVKq .t/
QM�1
q : Furthermore, kUK.t/k �

q�akVK.t/k; t � 0: }
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Proof. Let us assume that TKq generates a C0-semigroup fVK.t/; t � 0g in Xp:
Let  2 D.TKq /. Then, by using Lemma 13.4.5,  D QM�1

q ', where ' 2 D.SK/:
Thus,

TKq D lim
t!0C

t�1ŒVKq .t/ �  �
D lim

t!0C

t�1 QM�1
q

h QMqVKq .t/
QM�1
q ' � '

i
;

which implies, by using Lemma 13.4.5, that SK'D lim
t!0C

t�1
h QMqVKq .t/

QM�1
q ' �'

i
:

Therefore, SK generates the C0-semigroup fUK.t/; t � 0g in Xp . Similarly, we
prove the converse of our assumption, which ends the proof. Q.E.D.

Consequently, and according to the previous results, we deduce that the following
time-dependent problem

8
ˆ̂
<

ˆ̂
:

@'

@t
.�; v; t/ D �v @'

@�
.�; v; t/ � �.�; v/'.�; v; t/ DW SK'.�; v; t/

'0 D K'1

'.�; v; 0/ D '0.�; v/

is equivalent to

8
ˆ̂
<

ˆ̂
:

@ 

@t
.�; v; t/ D �v @ 

@�
.�; v; t/� .�.�; v/C v log q/ .�; v; t/ DW TKq .�; v; t/

 0 D KMq 
1

 .�; v; 0/ D q�� 0.�; v/;

where '.�; v; t/ D q�� .�; v; t/.

Theorem 13.4.7. LetK 2 L.X1
p;X

0
p/ be an arbitrary bounded boundary operator.

Then, the streaming operator SK generates a C0-semigroup fUK.t/; t � 0g
in Xp: }
Proof. According to Theorem 13.4.6, it is sufficient to prove the result for kKk � 1:

This will be done by taking q WD 1
2
kKk� 1

a ; then kKMqk < 1, and the result follows
from Proposition 13.4.1. Q.E.D.
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13.4.4 Compactness Results

Now, let us consider the transport operator AK D SK C B where B is the bounded
operator given by

8
<

:

B W Xp �! Xp

 �!
Z c

0

r.�; v; v0/ .�; v0/dv0; (13.4.19)

where r.:; :; :/ is a measurable function from Œ0; a� � Œ0; c� � Œ0; c� into R
C.

Theorem 13.4.8. Assume that .i/–.iii/ of Lemma 2.4.1 hold true for D WD .0; a/

and V WD .0; c/. Then, for any � 2 C such that Re� > �K , the operator .� �
SK/

�1B is compact on Xp , 1 < p < 1, and weakly compact on X1. }
Remark 13.4.2. Let � be such that Re� > �K: We know from Eq. (13.4.7) that

.� � SK/�1B D
X

n�0
Q�K.P�K/

n…�B C „�B:

In order to prove the compactness (resp. the weak compactness) of .� � SK/
�1B

on Xp (resp. X1), it suffices to show that the operators …�B and „�B are compact
(resp. weakly compact) on Xp (resp. X1). }
Lemma 13.4.6. Assume that .i/–.iii/ of Lemma 2.4.1 hold true forD WD .0; a/ and
V WD .0; c/. Then, the operators …�B and „�B are compact on Xp and weakly
compact on X1. }
Proof. Since .i/–.iii/ of Lemma 2.4.1 are satisfied, then from Lemma 2.4.1, it
follows that B can be approximated, in the uniform topology by a sequence Bn of
finite rank operators on Lp.Œ0; c�; dv/ which converges, in the operator norm, to B .
Then, it suffices to establish the result for a finite rank operator, that is �n.�; v; v0/ DPn

jD1 �j .�/�j .v/ˇj .v0/ where �j .:/ 2 L1.Œ0; a�; d�/, �j .:/ 2 Lp.Œ0; c�; dv/ and
ˇj .:/ 2 Lq.Œ0; c�; dv/ (q denotes the conjugate of p). So, from the linearity and
the stability of the compactness by summation, we infer that it suffices to prove the
result for an operator B whose kernel is in the form �.�; v; v0/ D �.�/ �.v/ˇ.v0/
where �.:/ 2 L1.Œ0; a�; d�/, �.:/ 2 Lp.Œ0; c�; dv/ and ˇ.:/ 2 Lq.Œ0; c�; dv/.
Consider g 2 Xp ,

8
<

:

.…�Bg/.v/ D
Z c

0

Z a

0

1

v
�.�/�.v/ e� 1

v

R 1
�.�C�.�;v//d�ˇ.v0/g.�; v0/ d�dv0

D J� Ug;
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where U and J� denote the following bounded operators

8
<

:

U W Xp �! Lp.Œ0; a�; d�/

' �! .U'/.�/ D
Z c

0

ˇ.v/'.�; v/ dv

and
8
<

:

J� W Lp.Œ0; a�; d�/ �! X1
p

 �!
Z a

0

�.�/ �.v/

v
e� 1

v

R a
� .�C�.�;v//d� .�/ d�:

We first consider the case p 2 .1;1/. Then, it is sufficient to check that J� is
compact. This will follow from Theorem 2.4.3, if we show that

Z c

0

�Z a

0

ˇ
ˇ
ˇ
ˇ
1

v
�.�/ �.v/ e� 1

v

R a
� .�C�.�;v//d�

ˇ
ˇ
ˇ
ˇ

q

d�

� p
q

vdv < C1

(J� is then a Hille–Tamarkin operator). To do so, let us first observe that we have

Z a

0

ˇ
ˇ
ˇ
ˇ
1

v
�.�/ �.v/ e� 1

v

R a
� .�C�.�;v//d�

ˇ
ˇ
ˇ
ˇ

q

d� � k�kq1
j�.v/jq
vq

Z a

0

e�q .Re�C�/
v .a��/d�

� k�kq1
j�.v/jq

q.Re�C �/v.q�1/

which leads to

�Z a

0

ˇ
ˇ
ˇ
ˇ
1

v
�.�/ �.v/ e� 1

v

R a
� .�C�.�;v//d�

ˇ
ˇ
ˇ
ˇ

q

d�

� p
q

� k�kp1
j�.v/jp

.q.Re�C �//
p
q

v
.
p
q �p/

:

Integrating in v from 0 to c, we obtain

Z c

0

�Z a

0

ˇ
ˇ
ˇ
ˇ
1

v
�.�/ �.v/ e� 1

v

R a
� .�C�.�;v//d�

ˇ
ˇ
ˇ
ˇ

q

d�

� p
q

vdv

�
Z c

0

k�kp1
j�.v/jp

.q.Re�C �//
p
q

v
.
p
q �p/vdv

� k�kp1
k�kp

.q.Re�C �//
p
q

:

Now, we consider the case p D 1. Let � be such that Re� > �� C c
a

log.r� .K//.
As above, according to Lemma 2.4.1, it suffices to establish the result for an
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operator B with a kernel of the form �.�; v; v0/ D �.�/�.v/ˇ.v0/; where �.:/ 2
L1.Œ0; a�; d�/, �.:/ 2 L1.Œ0; c�; dv/ and ˇ.:/ 2 L1.Œ0; c�; dv/. The operator
…�B can be written in the form …�B D 	�Rˇ where Rˇ and 	� are two
bounded operators given by Rˇ W X1 �! L1.Œ0; a�; d�/; ' �! .Rˇ'/.�/ WDR c
0
ˇ.v/'.�; v/dv and

8
<

:

ƒ� W L1.Œ0; a�; d�/ �! X1
1 ;

' �! 1

v

Z a

0

�.�0/�.v/e� 1
v

R a
�0 .�C�.�;v//d� '.�0/ d�0:

It is sufficient to prove that ƒ� is weakly compact. For this purpose,
let O be a bounded subset of L1.Œ0; a�; d�/ and let ' 2 O. We haveR
E

j.ƒ�'/.v/jvdv � k�k1k'k R
E

j�.v/jdv; for all measurable subsets of Œ0; c�.
Next, by applying Theorem 2.4.5 we infer that the set ƒ�.O/ is weakly compact,
since limjEj!0

R
E

j�.v/jdv D 0; where jEj is the measure ofE. A similar reasoning
allows us to reach the same results for the operator „�B . This completes the
proof. Q.E.D.

Proof of Theorem 13.4.8. This follows from Lemma 13.4.6 and Remark
13.4.2. Q.E.D.

13.4.5 The Irreducibility of the Semigroup etAk

In this section, we will study the irreducibility of the C0-semigroup etAK generated
by the transport operator AK WD SK C B: In fact, if etAK is irreducible, then the
leading eigenvalue (if it exists) of AK is strictly dominant with multiplicity 1 and
the associated eigenprojection is strictly positive (Dpositivity improving). Thus,
if this eigenvalue is strictly dominant, we obtain a much easier description of the
time-asymptotic behavior (t ! 1) of the solution of the Cauchy problem (13.4.1).
Since SK is a generator of a C0-semigroup, according to the perturbation theory,
AK D SK CB generates a C0-semigroup fUK;B.t/; t � 0g given by Dyson–Phillips
expansion.

Definition 13.4.1. Let Q be a positive operator on Lp.�/: Q is named strictly
positive if Qf > 0 a.e. on � for all f � 0; f ¤ 0: }
We will use the following definition of the irreducibility of a C0-semigroup
fV.t/; t � 0g.

Definition 13.4.2. Let fV.t/; t � 0g be a positive C0-semigroup on Lp and let A
be its infinitesimal generator. V.t/ is irreducible on Lp if, for all � > s.A/ (where
s.A/ denotes the spectral bound of A), the operator .� � A/�1 is strictly positive,
i.e., for all f 2 Xp , f � 0, f ¤ 0; we have: .� � A/�1f is strictly positive a.e. }
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Lemma 13.4.7. If K is positive (in the lattice sense), then the C0-semigroups
fUK;0.t/; t � 0g and fU0;0.t/; t � 0g generated respectively by SK and S0 (SK
with K D 0), satisfy the following inequality UK;0.t/ � U0;0.t/ � 0; .t � 0/: }
Proof. For t D 0; the result is trivial.

We fixed t > 0. Let � > �K . Then, � 2 �.SK/ and the resolvent of SK is
given by

.� � SK/�1 D Q�K.I � P�K/�1…� C„�: (13.4.20)

It is noted that the operator „� is nothing else but the resolvent of the operator S0:
The positivity of the operators Q�;P�;…�;„� and K implies that

.� � SK/�1 � .� � S0/�1 � 0: (13.4.21)

Hence, for each integer n such that n
t
> �K; we have

"
n

t
R
�n

t
; SK

	
#n

 �
"
n

t
R
�n

t
; S0

	
#n

 � 0; . � 0/:

Therefore, lim
n!C1

hn

t
R
�n

t
; SK

	in
 � lim

n!C1

hn

t
R
�n

t
; S0

	in
 � 0; . � 0/:

By using the exponential formula (see Theorem 2.5.11), we deduce that UK;0.t/ �
U0;0.t/ � 0; .t � 0/: Q.E.D.

Lemma 13.4.8. IfK is positive (in the lattice sense) and the operator B is positive,
then UK;B.t/ � U0;B.t/ � 0, (t � 0), and UK;B.t/ � UK;0.t/ � 0, (t � 0). }
Proof. Let � 2 �.SK/ be such that r� Œ.� � SK/�1B� < 1. Then, � 2 �.AK/ and

.� � AK/�1 � .� � SK/�1 D
C1X

nD1


.� � SK/�1B

�n
.� � SK/�1: (13.4.22)

Due to Eq. (13.4.21) and the positivity of B; we have


.� � SK/�1B

�n
.� � SK/�1 � 

.� � S0/�1B
�n
.� � S0/�1 � 0:

Therefore, the equality (13.4.22) leads to .� � AK/
�1 � .� � SK/

�1 � 0 and
.� � AK/

�1 � .� � A0/
�1 � 0, where A0 is the operator AK with K D 0: To

deduce the result, we use a similar reasoning to that of Lemma 13.4.7. Q.E.D.

It is well known that if A and B are two positive linear operators on a lattice Banach
space X satisfying 0 � A � B , then if A is irreducible, B is irreducible, too. So,
as an immediate consequence of Lemma 13.4.8, we have the following.

Theorem 13.4.9. Assume thatK is positive. Then, if fUK;0.t/; t � 0g is irreducible,
fUK;B.t/; t � 0g is irreducible, too. }
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In the following, we give some sufficient conditions in terms of boundary operator
guaranteeing the irreducibility of fUK;B.t/; t � 0g:
Theorem 13.4.10. If the boundary operator K is positive and if the operator
K.I � P�K/

�1 is strictly positive, then the C0-semigroup fUK;B.t/; t � 0g
generated by AK is irreducible on Xp . }
Proof. By using Eq. (13.4.20) and the fact that „� is a positive operator, we have
the following

.� � SK/�1 � Q�K.I � P�K/�1…�: (13.4.23)

Knowing that Q� is a multiplication operator by a strictly positive function and
…� is a strictly positive operator from Xp into X1

p; we infer that, for all f � 0;

f ¤ 0; Q�K.I �P�K/�1…�f > 0 a.e. Consequently, .��SK/�1f > 0; f � 0;

f ¤ 0: Now, the result follows from Definition 13.4.2 and Theorem 13.4.9. Q.E.D.

Corollary 13.4.1. If there exists n0 2 N such that .P�K/n0 is strictly positive, the
C0-semigroup fUK;B.t/; t � 0g generated by AK is irreducible on Xp . }
Proof. Knowing that P� is a multiplication operator by a strictly positive function,
it is easy to verify that K.I � P�K/

�1 is strictly positive if, and only if,
P�K.I �P�K/�1 is strictly positive. Since K is positive and P�K.I �P�K/�1 DPC1

nD1.P�K/n; we have P�K.I � P�K/
�1 � .P�K/

n0 : Now, the result follows
from Eq. (13.4.23) and Theorem 13.4.9. Q.E.D.

13.4.6 Existence of the Leading Eigenvalues of AK

Let us denote by Lp.dv/ the space of functions LpŒ.0; c/; dv�: Notice that Lp.dv/
is a subspace of X0

p and the imbedding Lp.dv/ ,! X0
p is continuous. By B , we

mean the integral operator on Xp whose kernel is given by r.�; v; v0/ D r.�;v;v0/

v :

Theorem 13.4.11. Suppose that the operator B is bounded on Xp and that
K is bounded from X0

p into Lp.dv/ with kKk < 1: Then, �.AK/
Tf� 2

C such that Re� > ��g D ; for a small enough a. }
Proof. Let  2 Xp and put ' D B : Then, we have j„�'.�; v/jp �
a
p
q
R a
0

j'.�;v/jp
vp

d� and so,

Z a

0

Z c

0

j„�'.�; v/jpdvd� � a
.
p
q C1/

Z a

0

Z c

0

j'.�; v/jp
vp

dvd�

D ap
Z a

0

Z c

0

jB .�; v/jpdvd�;
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where q is the conjugate of p: Thus, we can write
hR a
0

R c
0

j„�'.�; v/jpdvd�
i 1
p �

a kBk k k which gives the estimate

k„�Bk � akBk: (13.4.24)

Moreover, the operator …� satisfies the following inequality

j…�'.�; v/j � 1

v

Z a

0

e� 1
v .Re�C�/.a��/ j'.�; v/jd� � 1

v

Z a

0

j'.�; v/jd�:

By using Hölder’s inequality, we obtain

j…�'.�; v/j � a1=q

v

hZ a

0

j'.�; v/jpd�
i1=p� a1=q

hZ a

0

j'.�; v/jp
vp

d�
i1=p

:

Finally, we have the estimate

k…�Bk � a1=qkBk: (13.4.25)

Next, the hypothesis about K, together with the estimate kP�k � e� a
c Re.�C�/, gives

kP�Kk < 1 uniformly on f� 2 C such that Re� � ��g; which implies

k.I � P�K/�1k � 1

1 � kKk ; for Re� � ��: (13.4.26)

Moreover, a simple calculation leads to

kQ�kL.Lp.dv/;Xp/ � a1=p: (13.4.27)

Now, by combining (13.4.24)–(13.4.27) with the hypothesis on K (kKukLp.dv/ �
� kukX0p ; � > 0/; we may write

k.� � SK/�1Bk � a1=p� a1=qkBk
1 � kKk C a kBk

D
�
�C 1 � kKk
1 � kKk

�

kBk a

D f .a/:

Clearly, f is a continuously increasing function on Œ0;1Œ which satisfies f .0/ D 0

and lim
a!1 f .a/ D C1: Hence, there exists a0 > 0, such that f .a0/ < 1: This

completes the proof. Q.E.D.
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In what follows, we turn our attention to the bounded part of the transport operator
AK which we denote by N . We will discuss the relationship between the real
eigenvalues of AK and those of N . For the sake of simplicity, we will deal here
with the homogeneous case, i.e., �.�; v/ D �.v/ and r.�; v; v0/ D r.v; v0/. Hence,
the bounded part of AK is then defined by

8
<

:

N W Lp.Œ0; c�; dv/ �! Lp.Œ0; c�; dv/

' �! .N'/.v/ D ��.v/ '.v/C
Z c

0

r.v; v0/'.v0/dv0:

In the following, we denote by P.AK/ [resp. P.N /� the set

�.AK/
\

f� 2 C such that Re� > �Kg .resp: �.N /
\

f� 2 C such that Re� > �Kg/:

Theorem 13.4.12. Suppose that B is a positive regular operator on Xp , and that
K � Id. Hence, ifP.N / D ;, thenP.AK/ D ; 8 a > 0 and the leading eigenvalue
of AK is less than or equal to that of N . Moreover, the latter is less than or equal to
�� C r� .B/. }
Proof. Since B is regular, then according to Theorem 13.4.8, for all � such that
Re� > �� , .� � SK/

�1B is power-compact on Xp , with 1 � p < C1. By
applying Theorem 13.4.1, we conclude that AK has a leading eigenvalue � with a
corresponding nonnegative eigenfunction  , i.e., AK D � . This equation may
be written as

� v @ 
@�
.�; v/ � .�C �.v// .�; v/C

Z c

0

r.v; v0/ .�; v0/dv0 D 0: (13.4.28)

Set '.v/ D R a
0
 .�; v/d�: It is clear that ' � 0 and ' 6D 0:By integrating (13.4.28)

with respect to�;we get �v Œ .a; v/� .0; v/���.v/'.v/CR c
0
r.v; v0/'.v0/dv0 D

� '.v/: Taking into account the hypotheses and the sign of  , we obtain

� v  .a; v/ �  .0; v/� D �v
h
 
1 �  0

i
D �v.I �K/ 1 � 0 8v 2 Œ0; c�:

(13.4.29)

Now, Eqs. (13.4.28) and (13.4.29) lead to ��.v/ ' C B' � �' and therefore,

Z c

0

r.v; v0/
�C �.v/

' � ': (13.4.30)

Let � 2� � �;C1Œ and let us define the operator B� on Lp.Œ0; c�; dv/ by

8
<

:

B� W Lp.Œ0; c�; dv/ �! Lp.Œ0; c�; dv/

' �! .B�'/.v/ D
Z c

0

r.v; v0/
�C �.v/

'.v0/dv0:
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Since B is a positive regular operator on Xp , then B� is positive and compact
on Lp.Œ0; c�; dv/. From Corollary 2.3.1, it follows that r� .B�/ is an eigenvalue
of B� depending continuously on �: Moreover, using both Eq. (13.4.30) and
Theorem 2.3.2, we conclude that r� .B�/ � 1: Since lim

�!C1 r� .B�/ D 0, then there

exists �0 � � such that r� .B�0/ D 1: Consequently, there exists '0 6D 0 and '0 � 0

in Lp.Œ0; c�; dv/ such that

B�0'0 D '0: (13.4.31)

This leads to N'0 D �0'0 and proves the first part of the theorem. Besides,
(13.4.31) may be written in the form

R c
0
r.v; v0/'0.v0/dv0 D .�0 C �.v// '0.v/ �

.�0C�/'0.v/: Since '0 6D 0 and '0 � 0, and applying Theorem 2.3.2, we conclude
that r� .B/ � � C �0 which ends the proof. Q.E.D.

