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Preface

The statistical signal processing developments described in this [book] [112]
are important to engineers working in many areas of communications because
non-Gaussian signals are encountered in digital communications, as well as in
areas such as seismology, radio astronomy, and sonar. For those in the field of
statistical signal processing itself, the problem of detecting non-Gaussian signals
is paradigmatic in that it provides a useful framework for discussing other current
research areas, such as wavelet decompositions, neural networks, and higher order
spectral analysis [94]. And . . . the most fundamental problem of signal detection
[is] the determination of the likelihood ratio for detecting signals against a noise
background [130, 148]. It is the first purpose of this book to explain, for the first
time perhaps, how, for a basic, fairly general, fairly realistic signal and noise model,
the likelihood may be computed, that is, given an analytic expression. The noise
shall be a Gaussian process, continuous in quadratic mean, and the signal, a random
process which depends on the noise, but whose law is unknown. The second purpose
is to gather some of the mathematics that enter the likelihood’s computation and
possibly enlighten it. The end result is a nice mathematical story in the sense of
T. Tao [256], in which rather diverse streams of mathematics merge to produce the
result one hopes for.

The prototype application of such mathematics is SONAR [181] (the acronym
for SOund NAvigation and Ranging), that is, the use of acoustic pressure waves
to ascertain the presence of objects, military or other, in an ocean environment.
The model requiring the book’s mathematics is that of a non-Gaussian signal in
additive and dependent Gaussian noise [which] can be viewed as the canonical
detection problem for active sonar in a reverberation-limited environment (when
reverberation is the predominant source of noise) [17].

In principle, for acoustic signal detection, one should resort to acoustic wave
propagation equations, that is, partial differential equations describing the behavior
of pressure when there is, and when there is not, an object to detect. The laws
of those pressures would be derived, and the likelihood computed. Unfortunately,
the parameters entering those equations are random fields whose law is unknown.
Here is the verdict of a specialist [246, p. 152]: Except for very simple cases,
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determination of the probability distributions of the wave field in a stochastic
medium (also in weakly inhomogeneous stochastic medium) is impossible. Mid-
dleton [194, 195] has developed a series of statistical-physical models, trying to
overcome the hurdle, while keeping the physics. Unfortunately, again there are
difficulties with such models. Middleton obtained only the one-dimensional laws,
and attempts to get the two-dimensional ones [183] yield, given many assumptions
and simplifications, exceedingly complicated expressions. Furthermore, estimating
the parameters in the models is no mean task, and again unwanted assumptions,
such as independence of observations, must be made. The road chosen for this book
is thus that of finding a generic, purely statistical, likelihood, and to use it as a guide
to algorithms.

This book is organized around a small number of facts which determine the
existence of the likelihood. For it to be, the signal must be smoother than the
noise, and the right amount of smoothness is obtained when it is required that
the signal belong to the reproducing kernel Hilbert space of the noise. The first
part of this book is thus devoted to such spaces. One of the few available tools
for the production of likelihoods, when the law of the signal is unknown, is
Girsanov’s theorem, valid for diverse types of martingales. But processes with
the properties of martingales are seldom found in applications, definitely not in
SONAR, and one must thus devise a way to bridge the gap that exists between
general Gaussian noises and Gaussian martingales, those of Girsanov’s theorem.
One tool that has proved effective for so doing is the Cramér-Hida decomposition
(or representation) of second order processes. The second part of this book is thus
devoted to such decompositions. The third and last part of this book deals with
the likelihood, first for Gaussian martingales, and then for Gaussian processes other
than martingales. Though the book is limited to the Gaussian noise case, its methods
have somewhat wider scope and may be extended to cover, in particular, spherically
invariant noises [19], which cover some of Middleton’s models mentioned above,
and causally filtered, independent, weighted Wiener and Poisson processes [59].
In an intermediate position, in the same vein, one finds skew-normal processes as
“signal-plus-Gaussian noise” models [123].

The resulting book is large, and one may wonder whether the game is worth
the candle, as the mathematics represent but a rather small step towards obtaining
workable algorithms. One answer is as follows [20]: Many discrete-time, finite-
sample detection algorithms are obtained from consideration of only the discrete-
time (and finite-dimensional) problem. If this is done, and the data represent
discretized, continuous-time data, then the problem of developing an optimally
effective algorithm is akin to that which the blind man faces in describing the
elephant. It is obviously preferable, if possible, to develop a discrete-time algorithm
based on approximations of the likelihood ratio for the continuous-time problem.
The likelihood that is mathematically determined by the model serves thus as a
benchmark. One finds that same point of view in other areas of current research: The
guiding principle underpinning the specific development of the subject of Bayesian
inverse problems in this article is to avoid discretization until the last possible
moment. This principle is enormously empowering throughout numerical analysis
[253].
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Statistical communication theory is a blend of disciplines, especially analysis,
probability, statistics, engineering, and numerics. That means many skills to master,
and few are those willing, or simply having the time, to work out the details of a
streamlined presentation. The choice has thus been made to provide at least a part
of those details. That decision has some advantages. The first relates to applications:
the pertinence of a mathematical theory, for applications, is often hidden in the
details, and presenting those may help focus on where the mathematics hinges, and
thus on its relevance. The second is that most errors in mathematics are concealed
under the surreptitious cover of terseness, whereas a fuller exposure leaves less to
pitfalls [56, p. vi]. So one hopes that details will facilitate reading, and especially
correction, when needed! There is also more material than strictly necessary for full
understanding of the likelihood, but that may prove useful for adequate application,
as neighboring results often help having things in perspective.

Three persons have to be thanked for their generous help. M. Émery (Strasbourg)
and L.D. Pitt (Virginia) were kind enough to explain to the author part of their
work, even when the questions where about “elementary topics.” K.D. Schmidt
(Dresden), a friend, has always welcomed questions about measure theory and
provided essential help with producing the manuscript.

It is C.R. Baker (UNC, Chapel Hill) who anticipated the potential of combining
Girsanov’s theorem with the Cramér-Hida decomposition. He and I (the author)
worked out many of the details during a more than one-year long sunny visit at the
University of Texas at Austin. C.R. Baker has also been my thesis supervisor: I wish
here to thank him for letting me in on the pleasures of likelihood calculation and,
last but not least, for his friendship.

Yens, Switzerland Antonio F. Gualtierotti
2015





Prolog

Possibly the simplest description of the detection problem is that found in [130,
p. 76]: The voltage at the input terminals of a radar or communications receiver
is always fluctuating in a random manner because of the chaotic thermal motions
of the surroundings. Any signals that are present—echoes from a distant target or
information-bearing communication signals—are added to this noisy background;
and if the strength of the signals is small, they are difficult to distinguish from the
noise. The task of an observer is to decide whether signals of some specified type
are present in the total input voltage received during a certain interval of time. No
matter what procedure he uses to make these decisions, there is always a chance that
he may be wrong, declaring a signal is present when there is none, or vice versa. He
seeks a way of handling the receiver input so that the decisions are made with the
greatest possible success in a series of observations. In the case of sonar, things are
even murkier [140, p. 2]: One may say that “signal” is what one wants to observe
and noise is anything that obscures the observation. Thus, a tuna fisherman who is
searching the ocean with the aid of sonar equipment will be overjoyed with sounds
that are impairing the performance of a nearby sonar system engaged in tracking a
submarine. Quite literally, one man’s signal is another man’s noise.

Let thus the waveform s D fs.t/; t 2 Œ0;T�g be observed. If it is a noise
waveform, it is an observed path of the stochastic process N whose probability law
is PN : If it is a waveform due to the presence of a signal S; it is an observed path of
a functional of S and N; with probability law PS;N : Since physical signals have finite
energy, the square of the waveforms must be integrable and the laws PN and PS;N

thus “sit” on selected subspaces of L2Œ0;T�; the Hilbert space of square integrable
functions, or on one of its manifolds such as that of continuous ones. The “noise
only” option is called the H0 hypothesis, and the “signal-and-noise” one is labeled
H1: The observer’s task is to ascribe s either to H0 or to H1:

A (mathematical) solution to the detection problem requires at least that one
answers the following questions [10]:

1. Is the mathematical model reasonable?
2. What is the optimum operation on the observed waveform?
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3. Given a specific procedure for deciding between H0 and H1; what is the
performance of that procedure?

The first requirement, for the answer to the first question to be yes, is that the
model not be singular, which means in practice that detection cannot be achieved
without error. One detailed justification for such a requirement may be found in
[225]. Its mathematical translation is that PS;N should have an absolutely continuous
component with respect to PN : As to the second question, the optimum operation on
the data according to several criteria (e.g., Bayes, Neyman-Pearson) is to compute
the value of the likelihood ratio at the observation and compare this value to
a threshold. If the threshold is exceeded, one decides that a signal is indeed
present. The likelihood ratio is in fact the Radon-Nikodým derivative of PS;N with
respect to PN ; evaluated at s; the observation. The two problems of singularity
and computation of the likelihood ratio go hand in hand. The latter is thought by
many to be a more practically important problem than the former. However, one
uses essentially the same techniques to attack both problems, and it would seem
difficult to obtain the likelihood while ignoring the various results on (non-)singular
detection.

Practical signal detection problems frequently involve non-Gaussian signals in
additive, dependent noise. A good example is the canonical problem of detection
by active sonar in a reverberation-limited environment (especially volume rever-
beration) [194]. The noise in such situations can frequently be regarded as arising
from reflections by many small scatterers, which can be reasonably assumed to have
statistically independent behavior. The central limit theorem then gives a Gaussian
process. The signal process, however, will frequently be dominated by reflections
from a few large scatterers, such as the sonar dome. These scatterers each give rise
to a non-Gaussian random process, which gets summed at the receiver to give a
non-Gaussian process. The problem of detecting very quiet submarines, emanating
primarily non-Gaussian broadband signals, is analogous in nature.

The objective here is to obtain a general solution to such problems as they arise
in a radar–sonar context. A general solution is defined to be one of a general form
having parameters that are functions of the data, and involving a minimal set of
assumptions on data properties, furthermore being susceptible of being reasonably
approximated. “Reasonable” refers to a discrete-time approximation that can be
implemented once the data parameters are known, together with procedures for
estimating those parameters, and which converges to the continuous-time solution
as the number of samples increases. Such a general solution is contained in this
book. The only meaningful assumptions are that the Gaussian noise process be
mean-square continuous, which is no restriction in practice, and that the signal
paths belong to the reproducing kernel of the noise, a necessary requirement for
the detection problem to be non-singular.

As the law PS;N is usually unknown, answers to the third question can only be
empirical.

References [22, 23] provide evidence that the program sketched above can be
successfully completed.
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A serious effort is made below to point at the principal sources for the material in
the book (more references are to be found directly in the text). Since the book is
a large one, potential for omission, and mistaken attribution, is abundant, and an
apology is offered here to those who may feel their work has not been given the
proper attention. The references were chosen with no effort to reduce their number,
or provide the earliest ones: the “method of convenience” has been used, and, when a
result was needed, the first adequate reference found was the one actually employed.

Chapter 1

Obtaining the functions of an RKHS as maps of the following form [(Proposi-
tion) 1.1.15]: t 7! hh;F.t/iH is a very convenient procedure, when applicable
(as it requires “guessing” H and F/; and is used throughout the “exposé.” It was
found in Saitoh’s book [232]. Example 1.3.15 illustrates well its advantages. The
material on supports of reproducing kernel Hilbert spaces is from [82]. Membership
properties are from the lecture notes of Neveu [202] and from the book of Fortet
[106]. The material on covariances has its sources in the lecture notes of V.S.
Mandrekar, delivered at the Polytechnic of Lausanne, in the middle 70s. That
eventually materialized into book expression [52]. The two Propositions 1.3.20 and
1.3.21, relating the RKHS of a second order process, and the range of the square root
of the covariance operator that the covariance of that process determines, are from
the lecture notes of C.R. Baker, produced over the years, at the Statistics Department
of the University of North Carolina at Chapel Hill. An analogous result may be
found in J. Neveu’s notes already cited [202]. Section 2.8 of Chap. 2 provides a
general treatment of the question. The material on triangular covariances is from
[82]. It provides an interesting illustration of what may hide behind some of the
seemingly simple concepts of the RKHS theory. The results on separable RKHS’s
have diverse sources, in particular [35, 106, 196, 198]. The representation of the
covariance in (Remark) 1.5.13 supports the modeling of Chap. 17, though the latter
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requires a canonical representation. Example 9.2.1 shows that (Remark) 1.5.13 is,
to that end, not sufficient. Projections are considered in [106, 202]. Example 1.6.9
is from [118]. Result (Proposition) 1.6.19 stems from [188], and is analogous, for
RKHS’s, to Kolmogorov’s result on existence of stochastic processes. The material
on operators is from [146], and results on covariance operators in RKHS’s are from
[35].

Chapter 2

Chapter 2 is based, to a large extent, on [50]. It is in line with result (Propo-
sition) 1.1.15: the functions of the RKHS should reflect the properties of F:
Having such a “duality” may help “understand” one of its terms using the other.
The same authors have obtained the “same” results for functions with values
in vector spaces [51]. The representation of RKHS’s as L2 spaces, and related
embeddings, are from [106]. The example using RKHS’s to define inner products
for measures is from [35, 254]. It illustrates the versatility of RKHS’s, given some
ingenuity. Result (Proposition) 2.4.30 is from [232], and is the type of result one
needs for applications as in Sect. 17.6. Result (Proposition) 2.4.38 is from [134].
Example 2.6.12 is from [82].

Chapter 3

To a large extent, Sect. 3.1 is based on [106]. The systematic use of the map J2;1;
rather than J?2;1J2;1, as is often the case, has some advantages, as seen in the proof
of (Proposition) 3.1.34 (where J2;1 is LF; for a particular case). Compactness of J2;1
is relevant for Chap. 4, and thus for the existence of the likelihood. Restriction to
subsets [(Proposition) 3.1.18] is important for computations. Section 3.2 is from
[233]. The end result [(Corollary) 3.2.25] has some interest, as shall be reiterated,
for the theory of mismatched channels [13], that is, those channels for which the
power constraint on the transmitted signal is more restrictive than that imposed by
the channel noise, in that it provides “a measure” of the mismatch. Section 3.3 is
again from [106] and bears again on the existence of the likelihood, as the latter
depends on the intersection of the RKHS’s involved being “large” [Chap. 5]. The
last section is from [197, 198]. It is of relevance for mismatched channels also,
as well as for Gaussian detection based on simultaneous reduction of covariance
operators [9, 147].
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Chapter 4

The material in that chapter is mostly from [176]. It explains, in terms of the RKHS’s
involved, the meaning of the requirement that, for the likelihood to exist, the signals
must be in the RKHS of the noise. Some ideas and results from [176] may already
be found in the references from earlier times [82, 106, 188]: the procedure amounts
to, as is often the case, going through compatible finite procedures over sets of
points which are dense in some sense. No effort has been made to sort out the
contributions of each author as the aim was to show that much is articulated around
the compatibility result of Meschkowski [188].

Chapter 5

The material is from [106], and provides what is perhaps the best, though not the
shortest, explanation of the (RKHS) conditions which secure the existence of a
likelihood, and in particular, the Gaussian likelihood. Fortet furthermore sets the
problem within the standard context of the Lebesgue decomposition of measures,
and relates equivalence to domination of probabilities on certain sub-manifolds.
That the intersection of RKHS’s is important for Gaussian discrimination emerges
also in [99]. Another explanation for the appearance of a compact perturbation of
the identity in such matters may be found in [104]. The shortest, and most general,
derivation of the Gaussian likelihood is perhaps that of Vakhania and Tarieladze
[261]. Reference [52] is a very nice survey, with ampler scope, along lines similar
to those of Vakhania and Tarieladze [261]. The extension to mixtures is from
[243]. Most derivations of the Gaussian likelihood result in an infinite product of
exponentials, not the most useful of representations. There is at least one exception,
that of Rao and Varadarajan [219], which provides, in terms of properties of the
covariance operators involved, conditions for the likelihood to be the exponential of
a quadratic form. The “Gaussian RKHS way” to the likelihood should be compared
to the “Girsanov’s way” of Part III, the difference being that in the first case, one
knows the probability laws, but not in the second.

Chapters 6, 7, and 9

Chapters 6, 7, and 9, yield, what are perhaps, successively, the most elementary and
instructive, the most elegant, and the deepest studies of the same topic, that of the
representation of second order processes as superpositions of causal transformations
of “white noises.” The first presentation results from a “hands on” approach based
on the fact that the elements of the linear space of a process with orthogonal
increments have an integral representation, and proceeds by exhaustion. It is in
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such a development that one sees most immediately, and clearly perhaps, why the
result is . . . what it is. The second presentation constructs the linear space of a
second order process as a direct integral, and then proceeds to the Cramér-Hida
representation by choosing a basis in it. Knight’s presentation uses the projection
process to reveal the martingale structure of the linear space of the process. All
representations use similar “tricks,” especially to obtain the absolute continuity of
the measures involved.

Chapter 6 is essentially based on [15]. The material on orthogonally scattered
measures is explained in [182]. The representation of functions as integrals with
respect to an orthogonally scattered measure is from [122]. The material on
separability, and existence of limits, is due to [48]. At the end of Baker [15], one
finds the Hellinger-Hahn theorem as a corollary. The reverse procedure (proof of the
Hellinger-Hahn theorem, followed by the Cramér-Hida representation) is presented
in [143]. The freedom provided by (Proposition) 6.4.34 is essential to the derivation
of the likelihood. The other two approaches are silent on the topic. Reference [133]
uses that fact.

Chapter 7 is from [200]. Though the references in the latter book list all the
papers of Cramér and Hida on multiplicity, the term does not appear in there, and
the pendant to the Cramér-Hida representation is in terms of a “Hilbertian stochastic
integral.” In [68], Neveu’s approach is used to produce a recursive expression for a
Gaussian likelihood. It should perhaps be noted that Neveu’s approach yields the
Cramér representation, and not the Hida one.

Chapter 9 has two main sources: [157, 158]. To have a complete picture, one must
insert [161, 193]. The results of Knight require some extra hypotheses, smoothness
ones in particular. Knight has given the prediction process a much wider scope in
[160], but practical uses for such power remain, it seems, yet to be found. There is
however a close connection between the Cramér-Hida and Knight’s approaches: the
first is, in the Gaussian case, the wide-sense version of the second [159], and that
fact is essential in obtaining the likelihood.

The Cramér-Hida representation is a way to prediction, and the latter is, in turn,
conditional expectation, which may be seen as an operator. Multiplicity is at the
core of operator theory, in Hilbert spaces at least [45, 126]. So it is not surprising
that the Cramér-Hida representation may be seen as a problem of Hilbert subspaces
(resolution of the identity). Examples are [72, 132, 143].

Chapter 8

Sections 8.1 and 8.2 are from [227]. The remaining part of the chapter is devoted
to multiplicity one, the only case which one can reasonably expect to be used for
practical purposes, with the exception perhaps of Goursat processes [Sect. 8.4],
as analytical Cramér-Hida representations stemming from a covariance are, at
best, hard to obtain, and for the time being nonexistent. Section 8.3 is mostly
from Cramér [63, 64]. The material on approximation by processes of multiplicity
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one is from [137]. Section 8.4 is based on [212], which provides what are,
possibly, the most explicit results on Cramér-Hida representations. Related results
may be found in [179, 180]. Goursat processes [212] may serve, especially for
data adjustment questions, as surrogate Cramér-Hida representations for processes
whose representation one may not pinpoint.

Chapter 10

The chapter is a jumble of results which underlie the sequel and are often passed
over quickly. Two topics, sets of measure zero, and inverses of monotone functions
are spelled out in detail to sooth the author’s conscience. It should however be
noticed that the need for more detail in such matters comes from the masters [70].
The material on inverses of monotone functions has two sources [88, 125]. The
material on exponentials of martingales has its origin in [189], its extension to
martingales with values in a Hilbert space, in [206]. A rather elegant treatment
of Gaussian processes with independent increments, their exponentials, and the
attendant Girsanov’s theory, may be found in [172].

Chapters 11, 12, 13, 14, and 15

Those chapters cover what may be termed the Girsanov’s theory of the likelihood
for Cramér-Hida processes, that is, processes with values in l2; continuous paths,
and independent components and increments. What may be the most lucid, and
complete, exposition of the topic, in the case of a vector noise made of a finite
number of independent, standard Wiener processes, is that of Memin [187].
Coverage of parts of the same material (dimension one), with some bonuses, may
be found in [172]. Chapters 11 to 15 fill the gap which exists between the finite
and the infinite frameworks. Part of that gap was reduced in [58]. Chapter 12 is an
adaptation, almost verbatim, to the infinite dimensional context, of results found in
[38]. The “latest” on the “moment condition” may be found in [156].

Chapter 16

The original Girsanov’s theorem combines what may be seen as two distinct
results: invariance of quadratic variation, and invariance in law, under random drift
translation, and absolutely continuous change of measure. That result seems to have
at first attracted little attention, except from electrical engineers, and in particular
T. Kailath, of Stanford, who saw in it a way to obtain a non-Gaussian likelihood.
Then the “martingale community” saw that the invariance of quadratic variation part
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of Girsanov’s theorem is central to martingale theory, and law invariance was sort
of forgotten, though potentially important for modeling non-Gaussian noise. The
question has been settled in [31], and the answer confirms, in part, an assertion found
in [40, p. 116]. It basically says that, with the exception of “white noise,” continuous
martingales do not provide interesting noise models. To get to that conclusion
much research had to be done. The results are documented in the following papers:
[90], for Vershik’s theorem on lacunary isomorphism, completed with [89, 205],
for Ocone martingales; [265], for the relations between Ocone’s martingales and
exponential ones. Reference [31] is based on [89, 90, 205, 265]. There is a shorter
way to Vershik’s theorem on lacunary isomorphism than that used here, constructive
and technical, which is from [90], and its consequence, from [89]: it is to be found
in [169], and uses a martingale convergence theorem. But again, the shorter way
is opaquer than the longer, at least for the amateurs, to which the present author
belongs.

Chapter 17

The theoretical part of Chap. 17 is essentially based on two papers: [18, 20]. Those
made the assumption that multiplicity is finite, a serious restriction, as multiplicity is
hard to obtain from the covariance of the process, and the importance of the Cramér-
Hida maps was somewhat in the background. One fact worth noticing about the form
of the likelihood that has been obtained is that it is “computable” at the signal as
received, without further ado. That is not the case with the “white noise likelihood”
as was acknowledged by J.M.C. Clark [57], who saw that the likelihood had to be
“tweaked” to accommodate actual signals. He then introduced the notion of “robust
likelihood.” An interesting, wide ranging complement to Sect. 17.5 (scope of the
SPGN) may be found in [42, 101, 102, 104]. The comments on applications are
from [14], the remark on inverse problems, from [253]. Finally, the essential reason
why the method used here to obtain the likelihood works may be found in [159,
p. 113].



Notation and Terminology

General Notation

� Almost sure equality, identity in law
� Absolute continuity of measures
� Mutual absolute continuity of measures,

identity of the elements, respectively to the left, and to the
right, of the symbol

˚ Direct sum
˝ Tensor product,

product of �-algebras
˝ Completion of product of �-algebras
] Disjoint union
�b Contained boundedly
�c Contained contractively
a � b a is replaced with b
� Symmetric difference
_ Maximum,

operation of generating an object (�-algebra, vector space)
�

p�1
QS D jSj Cardinal of set S
�.S2/; �.S/ Diagonal of set S � S D f.s; s/; s 2 Sg
SŒx1� When S is a subset of a product space, section of S at the first

component x1
dX Distance on space X;

related to object X
Œ1 W n� Integers 1; : : : ; n
I; J Set of indices,

intervals
tl; tr; tu Left, lower, right, upper limits of an interval
0S; 1S Function that is 0 on space S; respectively, 1

xix
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s.f / Function which delivers the sign of f (1; when f � 0; �1;
when f < 0)

�S Indicator function of set S
IS Equivalence class of �S

f jS Restriction of f to S
Œf � Equivalence class of the function f
Pf Member of the equivalence class f
DŒf �;N Œf �;RŒf � Domain, null space (kernel), and range of map f
f .i/ i-th derivative of f
f Œx1� When f has two arguments, x1; and x2;map x2 7! f Œx1�.x2/ D

f .x1; x2/
L.f / Laplace transform of f
D1f .Dtf /;D2f .Dxf / When f has two arguments, derivative with respect to first,

respectively, second argument
D� A matrix of Radon-Nikodým derivatives
ı Point mass,

eigenvalue function
ıi;j One, when i D j; and zero otherwise

function which is one when two elements are identical, zero
otherwise

idS Identity over set S
F Class of functions
C0Œ0; 1� Continuous functions on Œ0; 1�; 0 at the origin
C.T/ Continuous functions on T
Cc.T/ Continuous functions on T with compact support
CK.T/ Continuous functions with support in K (K generally com-

pact)
C0.T/ Continuous functions on T that vanish at infinity
P.S/ Subsets of set S
B.X/ Borel sets of topological X
C.X/ Cylinder sets generated on X by functionals
D.X/ �-algebra on X generated by functionals
E.X/ �-algebra on X generated by evaluation maps
K.X/ Compact sets of X
O.X/ Open sets of X
E A family of maps defined on set S; with real values
S �-algebra generated on set S using the family E above
L.E/ Linear manifold generated by E D .VŒE �/
M.S/ Linear space of functions adapted to S and B.R/
V.M/ Linear manifold of M.S/
Q.E/ Quadratic forms made of elements in E
V.M/

P
Closure in L2.S;S;P/ of manifold V.M/

V1.M/ Subset of V.M/\ L2.S;S;P/ of elements of norm 1
�P;V.M/.˛/ An upper bound for V1.M/
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C; 	;˙ Covariances
D Diagonal matrix
L Triangular matrix of ones (summation operator)
M Matrix
In Identity matrix of Rn

E.�/ (Spectral) projection
E.d�/ Measure whose values are projections
OE.f / D R f .t/E.dt/
HB Range of B as Hilbert space
P;Q Probability,

projection
PjS Probability P restricted to family of sets S
QaP;QsP In the Lebesgue decomposition, absolutely continuous,

respectively, singular part of Q with respect to P
Q 	 PŒV.M/� On V.M/; P dominates Q
OH; IH Null, respectively, identity operator of Hilbert H
Tm In linear space, translation by m
B;C;D; J;M Operators (typically: J inclusion, M multiplication)
R; S;U;V;W Idem (R covariance, U unitary)
L.H;K/ Bounded, linear operators from H to K
B1.H/ Operators of H with finite trace
B2.H/ Hilbert-Schmidt operators of H
ŒB� Abbreviation for .B?B/1=2

t.B/ Abbreviation for
P

i2IhBŒei�; eiiH; ei’s complete, orthonor-
mal

�.B/ Trace norm of operator B; equal to t.ŒB�/
�.B/ Spectrum of operator B
RC Covariance operator associated with the covariance C
X;Y;Z Random variables (EŒX�;EPŒX�;VŒX�;VPŒX� expectation and

variance)
X � Y Random variables with the same law
X � N .0; 1/ Standard normal random variable
IID.X/ Independent, identically distributed, with law that of X
L.X/ Law of random variable X
U Uniform random variable on Œ0; 1�
M; hMi Martingale, respectively, associated quadratic variation
X;Y;Z Vectors of random variables
�.X/ �-algebra generated by element X
ı�.X/ �.X/ enlarged to contain measurable sets of measure zero
�ı.X/ �.X/ enlarged to contain measurable sets of measure zero,

and their subsets
FX Distribution function of random variable X
XŒ!� When X is a process, the path of X at !
X When X is a process, the map ! 7! XŒ!�
Xt When X is a process, the equivalence class of ! 7! X.
; t/
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PX When P is a probability, X a process, the probability gener-
ated by P and X, P ı X�1

˘ A property, a projection, a product
.˝;A;P/; .
;B;Q/ Probability spaces
PAjB (Regular) conditional law for P of object A given object B
OA Universally measurable sets for A
N .A;P/ The sets of A which have, for P; measure zero
A Filtration of A
A1 �-algebra generated by the filtration A
AN Trace of A over the complement of set N
AıNt Completion of At with respect to the subsets of N
.˝;A;P/ .˝;A;P/ with a filtration of A
Lp.˝;A;P/ Adapted functions whose p-th power is integrable (when p D

0; adapted maps, almost surely finite)
Lp.˝;A;P/ Equivalence classes, for P; of adapted functions whose p-th

power is integrable
LS

p.˝;A;P/ Equivalence classes, for P; of adapted functions with values
in space S; for which the p-th power of some norm is
integrableR

.w/

A .
R
.s/

A / Symbol for weak (strong) integral on A; result being hw
�;A

(hs
�;A)
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B.c; r/ Ball centered at c; of radius r; open or closed
c^.
 ^ 
/c_.
 _ 
/ Triangular covariance
DŒC0� Family of covariances dominated by covariance C0
rC D c_=c^
rC D 1=rC

Et Evaluation map at t
hŒt� Element of H determined by t
hjS Function h restricted to set S
L;H;K;KF Hilbert spaces
HF Linear closure of a map with range in H;

subspace orthogonal to the kernel of LF; denoted N ŒLF �

H;K;KF Reproducing kernels
�H.t1; t2/ H.t1; t1/� 2H.t1; t2/CH.t2; t2/
d2H.t1; t2/ jjH.
; t1/�H.
; t2/jj2H.H;T/
H� K Domination of kernels (covariances)
H�� K Domination of kernels (covariances) with a finite trace

property
JK;H K.
; t/ 7! H.
; t/ when H� K
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H.f ITn/ The elements h of H.H;T/ for which h.ti/ D f .ti/; ti 2 Tn

hf ITn DPn
iD1 iH.
; ti/

H.
; t/;KF.
; t/ Maps obtained from reproducing kernels fixing one argu-
ment

H.H;T/;H.KF;T/ Reproducing kernel Hilbert spaces
C.H;T/;B.H;T/ Cylinder, respectively Borel, sets of H.H;T/
H.H;T/ v H.K;T/ H.H;T/ � H.K;T/ and, on H.H;T/; jjhjjH.K;T/ �

jjhjjH.H;T/
LF Linear map whose range, denoted RŒLF�, is a reproducing

kernel Hilbert space
Œn; ˛; .t;T/� Shorthand for n 2 N; f˛1; : : : ; ˛ng � R; ft1; : : : ; tng � T
T Domain of a function, set of indices
Tc Subset of T determined by constraint c;

countable subset of T
Td Determining set for a covariance
Tn Finite subset of T with n elements
TH Support of a reproducing kernel
T< D T\� �1; tŒ
TC Subset of T over which a triangular covariance is not zero
T �-algebra on T

� Measure on T
VŒF � Linear space generated by a family F of elements
�TH Restriction map to TH
� TH

“Inverse” of �TH

˙H;Tn Covariance matrix obtained when restricting H to Tn � Tn

Part II: Cramér-Hida Representations

T Interval of R
tl; tr inf T; respectively, sup T
f Unless otherwise stated, a map with T as domain, and range in

H; a real Hilbert space
F F.t2/� F.t1/ D jjf .t2/ � f .t1/jj2H
Cf The function with domain T � T and values hf .t1/; f .t2/iH
fC; f� When f has limits to the right, respectively, to the left, the

function with those limits as values
LtŒf � (Closed) subspace generated linearly in H by the values of

f jfT\��1;t�g
L.C/

t Œf � (Closed) subspace generated by LtŒf � and fC.t/
Lı

t Œf � LtCıŒf � \ LtŒf �?

Pt Projection onto LtŒf �
Ht All h such that PtŒh� D 0H ; and, for � > t; P� Œh� D h
fh.t/ PtŒh�; h 2 H
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L\T Œf � Intersection of all subspaces LtŒf �
P\ Projection onto L\T Œf �
L[T Œf � Subspace generated by the union of all subspaces LtŒf �
P[ Projection onto L[T Œf �
L�t Œf � Subspace generated by the subspaces L� Œf � contained in LtŒf �
P�t Projection onto L�t Œf �
LCt Œf � Subspace generated by the subspaces L� Œf � containing LtŒf �
PCt Projection onto LCt Œf �
H?

t All h such that PtŒh� D 0H ; and PCt Œh� D h
�tŒP� PCt � Pt

MŒt� dim fRŒ�t ŒP��g
MŒCjt�;MŒtjC� Dimension of L.C/

t Œf � \ LtŒf �?; respectively, LCt Œf � \ L.C/
t Œf �?

�ŒP�
P

t2Td
�tŒP�

LdŒf � Projection onto�ŒP�
fd.t/ Projection of f .t/ onto LdŒf �
LcŒf � (Closed) subspace orthogonal of LdŒf �
fc.t/ Projection of f .t/ onto LcŒf �
Td Subset of T of elements for which �tŒP� ¤ OH ; respectively,

some (left, right) limit of f does not exist
P ŒS� Pre-ring of subsets of S
RŒS� Ring of subsets of S
� .P ŒS�/ �-ring generated by P ŒS�
m Measure on some family of subsets of S; with values in H
LŒm� (Closed) subspace generated linearly in H by the values of mR
Œf �dm Integral of (equivalence class) of numerical f with respect to

vector measure m
M M.S0/ D jjm.S0/jj2H
mS m restricted to the family S
MS M restricted to the family S
Sf The sets in S that have a finite measure, for some specified

measure
�h �h.S0/ D hh;m.S0/iH
j�j Total variation of the measure �
mf Vector measure with values in H; mf .S0/ D

R
S0
Œf �dm;

or vector measure such that mf .�t1; t2�/ D f .t2C/ � f .t1C/; f W
T �! H

mB Vector measure in K; mB.S0/ D B .m.S0// ; B W H �! K; linear
and bounded

m Vector whose components are of type m
HS Product of Hilbert spaces indexed by .S;S/
HS Measurable field of Hilbert spaces in HS

H�

S A subset of HS

H�

S Measurable field generated by H�

S
HI

S Given a measure �; subset of HS of square integrable functions
H�

S Given a measure �; equivalence classes in HI
S
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R ˚
S Hs�.ds/ The space H�

S with an Hilbertian structure,
a direct integral of the family fHs; s 2 Sg

.B;VŒH�;K/ Generalized process on H
Fh

i;j.t/ hhi.t/; hj.t/iH
Mh

i;j Measure determined by Fh

i;j

Mh Matrix measure with entries Mh

i;j
L2.T; T ;�/ Vector valued functions whose “square” is integrable with respect

to a matrix measure
L2.T; T ;�/ Hilbert space of equivalence classes of functions in L2.T; T ;�/
Œa.t/; h.t/� The sum

Pn
iD1 ai.t/hi.t/R

Œa;m� The sum
Pn

iD1
R

ai dmi

AŒt j t1; : : : ; tn� A matrix made of the evaluations of a at n points larger than t;
non-singular when associated with a Goursat non-singular map

LŒt1; t2�
˚
Pf

t1 Œf .t/� ; t � t2
�

LŒt1; t2� V ŒL Œt1; t2��
	f .�/

R
T e���Cf .�; �/d�

˘ a
˛ Exponential law with parameter ˛; and Œa;1Œ as support

j .t; �/
R

T e��� f .tC �/d�
q .t; �/ �

R
T e���Pt Œf .tC �/� d�

h�.t/ Knight’s martingale
L˚t .�/

R1
0

e��� ˚.tC �; t/d� D R1
0

e��� ˚t.�/d�
�t f� 2 �0; tŒ WWRTLeb; ˚� .�/ D 0; a:e:�g
�t

˚
.�; �/ 2 �0;1Œ � �0; tŒ W L˚� .�/ D 0

�
mXŒt� Index of multiplicity of X at t
sXŒt� Index of stationarity of X at t

Part III: Likelihoods

f ˘ g Given f .x; y/ and g.x; y/; f ˘ g.x; y/ D f .x; g.x; y//
f � g Given f .x; y/ and g.x; y/; f � g.x; y/ D f .g.x; 
/; y/
B Cramér-Hida process (with values in l2; and components Bn)
B.
; t/ jjB .!; t/jj2l2
bn Variance of Bn

b Sum of the bn’s
Mn Measure determined by bn

C.t/ Covariance operator of B.
; t/
hhBii Quadratic variation of B
E˛.!; t/ Exponential of a martingale, depending on parameter ˛
V Process with paths of bounded variation
WM; SM Wiener process, respectively, change of time, associated with

continuous martingale
S; ˙ Stopping times
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˛.t/ inf f˛.�/ � tg
˛.t/ inf f˛.�/ > tg
IB fag Integral of a with respect to B
IP
B fag Integral of a with respect to B; when there are several probabilities

of which one must take account
L2Œbn�;L2Œbn� Space of (equivalence classes of ) square integrable functions for

the measure Mn

L2Œb� Direct sum of the spaces L2Œbn�

ajt a multiplied by �
Œ0;t�

ajS a multiplied by �
ŒŒ0;S��

I0Œb� Classes of stochastic processes with values in R1 and paths almost
surely in L2Œb�

IP
0 Œb� Classes of stochastic processes with values in R1 and, with

respect to P; paths almost surely in L2Œb�
I2Œb� Elements in I0Œb� whose norm squared has finite expectation
I loc
2 Œb� Elements in I0Œb� for which there exists a localizing sequence

such that the elements, restricted to the corresponding stochastic
intervals, yield elements of I2Œb�

Hn.t; x/ Hermite polynomial
s Either l2 or R1

jj
jjs jj
jjl2 ; when s D l2; Fréchet quasinorm, when s D R1

C
Q1

nD1 CnŒ0; 1�; CnŒ0; 1� D CŒ0; 1�
c An element in C
jjcjj sup-norm of c in CŒ0; 1�
jjcjjp

˚P1
nD1 jjcnjjp

�1=p

jjcjjCl2
supt2Œ0;1� jjc.t/jjl2

jjcjjCF

P1
nD1

2�njjcnjj
1Cjjcnjj

Cp
S;Cl2 ;CF C with respective norm jjcjjp ; jjcjjCl2

; jjcjjCF

K C when it is either Cl2 or CF

K The Borel sets of K
K Filtration of K; that is generated by the evaluation maps
PK Probability on K
E�.k; t/ k.t/; evaluation map at t; for K; when measure � prevails
aK Process of type a defined on K
X D SŒa�C B Received signal in the form of a signal, determined by a; plus

additive noise
˚X.!; t/ .XŒ!�; t/
A � B Isomorphic filtrations
A v B Filtration A included in filtration B
A  B Filtration A includable in filtration B
AŒA� �-algebra of subsets of A included in A 2 A
P ŒA� Finite partitions of˝ with sets in A
} An element of P ŒA�
S.} j A0/ Support of } with respect to A0
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multPŒA j A0� Conditional multiplicity of A given A0; for probability P
QS.A/ For measurable A and S, P.A \ S/=P.S/
A _ B Filtration of elements At _ Bt

FI.A/ Family of filtrations immersed in A
S.A/ Family of �-algebras of A that are saturated for A
K Compact metric space with distance dK

PK Space of probability measures defined on the Borel sets of K
V.A;K/ Family of random elements with values in K; adapted to A
dV.A;K/.X;Y/ EP ŒdK.X;Y/� ; distance between two elements X and Y of V.A;K/
dKR Kantorovich-Rubinshtein distance on PK

M� Generalized inverse of matrix M
Z�0 f: : : ;�2;�1; 0g
IM ff g ; JM fg Integral of f , respectively , with respect to martingale M
P!

MjhMi For ! 2 ˝; fixed, but arbitrary, probability C 7! PMjhMi.!;C/
M A class of martingales
P A class of laws for a subset of M
F�Œf �.t/ �

Œ�;1Œ
.t/f .T��.t//

G�Œf �.t/ f .T�.t//
N Gaussian noise
BN Cramér-Hida process obtained from N
PN Probability induced on the cylinder sets of RŒ0;1� by N
P2

N Probability induced on the Borel sets of L2Œ0; 1� by N
Pc

N Probability induced on the Borel sets of CŒ0; 1� by N
˚;˚2;˚c Cramér-Hida maps for, respectively, real, square integrable, and

continuous paths
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Part I
Reproducing Kernel Hilbert Spaces

The sequence of words “reproducing kernel Hilbert space” shall often be abbrevi-
ated in the sequel using the acronym “RKHS.” As shall be seen [Part III], when the
noise is Gaussian, the signals which may be detected using the likelihood belong to
the RKHS associated with the specific noise with which one has to deal. The study
of RKHS’s is thus the study of the spaces of signals available for detection.

One has chosen to develop RKHS’s systematically as ranges of continuous,
linear operators with domain a Hilbert space [Chap. 1]. Such an approach has many
practical advantages as can be ascertained all through the book, as, for example,
when one establishes which kinds of functions belong to a specific RKHS [Chap. 2].
The ability of detecting signals is based on the relations of inclusion that may or
may not exist between the RKHS’s of the signal and the noise, as well as on their
“size” [Chap. 3], and it depends furthermore on the conditions (compactness of
linear operators) that insure that the paths of a signal are in the RKHS of the noise
[Chap. 4]. Finally, to appreciate what is achieved in Chap. 17, one must know how
detection is studied in a Gaussian context [Chap. 5].



Chapter 1
Reproducing Kernel Hilbert Spaces:
The Rudiments

This chapter provides and illustrates, following the table of contents, the basic tools
of the theory of reproducing kernel Hilbert spaces.

1.1 Definition and First Properties

Let T be a set, and H be a Hilbert space of functions, defined on T; with values
in R (one shall presently see that such spaces exist), whose inner product, for
.h1; h2/ 2 H �H; fixed, but arbitrary, shall be denoted

hh1; h2iH :

Given a function of two arguments, H W T � T �! R;H .
; t/ shall be, for fixed,
but arbitrary t 2 T; the function x 7! H .x; t/ : It shall always be assumed that H is
not identically zero.

Definition 1.1.1 A reproducing kernel for H; if it exists, is a function of two
arguments, H W T � T �! R; such that, for .h; t/ 2 H � T; fixed, but arbitrary,

1. H .
; t/ 2 HI
2. h .t/ D hh;H .
; t/iH:
Definition 1.1.2 A reproducing kernel Hilbert space is a Hilbert space of real
valued functions for which there exists a reproducing kernel (one shall presently
see that such spaces exist).

If, in (Definition) 1.1.2, H is the Hilbert space of functions, T the domain of these,
and H the reproducing kernel, the notation shall usually be H .H;T/ : The acronym
for reproducing kernel Hilbert space shall be RKHS. When the reproducing kernel
has domain T � T; one shall say that it is a reproducing kernel over T:

© Springer International Publishing Switzerland 2015
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4 1 Reproducing Kernel Hilbert Spaces: The Rudiments

Remark 1.1.3 Suppose H .H;T/ is an RKHS. Given .t; x/ 2 T � T; fixed, but
arbitrary, (Definition) 1.1.1 yields that

hH .
; x/ ;H .
; t/iH.H;T/ D H .t; x/ ;

hH .
; t/ ;H .
; x/iH.H;T/ D H .x; t/ ;

so that H .t; x/ D H .x; t/ (reproducing kernels are symmetric).

In the sequel, the triad Œn; ˛; .t;T/� shall represent the following elements:

n 2 N;

f˛1; : : : ; ˛ng � R;

ft1; : : : ; tng � T:

ft1; : : : ; tng shall also be written as Tn:

Remark 1.1.4 Suppose H .H;T/ is an RKHS. Definition 1.1.1 and the previous
remark also yield that, for Œn; ˛; .t;T/�; fixed, but arbitrary,

nX
iD1

nX
jD1

˛i˛jH
�
ti; tj

� D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.H;T/

:

Consequently the matrix ˙H;Tn ; with entries H
�
ti; tj

�
is positive definite, and

strictly positive definite when the functions fH .
; t1/ ; : : : ;H .
; tn/g are linearly
independent. In particular, for t 2 T; fixed, but arbitrary,

H .t; t/ D jjH .
; t/jj2H.H;T/
Proposition 1.1.5 One has, for the RKHS H.H;T/ ; that

1. H is symmetric and positive definite (it is thus a covariance: (Definition) 1.3.1);
2. for .t1; t2/ 2 T � T; fixed, but arbitrary,

jH .t1; t2/j � H1=2.t1; t1/H1=2.t2; t2/I

3. the family HŒT� D fH .
; t/ ; t 2 Tg is total [266, p. 32] in H.H;T/ ; so that the
linear manifold V ŒH� generated by that family is dense in H.H;T/ I

4. for .h; t/ 2 H.H;T/ � T; fixed, but arbitrary, and Et W RT �! R defined using
the following relation: Et Œh� D h .t/ ;

jEt Œh�j D jh .t/j � H1=2.t; t/ jjhjjH.H;T/ ;

so that each evaluation map is a continuous linear functional of H.H;T/ :
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Proof It suffices to invoke (Remarks) 1.1.3, 1.1.4, and the properties of inner
products [266]. ut
Proposition 1.1.6 Let K be a reproducing kernel for the RKHS H.H;T/ : Then
K D H; that is, RKHS’s have a unique reproducing kernel.

Proof As K .
; t/ 2 H .H;T/ ;

K .x; t/ D hK .
; t/ ;H .
; x/iH.H;T/:

But K being a kernel for H .H;T/ and H .
; x/ being an element of H .H;T/ ;

H .t; x/ D hH .
; x/ ;K .
; t/iH.H;T/:

Thus, using (Remark) 1.1.3 for the equality below, for fixed, but arbitrary elements
.x; t/ 2 T � T;

K .x; t/ D H .t; x/ D H .x; t/ :

ut
Proposition 1.1.7 Suppose that one has two RKHS’s with the same domain and the
same kernel, say H .H;T/ and K .H;T/ : Then H .H;T/ and K .H;T/ are identical
as Hilbert spaces. Consequently, one domain and one kernel determine a unique
RKHS.

Proof Since H .H;T/ and K .H;T/ have same kernel and domain, for Œn; ˛; .t;T/�
and Œ p; ˇ; .�;T/� fixed, but arbitrary,

h
nX

iD1
˛iH .
; ti/ ;

pX
jD1

ˇjH
�
; �j

�iH.H;T/ D
D

nX
iD1

pX
jD1

˛iˇjH
�
ti; �j

�

D h
nX

iD1
˛iH .
; ti/ ;

pX
jD1

ˇjH
�
; �j

�iK.H;T/:
Consequently, for fh1; h2g � V ŒH� ; fixed, but arbitrary,

hh1; h2iH.H;T/ D hh1; h2iK.H;T/:

V ŒH� is dense in H .H;T/ because of fact (Proposition) 1.1.5. So, given a fixed,
but arbitrary h 2 H .H;T/ ; there exists fhn; n 2 Ng � V ŒH� such that, in H .H;T/ ;
limn hn D h: fhn; n 2 Ng is thus a Cauchy sequence of H.H;T/ in VŒH�; and,
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consequently, also of K.H;T/: Let k be the corresponding limit. Then

h .t/ D hh;H .
; t/iH.H;T/
D lim

n
hhn;H .
; t/iH.H;T/

D lim
n
hhn;H .
; t/iK.H;T/

D hk;H .
; t/iK.H;T/
D k .t/ ;

so that, as functions, h D k; and, as sets, H .H;T/ � K .H;T/ : The respective roles
of H .H;T/ and K .H;T/ are, in the preceding argument, interchangeable. Thus, as
sets, they are equal. The norms in both spaces are furthermore equal:

jjhjjK.H;T/ D jjkjjK.H;T/ D lim
n
jjhnjjK.H;T/ D lim

n
jjhnjjH.H;T/ D jjhjjH.H;T/ :

ut
Proposition 1.1.8 A Hilbert space H of real valued functions over a set T is an
RKHS if, and only if, all evaluation maps are continuous linear functionals of H:

Proof Suppose that H is the RKHS H .H;T/ :
That the evaluation maps are continuous linear functionals of H .H;T/ has

already been asserted in property (Proposition) 1.1.5.

Proof Suppose that all evaluation maps are continuous linear functionals of H:
Fix t 2 T arbitrarily. By the Riesz representation theorem [266, p. 64], there is a

unique hŒt� 2 H such that EtŒh� D hh; hŒt�iH; h 2 H: It then suffices to set, for fixed,
but arbitrary .t; x/ 2 T � T;

H .x; t/ D hŒt� .x/ :

Indeed H .
; t/ D hŒt� 2 H; and, for h 2 H; fixed, but arbitrary,

hh;H .
; t/iH D hh; hŒt�iH D EtŒh� D h.t/ :

ut
Proposition 1.1.9 Let H .H;T/ be an RKHS, and c 2 �0;1Œ be a fixed, but
arbitrary constant. Let Tc D ft 2 T W H .t; t/ � cg : Then:

1. [Point-wise convergence] when fhn; n 2 Ng � H .H;T/ is a sequence which
converges weakly to h 2 H .H;T/ ; for fixed, but arbitrary t 2 T; limn hn .t/ D
h .t/ I
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2. [Uniform convergence] when fhn; n 2 Ng � H .H;T/ is a sequence which
converges in norm to h 2 H .H;T/ ; given � > 0; fixed, but arbitrary, there
exists n .�/ > 0 such that, for any n > n .�/ and any t 2 Tc; jhn .t/ � h .t/j < �:

Proof From facts (Definition) 1.1.1 and (Proposition) 1.1.5, one has that

jh .t/ � hn .t/j D
ˇ̌hh � hn;H .
; t/iH.H;T/

ˇ̌ � H1=2.t; t/ jjh � hnjjH.H;T/ :

The equality proves item 1, and the inequality, item 2. ut
Since V ŒH� is dense in H .H;T/ [(Proposition) 1.1.5], one has the following
corollary:

Corollary 1.1.10 Every h 2 H .H;T/ is the pointwise limit of a sequence
fhn; n 2 Ng � V ŒH� :

Corollary 1.1.11 When H .H;T/ is separable, for every complete orthonormal set
fen; n 2 Ng � H .H;T/ ; and fixed, but arbitrary .h; t/ 2 H .H;T/ � T;

1. h .t/ DP1nD1hh; eniH.H;T/ en .t/ ;
2.
ˇ̌P1

nD1hh; eniH.H;T/en .t/
ˇ̌ � H1=2.t; t/ jjhjjH.H;T/ :

The series converges at every t 2 T; and uniformly on the sets Tc of result
(Proposition) 1.1.9.

Proof Let hn DPn
iD1hh; eniH.H;T/en: fhn; n 2 Ng converges in norm to h; and

hn .t/ D hhn;H .
; t/iH.H;T/ D
nX

iD1
hh; eniH.H;T/ en .t/ :

Thus item 1 follows from (Proposition) 1.1.9, and item 2, from item 1 and
(Proposition) 1.1.5. ut
Remark 1.1.12 ([35, p. 34]) Suppose T has a topology, and that the map F W T �!
H .H;T/ ; computed as F .t/ D H .
; t/ ; is continuous. Let fhn; n 2 Ng � H .H;T/
be weakly convergent to h 2 H .H;T/ : Then, given a fixed, but arbitrary compact
subset Tc � T;

˚
hjTc

n ; n 2 N
�

converges uniformly to hjTc :

Indeed, Hc; the image of Tc by F; is compact [84, p. 224]. For t 2 Tc; fixed, but
arbitrary, let

B .t; ı/ D ˚h 2 H .H;T/ W jjh �H .
; t/jjH.H;T/ < ı
�
:

One thus obtains an open covering of Hc from which a finite one, corresponding
say to n

t.ı/1 ; : : : ; t
.ı/

nŒı�

o
� Tc;
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may be extracted. Thus, for t 2 Tc; fixed, but arbitrary, there is an element

t.ı/i Œt� 2
n
t.ı/1 ; : : : ; t

.ı/

nŒı�

o
such that ˇ̌̌̌

H .
; t/�H
�
; t.ı/i Œt�

�ˇ̌̌̌
H.H;T/ < ı:

As a weakly convergent sequence is bounded [266, p. 79], let

� D sup
n
jjhnjjH.H;T/ <1:

Given � > 0; fixed, but arbitrary, let ı D �.4�/�1: Using weak convergence, choose
[(Proposition) 1.1.9] n� such that, for n � n� and i 2 Œ1 W nŒı�� ; fixed, but arbitrary,

ˇ̌
h
�
t.ı/i Œt�

� � hn
�
t.ı/i Œt�

�ˇ̌
<
�

2
:

Then, for t 2 Tc; fixed, but arbitrary, since h .t/ � hn .t/ may be written as�
h .t/ � h

�
t.ı/i Œt�

��C �h �t.ı/i Œt�
�� hn

�
t.ı/i Œt�

��C �hn
�
t.ı/i Œt�

� � hn .t/
�
;

its absolute value is dominated byˇ̌
h
�
t.ı/i Œt�

�� hn
�
t.ı/i Œt�

�ˇ̌C ˇ̌fh .t/ � hn .t/g �
˚
h
�
t.ı/i Œt�

� � hn
�
t.ı/i Œt�

��ˇ̌
which is strictly less than

�

2
C
ˇ̌̌
hh� hn;H .
; t/iH.H;T/ �

˝
h � hn;H

�
; t.ı/i Œt�
�˛

H.H;T/

ˇ̌̌
:

Thus, using the fact [266, p. 78] that, in the presence of weak convergence,

jjhjjH.H;T/ � lim inf
n
jjhnjjH.H;T/ .� sup

n
jjhnjjH.H;T/ D �/;

one has that

jh .t/ � hn .t/j < �

2
C ˇ̌hh � hn;H .
; t/�H

�
; t.ı/i Œt�
�iH.H;T/ ˇ̌

� �

2
C jjh � hnjjH.H;T/

ˇ̌̌̌
H .
; t/�H

�
; t.ı/i Œt�
�ˇ̌̌̌

H.H;T/

<
�

2
C .2�/

� �
4�

�
D �:



1.1 Definition and First Properties 9

Remark 1.1.13 Suppose T has a topology, and F W T �! H .H;T/ ; computed as
F .t/ D H .
; t/ ; is continuous. As, for ft1; t2g � T; fixed, but arbitrary,

jh .t1/� h .t2/j D
ˇ̌hh;H .
; t1/ �H .
; t2/iH.H;T/

ˇ̌
� jjhjjH.H;T/ jjF .t1/ � F .t2/jjH.H;T/ ;

bounded sets in H .H;T/ are made of equicontinuous functions.

Remark 1.1.14 Another version of result (Corollary) 1.1.11 is as follows. Suppose
that

fei; i 2 I � Ng � H .H;T/

is a fixed, but arbitrary orthonormal set, and ˛ 2 l2; a fixed, but arbitrary element.
Then, for t 2 T; fixed, but arbitrary,

ˇ̌̌
ˇ̌X

i2I

˛iei .t/

ˇ̌̌
ˇ̌ D

ˇ̌̌
ˇ̌̌*X

i2I

˛iei;H .
; t/
+

H.H;T/

ˇ̌̌
ˇ̌̌ � H1=2.t; t/ jj˛jjl2 :

Many RKHS’s can be obtained rather quickly with the help of the following result
which will be of use repeatedly. R denotes range, and N ; kernel or null space. The
content of an adjacent straight parenthesis indicates of which map one considers the
range or the kernel. A contraction is a bounded, linear operator whose norm is at
most one.

Proposition 1.1.15 Let T be a set, and H; a real Hilbert space. Suppose one is
given a function F W T �! H: Let

HF D V ŒRŒF�� � H;

and PHF denote the corresponding projection of H onto HF: Let the map LF W H �!
RT be defined using the following relation: for .h; t/ 2 H � T; fixed, but arbitrary,

LF Œh� .t/ D hh;F .t/iH :

LF shall be taken as a map from H onto its range. On RŒLF �; for elements .h1; h2/ 2
H � H; fixed, but arbitrary, let the formula

hLF Œh1� ;LF Œh2�iRŒLF � D hPHF Œh1� ;PHF Œh2�iH (?)

designate a tentative inner product. Then:

1. LF is linear, so that RŒF� is a linear manifold in RT I
2. the tentative inner product formula (?) makes of RŒF� a Hilbert space, so that

LF is a contraction;
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3. N ŒLF � is closed and equal to H?F I
4. RŒLF � is an RKHS whose reproducing kernel KF is given by the following

relation:

KF .t1; t2/ D hF .t1/ ;F .t2/iHI

5. LF has the following further properties:

(i) it is a partial isometry, with HF as initial set, and RŒLF � as final set;
(ii) the restriction UF D LjHF

F of LF to HF is unitary, and

LF D UFPHF I

(iii) when it is an injection, LF is unitary;
(iv) LF ŒF.t/� D KF.
; t/; and L?F ŒKF .
; t/� D F .t/ :

Proof LF is linear:

LF Œ˛1h1 C ˛2h2� .t/ D h˛1h1 C ˛2h2;F .t/iH
D ˛1hh1;F .t/iH C ˛2hh2;F .t/iH
D ˛1LF Œh1� .t/C ˛2LF Œh2� .t/

D f˛1LF Œh1�C ˛2LF Œh2�g .t/ :

Proof The expression (?) for hLF Œh1� ;LF Œh2�iRŒLF � produces an inner product on
RŒLF�:

• it is bilinear as, using successively the linearity of LF and the definition,

h˛1LF Œh1�C ˛2LF Œh2� ;LF Œh�iRŒLF � D
D hLF Œ˛1h1 C ˛2h2� ;LF Œh�iRŒLF �

D hPHF Œ˛1h1 C ˛2h2� ;PHF Œh�iH
D ˛1hPHF Œh1� ;PHF Œh�iH C ˛2hPHF Œh2� ;PHF Œh�iH
D ˛1hLF Œh1� ;LF Œh�iRŒLF � C ˛2hLF Œh2� ;LF Œh�iRŒLF �I

• it is strictly positive definite: indeed, by definition,

jjLF Œh�jj2RŒLF �
D jjPHF Œh�jj2H � 0I

but jjPHF Œh�jjH is zero when h 2 H?F I then, by the definition of LF; LF Œh� D 0T ;

and the bilinear form is thus strictly positive definite.
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Proof The manifold RŒLF � with the given tentative inner product (?) is complete:
let indeed fLF Œhn� ; n 2 Ng � RŒLF � be Cauchy; then the sequence

fPHF Œhn� ; 2 Ng � HF

is Cauchy, and there exists a unique h 2 HF such that, in H;

lim
n

PHF Œhn� D hI

but then, by the definition of the (RKHS) inner product,

lim
n
jjLF Œhn� � LF Œh�jjRŒLF �

D lim
n
jjPHF Œhn� � hjjH D 0;

and every Cauchy sequence in RŒLF� has a unique limit in RŒLF �:

Proof The manifold N ŒLF � is closed: because of [266, p. 35],

N ŒLF � D RŒF�? D V ŒRŒF��? D V ŒRŒF��? D H?F :

Proof The Hilbert space of functions RŒLF � is an RKHS:
let KF .
; t/ D LF ŒF .t/� 2 RŒLF �: Then

KF .x; t/ D LF ŒF .t/� .x/ D hF .t/ ;F .x/iH
defines a candidate kernel; but, for k D LF Œh� ;

hk;KF .
; t/iRŒLF � D hLF Œh� ;LF ŒF .t/�iRŒLF �

D hPHF Œh� ;F .t/iH
D hh;F .t/iH
D LF Œh� .t/

D k .t/ ;

and KF has the reproducing property.

Proof (5.iv) By definition

LF Œh� .t/ D hh;F .t/iHI

but, since LF Œh� 2 H.KF;T/ ; also

LF Œh� .t/ D hLF Œh� ;KF .
; t/iH.KF ;T/ D hh;L?F ŒKF .
; t/�iH:

ut
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Remark 1.1.16 Result (Proposition) 1.1.15 shall often be used in the sequel so that
one shall adopt a perhaps more convenient, certainly more flexible notation than
that used so far. One shall keep KF; LF , and HF; but replace RŒLF� with KF: When
convenient one shall also write K;L and K; and sometimes also H .KF;T/ for KF;

and H .K;T/ for K:

Remark 1.1.17 ([209, p. 1]) Every RKHS may be obtained by the procedure of
(Proposition) 1.1.15.

Let indeed H .H;T/ be an RKHS. As seen [(Proposition) 1.1.5], H is a
covariance. But each covariance gives rise as follows [273, p. 238] to a Gaussian
process whose mean is the zero function, and whose covariance is H: Let ˝ D RT ;

and A be the �-algebra generated by the evaluation maps fEt; t 2 Tg : Then the
requirement that, for fixed, but arbitrary n 2 N and ft1; : : : ; tng � T;

.Et1 ; : : : ; Etn/ � N .0Rn ; ˙H;Tn/

determines a probability measure PH on A (the entries of ˙H;Tn are those of
the following set:

˚
H
�
ti; tj

�
; fi; jg � Œ1 W n��/: The stochastic process is produced

setting

X . f ; t/ D Et Œ f � :

Let Xt be the equivalence class of X .
; t/ with respect to PH; and set

F W T �! L2 .˝;A;PH/ ; F .t/ D Xt:

An application of (Proposition) 1.1.15 yields H .H;T/ :
Remark 1.1.18 To use (Proposition) 1.1.15, it suffices, allowing for (Proposi-
tion) 1.1.7, to identify the Hilbert space H and the function F:

Remark 1.1.19 When T has “structure,” and F of (Proposition) 1.1.15 is “adapted”
to it, the functions of H .H;T/ will “reflect” the properties of F and T: This
statement has already been evidenced in (Remark) 1.1.12 and in (Remark) 1.1.13.
The chapter which follows shall make that same statement systematically explicit.

The following examples of RKHS’s illustrate the use, and efficiency, of (Proposi-
tion) 1.1.15.

Example 1.1.20 Let u and v be fixed, but arbitrary elements of Rn with respective
components u1; : : : ; un and v1; : : : ; vn: The usual inner product of Rn shall be
denoted, for fixed, but arbitrary .u; v/ 2 Rn �Rn;

hu; viRn D
nX

iD1
uivi:
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Let ei be the i-th standard basis vector of Rn; and M be a symmetric, strictly positive
definite matrix of dimension n: Define an inner product on Rn using the following
relation, valid for fixed, but arbitrary

˚
h1; h2

� � Rn W

hh1; h2iM D hM
�
h1
�
; h2iRn :

Let HM denote the corresponding Hilbert space: thus when M D In; the identity
matrix, HIn D Rn: B shall be any n � n matrix.

Let T D Œ1 W n� be the set of integers running from 1 to n; and define

FB W T �! HM using FB .i/ D Bei:

Then (writing for example LB for LFB )

LB Œh� .i/ D hh;FB .i/iM D hB?M Œh� ; eiiRn ;

so that LB D B?M: Thus

N ŒLB� D N ŒB?M� and KB D RŒB?M�:

Furthermore, since, for any bounded, linear operator L [266, pp. 35,71],

N ŒL�? D RŒL?�;

and that finite dimensional subspaces are closed [266, p. 48],

HB D N ŒLB�
? D RŒ.B?M/?� D RŒM?B� D RŒMB�;

and thus

hLB
�
h1
�
;LB

�
h2
�iKB D hPRŒMB�

�
h1
�
;PRŒMB�

�
h2
�iM

D hMPRŒMB�
�
h1
�
;PRŒMB�

�
h2
�iRn ;

and also

KB .i; j/ D hFB .i/ ;FB . j/iM D hB?MB
�
ei

�
; ejiRn :

As a particular case one may choose B D In and M D ˙; a strictly positive definite
covariance matrix. Then:

• LB D M D ˙;
• ei D LB

�
hi

�
has the solution hi D ˙�1

�
ei

�
;

• PN ŒLB �?
D In;
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so that

hei; ejiKB D hLB
�
hi

�
;LB

h
hj

i
iKB

D hhi; hji˙
D h˙ �

hi

�
; hjiRn

D h˙�1 �ei

�
; ejiRn :

Consequently ha; biKB D h˙�1 Œa� ; biRn :

Example 1.1.21 Let T be a set, and f W T �! R be a function different from the
null function. Write f˛ for the function f˛ .t/ D ˛f .t/ : Then H D f f˛; ˛ 2 Rg is
a Hilbert space with inner product h f˛; fˇiH D ˛ˇ; isomorphic to R: In particular
jj f jjH D jj f1jjH D 1:

Let F .t/ D f .t/ f D ff .t/ 2 H: Then

LF Œ f˛� .t/ D h f˛; ff .t/iH D ˛f .t/ D f˛ .t/ ;

so that LF is the identity. Furthermore N ŒLF� D f f0g and LF is unitary, so that
KF D H: H is thus an RKHS with kernel

KF .t1; t2/ D hF .t1/ ;F .t2/iH D h ff .t1/; ff .t2/iH D f .t1/ f .t2/ :

Example 1.1.22 Let V be a manifold of RT of dimension n 2 N; generated by
the following linearly independent set: fv1; : : : ; vng : Let M be a symmetric, strictly
positive definite matrix of size n: For ft1; t2g � T; fixed, but arbitrary, let

H .t1; t2/ D hMv .t1/ ; v .t2/iRn ;

where v .t/ 2 Rn has components fv1 .t/ ; : : : ; vn .t/g :H is positive definite. Since

H .x; t/ D hMv .x/ ; v .t/iRn D hv .x/ ;Mv .t/iRn D
nX

iD1
hMv .t/ ; eiiRnvi .x/ ;

it follows that

H .
; t/ D
nX

iD1
hMv .t/ ; eiiRnvi 2 V:
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For i 2 Œ1 W n� ; fixed, but arbitrary, let ci.t/ D hMv .t/ ; eiiRn and c have components
ci; i 2 Œ1 W n� : Then

c.t/ D Mv .t/ and H .
; t/ D
nX

iD1
ci.t/vi:

For fh1; h2g � V (and t 2 T), fixed, but arbitrary, with

h1.t/ D
nX

iD1
˛
.1/

i vi.t/ and h2.t/ D
nX

iD1
˛
.2/

i vi.t/;

set

hh1; h2iV D hM�1˛1; ˛2iRn ;

where, for example, ˛1 has components˚
˛
.1/

1 ; : : : ; ˛
.1/

n

�
:

One thus defines an inner product. Since

jjh1 � h2jj2V D hM�1 .˛1 � ˛2/ ; .˛1 � ˛2/iRn ;

with that inner product, V is complete, and thus a Hilbert space of functions.
Let F W T �! V be defined using the following relation: F .t/ D H .
; t/ : Then,

for h 2 V; fixed, but arbitrary, h DPn
iD1 ˛ivi;

LF Œh� .t/ D hh;H .
; t/iV
D hM�1˛; c.t/iRn

D hM�1˛;Mv .t/iRn

D h˛; v .t/iRn ;

so that

LFŒh�.t/ D
nX

iD1
˛ivi .t/ D h .t/ :

LF is thus the identity. Furthermore,

KF .t1; t2/ D hH .
; t1/ ;H .
; t2/iV D hM�1Mv .t1/ ;Mv .t2/iRn D H .t1; t2/ :

Hence V D H .H;T/ :
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One may notice that, for fi; jg � Œ1 W n� ; fixed, but arbitrary,

hvi; vjiH.H;T/ D hM�1ei; ejiRn :

Consequently, when one chooses M D In; the identity matrix of dimension n;
fv1; : : : ; vng is an orthonormal set in H .H;T/ :

Suppose that M is only positive definite, and that the vectors are not linearly
independent. Let a largest linearly independent subset of fv1; : : : ; vng be denoted˚
u1; : : : ; up

�
; p < n; and the remaining vectors be denoted

˚
w1; : : : ;wn�p

�
: Let

Mw;v be the matrix that expresses the w’s as linear combinations of the u’s. There is
then a permutation matrix [127, p. 86] P such that, for t 2 T; fixed, but arbitrary,

v .t/ D P?
	

Ip

Mw;v



u .t/ D Mv;u Œu .t/� :

Then

hM Œv .t1/� ; v .t1/iRn D h˚M?
v;uMMv;u

�
Œu .t1/� ; u .t2/iRp :

Let m be the rank of M?
v;uMMv;u: When m < p; let,

• for orthonormal
˚
m1; : : : ;mm

�
; M?

v;uMMv;u DPm
iD1 �i mi ˝ mi;

• Md be the diagonal matrix with successive entries �1; : : : ; �m;

• for i 2 Œ1 W m� ; fixed, but arbitrary, Qvi .t/ D hmi; u .t/iRp :

Then

h˚M?
v;uMMv;u

�
Œu .t1/� ; u .t2/iRp D hMd Œ Qv .t1/� ; Qv .t2/iRm :

The functions Qv1; : : : ; Qvm are linearly independent. Suppose indeed that,

mX
iD1

˛i Qvi D 0:

Then, for t 2 T; fixed, but arbitrary,*
mX

iD1
˛i mi; u .t/

+
Rp

D 0:

One has that fu .t/ ; t 2 Tg generates Rp since

0 D hx; u .t/iRp D
pX

iD1
xi ui .t/
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implies x D 0Rp as the ui’s are linearly independent. Consequently

mX
iD1

˛i mi D 0Rp ;

that is ˛1 D 
 
 
 D ˛m D 0: It follows that one may always assume that M is strictly
positive definite and that v1; : : : ; vn are linearly independent.

Example 1.1.23 ([7, p. 43]) Let fa; bg � R; a < b; be fixed, but arbitrary, T be
Œa; b� ; and Pn

T be the set of real polynomials of degree n over T: Pn
T is a vector

space. Let c 2 T be fixed, but arbitrary, and let every p 2 Pn
T have the (Taylor)

representation

p .t/ D
nX

iD0
p.i/ .c/

.t � c/i

iŠ
;

where p.i/ .c/ is the i-th derivative of p evaluated at c: Let H D RnC1 with its usual
inner product, and let F W T �! H be defined using the following relation: for
i 2 Œ0 W n� ; fixed, but arbitrary,

hF .t/ ; eiiH D
.t � c/i

iŠ
;

so that

LF Œx� .t/ D hx;F .t/iH D
nX

iD0
xi
.t � c/i

iŠ
; and thus LF Œx� 2 Pn

T :

LF is a bijection, so that

hLF Œx� ;LF

h
y
i
iRŒLF � D hx; yiH :

Furthermore, for ft1; t2g � T; fixed, but arbitrary,

KF .t1; t2/ D hF .t1/ ;F .t2/iH D
nX

iD0

.t1 � c/i

iŠ

.t2 � c/i

iŠ
:

Pn
T is thus an RKHS with kernel KF:

Example 1.1.24 Let T D N; and F W T �! l2 be defined using the following
relation: F .n/ D en; the n-th element of the standard basis of l2: Then, for h 2 l2;
fixed, but arbitrary, LF Œh� .n/ D hn; the component of h in position n: Obviously the
null space of LF is the zero sequence so that LF is the identity. Finally, for fixed, but
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arbitrary fn1; n2g � N;

HF .n1; n2/ D hF .n1/ ;F .n2/iH D ın1;n2 ;

and HF .
; n/ D en: Thus l2 D H .HF;N/ :

Example 1.1.25 Let Leb denote Lebesgue measure, and L2 Œ0; 1� ; the following
space: L2 .Œ0; 1� ;B Œ0; 1� ;Leb/ : Let the equivalence class of the indicator function
of Œ0; t� ; �

Œ0;t� ; be denoted It; and that of the function h; Œh� : Choose for H; L2 Œ0; 1� ;
and, for F; the map defined using the following equality: F .t/ D It: Then

L Œ Œh�� .t/ D hŒh� ; ItiL2Œ0;1� D
Z t

0

h .x/ dx:

L is thus the standard Volterra operator [236, p. 384]. Also N ŒL� D ˚�0Œ0;1��� and

hL ŒŒh1� � ;L Œ Œh2��iK D hŒh1� ; Œh2�iL2Œ0;1� D
Z 1

0

h1 .x/ h2 .x/ dx:

Finally

K .t1; t2/ D hF .t1/ ;F .t2/iL2Œ0;1� D hIt1 ; It2iL2Œ0;1�;

so that K .t1; t2/ D t1 ^ t2; the covariance of the standard Wiener process.
Let f1; f2 W Œ0; 1� �! R be defined using the following relations: for t 2 Œ0; 1� ;

fixed, but arbitrary,

f1 .t/ D 1; f2 .t/ D t:

Then f1 does not belong to H .K; Œ0; 1�/ ; but f2 does, and its norm is equal to one.

Example 1.1.26 Let .˝;A;P/ be a probability space, and L2 .˝;A;P/ be the
Hilbert space of equivalence classes of random variables whose square is integrable.
Let X W ˝ � T �! R be a second order stochastic process, that is, for t 2 T;
fixed, but arbitrary, X .
; t/ is adapted to A and EP ŒX2 .
; t/� < 1: The equivalence
class of X .
; t/ shall be denoted Xt; and LP ŒX� shall be the subspace of L2 .˝;A;P/
generated linearly by fXt; t 2 Tg ; that is, V ŒfXt; t 2 Tg�:

Let F W T �! L2 .˝;A;P/ be defined using the following assignment: F .t/ D
Xt: Then HF D LP ŒX� : F allows one to define an RKHS K using the ensuing
assignment: for Y 2 L2 .˝;A;P/ ; fixed, but arbitrary, PY; one of its members,

LF ŒY� .t/ D hY;XtiL2.˝;A;P/ D EP
� PYX .
; t/� :
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The reproducing kernel K is obtained using the following expression:

K .t1; t2/ D hXt1 ;Xt2iL2.˝;A;P/ D EP ŒX .
; t1/X .
; t2/� ;

and the inner product, the following equality:

hLF ŒY1� ;LF ŒY2�iK D hPLPŒX� ŒY1� ;PLPŒX� ŒY2�iL2.˝;A;P/:

Let

I D Œ1˝�L2.˝;A;P/ ;
IX D PLP ŒX� ŒI� ;
hI D LF ŒI� ;
hY D LF ŒY� :

Then:

• The element hI has norm less than one. Indeed,

jjhIjj2K D jjLF ŒI�jj2K
D ˇ̌̌̌

PLPŒX� ŒI�
ˇ̌̌̌
2

L2.˝;A;P/

� jjIjj2L2.˝;A;P/
D EP

�
12˝
�

D 1I

• The expectation of certain random variables can be computed as an RKHS inner
product.

Indeed,

hhY ; hIiK D hPLPŒX� ŒY� ; IXiL2.˝;A;P/;

so that, when Y 2 LP ŒX� ;

hhY ; hIiK D hY; IiL2.˝;A;P/ D EP
� PY� :

In particular, when Y D Xt; one gets LF ŒXt� .x/ D K .x; t/ ; and, furthermore,

hI .t/ D hhI;K .
; t/iK D hhI; hXtiK D EP ŒX .
; t/� :

Thus the mean function of X belongs to the RKHS it generates, and, in it, has a
norm at most equal to one. It is the image of the class of random variables that
are almost surely equal to one.
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• The variance of certain random variables can be expressed in terms of an RKHS
inner product.

Indeed, when Y 2 LP ŒX� ;

VP
� PY� D EP

� PY2
� � E2

P

� PY� D jjhY jj2K � hhY ; hIiK :

Suppose that one, instead of F; uses F0 W T �! L2 .˝;A;P/ ; defined using the
following relation:

F0 .t/ D Xt � ŒEP ŒX .
; t/��P :

The kernel K0 is then the covariance of X. HF0 is generated by the family
fXt � ŒEP ŒX .
; t/��P ; t 2 Tg : Furthermore

LF0 ŒY� .t/ D hY;Xt � ŒEP ŒX .
; t/��PiL2.˝;A;P/;

so that

hI .t/ D LF0 ŒI� .t/ D hI;Xt � ŒEP ŒX .
; t/��PiL2.˝;A;P/ D 0:

The elements of HF0 have then a mean that is equal to zero as hI is the zero element,
and, for Y 2 LP ŒX� ;

0 D hLF0 ŒY� ;LF0 ŒI�iK
D hPHF0

ŒY� ;PHF0
ŒI�iL2.˝;A;P/

D hY; IiL2.˝;A;P/
D EP

� PY� :
Consequently LF0 ŒY� .t/ D cov

� PY;X .
; t/� :
This example may be extended to include “white noise” [124, p. 251].
Let O be an open subset of R; and D ŒO� be the vector space of functions with

values in R; and domain O, whose support is contained in a compact subset of O;
and which are infinitely differentiable. A sequence f fn; n 2 Ng � D ŒO� converges
towards zero when the supports of the elements in the sequence are subsets of the
same compact set of O; and that, for i 2 N; fixed, but arbitrary, f .i/n being the i-th
derivative of fn;

lim
n

max
t

ˇ̌
f .i/n .t/

ˇ̌ D 0:
A generalized, second order process is a linear map

X W D ŒO� �! L2 .˝;A;P/ :
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The process is continuous when the map X is continuous. When the map X has the
following form:

X Œ f � D (class of)
Z

T
X .!; t/ f .t/ dt;

for locally integrable X (the integral of the paths of X exists on compact sets), one
says that the generalized process is represented by an “ordinary” one. A generalized
process is Gaussian when its range is contained in a subspace of Gaussian random
variables.

In what follows no distinction between a random variable and its equivalence
class shall be made. Let W be a standard Wiener process, and W Œ f � be the value at f
of the generalized process it represents. When T D Œ0; 1� ; one shall restrict attention
to functions f that have support in T; so that their values, as well as those of their
derivatives, at 0 and 1, are zero. One has that EP ŒW Œ f �� D 0; and that

EP ŒW Œ f �W Œg�� D
Z 1

0

Z 1

0

ft ^ �g f .t/ g .�/ dtd�:

One shall need below another expression for that covariance which is obtained as
follows. Let F be a primitive of f ; and G; of g W
• [step 1] using 2 fs ^ tg D sC t � js � tj ; splitting the unit square into two parts,

s � t and s > t; and integrating separately the s C t and the js � tj parts, one
obtains that

2

Z 1

0

Z 1

0

fs ^ tg f .s/ g .t/ dsdt D
Z 1

0

sf .s/ ds
Z 1

0

g .s/ ds

C
Z 1

0

sg .s/ ds
Z 1

0

f .s/ ds

�
Z 1

0

f .s/ ds
Z s

0

.s� t/ g .t/ dt

�
Z 1

0

g .s/ ds
Z s

0

.s � t/ f .t/ dtI

• [step 2] let  .t/ D t and  .t/ D R 1
t g .s/ dsI then Œ .t/  .t/�10 D 0; and, P and

P denoting derivatives,

Z 1

0

sg .s/ ds D �
Z 1

0

.s/ P .s/ds

D Œ .s/  .s/�10 �
Z 1

0

 .s/ P .s/ ds



22 1 Reproducing Kernel Hilbert Spaces: The Rudiments

D
Z 1

0

P .s/  .t/ ds

D
Z 1

0

dt
Z 1

t
g .s/ ds

D
Z 1

0

fG .1/� G .t/g dtI

• [step 3] one has thatZ s

0

.s � t/ g .t/ dt D Œ.s � t/G .t/�s0 �
Z s

0

.�1/G .t/ dt D
Z s

0

G .t/ dt;

so that Z 1

0

f .s/ ds
Z s

0

G .t/ dt D
	

F .t/
Z t

0

G .s/ ds


1
0

�
Z 1

0

F .s/G .s/ ds

D F .1/
Z 1

0

G .s/ ds�
Z 1

0

F .s/G .s/ ds

D
Z 1

0

fF .1/� F .s/gG .s/ ds:

Assembling the parts one gets that

2

Z 1

0

Z 1

0

fs ^ tg f .s/ g .t/ dsdt D F .1/
Z 1

0

fG .1/�G .s/g ds

C G .1/
Z 1

0

fF .1/� F .s/g ds

�
Z 1

0

fF .1/� F .s/gG .s/ ds

�
Z 1

0

fG .1/� G .s/gF .s/ ds

D 2
Z 1

0

fF .1/� F .s/g fG .1/�G .s/g ds:

Thus

EP ŒW Œ f �W Œg�� D
Z 1

0

fF .1/� F .s/g fG .1/� G .s/g ds: (?)
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Let now PW be the derivative of W in the sense of distributions, and  be a test
function (here P shall denote the derivative of  rather than an element in an
equivalence class):

PW Œ� D �W
� P� ;

so that ((?) with F.1/ D G.1/ D 0)

C PW .;  / D EP
�
W
� P�W

� P �� D Z 1

0

 .t/  .t/ dt:

Let F PW W D ŒT� �! L2 .˝;A;P/ be defined using the following relation:

F PW Œ� D PW Œ� ;

and LF PW W L2 .˝;A;P/ �! RDŒT�; using the following one:

LF PW ŒX� ./ D EP
�
X PW Œ�

�
:

Now, as WŒ� D RT W.
; t/.t/dt;

EP ŒXW Œ�� D
Z 1

0

EP ŒXW.
; t/�  .t/ dt:

But EP ŒXW.
; t/� belongs to H .CW ;T/ ; the RKHS of (Example) 1.1.26, so that
[(Example) 1.1.25], for some fX 2 L2 Œ0; 1� ; with V Œ fX � .t/ D

R t
0

fX .�/ d�;

EP ŒXW Œ�� D
Z 1

0

V Œ fX� .t/  .t/ dt:

Thus

EP
�
X PW Œ�

� D EP
�
X
��W

� P���
D �

Z 1

0

V Œ fX � .t/ P .t/ dt

D
Z 1

0

fX .t/  .t/ dt;

and

H
�
C PW ;D ŒT�

� D �˚f W  7!
Z 1

0

.t/f .t/ dt;  2 D ŒT� ; f 2 L2 Œ0; 1�

�
:
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Since, as a consequence of the covariance computation,

EP

h� PW Œ� � PW Œ �
�2i D EP

h�
W
� P � �W

� P��2i D Z 1

0

. .t/ �  .t//2 dt;

the linear space spanned by PW is isomorphic to L2 Œ0; 1� so that

h˚f ; ˚giH.C PW ;DŒT�/ D h f ; giL2Œ0;1�:

The identification of ˚f with f allows one to look at the space L2 Œ0; 1� as if it were
an RKHS.

The following example illustrates the role of the reproducing kernel in determin-
ing the geometry of an RKHS.

Example 1.1.27 Let H .H;T/ be an RKHS and, for fixed, but arbitrary t 2 T such
that H .t; t/ > 0; consider the following subsets and functions:

H Œt W 1� D fh 2 H .H;T/ W Et Œh� D 1g ; and ft .x/ D H.x;t/
H.t;t/ ;

SH.H;T/ D
˚
h 2 H .H;T/ W jjhjjH.H;T/ D 1

�
; and gt .x/ D H.x;t/

.H.t;t//1=2
:

Then:

1. ft 2 H Œt W 1� ; and minh2HŒtW1� jjhjjH.H;T/ D jj ftjjH.H;T/ D fH .t; t/g�1=2 I
2. gt 2 SH.H;T/; and, for h 2 SH.H;T/; fixed, but arbitrary,

jh .t/j � jgt .t/j D .H .t; t//1=2 :

By definition indeed, ft .t/ D 1; and thus ft 2 H Œt W 1� : Furthermore
[(Remark) 1.1.4],

jjftjjH.H;T/ D
jjH .
; t/jjH.H;T/

H .t; t/
D 1

.H .t; t//1=2
:

But the generally valid relation [(Proposition) 1.1.5] jh .t/j � .H .t; t//1=2 jjhjjH.H;T/
yields, when h .t/ D 1;

1

.H .t; t//1=2
� jjhjjH.H;T/ :

As

jjgtjjH.H;T/ D
jjH .
; t/jjH.H;T/
.H .t; t//1=2

D .H .t; t//1=2

.H .t; t//1=2
D 1;
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gt 2 SH.H;T/: Again, as jh .t/j � .H .t; t//1=2 jjhjjH.H;T/ ; when jjhjjH.H;T/ D 1;

jh .t/j � .H .t; t//1=2 D H .t; t/

.H .t; t//1=2
D jgt .t/j :

The following concepts, definitions, and results are useful for the computational
side of RKHS’s. In particular they allow one to often restrict attention to that part of
T over which H is strictly positive definite.

Let H be a reproducing kernel on T that is not the zero kernel, and F ŒH� be the
family of subsets of fH .
; t/ ; t 2 Tg with the following property: F0 2 F ŒH� if,
and only if, every nonempty finite subset of F0 contains only linearly independent
elements. F ŒH� is thus a family of finite character [131, p.13], and, as such, contains
a maximal element [131, p. 14], say Fm: Let

TFm D ft 2 T W H .
; t/ 2 Fmg :

The definition which follows then makes sense.

Definition 1.1.28 A support for H is a set of the form TFm : It shall be denoted TH:

The supports of H have the following properties:

Property 1.1.29 The set fH .
; t/ ; t 2 THg is a Hamel basis for V ŒH� :

Property 1.1.30 TH � ft 2 T W H .
; t/ ¤ 0RT g :
Property 1.1.31 Suppose that t 2 T n TH; and H .
; t/ ¤ 0RT : Since a support is
the index set of a Hamel basis, there exists then a finite subset of distinct elements
ft1; : : : ; tng � TH such that the family

fH .
; t/ ;H .
; t1/ ; : : : ;H .
; tn/g

is linearly dependent (otherwise TH would not be maximal).

Property 1.1.32 Suppose that t 2 T n TH; and H .
; t/ ¤ 0RT : There exists t0 2 TH
such that

fTH n ft0gg [ ftg

is a support of H:
Indeed, since a support yields a Hamel basis, there is a unique, linearly

independent set (depending on t)

fH .
; t1/ ; : : : ;H .
; tn/ ; ft1; : : : ; tng � TH; distinctg
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such that

H .
; t/ D
nX

iD1
˛iH .
; ti/ ;

none of the ˛’s being zero. As

ˇ1H .
; t/C ˇ2H .
; t2/C ˇ3H .
; t3/C 
 
 
 C ˇnH .
; tn/ D
D ˇ1˛1H .
; t1/C .ˇ1˛2 C ˇ2/H .
; t2/C 
 
 
 C .ˇ1˛n C ˇn/H .
; tn/ ;

the set fH .
; t/ ;H .
; t2; /H .
; t3/ ; : : : ;H .
; tn/g is linearly independent and may
replace fH .
; t1/ ; : : : ;H .
; tn/g :
Property 1.1.33 Consider the following property ˘H W

dthe requirements

• n 2 N;

• ft1; : : : ; tng � T distinct,
• for i 2 Œ1 W n� ;H .
; ti/ ¤ 0RT ;

have, as consequence, that fH .
; t1/ ; : : : ;H .
; tn/g is a linearly independent
family.c

A unique support for H exists if, and only if, property ˘H obtains, and, in that
case, TH D ft 2 T W H .
; t/ ¤ 0RT g :

Indeed, from (Fact) 1.1.32, when there is a unique support, say TH; the
relation H .
; t/ ¤ 0RT implies t 2 TH: Property ˘H thus obtains. Conversely,
when property ˘H obtains, there is a unique support which is the set of indices
ft 2 T W H .
; t/ ¤ 0RT g :
Property 1.1.34 Whenever

• n 2 N;

• ft1; : : : ; tng � T distinct,
• fH .
; t1/ ; : : : ;H .
; tn/g is a linearly independent family,

there is a support that contains ft1; : : : ; tng :
Definition 1.1.35 The pseudo-distance(-metric) on T; associated with H; is
defined, for fixed, but arbitrary .t1; t2/ 2 T � T; using the following relation:

dH .t1; t2/ D jjH .
; t1/�H .
; t2/jjH.H;T/ :

dH is indeed symmetric, positive, and equal to zero when t1 D t2: When the family
fH .
; t/ ; t 2 Tg is linearly independent, dH is a distance.

Definition 1.1.36 Any subset T0 � T such that fH .
; t/ ; t 2 T0g is a Hamel basis
for V ŒH� is called a Hamel subset of T for H:
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fH .
; t/ ; t 2 T0g is then total in H .H;T/ ; and .T0; dH/ is a metric space. A Hamel
subset is a support.

Remark 1.1.37 “Hamel subset” and “support” are thus two names for essentially
the same concept.

Lemma 1.1.38 Let H and K be real Hilbert spaces, H0 and K0; total subsets. Let
U W H0 �! K0 be a surjection such that, in H0;

hUŒh1�;UŒh2�iK D hh1; h2iH :

U may then be extended (uniquely) to a unitary map from H to K:

Proof U is an injection. Suppose indeed that, on H0; UŒh1� D UŒh2�: Then, on H0;

from hUŒh1�;UŒh�iK D hUŒh2�;UŒh�iK and the assumption,

hh1; hiH D hh2; hiH:

But, since H0 is total, h1 D h2:
Let h 2 VŒH0�; that is, h DPn

iD1 ˛i hi; hi 2 H0; i 2 Œ1 W n�: Set:

UŒh� D
nX

iD1
˛i UŒhi�:

Such an extension of U; from H0 to V ŒH0� ; is well defined. Let indeed

nX
iD1

˛i UŒhi� D
pX

jD1
˛?j UŒh?j �:

Then, for h 2 H0; fixed, but arbitrary, successively,*
nX

iD1
˛i UŒhi�;UŒh�

+
K

D
*

pX
jD1

˛?j UŒh?j �;UŒh�

+
K

;

nX
iD1

˛i hUŒhi�;UŒh�iK D
pX

jD1
˛?j
˝
UŒh?j �;UŒh�

˛
K
;

nX
iD1

˛ihhi; hiH D
pX

jD1
˛?j hh?j ; hiH;

*
nX

iD1
˛i hi; h

+
H

D
*

pX
jD1

˛?j h?i ; h

+
H

:
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Again, as H0 is total,

nX
iD1

˛i hi D
pX

jD1
˛?j h?i :

U has thus a linear extension to VŒH0� which maintains the inner product relation. It
can thus be extended by continuity to H: ut
Corollary 1.1.39 1. When K0 is not total, the isometry shall be between H and

VŒK0�:
2. Let H and K be real Hilbert spaces, H0 and K0 dense manifolds in these, and

U W H0 �! K0; an isometric bijection of H0 onto K0: U has then a unitary
extension to H and K:

Proposition 1.1.40 Let TH be a support for the reproducing kernel H defined over
T: The restriction of H to TH�TH shall be denoted HjTH ; and the restriction to TH
of a function f in RT ; f jTH : Let �TH W RT �! RTH be the restriction map:

�TH . f / D f jTH :

The restriction of �TH to H .H;T/ is unitary onto H
�
HjTH ;TH

�
:

Proof Since V ŒH� and V
�
HjTH

�
are dense in the RKHS’s they generate, one may

restrict attention to those two manifolds [(Corollary) 1.1.39].
Let

f D
nfX

iD1
˛

f

i H
�
; t f

i

�

be fixed, but arbitrary in V ŒH� : Now, for fixed, but arbitrary i 2 �1 W nf
�
;

H
�
; t f

i

� D n.t
f
i /X

jD1
ˇj.t

f

i /H
�
; tj.t f

i /
�

where, for j 2 �
1 W n �t f

i

��
; fixed, but arbitrary, tj

�
t f

i

� 2 TH: Thus f has the
representation

f D
nfX

iD1

n.t
f
i /X

jD1
˛

f

i ˇj.t
f

i /H
�
; tj.t f

i /
�
:
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Its restriction to TH yields an element of V
�
HjTH

�
: Furthermore, as, for .i; j/ 2�

1 W nf
� � �1 W nf

�
; fixed, but arbitrary,

H
�

t f

i ; t
f

j

�
D

D
D
H
�
; t f

i

�
;H

�

; t f

j

�E
H.H;T/

D
n
�

t
f
i

�X
kD1

n
�

t
f
j

�X
lD1

ˇk
�
t f

i

�
ˇl

�
t f

j

�
hH �
; tk �t f

i

��
;H

�

; tl
�

t f

j

��
iH.H;T/

D
n
�

t
f
i

�X
kD1

n
�

t
f
j

�X
lD1

ˇk
�
t f

i

�
ˇl

�
t f

j

�
H
�

tk
�
t f

i

�
; tl
�

t f

j

��

D
n
�

t
f
i

�X
kD1

n
�

t
f
j

�X
lD1

ˇk
�
t f

i

�
ˇl

�
t f

j

�
HjTH

�
tk
�
t f

i

�
; tl
�

t f

j

��

D
*n
�

t
f
i

�X
kD1

ˇk
�
t f

i

�
HjTH

�
; tk �t f

i

��
;

n
�

t
f
j

�X
lD1

ˇl

�
t f

j

�
HjTH

�

; tl
�

t f

j

��+
H.HjTH ;TH/

;

it follows that

jj f jj2H.H;T/ D
nfX

iD1

nfX
jD1

˛
f

i ˛
f

j H
�

t f

i ; t
f

j

�

D

ˇ̌̌
ˇ̌̌
ˇ
ˇ̌̌
ˇ̌̌
ˇ

nfX
iD1

n
�

t
f
i

�X
kD1

˛
f

i ˇk
�
t f

i

�
HjTH

�
; tk �t f

i

��ˇ̌̌ˇ̌̌
ˇ
ˇ̌̌
ˇ̌̌
ˇ
2

H.HjTH ;TH/

D jj�TH . f /jj2
H.HjTH ;TH/

:

Suppose now that

f D
nX

iD1
˛

f

i HjTH
�
; t f

i

� 2 V
h
HjTH

i
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is fixed, but arbitrary. One has that

f D �TH

� Qf � ; Qf D nX
iD1

˛
f

i H
�
; t f

i

� 2 V ŒH� :

Furthermore Qf is the unique element of V ŒH� whose restriction to TH yields f :
Suppose indeed that Of 2 V ŒH� is such that

�TH

�Of� D f :

Since Qf and Of agree on TH; one must only consider points t 2 T n TH: For such a
point,

H .
; t/ D
n.t/X
iD1

˛i.t/H .
; ti.t// ; some ft1.t/; : : : ; tn.t/g � TH:

But then

Qf .t/ D hQf ;H .
; t/iH.H;T/

D
n.t/X
iD1

˛i.t/Qf .ti.t//

D
n.t/X
iD1

˛i.t/Of .ti.t//

D hOf ;H .
; t/iH.H;T/
D Of .t/ :

ut
Remark 1.1.41 Result (Proposition) 1.1.40 is related to (Proposition) 1.6.3, which
is a result about projections using subsets of T:

Remark 1.1.42 Let f 2 RTH be fixed, but arbitrary. It may be extended to a map
Qf 2 RT as follows. For t 2 TH; fixed, but arbitrary, set

Qf .t/ D f .t/ :

When t 2 T n TH; one has uniquely, for some

n .t/ 2 N;
n
t.t/1 ; : : : ; t

.t/

n.t/

o
� TH;

n
˛
.t/

1 ; : : : ; ˛
.t/

n.t/

o
� R n f0g ;
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H .
; t/ D
n.t/X
iD1

˛
.t/

i H
�
; t.t/i

�
:

Set then

Qf .t/ D
n.t/X
iD1

˛
.t/

i f
�
t.t/i

�
:

Suppose now that f 2 RT ; that f jTH is its restriction to TH; and that QfTH is the
extension just defined. One has then that

f .t/ � QfTH .t/ D
(
0 when t 2 TH
f .t/ �Pn.t/

iD1 ˛
.t/

i f
�
t.t/i

�
when t 2 T n TH

:

One shall write

QfTH D � TH

h
f jTH

i
;

and the following result obtains.

Proposition 1.1.43 When TH � T is a support of H; a reproducing kernel on T;
and f 2 RT is fixed, but arbitrary, then f 2 H .H;T/ if, and only if,

1. �TH Œ f � 2 H
�
HjTH ;TH

�
;

2. � TH
�TH Œ f � D f :

Proof When f 2 H .H;T/ ;

f jTH 2 H
�
HjTH ;TH

�
;

since [(Proposition) 1.1.40] the restriction of �TH to H .H;T/ is onto H
�
HjTH ;TH

�
:

Also � TH
�TH Œ f � D f since then

f .t/ �
n.t/X
iD1

˛
.t/
i f

�
t.t/i

�
D
*

f ;H .
; t/ �
nX

iD1
˛
.t/

i H
�
; t.t/i

�+
H.H;T/

D 0:

Suppose now that f 2 RT is such that

f jTH 2 H
�
HjTH ;TH

�
; and that � TH

�TH Œ f � D f :
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Then, since for t 2 T; fixed, but arbitrary, � TH
�TH Œ f � .t/ has [(Remark) 1.1.42] the

generic form

nŒt�X
iD1

˛i Œt� f
jTH .ti Œt�/ ;

letting �?TH
be the unitary adjoint of the restriction of �TH to H .H;T/ ;

f .t/ D
nŒt�X
iD1

˛i Œt� f
jTH .ti Œt�/

D
nŒt�X
iD1

˛i Œt�
D

f jTH ;HjTH .
; ti Œt�/
E
H.HjTH ;TH/

D
*
�TH Œ f � ;

nŒt�X
iD1

˛i Œt�HjTH .
; ti Œt�/
+

H.HjTH ;TH/

D
*
�TH Œ f � ;

nŒt�X
iD1

˛i Œt� �TH ŒH .
; ti Œt�/�
+

H.HjTH ;TH/

D
*
�TH Œ f � ; �TH

2
4 nŒt�X

iD1
˛i Œt�H .
; ti Œt�/

3
5+

H.HjTH ;TH/

D h�TH Œ f � ; �TH ŒH .
; t/�iH.HjTH ;TH/

D ˝
�?TH

�TH Œ f � ;H .
; t/˛
H.H;T/

D �?TH
�TH Œ f � .t/ ;

which is the value at t of an element in H.H;T/: ut
Remark 1.1.44 One has the following situation, writing U for �jH.H;T/

TH
W

RT
�TH�! RTH

H .H;T/ U�! H
�
HjTH ;TH

�
H .H;T/ U?

 � H
�
HjTH ;TH

�
RT

� TH � RTH

Thus, in that sense, � TH
is an extension of �?TH

:
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Proposition 1.1.45 Let the support of H be T; f 2 RT ; and

Tn D ft1; : : : ; tng � T

be fixed, but arbitrary. Let

H . f ITn/ D fh 2 H .H;T/ W h .ti/ D f .ti/ ; i 2 Œ1 W n�g :

Then:

1. H . f ITn/ ¤ ;I
2. there exists a unique hf ITn 2 H .H;T/ such thatˇ̌̌̌

hf ITn

ˇ̌̌̌
H.H;T/ D min

h2H.f ITn/
jjhjjH.H;T/ I

3. hf ITn 2 V ŒfH .
; t1/ ; : : : ;H .
; tn/g� I
4. when f 2 H .H;T/ ; hf ITn is the orthogonal projection of f onto the (closed)

subspace V ŒfH .
; t1/ ; : : : ;H .
; tn/g� :
Proof One may assume that ft1; : : : ; tng are distinct. Then the functions of the set
fH .
; t1/ ; : : : ;H .
; tn/g are linearly independent, so that the matrix ˙H;Tn ; with
entries

˚
H
�
ti; tj

�
; fi; jg � Œ1 W n�� ; is nonsingular. Let f be the vector with entries

f .ti/ : The system

˙H;Tn Œx� D f

has thus a unique solution ; and
Pn

iD1 iH .
; ti/ belongs to H . f ITn/ ; so that item
1 obtains.

As, for t 2 T and h 2 H .H;T/ ; fixed, but arbitrary, h .t/ D hh;H .
; t/iH.H;T/;
and that fH .
; t1/ ; : : : ;H .
; tn/g are linearly independent, item 2 obtains because of
a general optimization result in Hilbert space [175, p. 65], from which items 3 and
4 follow also. In fact

hf ITn D
nX

iD1
iH .
; ti/ :

ut
Remark 1.1.46 When the support of H is strictly contained in T; for (Proposi-
tion) 1.1.45 to be valid, one must add the requirement that � TH

.�TH . f // D f :
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Remark 1.1.47 One has that

ˇ̌̌̌
hf ITn

ˇ̌̌̌
2

H.H;T/ D
nX

iD1

nX
jD1

ijH
�
ti; tj

�

D
D
˙H;Tn

h

i
; 
E
Rn

D
D
˙�1H;Tn

h
f
i
; f
E
Rn
:

1.2 Membership in a Reproducing Kernel Hilbert Space

This section contains some tools which, sometimes, allow one to establish that a
given function does, or does not, belong to a specific RKHS.

Proposition 1.2.1 Let H .H;T/ be a fixed, but arbitrary RKHS, and suppose that
the support of H is T: Let f 2 RT be fixed, but arbitrary. The following statements
are equivalent:

1. f 2 H .H;T/ I
2. there exists a finite � . f / � 0; depending on f only, such that, for fixed, but arbi-

trary n 2 N and ft1; : : : ; tng � T; the notation being that of (Proposition) 1.1.45,ˇ̌̌̌
hf ITn

ˇ̌̌̌
H.H;T/ � � . f / I

3. there exists a finite � . f / � 0; depending on f only, such that, for fixed, but
arbitrary Œn; ˛; .t;T/�;ˇ̌̌

ˇ̌ nX
iD1

˛i f .ti/

ˇ̌̌
ˇ̌ � � . f /

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
H.H;T/

:

When item 1, or one of its equivalents, obtains,

jj f jjH.H;T/ D sup
Tn�T

ˇ̌̌̌
hf ITn

ˇ̌̌̌
H.H;T/ :

Proof (1 ) 2) From (Proposition) 1.1.45, one has that hf ITn is the orthogonal
projection of f onto V ŒfH .
; t1/ ; : : : ;H .
; tn/g� : Consequently,ˇ̌̌̌

hf ITn

ˇ̌̌̌
H.H;T/ � jj f jjH.H;T/ ;

and one may choose � . f / D jj f jjH.H;T/ :
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Proof (2) 3) By definition, and because of (Proposition) 1.1.45,

hf ITn .ti/ D f .ti/ ; i 2 Œ1 W n� ;
and

hf ITn 2 V ŒfH .
; t1/ ; : : : ;H .
; tn/g� :

Thus

nX
iD1

˛if .ti/ D
nX

iD1
˛ihf ITn .ti/ D

*
hf ITn ;

nX
iD1

˛iH .
; ti/
+

H.H;T/

: (?)

Consequently ˇ̌̌
ˇ̌ nX

iD1
˛i f .ti/

ˇ̌̌
ˇ̌ � ˇ̌̌̌ hf ITn

ˇ̌̌̌
H.H;T/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
H.H;T/

� � . f /

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
H.H;T/

:

Proof (3) 1) Let Lf W V ŒH� �! R be defined using the following relation:

Lf

"
nX

iD1
˛iH .
; ti/

#
D

nX
iD1

˛i f .ti/ :

Since, whenever ft1; : : : ; tng � T are distinct, fH .
; t1/ ; : : : ;H .
; tn/g are linearly
independent, Lf is well defined, linear, and unique [46, p. 26]. Furthermoreˇ̌̌

ˇ̌Lf

"X
iD1

˛iH .
; ti/
#ˇ̌̌
ˇ̌ D

ˇ̌̌
ˇ̌ nX

iD1
˛i f .ti/

ˇ̌̌
ˇ̌ � � .f /

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
H.H;T/

:

Lf is thus bounded, and has a bounded linear extension [266, p. 62], say QLf ; which
is thus a continuous linear functional, and, as such, has the following representation
[266, p. 64]:

QLf Œh� D hh; hf iH.H;T/; hf 2 H.H;T/:

When t 2 T and h D H .
; t/ are fixed, but arbitrary, by definition,

QLf Œh� D Lf ŒH .
; t/� D f .t/ :
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But, using the linear functional representation, one has also that

QLf Œh� D hH .
; t/ ; hf iH.H;T/ D hf .t/ :

Consequently f D hf 2 H .H;T/ :

Proof (Norm of f ) One has that [266, p. 62]

jj f jjH.H;T/ D
ˇ̌̌̌
hf

ˇ̌̌̌
H.H;T/ D sup

h2VŒH�;h¤0H.H;T/

ˇ̌
Lf Œh�

ˇ̌
jjhjjH.H;T/

:

Let ˙H;Tn be the matrix with entries
˚
H
�
ti; tj

�
; fi; jg � Œ1 W n�� ; and f have entries

f .ti/ ; i 2 Œ1 W n� : Let S be the set of elements of the form Œn; ˛; .t;T/� with ˛ ¤ 0Rn

and elements t1; : : : ; tn distinct. Then

jj f jj2H.H;T/ D sup
h2VŒH�;h¤0H.H;T/

ˇ̌
Lf Œh�

ˇ̌
2

jjhjj2H.H;T/

D sup
S

ˇ̌Pn
iD1 ˛i f .ti/

ˇ̌
2ˇ̌̌̌Pn

iD1 ˛iH .
; ti/
ˇ̌̌̌
2

H.H;T/

D sup
S

D
˛; f

E2
Rn

h˙H;Tn Œ˛ � ; ˛iRn

:

But, since it is assumed that the support of H is T;D
˛; f

E
Rn
D
D
˙

1=2

H;Tn
Œ˛ � ;˙

�1=2
H;Tn

h
f
iE

Rn
:

Thus, letting S0 denote the family

fn 2 N; ft1; : : : ; tng � T; distinctg ;

one has that

sup
S

D
˛; f

E2
Rn

h˙H;Tn Œ˛ � ; ˛iRn

D sup
S

*
˙

1=2

H;Tn
Œ˛ �ˇ̌̌̌

˙
1=2

H;Tn
Œ˛ �
ˇ̌̌̌
Rn

; ˙
�1=2
H;Tn

h
f
i+2

Rn

D sup
S0

D
˙�1H;Tn

h
f
i
; f
E
Rn
:

But, because of (Remark) 1.1.47, the latter inner product isˇ̌̌̌
hf ITn

ˇ̌̌̌
2

H.H;T/ : ut
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Remark 1.2.2 When T is not the support of H; one must, in addition, require that

� TH
.�TH Œ f �/ D f :

Remark 1.2.3 It is sometimes useful to remember that, in (Proposition) 1.2.1,

jj f jj2H.H;T/ D sup
S0

D
˙�1H;Tn

h
f
i
; f
E
Rn
:

Proposition 1.2.4

1. Let H .H;T/ be an RKHS, and h 2 H .H;T/ be a fixed, but arbitrary function
that is not identically zero. Then the kernel Hh defined, for .t1; t2/ 2 T �T; fixed,
but arbitrary, using the following relation:

Hh .t1; t2/ D H .t1; t2/� h .t1/ h .t2/

jjhjj2H.H;T/
;

is positive definite.
2. Let f 2 RT be a function that is not identically zero, and for which there exists
� > 0 such that the kernel H�;f defined, for .t1; t2/ 2 T � T; fixed, but arbitrary,
using the following relation:

H�;f .t1; t2/ D H .t1; t2/� � f .t1/ f .t2/ ;

is positive definite. Then

(i) f 2 H .H;T/ ;
(ii) � � jj f jj�2H.H;T/:

Proof The following remark shall be of use in the ensuing proof. As seen in the
proof of (Proposition) 1.2.1 (relation ?), the following relation, flagged as (??),
obtains: ˇ̌Pn

iD1 ˛i f .ti/
ˇ̌ˇ̌̌̌Pn

iD1 ˛iH .
; ti/
ˇ̌̌̌

H.H;T/
D

D
ˇ̌̌
ˇ̌̌*hf It1;:::;tn ;

Pn
iD1 ˛iH .
; ti/ˇ̌̌̌Pn

iD1 ˛iH .
; ti/
ˇ̌̌̌

H.H;T/

+
H.H;T/

ˇ̌̌
ˇ̌̌ :

Furthermore, when f 2 H .H;T/ ; in that latter equality, hf ITn may be replaced with f
since it is then [(Proposition) 1.1.45] the projection of f onto the subspace generated
by the family fH .
; t1/ ; : : : ;H .
; tn/g :
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Suppose that h 2 H .H;T/ : Then, given Œn; ˛; .t;T/�; fixed, but arbitrary, from
the relation (??) above, with f being h;˚P

iD1 ˛ih .ti/
�2ˇ̌̌̌Pn

iD1 ˛iH .
; ti/
ˇ̌̌̌
2

H.H;T/
� jjhjj2H.H;T/ ;

which may be rewritten as

jjhjj2H.H;T/
nX

iD1

nX
jD1

˛i˛jH
�
ti; tj

� � nX
iD1

nX
jD1

˛i˛jh .ti/ h
�
tj
� � 0;

or

nX
iD1

nX
jD1

˛i˛jHh
�
ti; tj

� � 0;
that is, one has confirmed statement 1.

Suppose now that H�;f is positive definite. Then

0 �
nX

iD1

nX
jD1

˛i˛jH�;f
�
ti; tj

�

D
nX

iD1

nX
jD1

˛i˛jH
�
ti; tj

� � � nX
iD1

nX
jD1

˛i˛j f .ti/ f
�
tj
�
:

Consequently ˚Pn
iD1 ˛i f .ti/

�2ˇ̌̌̌Pn
iD1 ˛iH .
; ti/

ˇ̌̌̌
2

H.H;T/
� 1

�
:

But then again (Proposition) 1.2.1 says that f 2 H .H;T/ : The remark at the
beginning of the proof then yields that

*
f ;

Pn
iD1 ˛iH .
; ti/ˇ̌̌̌Pn

iD1 ˛iH .
; ti/
ˇ̌̌̌

H.H;T/

+2
H.H;T/

� 1

�
:

ut
Example 1.2.5 ([92]) Let X and Y be second order processes over the same
probability space. Let S be the index set of X and T that of Y: Suppose that the
means of X and Y are zero. Set, for .s; t/ 2 S � T; fixed, but arbitrary,

CX;Y .s; t/ D EP ŒX .
; s/Y .
; t/� :

CX and CY shall denote the covariances of X and Y respectively.
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Let s 2 S be fixed, but arbitrary, and fs W T �! R be the map whose defining
relation is: fs .t/ D CX;Y .s; t/ : Then

ˇ̌Pn
iD1 ˛i fs .ti/

ˇ̌
2Pn

iD1
Pn

jD1 ˛i˛jCY
�
ti; tj

� D E2

P

�
X .
; s/ �Pn

iD1 ˛iY .
; ti/
��

EP

h�Pn
iD1 ˛iY .
; ti/

�2i :

Using the Cauchy-Schwarz inequality on the right-hand side numerator of the latter
equality, one sees, from (Proposition) 1.2.1, that fs 2 H .CY ;T/ :

Using the Cauchy-Schwarz inequality on the expression

E2

P

"
X .
; s/

 
nX

iD1
˛iY .
; ti/

!#
;

one has, for Y0 2 LP ŒY� ; fixed, but arbitrary,

ˇ̌
EP
�
X .
; s/ PY0 .
/

�ˇ̌2 � CX .s; s/ jjY0jj2LPŒY� :

The map

Y0 7! EP
�
X .
; s/ PY0 .
/

�
is thus a continuous linear functional of LP ŒY� ; and there exists consequently a
unique Y Œs� 2 LP ŒY� such that

EP
�
X .
; s/ PY0 .
/

� D hY Œs� ;Y0iL2ŒY�:
That allows one to define B W LP ŒX� �! LP ŒY� using the assignment:

B ŒXs� D Y Œs� :

As, for Œn; ˛; .s; S/�; fixed, but arbitrary,

EP

"(
nX

iD1
˛iX .
; si/

)
PY0 .
/

#
D

nX
iD1

˛iEP
�
X .
; si/ PY0 .
/

�

D
nX

iD1
˛i hY Œsi� ;Y0iLPŒY�

D
*

nX
iD1

˛iY Œsi� ;Y0

+
LPŒY�

;
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one has that B
�Pn

iD1 ˛iXsi

� DPn
iD1 ˛iB ŒXsi � ; and also that

ˇ̌̌
ˇ̌̌*B

"
nX

iD1
˛iXsi

#
;Y0

+
LP ŒY�

ˇ̌̌
ˇ̌̌ D

ˇ̌̌
ˇ̌EP

"(
nX

iD1
˛iX .
; si/

)
PY0
#ˇ̌̌
ˇ̌

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iXsi

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
LP ŒX�

jjY0jjLP ŒY� :

Consequently, ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌B
"

nX
iD1

˛iXsi

#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
LPŒY�

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iXsi

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
LP ŒX�

;

and B has a continuous linear extension to a contraction. For X0 2 LP ŒX� and Y0 2
LP ŒY� ; fixed, but arbitrary, the following equalities obtain:

EP
� PX0 .
/ PY0 .
/� D hB ŒX0� ;Y0iLPŒY�;

and, in particular,

CX;Y .s; t/ D hB ŒXs� ;YtiLPŒY�:

An analogous development yields also a contraction C W LP ŒY� �! LP ŒX� such that

EP
� PX0 .
/ PY0 .
/� D hX0;C ŒY0�iLPŒX�;

and, in particular,

CX;Y .s; t/ D hXs;C ŒYt�iLPŒY�:

As a consequence C D B?:
Using the map L ŒXt� D CX .
; t/ ; one obtains contractions between the associated

RKHS’s. One thus finds, in a particular context, the cross-covariance operators of
[12].

The following example shows that checking for membership may be difficult,
and in particular that the function t 7! H .t; t/ need not belong to H .H;T/ :
Example 1.2.6 ([188]) Let H .H;T/ be an RKHS. The function f .t/ D H .t; t/ ;
t 2 T; need not belong to H .H;T/ :

Let fan; n 2 Ng � R be such that

0 < an < 1=2; anC1 < an; n 2 N; and lim
n

an D 0:
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Let then fbn; n 2 Ng � R be such that

1=2 < bn < 1; bn < bnC1; n 2 N; and lim
n

bn D 1:

Finally let fn W ��1;C1Œ �! R be defined by the following rules:

˛n D an C anC1
2

; ˇn D bn C bnC1
2

;

fn .x/ D

8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂:

0 on ��1; anC1� ;
2 ..x � anC1/ = .an � anC1// on �anC1; ˛n� ;

�2 ..x � an/ = .an � anC1// on �˛n; an� ;

0 on �an; bn� ;

2�n ..x � bn/ = .bnC1 � bn// on �bn; ˇn� ;

�2�n ..x � bnC1/ = .bnC1 � bn// on �ˇn; bnC1� ;
0 on �bnC1; 1Œ :

By construction fn is a continuous function whose support is ŒanC1; an�[ Œbn; bnC1� :
Each part of the support of fn is the base of a triangle whose other sides are
determined by the graph of fn on the support. The first triangle has height one, the
second, height �n: Thus, almost surely with respect to Lebesgue measure, fmfn D 0

for n ¤ m: Consequently, in that case,Z
��1;C1Œ

fm .x/ fn .x/ dx D 0:

The constants �n shall be chosen so thatZ
��1;C1Œ

f 2n .x/ dx D 1:

But a calculation yields thatZ
��1;C1Œ

f 2n .x/ dx D .an � anC1/C �2n .bnC1 � bn/

3
;

so that

�n D
�
3 � .an � anC1/

bnC1 � bn

� 1=2
" 1:

The equivalence classes in L2 . ��1;C1Œ / ; denoted Œ fn� ; of the terms that form
the sequence f fn; n 2 Ng ; are thus orthonormal.
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Let H be the Hilbert subspace generated by those equivalence classes, that is,

H D
( 1X

nD1
˛n Œ fn� ; f˛n; n 2 Ng 2 l2

)
:

Let T D ��1;C1Œ ; and define F W T �! H using F .t/ D P1
nD1 fn .t/ Œ fn� : This

definition makes sense since, in the expression

1X
nD1

f 2n .t/ ;

at most one of the terms is different from zero. Then

L

" 1X
nD1

˛n Œ fn�

#
D
1X

nD1
˛n fn 2 K;

N ŒL� D ˚0L2. ��1;C1Œ /
�
; and

K .t1; t2/ D
1X

nD1
fn .t1/ fn .t2/ :

Let � > 0 be small and I� denote the interval ��1; 1 � �Œ : All intervals of the form
ŒanC1; an� are in I�; but only a finite number of those of the form Œbn; bnC1� are. By
construction,

0 � fn .t/ � 1 on ŒanC1; an� ;

0 � fn .t/ � �n on Œbn; bnC1� ;

and fn is zero outside ŒanC1; an� [ Œbn; bnC1� : Consequently, the function t 7! f 2n .t/
is uniformly bounded on I�; and so must be the function t 7! K .t; t/ ; since, for
t 2 T; fixed, but arbitrary, K .t; t/ D f 2n .t/ for some n 2 N: It follows that the
series

P1
nD1 ˛n fn; which is norm convergent in K; the RKHS of K; is uniformly

convergent on I�; for � > 0; and, since it is a series of continuous functions, the
limit is a continuous function. K thus contains only continuous functions, since � is
arbitrary. But the function t 7! K .t; t/ is not continuous since

K .0; 0/ D 0; K .˛n; ˛n/ D 1; lim
n
˛n D 0:
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1.3 Covariances and Reproducing Kernel Hilbert Spaces

The reason RKHS’s are useful for the study of second order processes is that the
second order properties of those processes are determined by their covariance,
which is a reproducing kernel.

Definition 1.3.1 Let T be a set. A covariance C on T is a function of two arguments,
C W T � T �! R; which is symmetric and positive definite, that is, such that

1. for fixed, but arbitrary .t1; t2/ 2 T � T;

C .t1; t2/ D C .t2; t1/ I

2. for fixed, but arbitrary Œn; ˛; .t;T/�

nX
iD1

nX
jD1

˛i˛jC
�
ti; tj

� � 0:
Remark 1.3.2 As seen [(Proposition) 1.1.5], the reproducing kernel of an RKHS is a
covariance, and one shall see [(Proposition) 1.3.4] that covariances are reproducing
kernels of specific RKHS’s.

Remark 1.3.3 The fact that C is positive definite does not imply that it is symmetric.
For example, letting T D f1; 2g and

	
C .1; 1/ C .1; 2/
C .2; 1/ C .2; 2/



D
	
1 0

1 1



;

one has that

2X
iD1

2X
jD1

˛i˛jC .i; j/ D
�
˛1 C ˛2

2

�2 C 3

4
˛22 � 0:

The proposition which follows has already been proved in (Remark) 1.1.17. The
proof there relies on the properties of Gaussian processes. The proof below is “from
first principles.”

Proposition 1.3.4 Let C be a covariance on T: C is then the reproducing kernel of
a unique RKHS denoted H .C;T/ :

Proof One uses the following general result of linear algebra [46, p. 30] to define
an inner product on V ŒC� :

Suppose

• U; V; W are real linear spaces,
• U0 � U; V0 � V are subsets,
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• ˚ W U0 � V0 �! W is a map.

There exists then a bilinear � W U ˚ V �! W such that � restricted to U0 � V0
is ˚ if, and only if, both conditions which follow obtain:

1. given Œn; ˛; .u;U0/�; fixed, but arbitrary,

nX
iD1

˛iui D 0

implies that

nX
iD1

˛i˚ .ui; v/ D 0; v 2 V0I

2. given Œ p; ˇ; .v;V0/�; fixed, but arbitrary,

pX
jD1

ˇjvj D 0

implies that

pX
jD1

ˇj˚
�
u; vj

� D 0; u 2 U0:

Let now

• U D V D V ŒC� ;
• W D R;

• U0 D V0 D C D fC .
; t/ ; t 2 Tg ;
• ˚ ŒC .
; t1/ ;C .
; t2/� D C .t1; t2/ :

Then, for example,

nX
iD1

˛i˚ .C .
; ti/ ;C .
; t// D
nX

iD1
˛iC .ti; t/ ;

so that, if
Pn

iD1 ˛iC .ti; 
/ D 0; certainly

nX
iD1

˛iC .ti; t/ D 0; t 2 T:
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There exists thus � which shall be written as an inner product:

hh1; h2i D
*

nX
iD1

˛
.1/

i C
�
; t.1/i

�
;

pX
jD1

˛
.2/

j C
�

; t.2/j

�+

D
nX

iD1

pX
jD1

˛
.1/

i ˛
.2/

j C
�

t.1/i ; t
.2/

j

�
:

The definition shows that hh; hi � 0; so that, to have an inner product, one must
show that hh; hi D 0 implies that h D 0: But, for

h D
nX

iD1
˛iC .
; ti/ ;

hh;C .
; t/i D
nX

iD1
˛iC .t; ti/ D h .t/ ;

and, since one works with positive bilinear forms [266, p. 11],

h2 .t/ D hh;C .
; t/i2 � hC .
; t/ ;C .
; t/ihh; hi D C .t; t/ hh; hi:

Let H denote the Hilbert space completion of V ŒC� with respect to the inner product
just defined.

Define F W T �! H using F .t/ D ŒC .
; t/� ; the equivalence class of C .
; t/ in
H: K of (Remark) 1.1.16 is then H .C;T/ : ut

Covariances are obtained from maps into Hilbert spaces, that is according to
pattern (Proposition) 1.1.15, and that is the content of the proposition to follow.

Proposition 1.3.5 Let T be a set. The following statements are equivalent.

1. C is a covariance on T:
2. There exist a Hilbert space H and a map F W T �! H such that, for .t1; t2/ 2

T � T; fixed, but arbitrary,

C .t1; t2/ D hF .t1/ ;F .t2/iH:

3. There exists a family of functions f f� W T �! R; � 2 �g such that, for
ft; t1; t2g � T; fixed, but arbitrary,

(i)
P

�2� f 2� .t/ <1;
(ii) C .t1; t2/ DP�2� f� .t1/ f� .t2/ :

Proof (1 , 2) Suppose first that C is a covariance on T: Let H D H .C;T/ and
F W T �! H be defined using F .t/ D C .
; t/ : Then C has the form given in item 2.
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Conversely, if statement 2 is true, statement 1 is also true because of the properties
of the inner product of a real Hilbert space.

Proof (2 , 3) Suppose now C has the form given in statement 2, and let
fe�; � 2 �g be an orthonormal basis for H: Define, for .�; t/ 2 � � T; fixed, but
arbitrary,

f� .t/ D hF .t/ ; e�iH:

Parseval’s formulae [266, p. 44] then yield thatX
�2�

f 2� .t/ D jjF .t/jj2H <1I

C .t1; t2/ D hF .t1/ ;F .t2/iH

D
X
�2�
hF .t1/ ; e�iHhF .t2/ ; e�iH

D
X
�2�

f� .t1/ f� .t2/ :

Thus statement 2 implies statement 3. Suppose conversely that statement 3 is true.
Choose a real Hilbert space H of cardinality � (such spaces are known to exist:
[266, p. 49]), and, in H; a complete orthonormal basis fe�; � 2 �g : Set then

F .t/ D
X
�2�

f� .t/ e�:

The assumptions of statement 3 have as consequences that

F .t/ 2 H

and that

hF .t1/ ;F .t2/iH D
X
�2�

f� .t1/ f� .t2/ D C .t1; t2/ :

Consequently statement 3 implies statement 2. ut
The following examples illustrate (Proposition) 1.3.5.

Example 1.3.6 Let �n > 0; n 2 N: Define T D N; and

C .m; n/ D
�
�m when n D m
0 when n ¤ m

:
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Let H D l2 be the Hilbert space of square summable sequences, and en be the
n-th element of the standard basis of l2: Let F W T �! l2 be defined using

F .n/ D �1=2n en:

Then C is a covariance as, letting ım;n D
�
1 when m D n
0 when m ¤ n

;

hF .m/ ;F .n/il2 D �1=2m �
1=2

n ım;n D C .m; n/ :

Furthermore, with h having components h1; h2; h3; : : : ;

L Œh� .n/ D hh;F .n/il2 D �1=2n hn;

and N ŒL� D ˚0l2

�
: Consequently, L is unitary and

hL �h1 � ;L �h2 �iK D hh1; h2il2 :
Letting some of the � ’s be zero, one gets an RKHS that is isomorphic to a subspace
of l2 generated by a subset of the standard basis.

Example 1.3.7 Let .˝;A;P/ be a probability space, and T D A: Denote L2 ŒP� the
space L2 .˝;A;P/ : Let IA D Œ�A �L2ŒP� be the equivalence class of the indicator of
A; and define

F W A �! L2 ŒP� using F .A/ D IA:

Then

hF .A1/ ;F .A2/iL2ŒP� D P .A1 \ A2/

is a covariance and, Pf denoting one function in the equivalence class f ;

L Œ f � .A/ D h f ;F .A/iL2ŒP� D
Z

A

Pf .!/P .d!/ :

Again N ŒL� D ˚Œ0�L2ŒP�� ; and

hL Œ f � ;L Œg�iK D
Z
˝

Pf .!/ Pg .!/P .d!/ :

Example 1.1.26 is a particular case of the latter example.
One could also define

F W A �! L2 ŒP� using F .A/ D IA � ŒP .A/�L2ŒP� :
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Then

hF .A1/ ;F .A2/iL2ŒP� D P .A1 \ A2/� P .A1/P .A2/

is also a covariance, and

L Œ f � .A/ D h f ;F .A/iL2ŒP� D
Z

A

Pf .!/P .d!/� P .A/EP
�Pf � :

The next proposition helps recognize and build covariances.

Proposition 1.3.8 Let fCn; n 2 N0g be a family of covariances on the same set T;
f W T �! R be a fixed, but arbitrary function, and � 2 RC; be a fixed, but arbitrary
constant. The following equalities, valid for .t1; t2/ 2 T � T; fixed, but arbitrary,
define covariances:

1. C .t1; t2/ D � I
2. C .t1; t2/ D f .t1/ f .t2/ I [(Example) 1.1.21]
3. C .t1; t2/ D �C0 .t1; t2/ I
4. C .t1; t2/ D C1 .t1; t2/C C2 .t1; t2/ I
5. C .t1; t2/ D C1 .t1; t2/ � C2 .t1; t2/ I
6. C .t1; t2/ D limn Cn .t1; t2/ ; provided limn Cn .t1; t2/ exists.

Proof All statements, except the fifth, follow directly from the definition of a
covariance [(Definition) 1.3.1]. Statement 5 follows from (Proposition) 1.3.5. Let
indeed, for fixed, but arbitrary ft; t1; t2g � T;

C1 .t1; t2/ D
X
i2I

f .1/i .t1/ f .1/i .t2/ where
X
i2I

�
f .1/i

�2
.t/ <1;

C2 .t1; t2/ D
X
j2J

f .2/j .t1/ f .2/j .t2/ where
X
j2J

�
f .2/j

�2
.t/ <1:

One then sets, for fixed, but arbitrary .i; j/ 2 I � J and t 2 T;

fi;j .t/ D f .1/i .t/ � f .2/j .t/ :

Since X
i2I

X
j2J

f 2i;j .t/ <1;

and that

C1 .t1; t2/ � C2 .t1; t2/ D
X
i2I

X
j2J

fi;j .t1/ fi;j .t2/ ;

C D C1 � C2 is a covariance. ut
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Corollary 1.3.9 For fixed, but arbitrary n 2 N; let ˛n 2 RC be fixed, but arbitrary.
Let f W R � Df �! R be defined using

f .x/ D
1X

nD1
˛nxn:

Let C be a covariance on T such that, for .t1; t2/ 2 T � T; fixed, but arbitrary,
C .t1; t2/ 2 Df : Then f ı C W T � T �! R is a covariance.

Example 1.3.10 The following are functions to which (Corollary) 1.3.9 applies.

1. f .x/ D e˛x; ˛ > 0:

2. f .x/ D 1
.1�x/˛

; ˛ > 0;

as, for jxj < 1; 1
.1�x/˛

D 1CP1nD1 ˛.˛C1/���.˛Cn�1/
nŠ xn:

3. f .x/ D arcsin .x/ ;
as, for jxj < 1; arcsin .x/ DP1nD1 1�3�5�����.2n�1/

2�4�6�����2n�.2nC1/ x2nC1:

Example 1.3.11 The following is an example of use of (Corollary) 1.3.9. Let T D
H; a real Hilbert space, and F W T �! H be defined using F D IH; the identity. Then
C .h1; h2/ D hh1; h2iH is, by definition, a covariance, and KF D H?: One obtains a
covariance C˛ on T D H when setting

C˛ .h1; h2/ D e˛hh1;h2iH ; ˛ > 0:

Example 1.3.12 (RKHS Generated by a Scalar Multiple of a Covariance) Let C be
a covariance on T; and � be a strictly positive real number. Denote C� the covariance

C� .t1; t2/ D �C .t1; t2/ ; .t1; t2/ 2 T � T;

and define

F W T �! H .C;T/ using F .t/ D �1=2C .
; t/ :

Then

L Œh� .t/ D hh;F .t/iH.C;T/ D �1=2h .t/ ;

so that L Œh� D �1=2h: Thus L is a bijection and

hL Œh1� ;L Œh2�iK D hh1; h2iH.C;T/:

Consequently

hh1; h2iK D hL
	

h1
�1=2



;L

	
h2
�1=2



iK D ��1hh1; h2iH.C;T/;
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and

K .t1; t2/ D hF .t1/ ;F .t2/iH.C;T/ D �C .t1; t2/ D C� .t1; t2/ :

Thus, as sets, H
�
C� ;T

� D H .C;T/ ; but

hh1; h2iH.C;T/ D � hh1; h2iH.C� ;T/:

Example 1.3.13 (RKHS Generated by a Sum of Covariances) Such a covariance
could arise as the covariance of the sum of two independent stochastic processes.

Let H D H .C1;T/ ˚ H .C2;T/ be the direct sum [266, p. 39] of the RKHS’s
H .C1;T/ and H .C2;T/ : Define

F W T �! H using F .t/ D .C1 .
; t/ ;C2 .
; t// :

Then

L Œ.h1; h2/� .t/ D h.h1; h2/ ; .C1 .
; t/ ;C2 .
; t//iH D .h1 C h2/ .t/ :

The functions of the RKHS H .C1 C C2;T/ are thus those obtained from
summing the elements of the manifolds H .C1;T/ and H .C2;T/ : Furthermore

N ŒL� D f.h;�h/ ; h 2 H .C1;T/ \ H .C2;T/g :

A calculation confirms that the associated RKHS has, as kernel, C1 C C2: It
is here perhaps that one sees most immediately the value of defining RKHS’s
using (Proposition) 1.1.15 (compare, for example, with [35, p. 24]; see also
(Example) 1.3.15). One may notice that:

• The square norm of the projection of .h1; h2/ onto HF is the minimum of
expressions of the form

ˇ̌̌̌ Qh1 ˇ̌̌̌ 2H.C1;T/ C ˇ̌̌̌ Qh2 ˇ̌̌̌ 2H.C2;T/
for which Qh1 C Qh2 D h1 C h2:

Let indeed PHF Œ.h1; h2/� D .h?1; h?2/: Then

jjLŒ.h1; h2/�jj2KF
D jjPHF Œ.h1; h2/�jj2H D jjh?1 jj2H.C1;T/ C jjh?2 jj2H.C2;T/ ;

and, .h?1; h
?
2/ being the projection,

h.h1; h2/� .h?1 ; h?2/; .C1.
; t/;C2.
; t//iH.C1;T/˚H.C2;T/
D 0;
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so that h1.t/C h2.t/ D h?1.t/C h?2.t/: Furthermore

jjPHF Œ.h1; h2/�jj2H.C1;T/˚H.C2;T/
� jj.h1; h2/jj2H.C1;T/˚H.C2;T/

D jjh1jj2H.C1;T/ C jjh2jj2H.C2;T/ :

• When H .C1;T/\H .C2;T/ D f0RT g ; the map L is an isomorphism of the direct
sum onto H .C1 C C2;T/ : One shall see in Chap. 3 that

H .C1;T/ � H .C1 C C2;T/ ;

H .C2;T/ � H .C1 C C2;T/ :

Consequently, one can understand

H .C1 C C2;T/ D H .C1;T/˚ H .C2;T/

as an orthogonal decomposition.

Example 1.3.14 (Illustration of (Example) 1.3.13) Let C be a covariance on T; and
f W T �! R be a fixed, but arbitrary function. Let f ˝ f be the covariance function
defined, for fixed, but arbitrary .t1; t2/ 2 T � T; using [(Example) 1.1.21]:

Œ f ˝ f � .t1; t2/ D f .t1/ f .t2/ ;

and let Cf D f ˝ f C C: Then:

1. When f 2 H .C;T/ ;

(i) H . f ˝ f ;T/ \H .C;T/ D H . f ˝ f ;T/ ;
(ii) N ŒL� D f.˛ f ;�˛ f / ; ˛ 2 Rg :

The projection onto N ŒL� is obtained as

PN ŒL� Œ.˛ f ; h/� D h.˛ f ; h/ ; . f ;�f /iH. f˝f ;T/˚H.C;T/

jj. f ;�f /jj2H. f˝f ;T/˚H.C;T/

. f ;�f / :

Let � .˛; h/ D ˛�hh;f iH.C;T/
1Cjj f jj2H.C;T/

; so that

PN ŒL� Œ.˛ f ; h/� D � .˛; h/ .f ;�f / :

The elements of H
�
Cf ;T

�
are of the form ˛ f C h; whose norm is

jjL Œ.˛ f ; h/�jj2H.Cf ;T/
D

D ˇ̌̌̌ ˚
IH. f˝f ;T/˚H.C;T/ � PN ŒL�

�
.˛ f ; h/

ˇ̌̌̌
2

H.f˝f ;T/˚H.C;T/
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D jj.˛ f ; h/� � .˛; h/ .f ;�f /jj2H.f˝f ;T/˚H.C;T/

D jj.Œ˛ � � .˛; h/� f ; hC � .˛; h/ f /jj2H.f˝f ;T/˚H.C;T/

D Œ˛ � � .˛; h/�2 C jjhC � .˛; h/ f jj2H.C;T/ :

A calculation then shows that

jj f jj2
H.Cf ;T/

D jj f jj2H.C;T/
1C jj f jj2H.C;T/

< 1:

2. When f 2 H .C;T/c ; H
�
Cf ;T

�
is isomorphic to H . f ˝ f ;T/˚ H .C;T/ :

Second order stochastic processes provide an illustration of the present example.
Let thus X be a second order process with index set T; on some probability space
.˝;A;P/ : Let also, for ft; t1; t2g � T;

�X .t/ D EP ŒX .
; t/� ;
	X .t1; t2/ D EP ŒX .
; t1/ X .
; t2/� ;
CX .t1; t2/ D EP ŒfX .
; t1/� �X .t1/g fX .
; t2/� �X .t2/g�

D 	X .t1; t2/� �X .t1/�X .t2/ :

Then 	X D CX C �X ˝ �X ; and what precedes applies mutatis mutandis.

Example 1.3.15 (RKHS Generated by a Product of Covariances) Such a covariance
could arise as the covariance of the product of two independent stochastic processes.

The most general case is that of two covariances CS and CT defined on different
sets S and T (which could be the same set in two “versions”). Let ˝ denote the
Hilbert spaces tensor product [266, p. 51], and

F W S � T �! H .CS; S/˝ H .CT ;T/

be defined using

F .s; t/ D CS .
; s/˝ CT .
; t/ :

Then

L ŒhS ˝ hT � .s; t/ D hhS ˝ hT ;CS .
; s/˝ C .
; t/iH.CS;S/˝H.CT ;T/:

But, by definition of the Hilbert spaces tensor product,

hhS ˝ hT ;CS .
; s/˝ C .
; t/iH.CS;S/˝H.CT ;T/
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equals

hhS;CS .
; s/iH.CS ;S/hhT ;CT .
; t/iH.CT ;T/;

so that

L ŒhS ˝ hT � .s; t/ D hS .s/ hT .t/ :

Since fCS .
; s/ ; s 2 Sg generates the RKHS H .CS; S/ ; and fCT .
; t/ ; t 2 Tg ; the
RKHS H .CT ;T/ ; the range of F generates H .CS; S/˝ H .CT ;T/ [266, p. 52], and
L is an isomorphism. Furthermore

K ..s1; t1/ ; .s2; t2// D hF .s1; t1/ ;F .s2; t2/iH.CS;S/˝H.CT ;T/

D CS .s1; s2/CT .t1; t2/ :

Suppose now one has two covariances C1 and C2 on the same set T: One can then
also define F W T �! H .C1;T/˝ H .C2;T/ using

F .t/ D C1 .
; t/˝ C2 .
; t/ :

Then

L Œh1 ˝ h2� .t/ D h1 .t/ h2 .t/ :

L is no longer an isomorphism, but

K .t1; t2/ D C1 .t1; t2/C2 .t1; t2/ :

Definition 1.3.16 Let H be a real Hilbert space. A (weak) covariance operator on
H is a linear and bounded operator of H which is positive and self-adjoint. When
the operator has finite trace, it is a (strong) covariance operator.

Covariance operators often result from covariances as described farther. One uses
repeatedly the following fact.

Fact 1.3.17 ([Square Root Theorem][162, p. 27]) Let H be a real Hilbert space,
and R; a linear, bounded, and positive operator. R has a unique square root, denoted,
R1=2; that is, the latter is the unique linear and bounded S such that R D S2:
Furthermore, the square root commutes with every linear and bounded operator
which commutes with R: One has that jjR1=2jj D jjRjj1=2 : R and its square root have
the same null space, and the closures of their ranges are equal.

When R has the following form: R.h/ D P
i �i hh; eiiH ei; where the �’s are

strictly positive, and the ei’s, orthonormal, letting He be the (closed) subspace
generated by the ei’s, one has that N ŒR� D H?e ; and that RŒR� D He:
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Example 1.3.18 (The RKHS of a Covariance Operator) Let R be a covariance
operator of the real Hilbert space H: As seen below the following facts obtain.

The RKHS KR of R is obtained as the range of UR1=2; where U W H �! H?

is defined using U Œh� .x/ D hx; hiH: Furthermore [266, pp. 35 and 71], if H0 D
N ŒR1=2�; H?0 D RŒR1=2�; and

hUR1=2 Œh1� ;UR1=2 Œh2�iKR D hPH?0
Œh1� ;PH?0

Œh2�iH:

The reproducing kernel is, for fixed, but arbitrary .h1; h2/ 2 H � H;

KR .h1; h2/ D hR Œh1� ; h2iH :

Let indeed T D H; and F W T �! H be defined using F .h/ D R1=2 Œh� : Then

L Œh� .x/ D hh;F .x/iH D hh;R1=2 Œx�iH D hR1=2 Œh� ; xiH ;

so that L Œh� D UR1=2 Œh� : Furthermore N ŒL� D N ŒR1=2�: The reproducing kernel KR

is

KR .h1; h2/ D hF .h1/ ;F .h2/iH D hR Œh1� ; h2iH:

As KR .x; h/ D hx;R Œh�iH D hx;R1=2 ŒR1=2 Œh��iH; one has that

KR .
; h/ D L ŒF .h/� D L
�
R1=2 Œh�

� D UR Œh� :

Remark 1.3.19 With a given covariance, there may thus be associated two RKHS’s,
that defined by the covariance acting as a reproducing kernel, and that defined by
the covariance operator determined by the covariance. The relation between these
two RKHS’s is illustrated below.

The context shall be as follows. Let fa; bg � R; a < b; T D Œa; b� ; T be the
�-algebra of Borel sets, and Leb be Lebesgue measure. Let C be a covariance that
belongs to the manifold L2 .T � T; T ˝ T ;Leb˝ Leb/ : Defining RC Œ f � to be the
equivalence class in L2 .T; T ; �/ of

t 7!
Z

T
C .t; x/ Pf .x/ dx;

one gets [266, pp. 135 and 163] a Hilbert-Schmidt operator RC on the Hilbert space
L2 .T; T ;Leb/ ; which has a representation of the following form:

RC Œ f � D
X
i2I

�i h f ; eiiL2.T;T ;Leb/ ei;
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with I at most countable, �i > 0; i 2 I;
P

i2I �
2

i < 1; and the set fei; i 2 Ig �
L2 .T; T ;Leb/ orthonormal.

Proposition 1.3.20 Let T D Œa; b� ; T be the �-algebra of Borel sets, and Leb be
Lebesgue measure. Let C be a covariance in L2 .T � T; T ˝ T ;Leb˝ Leb/ ; and
RC D P

i2I �i Œei ˝ ei� be the associated Hilbert-Schmidt operator. Assume that
there exists a choice of Pei in ei; i 2 I; for which

P
i2I �i Pei .t1/ Pei .t2/ converges for

all .t1; t2/ 2 T � T: Let, for fixed, but arbitrary .t1; t2/ 2 T � T;

	 .t1; t2/ D
X
i2I

�i Pei .t1/ Pei .t2/ :

Then:

1. 	 is a covariance kernel (according to [245, p. 115], almost surely equal to C in
the space L2 .T � T; T ˝ T ;Leb˝ Leb/), and

H .	;T/ � L2 .T; T ;Leb/ :

2. Let

ŒH .	;T/� D ˚Œh�L2.T;T ;Leb/ 2 L2 .T; T ;Leb/ ; h 2 H .	;T/
�
;

that is, the family of equivalence classes obtained by taking the equivalence class
in L2 .T; T ;Leb/ of each function of H .	;T/ : Then also:

(i) RŒR1=2

C � D ŒH .	;T/� ; and, given h1 and h2 in H .	;T/ ;

Œh1�L2.T;T ;Leb/ ¤ Œh2�L2.T;T ;Leb/ if, and only if, h1 ¤ h2:

(ii) When C D 	; H .C;T/ can be represented as the square root of RC; and
conversely. This will happen in particular when C is continuous, because of
Mercer’s proposition [245, p. 128].

Proof Define F W T �! L2 .T; T ;Leb/ using the following relation:

F .t/ D
X
i2I

�
1=2

i Pei .t/ ei:

The requirement that 	 be a convergent series makes such a definition legitimate.
Define LF W L2 .T; T ;Leb/ �! RT using the following relation:

LF Œ f � .t/ D h f ;F .t/iL2.T;T ;Leb/:
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Then

LF Œ f � .t/ D
X
i2I

�
1=2

i h f ; eiiL2.T;T ;Leb/ Pei .t/ ;

ŒLF Œ f ��L2.T;T ;Leb/ D
X
i2I

�
1=2

i h f ; eiiL2.T;T ;Leb/ ei D R1=2

C Œ f � 2 RŒR1=2

C �;

and

hF .t1/ ;F .t2/iL2.T;T ;Leb/ D 	 .t1; t2/ :

As the range of LF is H .	;T/ ; and that the equivalence classes of elements
in H .	;T/ are contained in the range of the square root of RC; a manifold of
L2 .T; T ;Leb/ ; item 1 obtains. But every element

R1=2

C Œg� 2 RŒR1=2

C �

is of the form

X
i2I

�
1=2

i hg; eiiL2.T;T ;Leb/ ei D
"X

i2I

�
1=2

i hg; eiiL2.T;T ;Leb/ Pei

#
L2.T;T ;Leb/

D ŒLF Œg��L2.T;T ;Leb/ ;

so that, as sets, ˚
ŒLF Œ f ��L2.T;T ;Leb/ ; f 2 L2 .T; T ;Leb/

� D RŒR1=2

C �:

Suppose finally that, for fixed, but arbitrary t 2 T; LF Œ f � .t/ D 0: Its equivalence
class in L2 .T; T ;Leb/ is thus

R1=2

C Œ f � D 0L2.T;T ;Leb/:

But, since R1=2

C Œ f � D P
i2I �

1=2

i h f ; eiiL2.T;T ;�/ ei; using [266, pp. 35 and 71] and
(Fact) 1.3.17,

f 2 V Œfei; i 2 Ig�? D RŒR1=2

C �
? D N ŒR1=2

C �;

so that N ŒLF� � N ŒR1=2

C �: But, when f 2 N ŒR1=2

C �; as seen above, independently of i;
h f ; eiiL2.T;T ;Leb/ D 0: Thus, because of the representation of LF; the latter inclusion
is an equality, and

N ŒLF�
? D RŒR1=2

C �:
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Consequently, whenever f and g are in the range of R1=2

C ;

jjLF Œ f � � LF Œg�jjH.	;T/ D jjLF Œ f � g�jjH.	;T/

D
ˇ̌̌
ˇ
ˇ̌̌
ˇPRŒR1=2C �

Œ f � g�

ˇ̌̌
ˇ
ˇ̌̌
ˇ
L2.T;T ;Leb/

D jj f � gjjL2.T;T ;Leb/ :

ut
Proposition 1.3.21 T; T ; and Leb are as in (Proposition) 1.3.20. Let C be a
covariance on T that is adapted to T ˝ T and B .R/ : Suppose that the function

t 7! C .t; t/

(which is adapted to T and B .R/ [138, p. 92]) is integrable with respect to Leb: C is
then a square integrable kernel, and there is an associated Hilbert-Schmidt operator
RC DPi2I �i Œei ˝ ei� :

One has that

RŒR1=2

C � D ŒH .C;T/� :

Furthermore, given h1 and h2 in H .C;T/ ; simultaneously,

h1 ¤ h2 and Œh1�L2.T;T ;Leb/ ¤ Œh2�L2.T;T ;Leb/

if, and only if, for t 2 T; fixed, but arbitrary, setting

Qei .t/ D ��1i

˝
ŒC .
; t/�L2.T;T ;Leb/ ; ei

˛
L2.T;T ;Leb/

;

one has that

C .t; t/ D
X
i2I

�i Qe2i .t/ :

Proof As [(Proposition) 1.1.5] C2 .t1; t2/ � C .t1; t1/C .t2; t2/ ; one has that C is
square integrable.

Let h 2 H .C;T/ W it then follows, as presently seen, that h 2 L2 .T; T ;Leb/ ;
and that

jjhjj2L2.T;T ;Leb/ �
�Z

T
C .t; t/ dt

�
jjhjj2H.C;T/ :
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Indeed, for t 2 T; fixed, but arbitrary, x 7! C .x; t/ is adapted, and

Z
T

(
nX

iD1
˛iC .
; ti/

) 2

.t/ dt D

D
Z

T

*
nX

iD1
˛iC .
; ti/ ;C .
; t/

+2
H.C;T/

dt

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iC .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

Z
T
jjC .
; t/jj2H.C;T/ dt

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iC .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

Z
T

C .t; t/ dt

< 1:

Consequently the operator that sends h 2 H .C;T/ to its equivalence class in
L2 .T; T ;Leb/ is well defined and continuous. Let J denote that operator. For
f 2 L2 .T; T ;Leb/ ; fixed, but arbitrary,

J? Œ f � .t/ D hJ? Œ f � ;C .
; t/iH.C;T/
D h f ; J ŒC .
; t/�iL2.T;T ;Leb/

D
Z

T
C .x; t/ Pf .x/ dx:

Consequently, JJ? D RC; the Hilbert-Schmidt operator determined by C: But then,
by Douglas’s proposition [80],

RŒJ� D RŒR1=2

C �:

Since [266, pp. 35 and 71] N ŒJ� D RŒJ?�?; J is an injection if, and only if, RŒJ?�
is dense in H .C;T/ ; or, if, and only if,

C .
; t/ 2 RŒJ?�:

The polar decomposition [266, p. 186] yields that J? D UR1=2

C ; with U a partial
isometry with

RŒR1=2

C � as initial set, and RŒJ?� as final set.

Since RŒR1=2

C � is generated by fei; i 2 Ig ; fJ? Œei� ; i 2 Ig generates RŒJ?�:
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Now, since*
J?
	

eip
�i



; J?

"
ejp
�j

#+
H.C;T/

D
*

JJ?
	

eip
�i



;

ejp
�j

+
L2.T;T ;Leb/

D
*

RC

	
eip
�i



;

ejp
�j

+
L2.T;T ;Leb/

D
s
�i

�j
hei; ejiL2.T;T ;Leb/;

C .
; t/ 2 RŒJ?� if, and only if,

C .
; t/ D
X
i2I


C .
; t/ ; J?

	
eip
�i


�
H.C;T/

J?
"

ejp
�j

#

or

C .t; t/ D
X
i2I


C .
; t/ ; J?

	
eip
�i


�2
H.C;T/

D
X
i2I

�
1p
�i
hJ ŒC .
; t/� ; eiiL2.T;T ;Leb/

� 2

D
X
i2I

�
1p
�i

Z
T

C .x; t/ Pei .x/ dx

� 2

D
X
i2I

�i Qe2i .t/ :

ut
Remark 1.3.22 When, in (Proposition) 1.3.21, J is an injection, H .C;T/ is separa-
ble as J? is compact [8, p. 291].

1.4 Triangular Covariances

Covariances (reproducing kernels), which are the product of functions evaluated at,
respectively, the minimum and maximum of two indices, are the source of many
not so obvious illustrative examples. They are intimately related to the Markovian
properties of processes [200, p. 53] and to Goursat processes (Sect. 8.4).
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In the immediate sequel T shall be a subset of R and, given t 2 T; fixed, but
arbitrary, the following sets shall be needed:

T<

t D T \ ��1; tŒ ; T�t D T \ ��1; t� ; T>

t D T \ �t;1Œ ; T�t D T \ Œt;1Œ :

Definition 1.4.1 Let C W T � T �! R be a symmetric map. It has a factorization
when there exist maps c^ W T �! R and c_ W T �! R such that, for ft1; t2g � T;
fixed, but arbitrary,

C .t1; t2/ D c^ .t1 ^ t2/ c_ .t1 _ t2/ :

When C is also a covariance, it is called a triangular covariance.

When C has a factorization, TC shall denote the following set:

ft 2 T W c^ .t/ c_ .t/ ¤ 0g D ft 2 T W C .t; t/ ¤ 0g ;

and rC W TC �! R shall denote the following map:

rC .t/ D c_ .t/
c^ .t/

:

Since, when C is a covariance, C .t; t/ � 0; then, when C is a covariance,

TC D ft 2 T W C .t; t/ ¤ 0g D ft 2 T W C .t; t/ > 0g :

Remark 1.4.2 Let C have a factorization with components c^ and c_; continuous,
and of bounded variation on Œ0; 1�: Suppose that c^ is strictly positive on �0; 1�;
c_; strictly positive, and c^=c_; strictly increasing, with associated measure M: Let
F W Œ0; 1� �! L2.Œ0; 1�;B.Œ0; 1�/;M/ be the map computed using F.t/ D c_.t/It:

Then LFŒh�.t/ D c_.t/
R t
0 h.�/M.d�/; and

hLFŒh1�;LFŒh2�iH.C;Œ0;1�/ D hh1; h2iL2.Œ0;1�B.Œ0;1�/;M/ :

In what follows, fewer restrictions are imposed on c^ and c_; and more information
about M and its L2 space shall be provided. Supports are in that matter crucial.

Proposition 1.4.3 Let C W T � T �! R be a symmetric map with the following
factorization: for ft1; t2g � T; fixed, but arbitrary,

C .t1; t2/ D c^ .t1 ^ t2/ c_ .t1 _ t2/ :

C is a covariance if, and only if,

1. for t 2 TC; fixed, but arbitrary, rC .t/ > 0I
2. for ft1; t2g � TC; t1 < t2; fixed, but arbitrary, rC .t1/ � rC .t2/ I



1.4 Triangular Covariances 61

3. when t 2 T and c^ .t/ D 0;

either c_ .t/ D 0;

or cjT
�
t^ � 0I

4. when t 2 T and c_ .t/ D 0;

either c^ .t/ D 0;

or cjT
�
t_ � 0:

Proof Suppose that C is a covariance.
Let t 2 TC be fixed, but arbitrary. Then, as c^ .t/ c_ .t/ D C .t; t/ > 0;

rC .t/ D c_ .t/
c^ .t/

D c^ .t/ c_ .t/
c2^ .t/

> 0:

Let ft1; t2g � T be fixed, but arbitrary. One has that ((Proposition) 1.1.5)

C2 .t1; t2/ � C .t1; t1/C .t2; t2/ :

Thus

• when ft1; t2g � TC; t1 � t2;

c2^ .t1/ c2_ .t2/ � c^ .t1/ c_ .t1/ c^ .t2/ c_ .t2/ ;

so that, since none of c^ .t1/ ; c^ .t2/ ; c_ .t1/ and c_ .t2/ is zero, and thus
c^ .t1/ c_ .t2/ ¤ 0;

jc^ .t1/j jc_ .t2/j � jc^ .t2/j jc_ .t1/j

which translates into rC .t2/ � rC .t1/ I
• when f�; tg � T; � � t; c^ .t/ D 0; c_ .t/ ¤ 0; as above,

jc^ .�/j jc_ .t/j � jc^ .�/j1=2 jc_ .�/j1=2 jc^ .t/j1=2 jc_ .t/j1=2 ;

and, since the right-hand side of the latter inequality is zero, and that c_.t/ is
assumed different from zero, c^ .�/ D 0I

• when f�; tg � T; t � �; c_.t/ D 0; c^.t/ ¤ 0; as above,

jc^.t/j jc_.�/j � jc^.t/j1=2 jc_.t/j1=2 jc^.�/j1=2 jc_.�/j1=2 D 0;

and, since c^.t/ ¤ 0; c_.�/ D 0:
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Proof Suppose that items 1 to 4 obtain.
To see what happens, it is simplest to use explicit expressions. Let thus

ft1; t2; t3; t4; t5g � T

be fixed, but arbitrary. One may suppose, without restriction, that

t1 < t2 < t3 < t4 < t5:

Let C5 be the matrix with entries

c^
�
ti ^ tj

�
c_
�
ti _ tj

�
; fi; jg � Œ1 W 5� :

Then

C5 D

2
666664

c^ .t1/ c_ .t1/ c^ .t1/ c_ .t2/ c^ .t1/ c_ .t3/ c^ .t1/ c_ .t4/ c^ .t1/ c_ .t5/
c^ .t1/ c_ .t2/ c^ .t2/ c_ .t2/ c^ .t2/ c_ .t3/ c^ .t2/ c_ .t4/ c^ .t2/ c_ .t5/
c^ .t1/ c_ .t3/ c^ .t2/ c_ .t3/ c^ .t3/ c_ .t3/ c^ .t3/ c_ .t4/ c^ .t3/ c_ .t5/
c^ .t1/ c_ .t4/ c^ .t2/ c_ .t4/ c^ .t3/ c_ .t4/ c^ .t4/ c_ .t4/ c^ .t4/ c_ .t5/
c^ .t1/ c_ .t5/ c^ .t2/ c_ .t5/ c^ .t3/ c_ .t5/ c^ .t4/ c_ .t5/ c^ .t5/ c_ .t5/

3
777775 :

Suppose c^ .t4/ D 0: As either c_ .t4/ D 0 or c^ .t1/ D c^ .t2/ D c^ .t3/ D 0;

the fourth row and column of C5 are made of zeros. Suppose c_ .t1/ D 0: As either
c^ .t1/ D 0 or c_ .t2/ D c_ .t3/ D c_ .t4/ D c_ .t5/ D 0; the first row and column
of C5 are made of zeroes. One may thus assume that none of the entries of C5 is
zero, and thus that ft1; t2; t3; t4; t5g � TC:

Let D.5/^ be the diagonal matrix whose diagonal entries are c^ .t1/ ; : : : ; c^ .t5/ ;
and L5 be the following matrix:

L5 D

2
666664
1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

3
777775 :

It may be checked that

L�15 D

2
666664

1 0 0 0 0

�1 1 0 0 0

0 �1 1 0 0

0 0 �1 1 0

0 0 0 �1 1

3
777775 :
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Let D.5/
rC

be the matrix

˚
L�15

�? ˚
D.5/^

��1
C5

˚
D.5/^

��1
L�15 :

It can be checked that D.5/
rC

is a diagonal matrix with diagonal entries equal to,
successively,

rC .t1/� rC .t2/ ; rC .t2/� rC .t3/ ; rC .t3/� rC .t4/ ; rC .t4/� rC .t5/ ; rC .t5/ :

D.5/
rC

is thus positive definite and thus so is C5: C is thus positive definite and
consequently a covariance. ut
Remark 1.4.4 Assume that (Proposition) 1.4.3 obtains. As, for ft1; t2g � T; fixed,
but arbitrary,

c^ .t1 ^ t2/ c_ .t1 _ t2/ D C .t1; t2/ D hC .
; t1/ ;C .
; t2/iH.C;T/;

the matrix Cn (as C5 in (Proposition) 1.4.3) is the Gram matrix of C .
; t1/ ; : : : ;
C .
; tn/ : Thus these functions and elements of H .C;T/ are linearly independent
if, and only if, the matrix Cn has an inverse. But, as seen, that is secured by the
following conditions:

• no rows and columns of zeros: ti 2 TC or c^ .ti/ c_ .ti/ > 0; so that

rC .ti/ > 0I

• D.n/
rC

(as D.5/
rC

in (Proposition) 1.4.3) has an inverse: for ti ¤ tj;

rC .ti/ ¤ rC
�
tj
�
:

Remark 1.4.5 Assume that (Proposition) 1.4.3 obtains. For f�; tg � T; fixed, but
arbitrary, by definition,

C .�; t/ D �
T
�
t

.�/ c^ .�/ c_ .t/C �
T>t
.�/ c^ .t/ c_ .�/ :

Suppose that c^ .t/ D 0: Then, since either c_ .t/ D 0 or c^ .�/ D 0 for � � t;
C .
; t/ D 0H.C;T/: That remains true when c_ .t/ D 0:Consequently, when C .
; t/ ¤
0H.C;T/; t 2 TC:

Remark 1.4.6 Assume that (Proposition) 1.4.3 obtains. Let TC be a support for C;
and t 2 TC be fixed, but arbitrary. Then [(Fact) 1.1.30] C .
; t/ ¤ 0H.C;T/; so that
[(Remark) 1.1.4]

C .t; t/ D jjC .
; t/jj2H.C;T/ > 0;

and thus t 2 TC: Consequently TC � TC:
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Remark 1.4.7 Assume that (Proposition) 1.4.3 obtains. When ft1; t2g � TC; t1 < t2;
and t 2 Œt1; t2�\T are fixed, but arbitrary, either both c^ .t/ D c_ .t/ D 0; or t 2 TC:

Indeed, when c^ .t/ D 0 but c_ .t/ ¤ 0; c^ .�/ D 0 for � 2 T�t ; fixed, but arbitrary,
giving c^ .t1/ D 0; which is impossible, as t1 2 TC:

Remark 1.4.8 Assume that (Proposition) 1.4.3 obtains. Let TrC � TC be a set of
points at which rC is strictly decreasing. Then, restricting rC to that set,

• one obtains, for the diagonal elements of D.n/
rC

[(Proposition) 1.4.3], strictly
positive numbers, that is, that latter matrix has an inverse, and

Cn D D.n/^ L?n D.n/
rC

LnD.n/^

C�1n D
n
D.n/^

o�1
L�1n

˚
D.n/

rC

��1 ˚
L�1n

�? n
D.n/^

o�1 I
• letting

– rC D 1
rC
;

– D.n/_ be the diagonal matrix with successive diagonal entries

c_ .ti/ ; i 2 Œ1 W n� ;

– D.n/
rC be the diagonal matrix with, in the diagonal, successive entries

rC .t1/ ; r
C .t2/ � rC .t1/ ; : : : ; r

C .tn/� rC .tn�1/ ;

one has similarly that

Cn D D.n/
_ L?n D.n/

rC Ln D.n/
_ ;

C�1n D
n
D.n/_

o�1
L�1n

n
D.n/

rC

o�1 ˚
L�1n

�? n
D.n/_

o�1
:

Remark 1.4.9 Assume that (Proposition) 1.4.3 obtains. C�1n is a tridiagonal matrix
with the following entries, made explicit presently:

• ˛1; : : : ; ˛n in the diagonal,
• ˇ1; : : : ; ˇn�1 above and below the diagonal.

The ˛’s and the ˇ’s are obtained as follows. Let, for fi; jg � Œ1 W n� ;

�i;j D c^ .ti/ c_
�
tj
�� c^

�
tj
�

c_ .ti/ :

Suppose that �i;j D 0 W then c^ .ti/ c_
�
tj
� D c^

�
tj
�

c_ .ti/ ; which means that
rC .ti/ D rC

�
tj
�
; a case that has been excluded by assumption [(Remark) 1.4.4].
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So the following assignments make sense and may be checked to be correct:

˛1 D � c^.t2/
c^.t1/

1
�1;2
;

˛i D �iC1;i�1

�i�1;i �i;iC1
.for i 2 Œ2 W n � 1�/;

˛n D � c_.tn�1/
c_.tn/

1
�n�1;n

;

ˇi D 1
�i;iC1

.for i 2 Œ1; n � 1�/:

Proposition 1.4.10 Let C be a covariance on T � R; with a factorization. A subset
Ts � T is a support of C if, and only if, it is a maximal subset such that rjTs

C is strictly
positive and strictly decreasing.

Proof Let Ts � T be a support, that is, a maximal subset such that, when in
Ts; t1 < 
 
 
 < tn; then C.
; t1/; : : : ;C.
; tn/ are linearly independent. Then, from
(Remark) 1.4.4, rjTs

C is strictly positive, and strictly decreasing. If Ts is a maximal
subset such that rjTs

C is strictly positive, and strictly decreasing, it is a support, again
because of (Remark) 1.4.4. ut
Remark 1.4.11 The supports of C are thus the maximal sets over which rC is strictly
positive and decreasing.

Proposition 1.4.12 Let C be a covariance on T � R; with a factorization. Let
ft1; t2g � TC; t1 < t2; be two points such that rC .t1/ D rC .t2/ : Let t 2 Œt1; t2� \ TC

be fixed, but arbitrary, and let

�1 D c^ .t/ =c^ .t1/ ;

�2 D c_ .t/ =c_ .t1/ :

Then �1 D �2 D �; and

C .
; t/ D �C .
; t1/ :

Proof Since rC is monotone decreasing, rC .t1/ � rC .t/ � rC .t2/ ; so that
rC .t/ D rC .t1/ : But then, as seen in (Remark) 1.4.4, C .
; t/ and C .
; t1/ are linearly
dependent, so that, for some �; C .
; t/ D �C .
; t1/ : But, when � � t1; � 2 T;

C .�; t/ D c^ .�/ c_ .t/ D c_ .t/
c_ .t1/

c^ .�/ c_ .t1/ D �2C .�; t1/ :
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As C.t1; t/ D � C.t1; t1/ D �2 C.t1; t1/; and, since t1 2 TC; then C.t1; t1/ > 0; so
that � D �2: Furthermore, for � � t1;

C .�; t1/ D c^ .t1/ c_ .�/ D c^ .t1/
c^ .t/

c^ .t/ c_ .�/ D 1

�1
C .�; t/ ;

and thus �1C.t1; t1/ D C.t1; t/ D �2C.t1; t1/; or �1 D �2:
Corollary 1.4.13 Let C be a covariance on T � R; with a factorization, h 2
H .C;T/ be fixed, but arbitrary, and ft1; t2g � TC; t1 < t2; be two points such that
rC .t1/ D rC .t2/ : Then the functions h

c^
and h

c_
are constant on the set Œt1; t2�\ TC:

Proof One has, for t 2 Œt1; t2� \ TC; fixed, but arbitrary,

h .t/ D hh;C .
; t/iH.C;T/ D � hh;C .
; t1/iH.C;T/ D �h .t1/ :

Example 1.4.14 Let T D Œ0; 3� ;

c^ .t/ D
8<
:

t when 0 � t � 1
1 when 1 < t � 2
t � 1 when 2 < t � 3

and c_ .t/ D
8<
:

t when 0 � t � 1
3�t
2

when 1 < t � 2
t�1
2

when 2 < t � 3
:

One has that TC D �0; 3� and

rC .t/ D
8<
:
1 when 0 � t � 1
3�t
2

when 1 < t � 2
1
2

when 2 < t � 3
:

Since supports of C are determined by rC and that the latter is constant on Œ0; 1� and
Œ1; 2� ; strictly decreasing on Œ1; 2� ; any support Ts is of the form

Ts D fag [ �1; 2Œ[ fbg ; a 2 �0; 1� and b 2 Œ2; 3� :

The simplest support is Œ1; 2� :

Remark 1.4.15 Let C be a covariance on T; with factorization made of c^ and
c_: Let ft; t1; 
 
 
 ; tng � T; t1 < 
 
 
 < tn; be fixed, but arbitrary. Sup-
pose that C .
; t1/ ; : : : ;C .
; tn/ are linearly independent, which means, as seen
[(Remark) 1.4.11], that rC.ti/ > 0; rC.ti/ > rC.tiC1/; and that

C .
; t/ D
nX

iD1
�i C .
; ti/ :
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Let

	 .�/ D
nX

iD1
�i C .�; ti/ D

nX
iD1

�i c^.� ^ ti/c_.� _ ti/;

and, for i 2 Œ1 W n� ; fixed, but arbitrary,

ci D
iX

jD1
�j c^

�
tj
�
; �i D

iX
jD1

�j c_
�
tj
�
:

Thus, for example, when tj � � � tjC1;

jX
iD1

�ic^.ti/c_.�/C
nX

iDjC1
�ic^.�/c_.ti/ D

D c_.�/cj C
(

nX
iD1

�ic^.�/c_.ti/�
jX

iD1
�ic^.�/c_.ti/

)

D c_.�/cj C
˚
c^.�/�n � c^.�/�j

�
:

Consequently,

	 .�/ D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂:

�n c^ .�/ when � � t1

.�n � �1/ c^ .�/C c1c_ .�/ when t1 � � � t2
:::

:::

.�n � �i/ c^ .�/C ci c_ .�/ when ti � � � tiC1
:::

:::

.�n � �n�1/ c^ .�/C cn�1c_ .�/ when tn�1 � � � tn

cn c_ .�/ when � � tn

:

Furthermore,

• choosing � � t ^ t1; the following equation: C .�; t/ D 	 .�/ yields that

c^ .�/ c_ .t/ D
nX

iD1
�i c^ .�/ c_ .ti/ D c^.�/�n;

and, when one is interested in the value of rC.�/; � belongs to TC; so that c^.�/ >
0 and one gets that c_.t/ D �nI
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• similarly, choosing � � t _ tn; C .�; t/ D 	 .�/ yields

c^ .t/ c_ .�/ D
nX

iD1
�i c^ .ti/ c_ .�/ D c_.�/cn;

so that c^ .t/ D cn:

Suppose that

• t < t1 W for t � � � t1;

C .�; t/ D c^ .t/ c_ .�/ D �n c^ .�/ ;

so that, using c^ .t/ D cn;

rC .�/ D c_ .�/
c^ .�/

D �n

cn
I

• t D t1 W for t � � � t2;

C .�; t/ D c^ .t/ c_ .�/ D .�n � �1/ c^ .�/C c1c_ .�/ ;

so that, using c^ .t/ D cn;

rC .�/ D �n � �1
cn � c1

I

• t1 < t < t2 W for t � � � t2;

C .�; t/ D c^ .t/ c_ .�/ D .�n � �1/ c^ .�/C c1c_ .�/

so that, using c^ .t/ D cn;

rC .�/ D �n � �1
cn � c1

I

• t D t2 W for t2 � � � t3;

C .�; t/ D c^ .t/ c_ .�/ D .�n � �2/ c^ .�/C c2c_ .�/

so that, using c^ .t/ D cn;

rC .�/ D �n � �2
cn � c2

I

• . . .
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One sees that, whatever the positioning of t with respect to t1; : : : ; tn; there are
intervals of constancy of rC; containing t; so that, in the representation of C .
; t/
with respect to C .
; t1/ ; : : : ;C .
; tn/ ; n must be one [(Proposition) 1.4.12].

Remark 1.4.16 When dealing with covariances with a factorization, the representa-
tion of the covariance that one uses may be of relevance as seen in (Remark) 1.4.2.
Thus, as seen there, the representation that helps identify the RKHS of the
covariance has the following form. Assume that T D TC D Œtl; tr� ; tl � 0: Let

rC D c^
c_
:

Then, for ft1; t2g � T; fixed, but arbitrary,

C .t1; t2/ D c_ .t1/ c_ .t2/ rC .t1 ^ t2/ :

The function rC is monotone increasing since it is the reciprocal of rC:

The map rC may be extended to a monotone increasing function on R by letting
it be equal to rC .tl/ when t � tl; and equal to rC .tr/ when t � tr: One thus obtains a
measure �C on the Borel sets of R using, for fixed, but arbitrary reals a and b; with
a < b; the assignment

�C .�a; bŒ/ D rC .b�/� rC .aC/ :

Then �C .��1; tlŒ/ D 0; and �C .�tr;1Œ/ D 0:
For the definition of �C; it is no restriction to suppose that rC is continuous to the

right on �tl; trŒ [46, p. 139]. The consequence is that one may write, for fixed, but
arbitrary t 2 �tl; tr� ;

�C .Œtl; t�/ D rC .t/ � rC .tl/ :

Let ı� be the measure defined, for fixed, but arbitrary Borel B; using the following
relation:

ı� .B/ D ��B .tl/ ;

and let then Q�C D �C C ı�; with � D rC .tl/ : It then follows that

rC .t/ D Q�C .Œtl; t�/ ;

so that

rC .t1 ^ t2/ D hIŒtl ;t1�; IŒtl;t2�iL2.T;T ;Q�C/

D rC .tl/C hIŒtl;t1�; IŒtl;t2�iL2.T;T ;�C/:



70 1 Reproducing Kernel Hilbert Spaces: The Rudiments

Let F W T �! L2 .T; T ; Q�C/ be defined using the following relation:

F .t/ D IŒtl;t�:

Then, as just seen,

hF .t1/ ;F .t2/iL2.T;T ;Q�C / D rC .t1 ^ t2/ ;

and

LF Œ f � .t/ D hf ; IŒtl;t�iL2.T;T ;Q�C/ D rC .tl/ Pf .tl/C hf ; IŒtl;t�iL2.T;T ;�C/:

That one need not distinguish Pf from f follows from the fact that there is a point
mass lurking in the background. Finally

hLF Œ f � ;LF Œg�iH.rC ;T/ D rC .tl/ f .tl/ g .tl/C hf ; giL2.T;T ;�C/:

Now, when c_ is strictly different from zero, one has, as shall be seen [(Exam-
ple) 1.6.8], that

H .C;T/ D ˚c_h; h 2 H
�
rC;T

��
;

and that

hc_h1; c_h2iH.C;T/ D hh1; h2iH.rC;T/:

Remark 1.4.17 Let C and T be as in the previous remark [(Remark) 1.4.16], and
f 2 RT be fixed, but arbitrary. Set

˚ D f

c^
and � D f

c_
:

The following relation [(Remark) 1.1.47]:

ˇ̌̌̌
hf ITn

ˇ̌̌̌
2

H.C;T/
D
D
˙�1C;Tn

h
f
i
; f
E
Rn

may be expressed, using (Remark) 1.4.9, as presently seen, as follows:

ˇ̌̌̌
hf ITn

ˇ̌̌̌
2

H.C;T/
D

n�1X
iD1

f˚ .ti/ �˚ .tiC1/g2
rC .ti/� rC .tiC1/

C ˚2 .tn/

rC .tn/

D �2 .t1/

rC .t1/
C

n�1X
iD1

f� .tiC1/� � .ti/g2
rC .tiC1/ � rC .ti/

:



1.4 Triangular Covariances 71

Let indeed�i D rC .ti/� rC .tiC1/ ; and c^ .ti/ D ci: Then, for example, the product

2
6664

1
c1
0 0 0

0 1
c2
0 0

0 0 1
c3
0

0 0 0 1
c4

3
7775
2
664

1 0 0 0

�1 1 0 0

0 �1 1 0

0 0 �1 1

3
775
2
6664

1
�1

0 0 0

0 1
�2

0 0

0 0 1
�3

0

0 0 0 1
�4

3
7775�

�

2
664
1 �1 0 0

0 1 �1 0

0 0 1 �1
0 0 0 1

3
775
2
6664

1
c1
0 0 0

0 1
c2
0 0

0 0 1
c3
0

0 0 0 1
c4

3
7775

yields the matrix2
6666664

1

c21�1
� 1

c1c2�1
0 0

� 1
c1c2�1

1

c22

�
1
�1
C 1

�2

�
� 1

c2c3�2
0

0 � 1
c2c3�2

1

c23

�
1
�2
C 1

�3

�
� 1

c3c4�3

0 0 � 1
c3c4�3

1

c24

�
1
�3
C 1

�4

�

3
7777775 :

When that matrix gets pre- and post-multiplied by a vector whose components
are f .t1/ ; f .t2/ ; f .t3/ ; f .t4/ ; combining these values with the c’s, one gets the
expression

˚2 .t1/

�1

� 2˚ .t1/ ˚ .t2/
�1

C
�
1

�1

C 1

�2

�
˚2 .t2/ � 2˚ .t2/ ˚ .t3/

�2

C 
 
 
 ;

that is, one of the two displayed above.
Those expressions determine membership of f in H .C;T/ ; and, considering the

case of that with �;may be understood in the following way. Let T have finite length
jTj; and  W T �! R be a map. Allow for the following notation:

In;0 D �ftlg ;
In;i D �

�jTj i�12n Ctl ;jTj
i
2nCtl�

;

n;0 D  .tl/ ;
n;i D  � i

2n

�
;

rC
n;i D rC.tn;i/;

n .�/ D
n
n;0

rC.tl/

o
In;0 .�/CPi2Œ1Wn�

�
n;i�n;i�1

rC
n;i�rC

n;i�1

�
In;i .�/ :
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Then

2n;0

rC .tl/
C
X

i2Œ1Wn�

.n;i � n;i�1/2

rC
n;i � rC

n;i�1
D
Z

T
2n .�/ Q�C .d�/ :

Consequently f belongs to H .C;T/ when � has a square that is integrable with
respect to Q�C:

The nature of the range of rC is determining for the identification of H .C;T/ as
shall be seen. Some of its properties are listed below.

Definition 1.4.18 Let C be a covariance with factorization terms c^ and c_;
TC � T; a support of C; and rC D c_

c^
; whose domain is TC: The range of rC

when restricted to TC shall be denoted

RŒrjTC
C �:

Remark 1.4.19 Since [(Remark) 1.4.6] TC � TC;RŒrjTC
C � � RŒrC�:

Proposition 1.4.20 For any support TC;RŒrjTC
C � D RŒrC�:

Proof Let � > 0 be fixed, but arbitrary. Suppose � 2 RŒrC �; that is, � is a
value taken by rC: Since TC is a maximal set over which rC is strictly decreasing
[(Remark) 1.4.11], were TC \ r�1C .�/ D ; to obtain, TC would not be maximal.
Thus, for any TC and 0 < � 2 RŒrC�;

TC \ r�1C .�/ ¤ ;:

Let T .1/

C and T .2/

C be two supports, not equal, and suppose that

� 2 R
	

r
jT
.1/
C

C



� RŒrC�:

By definition � > 0 and thus T .2/

C \ r�1C .�/ ¤ ;; so that there exists t� 2 T .2/

C such
that rC

�
t�
� D �: Consequently

R
	

r
jT
.1/
C

C



� R

	
r
jT
.2/
C

C



:

Since the argument is independent of the indices,

R
	

r
jT
.2/
C

C



D R

	
r
jT
.1/
C

C



;

and the range of the restriction of rC to a support is independent of that support. Let
R denote that unique range.
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If now t 2 TC; C .
; t/ ¤ 0H.C;T/ as C .t; t/ D c^ .t/ c_ .t/ ¤ 0: There exists thus
a support TC containing t: Consequently RŒrC� � R: ut
Remark 1.4.21 The importance of the range of rC is illustrated by the following
considerations.