Corollary 13.4.2. Suppose that the hypotheses of Theorem 13.4.12 hold. If the
operator N is subcritical (i.e., P.N / � f� 2 R such that � < 0g/, then the
transport operator AK is subcritical for all a > 0: }
Remark 13.4.3. Let � be in �.AK/

T
�.A0/ such that r� ..��SK/�1B/ < 1. Then,

.�� SK � B/�1 D P
n�0 Œ.�� SK/�1B�n.�� SK/�1: The positivity of B and the

fact that .� � SK/�1 � .� � S0/�1 � 0 imply that

Œ.� � SK/�1B�n.� � SB/�1 � Œ.� � S0/�1S�n.� � S0/�1 � 0

and therefore,

R.�;AK/ � R.�;A0/ � 0: (13.4.32)

Next, by using (13.4.32) and Proposition 2.1.1, it follows that if P.A0/ 6D ;, then
P.AK/ 6D ;: }

13.4.7 The Strict Monotonicity of the Leading
Eigenvalue of AK

The objective of this section is to study the strict growth properties of the leading
eigenvalue with respect to the parameters of the equation. We start our study by
discussing the incidence of the boundary operators on the monotony of the leading
eigenvalue. For this purpose, we consider two positive boundary operators K1 and
K2 satisfying K1 � K2 and K1 6D K2. We denote by �.K/ the leading eigenvalue
of AK (when it exists).
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Theorem 13.4.13. Suppose that the assumptions .i/–.iii/ of Lemma 2.4.1 are
satisfied for D WD .0; a/ and V WD .0; c/ and �.K1/ exists, then �.K2/ exists
and �.K1/ � �.K2/. Moreover, if one of the following conditions is satisfied

.i/ there exists an integer n � 1, such that Œ.„�.K1//B�
n is strictly positive,

.ii/ there exists an integer n � 1, such that
�
Q�.K1/K2.I�P�.K1/K2/

�1…�.K1/B
	n

is strictly positive,

then, �.K1/ < �.K2/. }
Proof. Since K1 � K2, then �K1 � �K2 . The positivity of the operators K1, K2, B
and the fact thatK1 � K2 imply that, for all � > �K2 , .��SK1/�1B � .��SK2/�1B
and therefore, r� ..� � SK1/

�1B/ � r� ..� � SK2/
�1B/: Moreover, according to

Theorem 13.4.8, .� � SK1/
�1B is power-compact on Xp , 1 � p < C1. So, by

using Gohberg–Shmul’yan’s theorem (see Theorem 2.5.13), and arguing as in the
proof of Theorem 13.4.1, we infer that P.AK1/ consists of, at most, eigenvalues
with a finite algebraic multiplicity. Besides, it is clear that � 2 P.AK1/ if, and only
if, 1 is an eigenvalue of .� � SK1/

�1B . Accordingly, since �.K1/ 2 P.AK1/, we
have

r� Œ.�.K1/ � SK1/�1B� � 1: (13.4.33)

Set �1 D .�.K1/ � SK1/
�1B and �2 D .�.K1/ � SK2/

�1B . According to
Theorem 13.4.8, �2 is power-compact on Xp . Moreover, if one of the above
conditions is satisfied, then �2 has a strictly positive power. Now, the fact that �1 �
�2, (13.4.33) and using Theorem 2.3.1, we get r� .�2/ D r� Œ.�.K1/�SK2/�1B� > 1:
However, the function �s.SK2/;C1Œ3 � ! r� Œ.��SK2/�1B� is strictly decreasing.
Hence, there exists a unique �0 > �.K1/, such that r� Œ.�0 � SK2/

�1B� D 1: This
immediately implies that �0 D �.K2/, which completes the proof. Q.E.D.

We deduce the following corollary which provides a practical criterion of mono-
tonicity of �.K/.

Corollary 13.4.3. Suppose that B satisfies the items .i/–.iii/ of Lemma 2.4.1 for
D WD .0; a/ and V WD .0; c/ and that �.K1/ exists. Then, �.K2/ exists and �.K1/ �
�.K2/. Further, if one of the following conditions is satisfied

.i/ K2 is strictly positive and N.B/
Tf' 2 Xp such that ' � 0g D f0g,

.ii/ there exists an integer n � 1, such that .P�.K1/K2/
n is strictly positive and

N.B/
Tf' 2 Xp such that ' � 0g D f0g,

then, �.K1/ < �.K2/. }
The proof of this corollary is similar to that of Theorem 13.4.13. It uses the fact

that, for � > �� , the operators P� and Q� are two multiplication operators by
strictly positive functions.
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In what follows, we will study the strict monotonicity of the leading eigenvalue
of AK with respect to the collision operators. In fact, let us consider B1 and B2 as
two operators satisfying the following hypothesis

.R3/ B1 � B2 and B1 6D B2:

We denote by �.B/ the leading eigenvalue of AK D SK C B (when it exists).

Proposition 13.4.2. Let us assume that B1 and B2 satisfy .R3/ and that �.B1/
exists. Then, �.K2/ exists and �.B1/ � �.B2/. Further, if one of the following
conditions is satisfied

.i/ there exists an integer n � 1, such that Œ„�.B1/B2�
n is strictly positive,

.ii/ there exists an integer n � 1, such that ŒQ�.B1/K.I � P�.B1/K/
�1…�.B1/B2�

n

is strictly positive,

then, �.B1/ < �.B2/. }
Proof. Since B1 is regular, as in the proof of Theorem 13.4.13, we have P.SK C
B1/ 6D ; and �.B1/ 2 P.SK C B1/. This implies that

r� Œ.�.B1/ � SK/�1B1� � 1: (13.4.34)

Set �1 D .�.B1/ � SK/
�1B1 and �2 D .�.B1/ � SK/

�1B2. Clearly, �1 � �2 and,
according to Theorem 13.4.8, �2 is power-compact on Xp . Moreover, if one of the
above conditions is satisfied, then �2 has a strictly positive power. By using (13.4.34)
and applying Theorem 2.3.1, we conclude that r� .�2/ D r� Œ.�.B1/�SK/�1B2� > 1:
Since the function ��K;C1Œ3 � ! r� Œ.� � SK/

�1B2� is strictly decreasing, there
exists a unique �0 > �.B1/, such that r� Œ.�0 � SK/

�1B2� D 1. This implies that
�0 D �.B2/, which completes the proof. Q.E.D.

As an immediate consequence of Proposition 13.4.2, we have:

Corollary 13.4.4. Let us assume that �.B1/ exists, then �.B2/ exists and �.B1/ �
�.B2/. Moreover, if one of the following conditions is satisfied

.i/ K is strictly positive and N.B2/
Tf' 2 Xp such that ' � 0g D f0g,

.ii/ there exists an integer n � 1, such that .P�.B1/K/
n is strictly positive and

N.B2/
Tf' 2 Xp such that ' � 0g D f0g,

then, �.B1/ < �.B2/. }

13.4.8 Essential Spectra of AK

The aim of this section is to describe in detail the various essential spectra of
the operator AK for large classes of transition and collision operators. From
Eq. (13.4.7), we know that, if Re� > �K , then � 2 �.SK/ and .� � SK/

�1 is
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given by .��SK/�1 D P
n�0 Q�K.P�K/

n…�C„�:Moreover, the operator„� is
nothing else but .��S0/�1, i.e.,K D 0. So, if Re� > �K , then � 2 �.SK/T �.S0/,
and

.� � SK/�1 � .� � S0/�1 D V�; (13.4.35)

where V� WD P
n�0 Q�K.P�K/

n…�: Let � 2 C be such that Re� � ���. The
solution of the eigenvalue problem .� � S0/ D 0 is formally given by  .�; v/ D
k.v/e� 1

v .�C�.v//�: Moreover,  must satisfy the boundary conditions, i.e.,  0 D
0. So, we obtain k.v/ D 0 and consequently,  D 0. This shows that the point
spectrum of the operator S0 is empty, i.e., �p.S0/ D ;: Let S�

0 denote the dual
operator S0. It is given by

8
ˆ̂
<

ˆ̂
:

S�
0 W D.S�

0 / � Xq �! Xq

 �! S�
0  .�; v/ D v

@ 

@�
.�; v/ � �.�; v/ .�; v/

D.S�
0 / D f 2 Wq such that  1 D 0g;

where q is the conjugate of p. Now, let us consider the eigenvalue problem .� �
S�
0 / D 0 with Re� � ��� (because �.S0/ D �.S�

0 /). In view of the boundary
conditions, a straightforward computation shows that the above problem admits only
the trivial solution, i.e., �p.S�

0 / D ;. Now, by using the inclusion �r.S0/ � �p.S
�
0 /,

we conclude that �r.S0/ D ;: This leads to the following lemma.

Lemma 13.4.9. With the above introduced notations, we have

�.S0/ D �c.S0/ D f� 2 C such that Re� � ���g: }
As an immediate consequence of Lemma 13.4.9, and the fact that all essential
spectra constitute some enlargements of the continuous spectrum, we have

�ei.S0/ D f� 2 C such that Re� � ��g for i D 1; : : : ; 6: (13.4.36)

Let us notice that the perturbation of the boundary conditions of the operator S0
leads to the above Eq. (13.4.35). So, if the transition operator K is strictly singular
(in applications, K is compact or weakly compact), and since S.Xp/ is a closed
two-sided ideal of L.Xp/, then V� is strictly singular too. Hence, Lemma 13.4.9,
Theorem 7.5.4, and Eq. (13.4.36) give

�ei.SK/ D f� 2 C such that Re� � ��g; i D 1; 2; 3; 4 and 5: (13.4.37)

Let us recall that the transport operator AK is defined as a bounded perturbation of
SK , i.e., AK D SK CB , where B is the operator defined by (13.4.19). Now, we may
introduce the class G.Xp/ of collision operators which is defined by

G.Xp/ D
n
B 2 L.Xp/ such that .� � SK/�1B 2 S.Xp/ for some � 2 �.SK/

o
:



13.5 Some Applications of the Regularity and Irreducibility on Transport Theory 519

Clearly, if B is a collision operator on Xp satisfying .i/–.iii/ of Lemma 2.4.1
for D WD .0; a/ and V WD .0; c/, then from Theorem 13.4.8, it follows that
.� � SK/

�1B is compact on Xp for 1 < p < 1 (resp. weakly compact on
X1). Hence, by using the inclusion K.Xp/ � S.Xp/ [resp. the fact that the set
of weakly compact operators on X1 coincides with S.X1/ (cf. [277]), we infer that
B 2 G.Xp/: In particular, the set of collision operators with kernels in the form
r.v; v0/ D f .v/ g.v0/ with f 2 Lp.Œ0; c�; dv/ and g 2 Lq.Œ0; c�; dv/, q D p

p�1 ,
is contained in G.Xp/. This shows that G.Xp/ 6D ;. Let � 2 �.SK/ be such that
r� ..� � SK/�1B/ < 1, then � 2 �.SK C B/, and

.� � AK/�1 � .� � SK/�1 D
X

n�1
Œ.� � SK/�1B�n.� � SK/�1: (13.4.38)

Theorem 13.4.14. Let p 2 Œ1;1/. If the collision operator B 2 G.Xp/, then
�ei.AK/ D �ei.SK/, for i D 1; : : : ; 5. Moreover, if K is strictly singular, then
�ei.AK/ D f� 2 C such that Re� � ��g, for i D 1; : : : ; 5: }
Proof. Since B 2 G.Xp/, and according to (13.4.37) and Theorem 13.4.8, we
infer that .� � AH/

�1 � .� � SK/
�1 2 G.Xp/. Then, the first claim follows

from Theorem 7.5.4. In order to establish the second claim, let us notice that
Eqs. (13.4.35) and (13.4.38) give

.� � AK/�1 � .� � S0/�1 D V� C
X

n�1
Œ.� � SK/�1B�n .� � SK/�1:

Next, if K is strictly singular, then V� is strictly singular too. This, together with
Theorem 13.4.8, leads to .� � AK/

�1 � .� � S0/
�1 2 S.Xp/. Again, the use of

Lemma 13.4.9 and Theorem 7.5.4 gives the result. Q.E.D.

13.5 Some Applications of the Regularity and Irreducibility
on Transport Theory

This section deals with the spectral analysis of the following integro-differential
operator:

AH .x; �/ D �� @ 
@x
.x; �/ � �.�/ .x; �/C

Z 1

�1
�.x; �; � 0/ .x; � 0/ d� 0

with the following boundary conditions:

(
 i
1 D H11 

o
1 CH12 

o
2

 i
2 D H21 

o
1 CH22 

o
2 ;
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where x 2 .�a; a/; a > 0; � 2 .�1; 1/,
8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

 i
1 W � 2 .0; 1/ �!  .�a; �/;
 i
2 W � 2 .�1; 0/ �!  .a; �/;

 o
1 W � 2 .�1; 0/ �!  .�a; �/;
 o
2 W � 2 .0; 1/ �!  .a; �/;

(13.5.1)

H11;H12;H21 and H22 are abstract linear operators defined on suitable boundary
spaces. Here  represents the angular density of particles (for instance, gas
molecules, photons, or neutrons) in a homogeneous slab of thickness 2a. The real
function �.:/ in L1.�1; 1/ is called the collision frequency. The function �.:; :; :/
is called the scattering kernel and is defined on .�a; a/ � .�1; 1/ � .�1; 1/. Both
functions are assumed to be measurable. Let us introduce the functional setting of
the problem:

D D .�a; a/ � .�1; 1/; .a > 0/;

Di D Di
1

S
Di
2 D f�ag � .0; 1/Sfag � .�1; 0/;

Do D Do
1

S
Do
2 D f�ag � .�1; 0/Sfag � .0; 1/:

Do and Di represent respectively the outgoing and the incoming boundary of the
phase space D (“o” for outgoing and “i” for incoming). Now let

X D L1.D; dxd�/;

Xi WD L1.D
i ; j�jd�/

WD Xi
1 �Xi

2

endowed with the norm:

k i ;Xik D �k i
1; X

i
1k C k i

2; X
i
2k
�

D
�Z 1

0

j .�a; �/jj�j d� C
Z 0

�1
j .a; �/jj�j d�

�

and

Xo WD L1.D
o; j�jd�/

WD Xo
1 �Xo

2
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endowed with the norm:

k o;Xok D �k o
1 ;X

o
1 k C k o

2 ;X
o
2 k�

D
�Z 0

�1
j .�a; �/jj�j d� C

Z 1

0

j .a; �/jj�j d�
�

:

We define the partial Sobolev space W by W D
n
 2 X such that � @ 

@x
2 X

o
: It is

well known (see [89, 138]) that any  2 W has traces on the spatial boundary
f�ag and fag which belong respectively to the spaces Xo and Xi . They are
denoted respectively, by  o and  i . We are now in position to define the boundary
operator H ,

8
ˆ̂
<

ˆ̂
:

H W Xo
1 �Xo

2 �! Xi
1 �Xi

2

H

�
u1
u2

�

D
�
H11 H12

H21 H22

��
u1
u2

�

with for j; k 2 f1; 2g, Hjk W Xo
k �! Xi

j , Hjk 2 L.Xo
k ; X

i
j /, defined such that,

on natural identification, the boundary conditions can be written as  i D H. o/.
We define now the streaming operator TH with domain including the boundary
conditions:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

TH W D.TH / � X �! X

 �! TH .x; �/ D �� @ 
@x
.x; �/ � �.�/ .x; �/

D.TH / D ˚
 2 W such that  i D H. o/



;

where  o D . o
1 ;  

o
2 /

> and  i D . i
1;  

i
2/

>, with  o
1 ;  

o
2 ;  

i
1 , and  i

2 are given
by (13.5.1). We define the bounded collision operator K by

8
<

:

K W X �! X

' �!
Z 1

�1
�.x; �; � 0/'.x; � 0/ d� 0;

where the kernel �.:; :; :/ is measurable. Such an operator brings compactness with
respect to the velocity � 2 .�1; 1/. To make these compactness properties precise,
M. Mokhtar-Kharroubi introduced the class of regular collision operators in a
general Lp-spaces setting .1 � p < 1/ (see Definition 2.4.1). Roughly speaking, a
bounded operatorK 2 L.Lp.�a; a/�.�1; 1// .1 � p < 1/ is said to be regular if
K is local with respect to x 2 .�a; a/ and compact with respect to � 2 .�1; 1/. In a
L1-space setting, M. Mokhtar-Kharroubi noticed that the compactness assumption
is too restrictive and that a nonnegative collision operator K can be assumed to
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be only dominated by a compact operator. Unfortunately, this class of operators
dominated by a compact operator is not yet optimal. In this section, we deal with
the class of collision operators, introduced and studied by Lods in [236], which are
weakly compact in velocities (see Definition 2.4.3).

13.5.1 Weak Compactness Results

We begin this section by giving the expression of the resolvent .� � TH/�1. To this
end we consider the problem .� � TH/ D �. Set �� Dinff�.�/;�1 � � � 1g, a
straightforward calculation for Re�C �� > 0 gives

 .x; �/ D  .�a; �/ e� .�C�.�//jaCxj

j�j C 1

j�j
Z x

�a
e

� .�C�.�//jx�x0j
j�j �.x0; �/ dx0; 0 < � < 1

(13.5.2)

 .x; �/ D  .a; �/ e
� .�C�.�//ja�xj

j�j C 1

j�j
Z a

x

e
� .�C�.�//jx�x0j

j�j �.x0; �/ dx0; �1 < � < 0;
(13.5.3)

where as  .a; �/ and  .�a; �/ are given by

 .a; �/ D  .�a; �/ e�2a .�C�.�//

j�j C 1

j�j
Z a

�a
e

� .�C�.�//ja�xj

j�j �.x; �/ dx; 0 < � < 1

(13.5.4)

 .�a; �/ D  .a; �/ e
�2a .�C�.�//

j�j C 1

j�j
Z a

�a
e

� .�C�.�//jaCxj

j�j �.x; �/ dx; �1 < � < 0:
(13.5.5)

For the lucidity of analysis, we introduce the following bounded operators:

8
ˆ̂
<

ˆ̂
:

M� W Xi �! Xo;M�u WD .MC
� u;M�

� u/ with

.MC
� u/.�a; �/ WD u.a; �/ e

�2a .�C�.�//

j�j ; �1 < � < 0;
.M�

� u/.a; �/ WD u.�a; �/ e�2a .�C�.�//

j�j ; 0 < � < 1;

8
ˆ̂
<

ˆ̂
:

B� W Xi �! X;B�u WD �.�1;0/.�/BC
� u C �.0;1/.�/B

�
� u with

.B�
� u/.x; �/ WD u.�a; �/ e� .�C�.�//jaCxj

j�j ; 0 < � < 1;

.BC
� u/.x; �/ WD u.a; �/ e

� .�C�.�//ja�xj

j�j ; �1 < � < 0;
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8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

G� W X �! Xo;G�u WD .GC
� �;G

�
� �/ with

G�
� � WD 1

j�j
Z a

�a
e

� .�C�.�//ja�xj

j�j �.x; �/ dx; 0 < � < 1;

GC
� � WD 1

j�j
Z a

�a
e

� .�C�.�//jaCxj

j�j �.x; �/ dx; �1 < � < 0;

and

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

C� W X �! X;C�� WD �.�1;0/.�/CC
� � C �.0;1/.�/C

�
� � with

C�
� � WD 1

j�j
Z x

�a
e

� .�C�.�//jx�x0j
j�j �.x0; �/ dx0; 0 < � < 1;

CC
� � WD 1

j�j
Z a

x

e
� .�C�.�//jx�x0j

j�j �.x0; �/ dx0; �1 < � < 0;

where �.�1;0/.:/ and �.0;1/.:/ denote, respectively, the characteristic functions of
the sets .�1; 0/ and .0; 1/. A simple calculation shows for Re� C �� > 0, the
norms of the operators M�, B�, G� and C� are bounded above, respectively, by

e�2a.Re�C ��/, 1
Re�C��

, 1 and 1
Re�C��

. Let �0 denote the real defined by

�0 WD
8
<

:

��� if kHk � 1

��� C 1

2a
log.kHk/ if kHk > 1.

The use of preceding operators and spaces allows us to write abstractly equa-
tions (13.5.4) and (13.5.5) as an equation in the space Xo,  o D M�H 

o C G��:

For Re� > �0, we have kM�Hk < 1, then  o is given by

 o D
X

n�0
.M�H/

nG��: (13.5.6)

On the other hand, Eqs. (13.5.2) and (13.5.3) can be written as follows  D
B�H 

oCC� :Hence by (13.5.6), we obtain D P
n�0 B�H.M�H/

nG��CC��:
Finally, the resolvent of the operator TH can be expressed by

R.�; TH / WD .� � TH/�1 D
X

n�0
B�H.M�H/

nG� C C�: (13.5.7)

Note that C� is not either .�� T0/�1: The rest of this section is devoted to establish
some results of weak compactness of the operators .��TH/�1K andK.��TH/�1.
For this, we have the following.

Theorem 13.5.1. We assume that the collision operator K is nonnegative, regular
in the sense of Definition 2.4.3 and the boundary operator H is positive, then
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.i/ For any � 2 C satisfying Re� > s.TH /, the operator .� � TH/
�1K is weakly

compact on X .
.ii/ lim

Re�!C1 k.� � TH/�1Kk D lim
Re�!C1 kK.� � TH/�1k D 0:

}
Proof.

.i/ Let � 2 C such that Re� > �0. Using Eq. (13.5.7) We have

k.� � TH/�1k � kB�kkHk kG�k
1 � kM�Hk C kC�k

� 1

Re�C ��

� kHk
1 � kM�kkHk C 1

�

:

Let " > 0, for Re� > �0 C ", we have k.� � TH/�1k � 1
"

� kHk
1�e�2a"kHk C 1

	
; then

k.� � TH/�1Kk � 1

"

� kHk
1 � e�2a"kHk C 1

�

kKk: (13.5.8)

Then, .� � TH/
�1K depends continuously on K, uniformly on fRe� > �0 C "g.

According to Theorem 2.4.4 and Proposition 2.3.1.i/, it suffices to prove the result
when K is dominated by a rank-one operator in L

�
L1..�1; 1/; d�/

�
. Moreover, by

Remark 2.4.3 and Proposition 2.3.1.ii/ we may assume that K itself is a rank-one
collision operator in L

�
L1..�1; 1/; d�/

�
. This asserts thatK have kernel �.�; � 0/ D

�1.�/�2.�
0/, �1.:/ 2 L1.�1; 1/, �2.:/ 2 L1.�1; 1/: To conclude, it suffices to show

that
P

n�0
B�H.M�H/

nG�K and C�K are weakly compact onX . We claim thatG�K

and C�K are weakly compact on X . Consider ' 2 X ,

.G�
� K'/.�/ D 1

j�j
Z a

�a
e

� .�C�.�//ja�xj

j�j K'.x; �/ dx;

D 1

j�j
Z a

�a

Z 1

�1
e

� .�C�.�//ja�xj

j�j �1.�/�2.�
0/'.x; � 0/ dxd� 0; 0 < � < 1;

D J�U�';

where U� and J� denote the following bounded operators

8
<

:

U� W X �! L1..�a; a/; dx/

' �!
Z 1

�1
�2.�/ '.x; �/ d�
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and
8
<

:

J� W L1..�a; a/; dx/ �! Xo
2

 �! 1

j�j
Z a

�a
e

� .�C�.�//ja�xj

j�j �1.�/  .x/ dx:

It is now sufficient to show that J� is weakly compact. To do so let O be a
bounded set of L1..�a; a/; dx/, and let  2 O. We have

R
E

jJ� .�/j j�j d� �
k k R

E
j�1.�/j d�; for all measurable subset E of .0; 1/. Next, apply-

ing Theorem 2.4.5 we infer that the set J�.O/ is weakly compact, since
limjEj!0

R
E

j�1.�/j d� D 0; .�1.:/ 2 L1..�1; 1/; d�// where jEj is the measure of
E. A similar reasoning allows us to reach the same result for the operators GC

� K

and C�K for any � such that Re� > �0. Using the resolvent identity we have the
result for all � such that Re� > s.TH /.

.ii/ Let � such that Re� > �0. From (13.5.8) when we set " D Re���0
2

> 0 we have

Re� > �0C" and so, k.� � TH/�1Kk � 2
Re���0

�
kHk

1�e�2a
Re���0

2 kHk
C 1

�

kKk:
This implies lim

Re�!C1 k.� � TH/�1Kk D 0; and by the same way we get

lim
Re�!C1 kK.� � TH/�1k D 0: Q.E.D.

Theorem 13.5.2. We assume that the collision operator K is nonnegative with

kernel �.:; :; :/ satisfying

�
�.x;:;�0/

j�0j ; .x; � 0/ 2 .�a; a/ � .�1; 1/
�

is relatively weakly

compact onL1..�1; 1/; d�/. Then, for any � 2 C satisfying Re� > �0, the operator
K.� � TH/�1 is weakly compact on X . }
Proof. Let � 2 C such that Re� > �0, We have

K.� � TH/�1 D
X

n�0
KB�H.M�H/

nG� C KC�:

It suffices to show that KB� and KC� are weakly compact on X . Let ' 2 Xi
1

.KB�
� '/.x; �/ D

Z 1

0

�.x; �; � 0/ e� .�C�.�0//ja�xj

j�0j '.�a; � 0/ d� 0;

D
Z 1

0

�.x; �; � 0/
j� 0j e

� .�C�.�0//ja�xj

j�0j '.�a; � 0/
ˇ
ˇ� 0ˇˇ d� 0;

D K 0 QB�';
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where K 0 and QB� denote the following bounded operators

8
<

:

K 0 W X �! X

' �!
Z 1

�1
�.x; �; � 0/

j� 0j '.x; � 0/ d� 0

and

( QB� W Xi
1 �! X

 �! e
� .�C�.�0//ja�xj

j�0j  .�a; � 0/ j� 0j�.0;1/.� 0/:

We claim that K 0 QB� depend continuously on K 0. Let ' 2 Xi
1

k QB�'k1 D
Z a

�a

Z 1

0

ˇ
ˇ
ˇ
ˇ e

� .�C�.�0//ja�xj

j�0j '.�a; � 0/
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ� 0ˇˇ dxd� 0;

� 2a

Z 1

0

ˇ
ˇ'.�a; � 0/

ˇ
ˇ
ˇ
ˇ� 0ˇˇ d� 0;

� 2a k';Xi
1k;

then kK 0 QB�k � 2akK 0k: According to Theorem 2.4.4 and Proposition 2.3.1.i/,
it suffices to prove the result when K 0 is dominated by a rank-one operator in
L
�
L1..�1; 1/; d�/

�
. Moreover, by Remark 2.4.3 and Proposition 2.3.1.ii/ we may

assume that K 0 itself is a rank-one collision operator in L
�
L1..�1; 1/; d�/

�
. This

asserts that K 0 have kernel �0.�; � 0/ D �0
1.�/�

0
2.�

0/, �0
1.:/ 2 L1.�1; 1/, �0

2.:/ 2
L1.�1; 1/: Let O be a bounded set of Xi

1 , and let  2 O. We have

Z

E

jK0 QB� .x; �/j dxd� �
Z

E

ˇ
ˇ
ˇ
ˇ

Z 1

0

�.x; �; � 0/

j� 0j e
�

.�C�.�0//ja�xj

j�0j  .�a; � 0/
ˇ
ˇ� 0

ˇ
ˇ d� 0

ˇ
ˇ
ˇ
ˇ dxd�;

�kk0

2k1 k ;Xi
1k
Z

E

�0

1.�/ dxd�;

for all measurable subset E of D. Next, applying Theorem 2.4.5 we infer that
the set K 0 QB�.O/ is weakly compact, since limjEj!0

R
E

ˇ
ˇ�0
1.�/

ˇ
ˇ dxd� D 0; .�0

1 2
L1..�1; 1/; d�// where jEj is the measure of E. A similar reasoning allows us to
reach the same result for the operators KBC

� and KC�. Q.E.D.

13.5.2 Essential Spectra

It is well known that if H is weakly compact, then �.TH / D f� 2 C such that
Re� � �0g : In fact, we can easily show that �.TH / is reduced to �c.TH /, the
continuous spectrum of TH , that is
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�.TH / D �c.TH / D f� 2 C such that Re� � �0g : (13.5.9)

On the other hand, if � 2 �c.TH / then R.� � TH/ is not closed [otherwise � 2
�.TH /]. So, � 2 �ei .TH /; i D 1; : : : ; 6: This implies that �c.TH / �

6T

iD1
�ei .TH /.

Thus, according to (13.5.9) we have

�ei .TH / D f� 2 C such that Re� � �0g for i D 1; : : : ; 6: (13.5.10)

Theorem 13.5.3. We assume that the collision operator is positive, regular
and H is positive and weakly compact. Then, �ei .AH / D �ei .TH / D
f� 2 C such that Re� � �0g, i D 1; : : : ; 6: }
Proof. By Theorem 13.5.1.ii/ we have lim

Re�!C1 k.� � TH/�1Kk D 0: So, there

is a complex number � 2 �.TH / such that r� ..� � TH/
�1K/ < 1. Now, the

result follows from Eq. (13.5.10), Theorem 13.5.1, Corollary 7.5.2 and Theorem
7.3.1. Q.E.D.

LetM the multiplication operatorM' D �' and letB the bounded part of transport
operator AH defined by

8
<

:

B W L1.�1; 1/ �! L1.�1; 1/
' �! ��.�/'.�/C

Z 1

�1
�.�; � 0/'.� 0/ d� 0:

Theorem 13.5.4. We assume that the collision operator K is positive, regular and
the function � is continuous, then ��� 2 �e5.B/: }
Proof. The use of the Theorem 13.5.2 and Lemma 2.4 in [270] implies that
��� 2 �e5.M/. For Re� > ���, we have .� � M/�1K is weakly com-
pact and lim

Re�!C1 k.� �M/�1Kk D 0: Now the result follows from Corollary

7.5.2. Q.E.D.

13.5.3 Existence Results of Eigenvalues

We denote by Ps.TH /.AH/ (resp. Ps.TH /.B/) the set �.AH/
T f� 2 C such that

Re� > s.TH /g (resp. �.B/
T f� 2 C such that Re� > s.TH /g), where �.AH/

[resp. �.B/] stands for the spectrum of the operator AH (resp. B).

Remark 13.5.1. If the boundary operator H is positive in the lattice sense then for
any � > �0, we have .� � TH/

�1 � 0, so TH has a positive resolvent and by
Lemma 2.3.1, we conclude that s.TH / � �0. }
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In the remainder of this section we denote by K� the operator .� � TH/
�1K for

� 2�s.TH /;C1Œ.

Lemma 13.5.1. Suppose that K is regular and positive. If the boundary operator
H is positive, then the spectral radius r� .K�/ as a function of � 2�s.TH /;C1Œ is
continuous. }
Proof. Let �1 and �2 in �s.TH /;C1Œ, we have K�1 � K�2 D .�1 � �2/.�1 �
TH/

�1K�2 , so

kK�1 �K�2k � j�1 � �2j k.�1 � TH/�1kkK�2k: (13.5.11)

The Eq. (13.5.11) proves that the function �s.TH /;C1Œ3 � �! K� is continuous.
On the other hand for any � 2�s.TH /;C1Œ, K2

� is compact, so K� has a finite or
countable spectrum. Then by a consequence of Newburgh theorem [41, pp. 51–52],
the function � �! r� .K�/ is continuous on �s.TH /;C1Œ. Q.E.D.

Remark 13.5.2. We remark that the continuity of r� .K�/ is proved without restric-
tive conditions on K providing the irreducibility of K�. }
Lemma 13.5.2. Suppose that K is regular and positive, the boundary operator H
is positive andPs.TH /.AH/ ¤ ;. Let �1 D inff� 2�s.TH /;C1Œ such that r� .K�/ D
0g, then:

.i/ s.TH / < �1 � C1:

.ii/ The spectral radius r� .K�/ as a function of � 2�s.TH /; �1Œ is strictly
decreasing and lim

Re�!�1
r� .K�/ D 0.

.iii/ � is an eigenvalue of AH if, and only if, 1 is an eigenvalue of K� and the
corresponding eigenspace is the same.

}
Proof. .i/ For Re� > s.TH /, using the identity

� � AH D .� � TH/.I �K�/ (13.5.12)

we have, � � AH is invertible if, and only if, .I � K�/ is invertible.
Since Ps.TH /.AH / ¤ ;, then there exists �2 such that Re�2 > s.TH / and
r� .K�2/ � 1. The positivity of the operator K means that jR.�2; TH /Kf j �
R.Re�2; TH /K jf j ; for all f in the Banach lattice X (see [271, Remark
1.1] and [237, Proposition 1.6]). Therefore, we obtain kR.�2; TH /Kk �
kR.Re�2; TH /Kk:We deduce that 1 � r� .K�2/ � r� .KRe�2/ and for s.TH / �
� � Re�2, we have r� .K�/ ¤ 0. So, s.TH / < Re�2 � �1.

.ii/ By Lemma 2.3.1.iii/, we have r� .K�/ as a function of � is decreasing. We
suppose that there exists ˛ and ˇ in �s.TH /; �1Œ such that ˛ < ˇ and
r� .K˛/ D r� .Kˇ/ D m, then for all � 2 Œ˛; ˇ�, r� .K�/ D m. From .i/,
m > 0 andm is an eigenvalue ofK� for all � 2 Œ˛; ˇ�. So, there exists  � ¤ 0
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such that K� � D m �. Therefore, .TH C K
m
/ � D � � and then Œ˛; ˇ� �

�.TH C K
m
/
T
�s.TH /; �1Œ. But, by Theorem 2.6.2, �.TH C K

m
/
T
�s.TH /; �1Œ

is a discrete set which is a contradiction. Hence r� .K�/ is a strictly decreasing
function.

.iii/ Let � 2�s.TH /;C1Œ an eigenvalue of AH and  � 2 D.AH / a corresponding
eigenfunction. We have AH � D � � if, and only if, K� � D  �. That is 1
is an eigenvalue of K� with eigenfunction  �. Q.E.D.

Lemma 13.5.3. Suppose that K is regular and positive, the boundary operator H
is positive and Ps.TH /.AH / ¤ ;. The following assertions are equivalent:

.i/ There exists �3 > s.TH / with r� .K�3/ > 1:

.ii/ There exists a unique �4 > s.TH / with r� .K�4/ D 1. In particular �4 D
s.AH/.

.iii/ s.AH/ > s.TH /.

}
Proof. .i/ ) .ii/ By Lemmas 13.5.1 and 13.5.2, there exists a unique �4 > s.TH /
such that r� .K�4/ D 1. The fact that � 2 �.AH/ with Re� > �4 would imply
r� .K�/ � r� .KRe�/ < r�.K�4/ D 1, which together with the Eq. (13.5.12) leads
to a contradiction. Then �4 � s.AH/. On the other hand, since K�4 � 0, then
r� .K�4/ 2 �.K�4/ and so by (13.5.12), we get �4 2 �.AH/. Hence �4 � s.AH/.
.ii/ ) .iii/ This is obvious, since s.AH/ D �4 > s.TH /.
.iii/ ) .i/Suppose that r� .K�/ � 1 for all � > s.TH /, then by

Lemma 13.5.2, we have r� .K�/ < 1 for all � > s.TH /. Hence, R.1;K�/ exists
for � 2�s.TH /;C1Œ. Using the fact that R.1;K�/ exists for all � 2�s.TH /;C1Œ

and the Eq. (13.5.12), it follows that R.�;AH/ exists for all � 2�s.TH /;C1Œ

and R.�;AH/ D R.1;K�/R.�; TH /. Now, we know that R.1;K�/ � 0 and
R.�; TH / � 0 for all � 2�s.TH /;C1Œ, so R.�;AH/ � 0 for all � 2�s.TH /;C1Œ.
Using Lemma 2.3.1.ii/, we deduce that s.AH/ � s.TH / which is the desired
contradiction. Q.E.D.

Lemma 13.5.4. Suppose that K is regular, positive, and the boundary operator H
is positive, then

.i/ Ps.TH /.AH / consists of, at most, isolated eigenvalues with finite algebraic
multiplicities.

.ii/ If Ps.TH /.AH / ¤ ;, then there exists a leading eigenvalue � for the
operator AH .

.iii/ Ps.TH /.B/ consists of, at most, isolated eigenvalues with finite algebraic
multiplicities.

.iv/ If Ps.TH /.B/ ¤ ;, then there exists a leading eigenvalue �1 for the operator B .

}
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Proof.

.i/ Since X is a Dunford–Pettis space, then by Theorem 13.5.1, .K�/
2 is compact

for Re� > s.TH /. Hence, .i/ follows from Theorem 2.6.2.
.ii/ By using Lemma 13.5.1 and Theorem 13.5.1.ii/ , there exists ! > s.TH / such

that, r� .K.� � TH/
�1/ < 1 for all � 2 .!;C1/. So, by Lemma 2.3.2,

we get .!;C1/ � �.AH/ and R.�;AH/ � 0 for all � 2 .!;C1/.
Since Ps.TH /.AH / ¤ ;, .i/ and Lemma 2.3.1.i/ give that s.AH/ exists and
strictly greater then s.TH /. By Proposition 13.5.1, s.AH/ is characterized
by r� .Ks.AH // D 1. Since Ks.AH / is power-compact, 1 is a pole of the
resolventR.�;Ks.AH //. So, using [298, Ex. 7 p. 352],Ks.AH / possess a positive
eigenfunction  � associated with the eigenvalue 1. By Lemma 13.5.2.ii/,  �
is a positive eigenfunction of AH associated with the eigenvalue s.AH/ which
imply that s.AH/ is the leading eigenvalue ofAH . The same arguments provide
the results of .iii/ and .iv/.

Q.E.D.

Theorem 13.5.5. Suppose thatK is homogeneous, regular and irreducible,H11 D
H22 D 0, 0 � Hij � Id; i ¤ j; i; j D 1; 2 and the function � is continuous. If
Ps.TH /.AH / ¤ ;, then Ps.TH /.B/ ¤ ;, (8 a > 0) and � � �1 � ��� C r� .K/,
where � is the leading eigenvalue of AH and �1 is the leading eigenvalue of B . }
Proof. We start the proof by the case when � > ���. Since .��TH/�1K is weakly
compact for Re� > s.TH / (see Theorem 13.5.1) and X is a Dunford–Pettis space,
then Œ.��TH/�1K�2 is compact. Denote, by  an associated positive eigenfunction
to �. Hence AH D � : This equation may be written in the form

� � @ 
@x
.x; �/ � .�C �.�// .x; �/C

Z 1

�1
�.�; � 0/ .x; � 0/ d� 0 D 0: (13.5.13)

Set '.�/ D R a
�a  .x; �/ dx. It is clear that ' � 0 and ' ¤ 0. By integrat-

ing (13.5.13) with respect to x, we get ��Œ .a; �/ �  .�a; �/� � �.�/'.�/ C
R 1

�1 �.�; �
0/'.� 0/ d� 0 D �'.�/: Taking into account the hypotheses and the sign

of  , we get

� �Œ .a; �/ �  .�a; �/� � 0 8� 2 .�1; 1/: (13.5.14)

In fact, if � < 0, then  .a; �/ �  .�a; �/ D  
i

2 �  
o

1 D H21 
o

1 �  
o

1 D .H21 �
I / 

o

1 � 0; and therefore ��Œ .a; �/ �  .�a; �/� � 0: If � > 0, then  .a; �/ �
 .�a; �/ D  

o

2 �H12 
o

2 D .I�H12/ 
o

2 ;which implies ��Œ .a; �/� .�a; �/� �
0: Now, (13.5.13) and (13.5.14) lead to �.�/' CK' � �': Therefore, we get

Z 1

�1
�.�; � 0/
�C �.�/

'.� 0/d� 0 � '.�/: (13.5.15)
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Let � � � and define the operator K� on L1..�1; 1/; d�/ by

8
<

:

QK� W L1..�1; 1/; d�/ �! L1..�1; 1/; d�/
' �! QK�' D

Z 1

�1
�.�; � 0/
�C �.�/

'.� 0/d� 0:

Notice that QK� is a weakly compact operator on L1..�1; 1/; d�/, then we have QK2
�

is compact. This implies with the fact that QK� is irreducible and by the theorem
of Jentzch and Perron (see Theorem 2.3.4), that r� . QK�/ is a pole of the resolvent
.� � QK�/

�1. Then by Theorem 2.3.4, r� . QK�/ > 0, r� . QK�/ is an eigenvalue of
QK� of algebraic multiplicity one and the corresponding eigenspace is spanned by

a strictly positive function. On the other hand, by Lemma 13.5.1, r� . QK�/ is an
eigenvalue of QK�, depending continuously on �. By (13.5.15) we have k. QK�/

nk � 1

for all n 2 N
�. So, r� . QK�/ � 1. On the other hand, lim

�!1 r� . QK�/ D 0. Hence,

there exists �0 � � such that r� . QK�0/ D 1. Consequently, there exists '0 ¤ 0

in L1..�1; 1/; d�/ satisfying QK�0'0 D '0: This leads to B'0 D �0'0. Then
Ps.TH /.B/ ¤ ; and � � �1. If � � ��� then by Theorem 13.5.4, we have
� � �1. To establish the second part of the theorem, we use the fact that for �1
there exists '1 ¤ 0 in L1..�1; 1/; d�/ such that B'1 D �1'1. This equality allows
us to write ��.�/'1.�/ C R 1

�1 �.�; �
0/'1.� 0/ d� 0 D �1'1.�/: Since �1 > ���, we

have .�1 C ��/ j'1.�/j � R 1
�1 �.�; �

0/ j'1.� 0/j d� 0; and therefore �1 C �� � r� .K/.
So, �1 � ��� C r� .K/: Q.E.D.

Proposition 13.5.1. Suppose that K is regular, strictly positive .� > 0/ and the
boundary operator H is positive. Then, for all � 2�s.TH /;C1Œ,

.i/ the operator K� is irreducible,
.ii/ the spectral radius r� .K�/ > 0 and r� .K�/ is an eigenvalue ofK� of algebraic

multiplicity one. }
Proof.

.i/ We start by the case when � > �0. By (13.5.7), we have the following inequality
..� � T0/

�1K/2 � ..� � TH/
�1K/2: By the hypothesis on � (� > 0) we have

..� � T0/
�1K/2 is strictly positive. So, ..� � TH/

�1K/2 is strictly positive on
the L1-space X , then it is an irreducible operator. Therefore, K� is irreducible.
Let � 2�s.TH /; �0� and �0 > �0. By Lemma 2.3.1.iii/, we have 0 � K�0 � K�.
Since K�0 is irreducible, then K� is also irreducible.

.ii/ In our proof, we use some ideas from the paper of DrnovLsek [98]. Since every
closed ideal of the L1-space X is a band, every positive operator on X is � -
order continuous (see [19, Theorem 4.8]). The same argument shows that K�

is band irreducible. The result follows from Theorem 2.3.5. Q.E.D.
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Proposition 13.5.2. We suppose that the assumptions of Proposition 13.5.1 hold
true. Then:

.i/ The spectral radius r� .K�/ is strictly decreasing as a function of � 2
�s.TH /;C1Œ.

.ii/ If Ps.TH /.AH/ ¤ ;, then the eigenspace associated with s.AH/ is spanned by
a quasi-interior point of D.AH/C (i.e.,  > 0 a.e). }

Proof. The item .i/ is a consequence of Lemma 13.5.2.ii/ and Proposition
13.5.1.ii/.

The assertion .ii/ follows from Proposition 3.1 and Theorem 5.2 in
[298]. Q.E.D.

13.5.4 Monotonicity of the Spectral Bound

We are concerned in this section with the monotonicity dependence of the spectral
bound with respect to the parameters of the transport operator. We consider two
boundary operators H1 and H2 such that 0 � H1 � H2 and H1 ¤ H2.