Suppose that RŒrC� D R
h
rjTC

C

i
D �

�C
l ; �

C
r

�
; �C

l � 0: Then one has that

r�1C

��
�C

l ; �
C
r

�� D TC � TC (since rjTC
C is strictly decreasing), and one may define

�C W RTC �! RŒ�
C
l ;�

C
r �

using the following relation: for f 2 RTC and t 2 ��C
l ; �

C
r

�
; fixed, but arbitrary,

Et .�C Œ f �/ D f

c^
�
r�1C .t/

� D ˚ �r�1C .t/
�
;

that is

�C Œ f � D f

c^
ı r�1C D ˚ ı r�1C :

As seen [(Proposition) 1.2.1 and (Remark) 1.4.17], the condition for f to belong
to H

�
CjTC ;TC

�
is that the following sums, for fixed, but arbitrary ft1; : : : ; tng �

TC; t1 < 
 
 
 < tn; be bounded by a (finite) bound depending only on f W
n�1X
iD1

f˚ .ti/ �˚ .tiC1/g2
rC .ti/� rC .tiC1/

C ˚2 .tn/

rC .tn/
:

For i 2 Œ1 W n� ; fixed, but arbitrary, let rC .ti/ D �i; so that �n < 
 
 
 < �1: Then

˚ .ti/ D ˚
�
r�1C ı rC .ti/

� D ˚ �r�1C .�i/
� D �C Œ f � .�i/ ;

so that the latter sum rewrites as

n�1X
iD1

f�C Œ f � .�i/ � �C Œ f � .�iC1/g2
�i � �iC1

C �C Œ f �
2 .�n/

�n
:

Letting Q�1 D �n; : : : ; Q�i D �n�iC1; : : : ; Q�n D �1; the sum becomes

�C Œ f �
2

� Q�1�
Q�1

C
n�1X
iD1

n
�C Œ f �

� Q�n�iC1
�
� �C Œ f �

� Q�n�i

�o2
Q�n�iC1 � Q�n�i

D

D
�C Œ f �

2

� Q�1�
Q�1

C
n�1X
iD1

n
�C Œ f �

� Q�iC1
�
� �C Œ f �

� Q�i

�o2
Q�iC1 � Q�i

:
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Consequently, letting CW be the covariance of the standard Wiener process (for
which rCW .t/ D t�1), f 2 H

�
CjTC ;TC

�
if, and only if,

�C Œ f � 2 H

�
C
jŒ�C

l ;�
C
r �

W ;
�
�C

l ; �
C
r

��
:

Furthermore one has that the corresponding norms are equal.
One has the identity

f D c^ � f�C Œ f � ı rCg :

Consequently, when h 2 H

�
C
jŒ�C

l ;�
C
r �

W ;
�
�C

l ; �
C
r

��
;

c^ � fh ı rCg 2 H
�
CjTC ;TC

�
; and f D � TC

Œc^ � fh ı rCg� :

The norms are equal.

Remark 1.4.22 Given appropriate measurability and integrability conditions, the
covariance operator associated, on Œ0; 1�; with the triangular covariance

c^.s ^ t/c_.s _ t/;

has the following form:

Mc_VMc^ C fMc_VMc^g? ;

where V is the Volterra operator, and Mf is the operator of multiplication by f :

1.5 Separable Reproducing Kernel Hilbert Spaces

In the context of RKHS’s, separable means, basically, finitely computable, an
important feature.

Proposition 1.5.1 Let H .H;T/ be a separable RKHS. There exists then a count-
able Vc � V ŒH� which is total in H .H;T/ :
Proof It is enough to consider the countably infinite case. Let thus the set Hc D
fhn; n 2 Ng � H .H;T/ be countable and total. Since [(Proposition) 1.1.5] V ŒH� is
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dense in H .H;T/ ; given n 2 N; fixed, but arbitrary, there exists kn;p 2 V ŒH� such
that ˇ̌̌̌

hn � kn;p

ˇ̌̌̌
H.H;T/ < p�1:

Let Vc D
˚
kn;p; .n; p/ 2 N � N

�
; and h0 2 H .H;T/ and � > 0 be fixed, but

arbitrary. Choose both

• p 2 N such that p > 2
�
;

• hn 2 Hc such that jjh0 � hnjjH.H;T/ < �
2
:

Then

ˇ̌̌̌
h0 � kn;p

ˇ̌̌̌
H.H;T/ � jjh0 � hnjjH.H;T/ C

ˇ̌̌̌
hn � kn;p

ˇ̌̌̌
H.H;T/ �

�

2
C 1

p
<
�

2
C �

2
:

ut
Definition 1.5.2 Let H .H;T/ be an RKHS. A set Td � T is determining when,
given that h 2 H.H;T/ and hjTd D 0Td ; it follows that h D 0T :

Remark 1.5.3 Let Td � T be determining for H.H;T/: Then

HŒTd� D fH.
; t/; t 2 Tdg

is total in H.H;T/ as h.t/ D hh;H.
; t/iH.H;T/: Provided there is at least one t 2
T such that H.
; t/ ¤ 0T ; which is thus linearly independent, there is a Hamel
basis, say HŒTS�;TS � Td; for VŒH�; which belongs to HŒTd� [46, p. 26]. TS is also
determining, and then TS is a Hamel subset of T; and consequently a support for H:
One may thus take that determining set, Hamel subset, and support are one and the
same concept. According to case, one or the other of these avatars will prove more
convenient to use than the others.

Remark 1.5.4 Suppose H.H;T/ is separable, and fVi; i 2 Ig � VŒH� is a countable
set which is total in H.H;T/ [(Proposition) 1.5.1]. Let TI be the union of the
indices corresponding to the elements H.
; t.i/j / which subtend the Vi’s. They form a
countable, determining set.

Proposition 1.5.5 Let H .H;T/ be an RKHS. When there is a countable, determin-
ing Tdc � T; H .H;T/ is separable.

Proof Let h 2 fH .
; t/ ; t 2 Tdcg? : Then (orthogonality), for tdc 2 Tdc;

h .tdc/ D hh;H .
; tdc/iH.H;T/ D 0:

But, Tdc being determining, h D 0: Consequently

fH .
; t/ ; t 2 Tdcg? D
˚
0H.H;T/

�
;
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so that

V ŒfH .
; t/ ; t 2 Tdcg� D H .H;T/ :

ut
Proposition 1.5.6 Let H .H;T/ be an RKHS.

1. When H .H;T/ is separable, for any complete orthonormal system

fhi; i 2 Ig ;

for t 2 T; fixed, but arbitrary, in H.H;T/;

H.
; t/ D
X
i2I

hi.t/hi:

2. Suppose there exists an orthonormal system fhi; i 2 Ig such that, for t in T; fixed,
but arbitrary, in H.H;T/;

H.
; t/ D
X
i2I

hi.t/hi:

Then fhi; i 2 Ig is complete, and H.H;T/; separable.
3. When either item 1 or 2 obtains, for .t1; t2/ 2 T � T; fixed, but arbitrary, in R;

H.t1; t2/ D
X
i2I

hi.t1/hi.t2/:

Proof When the assumptions of item 1 are true, one has, in H.H;T/; that

H.
; t/ D
X
i2I

hH.
; t/; hiiH.H;T/hi:

But hH.
; t/; hiiH.H;T/ D hi.t/: So item 1 is true.
Let now the assumption of item 2 obtain, and h 2 H.H;T/ be fixed, but arbitrary.

Then

h.t/ D hh;H.
; t/iH.H;T/ D
X
i2I

hi.t/hh; hiiH.H;T/:

That latter expression rewrites as (Et is continuous)

Et.h/ D Et

 X
i2I

hihh; hiiH.H;T/
!
:
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Since t 2 T is arbitrary, h DPi2I hihh; hiiH.H;T/; and, since h is arbitrary, fhi; i 2 Ig
is complete, and thus H.H;T/ is separable. Result 3 follows using series expansion.

ut
Remark 1.5.7 ([77]) Let F ŒT� be a pre-Hilbert space of functions [8, p. 7] for which
the evaluation maps are continuous, and let H be the completion of F ŒT� [8, p. 54].
The functional Et has then an extension to H; say Lt; which, because of the Riesz
representation theorem [8, p. 209], has the following representation: LtŒh�.�/ D
hh; hŒt�iH; some hŒt� 2 H: Define F W T �! H using the following relation: F.t/ D
hŒt�: Let HF be the (closed) subspace generated linearly by the set fhŒt�; t 2 Tg ; PF

be the associated projection, and the map LF W H �! RT be defined using the
following relation: LFŒh�.t/ D hh; hŒt�iH : RŒLF � is an RKHS H.H;T/; with inner
product given by the following relation:

hLFŒh1�;LFŒh2�iH.H;T/ D hPFŒh1�;PFŒh2�iH ;

and kernel, by the following one:

H.t1; t2/ D hF.t1/;F.t2/iH D hhŒt1�; hŒt2�iH :

Using the way the completion of F ŒT� is obtained, one has that

f .t/ D Et.f / D Lt ŒŒf �� D hŒf �; hŒt�iH D LF ŒŒf �� .t/:

F ŒT� is thus a subset of H.H;T/; which is its functional completion [117, p. 185]
if, and only if, HF D H; or LF is unitary.

Let now the reproducing kernel H have the following representation:

H.t1; t2/ D
X
i2I

hi.t1/hi.t2/;

for fhi; i 2 I � Ng linearly independent, and such that, for t 2 T; fixed, but arbitrary,P
i2I h2i .t/ <1:
Let F ŒT� D V Œfhi; i 2 Ig� : As the hi’s are linearly independent, each f 2 F ŒT�

has a unique representation in the following generic form: f DPn
iD1 ˛ihi: Let

jjf jj D
nX

iD1
˛2i :

With that norm, F ŒT� is a pre-Hilbert space, and, because of the Cauchy-Schwarz
inequality, and the “summability” assumption on the hi’s, the evaluation maps are
continuous. Let H be the completion of F ŒT� as described above. The specific form
of the inner product of F ŒT� has, as consequence, that fhi; i 2 Ig is a complete
orthonormal set in H: One has thus that:
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The functions fhi; i 2 Ig form a complete orthonormal set in H.H;T/ if, and only
if, given that

P
i2I ˛ihi.t/ � 0 and ˛ 2 l2; then ˛ D 0l2 :

One may use the preceding result to check that, in [123], where one to require the
skew-normal processes defined there to be stationary, they then would be Gaussian.

Proposition 1.5.8 If T is a separable topological space, and H � RT is a Hilbert
space of continuous functions that is not separable, then H cannot be an RKHS.

Proof Suppose a contrario that there is a kernel H which is reproducing for H: Fix
then a countable, dense subset Tdc of T: It is a determining set, and, according to
(Proposition) 1.5.5, H should be separable. But that contradicts the assumption. ut
Corollary 1.5.9 An RKHS of continuous functions defined on a separable topo-
logical space is itself separable, and an RKHS of functions defined on a separable
topological space that is not separable must contain functions that are not continu-
ous.

The following notation is required for what follows. Given H .H;T/ and .t1; t2/ 2
T � T; set

�H .t1; t2/ D H .t1; t1/� 2H .t2; t1/CH .t2; t2/ :

One has thus that

�H .t1; t2/ D jjH .
; t1/ �H .
; t2/jj2H.H;T/ D d2H .t1; t2/ :

Proposition 1.5.10 ([106, p. 142]) H .H;T/ is separable if, and only if, given a
fixed, but arbitrary � > 0; there exists a countable partition of T; say fTi Œ�� ; i 2 Ig
such that, whatever i 2 I; .t1; t2/ 2 Ti Œ�� � Ti Œ�� ;

�H .t1; t2/ < 4�
2:

Proof Suppose first that H .H;T/ is separable.
Let fhi; i 2 Ig � H .H;T/ be a countable, dense subset of H .H;T/ : Define then

Si D
˚
t 2 T W jjH .
; t/ � hijjH.H;T/ < �

�
:

Since fhi; i 2 Ig is dense, [i2ISi D T: One then defines recursively

T1 Œ�� D S1;
T2 Œ�� D S2 n ŒS2 \ T1 Œ��� ;
:::

:::

TnC1 Œ�� D SnC1 n
�
SnC1 \

�[n
iD1Ti Œ� �

��
;

:::
:::
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The sets Ti Œ�� are, by construction, disjoint, and

[n
iD1Ti Œ�� D [n

iD1Si:

Thus fTi Œ�� ; i 2 Ig is a partition of T: By construction, whenever t1 and t2 belong
to Ti Œ�� ; one has that jjH .
; t1/�H .
; t2/jjH.H;T/ < 2�; so that

�H .t1; t2/ D jjH .
; t1/�H .
; t2/jj2H.H;T/ < 4�2:

Proof Suppose conversely that the latter inequality obtains for any � > 0 and
associated countable partition fTi Œ�� ; i 2 Ig of T:

Choose then, for every i 2 I and every n 2 N;

� D n�1; and, in the set Ti Œ�� ; a point t.n/i :

Fix t 2 T; and suppose that this t belongs to Ti
�
1
n

�
: Set then in Œt� D i: One then has

that ˇ̌̌̌̌̌
H .
; t/�H

�

; t.n/inŒt�

�ˇ̌̌̌̌̌
H.H;T/

< 2n�1:

That shows that the family

F D ˚H �
; t.n/i

�
; i 2 I; n 2 N

�
is a countable, dense set in G D fH.
; t/; t 2 Tg ; that is, G � F : Thus

VŒG� � VŒF � � VŒF �;

so that

H.H;T/ � VŒF � D VQŒF �;

where the index Q denotes rational linear combinations. As H.H;T/ D VQŒF �; that
the latter is separable [266, p. 32], H.H;T/ is separable. ut
Corollary 1.5.11 Let H .H;T/ be an RKHS such that dH is a metric on T: Then
H .H;T/ is separable if, and only if, .T; dH/ is separable.

Proof If H.H;T/ is separable, from (Proposition) 1.5.10, one knows that, whatever
� > 0; there is a countable partition of T; say fTi Œ�� ; i 2 Ig ; such that, whatever
i 2 I and .t1; t2/ 2 Ti Œ�� � Ti Œ�� ;

d2H .t1; t2/ D �H.t1; t2/ � 4�2:

For �i D i�1; i 2 N; choose arbitrarily ti;j 2 Tj Œ�i� W the family of these ti;j’s
constitutes a countable, dense subset.
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Suppose now that .T; dH/ is separable, and that fti; i 2 Ig is a dense set. Then,
since

jjH.
; t/�H.
; ti/jj2H.H;T/ D d2H.t; ti/;

fH.
; ti/; i 2 Ig is dense in fH.
; t/; t 2 Tg : That H.H;T/ is separable follows as in
the proof of (Proposition) 1.5.10. ut
Proposition 1.5.12 ([198]) Let C be a covariance on T: H .C;T/ is separable if,
and only if, there exists a Gaussian process G W Œ0; 1� � T �! R; with base
.Œ0; 1� ;B Œ0; 1� ;Leb/ ; whose mean is the zero function, and whose covariance is C:

Proof Suppose first that the process G exists.
Let then Gt be the equivalence class of ! 7! G .!; t/ ; and HG be the subspace

of L2 .Œ0; 1� ;B Œ0; 1� ;Leb/ generated by the family fGt; t 2 Œ0; 1�g : As the space
L2 .Œ0; 1� ;B Œ0; 1� ;Leb/ is separable [46, p. 174,376], and H .C;T/ is isomorphic
to HG � L2 .Œ0; 1� ;B Œ0; 1� ;Leb/ [(Example) 1.1.26], H .C;T/ is separable [266,
p. 32].

Proof Suppose conversely that H .C;T/ is separable (one has assumed C ¤ 0).
Let fhi; i 2 Ig � H .C;T/ be a countable orthonormal basis. For i 2 I; let ˘i D

.R;B .R/ ;P/ be the probability space of the standard normal random variable, and
˘ D ˝i2I˘i be the product of these spaces. Thus

˘ D �RI ;B
�
RI
�
;˝i2IP

�
:

The evaluation maps Ei W RI �! R; i 2 I; form a family of independent standard
normal random variables which generate, in L2 .˘/ ; a Gaussian subspace, say HE :
The map

U W hi 7! ŒEi�L2.˘/ ; i 2 I;

is unitary. For each t 2 T; choose a representative G .
; t/ 2 U ŒC .
; t/� : G is a
Gaussian process on˘ whose mean is zero and whose covariance is equal to

E˝i2IP ŒG .
; t1/ ;G .
; t2/� D hC .
; t1/ ;C .
; t2/iH.C;T/ D C .t1; t2/ :

˘ is not atomic, and it is separable, since ˝i2IB .R/ is generated by a countable
family of subsets. Thus it is isomorphic to L2 .Œ0; 1� ;B Œ0; 1� ;Leb/ [226, p. 323].

ut
Remark 1.5.13 When H .C;T/ is separable, C has thus a representation of the form

C .t1; t2/ D
Z 1

0

G .x; t1/G .x; t2/ dx; G .
; t/ 2 L2 .Œ0; 1� ;B Œ0; 1� ;Leb/ ; t 2 T:

In other words, as shall be seen farther [(Definition) 2.3.1], C has an L2 representa-
tion.
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1.6 Subspaces of Reproducing Kernel Hilbert Spaces
and Associated Projections

The simplest estimations and predictions are obtained as projections. In RKHS’s
certain useful projections, those that correspond to restrictions of the observation’s
domain, have particularly simple expressions. A few facts about domination of
covariances, denoted�; are required. Those are to be found in Sect. 3.1.

Let H.H;T/ be an RKHS, and � be a closed subspace with projection P�: Let
F� W T �! H.H;T/ be defined using the following relation:

F�.t/ D P� ŒH.
; t/� ;

and H� be the closed, linear subspace generated by RŒF� �: It is � W indeed, by
definition RŒF� � � �; and � 2 �; � ? RŒF� �; implies that � D 0H.H;T/:

Let now L� W H.H;T/ �! RT be defined using the following relation:

L� Œh�.t/ D hh;F�.t/iH.H;T/ D hP�Œh�;H.
; t/iH.H;T/ D P�Œh�.t/;

so that RŒL� � D �: � D H.H�;T/ is an RKHS with inner product

h�1; �2iH.H� ;T/ D hP�Œ�1�;P� Œ�2�iH.H;T/ D h�1; �2iH.H;T/;

and kernel

H�.t1; t2/ D hP�ŒH.
; t1/�;H.
; t2/iH.H;T/:

In the relation L� D U� ı P� [(Proposition) 1.1.15], restricted to �; one obtains
that U� is the identity since

�.t/ D h�;H.
; t/iH.H;T/ D h�;P�ŒH.
; t/�iH.H;T/ D L� Œ��.t/:

Finally

nX
iD1

nX
jD1

˛i˛jH�

�
ti; tj

� D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌P�

"
nX

iD1
˛iH .
; ti/

#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.H;T/

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.H;T/

D
nX

iD1

nX
jD1

˛i˛jH
�
ti; tj

�
:

One may thus state:
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Proposition 1.6.1 Let H .H;T/ be an RKHS, and � be a fixed, but arbitrary
(closed) subspace of H .H;T/ : Let the orthogonal projection onto � be denoted
P�: � is then an RKHS with kernel H� given by the following expression: for
.t1; t2/ 2 T � T; fixed, but arbitrary,

H� .t1; t2/ D hP� ŒH .
; t1/� ;P� ŒH .
; t2/�iH.H;T/I

the inner product of .�1; �2/ 2 � ��; fixed, but arbitrary, is given by the following
expression:

h�1; �2iH.H� ;T/ D h�1; �2iH.H;T/:

In particular,

1. for .t1; t2/ 2 T � T; fixed, but arbitrary,

H� .t1; t2/ D P� ŒH .
; t2/� .t1/ I

2. for .h; t/ 2 H .H;T/ � T; fixed, but arbitrary,

P� Œh� .t/ D hh;P� ŒH .
; t/�iH.H;T/I

3. H� � H:

Remark 1.6.2 Suppose that K is a real Hilbert space, and that the RKHS H .H;T/
is a (closed) subspace of K: Then the formula

kH .t/ D hk;H .
; t/iK
provides the projection in K onto H .H;T/ : Indeed, the orthogonal decomposition
of k with respect to H .H;T/ has the form k D hk ˚ h?k ; hk 2 H .H;T/ ; so that

kH .t/ D hk;H .
; t/iK
D hhk ˚ h?k ;H .
; t/iK
D hhk;H .
; t/iK
D hhk;H .
; t/iH.H;T/
D hk .t/ :

The most useful projections in an RKHS are those obtained by restriction of the
index set. Here are their properties.

Proposition 1.6.3 Let H .H;T/ be an RKHS, and S � T be a fixed, but arbitrary
subset. Let HS denote the restriction of H to S � S; and HS; the closed subspace
of H .H;T/ generated by fH .
; s/ ; s 2 Sg : PS shall denote the projection onto HS:

The map US W H .H;T/ �! RS which “sends” the element h 2 H .H;T/ to its
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restriction to S, that is US Œh� D hjS; is a partial isometry with HS as initial set, and
H .HS; S/ as final set. In particular, for h 2 H.H;T/; fixed, but arbitrary:

1. jjUS Œh�jjH.HS;S/ � jjhjjH.H;T/ I
2. US ŒPS Œh�� D US Œh� I
3. H?S D fh 2 H .H;T/ W h .s/ D 0; s 2 Sg I
4. for s 2 S; fixed, but arbitrary, PSŒh�.s/ D h.s/:

Proof Let FS W S �! H .H;T/ be defined using FS .s/ D H .
; s/ : Then

LS Œh� .s/ D hh;FS .s/iH.H;T/ D hh;H .
; s/iH.H;T/ D h .s/ ;

so that LS D US:

Furthermore N ŒLS� D fh 2 H .H;T/ W h .s/ D 0; s 2 Sg ; and, since, by the
definition of a reproducing kernel, h .t/ D hh;H .
; t/iH.H;T/; N ŒLS� D H?S : Thus

hLS Œh1� ;LS Œh2�iH.HS;S/ D hPN ŒLS�?
Œh1� ;PN ŒLS �?

Œh2�iH.H;T/
D hPS Œh1� ;PS Œh2�iH.H;T/:

Also, for fixed, but arbitrary .s1; s2/ 2 S � S;

HS .s1; s2/ D hFS .s1/ ;FS .s2/iH.H;T/:

Consequently the range of US is H .HS; S/ ; and US; restricted to HS; is unitary.
Finally, for fixed, but arbitrary h 2 H .H;T/ ; since h�PS Œh� ? HS; one has that

h .s/ D PS Œh� .s/ ; s 2 S. ut
Remark 1.6.4 Suppose that h 2 HS; and that hjS D 0: Then, as h 2 H?S [(Proposi-
tion) 1.6.3,3.], h D 0:
Remark 1.6.5 If one chooses, for � in (Proposition) 1.6.1, HS in (Proposi-
tion) 1.6.3, one obtains that HS is a reproducing kernel Hilbert space isomorphic to
H.HS; S/: The functions of the RKHS HS have domain T; while those of H.HS; S/
have domain S:

Remark 1.6.6 The fact that h.s/ D PSŒh�.s/; s 2 S; does not mean that h.t/ D 0; t 2
TnS: Let, for example, S be the interval Œ0; 1=2�; and ˘S; the projection of L2Œ0; 1�
defined using ˘S.Œf �/ D Œ�S f � [129, p. 103]. Let, as in (Example) 1.1.25, F.t/ D
It 2 L2Œ0; 1�; t 2 Œ0; 1�: LF˘SL?F is then a projection of H.CW ; Œ0; 1�/ (self-adjoint
and idempotent). Given t 2 Œ0; 1�; fixed, but arbitrary, as L?F.CW.
; t// D It [(Exam-
ple) 1.1.25 and (Proposition) 1.1.15], and ˘S.It/ D Œ�

Œ0;1=2�
�
Œ0;t� �, LF˘SL?F.CW .
; t//

is, when t � 1=2; CW.
; t/: Thus PS D LF˘SL?F; and, when s 2 S; fixed, but
arbitrary,

PS.CW.
; s//.x/ D CW.x; s/;

but, for x > .1=2/ and s ¤ 0; CW.x; s/ D s > 0:
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Example 1.6.7 In (Example) 1.3.15, two RKHS are defined from the same tensor
product of RKHS’s H .CS; S/˝H .CT ;T/ : The first has kernel CS˝CT ; the second
C1 � C2: Let S D T; CS D C1; CT D C2 and write C1 ˝ C2 for the tensor
product covariance function on T � T: Consider the restriction of functions in
H .C1 ˝ C2;T � T/ to the diagonal of T � T: One then gets the RKHS with kernel
C1 � C2; the product of the covariances. The definition by projection yields more
information on this RKHS than the direct definition.

Example 1.6.8 Let H .H;T/ be an RKHS, and f 2 RT be a fixed, but arbitrary
function. One may obtain, as follows, an RKHS H.Hf ;T/:

Define Ff W T �! H .H;T/ using Ff .t/ D f .t/H .
; t/ : Then

Lf Œh� .t/ D hh;F .t/iH.H;T/ D hh; f .t/H .
; t/iH.H;T/ D f .t/ h .t/ D Œfh�.t/:

Thus Lf Œh� is multiplication of h by f in RT : Furthermore

N ŒLf � D fh 2 H .H;T/ W h .t/ D 0; t 2 N Œf �c D T nN Œf �g ;

and

Hf .t1; t2/ D hFf .t1/ ;Ff .t2/iH.H;T/ D f .t1/ f .t2/H .t1; t2/ :

One has that

V
�
RŒFf �

� D V ŒfH.
; t/; t 2 N Œf �cg� :

Let, in H.H;T/;

Hf D V ŒfH.
; t/; t 2 N Œf �cg�:

Then

hLf Œh1�;Lf Œh2�iH.Hf ;T/ D hŒfh1�; Œfh2�iH.Hf ;T/ D hPHf Œh1�;PHf Œh2�iH.H;T/:

In (Proposition) 1.6.3, let S D N Œf �c: The inner product of H.HS; S/ is obtained
using the following formula:

hLSŒh1�;LSŒh2�iH.HS;S/ D hPSŒh1�;PSŒh2�iH.H;T/:

But PS D PHf : Consequently H.Hf ;T/ and H.HS; S/ are isomorphic. The
isomorphism is

Œfh� 7! hjN Œf �c:
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Suppose now that S � T; and that f .t/ D �S.t/: The construction just achieved
provides an isomorphism between �S h; which is defined on T; and hjS; which is
defined on S:

Example 1.6.8 may be of use in the following situation. Let X D AG with A and
G independent stochastic processes. Then

P .X 2 S/ D
Z

P .X 2 S j A D a/PA .da/ D
Z

P .aG 2 S/PA .da/ :

The process aG; a an ordinary function, has an RKHS driven by the covariance
a .t1/ a .t2/CG .t1; t2/ ; CG the covariance of G:

The next example is of interest in the context of the Cramér-Hida representation
covered in Part II of this book.

Example 1.6.9 ([118, p. 498]) Let T D Œa; b� ; and H .H;T/ be an RKHS. Let Ht

be the subspace of H .H;T/ generated by fH .
; �/ ; a � � � tg ; and let Pt denote
the associated projection. Then:

1. Pb D IH.H;T/I
2. when h 2 H .H;T/ and � 2 Œa; t � ; one has that Pt Œh� .�/ D h .�/ I
3. when .h1; h2/ 2 H .H;T/ � H .H;T/ and h1 .�/ D h2 .�/ for all � 2 Œa; t � ; one

has that Pt Œh1� D Pt Œh2� I
4. when .h; t/ 2 H .H;T/ � T and

S .h; t/ D ˚h0 2 H .H;T/ W h0 .�/ D h .�/ ; � 2 Œa; t�
�
;

one has that

jjPt Œh�jjH.H;T/ D min
h02S.h;t/

ˇ̌̌̌
h0
ˇ̌̌̌

H.H;T/ I

5. when .h; h0/ 2 H .H;T/ � H .H;T/ ; h0 2 S .h; t/ ; and h0 ¤ Pt Œh� ;

jjPt Œh�jjH.H;T/ <
ˇ̌̌̌
h0
ˇ̌̌̌

H.H;T/ :

Suppose indeed that .h; t/ 2 H .H;T/�T; is fixed, but arbitrary, and that h ? Ht:

Then, simultaneously, for � 2 Œa; t� ;

hh;H .
; �/iH.H;T/ D h .�/ ;
hh;H .
; �/iH.H;T/ D 0:

Thus h .�/ D 0; � 2 Œa; t� : In particular, when t D b; h .t/ D 0; t 2 T; and then
Pb D IH.H;T/: This is item 1.
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For item 2, given � 2 Œa; t� ; one has that,

Pt Œh� .�/ D hPt Œh� ;H .
; �/iH.H;T/
D hh;Pt ŒH .
; �/�iH.H;T/
D hh;H .
; �/iH.H;T/
D h .�/ :

For item 3, it suffices to set h D h1 � h2: Then, by item 2,

Pt Œh1� .�/� Pt Œh2� .�/ D Pt Œh� .�/ D h .�/ D 0; � 2 Œa; t � ;

which is enough because of (Remark) 1.6.4.
A consequence of item 3 is that Pt Œh0� D Pt Œh� whenever h0 2 S .h; t/ (defined in

the statement of item 4).
For item 4, one may writeˇ̌̌̌
h0
ˇ̌̌̌
2

H.H;T/ D
ˇ̌̌̌
Pt
�
h0
�ˇ̌̌̌ 2

H.H;T/ C
ˇ̌̌̌ �

IH.H;T/ � Pt
� �

h0
�ˇ̌̌̌ 2

H.H;T/ �
ˇ̌̌̌
Pt
�
h0
�ˇ̌̌̌ 2

H.H;T/ :

But, when h0 2 S .h; t/ ; as stated, Pt Œh0� D Pt Œh� ; and, replacing Pt Œh0� by Pt Œh� in
the right-hand side of the latter inequality, one has thatˇ̌̌̌

h0
ˇ̌̌̌

H.H;T/ � jjPt Œh�jjH.H;T/ ; h0 2 S .h; t/ :

But item 2 yields that Pt Œh0� .�/ D h0 .�/ ; � 2 Œa;t � : As h0 2 S .h; t/ ; it follows that
h0 .�/ D h .�/ ; � 2 Œa;t � : But then Pt Œh0� 2 S .h; t/ ; and thus Pt ŒPt Œh0�� D Pt Œh� ;
that is Pt Œh0� D Pt Œh� : So there is an element in S .h; t/ whose norm is equal to that
of Pt Œh� :

For item 5, when h0 2 S .h; t/ ; Pt Œh0� D Pt Œh� ; so that, using the assumption,

0 <
ˇ̌̌̌
h0 � Pt Œh�

ˇ̌̌̌
2

H.H;T/ D
ˇ̌̌̌
h0 � Pt

�
h0
�ˇ̌̌̌ 2

H.H;T/ :

Consequently ˇ̌̌̌
h0
ˇ̌̌̌
2

H.H;T/ >
ˇ̌̌̌
Pt
�
h0
�ˇ̌̌̌ 2

H.H;T/ D jjPt Œh�jj2H.H;T/ :

Computations require finite sets, and the results which follow provide the
framework within which a reduction to finite dimensional subspaces is possible. The
first result restates and completes facts about the role of supports already explained
(starting at (Definition) 1.1.28).

Proposition 1.6.10 ([176]) Let H .H;T/ be an RKHS, and S � T be fixed, but
arbitrary. The following statements are equivalent:

1. S is a determining set [(Definition) 1.5.2] for H .H;T/ I
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2. US W H .H;T/ �! H .HS; S/ ; defined using US Œh� D hjS; is unitary;
3. every hS 2 H .HS; S/ has a unique extension to an h 2 H .H;T/ for which

jjhjjH.H;T/ D jjhSjjH.HS;S/ I

4. the family fH .
; s/ ; s 2 Sg is total in H .H;T/ I
5. the family of continuous linear functionals

Es D
˚h
;H .
; s/iH.H;T/; s 2 S

�
separates points in H .H;T/ :

Proof Let HS D V ŒHS�; the closure being in H.H;T/:
[1) 2] As seen in (Proposition) 1.6.3, US D LS; and N ŒLS� D H?S : But, when

h 2 H?S ;

h .s/ D hh;H .
; s/iH.H;T/ D 0; s 2 S:

Since S is determining, h .t/ D 0; t 2 T; and N ŒLS� D f0Tg : LS is thus unitary,
and so is US:

[2) 3] Let hS 2 H .HS; S/ be fixed but arbitrary. Since US is onto, the possible
extensions of hS form the set U�1S ŒhS� : Suppose that

US Œh1� D US Œh2� D hS; fh1; h2g � H .H;T/ :

Then 0S D US Œh1 � h2� : But US is unitary and thus jjh1 � h2jjH.H;T/ D 0:
[3) 4] Let h 2 H?S be fixed, but arbitrary. Then h .s/ D 0; s 2 S: Since h has a

unique extension preserving norms, its extension must be the zero function, and
item 4 is proved.

[4) 5] Let fh1; h2g � H .H;T/ be such that h1 ¤ h2: Then the following
equality: h1 .t/ D h2 .t/ ; s 2 S; implies that hh1 � h2;H .
; s/iH.H;T/ D 0; s 2 S;
so that h1� h2 D 0; which is impossible by assumption. There is thus s 2 S such
that h1 .s/ ¤ h2 .s/ ; or Es Œh1� ¤ Es Œh2� :

[5) 1] Suppose h 2 H .H;T/ and h .s/ D 0; s 2 s: Then Es Œh� D 0; s 2 S;
which means, by assumption, that h D 0: ut
The following lemmas and proposition, which result in a sort of Kolmogorov

extension theorem [5, p. 191] for RKHS’s, all require the same set of assumptions
that are stated separately, as a fact, for convenience.

Fact 1.6.11 1. fTn; n 2 Ng is an increasing family of subsets of some common set
S (Tn � TnC1 � S), and T D [nTn:
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2. fHn W Tn � Tn �! R; n 2 Ng is a family of reproducing kernels such that, for
p > n in N; and h in H

�
Hp;Tp

�
; fixed, but arbitrary,

hjTn 2 H .Hn;Tn/ ; and
ˇ̌̌̌
hjTn
ˇ̌̌̌

H.Hn;Tn/
� jjhjjH.Hp;Tp/ :

Hpjn shall denote the restriction of Hp to Tn:

Remark 1.6.12 Assume (Fact) 1.6.11, and fix p > n: Let

Vp;n W H.Hp;Tp/ �! H.Hn;Tn/

be the restriction map of (Fact) 1.6.11. Let Hp;n be the subspace of H.Hp;Tp/

generated by
˚
Hp.
; t/; t 2 Tn

�
: From (Proposition) 1.6.3, one has a map

Lp;n W H.Hp;Tp/ �! H.Hpjn;Tn/

with Lp;n D Up;nPHp;n ; and Un;p W Hn;p �! H.Hpjn;TN/; unitary. Let

Jp;n W H.Hpjn;Tn/ �! H.Hn;Tn/

be the inclusion, so that

Vp;n D Jp;nLp;n:

Fact 1.6.11 says that Vn;p is a contraction. One furthermore knows that Lp;n is
continuous.

Temporarily, for convenience, one shall sometimes use the following notation
(p > n):

• Hn for H .Hn;Tn/ I
• jj
jjn for jj
jjH.Hn;Tn/

I
• h.p/ for an element of Hp; and h.pjn/ for the restriction of h.p/ to Tn; also written

h.p/jTn :

Lemma 1.6.13 The assumptions are those of (Fact) 1.6.11. Suppose f W T �!
R is a function with the property that, for n 2 N; f jTn 2 Hn: The sequence˚ˇ̌̌̌

f jTn
ˇ̌̌̌

n ; n 2 N
�

has then a limit (which may be infinite).

Proof For p > n in N;

ˇ̌̌̌
f jTn
ˇ̌̌̌

n
D
ˇ̌̌̌̌̌ ˚

f jTp
�jTn
ˇ̌̌̌̌̌

n
:

By assumption f jTp 2 Hp so that, by assumption again,ˇ̌̌̌̌̌ ˚
f jTp
�jTn
ˇ̌̌̌̌̌

n
� ˇ̌̌̌ f jTp

ˇ̌̌̌
p :
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Consequently p > n implies ˇ̌̌̌
f jTn
ˇ̌̌̌

n �
ˇ̌̌̌
f jTp
ˇ̌̌̌

p :

ut
Lemma 1.6.14 The assumptions are those of (Fact) 1.6.11. Let

H D
n
f 2 RT W for all n 2 N; f jTn 2 Hn; and lim

n

ˇ̌̌̌
f jTn
ˇ̌̌̌

n <1
o
:

For ff1; f2g � H; fixed, but arbitrary, the following relation defines an inner product:

h f1; f2iH D lim
n
h f jTn
1 ; f jTn

2 in:

With that inner product, H is a Hilbert space.

Proof One must notice that the formula for the inner product yields, for f 2 H;

jjf jjH D lim
n

ˇ̌̌̌
f jTn
ˇ̌̌̌

n ;

which exists, and is finite, by assumption.

Proof H is a vector space.
Let indeed f˛1; ˛2g � R and ff1; f2g � H be fixed, but arbitrary, and consider

f D ˛1f1 C ˛2f2: Then

f jTn D ˛1f jTn
1 C ˛2f jTn

2 2 Hn:

Furthermore, using (Lemma) 1.6.13 on f1 and f2;ˇ̌̌̌
f jTn
ˇ̌̌̌

n
D ˇ̌̌̌

˛1f
jTn
1 C ˛2f jTn

2

ˇ̌̌̌
n

� j˛1j
ˇ̌̌̌
f jTn
1

ˇ̌̌̌
n C j˛2j

ˇ̌̌̌
f jTn
2

ˇ̌̌̌
n

� j˛1j jjf1jjH C j˛2j jjf2jjH
< 1:

Since
˚ˇ̌̌̌

f jTn
ˇ̌̌̌

n
; n 2 N

�
is an increasing sequence (again (Lemma) 1.6.13), f belongs

to H:

Proof The statement’s formula determines an inner product.
The limit that defines the tentative inner product exists: indeed, as H is a vector

space, the following expression is legitimate:

h f jTn
1 ; f jTn

2 in D
1

4

nˇ̌̌̌
.f1 C f2/

jTn
ˇ̌̌̌ 2

n
� ˇ̌̌̌ .f1 � f2/

jTn
ˇ̌̌̌ 2

n

o
;
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and the right-hand side has a limit.

• The function .f1; f2/ 7! h f1; f2iH is bilinear.
Indeed, for f˛1; ˛2g � R; ff ; f1; f2g � H; fixed, but arbitrary,

h˛1f1 C ˛2f2; f iH D lim
n
h˛1f jTn

1 C ˛2f jTn
2 ; f jTnin

D lim
n

˚
˛1h f jTn

1 ; f
jTnin C ˛2h f jTn

2 ; f jTnin
�

D ˛1h f1; f iH C ˛2h f2; f iH:

• The condition h f ; f iH D 0 means that f D 0H:

Since, for n 2 N; fixed, but arbitrary, jjf jjH �
ˇ̌̌̌
f jTn
ˇ̌̌̌

n ; f jTn D 0; so that,
for t 2 T; f .t/ D 0.

Proof H is complete.
Suppose ffn; n 2 Ng is a fixed, but arbitrary Cauchy sequence in H:Having fixed

� > 0; suppose that, for n; p � n .�/ ;ˇ̌̌̌
fn � fp

ˇ̌̌̌
H
< �:

Since, for fixed, but arbitrary q 2 N; f
jTq
n 2 Hq andˇ̌̌̌̌̌

f
jTq
n � f

jTq
p

ˇ̌̌̌̌̌
Hq

� ˇ̌̌̌ fn � fp
ˇ̌̌̌

H ;

the sequence n
f
jTq
n ; n 2 N

o
is a Cauchy sequence in Hq. As such it has a limit f .q/ 2 Hq: Now, for m 2 N; fixed,
but arbitrary, since f .qCm/ 2 HqCm; by assumption f .qCm/jTq 2 Hq: Consequently

ˇ̌̌̌
f .qCm/jTq � f .q/

ˇ̌̌̌
q
D lim

n

ˇ̌̌̌̌̌
f .qCm/jTq � f

jTq
n

ˇ̌̌̌̌̌
q

D lim
n

ˇ̌̌
ˇ
ˇ̌̌
ˇf .qCm/jTq �

n
f
jTqCm
n

ojTq
ˇ̌̌
ˇ
ˇ̌̌
ˇ
q

:

But, by assumption,ˇ̌̌
ˇ
ˇ̌̌
ˇf .qCm/jTq �

n
f
jTqCm
n

ojTq
ˇ̌̌
ˇ
ˇ̌̌
ˇ
q

�
ˇ̌̌̌̌̌
f .qCm/ � f

jTqCm
n

ˇ̌̌̌̌̌
qCm

:

It follows that
ˇ̌̌̌
f .qCm/jTq � f .q/

ˇ̌̌̌
q D 0:

The requirement that f D f .n/ on Tn defines thus unambiguously a function on T:
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It remains to check that f belongs to H:But, since, by definition, f jTn D f .n/; f jTn 2
Hn; n 2 N: One must thus only prove that limn jjf .n/jjn <1; since the corresponding
sequence of norms is increasing. Butˇ̌̌̌

f .n/
ˇ̌̌̌

n
� ˇ̌̌̌ f .n/ � f jTn

p

ˇ̌̌̌
n
C ˇ̌̌̌ f jTn

p

ˇ̌̌̌
n

� ˇ̌̌̌ f .n/ � f jTn
p

ˇ̌̌̌
n
C ˇ̌̌̌ fp ˇ̌̌̌ H :

Since a Cauchy sequence is bounded, there exists � 2 RC such that, independently
of p;

ˇ̌̌̌
fp
ˇ̌̌̌

H
� �: Furthermore, given � > 0; there is a p .�; n/ such that

ˇ̌̌̌̌̌
f .n/ � f jTn

p.�;n/

ˇ̌̌̌̌̌
n
< �:

Thus, independently of n; ˇ̌̌̌
f .n/
ˇ̌̌̌

n � � C � <1:

ut
Lemma 1.6.15 The assumptions are those of (Fact) 1.6.11. Let p > n in N be fixed,
but arbitrary. Let Hpjn be the restriction of Hp to Tn�Tn; and Hpjn be the associated
RKHS with norm jj
jjpjn : Then

1. as sets, Hpjn � HnI
2. for h 2 Hp; fixed, but arbitrary,ˇ̌̌̌

hjTn
ˇ̌̌̌

n
� ˇ̌̌̌ hjTn

ˇ̌̌̌
pjn :

Proof Hpjn is obtained as in (Proposition) 1.6.3. In particular, Hpjn results from
the restrictions to Tn of the maps in Hp: Letting Hp;n denote the (closed) subspace
generated linearly in Hp by the family

˚
Hp .
; t/ ; t 2 Tn

�
; and PHp;n ; the associated

projection, one has, for fh; h1; h2g � Hp; fixed, but arbitrary, that

• hhjTn
1 ; h

jTn
2 ipjn D hPHp;n Œh1� ;PHp;n Œh2�ipI

• PHp;n Œh�
jTn D hjTn :

Then, since, by assumption, for h 2 Hp; fixed, but arbitrary, hjTn 2 Hn; and that the
maps hjTn form Hpjn; Hpjn � Hn: Furthermore, for h 2 Hp; fixed, but arbitrary,ˇ̌̌̌

hjTn
ˇ̌̌̌

n D
ˇ̌̌̌
PHp;n Œh�

jTn
ˇ̌̌̌

n
:

But, by assumption, since PHp;n Œh� 2 Hp;ˇ̌̌̌
PHp;n Œh�

jTn
ˇ̌̌̌

n
� ˇ̌̌̌PHp;n Œh�

ˇ̌̌̌
p
D ˇ̌̌̌ hjTn

ˇ̌̌̌
pjn :

Consequently, for h 2 Hp; fixed, but arbitrary,
ˇ̌̌̌
hjTn
ˇ̌̌̌

n
� ˇ̌̌̌ hjTn

ˇ̌̌̌
pjn : ut
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Remark 1.6.16 In the formalism of (Remarks) 1.6.12, 1.6.15 has the following
meaning:

1.
ˇ̌̌̌
Vp;nŒh�

ˇ̌̌̌
n
D ˇ̌̌̌ Jp;nLp;nŒh�

ˇ̌̌̌
n
� ˇ̌̌̌Lp;nŒh�

ˇ̌̌̌
pjn I

2. Jp;n is not only an inclusion, but also a contraction.

Lemma 1.6.17 The assumptions are those of (Fact) 1.6.11. For p > n in N and
t 2 Tn; fixed, but arbitrary,

Hp .t; t/ � Hn .t; t/ :

Proof Let Hpjn denote the restriction of Hp to Tn � Tn: Lemma 1.6.15 yields
[(Proposition) 3.1.23] that Hpjn is dominated by Hn; that is, for fixed, but arbitrary
Œn; ˛; .t;Tn/�;

mX
iD1

mX
jD1

˛i˛jHpjn
�
ti; tj

� D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ mX

iD1
˛iHpjn.
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
pjn

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ mX

iD1
˛iHn.
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
n

D
mX

iD1

mX
jD1

˛i˛jHn
�
ti; tj

�
:

The lemma’s claim is a particular case of the latter inequality due to the fact that
Hpjn D HjTn�Tn

p : ut
Lemma 1.6.18 The assumptions are those of (Fact) 1.6.11. Set Hpjn D HjTn�Tn

p :

Then, for p > n > m in N and t 2 Tm; fixed, but arbitrary,ˇ̌̌̌
Hnjm .
; t/�Hpjm .
; t/

ˇ̌̌̌
2

m
� Hn .t; t/ �Hp .t; t/ :

Proof Let

h D Hn .
; t/ �Hpjn .
; t/ :

As Hn .
; t/ 2 Hn; and, by assumption, Hpjn .
; t/ 2 Hn; h 2 Hn: Consequently, by
assumption, as t 2 Tm;

hjTm D Hnjm .
; t/�Hpjm .
; t/ 2 Hm;

and
ˇ̌̌̌
hjTm

ˇ̌̌̌
m
� jjhjjn : Thus

ˇ̌̌̌
Hnjm .
; t/�Hpjm .
; t/

ˇ̌̌̌
m
� ˇ̌̌̌Hn .
; t/�Hpjn .
; t/

ˇ̌̌̌
n
:
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But, expanding the square of the right-hand side of the latter inequality, one has thatˇ̌̌̌
Hn .
; t/�Hpjn .
; t/

ˇ̌̌̌
2

n D Hn .t; t/ � 2Hpjn .t; t/C
ˇ̌̌̌
Hpjn .
; t/

ˇ̌̌̌
2

n :

and then, because of (Lemma) 1.6.15,ˇ̌̌̌
Hpjn .
; t/

ˇ̌̌̌
2

n
� ˇ̌̌̌Hpjn .
; t/

ˇ̌̌̌
2

pjn D Hpjn .t; t/ :

The claim of (Lemma) 1.6.18 is thus warranted as, when t 2 Tm;

Hpjn .t; t/ D Hp .t; t/ :

ut
Proposition 1.6.19 ([188, p. 111]) The assumptions are those of (Fact) 1.6.11.
Then:

1. Given .t1; t2/ 2 T � T; fixed, but arbitrary, limn Hn .t1; t2/ exists and is the value
at .t1; t2/ of a reproducing kernel H:

2. H of (Lemma) 1.6.14 is the RKHS H .H;T/ :

Proof For m 2 N and t 2 Tm; fixed, but arbitrary, the positive sequence
fHn .t; t/ ; n 2 Ng is decreasing [(Lemma) 1.6.17], and thus convergent.
Lemma 1.6.18 then says that˚

Hnjm .
; t/ ; n 2 N; n > m
�

is a Cauchy sequence in Hm: Let hm;t 2 Hm be its limit. Then, since norm
convergence implies pointwise convergence, for .t; x/ 2 Tm�Tm; fixed, but arbitrary,

hm;t .x/ D lim
n

Hnjm .x; t/ D lim
n
Hn .x; t/ :

Let hmCp;t 2 HmCp be defined analogously. Then, for .t; x/ 2 TmCp � TmCp; fixed,
but arbitrary,

hmCp;t .x/ D lim
n

HnjmCp .x; t/ D lim
n

Hn .x; t/ :

Consequently, for .t; x/ in Tm�Tm; fixed, but arbitrary, hmCp;t .x/ D hm;t .x/ ; so that
the assignment

H.x; t/jTm�Tm D hm;t .x/

is unambiguous.
One must keep in mind for the sequel the following facts: for m 2 N; t 2 Tm;

fixed, but arbitrary,
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• limn Hnjm .
; t/ D hm;t D H .
; t/jTm 2 HmI
• limn Hn .x; t/ D limn Hnjm .x; t/ D hm;t .x/ D H .x; t/ :

H is symmetric as, for .t; x/ 2 Tm � Tm; fixed, but arbitrary,

H .x; t/ D lim
n
Hnjm .x; t/ D lim

n
Hnjm .t; x/ D H .t; x/ :

H is also positive definite for, given
˚
t1; : : : ; tp

� � T; there exists m 2 N such that˚
t1; : : : ; tp

� � Tm: And then

pX
iD1

pX
jD1

˛i˛jH
�
ti; tj

� D pX
iD1

pX
jD1

˛i˛j lim
n

Hnjm
�
ti; tj

�

D lim
n

pX
iD1

pX
jD1

˛i˛jHnjm
�
ti; tj

�
� 0:

H is thus a reproducing kernel.
It remains to prove that H reproduces H: Two requirements, a) and b) below,

must be fulfilled:

a) H .
; t/ must belong to H which means that

• H .
; t/jTn 2 Hn for arbitrary n 2 N;

• and that limn

ˇ̌̌̌
H .
; t/jTn

ˇ̌̌̌
n <1:

Let t 2 Tm and n 2 N be fixed, but arbitrary. There is p 2 N such that Tm � Tp

and Tn � Tp: By definition, for .t; x/ 2 Tp � Tp; fixed, but arbitrary,

H .x; t/ D hp;t .x/ ; hp;t 2 Hp:

Thus

H .
; t/jTn D hjTn
p;t :

But, by assumption, hjTn
p;t 2 Hn and thus H .
; t/jTn 2 Hn:

From (Lemma) 1.6.18 one gets, for m 2 N; t 2 Tm; fixed, but arbitrary, p> n>m;ˇ̌̌̌
Hnjm .
; t/�Hpjm .
; t/

ˇ̌̌̌
2

m
� Hn .t; t/ �Hp .t; t/ :

Taking the limit on p; it follows thatˇ̌̌̌
Hnjm .
; t/�H .
; t/jTm

ˇ̌̌̌ 2
m
� Hn .t; t/ �H .t; t/ : (?)
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Now ˇ̌̌̌
H .
; t/jTm

ˇ̌̌̌
m �

ˇ̌̌̌ ˚
H .
; t/jTm

� �Hnjm .
; t/
ˇ̌̌̌

m C
ˇ̌̌̌
Hnjm .
; t/

ˇ̌̌̌
m : (??)

Since also [(Lemma) 1.6.15]ˇ̌̌̌
Hnjm .
; t/

ˇ̌̌̌
m
� ˇ̌̌̌Hnjm .
; t/

ˇ̌̌̌
njm D H1=2

n .t; t/ ; (? ? ?)

combining both inequalities ((?) and (? ? ?) in (??)),ˇ̌̌̌
H .
; t/jTm

ˇ̌̌̌
m
� fHn .t; t/ �H .t; t/g1=2 CH1=2

n .t; t/ ;

so that, taking the limit on n;ˇ̌̌̌
H .
; t/jTm

ˇ̌̌̌
m
� H1=2 .t; t/ <1:

b) One must have, for f 2 H and t 2 T; fixed, but arbitrary,

h f ;H .
; t/iH D f .t/ :

But, for n large enough, as f jTn 2 Hn;

f .t/ D f jTn .t/

D h f jTn ;Hn .
; t/in
D h f jTn ;H .
; t/jTnin
C h f jTn ;Hn .
; t/ �H .
; t/jTnin;

so that, taking the limit on n; one has the reproducing property characteristic of
RKHS’s.

ut
Example 1.6.20 Let H .H;T/ be an RKHS, and fTn; n 2 I � Ng be an increasing
sequence of subsets of T whose union is T0: Let also Hn D HjTn�Tn :

Given p > n in N and h in H
�
Hp;Tp

�
; fixed, but arbitrary, because of

(Proposition) 1.6.3, one has that hjTn 2 H .Hn;Tn/ ; and thatˇ̌̌̌
hjTn
ˇ̌̌̌

H.Hn;Tn/
� jjhjjH.Hp;Tp/ ;

so that (Fact) 1.6.11 obtains. Furthermore, for p > n in N and h in H .H;T/ ; fixed,
but arbitrary, Hn being the (closed) subspace of H .H;T/ generated by the family
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fH .
; t/ ; t 2 Tng ; ˇ̌̌̌
hjTn
ˇ̌̌̌

H.Hn;Tn/
D jjPHn Œh�jjH.H;T/
� ˇ̌̌̌PHp Œh�

ˇ̌̌̌
H.H;T/

D ˇ̌̌̌
hjTp
ˇ̌̌̌

H.Hp;Tp/

� jjhjjH.H;T/ ;

so that (Proposition) 1.6.19 obtains, and the resulting RKHS is H .H0;T0/ ; since
one obviously has that H0 D limn Hn: This should not be surprising as an increasing
sequence of projections has a limit which is a projection [266, p. 85]. Result
(Proposition) 1.6.19 is thus an extension of the latter example.

Corollary 1.6.21 ([176]) Let H .H;T/ be a separable RKHS, and T0 be a Hamel
subset of T [(Definition) 1.1.36]. There exists then [(Proposition) 1.5.1] Tc � T0; a
countable dense set. Its elements shall be denoted ftc;1; tc;2; tc;3; : : :g : Tc;n shall be
the set

ftc;1; tc;2; tc;3; : : : ; tc;ng ;

Hc;n shall be the restriction of H to Tc;n � Tc;n; and

Uc;n W H .H;T/ �! H .Hc;n;Tc;n/ ;

the partial isometry of (Proposition) 1.6.3.H0 and U0 are defined similarly. Then:

1. .T0; dH0/ is a separable metric space.
2. Tc is a determining set [(Definition) 1.5.2] for H .H;T/ :
3. For any h 2 H .H;T/ ; the sequencen

jjUc;n Œh�jjH.Hc;n;Tc;n/ ; n 2 N

o
is monotone increasing, and

lim
n
jjUc;n Œh�jjH.Hc;n;Tc;n/ D jjhjjH.H;T/ :

4. Let Hc be the restriction of H to Tc � Tc; and suppose that f W T �! R is a
function such that

(a)
ˇ̌̌̌

f jTc;n
ˇ̌̌̌

H.Hc;n;Tc;n/
� ˇ̌̌̌ f jTc;nCp

ˇ̌̌̌
H.Hc;nCp;Tc;nCp/

;

(b) limn

nˇ̌̌̌
f jTc;n

ˇ̌̌̌
H.Hc;n;Tc;n/

o
<1:
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Then f jTc 2 H .Hc;Tc/ ; and there exists a unique h 2 H .H;T/ such that

hjTc D f jTc ; and jjhjjH.H;T/ D
ˇ̌̌̌
f jTc
ˇ̌̌̌

H.Hc;Tc/
D lim

n

ˇ̌̌̌
f jTc;n

ˇ̌̌̌
H.Hc;n;Tc;n/

:

Proof (1) dH0 is a metric as T0 is a Hamel set. H .H0;T0/ is separable as the unitary
image of a subspace of a separable space [(Proposition) 1.6.3]. But then item 1 is
true because of (Corollary) 1.5.11.

Proof (2) On the basis of item 1, let Tc be a (countable) dense subset of the separable
.T0; dH0 / ; and let h 2 H .H;T/ be fixed, but arbitrary. Suppose that h .t/ D 0; t 2
Tc:

hjT0 belongs to H .H0;T0/ [(Proposition) 1.6.3] and is continuous for dH0

[(Proposition) 2.6.9]. Since it is zero on a dense subset, it is zero on T0: Since T0
is a determining set for H .H;T/ [(Remark) 1.5.3], h must be the zero function. So
item 2 obtains.

Proof (3) Let h 2 H .H;T/ be fixed, but arbitrary. Because of (Proposition) 1.6.10,
it is sufficient to obtain as limit the norm in H .Hc;Tc/ : But that is true as seen in
(Example) 1.6.20.

Proof (4) Because of (Proposition) 1.6.19, the set of functions f W Tc �! R for
which

• f jTc;n 2 H .Hc;n;Tc;n/ ;

•
ˇ̌̌̌
f jTc;n

ˇ̌̌̌
H.Hc;n;Tc;n/

� ˇ̌̌̌ f jTc;nCp
ˇ̌̌̌

H.Hc;nCp;Tc;nCp/
;

• limn

nˇ̌̌̌
f jTc;n

ˇ̌̌̌
H.Hc;n;Tc;n/

o
<1;

is an RKHS K whose kernel K is such that KjTc;n�Tc;n D Hc;n: K is thus
H .Hc;Tc/ : The function f jTc belongs then to H .Hc;Tc/ ; and, as such, has a
unique extension g 2 H .H0;T0/ to T0; with the same norm [(Proposition) 1.6.10].
But then it has a unique extension h 2 H .H;T/ to T with the same norm
[(Proposition) 1.6.10]. ut

The results to follow show that projections in RKHS’s have particularly simple
expressions when they arise from the restriction of functions to finite sets. Suppose
thus that T0 is finite, say T0 D ft1; : : : ; tng : The elements of H .H0;T0/ have the
form

t 7!
nX

iD1
˛iH .t; ti/ ; f˛1; : : : ; ˛ng ; ft; t1; : : : ; tng � T0:

Let L be the map whose range is H .H0;T0/ [(Proposition) 1.6.3]. Since then L Œh� D
hjT0 ; and

L Œh� .ti/ D
nX

kD1
˛h

kH .ti; tk/ ; hjT0 .ti/ D h .ti/ ;
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one has the following relation (which may be construed as a linear system with the
˛’s as unknowns):

2
64

h .t1/
:::

h .tn/

3
75 D

2
64
H .t1; t1/ 
 
 
 H .t1; tn/

:::
:::

H .tn; t1/ 
 
 
 H .tn; tn/

3
75
2
64
˛h
1
:::

˛h
n

3
75 :

That relation may be written in the following form: h D ˙H;T0
�
˛h

�
: Consequently,

in case ˙H;T0 is invertible,

˛h D ˙�1H;T0 Œh� ; t 2 T0:

Furthermore

hL Œh1� ;L Œh2�iH.H0;T0/ D

D
nX

iD1

nX
jD1

˛
h1
i ˛

h2
j H

�
ti; tj

� D h˙H;T0
�
˛h1

�
; ˛h2iRn

D h˙�1H;T0
�
h1
�
; h2iRn ;

so that, using the definition of the inner product in (Proposition) 1.1.15,

hP0 Œh1� ;P0 Œh2�iH.H;T/ D h˙�1H;T0
�
h1
�
; h2iRn :

Let finally

P0 Œh� .t/ D
nX

iD1
ah

i H .t; ti/ ; t 2 T; ft1; : : : tng D T0:

Since the restriction of P0 Œh� to T0 equals the restriction of h to T0 [(Proposi-
tion) 1.6.3], ah D ˙�1H;T0h: Consequently, with ei; the i-th vector of the standard
basis of Rn; and � .t/ ; the vector with components H .t; ti/ ; 1 � i � n;

P0 Œh� .t/ D
nX

iD1
h˙�1H;T0h; eiiRnH .t; ti/ D h˙�1H;T0h; � .t/iRn :

Those latter remarks lead to the following statement.

Proposition 1.6.22 ([202]) Let H .H;T/ be an RKHS, and ft1; : : : ; tng � T be
a fixed, but arbitrary finite subset of T; denoted Tn. Let ˙H;Tn be the matrix with
entries H

�
ti; tj

�
;
˚
ti; tj

� � Tn; 1 � i; j � n; and Hn be the subspace of H .H;T/
generated by fH .
; ti/ ; ti 2 Tn; 1 � i � ng : Assume that ˙H;Tn is invertible.
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Given fh1; h2g � H .H;T/ fixed, but arbitrary, let, for j 2 f1; 2g ;

h.j/i D hj .ti/ ; and hj have components h.j/i ; 1 � i � n:

Let also �i .x/ D H .x; ti/ ; and � .x/ be the vector whose components, for 1 � i � n;
have value �i .x/ : Then:

1. PHn Œh1� .t/ D h˙�1H;Tn

�
h1
�
; � .t/iRn ; t 2 TI

2. hPHn Œh1� ;PHn Œh2�iH.H;T/ D h˙�1H;Tn

�
h1
�
; h2iRn :

Corollary 1.6.23 Let X be a second order process indexed by T; defined on a prob-
ability space .˝;A;P/ ; with a mean that is equal to zero, and a covariance denoted
CX: Let LP ŒX� denote the subspace of L2 .˝;A;P/ generated linearly by the family
fXt; t 2 Tg ; where Xt is the equivalence class of X .
; t/ in L2 .˝;A;P/ : Since
[(Example) 1.1.26] the equivalence class Xt of X .
; t/ is in unitary correspondence
with CX .
; t/ ; the projection of Y 2 LP ŒX� onto the subspace generated linearly by
fXt1 ; : : : ;Xtng is expressed as follows:

h˙�1CX ;Tn
h;XiRn ;

where

(i) ˙CX ;Tn is the matrix with entries CX
�
ti; tj

�
; fi; jg � Œ1 W n� ;

(ii) h .t/ D EP
� PYX .
; t/� ;

(iii) X has components Xt1 ; : : : ;Xtn :

Proof Let ˙�1CX ;Tn
have entries �i;j; 1 � i; j � n; and Hn be generated by

fCX .
; t1/ ; : : : ;CX .
; tn/g : As

PHn Œh� D
nX

iD1

8<
:

nX
jD1

�i;jh
�
tj
�9=;CX .
; ti/ ;

the unitary correspondence between CX .
; t/ and Xt [(Example) 1.1.26] proves the
result. ut

1.7 Operators in Reproducing Kernel Hilbert Spaces

Operators in RKHS’s are determined by kernels, and some of the details are spelled
out in this section. A few facts about domination of covariances, denoted �, are
required. Those are to be found in Sect. 3.1.
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1.7.1 Bounded Linear Operators

One finds below the main properties of operators between reproducing kernel
Hilbert spaces that are linear and bounded.

Proposition 1.7.1 The following properties obtain:

1. Let H .H1;T1/ and H .H2;T2/ be RKHS’s, and

B W H .H1;T1/ �! H .H2;T2/

be a bounded linear operator. For fixed, but arbitrary t.2/ 2 T2; let

H.H1;T1/ 3 h.1/Œt.2/� D B?
�
H2

�
; t.2/�� :
Then, for fixed, but arbitrary .h.1/; t.2// 2 H .H1;T1/ � T2;

Et.2/
�
B
�
h.1/
�� D hh.1/; h.1/Œt.2/�iH.H1;T1/;

and, for
�
t.2/1 ; t

.2/

2

� 2 T2 � T2; fixed, but arbitrary,

HB
�
t.2/1 ; t

.2/

2

� defD hh.1/Œt.2/1 �; h.1/Œt.2/2 �iH.H1;T1/ � jjBjj2H2

�
t.2/1 ; t

.2/

2

�
:

2. Let, for fixed, but arbitrary
˚
t.2/; t.2/1 ; t

.2/

2

� � T2;

h.1/Œt.2/� 2 H .H1;T1/ ;

and

HB
�
t.2/1 ; t

.2/

2

� defD hh.1/Œt.2/1 �; h.1/Œt.2/2 �iH.H1;T1/:

Suppose there exists � > 0 such that

HB
�
t.2/1 ; t

.2/

2

�� �H2

�
t.2/1 ; t

.2/

2

�
:

There exists then a bounded, linear B as in item 1 such that

B?
�
H2

�
; t.2/�� D h.1/Œt.2/�:

Proof (1) The first assertion follows from the following equalities:

hh.1/; h.1/Œt.2/�iH.H1;T1/ D hh.1/;B?
�
H
�
; t.2/��iH.H1;T1/

D hB �h.1/� ;H �
; t.2/�iH.H2;T2/

D B
�
h.1/
� �

t.2/
�
;
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and the second from these:

nX
iD1

nX
jD1

˛i˛jHB

�
t.2/i ; t

.2/

j

�
D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛ih

.1/Œt.2/i �

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.H1;T1/

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌B?

"
nX

iD1
˛iH2

�
; t.2/i

�#ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌2
H.H1;T1/

� jjB?jj2
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH2

�
; t.2/i

�ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌2
H.H2;T2/

D jjBjj2
nX

iD1

nX
jD1

˛i˛jH2

�
t.2/i ; t

.2/

j

�
:

Proof (2) Let H�
2 D �H2: Consider the following maps.

• J W H
�
H�
2 ;T2

� �! H .HB;T2/ ; defined using the following relation: for t.2/ 2
T2; fixed, but arbitrary,

J
�
H�
2

�
; t.2/�� D HB
�
; t.2/� :

It is a contraction, and its transpose is an inclusion [(Proposition) 3.1.5].
• LF W H .H1;T1/ �! H .HB;T2/ is the map corresponding to

F W T2 �! H .H1;T1/ ;

defined, for t.2/ 2 T2; fixed, but arbitrary, using relation (Proposition) 1.1.15,

F
�
t.2/
� D h.1/Œt.2/�:

In particular L?F ŒHB .
; t.2//� D F .t.2// :
• QJ W H �H�

2 ;T2
� �! H .H2;T2/ is the identity [(Example) 1.3.12].

• B D QJJ?LF:

Then, for t.2/ 2 T2; fixed, but arbitrary,

B?
�
H2

�
; t.2/�� D L?FJ QJ? �H2

�
; t.2/�� :
But, since [(Example) 1.3.12]

hh.2/1 ; QJ?
�
h.2/2
�iH.H�

2 ;T2/
D h QJ �h.2/1 � ; h.2/2 iH.H2;T2/

D hh.2/1 ; h.2/2 iH.H2;T2/

D �hh.2/1 ; h.2/2 iH.H�
2 ;T2/

D hh.2/1 ; �h.2/2 iH.H�
2 ;T2/

;
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QJ? is the identity times �: Thus

L?FJ QJ? �H2

�
; t.2/�� D L?FJ
�
�H2

�
; t.2/��
D L?FJ

�
H�
2

�
; t.2/��
D L?F

�
HB

�
; t.2/��
D F

�
t.2/
�

D h.1/Œt.2/�:

ut
Remark 1.7.2 (Kernel Associated with an Operator in an RKHS) Since, for fixed,
but arbitrary t.2/ 2 T2; the element h.1/Œt.2/� is a function defined on T1; one
customarily regards the set fh.1/Œt.2/�; t.2/ 2 T2g as a kernel

B W T1 � T2 �! R

with, for .t.1/; t.2// 2 T1 � T2; fixed, but arbitrary,

B
�
t.1/; t.2/

� D h.1/Œt.2/�
�
t.1/
�
:

Then

B
�
t.1/; t.2/

� D hB? �H2

�
; t.2/�� ;H1

�
; t.1/�iH.H1;T1/

D hB �H1

�
; t.1/�� ;H2

�
; t.2/�iH.H2;T2/

D BŒH.
; t.1//�.t.2//
D B?ŒH.
; t.2//�.t.1//:

Also ˝
B
�
; t.2/� ; h.1/˛

H.H1;T/
D ˝

B?
�
H2

�
; t.2/�� ; h.1/˛
H.H1;T/

D ˝
H2

�
; t.2/� ;B �h.1/�˛H.H2;T/

D B
�
h.1/
� �

t.2/
�
:

Remark 1.7.3 The kernel of the identity operator of H .H;T/ is H:

Example 1.7.4 In (Example) 1.2.5, let LX W LP ŒX� �! H .CX; S/ be the unitary
map of (Example) 1.1.26, and LY be defined analogously. Then, for .s; t/ 2 S � T;
fixed, but arbitrary,

CX;Y .s; t/ D hXs;B
? ŒYt�iLPŒX�

D hL?X ŒCX .
; s/� ;B?
�
L?Y ŒCY .
; t/�

�iLPŒX�
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D hCX .
; s/ ; fLXB?L?Yg ŒCY .
; t/�iH.CX ;S/

D fLYBL?Xg? ŒCY .
; t/� .s/ ;

and thus CX;Y is the kernel of the operator LYBL?X:

Proposition 1.7.5 Let H .H1;T1/ and H .H2;T2/ be RKHS’s, and

B W H .H1;T1/ �! H .H2;T2/

be a bounded linear operator with kernel B: Let B? denote the kernel of B?: Then
B? W T2 � T1 �! R; and, for .x2; t1/ 2 T2 � T1; fixed, but arbitrary,

B? .x2; t1/ D B .t1; x2/ :

Proof One has that B?? D B: Referring to (Remark) 1.7.2, the kernel of B? is given
using the following relation:

B? .x2; t1/ D .B?/? ŒH1 .
; t1/� .x2/ D B ŒH1 .
; t1/� .x2/ :

But

B ŒH1 .
; t1/� .x2/ D hB ŒH1 .
; t1/� ;H2 .
; x2/iH.H2;T2/

D hH1 .
; t1/ ;B? ŒH2 .
; x2/�iH.H1;T1/

D B .t1; x2/ :

ut
Corollary 1.7.6 Let H .H;T/ be an RKHS, and B W H .H;T/ �! H .H;T/ be a
bounded linear operator with associated kernel B: B is self-adjoint if, and only if, B
is symmetric.

Proof Let .x; t/ 2 T � T be fixed, but arbitrary. If B is self-adjoint, from
(Propositions) 1.7.1 and 1.7.5,

B? .x; t/ D B ŒH .
; t/� .x/ D B? ŒH .
; t/� .x/ D B .x; t/ :

But, according to (Proposition) 1.7.5, B? .x; t/ D B .t; x/ : Consequently B .t; x/ D
B .x; t/ :

Conversely, let .x; t/ 2 T � T be fixed, but arbitrary, and suppose that B .t; x/ D
B .x; t/ : Then B? .x; t/ D B .x; t/ ; or B ŒH .
; t/� .x/ D B? ŒH .
; t/� .x/ : It follows
that, for t 2 T; fixed, but arbitrary, B? ŒH .
; t/� D B ŒH .
; t/� ; and thus, since
fH .
; t/ ; t 2 Tg � H .H;T/ is total, that B? D B: ut
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Proposition 1.7.7 Let H .H1;T1/ and H .H2;T2/ be RKHS’s, and

B1;B2 W H .H1;T1/ �! H .H2;T2/

be bounded linear operators with respective kernels B1 and B2: Form

B D ˛1B1 C ˛2B2;

and let B be the kernel of B: Then

B D ˛1B1 C ˛2B2:

Proof B? D ˛1B?1 C ˛2B?2 so that

B .x1; t2/ D B? ŒH2 .
; t2/� .x1/
D ˛1B?1 ŒH2 .
; t2/� .x1/C ˛2B?2 ŒH2 .
; t2/� .x1/
D ˛1B1 .x1; t2/C ˛2B2 .x1; t2/ :

ut
Proposition 1.7.8 Let H .H1;T1/ ; H .H2;T2/, and H .H3;T3/ be RKHS’s. Let

B1 W H .H1;T1/ �! H .H2;T2/ ;

B2 W H .H2;T2/ �! H .H3;T3/

be bounded linear operators with respective kernels B1 and B2: Let B D B2B1 have
kernel B: Then

B .x1; t3/ D hB1 .x1; 
/ ;B2 .
; t3/iH.H2;T2/; .x; t/ 2 T1 � T3:

Proof B? D B?1B?2 so that

B .x1; t3/ D B? ŒH3 .
; t3/� .x1/
D B?1B?2 ŒH3 .
; t3/� .x1/
D hB?1B?2 ŒH3 .
; t3/� ;H1 .
; x1/iH.H1;T1/

D hB?2 ŒH3 .
; t3/� ;B1 ŒH1 .
; x1/�iH.H2;T2/:

But B?2 ŒH3 .
; t3/� D B2 .
; t3/ ; and

B1 ŒH1 .
; x1/� D
�
B?1
�?
ŒH1 .
; x1/� D B?1 .
; x1/ D B1 .x1; 
/ :

ut
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Proposition 1.7.9 Let H .H;T/ be an RKHS, and

B W H .H;T/ �! H .H;T/

be a bounded linear operator. Then B is positive, that is, for h 2 H .H;T/ ; fixed,
but arbitrary,

hB Œh� ; hiH.H;T/ � 0;

if, and only, if the associated kernel B is positive definite.

Proof One has for .t1; t2/ 2 T � T; fixed, but arbitrary,

hB ŒH .
; t1/� ;H .
; t2/iH.H;T/ D hH .
; t1/ ;B? ŒH .
; t2/�iH.H;T/
D hH .
; t1/ ;B .
; t2/iH.H;T/
D B .t1; t2/ :

Consequently, for fixed, but arbitrary Œn; ˛; .t;T/� and h DPn
iD1 ˛iH .
; ti/ ; one has

that

hB Œh� ; hiH.H;T/ D
nX

iD1

nX
jD1

˛i˛jB
�
ti; tj

�
:

Thus B is positive on V ŒH� if, and only if, B is positive definite, and B is positive if,
and only if, it is positive on V ŒH� : ut
Proposition 1.7.10 Let B and fBn; n 2 Ng be bounded, linear operators from
H .H1;T1/ to H .H2;T2/ ; and B and fBn; n 2 Ng be their respective kernels. Let,
for c1 2 RC; fixed, but arbitrary,

T .1/

c1
D ˚t.1/ 2 T1 W H1

�
t.1/; t.1/

� � c1
�
:

T .2/
c2 is defined similarly. Then:

1. when, for h.1/ 2 H .H1;T1/ ; fixed, but arbitrary,˚
Bn
�
h.1/
�
; n 2 N

�
converges weakly to B

�
h.1/
�
;

one has that, for ft.1/; t.2/g � T1 � T2; fixed, but arbitrary,

lim
n

Bn
�
t.1/; t.2/

� D B
�
t.1/; t.2/

� I
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2. when limn Bn D B (in operator norm), one has, for fixed, but arbitrary fc1; c2g �
RC; that

fBn .
; 
/ ; n 2 Ng converges uniformly, on T .1/

c1 � T .2/

c2 ; to B .
; 
/ :

Proof The kernel B of B is obtained, for .t.1/; t.2// 2 T1 � T2; fixed, but arbitrary, as

B
�
t.1/; t.2/

� D B?
�
H2

�
; t.2/�� �t.1/�
D hB? �H2

�
; t.2/�� ;H1

�
; t.1/�iH.H1;T1/

D hH2

�
; t.2/� ;B �H1

�
; t.1/��iH.H2;T2/:

Similarly,

Bn
�
t.1/; t.2/

� D hH2

�
; t.2/� ;Bn
�
H1

�
; t.1/��iH.H2;T2/:

Item 1 is now obvious. Furthermoreˇ̌
B
�
t.1/; t.2/

� � Bn
�
t.1/; t.2/

�ˇ̌ D
D ˇ̌hH2

�
; t.2/� ; ŒB � Bn�
�
H1

�
; t.1/��iH.H2;T2/

ˇ̌

� ˇ̌̌̌H2

�
; t.2/�ˇ̌̌̌
H.H2;T2/

jjB � Bnjj
ˇ̌̌̌
H1

�
; t.1/�ˇ̌̌̌
H.H1;T1/

D ˚
H1

�
t.1/; t.1/

�
H2

�
t.2/; t.2/

��1=2 jjB � Bnjj :

That is item 2. ut
Remark 1.7.11 Let

S D
n
h.1/ 2 V ŒH1� ; h

.2/ 2 V ŒH2� W
ˇ̌̌̌
h.1/
ˇ̌̌̌

H.H1;T1/
D ˇ̌̌̌ h.2/ ˇ̌̌̌

H.H2;T2/
D 1

o
:

As the range of B is contained in the closure of V ŒH2� ; restricting B to V ŒH1� ; one
has that [266, p. 60]

sup
S

ˇ̌hB �h.1/� ; h.2/iH.H2;T2/

ˇ̌ D jjBjj :
Thus, with now

S1 D
˚f˛1; : : : ; ˛ng � R;

˚
t.1/1 ; : : : ; t

.1/

n

� � T1; n 2 N
�
;
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and

S2 D
˚˚
ˇ1; : : : ; ˇp

� � R;
˚
t.2/1 ; : : : ; t

.2/

n

� � T2; p 2 N
�
;

one has that

sup
S1�S2

nX
iD1

pX
jD1

˛iˇjB
�

t.1/i ; t
.2/

j

�
D jjBjj :

Remark 1.7.12 When

sup
n

sup
S1�S2

nX
iD1

pX
jD1

˛iˇjBn

�
t.1/i ; t

.2/

j

�
<1;

and, for t.1/ 2 T1 and t.2/ 2 T2; fixed, but arbitrary, fBn .t.1/; t.2// ; n 2 Ng is Cauchy,
fBn; n 2 Ng is weakly Cauchy. That follows from [266, p. 80].

1.7.2 Unitary Operators

As shall be seen, unitary operators in separable spaces have kernels corresponding
to series formed from orthonormal elements.

Proposition 1.7.13 Let H .H;T/ be a separable RKHS, and

U W H .H;T/ �! H .H;T/

be a unitary operator with kernel U : There exist then two complete orthonormal
sets, fei; i 2 Ig and ffi; i 2 Ig ; both in H .H;T/ ; such that, for .t1; t2/ 2 T � T;
fixed, but arbitrary,

U .t1; t2/ D
X
i2I

ei .t1/ fi .t2/ :

Proof For fixed, but arbitrary t 2 T; one has that U .
; t/ 2 H .H;T/ ; so that, for
any complete orthonormal set fei; i 2 Ig � H .H;T/ ; U .
; t/ is represented as

U .
; t/ D
X
i2I

hU .
; t/ ; eiiH.H;T/ ei:

Consequently, for fixed, but arbitrary x 2 T;

U .x; t/ D hU .
; t/ ;H .
; x/iH.H;T/ D
X
i2I

hU .
; t/ ; eiiH.H;T/ ei .x/ :
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Now [(Remark) 1.7.2]

hU .
; t/ ; eiiH.H;T/ D hU? ŒH .
; t/� ; eiiH.H;T/
D hH .
; t/ ;U Œei�iH.H;T/
D U Œei� .t/ :

Let fi D U Œei� : Since U is unitary, ffi; i 2 Ig � H .H;T/ is a complete orthonormal
set, and the result follows. ut
Proposition 1.7.14 Let H .H;T/ be an RKHS, and fei; i 2 Ig and ffi; i 2 Ig be
two complete orthonormal sets, both in H .H;T/ : Set, for .t1; t2/ 2 T �T; fixed, but
arbitrary,

U .t1; t2/ D
X
i2I

ei .t1/ fi .t2/ :

U is then the kernel of a unitary operator of H .H;T/ :

Proof One has that

ei .t1/ D hei;H .
; t1/iH.H;T/;
fi .t2/ D h fi;H .
; t2/iH.H;T/;

so that X
i2I

e2i .t1/ D
X
i2I

hei;H .
; t1/i2H.H;T/ D jjH .
; t1/jj2H.H;T/ D H .t1; t1/ ;

and, similarly,
P

i2I f 2i .t2/ D H .t2; t2/. Consequently

(X
i2I

jei .t1/j jfi .t2/j
) 2

�
X
i2I

e2i .t1/
X
i2I

f 2i .t2/ D H .t1; t1/H .t2; t2/ <1:

The kernel U is thus well defined. Now U .
; t/ D P
i2I fi .t/ ei; so that one may

define

U Œh� .t/ D hh;U .
; t/iH.H;T/ D
X
i2I

fi .t/ hh; eiiH.H;T/:

Consequently

U Œh� D
X
i2I

hh; eiiH.H;T/ fi;
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jjU Œh�jj2H.H;T/ D
X
i2I

hh; eii2H.H;T/ D jjhjj2H.H;T/ :

Since RŒU� contains a complete orthonormal set, U is unitary. ut

1.7.3 Hilbert-Schmidt Operators

As shall be seen, Hilbert-Schmidt operators are at the core of the L2 theory of
stochastic processes, and the following result is often used. Properties of Hilbert-
Schmidt operators are listed in [266, pp. 133–135,163].

Proposition 1.7.15 Let H1 and H2 be reproducing kernels on T1 and T2 respec-
tively, T D T1 � T2; and H be the reproducing kernel on T obtained as follows
[(Example) 1.3.15]: for t1 D

�
t.1/1 ; t

.2/

1

�
and t2 D

�
t.1/2 ; t

.2/

2

�
in T; fixed, but arbitrary,

H .t1; t2/ D H1

�
t.1/1 ; t

.1/

2

�
H2

�
t.2/1 ; t

.2/

2

�
:

Let B W H .H1;T1/ �! H .H2;T2/ be a Hilbert-Schmidt operator, and B be its
kernel. Then

B 2 H .H;T/ ;

and every B 2 H .H;T/ is the kernel of a Hilbert-Schmidt operator from H .H1;T1/
to H .H2;T2/ : Furthermore, jj
jjHS denoting the Hilbert-Schmidt norm,

jjBjjHS D jjBjjH.H;T/ :

Proof Suppose that B is Hilbert-Schmidt.
Let fe�.1/ ; �.1/ 2 �1g and fe�.2/ ; �.2/ 2 �2g be complete orthonormal sets in,

respectively, H .H1;T1/ and H .H2;T2/ : Since B is a kernel for B; for fixed, but
arbitrary t2 2 T2; B .
; t2/ 2 H .H1;T1/ ; and then

B .
; t2/ D
X

�.1/2�1
hB .
; t2/ ; e�.1/iH.H1;T1/ e�.1/ ;

so that

B .t1; t2/ D hB .
; t2/ ;H1 .
; t1/iH.H1;T1/

D
X

�.1/2�1
hB .
; t2/ ; e�.1/iH.H1;T1/ e�.1/ .t1/ :
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But, using the definition of B as a kernel for B;

hB .
; t2/ ; e�.1/iH.H1;T1/ D

D B Œe�.1/ � .t2/

D hB Œe�.1/ � ;H2 .
; t2/iH.H2;T2/

D
X

�.2/2�2
hB Œe�.1/ � ; e�.2/iH.H2;T2/he�.2/ ;H2 .
; t2/iH.H2;T2/

D
X

�.2/2�2
hB Œe�.1/ � ; e�.2/iH.H2;T2/e�.2/ .t2/ :

Now, as B is Hilbert-Schmidt,X
�.1/2�1

X
�.2/2�2

hB Œe�.1/ � ; e�.2/i2H.H2;T2/
D

X
�.1/2�1

jjB Œe�.1/ �jj2H.H2;T2/
<1:

Furthermore, using the representation of H .H;T/ as the range of the map L
of (Example) 1.3.15, since fe�.1/ ˝ e�.2/ ; .�

.1/; �.2// 2 �1 ��2g is a complete
orthonormal set in H .H1;T1/˝ H .H2;T2/ ;˚

L Œe�.1/ ˝ e�.2/ � ;
�
�.1/; �.2/

� 2 �1 ��2

�
is a complete orthonormal set in H .H;T/ : But

L Œe�.1/ ˝ e�.2/ � .t1; t2/ D e�.1/ .t1/ e�.2/ .t2/ :

Thus, as

B .t1; t2/ D
X

�.1/2�1
hB .
; t2/ ; e�.1/iH.H1;T1/ e�.1/ .t1/

D
X

�.1/2�1

X
�.2/2�2

hB Œe�.1/ � ; e�.2/iH.H2;T2/ e�.2/ .t2/ e�.1/ .t1/ ;
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that latter series represents an element of H .H;T/ ; and consequently B belongs to
H .H;T/ : Since

B D L

2
4 X
�.1/2�1

X
�.2/2�2

hB Œe�.1/ � ; e�.2/iH.H2;T2/ e�.1/ ˝ e�.2/

3
5 ;

one has furthermore that

jjBjj2H.H;T/ D

D
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌ X
�.1/2�1

X
�.2/2�2

hB Œe�.1/ � ; e�.2/iH.H2;T2/e�.1/ ˝ e�.2/

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌2
H.H1;T1/˝H.H2;T2/

D
X

�.1/2�1

X
�.2/2�2

hB Œe�.1/ � ; e�.2/i2H.H2;T2/
:

The latter, as seen, is the Hilbert-Schmidt norm of B:

Proof Suppose now that B is a fixed, but arbitrary element of H .H;T/ :
As already seen, B has a representation of the form

B D
X

�.1/2�1

X
�.2/2�2

˛.�.1/;�.2//L Œe�.1/ ˝ e�.2/ � ;

with X
�.1/2�1

X
�.2/2�2

˛2
.�.1/;�.2//

<1;

so that, for fixed, but arbitrary .t1; t2/ 2 T1 � T2;

B .t1; t2/ D
X

�.1/2�1

X
�.2/2�2

˛.�.1/;�.2//e�.1/ .t1/ e�.2/ .t2/ :

Now, using the inequality of Cauchy-Schwarz, for a fixed, but arbitrary element
h1 2 H .H1;T1/ ;8<

: X
�.1/2�1

X
�.2/2�2

ˇ̌̌
˛.�.1/;�.2//

ˇ̌̌
je�.2/ .t2/j

ˇ̌hh1; e�.1/iH.H1;T1/

ˇ̌9=;
2

D

D
8<
: X
�.1/2�1

8<
: X
�.2/2�2

ˇ̌̌
˛.�.1/;�.2//

ˇ̌̌
je�.2/ .t2/j

9=
; ˇ̌hh1; e�.1/iH.H1;T1/

ˇ̌9=;
2
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�
X

�.1/2�1

8<
: X
�.2/2�2

ˇ̌̌
˛.�.1/;�.2//

ˇ̌̌
je�.2/ .t2/j

9=
;
2 X
�.1/2�1

hh1; e�.1/i2H.H1;T1/

�
X

�.1/2�1

8<
: X
�.2/2�2

˛2
.�.1/;�.2//

X
�.2/2�2

e2
�.2/
.t2/

9=
; jjh1jj2H.H1;T1/

D
X

�.1/2�1

X
�.2/2�2

˛2
.�.1/;�.2//

H2 .t2; t2/ jjh1jj2H.H1;T1/ :

Consequently, and analogously,

B .
; t2/ D
X

�.1/2�1

8<
: X
�.2/2�2

˛.�.1/;�.2//e�.2/ .t2/

9=
; e�.1/ 2 H .H1;T1/ ;

and one may then compute

hh1;B .
; t2/iH.H1;T1/ D
X

�.1/2�1

X
�.2/2�2

˛.�.1/;�.2//e�.2/ .t2/ hh1; e�.1/iH.H1;T1/:

But h2; defined using

h2 D
X

�.2/2�2

8<
: X
�.1/2�1

˛.�.1/;�.2//hh1; e�.1/iH.H1;T1/

9=
; e�.2/ ;

belongs to H .H2;T2/ ; so that

t2 7! hh1;B .
; t2/iH.H1;T1/ D hh2;H2 .
; t2/iH.H2;T/

is a function of H .H2;T/ : One may then define, for .h1; t2/ 2 H .H1;T1/ � T2;
fixed, but arbitrary,

B Œh1� .t2/ D hh1;B .
; t2/iH.H1;T1/; and BŒh1� D h2:

One thus obtains a linear and bounded operator from the RKHS H .H1;T1/ to the
H .H2;T2/ one, and the set of inequalities that have been exhibited above establishes
that B is also Hilbert-Schmidt. ut
Example 1.7.16 In (Example) 1.7.4, the operator B shall be Hilbert-Schmidt when-
ever

CX;Y belongs to the RKHS whose kernel is CX � CY :
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That last remark has been used to define canonical correlations for stochastic
processes [92].

1.7.4 Covariance Operators

Since useful signals often have paths in RKHS’s, they induce, on these, laws for
which covariance operators are an essential parameter.

In this section H .H;T/ shall be a separable RKHS, .˝;A;P/ ; a probability
space, and � W ˝ �! H .H;T/ a map. On H .H;T/ ; one shall consider the
following �-algebras:

B .H;T/ : the Borel sets
(�-algebra generated by the open sets);

C .H;T/ : the cylinder sets
(�-algebra generated by the continuous linear functionals);

D .H;T/ : the �-algebra generated by the following family of
continuous linear functionals:

˚h
; hiiH.H;T/; hi 2 H .H;T/ ; i 2 I
�
;

where H.I/ D fhi; i 2 Ig � H .H;T/ is a total set;

E .H;T/ : the �-algebra generated by the evaluation maps.

From the definitions one has that

D .H;T/ � C .H;T/ � B .H;T/ ;

and that

E .H;T/ � C .H;T/ � B .H;T/ :

Lemma 1.7.17 E .H;T/ D B .H;T/

Proof Since the evaluation maps are continuous linear functionals [(Proposi-
tion) 1.1.5], E .H;T/ � B .H;T/ : So one must prove the converse inclusion.

Let H.I/ D fhi; i 2 Ig � V ŒH� be a countable set that is dense in H .H;T/
[(Proposition) 1.5.1], and B .h; ˛/ � H .H;T/ be the closed ball centered at h; with
radius ˛:
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When h 2 VŒH�; h DPn
iD1 ˛iH.
; ti/; so that

hx; hiH.H;T/ D
nX

iD1
˛iEti.x/;

and thus x 7! hx; hiH.H;T/ is adapted to E.H;T/: Now [266, p. 61], for fixed, but
arbitrary h0 2 H .H;T/ ;

jjh0jjH.H;T/ D sup
h2B.0;1/

ˇ̌hh0; hiH.H;T/ ˇ̌ D sup
h2B.0;1/\H.I/

ˇ̌hh0; hiH.H;T/ ˇ̌ :
Thus, for h 2 B .h0; ˛/ ; and Qh 2 B .0; 1/\ H.I/; fixed, but arbitrary,ˇ̌hh � h0; QhiH.H;T/

ˇ̌ � jjh � h0jjH.H;T/ � ˛:

But the supremum of a countable set of expressions, adapted to E.H;T/; dominated
by ˛; is also adapted to E.H;T/; and dominated by ˛: Consequently:

B .h0; ˛/ D
\

Qh2B.0;1/\H.I/

˚
h 2 H .H;T/ W ˇ̌hh� h0; QhiH.H;T/

ˇ̌ � ˛� :
So, B .h0; ˛/ belongs to E .H;T/ : But the closed balls generate B .H;T/ : ut
Lemma 1.7.18 D .H;T/ D B .H;T/
Proof By assumption, V ŒH .I/� is dense in H .H;T/ : One may show, as in
(Proposition) 1.5.1, that V ŒH .I/� contains a countable dense set, and then adjust
the proof of (Lemma) 1.7.17 to this latter case. ut
Proposition 1.7.19 � is adapted to A and B .H;T/ if, and only if, for t 2 T; fixed,
but arbitrary, Et ı � is adapted to A

Proof This result is a direct consequence of (Lemma) 1.7.17. ut
Definition 1.7.20 Let � W ˝ �! H .H;T/ be adapted, and A 2 A be fixed, but
arbitrary. Then � is said to be weakly integrable on A when

1. for h 2 H .H;T/ ; fixed, but arbitrary,

EP
�
�A .
/

ˇ̌h� .
/ ; hiH.H;T/ ˇ̌ � D Z
A

ˇ̌h� .!/ ; hiH.H;T/ ˇ̌P .d!/ <1;
2. there exists hw

�;A 2 H .H;T/ such that, for h 2 H .H;T/ ; fixed, but arbitrary,

EP
�
�A .
/ h� .
/ ; hiH.H;T/

� D hhw
�;A; hiH.H;T/:
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hw
�;A is called the weak integral of � on A; and one writes, according to convenience,

hw
�;A D EP Œ�A�� D

Z .w/

A
� dP:

Definition 1.7.21 When � is weakly integrable on A for all A 2 A; it is said to be
weakly, or Pettis integrable.

Definition 1.7.22 Let � W ˝ �! H .H;T/ be adapted, and A 2 A be fixed, but
arbitrary. Then � is said to be strongly integrable on A whenZ

A
jj� .!/jjH.H;T/ P .d!/ <1:

One writes, for that integral, either
R

A � dP or, when useful,
R .s/

A � dP:

Definition 1.7.23 When � is strongly integrable on ˝; it is said to be Bochner
integrable, so that, when � is Bochner integrable, it is strongly integrable on every
A 2 A:
Remark 1.7.24 As

ˇ̌h� .!/ ; hiH.H;T/ ˇ̌ � jj� .!/jjH.H;T/ jjhjjH.H;T/ ;when � is strongly
integrable on A;Z

A

ˇ̌h� .!/ ; hiH.H;T/ ˇ̌P .d!/ �
�Z

A
jj� .!/jjH.H;T/ P .d!/

�
jjhjjH.H;T/ ;

so that h 7! R
Ah� .!/ ; hiH.H;T/P .d!/ is a continuous linear functional on H .H;T/ ;

and then, by the Riesz representation theorem [266, p. 64], there exists hs
�;A 2

H .H;T/ such that Z
A
h� .!/ ; hiH.H;T/P .d!/ D hh; hs

�;AiH.H;T/:

One writes

hs
�;A D

Z .s/

A
� .!/P .d!/ :

Remark 1.7.25 Obviously, when � is strongly integrable on A; it is weakly inte-
grable also, and the two integrals result in the same element of H .H;T/ ; that is
hw
�;A D hs

�;A:

Example 1.7.26 Let ˝ D N and A be the subsets of N: Let P .fng/ D 1
2n :
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The space l2 is an RKHS [(Example) 1.1.24]. Let � W N �! H .H;T/ D l2 be
defined using the following relation:

� .n/ D
�
2n

n

�
en:

� is adapted as, for p 2 N; fixed, but arbitrary,

Ep

h
� .n/

i
D
�
2n

n when p D n
0 when p ¤ n

�
D 2n

n
hen; epil2 :

� is not Bochner integrable since

Z
N

ˇ̌̌̌̌̌
� .n/

ˇ̌̌̌̌̌
l2

P .dn/ D
X
n2N

ˇ̌̌̌̌̌
� .n/

ˇ̌̌̌̌̌
l2

P .fng/ D
X
n2N

2n

n

1

2n
D1:

Let A � N be fixed, but arbitrary, and let lA � l2 be the subspace spanned by˚
en; n 2 A

�
: Let h0 be defined using the following relation:

h.0/n D hh0; enil2 D
1

n
:

Then

PlA

�
h0
� DX

n2A

h.0/n en;

and, for fixed, but arbitrary h 2 l2;

hh;PlA

�
h0
�il2 DX

n2A

hn

n
:

Consequently Z
A
hh; � .n/il2P .dn/ D

X
n2A

hn

n
D hh;PlA

�
h0
�il2 :

� is thus weakly integrable on A:

Remark 1.7.27 When � is weakly integrable on A, X .
; t/ D Et ı � .
/ is integrable
on A; and the map

t 7! EP Œ�A .
/Et ı � .
/�
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belongs to H .H;T/ : By definition indeed there exists hw
�;A 2 H .H;T/ such that,

for fixed, but arbitrary h 2 H .H;T/ ;Z
A
hh; � .!/iH.H;T/P .d!/ D hh; hw

�;AiH.H;T/:

Letting h D H .
; t/ one gets that, for fixed, but arbitrary t 2 T;Z
A

X .!; t/P .d!/ D
Z

A
Et Œ� .!/�P .d!/ D hw

�;A .t/ :

Remark 1.7.28 The fact that X in (Remark) 1.7.27 is integrable does not imply that
� is weakly integrable, as shown by the following example. In (Example) 1.7.26 let
� .n/ D 2nen: Then

hH .
; p/ ; � .n/il2 D 2nın;p:

Consequently
R
N
hH .
; p/ ; � .n/il2P .dn/ D 1: But 1N does not belong to l2 which is,

in this case, H .H;T/ : Thus, by its very definition, � cannot be weakly integrable.

Proposition 1.7.29 Let A 2 A be fixed, but arbitrary, and X .
; t/ D Et ı � .
/ : The
following two conditions are then equivalent:

1. the map �A W T �! R defined using

t 7! EP Œ�A .
/X .
; t/�

belongs to H .H;T/ I
2. the map �A W V ŒH� �! R defined using the following assignment:

h 7! EP
�
�A .
/ hh; � .
/iH.H;T/

�
is a continuous linear functional on H.H;T/:

When both statements obtain, one has that

�A Œh� D hh; �AiH.H;T/:

Proof (1) 2) Let h DPn
iD1 ˛iH .
; ti/ : Then

EP
�
�A .
/ hh; � .
/iH.H;T/

� D nX
iD1

˛iEP Œ�A .
/X .
; ti/�

D
nX

iD1
˛i�A .ti/
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D
nX

iD1
˛ih�A;H .
; ti/iH.H;T/

D hh; �AiH.H;T/:

Proof (2) 1) By the Hahn-Banach theorem [266, p. 62], there exists a continuous
linear functional on H .H;T/, say Q�A; such that

Q� jV ŒH�

A D �A; and
ˇ̌̌̌ Q�A

ˇ̌̌̌ D jj�Ajj :

By the Riesz representation theorem [266, p. 64], there exists hA 2 H .H;T/ such
that, for h 2 H .H;T/ ; fixed, but arbitrary,

Q�A Œh� D hh; hAiH.H;T/:

Then

hA .t/ D hhA;H .
; t/iH.H;T/
D Q�A ŒH .
; t/�
D �A ŒH .
; t/�
D EP Œ�A .
/X .
; t/�
D �A .t/ :

Consequently �A D hA 2 H .H;T/ : ut
Proposition 1.7.30 Let � W ˝ �! H .H;T/ be an adapted map, and, for t 2 T;
fixed, but arbitrary, X .
; t/ D Et ı �: Let A 2 A be such that, for t 2 T; fixed, but
arbitrary, EP Œ�A .
/X .
; t/� exists. For fixed, but arbitrary h 2 V ŒH� ; let

˚A Œh� D
Z

A

ˇ̌hh; � .!/iH.H;T/ ˇ̌P .d!/ :
˚A is well defined by assumption. The following statements are then equivalent:

1. ˚A is continuous at the origin;
2. ˚A is continuous;
3. ˚A is Lipschitz-continuous.

Proof Since, by definition, item 3 implies item 2, which implies item 1, it is enough
to prove that item 1 implies item 3.

Because of the continuity at the origin assumption, there exists � > 0 such that,
whenever

h 2 V ŒH� and jjhjjH.H;T/ � �;
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then

˚A .h/ � 1:

Thus, when h 2 V ŒH� and jjhjjH.H;T/ ¤ 0;ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ h

jjhjjH.H;T/
�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
H.H;T/

� �; and 0 � ˚A

"
h

jjhjjH.H;T/
�

#
� 1;

so that

0 � ˚A .h/ �
jjhjjH.H;T/

�
:

Let now fh1; h2g � V ŒH� be fixed, but arbitrary. Then, using firstly the inequality
jjaj � jbjj � ja � bj ; and, secondly, the inequality just obtained,

j˚A Œh1� �˚A Œh2�j D
ˇ̌
EP
�
�A .
/

˚ˇ̌hh1; � .
/iH.H;T/ ˇ̌� ˇ̌hh2; � .
/iH.H;T/ ˇ̌��ˇ̌
� EP

�
�A .
/

ˇ̌˚ˇ̌hh1; � .
/iH.H;T/ ˇ̌� ˇ̌hh2; � .
/iH.H;T/ ˇ̌�ˇ̌�
� EP

�
�A .
/

ˇ̌hh1 � h2; � .
/iH.H;T/
ˇ̌�

D ˚A Œh1 � h2�

� 1

�
jjh1 � h2jjH.H;T/ :

ut
Proposition 1.7.31 Let A 2 A be fixed, but arbitrary. When �A of (Proposi-
tion) 1.7.29 belongs to H .H;T/ ; and ˚A of (Proposition) 1.7.30 is continuous at
the origin, � is weakly integrable on A; and

Z .w/

A
� dP D �A:

Proof Let h 2 H .H;T/ be fixed, but arbitrary. One must prove that

• hh; �iH.H;T/ is integrable on AI
• EP

�
�A .
/ hh; � .
/iH.H;T/

� D hh; �AiH.H;T/:
Let fhn; n 2 Ng � V ŒH� converge in H .H;T/ to h: One has thatZ

A

ˇ̌hhn; � .!/iH.H;T/ � hhp; � .!/iH.H;T/
ˇ̌
P .d!/ D ˚A

�
hn � hp

�
:
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But there exists [(Proposition) 1.7.30] � � 0 such that

˚A
�
hn � hp

� � � ˇ̌̌̌ hn � hp

ˇ̌̌̌
H.H;T/ :

The equivalence classes of the sequence
˚hhn; �iH.H;T/; n 2 N

�
form thus a Cauchy

sequence in L1
�
A;A\ A;PjA\A

�
: But, since, for fixed, but arbitrary ! 2 ˝;

lim
n
hhn; � .!/iH.H;T/ D hh; � .!/iH.H;T/;

that Cauchy sequence converges in L1
�
A;A\ A;PjA\A

�
to hh; �iH.H;T/: Conse-

quently

lim
n

EP
�
�A .
/ hhn; � .
/iH.H;T/

� D EP
�
�A .
/ hh; � .
/iH.H;T/

�
:

Now, by (Proposition) 1.7.29, EP
�
�A .
/ hhn; � .
/iH.H;T/

� D hhn; �AiH.H;T/; so that

EP
�
�A .
/ hh; � .
/iH.H;T/

� D hh; �AiH.H;T/:

ut
Definition 1.7.32 Let � W A �! H .H;T/ be a map. It is absolutely continuous
with respect to P when, given � > 0; fixed, but arbitrary, there exists � .�/ > 0 such
that

A 2 A and P .A/ < � .�/ H) jj� .A/jjH.H;T/ < �:

Proposition 1.7.33 Assume that � is weakly integrable, and define a map � W
A �! H .H;T/ using the following assignment:

� .A/ D
Z .w/

A
� .!/P .dx/ :

The map � is then absolutely continuous with respect to P:

Proof Since, for fixed, but arbitrary h 2 H .H;T/

hh; � .A/iH.H;T/ D
Z

A
hh; � .!/iH.H;T/P .d!/ ;

� is weakly countably additive. Furthermore, when P .A/ D 0;

hh; � .A/iH.H;T/ D 0; all h 2 H .H;T/ ;

that is, � .A/ D 0H.H;T/: But then [135, p. 76] � is absolutely continuous with
respect to P: ut
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Proposition 1.7.34 � W ˝ �! H .H;T/ is weakly integrable if, and only if, both
statements that follow obtain:

1. for A 2 A; fixed, but arbitrary, the map

t 7! EP Œ�A .
/X .
; t/� D EP Œ�A .
/Et ı � .
/�

belongs to H .H;T/ I
2. the map � of (Proposition) 1.7.33 is absolutely continuous with respect to P:

Proof Suppose � is weakly integrable.
According to (Remark) 1.7.27, item 1 obtains, and item 2 is (Proposition) 1.7.33.

Proof Suppose that assertions 1 and 2 obtain.
� is weakly measurable as, for fixed, but arbitrary t 2 T; X .
; t/ is (implicitly)

adapted because of item 1: one then uses (Lemma) 1.7.17.
If one proves that, for fixed, but arbitrary A 2 A; ˚A of (Proposition) 1.7.30

is continuous at the origin, weak integrability shall follow because of (Proposi-
tion) 1.7.31.

Let thus A 2 A be fixed, but arbitrary, fhn; n 2 Ng � V ŒH� converge to 0H.H;T/
in H .H;T/ ; and � > 0 be fixed, but arbitrary. Because of item 2, given

p
�; there

exists � .�/ such that, for A0 2 A;

P .A0/ < � .�/ implies that jj�A .A0/jjH.H;T/ <
p
�:

As, for fixed, but arbitrary ! 2 ˝;

lim
n
h� .!/ ; hniH.H;T/ D 0;

˚h� .!/ ; hniH.H;T/; n 2 N
�

converges in probability to zero, and thus there exists
n .�/ 2 N such that, for n � n .�/ ;

jjhnjjH.H;T/ <
p
�

4
; and P

�
! 2 ˝ W ˇ̌h� .!/ ; hniH.H;T/

ˇ̌
>
�

2

�
< � .�/ :

Let, for n 2 N;

ACn Œ�� D A \
n
! 2 ˝ W ˇ̌h� .!/ ; hniH.H;T/

ˇ̌
>
�

2

o
\ ˚! 2 ˝ W h� .!/ ; hniH.H;T/ � 0

�
;

and

A�n Œ�� D A \
n
! 2 ˝ W ˇ̌h� .!/ ; hniH.H;T/

ˇ̌
>
�

2

o
\ ˚! 2 ˝ W h� .!/ ; hniH.H;T/ < 0

�
:
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Then

˚A .hn/ D

D
Z

A

ˇ̌h� .!/ ; hniH.H;T/
ˇ̌
P .d!/

�
Z

A\fjh�;hniH.H;T/j> �
2 g
ˇ̌h� .!/ ; hniH.H;T/

ˇ̌
P .d!/C �

2

D
Z

ACn Œ��
h� .!/ ; hniH.H;T/P .d!/�

Z
A�n Œ��
h� .!/ ; hniH.H;T/P .d!/C �

2

D ˝
hn; �

�
ACn Œ��

�˛
H.H;T/ �

˝
hn; �

�
A�n Œ��

�˛
H.H;T/ C

�

2

� jjhnjjH.H;T/
nˇ̌̌̌
�
�
ACn Œ��

�ˇ̌̌̌
H.H;T/ C

ˇ̌̌̌
�
�
A�n Œ��

�ˇ̌̌̌
H.H;T/

o
C �

2
:

As

ACn Œ�� �
n
! 2 ˝ W ˇ̌h� .!/ ; hniH.H;T/

ˇ̌
>
�

2

o
;

and

ACn Œ�� �
n
! 2 ˝ W ˇ̌h� .!/ ; hniH.H;T/

ˇ̌
>
�

2

o
;

one has that, for n � n .�/ ;

˚A .hn/ �
p
�

4

˚
2
p
�
�C �

2
D �:

ut
Example 1.7.35 (Covariance Operator in an RKHS) Assume that! 7!jj�.!/jjH.H;T/
is adapted, and that

EP
�jj� .
/jj2H.H;T/� <1:

Then the map ! 7! hh; � .!/iH.H;T/ � .!/ is adapted, and Bochner integrable. The
operator R� W H .H;T/ �! H .H;T/ defined using the following assignment:

h 7! EP
�hh; � .!/iH.H;T/ � .!/�

is well defined, and continuous, since the second moment of the norm of � exists,
and that, for Bochner integrals, the norm of the integral is less than the integral of
the norm [135, p. 82]. R� is, by definition, the covariance operator of �: Its kernel
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K� is obtained from the following calculation:

K� .x; t/ D R?� ŒH .
; t/� .x/
D hH .
; x/ ;R?� ŒH .
; t/�iH.H;T/
D hR� ŒH .
; x/� ;H .
; t/iH.H;T/
D hEP

�hH .
; x/ ; � .!/iH.H;T/� .!/
�
;H .
; t/iH.H;T/

D EP
�hH .
; x/ ; � .!/iH.H;T/hH .
; t/ ; � .!/iH.H;T/

�
D EP ŒX .
; x/X .
; t/� :

Thus the kernel of the operator R� is, when the mean of � is zero, the covariance of
the stochastic process with paths in H .H;T/ that � determines.

The operator R� is also compact. Indeed, when fhn; n 2 Ng � H .H;T/
converges weakly to zero, that sequence is bounded in norm by some constant � � 0
[266, p. 79], limnhhn; � .!/iH.H;T/ � .!/ D 0H.H;T/; andˇ̌̌̌ hhn; � .!/iH.H;T/ � .!/

ˇ̌̌̌
H.H;T/ � � jj� .!/jj2H.H;T/ ;

which is integrable. Consequently [135, p. 83]

lim
n

R� Œhn� D lim
n

Z
˝

hhn; � .!/iH.H;T/ � .!/P .d!/

D
Z
˝

lim
n

˚hhn; � .!/iH.H;T/ � .!/
�

P .d!/

D 0:



Chapter 2
The Functions of a Reproducing Kernel Hilbert
Space

The functions of an RKHS, that is, the signals one works with, may not be easy to
handle per se. In those cases, it may sometimes be useful to know that they belong
to spaces in which computation may be easier, such as L2 spaces. This chapter
deals with such questions. The correspondence between RKHS’s and other spaces
of functions follows naturally from the construction of (Proposition) 1.1.15.

The behavior of functions in an RKHS reflects that of the map F which
determines its reproducing kernel [(Proposition) 1.1.15]. Since F .t/ can be H .
; t/
(so that LF is the identity), the behavior of the kernel also determines that of the
functions in its RKHS. Conditions on F are often simpler to state, and understand,
than those bearing, equivalently, on the corresponding reproducing kernel. One
concentrates here on measurability, integrability, continuity, and range inclusion
which are of most interest in signal detection. But differentiability properties are
also ubiquitous [7, 35].

It should be noted that a separability assumption is often necessary. It usually
serves to have that F is measurable.

The concepts which follow often find easy illustrations through the use of
covariances that have a factorization [Sect. 1.4].

2.1 Kernels and the Operators They Determine

The map F being that mentioned above, the definitions which follow specify those
of its weak properties that shall be considered in the sequel, as well as their meaning,
in terms of the associated RKHS’s.

© Springer International Publishing Switzerland 2015
A.F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise,
DOI 10.1007/978-3-319-22315-5_2
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Definition 2.1.1 q is a quasi-norm, on the vector space E; when the following
obtain, for f�; �n; n 2 Ng � R and fx; yg � E; fixed, but arbitrary:

1. q .x/ D 0 if, and only if, x D 0I
2. q .�x/ � q .x/ when �1 � � � 1I
3. q .xC y/ � q .x/C q .y/ I
4. limn q .�nx/ D 0 whenever limn �n D 0:
Example 2.1.2 The function q W R �! R defined as q.x/ D jxj

1Cjxj is a quasi-norm
as the map t � 0; t 7! t

1Ct is increasing, continuous, and sub-additive.

Definition 2.1.3 ([46, p. 364]) Let T be a set, T be a �-algebra of subsets of T; and
� be a �-finite measure on T : Then:

1. L0 .T; T ; �/ is the real vector space of functions adapted to T and B .R/ :
When convergence in L0 .T; T ; �/ is convergence in measure on subsets of finite
measure, one has there a topological vector space.

2. Given p 2 Œ1;1Œ ; fixed, but arbitrary, Lp .T; T ; �/ is the pseudo(semi)normed
space of those functions f in L0 .T; T ; �/ for which the function t 7! j f .t/jp is
integrable.

3. L1 .T; T ; �/ is the pseudo(semi)-normed space of those functions f in
L0 .T; T ; �/ for which there exists Nf 2 T such that �

�
Nf
� D 0; and f ;

restricted to Nc
f ; is bounded.

4. When f and g belong to L0 .T; T ; �/ ; and ft 2 T W f .t/ ¤ g .t/g has measure zero
for �; one writes f � g; and obtains, so doing, an equivalence relation. The vector
space of equivalence classes of functions in L0 .T; T ; �/ is denoted L0 .T; T ; �/ :
Lp .T; T ; �/ and L1 .T; T ; �/ have a similar definition, and are Banach spaces.

5. The following relation:

ˇ̌̌̌
Œ f �L0.T;T ;�/

ˇ̌̌̌
A
D
Z

A

j f .t/j
1C j f .t/j � .dt/ ; A 2 T ; � .A/ <1;

defines a family of quasinorms on L0 .T; T ; �/ such that

lim
n

ˇ̌̌̌
Œ f �L0.T;T ;�/ � Œ fn�L0.T;T ;�/

ˇ̌̌̌
A
D 0

if, and only if, f fn; n 2 Ng converges in measure to f on A:

Definition 2.1.4 Let T be a set, H be a real Hilbert space, and F W T �! H be a
map. Let T be a �-algebra of subsets of T: F is weakly measurable with respect
to T and B .R/ when, for h 2 H; fixed, but arbitrary, the real valued map t 7!
LF Œh� .t/ D hh;F .t/iH is adapted to T and B .R/ :

Definition 2.1.5 Let T be a set, H be a real Hilbert space, and F W T �! H be a
map. Let T be a �-algebra of subsets of T; and � be a �-finite measure on T :
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1. Let p 2 Œ1;1Œ be fixed, but arbitrary. F is weakly p-integrable with respect to
T ; B .R/ ; and �; when, for h 2 H; fixed, but arbitrary, the real valued map
t 7! LF Œh� .t/ D hh;F .t/iH belongs to Lp .T; T ; �/ :

2. F is weakly in L1 with respect to T ; B .R/ ; and �; when, for h 2 H; fixed,
but arbitrary, the real valued map t 7! LF Œh� .t/ D hh;F .t/iH belongs to
L1 .T; T ; �/ :

Definition 2.1.6 Let T be a set, H be a real Hilbert space, and F W T �! H be
a map. Let T be a topological space. F is weakly continuous with respect to the
topology of T; when, for h 2 H; fixed, but arbitrary, the real valued map t 7!
LF Œh� .t/ D hh;F .t/iH is continuous.

Definition 2.1.7 Let T be a set, H be a real Hilbert space, and F W T �! H be a
map. Let T be a �-algebra of subsets of T; and � be a �-finite measure on T : Let
B .h; �/ be the open ball, centered at h; whose radius is � > 0:When F is adapted to
T and B .H/ ; let

RŒF; � � D ˚h 2 H W � �F�1 fB .h; �/g� > 0; all � > 0
�
:

The essential range of F (for T and �) is the closure, in H; of V ŒRŒF; � �� ; the
manifold linearly generated from RŒF; � �: It shall be denoted HF;� :

Example 2.1.8 In the context of (Remark) 1.4.16, H is the space L2 .T; T ; Q�C/ ; and
F .t/ ; IŒtl;t�: Thus

jjF .t0/ � F .t/jj2H D rC .t0/ � 2rC .t0 ^ t/C rC .t/

D .when t0 � t/ rC .t/ � rC .t0/

D .when t0 > t/ rC .t0/ � rC .t/ :

The map t 7! F .t/ is thus continuous when rC is, and

ft 2 T W jjF .t0/� F .t/jjH < �g
is open and has positive Lebesgue measure. Consequently F .t0/ 2 RŒF;Leb�; and
the essential range of F is H.

Proposition 2.1.9 Let HF be the (closed) subspace of H linearly generated by F;
that is, HF D V ŒRŒF��: RŒF; � � is a closed subset of H; contained in HF; so that
HF;� � HF:

Proof Let fhn; n 2 Ng � RŒF; � � converge to h 2 H: For fixed, but arbitrary � > 0;
eventually, hn 2 B .h; �/ : But then there exists ı > 0 such that B .hn; ı/ � B .h; �/ :
Consequently,

�
�
F�1 .B .h; �//

� � � �F�1 .B .hn; ı//
�
> 0;

and h 2 RŒF; � �:
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Suppose that h 2 RŒF; � �: Then, for n 2 N; fixed, but arbitrary, there is tn 2 T
such that F .tn/ 2 B

�
h; 1n

�
: Thus HF 3 limn F .tn/ D h: ut

The next definition introduces the kernels which allow one to define integral
operators between Lp-spaces.

Definition 2.1.10 Let T and X be sets. Suppose T and X are �-algebras of subsets
respectively of T and X; and � and � are �-finite measures on T and X respectively.
Let 1 � p; q � 1 be fixed, but arbitrary numbers, and K W T � X �! R be a map
adapted to T ˝ X and B .R/ :

When K has the following properties for all fixed, but arbitrary

f 2 Lq .X;X ; �/ ;

one says that K is a .p; q/-bounded kernel for Lp .T; T ; �/ and Lq .X;X ; �/ W
1. there exists Nf 2 T such that

a) �
�
Nf
� D 0;

b) for t 2 Nc
f ; x 7! K .t; x/ f .x/ belongs to L1 .X;X ; �/ I

2. the map  W T �! R defined using the following relation:

 .t/ D
8<
:
R

X K .t; x/ f .x/ � .dx/ when t 2 Nc
f

0 when t 2 Nf

belongs to Lp .T; T ; �/ :
The assignment

Œ f �Lq.X;X ;�/ 7! Œ�Lp.T;T ;�/

produces a linear operator

LK W Lq .X;X ; �/ �! Lp .T; T ; �/ :

The following lemma prepares (Proposition) 2.1.12.

Lemma 2.1.11 Let p 2 Œ1;1� be fixed, but arbitrary, and fg; gn; n 2 Ng ; a subset
of Lp .X;X ; �/ ; be such that

lim
n

ˇ̌̌̌̌̌
Œg�Lp.X;X ;�/ � Œgn�Lp.X;X ;�/

ˇ̌̌̌̌̌
Lp.X;X ;�/

D 0:

One may then assume that there exists a positive � 2 Lp .X;X ; �/ ; and a set
G 2 X ; such that

1. � .G/ D 0;
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2. for x 2 Gc; fixed, but arbitrary,

a) jgn .x/j � � .x/ ;
b) limn gn .x/ D g .x/ :

Proof It relies on standard proofs of the Fischer-Riesz theorem on the completeness
of Lp-spaces [113, p. 159].

The case of p D 1 W The definition of the essential supremum norm [155, p. 168]
says that there exists G 2 X such that � .G/ D 0; and, for x 2 Gc; fixed, but
arbitrary,

jg .x/ � gn .x/j �
ˇ̌̌̌
Œg�L1.X;X ;�/ � Œgn�L1.X;X ;�/

ˇ̌̌̌
L1.X;X ;�/

:

The latter inequality thus suffices to yield the lemma.
The case of p 2 Œ1;1Œ W One chooses first a subsequence

˚
gnp ; p 2 N

�
such that

ˇ̌̌̌̌̌ �
gnpC1

�
Lp.X;X ;�/

� �gnp

�
Lp.X;X ;�/

ˇ̌̌̌̌̌
Lp.X;X ;�/

� 1

2p
:

One then sets

�p .x/ D
p�1X
iD1

ˇ̌
gniC1 .x/� gni .x/

ˇ̌
; � .x/ D

1X
iD1

ˇ̌
gniC1 .x/� gni .x/

ˇ̌
:

One has that [113, p. 160]

ˇ̌̌̌
Œ��Lp.X;X ;�/

ˇ̌̌̌
Lp.X;X ;�/

�
1X

iD1

ˇ̌̌̌ ˇ̌
ŒgniC1 �Lp.X;X ;�/ � Œgni �Lp.X;X ;�/

ˇ̌ ˇ̌̌̌
Lp.X;X ;�/

:

The choice made for the subsequence yields that the norm of � is finite, and, in
particular, that � is almost surely finite. Consequently the series with general term
gniC1 .x/�gni .x/ is absolutely convergent, almost surely with respect to �: But then

gnp .x/ D
p�1X
iD1

˚
gniC1 .x/ � gni .x/

�C gn1 .x/

is almost surely convergent, necessarily to g; and

ˇ̌
gnp .x/

ˇ̌ � 1X
iD1

ˇ̌
gniC1 .x/� gni .x/

ˇ̌C jgn1 .x/j D � .x/C jgn1 .x/j :

But the latter is an Lp-function. ut
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Proposition 2.1.12 Let K be a .p; q/-bounded kernel for Lp .T; T ; �/ and
Lq .X;X ; �/ ; and LK W Lq .X;X ; �/ �! Lp .T; T ; �/ be the associated linear
operator [(Definition) 2.1.10]. LK is bounded.

Proof Since a closed, linear operator, defined everywhere, is bounded [266,
p. 94], it will suffice to prove that LK is closed. Let thus the sequence
fgn; n 2 Ng � Lq .X;X ; �/ converge, in Lq .X;X ; �/ ; to g; and the sequence
f fn D LK Œgn� ; n 2 Ng � Lp .T; T ; �/ converge, in Lp .T; T ; �/ ; to f . One must
prove that LK Œg� D f :

Lemma 2.1.11 allows one to assume that there exists

• a positive � 2 Lq .X;X ; �/ ; and a G 2 X such that

– � .G/ D 0;
– for x 2 Gc; jPgn .x/j � � .x/ ; and limn Pgn .x/ D Pg .x/ ;

• a positive  2 Lp .T; T ; �/ ; and an F 2 T such that

– � .F/ D 0;
– for t 2 Fc;

ˇ̌ Pf n .t/
ˇ̌ �  .t/ ; and limn Pf n .t/ D Pf .t/ :

The assumptions on the kernel K yield that there exists

• T0 2 T such that

– � .T0/ D 0;
– for t 2 Tc

0 ; the equivalence class of the map x 7! K .t; x/ � .x/ belongs to
L1 .X;X ; �/ ;

• for n 2 N; Tn 2 T such that

– � .Tn/ D 0;
– for t 2 Tc

n; the equivalence class of the map x 7! K .t; x/ Pgn .x/ belongs to
L1 .X;X ; �/ :

Let N0 D [n�0Tn: Then, outside of G;

lim
n

K .t; x/ Pgn .x/ D K .t; x/ Pg .x/ ; and jK .t; x/ Pgn .x/j � jK .t; x/j � .x/ ;

and, outside of N0; by dominated convergence [113, p. 163],

lim
n
Pf n .t/ D lim

n

Z
X
K .t; x/ Pgn .x/ � .dx/ D

Z
X
K .t; x/ Pg .x/ � .dx/ :

But, outside of F; limn Pf n .t/ D Pf .t/ ; and, furthermore, limn fn D f in Lp.T; T ; �/;
by dominated convergence. Consequently,

f D LK Œg� :

ut
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Among the kernels of integral operators, Carleman kernels are those that have
particularly useful properties. Their definition follows.

Definition 2.1.13 Let T and X be sets. Suppose T and X are �-algebras of subsets
respectively of T and X; and � and � are �-finite measures on T and X respectively.
Let 1 � p; q � 1 be fixed, but arbitrary numbers, and K W T �X �! R be a .p; q/-
bounded kernel. Let

˛ .q/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

1 when q D 1
q

q�1 when 1 < q <1

1 when q D 1

:

When there exists T0 2 T such that

1. � .T0/ D 0;
2. for t 2 Tc

0; x 7! K .t; x/ belongs to L˛.q/ .X;X ; �/ ;

K is called a Carleman, .p; q/-bounded kernel.

Remark 2.1.14 When p D q
q�1 ;

1
p C 1

q D 1:
Remark 2.1.15 Square integrable kernels are examples of .2; 2/-bounded Carleman
kernels. For properties of Carleman kernels, one may consult [266, p. 132].

Remark 2.1.16 Let C D c^c_ be a covariance with a factorization [(Defini-
tion) 1.4.1]. When c^ and c_ are both adapted, C is adapted. AsZ

T
jC .x; t/j j f .x/j� .dx/ D jc_ .t/j

Z
Œtl;t�
jc^ .x/j j f .x/j� .dx/

C jc^ .t/j
Z
�t;tr �
jc_ .x/j j f .x/j� .dx/

D  .t/C  .t/ ;

that

f .t/C  .t/gp � 2p�1 fp .t/C  p .t/g ;

because p � 1;  .t/ � 0;  .t/ � 0; and that

p .t/ D jc_ .t/jp
�Z

Œ0;t�
jc^ .x/j j f .x/j� .dx/

� p

;

one sees that, when choosing appropriately integrable c^ and c_, (Proposi-
tion) 2.1.12 will hold.
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2.2 Reproducing Kernel Hilbert Spaces of Measurable
Functions

One is really interested here in RKHS’s whose functions are integrable. As a
preliminary step, one must be concerned with their measurability.

Proposition 2.2.1 Let H .H;T/ be an RKHS, and suppose that T is a �–algebra of
subsets of T: Whenever the family fH .
; t/ ; t 2 Tg is made of functions adapted to
T ; H .H;T/ too consists of functions that are adapted to T :

Proof By assumption, V ŒH� is made of functions that are adapted to T : But every
function of H .H;T/ is the pointwise limit of functions in V ŒH� [(Corollary) 1.1.10],
and so it must be adapted to T : ut
Proposition 2.2.2 Let T be a set, and T be a �-algebra of subsets of T: Let H be a
real Hilbert space, and F W T �! H be a map. Suppose that HF is separable. The
following statements are then equivalent:

1. F is weakly measurable;
2. F is adapted to T and B .H/ I
3. HF is adapted to T ˝ T and B .R/ I
4. for t 2 T; fixed, but arbitrary, � 7! HF .�; t/ is adapted to T and B .R/ :

When � is a �-finite measure on T ; and the latter statements obtain, then
H .HF;T/ D RŒLF � � L0 .T; T ; �/ ; so that one may define

JF;0 W H .HF;T/ �! L0 .T; T ; �/

using the following assignment:

JF;0 Œh� D Œh�L0.T;T ;�/ :

Then:

(i) JF;0 is an operator which is linear and bounded;
(ii) �F;0 W H �! L0 .T; T ; �/ defined using �F;0 D JF;0LF is linear and bounded;

(iii) N Œ�F;0� D H?F;� [(Definition) 2.1.7].

Proof (1 ) 2) Let fei; i 2 Ig � HF be a countable, complete orthonormal set.
Then, for fixed, but arbitrary t 2 T;

F .t/ D
X
i2I

hF .t/ ; eiiH ei D
X
i2I

LF Œei� .t/ ei:

F has thus separable range. Since it is furthermore weakly measurable, it is
(strongly) measurable [260, p. 89].
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Proof (2) 3) Let˚ be the map on H˚H defined using the following relation: for
fixed, but arbitrary .h1; h2/ 2 H � H;

.h1; h2/ 7! hh1; h2iH;

and � be the map on T � T defined using the following relation: for fixed, but
arbitrary .t1; t2/ 2 T � T;

.t1; t2/ 7! .F .t1/ ;F .t2// :

˚ is continuous, and thus adapted, and � is adapted by assumption. Since HF D
˚ ı �; it is adapted too.

Proof (3) 4) The sections of a measurable map are measurable.

Proof (4) 1) Let h DPn
iD1 ˛iF .ti/ : Then

LF Œh� .t/ D hh;F .t/iH D
nX

iD1
˛iHF .t; ti/ ;

and thus t 7! LF Œh� .t/ is adapted to T and B .R/ : But HF is the closure in H of
the set of expressions of the form h above, and thus, since convergence in H implies
point-wise convergence in RŒLF�; t 7! LF Œh� .t/ is adapted to T and B .R/ ; for all
h 2 HF: For h 2 H?F ; t 7! LF Œh� .t/ D 0 is adapted to T and B .R/ : Consequently
t 7! LF Œh� .t/ is adapted to T and B .R/ for all h 2 H:

To see that JF;0 is continuous, let fhn; n 2 Ng � H .HF;T/ converge to h: Then,
for every t 2 T; limn hn .t/ D h .t/ [(Proposition) 1.1.9]. The function q; met in
[(Example) 2.1.2], that is, q W t 7! t

1Ct ; t in Œ0;1Œ ; has the following properties:

1. q .0/ D 0I
2. q .t/ � 1I
3. q is continuous and strictly increasing;
4. q .tC u/ � q .t/C q .u/ :

Consequently, for A 2 T such that � .A/ <1;

lim
n

Z
A

q .h .t/ � hn .t// � .dx/ D 0

(dominated convergence), so that, for convergence in measure [(Definition)
2.1.3, 5],

lim
n

JF;0 .hn/ D JF;0 .h/ :

�F;0 is then continuous as the composition of continuous functions.
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It remains to characterize the kernel of �F;0: By definition

H?F D N ŒLF � � N Œ�F;0�;

and, by (Proposition) 2.1.9, HF;� � HF so that

H?F � H?F;� :

It is thus no restriction, given the assertion to be proved, to assume that H?F reduces
to the zero element, that is, that HF D H; so that the latter is separable. Furthermore,
since [266, p. 35]

RŒF; � �? D V ŒRŒF; � ��? D V ŒRŒF; � ��? D H?F;� ;

it is sufficient to prove that N Œ�F;0� D RŒF; � �?:
Let T0 D ft 2 T W F .t/ 2 RŒF; � �cg : Since RŒF; � �c is open [(Proposition) 2.1.9],

it belongs to B .H/ ; the Borel sets of H; and, since F is adapted to T and B .H/ ;
T0 2 T :

One shall first prove that � .T0/ D 0; which is needed below. To that end, let
t0 2 T0 be fixed, but arbitrary. Let B .h; �/ denote the open ball centered at h; of
radius � > 0: By the definition of T0; there must be �0 > 0 such that

�
�
F�1 fB .F .t0/ ; �0/g

� D 0:
Since H is separable, it has a countable base of open sets fOi; i 2 Ig [270, p. 112],
and

B .F .t0/ ; �0/ D [Oi�B.F.t0/;�0/Oi:

Let J � I be the set of indices for which there exists t0 2 T0 and �0 > 0 with

�
�
F�1 fB .F .t0/ ; �0/g

� D 0; and F .t0/ 2 Oj � B .F .t0/ ; �0/ :

Then T0 � [j2JF�1
˚
Oj
�
; and, consequently,

� .T0/ �
X
j2J

�
�
F�1

˚
Oj
�� D 0:

Let now h 2 RŒF; � �?: Suppose t 2 Tc
0 : Then F .t/ 2 RŒF; � �; and, since h

and F .t/ are then orthogonal, LF Œh� .t/ D hh;F .t/iH D 0: Since � .T0/ D 0;

�F;0 Œh� D JF;0 .LF Œh�/ D Œ0�L0.T;T ;�/ : Thus

RŒF; � �? � N Œ�F;0�:
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Suppose next that h 2 N Œ�F;0�; and that there exists k0 2 RŒF; � � such that h and k0
are not orthogonal, that is, jhh; k0iHj > 0: Since the map k 7! hh; kiH is continuous,
there exists � > 0 such that

jhh; kiHj > 0; k 2 B .k0; �/ :

Let t 2 F�1 fB .k0; �/g be fixed, but arbitrary. Then F .t/ 2 B .k0; �/ ; so that
jhh;F .t/iHj > 0: Since k0 2 RŒF; � �; �

�
F�1 fB .k0; �/g

�
> 0; and it follows thus

that jLF Œh� .t/j > 0 on a set of strictly positive measure: h cannot belong to N Œ�F;0�;

a contradiction. One must thus have that h belongs to RŒF; � �?; and consequently

N Œ�F;0� � RŒF; � �?: ut
Remark 2.2.3 When HF is not separable, the proposition may not hold. Here is an
example.

Let T D Œ0; 1� ; T be the Lebesgue sets, and � be Lebesgue measure. Let H be
the Hilbert space of functions f W T �! R for which

P
t2T j f .t/j2 < 1; with the

inner product h f ; giH D P
t2T f .t/ g .t/ [8, 266, pp. 21, 27, 34, respectively 144].

Let A be a set that is not measurable [155, p. 93], and

ıt .x/ D
�
1 when x D t
0 when x ¤ t

:

Then

hıt1 ; ıt2iH D
�
1 when t1 D t2
0 when t1 ¤ t2

:

Let

F .t/ D
�
ıt when t 2 A
0RT when t 2 Ac :

If HF W .t1; t2/ 7! hF .t1/ ;F .t2/iH were measurable, t 7! .t; t/ composed with
HF would be measurable. But the latter is �A : Furthermore jjF .t/jj2H D �A .t/ ; so
that, for 0 < � < 1;

F�1 .B .0; �// D ˚t 2 T W jjF .t/jj2H < �2
� D Ac:

Consequently, neither HF nor F are measurable. However,

hh;F .t/iH D
� hh; ıtiH D h .t/ when t 2 A
hh; 0TiH D 0 when t 2 Ac

�
D �A .t/ h .t/ :

Since h .t/ ¤ 0 for at most a countable number t’s, F is thus weakly measurable.
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Remark 2.2.4 As seen in (Proposition) 2.2.1, item 4 of (Proposition) 2.2.2 is enough
to have the functions in the RKHS measurable.

Remark 2.2.5 Suppose that f W T �! R is adapted to T and B .R/ ; and let QF D
f �F:When F is adapted to T and B .H/ ; so is QF; as it is obviously weakly adapted.

2.3 Representations of Reproducing Kernels

All reproducing kernels have a Hilbert space representation [(Proposition) 1.3.5].
Such a representation is particularly useful when the Hilbert space is an L2 space.
Reproducing kernels that have an L2 representation as defined below are isomorphic
to subspaces of L2 spaces.

Definition 2.3.1 Let K be a reproducing kernel on T: It has an L2 representation
when there exists fkt; t 2 Tg � L2 .X;X ; �/ ; with � a �-finite measure, such that,
for .t1; t2/ 2 T � T; fixed. but arbitrary,

K .t1; t2/ D hkt1 ; kt2iL2.X;X ;�/:

Example 2.3.2 Result (Proposition) 1.5.12 (see (Remark) 1.5.13) shows that every
kernel whose RKHS is separable has an L2 representation.

Example 2.3.3 Every RKHS obtained with the help of a map

F W T �! L2 .X;X ; �/

has an L2 representation.

Example 2.3.4 Remark 1.4.16 contains cases of L2 representations for covariances
with a factorization.

Example 2.3.5 ([103]) A strictly positive measure for a topological space X is a
Borel measure for which every open, not void subset has strictly positive measure,
and every point is contained in an open set of finite measure.

Let X be a metric space, and � be a strictly positive measure on X: Let C be a
continuous covariance on X that defines a positive operator on L2 .X;X ; �/ ;with the
property that x 7! C .x; x/ is integrable with respect to�: C has then a representation
of the following form:

C .x1; x2/ D
1X

iD1
�n en .x1/ en .x2/ ;

where the convergence is in L2 .X � X;X ˝ X ; �˝ �/ ; but absolute and uniform
on compact subsets of X � XI the functions in the series are orthonormal in
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L2 .X;X ; �/ ; and the pairs .�n; en/ are the eigenvalue-eigenvector pairs of the
covariance operator R determined by C:

Set

	 .x1; x2/ D
1X

iD1
�1=2n en .x1/ en .x2/ :

One thus gets the kernel of R1=2; whose range contains continuous, square integrable
functions only (with respect to �). Furthermore

C .x1; x2/ D
Z

X
	 .�; x1/ 	 .�; x2/� .d�/ :

As a particular case of (Proposition) 1.1.15, one has the following result:

Proposition 2.3.6 Let K be a reproducing kernel on T; with the L2 representation
fkt; t 2 Tg � L2 .X;X ; �/ : The resulting RKHS H .K;T/ is then the set of functions˚

h .t/ D hk; ktiL2.X;X ;�/; t 2 T; k 2 L2 .X;X ; �/
�
:

Let K0 be the (closed) linear subspace generated by fkt; t 2 Tg in L2 .X;X ; �/ ;
and PK0 be the associated projection. The following functions

h1 .t/ D hk.1/; ktiL2.X;X ;�/; and h2 .t/ D hk.2/; ktiL2.X;X ;�/

have then the following RKHS inner product

hh1; h2iH.K;T/ D hPK0

�
k.1/
�
;PK0

�
k.2/
�iL2.X;X ;�/:

The map L W L2 .X;X ; �/ �! H .K;T/ defined using the following assignment:

L Œkt� D K .
; t/

is a partial isometry with K0 as initial set, and H .K;T/ as final set.

Proof Define F W T �! L2 .X;X ; �/ using the following assignment:

F .t/ D kt; t 2 T:

Then

L Œk� .t/ D hk; ktiL2.X;X ;�/;



138 2 The Functions of a Reproducing Kernel Hilbert Space

and

hL �k.1/� ;L �k.2/�iK D hPK0

�
k.1/
�
;PK0

�
k.2/
�iL2.X;X ;�/:

Also

hF .t1/ ;F .t2/iL2.X;X ;�/ D hkt1 ; kt2iL2.X;X ;�/;

so that K is indeed the reproducing kernel of H .K;T/ : ut
The proposition to follow says that for separable RKHS’s which have an L2

representation, that representation happens through measurable kernels.

Proposition 2.3.7 Let .T; T / be a measurable space, and suppose that the repro-
ducing kernel K on T is adapted T ˝T ; and has the L2 representation fkt; t 2 Tg �
L2 .X;X ; �/ : Suppose furthermore that K0 [(Proposition) 2.3.6] is separable. Then
K has also an L2 representation f�t; t 2 Tg � L2 .X;X ; �/ with

�t D Œ� .t; 
/�L2.X;X�/ ;

�; a function which is adapted to T ˝X : Furthermore, for fixed, but arbitrary t 2 T;
�t D kt:

Proof One must notice that, since K is adapted to T ˝ T ; H .K;T/ is made of
measurable functions [(Propositions) 2.2.1, 2.2.2]. Also, since K0 is separable by
assumption, and unitarily isomorphic to the RKHS H .K;T/ [(Proposition) 2.3.6],
the latter is separable.

Let n 2 N be fixed, but arbitrary. Since the RKHS H .K;T/ is separable, there
exists [(Proposition) 1.5.10] n

T.n/i 2 T ; i 2 N

o
such that,

• for fixed, but arbitrary fi; jg � N; i ¤ j; T .n/

i \ T .n/

j D ;;
• [iT

.n/

i D T;
• for

�
t.n;i/1 ; t.n;i/2

� 2 T .n/

i � T .n/

i ; fixed, but arbitrary,

ˇ̌̌̌
K
�
; t.n;i/1

� �K
�
; t.n;i/2

�ˇ̌̌̌ 2
H.K;T/ <

1

2n
:

Let, in each set T .n/

i ; a fixed, but arbitrary point t.n/i be chosen, and˚
ej; j 2 J � N

�
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be a complete orthonormal set in H .K;T/ : SinceX
j2J

e2j .t/ D
X
j2J

hej;K .
; t/i2H.K;T/ D jjK .
; t/jj2H.K;T/ D K .t; t/ <1;

for t.n/i ; fixed, but arbitrary, there exists pn;i 2 N such that

X
j>pn;i

e2j
�
t.n/i

�
<
1

2n
:

Thus, for t 2 T .n/

i ; fixed, but arbitrary,

X
j>pn;i

e2j .t/ D
X
j>pn;i

˚
ej .t/ � ej

�
t.n/i

�C ej
�
t.n/i

��2

� 2
2
4X

j>pn;i

˚
ej .t/ � ej

�
t.n/i

��2 CX
j>pn;i

e2j
�
t.n/i

�35

� 2
2
4X

j>pn;i

˚
ej .t/ � ej

�
t.n/i

��2 C 1

2n

3
5 :

But, still for t 2 T .n/

i ;

1

2n
>
ˇ̌̌̌
K .
; t/ �K

�
; t.n/i

�ˇ̌̌̌ 2
H.K;T/

D
X
j2J

hK .
; t/ �K
�
; t.n/i

�
; eji2H.K;T/

D
X
j2J

˚
ej .t/ � ej

�
t.n/i

��2
D
X
j�pn;i

˚
ej .t/ � ej

�
t.n/i

��2 CX
j>pn;i

˚
ej .t/ � ej

�
t.n/i

��2
�
X
j>pn;i

˚
ej .t/ � ej

�
t.n/i

��2
;

so that

X
j>pn;i

e2j .t/ < 2

�
1

2n
C 1

2n

�
D 4

2n
:
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Thus, for t 2 T .n/

i ; there exists pn;i 2 N such that

X
j>pn;i

e2j .t/ <
4

2n
:

Let K0 and L be as in (Proposition) 2.3.6. Since L? is a partial isometry with
H .K;T/ as initial set, and K0 as final set,

• L?L is the projection onto the initial set of L [266, p. 86], that is, is the identity
of K0;

•
˚

fj D L?
�
ej
�
; j 2 N

�
is a complete orthonormal set in K0:

Thus, since L Œkt� D K .
; t/ ;

kt D L?L Œkt� D L? ŒK .
; t/� D L?

2
4X

j2J

hej;K .
; t/iH.K;T/ ej

3
5 DX

j2J

ej .t/ fj:

Set, for t 2 T .n/

i ; fixed, but arbitrary,

• �
.n/
t D

P
j�pn;i

ej .t/ f j 2 K0;

• P�.n/t .x/ DPj�pn;i
ej .t/ Pf j .x/ :

P�.n/t .x/ is thus a function which is adapted to T ˝ X ;� P�.n/t

�
L2ŒX;X ;�� D �.n/t ;

and, in L2.X;X ; �/; limn �
.n/
t D kt:

Let now t 2 T; be fixed, but arbitrary, and n1 and n2 be distinct, fixed, but
arbitrary integers in N: Let i1 be the integer for which

t 2 T.n1/i1
;

and i2 be that for which

t 2 T.n2/i2
:

Let m1 D pn1;in1
^ pn2;in2

; and m2 D pn1;in1
_ pn2;in2

: Then

�
.n1/
t � �.n2/t D

m2X
jDm1C1

ej .t/ Pf j;
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so that

ˇ̌̌̌
�
.n1/
t � �.n2/t

ˇ̌̌̌ 2
L2ŒX;X ;�� D

m2X
jDm1C1

e2j .t/

<

8<
:

4
2n1 when m1 D pn1;in1

4
2n2 when m1 D pn2;in2

� 4

2n1^n2
:

One has thus a Cauchy sequence in L2 ŒX;X ; �� ; and, because of the Fischer-Riesz
theorem [113, p. 160], considering, when necessary a subsequence, an element �t 2
L2 ŒX;X ; �� such that, respectively in L2 ŒX;X ; �� ; and almost surely with respect
to � (in terms of equivalence classes),

lim
n
�.n/t D �t:

Set, for .t; x/ 2 T � X;

� .t; x/ D lim sup
n
P�.n/t .x/ :

� is thus adapted to T ˝ X : Furthermore, for t 2 T; fixed, but arbitrary, �-almost
surely, � .t; 
/ D P�t; so that, for .t1; t2/ 2 T � T; fixed, but arbitrary,˝

Œ� .t1; 
/�L2ŒX;X ;�� ; Œ� .t2; 
/�L2ŒX;X ;��
˛
L2ŒX;X ;��

D h�t1 ; �t2iL2ŒX;X ;��
D lim

n

˝
�.n/t1 ; �

.n/
t2

˛
L2ŒX;X ;��

:

Now, given t1; t2; and n; fixed, but arbitrary, there are i1 and i2 such that t1 2
T .n/

i1
and t2 2 T .n/

i2
: Set mn D pn;i1 ^ pn;i2 : Then

h�.n/t1
; �.n/t2
iL2ŒX;X ;�� D

X
j�mn

ej .t1/ ej .t2/ :

Consequently [(Proposition) 1.5.6],

hŒ� .t1; 
/�L2ŒX;X ;�� ; Œ� .t2; 
/�L2ŒX;X ;��iL2ŒX;X ;�� D K .t1; t2/

D hkt1 ; kt2iL2ŒX;X ;��:

ut
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Remark 2.3.8 When L2 .X;X ; �/ is separable, since H .K;T/ is the unitary image
of a subspace of L2 .X;X ; �/ ; it is separable, and (Proposition) 2.3.7 obtains.

When H is an L2 space,�F;0 of (Proposition) 2.2.2 is an integral operator as seen
in the next corollary.

Corollary 2.3.9 Let .T; T ; �/ and .X;X ; �/ be �-finite measure spaces. Suppose
that:

(a) F W T �! L2 .X;X ; �/ is weakly measurable;
(b) V ŒRŒF�� is separable.

Then:

1. there exists KF W T � X �! R such that

(i) KF is adapted to T ˝ X and B .R/ I
(ii) for t 2 T; the map x 7! KF .t; x/ belongs to (the class) F .t/ :

2. �F;0 W L2 .X;X ; �/ �! L0 .T; T ; �/ is an integral operator whose kernel is KFI
3. for .t1; t2/ 2 T � T;HF .t1; t2/ D

R
X KF .t1; x/KF .t2; x/ � .dx/ :

Proof HF is adapted to T ˝ T and B .R/ [(Proposition) 2.2.2]. Thus (Proposi-
tion) 2.3.7 applies. ut
Example 2.3.10 (Inner Products for Measures Using RKHS’s [254]) This example
shows the versatility of RKHS’s (provided one has the proper insight!). It has
applications to central limit theory. The measures considered below are assumed
to have finite total variation.

Let T be a metric space, T D B .T/ ; the Borel sets of T; M; the family of
signed measures on T : A signed measure � is the difference of two positive and
bounded measures. The Hahn-Jordan decomposition of � is denoted

�
�C; ��

�
;

and its total variation measure, j�j D �C C ��: Suppose that, for ft1; t2g � T;
fixed, but arbitrary,

K .t1; t2/ D
Z

S
� .t1; s/ � .t2; s/ � .ds/ ;

where

• � is a positive measure on S; a �-algebra of subsets of S;
• � W T � S �! R is adapted to T ˝ S; and has the property that

�T D sup
t2T
jj� .t; 
/jjL2.S;S;�/ <1:

K is thus a bounded reproducing kernel.
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Particular cases:

(a) Let f fn W T �! R; n 2 Ng be a family of functions such that, for t 2 T; fixed,
but arbitrary, X

n2N
f 2n .t/ <1:

Let K .t1; t2/ D P
n2N fn .t1/ fn .t2/ : It is a reproducing kernel. Let � be the

counting measure on P .N/ ; and � .t; n/ D fn .t/ : Then

K .t1; t2/ D
Z
N

� .t1; n/ � .t2; n/ � .dn/ :

(b) Let S D T D Œ0; 1� ; � .t; s/ D �
Œ0;t� .s/ ; � .ds/ D ds: Then

t1 ^ t2 D
Z

T
� .t1; s/ � .t2; s/ � .ds/ :

(c) Let S D T D RC; � .t; s/ D e�ts; � a positive, bounded measure on the Borel
sets of RC: Then

K .t1; t2/ D
Z

T
e�.t1Ct2/s� .ds/ :

Fact When � is a signed measure on T ; then, for almost every s 2 S; with respect
to �; t 7! � .t; s/ is integrable with respect to �:

It suffices to consider � positive and bounded. Then, for ft1; t2g � T; fixed, but
arbitrary,

jK .t1; t2/j �
Z

S
j� .t1; s/ � .t2 s/j � .ds/

� jj� .t1; 
/jjL2.S;S;�/ jj� .t2; 
/jjL2.S;S;�/
� �2T
<1:

ConsequentlyZ
T

Z
T

�Z
S
j� .t1; s/ � .t2 s/j� .ds/

�
�˝ � .dt1; dt2/ <1:
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Using Fubini’s theorem, one gets that, for almost every s 2 S; with respect to �;Z
T

Z
T
j� .t1; s/ � .t2; s/j�˝ � .dt1; dt2/ <1:

But the left-hand side of the latter inequality is
˚R

T j� .t; s/j� .dt/
�2
:

ASSUMPTION CM1 When, for almost every s 2 S; with respect to �;Z
T
� .t; s/ � .dt/ D 0

then � D 0:
Some definitions and facts:

1. With the assumptions made so far, the following relation establishes an inner
product on M W

h�1; �2iK D
Z

T

Z
T
K .t1; t2/ �1 ˝ �2 .dt1; dt2/ :

That relation makes indeed sense as K is bounded, and the measures have
finite total variation. It is “structurally” symmetric and bilinear. Since, as above,

Z
T

Z
T
K .t1; t2/ �˝ � .dt1; dt2/ D

Z
S

�Z
T
� .t; s/ � .dt/

� 2
� .ds/ ;

h�;�iK � 0. The assumption CM insures that h�;�iK D 0 implies that � is
identically zero.

2. Let F W T �! L2 .S;S; �/ be defined using the following relation:

F .t/ D Œ� .t; 
/�L2.S;S;�/ ;

and LF W L2 .S;S; �/ �! RT using the following one:

LF Œk� .t/ D
Z

S
� .t; s/ Pk .s/ � .ds/ :

The range of LF is the RKHS with domain T and kernel K: Let HF denote the
linear subspace generated by fF .t/ ; t 2 Tg :

1C:= caractérisation, M:= mesures.
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3. Define, for � 2 M; fixed, but arbitrary, B Œ�� as the equivalence class in
L2 .S;S; �/ of the map s 7! R

T � .�; s/ � .d�/ : It is obviously linear and
injective, because of assumption CM. It is thus well defined.

4. One has that

hB Œ�1� ;B Œ�2�iL2.S;S;�/ D

D
Z

S

�Z
T
� .t; s/ �1 .dt/

� �Z
T
� .�; s/ �2 .d�/

�
�ds

D
Z

T

Z
T
K .t; �/ �1 ˝ �2 .dt; d�/

D h�1; �2iK:

5. Let f 2 H?F : Then

hB Œ�� ; f iL2.S;S;�/ D
Z

S

Pf .s/
�Z

T
� .�; s/ � .d�/

�
� .ds/

D
Z

T

�Z
S

Pf .s/ � .�; s/ � .ds/

�
� .d�/

D 0:

Thus RŒB� � HF:

6. Let BF D LFB: Then

BF Œ�� .t/ D LF ŒB Œ���

D
Z

S
k .t; s/

P‚…„ƒ
B Œ�� .s/ � .ds/

D
Z

S
� .t; s/

Z
T
� .�; s/ � .d�/ � .ds/

D
Z

T
K .�; t/ � .d�/ :

When taking � D ıt0 ; one obtains that BF Œıt0 � D K .
; t0/ : Furthermore

• since in an RKHS, jh .t/j � H1=2 .t; t/ jjhjjH.H;T/,

sup
t2T
jBF Œ�� .t/j � sup

t2T
K1=2 .t; t/ jjBF Œ��jjH.H;T/ I

• since K has a representation in L2;

sup
t2T

K1=2 .t; t/ D sup
t2T
jj� .t; 
/jjL2.S;S;�/ :



146 2 The Functions of a Reproducing Kernel Hilbert Space

7. One has that

hBF Œ�1� ;BF Œ�2�iH.K;T/ D

D h
Z

T
K .�; 
/ �1 .d�/ ;

Z
T
K .�; 
/�2 .d�/iH.K;T/

D hPHF B Œ�1� ;PHF B Œ�2�iL2.S;S;�/
D hB Œ�1� ;B Œ�2�iL2.S;S;�/:

Since LF is unitary on HF; BF is a unitary map.
8. For f�;�0g �M; fixed, but arbitrary,Z

T
BF Œ�� .t/ �0 .dt/ D

Z
T

�Z
T
K .�; t/ � .d�/

�
�0 .dt/

D hB Œ�� ;B Œ�0�iL2.S;S;�/
D hBF Œ�� ;BF Œ�0�iH.K;T/:

But, since BF is unitary, one has, for h 2 H .K;T/ ; h D BF Œ�� ; some �; and
thus Z

T
h .t/ �0 .dt/ D hh;BF Œ�0�iH.K;T/:

Particular cases:

1. Consider particular case (a) above. Then L2 .S;S; �/ D l2; and � .t; n/ D fn .t/ :
The required conditions become:

• for supt2T jj� .t; 
/jjL2.S;S;�/ <1 W supt2T

P1
nD1 f 2n .t/ <1I

• CM: for n 2 N; fixed , but arbitrary,
R

T fn .t/ � .dt/ D 0 implies � D 0:
The map F .t/ D Œ� .t; 
/�L2.S;S;�/ becomes F .t/ D f fn .t/ ; n 2 Ng ; so that,

for ˛ 2 l2 and t 2 T; fixed, but arbitrary,

LF Œ˛� .t/ D
1X

nD1
˛nfn .t/ :

Consequently H .K;T/ D ˚P1
nD1 ˛nfn; ˛ 2 l2

�
: HF is the closed subspace

generated by the family f f .t/ ; t 2 Tg; and

hLF Œ˛1� ;LF Œ˛2�iH.K;T/ D hPHF Œ˛1� ; ˛2il2 :
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B Œ�� is the map n 7! R
T fn .t/ � .dt/ ; and

BF Œ�� D
1X

nD1

�Z
T

fn .t/ � .dt/

�
fn:

Finally

h�1; �2iK D hB Œ�1� ;B Œ�2�il2
D hBF Œ�1� ;BF Œ�2�iH.K;T/

D
1X

nD1

Z
T

fn .t/ �1 .dt/
Z

T
fn .t/ �2 .dt/ :

2. Consider particular case (c) above. Then � .t; s/ D e�ts: The required conditions
become:

• for supt2T jj� .t; 
/jjL2.S;S;�/ <1 W supt2T

R
S �

2 .t; s/ � .ds/ <1I
• CM: for s 2 S; fixed , but arbitrary,

R
T e�st� .dt/ D 0 implies � D 0:

The map F .t/ D Œ� .t; 
/�L2.S;S;�/ becomes

F .t/ D �e�t���
L2.S;S;�/ ;

so that, for f 2 L2 .S;S; �/ and t 2 T; fixed, but arbitrary,

LF Œ f � .t/ D
Z

S
e�ts Pf .s/ � .ds/ :

Consequently

H .K;T/ D
�
 .t/ D

Z
S

e�ts Pf .s/ � .ds/ ; Œ f �L2.S;S;�/ 2 L2 .S;S; �/
�
:

HF is the closed subspace generated by the familyn�
e�t���

L2.S;S;�/ ; t 2 T
o
;

and

hLF Œ f1� ;LF Œ f2�iH.K;T/ D hPHF Œ f1� ; f2iL2.S;S;�/:
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B Œ�� is the equivalence class in L2 .S;S; �/ of the map
˚
s 7! R

T e�st� .dt/
�

and

BF Œ�� D
Z

S
e�s��

�Z
T

e�s�� .d�/

�
� .ds/ :

Finally

h�1; �2iK D hB Œ�1� ;B Œ�2�il2

D hBF Œ�1� ;BF Œ�2�iH.K;T/

D
Z

S

�Z
T

e�st�1 .dt/

� �Z
T

e�st�2 .dt/

�
� .ds/ :

Remark When one allows complex valued functions, letting T and S be euclidian
spaces of the same dimension n; and � .t; s/ ; the exponential of iht; siRn ; one
obtains analogous results for Fourier transforms.

The Hilbert structure for signed measures that has been described is useful for
studying convergence of measures as shown by the following proposition whose
proof needs a preliminary fact. C0 .T/ denotes the space of continuous functions
that vanish at infinity.

Fact Suppose CM obtains, and, for t 2 T; fixed, but arbitrary, K .
; t/ 2 C0 .T/ ;
then H .K;T/ is dense in C0 .T/ :

Proof M is the dual of C0 .T/ [178, p. 97]. Thus, a fixed, but arbitrary � 2 M
is a continuous linear functional on C0 .T/ ; and, since, by assumption, for t 2 T;
fixed, but arbitrary, K .
; t/ 2 C0 .T/ ; it makes sense to consider the following set of
relations: for t 2 T; fixed, but arbitrary,Z

T
K .�; t/ � .d�/ D 0:

Now Z
T
K .�; t/ � .d�/ D

Z
T

�Z
S
� .�; s/ � .t; s/ � .ds/

�
� .d�/

D
Z

S
� .t; s/

�Z
T
� .�; s/ � .d�/

�
� .ds/ :

Since
R

T � .�; s/ � .d�/ belongs to HF; the former zero requirement means that
the latter integral is zero, and then the CM assumption that � D 0: Consequently
fK .
; t/ ; t 2 Tg is a total family in C0 .T/ ; and the vector space it generates is dense.
But limits in H .K;T/ of sequences in V ŒfK .
; t/ ; t 2 Tg� are also limits in C0 .T/ ;
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since convergence in H .K;T/ implies uniform convergence, given the assumptions
(K is then uniformly bounded). Consequently

V ŒfK .
; t/ ; t 2 Tg� � H .K;T/ � C0 .T/ ;

with the left-hand side dense in the right-hand side.

Fact Suppose the following obtain:

(a) T is a separable, locally compact metric space;
(b) K is continuous;
(c) for t 2 T; fixed, but arbitrary, the map K .
; t/ has the following property:

for fixed, but arbitrary � > 0; there is a compact Ct;� � T such that, for � in
T n Ct;� ; jK .�; t/j < �; that is K .
; t/ 2 C0 .T/ I

(d) P and, for n 2 N; fixed, but arbitrary, Pn are probabilities.

Then the following assertions are equivalent:

(1) fPn; n 2 Ng converges weakly to P; that is, for f 2 C0 .T/ ; fixed, but arbitrary,

lim
n

Z
T

f .t/Pn .dt/ D
Z

T
f .t/P .dt/ ;

(2) limn jjP � PnjjK D 0;
(3) weakly in H .K;T/ ; limn BF ŒPn� D BF ŒP� :

Proof (3) 1) One has seen that, for h 2 H .K;T/ ; fixed, but arbitrary,

hh;BF Œ��iH.K;T/ D
Z

T
h .t/ � .dt/ :

Consequently, when limn BF ŒPn� D BF ŒP� ; weakly in H .K;T/ ;

lim
n

Z
T

h .t/Pn .dt/ D
Z

T
h .t/P .dt/ :

But, since H .K;T/ is dense in C0 .T/ ; and that the Pn’s are probabilities, weak
convergence follows [178, p. 98].

Proof (1) 2) Because of

• the assumption of weak convergence,
• the inclusion H .K;T/ � C0 .T/ ;
• the relation hh;BF Œ��iH.K;T/ D

R
T h .t/ � .dt/ ;

one has that, weakly in H .K;T/ ; limn BF ŒPn� D BF ŒP� : Furthermore

jjBF Œ��jj2H.K;T/ D
Z

T

Z
T

K .t1; t2/ �˝ � .dt1; dt2/ :
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Now from the weak convergence of Pn to P follows that of Pn ˝ Pn to P˝ P [208,
p. 57]. But K is continuous and uniformly bounded, so that

lim
n

Z
T

Z
T

K .t1; t2/Pn ˝ Pn .dt1; dt2/ D
Z

T

Z
T

K .t1; t2/P˝ P .dt1; dt2/ ;

or limn jjBF ŒPn�jj2H.K;T/ D jjBF ŒP�jj2H.K;T/ : Since weak convergence plus conver-
gence of norms imply, in Hilbert space, strong convergence, the claim is valid as
BF is unitary.

Since BF is unitary, obviously item 2 implies item 3, and the proof is finished.

2.4 Embeddings of Reproducing Kernel Hilbert Spaces

The embeddings considered shall be into L2 spaces, so that Hilbert space operators
may be used.

Definition 2.4.1 Suppose .T; T ; �/ is a �-finite measure space, and H; a repro-
ducing kernel on T such that each h 2 H .H;T/ is adapted to T ; and its square
is integrable with respect to �: One then says that H .H;T/ is imbedded in
L2 .T; T ; �/ : JH;� W H .H;T/ �! L2 .T; T ; �/ shall be the “inclusion map” defined
using the following relation: for h 2 H .H;T/ ; fixed, but arbitrary,

JH;� Œh� D Œh�L2.T;T ;�/ :

Definition 2.4.2 The reproducing kernel H has property ˘J for .T; T ; �/ when-
ever

1. for t 2 T; fixed, but arbitrary, H .
; t/ is adapted to T ;
2. t 7! H .t; t/ is adapted to T ;
3. �H;� D

R
T H .t; t/ � .dt/ <1:

Remark 2.4.3 Let T D Œ0; 1� and H .t1; t2/ D t1 ^ t2: The elements of H .H;T/
have the following generic form [(Example) 1.1.25]:

 .t/ D
Z t

0

f .�/ d�; f 2 L2 .Œ0; 1�/ ;

and

jjjj2L2Œ0;1� D
Z 1

0

hIŒ0;t�; Œ f �L2Œ0;1�i2L2Œ0;1�dt � 1

2
jjjj2H.H;T/ :

H .H;T/ is thus embedded in L2 Œ0; 1� : What follows extends the properties of this
example to a larger class of kernels.
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Remark 2.4.4 Item 1 of (Definition) 2.4.2 does not imply item 2 as t 7! H .t; t/
may not belong to H .H;T/ [(Example) 1.2.6].

Remark 2.4.5 When C is a covariance with a factorization c^c_; for C to have
property˘J it suffices that c^ and cV both belong to L2 .T; T ; �/ :

Remark 2.4.6 Property˘J was used in (Proposition) 1.3.21.

Remark 2.4.7 Suppose that, for some F W T �! H; for fixed, but arbitrary .t; x/ 2
T � T;

H .x; t/ D LF ŒF .t/� .x/ D hF .x/ ;F .t/iH:

Definition 2.4.2 means then that F is weakly measurable, and that

t 7! jjF .t/jj2H
is measurable and integrable. When V ŒRŒF�� is separable, F is strongly (Bochner)
measurable [(Proposition) 2.2.2], and thus the definition means that F is strongly
(Bochner) integrable [207, p. 114].

Remark 2.4.8 When H .H;T/ is separable, and ˘J obtains, H is adapted. It is
indeed enough to apply (Proposition) 2.2.2 to F W t 7! H .
; t/ :
Remark 2.4.9 When H has an L2 representation, and H .H;T/ is separable, condi-
tion

R
T H .t; t/ � .dt/ <1 means that [(Proposition) 2.3.6]

Z
T
� .dt/

Z
X
K2 .x; t/ � .dx/ <1;

and thus (Definition) 2.4.2 is a stronger requirement than (Corollary) 2.3.9.

Remark 2.4.10 Item 2 of the following lemma says that H .H;T/ is a Hilbertian
subspace of L2 .T; T ; �/ [35, p. 224].

Lemma 2.4.11 Suppose the reproducing kernel H; defined on T; has property ˘J

for .T; T ; �/ : Then [�H;� is defined in (Definition) 2.4.2]:

1. H .H;T/ is embedded in L2 .T; T ; �/ I
2. given h 2 H .H;T/ ; fixed, but arbitrary,ˇ̌̌̌

Œh�L2.T;T ;�/
ˇ̌̌̌
2

L2.T;T ;�/
� �H;� jjhjj2H.H;T/ I

in particular, given t 2 T; fixed, but arbitrary,ˇ̌̌̌
ŒH .
; t/�L2.T;T ;�/

ˇ̌̌̌
2

L2.T;T ;�/
� �H;�H .t; t/ I

3. the inclusion map JH;� is linear and bounded.
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Proof Since for t 2 T; fixed, but arbitrary, H .
; t/ is adapted to T ; all elements of
H .H;T/ are adapted to T [(Proposition) 2.2.1]. FurthermoreZ

T
h2 .t/ � .dt/ D

Z
T
hh;H .
; t/i2H.H;T/� .dt/

� jjhjj2H.H;T/
Z

T
jjH .
; t/jj2H.H;T/ � .dt/

D �H;� jjhjj2H.H;T/ :

ut
Proposition 2.4.12 When the reproducing kernel H; defined on T; has property˘J

for .T; T ; �/ ; the following assignment: for f 2 L2 .T; T ; �/ ; fixed, but arbitrary,

hf .t/ D
Z

T
H .x; t/ Pf .x/ � .dx/ ;

defines the value at f of an operator BH;� W L2 .T; T ; �/ �! H .H;T/ which
is linear and bounded [BH;� Œ f � .t/ D hf .t/ W the operator values may thus be
computed as ordinary integrals]. Furthermore B?H;� D JH;� :

Proof Due to (Lemma) 2.4.11, H .H;T/ is a subset of L2 .T; T ; �/ : Thus, for fixed,
but arbitrary f 2 L2 .T; T ; �/ ; still because of (Lemma) 2.4.11, for h 2 H .H;T/ ;
fixed, but arbitrary,

�f .h/ D
Z

T
h .t/ Pf .t/ � .dt/ ;

is a well defined linear functional on H .H;T/ : Furthermore, since

jh .t/j D ˇ̌hh;H .
; t/iH.H;T/ ˇ̌ � jjhjjH.H;T/ jjH .
; t/jjH.H;T/ ;

by Cauchy-Schwarz’s inequality,ˇ̌̌
ˇ
Z

T
h .t/ Pf .t/ � .dt/

ˇ̌̌
ˇ �

� jjhjjH.H;T/
Z

T
jjH .
; t/jjH.H;T/

ˇ̌ Pf ˇ̌ .t/ � .dt/

� jjhjjH.H;T/
�Z

T
jjH .
; t/jj2H.H;T/ � .dt/

� 1=2 �Z
T

Pf 2 .t/ � .dt/

� 1=2
D �

1=2

H;� jj f jjL2.T;T ;�/ jjhjjH.H;T/ :
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The linear functional �f is thus continuous, and so there exists, by Riesz’s
representation theorem [266, p. 64], a unique element h Œ f � 2 H .H;T/ such that,
for h 2 H .H;T/ ; fixed, but arbitrary,

hh; h Œ f �iH.H;T/ D �f .h/ D
Z

T
h .t/ Pf .t/ � .dt/ : (?)

Let UH;T be the map h 7! h
; hiH.H;T/ which identifies H .H;T/ with its dual. One
sets

BH;� Œ f � D U?
H;T ı�f :

Then [266, p. 60], using the latter inequality, and taking into account that h has norm
one,

jjBH;� Œ f �jjH.H;T/ D
ˇ̌̌̌
U?

H;T ı�f

ˇ̌̌̌
H.H;T/

D jjhŒ f �jjH.H;T/
D sup
jjhjjH.H;T/D1

ˇ̌hh Œ f � ; hiH.H;T/ ˇ̌

D sup
jjhjjH.H;T/D1

ˇ̌̌
ˇ
Z

T
h .t/ Pf .t/ � .dt/

ˇ̌̌
ˇ

� �1=2H;� jj f jjL2.T;T ;�/ :
BH;� is thus an operator which is linear and bounded. Furthermore, using (?),

BH;� Œ f � .t/ D hU?
H;T ı�f ;H .
; t/iH.H;T/

D hh Œ f � ;H .
; t/iH.H;T/
D
Z

T
H .x; t/ Pf .x/ � .dx/

defD hf .t/ ;

and, using the definition of the adjoint of an operator [266, p. 70],

h f ;B?H;� Œh�iL2.T;T ;�/ D hBH;� Œ f � ; hiH.H;T/
D hU?

H;T ı�f ; hiH.H;T/
D hh Œ f � ; hiH.H;T/
D
Z

T
h .t/ Pf .t/ � .dt/

D h f ; Œh�L2.T;T ;�/iL2.T;T ;�/:

Consequently B?H;� D JH;� : ut
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Remark 2.4.13 Since, formally and intuitively,

hh; h Œ f �iH.H;T/ D
Z

T
h .t/ Pf .t/ � .dt/

D
Z

T
hh;H .
; t/iH.H;T/ Pf .t/ � .dt/

D hh;
Z

T
H .
; t/ Pf .t/ � .dt/iH.H;T/;

h Œ f � can be “read” as a weak (Pettis) integral [207, p. 114] of the function

t 7! � Pf .t/H .
; t/�
L2.T;T ;�/ W

h Œ f � D
Z .w/

T
H .
; t/ Pf .t/ � .dt/ 2 H .H;T/ :

Remark 2.4.14 B?H;TBH;� is an integral operator of L2 .T; T ; �/ with kernel H:
When H is taken in its covariance guise, B?H;TBH;� is the associated covariance
operator, say RH: Then, as in (Proposition) 1.3.21, setting J? D BH;� ;

RŒB?H;� � D RŒR1=2

H �:

The results which follow yield thus, in the case of covariances, information on RH:

Proposition 2.4.15 When the reproducing kernel H; defined on T; has property˘J

for .T; T ; �/ ;

QBH;� D B?H;�BH;� D JH;�BH;T

is Hilbert-Schmidt, and one has, for its Hilbert-Schmidt norm, denoted using an
index HS; ˇ̌̌̌ QBH;�

ˇ̌̌̌
HS � �H;� :

Proof Let L0 be a (closed) subspace of L2 .T; T ; �/ with an at most countable
orthonormal basis fei; i 2 Ig : Let HL0

t be the projection of ŒH .
; t/�L2.T;T ;�/ onto
L0; so that

HL0
t D

X
i2I

˝
ŒH .
; t/�L2.T;T ;�/ ; ei

˛
L2.T;T ;�/

ei:
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Let fi D BH;� Œei� : Then, using the definition of BH;� ;

fi .t/ D hBH;� Œei� ;H .
; t/iH.H;T/
D ˝

ei;B
?
H;� ŒH .
; t/�˛

L2.T;T ;�/

D hei; JH;� ŒH .
; t/�iL2.T;T ;�/
D ˝

ei; ŒH .
; t/�L2.T;T ;�/
˛
L2.T;T ;�/

:

Thus, using (Lemma) 2.4.11, item 2, for the last inequality,X
i2I

f 2i .t/ D
ˇ̌̌̌
HL0

t

ˇ̌̌̌ 2
L2.T;T ;�/ �

ˇ̌̌̌
ŒH .
; t/�L2.T;T ;�/

ˇ̌̌̌
2

L2.T;T ;�/
� �H;�H .t; t/ :

But then, since fi D BH;� Œei� ;ˇ̌̌̌ QBH;� Œei�
ˇ̌̌̌ 2

L2.T;T ;�/ D
ˇ̌̌̌
B?H;�BH;� Œei�

ˇ̌̌̌
2

L2.T;T ;�/

D ˇ̌̌̌
B?H;� Œ fi�

ˇ̌̌̌
2

L2.T;T ;�/

D jjJH;� Œ fi�jj2L2.T;T ;�/
D
Z

T
f 2i .t/ � .dt/ ;

so that, using the inequality
P

i2I f 2i .t/ � �H;� H .t; t/ obtained above, and the
integrability of t 7! H .t; t/ ;

X
i2I

ˇ̌̌̌ QBH;� Œei�
ˇ̌̌̌ 2

L2.T;T ;�/ D
X
i2I

Z
T

f 2i .t/ � .dt/ D
Z

T

X
i2I

f 2i .t/ � .dt/ � �2H;� :

The latter inequality suffices to establish that QBH;� is a Hilbert-Schmidt operator
[266, p. 133]. ut
Remark 2.4.16 As (Proposition) 2.4.12 proves that QBH;� is an integral operator with
H as kernel, if H were adapted to T ˝ T (see (Remark) 2.4.8), it would suffice to
check that its square is integrable [119, p. 70].

Corollary 2.4.17 Let the reproducing kernel H; defined on T; have property ˘J

for .T; T ; �/ ; and QBH;� be the operator of (Proposition) 2.4.15. QBH;� has thus [266,
p. 163] a standard decomposition

QBH;� Œ f � D
X
i2I

ˇih f ; biiL2.T;T ;�/bi;
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with ˇi > 0; i 2 I; and fbi; i 2 Ig ; an at most countable orthonormal set. Then˚Qbi D BH;�
�
ˇ
�.1=2/

i bi
�
; i 2 I

�
is an orthonormal set in H .H;T/ :

Proof With

ıi;j D
�
1; i D j
0; i ¤ j

;

one has that

hBH;�
�
ˇ
�.1=2/

i bi
�
;BH;�

h
ˇ
�.1=2/

j bj

i
iH.H;T/ D

D hB?H;�BH;�
�
ˇ
�.1=2/

i bi
�
; ˇ
�.1=2/

j bjiL2.T;T ;�/
D ˇ

�.1=2/

j ˇ
1=2

i ıi;j:

ut
Corollary 2.4.18 Let the reproducing kernel H; defined on T; have property˘J for
.T; T ; �/ ; and QBH;� be the operator of (Proposition) 2.4.15. Then

N
� QBH;�

�? D RŒB?H;� �:

Proof Fix arbitrarily f 2 N
� QBH;�

�
: Then, because

0 D h QBH;� Œ f � ; f iL2.T;T ;�/ D jjBH;� Œ f �jj2H.H;T/ ;

f 2 N ŒBH;� � ; and thus, for every h 2 H .H;T/ ;

h f ;B?H;� Œh�iL2.T;T ;�/ D hBH;� Œ f � ; hiH.H;T/ D 0:

Consequently N
� QBH;�

�
is orthogonal to the range of B?H;� ; so that

N
� QBH;�

� � ˚B?H;� ŒH .H;T/��? ;
and thus [266, pp. 35 and 37]

N
� QBH;�

�? � ˚B?H;� ŒH .H;T/��?? D B?H;� ŒH .H;T/�:

Now fix f arbitrarily in (for the equality: [266, p. 71])

N
� QBH;�

�? D R
� QBH;�

�
:
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Since the bi’s of (Corollary) 2.4.17 are in the range of QBH;� ; one has then that f D
limn fn; for some sequence8<

:fn D
p. fn/X
iD1

˛i. fn/bi. fn/; n 2 N

9=
; � L2 .T; T ; �/ :

But, as QBH;� Œbi� D ˇibi;

fn D
p. fn/X
iD1

˛i. fn/B
?
H;�

h
ˇ�1i. fn/

BH;�
�
bi. fn/

�i D B?H;�

2
4p. fn/X

iD1

˛i. fn/

ˇi. fn/
BH;�

�
bi. fn/

�35 ;
so that

N
� QBH;�

�? � B?H;� ŒH .H;T/�:

ut
Corollary 2.4.19 Let the reproducing kernel H; defined on T; have property˘J for
.T; T ; �/ ; and QBH;� be the operator of (Proposition) 2.4.15. It has a (finite) trace.

Proof From [(Corollary) 2.4.17]

QBH;� Œbi� D B?H;�BH;� Œbi� D ˇibi; and Qbi D BH;�
�
ˇ
�.1=2/

i bi
�
;

one gets that

B?H;�
�Qbi
� D ˇ1=2i bi:

Let P0 be the projection of H .H;T/ whose range is generated by˚Qbi; i 2 I
�
:

Then, since B?H;� is the inclusion map [(Proposition) 2.4.12], almost surely with
respect to �; referred to when using the symbol� ,X

i2I

ˇi Pb2i .t/ �
X
i2I

Qb2i .t/ D
X
i2I

hQbi;H .
; t/i2H.H;T/ D jjP0 ŒH .
; t/�jj2H.H;T/ :

Consequently, almost surely with respect to �;X
i2I

ˇi Pb2i .t/ � H .t; t/ :

Integrating over T yields
P

i2I ˇi � �H;� : ut
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Remark 2.4.20 Property ˘J thus allows one to embed an RKHS into an L2 space
and relate the two using operators with finite trace.

Definition 2.4.21 Let H .H;T/ be embedded in L2 .T; T ; �/ [(Definition) 2.4.1].
When

jjJH;� Œh�jjL2.T;T ;�/ D 0 means that h .t/ D 0; t 2 T;

that is, when JH;� is an injection, the embedding is said to be regular.

Proposition 2.4.22 Let H .H;T/ be embedded in L2 .T; T ; �/ : Suppose T is a
topological space, T is the family of Borel sets of T; and � is such that �.O/ D 0;

O open, implies O D ;: Then, when H is continuous for the product topology, the
embedding is regular.

Proof The elements in H .H;T/ are continuous [(Proposition) 2.6.1]. Suppose that

Œh�L2.T;T ;�/ D 0:

Then Tp D ft 2 T W jh .t/j > 0g is an open, measurable set, and, for that set,
�
�
Tp
� D 0: Tp is thus empty, and h .t/ D 0; t 2 T: ut

Proposition 2.4.23 Let the reproducing kernel H; defined on T; have property ˘J

for .T; T ; �/ ; and QBH;� be the operator of (Proposition) 2.4.15. Suppose that the
resulting embedding is regular. Then:

1. H .H;T/ is separable;
2. H has the following representation [(Corollary) 2.4.17]: for .t1; t2/ 2 T � T;

fixed, but arbitrary,

H .t1; t2/ D
X
i2I

Qbi .t1/ Qbi .t2/ I

3.
P

i2I ˇi D �H;� [(Definition) 2.4.2, Corollary 2.4.17].

Proof Let h 2 H .H;T/ be fixed, but arbitrary, and suppose that, for i 2 I; fixed,
but arbitrary,

hh; QbiiH.H;T/ D 0:

Since [(Corollary) 2.4.17]

hh; QbiiH.H;T/ D hh;BH;�
�
ˇ
�.1=2/

i bi
�iH.H;T/ D hB?H;� Œh� ; ˇ�.1=2/i biiL2.T;T ;�/;
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B?H;� Œh� is orthogonal to the subspace generated by the bi’s, that is, using succes-
sively [266, p. 71] and (Corollary) 2.4.18,

B?H;� Œh� 2 RŒ QBH;� �
? D N Œ QBH;� � D RŒB?H;� �

?
;

so that B?H;� Œh� D 0 in L2 .T; T ; �/ : Since the embedding is regular, h D 0H.H;T/;
that is, JH;� is an injection. But [266, p. 71]

˚
0H.H;T/

� D N
�
B?H;�

� D R ŒBH;� �
?
;

so that

RŒBH;� � D H .H;T/ :

Since RŒBH;� � contains the orthonormal set
˚Qbi; i 2 I

�
, item 1 is true.

Item 2 follows from (Proposition) 1.5.6.
Finally Z

T
H .t; t/ � .dt/ D

X
i2I

Z
T
hH .
; t/ ; Qbii2H.H;T/ � .dt/

D
X
i2I

Z
T

Qb2i .t/ � .dt/

D
X
i2I

ˇ̌̌̌
B?H;� Qbi

ˇ̌̌̌ 2
L2.T;T ;�/

D
X
i2I

ˇ̌̌̌
B?H;�BH;�

�
ˇ
�.1=2/

i bi
�ˇ̌̌̌ 2

L2.T;T ;�/

D
X
i2I

ˇi:

ut
Definition 2.4.24 Let H .H;T/ be embedded in L2 .T; T ; �/ : This embedding is
complete whenever, for fixed, but arbitrary .h1; h2/ 2 H .H;T/ � H .H;T/ ;

hh1; h2iH.H;T/ D hJH;� Œh1� ; JH;� Œh2�iL2.T;T ;�/:

Remark 2.4.25 The inclusion map is, for a complete embedding, an isometry [266,
p. 66], and JH;� ŒH .H;T/� is thus closed in L2 .T; T ; �/ [266, p. 86].