Theorem 13.5.6. We consider two boundary operators H1 and H2 such that 0 �
H1 � H2 and H1 ¤ H2. Suppose that K is regular, strictly positive (� > 0)
and the spectrum of AH1 satisfy �.AH1/

T f� 2 C such that Re� > �0g ¤ ;. Then
s.AH1/ < s.AH2/. }
Proof. Let � > �0. According to the positivity of the operators H1, H2, and K,
the fact that H1 � H2 and the expression of the resolvent Eq. (13.5.7), we have the
following .� � TH1/

�1K � .� � TH2/
�1K: Set �1 WD .s.AH1/ � TH1/

�1K and
�2 WD .s.AH1/ � TH2/

�1K. Since K is regular, it follows from Theorem 13.5.1,
that �2 is weakly compact on X and so �22 is compact. Moreover, since K is strictly
positive, we have by Proposition 13.5.1, �2 is irreducible. Next, Theorem 2.3.6 gives
r� .�2/ > r�.�1/; which implies by Proposition 13.5.1.ii/ that r� .�2/ > 1. On the
other hand, by Theorem 13.5.1 we have lim

�!1 r� ..� � TH2/
�1K/ D 0: Hence, by

Lemmas 13.5.1 and 13.5.2.ii/ there exists a unique �0 > s.AH1/ such that r� ..�0 �
TH2/

�1K/ D 1: By Lemma 2.3.1 it follows that s.AH2/ D �0 > s.AH1/, which
completes the proof. Q.E.D.

Remark 13.5.3. If K is regular, positive, H1 is positive and

�.AH1/
\

f� 2 C such that Re� > �0g ¤ ;

then s.AH1/ > �0. }
In the following, we shall study the strict monotonicity of the spectral bound of
AH with respect to the collision operators. In fact, consider K1 and K2, two regular
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positive collisions operators satisfying K1 � K2 and K1 ¤ K2. We denote by
sK.TH / the spectral bound of AH D TH CK (when it exists).

Theorem 13.5.7. Suppose that sK1.TH / > s.TH /, K2 is strictly positive .�2 > 0/

and the boundary operator H is positive. Then, sK2.TH / exists and sK1.TH / <
sK2.TH /. }
Proof. From the positivity of the operators H , K1, and K2 and the fact that
K1 � K2 we deduce, for any � > s.TH / the inequality .� � TH/

�1K2 �
.� � TH/

�1K1: We have already shown in Proposition 13.5.1.ii/ that the spectral
bound of TH CK1, sK1.TH /, is characterized by r� .sK1.TH /� TH/�1K1/ D 1: Set
�1 WD .sK1.TH / � TH/

�1K1 and �2 WD .sK1.TH / � TH/
�1K2. As in the proof of

Theorem 13.5.6, from the regularity and the strict positivity of K2, we have �2 is
irreducible and positive. Then the Theorem 2.3.6 gives r� .�2/ > r�.�1/ D 1: Since
the function �s.TH /;C1Œ3 � �! r� ..� � TH/

�1K2/ is strictly decreasing, there
exists a unique �0 > sK1.TH / such that r� ..�0 � TH/

�1K2/ D 1. But this equation
characterizes sK2.TH /, so we have �0 D sK2.TH /. This completes the proof of the
theorem. Q.E.D.

13.6 Singular Neutron Transport Operator

This section is concerned with the application of Corollary 7.5.2 with the aim to
study the essential spectra of the following singular neutron transport operator

A .x; v/ D �v:rx .x; v/ � �.v/ .x; v/C
Z

Rn

�.v; v0/ .x; v0/ d�.v0/;

where .x; v/ 2 D � R
n, D represents an open bounded subset of R

n, d�.:/
is a bounded positive Radon measure on R

n and where K denotes the integral
part of A. This operator describes the transport of particles (neutrons, photons,
molecules of gas, etc.) in the domainD. The function .x; v/ represents the number
(or probability) density of gas particles having the position x and the velocity v.
The collision frequency and the scattering kernel are denoted, respectively, by the
functions �.:/ and �.:; :/. First, let us state precisely the functional setting of our
problem:

Xp D Lp.D � R
n; dx d�.v//; p 2 .1;1/;

X�
p D Lp.D � R

n; �.v/dx d�.v//;

L�p.R
n/ D Lp.R

n; �.v/d�.v//; and

Lp.R
n/ D Lp.R

n; d�.v//:

Let Wp be the space defined by Wp D ˚
 2 Xp such that v:rx 2 Xp



:

Then, we introduce the following subspace of Wp by W0
p D ˚

 2 Wpsuch that
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 j	�
D 0



; with 	� is defined by 	� D f.x; v/ 2 @D � R

n such that v:�x < 0g ;
where �x stands for the outer unit normal vector at x 2 @D. Here, the main
characteristic is that the collision frequency �.:/ and the collision operator K
are unbounded. In fact, an unbounded collision frequency �.:/ acts as a strong
absorption which enables the unboundedness ofK. In the following, we will assume
the existence of a closed subset O � R

n with a zero d� measure and a constant
�0 > 0, such that

�.:/ 2 L1
loc.R

nnO/; �.v/ > �0 a:e:; and (13.6.1)

"Z

Rn

 
�.:; v0/

�.v0/
1
p

!q

d�.v0/
# 1
q

2 Lp.Rn/; (13.6.2)

where q represents the conjugate exponent of p.K represents the collision operator,
which is defined as follows K W  �! K .v/ WD R

Rn
�.v; v0/ .x; v0/ d�.v0/ 2

Lp.R
n/; where the scattering kernel �.:; :/ will be assumed to be unbounded. Now,

we are ready to define the streaming operator T by

8
<̂

:̂

T W D.T / � Xp �! Xp
 �! T .x; v/ D �v:rx .x; v/ � �.v/ .x; v/

D.T / D W0
p

\
X�
p :

Remark 13.6.1.

.i/ From the assumption (13.6.2), we deduce that K 2 L.L�p.Rn/; Lp.Rn// and

kKkL.L�p.Rn/;Lp.Rn// �
�
�
�
�
�
�

"Z

Rn

 
�.:; v0/

�.v0/
1
p

!q

d�.v0/
# 1
q

�
�
�
�
�
�
Lp.Rn/

:

Besides, by using the boundedness of D, we infer that K 2 L.X�
p ;Xp/, where

kKkL.X�p ;Xp/ �
�
�
�
�
�
�

"Z

Rn

 
�.:; v0/

�.v0/
1
p

!q

d�.v0/
# 1
q

�
�
�
�
�
�
Lp.Rn/

:

By using the assumption (13.6.1), a simple calculation allows us to show that
X�
p is a subset of Xp and that the embedding X�

p ,! Xp is continuous.
.ii/ Let ' 2 Xp and � 2 C, such that Re� > ��0. We seek  2 D.T / satisfying

.� � T / D ': (13.6.3)
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The formal and intermediate solution of (13.6.3) can be given by

 .x; v/ D  .x � t�.x; v/v; v/e�.�C�.v//t�.x;v/

C
Z t�.x;v/

0

e.��C�.v//'.x � sv; v/ds;

where t�.x; v/ D sup ft > 0; x � sv 2 D; 0 < s < tg. Since  must
belong to D.T /, then we can infer that  .x � t�.x; v/v; v/ D 0 for all
.x; v/ 2 D � R

n. Hence, the final solution of (13.6.3) is given by  .x; v/ D
R t�.x;v/
0

e.��C�.v//'.x � sv; v/ds: An immediate consequence of these facts is
that f� 2 C such that Re� > ��0g � �.T /: Since �.:/ is bounded below by
�0, a reasoning similar to the one in Lemma 13.4.9 (see also [184, Corollary
12.11, p. 272]) shows that �.T / D f� 2 C such that Re� � ��0g: Actually,
by using Lemma 13.4.9 (see [184, Chapter 12]), we can easily check that �.T /
is reduced to �c.T /. Then, we have

�ei.T / D �c.T / D f� 2 C such that Re� � ��0g; i D 1; : : : ; 6: (13.6.4)

}
Lemma 13.6.1 ([262, Theorem 3.2 .ii/]). Let us assume that the measure d�
satisfies

�
the hyperplanes have a zero d� measure; i:e:;
for each e 2 Sn�1; d� fv 2 R

n such that v:e D 0g; (13.6.5)

where Sn�1 represents the unit sphere of Rn, and let M be the averaging operator

' 2 Lp.Rn;Rn/ �!
Z

Rn

'.:; v0/ d�.v0/ 2 Lp.Rn/;

where 1 < p < 1. Then, M W W0
p �! Lp.D/ is compact. }

We start by recalling a lemma which is given in [224].

Lemma 13.6.2. Let D be a bounded subset of R
n and 1 < p < 1: If the

hypotheses (13.6.1), (13.6.2) and (13.6.5) are all satisfied, and if the collision
operator K W L�p.Rn/ �! Lp.R

n/ is compact, then for any � satisfying Re� >
��0; the operator K.� � T /�1 is compact on Xp . }
Proof. SinceK is compact fromL�p.R

n/ intoLp.Rn/, and by using the linearity and
approximation arguments, we may restrict ourselves to the case where the scattering

kernel has the form �.v; v0/ D f .v/g.v0/, and where f .:/ 2 Lp.R
n/, g.:/�

1
q 2

Lq.R
n/ and q represents the conjugate exponent of p. Again, the use of a density

argument enables us to assume that f .:/ 2 Cc.R
n/ (continuous functions with a
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compact support). In these conditions, the operatorK.��T /�1 maps X� into itself,
for all � 2 Œ1;C1�. By applying the interpolation arguments (see Theorem 2.4.2),
we can restrict ourselves to the case where p D 2. Let Ag be the averaging operator
defined by

Ag W ' 2 X�
2 �!

Z

g.v0/'.x; v0/ d�.v0/ 2 L2.D/:

It is sufficient to show that Ag.��T /�1 is a compact operator fromX2 into L2.D/.
This leads to Ag W D.T / D W0

2

T
X�
2 �! L2.D/ is compact. We may notice

that D.T / is equipped with the norm k kD.T / D k kW0
2

C k kX�2 for all  2
D.T /; where k kW0

2
D k kX2 C kv:rx kX2 is a Banach space. If U is a bounded

subset of D.T /, then there exists � > 0, such that k kD.T / � � for every  2
U . This implies, in particular, that U is bounded as a set of W0

2 . Now, by using
Lemma 13.6.1, we deduce that AgU is relatively compact in L2.D/. This shows
the compactness of Ag, which ends the proof. Q.E.D.

Theorem 13.6.1. Let us assume that the hypotheses of Lemma 13.6.2 are satisfied.
Then,

�ei.A/ D f� 2 C such that Re� � ��0g; with i D 1; : : : ; 6:

}
Proof. Let � 2 �.T /. Since the collision operator K is T -defined, and by applying
the closed graph theorem, we deduce that K.� � T /�1 2 L.Xp/. Moreover, the
domain D.T / is continuously embedded in X�

p and, for any � > 0, we have

k.� � T /�1kL.Xp;X�p / �
�
1

�q

� 1
q
�
1

p

� 1
p

:

Since X�
p is continuously embedded in Xp , we deduce that lim

�!1 kK.� �
T /�1kL.Xp/ D 0. Therefore, there exists � 2 �.T /, such that r� .K.� � T /�1/ < 1.
Then, by using Lemma 13.6.2 we infer that K.� � T /�1 2 K.Xp/. The result
follows from both (13.6.4) and Corollary 7.5.2. Q.E.D.

Open question. The result of Theorem 13.6.1 is open in L1.D � R
n; dx d�.v//-

space? �

Open question. Consider the multidimensional neutron transport operators on L1-
spaces (cf., [99, 138, 184, 344]):

A0 .x; v/ D �v:rx .x; v/ � �.x; v/ .x; v/

C
Z

V

�.x; v; v0/ .x; v0/ dv0 D T0 CR ; (13.6.6)
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where .x; v/ 2 D�V (here D and V are open subsets of RN .N � 1/), v:rx .x; v/

is the inner product of v and rx .x; v/, and R is the integral operator with a kernel
�.x; v; v0/. Let 	� denote the set 	� D f.x; v/ 2 @D�V such that v:�x � 0g;where
�x stands for the outer normal unit vector at x 2 @D: The unbounded operator A0 is
studied in the Banach space L1.D � V; dxdv/, and its domain is

D.A0/ D
n
 2 L1.D � V; dxdv/; such that

v:rx .x; v/ 2 L1.D � V; dxdv/;  j	� D 0
o
;

where  j	� denotes the trace of  on 	�: The functions �.:; :/ and �.:; :; :/ are
respectively called the collision frequency and the scattering kernel. This operator
describes the transport of particle neutrons in the domain D: The function  .x; v/
represents the number (or probability) density of gas particles having the position
x, and the velocity v: Let R1 and R2 be two regular collision operators on L1.D �
V; dxdv/ and Re� > �; where � is the type of the C0-semigroup generated by
T0: It was proved in [261] that R1.� � T0/

�1R2 is weakly compact on L1.D �
V; dxdv/. However, if �.x; v/ D �.v/ and if D is convex, then R1.� � T0/�1R2 is
compact on L1.D�V; dxdv/. In both cases, can we determine the essential spectra
of A0? �

13.7 Systems of Ordinary Differential Operators

In this section, we study the case where A, B , and C constitute three ordinary
differential operators in spaces of vector functions and where D represents a multi-
plication operator. Let us consider the operators defined by differential expressions
of the form

.A'/.x/ D a0.x/'
.l/.x/C a1.x/'

.l�1/.x/C � � � C al .x/'.x/

.B /.x/ D b0.x/ 
.s/.x/C b1.x/ 

.s�1/.x/C � � � C bs.x/ .x/

.C'/.x/ D c0.x/'
.h/.x/C c1.x/'

.h�1/.x/C � � � C ch.x/'.x/;

where l > 0, 0 � s, h � l and s C h D l , ' 2 X1 WD .Lp.0; 1//
n, p > 1, n 2 N,

 2 X2 WD .Lp.0; 1//
m, m 2 N, and with suitable domains to be specified below.

Here, ai 0 � i � l represent n�n-matrix functions with sufficiently smooth entries
and det a0.x/ ¤ 0 (whence a�1

0 is also a smooth matrix function). Moreover, bi ,
0 � i � s are n � m-matrix functions, and ci , 0 � i � h are m � n-matrix
functions. Let us notice that both bi and ci have sufficiently smooth entries. Finally,
with anm�m-matrix function d , which is assumed to be measurable and essentially
bounded, we define
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�
D W X2 �! X2

 �! D .x/ D d.x/ .x/;

which is a bounded operator in X2. The domain D.A/ is assumed to be given by
general boundary conditions

U.'/ WD U0

0

B
B
B
B
B
@

'.0/

'0.0/
:

:

'.l�1/.0/

1

C
C
C
C
C
A

C U1

0

B
B
B
B
B
@

'.1/

'0.1/
:

:

'.l�1/.1/

1

C
C
C
C
C
A

D 0; (13.7.1)

with nl � nl matrix U0 and U1. We suppose that these boundary conditions are
normalized and Birkhoff regular (see [268, Chapter I, III]). Hence, the domain of
A can be written as D.A/ D Hl

p;U WD f' 2 .H l
p/
n such that U.'/ D 0g where

.H l
p/
n WD .H l

p.0; 1//
n is a Sobolev space of n-vector functions. Moreover, let

D.C / D Hh
p;U ; (13.7.2)

where Hh
p;U consists of all functions ' 2 .Hh

p .0; 1//
n satisfying all the boundary

conditions in (13.7.1) of order � h � 1.
The definition of D.B/ is more complicated. Our aim is, on the one hand, to

satisfy the condition D.B�/	D.A�/ (see Proposition 10.1.1) and, on the other
hand, D.B/ has to be chosen as large as possible, in order to cover examples
which are interesting for the applications. The inclusion D.B�/	D.A�/ would be

satisfied, e.g., with D.B/ D
n
 2 .Hs

p.0; 1//
m such that  .j /.0/ D  .j /.1/ D 0;

0 � j � s � 1g :However, this definition of B is too restrictive for the applications.
Let us notice that the construction of D.B/ can be described through the following
steps.

.i/ Note that D.A�/ D Hl
q;U� WD f' 2 .H l

q.0; 1//
n such that U �.'/ D 0g;

where q D p

p�1 and the system of boundary conditions U �.'/ D 0 is adjoint
to the system (13.7.1) in the sense of Lagrange identity with respect to the
differential operator A (see [268, Chapter I, III]). Moreover, we suppose that
the boundary conditions U �.'/ D 0 are normalized.

.ii/ Let us define the formally adjoint differential expression B�
f from D.B�

f / WD
.Hs

q .0; 1//
n, a subspace of X�

1 WD .Lq.0; 1//
n, into X�

2 WD .Lq.0; 1//
m, q D

p

p�1 , by the expression

.B�
f v1/.x/ D .�1/s.b�

0 .x/v1.x//
.s/ C .�1/s�1.b�

1 .x/v1.x//
.s�1/

C � � � C b�
s .x/v1.x/:
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.iii/ Let us take all the boundary conditions of order � s � 1 in the system
of boundary conditions U �.v1/ D 0 and let us denote the corresponding
subsystem of linear forms by OU �.v1/. Then, we define the operator B�

U as
the restriction of B�

f to the space

D.B�
U / WD

n
v1 2 .Hs

q .0; 1//
n such that OU �.v1/ D 0

o
.D Hs

q;U�/:

.iv/ By using the Lagrange identity for the operator B�
U , we find the boundary

conditions OU. / D 0 which are adjoint to the conditions OU �.v1/ D 0 with
respect to B�

f . Finally, we define

D.B/ D
n
 2 .Hs

p.0; 1//
m such that OU. / D 0

o
: (13.7.3)

Then, we have the following operators

8
ˆ̂
<̂

ˆ̂
:̂

A W D.A/ � X1 �! X1

' �! A'.x/ D
lX

kD0
ak.x/'

.l�k/.x/

D.A/ D f' 2 .H l
p/
n such that U.'/ D 0g;

(13.7.4)

8
ˆ̂
<̂

ˆ̂
:̂

B W D.B/ � X2 �! X1

 �! B .x/ D
sX

kD0
bk.x/ 

.s�k/.x/

D.B/ D f 2 .Hs
p/
m such that OU. / D 0g;

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

C W D.C / � X1 �! X2

' �! C'.x/ D
hX

kD0
ck.x/'

.h�k/.x/

D.C / D Hh
p;U WD f' 2 .Hh

p /
nsuch that U' D 0g;

and

�
D W X2 �! X2

 �! D .x/ D d.x/ .x/:

For more details, we may refer to [40]. The next proposition (see [40]) contains
the sufficient conditions which will be needed in the sequel.
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Proposition 13.7.1. The operator B with the domain (13.7.3) is closable and the
inclusion

D.B�/ 	 D..A�/ sl / (13.7.5)

holds. }
Proof. The resolvent of the differential operator A has a ray of minimal growth.
Hence, the fractional powers of A and A� are well defined. The results of [107, 108]
imply that

D..A�/ sl / D D.B�
U / D Hs

q;U� : (13.7.6)

The operators B and B�
U are adjoint to each other, i.e., .By2; v1/ D .y2; B

�
U v1/

for y2 2 D.B/, v1 2 D.B�
U /. Besides, both operators are densely defined. Hence,

they are closable. Obviously, B� 	 B�
U and the inclusion (13.7.5) follows from

(13.7.6). Q.E.D.

Proposition 13.7.2. The operator C with the domain given by (13.7.2) is closable,
and

D.C / 	 D.Ah
l /:

}
Proof. First, we note that, as in (13.7.6), we have D.Ah

l / D Hh
p;U . As before,

we construct the formal adjoint C �
f W X�

2 �! X�
1 with the domain D.C �

f / D
.Hh

q .0; 1//
m and then we consider the restriction C �

U of C �
f such that C �

U and C are
adjoint to each other in the sense of Lagrange identity. Since C �

U is densely defined,

then we deduce that C is closable and D.C / 	 D.C / D D.Ah
l /. Q.E.D.

Lemma 13.7.1 ([40]). Let A be a differential operator generated by an expression
as in (13.7.4). Let us denote the Green’s (matrix) function ofA byG.x; �/. Then, the
partial derivatives of the Green’s function with respect to x and � up to the order
l � 1, i.e.,

@iCjG
@xi@�j

.x; �/ .i C j � l � 1/

exist and are continuous on Œ0; 1� � Œ0; 1�n	 , where 	 denotes the diagonal of the
square Œ0; 1� � Œ0; 1�. Moreover, if 0 < x < 1, then the limits

@iCjG
@xi@�j

.x; x ˙ 0/ .i C j � l � 1/ (13.7.7)
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exist and satisfy the following relationships

@iCjG
@xi@�j

.x; x C 0/ � @iCjG
@xi@�j

.x; x � 0/ D
�

0; if i C j � l � 2;
.�1/j a�1

0 .x/; if i C j D l � 1:
(13.7.8)

}
Proof. For more simplicity, we consider the case n D 1, which means that A is
a scalar differential operator. Making the standard substitution z.x/ D ep.x/y.x/,
p.x/ D 1

l

R x
0
a1.�/

a0.�/
d� , we get Ay1 D a0e

�p.:/A0ep.:/y1; where the operator A0

is defined by the expression .A0z/.x/ D
�
d l

dxl
C Qa2.x/dl�2dxl�2

C � � � C Qal .x/
	

z.x/;

and the boundary conditions are QU.z/ D U.e�p.:/z/ D 0: Hence, G.x; �/ D
e�p.x/G0.x; �/ep.�/a�1

0 .�/; where G0.x; �/ represents the Green’s function of
the differential operator A0. Hence, it is sufficient to prove the assertions of
Lemma 13.7.1 for the case a0.x/ D 1 and a1.x/ D 0. Let �1,. . . ,�l be the
fundamental system of the differential equation Ay1 D 0 satisfying the initial
conditions �.i�1/j .0/ D ıij (i; j D 1; 2; : : : ; l). It is known [268, Ch. I, Section 3.8]
that the Green’s function G.x; �/ has the following form

G.x; �/ D .�1/l



H.x; �/; (13.7.9)

where


 D det

0

B
@

U1.�1/ � � � U1.�l /
:::

:::

Ul .�1/ � � � Ul.�l /

1

C
A ;

H.x; �/ D det

0

B
B
B
@

�1.x/ � � � �l .x/ g.x; �/

U1.�1/ � � � U1.�l / U1.g.:; �//
:::

:::
:::

Ul .�1/ � � � Ul.�l / Ul .g.:; �//

1

C
C
C
A
;

and

g.x; �/ D ˙ 1

2W.�/
det

0

B
B
B
@

�1.x/ � � � �l .x/

�
.l�2/
1 .�/ � � � �.l�2/l .�/
:::

:::

�1.�/ � � � �l .�/

1

C
C
C
A
;
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with the sign C if x > � , and the sign � if x < � . Here, the function W.�/ in the
denominator denotes the Wronskian

det

0

B
@

�
.l�1/
1 .�/ � � � �.l�1/l .�/
:::

:::

�1.�/ � � � �l .�/

1

C
A :

Since a1.x/ D 0, the Wronskian is identical to 1. The statements dealing
with the differentiability of the Green’s function follow immediately from the
representation (13.7.9). The existence of the limits (13.7.7) as well as the validity
of the formulas (13.7.8) depend only on the function g.x; �/. The calculation of the
corresponding derivatives of g.x; �/ shows that the limits

@iCj g
@xi@�j

.x; x ˙ 0/ .i C j � l � 1/

exist if 0 < x < 1, and satisfy the relationships

@iCj g
@xi@�j

.x; x C 0/ � @iCj g
@xi@�j

.x; x � 0/ D
�

0; if i C j � l � 2;
.�1/j ; if i C j D l � 1:

Consequently, the limits (13.7.7) exist and satisfy the Eq. (13.7.8) with
a0.x/ D 1. Q.E.D.