160 2 The Functions of a Reproducing Kernel Hilbert Space

Proposition 2.4.26 H .H;T/ is completely embedded in L2 .T; T ; �/ if, and only if,
for ft; t1; t2g � T; fixed, but arbitrary,

1. ŒH .
; t/�L2.T;T ;�/ 2 L2 .T; T ; �/ ;
2. H .t1; t2/ D

R
T H .x; t1/H .x; t2/ � .dx/ :

Furthermore a complete embedding is regular.

Proof Suppose H .H;T/ is completely embedded in L2 .T; T ; �/ :
It is then, by definition, embedded, and item 1 is trivially true. Item 2 expresses,

for h1 D H .
; t1/ and h2 D H .
; t2/ the fact that the embedding is complete.

Proof Suppose conversely that items 1 and 2 obtain.
Item 2 yields that, for .h1; h2/ 2 V ŒH� � V ŒH� ; fixed, but arbitrary,

hh1; h2iH.H;T/ D hJH;� Œh1� ; JH;� Œh2�iL2.T;T ;�/:

JH;� is thus an isometry which “sends” a function of H .H;T/ to its equivalence
class in L2 .T; T ; �/ : ut
Proposition 2.4.27 Suppose H .H;T/ is completely embedded in L2 .T; T ; �/ : The
operator J?H;� ; which is a partial isometry, with initial set JH;� ŒH .H;T/� and final
set H .H;T/ (and is thus onto), is the integral operator obtained, for Œ f �L2.T;T ;�/ 2
L2 .T; T ; �/ ; fixed, but arbitrary, using the following relation:

h .t/ D
Z

T
H .x; t/ f .x/ � .dx/ :

Proof One has that

J?H;� Œ f � .t/ D hJ?H;� Œ f � ;H .
; t/iH.H;T/
D h f ; JH;� ŒH .
; t/�iL2.T;T ;�/
D
Z

T
H .x; t/ Pf .x/ � .dx/ :

ut
Remark 2.4.28 Since, for a complete embedding, JH;� is an isometry, J?H;�JH;� is
the identity of H .H;T/ ; and JH;�J?H;� ; the projection onto JH;� ŒH .H;T/� [266,
p. 86].

One shall see that signals arising in detection have representations as outputs
of filters, that is, are elements in the range of integral operators from L2 spaces to
RKHS’s. It is thus important to be able to invert these operators. The following result
states some conditions under which such an inversion is possible. But a preliminary
lemma is needed.
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Lemma 2.4.29 Let H.H;T/ be an RKHS which is completely embedded into
L2.T; T ; �/; and S � T; be a fixed, but arbitrary subset. Then H.HS; S/ is
completely embedded into L2.S; T \ S; � jT\S/:

Proof The elements of H.HS; S/ are obtained as the restrictions to S of elements in
H.H;T/; and HS is the restriction to S of H [(Proposition) 1.6.3]. One then applies
(Proposition) 2.4.26 which only requires a transcription. ut
Proposition 2.4.30 ([232, p. 85]) Let H; defined over T; have, for .t1; t2/ in T � T;
fixed, but arbitrary, the following L2 representation:

H .t1; t2/ D
Z

X
� .x; t1/ � .x; t2/ � .dx/ ;

where � is a function defined on X � T; adapted to X ˝ T ; and such thatZ
X
�2 .x; t/ � .dx/ <1; t 2 T:

�t shall denote the equivalence class of � .
; t/ and H� the (closed) subspace of
L2 .X;X ; �/ generated linearly by f�t; t 2 Tg :

Suppose that H .H;T/ is completely embedded in L2 .T; T ; �/ ; and let h in
H .H;T/ be fixed, but arbitrary. It has, for t 2 T; fixed, but arbitrary, a
representation of the following form:

h .t/ D
Z

X
� .x; t/ fh .x/ � .dx/ ;

where
R

X f 2h .x/ � .dx/ <1:
Suppose there exists fTn; n 2 Ng � T such that

(A) Tn � TnC1; n 2 N and [nTn D T;
(B) for n 2 N; fixed, but arbitrary,

(a)
R

Tn
H .t; t/ � .dt/ <1;

(b)
R

X

nR
Tn
� .x; t/ h .t/ � .dt/

o2
� .dx/ <1:

One has then that, in L2 .X;X ; �/ ;

PH� Œ fh� D lim
n

	Z
Tn

� .
; t/ h .t/ � .dt/



L2.X;X ;�/

:

Proof The following calculation is needed for a subsequent interchange of integrals.
Let thus g 2 L2 .X;X ; �/ be fixed, but arbitrary. ThenZ

Tn

Z
X
� .dt/� .dx/ jPg .x/j jh .t/j j� .x; t/j �

�
Z

Tn

� .dt/ jh .t/j jjgjjL2.X;X ;�/ jj�tjjL2.X;X ;�/
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D jjgjjL2.X;X ;�/
Z

Tn

� .dt/ jh .t/jH .t; t/1=2

� jjgjjL2.X;X ;�/
ˇ̌̌̌
Œh�L2.T;T ;�/

ˇ̌̌̌
L2.T;T ;�/

�Z
Tn

H .t; t/ � .dt/

� 1=2
< 1:

Let L� be the defining map which sends L2.X;X ; �/ onto H.H;T/; that is, the
map defined using L�Œk�.t/ D hk; �tiL2.X;X ;�/; and H� be the subspace generated in
L2.X;X ; �/ by the family f�.
; t/; t 2 Tg : Let Ln be the defining map which sends
H.H;T/ onto H.HTn ;Tn/; and Hn be the subspace generated in H.H;T/ by the
family fH.
; t/; t 2 Tng : Let finally JHTn ;�

jTn be the embedding of (Lemma) 2.4.29.
Assumption (B,b) says that the equivalence class kn of

x 7!
Z

Tn

�.x; t/h.t/�.dt/

belongs to L2.X;X ; �/: One has that L?�L?n ŒLnŒh�� D kn: Indeed,

hL?�L?n ŒLnŒh��; giL2.X;X ;�/ D
D hLnŒh�;Ln ŒL� Œg��iH.HTn ;Tn/

D hJHTn ;�
jTn ŒLnŒh�� ; JHTn ;�

jTn ŒLn ŒL� Œg���iL2.Tn ;T \Tn;� jTn/

D
Z

Tn

� .dt/ h.t/hg; �tiL2.X;X ;�/

D
Z

Tn

� .dt/ h .t/
Z

X
� .dx/ Pg .x/ � .x; t/

D
Z

X
� .dx/ Pg .x/

Z
Tn

� .dt/ � .x; t/ h .t/

D hkn; giL2.X;X ;�/:

Let Pn be the projection in H.H;T/; onto Hn: Then L?�
�
L?n ŒLn Œh��

� D kn rewrites
as L� ŒPn Œh�� D kn; so that, taking the limit in L2.X;X ; �/; and taking into account
that Pn tends to the identity, L?� Œh� D limn kn: But

L?� Œh� D L?� ŒL� Œ fh�� D PH� Œ fh� :

ut
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Example 2.4.31 ([232, p. 89]) Let F W Œ0;1Œ �! L2 Œ0; 1� be defined using the
following relation

F .t/ D
h
x 7! p2 sin .�tx/

i
L2Œ0;1�

:

Since fF .n/ ; n 2 Ng is a complete orthonormal set in L2 Œ0; 1� [134, p. 37], the map

L Œ f � .t/ D h f ;F .t/iL2Œ0;1�
is unitary between L2 Œ0; 1� and the RKHS H .H; Œ0;1Œ/ with the following kernel
[120, p. 139]:

H .t1; t2/ D 2
Z 1

0

sin .�t1x/ sin .�t2x/ dx D sin .� Œt1 � t2�/

� .t1 � t2/
� sin .� Œt1 C t2�/

� .t1 C t2/
:

Now
R1
0 H .x; t1/H .x; t2/ dx D

2

Z 1

0

Z 1

0

d�d� sin .�t1�/ sin .�t2�/

�
2

Z 1
0

dx sin .��x/ sin .��x/

�
;

and (as above)

2

Z
dx sin .��x/ sin .��x/ D sin .� Œ� � �� x/

� .� � �/ � sin .� Œ� C �� x/
� .� C �/ :

Since [152, p. 68] lim˛!1 sin.˛ x/
� x D ı .x/ ; the last but one expression (with, for

example, x taking the part of ���; and �x; that of ˛), evaluated at 0 and at1; yields
a delta function whose value is different from zero only when � D �: The conditions
(Proposition) 2.4.23 for a complete embedding thus obtain, and the solution of

h .t/ D p2
Z 1

0

sin .�tx/ f .x/ dx

with unknown f is the equivalence class of limn

p
2
R n
1=n sin .�xt/ h .t/ dt:

One shall gather here a number of definitions and facts about Borel and Radon
measures on Hausdorff, locally compact spaces that shall be needed repeatedly.
Most definitions and facts are taken from [275, p 450]. The same Hausdorff space
X obtains throughout.

Let X denote a Hausdorff space. The following notation shall be used:

• B .X/ W Borel sets of XI
• O .X/ W open sets of XI
• K .X/ W compact sets of X:
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Definition 2.4.32 A Borel measure � on B .X/ is a map whose domain is B .X/ ;
whose values belong to RC; which is zero at the empty set and is �-additive.

Let � be a Borel measure on B .X/ ; and B 2 B .X/ be fixed, but arbitrary.� is

1. outer regular for B when � .B/ D inf f� .O/ ; O � B; O 2 O .X/g I
2. inner regular for B when � .B/ D sup f� .K/ ; K � B; K 2 K .X/g I
3. regular for B when it is outer and inner regular for B:

When S.B.X// is an arbitrary collection of subsets of B.X/; � is outer, inner, or
plain regular for S.B.X// when it is, respectively, outer, inner, or plain regular for
each of the sets in S.B.X//: When the class of sets is B.X/; then � is respectively,
outer, inner or plain regular.

A Radon measure � on B .X/ is an outer regular Borel measure such that

1. � .K/ <1; K 2 K .X/ I
2. � .O/ D sup f� .K/ ; K � O; K 2 K .X/g ; O 2 O .X/ :

A signed Radon measure is a signed measure whose Jordan decomposition is
the difference of two positive Radon measures.

Fact 2.4.33 ([275, p. 452]) Let � be a Radon measure on B .X/ : Then:

1. when B 2 B .X/ and � .B/ <1; B is inner regular for �I
2. when � is �-finite, every B 2 B .X/ is inner regular for �; and thus regular.

Example 2.4.34 ([263, p. 136]) Every (positive) Radon measure on the real line
is a Lebesgue-Stieltjes measure obtained from a right (left) continuous, monotone
increasing function.

Fact 2.4.35 ([167, p. 334]) Let Cc .X/ denote the linear space of functions with
domain X; range in R; and compact support. Let � W Cc .X/ �! R be linear and
positive [�. f / � 0 when f 2 Cc .X/ and f � 0]. There exists then a unique Radon
measure on B .X/ such that

�. f / D
Z

X
f .x/ � .dx/ :

Fact 2.4.36 Let K 2 K .X/ be fixed, but arbitrary. Let CK .X/ denote the linear
space of functions with domain X; range in R; and support in K; and let � W
Cc .X/ �! R be linear and positive. Then

1. [275, p. 471] CK .X/ is a Banach space;
2. [167, p. 323]� is bounded on CK .X/ :

Fact 2.4.37 ([263, p. 160]) Let f�n; n 2 Ng be a family of Radon measures on
B .X/ such that, for fixed, but arbitrary x0 2 X;

1. for every compact neighborhood Nx0 of x0; limn �n .Nx0 / D 1;
2. for every compact set K in the complement of fx0g ; limn �n .K/ D 0:
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Then, for every continuous function f on X which has compact support,

lim
n

Z
X

f .x/ �n .dx/ D f .x0/ :

One way to recognize RKHS’s in L2 spaces is as follows.

Proposition 2.4.38 ([134, p. 54]) Let T be a Hausdorff, locally compact, first
countable space, T be its Borel sets, and � be a Radon measure on T that
gives strictly positive measure to open sets. Suppose H is a Hilbert subspace of
L2 .T; T ; �/ such that each of its equivalence classes contains a continuous function.
One shall write, for the equivalence classes of H;

Œh�L2.T;T ;�/ ;

with h being its continuous member [if h and h0 are both continuous,˚
t 2 T W ˇ̌h .t/ � h0 .t/

ˇ̌
> 0

�
is open, and thus has strictly positive � measure, so that h and h0 cannot belong to
the same equivalence class]. Let

Hc D
˚
h; Œh�L2.T;T ;�/ 2 H

�
and define, for .h1; h2/ 2 Hc � Hc; fixed, but arbitrary,

hh1; h2iHc D hŒh1�L2.T;T ;�/ ; Œh2�L2.T;T ;�/iL2.T;T ;�/:

Hc is then an RKHS completely embedded in L2 .T; T ; �/.

Proof Let t 2 T be fixed, but arbitrary. Since T is first countable, let fOn; n 2 Ng
be a countable base of open neighborhoods at t. One may assume that OnC1 �
On; n 2 N. Since T is Hausdorff, ftg D \nOn [84, p. 156]. Since T is Hausdorff
and locally compact, there are open sets Cn; n 2 N; such that t 2 Cn � Cn � On;

with Cn compact [84, p. 238]. But then there is, for each n 2 N; a continuous
fn W T �! Œ0; 1� such that its support S . fn/ � On is compact, and fn .t/ D 1; t 2 Cn

[263, p. 14]. In particular, Cn � S . fn/ : One may assume that

O1 � S . f1/ � C1 � C1 � O2 � S . f2/ � C2 � C2 � O3 : : :

One last important fact is that compact sets have, for Radon measures, finite
measure.

Since open sets are measurable, and � .Cn/ > 0; ın D � .Cn/
�1�Cn

is an
integrable function, with integral equal to one, so that d�n D ınd� is a probability
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measure. If Nt is a compact neighborhood of t; there is an nt such that, for n � nt;

On � Nt: Consequently

1 � �n .Nt/ � �n .On/ � �n .Cn/ D 1;

so that limn �n .Nt/ D 1:
If K is a compact set that does not contain t; since a Hausdorff, locally compact

space is completely, regular [84, p. 238], there is, by definition, a continuous  W
T �! Œ0; 1� such that  .t/ D 1; and  .k/ D 0; k 2 K: There is thus an open set
containing t that is disjoint from K: But since the �n’s have no support outside the
On’s, one must have limn �n .K/ D 0: Consequently (Proposition) 2.4.37 applies.

Now, since
R

T ı
2
n .t/ � .dt/ D f� .Cn/g�1 ; the map Ln; defined using the following

relation:

Ln
�
Œh�L2.T;T ;�/

� D hŒh�L2.T;T ;�/ ; Œın�L2.T;T ;�/iL2.T;T ;�/;

is a continuous linear functional on H; and, since f1ın D ın and hf1 is continuous
with compact support,

lim
n

Ln
�
Œh�L2.T;T ;�/

� D lim
n

Z
T

h .x/ �n .dx/

D lim
n

Z
T

h .x/ f1 .x/ �n .dx/

D h .t/ :

Consequently, for fixed, but arbitrary Œh�L2.T;T ;�/ ; there is a finite constant, depend-
ing on the class of h and on t; such that

sup
n

Ln
�
Œh�L2.T;T ;�/

� � � �Œh�L2.T;T ;�/ ; t� <1:
Because of the Banach-Steinhaus theorem [266, p. 76], there exists Q� such that
jjLnjj � Q� <1; n 2 IN: But then, for n 2 N; fixed, but arbitrary,ˇ̌

Ln
�
Œh�L2.T;T ;�/

�ˇ̌ � Q� ˇ̌̌̌ Œh�L2.T;T ;�/ ˇ̌̌̌ L2.T;T ;�/
;

so that, taking the limit,

jh .t/j � Q� ˇ̌̌̌ Œh�L2.T;T ;�/ ˇ̌̌̌ L2.T;T ;�/
D Q� jjhjjHc

:

So the evaluation maps are continuous linear functionals on the Hilbert space Hc;

which is so an RKHS. ut
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2.5 Reproducing Kernel Hilbert Spaces of Functions
with Integrable Power

The main differences between this section and the preceding one are:

• one considers Lp spaces and not L2 ones exclusively;
• all results involve the F function;
• a separability condition obtains, allowing one to have that F is (strongly) adapted.

The proof of next proposition requires a lemma that is stated and proved first.

Lemma 2.5.1 Let .T; T ; �/ be a �-finite measure space, H be a real Hilbert space,
and F W T �! H be a weakly measurable map for which HF D V ŒRF� is separable.

There exists then a measurable partition of T; say fTn; n 2 N0g � T ; such that

1. T0 D ;;
2. � .Tn/ <1; n 2 N;

3. Fn D �Tn
F is (strongly) measurable, and, for fixed, but arbitrary n 2 N;

jjFn .t/jjH � n; t 2 Tn;

so that, for fixed, but arbitrary n 2 N; Fn is strongly (Bochner) integrable.

Proof By assumption and (Proposition) 2.2.2, F is (strongly) measurable. Since
the norm of a strongly measurable function is measurable as the composition of
a measurable function and a continuous one, for n 2 N; fixed, but arbitrary, one
may set

An D ft 2 T W jjF .t/jjH � ng 2 T ;

so that An � AnC1 with T D [n2NAn: Since � is �-finite, there exists a partition of
T; say fBn; n 2 Ng � T ; such that

• Bn � BnC1; n 2 N;

• [nBn D T;
• � .Bn/ <1; n 2 N:

Let Cn D An \ Bn 2 T : Since An � AnC1 and Bn � BnC1; Cn � CnC1:
Furthermore, for fixed, but arbitrary t 2 T; eventually t 2 Cn; and, consequently,
[nCn D T: Let C0 D T0 D ;; and

Tn D Cn n Cn�1; n 2 N:

Those Tn’s are disjoint, belong to T ; “sum” to T; and FjTn is bounded in norm by n:
For n 2 N; fixed, but arbitrary, let

Fn D �Tn
F:
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Since Fn is weakly measurable [(Remark) 2.2.5], and has range in HF; a separable
(closed) subspace, it is (strongly) measurable. A function with values in a Banach
space which is (strongly) measurable is strongly (Bochner) integrable when its norm
is integrable [207, p. 114], which is the case of Fn; since its norm is uniformly
bounded on a set of finite measure, and zero outside that set. ut
Proposition 2.5.2 Let .T; T ; �/ be a �-finite measure space, H be a real Hilbert
space, and F W T �! H be a map. Suppose HF is separable. Let p 2 Œ0;1� be fixed,
but arbitrary. The following statements are then equivalent:

1. F is weakly p-integrable;
2. HF D hF.
/;F.
/iH is .p; q/-bounded with q D p

p�1 D ˛ .p/ [(Defini-
tion) 2.1.13].

When these conditions obtain,

(i) the map JF;p W H .HF;T/ �! Lp .T; T ; �/ defined using the following relation:

JF;p Œh� D Œh�Lp.T;T ;�/

is linear and bounded, and the operator�F;p D JF;p LF is linear and bounded;
(ii) for p 2 Œ1;1� ; �?

F;p W L?p .T; T ; �/ �! H? has the following representation
in terms of a weak (Pettis) integral [207, p. 114]: when, for fixed, but arbitrary
f 2 Lq .T; T ; �/ and g 2 Lp .T; T ; �/ ;

˚f .g/ D
Z

T

Pf .t/ Pg .t/ � .dt/ ;

then

�?
F;p

�
˚f
� D

*

 ;
Z .w/

T
.fF/d�

+
H

(when p D 1; q D 1; the weak integral yields the restriction of �?
F;p to

L1 .T; T ; �/ considered as a subset of the dual of L1 .T; T ; �//I
(iii) let UH W H �! H? be defined, for h 2 H; fixed, but arbitrary using

the following relation: UH Œh� D h
; hiH: HF is a Carleman kernel, and
�F;pU?

H�
?
F;p D LHF ; the latter being as defined in [(Definition) 2.1.10], that

is, as an integral operator with kernel HF:

Proof (1) 2) Suppose thus that F is weakly p-integrable, so that every function in
H .HF;T/ is p-integrable, and the map JH;p is well defined.

As the proof uses items (i) to (iii) of the statement’s second part, one starts by
proving those.
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Proof (i) To have that JH;p is continuous, it suffices to prove that JF;p is a closed
map [266, p. 94]. Let thus

fhn; n 2 Ng converge to h in H .HF;T/ ;

and n
Œhn�Lp.T;T ;�/ ; n 2 N

o
converge to f in Lp .T; T ; �/ :

Then, for t 2 T; fixed, but arbitrary, limn hn .t/ D h .t/ [(Proposition) 1.1.9], andn
Œhn�Lp.T;T ;�/ ; n 2 N

o
converges weakly to f [275, p. 390], so that it is bounded [85, p. 68]. Consequently,n

Œhn�Lp.T;T ;�/ ; n 2 N

o
being bounded, and fhn; n 2 Ng converging everywhere to h;n

Œhn�Lp.T;T ;�/ ; n 2 N

o
converges weakly to Œh�Lp.T;T ;�/ [275, p. 391]. Since weakly convergent sequences
can have only one limit [85, p. 68],

f D Œh�Lp.T;T ;�/ ;

and JF;p is closed. �F;p is then linear and bounded, as the composition of two such
maps.

Proof (ii) Since F is weakly measurable, and HF is separable, F is (strongly)
measurable [(Proposition) 2.2.2], and so is fF; for scalar and measurable f
[(Remark) 2.2.5].

Suppose first that p 2 Œ1;1Œ : Since, by assumption, q D p=.p � 1/; p and q are
conjugate, and Hölder’s inequality yields that [229, p. 67], for fixed, but arbitrary
f 2 Lq .T; T ; �/ ; h 2 H; and T0 2 T ;Z

T0

ˇ̌hh;F .t/iH Pf .t/ˇ̌ � .dt/ � jj f jjLq.T;T ;�/
ˇ̌̌̌
�F;p Œh�

ˇ̌̌̌
Lp.T;T ;�/ :

Since �F;p is continuous,ˇ̌̌̌
�F;p Œh�

ˇ̌̌̌
Lp.T;T ;�/ �

ˇ̌̌̌
�F;p

ˇ̌̌̌ jjhjjH ;
so that

h 7!
Z

T0

hh;F .t/iH Pf .t/ � .dt/
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is a continuous linear functional of H: There exists thus [266, p. 64] an element of
H; represented as

Z .w/

T0

.fF/ d� 2 H;

such that, for fixed, but arbitrary h 2 H;

hh;
Z .w/

T0

. fF/ d�iH D
Z

T0

� .dt/ hh; Pf .t/F .t/iH D
Z

T0

hh;F .t/iH Pf .t/ � .dt/ :

Let now T0 be T: When E and F are Banach spaces, and R W E �! F is an
operator which is linear and bounded, the map conjugate to R; R? W F? �! E? is
obtained letting [8, p. 281]

R? Œ f ?� Œe� D f ? ŒR Œe�� ; e 2 E; f ? 2 F?:

If one now makes the following assignments:

• for R W E �! F; �F;p W H �! Lp .T; T ; �/ ;
• for R? W F? �! E?; �?

F;p W L?p .T; T ; �/ �! H?;

one has, for some f 2 Lq .T; T ; �/ (since F stands for an Lp space, an element of F?

is obtained as

˚g Œ f � D
Z
Pf Pgd�

for an element g in the corresponding Lq space),

• for R Œe� ; �F;p Œh� D JH;p Œhh;F .
/iH� ;
• for f ? ŒR Œe�� ;

˚f
�
�F;p Œh�

� D Z
T

Pf .t/ hh;F .t/iH � .dt/

D
Z

T
hh; Pf .t/F .t/iH � .dt/

D hh;
Z .w/

T
.fF/ d�iH:

Consequently, for R? Œ f ?� .h/ ; one has that

�?
F;p

�
˚f
�
.h/ D hh;

Z .w/

T
.fF/ d�iH:
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Since the dual of L1 contains L1 strictly [85, 113, p. 296, respectively, p. 198], when
p D 1; �?

F;p must be restricted to L1:

Proof (iii and item 2) One has that

�F;pU?
H�

?
F;p

�
˚f
� D �F;p

"Z .w/

T
.fF/ d�

#

D JF;pLF

"Z .w/

T
.fF/ d�

#

D JF;p

"
h
Z .w/

T
.fF/ d�;F .
/iH

#

D JF;p

	Z
T

Pf .t/ hF .t/ ;F .
/iH � .dt/




D JF;p

	Z
T
HF .
; t/ Pf .t/ � .dt/



D LHF Œ f � :

�F;pU?
H�

?
F;p is thus an integral operator whose kernel is HF: For it to be “Carleman-

.p; q/ ;” the following properties must obtain:

1. the equivalence class of HF .t; 
/ must belong to L˛.q/ .T; T ; �/ ; and that is true
because p has been chosen to be ˛ .q/ ; and because the equivalence class of
HF .t; 
/ is �F;p ŒF .t/� ; which belongs to Lp .T; T ; �/ (HF is thus a Carleman
kernel);

2. HF .t; 
/ Pf must be integrable for almost all t; with respect to �; but that follows
from the following inequality:Z

T0

ˇ̌hh;F .t/iH Pf .t/ˇ̌ � .dt/ � jj f jjLq.T;T ;�/
ˇ̌̌̌
�F;p Œh�

ˇ̌̌̌
Lp.T;T ;�/ ;

whose validity has already been checked (proof of (ii));
3. the map t 7! R

T HF .t; �/ Pf .�/ � .d�/ must belong to Lp .T; T ; �/ ; but that is
true because its equivalence class is in the range of �F;pU?

H�
?
F;p:

Proof (2) 1) Suppose thus that HF is .p; q/-bounded, with q D p
p�1 : One must

prove that F is weakly p-integrable.
By assumption HF is separable, and furthermore HF is adapted [(Defini-

tion) 2.1.10]: that is sufficient [(Proposition) 2.2.2] to have that F is weakly adapted.
It thus remains to prove that the map t 7! hh;F .t/iH belongs to Lp .T; T ; �/ :
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Let fTn; n 2 N0g � T be the decomposition of T in (Lemma) 2.5.1. Let f 2
Lq .T; T ; �/ be fixed, but arbitrary, and

QFn W T �! H

be defined using the following relation:

QFn .t/ D �Tn
.t/ Pf .t/F .t/ D �

Tn
.t/ Pf .t/Fn .t/ :

QFn is (strongly) adapted [(Proposition) 2.2.2], andˇ̌̌̌ QFn .t/
ˇ̌̌̌

H
� n�

Tn
.t/
ˇ̌ Pf .t/ˇ̌ :

For n 2 N; fixed, but arbitrary, let the measure �n be defined using the following
relation: d�n D �Tn

d�: Then

�n .T/ <1; and Pf 2 Lq .T; T ; �n/ ;

so that, since for finite measures, when p < q; Lq � Lp [113, p. 190],

n
ˇ̌ Pf ˇ̌ 2 L1 .T; T ; �n/ ; or n�

Tn

ˇ̌ Pf ˇ̌ 2 L1 .T; T ; �/ :

Since Z
T

ˇ̌̌̌ QFn .t/
ˇ̌̌̌

H
� .dt/ <1;

the integral
R

T
QFn .t/ � .dt/ is well defined as a strong (Bochner) integral [207,

p. 114]. Thus Rn W Lq .T; T ; �/ �! H defined using the following relation:

Rn Œ f � D
Z

T

QFn .t/ � .dt/ D
Z

Tn

Pf .t/F .t/ � .dt/

makes sense, and, consequently, using the norm property of the Bochner integral
[207, p. 114], and then Hölder’s inequality [229, p. 67],

jjRn Œ f �jjH �
Z

T

ˇ̌̌̌ QFn .t/
ˇ̌̌̌

H
� .dt/ � n f� .Tn/g1=p jj f jjLq.T;T ;�/ :

Rn is thus linear and bounded. Furthermore, since a strongly (Bochner) integrable
function is weakly (Pettis) integrable [207, p. 115],

jjRn Œ f �jj2H D h
Z

T
Fn .t/ � .dt/ ;

Z
T

Fn .u/ � .du/iH

D
Z

T

Z
T
� .dt/ � .du/ hFn .t/ ;Fn .u/iH
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D
Z

T

Z
T
� .dt/ � .du/�

Tn
.t/ �

Tn
.u/ Pf .t/ Pf .u/ hF .t/ ;F .u/iH

D
Z

T
� .dt/ �

Tn
.t/ Pf .t/

Z
T
HF .t; u/ �Tn

.u/ Pf .u/ � .du/ :

Let fn be the equivalence class of

�
Tn
Pf :

Then, since, by assumption, HF is .p; q/-bounded, the equivalence class ofZ
T
HF .t; u/ �Tn

.u/ Pf .u/ � .du/

is LHF Œ fn� : It is an element of Lp .T; T ; �/ ; and thus, with the help of Hölder’s
inequality [229, p. 67],

jjRn Œ f �jj2H � jjLHF Œ fn�jjLp.T;T ;�/ jj fnjjLq.T;T ;�/ :

Since LHF is continuous [(Proposition) 2.1.12],

jjRn Œ f �jj2H � jjLHF jj jj fnjj2Lq.T;T ;�/ :

Consequently, since jj fnjjLq.T;T ;�/ � jj f jjLq.T;T ;�/ ;

sup
n
jjRnjj � jjLHF jj1=2 <1;

and thus also [8, p. 282]

sup
n

ˇ̌̌̌
R?n
ˇ̌̌̌ � jjLHF jj1=2 <1:

For h 2 H and f 2 Lq .T; T ; �/ ; fixed, but arbitrary, the duality relation
for operators [8, p. 281] yields that R?n ŒUH Œh�� . f / D hh;Rn Œ f �iH : But strongly
(Bochner) integrable functions are weakly (Pettis) integrable with the same value
[207, p. 115], and thus

hh;Rn Œ f �iH D
Z

T
�Tn
.t/ Pf .t/ hh;F .t/iH � .dt/ D ˚Fh

n
. f / ;

where Fh
n denotes the equivalence class, in Lp .T; T ; �/ ; of the following map:

t 7! �
Tn
.t/ hh;F .t/iH:
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It follows that

R?n ŒUH Œh�� . f / D ˚Fh
n
. f / ; ˚Fh

n
2 L?q .T; T ; �/ :

Thus, as [229, p. 136]
ˇ̌̌̌
˚Fh

n

ˇ̌̌̌ D ˇ̌̌̌Fh
n

ˇ̌̌̌
Lp.T;T ;�/ ;ˇ̌̌̌

Fh
n

ˇ̌̌̌
Lp.T;T ;�/ D

ˇ̌̌̌
˚Fh

n

ˇ̌̌̌
D ˇ̌̌̌

R?n ŒUH Œh��
ˇ̌̌̌

� ˇ̌̌̌R?n ˇ̌̌̌ jjUH Œh�jjH?

D ˇ̌̌̌
R?n
ˇ̌̌̌ jjhjjH

� jjLHF jj1=2 jjhjjH :

The sequence of functions ˚ PFh
n; n 2 N

�
converges, almost surely, with respect to �; to the function

PFh W t 7! hh;F .t/iH ;

and the sequence of functions ˚ˇ̌ PFh
n

ˇ̌
; n 2 N

�
increases, almost surely, with respect to �; to the absolute value of the function PFh:

Then, for fixed, but arbitrary h 2 H; because of the last set of inequalities,

• when p D1; ˇ̌̌̌
Fh

n

ˇ̌̌̌
L1.T;T ;�/ �

ˇ̌̌̌
Fh

nC1
ˇ̌̌̌

L1.T;T ;�/ � jjLHF jj1=2 jjhjjH ;

• when 1 � p <1; fixed, but arbitrary,ˇ̌̌̌
Fh

n

ˇ̌̌̌
Lp.T;T ;�/ �

ˇ̌̌̌
Fh

nC1
ˇ̌̌̌

Lp.T;T ;�/ � jjLHF jj1=2 jjhjjH :

PFh is thus essentially bounded when p D 1; and, because of the monotone
convergence theorem, in Lp .T; T ; �/ ; when 1 � p <1: ut
Remark 2.5.3 When p D 2; one may replace ˚f of (Proposition) 2.5.2 with f :
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Corollary 2.5.4 Let .T; T ; �/ be a �-finite measure space, H be a real Hilbert
space, and F W .T; T ; �/ �! H be a weakly adapted map. Let, for a fixed, but
arbitrary p 2 Œ1;1� ;HF.t; �/ D hF.t/;F.�/iH; and suppose thatZ

T�T
jHF .t; �/jp � ˝ � .dt; d�/ <1:

F is then weakly (Pettis) p-integrable.

Proof Fubini’s theorem [229, p. 150], and Hölder’s inequality [229, p. 67], imply
that HF is a .p; q/-bounded kernel, and then (Proposition) 2.5.2 applies. ut
Proposition 2.5.5 Let .T; T ; �/ be a �-finite measure space, H be a real Hilbert
space, and F W T �! H be a map. Then:

1. when F is weakly (Pettis) integrable, and HF is separable, F has an additive
decomposition, F D F1CF2; such that F1 has countable range, and F2 is strongly
(Bochner) integrable;

2. when p 2 Œ1;1Œ ; and F is strongly (Bochner) p-integrable, �F;p [(Proposi-
tion) 2.5.2] is compact;

3. when F is weakly (Pettis) integrable, and HF is separable,�F;1 is compact

Proof (1) The map Fn of (Proposition) 2.5.2 is strongly (Bochner) integrable, so
that there is [276, p. 132] a map QFn W T �! H with finite range such thatZ

T

ˇ̌̌̌
Fn .t/ � QFn .t/

ˇ̌̌̌
H
� .dt/ � 1

2n
:

Taking, if necessary, �
Tn
QFn [(Lemma) 2.5.1] instead of QFn; one may assume that

˚
t 2 T W QFn .t/ ¤ 0

� � Tn:

Let

F1 .t/ D
X

n

�
Tn
.t/ QFn .t/ :

F1 is well defined, (strongly) adapted, and has, at most, a countable range. One
may set F2 D F � F1: Now since F and F1 are (strongly) adapted, F2 is (strongly)
adapted, and Z

T
jjF2 .t/jjH � .dt/ D

Z
T
jjF .t/ � F1 .t/jjH � .dt/

D
X

n

Z
Tn

jjF .t/ � F1 .t/jjH � .dt/
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D
X

n

Z
Tn

ˇ̌̌̌
Fn .t/ � QFn .t/

ˇ̌̌̌
H
� .dt/

�
X

n

1

2n
:

F2 is thus strongly (Bochner) integrable [207, p. 114].

Proof (2) One must show that �F;p transforms weakly convergent sequences into
strongly convergent ones (it suffices to consider sequences converging to zero).
To that end, let fhn; n 2 Ng � H be a sequence which converges weakly to zero.
Because of weak convergence, one has that [(Proposition) 1.1.9], for fixed, but
arbitrary t 2 T; limnhF .t/ ; hniH D 0: But

jhF .t/ ; hniHj � jjF .t/jjH jjhnjjH � jjF .t/jjH sup
n
jjhnjjH :

Since a weakly convergent sequence is bounded [266, p. 79],

jhF .t/ ; hniHj � � jjF .t/jjH ;

and the right-hand side is p-integrable. So, by dominated convergence,

lim
n

ˇ̌̌̌
�F;p Œhn�

ˇ̌̌̌
Lp.T;T ;�/ D 0:

Proof (3) By item 1, F D F1 C F2; where F1 has countable range. One may thus
assume [167, p. 233] that there exists a countable index set I; a family of disjoint
sets Ti 2 T such that � .Ti/ <1; i 2 I; and elements hi 2 H; i 2 I; all such that

F1 .t/ D
X
i2I

hi�Ti
.t/ :

Let Ei be the evaluation map on RI that returns the i-th element of a sequence, and
let R W H �! l1 be defined using the following relation:

Ei fR Œh�g D � .Ti/ hh; hiiH :

R is well defined as F and F2; and thus F1 D F � F2; are all weakly integrable, and
that Z

T
jhF1 .t/ ; hiHj � .dt/ D

X
i2I

� .Ti/ jhhi .t/ ; hiHj :
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But the left-hand side of that latter equality is

jj�F1;1 Œh�jjL1.T;T ;�/ ;

and the right-hand side is jjR Œh�jjl1 ; so that

jjR Œh�jjl1 D jj�F1;1 Œh�jjL1.T;T ;�/ :

Since�F1;1 is bounded [(Proposition) 2.5.2], R is bounded. If now fhn; n 2 Ng � H
converges weakly to zero, fR Œhn� ; n 2 Ng � l1 converges weakly to zero [266,
p. 81]. But, in l1; weakly convergent sequences converge strongly [236, p. 194],
and thus �F1;1 must be compact. �F2;1 is compact since, as seen, F2 is strongly
integrable (item 2). Thus �F;1 is compact as the sum of two compact operators.
That completes the proof. ut
Remark 2.5.6 When p > 1; HF is separable, and F is only weakly p-integrable,
�F;p may fail to be a compact operator, as shown by the example which follows.
However, when � .T/ <1;

Lp .T; T ; �/ � L1 .T; T ; �/ ;

and thus �F;p will be compact as an operator with values in L1 .T; T ; �/ :
Example 2.5.7 Let .T; T ; �/ be a �-finite measure space, and H be a separable,
infinite dimensional, real Hilbert space. There exists thus a partition of T by subsets
fTn; n 2 Ng � T ; such that, for n 2 N; �n D � .Tn/ 2 �0;1Œ : Let fen; n 2 Ng � H
be an orthonormal basis for H; and f˛n; n 2 Ng � R be a sequence of positive
numbers. Let F W T �! H be defined using the following relation:

F .t/ D
X

n

�
Tn
.t/ ��.1=2/n ˛n en:

Then

hh;F .t/iH D
X

n

�
Tn
.t/ ��.1=2/n ˛nhh; eniH:

F is thus weakly adapted. Since it has countable range, it is (strongly) adapted
[(Proposition) 2.2.2]. FurthermoreZ

T
hh;F .t/i2H � .dt/ D

X
n

˛2n hh; eni2H:
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Let fxn; n 2 Ng be a real sequence in l1: Then h D P
n jxnj1=2 en belongs to H; and

hh; eni2H D jxnj : Consequently, s .x/ denoting the sign of x;

X
n

˛2n xn D
X

n

˛2n s .xn/ hh; eni2H;

so that, if F is weakly square integrable, as the ˛’s are taken to be positive,
supn ˛n <1 [257, p. 185]. When the latter is true, F is obviously weakly square
integrable. It shall thus be assumed that supn ˛n <1:

Let

fn .t/ D
�
��.1=2/n when t 2 Tn

0 when t 2 Tc
n

�
D ��.1=2/n �

Tn
.t/ :

One gets thus an orthonormal sequence in L2 .T; T ; �/ ; and

F .t/ D
X

n

˛nfn .t/ en:

Then�F;2 is well defined as �F;2 Œh� is the equivalence class of the series

X
n

˛nhh; eniHfn:

Letting a˝ b Œx� D hx; bia; one has that

�F;2 D
X

n

˛n
˚
Œ fn�L2.T;T ;�/ ˝ en

�
:

Thus [235] �F;2 is

• a compact operator if, and only if, limn ˛n D 0;
• a Hilbert-Schmidt operator if, and only if,

P
n ˛

2
n <1;

• an operator with finite trace if, and only if,
P

n ˛n <1:
Finally [235]

�?
F;2 D

X
n

˛n
˚
en ˝ Œ fn�L2.T;T ;�/

� I
�?

F;2�F;2 D
X

n

˛2n fen ˝ eng :

It should perhaps be noticed that in that example UH may be omitted in the left-hand
side of the latter equality.
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Remark 2.5.8 When p D 1 and F is essentially bounded, �F;1 may fail to be
compact as shown by the example which follows.

Example 2.5.9 Let T D N; T be the subsets of T; � .fng/ D pn > 0; and H D l2:
The p-th element of the standard basis of l2 is ep: Let

˛p;n D
�
0 when n > p
.pC 1 � n/�1 when n � p

;

and

F .n/ D
1X

pD1
˛p;n ep D

1X
jD1

j�1en�1Cj :

As

jjF .n/jj2H D
1X

jD1
j�2 <1;

F W N �! l2 is well defined. Furthermore, for p 2 N; fixed, but arbitrary,

�F;1
h
ep

i
.n/ D hep;F .n/iH D ˛p;n:

The essential supremum of this latter function is one, so thatˇ̌̌̌̌̌
�F;1

h
ep

iˇ̌̌̌̌̌
L1.T;T ;�/

D 1:

But
n
ep; p 2 N

o
converges weakly to zero.

One should perhaps notice that latter example does not require that one distin-
guishes a function from its equivalence class.

Result (Proposition) 2.5.2 is about�F;pUH�
?
F;p: The following corollary is about

�?
F;2�F;2 W it is closely related to (Proposition) 1.3.20 and the previous section, and

it puts those results into perspective. Again there is no need to take into account
duals [(Remark) 2.5.3].

Corollary 2.5.10 Let .T; T ; �/ be a �-finite measure space, and H be a real Hilbert
space. Let F W T �! H be weakly square-integrable, HF be separable, and HF D
hF.
/;F.
/iH: Then:

1. one has that

�?
F;2�F;2 Œh� D

Z
T
hh;F .t/iH F .t/ � .dt/ D

Z
T
fF.t/˝ F.t/g Œh��.dt/;

and the integral is a weak (Pettis) integral [207, p. 114];
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2. �F;2 is a Hilbert-Schmidt operator if, and only if, F is strongly (Bochner) square-
integrable [207, p. 114], that is, if, and only if, it obtains thatZ

T
HF .t; t/ � .dt/ <1I

3. when
R

T HF .t; t/ � .dt/ <1; the representation

�?
F;2 Œ f � D

Z
T

Pf .t/F .t/ � .dt/

is through a strong (Bochner) integral [207, p. 114], and the representation

�?
F;2�F;2 Œh� D

Z
T
hh;F .t/iHF .t/ � .dt/ D

Z
T
fF.t/˝ F.t/g Œh��.dt/

is now through a strong (Bochner) integral in the space of trace-class operators
[235, p. 36];

4. F is strongly (Bochner) square-integrable if, and only if, the operator LHF is a
trace-class operator.

Proof One knows [(Proposition) 2.5.2, Remark 2.5.3] that �?
F;2 Œ f � D

R
T
Pf .t/F .t/

� .dt/ ; where the integral is a weak (Pettis) integral. Choosing �F;2 Œh� for f ; one
has that

P‚ …„ ƒ
�F;2 Œh� D hh;F .t/iH ;

hence item 1 obtains.
A proof of item 2 proceeds as follows. Since H?F;� is the null space (kernel) of

�F;2 [(Proposition) 2.2.2], it suffices to restrict attention to HF;� ; and, since one
has that HF;� � HF [(Proposition) 2.1.9], it suffices to restrict attention to HF: Let
thus fei; i 2 Ig be a complete orthonormal set for HF (by assumption, I is at most
countable). Then, using successively item 1, then the properties of the Pettis integral
[207, p. 114], and finally Fubini’s theorem [229, p. 150],X

i2I

jj�F;2 Œei�jj2L2.T;T ;�/ D
X
i2I

h�?
F;2�F;2 Œei� ; eiiH

D
X
i2I

�Z
T
hei;F .t/iHF .t/ � .dt/

�
; ei

�
H

D
X
i2I

Z
T
hei;F .t/i2H � .dt/

D
Z

T

X
i2I

hei;F .t/i2H � .dt/
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D
Z

T
jjF .t/jj2H � .dt/

D
Z

T
HF .t; t/ � .dt/ :

Item 2 is thus proved.
One now proves item 3. The assumptions of weak measurability and separability

say that F is (strongly) adapted [(Proposition) 2.2.2]. Let T C ŒH� denote the Banach
space of the trace-class operators of H [235, p. 36]. The maps F1 W T �! H and
F2 W T �! T C ŒHF� ; defined using respectively the following assignments:

t 7! Pf .t/F .t/ and t 7! F ˝ F .t/
defD F .t/˝ F .t/ ;

produce then (strongly) adapted maps (weakly adapted with values in a separable
subspace [(Proposition) 2.2.2]): when HF is generated by the orthonormal basis
fei; i 2 I � Ng ; F .t/ DPi2I ˛i .t/ ei; so that

F .t/˝ F .t/ D
X
i2I

X
j2I

˛i .t/ ˛j .t/ ei ˝ ej;

and thus HF˝F is generated by
˚
ei ˝ ej; fi; jg � I � N

�
). Furthermore

ˇ̌̌̌ Pf .t/F .t/
ˇ̌̌̌

H
D ˇ̌ Pf .t/ˇ̌ fHF .t; t/g1=2 ;

so that the map

t 7! ˇ̌̌̌ Pf .t/F .t/
ˇ̌̌̌

H

belongs to L1 .T; T ; �/ : Since operators of the form a˝ a are self-adjoint,˚
Œa˝ a�? Œa˝ a�

�1=2 D a˝ a;

so that [235]

jjF .t/˝ F .t/jjT CŒHF �
D
X
i2I

h˚ŒF .t/˝ F .t/�? ŒF .t/˝ F .t/�
�1=2

Œei� ; eiiH

D
X
i2I

hF .t/˝ F .t/ Œei� ; eiiH

D
X
i2I

hF .t/ ; eii2H

D jjF .t/jj2H D HF .t; t/ :
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The map t 7! jjF .t/˝ F .t/jjT CŒHF �
belongs thus to L1 .T; T ; �/ ; and item 3 is then

true.
For item 4, one starts with (Proposition) 2.5.2 and the polar decomposition [266,

p. 186]

�F;2 D W
�
�?

F;2�F;2
�1=2

;

to obtain that , for some partial isometry W;

LHF D �F;2�
?
F;2 D W�?

F;2�F;2W
?:

Thus, for item 4 to be true, one must have that �?
F;2�F;2 be trace-class [235, p. 38].

However, since F is strongly square integrable if, and only if, �F;2 is Hilbert-
Schmidt (that is item 2), and that �F;2 is Hilbert-Schmidt if, and only if, �?

F;2�F;2

is trace-class [61, p. 88], the claim is validated. ut
Remark 2.5.11 Example 2.5.7 shows that the assumption that F is weakly square
integrable does not entail that �F;2 is compact, and that the latter can be compact
without F being strongly square-integrable asZ

T
jjF .t/jj2H � .dt/ D

X
n

˛2n:

Example 2.5.12 Let H be a reproducing kernel, and F W T �! H .H;T/ be defined
using F .t/ D H .
; t/ : The assumption “F weakly square-integrable” means that
H .H;T/ � L2 .T; T ; �/ ; and that of “HF separable,” that H .H;T/ is separable.
�F;2 is the map h 7! �

hL2.T;T ;�/
�
: The condition

R
T H .t; t/ � .dt/ <1 will be true

for instance when T D Œ0; 1� ; and H is continuous.

Proposition 2.5.13 Let .T; T ; �/ and .X;X ; �/ be �-finite measure spaces, the
latter separable (so that the associated Lp-spaces, 1 � p < 1; are separable
[46, p. 376]. Let K W T � X �! R be a Carleman .p; 2/-bounded kernel with
p 2 Œ1;1� ; fixed, but arbitrary. Let F W T �! L2 .X;X ; �/ be defined using
F .t/ D ŒK .t; 
/�L2.X;X ;�/ : F is then weakly p-integrable.

Proof Since K is Carleman, F is weakly measurable [(Proposition) 2.2.2], and,
since L2 .X;X ; �/ is separable, F is (strongly) adapted [(Proposition) 2.2.2].
Furthermore

h f ;F .t/iL2.X;X ;�/ D
Z

X
K .t; x/ Pf .x/ � .dx/ D LK Œ f � .t/ :

But the range of LK is contained in Lp .T; T ; �/ since the kernel is .p; 2/ : ut
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2.6 Reproducing Kernel Hilbert Spaces of Continuous
Functions

One examines here the pendant, for continuous functions, of Sect. 2.5.

Proposition 2.6.1 Let H .H;T/ be an RKHS. Suppose that T is a topological
space, and that H is continuous for the product topology. Then H .H;T/ consists of
continuous functions.

Proof Since

jjH .
; t1/�H .
; t0/jj2H.H;T/ D fH .t1; t1/� 2H .t1; t0/CH .t0; t0/g ;

the map F W T �! H .H;T/ defined using F .t/ D H .
; t/ is continuous.
Consequently, for fixed, but arbitrary h 2 H .H;T/ ; the map LF Œh� W T �! R

defined using LF Œh� .t/ D hh;F.t/iH D hh;H .
; t/iH D h .t/ is continuous. ut
Proposition 2.6.2 Let H .H;T/ be an RKHS. Suppose that T is a topological
space, that fH .
; t/ ; t 2 Tg is a family of continuous functions, and that supt2T
H .t; t/ <1: Then H .H;T/ consists of continuous functions.

Proof By assumption V ŒH� consists of continuous functions. The reproducing
kernel being bounded on the diagonal of T � T; every function in H .H;T/ is the
uniform limit of continuous functions and is thus continuous [(Proposition) 1.1.9].

ut
Next proposition weakens the conditions of (Proposition) 2.6.2 for metric spaces

of indices.

Proposition 2.6.3 Let H .H;T/ be an RKHS for which T is a metric space with
distance dT : H .H;T/ is made of continuous functions if, and only if, for t 2 T;
fixed, but arbitrary,

1. H .
; t/ is continuous,
2. there exists � .t/ > 0 such that the restriction of t 7! H .t; t/ to the open ball

B .t; � .t// is bounded.

Proof Suppose that H .H;T/ is made of continuous functions.
Item 1 certainly obtains. Suppose it is not the case for item 2. There exists then

t0 2 T such that, for n 2 N; fixed, but arbitrary, one can find tn in B
�
t0; 1n

�
such that

H .tn; tn/ � n: Now, for h 2 H .H;T/ ; fixed, but arbitrary,

hh;H .
; t/iH.H;T/ D h .t/ D lim
n

h .tn/ D lim
n
hh;H .
; tn/iH.H;T/;

so that, weakly,

lim
n
H .
; tn/ D H .
; t/ :
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However

jjH .
; tn/jj2H.H;T/ D H .tn; tn/ � n;

which is impossible in the presence of weak convergence.

Proof Suppose that items 1 and 2 obtain.
Let h 2 H .H;T/ and t 2 T be fixed, but arbitrary, and suppose that the sequence

ftn; n 2 Ng � T converges to t: For hp 2 H .H;T/ fixed, but arbitrary, one has that

jh .t/ � h .tn/j �
ˇ̌
h .t/ � hp .t/

ˇ̌C ˇ̌hp .t/ � hp .tn/
ˇ̌C ˇ̌hp .tn/� h .tn/

ˇ̌
:

Let now

sup
t02B.t;�.t//

H .t0; t0/ � � <1;

and
˚
hp; p 2 N

� � V ŒH� converge in H .H;T/ to h: One has then thatˇ̌
h .t/ � hp .t/

ˇ̌ D ˇ̌hh � hp;H .
; t/iH.H;T/
ˇ̌ � fH .t; t/g1=2 ˇ̌̌̌ h � hp

ˇ̌̌̌
H.H;T/ ;

and, similarly, thatˇ̌
hp .tn/ � h .tn/

ˇ̌ � fH .tn; tn/g1=2
ˇ̌̌̌
h � hp

ˇ̌̌̌
H.H;T/ :

Given � > 0; choose p 2 N such that

ˇ̌̌̌
h � hp

ˇ̌̌̌
H.H;T/ <

�

2�1=2
:

Then

jh .t/ � h .tn/j � �

4�1=2

˚fH .t; t/g1=2 C fH .tn; tn/g1=2
�C ˇ̌hp .t/ � hp .tn/

ˇ̌
:

Since p is fixed, and hp is continuous, letting n 2 N increase indefinitely, one gets
that

jh .t/ � h .tn/j < �:

ut
Example 2.6.4 Let T � R be fixed, but arbitrary, and C be a covariance with the
factorization c^c_:

When c^ and c_ are continuous, since the maps x 7! x ^ t and x 7! x _ t are
continuous, the map � 7! C .�; t/ is continuous. Furthermore, as the map which
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sends t to C .t; t/ D c^ .t/ c_ .t/ is continuous, it is locally bounded. Consequently
H .C;T/ is made of continuous functions.

Suppose that H .C;T/ is made of continuous functions. Since it is assumed that
C is not the zero function, TC is not void. For ft; �1; �2g � T; fixed, but arbitrary,

C .�1; t/�C .�2; t/ D
8<
:

c_ .t/ Œc^ .�1/ � c^ .�2/� when �1 _ �2 < t
c_ .t/ c^ .�1/� c^ .t/ c_ .�2/ when �1 � t; �2 � t
c^ .t/ Œc_ .�1/ � c_ .�2/� when �1 ^ �2 � t

: (?)

Let tC
l D inf TC and tC

r D sup TC: Suppose t 2 T\�tC
l ; t

C
r Œ: Then, c^.t/ and c_.t/

are different from zero, and, given (?), c^ is continuous on T\� � 1; tŒ; and c_;
on T\�t;1Œ: Since t is arbitrary, c^ is continuous on T\� � 1; tC

r Œ; and c_; on
T\�tC

l ;1Œ: Suppose that t 2 T; t > tC
r : Since there are values of � 2 TC; � < tC

r ;

such that c^.�/ ¤ 0; then c_.t/ D 0 [(Proposition) 1.4.3]. Consequently, since c_
is continuous at tC

r ; c_.tC
r / D 0; and tC

r does not belong to TC: The same is true for
tC
l : Thus

• c^ is continuous on T \ ��1; tC
r

� I
• c_ is continuous on T \ �tC

l ;1
� I

• tC
l and tC

r do not belong to TC:

That means that c^ and c_ are continuous on TC:

Corollary 2.6.5 Let H .H;T/ be an RKHS for which T is a compact metric space.
Suppose that H is continuous for the product topology. Then, for fixed, but arbitrary
ft1; t2g � T;

H .t1; t2/ D
X
i2I

hi .t1/ hi .t2/ ;

where fhi; i 2 Ig is a countable, orthonormal system, of uniformly continuous
functions, bounded by the square root of supt2T H .t; t/ ; and the convergence of
the series is uniform.

Proof H .H;T/ is made of continuous functions [(Proposition) 2.6.1]. T is sepa-
rable as it is metric and compact [85, p. 22]. H .H;T/ is thus a separable space
of continuous functions [(Corollary) 1.5.9]. The representation of the kernel in the
form of the given series then follows [(Proposition) 1.5.6], and [(Proposition) 1.1.5]

jhi .t/j � jjhijjH.H;T/ fH .t; t/g1=2 :

One may thus suppose that I is an “interval” of N starting at 1. Since H is continuous
on a compact set [84, p. 224], it is bounded [84, p. 224]. The only fact to prove is
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thus the uniform convergence of the series. To that end, let

sn .t/ D
nX

iD1
h2i .t/ :

On thus obtains an increasing sequence of continuous functions whose limit is the
continuous function H .t; t/ : By Dini’s theorem [111, p. 336], the convergence is
uniform as T is compact. Sinceˇ̌̌

ˇ̌ X
i2I;i�n

hi .t1/ hi .t2/

ˇ̌̌
ˇ̌2 � X

i2I;i�n

jhi .t1/j2
X

i2I;i�n

jhi .t2/j2 ;

it follows that the series
Pn

iD1 hi .t1/ hi .t2/ converges uniformly to H .t1; t2/ : The
proof is complete. ut
Proposition 2.6.6 Let H .H;T/ be an RKHS for which T is an interval of R:

Suppose that fH .
; t/ ; t 2 Tg is a family of functions which are continuous to the
right, and that supt2T H .t; t/ < 1: Then H .H;T/ consists of functions which are
continuous to the right.

Proof By assumption V ŒH� consists of functions which are continuous to the
right. Let h 2 H .H;T/ be fixed, but arbitrary. There exists [(Proposition) 1.1.5]
a sequence fhn; n 2 Ng � V ŒH� such that h D limn hn in H .H;T/. But then

lim
u#t
jh .t/ � h .u/j � lim

u#t
fjh .t/ � hn .t/j C jhn .t/ � hn .u/j C jhn .u/� h .u/jg :

Now, using (Proposition) 1.1.5, as in (Proposition) 2.6.3, and the continuity to the
right of hn;

jh .t/ � hn .t/j2 � sup
t2T

H .t; t/ jjh � hnjj2H.H;T/ ;

and, for n 2 IN; fixed, but arbitrary,

lim
u#t
jhn .t/ � hn .u/j D 0;

and that suffices to establish the result. ut
Corollary 2.6.7 Let H .H;T/ be an RKHS for which T is an interval of R: Suppose
that fH .
; t/ ; t 2 Tg is a family of functions which are continuous to the right, and
that supt2T H .t; t/ <1: Then H .H;T/ is separable.

Proof H .H;T/ is made of functions which are continuous to the right [(Propo-
sition) 2.6.6]. Let Td be a countable dense subset of T which contains the right
end-point of T when that right end-point belongs to T: Suppose that h 2 H .H;T/
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is fixed, but arbitrary, and that hh;H .
; td/iH.H;T/ D 0; td 2 Td: One then has that
h .td/ D 0; td 2 Td: Let t 2 T n Td: There exits then˚

u.n/d > t; n 2 N
� � Td

such that limn!1 u.n/d D t: But h being continuous to the right,

0 D lim
n!1 h

�
u.n/d

� D h .t/ :

Consequently h .t/ D 0; t 2 T; and fH .
; td/ ; td 2 Tdg � H .H;T/ is a countable
dense set. ut
Remark 2.6.8 Results (Proposition) 2.6.6 and (Corollary) 2.6.7 are true, mutatis
mutandis, when the functions considered are continuous to the left.

Proposition 2.6.9 Let H .H;T/ be an RKHS. Its functions are continuous on
.T; dH/ :

Proof For fixed, but arbitrary h 2 H .H;T/ and .t1; t2/ 2 T � T; one has that
[(Proposition) 1.1.5]

jh .t1/� h .t2/j D hh;H .
; t1/�H .
; t2/iH.H;T/
� jjhjjH.H;T/ jjH .
; t1/�H .
; t2/jjH.H;T/
D jjhjjH.H;T/ dH .t1; t2/ :

ut
The result which follows yields another version of (Proposition) 2.6.3.

Proposition 2.6.10 Let T be Hausdorff and locally compact, and let C .T/ be the
vector space of continuous functions f W T �! R: C .T/ is given the topology of
uniform convergence on compact sets [154, p. 229]. Let H be a real Hilbert space,
and F W T �! H be a map. The following two statements are then equivalent:

1. F is weakly continuous;
2. for t 2 T; fixed, but arbitrary, HF .
; t/ is continuous, and HF is locally bounded

in the sense that, for each compact K � T; there is a finite and positive constant
�K such that, for .t1; t2/ 2 K � K; fixed, but arbitrary

jHF .t1; t2/j � �K ; .t1; t2/ 2 K � K:

When those conditions obtain,

(i) RŒLF � � C .T/ I
(ii) when �F;c W H �! C .T/ is defined, for h 2 H; fixed, but arbitrary, using the

following relation: �F;c Œh� D LF Œh� ; �F;c is then continuous.

Finally, when T is separable, so is HF:
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Proof It may be noticed that item (i) means that, for h 2 H; fixed, but arbitrary, LFŒh�
is a continuous function. As LFŒh�.t/ D hh;F.t/iH; F is thus weakly continuous.
And, when F is weakly continuous, the range of LF is made of continuous functions.
Thus items 1 and (i) state the same fact.

Proof Suppose F weakly continuous.
Let t 2 T be fixed, but arbitrary. For x 2 T; fixed, but arbitrary, the function x 7!

HF.x; t/ D hF.t/;F.x/iH is continuous as F is assumed to be weakly continuous.
Now let K � T be a compact set, fixed, but arbitrary, and consider the following
family of continuous linear functionals:

LK D f�t .h/ D LF Œh� .t/ D hh;F .t/iH ; t 2 Kg � H?:

For h 2 H; fixed, but arbitrary, t 7! LF Œh� .t/ D hh;F.t/iH is a continuous function
which is thus bounded when restricted to K: There is thus a finite, positive constant
� .h/ such that

j�t Œh�j � � .h/ ; t 2 K:

The Banach-Steinhaus theorem [266, p. 76] allows one to then assert that there is a
finite, positive constant �K such that

jjF .t/jjH D jjh
;F .t/iHjj D jj�tjj � �K ; t 2 K:

Consequently, for fixed, but arbitrary .t1; t2/ 2 K � K;

jHF .t1; t2/j D jhF .t1/ ;F .t2/iHj � jjF .t1/jjH jjF .t2/jjH � �2K ;

and HF is locally bounded.

Proof Suppose now that x 7! HF .x; t/ is continuous for all fixed t’s, and that HF is
locally bounded.

Let h DPn
iD1 ˛iF .ti/ : As

LF Œh� D
nX

iD1
˛iLF ŒF .ti/� D

nX
iD1

˛iHF .
; ti/ ;

LF Œh� is a continuous function.
Since, for h 2 H?F ; LF Œh� is the zero function, t 7! hh;F .t/iH is continuous.

Let now h0 2 HF and t0 2 T be fixed, but arbitrary. One shall show that LF Œh0�
is continuous at t0 W since LF Œh0� .t0/ D hh0;F .t0/iH; that will establish the weak
continuity of F at t0:

Let thus, to that end, K be a compact neighborhood of t0 W it exists as T is locally
compact by assumption. Since HF is locally bounded, there is a finite, positive �K
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such that

sup
u2K
jjF .u/jjH D sup

u2K
fHF .u; u/g1=2 � �K :

Let � > 0 be fixed, but arbitrary. There exists [(Proposition) 1.1.5] h D Pn
iD1

˛iF .ti/ such that

jjh0 � hjjH � �:

Since LF Œh� is continuous, and thus continuous at t0; and since T is locally compact,
there is a compact neighborhood of t0; say K0; such that, for t 2 K0; fixed, but
arbitrary,

jLF Œh� .t/ � LF Œh� .t0/j � �:

Then

jLF Œh0� .t/ � LF Œh0� .t0/j � jLF Œh0� .t/ � LF Œh� .t/j
C jLF Œh� .t/ � LF Œh� .t0/j
C jLF Œh� .t0/� LF Œh0� .t0/j :

But

jLF Œh0� .t/ � LF Œh� .t/j D jhh0 � h;F .t/iHj � jjF .t/jjH jjh0 � hjjH :

A similar inequality applies to the third term of the last but one expression.
Consequently, for t 2 K \ K0; fixed, but arbitrary,

jLF Œh0� .t/ � LF Œh0� .t0/j � jLF Œh� .t/ � LF Œh� .t0/j
C .jjF .t/jjH C jjF .t0/jjH/ jjh0 � hjjH
� � .1C 2�K/ :

Proof (ii) The topology of uniform convergence on compact sets is given by the
family of seminorms of the form pK W f 7! supt2K j f .t/j ; for compact K [111,
p. 344], and a linear map L W H �! C .T/ is continuous if, and only if, pK ı L is
continuous [269, p. 217]. Thus, to see whether �F;c is a bounded operator in case
F is weakly continuous, one fixes an arbitrary compact subset K of T: Since HF is
locally bounded, there is a finite, positive �K such that

jjF .t/jj2H D HF .t; t/ � �2K ; t 2 K:
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Consequently

sup
t2K
j�F;c Œh� .t/j D sup

t2K
jhh;F .t/iHj � jjhjjH sup

t2K
jjF .t/jjH � �K jjhjjH :

Proof HF is separable when T is.
One chooses arbitrarily a countable, dense subset Tc of T: Let Hc be the subspace

of HF spanned by the set fF .t/ ; t 2 Tcg : Hc is separable. Let h 2 HF be orthogonal
to Hc: Then, for fixed, but arbitrary t 2 Tc;

LF Œh� .t/ D hh;F .t/iH D 0:

Since LF Œh� is continuous, and Tc is dense in T;

LF Œh� .t/ D hh;F .t/iH D 0; t 2 T;

so that h 2 H?F : But then h D 0: Thus Hc D HF which is thus separable. ut
The following proposition explains the consequences of kernel continuity.

Proposition 2.6.11 Let T be a Hausdorff, locally compact space, and C .T/ be the
set of continuous functions f W T �! R: C .T/ is given the topology of uniform
convergence on compact sets [154, p. 229]. Let H be a real Hilbert space, and
F W T �! H be a map. The following statements are then equivalent:

1. HF is continuous;
2. the diagonal of T � T belongs to the set of points at which the map .t1; t2/ 7!

HF .t1; t2/ is continuous;
3. F is continuous;
4. F is weakly continuous, and t 7! HF .t; t/ is continuous;
5. �F;c D LF is compact.

Proof (1) 2) Since HF is continuous on T � T; it is continuous on the diagonal.

Proof (2) 3) One has, for fixed, but arbitrary .t1; t2/ 2 T � T;

jjF .t1/ � F .t2/jj2H D HF .t1; t1/� 2H .t1; t2/CHF .t2; t2/ ;

but, when jt1 � t2j is small, the right-hand side of the latter expression is small too,
because of item 2.

Proof (3) 1) For fixed, but arbitrary .t1; t2/ 2 T � T and .h1; h2/ 2 H ˚ H; one
may define the following continuous maps:

˚ W T � T �! H ˚ H using ˚ .t1; t2/ D .F .t1/ ;F .t2// ;
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and

� W H ˚ H �! R using � .h1; h2/ D hh1; h2iH:

Since one has that

HF .t1; t2/ D � ı ˚ .t1; t2/ ;

HF is continuous.

Proof (3, 4) When F is continuous, it is weakly continuous, and the map t 7!
jjF .t/jjH is also continuous. Thus item 4 obtains. Suppose now that item 4 is true,
and that one has a convergent net in T W lim� t� D t: Since, for fixed, but arbitrary
h 2 H; t �! hh;F .t/iH is continuous as well as t �! jjF .t/jjH ; as limits of
nets, lim�hh;F .t�/iH D hh;F .t/iH and lim� jjF .t�/jjH D jjF .t/jjH [270, p. 75].
Since convergent nets are Cauchy nets [270, p. 260], one can build, as in [270,
p. 261], a subsequence of the net, ft�n ; n 2 Ng ; converging to t: But then [69, p. 98],
since it obtains that limnhh;F .t�n/iH D hh;F .t/iH ; and also that limn jjF .t�n/jjH D
jjF .t/jjH ; one has that limn F .t�n/ D F .t/ : Consequently [270, p. 261], lim F .t�/ D
F .t/ :

Proof (3, 5) Let BH .0; 1/ denote the closed unit ball in H W to have that �F;c is
compact, it suffices to prove that F D �F;c ŒBH .0; 1/� is a compact subset of C .T/
[222, p. 152]. But compactness in C .T/ of the set of functions F is regulated by
Ascoli’s theorem [154, p. 233] which states the following necessary and sufficient
conditions:

• F is closed in C .T/ I
• the closure of F Œt� D f f .t/ ; f 2 Fg is compact for each t 2 TI
• F is equicontinuous.

Let f f� D �F;c Œh�� ; h� 2 BH .0; 1/g be a net converging to f in C .T/ : Since
BH .0; 1/ is weakly compact [129, p. 185], there is a sub-net

˚
h��
�

converging
weakly to some h 2 BH .0; 1/ [154, p. 136]. Since F is continuous, it is weakly
continuous (item 4), and thus�F;c is continuous [(Proposition) 2.6.10]. But then it is
continuous for the weak topology [222, p. 48], so that the net

˚
�F;c

�
h��
��

converges
to�F;c Œh� : Since T is Hausdorff, C .T/ is Hausdorff also [84, p. 258]. But a net in a
Hausdorff space can only have one limit [154, p. 67], that is f D �F;c Œh� : In other
words, the image of the closed unit ball is closed.

Since �F;c is continuous, the image of a bounded set by a continuous function
being bounded [269, p. 180], F is bounded. The evaluation map at t is continuous,
since the topology is that of uniform convergence on compact sets, and thus F Œt� is
bounded. Since F is closed, F Œt� is closed. F Œt� is thus compact.
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To see that F is equicontinuous, one must notice that

sup
f2F
j f .t1/ � f .t2/j D sup

h2BH.0;1/

j�F;c Œh� .t1/��F;c Œh� .t2/j

D sup
h2BH.0;1/

jLF Œh� .t1/� LF Œh� .t2/j

D sup
h2BH.0;1/

jhh;F .t1/iH � hh;F .t2/iHj

D sup
h2BH.0;1/

jhh;F .t1/ � F .t2/iHj

D jjF .t1/� F .t2/jjH :

Thus F is equicontinuous if, and only if, F is continuous.
Now, when�F;c is compact, F is equicontinuous, which as just seen, means that

F is continuous. ut
Example 2.6.12 (A Family of RKHS’s of Continuous Functions) The derivative of
a function f shall be denoted f 0: Let 0 � tl < tr < 1; and T; the interval Œtl; tr� :
For ft1; t2g � T; fixed but arbitrary, let CW .t1; t2/ D t1 ^ t2: It is a covariance
whose factorization corresponds to c^ .t/ D t and c_ .t/ D 1: Let H .CW ;T/ be the
associated RKHS.

Let C be a covariance with a factorization C D c^c_ such that

• TC D T;
• c^ and c_ are twice continuously differentiable,
• rC has a strictly negative derivative.

In particular rC is continuous, and thus its range is a finite, closed interval which
shall be denoted I D Œa; b� : One has then, since rC is decreasing, that rC .tl/ D b
and rC .tr/ D a: One then has also a unitary map U W H .C;T/ �! H .CW ; I/ ; as
obtained in (Remark) 1.4.21:

U Œh� D
	

h

c^



ı r�1C :

Furthermore U? Œh� D c^ Œh ı rC� :

The norm of elements in H .C;T/ may be obtained as follows. As, with ˚ D
h=c^;

jjhjj2H.C;T/ D jjU Œh�jj2H.CW ;I/
D
ˇ̌̌
ˇ
ˇ̌̌
ˇ
	

h

c^



ı r�1C

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H.CW ;I/

D ˇ̌̌̌˚ ı r�1C

ˇ̌̌̌ 2
H.CW ;I/

; (?)

and that, for hW 2 H .CW ; I/ ; fixed, but arbitrary, both

hW .t/ D hW .a/C
Z

I
�
Œa;t� .x/ � .x/ dx;

Z
I
�2 .x/ dx <1 ;
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and

jjhW jjH.CW ;I/ D
h2W .a/

a
C
Z

I
�2 .x/ dx

obtain, it follows, from the inverse function formula:

. f�1/0.x/ D . f�1/0. f Œ f�1.x/�/ D 1

f 0. f�1.x//
;

that

� D ˚˚ ı r�1C

�0 D ˚˚ 0 ı r�1C

� �
r�1C

�0 D ˚ 0 ı r�1C

r0C ı r�1C

:

Consequently, using the following formula [262, p. 249]:Z
I
f .x/ dx D

Z
T

f .rC .t//
ˇ̌
r0C .t/

ˇ̌
dt ;

with f D
n
˚ 0ır�1C

r0Cır�1C

o2
; one gets that

Z
I
�2 .x/ dx D �

Z
T

f˚ 0 .t/g2
r0C .t/

dt :

Suppose that h of (?) can be differentiated (more on that below): then

˚ 0 D h0c^ � hc0̂

c2^
; and r0C D

c0_c^ � c_c0̂

c2^
;

so that

1 >

Z
I
�2 .x/ dx D

Z
T

n
h0 .t/ � c0^.t/

c^.t/
h .t/

o2
fc0̂ .t/ c_ .t/ � c^ .t/ c0_ .t/g

dt :

Let

D D 1

fc0̂ .t/ c_ .t/ � c^ .t/ c0_ .t/g
:

The denominator of D is a continuous function, and thus, because of the last
inequality, D has a strictly positive lower bound. Expanding the right-hand side in
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that same inequality, one gets thatZ
I
�2 .x/ dx D

Z
T

˚
h0 .t/

�2
D .t/ dt

C
Z

T

�
c0̂ .t/
c^ .t/

� 2
h2 .t/D .t/ dt

� 2
Z

T

�
c0̂ .t/
c^ .t/

�
h .t/ h0 .t/D .t/ dt :

Now

2

Z
T

�
c0̂ .t/
c^ .t/

�
h .t/ h0 .t/D .t/ dt D

D
Z

T
D .t/

�
c0̂ .t/
c^ .t/

�
d
˚
h2 .t/

�
D D .t/

�
c0̂ .t/
c^ .t/

�
h2 .t/

ˇ̌̌
ˇtr
tl

�
Z

T
h2 .t/ d

�
D .t/

�
c0̂ .t/
c^ .t/

��

D D .t/

�
c0̂ .t/
c^ .t/

�
h2 .t/

ˇ̌̌
ˇtr
tl

�
Z

T
h2 .t/

�
D .t/

�
c0̂ .t/
c^ .t/

�� 0
dt ;

so that Z
I
�2 .x/ dx D

Z
T

˚
h0 .t/

�2
D .t/ dt

C
Z

T
h2 .t/G .t/ dt �

(
D .t/

�
c0̂ .t/
c^ .t/

�
h2 .t/

ˇ̌̌
ˇtr
tl

)
;

where

G D D

�
c0̂

c^

� 2
C
�

D

�
c0̂

c^

�� 0

D D

�
c0̂

c^

� 2
C D0

c0̂

c^
CD

�
c00̂ c^ � fc0̂ g2

c2^

�

D D0
c0̂

c^
C D

c00̂

c^
:
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As D0 D fc^c00_ � c00̂ c_gD2;

G D ˚
c^c00_ � c00̂ c_

�
D2

c0̂

c^
C D

c00̂

c^

D D2

c^
˚˚

c^c00_ � c00̂ c_
�

c0̂ C ˚c0̂ c_ � c^c0_
�

c00̂
�

D D2

c^
˚
c^c0̂ c00_ � c^c00̂ c0_

�
D D2

˚
c0̂ c00_ � c00̂ c0_

�
:

In particular, G is continuous. Furthermore, given thatZ
I
�2 .x/ dx D

D
Z

T
D .t/

˚
h0 .t/

�2
dtC

Z
T

G .t/ h2 .t/ dt �
(

D .t/

�
c0̂ .t/
c^ .t/

�
h2 .t/

ˇ̌̌
ˇtr
tl

)
;

h0 has a square that is integrable.
Now a D rC .tr/ D c_.tr/

c^.tr/
; and

hW .a/ D h

c^
ı r�1C .a/ D h

c^
ı r�1C .rC .tr// D h .tr/

c^ .tr/
;

so that

h2W .a/

a
D h2 .tr/

c2^ .tr/
c^ .tr/
c_ .tr/

D h2 .tr/

c^ .tr/ c_ .tr/
:

Finally

h2W .a/

a
� D .t/

�
c0̂ .t/
c^ .t/

�
h2 .t/

ˇ̌̌
ˇtr
tl

D

D D .tl/
c0̂ .tl/
c^ .tl/

h2 .tl/C h2 .tr/

c^ .tr/ c_ .tr/
�D .tr/

c0̂ .tr/
c^ .tr/

h2 .tr/

D D .tl/
c0̂ .tl/
c^ .tl/

h2 .tl/C
�

1

c^ .tr/ c_ .tr/
� D .tr/

c0̂ .tr/
c^ .tr/

�
h2 .tr/ :
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But

1

c^ .tr/ c_ .tr/
�D .tr/

c0̂ .tr/
c^ .tr/

D

D 1 �D .tr/ c0̂ .tr/ c_ .tr/
c^ .tr/ c_ .tr/

D D .tr/ fc0̂ .tr/ c_ .tr/� c^ .tr/ c0_ .tr/g �D .tr/ c0̂ .tr/ c_ .tr/
c^ .tr/ c_ .tr/

D �D .tr/
c0_ .tr/
c_ .tr/

:

The norm of h is thus given by the following expression:

jjhjj2H.C;T/ D
Z

T

n
D
˚
h0
�2 C Gh2

o
.t/ dtC

�
D

c0̂

c^
h2
�
.tl/ �

�
D

c0_
c_

h2
�
.tr/ ;

where h0 is the generalized derivative of h; and the usual derivative when it is
differentiable. The procedure that has just been described hinges on the fact that
all continuous h 2 H .C;T/ may be differentiated in the appropriate sense. The
remarks which follow explain why one may consider that such is the case, and
that, furthermore, the derivative has an integrable square. Another way to justify
the computation is to do it for usually differentiable functions, and then use the fact
that these are dense in the appropriate space.

Beppo-Levi space [a particular case]
Let I D Œa; b� � R be fixed, but arbitrary. A continuous function f W I �! R

admits a generalized derivative g when it can be expressed as

f .t/ D f .a/C
Z t

a
g .�/ d�; with

Z b

a
g2 .�/ d� <1:

The class of g is the generalized derivative of f : H1 Œa; b� denotes the vector space
of functions with a generalized derivative. On H1 Œa; b� let

Œ f1; f2� D f1 .a/ f2 .a/C
Z b

a
g1 .�/ g2 .�/ d�:

One thus defines a Hilbert space, in fact, the RKHS obtained using the following
function: F W I �! R˚ L2 Œa; b� ; defined through the following relation:

F .t/ D �˛; IŒa;t�� :
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Sobolev space [a particular case]
Let I D Œa; b� � R be fixed, but arbitrary. Suppose that f and g are locally

integrable. g is the weak derivative of f when, for all functions  that are indefinitely
and continuously differentiable,Z

I
f .�/ 0 .�/ d� D �

Z
I
g .�/  .�/ d�:

Write D Œ f � for g: Then

H1 Œa; b� D
�

f 2 L2 Œa; b� W
Z b

a
D Œ f �2 .�/ d� <1

�
:

One has that [7, p. 28] to every element f 2 H1 Œa; b� there corresponds a
continuous Qf such that, almost surely, Qf D Pf and

Qf .t/ D Qf .c/C
Z t

a
D Œ f � .�/ d�:

When f is continuous, f D Qf ; and thus every element of H .C;T/ has a
generalized derivative, and the above calculation makes sense.

2.7 Spectral Theory: A Vademecum

In the sequel, repeated use of the spectral decomposition of an operator shall occur.
All results upon which one shall rely may be found in [266]. Here is a list of the
relevant facts.

One needs first an appropriate theory of integration. Mentioned will only be the
facts that are needed to understand correctly the meaning of that theory as used in
[266, pp. 175, 185–186, 335–350].

Let I be the family of bounded intervals (open, half-open, closed, made of one
point, empty) of R (the theory works identically for Euclidean space), and QI be the
family of finite unions of such intervals. A function defined for intervals, called an
intervals function, is a map � W I �! R which is monotone increasing with respect
to inclusion, and additive over disjoint intervals. � has a natural extension to QI; it is
positive, and zero at the empty set. Intervals functions are regular when their values
on arbitrary intervals may be approximated arbitrarily closely from the inside by
closed intervals, and from the outside, by open ones. A regular intervals function is
called a measure.

Let N be a set of reals. It has measure zero for � when, for arbitrary � > 0; there
exists fIn.N; �/; n 2 Ng � I such that

N � [nIn.N; �/; and
X

n

� .In.N; �// < �:



198 2 The Functions of a Reproducing Kernel Hilbert Space

When � accompanies a relation, such as f D� g; it means that the relation holds for
all arguments, of f and g in the example, outside a set of �-measure zero.

A step function is a map of the following form:

f .x/ D
nX

iD1
˛i�Ii

.x/ ; n 2 N; f˛1; : : : ; ˛ng � R; fI1; : : : ; Ing � I:

Let S denote the family of all possible step functions. The integral of f 2 S is the
number Z

fd� D
nX

iD1
˛i� .Ii/ :

Such assignments make sense and have the properties an integral should have. One
then extends that notion of integral to functions which are obtained as follows, and
whose family is denoted S1: Let f W R �! R be a function with the following
property: there exists f fn; n 2 Ng � S such that

• f fn; n 2 Ng is increasing and limn fn D� f I
• the sequence

˚R
fnd�; n 2 N

�
is bounded.

One then defines Z
fd� D lim

n

Z
fnd�:

Again such a definition makes sense and has the properties of an integral. The final
extension of the integral is obtained by taking differences of functions in S1 to obtain
S2 W for f f1; f2g � S1; let

f D f1 � f2; and
Z

fd� D
Z

f1d� �
Z

f2d�:

Again such assignments make sense and have the properties an integral should have.
In particular the usual limit theorems obtain, and the following result yields the gist
of the theory: given f 2 S2; there is f fn; n 2 Ng � S such that

lim
n

fn D� f ; lim
n

Z
j f � fnj d� D 0; and lim

n

Z
fnd� D

Z
fd�:

That done, one must produce measurable functions. The function f is measurable
for � when there exists f fn; n 2 Ng � S with limn fn D� f : The usual properties
of measurable functions then follow, and, in particular, continuous functions,
and functions in S2 are measurable for �: Borel measurable functions are also
measurable for �: A set is measurable for � when its indicator function is, so that
the sets in QI are measurable for �; and have finite measure for �: Sets that are
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measurable for � and have measure zero for � are said to be sets of measure zero
for �: When a set is measurable for �; but its indicator function is not integrable,
then that set is given infinite measure for �: When the indicator is integrable, the
measure, for �; of the corresponding set, is its integral with respect to �:

Let H be a real Hilbert space, and L .H/ be its bounded, linear operators (whose
domain is H).

Definition 2.7.1 A spectral family on H is a map E W R �! L .H/ such that (the
prefix s-indicates strong convergence [266, p. 77])

1. E .t/ is a projection for every t 2 RI
2. when t1 � t2; E .t1/ � E .t2/ I
3. for t 2 R; fixed, but arbitrary, s � lim�#0 E .tC �/ D E .t/ ;

which means that, for h 2 H; fixed, but arbitrary,

lim
�#0
jjE .tC �/ Œh�� E .t/ Œh�jjH D 0I

4. s � limt#�1 E .t/ D 0H; and s� limt"1 E .t/ D IH :

Let h 2 H be fixed, but arbitrary. The function

FE
h .t/ D jjE .t/ Œh�jj2H

is monotone increasing, continuous to the right, bounded, and

0 D lim
t#�1

FE
h .t/ � FE

h .t/ � lim
t"1

FE
h .t/ D jjhjj2H :

The measure defined using FE
h shall be denoted �E

h: A map  W R �! R is
measurable for E when, for h 2 H; fixed, but arbitrary, it is measurable for�E

h: Step,
point-wise limits of such, continuous, and Borel measurable functions are examples
of functions measurable for E: Bounded functions, measurable for E; belong to
L2
�
�E

h

�
; for every h 2 H: Since

hE .t/ Œh1� ; h2iH D
D hE .t/ Œh1� ;E .t/ Œh2�iH

D jjE .t/ Œh1 C h2�jj2H � jjE .t/ Œh1 � h2�jj2H
4

D Fh1Ch2 .t/ � Fh1�h2 .t/

4
;

one has similarly a measure �E
h1;h2

:
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Let E .t�/ D s � lim�#0 E .t � �/ : One sets:

E�t1;t2� D E .t2/� E .t1/ ;

E�t1;t2Œ D E .t2�/� E .t1/ ;

EŒt1;t2� D E .t2/� E .t1�/ ;
EŒt1;t2Œ D E .t2�/� E .t1�/ :

Those assignments allow one to define an integral of step functions, with respect to
E; that produces an operator in L .H/ W for f 2 S; fixed, but arbitrary,

Z
f .t/E .dt/ D

nX
iD1

˛iE .Ii/ ;

and then the following obtains, for fixed, but arbitrary h 2 H Wˇ̌̌
ˇ
ˇ̌̌
ˇ
�Z

f .t/E .dt/

�
Œh�

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

D
Z

f 2 .t/ �E
h .dt/ :

A limiting argument allows one to define an operator which integrates, with
respect to the spectral measure E; functions f which are measurable for E; and
whose square is integrable for �E

h: That operator is denoted

OE . f / D
Z

f .t/E .dt/ :

Functions with such properties shall be denoted ; etc. in the sequel.
Operators thus defined have the following properties:

Fact 2.7.2 ([266, pp. 175]) Let DŒB� denote the domain of the operator B:

1. When the equivalence class of ; with respect to �E
h; belongs to the space

L2
�
�E

h

�
; then h belongs to the domain of OE ./ :

2. OE ./ is self-adjoint (that is, densely defined, and equal to its adjoint).
3. Let �n be the indicator function of the interval Œ�n; n� ; and

n .t/ D �n . .t//  .t/ W

then, for

h 2 D
h OE ./i ; and h 2 D

h OE . /i ;
h OE ./ �h� ; OE . / �h �iH D lim

n

Z
n .t/  n .t/ �

E
h ;h .dt/
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(the notation shall be eitherZ
 .t/  .t/ �E

h ;h .dt/ or
Z
 .t/  .t/ hE .dt/

�
h
�
; h iH/:

4. For h 2 D
h OE ./i ; ˇ̌̌̌̌̌ OE ./ Œh�ˇ̌̌̌̌̌ 2

H
D R 2 .t/ �E

h .dt/ :

5. When  is bounded, OE ./ 2 L .H/ and
ˇ̌̌̌̌̌
OE ./

ˇ̌̌̌̌̌
� supt2R j .t/j :

6. When  .t/ D 1; t 2 R; OE ./ D IH:

7. For h 2 H; and h 2 D
h OE ./i ;

h OE ./ �h� ; hiH D Z  .t/ hE .dt/
�
h
�
; hiH:

8. When  .t/ � �; t 2 R; for h 2 D
h OE ./i ; fixed, but arbitrary,

h OE ./ Œh� ; hiH � � jjhjj2H :

9. D
h OE ./i \D

h OE . /i D D
h OE ./C OE . /i D D

h OE .jj C j j/i :
10. D

� OE ./C OE . /� � D
� OE .˛ C ˇ /� :

11. OE .˛ C ˇ / extends ˛ OE ./C ˇ OE . / ; that is

(i) D
h
˛ OE ./C ˇ OE . /

i
� D

h OE .˛ C ˇ /i,
(ii)

h OE .˛ C ˇ /ijDŒ˛ OE./Cˇ OE. /� D ˛ OE ./C ˇ OE . / :
12. D

h OE ./ OE . /i D D
h OE . /i \D

h OE . /i :
13. OE . / extends OE ./ OE . / ; that is

(i) D
h OE ./ OE . /i � D

h OE . /i ;
(ii)

h OE . /ijDŒ OE./ OE. /� D OE ./ OE . / :
14. A set S is measurable for E when �S is. Then one often writes ES for OE Œ�S � :

One has furthermore the following set of equalities:

ERnS D OE
�
1R � �S

� D IH � OE
�
�

S

� D IH � ES:

The operators ES are projections.
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Fact 2.7.3 ([266, pp. 185–186]) Suppose now B is a self-adjoint operator on H;
that is D ŒB� D H; and, on D ŒB� ; B D B?: There is then a unique spectral family
EB such that

B D OEB .idR/ ; idR.t/ D t; t 2 R:

The following obtain:

1. Let  be a measurable function for EB: Then

 .B/ D OEB ./ :

In particular, given S measurable for EB; EB
S D �S .B/ :

2. The spectral family associated with  .B/ ; say E.B/; is obtained as follows (S
below is a Borel set):

E.B/ .t/ D EB

�1.��1;t�/I
E.B/S D EB

�1.S/:

3. Let S be measurable for EB: Then BEB
S extends EB

SB:
4. Let D .S;B/ D EB

S .D ŒB�/ : Then

(i) for h 2 D .��1; �Œ ;B/ n f0Hg ;

hB Œh� ; hiH < � jjhjj2H I

(ii) for h 2 D .��1; �� ;B/ n f0Hg ;

hB Œh� ; hiH � � jjhjj2H :

5. hB Œh� ; hiH � � jjhjj2H for all h 2 DŒB� if, and only if, for all t � �; EB .t/ D IH

(identity operator).
6. hB Œh� ; hiH � � jjhjj2H for all h 2 DŒB� if, and only if, for all t < �; EB .t/ D OH

(zero operator).
7. Let I be a bounded interval. Then RŒEB

I � � DŒB�; and

BEB
I D OE .�I idR/ 2 L .H/ :

8. Fix arbitrarily t 2 R and � > 0: Then, for h 2 RŒEB .tC �/ � EB .t � �/�;

h 2 DŒB�; and jj.B � tIH/ Œh�jjH � � jjhjjH :
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9. B is bounded if, and only if, there are constants �1 and �2 such that

EB .t/ D
�

OH when t < �1
IH when t � �2: :

One may choose

(i) �1 D m D inffh2DŒB�WjjhjjHD1g fhB Œh� ; hiHg I
(ii) �2 D M D supfh2DŒB�WjjhjjHD1g fhB Œh� ; hiHg :
When t 2 �m;MŒ ; EB .t/ ¤ OH ; and EB .t/ ¤ IH:

Remark 2.7.4 One sometimes meets the following notation:

f .B/ D
Z M

m�
f .t/ EB .dt/ ;

where the minus in m� means that Pf .m/E .m/ may be different from the zero
operator.

Fact 2.7.5 ([266, p. 194]) Let Hp be the subspace of H generated by the eigenvec-
tors of B; and Hc D H?p : Hcs is the subspace of elements h 2 Hc for which there
exists a Borel N � R; of Lebesgue measure zero, with the property that

EB
N Œh� D h:

Finally Hca D Hc �Hcs; and Hs D Hp ˚ Hcs: Then the following facts obtain:

1. Hp D fh 2 H W 9S � R with jSj � @0 and �h .R n S/ D 0g I
2. Hc D fh 2 H W �h .t/ D 0; t 2 Rg I
3. Hs D fh 2 H W 9N; Borel, of Lebesgue measure zero, with �h .R n N/ D 0g I
4. Hca D fh 2 H W �h .N/ D 0;N Borel, of Lebesgue measure zero.g

2.8 Reproducing Kernel Hilbert Spaces as Images of Ranges
of Square Roots of Linear Operators

When the functions of an RKHS are square integrable, one may sometimes be able
to show that this RKHS is basically the range of the square root of the integral
operator determined by its reproducing kernel (Propositions 1.3.20 and 1.3.21). One
shall find below a further context in which this assertion proves true.

Definition 2.8.1 Let X be a topological space, and X be a �-algebra of subsets
of X containing B .X/ ; the Borel sets. Let � be a measure on X : Its support is
denoted S .�/ ; and x 2 S .�/ when � .Vx/ > 0 for open neighborhoods Vx of x:
S .�/ is closed since, whenever the net x� in S .�/ converges to x; and Vx is an open
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neighborhood of x; Vx is eventually an open neighborhood of x�:As the complement
of S .�/ is open, any of its measurable subsets has measure zero for �:

Remark 2.8.2 The following facts are used in the sequel. Second countable means
separable [84, p. 176]. In metric spaces, second countable and separable are
equivalent [84, p. 187]. A Hausdorff space is locally compact if, and only if, each
of its points has a compact neighborhood [270, p. 130].

Remark 2.8.3 Suppose that T is Hausdorff, locally compact, and second countable.
It is thus separable because second countable. Let � be a positive, Radon measure on
T D B .T/ : Suppose that F W T �! H is weakly continuous. Then HF is separable
[(Proposition) 2.6.9], so that [(Proposition) 2.2.2]

N Œ�F;0� D H?F;� :

However, since Œ f �L0.T;T ;�/ D 0 if, and only if, f .t/ D 0; t 2 S .�/ ;

N Œ�F;0� D fh 2 H W hh;F .t/iH D 0; t 2 S .�/g D V ŒF .t/ ; t 2 S .�/�
?
:

Consequently, HF;� D V ŒF .t/ ; t 2 S .�/�:
The continuity assumption may be replaced by an assumption on HF W that it be

separable. When the range of F is in an RKHS, that amounts to the assumption that
the RKHS itself be separable. One may then drop the assumption that T be second
countable.

Remark 2.8.4 Suppose that, in (Remark) 2.8.3, T is compact. Then � is finite.
Since F is weakly continuous, for h 2 H; fixed, but arbitrary, t �! hh;F .t/iH
is continuous, and there are thus tm and tM in T such that, for t 2 T; fixed, but
arbitrary,

hh;F .tm/iH � hh;F .t/iH � hh;F .tM/iH :

Thus

jhh;F .t/iHj � jhh;F .tm/iHj _ jhh;F .tM/iHj
� jjhjjH fjjF .tm/jjH _ jjF .tM/jjHg :

Thus (Banach-Steinhaus theorem, [266, p. 76]) F is bounded. It is thus strongly
p-integrable, and �F;p is compact [(Proposition) 2.5.5].

However, for�F;c to be compact, it is necessary, and sufficient, that F be strongly
continuous [(Proposition) 2.6.10].

Proposition 2.8.5 Let .T; T ; �/ be a �-finite measure space, and H .H;T/ be a
separable RKHS. The following statements are then equivalent:

1. H .H;T/ is a manifold in L2 .T; T ; �/ I
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2. H is a .2; 2/-bounded kernel.

When these equivalent conditions obtain, the following operator:

LHF D �F;2�
?
F;2 D JF;2J

?
F;2

is the integral operator with kernel HF D H:
Proof This result is a particular case of (Proposition) 2.5.2.

Suppose indeed that H .H;T/ is a manifold in L2 .T; T ; �/ : Let the map F W
T �! H .H;T/ be defined using F .t/ D H .
; t/ ; t 2 T: Then LF is the identity,
HF D H .H;T/ is separable, and HF D H: The assumption (item 1) then says that F
is weakly 2-integrable, so that, by (Proposition) 2.5.2, HF is .2; 2/-bounded (in fact
a Carleman kernel). The validity of the last part of the statement follows also from
(Proposition) 2.5.2. That item 2 implies item 1 follows from (Proposition) 2.5.2 as
well. ut
Remark 2.8.6 Statement (Proposition) 2.8.5 plus Douglas’s theorem [80] yield that
JF;2 and L1=2

H have the same range. The result which follows gives more information
on this relation. But two preliminary lemmas are needed for its proof.

Lemma 2.8.7 Let T be Hausdorff, locally compact, second countable; T be B .T/ I
and � be a (regular) �-finite Radon measure on T : Assume that � has full support,
and that H .H;T/ is separable, and a manifold in L2 .T; T ; �/ : Let F W T �!
H .H;T/ be defined using F .t/ D H .
; t/ ; t 2 T; and LH be the integral operator
with kernel H: Then

1. �F;2 D JF;2 is injective;
2. JF;2 Œh� D Œh�L2.T;T ;�/ D L1=2

H W? Œh� ; h 2 H .H;T/ ; where W? is a partial
isometry whose initial and final sets are, respectively,

H .H;T/ and RŒL1=2
H �I

3. L1=2

H is injective on the range of W?; and thus

L�1=2H

�
Œh�L2.T;T ;� /

� D W? Œh� ; h 2 H .H;T/ ;

so that ˇ̌̌̌
L�1=2H

�
Œh�L2.T;T ;� /

�ˇ̌̌̌
L2.T;T ;� /

D jjhjjH.H;T/ I

4. furthermore

N ŒL1=2

H � D RŒJF;2�
?
;

RŒL1=2

H � D RŒJF;2�:
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Proof It was noticed, in (Remark) 2.8.3, that, when one assumes that S .�/ D T;

HF;� D V ŒF .t/ ; t 2 S .�/� D HF D H .H;T/ :

Consequently, since [(Proposition) 2.2.2] N Œ�F;2� D H?F;� ; N Œ�F;2� D N ŒJF;2� D˚
0H.H;T/

�
:

Because of (Proposition) 2.8.5, �F;2�
?
F;2 D LH: The polar decomposition [266,

p. 186] of �?
F;2 thus yields that

�?
F;2 D W

˚�
�?

F;2

�?
�?

F;2

�1=2 D W
˚
�F;2�

?
F;2

�1=2 D WL1=2

H ;

where W is a partial isometry whose initial and final sets are, respectively,

RŒ�F;2�
?
F;2�

1=2� D RŒL1=2
H �; and RŒ�?

F;2�:

Since generally [266, p. 71], for any operator A, RŒA?�? D N ŒA�;

RŒ�?
F;2�
? D N Œ�F;2�;

and, since it has just been acknowledged that �F;2 is an injection, one has that

RŒ�?
F;2�
? D ˚0H.H;T/

�
;

so that

RŒ�?
F;2� D H .H;T/ :

But then [266, p. 86], W? is a partial isometry whose initial and final sets are,
respectively,

H .H;T/ and RŒL1=2
H �:

Consequently, as asserted in item 2,

JF;2 D �F;2 D L1=2

H W?:

Suppose now that L1=2
H Œ f � D 0; f 2 RŒW?�: There is h 2 H .H;T/ such that

W? Œh� D f : But then, because of items 1 and 2, �F;2 Œh� D 0; so that, since �F;2 is
injective, h D 0 and thus f D 0. Item 3 is proved.

Finally, from �?
F;2 D WL1=2

H ; since the initial set of W is the closure of the range
of the square root of LH; the kernel of that square root is that of �?

F;2: But

N Œ�?
F;2� D RŒ�F;2�

? D RŒJF;2�
?
:
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Suppose that f D L1=2
H Œg� : Because of [266, p. 71], and what precedes (item 2),

N ŒL1=2

H � D RŒL1=2
H �
?

; and RŒL1=2
H � D RŒW?�:

Thus g D g1 C g2; where

g1 2 N ŒL1=2

H �; g2 2 RŒL1=2

H �; g2 D W? Œh .g2/� ; some h .g2/ 2 H .H;T/ :

Consequently (item 2)

f D L1=2

H W? Œh .g2/� D JF;2 Œh .g2/� :

Thus RŒL1=2
H � � RŒJF;2�: But, from item 2, one has the reverse inclusion. ut

Remark 2.8.8 Let EH denote the spectral family of LH: One has that:

N ŒLH� D RŒEH .0/�:

Indeed, for 0 < t1 < t2; fixed, but arbitrary, because of (Fact) 2.7.3, items 3 and 7,

ˇ̌̌̌̌̌
EH
�t1;t2�

LH Œh�
ˇ̌̌̌̌̌
2

L2.T;T ;� /
D
Z
�
�t1;t2�

.t/ t2�H
h .dt/

� t21
˚
�H

h .t2/� �H
h .t1/

�
D t21

˚jjEH .t2/ Œh�jj2L2.T;T ;� /
� jjEH .t1/ Œh�jj2L2.T;T ;� /

�
D t21 jjfEH .t2/ � EH .t1/g Œh�jj2L2.T;T ;� / :

Thus, when h 2 N ŒLH�; and 0 < t1 < t2;

jjfEH .t2/� EH .t1/g Œh�jjL2.T;T ;� / D 0:

Choosing t2 > jjLHjj and letting t1 # 0; one has that

jjfIH � EH .0/g Œh�jjL2.T;T ;� / D 0:

Consequently h 2 RŒEH .0/�: Now, when h 2 RŒEH .0/�; because of (Fact) 2.7.3,
item 4, h 2 N ŒL1=2

H � D N ŒLH�:

Lemma 2.8.9 Let T be Hausdorff, locally compact, and second countable; T D
B .T/ I and � be a (regular) �-finite Radon measure on T : Assume that � has full
support, and that H .H;T/ is separable, and a manifold in L2 .T; T ; �/ : Let F W
T �! H .H;T/ be defined using F .t/ D H .
; t/ ; t 2 T; and LH be the integral
operator with kernel H: Then, as LH is linear, positive, bounded, and self-adjoint,
with domain L2 .T; T ; �/ [(Proposition) 2.8.5], it has a spectral decomposition with
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m D 0 and M D jjLHjj : Let EH denote the associated spectral family. One has then
that, for W defined in (Lemma) 2.8.7,

fEH .0/� EH .0�/gW? D EH .0/W? D 0:

Proof EH .0�/ D OH because of (Fact) 2.7.3, item 9, and, since

• on one hand, because of [266, p. 71] and (Remark) 2.8.8,

RŒL1=2
H � D N ŒL1=2

H �
? D RŒEH .0/�?;

• on the other hand, because of (Lemma) 2.8.7, item 2,

RŒW?� D RŒL1=2

H �;

EH .0/W? D 0: ut
Remark 2.8.10 Let I D Œ0; jjLHjj� ; and I0 D I n f0g : One then has, because of
(Lemma) 2.8.9, that, for appropriate f ; in the range of W?;

Z
f dEH D

Z jjLHjj

0�
f dEH D

Z
I
f dEH D

Z
I0

f dEH:

Proposition 2.8.11 Let T be Hausdorff, locally compact, and second countable;
T D B .T/ I and � be a (regular) �-finite Radon measure on T : Assume that � has
full support, and that H .H;T/ is separable, and a manifold in L2 .T; T ; �/ : Let
F W T �! H .H;T/ be defined using F .t/ D H .
; t/ ; t 2 T; and LH be the integral
operator with kernel H: Then, as LH is linear, positive, bounded, and self-adjoint
[(Proposition) 2.8.5], with full domain, it has [(Fact) 2.7.3] a spectral decomposition
denoted

LH D
Z

I
�EH .d�/ :

Then:

1. The set �
f 2 L2 .T; T ; �/ W

Z
I
��1�H

f .d�/ <1
�

which is the range of L1=2
H ; and the domain of L�1=2H ; is obtained as the equivalence

classes in L2 .T; T ; �/ of the elements in H .H;T/ ; and, for h 2 H .H;T/ ; fixed,
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but arbitrary,

jjhjj2H.H;T/ D
Z

I
��1�H

h .d�/ D
ˇ̌̌̌
L�1=2H

�
Œh�L2.T;T ;� /

�ˇ̌̌̌ 2
L2.T;T ;� /

:

2. For fixed, but arbitrary .t1; t2/ 2 T � T; there exists a Radon measure �t1;t2 on
B .I0/ such that

(i) H .t1; t2/ D
R

I0
� �t1;t2 .d�/ ;

(ii) for B 2 B .I0/ such that B � I0; there exists a subset
˚
hB

i ; i 2 IB
�
; in

H .H;T/ ; such that

•
n�

hB
i

�
L2.T;T ;� /

; i 2 IB
o

is, for the range of EH
B ; an orthonormal basis, and

• �t1;t2 .B/ D
P

i2IB hB
i .t1/ hB

i .t2/ :

3. For fixed, but arbitrary t 2 T; there exists a positive Borel measure �t on B .I0/ ;
and a family fhi; i 2 Ig ; in H .H;T/ ; such that

(i)
˚
Œhi�L2.T;T ;� / ; i 2 I

�
is an orthonormal basis for N ŒLH�

?;

(ii) �t is finite if, and only if, ŒH .
; t/�L2.T;T ;�/ 2 RŒLH�;

(iii) when �t is finite, �t .I0/ DPi2I h2i .t/ :

Proof (1) The assertion’s validity follows from (Lemma) 2.8.7, and the fact that

1 >
ˇ̌̌̌
L�1=2H

�
Œh�L2.T;T ;� /

�ˇ̌̌̌ 2
L2.T;T ;� /

D
Z

I
��1�H

h .d�/ :

Proof (2) Let f f ; gg � L2 .T; T ; �/ be fixed, but arbitrary, and  be a continuous
function whose support is compact, and contained in I0: The map

 7!
Z

I0

 .�/

�
�H

fCg .d�/

is linear and positive. There exists thus [263, p. 25] a unique (regular) Radon
measure � fCg; on the Borel sets of I0; such that

Z
I0

 .�/

�
�H

fCg .d�/ D
Z

I0

 .�/ � fCg .d�/ :

There is consequently [263, pp. 26,28] a (regular) signed Radon measure � f ;g; on
the Borel sets of I0; such thatZ

I0

 .�/

�
�H

f ;g .d�/ D
Z

I0

 .�/ � f ;g .d�/ :
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But continuous functions with compact support are dense in L1 [263, p. 123], so that
the latter equality remains true for generally integrable functions : Applying the
formula with

•  .�/ D �;
• f D W? ŒF .t1/� D W? ŒH .
; t1/� ;
• g D W? ŒF .t2/� D W? ŒH .
; t2/� ;
one gets, since LH is injective on the range of W? [(Lemma) 2.8.7], and thus
[(Lemma) 2.8.9],

fEH .0/� EH .0�/gW? D 0;

that, since [(Fact) 2.7.2] OE./ D IH when  � 1;
R

I0
� f ;g .d�/ � D

R
I0
�H

f ;g .d�/

D R
I0
hEH .d�/ Œ f � ; giL2.T;T ;� /

D R
I0
hEH .d�/ .W? ŒF .t1/�/ ;W? ŒF .t2/�iL2.T;T ;� /

D R
IhEH .d�/ .W? ŒF .t1/�/ ;W? ŒF .t2/�iL2.T;T ;� /

D hW? ŒF .t1/� ;W? ŒF .t2/�iL2.T;T ;� /

D hF .t1/ ;F .t2/iH.H;T/

D H .t1; t2/ ;

which is claim (i) of item 2.
Let now B � I0 be a Borel set such that B � I0: Since [(Fact) 2.7.3]

EH
B D �B .LH/ D

Z
�B dEH;

and since B contains only elements larger than a strictly positive number, there is a
finite � � 0 such that �

B
.�/ � ��; and, for fixed, but arbitrary f 2 L2 .T; T ; �/ ;

hEH
B Œ f � ; f iL2.T;T ;� / D

Z
B
hEH .d�/ Œ f � ; f iL2.T;T ;� /

� �
Z

I
�hEH .d�/ Œ f � ; f iL2.T;T ;� /

D � hLH Œ f � ; f iL2.T;T ;� /:
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Consequently [80]

RŒEH
B � � RŒL1=2

H �:

Because of (Lemma) 2.8.7,

RŒL1=2

H � D RŒJF;2�; and RŒL1=2

H � D RŒW?�:

Thus

RŒEH
B � � RŒL1=2

H � D RŒJF;2� � RŒW?�: (?)

Since B � I0; �B is integrable with respect to � f ;g: From (Fact) 2.7.2, item 13,
(Fact) 2.7.3, item 3, and appropriate  (for instance, measurable and bounded, on a
support strictly included into �0; jjLHjj�), it follows that

 .LH/ �B
.LH/ D

Z
 .�/�

B
.�/EH .d�/ D OEH

�
�

B

�
;

and thus that

EH
B  .LH/ D EH

B  .LH/EH
B D  .LH/EH

B : (??)

Consequently

h˚ .LH/EH
B

�
Œ f � ; giL2.T;T ;� / D hf .LH/g

�
EH

B Œ f �
�
;
�
EH

B Œg�
�iL2.T;T ;� /;

or

h OEH
�
�

B

�
Œ f � ; giL2.T;T ;� / D h OEH Œ�

�
EH

B Œ f �
�
;
�
EH

B Œg�
�iL2.T;T ;� /;

which, letting  .�/ D ��1; yields that

Z
I

�
B
.�/

�
�H

f ;g .d�/ D
Z

I

1

�
hEH .d�/

�
EH

B Œ f �
�
;
�
EH

B Œg�
�iL2.T;T ;� /:

As a consequenceZ
I0

�
B
.�/ � f ;g .d�/ D

Z
I

1

�
hEH .d�/

�
EH

B Œ f �
�
;EH

B Œg�iL2.T;T ;� /:

Choose f D W? ŒF .t1/� ; and g D W? ŒF .t2/� : Using (?), one may write, for
example,

EH
B Œ f � D L1=2

H W? Œk� :
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Then, since, on the range of W?; the operator L1=2
H is injective [(Lemma) 2.8.7],Z

I0

�
B
.�/ � f ;g .d�/ D hL�1=2H fEH

B Œ f �g ;L�1=2H fEH
B Œg�giL2.T;T ;� /:

Since EH
B is a projection, let (because of (?))

n�
hB

i

�
L2.T;T ;� /

D L1=2

H W?
�
hB

i

�
; hB

i 2 H .H;T/ ; i 2 IB
o

be a complete orthonormal set in its range. Then, since, as seen above (??),
L1=2

H EH
B D EH

B L1=2

H EH
B ; the following inner product

hL�1=2H fEH
B ŒW

? .F .t1//�g ;L�1=2H fEH
B ŒW

? .F .t2//�giL2.T;T ;� /

equals X
i2IB

hL�1=2H fEH
B ŒW

? .F .t1//�g ;
�
hB

i

�
L2.T;T ;� /

iL2.T;T ;� / �

� hL�1=2H fEH
B ŒW

? .F .t2//�g ;
�
hB

i

�
L2.T;T ;� /

iL2.T;T ;� /:

Furthermore, the following one,

hL�1=2H fEH
B ŒW

? .F .t1//�g ;
�
hB

i

�
L2.T;T ;� /

iL2.T;T ;� /

is equal to

hEH
B L�1=2H ŒW? .F .t1//� ;

�
hB

i

�
L2.T;T ;� /

iL2.T;T ;� / D
D hL�1=2H ŒW? .F .t1//� ;

�
hB

i

�
L2.T;T ;� /

iL2.T;T ;� /
D hL�1=2H ŒW? .F .t1//� ;L

1=2

H W?
�
hB

i

�iL2.T;T ;� /
D hW? .F .t1// ;W

?
�
hB

i

�iL2.T;T ;� /
D hF .t1/ ; hB

i iH.H;T/
D hB

i .t1/ :

Consequently

� f ;g .B/ D
Z

I0

�
B
.�/ � f ;g .d�/ D

X
i2IB

hB
i .t1/ hB

i .t2/ ;

and part (ii) of item 2 obtains.
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Proof (3) Let Bn D
�
1
n ; jjLHjj

�
: Then, as already computed for the proof of (ii),

item 2,

� f ;f .Bn/ D
ˇ̌̌̌
L�1=2H EH

Bn
ŒW? ŒF .t1/��

ˇ̌̌̌
2

L2.T;T ;� /
:

Consequently, since the sequence
n
�

Bn
; n 2 N

o
increases to I�0;jjLHjj�; and the

sequence n
EH

Bn
D IL2.T;T ;�/ � EH

Œ0; 1n Œ
; n 2 N

o
increases, on the range of W?; to the identity operator,

lim
n
� f ;f .Bn/ D lim

n

ˇ̌̌̌
L�1=2H EH

Bn
ŒW? ŒF .t1/��

ˇ̌̌̌
2

L2.T;T ;� /
;

which is finite if, and only if, W? ŒF .t1/� 2 RŒL1=2
H �: But

W? ŒF .t1/� 2 RŒL1=2
H �, W? ŒF .t1/� D L1=2

H Œ f �

, L1=2
H W? ŒF .t1/� D LH Œ f �

, JF;2 ŒF .t1/� D LH Œ f �

, ŒF .t1/�L2.T;T ;� / D LH Œ f � :

Let ˚
Œhi�L2.T;T ;� / ; hi 2 H .H;T/ ; i 2 I

� � L2 .T; T ; �/

be a complete orthonormal set in the range of the square root of LH (as a separable,
inner product space, this range contains an orthonormal basis [266, p. 47].) Then,
when W? ŒF .t1/� 2 RŒL1=2

H �;ˇ̌̌̌
L�1=2H W? ŒF .t1/�

ˇ̌̌̌
2

L2.T;T ;� /
D
X
i2I

hL�1=2H W? ŒF .t1/� ; Œhi�L2.T;T ;� /i2L2.T;T ;� /

D
X
i2I

hL�1=2H W? ŒF .t1/� ;L
1=2

H W? Œhi�i2L2.T;T ;� /

D
X
i2I

hF .t1/ ; hii2H.H;T/

D
X
i2I

h2i .t1/ :

ut
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Remark 2.8.12 When S .�/ is strictly contained in T, (Proposition) 2.8.11 remains
true as long as one replaces T with S .�/ ; and H .H;T/ with H

�
HS.�/; S .�/

�
:

Corollary 2.8.13 The assumptions are those of (Proposition) 2.8.11. When LH has
pure point spectrum, there exists an orthonormal family˚

Œhi�L2.T;T ;� / ; hi 2 H .H;T/ ; i 2 I
� � L2 .T; T ; �/ ;

and strictly positive constants f�i; i 2 Ig ; such that

1. LH DPi2I �i
˚
Œhi�L2.T;T ;� / ˝ Œhi�L2.T;T ;� /

� I
2. H .H;T/ D

n
h 2 L2 .T; T ; �/ WPi2I

1
�i

ˇ̌̌̌
Œh�L2.T;T ;� /

ˇ̌̌̌
2

L2.T;T ;� /
<1

o
I

3. jjhjj2H.H;T/ D
P

i2I
1
�i
hŒh�L2.T;T ;� / ; Œhi�L2.T;T ;� /i2L2.T;T ;� /

I
4. H .t1; t2/ DPi2I �i hi .t1/ hi .t2/ is an absolutely convergent series.

Proof Items 1 to 3 follow directly from (Proposition) 2.8.11.
The series representation of item 4 has the following justification. When LH

has pure point spectrum, �t1;t2 is a discrete measure located at the eigenvalues.
Furthermore [(Proposition) 2.8.11],

�t1;t2

��
�j
�� DX

i2Ij

h.j/i .t1/ h.j/i .t2/ ;

where n�
h.j/i

�
L2.T;T ;� /

; i 2 Ij

o
is orthonormal and spans the eigenspace associated with �j: Since the series is an
integral, it converges absolutely. ut
Remark 2.8.14 When one assumes that H .H;T/ is also a manifold of continuous
functions, or, equivalently [(Proposition) 2.6.10], that H is locally bounded, and that
x 7! H .x; t/ is continuous for t 2 T; that is, that F is weakly continuous, the series
in item 4 of (Corollary) 2.8.13 is uniformly convergent on compact sets if, and only
if, F is continuous.

Indeed, since the elements in H .H;T/ are continuous, uniform convergence on
compact sets makes H continuous [111, p. 336], and that, in turn, is equivalent to
the continuity of F [(Proposition) 2.6.10]. Conversely, when F is continuous, H is
continuous, and it is Dini’s theorem [154, p. 239] that insures uniform convergence
on compact sets:ˇ̌̌

ˇ̌̌H .t1; t2/ �
X
i�in

�i hi .t1/ hi .t2/

ˇ̌̌
ˇ̌̌ �X

i>in

�i jhi .t1/ hi .t2/j :

Mercer’s theorem is (Corollary) 2.8.13 with the continuity assumptions.
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Remark 2.8.15 Proposition 1.3.21 follows directly from (Corollary) 2.8.13. Indeed
the assumption on C; that is, that C is adapted to T ˝ T ; and such thatR

T C .t; t/ � .dt/ <1;makes it .2; 2/-bounded, so that F is weakly square integrable
[(Proposition) 2.5.2]. Consequently H .C;T/ � L2 .T; T ; �/ : The definition of F
yields that H .C;T/ is separable (it is isomorphic to a subspace of a separable space).
Thus (Lemma) 2.8.9 and (Proposition) 2.8.11 apply. One should also notice that C
has property˘J [(Definition) 2.4.2].



Chapter 3
Relations Between Reproducing Kernel Hilbert
Spaces

When one claims that the signal must be in the RKHS of the noise, for detection to
be nonsingular, one in fact means that the family of its paths should be contained,
as a set, in the RKHS of that noise. One shall see in the next chapter that such a
requirement entails a specific inclusion of related RKHS’s, and the entire topic may
be seen as a partial answer to the following question: given an RKHS of signals,
which noises does it accommodate? What follows covers thus relations between
RKHS’s and, in particular inclusions and intersections.

3.1 Order for Covariances

As shall be seen, order for covariances is equivalent to inclusion of the associated
RKHS’s.

Definition 3.1.1 Let C1 and C2 be covariances on the same set T. C2 dominates C1
when C2 � C1 is a covariance on T. One writes C2 � C1. C1 and C2 are disjoint
when, given a covariance C such that C � C1 and C � C2, C is then the zero
covariance.

Remark 3.1.2 One shall see that disjoint covariances are covariances whose
RKHS’s have an intersection whose only element is the zero function.

Example 3.1.3 Let C D c^c_ and 	 D �^�_ be two covariances on the same set T
of indices. Let [(Definition) 1.1.28] TC and T	 be supports of C and 	 respectively,
that is [(Proposition) 1.4.10], maximal sets of indices at which respectively rC and
r	 are strictly positive and decreasing. Let ft1; t2; t3g � TC \ T	 ; t1 < t2 < t3
be fixed, but arbitrary (one thus supposes that three such points exist). Let C3 and
	3 be the matrices with, for fi; jg � Œ1 W 3�, fixed, but arbitrary, respective entries
C
�
ti; tj

�
and 	

�
ti; tj

�
. C3 and 	3 have the following respective representations
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[(Remark) 1.4.8]:

C3 D D.3/
^ L?3D.3/

rC
L3D

.3/^ ; and 	3 D �.3/^ L?3�
.3/

r	 L3�
.3/^ ;

which may be written in the following respective forms:

C3 D
n
D.3/^ L?3

˚
D.3/

rC

�1=2o n
D.3/^ L?3

˚
D.3/

rC

�1=2o? D QC3 QC?
3 ;

	3 D
n
�

.3/^ L?3
˚
�.3/

r	

�1=2o n
�

.3/^ L?3
˚
�.3/

r	

�1=2o? D Q	3 Q	 ?
3 :

Consider the matrix equation which, when it has a solution, insures that 	
dominates C [37, p. 277], that is, QC3 D Q	3X: using for example c1 for c^ .t1/,
one has that 2

666664
c1 .r1 � r2/

1=2 c1 .r2 � r3/
1=2 c1r

1=2

3

0 c2 .r2 � r3/
1=2 c2r

1=2

3

0 0 c3r
1=2

3

3
777775 D

2
666664
�1 .�1 � �2/1=2 �1 .�2 � �3/1=2 �1�1=23

0 �2 .�2 � �3/1=2 �2�1=23

0 0 �3�
1=2

3

3
777775

2
666664

x1;1 x1;2 x1;3

x2;1 x2;2 x2;3

x3;1 x3;2 x3;3

3
777775

X is thus an upper triangular matrix whose diagonal elements are respectively:

c1
�1

�
r1 � r2
�1 � �2

� 1=2
;

c2
�2

�
r2 � r3
�2 � �3

� 1=2
;

c3
�3

�
r3
�3

� 1=2
:

Since the eigenvalues of X are its diagonal elements [121, p. 193], and that the
eigenvalues of XX? are the squares of those diagonal elements [121, p. 194], using
the following inequality [37, p. 277]: XX? � �max .XX/? I, one has that

C3 � max

��
c1
�1

� 2 r1 � r2
�1 � �2 ;

�
c2
�2

� 2 r2 � r3
�2 � �3 ;

�
c3
�3

� 2 r3
�3

�
	3:

One thus sees that domination of C by 	 is determined by the values of the
following expression (� > 0):

�
c^ .t/
�^ .t/

� 2 rC .t/ � rC .tC �/
r	 .t/ � r	 .tC �/ :
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Analogously, one obtains expressions of the following form:

�
c_ .t/
�_ .t/

� 2 rC .tC �/� rC .t/

r	 .tC �/� r	 .t/
;

which explain, when investigating the equivalence of Gaussian measures whose
covariances have a factorization, the presence of conditions of the following type
[146, p. 50]:

c2_drC D �2_dr	 :

Proposition 3.1.4 Let C1;C2 and C3 be covariances on T. Then:

1. if C1 dominates C2 and C2 dominates C1, C1 and C2 are two notations for the
same covariance;

2. if C3 dominates C2 which dominates C1, C3 dominates C1.

Proof To prove item 1, one may proceed as follows. When C1 dominates C2, for
t 2 T, fixed, but arbitrary, C1 .t; t/ � C2 .t; t/. Thus, because of the assumption,
C1 .t; t/ D C2 .t; t/ ; t 2 T. Now, whenever C1 dominates C2, C D C1 � C2 is a
covariance and (by Cauchy-Schwarz’s inequality: see (Proposition) 1.1.5)

C2 .t1; t2/ � C .t1; t1/C .t2; t2/ :

The right-hand side of the latter inequality is zero, and thus C is the zero covariance.
For item 2, one has that C3 � C1 D .C3 � C2/C .C2 � C1/, which is, as the sum of
two covariances, a covariance [(Proposition) 1.3.8]. ut
Proposition 3.1.5 Let C1 and C2 be covariances on T, with associated RKHS’s
H .C1;T/ and H .C2;T/ respectively. Suppose C2 dominates C1, and define J2;1 W
H .C2;T/ �! H .C1;T/ using, for t 2 T, fixed, but arbitrary, the following
assignment:

J2;1 ŒC2 .
; t/� D C1 .
; t/ :

Then:

1. J2;1 can be extended to be a contraction.
2. J?2;1 is the inclusion map of H .C1;T/ into H .C2;T/, so that, as sets, H .C1;T/ �

H .C2;T/. Furthermore, for h 2 H .C1;T/, fixed, but arbitrary,

jjhjjH.C2;T/ � jjhjjH.C1;T/ :

J?2;1 is thus a contraction.
3. The kernel of J?2;1J2;1 is C1.
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Proof The fact that J2;1 has a unique linear extension to V ŒC2� follows from a
general result in linear algebra [46, p. 26]. Indeed, the required condition is that,
for any Œn; ˛; .t;T/�, as soon as

Pn
iD1 ˛iC2 .
; ti/ D 0,

nX
iD1

˛iJ2;1 ŒC2 .
; ti/� D 0:

But that follows from the assumption of domination as

nX
iD1

nX
jD1

˛i˛jC1
�
ti; tj

� � nX
iD1

nX
jD1

˛i˛jC2
�
ti; tj

�

can be written in the following form:ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iJ2;1 ŒC2 .
; ti/�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C1;T/

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iC2 .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C2;T/

: (?)

Then

nX
iD1

˛iJ2;1 ŒC2 .
; ti/� D J2;1

"
nX

iD1
˛iC2 .
; ti/

#
;

and (?) shows that J2;1 can be extended to be a linear and bounded operator whose
norm is less or equal to one. So item 1 obtains.

Now, for .t; u/ 2 T � T, fixed, but arbitrary, on one hand

hJ2;1 ŒC2 .
; u/� ;C1 .
; t/iH.C1;T/ D C1 .t; u/ ;

and, on the other hand,

hJ2;1 ŒC2 .
; u/� ;C1 .
; t/iH.C1;T/ D
˝
C2 .
; u/ ; J?2;1 ŒC1 .
; t/�

˛
H.C2;T/

:

Consequently

C1 .u; t/ D C1 .t; u/ D J?2;1 ŒC1 .
; t/� .u/ ; that is, C1 .
; t/ D J?2;1 ŒC1 .
; t/� ;

and J?2;1 is the inclusion map. Since its norm is less than or equal to one [266, p. 71]),
it is also a contraction. Thus, for h 2 H .C1;T/, fixed, but arbitrary, one has that

jjhjjH.C2;T/ D
ˇ̌̌̌
J?2;1 Œh�

ˇ̌̌̌
H.C2;T/

� jjhjjH.C1;T/ :
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The kernel B of an operator B W H .K;TK/ �! H .H;TH/ is given by the following
equality [(Remark) 1.7.2]:

B
�
tK; tH

� D ˝B �K �
; tK�� ;H �
; tH�˛
H.H;TH/

:

Letting K D H D C2, TK D TH D T, B D J?2;1J2;1, one gets:

B .t1; t2/ D
˝
J?2;1J2;1 ŒC2 .
; t1/� ;C2 .
; t2/

˛
H.C2;T/

D C1 .t1; t2/ :

ut
Remark 3.1.6 The range of J2;1 is dense in H .C1;T/. It is H .C1;T/ if, and only
if, J?2;1 has bounded inverse [228, p. 97]. In that case, H .C1;T/ is norm closed in
H .C2;T/, and then, on H .C1;T/, both norms are equivalent.

Remark 3.1.7 The map J2;2 D J?2;1J2;1 may be looked at as the map of H .C2;T/
resulting from the following assignment: C2 .
; t/ 7! C1 .
; t/. It is then a positive
contraction.

Remark 3.1.8 Since N ŒJ2;1� D RŒJ?2;1�
?

[266, p. 71], the null space of J2;1 is the
complement of the closure, in H .C2;T/, of H .C1;T/.

Remark 3.1.9 Let H .C;T/ be an RKHS, and H0 be a subspace of H .C;T/. H0 is
an RKHS with kernel [(Proposition) 1.6.1]

H0 .t1; t2/ D PH0 ŒC .
; t2/� .t1/ ; .t1; t2/ 2 T � T:

Furthermore, H0 is dominated by C. The map J0 W H .C;T/ �! H .H0;T/ is
defined using the following relation:

J0 ŒC .
; t/� D H0 .
; t/ D PH0 ŒC .
; t/� :

Consequently J0 D PH0 .

Remark 3.1.10 Suppose that C0 � C1, and also that C0 � C2. Then, H.C1;T/ �
J?1;0ŒH.C0;T/�, and H.C2;T/ � J?2;0ŒH.C0;T/�. Let sH.C0;T/ be the family of
functions which make up H.C0;T/. Then:

H.C1;T/ \H.C2;T/ � sH.C0;T/:

Example 3.1.11 Let K be a real Hilbert space, C1 and C2 be two injective covariance
operators on K, and U be the isometry between K and its dual. One has seen
[(Example) 1.3.18] that, for example, the RKHS H.K1;K/ related to C1, is the range
of UC1=2

1 , with kernel K1.k1; k2/ D hC1Œk1�; k2iK . The requirement that K1 � K2

is equivalent to the requirement that hC1Œk1�; k2iK � hC2Œk1�; k2iK . But the latter
is equivalent to [11] RŒC1=2

1 � � RŒC1=2

2 �, and to C1=2

1 D C1=2

2 B, where B is some
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bounded, linear operator of K. Furthermore:

B D BP
RŒC1=21 �

D P
RŒC1=22 �

BP
RŒC1=21 �

: (?)

Let J W H.K2;K/ �! H.K1;K/ be defined using the following assignment:

JŒUC1=2

2 Œk�� D UC1=2

2 BB?Œk� D UC1=2

1 B?Œk�:

Then [(Example) 1.3.18]:

JŒK2.
; k/� D JŒUC2Œk��

D JŒUC1=2

2 ŒC
1=2

2 Œk��

D UC1=2

2 BB?C1=2

2 Œk�

D UC1Œk�

D K1.
; k/:

Thus J is JK2;K1 , and the properties of J and B are closely related. Suppose thus,
for example, that K is separable, and that fen; n 2 Ng is a complete orthonormal set.
Then [(Example) 1.3.18]:X

n

ˇ̌̌̌
JK2;K1 ŒUC1=2

2 Œen��
ˇ̌̌̌ 2

H.K1;K/
D
X

n

ˇ̌̌̌
UC1=2

1 ŒB
?Œen��

ˇ̌̌̌ 2
H.K1;K/

D
X

n

ˇ̌̌
ˇ
ˇ̌̌
ˇPRŒC1=21 �

B?Œen�

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
K

.?/D
X

n

jjB?Œen�jj2K ;

and JK2;K1 is Hilbert-Schmidt if, and only if, B is.
Suppose that N is a Gaussian element with values in K, mean zero, and

covariance CN . Let S be a signal, with values in K, independent of N, with
covariance CS. Then, among sufficient conditions which insure that PSCN and PN ,
the probabilities related to S C N and N, respectively, are mutually absolutely
continuous, and thus that the related detection problem is not singular, one finds
[11] CS D C1=2

N DC1=2

N , D trace-class. That means, for B or JK2;K1 above, to be Hilbert-
Schmidt.

Example 3.1.12 Let T be an interval, say T D Œtl; tr� ; tl � 0, and suppose that
C D c^c_ and 	 D �^�_ are two covariances on T with a factorization. Assume
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that T is the support of both covariances. Write these as [(Remark) 1.4.16]

C .t1; t2/ D c_ .t1/ c_ .t2/ rC .t1 ^ t2/ ;
	 .t1; t2/ D �_ .t1/ �_ .t2/ r	 .t1 ^ t2/ :

For fixed, but arbitrary ft1; t2g � T, let

HC .t1; t2/ D rC .t1 ^ t2/ ; and H	 .t1; t2/ D r	 .t1 ^ t2/

(they are reproducing kernels as the covariances of processes whose form is that of
WrC.t/). Define FC W T �! H .HC;T/ using the assignment

FC .t/ D c_ .t/HC .
; t/ :

F	 is defined analogously: F	 .t/ D �_ .t/H	 .
; t/. Then, for instance,

LFC Œc_ .t/HC .
; t/� .�/ D hc_ .t/HC .
; t/ ;FC .�/iH.HC ;T/ D C .�; t/ ;

so that the resulting RKHS is H .C;T/. Furthermore [(Proposition) 1.1.15]

L?FC
ŒC .
; t/� D FC .t/ D c_ .t/HC .
; t/ :

Suppose that HC � H	 , that is, for fixed, but arbitrary Œn; ˛; .t;T/�,ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iIŒtl;ti�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
L2.T;T ;Q�C/

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iIŒtl;ti�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
L2.T;T ;Q�	 /

:

Let

J W H .H	 ;T/ �! H .HC;T/

be the map J2;1 of (Proposition) 3.1.5. Then

C .
; t/ D LFC Œc_ .t/HC .
; t/�
D LFC Œc_ .t/ J ŒH	 .
; t/��
D LFC

h
c_ .t/ J

h
�_ .t/�1 �_ .t/H	 .
; t/

ii
D LFC

h
c_ .t/ J

h
�_ .t/�1 L?F	 Œ	 .
; t/�

ii
D LFC JL?F	

h
c_ .t/ �_ .t/�1 	 .
; t/

i
:
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Let M be the following assignment:

M Œ	 .
; t/� D c_ .t/
�_ .t/

	 .
; t/ :

Since the 	 .
; t/’s are linearly independent, M extends linearly uniquely to V Œ	 �.
Furthermore, for fixed, but arbitrary Œn; ˛; .t;T/�; t1 < 
 
 
 < tn, and matrices r	 and
Dc_ to be specified,

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌M
"

nX
iD1

˛i	 .
; ti/
#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.H	 ;T/

D
nX

iD1

nX
jD1

˛i˛j
c_ .ti/
�_ .ti/

c_
�
tj
�

�_
�
tj
�	 �ti; tj�

D
nX

iD1

nX
jD1

˛i˛jc_ .ti/ c_
�
tj
�

r	
�
ti ^ tj

�
D ˝

r	 Dc_˛;Dc_˛
˛
Rn :

To see what happens, let n D 3. Then

r	 D

2
666664

r	 .t1/ r	 .t1/ r	 .t1/

r	 .t1/ r	 .t2/ r	 .t2/

r	 .t1/ r	 .t2/ r	 .t3/

3
777775 ; Dc_ D

2
666664

c_ .t1/ 0 0

0 c_ .t2/ 0

0 0 c_ .t3/

3
777775 :

Writing ri for r	 .ti/, and ci for c_ .ti/, one has that r	 D r	 r?	 with

r	 D

2
666664

r1=21 0 0

r1=21 .r2 � r1/
1=2 0

r1=21 .r2 � r1/
1=2 .r3 � r2/

1=2

3
777775 :

Thus Dc_r	 Dc_ D Dc_r	 fDc_r	 g?, and to check that it is dominated in terms of
covariances by a multiple of r	 , one must solve for X the following matrix equation:
Dc_r	 D r	 X [37, p. 277]. The solution is a lower triangular matrix whose diagonal
elements are those of Dc_ . Consequently, as in (Example) 3.1.3,˝

r	 Dc_˛;Dc_˛
˛
Rn � max

˚
c21; c

2

2; c
2

3

� ˝
r	 ˛; ˛

˛
Rn

D max
˚
c21; c

2

2; c
2

3

� ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛i	 .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.	;T/

:
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Finally, as J; LFC and L?F	 are contractions [(Propositions) 1.1.15 and 3.1.5] when
c_ is bounded on T,

nX
iD1

nX
jD1

˛i˛jC
�
ti; tj

� D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iC .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌LFC JL?F	 M

"
nX

iD1
˛i	 .
; ti/

#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

� ˇ̌̌̌LFC JL?F	
ˇ̌̌̌
2

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌M
"

nX
iD1

˛i	 .
; ti/
#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.H	 ;T/

�
�

sup
T

c2_
� ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛i	 .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.	;T/

D
�

sup
T

c2_
� nX

iD1

nX
jD1

˛i˛j	
�
ti; tj

�

Thus, using (Example) 1.3.12, H .C;T/ � H .	;T/.

Corollary 3.1.13 Let C1 and C2 be covariances on T, with associated RKHS’s
H .C1;T/ and H .C2;T/ respectively. Suppose C2 dominates C1, and let E be a
weakly closed subset of H .C2;T/. Then

1. E \H .C1;T/ is a weakly closed subset of H .C1;T/;
2. when E is furthermore convex (for example, a subspace), it follows that

E \H .C1;T/ is a strongly closed subset of H .C1;T/.

Proof Let fhn; n 2 Ng � E \ H .C1;T/ be a weak Cauchy sequence in
H .C1;T/, with weak limit h1 2 H .C1;T/. Then, for fixed, but arbitrary t in T,
fhn .t/ ; n 2 Ng � R is a Cauchy sequence, so that, since [(Proposition) 3.1.5]
H .C1;T/ � H .C2;T/, for fixed, but arbitrary t 2 T,˚hhn;C2 .
; t/iH.C2;T/ ; n 2 N

� � R

is a Cauchy sequence. For the same reason [(Proposition) 3.1.5],

jjhnjjH.C2;T/ � jjhnjjH.C1;T/ ;

and, weakly convergent sequences being bounded [266, p. 79], there exists � in
Œ0;1Œ such that

jjhnjjH.C1;T/ � �:
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Consequently [8, p. 235] fhn; n 2 Ng � E � H .C2;T/ is a weak Cauchy sequence
with a limit h2 2 E. But, for fixed, but arbitrary t 2 T,

h2 .t/ D hh2;C2 .
; t/iH.C2;T/
D lim

n
hhn;C2 .
; t/iH.C2;T/

D lim
n

hn .t/

D lim
n
hhn;C1 .
; t/iH.C1;T/

D hh1;C1 .
; t/iH.C1;T/
D h1 .t/ ;

so that h1 2 E, and thus h1 2 E\H .C1;T/. It is a general result that weakly closed
convex sets are strongly closed [60, p. 126]. As E \ H .C1;T/ is convex as soon as
E is, the proof is complete. ut
Corollary 3.1.14 Let C1 and C2 be covariances on T, with associated RKHS’s
H .C1;T/ and H .C2;T/ respectively. Suppose C2 dominates C1. Then, when
H .C2;T/ is separable, so is H .C1;T/.

Proof Let
˚
e.2/n ; n 2 N

� � H .C2;T/ be a complete orthonormal set. Set, for n 2 N,
fixed, but arbitrary,

e.1/n D J2;1
�
e.2/n

� 2 H .C1;T/ :

Suppose h1 2 H .C1;T/ and
˝
h1; e.1/n

˛
H.C1;T/

D 0; n 2 N. Then

˝
J?2;1 Œh1� ; e

.2/

n

˛
H.C2;T/

D 0; n 2 N;

so that J?2;1 Œh1� D 0, that is, h1 is the zero function. That means that the family

˚
e.1/n ; n 2 N

�
is total in H .C1;T/ [266, pp. 40,45], and thus that the latter is separable. ut
Corollary 3.1.15 Let H .H;T/ be an RKHS, and� be a symmetric kernel on T. �
corresponds to a linear, bounded, self-adjoint operator L on H .H;T/ with

• lower bound ˛L > �1,
• upper bound ˇL <1,

if, and only if, ˛LH� �� ˇLH.
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Proof Suppose that L is a linear, bounded, and self-adjoint operator of H .H;T/,
with bounds ˛L and ˇL, and kernel �. Then [266, p. 187]

˛L jjhjj2H.H;T/ � hL Œh� ; hiH.H;T/ � ˇL jjhjj2H.H;T/ ;

that is, L � ˛LIH.H;T/ and ˇLIH.H;T/ � L are positive operators. Since, for example,˝˚
L� ˛LIH.H;T/

�
ŒH .
; t/� ;H .
; �/˛

H.H;T/

equals

hL ŒH .
; t/� ;H .
; �/iH.H;T/ � ˛LH .�; t/ D �.�; t/ � ˛LH .�; t/ ;

� � ˛LH is the kernel of L � ˛LIH.H;T/, and, since the latter is positive, the former
is positive definite because of (Proposition) 1.7.9. The condition is thus necessary.

The condition is also sufficient. One may assume that ˛L < ˇL, for, otherwise,
˛LH D �, and � corresponds to ˛LIH.H;T/ [(Remark) 1.7.3]. Let thus

K D .ˇL � ˛L/
�1 .� � ˛LH/ :

Then, by assumption,

0� K� .ˇL � ˛L/
�1 .ˇLH � ˛LH/ D H:

Because of (Proposition) 3.1.5, item 2, the kernel K determines an operator LK of
H .H;T/ that is linear, bounded, self-adjoint, and positive, since LK D J?H;KJH;K,
where JH;K W H .
; t/ 7! K .
; t/. LK is then a contraction as a product of contractions
[(Proposition) 3.1.5], so that jjLKjj � 1. Now� D .ˇL � ˛L/KC˛LH, which is the
kernel of the operator L D .ˇL � ˛L/ LKC˛LIH.H;T/, has the required bounds since
jjLKjj � 1 and

hL Œh� ; hiH.H;T/ D .ˇL � ˛L/ hLK Œh� ; hiH.H;T/ C ˛L jjhjj2H.H;T/ :

ut
Proposition 3.1.16 Let C1 and C2 be covariances on T, with associated RKHS’s
H .C1;T/ and H .C2;T/ respectively. Suppose C2 dominates C1. When J2;1 is
compact,

1. H .C1;T/ is separable;
2. there exists a covariance C on T with H .C;T/ separable, and

H .C;T/ � H .C2;T/ I

3. J2;1 ŒC .
; t/� D C1 .
; t/ ; t 2 T;
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4. the map J W H .C;T/ �! H .C1;T/ defined using the following assignment:

J ŒC .
; t/� D C1 .
; t/

is compact.

Proof When J2;1 is compact, RŒJ2;1� is separable [266, p. 129]. But then RŒJ2;1� is
separable [266, p. 32], and, since [(Remark) 3.1.6]

RŒJ2;1� D H .C1;T/ ;

the latter is separable.
Let now H0 D RŒJ?2;1�. As J?2;1 is compact [266, p. 128], RŒJ?2;1� is separable

[266, p. 129], and thus so is H0 [266, p. 32]. Let

C .x; t/ D PH0 ŒC2 .
; t/� .x/ :

The latter relation defines a reproducing kernel dominated by C2 [(Proposi-
tion) 1.6.1], and, consequently [(Proposition) 3.1.5], H .C;T/ � H .C2;T/. But,
since H .C;T/ D H0 [(Proposition) 1.6.1], H .C;T/ is separable. Finally

hJ2;1 ŒC .
; t/� ;C1 .
; x/iH.C1;T/ D
D ˝

C .
; t/ ; J?2;1 ŒC1 .
; x/�
˛
H.C2;T/

D ˝
PH0 ŒC2 .
; t/� ; J?2;1 ŒC1 .
; x/�

˛
H.C2;T/

D ˝
C2 .
; t/ ;PH0

�
J?2;1 ŒC1 .
; x/�

�˛
H.C2;T/

D ˝
C2 .
; t/ ; J?2;1 ŒC1 .
; x/�

˛
H.C2;T/

D hJ2;1 ŒC2 .
; t/� ;C1 .
; x/iH.C1;T/ :

Thus J2;1 ŒC .
; t/� D J2;1 ŒC2 .
; t/� D C1 .
; t/. Consequently J D J2;1PH0 is compact
as the composition of a compact operator with one that is bounded [266, p. 128].

ut
The properties which follow cover the cases for which finite dimensional

approximations are possible. Furthermore, the finite trace properties cover the
question of which noises are admissible for which signals.

Consider again the situation for which C1 and C2 are covariances on T, with
C2 dominating C1, and fix an arbitrary subset T0 � T. If C0

1 and C0

2 denote the
restrictions of, respectively, C1 and C2 to T0 � T0, then C0

2 dominates C0

1, and one
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has thus [(Proposition) 3.1.5] the following maps:

J2;1 W H .C2;T/ �! H .C1;T/ ;

J02;1 W H
�
C0

2;T0
� �! H

�
C0

1;T0
�
:

Let H0

1 � H .C1;T/ be the subspace generated by fC1 .
; t0/ ; t0 2 T0g, and
H0

2 � H .C2;T/ that which is generated by fC2 .
; t0/ ; t0 2 T0g.
Let J01 W H .C1;T/ �! H

�
C0

1;T0
�

be the map that restricts a function of
H .C1;T/ to the subset T0 [(Proposition) 1.6.3]. It is a partial isometry, with initial
set H0

1, and final set, H
�
C0

1;T0
�
, with the property that

J01 ŒC1 .
; t0/� D C0

1 .
; t0/ ; t0 2 T0:

J02 is defined analogously, and has, mutatis mutandis, the same properties as J01.

Lemma 3.1.17 Let H be a real Hilbert space, and A be an operator of H with finite
trace.

1. For any unitary operator U of H, UA and AU have a finite trace norm equal to
that of A.

2. For any partial isometry W of H, WA and AW have a finite trace norm smaller
than, or equal to that of A.

Proof Write ŒA� for .A?A/1=2. Let fei; i 2 Ig � H be any complete orthonormal set.
One has [235, pp. 37–39], for the trace norm � .A/, that

� .A/ D t .ŒA�/ where t .A/ D
X
i2I

hA Œei� ; eiiH :

If now B D UA, as U?U D UU? D IH [266, p. 87],

�.B/ D t
��
.UA/? .UA/

�1=2� D t
�
ŒA?U?UA�1=2

� D t
�
ŒA?A�1=2

� D � .A/ :
A has a representation in the following form [235, p. 42]:X

i2I

˛i fei ˝ fig ;

where fa˝ bg Œh� D hh; biH a, ˛i > 0; i 2 I; jIj � @0, and fei; i 2 Ig � H as
well as f fi; i 2 Ig � H are sets of orthonormal elements. Furthermore [235, p. 42],
� .A/ DPi2I ˛i. Consequently, as

AU Œh� D
X
i2I

˛i hU Œh� ; fiiH ei
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D U

(X
i2I

˛i hh;U? Œ fi�iH U? Œei�

)

D
(

U
X

i

˛i fU? Œei�˝ U? Œ fi�g
)
Œh� ;

AU has a representation as UC, where C has a finite trace norm equal to that of A. It
thus suffices to apply the result for UA to AU in the form UC.

The second statement follows from [235, p. 39], and the fact that partial
isometries have norm one. ut
Proposition 3.1.18 Let C1 and C2 be covariances on T, with associated RKHS’s
H .C1;T/ and H .C2;T/ respectively. Assume that C2 dominates C1. Let T0 � T be
a fixed, but arbitrary subset, C0

1 and C0

2 be the restrictions of respectively C1 and
C2 to T0 � T0, and J02;1 W H

�
C0

2;T0
� �! H

�
C0

1;T0
�

be defined using the following
relation:

J02;1
�
C0

2 .
; t0/
� D C0

1 .
; t0/ ; t0 2 T0:

Let J01 Œh� D hjT0 ; h 2 H .C1;T/. J02 is defined analogously. Then

J01J2;1
�
J02
�? D J02;1:

Furthermore, when

1. J2;1 is Hilbert-Schmidt, then J02;1 is Hilbert-Schmidt;
2. J2;1 has finite trace, then J02;1 has finite trace, and, with �

�
J02;1

�
and � .J2;1/

denoting the respective trace norms of the corresponding operators, one has
that[235, p. 38]

�
�
J02;1

� � � .J2;1/ :
When T0 is a determining set [(Definition) 1.5.2] for H .C2;T/, �

�
J02;1

� D
� .J2;1/.

Proof By definition, for .t0; t/ 2 T0 � T, fixed, but arbitrary,˝
J01 ŒC1 .
; t/� ;C0

1 .
; t0/
˛
H.C01;T0/

D C1 .t0; t/ :

But, by definition of the adjoint,˝
J01 ŒC1 .
; t/� ;C0

1 .
; t0/
˛
H.C01;T0/

D ˝C1 .
; t/ ; �J01�? �C0

1 .
; t0/
�˛

H.C1;T/
:
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Thus, for t 2 T, fixed, but arbitrary,�
J01
�? �

C0

1 .
; t0/
�
.t/ D C1 .t0; t/ D C1 .t; t0/ :

In other words,�
J01
�? �

C0

1 .
; t0/
� D C1 .
; t0/ ;

�
J02
�? �

C0

2 .
; t0/
� D C2 .
; t0/ :

Consequently, for .t0; x0/ 2 T0 � T0, fixed, but arbitrary, one has that

J01J2;1
�
J02
�? �

C0

2 .
; t0/
�
.x0/ D J01J2;1 ŒC2 .
; t0/� .x0/
D J01 ŒC1 .
; t0/� .x0/
D C0

1 .x0; t0/ :

Thus J01J2;1
�
J02
�? D J02;1.

Then, if J2;1 is Hilbert-Schmidt, J02;1 is Hilbert-Schmidt as the product of a
Hilbert-Schmidt operator by two bounded ones [235, p. 30]. The same is true if
“is Hilbert-Schmidt” is replaced by “has finite trace” [235, p. 38]. The inequality on
the trace norms follows from the fact that [235, p. 39]

�
�
J02;1

� D � �J01J2;1 �J02�?� � ˇ̌̌̌ J01 ˇ̌̌̌ ˇ̌̌̌ �J02�? ˇ̌̌̌ � .J2;1/ � � .J2;1/
as the operators J01 and J02 are contractions [(Proposition) 1.6.3].

Finally, when T0 is a determining set for H .C2;T/, it is also a determining set
for H .C1;T/, since, as sets, H .C1;T/ � H .C2;T/. But then J01 and J02 are unitary
[(Proposition) 1.6.10], and, because of (Lemma) 3.1.17,

�
�
J02;1

� D � .J2;1/ :
ut

Corollary 3.1.19 Let C1 and C2 be covariances on T, with associated RKHS’s
H .C1;T/ and H .C2;T/ respectively. Let FT denote the family of finite subsets of T.
When C2 dominates C1, J2;1 has finite trace if, and only if,

sup
T02FT

˚
�
�
J02;1

��
<1;

and, in that case,

� .J2;1/ D sup
T02FT

˚
�
�
J02;1

��
:
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Proof Suppose that J2;1 has finite trace, that is, � .J2;1/ < 1. Then, since
�
�
J02;1

� � � .J2;1/ [(Proposition) 3.1.18],

sup
T02FT

˚
�
�
J02;1

��
<1:

Suppose now that supT02FT

˚
�
�
J02;1

��
< 1. Since, for example, J01 is a partial

isometry with H0

1 as initial set, and H
�
C0

1;T0
�

as final set [(Proposition) 1.6.3],
result [(Proposition) 3.1.18] yields that�

J01
�?

J01J2;1
�
J02
�?

J02 D
�
J01
�?

J02;1J
0

2;

and thus [266, p. 86] that

PH0
1
J2;1PH0

2
D �J01�? J02;1J

0

2;

so that [235, p. 39]

�
�

PH0
1
J2;1PH0

2

�
� � �J02;1� :

In their respective Hilbert spaces the families˚
PH˛

i
; T˛ 2 FT

�
; i D 1; 2;

are nets of projections such that, for T˛ � Tˇ , fixed, but arbitrary,

OH.Ci;T/ � PH˛
i
� P

H
ˇ
i
� IH.Ci;T/:

There is then [81, p. 108], in the respective spaces, an operator Pi, linear and
bounded, which is the strong limit of the respective nets, and which has the property
that

OH.Ci;T/ � PH˛
i
� Pi � IH.Ci;T/:

P1 and P2 are projections [266, p. 85], and, since IH.Ci;T/ � Pi, for i D 1; 2, is
orthogonal to all PH˛

i
’s, it is the zero operator. As

ˇ̌̌̌
J2;1

�
h.2/
� � PH˛

1
J2;1PH˛

2

�
h.2/
�ˇ̌̌̌ D

D ˇ̌̌̌ ˚
J2;1 � PH˛

1
J2;1 C PH˛

1
J2;1 � PH˛

1
J2;1PH˛

2

� �
h.2/
�ˇ̌̌̌

� ˇ̌̌̌ ˚IH.C1;T/ � PH˛
1

� �
J2;1

�
h.2/
��ˇ̌̌̌ C ˇ̌̌̌PH˛

1
J2;1

˚
IH.C2;T/ � PH˛

2

� �
h.2/
�ˇ̌̌̌
;
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it follows that

lim
T02FT

PH0
1
J2;1PH0

2
D J2;1

in the sense of strong convergence.
Let now ˚

e.2/i ; i 2 I
�

be an orthonormal basis of H .C2;T/, and I0 � I be a finite subset. Write ŒJ2;1� for

�
J?2;1J2;1

�1=2
:

Then, using ŒJ2;1� D W?J2;1 (polar decomposition [266, p. 188])

X
i2I0

ˇ̌̌̌
ŒJ2;1�

1=2 Œei�
ˇ̌̌̌
2

H.C1;T/
D
X
i2I0

ˇ̌hW?J2;1 Œei� ; Œei�iH.C2;T/
ˇ̌

D lim
T02FT

X
i2I0

ˇ̌̌
ˇDW?PH0

1
J2;1PH0

2
Œei� ; Œei�

E
H.C2;T/

ˇ̌̌
ˇ

� sup
T02FT

�
�

W?PH0
1
J2;1PH0

2

�
� sup

T02FT

�
�

PH0
1
J2;1PH0

2

�
� sup

T02FT

�
�
J02;1

�
:

The first of the latter inequalities is based on [61, p. 91], the second on
(Lemma) 3.1.17, and the last by what has been acknowledged at the beginning
of this proof. The family ˚hŒJ2;1� Œei� ; Œei�iH.C2;T/ ; i 2 I

�
is thus summable [210, p. 19], and, consequently, J2;1 has finite trace. The equality
of trace norm and supremum follows from the proof. ut
Corollary 3.1.20 Let C1 and C2 be covariances on T, with C2 dominating C1.
Suppose that H .C2;T/ is separable, and that J2;1 has finite trace.

Let T0 be a Hamel subset of T [(Definition) 1.1.36], and

Tc D ftc;1; tc;2; tc;3; : : : g
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be a subset of T0 which is dense in .T0; dC2 / [(Definition) 1.1.35, (Corollar-
ies) 1.5.11, 1.6.21]. The symbol Tcjn denotes the subset

ftc;1; tc;2; tc;3; : : : ; tc;ng ;

and ˙.1/
n and ˙.2/

n represent the matrices obtained when restricting respectively C1
and C2 to Tcjn. Then

� .J2;1/ D lim
n
�
�
˙.1/

n

˚
˙.2/

n

��1�
:

Proof Tc is a determining set for H .C2;T/ [(Corollary) 1.6.21]. One may then
assume, because of (Proposition) 3.1.18, item 2, that T D Tc. The supremum in
(Corollary) 3.1.19 may then be computed over the sets Tcjn. Now, by definition, the
0-exponent of (Corollary) 3.1.19 being replaced by jTcjn,

J
jTcjn
2;1

h
C
jTcjn
2 .
; tc;i/

i �
tc;j
� D C

jTcjn
1

�
tc;j; tc;i

�
: (?)

For fixed, but arbitrary i 2 Tcjn, the map C
jTcjn
1 .
; tc;i/ is in fact a vector in Rn with

components

C
jTcjn
1 .tc;1; tc;i/ ; : : : ;C

jTcjn
1 .tc;n; tc;i/ :

One has thus a map that sends the columns of2
664

C
jTcjn
2 .tc;1; tc;1/ 
 
 
 CjTcjn

2 .tc;1; tc;n/
:::

:::

C
jTcjn
2 .tc;n; tc;1/ 
 
 
 CjTcjn

2 .tc;n; tc;n/

3
775

to those of 2
664

C
jTcjn
1 .tc;1; tc;1/ 
 
 
 CjTcjn

1 .tc;1; tc;n/
:::

:::

C
jTcjn
1 .tc;n; tc;1/ 
 
 
 CjTcjn

1 .tc;n; tc;n/

3
775 :

That map may be represented as a matrix, say M, and the initial equality (?) may be
read as

M˙.2/

n D ˙.1/

n :
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Since Tc � T0, a Hamel subset, ˙.2/
n is invertible [(Remark) 1.1.4], and thus

M D ˙.1/

n

˚
˙.2/

n

��1
:

The trace of J2;1 restricted to Tcjn is that of M. ut
The following proposition yields a purely analytic condition for (Defini-

tion) 4.2.8 to hold.

Proposition 3.1.21 Let C1 be a covariance over T whose RKHS is separable. There
exists a covariance C2 over T that dominates C1, and for which the operator J2;1 W
H .C2;T/ �! H .C1;T/, defined using the following relation:

J2;1 ŒC2 .
; t/� D C1 .
; t/ ;

is Hilbert-Schmidt if, and only if, there exists an injective Hilbert-Schmidt operator
J1 W H .C1;T/ �! H .C1;T/ such that the family fht; t 2 Tg of solutions to the
following family of equations:

fC1 .
; t/ D J1 Œht� ; t 2 Tg

generates H .C1;T/.

Proof The condition that has been stated is necessary.
Let indeed C1 and C2 be covariances on T, with associated RKHS’s H .C1;T/

and H .C2;T/ respectively. Let C2 dominate C1, and the operator J2;1 be Hilbert-
Schmidt. One may then assume that H .C1;T/ and H .C2;T/ are separable [(Propo-
sition) 3.1.16]. Furthermore J?2;1 is Hilbert-Schmidt [266, p. 133], and, since the
composition of Hilbert-Schmidt operators yields operators with finite trace [266,
pp. 165–167], J?2;1J2;1 is a self-adjoint, positive operator of H .C2;T/, with finite
trace. As such it can be written in the following form [266, p. 163]:

J?2;1J2;1 Œh2� D
X
i2I

�i hh2; eiiH.C2;T/ ei;

where

• fh2; ei; i 2 I � Ng � H .C2;T/,
• �i > 0;

P
i2I �i <1,

•
˝
ei; ej

˛
H.C2;T/

D ıi;j ; .i; j/ 2 I � I.

One may assume, by restricting attention, if necessary, to N ŒJ2;1�? [266,
pp. 35,71], that fei; i 2 Ig forms a complete orthonormal set in H .C2;T/. Then

C1 .t1; t2/ D hC1 .
; t1/ ;C1 .
; t2/iH.C1;T/
D hJ2;1 ŒC2 .
; t1/� ; J2;1 ŒC2 .
; t2/�iH.C1;T/
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D ˝
J?2;1J2;1 ŒC2 .
; t1/� ;C2 .
; t2/

˛
H.C2;T/

D
X
i2I

�i hC2 .
; t1/ ; eiiH.C2;T/ hei;C2 .
; t2/iH.C2;T/

D
X
i2I

�i ei .t1/ ei .t2/ :

One may notice that

C1 .t1; t2/ � �n en .t1/ en .t2/ D
X

i2I;i¤n

�i ei .t1/ ei .t2/

is positive definite, so that en 2 H .C1;T/ [(Proposition) 1.2.4, item 2]. Thus, since
J?2;1 is the inclusion map [(Proposition) 3.1.5],

J?2;1J2;1 Œen� D �nen D �nJ?2;1 Œen� D J?2;1 Œ�nen� ;

so that

J?2;1 ŒJ2;1 Œen�� �nen� D 0; or J2;1 Œen� D �nen:

Set fi D �1=2i ei. Then˝
fi; fj

˛
H.C1;T/

D ��1=2i �
�1=2
j

˝
�iei; �jej

˛
H.C1;T/

D ��1=2i �
�1=2
j

˝
J2;1 Œei� ; J2;1

�
ej
�˛

H.C1;T/

D ��1=2i �
�1=2
j

˝
J?2;1J2;1 Œei� ; ej

˛
H.C2;T/

D �1=2i �
�1=2
j

˝
ei; ej

˛
H.C2;T/

D ıi;j:

Thus the fi’s are orthonormal in H .C1;T/. They are also complete as, for
h 2 H .C1;T/, fixed, but arbitrary,

0 D hh; fiiH.C1;T/
D �

�1=2
i hh; �ieiiH.C1;T/

D �
�1=2
i hh; J2;1 Œei�iH.C1;T/

D �
�1=2
i

˝
J?2;1 Œh� ; ei

˛
H.C2;T/

:

The relation J1 Œ fi� D �
1=2

i fi defines an injective, positive, self-adjoint, Hilbert-
Schmidt operator of H .C1;T/ [235, pp. 16,41], and C1 .
; t/ 2 RŒJ1�. Indeed, as,
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as seen above,

C1 .x; t/ D
X
i2I

�i ei .x/ ei .t/ ;

and furthermore thatX
i2I

e2i .t/ D
X
i2I

hei;C2 .
; t/i2H.C2;T/ D C2 .t; t/ <1;

one has that

C1 .
; t/ D
X
i2I

�i ei .t/ ei D
X
i2I

ei .t/ J1 Œ fi� D J1

"X
i2I

ei .t/ fi

#
:

The latter calculation shows also that the functions(
ht D

X
i2I

ei .t/ fi; t 2 T

)

are solutions of the equations fC1 .
; t/ D J1 Œh� ; h 2 H .C1;T/ ; t 2 Tg. It remains
to prove that these solutions generate H .C1;T/. To that end, let h 2 H .C1;T/ be
fixed, but arbitrary, and suppose that, for t 2 T, fixed, but arbitrary,

hh; htiH.C1;T/ D 0:

Using the definition of ht, sinceX
i2I

hh; fii2H.C1;T/ D jjhjj2H.C1;T/ <1;

it follows that, for t 2 T, as, as sets, H.C1;T/ � H.C2;T/,

0 D hh; htiH.C1;T/
D
X
i2I

ei .t/ hh; fiiH.C1;T/

D
X
i2I

hei;C2 .
; t/iH.C2;T/ hh; fiiH.C1;T/

D
*X

i2I

hh; fiiH.C1;T/ ei;C2 .
; t/
+

H.C2;T/

:
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But then
P

i2I hh; fiiH.C1;T/ ei D h D 0H.C2;T/, which means that, for i 2 I, one
obtains that hh; fiiH.C1;T/ D 0, or h D 0H.C1;T/.

Proof The proposition’s condition is also sufficient.

Suppose indeed that C1 is a covariance over T for which H .C1;T/ is separable,
and that J1 is an injective Hilbert-Schmidt operator of H .C1;T/ such that the family
of solutions fht; t 2 Tg to the set of equations

fC1 .
; t/ D J1 Œht� ; t 2 Tg

generates H .C1;T/.
Define

F W T �! H .C1;T/ using F .t/ D jjJ1jj ht:

Because of (Proposition) 1.1.15, the range KF of the map LF W H .C1;T/ �! RT ,
defined using the following assignment:

LF Œh� .t/ D hh;F .t/iH.C1;T/ D jjJ1jj hh; htiH.C1;T/ ;

is an RKHS, with reproducing kernel given, for fixed, but arbitrary .t1; t2/ in T � T,
by the following formula:

KF .t1; t2/ D hF .t1/ ;F .t2/iH.C1;T/ D jjJ1jj2 hht1 ; ht2iH.C1;T/ :

Furthermore, since the family fht; t 2 Tg generates H .C1;T/, the condition
LF Œh� .t/ D 0; t 2 T, means that h D 0H.C1;T/, and, consequently, still because of
(Proposition) 1.1.15, that

hLF Œh1� ;LF Œh2�iKF
D hh1; h2iH.C1;T/ :

As

nX
iD1

nX
jD1

˛i˛jC1
�
ti; tj

� D nX
iD1

nX
jD1

˛i˛j
˝
C1 .
; ti/ ;C1

�
; tj�˛H.C1;T/
D

nX
iD1

nX
jD1

˛i˛j
˝
J1 Œhti � ; J1

�
htj

�˛
H.C1;T/

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌J1
"

nX
iD1

˛ihti

#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C1;T/
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� jjJ1jj2
nX

iD1

nX
jD1

˛i˛j
˝
hti ; htj

˛
H.C1;T/

D
nX

iD1

nX
jD1

˛i˛jKF
�
ti; tj

�
;

C1 is dominated by KF . Choose thus C2 D KF , and H .C2;T/ D KF . J2;1 is then
well defined. One has also that

LF ŒjjJ1jj ht� .x/ D hjjJ1jj ht; jjJ1jj hxiH.C1;T/ D KF .x; t/ :

The relation J2;1 ŒKF .
; t/� D C1 .
; t/ yields then J2;1 ŒLF ŒjjJ1jj ht�� D J1 Œht�, so that

jjJ1jj J2;1LF D J1:

So, if fei; i 2 I � Ng is a complete orthonormal set in H .C1;T/, the family
fLF Œei� ; i 2 Ig is a complete orthonormal set in KF , and

X
i2I

jjJ2;1 ŒLF Œei��jj2KF
D 1

jjJ1jj
X
i2I

jjJ1 Œei�jj2H.C1;T/ <1:

J2;1 is thus Hilbert-Schmidt. ut
Remark 3.1.22 Let fa˝ bg Œx� D hx; bi a, and J1 D P

n �n f fn ˝ eng, with
fen; n 2 Ng and f fn; n 2 Ng complete orthonormal sets. The following couple of
relations:

C1 .t1; t2/ D hJ1 Œht1 � ; J1 Œht2 �iH.C1;T/
D
X

n

�2n hht1 ; eniH.C1;T/ hht2 ; eniH.C1;T/ ;

C2 .t1; t2/ D jjJ1jj2
X

n

hht1 ; eniH.C1;T/ hht2 ; eniH.C1;T/ ;

yield the most general representations of covariances for which (Proposition) 3.1.21
is true.

Proposition 3.1.23 Let C be a covariance on T whose associated RKHS is
H .C;T/. Suppose H � H .C;T/ is a real Hilbert space of functions such that,
for fixed, but arbitrary h 2 H,

jjhjjH.C;T/ � jjhjjH : (?)

H is then an RKHS whose kernel H is dominated by C.



240 3 Relations Between Reproducing Kernel Hilbert Spaces

Proof Since H .C;T/ is an RKHS, the evaluation maps are continuous linear
functionals [(Proposition) 1.1.5, item 4], and thus, for fixed, but arbitrary t 2 T,

jEt Œh�j � � .t/ jjhjjH.C;T/ ; h 2 H .C;T/ :

The restriction of the latter inequality to H yields, using the assumption (?) on the
norms, that

jEt Œh�j � � .t/ jjhjjH ; h 2 H:

The evaluation maps are thus continuous linear functionals of H, which is thus
an RKHS [(Proposition) 1.1.8]. Let H denote its reproducing kernel. Since, for
t 2 T, fixed, but arbitrary, H .
; t/ 2 H � H .C;T/, one has, for fixed, but arbitrary
.t1; t2/ 2 T � T, that

H .t1; t2/ D hH .
; t2/ ;C .
; t1/iH.C;T/ :

Consequently, given Œn; ˛; .t;T/�, fixed, but arbitrary,8<
:

nX
iD1

nX
jD1

˛i˛jH
�
ti; tj

�9=;
2

D
*

nX
iD1

˛iH .
; ti/ ;
nX

iD1
˛iC .
; ti/

+2
H.C;T/

:

The right-hand side of the latter equality is dominated byˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iC .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

:

Since ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D
nX

iD1

nX
jD1

˛i˛jH
�
ti; tj

�
;

and that ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iC .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

D
nX

iD1

nX
jD1

˛i˛jC
�
ti; tj

�
;

one may cancel the term
Pn

iD1
Pn

jD1 ˛i˛jH
�
ti; tj

�
, when it is different from zero.

But, when it is zero, there is nothing to prove. Thus C dominates H. ut
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Corollary 3.1.24 For covariances over T, one has that C1 � C2 if, and only if, as
manifolds, H .C1;T/ � H .C2;T/, and, for h 2 H .C1;T/, fixed, but arbitrary,

jjhjjH.C2;T/ � jjhjjH.C1;T/ :

When useful, that situation shall be denoted H .C1;T/ v H .C2;T/.

Corollary 3.1.25 Let C be a covariance on T whose associated RKHS is H .C;T/.
Suppose H � H .C;T/ is a real Hilbert space of functions such that, for fixed, but
arbitrary h 2 H,

jjhjjH.C;T/ � jjhjjH :

Let [(Proposition) 3.1.23] H D H.H;T/, and H� C. Let, mutatis, mutandis, JC;H
be the J2;1 map defined in (Proposition) 3.1.5. The map

J D IH.C;T/ � J?C;HJC;H

is positive as JC;H and its adjoint are contractions, so that it makes sense to compute
its square root. One has that

K D RŒJ1=2�

is an RKHS, with reproducing kernel K D C �H, and normˇ̌̌̌
J1=2 Œh�

ˇ̌̌̌
K
D ˇ̌̌̌PN ŒJ1=2�? Œh�

ˇ̌̌̌
H.C;T/

:

Proof Since [266, pp. 35,72]

RŒJ1=2� D N ŒJ1=2�?;

the following relation: ˇ̌̌̌
J1=2 Œh�

ˇ̌̌̌
K
D ˇ̌̌̌PN ŒJ1=2�? Œh�

ˇ̌̌̌
H.C;T/

says that J1=2 restricted to K is unitary, and thus that K is a Hilbert space. Using the
fact that J?C;H is an inclusion,

J ŒC .
; �/� .t/ D C .t; �/ �H .t; �/ ;

and, for t 2 T, fixed, but arbitrary,

C .
; t/�H .
; t/ D J1=2
�
J1=2 ŒC .
; t/�� 2 K:
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Furthermore, for k 2 K, k D J1=2 Œh�, fixed, but arbitrary,

k .t/ D hC .
; t/ ; kiH.C;T/
D ˝

C .
; t/ ; J1=2 Œh�˛
H.C;T/

D ˝
J1=2 ŒC .
; t/� ; h˛H.C;T/

D ˝
PN ŒJ1=2�?

�
J1=2 ŒC .
; t/�� ;PN ŒJ1=2�? Œh�

˛
H.C;T/

D ˝
J1=2

�
J1=2 ŒC .
; t/�� ; J1=2 Œh�˛

K

D hC .
; t/ �H .
; t/ ; kiK :

C �H is thus a reproducing kernel for K. ut
Remark 3.1.26 There is, in (Corollary) 3.1.25, a direct way to obtain JC;H which
does not transit through (Proposition) 3.1.5.

Let indeed h 2 H .C;T/ be fixed, but arbitrary, and let �h W H .H;T/ �! R be
the continuous linear functional on H .C;T/ determined by h:

�h Œk� D hk; hiH.C;T/ :

As, for k 2 H,

j�h Œk�j � jjkjjH.C;T/ jjhjjH.C;T/ � jjkjjH jjhjjH.C;T/ ;

�h is a continuous linear functional of H, and there exists a unique k Œh� 2 H for
which, for k 2 H, fixed, but arbitrary,

�h Œk� D hk; k Œh�iH :

Thus the assignment B Œh� D k Œh� yields B W H .C;T/ �! H, a well-defined linear
map. By definition

hB Œh� ; kiH D hh; kiH.C;T/ :

Furthermore, with

S D ˚h 2 H .C;T/ ; k 2 H; jjhjjH.C;T/ D jjkjjH D 1
�
;

one has that [266, p. 60]

jjBjj D sup
S
jhB Œh� ; kiHj

D sup
S

ˇ̌hh; kiH.C;T/ ˇ̌



3.1 Order for Covariances 243

� sup
S
jjhjjH.C;T/ jjkjjH.C;T/

� sup
S
jjkjjH

D 1:

B is thus a contraction. Since

hh;B? Œk�iH.C;T/ D hB Œh� ; kiH D hh; kiH.C;T/ ;

B? is the inclusion map. As, for t 2 T, fixed, but arbitrary,

B Œh� .t/ D hB Œh� ;H .
; t/iH.H;T/
D hh;B? ŒH .
; t/�iH.C;T/
D hh;H .
; t/iH.C;T/ ;

choosing C .
; �/ for h,

B ŒC .
; �/� .t/ D hC .
; �/ ;H .
; t/iH.C;T/ D H .�; t/ D H .t; �/ :

B is thus the map JC;H of (Proposition) 3.1.5.

Remark 3.1.27 Let h 2 H .C;T/, be fixed, but arbitrary. Then, by definition,

jjJ Œh�jj2K D
ˇ̌̌̌
J1=2

�
J1=2 Œh�

�ˇ̌̌̌ 2
K

D ˇ̌̌̌
J1=2 Œh�

ˇ̌̌̌
2

H.C;T/

D jjhjj2H.C;T/ � jjJC;H Œh�jj2H.H;T/ :

In particular,

jjhjj2H.C;T/ D jjJC;H Œh�jj2H.H;T/ C jjJ Œh�jj2K
D jjJC;H Œh�jj2H.H;T/ C

ˇ̌̌̌ ˚
IH.C;T/ � J?C;HJC;H

�
Œh�
ˇ̌̌̌
2

H.C�H;T/ ;

which looks like the result of an orthogonal decomposition. The drawback of that
decomposition is that a third RKHS must be considered. In the next chapter that
complication will vanish.

Remark 3.1.28 The range of J is dense in K. Indeed, K is the range of J1=2, J and
J1=2 have the same range closure [162, p. 27], and RŒJ� � RŒJ1=2�.
Remark 3.1.29 ([105, p. 259]) RŒJ� and RŒJ1=2� are simultaneously closed, and,
when they are, are equal. It should be noted that closed range for compact operators
means range of finite dimension [228, p. 98].
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Suppose that the range of J is closed. Since

RŒJ� � RŒJ1=2� � RŒJ1=2� D RŒJ�;

the range of J1=2 is closed.
Suppose that RŒJ1=2� is closed, and that J Œhn�! h. Then˝

J1=2 Œhn� ; J
1=2 Œk�

˛
H
! hh; kiH ;

that is, ˚
J1=2 Œhn� ; n 2 N

�
is weakly convergent on RŒJ1=2�. Let J1=2 Œk0� be its unique weak limit. Then, weakly,
J Œhn�! J Œk0�. Thus h D J Œk0�, and the range of J is closed.

When RŒJ� and RŒJ1=2� are closed, because they have the same closure, they are
equal. Suppose now that RŒJ� D RŒJ1=2�. By Douglas’s theorem [80], for some
invertible operator B,

J1=2 D J1=2BJ1=2:

Consequently, when limn J1=2 Œhn� D h, h D J1=2B Œh�, and the range of J1=2 is closed,
that is,

RŒJ1=2� D RŒJ1=2�:

Then

RŒJ� D RŒJ1=2� D RŒJ1=2� D RŒJ�;

and RŒJ� is closed.
To establish closure of range, one may sometimes use the Banach closed range

theorem [277, p. 210], which says that a bounded linear operator B, from H1 to H2,
has closed range if, and only if, there is a � > 0 such that, for h 2 H1, fixed, but
arbitrary,

jjB Œh�jjH2 � � ıH1 .h;N ŒB�/ ;

where ıH1 denotes distance in H1.

Remark 3.1.30 Because of [228, pp. 96–97], in (Corollary) 3.1.25,RŒJ� D H .C;T/
if, and only if,

jjJ Œh�jjH.C;T/ � ˛ jjhjjH.C;T/ ;
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some ˛ > 0 (and then J has closed range). Consequently [(Fact) 2.7.3], for t < ˛2,

EJ
t D OH.C;T/;

the lower end of the spectrum is at least ˛2, and 0 is not in the spectrum of J. Since,
letting

S D ˚h 2 H .C;T/ W jjhjjH.C;T/ D 1
�
;

one has that

0 < m D inf
S
hJ Œh� ; hiH.C;T/ � jjhjj2H.C;T/ � jjJC;H Œh�jj2H.C;T/ ;

it follows that ˝
J?C;HJC;H Œh� ; h

˛
H.C;T/

C m � jjhjj2H.C;T/ ;

and 1 is not in the spectrum of J?C;HJC;H.

Usually the inclusion of RŒJ� in RŒJ1=2� is strict. Here is an example for which

jjhjj2H.C;T/ � jjJC;H Œh�jj2H.C;T/ D 0:

Example 3.1.31 Let f and g be two linearly independent, bounded, measurable
functions, with domain T D Œ0; 1�. Let

F .t/ D
Z t

0

f .�/ d�;

G be defined analogously, and

h D ˛F C ˇG:

Let H D H .H;T/ be built as in (Example) 1.1.22, with

M�1 D
�

m1 m0

m0 m2

�
;

and m1m2 > m2

0. Then

jjhjj2H.H;T/ D

M�1

	
˛

ˇ



;

	
˛

ˇ


�
R2

D m1˛
2 C 2m0˛ˇ C m2ˇ

2:
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Also (omitting the usual distinction between a function and its equivalence class,
and letting CW be the covariance of the standard Wiener process),

jjhjj2H.CW ;T/ D
Z 1

0

f˛f .�/C ˇg .�/g2 d�

D ˛2 jj f jj2L2Œ0;1� C 2˛ˇ h f ; giL2Œ0;1� C ˇ2 jjgjj2L2Œ0;1�

D
* 
jj f jj2L2Œ0;1� h f ; giL2Œ0;1�
h f ; giL2Œ0;1� jjgjj2L2Œ0;1�

!	
˛

ˇ



;

	
˛

ˇ


+
R2

:

The requirement that

jjhjjH.CW ;T/ � jjhjjH.H;T/
becomes

�
m1 m0

m0 m2

�
�
 
jj f jj2L2Œ0;1� h f ; giL2Œ0;1�
h f ; giL2Œ0;1� jjgjj2L2Œ0;1�

!

is positive definite, and that means two further requirements:

• m1 � jj f jj2L2Œ0;1�,
•
˚
m1 � jj f jj2L2Œ0;1�

� ˚
m2 � jjgjj2L2Œ0;1�

� � ˚m0 � h f ; giL2Œ0;1�
�2

.

It follows that one must also have m2 � jjgjj2L2Œ0;1�.
H is computed as follows, letting � D ˚m1m2 �m2

0

��1
:

H .x; t/ D �
�

m2 �m0

�m0 m1

�	
F .x/
G .x/



;

	
F .t/
G .t/


�
R2

D � fŒm2F .x/ �m0G .x/�F .t/C Œm1G .x/ �m0F .x/�G .t/g
D � fŒm2F .t/ � m0G .t/�F .x/C Œm1G .t/ �m0F .t/�G .x/g :

Since F .t/ D ˝�Œ0;t�; f ˛L2Œ0;1�, the map

JCW ;H ŒCW .
; t/� D H .
; t/

has the following representation:

��1JCW ;H

	Z �
0

�Œ0;t� .�/ d�



D

D ˝
�Œ0;t�;m2 f � m0g

˛
L2Œ0;1�

F C ˝�Œ0;t�;m1g � m0f
˛
L2Œ0;1�

G
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which extends to

��1JCW ;H

	Z �
0

 .�/ d�



D

D h;m2 f �m0giL2Œ0;1� F C h;m1g �m0f iL2Œ0;1� G:

Let Q D  jjjj�1L2Œ0;1�. Then

��2
ˇ̌̌
ˇ
ˇ̌̌
ˇJ?CW ;HJCW ;H

	Z �
0

Q .�/ d�


ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H.CW ;T/

D

D jj f jj2L2Œ0;1�
˝ Q;m2 f � m0g

˛2
L2Œ0;1�

C 2 h f ; gi2L2Œ0;1�
˝ Q;m2 f � m0g

˛
L2Œ0;1�

˝ Q;m1g � m0f
˛
L2Œ0;1�

C jjgjj2L2Œ0;1�
˝ Q;m1g � m0f

˛2
L2Œ0;1�

:

Choose

• Q D 1; f D �,
• over

�
0; 1

2

�
; g D 1,

• over
�
1
2
; 1
�
; g D �1.