Theorem 13.7.1. For the operators A, B , C , and D as defined in this section, and
for � 2 �.A/, the operator D � C.A � �/�1B , which is defined on D.B/, admits
a bounded closure S.�/ D S0 C K.�/; where S0 represents the multiplication
operator, by the function

d � c0a�1
0 b0; (13.7.10)

and where K.�/ is a compact operator in X2. }
Proof. From Propositions 13.7.1, 13.7.2 and Lemma 10.1.1, it follows that the
operator S.�/ is bounded and defined on X2. Let � 2 �.A/. Then, the differential
operator A � � satisfies the assumptions of Lemma 13.7.1. Let G.x; �; �/ be its
Green’s function. Let ' be a C1-function on R, with a compact support in the
interval .0; 1/. Let j 2 N be such that j � l , and let us consider

Œ.A � �/�1'.j /�.x/

D
Z x

0

G.x; �; �/'.j /.�/ d� C
Z 1

x

G.x; �; �/'.j /.�/ d�
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D
j�1X

kD0
.�1/kC1

�
@kG

@�k
.x; x C 0; �/ � @kG

@�k
.x; x � 0; �/

�

'.j�k�1/.x/

C.�1/j
�Z x

0

C
Z 1

x

�
@jG

@�j
.x; �; �/'.�/ d�

which is obtained using an integration by parts, where special attention has to be
paid to the cases x D 0 and x D 1. Let i C j � l . By using Eq. (13.7.8), we deduce
that

Œ.A � �/�1'.j /�.i/.x/ D ıiCj;la�1
0 .x/'.x/C .�1/j

Z 1

0

@iCjG
@xi@�j

.x; �; �/'.�/ d�:

Since the differential operator B can be written in the form

By2 D .b0y2/
.s/ C . Qb1y2/.s�1/ C � � � C Qbsy2

with appropriate functions Qb1,. . . , Qbs , and since the space of C1-functions with a
compact support in .0; 1/ is dense in Lp.0; 1/, then the representation (13.7.10) is
proved. Q.E.D.

Theorem 13.7.2. Let L0 be the operator defined in (10.0.1), and let L denote the
closure of L0. Then, for i D 1; : : : ; 6

�ei.L/ D ˚
� 2 C such that ess � inf

ˇ
ˇdet


d.x/ � c0.x/a�1

0 .x/b0.x/ � �I �ˇˇ D 0


:

(13.7.11)

Moreover, if the complement of this set is connected, then this complement coincides
with the domain of a finite meromorphy of the operator function .L � �I/�1. }
Proof. By using Theorems 10.1.3 and 13.7.1, we infer that �ei.L/ D �ei.S0/, with
i D 1; : : : ; 6 and where S0 represents the multiplication operator by the matrix
function d � c0a

�1
0 b0. Moreover, it is shown in [147] that the spectrum of S0 is

purely continuous and is given by the expression on the right-hand side of (13.7.11).
Now, the result follows from Remark 7.1.1. Q.E.D.

Remark 13.7.1. By virtue of the Frobenius–Schur factorization, we have

det

d.x/ � c0.x/a�1

0 .x/b0.x/ � �I � D .det a0.x//
�1det

�
a0.x/ b0.x/

c0.x/ d.x/ � �I
�

:

}
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13.8 Essential Spectra of Two-Group Transport Operators

Let Xp WD Lp..�a; a/ � .�1; 1/; dxd�/, with a > 0, and 1 � p < 1: Let
us consider the following two-group transport operators with abstract boundary
conditions AH D TH CK; where

TH D

0

B
@

�� @ 1
@x

� �1.�/ 1 0

0 �� @ 2
@x

� �2.�/ 2

1

C
A D

�
TH1 0

0 TH2

��
 1
 2

�

;

and

K D
�
K11 K12

K21 K22

�

with Kij; i; j D 1; 2 as bounded linear operators defined on Xp by

8
<

:

Kij W Xp �! Xp

u �! Kiju.x; �/ D
Z 1

�1
�ij.x; �; �

0/ u.x; � 0/ d� 0;

and where the kernels �ij W .�a; a/ � .�1; 1/ � .�1; 1/ �! R are assumed to be
measurable. Each operator THj ; j D 1; 2 is defined by

8
ˆ̂
<

ˆ̂
:

THj W D.THj / � Xp�! Xp

' �! .THj '/.x; �/ D �� @'
@x
.x; �/ � �j .�/'.x; �/

D.THj / D
n
' 2 Wp such that 'i D Hj'

og;

where Wp is the space defined by Wp D
n
' 2 Xp such that � @'

@x
2 Xp

o
and where

�j .:/ 2 L1.�1; 1/. 'o; 'i represent the outgoing and the incoming fluxes related
by the boundary operator Hj (“o” for the outgoing and “i” for the incoming) and
given by

8
ˆ̂
<

ˆ̂
:

'i .�/ D '.�a; �/ � 2 .0; 1/

'i .�/ D '.a; �/ � 2 .�1; 0/
'o.�/ D '.�a; �/ � 2 .�1; 0/
'o.�/ D '.a; �/ � 2 .0; 1/:

We denote by Xo
p and Xi

p the following boundary spaces

Xo
p WD Lp Œf�ag � .�1; 0/; j�jd�� � Lp Œfag � .0; 1/; j�jd�� WD Xo

1;p �Xo
2;p
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equipped with the norm

kuo; Xo
pk WD

�
kuo1; X

o
1;pkp C kuo2; X

o
2;pkp

	 1
p

D
�Z 0

�1
ju.�a; �/jp j�jd� C

Z 1

0

ju.a; �/jp j�jd�
� 1
p

;

and Xi
p WD Lp Œf�ag � .0; 1/; j�jd�� � Lp Œfag � .�1; 0/; j�jd�� WD Xi

1;p � Xi
2;p

equipped with the norm

kui ; Xi
pk WD

�
kui1; X

i
1;pkp C kui2; X

i
2;pkp

	 1
p

D
�Z 1

0

ju.�a; �/jp j�jd� C
Z 0

�1
ju.a; �/jp j�jd�

� 1
p

:

It is well known that any function u in Wp possesses some traces on the spatial
boundary f�ag � .�1; 0/ and fag � .0; 1/ which respectively belong to the spaces
Xo
p and Xi

p (see, for instance, [89] or [138]). These traces are denoted, respectively,
by uo and ui . It is clear that the operator AH is defined on D.TH1/ � D.TH2/: We
will denote the operator AH by

AH WD
�
A11 A12
A21 A22

�

;

where

8
ˆ̂
<

ˆ̂
:

A11 D TH1 CK11

A12 D K12

A21 D K21

A22 D TH2 CK22:

13.8.1 The Expression of the Resolvent of TH1

We will determine the expression of the resolvent of the operator TH1: Let ' 2
Xp; � 2 C and consider the following resolvent equation for TH1

.� � TH1/ 1 D '; (13.8.1)
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where the unknown  1 must be in D.TH1/: Let ��
j D lim inf

j�j!0
�j .�/, with j D 1; 2

and

�
j
0 WD

8
<

:

���
j if kHj k � 1

���
j C 1

2a
log.kHj k/ if kHj k > 1:

Therefore, for � 2 C such that Re� > ���
1 ; the solution of (13.8.1) is formally

given by

 1.x; �/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

 1.�a; �/e�
.�C�1.�//jaCxj

j�j C 1

j�j
Z x

�a

e
�

.�C�1.�//jx�x0
j

j�j '.x0; �/dx0; if 0 < � < 1

 1.a; �/e
�

.�C�1.�//ja�xj

j�j C 1

j�j
Z a

x

e
�

.�C�1.�//jx�x0
j

j�j
/
'.x0; �/dx0; if � 1 < � < 0:

(13.8.2)
Accordingly,  1.a; �/ and  1.�a; �/ are given by

 1.a; �/ D  1.�a; �/e�2a
.�C�1.�//

j�j C 1

j�j
Z a

�a

e
�

.�C�1.�//ja�xj

j�j '.x; �/dx; if 0 < � < 1

(13.8.3)

 1.�a; �/ D  1.a; �/e
�2a

.�C�1.�//

j�j C 1

j�j
Z a

�a

e
�

.�C�1.�//jaCxj

j�j '.x; �/dx; if � 1 < � < 0:

(13.8.4)

In order to clarify our subsequent analysis, we introduce the following bounded
operators:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

M� W Xi
p �! Xo

p; M�u WD .MC
� u;M�

�u/ with

MC
� u.�a; �/ WD u.�a; �/e�2a .�C�1.�//

j�j ; if 0 < � < 1

M�
� u.a; �/ WD u.a; �/e�2a .�C�1.�//

j�j ; if � 1 < � < 0
8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

B� W Xi
p �! Xp; B�u WD �.�1;0/.�/B�

� u C �.0;1/.�/B�
Cu with

BC
� u.x; �/ WD u.�a; �/e� .�C�1.�//jaCxj

j�j ; if 0 < � < 1

B�
� u.x; �/ WD u.a; �/e� .�C�1.�//ja�xj

j�j ; if � 1 < � < 0



13.8 Essential Spectra of Two-Group Transport Operators 547

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

G� W Xp �! Xo
p; G�' WD .GC

� ';G
�
� '/ with

GC
� '.�a; �/ WD 1

j�j
Z a

�a
e

� .�C�1.�//ja�xj

j�j '.x; �/dx; if 0 < � < 1

G�
� '.a; �/ WD 1

j�j
Z a

�a
e

� .�C�1.�//jaCxj

j�j '.x; �/dx; if � 1 < � < 0

and finally, we consider

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

C� W Xp �! Xp; C�' WD �.�1;0/.�/C�
� ' C �.0;1/.�/C

C
� ' with

CC
� '.x; �/ WD 1

j�j
Z x

�a
e

� .�C�1.�//jx�x0
j

j�j '.x0; �/dx0; if 0 < � < 1

C�
� '.x; �/ WD 1

j�j
Z a

x

e
� .�C�1.�//jx�x0

j

j�j '.x0; �/dx0; if � 1 < � < 0;

where �.�1;0/.:/ and �.0;1/.:/ denote, respectively, the characteristic functions of
the intervals .�1; 0/ and .0; 1/: The operators M�; B�; G�; and C� are bounded
on their respective spaces. Their norms are bounded above, respectively, by
e�2a.Re�C��

1 /; .pRe�C��
1 /

�1=p; .Re�C��
1 /

�1=q and .Re�C��
1 /

�1;where q denotes
the conjugate of p. By using the above defined operators, and by recalling the
fact that  1 must satisfy the boundary conditions, we can write Eqs. (13.8.3) and
(13.8.4) in the operators form  o

1 D M�H1 
o
1 C G�': From the norm estimate of

M�, we deduce that kM�H1k < 1 for Re� > �10: This gives

 o
1 D

X

n�0
.M�H1/

nG�': (13.8.5)

Moreover, Eq. (13.8.2) can be written as

 1 D B�H1 
o
1 C C�': (13.8.6)

Substituting (13.8.5) into (13.8.6), we get  1 D P
n�0 B�H1.M�H1/

nG�' CC�':

Therefore,

.� � TH1/�1 D
X

n�0
B�H1.M�H1/

nG� C C�: (13.8.7)

13.8.2 Compactness Results

Lemma 13.8.1. If �21.x;�;�
0/

j�0j defines a regular operator then, K21.� � TH1/
�1 is

weakly compact on X1: }
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Proof. In view of (13.8.7), the operator K21.� � TH1/�1 is given by

K21.� � TH1/�1 D
X

n�0
K21B�H1.M�H1/

nG� CK21C�:

Then, in order to prove the weak compactness of K21.� � TH1/�1; it is sufficient to
prove the weak compactness of the operators K21B� and K21C�. Let us notice that
C� is nothing else but .��T1/�1; where T1 is the streaming operator for the vacuum
boundary conditions. It suffices to prove that K21B� is weakly compact on X1 (the
same reasoning can be applied for the operator K21C�). Let u 2 Xi

1 . Then, we have

K21B�u.x; �/ D
Z 1

�1
�21.x; �; �

0/B�u.x; � 0/d� 0

D QK21
QB�u.x; �/;

where
8
<

:

QK21 W X1 �! X1

 �! QK21u.x; �/ D
Z 1

�1
�21.x; �; �

0/
j� 0j u.x; � 0/ d� 0;

and QB� D j� 0jB�: Then, it is sufficient to establish the weak compactness of
QK21

QB�. The fact that QK21 is regular and the use of Lemma 2.4.1 allow us to get the
result for an operator whose kernel is �21.x;�;�

0/

j�0j D Pn
jD1 ˛j .x/fj .�/gj .� 0/; where

˛j .:/ 2 L1.�a; a/; fj .:/ 2 L1.�1; 1/ and gj .:/ 2 L1.�1; 1/: Therefore, we

restrict ourselves to �21.x;�;�
0/

j�0j D ˛.x/f .�/g.� 0/; where ˛.:/ 2 L1.�a; a/; f .:/ 2
L1.�1; 1/, and g.:/ 2 L1.�1; 1/; since the weak compactness is stable by
summation. We claim that the operator QK21

QB� satisfies the following estimate

k QK21
QB�k � 2akgk1k˛k1kf k: (13.8.8)

Indeed, let u 2 Xi
1 . Then, we have

QK21
QB�u.x; �/ D ˛.x/f .�/

�Z 1

0

g.� 0/u.�a; � 0/ e� .�C�1.�
0//jaCxj

j�0j j� 0jd� 0

C
Z 0

�1
g.� 0/u.a; � 0/ e� .�C�1.�

0//ja�xj

j�0j j� 0jd� 0
�

:

Therefore,

ˇ
ˇ QK21

QB�u.x; �/
ˇ
ˇ � kgk1k˛k1jf .�/j

�Z 1

0

ju.�a; � 0/je� .Re�C��

1 /jaCxj

j�0j j� 0jd� 0

C
Z 0

�1
ju.a; � 0/je� .Re�C��

1 /ja�xj

j�0j j� 0jd� 0
�

:
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Hence, for Re� > ���
1 ; we have j QK21

QB�u.x; �/j � kgk1k˛k1jf .�/jku; Xi
1k:

Then, the claim is proved. The inequality (13.8.8) shows that the operator QK21
QB�

depends continuously (in the uniform topology) on f .:/: Since the set of bounded
functions, which vanish in the neighborhood of � D 0, is dense inL1.�1; 1/; QK21

QB�
is a limit (in the uniform topology) of integral operators with bounded kernels. The
use of Theorem 2.4.5 allows us to conclude that QK21

QB� is weakly compact on Xi
1 .

Now, the weak compactness of K21.� � TH1/�1 follows immediately. Q.E.D.

Lemma 13.8.2. Let � 2 �.TH1/ be such that r�
�
.� � TH1/�1K11

�
< 1, where r� .:/

is the spectral radius.

.i/ If �21.x;�;�
0/

j�0j defines a regular operator, then the operator F.�/ D K21.� �
A11/

�1 is weakly compact on X1.
.ii/ IfK21 is regular, then the operator F.�/ D K21.��A11/�1 is compact on Xp

for 1 < p < 1.
.iii/ If the operator K12 is regular, then G.�/ D .��A11/�1K12 is compact on Xp

for 1 < p < 1 and is weakly compact on X1. }
Proof. By using a similar reasoning to the proof of Lemma 13.1.1, we can show the
following equality lim

Re�!C1 k.� � TH1/�1k D 0: Then, there exists a � 2 �.TH1/,

such that r�
�
.� � TH1/�1K11

�
< 1: For such a �; the equation .��TH1 �K11/' D

 may be transformed into '�.��TH1/�1K11' D .��TH1/�1 , since � 2 �.TH1/:
The fact that r�

�
.� � TH1/�1K11

�
< 1, implies that

.� � A11/�1 D
X

n�0


.� � TH1/�1K11

�n
.� � TH1/�1: (13.8.9)

.i/ The use of Lemma 13.8.1 implies that, for all n in N, K21


.� � TH1/�1K11

�n

.� � TH1/
�1 is weakly compact on X1. Now, the result follows immediately

from Eq. (13.8.9) and from the fact that W.X1/ is a closed two-sided ideal of
L.X1/.

.ii/ The proof of this assertion follows immediately from both Eq. (13.8.9) and
Theorem 13.4.8.

.iii/ Eq. (13.8.9) leads to G.�/ D P
n�0


.� � TH1/�1K11

�n
.� � TH1/

�1K12:

Therefore, the hypothesis on K12, together with Theorem 13.4.8, imply the
compactness of G.�/ on Xp , for 1 < p < 1, and also its weak compactness
on X1. Q.E.D.
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13.8.3 Essential Spectra

The essential spectra of the operator Tj , with j D 1; 2 (Tj designates the streaming
operator with vacuum boundary conditions, i.e., Hj D 0) were analyzed in detail
in Lemma 13.4.9 and Eq. (13.4.36). In particular, it was shown that �ei.Tj / D f� 2
C such that Re� � ���

j g for i D 1; : : : ; 6: In view of Eq. (13.8.7), and for Re� >

�
j
0 , with j D 1; 2, we have

.� � THj /�1 � .� � Tj /�1 D
X

n�0
B�Hj .M�Hj /

nG�

(C� is nothing else but .� � Tj /
�1). If the operators Hj , with j D 1; 2 are strictly

singular onXp; for 1 � p < 1, then .��THj /�1� .��Tj /�1 are strictly singular,
too. Therefore, the use of Theorem 7.5.4 implies that

�ei.THj / D f� 2 C such that Re� � ���
j g for i D 1; : : : ; 5: (13.8.10)

The fact that Cn�e5.THj /, with j D 1; 2 are connected and that �.THj / ¤ ; imply
that �e5.THj / D �e6.THj /: The previous equality in Eq. (13.8.10) is not optimal.
An example is given in [212]. Indeed, fix p D 2 and suppose that the collision
frequency is constant (�.:/ D � ). Let QH be the following boundary operator:

8
<

:

QH W Xo
1;2 �Xo

2;2 �! Xi
1;2 �Xi

2;2

QH
�

u1
u2

�

D
�
H11 0

H21 0

��
u1
u2

�

;

where

�
H11 W Xo

1;2 �! Xi
1;2

u.�a; �/ �! u.�a;��/

and
(
H21 W Xo

1;2 �! Xi
2;2

H21 2 L.Xo
1;2; X

i
2;2/

withH21 an arbitrary operator. Note that sinceH11 andH21 are not compact QH is not
compact either. Our objective is to show �.T QH/ D f� 2 C such that Re� � ��g. To
this end, we shall use the following classical result (see, for instance, [89, p. 1134]).