The expression for the norm yields thenˇ̌̌
ˇ
ˇ̌̌
ˇJ?CW ;HJCW ;H

	Z �
0

Q .�/ d�


ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H.CW ;T/

D �2
˚
m2

2�
4 C m2

0�
2
�
:

The relation �2
˚
m2

2�
4 C m2

0�
2
� D 1 requires that

�2 D 2

�2m2

0 C
˚
�4m4

0 C 2�2m2

2

�1=2 :
Choosing, for example, integers n for m�10 and p for m1 and m2, one obtains a � that
decreases and the relations

m1m2 �m2

0 > 0; .m1 � �2/.m2 � 1/ � m2

0

obtain.

Corollary 3.1.32 Let H .C;T/ be an RKHS. To each decomposition of the covari-
ance C into the sum of two covariances, say C D C1 C C2, there corresponds a
decomposition of IH.C;T/ into the sum IH.C;T/ D J1 C J2 of linear, bounded, positive,
and self-adjoint operators such that:

1. J1 D J?C;C1JC;C1 , and J1 Œh� .t/ D hh;C1 .
; t/iH.C;T/;
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2. J2 D J?C;C2JC;C2 , and J2 Œh� .t/ D hh;C2 .
; t/iH.C;T/;
3. RŒJ1=21 � D H .C1;T/, and RŒJ1=22 � D H .C2;T/;
4. the restriction of J1=21 to N ŒJ1�? is a unitary map from N ŒJ1�? onto H .C1;T/ so

that, when h 2 N ŒJ1�?, ˇ̌̌̌
J1=21 Œh�

ˇ̌̌̌
H.C1;T/

D jjhjjH.C;T/ I

5. the restriction of J1=22 to N ŒJ2�? is a unitary map from N ŒJ2�? onto H .C2;T/, so
that, when h 2 N ŒJ2�?, ˇ̌̌̌

J1=22 Œh�
ˇ̌̌̌

H.C2;T/
D jjhjjH.C;T/ :

Conversely, to each decomposition of IH.C;T/ into the sum

IH.C;T/ D J1 C J2

of linear, bounded, positive, and self-adjoint operators, there exist RKHS’s H .C1;T/
and H .C2;T/ whose norms are defined above. The corresponding kernels are
obtained as C1 .
; t/ D J1 ŒC .
; t/�, and C2 .
; t/ D J2 ŒC .
; t/�, where C D C1 C C2.

Proof Suppose that C D C1CC2. Then C1 � C and C2 � C, so that the operators
JC;C1 and JC;C2 of (Proposition) 3.1.5 are well defined. Set J1 D J?C;C1JC;C1 and
J2 D J?C;C1JC;C1 . One has that, in H .C;T/, for � 2 T, fixed, but arbitrary,

J?C;C1JC;C1 ŒC .
; �/� D C1 .
; �/ ;

so that, for t 2 T, fixed, but arbitrary,

Et ŒJ1 ŒC .
; �/�� D J1 ŒC .
; �/� .t/ D C1 .t; �/ D hC1 .
; t/ ;C .
; �/iH.C;T/ ;

and thus, for h 2 H .C;T/ and t 2 T, fixed, but arbitrary,

Et ŒJ1 Œh�� D J1 Œh� .t/ D hh;C1 .
; t/iH.C;T/ :

Consequently, .J1 C J2/ Œh� .t/ D hh;C .
; t/iH.C;T/ D h .t/. The other items
reexpress (Corollary) 3.1.25. The converse follows from the assumptions and the
first part, as C D C1 C C2. ut
Remark 3.1.33 The ensuing sections provide finer detail on those decompositions.

Set inclusion of RKHS’s coincides with domination of norms as seen below.

Proposition 3.1.34 Let H .C1;T/ and H .C2;T/ be RKHS’s such that, as sets of
functions,

H .C1;T/ � H .C2;T/ :
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There exists then � � 0 such that �C2 dominates C1, and, for h 2 H.C1;T/, fixed,
but arbitrary,

jjhjjH.C2;T/ � � jjhjjH.C1;T/ :

Proof Let F W T �! H.C2;T/ be the following assignment: F.t/ D C1.
; t/,
HF, the subspace of H.C2;T/ generated linearly by RŒF�, and PHF , the associated
projection. Then [(Proposition) 1.1.15] LF W H.C2;T/ �! RT , representing the
following assignment: LFŒh�.t/ D hh;F.t/iH.C2;T/ is such that KF D RŒLF � is an
RKHS with kernel

KF.t1; t2/ D hC1.
; t1/;C1.
; t2/iH.C2;T/;

and inner product

hLFŒh1�;LF Œh2�iKF D hPHF Œh1�;PFH Œh2�iH.C2;T/:

One has, in particular, that

LFŒC2.
; t/�.�/ D hC2.
; t/;C1.
; �/iH.C2;T/ D C1.�; t/;

so that LFŒC2.
; t/� D C1.
; t/ 2 H.C2;T/ \ KF . Furthermore, the family
fC1.
; t/; t 2 Tg is total in KF . Suppose indeed that, for t 2 T, and k 2 KF , fixed, but
arbitrary, hk;C1.
; t/iKF D 0. Let k D LFŒh.k/�. Then, as

hk;C1.
; t/iKF D hLFŒh.k/�;LF ŒC2.
; t/�iKF

D hPHF Œh.k/�;PHF ŒC2.
; t/�iH.C2;T/
D hPHF Œh.k/�;C2.
; t/iH.C2;T/;

PHF Œh.k/� D 0T , and thus h.k/ 2 H?F , or k D LFŒh.k/� D 0T .
Let V W KF �! KF denote the following assignment: VŒC1.
; t/� D KF.
; t/. Then

the following equalities, tagged (?), obtain:ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛i VŒC1.
; ti/�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
KF

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iKF.
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
KF

D
nX

iD1

nX
jD1

˛i˛jKF.i; j/

D
nX

iD1

nX
jD1

˛i˛j hC1.
; ti/;C1.
; tj/iH.C2;T/



250 3 Relations Between Reproducing Kernel Hilbert Spaces

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛i C1.
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C2;T/

:

Suppose now that
ˇ̌̌̌Pn

iD1 ˛i C1.
; ti/
ˇ̌̌̌

KF
D 0. Since C1.
; t/ D LFŒC2.
; t/�, the latter,

equal to zero, expression means that

nX
iD1

˛i C2.
; ti/ 2 H?F ;

or that, for � 2 T, fixed, but arbitrary,*
nX

iD1
˛i C2.
; ti/;C1.
; �/

+
H.C2;T/

D
nX

iD1
˛i C1.�; ti/ D 0:

It follows from (?) that
ˇ̌̌̌Pn

iD1 ˛i VŒC1.
; ti/�
ˇ̌̌̌
2

KF
D 0, which means that V is

well defined, and linear on VŒfC1.
; t/; t 2 Tg�. One should note that VŒC1.
; t/� D
LFŒC1.
; t/�, but that V is a map of KF .

Now, as C1.
; t/ 2 H.C2;T/,

mX
iD1

˛i C1.�; ti/ D
mX

iD1
˛i hC2.
; �/;C1.
; ti/iH.C2;T/

D
*

C2.
; �/;
mX

iD1
˛i C1.
; ti/

+
H.C2;T/

:

Consequently,

nX
jD1

mX
iD1

˛iˇj C1.�j; ti/ D

D
*

nX
jD1

ˇj C2.
; �j/;

mX
iD1

˛i C1.
; ti/
+

H.C2;T/

D
*

PHF

2
4 nX

jD1
ˇj C2.
; �j/

3
5 ;PHF

"
mX

iD1
˛i C1.
; ti/

#+
H.C2;T/

D
*

LF

2
4 nX

jD1
ˇj C2.
; �j/

3
5 ;LF

"
mX

iD1
˛i C1.
; ti/

#+
KF
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D
*

nX
jD1

ˇj C1.
; �j/;

mX
iD1

˛iKF.
; ti/
+

KF

D
*

nX
jD1

ˇjC1.
; �j/;V

"
mX

iD1
˛i C1.
; ti/

#+
KF

:

But, as C1.
; t/ 2 KF also,

mX
iD1

˛i C1.�; ti/ D
*
KF.
; �/;

mX
iD1

˛i C1.
; t1/
+

KF

;

so that

nX
jD1

mX
iD1

˛iˇj C1.�j; ti/ D
*

V

2
4 nX

jD1
ˇj C1.
; �j/

3
5 ; mX

iD1
˛i C1.
; ti/

+
KF

: (??)

It follows that, for h1 and h2 in VŒfC1.
; t/; t 2 Tg�, fixed, but arbitrary,

hVŒh1�; h2iKF D hh1;VŒh2�iKF :

But then [228, p. 334] V is continuous, and, from (??) above,

nX
iD1

nX
iD1

˛i˛j C1.ti; tj/ D
*

V

"
nX

iD1
˛i C1.
; ti/

#
;

nX
iD1

˛i C1.
; ti/
+

KF

� jjVjj
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛i C1.
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
KF

D jjVjj
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛i LFŒC2.
; ti/�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
KF

� jjVjj
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌PHF

"
nX

iD1
˛i C2.
; ti/

#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C2;T/

� jjVjj
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛i C2.
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C2;T/

D jjVjj
nX

iD1

nX
iD1

˛i˛j C2.ti; tj/:
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So jjVjjC2 dominates C1. Consequently, on H.C1;T/,

jjhjjH.jjVjjC2;T/ � jjhjjH.C1;T/ :

But jjhjjH.jjVjjC2;T/ D jjVjj�1 jjhjjH.C2;T/. ut
Remark 3.1.35 On its own, HF is an RKHS [(Proposition) 1.6.1], denoted here
H.HFF;T/, obtained using the following map:

LFF D PHF W H.C2;T/ �! RT with LFFŒC2.
; t/� D PHF ŒC2.
; t/�;

and resulting in the reproducing kernel:

HFF.t1; t2/ D hPHF ŒC2.
; t1/�;PHF ŒC2.
; t2/�iH.C2;T/;

and the inner product:

hPHF Œh1�;PHF Œh2�iH.HFF ;T/ D hPHF Œh1�;PHF Œh2�iH.C2;T/:

Since [(Proposition) 1.1.15] L?FLF D PHF , one has that

LFFŒC2.
; t/� D PHF ŒC2.
; t/� D L?FLFŒC2.
; t/�;

so that LFF D L?FLF .

The proof of (Proposition) 3.1.34 just given, with the exception of reference to
[228, p. 334], is elementary, but allows one to identify � as jjVjj, with V , an explicitly
defined operator, the restriction of LF to KF . It should be noted that jjLFjj � 1

(it is a contraction), but that one has no estimation of the value of jjVjj. There are
more sophisticated proofs of that same result, which are presented in the following
remarks, and which may prove more instructive as to the structure of the situation.
The one using the closed graph theorem is also quite shorter, but makes a détour
through (Proposition) 3.1.23!

Remark 3.1.36 ([4]) Here is a preliminary observation.
Let H .C1;T/ and H .C2;T/ be RKHS’s, and

H0 D H .C1;T/ \H .C2;T/ :

Let HC1
0 be H0 considered as a subset of H .C1;T/, and HC2

0 be defined similarly. Let

I W HC1
0 �! HC2

0

be the identity. It is a closed map.
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Proof Let fhn; n 2 Ng � HC1
0 converge to hC1 in H .C1;T/, and to hC2 in H .C2;T/

(that is, limn hn D hC1 and limn I Œhn� D hC2). Since convergence in an RKHS
implies pointwise convergence,

hC1 .t/ D hhC1 ;C1 .
; t/iH.C1;T/
D lim

n
hhn;C1 .
; t/iH.C1;T/

D lim
n

hn .t/

D lim
n
hhn;C2 .
; t/iH.C2;T/

D hhC2 ;C2 .
; t/iH.C2;T/
D hC2 .t/ :

Thus hC1 2 DI , and I ŒhC1 � D hC2 , as hC1 D hC2 2 H0. ut
The proof of (Proposition) 3.1.34 then proceeds as follows:

Proof As H0 of the observation just made is H .C1;T/, and that the identity map
is closed, it is bounded by the closed graph theorem [266, p. 94]. Thus, for
h 2 H .C1;T/, fixed, but arbitrary,

jjhjjH.C2;T/ D jjI Œh�jjH.C2;T/ � � jjhjjH.C1;T/ :

Consequently [(Example) 1.3.12]

jjhjjH.�C2;T/ D ��1 jjhjjH.C2;T/ � jjhjjH.C1;T/ :

One then uses result (Proposition) 3.1.23 to see that the claimed domination of
covariances obtains. ut
Remark 3.1.37 ([106, p. 156]) The second alternate proof of (Proposition) 3.1.34
requires the following preliminaries [111, pp. 275,315]:

Preliminaries:

1. Let V be a real vector space. C � V is convex when �v1 C .1 � �/ v2 2 C,
whatever � 2 Œ0; 1� ; .v1; v2/ � V � V .

2. Let V be a real vector space. B � V is balanced when � v 2 B whatever
� 2 Œ�1;C1� and v 2 B.

3. Let V be a real vector space. A � V absorbs B � V when there exists � > 0

such that �B � A whatever � 2 Œ��;C��.
4. Let V be a real vector space. A � V is absorbing in V when A absorbs fvg, all
v 2 V .

5. Let V be a real vector space. S � V is symmetric when �S D S. Balanced
sets are symmetric. The empty set is convex and balanced.
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6. Let V be a real vector space. B � V is a barrel when it is closed, convex,
absorbing in V , and balanced.

7. A locally convex topological vector space V is barrelled when everyone of its
barrels is a neighborhood of the zero vector. Fréchet and Banach spaces are
barrelled.

Proof Let

• B2 denote the closed unit ball of H .C2;T/, and
• B2j1 denote B2 \ H .C1;T/.

The first step of the proof consists in checking that B2j1 is closed in H .C1;T/
(Corollary 3.1.13 is a similar result, but requires that C2 dominates C1, a fact that is
not available in the present context).

To that end, one considers a Cauchy sequence in H .C1;T/, say fhn; n 2 Ng,
contained in B2j1. As such, it has a limit h.1/ 2 H .C1;T/. That sequence is however
bounded in H .C2;T/, since it is contained in B2. As such [266, p. 79], it contains a
subsequence

˚
hnp ; p 2 N

� � fhn; n 2 Ng which has a weak limit in H .C2;T/, say
h.2/. Furthermore, as for all weak limits [266, p. 78],ˇ̌̌̌

h.2/
ˇ̌̌̌

H.C2;T/
� lim inf

p

ˇ̌̌̌
hnp

ˇ̌̌̌
H.C2;T/

;

jjh.2/jjH.C2;T/ � 1. Thus h.2/ belongs to B2. Finally, for fixed, but arbitrary t 2 T,

h.2/ .t/ D ˝h.2/;C2 .
; t/˛H.C2;T/ D lim
p

˝
hnp ;C2 .
; t/

˛
H.C2;T/

D lim
p

hnp .t/ :

Now, since hnp 2 H .C1;T/, hnp .t/ D
˝
hnp ;C1 .
; t/

˛
H.C1;T/

, and

lim
p

hnp .t/ D
˝
h.1/;C1 .
; t/

˛
H.C1;T/

D h.1/ .t/ :

Consequently h.1/ belongs to B2j1 which is thus closed in H .C1;T/.
One finishes the proof using the geometric properties of B2j1 as follows. One first

notices that B2j1 is a barrel: it is closed as proved; it is convex as the intersection
of two convex sets; it is absorbing as the intersection of two absorbing sets; it is
balanced as the intersection of two balanced sets. Since a Hilbert space is barrelled
[234, p. 60], B2j1 is a neighborhood of the origin. Consequently B2j1 contains a
closed ball B0 � H .C1;T/ containing the origin. That means [269, p. 73] that
the topology of H .C1;T/ is stronger than the relative topology of H .C2;T/ on
H .C1;T/. But this in turn means [269, p. 57] that there exits � � 0 such that, for
h 2 H .C1;T/, fixed, but arbitrary,

jjhjjH.C2;T/ � � jjhjjH.C1;T/ :

One finishes as in (Example) 3.1.36. ut
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Remark 3.1.38 H .C1;T/ v H .C2;T/ [(Corollary) 3.1.24] if, and only if, there
exists a reproducing kernel H such that H .C2;T/ D H .C1 CH;T/. When H
exists, it is unique, and one then writes H .H;T/ D H .C2;T/� H .C1;T/.

Suppose indeed that H .C1;T/ v H .C2;T/. Then C1 � C2: set

H D C2 � C1 � C2:

Let F W T �! H .C1;T/ ˚ H .H;T/ be defined using the following relation:
FH .t/ D .C1 .
; t/ ;H .
; t//. Then LH has range equal to

H .C1 CH;T/ D H .C2;T/ :

The kernel H is also unique, for H.C1 C H1;T/ D H.C1 C H2;T/ implies that
C1 C H1 D C1 C H2 [(Proposition) 1.1.6]. Conversely, and for the same reason,
when H .C2;T/ D H .C1 CH;T/, for a reproducing kernel H, C2 � C1, and then
H .C1;T/ v H .C2;T/.

Since, when C2 D C1 C H, LF is unitary, and thus H.C2;T/ is isomorphic to
H.C1;T/˚ H.H;T/, the statement’s notation makes sense.

Lemma 3.1.39 H .C;T/ D f0RT g if, and only if, C D 0RT�T .

Proof Suppose that H .C;T/ contains only the zero function. Then, since
C .
; t/ 2 H .C;T/, for ft; �g � T, fixed, but arbitrary, C .�; t/ D 0. Conversely,
when C is the zero function, V ŒC� is reduced to the zero function, and so is its
closure. ut
Lemma 3.1.40 Given two covariances C1 and C2 over T,

H .C1;T/ \ H .C2;T/ D f0RT g

if, and only if, C1 and C2 are disjoint [(Definition) 3.1.1].

Proof Suppose indeed that the intersection of the two RKHS’s is the zero function,
and that the covariance C on T is dominated by both C1 and C2. Then H .C;T/ �
H .C1;T/\H .C2;T/ D f0RT g, so that H .C;T/ is reduced to the zero function, and
its covariance must be zero. C1 and C2 are thus disjoint.

Suppose conversely that C1 and C2 are disjoint and let

H D H .C1;T/ \ H .C2;T/ :

The following relation, valid for fh1; h2g � H, fixed, but arbitrary, determines an
inner product on H:

hh1; h2iH D hh1; h2iH.C1;T/ C hh1; h2iH.C2;T/ ;

and makes of H a Hilbert space. Suppose indeed that fhn; n 2 Ng � H is a Cauchy
sequence. It is then also Cauchy in H .C1;T/ and H .C2;T/, with respective limits



256 3 Relations Between Reproducing Kernel Hilbert Spaces

h1 and h2. But

h1 .t/ D hh1;C1 .
; t/iH.C1;T/
D lim

n
hhn;C1 .
; t/iH.C1;T/

D lim
n

hn .t/

D lim
n
hhn;C2 .
; t/iH.C2;T/

D hh;C2 .
; t/iH.C2;T/
D h2 .t/ :

Since, for h 2 H � H .C1;T/ \ H .C2;T/, and i 2 f1; 2g, fixed, but arbitrary,
jEt .h/j � �i jjhjjH.Ci;T/, it follows that

jEt .h/j � .�1 C �2/
�

�1

�1 C �2 jjhjjH.C1;T/ C
�2

�1 C �2 jjhjjH.C2;T/
�

� .�1 C �2/ jjhjjH
(one may assume that �1 C �2 > 0, otherwise there is nothing to prove). Thus H is
an RKHS. Let H denote its kernel. By construction, for h 2 H, fixed, but arbitrary,

jjhjjH.C1;T/ � jjhjjH.H;T/ ; and jjhjjH.C2;T/ � jjhjjH.H;T/ :

Thus [(Corollary) 3.1.24]H� C1, and H� C2. But C1 and C2 have been assumed
to be disjoint, so that H is reduced to the zero function. ut
Proposition 3.1.41 H .C1;T/ is a (closed) subspace of H .C2;T/ if, and only if, C1
and C2 � C1 are disjoint.

Proof When H .C1;P/ is a subspace of H .C2;T/, because of (Proposition) 1.6.1,

C1 .
; t/ D PH.C1;T/ ŒC2 .
; t/� ;

and thus

fC2 � C1g .
; t/ D
˚
IH.C2;T/ � PH.C1;T/

�
ŒC2 .
; t/� ;

so that H .C1;T/ and H .C2 � C1;T/ are orthogonal in H .C2;T/, and thus their
intersection is the zero function. C1 and C2�C1 are thus disjoint [(Lemma) 3.1.40].
When C1 and C2 � C1 are disjoint, the intersection H.C1;T/ \ H.C2 � C1;T/ is
made of the zero function, and thus H.C2;T/ D H.C1C ŒC2�C1�;T/ is isomorphic
to H.C1;T/˚ H.C2 � C1;T/. ut
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3.2 Contractive Inclusions of Hilbert Spaces

When, on T, the covariance C2 dominates the covariance C1, one knows that, as
sets, H .C1;T/ � H .C2;T/, and that, for h 2 H .C1;T/,

jjhjjH.C2;T/ � jjhjjH.C1;T/ :

It is of interest to measure the gap separating the two norms, for example when they
represent “energy constraints” [13]. It is the aim of this chapter to obtain the value of

jjhjj2H.C1;T/ � jjhjj2H.C2;T/ :

One has already met an analogous description in (Remark) 3.1.27, but there, one
has an expression for

jjhjj2H.C2;T/ � jjJC2;C1 Œh�jj2H.C1;T/ :

Since J?2;1 is an inclusion and a contraction, the material in this section informs
also on J?2;1, and, consequently, on J2;1.

3.2.1 Definition and Properties of Contractive Inclusions

The material which follows expands on (Proposition) 1.1.15.

Definition 3.2.1 Let H1 and H2 be real Hilbert spaces, and suppose that H1 is a
(linear) submanifold of H2. Denote J1;2 the inclusion map of H1 into H2. Then:

1. when J1;2 is continuous, H1 is said to be contained boundedly in H2, and one
sometimes writes H1 �b H2;

2. when J1;2 is a contraction, H1 is said to be contained contractively in H2, and one
sometimes writes H1 �c H2.

Thus, in both cases, H1 is the range of an operator [105].

The following result is very much like that of (Proposition) 1.1.15, and the proof
is similar.

Proposition 3.2.2 Let H1 and H2 be real Hilbert spaces, and B, a bounded linear
operator from H1 into H2. Let HB D RŒB� � H2. Then

1. HB is a real Hilbert space for the inner product

hB �h.1/1 � ;B �h.1/2 �iHB D hPN ŒB�?
�
h.1/1
�
;PN ŒB�?

�
h.1/1
�iH1 I

2. HB is contained boundedly in H2;
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3. when B is a contraction, HB is contained contractively in H2.

Proof Since HB is the range of a linear operator, it is a linear manifold. Thus one
must first check that the following map:�

h.1/1 ; h
.1/

2

� 7! hB �h.1/1 � ;B �h.1/2 �iHB

is an inner product. It is bilinear as, for example, given f˛1; ˛2g � R, and˚
h.1/; h.1/1 ; h

.1/

2

� � H1, fixed, but arbitrary,

h˛1B
�
h.1/1
�C ˛2B �h.1/2 � ;B �h.1/�iHB D

D hB �˛1h.1/1 C ˛2h.1/2 � ;B �h.1/�iHB

D hPN ŒB�?
�
˛1h

.1/

1 C ˛2h.1/2
�
;PN ŒB�?

�
h.1/
�iH1

D ˛1hPN ŒB�?
�
h.1/1
�
;PN ŒB�?

�
h.1/
�iH1 C ˛2hPN ŒB�?

�
h.1/2
�
;PN ŒB�?

�
h.1/
�iH1

D ˛1hB
�
h.1/1
�
;B
�
h.1/
�iHB C ˛2hB

�
h.1/2
�
;B
�
h.1/
�iHB :

Furthermore jjB Œh.1/�jjHB
D 0 implies that

ˇ̌̌̌
PN ŒB�?

�
h.1/
�ˇ̌̌̌

H1
D 0;

and thus that

B
�
h.1/
� D B

�
PN ŒB�?

�
h.1/
�� D 0H2 :

One has thus indeed defined an inner product. It remains to check that, for that inner
product, HB is complete. Suppose thus that

lim
m;n

ˇ̌̌̌
B
�
h.1/m

� � B
�
h.1/n

�ˇ̌̌̌
HB
D 0:

Then, by definition,

lim
m;n

ˇ̌̌̌
PN ŒB�?

�
h.1/m

� � PN ŒB�?
�
h.1/n

�ˇ̌̌̌
H1
D 0;

so that there exists h.1/ 2 N ŒB�? such that, in H1,

lim
n

PN ŒB�?
�
h.1/n

� D h.1/:

But then

lim
n

ˇ̌̌̌
B
�
h.1/n

� � B
�
h.1/
�ˇ̌̌̌

HB
D lim

n

ˇ̌̌̌
PN ŒB�?

�
h.1/n

� � h.1/
ˇ̌̌̌

H1
D 0:
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Let JB;2 denote the inclusion of HB into H2. Since

ˇ̌̌̌
JB;2

�
B
�
h.1/
��ˇ̌̌̌

H2
D
ˇ̌̌̌̌̌
B
h
PN?B

�
h.1/
�iˇ̌̌̌̌̌

H2
� jjBjj

ˇ̌̌̌̌̌
PN?B

�
h.1/
�ˇ̌̌̌̌̌

H1
;

and that ˇ̌̌̌̌̌
PN?B

�
h.1/
�ˇ̌̌̌̌̌

H1
D ˇ̌̌̌B

�
h.1/
�ˇ̌̌̌

HB
;

one has finally that ˇ̌̌̌
JB;2

�
B
�
h.1/
��ˇ̌̌̌

H2
� jjBjj ˇ̌̌̌B �h.1/�ˇ̌̌̌ HB

:

Thus items 2 and 3 follow. ut
Example 3.2.3 Suppose that (Proposition) 3.1.5 obtains, and choose

H1 D H .C2;T/ ; H2 D H .C1;T/ ; and B D J2;1:

Then [266, p. 71]

N ŒB�? D N ŒJ2;1�? D RŒJ?2;1� D H .C1;T/;

the closure being in H .C2;T/. HB is RŒJ2;1� D H .C1;T/, and

hJ2;1
�
h.2/1
�
; J2;1

�
h.2/2
�iHB D hPH.C1;T/

�
h.2/1
�
;PH.C1;T/

�
h.2/2
�iH.C2;T/:

Since J2;1 is a contraction, HB is contained contractively in H .C1;T/, that is, the
inclusion of HB into H .C1;T/ is a contraction, so that

ˇ̌̌̌
J2;1

�
h.2/
�ˇ̌̌̌

H.C1;T/
� ˇ̌̌̌ J2;1 �h.2/�ˇ̌̌̌ HB

D
ˇ̌̌̌̌̌
PH.C1;T/

�
h.2/
�ˇ̌̌̌̌̌

H.C2;T/
;

which, when (with closure in H .C2;T/) H .C1;T/ � H .C2;T/, is an inequality
tighter than that given by the fact that J2;1 is a contraction.

Choose now H1 D H .C1;T/, H2 D H .C2;T/, B D J?2;1. Then [266, p. 71]

N ŒB�? D N ŒJ?2;1�? D RŒJ2;1� D H .C1;T/ :

Consequently HB D H .C1;T/, and

hJ?2;1
�
h.1/1
�
; J?2;1

�
h.1/2
�iHB D hh.1/1 ; h.2/2 iH.C1;T/;

so that, as Hilbert spaces, HB D H .C1;T/, and the inclusion result yields the norm
inequality of (Proposition) 3.1.5.
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Proposition 3.2.4 Let H1 and H2 be real Hilbert spaces, and B W H1 �! H2

be a bounded linear operator. Let HB denote the Hilbert space built in (Proposi-
tion) 3.2.2. For fixed, but arbitrary h.2/ 2 H2, let hh.2/; 
ijHB

H2
denote the restriction of

hh.2/; 
iH2 to HB. It is a continuous linear functional on HB, and

hh.2/; 
ijHB
H2
D hBB?

�
h.2/
�
; 
iHB :

Proof For fixed, but arbitrary h.1/ 2 H1, the definitions yield that

hh.2/;B �h.1/�iH2 D hB? �h.2/� ; h.1/iH1 :
As [266, p. 71] N ŒB�? D RŒB?�, using (Proposition) 3.2.2, item 1,

hB? �h.2/� ; h.1/iH1 D hPN ŒB�?
�
B?
�
h.2/
��
;PN ŒB�?

�
h.1/
�iH1

D hB �B? �h.2/�� ;B �h.1/�iHB :

Thus

hh.2/;B �h.1/�iH2 D hBB?
�
h.2/
�
;B
�
h.1/
�iHB :

ut
The next result is a version of Douglas’s theorem [80]. The notation B1 � B2, for

operators B1 and B2 on H, means that, for h 2 H, fixed, but arbitrary,

hB1 Œh� ; hiH � hB2 Œh� ; hiH:

Proposition 3.2.5 Let H;H1;H2 be real Hilbert spaces, and B1 W H1 �! H and
B2 W H2 �! H be bounded linear operators. Then,

B1B
?
1 � B2B

?
2

if, and only if, there exists a contraction C W H1 �! H2 such that B1 D B2C, (which
means in particular that RŒB1� � RŒB2�).
Proof Suppose that there exists a contraction C such that B1 D B2C.

Then, for fixed, but arbitrary h 2 H,

hB1B?1 Œh� ; hiH D hB?1 Œh� ;B?1 Œh�iH1
D jjC?B?2 Œh�jj2H1
� jjC?jj2 hB2B?2 Œh� ; hiH:

Since jjC?jj D jjCjj [266, p. 71], C being a contraction, C? is a contraction, and thus
B1B?1 � B2B?2 .
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Proof Suppose now that B1B?1 � B2B?2 .
Define D W RŒB?2 � �! RŒB?1 � using the following assignment:

D
�
B?2 Œh�

� D B?1 Œh� ; h 2 H:

One has, for f˛1; ˛2g � R, and fh; h1; h2g � H, fixed, but arbitrary, that

D
�
˛1B

?
2 Œh1�C ˛2B?2 Œh2�

� D D
�
B?2 Œ˛1h1 C ˛2h2�

�
D B?1 Œ˛1h1 C ˛2h2�
D ˛1B?1 Œh1�C ˛2B?1 Œh2�
D ˛1D

�
B?2 Œh1�

�C ˛2D �B?2 Œh2�� ;
and that ˇ̌̌̌

D
�
B?2 Œh�

�ˇ̌̌̌ 2
H1
D jjB?1 Œh�jj2H1
D hB1B?1 Œh� ; hiH
� hB2B?2 Œh� ; hiH
D jjB?2 Œh�jj2H2 :

This shows, firstly, that D is well defined since, whenever B?2 Œh1� D B?2 Œh2�,
.h1; h2/ 2 H � H,

ˇ̌̌̌
D
�
B?2 Œh1�

� �D
�
B?2 Œh2�

�ˇ̌̌̌ 2
H1
� jjB?2 Œh1� � B?2 Œh2�jj2H2 D 0;

and, secondly, that D has an extension to a contraction defined on RŒB?2 �. To have
H2 as domain for D, one sets

D
�
h.2/
� D 0 for h.2/ 2 RŒB?2 �

?
:

Then, given .h; h.1// 2 H � H1, fixed, but arbitrary,

hB2
�
D?
�
h.1/
��
; hiH D hh.1/;DB?2 Œh�iH1

D hh.1/;B?1 Œh�iH1
D hB1

�
h.1/
�
; hiH:

To have the required result, it suffices to choose C D D?, which is a contraction
since D is one [266, p. 71]. ut
Proposition 3.2.6 Let H;H1;H2 be real Hilbert spaces, and B1 W H1 �! H and
B2 W H2 �! H be bounded linear operators. HB1 is contained contractively in HB2
if, and only if, B1B?1 � B2B?2 .
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Proof Suppose that HB1 is contained contractively in HB2 .
Given (Proposition) 3.2.5, it will suffice to prove that B1 D B2C, C W H1 �! H2,

a contraction. Let h.1/ 2 H1 be fixed, but arbitrary. By assumption, one has that
RŒB1� � RŒB2�, so that there exists h.2/ 2 H2 such that B2 Œh.2/� D B1 Œh.1/�.
Furthermore h.2/ can be chosen to belong to N ŒB2�?. Let then C W H1 �! H2

be the following assignment:

C
�
h.1/
� D h.2/:

Let f˛1; ˛2g � R, and
˚
h.1/; h.1/1 ; h

.1/

2

� � H1, be fixed, but arbitrary, and

˚
h.2/1 ; h

.2/

2

� � N ŒB2�?

be such that

B2
�
h.2/1
� D B1

�
h.1/1
�

and B2
�
h.2/2
� D B1

�
h.1/2
�
:

Then

B2
�
˛1h

.2/

1 C ˛2h.2/2
� D ˛1B2

�
h.2/1
�C ˛2B2 �h.2/2 �

D ˛1B1
�
h.1/1
�C ˛2B1 �h.1/2 �

D B1
�
˛1h

.1/

1 C ˛2h.1/2
�
;

so that

C
�
˛1h

.1/

1 C ˛2h.1/2
� D ˛1h.2/1 C ˛2h.2/2 D ˛1C �h.1/1 �C ˛2C �h.1/2 � :

Then indeed B2C Œh.1/� D B2 Œh.2/� D B1 Œh.1/�, the required equality. Also one has
that ˇ̌̌̌

C
�
h.1/
�ˇ̌̌̌

H2
D ˇ̌̌̌

PN ŒB2�?
�
h.2/
�ˇ̌̌̌

H2

D ˇ̌̌̌
B2
�
h.2/
�ˇ̌̌̌

HB2

D ˇ̌̌̌
B1
�
h.1/
�ˇ̌̌̌

HB2

� ˇ̌̌̌B1 �h.1/�ˇ̌̌̌ HB1

D ˇ̌̌̌
PN ŒB1�?

�
h.1/
�ˇ̌̌̌

H1

� ˇ̌̌̌ h.1/ ˇ̌̌̌
H1
:

That proves that C is well defined, and a contraction.
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Proof Suppose that B1B?1 � B2B?2 .
Because of (Proposition) 3.2.5, B1 D B2C; C W H1 �! H2, a contraction. A first

consequence is that RŒB1� � RŒB2�. Also, for h.1/ 2 H1, fixed, but arbitrary,ˇ̌̌̌
B1
�
h.1/
�ˇ̌̌̌

HB2
D ˇ̌̌̌

B2C
�
h.1/
�ˇ̌̌̌

HB2

D ˇ̌̌̌
PN ŒB2�?C

�
h.1/
�ˇ̌̌̌

H2

D ˇ̌̌̌
PN ŒB2�?CPN ŒB1�

�
h.1/
�C PN ŒB2�?CPN ŒB1�?

�
h.1/
�ˇ̌̌̌

H2
:

Since B1PN ŒB1� Œh
.1/� D 0, B2CPN ŒB1� Œh

.1/� D 0, so that

CPN ŒB1�
�
h.1/
� 2 N ŒB2�; and thus PN ŒB2�?CPN ŒB1�

�
h.1/
� D 0:

Consequently ˇ̌̌̌
B1
�
h.1/
�ˇ̌̌̌

HB2
D ˇ̌̌̌

PN ŒB2�?CPN ŒB1�?
�
h.1/
�ˇ̌̌̌

H2

� ˇ̌̌̌PN ŒB1�?
�
h.1/
�ˇ̌̌̌

H1

D ˇ̌̌̌
B1
�
h.1/
�ˇ̌̌̌

HB1
:

HB1 is thus contained contractively in HB2 . ut
Corollary 3.2.7 Let H;H1;H2 be real Hilbert spaces, and B1 W H1 �! H and
B2 W H2 �! H be bounded linear operators. HB1 and HB2 designate the same
Hilbert space if, and only if, B1B?1 D B2B?2 . In particular the Hilbert spaces HB1
and H

ŒB1B?1 �
1=2 are identical.

Proposition 3.2.8 Let H1 and H2 be real Hilbert spaces, and B W H1 �! H2 be
a bounded linear operator. HB is a (closed) subspace of H2 if, and only if, B is a
partial isometry.

Proof Suppose B is a partial isometry.
RŒB� is then closed in H2. One must check that RŒB� D HB. But [266, p. 86]

BB? D PRŒB�;

and

PRŒB� D PRŒB�P
?
RŒB�;

so that, using (Corollary) 3.2.7, HB and HPRŒB� designate the same Hilbert space. But
HPRŒB� D RŒB�.
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Proof Suppose HB is an ordinary subspace of H2.
Then RŒB� is closed, which is the first of a set of two conditions for B to be a

partial isometry [266, p. 86]. Also, by the definition of HB,

hB Œh1� ;B Œh2�iHB D hPN ŒB�? Œh1� ;PN ŒB�? Œh2�iH1 ;

and, because HB, which is a Hilbert space, is a closed subspace of H2, it must have
the same inner product, that is

hB Œh1� ;B Œh2�iHB D hB Œh1� ;B Œh2�iH2 :

Thus B?B D PN ŒB�? , which is the second of the same set of two conditions for B to
be a partial isometry [266, p. 86]. ut
Example 3.2.9 In (Example) 3.2.3, choose B D J?2;1. Then HB D H .C1;T/, so that

H .C1;T/ is a closed subspace of H .C2;T/
if ; and only if ; J?2;1 is a partial isometry:

Then H .C1;T/ is the initial set of J?2;1 as well as its final set. J2;1 is also a partial
isometry with the same initial and final set. J?2;1J2;1 is the identity of H .C1;T/ and
J2;1J?2;1 the projection onto it in H .C2;T/.

3.2.2 Complementary and Overlapping Spaces

As seen in (Remark) 3.1.27, the ingredients of a norm decomposition along RKHS’s
involve an operator B and an operator of type I �B?B. Here one shall preferentially
use the operator I � BB? which realizes the “switch” mentioned at the beginning of
Sect. 3.2. Complementary and overlapping spaces reflect the relations that may exist
between HB and HI�B?B. Complementary reminds one of orthogonal complement,
and complementary spaces are substitutes for orthogonal complements: when B is
a partial isometry, BB? and B?B are projections, and so is their difference from the
identity.

Definition 3.2.10 Let B W H1 �! H2 be a real Hilbert spaces contraction. Define
the following operators:

on H1 W B1 D .IH1 � B?B/1=2 ;

on H2 W B2 D .IH2 � BB?/1=2 :

HB2 is called the space complementary to HB. The overlapping space is the
intersection HB \ HB2 .
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Remark 3.2.11 Suppose that H1 D H2 D H. Write temporarily DB for B1, and DB?

for B2. It is a consequence of the definition of DB and DB? that, for h 2 H, fixed, but
arbitrary,

jjhjj2H D jjB Œh�jj2H C jjDB Œh�jj2H D jjB? Œh�jj2H C jjDB? Œh�jj2H :

DB and DB? are called the defect operators of B [107, p. 130], and they give a
measure of how far B and B? are from being isometric. Thus B is isometric if, and
only if, DB D 0, and similarly for B?. The sequel describes an extension of that idea
to products of operators between different Hilbert spaces.

Remark 3.2.12 One has, for positive R, that [162, p. 27] N ŒR1=2� D N ŒR�. Thus an
element h.2/ in N ŒB2� is such that h.2/ D BB? Œh.2/�.

Remark 3.2.13 For fixed, but arbitrary h.1/ 2 H1, one has, for example, that

h.IH1 � B?B/ Œh.1/� ; h.1/iH1
jjh.1/jj2H1

D 1 � jjB Œh
.1/�jj2H2

jjh.1/jj2H1
;

and thus IH1 � B?B and IH2 � BB? are nonnegative, self-adjoint contractions.
Consequently so are B1 and B2. Furthermore the spectrum of these operators, since
they are nonnegative contractions, is contained in the interval Œ0; 1�.

Remark 3.2.14 When HB is an ordinary subspace, that is when B is a partial
isometry, BB? and IH2 � BB? are complementary projections, and

HB2 D H?B :

Proposition 3.2.15 When B W H1 �! H2 is a Hilbert spaces contraction,

BB1 D B2B:

Proof First of all, B .IH1 � B?B/ D .IH2 � BB?/B.
Suppose then that, for some integer n 2 N,

B .IH1 � B?B/n D .IH2 � BB?/n B:

One has then that

B .IH1 � B?B/nC1 D B .IH1 � B?B/ .IH1 � B?B/n

D .IH2 � BB?/B .IH1 � B?B/n

D .IH2 � BB?/ .IH2 � BB?/n B

D .IH2 � BB?/nC1 B:
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Consequently, for any polynomial p, and operators A1 D p .IH1 � B?B/ and A2 D
p .IH2 � BB?/, on H1 and H2 respectively, BA1 D A2B.

Now a standard result [129, p. 232] says that, if A is a bounded, self-adjoint,
linear operator, with spectrum � .A/, f is a continuous function, and f pn; n 2 Ng a
sequence of polynomials such that

lim
n

(
sup

x2�.A/
jf .x/ � pn .x/j

)
D 0;

then, in operator norm, f .A/ D limn pn .A/. Furthermore, for any bounded linear
operator B such that AB D BA, one has that f .A/B D Bf .A/. Consequently, for
any sequence f pn; n 2 Ng of polynomials that converges uniformly, on the interval
Œ0; 1�, to the square root function [230, p. 159], taking into account that the spectra
of the operators one considers are subsets of Œ0; 1�, one has that

lim
n

pn .IH1 � B?B/ D .IH1 � B?B/1=2 D B1;

and

lim
n

pn .IH2 � BB?/ D .IH2 � BB?/1=2 D B2;

which yields the required equality. ut
Corollary 3.2.16 B?B2 D B1B?

Proof It suffices to write the formula of (Proposition) 3.2.15 for B? W H2 �! H1.
ut

Proposition 3.2.17 For B W H1 �! H2, a Hilbert spaces contraction,

1. h 2 HB2 if, and only if, B? Œh� 2 HB1;
2. for fixed, but arbitrary fh1; h2g � HB2 ,

hh1; h2iHB2
D hh1; h2iH2 C hB? Œh1� ; B? Œh2�iHB1

:

Proof [1] Suppose first that h 2 HB2 . Then, for some h.2/ 2 H2, h D B2 Œh.2/�.
Consequently, because of (Corollary) 3.2.16,

B? Œh� D B?B2
�
h.2/
� D B1

�
B?
�
h.2/
�� 2 HB1 :

Conversely, suppose that h.2/ 2 H2 is such that B? Œh.2/� D B1 Œh.1/�, some h.1/ 2 H1.
Then

h.2/ D .IH2 � BB?/
�
h.2/
�C BB?

�
h.2/
� D B22

�
h.2/
�C BB1

�
h.1/
�
:
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But (Proposition) 3.2.15 yields that BB1 D B2B, and thus that

h.2/ D B22
�
h.2/
�C B2B

�
h.1/
� D B2

˚
B2
�
h.2/
�C B

�
h.1/
�� 2 HB2 :

Proof [2] One must first notice that, because of item 1, the expression in item 2
makes sense.

Let h belong to HB2 , that is h D B2 Œh.2/� ; h.2/ 2 H2. Then

B? Œh� D B?B2
�
h.2/
�
;

so that, using (Corollary) 3.2.16,

B? Œh� D B1B
?
�
h.2/
� D B1

�
PN ŒB1�?

�
B?
�
h.2/
���
:

Thus, given h 2 HB2 , there exists h.1/ 2 H1 such that

B? Œh� D B1
�
h.1/
�
; h.1/ 2 N ŒB1�?: (?)

One may then check, as in the proof of item 1, that, given h 2 HB2 , one may write

h D B2
˚
B2 Œh�C B

�
h.1/
��
; h.1/ 2 N ŒB1�? � H1:

One has furthermore that B2 Œh�C B Œh.1/� ? N ŒB2�. Indeed [266, p. 71],

• firstly,

B2 Œh� 2 RŒB2� � RŒB2� ? N ŒB?2 � D N ŒB2�;

• and, secondly, as h.1/ 2 H1; and h.1/ ? N ŒB1�,

h.1/ 2 RŒB?1 � D RŒB1�;

so that, for some sequence
˚
h.1/n ; n 2 N

� � H1, using (Proposition) 3.2.15 in the
second step,

h.1/ D lim
n
.H1/B1

�
h.1/n

�
;

B
�
h.1/
� D lim

n
.H2/BB1

�
h.1/n

�
D lim

n
.H2/B2B

�
h.1/n

�
2 RŒB2� ? N ŒB?2 � D N ŒB2�:
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The facts just proved allow one to write, for .h1; h2/ 2 HB2�HB2 , and corresponding�
h.1/1 ; h.1/2

� 2 H1 � H1; with h.1/1 ? N ŒB1� and h.1/2 ? N ŒB1�;

hh1; h2iHB2
D

D hB2
˚
B2 Œh1�C B

�
h.1/1
��
; B2

˚
B2 Œh2�C B

�
h.1/2
��iHB2

D hPN ŒB2�?
˚
B2 Œh1�C B

�
h.1/1
��
; PN ŒB2�?

˚
B2 Œh2�C B

�
h.1/2
��iH2

D h˚B2 Œh1�C B
�
h.1/1
��
;
˚
B2 Œh2�C B

�
h.1/2
��iH2

D hB2 Œh1� ; B2 Œh2�iH2 C hB2 Œh1� ; B
�
h.1/2
�iH2

ChB �h.1/1 � ; B2 Œh2�iH2 C hB
�
h.1/1
�
; B
�
h.1/2
�iH2 :

Now, using the definition of the different ingredients, one has, for the first term to
the right of the latter equality, that

hB2 Œh1� ; B2 Œh2�iH2 D hB22 Œh1� ; h2iH2
D h.IH2 � BB?/ Œh1� ; h2iH2
D hh1; h2iH2 � hB? Œh1� ; B? Œh2�iH1 :

Also, using (Proposition) 3.2.15, and the already exhibited (see ?) following
relation:

B? Œh� D B1
�
h.1/
�
; h 2 HB2 ; h.1/ 2 N ŒB1�? � H1;

one obtains, for the second term, that

hB2 Œh1� ; B
�
h.1/2
�iH2 D hh1; B2B

�
h.1/2
�iH2

D hh1; BB1
�
h.1/2
�iH2

D hB? Œh1� ; B1
�
h.1/2
�iH1

D hB? Œh1� ; B? Œh2�iH1 :

Similarly, one has, for the third term, that

hB �h.1/1 � ; B2 Œh2�iH2 D hB? Œh1� ; B? Œh2�iH1 :

Thus

hh1; h2iHB2
D hh1; h2iH2 C hB? Œh1� ; B? Œh2�iH1 C hB

�
h.1/1
�
; B
�
h.1/2
�iH2 :
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Now, still using the same relation (that is, (?)): B? Œh� D B1 Œh.1/�, one has that

hB? Œh1� ; B? Œh2�iH1 D hB1
�
h.1/1
�
; B1

�
h.1/2
�iH1 D hB21 �h.1/1 � ; h.1/2 iH1 :

Recalling the definition of B1, one has that

hB21
�
h.1/1
�
; h.1/2 iH2 D hh.1/1 ; h.1/2 iH2 � hB?B

�
h.1/1
�
; h.1/2 iH2

D hh.1/1 ; h.1/2 iH2 � hB
�
h.1/1
�
; B
�
h.1/2
�iH2 :

Thus finally

hh1; h2iHB2
D hh1; h1iH2 C hh.1/1 ; h.1/2 iH1 :

As h.1/1 ? N ŒB1� and h.1/2 ? N ŒB1�,

hh.1/1 ; h.1/2 iH1 D hPN ŒB1�?
�
h.1/1
�
;PN ŒB1�?

�
h.1/2
�iH1

D hB1
�
h.1/1
�
; B1

�
h.1/2
�iHB1

D hB? Œh1� ; B? Œh2�iHB1
;

ut
which establishes item 2.

Corollary 3.2.18 When B W H1 �! H2 is a Hilbert spaces contraction, the
overlapping space has the following representation:

HB \ HB2 D BHB1 :

Proof (BHB1 � HB \HB2)
Certainly BHB1 � HB. Let thus h1 2 HB1 , and choose h.1/1 2 H1, with

h1 D B1
�
h.1/1
�
. Then (Proposition) 3.2.15 yields that

B Œh1� D BB1
�
h.1/1
� D B2B

�
h.1/1
�
;

so that B Œh1� 2 HB \ HB2 .

Proof (HB \ HB2 � BHB1)
Definition 3.2.10 applied to B? W H2 �! H1 says that

• ŒB?�2 is the map on H1 defined using ŒB?�2 D .IH1 � B?B/1=2 D B1,
• ŒB?�1 is the map on H2 defined using ŒB?�1 D .IH2 � BB?/1=2 D B2.

One then remarks that (Proposition) 3.2.17, used with B? in place of B, yields, with,
for example, ŒB?�1 being the pendant of B1 for B?, that (iff� if, and only if,)

h1 2 HŒB?�2 iff .B?/? Œh1� 2 HŒB?�1 ; that is, iff B Œh1� 2 HŒB?�1 ;
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which translates to

h1 2 HB1 iff B Œh1� 2 HB2 :

Consequently, when h2 2 HB \ HB2 , there are h.1/2 2 H1 and h.2/2 2 H2 such that

h2 D B
�
h.1/2
� D B2

h
h.2/2

i
:

That means, in particular, that h.1/2 2 HB1 , and thus that h2 2 BHB1 . ut
Corollary 3.2.19 When B W H1 �! H2 is a real Hilbert spaces contraction, then
HB \ HB2 D f0H2g if, and only if, HB and HB2 are ordinary subspaces of H2

orthogonal to each other.

Proof The null operator from the Hilbert space H1 to the Hilbert space H2 shall be
denoted OH1;H2 , and OH, when H1 D H2 D H.

Proof Suppose that HB and HB2 are ordinary subspaces of H2 orthogonal to each
other.

Then [266, p. 84] PHB PHB2
D PHB2

PHB D OH2 , so that PHB\HB2
D OH2 , or

HB \ HB2 D f0H2g :

Proof Suppose that HB \ HB2 D f0H2g.
Given that [(Corollary) 3.2.18] HB \ HB2 D BHB1 , one has that

HB1 � N ŒB�; so that BB1 D OH1;H2 ; and thus BB21 D OH1;H2 :

Consequently, B .IH1 � B?B/ D OH1;H2 ; or B D BB?B, so that

RŒB� D RŒBB?�;

and, furthermore, that

BB? D .BB?/2 ; and B?B D .B?B/2 :

BB? and B?B are thus idempotent. Since they are moreover selfadjoint, they are
projections [266, p. 83]. The consequence is [266, p. 86] that B is a partial isometry
whose initial set is the range of B?B, and whose final set is the range of BB?.
It follows that [266, p. 86] BB? D PHB , and that HB is closed. Since, by definition,

B22 D IH2 � BB? D IH2 � PHB ;
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it is a projection orthogonal to PHB [266, p. 83]. But then [266, p. 86] B2 is a partial
isometry, and HB2 is thus a subspace. Since PHB D BB?, and

PHB2
D B2B

?
2 D B22 D IH2 � BB?;

one has that [266, p. 84]

PHB PHB2
D PHB2

PHB D PHB\HB2
D Pf0H2g D OH2 ;

so that HB ? HB2 . ut
Fact 3.2.20 Let H and K be real Hilbert spaces, and H ˚ K, their direct sum. Let

˘H W H ˚ K �! H be defined using˘HŒ.h; k/� D h,

PH W H ˚ K �! H ˚ K be the projection onto H � f0Kg.

Then ˘?
HŒh� D .h; 0K/, and˘?

H˘H D PH.

Proof One has that h˘HŒ.h; k/�; h0iH D hh; h0iH D h.h; k/; .h0; 0K/iH˚K .

Lemma 3.2.21 Let H, H1 and H2 be real Hilbert spaces, and

C W H1 �! H; D W H �! H2; be contractions, and B D DC:

Set

B2 D .IH2 � BB?/1=2 ; C2 D .IH � CC?/
1=2
; D2 D .IH2 � DD?/

1=2
:

Define

S1 W H2 �! H2 using S1 Œh2� D D2 Œh2� ;

S2 W H �! H2 using S2 Œh� D DC2 Œh� ;

S W H2 ˚ H �! H2 using S D S1˘H2 C S2˘H:

1. One has the following equalities:

(i) S? D .D2;C2D?/ D �S1; S?2�,
(ii) SS? D IH2 � BB? D B22,

(iii) HS D HB2 .

2. Let H0 and H0
2 be two closed subspaces of H and H2 respectively, and

H0 D H0
2 � H0:
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Then

PH0 D .PH0
2
;PH0 /:

Proof One has, using (Fact) 3.2.20, that

S? D ˘?
H2S

?
1 C˘?

HS?2 D ˘?
H2D2 C˘?

HC2D
?;

which yields (i) of item 1. Now

SS? D S.D2;C2D
?/

D S1D2 C S2C2D
?

D D2
2 C DC2

2D
?

D .IH2 � DD?/C D.IH � CC?/D?

D IH2 � DCC?D?

D IH2 � BB?

D B22:

That, because of (Corollary) 3.2.7, yields the last equality of item 1.
One has that

H0 D H0
2 � f0Hg C f0H2g � H0 D ˘?

H2 ŒH
0
2 �C˘?

HŒH
0�

which yields

PH0 D ˘?
H2PH0

2
C˘?

HPH0 :

ut
Proposition 3.2.22 Let the assumptions and the notation be those of (Lemma) 3.2.21.
Then:

1. HB2 D HD2 C DHC2 (in particular HD2 � HB2).
2. If h2 2 HB2 has the representation h2 D d C D Œc�, with d 2 HD2 , and c 2 HC2 ,

then

jjh2jj2HB2
� jjdjj2HD2

C jjcjj2HC2
:

3. For each h2 2 HB2 , there is a unique .c;d/ 2 HC2 � HD2 such that

h2 D d CD Œc� ; and jjh2jj2HB2
D jjdjj2HD2

C jjcjj2HC2
:

4. HD2 is contained contractively in HB2 (see item 1).
5. Let DjHC2 be D restricted to HC2 . It is a contraction into HB2 .
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Proof [1] Because of (Lemma) 3.2.21, item 1, result (iii), one has that HB2 D HS.
The definition of S, that isD D2˘H2 C DC2˘H , yields the claim as

SŒ.h; k/� D D2Œh�C DC2Œk�: (?)

Proof [2 + 3] Let h2 D B2
�
h.1/2
�
, d D D2

�
h.2/2
�

and c D C2 Œh�. The following
relation: h2 D dC D Œc� may then be expressed in the ensuing manner:

B2
�
h.1/2
� D D2

�
PN ŒD2�?

�
h.2/2
��C DC2

�
PN ŒC2�? Œh�

�
D S

�
PN ŒD2�?

�
h.2/2
�
;PN ŒC2�? Œh�

�
:

Thus, since HB2 D HS [(Lemma) 3.2.21], by definition of HS,

.a/
ˇ̌̌̌
B2
�
h.1/2
�ˇ̌̌̌ 2

HB2
D ˇ̌̌̌

S
�
PN ŒD2�?

�
h.2/2
�
; PN ŒC2�? Œh�

�ˇ̌̌̌ 2
HS

D ˇ̌̌̌
PN ŒS�?

�
PN ŒD2�?

�
h.2/2
�
; PN ŒC2�? Œh�

�ˇ̌̌̌ 2
H2˚H

:

Let H0 be as in (Lemma) 3.2.21, with H0 D N ŒC2�, and H0
2 D N ŒD2�. One then has

that

PH?0
D IH2˚H � PH0 D .IH2 ; IH/�

�
PN ŒD2�;PN ŒC2�

� D �PN ŒD2�? ;PN ŒC2�?
�
;

and, since H0 D N ŒD2� �N ŒC2�, that (because of (?))

H0 � N ŒS�; and consequently that H?0 � N ŒS�?:

Thus [266, p. 84]

.b/ PN ŒS�?
�
PN ŒD2�?

�
h.2/2
�
; PN ŒC2�? Œh�

� D PN ŒS�?PH?0

��
h.2/2 ; h

��
D PH?0

PN ŒS�?
��

h.2/2 ; h
��
;

and

.c/
ˇ̌̌̌̌̌
PN ŒS�?PH?0

��
h.2/2 ; h

��ˇ̌̌̌̌̌ 2
H2˚H

�
ˇ̌̌̌̌̌
PH?0

��
h.2/2 ; h

��ˇ̌̌̌̌̌ 2
H2˚H

:

Let PN ŒS�? .h
.2/; h/ D �Qh.2/2 ; Qh�. Then, from .a/ and .b/, one gets that

ˇ̌̌̌
B2
�
h.1/2
�ˇ̌̌̌ 2

HB2
D
ˇ̌̌̌̌̌
PH?0

��Qh.2/2 ; Qh��ˇ̌̌̌̌̌ 2
H2˚H

D ˇ̌̌̌
PN ŒD2�?

�Qh.2/2 �ˇ̌̌̌ 2H2 C ˇ̌̌̌PN ŒC2�?
�Qh�ˇ̌̌̌ 2

H
;
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and, from .a/, .b/, and .c/, that

ˇ̌̌̌
B2
�
h.1/2
�ˇ̌̌̌ 2

HB2
�
ˇ̌̌̌̌̌
PH?0

��
h.2/2 ; h

��ˇ̌̌̌̌̌ 2
H2˚H

D ˇ̌̌̌
PN ŒD2�?

�
h.2/2
�ˇ̌̌̌ 2

H2
C ˇ̌̌̌PN ŒC2�? Œh�

ˇ̌̌̌ 2
H
:

Consequently

ˇ̌̌̌
B2
�
h.1/2
�ˇ̌̌̌ 2

HB2
D ˇ̌̌̌

PN ŒD2�?
�Qh.2/2 �ˇ̌̌̌ 2H2 C ˇ̌̌̌PN ŒC2�?

�Qh�ˇ̌̌̌ 2
H

� ˇ̌̌̌PN ŒD2�?
�
h.2/2
�ˇ̌̌̌ 2

H2
C ˇ̌̌̌PN ŒC2�? Œh�

ˇ̌̌̌ 2
H
:

It is then sufficient to notice that, by definition [(Proposition) 3.2.2],

ˇ̌̌̌
PN ŒD2�?

�Qh.2/2 �ˇ̌̌̌ 2H2 D ˇ̌̌̌
D2

�Qh.2/2 �ˇ̌̌̌ 2HD2
;ˇ̌̌̌

PN ŒD2�?
�
h.2/2
�ˇ̌̌̌ 2

H2
D ˇ̌̌̌

D2

�
h.2/2
�ˇ̌̌̌ 2

HD2
;ˇ̌̌̌

PN ŒC2�?
�Qh�ˇ̌̌̌ 2

H
D ˇ̌̌̌

C2
�Qh�ˇ̌̌̌ 2

HC2
;ˇ̌̌̌

PN ŒC2�? Œh�
ˇ̌̌̌ 2

H
D jjC2 Œh�jj2HC2

:

Proof [4 + 5] Item 1 says that HD2 � HB2 , and item 2, with c D 0, yields that

jjdjjHB2
� jjdjjHD2

:

Item 5 is item 2 with d D 0. ut
Corollary 3.2.23 Let the assumptions and notation be those of (Proposi-
tion) 3.2.22, and suppose that HD2 \ D ŒHC2 � D f0H2g. Then:

1. HB2 D HD2 C DHC2 is an orthogonal direct sum.
2. HD2 is contained isometrically in HB2 (see item 1).
3. DjHC2 , the restriction of D to HC2 , is a partial isometry from HC2 to HB2 (from

item 1, DHC2 � HB2) with initial set C2 ŒN ŒDC2�?�.

Proof [1] By definition, for fixed, but arbitrary .h2; h/ 2 H2 �H,

S .h2; h/ D S1 Œh2�C S2 Œh� ; with S1 Œh2� D D2 Œh2� ; S2 Œh� D DC2 Œh� :

Since HD2 \D ŒHC2 � D f0H2g,

N ŒS� D N ŒS1� �N ŒS2� D .N ŒS1� � f0Hg/C .f0H2g �N ŒS2�/ ;
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an orthogonal decomposition. Consequently [266, p. 84], using (Lemma) 3.2.21,
item 2, with H0 D N ŒS2� and H0

2 D N ŒS1�,

PN ŒS�? D IH2˚H �
�

PH0
2
;PH0

�
D .IH2 ; IH/ �

�
PN ŒS1�; PN ŒS2�

�
D �

PN ŒS1�? ; PN ŒS2�?
�
;

and, for fixed, but arbitrary .h2; h/ 2 H2 � H,

hD2 Œh2� ;DC2 Œh�iHB2
D hS .h2; 0H/ ; S .0H2 ; h/iHS

D hPN ŒS�? .h2; 0H/ ;PN ŒS�? .0H2 ; h/iH2˚H

D h�PN ŒS1�? Œh2� ; 0H
�
;
�
0H2 ;PN ŒS2�? Œh�

�iH2˚H

D 0:

Proof [2] One has, for fixed, but arbitrary h2 2 H2, since HS D HB2
[(Lemma) 3.2.21],

jjD2 Œh2�jj2HD2
D ˇ̌̌̌

PN ŒD2�? Œh2�
ˇ̌̌̌ 2

H2

D ˇ̌̌̌
PN ŒS1�? Œh2�

ˇ̌̌̌ 2
H2

D ˇ̌̌̌
PN ŒS�? .h2; 0H/

ˇ̌̌̌ 2
H2˚H

D jjS .h2; 0H/jj2HS

D jjD2 Œh2�jj2HB2
:

Proof [3] Let DjHC2 denote the restriction of D to HC2 . As

N ŒD� \HC2 � N ŒDjHC2 �;

one has that, in HC2 ,

.N ŒD� \ HC2 /
? � N ŒDjHC2 �?:

Thus, in proving item 3, one may restrict attention to .N ŒD� \HC2 /
?, the orthogo-

nal complement being in HC2 . Suppose thus that

h 2 .N ŒD� \HC2 /
? � HC2 ; with h D C2

�Qh?� ; and Qh? 2 N ŒC2�? � H:
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Since N ŒC2� � N ŒDC2�, in H, N ŒC2�? � N ŒDC2�?; so that one may consider,
successively,

Qh? 2 N ŒDC2�
? and then Qh? 2 N ŒDC2�:

Suppose thus at first that Qh? 2 N ŒDC2�? D N ŒS2�?. Then, since HS D HB2 , using
the various definitions, and in particular (Proposition) 3.2.2 and (Lemma) 3.2.21,

jjD Œh�jj2HB2
D ˇ̌̌̌

DC2
�Qh?�ˇ̌̌̌ 2

HB2

D ˇ̌̌̌
S
�
0H2 ;
Qh?�ˇ̌̌̌ 2

HS

D ˇ̌̌̌
PN ŒS�?

�
0H2 ; Qh?

�ˇ̌̌̌ 2
H2˚H

D ˇ̌̌̌ �
0H2 ;PN ŒS2�?

�Qh?��ˇ̌̌̌ 2
H2˚H

D ˇ̌̌̌
PN ŒS2�?

�Qh?�ˇ̌̌̌ 2
H

D ˇ̌̌̌ Qh? ˇ̌̌̌ 2
H

D ˇ̌̌̌
PN ŒC2�?

�Qh?�ˇ̌̌̌ 2
H

D ˇ̌̌̌
C2
�Qh?�ˇ̌̌̌ 2HC2

D jjhjj2HC2
;

so that there is preservation of norms when

h 2 .N ŒD� \HC2 /
? � HC2 has the form C2

�Qh?� ; Qh? 2 N ŒDC2�
?:

Suppose then that Qh? 2 N ŒDC2�. Since

DC2
�Qh?� D 0; C2

�Qh?� 2 N ŒD�; so that C2
�Qh?� 2 N ŒD� \ HC2 ;

and thus the elements Qh? 2 N ŒDC2� are sent to elements of HC2 in the kernel of D.
Thus the cases for which Qh? 2 N ŒDC2� may be ignored.

For item 3 to obtain, it remains to prove that C2 ŒN ŒDC2�?� is a closed subset of
HC2 . But, for fixed, but arbitrary fhm; hng � N ŒDC2�?,

jjC2 Œhm� � C2 Œhn�jjHC2
D ˇ̌̌̌PN ŒC2�? Œhm� � PN ŒC2�? Œhn�

ˇ̌̌̌
H
:

Let limn .H/PN ŒC2�? Œhn� D h 2 N ŒC2�?. Then

lim
n
jjC2 Œh� � C2 Œhn�jjHC2

D 0:

ut
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From the point of view that prevails here, the main result in this section is the
following proposition.

Proposition 3.2.24 Suppose that B W H1 �! H2 is a Hilbert spaces contraction,
and that B2 D .IH2 � BB?/1=2. Then:

1. H2 D HB C HB2;
2. for h2 2 H2 such that h2 D B Œh1�C hB2 , with h1 2 H1; hB2 2 HB2 , one has that

jjh2jj2H2 � jjh1jj2H1 C jjhB2 jj2HB2
I

3. equality in item 2 is achieved when using h1 D B? Œh2� and hB2 D B22 Œh2�.

Proof Those statements are a consequence of (Proposition) 3.2.22 when the
following choices are made:

• H is chosen to be H1,
• C is chosen to be OH1;H1 D OH1 , the null operator,
• D is chosen to be B (of statement (Proposition) 3.2.24, not of (Proposi-

tion) 3.2.22).

The operator B of (Proposition) 3.2.22 is then OH1;H2 .
As a consequence of those choices, HB2 becomes H2, HC2 becomes H1, and HD2

becomes HB2 , and thus

• HB2 D HD2 C DHC2 translates into

H2 D BH1 C HB2 D HB C HB2 ;

• h2 D D Œc�C d; h2 2 HB2 ; c 2 HC2 ; d 2 HD2 , translates into

h2 D B Œh1�C hB2 ; h1 2 H1; h2 2 H2; hB2 2 HB2 ;

• jjh2jj2HB2
� jjcjj2HC2

C jjdjj2HD2
translates into

jjh2jj2H2 � jjh1jj2H1 C jjhB2 jj2HB2
:

These are items 1 and 2. Also

• S1 D D2 translates into

S1 D B2;

• S2 D DC2 translates into

S2 D B;
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• S? D .D2; C2D?/ translates into

S? D .B2;B?/ :

Thus

jjS? Œh2�jj2H2˚H1
D jj.B2 Œh2� ;B? Œh2�/jj2H2˚H1

D jjB2 Œh2�jj2H2 C jjB? Œh2�jj2H1
D hB22 Œh2� ; h2iH2 C hBB? Œh2� ; h2iH2
D jjh2jj2H2 :

S?is thus an isometry, and [266, p. 71] N ŒS�? D RŒS?� D RŒS?�. Since, given the
definition of B2,

h2 D B22 Œh2�C BB? Œh2� ;

and that the latter may be written as

h2 D B2 ŒB2 Œh2��C B ŒB? Œh2�� D S .B2 Œh2� ;B
? Œh2�/ ;

which is the translation of

B2
�
h.1/2
� D D2

�
h.2/2
�C DC2 Œh� D S

�
h.2/2 ; h

�
;

one has equality in item 2 when replacing (see the proof of (Proposition) 3.2.22)�
h.2/2 ; h

�
with PN ŒS�?

�
h.2/2 ; h

�
. But here

PN ŒS�? .B2 Œh2� ;B
? Œh2�/ D PRŒS?�S

? Œh2� D S? Œh2� D .B2 Œh2� ;B? Œh2�/ :

ut
Corollary 3.2.25 Let C1 and C2 be covariances on T, with C2 dominating C1. Then,
for fixed, but arbitrary h.1/ 2 H .C1;T/,

ˇ̌̌̌
h.1/
ˇ̌̌̌ 2

H.C1;T/
D ˇ̌̌̌ J?2;1 �h.1/�ˇ̌̌̌ 2H.C2;T/ C

ˇ̌̌̌̌̌ ˚
IH.C1;T/ � J2;1J

?
2;1

�1=2 �
h.1/
�ˇ̌̌̌̌̌ 2

H.C1;T/
:

Analogously, one has also that, for fixed, but arbitrary h.2/ 2 H .C2;T/,

ˇ̌̌̌
h.2/
ˇ̌̌̌ 2

H.C2;T/
D ˇ̌̌̌ J2;1 �h.2/�ˇ̌̌̌ 2H.C1;T/ C

ˇ̌̌̌̌̌ ˚
IH.C2;T/ � J?2;1J2;1

�1=2 �
h.2/
�ˇ̌̌̌̌̌ 2

H.C2;T/
:
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Proof In (Proposition) 3.2.24 choose

• H1 D H .C2;T/,
• H2 D H .C1;T/,
• B D J2;1.

Then for fixed, but arbitrary h.1/ 2 H .C1;T/, trivially,

h.1/ D J2;1J
?
2;1

�
h.1/
�C ˚IH.C1;T/ � J2;1J

?
2;1

� �
h.1/
� D BB?

�
h.1/
�C B22

�
h.1/
�
;

so thatˇ̌̌̌
h.1/
ˇ̌̌̌ 2

H.C1;T/
D ˇ̌̌̌

J?2;1
�
h.1/
�ˇ̌̌̌ 2

H.C2;T/
C ˇ̌̌̌PN ŒB2�?B2

�
h.1/
�ˇ̌̌̌ 2

H.C1;T/

D ˇ̌̌̌
J?2;1

�
h.1/
�ˇ̌̌̌ 2

H.C2;T/
C ˇ̌̌̌B2

�
h.1/
�ˇ̌̌̌ 2

H.C1;T/

D ˇ̌̌̌
J?2;1

�
h.1/
�ˇ̌̌̌ 2

H.C2;T/
C
ˇ̌̌̌̌̌ ˚

IH.C1;T/ � J2;1J
?
2;1

�1=2 �
h.1/
�ˇ̌̌̌̌̌ 2

H.C1;T/
:

For the second equality, let

• H1 D H .C1;T/,
• H2 D H .C2;T/,
• B D J?2;1.

For fixed, but arbitrary h.2/ 2 H .C2;T/, trivially,

h.2/ D J?2;1J2;1
�
h.2/
�C ˚IH.C2;T/ � J?2;1J2;1

� �
h.2/
� D BB?

�
h.2/
�C B22

�
h.2/
�
;

and then (Proposition) 3.2.24 yields the result. ut

3.3 Intersections of Reproducing Kernel Hilbert Spaces

It is the “relative size” of the intersection of the RKHS’s associated with the
respective covariances of two processes that determines in part whether the laws
of those processes are equivalent or orthogonal (Sect. 5.3.2). Hence this section!

Suppose C; C1, and C2 are covariances on T such that C D C1 C C2. Let the
following somewhat shorter notation be used:

J1 W H .C;T/ �! H .C1;T/ is defined using J1 ŒC .
; t/� D C1 .
; t/ ;

J2 W H .C;T/ �! H .C2;T/ is defined using J2 ŒC .
; t/� D C2 .
; t/ :
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Define also

H1 D J?1 ŒH .C1;T/� � H .C;T/ ;

H2 D J?2 ŒH .C2;T/� � H .C;T/ ;

H0 D H .C1;T/ \ H .C2;T/ :

Remark 3.3.1 H1 and H2 are thus, respectively, H .C1;T/ and H .C2;T/, regarded
as submanifolds of H .C;T/, rather than Hilbert spaces in their own right. Similarly
H?1 is a (closed) subspace of H .C;T/, but, as shall be established, it is also a subset
of H2, that is H?1 is a subset of H .C2;T/. In an effort to maintain a distinction
between subspaces and subsets, one shall thus write, whenever uncertainty of
meaning is possible, and a distinction appears useful, for example, H?1 for the
subspace, and s

�
H?1
�

for the subset.

Proposition 3.3.2 Let C;C1;C2 be covariances on T such that C D C1 C C2. Let
J1; J2;H0;H1;H?1 ;H2 be as described above.

1. The following equalities obtain:

J?1 J1 C J?2 J2 D IH.C;T/;

and

jjhjj2H.C;T/ D jjJ1 Œh�jj2H.C1;T/ C jjJ2 Œh�jj2H.C2;T/ :

2. For h 2 H?1 , J?2 J2 Œh� D h, and

jjhjjH.C;T/ D jjJ?2 J2 Œh�jjH.C;T/ D jjJ2 Œh�jjH.C2;T/ :

In particular, set-wise, s
�
H?1
� � J?2 ŒH .C2;T/� D H2.

3. For h 2 H0,

hJ1J?1 Œh� ; hiH.C1;T/ D jjJ?1 hjj2H.C;T/ D jjJ?2 hjj2H.C;T/ D hJ2J?2 Œh� ; hiH.C2;T/:

4. For h 2 H .C;T/, hJ?1 J1 Œh� ; J2J?2 Œh�iH.C;T/ � 0.

Proof One must remember that C1 � C, and that C2 � C. Furthermore, for
example,

C1 .t1; t2/ D hJ1 ŒC .
; t1/� ; J1 ŒC .
; t2/�iH.C1;T/:

For checking item 1, one may thus rewrite the equality

C .t1; t2/ D C1 .t1; t2/C C2 .t1; t2/
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as

hC .
; t1/ ;C .
; t2/iH.C;T/ D hJ1 ŒC .
; t1/� ; J1 ŒC .
; t2/�iH.C1;T/
ChJ2 ŒC .
; t1/� ; J2 ŒC .
; t2/�iH.C2;T/

D hJ?1 J1 ŒC .
; t1/� ;C .
; t2/iH.C;T/
ChJ?2 J2 ŒC .
; t1/� ;C .
; t2/iH.C;T/

D hfJ?1 J1 C J?2 J2g ŒC .
; t1/� ;C .
; t2/iH.C;T/:

Linearity and continuity lead, for .h1; h2/ 2 H .C;T/�H .C;T/, fixed, but arbitrary,
to

hh1; h2iH.C;T/ D hfJ?1 J1 C J?2 J2g Œh1� ; h2iH.C;T/;

which yields item 1.
For item 2, one may proceed as follows. For fixed, but arbitrary h 2 H?1 , and all

h1 2 H .C1;T/,

0 D hh; J?1 Œh1�iH.C;T/ D hJ1 Œh� ; h1iH.C1;T/;

so that J1 Œh� D 0, and thus, from item 1, h D J?2 J2 Œh�. Consequently

H?1 � J?2 ŒH .C2;T/� D H2:

Furthermore, on one hand,

jjhjjH.C;T/ D jjJ?2 J2 Œh�jjH.C;T/ ;

and, on the other hand, from item 1,

jjhjjH.C;T/ D jjJ2 Œh�jjH.C2;T/ :

Item 2 thus obtains.
Suppose now, for item 3, that h 2 H0. Then J?1 Œh� D J?2 Œh�, and

jjJ?1 Œh�jj2H.C;T/ D hJ?1 Œh� ; J?1 Œh�iH.C;T/ D hJ1J?1 Œh� ; hiH.C1;T/:

Item 3 is thus true.
For item 4, one has that

jjJ1 Œh�jj2H.C1;T/ D hJ?1 J1 Œh� ; hiH.C;T/
D hJ?1 J1 Œh� ; fJ?1 J1 C J?2 J2g Œh�iH.C;T/
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D jjJ?1 J1 Œh�jj2H.C;T/ C hJ?1 J1 Œh� ; J
?
2 J2 Œh�iH.C;T/:

But, since J?1 is a contraction,
ˇ̌̌̌
J?1 J1 Œh�

ˇ̌̌̌ 2
H.C;T/

� jjJ1 Œh�jj2H.C1;T/. ut
Fact 3.3.3 ([44, pp. 24–25]) Suppose that H1 and H2 are closed subspaces of some
Hilbert space H. Then

1. H1 \ H2 D
�
H?1 CH?2

�?
;

2. .H1 \ H2/
? � �H?1 CH?2

�
;

3. H?1 \ H?2 D .H1 C H2/
?;

4.
�
H?1 \H?2

�? D H1 C H2.

Proposition 3.3.4 Let C; C1; C2 be covariances on T and suppose that
C D C1 C C2. Let J1; J2;H0;H1;H?1 ;H2 be as in (Proposition) 3.3.2 above. In
particular H?1 is the orthogonal complement in H .C;T/.

Let:

(a) H1;2 D H?1 \ H2,
(b) H0 be the closure of H0 in H .C2;T/,
(c) H?0 D H

?

0 be the orthogonal complement, in H .C2;T/, of, respectively, H0 and
H0

Then:

1. s ŒH1;2� D s
�
H?1
�
.

2. The manifold s
�
H?1
�

is a (closed) subspace of H .C2;T/: thus

s ŒH1;2� D s
�
H?1
� � H .C2;T/

as (closed) subspaces of functions.
3. s

�
H?1
� D H?0 .

4. Define two covariances 	1 and 	2 as follows: for .t; x/ 2 T � T, fixed, but
arbitrary,

	1 .x; t/ D PH0
ŒC2 .
; t/� .x/ ;

and

	2 .x; t/ D PH?0
ŒC2 .
; t/� .x/ :

Then:

(i) For .t1; t2/ 2 T � T, fixed, but arbitrary,

C2 .t1; t2/ D 	1 .t1; t2/C 	2 .t1; t2/ ;
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and

H .	1;T/ \ H .	2;T/ D f0RT g :

(ii) One has that

H .	2;T/ \ H .C1;T/ D f0RT g ;

H .	2;T/ \ H .C1 C 	1;T/ D f0RT g :

(iii) H?1 D f0RT g if, and only if, H0 D H .C2;T/, and then

H .C2;T/ D H .	1;T/ :

A sufficient condition is that H .C2;T/ � H .C1;T/, that is, that C2 is
dominated by some positive constant times C1 [(Proposition) 3.1.34].

(iv) s
�
H?1
� D H .C2;T/ if, and only if, H0 D f0RT g.

Then H .C;T/ is isomorphic to H .C1;T/ ˚ H .C2;T/, and the elements
h 2 H .C;T/ have the unique representation

h D J?1 J1 Œh�C J?2 J2 Œh� :

Furthermore J?1 J1 and J?2 J2 are the projections onto H .C1;T/ and
H .C2;T/ respectively.

Proof One shall use tacitly the following properties of orthogonal complements of
subsets of Hilbert spaces [266, p. 35]: for a set S � H, H a Hilbert space,

S? D VŒS�? D VŒS�
?
; and S?? D VŒS�:

As the orthogonal complement of H1 � H .C;T/, H?1 is a (closed) subspace of
H .C;T/. But item 2 of (Proposition) 3.3.2 asserts that H?1 is a subset of H2, so that
H?1 \H2 D H?1 . Thus item 1 is true.

Since C dominates C2, that H?1 is a convex and closed, and thus weakly closed
[60, p. 126], subset of H .C;T/, it follows [(Corollary) 3.1.13] that H?1 \ H2 is
a closed subspace of H .C2;T/, that is s

�
H?1
�

is a closed subspace of H .C2;T/.
Assertion 2 is thus proved.

To prove item 3, one may proceed as follows. Any h 2 H .C;T/ has a unique
decomposition in the form h D h1Ch?1 , where h1 belongs to H1, the closure of H1 in
H .C;T/, and h?1 belongs to H?1 . If h is chosen in H2, since [(Proposition) 3.3.2, item
2], as manifolds, H?1 � H2, h1 D h � h?1 2 H2. Thus h1 2 H1 \ H2. Consequently,
every h 2 H2 has a unique decomposition in the following form:

h D h1 C h2; h1 2 H1 \ H2; h2 2 H?1 D H?1 \ H2:
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Since H1 and H?1 are closed subspaces of H .C;T/, again because of (Corol-
lary) 3.1.13, H1 \ H .C2;T/ and H?1 D H?1 \ H .C2;T/ are closed subspaces of
H .C2;T/. Thus the following equality

H2 D
�
H1 \H2

�C H?1

can be read as

H .C2;T/ D E C F; (?)

where

E D H1 \ H .C2;T/ ; F D s
�
H?1
�
;

with E and F closed in H .C2;T/, E \ F D f0RT g. But then H .C2;T/ is isomorphic
to E ˚ F [167, p. 184], which means that E and F are orthogonal subspaces in
H .C2;T/. One shall now check that E D H0, which means that F is its orthogonal
complement, and thus that item 3 is true. Now, in H .C2;T/, one has, using item 3
of (Fact) 3.3.3, that

�
H?0 C

˚
H1 \H .C2;T/

��? D ˚H?0 �? \ ˚H1 \ H .C2;T/
�?
:

But
˚
H?0
�? D H0, and, because of (?),

˚
H1 \H .C2;T/

�? D F D s
�
H?1
�
. Thus

�
H?0 C

˚
H1 \H2

��? D H0 \ s
�
H?1
�
: (??)

Since H0 � H1 \ H .C2;T/, a closed set in H .C2;T/,

H0 � H1 \H .C2;T/ ;

and, because of (?), s
�
H?1
� � H

?

0 . Thus

H0 \ s
�
H?1
� D f0RT g ;

and, because of (??),

�
H?0 C H1 \ H2

�? D ˚0
RT

�
;

or

H?0 C H1 \ H2 D H .C2;T/ : (? ? ?)
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Comparing (?) and (? ? ?) one has that

H?0 D H
?

0 D s
�
H?1
�
;

that is, item 3.
The first part of (i) in assertion 4 obtains by definition, and the second, because

[(Proposition) 1.6.1]

H .	1;T/ D H0; and H .	2;T/ D H?0 :

The first assertion of (ii) follows from the fact that (H1 is the closure of H1 in
H .C;T/)

H .	2;T/ D H?0 D s
�
H?1
�
; and that H .C1;T/ � H1:

For the second assertion, one has that, as a manifold of functions, the set
H .C1 C 	1;T/ is made of functions of the form h D h1 C h2, with h1 2 H .C1;T/,
and h2 2 H .	1;T/. But, from (i) and the first part of (ii), H .	2;T/ has only the
zero function in common with H .C1;T/ and H .	1;T/.

One has seen that s
�
H?1
� D H?0 . Thus the relation H?1 D f0RT g is equivalent to

the relation H0 D H .C2;T/, and thus to H .C2;T/ D H .	1;T/. That is item (iii) of
assertion 4.

Item (iv) follows from similar considerations, since s
�
H?1
� D H .C2;T/ if, and

only if, H0 D f0RT g. ut
Remark 3.3.5 The “quirky” nature of (Corollary) 3.3.4 is due to the fact that, when
computing the RKHS of a sum of covariances, the intersection of the RKHS’s of
both components gets “factored out.”

Example 3.3.6 Consider again the example of (Example) 1.3.14, where C1 D f˝ f ,
and C2 D C, so that C of (Proposition) 3.3.2 is Cf . Then, as seen, when f does not
belong to H .C;T/,

H
�
Cf ;T

�
is isomorphic to H .f ˝ f ;T/˚H .C;T/ ;

and one is in case (iv), item 4 of (Corollary) 3.3.4. When f belongs to H .C;T/, since
H .f ˝ f ;T/ has dimension one, it is a (closed) subspace of H

�
Cf ;T

�
, and, since

H0 D H .f ˝ f ;T/ \ H .C;T/ D H .f ˝ f ;T/, H0 D H .f ˝ f ;T/. Consequently
one has the decomposition of H

�
Cf ;T

�
into the following form:

H
�
Cf ;T

� D H0 C H?0 :

As H1 D H0, H?1 D H?0 , and (Corollary) 3.3.4 is “obvious,” since, as sets,
H
�
Cf ;T

� D H .C;T/. Proposition 3.3.4 says that an analogous situation always
prevails.
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3.4 Dominated Families of Covariances

The family of covariances which are dominated by a given, fixed, but arbitrary
covariance, is the family within which one may find simultaneous reductions of
covariances, a device useful for the discrimination of Gaussian probability laws
[9, 147].

3.4.1 Spectral Representation of Dominated Covariances

Let C0 be a fixed, but arbitrary covariance on T, and let D ŒC0� be the family of
covariances on T which are dominated by C0, that is, C 2 DŒC0� means that
C� C0. Let L0 ŒH .C0;T/� be the family of linear and bounded operators B of
H .C0;T/ ; which are self-adjoint, and such that (they are then contractions)

0 � mB jjhjj2H.C0;T/ � hB Œh� ; hiH.C0;T/ � MB jjhjj2H.C0;T/ � jjhjj2H.C0;T/ ;

where

mB D inf
˚hB Œh� ; hiH.C0;T/; h 2 H .C0;T/ W jjhjjH.C0;T/ D 1

�
;

and

MB D sup
˚hB Œh� ; hiH.C0;T/; h 2 H .C0;T/ W jjhjjH.C0;T/ D 1

�
:

Proposition 3.4.1 There is a bijection

ˇ W D ŒC0� �! L0 ŒH .C0;T/�

which preserves order, that is such that, for fixed, but arbitrary C1 and C2 in D ŒC0�,
C1 � C2 implies, for h 2 H .C0;T/, fixed, but arbitrary,

hˇ ŒC1� Œh� ; hiH.C0;T/ � hˇ ŒC2� Œh� ; hiH.C0;T/:

Furthermore, for C 2 D ŒC0�,

ˇ ŒC� D BC 2 L0 ŒH .C0;T/� ;

where, for fixed, but arbitrary .t1; t2/ 2 T � T,

C .t1; t2/ D hBC ŒC0 .
; t1/� ;C0 .
; t2/iH.C0;T/:

Proof ˇ is well defined.
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Fix arbitrarily C 2 D ŒC0�. Since C � C0, one has available (Proposition 3.1.5)
the map JC0;C W H .C0;T/ �! H .C;T/ which is uniquely defined using the
following relation: for t 2 T, fixed, but arbitrary,

JC0;C ŒC0 .
; t/� D C .
; t/ :

Then BC D J?C0;CJC0;C belongs to L0 ŒH .C0;T/�, and thus ˇ ŒC� D BC is well
defined.

Proof ˇ is an injection.
Indeed, ˇ ŒC1� D ˇ ŒC2� implies J?C0;C1JC0;C1 D J?C0;C2JC0;C2 , so that

C1 .t1; t2/ D hJC0;C1 ŒC .
; t1/� ; JC0;C1 ŒC .
; t2/�iH.C1;T/
D hJ?C0;C1JC0;C1 ŒC .
; t1/� ;C .
; t2/iH.C0;T/
D hJ?C0;C2JC0;C2 ŒC .
; t1/� ;C .
; t2/iH.C0;T/
D hJC0;C2 ŒC .
; t1/� ; JC0;C2 ŒC .
; t2/�iH.C2;T/
D C2 .t1; t2/ :

Proof ˇ is also a surjection.
Suppose indeed that B 2 L0 ŒH .C0;T/�. Define then F W T �! H .C0;T/ using

F .t/ D B1=2 ŒC0 .
; t/� :

The range of LF W H .C0;T/ �! RT is obtained [(Proposition) 1.1.15] as

LF Œh� .t/ D hh;F .t/iH.C0;T/ D hB1=2 Œh� ;C0 .
; t/iH.C0;T/ D B1=2 Œh� .t/ ;

so that B1=2 is a contraction, and its range, an RKHS, with kernel

CB .t1; t2/ D hF .t1/ ;F .t2/iH.C0;T/ D hB ŒC0 .
; t1/� ; ŒC0 .
; t2/�iH.C0;T/:

But then

nX
iD1

nX
jD1

˛i˛jCB
�
ti; tj

� D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌B1=2

"
nX

iD1
˛iC0 .
; ti/

#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C0;T/

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iC0 .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C0;T/

D
nX

iD1

nX
jD1

˛i˛jC0
�
ti; tj

�
:



288 3 Relations Between Reproducing Kernel Hilbert Spaces

Consequently CB 2 D ŒC0�. Furthermore

hJ?C0;CB
JC0;CB ŒC0 .
; t/� ;C0 .
; x/iH.C0;T/ D

D CB .x; t/

D hB ŒC0 .
; t/� ;C0 .
; x/iH.C0;T/;

so that J?C0;CB
JC0;CB D B, or ˇ ŒCB� D B. The map CB 7! BC is thus a bijection.

Proof ˇ, as defined, preserves order.
Suppose thus that

C1 � C2 � C0:

Then, for i D 1; 2,

hBCi ŒC0 .
; t/� ;C0 .
; t/iH.C0;T/ D
D hJ?C0;Ci

JC0;Ci ŒC0 .
; t/� ;C0 .
; t/iH.C0;T/
D Ci .t; t/ :

Thus

hBC1 ŒC0 .
; t/� ;C0 .
; t/iH.C0;T/ � hBC2 ŒC0 .
; t/� ;C0 .
; t/iH.C0;T/;

which proves preservation of order. ut
Remark 3.4.2 Let H0 � H .C0;T/ be a closed subspace with projection P0. Let H0

be the kernel of H0. Then [(Proposition) 1.6.1] ˇ ŒH0� D P0.

Definition 3.4.3 A C0-covariance 	 is an element of D ŒC0� such that H .	;T/ is a
(closed) subspace of H .C0;T/.

Proposition 3.4.4 Let C 2 D ŒC0� be fixed, but arbitrary, and let mC and MC denote
the bounds of BC D ˇ ŒC�, as defined above [(Proposition) 3.4.1]. There exists a
unique family of C0-covariances, say f	�; � 2 Rg, such that:

1. whenever �1 � �2, 	�1 � 	�2;
2. whenever � < mC, 	� D 0;
3. whenever � � MC, 	� D C0;
4. for t 2 T, fixed, but arbitrary, the map from R to H .C0;T/ defined using the

following relation:

� 7! 	� .
; t/

is continuous to the right;
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5. for .t1; t2/ 2 T�T, the map�C .
 j ft1; t2g/ W R �! R defined using the following
relation:

�C .� j ft1; t2g/ D ��0;1� .�/ 	� .t1; t2/

is of bounded variation on Œ0; 1�, and, as a Riemann-Stieltjes integral,

C .t1; t2/ D
Z 1

0

��C .d� j ft1; t2g/ :

Proof Let

BC D
Z MBC

mBC�
�EC .d�/

be the spectral representation of BC [266, p. 181], and 	� be the reproducing kernel
of the projection EC .�/, so that [(Remark) 3.4.2] ˇ Œ	�� D EC .�/. By definition,
ŒmBC ;MBC � � Œ0; 1�. As the spectral representation is obtained as a limit of sums of
Riemann-Stieltjes type, there may always be, in the sums approaching

f .BC/ D
Z MBC

mBC�
f .�/EC .d�/ ;

an initial term of the following form, representing, in the integral, the minus sign
following mBC : for � < mBC , fixed, but arbitrary,

f .mBC/ fEC .mBC/ � EC .�/g D f .mBC/EC.mBC/:

When the domain of integration is contained in Œ0; 1�, as is here the case,

f .BC/ D
Z 1

0

f .�/EC.d�/;

as the intervals Œ0;mBC Œ and �MBC ; 1� have measure zero. The notation used in the
sequel is thus legitimate.

Because of the definition of 	 as the kernel of a projection, one has [(Proposi-
tion) 1.6.1] that, as an element of H .C0;T/,

	� .
; t/ D EC .�/ ŒC0 .
; t/� ;

so that, for fixed, but arbitrary .�1; �2; t/ 2 R �R � T,

jj	�1 .
; t/ � 	�2 .
; t/jjH.C0;T/ D
D jjEC .�1/ ŒC0 .
; t/� � EC .�2/ ŒC0 .
; t/�jjH.C0;T/ ;
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and, for fixed, but arbitrary .�; t1; t2/ 2 R � T � T, that

	� .t1; t2/ D hEC .�/ ŒC0 .
; t1/� ;C0 .
; t2/iH.C0;T/:

Items 1 to 4 state thus properties of EC in terms of 	�.
One of the consequences of the spectral theorem [266, p. 175], reported in

(Fact) 2.7.2, is that, for fixed, but arbitrary .h1; h2/ 2 H .C0;T/ � H .C0;T/,

hBC Œh1� ; h2iH.C0;T/ D
Z 1

0

�hEC .d�/ Œh1� ; h2iH.C0;T/:

But hEC .d�/ ŒC0 .
; t1/� ;C0 .
; t2/iH.C0;T/ D �C .d� j ft1; t2g/. Thus item 5 is true
because of (Proposition) 3.4.1. ut
Example 3.4.5 Suppose P is a projection of H .C0;T/. The spectral representation
of P is [266, p. 184]

EP .�/ D �Œ0;1Œ .�/
�
IH.C0;T/ � P

�C �
Œ1;1Œ

.�/ IH.C0;T/;

so that

EP .�/ ŒC0 .
; t/� D �Œ0;1Œ .�/ fC0 .
; t/� P ŒC0 .
; t/�g C �Œ1;1Œ
.�/C0 .
; t/ :

Since CP .�; t/ D P ŒC0 .
; t/� .�/ is a kernel in D ŒC0�, one has, in D ŒC0�, that

	� .�; t/ D EP .�/ ŒC0 .
; t/� .�/ D
8<
:

zero kernel when � < 0;
C0 .�; t/ � CP .�; t/ when 0 � � < 1;
C0 .�; t/ when � � 1:

:

Example 3.4.6 One starts with the following formulae [120, p. 406]:

e�j˛j D
Z 1
0

cos Œ˛t�
2

�

dt

1C t2
I

sin Œ˛�

�˛
D
Z 1

0

cos Œ˛t�
dt

�
:

Let

q .x/ D 1C x2

2
;

�C0 .dx/ D 1

q .x/

dx

�
;

�C .dx/ D �
Œ0;1�
.x/

dx

�

D �
Œ0;1�
.x/ q .x/ �C0 .dx/ :
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The measure �C0 , on the Borel sets of RC is a probability (set ˛ D 0 in the
integral expression for the exponential); by definition, �C has mass 1=� , and
is absolutely continuous with respect to �C0 , with �

Œ0;1�
q as Radon-Nikodým

derivative. Let L2Œ�C0 � D L2.RC;B.RC/; �C0 /. L2Œ�C� is defined analogously. The
map J W L2Œ�C0 � �! L2Œ�C�, obtained using the following assignment:

J
�
Œ f0�L2Œ�C0 �

�
D Œ f0�L2Œ�C �

; (?)

makes sense and produces a contraction as, by definition, 0 � q � 1, and,
furthermore, Z

RC

f 20 .x/�C.dx/ D
Z 1

0

f 20 .x/q.x/�C0 .dx/

�
Z 1

0

f 20 .x/�C0 .dx/

�
Z
RC

f 20 .x/�C0 .dx/:

With the notation just introduced, one has thatZ 1
0

cos Œ˛t�
2

�

dt

1C t2
D
Z 1
0

cos Œ˛t� �C0 .dt/ I
Z 1

0

cos Œ˛t�
dt

�
D
Z 1
0

cos Œ˛t� �C .dt/ :

Let, for t 2 Œ0;1Œ, ct .x/ D cos Œtx� and st .x/ D sin Œtx�, and denote, for example,
Œct�C0 and Œst�C0 the equivalence classes of respectively ct and st with respect to �C0 .

Result 1:

An L2 representation for the RKHS of C0 .t1; t2/ D e�jt1�t2j.
It is a consequence of the definitions and properties listed above that

C0 .t1; t2/ D e�jt1�t2j D
Z 1
0

cos Œ.t1 � t2/ x� �C0 .dx/

has the following representation:

C0 .t1; t2/ D hŒct1 �C0 ; Œct2 �C0iL2Œ�C0 �
C hŒst1 �C0 ; Œst2 �C0iL2Œ�C0 �

:

Let HC0 be the direct sum of L2 Œ�C0 � with itself, and define

F0 W T �! HC0 ; using F0 .t/ D
�
Œct�C0 ; Œst�C0

�
:
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Then

C0 .t1; t2/ D hF0 .t1/ ;F0 .t2/iHC0
:

Let LC0 W HC0 �! RT be defined using F0, as usual:

LC0 Œ.h1; h2/� .t/ D h.h1; h2/ ;F0 .t/iHC0

D hh1; Œct�C0iL2Œ�C0 �
C hh2; Œst�C0iL2Œ�C0 �

:

Its range is the RKHS determined by C0.
The following families of L2 Œ�C0 �,˚

Œct�C0 ; t 2 T
�

and
˚
Œst�C0 ; t 2 T

�
;

are dense in L2 Œ�C0 �. Indeed, these families are dense in L1 with respect to Lebesgue
measure, a consequence of Fourier’s theorem for the sine and cosine transforms
[108, pp. 389,404]. But then they are dense in L1 Œ�C0 �, and, since L2 Œ�C0 � �
L1 Œ�C0 � (�C0 is a probability), they are dense in L2 Œ�C0 �. Thus fF0.t/; t 2 Tg is
total in HC0 , and LC0 is a unitary map between HC0 and H .C0;T/.

Result 2:

An L2 representation for the RKHS of C .t1; t2/ D sin.t1�t2/
�.t1�t2/

.
Mutatis mutandis, for

C .t1; t2/ D sin .t1 � t2/

� .t1 � t2/
D
Z 1
0

cos Œ.t1 � t2/ x� �C .dx/ ;

one has that

C .t1; t2/ D hF .t1/ ;F .t2/iHC ;

where F.t/ D .Œct�C; Œst�C/. The map LC W HC �! RT whose range is H .C;T/
follows. Since the trigonometric functions are also dense in L2Œ0; 1� [134, p. 123],
fF.t/; t 2 Tg is total in HC, and LC is also unitary.

Result 3:

C belongs to D ŒC0�, and thus JC0;C of (Proposition) 3.1.5 exists.
Since for x 2 Œ0; 1�, 1

q.x/ 2 Œ1; 2�, 2
�

1
1Cx2
� �

Œ0;1�
.x/ 1

�
� 0,

C0 .t1; t2/� C .t1; t2/ D

D
Z 1
0

fct1 .x/ ct2 .x/C st1 .x/ st2 .x/g
�
2

�

1

1C x2
� �

Œ0;1�
.x/

1

�

�
dx

is symmetric and positive definite on T, so that C 2 D ŒC0�.
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Result 4:

A contraction VJ W HC0 �! HC.
J being introduced at (?), define VJ W HC0 �! HC using the following equality:

VJŒ.h1; h2/� D .JŒh1�; JŒh2�/. Then

VJ ŒF0.t/� D F.t/:

Result 5:

Identification of BC.
One has that

LCVJ ŒF0.t/� D LCŒF.t/� D C.
; t/:

Furthermore

JC0;CLC0 ŒF0.t/� D JC0;CŒC0.
; t/� D C.
; t/:

One has thus the following commuting diagram:

HC0

LC0−−−−−→ H(C0, T )

VJ

⏐
⏐
�

⏐
⏐
�JC0,C

HC
LC−−−−−→ H(C, T ) ,

and JC0;C D LCVJL?C0 . Then

C.t1; t2/ D hC.
; t1/;C.
; t2/iH.C;T/
D hJC0;CŒC0.
; t1/�; JC0;CŒC0.
; t2/�iH.C;T/
D hJ?C0;CJC0;CŒC0.
; t1/�;C0.
; t2/iH.C0;T/
D hLC0V

?
J L?CLCVJL?C0 ŒC0.
; t1/�;C.
; t2/iH.C0;T/;

so that, as LC is unitary, BC D LC0V
?
J VJL?C0 .

Result 6:

Computation of V?
J .
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One has that

hJŒ f0�; giL2Œ�C � D
Z 1

0

Pf0.x/ Pg.x/�C.dx/

D
Z 1
0

Pf 0.x/ Pg.x/�Œ0;1� q.x/�C0 .dx/

D ˝
f0; Œ�Œ0;1� q Pg�C0

˛
L2Œ�C0 �

:

Thus

J?Œg� D Œ�
Œ0;1�

q Pg�C0 :
Using the definition of the adjoint, one has that V?

J D .J?; J?/, so that

V?
J Œ.h1; h2/� D

�
Œ�

Œ0;1�
q Ph1�C0 ; Œ�Œ0;1� q Ph2�C0

�
:

Result 7:

Computation of mBC and MBC

To compute mBC and MBC , suppose that, for .h1; h2/ 2 HC0 ; h 2 H .C0;T/, fixed,
but arbitrary,

LC0 Œ.h1; h2/� D h:

Then, since LC0 is unitary,

jjBC Œh�jj2H.C0;T/ D
D ˇ̌̌̌

LC0V
?
J VJL?C0 Œh�

ˇ̌̌̌ 2
H.C0;T/

D ˇ̌̌̌
LC0V

?
J VJ Œ.h1; h2/�

ˇ̌̌̌ 2
H.C0;T/

D ˇ̌̌̌
V?

J VJ Œ.h1; h2/�
ˇ̌̌̌ 2

HC0

D ˇ̌̌̌
V?

J

��Ph1�C
;
�Ph2�C

�ˇ̌̌̌ 2
HC0

D
ˇ̌̌̌̌̌ ��

�
Œ0;1�

q Ph1
�

C0
;
�
�
Œ0;1�

q Ph2
�

C0

�ˇ̌̌̌̌̌ 2
HC

D
Z 1
0

Ph21 .x/ �Œ0;1� .x/ q2 .x/ �C0 .dx/C
Z 1
0

Ph22 .x/ �Œ0;1� .x/ q2 .x/ �C0 .dx/

D
Z 1
0

Ph21 .x/ q .x/ �C .dx/C
Z 1
0

Ph22 .x/ q .x/ �C .dx/ :
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For i D 1; 2, choose hi 2 L2 Œ�C0 � such that
R1
1
Ph2i .x/ �C0 .dx/ > 0, and let

Pki .x/ D
�
�1;1Œ
Phi .x/qR1

1
Ph2i .x/ �C0 .dx/

:

Then ki D
�Pki
�

C0
2 L2 Œ�C0 � has norm equal to one. Furthermore, letting

LC0

	�
k1p
2
;

k2p
2

�

D k 2 H .C0;T/ ;

ˇ̌̌
ˇ
ˇ̌̌
ˇ
�

k1p
2
;

k2p
2

�ˇ̌̌
ˇ
ˇ̌̌
ˇ
HC0

D jjkjjH.C0;T/ D 1;

and, using the expression for jjBC Œh�jj2H.C0;T/ obtained above,

jjBC Œh�jj2H.C0;T/ D 0;

so that mBC D 0.
Let now � 2 �0; 1Œ be fixed, but arbitrary, and Ph1 D Ph2 D �Œ1��;1� . Let also

h1 D
�Ph1�C0

and h2 D
�Ph2�C0

:

Then LC0

h�
h1p
2
; h2p

2

�i
D h 2 H .C0;T/, and, using the mean value theorem,

jjhjj2H.C0;T/ D jj.h1; h2/jj2HC0

D
Z 1

1��
�C0 .dx/

D
Z 1

1��
2

�

dx

1C x2

D �
2

�

1

1C u2
; 1 � � < u < 1:

Similarly, using the expression for jjBC Œh�jj2H.C0;T/ obtained above,

jjBC Œh�jj2H.C0;T/ D
Z 1

1��
q .x/ �C .dx/

D
Z 1

1��
1C x2

2

dx

�

D � 1C v
2

2�
; 1 � � < v < 1:
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Consequently

jjBC Œh�jj2H.C0;T/
jjhjj2H.C0;T/

D
1
2�

�
1C v2�
2
�

1
1Cu2

;

which has limit, as � # 0, equal to one, and thus MBC D 1.

Result 9:

The spectral representation of BC.
Using the representation BC D LC0V

?
J VJL?C0 , one has that

Bn
C D LC0

�
V?

J VJ
�n

L?C0 :

But, for example,

V?
J VJ

��
Œ�

Œ0;1�
q Ph1�C0 ; Œ�Œ0;1� q Ph2�C0

�� D �Œ�
Œ0;1�

q2 Ph1�C0 ; Œ�Œ0;1� q2 Ph2�C0
�
;

so that, for fixed, but arbitrary .h1; h2/ 2 HC0 , and integer n 2 N,

Bn
CLC0 Œ.h1; h2/� D LC0

h��
�
Œ0;1�

qn Ph1
�

C0
;
�
�
Œ0;1�

qn Ph2
�

C0

�i
:

Let Qq D �
Œ0;1�

q. Then, for any polynomial pn,

pn .BC/ LC0 Œ.h1; h2/� D LC0

h��
pn .Qq/ Ph1

�
C0
;
�

pn .Qq/ Ph2
�

C0

�i
:

Thus

pn .BC/ ŒC0 .
; t/� D LC0

��
Œ pn .Qq/ ct�C0 ; Œ pn .Qq/ st�C0

��
;

so that

h pn .BC/ ŒC0 .
; t1/� ;C0 .
; t2/iH.C0;T/ D
D ˝

LC0

��
Œ pn .Qq/ ct1 �C0 ; Œ pn .Qq/ st1 �C0

��
;LC0

��
Œct2 �C0 ; Œst2 �C0

��˛
H.C0;T/

D
Z 1
0

pn .Qq .x// ct1 .x/ ct2 .x/�C0 .dx/C
Z 1
0

pn .Qq .x// st1 .x/ st2 .x/ �C0 .dx/ :

For fixed, but arbitrary � 2 T, let f pn .
 j �/ ; n 2 Ng be a sequence of polynomials
which decreases point-wise to the indicator �

Œ0;��
[109, p. 386]. Then, for .t1; t2/ in

T �T, fixed, but arbitrary, using, successively, item 14 of (Fact) 2.7.2, [129, p. 232],
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and what precedes,

hEBC .�/ ŒC0 .
; t1/� ;C0 .
; t2/iH.C;T/ D
D lim

n
hpn .BC j �/ ŒC0 .
; t1/� ;C0 .
; t2/iH.C0;T/

D
Z 1
0

�
Œ0;��
.Qq .x// ct1 .x/ ct2 .x/ �C0 .dx/C

Z 1
0

�
Œ0;��
.Qq .x// st1 .x/ st2 .x/ �C0 .dx/ :

Since Qq .x/ D 1Cx2

2
� 1

2
when x 2 Œ0; 1�, and Qq .x/ D 0 when x > 1,

• for � 2 �0; 1
2

�
,

�
Œ0;��
.Qq .x// D 1 for x > 1;

and zero otherwise. Thus, as stated in the proof of (Proposition) 3.4.4,

	� .t1; t2/ D
Z 1
1

ct1 .x/ ct2 .x/ �C0 .dx/C
Z 1
1

st1 .x/ st2 .x/ �C0 .dx/ I

• for � 2 � 1
2
; 1
�
,

�
Œ0;��
.Qq .x// D 1 for x > 1 and for x 2 �0; .2�� 1/1=2� ;

and zero otherwise. Thus

	� .t1; t2/ D 	0 .t1; t2/

C
Z .2��1/1=2

0

ct1 .x/ ct2 .x/ �C0 .dx/

C
Z .2��1/1=2

0

st1 .x/ st2 .x/ �C0 .dx/ :

Example 3.4.7 Suppose BC is a compact operator whose eigenvalues that are
different from zero are denoted f�i; i 2 I � Ng. Let �0 D 0, P0 be the projection
ontoN ŒBC�, and Pi be the projection onto N Œ�iIH.C0;T/�BC�. The following formula
[266, p. 184] yields then the spectral decomposition of BC in H .C0;T/: for � < 0,

EBC .�/ D 0;

and, for � � 0,

EBC .�/ Œh� D P0 Œh�C
X

i2IW�i��
Pi Œh� :
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Consequently,

	� .t1; t2/ D
D hEBC .�/ ŒC0 .
; t1/� ;C0 .
; t2/iH.C0;T/
D hP0 ŒC0 .
; t1/� ;C0 .
; t2/iH.C0;T/ C

X
i2IW�i��

hPi ŒC0 .
; t1/� ;C0 .
; t2/iH.C0;T/:

Proposition 3.4.8 Let � .B/ designate the spectrum of the operator B, and
fEB .�/ ; � 2 Rg, the spectral family of B. For fixed, but arbitrary covariances
C1 and C2 on T, let

(a) C D C1 C C2,
(b) JC;C1 W H .C;T/ �! H .C1;T/ be defined using JC;C1 ŒC .
; t/� D C1 .
; t/,
(c) B1 W H .C;T/ �! H .C;T/ be defined using B1 D J?C;C1JC;C1 .

The operators JC;C2 and B2 are defined analogously. Then C2 dominates C1 if,
and only if, � .B1/ �

�
0; 1

2

�
.

Proof Given a bounded, selfadjoint linear operator B, and a continuous function f ,
defined on R, the operator f .B/ has the following representation [129, p. 256]:

Z MB

mB�
f .�/EB .d�/ ;

and may be approximated, in operator norm, by expressions of the following form:

nX
iD1

f .�i/ fEB Œ�i� � EB Œ�i�1�g ;

where

• �0 < mB D �1 < �2 < 
 
 
 < �n�1 < �n D MB,
• �i 2 Œ�i�1; �i� ; 1 � i � n,

provided the intervals Œ�i�1; �i� are uniformly small. The projections

fEB Œ�i� � EB Œ�i�1� ; 1 � i � ng

are orthogonal.

Proof Suppose that � .B1/ �
�
0; 1

2

�
.

Because of (Proposition) 3.4.1, it suffices to check that B2 � B1 is a positive
operator. To that end, let 
n represent the following set:

• n 2 N,
• �0 < �1 D 0 < 
 
 
 < �n D 1

2
< �nC1 < 
 
 
 < �2n D 1,

• �i 2 Œ�i�1; �i� ; 1 � i � 2n.
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Let

B
n D
2nX

iD1
�i fEB1 .�i/ � EB1 .�i�1/g :

It is an approximation to B1. Then,

IH.C;T/ � 2B
n D
2nX

iD1
.1 � 2�i/ fEB1 .�i/� EB1 .�i�1/g

is an approximation to IH.C;T/ � 2B1. By assumption, for i � n, one has that
EB1 .�i/ D IH.C;T/, so that the corresponding terms vanish. Thus

IH.C;T/ � 2B
n D
nX

iD1
.1 � 2�i/ fEB1 .�i/� EB1 .�i�1/g :

But, for i � n, 1 � 2�i � 0; so that IH.C;T/ � 2B
n � 0, and thus, since IH.C;T/ D
B1 C B2,

B2 � B1 D IH.C;T/ � 2B1 D lim
n

˚
IH.C;T/ � 2B
n

� � 0:
Proof Suppose that the interval

�
0; 1

2

�
does not contain the set � .B1/.

Let � 2 � 1
2
; 1
� \ � .B1/ be fixed, but arbitrary. Let 
n be the following set:

• n 2 N,
• �0 < �1 D 0 < 
 
 
 < �n D 1 and sup1�i�n .�i � �i�1/ D 1

n ,
• there is, in f1; : : : ; ng, an index i� such that

�i��1 D � �
1

2n
and �i� D �C

1

2n
;

• �i 2 ��i�1; �i� ; 1 � i � n,
• � 2 f�1; : : : ; �ng.
B
n shall be defined as above, mutatis mutandis. Since � 2 � 1

2
; 1
�\ � .B1/,

EB1

�
�C 1

2n

�
� EB1

�
� � 1

2n

�

is a projection of H .C;T/ whose range strictly contains the subspace made of the
zero vector [266, p. 189]. One can thus find an element hn in that range that has
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norm equal to one, for which�
EB1

�
�C 1

2n

�
� EB1

�
� � 1

2n

��
Œhn� D hn:

Then ˝�
IH.C;T/ � 2B
n

�
Œhn� ; hn

˛
H.C;T/

D 1 � 2�:

Consequently, since IH.C;T/ D B1 C B2,ˇ̌h.B2 � B1/ Œhn� ; hniH.C;T/ � .1 � 2�/
ˇ̌ D

D
ˇ̌̌˝�

IH.C;T/ � 2B1
�
Œhn� ; hn

˛
H.C;T/

� .1 � 2�/
ˇ̌̌

D
ˇ̌̌˝�

IH.C;T/ � 2B1
�
Œhn� ; hn

˛
H.C;T/

� ˝�IH.C;T/ � 2B
n

�
Œhn� ; hn

˛
H.C;T/

ˇ̌̌
D 2

ˇ̌̌
h.B
n � B1/ Œhn� ; hniH.C;T/

ˇ̌̌
� 2n�1;

so that, for n large enough, since � > 1
2
,

.1 � 2�/� 2
n
� h.B2 � B1/ Œhn� ; hniH.C;T/ � .1 � 2�//C 2

n
< 0;

and B2 cannot dominate B1, nor C2, C1. ut

3.4.2 Simultaneous Reduction of Covariances

As mentioned above, simultaneous reduction of covariances has, sometimes, appli-
cations to Gaussian discrimination problems [9, 147].

Definition 3.4.9 Suppose C0 and C are covariances on T, and that C belongs
to D .C0/, with associated operator BC. When BC is compact, with eigenvalues
f�i; i 2 Ig, using the notation of (Example) 3.4.7, let

˚
ej; j 2 J

�
be a complete

orthonormal set formed by a choice of basis in each of the subspaces

N ŒBC�; N Œ�iIH.C;T/ � BC�; i 2 I:
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Then

C0 .t1; t2/ D hC0 .
; t1/ ;C0 .
; t2/iH.C;T/
D
X

j

˝
ej;C0 .
; t1/

˛
H.C;T/

˝
ej;C0 .
; t2/

˛
H.C;T/

D
X

j

ej .t1/ ej .t2/

and

C .t1; t2/ D hBC ŒC0 .
; t1/� ;C0 .
; t2/iH.C;T/
D
X

j

�j
˝
ej;C0 .
; t1/

˛
H.C;T/

˝
ej;C0 .
; t2/

˛
H.C;T/

D
X

j

�j ej .t1/ ej .t2/ :

These series expansions of, respectively, C and C0 are what is meant by the
expression “simultaneous reduction of covariances.”

It is shown below how one can obtain, more generally, an approximate reduction
for any two covariances on T, C1 and C2.

Let C D C1 C C2, and B1 W H .C;T/ �! H .C;T/ denote the operator

J?C;C1JC;C1 :

For fixed, but arbitrary real numbers

�0 < �1 D 0 < �2 < 
 
 
 < �n�1 < �n D 1;

and fixed, but arbitrary fi; jg � Œ0 W n� with i < j,

.EB1.�i/� EB1.�i�1//
�
EB1.�j/ � EB1.�j�1/

� D
D EB1.�i/EB1.�j/� EB1.�i/EB1.�j�1/

� EB1.�i�1/EB1 .�j/C EB1.�i�1/EB1.�j�1/

D EB1.�i/� EB1.�i/� EB1.�i�1/C EB1 .�i�1/

D 0;

so that the family of projections

fEB1 .�1/� EB1 .�0/ ; EB1 .�2/� EB1 .�1/ ; : : : ;EB1 .�n/ � EB1 .�n�1/g
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is made of orthogonal elements. Furthermore

EB1 .�n/ � EB1 .�n�1/ D IH.C;T/ � EB1 .�n�1/ :

Let 0 � �1 � 
 
 
 � �n be fixed, but arbitrary. Then, for

B D
nX

iD1
�i fEB1 .�i/ � EB1 .�i�1/g ;

one has that

hB Œh� ; hiH.C;T/ D
nX

iD1
�i jjfEB1 .�i/� EB1 .�i�1/g Œh�jj2H.C;T/

� �n

nX
iD1
jjfEB1 .�i/� EB1 .�i�1/g Œh�jj2H.C;T/

D �n

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
fEB1 .�i/ � EB1 .�i�1/g Œh�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

D �n

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌
(

nX
iD1

EB1 .�i/� EB1 .�i�1/
)
Œh�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.C;T/

D �n jjEB1 .�n/ Œh�jj2H.C;T/

D �n

ˇ̌̌̌
IH.C;T/ Œh�

ˇ̌̌̌ 2
H.C;T/

D �n jjhjj2H.C;T/ :

When �1 is allowed to be zero, the same calculation yields that

hB Œh� ; hiH.C;T/ � �n

ˇ̌̌̌ ˚
IH.C;T/ � EB1 .0/

�
Œh�
ˇ̌̌̌ 2

H.C;T/ � �n jjhjj2H.C;T/ :

One shall need the following family of operators of H .C;T/:

Bl;n
1 D

2nX
iD1

i � 1
2n

�
EB1

�
i

2n

�
� EB1

�
i � 1
2n

��
;
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and

Bu;n
1 D

1

2n
IH.C;T/ C Bl;n

1 :

From the preceding remarks, and similar calculations, one has that:

• 0 � ˝Bl;n
1 Œh� ; h

˛
H.C;T/

� ˝Bu;n
1 Œh� ; h

˛
H.C;T/

� jjhjj2H.C;T/,
• 0 � ˝˚Bu;n

1 � Bl;n
1

�
Œh� ; h

˛
H.C;T/

� 1
2n jjhjj2H.C;T/,

• Bl;n
1 � Bl;nC1

1 � B1 � Bu;nC1
1 � Bu;n

1 ,
•
ˇ̌̌̌
B1 � Bl;n

1

ˇ̌̌̌ � 1
2n , and

ˇ̌̌̌
B1 � Bu;n

1

ˇ̌̌̌ � 1
2n .

As

B2 D J?C;C2JC;C2 D IH.C;T/ � B1 D
Z 1

0�
.1 � �/EB1 .d�/ ;

one has that:

• 0 � IH.C;T/ � Bu;n
1 � IH.C;T/ � Bu;nC1

1 � IH.C;T/ � B1 D B2,
• B2 � IH.C;T/ � Bl;nC1

1 � IH.C;T/ � Bl;n
1 ,

•
ˇ̌̌̌
B2 �

�
IH.C;T/ � Bl;n

1

�ˇ̌̌̌ D ˇ̌̌̌B1 � Bl;n
1

ˇ̌̌̌ � 1
2n ,

•
ˇ̌̌̌
B2 �

�
IH.C;T/ � Bu;n

1

�ˇ̌̌̌ D ˇ̌̌̌B1 � Bu;n
1

ˇ̌̌̌ � 1
2n .

Let H1 be the range of EB1

�
1
2n

�
, and Hi be that of

EB1

�
i

2n

�
� EB1

�
i� 1
2n

�
; 2 � i � 2n:

An orthonormal basis fen;i; i 2 Ig for H .C;T/ is built by taking an orthonormal
basis in each of the subspaces Hi; 1 � i � 2n, and the corresponding eigenvalue
shall be denoted �n;i so that

f�n;i; i 2 Ig �
�
0;
1

2n
; : : : ;

2n � 1
2n

�
:

Since the covariance CB associated with the operator B of H .C;T/ is given by
the following relation [(Proposition) 3.4.1]:

CB .t1; t2/ D hB ŒC .
; t1/� ;C .
; t2/iH.C;T/ ;

one has that the covariances associated with, respectively,

Bl;n
1 ; Bu;n

1 ; IH.C;T/ � Bl;n
1 ; IH.C;T/ � Bu;n

1 ;
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are, respectively,

C.l/

n;1 .t1; t2/ D
X
i2I

�n;i en;i .t1/ en;i .t2/ ;

C.u/

n;1 .t1; t2/ D
X
i2I

�
�n;i C 1

2n

�
en;i .t1/ en;i .t2/

D C.l/

n;1 .t1; t2/C
1

2n
C .t1; t2/ ;

C.l/

n;2 .t1; t2/ D
X
i2I

.1 � �n;i/ en;i .t1/ en;i .t2/ ;

C.u/

n;2 .t1; t2/ D
X
i2I

�
1 � �n;i � 1

2n

�
en;i .t1/ en;i .t2/

D C.l/

n;2 .t1; t2/�
1

2n
C .t1; t2/ :

One then has, for example, thatˇ̌
C1 .t1; t2/� C.l/

n;1 .t1; t2/
ˇ̌ D

D
ˇ̌̌
hB1 ŒC1 .
; t1/� ;C1 .
; t2/iH.C;T/ �

˝
Bl;n
1 ŒC1 .
; t1/� ;C1 .
; t2/

˛
H.C;T/

ˇ̌̌
� ˇ̌̌̌B1 � Bl;n

1

ˇ̌̌̌
C .t1; t1/C .t2; t2/

� 1

2n
C .t1; t1/C .t2; t2/ :

One consequently has that:

•
n
C.l/

n;1;C
.u/
n;1;C

.l/

n;2;C
.u/

n;2

o
� D .C/;

• limn C.l/

n;1 .t1; t2/ D limn C.u/

n;1 .t1; t2/ D C1 .t1; t2/;
• limn C.l/

n;2 .t1; t2/ D limn C.u/

n;2 .t1; t2/ D C2 .t1; t2/.

Furthermore, since �
�
Bn;l
1

� D f�n;i; i 2 Ig,
• when C2 dominates C1, C.l/

n;2 dominates C.l/

n;1, so that �
�
Bn;l
1

� � �0; 1
2

�
,

• when �
�
Bn;l
1

� � �0; 1
2

�
, C2 C 1

2n C dominates C1.

As a summary, one may say that C.l/

n;1 and C.u/

n;2 have the following properties:

1. they have a simultaneous reduction;
2. C.l/

n;1 � C1 � C.l/

n;1 C 1
2n C;

3. C.u/

n;2 � C2 � C.u/

n;2 C 1
2n C;

4. limn C.l/

n;1 .t1; t2/ D C1 .t1; t2/, and limn C.u/

n;2 .t1; t2/ D C2 .t1; t2/;
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5. the domination properties of C1 and C2 are close to the domination properties of
C.l/

n;1 and C.u/

n;2.

Remark 3.4.10 For item 4 above, convergence occurs uniformly as soon as C1 and
C2 are bounded on the diagonal of T � T.



Chapter 4
Reproducing Kernel Hilbert Spaces
and Paths of Stochastic Processes

The problem addressed in this chapter is that of giving conditions which insure
that the paths of a stochastic process belong to a given RKHS, a requirement for
likelihood detection problems not to be singular. All along .˝;A;P/ shall denote
a fixed, but arbitrary probability space, and H .H;T/, a fixed, but arbitrary RKHS.
The source of the following material is [176].

4.1 Random Elements with Values in a Reproducing Kernel
Hilbert Space

Some of the definitions, and results, which follow, repeat,1 and complete, to some
extent, those of Sects. 1.7.4 and 2.1, where some of the proofs may be found.

Definition 4.1.1 On H .H;T/ there are two �-algebras of particular interest.
The first, denoted C .H;T/, is generated by the continuous linear functionals of
H .H;T/, and the second, denoted B .H;T/, is generated by the open sets of
H .H;T/.
Fact 4.1.2 ([260, p.17]) One has always that

C .H;T/ � B .H;T/ ;

but, when H .H;T/ is separable,

C .H;T/ D B .H;T/ :

1Repetitio est mater studiorum!

© Springer International Publishing Switzerland 2015
A.F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise,
DOI 10.1007/978-3-319-22315-5_4
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Definition 4.1.3 A probability measure ˘ on B .H;T/ is Radon when, for each
B 2 B .H;T/,

˘ .B/ D sup
fK�BWK compactg

˘ .K/ :

Fact 4.1.4 ([260, p. 80]) Every probability measure ˘ on C .H;T/ has a unique
Radon extension to B .H;T/.

Definition 4.1.5 A random element on .˝;A;P/, with values in H .H;T/, is a map
� W ˝ �! H .H;T/, which is adapted to A and C .H;T/. When � is adapted to A
and B .H;T/, one says that � is a Borel random element.

Fact 4.1.6 ([260, p. 89]) When a function � W ˝ �! H .H;T/ has separable
range, that is, when there exists a countable Hc � H .H;T/ whose closure, in
H .H;T/, contains � .˝/, then the following statements are equivalent:

1. � is a random element;
2. � is a Borel random element ;
3. given any separating subset Hs � H.H:T/, the set of functions˚

! 7! h� .!/ ; hiH.H;T/ ; h 2 Hs
�

is made of random variables.

When the above obtain, the probability law of �, P� , is Radon [260, p. 29].

Definition 4.1.7 Let � and � be random elements defined on .˝;A;P/, with values
in H .H;T/. � is a version of � whenever, for each h 2 H .H;T/,

P
�
! 2 ˝ W h� .!/ ; hiH.H;T/ D h� .!/ ; hiH.H;T/

� D 1:
Fact 4.1.8 ([260, p. 219]) Let � be a random element on .˝;A;P/, with values in
H .H;T/. P� extends to a Radon measure on B .H;T/ if, and only if, � has a version
� whose range is separable.

Remark 4.1.9 Since probability measures on C .H;T/ have Radon extensions to
B .H;T/ [(Fact) 4.1.4], random elements have versions whose range is separable,
that is, Borel versions [(Definition) 4.1.5]. The induced probability is thus Radon
[(Fact) 4.1.8].

Definition 4.1.10 Let p be fixed, but arbitrary in �0;1Œ. A probability ˘ on
C .H;T/ is weakly of order p when, for fixed, but arbitrary h 2 H .H;T/,Z

H.H;T/

ˇ̌hx; hiH.H;T/ ˇ̌p˘ .dx/ <1:
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A random element �, defined on .˝;A;P/, with values in H .H;T/, is weakly of
order p when P� is weakly of order p. A probability ˘ on B .H;T/ is strongly of
order p when Z

H.H;T/
jjxjjpH.H;T/ ˘ .dx/ <1:

A random element �, defined on .˝;A;P/, with values in H .H;T/, is strongly of
order p when P� is strongly of order p.

Fact 4.1.11 ([260, p. 114]) Let � be a random element defined on .˝;A;P/, with
values in H .H;T/, and suppose it is weakly of order one. There exists then a unique
m� 2 H .H;T/ such that, for every h 2 H .H;T/,Z

˝

h� .!/ ; hiH.H;T/ P .!/ D
Z

H.H;T/
hx; hiH.H;T/ P� .dx/ D ˝h;m�

˛
H.H;T/ :

One then writes m� D EP Œ��, and one says that m� is the Pettis integral of � with
respect to P.

Definition 4.1.12 Let ˘ be a probability of weak order two on C .H;T/. Given
fixed, but arbitrary .h1; h2/ 2 H .H;T/ � H .H;T/, let

	˘ .h1; h2/ D
Z

H.H;T/
hx; h1iH.H;T/ hx; h2iH.H;T/ ˘ .dx/ ;

and

C˘ .h1; h2/ D 	˘ .h1; h2/� hh1;m˘ iH.H;T/ hh2;m˘ iH.H;T/ :

Fact 4.1.13 ([260, p. 169, 170, 171 and 172]) Let ˘ be a probability of weak
order two on C .H;T/. Then 	˘ and C˘ are bilinear forms on H .H;T/ which are
positive, symmetric, and continuous. There exist then linear, positive, continuous,
and self-adjoint operators of H .H;T/, say R˘ and S˘ , such that

	˘ .h1; h2/ D hR˘ Œh1� ; h2iH.H;T/ ;
C˘ .h1; h2/ D hS˘ Œh1� ; h2iH.H;T/ :

Definition 4.1.14 S˘ is the covariance operator of ˘ .

Fact 4.1.15 ([260, p. 173]) Operators of H .H;T/, which are linear, positive,
continuous, self-adjoint, with separable range, are the covariance operators of
Radon probability measures which are weakly of second order.



310 4 Reproducing Kernel Hilbert Spaces and Paths of Stochastic Processes

Fact 4.1.16 ([260, p. 177]) Operators of H .H;T/ which are linear, positive,
continuous, self-adjoint, with finite trace, are the covariance operators of Radon
probability measures which are strongly of second order.

4.2 Paths and Values, in Reproducing Kernel Hilbert Spaces,
of Random Elements

Under conditions to be made precise, random elements with values in an RKHS
produce processes with paths in them, and conversely. Elements and paths so related
share properties to be listed.

Proposition 4.2.1 Let H .H;T/ be an RKHS, and X be a stochastic process on
.˝;A;P/, with index set T.

Suppose that there exists A 2 A such that

1. P .A/ D 1,
2. for ! 2 A, X .!; 
/ 2 H .H;T/.

The formula

� .!/ D �
A
.!/X .!; 
/

determines then a random element in H .H;T/ such that

h� .!/ ;H .
; t/iH.H;T/ D �A
.!/X .!; t/ :

Proof One has that*
� .!/ ;

nX
iD1

˛iH .
; ti/
+

H.H;T/

D �
A
.!/

nX
iD1

˛iX .!; ti/ ;

and thus h� .
/ ; hiH.H;T/ is adapted for every h 2 V ŒH�. But V ŒH� is dense
in H .H;T/ [(Proposition) 1.1.5], and thus h� .
/ ; hiH.H;T/ is adapted for every
h 2 H .H;T/, as the limit of a sequence of adapted functions. ut
Proposition 4.2.2 When � is a random element defined on .˝;A;P/, with values
in H .H;T/, the formula

X .!; t/ D h� .!/ ;H .
; t/iH.H/
determines a stochastic process on .˝;A;P/, with index set T, and paths in
H .H;T/.
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Proposition 4.2.3 Let � be a random element defined on .˝;A;P/, with values in
H .H;T/, and let X be the process it determines [(Proposition) 4.2.2]. Then:

1. when � is weakly of first order, X has a mean in H .H;T/, equal to that of �:

�X .t/ D E ŒX .
; t/� D ˝m� ;H .
; t/˛
H.H;T/ D m� .t/ ; t 2 TI

2. when � is weakly of second order, X is a second order process, and, for fixed, but
arbitrary .t1; t2/ 2 T � T,

CX .t1; t2/ D
˝
S� ŒH .
; t1/� ;H .
; t2/

˛
H.H;T/ ;

where S� is the covariance operator of P� . Furthermore

CX �
ˇ̌̌̌
S�
ˇ̌̌̌
H:

Proof One has, because of the definition of weak first order, that

E ŒjX .
; t/j� D E
�ˇ̌h�;H .
; t/iH.H;T/

ˇ̌�
<1:

For the same reason, using (Fact) 4.1.11,

E ŒX .
; t/� D E
�h�;H .
; t/iH.H;T/

� D ˝m� ;H .
; t/˛
H.H;T/ :

Similarly E
�
X2 .
; t/� D E

h
h�;H .
; t/i2H.H;T/

i
<1, and

CX .t1; t2/ D E ŒX .
; t1/X .
; t2/� � E ŒX .
; t1/�E ŒX .
; t2/�
D E

�h�;H .
; t1/iH.H;T/ h�;H .
; t2/iH.H;T/
�

� E
�h�;H .
; t1/iH.H;T/

�
E
�h�;H .
; t2/iH.H;T/

�
D ˝

S� ŒH .
; t1/� ;H .
; t2/
˛
H.H;T/ :

Finally

nX
i;jD1

˛i˛jCX
�
ti; tj

� D
*

S�

"
nX

iD1
˛iH .
; ti/

#
;

nX
iD1

˛iH .
; ti/
+

H.H;T/

� ˇ̌̌̌ S� ˇ̌̌̌
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iH .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.H;T/

� ˇ̌̌̌ S� ˇ̌̌̌ nX
i;jD1

˛i˛jH
�
ti; tj

�
:

ut
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Remark 4.2.4 A second order stochastic process may, or may not, determine a weak
second order random element. Here is an example.

Example 4.2.5 It may be built from the following RKHS. Let H � R1 be the
family of sequences a D fa1; a2; a3; : : : g such that

X
n

n2a2n <1:

It is a real vector space as

˛aC ˇb D f˛an C ˇbn; n 2 Ng ;

and X
n

n2 .˛an C ˇbn/
2 � 2

X
n

n2
�
˛2a2n C ˇ2b2n

�
<1:

The prescription

ha; biH D
X

n

n2anbn

obviously defines a bilinear, strictly positive form, and thus an inner product. For
the norm determined by this inner product, H is complete. Let indeed

lim
m;n

ˇ̌̌̌
am � an

ˇ̌̌̌
H D 0:

As, for fixed, but arbitrary i 2 N,

�
a.m/i � a.n/i

�2 �X
j

j2
�

a.m/j � a.n/j

�2 D ˇ̌̌̌ am � an

ˇ̌̌̌
2

H
;

there exists, for each i 2 N, ˛i D limn a.n/i . One must show that
P

i i2˛2i <1. NowX
i

i2˛2i D
X

i

i2
�
˛i � a.n/i C a.n/i

�2

� 2
(X

i

i2
�
˛i � a.n/i

�2 CX
i

i2
�
a.n/i

�2)
;

so that, since a Cauchy sequence is bounded,

X
i

i2˛2i � 2
(X

i

i2
�
˛i � a.n/i

�2 C ˇ̌̌̌ an

ˇ̌̌̌
2

H

)
� 2

(X
i

i2
�
˛i � a.n/i

�2 C �2
)
:
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Choose then n1 2 N such that, for n 2 N; n > n1,�
˛1 � a.n/1

�2 � 2�1;
and, successively, for every p 2 N, npC1 > np such that, for n > npC1,

.pC 1/2
�
˛pC1 � a.n/pC1

�2 � 2�.pC1/:
Then X

i

i2˛2i � 2
˚
1C �2� <1:

Thus f˛n; n 2 Ng 2 H.
A reproducing kernel for H is obtained setting

H .i; j/ D i�2 ıi;j; with ıi;j D
�
1 when i D j
0 when i ¤ j

:

Indeed

•
P

i;j ˛i˛jH .i; j/ DPi ˛
2

i i�2 � 0;
• given that ei is the element of R1 with all components equal to zero, except the

ith, which is 1,

H .
; i/ D i�2 ei 2 HI

• ha;H .
; i/iH D
˝
a; i�2 ei

˛
H D ai.

For the probability space, one chooses ˝ D N, for the events, A D P .N/, the
family of subsets of N, and, for the probability P, any sequence

f�n > 0; n 2 Ng

such that
P

n �n D 1 and �n D P .fng/. The index set of X is T D N, and X is
defined, for fixed, but arbitrary n 2 N, using the following relation:

X .!; n/ D
�
1 when ! D n
0 when ! ¤ n

�
D �

fng
.!/ :

X is a second order process as

E
�
X2 .
; n/� D E

h
�2
fng

i
D E

h
�
fng

i
D P .fng/ D �n; (?)
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and has paths in H as X .!; 
/ D e! . The random element associated with X is thus
� .!/ D X .!; 
/ D e! , and

h� .!/ ; aiH D !2a!:

The order of � shall be determined by the behavior of the following expression:Z
˝

ˇ̌h� .!/ ; aiH ˇ̌p P .d!/ D
X
!2˝

ˇ̌˝
e!; a

˛
H

ˇ̌p
P .!/ D

X
!

!2p ja!jp �!:

• Case 1: �n D �n�3=2; � > 0, and
P

n �n D 1.
If � were weakly of first order, the following relation:

E ŒX .
; n/� D ˝m� ;H .
; n/˛
H
D m� .n/

would yield (as for ?) m� .n/ D �n. But
P

n n2�2
n D �2

P
n n2n�3 D 1, a

contradiction. � can thus not be weakly of first order.
One may notice that

CX .m; n/ D E ŒX .
;m/X .
; n/� � E ŒX .
;m/�E ŒX .
; n/�

D �

n3=2
ım;n � �2

m3=2n3=2
D �

n3=2

n
ım;n � �

m3=2

o
;

so that

X
m

m2

n �
n3=2

n
ım;n � �

m3=2

oo2 D �2

n3
X

m

m2

n
ım;n � �

m3=2

o2 D1:
Thus CX .
; n/ does not belong to H, and H .CX;N/ cannot be a subset of H.

• Case 2: �n D �n�5=3; � > 0, and
P

n �n D 1.
� is weakly of first order asZ

˝

ˇ̌h� .!/ ; aiH ˇ̌P .d!/ D
X
!2˝

!2 ja! j�!;

and that � D f�n; n 2 Ng 2 H asX
n

n2�2

n D �2
X

n

n2n�10=3 D
X

n

n�4=3 <1:

Now since
P

n n2n�19=6 DPn n�7=6 <1, the sequence

h D h D ˚n�19=12; n 2 IN
�

belongs to H;
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but
R
˝

ˇ̌h� .!/ ; hiH ˇ̌2 P .d!/ D
X
!2˝

˝
e!; h

˛2
�! D

X
n

˚
n2hn

�2 �

n5=3
D �

X
n

1

n5=6
D1;

so that � is not weakly of second order.

Proposition 4.2.6 Let X be a second order stochastic process on .˝;A;P/, with
index set T, and let H .H;T/ be an RKHS. Let �X denote the mean of X, and CX, its
covariance. Suppose that

(a) �X 2 H .H;T/,
(b) there exists A 2 A such that P .A/ D 1, and X .!; 
/ 2 H .H;T/ ; ! 2 A,
(c) there exists � � 0 such that CX � �H D H� .

Let � .!/ D �
A
.!/X .!; 
/ 2 H .H;T/ ; ! 2 ˝ . Then:

1. � is of weak second order;
2. letting JH� ;CX W H .H�;T/ �! H .CX;T/ be defined, using Assumption (c) and

(Proposition) 3.1.5, as

JH� ;CX ŒH� .
; t/� D CX .
; t/ ;

one has that

S� D J?H� ;CX
JH� ;CX :

Proof H .H;T/ and H .H�;T/ are equal as sets of functions, and their respective
norms are equivalent [(Example) 1.3.12]. Thus �X 2 H .H�;T/, and also X .!; 
/ 2
H .H� ;T/ ; ! 2 A. Assumption (a) allows one to subtract from X its mean, and thus
suppose that the mean is the zero function.

Fixed, but arbitrary elements h1 and h2 in V ŒH�� may be represented as

h1 D
nX

iD1
˛
.1/

i H� .
; ti/ ; and h2 D
nX

iD1
˛
.2/

i H� .
; ti/

(introducing when necessary coefficients equal to zero). Then

h�; h1iH.H� ;T/ D �A

nX
iD1

˛
.1/

i X .
; ti/ ;

and

h�; h2iH.H� ;T/ D �A

nX
iD1

˛
.2/

i X .
; ti/ :
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Consequently

E
�h�; h1iH.H� ;T/ h�; h2iH.H� ;T/

� D nX
iD1

nX
jD1

˛
.1/

i ˛
.2/

j CX
�
ti; tj

�
D ˝

J?H� ;CX
JH� ;CX Œh1� ; h2

˛
H.H� ;T/

:

Let now, h1 and h2 be fixed, but arbitrary elements of H .H�;T/, and let˚
h.1/n ; n 2 N

� � V ŒH� � ; and
˚
h.2/n ; n 2 N

� � V ŒH�� ;

be such that, in H .H� ;T/, limn h.1/n D h1, and limn h.2/n D h2. A first consequence is
that, for ! 2 ˝ ,

lim
n

˝
� .!/ ; h.1/n

˛
H.H� ;T/

D h� .!/ ; h1iH.H� ;T/ :

But

E

	n˝
� .
/ ; h.1/n

˛
H.H� ;T/

� ˝� .
/ ; h.1/p

˛
H.H� ;T/

o2
 D
D E

h˝
� .
/ ; h.1/n � h.1/p

˛2
H.H� ;T/

i
D ˝

J?H� ;CX
JH� ;CX

�
h.1/n � h.1/p

�
; h.1/n � h.1/p

˛
H.H� ;T/

;

which converges to zero. Thus, in L2 .˝;A;P/, as convergence takes place for every
! 2 ˝ ,

lim
n

h˝
� .
/ ; h.1/n

˛
H.H� ;T/

i
L2.˝;A;P/

D �h� .
/ ; h1iH.H� ;T/

�
L2.˝;A;P/

:

Consequently

E
�h� .
/ ; h1iH.H� ;T/ h� .
/ ; h2iH.H� ;T/

� D
D lim

n;p
E
h˝
� .
/ ; h.1/n

˛
H.H� ;T/

˝
� .
/ ; h.2/p

˛
H.H� ;T/

i
D ˝

J?H� ;CX
JH� ;CX Œh1� ; h2

˛
H.H� ;T/

:

ut
Corollary 4.2.7 The assumptions are those of (Proposition) 4.2.6. Then:

1. S� D J?H� ;CX
JH� ;CX has finite trace if, and only if, � has a Borel version � which

is strongly of second order.

2. When H .H� ;T/ is separable, S� D J?H� ;CX
JH� ;CX has finite trace if, and only if,

� is strongly of second order.
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Proof [1] Suppose S� has finite trace.
Since random elements have Borel versions [(Remark) 4.1.9], one may assume

that � is Borel. So P� is a Radon probability measure [(Fact) 4.1.6], with covariance
S� . It must thus [(Fact) 4.1.16] be of strong second order since its representation
J?H� ;CX

JH� ;CX has the properties required for (Fact) 4.1.16 to apply.

Proof [1] Suppose that � is a Borel version of � (whose range is thus separable),
and which is of strong second order.

P� is then Radon [(Fact) 4.1.6], and the covariance operator of � has finite trace
[(Fact) 4.1.16]. But it is equal to S� as � is a version of �.

Item 2 follows directly from item 1. ut
The trace-class property encountered above determines a form of “strong order”

among covariances as encapsulated in the definition which follows.

Definition 4.2.8 Let H andK be reproducing kernels on T. When there exists � > 0
such that

1. H� �K D K� ,
2. JK� ;H W H .K�;T/ �! H .H;T/, defined using [(Proposition) 3.1.5]

JK� ;H ŒK� .
; t/� D H .
; t/ ; t 2 T;

is such that J?K� ;HJK� ;H has finite trace,

one shall use the notation H�� K.

Remark 4.2.9 When J?K� ;HJK� ;H has finite trace, there are [235] orthonormal ei’s,
and strictly positive coefficients �i, for which

P
i �i <1, and

J?K� ;HJK� ;H D
X

i

�i ei ˝ ei :

Furthermore ˚
J?K� ;HJK� ;H

�1=2 DX
i

�
1=2

i ei ˝ ei ;

and, for a partial isometry W,

JK� ;H D W
˚
J?K� ;HJK� ;H

�1=2
:

Thus J?K� ;HJK� ;H has finite trace if, and only if, JK� ;H is Hilbert-Schmidt. Sec-
tion 3.1 contains a discussion of the Hilbert-Schmidt properties of JK� ;H.
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4.3 Paths and Values, in Reproducing Kernel Hilbert Spaces,
of Gaussian Elements

Gaussian processes having paths in a RKHS must have covariances which are
“strongly dominated” as explained below.

Definition 4.3.1 Let .˝;A;P/ be a probability space, H .H;T/ be an RKHS, and
� be a random element defined on .˝;A;P/, with values in H .H;T/. � is Gaussian
when ! 7! h� .!/ ; hiH.H;T/ is a Gaussian random variable for every h 2 H .H;T/.

Remark 4.3.2 Every Gaussian random element with values in an RKHS determines
a Gaussian random process [(Propositions) 4.2.2, 4.2.3].

Remark 4.3.3 � is a Gaussian random element as soon as h�;H .
; t/iH.H;T/ is a
Gaussian random variable for all t 2 T. For then indeed h�; hiH.H;T/ is Gaussian for
h 2 V ŒH� as

h�; hiH.H;T/ D
nX

iD1
˛i Œh� h�;H .
; ti Œh�/iH.H;T/ :

If now, in H .H;T/, h D limn hn; hn 2 V ŒH� ; n 2 N,

h�; hiH.H;T/ D lim
n
h�; hniH.H;T/ ;

which is Gaussian as the everywhere limit of Gaussian random variables [200, p.
16].

Fact 4.3.4 ([260, p. 213]) The class of covariance operators of Gaussian Radon
measures on H .H;T/ coincides with that of linear, continuous, positive, self-adjoint
operators of H .H;T/ that have finite trace.

Proposition 4.3.5 Let X be a Gaussian random process for the probability space
.˝;A;P/, with index set T, mean �X, and covariance CX, and let H .H;T/ be an
RKHS. Suppose that

(a) �X 2 H .H;T/,
(b) there exists A 2 A such that P .A/ D 1 and X .!; 
/ 2 H .H;T/ ; ! 2 A.

Then:

1. X determines, on .˝;A;P/, a Gaussian random element � whose values are in
H .H;T/;

2. CX �� H.

Proof Because of Assumption (a), one may, as in (Proposition) 4.2.6, subtract from
X its mean, and thus assume that �X D 0.
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� is defined as in (Proposition) 4.2.1:

h� .!/ ;H .
; t/iH.H;T/ D �A
.!/X .!; t/ :

� is thus a random element with values in H .H;T/, and is Gaussian since
h� .!/ ;H .
; t/iH.H;T/ is Gaussian for t 2 T [(Remark) 4.3.3]. It is thus automat-
ically of weak order two. Result (Proposition) 4.2.3 then yields that CX � �H,
some � � 0, and that, for .t1; t2/ 2 T � T, fixed, but arbitrary,

CX .t1; t2/ D
˝
S� ŒH .
; t1/� ;H .
; t1/

˛
H.H;T/ :

Result (Proposition) 4.2.6 yields then that S� D J?H� ;CX
JH� ;CX .

As � has a version � with a Radon law [(Fact) 4.1.11], which must be Gaussian,
one has that the trace of the covariance operator of � is finite [(Fact) 4.3.4]. ut
Fact 4.3.6 ([98, p. 8]) Let X be a Gaussian process, defined on the probability
space .˝;A;P/, with index set T. It defines a Gaussian random element X with
values in RT: ! 7! XŒ!� is indeed adapted to A, and the cylinder sets of RT . If V
is any linear manifold of RT which belongs to the �-algebra of cylinder sets of RT ,
then either P .X 2 V/ D 0 or P .X 2 V/ D 1.

4.4 Processes of Second Order with Paths in a Reproducing
Kernel Hilbert Space

This section gives conditions for a second order process to have paths in an RKHS:
“strong domination” is again the determining factor. Given a probability space
.˝;A;P/, its completion shall be denoted

.˝;Aı;Pı/:

Proposition 4.4.1 Let .˝;A;P/ be a probability space, and X be a second order
stochastic process defined on .˝;A;P/, with index set T. The mean of X shall be
denoted �X, and its covariance, CX. H shall be a reproducing kernel on T such
that

(a) mX 2 H .H;T/,
(b) CX �� H.

There exists then a stochastic process Y, defined on .˝;A;P/, with T as index
set, which has the following properties:

1. Y is a version of X;
2. there is � � 0 such that Y .!; 
/ 2 H .H�;T/ ; ! 2 ˝;
3. furthermore, when
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(a) dH� is a metric on T,
(b) H .H�;T/ is separable,
(c) X .!; 
/ is continuous on .T; dH� / ; ! 2 ˝ ,

there exists then Aı 2 Aı such that Pı .Aı/ D 1, and, for ! 2 Aı, fixed, but
arbitrary,

X .!; 
/ 2 H .H�;T/ :

Proof Assumption (a), and the fact that H .H;T/ and H .H�;T/ represent the
same set of functions, and have equivalent norms [(Example) 1.3.12], allow one
to subtract from X its mean, and thus assume that X has a mean equal to zero. One
may furthermore assume that H .H�;T/ is separable [(Proposition) 3.1.16].

Let T0 be a Hamel subset for H� [(Definition) 1.1.36]. Denote H�;0 the restriction
of H� to T0 � T0. Since H .H� ;T/ is separable, H .H�;0;T0/ is separable [(Propo-
sition) 1.6.3]. Then

�
T0; dH�;0

�
is a separable metric space [(Corollary) 1.6.21], and

there is thus Tc � T0 which is countable and dense in
�
T0; dH�;0

�
. Its n-th element

shall be denoted tc;n.
One shall use the following notation (already encountered, starting with

(Fact) 1.6.11):

• Tcjn D ftc;1; tc;2; tc;3; : : : tc;ng � Tc � T0,
• Tc D [nTcjn,
• H�;n for the restriction of H� to Tcjn � Tcjn,
• Mn for the matrix resulting from H�;n,
• mn .i; j/ for the element in row i and column j of the inverse of Mn (which exists

since T0 is a Hamel subset),
• H�;c for the restriction of H� to Tc � Tc,
• Xcjn for the restriction of X to Tcjn,
• ˙n for the covariance matrix of Xcjn,
• �n .i; j/ for the element in row i and column j of ˙n,
• Xc for the restriction of X to Tc.

One shall first prove that there exists Ac 2 A such that P .Ac/ D 1, and, for
! 2 Ac,

Xc .!; 
/ 2 H .H�;c;Tc/ :

For fixed, but arbitrary! 2 ˝ , Xcjn yields a finite dimensional vector, so that one
may display explicitly

Zn .!/ D
ˇ̌̌̌
Xcjn .!; 
/

ˇ̌̌̌
2

H.H�;n;Tcjn/



4.4 Processes of Second Order with Paths in a Reproducing Kernel Hilbert Space 321

as [(Example) 1.1.20]

Zn .!/ D
nX

iD1

nX
jD1

Xcjn .!; tc;i/Xcjn
�
!; tc;j

�
mn .i; j/ :

Since Xcjn D X
jTcjn

cjnC1, the following sequence of norms:

nˇ̌̌̌
Xcjn .!; 
/

ˇ̌̌̌
2

H.H�;n;Tcjn/
; n 2 N

o
is, for fixed, but arbitrary ! 2 ˝ , increasing [(Proposition) 1.6.3, (Fact) 1.6.11,
(Lemma) 1.6.13]. There is thus a random variable Z which is the limit of that
sequence. Using successively the monotone convergence theorem, the explicit
expression for Zn given above, and result (Corollary) 3.1.20 with the domination
assumption, one has that

E ŒZ� D lim
n

E ŒZn�

D lim
n

nX
iD1

nX
jD1

�n .i; j/mn .i; j/

D lim
n
�
�
˙nM�1n

�
D � �J?H� ;CX

JH� ;CX

�
< 1:

Thus, if Ac D f! 2 ˝ W Z .!/ <1g, P .Ac/ D 1. Consequently [(Corol-
lary) 1.6.21], for ! 2 Ac,

Xc .!; 
/ 2 H .H�;c;Tc/ ;

and there is thus [(Corollary) 1.6.21] a unique h Œ!� 2 H .H�;T/ such that

h Œ!�jTc D Xc .!; 
/ :

A function � W ˝ �! H .H�;T/ is defined letting

� .!/ D
�

h Œ!� when ! 2 Ac

0RT when ! 2 Ac
c:
:

Since H .H�;T/ is separable, � has separable range. Furthermore, for fixed, but
arbitrary tc;i 2 Tc, and ! 2 Ac,

h� .!/ ;H� .
; tc;i/iH.H� ;T/
D Xc .!; tc;i/ D X .!; tc;i/ ;
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so that the following family:n
h� .
/ ;H� .
; tc;i/iH.H� ;T/

D �
Ac

X .
; tc;i/ ; tc;i 2 Tc

o
is a family of random variables. Since Tc is a determining set [(Corollary) 1.6.21],
the family

fH� .
; tc;i/ ; tc;i 2 Tcg

is separating (total [(Proposition) 1.6.10]), and consequently � is a Borel random
element [(Fact) 4.1.6]. It follows that ! 7! jj� .!/jjH.H� ;T/ is adapted. Now

ˇ̌̌̌
� .!/ jTcjn

ˇ̌̌̌
2

H.H�;n;Tcjn/
D �

Ac
.!/

ˇ̌̌̌
Xcjn .!; 
/

ˇ̌̌̌
2

H.H�;n;Tcjn/

D �
Ac
.!/ Zn .!/ ;

and, using successively (Proposition) 1.6.19, the monotone convergence theorem,
and what has already been proved above,

E
�jj�jj2H.H� ;T/

� D lim
n

E
hˇ̌̌̌
� jTcjn

ˇ̌̌̌
2

H.H�;n;Tcjn/

i
D lim

n
E ŒZn�

D �
�
J?H� ;CX

JH� ;CX

�
<1:

� is thus of second order, strongly. It is then of weak first order, so that its mean E Œ��
exists, and belongs to H .H�;T/. But then [(Proposition) 4.2.3]

�� .t/ D hE Œ�� ;H� .
; t/iH.H� ;T/ D E
�h�;H� .
; t/iH.H� ;T/

�
; t 2 T:

Choosing t D tc;i 2 Tc, one gets �� .t/ D E ŒX .
; tc;i/� D 0, and, since Tc is a
determining set, as already noticed, �� D 0.

Let

Y .!; t/ D h� .!/ ;H� .
; t/iH.H� ;T/ :

One thus defines a second order process with paths in H .H� ;T/ [(Proposi-
tion) 4.2.2]. One shall now prove that Y is a version of X.

As a first step, one shall establish that

jjXt � YtjjL2.˝;A;P/ D 0; t 2 T0;

where Xt and Yt are the equivalence classes in L2 .˝;A;P/ of, respectively, X .
; t/
and Y .
; t/. Since, for t 2 Tc, by definition,

Y .
; t/ D �
Ac

X .
; t/ ;
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one need only consider t 2 T0 n Tc. Suppose that such is the case, and let tc 2 Tc be
fixed, but arbitrary. Then

jjXt � YtjjL2.˝;A;P/ D
� jjXt � Xtc jjL2.˝;A;P/ C jjXtc � Ytc jjL2.˝;A;P/ C jjYtc � YtjjL2.˝;A;P/
D jjXt � Xtc jjL2.˝;A;P/ C jjYtc � YtjjL2.˝;A;P/ :

Now, using the isometry which exists between the linear space of a process and the
RKHS determined by its covariance [(Example) 1.1.26],

jjXt � Xtc jjL2.˝;A;P/ D jjCX .
; t/ � CX .
; tc/jjH.CX ;T/

D jjJH� ;CX ŒH� .
; t/�H� .
; tc/�jjH.CX ;T/

� jjJH� ;CX jj jjH� .
; t/�H� .
; tc/jjH.H� ;T/

D jjJH� ;CX jj dH� .t; tc/ :

Furthermore, using the definition of Y and [260, p. 175],

jjYtc � Ytjj2L2.˝;A;P/ D E
�h�;H� .
; tc/�H� .
; t/i2H.H� ;T/

�
� E

�jj�jj2H.H� ;T/ jjH� .
; tc/ �H� .
; t/jj2H.H� ;T/

�
D d2H�

.t; tc/E
�jj�jj2H.H� ;T/

�
D d2H�

.t; tc/ �
�
J?H� ;CX

JH� ;CX

�
:

Consequently, for fixed, but arbitrary t 2 T0 n Tc and tc 2 Tc,

jjXt � YtjjL2.˝;A;P/ �
˚jjJH� ;CX jj C �1=2

�
J?H� ;CX

JH� ;CX

��
dH� .t; tc/ :

Since Tc is dense in .T0; dH� /, for fixed, but arbitrary t 2 T0, Yt D Xt.
Suppose finally that t 2 T n T0 is fixed, but arbitrary. Since T0 is a Hamel subset

for H� ,

H� .
; t/ D
nX

iD1
˛iH� .
; ti/ ; ti 2 T0; 1 � i � n:

Then

CX .
; t/ D JH� ;CX ŒH� .
; t/� D
nX

iD1
˛i CX .
; ti/ :
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Consequently, in L2 .˝;A;P/, by isometry,

Xt D
nX

iD1
˛i Xti :

On the other hand,

Y .
; t/ D h�;H� .
; t/iH.H� ;T/

D
nX

iD1
˛i h�;H� .
; ti/iH.H� ;T/

D
nX

iD1
˛i Y .
; ti/ ;

so that

Yt D
nX

iD1
˛iYti :

Since Yt D Xt for t 2 T0, the same is thus true for t 2 T. Y is thus a version of X.
Suppose now that the assumptions in the second part of statement (Proposi-

tion) 4.4.1 obtain. The elements in H .H� ;T/ are continuous on .T; dH� / [(Propo-
sition) 2.6.9], and, since H .H� ;T/ is separable, and that dH� is a metric, .T; dH� /

is separable [(Corollary) 1.5.11]. Let Tc be a countable, dense subset of .T; dH� /.
Since Y is a version of X, there exists Ac 2 A such that P .Ac/ D 1, and, for ! 2 Ac

and tc 2 Tc, fixed, but arbitrary,

X .!; tc/ D Y .!; tc/ :

But t 7! X .!; t/, and t 7! Y .!; t/ are continuous for .T; dH� / (X by assumption,
and Y because it has paths in H .H�;T/), and, for ! 2 Ac, equal on a dense subset
of .T; dH� /. Thus, for ! 2 Ac, X .!; t/ D Y .!; t/ ; t 2 T. Now the set

A0 D
˚
! 2 ˝ W X .!; 
/ 2 RT n H .H�;T/

�
is a subset of Ac

c, so that same set A0 belongs to the completion of A with respect to
P, that is, Aı. Consequently

Pı .! 2 ˝ W X .!; 
/ 2 H .H�;T// �
� Pı .! 2 ˝ W X .!; t/ D Y .!; t/ ; t 2 T/

D Pı .Ac/
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D P .Ac/

D 1:

ut
Corollary 4.4.2 Let H and K be reproducing kernels on T, and k be a fixed, but
arbitrary element of H .K;T/.

There exists a Gaussian process X, on some probability space .˝;A;P/, such
that

1. mX D k,
2. CX D H,
3. there exists A 2 A such that P .A/ D 1, and X .!; 
/ 2 H .K;T/ ; ! 2 A,

if, and only if, H�� K.

Proof Suppose items 1 to 3 obtain. Result (Proposition) 4.3.5 then states that one
must have H D CX �� K. Suppose conversely that H �� K. One knows that
there exists a Gaussian process X that has k as mean, and H, as covariance [200, p.
39]. Since Gaussian processes are second order, given the assumption, there exists,
because of (Proposition) 4.4.1, a version of X with paths in H .K;T/. But a version
of a Gaussian process is Gaussian. ut
Proposition 4.4.3 Let H and K be reproducing kernels on T, and suppose that,
as sets, H .H;T/ � H .K;T/, and that H .H;T/ is a separable subset of H .K;T/.
There exists then a second order random process whose covariance is H, and whose
paths belong to H .K;T/.

Proof Since H .H;T/ � H .K;T/, there exists [(Proposition) 3.1.34] a constant
� � 0 such that H � � K D K� . The map JK�;H W K� .
; t/ 7! H .
; t/ is
thus well defined, and, by assumption, J?K� ;HJK� ;H has separable range. It is thus
[(Fact) 4.1.15] the covariance of a weak second order Radon probability � on
B .K�;T/, the Borel sets of H .K�;T/. But then there exists a random element � with
values in H .K�;T/, whose law is �: let indeed ˝ D H .K� ;T/, A D C .K�;T/,
P D �, and � D IH.K� ;T/Œ��, the identity. Let X be the process associated with
� [(Proposition) 4.2.2]: it has paths in H .K�;T/. The covariance CX of X is then
given by the following expression [(Proposition) 4.2.3]:

CX .t1; t2/ D
˝
S� ŒK� .
; t1/� ;K� .
; t2/

˛
H.K� ;T/

:

Since S� D J?K� ;HJK�;H, and JK� ;H ŒK� .
; t/� D H .
; t/,

CX .t1; t2/ D hH .
; t1/ ;H .
; t2/iH.H;T/ D H .t1; t2/ :

ut
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Corollary 4.4.4 Let H and K be reproducing kernels on T such that H � K,
and H .H;T/ be separable. There exists then a second order random process whose
covariance is H, and whose paths belong to H .K;T/.

Proof It is sufficient to see that, when H .H;T/ is a separable Hilbert space, it is
a separable subset of H .K� ;T/ as the image in H .K� ;T/ of the continuous JK� ;H
[84, p. 175]. One then uses (Proposition) 4.4.3. ut
Corollary 4.4.5 Let H be a reproducing kernel on T such that H .H;T/ is
separable. There exists then a second order process with paths in H .H;T/ whose
covariance is H.

Proof One uses (Corollary) 4.4.4 with K D H. ut

4.5 Dichotomies

For Gaussian laws, assertions tend to be either true, or false, that is, dichotomous.
Another instance of that phenomenon is met below. .˝;Aı;Pı/ still denotes the
completion of .˝;A;P/.

Proposition 4.5.1 Let .˝;A;P/ be a probability space, and, on it, let X be a
Gaussian process, with T as index set. Let H .H;T/ be an RKHS, and suppose that
�X 2 H .H;T/. When CX �� H does not obtain,

1. f! 2 ˝ W X .!; 
/ 2 H .H;T/g 2 Aı;
2. Pı .f! 2 ˝ W X .!; 
/ 2 H .H;T/g/ D 0.

Proof Let Tc � T be a countably infinite subset of a Hamel set for T. Xc shall denote
the restriction of X to Tc, and Hc, that of H to Tc � Tc. Then [(Proposition) 1.6.3]:

f! 2 ˝ W X .!; 
/ 2 H .H;T/g � f! 2 ˝ W Xc .!; 
/ 2 H .Hc;Tc/g :
It suffices thus to prove that the latter set has zero probability. Let

Tc D ft1; t2; t3; : : : g ; and Tcjn D ft1; t2; t3; : : : ; tng :
Let Q be the set of rationals, and let n 2 N, and f˛1; : : : ; ˛ng � Q be fixed, but
arbitrary. Let

F .n; p; ˛/ D
(

f 2 RT W
˚Pn

iD1 ˛if .ti/
�2ˇ̌̌̌Pn

iD1 ˛iH .
; ti/
ˇ̌̌̌
2

H.H;T/
� p; ti 2 Tcjn; 1 � i � n

)
:

It is a cylinder set in RN. Then, because of (Proposition) 1.2.1, the following set,

H .Hc;Tc/ D
[
p2N

\
n2N

\
˛2Q n

F .n; p; ˛/ ;
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belongs to the �-algebra of cylinder sets of RN. Since it is a linear manifold of
RN, its probability is zero or one [(Fact) 4.3.6]. Suppose it is one. Then, because
of (Proposition) 4.3.5, CX �� H. This is impossible by assumption, and thus the
probability must be zero. Consequently

f! 2 ˝ W X .!; 
/ 2 H .H;T/g

is a subset of a set whose probability is zero. ut
Corollary 4.5.2 Let X be a Gaussian process on the probability space .˝;A;P/,
with index set T. Suppose that the dimension of H .CX ;T/ is infinite. Then

Pı .! 2 ˝ W X .!; 
/ 2 H .CX ;T/g D 0:

Proof In (Proposition) 4.5.1, one takes H D CX . The map JH� ;CX is then the identity,
and J?H� ;CX

JH� ;CX cannot have finite trace. Thus (Proposition) 4.5.1 applies. ut
Corollary 4.5.3 Let X be a Gaussian process on the probability space .˝;A;P/,
with index set T. Let H be a reproducing kernel, and suppose that �X 2 H .H;T/.
Then:

1. when CX �� H obtains, there exists a version Y of X such that

Pı .! 2 ˝ W Y .!; 
/ 2 H .H;T// D 1I

2. when CX �� H does not obtain,

Pı .! 2 ˝ W X .!; 
/ 2 H .H;T// D 0:

Proof Item 1 repeats (Proposition) 4.4.1, and item 2, (Proposition) 4.5.1. ut
Corollary 4.5.4 Let X be a Gaussian process on the probability space .˝;A;P/,
with index set T. Let H be a reproducing kernel. Suppose that dH is a metric, that
the paths of X are continuous on .T; dH/, and that H.H;T/ is separable. Then:

1. when CX �� H obtains,

Pı .! 2 ˝ W X .!; 
/ 2 H .H;T// D 1I

2. when CX �� H does not obtain,

Pı .! 2 ˝ W X .!; 
/ 2 H .H;T// D 0:

Proof Item 1 repeats (Proposition) 4.4.1, and item 2, (Proposition) 4.5.1. ut



Chapter 5
Reproducing Kernel Hilbert Spaces
and Discrimination

In this chapter, it is examined to what extent RKHS’s allow one to discriminate
between probability laws, that is determine their equivalence or singularity.

5.1 Context of Discrimination

This section details the framework within which discrimination problems shall be
considered.

Definition 5.1.1 Let S and T be sets, and

E D fEt W S �! R; t 2 Tg

be a family of maps. The following notation and definitions shall be used:

1. S for the �-algebra of subsets of S, generated by E ;
2. L .E/ for the linear manifold generated by E : L .E/ D V ŒE �;
3. M .S/ for the linear space of functions adapted to S and B .R/;
4. V .M/ for a fixed, but arbitrary linear manifold of M .S/.

Remark 5.1.2 Among the linear manifolds of M .S/, there are two which shall be
of special interest:

1. L .E/ (it shall be called the “linear manifold of evaluations”);
2. Q .E/ which contains the functions representable in the following form:

˛ C
mX

iD1
˛iEti C

nX
jD1

pX
kD1

˛j;k EujEvk ;

© Springer International Publishing Switzerland 2015
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where

fm; n; pg � N;˚
˛; ˛1; : : : ; ˛m; ˛1;1; : : : ; ˛n;p

� � R;˚
t1; : : : ; tm; u1; : : : ; un; v1; : : : ; vp

� � T

(it shall be called “the quadratic manifold of evaluations”).

Given two functions of L .E/, say f and g, one shall always be able to represent
them in the following form:

f .s/ D
nX

iD1
˛

f

i Eti .s/ ; g .s/ D
nX

iD1
˛

g

i Eti .s/ ;

with

n 2 N;
˚
˛

f

1 ; : : : ; ˛
f
n ; ˛

g

1; : : : ; ˛
g
n

� � R; ft1; : : : ; tng � T:

It suffices indeed to let some of the ˛’s be zero.

The context just described covers several examples, which are those of usually
greatest practical interest. They shall now be listed.

Example 5.1.3 T is a set, and S D RT . Then Et .s/ D s .t/, and S is the �-algebra
generated by the cylinder sets.

Example 5.1.4 ([38, p. 19]) T D Œ0; 1�, and S D C Œ0; 1�, the Banach space
of continuous functions over Œ0; 1�. Then Et .s/ D s .t/, and S is the �-algebra
generated by the cylinder sets: it is thus the �-algebra of Borel sets.

Example 5.1.5 ([38, p. 109]) T D Œ0; 1�, and S D D Œ0; 1�, the space of functions on
Œ0; 1�, which are continuous to the right, and have limits to the left. The topology is
that of Skorohod, and D Œ0; 1� is then a complete metric space. Then Et .s/ D s .t/,
and S is the �-algebra generated by the cylinder sets: it is thus the �-algebra of
Borel sets.

Example 5.1.6 H is a real Hilbert space, and T D H. S D H, and E is the Hilbert
space of continuous linear functionals on H. S is thus the �-algebra generated by
the cylinder sets, and the �-algebra of Borel sets when H is separable.

Remark 5.1.7 Any set X, and vector space V ŒF.X/� of real valued functions,
defined on X, will do, provided the �-algebra used is �.V ŒF.X/�/, and P is Gaussian
[220, 261, p. 376].
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Assumptions 5.1.8 The context is that of (Definition) 5.1.1. Let P be a probability
on S. It shall always be assumed thatZ

S
E2t .s/P .ds/ <1; t 2 T;

so that one can define, for the “process” E , a covariance, and thus an RKHS: for
fixed, but arbitrary .t1; t2/ 2 T � T,

CE ;P .t1; t2/ D
Z

S
Et1 .s/ Et2 .s/P .ds/�

Z
S
Et1 .s/P .ds/

Z
S
Et1 .s/P .ds/ :

Definition 5.1.9
h
V .M/

P
i

The context is that of (Definition) 5.1.1. Given a linear manifold of functions
whose square is integrable with respect to P, say V .M/, one shall write

V .M/
P

for the closure, in L2 .S;S;P/, of the linear manifold of equivalence classes of
elements in V .M/.

Definition 5.1.10 [V1 .M/]
The context is that of (Definition) 5.1.1. V1 .M/ shall be the set of functions in

V .M/ which have a square that is integrable with respect to P, and an L2 norm
equal to one.

Definition 5.1.11 [�P;V.M/]
The following function, defined for ˛ � 0, shall be of use:

�P;V.M/ .˛/ D sup
f2V1.M/

P .s 2 S W j f j .s/ � ˛/ D sup
f2V1.M/

Pf .Œ�˛; ˛�/ :

In the latter expression, Pf D P ı f�1, and the supremum is set to one when
V1 .M/ D ;.

Remark 5.1.12 The map ˛ 7! �P;V.M/ .˛/ is obviously monotone increasing.

Definition 5.1.13 [Property˘1, for V .M/ and P]
The context is that of (Definition) 5.1.1. P shall have property˘1, for V .M/ and

P, when all the elements in V .M/ have a square that is integrable with respect to P.

Definition 5.1.14 [Property˘2, for V .M/ and P]
The context is that of (Definition) 5.1.1. P shall have property ˘2 for V .M/

when lim˛#0 �P;V.M/ .˛/ D 0.
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Example 5.1.15 [Property˘2 for LŒE �]
Suppose (Fact) 5.1.8 obtains with P, a probability for which E is a Gaussian

stochastic process, with mean �E ;P and covariance CE ;P. Let V .M/ D L ŒE �. Then
all elements of L ŒE � are Gaussian, and, for

f D
nX

iD1
˛iEti ;

one has that

EP Œ f � D
nX

iD1
˛i�E ;P .ti/ ;

VP Œ f � D
nX

iD1

nX
jD1

˛i˛jCE ;P
�
ti; tj

�
:

If one supposes that �E ;P 2 H .CE ;P;T/, then

EP Œ f � D h�E ;P;

nX
iD1

˛iCE ;P .
; ti/iH.CE;P;T/:

Let

hf D
nX

iD1
˛iCE ;P .
; ti/ :

Then, using the following relation: E
�
X2
� D V ŒX�C E2 ŒX�, one gets that

Z
S

f 2 .s/P .ds/ D ˇ̌̌̌ hf

ˇ̌̌̌ 2
H.CE;P;T/

C h�E ;P; hf i2H.CE;P;T/
:

The requirement that
R

S f 2 .s/P .ds/ D 1 means thus that hf is not the zero function,
and that one has a family of Gaussian random variables whose mean � and variance
�2 > 0 are tied in the expression �2 C �2 D 1. Let then, for ˛ > 0, but small,

f˛ .�/ D ˛ � �p
1 � �2 ; and g˛ .�/ D �˛ � �p

1 � �2 :

One must study, as a function of � 2 ��1; 1Œ, the expression

Pf .Œ�˛; ˛�/ defD �˛ .�/
defD ˚ . f˛ .�// �˚ .g˛ .�// > 0;
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where˚ is the distribution function of the standard normal random variable. Choos-
ing successively �n D �1C 1

n , then �n D 1 � 1
n , one sees that limn �˛ .�n/ D 0.

Furthermore �˛ .0/ D ˚ .˛/ � ˚ .�˛/. Differentiating with respect to �, one gets
that �

d

d�
�˛

�
.�/ D ˛�C 1p

1 � �2
e� 12 g2˛.�/p

2�
C ˛� � 1p

1 � �2
e� 12 f 2˛ .�/p

2�
:

Setting to zero, one achieves 1 D 1�˛�
1C˛�e2˛�, or � D 0. P has thus property ˘2 for

L .E/.

Remark 5.1.16 An adroiter calculation may be culled from (Lemma) 5.6.11 and
(Corollary) 5.6.14.

Definition 5.1.17 [Property˘3 for P]
The context is that of (Definition) 5.1.1. P shall have property ˘3 for P when

there exists �P � 0 such that [(Definition) 5.1.9],

Z
S

f 4 .s/P .ds/ � �2P
�Z

S
f 2 .s/P .ds/

� 2
;

for Œ f �L2.S;S;P/ 2 L .E/P
, fixed, but arbitrary,

Remark 5.1.18 Let X . p/ D EP ŒjXjp�. Then [229, p. 73] ln ŒX . p/� is convex in
the interior of

f p 2 �0;1Œ W X . p/ <1g :

Consider the line that goes through .2; ln ŒX .2/�/ and .4; ln ŒX .4/�/. It cuts the
vertical axis at the point .0; 2 ln ŒX .2/� � ln ŒX .4/�/. When

2 ln ŒX .2/� � ln ŒX .4/� � � ln
�
�2
�
; class of X 2 L .E/P; some �;

then (Definition) 5.1.17 obtains. One has thus a geometric rephrasing of that
condition.

Remark 5.1.19 Definition 5.1.17 expresses a type of uniform hypercontractive
domination [165, p. 72], a feature that allows domination of higher moments by
lower ones. It is uniform, as it is required for a set of random variables, rather than
for a single one. As hypercontractive domination is a feature of distributions (it
holds, in particular, for Bernoulli and Gaussian series, [165, p. 73]) when the linear
space of a process is made of (classes of) random variables of the same type, say
Gaussian (see next remark), it suffices to examine hypercontractivity for one random
variable. But the linear space of a process need not contain variables all of the same
type [123].
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Remark 5.1.20 All zero mean Gaussian processes have property ˘3. Indeed, for a
normal random variable X, with mean zero, one has that [138, p. 291]

E
�
X4
� D 3E2

�
X2
�
:

But, when E is Gaussian for P, with zero mean, expressions of the form
Pn

iD1 ˛iEti
are Gaussian, and L2 limits of sequences of such linear combinations are also
Gaussian [273, p. 246], and ˘3 thus obtains.

Remark 5.1.21 Every time a process exhibits a Gaussian feature, there is a good
chance for (Definition) 5.1.17 to hold. A few examples follow.

Example 5.1.22 Let A1;A2;W1;W2 be independent elements, A1 and A2, random
variables, and W1 and W2, standard Wiener processes. Let X D A1W1 C A2W2, and
P D PX , the measure induced by X on, say, RŒ0;1�. And let E denote the evaluation
maps. Then, when f DPn

iD1 ˛iEti , using the inequality .aC b/n � 2n�1 .an C bn/,
and then independence,

EP
�

f 4
� D
D E

2
4( nX

iD1
˛iX .
; ti/

) 435

D E

2
4(A1

nX
iD1

˛iW1 .
; ti/C A2

nX
iD1

˛iW2 .
; ti/
) 435

� 23
8<
:E

�
A41
�

E

2
4( nX

iD1
˛iW1 .
; ti/

) 435C E
�
A42
�

E

2
4( nX

iD1
˛iW2 .
; ti/

) 435
9=
;

D 3 
 23E2
2
4( nX

iD1
˛iW1 .
; ti/

) 235 �E �A41�C E
�
A42
��
:

But

EP
�

f 2
� D �E �A21�C E ŒA2�

�
E

2
4( nX

iD1
˛iW1 .
; ti/

) 235 ;
so that (provided the required moments exist)

�2P D 3 
 23
E
�
A41
�C E

�
A42
�

�
E
�
A21
�C E ŒA2�

�2 :
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In the same vein, let

Xt D St CWt;

St D A0 cos .!0 tC U/ ;

with U, uniform on Œ��; ��, and independent of W, standard Wiener. Then [215,
p. 85]

E ŒSt� D 0;

CS .s; t/ D A20
2

cos .!0 Œt � s�/ :

The elements of L2 ŒX�, the linear space generated by X, are then of the following
generic form:

X D ˛ cos .U/C ˇ sin .U/C N D V C N;

where V and N are independent, and N is normal, with mean zero. Thus

E2
h
.V C N/2

i
D E2

�
V2
�C 2E

�
V2
�

E
�
N2
�C E2

�
N2
�
;

and

E
h
.V C N/4

i
D E

�
V4
�C 6E

�
V2
�

E
�
N2
�C 3E2

�
N2
�
:

Now, using the properties of trigonometric functions,

E2
�
V2
� D
D ˛4E2 �cos2 .U/

�C 2˛2ˇ2E �cos2 .U/
�

E
�
sin2 .U/

�C ˇ4E2 �sin2 .U/
�
;

and

E
�
V4
� D
D ˛4E

�
cos4 .U/

�C 6˛2ˇ2E �cos2 .U/ sin2 .U/
�C ˇ4E �sin4 .U/

�
:

Thus˘3 still obtains.

Example 5.1.23 Strictly sub-Gaussian random elements provide examples which
are not Gaussian, but have property˘3.
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A random variable X is sub-Gaussian when there exists � � 0 such that, for
� 2 R, fixed, but arbitrary,

EP
�
e�X
� � e

�2�2

2 :

It is strictly sub-Gaussian when it is sub-Gaussian, and one can choose, for �2, the
variance of X. Strictly sub-Gaussian random variables have the property that [49,
p. 17]

EP ŒX� D EP
�
X3
� D 0; EP

�
X4
� � 3E2P

�
X2
�
:

Furthermore [49, p. 19], when X is a family of independent, strictly sub-Gaussian
random variables, the closure in mean square of its linear span,

V ŒX �P;

contains only strictly sub-Gaussian random variables.
Let now fXn; n 2 Ng be a family of independent, strictly sub-Gaussian random

variables with variance one, and f fn; n 2 Ng, a sequence of functions such that, for
t 2 T, fixed, but arbitrary, X

n

f 2n .t/ <1:

The assignment

Xt D
X

n

fn .t/Xn

provides a stochastic process whose linear space L2 ŒX� is made of strictly sub-
Gaussian random variables.