Let for 0 < ı < 1
2

and Re�C � D ˇ < 0, uı.x; �/ D e
� 1
� ˇ.x�a/

�.ı2;ı/.�/
1
ı
aCx
a
: It

is clear that uı 2 D.T QH/. Let us now estimate its norm
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kuık2 D
Z a

�a

Z 1

�1
juı.x; �/j2dxd�

D
Z 1

�1

Z a

�a
e

� 2
j�j
ˇ.x�a/

�.ı2;ı/.�/
1

ı2

�
aC x

a

�2
dxd�

>
1

2jˇj
Z ı

ı2

�

ı2
.1 � e� 2aˇ

� /d�

� c1

ı2

Z ı

ı2
�d�

D c1

2
.1 � ı2/

> c2;

where c1 and c2 are independent of ı. Thus

kuık � c > 0: (13.8.11)

Second

.� � T QH/uı.x; �/ D �e
� ˇ
� .x�a/

�.ı2;ı/.�/
1

ı

�
aC x

a

�0
WD S;

kSk D
Z a

�a

Z 1

�1
�2e

�2 ˇ� .x�a/
�

�.ı2;ı/.�/
1

ı

�2 �
aC x

a

�02
dxd�

D 1

a2

Z 1

�1
�3
�

�.ı2;ı/.�/
1

ı

�2
1

2jˇj
�h
e

�2 ˇ� .x�a/ia
�a

�

d�

D 1

2a2ı2jˇj
Z ı

ı2
�3
�
1 � e 4a� ˇ

	
d�

� 1

8a2ı2jˇj .ı
4 � ı6/

D ı2 � ı4
8a2jˇj ! 0 as ı ! 0:

This proves that

k.� � T QH/uık ! 0 as ı ! 0: (13.8.12)

Using Eqs. (13.8.11) and (13.8.12), we have � belongs to �.T QH/ (see [89, p. 1134]).
Now, by using the fact that the spectrum is a closed set, we get f� 2 C such that
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Re� � ��g � �.T QH/: On the other hand, for all � 2 C satisfying Re� > �� , the
resolvent equation .��T QH/ D ' (' is a given function in X2 and  is unknown),
has a unique solution. Therefore, we obtain �.T QH/ D f� 2 C such that Re� � ��g:
Let us consider the eigenvalue problem

.� � T QH/ D 0; .Re� � ��/: (13.8.13)

The solution of Eq. (13.8.13) is formally given by  .x; �/ D k.�/e
� 1
� .�C�/x

:

Moreover,  must satisfy the boundary conditions which imply that Eq. (13.8.13)
has only the trivial solution. So, we conclude that the point spectrum of T QH is empty,
�p.T QH/ D ;. Next we shall show that the residual spectrum of T QH is empty. Indeed,
the dual operator of T QH is given by

8
ˆ̂
<

ˆ̂
:

T �
QH W D.T �

QH/ � X2 �! X2

 �! T �
QH .x; �/ D �

@ 

@x
.x; �/ � � .x; �/

D.T �
QH/ D f 2 W2 such that QH� i D  og;

where QH� is given by

8
ˆ̂
<

ˆ̂
:

QH� W Xi
1;2 �Xi

2;2 �! Xo
1;2 �Xo

2;2

QH�
�

u1
u2

�

D
�
H�
11 H

�
21

0 0

��
u1
u2

�

;

and where H�
11 and H�

21 are, respectively, the dual operators of H11 and H21.
A similar reasoning as above shows that �p.T �

QH/ D ;. Therefore, the residual
spectrum of T QH is empty, �r.T QH/ D ;.

Proposition 13.8.1. With the notation above, we have

�e5.T QH/ D �c.T QH/ D f� 2 C such that Re� � ��g:
}

Now, we are ready to express the essential spectra of two-group transport operators
with general boundary conditions.

Theorem 13.8.1. If the operators Hj 2 S.Xp/, with j D 1; 2 and the operators

K11, K22, and K12 are regular, and if, in addition, �21.x; �; � 0/ (resp. �21.x;�;�
0/

j�0j )
defines a regular operator on Xp , for 1 < p < 1 (resp. on X1), then

�ei.AH / D f� 2 C such that Re� � � min.��
1 ; �

�
2 /g ; for i D 1; : : : ; 6:

}
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Proof. Let � 2 �.TH1/, such that r�
�
.� � TH1/�1K11

�
< 1, then � 2

�.A11/
T
�.TH1/. From Eq. (13.8.9), we have

.� � A11/�1 � .� � TH1/�1 D
X

n�1


.� � TH1/�1K11

�n
.� � TH1/�1: (13.8.14)

Since K11 is regular, then from Theorem 13.4.8, it follows that the operator .� �
A11/

�1 � .��TH1/�1 is compact on Xp; for 1 < p < 1, and also weakly compact
on X1. The use of Eq. (13.8.14) leads to

�ei.A11/ D �ei.TH1/ D f� 2 C such that Re� � ���
1 g ; with i D 1; : : : ; 6:

(13.8.15)

Let � 2 �.A11/: The operator S.�/ is given by S.�/ D A22 � K21G.�/: By
using Lemma 13.8.2, we deduce that the operator K21G.�/ is compact on Xp; for
1 < p < 1, and also weakly compact on X1. Then, from Theorem 7.5.4, it follows
that �ei.S.�// D �ei.A22/, with i D 1; : : : ; 6: By using a similar reasoning to the
previous one, we have

�ei.S.�// D �ei.A22/ D f� 2 C such that Re� � ���
2 g ; with i D 1; : : : ; 6:

(13.8.16)

By applying Theorem 10.2.2, and by using Eqs. (13.8.15) and (13.8.16), we get

�ei.AH / D f� 2 C such that Re� � � min.��
1 ; �

�
2 /g ; for i D 1; : : : ; 6:

Q.E.D.

13.9 Elliptic Problems with �-Dependent
Boundary Conditions

For more details concerning the following elliptic problems with �-dependent
boundary conditions, the reader may refer to [50].

13.9.1 The Problem

Let � be an open bounded domain in R
n with a closure � and a boundary @� of

class C1, see [234, Section 1.7]. We refer the reader to [234, Section 2.1] for the
following notions related to the theory of elliptic operators. Let us assume that the
operator

A.x; @/ WD �
nX

j;kD1
ajk.x/@j @k C

nX

jD1
aj .x/@j C a0.x/
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with ajk 2 C.�/, a0, aj 2 L1.�/, j; k D 1; : : : ; n is properly elliptic in �. This
means that, for any x 2 � and any linearly independent vectors � , � 2 R

n, the
equation

A0.x; � C t�/ D 0 (13.9.1)

has exactly one root t with a positive imaginary part. Here,

A0.x; �/ WD
nX

j;kD1
ajk.x/�j �k (13.9.2)

is the main symbol of the operator A.x; @/. The trace operator of the restriction
of smooth functions in � to the boundary @� is denoted by � . Let Bj DPn

kD1 �bjk.x/@kC�bj0.x/, j D 0; 1, be two boundary operators with bjk 2 C1.@�/

and bj0 2 C2.@�/, such that B1 is normal on @� and covers A D A.x; @/. That
is, the problem fA;B1g is supposed to be regular elliptic in �. Let m.x; y/ be a
bounded measurable function of x 2 � and y 2 @�. We introduce an operator
B , acting from L2.@�/ into L2.�/, via .Bg/.x/ WD R

@�
m.x; y/g.y/dy; x 2 �:

Finally, let D be a properly elliptic operator on @� of second order with smooth
coefficients. This means that, in the local coordinate system fy1; y2; : : : ; yn�1g of
the point y 2 @�, the operator D is represented by

D.y/ WD �
n�1X

j;kD1
djk.y/@j @k C

n�1X

jD1
dj .y/@j C d0.y/;

where @j WD @
@yj

and djk 2 C.@�/, d0, dj 2 L1.@�/, j; k D 1; : : : ; n�1, and that
a root condition which is analogous to (13.9.1) holds for D. A typical example of
such a D is �
@�, which represents the negative Laplace–Beltrami’s operator on
@�. Now, let us consider the following boundary value of the spectral problem:

Au C B�u D �u in � (13.9.3)

B0u CD�u D �B1u on @�: (13.9.4)

The corresponding dynamic problem describes the motion of a Markovian particle
which moves in �, according to a diffusion law, and possibly jumps at random
times from x 2 � into a set 	0 � @� (if

R
	0
m.x; y/dy > 0). After reaching

the boundary (either by jump or diffusion), the particle can be reflected into � and
can be absorbed in @�, or also can move in @�, this behavior on the boundary is
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governed by the terms in the boundary condition see [315]. We can easily notice
that this problem (13.9.3) and (13.9.4) can be represented in the form A0u D �u for
the operator

A0 WD
�
A B

C D

�

in the Hilbert’s space H WD L2.�/˚ L2.@�/

with C D B0, and that

D.A0/ WD
��

u
g

�

; such that u 2 H2.�/; g 2 H2.@�/ and B1u D g

�

:

The operator A0 takes the form of the previous sections with the following
identification for the spaces and operators involved: X D L2.�/, Y D L2.@�/,
Z D H�3=2.@�/, A, B , and D as above stated, with D.A/ D H2.�/ and
D.D/ D H2.@�/, C D B0, 	X D B1, and 	Y being the natural embedding of
L2.@�/ into H�3=2.@�/.

13.9.2 Verification of the Assumptions .J 1/–.J 8/

of Chap. 10, Sect. 10.3

From the general theory of elliptic operators, we deduce that the operator A with a
domain H2.�/ is closable in X D L2.�/, and that its closure A has a domain

D.A/ WD fu 2 X; such that Au 2 Xg;
where, as usual, the same notation A is used for the operator in the distributional
sense, see [140]. For any u 2 D.A/, 	Xu exists as an element of Z D H�3=2.@�/,
and the mapping 	X W D.A/ �! Z is bounded, see [140]. Obviously, the same
is true for the operator C . As a result, C is closable as a mapping from D.A/ into
Y D L2.@�/. These arguments have been used in order to establish the properties
.J1/, .J 2/, and .J 3/ in Chap. 10, Sect. 10.3. SinceD is a uniformly elliptic operator
on a compact manifold without boundary, then D is closed and also has a discrete
spectrum. Hence, the property .J 6/ of Chap. 10 Sect. 10.3 is satisfied (see [320,
Section 5.1] for the case where D is the Laplacian on @�). Then, the general case
follows from the standard techniques. Moreover, the properties .J 7/ and .J 8/ are
trivially satisfied here, as 	Y is the embedding of Y into Z noted above, and B
is a bounded operator. It remains to verify .J 4/ and .J 5/. The first condition is a
consequence of the following proposition.

Proposition 13.9.1 ([15, Theorem 2.1]). Under the assumptions of Sect. 13.9.1,
the operator A1 in L2.�/, defined on the domain D.A1/ WD fu 2 H2.�/; such that
B1u D 0g by A1u WD Au, is closed and also has a discrete spectrum. }
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Now, let us assume that � belongs to the resolvent set of A1. It is known (see, e.g.,
[234, Section 2.7.3]) that, for any g 2 H1=2.@�/, the problem Au��u D 0, 	Xu D
g has a unique solution u which belongs to H2.�/. In particular, the operator K�,
mapping g 2 H1=2.@�/ to this solution u 2 H2.�/, is well defined. Therefore, we
can identify the subspaceZ1 ofZ withH1=2.@�/. In order to verify .J 5/, we show
that K� extends to a bounded mapping K� from Z into X . In fact, an even stronger
result holds.

Proposition 13.9.2 ([234, Section 2.7.3]). With the assumptions of Sect. 13.9.1, let
� 2 �.A1/ and l � 0. Then, for any g 2 Hl�3=2.@�/, the problem Aw � �w D 0;

B1w D g has a unique solution w. Moreover, w belongs toHl.�/ and the operator
K� W Hl�3=2.@�/ �! Hl.�/; defined by K�g D w, is bounded. }
For l D 0, the above proposition leads to the desired boundedness of K�. By
choosing l D 3=2, and recalling that the embedding of H3=2.�/ into X D L2.�/

is compact, we reach the following corollary.

Corollary 13.9.1. K� is compact as an operator from Y D L2.@�/ into X D
L2.�/. }
The above properties of K� imply that, for any y 2 Y , we have K�	Y y D K�y 2
H3=2.�/. In particular, we are allowed to write K� instead of K�	Y .

13.9.3 The Closure of the Operator A0

In order to describe the closure A of the operator A0, let us start with the following
lemma.

Lemma 13.9.1. For any � 2 �.A1/, the operator CK� is bounded in L2.@�/. }
Proof. Since, by hypothesis, B1 is normal on @�, then the vector field

b1.x/ D .b11.x/ : : : b1n.x//

is never tangential on @�. Hence, there exist a continuous function �.x/ as well as
a vector field bt D .b1 : : : bn/ which is tangential to @� for x 2 @�, such that

.b01.x/ : : : b0n.x// D �.x/b1.x/C bt .x/:

Now, we have Cu D �.x/	Xu C Btu C b0.x/�u; where Bt D Pn
kD1 �bk.x/@k;

b0.x/ D b00.x/ � �.x/b10.x/. Since bt is tangential to @�, then the operator Bt
acts continuously from H1.@�/ into L2.@�/. Moreover, �K� is continuous from
L2.@�/ into H1.@�/ and hence, BtK� D Bt�K� W L2.@�/ �! L2.@�/ is
continuous. Finally, we have

CK� D �B1K� C BtK� C b0�K� D �I C BtK� C b0�K�: (13.9.5)

Q.E.D.
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Corollary 13.9.2. The operatorDCCK��C�B with a domain D.D/ D H2.@�/

is closed in Y and hence, coincides with M�. }
As a result, the operator A0 is closable. Now, we are ready to give an explicit
description of its closure A.

Theorem 13.9.1. The operator A0 is closable in H and its closure A acts
according to

A
�
x CK�y � .A1 � �/�1By

y

�

D
�

Ax C �K�y � �.A1 � �/�1By
Cx CM�y

�

on the domain

D.A/ D
��

x CK�y � .A1 � �/�1By
y

�

; such that x 2 D.A1/ and y 2 D.D/
�

:

}

13.9.4 Spectrum of the Operator A

In this subsection, we will use the results of Chap. 10 Sect. 10.3 in order to study
the spectrum of the operator A. Recall that the operator A1 has a discrete spectrum
according to Proposition 13.9.1. If we fix �0 2 �.A1/, then the resolvent .A1��0/�1
maps X into H2.�/ boundedly, and C maps H2.�/ into L2.@�/ compactly.
Hence, C is A1-compact. Theorem 10.3.2 implies that the essential spectra of A
coincides with the essential spectra of M�0 . Moreover, D has a discrete spectrum
(see Sect. 13.9.2) andM�0 D DCCK�0 �C�B represents a bounded perturbation
of D. Hence, the essential spectra of M�0 is empty, and we have proved the
following proposition

Proposition 13.9.3. Under the assumptions of Sect. 13.9.1, the operator A has a
discrete spectrum. }
Under additional assumptions related to the operators A and D, more can be said
about the distribution of the eigenvalues of A. For example, let us assume that, for
the main symbol A0.x; �/ of A given by (13.9.2), there exists � 2 Œ0; 2/, such that

argA0.x; �/ ¤ � (13.9.6)

for all x 2 � and all vectors � 2 R
nnf0g. Therefore, the problem fA � �;B1g is

elliptic with a parameter � D rei� , r > 0 (see [15], [16, Chapter I]). Besides, A1
has the following property.
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Proposition 13.9.4 ([15, Theorem 2.1]). If (13.9.6) holds, then R� WD
frei� such that r > 0g is a ray of minimal growth of the resolvent of A1, i.e.,
there exist positive numbers r� and c� such that, for all r > r� , � D rei� 2 �.A1/,
and k.A1 � rei� /�1kL2.�/ � c�

r
: }

Lemma 13.9.2. If (13.9.6) holds, then CK� is uniformly bounded on the setR0� WD
f� D rei� such that r � r�g, with r� as in Proposition 13.9.4. }
Proof. First, let us notice that, by definition, R0� belongs to the resolvent set of
A1, so that K� is well defined for � 2 R0� . In view of relation (13.9.5) (recall
the proof of Lemma 13.9.1), it is sufficient to prove that the mapping K� W
L2.@�/ �! H3=2.�/ is uniformly bounded in � 2 R0� . So, let us assume that
g 2 Hl�3=2.@�/ for some l � 3=2 and let u D K�g for � 2 R0� . Then, u
solves the problem Au � �u D 0; B1u D g; and [16, Theorem 4.1] implies that
there exists a constant C > 0 such that the inequality kukHl .�/ C j�jlkukL2.�/ �
C
�kgkHl�3=2.@�/ C j�jl�3=2kgkL2.@�/

�
holds, for all g 2 Hl�3=2.@�/ and all � 2

R0� . Choosing l D 3=2 allows us to reach the desired conclusion. Q.E.D.

Now, let us suppose that, with the same value of � 2 Œ0; 2/ as in (13.9.6), we have

argD0.y; �/ ¤ �; (13.9.7)

for all y 2 @� and all nonzero � in the tangent space T@�.y/ to @� at the point y.
Therefore, the ray R� is also a ray of minimal growth for the resolvent set ofD, and
a suitable combination of the above results leads to the following theorem.

Theorem 13.9.2. In addition to the assumptions at the beginning of Sect. 13.9.1, let
us assume that the conditions (13.9.6) and (13.9.7) are both satisfied for the same
� 2 Œ0; 2/. Then, all sufficiently large � 2 R� belong to the resolvent set of the
operator A. }
Proof. In view of the Frobenius–Schur’s factorization, it is sufficient to show that
the operator M� � � is boundedly invertible, for all sufficiently large � 2 R0� . We
find thatM��� D .D��/.I C .D��/�1ŒCK��C�B�/: Since the ray R� is also
a ray of minimal growth for the resolvent set of D, and since the operators CK�

and C�B are bounded in Y uniformly in � 2 R0� , according to Lemma 13.9.2 and
Inequality (10.3.18), the operator I C .D � �/�1ŒCK� � C�B� is then boundedly
invertible for all sufficiently large � 2 �.D/

T
R0� and hence, the same reasoning

holds for M� � �. Q.E.D.

13.9.5 Semigroup Generation

Now, let us suppose that both A and D generate holomorphic operator semigroups
in X and Y , respectively. A sufficient (and in fact necessary) condition for this is
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that the main symbols A0.x; �/ and D0.y; �/ of A and D are sectorial, i.e., there
exists a �0 2 .0; =2/ such that jargA0.x; �/j < �0, jargD0.y; �/j � �0 for all
x 2 �, y 2 @�, and all nonzero � 2 R

n and � 2 T@�.y/, see [238, Theorem 3.1.3].
In fact, under this condition, any ray R� with j� j �  � �0 constitutes a ray of
minimal growth for the resolvents of A1 and D and hence, A1 and D generate
holomorphic operator semigroups in X and Y , respectively. Then, M�, � 2 �.A1/,
is also a generator of a holomorphic semigroup in Y . Applying Theorem 10.3.5 and
Proposition 10.3.1 allows us to reach the following theorem.

Theorem 13.9.3. In addition to the assumptions at the beginning of Sect. 13.9.1, let
us assume that A1 and D generate holomorphic operator semigroups in X and Y ,
respectively. Then, A is the generator of a holomorphic semigroup in H. }
This result is also deduced from the observation that, under the assumptions of
Theorem 13.9.2, all R� with j� j <  � �0 actually constitute some rays of minimal
growth for the resolvent of A.

13.10 Delay Differential Equations

Partial differential equations with delay have been studied using several methods. In
an abstract way, and using the standard notation (see [178]), they can be written as:

8
<

:

u
0

.t/ D Cut C Du.t/; t � 0

u0 D x;

u.0/ D y;

where

• y 2 Y , Y being a Banach space,
• D W D.D/ � Y �! Y is a linear, closed, and densely defined operator which

generates a strongly continuous semigroup,
• x 2 Lp.Œ�1; 0�; Y / WD X; p � 1,
• C W W 1;p.Œ�1; 0�; Y / �! Y is a linear and bounded operator,
• u W Œ�1;1/ �! Y and ut W Œ�1; 0� �! Y is defined by ut .�/ WD u.t C �/.

It is well known that this problem is equivalent to an abstract Cauchy problem in
H WD X � Y with the vector function

v.t/ WD
�

ut
u.t/

�

8
<

:

v0.t/ D Av.t/; t � 0;

v.0/ D
�
x

y

�

;
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where

A WD
0

@
d

ds
0

C D

1

A

is defined on the domain

D.A/ WD
��

x

y

�

; such that x 2 W 1;p.Œ�1; 0�; Y /; y 2 D.D/ and x.0/ D y

�

:

Now, it is easy to check that this operator is of the matrix form of Chap. 10,
Sect. 10.3 with Z WDZ1 WDY; 	Y WD I; 	Xx WD x.0/ with D.	X/ WDW 1;p

.Œ�1; 0�; Y /�X;AD d

ds
with D.A/DW 1;p.Œ�1; 0�; Y / and B D 0: The operator

A1 D d

ds
with the domain D.A1/ given as follows D.A1/ D ˚

x 2 W 1;p.Œ�1; 0�; Y /;
such that x.0/ D 0g ; is the generator of the left shift semigroup

.T .t/y/.s/ WD
�
y.t C s/; t C s < 0;

0; t C s � 0;

which is nilpotent. For � 2 C, we get N.A � �/ D ˚
e�y such that y 2 Y 
 : In the

applications, the operator C often has such a representation

Cx WD
Z 0

�1
d�.s/x.s/; (13.10.1)

where �.:/ 2 BV.Œ�1; 0�;L.Y // is a given function. Then, K�y D e�:y, and
CK�y D R 0

�1 e
�sd�.s/y. Now, and under these assumptions, we can verify the

conditions .J1/–.J 8/ of Chap. 10, Sect. 10.3. Since A is closed and D.A/ D
D.	X/, the assumptions .J1/ and .J 2/ are satisfied. Assumption .J 3/ follows
directly from the fact that A1 generates a strongly continuous semigroup. Since C
is of the form (13.10.1), .J 4/ follows and .J 5/ is a consequence of K�y D e�:y.
Assumption .J 6/ was made earlier, and .J 7/ and .J 8/ follow trivially. Moreover,
in this case, the operator A is already closed. For delay differential equations, the
imposed conditions on the operator C� in Theorem 10.3.2 are satisfied if, and only
if, Y is finite-dimensional (recall that, in this case, �ei.D/ D ;; i D 1; : : : ; 6). So,
�ei.A/ D ;, with i D 1; : : : ; 6:
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13.11 A �-Rational Sturm–Liouville’s Problem

Let p; u 2 L1.0; 1/ be real, q 2 L2.0; 1/ be real, and let � be a bounded nonnegative
measure on R, and .˛j ; ˇj / 2 R

2; such that ˛2j C ˇ2j ¤ 0; j D 0; 1: We will
consider the spectral problem

�f 00 C pf C qf

u � � � �f D 0 on Œ0; 1�; (13.11.1)

b1.f /CN.�/b0.f / D 0; f .1/ D 0; (13.11.2)

where N.�/ is the Nevanlinna’s function N.�/ WD R
R

d�.t/

t�� and bj .f / WD
˛j f

0.0/ C ˇj f .0/, j D 0; 1: These equations make sense, at least, for � 2 CnS,
where S WD u.Œ0; 1�/

S
supp � . If q D 0 then we can take S D supp � and also the

following considerations can be simplified.

Definition 13.11.1. A point � 2 CnS is called an eigenvalue of the prob-
lem (13.11.1), (13.11.2), if there exists a nonzero function f , such that f 0 is
absolutely continuous and these equations are satisfied. }

The problems (13.11.1) and (13.11.2) are equivalent to the following operator
matrix. SetX D L2.0; 1/, Y D L2.0; 1/�H;where H is the Hilbert spaceL2.�;R/
of all functions g on R, with kgk2 D R

R
jg.t/j2d�.t/ < 1; and Z D C: Let

us define the operators A;B;C;D; 	X and 	Y as follows: Af D �f 00 C pf on
D.A/ D ˚

f 2 W 2;2Œ0; 1� such that f .1/ D 0


;

B

�
h

g

�

D qh; Cf D
� �f
b0.f /

�

; D

�
h

g

�

D
�
Uh

Tg

�

;

	Xf D b1.f /; 	Y

�
h

g

�

D
Z

R

g.t/d�.t/;

where .Uh/.t/ D u.t/h.t/ a.e. in Œ0; 1� and .Tg/.t/ D tg.t/ � -a.e. on R: The

operator D is defined on all vectors

�
h

g

�

; h 2 L2.0; 1/; g 2 H; such that

Uh 2 L2.0; 1/ and Tg 2 H.
We will show that the assumptions .J1/–.J 8/ of Chap. 10, Sect. 10.3 are

satisfied. In fact, it is well known that the operator A is densely defined and closed
(so .J1/ holds), and the functionals b0 and b1 are defined and continuous on XA,
which implies .J 2/. The operator A1 is the (self-adjoint) restriction of A by the
boundary condition b1.f / D 0. Hence, .J 3/ is satisfied, and since the embedding
ofXA into L2.0; 1/ is continuous and b0 is continuous onXA, C is continuous as an
operator from XA into Y and then, .J 4/ holds. The operator K� is defined, at least,
for nonreal � and, for z 2 C, K�z represents the solution of the boundary value
problem �f 00 C pf D �f , b1.f / D z, f .1/ D 0; which depends continuously
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on z with respect to the norm of L2.0; 1/ and, then .J 5/ holds. Obviously, D is
self-adjoint in Y and hence, .J 6/ holds. The estimate

ˇ
ˇ
ˇ
ˇ

Z

R

g.t/d�.t/

ˇ
ˇ
ˇ
ˇ

2

�
Z

R

jg.t/j2d�.t/
Z

R

d�.t/

implies that the condition .J 7/ is satisfied. Finally, since the operator .A1 � �/�1
acts boundedly fromL1.0; 1/ intoL2.0; 1/, the assumption q 2 L2.0; 1/ implies the
boundedness of the operator .A1 � �/�1B and hence, .J 8/ holds for a nonreal �.

If f 2 D.A/ and

�
h

g

�

2 D.D/
T

D.B/, then

A0

0

@
f

h

g

1

A D
0

@
�f 00 C pf C qh

� �f
b0.f /

�

C
�

Uh
Tg

�

1

A ; f .1/ D 0;

and the matrix equation A0

0

@
f

h

g

1

A D �

0

@
f

h

g

1

A becomes

� f 00 C pf C qh D �f; f .1/ D 0; �f C uh D �h; b0.f /C Tg D �g:

(13.11.3)

Finally, 	Xf D 	Y

�
h

g

�

yields

b1.f / D
Z

R

g.t/d�.t/: (13.11.4)

By solving the last two equations in (13.11.3) for h and g, we get h D f

u�� , g.t/ D
� b0.f /

t�� ; and the first two equations in (13.11.3), combined with (13.11.4), give

�f 00 C pf C q
f

u � � D �f; f .1/ D 0; b1.f /CN.�/b0.f / D 0;

and these are exactly the already found relations (13.11.1) and (13.11.2). Now, the
operator A can be defined as in Chap. 10, Sect. 10.3.1. Since A1 has a compact
resolvent, C is A1-compact and K�, as well as .A1 � �/�1B are also compact
operators. Therefore, the assumptions of Theorem 10.3.3 are satisfied. Since the
spectrum ofA1 is discrete, then the essential spectra of A coincide with the essential
spectra of M� (and therefore of D). Hence, we get �ei.A/ D �ei.U /

S
�ei.T /;

i D 1; : : : ; 6:
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13.12 Two-Group Radiative Transfer Equations in a Channel

13.12.1 Functional Setting

Let X WD L1.D; dxdv/; where D D .0; 1/ �K with K being the unit sphere of R3,
x 2 .0; 1/ and v D .v1; v2; v3/ 2 K: Let us define the following sets representing
the incoming Di and the outgoing D0 boundary of the phase space D:

Di D Di
1

S
Di
2 D f0g �K1

Sf1g �K0;

D0 D D0
1

S
D0
2 D f0g �K0

Sf1g �K1;

for K0 D K
Tfv3 < 0g and K1 D K

Tfv3 > 0g: Moreover, we will denote the
boundary spaces Xi and X0 by the following ways:

Xi WD L1.D
i ; jv3jdv/

WD L1.D
i
1; jv3jdv/˚ L1.D

i
2; jv3jdv/

WD Xi
1 ˚Xi

2

endowed with the norm:

k i ;Xik D k i
1; X

i
1k C k i

2; X
i
2k

D
Z

K1

j .0; v/jjv3j dv C
Z

K0

j .1; v/jjv3j dv

and,

X0 WD L1.D
0; jv3jdv/

WD L1.D
0
1; jv3jdv/˚ L1.D

0
2; jv3jdv/

WD X0
1 ˚X0

2

equipped with the norm:

k 0;X0k D k 0
1 ;X

0
1 k C k 0

2 ;X
0
2 k

D
Z

K0

j .0; v/jjv3j dv C
Z

K1

j .1; v/jjv3j dv:
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Let us denote by W the space defined by W D
n
 2 X such that v3

@ 

@x
2 X

o
: It

is well known that any function  2 W possesses traces (see [89]) on the spatial
boundary denoted by  0 D . 0

1 ;  
0
2 /
T ; and  i D . i

1;  
i
2/
T given by:

8
ˆ̂
<

ˆ̂
:

 i
1.v/ D  .0; v/; v 2 K1

 i
2.v/ D  .1; v/; v 2 K0

 0
1 .v/ D  .0; v/; v 2 K0

 0
2 .v/ D  .1; v/; v 2 K1:

We consider the following two-group transport operators A D T C K with

T  WD

0

B
@

�v3 @ 1
@x

.x; v/ � �1.x; v/ 1.x; v/ 0

0 �v3 @ 2
@x

.x; v/ � �2.x; v/ 2.x; v/

1

C
A

D
�
T1 0

0 T H2

��
 1
 2

�

and K D
�
0 K12

K21 K22

�

; where x 2 Œ0; 1�; v D .v1; v2; v3/ 2 K and Kij; .i; j / 2
f.1; 2/; .2; 1/; .2; 2/g are bounded linear operators on X by

8
<

:

Kij W X �! X

 �! Kij  .x; v/ D
Z

K

�ij.x; v; v
0/  .x; v0/ dv0;

and the kernels �ij W .0; 1/ �K �K �! R are assumed to be measurable. Now, let
us introduce the boundary operator H ,

8
<

:

H W X0 �! Xi

H

�
u1
u2

�

D
�
H11 H12

H21 H22

��
u1
u2

�

with for j; k 2 f1; 2g, Hjk W X0
k �! Xi

j , Hjk 2 L.X0
k ; X

i
j /, defined such that, on

natural identification, the boundary conditions can be written as  i D H. 0/. The
operators T1 and T H2 are defined by:

8
ˆ̂
<

ˆ̂
:

T1 W D.T1/ � X �! X

' �! T1'.x; v/ D �v3 @'
@x
.x; v/ � �1.x; v/'.x; v/

D.T1/ D W
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and
8
ˆ̂
<̂

ˆ̂
:̂

T H2 W D.T H2 / � X �! X

 �! TH2  .x; v/ D �v3 @ 
@x
.x; v/ � �2.x; v/ .x; v/

D.T H2 / D
n
 2 W such that  jDi WD  i 2 Xi ;  jD0 WD  0 2 X0 and  i D H. 0/

o
;

where �j .:; :/; j D 1; 2 is a positive bounded function. It is clear that the operator
T is defined on W � D.T H2 /: Next, we will define A by

D.A/ WD
��

 1
 2

�

2 W � D.T H2 / such that  i
1 D  i

2

�

and

A WD
�
A B

C D

�

;

where

8
ˆ̂
<

ˆ̂
:

A D T1
B D K12

C D K21

D D T H2 CK22:

Now, it is easy to check that this operator is of the matrix form of Chap. 10,
Sect. 10.3 with Z WD Z1 WD Xi ; X D Y WD L1.D; dxdv/;

8
<

:

	X W W �! Xi

' �! 	X' D 'i ;

with D.	X/ D D.T1/

and

�
	Y W X �! Xi

 �! 	Y  D H 0:

We define the operator A1 by:

8
<

:
A1 .x; v/ WD T1 .x; v/ WD �v3 @ 

@x
.x; v/ � �1.x; v/ .x; v/

D.A1/ D f 2 D.T1/ such that  i D 0g:

Remark 13.12.1. It is well known that the operators T1 and T H2 are closed linear
operators. Moreover, the derivative of  in the definition of T1 and T H2 is meant
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in distributional sense. Note that, if  2 D.T1/ [resp.  2 D.T H2 /], then it is
absolutely continuous with respect to x. Hence, the restrictions of  to Di and
D0 are meaningful. Note also that D.T1/ [resp. D.T H2 /] is dense in X because it
contains C1

0 .D
0/: }

13.12.2 The Expression of the Resolvent of the Operator T H
2

Now, we may determine the expression of the resolvent of the operator T H2 . Let
' 2 X , � 2 C and let us consider the problem

.� � T H2 / D '; (13.12.1)

where the unknown  must be sought in D.T H2 /: Let ��
j ; j D 1; 2 denote the real

number defined by ��
j WD ess- inff�j .x; v/ such that .x; v/ 2 Dg; j D 1; 2; and

�0 WD
(

���
2 if kHk � 1

���
2 C log.kHk/ if kHk > 1.

Thus, for Re� > ���
2 ; the solution of (13.12.1) is formally given by

 .x; v/ D  .0; v/ e
� R x

0
�2.s;v/C�

jv3j
ds C 1

jv3j
Z x

0

e
� R x

x0

�2.s;v/C�

jv3j
ds
'.x0; v/dx0; v 2 K1

(13.12.2)

 .x; v/ D  .1; v/e
� R 1

x
�2.s;v/C�

jv3j
ds C 1

jv3j
Z 1

x

e
� R x0

x
�2.s;v/C�

jv3j
ds
'.x0; v/dx0; v 2 K0

(13.12.3)

whereas  .1; v/ and  .0; v/ are given by

 .1; v/ D  .0; v/e
� R 1

0
�2.s;v/C�

jv3j
ds C 1

jv3j
Z 1

0

e
� R 1

x0

�2.s;v/C�

jv3j
ds
'.x0; v/dx0; v 2 K1

(13.12.4)

 .0; v/ D  .1; v/e
� R 1

0
�2.s;v/C�

jv3j
ds C 1

jv3j
Z 1

0

e
� R x0

0
�2.s;v/C�

jv3j
ds
'.x0; v/dx0; v 2 K0:

(13.12.5)
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In order to clarify our subsequent analysis, we introduce the following bounded
operators depending on the parameter �;

8
ˆ̂
<

ˆ̂
:

N� W Xi �! X0;N�u WD .NC
� u; N�

� u/ with

.NC
� u/.0; v/ WD u.1; v/ e� R 1

0
�2.s;v/C�

jv3j
ds
; v 2 K0;

.N�
� u/.1; v/ WD u.0; v/ e� R 1

0
�2.s;v/C�

jv3j
ds
; v 2 K1;

8
ˆ̂
<

ˆ̂
:

B� W Xi �! X;B�u WD �K0.v/BC
� u C �K1.v/B�

� u with

.B�
� u/.x; v/ WD u.0; v/ e� R x

0
�2.s;v/C�

jv3j
ds
; v 2 K1;

.BC
� u/.x; v/ WD u.1; v/ e� R 1

x
�2.s;v/C�

jv3j
ds
; v 2 K0;

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

G� W X �! X0;G�' WD .GC
� ';G

�
� '/ with

G�
� ' WD 1

jv3j
Z 1

0

e
� R 1

x
�2.s;v/C�

jv3j
ds
'.x; v/ dx; v 2 K1;

GC
� ' WD 1

jv3j
Z 1

0

e
� R x

0
�2.s;v/C�

jv3j
ds
'.x; v/ dx; v 2 K0;

and,

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

F� W X �! X;F�' WD �K0.v/FC
� ' C �K1.v/F �

� ' with

F �
� ' WD 1

jv3j
Z x

0

e
� R x

x0

�2.s;v/C�

jv3j
ds
'.x0; v/ dx0; v 2 K1;

FC
� ' WD 1

jv3j
Z 1

x

e
� R x0

x
�2.s;v/C�

jv3j
ds
'.x0; v/ dx0; v 2 K0;

where �K0.:/ and �K1.:/ denote, respectively, the characteristic functions of the
sets K0 and K1: The operators N�;B�;G�, and F� are bounded on their respec-
tive spaces. Their norms are bounded above, respectively, by e�.Re�C��

2 /; .��
2 C

Re�/�1; .��
2 CRe�/�1 and .Re�C��

2 /
�1: The fact that  must satisfy the boundary

conditions, Eqs. (13.12.4) and (13.12.5) can be written in the space X0 in the
operator form  0 D N�H 

0 CG�'; and .I �N�H/ 0 D G�': If Re� > �0; the
solution of the last equation is reduced to the following form:

 0 D
X

n�0
.N�H/

nG�': (13.12.6)

Moreover, Eqs. (13.12.2) and (13.12.3) can be rewritten as

 D B�H 
0 C F�': (13.12.7)

Substituting (13.12.6) into (13.12.7), we get  D P
n�0 B�H.N�H/nG�' C F�':
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Hence

�
� � T H2

��1 D
X

n�0
B�H.N�H/

nG� C F�: (13.12.8)

13.12.3 Essential Spectra

Let us observe that the operator F� is, nothing else but, .� � T 02 /
�1 where T 02

designates the operator T H2 with a boundary condition H D 0: Let � 2 C such
that Re� > �0 then, � 2 �.T H2 /

T
�.T 02 /: From Eq. (13.12.8), we have

.� � T H2 /�1 � .� � T 02 /�1 D
X

n�0
B�H.N�H/

nG�: (13.12.9)

It is easy to notice that

�.T 02 / D �c.T
0
2 / D f� 2 C such that Re� � ���

2 g: (13.12.10)

According to Remark 7.1.1, together with Eq. (13.12.10), we get the following:

�ei.T
0
2 / D f� 2 C such that Re� � ���

2 g; i D 1; : : : ; 6:

In addition, it is well known that the spectrum of the operator A1 is reduced to a
continuous spectrum. More precisely, we have

�ei.A1/ D �c.A1/ D f� 2 C such that Re� � ���
1 g; i D 1; : : : ; 6 (13.12.11)

Since H is weakly compact, then from Eq. (13.12.9), it follows that the operator
.� � T H2 /

�1 � .� � T 02 /
�1 is weakly compact. Therefore, by using Theorem 7.5.4

and Proposition 13.1.1, we get

�ei.T
H
2 / D f� 2 C such that Re� � ���

2 g; i D 1; : : : ; 5: (13.12.12)

Also, the fact that Cn�e5.T H2 / is connected and �.T H2 / ¤ ; yields �e5.T H2 / D
�e6.T

H
2 /:

13.12.3.1 Verification of the Assumptions .J1/–.J8/

of Chap. 10, Sect. 10.3

The conditions .J1/–.J 2/ are satisfied since A is closed with D.A/ D D.	X/:
From the general theory of C1

0 .D
0/, we deduce that the operator A1 satisfies .J 3/.

The result defined by assumption .J 4/ follows from the fact that K21 is bounded.
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In order to verify the hypothesis .J 5/, we will determine the expression of the
solution of the equation .� � A/ D 0; where the unknown  must be sought
in D.A/: Thus, for each Re� > ���

1 ; the solution is given by

 .x; v/ D
8
<

:

 .0; v/ e
� R x

0
�1.s;v/C�

jv3j
ds

v 2 K1

 .1; v/e
� R 1

x
�1.s;v/C�

jv3j
ds

v 2 K0:

Hence, the operator K� is defined on Xi by

8
ˆ̂
<

ˆ̂
:

K� W Xi �! X;K�u WD �K0KC
� u C �K1K�

� u with

.K�
� u/.x; v/ WD u.0; v/ e� R x

0
�1.s;v/C�

jv3j
ds
; v 2 K1

.KC
� u/.x; v/ WD u.1; v/e� R 1

x
�1.s;v/C�

jv3j
ds
; v 2 K0

which is bounded by .Re�C ��
1 /

�1: Finally, .J 6/–.J 8/ can be easily verified. Let
us notice that the collision operator Kij; .i; j / 2 f.1; 2/; .2; 1/; .2; 2/g acts only on
the variables v0; so x may be viewed merely as a parameter in Œ0; 1�. Then, we
will consider Kij as a function Kij.:/ W x 2 Œ0; 1� �! Kij.x/ 2 L.L1.K; dv//:
The class of regular operators introduced in Definition 2.4.3 satisfies the following
approximate property:

Lemma 13.12.1. We assume that the collision operator K21 is nonnegative, with

its kernel �21.:; :; :/ satisfying that
n
�21.x;:;v

0/

jv0

3j such that .x; v0/ 2 .0; 1/ �K
o

is a

relatively weak compact subset of L1.K; dv/. Then, for any � 2 C satisfying
Re� > ���

1 ; K21.� � A1/�1 is a weakly compact operator on X . }
Proof. Let � 2 C be such that Re� > ���

1 : We have K21.� � A1/
�1 D K21F�: It

is sufficient to show that K21F� is weakly compact on X . Let ' 2 X:

.K21F�'/.x; v/

D
Z

K

K21.x; v; v
0/.F�'/.x; v0/dv0

D
Z

K0

K21.x; v; v
0/FC

� '.x; v
0/dv0 C

Z

K1

K21.x; v; v
0/F �

� '.x; v
0/dv0

D
Z

K0

�21.x; v; v
0/

jv0
3j

Z 1

x

e
� R x0

x
�1.s;v

0/C�

jv0

3j

ds
'.x0; v0/dx0dv0

C
Z

K1

�21.x; v; v
0/

jv0
3j

Z x

0

e
� R x

x0

�1.s;v
0/C�

jv0

3j

ds
'.x0; v0/dx0dv0

D K 0
21

QF� ';
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where K 0
21 and QF� denote the following bounded operators:

8
<

:

K 0
21 W X �! X

' �!
Z

K

�21.x; v; v
0/

jv0
3j

'.x; v0/ dv0;

and

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

QF� W X �! X

 �! �K0.v0/
Z x

0

e
� R x

x0

�1.s;v
0/C�

jv0

3j

ds
 .x0; v0/ dx0 C �K1.v0/

Z 1

x

e
� R x0

x
�1.s;v

0/C�

jv0

3j

ds
 .x0; v0/ dx0:

We claim that K 0
21

QF� depends continuously on K 0
21: Let ' 2 X , we have

k QF�'k �
Z 1

0

"Z

K0

dv0
Z x

0

e
� R x

x0

�1.s;v
0/CRe�

jv0

3j

dsj'.x0; v0/jdx0
#

dx

C
Z 1

0

"Z

K1

dv0
Z 1

x

e
� R x0

x
�1.s;v

0/CRe�

jv0

3j

dsj'.x0; v0/jdx0
#

dx

�
Z 1

0

"Z

K0

dv0
Z x

0

e
� R x

x0

Re�C��

1
jv0

3j

dsj'.x0; v0/jdx0
#

dx

C
Z 1

0

" Z

K1

dv0
Z 1

x

e
� R x0

x

Re�C��

1
jv0

3j

ds j'.x0; v0/jdx0
#

dx

�
Z 1

0

�Z

K0

dv0
Z x

0

j'.x0; v0/jdx0
�

dx C
Z 1

0

�Z

K1

dv0
Z 1

x

j'.x0; v0/jdx0
�

dx

�
�Z

K0

Z x

0

j'.x0; v0/jdx0dv0 C
Z

K1

Z 1

x

j'.x0; v0/jdx0dv0
�

� k'k:

Then, kK 0
21

QF�k � kK 0
21k: According to both Theorem 2.4.4 and Proposi-

tion 2.3.1.i/; it is sufficient to prove the result whenK 0
21 is dominated by a rank-one

operator in L.L1.K; dv//: This asserts thatK 0
21 has a kernel �0

21.v; v/ D �21.x;v;v
0/

jv0

3j D
�0
1.v/�

0
2.v

0/, �0
1.:/ 2 L1.K/, �0

2.:/ 2 L1.K/: Let O be a bounded set of X; and let
 2 O. We have, for all measurable subsets E of D,
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Z

E

jK 0
21

QF� .x; v/jdxdv

�
Z

E

Z

K0

Z x

0

j�0
1.v/j j�0

2.v
0/je� R x

x0

�1.s;v
0/CRe�

jv0

3j

dsj'.x0; v0/jdx0dv0dxdv

C
Z

E

Z

K1

Z 1

x

j�0
1.v/j j�0

2.v
0/je� R x0

x
�1.s;v

0/CRe�

jv0

3j

dsj'.x0; v0/jdx0dv0dxdv

� k�0
2k1

Z

E

j�0
1.v/jdxdv

�
�Z

K1

Z 1

x

j .x0; v0/jdx0dv0 C
Z

K0

Z x

0

j .x0; v0/jdx0dv0
�

� k�0
2k1k k1

Z

E

j�0
1.v/jdxdv:

Since limjEj�!0

R
E

j�0
1.v/jdxdv D 0; .�0

1 � L1.K; dv// and, according to
Theorem 2.4.5, we infer that the set K 0

21
QF�.O/ is weakly compact. Hence the weak

compactness of K21.� � A1/�1 is proved. Q.E.D.