Analogously to strictly sub-Gaussian random variables, one defines [49, p. 189]
strictly sub-Gaussian random vectors, that is, X 2 Rn is strictly sub-Gaussian when,
given a fixed, but arbitrary � 2 Rn,

EP

h
eh�;XiRn

i
� e

1
2 h˙XŒ��;�iRn ;

where˙X is the covariance matrix of X. A stochastic process is strictly sub-Gaussian
when all its finite dimensional distributions are strictly sub-Gaussian, and then
its linear space is made of strictly sub-Gaussian random variables [49, p. 190].
Consequently, when fXn; n 2 Ng above is strictly sub-Gaussian, the random series
process it determines, provided it exists, is strictly sub-Gaussian (no independence
required) [49, p. 190]. Those two properties extend to the following case [49,
p. 191].
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Let T be a connected, compact set of Rn, X, a strictly sub-Gaussian process,
indexed by T, continuous in quadratic mean, and f fn; n 2 Ng, a family of continuous
functions. Set

Xn D
Z

T
Xt fn .t/ dt;

and, given the family of functions fgn; n 2 Ng,

Y.n/t D
nX

iD1
gi .t/Xi:

One thus obtains a family of strictly sub-Gaussian processes such that, when, for
fixed, but arbitrary t 2 T, in quadratic mean,

Zt D lim
n

Y.n/t

exists, Z is also strictly sub-Gaussian.

Example 5.1.24 ([36, p. 268]) Let Xt D ha .t/ ;XiRn , with X orthogonally invariant.
Orthogonally invariant vectors have the following properties [96, p. 26]:

(i) the characteristic function 'X .�/ of X has the following form:

'X .�/ D X

�
jj� jj2Rn

�
; X .�/ D

Z 1
0

˝n
�
�x2

�
FX .dx/ ;

where FX is a distribution function, and, with Sn the area of the surface of the
unit sphere of Rn,

˝n

�
jj� jj2Rn

�
D
Z
n
x2RnWjjxjj2

RnD1
o eih�;xiRn dS

Sn
I

(ii) X has the same law as RUn, where R has distribution FX , and Un has
the uniform distribution on the surface of the unit sphere of Rn; when the
probability of the origin is zero, the distribution of R and that of the norm
of X are the same, as well as those of Un and the ratio of X to its norm;

(iii) the inner product ha;XiRn and the random variable jjajjRn X1 have the same
distribution;

(iv) X has zero mean, and, when it exists, covariance
EPŒR2�

n In.

The process X has thus zero mean, and its covariance, when it exists, has the
following form:

CX .t1; t2/ D
EP
�
R2
�

n
ha .t1/ ; a .t2/iRn :
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The elements of H .CX ;T/ are of the form t 7! Pn
iD1 xiai .t/, and the elements of

L2 ŒX�, of the form ha;XiRn , whose law is that of jjajjRn X1. Consequently, provided
the required moments exist,

EP
�ha;Xi4Rn

�
E2P
�ha;Xi2Rn

� D EP
�
X41
�

E2P
�
X21
� ;

and˘3 obtains. Furthermore, the finite dimensional distributions of X are elliptically
contoured [36, p. 270], and reference [96, Chapter 3] is rich in particular cases.

Remark 5.1.25 It is not too difficult to find cases that do not enjoy property˘3. An
example follows.

Example 5.1.26 Let Xt D Wt^T , where T is an exponential random variable,
independent of the Wiener process W. Let At D � .T/ _ �t .W/. Then T is a
stopping time of that filtration, with respect to which W remains a Wiener process
independent of T. Furthermore X is adapted to it [67, p. 209]. As

Wt^T D
Z 1
0

�
Œ0;t�
.�/ �

Œ0;T.!/�
.�/W .!; d�/ ;

one has that X has mean zero, and covariance

CX .s; t/ D E

	Z 1
0

�
Œ0;s�
.�/ �

Œ0;t�
.�/ �

Œ0;T.!/�
.�/ d�




D
Z 1
0

�Œ0;s� .�/ �
Œ0;t�
.�/P .T � �/ d�

D
Z 1
0

�
Œ0;s�
.�/ �Œ0;t� .�/ e��d�:

Consequently L2 ŒX� and H .CX;RC/ are isomorphic to

L2 Œ�� D L2
�
RC;B .RC/ ; �Exp

�
;

where �Exp is the measure with exponential density. The elements of L2 ŒX� have
thus a representation of the following form:

Z T

0

f dW; f 2 L2
h
�Exp

i
:

Now

E
h
ei˛

R T
0 f dW

i
D
Z 1
0

e�
˛2

2

R �
0 f 2.�/ d��Exp .d�/ :
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Letting X . f / D R T
0

f dW, differentiating with respect to ˛, one obtains that

E
�
X2 . f /

� D Z 1
0

�Z �

0

f 2 .�/ d�

�
�Exp .d�/ ;

and that

E
�
X4 . f /

� D 3 Z 1
0

�Z �

0

f 2 .�/ d�

� 2
�Exp .d�/ :

Choose now f .�/ D �n. Integrating, one obtains that

E
�
X2 . f /

� D Z 1
0

�2nC1

2nC 1 �Exp .d�/ D
.2nC 1/Š
2nC 1 ;

and that

E
�
X4 . f /

� D 3 Z 1
0

	
�2nC1

2nC 1

2
�Exp .d�/ D 3

.4nC 2/Š

.2nC 1/2 :

Consequently

E
�
X4 . f /

�
E2 ŒX2 . f /�

� 4nC 2;

so that ˘3 does not obtain.
For integrals of the type M D R

XdW, there are generally valid inequalities for
fourth moments [56, p. 128]:

E
�
M4

t

� � 6E
�
M2

t hMit
� � 36E

�hMi2t � ;
but they are not tight enough to imply the ˘3 property, as one would need, instead
of E

�hMi2t �, E2 ŒhMit�.
Remark 5.1.27 In some cases, when investigating absolute continuity, the method-
ology which follows may be inoperative, or dispensed with. Some examples follow.

Example 5.1.28 Let U and V be independent, with mean zero and variance one. Let
f and g be two linearly independent functions, and set

Xt D f .t/U C g .t/V:
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The elements of L2 ŒX� are of the form X D ˛U C ˇV . Consequently, provided
moments exist,

E
�
X4
� D ˛4E �U4

�C 6˛2ˇ2 C ˇ4E �V4
�
;

whereas

E2
�
X2
� D ˛4 C 2˛2ˇ2 C ˇ4;

so that condition˘3 becomes: for real .˛; ˇ/, fixed, but arbitrary,�
�2 � E

�
U4
��
˛4 C ��2 � 6�˛2ˇ2 C ��2 � E

�
V4
��
ˇ4 � 0;

which, when moments are finite, is always true for � large enough. But one would
usually attempt to study the equivalence problem using the following representation:

Xt D ˚
�	

U
V


�
Œt�; ˚.x/Œt� D f .t/x1 C g.t/x2:

In the same vein, let fXn; n 2 Ng be a sequence of independent random variables,
with mean zero and variance one. Let also f fn W T �! R; n 2 Ng be a sequence of
functions such that f fn .t/ ; n 2 Ng 2 l2 for all t 2 T. The random variables˚ QXn D fn .t/Xn; n 2 N

�
are then independent, with mean zero and respective variances f 2n .t/, which form a
summable sequence. Consequently [54, p. 113],

Xt D
X

n

fn .t/Xn

represents a second order random process, with mean zero and covariance

CX .t1; t2/ D
X

n

fn .t1/ fn .t2/ D h f .t1/; f .t2/il2 :

The elements h 2 H .CX ;T/ have then the following representation:

h .t/ D h˛; f .t/il2 D
X

n

˛n fn .t/ ;

˛ 2 l2. Let, in l2,

l2Œf � D V
hn

f .t/; t 2 T
oi
:
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Then

hh1; h2iH.CX ;T/ D hPl2Œf � Œ˛1� ; ˛2il2 :

Let c be a sequence in l2. Then X D P
n cnXn has mean zero, and an integrable

square. Furthermore

E

2
4 X �

pX
iD1

˛iXti

!235 D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌c � pX

iD1
˛i f .ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
l2

:

Consequently, when l2Œf � D l2, L2 ŒX� is generated by elements of type X. Condition
˘3 then becomes

E
�hc;Xi4l2� � �2E2 �hc;Xi2l2� ; all c 2 l2:

Here is the assessment of˘3 for a particular case, that of independent, identically
distributed, Laplace random variables, that is, since one must have E

�
X2n
� D 1,

fXn .x/ D
1p
2

e�
p
2jxj; E

�
e�Xn

� D 1

1 � �2

2

:

Let then

' .�/ D E
h
e�hc;Xil2

i
D
Y

n

1

1 � c2n�
2

2

:

Taking logarithms, differentiating, and setting � D 0, one gets:

E
�hc;Xi4l2� D 3E2

�hc;Xi2l2�C 3

4

X
n

c4n:

Consequently (Hölder’s inequality)

E
�hc;Xi4l2�

E2
�hc;Xi2l2� � 4:

Let ˚ W RN �! RT be defined using the following relation:

˚ .x/ Œt� D lim sup
n

nX
iD1

xifi .t/ :
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Then Xt D ˚ .X/, and equivalence and singularity of such processes may be
investigated using Kakutani’s dichotomy theorem [163, p. 116], rather than the more
cumbersome methods to follow.

Let Xt D
R t
0

s .
; �/ d�CWt, s a random signal, and W a standard Wiener process.
The elements of the linear space of X shall have the following form:

X Œ f � D h f ; siL2ŒT� C
Z

T
f dW:

As the law of s is typically unknown, it will usually be very difficult to check
condition ˘3. In that case, one has Girsanov’s theorem [264, p. 250] to carry the
day. Furthermore specific assumptions on the behavior of E with respect to P are
necessary for the linear space determined by E and P to have an explicit form,
generally a prerequisite to checking the requirements of the theory.

Remark 5.1.29 The assumption that the elements of E have a square that is
integrable with respect to P means, for example (Example) 5.1.6, that a covariance
operator exists. For it to have finite trace something more must be assumed of P,
for example that the square of the norm is adapted and integrable. When˘3 obtains
[(Definition) 5.1.17], one assumes in particular that, with respect to P, the “process”
E has fourth moments.

The properties that have been listed (˘1 in (Definition) 5.1.13, ˘2 in (Defini-
tion) 5.1.14, and˘3 in (Definition) 5.1.17) have the following consequences, stated
as propositions.

Proposition 5.1.30 The context is that of (Definition) 5.1.1. Suppose ˘1 and ˘2

obtain for P and V .M/, and that A 2 S is such that P .A/ > 0. There exists then

�A > 0 such that, for f 2 V .M/
P
, fixed, but arbitrary,Z

A

Pf 2 .s/P .ds/ � �A

Z
S

Pf 2 .s/P .ds/ :

Proof One may assume that
R

S
Pf 2 .s/P .ds/ > 0, for otherwise there is nothing to

prove.
Assume that f 2 V .M/. Then, letting nf D

˚R
S f 2 .s/P .ds/

�1=2
, one has

simultaneously that

f

nf
2 V1 .M/ ; and that

Z
A

f 2 .s/P .ds/ D n2f

Z
A

f 2 .s/

n2f
P .ds/ :

For fixed, but arbitrary � > 0, set

Sf ;� D
(

s 2 S W f 2 .s/

n2f
> �

)
:
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Then Z
A

f 2 .s/

n2f
P .ds/ � � P

�
A \ Sf ;�

�
:

But one has that 0 < P .A/ D P
�
A \ Sf ;�

�C P
�

A \ Sc
f ;�

�
, and also that

P
�
A \ Sc

f ;�

� � P
�
Sc

f ;�

� D P

�
s 2 S W j f .s/j

nf
� �1=2

�
:

Let 0 < ı < P.A/
2

. Property˘2 has thus the consequence that, for � small enough,

P

�
s 2 S W j f .s/j

nf
� �1=2

�
< ı;

independently of f , and thus that

P
�
A \ Sf ;�

�
>

P .A/

2
;

independently of f . It thus suffices to choose �A D � P.A/
2

for the result to hold in
case f 2 V .M/.

Suppose now that f 2 V .M/
P
, and that f fn; n 2 Ng � V .M/ is such that, in

L2 .S;S;P/, limn Œ fn�L2.S;S;P/ D f . Then

Z
A

Pf 2 .s/P .ds/ D lim
n

Z
A

f 2n .s/P .ds/

� lim
n
�A

Z
S

f 2n .s/P .ds/

D �A

Z
S

Pf 2 .s/P .ds/ :

ut
Proposition 5.1.31 The context is that of (Definition) 5.1.1. Suppose that P has
property ˘3. It has then property ˘1 for Q .E/, that is, “quadratic functionals”
have a square that is integrable with respect to P.

Proof For fixed, but arbitrary .t1; t2/ 2 T � T,

�Z
S
.Et1 .s/ Et2 .s//

2 P .ds/

� 2
�
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�
Z

S
E4t1 .s/P .ds/

Z
S
E4t2 .s/P .ds/

� �4P
�Z

S
E2t1 .s/P .ds/

� 2 �Z
S
E2t2 .s/P .ds/

� 2
:

ut
Proposition 5.1.32 The context is that of (Definition) 5.1.1. Suppose that P has
property ˘3, and that m 2M .S/ is such thatZ

S
m4 .s/P .ds/ <1:

Let M W L .E/P �! L2 .S;S;P/ be defined using the following assignment:

M Œ f � D �mPf �
L2.S;S;P/ :

Then:

1. M is a multiplication operator which is linear and bounded.
2. Let PL.E/P denote the projection onto L .E/P

in L2 .S;S;P/: the operator

PL.E/P M

is linear and bounded, with domain equal to L .E/P
, and range in L .E/P

.

Proof The definition of M makes sense, and yields a bounded, linear operator, as

Z
S

˚
m .s/ Pf .s/�2 P .ds/ �

�Z
S

m4 .s/P .ds/

� 1
2
�Z

S

Pf 4 .s/P .ds/

� 1
2

� �P

�Z
S

m4 .s/P .ds/

� 1
2
Z

S

Pf 2 .s/P .ds/ ;

where f 2 L .E/P
and Pf 2 f are fixed, but arbitrary. ut

Remark 5.1.33 M may be looked at as the restriction, to the closure of L.E/,
with respect to P, of a standard multiplication operator with domain and range in
L2.S;S;P/. That domain contains the measurable functions whose fourth power is
integrable. The ˘3 assumption insures that the closure, with respect to P, of L.E/
belongs to the domain of M.
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5.2 Atoms and Reduced Measures

Atoms, “isolated” points, or sets, of positive measure, are a “nuisance,” when
one is interested in “continuous” measures. Reduced measures are measures for
which such “perturbing” elements do not exist, or have been removed. This section
contains a number of technical considerations on the subject. The “canonical” cases
are those of Gaussian measures [(Proposition) 5.6.10].

Let S0 2 S be fixed, but arbitrary, and let S0 D fA \ S0; A 2 Sg. M .S0/ shall
be the family of functions f W S0 �! R which are adapted to S0 and B .R/.
Lemma 5.2.1 Let, as just described, S0 2 S, and S0 D fA \ S0; A 2 Sg. Then

M .S0/ D
˚

f jS0 ; f 2M .S/
�
;

where f jS0 is the restriction of f to S0.

Proof Suppose that f 2M .S/, and let f0 be the restriction of f to S0. Then

fs 2 S0 W a < f0 .s/ � bg D fs 2 S0 W a < f .s/ � bg
D S0 \ f�1 .�a; b�/

2 S0:

Suppose now that f0 2M .S0/. Let

˚f .s/ D
�

f0 .s/ when s 2 S0
0 when s 2 Sc

0

:

f0 is the restriction of ˚f to S0, and

˚�1f .�a; b�/ D
�

f�10 .�a; b�/ 2 S0 � S; when 0 2 �a; b�c
f�10 .�a; b�/ [ Sc

0 2 S; when 0 2 �a; b�
�
2 S;

so that ˚f 2M .S/. ut
Here is a way to spot atoms. The restriction of Et to S0 shall be denoted �t.

Proposition 5.2.2 The context is that of Sect. 5.1. Let, as just described, S0 2 S,
and S0 D fA \ S0; A 2 Sg. Suppose that .S0;S0; �/ is a finite measure space for
which, given t 2 T, fixed, but arbitrary,Z

S0

�2t .s/ � .ds/ <1:
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If, for all t 2 T, all f 2M .S0/ such that
R

S0
f 2 .s/ � .ds/ <1, one has that

Z
S0

�t .s/ f .s/ � .ds/ D 0;

then either � .S0/ D 0, or S0 is an atom for � (any measurable subset of S0 has
either measure zero or a measure equal to that of S0).

Proof One shall first prove that, in case � .S0/ > 0, every function f , with values
in R, which is adapted to S0 and B .R/, is constant on a measurable subset Of 2 S0
with the property that �

�
Of
� D � .S0/.

Suppose thus that � .S0/ > 0. Let f D �t, so that, by assumption,

0 D
Z

S0

�t .s/ f .s/ � .ds/ D
Z

S0

�2t .s/ � .ds/ :

Then, since � .S0/ > 0, one has that �t .s/ D 0 for s 2 Ot � S0, some Ot 2 S0, and
� .Ot/ D � .S0/.

Let f be adapted to S0. From (Lemma) 5.2.1, there is a g adapted to S such that,
for fixed, but arbitrary s 2 S0, f .s/ D g .s/. But [41, p. 144] g has a representation
in the following form:

g .s/ D ˚g

�n
Et

g
i
.s/ ; i 2 N

o�
;

s 2 S; ˚g W R1 �! R, ˚g adapted. Consequently, for s 2 S0,

f .s/ D g .s/ D ˚g

�n
�t

g
i
.s/ ; i 2 N

o�
:

Let O D \i2NOt
g
i
, where the Ot

g
i
’s have the meaning given above to Ot. Then

O � S0, O 2 S0, and � .O/ D � .S0/, as a countable intersection of sets of full
measure has full measure. Furthermore, for s 2 O, f .s/ D ˚g .f0; i 2 Ng/.

What precedes is now used with functions which are indicators of sets. For A \
S0 2 S0, let ˚A\S0 W R1 �! R be the measurable function such that

�A\S0
.s/ D ˚A\S0

�n
�

t
A\S0
i

.s/ ; i 2 N
o�
:

Let OA\S0 2 S0 be such that � .OA\S0 / D � .S0/, and, for s 2 OA\S0 ,

�A\S0
.s/ D ˚A\S0 .f0; i 2 Ng/ ;



5.2 Atoms and Reduced Measures 347

a constant, denoted cA\S0 , which takes its values in f0; 1g. Then

0 D
Z

OA\S0

ˇ̌�
�A\S0

.s/ � cA\S0

�ˇ̌
� .ds/

D
Z

S0

ˇ̌�
�A\S0

.s/� cA\S0

�ˇ̌
� .ds/

D
Z

A\S0

ˇ̌�
�A\S0

.s/ � cA\S0

�ˇ̌
� .ds/C

Z
Ac\S0

ˇ̌�
�A\S0

.s/ � cA\S0

�ˇ̌
� .ds/

D .1 � cA\S0/ � .A \ S0/C cA\S0 � .A
c \ S0/ :

As � .S0/ D � .A \ S0/C � .Ac \ S0/,

• when cA\S0 D 0,

� .A \ S0/ D 0; and � .Ac \ S0/ D � .S0/ > 0I

• when cA\S0 D 1,

� .Ac \ S0/ D 0; and � .A \ S0/ D � .S0/ > 0:

ut
Remark 5.2.3 When S is one of the Examples 5.1.3 to 5.1.6,

�A\S0
.0/ D ˚A\S0

�n
E

t
A\S0
i

.0/ ; i 2 N
o�

D ˚A\S0 .f0; i 2 Ng/
D cA\S0 ;

so that, choosing A D S0, one gets, from the following expression (see proof of
(Proposition) 5.2.2):

.1 � cA\S0/ � .A \ S0/C cA\S0� .A
c \ S0/ D 0;

that

.1 � cS0 / � .S0/ D 0:

Thus, since � .S0/ > 0, cS0 D 1, and 0 2 S0. Furthermore, when 0 2 A \ S0,
cA\S0 D 1, and � .A \ S0/ D � .S0/ > 0.

Remark 5.2.4 Let S be a separable metric space, with metric d; S, the family of its
Borel sets; and�, a finite measure on S such that, whatever A 2 S, either� .A/ D 0,
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or � .A/ D � .S/. Let � > 0 be fixed, but arbitrary, and fsn; n 2 Ng be a countable,
�-dense subset of S [84, p. 187], that is, the balls

B .sn; �/ D fs 2 S W d .sn; s/ < �g ; n 2 N;

cover S. There is thus at least one whose measure equals � .S/. For each p 2 N,
choose then sn. p/ such that

�

�
B

�
sn. p/;

1

p

��
D � .S/ :

Denote
˚
Bp; p 2 N

�
the sequence of those balls, and let

An D \n
pD1Bp; A D \n2NAn:

Then � .A/ D � .S/, and A is a singleton [240, p. 68].
The spaces of (Examples) 5.1.4 and 5.1.5 are separable metric spaces, and that

of (Example) 5.1.6 is also separable when H is separable.

Here is a case when atoms are “irrelevant.”

Fact 5.2.5 ([46, pp. 114,122]) The context is that of Sect. 5.1. Suppose s0 2 S and
ı0 is the measure on S defined using the following assignment:

ı0 .A/ D
�
1 when s0 2 A
0 when s0 2 Ac :

Then Z
S

f .s/ ı0 .ds/ D f .s0/ ; f adapted to S and B .R/ :

Proposition 5.2.6 The context is that of Sect. 5.1. Let � be a finite measure on S
for which Z

S
E2t .s/ � .ds/ <1; t 2 T:

Suppose s0 2 S is such that Et .s0/ D 0; t 2 T. Let

(a) ı0 be the measure on S defined in (Fact) 5.2.5,
(b) p0 D inf f� .A/ W A 2 S; A 3 s0g � � .S/ <1;
(c) �0 D � � p0ı0.
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Then, for fixed, but arbitrary .t1; t2/ 2 T � T,

HE ;� .t1; t2/ D
Z

S
Et1 .s/ Et2 .s/ � .ds/ D

Z
S
Et1 .s/ Et2 .s/ �0 .ds/ :

Proof Using (Fact) 5.2.5, for every f W S �! R, adapted to S and B .R/,Z
S

f .s/ ı0 .ds/ D f .s0/ :

Thus Z
S
Et1 .s/ Et2 .s/ ı0 .ds/ D Et1 .s0/ Et2 .s0/ D 0:

ut
Remark 5.2.7 The previous result applies in particular to the Examples 5.1.3 to
5.1.6 with s0, the zero function (element).

Definition 5.2.8 The context is that of Sect. 5.1. Let � be a finite measure on S for
which Z

S
E2t .s/ � .ds/ <1; t 2 T:

Let

p0 D inf f� .A/ W A 2 S; A 3 s0g � � .S/ <1:

When p0 D 0, one then says that � is reduced at s0.

Proposition 5.2.9 The context is that of Sect. 5.1. Let � be a finite measure on S
for which Z

S
E2t .s/ � .ds/ <1; t 2 T:

If � is reduced at some s0 2 S, and � is a measure on S which is absolutely
continuous with respect to �, then � is also reduced at s0.

Proof Since � is reduced at s0, there is a sequence fAn; n 2 Ng � S such that s0 2
An; n 2 N, and limn � .An/ D 0. fAn; n 2 Ng may be assumed to be decreasing. As

�
�
s 2 S W ˇ̌�An

� 0ˇ̌ > �� D � .An/ ;
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for the measure �, the sequence
˚
�An
; n 2 N

�
converges to zero in measure.

Consequently, since

� .An/ D
Z

S
�An

.s/
d�

d�
.s/ � .ds/ ;

limn � .An/ D 0. ut

5.3 Dependence of the Lebesgue Decomposition on Some
Related Reproducing Kernel Hilbert Spaces

Between any two measures there is a relation, that described by the Lebesgue
decomposition. It is examined below to what extent knowledge of the RKHS’s
associated with those measures makes that relation more explicit.

5.3.1 Background

One finds here the form of the Lebesgue decomposition that shall be used in the
sequel.

The context is that of Sect. 5.1. In particular, the maps Et; t 2 T, have always a
square that is integrable. Let P and Q be probabilities on S. One may thus compute,
for .t1; t2/ 2 T � T fixed, but arbitrary,

HE ;P .t1; t2/ D
Z

S
Et1 .s/ Et2 .s/P .ds/

and

HE ;Q .t1; t2/ D
Z

S
Et1 .s/ Et2 .s/Q .ds/ :

The RKHS H .HE ;P;T/, associated with both P and HE ;P, is the range of the map
LP W L2 .S;S;P/ �! RT defined using the following relation:

LP Œ f � .t/ D
Z

S

Pf .s/ Et .s/P .ds/ :
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LP is a partial isometry whose initial set is L .E/P
, and whose range and final set is

H .HE ;P;T/. The null space of LP is

N ŒLP� D
n
L .E/P

o?
:

The restriction of LP to L .E/P
is unitary and shall be denoted UP. One has in

particular that

UP
�
ŒEt�L2.S;S;P/

� D HE ;P .
; t/ ; t 2 T;

and, for hf D UP Œ f �, ˇ̌̌̌
hf

ˇ̌̌̌
H.HE;P;T/

D jj f jjL2.S;S;P/ :

The Lebesgue decomposition of Q with respect to P says that, uniquely,

Q .A/ D
Z

A
DP .s/P .ds/C Q .A \ NsP/ ;

with

fA;NsPg � S; and P .NsP/ D 0;

where DP is, up to equivalence, the largest (extended) real and measurable function
D such that Z

A
D .s/P .ds/ � Q .A/ ; A 2 S:

The absolutely continuous part of Q with respect to P shall be denoted QaP, and the
singular part, QsP. Then

DP D dQaP

dP
:

Remark 5.3.1 The Lebesgue decomposition can be obtained as follows [201, p. 47].
One first proves that there is a measurable D such that

Q .A/ D
Z

A
D .s/ ŒPC Q� .ds/ ; RD � Œ0; 1� :
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One then sets N D fs 2 S W D .s/ D 1g, and establishes that P .N/ D 0. One
consequently sets, arbitrarily on N,

dQ

dP
D
�

D
1�D on Nc

1 on N
:

Finally

Q .A/ D Q .A \ N/C Q .A \ Nc/

D Q .A \ N/C
Z

A\Nc

dQ

dP
.s/P .ds/ :

But Z
A\N

dQ

dP
.s/P .ds/ �

Z
N

dQ

dP
.s/P .ds/

D 1� P .N/

D 0;

so that Z
A

dQ

dP
.s/P .ds/ D

Z
A\Nc

dQ

dP
.s/P .ds/ :

Also �
s 2 S W dQ

dP
.s/ D 0

�
� Nc

so that

Q

��
s 2 S W dQ

dP
.s/ D 0

��
D 0:

One shall write, as already stated, NsP for N, and dQaP
dP for dQ

dP . Then

QaP .A/ D
Z

A

dQaP

dP
.s/P .ds/ ;

QsP .A/ D Q .A \ NsP/ :
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Definition 5.3.2 [S0; S�] The following sets shall be of frequent use (� > 0 is fixed,
but arbitrary):

1. S0 D
˚
s 2 S W dQaP

dP .s/ D 0� � Nc
sP, so that

Q .S0/ D QaP .S0/ D 0I

then

Q .S0 [ NsP/ D Q .S0/C Q .NsP/ D Q .NsP/ :

2. S� D
˚
s 2 S W 0 < dQaP

dP .s/ � 1
�

� � Nc
sP, so that

Q .S�/ D QaP .S�/ I

then

(i) for 0 < �1 < �2, Sc
�1
� Sc

�2
;

(ii) Sc
� D S0 [

˚
s 2 S W dQaP

dP .s/ > 1
�

�
;

(iii) \�>0Sc
� D S0 [ NsP.

Fact 5.3.3 (Background Summary) The context is that of Sect. 5.1.
For two probabilities on S, P and Q,

1. Q .A/ D QaP .A/CQsP .A/ where

(i) QsP .A/ D Q .A \ NsP/,
(ii) P .NsP/ D 0,

(iii) QaP .A/ D
R

A
dQaP

dP .s/P .ds/,
(iv) 0 � dQaP

dP .s/ <1; s 2 Nc
sP,

(v) dQaP
dP .s/ D 1; s 2 NsP.

2. S0 D
˚
s 2 S W dQaP

dP .s/ D 0�.
3. S� D

˚
s 2 S W 0 < dQaP

dP .s/ � 1
�

�
.

5.3.2 Lebesgue Decomposition and “Sizes” of Reproducing
Kernel Hilbert Spaces Intersections

It is shown, in this section, that, in the Lebesgue decomposition, the presence, or
absence, of the term Q .NsP/ is linked to the “size” of the intersection of the RKHS’s
associated with, respectively, P and Q.
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Lemma 5.3.4 The background is that of Sect. 5.3.1. Let P and Q be probabilities
on S, and

H0 D H .HE ;P;T/ \ H
�
HE ;Q;T

�
:

Let h 2 H
�
HE ;Q;T

�
be fixed, but arbitrary, and fh D U?

Q Œh� 2 L .E/Q
. Form, from

fh, the following functions:

(a) Pfh;P .s/ D �S�
.s/ Pfh .s/ dQaP

dP .s/,
(b) Pfh;Q .s/ D �S�

.s/ Pfh .s/,
(c) h� .t/ D

R
S�
Pfh .s/ Et .s/Q .ds/.

Then

1. fh;P 2 L2 .S;S;P/,
2. fh;Q 2 L2 .S;S;Q/,
3. h� .t/ D

R
S
Pfh;P .s/ Et .s/P .ds/ D RS

Pfh;Q .s/ Et .s/Q .ds/,
4. h� 2 H0.

Proof fh;P 2 L2 .S;S;P/ since

Z
S

Pf 2h;P .s/P .ds/ D
Z

S�

Pf 2h .s/
	

dQaP

dP


2
.s/P .ds/

� 1

�

Z
S�

Pf 2h .s/
dQaP

dP
.s/P .ds/

D 1

�

Z
S�

Pf 2h .s/QaP .ds/

D 1

�

Z
S�

Pf 2h .s/Q .ds/

� 1

�

Z
S

Pf 2h .s/Q .ds/

< 1:

Similarly, fh;Q 2 L2 .S;S;Q/ sinceZ
S

Pf 2h;Q .s/Q .ds/ D
Z

S�

Pf 2h .s/Q .ds/ �
Z

S

Pf 2h .s/Q .ds/ <1:

Since Z
S�

Pfh .s/ Et .s/Q .ds/ D
Z

S�

Pfh .s/ Et .s/QaP .ds/
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D
Z

S�

Pfh .s/ Et .s/
dQaP

dP
.s/P .ds/

D
Z

S

Pfh;P .s/ Et .s/P .ds/ ;

h� .t/ D
R

S�
Pfh .s/ Et .s/Q .ds/ has a first representation as

h� .t/ D
Z

S

Pfh;P .s/ Et .s/P .ds/ ; where fh;P 2 L2 .S;S;P/ ;

and a second representation as

h� .t/ D
Z

S

Pfh;Q .s/ Et .s/Q .ds/ ; where fh;Q 2 L2 .S;S;Q/ :

Thus h� 2 H0. ut
Lemma 5.3.5 The background is that of Sect. 5.3.1. Elements P;Q; h; fh; S� , and h�
are as in (Lemma) 5.3.4. Define

h.�/ .t/ D h .t/ � h� .t/ ; t 2 T:

Then:

1. h.�/ 2 H
�
HE ;Q;T

�
;

2. h.�/ .t/ D RSc
�

Pfh .s/ Et .s/Q .ds/;

3.
ˇ̌̌̌
h.�/
ˇ̌̌̌ 2

H.HE;Q;T/
D jjhjj2

H.HE;Q;T/
� jjh�jj2H.HE;Q;T/

.

Proof h has been chosen in H
�
HE ;Q;T

�
, and h� has been shown to belong to it

[(Lemma) 5.3.4, item 4]. So item 1 is true. Now, still from (Lemma) 5.3.4,

h .t/ � h� .t/ D
Z

S

Pfh .s/ Et .s/Q .ds/ �
Z

S

Pfh;Q .s/ Et .s/Q .ds/

D
Z

S

�
1� �

S�

�
.s/ Pfh .s/ Et .s/Q .ds/ ;

so that ˇ̌̌̌
h.�/
ˇ̌̌̌ 2

H.HE;Q;T/
D
Z

S

�
1 � �

S�

�2
.s/ Pf 2h .s/Q .ds/

D
Z

S

�
1 � �

S�

�
.s/ Pf 2h .s/Q .ds/

D jjhjj2
H.HE;Q;T/

� jjh�jj2H.HE;Q;T/
:

ut
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Proposition 5.3.6 The background is that leading to Sect. 5.3.2 (in particular,
Sect. 5.1). Elements P;Q; h; fh; S� , and h� are as in (Lemma) 5.3.4, h.�/ as in
(Lemma) 5.3.5. Let H?0 be the orthogonal complement, in H

�
HE ;Q;T

�
, of H0

(defined in (Lemma) 5.3.4). When H?0 is not the trivial subspace f0RT g, Q .NsP/ > 0.

Proof Suppose that both h 2 H?0 and h ¤ 0RT obtain. Because of the inclusion
H?0 � H

�
HE ;Q;T

�
, (Lemmas) 5.3.4 and 5.3.5 apply to h, and one may proceed

with the element h.�/ D h � h�. Since h� 2 H0 and h 2 H?0 ,

hh; h�iH.HE;Q;T/ D 0:

Thus ˇ̌̌̌
h.�/
ˇ̌̌̌ 2

H.HE;Q;T/
D jjhjj2

H.HE;Q;T/
C jjh�jj2H.HE;Q;T/

:

It then follows, from (Lemma) 5.3.5, item 3, thatˇ̌̌̌
h.�/
ˇ̌̌̌

H.HE;Q;T/
D jjhjjH.HE;Q;T/ :

But, from (Lemma) 5.3.5, item 2, one has that

h.�/ .t/ D
Z

S
�

Sc
�
.s/ Pfh .s/ Et .s/Q .ds/ ;

so that Z
Sc
�

Pf 2h .s/Q .ds/ D ˇ̌̌̌ h.�/ ˇ̌̌̌ 2
H.HE;Q;T/

D jjhjj2
H.HE;Q;T/

> 0:

As advertised in (Definition) 5.3.2, item 2, Sc
� decreases with �, and \�>0Sc

� is the
disjoint union of S0 and NsP. Furthermore Q .S0/ D 0. Thus, from the above,

0 < jjhjj2
H.HE;Q;T/

D lim
�#0

Z
Sc
�

Pf 2h .s/Q .df / D
Z

NsP

Pf 2h .s/Q .ds/ � jjhjj2
H.HE;Q;T/

:

Consequently
R

Nc
sP

Pf 2h .s/Q .ds/ D 0, and

h .t/ D
Z

NsP

Pfh .s/ Et .s/Q .ds/ :

Since h ¤ 0RT , Q .NsP/ > 0. ut
Remark 5.3.7 Result (Proposition) 5.3.6 says in particular that, when H0 is “small,”
P and Q cannot be equivalent. The next proposition says that when P and Q are
equivalent, H0 is “large.”



5.3 Dependence of the Lebesgue Decomposition on Some Related. . . 357

Proposition 5.3.8 The background is that leading to Sect. 5.3.2 (in particular,
Sect. 5.1). Elements P;Q; h; fh; S� , and h� are as in (Lemma) 5.3.4. Let H0 be the
closure, in H

�
HE ;Q;T

�
, of H0. When Q .NsP/ D 0,

H0 D H
�
HE ;Q;T

�
:

Proof Again, as h 2 H
�
HE ;Q;T

�
by assumption, and that h� 2 H0 by construction

[(Lemma) 5.3.4], one has that [(Lemma) 5.3.5]

h .t/ � h� .t/ D
Z

Sc
�

Pfh .s/ Et .s/Q .ds/ :

Consequently [Sect. 5.3.1 and assumption],

lim
�#0
jjh � h�jj2H.HE;Q;T/

D lim
�#0

Z
Sc
�

Pf 2h .s/Q .ds/ D
Z

NsP

Pf 2h .s/Q .ds/ D 0:

So every element in H
�
HE ;Q;T

�
is the strong limit of a sequence in H0. ut

Proposition 5.3.9 The background is that leading to Sect. 5.3.2 (in particular,
Sect. 5.1). S is any of the spaces of (Examples) 5.1.3 to 5.1.6, so that the family
E is then either that of the evaluation maps, or that of the continuous linear
functionals. Suppose also that P and Q are probabilities on S, and that P is reduced
at zero [(Definition) 5.2.8]. H0 is as in (Lemma) 5.3.4, and H?0 is the orthogonal
complement of H0, in H

�
HE ;Q;T

�
. Then,

1. when QaP .S/ > 0, H0 contains f0RT g strictly;
2. when H?0 D H

�
HE ;Q;T

�
, that is, when H0 D f0RT g, Q ? P.

Proof Let

S� D fA \ S�; A 2 Sg ;

and Q.�/ and Q.�/

aP be the restrictions of, respectively, Q and QaP to S� . Since S� � Nc
sP,

Q.�/ D Q.�/

aP:

Let �t denote the restriction of Et to S�. It is adapted to S� [(Lemma) 5.2.1], andZ
S�

�2t .s/Q.�/

aP .ds/ D
Z

S�

E2t .s/Q.�/

aP .ds/

D
Z

S�

E2t .s/QaP .ds/

�
Z

S
E2t .s/QaP .ds/
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�
Z

S
E2t .s/Q .ds/

< 1:

Thus when f 2 L2
�
S�;S�;Q.�/

aP

�
is fixed, but otherwise arbitrary, the following

definition:

hf ;� .t/ D
Z

S�

Pf .s/ �t .s/Q.�/

aP .ds/

is legitimate, as it is based on the inner product of L2
�
S�;S�;Q.�/

aP

�
.

One then proceeds below as in (Lemma) 5.3.4 to prove that hf ;� belongs to H0,
and thus, to show that H0 is not the trivial subspace, it suffices to prove that there is
one hf ;� that is not identically zero. That is achieved using (Proposition) 5.2.2. The
fact that attention is restricted to (Examples) 5.1.3 to 5.1.6, and that P is reduced at
zero, is essential: only in those cases can one identify the carrier of mass.

Let thus, for f 2 L2
�
S�;S�;Q.�/

aP

�
, fixed, but arbitrary,

PfQ;� .s/ D �S�
.s/ Pf .s/ ;

PfP;� .s/ D PfQ;� .s/ dQaP

dP
.s/ :

Then:

• fQ;� 2 L2 .S;S;Q/:
indeed, PfQ;� is adapted to S, andZ

S

Pf 2Q;� .s/Q .ds/ D
Z

S�

Pf 2 .s/Q.�/ .ds/

D
Z

S�

Pf 2 .s/Q.�/

aP .ds/

< 1:

• fP;� 2 L2 .S;S;P/:
indeed, PfP;� is adapted to S, and

Z
S

Pf 2P;� .s/P .ds/ D
Z

S�

Pf 2 .s/
	

dQaP

dP


2
.s/P .ds/

� 1

�

Z
S�

Pf 2 .s/Q.�/

aP .ds/

< 1:
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• hf ;� 2 H0:
indeed hf ;� has the following representations:

hf ;� .t/ D
Z

S

PfP;� .s/ Et .s/P .ds/

D
Z

S

PfQ;� .s/ Et .s/Q .ds/ ;

as

hf ;�.t/ D
Z

S�

Pf .s/�t.s/Q
.�/

aP

D
Z

S
�S�
.s/Pf .s/Et.s/QaP.ds/

D
Z

S
�S�
.s/Pf .s/Et.s/

dQaP

dP
.s/P.ds/

D
Z

S

PfP;�.s/Et.s/P.ds/;

and

hf ;�.t/ D
Z

S�

Pf .s/�t.s/Q
.�/

aP

D
Z

S
�S�
.s/Pf .s/Et.s/Q.ds/

D
Z

S

PfQ;�.s/Et.s/Q.ds/:

Suppose thus that QaP .S/ > 0. One has then that

QaP .S�/C QaP
�
Sc
�

� D QaP .S/ > 0:

As � decreases to zero,

� 7! QaP .S�/ is a function that increases,

� 7! QaP
�
Sc
�

�
is a function that decreases to QaP .NsP/ D 0.

Consequently, there is an � > 0 such that Q.�/

aP .S�/ D QaP .S�/ > 0.
Suppose then that, for all t 2 T, and all f 2 L2

�
S�;S�;Q.�/

aP

�
,

hf ;� .t/ D 0:
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Since, by definition,

hf ;� .t/ D
Z

S�

Pf .s/ �t .s/Q.�/

aP .ds/ ;

and that Z
S�

�2t .s/Q.�/

aP .ds/ D
Z

S�

�2t .s/QaP .ds/ �
Z

S
E2t .s/Q .ds/ <1;

one may apply (Proposition) 5.2.2 and (Remark) 5.2.4: S� contains the zero element
of S, and QaP has a unique point mass at zero, with value QaP .S�/. In other words,

QaP .A \ S�/ D QaP .S�/ ıA .0S/ :

It follows then that

QaP .S�/ ıA .0S/ D
Z

A\S�

dQaP

dP
.s/P .ds/ :

If A contains the zero element of S, the latter expression yields that

� QaP .S�/ � P .A/ ;

so that P cannot be reduced, a contradiction. Claim 1 is thus valid. Claim 2 follows
from claim 1. ut

5.4 Domination of Probabilities on Sub-manifolds

Domination is a way to compare the respective supports of probability measures
(for instance, (Examples) 5.4.2 and 5.4.4 below), and that explains its presence
in discrimination matters. It is also the seed that produces the Radon-Nikodým
derivative [(Corollaries) 5.4.7 and 5.4.9].

5.4.1 The General Case

By “general case,” one understands domination over an arbitrary vector space of
measurable functions. The immediately useful “special cases” are L.E/ and Q.E/,
which are presented separately.

Definition 5.4.1 The context is that of Sect. 5.3.1. Let V .M/ be a linear manifold
in M .S/, and suppose that P and Q are probabilities for which ˘1 obtains for
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V .M/. If there exists � ŒV .M/ ;P;Q� � 0 such that, for all f 2 V .M/,ˇ̌̌̌
Œ f �L2.S;S;Q/

ˇ̌̌̌
L2.S;S;Q/

� � ŒV .M/ ;P;Q�
ˇ̌̌̌
Œ f �L2.S;S;P/

ˇ̌̌̌
L2.S;S;P/

;

one says that P dominates Q on V .M/, and writes, whenever useful,

Q	P ŒV .M/� :

Example 5.4.2 Let T D f0; 1g. A function with domain T is then given by an
element in R2. Thus S D RT D R2, and E0 and E1, the evaluation maps, are the
coordinate maps, and M is the family of all Borel measurable functions from R2 to
R. Assume that P and Q are measures on the Borel sets of R2, with finite support,
and that Q 	 P ŒM�. Then, domination of Q by P, on M, that is

nQX
iD1

qif
2
�
xQ;i; yQ;i

� � � ŒM;P;Q�
nPX

jD1
pif

2 .xP;i; yP;i/ ; f 2M;

means in particular that the support of Q must be contained in that of P.

The result which follows says that domination of probabilities on the linear space
of a process is equivalent to the domination of the associated covariances.

Proposition 5.4.3 Suppose that P and Q are probabilities on S. P dominates Q on
L .E/ if, and only if, there exists � ŒL .E/ ;P;Q� � 0 such that

HE ;Q � � ŒL .E/ ;P;Q�HE ;P:

Proof Let f DPn
iD1 ˛iEti 2 L .E/. Then, for example,

ˇ̌̌̌
Œ f �L2.S;S;P/

ˇ̌̌̌ 2
L2.S;S;P/

D
Z

S
f 2 .s/P .ds/

D
nX

iD1

nX
jD1

˛i˛j

Z
S
Eti .s/ Etj .s/P .ds/

D
nX

iD1

nX
jD1

˛i˛jHE ;P .t1; t2/ :

ut
Example 5.4.4 Let P and Q be probabilities on S which make of E a continuous,
zero mean martingale, with index set RC, and let V .M/ D L .E/ (letting, for
example, P and Q be the measures induced, on the space of continuous functions,
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by continuous martingales). One then has, for example, that

HE ;P .t1; t2/ D EP ŒhEi .t1 ^ t2/�

where hEi denotes the quadratic variation process. There is also [264, p. 101] a
measure �E on S ˝ B .RC/ such that

Z
S�RC

f .s; t/ �E .ds; dt/ D EP

"Z
RC

f .
; t/ hEi .
; dt/

#
:

Let � be defined as follows:

� .Œ0; ˛�/ D �E .S � Œ0; ˛�/ D EP ŒhEi˛� :

Then, for example,

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌" nX

iD1
˛iEti

#
L2.S;S;P/

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌2
L2.S;S;P/

D
nX

iD1

nX
iD1

˛i˛j EP
�
EtiEtj

�

D
nX

iD1

nX
iD1

˛i˛j EP

h
E2ti^tj

i

D
nX

iD1

nX
iD1

˛i˛j EP
�hEiti^tj

�

D
nX

iD1

nX
iD1

˛i˛j�.Œ0; ti ^ tj�/

D
nX

iD1

nX
iD1

˛i˛j

Z 1
0

�
Œ0;ti �
.t/�

Œ0;tj �
.t/�.dt/

D
Z 1
0

(
nX

iD1
˛i�Œ0;ti� .t/

) 2
�.dt/;

so that

L .E/P D
(Z

RC

f dE ; f 2 L2 .RC;B .RC/ ; �/
)
:

The domination condition (Proposition) 5.4.3 becomes

EQ
�hEiQ .
; t1 ^ t2/

�� � ŒL .E/ ;P;Q�EP
�hEiP .
; t1 ^ t2/

�
;
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which translates into

Z
RC

(
nX

iD1
˛i�

Œ0;ti�
.t/

) 2
�Q .dt/ � � ŒL .E/ ;P;Q�

Z
RC

(
nX

iD1
˛i�

Œ0;ti�
.t/

) 2
�P .dt/ :

Suppose that P is Wiener measure, and that Q is induced by a process X of the
following form: X .!; t/ D R t

0
f .!; x/W .!; dx/, W a Wiener process. It can be

shown [172, p. 33] that

hEiQ .s; t/ D
Z t

0

2 .s; x/ dx; where
Z t

0

2 .X .!; 
/ ; x/ dx D
Z t

0

f 2 .!; x/ dx:

In that particular case, the domination condition becomes

Z
RC

(
nX

iD1
˛iIŒ0;ti� .t/

) 2
EQ
�
2 .
; t/� dt �

� � ŒL .E/ ;P;Q�
Z
RC

(
nX

iD1
˛iIŒ0;ti� .t/

) 2
dt:

It will obtain, in particular, when t 7! EQ
�
2 .
; t/� is bounded.

Proposition 5.4.5 Let P and Q be probabilities on S, and let V .M/ be a fixed,
but arbitrary manifold of M. Suppose that, for V .M/, P has property ˘1, and Q
has properties ˘1 and ˘2. When P does not dominate Q on V .M/, P and Q are
orthogonal.

Proof Suppose that QaP .S/ > 0. As can be seen in the proof of (Proposition) 5.3.9,
it may be assumed that there is an � > 0 such that Q .S�/ D QaP .S�/ > 0. Then,
since property˘2 obtains for Q, there exists [(Proposition) 5.1.30] �Q.S�/ > 0 such
that,

for all f 2 V .M/
Q
;

Z
S�

Pf 2 .s/Q .ds/ � �Q.S�/ jj f jj2L2.S;S;Q/ :

But Z
S�

Pf 2 .s/Q .ds/ D
Z

S�

Pf 2 .s/QaP .ds/

D
Z

S�

Pf 2 .s/ dQaP

dP
.s/P .ds/

� 1

�

Z
S�

Pf 2 .s/P .ds/ ;
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so that

�Q.S�/ jj f jj2L2.S;S;Q/ �
1

�

Z
S�

Pf 2 .s/P .ds/ : (*)

Since P does not dominate Q on V .M/, given any � > 0, there exists f� in V .M/

such that ˇ̌̌̌
Œ f��L2.S;S;Q/

ˇ̌̌̌ 2
L2.S;S;Q/

> �
ˇ̌̌̌
Œ f��L2.S;S;P/

ˇ̌̌̌ 2
L2.S;S;P/

:

Consequently, using the latter in (*) above,

��Q.S�/

ˇ̌̌̌
Œ f��L2.S;S;P/

ˇ̌̌̌ 2
L2.S;S;P/

<
1

�

ˇ̌̌̌
Œ f��L2.S;S;P/

ˇ̌̌̌ 2
L2.S;S;P/

;

or � �Q.S�/ < ��1. Since � and �Q.S�/ are fixed, but � may be arbitrarily large, the
latter inequality is impossible, and QaP .S/ > 0 cannot be sustained. ut
Proposition 5.4.6 Let P and Q be probabilities on S, and V .M/, a fixed, but
arbitrary manifold of M. Suppose that, for V .M/, P and Q have property ˘1,
and that P dominates Q on V .M/.

Let B W V .M/
P �! V .M/

Q
be defined using the following relation: for f 2

V .M/, fixed, but arbitrary,

B
�
Œ f �L2.S;S;P/

� D Œ f �L2.S;S;Q/ :
B is an operator which is linear and bounded, with

DŒB� D V .M/
P
; and RŒB� � V .M/

Q
; densely:

Proof The domination inequality of (Definition) 5.4.1 translates intoˇ̌̌̌
B
�
Œ f �L2.S;S;P/

�ˇ̌̌̌
L2.S;S;Q/

� � ŒV .M/ ;P;Q�
ˇ̌̌̌
Œ f �L2.S;S;P/

ˇ̌̌̌
L2.S;S;P/

:

B is thus linear and bounded on a dense set, and, on that set, has values in V .M/
Q
.

Furthermore, when g 2 V.M/
Q

is orthogonal to RŒB�, for f 2 V.M/, fixed, but
arbitrary,

0 D hg;B �Œ f �L2.S;S;P/�iL2.S;S;Q/ D hg; Œ f �L2.S;S;Q/iL2.S;S;Q/;
and, as V.M/ is dense in V.M/

Q
, g D 0L2.S;S;Q/. ut

Corollary 5.4.7 Let f1 D 1S, and suppose that f1 2 V .M/. Then

B
�
Œ f1�L2.S;S;P/

� D Œ f1�L2.S;S;Q/ ;
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and one may define � W V .M/
P �! R using the following assignment: for f 2

V .M/
P
, fixed, but arbitrary,

�. f / D h f ;B? �Œ f1�L2.S;S;Q/�iL2.S;S;P/:
The continuous linear functional� has then the following properties:

1. Given fQ 2 B?
�
Œ f1�L2.S;S;Q/

�
, �. f / D RS

Pf .s/ fQ.s/P.ds/.
2. For f 2 V.M/, fixed, but arbitrary,

�
�
Œ f �L2.S;S;P/

� D Z
S

f .s/Q.ds/;

and, in particular,

(i) �
�
Œ f1�L2.S;S;P/

� D 1,
(ii) when f is, with respect to Q, almost surely positive,

�
�
Œ f �L2.S;S;P/

� � 0:
Proof Item 1 is a rewriting of the definition of �. Using the definition of B and �,
one has that

�
�
Œ f �L2.S;S;P/

� D
D ˝

Œ f �L2.S;S;P/ ;B
?
�
Œ f1�L2.S;S;Q/

�˛
L2.S;S;P/

D ˝
B
�
Œ f �L2.S;S;P/

�
; Œ f1�L2.S;S;Q/

˛
L2.S;S;Q/

D ˝
Œ f �L2.S;S;Q/ ; Œ f1�L2.S;S;Q/

˛
L2.S;S;Q/

D
Z

S
f .s/ f1.s/Q.ds/

D
Z

S
f .s/Q .ds/ :

ut
The following proposition indicates that domination on a manifold implies

domination on the respective closures.

Proposition 5.4.8 Let P and Q be probabilities on S, and V .M/, a fixed, but
arbitrary manifold of M. Suppose that, for V .M/, P and Q have property ˘1,
and that P dominates Q on V .M/. Then, for every Cauchy sequence˚

Œ fn�L2.S;S;P/ ; fn 2 V .M/ ; n 2 N
� � L2 .S;S;P/ ;
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there exists f 2M .S/ such that

1. Œf �L2.S;S;P/ 2 V .M/
P
, and, in L2 .S;S;P/,

lim
n
Œ fn�L2.S;S;P/ D Œf �L2.S;S;P/ ;

2. Œf �L2.S;S;Q/ 2 V .M/
Q
, and, in L2 .S;S;Q/,

lim
n
Œ fn�L2.S;S;Q/ D Œf �L2.S;S;Q/ ;

3. B
�
Œ f �L2.S;S;P/

� D Œ f �L2.S;S;Q/, and

ˇ̌̌̌
Œ f �L2.S;S;Q/

ˇ̌̌̌
L2.S;S;Q/

� � ŒV .M/ ;P;Q�
ˇ̌̌̌
Œ f �L2.S;S;P/

ˇ̌̌̌
L2.S;S;P/

:

Proof In L2 .S;S;P/, let fP be the limit of the sequence˚
Œ fn�L2.S;S;P/ ; fn 2 V .M/ ; n 2 N

�
:

As, by assumption,ˇ̌̌̌
Œ fm�L2.S;S;Q/ � Œ fn�L2.S;S;Q/

ˇ̌̌̌
L2.S;S;Q/

�
� � ŒV .M/ ;P;Q�

ˇ̌̌̌
Œ fm�L2.S;S;P/ � Œ fn�L2.S;S;P/

ˇ̌̌̌
L2.S;S;P/

;

the sequence ˚
Œ fn�L2.S;S;Q/ ; fn 2 V .M/ ; n 2 N

�
is a Cauchy sequence in L2 .S;S;Q/. Let its limit be denoted fP;Q.

Now, for fixed, but arbitrary � > 0, S� being as previously defined [(Defini-
tion) 5.3.2],

lim
n

Z
S�

�
fn .s/ � PfP .s/

�2
P .ds/ � lim

n

ˇ̌̌̌
Œ fn�L2.S;S;P/ � fP

ˇ̌̌̌ 2
L2.S;S;P/

D 0:

But Z
S0[S�

�
fn .s/ � PfP .s/

�2
Q .ds/ D

Z
S�

�
fn .s/ � PfP .s/

�2
QaP .ds/

D
Z

S�

�
fn .s/ � PfP .s/

�2 dQaP

dP
.s/P .ds/

� 1

�

Z
S�

�
fn .s/� PfP .s/

�2
P .ds/ :
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Consequently,

lim
n

Z
S0[S�

�
fn .s/ � PfP .s/

�2
Q .ds/ D 0;

and, with respect to Q, on S0 [ S�, almost surely, PfP;Q .s/ D PfP .s/. Since � > 0 is
arbitrary, the same is true on�

s 2 S W 0 � dQaP

dP
.s/ <1

�
D Nc

sP:

Define thus

Pf .s/ D
� PfP .s/ for s 2 Nc

sPPfP;Q .s/ for s 2 NsP
:

Then, for ı > 0, fixed, but arbitrary,

P
�
s 2 S W ˇ̌Pf .s/ � PfP .s/ˇ̌ > ı� D

D P
�
NsP \

˚
s 2 S W ˇ̌Pf .s/ � PfP .s/ˇ̌ > ı��

C P
�
Nc

sP \
˚
s 2 S W ˇ̌Pf .s/ � PfP .s/ˇ̌ > ı��

D P
�
NsP \

˚
s 2 S W ˇ̌PfP;Q .s/ � PfP .s/ˇ̌ > ı��

C P
�
Nc

sP \
˚
s 2 S W ˇ̌PfP .s/ � PfP .s/ˇ̌ > ı��

� P .NsP/C P .;/ D 0;

and

Q
�
s 2 S W ˇ̌Pf .s/� PfP;Q .s/ˇ̌ > ı� D

D Q
�
NsP \

˚
s 2 S W ˇ̌Pf .s/ � PfP;Q .s/ˇ̌ > ı��

C Q
�
Nc

sP \
˚
s 2 S W ˇ̌Pf .s/ � PfP;Q .s/ˇ̌ > ı��

D Q
�
NsP \

˚
s 2 S W ˇ̌PfP;Q .s/� PfP;Q .s/ˇ̌ > ı��

C Q
�
Nc

sP \
˚
s 2 S W ˇ̌PfP .s/� PfP;Q .s/ˇ̌ > ı��

D Q .;/C 0 D 0:

ut
Corollary 5.4.9 Let P and Q be probabilities on S, and V .M/, a fixed, but
arbitrary manifold of M. Suppose that, for V .M/, P and Q have property ˘1,
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and that P dominates Q on V .M/. Then, given

f 2 V .M/
P
;

there is Pf 2 f such that

B
h�Pf �

L2.S;S;P/

i
D �Pf �

L2.S;S;Q/ ;

and thus�, defined in (Corollary) 5.4.7, has the representation

�. f / D
Z

S

Pf .s/Q .ds/ ; f 2 V .M/
P
:

5.4.2 Domination on the Linear Manifold of Evaluations

The manifold of evaluations is V.M/ D L.E/.
In this section, P and Q are probabilities on S such that, on L .E/, P dominates Q.

One then knows [(Proposition) 5.4.3] that there is a constant � � 0 for which

HE ;Q � �HE ;P:

Let H�
E ;P denote �HE ;P. One then has at disposal [(Proposition) 3.1.5] the contrac-

tion

JP;Q W H
�
H�

E ;P;T
� �! H

�
HE ;Q;T

�
defined using the following assignment: for t 2 T, fixed, but arbitrary,

JP;Q
�
H�

E ;P .
; t/
� D HE ;Q .
; t/ :

Let also M� W H .HE ;P;T/ �! H
�
H�

E ;P;T
�

be defined using the following
assignment:

M�1=2 Œh� D �1=2h:

Proposition 5.4.10 Let P and Q be probabilities on S such that P dominates Q on
L .E/. Let

UP W L .E/P �! H .HE ;P;T/
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be the isometry defined using the following assignment: for t 2 T, fixed, but
arbitrary,

UP
�
ŒEt�L2.S;S;P/

� D HE ;P .
; t/ :

UQ is defined analogously. Then, for f 2 L .E/,

Œ f �L2.S;S;Q/ D U?
QJP;QM�1=2UP

�
Œ f �L2.S;S;P/

�
;

and the operator BL W L .E/P �! L .E/Q
, defined on L .E/, using the following

equality:

BL D U?
QJP;QM�1=2UP

has a bounded linear extension to L .E/P
.

Proof Successively,

UP
�
ŒEt�L2.S;S;P/

� D HE ;P .
; t/ ;
M�1=2UP

�
ŒEt�L2.S;S;P/

� D �1=2HE ;P .
; t/ D H�
E ;P .
; t/ ;

JP;QM�1=2UP
�
ŒEt�L2.S;S;P/

� D HE ;Q .
; t/ ;
U?

QJP;QM�1=2UP
�
ŒEt�L2.S;S;P/

� D ŒEt�L2.S;S;Q/ :

B is a product of operators which are linear and bounded, so that the extension
proceeds by linearity and denseness. ut
Proposition 5.4.11 Let P and Q be probabilities on S such that

(a) P dominates Q on L .E/,
(b) P and Q have property ˘2 for L .E/.

Then

1. when one does not have, for some 0 < � < 	 <1,

�HE ;P � HE ;Q � 	 HE ;P;

P and Q are orthogonal;
2. when one does have, for some 0 < � < 	 <1,

�HE ;P � HE ;Q � 	 HE ;P;

P and Q need neither be orthogonal, nor one be absolutely continuous with
respect to the other.
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Proof The inequalities of item 1 are equivalent to domination, on L .E/, of P by Q,
and Q by P [(Proposition) 5.4.3]. Thus if one of the inequalities of item 1 does not
hold, either P does not dominate Q, or Q does not dominate P, which are sufficient
conditions for P and Q to be orthogonal [(Proposition) 5.4.5].

Return to (Example) 5.4.2. Let P be a probability on the Borel sets of R2 that
gives mean zero to the evaluation maps. Then, for example,

HE ;P .0; 0/ D
Z
R2

E0 .x; y/ E0 .x; y/P .d .x; y// D EP
�
E20
�
;

HE ;P .0; 1/ D
Z
R2

E0 .x; y/ E1 .x; y/P .d .x; y// D EP ŒE0E1� ;

HE ;P .1; 1/ D
Z
R2

E1 .x; y/ E1 .x; y/P .d .x; y// D EP
�
E21
�

Let now P have mass one-fifth at the points

.0; 0/; .1; 0/; .�1; 0/; .0; 1/; .0;�1/;

and Q have mass one-fourth at the points

.1; 0/; .�1; 0/; .0; 2/; .0;�2/:

Then P and Q are neither orthogonal, nor one is absolutely continuous with respect
to the other. E0 and E1 have zero mean and correlation for P and Q. Finally they have
finite variances, and their kernels dominate each other. ut
Remark 5.4.12 For P and Q not to be orthogonal, the associated RKHS’s must
contain the same functions.

5.4.3 Domination on the Quadratic Manifold of Evaluations

The quadratic manifold of evaluations is V.M/ D Q.E/.
In this part one shall consistently assume that:

1. P and Q are two probabilities on S which have properties ˘1 and ˘2 for Q .E/
(˘1 for Q.E/ may be a consequence of ˘3: (Proposition) 5.1.31);

2. P dominates Q on Q .E/.

Assumption 1 has the particular consequence that, for example,

ŒEt1Et2 �L2.S;S;P/ 2 L2 .S;S;P/ ;
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and Assumption 2, that there is some � � 0 for which

HE ;Q � �HE ;P:

BQ shall denote the operator of (Proposition) 5.4.6, with V.M/ D Q.E/, and fQ a
function in the equivalence class of

B?Q
�
Œ f1�L2.S;S;Q/

�
(the function f1 D 1S belongs to Q .E/).
Proposition 5.4.13 HE ;Q has the representation

HE ;Q .t1; t2/ D
Z

S
Et1 .s/ Et2 .s/ fQ .s/P .ds/ :

Proof Since, because of Assumption 1, ŒEt1Et2 �L2.S;S;P/ 2 Q .E/P
, then because of

(Corollary) 5.4.7,

�
�
ŒEt1Et2 �L2.S;S;P/

� D Z
S
Et1 .s/ Et2 .s/ fQ .s/P .ds/ ;

and

�
�
ŒEt1Et2 �L2.S;S;P/

� D Z
S
Et1 .s/ Et2 .s/Q .ds/ D HE ;Q .t1; t2/ :

ut
Fact 5.4.14 In what follows [(Proposition) 5.4.15], one shall need the following
considerations. Let M�1=2 W H .HE ;P;T/ �! H

�
H�

E ;P;T
�

be defined using the
following assignment:

M�1=2 Œh� D �1=2h:

M�1=2 is a well-defined unitary operator [(Example) 1.3.12], so that

M?
�1=2

M�1=2 D IH.HE;P;T/;

M?
�1=2

Œh� D ��1=2h:

Since H
�
HE ;Q;T

� � � H .HE ;P;T/, one has available [(Proposition) 3.1.5] the
contraction

JP;Q W H
�
H�

E ;P;T
� �! H

�
HE ;Q;T

�
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defined using

JP;Q
�
H�

E ;P .
; t/
� D HE ;Q .
; t/ :

Thus, since J?P;Q is inclusion,

M?
�1=2

J?P;QJP;QM�1=2 ŒHE ;P .
; t/� D ��1HE ;Q .
; t/ 2 H .HE ;P;T/ :

Proposition 5.4.15 Suppose, in addition to the “standard” assumptions of this
section, that P has property ˘3, and thatZ

S
f 4Q .s/P .ds/ <1;

so that multiplication by a constant multiple of the function fQ on L .E/P
makes

sense [(Proposition) 5.1.32], and yields an element of L2 .S;S;P/. Consider then
the following objects:

(a) f 0Q D fQ � f1; f1 D 1S;

(b) M�;Q W L .E/P �! L2 .S;S;P/, the operator defined using the following
relation:

M�;Q Œ f � D ��1
�Pf fQ

�
L2.S;S;P/ I

(c) B�;Q D PL.E/P M�;Q;

(d) M0

�;Q W L .E/P �! L2 .S;S;P/, the operator defined using the following
relation:

M0

�;Q Œ f � D ��1
�Pf f 0Q

�
L2.S;S;P/

I

(e) B0

�;Q D PL.E/P M0

�;Q.

Then

1.
�

f 0Q
�

L2.S;S;P/
2 Q .E/P

,

2.
R

S f 0Q .s/P .ds/ D 0,
3. as operators of H .HE ;P;T/,

M?
�1=2

J?P;QJP;QM�1=2 D UPB�;QU?
P D ��1=2IH.HE;P;T/ C UPB0

�;QU?
P:

Proof As already seen [(Proposition) 5.1.32], M�;Q and, because [275, p. 378]

.aC b/p � 2p.jajp C jbjp/; so that
˚

f 0Q
�4 � 24 ˚ f 4Q C 1

�
;
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M0

�;Q also, are well defined. The function f1 belongs to Q .E/, so that its equivalence
class, with respect to P, belongs to the closure, with respect to P, of Q .E/.
Consequently, as a sum of elements in that closure, the equivalence class (with
respect to P) of f 0Q belongs to

Q .E/P
;

and [(Corollary) 5.4.7] Z
S

f 0Q .s/P .ds/ D 0:

Let h 2 V ŒHE ;P� be fixed, but arbitrary. Then, as

HE ;P .
; t/ D UP
�
ŒEt�L2.S;S;P/

�
;

one has that

h D
nX

iD1
˛h

i HE ;P
�
; th

i

� D UP

2
4" nX

iD1
˛h

i Ethi

#
L2.S;S;P/

3
5 ;

and that

h .t/ D
*

nX
iD1

˛h
i HE ;P

�
; th
i

�
;HE ;P .
; t/

+
H.HE;P;T/

D
*

UP

2
4" nX

iD1
˛h

i Ethi

#
L2.S;S;P/

3
5 ;UP

�
ŒEt�L2.S;S;P/

�+
H.HE;P;T/

D
*"

nX
iD1

˛h
i Ethi

#
L2.S;S;P/

; ŒEt�L2.S;S;P/

+
L2.S;S;P/

D
Z

S

(
nX

iD1
˛h

i Ethi
.s/

)
Et .s/P .ds/ :

As already seen [(Fact) 5.4.14],

M?
�1=2

J?P;QJP;QM�1=2 ŒHE ;P .
; t/� D ��1HE ;Q .
; t/ ;
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so that, by the same calculation as that which has just been performed, to obtain the
integral representation of h with respect to P,

M?
�1=2

J?P;QJP;QM�1=2 Œh� .t/ D ��1
nX

iD1
˛h

i HE ;Q
�
t; th

i

�

D ��1
Z

S

(
nX

iD1
˛h

i Ethi

)
.s/ Et .s/Q .ds/ :

Using (Proposition) 5.4.13 on
nPn

iD1 ˛h
i Ethi

o
Et 2 Q .E/, one has that

��1
Z

S

(
nX

iD1
˛h

i Ethi

)
.s/ Et .s/Q .ds/ D

D
Z

S
��1 fQ .s/

(
nX

iD1
˛h

i Ethi

)
.s/ Et .s/P .ds/ :

But ��1 fQ .s/
nPn

iD1 ˛h
i Ethi

o
is in the equivalence class of M�;Q

�
U?

P Œh�
�
. Conse-

quently

M?
�1=2

J?P;QJP;QM�1=2 Œh� .t/ D
˝
M�;QU?

P Œh� ; ŒEt�L2.S;S;P/
˛
L2.S;S;P/

:

Now ˝
M�;QU?

P Œh� ; ŒEt�L2.S;S;P/
˛
L2.S;S;P/

D

D
D
PL.E/P M�;QU?

P Œh� ; ŒEt�L2.S;S;P/

E
L2.S;S;P/

D ˝
B�;QU?

P Œh� ; ŒEt�L2.S;S;P/
˛
L2.S;S;P/

D hUPB�;QU?
P Œh� ;HE ;P .
; t/iH.HE;P;T/

D fUPB�;QU?
P Œh�g .t/ :

It should then be clear that

M?
�1=2

J?P;QJP;QM�1=2 Œh� .t/ � ��1h .t/ D

D
Z

S
��1

�
fQ .s/� 1

� ( nX
iD1

˛h
i Ethi

)
.s/ Et .s/P .ds/

D UPPLŒE �P M0

�;QU?
P Œh� .t/

D ˚
UPB0

�;QU?
P Œh�

�
.t/ :
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Since V ŒHE ;P� is dense in H .HE ;P;T/,

M?
�1=2

J?P;QJP;QM�1=2 D UPB�;QU?
P D ��1 IH.HE;P;T/ CUPB0

�;QU?
P:

ut
Corollary 5.4.16 One has that B�;Q D B?LBL, where BL is the operator of
(Proposition) 5.4.10, so that B�;Q is positive.

Corollary 5.4.17 The function fQ is, with respect to P, almost surely positive.

Proof One has [(Corollary) 5.4.16] that

0 �
*

B�;Q

"
nX

iD1
˛iEti

#
L2.S;S;P/

;

"
nX

iD1
˛iEti

#
L2.S;S;P/

+
L2.S;S;P/

D
*

PLŒE �P M�;Q

"
nX

iD1
˛iEti

#
L2.S;S;P/

;

"
nX

iD1
˛iEti

#
L2.S;S;P/

+
L2.S;S;P/

D
*

M�;Q

"
nX

iD1
˛iEti

#
L2.S;S;P/

;

"
nX

iD1
˛iEti

#
L2.S;S;P/

+
L2.S;S;P/

D
Z

S
fQ.s/

(
nX

iD1
˛iEti

) 2

P.ds/:

Thus, for fixed, but arbitrary f 2 L ŒE �P,
R

S fQ.s/Pf 2.s/P.ds/ � 0.
To have that fQ is, with respect to P, almost surely positive, one must have that,

whatever S0 2 S, Z
S0

fQ.s/P.ds/ � 0:

So it is not immediately obvious that B�;Q positive is sufficient.
But [201, p. 3], the closure, with respect to P, of Q.E/ is of the form L2.S;S0;P/,

where S0 is a complete �-algebra contained in S. Since Et belongs to Q.E/, S0 D S.
Finally, because of Proposition 531, the elements

Pn
iD1.˛iEti/

2 are dense in the set

of indicator functions, and thus Q.E/P
. ut

5.5 Discrimination of Translates

Translates represent deterministic signals. Discrimination for translates corresponds
thus to detection of such signals.
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5.5.1 Preliminaries

In this section, S shall be one of the spaces of (Examples) 5.1.3 to 5.1.6. E shall be
the family of evaluation maps in cases (Examples) 5.1.3 to 5.1.5, and that of linear
functionals in case (Example) 5.1.6. In the case of (Example) 5.1.6, one shall write,
when useful,

Et .h/ D h .t/ D hh; tiH :

Suppose P is a probability on S (with property˘1 for L .E/), which has a mean
equal to 0, that is, such that, for t 2 T, fixed, but arbitrary,

mP .t/ D
Z

S
Et .s/P .ds/ D 0:

Given a function m W T �! R, let, for s 2 S, fixed, but arbitrary,

Tm .s/ D sC m;

and, given an element m 2 H, let, for h 2 H, fixed, but arbitrary,

Tm .h/ D hC m:

Since, for t 2 T, fixed, but arbitrary, Et ı Tm is adapted to S, Tm is adapted to S. The
following probability:

Pm D P ı T�1m

is thus well defined, andZ
S
E2t .s/Pm .ds/ D

Z
S
Œs .t/C m .t/�2 P .ds/

� 2
�

m2 .t/C
Z

S
E2t .s/P .ds/

�
:

A similar calculation yields that, for t; t1, and t2 2 T, fixed, but arbitrary,Z
S
Et .s/Pm .ds/ D m .t/ ;

and that Z
S
Et1 .s/ Et2 .s/Pm .ds/ D m .t1/m .t2/C

Z
S
Et1 .s/ Et2 .s/P .ds/ ;
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so that

HE ;Pm D m˝ mCHE ;P:

5.5.2 The Case of a Signal Lying Outside of the Reproducing
Kernel Hilbert Space of Noise

In such a case, the following facts obtain [(Examples) 1.1.21, 1.3.14]:

1. H .HE ;Pm ;T/ D H .m˝ m;T/˚ H .HE ;P;T/ (direct sum),
2. m 2 H .m˝m;T/ � H .HE ;Pm ;T/,
3. jjmjjH.HE;Pm ;T/

D jjmjjH.m˝m;T/ D 1.

Let Um W L .E/Pm �! H .HE ;Pm ;T/ be the usual unitary map: for t 2 T, fixed, but
arbitrary,

Um
�
ŒEt�L2.S;S;Pm/

� D HE ;Pm .
; t/ :

Lemma 5.5.1 Let fm D U?
m Œm�. Then, when f DPn

iD1 ˛
f

i Et
f
i
,

ˇ̌̌̌
Œ f �L2.S;S;Pm/

ˇ̌̌̌ 2
L2.S;S;Pm/

D

D ˝
Œ f �L2.S;S;Pm/

; fm
˛2
L2.S;S;Pm/

C ˇ̌̌̌ Œ f �L2.S;S;P/ ˇ̌̌̌ 2L2.S;S;P/ :
Proof One has (from Sect. 5.5.1, remembering that P has zero mean) the following
equality:

Z
S

f 2 .s/Pm .ds/ D
Z

S

"
nX

iD1
˛

f

i

�
m
�
t f

i

�C s
�
t f

i

��#2
P .ds/

D
"

nX
iD1

˛
f

i m
�
t f

i

�#2 C Z
S

f 2 .s/P .ds/ :

But

nX
iD1

˛
f

i m
�
t f

i

� D nX
iD1

˛
f

i

˝
m;HE ;Pm

�
; t f

i

�˛
H.HE;Pm ;T/

D
*

m;
nX

iD1
˛

f

i HE ;Pm

�
; t f

i

�+
H.HE;Pm ;T/
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D ˝
Um Œ fm� ;Um

�
Œf �L2.S;S;Pm/

�˛
H.HE;Pm ;T/

D ˝
fm; Œf �L2.S;S;Pm/

˛
L2.S;S;Pm/

;

and thus the lemma obtains. ut
Proposition 5.5.2 Whenever f 2 L .E/Pm

, there is Pf 2 f such that:

1.
�Pf �

L2.S;S;P/ 2 L .E/P
;

2. jj f jj2L2.S;S;Pm/
D h f ; fmi2L2.S;S;Pm/

C
ˇ̌̌̌̌̌ �Pf �

L2.S;S;P/

ˇ̌̌̌̌̌ 2
L2.S;S;P/

.

Proof Let f 2 L .E/Pm
be fixed, but arbitrary. There is then a sequence

f fn; n 2 Ng � L .E/ such that, in L2 .S;S;Pm/, limn Œ fn�L2.S;S;Pm/
D f , that is,

lim
n

Z
S

�Pf .Tm .s// � fn .Tm .s//
�2

P .ds/ D 0: (?)

Now, because of (Lemma) 5.5.1,˚
Œ fn�L2.S;S;P/ ; n 2 N

�
is a Cauchy sequence in L2 .S;S;P/. So there exists fP 2 L .E/P

such that, in
L2 .S;S;P/,

lim
n
Œ fn�L2.S;S;P/ D fP:

But there exists also a subsequence˚
fnp ; p 2 N

� � f fn; n 2 Ng

such that, almost surely with respect to P, limp fnp D PfP. By Fatou’s lemma,
using (*), Z

S

˚Pf .Tm .s//� PfP .Tm .s//
�2

P .ds/ D

D
Z

S
lim inf

p

˚Pf .Tm .s// � fnp .Tm .s//
�2

P .ds/

� lim
n

Z
S

˚Pf .Tm .s// � fnp .Tm .s//
�2

P .ds/

D 0:
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Thus Pf D PfP, almost surely, with respect to Pm. Now (Lemma) 5.5.1 yields that

ˇ̌̌̌
Œ fn�L2.S;S;Pm/

ˇ̌̌̌ 2
L2.S;S;Pm/

D

D ˝
Œ fn�L2.S;S;Pm/

; fm
˛2
L2.S;S;Pm/

C ˇ̌̌̌ Œ fn�L2.S;S;P/ ˇ̌̌̌ 2L2.S;S;P/ :
Taking limits one gets that

jj f jj2L2.S;S;Pm/
D h f ; fmi2L2.S;S;Pm/

C jj fPjj2L2.S;S;P/ ;

with PfP 2 f . ut
Corollary 5.5.3 There is Pfm 2 fm for which the following statements are valid:

1.
�Pfm�L2.S;S;P/ 2 L .E/P

,

2.
ˇ̌̌̌̌̌ �Pfm�L2.S;S;P/

ˇ̌̌̌̌̌
L2.S;S;P/

D 0.

Proposition 5.5.4 When m does not belong to H .HE ;P;T/, Pm and P are
orthogonal.

Proof For the appropriate representative Pfm 2 fm [(Corollary) 5.5.3], one has that

jjmjj2H.HE;Pm ;T/
D
Z

S

Pf 2m .s/Pm .ds/

D
Z

S

Pf 2m .s/PmaP
.ds/C

Z
S

Pf 2m .s/PmsP
.ds/ ;

with Pfm almost surely zero with respect to P, and thus with respect to PmaP
.

Furthermore, the norm of m in H .HE ;Pm ;T/ is 1. Thus

1 D
Z

S

Pf 2m .s/PmsP
.ds/ :

To have that PmsP
.S/ D 1, it suffices to show that Pfm .s/ D 1, for almost every s 2 S,

with respect to Pm. Now, since H .HE ;Pm ;T/ is the range of the operator Lm, defined,
for fixed, but arbitrary t 2 T, and f 2 L2 .S;S;Pm/, using the following relation:

Lm Œ f � .t/ D h f ;Fm .t/iL2.S;S;Pm/
D ˝ f ; ŒEt�L2.S;S;Pm/

˛
L2.S;S;Pm/

;

and, since the class of f1 (f1 D 1S) belongs to L2 .S;S;Pm/,

Lm
�
Œ f1�L2.S;S;Pm/

�
.t/ D ˝

Œ f1�L2.S;S;Pm/
; ŒEt�L2.S;S;Pm/

˛
L2.S;S;Pm/

D m .t/

D ˝
fm; ŒEt�L2.S;S;Pm/

˛
L2.S;S;Pm/

:
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But, since PL.E/Pm

�
ŒEt�L2.S;S;Pm/

� D ŒEt�L2.S;S;Pm/
,

˝
Œ f1�L2.S;S;Pm/

; ŒEt�L2.S;S;Pm/

˛
L2.S;S;Pm/

D

D
D
PL.E/Pm

�
Œ f1�L2.S;S;Pm/

�
; ŒEt�L2.S;S;Pm/

E
L2.S;S;Pm/

:

Consequently fm D PL.E/Pm

�
Œ f1�L2.S;S;Pm/

�
, and, in L2 .S;S;Pm/, orthogonally,

Œ f1�L2.S;S;Pm/
D fm C f?m ;

so that

1 D ˇ̌̌̌ Œ f1�L2.S;S;Pm/

ˇ̌̌̌ 2
L2.S;S;Pm/

D jj fmjj2L2.S;S;Pm/
C ˇ̌̌̌ f?m

ˇ̌̌̌ 2
L2.S;S;Pm/

:

Since jj fmjjL2.S;S;Pm/
D 1,

ˇ̌̌̌
f?m
ˇ̌̌̌

L2.S;S;Pm/
D 0, and fm D Œ f1�L2.S;S;Pm/

. ut
The proof of the most general discrimination result for translates requires the

following lemmas.

Lemma 5.5.5 Let .˝1;A1/ and .˝2;A2/ be two measurable spaces, and

˚ W ˝1 �! ˝2

be an adapted map, that is, such that ˚�1 ŒA2� � A1. Let

B1 D ˚�1 ŒA2� � A1; and B2 D
˚
A2 � ˝2 W ˚�1 ŒA2� 2 A1

�
;

so that A2 � B2. Then:

1. B1 and B2 are �-fields,
2. ˚ is adapted to A1 and B2,
3. for an injective ˚ ,

(i) when A1 2 A1, then ˚ ŒA1� 2 B2,
(ii) when B2 D A2, then B1 D A1.

Proof Item 1 is standard measurability fare [138, pp. 46,87]. Item 2 obtains by
definition. For item 3, one may proceed as follows. When ˚ is an injection,
˚�1˚ .!/ D !, so that ˚�1 Œ˚ .A1/� D A1, and thus, when A1 2 A1, ˚ .A1/ is
in B2, that is, ˚ .A1/ � B2. If now B2 D A2,

A1 D ˚�1 Œ˚ .A1/� � ˚�1 .B2/ D ˚�1 .A2/ D B1 � A1:

ut
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When P and Q are probabilities on the same �-algebra, P � Q means that P is
absolutely continuous with respect to Q.

Lemma 5.5.6 Let ˚ be denoted � when it is taken as a map adapted to A1 and B2
of (Lemma) 5.5.5. Let P and Q be probabilities on A1, and

P˚ D P ı ˚�1;
P� D P ı ��1;
Q˚ D Q ı ˚�1;
Q� D Q ı ��1:

Then:

1. when P and Q are orthogonal, and ˚ , injective, P� and Q� are orthogonal;
2. when Q� P, Q˚ � P˚ ;
3. when Q� P and B1 D A1,

dQ˚

dP˚
ı ˚ D dQ

dP
:

Proof When ˚ is injective, and A1 2 A1, ˚ .A1/ 2 B2 and

A1 D ��1 Œ˚ .A1/� ;

so that

P .A1/ D P� Œ˚ .A1/� :

Since ˚ is injective, the choice of A1 such that P .A1/ D Q
�
Ac
1

� D 1 does the trick,
for [229, p. 128] ˚ .A1/ \˚

�
Ac
1

� D ;. Item 2 is a consequence of the definition.
Since, by the change of variables formula,

Q
�
˚�1 .A/

� D Q˚ .A/ D
Z

A

dQ˚

dP˚
dP˚ D

Z
˚�1.A/

�
dQ˚

dP˚
ı ˚

�
dP;

only when ˚�1 .A2/ D A1 does

dQ˚

dP˚
ı ˚ D dQ

dP

obtain. ut
Lemma 5.5.7 Let ˚ W S �! S be a map adapted to S, and P and Q be two
probabilities on S. If one assumes that

(a) ˚ is an injection,
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(b) Q� P,
(c) � is the map defined in (Lemma) 5.5.6 (here A1 D A2 D S),

then:

1. Q� � P� ,

2. dQ�
dP�

.s/ D
8<
:

dQ
dP ı ˚�1 .s/ when s 2 RŒ˚�

0 when s 2 RŒ˚�c
:

Proof Let ˚� W S �! S be defined using the following rule:

˚� .s/ D
�
˚�1 .s/ when s 2 RŒ˚�
0S when s 2 RŒ˚�c :

The map ˚� is adapted to B2 and S. Indeed, for fixed, but arbitrary S0 2 S,

.˚�/�1 .S0/ D fs 2 RŒ˚� W ˚� .s/ 2 S0g ] fs 2 RŒ˚�c W ˚� .s/ 2 S0g
D ˚

s 2 RŒ˚� W ˚�1 .s/ 2 S0
� ] fs 2 RŒ˚�c W 0S 2 S0g

D ˚
s0 2 S W ˚�1 �˚ �s0�� 2 S0

�[ f; or RŒ˚�cg
D S0

or S0 [RŒ˚�c:

Since ˚�1 .RŒ˚�/ D S, and ˚�1 .RŒ˚�c/ D ;, RŒ˚� and RŒ˚�c belong to B2.
Thus, since S � B2, .˚�/�1 .S0/ 2 B2. Furthermore the following product:

�
RŒ˚�

.s/

�
dQ

dP
ı ˚�

�
.s/ D

8<
:

dQ
dP ı ˚�1.s/ when s 2 RŒ˚�

0 when s 2 RŒ˚�c

is then adapted to B2, and, for B2 2 B2 fixed, but arbitrary,Z
B2

�
RŒ˚�

.s/

�
dQ

dP
ı ˚�

�
.s/P� .ds/ D

D
Z

B2\RŒ˚�

�
dQ

dP
ı ˚�1

�
d�

D
Z
��1.B2\RŒ˚�/

�
dQ

dP
ı ˚�1 ı �

�
dP

D
Z
��1.B2/\��1.RŒ˚�/

�
dQ

dP
ı ˚�1 ı ˚

�
dP
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D
Z
��1.B2/

dQ

dP
dP

D Q
�
��1 .B2/

�
D Q� .B2/ :

ut
Example 5.5.8 Let m 2 S be fixed, but arbitrary, and let Tm W S �! S be defined
using Tm Œs� D s C m. As already stated [Sect. 5.5.1], Tm is adapted to S. One has
furthermore that:

1. B1 D S.
Indeed

fEt ı Tmg�1 .�a; b�/ D fs 2 S W s .t/C m .t/ 2 �a; b�g
D fs 2 S W s .t/ 2 �a �m .t/ ; b � m .t/�g
D E�1t .�a � m .t/ ; b � m .t/�/ :

2. B2 D S.
By definition, T�1m .B/ D B � m. Suppose B � m 2 S. Then, for some

measurable ˚ W R1 �! R,

�B�m .s/ D ˚ .fEti Œs� ; i 2 INg/ :

Thus

�B .s/ D �B�m .s� m/

D ˚ .fEti Œs �m� ; i 2 INg/
D ˚ .fEti ı T�m Œs� ; i 2 INg/ ;

and B 2 S. Thus B2 D S.

Tm is an injection, S D B1 D B2; and the results of (Lemmas) 5.5.5, 5.5.6, and
5.5.7 obtain for Tm.

Corollary 5.5.9 Let P be a probability on S (for which ˘1 obtains for L .E/). Let
m1 and m2 be two elements in S, and let

P1 D P ı T�1m1 ; and P2 D P ı T�1m2 :

Then, when m1 � m2 does not belong to H .HE ;P;T/, P1 and P2 are orthogonal.
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Proof Because of (Proposition) 5.5.4, Pm1�m2 and P are orthogonal. Then Pm1�m2 ı
T�1m2 and P ı T�1m2 D P2 are orthogonal because of (Lemma) 5.5.6. But

Pm1�m2 ı T�1m2
D P ı T�1m1�m2

ı T�1m2

D P ı fTm2 ı Tm1�m2g�1
D P ı T�1m1 D P1:

ut

5.6 Discrimination of Gaussian Laws

The context shall be that of Sect. 5.1. One is here concerned with detection of
Gaussian random signals immersed in Gaussian noise.

5.6.1 Some Properties of Gaussian Laws

Reviewed here are those properties of Gaussian laws that shall be of use in the
sequel.

Definition 5.6.1 A probability P on S is a Gaussian probability, or a Gaus-
sian law, with a mean equal to zero, whenever, given fixed, but arbitrary n 2
N; and ft1; : : : ; tng � T, the functions fEt1 ; : : : ; Etng have a normal law, with a
mean equal to zero, and a covariance with entries HE ;P

�
ti; tj

�
, 1 � i; j � n, that is,

given fixed, but arbitrary f˛1; : : : ; ˛ng � R, and � D p�1,Z
S

e�
Pn

jD1 ˛jEtj .s/P .ds/ D e�
1
2

Pn
iD1

Pn
jD1 ˛i˛jHE;T.ti;tj/:

P has thus property˘1 for L .E/.

Remark 5.6.2 Suppose that f DPn
iD1 ˛iEti 2 L .E/. As

nX
iD1

nX
jD1

˛i˛jHE ;P
�
ti; tj

� D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iHE ;P .
; ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.HE;P;T/

D
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌" nX

iD1
˛iEti

#
L2.S;S;P/

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌2
L2.S;S;P/

;
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the definition rewrites: for f 2 L .E/,Z
S

e�f .s/P .ds/ D e
� 12 jjŒ f �L2.S;S;P/jj2L2.S;S;P/

D e
� 12 jjUPŒŒ f �L2.S;S;P/�jj2H.HE;P;T/;

where UP W L .E/P �! H .HE ;P;T/ is the usual isometry.

Remark 5.6.3 Suppose f fn; n 2 Ng � L .E/ is such that, in L2 .S;S;P/,

lim
n
Œ fn�L2.S;S;P/ D f 2 L .E/P:

There is then a subsequence that converges almost surely to Pf . One can thus take
limits to obtain that the characterizing equation in (Remark) 5.6.2 is valid for the
closure of L .E/ in L2 .S;S;P/.

Remark 5.6.4 All elements f 2 L .E/P
are classes of Gaussian random variables,

with a mean equal to zero [(Remarks) 5.6.2 and 5.6.3]. Thus [66, p. 92]

EP
�Pf 4� D 3E2P

�Pf 2� :
Consequently P has property˘3.

Remark 5.6.5 P has property˘1 for Q .E/. This is due, in particular, to the property
of centered Gaussian variables [66, p. 92] that

E ŒG1G2G3G4� D
D E ŒG1G2�E ŒG3G4�C E ŒG1G3�E ŒG2G4�C E ŒG1G4�E ŒG2G3� :

Remark 5.6.6 Let

�
�
L .E/P

�
denote the �-algebra generated by the random variables whose equivalence class
belongs to the closure in L2 .S;S;P/ of L .E/. Then

�
�
L .E/P

�
D � .fEt; t 2 Tg/P D SP

;

where, for example, SP
denotes the completion of S with respect to P.

Indeed, �
�
L .E/P

�
contains all null sets, and ŒEt�L2.S;S;P/ 2 L .E/P

, so that

� .fEt; t 2 Tg/P � �
h
L .E/P

i
:
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Conversely, a random variable whose equivalence class belongs to L .E/P
is almost

surely equal to an element of L .E/, or is the limit, in L2 .S;S;P/, of a sequence of
such random variables, and thus the reverse inclusion obtains also.

Remark 5.6.7 Since the conditional expectation of a square integrable random
variable is a projection [200, p. 24], setting

e2 D
ˇ̌̌̌
Œ f2�L2.S;S;P/

ˇ̌̌̌ �1
L2.S;S;P/

f2;

EP Œ f1 j f2� D
˝
Œ f1�L2.S;S;P/ ; Œe2�L2.S;S;P/

˛
L2.S;S;P/

e2:

5.6.2 Quadratic Forms of Normal Random Variables

One shall use, for the discrimination of Gaussian laws, domination based on the
manifold Q.E/. Its properties, when Gaussian laws obtain, are listed below. The
symbol IIDŒN .0; 1/� means independent, identically distributed, standard random
variables, and X � Y indicates random elements with the same law.

Lemma 5.6.8 Every f 2 Q .E/ has a representation of the following form:

f D � C
nX

iD1
�i Zi C

nX
iD1

�i Z
2
i ;

where fZ1; : : : ;Zng is a set of IIDŒN .0; 1/�’s.

Proof By definition,

f D ˛ C
mX

iD1
˛iEti C

nX
jD1

pX
kD1

˛j;kEujEvk ;

and one assumes, which is no restriction, that the evaluations involved produce a
law that is not degenerate. Let �1; : : : ; �� be the distinct values taken by the t’s, the
u’s and the v’s. Let E� be the vector with components E�i ; 1 � i � �, and v� be the
vector that secures the following equality:

mX
iD1

˛iEti D hv�; E�iR� :
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Let M� be the matrix that secures the following equality:

nX
jD1

pX
kD1

˛j;kEujEvk D hM ŒE�� ; E�iR� :

One has that

hM ŒE�� ; E�iR� D


M CM?

2
ŒE�� ; E�

�
R�
;

so that M may be assumed to be symmetric. Consequently,

f D ˛ C hv�; E�iR� C hM ŒE�� ; E�iR� :

Let ˙� be the matrix with entries HE ;P
�
�i; �j

�
; 1 � i; j � �. Set

Z� D ˙�1=2� ŒE�� :

One thus obtains a vector of independent, standard normal random variables, and

f D ˛ C ˝˙1=2

� Œv�� ;Z�
˛
R�
C ˝˙1=2

� M˙1=2

� ŒZ�� ;Z�
˛
R�
:

The matrix˙1=2
� M˙1=2

� , being symmetric, has a representation of the following form:
P�D�P?� , P� being orthogonal, and D� diagonal. One has finally that

f D ˛ C ˝P?�˙1=2

� Œv�� ;P
?
� ŒZ��

˛
R�
C hD�P

?
� ŒZ�� ;P

?
� ŒZ��iR� ;

which is the required representation, since the vector P?� ŒZ�� has components that
are independent, standard normal, random variables. ut
Lemma 5.6.9 When .Z1; : : : ;Zn/ � IID ŒN .0; 1/�, the first two moments of

f D � C
nX

iD1
�iZi C

nX
iD1

�iZ
2
i

are, respectively,

EP Œ f � D � C
nX

iD1
�i;

VP Œ f � D
nX

iD1
�2i C 2

nX
iD1

�2i :
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Proof f has the form C C L C Q, a constant (C), plus a linear term (L), plus a
quadratic term (Q). Then, since odd powers of standard normal random variables
have moments with zero expectation [200, p. 12],

EP
�

f 2
� D EP

�
C2 C L2 CQ2 C 2CLC 2CQC 2LQ

�
D C2 C EP

�
L2
�C EP

�
Q2
�C 2CEP ŒQ� :

But

EP
�
L2
� D nX

iD1
�2i ; EP ŒQ� D

nX
iD1

�i;

and

EP
�
Q2
� D 3 nX

iD1
�2i C

X
i¤j

�i�j D 2
nX

iD1
�2i C

 
nX

iD1
�i

!2
:

Thus

EP
�

f 2
� D

 
� C

nX
iD1

�i

!2
C

nX
iD1

�2i C 2
nX

iD1
�2i :

ut

5.6.3 Gaussian Laws Have the Properties Required
for Domination

The aim here is to check that Gaussian laws have property ˘2 for Q.E/, which
is required, for instance, by result (Proposition) 5.4.5. Gaussian measures may be
degenerate, that is, concentrated at one point. When they are not, they are reduced,
and what follows concerns reduced Gaussian measures.

Proposition 5.6.10 Suppose S is one of the spaces (Examples) 5.1.3 to 5.1.6. A
Gaussian law whose mean is the zero function is either reduced, or a point mass
located at the origin.

Proof Let fSn; n 2 Ng � S be a sequence such that 0S 2 Sn; n 2 N, and

lim
n

P .Sn/ D inf fP .A/ W A 2 S and 0S 2 Ag :
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One may assume that the sequence is decreasing. Let S0 D \nSn, and let A 2 S
contain the zero element. Then, since A\S0 contains the zero element, by the choice
of S0,

P .S0/ � P .A \ S0/ � P .A/ :

In particular, let ˛ > 0 be fixed, arbitrary, and

S.˛/t D fs 2 S W Et .s/ 2 ��˛; ˛Œg :

Then P .S0/ � P
�
S.˛/t

�
. Letting ˛ # 0, one has that

P .S0/ � P .Et D 0/ :

Since Et is a normal random variable, with mean equal to zero, the inequality
P .S0/ > 0 means that Et takes the value zero with probability 1.

Now, given A 2 S, fixed, but arbitrary [41, p. 144],

�
A
D ˚ .fEti ; i 2 Ng/ ; ˚ W R1 �! f0; 1g ; measurable.

Consequently

P .A/ D EP Œ˚ .fEti ; i 2 Ng/� D ˚ .f0i; i 2 Ng/ :

Thus P .A/ is either zero or one. ut
Lemma 5.6.11 Let Z be a standard normal random variable, and

' .�/ D E
h
e��ŒaZCbZ2�

i
:

Then

j' .�/j � 1n
1C

h
a2

2
C 4b2

i
�2
o1=4 :

Proof Writing

E
h
e��ŒaZCbZ2�

i
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as an integral with respect to a Gaussian density (with complex parameters), one
gets that [29, 66, p. 88,75]

' .�/ D e�
a2�2

2.1�2��b/

.1 � 2��b/1=2
D e

� a2�2

2.1C4b2�2/
C�
n
�a2b�3

1C4b2�2

o

.1 � 2��b/1=2
:

Consequently, using ex > 1C x; x > 0, in the form .1C x/�1 > e�x, and denoting
˛ the expression 1C 4b2�2, one has that

j' .�/j D e� a2�2
2˛

˛1=2
� ˛�1=2

�
1C a2�2

2

��1
D ˛1=2

�
˛ C a2�2

2

��1

�
�
˛ C a2�2

2

��1=2
�
�
˛ C a2�2

2

��1=4

ut
Lemma 5.6.12 Let f 2 Q .E/, fixed, but arbitrary, have the representation
[(Lemma)] 5.6.8. There is a constant � such thatˇ̌

EP
�
e�� f

�ˇ̌ � �1C �2�2��1=4 W
in fact

�2 D 1

2

nX
iD1

�2i C 4
nX

iD1
�2i :

Proof f has the following representation [(Lemma) 5.6.8]:

f D � C
nX

iD1
�iZi C

nX
iD1

�iZ
2
i ; .Z1; : : : ;Zn/ � IID ŒN .0; 1/� :

Thus, using (Lemma) 5.6.11,

ˇ̌
EP
�
e�� f

�ˇ̌ D
ˇ̌̌
ˇ̌ei��

nY
iD1

EP

h
e��Œ�iZiC�iZ

2
i �
iˇ̌̌ˇ̌ � nY

iD1

�
1C

	
�2i
2
C 4�2i



�2
��1=4

:

Then the following obvious inequality:

nY
iD1

�
1C c2i

� D 1CX
i

c2i C
X
i¤j

c2i c2j C 
 
 
 C c21c
2
2 
 
 
 c2n � 1C

nX
iD1

c2i ;
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applied to the latter product yields that

ˇ̌
EP
�
e�� f

�ˇ̌ �
 
1C

"
1

2

nX
iD1

�2i C 4
nX

iD1
�2i

#
�2

!�1=4
:

ut
Lemma 5.6.13 For a > 0,Z 1

�1

ˇ̌̌
ˇ sinu

u

ˇ̌̌
ˇ �1C a2u2

��1=4
du <1:

Proof Let f .u/ D sin u
u

�
1C a2u2

��1=4
, and define

I�1 D
Z �1
�1
j f .u/j du; I0 D

Z 1

�1
j f .u/j du; I1 D

Z 1
1

j f .u/j du:

One has that

I�1 �
Z �1
�1
juj�1 �1C a2u2

��1=4
du:

The change of variables u D �v yields that

I�1 �
Z 1
1

1

v

�
1C a2v2

��1=4
dv � 1p

a

Z 1
1

dv

v3=2
<1:

I1 has the same bound. I0 is bounded because [2, p. 135], for 0 < x < �
2

,

0 < cosx <
sinx

x
<

1

cosx
:

ut
Corollary 5.6.14 For ˛ > 0, and f as in (Lemma) 5.6.8,

P .j f j � ˛/ D 1

�

Z 1
�1

sin�

�
EP

h
e�

�
˛ f
i

d�:

Proof One starts with the inversion formula for characteristic functions [55, p. 141]:

P .j f j � ˛/ D P

� j f j
˛
� 1

�

D P

�
�1 < f

˛
< 1

�
C 1

2

�
P

�
f

˛
D �1

�
C P

�
f

˛
D 1

��
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D lim
C"1

1

2�

Z C

�C

e�t � e��t

�t
'n f

˛

o .t/ dt

D lim
C"1

1

�

Z C

�C

sin t

t
EP

h
e�t

f
˛

i
dt:

Then (Lemmas) 5.6.12 and 5.6.13 are used. ut
Lemma 5.6.15 Let ˛ � 0, f , and � be real numbers. Then j f j � ˛ implies that

j f � �j � j�j � ˛:

Proof In the standard inequality jjaj � jbjj � ja � bj use a D f � � and b D ��
to get

jj f � �j � j�jj � j f j � ˛

so that �˛ � j f � �j � j�j. ut
Proposition 5.6.16 P has property˘2 for Q .E/.

Proof Let f 2 Q1 .E/ be fixed, but arbitrary, so that EP
�

f 2
� D 1, and � D EP Œ f �.

Choose arbitrarily � 2 �0; 1Œ.
Case: j�j � 1 � �.
From (Lemma) 5.6.15

P .s 2 S W j f .s/j � ˛/ � P .s 2 S W j f .s/ � �j � j�j � ˛/ :

Since � D EP Œ f �, one gets that

P .s 2 S W j f .s/j � ˛/ � VP Œ f �

.j�j � ˛/2 :

Choose ˛ 2 Œ0; 1 � �Œ. Then, since

1 � �2 � 1� .1 � �/2 ; and j�j � ˛ � 1 � � � ˛;

one obtains that

P .s 2 S W j f .s/j � ˛/ � 1 � �2
.j�j � ˛/2 �

1 � .1 � �/2
.1 � � � ˛/2 :
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Case: j�j < 1 � �.
Let ı > 0 be fixed, but arbitrary. Then [(Lemma) 5.6.13]

P .j f j � ˛/ � 1

�

Z
j� j�ı

sin�

�
EP

h
e�

�
˛ f
i

d� C 1

�

Z
j� j>ı

sin�

�
EP

h
e�

�
˛ f
i

d�:

Since
ˇ̌̌

sin �
�

EP

h
e�

�
˛ f
iˇ̌̌
� 1,

Z
j� j�ı

sin�

�
EP

h
e�

�
˛ f
i

d� � 2ı:

Since [(Lemma) 5.6.9] 1 D EP
�

f 2
� D �2 CPn

iD1 �2i C 2
Pn

iD1 �2i ,

�2
Lemma 5.6.12D

Pn
iD1 �2i
2

C 4
nX

iD1
�2i

�
Pn

iD1 �2i C 2
Pn

iD1 �2i
2

D 1 � �2
2

� 1 � .1 � �/2
2

;

and [(Lemma) 5.6.12]

Z
j� j>ı

sin�

�
EP

h
e�

�
˛ f
i

d� �
Z
j� j>ı

�
1C �2 �

2

˛2

��1=4
d�

j� j

�
Z
j� j>ı

(
1C 1 � .1 � �/2

2

�2

˛2

) �1=4
d�

j� j

� 2
Z
�>ı

(
1 � .1 � �/2

2

�2

˛2

)�1=4
d�

�

D 2
21=4˛1=2�

1 � .1 � �/2
�1=4

Z
�>ı

d�

�
3=2

D 4
21=4˛1=2�

1 � .1 � �/2
�1=4 1

ı1=2
:
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Thus

�P .j f j � ˛/ � 2ı C 2
9=4�

1 � .1 � �/2
�1=4 n˛ı

o1=2
:

Finally, in both cases considered, lim˛#0 supf2Q1.E/ P .j f j � ˛/ is arbitrarily small.
ut

5.6.4 The Quadratic Manifold of Evaluations: A Source
of Hilbert-Schmidt Operators

In most Gaussian “signal-in-noise” discrimination problems, one finds operators
which are the sum of the identity with a Hilbert-Schmidt operator. The reason for
that fact, as shall presently be seen, is that domination based on Q.E/ is used.
The basic point is that, in that latter case, the Radon-Nikodým derivative acts as
a multiplication operator, and that such operators have a representation in the form
of the sum of the identity with a Hilbert-Schmidt operator.

In this section, unless stated otherwise, f0 2 Q .E/ shall mean that

f0 D m0 C L0 C Q0;

where, Z0;1; : : : ;Z0;n0 being independent, standard normal random variables,

m0 D EP Œ f0� ;

L0 D
n0X

iD1
�0;i Z0;i;

Q0 D
n0X

iD1
�0;i

�
Z20;i � 1

�
:

When one needs to work with the equivalence class of Z0;i, one shall use the
somewhat less cumbersome notation "0;i.

Lemma 5.6.17 Let f0 2 Q .E/ be fixed, but arbitrary. Then

EP
�

f 40
�
<1;

so that the following assignment: given f 2 L .E/P
, fixed, but arbitrary,

M0 Œ f � D
�

f0Pf
�

L2.S;S;P/ ;
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defines a linear and bounded operator, with

DŒM0� D L .E/P
; and RŒM0� � L2 .S;S;P/ :

The following operator:

B0 D PL.E/P M0;

is then well defined, linear, and bounded. Furthermore

RŒB0� � L .E/P
:

Finally, letting

QB0 Œ f � D PL.E/P
�
Q0
Pf �

L2.S;S;P/ ;

B0 has the following representation:

B0 Œ f � D
n
m0IL.E/P C QB0

o
Œ f � :

Proof In f 40 , the powers of Z0;i with highest order are of the form Z80;i, and [200,
p. 12]

E
�
Z80;i
� D 105:

The first part of (Lemma) 5.6.17 is then true because of (Proposition) 5.1.32. One
must thus only check that the representation of B0 that is advertised above obtains.

Now �
f0Pf
�

L2.S;S;P/ D m0

�Pf �
L2.S;S;P/ C

�
L0Pf
�

L2.S;S;P/ C
�
Q0
Pf �

L2.S;S;P/ ;

and, for g 2 L .E/P
, fixed, but arbitrary, since one integrates normal random

variables with a mean equal to zero,D
PL.E/P

h�
L0 Pf
�

L2.S;S;P/

i
; g
E
L2.S;S;P/

D
D�

L0Pf
�

L2.S;S;P/ ; g
E
L2.S;S;P/

D
Z

S
L0 .s/ Pf .s/ Pg .s/P .ds/

D 0:
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Thus

PL.E/P
h�

L0Pf
�

L2.S;S;P/

i
D Œ0�L2.S;S;P/ :

ut
Lemma 5.6.18 Let f0 2 Q .E/ be fixed, but arbitrary. Let

(a) H0 denote the subspace of L .E/P
generated by Z0;1; : : : ;Z0;n0 (the random

variables from which f0 is built: their equivalence classes are orthonormal
random elements),

(b) H?0 be the orthogonal complement of H0 in L .E/P
.

For any two f and g belonging to L .E/P
, one has, in L .E/P

taken as Hilbert space,
that (R stands for “remainder”):

Pf DPn0
iD1 fi Z0;i C PRf ; Rf 2 H?0 ;

Pg DPn0
iD1 gi Z0;i C PRg; Rg 2 H?0 ;

and

EP
�
Q0
Pf Pg� D 2 n0X

iD1
�0;ifi gi:

Proof The representations of f and g in the lemma’s statement reflect the fact
that independent, standard normal, random variables correspond to orthonormal
elements in the Hilbert space of equivalence classes of random variables. Since one
deals with orthogonal, and thus independent, Gaussian random variables that have
a mean equal to zero, using [66, p. 92], one has that

EP
�Pf PgZ20;i

� D EP
�Pf Pg�EP

�
Z20;i
�C 2EP

�Pf Z0;i
�

EP ŒPgZ0;i�

D EP
�Pf Pg�C 2figi:

Consequently, as EP
�Pf Pg �Z20;i � 1�� D EP

�Pf Pg�C 2figi � EP
�Pf Pg�,

EP
�
Q0
Pf Pg� D n0X

iD1
�0;iEP

�Pf Pg �Z20;i � 1�� D 2 n0X
iD1

�0;ifigi:

ut
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Lemma 5.6.19 Let f0 2 Q .E/ be fixed, but arbitrary, and f be as in
(Lemma) 5.6.18. Then

PL.E/P
h�

Q0
Pf �

L2.S;S;P/

i
D 2

n0X
iD1

�0;ifi "0;i:

Proof Let g 2 L .E/P
be fixed, but arbitrary. Then, using (Lemma) 5.6.18,D

PL.E/P
h�

Q0
Pf �

L2.S;S;P/

i
; g
E
L2.S;S;P/

D
D�

Q0
Pf �

L2.S;S;P/ ; g
E
L2.S;S;P/

D EP
�
Q0
Pf Pg�

D 2
n0X

iD1
�0;ifigi

D 2
n0X

iD1
�0;ifi h"0;i; giL2.S;S;P/

D
*

n0X
iD1

2�0;ifi "0;i; g

+
L2.S;S;P/

:

ut
Proposition 5.6.20 The following operator (where the notation Œa˝ b� .x/ stands
for hx; bi a, with the appropriate inner product):

QBŒ0� defD p2
n0X

iD1
�0;i "0;i ˝ "0;i;

is a Hilbert-Schmidt operator, with Hilbert-Schmidt operator norm equal to

2

n0X
iD1

�20;i D EP
�
Q2
0

�
:

Proof By definition,
Pn0

iD1
p
2�0;i "0;i ˝ "0;i is a Hilbert-Schmidt operator, and its

Hilbert-Schmidt norm is 2
Pn0

iD1 �20;i [235, p. 34]. On the other hand,

EP
�
Q2
0

� D n0X
iD1

n0X
jD1

�0;i�0;j EP
��

Z20;i � 1
� �

Z20;j � 1
��

D
n0X

iD1
�20;i EP

h�
Z20;i � 1

�2i
;
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and

EP

h�
Z20;i � 1

�2i D EP
�
Z40;i
� � 2EP

�
Z20;i
�C 1

D 3� 2C 1
D 2:

ut
Proposition 5.6.21 Let f0 2 Q .E/P

be fixed, but arbitrary, and let (where
f1 .s/ D 1S)

�0 D EP
�Pf0� ;

L0 D PL.E/P Œ f0� ;

Q0 D f0 � �0 Œ f1�L2.S;S;P/ � L0:

Define M0 to be the operator of multiplication by f0, and B0 D PL.E/P M0. Then

B0 D �0 IL.E/P C QB0;

with QB0, a Hilbert-Schmidt operator, whose Hilbert-Schmidt norm, indexed by HS,
is given by the following formula:

ˇ̌̌̌ QB0 ˇ̌̌̌ 2HS D EP
� PQ2

0

�
:

Proof Let f f0;n; n 2 Ng � Q .E/ be such that, in L2 .S;S;P/,

lim
n
Œ f0;n�L2.S;S;P/ D f0:

Let also

�0;n D EP Œ f0;n� ;

L0;n D PL.E/P
�
Œ f0;n�L2.S;S;P/

�
;

Q0;n D Œ f0;n�L2.S;S;P/ � �0;n Œ f1�L2.S;S;P/ � L0;n:

Then:

• limn �0;n D �0, a result which follows from the following inequalities:

j�0;n � �0j � EP
� ˇ̌

f0;n � Pf0
ˇ̌� � ˇ̌̌̌ Œ f0;n�L2.S;S;P/ � f0

ˇ̌̌̌
L2.S;S;P/

I
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• in L2 .S;S;P/ ; limn L0;n D L0, a result which follows from the following
inequalities:

jjL0;n � L0jjL2.S;S;P/ D
ˇ̌̌̌̌̌
PL.E/P

�
Œ f0;n�L2.S;S;P/ � f0

�ˇ̌̌̌̌̌
L2.S;S;P/

� ˇ̌̌̌ Œ f0;n�L2.S;S;P/ � f0
ˇ̌̌̌

L2.S;S;P/
I

• in L2 .S;S;P/ ; limn Q0;n D Q0, a result which follows from the following
inequalities:

jjQ0;n �Q0jjL2.S;S;P/ �
ˇ̌̌̌
Œ f0;n�L2.S;S;P/ � f0

ˇ̌̌̌
L2.S;S;P/

C j�0 � �0;nj
C jjL0;n � L0jjL2.S;S;P/ :

Let M0;n be the operator of multiplication by f0;n (which is well defined because
of (Lemma) 5.6.17), and

B0;n D PL.E/P M0;n:

Then [(Lemma) 5.6.17], for f 2 L .E/P, fixed, but arbitrary, setting

QB0;n Œ f � D PL.E/P
h� PQ0;n Pf

�
L2.S;S;P/

i
;

one has that

B0;n D �0;n IL.E/P C QB0;n:

Now QB0;n � QB0;p has the same representation as QB0;n. Indeed� QB0;n � QB0;p� Œ f � D QB0;n Œ f � � QB0;p Œ f �
D PL.E/P

h� PQ0;n Pf
�

L2.S;S;P/

i
� PL.E/P

h� PQ0;pPf
�

L2.S;S;P/

i
D PL.E/P

h�� PQ0;n � PQ0;p
� Pf �L2.S;S;P/

i
:

Furthermore,

Q0;n �Q0;p D
�

f0;n � f0;p
�

L2.S;S;P/ �
�
�0;n � �0;p

�
IL.E/P �

�
L0;n � L0;p

�
;
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with f0;n � f0;p 2 Q .E/, and

L0;n � L0;p D PL.E/P
�
Œ f0;n�L2.S;S;P/

� � PL.E/P
h�

f0;p
�

L2.S;S;P/

i
D PL.E/P

h
Œ f0;n�L2.S;S;P/ �

�
f0;p
�

L2.S;S;P/

i
D PL.E/P

h��
f0;n � f0;p

��
L2.S;S;P/

i
:

Consequently [(Proposition) 5.6.20]

ˇ̌̌̌ QB0;n � QB0;p ˇ̌̌̌ 2HS
D EP

h� PQ0;n � PQ0;p
�2i D ˇ̌̌̌Q0;n � Q0;p

ˇ̌̌̌ 2
L2.S;S;P/ :

There is thus a Hilbert-Schmidt limit QB0 to the sequence
˚ QB0;n; n 2 N

�
, and

QB0 Œ f � D PL.E/P
h� PQ0
Pf �L2.S;S;P/i ;

with, in L2 .S;S;P/,

Q0 D lim
n
ŒQ0;n�L2.S;S;P/ ; and

ˇ̌̌̌ QB0 ˇ̌̌̌ 2HS
D EP

� PQ2
0

�
:

ut

5.6.5 Discrimination of Gaussian Translates

In the Gaussian case, discrimination, as exhibited in Sect. 5.4, can be successfully
completed. A Gaussian translate is a Gaussian law, with mean zero, to which a mean
has been added.

Lemma 5.6.22 Let P be a Gaussian probability whose mean is zero. Suppose that

m 2 H .HE ;P;T/ ;

and let (Sect. 5.5.2) fm D U?
P Œm�. Then, for f 2 L .E/P

, fixed, but arbitrary,Z
S

ePfm.s/C�Pf .s/P .ds/ D e�
1
2 jjf��fmjj2L2.S;S;P/ :
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Proof Let f fn; n 2 Ng � L .E/, and
˚

f .m/n ; n 2 N
� � L .E/ be such that, in

L2 .S;S;P/,

f D lim
n
Œ fn�L2.S;S;P/

fm D lim
n

�
f .m/n

�
L2.S;S;P/ :

Some subsequence will converge almost surely, with respect to P. Suppose one
has already chosen such a subsequence. One may assume, choosing some of the
coefficients to be zero, that

fn D
nX

iD1
˛
.n/

i E
t
.n/
i
; and f .m/n D

nX
iD1

ˇ
.n/

i E
t
.n/
i
:

The sequence with terms gn D ef
.m/
n C�fn is uniformly integrable [192, p. 19]. Indeed,

choosing G .t/ D t1C˛; ˛ > 0,

G .jgnj/ D e.1C˛/f
.m/
n ;

and, f .m/n being a Gaussian random variable (with a mean equal to zero),

EP ŒG .jgnj/� D e
1
2
.1C˛/2

ˇ̌̌
ˇ
ˇ̌̌
ˇh f

.m/
n

i
L2.S;S;P/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
L2.S;S;P/ ;

which is uniformly bounded. Thus

lim
n

Z
S

ef
.m/
n .s/C�fn.s/P .ds/ D

Z
S

ePfm.s/C�Pf .s/P .ds/ :

On the other hand, either by doing the computation, or by invoking a complex
variables result on entire functions which are equal on the reals [66, 200, p. 75,11],
one may justify the following formal trick:Z

S
ef
.m/
n .s/C�fn.s/P .ds/ D

Z
S

e�
�

fn.s/��f .m/n .s/
�
P .ds/

D e
� 12

ˇ̌̌
ˇ
ˇ̌̌
ˇŒ fn�L2.S;S;P/��h f

.m/
n

i
L2.S;S;P/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
L2.S;S;P/ :

The last term has, as limit, the value given in the lemma’s statement. ut
Proposition 5.6.23 Let S be one of the spaces [(Example) 5.1.3] to [(Exam-
ple) 5.1.6], and let P be a Gaussian measure on S, with mean equal to zero. Suppose
that m belongs to H .HE ;P;T/, and let fm D U?

P Œm�.
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Then P and Pm D PıT�1m , where Tm .s/ D sCm; s 2 S, are mutually absolutely
continuous, and, almost surely, with respect to P,

dPm

dP
.s/ D e

Pfm.s/� 12 jj fmjj2L2.S;S;P/ :

Proof Let f 2 L .E/P
be fixed, but arbitrary. ThenZ

S
e�Pf .s/

n
e
Pfm.s/� 12 jj fmjj2L2.S;S;P/

o
P .ds/ D

D e�
1
2 jj fmjj2L2.S;S;P/

Z
S

ePfm.s/C�Pf .s/P .ds/

D e�
1
2 jj fmjj2L2.S;S;P/e�

1
2 jj f��fmjj2L2.S;S;P/

D e�h f ;fmiL2.S;S;P/�
1
2 jj f jj2L2.S;S;P/ :

Another limiting argument, similar to that used in the proof of (Lemma) 5.6.22,
yields that Z

S
e�Pf .s/Pm .ds/ D e�h f ;fmiL2.S;S;P/�

1
2 jj f jj2L2.S;S;P/ :

Thus Z
S

e�Pf .s/
n
e
Pfm.s/� 12 jj fmjj2L2.S;S;P/

o
P .ds/ D

Z
S

e�Pf .s/Pm .ds/ ; f 2 L .E/P
:

Since probabilities on S are determined by their finite dimensional distributions, the
result is proved. ut
Corollary 5.6.24 Let S be one of the spaces [(Example) 5.1.3] to [(Example) 5.1.6],
and let P be a Gaussian measure on S, with mean equal to zero. Suppose that
fm1;m2g � S, and let Pm1 D P ı T�1m1 , and Pm2 D P ı T�1m2 . Then:

1. when m1 � m2 2 H .HE ;P;T/
c, Pm1 and Pm2 are orthogonal;

2. when m1 � m2 2 H .HE ;P;T/, Pm1 and Pm2 are mutually absolutely continuous,
and, almost surely with respect to Pm1 ,

dPm2

dPm1

.s/ D dPm2�m1

dP
ı T�1m1 .s/ D e

Pfm2�m1 .s�m1/� 12 jj fm2�m1 jj2L2.S;S;P/ :
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Furthermore, when m1 2 H .HE ;P;T/,

dPm2

dPm1

.s/ D e.
Pfm2�Pfm1 /.s/� 12

njj fm2 jj2L2.S;S;P/�jj fm1 jj2L2.S;S;P/
o
:

Proof Item 1 is an application of (Corollary) 5.5.9.
When m1 � m2 2 H .HE ;P;T/, m2 � m1 is also in H .HE ;P;T/, and one has that

Pm2�m1 and P are mutually absolutely continuous [(Proposition) 5.6.23]. Because of
(Lemmas) 5.5.6 and 5.5.7, as Pm2 D Pm2�m1 ıT�1m1 , and Pm1 D PıT�1m1 , Pm2 and Pm1
are mutually absolutely continuous, with the following Radon-Nikodým derivative:

dPm2

dPm1

D dPm2�m1

dP
ı T�1m1 :

But, because of (Proposition) 5.6.23,

dPm2�m1

dP
D e
Pfm2�m1� 12 jj fm2�m1 jj2L2.S;S;P/ ;

and the first form, given above, for the Radon-Nikodým derivative obtains.
Suppose now that m1 belongs to H .HE ;P;T/, and let f DPn

iD1 ˛iEti . Then m2 2
H .HE ;P;T/,

f .s � m1/ D f .s/ �
nX

iD1
˛i m1 .ti/ ;

and, with fm1 D U?
P Œm1�,

nX
iD1

˛im1 .ti/ D
nX

iD1
˛i hm1;HE ;P .
; ti/iH.HE;P;T/

D
*

m1;

nX
iD1

˛iHE ;P .
; ti/
+

H.HE;P;T/

D
*

fm1 ;
nX

iD1
˛iEti

+
L2.S;S;P/

D h fm1 ; f iL2.S;S;P/ :

Let now

lim
n
jj f � fnjjL2.S;S;P/ D 0; and Pfn D

pnX
iD1

˛
.n/

i E
t
.n/
i
:
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By taking, if necessary, a subsequence, one may assume that convergence takes
place almost surely, so that, almost surely with respect to P,

Pf ı T�1m1 .s/ D lim
n
Pfn ı T�1m1 .s/

D lim
n

˚Pfn .s/ � h fm1 ; fniL2.S;S;P/�
D Pf .s/ � h fm1 ; f iL2.S;S;P/ :

But, because

UP Œ fm2�m1 � D m2 � m1 D UP Œ fm2 � �UP Œ fm1 � D UP Œ fm2 � fm1 � ;

one has that

Pfm2�m1 �
1

2
jj fm2�m1 jj2L2.S;S;P/ D

�Pfm2 � Pfm1� � 12 jj fm2 � fm1 jj2L2.S;S;P/ :

Moreover

Pfm2 ı T�1m1 D Pfm2 � h fm1 ; fm2iL2.S;S;P/ ;

and

Pfm1 ı T�1m1 D Pfm1 � h fm1 ; fm1iL2.S;S;P/ ;

so that ��Pfm2 � Pfm1� ı T�1m1
� 1
2
jj fm2 � fm1 jj2L2.S;S;P/

�
D

D �Pfm2 � Pfm1� � 12
n
jj fm2 jj2L2.S;S;P/ � jj fm1 jj2L2.S;S;P/

o
:

ut

5.6.6 Discrimination of Gaussian Laws

In this section, S shall be one of the spaces (Examples) 5.1.3 to 5.1.6, and P and Q,
fixed, but arbitrary Gaussian measures on S, with a mean equal to zero. It shall also
be assumed that, on Q .E/, P dominates Q, and Q dominates P. These assumptions
have, as seen, the following consequences:

1. Because of (Corollaries) 5.4.9 and 5.4.17, there exists
�

fQ
�

L2.S;S;P/ 2 Q .E/P
such

that
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(i) fQ � 0, almost surely with respect to P,
(ii)

R
S fQ .s/P .ds/ D 1,

(iii) for all f 2 Q .E/P
, there exists Pf 2 f such thatZ

S

Pf .s/Q .ds/ D
Z

S

Pf .s/ fQ .s/P .ds/ :

2. Because of (Proposition) 5.6.21, with f0 becoming fQ, one may define three linear
and bounded operators:

(i) for f 2 L .E/P
, MQ Œ f � D

�Pf fQ
�

L2.S;S;P/,
(ii) BQ D PL.E/P MQ,

(iii) QBQ D BQ � IL.E/P .
The constant �0, in (Proposition) 5.6.21, is one because of the fact that

the function f0 D fQ integrates to one.

3. BQ is strictly positive and self-adjoint:
Indeed, from (Proposition) 5.4.15, one has that BQ has a multiplicative

decomposition of the following form:

U?M?J?P;QJP;QMU;

where U is unitary, and M, multiplication by a strictly positive constant. Thus

hBQ Œ f � ; f iL2.S;S;P/ D jjJP;QMU Œ f �jj2H.HE ;P/
:

When hBQ Œ f � ; f iL2.S;S;P/ D 0,

MU Œ f � 2 N ŒJP;Q�;

which is the orthogonal complement of the range of J?P;Q in H .HE ;P;T/,
that is, the orthogonal complement of H

�
HE ;Q;T

�
in H .HE ;P;T/. But mutual

domination of P and Q on Q .E/ has, among its consequences, that, as sets,
H
�
HE ;Q;T

� D H .HE ;P;T/. Consequently JP;Q is an injection and f is the class
of the zero function.

It is here that mutual domination comes in for the first time. The second is in
(Remark) 5.6.32.

4. QBQ is Hilbert-Schmidt.

The following notation shall be used:

(a) for the orthonormal representation of QBQ:

1X
iD1

ˇi bi ˝ bi
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where ˇi > �1; i 2 N (from item 3 above, as BQ is strictly positive);

(b) for the subspace of L .E/P
generated by fbi; i 2 Ng: HQ;

(c) for the orthogonal complement of HQ in L .E/P
: H?Q .

The calculations leading to discrimination shall be “parceled” into successive
steps.

Lemma 5.6.25 For x > �1,

e1=2 .
x

1Cx /p
1C x

� e1=2
�
1C x2

�
:

Proof For y > 0, y < ey �
�
1C

�
1
y � 1

�2� 2
ey, so that, for y > 0,

ye�y �
(
1C

�
1

y
� 1

�2) 2
:

Letting y D 1
1Cx ; x > �1, it follows that 1y � 1 D x, and that

e�
1

1Cx

1C x
� ˚1C x2

�2
;

so that, taking the square root,

e�
1
2

1
1Cxp

1C x
� 1C x2:

It then suffices to multiply with e1=2. ut
Lemma 5.6.26 In a neighborhood of 0,

e�x=2

p
1 � x

� 1C x2:

Proof Consider the function f .x/ D .1 � x/
�
1C x2

�2
ex: f .0/ D 1. Now, D

denoting the derivative with respect to x,

Df .x/ D �x
�
1C x2

� �
x2 C 4x � 3� ex;

D2f .x/ D �ex
˚�
1 � x2

� �
x2 C 4x � 3�C x

�
1C x2

� �
x2 C 6xC 1�� ;
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so that Df .0/ D 0, and D2f .0/ D 3. Consequently, in a neighborhood of 0, f .x/ �
1, so that

e�x

1 � x
� �1C x2

�2
:

One then takes the square root of the latter expression. ut
In the next lemma, one introduces the exponent value p. It is there to allow for

the Radon-Nikodým derivative to be integrable to the power p.

Lemma 5.6.27 Let p > 1 be such that maxˇi>0 ˇi <
1

p�1 , and

(a) �i D ˇi
2.1Cˇi/

,

(b) ıi D e�ip
1Cˇi

,

(c) Di .s/ D ıi e�ifPb2i .s/�1g,
(d) Dn.s/ D Qn

iD1 Di .s/.

Then:

1.
˚Q1

iD1 ıi
�p D Q1iD1 ıp

i is convergent;
2. EP

�
Dp

n

� � � <1, so that the sequence fDn; n 2 Ng is uniformly integrable.

Proof Item 1 follows from the fact (which uses (Lemma) 5.6.25) that

1Y
iD1
ı

p
i D

8<
:
1Y

iD1

e
1
2

ˇi
1Cˇi

.1C ˇi/
1=2

9=
;

p

�
(

e1=2
1Y

iD1

�
1C ˇ2i

�) p

;

and that, from the Hilbert-Schmidt property,
P1

iD1 ˇ2i <1.
Now, X1; : : : ;Xn being independent, standard normal random variables (they

stand for the bi’s),

EP
�
Dp

n

� D nY
iD1
ı

p
i

nY
iD1

EP

h
ep�i.X2i �1/

i
:

As 1 � 2p�i D 1�. p�1/ˇi
1Cˇi

> 0, and that, for ˛ < 1=2,

Z C1
�1

e˛ x2

8<
: e� x2

2p
2�

9=
; dx D 1p

1 � 2˛ ;

one has that

E
h
ep�i.X2i �1/

i
D e�p�i

p
1 � 2p�i

:
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Let i D pˇi
1Cˇi
D 2p�i. Then, from (Lemma) 5.6.26,

e�p�i

p
1 � 2p�i

D e� 12 i

p
1 � i

� 1C 2i ;

and thus, as, for x > 0,

.1C x/2C p2x2 � .1C x/2C p2.1C x/2 D .1C p2/.1C x/2 � 2.1C p2/.1C x2/;

so that

1C p2x2

.1C x/2
� 2.1C p2/.1C x2/

.1C x/2
� 2.1C p2/.1C x2/;

then

1C 2i � �2
�
1C ˇ2i

�
:

Consequently

nY
iD1

EP

h
ep�i.X2i �1/

i

is dominated by a convergent product, and so EP
�
Dp

n

�
is dominated by a product of

convergent products. ut
Lemma 5.6.28 The series

P1
iD1 �i

˚Pb2i � 1� is convergent in L2 .S;S;P/.

Proof Given � > 0, there is n .�/ such that j ˇn j< �; n > n .�/. Consequently, for
n > n .�/, 1C ˇn > 1 � �, and �n <

ˇn
1�� . Thus

lim
p;q

EP

2
64
8<
:

qX
iDp

�i
˚Pb2i � 1�

9=
;
2
3
75 D lim

p;q
2

qX
iDp

�2i D 0:

ut
Proposition 5.6.29 The notation being that of the previous lemmas, the sequence
fDn; n 2 Ng converges to D DQ1iD1 Di, in Lp .S;S;P/, and

EP ŒD
p� <1:

Proof Because of (Lemma) 5.6.28,
˚
Dp

n; n 2 N
�

converges in probability to D. That
fact combined with uniform convergence does the trick. ut
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Lemma 5.6.30 The notation being that of the previous lemmas, one has that:

1. (i) EP ŒDi� D 1;
(ii) EP

�PbiDi
� D 0;

(iii) EP
�Pb2i Di

� D 1C ˇi;
(iv) EP ŒD� D 1;
(v) EP

�PbiD
� D EP

� PbiDi
�
.

2. Let f f ; f1; f2g � L .E/P
be fixed, but arbitrary, and have the respective decompo-

sitions

f D gC h; f1 D g1 C h1; f2 D g2 C h2;

where fg; g1; g2g � HQ; fh; h1; h2g � H?Q : then

(i) EP
�Pf 2D� D EP

��Pg2 C Ph2�D
�
<1;

(ii) EP
�Pf D

� D EP ŒPgD� D 0;
(iii)

˝
Œ f1�L2.S;S;Q/ ; Œ f2�L2.S;S;Q/

˛
L2.S;S;Q/

D RS
Pf1 .s/ Pf2 .s/D .s/P .ds/.

Proof For 1 � 2˛ > 0, the following function:

f˛ .x/ D
r
1 � 2˛
2�

e�
1
2
.1�2˛/x2 ;

is a Gaussian density, whose mean is equal to zero, and variance, equal to .1�2˛/�1.
It may be written in the following form:

f˛ .x/ D
p
1 � 2˛ e˛ e˛.x

2�1/ e� 12 x2

p
2�
;

so that, in particular, since 1 � 2�i D 1
1Cˇi

> 0,

f�i .x/ D ıi e
�i.x2�1/ e� 12 x2

p
2�

is a Gaussian density, with a mean equal to zero and a variance equal to 1�2�i. Thus,
for any Borel measurable function F, with appropriate integrability properties, since
the Pbi’s are, with respect to P, independent, standard normal random variables,

Z
S

F
�Pbi .s/

�
Di .s/P .ds/ D

Z
R

F .x/ ıi e
�ifx2�1g e� 12 x2

p
2�

dx D
Z
R

F .x/ f�i .x/ dx:

Consequently,
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(i) F .x/ D 1 yields

EP ŒDi� D 1; and then, because of (Proposition) 5.6.29, EP ŒD� D 1I

(ii) F .x/ D x yields

EP
�PbiDi

� D 0I
(iii) F .x/ D x2 yields

EP
�Pb2i Di

� D 1

1 � 2�i
D 1C ˇi :

Finally, point (v) of item 1 is true using independence. Item 1 thus obtains.
Let f 2 H?Q be fixed, but arbitrary. Then, because of independence,

EP
�Pf 2D� D EP

�Pf 2�EP ŒD� <1:

If now f 2 HQ, let fi D h f ; biiL2.S;S;P/. Then, almost surely for P,

Pf D
1X

iD1
fi Pbi;

and, since Pb2i D is integrable with respect to P, for all i, as, using independence,
EPŒPbi PbjD� D EPŒb2i D�, when i D j, and zero otherwise, then

EP

2
4( nX

iD1
fi Pbi

) 2
D

3
5 D nX

iD1

nX
jD1

fifjEP
�Pbi PbjD

�

D
nX

iD1
f 2i .1C ˇi/

�
�
1Cmax

i
jˇij

�
jj f jjL2.S;S;P/ :

Thus, by Fatou’s lemma,

EP
�Pf 2D� � lim inf

n
EP

2
4( nX

iD1
fi Pbi

) 2
D

3
5 � �1Cmax

i
jˇij

�
jj f jjL2.S;S;P/ :
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Since .jaj � jbj/2 is positive, 2jabj � a2 C b2, so that

2EP
�jPgPhjD� � EPŒPg2D�C EPŒPh2D� <1:

As a consequence, using independence again, and the fact that P has zero mean,

EP
�PgPhD

� D EP ŒPgD�EP
�Ph� D 0:

But, as EPŒjPgjD� � EPŒPg2D�C EPŒD� <1, PgD is integrable, and thus

EP ŒPgD� D
1X

iD1
hg; biiL2.S;S;P/ EP

�PbiD
�

D
1X

iD1
hg; biiL2.S;S;P/ EP

�PbiDi
�

D 0:

One has already been reminded that, for f 2 Q .E/P
, there exists Pf such thatZ

S

Pf .s/Q .ds/ D
Z

S

Pf .s/ fQ .s/P .ds/ :

Consequently, as f f1; f2g � L .E/P
,

f1f2 2 Q .E/P
;

and Z
S

Pf1 .s/ Pf2 .s/Q .ds/ D
Z

S

Pf1 .s/ Pf2 .s/ fQ .s/P .ds/ :

The right-hand side of the latter equality “reads as”D
f1;
�Pf2fQ�L2.S;S;P/

E
L2.S;S;P/

D h f1;MQ Œf2�iL2.S;S;P/

D
D

f1;PL.E/P MQ Œf2�
E
L2.S;S;P/

D
D

f1;
n
IL.E/P C QB0

o
Œf2�
E
L2.S;S;P/

:
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Now

IL.E/P C QB0 D
1X

iD1
.1C ˇi/ bi ˝ bi C PH?Q

;

and thus, replacing, in the left-hand side below, f1 and f2 by their respective
decompositions g1 C h1 and g2 C h2,D

f1;
n
IL.E/P C QB0

o
Œf2�
E
L2.S;S;P/

D

D
1X

iD1
.1C ˇi/ hg1; biiL2.S;S;P/ hg2; biiL2.S;S;P/ C hh1; h2iL2.S;S;P/ :

It is this latter equality that yields part (iii) of item 2 in (Lemma) 5.6.30. IndeedZ
S

Pf1 .s/ Pf2 .s/D .s/P .ds/ D
Z

S
Pg1 .s/ Pg2 .s/D .s/P .ds/

C
Z

S
Pg1 .s/ Ph2 .s/D .s/P .ds/

C
Z

S

Ph1 .s/ Pg2 .s/D .s/P .ds/

C
Z

S

Ph1 .s/ Ph2 .s/D .s/P .ds/ ;

and, using what has already been proved, and, in particular, independence,Z
S

Ph1 .s/ Ph2 .s/D .s/P .ds/ D
Z

S

Ph1 .s/ Ph2 .s/P .ds/
Z

S
D .s/P .ds/

D
Z

S

Ph1 .s/ Ph2 .s/P .ds/ ;Z
S

Ph1 .s/ Pg2 .s/D .s/P .ds/ D
Z

S

Ph1 .s/D .s/P .ds/
Z

S
Pg2 .s/P .ds/

D 0;

and Z
S
Pg1 .s/ Pg2 .s/D .s/P .ds/ D

D
1X

iD1

1X
jD1
hg1; biiL2.S;S;P/

˝
g2; bj

˛
L2.S;S;P/

Z
S

Pbi .s/ Pbj .s/D .s/P .ds/
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D
1X

iD1
hg1; biiL2.S;S;P/ hg2; biiL2.S;S;P/ .1C ˇi/ :

Part (iii) of item 2 is thus established. ut
Proposition 5.6.31 The prescription d QQ D DdP defines a probability measure,
and QQ D Q, so that Q is absolutely continuous to P, with D as Radon-Nikodým
derivative.

Proof Since D � 0, and that EP ŒD� D 1, d QQ D DdP defines a probability law.
Furthermore

E QQ
h
e�� Pbi

i
D EP

h
e�� Pbi D

i
D
Z
R

e��xf�i .x/ dx D e� 12 .1Cˇi/�
2

;

so that, using independence,

E QQ
h
e�� Pf

i
D EP

h
e��.PgCPh/D

i
D EP

h
e�� PgD

i
EP

h
e�� Ph

i
;

and

EP

h
e�� PgD

i
D
1Y

iD1
EP

h
e��hg;biiL2.S;S;P/ Pbi Di .s/

i

D e�
1
2 �

2
P1

iD1.1Cˇi/hg;bii2L2.S;S;P/ :

But

1X
iD1

.1C ˇi/ hg; bii2L2.S;S;P/ D
Z

S
Pg2 .s/D .s/P .ds/ ;

and, since, with respect to P, Ph is Gaussian with a mean that equals zero,

EP

h
e�� Ph

i
D e�

1
2EPŒPh2�:

Consequently (Corollary 5.4.9 for the last equality)

E QQ
h
e�� Pf

i
D e�

1
2 �

2fRS Pg2.s/D.s/P.ds/CEPŒPh2�g

D e�
1
2 �

2jj f jj2L2ŒQ�

D EQ

h
e�� Pf

i
:

ut



414 5 Reproducing Kernel Hilbert Spaces and Discrimination

Remark 5.6.32 One knows, from (Proposition) 5.4.5, that, when P and Q do
not dominate each other, they are orthogonal. Since, from (Proposition) 5.6.31,
domination implies absolute continuity, one has a dichotomy: Gaussian laws are
either equivalent or orthogonal.

Remark 5.6.33 In case S D H, a real and separable Hilbert space, and T D H, with
Et .h/ D hh; tiH , S is the family of Borel sets. Let P be a Gaussian measure on S,
with a mean equal to zero, and a covariance denoted RP. Then

HE .t1; t2/ D
Z

S
Et1 .s/ Et2 .s/P .ds/

D
Z

S
hs; t1iH hs; t2iH P .ds/

D hRP Œt1� ; t2iH :

Let

(i) UP W H �! H? be defined using

UP Œx� .x/ D hx; Œh�iH ;

(ii) VP W H .HE ;P;T/ �! L .E/P be defined using

VP ŒHE ;P .
; t/� D ŒEt�L2.S;S;P/ ;

(iii) WP W RŒR1=2

P � �! H .HE ;P;T/ be defined using

WP
�
R1=2

P Œt�
� D HE ;P .
; t/ :

UP; VP and WP are unitary.
Suppose Q is another Gaussian measure on S, with a mean equal to zero. The

following relation (introduction to Sect. 5.6.6, item 1):Z
S

Pf .s/Q .ds/ D
Z

S

Pf .s/ fQ .s/P .ds/ ; f 2 Q .E/P
;

applied to Et1Et2 , yields, as seen in the proof of (Lemma) 5.6.30, that

hRQ Œt2� ; t2iH D
Dn

IL.E/P C QBQ

o �
ŒEt1 �L2.S;S;P/

�
; ŒEt1 �L2.S;S;P/

E
L2.S;S;P/

:

Since

ŒEt�L2.S;S;P/ D VPWPR1=2

P Œt� ;
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one obtains the usual condition, in terms of covariance operators, for equivalence
on Hilbert spaces :

RQ D R1=2

P .I C B/R1=2

P : (?)

The same condition expressed in RKHS’s terms comes out as

HE ;Q .t1; t2/ D hfI C Bg ŒHE ;P .
; t1/� ;HE ;P .
; t2/iH.HE;P;T/ :

It is thus the I C B element that is significant, rather than the square roots of (?)
which represent the RKHS ingredient of the problem. The form I C B is ubiquitous
in those matters [42, 104].

5.7 An Extension to Mixtures of Gaussian Laws

As, in practice, Gaussian laws are hard to come across, it is useful to be able to
compute likelihoods when laws are not Gaussian. The simple “gimmick” of change
of time allows one to extend results valid for Gaussian laws to laws that are not. As
shall be seen in Chap. 16, in so doing, one gets, in some cases at least, the best one
may expect. However, to check that the best is achieved may be hard, as that same
chapter proves.

In what follows, one shall show that the expression

XA .!; t/ D X .!;A .!; t//

makes sense when X and A are independent stochastic processes, and that the law of
XA is a mixture of the laws of X and A. When X is the Wiener process, XA is an Ocone
martingale [205]. Those martingales are introduced and described in Sect. 16.7.

One must introduce the following ingredients:

1. .T; T /, a measurable space;
2. E , S and S, as in (Examples) 5.1.3 to 5.1.6;
3. .˝1;A1;P1/ and .˝2;A2;P2/, probability spaces;
4. .˝;A;P/ D .˝1 �˝2;A1 ˝A2;P1 ˝ P2/;
5. ˘1 W ˝ �! ˝1 W .!1; !2/ 7! !1;
6. ˘2 W ˝ �! ˝2 W .!1; !2/ 7! !2;
7. X W ˝1 � T �! R, and A W ˝2 � T �! T, stochastic processes;
8. X W ˝1 �! S, defined using the following assignment:

!1 7! X Œ!1� D X .!1; 
/ D fX.!1; t/; t 2 Tg I

9. A W ˝2 �! TT , defined, mutatis mutandis, as X is;
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10. for t 2 T, fixed, but arbitrary, Jt W ˝ �! ˝1 � T defined using the following
assignment:

Jt .!/ D .˘1 .!/ ;A .˘2 .!/ ; t// D .!1;A .!2; t// I

11. Y W ˝ � T �! R defined using the following assignment:

Y .!; t/ D X .˘1 .!/ ; t/ D X .!1; t/ I

12. Y W ˝ �! S defined, mutatis mutandis, as X is;
13. Z W ˝ � T �! R defined using the following assignment:

Z .!; t/ D X ı Jt .!/ D X .!1;A .!2; t// I

14. Z W ˝ �! S defined, mutatis mutandis, as X is;
15. for !02 2 ˝2, fixed, but arbitrary, Z!02 .!1; t/ D Z

��
!1; !

0
2

�
; t
�
;

16. Z!02 W ˝1 �! S defined, mutatis mutandis, as X is;
17. Tn D ft1; : : : ; tn/ � T, distinct points;
18. for s 2 S,

ETn Œs� D

2
64 s .t1/

:::

s .tn/

3
75 :

Lemma 5.7.1 Let

(a) B 2 B .Rn/,
(b) C D E�1Tn

.B/ � S,

(c) C˝ D Z�1 .C/ � ˝ .

Let also C˝
�
!02
�

be the section of C˝ at !02 , that is,

C˝
�
!02
� D ˚!1 2 ˝1 W

�
!1; !

0
2

� 2 C˝
� � ˝1:

Then

C˝
�
!02
� D Z�1

!02
.C/ :

Proof One has that

Z�1
!02
.C/ D

n
!1 2 ˝1 W Z!02 .!1; 
/ 2 C

o
D ˚

!1 2 ˝1 W Z
��
!1; !

0
2

�
; 
� 2 C

�
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D ˚
!1 2 ˝1 W

�
!1; !

0
2

� 2 Z�1 .C/
�

D C˝
�
!02
�
:

ut
Lemma 5.7.2 Let F W T �! T be a map, and define ˚F W S �! S using the
following rule:

˚F Œs� D s ı F; s 2 S:

˚F is then adapted to S.

Proof Let t 2 T be fixed, but arbitrary. It is sufficient to prove that Etı˚F is adapted.
But

Et ı ˚F .s/ D Et .s ı F/ D s .F .t// D EF.t/ .s/ ;

so that Et ı ˚F D EF.t/, which is adapted. ut
Lemma 5.7.3 Let F!02 W T �! T be defined using the following rule:

F!02 .t/ D A
�
!02 ; t

�
:

Let also PX D P1 ı X�1. Then Z!02 is adapted, and

P1 ı Z�1
!02
D PX ı ˚�1F

!02

:

Proof Let t 2 T be fixed, but arbitrary. It is sufficient to prove that the variable
Et ı Z!02 is adapted. But

n
Et ı Z!02

o
.!1/ D Z!02 .!1; t/ D Z

��
!1; !

0
2

�
; t
� D X

�
!1;A

�
!02 ; t

��
;

so that

Et ı Z!02 D X
�
;A �!02 ; t�� ;

which is adapted. Furthermoren
˚F

!02

.X Œ!1�/
o
.t/ D

n
X Œ!1� ı F!02

o
.t/

D X
�
!1;F!02 .t/

�
D X

�
!1;A

�
!02 ; t

��
D
n
Z!02 Œ!1�

o
.t/ ;
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so that ˚F
!02

ı X D Z!02 , and, consequently, that

P1 ı Z�1
!02
D P1 ı

n
˚F

!02

ı X
o�1 D PX ı ˚�1F

!02

:

ut
Lemma 5.7.4 Given B 2 B .Rn/ ; and C D E�1Tn

.B/, let

Q
!02
1 .C/ D P1

�
C˝

�
!02
��
:

Then

P1 ı Z�1
!02
.C/ D Q

!02
1 .C/ :

Proof It has been shown (Lemma 5.7.1) that Z�1
!02
.C/ D C˝

�
!02
�
. ut

Lemma 5.7.5 Let S0 2 S be fixed, but arbitrary. The map

!2 7! P1 ı Z�1!2 .S0/

is adapted to A2.

Proof Again, due to (Lemma) 5.7.1, for B 2 B .Rn/, and C D E�1Tn
.B/, fixed, but

arbitrary,

Z�1!2 .C/ D C˝ Œ!2�

so that

P1 ı Z�1!2 .C/ D P1 .C˝ Œ!2�/ :

But it is a property of product measures [113, p. 238] that !2 7! P1 .C˝ Œ!2�/ is
adapted. That it is adapted for all S0 2 S follows from [199, p. 31]. ut
Proposition 5.7.6 Let A 2 A2, and S0 2 S, be fixed, but arbitrary. Then

P .Z 2 S0;˘2 2 A/ D
Z

A
P1 ı Z�1!2 .S0/P2 .d!2/

D
Z

A
P2 .d!2/PX ı ˚�1F!2

.S0/ ;

so that the following assignment: .S0; !2/ 7! P1 ı Z�1!2 .S0/ yields a regular
conditional probability of Z with respect to ˘2.
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Proof Let B 2 B .Rn/, and S0 D E�1Tn
.B/, be fixed, but arbitrary. Let Zn be the

vector with components Z .!; ti/ ; 1 � i � n. Then, by Fubini’s theorem,

P .Z 2 S0;˘2 2 A/ D P
�
Zn 2 B; ˘2 2 A

�
D
Z
˝

P .d!/�
B

�
Zn .!/

�
�

A
.˘2 .!//

D
Z

A
P2 .!2/

Z
˝1

P1 .d!1/ �B

�
Zn .!1; !2/

�
:

Now, in that latter integral,

�
B

�
Zn .!1; !2/

� D
D �

B
.Z!2 .!1; t1/ ; : : : ;Z!2 .!1; tn//

D �
B
.ETn ı Z!2 Œ!1�/ :

Consequently, as C D E�1Tn
.B/,

Z
˝1

P1 .d!1/ �B

�
Zn .!1; !2/

� D P1 f!1 2 ˝1 W Z!2 Œ!1� 2 Cg D P1 ı Z�1!2 .C/ :

The proposition is thus true for “cylinder sets,” and, consequently, must be true [192,
p. 11]. ut
Example 5.7.7 Ocone martingales [(Fact) 10.3.45 and Sect. 16.7]

An Ocone martingale is a continuous martingale M whose Dambis-Dubins-
Schwarz representation WM ˘ hMi is such that the Brownian motion WM and the
quadratic variation hMi are independent. Item (Proposition) 5.7.6 leads to a formula
for the law of M.

For item (Proposition) 5.7.6 to be useful, one must be able to compute likelihoods
for those representations. The following results provide tools towards that goal.

Fact 5.7.8 (Product Measure Theorem [6, p. 97–104]) Let S be one of the spaces
of Examples 5.1.3 to 5.1.6. In the last case, assume that S is separable. Let .X;X /
be a measurable space. One shall suppose that, for the following maps:

P1 W S � X �! Œ0; 1� ; and P2 W S � X �! Œ0; 1� ;

these statements are true:

(a) for i 2 f1; 2g, and each x 2 X, Pi .
; x/ is a probability law on S,
(b) for i 2 f1; 2g, and each S0 2 S, x 7! Pi .S0; x/ is adapted to X .
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Given two probability laws on X , say �1 and �2, one may define two probability
laws on S ˝X , say Q1 and Q2, setting, when .S0;X0/ 2 S ˝ X ; i 2 f1; 2g,

Qi .S0 � X0/ D
Z

X0

Pi .S0; x/ �i .dx/ :

Those probability laws have the following properties, for i 2 f1; 2g:
1. For F 2 S ˝ X , fixed, but arbitrary, Qi .F/ D

R
X Pi .F Œx� ; x/ �i .dx/.

2. For every f � 0, adapted to S ˝ X , the integralZ
S

f .s; x/Pi .ds; x/

exists, is adapted to X , andZ
S�X

f .s; x/Qi .ds; dx/ D
Z

X

�Z
S

f .s; x/Pi .ds; x/

�
�i .dx/ :

3. When
R

S�X f .s; x/Qi .ds; dx/ exists (respectively, is finite), then:

(i) there exists X.i/

0 2 X such that �i
�
X.i/

0

� D 1, and, for x 2 X.i/

0 ,

Z
S

f .s; x/Pi .ds; x/

exists (respectively, is finite);
(ii) setting

 .x/ D
8<
:
R

S f .s; x/Pi .ds; x/ when x 2 X.i/

0

0 when x 2 ˚X.i/

0

�c
;

one obtains a map adapted to X ;
(iii) one has thatZ

S�X
f .s; x/Qi .ds; dx/ D

Z
X

�Z
S

f .s; x/Pi .ds; x/

�
�i .dx/ :

4. When
R

X

˚R
S j f j .s; x/Pi .ds; x/

�
�i .dx/ <1,

Z
S�X

f .s; x/Qi .ds; dx/

is finite.
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Proposition 5.7.9 Assume that context [(Fact)] 5.7.8 obtains. Then:

1. When Q2 � Q1, one has that

(i) �2 � �1,
(ii) there exists X0 2 X such that

• �2 .X0/ D 1,
• for x 2 X0, P2 .
; x/� P1 .
; x/.

2. When

(a) �2 � �1,
(b) there exists X0 2 X such that

• �2 .X0/ D 1
• for x 2 X0, P2 .
; x/� P1 .
; x/,

then Q2 � Q1.
3. When items 1 and 2 obtain, there exits

(i) DP W S � X �! R, adapted to S ˝X ,
(ii) X0 2 X with �2 .X0/ D 1,

such that

• for x 2 X0,
dP2.�;x/
dP1.�;x/ .s/ D DP .s; x/,

• dQ2
dQ1

.s; x/ D DP .s; x/
d�2
d�1
.x/.

Proof [1] Suppose that Q2 � Q1. Let

D D dQ2

dQ1

; and d .x/ D
Z

S
D .s; x/P1 .ds; x/ :

Set

d� .x/ D

8̂<
:̂

1
d.x/ when d .x/ > 0

0 when d .x/ � 0
:

Then, for S0 2 S;X0 2 X , fixed, but arbitrary,

Q2 .S0 � X0/ D
Z

X0

Z
S0

D .s; x/P1 .ds; x/ �1 .dx/

D
Z

X0

�
d� .x/

Z
S0

D .s; x/P1 .ds; x/

�
d .x/ �1 .dx/ :
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Thus, setting S0 to S,

�2 .X0/ D
Z

X0

d .x/ �1 .dx/ ;

which means, in particular, that �2 � �1, and that

d�2
d�1

.x/ D d .x/ :

Consequently

Q2 .S0 � X0/ D
Z

X0

�
d� .x/

Z
S0

D .s; x/P1 .ds; x/

�
�2 .dx/

D
Z

X0

�Z
S0

D .s; x/ d� .x/P1 .ds; x/

�
�2 .dx/ :

In other “words,” for fixed, but arbitrary S0 2 S, almost surely in X, with respect
to �2,

P2 .S0; x/ D
Z

S0

D .s; x/ d� .x/P1 .ds; x/ :

As S is separable, there is a countable base fSi; i 2 Ig for S. Let Xi be the set in X
for which �2 .Xi/ D 1, and

P2 .Si; x/ D
Z

Si

D .s; x/ d� .x/P1 .ds; x/ ; x 2 Xi:

Let X0 D \i2IXi. Then �2 .X0/ D 1, and, for x 2 X0, P2 .
; x/� P1 .
; x/, and

DP .s; x/ D D .s; x/ d� .x/ :

Proof [2] Suppose that �2 � �1, that there exists a set X0 2 X such that �2 .X0/ D 1,
and that, for x 2 X0, P2 .
; x/� P1 .
; x/.

Let F 2 S ˝ B be fixed, but arbitrary. As, for i 2 1; 2,

Qi .F/ D
Z

X
Pi .F Œx� ; x/ �i .dx/ ; F 2 S ˝ X ;

when Q1 .F/ D 0, there is a set X0 2 X such that �1 .X0/ D 1, and, for x 2 X0,
P1 .F Œx� ; x/ D 0, that is, P2 .F Œx� ; x/ D 0. But �2

�
Xc
0

� D 0, so that �2 .X0/ D 1.
Consequently Q2 .F/ D 0.

Proof [3] Item 3 has been obtained while proving item 1. ut
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Remark 5.7.10 Let ES W S � X �! S be the projection map: ES .s; x/ D s. It is
adapted to S˝X and S. Thus �i D Qi ı E�1S defines a law on S which is a mixture
of laws. Result (Lemma) 5.5.6 then yields conditions for equivalence of mixtures.
Since ES is not an injection, result (Lemma) 5.5.7 does not produce the Radon-
Nikodým derivative for �2 with respect to �1. One can however try to use, to obtain
that derivative, the facts which follow.

Lemma 5.7.11 Let P and Q be probability laws on .X;X /. Let .Y;Y/ be a
measurable space, and F W X �! Y be a map adapted to X and Y . Let finally
PF and QF be the laws induced on Y by F and, respectively, P and Q. Then, when
Q� P, QF � PF, and

dQF

dPF
D EP

	
dQ

dP
j F


:

Furthermore, when X is a separable metric space, and X its Borel �-algebra, then

EP

	
dQ

dP
j F


.y/ D

Z
X

dQ

dP
.x/PX jF .dx; y/ ;

where PX jF is the regular image conditional law of P with respect to F, that is [274,
p. 484],

P
�
X0 \ F�1 .Y0/

� D Z
Y0

PX jF .X0; y/PF .dy/ ; X0 2 X ; Y0 2 Y:

Proof Let f W Y �! R be adapted to Y , and bounded. By definition, for fixed, but
arbitrary Y0 2 Y ,Z

F�1.Y0/
f f ı Fg .x/ dQ

dP
.x/P .dx/ D

Z
Y0

EP

	
f f ı Fg dQ

dP
j F


.y/PF .dy/ :

But

EP

	
f f ı Fg dQ

dP
j F


D f EP

	
dQ

dP
j F


;

and Z
F�1.Y/

f f ı Fg .x/ dQ

dP
.x/P .dx/ D

Z
Y

f .y/QF .dy/ :

Consequently Z
Y

f .y/QF .dy/ D
Z

Y
f .y/EP

	
dQ

dP
j F


.y/PF .dy/ ;
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and

dQF

dPF
D EP

	
dQ

dP
j F


:

The last part of the statement follows from the standard properties of conditional
expectations and regular conditional probability laws [274, p. 485]. ut

To use (Lemma) 5.7.11 with mixture laws, one must proceed to the following
assignments (ES is the projection map .s; x/ 7! s, and a  � b means that a is
replaced with b):

X  � S � X;
Y  � S;
F  � ES;

X  � S ˝ X ;
Y  � S;
P  � Q1;

Q  � Q2;

PF  � Q1 ı E�1S D �1;
QF  � Q2 ı E�1S D �2:

Result (Lemma) 5.7.11 then yields that

d�2
d�1

.s/ D
Z

S�X

dQ2

dQ1

.�; x/ ŒQ1�S˝X jES
.d .�; x/ ; s/ ;

where, given A 2 S ˝ X , and S0 2 S, fixed, but arbitrary,

Q1

�
A \ E�1S .S0/

� D Z
S0

ŒQ1�S˝X jES
.A; s/Q1 ı E�1S .ds/ :

One may then state:

Corollary 5.7.12 One has, with the assumptions of (Proposition) 5.7.9, item 2, and
the notation of (Remark) 5.7.10, that

d�2
d�1

.s/ D
Z

S�X

dP2 .
; x/
dP1 .
; x/ .�/

d�2
d�1

.x/ ŒQ1�S˝X jES
.d .�; x/ ; s/ :

The following remarks are meant to clarify some of the statements to follow. To
that end, let fSx; x 2 Xg � S be a partition of S, that is, Sx1\Sx2 D ; when x1 ¤ x2,
and [x2XSx D S.

Remark 5.7.13 Let fx W Sx �! Y be a map for each x 2 X. There is a unique
F W S �! Y such that F jSxD fx.
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Remark 5.7.14 When for x 2 X, fx is adapted to S, F need not be adapted as
F�1 .Y0/ D [x2X

˚
f�1x .Y0/ \ Sx

�
.

Remark 5.7.15 Let ES W S � X �! S be the evaluation map: ES .s; x/ D s. Define
f W S �! S � X setting f .s/ D .s; x/, where x is the index of the set Sx containing s.
It is a well-defined map as there is only one set Sx that contains s. Then ESf .s/ D s,
and f is injective.

Lemma 5.7.16 Let the assumptions of (Proposition) 5.7.9, item 2, be valid, and
notation be that of (Remark) 5.7.10.

1. When there exists a measure � on S such that, for x 2 X, P1 .
; x/� �, then

d�2
d�1

.s/ D
R

X DP .s; x/
dP1.�;x/

d� .s/ �2 .dx/R
X

dP1.�;x/
d� .s/ �1 .dx/

:

2. When there exists fSx; x 2 Xg � S such that,

(a) for x1 ¤ x2, Sx1 \ Sx2 D ;,
(b) for x1 ¤ x2, P1 .
; x1/ ? P1 .
; x2/,
(c) for x1 ¤ x2, P1 .Sx1 ; x1/ D 1; P1 .Sx2 ; x1/ D 0,
(d) d .s/ DPx2X

dP2.�;x/
dP1.�;x/ .s/ �Sx

.s/ is adapted,
(e) �2 D �1,

then

d�2
d�1
D d:

Proof Let

D .s; x/ D dP1 .
; x/
d�

.s/ :

One may assume that D is adapted to S ˝ X : indeed, letting Q D �˝ �1, one has
that Q1 � Q, and one may use (Proposition) 5.7.9, item 3, to get an adapted map.
Then:

Q1 .S0 � X0/ D
Z

X0

P1 .S0; x/ �1 .dx/

D
Z

X0

�Z
S0

dP1 .
; x/
d�

.s/ � .ds/

�
�1 .dx/

D
Z

X0

�Z
S0

D .s; x/ � .ds/

�
�1 .dx/

D
Z

S0

�Z
X0

D .s; x/ �1 .dx/

�
� .ds/ :
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Setting X0 to X, one gets that

�1 .S0/ D
Z

S0

�Z
X

D .s; x/ �1 .dx/

�
� .ds/ ;

so that �1 � �, and

d�1
d�

.s/ D
Z

X
D .s; x/ �1 .dx/ :

Since P2 .
; x/� P1 .
; x/� �,

dP2 .
; x/
d�

.s/ D dP2 .
; x/
dP1 .
; x/ .s/

dP1 .
; x/
d�

.s/ D DP .s; x/D .s; x/ :

As above

Q2 .S0 � X0/ D
Z

X0

P2 .S0; x/ �2 .dx/

D
Z

X0

�Z
S0

dP2 .
; x/
d�

.s/ � .ds/

�
�2 .dx/

D
Z

X0

�Z
S0

DP .s; x/D .s; x/ � .ds/

�
�2 .dx/

D
Z

S0

�Z
X0

DP .s; x/D .s; x/ �2 .dx/

�
� .ds/ ;

so that, setting X0 to X,

d�2
d�

.s/ D
Z

X
DP .s; x/D .s; x/ �2 .dx/ :

Finally, as �2 � �1 � �,

d�2
d�1
D

d�2
d�
d�1
d�

D
R

X DP .s; x/D .s; x/ �2 .dx/R
X D .s; x/ �1 .dx/

:

Item 1 is thus true. For item 2, given a function f W S �! R adapted to S, and
bounded, Z

S
f .s/ d .s/P1 .ds; x/ D

Z
S

f .s/P2 .ds; x/ ;
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and thus Z
S

f .s/ d .s/ �1 .ds/ D
Z

X

Z
S

f .s/ d .s/P1 .ds; x/ �1 .dx/

D
Z

X

Z
S

f .s/P2 .ds; x/ �1 .dx/

D
Z

S
f .s/ �2 .ds/ :

ut
Proposition 5.7.17 Let fPi .
; x/ ; x 2 X; i 2 f1; 2gg be a family of probability laws
on S such that:

(A) for fixed, but arbitrary S0 2 S, the map x 7! Pi .S0; x/ is adapted to X ;
(B) there is a family fSx; x 2 Xg � S such that:

(a) when x1 ¤ x2, Sx1 \ Sx2 D ;;
(b) for every fixed, but arbitrary X0 2 X , [x2X0Sx 2 S;
(c) for i 2 f1; 2g,

Pi .Sx1 ; x2/ D
�
1 when x1 D x2
0 when x1 ¤ x2

:

Let �1 and �2 be laws on X and set, for S0 2 S; i 2 f1; 2g,

�i .S0/ D
Z

X
Pi .S0; x/ �i .dx/ :

Then �2 � �1 if, and only if,

1. �2 � �1,
2. there exists X0 2 X such that

• �2 .X0/ D 1,
• for x 2 X0, P2 .
; x/� P1 .
; x/.

Then, on Sx,

d�2
d�1

.s/ D dP2 .
; x/
dP1 .
; x/ .s/

d�2
d�1

.x/ :

Proof Let, when s 2 Sx, f .s/ D .s; x/. f is adapted as, for fixed, but arbitrary S0 2 S
and X0 2 X ,

fs 2 S W f .s/ 2 S0 � X0g D [x2X0 fSx \ S0g D f[x2X0Sxg \ S0 2 S:
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Let Q D �1 ı f�1. As

Sx0 \ Œf[x2X0Sxg \ S0� D Sx0 \ Œ[x2X0 .Sx \ S0/�

D [x2X0 .Sx0 \ Sx \ S0/

D
�

Sx0 \ S0 when x0 2 X0
; when x0 2 Xc

0

;

one has that

P1 .f[x2X0Sxg \ S0; x0/ D P1 .Sx0 \ Œf[x2X0Sxg \ S0� ; x0/

D �X0
.x0/P1 .S0; x0/ :

Consequently,

Q .S0 � X0/ D �1
�

f�1 .S0 � X0/
�

D �1 .f[x2X0Sxg \ S0/

D
Z

X
P1 .f[x2X0Sxg \ S0; Qx/ �1 .dQx/

D
Z

X
�X0

.Qx/P1 .S0; Qx/ �1 .dQx/

D Q1 .S0 � X0/ :

The conclusion is that �2 � �1 implies Q2 � Q1, and (Proposition) 5.7.9 obtains.
It remains to identify the Radon-Nikodým derivative. To that end, let

� .S0/ D
Z

X
P1 .S0; x/ �2 .dx/ ; S0 2 S:

From (Lemma) 5.7.16, one has that �2 � �, and that, for s 2 Sx,

d�2
d�

.s/ D P2 .
; x/
P1 .
; x/ .s/ :

Let  W S �! R be adapted to S, and bounded, and define d W S �! RC using,
when s 2 Sx,

d .s/ D d�2
d�1

.x/ :
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Then Z
S
 .s/ � .ds/ D

Z
X

�Z
S
 .s/P1 .ds; x/

�
�2 .dx/

D
Z

X

�Z
S
 .s/P1 .ds; x/

�
d�2
d�1

.x/ �1 .dx/

D
Z

X

�Z
S
 .s/ d .s/P1 .ds; x/

�
�1 .dx/

D
Z

S
 .s/ d .s/ �1 .dx/ :

Thus �� �1, and d�
d�1
D d. Consequently,�2 � �� �1, and

d�2
d�1
D d�2

d�

d�

d�1
;

which is the required result. ut
Example 5.7.18 Let PW be the standard Wiener measure on C Œ0; 1�, and f be
adapted and bounded. Let, for c 2 C Œ0; 1�, and E .c; t/ D c .t/,

X .c; t/ D
Z t

0

f .x/ dxC E .c; t/ :

Let A be a stochastic process with continuous, strictly increasing paths, denoted a,
independent of E (it could have, for example, the form A .!; t/ D R t

0
g2 .!; x/ dx

with g independent of the Brownian motion, and appropriate paths). One can form

X .c;A .!; t// D
Z A.!;t/

0

f .x/ dxC E .c;A .!; t// ;

which may be written [(Fact) 10.3.36], using ˘CŒc; !� D c; ˘˝Œc; !� D !,

Y .Œc; !�; t/ D
Z t

0

f .A .˘˝Œc; !�; x//A .˘˝Œc; !�; dx/CM .˘CŒc; !�; t/ :

Let Wa be the Gaussian process with covariance a .t1 ^ t2/: it is a Brownian motion
with change of time a. The laws of Wa and Wb are orthogonal as soon as a ¤ b. As
hMi D A, Ca D fc W hMi D ag provides a partition of C Œ0; 1� of the type required
in (Proposition) 5.7.17. One has thus that, on Ca, with respect to PWa ,

dPY

dPM
.c/ D

Z 1

0

f .a .x// E .c; dx/� 1
2

Z 1

0

f 2 .a .x// a .dx/ :
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Remark 5.7.19 The latter example exhibits what shall be proved (in Part III,
Chap. 16, with much effort) to be practically the most general case of absolute
continuity with respect to a continuous martingale that is not Gaussian. It is in that
respect, as already mentioned, that mixtures are useful: they produce the adequate
results, though it may prove difficult to ascertain that they are the best one can
achieve.



Part II
Cramér-Hida Representations

The sequence of words “Cramér-Hida representation” shall often be abbreviated
in the sequel using the acronym “CHR,” and “Cramér-Hida,” “CH.” The Cramér-
Hida representation is a representation of a second order stochastic process as a
sum of outputs of causal filters whose inputs are orthogonal “white noises.” Such
representations are useful for two reasons: the first is that the elements in the sum
have a “natural” interpretation, and the second, that they are mathematically simple
and highly structured. All these representations are obtained as unitary maps from L2
spaces, or Hilbert spaces which behave like L2 spaces, to spaces of classes of random
variables, or vectors. The elements in the ranges of these unitary maps are often
interpreted as stochastic integrals as they mimic, in spaces of (classes of) random
variables, L2 spaces.

The Cramér-Hida representation is the result of the search of flexible structures,
in an a priori “shapeless” space, the linear space generated by the values of a
Hibert space valued function. Chapter 6 exhibits what is obtained when using the
immediate structure provided by a basis, hence the “first principles” denomination.
Chapter 7 contains the representation of the linear space as a direct integral, before
a basis is used. Finally, Chap. 9 exhibits the finer structures of the same linear space
in the form of martingales. Chapter 8 is about multiplicity one, which is helpful in
applications. It also shows the limits of multiplicity in that respect. One also finds
in there Goursat processes whose deployment in applications has not found justice
. . . yet.

In the sequel, the main use of the Cramér-Hida representation shall be that it
serves as the bridge which allows one to use stochastic calculus techniques with
models that are not semimartingales.

One shall sometimes use the abbreviated “Cramér-Hida” for “Cramér-Hida
representation.” The latter will also be called the “Cramér-Hida decomposition.”



Chapter 6
Cramér-Hida Representations from “First
Principles”

The Cramér-Hida representation shall be, at first, the decomposition of a function,
with values in a Hilbert space, into manageable parts, one continuous, and one
discontinuous. The continuous part shall furthermore be decomposed into a possibly
infinite sum of continuous and orthogonal functions, which have a representation
as integrals, with respect to an orthogonal vector measure, itself determined by a
function with orthogonal increments. The decomposition is obtained under some
“natural” assumptions [Assumption 6.4.1].

6.1 Preliminaries

This section registers all that is needed to obtain the Cramér-Hida representation
(CHR), explains and illustrates the underlying assumptions.

6.1.1 Context

The setup shall be as follows. The set T � R is an interval, and H is a real Hilbert
space. The elements tl D inf T; and tr D sup T; are the boundaries of T; they may or
may not belong to T; and they may or may not be finite. The object of study shall be
f W T �! H; a well-defined map. The notation t ## tn means that ftn; n 2 Ng � T
is a strictly decreasing sequence whose elements are strictly greater that t and has
the latter as limit. Analogously one defines tn "" t:When lim�""t f .�/ makes sense,
and exists, it shall be denoted f� .t/ :Mutatis mutandis, fC .t/ denotes limt##� f .�/ :
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For t 2 T; fixed, but arbitrary, Lt Œ f � � H represents the (closed) linear subspace
generated in H by the set f f .�/ ; � � tg W

LtŒ f � D V Œff .�/; � 2 T; � � tg�;

and Pt; the projection of H; with range Lt Œ f � : The following subspaces shall also
be of interest:

L�t Œ f � D
_
�<t

L� Œ f � ; and LCt Œ f � D
\
�>t

L� Œ f � :

The corresponding projections shall be P�t ; and PCt : These subspaces are “banded”
below by

L\T Œ f � D
\
t2T

Lt Œ f � ; with projection P\ ;

and above, by

L[T Œ f � D
_
t2T

Lt Œ f � ; with projection P[ :

When

L[T Œ f � D L\T Œ f � ;

f is deemed deterministic, and, when

L\T Œ f � D f0Hg ;

purely nondeterministic. When f represents an evolution, if it is deterministic,
then the evolution is completely known “at the start of time”; if it is purely
nondeterministic, nothing is known of the evolution “at the start of time.” The
Cramér-Hida representation concentrates on functions of the latter type.

Remark 6.1.1 One shall make repeated use of the following property. For projec-
tions P and Q of H; with P � Q;

RŒQ � P� D RŒQ� \RŒP�? D fh 2 H W P Œh� D 0;Q Œh� D hg :

Indeed the first equality is a standard result about projections [8, p. 413], and the
second rephrases the middle expression above.

Remark 6.1.2 The dimension of Lt Œ f � \ L�t Œ f �
? is at most one.
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One has that

f .t/ D P�t Œ f .t/�C h; h 2 Lt Œ f � ; h ? L�t Œ f �
? ;

and thus

V Œf f .�/ ; � � tg� � L�t Œ f �
_

V Œh� :

Remark 6.1.3 When fC exists, fC .t/ 2 LCt Œ f � :
Indeed, given � > 0; and h 2 LtC� Œ f �? ; fixed, but arbitrary, as soon as ı < �;

hf .tC ı/ ; hiH D 0:

Consequently, ˝
fC .t/ ; h

˛
H
D lim

ı##0
hf .tC ı/ ; hiH D 0:

Thus fC .t/ 2 LtC� Œ f � :

Remark 6.1.4 When fC .t/ exists, let L.C/
t Œ f � be the subspace generated by Lt Œ f �

and fC .t/ : It may be strictly included in LCt Œ f � : Here is an example:

Example 6.1.5 Let T D Œ0; 1� ; and fe1; e2; e3g � H be orthonormal. Consider the
following function:

f .t/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

0H when t 2 �0; 1
4

�
e1 when t 2 � 1

4
; 1
2

�
e2 C

�
t � 1

2

�
e3 when t 2 � 1

2
; 1
�
:

The function f is continuous, except for t D 1
4

and t D 1
2
; where

f

�
1

4

�
D 0H; fC

�
1

4

�
D e1; f

�
1

2

�
D e1; fC

�
1

2

�
D e2:

Furthermore,

Lt Œ f � D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

f0Hg when t 2 �0; 1
4

�
V Œe1� when t 2 � 1

4
; 1
2

�
V Œe1; e2; e3� when t 2 � 1

2
; 1
�
:
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The subspace generated by L 1
2
Œ f � and fC

�
1
2

�
is thus V Œe1; e2� ; whereas

LC1
2

Œ f � D V Œe1; e2; e3� :

That example also shows that, for � > t;

PCt Œ f .�/� does not necessarily equal fC .t/

(it does when f has orthogonal increments—see below). Indeed, fC. 1
4
/ D e1; while

PC1
4

	
f

�
3

4

�

D PVŒe1�

	
e2 C 1

4
e3



D 0H :

6.1.2 Functions and Determinism

The result to follow shows that a map f W T �! H can always be decomposed into
deterministic and purely nondeterministic parts, that is, a “static” contribution of the
“past,” and an “evolving” part. In practice only the latter is of real interest.

Proposition 6.1.6 Let T be an interval, H a real Hilbert space, and

f W T �! H;

a well-defined map. One has the following unique representation: for t 2 T; fixed,
but arbitrary,

f .t/ D g .t/C h .t/ ;

with:

1. g W T �! H purely deterministic, that is, for t 2 T; fixed, but arbitrary,

L[T Œg� D Lt Œg� D L\T Œg� I

2. h W T �! H purely nondeterministic, that is,

L\T Œh� D f0Hg :

Proof Let P\ be the projection in L[T Œ f � ; whose range is L\T Œ f � : Set

g .t/ D P\ Œ f .t/� ; and h .t/ D ˚IL[T Œ f � � P\
�
Œ f .t/� :
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By definition, for ft1; t2g � T; fixed, but arbitrary,

hg .t1/ ; h .t2/iH D 0;

and, for t 2 T; fixed, but arbitrary, since

Pt
˚
IL[T Œ f � � P\

�
Œ f .t/� D ˚IL[T Œ f � � P\

�
Œ f .t/� ;

one has that

Lt Œh� � Lt Œ f � ; Lt Œh� ? RŒP\�; and Lt Œg� � RŒP\�:

Consequently,\
t2T

Lt Œh� �
\
t2T

Lt Œ f � D RŒP\�; and
\
t2T

Lt Œh� ? RŒP\�;

so that

L\T Œh� D
\
t2T

Lt Œh� D f0Hg ;

and h is purely nondeterministic. Now, as for fixed, but arbitrary t 2 T;

f .t/ D g .t/C h .t/ ; g .t/ ? h .t/ ;

one has that

Lt Œ f � � Lt Œg�˚ Lt Œh� :

But, since PtP\ Œ f .t/� D P\ Œ f .t/� ; for fixed, but arbitrary t 2 T;

Lt Œg� � Lt Œ f � ;

and, as seen,

Lt Œh� � Lt Œ f � :

It follows that

Lt Œ f � D Lt Œg�˚ Lt Œh� :

In particular

RŒP\� � Lt Œg�˚ Lt Œh� ;
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and, since RŒP\� ? Lt Œh� ;

RŒP\� � Lt Œg� � Lt Œ f � ;

so that \
t2T

Lt Œg� D RŒP\�:

As, by definition, for t 2 T; fixed, but arbitrary, Lt Œg� � RŒP\�;

Lt Œg� D RŒP\�:

g is thus purely deterministic.
Suppose that f has another decomposition of the form f D gC h; say

f D QgC Qh:
Then, for k 2 RŒP\�; and t 2 T; fixed, but arbitrary,

hg .t/ ; kiH D hf .t/ ; kiH D hQg .t/ ; kiH ;

so that g .t/ D Qg .t/ ; and thus h .t/ D Qh .t/ : ut

6.1.3 Functions with Orthogonal Increments

Functions with orthogonal increments shall be the building blocs of the Cramér-
Hida decomposition. Here are the salient features of those functions, for that context.