Lemma 13.12.2. We assume that the collision operatorK12 is nonnegative, regular
in the sense of Definition 2.4.3. Then, for � 2 C satisfying Re� > ���

1 ; the operator
.� � A1/�1K12 is weakly compact on X . }
Proof. Let � 2 C such that Re� > ���

1 : It follows that k.� � A1/
�1k � kF�k �

1
.Re�C��

1 /
: Let " > 0; for Re� > ���

1 C";we get k.��A1/�1K12k � 1
"

kK12k: Then,

.� � A1/
�1K12 depends continuously on K12; unfortunately on fRe� > ���

1 C "g:
From Theorem 2.4.4 and Proposition 2.3.1.i/, it suffices to prove the result when
K12 is dominated by a rank-one operator in L.L1.K; dv//: This asserts that the
kernel of K12 can be rewritten as follows �12.v; v0/ D �1.v/�2.v

0/, �1.:/ 2 L1.K/,
�2.:/ 2 L1.K/: Now, we may show that F�K12 is weakly compact. Let ' 2 X , we
have

.FC

� K12'/.x; v/ D 1

jv3j
Z 1

x

e
�

R x0

x
�1.s;v/C�

jv3j
ds
K12'.x

0; v/dx0

D 1

jv3j
Z 1

x

Z

K

e
�

R x0

x
�1.s;v/C�

jv3j
ds
�12.x

0; v; v0/'.x0; v0/dx0 dv0; v 2 K0

D J�U�';
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where J� and U� denote the following bounded operators

8
<

:

U� W X �! L1..0; 1/; dx/

' �!
Z

K

�2.v
0/'.x0; v0/ dv0;

and

8
<

:

J� W L1..0; 1/; dx/ �! X0
1

' �! 1

jv3j
Z 1

x

e
� R x0

x
�1.s;v/C�

jv3j
ds
�1.v/'.x

0/ dx0:

Now, it is sufficient to show that J� is weakly compact. To do so, let O be a
bounded set of L1..0; 1/; dx/; and let  2 O: It follows that, for all measurable
subsets E of K0, we have

R
E

jJ� .v/jjv3j dv � k k R
E

j�1.v/j dv: Since
limjEj!0

R
E

j�1.v/j dv D 0, .�1.:/ 2 L1.K; dv//; where jEj is the measure of
E. By applying Theorem 2.4.5, we deduce that the set J�.O/ is weakly compact.
Hence, the weak compactness of FC

� K12 is checked. A similar reasoning shows that
the operator F �

� K12 is weakly compact. Q.E.D.

We have the following theorem.

Theorem 13.12.1. If the operator H is weakly compact, positive, and if the
operators K12;K22 are nonnegative, regular in the sense of Definition 2.4.3 and if,

in addition,
n
�21.x;:;v

0/

jv0

3j such that .x; v0/ 2 .0; 1/ �K
o

is relatively weakly compact,

then �ei.A/ D f� 2 C such that Re� � � min.��
1 ; �

�
2 /g, i D 1; : : : ; 6: }

Proof. Let � 2 �.A1/. The operator M� is given by M� D D C K21B�H 
0 �

K21.� � A1/�1K12: By using Lemma 13.12.2 and the weak compactness of H , we
conclude that K21B�H 

0 � K21.� � A1/
�1K12 is weakly compact. Then, from

Theorem 7.5.3, it follows that �ei.M�/ D �ei.D/, for i D 1; : : : ; 6: For � 2 �.T H2 /
such that r� ..� � T H2 /

�1K22/ < 1; then � 2 �.T H2 /
T
�.T H2 C K22/: Hence, we

have

.� �D/�1 � .� � T H2 /�1 D
X

n�1
..� � T H2 /�1K22/

n.� � T H2 /�1: (13.12.13)

Since K22 is a nonnegative, and regular operator, implies that, for all n � 1,
..��T H2 /�1K22/

n.��T H2 /�1 is weakly compact onX . So, .��D/�1�.��T H2 /�1
is weakly compact. The use of both Eq. (13.12.13) and Theorem 7.5.4 leads to
�ei.D/ D �ei.T

H
2 / D f� 2 C such that Re� � ���

2 g, i D 1; : : : ; 6: Then, from
Eq. (13.12.12), we have

�ei.M�/ D f� 2 C such that Re� � ���
2 g; i D 1; : : : ; 6: (13.12.14)
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Now, by applying Theorem 10.3.3, and by using Eqs. (13.12.11) and (13.12.14), we
get �ei.A/ D f� 2 C such that Re� � � min.��

1 ; �
�
2 /g, i D 1; : : : ; 6: Q.E.D.

Remark 13.12.2. In this application, we have determined the essential spectra of the
two-group transport operator A on L1-space without knowing the essential spectra
of the operator A. However, we only know the essential spectra of the restriction of
the operator A on the intersection densely domain, D.A/

T
N .	X/: }

Open question. If K11 ¤ 0, can we determine the essential spectra of A? �

Open question. Consider the multidimensional two-group neutron transport oper-
ators on L1-spaces

A WD
�
A0 R

R A0

�

;

where A0 and R are the operators already defined in (13.6.6). If R is a regular
collision operator on L1.D � V; dxdv/ and Re� > �; where � is the type of the
C0-semigroup generated by A0 �R, it was proved in [261] that R.��A0 �R/�1R
is weakly compact on L1.D � V; dxdv/. However, if �.x; v/ D �.v/ and if D is
convex, then it was proved thatR.��A0�R/�1R is compact on L1.D�V; dxdv/.
In both cases, can we determine the essential spectra of the matrix A? �

13.13 Three-Group Transport Equation

The work presented in this section concerns the application of Theorems 11.2.2,
11.2.3 and 11.3.2 to a three-group transport operator on L1-spaces. Let X1 WD
L1 .Œ�a; a� � Œ�1; 1�; dxd�/, a > 0, and X D Y D Z WD X1: We consider the
boundary spaces

Xo
1 WD L1 .f�ag � Œ�1; 0�I j�jd�/ � L1 .fag � Œ0; 1�; j�jd�/ DW Xo

1 �Xo
2

and

Xi
1 WD L1 .f�ag � Œ0; 1�; j�jd�/ � L1 .fag � Œ�1; 0�; j�jd�/ DW Xi

1 �Xi
2

respectively equipped with the norms

kuo; Xo
1 k WD �kuo1; X

o
1 k C kuo2; X

o
2 k� D

�Z 0

�1
ju.�a; �/jj�jd� C

Z 1

0

ju.a; �/jj�jd�
�

and

kui ; Xi
1k WD �kui1; X

i
1k C kui2; X

i
2k
� D

�Z 1

0

ju.�a; �/jj�jd� C
Z 0

�1

ju.a; �/jj�jd�
�

:
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We will consider the matrix of the operator L D T C K; where

T  D

0

B
B
B
B
@

�� @ 1
@x

� �1.�/ 1 0 0

0 �� @ 2
@x

� �2.�/ 2 0

0 0 �� @ 3
@x

� �3.�/ 3

1

C
C
C
C
A

D
0

@
T1 0 0

0 T2 0

0 0 TH

1

A

0

@
 1
 2
 2

1

A

and

K D
0

@
0 K12 K13

K21 K22 0

K31 K32 K33

1

A

with Kij, i; j D 1; 2; 3 and .i; j / ¤ .1; 1/, .2; 3/ are bounded linear operators
defined on X1 by

8
<

:

Kij W X1 �! X1

u �! Kiju.x; �/ D
Z 1

�1
�ij.x; �; �

0/u.x; � 0/d� 0;
(13.13.1)

and the kernels �ij W Œ�a; a�� Œ�1; 1�� Œ�1; 1� �! R are assumed to be measurable.
The operator T1 is defined by

8
ˆ̂
<

ˆ̂
:

T1 W D.T1/ � X1 �! X1

'1 �! T1'1.x; �/ D �� @'1
@x
.x; �/ � �1.�/'1.x; �/

D.T1/ D W1;

where W1 is the partial Sobolev’s space defined by W1 D
n
' 2 X1 such that

�
@'

@x
2 X1

o
: T2 is the streaming operator defined by

8
ˆ̂
<

ˆ̂
:

T2 W D.T2/ � X1 �! X1

'2 �! T2'2.x; �/ D �� @'2
@x
.x; �/ � �2.�/'2.x; �/

D.T2/ D W1
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and
8
ˆ̂
<

ˆ̂
:

TH W D.TH / � X1 �! X1

'3 �! TH'3.x; �/ D �� @'3
@x
.x; �/ � �3.�/'3.x; �/

D.TH / D f'3 2 W1 such that 'i3 D H'o3g;

where �j .:/ 2 L1.�1; 1/, j D 1; 2; 3. It is well known that any function ' 2 W1

has traces on the spacial boundary f�ag�.�1; 0/ and fag�.1; 0/ respectively inXo
1

and Xi
1 . They are denoted, respectively, by 'o and 'i , and represent the outgoing

and the incoming fluxes (“o” for outgoing and “i” for incoming). Let ��
j be the real

defined by ��
j WD lim infj�j!0 �j .�/, j D 1; 2; 3: In the following, we will define

the operator L on the domain

D.L/ D
8
<

:

0

@
 1
 2
 2

1

A ;  1 2 W1;  2 2 D.T2/;  3 2 D.TH / and  i
1 D  i

2 D  i
3

9
=

;
:

We will denote by

�
	X W X1 �! Xi

1

 1 �!  i
1

�
	Y W X1 �! Xi

1

 2 �!  i
2

and

�
	Z W X1 �! Xi

1

 3 �! H o
3 :

Let A1 be the operator defined by

�
A1 D T1
D.A1/ D f 1 2 W1 such that  i

1 D 0g:

Remark 13.13.1. It is well known that the operators T1, T2, and TH are closed and
linear operators. Moreover, the derivative of  j in the definition of Tj , j D 1; 2,
and TH is meant in the distributional sense. Note that, if  2 D.TH / or D.Tj /, then
it is absolutely continuous with respect to x. Hence, the restrictions of  to Xi

1 and
Xo
1 are meaningful. Let us also notice that D.TH / is dense in X1 because it contains

C1
0 .X

o
1 /: }
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Let us observe that, for � such that Re� > ���
1 , we have � 2 �.A1/: Indeed, the

solution of .� � T1/ 1 D '1, for  1 2 D.A1/ is formally given by:

 1.x; �/ D

8
ˆ̂
<

ˆ̂
:

1

j�j
Z x

�a
e

� .�C�1.�//jx�x0
j

j�j '1.x
0; �/dx0; 0 < � < 1

1

j�j
Z a

x

e
� .�C�1.�//jx�x0

j

j�j '1.x
0; �/dx0; �1 < � < 0:

For any �, such that Re� > ���
1 , the operator K� is chosen as follows:

K�u D '1; for u 2 Xi
1 if, and only if,

�
'1 2 D.T1/ and 	X'1 D u
.T1 � �/'1 D 0

i.e.,

�
.T1 � �/'1 D 0; '1 2 W1

'i1 D u:

It is easy to check that K� is the following operator

8
ˆ̂
<

ˆ̂
:

K� W Xi
1 �! X1; K� WD �Œ�1;0�.�/K�

� u C �Œ0;1�.�/K
C
� u with

KC
� u.x; �/ WD u.�a; �/e� .�C�1.�//jaCxj

j�j ; 0 < � < 1;

K�
� u.x; �/ WD u.a; �/e� .�C�1.�//ja�xj

j�j ; �1 < � < 0;

where �Œ�1;0�.:/ and �Œ0;1�.:/ denote respectively the characteristic functions on the
intervals Œ�1; 0� and Œ0; 1�. It is easy to see that K� is bounded and kK�k �
Œ.Re� C ��

1 /�
�1: The domain Y1, defined in (11.2.2), is given by Y1 D f 2 2

W1 such that  i
2 2 	X.W1/g: Then, Y1

T
N .	Y / D f 2 2 W1 such that  i

2 D 0g:
The operator J� can be defined as follows:

�
J� W Xi

1 �! X1
D.J�/ D f i

2 such that  2 2 Y1g

J�u D '2; for u 2 Xi
1 if, and only if,

�
'2 2 Y1 and 	Y '2 D u
.S.�/ � �/'2 D 0

and the equation .S.�/ � �/'2 D 0 leads to

.T2 CK22 � �/'2 CK21K�'
i
2 �K21.T1 � �/�1K12'2 D 0:

Then,
�
.T2 CK22 � �/ �K21.T1 � �/�1K12

�
'2 D �K21K�u: For � 2

�.T1/
T
�.T2/, such that r� ..T2 � �/�1K22/ < 1, we deduce that � 2
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�.T1/
T
�.T2/

T
�.T2 C K22/ and, if r�

�
.T2 CK22 � �/�1K21.T1 � �/�1K12

�
<

1, then J� can be given by

J� D �
X

n�0

�
.T2 CK22 � �/�1K21.T1 � �/�1K12

�n
.T2 CK22 � �/�1K21K�

and so, J� is bounded. Now, the operator S1.�/ which is defined on D.S1.�// D
f'2 2 W1 such that 'i2 D 0g is given by S1.�/ D .T2CK22/�K21.T1��/�1K12.
The operator M.�/, already defined in Chap. 11, is weakly compact on X1 � X1 �
X1, since the operators Fi.�/ and QGi.�/, i D 1; 2; 3 are weakly compact. Let us
notice that the collision operators Kij, i; j D 1; 2; 3, .i; j / ¤ .1; 1/, .2; 3/ defined
in (13.13.1), act only on the velocity v, so x may be simply viewed as a parameter in
Œ�a; a�. Then, we will consider Kij as a function Kij.:/ W x 2 Œ�a; a� �! Kij.x/ 2
L .L1.Œ�1; 1�; d�// :
Theorem 13.13.1. If the operator H is weakly compact and positive, and if the
operators K12;K21;K13;K31;K33 are nonnegative and regular, and if, in addition,
�21.x;�;�

0/

j�0j and �31.x;�;�
0/

j�0j define two regular operators on X1, then

�ei.L/ D �e7.L/ D �e8.L/ D f� 2 C such that

Re� � � min.��
1 ; �

�
2 ; �

�
3 /g; i D 1; : : : ; 6:

}
Open question. If K11 ¤ 0 or K23 ¤ 0, can we determine the essential spectra
of L? �
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collectively compact, 28, 29
commutes, 53
commutes with itself, 53
compact Friedrichs module, 76
compact perturbation, 77
complemented, 34
complete bipartite, 95
compression spectrum, 196
condensing, 80
connected, 92
converge in the generalized sense to T , 253
converge to zero compactly, 167
converges discretely to x, 285
converges to zero compactly, 257
core of A, 194

D
decomposable, 33
decomposed, 45
deficiency indices, 92
degree of x 2 V , 92
demicompact, 150
demicontinuous, 150
descent, 40, 53
difference operator, 415
discrete approximation scheme, 285
discretely compact, 290
dissipative, 68, 449, 450, 489
DP operator, 161
DP property, 35
Duhamel formula, 121
Dunford’s integral, 64
Dunford-Pettis operator, 161
Dunford-Pettis property, 35
Dyson-Phillips expansion series, 121, 127
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E
eigenvalue, 561
eigenvalue of finite algebraic multiplicity, 68
elliptic operators, 553
essential approximate point spectrum, 193
essential defect spectrum, 194
essential spectral radius, 68
essential type, 69
essentially self-adjoint, 25
essentially semi-regular, 44
essentially semi-regular perturbation, 44
essentially semi-regular spectrum, 195
essentially stronger than X , 185
extension, 54

F
finite type, 55
form core for q, 90
form domain, 90
Fredholm, 26, 37, 48
Fredholm inverse, 182
Fredholm perturbation, 33
Friedrichs module, 76

G
gap between T and S , 44
gap between two linear subspaces, 42
gap metric, 43
Gap topology, 43
Gauß-Bonnet operator, 415
Gelfand triple, 76
generalized kernel, 24
generalized range, 24
generalized Riesz operator, 106
graph, 23
graph measure of noncompactness, 84, 86
graph measure of weak noncompactness, 87
graph norm, 30
growth bound, 65
Gustafson essential spectrum, 193

H
H.I. Banach space, 33
Hausdorff distance, 71
Hausdorff measure of noncompactness, 78
hereditarily indecomposable, 33
holomorphic semigroup of a semiangle �, 360

I
injectivity modulus, 44
inverse of A modulo compact operator, 27
invertible modulo compact operator, 27
irreducible, 56, 510

J
Jeribi essential spectrum, 198, 199

K
Kato essential spectrum, 193
Kato spectrum, 195
Kato topology, 43
Kato type, 45
Kato type of order d , 45
Kato’s operator, 41
kernel of the measure of noncompactness,

78
Kuratowski measure of noncompactness, 78,

183

L
leading eigenvalue, 28, 58
left decay preserving, 76
left Fredholm inverse, 182
left topological divisor of zero, 71
line graph, 413
linear, 23
locally finite, 92
loop in x 2 V , 92
lower A-Fredholm perturbation, 174
lower Fredholm perturbation, 33
lower local complexity, 416
lower semi-Browder operators, 41, 56
lowersemi-Fredholm, 26

M
maximal gap, 43
measure of noncompactness, 78
measure of non-strict singularity, 82, 149
measure of weak noncompactness, 82, 159
measure with maximum property, 78
minimal polynomial, 110, 117, 267, 268
multiplier algebra, 76
mutually commuting operators, 53
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N
neighbors, 92
nilpotent of order d , 45
non-degenerate, 76

O
off-�-diagonally dominant, 363
off-�-diagonally dominant with bound ı,

363
offspring, 93
one-parameter semigroup, 65
operator, 23
ordinary differential operators, 537
orientation, 415, 430

P
Polish space, 71
polynomially compact, 101
polynomially Fredholm perturbation, 118
polynomially Riesz operator, 117
positive, 90
positive cone, 56
positive operator, 56
power-compact operator, 29, 56, 58
pseudo-Browder essential spectrum, 296
pseudo-Jeribi essential spectrum, 300
pseudo-Schechter essential spectrum, 301

Q
quadratic form, 90
quasi-interior points, 56
quasi-inverse, 51
quasi-nilpotent, 42, 56

R
ray of minimal growth, 336
reduced minimum modulus, 37, 174
regular, 60, 62, 78, 83, 88, 447, 521
related, 115
relative bound, 29
relatively bounded with respect to A, 29
relatively compact with respect to A, 29
relatively weakly compact with respect to A,

29
resolvent compact relative to �T , 67
resolvent positive, 58
resolvent set, 28
Riesz operator, 42

Riesz type, 65
rigged Hilbert space, 76
right decay preserving, 76
right Fredholm inverse, 182

S
Schechter essential spectrum, 193
Schur test function, 91
self-adjoint, 25
semi-bounded, 90
semi-regular, 44
semi-regular spectrum, 195
simple, 92
simple tree, 93
spectral bound, 58, 65
spectral mapping theorem, 64, 265
spectral measure, 421
spectral projection, 421
spectral radius, 56, 68
spectrum, 28
standard Borel’s space, 72
strictly cosingular, 33
strictly positive, 56, 510
strictly power-compact, 68
strictly singular, 32
strong topology, 71
strongly continuous semigroup, 65
sub-lower local complexity, 416
subgraph, 98
sublinear, 78
subprojective, 35
successive convex combinations, 83
superprojective, 35
symmetric, 25, 90
symmetric family, 141
symmetric gap, 43, 44

T
three-group transport operator, 573
transport equation, 441, 469, 482, 496
two-group transport operators, 544
type of the semigroup, 65, 68

U
ultraproduct EU of E with respect to U , 288
ultraproduct of .Tn/ with respect to U , 288
unbounded A-Fredholm perturbation, 174
unbounded lower A-Fredholm perturbation,

174
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unbounded upper A-Fredholm perturbation,
174

uniformly bounded, 66
unoriented weighted graph with vertices V and

weights E , 92
upper A-Fredholm perturbation, 174
upper Fredholm perturbation, 33
upper semi-Browder operators, 41, 56
uppersemi-Fredholm, 26

V
Vietoris topology, 74

W
weakly compact, 29
weakly compactly generating, 35
Weidman essential spectrum, 193
Wolf essential spectrum, 193
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