Definition 6.1.7 Let f W T �! H have the following property: for fixed, but
arbitrary ft1; t2; t3; t4g � T; such that t1 < t2 � t3 < t4;

hf .t2/� f .t1/; f .t4/� f .t3/iH D 0:

One then says that f has orthogonal increments.

Example 6.1.8 Let fh .t/ D Pt Œh� ; h 2 H: The function fh has orthogonal
increments.

Proposition 6.1.9 Let f W T �! H have orthogonal increments, and t0 2 T be
fixed, but arbitrary. Set, for t 2 T; fixed, but arbitrary,

F .t/ D
8<
:
jj f .t/ � f .t0/jj2H when t � t0

� jj f .t/ � f .t0/jj2H when t < t0

:



6.1 Preliminaries 439

Then, for fixed, but arbitrary t1 < t2; ft1; t2/ � T;

F .t2/� F .t1/ D jj f .t2/ � f .t1/jj2H ;

so that F is a function with values in R; which is increasing.

Proof Since the increments of f are orthogonal in H; for fixed, but arbitrary t1 <
t2; ft1; t2/ � T;

• when t0 < t1 < t2;

F .t2/ D jj f .t2/� f .t0/jj2H
D jj f .t2/� f .t1/C f .t1/ � f .t0/jj2H
D jj f .t2/� f .t1/jj2H C F .t1/ I

• when t1 < t0 < t2;

jj f .t2/ � f .t1/jj2H D jj f .t2/ � f .t0/C f .t0/ � f .t1/jj2H
D jj f .t2/ � f .t0/jj2H C jj f .t0/ � f .t1/jj2H
D F .t2/� F .t1/ I

• when t1 < t2 < t0;

�F .t1/ D jj f .t1/ � f .t0/jj2H
D jj f .t0/ � f .t2/C f .t2/ � f .t1/jj2H
D jj f .t0/ � f .t2/jj2H C jj f .t2/ � f .t1/jj2H
D �F .t2/C jj f .t2/ � f .t1/jj2H :

When t0 D t1; F .t1/ D F .t0/ D 0; and

F .t2/ D jj f .t2/ � f .t0/jj2H D jj f .t2/ � f .t1/jj2H ;

and, when t0 D t2; as above, F .t2/ D 0; and

�F .t1/ D jj f .t1/� f .t0/jj2H D jj f .t2/� f .t1/jj2H :

Consequently, in all cases,

F .t2/ � F .t1/ D jj f .t2/� f .t1/jj2H :

ut
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Corollary 6.1.10 Let f W T �! H have orthogonal increments. The limits f�.t/
and fC.t/ exist. Furthermore, F� and FC being defined analogously to f� and fC

respectively,

F .t/ � F� .t/ D jj f .t/ � f�.t/jj2H ;
FC .t/ � F .t/ D jj fC.t/ � f .t/jj2H ;
FC .t/ � F� .t/ D jj fC.t/ � f�.t/jj2H :

Proof To prove, for example, the existence of f�.t/; one may proceed as follows.
Let tn "" t be fixed, but arbitrary. Then, as seen above [(Proposition) 6.1.9],

ˇ̌̌̌
f .tn/ � f .tp/

ˇ̌̌̌ 2
H
D F .tn/� F

�
tp
�
:

Since F .tn/ � F .t/ <1; and that F has limits to the left,

lim
n;p!1

ˇ̌̌̌
f .tn/� f .tp/

ˇ̌̌̌ 2
H
D 0:

Thus f f .tn/ ; n 2 Ng is a Cauchy sequence. Its limit is f� .t/ : ut
Remark 6.1.11 When f W T �! H is purely nondeterministic, and has orthogonal
increments, for ft1; t2g � T; t1 < t2; fixed, but arbitrary,

jj f .t2/ � f .t1/jj2H D jj f .t2/jj2H � jj f .t1/jj2H :

For then indeed, when tl does not belong to T; there exists t0 2 T; with tl < t0 <
t1; and then

hf .t2/ ; f .t1/iH D hf .t2/ � f .t1/C f .t1/ ; f .t1/ � f .t0/C f .t0/iH
D hf .t2/ � f .t1/ ; f .t0/iH C jj f .t1/jj2H :

Letting t0 ## tl, one has that

hf .t2/ ; f .t1/iH D jj f .t1/jj2H :

When tl 2 T; f .tl/ D 0H; and

hf .t2/ ; f .t1/iH D hf .t2/ � f .t1/C f .t1/ ; f .t1/ � f .tl/iH D jj f .t1/jj2H :

Finally jj f .t2/� f .t1/jj2H D jj f .t2/jj2H � 2 hf .t2/ ; f .t1/iH C jj f .t1/jj2H :
Proposition 6.1.12 Let f W T �! H have orthogonal increments. The function fC

of (Corollary) 6.1.10 has then orthogonal increments, and is continuous to the right.
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Proof Let ft1; t2; t3; t4g � T; t1 < t2 � t3 < t4; be fixed, but arbitrary, and let
fı; ı1; ı4g � RC n f0g be such that t1 C ı1 < t2 C ı

2
� t3 C ı < t4 C ı4: Then

0 D

f

�
t2 C ı

2

�
� f .t1 C ı1/ ; f .t4 C ı4/� f .t3 C ı/

�
H

:

Letting ı; ı1; ı4 ## 0; one obtains that

0 D ˝fC .t2/� fC .t1/ ; f
C .t4/� fC .t3/

˛
H
:

Also limı##0 fC .tC ı/ D limı##0 limı?##0 f .tC ı C ı?/ D fC .t/ : ut
Lemma 6.1.13 Let f W T �! H have orthogonal increments. Let ı > 0 be fixed,
but arbitrary, and

Lıt Œ f � D V Œf f .tC d/ � f .t/; 0 < d � ıg�:

Then

LtCı Œ f � D Lt Œ f �˚ Lıt Œ f � :

Proof Let t1 < t2; ft1; t2g � T; be fixed, but arbitrary. Then

Pt2 Œ f .t1/� D f .t1/;

Pt1 Œ f .t2/� D Pt1 Œ.f .t2/� f .t1//C f .t1/�

D Pt1 Œ f .t1/�

D f .t1/:

Consequently, when ı > 0 is fixed, but arbitrary, and P0 D PtCı � Pt; for fixed, but
arbitrary d 2 �0; ı� ;

P0 Œ f .tC d/� f .t/� D PtCı Œ f .tC d/� � PtCı Œ f .t/� � Pt Œ f .tC d/�C Pt Œ f .t/�

D f .tC d/� f .t/ � f .t/C f .t/

D f .tC d/� f .t/:

Thus Lıt Œ f � � RŒP0�:
If now h 2 RŒP0�; but h ? Lıt Œ f � ; for fixed, but arbitrary d 2 �0; ı� ;

hh; f .tC d/� f .t/iH D 0:



442 6 Cramér-Hida Representations from “First Principles”

But P0 has LtCı Œ f � \ Lt Œ f �
? as range [(Remark) 6.1.1], so that h ? Lt Œ f � by its

choice, and thus

hh; f .tC d/iH D 0; d 2 �0; ı� :

In other words h ? LtCı Œ f � : As h 2 LtCı Œ f � ; one must have h D 0H; and thus
RŒP0� D Lıt Œ f � ; that is,

Lıt Œ f � D LtCı Œ f � \ Lt Œ f �
? :

The assertion follows from the following equality: PtCı D Pt C .PtCı � Pt/ : ut
Lemma 6.1.14 Let f W T �! H have orthogonal increments. For fixed, but
arbitrary ı > 0;

LtCı Œ f � \ LCt Œ f �
? D RŒPtCı � PCt � D V Œf f .t C d/ � fC.t/; 0 < d � ıg�:

Proof One has, for � > 0; fixed, but arbitrary, that (see proof of (Lemma) 6.1.13)

PCt Œ f .tC �/� D lim
�##0

PtC� Œ f .t C �/� D lim
�##0

f .tC �/ D fC.t/;

and that

PtC�
�

fC.t/
� D lim

�##0
PtC� Œf .tC �/� D lim

�##0
f .tC �/ D fC.t/:

Consequently,

PtCı
�

f .t C d/� fC.t/
� D f .t C d/� fC.t/;

and

PCt
�

f .tC d/� fC.t/
� D 0H:

Using (Remark) 6.1.1, one obtains that

V Œf f .t C d/� fC.t/; 0 < d � ıg� � LtCı Œ f � \ LCt Œ f �
? :

Suppose h 2 LtCı Œ f � \ LCt Œ f �
? ; is fixed, but arbitrary, and that

h ? V Œf f .t C d/ � fC.t/; 0 < d � ıg�:

Then ˝
h; f .tC d/� fC.t/

˛
H D 0;
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so that

hh; f .tC d/iH D
˝
h; fC.t/

˛
H D 0:

Consequently, h ? f .t C d/; 0 < d � ı: But h ? LCt Œ f � by its choice. Thus
h ? LtCı Œ f � : But then h D 0H: ut
Corollary 6.1.15 Let f W T �! H have orthogonal increments. One has that\

ı>0

V Œf f .tC d/� fC.t/; 0 < d � ıg� D f0Hg :

Proof The left-hand side of the assertion is the range of the limit of the net of
projections

˚
PtCı � PCt ; ı > 0

�
[(Lemma) 6.1.14]. ut

Proposition 6.1.16 Let f W T �! H have orthogonal increments. One has that

LCt Œ f � \ Lt Œ f �
? D RŒPCt � Pt� D V

�
fC.t/ � f .t/

�
:

Proof Because of (Lemma) 6.1.13, RŒPCt � Pt� D \ı>0Lıt Œ f � : It suffices thus to
check that

V
�

fC.t/ � f .t/
� D \ı>0Lıt Œ f � :

But one has the following orthogonal decomposition:

f .t C d/ � f .t/ D �f .tC d/� fC.t/
�C �fC.t/ � f .t/

�
;

which extends to linear combinations, and one has thus the orthogonal decomposi-
tion

V Œf f .tC d/� f .t/; d 2 �0; ı�g� D V
�˚

f .tC d/� fC.t/; d 2 �0; ı���
C V

�
fC.t/ � f .t/

�
:

But then [266, p. 40],

Lıt Œ f � D V Œf f .tC d/� fC.t/; d 2 �0; ı�g�˚ V
�

fC.t/ � f .t/
�
;

and, because, for decreasing nets of projections, limı .Pı C P/ D .limı Pı/C P;

\ı>0Lıt Œ f � D \ı>0V Œf f .tC d/� fC.t/; d 2 �0; ı�g�˚ V
�

fC.t/ � f .t/
�
:

However, because of (Corollary) 6.1.15, \ı>0V Œff .tC d/� fC.t/; d 2 �0; ı�g� D
f0Hg : ut
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Corollary 6.1.17 Let f W T �! H have orthogonal increments. One has that PCt D
Pt if, and only if, fC.t/ D f .t/:

Remark 6.1.18 Let t0 � t; ft; t0g � T; and ı > 0 be fixed, but arbitrary. Then

jj f .tC ı/ � f .t0/jj2H D jj f .tC ı/� f .t/C f .t/ � f .t0/jj2H
D jj f .tC ı/� f .t/jj2H C jj f .t/ � f .t0/jj2H
� jj f .tC ı/� f .t/jj2H

Letting ı go to zero, one gets that

ˇ̌̌̌
fC.t/ � f .t0/

ˇ̌̌̌ 2
H
� ˇ̌̌̌ fC.t/ � f .t/

ˇ̌̌̌ 2
H
:

Proposition 6.1.19 Let f W T �! H have orthogonal increments, and h in L[T Œ f �
be fixed, but arbitrary. Set fh .t/ D Pt Œh� : Then:

1. fh is a function with orthogonal increments;

2. when f is continuous to the left, so is fhI
3. fCh exists;

4. supt2T jj fh.t/jjH <1I
5. when L\T Œ f � D f0Hg ; L\T Œ fh� D f0Hg :
Proof Since the range of Pt is Lt Œ f � � H; fh.t/ 2 H; for t 2 T: Furthermore, for
t1 < t2 � t3 < t4; ft1; t2; t3; t4g � T; fixed, but arbitrary,

hfh.t2/ � fh.t1/; fh.t4/� fh.t3/iH D
D hfPt2 � Pt1g Œh� ; fPt4 � Pt3g Œh�iH
D hfPt4 � Pt3g fPt2 � Pt1g Œh� ; hiH :

However

fPt4 � Pt3g fPt2 � Pt1g D Pt4Pt2 � Pt4Pt1 � Pt3Pt2 C Pt3Pt1

D Pt2 � Pt1 � Pt2 C Pt1 :

fh has thus orthogonal increments. Items 2 and 3 follow from the properties of the
family fPt; t 2 Tg : Item 4 is immediate as

jj fh.t/jjH D jjPt Œh�jjH � jjhjjH <1:

Item 5 follows from the inclusion Lt Œ fh� � Lt Œ f � : ut
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6.2 Hilbert Space Valued, Countably Additive, Orthogonally
Scattered Measures: A Summary of Results

The acronym for “countably additive, orthogonally scattered measures” shall be
CAOSM, and to emphasize that values are in the real Hilbert space H; H-CAOSM.
Expressions of the form Z

f dm;

where f is a class of functions with scalar values, and m; a measure, with values in a
real Hilbert space, say H; are the building blocs of the Cramér-Hida representation.
A compendium of properties of such objects is presented below. The reference is
[182].

6.2.1 General Case

It is the case for which the measure m is defined for a family of subsets of an
arbitrary set.

Measures

Definition 6.2.1 Let S be a set which is not empty. A family P ŒS� of subsets of S is
a pre-ring over S when, given S1 and S2 in P ŒS�;

1. S1 \ S2 2 P ŒS�I
2. there are disjoint sets ˙1; : : : ; ˙n in P ŒS� such that S1 � S2 D [n

iD1˙i:

Definition 6.2.2 Let P ŒS� be a pre-ring over SI H; a real Hilbert space; and m W
P ŒS� �! H; a map such that

1. given disjoint fSn; n 2 Ng in P ŒS� with [1nD1Sn 2 P ŒS�;

1X
nD1

m.Sn/

is unconditionally convergent towards m.[1nD1Sn/;

2. given disjoint S1 and S2 in P ŒS�; m.S1/ ? m.S2/:

The map m is then called a CAOSM on P ŒS�:
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Example 6.2.3 Given H D L2.X;X ; �/; and X0 2 X ; let IX0 be the equivalence
class of �X0

in H: The assignment X0 7! IX0 defines a CAOSM on X :

Fact 6.2.4 Let P ŒS� be a pre-ring over SI H; a real Hilbert space; and the map
m W P ŒS� �! H; a CAOSM on P ŒS�: Let, for S0 2 P ŒS�; fixed, but arbitrary,

M.S0/ D jjm.S0/jj2H :

M is a finite, positive, countably additive measure on P ŒS�:M is called “the measure
associated with m:”

Fact 6.2.5 Let P ŒS� be a pre-ring over SI H; a real Hilbert space; and the map
m W P ŒS� �! H; a CAOSM on P ŒS�: All the sets involved below, at which m is
evaluated, are assumed to belong to P ŒS�: The following relations obtain:

1. m.S1 [ S2/ D m.S1/C m.S2/� m.S1 \ S2/:
2. m.S1 � S2/ D m.S1/� m.S1 \ S2/:

3. m.S1�S2/ D m.S1/C m.S2/� 2m.S1 \ S2/:

4. M.S1�S2/ D jjm.S1/� m.S2/jj2H :
5. jjm.S1/� m.S2/jj2H D M.S1/CM.S2/� 2M.S1 \ S2/:

6. When S1 � S2;

(i) m.S2 � S1/ D m.S2/� m.S1/:

(ii) jjm.S2/ �m.S1/jj2H D M.S2/�M.S1/I
(iii) jjm.S1/jjH � jjm.S2/jjH I
(iv) when m.S2/ D 0H; m.S1/ D 0H:

Fact 6.2.6 Let P ŒS� be a pre-ring over SI H; a real Hilbert space; M; a finite,
positive, countably additive measure on P ŒS�I and m W P ŒS� �! H; a map. The
following statements are equivalent:

1. Given S1 and S2 in P ŒS�; fixed, but arbitrary,

hm.S1/;m.S2/iH D M.S1 \ S2/:

2. m is a CAOSM over P ŒS�; with M as associated measure.

Fact 6.2.7 Let P ŒS� be a pre-ring over SI H; a real Hilbert space; the map m W
P ŒS� �! H; a CAOSM on P ŒS�I M�.P ŒS�/; the unique, positive, �-finite, countably
additive, extension of M to the �-ring �.P ŒS�/ generated by P ŒS�I and

�m
f .P ŒS�/ D

˚
S0 2 �.P ŒS�/ W M�.P ŒS�/.S0/ <1

�
:
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Then:

1. m has a unique CAOSM extension m�m
f .P ŒS�/ to �m

f .P ŒS�/:
2. M�m

f .P ŒS�/; the measure associated with m�m
f .P ŒS�/; is obtained as the restriction of

M�.P ŒS�/ to �m
f .P ŒS�/:

Definition 6.2.8 Let RŒS� be a �-ring over SI M; a positive, �-finite, countably
additive, measure on RŒS�I

Rf ŒS� D fR 2 RŒS� W M.R/ <1g I

the map m W Rf ŒS� �! H; a CAOSM; and MRf ŒS�; the restriction of M to Rf ŒS�:
Then m is a H-CAOSM over .S;RŒS�;M/:

The Linear Space of a CAOSM

Definition 6.2.9 Let P ŒS� be a pre-ring of subsets of SI H; a real Hilbert space; and
the map m W P ŒS� �! H; a CAOSM on P ŒS�: The (linear sub-) space generated by
m is the following subspace of H W

V Œ.m.S0/; S0 2 P ŒS�g�:
It shall be denoted LŒm�:

Fact 6.2.10 Let m be a H-CAOSM over .S;RŒS�;M/; and P ŒS� be a pre-ring such
that P ŒS� � Rf ŒS� � �.P ŒS�/: Then, letting mP ŒS� be the restriction of m to P ŒS�;

1. LŒm� D L
�
mP ŒS�

� I
2. when P ŒS� is countable, LŒm� is separable.

Integration

Definition 6.2.11 Let m be a H-CAOSM over .S;RŒS�;M/: Given a function f ;
let its equivalence class in L2.S;RŒS�;M/ be Œ f �: The class of a simple function
f DPn

iD1 ˛i�Si
; ˛i 2 R; Si 2 Rf ŒS�; i 2 Œ1 W n�; has the following integral:

Z
Œ f �dm D

nX
iD1

˛i m.Si/:

Given Œ f � 2 L2.S;RŒS�;M/; let fŒ fn�; n 2 Ng be a sequence of equivalence classes
of simple functions in L2.S;RŒS�;M/; converging, in that same space, to Œ f �: ThenZ

Œ f �dm D lim
Z
Œ fn�dm:
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Fact 6.2.12 The integral defined in (Definition) 6.2.11 has the following proper-
ties:

1.
R
Œ f �dm 2 H:

2.
˝R
Œ f �dm;

R
Œg�dm

˛
H D

R
fgdM:

3. Given S0; S1; S2 2 RŒS�; Z
S0

Œ f �dm D
Z
Œ�S0

f �dm;

and Z
S1

Œ f �dm;
Z

S2

Œg�dm

�
H

D
Z

S1\S2

Œ f �dm;
Z

S1\S2

Œg�dm

�
H

:

4.
R
Œ˛ f C ˇg�dm D ˛ R Œ f �dmC ˇ R Œg�dm:

5. Œ fn�! Œ f � in L2.S;RŒS�;M/ if, and only if,
R
Œ fn�dm! R

Œ f �dm:

6. LŒm� D ˚R Œ f �dm; Œ f � 2 L2.S;RŒS�;M/
�
; and

U W L2.S;RŒS�;M/ �! H

defined using the following relation:

U ŒŒ f �� D
Z
Œ f �dm

is a unitary operator onto LŒm�:

Projection onto the Linear Space of a CAOSM

One may be interested in PLŒm�; the projection in H; onto LŒm�: It may be computed
as follows. Let again m be a H-CAOSM on .S;RŒS�;M/: Given h 2 H; and R 2
Rf ŒS�; fixed, but arbitrary, let

�h.R/ D hh;m.R/iH :

It is a finite, countably additive measure on the ring Rf ŒS�:
Now, given a pre-ring P ŒS�; and a finite, countably additive measure �; on P ŒS�;

with, on P ŒS�, finite total variation j�j ; the latter has [85, p. 136] a unique, positive,
�-finite, countably additive, extension on the �-ring �.P ŒS�/ generated by P ŒS�; say

j�j�.P ŒS�/ :
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Furthermore, � has a unique, finite, countably additive extension, say �Rf ŒS�; to the
ring

Rf ŒS� D
˚
S0 2 �.P ŒS�/ W j�j�.P ŒS � / .S0/ <1

�
:

One may apply the latter considerations to the measure�h: j�hj ;which is defined
on the ring Rf ŒS�; has an extension to the �-ring �.Rf ŒS�/; which is RŒS�: Write
j�hjRŒS� for that extension. �h has then an extension to the following ring:

˚
S0 2 RŒS� W j�hjRŒS� .S0/ <1

�
:

That latter ring shall be denoted RhŒS�: One has that

Rf ŒS� � RhŒS�:

Fact 6.2.13 Let m be a H-CAOSM on .S;RŒS�;M/: Then:

1. on RhŒS�; �h � MI
2.
h

d�h
dM

i
2 L2.S;RŒS�;M/I

3. PLŒm� Œh� D
R h d�h

dM

i
dmI

4. given Œ f � 2 L2.S;RŒS�;M/; fixed, but arbitrary,
h;
Z
Œ f �dm

�
H

D
Z

f d�h:

Remark 6.2.14 Let m be a H-CAOSM on .S;RŒS�;M/: One can associate with m a
RKHS as follows. Define F W Rf ŒS� �! H using the following relation:

F.S0/ D m.S0/:

Then

VŒ
˚
F.S0/; S0 2 Rf ŒS�

�
� D VŒ

˚
m.S0/; S0 2 Rf ŒS�

�
� D LŒm�:

Let then LF W H �! RRf ŒS�; be defined using the following relation:

LFŒh�.S0/ D hh;m.S0/iH D �h.S0/:

Thus the RKHS associated with m is a Hilbert space of measures whose inner
product is obtained using the following relation:

h�h1 ; �h2iRKHS D hLFŒh1�;LF Œh2�iRKHS

D ˝
PLŒm�Œh1�;PLŒm�Œh2�

˛
H
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D
Z 	

d�h1

dM



dm;

Z 	
d�h2

dM



dm

�
H

D
Z

d�h1

dM

d�h2

dM
dM:

The reproducing kernel is obtained using the following relation:

CF.S1; S2/ D hF.S1/;F.S2/iH
D hm.S1/;m.S2/iH
D M.S1 \ S2/

D
Z
�

S1
�

S2
dM:

Remark 6.2.15 Let m be a H-CAOSM on .S;RŒS�;M/I P; a projection of LŒm�I and
Q a projection of L2.S;RŒS�;M/: Then U?PU; U as in (Fact) 6.2.12, is a projection
of L2.S;RŒS�;M/; and UQU?; a projection of LŒm�:

A case in point is as follows. Suppose one defines UŒt� D f .t/: Let the inclusion
T0 � T be strict. Let LT0 Œ f � be the subspace of L[T Œ f � generated linearly by the
family f f .t/; t 2 T0g : The associated projection shall be P0: LT0 Œ� and Q0 are
obtained similarly, mutatis mutandis. As, when t 2 T0;

P0Œ f .t/� D f .t/ D
Z
t dm D

Z
Q0Œt�dm;

one has, for Qf 2 L[T Œ f �; Q 2 L[T Œ�; Qf D UŒ Q�; fixed, but arbitrary,

P0
� Qf � D Z Q0

� Q� dm;

or P0 D UQ0U?:

Remark 6.2.16 Let m be a H-CAOSM on .S;RŒS�;M/: Let S0 2 RŒS�; and M.S0/ <
1: Let L0Œm� be the subspace generated linearly in LŒm� by the elements m.S00/;
S00 2 RŒS�; S00 � S0: Then, P0 being the projection onto L0Œm�;

P0

	Z
Œ f �dm



D
Z

IS0 Œ f �dm:

The integral on the right of the latter equality is indeed an element of LŒm�; andZ
Œ f �dm �

Z
IS0 Œ f �dm;m.S00/

�
H

D
Z
�SnS0

�S00
f dM D 0:
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Isomorphisms of Linear Spaces

The next result introduces two objects of the same kind. Indices are used to
distinguish the cases.

Fact 6.2.17 Let m be a H-CAOSM on .S;RŒS�;M/; K; a real Hilbert space, and
A W LŒm� �! K; a bounded, linear operator. Set, for R 2 Rf ŒS�; fixed, but arbitrary,

mA.R/ D AŒm.R/�:

Suppose that, for R1 and R2 in Rf ŒS�; fixed, arbitrary, and disjoint,

mA.R1/ ? mA.R2/:

Then:

1. mA is a K-CAOSM on Rf ŒS�I
2. for R 2 Rf ŒS�; fixed, but arbitrary,

MA.R/ � jjAjj2 M.R/I

3. L2.S;RŒS�;M/ � L2.S;RŒS�;MA/I
4. for Œ f � 2 L2.S;RŒS�;M/; fixed, but arbitrary,

A

	Z
Œ f �dm



D
Z
Œ f �dmAI

5. when A is unitary (write U for A), mU is a K-CAOSM over .S;RŒS�;M/; and
LŒmA� D U ŒLŒm�� :

Fact 6.2.18 Let m be a H-CAOSM, and n be a K-CAOSM, both on .S;RŒS�;M/:
There exists then a unitary U W LŒm� �! LŒn� such that, for R 2 Rf ŒS�; fixed, but
arbitrary, n.R/ D UŒm.R/�:

Absolute Continuity

Fact 6.2.19 Let m be a H-CAOSM on .S;RŒS�;M/; and ˚ W S �! R; an adapted
function. Set:

(a) R˚ ŒS� D
˚
R 2 RŒS� W Œ˚� 2 L2.R;RŒS� \ R;MjRŒS�\R/

�
;
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(b) for R 2 R˚ ŒS�; fixed, but arbitrary,

M˚.R/ D
Z

R
˚2.s/M.ds/;

and

m˚.R/ D
Z

R
Œ˚�dm:

Then, M�.R˚ ŒS�/

˚ being the extension of M˚ to �.R˚ ŒS�/;

1. m˚ is a H-CAOSM over .S; �.R˚ ŒS�/;M
�.R˚ ŒS�/

˚ /I
2. given Œ f � 2 L2.S; �.R˚ ŒS�/;M

�.R˚ ŒS�/

˚ /; fixed, but arbitrary,

Œ f ˚� 2 L2.S;RŒS�;M/;

and Z
Œ f �dm˚ D

Z
Œ f ˚�dm:

Change of Measure

Fact 6.2.20 Let m be a H-CAOSM over .S;RŒS�;M/; and � W S �! T; a map. Let

R� .T/ D
˚
T0 � T W ��1.T0/ 2 RŒS�

�
:

Then m� D m ı ��1 is a H-CAOSM over .T;R� ŒT�;M� D M ı ��1/: When f is
adapted to R� .T/; f ı � is adapted to RŒS�; andZ

Œ f �dm� D
Z
Œ f ı ��dm;

in the sense that, if either integral exists, the other does too, and they are equal.

An Interchange of Integration Lemma

Fact 6.2.21 ([153, p. 49]) Let m be a H-CAOSM over .S;RŒS�;M/I the space
L2.S;RŒS�;M/ be separable; and

(a) ˚ W S� S �! R be adapted to RŒS�˝RŒS�; and such that, for � 2 S; fixed, but
arbitrary,

Œ˚.�; 
/� 2 L2 .S;RŒS�;M/ I
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(b) f .�/ D R Œ˚.�; 
/� dmI
(c) � be a measure on RŒS� such that, for s 2 S; fixed, but arbitrary,

j� j .s/ D
Z

S
j˚.�; s/j�.d�/ <1I

(d) �.s/ D RS ˚.�; s/�.d�/.

When j� j 2 L2.S;RŒS�;M/; f is weakly (Pettis) integrable, andZ
S

f .s/ �.ds/ D
Z
Œ� � dm:

Proof Let indeed g 2 L Œm� ; fixed, but arbitrary, correspond unitarily to
�
g
�

in
L2.S;RŒS�;M/: As

hg; f .�/iH D
Z

T
M.ds/ g.s/ ˚.�; s/;

� 7! hg; f .�/iH is adapted [46, p. 164]. Furthermore

Z
S
�.d�/ jhg; f .�/iHj D

Z
S
�.d�/

ˇ̌̌
ˇ
Z

S
M.ds/ g.s/ ˚.�; s/

ˇ̌̌
ˇ

�
Z

S
M.ds/

ˇ̌
g.s/

ˇ̌ j� j .s/
< 1:

Finally, L Œm� is separable, as it is unitarily isomorphic to L2 .T; T ;M/ ; which has
been assumed separable. Since the range of f is in L Œm� ; f is thus weakly integrable
[207, p. 111]. But then

g;
Z

S
f .�/�.d�/

�
H

D
Z

S
hg; f .�/iH �.d�/

D
Z

S
�.d�/

Z
S

M.ds/ g.s/ ˚.�; s/:

The assumption on j� j allows one to proceed to an integration interchange [46, p.
166], so that

g;
Z

S
f .�/�.d�/

�
H

D
Z

S
M.ds/ g.s/ �.s/ D


g;
Z
Œ� � dm

�
H

:

Since g is arbitrary, one is done. ut
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Representation of Functions as Integrals with Respect to a CAOSM

When the covariance of a function f W T �! H; H; a real Hilbert space, has an
L2 representation (Definition 2.3.1), an integral representation of f itself is obtained
from its covariance representation, as asserted in the next result. In such a case, one
is thus able to produce “explicitly” a measure of type m; that is, one which is a
CAOSM.

Fact 6.2.22 ([122, p. 59]) Let f W T �! H be fixed, but arbitrary, and, for ft1; t2g �
T; fixed, but arbitrary, set

Cf .t1; t2/ D hf .t1/ ; f .t2/iH :

Suppose that there exists fkt 2 L2 .X;X ; �/ ; t 2 Tg such that,

Cf .t1; t2/ D hkt1 ; kt2iL2.X;X ;�/ :

There exists then m W S �! H; a CAOSM, such that

f .t/ D
Z

kt dm:

Furthermore:

1. L[T Œ f � � L Œm� I
2. L[T Œ f � D L Œm� if, and only if, the following family: fkt; t 2 Tg is total in

L2 .X;X ; �/ :

Proof Let K be the (closed) subspace generated in L2 .X;X ; �/ by the family
fkt; t 2 Tg ; and define U W K �! H using the following relation:

U Œkt� D f .t/ :

That definition makes sense. Indeed, by assumption,

hf .t1/; f .t2/iH D Cf .t1; t2/ D hkt1 ; kt2iL2.X;X ;�/ ;

from which one obtains thatˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iU Œkti �

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛if .ti/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D
nX

iD1

nX
jD1

˛i˛j
˝
f .ti/; f .tj/

˛
H
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D
nX

iD1

nX
jD1

˛i˛j
˝
kti ; ktj

˛
L2.X;X ;�/

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛ikti

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
L2.X;X ;�/

:

U may thus be extended, using linearity and continuity, to a unitary map between K
and L[T Œ f � :

Proof ([2]) Suppose that K D L2.X;X ; �/:

U is then a unitary map between L2.X;X ; �/ and L[T Œ f � : Let X0 2 X be such
that IX0 2 L2.X;X ; �/; and define m W X �! H using the following relation:

m .X0/ D U ŒIX0 � :

One thus obtains an orthogonal, additive, vector set function, and

M .M0/ D jjm .X0/jj2H D � .X0/ :

Consequently, for g 2 L2.X;X ; �/; fixed, but arbitrary,Z
gdm D U Œg� ;

and in particular Z
kt dm D f .t/ :

L Œm� is thus L[T Œ f � :

Proof ([1]) Suppose that K is strictly contained in L2.X;X ; �/:

Let:

(a)
˚
k?� ; � 2 


�
be a total family in K?I

(b) C? .�1; �2/ D
D
k?�1 ; k

?
�2

E
L2.X;X ;�/

I
(c) � D T ]
 (disjoint union);
(d) k?� D kt; when � D t 2 T; and k?� D k?� , when � D � 2 
I
(e) C? .�1; �2/ D

D
k?�1 ; k

?
�2

E
L2.X;X ;�/

:

C? is a covariance, and there is thus a Hilbert space H?; and a map

f? W 
 �! H?;
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such that

hf? .�1/ ; f? .�2/iH? D C? .�1; �2/ :

Let H? D H ˚ H?; and

f ? .�/ D
8<
:
�
f .t/ ; 0H?

�
when � D t 2 T

.0H; f? .�// when � D � 2 

:

f ? has covariance C?; and the subspace generated by the family

fk?�; � 2 �g

is L2.X;X ; �/: However L[T Œ f � is isomorphic to K: ut

6.2.2 Case of Intervals

It is the case for which the map m is defined for subsets of intervals of R; and
its values are obtained from the increments of a function with values in H; and
orthogonal increments.

Let thus T � R be an interval; H; a real Hilbert space; g W T �! H; a map
with orthogonal increments. P ŒS� shall be IŒT�; the set of intervals �t1; t2� � T: mg

is obtained setting

mg.�t1; t2�/ D g.t2C/ � g.t1C/;
and Mg; setting

Mg.�t1; t2�/ D jjg.t2C/� g.t1C/jj2H :
mg and Mg have unique extensions to the Borel sets of T; say T : One shall not
distinguish between respectively mg and Mg; and their extensions. The extension of
mg can be computed for sets in T of finite, extended, Mg-measure. The result is a
CAOSM on .T; T ;Mg/: The distinguishing feature of the present case is that the
integral can be obtained as a Stieltjes one, with some extra formulae in the bargain,
as follows.

Fact 6.2.23 Suppose g has orthogonal increments on RI mg and Mg are the
(extended) measures introduced above;  is a real valued, continuous function,
defined on Œt1; t2�: Then Z t2

t1

Œ�dmg
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may be obtained as the limit, in H; of expressions of the following form:

nX
iD1

.�i/ fg.�i/ � g.�i�1g ;

and one has that the integral is the sum of three terms, that is,Z t2

t1

Œ�dmg D .t1/ fg.t1C/ � g.t1/g C
Z
�t1;t2Œ

Œ�dmg C .t2/ fg.t2/� g.t2�/g :

Fact 6.2.24 When  in (Fact) 6.2.23 is absolutely continuous,Z t2

t1

Œ�dmg D .t2/g.t2/ � .t1/g.t1/�
Z
Œt1;t2�

0.�/g.�/d�;

where the integral on the right-hand side of the equality is a Bochner integral.

What has been streamlined above shall be used within the framework of the
Cramér-Hida representation, where the specific assumptions, which are adopted to
that end, lead to a number of adjustments, presented below in the form of remarks.
They also serve to fix notation. That representation involves additive vector set
functions always obtained from “ordinary” functions.

Let thus f W T �! H be a well-defined function which is continuous to the left
(an assumption that shall be made to obtain also the Cramér-Hida representation),
and set

mf .Œt1; t2Œ/ D f .t2/ � f .t1/ :

The extension of mf to a measure may be based on [182, p. 69], or on the fact that mf

is sigma-additive, and has finite variation, if, and only if, f is continuous to the left,
and has bounded variation [75, Paragraph 18]. It will have orthogonal increments if,
and only if, f does, and then

Mf .Œt1; t2Œ/ D jj f .t2/� f .t1/jj2H D F .t2/ � F .t1/ :

Remark 6.2.25 When tl 2 T; mf .Œtl; tl C �Œ/ D f .tl C �/ � f .tl/ ; so that, when
fC .tl/ exists

mf .ftlg/ D fC .tl/� f .tl/ :

Remark 6.2.26 When t2 D t; and t1 ## tl (so that fC .tl/ exists), one gets that

mf .�tl; tŒ/ D f .t/ � fC .tl/ :
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Thus, when fC .tl/ D 0H; L[T Œ f � is isomorphic to

L2
�
�tl;1Œ\ T; �tl;1Œ\ T ;Mj�tl;1Œ\T

f

�
;

and, when tl 2 T; from (Remark) 6.2.25, mf .ftlg/ D �f .tl/ :When f .tl/ ¤ 0H; one
has an, in practice, awkward situation, as one would expect that f .tl/ D 0H when
fC .tl/ D 0H: The requirement that f be purely nondeterministic insures that fact,
and that will be a consequence of the assumptions that shall guide the Cramér-Hida
representation. Then, in particular, L[T Œ f � D L

�
mf
�
; so that the former has the

integral representation of the latter, which is often useful when computing with f :

Remark 6.2.27 Let f ; continuous to the left, have orthogonal increments, with
fC .tl/ D 0H (take for instance f .t/ D 0H; t 2 T), and L[T Œ f � � H: Let
h 2 H; h ¤ 0H; be orthogonal to L[T Œ f � ; and set g .t/ D h C f .t/ : g is then
continuous to the left, has orthogonal increments, gC .tl/ D h; and mg D mf :

However

L[T Œg� D V Œh�˚ L[T Œ f � ; and L
�
mg
� D L

�
mf
� D L[T Œ f � ;

so that L
�
mg
� � L[T Œg� :

Remark 6.2.28 Let h1 and h2 be orthonormal in H; and set k1 D h1 C h2; k2 D
2�1 fh1 C 3h2g : Define: T D Œ0; 1� ; and

f .t/ D �
�0; 12 �

.t/ k1 C �� 12 ;1� .t/ k2:

f is continuous to the left. It has orthogonal increments. Indeed, for fixed, but
arbitrary ft1; t2; t3; t4g � Œ0; 1� ; t1 < t2 � t3 < t4; one has to consider the following
“qualitative” cases:

0
�
0; 1

2

� �
1
2
; 1
�

f .t2/� f .t1/ f .t4/ � f .t3/

t1 t2; t3; t4 k1 0H

t1 t2; t3 t4 k1 k2 � k1
t1 t2 t3; t4 k1 0H

t1 t2; t3; t4 k2 0H

t1; t2; t3; t4 0H 0H

t1; t2; t3 t4 0H k2 � k1
t1; t2 t3; t4 0H 0H

t1 t2; t3; t4 k2 � k1 0H

t1; t2; t3; t4 0H 0H



6.3 Boundedness, Limits, and Separability 459

As hk1; k2 � k1iH D
˝
h1 C h2;

h2�h1
2

˛
H
D 0;

hf .t2/� f .t1/; f .t4/� f .t3/iH D 0:

Furthermore fC .0/ D k1 ¤ 0H: However L
�
mf
� D L[T Œ f � D V Œh1; h2� ; so that

the latter may obtain without fC .tl/ D 0H:

Remark 6.2.29 In the sequel one shall try to work as much as possible with the
following generic notation: for a function, say f W T �! H; the additive vector
set function it determines is denoted mf ; or m f when indices are used. And Mf and
M f denote the measures associated respectively with mf and m f ; using their norm
squared.

6.3 Boundedness, Limits, and Separability

Separability refers to that of L[T Œ f � and is basic to the Cramér-Hida representation.
It is furthermore necessary in practice, for computing. It is thus useful to have
“reasonable” conditions on f that insure separability of L[T Œ f � ; and explain what
other restrictions one uses may mean. Schematically, and intuitively, L[T Œ f � should
be separable when f is smooth enough. One meets below two ways to understand
“smooth enough.”

Lemma 6.3.1 Let t 2 T be fixed, but arbitrary, and

˙ Œt� D ft D ftn; n 2 Ng � T W t ## tng :

Define, for f W T �! H; fixed, but arbitrary,

� .t/ D sup
ft1;t2g�˙Œt�

�
lim sup

n

ˇ̌̌̌
f
�
t.1/n

� � f
�
t.2/n

�ˇ̌̌̌
H

�
:

Then fC .t/ exists if, and only if, � .t/ D 0:
Proof Suppose that fC .t/ exists.

Then, whatever t 2 ˙ Œt� ; fC .t/ D limn f .tn/ : Thus, given
˚
t1; t2

� � ˙ Œt� ;

lim sup
n

ˇ̌̌̌
f
�
t.1/n

� � f
�
t.2/n

�ˇ̌̌̌
H
D lim

n

ˇ̌̌̌
f
�
t.1/n

�� f
�
t.2/n

�ˇ̌̌̌
H
D 0;

so that � .t/ D 0:
Proof Suppose that � .t/ D 0:



460 6 Cramér-Hida Representations from “First Principles”

Let t 2 ˙ Œt� be fixed, but arbitrary, and choose t1 and t2 to be arbitrary, but fixed
subsequences of t: The assumption � .t/ D 0 then means that f f .tn/ ; n 2 Ng is a
Cauchy sequence, so that it has a limit, which, by definition, is fC .t/ : ut

For a set S; jSj represents the (cardinal) number of its elements.

Lemma 6.3.2 Suppose that, for fixed, but arbitrary t 2 T; f� .t/ exists. Then, for
t 2 T; fixed, but arbitrary, there is �t > 0 such that

jf� 2 Œt � �t; t� \ T W � .�/ D1gj < @0:

Proof Suppose not, that is, there is t0 2 T such that, for fixed, but arbitrary � > 0;

jft 2 Œt0 � �; t0� \ T W � .t/ D1gj � @0:

Let T0 be the set of those t values, at, or to the left of t0; at which �.t/ D 1: Then
t0 must be an accumulation point of T0: Because of the definition of �;

� .t/ � 2 sup
t2˙Œt�

lim sup
n
jj f .tn/jjH :

Thus, when t 2 T0; �.t/ D 1; and, since lim sup an > c implies that an > c
infinitely often, for any � > 0; there is then a sequence

˚
t.�/n

� � T0; converging to t0
from the left, such that for all n 2 N;ˇ̌̌̌

f
�
t.�/n

�ˇ̌̌̌
H
> �:

But then, choosing � > jj f� .t0/jjH ;ˇ̌̌̌
f
�
t.�/n

� � f� .t0/
ˇ̌̌̌

H
� ˇ̌ˇ̌̌̌ f

�
t.�/n

�ˇ̌̌̌
H
� jj f� .t0/jjH

ˇ̌
D ˇ̌˚ˇ̌̌̌

f
�
t.�/n

�ˇ̌̌̌
H
� ��C f� � jj f� .t0/jjHgˇ̌

D ˚ˇ̌̌̌
f
�
t.�/n

�ˇ̌̌̌
H
� ��C f� � jj f� .t0/jjHg

> � � jj f� .t0/jjH :

Consequently,
ˇ̌̌̌
f
�
t.�/n

� � f� .t0/
ˇ̌̌̌

H
is arbitrarily large, uniformly in n 2 N; and that

contradicts the existence of a limit to the left. ut
Proposition 6.3.3 Suppose that, for fixed, but arbitrary t 2 T; f� .t/ exists. Then
the number of points t 2 T at which fC .t/ does not exist is at most countable.

Proof Because of (Lemma) 6.3.1,

Td D
˚
t 2 T W fC .t/ does not exist

� D ft 2 T W � .t/ > 0g :
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Let

T .n/

d D
˚
t 2 T W �.t/ > n�1

�
:

Then

ft 2 T W � .t/ > 0g D
[

n

˚
t 2 T W � .t/ > n�1

� D[
n

T .n/

d :

Suppose that the assertion is false, that is, jTdj > @0: There exists then n0 such
that

ˇ̌
T .n0/

d

ˇ̌
> @0: Let, for p 2 N; fixed, but arbitrary,

T .n;p/

d D T .n/

d \ Œp; pC 1Œ:

As

T .n0/

d D
[

p

˚
T .n0/

d \ Œp; pC 1Œ� D[
p

T .n0;p/

d ;

there exists p0 such that
ˇ̌
T .n0;p0/

d

ˇ̌
> @0 W T .n0;p0/

d is an uncountable set of points
t 2 Œp0; p0 C 1Œ at which �.t/ > n�10 ; and for which fC.t/ does not exist.

As shall presently be seen, there exists then t0 2 �p0; p0 C 1� such that, for fixed,
but arbitrary � > 0; ˇ̌

Œt0 � �; t0� \ T .n0/

d

ˇ̌ � @0; (?)

that is, each left neighborhood of t0 contains infinitely many values of t for which
� .t/ > n�10 : Suppose indeed, as a temporary assumption, that such is not the case:
for t 2 �p0; p0 C 1� ; fixed, but arbitrary, there exists �t > 0; such thatˇ̌

Œt � �t; t� \ T .n0/

d

ˇ̌
< @0:

Let Ip0C1 be the family of intervals of the form Œp0 C 1 � �; p0 C 1� for which 0 <
� < 1; and ˇ̌

Œp0 C 1 � �; p0 C 1� \ T .n0/

d

ˇ̌
< @0:

That family is not void, because of the temporary assumption, when choosing t D
p0 C 1: So the following definition:

t? D inf
�2�0;1Œ

.p0 C 1 � �/

makes sense. But one must then have that t? D p0: Indeed, if t? > p0; since t? is the
smallest element for which the interval it determines with p0 C 1 contains a finite
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number of values, and that T .n0;p0/

d is uncountable, all sets of the form

Œt? � ı; t?� \ T .n0/

d ; ı > 0;

will contain, because of the choice of n0 and p0; infinitely many points, contrary to
the temporary assumption. Consequentlyˇ̌

Œp0; p0 C 1�\ T .n0/

d

ˇ̌
is at most countable, but that is impossible given that

ˇ̌
T .n0;p0/

d

ˇ̌
> @0:

Let t0 be the value appearing in (?). Since f� .t0/ exists, for � > 0; fixed, but
arbitrary, there exists ı� > 0 small enough such that, for t 2 Œt0 � ı�; t0� ;

jj f� .t0/� f .t/jjH < �:

Using (?) and (Lemma) 6.3.2, let then˚
t.0/p ; p 2 N

�
be a sequence such that t.0/p "" t0; and n�10 < �

�
t.0/p

�
<1: By definition

�
�
t.0/p

� D sup
f�1;�2g�˙

h
t
.0/
p

i lim sup
p

ˇ̌̌̌
f
�
�.1/p

� � f
�
�.2/p

�ˇ̌̌̌
H
:

Since, for i 2 f1; 2g ; eventually t.0/p < �.i/p < t0;ˇ̌̌̌
f
�
�.1/p

� � f
�
�.2/n

�ˇ̌̌̌
H
� ˇ̌̌̌ f ��.1/p

� � f� .t0/
ˇ̌̌̌

H
C ˇ̌̌̌ f� .t0/ � f

�
�.2/n

�ˇ̌̌̌
H

� n�10 ;

and one ends up with a contradiction as the left-hand side of those inequalities yields
�.t.0/p / > n�10 : ut
Proposition 6.3.4 Suppose that, for fixed, but arbitrary t 2 T; f� .t/ exists. Then

1. the number of points t 2 T at which f is not continuous to the left is at most
countable;

2. the number of points t 2 T at which f is not continuous to the right is at most
countable.

Proof Let ı .t/ D jj f� .t/ � f .t/jjH ; Td D ft 2 T W ı .t/ > 0g ; and suppose that
jTdj > @0: Again, there are integers n0 and p0 such thatˇ̌

T .n0;p0/

d

ˇ̌ D ˇ̌�p0; p0 C 1� \ ˚t 2 T W ı .t/ > n�10
�ˇ̌
> @0:



6.3 Boundedness, Limits, and Separability 463

Furthermore, (?) of (Proposition) 6.3.3 obtains: there exists t0 2 �p0; p0 C 1� such
that each left neighborhood of t0 contains infinitely many points t for which

ı .t/ > n�10 :

Let thus t.0/p "" t0 be such that, for p 2 N; fixed, but arbitrary,

ı
�
t.0/p

�
> n�10 :

Given a fixed, but arbitrary � > 0; choose, which is possible as left limits exist,
�p > 0 such that

t.0/p C �p < t.0/pC1; and
ˇ̌̌̌̌̌

f
�
t.0/p C �p

� � f�
�

t.0/pC1
�ˇ̌̌̌̌̌

H
< �:

Then, for � > 0 small enough,ˇ̌̌̌̌̌
f
�
t.0/p C �p

� � f
�

t.0/pC1
�ˇ̌̌̌̌̌

H
D

D
ˇ̌̌̌̌̌ n

f�
�

t.0/pC1
�
� f

�
t.0/pC1

�o
�
n

f�
�

t.0/pC1
�
� f

�
t.0/p C �p

�oˇ̌̌̌̌̌
H

�
ˇ̌̌ˇ̌̌̌̌̌

f�
�

t.0/pC1
�
� f

�
t.0/pC1

�ˇ̌̌̌̌̌
H
�
ˇ̌̌̌̌̌

f�
�

t.0/pC1
�
� f

�
t.0/p C �p

�ˇ̌̌̌̌̌
H

ˇ̌̌
> n�10 � �:

Since f has limits to the left, the first term of that sequence of inequalities goes to
zero, a contradiction. The proof of the second statement mimics that of the first. ut
Proposition 6.3.5 Suppose that for t 2 T; fixed, but arbitrary, f� .t/ exists. The
space L[T Œ f � is then separable.

Proof Let TQ be the set of rational numbers in T; and T0; that of numbers in
T at which f is not continuous to the left. T0 is countable [(Proposition) 6.3.4].
The (closed) linear subspace generated by the countable family f f .t/ ; t 2 TQ [ T0g
contains the family f f .t/ ; t 2 Tg ; and thus L[T Œ f �. ut
Corollary 6.3.6 Suppose that for t 2 T; fixed, but arbitrary, f� .t/ exists. The
dimension of the subspace

LCt Œ f � \ Lt Œ f �
?

is then at most countable.

Proof As seen in (Proposition) 6.3.5, L[T Œ f � ; and thus LCt Œ f �\Lt Œ f �
? ; is separable

when f� exists. ut
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Remark 6.3.7 When f W T �! H is bounded, the following considerations also
yield that L[T Œ f � is separable.

Let Lf W H �! RT be defined using

Lf Œh�.t/ D hh; f .t/iH; (?)

and

Cf .t1; t2/ D hf .t1/; f .t2/iH:

Then [(Proposition) 1.1.15], the range of Lf is H.Cf ;T/; and Hf D L[T Œ f �:
Furthermore, those two spaces are unitarily isomorphic. Let BŒT;R� be the Banach
space of bounded, real valued functions, with the supremum norm. Then, because
of (?), and the assumption that f is bounded, H.Cf ;T/ � BŒT;R�: Let J be the
inclusion of H.Cf ;T/ into BŒT;R�: It is a linear map, and

sup
�2T

ˇ̌̌
ˇ̌ nX

iD1
˛i Cf .�; ti/�

pX
iD1

ˇj Cf .�; �j/

ˇ̌̌
ˇ̌ D

D sup
�2T

ˇ̌̌
ˇ̌̌hf .�/; nX

iD1
˛i f .ti/ �

pX
jD1

ˇj f .�j/

ˇ̌̌
ˇ̌̌

� sup
�2T
jj f .�/jjH

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌ nX

iD1
˛i f .ti/�

pX
jD1

ˇj f .�j/

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
H

:

J is thus a continuous injection. J? is then continuous [44, p. 31].
Let Bf ŒT;R� be the closure, in BŒT;R�; of H.Cf ;T/: Since a subset of a separable

metric space is separable, in the induced topology [84, pp. 187,176], when Bf ŒT;R�
is separable, so is

˚
Cf .
; t/; t 2 T

�
: If the latter set is separable, the (closed) subspace

generated by the resulting countable subfamily, which is Bf ŒT;R� [46, p. 240], is
separable. Since continuous images of separable spaces are separable [84, p. 175],
one has that:

L[T Œ f � is separable if, and only if, the metric subspace˚
Cf .
; t/; t 2 T

� � BŒT;R�

is separable.
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6.4 The Cramér-Hida Representation

Cramér-Hida representations are decompositions into orthogonal subspaces of the
linear space generated by a “time” function. That decomposition is chosen to
preserve the “time” dimension inherent to the problem (it would otherwise have
little interest). Each subspace in the decomposition is furthermore isomorphic to
an L2 space, and its elements are obtained has integrals of (classes of) numerical
functions with respect to vector measures, with orthogonal increments, a feature
that provides a modicum of computational ease. The measures determining these L2
spaces are ordered by absolute continuity, and the number of subspaces is the same,
regardless of the decomposition.

In this section, the Cramér-Hida representation (acronym: CHR) for a function
f W T �! H; T an interval, H a real Hilbert space, shall be obtained from first
principles following [15]. In its uses the CHR takes most often H to be an L2 space.

The assumptions to which the previous Sects. 6.1–6.3 provide context are now
listed (they shall be referred to using the following acronym: CHA). They basically
assume that there is no knowledge at time zero, that at time t; all the past is known,
and that the energy in the system is finite.

Assumptions 6.4.1 (CHA: The Cramér-Hida Assumptions)

CHA-1 : f W T �! H is continuous to the left;

CHA-2 : for t 2 T; fixed, but arbitrary, fC .t/ exists
whenever it makes sense;

CHA-3 : supt2T jj f .t/jjH � � <1I

CHA-4 : L\T Œ f � D f0Hg :
Assumptions CHA have immediate consequences, expressed below as remarks.

Remark 6.4.2 L[T Œ f � and H
�
Cf ;T

�
are separable.

Remark 6.4.3 Let Pt denote the projection onto LtŒ f �: From the properties of
projections [266, p. 85], one has that:

1. when tn "" t; Ptn
s�! P; that is, for h 2 H; fixed, but arbitrary,

Ptn Œh� �! PŒh�;

where, when f is continuous to the left, P is the projection onto

[nRŒPtn � D [nLtn Œ f � D LtŒ f �;

that is, P D P�t D PtI
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2. when t ## tn; Ptn
s�! P; where P is the projection onto

\nRŒPtn � D \nLtn Œ f � D LCt Œ f �;

that is, P D PCt :

Remark 6.4.4 P\ D OL[T Œ f � (null operator), and P[ D IL[T Œ f � (identity operator).

Remark 6.4.5 There are cases for which P�t D Pt; t 2 T; but f�.t/ ¤ f .t/; some
t 2 T: An example follows.

Example 6.4.6 Let T D Œ0; 1� ; W; the standard Wiener process, and Wt; the
equivalence class of W .
; t/ in the appropriate L2 space. Let

f .t/ D
8<
:
�Wt when t < 2�1

CWt when t � 2�1
:

Then, when t < 2�1;
ˇ̌̌̌

f .t/ � f
�
2�1

�ˇ̌̌̌ 2
H
D jj�Wt �W2�1 jj2L2.˝;A;P/
D EP

h� PWt C PW2�1

�2i
D 3tC 2�1:

Thus f is not continuous to the left, in quadratic mean, at t D 2�1: However, for
t < 2�1;

ˇ̌̌̌
f
�
2�1

� � f�f .t/gˇ̌̌̌ 2H D jjW2�1 �Wtjj2L2.˝;A;P/ D 2�1 � t:

Thus

f
�
2�1

� 2 V Œf f .t/; t < 2�1g�

and L�
2�1

Œ f � D L2�1 Œ f � :

Remark 6.4.7 Let h 2 L[T Œ f � be fixed, but arbitrary, and fh .t/ D Pt Œh� : Then, as a
consequence of CHA and (Remark) 6.4.3,

1. fh has orthogonal increments, is continuous to the left, and has limits to the right;

2. Lt Œ fh� � Lt Œ f � ; so that fh is purely nondeterministic;

3. as jj fh .t/jjH � jjhjjH ; fh is bounded.
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Thus CHA obtains for fh; and, setting

m fh .Œt1; t2Œ/ D fh .t2/ � fh .t1/ ;

one has that [(Remark) 6.2.26] L
�
m fh

� D L[T Œ fh� ; so that every element k 2
L[T Œ fh� can be expressed in the following form:

k D
Z
k dm fh ; some k 2 L2

�
T; T ;M fh

�
:

Furthermore, for ft1; t2g � T; t1 < t2; fixed, but arbitrary,

M fh .Œt1; t2Œ/ D jj fh .t2/� fh .t1/jj2H
D jj fh .t2/jj2H � jj fh .t1/jj2H
D Fh .t2/� Fh .t1/ :

6.4.1 Canonical Representations

A Cramér-Hida representation (CHR) is a particular decomposition of LtŒ f � into
a direct sum of parts of a similar type. To achieve it, one needs the properties of
infinite sums of subspaces, gathered in the following fact [8, p. 433]. Those will be
used more or less tacitly.

Fact 6.4.8 Let H be a real Hilbert space, and fH�; � 2 �g ; a family of (closed)
subspaces of H:

1. Let fh�; � 2 �g � H be a collection of elements. It is summable, or commuta-
tively convergent, to h 2 H; when, given � > 0; fixed, but arbitrary, there is a
finite �� � � such that, given any finite subset of �; say �f ; containing��;ˇ̌̌

ˇ̌̌
ˇ̌̌
ˇ̌̌X
�2�f

h� � h

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌
H

< �:

One then writes:

h D
X
�2�

h�:

P
�2� H� stands for the vector space of commutatively convergent sequences

fh�; � 2 � W h� 2 H�; � 2 �g :
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2. One has that

[�2�H� D
X
�2�

H�:

3. When the subspaces fH�; � 2 �g are pair-wise orthogonal, one has that:

(i) [�2�H� DP�2� H�: One then writes

M
�2�

H� for
X
�2�

H�:

(ii) When H DL�2� H�; every h 2 H has the following representation, which is
unique:

h D
X
�2�

h�; h� 2 H�:

(iii) [�2�H� DP�2� H� is equivalent to the following statement:

h ? [�2�H� implies that h D 0H:

4. Let B; be a bounded, linear operator of H: Then, when h D P
�2� h�; one has

that

BŒh� D
X
�2�

BŒh��:

5. Let fB�; � 2 �g be a family of bounded, linear operators of H: It is summable to
B when, for h 2 H; fixed, but arbitrary,

P
�2� B�Œh� D BŒh�:

6. Let fP�; � 2 �g be a family of orthogonal projections of H which are pair-wise
orthogonal. Then:

(i)
P

�2� P� D P˚ is the orthogonal projection onto

[�2�H� D
M
�2�

H�; H� D RŒP��

(the converse is also true);

(ii) when Q commutes with each P�; QP˚ DL�2� QP� [126, p. 50].

Definition 6.4.9 Posit CHA, and suppose that there exists a sequence of functions

Ff ŒT;H; I� D f fi W T �! H; i 2 I � Ng



6.4 The Cramér-Hida Representation 469

such that

(a) each fi; i 2 I; has orthogonal increments;

(b) for fi; jg � I; i ¤ j; ft1; t2g � T; fixed, but arbitrary,˝
fi .t1/ ; fj .t2/

˛
H
D 0I

(c) for t 2 T; fixed, but arbitrary, Lt Œ fi; i 2 I� being the (closed) subspace of H
generated linearly by the family f fi .�/ ; � � t; i 2 Ig ; one has that (Fact 6.4.8)

Lt Œ fi; i 2 I� D
M
i2I

Lt Œ fi� :

When, for t 2 T; fixed, but arbitrary,

1. Lt Œ f � � Lt Œ fi; i 2 I� ; the family Ff ŒT;H; I� is called a sequence of innovations
for f ; and the number jIj � @0; the multiplicity of the sequence;

2. Lt Œ f � D Lt Œ fi; i 2 I� ; the family Ff ŒT;H; I� is called a canonical representation
of f :

Proposition 6.4.10 Posit CHA: f has then a canonical representation.

Proof Let fhi; i 2 I � Ng be a complete orthonormal set for L[T Œ f � : Define
recursively the following objects, respectively, elements, subspaces, and projections:

1: k1 D h1;
K1 D V ŒfPt Œk1� ; t 2 Tg�;
PK1 D PK1 ;

(one has then that h1 2 K1/I

2: k2 D h2 � PK1 Œh2� ;
K2 D V ŒfPt Œk2� ; t 2 Tg�;
PK2 D PK1_K2 ;

.as h2 D k2 C PK1 Œh2� ; h2 2 K1 _ K2/I

3: k3 D h3 � PK2 Œh3� ;
K3 D V ŒfPt Œk3� ; t 2 Tg�;
PK3 D PK1_K2_K3 ;

.as h3 D k3 C PK2 Œh3� ; h3 2 K1 _ K2 _ K3/I

4: : : :
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Such a procedure either yields, after a finite number of steps, L[T Œ f � ; or one has
that fhi; i 2 Ig �Wi2I Ki � L[T Œ f � ; that is, in all cases,

L[T Œ f � D
_
i2I

Ki:

Let, for t 2 T; fixed, but arbitrary,

Ki
t D V ŒfP� Œki� ; � � tg�:

As presently seen, for fixed, but arbitrary i1 ¤ i2; in I; and t1 ¤ t2; in T; one has
that

Ki1
t1 ? Ki2

t2 :

Indeed, assuming that i1 < i2 and t1 < t2; which is no restriction, one has that:

(i) ki2 ? K1 _ 
 
 
 _ Ki2�1 � Ki1 � Ki1
t I

(ii)
�
IL[T Œ f � � Pt

�
Œki2 � ? Lt Œ f � � Ki1

t .

Thus, when � � t; in T, as Ki1
� � Ki1

t , using (ii),

Pt Œki2 � D ki2 �
�
IL[T Œ f � � Pt

�
Œki2 � ? Ki1

� :

When � > t, in T, because of (i), and Pt.P� � Pt/ D OH ,

hPt Œki2 � ;P� Œki1 �iH D hPt Œki2 � ; .P� � Pt/ Œki1 �iH C hPt Œki2 � ;Pt Œki1 �iH
D 0:

Thus, for � 2 T; fixed, but arbitrary, Pt Œki2 � ? P� Œki1 �, and consequently,

_
i2I

Ki
t D

M
i2I

Ki
t:

Furthermore

hki1 ; ki2iH D lim
ft1;t2g�T;t1¤t2;t1";t2"

hPt1 Œki1 � ;Pt2 Œki2 �iH D 0;

so that Ki1 ? Ki2 ; and

L[T Œ f � D
_
i2I

Ki D
M
i2I

Ki:
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Finally, Pt ŒKi� D Ki
t; and, as Pt and PKi commute (ki 2 L[T Œ f � ; thus Pt Œki� 2 Lt Œ f � ;

so that Ki � Lt Œ f �), then [126, p. 50]

M
i2I

Ki
t D

_
i2I

Ki
t D

_
i2I

PtPKi ŒKi� D Pt

"_
i2I

Ki

#
D Lt Œ f � :

It then suffices to define, for i 2 I; fixed, but arbitrary,

fi .t/ D Pt Œki� ;

so that Lt Œ fi� D Ki
t; and L[T Œ fi� D Ki: ut

Remark 6.4.11 Combining (Facts) 6.2.12, 6.2.19, and 6.4.8, one has that

f .t/ D
X
i2I

Z
i .t/ dm f

i

where, for i 2 I; and ft; t1; t2g � T; t1 < t2; fixed, but arbitrary,

• m f

i .Œt1; t2Œ/ D fi .t2/� fi .t1/ ;

• M f

i .Œt1; t2Œ/ D
ˇ̌̌̌
m f

i .Œt1; t2Œ/
ˇ̌̌̌ 2

H D jjPt2 Œki�jj2H � jjPt1 Œki�jj2H ;
• i .t/ 2 L2

�
T; T ;M f

i

�
;

•
R
i .t/ dm f

i 2 Lt Œ fi� :

The latter property means [(Remark) 6.2.15] that, letting Tt D T \ ��1; t� ; the
following obtains: ITti .t/ D i .t/ :

Remark 6.4.12 The measures M f

i shall sometimes be called the basis measures
of the canonical representation. One shall also use, when convenient, the notation
Lt Œki� for Lt Œ fi� : Finally the spaces

L2
�
T; T ;M f

i

�
and L2

�
Tt; Tt;M

f jTt
i

�
shall be called the basis L2-spaces.

Remark 6.4.13 It is sometimes convenient to use the following shortened notation:

f .t/ D
Z
h� .t/ ; dmi :

� is then interpreted as the function

� W T �!
M
i2I

L2 .T; T ;Mi/ ;

whose value is determined by the expansion of f .t/ which is unique [8, p. 435].
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Remark 6.4.14 Suppose one knows, instead of

LtŒ f � D
M
i2I

LtŒ fi�; (?)

that, for t 2 T; fixed, but arbitrary,

f .t/ D
X
i2I

Z
ITt
Qf i dm fi : (??)

Then (??) implies (?) when one of the following equivalent conditions obtains.

1. For t 2 T; and � � t; fixed, but arbitrary,

X
i2I

Z
T�

PQf i.�/Œx�gi.x/M fi.dx/ D 0

implies that

X
i2I

Z
Tt

g2i .x/M fi.dx/ D 0:

2. Each family
˚ Qf i.�/; � � t

�
; i 2 I; is total in its respective

L2.Tt; T \ Tt;M
jT\Tt
fi

/:

space.

Relation (??) yields indeed that LtŒ f � � L
i2I LtŒ fi�: Suppose the inclusion is

strict. There is then an element

Gt D
X
i2I

Z
ITt Œgi�dm fi ? LtŒ f �; jjGtjj2H D

X
i2I

Z
Tt

g2i .x/M fi.dx/ ¤ 0:

But, for � � t; fixed, but arbitrary,

hGt; f .�/iH D
Z

T�

PQf i.�/Œx�gi.x/M fi.dx/ D 0:

The above is, mutatis mutandis, a version of (Proposition) 6.2.22.

Remark 6.4.15 Let � < t be fixed, but arbitrary. Then

P� Œ f .t/� D
M
i2I

Z
IT�
Qf i.t/dm fi :
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Indeed, the latter’s right-hand side belongs to
L

i2I L� Œ fi�; and, for u � �; fixed, but
arbitrary, *

f .t/ �
M
i2I

Z
IT�
Qf i.t/dm fi ;

M
i2I

Z
ITu
Qf i.u/dm fi

+
H

D

D
M
i2I

Z
ŒTtnT� �\Tu

PQf i.t/Œx�
PQf i.u/Œx�M fi.dx/ D 0H:

That result is thus a version of (Remark) 6.2.16.

6.4.2 Proper Canonical Representations

Proper canonical representations are refinements of canonical ones.

Definition 6.4.16 Proper canonical representations are canonical representations
which distinguish themselves by

1. having the measures fMi; i 2 Ig ordered by absolute continuity,

2. the fact that the number of those measures is unique, and thus chosen to be the
multiplicity of the representation.

Remark 6.4.17 Until item 2 of (Definition) 6.4.16 is established, a proper canonical
representation shall be one for which item 1 of that same reference obtains. In its
most detailed version, a proper canonical representation is obtained by splitting the
function f W T �! H into continuous and discontinuous parts. The continuous part
has a proper canonical representation whose components are continuous with basis
measures ordered by absolute continuity. The discontinuous part is a superposition
of step functions. The detailed definition of a proper canonical representation is that
of statements (Propositions) 6.4.46 and 6.4.47.

Definition 6.4.18 (Notation) For t 2 T, fixed, but arbitrary, one sets (OH is the null
operator)

�t ŒP� D PCt � Pt;

Td D ft 2 T W �t ŒP� ¤ OHg :

Lemma 6.4.19 Let t 2 T be fixed, but arbitrary. The range of�t ŒP� is equal to the
two following subsets, and thus subspaces:

Ht W the set of those h 2 H for which Pt Œh� D 0H; and, for � 2 T; � > t; fixed,
arbitrary, P� Œh� D hI

H?
t W the set of those h 2 H for which Pt Œh� D 0H; and PCt Œh� D h:
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Proof When, for � 2 T; � > t; fixed, but arbitrary, P� Œh� D h; then PCt Œh� D h;
and, when the latter obtains,

P� Œh� D P�
�
PCt Œh�

� D PCt Œh� D h:

One then uses (Remark) 6.1.1. ut
Proposition 6.4.20 One has that jTdj � @0; and, when ft1; t2g � Td; t1 ¤ t2; fixed,
but arbitrary,

�t1 ŒP� ? �t2 ŒP�

so that � ŒP� DPt2Td
�t ŒP� is a projection (see also (Proposition) 6.3.4).

Proof Suppose that t1 < t2; which is no restriction, and that

0H ¤ h1 2 RŒ�t1 ŒP��; 0H ¤ h2 2 RŒ�t2 ŒP��:

Then h2 ? Lt2 Œ f � � LCt1 Œ f � 3 h1; that is h2 ? h1: Thus �t1 ŒP� ? �t2 ŒP� :
Since L[T Œ f � is separable, it may contain at most a countable number of orthogonal
elements. ut
Lemma 6.4.21 For t 2 T; fixed, but arbitrary,

1. Pt and � ŒP� commute;

2. Pt and IL[T Œ f � �� ŒP� commute.

Proof When t � �; in T;�
PC� � P�

�
Pt D OH D Pt

�
PC� � P�

�
;

and, when t > �; in T;�
PC� � P�

�
Pt D

�
PC� � P�

� D Pt
�
PC� � P�

�
;

so that, for ft; �g � T; fixed, but arbitrary, Pt and PC� � P� commute. Then [126,
p. 50]

Pt� ŒP� D Pt

X
t2Td

�t ŒP�

D Pt

_
t2Td

�t ŒP�

D
_
t2Td

fPt�t ŒP�g

D
_
t2Td

f�t ŒP�Ptg
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D
8<
:_

t2Td

�t ŒP�

9=
;Pt

D
8<
:X

t2Td

�t ŒP�

9=
;Pt

D � ŒP�Pt:

ut
Definition 6.4.22 (Notation) One sets:

1. Ld Œ f � is the range of � ŒP� I
2. Lc Œ f � is the orthogonal complement of Ld Œ f � in L[T Œ f � I
3. given h 2 Lc Œ f � ; fixed, but arbitrary,

fh .t/ D Pt Œh�

(then, automatically [(Remark) 6.4.7], fh is purely nondeterministic, has orthog-
onal increments, and is continuous to the left, with limits to the right).

Lemma 6.4.23 The map

jj fhjj W t 7! jj fh .t/jjH
is continuous if, and only if, for t 2 T; fixed, but arbitrary,

�t ŒP� Œh� D 0H;

that is, if, and only if, fh is continuous to the right.

Proof For t1 < t2; in T; fixed, but arbitrary, since fh is purely nondeterministic, and
has orthogonal increments,

jjfh .t2/ � fh .t1/jj2H D jj fh .t2/jj2H � jj fh .t1/jj2H :
Thus the continuity of t 7! fh .t/ is equivalent to that of t 7! jj fh .t/jjH : Since,
by definition, t 7! fh .t/ is continuous to the left, it is continuous if, and only if,
�t ŒP� Œh� D 0H ; that is, if, and only if, it is continuous to the right. ut
Proposition 6.4.24 One has that h 2 Lc Œ f � if, and only if, the map

jj fhjj W t 7! jj fh.t/jjH
is continuous.

Proof Suppose that jj fhjj is continuous.
Because of (Lemma) 6.4.23, for t 2 T; fixed, but arbitrary, PCt Œh� D Pt Œh� :
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Let then t 2 Td be fixed, but arbitrary, and � 2 T be such that � > t: Let
k 2 RŒ�t ŒP�� be fixed, but arbitrary, so that k D �t ŒP� Œk� ¤ 0H: Then

hh; kiH D hh;P� Œk�iH D hP� Œh� ; kiH ;

so that, since Pt�tŒP� is the zero operator,

hh; kiH D lim
�##t
hP� Œh� ; kiH

D ˝
PCt Œh� ; k

˛
H

D hPt Œh� ; kiH
D hh;Pt Œk�iH
D hh;Pt�tŒP�Œk�iH
D 0:

Consequently h ? k; k 2 Ld Œ f � ; that is, h 2 Lc Œ f � :

Proof Suppose that h 2 Lc Œ f � :
Suppose that t 7! jj fh .t/jjH is not continuous at t 2 T: Then [(Lemma) 6.4.23]

�t ŒP� Œh� ¤ 0H ; and

fCh .t/ D fh .t/C�t ŒP� Œh� :

Now

PCt Œ�t ŒP� Œh�� D �t ŒP� Œh� ;

and

Pt Œ�t ŒP� Œh�� D 0H;

so that [(Lemma) 6.4.19]�t ŒP� Œh� 2 Ld Œ f � : But

hh; �t ŒP� Œh�iH D
˝
h;PCt Œ�t ŒP� Œh��

˛
H

D ˝
fCh .t/ ;�t ŒP� Œh�

˛
H

D hfh .t/C�t ŒP� Œh� ; �t ŒP� Œh�iH :

Since, by definition,�t ŒP� Œh� ? fh .t/ ;

hh; �t ŒP� Œh�iH D jj�t ŒP� Œh�jj2H > 0:

h is thus not orthogonal to Ld Œ f � ; and consequently not in Lc Œ f � ; a contradiction.
ut
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Corollary 6.4.25 Let h 2 Lc Œ f � be fixed, but arbitrary, and, for fixed, but arbitrary
t 2 T; let fh .t/ D Pt Œh� : fh has the properties of f ; in particular CHA, as already
seen [(Remark) 6.4.7]. But it has now the further property of being continuous.

Proof Since fh is purely nondeterministic, and has orthogonal increments,

jj fh .t2/� fh .t1/jj2H D jj fh .t2/jj2H � jj fh .t1/jj2H ;

and then fh is continuous because of (Proposition) 6.4.24. ut
Corollary 6.4.26 Let, for t 2 T; fixed, but arbitrary, fc .t/ D PLcŒ f � Œ f .t/� : L[T Œ fc�
has then a canonical representation with continuous components, as defined in the
proof to follow.

Proof Since PLcŒ f � is continuous and bounded, fc has the continuity properties
of f ; and is bounded, since Pt and PLcŒ f � are. Since Pt and PLcŒ f � commute
[(Lemma) 6.4.21],

fc .t/ D PLcŒ f � Œ f .t/� D PLcŒ f �Pt Œ f .t/� D PtPLcŒ f � Œ f .t/� D Pt Œ fc .t/� 2 Lt Œ f � ;

so that fc is purely nondeterministic. The CHA thus obtain, and one has that, for
t 2 T; fixed, but arbitrary,

Lt Œ fc� D
M
i2I

Lt
�

f c
i

�
;

where, Pc
t being the projection with range Lt Œ fc� ;

f c
i .t/ D Pc

t

�
kc

i

�
; kc

i 2 L[T Œ fc� � LcŒ f �: (?)

The latter inclusion is due to the fact that, by definition, fc.t/ 2 LcŒ f �: Now, for
� � t; in T; and i 2 I; fixed, but arbitrary, again since the projections Pt and PLcŒ f �

commute [(Lemma) 6.4.21],

˝
kc

i � Pt
�
kc

i

�
; fc .�/

˛
H

defD ˝
kc

i � Pt
�
kc

i

�
;PLcŒ f � Œ f .�/�

˛
H

.?/D ˝
kc

i � Pt
�
kc

i

�
; f .�/

˛
H

.??/D 0:

Equality (??) above expresses indeed the fact that Pt is the projection onto LtŒ fc�
[44, p. 80], so that Pc

t

�
kc

i

� D Pt
�
kc

i

�
; and f c

i .t/ D Pt
�
kc

i

�
: It follows then from

(Corollary) 6.4.25 that f c
i is continuous. ut

Definition 6.4.27 (Notation) Let t 2 Td be fixed, but arbitrary, and

M Œt� D dim fRŒ�t ŒP��g :
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Because of the characterization of RŒ�t ŒP�� [(Remark) 6.1.1, (Lemma) 6.4.19], one
has that

M Œt� D dim
˚
LCt Œ f � \ Lt Œ f �

?
�

D dim
˚
h 2 L[T Œ f � W PCt Œh� D h; Pt Œh� D 0H

�
:

The result which follows provides an alternate version of the canonical repre-
sentation (Proposition) 6.4.10, in the form of a sum of a continuous part, and a
discontinuous one, and the ensuing corollaries describe the discontinuous part.

Proposition 6.4.28 Assume that CHA obtains for f : Let

fc.t/ D PLcŒ f � Œ f .t/� ; and fd.t/ D PLd Œ f � Œ f .t/� :

Then, for t 2 T; fixed, but arbitrary, in L[T Œ f � ;

f .t/ D fc.t/C fd.t/:

fc.t/ has the following representation:

fc.t/ D
Z ˝

�c .t/ ; dm fc

˛
:

fd.t/ has the following representation:

fd.t/ D
X

�2Td ;�<t

MŒ� �X
jD1

D
f .t/; h.�/j

E
H

h.�/j :

The elements in those representations have the following properties:

1. the vector measure components mfc
i of m fc ; i 2 I fc ; are obtained from continuous,

purely nondeterministic, orthogonal functions with orthogonal increments:

f c
i .�/ D P�

�
kc

i

�
; � 2 T;

using the following formulae .ft1; t2g � T; t1 < t2; / W

m fc
i .Œt1; t2Œ/ D f c

i .t2/� f c
i .t1/;

M fc
i .Œt1; t2Œ/ D

ˇ̌̌̌
m fc

i .Œt1; t2Œ/
ˇ̌̌̌ 2

H
I

2. the components c
i .t/ of �c .t/ ; i 2 I fc ; belong to L2

�
T; T ;M fc

i

� I
3. the set Td � T gathers the points of T at which t 7! Pt is discontinuous;
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4. for fixed, but arbitrary � 2 Td; M Œ�� is the dimension of the range of PC� � P� ;
and n

h.�/j ; j 2 Œ1 W M Œ���
o

is a complete orthonormal set in that range, with the property that, for fixed, but
arbitrary j 2 Œ1 W M Œ��� ;

when t > � ; Pt

h
h.�/j

i
D h.�/j ;

and P�
h
h.�/j

i
D 0H:

Proof By definition, Lc Œ f � and Ld Œ f � form an orthogonal decomposition of L[T Œ f � :
The representation of fc is due to (Corollary) 6.4.26, and that of fd.t/; to (Proposi-
tion) 6.4.20, using the fact [(Lemma) 6.4.21] that, on the one hand, Pt and PLd Œ f �

commute, and, on the other hand, the following identities obtain:

for t � �; Pt
�
PC� � P�

� D 0;
for t > �; Pt

�
PC� � P�

� D PC� � P� :

ut
Remark 6.4.29 Since [(Remark) 6.1.4] L.C/

t Œ f � may be a strict subspace of LCt Œ f � ;
it may at times be useful to build the basis of

LCt Œ f � \ Lt Œ f �
?

using a basis of

L.C/
t Œ f � \ Lt Œ f �

? ;

and then completing it. When doing that, one shall write:

h.Cj�/j ; j 2 Œ1 W M ŒC j ��� ;

for the basis of L.C/
t Œ f � \ Lt Œ f �

? ; and

h.� jC/j ; j 2 Œ1 W M Œ� j C�� ;

for the elements of the completion.
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Corollary 6.4.30 Let � 2 Td be fixed, but arbitrary, and h.Cj�/j be as defined in
(Remark) 6.4.29. Then, for fixed, but arbitrary j 2 Œ1 W M ŒC j ��� ;ˇ̌̌D

fC .�/ ; h.Cj�/j

E
H

ˇ̌̌
> 0:

Proof Let j0 2 Œ1 W M ŒC j ��� be fixed, but arbitrary, and suppose thatD
fC .�/ ; h.Cj�/j0

E
H
D 0:

Since h.Cj�/j0
belongs to the range of �� ŒP� ; and that �� ŒP� and Pt are orthogonal,

for t � �; fixed, but arbitrary, D
f .t/ ; h.Cj�/j0

E
H
D 0:

h.Cj�/j0
is thus orthogonal to L.C/

� Œ f � ; since the latter is generated by L� Œ f � and fC� :

But since h.Cj�/j0
belongs to L.C/

� Œ f � ; it must be 0H; a contradiction. ut
Corollary 6.4.31 Let d .t/ D � ŒP� Œ f .t/� : Then, for fixed, but arbitrary �0 2 Td;

the map

jjdjj2 W t 7! jjd .t/jj2H
has a jump at �0 whose magnitude is equal to

MŒCj�0�X
jD1

D
fC .�0/ ; h

.Cj�0/

j

E2
H
:

Proof One has that [(Proposition) 6.4.20, (Definition) 6.4.22, (Proposition) 6.4.28]

jjd .t/jj2H D jj� ŒP� Œ f .t/�jj2H
D

X
�2Td ;�<t

jj�� ŒP� Œ f .t/�jj2H

D
X

�2Td ;�<t

MŒ� �X
iD1

D
f .t/ ; h.�/j

E2
H
;

so that, as soon as t runs past �0;

jjd .t/jj2H � jjd .�0/jj2H D
MŒ�0�X
iD1

D
f .t/ ; h.�0/j

E2
H
D
ˇ̌̌̌̌̌ �

PC�0 � P�0
�
Œ f .t/�

ˇ̌̌̌̌̌ 2
H
:
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Thus

lim
t##�0
jjd .t/jj2H � jjd .�0/jj2H D

ˇ̌̌̌̌̌ �
PC�0 � P�0

� �
fC .�0/

�ˇ̌̌̌̌̌ 2
H

D
ˇ̌̌̌̌̌ �

P.C/

�0
� P�0

� �
fC .�0/

�ˇ̌̌̌̌̌ 2
H

D
MŒCj�0�X

jD1

D
fC .�0/ ; h

.Cj�0/

j

E2
H
:

ut
Proposition 6.4.32 Let f have orthogonal increments, and, as above,

d .t/ D � ŒP� Œ f .t/� :

Then, the assignment t 7! jjd .t/jjH produces a step function. It is the sum of
“elementary” step functions ft 7! jjd;� .t/jj ; � 2 Tdg obtained as follows:

jjd;� .t/jj2 D

8̂<
:̂
0 when t � �
PMŒCj��

jD1
D
fC .�/ ; h.Cj�/j

E2
H

when t > �

:

Proof Let d;� .t/ D ��ŒP�Œ f .t/�: One starts from the following expression:

d .t/ D � ŒP� Œ f .t/� D
X
�2Td

�� ŒP� Œ f .t/� D
X
�2Td

d;� .t/ ;

and [(Proposition) 6.4.20, Definition 6.4.22, Proposition 6.4.28]

jjd .t/jj2H D
X
�2Td

jjd;� .t/jj2H D
X
�2Td

MŒ� �X
iD1

D
f .t/ ; h.�/j

E2
H
:

When t � �; as h.�/j 2 RŒ�� ŒP�� ? L� Œ f � ;D
f .t/; h.�/j

E
H
D 0:

Let now ft1; t2g � T; and � 2 Td; be such that t2 > t1 > �:As (f has here orthogonal
increments)

f .t2/ � f .t1/ ? Lt1 Œ f � � LC� Œ f � ;
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one has that D
f .t2/� f .t1/ ; h

.�/

j

E
H
D 0; j 2 Œ1 W M Œ��� :

Consequently D
f .t2/ ; h

.�/

j

E
H
D
D
f .t1/ ; h

.�/

j

E
H
; j 2 Œ1 W M Œ��� :

Letting t1 ## �; it follows that, for fixed, but arbitrary t > �; t 2 T;D
f .t/; h.�/j

E
H
D
D
fC .�/ ; h.�/j

E
H
; j 2 Œ1 W M Œ��� :

Since
D
fC .t/ ; h.� jC/j

E
H
D 0; the result follows. ut

Getting the proper canonical representation requires that many details be
checked. Most of these are presented as lemmas. The main idea is that weighted
sums of orthogonal elements provide the key mechanism in bringing about absolute
continuity of the basis measures.

Lemma 6.4.33 Let LcŒ f � be the (closed) subspace defined in (Definition) 6.4.22,
and fc.t/ D PLcŒ f � Œ f .t/� : Then

1. Lt Œ fc� D PLcŒ f � ŒLt Œ f �� � Lt Œ f � I
2. L[T Œ fc� D Lc Œ f � :

Proof The definition of fc yields that PLcŒ f � ŒLt Œ f �� � Lt Œ fc� : For h 2 Lt Œ fc� ;
orthogonal to PLcŒ f � ŒLt Œ f �� ; and, in T; � � t; one has that

0 D ˝h;PLcŒ f � Œ f .�/�
˛
H
D hh; fc .�/iH ;

so that h D 0H; and the inclusion of the proof’s beginning is an equality. As Pt and
PLcŒ f � commute [(Lemma) 6.4.21],

fc .t/ D PLcŒ f � Œ f .t/� D PLcŒ f �Pt Œ f .t/� D PtPLcŒ f � Œ f .t/� 2 Lt Œ f � ;

and the inclusion stated in item 1 obtains also.
By definition fc.t/ 2 Lc Œ f � ; and thus L[T Œ fc� � Lc Œ f � : Suppose one has that

h 2 Lc Œ f � is orthogonal to L[T Œ fc� : Then, for fixed, but arbitrary t 2 T,

0 D hh; fc.t/iH D
˝
h;PLcŒ f � Œ f .t/�

˛
H
D ˝PLcŒ f � Œh� ; f .t/

˛
H
D hh; f .t/iH ;

so that, using item 1, h D 0H: ut
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Lemma 6.4.34 Let, as in (Proposition) 6.4.10,

f fi W t 7! fi .t/ D Pt Œki� ; t 2 T; ki 2 H; i 2 I � Ng

be a family of orthogonal functions, with orthogonal increments, arising in a
canonical decomposition, and let

Mi .Œt1; t2Œ/ D jjmi .Œt1; t2Œ/jj2H
D jj fi .t2/ � fi .t1/jj2H
D jj fi .t2/jj2H � jj fi .t1/jj2H :

When f˛i; i 2 Ig � .R n f0g/I is such thatX
i2I

˛2i jjkijj2H <1;

then

f˛ .t/ D
X
i2I

˛ifi .t/

has orthogonal increments, and, letting,

M˛ .Œt1; t2Œ/ D jjm˛ .Œt1; t2Œ/jj2H
D jj f˛ .t2/� f˛ .t1/jj2H
D jj f˛ .t2/jj2H � jj f˛ .t1/jj2H ;

one has that

M˛ .Œt1; t2Œ/ D
X
i2I

˛2i Mi .Œt1; t2Œ/ :

Furthermore, one may always choose the family f˛i; i 2 Ig so that, given a � > 0;

M˛ .T/ � � <1:

Proof The orthogonality properties of the functions involved allow one to write that

hf˛ .t2/ � f˛ .t1/ ; f˛ .t4/� f˛ .t3/iH D
D
X
i2I

˛2i hfi .t2/ � fi .t1/ ; fi .t4/ � fi .t3/iH :
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Furthermore, M˛ .T/ is the limit of M˛ .Œt1; t2Œ/ ; when t1 and t2 become large, as,
for example, fi.t/ D PtŒki�; and, analogously, the same obtains for the components
Mi .T/ ; so that

M˛ .T/ D
X
i2I

˛2i Mi .T/ D
X
i2I

˛2i jjkijj2H :

One need then only “adjust” the ˛i’s (�
P

i2I ˛
2
i jjkijj2H D �). ut

Remark 6.4.35 The last assertion of (Lemma) 6.4.34 shall prove essential in the
computation of the likelihood (part III).

Lemma 6.4.36 Let

Lt Œ f � D
M
i2I

Lt Œ fi�

be a canonical representation of f ; that is [(Proposition) 6.4.10, (Remark) 6.4.11],
fi .t/ D Pt Œki� ; fki; i 2 Ig orthogonal, and

M f

i .Œt1; t2Œ/ D
ˇ̌̌̌
m f

i .Œt1; t2Œ/
ˇ̌̌̌ 2

H

D jj fi .t2/ � fi .t1/jj2H
D jj fi .t2/jj2H � jj fi .t1/jj2H :

Consider the following items:

(A) ˛-elements:

(a) f˛i; i 2 Ig 2 .R n f0g/I such that
P

i2I ˛
2
i jjkijj2H <1I

(b) k˛ DPi2I ˛i kiI
(c) f˛ .t/ D Pt Œk˛� DPi2I ˛i fi .t/ I
(d) M˛ .Œt1; t2Œ/ as in (Lemma) 6.4.34;

(B) h-elements:

(a) h 2 L[T Œ f � with decomposition h DPi2I hi; hi 2 L[T Œ fi� ;
that is,

hi D
Z
h

i dm f

i ; 
h
i 2 L2

�
T; T ;M f

i

� I
(b) gi .t/ D Pt Œhi� I
(c) Mg

i .Œt1; t2Œ/ as, mutatis mutandis, M˛.Œt1; t2Œ/ (the measure m˛ becomes mg

i ;

and the function f˛; gi);
(d) gh .t/ DPi2I gi .t/ I
(e) Mgh D

P
i2I Mg

i :

Then, for i 2 I; fixed, but arbitrary, Mg

i � M f

i ; and Mgh � M˛:
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Proof One should notice that the items of the statement are legitimate and make
sense. Thus (A.b) follows from (A.a) and the fact that the ki’s are orthogonal. Also
(A.d) is due to (A.c) and (Lemma) 6.4.34. In fact

M˛ .Œt1; t2Œ/ D
X
i2I

˛2i M f

i .Œt1; t2Œ/ :

The canonical representation [(Proposition) 6.4.10, (Fact) 6.2.12] justifies item
(B.e), and the consequence that Mg

i � M f

i : Item (B.h) follows from the orthogo-
nality of the hi’s. The conclusion of the statement is then immediate. ut

The following table may perhaps usefully display the ingredients of the previous
lemma:

Pt

LtŒ f � DLi2I LtŒ fi� f ki fi m f

i M f

i

k˛ DPi2I ki f˛ m˛ M˛

h DPi2I hi hi gi mg

i Mg

i � M f

i

gh mgh Mgh � M˛

The result which follows provides the basic feature of the existence of a
proper canonical representation. The main improvement with respect to the simpler
canonical representations is the ordering by absolute continuity of the measures
appearing in it. It is that feature which insures that proper canonical representations
are essentially unique, in the sense that they have the same multiplicity.

Proposition 6.4.37 Let CHA obtain for f ; so that a canonical representation
exists. There exists then a (proper [(Remark) 6.4.17]) canonical representation
with orthogonal components

˚
f p

i W T �! H; i 2 I
�

such that, for i 2 I; fixed, but
arbitrary, Mp

iC1 � Mp

i : When the map g W T �! H is such that, for t 2 T; fixed, but
arbitrary, g .t/ 2 Lt Œ f � ; then g.t/ DPi2I gi.t/; and

gi .t/ D
Z


g

i .t/ dm f p

i ; ITt
g

i .t/ D g

i .t/ :

Proof Since the representation of g is a consequence of any canonical representa-
tion, one need only produce a proper [(Remark) 6.4.17] canonical representation for
f : Let thus

Lt Œ f � D
M
i2I

Lt Œ fi�

be a canonical representation [(Proposition) 6.4.10]. One starts with a fixed, but
arbitrary k1 2 L[T Œ f � which is obtained as the k˛ of (Lemma) 6.4.36. The latter’s
f˛ is now denoted f p

1 ; and M˛; Mp

1: One then knows, from (Lemma) 6.4.36, that, for
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fixed, but arbitrary h 2 L[T Œ f � ; the measure Mgh associated with it has the property
that Mgh � M˛ D Mp

1:

Let LŒ1� Œ f � D L[T Œ f �\L[T
�

f p

1

�?
: Choose in LŒ1� Œ f � a complete orthonormal set˚

h.1/i ; i 2 I1
�
; and build a sequence

˚
k.1/i ; i 2 I1

�
as in (Proposition) 6.4.10, so that

LŒ1� Œ f � D
M
i2I1

L[T
�

f .1/i

�
; f .1/i .t/ D Pt

�
k.1/i

�
:

Choose then, in .R n f0g/I1 ; a sequence
˚
˛
.1/

i ; i 2 I1
�

such that

X
i2I1

˚
˛
.1/

i

�2 ˇ̌̌̌
k.1/i

ˇ̌̌̌ 2
H
<1:

Define then, as in (Lemma) 6.4.36,

(i) k2 DPi2I1
˛
.1/

i k.1/i 2 LŒ1� Œ f � I
(ii) f p

2 .t/ D Pt Œk2� DPi2I1
˛
.1/

i f .1/i .t/ I
(iii) Mp

2; the measure associated with f p

2 :

One thus obtains that Mp

2 � Mp

1; and that, for h 2 LŒ1� Œ f � ; fixed, but arbitrary,
and Mgh built, mutatis mutandis, as in (Lemma) 6.4.36, Mgh � Mp

2: Furthermore, as
proven in (Proposition) 6.4.10, for ft1; t2g � T; fixed, but arbitrary,

Lt1

�
f p

1

� ? Lt2

�
f p

2

�
:

Such a procedure may be continued “identically, and indefinitely,” until L[T Œ f �
is “emptied.” Since the subspaces built in such a fashion are orthogonal, and that
L[T Œ f � is separable, there shall be at most a countable number of them. Since
subspaces are ordered by inclusion, that successive sums of orthogonal subspaces
form an ordered chain with an upper bound, by Zorn’s lemma, there shall be a
maximal subspace, which can only be L[T Œ f � ; which has thus a representation,
with components f p

i ; whose associated measures Mp

i behave as in the proof of the
present proposition. ut
Remark 6.4.38 When g 2 L[T Œ f �; PtŒg� 2 LtŒ f �; and (Proposition) 6.4.37 applies.
Letting g .t/ D f .t/ ; one gets a canonical decomposition for f ; with accompanying
measures that are ordered by absolute continuity. Letting f D fc; and then g .t/ D
fc .t/ ; one gets a canonical decomposition for fc; with continuous components, and
accompanying measures that are ordered by absolute continuity.

As stated, proper canonical representations are essentially unique. That is the
content of the lemmas to follow. They require the introduction of a new concept,
that of a maximal chain.
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Definition 6.4.39 The family of measures fMi; i 2 Ig of (Proposition) 6.4.37 is
said to be maximal, or to form a maximal chain. It is characterized by two facts:

1. for fixed, but arbitrary i 2 I;Mi � MiC1I
2. for h 2 L[T Œ f �; and gh as in (Lemma) 6.4.36, Mgh � M1; and, for fixed, but

arbitrary i 2 I and h ?Li
�D1 L[T Œ f�� ; Mgh � MiC1:

Remark 6.4.40 Let L[T Œ f � D L
i2I L[T Œ fi� be such that, for i 2 I; fixed, but

arbitrary, MiC1 � Mi: Item 2 of (Definition) 6.4.39 is then automatically true.
Indeed, when h ?Li

lD1 L[T Œ fl� ;

h 2
M

iC1�l2I

L[T Œ fl� ;

so that

h D
X

iC1�l2I

Z
h

l dml; 
h
l 2 L2 .T; T ;Mi/ ; iC 1 � l 2 I:

Consequently

dMgh D
X

nC1�l2I

˚ Ph
l

�2
dMl � MiC1:

The result which follows serves as deus ex machina for proper canonical
representations. It provides a useful consequence of the lack of absolute continuity.

Lemma 6.4.41 Suppose that

(A) for t 2 T; fixed, but arbitrary,

Lt Œ f � D
M
i2I

Lt Œ fi�

is a proper canonical representation, that is, a canonical representation for
which the family

˚
M f

i ; i 2 I
�

is a maximal chain;
(B) it obtains that the following direct sumM

j2J

L[T
�
gj
� � L[T Œ f �

has the properties of a proper [(Remark) 6.4.17] canonical representation, that
is, such that, for j 2 J; fixed, but arbitrary, Mg

j � Mg

jC1I
(C) there exists j0 2 J such that, for j 2 Œ1 W j0 � 1� ; fixed, but arbitrary,

Mg

j � M f

j ;
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but that Mg

j0
is not absolutely continuous with respect to M f

j0
(however, since

the M f

i form a maximal chain, Mg

j � M f

1; j � 1).

Since all measures that are used are finite, one may call on the Lebesgue
decomposition [5, p. 68] to write that

Mg

j0
D M0 CM?0 ; with M0 � M f

j0
; and M?0 ? M f

j0
:

As, for j 2 Œ1 W j0 � 1� ; fixed, but arbitrary,

M?0 � Mg

j0
� Mg

j � M f

j ;

one may define the following items:

(a) for j 2 Œ1 W j0� ; fixed, but arbitrary,

dg

j D
dM?0
dMg

j

;

Dg

j D equivalence class of
q

dg

j ;

hg

j D
Z

Dg

j dmg

j 2 L[T Œgj�I

(b) for j 2 Œ1 W j0 � 1� ; fixed, but arbitrary,

d f

j D
dM?0
dM f

j

;

D f

j D equivalence class of
q

d f

j ;

h f

j D
Z

D f

j dm f

j 2 L[T Œ fj�:

Let

Qf j .t/ D Pt

h
h f

j

i
;

Qgj .t/ D Pt

h
hg

j

i
:
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The following assertions then obtain:

1. for fj; j1; j2g � Œ1 W j0� ; fixed, but arbitrary,

(i) MQgj � M?0 (in fact they are equal),

(ii) when j1 ¤ j2; for fixed, but arbitrary ft1; t2g � T;

Lt1

�Qgj1

� ? Lt2

�Qgj2

�
(in particular, hg

j1
? hg

j2
/I

2. for fj; j1; j2g � Œ1 W j0 � 1� ; fixed, but arbitrary,

(i) M
Qf

j � M?0 (in fact they are equal),
(ii) when j1 ¤ j2; for fixed, but arbitrary ft1; t2g � T;

Lt1

� Qf j1

� ? Lt2

� Qf j2

�
(in particular, h f

j1
? h f

j2
/I

3.
Lj0�1

jD1 L[T
� Qfj� D ˚h 2 L[T Œ f � W Mgh � M?0

�
:

Proof Items 1 and 2 restate either immediate consequences of the definitions
(absolute continuity), or properties of a canonical decomposition (orthogonality).
Thus only item 3 requires a proof.

It is useful to notice the following two facts:

• since M?0 ? M f

j0
; there exists T0 2 T such that

M f

j0
.T0/ D 0; and M?0 .T0/ D M?0 .T/ I

• since
˚
M f

i ; i 2 I
�

is a maximal chain, for i > j0; M f

i � M f

j0
; so that, for i � j0;

M f

i .T0/ D 0; and M f

i ? M?0 :

Proof Suppose that h 2 L[T Œ f � ; and that

Mgh � M?0 : (?)

Assumption (A: canonical representation, maximal chain) assures that [(Proposi-
tion) 6.4.37]:

• h has the decomposition h DPi2I hi; with hi D PL[T Œ fi� Œh� I
• hi has the representation hi D

R
h

i dm f

i ; 
h
i 2 L2

�
T; T ;M f

i

� I
• Mgh

i is determined using the function t 7! Pt Œhi� (gi.t/ in (Lemma) 6.4.36), and
Mgh ; the function t 7! Pt Œh� I
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• for QT 2 T ; fixed, but arbitrary, Mgh
i

� QT� D RQT � Ph
i

�2
dM f

i I
• for QT 2 T ; fixed, but arbitrary, Mgh

� QT� DPi2I Mgh
i

� QT� :
Since it is assumed (?) that Mgh � M?0 ; for i 2 I; fixed, but arbitrary,

Mgh
i � Mgh � M?0 ;

so that one may compute

dh
i D

dMgh
i

dM?0
:

Then, for QT 2 T ; fixed, but arbitrary,Z
T0\QT

dh
i dM?0 D Mgh

i

�
T0 \ QT

� D Z
T0\QT

� Ph
i

�2
dM f

i : (??)

As, when i � j0; M f

i .T0/ D 0; and M?0 .T0/ D M?0 .T/ ; (??) rewrites asZ
QT

dh
i dM?0 D 0;

so that dh
i is almost surely zero, with respect to M?0 : But then Mgh

i is a zero measure,
that is, h

i is the equivalence class of the zero function, which, in turn, means that
hi D 0H: Consequently

h D
j0�1X
jD1

hj:

Now, given (A), and the assumption (?) that Mgh � M?0 ; for j 2 Œ1 W j0 � 1� ; fixed,
but arbitrary,

Mgh
j � Mgh � M?0 � M0 CM?0 D M f

j0
� M f

j ;

so that, for QT 2 T ; fixed, but arbitrary,

Mgh
j

� QT� D
8̂̂<
ˆ̂:
R
QT
� Ph

i

�2
dM f

j

R
QT
�

dM
gh
j

dM?0

� �
dM?0
dM

f
j

�
dM f

j D
R
QT dh

j d f

j dM f

j

:

Consequently, almost surely with respect to M f

j ; dh
j d f

j D
� Ph

i

�2
:
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Given a function Pf ; with extended real values, let s .f / be the equivalence class
of the following function:

Ps � Pf � D
8<
:

1 when Pf � 0

�1 when Pf < 0
:

Let also Dh
j be the equivalence class of

q
dh

j : Then

Z
s
�
h

j

�
Dh

j dm
Qf

j D
Z

s
�
h

j

�
Dh

j D
f

j dm f

j D
Z
h

j dm f

j D hj:

Consequently hj 2 L
h
m
Qf

j

i
D L[T

� Qf j
�
; so that

h 2
j0�1M
jD1

L[T
� Qf j
�
;

and

˚
h 2 L[T Œ f � W M fh � M?0

� � j0�1M
jD1

L[T
� Qf j
�
:

Proof Suppose now that h 2Lj0�1
jD1 L[T

� Qf j
�
:

Then

h D
j0�1X
jD1

Z
h

j dm
Qf

j ; 
h
j 2 L2

�
T; T ;M Qfj

�
:

But Z
h

j dm
Qf

j D
Z
h

j D f

j dm f

j ;

so that

dMgh D
j0�1X
jD1

� Ph
j

�2
d f

j dM f

j D
j0�1X
jD1

� Ph
j

�2
dM?0 ;

that is, Mgh � M?0 : ut



492 6 Cramér-Hida Representations from “First Principles”

The next lemma says that, when the index is small enough, that is, in item (B) of
(Lemma) 6.4.41, k 2 I \ J; absolute continuity prevails, that is Mg

k � M f

k .

Lemma 6.4.42 Suppose that items (A) and (B) of (Lemma) 6.4.41 obtain, and let
QI D jIj ; QJ D jJj : Then, for k � QI ^ QJ; fixed, but arbitrary,

Mg

k � M f

k :

Proof Notation, and definitions, are those of (Lemma) 6.4.41. Let, for j 2 J; fixed,
but arbitrary, gj .t/ D Pt

�
hj
�
; hj 2 L[T Œ f � : As˚

M f

i ; i 2 I
�

is a maximal chain, and that, for j 2 J; fixed, but arbitrary, hj 2 L[T Œ f � ;

hj D
X
i2I

PL[T Œ fi�
�
hj
� DX

i2I

Z


hj

i dm f

i ;

so that

dMg

j D
� Phj

i

�2
dM f

i � dM f

1;

and, in particular, Mg

1 � M f

1:

Suppose that k0 � QI ^ QJ is the first integer, if there is one, for which one does not
have Mg

k0
� M f

k0
: Then, because of (Lemma) 6.4.41,

k0�1M
kD1

L[T
� Qf k
� D ˚h 2 L[T Œ f � W Mgh � M?0

�
:

Since [(Lemma) 6.4.41] M Qgk � M?0 ; hg

k 2
Lk0�1

lD1 L[T
� Qf l
�
; and thus

hg

k D
k0�1X
lD1

Z


h
g
k

l dm
Qf

l ;

so that

dM Qgk D
k0�1X
lD1

� Ph
g
k

l

�2
dM
Qf

l :

Using the definitions of (Lemma) 6.4.41, one has, for example, that

dM
Qf

l D d f

l dM f

l D dM?0 :



6.4 The Cramér-Hida Representation 493

So, for fixed, but arbitrary

j 2 Œ1 W k0� W dM Qgj D dM?0 ;

i 2 Œ1 W k0 � 1� W dM
Qf

i D dM?0 ;

and thus, almost surely, with respect to M?0 ;

k0�1X
lD1

� Ph
g
k

l

�2
D 1:

On the other hand, when l ¤ �;

0 D hQgl .t/ ; Qg� .t/iH

D
*

k0�1X
kD1

Z
ITt 

h
g
l

k dm
Qf

k;

k0�1X
kD1

Z
ITt 

h
g
�

k dm
Qf

k

+
H

D
k0�1X
kD1

Z
Tt

Ph
g
l

k
Ph

g
�

k dM
Qf

k

D
Z

Tt

k0�1X
kD1
Ph

g
l

k
Ph

g
�

k dM?0 :

Consequently, almost surely, with respect to M?0 ;

k0�1X
kD1
Ph

g
l

k
Ph

g
�

k D 0:

Let vl .t/ 2 Rk0�1 be the vector with components

n Ph
g
l

k .t/ ; k 2 Œ1 W k0 � 1�
o
:

From what precedes, almost surely for t 2 T; with respect to M?0 ; the set˚
v1 .t/ ; : : : ; vk0 .t/

�
forms a family of k0 orthonormal vectors in Rk0�1: This is possible only when
M?0 .T/ D 0: ut

The lemma which follows is the key to proving that multiplicities must be equal.
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Lemma 6.4.43 Suppose that items (A) and (B) of (Lemma) 6.4.41 obtain, and that

jIj D QI < QJ D jJj :

Then, because of (Lemma) 6.4.42,

Mg

i � M f

i ; i 2 Œ1 W QI�:

Furthermore, because of Assumption (B), Mg

QIC1 � Mg

QI ; so that

Mg

QIC1 � M f

QI :

It makes thus sense to set:

(a) for j 2 �1 W QI C 1� ; fixed, but arbitrary,

dg

j D
dMg

QIC1
dMg

j

;

Dg

j D equivalence class of
q

dg

j ;

hg

j D
Z

Dg

j dmg

j I

(b) for i 2 �1 W QI� ; fixed, but arbitrary,

d f

i D
dMg

QIC1
dM f

i

;

D f

i D equivalence class of
q

d f

i ;

h f

i D
Z

D f

i dm f

i :

Then, with notation and definitions of (Lemma) 6.4.42,

1. QI <1I
2. for i 2 �1 W QI� ; and j 2 �1 W QI C 1� ; fixed, but arbitrary,

MQgj D Mg
QIC1 D M

Qf
i I

3.
L

i2I L[T
� Qf i

� D nh 2 L[T Œ f � W Mgh � Mg

QIC1
o
I

4.
LQIC1

jD1 L[T
�Qgj
� �Li2I L[T

� Qf i

�
:
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Proof Item 1 expresses the fact that J is at most countable, and that one has assumed
QI < QJ: Item 2 is a direct consequence of the definitions (in (a) and (b)) of the
elements involved: for example dMQgj D dg

j dMg

j D dMg

QIC1:

Proof ([3],�) Let h 2Li2I L[T
� Qf i
�

be fixed, but arbitrary.
Then

h D
X
i2I

hi; hi D PL[TŒ Qf i� Œh� :

Thus

hi D
Z
h

i dm
Qf

i D
Z
h

i D f

i dm f

i ;

dMgh
i D

�
h

i

�2
dM
Qf

i D
�
h

i

�2
dMg

QIC1 (item 2),

and

1 >

Z � Ph
i

�2
dM
Qf

i D

8̂<
:̂
R � Ph

i

�2
d f

i dM f

i

R � Ph
i

�2
dMg

QIC1

:

Consequently

hi 2 L
�
m f

i

� D L[T Œ fi� � L[T Œ f � :

Furthermore

Mgh
i � Mg

QIC1;

so that both h 2 L[T Œ f � and Mgh � Mg

QIC1 obtain. The .�/-part of the equality of
item 3 is thus true.

Proof ([3],�) Suppose that h 2 L[T Œ f � is such that Mgh � Mg

QIC1:
Then

h D
X
i2I

hi; hi D
Z
h

i dm f

i 2 L
�
m f

i

� D L[T Œ fi� ;

and thus

dMgh
i D

� Ph
i

�2
dM f

i :
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But, for i 2 I; fixed, but arbitrary, first by definition, and then by assumption,

Mgh
i � Mgh � Mg

QIC1:

Let then

dh
i D

dMgh
i

dMg

QIC1
;

Dh
i D equivalence class of

q
dh

i :

One may thus write, using item 2, that

dMgh
i D dh

i dMg

QIC1 D dh
i dM

Qf

i D dh
i d f

i dM f

i ;

with the consequence that, almost surely with respect to M f

i ;� Ph
i

�2 D dh
i d f

i :

One may then check, as in the proof of (Lemma) 6.4.42, that

hi D
Z

s
�
h

i

�
Dh

i dm
Qf

i 2 L
h
m
Qf

i

i
D L[T

� Qf i
�
:

The proof of item 4 proceeds then as follows. Let k 2 LQIC1jD1 L[T
�Qgj
�

be fixed,
but arbitrary. Then

k D
QIC1X
jD1

kj; kj 2 L[T ŒQgi� ; or kj D
Z
k

j Dg

j dmg

j 2 L
h
mg

j

i
D L[T

�
gj
�
;

so that, using the Assumption (B), k 2 L[T Œ f � : Furthermore, using the definitions,
and item 2,

Mgk D
QIC1X
jD1

MQgj � Mg

QIC1:

But then, by item 3, k 2L2I L[T
� Qf i
�
: ut

One shall now see that multiplicities of proper canonical representations domi-
nate those of similar representations.
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Lemma 6.4.44 Suppose that items (A) and (B) of (Lemma) 6.4.41 obtain. Then:

1. QJ � QII
2. for j 2 J; fixed, but arbitrary, Mg

j � M f

j :

Proof Suppose one establishes that

Mg

QIC1 .T/ D 0:

As, by assumption, for fj1; j2g � J; j1 < j2; fixed, but arbitrary,

Mg

j2
� Mg

j1
;

one shall then have that, for j > QI; fixed, but arbitrary, Mg

j .T/ D 0; that is

QJ � QI:

And it follows then, from (Lemma) 6.4.42, that, for j 2 J; fixed but arbitrary,

Mg

j � M f

j :

Suppose thus that QI < QJ: From (Lemma) 6.4.43, items 2 and 3, it follows
respectively that:

(i) for i 2 �1 W QI� ; and j 2 �1 W QI C 1� ; fixed, but arbitrary,

MQgj D Mg

QIC1 D M
Qf

i I

(ii)
L

i2I L[T
� Qf i
� D nh 2 L[T Œ f � W Mgh � Mg

QIC1
o
:

Since, from (i), for j 2 �
1 W QI C 1� ; fixed, but arbitrary, MQgj � Mg

QIC1; then,
from (ii),

hg

j D
QIX

iD1

Z


h
g
j

i dm
Qf

i ;

so that, with hg

j ; the element of H that determines the function Qgj in terms of the
projections Pt;

dMQgj D
QIX

iD1

�
Ph

g
j

i

�2
dM
Qf

i :
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It follows from there, almost surely, with respect to Mg

QIC1; that

QIX
iD1

�
Ph

g
j

i

�2
D 1:

One has thus a situation analogous to that encountered in the proof of
(Lemma) 6.4.42. Mutatis mutandis one must conclude that Mg

QIC1 .T/ D 0: ut
One sees next that multiplicity is unique.

Lemma 6.4.45 Suppose that

L[T Œ f � D
M
i2I

L[T Œ fi�
M

Ld Œ f � ;

with, for i 2 I; fixed, but arbitrary,

• the maps with orthogonal increments fi .t/ D Pt Œki� are continuous,

• M f

i � M f

iC1:

If also

L[T Œ f � D
M
j2J

L[T
�
gj
�M

Ld Œ f �

with, for j 2 J; fixed, but arbitrary, Mg

j � Mg

jC1; then

1. QJ D QII
2. for i 2 I; fixed, but arbitrary, Mg

i � M f

i :

Proof The assumption amounts to the following equality:M
i2I

L[T Œ fi� D Lc Œ f � D
M
j2J

L[T
�
gj
�
:

The conclusion follows from (Lemma) 6.4.44 provided one knows that the mea-
sures associated with the decompositions are maximal. But that follows from
(Lemma) 6.4.40. ut

It is now possible to state the two forms of the (proper, canonical) CHR, one due
to Cramér, and the other, to Hida. The proofs have already been presented above,
piecemeal.

Proposition 6.4.46 (Cramér’s Representation) Let CHA obtain for

f W T �! H:
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There exists then fki; i 2 Ig � H such that, with fi .t/ D Pt Œki� ;

1. for t 2 T; fixed, but arbitrary, Lt Œ f � DLi2I Lt Œ fi� I
2. for i 2 I; fixed, but arbitrary, M f

i � M f

iC1I
3. when there exits

˚ Qki; ı 2 QI
� � H such that, with Qf i .t/ D Pt

� Qki
�
;

(a) for t 2 T; fixed, but arbitrary, Lt Œ f � DLi2QI Lt
� Qf i
� I

(b) for i 2 QI; fixed, but arbitrary, M
Qf

i � M
Qf

iC1;

then

(i) QI D II
(ii) for i 2 I; fixed, but arbitrary, M

Qf

i � M f

i I
4. for h 2 Lt Œ f � ; fixed, but arbitrary,

h D
X
i2I

Z
f h
i dm f

i ; f h
i 2 L2

�
T; T ;M f

i

�
; ITt f

h
i D f h

i :

QI is the multiplicity of f :

Proposition 6.4.47 (Hida’s Representation) Let CHA obtain for

f W T �! H:

Then, for t 2 T; fixed, but arbitrary, in H;

f .t/ D
X
i2I

Z
i .t/ dm f

i C
X
ti<t

nŒti�X
jD1

 
j

i .t/ hj

i

where,

1. for the sum of integrals,

(i) for i 2 I; fixed, but arbitrary, the additive vector set functions m f

i are obtained
from functions fi W T �! H that are continuous, orthogonal, and have
orthogonal increments;

(ii) the numerical additive set functions M f

i associated with m f

i and fi are ordered
by absolute continuity: for i 2 I; fixed, but arbitrary,

M f

i � M f

iC1I

(iii) the functions

i W T �! L2
�
T; T ;M f

i

�
; i 2 I;

have the following features: ITti .t/ D i .t/ ;
P

i2I

R P2i dM f

i <1I
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2. for the sum of sums,

(i) the points ti are those elements t 2 T at which PCt �Pt ¤ OH (null projection);
(ii) n Œti� is the dimension of the range of PCt � Pt [(Remark) 6.1.4]: it is either a

strictly positive integer or infinity;
(iii) the hj

i’s are orthonormal elements of HI the family˚
hj

i; j 2 Œ1 W n Œti��
�

forms a basis for the range of PCt � PtI
(iv)  j

i .t/ D
˝
f .t/ ; hj

i

˛
H
I

3. the sum of integrals and the sum of sums are orthogonal in H; and, for t 2 T;
fixed, but arbitrary,

Lt Œ f � D
X
i2I

Lt Œ fi�
M

V
�˚

hj

i; j 2 Œ1 W n Œti�� ; ti < t
��I

4. suppose that, for t 2 T; fixed, but arbitrary, also

f .t/ D
X
j2J

Z
Qj .t/ d Qmf

j C
X
ti<t

nŒti�X
kD1
Q k

i .t/ Qhk
i ;

an expression to be interpreted as the original one above: then

(i) QI D QJI
(ii) for i 2 I; fixed, but arbitrary, QM f

i � M f

i (mutual absolute continuity), where
the relation of QM f

i to Qm f

i and Qf i is that of M f

i to m f

i and fiI furthermore,almost
surely with respect to QM f

i ;

Qi D i

s
dM f

i

d QM f

i

I

(iii) for i 2 I; fixed, but arbitrary, there is a unitary map Ui on the range of PCti �Pti
for which, for j 2 Œ1 W n Œti�� ; fixed, but arbitrary,

Qh j

i D Ui
�
h j

i

�
:

The multiplicity of f is the value sup
˚ QI; dim .Ld Œ f �/

�
:

Remark 6.4.48 Let � and � be equivalent (mutually absolutely continuous) mea-
sures on .X;X / ; and define U W L2 .X;X ; �/ �! L2 .X;X ; �/ ; using the following
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assignment:

f 7!
"
Pf
r

d�

d�

#
L2.X;X ;�/

:

As

jjU Œ f �jj2L2.X;X ;�/ D jj f jj2L2.X;X ;�/ ;

U is an isometry. But, if g is orthogonal to the range of U; one has, for fixed, but
arbitrary f 2 L2 .X;X ; �/ ; that

0 D hg;U Œ f �i2L2.X;X ;�/ D
Z

X
Pg .x/ Pf .x/

r
d�

d�
.x/ � .dx/ :

Consequently, since, because of equivalence, the Radon-Nikodým derivative is
almost surely different from 0, g is the zero element, and U is unitary. The CHR’s
are thus unique modulo unitary maps.

It remains to check that the multiplicities of the Cramér and the Hida representa-
tions are the same.

Lemma 6.4.49 Definitions, and notation, are as in (Proposition) 6.4.47. Let


 D f.i; j/ 2 N � N W ti 2 Td and j 2 Œ1 W n Œti��g ;

and choose a set f˛1;� ; � 2 
g � R n f0g with
P

�2
 ˛21;� D 1: Define then

k1 D
X

�2
;�D.i;j/
˛1;� h j

i :

Continue producing orthonormal kn’s in the following fashion, given, for n 2 N;

Vn Œk� D L Œk1; : : : ; kn� ; the vector subspace with basis fk1; : : : ; kng W
(a) when, given � D .i; j/ ; h j

i 2 Vn Œk� ; ˛nC1;� D 0I
(b) when, given � D .i; j/ ; h j

i … Vn Œk� ; ˛nC1;� 2 R n f0g I
(c)

P
�2
 ˛2nC1;� D 1I

(d) knC1 DP�2
;�D.i;j/ ˛nC1;� h j

i ; and knC1 ? Vn Œk� :

The procedure just described yields a basis for Ld Œ f � :

Proof It suffices to check that
˚
h j

i ; .i; j/ D � 2 

� �Wn Vn Œk� : To that end, let


0 D
(
� 2 
; � D .i; j/ W h j

i …
_

n

Vn Œk�

)
:
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Then, because of the way the sequence fkn; n 2 N0 � Ng was built, there is, in that
sequence, an element kn0 whose ˛-coefficients are different from zero when they
weigh an element h j

i such that .i; j/ D � 2 
0: Let Q be the projection ontoW
n Vn Œk� : Since

kn0 D
X

�2
0;�D.i;j/
˛n0;.i;j/h

j

i D
X

�2
0;�D.i;j/
˛n0;.i;j/Q

�
h j

i

�
;

one has that

0H D
X

�2
0;�D.i;j/
˛n0;.i;j/

˚
h j

i � Q
�
h j

i

��
:

But ˝
h j

i �Q
�
h j

i

�
; hl

k � Q
�
hl

k

�˛
H
D � ˝Q �h j

i

�
;Q
�
hl

k

�˛
H
;

so that

0 D
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌ X
�2
0;�D.i;j/

˛n0;.i;j/
˚
h j

i �Q
�
h j

i

��ˇ̌̌ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

D �
X

�2
0;�D.i;j/

X
�2
0;�D.k;l/

˛n0;.i;j/ ˛n0;.k;l/
˝
Q
�
h j

i

�
;Q
�
hl

k

�˛
H

D �
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌Q
8<
: X
�2
0;�D.i;j/

˛n0;.i;j/h
j

i

9=
;
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

D �
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌ X
�2
0;�D.i;j/

˛n0;.i;j/h
j

i

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

D �
X

�2
0;�D.i;j/
˛2n0;.i;j/:

Thus kn0 D 0; which is impossible, as it belongs to an orthonormal set. ut
Proposition 6.4.50 The Cramér and Hida proper canonical representations have
the same multiplicity.
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Proof Notation and definitions are as in (Propositions) 6.4.46, 6.4.47, and 6.4.49.
Let

L[T Œ f � D Lc Œ f �˚ Ld Œ f �

and let

•
˚
kc

i ; i 2 Ic
� � H be a family such that, when f c

i .t/ D Pt
�
kc

i

�
;

Lc Œ f � D
M
i2Ic

L[T
�

f c
i

�

is a proper canonical representation;

•
˚
kd

i ; i 2 Id
� � H be a family such that

Ld Œ f � D
_
i2Id

Vi
�
kd

i

�
;

as in (Lemma) 6.4.49.

Set

ki D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

kc
i C kd

i when i � QIc ^ QId

kc
i when QId < i � QIc

kd
i when QIc < i � QId

:

Since, for .i; j/ D � 2 
; the measure associated with

Pt
�
h j

i

�
;

has a one point support made of ti; whose measure is one, the measures associated
with the functions f d

i .t/ D Pt
�
kd

i

�
; i 2 Id; have decreasing supports contained in Td:

Consequently

L[T Œ f � D
8<
:M

i2Ic

L[T
�

f c
i

�9=;M
8<
:M

i2Id

L[T
�

f d
i

�9=;
is a proper canonical representation in the sense of Cramér, and thus both multiplic-
ities agree. ut
Remark 6.4.51 “Current language” makes no distinction between the Cramér’s and
the Hida’s representations as, most often, the processes concerned are at least
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second order continuous, and then the two types coincide. The common term is
thus “Cramér-Hida” representation.

Remark 6.4.52 The CHR may be obtained “without work” using the Hellinger-
Hahn theorem [249, Chapter 7], as done in [132] (for a complete exposition “under
the same roof,” see [143]). It is obviously a shorter way to the CHR, though, perhaps,
a less informative one. It turns out [15] that within cosmetic rearrangements,
the results obtained here for the CHR amount to a proof of the Hellinger-Hahn
theorem. It all boils down to the fact the Cramér-Hida representation furnishes a
left-continuous resolution of the identity.



Chapter 7
Cramér-Hida Representations via Direct
Integrals

Direct integrals generalize direct sums. As the CHR is a direct sum decomposition
(preserving the time structure), it is perhaps unsurprising that direct integrals have a
part to play in the study of the CHR.

Direct integrals allow one to give a representation of the subspace generated
linearly by the range of a function f W T �! H akin to that available for processes
with orthogonal increments, for which the elements of L[T Œf � are represented as
integrals with respect to a H-CAOSM. In the general case the integrals are the so-
called direct integrals, developed mostly for the analysis of operator classes [76,
203]. Such integrals preserve the time dimension inherent to f , and one has then
at disposal a reasonably flexible computing instrument. One consequence of the
representation of L[T Œf � by a direct integral is the Cramér representation of f ; with
an emphasis on its global properties, rather than its local ones.

7.1 Direct Integrals

Direct integrals are Hilbert subspaces of uncountable products of Hilbert spaces
which are not, “naturally,” Hilbert spaces [269, p. 185]. One starts with measurable
fields of Hilbert spaces, a particular class of submanifolds, and it is within those
that one finds the direct integrals, using a measure on the space of indices of the
uncountable product.

© Springer International Publishing Switzerland 2015
A.F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise,
DOI 10.1007/978-3-319-22315-5_7
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7.1.1 Measurable Fields of Hilbert Spaces

Definition 7.1.1 Let .S;S/ be a measurable space, and for each s 2 S; let Hs be a
real Hilbert space. One shall assume that Hs ¤ f0Hsg ; s 2 S: Let

HS D
Y
s2S

Hs:

A measurable field of Hilbert spaces, defined on .S;S/ ; is a linear manifold HS of
HS which has the following properties:

1. for fixed, but arbitrary fh1; h2g � HS; the map

s 7! hh1 .s/ ; h2 .s/iHs

is adapted to SI
2. whenever f 2 HS is such that, for all h 2 HS;

s 7! hf .s/ ; h .s/iHs

is adapted to S; then f 2 HSI
3. there exists a family fhn; n 2 Ng � HS such that, for fixed, but arbitrary s 2 S;
fhn .s/ ; n 2 Ng is total in Hs:

An element of HS is called a measurable field of vectors.

Remark 7.1.2 Item 1 of (Definition) 7.1.1 has the consequence that, for h 2 HS ;
fixed, but arbitrary, the map s 7! jjh.s/jjHs

is adapted.

Remark 7.1.3 Item 3 of (Definition) 7.1.1 has, as consequence, that, for fixed, but
arbitrary s 2 S; Hs is separable. Consequently its Borel sets are generated by the
cylinder sets: B .Hs/ D C .Hs/ ; s 2 S:

Example 7.1.4 Let H be a real, separable, Hilbert space, and Hs D H; s 2 S: Then
HS D HS; and the linear manifold M of maps s 7! f .s/ 2 H that are adapted to S
and B .H/ is a measurable field of Hilbert spaces, called the constant field associated
with H and .S;S/ :

Indeed, since s 7! f .s/ is adapted if, and only if, s 7! hf .s/ ; hiH is adapted for
all h 2 H [(Remark) 7.1.3], the constant functions belong to M:

Let ff1; f2g �M be fixed, but arbitrary. Then

s 7! hf1 .s/ ; f2 .s/iHs
D hf1 .s/ ; f2 .s/iH

is adapted to S as it is the composition of the following maps:

s 7! .f1 .s/ ; f2 .s// 2 H �H; and .h1; h2/ 7! hh1; h2iH :
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When g 2 HS is such that˚
s 7! hg .s/ ; f .s/iHs

D hg .s/ ; f .s/iH ; f 2M
�

is a family of functions adapted to S; then g 2M W it suffices to restrict attention to
the functions f that are constant.

Let fhi; i 2 Ig be a complete orthonormal set in H: Item 3 of (Definition) 7.1.1
is given by the family fs 7! hi; i 2 Ig :
Example 7.1.5 Let .X;X / be a measurable space, and let X be countably generated.
Suppose that, for each s 2 S; � .s; 
/ is a finite, positive measure on .X;X / ; and
that, for each X0 2 X ; the map s 7! � .s;X0/ is adapted to S: Then, given f adapted
to S ˝ X and B .R/ ;

s 7!
Z

X
f .s; x/ � .s; dx/

is adapted to S as soon as the integral makes sense.
Let

HS D
Y
s2S

L2 .X;X ; � .s; 
// ;

and, in HS; let HS be the family of elements h for which there exists Qh; adapted to
S ˝ X and B .R/ ; with the property that�Qh .s; 
/�

L2.X;X ;�.s;�// D h .s/ ; s 2 S:

HS is then a measurable field of Hilbert spaces.
Let indeed Qh1 correspond to h1; and Qh2 to h2: Then the following map:

s 7! hh1 .s/ ; h2 .s/iL2.X;X ;�.s;�// D
Z

X

Qh1 .s; x/ Qh2 .s; x/ � .s; dx/

is adapted to S:
Let Xc � X be a countable family of sets of positive measure generating X : For

fixed, but arbitrary Xc 2 Xc; let

QhXc .s; x/ D �Xc
.x/ :

Then, by definition of HS; the following relation:

hXc .s/ D
�QhXc .s; 
/

�
L2.X;X ;�.s;�//

determines an element of HS : The family fhXc; Xc 2 X g is the family required by
item 3 of (Definition) 7.1.1.
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Suppose finally that the following map: f 2 HS is such that

s 7! hf .s/ ; h .s/iL2.X;X ;�.s;�//
is adapted to S for h 2 HS : For fixed, but arbitrary n 2 N; let Xn � X be a finite
�-algebra. Suppose that

X D � fXn; n 2 Ng :

Then, for fixed, but arbitrary s 2 S; by the appropriate martingale convergence
theorem, almost surely with respect to � .s; 
/ ;

lim
n

E�.s;�/
�Pf .s/ j Xn

� D Pf .s/ :
Let

Pn ŒX� D
˚
X.n/

i ; i 2 In
�

be the finite partition of X generated by Xn: The explicit formula for the conditional
expectation of Pf .s/ with respect to Xn is then [54, p. 215]:

Qhn .s; x/ D
X

X
.n/
i 2PnŒX�

D
f .s/ ; h

X
.n/
i
.s/
E
L2.X;X ;�.s;�//

�
X
.n/
i

.x/

�
�
s;X.n/

i

� :
Qhn is adapted to S ˝ X and, for s 2 S; fixed, but arbitrary,�Qhn .s; 
/

�
L2.X;X ;�.s;�// D

�
E�.s;�/

� Pf .s/ j Xn
��

L2.X;X ;�.s;�// :

Then the element

Qh D lim sup Qhn

is adapted to S ˝ X and, for s 2 S; fixed, but arbitrary,�Qh .s; 
/�L2.X;X ;�.s;�// D f .s/ :

Item 2 of (Definition) 7.1.1 thus obtains.

Remark 7.1.6 Example 7.1.5 provides one possible construction for the Hilbert
space of estimating functions in the sense of [174, 244]. Using a measure � on
S yields the Bayesian framework for estimation.
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Lemma 7.1.7 Let (Definition) 7.1.1 obtain. Let I � N; and fhi; i 2 Ig � HS be
fixed, but arbitrary. Let fi; i 2 Ig be a fixed, but arbitrary family of functions with
values in R that are adapted to S: When I is infinite, suppose that, for fixed, but
arbitrary s 2 S; the series X

i2I

i .s/ hi .s/

is convergent in Hs: The following assignment:

f .s/ D
X
i2I

i .s/ hi .s/

produces then an element of HS :

Proof Let h 2 HS be fixed, but arbitrary. Then

s 7! hf .s/ ; h .s/iHs
D
X
i2I

i .s/ hhi .s/ ; h .s/iHs

is an adapted function [(Definition) 7.1.1, item 1]. Consequently f 2 HS [(Defini-
tion) 7.1.1, item 2]. ut
Lemma 7.1.8 Let H be a real Hilbert space, and let fhn; n 2 Ng � H be any
sequence that contains elements other than 0H : For n 2 N; let Vn Œh� be the (closed)
subspace generated linearly by fh1; : : : ; hng : There exists then an orthonormal set,
say fki; i 2 I � Ng � H; with I either equal to N; or to an “interval” of the form
Œ1 W n� ; some n 2 N; such that, when Vn Œh� ¤ f0Hg ;

Vn Œh� D Vp Œk� ;

where p D dim Vn Œh� ; and Vp Œk� is the (closed) subspace generated linearly by˚
k1; : : : ; kp

�
:

Proof Below, the minimum of an empty set of integers shall be1: Since there is
n 2 N such that jjhnjjH ¤ 0; the following number is finite:

n1 D min fn 2 N W jjhnjjH ¤ 0g :

Set k1 D jjhn1 jj�1H hn1 ; and

h.1/n D hn � hhn; k1iH k1; n 2 N:
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Then

V Œh1; : : : ; hn1 � D V Œhn1 � D V Œk1� :

Let then n2 D1 when ˚
h.1/n ; n 2 N W ˇ̌̌̌ h.1/n

ˇ̌̌̌
H
¤ 0� D ;;

and, otherwise,

n2 D min
˚
n 2 N W ˇ̌̌̌ h.1/n

ˇ̌̌̌
H
¤ 0� :

If n2 D1; the process stops. Otherwise one sets

k2 D
ˇ̌̌̌̌̌ ˚

h.1/n2

��1 ˇ̌̌̌̌̌
H

h.1/n2
;

and

h.2/n D h.1/n �
˝
h.1/n ; k2

˛
H k2; n 2 N:

When n2 D1; hn D hhn; k1iH k1; all n: Consequently

V Œh1; : : : ; hn� D V Œk1� ; n � 1:

Otherwise

V
�
h1; : : : ; hp

� D V Œk1� ; p < n2; and V Œh1; : : : ; hn2 � D V Œk1; k2� :

One continues in similar fashion. If there is a p 2 N such thatn
h.p/n ; n 2 N W

ˇ̌̌̌̌̌
h.p/n

ˇ̌̌̌̌̌
H
¤ 0

o
D ;;

the process stops with np: Otherwise the process will continue indefinitely. ut
Remark 7.1.9 When there exists p 2 N such that, for i 2 Œ1 W p � ; fixed, but arbitrary,
ni <1; but np C 1 D 1; then

dim V Œfhn; n 2 Ng� D p :

Remark 7.1.10 When, for p 2 N; fixed, but arbitrary, np <1; then

dim V Œfhn; n 2 Ng� D 1:
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Proposition 7.1.11 Let (Definition) 7.1.1 obtain. Then:

1. there exists fei; i 2 I � Ng � HS such that

(i) when dim fHsg D 1; fei .s/ ; i 2 Ig is a basis for Hs;

(ii) when dim fHsg <1;
(a) fei .s/ ; i 2 Œ1 W dim fHsg�g is a basis for Hs;

(b) for i > dim fHsg ; ei .s/ D 0Hs I
2. the map s 7! dim fHsg is adapted to SI
3. f 2 HS belongs to HS if, and only if, s 7! hf .s/ ; ei .s/iHs

is adapted for all i 2 I:

Proof Let fhn; n 2 Ng be the family of item 3 in (Definition) 7.1.1. As seen in
(Remark) 7.1.2, for n 2 N; fixed, but arbitrary, s 7! jjhn.s/jjHs

is adapted. Let

n1.s/ D min
˚
n 2 N W jjhn.s/jjHs

¤ 0� :
n1.s/ 2 N for every s 2 S; as one has assumed that Hs has at least dimension one.
Consequently

S1;n D fs 2 S W n1.s/ D ng
D ˚

s 2 S W jjhi.s/jjHs
D 0; i < n; jjhn.s/jjHs

¤ 0�
2 S:

Because of (Lemma) 7.1.7, the following definition makes sense, yields a measur-
able field of vectors, each of norm one:

e1.s/ D
X
n2N

�S1;n
.s/ jjhn.s/jj�1Hs

hn.s/:

When s 2 S1;n; hn.s/ is the first element in fhn.s/; n 2 Ng whose norm is not zero,
so that jjhn.s/jj�1Hs

hn.s/ corresponds, in Hs; to k1 of (Lemma) 7.1.8, and thus e1.s/
yields the equivalent of k1 of (Lemma) 7.1.8 for arbitrary s: For n 2 N; let

h.1/n .s/ D hn.s/� hhn.s/; e1.s/iHs
e1.s/:

One thus obtains, again because of (Lemma) 7.1.7, a sequence of measurable fields
of vectors. Let

N1.s/ D
n
n 2 N W ˇ̌̌̌ h.1/n .s/

ˇ̌̌̌
Hs
> 0

o
;
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n2.s/ D
8<
:
1 when N1.s/ D ;

minN1.s/ when N1.s/ ¤ ;
;

S2;n D fs 2 S W n2.s/ D ng :

Set again

e2.s/ D
X
n2N

�S2;n
.s/
ˇ̌̌̌
h.1/n .s/

ˇ̌̌̌ �1
Hs

h.1/n .s/:

The procedure yields adapted elements and may be continued indefinitely. The
orthogonality properties of the en.s/-sequence follow, as seen, from (Lemma) 7.1.8.

Since np.s/ is finite when there are at least p orthonormal vectors in Hs;

fs 2 S W dim fHsg � pg D ˚s 2 S W np.s/ <1
�
:

The map s 7! dim fHsg is thus adapted.
To see that item 3 holds, one may proceed as follows. Let h 2 HS be fixed but

arbitrary. The map

s 7! hh .s/ ; ei .s/iHs

is adapted to S as both h and ei belong to HS : If now f 2 HS is fixed, but arbitrary,
and that

s 7! hf .s/ ; ei .s/iHs

is adapted to S for all i 2 I; then, for fixed, but arbitrary h 2 HS;

s 7! hf .s/ ; h .s/iHs

is adapted to S as

hf .s/ ; h .s/iHs
D
X
i2I

hf .s/ ; ei .s/iHs
hei .s/ ; h .s/iHs

:

Consequently, f 2 HS : ut
Corollary 7.1.12 Let (Definition) 7.1.1 obtain. Let dim fHsg D d; all s 2 S; and let
H be a real Hilbert space of dimension d: There exist then unitary maps

Us W Hs �! H; s 2 S;

such that f 2 HS if, and only if, s 7! Us Œf .s/� is adapted to S and B .H/ :
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Proof Let fbi; i 2 Ig be a basis for H; jIj D d; and fei; i 2 Ig be the family of bases
of (Proposition) 7.1.11. The assignment ei .s/ 7! bi determines the isometry Us: But
then

hUs Œf .s/� ; biiH D
˝
f .s/ ;U?

s Œbi�
˛
Hs
D hf .s/ ; ei .s/iHs

:

Consequently the map f belongs to HS if, and only if, s 7! Us Œf .s/� is adapted to
B .H/ [(Remark) 7.1.3]. ut
Remark 7.1.13 A similar result, with the same proof, but more complex notation,
holds when the dimension is not constant: but then one has only an isometry between
spaces of HS type.

Lemma 7.1.14 Let (Definition) 7.1.1 obtain. Let fh�; � 2 �g � HS have the
following properties:

(a) for fixed, but arbitrary f�1; �2g � �; the map s 7! hh�1 .s/ ; h�2 .s/iHs
is

adapted to SI
(b) there exists fh�n ; n 2 Ng � fh�; � 2 �g such that, for fixed, but arbitrary s 2

S; the set fh�n .s/ ; n 2 Ng is total in Hs:

Let fki; i 2 Ig be the sequence obtained from fh�n ; n 2 Ng ; using (Lemma) 7.1.8
and the proof of (Proposition) 7.1.11.

Then, for a fixed, but arbitrary f 2 HS; one has that

F D ˚s 7! hf .s/ ; h� .s/iHs
; � 2 ��

is a family of functions adapted to S if, and only if,

G D ˚s 7! hf .s/ ; ki .s/iHs
; i 2 I

�
is a family of functions adapted to S:
Proof Suppose that F contains adapted functions. The construction of the ei’s in
(Proposition) 7.1.11 only requires items 1 and 3 of (Definition) 7.1.1, and those
are items (a) and (b) of the present lemma. So the ki’s are well defined. They are
obtained as series of elements h�n multiplied by adapted, scalar functions. The maps
s 7! hf .s/; ki.s/iHs

are thus adapted.
Suppose conversely that G contains adapted functions. One has, for � 2 �; fixed,

but arbitrary, that

hf .s/ ; h� .s/iHs
D
X
i2I

hf .s/ ; ki .s/iHs
hki .s/ ; h� .s/iHs

:

The first terms in the products of that latter sum are adapted because they belong
to G: The map s 7! hki .s/ ; h� .s/iHs

is adapted as countable linear combinations of
terms found in Assumption (a). The functions of F are thus adapted. ut
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Proposition 7.1.15 Let the assumptions of (Lemma) 7.1.14 obtain, set

H�

S D fh�; � 2 �g ;

and let

H�

S D
˚
f 2 HS W s 7! hf .s/ ; h� .s/iHs

is adapted to S; � 2 �� :
Then:

1. H�
S is a measurable field of Hilbert spaces;

2. H�
S � H�

S I
3. if KS � HS is any measurable field of Hilbert spaces that contains H�

S ; then
KS D H�

S :

H�
S is called the (unique) measurable field of Hilbert spaces generated by the

family H�
S :

Proof Let fki; i 2 Ig be the sequence of (Lemma) 7.1.14.
H�

S is a measurable field of Hilbert spaces for the following reasons:

• it is a vector space;
• let ff1; f2g � H�

S be fixed, but arbitrary: then

s 7! hf1 .s/ ; f2 .s/iHs
D
X
i2I

hf1 .s/ ; ki .s/iHs
hf2 .s/ ; ki .s/iHs

is, because of (Lemma) 7.1.14, an at most countable sum of products of adapted
terms, and is thus adapted;

• when g 2 HS is such that s 7! hg .s/ ; f .s/iHs
is adapted for all f 2 H�

S ; the same
is true when choosing h� for f ; and thus g 2 H�

S by definition;
• the existence of a family that produces total subsets in each Hs has been assumed.

Furthermore H�
S contains fh�; � 2 �g by its very definition, and the assump-

tions.
To see that H�

S is unique, suppose that KS is a measurable field of Hilbert spaces
that contains the family fh�; � 2 �g : It then necessarily contains the ki’s, because
of the assumption that those (assumptions) of (Lemma) 7.1.14 obtain.

Since KS is a measurable field of Hilbert spaces that contains H�
S ; when k 2 KS

is fixed, but arbitrary, s 7! hk .s/ ; h� .s/iHs
is adapted to S for all � 2 �; that is

k 2 H�
S : Thus KS � H�

S :

Suppose now that f 2 H�
S is fixed, but arbitrary. It follows that the maps s 7!

hf .s/ ; ki .s/iHs
are adapted to S: But, for fixed, but arbitrary k 2 KS;

hf .s/ ; k .s/iHs
D
X
i2I

hf .s/ ; ki .s/iHs
hki .s/ ; k .s/iHs

:
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The first terms in the products of latter sum are adapted as just seen, and the second
ones are because the ki’s belong to KS : Consequently f 2 KS; and H�

S � HS : ut

7.1.2 The Direct Integral: Existence

Direct integrals are subsets of
Q

s2S Hs which are given a Hilbert space structure.
The term “integral” is possibly due to the fact that integrals are sums, and that direct
integrals, as already mentioned, generalize the notion of direct sum. Furthermore
“genuine” integrals are used to define direct integrals, and when, for fixed, but
arbitrary s 2 S; Hs D H; a Hilbert space, the direct integral can be identified with
an actual integral (of functions with S as domain, and H as range).

Proposition 7.1.16 Let (Definition) 7.1.1 obtain. Assume that � is a �-finite
measure on S: Let HI

S be the subset of HS of those elements h for which the map
s 7! jjh .s/jj2Hs

is integrable for �; and let h1 and h2 belong to HI
S : When

Z
S
jjh1 .s/ � h2 .s/jj2Hs

� .ds/ D 0;

h1 and h2 shall be in the same equivalence class. H�
S then denotes the resulting

partition of HI
S into equivalence classes. The equivalence class of h 2 HI

S shall be
denoted Œh� and, when h 2 H�

S;
Ph is a function in that class. One has that:

1. H�
S is a real Hilbert space with inner product

hh1; h2iH�
S
D
Z

S

˝Ph1 .s/ ; Ph2 .s/˛Hs
� .ds/ ; fh1; h2g � H�

S :

2. Let fei; i 2 Ig be the family of equivalence classes in H�
S of a sequence of

elements Pei 2 HS with the properties listed in (Proposition) 7.1.11. For fixed,
but arbitrary i 2 I; let

Si D fs 2 S W dim fHsg � ig D fs 2 S W Pei .s/ ¤ 0Hsg ;

and �i .S0/ D � .S0 \ Si/ ; S0 2 S:
Let Ui W L2 .S;S; �i/ �! H�

S be defined using the following assignment:

f .i/ 7!
h Pf .i/Pei

i
D f .i/ei;

where f .i/ is a fixed, but arbitrary element in L2 .S;S; �i/ : Then

(i) for fixed, but arbitrary i 2 I; Ui is a partial isometry, whose initial set is
L2 .S;S; �i/ ; and final set, RUi � H�

SI
(ii) H�

S D
L

i2I Ui ŒL2 .S;S; �i/� :
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Proof One must notice that, when s 2 Sc
i ; Pei .s/ D 0Hs ; and consequently that

Pf .s/ Pei .s/ D �Si
.s/ Pf .s/ Pei .s/ :

The assignment f .i/ 7!
h Pf .i/Pei

i
makes sense as (Lemma 7.1.7) Pf .i/Pei 2 HS; and

ˇ̌̌̌
Ui
�
f .i/
�ˇ̌̌̌ 2

H�
S
D
Z

S

ˇ̌̌̌̌̌
Pf .i/ .s/ Pei .s/

ˇ̌̌̌̌̌ 2
Hs

� .ds/

D
Z

S

n Pf .i/o2 .s/ jj Pei .s/jj2Hs
�Si
.s/ � .ds/

D
Z

S

n Pf .i/o2 .s/ �i .ds/

D ˇ̌̌̌
f .i/
ˇ̌̌̌ 2

L2.S;S;�i/
:

That latter equality also proves that Ui is a partial isometry. Furthermore, as
presently seen, when fi1; i2g � I are such that i1 ¤ i2; one has, for elements
f .i1/ 2 L .S;S; �i1 / and f .i2/ 2 L .S;S; �i2 / ; fixed, but arbitrary, that

D
Ui1

h
f .i1/

i
;Ui2

h
f .i2/

iE
H�

S
D
Z

S

Pf .i1/ .s/ Pf .i2/ .s/ h Pei1 .s/ ; Pei2 .s/iHs
� .ds/

D 0:

Indeed h Pei1 .s/ ; Pei2 .s/iHs
D 0 as, when s 2 Si1 \ Si2 ; Pei1 .s/ ? Pei2 .s/ ; and, when

s 2 Sc
i1
[ Sc

i2
; at least one of f Pei1 .s/ ; Pei2 .s/g is the zero element. Consequently

RŒUi1 � ? RŒUi2 �; and

M
i2I

Ui ŒL2 .S;S; �i/� � H�

S :

Let now h 2 H�
S be fixed, but arbitrary. Then, for s 2 S; fixed, but arbitrary,

Ph .s/ D
X
i2I

˝Ph .s/ ; Pei .s/
˛
Hs
Pei .s/ :

As Z
S

˝Ph .s/ ; Pei .s/
˛2
Hs
�i .ds/ �

Z
S

ˇ̌̌̌ Ph .s/ˇ̌̌̌ 2
Hs
� .ds/ <1;

the map

s 7! ˝Ph .s/ ; Pei .s/
˛
Hs
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belongs to L2 .S;S; �i/ ; and, its equivalence class being denoted f .i/;

X
i2I

Ui
�
f .i/
� DX

i2I

f .i/ei D
X
i2I

h˝Ph .
/ ; Pei .
/
˛
Hs

i
ei D

�Ph� D h:

Thus M
i2I

Ui ŒL2 .S;S; �i/� D H�

S :

But then H�
S is a Hilbert space. ut

Remark 7.1.17 H�
S is called a direct, or Hilbertian, integral of the measurable field

of Hilbert spaces HS : One often sees the following notation for H�
S W

H�

S D
Z ˚

S
Hs� .ds/ :

Remark 7.1.18 Since, by definition, SiC1 � Si; one has that

�iC1.S0/ D �.S0 \ SiC1/ � �.S0 \ Si/ D �i.S0/:

Thus �iC1 � �i:

Remark 7.1.19 Let S0 2 S be fixed, but arbitrary. Define PS0 W H�
S �! H�

S using
the following assignment:

h 7! �
�S0
Ph� D IS0h; Ph 2 h:

PS0 is a projection. Its range shall be denoted H�jS0
S : One has that

P?S0 D PSc
0
:

In particular

˝
PS0 Œh1� ; h2

˛
H�

S
D
Z

S0

˝Ph1 .s/ ; Ph2 .s/˛Hs
� .ds/ :

Example 7.1.20 The Hilbertian integral of (Example) 7.1.4 is LH
2 .S;S; �/ which,

when H has dimension one, is isomorphic to L2 .S;S; �/ :

Example 7.1.21 The Hilbertian integral of (Example) 7.1.5 is isomorphic to

L2 .S � X;S ˝ X ; �/ ; where � .ds; dx/ D � .s; dx/ � .ds/ :
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The isomorphism is obtained using the formulaZ
S�X

f .s; x/ g .s; x/ � .ds; dx/ D
Z

S
hŒf .s; 
/� ; Œg .s; 
/�iL2.X;X ;�.s;�// � .ds/ :

7.1.3 The Direct Integral: Properties

Definition 7.1.22 Let H�
S �

Q
s2S Hs and K�

S �
Q

s2S Ks be two direct integrals,
and, for fixed, but arbitrary s 2 S; let Ts W Hs �! Ks be a linear, and bounded
operator. The map s 7! Ts is then called a field of linear, and bounded operators.
For fixed, but arbitrary h 2 HS and s 2 S; let

k .s/ D Ts Œh .s/� :

The field of linear and bounded operators s 7! Ts is measurable when k is a
measurable field of vectors for all h 2 HS :

Proposition 7.1.23 Let H�
S and K�

S be two Hilbertian integrals, and suppose that

U W H�

S �! K�

S

is a unitary operator, with the property that, for fixed, but arbitrary S0 2 S;

U
�
H�jS0

S

� D K� jS0
S :

Then � � � (mutual absolute continuity), and there is a measurable field of unitary
operators

Us W Hs �! Ks

such that, for Œh� 2 H�
S; fixed, but arbitrary,

P‚…„ƒ
U Œh� .s/ D

�
d�

d�
.s/

��1=2
Us Œh .s/� :

Proof Let PS0 be the projection of H�
S defined in (Remark) 7.1.19, and QS0 be the

analogous projection in K�
S : The assumption “reads” as

UPS0 D QS0U:
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Consequently, Pei being one member of the family appearing in (Proposition) 7.1.11,

UPS0 Œei� D
8<
:

U
�
IS0ei

�
QS0 ŒU Œei�� D IS0U Œei�

;

so that, “taking norms” on both right-hand sides of the latter equality, one gets

� .S0/ D
Z

S0

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ P‚…„ƒU Œei� .s/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
Ks

� .ds/ :

Thus � � �: This relation is symmetric in the sense that PS0U
? D U?QS0 :

Consequently � � �:
Let D denote the Radon-Nikodým derivative of � with respect to �: Then

� .S0/ D
Z

S0

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ P‚…„ƒU Œei� .s/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
Ks

D .s/ � .ds/ ;

and thus, almost surely with respect to � and �;

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ P‚…„ƒU Œei� .s/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
Ks

D .s/ D 1:

Define Us W Hs �! Ks using the following assignment:

Us Œ Pei .s/� D D1=2 .s/
P‚…„ƒ

U Œei� .s/ :

As, for almost every s 2 S;

jjUs Œ Pei .s/�jj2Ks
D D .s/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ P‚…„ƒU Œei� .s/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
Ks

D 1;

one may assume that Us is an isometry for s 2 S: Then˚
D�1=2 .s/Us Œ Pei .s/� ; s 2 S

�
is a measurable field of vectors, the image by U of ei: ut
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Lemma 7.1.24 ((Lemma) 2.1.11) Suppose fhn; n 2 Ng � H�
S is convergent to h:

There is then a subsequence
˚
hnp ; p 2 N

� � fhn; n 2 Ng such that

˚Phnp .s/ ; p 2 N
�

converges to Ph .s/ ; for almost every s 2 S; with respect to �:

Proof Since fhn; n 2 Ng is convergent, it is Cauchy. One can thus find
˚
hnp ; p 2 N

�
such that X

p

ˇ̌̌̌
hnpC1 � hnp

ˇ̌̌̌
H�

S
<1:

Let fSn; n 2 Ng � S be an at most countable decomposition of S into measurable
sets of finite measure. Then, by Jensen’s inequality,

X
p

Z
Sn

ˇ̌̌̌ PhnpC1 .s/ � Phnp .s/
ˇ̌̌̌

Hs
� .ds/ �

� f� .Sn/g1=2
X

p

�Z
Sn

ˇ̌̌̌ PhnpC1 .s/ � Phnp .s/
ˇ̌̌̌ 2

Hs
� .ds/

� 1=2

� f� .Sn/g1=2
X

p

ˇ̌̌̌
hnpC1 � hnp

ˇ̌̌̌
H�

S
<1:

Consequently, almost surely with respect to �;X
p

ˇ̌̌̌ PhnpC1 .s/ � Phnp .s/
ˇ̌̌̌

Hs
<1;

so that, almost surely with respect to �;

Ph .s/ D Phn1 .s/C
X

p

˚PhnpC1 .s/ � Phnp .s/
�
:

ut
Proposition 7.1.25 Let H D fhn; n 2 Ng � HS be the distinguished family of
(Definition) 7.1.1, and let fkn; n 2 Ng be a sequence of measurable fields of vectors.
Let K be the set, in H�

S; formed by the classes of products of the following form: for
n 2 N; and f W S �! R; adapted,

s 7! ff .s/ kn .s/g :

When the classes of elements in H belong to H�
S; and K is total in H�

S; almost surely
with respect to �; fkn .s/ ; n 2 Ng is total in Hs:
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Proof As, for fixed, but arbitrary n 2 N; Œhn� 2 H�
S; there exists by assumption˚

k.n/p ; p 2 N
� � V ŒK�

such that, in H�
T ; Œhn� D limp k.n/p : There is then a subsequence [(Lemma) 7.1.24],

say n
k.n/pq
; q 2 N

o
� ˚k.n/p ; p 2 N

�
;

such that, almost surely with respect to �; hn .s/ D limq Pk.n/pq
.s/ : Now Pk.n/pq

.s/ is a
finite linear combination of elements in fkn .s/ ; n 2 Ng : Thus, almost surely,

hn .s/ 2 V Œfkn .s/ ; n 2 Ng�:

Since there are only at most countable elements, almost surely,

fhn .s/ ; n 2 Ng � V Œfkn .s/ ; n 2 Ng�:

ut

7.2 Representations of the Linear Closure of the Range
of a Function with Values in a Hilbert Space

In this section, (Definition) 7.1.1 shall obtain. The first result is a representation of
L[T Œf � in the form of a direct integral, and the second, in the form of a direct sum of
spaces, each of which is isomorphic to a L2 space. Those representations preserve
their structure in time. Notation, and definitions, are as in Sect. 7.1.

Proposition 7.2.1 Let f W T �! H be a map for which CHA obtain. There is a
direct integral H�

T with the property that L[T Œf � and H�
T are unitarily isomorphic,

and, for that same isomorphism, for t 2 T; fixed, but arbitrary,

H� jTt
T and Lt Œf �

are unitarily isomorphic.

Proof For fixed, but arbitrary h 2 L[T Œf � ; let fh .t/ D Pt Œh� : It is a function with
orthogonal increments. Let Mf

h be the associated measure:

Mf

h .Œt1; t2Œ/ D
ˇ̌̌̌
mf

h .Œt1; t2Œ/
ˇ̌̌̌ 2

H
D jjfh .t2/jj2H � jjfh .t1/jj2H :
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Since, for fixed, but arbitrary f˛1; ˛2g � R and fh1; h2g � L[T Œf � ;

Mf

˛1h1C˛2h2
.Œt1; t2Œ/ D ˛21Mf

h1
.Œt1; t2Œ/

C 2˛1˛2
˚hfh1 .t2/ ; fh2 .t2/iH � hfh1 .t1/ ; fh2 .t1/iH�

C ˛22Mf

h2
.Œt1; t2Œ/ ;

one has that

Mf

h1Ch2
.Œt1; t2Œ/�Mf

h1�h2
.Œt1; t2Œ/ D

D 4 ˚hfh1 .t2/ ; fh2 .t2/iH � hfh1 .t1/ ; fh2 .t1/iH� :
The latter’s right-hand side is thus a measure. Its value divided by 4 shall be denoted
Mf

h1;h2
: One has, in particular, that Mf

h1;h1
D Mf

h1
: As, for t 2 T; fixed, but arbitrary,

and Tt D T \ ��1; tŒ ;

Mf

h1
.Tt/CMf

h2
.Tt/ D jjfh1 .t/jj2H C jjfh2 .t/jj2H
� 2 jjfh1 .t/jjH jjfh2 .t/jjH
� 2 ˇ̌hfh1 .t/ ; fh2 .t/iH ˇ̌
D 2 ˇ̌Mf

h1;h2
.Tt/

ˇ̌
;

one has that Mf

h1;h2
� Mf

h1
CMf

h2
:

Let fhi; i 2 Ig � L[T Œf � be a complete orthonormal set, and let

Mf D
X
i2I

2�iMf

hi
:

Since, for fi; jg � I; fixed, but arbitrary, Mf

hi;hj
� Mf ; one can compute the following

Radon-Nikodým derivative:

Di;j D
dMf

hi;hj

dMf
:

Define then, for t 2 T; fixed, but arbitrary, a tentative inner product, using the
following relation: �

hi; hj
�

t
D Di;j .t/ :

Since fhi; i 2 Ig is a basis, the conditions for the existence of a bilinear functional
with assigned values on a given subset obtain [46, p. 30], and there is thus a bilinear
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ˇt W L[T Œf � � L[T Œf � �! R such that

ˇt
�
hi; hj

� D �hi; hj
�

t
D Di;j .t/ :

If the map h 7! ˇt .h; h/ is not strictly positive, let N Œˇt� be its null space, and
V0

t Œfhi; i 2 Ig� be the quotient of V Œfhi; i 2 Ig� with respect to N Œˇt�: One can then
define an inner product ˇ0t on V0

t Œfhi; i 2 Ig� � V0
t Œfhi; i 2 Ig� setting

ˇ0t .Œh1� ; Œh2�/ D ˇt .h1; h2/ ;

where Œh� is the equivalence class of h: One may thus assume for simplicity’s sake
that ˇt is already an inner product on L[T Œf � : Ht then designates the completion of
V Œfhi; i 2 Ig� for ˇt: Let Œh�t be the class of h in that completion. Then˝

Œhi�t ;
�
hj
�

t

˛
Ht
D ˇt

�
hi; hj

� D Di;j .t/ :

The family of spaces fHt; t 2 Tg has the following properties:

1. for fi; jg � I; fixed, but arbitrary, the map

t 7! ˝
Œhi�t ;

�
hj
�

t

˛
Ht

is adapted, as Di;j is;
2. since V Œfhi; i 2 Ig� is dense in its completion, fŒhi�t ; i 2 Ig is total in Ht:

One can thus build HT [(Proposition) 7.1.15], and H
Mf
T [(Proposition) 7.1.16].

Let U W L[T Œf � �! H
Mf
T be defined using the following assignment:

U Œhi� D ŒfŒhi�t ; t 2 Tg� :

Then, for t 2 T; fixed, but arbitrary,˝
Pt Œhi� ;Pt

�
hj
�˛

H
D ˝

fhi .t/ ; fhj .t/
˛
H

D Mf

hi;hj
.Tt/

D
Z

Tt

Di;j .�/Mf .d�/

D
Z

Tt

˝
Œhi�� ;

�
hj
�
�

˛
H�

Mf .d�/

D

P

H
Mf jTt
T

ŒU Œhi�� ;P
H

Mf jTt
T

ŒU Œhi��

�
H

Mf
T

;
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so that

hPt Œh� ;Pt Œk�iH D

P

H
Mf jTt
T

ŒU Œh�� ;P
H

Mf jTt
T

ŒU Œk��

�
H

Mf
T

:

Thus Pt D U?P
H

Mf jTt
T

U: ut

Remark 7.2.2 For fixed, but arbitrary h 2 L[T Œf � ; Mf

h � Mf : Indeed

Mf

h .Tt/ D jjfh .t/jj2H
D jjPt Œh�jj2H
D
X
i2I

X
j2I

hh; hiiH
˝
h; hj

˛
H

˝
Pt Œhi� ;Pt

�
hj
�˛

H

D
X
i2I

X
j2I

hh; hiiH
˝
h; hj

˛
H

˝
fhi .t/ ; fhj .t/

˛
H

D
X
i2I

X
j2I

hh; hiiH
˝
h; hj

˛
H

Mf

hi;hj
.Tt/

� Mf .Tt/ ;

and the same obtains for all sets in T : Consequently, for fixed, but arbitrary
fk1; k2g � L[T ; Mf

k1;k2
� Mf :

Remark 7.2.3 For fixed, but arbitrary fk1; k2g � L[T Œf � ; almost surely with respect
to Mf ;

dMf

k1;k2

dMf
.t/ D hŒk1�t ; Œk2�tiHt

:

Indeed, the equality

hPt Œk1� ;Pt Œk2�iH D

P

H
Mf jTt
T

ŒU Œk1�� ;P
H

Mf jTt
T

ŒU Œk2��

�
H

Mf
T

of (Proposition) 7.2.1 is the same as the equality

Z
Tt

dMf

k1;k2

dMf
.t/Mf .dt/ D

Z
Tt

˝
Œhi�t ;

�
hj
�

t

˛
Ht

Mf .dt/ :

Remark 7.2.4 The range of P
H

Mf jT0
T

is the zero subspace if, and only if,

Mf .T0/ D 0:
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Indeed, when Mf .T0/ D 0; since

ˇ̌̌
ˇ
ˇ̌̌
ˇPH

Mf jT0
T

ŒU Œh��

ˇ̌̌
ˇ
ˇ̌̌
ˇ2

HT
Mf

D
Z

T0

jjŒh�tjj2Ht
Mf .dt/ ;

then ˇ̌̌
ˇ
ˇ̌̌
ˇPH

Mf jT0
T

ŒU Œh��

ˇ̌̌
ˇ
ˇ̌̌
ˇ2

HT
Mf

D 0:

Suppose conversely that Mf .T0/ > 0; but that

ˇ̌̌
ˇ
ˇ̌̌
ˇPH

Mf jT0
T

ŒU Œh��

ˇ̌̌
ˇ
ˇ̌̌
ˇ2

H
Mf
T

D 0; h 2 L[T Œf �:

Then, for i 2 I; fixed, but arbitrary,

0 D
ˇ̌̌
ˇ
ˇ̌̌
ˇPH

Mf jT0
T

ŒU Œhi��

ˇ̌̌
ˇ
ˇ̌̌
ˇ2

H
Mf
T

D
Z

T0

hŒhi�t ; Œhi�ti2Ht
Mf .dt/

D
Z

T0

Di;i .t/Mf .dt/

D Mf

hi;hi
.T0/

D Mf

hi
.T0/ :

Thus Mf

hi;hi
.T0/ D 0; all i 2 I; that is Mf .T0/ D 0; a contradiction.

7.3 Cramér’s Representation

The CHR is an immediate consequence of what precedes.

Proposition 7.3.1 There exists an orthonormal family fhi; i 2 Ig � L[T Œf � such
that, for t 2 T; fixed, but arbitrary,

Lt Œf � D
M
i2I

Lt Œfhi �
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if, and only if,

sup
t2T

.dim Ht/ � jIj D QI;

where the family of subspaces fHt; t 2 Tg is that of a Hilbertian integral represen-
tation of L[T Œf � : One has then a proper canonical representation.

Proof One may restrict attention to L[T Œf � DLi2I L[T Œfhi � as the equality Lt Œf � DL
i2I Lt Œfhi � may be written in the form

L[T ŒPt Œf �� D
M
i2I

L[T ŒPt Œfhi �� :

Proof Suppose that L[T Œf � DLi2I L[T Œfhi � :

Let H
Mf
T be the representation of L[T Œf � ; given in (Proposition) 7.2.1, using

the orthonormal family fhi; i 2 Ig of the proposition’s statement, and let U be the
associated isometry. Denote ki the element U Œhi� : It is the equivalence class of a
measurable field of vectors

Pki D
˚Pki .t/ ; t 2 T

�
:

Then

U ŒPt Œhi�� D P
H

Mf jTt
T

U Œhi� D P
H

Mf jTt
T

Œki� ;

which is [(Proposition) 7.3.1] the equivalence class of the measurable field of
vectors

�
Tt
Pki:

Consequently U ŒL[T Œhi�� is generated by the equivalence classes of the elements in
the family n

�
Tt
Pki; t 2 T

o
:

But then H
Mf
T is generated by the equivalence classes of the elements in the familyn

�
Tt
Pki; t 2 T; i 2 I

o
:

From (Proposition) 7.1.25, one then knows that, for fixed, but arbitrary t 2 T; almost
surely with respect to Mf ; ˚Pki .t/ ; i 2 I

�
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is total in Ht: On the exceptional set the dimension can be set arbitrarily to one.

Proof Suppose that supt2T .dim Ht/ � jIj D QI:
Let

H
Mf
T D

M
j2J

Uj
�
L2
�
T; T ; �j

��

be the representation of (Proposition) 7.1.16. Uj is a partial isometry defined using
the following relation:

Uj Œf � D
� Pf ej

�
;

for which the ej’s are as in (Proposition) 7.1.11, and dim Ht � j if, and only if,
ej .t/ ¤ 0Ht : Thus when j > jIj ; ej .t/ D 0Ht ; t 2 T; so that J D jIj :

Let hi D U? Œei� ; i 2 I: One has that

Pt Œhi� D PtU
? Œei� D U?P

H
Mf jTt
T

Œei� D U? ŒITt ei� D U?Ui ŒITt � :

Consequently L[T Œhi� and L2 .T; T ; �i/ are unitarily equivalent. It follows thatL
i2I L[T Œhi� and

L
i2I L2 .T; T ; �i/ are unitarily equivalent. But the latter is

unitarily equivalent to L[T Œf � :
As Pt Œhi� D U?Ui ŒITt � ;

Mf

hi
.Tt/ D jjfhi .t/jj2H D jjPt Œhi�jj2H D �i .Tt/ :

Since the �i’s are “ordered by inclusion” [(Remark) 7.1.18], so are the Mf

hi
’s, and the

decomposition is proper canonical. ut



Chapter 8
Some Facts About Multiplicity

Multiplicity is not easy to fathom. One way to acquire a feel for it, is to look at
examples, and, in this chapter, multiplicity is looked at from different angles.

8.1 All Multiplicities May Occur

That all multiplicities may occur should not come as a surprise [(Example) 6.1.5].
Below is a typical example for that fact (for a further example, see (Example) 9.2.1).
It is based on a construction involving Cantor-like sets.

Fact 8.1.1 ([275, p. 87]) A Cantor-like set is a subset F of Œ0; 1� obtained as
follows.

Let t 2 �0; 1Œ be fixed, but arbitrary. Let I1;1 be the open interval of length t
2

at the
center of Œ0; 1�. When it is removed from Œ0; 1�, one is left with two disjoint, closed
intervals, J1;1 and J1;2.

Let I2;1 be the open interval of length 1
2
� t

22
at the center of the closed interval

J1;1, and I2;2 be the open interval of length 1
2
� t
22

at the center of the closed interval
J2;1. When both I2;1 and I2;2 are also removed from Œ0; 1�, one is left with 22 closed,
disjoint intervals J2;1; J2;2; J2;3; J2;4.

J2;1; J2;2; J2;3; J2;4 contain at their center 22 open intervals I3;k; 1 � k � 22, each
of length 1

4
� t

23
. When these open intervals are also removed from Œ0; 1�, one is left

with 23 closed, disjoint intervals J3;k; 1 � k � 23.
Thus, at step 1, there is one I interval and two J intervals; at step 2, there are two

I intervals and four J intervals; at step three, four I intervals and eight J intervals.
Pursuing in the same way, at step n � 2, there are 2n�1 intervals of type I contained
in the J intervals of step n�1, and 2n intervals of type J. The length of the I intervals

© Springer International Publishing Switzerland 2015
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at step n is

1

2n�1 �
t

2n
:

Let

Gn D [2n�1

kD1 In;k;

Fn D [2n

kD1Jn;k:

The Gn’s are disjoint and open, and the Fn’s are decreasing and closed. One sets

F D \1nD1Fn D Œ0; 1�\
˚[1nD1Gn

�c
:

Remark 8.1.2 Let Leb be Lebesgue measure, and G D [1nD1Gn. Then

Leb .Gn/ D t

2n
; and Leb

�[n
kD1Gk

� D �1� 1

2n

�
t:

Fn is what is left of Œ0; 1�when[n
kD1Gk is removed from it. It is made of 2n intervals

of equal length. Thus

Leb .Jn;k/ D 1

2n

�
1 �

�
1 � 1

2n

�
t

�
� 1

2n
:

Furthermore Leb .G/ D t, and Leb .F/ D 1 � t.

Remark 8.1.3 F is compact, as it is closed and bounded.

Remark 8.1.4 F contains no open interval, so that G is dense in Œ0; 1�.
Suppose indeed that I is an open interval of strictly positive length Leb .I/. There

is an n0 .I/ 2 N such that, for n � n0 .I/, 1
2n < Leb .I/, and I cannot be contained in

Fn, for n � n0 .I/. But then I cannot be contained in F.

Remark 8.1.5 When one starts with �0; 1Œ, instead of Œ0; 1�, the same procedure
works, but one no longer may claim that F is closed.

Proposition 8.1.6 There is, in Œ0; 1�, a subset of Lebesgue measure zero, whose
complement, in Œ0; 1�, can be countably partitioned in such a way that the intersec-
tion of each set of that decomposition with any open, not void, subinterval of Œ0; 1�,
has positive Lebesgue measure.

Proof An interval of the form In;k shall be called an interval of type I.
Let �1 be a fixed, but arbitrary value of �0; 1Œ. Let F1 be a Cantor-like set in �0; 1Œ

such that Leb .F1/ D �1.
The complement of F1 in Œ0; 1� is the union of the disjoint, open intervals In;k; n 2

N; 1 � k � 2n�1. In each set In;k, one may thus obtain a Cantor-like set Fn;k, whose
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Lebesgue measure is �n;k > 0. Let

F2 D [n;kFn;k:

Sets, obtained in the way F2 has been, shall be called sets of type F. F1 and F2
are disjoint by construction, and the complement of their union is again a union
of disjoint intervals of type I. One can thus continue to build sets of type F and,
adjusting the � values, one will eventually have a disjoint sequence of sets of type
F of strictly positive measure, whose combined measure is 1.

Each Cantor-like set F of that construction is contained in an interval of type I,
say IF. Let J be an open, not void, subinterval of IF . Since F is nowhere dense in IF,
J must intersect one of the open intervals of IF n F.

Let �a; bŒ � Œ0; 1� be fixed, but arbitrary, and let � > 0 be such that aC� < b� �.
There is thus In;k such that

J1 D �aC �; b � �Œ \ In;k ¤ ;:

Since J1 � In;k, and is an open, not void subinterval, there is an interval of type I in
In;k such that its intersection with J1 is a not void interval. Let that intersection be J2.
One thus builds a sequence fJn; n 2 Ng of intervals whose sizes decrease to zero as
they are contained in intervals of type I of strictly decreasing size. But then, when
the size of these intervals of type I is strictly less than epsilon, one of them must be
contained in �a; bŒ. Consequently as every open interval of Œ0; 1� contains an interval
of type I, it will contain an interval of type F of strictly positive measure.

Let N D [pNp, where Np is a subsequence of N, and Np \Nq D ; when p ¤ q.
This can be achieved, for instance, representing the rationals as pairs of integers,
and using the usual diagonal method to number the integers [230, p. 29]: the p-th
row or the p-th column of the resulting table yield the sets Np. Let fFn; n 2 Ng be
the sequence of sets of type F that were sequentially built above. Let

Tp D [q2Np Fq:

These are disjoint by construction, and the measure of their sum is one. Furthermore,
since any open interval of Œ0; 1� shall contain one of the sets of type F that have
strictly positive measure, the intersection of one of these intervals with an arbitrary
Tp shall be positive. ut
Remark 8.1.7 The proposition’s validity is not restricted to the unit interval: cases
of other intervals in R are somewhat more complicated to describe but have a very
similar proof (see for example [227, p. 8], where one finds the same proof for any
finite open interval; for infinite ones, one decomposes them into countable sums of
disjoint, finite intervals).

Proposition 8.1.8 Let T D Œ0; 1�, and f fi W T �! H; i 2 Ig be a finite, or infinite,
sequence of purely nondeterministic, orthogonal functions, with orthogonal incre-
ments. Suppose furthermore that those functions are continuous to the left. There is
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then a function f W T �! H, whose canonical representation is obtained from the
sequence f fi W T �! H; i 2 Ig.
Proof The “distribution” associated with fi shall be defined to be the following
function:

Fi .t/ D jj fi .t/jj2H :

Let [(Proposition) 8.1.6] fTi; i 2 Ig be a family of disjoint measurable subsets of
Œ0; 1� such that

• Leb
�
Œ0; 1� nUi2I Ti

� D 0,
• given a fixed, but arbitrary interval of T D Œ0; 1�, say �a; bŒ ; a < b, for fixed, but

arbitrary i 2 I, Leb .�a; bŒ\ Ti/ > 0.

For i 2 I, fixed, but arbitrary, let �i W Ti �! R be adapted, and strictly positive, and

gi .t/ D �Ti
.t/ �i .t/ fi .t/ :

Since fi is continuous to the left, for h 2 H, fixed, but arbitrary, the map t 7!
h fi.t/; hiH is continuous to the left, and thus adapted [128, p. 86]. Consequently, fi
is adapted, and thus so is gi. AsZ

jjgi .t/jjH dt D
Z

Ti

�i .t/ jj fi .t/jjH dt

�
�Z

Ti

�2i .t/ dt

� 1=2 �Z
Ti

Fi .t/ dt

� 1=2

� F1=2

i .1/

�Z
Ti

�2i .t/ dt

� 1=2
;

one sees that, adequately choosing the functions f�i; i 2 Ig, one obtains functions
f W T �! H, and g W T �! H, when setting

g .t/ D
X
i2I

gi .t/ ; and f .t/ D
Z t

0

g .�/ d�:

One must then prove that, for fixed, but arbitrary t 2 T, Lt Œ f � DLi2I Lt Œ fi�.
By construction, for fixed, but arbitrary � 2 T, g .�/ 2 Li2I Lt Œ fi�, and thus,

its integral on Œ0; t� belongs to
L

i2I Lt Œ fi�, as it is a limit of linear combinations of
g .�/’s, � � t. It then follows that Lt Œ f � �Li2I Lt Œ fi�.

Conversely, by definition, f satisfies the fundamental theorem of calculus [262, p.
238]. It is thus differentiable, and, almost surely, with respect to Lebesgue measure,
the derivative of f , f 0 equals g [262, p. 241]. Since f 0.t/ can be obtained as the limit
of �n�1 f f .t � n�1/� f .t/g, f 0.t/ 2 LtŒ f �. Consequently, for almost every t 2 Ti,
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fixed, but arbitrary,

f 0 .t/ D �i .t/ fi .t/ ; �i .t/ > 0:

Let T0

i be the exceptional set, and t 2 ˚
T0

i

�c
be fixed, but arbitrary. Since

[(Proposition) 8.1.6], for fixed, but arbitrary � > 0, Leb .�t � �; tŒ \ Ti/ > 0, for
every n 2 N, there exits

tn 2



t � 1
n
; t

	
such that fi .tn/ 2 Lt Œ f � :

Since fi is continuous to the left,

fi .t/ D lim
n

fi .tn/ 2 Lt Œ f � :

Thus fi .t/ 2 Lt Œ f � ; t 2 Ti, and, consequently, for t 2 Ui2I Ti. Since the latter is
dense in T, the result obtains again because of the continuity properties of the fi’s.

ut

8.2 Invariance of Multiplicity

Transformations of signals and, in particular, linear transformations are pervasive in
communication theory. It is thus of interest to know how multiplicity behaves under
transformations. In this section it is invariance with respect to linear transformations
that is examined.

8.2.1 The Case of Projections

The fact that multiplicity is not preserved by projection shows that it is a feature
whose embodiments are difficult to anticipate. The example given shows even more:
the projection of a purely nondeterministic process of multiplicity one may yield a
deterministic process of arbitrarily large multiplicity.

Example 8.2.1 (Projection Does Not Generally Preserve Multiplicity) Let T D
Œ0; 1�, and W W T �! H D L2 .˝;A;P/ be a standard Wiener process (continuous
in quadratic mean, with stationary, normal, independent increments, and variance
one). It has multiplicity one since

W .t/ D
Z

IŒ0;t�dmW ;
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and that the family
˚
IŒ0;t�; t 2 Œ0; 1�� is total in L2 Œ0; 1�. It turns out that certain

projections of W have arbitrarily large multiplicity. Indeed W has a representation
in quadratic mean of the following form [271, p. 87]:

W .t/ D
1X

kD0
fk .t/Wk;

where the Wk’s are orthogonal, and the fk’s, which are orthonormal in L2 Œ0; 1�, are
given by relations of the following type:

fk .t/ D
p
2 sin

�	
kC 1

2



� t

�
:

One now needs the following facts:

[1] Let n 2 N, and 0 < a1 < a2 < a3 < 
 
 
 < an, be fixed, but arbitrary, and, with
k 2 Œ0 W n� 1� and l 2 Œ1 W n�,

Mn D

2
6666664

a1 
 
 
 a2kC1
1 
 
 
 a2n�1

1
:::

:::
:::

al 
 
 
 a2kC1
l 
 
 
 a2n�1

l
:::

:::
:::

an 
 
 
 a2kC1
n 
 
 
 a2n�1

n

3
7777775 :

Mn is invertible, and its determinant is computed as indicated below.
The simplest way to see that the result obtains is to proceed inductively. M1

has one entry, a1, and is thus invertible with determinant equal to a1. M2 has a
determinant equal to a1a2

�
a22 � a21

�
> 0. For M3, consider the matrix

T3 D
2
4 1 �a23 0

0 1 �a23
0 0 1

3
5 :

Then

M3T3 D
"

a2 D2M2

a3 0 0

#
;

where a2 has entries a1 and a2, and

D2 D
	

a21 � a23 0

0 a22 � a23



:
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Similarly, and iteratively,

MnTn D
"

an�1 Dn�1Mn�1
an 0?n1

#
;

where

a?n�1 D .a1; : : : ; an�1/ ;

Tn D

2
666666664

1 �a2n 0 0 : : : 0 0 0

0 1 �a2n 0 : : : 0 0 0

0 0 1 �a2n : : : 0 0 0
:::
:::

:::
:::

:::
:::

:::

0 0 0 0 
 
 
 0 1 �a2n
0 0 0 0 
 
 
 0 0 1

3
777777775
;

and Dn�1 is a diagonal matrix with entries a21�a2n; : : : ; a
2
n�1�a2n. Then, denoting

jMnj the determinant of Mn,

jMnj D jMnTnj D .�1/nC1 an

n�1Y
lD1

�
a2l � a2n

� jMn�1j ¤ 0:

[2] For n 2 N, and t 2 �0; 1�, fixed, but arbitrary, the following family of functions
is linearly independent:

sk .�/ D sin
�
Œ2kC 1� �

2
�
�
; for � 2 Œ0; t� ; k 2 Œ0 W n � 1� :

Suppose indeed that, for � 2 Œ0; t�, fixed, but arbitrary,

f .�/ D
n�1X
kD0

˛ksk .�/ D 0:

One has that, s.l/k denoting the derivative of order l of sk,

s.2l/

k .0/ D 0;

s.2lC1/

k .0/ D .�1/lC2 .2kC 1/2lC1 ��
2

�2lC1
:
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Consequently, for l 2 Œ0 W n � 1�, fixed, but arbitrary, the assumption that f is
the zero function leads to the following identity:

f .2lC1/ .0/ D 0

which translates to

n�1X
kD0

˛k .2kC 1/2lC1 D 0:

Fact [1] then yields that the ˛k’s are zero.

[3] When the functions f1; : : : ; fn are linearly independent on �0; tŒ ; t > 0, that latter
interval contains n distinct points t1; : : : ; tn such that, f .t/ being the vector in
Rn with components f1 .t/ ; : : : ; fn .t/, the vectors f .t1/ ; : : : f .tn/ form a basis
for Rn.

Linear independence means that the range of f is total in Rn, that is, Rn is
the set of linear combinations of the form

nX
iD1

˛if .ti/ :

The range of f is thus a basis of Rn, and it then contains n linearly independent
elements.

Now, given t 2 �0; 1�, fixed, but arbitrary, one can thus find (facts [1] and [2]
above), in �0; tŒ, points ft1; : : : ; tng such that t1 < 
 
 
 < tn, and the matrix Mn, with
entries fi

�
tj
�
, is invertible. Let then

Wn .t/ D
n�1X
iD0

fi .t/Wi:

Denote Wn the vector with components Wn .ti/, and W that with components Wi.
Then

Wn D MnW; so that W D M�1n Wn:

The process Wn is the projection of the process W onto the subspace generated by the
classes of the random variables W1; : : : ;Wn, and generates a subspace of the same
dimension. Its multiplicity is thus n. And the vector with components W1; : : : ;Wn is
present at the “origin of time.”
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8.2.2 The Case of Unitary Transformations

Unitary transformations ought to preserve multiplicity. Conditions that make that
assertion true are given below.

Let H be a real Hilbert space, and fHt; t 2 Tg be a family of (closed) subspaces
of H such that, for t 2 T, fixed, but arbitrary,

Ht D
_

f�2T;��tg
H� ;

and

H D
_
t2T

Ht:

The projection with range Ht is denoted PH
t . K; Kt; PK

t are defined analogously.

Remark 8.2.2 Given H and the family fHt; t 2 Tg, one obtains for it a canonical
representation proceeding as in (Proposition) 6.4.10. One says that the orthonormal
set used in so doing generates the canonical representation.

Definition 8.2.3 The families of (closed) subspaces

fHt; t 2 Tg and fKt; t 2 Tg

are said to be isometric when there is a unitary operator U W H �! K such that, for
t 2 T, fixed, but arbitrary, U ŒHt� D Kt.

Remark 8.2.4 When fHt; t 2 Tg and fKt; t 2 Tg are isometric, the restriction of U
to Ht is unitary, and so is the restriction of U? to Kt [266, p. 87].

Lemma 8.2.5 Suppose that fHt; t 2 Tg and fKt; t 2 Tg are isometric. Then
U
�
H?t
� D K?t , and, for fixed, but arbitrary t 2 T, PK

t D UPH
t U?.

Proof U
�
H?t
� D K?t :

Let h?t 2 H?t , and kt 2 Kt, be fixed, but arbitrary. Then, by assumption, for some
ht .kt/ 2 Ht, kt D UŒht .kt/�, and˝

U
�
h?t
�
; kt
˛
K D

˝
U
�
h?t
�
;U Œht .kt/�

˛
K D

˝
h?t ; ht .kt/

˛
H D 0:

Consequently U
�
H?t
� � K?t . Let thus k?t 2 K?t be such that, for fixed, but arbitrary

h?t 2 H?t , ˝
k?t ;U

�
h?t
�˛

K D 0:
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Then
˝
U?

�
k?t
�
; h?t

˛
H D 0, for all h?t 2 H?t . Thus U?

�
k?t
� 2 Ht, and k?t 2 Kt. So

k?t D 0K , and

U
�
H?t
� D K?t :

Proof PK
t D UPH

t U?:
Suppose that kt 2 Kt is fixed, but arbitrary. Then, because U ŒHt� D Kt, U? Œkt� 2

Ht, so that PH
t ŒU

? Œkt�� D U? Œkt�, or

UPH
t U? Œkt� D kt; kt 2 Kt:

Similarly, for fixed, but arbitrary k?t 2 K?t , since U
�
H?t

� D K?t , one has that
U?
�
k?t
� 2 H?t , so that PH

t

�
U?

�
k?t
�� D 0H, and thus

UPH
t U?

�
k?t
� D 0K ; k?t 2 K?t :

Consequently UPH
t U? D PK

t . ut
Proposition 8.2.6 Isometric families of subspaces have the same multiplicity.

Proof Suppose that fHt; t 2 Tg and fKt; t 2 Tg are isometric through the unitary U.
Let fhi; i 2 Ig generate a canonical representation [(Remark) 8.2.2] for the family
fHt; t 2 Tg, and let, for i 2 I, fixed, but arbitrary, ki D U Œhi�. Then [(Lemma) 8.2.5]

PK
t Œki� D UPH

t U? Œki� D UPH
t Œhi� :

Since, for example,

Lt Œki� D V
�˚

PK
t Œki� ; t 2 T

��
;

one has that

Lt Œki� D ULt Œhi� ; t 2 T:

Furthermore, for i1 ¤ i2 in I, and t1 and t2 in T, fixed, but arbitrary, since one works
with a canonical representation,˝

PK
t1
Œki1 � ;P

K
t2
Œki2 �

˛
K
D ˝

UPH
t1
Œhi1 � ;UPH

t2
Œhi2 �

˛
K

D ˝
PH

t1
Œhi1 � ;P

H
t2
Œhi2 �

˛
H

D 0:
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Thus

M
i2I

Lt Œki� D
M
i2I

ULt Œhi� D U

"M
i2I

Lt Œhi�

#
D U ŒHt� D Kt;

and fki; i 2 Ig generates a canonical representation for the family fKt; t 2 Tg. ut
Remark 8.2.7 For the measures associated with the function t 7! PK

t Œki�, one has
that

mK
i .Œt1; t2Œ/ D PK

t2 Œki� � PK
t1 Œki�

D PK
t2U Œhi� � PK

t1U Œhi�

D U
�
PH

t2
Œhi� � PH

t1
Œhi�
�

D U
�
mH

i .Œt1; t2Œ/
�
;

so that, for i 2 I and Œt1; t2Œ � T, fixed, but arbitrary,

MK
i .Œt1; t2Œ/ D

ˇ̌̌̌
mK

i .Œt1; t2Œ/
ˇ̌̌̌ 2

K
D ˇ̌̌̌mH

i .Œt1; t2Œ/
ˇ̌̌̌ 2

H
D MH

i .Œt1; t2Œ/ :

Proposition 8.2.8 Canonical representations, with the same multiplicity, and mutu-
ally absolutely continuous basis measures lead to isometric families of subspaces.

Proof Suppose that, for fixed, but arbitrary t 2 T,

Ht D
M
i2I

Lt Œhi� ; and Kt D
M
i2I

Lt Œki� ;

and, furthermore, that, for i 2 I, fixed, but arbitrary, MK
i � MH

i . Let, for convenience,
and for i 2 I, fixed, but arbitrary,

fi .t/ D PH
t Œhi� ; gi .t/ D PK

t Œki� ; and dMg

i D di dMf

i :

As presently seen, it is no restriction to assume that the measures equivalence is an
equality. Indeed Z

T
d�1i dMg

i D Mf

i .T/ <1;

so that one may set

D�1=2i D �d�1=2i

�
L2.T;T ;M

g
i /
:



540 8 Some Facts About Multiplicity

The following definitions then make sense:

dm?

i D D�1=2i dmg

i ;

and

g?i .t/ D m?

i .Tt/ D
Z
�

Tt
dm?

i D
Z
�

Tt
D�1=2i dmg

i :

Consequently, for t 2 T, fixed, but arbitrary, Lt
�
g?i
� � Lt Œgi�. But if k 2 Lt Œgi� is

orthogonal to Lt
�
g?i
�
, then, for � 2 T; � � t, fixed, but arbitrary,

k D
Z

f K dmg
i ;

and

0 D ˝
k; g?i .�/

˛
K

D
Z

f K dmg

i ;

Z
�

T�
D�1=2i dmg

i

�
K

D
Z

T�

Pf Kd�1=2i dMg

i ;

so that f K is the zero element in K, and the inclusion is an equality. Furthermore

mg?

i D m?

i ;

and

Mg?

i D M?

i D Mf

i :

But, since then the basis L2 spaces are equal, the spaces Lt, which are unitary images
of those, are in turn unitarily equivalent. ut
Remark 8.2.9 The “trick” used in the proof of (Proposition) 8.2.8 has already been
put to work many times!

8.2.3 Other Linear Transformations Which Preserve
Multiplicity

Linear transformations which preserve multiplicity, but are not “obvious,” require
some work to devise. This section is devoted to the results of such a search. The
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end product says that multiplicity is preserved when covariances can be adequately
factored, and that one can achieve such a factorization when the covariances are
the sum of the identity and a Hilbert-Schmidt operator, a ubiquitous feature of the
whole subject.

Definition 8.2.10 Let H and K be real Hilbert spaces, and V ŒH� be a manifold,
dense in H. Suppose B W V ŒH� �! K is a linear map such that, for fh1; h2g � V ŒH�,
fixed, but arbitrary,

hB Œh1� ;B Œh2�iK D hCB Œh1� ; h2iH ;

where CB W H �! H is a weak covariance operator, that is [25, p. 267], a linear,
bounded, positive, and self-adjoint operator. B is called a generalized process on H.
One writes then .B;V ŒH� ;K/.

Remark 8.2.11 Since, on V ŒH�,

jjB Œh�jj2K D
ˇ̌̌̌
C1=2

B Œh�
ˇ̌̌̌ 2

H
� ˇ̌̌̌C1=2

B

ˇ̌̌̌ 2 jjhjj2H ;
B is necessarily bounded.

Lemma 8.2.12 (Proposition 3.2.5) Let A W H �! L, and B W K �! L, be
bounded, linear operators of Hilbert spaces. Then RŒA� � RŒB� if, and only if,
one of the following assertions obtains:

1. there exists a bounded, linear operator C W H �! K such that A D BC;
2. there exists � 2 RC such that hAA?Œl�; liL � � hBB?Œl�; liL.

Proof The relation A D BC obviously means range inclusion.
Suppose thus that RŒA� � RŒB�. Then AŒh� D BŒk�. Define C W H �! K using

the following relation:

CŒh� D PRŒB?�Œk�:

That makes sense. Suppose indeed that

CŒh� D PRŒB?�Œk1�; and that CŒh� D PRŒB?�Œk2�:

Then [8, p. 363], k1 � k2 2 N ŒB�. But

k1 � k2 D
n
PRŒB?�Œk1�C PN ŒB�Œk1�

o
�
n
PRŒB?�Œk2�C PN ŒB�Œk2�

o
;

so that

k1 � k2 � PN ŒB�Œk1�C PN ŒB�Œk2� D PRŒB?�Œk1� � PRŒB?�Œk2�:
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Since the left-hand side of the latter equality is in N ŒB�, and the right-hand one, in
RRŒB?�, its orthogonal complement [8, p. 363], one must have that

PRŒB?�Œk1� � PRŒB?�Œk2� D 0K :

C is also linear. Suppose indeed that AŒh1� D BŒk1�, and that AŒh2� D BŒk2�, that
is, CŒh1� D PRŒB?�Œk1�, and CŒh2� D PRŒB?�Œk2�. One has that

AŒ˛1h1 C ˛2h2� D BŒ˛1k1 C ˛2k2�;

so that

CŒ˛1h1 C ˛2h2� D ˛1PRŒB?�Œk1�C ˛2PRŒB?�Œk2� D ˛1CŒh1�C ˛2CŒh2�:

C is closed. Suppose indeed that hn ! h, and that

PRŒB?�Œkn� D CŒhn�! k:

The latter equality means that AŒhn� D BŒkn�. Consequently, as [8, p. 363] BŒkn� D
BŒPRŒB?�Œkn��, AŒh� D BŒk�. As k 2 RŒB?�, CŒh� D k. It follows (closed graph theorem
[8, p. 272]) that C is continuous.

When range inclusion obtains, from item 1,

hAA?Œl�; liL D jjA?Œl�jj2H
D jjC?B?Œl�jj2H
� jjC?jj2 jjB?Œl�jj2K
D jjC?jj2 hBB?Œl�; liL :

Suppose conversely that latter equality prevails (with � instead of jjC?jj2). Let
h 2 H be fixed, but arbitrary. Let

'h .B
?Œl�/ D hh;A?Œl�iH :

One has that

j'h .B
?Œl�/j � jjhjjH jjA?Œl�jj2H � � jjB?Œl�jj2H :

'h extends thus to a continuous, linear functional on the closure of the range of B?.
There exists thus k 2 RŒB?� such that hh;A?Œl�iH D hk;B?Œl�iK . Consequently,

hAŒh�; liL D hBŒk�; liL ;

or AŒh� D BŒk�, that is, RŒA� � RŒB�. ut
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Remark 8.2.13 One sees, using (Lemma) 8.2.12, that (Definition) 8.2.10 has the
consequence that RŒB?� D RŒC1=2

B �. (Lemma) 8.2.12 is another avatar of Douglas’s
range inclusion result [80].

Remark 8.2.14 The terminology used in (Definition) 8.2.10 comes from the follow-
ing particular case.

Let T be an interval of reals, f W T �! H, and g W T �! K, maps. Suppose,
with, for example, Cf .t1; t2/ D hf .t1/; f .t2/iH, that

Cg � �2Cf :

There is then [(Proposition) 3.1.5] an operator Jf ;g W H
�
Cf ;T

� �! H
�
Cg;T

�
for

which, for t 2 T, fixed, but arbitrary,

Jf ;g
�
Cf .
; t/

� D Cg .
; t/ :

Let Uf W H
�
Cf ;T

� �! L[T Œ f � be the isometry that associates f .t/ with Cf .
; t/.
Then

g .t/ D UgJf ;gU?
f Œ f .t/� D B Œ f .t/� ;

and .B;V Œf f .t/ ; t 2 Tg� ;K/ is a generalized process for L[ Œ f � and L[ Œg�.
Typically H and K are L2 spaces over a probability space, and f and g second

order processes. One then deals with linear operations on second order processes
of the following type: Yt D A ŒXt�, and invariance of multiplicity means then that
certain structures of the input remain unaltered at the output.

Here are a couple of concrete cases illustrating (Definition) 8.2.10.

Example 8.2.15 Let f W T �! K be a map with orthogonal increments. For fixed,
but arbitrary h 2 H D L2

�
T; T ;Mf

�
, let

B Œh� D
Z

hdmf :

Then

hB Œh1� ;B Œh2�iK D hh1; h2iL2.T;T ;Mf / ;

so that V ŒH� D L2
�
T; T ;Mf

�
, and CB is the identity operator of H.

Example 8.2.16 Let X be a second order, measurable stochastic process. Let its
mean be zero, and its covariance be CX . Suppose that CX is a .2; 2/-bounded kernel
for L2 .T; T ;Leb/ [(Definition) 2.1.10]. The following assignment, valid for fixed,
but arbitrary h 2 H D L2 .T; T ;Leb/, produces then a generalized process with
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values in the space K D L2 .˝;A;P/ (thus B D X):

PX Œh� .!/ W .!; h/ 7! hX Œ!� ; hiL2.T;T ;Leb/ ;

for which

hX Œh1� ;X Œh2�iL2.˝;A;P/ D h	X Œh1� ; h2iL2.T;T ;Leb/ ;

where 	X is the operator of H with kernel CX .

Remark 8.2.17 Let .B;V ŒH� ;K/ be a generalized process on H, and let fVt; t 2 Tg
be an increasing sequence of manifolds of H. Let

Lt ŒB� D V ŒfB Œh� ; h 2 Vtg�:

There are operators 	B W H �! H such that

CB D 	 ?
B 	B

(for example 	B D UC1=2

B ; U a partial isometry). Let H	B
t be the closure of the range

of 	B restricted to Vt. Then

hB Œh1� ;B Œh2�iK D h	B Œh1� ; 	B Œh2�iH ;

and thus the families of subspaces

fLt ŒB� ; t 2 Tg and
˚
H	B

t ; t 2 T
�

are isometric, that is, there is a unitary U W L[T ŒB� �! H such that

U ŒLt ŒB�� D H	B
t :

The search of operators B that make Ht, the closure of Vt, and Lt ŒB� isometric
reduces thus to the search for operators 	 W H �! H that make Ht, isometric to H	

t ,
the closure of the range of 	 restricted to Vt, and have the property that 	 ?	 D CB.
It is the introduction of increasing families of subspaces, and their images, that,
in such an instance, gives sense to the notion of generalized process. Otherwise it
suffices to use Douglas’s theorem [80] to have that B and 	B are unitarily related.

Example 8.2.18 For the generalized process of (Example) 8.2.16, the “obvious”
choices for V ŒH� and Vt are as follows. One has that H D L2 .T; T ;Leb/. For
fixed, but arbitrary fh1; : : : ; hng � H, and f˛i; i 2 Œ1 W n�g, functions with compact
support, and square that is integrable, h .t/ D Pn

iD1 ˛i .t/ hi 2 H, and these
functions form a manifold dense in H. V ŒH� is that manifold, and Vt is made of
the same functions restricted to Tt.
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Definition 8.2.19 Let .B;V ŒH� ;K/ be a generalized process. Let

(a) fVt; t 2 Tg be a family of increasing manifolds of H,
(b) Ht be the closure of Vt,
(c) H DWt2T Ht,
(d) Lt ŒB� be the closure of the manifold generated by the variables

fB Œh� ; h 2 Vtg ;

(e) L[T ŒB� be the closure of the manifold generated by fB Œh� ; h 2 V ŒH�g.
Then one says that

1. .B;V ŒH� ;K/ is regular when there is a unitary operator

U W H �! L[T ŒB�

such that, for t 2 T, fixed, but arbitrary,

Lt ŒB� D UHtI

2. the operator CB of Definition 8.2.10 can be represented as a product of factors
when it may be written in the following form:

CB D 	 ?	;

where 	 W H �! H is a bounded, linear operator such that, for t 2 T, fixed, but
arbitrary,

H	

t D Ht;

where H	
t is still the closure of the range of 	 , restricted to Vt.

Remark 8.2.20 The notion of regularity of a generalized process covers invariance
of multiplicity [(Proposition) 8.2.6, (Remark) 8.2.17].

Remark 8.2.21 A regular generalized process has the property that the image of a
specific sequence of increasing manifolds, by the operator of the process, essentially
reproduces the structure of the starting sequence. One thus senses why regularity has
something to do with the preservation of multiplicity.

Remark 8.2.22 The generalized process .B;V ŒH� ;K/ of (Definition) 8.2.19 is
regular if, and only if, CB can be represented as a product of factors. Invariance
of multiplicity is thus a consequence of the ability to adequately factor covariances.
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Indeed:

1. when the process is regular:

One has then the following unitary relations:

Lt ŒB� D UHt; t 2 T:

Let

	 D UC1=2

B W H �! L[T ŒB�:

By definition, the domain of 	 is H, and thus contains V ŒH�. As seen
in (Remark) 8.2.17, there is a unitary operator V W L[T ŒB� �! H such that
V ŒLt ŒB�� D H	

t . Thus UHt D Lt ŒB� D V?H	
t , so that

Ht D U?V?H	

t D OH	

t ;

where, as presently seen, OH	
t is the closure of the range of the operator U?V?	 ,

restricted to Vt. Indeed, when h D limn U?V?	 Œhn�,

VU Œh� D lim
n
	 Œhn� 2 H	

t ;

so that h 2 U?V?H	
t . Conversely, when

h D U?V?
h Ohi ; with Oh D lim

n
	
h Ohn

i
;

h D limn U?V?	
h Ohn

i
2 OH	

t .

One then sets O	 D U?V?	 . Then, by the very definition of 	 ,

• O	 ? O	 D CB,
• O	 W H �! H is linear and bounded,
• Ht is the closure of the range of O	 , restricted to Vt.

2. when CB can be represented as a product of factors using the operator 	 :

As seen in (Remark) 8.2.17, there exists a unitary V W L[T ŒB� �! H such
that

V ŒLt ŒB�� D H	

t :

But then, for t 2 T, fixed, but arbitrary, Lt ŒB� D UH	
t , with U D V?.

Remark 8.2.23 Any two representations of CB as a product of factors in the sense of
(Definition) 8.2.19 are equal within a unitary operator U such that UHt D Ht; t 2 T.
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The polar decomposition yields indeed that

• 	 D UC1=2

B , U a partial isometry with

– initial set: RŒC1=2

B �,
– final set: RŒ	 �;

• O	 D OUC1=2

B , OU a partial isometry with

– initial set: RŒC1=2

B �,

– final set: RŒ O	 �.
Thus U?	 D OU? O	 and, since UU? is the projection onto the closure of the range

of 	 [266, p. 86],

	 D U OU? O	 :

Consequently, given that H	
t is the closure of the range of 	 , restricted to Vt, and

H O	t , that of O	 restricted to Vt,

H	

t D U OU?H O	t ;

which, given the assumptions, rewrites as

Ht D U OU?Ht; t 2 T:

But then the partial isometry U OU? must be unitary.

The result which follows provides generally sufficient conditions for a covariance
to be represented as a product of factors.

Proposition 8.2.24 Let H be a real Hilbert space, and fHt; t 2 Tg be a family of
increasing subspaces of H such that H D Wt2T Ht. Let C W H �! H be a bounded,
linear operator that is positive and self-adjoint. Suppose that

C D C�CC

with

(a) C� and CC linear, bounded, with bounded inverse,
(b) for t 2 T, fixed, but arbitrary,

CC ŒHt� D Ht; C�
�
H?t
� � H?t :

Then:

1. C?� ŒHt� � Ht;
2. C�1C ŒHt� D Ht;
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3. C can be represented as a product of factors.

Proof ([1]) Let t 2 T, h1 2 Ht, and h2 2 H?t , be fixed, but arbitrary. Then, using
Assumption (a)

hC?� Œh1� ; h2iH D hh1;C� Œh2�iH D 0:

Thus C?� Œh1� 2
˚
H?t
�? D Ht.

Proof ([2]) Let h 2 Ht be fixed, but arbitrary. Because of Assumption (b), there is
h1 2 Ht such that h D CCŒh1�. Then, because of Assumption (a), C�1C Œh� D h1 2 Ht,
so that C�1C ŒHt� � Ht. But, still because of Assumption (a), h D C�1C CC Œh�, so that,
as, because of Assumption (b), CCŒh� 2 Ht, C�1C is onto Ht.

Proof ([3]) Let D D ˚
C�1C

�?
CC�1C . Then, since, by assumption, C is self-adjoint

and C D C�CC,

D D ˚
C?C
��1

C?C�1C

D ˚
C?C
��1

C?CC?�C�1C
D C?�C�1C :

Thus, using conclusion 1 only, D ŒHt� D C?�C�1C ŒHt� D C?� ŒHt� � Ht. Suppose that
h 2 Ht, and also that h ? D ŒHt�. Then, for fixed, but arbitrary h1 2 Ht, using the
definition of D,

0 D hh;D Œh1�iH D
˝
C
�
C�1C Œh�

�
;C�1C Œh1�

˛
H :

Let h1 D h. Since C is positive, self-adjoint, and has bounded inverse, as the product
of two operators with bounded inverse, there is � > 0 such that

�
ˇ̌̌̌
C�1C Œh�

ˇ̌̌̌ 2
H
� ˝C �C�1C Œh�

�
;C�1C Œh1�

˛
H
D 0:

Consequently C�1C Œh� D 0. But C�1C has CC as inverse, and thus

h D CCC�1C Œh� D CC Œ0H� D 0H ;

or D ŒHt� D Ht.
By definition, D is bounded, positive, and self-adjoint. It has thus a square root.

Let 	 D D1=2CC. Then 	 ?	 D C?CDCC D C. Furthermore, as presently seen,
using Assumption (b),

	 ŒHt� D D1=2CC ŒHt� D D1=2 ŒHt� D Ht:
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Indeed, the range of D is contained in that of its square root, so that Ht D D ŒHt� �
D1=2 ŒHt�. But then, multiplying the latter relation by D1=2, D1=2 ŒHt� � D ŒHt� D Ht,
and thus D1=2 ŒHt� D Ht. Consequently C D 	 ?	 is a factorization of C in the sense
of (Definition) 8.2.19. ut

One shall prove below that operators of the following form: C D IH � R, R
Hilbert-Schmidt, may be represented as products of factors. The proof proceeds in
two steps. The first one uses a decomposition of operators as finite sums which
involve projections to secure that the assumptions of 8.2.25 below obtain. The
second step amounts to a limiting procedure on those representations in terms of
finite sums.

For what follows, one makes consistently the following assumptions:

Assumptions 8.2.25 1. H is a real Hilbert space, and fHt; t 2 Tg is an increasing
family of subspaces of H, with respective associated projections Pt, such that_

t2T

Ht D H:

2. C W H �! H is a linear, bounded, positive, and self-adjoint operator with
bounded inverse, and a representation of the following form:

C D IH � R:

The First Step: The Finite Sums Case

The first lemma serves to show that, for any projection Q, IH�QRQ is also positive,
and has bounded inverse.

Lemma 8.2.26 Assume that (Assumption) 8.2.25 obtains, and that Q is a projection
of H. Then:

1. jjRjj D supjjhjjD1 hR Œh� ; hiH D � < 1;
2. IH � QRQ is positive, with bounded inverse, and

jjIH � QRQjj�1 � .1 � �/�1:

Proof As [(Fact) 1.3.17] hRŒh�; hiH D jjR1=2jj2 D ˚jjRjj1=2�2, the first part of item 1
follows from the definition. Since C has bounded inverse, there exists � > 0 such
that, for fixed, but arbitrary h 2 H such that jjhjjH D 1,

0 < � � hC Œh� ; hiH D 1 � hR Œh� ; hiH :
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Thus

sup
jjhjjHD1

hR Œh� ; hiH D 1 � inf
jjhjjHD1

hC Œh� ; hiH � 1 � �:

As 1 � � � 1 implies � � 0, one must have that

sup
jjhjjHD1

hR Œh� ; hiH D 1 � inf
jjhjjHD1

hC Œh� ; hiH D � < 1:

Now, as hRŒQŒh��;QŒh�iH � jjRjj jjQŒh�jj2 � jjRjj jjhjj2,

inf
jjhjjHD1

h.IH � QRQ/ Œh� ; hiH D 1 � sup
jjhjjHD1

hR ŒQh� ;QŒh�iH � 1 � � > 0:

Consequently IH � QRQ is a positive operator, with bounded inverse. Furthermore,
when h has norm one, as

h.IH � QRQ/ Œh� ; hiH � jjIH �QRQjj ;

one gets 0 < 1 � � � jjIH �QRQjj. ut
The following definition yields in fact the decomposition of operators that shall

be used to reach the assigned goal.

Definition 8.2.27 Let fQi; i 2 Œ0 W n�g be an increasing family of projections of H
such that Q0 D OH , and Qn D IH . Then

Pn
iD1 fQi �Qi�1g D IH . Thus, given an

operator B, one has that

B D
 

nX
iD1
fQi � Qi�1g

!
B

 
nX

iD1
fQi � Qi�1g

!

D
X

i;j

fQi �Qi�1gB
˚
Qj � Qj�1

�
D
X
i<j

fQi �Qi�1gB
˚
Qj � Qj�1

�CX
i�j

fQi � Qi�1gB
˚
Qj � Qj�1

�
:

One then sets

SQ .B/ D
X
i<j

.Qi � Qi�1/B
�
Qj � Qj�1

�

and

Sc
Q .B/ D

X
i�j

.Qi � Qi�1/B
�
Qj �Qj�1

�
:
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Thus, by definition,

B D SQ .B/C Sc
Q .B/ :

Remark 8.2.28 Let Bi;j D fQi � Qi�1gB
˚
Qj � Qj�1

�
. Then SQ .B/ contains the

components of the following table:

SQ .B/ 1 2 3 4 5 
 
 
 n � 1 n
1 B1;2 B1;3 B1;4 B1;5 
 
 
 B1;n�1 B1;n
2 B2;3 B2;4 B2;5 
 
 
 B2;n�1 B2;n
3 B3;4 B3;5 
 
 
 B3;n�1 B3;n
4 B4;5 
 
 
 B4;n�1 B4;n
5 B5;n�1 B5;n
:::

:::
:::

n � 1 Bn�1;n

From that table, it is immediate that

SQ .B/ D
n�1X
iD1

nX
jDiC1

Bi;j D
nX

jD2

j�1X
iD1

Bi;j;

Sc
Q .B/ D

n�1X
iD1

iX
jD1

Bi;j:

Let B D ˇ1B.1/ C ˇ2B.2/. Then Bi;j D ˇ1B.1/

i;j C ˇ2B.2/

i;j , and, since the terms Bi;j have
the form CiBCj, SQ.B/ and Sc

Q.B/ are linear in B.

Lemma 8.2.29 In the context of (Definition) 8.2.27 one has that

SQ .B/ D
n�1X
iD1

QiB .QiC1 �Qi/ ;

and that

Sc
Q .B/ D

n�1X
iD1

.Qi �Qi�1/BQi:

Proof Using the explicit expression for Bi;j,

j�1X
iD1

Bi;j D Qj�1B
�
Qj � Qj�1

�
:
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The first formula then results from (Remark) 8.2.28. For the second one, one
proceeds analogously. with

iX
jD1

Bi;j D
iX

jD1
.Qi �Qi�1/B

�
Qj �Qj�1

� D .Qi � Qi�1/BQi:

ut
The following lemma shows that SP.B/ and Sc

P.B/ provide operators of the form
required in (Proposition) 8.2.24.

Lemma 8.2.30 Assume that (Assumption) 8.2.25 obtains. Fix arbitrarily
ft1; : : : ; tng
� T such that t1 < 
 
 
 < tn. Set

t0 < t1; and Pt0 D OH ;

tnC1 > tn; and PtnC1 D IH :

Let B be an operator of H, and SP .B/ and Sc
P .B/ be as in (Lemma) 8.2.29 (one

chooses, as the Q projections, the projections Pt). Then

1. SP .B/ ŒHt1 � D f0Hg (zero subspace);
2. for k 2 Œ2 W n�,

SP .B/ ŒHtk � D
k�1X
iD1

Pti B
�
PtiC1 � Pti

�
ŒHtk � � Htk�1 I

3. for k 2 Œ1 W n�,

Sc
P .B/

�
H?tk
� D nX

iDk

�
PtiC1 � Pti

�
BPtiC1

�
H?tk
� � H?tk :

Proof One must have in mind the following fact [266, p. 84]: given two projections,
P and Q, Q � P is a projection if, and only if, the range of P is contained in that of
Q, and, in that latter case, it obtains that

RŒQ � P� D RŒQ� \RŒP?�:

The range of PtiC1 �Pti is thus HtiC1 \H?ti , and then, for i � k, PtiC1 �Pti , acting on
Htk , yields the zero subspace. Thus, when k D 1, one has that SP .B/ ŒHt1 � D f0Hg,
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and, when k > 1, as

SP .B/ ŒHtk � D
k�1X
iD1

Pti B
�
PtiC1 � Pti

�
ŒHtk � ;

the sum to the right in that latter expression shall have all its values in the range of
Ptk�1 , that is, Htk�1 . Items 1 and 2 thus obtain.

In a similar vein, Pti acting on H?tk yields the zero subspace when i � k. Thus
(the sum goes to n as one has PtnC1 D IH)

Sc
P .B/

�
H?tk
� D nX

iDkC1
.Pti � Pti�1 /BPti

�
H?tk
�
:

Now .Pti � Pti�1 /BPti

�
H?tk
�

is a subset of H?ti�1 . But, since the subspaces H?t are
decreasing when t increases in T,

H?ti�1 � H?tk ; i > k:

Consequently Sc
P .B/

�
H?tk
� � H?tk . ut

The following “appendix” to (Lemma) 8.2.30 is central to what follows.

Remark 8.2.31 Let HtnC1 D H. For fixed, but arbitrary k 2 Œ1 W nC 1�, one has that

SP .B/ SP .B/ ŒHtk � � SP .B/ ŒHtk�1 � � Htk�2 :

Thus

Sk�1
P .B/ ŒHtk � � Ht1 ;

and Sk
P .B/ ŒHtk � is the zero subspace. Consequently

SnC1
P .B/

�
HtnC1

� D SnC1
P .B/ ŒH� D f0Hg :

SP .B/ is thus nilpotent [1, p. 244], and its spectrum is reduced to the zero value.

Lemma 8.2.32 Assume that (Assumption) 8.2.25 obtains. Because of (Lemma)
8.2.26, the following definition makes sense:

RC D
X
i<j

�
IH � Ptj RPtj

��1 �
PtiC1 � Pti

�
R
�
PtjC1 � Ptj

�
:

Then

SP .R ŒIH C RC�/ D RC:
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Proof Let

• Rj D
�
IH � Ptj RPtj

��1
,

• Ri;j D Bi;j (R takes the place of B in the proof of (Lemma) 8.2.29),
• QRi;j D RjRi;j.

Then

RC D
X
i<j

RjRi;j D
X
i<j

QRi;j:

Consequently, as in (Remark) 8.2.28,

RC D
n�1X
iD0

nX
jDiC1

QRi;j D
nX

jD1

j�1X
iD0
QRi;j:

But

j�1X
iD0
QRi;j D

j�1X
iD0

RjRi;j D Rj

j�1X
iD0

Ri;j D RjPtj R
�
PtjC1 � Ptj

�
;

as in the proof of (Lemma) 8.2.29. Thus

RC D
nX

iD1
RiPti R

�
PtiC1 � Pti

�
: (?)

Then, using (Lemma) 8.2.29, and the definition of RC,

SP .RRC/ D
nX

iD1
Pti .RRC/

�
PtiC1 � Pti

�

D
nX

iD1
Pti R

8<
:

nX
jD1

RjPtj R
�
PtjC1 � Ptj

�9=; �PtiC1 � Pti

�

D
nX

iD1
Pti R

˚
RiPti R

�
PtiC1 � Pti

��
:

But

.IH � Pti RPti/Pti D Pti � Pti RPti D Pti .IH � Pti RPti/ ;

and, from AB D BA, one has, successively, that, when A is invertible, that indeed
B D A�1BA, and then BA�1 D A�1B. Thus Ri and Pti commute. Consequently, as a
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projection equals its square,

SP .RRC/ D
nX

iD1
fPti RPtigRiPti R

�
PtiC1 � Pti

�
:

Finally, since SP is additive, and since .I � A/ .I � A/�1 D I yields

.I � A/�1 D I C A .I � A/�1 ; (??)

letting I D IH , and A D Pti RPti ,

.I � A/�1 D .IH � Pti RPti/
�1 D Ri; (? ? ?)

and

SP .R ŒIH C RC�/ D SP .R/C SP .RRC/

D
nX

iD1

�
Pti R

�
PtiC1 � Pti

��

C
nX

iD1
fPtiRPtigRi

�
Pti R

�
PtiC1 � Pti

��

D
nX

iD1
.IH C fPti RPtigRi/

�
PtiR

�
PtiC1 � Pti

��
:

Now, using successively (? ? ?) and then (??),

IH C fPti RPtigRi D Ri;

so that

SP .R ŒIH C RC�/ D
nX

iD1
Ri
�
Pti R

�
PtiC1 � Pti

��
;

which, because of (?), is RC. ut
Corollary 8.2.33 Assume that (Assumption) 8.2.25 obtains. RC shall be as
in (Lemma) 8.2.32. Then

� 7! .RC � �IH/
�1

is, for � ¤ 0, linear and bounded, and IH C RC has bounded inverse.
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Proof Since RC is of the form SP .B/, its spectrum reduces to zero, that is,
.RC � �IH/

�1 is linear and bounded for � ¤ 0. Choosing � D �1, one gets that
IH C RC has bounded inverse. ut
Lemma 8.2.34 Assume that (Assumption) 8.2.25 obtains. RC shall be as
in (Lemma) 8.2.32. Let

R� D Sc
P .R ŒIH C RC�/ :

Then

C D IH � R D .IH � R�/ .IH C RC/�1 :

Proof The inverse of IH C RC exists because of (Corollary) 8.2.33. From the
following identity [(Definition) 8.2.27]:

B D SP .B/C Sc
P .B/

one has that [(Corollary) 8.2.33]

.IH � R/ .IH C RC/ D .IH C RC/� R .IH C RC/

D .IH C RC/� SP .R ŒIH C RC�/� Sc
P .R ŒIH C RC�/

D .IH C RC/� RC � R�
D IH � R�:

ut
Lemma 8.2.35 Let H be a Hilbert space, K, a closed subspace, and T, a bounded,
linear operator of H, which leaves K invariant, that is, such that TŒK� � K. Suppose
that IH C T has an inverse that is linear and bounded. Then .IH C T/�1 leaves K
invariant.

Proof Since K is a subspace, IH C T leaves K invariant. As a necessary, and
sufficient, condition for a subspace K to be invariant with respect to a bounded,
linear operator B, is that BPK D PKBPK [236, p. 298],

PK D .IH C T/�1 Œ.IH C T/PK � D .IH C T/�1 ŒPK .IH C T/PK � :

Multiplying by PK that latter expression, one also obtains that

PK D PK .IH C T/�1 PK .IH C T/PK:

Thus equating the right-hand sides of the latter two expressions, one obtains that

.IH C T/�1 PK Œ.IH C T/PK � D PK .IH C T/�1 PK Œ.IH C T/PK � :



8.2 Invariance of Multiplicity 557

Consequently, on RŒ.IH C T/PK �,

.IH C T/�1 PK D PK .IH C T/�1 PK :

But, since IH C T? must have bounded inverse [266, p. 71, 74], using [266, p. 71],

R .IH C T/PK � D N ŒPK .IH C T?/�? D K?? D K:

The claim is thus true. ut
Lemma 8.2.36 Assume that (Assumption) 8.2.25 obtains. RC shall be as
in (Lemma) 8.2.32, and R�, as in (Lemma) 8.2.34. Let

CC D .IH C RC/�1 ; and C� D IH � R�:

Then [(Lemma) 8.2.34] C D C�CC can be represented as a product of factors for
the family of subspaces fHtk ; k 2 Œ0; nC 1�g (Ht0 is the zero subspace).

Proof The definitions of CC and C� insure that they are linear, bounded, with
bounded inverse. To apply (Proposition) 8.2.24, one must check that

CC ŒHtk � � Htk ; and that C�
�
H?tk
� � H?tk :

As RC is of the form SP .B/ [(Lemma) 8.2.32], RC ŒHtk � � Htk�1 � Htk
[(Lemma) 8.2.30], and thus Htk is invariant for RC, and, consequently, for IH C
RC [(Lemma) 8.2.35]. One then applies (Corollary) 8.2.33 and (Lemma) 8.2.35.
Analogously, as R� is of the form Sc

P ŒB�, H?tk is invariant for C� [(Lemma) 8.2.30].
ut

Lemma 8.2.36 shows that C’s of the form IH �R can be represented as a product
of factors when one restricts attention to a finite sample of subspaces Ht. Since the
size of the sample is irrelevant, one may try to let it increase indefinitely. Let RCn be
RC for the sample considered below in (Fact) 8.2.40, and suppose that a sequence
of such operators has a limit RC, as the sample increases, and that IH C RC is an
operator with bounded inverse. Then R�n will also have a limit, and one will be able
to represent C as a product of factors. What follows is geared to proving those facts.

The Second Step: The Limiting Procedure

What follows requires an added assumption:

Assumptions 8.2.37 R is Hilbert-Schmidt.

The properties of Hilbert-Schmidt operators may be found in [235], for example.
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Lemma 8.2.38 Assume that (Assumptions) 8.2.25 and 8.2.37 obtain. Let
fQti ; i 2 Œ0; n�g be a family of projections as in (Definition) 8.2.27, and
fBi; i 2 Œ0 W n�g be a family of bounded, linear operators of H. Then

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
BiR .Qti �Qti�1 /

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
HS

D
nX

iD1
jjBiR .Qti �Qti�1 /jj2HS :

Proof Let Hi be the range of Qti � Qti�1 , andn
e.i/j ; j 2 Ji

o
be a complete orthonormal set in Hi. Then, since the (orthogonal) sum of the Hi’s is
H, n

e.i/j ; j 2 Ji; i 2 Œ0 W n�
o

is a complete orthonormal set in H. Since a finite sum of Hilbert-Schmidt operators
is Hilbert-Schmidt, as well as the product of a Hilbert-Schmidt operator by a
bounded one,

Pn
iD1 BiR .Qti �Qti�1 / is a Hilbert-Schmidt operator. Thus, using the

definition of the Hilbert-Schmidt norm, and considering the “effective domain” of
the operators concerned, the Hi’s,

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
BiR .Qti � Qti�1 /

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
HS

D
X

i2Œ1Wn�;j2Ji

ˇ̌̌̌̌̌
BiR .Qti � Qti�1 /

h
e.i/j

iˇ̌̌̌̌̌ 2
H

D
nX

iD1

8<
:X

j2Ji

ˇ̌̌̌̌̌
BiR .Qti � Qti�1 /

h
e.i/j

iˇ̌̌̌̌̌ 2
H

9=
;

D
nX

iD1
jjBiR .Qti � Qti�1 /jj2HS :

ut
Lemma 8.2.39 Assume that (Assumptions) 8.2.25 and 8.2.37 obtain. Let B1 and B2
be bounded, linear operators of H. Then

jjB1RB2jj2HS D jjB?2RB?1 jj2HS ;

and

jjB1RB2jj2HS � jjB1jj2 jjRjj2HS jjB2jj2 :
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Proof R is self-adjoint and Hilbert-Schmidt. Thus B1RB2 is Hilbert-Schmidt, and
so is its transpose B?2RB?1 . As a Hilbert-Schmidt operator and its transpose have the
same Hilbert-Schmidt norm, the first assertion obtains. The second is a consequence
of the following inequality:

jjBRjjHS _ jjRBjjHS � jjBjj jjRjjHS ;

valid for Hilbert-Schmidt R and bounded B. ut
Fact 8.2.40 Let Tn D

˚
t.n/i W t.n/i < t.n/iC1; i 2 Œ0 W n�� be a set of indices such that

P
t
.n/
0
D OH ; P

t
.n/
nC1
D IH; and, for i 2 Œ1 W n � 1� ; t.n/i 2 T:

In conformity with notation used in the first step [(Lemmas) 8.2.30, 8.2.32], one
shall write that

R
t
.n/
i
D
�

IH � P
t
.n/
i

RP
t
.n/
i

��1
;

and that

RCn D
nX

iD1
R

t
.n/
i

P
t
.n/
i

R

�
P

t
.n/
iC1
� P

t
.n/
i

�
:

Let Tn � TnCp, and t.nCp/
.i/ D t.n/i . Then, Ji being the set of indices of the elements

of TnCp located between t.n/i and t.n/iC1,

P
t
.n/
iC1
� P

t
.n/
i
D P

t
.nCp/
.iC1/
� P

t
.nCp/
.i/
D
X
j2Ji

�
P

t
.nCp/
jC1
� P

t
.nCp/
j

�
;

and

RCn D
nX

iD1

X
j2Ji

�
R

t
.nCp/
.i/

P
t
.nCp/
.i/

R

�
P

t
.nCp/
jC1
� P

t
.nCp/
j

��
:

Consequently

RCnCp � RCn D

D
nX

iD1

X
j2Ji

�	
R

t
.nCp/
j

P
t
.nCp/
j
� R

t
.nCp/
.i/

P
t
.nCp/
.i/



R

�
P

t
.nCp/
jC1
� P

t
.nCp/
j

��
:
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Lemma 8.2.41 Let Assumptions 8.2.25, 8.2.37, and Fact 8.2.40 obtain. The follow-
ing equality prevails (� is defined in (Lemma) 8.2.26):

ˇ̌̌̌̌̌
RCnCp � RCn

ˇ̌̌̌̌̌ 2
HS
�

� 2
nX

iD1

X
j2Ji

ˇ̌̌
ˇ
ˇ̌̌
ˇRt

.nCp/
j
� R

t
.nCp/
.i/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
ˇ̌̌
ˇ
ˇ̌̌
ˇR
�

P
t
.nCp/
jC1
� P

t
.nCp/
j

�ˇ̌̌
ˇ
ˇ̌̌
ˇ2
HS

C 2

.1 � �/2
nX

iD1

X
j2Ji

ˇ̌̌
ˇ
ˇ̌̌
ˇ
�

P
t
.nCp/
.iC1/
� P

t
.nCp/
.i/

�
R

�
P

t
.nCp/
jC1
� P

t
.nCp/
j

�ˇ̌̌
ˇ
ˇ̌̌
ˇ2
HS

:

Proof Adding and subtracting R
t
.nCp/
j

P
t
.nCp/
.i/

, one has that

R
t
.nCp/
j

P
t
.nCp/
j
� R

t
.nCp/
.i/

P
t
.nCp/
.i/
D

D R
t
.nCp/
j

�
P

t
.nCp/
j
� P

t
.nCp/
.i/

�
C
�

R
t
.nCp/
j
� R

t
.nCp/
.i/

�
P

t
.nCp/
.i/

:

The f
 
 
 g bracket, in the initial expression for RCnCp � RCn [(Fact) 8.2.40], then
becomes

R
t
.nCp/
j

�
P

t
.nCp/
j
� P

t
.nCp/
.i/

�
R

�
P

t
.nCp/
jC1
� P

t
.nCp/
j

�
C

C
�

R
t
.nCp/
j
� R

t
.nCp/
.i/

�
P

t
.nCp/
.i/

R

�
P

t
.nCp/
jC1
� P

t
.nCp/
j

�
:

Using, with the Hilbert-Schmidt norm, the Hilbert space norm inequality

jjhC kjj2 � 2
n
jjhjj2 C jjkjj2

o
;

and then (Lemma) 8.2.39, one gets that the Hilbert-Schmidt norm of the f
 
 
 g
bracket [(Fact) 8.2.40] is dominated by 2 times

ˇ̌̌
ˇ
ˇ̌̌
ˇRt

.nCp/
j

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
ˇ̌̌
ˇ
ˇ̌̌
ˇ
�

P
t
.nCp/
j
� P

t
.nCp/
.i/

�
R

�
P

t
.nCp/
jC1
� P

t
.nCp/
j

�ˇ̌̌
ˇ
ˇ̌̌
ˇ2
HS

C

C
ˇ̌̌
ˇ
ˇ̌̌
ˇRt

.nCp/
j
� R

t
.nCp/
.i/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
ˇ̌̌
ˇ
ˇ̌̌
ˇPt

.nCp/

.i/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
ˇ̌̌
ˇ
ˇ̌̌
ˇR
�

P
t
.nCp/
jC1
� P

t
.nCp/
j

�ˇ̌̌
ˇ
ˇ̌̌
ˇ2
HS

:

The required inequality follows then from (Lemmas) 8.2.26 and 8.2.38. ut
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Lemma 8.2.42 Let Assumptions 8.2.25, 8.2.37, and Fact 8.2.40 obtain. Let also,
for fixed, but arbitrary t1 < t2; ft1; t2g � T,

�R .Œt1; t2Œ/ D jjR .Pt2 � Pt1 /jj2HS :

Then �R can be extended to a finite measure on the Borel sets of T.

Proof Because of (Lemma) 8.2.38, �R is additive on the semiring formed by the
intervals, and thus can be extended to an additive set function on the generated ring.
Since the elements of the ring are finite unions of elements in the semiring, to have
that �R is continuous from above at the empty set, and thus �-additive, it suffices to
check that �R .Œt1; t2Œ/ goes to zero when the length of the interval does. Now, as R
is Hilbert-Schmidt and self-adjoint, it has a representation of the following form:

R D
X
i2I

�i ri ˝ ri;

where fri; i 2 Ig is an orthonormal family, and
P

i2I �
2
i <1. Furthermore, for the

(any) Hilbert-Schmidt operator R .Pt2 � Pt1 /,

jjR .Pt2 � Pt1 /jj2HS D hR .Pt2 � Pt1 / ;R .Pt2 � Pt1 /iHS

D ˝fR .Pt2 � Pt1 /g? ; fR .Pt2 � Pt1 /g?
˛
HS

D jj.Pt2 � Pt1 /Rjj2HS :

Thus, since the “effective domain” of R is spanned by its eigenvectors,

�R .Œt1; t2Œ/ D jjR .Pt2 � Pt1 /jj2HS

D jj.Pt2 � Pt1 /Rjj2HS

D
X
i2I

jj.Pt2 � Pt1 /R Œri�jj2H

D
X
i2I

�2i jj.Pt2 � Pt1 / Œri�jj2H :

But limt1"t2 Pt1 D Pt2 , and thus, by dominated convergence,

lim
t1"t2

�R .Œt1; t2Œ/ D 0:

One then calls on the standard extension theorem for measures [83, p. 64]. ut
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Lemma 8.2.43 Let Assumptions 8.2.25, 8.2.37, and Fact 8.2.40 obtain. Let, for
fixed, but arbitrary t1 < t2; t3 < t4; ft1; t2; t3; t4g � T,

�R .Œt1; t2Œ � Œt3; t4Œ/ D jj.Pt2 � Pt1 /R .Pt4 � Pt3 /jj2HS :

Then �R can be extended to a finite measure on the Borel sets of T � T.

Proof The argument is that of (Lemma) 8.2.42. ut
Lemma 8.2.44 Let Assumptions 8.2.25, 8.2.37, and Fact 8.2.40 obtain. Let

fTn; n 2 Ng
be a sequence of partitions as defined in (Fact) 8.2.40, which have the property that
Tn � TnC1; n 2 N. Then

lim
n;p

ˇ̌̌̌
RCn � RCp

ˇ̌̌̌ 2
HS
D 0:

Proof One uses (Lemma) 8.2.41 as follows.

The estimate for the first term of Lemma 8.2.41:

Let t1 < t2; ft1; t2g � T, be fixed, but arbitrary, and

 .t/ D �R .Tt � Tt/ D jjPtRPtjj2HS � jjPtjj2 jjRjj2HS jjPtjj2 � jjRjj2HS :

 is thus a positive function, continuous to the left, increasing, and bounded by the
square of Hilbert-Schmidt norm of R. As, using the properties of projections, and
those of the Hilbert-Schmidt inner product,

hPt1RPt1 ;Pt2RPt2iHS D hPt1RPt1 ;Pt1RPt2iHS

D ˝
.Pt1RPt1 /

? ; .Pt1RPt2/
?
˛
HS

D hPt1RPt1 ;Pt2RPt1iHS

D hPt1RPt1 ;Pt1RPt1iHS ;

one has that

jjPt1RPt1 � Pt2RPt2 jj2HS D jjPt2RPt2 jj2HS � jjPt1RPt1 jj2HS D  .t2/�  .t1/ :
Now [(Lemma) 8.2.32, beginning of proof, for the notation]

Rt2

�
R�1t1 � R�1t2

�
Rt1 D Rt2 � Rt1 ;

and

R�1t2
� R�1t1

D Pt1RPt1 � Pt2RPt2 :



8.2 Invariance of Multiplicity 563

The latter difference is Hilbert-Schmidt, its Hilbert-Schmidt norm, as seen just
above, has value .t2/� .t1/, and, using (Lemmas) 8.2.26 and 8.2.39,

jjRt2 � Rt1 jj2HS D
ˇ̌̌̌
Rt2

�
R�1t1
� R�1t2

�
Rt1

ˇ̌̌̌ 2
HS

� 1

.1 � �/2
ˇ̌̌̌
R�1t1
� R�1t2

ˇ̌̌̌ 2
HS

D 1

.1 � �/2 f .t2/�  .t1/g :

As the operator norm is dominated by the Hilbert-Schmidt norm, one finally has
that

jjRt2 � Rt1 jj2 �
1

.1 � �/2 f .t2/ �  .t1/g :

Consequently

nX
iD1

X
j2Ji

ˇ̌̌
ˇ
ˇ̌̌
ˇRt

.nCp/
j
� R

t
.nCp/
.i/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
ˇ̌̌
ˇ
ˇ̌̌
ˇR
�

P
t
.nCp/
jC1
� P

t
.nCp/
j

�ˇ̌̌
ˇ
ˇ̌̌
ˇ2
HS

�

� 1

.1 � �/2
nX

iD1

X
j2Ji

n

�

t.nCp/

j

�
�  �t.nCp/

.i/

�o
�R

�h
t.nCp/

j ; t.nCp/

jC1
h�
:

This last sum is the product of a constant by the difference of two terms, say InCp

and QInCp. One has that

InCp D
nX

iD1

X
j2Ji


�

t.nCp/

j

�
�R

�h
t.nCp/

j ; t.nCp/

jC1
h�

D
Z

T

nX
iD1

X
j2Ji


�

t.nCp/

j

�
�	

t
.nCp/
j ;t

.nCp/
jC1

	 .t/ �R .dt/ ;

with  uniformly bounded by jjRjj2HS, and �R finite. Similarly

QInCp D
Z

T

nX
iD1

X
j2Ji


�

t.nCp/

.i/

�
�	

t
.nCp/
j ;t

.nCp/
jC1

	.t/ �R .dt/ D In:

As n and p increase indefinitely, the elements InCp and QInCp form increasing
sequences tending to the same finite limit, and thus the first term of (Lemma) 8.2.41
is dominated by a quantity whose limit is zero.
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The estimate for the second term of Lemma 8.2.41:

Let

�.ı/ D f.t1; t2/ 2 T � T W t1 < t2 < t1 C ıg W

it is the “open strip” of width ı=
p
2 above and adjacent to the diagonal in T�T. Let

ı D max
i2Œ0Wn�

�
t.n/iC1 � t.n/i

�
:

Then, when

t.nCp/
.i/ � t1 < t.nCp/

j ; t.nCp/

j � t2 < t.nCp/

jC1 ; t.nCp/

jC1 � t.nCp/
.i/ < ı;

one has that

t1 < t.nCp/

j � t2 < t.nCp/

jC1 < ı C t.nCp/
.i/ � ı C t1:

Consequently, when the “.n/-partition” in T has intervals of length at most ı, the
intervals of the “.nC p/-partition” have the property thath

t.nCp/
.i/ ; t.nCp/

j

h
�
h
t.nCp/

j ; t.nCp/

jC1
h
� �.ı/ :

Now the second term of (Lemma) 8.2.41 is a constant times

nX
iD1

X
j2Ji

ˇ̌̌
ˇ
ˇ̌̌
ˇ
�

P
t
.nCp/
.iC1/
� P

t
.nCp/
.i/

�
R

�
P

t
.nCp/
jC1
� P

t
.nCp/
j

�ˇ̌̌
ˇ
ˇ̌̌
ˇ2
HS

D

D
nX

iD1

X
j2Ji

�R

��
t.nCp/
.i/ ; t.nCp/

.iC1/

� � ht.nCp/

j ; t.nCp/

jC1
h�

D �R

0
@ [

i2Œ1Wn�;j2Ji

�
t.nCp/
.i/ ; t.nCp/

.iC1/

� � ht.nCp/

j ; t.nCp/

jC1
h1A

� �R .� .ı// :

As n increases, ı decreases, and�.ı/ decreases to the empty set. ut
Proposition 8.2.45 Let Assumptions 8.2.25, 8.2.37, and Fact 8.2.40 obtain. In the
Hilbert space of Hilbert-Schmidt operators, limn RCn exists, and is thus a Hilbert-
Schmidt operator. It shall be denoted RC.

Proof The result is an immediate consequence of (Lemma) 8.2.44, and the fact that
Hilbert-Schmidt operators form a Hilbert space for the Hilbert-Schmidt norm. ut
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Lemma 8.2.46 Let Assumptions 8.2.25, 8.2.37, and Fact 8.2.40 obtain. Suppose
that, for some � 2 C n f0g, but all n 2 N,

R.n/

� D
�
RCn � �IH

��1
; and RC� D .RC � �IH/

�1 ;

are bounded, linear operators. Then
˚
R.n/

� ; n 2 N
�

converges uniformly (operator
norm) to RC� .

Proof From IH D .RC � �IH/
�1 .RC � �IH/ D RC� .RC � �IH/, it follows that

IH � RC� RC D ��RC� :

Adding RC� RCn to the latter expression, one gets that

IH � RC�
�
RC � RCn

� D RC�
�
RCn � �IH

�
:

Inverting that latter equality, on obtains that

˚
IH � RC�

�
RC � RCn

���1 D R.n/

�

˚
RC�
��1

;

so that, finally,

˚
IH � RC�

�
RC � RCn

���1
RC� D R.n/

� :

Consequently

RC� � R.n/

� D
n
IH �

�
IH � RC�

�
RC � RCn

���1o
RC� :

Because of (Proposition) 8.2.45, for n large enough,
�
IH � RC�

�
RC � RCn

���1
has

the Neumann series [129, p. 161] expansion

�
IH � RC�

�
RC � RCn

���1 D 1X
kD0

˚
RC�
�k �

RC � RCn
�k
:

Consequently

RC� � R.n/

� D
( 1X

kD1

˚
RC�
�k �

RC � RCn
�k

)
RC�

D RC�
�
RC � RCn

� ( 1X
kD0

˚
RC�
�k �

RC � RCn
�k

)
RC� ;
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so that, for n 2 N large enough, still because of [129, p. 161],

ˇ̌̌̌
RC� � RCn

ˇ̌̌̌ � ˇ̌̌̌
RC�
ˇ̌̌̌ 2 ˇ̌̌̌

RC � RCn
ˇ̌̌̌

1 � ˇ̌̌̌RC� �RC � RCn
�ˇ̌̌̌ :

The lemma’s statement thus obtains because of (Proposition) 8.2.45, and the fact
that the Hilbert-Schmidt norm dominates the operator one. ut
Remark 8.2.47 The result which follows uses a property of analytic functions with
values in a Banach space that shall now be stated [74, p. 241].

Definition 8.2.48 Let X0 be a subset of the metric space X. A point x0 2 X0 is an
isolated point of X0 when there is a neighborhood of x0 in X, say V0, such that V0 \
X0 D fx0g (example: X0 is the complement of a disc in the complex plane, centered
at the origin, with positive radius, from which that origin has been removed).

Fact 8.2.49 Let

(a) X be a Banach space,
(b) C0, an open subset of C,
(c) z0, an isolated point of C n C0,
(d) � > 0, such that fz 2 C W jz � z0j � �g n fz0g � C0,
(e) f W C0 �! X, analytic.

Then, when z is such that 0 < jz � z0j < �,

f .z/ D
1X

nD0
˛n .z� z0/

n C
1X

nD1

ˇn

.z � z0/
n :

Both series converge, and, 	0 being the circle centered at z0 whose radius is �,

˛n D 1

2�i

Z
	0

f .z/

.z� z0/
nC1 dz;

ˇn D 1

2�i

Z
	0

.z� z0/
n�1 f .z/ dz:

Remark 8.2.50 When, in (Fact) 8.2.49, one can compute the integrals producing the
ˇ’s, and obtain zero, it follows that f is analytic at z0.

The result just stated shall be used with f .�/ D RC� , C0 D � .RC/, the resolvent
set of RC, and z0 2 �p .RC/, the point spectrum of RC.

Proposition 8.2.51 Let Assumptions 8.2.25, 8.2.37, and Fact 8.2.40 obtain. Then

� .RC/ D f0g :
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Proof Since RC is compact [(Proposition) 8.2.45],

� .RC/ D �p .RC/[ f0g :

Let �0 2 �p .RC/ be fixed, but arbitrary. It is an isolated point of the spectrum of
RC. There is thus a punctured disk contained in the resolvent set of RC, centered
at �0, with boundary 	0. Since RCn , defined in (Fact) 8.2.40, has the form of RC
in (Lemma) 8.2.32, which, in turn, is of the form SP .B/ [(Lemma) 8.2.29], and that
operators of that form have a spectrum reduced to the zero point [(Remark) 8.2.31],

� 7! R.n/

� ;

defined in (Lemma) 8.2.46, is analytic on C n f0g, andZ
	0

�pR.n/

� d� D 0:

Since
˚
R.n/

� ; n 2 N
�

converges uniformly to RC� [(Lemma) 8.2.46], and that � 7! RC�
is bounded on 	0 [266, p. 99],

lim
n

Z
	0

�pR.n/

� d� D
Z
	0

�pRC� d�:

The latter integral must be zero, and thus the resolvent set of RC is C n f0g. ut
Proposition 8.2.52 Let Assumptions 8.2.25, 8.2.37, and Fact 8.2.40 obtain. The
operator C D IH � R can be represented as the product C�CC of the following
factors:

CC D .IH C RC/�1 ; and C� D C .IH C RC/ :

Proof Since the spectrum of RC reduces to zero, IHCRC has bounded inverse, and
thus CC is well defined. Consequently

C�CC D C .IH C RC/ .IH C RC/�1 D C:

One must thus only check the invariance of the subspaces Ht and H?t .

Invariance of Ht:

Let h 2 Ht be fixed, but arbitrary. Since

Ht D
_

t0<t;t02T

Ht0 ;
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there exists sequences

ftn; n 2 N W tn " tg ;

and n
hn; n 2 N W hn 2 Htn and lim

n
hn D h

o
:

Let ˚
RpŒn�/

C ; p Œn� < p ŒnC 1� ; n 2 N
�

be a sequence such that the sample on which RpŒn�/

C is based contains tn. Then

RpŒn�/

C Œhn� 2 Htn � Ht;

so that

RC Œhn� D lim
pŒn�

RpŒn�/

C Œhn� 2 Ht:

Consequently RC Œh� D limn RC Œhn� 2 Ht. But then .IH C RC/ ŒHt� � Ht, and thus,
using (Lemma) 8.2.35,

CC ŒHt� D .IH C RC/�1 ŒHt� � Ht:

Invariance of H?t :

One proceeds analogously. Let indeed Cn D C
�
IH C RCn

�
. Then

C� D lim
n

Cn:

But [(Lemma) 8.2.34, using R�n for R�],

C D �IH � R�n
� �

IH C RCn
��1

;

so that

Cn D IH � R�n :

Now R�n is of the form Sc
P .B/, for which the appropriate H?t subspaces are invariant.

ut
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Since, for Gaussian processes X and Y, the measures they determine, through the
cylinder sets of RT , are equivalent if, and only if, there is

F W L[T ŒX� �! L[T ŒY� ;

with bounded inverse, such that Yt D FXt, and I�F?F is Hilbert-Schmidt [97], one
has that:

Proposition 8.2.53 Equivalent Gaussian processes have the same multiplicity.

Proof One is in the situation of (Remark) 8.2.14, and one applies (Remark) 8.2.22,
since

hYt1 ;Yt2iL2.˝;A;P/ D hFXt1 ;FXt2iL2.˝;A;P/ D hF?FXt1 ;Xt2iL2.˝;A;P/ :

ut

8.3 Smoothness and Multiplicity: Multiplicity One

The multiplicity one category of processes is mainly of use when choosing a model
to adjust to data, as it is difficult, perhaps impossible, knowing the covariance,
to obtain explicitly its factorization (see, for instance, example (Remark) 8.3.13),
and then its analytical properties, such as continuity, or differentiability, of its
components. The same is true for Goursat processes which broaden the class of
models one may entertain. Thus, for practical purposes, multiplicity one is of
primary importance. Hence the need to assess its scope and the constraints which
bear on it.

The rule of thumb is that the smoother the process, the lower the multiplicity.
That rule is illustrated below in three cases. It is shown, in the first, that integrals
of very smooth integrands, with respect to processes with orthogonal increments,
lead to multiplicity one. In the second, it is shown that processes with rather smooth
predictions have multiplicity one. The third covers Goursat processes, which are
linear combinations of orthogonal processes with orthogonal increments, and the
coefficients of the linear combinations, functions. They have potentially “high” (>
1) multiplicity: one shall see that the smoothness of the coefficients reduces that
multiplicity.

In expressions of the form

g .t/ D
Z
� .t/ dmf ;

� .t/ is an equivalence class in L2
�
T; T ;Mf

�
, that of functions of the following

form: � .t; �/ ; � 2 Tt. When working with examples, it is often easier to deal with
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integrals of Itô type, that is, with processes of the following form:

g .t; !/ D
Z t

0

� .t; �/ M .!; d�/ ;

where M is a martingale in L2, and � is adequately measurable. That these two
points of view are compatible follows from the following facts:

• the Itô stochastic integral may be defined as an isometric integral [150, p. 53] in
the classes of which an appropriate version (stochastic process) is chosen;

• since

Cg .t1; t2/ D h� .t1/ ; � .t2/iL2.T;T ;Mf / ;

when Cg is adapted, and the subspace linearly generated by f� .t/ ; t 2 Tg, separa-
ble, then, in the equivalence class � .t/, an appropriate version may be chosen so
that � is adequately measurable as a function of two variables (Proposition 2.3.7:
typically g will be continuous (in quadratic mean), and the L2 spaces concerned,
separable [41, p. 252]).

Thus, according to convenience, one or the other of these points of view will tacitly
prevail.

When, below, f is a function of two variables, D1f shall be the partial derivative
of f with respect to the first variable, and D2f that with respect to the second.

Also repeated use shall be made of the following formula [109, p. 222]:

Fact 8.3.1 For

	 .t/ D
Z t

a
G .t; x/ dx;

d	

dt
.�/ D

Z �

a
D1G .�; x/ dxC G .�; �/ :

8.3.1 Multiplicity One: Smoothness of Integrands

The following definition, tailored to its purpose, yields a family of multiplicity one
processes.

Definition 8.3.2 Let T be an interval of the real line, T be its Borel sets, and H
a real Hilbert space. Let f W T �! H be a purely nondeterministic function, with
orthogonal increments, continuous to the left. Let Mf be the measure induced on T
using f , and F .t/ D Mf .Tt/. Assume that:

(A) There exists ft1; t2g � T, t1 < t2, such that F .t1/ < F .t2/.
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(B) There exists an integrable dF, which has at most a finite number of discontinu-
ities in any finite interval, such that F .t/ D RTt

dF .x/ dx.

Let � D f.t; x/ 2 T � T W x � tg, and � W T � T �! R, a measurable map such
that

(a) for fixed, but arbitrary t 2 T,Z
T
�2 .t; x/Mf .dx/ <1I

(b) when x > t, � .t; x/ D 0;
(c) for fixed, but arbitrary t 2 T,

� .t; t/ D 1I

(d) � and D1� are bounded, and continuous on �.

Let �t be the equivalence class of x 7! � .t; x/, and

g .t/ D
Z

ITt�t dmf :

The function g is then said to be regular.

Example 8.3.3 Let m D mW , W a standard Wiener process on T D Œ0; 1�, with
H D L2.˝;A;P/, a probability space. Choose

�.t; �/ D �
Œ0;t� .�/.1C t/.1C �/�1;

and set

g.t/ D
Z
�t dmW :

g, as shall be seen, is a Goursat process. Referring to (Definition) 8.3.2, F.t/ D t,
dF D 1, (a)–(d) are obviously true, and so g is regular. It has also multiplicity one,
as Z

�.t; �/.�/d� D 0; t 2 Œ0; 1�;

yields that  is in the class of the zero function.

Remark 8.3.4 As mentioned at the beginning of this section, (Definition) 8.3.2 has
been concocted to facilitate the use of standard analysis results. In this particular
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case, multiplicity one means that, for t 2 T, fixed, but arbitrary,

LtŒg� D LtŒmf � D
�Z

ITt Œ�dmf ; Œ� 2 L2.T; T ;Mf /

�
:

That, in turn, means that, for h 2 LtŒmf �, h ? LtŒg�, and � � t, fixed, but arbitrary,

h D
Z

ITt
Qhdmf ; Qh 2 L2.T; T ;Mf /;

and

0 D hg.�/; hiH D
Z
�.�; x/PQh.x/Mf .dx/ D

Z
�.�; x/PQh.x/dF.x/dx:

Using formula (Fact) 8.3.1 above, one may differentiate, with respect to � , to obtain
that Z

T�

D1� .�; x/
PQh .x/ dF .x/ dxC PQh .�/ dF .�/ D 0:

One thus gets a homogeneous Volterra equation which has only the trivial zero
solution [69, p. 239]. g has indeed multiplicity one.

Remark 8.3.5 Definition 8.3.2 and its consequence remain valid for unbounded
intervals [63], provided it is assumed that, for fixed, but arbitrary t 2 T,Z

Tt

ˇ̌̌
ˇ@�@t

.t; �/

ˇ̌̌
ˇ d� <1:

One can indeed check that the method used to solve the Volterra equation for
bounded intervals still applies.

Remark 8.3.6 Remark 8.3.4 is no longer true without the regularity conditions.
Here is an example [63].

Example 8.3.7 Let T D �a; bŒ ; a < b, and f be such that Mf .Tt/ D F .t/, with
dF D dF dt, dF bounded below (for example, f D W, a Wiener process with a > 0,
or f .t/ D WA.t/, A an absolutely continuous function that is bounded below). Let

� .t; �/ D 2 � � a

t � a
� 1:

Then

@�

@t
.t; �/ D �2 � � a

.t � a/2
;
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which is not bounded when t is close to a. But, choosing  such that  dF D 1, one
gets a square integrable function that is not a null function, but for whichZ

�a;tŒ
� .t; �/  .�/ dF .�/ d� D 0:

Thus g.t/ D R ITt�.t/dmf is not a proper canonical representation.

Remark 8.3.8 Definition 8.3.2 is of limited scope. Indeed the process

g.t/ D
Z

IŒ0;t� Œ.t � 
/�L2Œ0;1� dmf ;

f a standard Wiener process, is such that � .t; t/ D 0, and (Definition) 8.3.2 does not
apply. The representation is however proper canonical. Suppose indeed thatZ t

0

.t � u/ .u/ du D 0:

Differentiating, or using (Fact) 8.3.1, one gets thatZ t

0

 .x/ dxC t .t/ D t .t/ ;

so that  D 0.

Remark 8.3.9 The requirement in (Definition) 8.3.2 that � .t; t/ D 1, for regularity
to obtain, may be replaced by � .t; t/ > 0.

Consider indeed the function � 7! � .�; �/. It is, by assumption, continuous and
bounded above. Its values are strictly positive, so that one may divide by �.t; t/. The
integral Z

Œ� .
; 
/�L2.T;T ;Mf / dmf

is thus well defined. Let m� be defined using the following relation:

m� .Tt/ D
Z

ITt Œ� .
; 
/�L2.T;T ;Mf / dmf :

Since Z
T

	
� .t; �/

� .�; �/


2
M� .d�/ <1;
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the integral Z 	
� .t; 
/
� .
; 
/



L2.T;T ;Mf /

dm�

is well defined, and

g .t/ D
Z

ITt

	
� .t; 
/
� .
; 
/



L2.T;T ;Mf /

dm� :

Furthermore the ratio in the bracket past the integral sign of the latter expression is
up to the requirements of (Definition) 8.3.2.

Remark 8.3.10 In (Remark) 8.3.9, �.t; t/ > 0 is meant for every t. It excludes thus

�.t; x/ D .nC 1/x � nt; t 2 Œ0; 1�;

for which �.t; t/ D t, and
R t
0

xn�1�.t; x/ dx D 0, t > 0. In [115], one finds an
example of a process

f .t/ D
Z

IŒ0;t��1.t/dmf1 C
Z

IŒ0;t��2.t/dmf2

of multiplicity 2 such that �1.t; t/C �2.t; t/ D 0, all t 2 Œ0; 1�.
Proposition 8.3.11 Let g be a regular function, as in (Definition) 8.3.2. Its covari-
ance Cg is continuous, has continuous partial derivatives off the diagonal of T � T
(except at a countable number of points), and a discontinuity on the diagonal, whose
size is provided by the density dF, that of the measure determined by the integrator
in the representation of g as an isometric integral.

Proof The representation of g as an integral yields that

Cg .t1; t2/ D
Z

Tt1^t2

� .t1; x/ � .t2; x/ dF .x/ dx:

Continuity of the covariance is that of the integral. Differentiability follows from
formula (Fact) 8.3.1 which yields, for example, and when �1 < �2, using item (c)
of (Definition) 8.3.2,

D1Cg .�1; �2/ D
Z

T�1

ŒD1� .�1; x/� � .�2; x/ dF .x/ dxC � .�2; �1/ dF .�1/ :
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When, in that formula, one lets �1 " �2, one gets (except for an at most countable
number of points)

D1Cg .�2; �2/ D
Z

T�1

ŒD1� .�2; x/� � .�2; x/ dF .x/ dxC dF .�2/ :

But, when �1 > �2, the analogous formula yields only the first term in the derivative
as � .�1; �2/ D 0. The difference is thus dF. ut

The main use of (Definition) 8.3.2 is that it provides a representation that is
unique.

Proposition 8.3.12 Let g be a regular function as in (Definition) 8.3.2: its repre-
sentation is essentially unique.

Proof Let, for i D 1; 2, �.i/t be the equivalence class of �i.t; 
/ in L2.T; T ;Mfi /.
Suppose that

g.t/ D
Z

ITt�
.1/

t dmf1 D
Z

ITt�
.2/

t dmf2 ;

and that the assumptions of (Definition) 8.3.2 obtain for �1; �2; f1, and f2. Since the
representations are proper canonical, for ft0; tg � T; t0 < t,

g.t/ � Pg
t0 Œg.t/� D

Z
IŒt0;tŒ�

.1/

t dmf1 D
Z

IŒt0;tŒ�
.2/

t dmf2 :

Letting t0 be t, and t be tC �; � > 0, one has, for i D 1; 2, thatZ
IŒt0;tŒ�

.i/
t dmfi

may be written in the following form:Z
IŒt;tC�Œdmfi �

Z
IŒt;tC�Œ

˚
1 � �.i/tC�

�
dmfi :

Consequently, computing a squared norm as an inner product, one has, for i D 1; 2,
that the following norm:

ˇ̌̌̌
g.tC �/ � Pg

t Œg.tC �/�
ˇ̌̌̌ 2

H

equals

A � 2BC C;
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where

A D jjfi.tC �/ � fi .t/jj2H ;

B D
Z

IŒt;tC�Œdmfi ;

Z
IŒt;tC�Œ

˚
1 � �.i/tC�

�
dmfi

�
H

D
Z
Œt;tC�Œ

f1 � �i.tC �; x/gMfi .dx/ ;

C D
ˇ̌̌
ˇ
ˇ̌̌
ˇ
Z

IŒt;tC�Œ
˚
1 � �.i/tC�

�
dmfi

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

D
Z
Œt;tC�Œ

f1 � �i.tC �; x/g2 Mfi .dx/ :

Now, on one hand,

jjfi.tC �/ � fi .t/jj2H D Mfi .Œt; t C �Œ/ D Fi .tC �/� Fi .t/ ;

and, on the other hand, since �i .t; t/ D 1,

1 � �i.tC �; x/ D �i .t; t/ � �i .tC �; x/ ;

so that, for � small enough, because of the continuity assumptions on �i, for i D 1; 2,
and the fact that .t; t/ and .tC �; x/ belong to �,

j�i .t; t/ � �i .tC �; x/j < �:

Consequently B and C are negligible, and, almost surely,

lim
�#0

ˇ̌̌̌
g.tC �/ � Pg

t Œg.tC �/�
ˇ̌̌̌ 2

H

�
D lim

�#0
Fi .tC �/ � Fi .t/

�
D dFi .t/ ;

so that dF1 and dF2 belong to the same equivalence class with respect to Lebesgue
measure.

Similarly, partitioning Œt1; t2Œ with intervals �j D
�
tj�1; tj

�
, and into increments

�jŒ fi� D fi
�
tj
� � fi

�
tj�1

�
,

jjŒ f1 .t2/� f1 .t1/� � Œ f2 .t2/ � f2 .t1/�jj2H D
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌X

j

˚
�jŒ f1� ��jŒ f2�

�ˇ̌̌ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

;
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and the right-hand side of the latter expression equals, adding and subtracting�jŒg�,

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌X

j

�Z
�
�j

n
1� �.1/tj

o
dmf1 �

Z
�
�j

n
1 � �.2/tj

o
dmf2

� ˇ̌̌ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

D

D
ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌Z

8<
:X

j

�
�j

n
1 � �.1/tj

o9=
; dmf1 �

Z 8<
:X

j

�
�j

n
1 � �.2/tj

o9=
; dmf2

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

�
Z 8<
:X

j

�
�j

˚
1 � �1

�
tj; 

��9=;

2

dMf1 C
Z 8<
:X

j

�
�j

˚
1 � �2

�
tj; 

��9=;

2

dMf2

D
Z X

j

�
�j

˚
1 � �1

�
tj; 

��2

dMf1 C
Z X

j

�
�j

˚
1� �2

�
tj; 

��2

dMf2 :

Let M be the measure Mf1 D Mf2 (it was checked above that dF1 and dF2 are in
the same equivalence class). Since one works with finite intervals, one may assume
that continuity is uniform so that, for small enough equal �j’s,

jjŒ f1 .t2/ � f1 .t1/� � Œ f2 .t2/� f2 .t1/�jj2H � 2�2M .Œt1; t2Œ/ : (?)

Let finally � > 0, and u > t C � . Then for i D 1; 2, considering temporarily
�i .u; tC �/ as (the equivalence class of) a constant,

Pg
tC� Œg.u/�� Pg

t Œg.u/� D

D
Z

IŒt;tC�Œ � .i/u dmfi

D
Z

IŒt;tC�Œ
˚
�i .u; tC �/� �i .u; tC �/C �.i/u

�
dmfi

D �i .u; tC �/
Z

IŒt;tC�Œdmfi �
Z

IŒt;tC�Œ
˚
�i .u; tC �/ � �.i/u

�
dmfi ;

so that

jj�1 .u; tC �/ ff1 .tC �/ � f1 .t/g � �2 .u; tC �/ f f2 .tC �/� f2 .t/gjj2H (??)

equals jjA � Bjj2H where

A D
Z

IŒt;tC�Œ
˚
�1 .u; tC �/� �.1/u

�
dmf1 ;

B D
Z

IŒt;tC�Œ
˚
�2 .u; tC �/� �.2/u

�
dmf2 :
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The expression (??) may be reformulated as the square of the norm of the difference
of two terms,

f�1 .u; tC �/ � �2 .u; tC �/g f f1 .tC �/� f1 .t/g ; (? ? ?)

and

�2 .u; tC �/ fŒ f1 .tC �/� f1 .t/� � Œ f2 .tC �/ � f2 .t/�g :

By what precedes (?), the second of those terms is zero, so that (??) equals

f�1 .u; tC �/ � �2 .u; tC �/g2 jjf1 .tC �/� f1 .t/jj2H :

But jjA � Bjj2H is dominated by

2

Z
Œt;tC�Œ

h
f�1 .u; tC �/ � �1 .u; x/g2 C f�2 .u; tC �/ � �2 .u; x/g2

i
M .dx/ ;

and, because of the continuity of �1 and �2, that latter integral is dominated by

4�2M .Œt; t C �Œ/ D 4�2 jjf1 .tC �/� f1 .t/jj2H :

Thus, in the end, using (? ? ?),

j�1 .u; t/ � �2 .u; t/j � 2�:

ut
Remark 8.3.13 In practice, one is “given” Cg, and, as shall eventually be seen, needs
to deduce � from it (f is taken to be “white noise,” denoted W below). In principle
one should also be able to express f in terms of g.

Lévy [173, p. 146] provides a method of solution for the following equation:

Cg .s; t/ D
Z s^t

0

� .s; x/ � .t; x/ dx;

when � has some regularity properties, those used in the (informal) example below.
That example illustrates rather well the difficulties encountered when trying to factor
explicitly a covariance.

For a function .v; u/ 7! F.v; u/, the equivalence class, for fixed v, of the
following map: u 7! F.v; u/ shall be denoted Fv .
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Example 8.3.14 (Part A) Let W be a wide sense Wiener process on Œ0; 1�, and

g.t/ D
Z

ITt�t dW

be a regular process. The covariance of g is, for an L2 probability space H,

Cg.t1; t2/ D hg.t1/; g.t2/iH:

Let �1 < �2 � t1 < t2, and R be the rectangle with vertices .�1; t1/; .�1; t2/; .�2; t1/,
and .�2; t2/. Then

�RCg D Cg.�2; t2/� Cg.�2; t1/� Cg.�1; t2/C Cg.�1; t1/;

so that

�RCg D hg.�2/� g.�1/; g.t2/� g.t1/iH: (1)

As g is absolutely continuous, so is Gg, which has thus a representation in the
following form:

Cg.t1; t2/ D
Z t1

0

Z t2

0

	 .x; y/dxdy:

So, for �2 � �1 and t2 � t1 small enough,

�RCg � 	 .�1; t1/.�2 � �1/.t2 � t1/: (2)

On the other hand, because regular functions have proper, canonical representations,

PLt1 Œg�
Œg.t2/� � g.t1/ D

Z
ITt1
�t2 dW � g.t1/ D

Z
ITt1
f�t2 � �t1g dW; (3)

and

g.t2/� g.t1/ D
Z

ITt1
�t2 dW � g.t1/C

Z
I�t1;t2��t2 dW

D ˚
PLt1 Œg�

Œg.t2/� � g.t1/
�C Z I�t1;t2��t2 dW:

Let �j D �1, and �jC1 D �2, in a partition of Œ0; t1�, using �i’s. As an element of
Lt1 Œg�,

PLt1 Œg�
Œg.t2/� � g.t1/ D

Z
ITt1

Gt1 dmg; (4)
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andZ
ITt1

Gt1 dmg �
nX

iD1
G.t1; �i�1/ fg.�i/� g.�i�1g

D G.t1; �j�1/
˚
g.�j � �j�1

�CX
i¤j

G.t1; �i�1/ fg.�i/ � g.�i�1g :

Thus, since g.�2/� g.�1/ ? Lt1 Œg�
?, using (3), (4), and the latter relation,

hg.�2/� g.�1/; g.t2/ � g.t1/iH D

D hg.�2/� g.�1/;PLt1
Œg.t2/� � g.t1/iH

D

g.�2/ � g.�1/;

Z
ITt1

Gt1 dmg

�
H

� G.t1; �1/ jjg.�2/ � g.�1/jj2H C
X
i¤j

G.t1; �i/	 .�1; �i/.�2 � �1/.�iC1 � �i/

� G.t1; �1/ jjg.�2/ � g.�1/jj2H C .�2 � �1/
Z t1

0

G.t1; x/	 .�1; x/dx;

that is, using (1) and the latter expression,

�RCg � G.t1; �1/ jjg.�2/� g.�1/jj2H C .�2 � �1/
Z t1

0

G.t1; x/	 .�1; x/dx: (5)

There are two more facts to notice. The first is that

jjg.�2/ � g.�1/jj2H D .�2 � �1/2
Z �1

0

�
�.t2; x/ � �.t1; x/

�2 � �1
� 2

dxC
Z �2

�1

�2.t2; x/dx;

and consequently that

jjg.�2/� g.�1/jj2H
�2 � �1

has, as limit, when �2 goes to �1, �2.�1; �1/. The second is that, using (3), and
comparing with (4), one sees that

�.t2; x/ � �.t1; x/ D .t2 � t1/D1�.t; x/;
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G.t1; x/ has the form .t2� t1/G?.t; x/. So, finally, using (2), and (5), and the last two
remarks, the following equation emerges:

	 .�1; t1/.�2 � �1/.t2 � t1/ �

� G?.t1; �1/
jjg.�2/� g.�1/jj2H

�2 � �1 .�2 � �1/.t2 � t1/

C .�2 � �1/.t2 � t1/
Z t1

0

G?.t; x/	 .�1; x/dx:

Going to the limit yields that

	 .t; �/ D G.t; �/�2.�; �/C
Z t

0

G.t; x/	 .�; x/dx;

where the latter G stands for G? above, for notational convenience. The unknown is
G, as 	 and � �! �2.�; �/ are obtained from the covariance Cg. For t 2 T, fixed,
but arbitrary, one has then a Volterra equation of the second kind, with kernel

	 .�; �/

�2 .�; �/
:

It has a unique solution when the covariance is strictly positive definite.

Example 8.3.15 (Illustration of (Example) 8.3.14) Consider the following function:

C .s; t/ D s ^ t � st; 0 � s; t � 1:

It is a covariance: indeed

nX
i;jD1

˛i˛j
�
ti ^ tj � titj

� D

D
Z 1

0

(
nX

iD1
˛i�

Œ0;ti�
.x/

) 2
dx �

(Z 1

0

nX
iD1

˛i�
Œ0;ti�

.x/ dx

) 2

is a positive number as it is the variance of a random variable. Now, using (Fact)
8.3.1, one has, for s � t, that

@C .s; t/

@s
D � .s; s/ � .t; s/C

Z s

0

@� .s; �/

@s
� .t; �/ d�:
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By differentiation under the integral sign one also has that

@C .s; t/

@t
D
Z s

0

� .s; �/
@� .t; �/

@t
d�:

Consequently

lim
s""t

�
@C .s; t/

@s
� @C .s; t/

@t

�
D �2 .t; t/ :

Computing these values with s^t�st yields that �2 .t; t/ D 1. Finally 	 .t; �/ D �1.
The equation for G is thus

�1 D G .t; �/ �
Z t

0

G .t; �/ d�:

For t fixed, but arbitrary, G .t; �/ is the constant ct D �1
1�t .

Example 8.3.16 (Part B of (Example) 8.3.14) At this point G is “known.” One then
sets:

(a) f .t/ D R ITt Gt dmg,
(b) F .t/ D R t

0
f .�/ d� ,

(c) ˚ .t/ D g .t/ � F .t/,
(d)  .t/ D R ITt Gt dm˚ .

From (c) above,�t denoting an increment of size � at t,

�t˚ D �tg ��tF D �tg � f .t/�:

Now, using (4) in (3) of (Example) 8.3.14, one sees that

f .t/ D
Z

ITt f�t2 � �t1g dW:

As [47, p. 243]

 .sC ı; tC�/ D  .s; t/C D1 .s; t/ı C D2 .s; t/�C R.ı;�/;

one has that

�.tC�; �/ D �.t; t/C D1�.t; t/�C D2�.t; t/.� � t/C R.�; � � t/;

and thus

�.tC�; �/ � �.t; �/ D D1.�; �/�:
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That, in turn, yields that

Z tC�

t
�tC�dW D

Z tC�

t
f�tC� � �.t; t/g dW C

Z tC�

t
�.t; t/dW

D �
Z tC�

t
ŒD1�.t; 
/�dW C �.t; t/�tW

� �.t; t/�tW:

so that

�tg D f .t/�C �.t; t/�tW;

�t˚ D �.t; t/�tW:

Now

 .t/ D
Z t

0

G .t; �/m˚ .d�/

D
Z t

0

G .t; �/
˚
mg .d�/� mF .d�/

�
D
Z t

0

G .t; �/
˚
mg .d�/� f .�/ d�

�
D f .t/ �

Z t

0

G .t; �/ f .�/ d�:

One has thus a Volterra equation of the second kind with f as unknown. The solution
of that equation [245, p. 26] has the following form:

f .t/ D  .t/ �
Z t

0

R .t; �/  .�/ d�;

where R is the resolvent kernel, that is, the solution of the following equation:

G .t; �/C R .t; �/ D
Z t

�

G .t; �/R .�; �/ d� D
Z t

�

R .t; �/G .�; �/ d�:

But

Z t

0

R .t; �/  .�/ d� D
Z t

0

R .t; �/

(Z �

0

G .�; �/ dm˚ .d�/

)
d�

D
Z t

0

m˚ .d�/
Z t

�

R .t; �/G .�; �/ d�
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D
Z t

0

m˚ .d�/ ŒR .t; �/CG .t; �/�

D
Z t

0

m˚ .d�/R .t; �/C  .t/ ;

that is,

.t/�
Z t

0

R.t; �/.�/d� D �
Z t

0

R.t; �/m˚ .d�/;

and thus

f .t/ D �
Z t

0

R .t; �/m˚ .d�/ D �
Z t

0

R .t; �/ � .�; �/ mW .d�/ :

Then

g .t/ D F .t/C ˚ .t/

D
Z t

0

f .�/ d� C
Z t

0

� .�; �/ mW .d�/

D
Z t

0

(
�
Z �

0

R .�; �/ � .�; �/mW .d�/

)
d� C

Z t

0

� .�; �/ mW .d�/

D �
Z t

0

mW .d�/ � .�; �/
Z t

�

R .�; �/ d� C
Z t

0

� .�; �/ mW .d�/

D
Z t

0

mW .d�/ � .�; �/

�
1 �

Z t

�

R .�; �/ d�

�
:

The comparison with g .t/ D R t
0
� .t; �/mW .d�/ yields that

� .t; �/ D � .�; �/
�
1 �

Z t

�

R .�; �/ d�

�
d�;

where � .�; �/ and R .�; �/ are obtained from the covariance of g.
A partial justification for that procedure may be found in [150, p. 241]: there,

there are no assumptions about existence and continuity of derivatives, but another
setup (strict sense rather than wide sense) is required for the definition of the
problem, in particular to make sense of the expression

ıgt D dt
Z t

0

G .t; �/ mg .d�/C � .t; t/ ıWt:
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A rather different approach, in the spirit of Lévy’s paper however, is provided by
Knight [157]. But the actual computations are then harder as one must have an
explicit expression for the projection of g .t/ onto L� Œg�.

Example 8.3.17 (Illustration of (Example) 8.3.16) The resolvent equation is

�1
1 � t

C R .t; �/ D �
Z t

�

R .t; �/
d�

1 � � :

Keeping t fixed, one has thus to solve an equation of the form:

� C  .�/ D �
Z t

�

 .�/

1 � � d�

whose solution is  .�/ D 1
1�� . Thus, since, as seen, � .�; �/ D 1,

� .t; �/ D 1 �
Z t

�

R .�; �/ d� D 1 �
Z t

�

d�

1 � � D 1 �
t � �
1� � D

1 � t

1 � � :

Proposition 8.3.18 Let f .t/ DLi2I fi .t/ be a proper canonical representation of f
for which all processes fi are regular. Then jIj D 1.

Proof Suppose that jIj > 1. Then at least jIj D 2. Let, for i 2 I, fixed, but arbitrary,

fi .t/ D
Z
i .t/ dmf

i; i .t/ 2 L2
�
T; T ;Mf

i

�
; i .t/ D ITti .t/ :

It is no restriction to suppose that Mf

1 ¤ 0 and Mf

2 ¤ 0.
Let dF1 and dF2 be the “derivatives” of, respectively

F1 .t/ D Mf

1 .Tt/ and F2 .t/ D Mf

2 .Tt/ :

The assumptions on dF1 and dF2 allow one to assume that there is an interval �a; bŒ �
T such that a < b and dF1 and dF2 are strictly positive on �a; bŒ. Let f i; i 2 Ig be
defined as follows:

 1 .t/ D 0; t 2 T n �a; bŒ ; class of  1 2 L2
�
T; T ;Mf

1

�
;

 2 .t/ D 0; t 2 T n �a; bŒ ; class of  2 2 L2
�
T; T ;Mf

2

�
;

 i .t/ D 0; t 2 T; i 2 I n f1; 2g :

Let t0 2 �a; bŒ be fixed, but arbitrary, and let Pi .t; x/ be a version of i .t/ that
embodies the regularity conditions for fi. Suppose that, for fixed, but arbitrary t 2
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�a; bŒ ; t � t0,

X
i2I

Z
Tt

Pi .t; x/  i .x/Mf

i .dx/ D 0:

Then Z
�a;tŒ

P1 .t; x/  1 .x/ dF1.x/dxC
Z
�a;tŒ

P2 .t; x/  2 .x/ dF2.x/dx D 0:

The assumptions on the ’s allow one to differentiate that expression using the
following formulae (i 2 Œ1 W 2�) [108, p. 222]:

�i .t; x/ D Pi .t; x/  i .x/ dFi .x/ ;

�i .t/ D
Z t

a
�i .t; x/ dx;

d�i

dt
.�/ D

Z �

a

@�i

@t
.�; x/ dxC �i .�; �/ :

Since i .t; t/ D 1, one obtains that

0 D  1 .t/ dF1 .t/C
Z
�a;tŒ

@ P1
@t

.t; x/  1 .x/ dF1 .x/ dx

C  2 .t/ dF2 .t/C
Z
�a;tŒ

@ P2
@t

.t; x/  2 .x/ dF2 .x/ dx:

Let 'i D  idFi ; i D 1; 2, and consider both equations

'1 .t/ D �1 �
Z
�a;tŒ

@ P1
@t

.t; x/ '1 .x/ dx;

and

'2 .t/ D C1 �
Z
�a;tŒ

@ P2
@t

.t; x/ '2 .x/ dx;

where the respective unknowns are '1 and '2. Those equations are Volterra
equations of the second kind and have unique solutions [69, p. 235] that cannot
be the zero function. But, since the densities dFi ; i D 1; 2, are strictly positive,
the functions  i; i D 1; 2, must be different from zero. That means that the CHR
representation is not proper canonical and thus contradicts the assumption. ut
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8.3.2 Multiplicity One from the Prediction Process’ Behavior

The prediction process has been explicitly designated as such, it seems, by Knight
(for example in [157]), and is defined, for H, a real Hilbert space, a map f W T �! H,
and f�; tg � T; � � t, fixed, but arbitrary, as

�f .� j t/ D P� Œ f .t/� ;

the best prediction of f .t/ at time � .
To Cramér, solutions based on Sect. 8.3.1 were clearly inadequate [64], as it is a

very rare occurrence when � can be obtained from Cg. Cramér also sensed, it seems,
that the prediction process opens the way to a better solution. He was thus able to
check that multiplicity one follows from smoothness conditions on the prediction
process, conditions which shall presently be stated.

To that end some notation is required. Let thus T be finite, and Tı be the subset
of T made of points of the form kı, where k is an integer. Let then

Tı

t D Tı \ Tt:

Lı
t Œ f � shall be the linear space generated by

˚
f .t/; t 2 Tı

t

�
, and the associated

projection shall be denoted Pı
t . Finally 4T is the “triangle” in T � T of elements

.t; �/ 2 T � T such that � � t.
For a purely nondeterministic f W T �! H, the conditions required for the

developments to follow are now listed as a (long) list of assumptions. In many ways
they are quite difficult to check, as one must be able to compute the prediction
process, but represent some progress with respect to solving equations of the type
illustrated in (Example) 8.3.14.

Assumptions 8.3.19 1. There exists, for fixed, but arbitrary .t; �/ 2 4T

.t; �/ 7!  .t; �/

such that

(i)  is bounded;
(ii) for some � > 0, and fixed, but arbitrary .t; �/ 2 4T ,

 .t; �/ � �I

(iii) for fixed, but arbitrary .t; �/ 2 ı4T , the interior of 4T ,  has bounded, first
order partial derivatives;

(iv) for fixed, but arbitrary ı > 0 such that f� � ı; �; � C ı; tg � T, and �Cı < t,

ˇ̌̌̌
�f .� j t/ � �f .� � ı j t/

ˇ̌̌̌ 2
H
D ı .t; �/CO

�
ı3=2
�



588 8 Some Facts About Multiplicity

and ˇ̌̌̌
�f .� C ı j t/ � �f .� j t/

ˇ̌̌̌ 2
H D ı .t; �/C O

�
ı3=2
�
:

2. There exists, for fixed, but arbitrary .t; �/ 2 4T ,

.t; �/ 7!  .t; �/

such that

(i)  is bounded;

(ii) for fixed, but arbitrary .t; �/ 2 ı4T ,  has bounded, first order partial
derivatives;

(iii) for fixed, but arbitrary ı > 0 such that f� � ı; �; tg � T, and � < t, the inner
product ˝

�f .� j t/ � �f .� � ı j t/ ; �f .� j �/ � �f .� � ı j �/
˛
H

equals

ı .t; �/CO
�
ı3=2
�
:

3. For fixed, but arbitrary .kı; t/ 2 Tı � T; kı � t,

ˇ̌̌̌
�f .kı j t/ � Pı

kı Œ f .t/�
ˇ̌̌̌ 2

H
D O

�
ı2
�
:

The proof that Assumption 8.3.19 entails multiplicity one is facilitated by a
number of preliminary remarks which depend on the following inequalities.

Lemma 8.3.20 One shall make repeated use of the following inequalities (all
elements considered below belong to the same real Hilbert space H):

1:
ˇ̌̌̌Pn

iD1 hi

ˇ̌̌̌ 2
H

� n
Pn

iD1 jjhijj2H I

2:
n
jjh1jj2H � jjh2jj2H

o2 � 2 jjh1 � h2jj2H
n
jjh1jj2H C jjh2jj2H

o

� 6 jjh1 � h2jj2H
n
jjh1jj2H C jjh1 � h2jj2H

o
I

3: 1
3
jhh1; h2iH � hk1; k2iHj2 � jjh1jj2H jjh2 � k2jj2H

C jjh2jj2H jjh1 � k1jj2H

C jjh1 � k1jj2H jjh2 � k2jj2H :
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Proof Let X be a random variable which takes the values jjh1jjH ; : : : ; jjhnjjH with
uniform probability. The inequality E2 ŒX� � E

�
X2
�

then rewrites as

� jjh1jjH C 
 
 
 C jjhnjjH
n

� 2
� jjh1jj

2
H C 
 
 
 C jjhnjj2H

n
;

which yields assertion 1:

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
hi

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

� .jjh1jjH C 
 
 
 C jjhnjjH/2 � n
�
jjh1jj2H C 
 
 
 C jjhnjj2H

�
:

Similarly

n
jjh1jj2H � jjh2jj2H

o2 D fjjh1jjH � jjh2jjHg2 fjjh1jjH C jjh2jjHg2 ;
with

fjjh1jjH C jjh2jjHg2 � 2
n
jjh1jj2H C jjh2jj2H

o
: (?)

But

fjjh1jjH � jjh2jjHg2 D fjjjh1jjH � jjh2jjHjg2 � jjh1 � h2jj2H ;

and one has the first part of item 2. One then dominates, in (?), jjh2jj2H with

jjh2jj2H D jj.h2 � h1/C h1jj2H � 2
n
jjh2 � h1jj2H C jjh1jj2H

o
;

and the second part of item 2 follows. For item 3, one has that

jhh1; h2iH � hk1; k2iHj D jhh1; h2 � k2iH C hh1 � k1; k2iHj
� jjh1jjH jjh2 � k2jjH C jjh1 � k1jjH jjk2jjH :

One then dominates jjk2jjH with

jjk2jjH D jj.k2 � h2/C h2jjH � jjk2 � h2jjH C jjh2jjH :

ut
The Assumptions of 8.3.19 have the following consequences.
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Remark 8.3.21 From items (iv) of 1, and (iii) of 2 of Assumption 8.3.19, one has
that

ı.t; t/C O.ı3=2/ D ˇ̌̌̌�f .t j t/ � �f .t � ı j t/
ˇ̌̌̌ 2

H D ı .t; t/C O.ı3=2/:

Thus

.t; t/ �  .t; t/ D ı�1 .ı.t; t/ � ı .t; t// D ı�1O.ı3=2/ D O.ı1=2/:

Thus .t; t/ D �.t; t/, and the difference between the left-hand and right-hand sides
of the former equality is O.ı3=2/.

Remark 8.3.22  and  are continuous [230, p. 239].

Remark 8.3.23 Let t 2 T be fixed, and � 2 Tt be arbitrary. �f .
 j t/ has orthogonal
increments: its associated “distribution” function is

Ft .�/ D
ˇ̌̌̌
�f .� j t/

ˇ̌̌̌ 2
H
:

Then, because of Assumption 8.3.19, item 1,

Ft .� C �/ � Ft .�/ D
ˇ̌̌̌
�f .� C � j t/ � �f .� j t/

ˇ̌̌̌ 2
H
D � .t; �/CO

�
�3=2
�
;

and, consequently,

dFt

d�
.�/ D  .t; �/ ;

so that

M�f .�jt/ .d�/ D  .t; �/ d�:

Let t be the equivalence class, with respect to M�f .�jt/, of x 7! �1=2 .t; x/, which is
bounded below by assumption, and

˚t .�/ D
Z

IT� t dm�f .�jt/:

˚t has orthogonal increments, and M˚t .d�/ D d� . Furthermore, �1t being the
equivalence class, with respect to M˚t , of x 7! 1=2 .t; x/,Z

IT� 
�1
t dm˚t D

Z
IT� 

�1
t t dm�f .�jt/ D m�f .�jt/ .T� / D �f .� j t/ :
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Remark 8.3.24 One has thatˇ̌̌̌̌̌
Pı

kı Œ f .t/�� Pı

.k�1/ı Œ f .t/�
ˇ̌̌̌̌̌ 2

H
D ı .t; kı/C O

�
ı3=2
�
:

Let indeed Pı

kı � Pı

.k�1/ı be written as

˚
Pı

kı � Pkı
�C ˚Pkı � P.k�1/ı

�C nP.k�1/ı � Pı

.k�1/ı
o
:

Then ˇ̌̌̌̌̌
Pı

kı Œ f .t/� � Pı

.k�1/ı Œ f .t/�
ˇ̌̌̌̌̌ 2

H
D

D ˇ̌̌̌
Pı

kı Œ f .t/� � Pkı Œ f .t/�
ˇ̌̌̌ 2

H

C ˇ̌̌̌
Pkı Œ f .t/� � P.k�1/ı Œ f .t/�

ˇ̌̌̌ 2
H

C
ˇ̌̌̌̌̌
P.k�1/ı Œ f .t/� � Pı

.k�1/ı Œ f .t/�
ˇ̌̌̌̌̌ 2

H

C 2
˝
Pı

kı Œ f .t/� � Pkı Œ f .t/� ;Pkı Œ f .t/� � P.k�1/ı Œ f .t/�
˛
H

C 2
D
Pı

kı Œ f .t/� � Pkı Œ f .t/� ;P.k�1/ı Œ f .t/� � Pı

.k�1/ı Œ f .t/�
E
H

C 2
D
Pkı Œ f .t/� � P.k�1/ı Œ f .t/� ;P.k�1/ı Œ f .t/� � Pı

.k�1/ı Œ f .t/�
E
H
:

In the right-hand side of that latter expression, the first, third, and fifth terms are
O
�
ı2
�

because of Assumption 8.3.19, item 3. The second term is

ı .t; kı/C O
�
ı3=2
�

because of Assumption 8.3.19, item 1. The two remaining terms are inner products
of the form 2 ha; bi for which j2 ha; bij � 2 jjajj jjbjj. Since jjajj is, because
of Assumption 8.3.19, item 3, O .ı/, and jjbjj, because of Assumption 8.3.19, item
1, O .ı1=2/, they are thus O .ı3=2/ terms.

Remark 8.3.25 An argument similar to that of (Remark) 8.3.24 which uses Assump-
tion 8.3.19, item 2, also yields thatDn

Pı

kı � Pı

.k�1/ı
o
Œ f .t/� ;

n
Pı

kı � Pı

.k�1/ı
o
Œ f .kı/�

E
D ı .t; kı/C O

�
ı3=2
�
:

Proposition 8.3.26 Let T be a finite interval, H, a real Hilbert space, and
f W T �! H, a purely nondeterministic map for which (Assumption) 8.3.19 obtains.
f has then multiplicity one.
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Proof Let f�; tg � ı4T ; � < t, be fixed, but arbitrary, and k Œt� be the integer for
which k Œt� ı � t < .k Œt�C 1/ ı. Let also

gı .kı/ D f .kı/ � Pı

.k�1/ı Œ f .kı/� D
n
Pı

kı � Pı

.k�1/ı
o
Œ f .kı/� ;

and

hı .kı/ D ı1=2 jjgı .kı/jj�1H gı .kı/ :

gı .kı/ is the “innovation” in f .kı/ with respect to the subspace spanned prior to
that “time,” and hı .kı/ is its “standardization” with small “absolute value.” The
families

fgı .kı/ ; k � k Œt�g and fhı .kı/ ; k � k Œt�g

are made, by definition, of orthogonal elements. Furthermore

f .kı/ D gı .kı/C Pı

.k�1/ı Œ f .kı/� ;

so that each element f .kı/ is the sum of an “innovation” gı .kı/ that is orthogonal
to the subspace generated by the elements of the form f .lı/ ; l < k, and of its
“prediction” in that subspace. Consequently

Lı

kı Œ f � D V Œfgı .lı/ ; l � kg� D V Œfhı .lı/ ; l � kg�;

and, in particular,

f .k Œt� ı/ D
X

k�kŒt�

˛ .t; ı; k/ hı .kı/ ;

where

˛ .t; ı; k/ D hf .k Œt� ı/ ; hı .kı/iH :

Consequently, for k0 � k Œt�,

Pı

k0ı
Œ f .k Œt� ı/� D

X
k�k0

˛ .t; ı; k/ hı .kı/ ;

and thus, for k1 < k2 � k Œt�, fixed, but arbitrary,

˚
Pı

k2ı � Pı

k1ı

�
Œ f .k Œt� ı/� D

X
k1<k�k2

˛ .t; ı; k/ hı .kı/ :
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From the following equality [(Remark) 8.3.23]:

P� Œ f .t/� D �f .� j t/ D
Z

IT� 
�1
t dm˚t ;

one has that

Pk0ı Œ f .k Œt� ı/� D
Z

ITk0ı
�1kŒt�ı dm˚kŒt�ı :

It follows that

fPk2ı � Pk1ıg Œ f .k Œt� ı/� D
Z

ITk2ınTk1ı
�1kŒt�ı dm˚kŒt�ı :

Now, as Assumption 8.3.19 is assumed to obtain, one has the following approxima-
tion to the increments of the prediction process:

ˇ̌̌̌̌̌ n
Pı

k2ı
� Pı

k1ı

o
Œ f .k Œt� ı/� � fPk2ı � Pk1ıg Œ f .k Œt� ı/�

ˇ̌̌̌̌̌ 2
H
D

ˇ̌̌̌̌̌ n
Pı

k2ı
� Pk2ı

o
Œ f .k Œt� ı/� �

n
Pı

k1ı
� Pk1ı

o
Œ f .k Œt� ı/�

ˇ̌̌̌̌̌ 2
H
D O .ı2/ :

That latter equality rewrites then as

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ X
k1<k�k2

˛ .t; ı; k/ hı .kı/ �
Z

ITk2ınTk1ı
�1kŒt�ı dm˚kŒt�ı

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D O
�
ı2
�
; (1)

which evaluates the increments of the prediction process as a sum of orthogonal,
“almost orthonormal” elements. The “unknowns” in that norm are the ˛ .t; ı; k/’s.
They are calculated in the next step.

As already acknowledged,n
Pı

kı � Pı

.k�1/ı
o
Œ f .k Œt� ı/� D ˛ .t; ı; k/ hı .kı/ ;

so that Dn
Pı

kı � Pı

.k�1/ı
o
Œ f .k Œt� ı/� ; hı .kı/

E
H
D ˛ .t; ı; k/ jjhı .kı/jj2H ;

or

˛ .t; ı; k/ D
Dn

Pı

kı � Pı

.k�1/ı
o
Œ f .k Œt� ı/� ; jjhı .kı/jj�2H hı .kı/

E
H
:
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But, by definition, jjhı .kı/jjH D ı1=2 so that

jjhı .kı/jj�2H hı .kı/ D 1

ı1=2
gı .kı/

jjgı .kı/jjH
;

and also

gı .kı/ D
n
Pı

kı � Pı

.k�1/ı
o
Œ f .kı/� :

So, finally,

˛ .t; ı; k/ D
Dn

Pı

kı � Pı

.k�1/ı
o
Œf .k Œt� ı/� ;

n
Pı

kı � Pı

.k�1/ı
o
Œf .kı/�

E
H

ı1=2
ˇ̌̌̌̌̌ n

Pı

kı � Pı

.k�1/ı
o
Œf .kı/�

ˇ̌̌̌̌̌
H

:

Using (Remarks) 8.3.24 and 8.3.25, one may write that

˛ .t; ı; k/ D ı .k Œt� ı; kı/C O .ı3=2/

ı1=2 fı .kı; kı/C O .ı3=2/g1=2 D
 .k Œt� ı; kı/C O .ı1=2/

f .kı; kı/C O .ı1=2/g1=2 :

Let

� .t; �/ D  .t; �/

 .�; �/1=2 CO .ı1=2/
:

Omitting arguments, one has that

˛ D  C O

. C O/1=2
; and that � D  

1=2 C O
:

 being bounded and strictly positive by assumption, one has that

. C O/1=2 D 1=2.1C O/1=2 D 1=2.1C O/ D 1=2 CO:

Consequently

˛ D �C O

1=2 C O
D �C O;

that is

˛ .t; ı; k/ D � .k Œt� ı; kı/C O
�
ı1=2
�
:

Thus, while, above, the ˛-term depends on k, the �-one does only in its argument,
which shows that the approximation in (1) is by “white-noise-like” elements.
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The aim is now to obtain, using (1), the relation marked below with (5). One
proceeds inserting terms in (1) in such a way that the resulting differences except
the one of interest may be neglected. Now when ı # 0, t and � < t shall remain
fixed, and one shall constantly choose

• k Œt� such that k Œt� � t < .k Œt�C 1/ ı,
• k1 such that k1ı � � < .k1 C 1/ ı,
• k2 such that k2ı � � C

p
ı < .k2 C 1/ ı.

Such a choice entails that

k2 � .k1 C 1/ < k2 � �
ı
� 1

ı1=2
< .k2 C 1/� �

ı
� .k2 C 1/� k1;

that is,

k2 � k1 � 1 < 1

ı1=2
< k2 � k1 C 1:

Then, as  and  , and thus �, are continuous, for appropriate functions’ arguments,

 .k Œt� ; �1/
1=2 �  .k Œt� ; �2/1=2 D O

�
ı1=2
�
;

and, as seen,

˛ .t; ı; k/ � � .k Œt� ; �/ D O
�
ı1=2
�
:

Consequently, as k2 � k1 behaves as 1

ı1=2
(denoted� below),

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ X
k1<k�k2

˛ .t; ı; k/ hı .kı/ �
X

k1<k�k2

� .k Œt� ı; �/ hı .kı/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

(2)

equals X
k1<k�k2

f˛ .t; ı; k/ � � .k Œt� ı; �/g2 jjhı .kı/jj2H � .k2 � k1/ ı
2 D O

�
ı3=2
�
:

Similarly, remembering the definitions in (Remark) 8.3.23,

ˇ̌̌
ˇ
ˇ̌̌
ˇ .k Œt� ı; �/1=2

Z
ITk2ınTk1ı

dm˚kŒt�ı �
Z

ITk2ınTk1ı
�1kŒt�ı dm˚kŒt�ı

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

(3)
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equals

Z k2ı

k1ı

˚
 .k Œt� ı; �/1=2 �  .k Œt� ı; �/1=2�2 M˚kŒt�ı .d�/ D

D
Z k2ı

k1ı

˚
 .k Œt� ı; �/1=2 �  .k Œt� ı; �/1=2�2 d�

� .k2 � k1/ ı
2 D O

�
ı3=2
�
:

Writing (1) as the square of the norm of A � B, (2) as that of A � C, (3) as that of
D � B, and (4) as that of C � D, one has that

A � B D .A � C/C .C � D/C .D � B/;

and that the square of the norm of the term C � D, that is

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌� .k Œt� ı; �/ X

k1<k�k2

hı .kı/ �  .k Œt� ı; �/1=2
Z

ITk2ınTk1ı
dm˚kŒt�ı

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

(4)

is evaluated to be O .ı3=2/. One has that

jjCjj2H D �2 .k Œt� ı; �/ .k2 � k1/ ı;

and that

jjDjjH D  .k Œt� ı; �/ .k2 � k1/ ı:

Thus

ı2 .k2 � k1/
2
˚
�2 .k Œt� ı; �/ �  .k Œt� ı; �/�2 D �jjCjj2H � jjDjj2H�2 :

Using item 2 of (Lemma) 8.3.20, one has that the right-hand side of the latter
equality is dominated by

2
�
jjC � Djj2H

� n
jjCjj2H C jjDjj2H

o
which equals

2
�
jjC � Djj2H

� ˚
�2 .k Œt� ı; �/C  .k Œt� ı; �/� ı .k2 � k1/ :
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Comparing with the left-hand side, using the fact that the  and � functions are
bounded, and that [(4)]

jjC � Djj2H D O
�
ı3=2
�
;

one obtains that

�2 .k Œt� ı; �/�  .k Œt� ı; �/ D O
�
ı1=2
�
;

and then that

jjCjj2H � jjDjj2H D O .ı/ :

From there, with sufficiently small ı,

�2 .k Œt� ı; �/ D  .k Œt� ı; �/C O
�
ı1=2
�
>
�

2
;

so that, from (4),

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ X
k1<k�k2

hı .kı/ �  .k Œt� ı; �/
1=2

j� .k Œt� ı; �/j
Z

ITk2ınTk1ı
dm˚kŒt�ı

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D O
�
ı3=2
�
:

An argument similar to that used for (3) (it simplifies matters that here one does not
distinguish function from equivalence class) yields that

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ X
k1<k�k2

hı .kı/ �
Z

ITk2ınTk1ı

 .k Œt� ı; 
/1=2
j� .k Œt� ı; 
/j dm˚kŒt�ı

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D O
�
ı3=2
�
: (5)

As k2 � k1 � ı�1=2, in TkŒt�ı , the number of equal intervals of length .k2 � k1/ ı is of
order

O
�
ı�1=2

�
as

t

.k2 � k1/ ı
� tı�1=2 :

The expression

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌X
k�kŒt�

hı .kı/ �
Z

ITkŒt�ı

 .k Œt� ı; 
/1=2
j� .k Œt� ı; 
/j dm˚kŒt�ı

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

is a sum of orthogonal terms of a type similar to that evaluated just above. Item 1
of (Lemma) 8.3.20 then says that it is dominated by the number of terms times the
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sum of the norms squared of those terms. It thus evaluates at

˚
O
�
ı�1=2

��2
O
�
ı3=2
� D O

�
ı1=2
�
:

Since M˚t is Lebesgue measure [(Remark) 8.3.23], that, above, �2 is a strictly
positive level, and that =�2 is continuous, in H,

lim
ı#0

Z
ITkŒt�ı

 .k Œt� ı; 
/1=2
j� .k Œt� ı; 
/j dm˚kŒt�ı D

Z
ITt

 .t; 
/1=2
j� .t; 
/j dm˚t :

As [(Remark) 8.3.23], d˚t D t dm�f .�jt/, it follows that, in H,

lim
ı#0

X
k�kŒt�

hı .kı/ D
Z

ITt

1

j� .t; 
/j dm�f .�jt/:

The latter integral belongs thus to Lt Œ f �, and, as the limit of orthogonal summands,
defines a function with orthogonal increments. Let it be denoted W. One has then
that Z

ITt j� .t; 
/j dW D
Z

ITt dm�f .�jt/ D f .t/:

Since the family fj� .t; 
/j ; t 2 Tg is total (it is strictly positively bounded below), f
has multiplicity one. ut
Example 8.3.27 The following example illustrates the conditions of (Proposition)
8.3.26.

Let T D �0; 1Œ, and C be a triangular covariance:

C .t1; t2/ D c^ .t1 ^ t2/ c_ .t1 _ t2/ :

It is, for example, the covariance of the function

f .t/ D c_ .t/W

�
c^ .t/
c_ .t/

�
;

where W is a Wiener process. Let f have covariance C, that is

Cf .t1; t2/ D hf .t1/ ; f .t2/iH D C .t1; t2/ :
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For fixed, but arbitrary 0 < �1 � �2 � t one has that
f .t/ � C .t; �2/

C .�2; �2/
f .�2/; f .�1/

�
H

D C .t; �1/� C .t; �2/

C .�2; �2/
C .�2; �1/

D c^ .�1/ c_ .t/ � c^ .�2/ c_ .t/
c^ .�2/ c_ .�2/

c^ .�1/ c_ .�2/

D 0:

Thus

f .t/ � C .t; �2/

C .�2; �2/
f .�2/ ? f .�1/; �1 � �2;

that is, for � � t, fixed, but arbitrary,

C .t; �/

C .�; �/
f .�/ D P� Œ f .t/� :

Furthermore, as

Pkı Œ f .t/� D C .t; kı/

C .kı; kı/
f .kı/;

Pı

kı Œ f .t/� D Pkı Œ f .t/�, so that Assumption 8.3.19, item 3, obtains. Let

	 .t1; t2/ D C .t1; t2/

C1=2 .t1; t1/C1=2 .t2; t2/
:

As, for � > 0, 0 < � � � < � � t, fixed, but arbitrary, writing 	 in terms of C,

	 .t; �/ 	 .�; � � �/ D C .t; � � �/p
C .t; t/C .� � �; � � �/ �

C .t; �/C .�; � � �/
C .�; �/C .t; � � �/ ;

and, writing the second term of the latter product in terms of c^ and c_,

C .t; �/C .�; � � �/
C .�; �/C .t; � � �/ D 1;

one has that (interchanging right-hand and left-hand sides)

	 .t; � � �/ D 	 .t; �/ 	 .�; � � �/ :
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Let 	t .�/ D 	 .t; �/, and � .�/ D .D2	 / .�; �/: the former equality yields,
provided the appropriate differentiability assumptions obtain, that

	 0t D � 	t;

an equation whose solution has the following form:

	t .x/ D 	t .x0/ e
R x

x0
�.�/ d� :

Letting x0 D � and x D t, one obtains that

	 .t; �/ D e�
R t
� .D2	 /.x;x/ dx :

Now, letting g.t/ D f .t/= jjf .t/jjH, hg.t/; g.�/iH D 	 .t; �/, and the following
expression:

jjP� Œ f .t/� � P��� Œ f .t/�jj2H D
ˇ̌̌
ˇ
ˇ̌̌
ˇ C .t; �/

C .�; �/
f .�/ � C .t; � � �/

C .� � �; � � �/ f .� � �/
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

can be rewritten as

jj	 .t; �/ jjf .t/jjH g.�/ � 	 .t; � � �/ jjf .t/jjH g.� � �/jj2H D

D C .t; t/ 	 2 .t; �/

ˇ̌̌
ˇ
ˇ̌̌
ˇg.�/ � 	 .t; � � �/	 .t; �/

g.� � �/
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

D C .t; t/ 	 2 .t; �/

�
1 � 2 	 .t; � � �/ 	 .�; � � �/

	 .t; �/
C 	 2 .t; � � �/

	 2 .t; �/

�
:

Writing 	 in terms of c^ and c_, and taking into account that � � t, the last bracket
becomes

1 � c^ .� � �/ c_ .�/
c^ .�/ c_.� � �/ D 1 � 	

2 .�; � � �/ :

But 	 is the exponential of the integral � R �
���.D2	 / .x; x/ dx, which, provided

.D2	 / .x; x/ is differentiable, by the mean value theorem, equals �� times the
derivative of .D2	 / .x; x/ at some point between � � � and � . Part of Assump-
tion 8.3.19, item 1, is thus valid provided enough regularity assumptions are required
from c_ and c^

c_
. The other assumptions are checked analogously, and in particular

those relating to the smoothness of

hfP� � P���g Œ f .t/� ; fP� � P���g Œ f .�/�iH D C .t; �/
˚
1 � 	 2 .�; � � �/� :

The following result extends slightly the scope of (Proposition) 8.3.26.
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Proposition 8.3.28 Let T be an interval in R; H, a real Hilbert space; and
f W T �! H, a purely nondeterministic map that is continuous to the left, and
has limits to the right. When, for any fixed, but arbitrary finite interval Œt1; t2� �
T, (Assumption) 8.3.19, items 1 and 2, obtain, and (Assumption) 8.3.19, item 3,
does also for

gt1 .t/ D f .t/ � Pt1 Œ f .t/� ;

f has then multiplicity one.

Proof Let � > 0 be arbitrarily small, but fixed, and f�; tg � �t1; t2Œ ; � < t. Then

P� Œgt1.t/� � P�˙� Œgt1 .t/� D P� Œ f .t/� � P�˙� Œ f .t/� :

Thus Assumption 8.3.19 obtains for gt1 . In particular, the functions ,  (and thus
�) appearing in Assumption 8.3.19 are independent of the interval over which they
are considered, as they are “local” conditions that “transfer” to gt1 . Furthermore the
following representation obtains:

gt1 .t/ D
Z

I
Œt1;t2�\Tt

� .t; 
/ dWt1 ;

where Wt1 is a function with orthogonal increments obtained as the following limit
in H:

Wt1 .�/ D lim
ı#0

X
t1<kı��

hı .kı/ :

When t1 < 0, one has, for � > 0, that

Wt1 .�/ D Wt1 .0/C lim
ı#0

X
0<kı��

hı .kı/ D Wt1 .0/CW0 .�/ ;

and, for � 2 �t1; 0�, that

Wt1 .�/ D Wt1 .0/� lim
ı#0

X
�<kı�0

hı .kı/ :

Thus Wt1 .�/ is always the sum of the element Wt1 .0/, independent of � , and a
process with orthogonal increments independent of t1. Let it be denoted W. Then,
for f�; tg � �t1; t2Œ ; � < t, �Wt1 D �W, so that, using the integral representation
of Wt1 ,

f .t/ D Pt1 Œ f .t/�C
Z

I
Œt1;t2�\Tt

� .t; 
/ dW:
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The process being purely nondeterministic, letting t1 #, one obtains that

f .t/ D
Z

I
Tt
� .t; 
/ dW;

a canonical representation of multiplicity one. ut

8.3.3 Approximation by Processes of Multiplicity One

For “practical” purposes, multiplicity one is very much easier to handle than higher
multiplicity, as one is immediately confronted, in the latter case, as shall be seen
when computing the likelihood, with a problem quite harder than that illustrated
in (Remark) 8.3.13. So, asking for approximations having multiplicity one makes
sense. A general result exists which provides such approximations. It is presented
first.

Lemma 8.3.29 Let H be a real Hilbert space, T D Œ0; 1�, and a fixed, but arbitrary
map f W T �! H be given. Let 0 D �0 < �1 < 
 
 
 < �n�1 < �n D 1, and
suppose that f f .�1/; : : : ; f .�n/g are linearly independent. Let, for a noncausal map
T � T �! R : [h.t; �/ D 0; � > t/�h such that, for t 2 T, fixed, but arbitrary,
h.t; t/ ¤ 0,

g.t/ D
X
�i�t

h.t; �i/f .�i/:

g has multiplicity one.

Proof Let f f1; : : : ; fng be the orthonormal set obtained, using the Gram-Schmidt
procedure, from the starting set f f .�1/; : : : ; f .�n/g. One has that

(a) for t < �1, g.t/ D 0H,
(b) for t 2 Œ�1; �2Œ, g.t/ D h.t; �1/f .�1/,
(c) for t 2 Œ�2; �3Œ, g.t/ D h.t; �1/f .�1/C h.t; �; 2/f .�2/,
(d) etc.

As, by assumption, for t 2 T, fixed, but arbitrary, h.t; t/ ¤ 0,

1. for t < �1, LtŒg� D f0Hg,
2. for t 2 Œ�1; �2Œ, as h.�1; �1/ ¤ 0;

LtŒg� D VŒ f .�1/� D VŒ f1�;

3. for t 2 Œ�2; �3Œ, again because h.t; t/ ¤ 0,

LtŒg� D VŒ f .�1/; f .�2/� D VŒ f1; f2�;
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4. etc.

In particular, L[T Œg� D V Œ f1; : : : ; fn�.
The construction of a canonical representation of g proceeds, according

to (Proposition) 6.4.10, as follows. One starts with g1 D f1, and

K1 D VŒPg
t Œg1�; t 2 T�:

But, for t � �1, f1 2 LtŒg�, so that K1 D VŒ f1�. One continues with the requirement
that g2 D f2 � PK1 Œ f2� D f2, and that

K2 D VŒPg
t Œg2�; t 2 T�:

But, when t � �2, Pg
t Œg2� D Pg

t Œ f2� D f2. Consequently,

K1 _ K2 D VŒ f1�˚ VŒ f2�:

g has thus a canonical representation of the following form

g.t/ D ˚n
iD1gi.t/; gi.t/ D Pg

t Œ fi�:

To obtain a proper canonical representation, one follows (Proposition) 6.4.37, which
begins with an element of the following form: h1 DPn

iD1 ˛i fi; ˛i ¤ 0; i 2 Œ1 W n�.
Now

Pg
t Œh1� D

nX
iD1

˛iP
g
t Œ fi�;

and, as seen above, L[T Œh1� D L[T Œg�. So g has multiplicity one. ut
Remark 8.3.30 Linear independence can be dispensed with because of
(Lemma) 7.1.8. Lemma 8.3.29 illustrates rather well the difference between
canonical and proper canonical representations. The multiplicity of the latter is
always smaller than that of the former. That fact is mentioned in [242].

Proposition 8.3.31 ([91]) Purely nondeterministic processes f W T �! H belong-
ing to LH

2 .Œ0; 1�;B.Œ0; 1�;Leb/ can be approximated, in that space, with processes of
multiplicity one.

Proof Let hn.t; �/ D �
�t�2�n ;t� .�/, and gn be defined as in (Lemma) 8.3.29, with hn

in place of h. Then

gn.t/ D f .i2�n/;
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where i2�n 2�t � 2�n; t�. When f is continuous, and thus uniformly continuous, f
can be approximated by gn. But continuous functions are dense in LH

2 ŒT� [135, p.
86]. ut

Result (Proposition) 8.3.31 is not particularly useful, as the approximating
process has no structure (it is here perhaps that the shortcomings of multiplicity
theory are easiest to see). What one needs in practice are approximations g typically
of the following type (linear estimator) [40, p. 116]:Z t

0

R.t; �/X.!; d�/;

that is, of the form appearing in the (proper) canonical representation. When L[T Œ f �
is separable, they always exist [(Remark) 1.5.13], but need not have multiplicity
one [(Example) 9.2.1]. Multiplicity one is usually required when one must invert
elements.

That question shall be illustrated by means of an (a class of) example(s) found in
[137]. The conclusion is that, in general, and unsurprisingly, such approximations
do not exist. Indeed the problem is akin to approximating two orthogonal vectors
using a single one. In [137] the actual objective is assessment of multiplicity one for
a simple signal-in-noise “model,” rather than approximation, but it illustrates well
the limits of multiplicity theories: it is difficult to find general results that could be
of use in applications (with the exception perhaps of the calculation of likelihoods,
as shall be seen in Part III).

The projection determined by the map  7! It shall be denoted Qt.
Let T D Œ0; 1�, and H be a real Hilbert space. Let W W T �! H be a wide sense

Wiener process, and f W T �! H be a map such that (capital C’s denote covariances)

C˛ D ˛CW � Cf � ˇCW D Cˇ; ˛ > 0; ˇ > 0:

Let:

• L˛ W H.CW ;T/ �! H.C˛;T/ be the unitary map

h 7! ˛1=2hI

• Jf ;˛ W H.Cf ;T/ �! H.C˛;T/ be the map

Cf .
; t/ 7! C˛.
; t/ D ˛1=2CW.
; t/I

• Jˇ;f W H.Cˇ;T/ �! H.Cf ;T/ be the map

Cˇ.
; t/ 7! Cf .
; t/:
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As sets, one has that

H.CW ;T/ D H.C˛;T/ � H.Cf ;T/ � H.Cˇ;T/ D H.CW ;T/:

One has furthermore the following diagram:

H(Cβ ; T )
Jβ,f−−−−→ H(Cf ; T )

�
⏐
⏐Lβ Jf,α

⏐
⏐
�

H(CW ; T ) Lα−−−−→ H(Cα; T )

As, for t 2 T, fixed, but arbitrary,

L?˛Jf ;˛Jˇ;f LˇŒCW .
; t/� D CW.
; t/; and Jˇ;f LˇL?˛Jf ;˛ ŒCf .
; t/� D Cf .
; t/;

JW;f D Jˇ;f Lˇ W H.CW ;T/ �! H.Cf ;T/ is thus a bounded linear operator with
bounded inverse such that

JW;f ŒCW .
; t/� D Cf .
; t/ :

Finally, for h 2 H.Cf ;T/, fixed, but arbitrary, J?W;f Œh� D ˇ1=2h 2 H.CW ;T/. Indeed,
J?W;f D L?ˇJ?ˇ;f . But L?ˇ;f makes h an element of H.Cˇ;T/, and L?ˇ makes of h the
element ˇ1=2h [(Proposition) 1.1.15, (Example) 1.3.12].

Let

UW W H .CW ;T/ �! L[T ŒW�

be the unitary map defined using the following relation:

UW ŒCW .
; t/� D W .t/ :

The operator Uf is defined analogously: Uf ŒCf .
; t/� D f .t/. Let finally, L2ŒT� being
the classes of functions whose square, over T D Œ0; 1�, is integrable,

VW W L2 ŒT� �! H .CW ;T/

be the unitary map defined using the following relation:

VW Œ� .t/ D
Z t

0

 .�/ d�:
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One has that

W Œ� D
Z
dmW D UWVW Œ� :

In particular W.t/ D W.It/ D UWVW ŒIt�. As Uf JW;f U?
W ŒW.t/� D f .t/, one has, by

analogy,

f Œ� D Uf JW;f U
?
W ŒW Œ�� :

Since W ŒIt� D W .t/, then f ŒIt� D f .t/, so that, for t 2 T, fixed, but arbitrary,

BW;f D Uf JW;f U?
W

is an isomorphism between Lt ŒW� and Lt Œ f �. One may notice that

f Œ� D BW;f ŒW Œ�� D Uf JW;f VW Œ� :

A second inner product, besides the standard one, shall be used on L2 ŒT�. It is
defined as follows:

h; if D hf Œ� ; f Œ �iH D
˝
JW;f VW Œ� ; JW;f VW Œ �

˛
H.Cf ;T/

:

Since Uf and VW are unitary, and JW;f has bounded inverse, the resulting norm is
equivalent to the standard norm of L2 ŒT�. One shall use the following map:

Bf D V?
WJ?W;f JW;f VW :

It is bounded, with bounded inverse. Furthermore, using the polar decomposition,

JW;f VW D UW;f B1=2

f ;

where UW;f is a partial isometry, whose initial set is the closure of the range of B1=2

f ,
and final set, the closure of the range of JW;f VW . UW;f is thus unitary. As JW;f D
U?

f BW;f UW , one has that

Bf D V?
WU?

WB?W;f Uf U
?
f BW;f UWVW D V?

WU?
WB?W;f BW;f UWVW ;

and that

hf Œ� ; f Œ �iH D h; if D
˝
Bf Œ� ;  

˛
L2ŒT�

:
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The following diagram summarizes the maps just introduced.

L2[T ] ←−−−−
V �

W

H(CW ; T )
⏐
⏐
�VW J�

W,f

�
⏐
⏐

H(CW ; T )
JW,f−−−−→ H(Cf , T )

⏐
⏐
�UW Uf

⏐
⏐
�

L∪T [W ]
BW,f−−−−→ L∪T [f ]

Bf = V �
WJ�

W,fJW,fVW

Remark 8.3.32 Pf
t Œ f Œ�� D f ŒQt Œ��.

As, for � � t, fixed, but arbitrary, f ŒQt ŒI� �� D f .�/, then

Lt Œ f � D f f ŒQt Œ�� ;  2 L2 ŒT�g :

But, for � � t, fixed, but arbitrary in T,

hf ./; f .�/iH D lim
�""1
hf .Q� Œ�/; f .�/iH :

However, for � > t, hf .Q� Œ�/; f .�/iH D hf .QtŒ�/; f .�/iH .

Remark 8.3.33 One considers below a “signal-plus-noise” model, f D sCW. When
CW dominates Cs, but Cf does not dominate CW , the above remains true, except
for the existence of a bounded inverse, and the facts that require that inverse. In
particular the range of BW;f may no longer equal L[T Œ f �. But it is always dense
in it.

Henceforth the map f shall have a specific form, namely,

f .t/ D s .t/CW .t/

where s and W are orthogonal, and Cs � �CW , some � > 0. Then, as

Cf D Cs C CW ;

Cf and CW are equivalent, that is, each one dominates the other. Since s and W are
orthogonal, the RKHS of Cf is the direct sum of those respectively of Cs and CW .

The following subspaces shall be relevant:

• Lt Œs;W� D Lt Œs�˚ Lt ŒW�;
• L[T Œs;W� D L[T Œs�˚ L[T ŒW�;
• L?t Œ f � D L[T Œs;W�� Lt Œ f �.

Since Cs is dominated by �CW , one is able to define, as above,

• JW;s D J�;sL� ,
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• BW;s D UsJW;sU?
W ,

• Bs D V?
WU?

WB?W;sBW;sUWVW D V?
WJ?W;sJW;sVW ,

with the same properties. Furthermore, since f .t/ D s.t/CW.t/ may be expressed
as

f ŒIt� D s ŒIt�CW ŒIt� ;

one has that

f Œ� D s Œ�CW Œ� :

Since Cf D Cs C CW , looking at Cf .
; t/ D Cs.
; t/C CW .
; s/, one has that

JW;f VW D JW;sVW C VW ;

and, since the range of JW;s and that of VW are orthogonal, V?
WJW;sVW is the zero

operator, and, using the definition of Bf ,

Bf D IL2ŒT� C Bs;

an operator, linear and bounded, with bounded inverse. Furthermore [8, p. 359],
since

Bs D .JW;sVW/
? JW;sVW ;

B�1f is positive definite and both the following obtain:

ˇ̌̌̌
B�1f

ˇ̌̌̌ � 1; ˇ̌̌̌
JW;sVWB�1f

ˇ̌̌̌ � 1:
Finally

hs Œ� ; s Œ �iH D h; is D hBs Œ� ;  iL2ŒT� :

The following abbreviations shall be used:

Bs;t D QtBsQt; Bf ;t D Qt C Bs;t D QtBf Qt:

Fact 8.3.34 Here are two basic properties:

1. Let s Œ�CW Œ � 2 L[T Œs;W� be fixed, but arbitrary. Then

s Œ�CW Œ � 2 L?t Œ f � if, and only if, Qt ŒBs Œ�C  � D 0;
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or, equivalently, for almost every � � t,

 .�/ D �Bs Œ� .�/ :

Consequently, when s ŒQt Œ��CW ŒQt Œ �� 2 Lt Œs;W� is fixed, but arbitrary, then

s ŒQt Œ��CW ŒQt Œ �� 2 L?t Œ f � if, and only if, Qt Œ � D �Bs;t Œ� :

2. For t 2 T, fixed, but arbitrary, the operator

Bf ;t D QtBf Qt D Qt C Bs;t

is an isomorphism of L2 Œ0; t�, and thus B�1f ;t is also an isomorphism of L2 Œ0; t�. In
what follows one shall use tacitly the following equality:

QtB
�1
f ;t D B�1f ;t :

The presence of Qt acts mainly as a reminder that one is “living” in L2 ŒT�.

Proof The elements of Lt Œ f � have the form f ŒQt Œ���, t fixed, � arbitrary. Given
s Œ�CW Œ �, one must thus have, for all � 2 L2 ŒT�,

hf ŒQt Œ��� ; s Œ�CW Œ �iH D 0:

But

hf ŒQt Œ��� ; s Œ�CW Œ �iH D hs ŒQt Œ���CW ŒQt Œ��� ; s Œ�CW Œ �iH
D hBs ŒQt Œ��� ; iL2ŒT� C hQt Œ�� ;  iL2ŒT�
D h�;Qt ŒBs Œ�C  �iL2ŒT� :

ut
Fact 8.3.35 Let h .t/ D s ŒQt Œ��CW ŒQt Œ �� 2 Lt Œs;W� be fixed, but arbitrary. It
may be expressed in the following form

h.t/ D hf .t/C h?f .t/;

with

hf .t/ 2 Lt Œ f � ; and h?f .t/ 2 Lt Œs;W�� Lt Œ f � ;

where

hf .t/ D f
�
QtB
�1
f ;t fBs;t Œ�C Qt Œ �g

�
;

h?f .t/ D s
�
QtB
�1
f ;t Qt Œ �  �

� �W
�
Bs;tB

�1
f ;t Qt Œ �  �

�
:
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Proof A generic element of Lt Œ f � has the following form: f ŒQt Œ���, and a generic
term of Lt Œs;W�� Lt Œ f � has, using (Fact) 8.3.34, the following one:

s ŒQt Œ���CW ŒQt Œ��� D s ŒQt Œ��� �W ŒBs;t Œ��� :

Given the left-hand side, one must solve, for unknowns �; �, the following equation:

s ŒQt Œ��CW ŒQt Œ �� D f ŒQt Œ���C s ŒQt Œ��� �W ŒBs;t Œ���

D s ŒQt Œ���CW ŒQt Œ���C s ŒQt Œ����W ŒBs;t Œ���

D s ŒQt Œ��C Qt Œ���CW ŒQt Œ�� � Bs;t Œ��� ;

that is, the following system:

Qt Œ� D Qt Œ��C Qt Œ�� ;

Qt Œ � D Qt Œ�� � Bs;t Œ�� :

Subtracting the second equation from the first, one obtains that

Qt Œ� �Qt Œ � D Qt Œ��C Bs;t ŒQt Œ��� D Bf ;t Œ�� ;

or

Qt Œ�� D B�1f ;t Qt Œ �  � :

From the first equation one computes:

Qt Œ�� D Qt Œ� � Qt Œ��

D Qt Œ� � B�1f ;t ŒQt Œ� �Qt Œ ��

D B�1f ;t ŒQt Œ ��C Qt Œ� � B�1f ;t ŒQt Œ��

D B�1f ;t

�
Qt Œ �C Bf ;t ŒQt Œ�� � Qt Œ�

�
D B�1f ;t ŒQt Œ �C Bs;t ŒQt Œ��� :

ut
Definition 8.3.36 The function g W T �! H, g.0/ D 0H, is a wide sense martingale
with respect to the function f W T �! H, f .0/ D 0H, when, for � � t in T, fixed,
but arbitrary,

g.�/ D Pf

� Œg.t/� :
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One may always use t D 1. Then, given, arbitrarily in T, but fixed,

0 D �0 < �1 < 
 
 
 < �n�1 < �n D t;

one has that

nX
iD1
jjg.�i/ � g.�i�1/jj2H D

nX
iD1

ˇ̌̌̌̌̌ n
Pf

�i
� Pf

�i�1

o
Œg.1/�

ˇ̌̌̌̌̌
2

H

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1

n
Pf

�i
� Pf

�i�1

o
Œg.1/�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D jjg.t/jj2H
� jjg.1/jj2H :

The value jjg.t/jj2H shall be called the wide-sense quadratic variation of g at t, for
f , and denoted hgif .t/. Quadratic variation is thus equivalent to the usual bounded
variation [135, p. 59].

Remark 8.3.37 When g is a wide sense martingale with respect to f , and t � � , then
g.t/� g.�/ is orthogonal to L� Œ f �. Indeed,˝

g.t/ � g.�/;Pf

� Œh�
˛
H D

˝˚
Pf

t � Pf

�

�
Œg.1/�;Pf

� Œh�
˛
H D 0:

Example 8.3.38 Let h 2 H be fixed, but arbitrary, and g.t/ D Pf
t Œh�. g is a wide

sense martingale with respect to f as Pf

� Œg.t/� D Pf

� ŒP
f
t Œh�� D Pf

� Œh� D g.�/.

Fact 8.3.39 Let g .t/ D Pf
t ŒW ŒQt Œ����. g is a wide sense martingale with respect to

f .

Proof g .t/ D Pf
t ŒW Œ��� is a wide sense martingale with respect to f [(Exam-

ple) 8.3.38]. But

Pf
t ŒW Œ��� D Ps;W

t ŒW Œ��� ;

and, for � � t, fixed, but arbitrary,

hW Œ�� ; s ŒQ� Œ��CW ŒQ� Œ��iH D hW Œ�� ;W ŒQ� Œ��iH
D h�;Q� Œ�iL2ŒT�
D hQt Œ�� ;Q� Œ�iL2ŒT�
D hW ŒQt Œ��� ;W ŒQ� Œ��iH
D hW ŒQt Œ��� ; s ŒQ� Œ��CW ŒQ� Œ��iH :
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Now, as in (Remark) 8.3.32, PW
t ŒWŒ��� D WŒQtŒ���. As Ps

t ŒWŒ��� D 0H,

Pf
t ŒWŒ��� D Ps;W

t ŒWŒ��� D PW
t ŒWŒ��� D WŒQtŒ���;

so that

Pf
t ŒW Œ��� D W ŒQt Œ��� D Pf

t ŒW ŒQt Œ���� :

ut
Fact 8.3.40 The martingale g of (Fact) 8.3.39 has the following representation:

g.t/ D f
�
QtB
�1
f ;t Qt Œ��

�
:

Proof Since g .t/ D Pf
t ŒW ŒQt Œ����, (Fact) 8.3.35, with  D 0L2ŒT� and  D � ,

yields that

g .t/ D hf .t/ D f
�
QtB
�1
f ;t Qt Œ��

�
:

ut
Fact 8.3.41 The following formulae obtain.

1. Pf
t Œ f Œ�� D f

h
QtB�1f ;t QtBf Œ�

i
, and, in particular,

Pf
t Œ f .tC �/� D f

�
QtB
�1
f ;t QtBf QtC�

�
IL2ŒT�

��
:

2. Maps of the following form:

g .t/ D f
�
QtB
�1
f ;t Qt Œ�

�
are wide sense martingales with respect to f .

Proof Let � � t be fixed, but arbitrary. One has that

hf Œ� ; f .�/iH D
D hs Œ� ; s ŒI� �iH C hW Œ� ;W ŒI� �iH
D hBs Œ� ; I� iL2ŒT� C h; I� iL2ŒT�
D ˝

Qt
�
Bs C IL2ŒT�

�
Œ� ; I�

˛
L2ŒT�

D ˝
B�1f ;t QtBf Œ� ;Bf ;t ŒI� �

˛
L2ŒT�

D ˝
B�1f ;t QtBf Œ� ;Bf ŒI� �

˛
L2ŒT�

D ˝
BsB
�1
f ;t QtBf Œ� ; I�

˛
L2ŒT�
C ˝B�1f ;t QtBf Œ� ; I�

˛
L2ŒT�

D ˝
s
�
B�1f ;t QtBf Œ�

�
; s ŒI� �

˛
H
C ˝W �

B�1f ;t QtBf Œ�
�
;W ŒI� �

˛
H
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D ˝
f
�
B�1f ;t QtBf Œ�

�
; f .�/

˛
H

D ˝
f
�
QtB
�1
f ;t QtBf Œ�

�
; f .�/

˛
H
:

Now, since Bf ;tC� D QtC�Bf QtC� .

Pf
t Œg .tC �/� D Pf

t

�
f
�
QtC�Bf ;tC�QtC� Œ�

��
D f

h
QtB
�1
f ;t QtBf

h
QtC�B�1f ;tC�QtC� Œ�

ii
D f

h
QtB
�1
f ;t QtQtC�Bf

h
QtC�B�1f ;tC�QtC� Œ�

ii
D f

�
QtB
�1
f ;t QtQtC� Œ�

�
D g .t/ :

ut
Fact 8.3.42 Let g W T �! H be a wide sense martingale with respect to f such
that RŒg� � L[T Œ f �. There exists then � 2 L2 ŒT� such that, for t 2 T; fixed, but
arbitrary,

g .t/ D f
�
QtB
�1
f ;t Qt Œ��

�
:

Furthermore,

hgif .t/ D
˝
B�1f ;t Qt Œ�� ;Qt Œ��

˛
L2ŒT�

:

Proof As g .1/ 2 L[T Œ f �, g .1/ D f Œ�. Choose � D Bf Œ�. Then, from
(Fact) 8.3.41,

g .t/ D Pf
t Œg .1/� D Pf

t Œ f Œ�� D f
�
QtB
�1
f ;t QtBf Œ�

� D f
�
QtB
�1
f ;t Qt Œ��

�
:

Now, using Bf ;t D Bs;t C Qt, QtB�1f ;t D B�1f ;t , Bs;t D QtBsQt,

˝
B�1f ;t Qt Œ�� ;Qt Œ��

˛
L2ŒT�
D

D ˝
B�1f ;t Qt Œ�� ;Bf ;tB

�1
f ;t Qt Œ��

˛
L2ŒT�

D ˝
B�1f ;t Qt Œ�� ;Bs;tB

�1
f ;t Qt Œ��

˛
L2ŒT�
C ˝B�1f ;t Qt Œ�� ;B

�1
f ;t Qt Œ��

˛
L2ŒT�

D ˝
B�1f ;t Qt Œ�� ;BsB

�1
f ;t Qt Œ��

˛
L2ŒT�
C ˝B�1f ;t Qt Œ�� ;B

�1
f ;t Qt Œ��

˛
L2ŒT�

D ˝
s
�
B�1f ;t Qt Œ��

�
; s
�
B�1f ;t Qt Œ��

�˛
H
C ˝W �

B�1f ;t Qt Œ��
�
;W

�
B�1f ;t Qt Œ��

�˛
H

D ˇ̌̌̌
f
�
QtB
�1
f ;t Qt Œ��

�ˇ̌̌̌ 2
H

D jjg.t/jj2H :
ut
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Fact 8.3.43 One has that Pf
t Œs Œ��� D f

h
QtB�1f ;t Bs Œ��

i
.

Proof The reason is the following calculation: for fixed, but arbitrary  and  in
Qt ŒL2 ŒT��,

hs Œ�� ; s Œ�CW Œ�iH D
D hs Œ�� ; s Œ�iH
D hBs Œ�� ; iL2ŒT�
D ˝

B�1f ;t Bs Œ�� ;Bf ;t Œ�
˛
L2ŒT�

D ˝
B�1f ;t Bs Œ�� ;Bs;t Œ�

˛
L2ŒT�
C ˝B�1f ;t Bs Œ�� ;Qt Œ�

˛
L2ŒT�

D ˝
B�1f ;t Bs Œ�� ;Bs Œ�

˛
L2ŒT�
C ˝B�1f ;t Bs Œ�� ; Œ�

˛
L2ŒT�

D ˝
s
�
B�1f ;t Bs Œ��

�
; s Œ�

˛
H
C ˝W �

B�1f ;t Bs Œ��
�
;W Œ�

˛
H

D ˝
f
�
B�1f ;t Bs Œ��

�
; s Œ�CW Œ�

˛
H
:

ut
Definition 8.3.44 Let W be a wide sense Wiener process with respect to f . f is said
to have a single Brownian innovation when, for t 2 T, fixed, but arbitrary, LtŒ f � D
LtŒW� (f has thus multiplicity one, with a representation of the form f .t/ D W Œ˚t�).

Fact 8.3.45 Given  2 L2 ŒT�, fixed, but arbitrary, let

F .t/ D
˝
B�1f ;t Qt Œ� ;Qt Œ�

˛
L2ŒT�

D ˝
Bf ;t

�
B�1f ;t Qt Œ�

�
;B�1f ;t ŒQt Œ��

˛
L2ŒT�

D ˝
Bf
�
B�1f ;t Qt Œ�

�
;B�1f ;t ŒQt Œ��

˛
L2ŒT�

D ˇ̌̌̌
f
�
QtB
�1
f ;t Qt Œ�

�ˇ̌̌̌ 2
H
;

which is [(Fact) 8.3.42] a monotone increasing function.
f has a single Brownian innovation if, and only if, there exists f 2 L2 ŒT� such

that, for t 2 T, fixed, but arbitrary,

1. the measure induced by Ff is equivalent to Lebesgue measure;
2. the following set of equalities�D

B�1f ;�Q�

�
f
�
;Q� Œ�

E
L2ŒT�
D 0; � � t

�
(?)

implies that, almost surely,  .�/ D 0; � � t.
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Proof Suppose that f has the single Brownian innovation W . Since W is a
martingale in the wide sense with respect to f (as indeed one checks that Pf

� ŒW.t/� D
PW
� ŒW.t/� DW.t/), it has [(Fact) 8.3.42] a representation in the following form:

W .t/ D f
�
QtB
�1
f ;t Qt Œˇ�

�
;

with hWi .t/ D t. Choose ˇ as f so that item 1 is automatically true.
Suppose that, for � � t, fixed, but arbitrary,D

B�1f ;�Q� Œˇ� ;Q� Œ�
E
L2ŒT�
D 0:

One has then thatD
B�1f ;�Q� Œˇ� ;Q� Œ�

E
L2ŒT�
D
D
B�1f ;�Q� Œˇ� ;Bf ;�B�1f ;�Q� Œ�

E
L2ŒT�

D
D
B�1f ;�Q� Œˇ� ;B

�1
f ;�Q� Œ�

E
f

D
D
f .Q�B�1f ;�Q� Œˇ�/; f .Q�B�1f ;�Q� Œ�/

E
H

D ˝
W.�/; g.�/

˛
H
;

where g is as in (Fact) 8.3.41, and in particular a martingale in the wide sense for
f . Then when � � � � t, using condition (?) in item 2, and the latter equality,˝

W .�/ ; g .�/
˛
H D

˝
W .�/ ; g .�/ � g .�/

˛
H :

But W.�/ 2 L� Œ f �, and thus
˝
W .�/ ; g .�/ � g .�/

˛
H
D 0. The same relation

holds when the order of � and � is reversed. Thus, for � � t, fixed, but arbitrary,
g .�/ is orthogonal to Lt ŒW � D Lt Œ f �, while belonging to it. It is thus 0H, and then

0 D ˝g˛f .�/ D ˇ̌̌̌̌̌ f hQ�B�1f ;�Q� Œ�
iˇ̌̌̌̌̌ 2

H
D
ˇ̌̌̌̌̌
B�1f ;�Q� Œ�

ˇ̌̌̌̌̌ 2
L2ŒT�

:

But B�1f ;t is an isomorphism of Qt ŒL2 ŒT��. Consequently Q� Œ� D 0, almost surely
for � � t.

Suppose conversely that items 1 and 2 above obtain. Let Leb denote Lebesgue
measure, and, because of item 1,

ı2 D dLeb

dFf

:

Let g denote the martingale defined as [(Fact) 8.3.41]

g .t/ D f
�
QtB
�1
f ;t Qt

�
f
��
:
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Then Mg D Ff . Set W .t/ D g ŒQt Œı��, the “integral” of Qt Œı� with respect to the
martingale in the wide sense g. Since

hW .t/i D jjg .Qt Œı�/jj2H D
Z ( P‚…„ƒ

Qt Œı�

) 2
dMg D t;

W is then a wide sense Wiener process, and, since Ff is equivalent to Lebesgue
measure, Lt ŒW � D Lt Œg�. Since item 2 says that Lt Œg� D Lt Œ f �, f has a single
Brownian motion. ut
Remark 8.3.46 Since, g having orthogonal increments,

ˇ̌̌̌
g
�
B�1f ;t Qt

�
f
��ˇ̌̌̌ 2

H
D ˇ̌̌̌B�1f ;t Qt

�
f
�ˇ̌̌̌ 2

L2Œhgif � ;

one has, for the canonical representation of f ,

f .t/ D g
�
B�1f ;t Qt

�
f
�� D g Œt� ;

as item 2 in (Fact) 8.3.45 asserts that ft; t 2 Tg is total in L2ŒT�.

Remark 8.3.47 When Bs is Hilbert-Schmidt, Bf has an inverse of the following
form: �

IL2ŒT� � L?
� �

IL2ŒT� � L
�
;

where L is a Volterra, Hilbert-Schmidt operator [25, p. 130], and then the conditions
of (Fact) 8.3.45 may be easier to check.

Example 8.3.48 Let T D Œ0; 1�, and H, a real Hilbert space. Let W ;W W T �! H
be two wide sense, orthogonal Wiener processes, and � W T �! R be the square
root map. Set

s.t/ D �.t/W.t/; and f .t/ D s.t/CW.t/:

The map f has then multiplicity two [136].
One has that

Cs .t1; t2/ D � .t1/ � .t2/ ft1 ^ t2g :

For checking that Cs � �CW , one may restrict attention to sets of strictly increasing
“time” indices as, for example, when t1 D t2 < t3 in T,

3X
iD1

3X
jD1

˛i˛j C:
�
ti; tj

� D
D .˛1 C ˛2/2 C: .t1; t1/C 2 .˛1 C ˛2/ ˛3C: .t1; t3/C ˛23C: .t3; t3/ :
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Then, to be explicit, for

˙W D

2
664

t1 t1 t1 t1
t1 t2 t2 t2
t1 t2 t3 t3
t1 t2 t3 t4

3
775 ;

one has that ˙W D MM?, where

M D

2
664
p

t1 0 0 0p
t1
p

t2 � t1 0 0p
t1
p

t2 � t1
p

t3 � t2 0p
t1
p

t2 � t1
p

t3 � t2
p

t4 � t3

3
775 :

Let D� denote the diagonal matrix whose diagonal elements are respectively � .t1/,
� .t2/, � .t3/, and � .t4/. Then

D�˙WD� D D�M .D�M/? D

D

2
664
� .t1/ � .t1/ t1 � .t1/ � .t2/ t1 � .t1/ � .t3/ t1 � .t1/ � .t4/ t1
� .t2/ � .t1/ t1 � .t2/ � .t2/ t2 � .t2/ � .t3/ t2 � .t2/ � .t4/ t2
� .t3/ � .t1/ t1 � .t3/ � .t2/ t2 � .t3/ � .t3/ t3 � .t3/ � .t4/ t3
� .t4/ � .t1/ t1 � .t4/ � .t2/ t2 � .t4/ � .t3/ t3 � .t4/ � .t4/ t4

3
775 :

Furthermore, mutatis mutandis,

nX
iD1

nX
jD1

˛i˛j CW
�
ti; tj

� D hMM?˛; ˛iRn ;

nX
iD1

nX
jD1

˛i˛j Cs
�
ti; tj

� D ˝D�M .D�M/? ˛; ˛
˛
Rn ;

and, using Douglas’s range inclusion result [80],˝
D�M .D�M/? ˛; ˛

˛
Rn � � hMM?˛; ˛iRn

if, and only if, RŒD�M� � RŒM�. But RŒM� D Rn. Thus Cs � �CW .
Below Mp� shall be multiplication by square root, and L, the Volterra operator

with a constant kernel equal to one.
The computation of H.Cs;T/ proceeds as usual. Let F W T �! H .CW ;T/ be

computed as

F .t/ D t1=2CW .
; t/ ;
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and LF W H .CW ;T/ �! RT , as

LF Œh� .�/ D hh;F .�/iH.CW ;T/ D �1=2h .�/ :

LF is unitary, and its range is H .Cs;T/. Furthermore

LF
�
t1=2CW .
; t/� D t1=2LF ŒCW .
; t/� .�/ D Cs .�; t/ D JW ;s ŒCW .
; t/� :

Define D W L2 ŒT� �! L2 ŒT� requiring that

D ŒIt� D t1=2 It:

As ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌X

i

˛iD ŒIti �

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
L2ŒT�

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌X

i

˛iCs .
; t/
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.Cs;T/

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌JW ;sVW

"X
i

˛iIti

#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H.Cs;T/

;

D is a well-defined operator, linear and bounded. Furthermore, forgetting temporar-
ily the distinction between functions and their classes, with ˚ .t/ D L Œ� .t/,

hD ŒIt� ; iL2ŒT� D
Z 1

0

t1=2 It .�/  .�/ d�

D t1=2˚ .t/

D
Z t

0

d�

2�1=2
˚ .�/C

Z t

0

�1=2  .�/ d�

D 1

2

D
It;M

�1p�L Œ�
E
L2ŒT�
C
D
It;Mp� Œ�

E
L2ŒT�

D

It;

�
Mp� C 1

2
M�1p�L

�
Œ�

�
L2ŒT�

:

The above holds provided M�1p�L is bounded. But [25, p. 70]

Z 1

0

dx

�
1

x1=2

Z x

0

j .y/j dy

� 2
�
Z 1

0

dx

�
1

x

Z x

0

j .y/j dy

� 2
� 4 jjjj2L2ŒT� :

Consequently

D? D Mp� C
1

2
M�1p�L;



8.3 Smoothness and Multiplicity: Multiplicity One 619

and thus

D D Mp� C 1

2
L?M�1p� :

One has, using LFVWD D JW ;sVW , that Bs D D?D.
Finally one has that [(Fact) 6.2.24]

s.t/ D �.t/W.t/ D
Z t

0

W .�/

2�1=2
d� C

Z t

0

�1=2 mW .d�/ ;

so that

f .t/ D
Z t

0

W .�/

2�1=2
d� C

Z t

0

�1=2 mW .d�/CW .t/ ;

and, consequently,

f ŒQt Œ�� D
Z t

0

W .�/

2�1=2
 .�/ d� C

Z t

0

�1=2  .�/mW .d�/C
Z t

0

 .�/mW .d�/ :

Let

X .t/ D
Z t

0

W .�/

2�1=2
 .�/ d�;

Y .t/ D
Z t

0

�1=2 .�/mW .d�/ ;

Z .t/ D
Z t

0

 .�/mW .d�/ :

One shall need the following evaluation:

jjX .1/C Y .1/C Z .1/jj2H D
D jjX .1/jj2H C jjY .1/jj2H C jjZ .1/jj2H C 2 hX .1/ ;Y .1/iH

D
Z 1

0

Z 1

0

dxdy .x/  .y/
x ^ y

4.xy/1=2

C 2

Z 1

0

dx
 .x/

2x1=2

Z x

0

dy .y/ y1=2

C
Z 1

0

dxx2 .x/C
Z 1

0

dx2 .x/ :
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Now Z 1

0

Z 1

0

dxdy .x/  .y/
x ^ y

4.xy/1=2
D

D 1

4

Z 1

0

dx .x/

�
1

x1=2

Z x

0

dyy1=2 .y/C x1=2
Z 1

x
dy
 .y/

y1=2

�

D 1

4

D
M�1p�LMp� Œ�CMp�L?M�1p� Œ� ; 

E
L2ŒT�

D 1

2

D
M�1p�LMp� Œ� ; 

E
L2ŒT�

:

Identically,

Z 1

0

dx
 .x/

2x1=2

Z x

0

dy .y/ y1=2 D 1

2

D
M�1p�LMp� Œ� ; 

E
L2ŒT�

:

The above holds if M�1p�LMp� is bounded. But

Z 1

0

dx

�
1

x1=2

Z x

0

dyy1=2 .y/

� 2
�
Z 1

0

dx

�Z x

0

dy j .y/j
� 2
� jjjj2L2ŒT� :

Thus

jjX .1/C Y .1/C Z .1/jj2H D
�

IL2ŒT� CM2p� C
3

2
M�1p�LMp�

�
Œ� ; 

�
L2ŒT�

:

Let

 D
nX

iD1
˛i�

�ti�1;ti�
:

A wide sense martingale with respect to f has the following form:

m .t/ D f ŒQt Œ�� D X .t/C Y .t/C Z .t/ ;

so that Z
 dm D

nX
iD1

˛i
˚
m .ti/ �m .ti�1/

� D X. /C Y. /C Z. /;
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and thus ˇ̌̌
ˇ
ˇ̌̌
ˇ
Z
 dm

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

D
�

IL2ŒT� CM2p� C
3

2
M�1p�LMp�

�
Œ � ;  

�
L2ŒT�

:

The functions that are integrable with respect to m are thus those  for which
  2 L2 ŒT�:

L2
�
M

� D f W   2 L2 ŒT�g :

Let fFt; t 2 Tg be total in L2
�
M

�
. The projection of an element of L[T Œ f � onto

Lt Œ f � has the form m .t/, some  2 L2 ŒT�, and thus

ˇ̌̌
ˇ
ˇ̌̌
ˇm .t/ �

Z
Ft dm

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

D

�
IL2ŒT� CM2p� C

3

2
M�1p�LMp�

�
ŒQt Œ � � Ft� ;Qt Œ � � Ft

�
L2ŒT�

:

As

jjQt Œ 1� � FtjjL2ŒT� �
ˇ̌jjQt Œ 1� � Qt Œ 2�jjL2ŒT� � jjQt Œ 2� � FtjjL2ŒT�

ˇ̌
;

a process of multiplicity one cannot approximate uniformly closely both processes

m 1 and m 2 :

Any assumption of multiplicity one must thus be carefully validated.

8.4 Smoothness and Multiplicity: Goursat Maps

A Goursat map f W T �! H, T an interval of R, H a real Hilbert space, is a map of
the following form:

f .t/ D
nX

iD1
ai.t/hi.t/;

where

fai W T �! R; i 2 Œ1 W n�g



622 8 Some Facts About Multiplicity

is a family of ordinary functions, and

fhi W T �! H; i 2 Œ1 W n�g

a family of functions with, in particular, orthogonal increments (more is in fact
required: the hi’s are the components of a wide sense martingale, as in (Definition)
8.4.8 below). When H is the space L2 .˝;A;P/, and hi .t/ is the equivalence class
of a random variable with a mean equal to zero, the usual term is “process.” Goursat
maps seem to be, at first sight, fairly simple objects. However their properties,
and, in particular, multiplicity ones, are manifold. Their practical, and illustrative,
usefulness stems from two facts:

(a) they are computationally tractable, and in particular, their prediction maps,
items entering the study of multiplicity (as in Chap. 9), have relatively simple
forms;

(b) they may be used as approximations to general CHR’s: when

hi.t/ D
Z

ITti dmi;

then

nX
iD1

ai.t/hi.t/ D
nX

iD1

Z
Fi .t; 
/ dmi; Fi .t; 
/ D ai.t/ITti;

and functions of form a � b, where a 2 L2.A;A; ˛/, and b 2 L2.B;B; ˇ/,
generate [200, p. 115] the space L2.A � B;A˝ B; ˛˝ ˇ/.

8.4.1 Hilbert Spaces from Matrix Measures

The work with Goursat maps is, unsurprisingly, given the results presented so far,
based on L2-type Hilbert spaces, which are obtained using a form of integration of
maps with values in Rn, with respect to measures which take matrices as their values.
All measures considered in this section are assumed to be Borel measures, that is
regular ones (as one uses Lusin’s theorem), and statements involving measures of
sets presuppose that the measures of the concerned sets are finite. The relevant facts
are now listed. Proofs can be found in [86, p. 1337]. These integrals can also be seen
as direct integrals (as in Sect. 7.1).

Assumptions 8.4.1 1. T is an interval of R.
2. T D B .R/ \ T.
3. For fixed, but arbitrary fi; jg � Œ1 W n�, �i;j is a �-additive, signed measure on T .
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4. For fixed, but arbitrary T0 2 T , � .T0/ is the matrix with entries

�i;j .T0/ ; fi; jg � Œ1 W n� :

Definition 8.4.2 Let Assumption 8.4.1 obtain. The family
˚
�i;j; fi; jg � Œ1 W n�

�
forms a matrix measure when � .T0/ is symmetric, and positive definite, for all
T0 2 T .

When the signed measures �i;j are all dominated by one, and the same, �-
finite measure, the resulting matrix of Radon-Nikodým derivatives has some
indispensable properties that are now stated.

Fact 8.4.3 Let (Assumption) 8.4.1 obtain. Suppose that, for some � , a �-finite
measure,

�i;j � �; fi; jg � Œ1 W n� ;

and let D� .t/ be a matrix of Radon-Nikodým derivatives of �i;j with respect to
�; fi; jg � Œ1 W n�.
1. There is a choice of Radon-Nikodým derivatives for which, almost surely with

respect to � , D� is symmetric, and positive definite.
2. There is a decomposition of D� into adapted and integrable orthonormal

eigenvector functions, and positive decreasing eigenvalue functions, that is valid
almost surely, with respect to �:

D� .t/ D
nX

iD1
ıi .t/

˚
di .t/˝ di .t/

�
:

Definition 8.4.4 Let (Definition) 8.4.2 and (Fact) 8.4.3 obtain. L2 .T; T ;�/ shall
denote the family of maps t 7! h .t/ 2 Rn whose components are adapted to T , and
such that Z

T
hD� .t/ h .t/ ; h .t/iRn � .dt/ <1:

Fact 8.4.5 (A Hilbert Space of Vector Valued Functions)

1. The choice made in (Fact) 8.4.3 for D� allows one to use Schwarz’s inequality to
obtain that ˝

D� .t/ h1 .t/ ; h2 .t/
˛2
Rn �

� ˝D� .t/ h1 .t/ ; h1 .t/
˛
Rn

˝
D� .t/ h2 .t/ ; h2 .t/

˛
Rn :
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2. The integral Z
T

˝
D� .t/ h1 .t/ ; h2 .t/

˛
Rn � .dt/

thus exists, for fixed, but arbitrary elements
˚
h1; h2

� � L2 .T; T ;�/, andˇ̌̌
ˇ
Z

T

˝
D� .t/ h1 .t/ ; h2 .t/

˛
Rn � .dt/

ˇ̌̌
ˇ2 �

�
Z

T

˝
D� .t/ h1 .t/ ; h1 .t/

˛
Rn � .dt/

Z
T

˝
D� .t/ h2 .t/ ; h2 .t/

˛
Rn � .dt/ :

It follows that L2 .T; T ;�/ is a linear manifold.
3. Maps h 2 L2 .T; T ;�/ such thatZ

T
hD� .t/ h .t/ ; h .t/iRn � .dt/ D 0

are called null functions, and, for the same reason that L2 .T; T ;�/ is a linear
manifold, the set of null functions is a linear manifold in L2 .T; T ;�/.

4. The quotient of L2 .T; T ;�/ by the manifold of null functions shall be denoted
L2 .T; T ;�/, and one shall write, for the equivalence class Œh� of h;

jjŒh�jj2L2.T;T ;Q�/ D
Z

T
hD� .t/ h .t/ ; h .t/iRn � .dt/ :

Similarly

˝�
h1
�
;
�
h2
�˛

L2.T;T ;Q�/ D
Z

T

˝
D� .t/ h1 .t/ ; h2 .t/

˛
Rn � .dt/ :

One has that the (right-hand side) of the expression defining the inner product˝�
h1
�
;
�
h2
�˛

L2.T;T ;Q�/

is independent of � , and that the latter inner product is an inner product for which
L2 .T; T ;�/ is a Hilbert space.

Fact 8.4.6 Let (Definition) 8.4.2 and (Fact) 8.4.3 obtain. Let t 7! c 2 Rn, and
t 7! d 2 Rn be constant functions. Then, for fixed, but arbitrary fT1;T2g � T ,Z

T
hD� .t/ IT1 .t/ c; IT2 .t/ diRn � .dt/ D

D
nX

iD1

nX
jD1

ci dj �i;j .T1 \ T2/

D h� .T1 \ T2/ c; diRn ;
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so that constant functions are “integrable” on sets of finite measure (as they should
be).

Example 8.4.7 The following example shows that some care is required when
handling matrix measures. Let indeed � be a measure over the Borel sets of T,
and (since � can be taken as �)

� D
	

� ��
�� �



; so that D� D

	
1 �1
�1 1



:

Then Z
T
hD� .t/h.t/; h.t/iR2 �.dt/ D

Z
T
.h1.t/ � h2.t//

2 �.dt/;

so that h may belong to L2 .T; T ;�/ without its components belonging to
L2.T; T ; �/ (� D �).

8.4.2 Martingales in the Wide Sense

The study of multiplicity for Goursat maps requires integral representations with
respect to martingales in the wide sense analogous to those obtained for processes
with orthogonal increments in Chap. 1. That is what one will find below.

Definition 8.4.8 Let T be an interval of the real line, and H be a real Hilbert space.
For t 2 T, let h.t/ have components

hi.t/ 2 H; i 2 Œ1 W n�

with the following property: for fixed, but arbitrary

ft1; t2; t3g � T; t1 � t2 � t3; fi; jg � Œ1 W n� ;

one has that ˝
hi.t1/; hj.t3/� hj.t2/

˛
H
D 0:

One shall say that h D fh.t/; t 2 Tg is a martingale in the wide sense of dimension
n (the dimension shall usually be omitted).

Example 8.4.9 Let h.t/ have two components made of the same wide-sense,
standard Wiener process. It is a martingale in the wide sense of order two, but its
components are not orthogonal.
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Example 8.4.10 Let T D Œ0; 1�, t 7! ˙.t/ be a matrix valued function, with
measurable components t 7! �i;j.t/, and bounded trace. Each ˙.t/ is a covariance
matrix of dimension n. Let W .
; t/ be a Wiener process as defined in [33, p. 168].
It is a Gaussian process with a mean equal to zero, whose covariance properties are
derived from the following expression: for ft1; t2g � T and f˛1; ˛2g � Rn, fixed,
but arbitrary,

E
�hW .
; t1/ ; ˛1iRn hW .
; t2/ ; ˛2iRn

� D Z t1^t2

0

h˙.�/˛1; ˛2iRn d�:

For matrix functions M1 and M2 of the appropriate dimensions, one has, as a
consequence [33, p. 184]

E

	Z t1

0

M1.�/W.
; d�/; ˛1
�
Rn

Z t2

0

M2.�/W.
; d�/; ˛2
�
Rn



D

D
Z t1^t2

0

hM2.�/˙.�/M
?
1 .�/˛1; ˛2iRn d�:

Let hi.t/ be the equivalence class ofZ t

0

M .�/W .
; d�/ ; ei

�
Rn

;

where ei is the i-th member of the standard basis of Rn. Then indeed˝
hi.t1/; hj.t3/� hj.t2/

˛
H
D

D E

	Z t1

0

M .�/W .
; d�/ ; ei

�
Rn�Z t3

0

M .�/W .
; d�/ ; ej

�
Rn

�
Z t2

0

M .�/W .
; d�/ ; ej

�
Rn

�

D 0:

As a particular case, let n D 3, and, with v˝v D vv?, �, a constant, I3, the identity
matrix,

˙.t/ D �.t/I3 C ��.t/˝ �.t/;

where � and the components of � are, say, continuous functions. Then

h˙.t/˛; ˛iR3 D �.t/ jj˛jj2R3 C � h�.t/; ˛i2R3 :
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For jj˛jjR3 > 0, and u Œ˛� D ˛= jj˛jjR3 ,

h˙.t/˛; ˛iR3 D jj˛jj2R3
˚
�.t/C �h�.t/; u Œ˛�i2

R3

�
;

and thus˙.t/ is a covariance matrix when �.t/C �h�.t/; u Œ˛�i2
R3
� 0. The spectral

properties of˙.t/ are as follows [121, p. 170 and 187]:

1. ˙.t/ has an inverse when �.t/ ¤ 0 and � ¤ ��.t/= jj�.t/jj2R3 : then

f˙.t/g�1 D I3
�.t/

� ��.t/

�.t/C � jj�.t/jj2R3

�
�.t/

�.t/
˝ �.t/

�.t/

�
I

2. ˙.t/ has two eigenvalues equal to �.t/, and one equal to �.t/ C � jj�.t/jj2R3 ;
furthermore, a calculation shows that

(i) ˙.t/x D �.t/x yields that x ? �.t/;
(ii) ˙.t/x D

n
�.t/C � jj�.t/jj2R3

o
x yields that x D �.t/.

Choosing for M a diagonal matrix of functions, one already ends up with matrices
whose eigenvalues are in general difficult to evaluate though the characteristic
equation is known [121, p. 187].

Fact 8.4.11 A martingale in the wide sense, of dimension one, is a process with
orthogonal increments. A process h with orthogonal increments, and index set Œ0;T�,
such that h.0/ D 0H, is a martingale in the wide sense of dimension one.

Proof Indeed, from the definition, for fixed, but arbitrary ft1; t2; t3; t4g in T, with
t1 < t2 � t3 < t4, the following equality:

hh.t1/; h.t4/� h.t3/iH D hh.t2/; h.t4/ � h.t3/iH D 0;

yields that

hh.t2/ � h.t1/; h.t4/� h.t3/iH D 0:

When h.0/ D 0H ,

hh.t1/; h.t4/ � h.t3/iH D hh.t1/� h.0/; h.t4/� h.t3/iH D 0:

ut
A process with orthogonal increments need not be a martingale in the wide sense

of dimension one.

Example 8.4.12 When T D f1; 2; 3; 4g, and h with the following values:

h.1/ D h; h.2/ D h; h.3/ D k; h.4/ D l;
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one has a process with orthogonal increments. For it to be a martingale in the wide
sense, one must have, for example that hh; l� kiH D 0, a condition that is easy to
violate, for example, choosing h D e2; k D e2; l D e3, orthonormal.

Fact 8.4.13 When a process with orthogonal increments is purely nondeterministic,
then it is a martingale in the wide sense of dimension one.

Proof One lets, in hh.t2/�h.t1/; h.t4/�h.t3/iH D 0, h.t1/ decrease indefinitely, and
applies the appropriate reverse martingale convergence theorem [78, p. 166]. ut
Fact 8.4.14 Let h D fh.t/; t 2 Tg be a martingale in the wide sense. For t 2
T, fixed, but arbitrary, fh1.t/; : : : ; hn.t/g are linearly independent when none of
h1.t/; h2.t/ � h1.t/; : : : ; hn.t/ � hn�1.t/ is 0H.

Proof Indeed, letting h0.t/ D 0H,

nX
iD1

˛ihi.t/ D
nX

iD1
˛i

iX
jD1
fhi.t/ � hi�1.t/g

D
nX

iD1

8<
:

nX
jDi

˛j

9=
; fhi.t/ � hi�1.t/g ;

and fh1.t/; h2.t/ � h1.t/; : : : ; hn.t/ � hn�1.t/g are orthogonal. ut
Fact 8.4.15 Let h D fh.t/; t 2 Tg be a martingale in the wide sense. Let
ft1; t2; t3; t4g � T; t1 < t2; t3 < t4, and fi; jg � Œ1 W n� be fixed but arbitrary.
Then, for

Œt1; t2Œ \ Œt3; t4Œ D Œ˛; ˇŒ ¤ ;;

one has that˝
hi.t2/� hi.t1/; hj.t4/� hj.t3/

˛
H
D ˝hi.ˇ/ � hi.˛/; hj.ˇ/ � hj.˛/

˛
H

(it is zero otherwise).

Proof For example, the inner product˝
hi.t2/� hi.t1/; hj.t4/� hj.t3/

˛
H

equals

• 0 when t4 � t1, and when t2 � t3, and then

Œt1; t2Œ \ Œt3; t4Œ D ;;
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•
˝
hi.t4/� hi.t1/; hj.t4/ � hj.t1/

˛
H when t3 � t1 < t4 � t2, and then

Œt1; t2Œ \ Œt3; t4Œ D Œt1; t4Œ ;

the other cases being treated similarly. ut
Fact 8.4.16 Let h D fh.t/; t 2 Tg be a martingale in the wide sense. Let

Lt Œh� D V Œfhi .�/ ; � 2 T; � � t; i 2 Œ1 W n�g�;

and Pt be the projection with that range. Then the fact that h is a martingale in
the wide sense can be expressed in the following succinct, and intuitively more
expressive form:

Pt1 Œh.t2/� D h.t1/; ft1; t2g � T; t1 < t2:

Proof The following relation, valid, when i is fixed, for all j and � � t:

hhi.t2/� hi.t1/; hj.�/iH D 0

means that hi.t1/ is the projection of hi.t2/ onto Lt1 Œh�. ut
Lemma 8.4.17 let H be a Hilbert space. All (closed) subspaces considered below,
denoted H with an index are subsets of H. H1

W
H2 denotes the intersection of all

the (closed) subspaces which contain H1[H2. The associated projection is denoted
P1
W

P2.

1. Let S be a subset of H generating H1: VŒS� D H1. Then:

H0 \ H1 D VŒH0 \ S�:

2.
˚Wn

iD1 Hi
�? D \n

iD1H?i .
3.
�Wn

iD1 Hi
� \ H0 DWn

iD1 .Hi \ H0/.
4. Let H.1/

� be a member of a decreasing family of subsets, with intersection H1. H.2/

�

and H2 are defined analogously. Then:

H1

_
H2 D

\
�

�
H.1/

�

_
H.2/

�

�
:

That latter relation extends to a finite number of terms.
5. Let H1;i � H2;i, i 2 Œ1 W n�, H1 DWn

iD1 H1;i, H2 DWn
iD1 H2;i. Then:

H2 \ H?1 �
n_

1D1

˚
H2;i \H?1;i

�
:
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Proof ([1]) Since H0 \ H1 is a (closed) subspace which contains H0 \ S,

VŒH0 \ S� � H0 \ H1:

Also H1 D VŒS�, so that VŒH0 \ S� is a (closed) subspace containing H0 \ H1.

Proof ([2]) When h is orthogonal to
Wn

iD1 Hi, it is orthogonal to each Hi, and thus
belongs to \n

iD1H?i . Conversely, when h belongs to \n
iD1H?i , it is orthogonal to each

Hi, and thus to
Wn

iD1 Hi.

Proof ([3]) Let H0;1;2 be the subspace generated by

.H1 [H2/\ H0 D .H1 \H0/[ .H2 [ H0/ :

Since .H1

W
H2/\ H0 is a subspace which contains .H1 [H2/\ H0,

H0;1;2 �
�

H1

_
H2

�
\ H0:

But, by definition, H0;1;2 D .H1 \H0/
W
.H2 \H0/. Thus

.H1 \ H0/
_
.H2 \ H0/ �

�
H1

_
H2

�
\ H0:

Now .H1 \ H0/
W
.H2 \ H0/ is a subspace which contains

.H1 \ H0/ [ .H2 \H0/ D .H1 [ H2/ \H0;

and thus, because of item 1, .H1

W
H2/ \H0. Finally

.H1

_
H2

_
H3/ \H0 D

n
.H1

_
H2/ \H0

o_
.H3 \H0/

D .H1 \ H0/
_
.H2 \ H0/

_
.H3 \ H0/:

Proof ([4]) One has that

H1 [ H2 D
�\�H.1/

�

� [ �\�H.2/

�

� D \�;� �H.1/

� [ H.2/

�

�
:

But

\�;�
�

H.1/

� [H.2/

�

�
D \�

�
H.1/

� [H.2/

�

�
: (?)
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Indeed, H.1/

� [H.2/
� is either H.1/

�^�[H.2/

�_�, or H.1/

�_�[H.2/

�^�. It thus contains H.1/

�^�[
H.2/

�^�, so that

\�;�
�

H.1/

� [ H.2/

�

�
� \�

�
H.1/

� [ H.2/

�

�
:

The inclusion in the other direction is due to the fact that the right-hand side of (?)
is the intersection of only part of the sets in the intersection of the left-hand side.
Thus

H1 [H2 D \�
�
H.1/

� [ H.2/

�

�
:

The smallest (closed) subspace containing \�
�
H.1/

� [ H.2/

�

�
must be the fol-

lowing subspace: \�
�
H.1/

�

W
H.2/

�

�
, for, if L is the smallest, then the inclusion

\�
�
H.1/

� [H.2/

�

� � L leads to

\�
�
H.1/

� [ H.2/

�

� � L \
n
\�
�

H.1/

�

_
H.2/

�

�o
;

and, consequently,

H1

_
H2 D \�

�
H.1/

�

_
H.2/

�

�
:

Suppose that H1 D \�H.1/

� ;H2 D \�H.2/

� ;H3 D \�H.3/

� . Let H0 D H1

W
H2, H0

� D
H.1/

�

W
H.2/

� . Then

H1

_
H2

_
H3 D H0

_
H3 D \�

�
H.0/

�

_
H.3/

�

�
D \�

�
H.1/

�

_
H.2/

�

_
H.3/

�

�
:

Proof ([5]) Because of item 2, and then item 3,

H2 \ H?1 D
(

n_
iD1

H2;i

)
\ ˚\n

iD1H?1;i
�

D
n_

iD1

˚
H2;i \

˚\n
iD1H?1;i

��

�
n_

iD1

˚
H2;i \H?1;i

�
:

ut
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Fact 8.4.18 Let h D fh.t/; t 2 Tg be a martingale in the wide sense. LtŒhi�

is the subspace generated by fhi.�/; � � tg, and LtŒh�, that generated by
fhi.�/; � � t; i 2 Œ1 W n�g. One has that

1. Lt Œh� D Wn
iD1 Lt Œhi�,

2. LCt Œh� D
Wn

iD1 LCt Œhi�,
3. LCt Œh� \ Lt Œh�

? D Wn
iD1

˚
LCt Œhi� \ Lt Œhi�

?
�
.

Proof ([1]) Let

Hi;t D fhi.�/; � � tg ; LtŒhi� D VŒHi;t�;

Ht D fhi.�/; � � t; i 2 Œ1 W n�g ; LtŒh� D VŒHt�:

One has that:

Hi;t � Ht H) LtŒhi� � LtŒh� H)
n_

iD1
LtŒhi� � LtŒh�;

and that

Ht D [n
iD1Hi;t � [n

iD1LtŒhi� �
n_

iD1
LtŒhi�:

Thus

LtŒh� D
n_

iD1
LtŒhi�: (?)

Proof ([2]) Relation (?) above is valid for t  t C ı. One then applies item 4
of (Lemma) 8.4.17.

Proof ([3]) The left-hand side of item 3 is contained in the right-hand side because
of item 5 of (Lemma) 8.4.17. Now hCi .t/�hi.t/ belongs to LCt Œh�, and is orthogonal
to Lt Œh� because of the martingale property of h. The reverse inclusion thus obtains.

ut
Fact 8.4.19 Let h D fh.t/; t 2 Tg be a martingale in the wide sense. Let PCtl denote
the projection whose range is LCtl Œh�. Let, for i 2 Œ1 W n�, fixed, but arbitrary,

ki.t/ D hi.t/ � PCtl Œhi.t/� D
˚
IH � PCtl

�
Œhi.t/� :

k is then a martingale in the wide sense such that

kC.tl/ D 0Hn ; and, when tl 2 T; k.tl/ D 0Hn :
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Proof Let indeed fi; jg � Œ1 W n�, and ft1; t2; t3g � T; t1 � t2 � t3 be fixed, but
arbitrary. Then ˝

ki.t1/; kj.t3/ � kj.t2/
˛
H
D

D ˝˚
IH � PCtl

�
Œhi.t1/� ; hj.t3/� hj.t2/

˛
H

� ˝˚IH � PCtl
�
Œhi.t1/� ;P

C
tl

�
hj.t3/ � hj.t2/

�˛
H
:

The second inner product on the right-hand side of the latter equality is zero, as its
two components are orthogonal. The first is equal to the limit, as ı # 0; ı > 0, of˝fIH � PtlCıg Œhi.t1/� ;

�
hj.t3/� hj.tl C ı/

� � �hj.t2/ � hj.tl C ı/
�˛

H
:

Since �
hj.t2/� hj.tl C ı/

� ? LtlCı Œh� ;
�
hj.t3/� hj.tl C ı/

� ? LtlCı Œh� ;

the latter inner product equals˝
hi.t1/; hj.t3/� hj.t2/

˛
H ;

which is zero by assumption. ut
To be in line with the assumptions made to obtain the CHR representation, one

shall often assume that a martingale in the wide sense is purely nondeterministic,
and continuous to the left. That will in particular allow one to write that, for a
martingale in the wide sense h, and fixed, but arbitrary ft1; t2g � T; t1 < t2,

h.t2/ � h.t1/ D
Z

I
Œt1;t2Œ

dmh:

Hence the definition which follows.

Definition 8.4.20 A CH-martingale is a martingale in the wide sense, that is purely
nondeterministic, and continuous to the left.

Lemma 8.4.21 Let h D fh.t/; t 2 Tg be a martingale in the wide sense. For
ft1; t2g � T; t1 < t2, fixed, but arbitrary,˝

hi.t2/ � hi.t1/; hj.t2/ � hj.t1/
˛
H D

˝
hi.t2/; hj.t2/

˛
H �

˝
hi.t1/; hj.t1/

˛
H :

Proof Definition 8.4.8 yields that˝
hi.t2/ � hi.t1/; hj.t2/� hj.t1/

˛
H
D ˝

hi.t2/; hj.t2/� hj.t1/
˛
H

D ˝
hi.t2/; hj.t2/

˛
H �

˝
hi.t2/; hj.t1/

˛
H :
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Now ˝
hi.t2/; hj.t1/

˛
H D

˝
.hi.t2/� hi.t1//C hi.t1/; hj.t1/

˛
H ;

and one uses again (Definition) 8.4.8. ut
Lemma 8.4.22 Let h D fh.t/; t 2 Tg be a martingale in the wide sense. For fi; jg �
Œ1 W n�, and t 2 T, fixed, but arbitrary, let

Fh

i;j .t/ D
˝
hi.t/; hj.t/

˛
H :

Fh

i;j is locally a function of bounded variation, and, for fixed, but arbitrary fi; jg �
Œ1 W n�, and ft1; t2g � T; t1 < t2,

Fh

i;j .t2/� Fh

i;j .t1/ D
˝
hi.t2/ � hi.t1/; hj.t2/� hj.t1/

˛
H : (?)

Proof The second assertion (?) follows from (Lemma) 8.4.21. Now, given fixed,
but arbitrary

˚
t0; t1; : : : ; tp

� � T such that t0 < t1 < 
 
 
 < tp, using (?),

ˇ̌̌
Fh

i;j .tk/ � Fh

i;j .tk�1/
ˇ̌̌
� jjhi.tk/ � hi.tk�1/jjH

ˇ̌̌̌
hj.tk/ � hj.tk�1/

ˇ̌̌̌
H
;

and, invoking the inequality of Cauchy-Schwarz,

pX
kD1

ˇ̌̌
Fh

i;j .tk/� Fh

i;j .tk�1/
ˇ̌̌
�
(

pX
kD1
jjhi.tk/� hi.tk�1/jj2H

) 1=2

�
(

pX
kD1

ˇ̌̌̌
hj.tk/ � hj.tk�1/

ˇ̌̌̌ 2
H

) 1=2

:

Since the map hi has orthogonal increments,

jjhi.tk/ � hi.tk�1/jj2H D Fh

i;i .tk/� Fh

i;i .tk�1/ ;

so that

pX
kD1
jjhi.tk/� hi.tk�1/jj2H D Fh

i;i

�
tp
� � Fh

i;i .t1/ D
ˇ̌̌̌
hi.tp/ � hi.t1/

ˇ̌̌̌ 2
H
:

ut
Example 8.4.23 Let h be the Wiener process of (Example) 8.4.10 with covariance

˙.t/ D �.t/I3 C ��.t/˝ �.t/:
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Then

Fh

i;j.t/ D
Z t

0

D
˙.�/ei; ej

E
R3

d�

D
8<
:
R t
0

˚
�.�/C ��2i .�/

�
d� when i D j

�
R t
0
�i.�/�j.�/d� when i ¤ j

;

and, for the matrix Fh, with entries Fh

i;j.t/,

˝
Fh .t/ ˛; ˛

˛
R3
D
Z t

0

h˙.�/˛; ˛iR3 d�

D jj˛jj2R3
Z t

0

�.�/d� C �
Z t

0

h�.�/; ˛i2R3 d�:

Proposition 8.4.24 Let h D fh.t/; t 2 Tg be a CH-martingale, and fi; jg, fixed, but
arbitrary, belong to Œ1 W n�. The function Fh

i;j determines a measure Mh

i;j on the Borel
sets of T, that is,

Mh

i;j .Œt1; t2Œ/ D Fh

i;j.t2/� Fh

i;j.t1/;

and then:

Mh

i;j � �h D
nX

iD1
Mh

i;i:

Proof For fixed, but arbitrary ft1; t2g � T; t1 < t2, using (Lemma) 8.4.22,ˇ̌̌
Fh

i;j .t2/ � Fh

i;j .t1/
ˇ̌̌
� jjhi.t2/� hi.t1/jjH

ˇ̌̌̌
hj.t2/� hj.t1/

ˇ̌̌̌
H

� 1

2

n
jjhi.t2/� hi.t1/jj2H C

ˇ̌̌̌
hj.t2/� hj.t1/

ˇ̌̌̌ 2
H

o
D 1

2

n�
Fh

i;i .t2/ � Fh

i;i .t1/
�C hFh

j;j .t2/ � Fh

j;j .t1/
io
:

ut
Remark 8.4.25 With no regularity assumption on Fh

i;j, denoted temporarily F, one
has that [275, p. 508]

F .Œt1; t2Œ/ D F� .t2/� F� .t1/ :

Hence the requirement that the martingale be a CH-martingale.
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Remark 8.4.26 The measures of (Proposition) 8.4.24 are Borel measures as they
are obtained from functions of bounded variation [263, p. 136].

Example 8.4.27 For (Example) 8.4.10 one has that:

Mh

i;j .Œt1; t2Œ/ D Fh

i;j.t2/� Fh

i;j.t1/

D

8̂<
:̂
R t2

t1

˚
�.�/C ��2i .�/

�
d� when i D j

�
R t2

t1
�i.�/�j.�/d� when i ¤ j

:

Thus

�h .Œt1; t2Œ/ D
Z t2

t1

(
3�.�/C �

3X
iD1

�2i .�/

)
d�;

and

dMh

i;j

d�h
.�/ D

8̂̂<
ˆ̂:

�.�/C� �2i .�/
3�.�/C�P3

iD1 �
2
i .�/

when i D j

� �i.�/�j.�/

3�.�/C�P3
iD1 �

2
i .�/

when i ¤ j

:

Definition 8.4.28

1. Let h D fh.t/; t 2 Tg be a CH-martingale, and Fh be the matrix with entries
Fh

i;j; fi; jg � Œ1 W n�. Fh is called the structure matrix of h.
2. The matrix Mh, with entries Mh

i;j; fi; jg � Œ1 W n�, is called the associated matrix
valued measure.

3. D�h denotes the matrix of Radon-Nikodým derivatives

dMh

i;j

d�h
; fi; jg � Œ1 W n� :

4. h is said to be non-singular when Fh .t/ is non-singular for t 2 T.

Remark 8.4.29 For a CH-martingale h, the structure matrix is a function which
is zero at the origin and continuous to the left. Suppose that the map t 7! F.t/
has matrices as values, is continuous to the left, and has increments which are
symmetric, and positive definite. There is then a multivariate Gaussian martingale
whose structure matrix is F. Indeed, when, for t1 < t2 in T, fixed, but arbitrary, Gt1;t2
denotes the Gaussian measure on Rn, with a mean equal to zero, and covariance
F.t2/ � F.t1/, one has, for t1 < t2 < t3 in T, that Gt1;t2 ? Gt2;t3 D Gt1;t3 (? denotes
the convolution product). There is then a general result [67, p. 5] which asserts the
existence of a multivariate Gaussian process, with independent increments, and F
as covariance function.
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Proposition 8.4.30 Let fh.t/; t 2 Tg be a CH-martingale. For fixed, but arbitrary
ft1; t2g � T; t1 < t2, the matrix Fh .t2/ � Fh .t1/ is positive definite.

Proof One has, from (Lemma) 8.4.22, for fixed, but arbitrary fi; jg � Œ1 W n�, that

Fh

i;j .t2/� Fh

i;j .t1/ D
˝
hi.t2/ � hi.t1/; hj.t2/� hj.t1/

˛
H :

Thus, for fixed, but arbitrary ˛ 2 Rn,

˝�
Fh .t2/ � Fh .t1/

�
˛; ˛

˛
Rn D

nX
iD1

nX
jD1

˛i˛j

h
Fh

i;j .t2/� Fh

i;j .t1/
i

D
nX

iD1

nX
jD1

˛i˛j
˝
hi.t2/� hi.t1/; hj.t2/ � hj.t1/

˛
H

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛i Œhi.t2/� hi.t1/�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

:

ut
Fact 8.4.31 Let fh.t/; t 2 Tg be a CH-martingale. D�h of (Definition) 8.4.28 may
be chosen [(Fact) 8.4.3], and will be chosen, to be symmetric, and positive definite
(almost surely, with respect to �h) so that the Hilbert space L2

�
T; T ;Mh

�
is well

defined.

Remark 8.4.32 Let h D fh.t/; t 2 Tg be a martingale in the wide sense. For fixed,
but arbitrary ˛ 2 Rn, expressions of the form Œ˛; h.t/� shall be understood as
shorthand for the following linear combination in H:

nX
iD1

˛i hi.t/:

They usually may be manipulated as inner products. For example, when A is a square
matrix of dimension n,

Œ˛;A Œh.t/�� D ŒA? Œ˛� ; h.t/� :

Remark 8.4.33 For fixed, but arbitrary ˛ 2 Rn, one has that

˝
Fh .t/ ˛; ˛

˛
Rn D

nX
iD1

nX
jD1

˛i˛j
˝
hi .t/ ; hj .t/

˛
H
D jjŒ˛; h.t/�jj2H :
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Remark 8.4.34 Choosing for ˛, in (Remark) 8.4.32, the i-th vector of the standard
basis of Rn, one obtains that˝

Fh .t/ ei; ei

˛
Rn D jjhi.t/jj2H :

Consequently, when Fh .t/ is non-singular, hi.t/ ¤ 0H; i 2 Œ1 W n�.
Remark 8.4.35 Let h be a CH-martingale. For i 2 Œ1 W n�, fixed, but arbitrary, let �h

i
be the measure defined using the following relation:

d�h

i D ıh

i d�h;

where ıh

i is the i-th eigenvalue function as in (Fact) 8.4.3. Then, as h is purely
nondeterministic,

˝
Fh .t/ ˛; ˛

˛
Rn D

nX
iD1

nX
jD1

˛i˛jF
h

i;j .t/

D
Z

Tt

˝
D�h .�/ ˛; ˛

˛
Rn �h .d�/

D
Z

Tt

nX
iD1

ı
h

i .�/
˝
dh

i .�/ ; ˛
˛2
Rn �h .d�/

� �h
n .Tt/ jj˛jj2Rn :

Remark 8.4.36 Let h be a CH-martingale. For fixed, but arbitrary ft1; t2g in T, t1 <
t2, as h is purely nondeterministic, one has that˝˚

Fh .t2/� Fh .t1/
�
˛; ˛

˛
Rn D

D
nX

iD1

nX
jD1

˛i˛j

n
Fh

i;j .t2/ � Fh

i;j .t1/
o

D
nX

iD1

nX
jD1

˛i˛j

Z
Œt1;t2Œ

dMh

i;j

d�h
.�/ �h .d�/

D
Z

T

D
D�h .�/ �Œt1;t2Œ

.�/ ˛; �
Œt1;t2Œ

.�/ ˛
E
Rn
�h .d�/ :

Thus, given ft1; : : : ; tng � T; t1 < 
 
 
 < tn; f˛1; : : : ; ˛ng � Rn, fixed, but arbitrary,

nX
kD1

˝˚
Fh .tk/� Fh .tk�1/

�
˛k; ˛k

˛
Rn D

D
Z

T

*
D�h .�/

nX
kD1

�
Œtk�1;tkŒ

.�/ ˛k;

nX
kD1

�
Œtk�1;tkŒ

.�/ ˛k

+
Rn

�h .d�/ ;
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and the latter equality shows how to approximate the norm of elements in
L2
�
T; T ;Mh

�
.

Example 8.4.37 In (Example) 8.4.10, let M1 and M2 have zero entries except,
respectively, in positions .i; i/ and .j; j/, where the values are, respectively, the
functions i and j. One then obtains that

E

	Z t1

0

i.�/Wi .
; d�/
Z t2

0

j.�/Wj .
; d�/


D
Z t1^t2

0

i.�/j.�/�i;j.�/d�:

Let thus, for i 2 Œ1 W n�, fixed, but arbitrary, and appropriate i,

hi.t/ D
Z

ITti dmW
i ;

where mW
i is the vector measure obtained from the i-th component of W. One then

has that

Fh

i;j.t/ D
Z t

0

i.�/j.�/�i;j.�/d�;

and consequently that

Mh

i;j.d�/ D i.�/j.�/�i;j.�/d� D i.�/j.�/�i;j.�/Pn
iD1 2i .�/�i;i.�/

�h.d�/:

Let ˚ be the diagonal matrix with diagonal elements i; i 2 Œ1 W n�. Then the
elements of L2

�
T; T ;Mh

�
are the equivalence classes of those functions t 7! ˛.t/

for which the integral Z
T
h˚.�/˙.�/˚.�/Œ˛.�/�; ˛.�/iRn d�

is finite. When �i;j D �i�j,
dFh

d� has the following form: ˚ ˝ ˚ , ˚i D i�i.

8.4.3 Integration with Respect to Cramér-Hida Martingales

Notation below is that of Sects. 8.4.1 and 8.4.2. Let h D fh.t/; t 2 Tg be a CH-
martingale. One shall give meaning to objects of the following form (integrals of
vector valued, deterministic functions, with respect to a vector measure, obtained
from h as elements in the range of a unitary operator, whose domain is the
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L2
�
T; T ;Mh

�
space):

Z h
˛; dmh

i
D

nX
iD1

Z
˛i dmh

i :

That meaning has its source in the following pair of relations, valid for fixed,
but arbitrary ft1; t2; t3; t4g � T; t1 < t2; t3 < t4, and the standard basis of Rn,˚
e1; : : : ; en

�
:

Mh

i;j .Œt1; t2Œ \ Œt3; t4Œ/ D
˝
hi.t2/ � hi.t1/; hj.t4/� hj.t3/

˛
H

D
Z

I
Œt1;t2Œ

dmh

i ;

Z
I
Œt3;t4Œ

dmh

j

�
H

;

Mh

i;j .Œt1; t2Œ \ Œt3; t4Œ/ D
D
�
Œt1;t2Œ

ei; �Œt3;t4Œ
ej

E
L2.T;T ;Mh/

:

The first is valid because of (Fact) 8.4.15, and the fact that the hi’s have
orthogonal increments. For the second, one has, by definition, thatD

�
Œt1;t2Œ

ei; �Œt3;t4Œ
ej

E
L2.T;T ;Mh/

D

D
Z

T

D
D�h .t/ �Œt1;t2Œ

.t/ ei; �Œt3;t4Œ
.t/ ej

E
Rn
�h .dt/ :

The latter equals Z
Œt1;t2Œ\ Œt3;t4Œ

D
D�h .t/ ei; ej

E
Rn
�h .dt/ ;

which, because of (Fact) 8.4.6, equalsD
Mh .Œt1; t2Œ \ Œt3; t4Œ/ ei; ej

E
Rn
:

Consequently, for fixed, but arbitrary f˛1; ˛2g � Rn,D
�
Œt1;t2Œ

˛1; �Œt3;t4Œ
˛2

E
L2.T;T ;Mh/

D ˝Mh .Œt1; t2Œ \ Œt3; t4Œ/ ˛1; ˛2
˛
Rn :
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The Integral with Respect to a Cramér-Hida Martingale

Define the assignment Uh W L2
�
T; T ;Mh

� �! H using the following relation:

Uh

h
I
Œt1;t2Œ

˛
i
D

nX
iD1

˛i .hi.t2/� hi.t1//

D
nX

iD1
˛im

h

i .Œt1; t2Œ/

D
nX

iD1
˛i

Z
I
Œt1;t2Œ

dmh

i

D
Z h

I
Œt1;t2Œ

˛; dmh

i
:

Then, as [(Fact) 8.4.15]*
Uh

"
I	

t
.i/
1 ;t

.i/
2

	 ˛i

#
;Uh

"
I	

t
.j/
1 ;t

.j/
2

	 ˛j

#+
H

D

D
nX

�D1

nX
�D1

˛.i/� ˛
.j/
�

˝
h�
�
t.i/2
� � h�

�
t.i/1
�
; h�

�
t.j/2
� � h�

�
t.j/1
�˛

H

D
nX

�D1

nX
�D1

˛.i/� ˛
.j/
� Mh

�;�

��
t.i/1 ; t

.i/

2

� \ �t.j/1 ; t.j/2 ��
D ˝

Mh
��

t.i/1 ; t
.i/

2

� \ �t.j/1 ; t.j/2 ��˛i; ˛j

˛
Rn ;

one has thatˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌ pX

jD1
xj Uh

"
I	

t
.j/
1 ;t

.j/
2

	 ˛j

#ˇ̌̌ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

D

D
pX

jD1

pX
kD1

xjxk
˝
Mh

��
t.j/1 ; t

.j/

2

� \ �t.k/1 ; t.k/2 �� ˛j; ˛k

˛
Rn

D
pX

jD1

pX
kD1

xjxk

Z
T

*
D�h�	

t
.j/
1 ;t

.j/
2

	 .t/ ˛j; �	
t
.k/
1 ;t

.k/
2

	 .t/ ˛k

+
Rn

d�h

D
Z

T

*
D�h .t/

pX
jD1

xj�	
t
.j/
1 ;t

.j/
2

	 .t/ ˛j;

pX
jD1

xj�	
t
.j/
1 ;t

.j/
2

	 .t/ ˛j

+
Rn

d�h:
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Consequently

pX
jD1

xjUh

 
I	

t
.j/
1 ;t

.j/
2

	˛j

!
is zero

if, and only if,

pX
jD1

xj�	
t
.j/
1 ;t

.j/
2

	 .t/ ˛j is a zero function;

and thus Uh has a unique (isometric) linear extension to the manifold generated by
the classes of functions of the following type:

t �! I
Œt1;t2Œ

.t/ ˛:

The resulting isometry is what is called the (isometric) integral, and one writes

Uh Œ˛� D
Z h

˛; dmh

i
:

Remark 8.4.38 One could define the integral in terms of orthogonally scattered
measures with values in Hn, and then “return” to H, using inner products.

Properties of the Integral

The integral just defined has the properties to be expected:

1. Let Tt D ��1; tŒ \ T, Tt D ��1; tŒ \ T ,

Mt
h D MjTt

h ;

and Qt be the projection of L2
�
T; T ;Mh

�
, defined using the following relation:

Qt Œ˛� D ITt˛:

The range of Qt and L2
�

Tt; Tt;Mt
h

�
are unitary images of each other.

2. Since h is a CH-martingale, and thus, in particular, purely nondeterministic, the
relation defining Uh shows that L2

�
T; T ;Mh

�
and L[T Œh� are unitary images of

each other.
3. Similarly, for t 2 T, fixed, but arbitrary,

L2
�

Tt; Tt;Mt
h

�
and Lt Œh�

are unitary images of each other.
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4. For ft; t1; t2g � T; t1 < t2, fixed, but arbitrary, the following relation:

Uh
�
IŒt1;t2Œ˛ .t/

� D h˛ .t/ ;mh .Œt1; t2Œ/
i

leads to, h being defined by the first equality sign below,

h.t/ D Œ˛ .t/ ; h .t/� D
h
˛ .t/ ;mh .Tt/

i
D
Z h

ITt˛.t/; dmh

i
;

so that 
h.t/;

Z h
a; dmh

i�
H

D hITt˛ .t/ ; aiL2.T;T ;Mh/

D h˛ .t/ ; a jTtiL2.T;T ;Mh/ :

8.4.4 Multiplicity of Martingales in the Wide Sense

Basically the multiplicity of a CH-martingale is determined by the spectral proper-
ties of its covariance.

From what precedes one has that

˝
D�h .t/ ˛ .t/ ; ˛ .t/

˛
Rn D

nX
iD1

ı
h

i .t/
˝
˛ .t/ ; dh

i .t/
˛2
Rn ;

so that its integral with respect to �h may be written in the following form:Z
T

˝
D�h .t/ ˛ .t/ ; ˛ .t/

˛
Rn �h .dt/ D

D
nX

iD1

Z
T

˝
dh

i .t/˝ dh

i .t/ Œ˛ .t/� ; ˛ .t/
˛
Rn �

h

i .dt/ :

It is that right-hand side which leads to the CHR of h.
Let indeed

(a) Dh

i .t/ D dh

i .t/˝ dh

i .t/;
(b) Hi D L2

�
T; T ; �h

i

�
be the Hilbert space built analogously to what is done in

Sect. 8.4.1, using Dh

i and �h

i in place of D�h and �h, and having inner product

hŒ˛1� ; Œ˛2�iHi
D
Z

T

˝
Dh

i .t/ Œ˛1 .t/� ; ˛2 .t/
˛
Rn �

h

i .dt/ I
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(c) Pi be the projection of L2
�
T; T ;Mh

�
that sends the equivalence class of ˛ to

the equivalence class of ˝
˛ .t/ ; dh

i .t/
˛
Rn dh

i .t/ I

(d) Ui W Hi �! L2
�
T; T ;Mh

�
be the map defined using the following assignment:

Ui Œ˛� D Pi Œ˛� :

It follows from those definitions that

hŒ˛1� ; Œ˛2�iHi
D
Z

T

˝
Dh

i Œ˛1.t/�; ˛2.t/
˛
Rn d�h

i

D
Z

T

˝
˛1 .t/ ; d

h

i .t/
˛
Rn

˝
˛2 .t/ ; d

h

i .t/
˛
Rn �

h

i .dt/

D
Z

T

˝
D�h .t/ ŒPi Œ˛1� .t/� ;Pi Œ˛2� .t/

˛
Rn �h .dt/

D hPi Œ˛1� ;Pi Œ˛2�iL2.T;T ;Mh/

D hUi Œ˛1� ;Ui Œ˛2�iL2.T;T Mh/ :

The map Ui is thus a partial isometry, and the map

U W ˚n
iD1Hi �! L2

�
T; T ;Mh

�
;

defined using the following assignment:�
Œ˛1� ; : : : ;

�
˛n

�� 7! U1 Œ˛1�C 
 
 
 C Un
�
˛n

�
;

is unitary. As the unitary relation is through “integrals,” for fixed, but arbitrary t 2 T,

L2
�

Tt; Tt;Mt
h

�
and ˚n

iD1 Ht
i

are the unitary image of each other (Ht
i is obtained as Hi by restricting functions to

the domain Tt).
It remains to check that the spaces Lt Œh� may be written as spaces generated by a

vector map whose components are orthogonal. To that end let

Uh W L2.T; T ;Mh/ �! H
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be defined using the following relations:

kh

i .t/ D Uh

h
Ui

h
I

Tt
dh

i

ii
D
Z h

I
Tt

dh

i ; dmh

i
:

One has then that ˝
kh

i .t1/; k
h

i .t2/
˛
H
D �h

i .Tt1^t2 / :

The map t 7! k
h

i .t/ has orthogonal increments, and basis
�
T; T ; �h

i

�
. Also, for i ¤ j,

fi; jg � Œ1 W n�, fixed, but arbitrary,

kh

i ? kh

j :

Consequently

L[T Œh� D ˚n
iD1L[T

�
kh

i

�
;

and, for t 2 T, fixed, but arbitrary,

Lt Œh� D ˚n
iD1Lt

�
kh

i

�
:

One thus sees that the multiplicity of h is at most n and is given by the rank of D�h .
h may then be given the following (CHR) representation. Let

D�h .t/ D D?
h .t/ �h .t/Dh .t/ ;

where Dh is the matrix with the dh

i ’s as columns, and �h is the diagonal matrix
whose diagonal elements are the ıh

i ’s. Then, with

mk
h
i

being the orthogonally scattered measure resulting from kh

i , and Mk
h
i the associated

measure on T , as

dMk
h
i

d�h
D �h;
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one has thatZ h
˛1; dmk

h
i

i
;

Z h
˛2; dmk

h
i

i�
H

D

D
Z

T

˝
�h .t/ ˛1 .t/ ; ˛2 .t/

˛
Rn �h .dt/

D
Z

T

D
D�h .t/D?

h .t/ ˛1 .t/ ;D
?
h .t/ ˛2 .t/

E
Rn
�h .dt/

D
Z h

D?
h˛1; dmh

i
;

Z h
D?

h˛2; dmh

i�
H

:

Consequently, when ˛1 D dh

i , Z h
dh

i ; dmk
h
i

i
D hi;

and h is thus given a representation, with respect to a martingale in the wide sense,
whose components are orthogonal.

8.4.5 Goursat Maps: Definition and Properties

Let f W T �! H be a map whose index set is an interval of R, and range, a subset of
H, a real Hilbert space.

Definition 8.4.39 f is (or has a representation as) a Goursat map (or process, when
H D L2 .˝;A;P/, and the mean is zero) of rank n 2 N when it has the following
form:

f .t/ D Œa .t/ ; h.t/� (?)

where

1. t 7! a .t/ is a map with values in Rn,
2. h is a martingale in the wide sense, with values in Hn,
3. the “inner product” of (?) means that, for fixed, but arbitrary t 2 T,

f .t/ D
nX

iD1
ai .t/ hi.t/:

h is called the martingale associated with f .

Definition 8.4.40 When the martingale associated with the Goursat map f is a CH-
martingale, f shall be called a CH-Goursat map.
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Fact 8.4.41 As, by definition, Lt Œ f � � Lt Œh�, a CH-Goursat map is purely
nondeterministic.

Remark 8.4.42 CH-Goursat maps are introduced for two reasons. The first is that
the Cramér-Hida representation has been derived assuming non-determinism and
continuity to the left. The second is that isometric integration has a simpler notation
with those assumptions. Thus every time an isometric integral is used, implicitly the
map involved will be of the CH kind.

Definition 8.4.43 When, for fixed, but arbitrary t 2 T, Lt Œ f � D Lt Œh�, the Goursat
map f is said to be proper.

As explained in the next statement, a Goursat map may always be given a proper
form.

Proposition 8.4.44 f .t/ D Œa .t/ ; h.t/� be a Goursat map of rank n, and Pf
t be the

projection with range Lt Œ f �. Then:

1. hf .t/ D Pf
t Œh.t/� is a martingale in the wide sense, with respect to f , as well as

with respect to itself;

2. f .t/ D
h
a .t/ ; hf .t/

i
, and

h
a .t/ ; hf .t/

i
is a proper Goursat map of rank n;

3. f .t/ D Œa .t/ ; h.t/� is proper if, and only if, for fixed, but arbitrary t 2 T,
Pf

t Œh.t/� D h.t/.

Proof Let ft1; t2g � T; t1 < t2, be fixed, but arbitrary. Then

Pf
t1

h
hf .t2/

i
D Pf

t1P
f
t2 Œh.t2/� D Pf

t1 Œh.t2/� :

As, for fixed, but arbitrary t 2 T, Lt Œ f � � Lt Œh�, Ph
t denoting the projection whose

range is Lt Œh�,

Pf
t1 Œh.t2/� D Pf

t1P
h
t1 Œh.t2/� D Pf

t1 Œh.t1/� D hf .t1/:

Thus

Pf
t1

h
hf .t2/

i
D hf .t1/;

and, since Lt

h
hf

i
� Lt Œ f �, denoting P

hf
t the projection whose range is Lt

h
hf

i
,

P
hf
t1

h
hf .t2/

i
D P

hf
t1Pf

t1

h
hf .t2/

i
D P

hf
t1

h
hf .t1/

i
D hf .t1/:

Item 1 thus obtains.
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From the definitions, one has furthermore that

f .t/ D Pf
t Œ f .t/� D

nX
iD1

ai .t/Pf
t Œhi.t/� D

h
a; hf .t/

i
:

Then

Lt Œ f � � Lt

h
hf

i
� Lt Œ f � ;

and item 2 obtains.
Suppose f is proper. Then Pf

t D Ph
t , and thus Pf

t Œh.t/� D Ph
t Œh.t/� D h.t/.

Conversely, when Pf
t Œh.t/� D h.t/, then

f .t/ D Œa .t/ ; h.t/� D �a .t/ ;Pf
t Œh.t/�

�
;

so that f is proper by item 2. ut
Goursat maps have the following properties.

Fact 8.4.45 A Goursat map f has a covariance of the following form:

Cf .t1; t2/ D hf .t1/; f .t2/iH D
˝
Fh .t1 ^ t2/ a .t1/ ; a .t2/

˛
Rn :

Fact 8.4.46 For a Goursat map f , and ft1; t2g � T; t1 � t2, fixed, but arbitrary,

Pf
t1 Œ f .t2/� D Œa .t2/ ; h.t1/� :

Proof Fix arbitrarily � 2 T; � � t1. Then indeed, using (Fact) 8.4.45,

hŒa .t2/ ; h.t1/� ; f .�/iH D hŒa .t2/ ; h.t1/� ; Œa .�/ ; h.�/�iH
D ˝

Fh .�/ a .�/ ; a .t2/
˛
Rn

D Cf .t2; �/

D hf .t2/; f .�/iH :

ut
The prediction from the past of a Goursat map has thus a rather simple expression

provided one knows its ingredients. The RKHS properties of f are closely related to
the theory of Goursat maps, as shown by the following result.

Fact 8.4.47 Let f W T �! H be a map.

1. One may define a map Lf W H �! RT using the following assignment:

t 7! Lf Œh�.t/ D hh; f .t/iH:
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The range of Lf is the RKHS of Cf , and Lf , restricted to L[T Œ f �, is unitary, with

Lf Œ f .t/� D Cf .
; t/:

It follows that, when g W T �! H is another map such that

Cg.t1; t2/ D Cf .t1; t2/;

then g.t/ and f .t/ are unitarily related.
2. Let f be the Goursat map t 7! Œa.t/; h.t/�. Let then

F W T �! L2
�
T; T ;Mh

�
be defined using the following relation:

F .t/ D a .t/ I
Tt
;

and LF W L2
�
T; T ;Mh

� �! RT , using the following one:

t 7! LFŒ˛�.t/ D h˛;F .t/iL2.T;T ;Mh/ D
Z

Tt

˝
Dh.�/Œa.t/�; ˛.�/

˛
Rn �h.d�/:

The range of LF is H.Cf ;T/, as [(Definition) 8.4.4, (Fact) 8.4.6]

hF .t1/ ;F .t2/iL2.T;T ;Mh/ D

D
Z

Tt1\ Tt2

˝
D�h .�/ a .t1/ ; a .t2/

˛
Rn �h .d�/

D ˝
Fh .t1 ^ t2/ a .t1/ ; a .t2/

˛
Rn

D Cf .t1; t2/ :

Let HF be the (closed) subspace generated linearly in L2
�
T; T ;Mh

�
by the

following family: fa.t/ITt ; t 2 Tg. H.Cf ;T/ is the unitary image of LF restricted
to HF, and H?F is the kernel of LF.

The proposition which follows characterizes proper CH-Goursat maps in terms
of their ingredients.
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Proposition 8.4.48 Let the class of ˛ be in L2
�
T; T ;Mh

�
. The CH-Goursat map

f .t/ D Œa .t/ ; h.t/� is proper if, and only if, whenever, for fixed, but arbitrary t 2 T,Z
T�

˝
D�h .u/ ˛ .u/ ; a .�/

˛
Rn �h .du/ D 0; � � t;

˛ is a null function.

Proof The class of the “constant” a.�/ belongs to L2
�
T; T ;Mh

�
[(Fact) 8.4.6] as

Z
T�

˝
D�h .u/ a .�/ ; a .�/

˛
R
�h .du/ D ˝Fh .�/ a .�/ ; a .�/

˛
R
D Cf .�; �/ ;

and thus the integral of the statement’s condition is well defined. One has that
Lt Œ f � � Lt Œh�. Let k 2 Lt Œh�� Lt Œ f � be fixed, but arbitrary. Then [Sect. 8.4.3]:

k D
Z h

I
Tt
˛k; dmh

i
; ˛k 2 L2

�
T; T ;Mh

�
;

f .�/ D
Z h

I
T�

a .�/ ; dmh

i
; � 2 T; � � t;

hk; f .�/iH D
Z

T�

˝
D�h .u/ ˛

k .u/ ; a .�/
˛
Rn �h .du/ :

Thus the statement’s condition is equivalent to k D 0H , which is equivalent to
Lt Œ f � D Lt Œh�. ut

In the language of (Fact) 8.4.47, the Goursat map is proper when the map LF is
an injection.

Fact 8.4.49 A proper Goursat map has the multiplicity properties of its associated
martingale, and these are determined by the spectral properties of the latter’s
structure matrix. In particular, when f is a proper CH-Goursat map, the proper
canonical CHR of f , that is, an expression of the form

f .t/ D
nX

iD1

Z
F.i/

t dmi;

is obtained setting

1. mi D mk
h
i ; kh

i D
R h

dh

i ; dmh

i
,

2. F.i/
t D

Pn
jD1 aj .t/

h
�Tt

dh

i;j

i
L2
�

T;T ;�h
i

�,
where the notation and meaning of the diverse ingredients are those of the present,
and previous sections.
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Remark 8.4.50 A CH-Goursat map f may always be expressed in the following
form:

f .t/ D
nX

iD1

Z
F.i/

t dmh

i ; F.i/
t D ai .t/ I

Tt
:

The latter is however not necessarily the CHR representation of f . It will be when f
is proper, and the associated martingale has nonzero eigenvalue functions.

Fact 8.4.51 For fixed, but arbitrary ft1; t2g � T; t1 < t2, adding and subtracting
Œa .t2/ ; h.t1/�, one obtains the orthogonal decomposition

f .t2/� f .t1/ D Œa .t2/ ; h.t2/� h.t1/�C Œa .t2/ � a .t1/ ; h.t1/� ;

from which it follows that

jjf .t2/ � f .t1/jj2H D jjŒa .t2/ ; h.t2/� h.t1/�jj2H
C jjŒa .t2/ � a .t1/ ; h.t1/�jj2H
D ˝˚

Fh .t2/ � Fh .t1/
�

a .t2/ ; a .t2/
˛
Rn

C ˝
Fh .t1/ fa .t2/� a .t1/g ; fa .t2/� a .t1/g

˛
Rn :

Consequently:

1. jjf .t2/� f .t1/jj2H �
˝˚

Fh .t2/� Fh .t1/
�

a .t2/ ; a .t2/
˛
Rn .

2. Let

(a) Fh .t/ DPn
iD1 

h

i .t/ f h

i
.t/˝ f h

i
.t/,

(b) h
m .t/ denote the smallest, nonzero eigenvalue,

(c) Qt
m be the projection whose range is spanned by the setn

f h

1
.t/ ; : : : ; f h

m
.t/
o
W

then jjf .t2/ � f .t1/jj2H � h
m .t1/

ˇ̌̌̌
Qt1

m Œa .t2/� a .t1/�
ˇ̌̌̌ 2
Rn .

3. When f is a CH-Goursat map, and a is continuous to the left, f is continuous to
the left.

Fact 8.4.52 The map t 7! h
m .t/ is increasing.

Proof Indeed, as [(Proposition) 8.4.30], for ft1; t2g � T; t1 < t2, fixed, but arbitrary,
Fh .t2/� Fh .t1/ is positive definite, then, for fixed, but arbitrary x 2 Rn,˝

Fh .t2/ x; x
˛
Rn �

˝
Fh .t1/ x; x

˛
Rn ;

so that, by the Rayleigh-Ritz theorem [170, p. 319], h
m .t2/ � h

m .t1/. ut
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Fact 8.4.53 When the martingale in the wide sense h, associated with f , is non-
singular, the following property obtains: when f is continuous (continuous to the left,
satisfies a local Hölder condition), a is continuous (continuous to the left, satisfies
a local Hölder condition), for then h

m .t/ > 0, and the validity of the claim follows
from (Fact) 8.4.51.

Let f be any function which has a limit to the left at every point of its domain.
Then the function f� is the function of limits to the left of f .

Fact 8.4.54 When the martingale in the wide sense h, associated with f , is non-
singular, the following properties obtain:

when, for t 2 T, the following limit exits in H:

D� Œ f � .t/ D lim
T3�""t

f .t/ � f .�/

t � � ;

then the following limit exists:

D� Œa� .t/ D lim
T3�""t

a .t/ � a .�/

t � � ;

and, furthermore, in H,

D� Œ f � .t/ D ŒD� Œa� .t/ ; h�.t/� :

Proof Since h is non-singular, one has, from (Fact) 8.4.51, and the differentiability
assumption on f , that the family of ratios (t fixed, � variable, � < t) of the form

jja .t/ � a .�/jjRn

t � �
is bounded. There is thus an increasing sequence f�n; n 2 Ng � T such that

lim
T3�n""t

a .t/ � a .�n/

t � �n

exists. As Fh is monotone increasing, the following limit exists:

lim
T3�n""t

h.�n/:

Thus

lim
T3�n""t

Œa .t/ � a .�n/ ; h.�n/�

t � �n
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exists. Subtracting, and then adding Œa.�n/; h.�n/�, defining kn using the first equal
sign below,

kn D Œa .t/ ; h.t/� h.�n/�

t � �n
D f .t/ � f .�n/

t � �n
� Œa .t/ � a .�n/ ; h.�n/�

t � �n
: (?)

Since [(Fact) 8.4.46] Œa .t/ ; h.�n/� D Pf

�n
Œ f .t/�, the ratios in (?) belong to Lt Œ f �.

From what precedes, they have a limit, say k 2 Lt Œ f �. Now, for fixed, but arbitrary
t0 2 T; t0 < t,

hf .t0/; kiH D lim
n
hf .t0/; kniH

D lim
n

hŒa.t0/; h.t0/� ; Œa.t/; h.t/� h .�n/�iH
t � �n

:

As, for n 2 N large enough, h.t/ � h.�n/ ? h.t0/,

k ? f .t0/; t0 < t:

Consequently k ? L�t Œ f �, and, since, by the assumption that the derivative to the
left exists, f is continuous to the left, L�t Œ f � D Lt Œ f �, and k ? Lt Œ f �. But, as seen
above, k 2 Lt Œ f �. Thus k D 0H, and

D� Œ f � .t/ D lim
n

Œa .t/ � a .�n/ ; h.�n/�

t � �n
: (??)

But that equality obtains irrespectively of the sequence chosen, and thus, letting

�t;� Œa� D a .t/ � a .�/

t � � ;

D� Œ f � .t/ D lim
T3�""t

Œ�t;� Œa� ; h.�/� ;

jjD� Œ f � .t/jj2H D lim
T3�""t

˝
Fh .�/�t;� Œa� ; �t;� Œa�

˛
Rn ;

• as ˝
Fh .�/�t;� Œa� ; �t;� Œa�

˛
Rn D

D
D
F�h .t/�t;� Œa� ; �t;� Œa�

E
Rn

�
Dn

F�h .t/ � Fh .�/
o
�t;� Œa� ; �t;� Œa�

E
Rn
;

• that the norm of �t;� Œa� is bounded,
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• that h has limits to the left,

jjD� Œ f � .t/jj2H D lim
T3�""t

D
F�h .t/�t;� Œa� ; �t;� Œa�

E
Rn
:

As F�h .t/ is strictly positive definite, limT3�""t �t;� Œa� exists. One finally uses (??).
ut

Fact 8.4.55 When the martingale in the wide sense h, associated with f , is non-
singular, the following property obtains:

when f is differentiable n times, its n-th derivative f .n/ has the following form:

f .n/.t/ D �a.n/ .t/ ; h.t/� ;
a.n/ .t/ denoting the n-th derivative of a at t 2 T.

Proof Let f�; t; �g � T; � < t; � . Then

Pf

� Œ f .�/� f .t/� D Pf

� ŒŒa.�/; h.�/�� � Pf

� ŒŒa.t/; h.t/��

D Œa.�/; h.�/� � Œa.t/; h.�/�
D Œa.�/ � a.t/; h.�/� :

Consequently

ˇ̌̌
ˇ
ˇ̌̌
ˇPf

�

	
f .�/ � f .t/

� � t


ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

D

Fh .�/

a .�/� a .t/

� � t
;

a .�/ � a .t/

� � t

�
Rn

;

so that (with a0 D a.1/) a0 .t/ exists, and

Pf

� ŒD Œ f � .t/� D
�
a0 .t/ ; h.�/

�
:

But ˝�
a0 .t/ ; h.�/

�
; Œa .�/ ; h.�/�

˛
H
D ˝

Fh .�/ a .�/ ; a0 .t/
˛
Rn

D ˝�
a0 .t/ ; h.t/

�
; Œa .�/ ; h.�/�

˛
H ;

so that, using the operational definition of projection, for � < t, fixed, but arbitrary,

Pf

� ŒD Œ f � .t/� D Pf

�

��
a0 .t/ ; h.t/

��
:

Consequently, the projections of respectively D Œ f � .t/ and Œa0 .t/ ; h.t/� onto L�t Œ f �
are equal. Since f is continuous, the projections onto Lt Œ f � are equal. Since
D Œ f � .t/ D D� Œ f � .t/, D Œ f � .t/ 2 Lt Œ f �, and, since one may choose an h that yields
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a proper representation of f [(Proposition) 8.4.44], the “inner product” also belongs
to Lt Œ f �, and thus the required equality in H obtains:

D Œ f � .t/ D �a0 .t/ ; h.t/� :
ut

Definition 8.4.56 When the Goursat map f has an associated non-singular mar-
tingale in the wide sense, and that, for fixed, but arbitrary t < tr, there exists
ft1; : : : ; tng � T such that

(a) t � t1 < t2 < 
 
 
 < tn�1 < tn,
(b) the matrix A Œt j t1; : : : ; tn� D

2
666664

a1 .t1/ a1 .t2/ 
 
 
 a1 .tn�1/ a1 .tn/
a2 .t1/ a2 .t2/ 
 
 
 a2 .tn�1/ a2 .tn/

:::
:::

:::
:::

an�1 .t1/ an�1 .t2/ 
 
 
 an�1 .tn�1/ an�1 .tn/
an .t1/ an .t2/ 
 
 
 an .tn�1/ an .tn/

3
777775

is non-singular,

then the Goursat map f is said to be non-singular.

Fact 8.4.57 Suppose f has i�1 derivatives, and that, for t 2 T, fixed, but arbitrary,
the set ˚

f .t/; f .1/.t/; : : : ; f .i�1/.t/
�

is linearly independent. Then, when the associated martingale is non-singular:

1. When f .i�1/ is continuous, the dimension of the subspace LCt Œh�\L?t Œh� is at most
n � i.

2. When there exists ˛ > 1
2

for which f .i�1/ satisfies a Lipschitz condition of order
˛, the multiplicity of h is at most n � i.

Proof Letting f .0/.t/ D f .t/, and a.0/ .t/ D a .t/, one has that [(Fact) 8.4.55]

i�1X
jD0

˛jf
.j/.t/ D

2
4 i�1X

jD1
˛j a

.j/ .t/ ; h.t/

3
5 ;

and thus that ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌ i�1X

jD1
˛jf

.j/.t/

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ̌̌2
H

D
*

Fh .t/
i�1X
jD1

˛j a
.j/ .t/ ;

i�1X
jD1

˛j a
.j/ .t/

+
Rn

:
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Since Fh .t/ is assumed strictly positive definite, linear independence of˚
f .t/; f .1/.t/; : : : ; f .i�1/.t/

�
is equivalent to linear independence of˚

a .t/ ; a.1/ .t/ ; : : : ; a.i�1/ .t/
�
:

Now, for ı > 0, and j 2 Œ0 W i� 1�, fixed, but arbitrary, using (Facts) 8.4.51
and 8.4.55,ˇ̌̌̌

f .j/.tC ı/ � f .j/.t/
ˇ̌̌̌ 2

H
D

D ˝˚
Fh .tC ı/� Fh .t/

�
a.j/ .t C ı/ ; a.j/ .t C ı/˛

Rn

C ˝
Fh .t/

˚
a.j/ .tC ı/ � a.j/ .t/

�
; a.j/ .tC ı/� a.j/ .t/

˛
Rn :

Since f and its derivatives are assumed to be continuous, the derivatives of a are
continuous [(Fact) 8.4.53], and thus, letting ı go to zero, one has that

0 D
Dn

FCh .t/ � Fh .t/
o

a.j/ .t/ ; a.j/ .t/
E
Rn
:

But then the kernel of

FCh .t/ � Fh .t/

contains at least i independent vectors, and thus its rank is at most n � i. Let˚
x1; : : : ; xi

� � Rn be orthonormal elements in the kernel of FCh .t/ � Fh .t/, and˚
k1; : : : ; kp

� � LCt Œh� \ L?t Œh�

be a basis [(Fact) 8.4.18].

Let
n
x; y
o
� Rn be fixed, but arbitrary. Then

*
nX

iD1
xi
�
hCi .t/ � hi.t/

�
;

nX
iD1

yi
�
hCi .t/ � hi.t/

�+
H

D
Dh

FCh .t/ � Fh.t/
i

x; y
E
Rn
;

and, as

nX
iD1

xi
�
hCi .t/� hi.t/

� D nX
iD1

xi

pX
jD1

˛
.i/

j ki

D
pX

jD1
kj

nX
iD1

xi˛
.i/

j
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D
pX

jD1

˝
x; ˛j

˛
Rn kj;

*
nX

iD1
xi
�
hCi .t/ � hi.t/

�
;

nX
iD1

yi
�
hCi .t/ � hi.t/

�+
H

D
pX

jD1

˝
x; ˛j

˛
Rn

D
y; ˛j

E
Rn
:

Thus

Dh
FCh .t/ � Fh

i
x; x
E
Rn
D

pX
jD1

˝
x; ˛j

˛2
Rn :

If one chooses the xj’s for x, one has that
˚
˛1; : : : ; ˛p

�
belongs to the subspace that

is orthogonal to that spanned by
˚
x1; : : : ; xi

�
, and thus p � n � i.

Suppose now that f .i�1/ satisfies a Lipschitz condition of order ˛ > 1
2
. Generally,

when, on ŒA;B�, ' has derivative ' 0 which satisfies a Lipschitz condition of order
˛,

• when ˛ > 1, ' is constant, as its derivative is zero, and thus ' satisfies a Lipschitz
condition of order ˛;

• when ˛ � 1,

j' .b/� ' .a/j D
ˇ̌̌
ˇ
Z b

a
' 0.x/dx

ˇ̌̌
ˇ

�
Z b

a

˚ˇ̌
' 0 .x/ � ' 0 .a/ˇ̌ dxC ˇ̌' 0 .a/ˇ̌� dx

� �
Z b

a
.x � a/˛ dxC ' 0 .a/ .b � a/

� � .b� a/1C˛

1C ˛ C ˇ̌' 0 .a/ˇ̌ .b � a/

� .b � a/˛
(
�

B � A

1C ˛ C sup
x2ŒA;B�

ˇ̌
' 0 .x/

ˇ̌
.B � A/1�˛

)
;

and thus ' satisfies a Lipschitz condition of order ˛.

Thus, for Œtl; tr� � T, and j 2 Œ0 W i� 1�, fixed, but arbitrary, there is � 2 RC such
that, for fixed, but arbitrary ft1; t2g � Œtl; tr�,ˇ̌̌̌

f .j/.t1/ � f .j/.t2/
ˇ̌̌̌

H
� � jt1 � t2j˛ :
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Then, using (Fact) 8.4.51,X
kWtl�tk�tr

˝˚
Fh .tk/ � Fh .tk�1/

�
a.j/ .tk/ ; a

.j/ .tk/
˛
Rn �

�
X

kWtl�tk�tr

ˇ̌̌̌
f .j/.tk/� f .j/.tk�1/

ˇ̌̌̌ 2
H

� �2
X

kWtl�tk�tr

jtk � tk�1j2˛ :

Since 2˛ > 1 by assumption, when the segments of the partition of Œtl; tr� by the tk’s
have length which tends to zero, the right-hand side member of the latter inequality
vanishes, and [(Remark) 8.4.36] the left term tends to the integralZ

Œtl;tr �

˝
Mh .d�/ a.j/ .�/ ; a.j/ .�/

˛
Rn D

D
Z
Œtl;tr �

˝
D�h .�/ a.j/ .�/ ; a.j/ .�/

˛
Rn �h .d�/ :

Since Œtl; tr� is arbitrary, it is now the kernel of D�h .t/ that contains at least i
independent vectors (almost surely with respect to �h). ut

8.4.6 Goursat and Markov Maps of Order n in the Wide Sense

The Markov property (of order n, in the wide sense) characterizes a particular
feature of the prediction map: the projection of the “future” onto the “past” yields a
subspace whose dimension remains constant through time. As that property incar-
nates in Goursat maps, one is therefore given, with those, a useful representation
of Markov maps, of order n 2 N, in the wide sense, and of the scope of Goursat
processes.

Definition 8.4.58 Let T � R be an interval, and H, a real Hilbert space. The map
f W T �! H is Markov of order n 2 N in the wide sense whenever, for fixed, but
arbitrary ftl; trg � T; tl � tr, the set˚

Pf
tl Œ f .t/� ; t � tr

�
contains exactly n linearly independent elements.

Proposition 8.4.59 f W T �! H is Markov of order n in the wide sense if, and only
if, it is a proper, non-singular, Goursat map of rank n. Let that representation be

f .t/ D Œa .t/ ; h.t/� :
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When

f .t/ D Œb .t/ ; k.t/�

is another proper Goursat representation of f , there exists an invertible matrix M
such that, for t 2 T, fixed, but arbitrary,

k.t/ D M Œh.t/� ;

and

b .t/ D fM?g�1 Œa .t/� :

Proof Suppose that f .t/ D Œa .t/ ; h.t/� is proper and non-singular, of rank n.
As seen [(Fact) 8.4.46], for f�; tg � T; � � t, fixed, but arbitrary, one has that

Pf

� Œ f .t/� D Œa .t/ ; h.�/� :

Then, given fixed, but arbitrary
˚
�1; : : : �p

� � T; ˛ 2 Rp,

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ pX

iD1
˛i Œa .�i/ ; h.�/�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D
*

Fh .�/

pX
iD1

˛i a .�i/ ;

pX
iD1

˛i a .�i/

+
Rp

:

Thus, since there are at most n linearly independent vectors of type a .�/, then, for
ftl; trg � T; tl � tr � t, fixed, but arbitrary, the family˚

Pf
tl Œ f .t/� ; t � tr

� D fŒa .t/ ; h.tl/� ; t � trg

contains at most n independent elements. But, as f is non-singular, h is non-singular,
and has thus linearly independent components, and there exists a non-singular
matrix A Œtl j t1; : : : ; tn� [(Definition) 8.4.56]. As

A Œtl j t1; : : : ; tn� Œh.tl/� D

2
64
Œa .t1/ ; h.tl/�

:::

Œa .tn/ ; h.tl/�

3
75 D

2
64

Pf
tl Œ f .t1/�
:::

Pf
tl Œ f .tn/�

3
75 ;

the right-hand side of the latter equality has linearly independent components. f is
thus Markov of order n in the wide sense.
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Proof Suppose that f is Markov of order n in the wide sense.
Let ft1; t2g � T; t1 � t2, be fixed, but arbitrary. Define

L Œt1; t2� D
˚
Pf

t1 Œ f .t/� ; t � t2
�
;

L Œt1; t2� D V ŒL Œt1; t2��:

In particular, the set

L Œt; t� D ˚Pf
t Œ f .�/� ; � � t

�
contains f .t/, and all the projections onto Lt Œ f � of the values of f .�/, for � following
t. Thus

L Œt; t� � Lt Œ f � : (?)

Since, by assumption, L Œt1; t2� contains exactly n linearly independent elements,
L Œt1; t2� has dimension n.

Still with t1 � t2 in T, fixed, but arbitrary, L Œt1; t1� and L Œt2; t2� are subspaces
of H of dimension n, and one may define Bt2;t1 W L Œt2; t2� �! L Œt1; t1� using the
following relation:

Bt2;t1

�
Pf

t2 Œ f .t/�
� D Pf

t1 Œ f .t/� ; t � t2:

Indeedˇ̌̌̌
Bt2;t1

�
Pf

t2 Œ f .t/�
�ˇ̌̌̌

H
D ˇ̌̌̌Pf

t1 Œ f .t/�
ˇ̌̌̌

H
D ˇ̌̌̌Pf

t1P
f
t2 Œ f .t/�

ˇ̌̌̌
H
� ˇ̌̌̌Pf

t2 Œ f .t/�
ˇ̌̌̌

H
;

so that Bt2;t1 is well defined on L Œt2; t2�, linear and bounded. It has thus a linear and
bounded extension to L Œt2; t2�, and a bounded adjoint. But, for � � t1 in T, fixed,
but arbitrary,˝

Bt2;t1

�
Pf

t2
Œ f .t/�

�
;Pf

t1
Œ f .�/�

˛
H
D ˝

Pf
t1
Œ f .t/� ;Pf

t1
Œ f .�/�

˛
H

D ˝
Pf

t2 Œ f .t/� ;P
f
t1 Œ f .�/�

˛
H
;

so that the adjoint is the identity, and consequently Bt2;t1 is onto [250, p. 81]. As

dim L Œt1; t1� D dim L Œt2; t2� D dim L Œt1; t2� D n;

Bt2;t1 is a bijection [250, p. 81]. Furthermore, for k 2 L Œt2; t2�,

Bt2;t1 Œk� D Pf
t1 Œk� :
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Let t0 2 T be fixed, but arbitrary, and let

fk0;1; : : : ; k0;ng

be a basis of L Œt0; t0�. For fixed, but arbitrary t 2 T, and i 2 Œ1 W n�, set

hi.t/ D Pf
t Œk0;i� :

Since (?) L Œt0; t0� � Lt0 Œ f �, for fixed, but arbitrary t � t0,

hi.t/ D Pf
t Œk0;i� D k0;i:

h shall be the map with components hi. Those components being, at time t, in Lt Œ f �,
one has that Lt Œh� � Lt Œ f �.

In T, for t � t0, fixed, but arbitrary, hi.t/ D k0;i, so that h.t/ has linearly
independent components. When t < t0, L Œt; t� is the image by Bt0;t of L Œt0; t0�, and

hi.t/ D Pf
t Œk0;i� D Bt0;t Œk0;i� ;

so that again h.t/ has linearly independent components. Thus the components of
h.t/ form a basis of L Œt; t�, which in turn contains f .t/, so that h is non-singular, and,
for some fa1.t/; : : : ; an.t/g,

f .t/ D Œa.t/; h.t/� :

In particular f .t/ 2 Lt Œh�, and f is a proper Goursat process, provided h is a
martingale in the wide sense.

Let t 2 T be fixed, but arbitrary. Since f is assumed to be Markov of order n,
there exits ft1; : : : ; tng � T such that

t1 < 
 
 
 < tn; t1 � t;
˚
Pf

t Œ f .t1/� ; : : : ;P
f
t Œ f .tn/�

�
linearly independent.

Furthermore, as Pf
t

�
hj.ti/

� D Pf
tP

f
ti

�
k0;j
� D Pf

t

�
k0;j
� D hj.t/,

Pf
t Œ f .ti/� D

nX
jD1

aj .ti/Pf
t

�
hj.ti/

� D nX
jD1

aj.ti/hj.t/;

and thus

nX
iD1

˛iP
f
t Œ f .ti/� D

nX
iD1

˛i

8<
:

nX
jD1

aj.ti/hj.t/

9=
; D

nX
jD1

(
nX

iD1
˛i aj .ti/

)
hj.t/:
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Since the components of h.t/ are linearly independent, the independence of˚
Pf

t Œ f .t1/� ; : : : ;P
f
t Œ f .tn/�

�
is equivalent to that of fa .t1/ ; : : : ; a .tn/g, so that, again, f is a non-singular Goursat
process, provided h is a martingale in the wide sense.

It remains thus to check that h is a martingale in the wide sense. Let ft1; t2g in T,
t1 < t2, be fixed, but arbitrary. There are three cases to consider (t0 is the value used
for the definition of h W hi.t0/ D Pf

t0 Œk0;i� D k0;i):

• t2 � t0
One has, by definition, that

Pf
t1 Œh.t2/� D Pf

t1

�
Pf

t2 Œh.t0/�
� D Pf

t1 Œh.t0/� D h.t1/:

• t1 � t0 < t2
One has, by definition, that

Pf
t1
Œh.t2/� D Pf

t1
Œh.t0/� D h.t1/:

• t0 < t1
One has, by definition, that

Pf
t1 Œh.t2/� D Pf

t1 Œh.t0/� D h.t0/ D h.t1/:

Proof Suppose that f .t/ D Œb .t/ ; k.t/� is also a proper representation.
Let f�; tg � T; � � t, be fixed, but arbitrary. Then, since the representation is

proper, and h is a martingale in the wide sense,

Pf

� Œ f .t/� D
�
a .t/ ;Pf

� Œh.t/�
� D �a .t/ ;Ph

� Œh.t/�
� D Œa .t/ ; h.�/� :

Choosing f�; t1; : : : ; tng � T; � < t1 < 
 
 
 < tn, fixed, but arbitrary, t, the vector
with components t1; : : : ; tn, A Œt�? the matrix whose columns are a .t1/ ; : : : ; a .tn/,
one gets that

2
64

Pf

� Œ f .t1/�
:::

Pf

� Œ f .tn/�

3
75 D

2
64
Œa .t1/ ; h.�/�

:::

Œa .tn/ ; h.�/�

3
75 D A Œt� Œh.�/� :

Then, for fixed, but arbitrary ˛ 2 Rn,

nX
iD1

˛i P
f

� Œ f .ti/� D
"

nX
iD1

˛i a .ti/ ; h.�/

#
:
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Consequently, since f is Markov of order n in the wide sense, the matrix A Œt�
may be assumed to be invertible. A similar expression may be obtained for the
representation f .t/ D Œb .t/ ; k.t/�, so that

B Œt� Œk.�/� D A Œt� Œh.�/� ; B Œt� non-singular,

or

k.�/ D fB Œt�g�1 A Œt� Œh.�/� :

Let now f�0; �1; : : : ; �n; t1; : : : ; tng � T; �0 < �1 < 
 
 
 < �n < t1 < 
 
 
 < tn, be
fixed, but arbitrary. Then, from the above,

k.�0/ D fB Œ��g�1 A Œ�� Œh.�0/� ;

and

k.�0/ D fB Œt�g�1 A Œt� Œh.�0/� ;

so that h
fB Œ� �g�1 A Œ�� � fB Œt�g�1 A Œt�

o
Œh.�0/� D 0Hn :

Since h is non-singular, the two matrix products in the latter relation are equal, and
define a non-singular matrix M, independent of the argument. Then

Œa .t/ ; h.t/� D f .t/

D Œb .t/ ; k.t/�
D Œb .t/ ;Mh.t/�

D ŒM?b .t/ ; h.t/� :

Since h is non-singular, a .t/ D M?b .t/. ut
Remark 8.4.60 Let f be a Markov map of order n in the wide sense with proper
representation

f .t/ D Œa .t/ ; h.t/� :

Let now

f .t/ D Œb .t/ ; k.t/�



664 8 Some Facts About Multiplicity

be any other representation of f , and

f .t/ D Œb .t/ ; l.t/�

be its proper version, that is,

l.t/ D Pf
t Œk.t/� :

As there is an invertible matrix M such that

l.t/ D M Œh.t/� ;

and that

b .t/ D fM?g�1 Œa .t/� ;

it follows that

f .t/ D �a .t/ ;M�1l.t/� D �a .t/ ;M�1Pf
t Œk.t/�

�
:

Since M is invertible, f .t/ D �a .t/ ;M�1Pf
t Œk.t/�

�
is a proper representation.

Furthermore, since, for fixed, but arbitrary ˛ 2 Rn, and ˇ D fM?g�1 ˛,


Fh

M�1P
f
t Œk.t/�

i˛; ˛
�
Rn

D ˇ̌̌̌ �
˛;M�1Pf

t Œk.t/�
�ˇ̌̌̌ 2

H

D
ˇ̌̌̌̌̌ h
ˇ;Pf

t Œk.t/�
iˇ̌̌̌̌̌ 2

H

D
nX

iD1

nX
jD1

ˇiˇj
˝
Pf

t Œki.t/� ;P
f
t

�
kj.t/

�˛
H

D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌Pf

t

"
nX

iD1
ˇiki.t/

#ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
ˇiki.t/

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

D
ˇ̌̌̌̌̌ h
ˇ; k.t/

iˇ̌̌̌̌̌ 2
H

D ˇ̌̌̌ �
˛;M�1k.t/

�ˇ̌̌̌ 2
H
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D
D
F
ŒM�1k.t/�

˛; ˛
E
Rn
;

it follows that

Fh
M�1P

f
t k.t/

i � F
ŒM�1k.t/�

:

Thus, since M�1Pf
tk.t/ D Pf

tM
�1k.t/, the proper representations of f are obtained

while choosing, for the solution F of the following equation:

Fh Œa .t/� D F .t/ Œa .t/� ;

one that is minimal for the order given by domination for matrices (denoted�).

8.4.7 Covariance Kernels of Markov Maps of Order n
in the Wide Sense

This section’s content is motivated by the following remark. Let f W T �! H be a
map with a covariance kernel of the following form: for fixed, but arbitrary ft1; t2g
� T,

Cf .t1; t2/ D hv .t1 ^ t2/ ; u .t1 _ t2/iRn :

Let V Œv j �� be the subspace of dimension at most n generated by the real valued
functions fv1; : : : ; vng, when their domain is restricted to the interval Œ0; ��.

Let F W T �! H be given as F.t/ D f .t/, and LF W H �! RT as

LF Œh� .�/ D hh;F.�/iH :
Let, for f�; tg � T; � � t, fixed, but arbitrary,

�;t.
/ D LF
�
Pf

� Œ f .t/�
� D ˝Pf

� Œf .t/� ; f .
/
˛
H
2 H.Cf ;T/:

When � � � ,

E� Œ�;t� D �;t.�/

D ˝
Pf

� Œ f .t/� ; f .�/
˛
H

D hf .t/; f .�/iH
DPn

iD1 ui .t/ vi .�/

D E�
�Pn

iD1 ui .t/ vi
�
:



666 8 Some Facts About Multiplicity

When � > � ,

Pf

� Œ f .�/� D lim
p

X
˛
.p/
j Œ� � f

�
�
.p/
j Œ� �

�
; �

.p/
j Œ� � � �;

so that

E� Œ�;t� D �;t.�/

D ˝
Pf

� Œ f .t/� ; f .�/
˛
H

D ˝
f .t/;Pf

� Œ f .�/�
˛
H

D lim
p

P
˛
.p/
j Œ� �

D
f .t/; f

�
�
.p/
j Œ� �

�E
H

D lim
p

P
˛
.p/
j Œ� �

Pn
iD1 ui.t/vi

�
�
.p/
j Œ� �

�
D lim

p
E
�
.p/
j Œ� �

hP
˛
.p/
j Œ� �

Pn
iD1 ui.t/vi

i
:

Thus �;t 2 V Œv j ��. As a consequence, one has that the subspace generated by the
following family: ˚

Pf

� Œf .t/� ; t � ��
has dimension at most n. Indeed, since on elements of the form Pf

� Œ f .t/�, LF is
unitary, that subspace is isometric to a subspace of V Œv j ��.
Definition 8.4.61 Let ft1; t2g � T, t 7! u .t/ 2 Rn, and t 7! v .t/ 2 Rn be fixed,
but arbitrary. Let

C .t1; t2/ D hv .t1 ^ t2/ ; u .t1 _ t2/iRn :

Then:

1. u has property ˘ 1

when, given fixed, but arbitrary t < tr , there exist ft1; : : : ; tng � T such that

a. t � t1 < 
 
 
 < tn,
b. U Œt j t1; : : : ; tn�, the matrix with entries ui

�
tj
�
; fi; jg � Œ1 W n�, is invertible;

2. v has property ˘ 2

when, given fixed, but arbitrary t > tl, there exist ft1; : : : ; tng � T such that

a. t1 < 
 
 
 < tn � t,
b. V Œt1; : : : ; tn j t�, the matrix with entries vi

�
tj
�
; fi; jg � Œ1 W n�, is invertible;

3. C has property ˘

when u has property ˘ 1 and v has property ˘ 2.
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Proposition 8.4.62 Let the covariance C have the following representation: for
ft1; t2g � T fixed, but arbitrary,

C .t1; t2/ D hv .t1 ^ t2/ ; u .t1 _ t2/iRn :

C is the covariance of a Markov map of order n in the wide sense if, and only if, it
has property ˘ .

Proof Suppose that C has property ˘ .
Let

s � � � t;
f�1; : : : ; �ng � T; �1 < 
 
 
 < �n � s;
f�1; : : : ; �ng � T; t � �1 < 
 
 
 < �n;

be fixed, but arbitrary. Let V� be the matrix whose columns are

v .�1/ ; : : : ; v .�n/ ;

and U� , that with columns u .�1/ ; : : : ; u .�n/. The matrix with entries

C
�
�i; �j

�
; fi; jg � Œ1 W n�

is then the matrix V?
�U� . Assumption .˘ / allows one to assume that V� , U� , and

thus V?
�U� have rank n.

Let X be a zero mean, Gaussian process with covariance C [273, p. 238]. Choose
for f .t/, Xt, the equivalence class of the variable X.
; t/. Let X� be the vector with
components X�1 ; : : : ;X�n . X� is defined similarly. The projection of X� onto the
subspace generated by X� is given by the following expression [29, p. 92]:

E ŒX� j X� � D ˙��˙
�1
�� ŒX� � ;

where ˙�� D E
�
X�X

?
�

� D V?
�U� , and ˙�� D E

�
X�X?�

� D V?
�V� . Since ˙��

has full rank, the elements of X� are linearly independent, and the form of the
conditional expectation exhibited above means that dimL Œ�; t� � n, where the latter
symbol has the meaning given to it in (Proposition) 8.4.59. But, as noticed in the
prelude to (Definition) 8.4.61, given the form of the covariance, dimL Œ�; t� � n. C
is thus the covariance of a Markov map of order n in the wide sense.

Proof Suppose that C D Cf , f a Markov map of order n in the wide sense.
The following set, where t 2 T is fixed, but arbitrary:˚

Pf

� Œ f .t/� ; t � ��
has thus dimension n, so that the functions v1; : : : ; vn, restricted to arguments � � � ,
are linearly independent [prelude to (Definition) 8.4.61], and so ˘ 2 obtains.
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Let ft1; : : : ; tng � T; � � t1 < 
 
 
 < tn, be such that Pf

� Œ f .t1/� ; : : : ;P
f

� Œ f .tn/�
are linearly independent. From (� � �)˝

f .�/;Pf

� Œ f .ti/�
˛
H D hv .�/ ; u .ti/iRn ;

one gets that *
f .�/;

nX
iD1

˛iP
f

� Œ f .ti/�

+
H

D
*
v .�/ ;

nX
iD1

˛i u .ti/

+
Rn

:

Thus, when one assumes that
Pn

iD1 ˛i u .ti/ D 0Rn ,

*
f .�/;

nX
iD1

˛iP
f

� Œ f .ti/�

+
H

D 0:

But, since that is true for every � � � , one must have that

nX
iD1

˛iP
f

� Œ f .ti/� D 0H;

that is ˛ D 0Rn , which means that ˘ 1 obtains. ut
Lemma 8.4.63 Let ft1; t2g � T, t 7! u .t/ 2 Rn, and t 7! v .t/ 2 Rn, be fixed, but
arbitrary. Let

C .t1; t2/ D hv .t1 ^ t2/ ; u .t1 _ t2/iRn

have property ˘ .
Suppose that there are t 7! U .t/ 2 Rn, and t 7! V .t/ 2 Rn, such that, for fixed,

but arbitrary ft1; t2g � T; t1 � t2,

C .t1; t2/ D hV .t1/ ;U .t2/iRn :

There exists then a unique, invertible matrix M, independent of t 2 T, such that

1. for t 2 T, fixed, but arbitrary,

(i) U .t/ D M Œu .t/�,
(ii) v .t/ D M? ŒV .t/�;

2. (i) U has property ˘ 1,
(ii) V has property ˘ 2,

3. when U D u, V D v.
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Proof Let t < tr be fixed but arbitrary, and t1; : : : ; tn be the points of assumption
(˘ 1). The vectors fu .t1/ ; : : : ; u .tn/g are thus linearly independent. Define the
following map: for i 2 Œ1 W n�, fixed, but arbitrary,

M Œu .ti/� D U .ti/ :

Trivially then, the following relation

nX
iD1

˛iu .ti/ D 0Rn

implies the following one (the ˛i’s are zero because of linear independence of ui’s):

nX
iD1

˛iM Œu .ti/� D 0Rn ;

and M is thus uniquely defined as a linear transformation [46, p. 26]. Then, because
of the assumption on C, for � 2 T; � � t, and i 2 Œ1 W n�, fixed, but arbitrary,

hv .�/ ; u .ti/iRn D hV .�/ ;U .ti/iRn

D hV .�/ ;M Œu .ti/�iRn

D hM? ŒV .�/� ; u .ti/iRn ;

so that v .�/ D M? ŒV .�/� ; � � t. Since the range of M?, by assumption
(˘ 2), contains n independent elements, that matrix is invertible. Consequently,
since � � t is arbitrary, condition ˘ 2 obtains for V . Furthermore, for fixed, but
arbitrary f�; �g � T; � � t � � , using the assumption on C, and the equality
v .�/ D M? ŒV .�/�,

hV .�/ ;U .�/iRn D hv .�/ ; u .�/iRn

D hM? ŒV .�/� ; u .�/iRn

D hV .�/ ;M Œu .�/�iRn :

It follows, since ˘ 2 obtains for V , that, for fixed, but arbitrary � � t,

U .�/ D M Œu .�/� :

Letting t # tl, while keeping ft1; : : : ; tng fixed, shows that U .t/ D M Œu .t/�. But as
M is invertible, and u “generates” n independent vectors, condition ˘ 1 obtains for
U also.
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Finally, as above, but for � > t,

hv .t/ ; u .�/iRn D hV .t/ ;U .�/iRn

D hV .t/ ;M Œu .�/�iRn

D hM? ŒV .t/� ; u .�/iRn :

Thus, given ˘ 1, v .t/ D M? ŒV .t/�, and, since t 2 T is arbitrary, for t 2 T,

v .t/ D M? ŒV .t/� :

ut
Proposition 8.4.64 For fixed, but arbitrary ft1; t2g � T, let

C .t1; t2/ D hv .t1 ^ t2/ ; u .t1 _ t2/iRn ;

and suppose that C has property ˘ . Then C is positive definite if, and only if, there
is a map t 7! 	 .t/ such that

1. for t 2 T, fixed, but arbitrary, 	 .t/ is a positive definite matrix,
2. for ft1; t2g � T; t1 < t2, fixed, but arbitrary, 	 .t1/� 	 .t2/,
3. for t 2 T, fixed, but arbitrary, v .t/ D 	 .t/ Œu .t/�.
Proof Suppose that C is positive definite.

Because of (Proposition) 8.4.62, C is then the covariance of a Markov map of
order n in the wide sense, say f . Because of (Proposition) 8.4.59, one has that f is a
proper, non-singular, Goursat map of rank n:

f .t/ D Œa .t/ ; h.t/� ;

and thus, when t1 � t2,

C .t1; t2/ D
˝
Fh .t1/ a .t1/ ; a .t2/

˛
Rn :

Because of (Lemma) 8.4.63, there is an invertible matrix M such that, for t 2 T,
fixed, but arbitrary, a .t/ D M Œu .t/�, and M?

�
Fh .t/ a .t/

� D v .t/. Thus

v .t/ D M?Fh .t/M Œu .t/� ;

and t 7! M?Fh .t/M has the properties listed as items 1, 2, and 3 of the proposition’s
statement.

Proof Suppose that items 1, 2, and 3 of the proposition’s statement obtain.
The map .t1; t2/ 7! 	 .t1 ^ t2/ is positive definite. Indeed, let, to be specific,

t1 � t2 � t3, and ˛1; ˛2; ˛3 be fixed, but arbitrary elements in T andRn, respectively.
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One must prove [106, p. 354] that

0 �
*24	 .t1/ 	 .t1/ 	 .t1/	 .t1/ 	 .t2/ 	 .t2/

	 .t1/ 	 .t2/ 	 .t3/

3
5
2
4˛1˛2
˛3

3
5 ;
2
4˛1˛2
˛3

3
5+

R3n

D h	 .t1/ Œ˛1� ; ˛1iRn C h	 .t2/ Œ˛2� ; ˛2iRn C h	 .t3/ Œ˛3� ; ˛3iRn

C 2 h	 .t1/ Œ˛1� ; ˛2iRn C 2 h	 .t1/ Œ˛1� ; ˛3iRn C 2 h	 .t2/ Œ˛2� ; ˛3iRn :

The latter sum of inner products may be written in the following form:

h	 .t1/ Œ˛1 C ˛2 C ˛3� ; ˛1 C ˛2 C ˛3iRn

C hf	 .t2/� 	 .t1/g Œ˛2 C ˛3� ; ˛2 C ˛3iRn

C hf	 .t3/� 	 .t2/g Œ˛3� ; ˛3iRn ;

which is positive because of items 1 and 2. There is thus a Gaussian vector map
t 7! Xt with 	 .
 ^ 
/ as covariance [106, p. 358]. Since, for t1 � t2 � t3, and ei and
ej fixed, but arbitrary elements in, respectively, T and the standard basis of Rn,

E
h˝

Xt1 ; ei

˛
Rn

D
Xt3 � Xt2 ; ej

E
Rn

i
D
D
	 .t1/Œei�; ej

E
Rn
�
D
	 .t1/Œei�; ej

E
Rn
D 0;

the map t 7! Xt is a martingale in the wide sense.
Let thus h be a martingale in the wide sense whose covariance is obtained from

	 , and set:

f .t/ D Œu.t/; h.t/� :

As, in fine, for t1 � t2, using item 3,

Cf .t1; t2/ D hŒu.t1/; h.t1/� ; Œu.t2/; h.t2/�iH

D
nX

iD1

nX
jD1

ui.t1/uj.t2/
˝
hi.t1/; hj.t2/

˛
H

D
nX

iD1

nX
jD1

ui.t1/uj.t2/	i;j.t1/

D
nX

iD1

nX
jD1

ui.t1 ^ t2/uj.t1 _ t2/	 .t1 ^ t2/
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D h	 .t1 ^ t2/Œu.t1 ^ t2/�; u.t1 _ t2/iRn

D hv.t1 ^ t2/�; u.t1 _ t2/iRn ;

and that, given the symmetry of .t1; t2/ 7! 	 .t1 ^ t2/, the same is true for t1 � t2,
the covariance of f is C, which is thus positive definite. ut

8.4.8 Multiplicity One for Goursat Maps

When the martingale associated with a Goursat map has multiplicity one, it becomes
easier to check that the process itself is proper and has thus multiplicity one.
This section thus explains first how multiplicity one follows from smoothness
properties of the covariance of a Goursat map whose associated martingale has
multiplicity one. Since establishing that the martingale associated with a Goursat
map has multiplicity one may in turn prove difficult, it is shown, in a second
step, that the determining factor is the behavior, with respect to Lebesgue measure,
of the trace of the matrix measure associated with the structure matrix of the
martingale. Multiplicity one occurs when there is equivalence, that is, when the
involved martingale behaves much like a Wiener process. The procedure is made
operationally effective transforming the problem into one of solving differential
equations.

Proposition 8.4.65 Let f .t/ D Œa .t/ ; h.t/� be a CH-Goursat process such that,
almost surely for t 2 T, with respect to �h,

1. D�h .t/ D d .t/˝ d .t/,
2. jjd .t/jjRn D 1.

Let  belong to L2
�
T; T ; �h

�
. Then f is proper if, and only if, for each fixed, but

arbitrary t 2 T, the following set of equalities:Z
T�

ha .�/ ; d .u/iRn  .u/�h .du/ D 0; � � t;

means that  is almost surely zero with respect to �h.

Proof Let ˛.�/ D .�/d.�/C d.�/?. It is a zero function of

L2.T; T ;Mh/

when  is almost surely zero with respect to �h as, in the context of the present
proposition, Z

Tt

˝
D�h.�/ Œ˛.�/� ; ˛.�/

˛
Rn �h.d�/ D

Z
Tt

2.�/�h.d�/:
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But the condition of statement (Proposition) 8.4.65 is the translation of that
of (Proposition) 8.4.48. ut
Example 8.4.66 Let W be a standard, wide sense, Wiener process over Œ0; 1�, f
and g, functions whose square is integrable over Œ0; 1�, with respect to Lebesgue
measure. Let

h1.t/ D
Z t

0

f .�/W.d�/; h2.t/ D
Z t

0

g.�/W.d�/:

Then:

Fh

1;1.t/ D jjh1.t/jj2H D
Z t

0

f 2.�/d�;

Fh

1;2.t/ D hh1.t/; h2.t/iH D
Z t

0

f .�/g.�/d�;

Fh

2;2.t/ D jjh2.t/jj2H D
Z t

0

g2.�/d�;

so that

dMh

1;1 D f 2dLeb; dMh

1;2 D fgdLeb; dMh

2;2 D g2dLeb;

and, consequently that

d�h D dMh

1;1 C dMh

2;2 D
˚

f 2 C g2
�

dLeb:

Thus, as, for example, provided f 2 C g2 > 0, almost surely, with respect to d�h,

dMh

1;1 D f 2dLeb D f 2

f 2 C g2
d�h;

one has that

D�h D

2
64

f 2

f 2Cg2
fg

f 2Cg2

fg
f 2Cg2

g2

f 2Cg2

3
75 :

D�h is thus a matrix of the following form:

	
a b
b c



; with aC c D 1; and ac D b2:



674 8 Some Facts About Multiplicity

Such a matrix has eigenvalues 0 and 1. An eigenvector associated

with 0 is

	
1

�a=b



; with 1 is

	
b=c
1



:

Letting d be the vector

c1=2
	

b=c
1



;

one has that 	
a b
b c



D d˝ d;

that is,

D�h.t/ D d.t/˝ d.t/; with d.t/ D
�

g2.t/

f 2.t/C g2.t/

� 1=2 " f .t/
g.t/

1

#
:

One must thus assume that g, with respect to �h, is endowed with adequate
properties. The condition of (Proposition) 8.4.65 rewrites as (s.g/ is the function
which delivers the sign of g)

0 D a1.�/
Z �

0

.u/s.g.u//f .u/
˚
f 2.u/C g2.u/

�1=2
Leb.du/

Ca2.�/
Z �

0

.u/ jg.u/j ˚f 2.u/C g2.u/
�1=2

Leb.du/:

Remark 8.4.67 In (Proposition) 8.4.65, when f is proper, it has multiplicity one.
The latter example shows that, to be able to assert multiplicity one, one must have
better tools at disposal. Some are explained in the material which follows.

Remark 8.4.68 Suppose that D�h D d ˝ d, with d.�/ of norm one, almost surely
with respect to �h, and that a is adapted. Then, provided the integral exists, which
will be the case, for instance, when a is continuous, over an appropriate domain,

jjajj2L2.T;T ;Mh/
D
Z

T
hd.�/; a.�/i2Rn �h.d�/:

The integrand in that latter integral is the norm of the projection of a.�/ onto the
subspace generated by d.�/. When it is required below that the integrand be almost
surely strictly positive with respect to �h, the restriction is mild as one could restrict
attention to its support, though all statements would then be quite messier.
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Remark 8.4.69 The function f is absolutely continuous with respect to the measure
� when one may write for  integrable with respect to �:

f .t/ D � C
Z

Tt

.�/�.d�/:

Then, for t1 < t2, fixed, but arbitrary in T,

f .t2/ � f .t1/ D
Z
Œt1;t2Œ

.�/�.d�/:

One may thus define a measure �f setting �f .Œt1; t2Œ/ D f .t1/ � f .t1/, and then
�f � �. Furthermore .�/ may be obtained as the limit of ratios of the following
type:

�f .B.�; �//

�.B.�; �//
;

with shrinking sets B.�; �/, which are typically intervals [32, p. 378]. That property
is used in many calculations which follow.

Lemma 8.4.70 Let �h be as in (Proposition) 8.4.24, and have distribution function
F�h . Define successively

a .t/ D �a C
Z

Tt

˛ .�/ �h .d�/ ;

b .t/ D �b C
Z

Tt

ˇ .�/ �h .d�/ ;

V .t/ D a .t/ b .t/ :

V is then a function of bounded variation. Let �V be the measure that it determines.
Then, almost surely with respect to �h,

d�V

d�h
.t/ D lim

�##0
V .tC �/ � V .t � �/

FC�h .tC �/ � F�h .t � �/
D a .t/ ˇ .t/C ˛ .t/ b .t/ :

Proof V is of bounded variation as a product of functions of bounded variation. As,
for fixed, but arbitrary t 2 T, and � > 0,

V .tC �/ � V .t � �/ D
D b .tC �/ fa .tC �/ � a .t � �/g C a .t � �/ fb .tC �/ � b .t � �/g ;
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and that, almost surely with respect to �h,

lim
�##0

a .tC �/ � a .t � �/
FC�h .tC �/ � F�h .t � �/

D ˛ .t/ ;

and

lim
�##0

b .tC �/ � b .t � �/
FC�h .tC �/ � F�h .t � �/

D ˇ .t/ ;

it follows that

lim
�##0

V .tC �/ � V .t � �/
FC�h .tC �/ � F�h .t � �/

D a .t/ ˇ .t/C ˛ .t/ b .t/ :

ut
Proposition 8.4.71 Let f .t/ D Œa .t/ ; h.t/� be a CH-Goursat map such that

(A) almost surely with respect to �h,

(a) D�h .t/ D d .t/˝ d .t/,
(b) jjd .t/jjRn D 1;

(B) a .t/ D �a C
R

Tt
˛ .�/ �h .d�/, with, for i 2 Œ1 W n�, fixed, but arbitrary,

Z
T
j˛i.�/j�h.d�/ <1I

(C) almost surely, with respect to �h, hd .�/ ; a .�/i2Rn > 0, and, for t 2 T, fixed, but
arbitrary,

Z
Tt

jj˛ .�/jj2Rn

hd .�/ ; a .�/i2Rn

d�h .d�/ <1:

Then f is proper.

Proof One shall need the fact that ˛ has a norm whose square is integrable. That is
seen as follows. Let

�2.t/ D 2
(
jj�ajj2Rn C

nX
iD1

�Z
Tt

j˛i .�/j�h .d�/

� 2)
:

One has then that, with respect to �h, for almost every � 2 T; � � t,

hd .�/ ; a .�/i2Rn � jja .�/jj2Rn � �2.t/;
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which is a finite quantity independent of � . Then, because of Assumption (C),

Z
Tt

jj˛ .�/jj2Rn

�2.t/
�h .d�/ �

Z
Tt

jj˛ .�/jj2Rn

hd .�/ ; a .�/i2Rn

d�h .d�/ <1;

and it follows that Z
Tt

jj˛ .�/jj2Rn �h .d�/ <1:

Because of (Proposition) 8.4.65, to check that f is proper, it suffices to establish that
functions 2 L2.T; T ; �h/which are the solutions of the following set of equations:Z

T�

ha .�/ ; d .u/iRn  .u/�h .du/ D 0; � � t;

can only be zero. But, letting

�.�/ D
Z

T�C�

ha .� C �/ ; d .u/iRn  .u/�h .du/

�
Z

T���

ha .� � �/ ; d .u/iRn  .u/�h .du/ ;

�1.�/ D
Z

T�C�

ha .�/ ; d .u/iRn  .u/�h .du/

�
Z

T���

ha .�/ ; d .u/iRn  .u/�h .du/ ;

�2.�/ D
Z

T�C�

ha .� C �/ � a .�/ ; d .u/iRn  .u/ �h .du/

�
Z

T���

ha .� C �/ � a .�/ ; d .u/iRn  .u/�h .du/

�3.�/ D
Z

T���

ha .� C �/ � a .� � �/ ; d .u/iRn  .u/�h .du/ ;

then

�.�/ D �1.�/C�2.�/C�3.�/;
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and

�2 .�/ D
nX

iD1
fai .� C �/ � ai .�/g �

�
( Z

T�C�

di .u/  .u/�h .du/�
Z

T���

di .u/  .u/�h .du/

)
:

One has thus that

�.�/

FC�h .� C �/ � F�h .� � �/

is the sum of three terms such that, when � ## 0, then, almost surely with respect to
�h,

• the first, whose numerator is �1.�/, has limit  .�/ ha .�/ ; d .�/iRn ,
• the second, whose numerator is �2 .�/, has, in the form exhibited above, a limit

equal to zero (since a is continuous and the “remainder” has a limit),
• the third, whose numerator is �3.�/, has limitZ

T�

h˛ .�/ ; d .u/iRn  .u/ �h .du/

(as the square of the norm of ˛ is integrable).

The end result is the following equation, valid, with respect to �h, almost surely
for � 2 T; � � t:

0 D ha .�/ ; d .�/iRn  .�/C
Z

T�

h˛ .�/ ; d .u/iRn  .u/�h .du/ ;

which may be rewritten as:

�
Z

T�

h˛ .�/ ; d .u/iRn

ha .�/ ; d .�/iRn

 .u/�h .du/ D  .�/ :

But, as d has an Euclidean norm almost surely equal to one, with respect to �h,

Z
Tt

�h .d�/
Z

Tt

�h .du/

� h˛ .�/ ; d .u/iRn

ha .�/ ; d .�/iRn

� 2
�

� �h .Tt/

Z
Tt

�h .d�/
jj˛ .�/jj2Rn

ha .�/ ; d .�/i2Rn

:
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Since the right-hand side of the latter expression is finite by assumption, one has
that  is an eigenvector of a Hilbert-Schmidt Volterra equation. As such it must be
zero [119, p. 70]. ut
Remark 8.4.72 The integrability condition of (Proposition) 8.4.71 (item (C)) has a
drawback: one must be able to compute d, a task that is not necessarily easy as seen,
for instance, in (Example) 8.4.10. Under further smoothness conditions, one is able
to express that condition in terms of Cf , which is supposedly known. That is the aim
of the calculations which follow. The end result is (Proposition) 8.4.79.

Lemma 8.4.73 Let �h be as in (Proposition) 8.4.24, and have distribution function
F�h . Suppose that, for i 2 Œ1 W 3�,

ai .t/ D �i C
Z

Tt

˛i .�/ �h .d�/ ;

and that

a .t/ D a1 .t/ a2 .t/ a3 .t/ :

a is then a function of bounded variation. Let �a be its associated measure. Then,
almost surely with respect to �h,

d�a

d�h
.t/ D lim

�##0
a .tC �/ � a .t � �/

FC�h .tC �/ � F�h .t � �/

D ˛1 .t/ a2 .t/ a3 .t/C a1 .t/ ˛2 .t/ a3 .t/C a1 .t/ a2 .t/ ˛3 .t/ :

Proof For u < v, fixed, but arbitrary,

a .v/ � a .u/ D a2 .v/ a3 .v/ fa1 .v/ � a1 .u/g
C a1 .u/ a3 .v/ fa2 .v/ � a2 .u/g
C a1 .u/ a2 .u/ fa3 .v/ � a3 .u/g :

One finishes as in (Proposition) 8.4.70. ut
Lemma 8.4.74 Let f .t/ D Œa.t/; h.t/� be a CH-Goursat map with covariance

Cf .t1; t2/ D
˝
Fh .t1 ^ t2/ a .t1/ ; a .t2/

˛
Rn ;

and suppose that

a .t/ D �a C
Z

Tt

˛ .�/ �h .d�/ :
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Then

dCf

d�h
.t/ D lim

�##0
Cf .tC �; t C �/ � Cf .t � �; t � �/

FC�h .tC �/ � F�h .t � �/

D ˝
D�h .t/ a .t/ ; a .t/

˛
Rn C 2

˝
Fh .t/ a .t/ ; ˛.t/

˛
Rn :

Proof Choose, in (Lemma) 8.4.73, a1 D Fh

i;j; a2 D ai; a3 D aj. Then

lim
�##0

a .tC �/ � a .t � �/
FC�h .tC �/ � F�h .t � �/

D

D dMh

i;j

d�h
.t/ ai .t/ aj .t/C Fh

i;j .t/ ˛i .t/ aj .t/C Fh

i;j .t/ ai .t/ ˛j .t/ :

ut
The following lemma entails prescriptions that reappear identically in some

subsequent lemmas. They are thus headlined under an “assumptions” banner.

Lemma 8.4.75 Let the following prescriptions prevail:

Assumptions:

f .t/ D Œa.t/; h.t/� be a CH-Goursat map with covariance

Cf .t1; t2/ D
˝
Fh .t1 ^ t2/ a .t1/ ; a .t2/

˛
Rn ;

and suppose that

a .t/ D �a C
Z

Tt

˛ .�/ �h .d�/ :

Let

A .t/ D Fh .t/ a .t/ :

The components of A .t/ have then bounded variation. Let�Ai denote the measure
corresponding to Ai, and �

A
, the vector with components �Ai . Then, component-

wise, almost surely with respect to �h,

d�
A

d�h
.t/ D lim

�##0
A .tC �/ � A .t � �/

FC�h .tC �/ � F�h .t � �/
D D�h .t/ a .t/C Fh .t/ ˛ .t/ :
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Furthermore

dCf

d�h
.t/ D

d�
A

d�h
.t/ ; a .t/

�
Rn

C hA .t/ ; ˛ .t/iRn :

Proof By definition, for i 2 Œ1 W n�, fixed, but arbitrary,

Ai .tC �/ � Ai .t � �/ D
nX

jD1

n
Fh

i;j .tC �/ aj .tC �/ � Fh

i;j .t � �/ aj .t � �/
o

D
nX

jD1

n
Fh

i;j .tC �/ � Fh

i;j .t � �/
o

aj .tC �/

C
nX

jD1
Fh

i;j .t � �/
˚
aj .tC �/ � aj .t � �/

�
:

The first “derivation” formula of the statement follows. For the second, one has that

Cf .t; t/ D hA .t/ ; a .t/iRn ;

and also that

d hA.
/; a.
/iRn

d�h
.t/ D

d�
A

d�h
.t/ ; a .t/

�
Rn

C hA .t/ ; ˛ .t/iRn :

Replacing
d�

A
d�h

with the value just obtained yields that

d�
A

d�h
.t/ ; a .t/

�
Rn

C hA .t/ ; ˛ .t/iRn D

D ˝
D�h .t/ a .t/ ; a .t/

˛
Rn C 2

˝
Fh .t/ ˛ .t/ ; a .t/

˛
Rn ;

which is [(Lemma) 8.4.74] dCf

d�h
.t/. ut

Lemma 8.4.76 Let the Assumptions of (Lemma) 8.4.75 obtain. One has that

˝
D�h .t/ a .t/ ; a .t/

˛
Rn D

d�
A

d�h
.t/ ; a .t/

�
Rn

� hA .t/ ; ˛ .t/iRn :

Proof One compares (Lemma) 8.4.74 with (Lemma) 8.4.75, using the definition of
A. ut
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Lemma 8.4.77 Let the Assumptions of (Lemma) 8.4.75 obtain. Let also

��;tCf D Cf .tC �; t C �/ � 2Cf .tC �; t � �/C Cf .t � �; t � �/ :

When F�h is continuous,

lim
�##0

��;tCf

F�h .tC �/ � F�h .t � �/
D ˝D�h .t/ a .t/ ; a .t/

˛
Rn :

Proof One has that

��;tCf D Cf .t C �; t C �/ � 2Cf .tC �; t � �/C Cf .t � �; t � �/
D ˝˚

Fh .tC �/ � Fh .t � �/
�

a .tC �/ ; a .tC �/˛
Rn

C ˝
Fh .t � �/ fa .tC �/ � a .t � �/g ; fa .tC �/ � a .t � �/g˛

Rn :

Thus

��;tCf

F�h .tC �/ � F�h .t � �/
D

D
˝˚

Fh .tC �/ � Fh .t � �/
�

a .tC �/ ; a .tC �/˛
Rn

F�h .tC �/ � F�h .t � �/

C
˝
Fh .t � �/ fa .tC �/ � a .t � �/g ; fa .tC �/ � a .t � �/g˛

Rn˚
F�h .tC �/ � F�h .t � �/

�2 �

� ˚F�h .tC �/ � F�h .t � �/
�
:

ut
Lemma 8.4.78 Let f .t/ D Œa.t/; h.t/� be a CH-Goursat map with covariance

Cf .t1; t2/ D
˝
Fh .t1 ^ t2/ a .t1/ ; a .t2/

˛
Rn ;

and suppose that

a .t/ D �a C
Z

Tt

˛ .�/ �h .d�/ :

Let ��;tCf be as defined in (Lemma) 8.4.77. Then:

1. when �h is equivalent to Lebesgue measure (Leb), the following limits exist
almost surely with respect to Leb and �h:

�2 .t/ D lim
�##0

��;tCf

Leb .tC �/ � Leb .t � �/ ;
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a0 .t/ D da

dLeb
.t/

D lim
�##0

a .tC �/ � a .t � �/
Leb .tC �/ � Leb .t � �/ I

2. and, when also, almost surely with respect to �h,

(a) D�h .t/ D d .t/˝ d .t/,
(b) jjd .t/jjRn D 1,

then Z
Tt

jj˛ .�/jj2Rn

hd .�/ ; a .�/i2Rn

d�h .d�/ D
Z

Tt

jja0 .�/jj2Rn

�2 .�/
Leb .d�/ :

Proof One has that

��;tCf

Leb .tC �/ � Leb .t � �/ D

D ��;tCf

F�h .tC �/ � F�h .t � �/
� F�h .tC �/ � F�h .t � �/

Leb .tC �/ � Leb .t � �/ :

Since �h is equivalent to Leb, F�h is continuous, and thus, from the definition of � ,
and (Lemma) 8.4.77,

�2 .t/ D ˝D�h .t/ a .t/ ; a .t/
˛
Rn

d�h

dLeb
.t/ D hd .t/ ; a .t/i2Rn

d�h

dLeb
.t/ :

Thus

jj˛ .�/jj2Rn

hd .�/ ; a .�/i2Rn

D jj˛ .�/jj
2
Rn

�2 .�/

d�h

dLeb
.�/ :

But, as

a .t/ D �a C
Z

Tt

˛ .�/ �h .d�/ D �a C
Z

Tt

˛ .�/
d�h

dLeb
.�/ Leb .d�/ ;

a0 .t/ D da

dLeb
.t/ D ˛ .t/ d�h

dLeb
.t/ ;

and the result follows. ut
Result (Proposition) 8.4.79 below lists conditions under which a Goursat map

is in fact a (wide sense) stochastic integral with respect to a (wide sense) Wiener
process. It is an explicit version of (Proposition) 8.4.71. Again, as the assumptions
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must be repeated identically in a second statement, the assumptions of (Proposition)
8.4.79 below are highlighted.

Proposition 8.4.79 Suppose that f .t/ D Œa .t/ ; h.t/� is a CH-Goursat map such
that
Assumptions:

(A) �h is equivalent to Lebesgue measure;
(B) for t 2 T, fixed, but arbitrary, a .t/ D �a C

R
Tt
˛ .�/ �h .d�/;

(C) almost surely, with respect to �h and Lebesgue measure,

(a) �2 .t/ [(Lemma) 8.4.78] exists, and is strictly positive,

(b)
R

Tt

jja0.�/jj2
Rn

�2.�/
Leb .d�/ <1;

(D) given that A .t/ D Fh .t/ a .t/ ; t 2 T, there exists a map t 7! F.t/ which has
the same properties as those of the structure function of a CH-martingale and
is such that

(a) for t 2 T, fixed, but arbitrary, A .t/ D F .t/ a .t/,
(b) dF

dLeb .t/ exists and has rank one.

f has then multiplicity one.

Proof Let hF be a CH-martingale with structure function F [(Remark) 8.4.29], and
set

fF.t/ D
�
a .t/ ; hF.t/

�
:

As f and fF have the same covariance, the elements f .t/ and fF.t/ are unitarily related
[(Fact) 8.4.47], and thus, for t 2 T, fixed, but arbitrary,

Lt Œ f � and Lt Œ fF�

are unitarily isomorphic. Consequently f and fF have the same multiplicity proper-
ties.

Since dF
dLeb .�/ has rank one,

dF

dLeb
.�/ D ı.�/ fd.�/˝ d.�/g ;

and

D
MhF

.Œt1; t2Œ/ Œx� ; y
E
Rn
D
Z
Œt1;t2Œ


dF

dLeb
.�/ Œx� ; y

�
Rn

dLeb

D
Z
Œt1;t2Œ

ı.�/ hd.�/; xiRn

D
d.�/; y

E
Rn

dLeb ;
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so that [(Fact) 8.4.6]

MhF
i;i .Œt1; t2Œ/ D

Z
Œt1;t2Œ

ı.�/
˝
d.�/; ei

˛2
Rn dLeb ;

and thus

�hF
.Œt1; t2Œ/ D

Z
Œt1;t2Œ

ı.�/dLeb : (?)

Consequently

D�hF
D d˝ d:

The assumption of rank one says that �hF
is equivalent to Lebesgue measure.

Result (Lemma) 8.4.78 thus applies, and, consequently, also result (Proposition)
8.4.71, as, using Assumption (A) and result (?),

a.t/ D �a C
Z

Tt

˛.�/
d�h

dLeb
.�/

1

ı.�/
�hF

.d�/:

fF has thus multiplicity one. ut
Result (Proposition) 8.4.80 which follows shows that, when (Proposition) 8.4.79

obtains, the function t 7! F .t/ that one finds there is the solution of a differential
equation.

Proposition 8.4.80 Suppose that f .t/ D Œa .t/ ; h.t/� is a CH-Goursat map for
which the Assumptions of (Proposition) 8.4.79 obtain. F of Assumption (D) is
then the solution of the following differential equation:

dF

dLeb
.t/ D

n
dA

dLeb .t/ � F .t/ da
dLeb .t/

o n
dA

dLeb .t/ � F .t/ da
dLeb .t/

o?
D
a .t/ ;

n
dA

dLeb .t/ � F .t/ da
dLeb .t/

oE
Rn

:

Proof As a and F are differentiable, A D Fa is, and, differentiating that product,
one has that

dA

dLeb
.t/ D dF

dLeb
.t/ a .t/C F .t/

da

dLeb
.t/ I

thus, moving the appropriate term, that

dF

dLeb
.t/ a .t/ D dA

dLeb
.t/ � F .t/

da

dLeb
.t/ : (1)
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The derivative dF
dLeb .t/, having rank one, has a representation as

dF

dLeb
.t/ D d .t/˝ d .t/ ; (2)

and thus

dF

dLeb
.t/ a .t/ D ha .t/ ; d .t/iRn d .t/ : (3)

Taking the inner product of that last expression with a .t/ yields that

ha .t/ ; d .t/i2Rn D


dF

dLeb
.t/ a .t/ ; a .t/

�
Rn

: (4)

But, as in the proof of (Lemma) 8.4.78, one has that

�2 .t/ D lim
�##0

��;tCf

Leb .tC �/ � Leb .t � �/

D lim
�#0;�>0

��;tCf

F�h .tC �/ � F�h .t � �/
F�h .tC �/ � F�h .t � �/
Leb .tC �/ � Leb .t � �/

D ˝
D�h .t/ Œa .t/�; a .t/

˛
Rn

d�h

dLeb
.t/ :

Using a definition analogous to that found in (Lemma) 8.4.75,

d�
A

dLeb
D dA

dLeb
: (5)

Also, since �h is equivalent to Lebesgue measure,

d�
A

dLeb
D d�

A

d�h

d�h

dLeb
: (6)

Thus

˝
D�h .t/ Œa .t/�; a .t/

˛
Rn

d�h

dLeb
.t/ D

8.4.76D
�d�

A

d�h
.t/ ; a .t/

�
Rn

� hA .t/ ; ˛ .t/iRn

�
d�h

dLeb
.t/

.5/;.6/;.B/D


dA

dLeb
.t/ ; a .t/

�
Rn

�

A .t/ ;

da

dLeb
.t/

�
Rn
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def :AD


dA

dLeb
.t/ ; a .t/

�
Rn

�

a .t/ ;F .t/

da

dLeb
.t/

�
Rn

D


dA

dLeb
.t/ � F .t/

da

dLeb
.t/ ; a .t/

�
Rn

.1/D


dF

dLeb
.t/ a .t/ ; a .t/

�
Rn

:

Consequently, using the expression for �2.t/ obtained above,

�2 .t/ D


dF

dLeb
.t/ a .t/ ; a .t/

�
Rn

:

Having made the assumption that, almost surely with respect to Leb, one has that
�2 .t/ > 0, one concludes, from equality (4), that, almost surely with respect to Leb,ˇ̌ha .t/ ; d .t/iRn

ˇ̌
> 0 :

Thus finally, from equality (3),

d .t/ D ˚ha .t/ ; d .t/iRn

��1 dF

dLeb
.t/ a .t/ ;

and, from equality (2),

dF

dLeb
.t/ D

˚
dF

dLeb .t/ a .t/
�˝ ˚ dF

dLeb .t/ a .t/
�

ha .t/ ; d .t/i2Rn

:

Because of equalities (1) and (4), F must indeed be the solution of the equation in
statement (Proposition) 8.4.80. ut

Result (Proposition) 8.4.82 which follows states that functions t 7! F .t/ that are
solutions to the differential equation found in (Proposition) 8.4.80 yield functions
that are required in the assumptions of (Proposition) 8.4.79.

Lemma 8.4.81 Let a and A be absolutely continuous with respect to Lebesgue
measure (Leb), and suppose that there exists Œtl; trŒ � T, and F, such that

(A) F .tl/ a .tl/ D A .tl/;
(B) for t 2 Œtl; trŒ, fixed, but arbitrary,

(a) dF
dLeb .t/ exists,

(b) dF
dLeb .t/ D

n
dA

dLeb .t/�F.t/
da

dLeb .t/
on

dA
dLeb .t/�F.t/

da
dLeb .t/

o?
D
a.t/;

n
dA

dLeb .t/�F.t/ da
dLeb .t/

oE
Rn

.

Then F .t/ a .t/ D A .t/ ; t 2 Œtl; trŒ.
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Furthermore, when dF
dLeb is a function whose values are symmetric, positive

definite matrices, for ft1; t2g � Œtl; trŒ ; t1 < t2, fixed, but arbitrary,

dF

dLeb
.t1/� dF

dLeb
.t2/ :

Proof It follows from item (b) of Assumption (B) that

dF

dLeb
.t/ a .t/ D dA

dLeb
.t/ � F .t/

da

dLeb
.t/ :

Consequently

d ŒF.
/a.
/�
dLeb

.t/ D dA

dLeb
.t/ ;

and thus

F .t/ a .t/ D A .t/ ; t 2 Œtl; trŒ :

Furthermore, by the mean value theorem,

hfF .t2/� F .t1/g x; xiRn D


dF

dLeb
.t1 C �/ x; x

�
Rn

:

ut
The following result may be considered to be the “operational version” of (Propo-

sition) 8.4.79.

Proposition 8.4.82 Let f .t/ D Œa .t/ ; h.t/� be a CH-Goursat process, and let
A .t/ D Fh .t/ a .t/, so that, for fixed, but arbitrary f�; tg � T; � � t

Cf .�; t/ D hA .�/ ; a .t/iRn :

Suppose that

(A) a and A are absolutely continuous with respect to Lebesgue measure (Leb),
(B) almost surely with respect to Lebesgue measure, �2 [as defined in (Lemma)

8.4.78] exists, and is strictly positive,
(C) for t 2 T, fixed, but arbitrary,

Z
Tt

jja0 .�/jj2Rn

�2 .�/
Leb .d�/ <1;
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1. for t 2 T, and symmetric, positive definite, constant matrix ˚ such that

˚ Œa .t/� D A .t/ ;

both t and ˚ fixed, but arbitrary, the following equation:8̂<
:̂

dF
dLeb .t/ D

n
dA

dLeb .t/�F.t/
da

dLeb .t/
on

dA
dLeb .t/�F.t/

da
dLeb .t/

o?
D
a.t/;

n
dA

dLeb .t/�F.t/
da

dLeb .t/
oE

Rn

F.t/ D ˚

has a solution F .t/ on Œt; tC �Œ, some � > 0 (F is thus absolutely continuous
with respect to Lebesgue measure).

f has then multiplicity one, and �h is equivalent to Lebesgue measure (abbrevi-
ated into the expression: “f has simple Lebesgue spectrum”).

Proof The first step in the proof amounts to checking that it suffices to prove the
result “locally,” and the second, that the local problem has the required solution.

Suppose one has a solution on Œt; t C �Œ, yielding an f with single Lebesgue
spectrum. If tC� 2 T, one can find ı > 0 such that f has simple Lebesgue spectrum
on ŒtC �; tC � C ıŒ. Repeating that process as necessary, one will find a largest tm
such that f has simple Lebesgue spectrum on Œt; tmŒ. But then one must have that
tm D tr. Since the choice of the starting t 2 T is arbitrary, one must have that the
purely nondeterministic f has simple Lebesgue spectrum on T (when tr 2 T, the
value of the integral representation at tr is by continuity).

Because of (Proposition) 8.4.44, and of (Remark) 8.4.60, one may assume that
the representation of f is proper. Let F be the solution of the statement’s differential
equation when the initial value is ˚ D Fh .t/ (Assumption (D)). Let

b.t/ D dA

dLeb
.t/ � F.t/

da

dLeb
.t/ D dF

dLeb
.t/a.t/ :

Then (Assumption (D) again)


dF

dLeb
.t/Œx�; x

�
Rn

D hb.t/; xi2Rn

ha.t/; b.t/iRn

:

From the proof of (Proposition) 8.4.80, one has, because of Assumption (B), that

0 < �2.t/ D


dF

dLeb
.t/Œa.t/�; a.t/

�
Rn

D ha.t/; b.t/iRn :

The derivative dF
dLeb .t/ is thus positive definite. Then (Lemma) 8.4.81 applies, and

one has that, for f�; �1; �2g � �t; t C �Œ ; �1 < �2, fixed, but arbitrary,

• A .�/ D F .�/ a .�/,



690 8 Some Facts About Multiplicity

• F .�1/� F .�2/.

Define

G .�/ D
8<
:

Fh .�/ � 2 Tt [ ftg

F .t/ � 2 �t; tC �Œ
:

Then

A .�/ D G .�/ a .�/ ; � 2 T; � < tC � ;

and G is increasing in the positive definite sense. Let hG be a wide sense martingale
defined for � 2 T; � < tC �, with structure matrix G [(Remark) 8.4.29], and let

fG.t/ D
�
a .t/ ; hG.t/

�
:

Then, for fixed, but arbitrary ft1; t2g � T; t1 < tC �; t2 < tC �; t1 � t2, since A is
the result of multiplying a by both F and Fh,

CfG .t1; t2/ D hA .t1/ ; a .t2/i D Cf .t1; t2/ ;

so that, for fixed, but arbitrary � 2 T; � < t C �, there is [(Fact) 8.4.47] a unitary
map

U� W L� Œ f � �! L� Œ fG� :

Since one has taken f to be proper, for fixed, but arbitrary t 2 T, one has that
Lt Œ f � D Lt Œh�. Since, for fixed, but arbitrary � 2 T; � � t, G .�/ D Fh .�/, for
fixed, but arbitrary � 2 T; � � t, there is a unitary map

V� W L� Œh� �! L�
�
hG

�
:

Consequently, for fixed, but arbitrary � 2 T; � � t,

L� Œ fG� D L�
�
hG

�
; � � t:

That the same is true for � 2 �t; t C �Œ is seen as follows. Consider (Proposition)
8.4.65. The condition there yields that  must be zero up to time t, since one knows
that the representation is proper up to that time. Consequently it suffices to use that
result on Œt; t C �Œ. Rewriting its proof with, in that interval, for d.�/, the vector

b.�/

jjb.�/jjRn

;
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and, for d�h, the measure jjb.�/jj2Rn dLeb, one gets indeed the expression

0 D
Z

T�

hb .u/ ; a .�/iRn  .u/Leb .d�/ :

Since the inner product cannot be zero (its square is �2), the norm cannot be zero
either, so that  must be zero on Œt; tC �Œ.

Now

�hG
.Œt1; t2Œ/ D

nX
iD1

MhG
i;i .Œt1; t2Œ/

D
nX

iD1
fGi;i .t2/ �Gi;i .t1/g

D
nX

iD1

˝fG .t2/ �G .t1/g ei; ei

˛
Rn

D
nX

iD1

Z
Œt1;t2Œ


dG

dLeb
.�/ ei; ei

�
Rn

Leb .d�/ ;

and (again the proof of (Proposition) 8.4.80)


dG

dLeb
.�/ ei; ei

�
Rn

D
˝
b .�/ ; ei

˛
Rn

ha .�/ ; b .�/i2Rn

D
˝
b .�/ ; ei

˛2
Rn

�2 .�/
;

so that

�hG
.Œt1; t2Œ/ D

Z
Œt1;t2Œ

jjb .�/jj2Rn

�2 .�/
Leb .d�/ :

Thus, since

0 < �2 .�/ D ha .�/ ; b .�/iRn ;

�hG
and Leb are equivalent on Œt; t C �Œ. fG has then multiplicity one [(Proposition)

8.4.79]. Since f and fG are unitarily related, the same is true for f , so that f has
simple Lebesgue spectrum on T. ut
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Riccati Matrix Differential Equations

The differential equation of Assumption (D) of Proposition 8.4.82 may be expressed
in the following from:

F0 D
˚
A0 � FŒa0�

� ˚
A0 � FŒa0�

�?
�2

;

where �2 is obtained directly form the covariance. It can thus be seen as a Riccati
matrix differential equation of the following form:

PM.t/ D Œu.t/ �M.t/Œv.t/�� Œu.t/ �M.t/Œv.t/��?

D U.t/ �M.t/W.t/ �W.t/?M.t/? CM.t/V.t/M.t/?;

where U.t/ D u.t/ u.t/?;V.t/ D v.t/ v.t/?;W.t/ D v.t/ u.t/?. One furthermore
wants a solution M which is symmetric and positive definite. Such an equation is
known as a matrix Riccati differential equation. Investigations of solutions of such
equations are present in many sources. One [272] is cited and used here as it matches
well the present context.

Let, for t 2 RC, fixed, but arbitrary, M.t/ be a square, symmetric matrix of
dimension n 2 N. Let E ŒM.t/� be the matrix defined as the following formal infinite
sum:

E ŒM.t/� D In

C
Z t

0

M.�/d�

C
Z t

0

M.�1/

(Z �1

0

M.�/d�

)
d�1

C
Z t

0

M.�1/

(Z �1

0

M.�2/

(Z �2

0

M.�/d�

)
d�2

)
d�1 C 
 
 


The matrix F ŒM.t/� is defined analogously, changing the products of type M.
R

M/
to products of type .

R
M/M. When M and

R
M commute, one has that:

E ŒM.t/� D F ŒM.t/� D e
R t
0 M.�/ d� :

Information about the relation M0M D MM0 may be found in [93]. When t 7! M.t/
is bounded and integrable on the interval Œ0;T�,

1. E ŒM.t/� and F ŒM.t/� define actual matrices which are invertible with

F ŒM.t/�E Œ�M.t/� D E Œ�M.t/�F ŒM.t/� D InI
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2. the Riccati equation:

PM.t/ D Q.t/C A.t/M.t/ �M.t/B.t/ �M.t/PM.t/

has the following solution: given that

	
M1.t/
M2.t/



D E

		
A.t/ Q.t/
P.t/ B.t/



 	
M.0/

In



;

then

M.t/ D M1.t/M2.t/
�1:

Furthermore there is a way to a unique solution.

For the application at hand, one must set:

A.t/  �u.t/v.t/?;

B.t/  v.t/u.t/?;

P.t/ D �v.t/v.t/?;
Q.t/  u.t/u.t/?;

to obtain that 	
A.t/ Q.t/
P.t/ B.t/



D �

	
u.t/
v.t/


 �
v.t/? �u.t/?

�
:

The above applies directly to the following case, as continuous coefficients on a
compact interval are bounded:

Fact 8.4.83 When a0 and A0 are continuous, the differential equation of (Proposi-
tion) 8.4.82, item (D), has a solution.

Fact 8.4.84 When the conditions listed below obtain, the differential equation
of (Proposition) 8.4.82, item (D), has a solution:

(A) for t 2 T, fixed, but arbitrary, there exists � > 0, and continuously differentiable˚
t 7! an .t/ ; t 7! An .t/ ; n 2 N

�
such that

(a) for fixed, but arbitrary ft1; t2g � Œt; t C �Œ,

Cn .t1; t2/ D
˝
An .t1 ^ t2/ ; an .t1 _ t2/

˛
Rn

is positive definite,



694 8 Some Facts About Multiplicity

(b) for fixed, but arbitrary n 2 N, almost surely (with respect to Lebesgue
measure) on Œt; t C �Œ, �2n .�/ > 0, where �n D � for an D a and An D A
in (Proposition) 8.4.82,

(B) the following function is locally square integrable (with respect to Lebesgue
measure):

t 7! jja
0.t/jjRn C

ˇ̌̌̌
A0 .t/

ˇ̌̌̌
Rn

� .t/
I

(C)

lim
n

Z tC�

t
d�

( ˇ̌̌
ˇ
ˇ̌̌
ˇa0n .�/�n .�/

� a0 .�/
� .�/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
Rn

C
ˇ̌̌
ˇ
ˇ̌̌
ˇA0n .�/�n .�/

� A0 .�/
� .�/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
Rn

)
D 0 :

Proof That latter result is a consequence of the fact that the solution, in the
continuous case, is a series of integrals, and that the assumptions allow those
integrals, and the series they form, to converge. ut

Fact 8.4.84 has the two applications (corollaries) which follow.

Corollary 8.4.85 Let f .t/ D Œa .t/ ; h.t/� be a Goursat process of order n, and let
A .t/ D Fh .t/ Œa .t/�. Suppose that

(a) a and A are absolutely continuous (with respect to Lebesgue measure),
(b) a0 and A0 are locally square integrable,
(c) Fh has a continuous derivative,
(d) �2 exists and is strictly positive.

Then f has simple Lebesgue spectrum.

Proof Let indeed
˚
an; n 2 N

�
be a sequence of continuously differentiable func-

tions such that

lim
n

Z tC�

t

ˇ̌̌̌
a0n .�/ � a0 .�/

ˇ̌̌̌ 2
Rn d� D 0;

and let An .t/ D Fh .t/
�
an .t/

�
. Then:

• Cn .t1; t2/ D
˝
An .t1 ^ t2/ ; an .t1 _ t2/

˛
Rn ; ft1; t2g � T, is positive definite;

• A0n .t/ D F0h .t/
�
an .t/

�C Fh .t/
�
a0n .t/

�
is continuous, and converges in L2 to A0;

• �2n .t/ D
˝
Fh
�
an .t/

�
; an .t/

˛
Rn converges uniformly to �2 .t/ > 0 on Œt; t C �Œ.

The conditions of case (Fact) 8.4.84 thus obtain. ut
Corollary 8.4.86 Let f .t/ D Œa .t/ ; h.t/� be a Goursat process of order n, and let
A .t/ D Fh .t/ Œa .t/�. Suppose that

(a) a and A are absolutely continuous (with respect to Lebesgue measure) and, for
t 2 T, fixed, but arbitrary, a .t/ ¤ 0Rn ,
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(b) a0 and A0 have a norm whose square is locally integrable,
(c) Fh is absolutely continuous (with respect to Lebesgue measure),
(d) F0h has a norm whose square is locally integrable and its smallest eigenvalue is

locally bounded below.

Then f has simple Lebesgue spectrum.

Proof Let ap be as in (Corollary) 8.4.85, and Fp be a continuously differentiable
approximation of Fh such that

•

lim
p

Z tC�

t

ˇ̌̌̌̌̌
F0p .�/ � F0h .�/

ˇ̌̌̌̌̌ 2
B

d� D 0;

• there exists ı > 0 so that, for t 2 Œt; t C �Œ, fixed, but arbitrary,

F0p .t/ � ı In:

Setting Ap .t/ D Fp .t/ ap .t/, one finishes as in (Corollary) 8.4.85. ut
Corollary 8.4.87 Let f .t/ D Œa .t/ ; h.t/� be a Goursat process such that

(a) h is a standard Wiener process in the wide sense,
(b) for t 2 T, fixed, but arbitrary, a .t/ ¤ 0Rn ,
(c) a is absolutely continuous (with respect to Lebesgue measure),
(d) for fixed, but arbitrary t 2 T,Z

Tt

ˇ̌̌̌
a0 .�/

ˇ̌̌̌ 2
Rn d� <1:

Then f has simple Lebesgue spectrum.

Proof In that case indeed Fh D tIn, and (Corollary) 8.4.87 is a particular case
of (Corollary) 8.4.86. ut
Example 8.4.88 The case n D 2 may be made explicit as follows. The differential
equation of Assumption (D) of (Proposition) 8.4.82 is then a set of four equations
with three unknowns:

F1;1; F1;2 D F2;1; F2;2:

Let Fh .t/ a .t/ D F .t/ a .t/, and M D F � Fh. Since, by definition,

M .t/ a .t/ D 0Rn ;
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M may be expressed, as presently seen, as follows:

M .t/ D � .t/
	

a22 .t/ �a1 .t/ a2 .t/
�a1 .t/ a2 .t/ a21 .t/



:

One has indeed a system of equations of the following form:

˛a1 C ˇa2 D 0
ˇa1 C � a2 D 0 :

Multiplying the first by a1, the second by a2, one obtains that

˛ D a22
a21
� and ˇ D �a2

a1
�:

� is the function � a�21 .
Since f has simple Lebesgue spectrum, F0 must have rank one, and thus

det F0 .t/ D det
n
F0h .t/CM0 .t/

o
D 0:

This latter equation yields a Riccati equation of the following form:

� .t/ �0 .t/C � .t/ � .t/C " .t/ �2 .t/ D �# .t/ ;

where

� .t/ D a22 .t/
dFh

2;2

dt
.t/C a21 .t/

dFh

1;1

dt
.t/C 2a1 .t/ a2 .t/

dFh

1;1

dt
.t/ ;

# .t/ D Fh

1;1

dt
.t/

dFh

2;2

dt
.t/ �

(
dFh

1;2

dt
.t/

) 2
;

� .t/ D 2

(
a2 .t/ a02 .t/

Fh

2;2

dt
.t/C a1 .t/ a01 .t/

dFh

1;1

dt
.t/

)

C 2

( �
a1 .t/ a02 .t/C a01 .t/ a2 .t/

� dFh

1;2

dt
.t/

)
;

" .t/ D � �a1 .t/ a02 .t/C a01 .t/ a2 .t/
�2
:

Applying the procedure just described to

f .t/ D cos .t/W .1/

t C sin .t/W .2/

t ;
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where t 7! W .1/

t , and t 7! W .2/

t , are orthogonal Wiener processes in the wide sense,
the Riccati equation becomes

�0 .t/ � �2 .t/ D �1:

When the initial condition is that F .0/ is the zero matrix, � .0/ D 0, and � .t/ D
� tanh .t/, so that

F .t/ D
	

t 0
0 t



� tanh .t/

	
cos2 .t/ � sin .t/ cos .t/

� sin .t/ cos .t/ sin2 .t/



:

8.4.9 Goursat Representations with Smooth, Deterministic
Part, Are Proper

In this section it is explained how, when a is smooth, proper Goursat representations
f .t/ D Œa .t/ ; h.t/� may be obtained.

The following notation shall be used.

1. Let Œ�l; �r� � T be an interval. � 2 RnC1 is a finite partition of Œ�l; �r� when, for
some n 2 N,

�l D �0 < �1 < 
 
 
 �n�1 < �n D �r:

P Œ�l; �r� is the set of finite partitions of Œ�l; �r�.
2. Given a function f , defined on Œ�l; �r�, and a finite partition � 2 P Œ�l; �r�,

�i Œ f ; �� D f .�iC1/ � f .�i/ :

3. Given two functions f and g defined on Œ�l; �r�,

I

	
f 2

g
j �l; �r



D sup

�2P Œ�l;�r �

X
i

�2
i Œ f ; ��

�i Œg; ��
:

4. Given a map f W T �! H, and f�l; �rg � T; �l < �r,

L��l;�r � Œ f � D V Œf f .t/; t 2 ��l; �r�g�:

Proposition 8.4.89 Let

(a) h be a CH-martingale, and Fh.t/ be the trace, at t 2 T, of its structure function;
(b) a W T �! Rn be continuously differentiable n � 1 times;
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(c) c W T �! T be continuous, positive, and such that, for arbitrary �l < �r,
Œ�l; �r� � �tl; trŒ,

I

	
c2

Fh
j �l; �r



D 1I

(d) f .t/ D Œa .c .t// ; h.t/�.
Then, given fixed, but arbitrary f�l; �rg � T; �l < �r, and i 2 Œ1 W n � 1�,�

a.i/ .c .�r// ; h.�r/
� 2 L��l;�r � Œ f � :

Proof Let t 2 ��l; �rŒ be fixed, but arbitrary and � 2 P Œt; �r� be such that, for i fixed,
but arbitrary, jc .�iC1/ � c .�i/j > 0. Set

� .�/ D
X

i

�2
i Œc; ��

�i ŒFh; � �
;

�i .�/ D 1

�.�/

	
�2

i Œc; ��

�i ŒFh; � �



;

f Œ�� D
X

i

�i .�/
�i Œ f ; � �

�i Œc; ��
:

The expression f Œ� � is thus a weighted average, with strictly positive weights
summing up to one. Then, inserting and subtracting, in f Œ��, terms of the type
Œa .c .�iC1// ; h.�i/�, one has that

f .�iC1/� f .�i/ D Œa.c.�iC1//; h.�iC1/� � Œa.c.�i//; h.�i/�

D Œa.c.�iC1//; h.�iC1/ � h.�i/� � Œa.c.�iC1// � a.c.�i//; h.�i/�;

so that

f Œ�� D
X

i

�i .�/

	
a .c .�iC1// ;

�i Œh; ��

�i Œc; � �



C
X

i

�i.�/

	
�i Œa ı c; � �

�i Œc; � �
; h.�i/



:

Consequently, as, by the mean value theorem, there exists �i 2 ��i; �iC1Œ such that

�i Œa ı c; ��

�i Œc; ��
D a0 .c .�i// ;
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one has thatˇ̌̌̌
f Œ�� � �a0 .c .�r// ; h.�r/

�ˇ̌̌̌
H �

�
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌X

i

�i .�/

	
a .c .�iC1// ;

�i Œh; ��

�i Œc; ��


ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌
H

C
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌X

i

�i .�/
�
a0 .c .�i// ; h.�i/

� � �a0 .c .�r// ; h.�r/
�ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌
H

:

Let A .�/ and B .�/ be the first, respectively, the second term of the right-hand side
of the latter inequality. One must prove that both can be made negligible.

Case of B .�/: One has that

0 � B .�/ �
X

i

�i .�/
ˇ̌̌̌ �

a0 .c .�i// ; h.�i/
� � �a0 .c .�r// ; h.�r/

�ˇ̌̌̌
H
:

Let

� .�l/ D sup
s2Œ�l;�r �

ˇ̌̌̌ �
a0 .c .s// ; h.�i/

� � �a0 .c .�r// ; h.�r/
�ˇ̌̌̌

H :

Then 0 � B .�/ � � .�l/, and lim�l"�r � .�l/ D 0.

Case of A .�/: Since h is a martingale in the wide sense,

A2 .�/ D
X

i

�2i .�/

�2
i Œc; ��

˝˚
Fh .�iC1/� Fh .�i/

�
Œa .c .�iC1//� ; a .c .�iC1//

˛
Rn :

Let

� Œ�l; �r� D sup
s2Œ�l;�r �

jja .c .s//jjRn :

As, for a symmetric, positive definite matrix M DPn
iD1 �i m1 ˝ mi,

0 � hMx; xiRn D
nX

iD1
�i
˝
mi; x

˛2
Rn � jjxjj2Rn

nX
iD1

�i D trace .M/ jjxjj2Rn ;

and, for matrices M1;M2,

trace .M1 �M2/ D trace .M1/� trace .M2/ ;
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one has that

0 � ˝˚Fh .�iC1/� Fh .�i/
�
Œa .c .�iC1//� ; a .c .�iC1//

˛
Rn

� �2 Œ�l; �r�
˚
Fh .�iC1/� Fh .�i/

�
:

Consequently, as �.�/�i.�/ D �2i Œc;��
�iŒFh;��

, and
P

i �i.�/ D 1,

A2 .�/ � �2 Œ�l; �r�
X

i

�2i .�/

�2
i Œc; ��

˚
Fh .�iC1/� Fh .�i/

� � �2 Œ�l; �r�

� .�/
:

The assumption on � .�/ (it increases to infinity) leads to

A .�/ �
p
�r � �l :

The same argument obtains for all derivatives. ut
Remark 8.4.90 Further meaning for condition (c) in (Proposition) 8.4.89 may be
obtained as follows. Let Tn .Œ�l; �r�/ be the �-algebra generated on Œ�l; �r� by the
dyadic intervals of order n. Let � and � be two measures on Borel �-algebra of T,
and �n and �n their respective restrictions to Tn .Œ�l; �r�/. Let˚


.i/
n ; i 2 In; jInj < @0

�
be a partition of Œ�l; �r� by sets of positive measure for �n in Tn .Œ�l; �r�/ and
generating it (modulo sets of measure zero), and let

fn .t/ D
X

i

�


.i/
n

.t/
�n
�

.i/

n

�
�n
�



.i/
n
� :

fn is the Radon-Nikodým derivative of �n with respect to �n. It can be shown [201,
p. 50] that f fn; n 2 Ng is almost surely convergent with respect to � to the Radon-
Nikodým derivative of � with respect to �. One has that

Z
f 2n d� D

X
i

�2n
�

.i/

n

�
�n
�



.i/
n
� :

Having�i Œc; �� taking the part of �n.

.i/
n /, and�i ŒFh; ��, that of �n.


.i/
n /, one has,

when it obtains, that the Radon-Nykodým derivative of the measure determined by
c, with respect to that determined by Fh, is in L1, but not in L2.

Corollary 8.4.91 Given the assumptions of (Proposition) 8.4.89, when the Wron-
skian of a .t/ is different from zero at t D c .tr/, its derivatives are linearly
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independent and, consequently, h.tr/ 2 Ltr Œ f �, and the representation of (Propo-
sition) 8.4.89 is proper.

Example 8.4.92 Let T D Œ0; 1�, and h.t/ D Wt be a standard Wiener process in the
wide sense, of dimension two. Then Fh .t/ D 2t. Let

c .t/ D pt D
Z t

0

1

2
p
�

d�:

As, for a < b, fixed, but arbitrary,

�p
b �pa

�2
b � a

D
�R b

a
1

2
p
�

d�
�2

b� a
� 1

4b
.b � a/ D 1

4

�
1 � a

b

�
;

when a D i
n and b D iC1

n ,

1

4

�
1 � a

b

�
D 1

4 .iC 1/ ;

and condition (c) of (Proposition) 8.4.89 obtains for any interval contained in T. Let

˛ .t/ D
	
1

et



:

Its Wronskian is et. Consequently

f .t/ D W .1/

t C e
p

t W.2/
t

is a proper Goursat representation Œa; h.t/�, with a D ˛ ı c and h.t/ D Wt.

Remark 8.4.93 The example just seen shows how to obtain explicitly Markov
processes of order n in the wide sense, given a non-singular CH-martingale in the
wide sense: one chooses c strictly increasing and continuous, so that condition (c)
of (Proposition) 8.4.89 obtains, and then a vector of exponentials, say

ai .t/ D e� .i�1/t; i 2 Œ1 W n� :

f .t/ D Œa .c .t// ; h.t/� is then a proper representation with a smooth, deterministic
part.

Remark 8.4.94 Processes within the fold of (Proposition) 8.4.89 have the following
property: for fixed, but arbitrary ftl; trg � T; tl < tr,

L�tl;tr � Œ f � D L�tl;tr � Œh� :
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But then, tr being fixed, but arbitrary,

\ftl<trgL�tl;tr � Œ f � D \ftl<trgL�tl;tr � Œh� :

As h is continuous to the left, when h is non-singular,

\ftl<trgL�tl;tr � Œ f � D L Œh.tr/� ;

whose dimension is n.

Remark 8.4.95 Let h be a non-singular CH-martingale, and

f .t/ D Œa .t/ ; h.t/� :

When, for t 2 T, fixed, but arbitrary,

dim\f�2T;�<tgL��;t� Œ f � D n;

the representation of f is proper. Indeed, since, given the assumption on h,
dim L Œh.t/� D n, and

\f�2T;�<tgL��;t� Œ f � � \f�2T;�<tgL��;t� Œh� D L Œh.t/� ;

the latter inclusion is an equality, and h.t/ 2 Lt Œ f �.



Chapter 9
Cramér-Hida Representations via the Prediction
Process

9.1 Introductory Remarks

The prediction process of Knight [157, 158, 160] has “wide sense” and “strict sense”
interpretations, with the meaning of those terms that of Doob [78]. One shall thus
use, in what follows, the term “process” for a map t 7! f .t/ as well as for a bona
fide process .!; t/ 7! X.!; t/.

Prediction processes provide yet another way to the CHR representation, with
the added advantage of a bond between a process and its representation that is
tighter than that provided by other ways to such a representation. Both types of
results (wide sense and strict sense) make the rather demanding assumption, given
the context, that explicit expressions for the projection process be available. That
such an assumption is not utterly unreasonable is due to at least two reasons.

The first reason is that, with Goursat processes, one has a fairly wide class of
processes for which the prediction process has an “immediate” expression, when
the representation is proper, that is,

Pt Œ f .tC �/� D Pt ŒŒa.tC �/; h.tC �/�� D Œa.tC �/; h.t/� ;

and computations with the prediction process are thus to a large extent computations
with a (the variable is �).

Remark 9.1.1 As already seen in Sect. 8.4, to get a proper representation may not
be easy. In simple cases already, finding the prediction process amounts to solving
explicitly differential equations. Here is a simple example. U and V are independent
standard Wiener processes, s is sine, c, cosine. Set

Xt D s.t/Ut C c.t/Vt:

© Springer International Publishing Switzerland 2015
A.F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise,
DOI 10.1007/978-3-319-22315-5_9
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One may write

Xt D Œa.t/; h.t/�; a.t/ D
	

s.t/
c.t/



; h.t/ D

	
Ut

Vt



:

The proper representation of X is [(Proposition) 8.4.44]

Œa.t/; hX.t/�; with hX.t/ D PX
t Œh.t/�:

The elements of Lt ŒX� have the following generic form [(Fact) 6.2.23]:Z t

0

.y/X.dy/ D

D
Z t

0

.x/ fc.x/Ux dxC s.x/U.dx/� s.x/Vx dxC c.x/V.dx/g :

To have a proper representation, one must obtain the projection of Ut and Vt onto
Lt ŒX�. One must thus compute, for � � t,

hUt;X� iL2.˝;A;P/ D �s.�/ and h
Z t

0

.y/X.dy/;X�iL2.˝;A;P/:

A calculation yields that the latter inner product is the right-hand side of the
following equality, which, in principle, determines :

�s.�/ D
Z �

0

.x/ fxs.� � x/C c.� � x/g dxC �
Z t

�

.x/s.� � x/dx: (?)

To simplify that expression, one differentiates it twice using the following formula
[262, p. 255]: when

g.t/ D
Z b.t/

a.t/
f .t; x/dx;

then

g0.t/ D
Z b.t/

a.t/

@f

@t
.t; x/dxC f .t; b.t//b0.t/ � f .t; a.t//a0.t/:
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The result is:

2c.�/� �s.�/ D

D 0.�/C 2
Z t

�

.x/c.� � x/dx

�
( Z �

0

.x/ fxs.� � x/C c.� � x/g dxC �
Z t

�

.x/s.� � x/dx

)
:

Since the right-hand side parenthesis is �s.�/, the end result is

2c.�/ D 0.�/C 2
Z t

�

.x/c.� � x/dx:

Integrating the whole expression, and interchanging order of integration on the right-
hand side, yields that

2s.t/ D .t/C 2
Z t

0

.x/s.s/dx;

and then, differentiating again, one has the following first order differential equation:

2c.t/ D 0.t/C 2s.t/.t/:

Its solution, using the formula of [2, p. 310, Vol. I], is:

U.t/ D 2e2c.t/

Z t

0

c.x/e�2c.x/dx:

For Vt, the only thing that changes in the calculation is the left-hand side of (?),
where �s.�/ is replaced by �c.�/, and the result is

V .t/ D �2e2c.t/

Z t

0

s.x/e�2c.x/dx:

Thus the proper representation is

Xt D s.t/
Z t

0

U dX C c.t/
Z t

0

V dX:

The second reason why there is hope to obtain, in certain cases, an explicit
expression for the projection process is that the projection Pt Œ f .tC �/� can be



706 9 Cramér-Hida Representations via the Prediction Process

obtained [(Corollary) 1.6.23] as the limit of expressions of the formh
˙�1c; f

i
;

where c and˙ have components whose values are given by the covariance of f , and
f is made of “time observations” of f .

The approach to CHR using the prediction process enables one to construct,
from the projections Pt Œ f .tC �/�, the elements  and h that enter the “multiplicity
representation” of f , in the simplest case:

f .t/ D
Z

ITtt dmh D
Z
t dmh:

The difference with the CHR representations obtained earlier is as follows. A
CHR representation is generally an existence result: one knows that a  and a h
exist. It does not say how one constructs them directly from f . This is what the
method based on the prediction process achieves to a certain extent (it yields more
for multiplicity one than for higher multiplicity, and always requires a “starting”
integral representation). The prediction process approach, and there lies perhaps its
main interest, produces a family of martingales (those of (Definition) 9.2.9) that
embody the original process’ properties.

Formally, the prediction method consists in introducing an object that is reminis-
cent of the resolvent in the theory of Markov processes, and makes substantial use
of the Laplace transform. Smoothness properties are more stringent than is the case
for the general CHR representation.

9.2 The Case of Karhunen Representations

In this section one assumes that the map f has the so-called Karhunen representation:

f .t/ D
Z t

0

t dmh;

where h has orthogonal increments, and t is an equivalence class in

L2.T; T ;Mh/;

with the property that IŒ0;t�t D t, of which one is reminded when an integral
symbol whose bounds are 0 and t is used. The apparent simplicity of such a
representation is rather deceptive, as evidenced by the following example [144],
which shows that representing functions as integrals is, in this context, not much of
a limitation. The requirement of multiplicity one is thus always stringent.
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Example 9.2.1 Let, for k 2 N0, fixed, but arbitrary,

Ik D


1

2kC1
;
1

2k



; and Jk D

�
2k; 2kC1

�
:

One has, for strictly positive integer l,

1

2l
Ik D IkCl; and

1

2l
Jk D

�
Jk�l when k � l
Il�k when k < l

:

Those intervals have a natural order: : : : ; I3; I2; I1; I0; J0; J1; J2; J3; : : : For p 2 N,
fixed, but arbitrary, let these intervals be assembled as follows, to form disjoint
subsets S0; S1; : : : ; Sp�1 (one considers, to be explicit, the case p D 4, and retains,
to form one set, every fourth interval):

:::
:::

:::
:::

I11 I10 I9 I8
I7 I6 I5 I4
I3 I2 I1 I0
J0 J1 J2 J3
J4 J5 J6 J7
J8 J9 J10 J11
:::
:::

:::
:::

S0 S1 S2 S3

Thus, letting i 2 N0 and j 2 N, S0 is the union of the sets J4i and I4j�1; S1,
J4iC1 and I4j�2; S2, J4iC2 and I4j�3; S3, J4iC3 and I4j�4. Those sets have particular
transformation properties as follows:

Case of S0: 1
21

S0 D S3;
1
22

S0 D S2;
1
23

S0 D S1;
1
24

S0 D S0

Indeed

1

2k
I4i�1 D



1

24iCk
;

1

24iCk�1



D

8̂̂<
ˆ̂:

k D 1 W I4i D I4.iC1/�4 2 S3
k D 2 W I4iC1 D I4.iC1/�3 2 S2
k D 3 W I4iC2 D I4.iC1/�2 2 S1
k D 4 W I4.iC1/�1 2 S0

;
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and

1

2k
J4i D

�
24i�k; 24i�kC1

� D

8̂̂̂
ˆ̂̂̂̂̂
ˆ̂<
ˆ̂̂̂̂̂
ˆ̂̂̂̂:

k D 1; i D 0 W I0 2 S3
k D 1; i � 1 W J4i�1 D J4.i�1/C3 2 S3
k D 2; i D 0 W I1 2 S2
k D 2; i � 1 W J4i�2 D J4.i�1/C2 2 S2
k D 3; i D 0 W I2 2 S1
k D 3; i � 1 W J4i�3 D J4.i�1/C1 2 S1
k D 4; i D 0 W I3 2 S0
k D 4; i � 1 W J4.i�1/ 2 S0

:

Case of S1: 1
21

S1 D S0;
1
22

S1 D S3;
1
23

S1 D S2;
1
24

S1 D S1

Indeed

1

2k
I4i�2 D



1

24iCk�1
;

1

24iCk�2



D

8̂̂<
ˆ̂:

k D 1 W I4i�1 2 S0
k D 2 W I4i D I4.iC1/�4 2 S3
k D 3 W I4iC1 D I4.iC1/�3 2 S2
k D 4 W I4.iC1/�2 2 S1

;

and

1

2k
J4iC1 D

�
24iC1�k; 24iC2�k

� D

8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂:

k D 1 W J4i 2 S0
k D 2; i D 0 W I0 2 S3
k D 2; i � 1 W J4i�1 D J4.i�1/C3 2 S3
k D 3; i D 0 W I1 2 S2
k D 3; i � 1 W J4i�2 D I4.i�1/C2 2 S2
k D 4; i D 0 W I2 2 S1
k D 4; i � 1 W J4.i�1/C1 2 S1

:

Case of S2: 1
21

S2 D S1; 1
22

S2 D S0; 1
23

S2 D S3; 124 S2 D S2

Indeed

1

2k
I4i�3 D



1

24iCk�2
;

1

24iCk�3



D

8̂̂<
ˆ̂:

k D 1 W I4i�2 2 S1
k D 2 W I4i�1 2 S0
k D 3 W I4i D I4.iC1/�4 2 S3
k D 4 W I4.iC1/�3 2 S2

;
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and

1

2k
J4iC2 D

�
24iC2�k; 24iC3�k

� D

8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

k D 1 W J4iC1 2 S1
k D 2 W J4i 2 S0
k D 3; i D 0 W I0 2 S3
k D 3; i � 1 W J4i�1 D I4.i�1/C3 2 S3
k D 4; i D 0 W I1 2 S2
k D 4; i � 1 W J4.i�1/C2 2 S2

:

Case of S3: 1
21

S3 D S2; 1
22

S3 D S1; 1
23

S3 D S0; 124 S3 D S3

Indeed

1

2k
I4i�4 D



1

24iCk�3
;

1

24iCk�4



D

8̂̂<
ˆ̂:

k D 1 W I4i�3 2 S2
k D 2 W I4i�2 2 S1
k D 3 W I4i�1 2 S0
k D 4 W I4.iC1/�4 2 S3

;

and

1

2k
J4iC3 D

�
24iC3�k; 24iC4�k

� D
8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

k D 1 W J4iC2 2 S2
k D 2 W J4iC1 2 S1
k D 3 W J4i 2 S0
k D 4; i D 0 W I0 2 S3
k D 4; i � 0 W J4.i�1/C3 2 S3

:

When, for example, t 2 S0, t=2 2 S0=2 D S3, and thus

�
�0; t

2 �\S3
D
�
1 when t 2 S0
0 when t 2 Sc

0

:

Generally,

�

0; t
2p�k



\Sk

D
�
1 when t 2 S0
0 when t 2 Sc

0

: (?)

To summarize:

1
24�k Sk S0 S1 S2 S3 �


0; t
24�k



\Sk

.t/ t 2 S0 t 2 S1 t 2 S2 t 2 S3

1
24�3

S3 S0 S1 S2 k D 3 1 0 0 0
1

24�2
S2 S3 S0 S1 k D 2 1 0 0 0

1
24�1

S1 S2 S3 S0 k D 1 1 0 0 0
1

24�4
S0 S1 S2 S3 k D 0 1 0 0 0

:
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Let W be a Wiener process in the wide sense, and let, for k 2 Œ1 W 3�, fixed, but
arbitrary,

hk.t/ D
Z "

�

0; t
2p�k



\Sk

#
dmW :

Then

hhk.t1/; hl.t2/i D

D R "
��


0;
t1

2p�k



\



0;

t2
2p�l



\Sk\Sl

�
#

dLeb

D

8̂<
:̂
0 when l ¤ kR "

��

0;

t1^t2
2p�k



\Sk

�
#

dLeb when l D k
:

Consequently, when l ¤ k, hk, and hl are orthogonal, and when l D k and t1 � t2,

hhk.t1/; hk.t2/i D hhk.t1/; hk.t1/i;

so that hk.t2/� hk.t1/ ? hk.t1/: hk is a martingale in the wide sense. Because of (?),
jjhk.t/jj2 increases as t on S0, and is constant on Sc

0, independently of k.
Let ' be a function with the properties of the function c in (Proposition) 8.4.89.

Then

f .t/ D
Z t

0

p�1X
kD0

"
�


0; t
2p�k



\Sk

'k.t/

#
dmW D

p�1X
kD0

'k.t/hk.t/;

so that f has multiplicity p [(Corollary) 8.4.91].

9.2.1 Notation, Assumptions, and Some Consequences

The reasons for the assumptions stated below shall emerge within the developments
to follow.

Assumptions 9.2.2 The tacit assumptions for the sequel shall be that:

1. T D RC,
2. f W T �! H is a continuous map with (continuous) covariance Cf ,
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3. for fixed, but arbitrary � > 0,

	f .�/ D
Z

T
e���Cf .�; �/ d� <1;

(an assumption based on the continuity of Cf ).

Definition 9.2.3 In the sequel, repeated use of the following facts shall be made.
Let ˘ a

˛ denote the probability on B .Œa;1Œ/ with density

˘ a
˛ .d�/ D �Œa;1Œ

.�/˛e�˛ .��a/d�:

For appropriate f ,

E˘a
˛
Œ f � D ˛e˛a

Z 1
a

e�˛� f .�/d� D ˛
Z 1
0

e�˛� f .aC �/d�:

Consequently, for f � 0,

E˘a
˛
Œ f � � E1=2

˘a
˛

�
f 2
�
;

or

p
˛

Z 1
0

e�˛� f .aC �/d� �
�Z 1

0

e�˛� f 2.aC �/d�
� 1=2

:

Lemma 9.2.4

1. 	f is continuous;
2.
R

T e�˛� f .tC �/d� may be used as a direct integral;
3.
R

T e�˛� f .tC �/d� may be used as a Bochner integral.

Proof Item 1 is the consequence of the theorem on the continuity of integrals
depending on a parameter [113, p. 136]. The other claims depend on the fact that

Cf .t; t/ D jj f .t/jj2H :

ˇ̌̌
ˇ
ˇ̌̌
ˇ
Z

T
e�˛� f .tC �/d�

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
LH
2 .T;T ;Leb/

D
Z

T

ˇ̌̌̌
e�˛� f .tC �/ˇ̌̌̌ 2

H
d�

D
Z

T
e�2˛�Cf .tC �; tC �/ d�

D e2˛t

Z 1
t

e�2˛uCf .u; u/ du

� e2˛t	f .2˛/ ;
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and Z
T

ˇ̌̌̌
e�˛� f .tC �/ ˇ̌̌̌

H
d� D

Z
T

e�˛� jj f .t C �/ jjH d�

D ˛�1E˘0
˛
Œjj f .t C 
/jjH�

� ˛�1E1=2

˘0
˛

�jj f .tC 
/jj2H�
D ˛�1

�
˛

Z
T

e�˛�Cf .tC �; tC �/ d�

� 1=2

D ˛�1=2
�

e˛t

Z 1
t

e�˛�CX .�; �/ d�

� 1=2

�
�

e˛t

˛

� 1=2
	

1=2

f .˛/ :

ut
Remark 9.2.5 One of the consequences of Bochner integrability is that operators
and integral signs commute [135, p. 83]: for projections, one has that

Pt

Z
D
Z

Pt:

Remark 9.2.6 Since f is continuous, f .t/ 2 L�t Œ f � D Lt Œ f �.

Remark 9.2.7 The proper canonical representation of f , when the multiplicity is
one, shall be denoted

f .t/ D
Z t

0

Ft dmh;

and the projection onto Lt Œ f �, Pt.

Lemma 9.2.8 For � > 0, and t 2 T, fixed, but arbitrary, let

j .t; �/ D
Z

T
e��� f .tC �/d�;

q .t; �/ D �
Z

T
e���Pt Œ f .tC �/� d�:

Then:

1. � 7! Pt Œ f .tC �/� is continuous;
2. q.t; �/ D �Pt Œ j.t; �/�;
3. t 7! j .t; �/, and � 7! j.t; �/, are continuous;
4. t 7! q .t; �/ is continuous to the left, and � 7! q.t; �/ is continuous.
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Proof Item 1 expresses the continuity of f , and item 2, the interchange property
[(Remark) 9.2.5] of the Bochner integral. For item 3, one has that (˘ a

˛ is defined
in (Definition) 9.2.3):

jj j .tC �; �/� j .t; �/jjH �
Z

T
e��� jjf .tC � C �/� f .tC �/jjH d�

D e�t

Z 1
t

e��u jjf .� C u/� f .u/jjH du

� e�t

Z
T

e��u jjf .� C u/� f .u/jjH du

D ��1e�tE˘0
�
Œjjf .� C 
/� f .
/jjH�

� ��1e�tE1=2

˘0
�

�jjf .� C 
/� f .
/jj2H
�

D ��1e�t

�
�

Z
T

e��� jjf .� C �/� f .�/jj2H d�

� 1=2

D e�t

p
�

�Z
T

e��� jjf .� C �/ � f .�/jj2H d�

� 1=2
:

Let

�.�/ D e��� jjf .� C �/� f .�/jj2H ;
 � .�/ D 2e���

˚jjf .� C �/jj2H C jjf .�/jj2H� :
Then

lim
�#0

� .�/ D 0; lim
�#0

 � .�/ D 4e��� jjf .�/jj2H ; � .�/ �  �.�/:

Furthermore, as seen [proof of (Lemma) 9.2.4]Z
T

ˇ̌̌̌
e��� f .t C �/ˇ̌̌̌ 2

H
d� D e2�t

Z 1
t

e�2��Cf .�; �/d�;

so that

lim
�#0

Z
T
 �.�/d� D 2 lim

�#0
e2��

Z 1
�

e�2��Cf .�; �/d�

C 2
Z 1
0

e�2��Cf .�; �/d�

D 4
Z 1
0

e�2��Cf .�; �/d�

D
Z 1
0

lim
�#0

 � .�/d�:
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The dominated convergence theorem [226, p. 232] yields then that

lim
�#0

Z
T

e��� jjf .� C �/ � f .�/jj2H d� D 0;

independently of t 2 T (thus on bounded intervals, continuity is uniform). The
continuity of j with respect to � follows from the fact that it is differentiable [262,
p. 253]. Now, for � > 0, fixed, but arbitrary, inserting and subtracting Pt�� Œ j.t; �/�
to obtain the inequality,

jjq .t � �; �/� q .t; �/jjH D
D � jjPt�� Œ j .t � �; �/� � Pt Œ j .t; �/�jjH
� � jj j.t � �; �/ � j.t; �/jjH C � jj.Pt�� � Pt/ Œ j.t; �/�jjH :

Since j is continuous, and Pt continuous to the left, q is continuous to the left.
Continuity in � follows from items 2 and 3. ut
Definition 9.2.9 The following definition makes sense because of (Lemmas) 9.2.4
and 9.2.8:

h�.t/ D q .t; �/ � q .0; �/C �
Z t

0

f f .�/ � q .�; �/g d�:

Maps of type h�.t/ shall be called Knight’s martingales, as they are, as shall be seen
below, martingales in the wide sense.

Example 9.2.10 Let, for W, a standard, wide sense, Wiener process,

f .t/ D a.t/
Z t

0

b.�/W.d�/ D a.t/B.t/:

f is continuous in mean square when a is continuous and b adequately integrable.
Then PtŒ f .t C �/� D a.tC �/B.t/, so that, with a change of variables,Z 1

0

e���PtŒ f .t C �/�d� D B.t/
Z 1
0

e���a.tC �/d� D e�tc.t/B.t/;

where c.t/ D R1t e���a.�/d� . Then, letting C.t/ D �e�tc.t/,

h�.t/ D C.t/B.t/C �
Z t

0

fa.�/ � C.�/gB.�/ d�:
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Using formula (Fact) 6.2.24, with 0.t/ D � fa.t/� C.t/g, omitting notation for
equivalence classes, one has that

�

Z t

0

fa.�/ � C.�/gB.�/ d� D .t/B.t/ �
Z t

0

.�/B.d�/:

Thus

h�.t/ D fC.t/C .t/gB.t/ �
Z t

0

.�/B.d�/:

h� resembles indeed a wide sense martingale, the obstacle being the factor C C .
The theory to follow [(Proposition) 9.2.21] shall establish that fact.

Remark 9.2.11 Definition 9.2.9 makes sense as, using the assumption on f ,
and (Lemma) 9.2.8, item 2,Z t

0

jj f .�/ � q.�; �/jjH d� �
Z t

0

jj f .�/ � �j.�; �/jjH d�:

Remark 9.2.12 Pt Œh�.t/� D h�.t/.

Remark 9.2.13 It is h� that provides the process with orthogonal increments of the
representation of f based on the prediction process.

Proposition 9.2.16 below requires the following result [192, p. 154] which is now
stated for convenience.

Fact 9.2.14 Suppose that F is a separable �-field (countably generated), that
.T; T / is a measurable space, and that fPt; t 2 Tg and fQt; t 2 Tg are two
measurable families of bounded, positive measures (t 7! Pt .A/ is adapted to T
for each A 2 F ) on .˝;F/ such that, for t 2 T, fixed, but arbitrary, Qt � Pt. There
exists then a positive function D .!; t/, adapted to F ˝ T , such that, for fixed, but
arbitrary t 2 T,

dQt

dPt
.!/ D D .!; t/ :

Let Fn be generated by the first n sets of the family generatingF . These sets generate
a measurable partition ˚

A.n/

i ; i 2 Œ1 W pn�
�

of ˝ . Then the limit of

Dn .!; t/ D
pnX

iD1

Qt
�
A.n/

i

�
Pt
�
A.n/

i

� �
A
.n/
i

.!/ ;

when it exists, yields D .!; t/. Elsewhere D is zero.
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Remark 9.2.15 Fact 9.2.14 obtains also when fQt; t 2 Tg is a family of bounded,
signed measures. It suffices to consider separately the elements of the Jordan
decomposition of Qt.

Proposition 9.2.16 Let h W T �! H have orthogonal increments, and be
continuous to the left, and mh and Mh be as in Sect. 6.2. In the representation

f .t/ D
Z

T
˚t dmh; ITt˚t D ˚t;

one may assume that ˚t is the equivalence class, with respect to Mh, of the function
x 7! ˚ .t; x/ obtained, for fixed, but arbitrary t 2 T, as the section at t of a
measurable .t; x/ 7! ˚ .t; x/.

Proof Let ˛t W T �! R be defined using the following relation:

˛t .�/ D h f .t/; h.�/iH:

It is of bounded variation as (with the convention 0 �1 D 0)X
i

j˛t .�iC1/� ˛t .�i/j D
X

i

jh f .t/; h.�iC1/� h.�i/iHj

D
X

i

ˇ̌̌
ˇ
Z t

0

�
Œ�i;�iC1Œ

.�/ P̊ t .�/Mh .d�/

ˇ̌̌
ˇ

�
X

i

Z t

0

�
Œ�i;�iC1Œ

.�/
ˇ̌ P̊ t .�/ˇ̌Mh .d�/

D
Z t

0

ˇ̌ P̊ t .�/ˇ̌Mh .d�/ :

Using the inequality of Cauchy-Schwarz, the last integral is less than, or equal to

M1=2

h .Œ0; t�/ jj˚tjjL2ŒT;T ;Mh/
;

which is finite, as Mh is a measure derived from a monotone increasing function into
the reals.

Let �˛
t be the signed measure associated with ˛t: it is absolutely continuous with

respect to Mh, and bounded, since, for ft1; t2g � T; t1 < t2, fixed, but arbitrary,

�˛

t .Œt1; t2Œ/ D h f .t/; h.t2/ � h.t1/iH D
Z t

0

�
Œt1;t2Œ

.�/ P̊ t .�/Mh .d�/ ;
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and t 7! �˛
t .A/ is adapted, since it is, as presently seen, continuous. Indeed

ˇ̌̌
�˛

tC� .A/� �˛

t .A/
ˇ̌̌
D
ˇ̌̌
ˇ
Z

A

˚ P̊ tC� .�/ � P̊ t .�/�Mh.d�/

ˇ̌̌
ˇ

�
Z

A

ˇ̌ P̊ tC� .�/ � P̊ t .�/ˇ̌Mh.d�/

� M1=2

h .A \ Œ0; tC ��/ ˇ̌̌̌˚tC� �˚t

ˇ̌̌̌
L2.T;T ;Mh/

D M1=2

h .A \ Œ0; tC ��/ jj f .tC �/ � f .t/jjH :

˚t is furthermore the equivalence class of the Radon-Nikodým derivative of �˛
t with

respect to Mh. But, in the context of (Fact) 9.2.14, the quantity D .�; t/ is the limit
of a sequence of the following type:

n�1X
iD1

�	
t
.n/
i ;t

.n/
iC1

	 .�/ �
˛
t

��
t.n/i ; t

.n/

iC1
��

Mh
��

t.n/i ; t
.n/

iC1
�� ;

and one may choose D to be ˚ . ut
Remark 9.2.17 In (Proposition) 9.2.16, one has, almost surely, with respect to Mh,
that P̊ .t; 0/ D 0.

Remark 9.2.18 (Result (Proposition)) 9.2.16 shows how, knowing f and h, one
obtains ˚ .

Remark 9.2.19 Let W be a Wiener process. (Result (Proposition)) 9.2.16 allows one
to switch “seamlessly” from an interpretation of

R t
0

F .t; x/ W .dx/ as an isometric
integral to its interpretation as a stochastic integral, and conversely.

Remark 9.2.20 It shall always be tacitly assumed in what follows that t is obtained
as in (Proposition) 9.2.16.
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9.2.2 Properties of Knight’s Martingales

Given the part that the Knight’s martingales h� are going to play, their properties
are required, the most important being that they are processes with orthogonal
increments. Their second order properties are equally relevant.

Proposition 9.2.21 h� has the following properties:

1. h�.t/ 2 Lt Œ f �;
2. t 7! h�.t/ is continuous to the left;
3. � 7! h�.t/ is continuous;
4. for fixed, but arbitrary � > 0, h� is a martingale in the wide sense with respect

to f : for ft1; t2; t3g � T; t1 � t2 � t3, fixed, but arbitrary,

Pt1 Œh�.t3/ � h�.t2/� D 0HI

5. for fixed, but arbitrary f�;�g � �0;1Œ and ft1; t2; t3g � T; t1 � t2 � t3,

hh�.t1/; h�.t3/ � h�.t2/iH D 0I

6. Pt1 Œq .t2; �/ � q .t1; �/� D �Pt1

hR t2
t1
fq .�; �/� f .�/g d�

i
.

Proof Items 1 and 2 follow directly from the definition of h�.t/ [(Definition) 9.2.9,
(Lemma) 9.2.8, (Remark) 9.2.11]. Item 3 also follows from (Definition) 9.2.9, and
the fact thatˇ̌̌

ˇ
ˇ̌̌
ˇ
Z t

0

q.�; �C �/d� �
Z t

0

q.�; �/d�

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

D

D
ˇ̌̌
ˇ
ˇ̌̌
ˇ.�C �/

Z t

0

P� Œ j.�; �C �/� d� � �
Z t

0

P� Œ j.�; �/� d�

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

� j�j
Z t

0

jj j.�; �C �/jjH d� C �
Z t

0

jj j.�; �C �/ � j.�; �/jjH d�:

From that same definition [(Definition) 9.2.9], one has that

h�.t2/� h�.t1/ D q .t2; �/ � q .t1; �/C �
Z t2

t1

f f .�/ � q .�; �/g d�: (?)

Item 6 follows directly from item 4, applying Pt1 to that last equality (?), and item
5 follows from item 4, and the fact that h�.t1/ D Pt1 Œh�.t1/�. So one must prove
item 4.



9.2 The Case of Karhunen Representations 719

As [(Lemma) 9.2.8]

q.t; �/ D �Pt Œ j.t; �/�

D �Pt

	Z 1
0

e��� f .tC �/d�



D �Pt

	Z 1
t

e��.��t/f .�/d�



;

the right-hand side of that same equality (?) has the following form:

Pt2

	
�

Z 1
t2

e��.��t2/f .�/d�



� Pt1

	
�

Z 1
t1

e��.��t1/f .�/d�



C

C�
Z t2

t1

f f .�/ � q .�; �/g d�:

Let its successive terms be denoted A;B, and C, so that it is expressed as A�BCC.
Because Pt

R D R Pt, one has that:

• Pt1 ŒA� D �
R1

t2
e��.��t2/Pt1 Œ f .�/� d� ,

• Pt1 ŒB� D �
R1

t1
e��.��t1/Pt1 Œ f .�/� d� ,

• for � � t1, Pt1 Œq .�; �/� D �
R1
�

e��.u��/Pt1 Œ f .u/� du, so that

Pt1 ŒC� D �
Z t2

t1

Pt1 Œ f .�/� d� � �2
Z t2

t1

d�
Z 1
�

due��.u��/Pt1 Œ f .u/� :

Consequently

Pt1 Œh�.t2/� h�.t1/� D �
Z 1

t2

˚
e��.��t2/ � e��.��t1/

�
Pt1 Œ f .�/� d�

� �
Z t2

t1

˚
e��.��t1/ � 1�Pt1 Œ f .�/� d�

� �2
Z t2

t1

d�
Z t2

�

due��.u��/Pt1 Œ f .u/�

� �2
Z t2

t1

d�
Z 1

t2

due��.u��/Pt1 Œ f .u/� :
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Following an interchange of integration [262, p. 80], the fourth term on the right-
hand side of the latter equality becomes

��
Z 1

t2

duPt1 Œ f .u/�
˚
e��.u�t2/ � e��.u�t1/

�
;

so that it cancels the first term. Similarly the third term cancels the second. ut
Lemma 9.2.22 Let h W T �! H have orthogonal increments, and be continuous to
the left, and mh and Mh be as in Sect. 6.2. Suppose that

f .t/ D
Z

T
Œ˚.t; 
/� dmh;

where ˚ is as in (Proposition) 9.2.16, and �
Tt
.�/˚.t; �/ D ˚.t; �/. Let

�.t; �/ D
Z

T
e���˚.tC �; �/d�:

Then �.0; 0/ D 0, andZ
T

e���Pt Œ f .t C �/� d� D
Z t

0

Œ�.t; 
/� dmh:

Proof The first claim follows from the properties of ˚ [(Remark) 9.2.17]. As

Pt Œ f .tC �/� D
Z

T
ITt Œ˚ .tC �; 
/� dmh;

one has thatZ
T

e���Pt Œ f .tC �/� d� D
Z

T
d�

�Z
T

ITt

�
e���˚ .tC �; 
/� dmh

�
:

Set

Gt.�; �/ D e���˚.tC �; �/�Tt .�/:

Then Z
T

Gt.�; �/d� D �Tt .�/�.t; �/:
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The conclusion thus obtains provided the integration interchange is legitimate. Now
one has that�Z

T
jGt.�; �/j d�

� 2
D �

Tt
.�/

�Z 1
0

e��� j˚ .tC �; �/j d�
� 2

D �
Tt
.�/��2E2

˘0
�

Œj˚ .tC 
 ; �/j�
� �

Tt
.�/��2E˘0

�

�
˚2 .tC 
 ; �/�

D �
Tt
.�/��1

Z
T

e���˚2 .tC �; �/ d�;

so thatZ
T

Mh.d�/

�Z
T
jGt.�; �/j d�

� 2
� ��1

Z t

0

�Z
T

e���˚2 .tC �; �/ d�

�
Mh .d�/ ;

and, recalling (Lemma) 9.2.4,Z t

0

�Z
T

e���˚2 .tC �; �/ d�

�
Mh .d�/ D

Z
T

d� e���
Z t

0

Mh .d�/˚
2 .tC �; �/

D
Z

T
d� e��� jjPt Œ f .tC �/�jj2H

�
Z

T
d� e��� jj f .tC �/jj2H

< 1:

One may thus apply the interchange of integration (Lemma) 6.2.21. ut
Proposition 9.2.23 Let h W T �! H have orthogonal increments, and be
continuous to the left, and mh and Mh be as in Sect. 6.2. Suppose that

(a) f .t/ D RT ˚t dmh; where ITt˚t D ˚t,
(b) �.t; �/ D RT e���˚.tC �; �/d� ,
(c) h� is as in (Definition) 9.2.9.

Then, for � > 0 and t � 0, fixed, but arbitrary,

1. almost surely, with respect to Mh, �.�; �/ exists, and � 7! �.�; �/ has an
equivalence class that belongs to L2 .T; T ;Mh/;

2. one has the following representation for h�:

h�.t/ D �
Z t

0

Œ�.
; 
/� dmh:
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Proof A change of variables yields that

��.�; �/ D �
Z

T
e���˚ .� C �; �/ d� D �

Z 1
�

e��.���/˚ .�; �/ d�:

But [(Definition) 9.2.3]

f��.�; �/g2 D E2

˘�
�

Œ˚.
; �/� � E˘�
�

�
˚2.
; �/� D � Z 1

�

e��.���/˚2 .�; �/ d�;

and then, proceeding with an interchange of integration, and remembering that
IŒ0;t�˚t D ˚t,Z

T
f��.�; �/g2 Mh.d�/ D

Z
T

�
�

Z
T

e���˚ .� C �; �/ d�

� 2
Mh .d�/

�
Z

T
Mh .d�/

Z 1
�

d��e��.���/˚2 .�; �/

D �
Z

T
d�e���

Z t^�

0

Mh.d�/e
�� ˚2.�; �/

� �e�t

Z
T

d�e���
Z

T
Mh .d�/˚

2 .�; �/

D �e�t

Z
T

d�e���
ˇ̌̌̌
˚�
ˇ̌̌̌
2

L2.T;T ;Mh/

D �e�t

Z
T

e���Cf .�; �/ d�:

The first assertion thus obtains. For the second, using (Lemma) 9.2.22, one has that

q .t; �/ D �
Z

T
e���Pt Œ f .tC �/� d� D �

Z t

0

Œ�.t; 
/� dmh:

Then, since �.0; 0/ D 0, using the definition of h� [(Definition) 9.2.9],

h�.t/
.?/D �

Z t

0

Œ�.t; 
/� dmh C �
Z t

0

( Z �

0

Œ˚.�; 
/� dmh � �
Z �

0

Œ�.�; 
/� dmh

)
d�:
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One must now proceed to an interchange of integration. Consider for an instant the
following functions (� � � � t):

Gt.�; �/ D �
Œ0;t�
.�/�

Œ0;� �
.�/� .�; �/;

	 .t; �/ D R
T Gt.�; �/d� D

8<
:
R t
�
� .�; �/d� when � � t

0 when � > t
;

gt.�/ D R
T ŒGt.�; 
/� dmh:

If allowed, the interchange of integration yields thatZ
T

gt.�/d� D
Z

T
Œ	 .t; 
/� dmh D

Z t

0

Œ	 .t; 
/� dmh:

Now gt.�/ D IŒ0;t�
R

T IŒ0;� � Œ� .�; 
/� dmh. Thus

Z t

0

d�
Z �

0

Œ� .�; 
/� dmh D
Z

T
Œ	 .t; 
/� dmh D

Z t

0

Œ	 .t; 
/� dmh:

Applied to the second term of the last expression obtained for h�, marked (?), the
latter interchange of integration yields that

h�.t/
.??/D �

Z t

0

Œ�.t; 
/� dmh C �
Z t

0

dmh
˚� Q̊ .t; 
/� � � � Q�.t; 
/�� ;

where Q̊ .t; �/ D R t
�
˚.�; �/d�; and Q�.t; �/ D R t

�
�.�; �/d� . One has already seen

[(Lemma) 9.2.22] that the interchange involving � is allowed. That concerning ˚
proceeds as follows:

Z t

0

Mh.dx/

�Z t

0

d� j˚.�; x/j
� 2
D

D
Z t

0

d�
Z t

0

d�
Z t

0

Mh.dx/ j˚.�; x/j j˚.�; x/j

�
Z t

0

d�
Z t

0

d� jjŒ˚.�; 
/�jjL2.T;T ;Mh/
jjŒ˚.�; 
/�jjL2.T;T ;Mh/

D
�Z t

0

d� jjŒ˚.�; 
/�jjL2.T;T ;Mh/

� 2
;

which is finite, since t 7! Œ˚.t; 
/� is continuous, as f is continuous, by assumption.
Now, successively, using the definition of � , interchanging the order of integration,
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continuing with a change of variables, and then integration by parts, one obtains that

��
Z t

�

d��.�; �/ D

D
Z

T

d

dx

�
e��x

� Z tCx

�Cx
˚.u; �/du

D
Z t

�

˚.u; �/du�
Z

T
e��x

	
d

dx

Z tCx

�Cx
˚.u; �/du



:

But [262, p. 255]

d

dx

�Z tCx

�Cx
˚ .u; �/ du

�
D ˚.tC x; �/ �˚.� C x; �/:

Thus

�� Q�.t; �/ D Q̊ .t; �/ �
Z

T
e��x˚.tC x; �/dxC

Z
T

e��x˚.� C x; �/dx;

that is,

�� Q�.t; �/ D Q̊ .t; �/ � �.t; �/C �.�; �/:

Inserting that in the last expression above for h�, marked (??), one finally obtains
item 2 of the proposition’s statement. ut
The following remarks ease the computations which follow, and those yield, in fine
[(Corollary) 9.2.33], the covariance of h�.

Remark 9.2.24 For � > 0, fixed, but arbitrary, one has, by change of variables
(� C � D u), thatZ

T
e��� f .t C � C �/d� D e��

Z 1
�

e��uf .tC u/du;

so that, with notation explained in Lemma 9.2.8, one has that

j .tC �; �/� j .t; �/ D �e�� � 1� Z 1
�

e��� f .tC �/d� �
Z �

0

e��� f .tC �/d�:

Remark 9.2.25 One has that [(Definition) 9.2.3]

E˘0
�

�jj f .tC 
/jj2H� D � Z 1
0

e��uCf .tC u; tC u/ du:
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The change of variables t C u D � yields that the right-hand side of the latter
expression equals [Assumption 9.2.2]

�e�t

Z 1
t

e���Cf .�; �/ d� � �e�t	f .�/ :

Thus

E˘0
�

�jj f .tC 
/jj2H� � �e�t	f .�/ :

Remark 9.2.26 Let 0 < �; � < 1 be fixed, but arbitrary. Since f is continuous,
it is uniformly continuous on Œ0; ��, and thus there exists ıf .�; �/ such that both
ft1; t2g � Œ0; �� and jt1 � t2j < ıf .�; �/ imply that

jj f .t1/ � f .t2/jjH < �:
Consequently, when � < ıf .�; �/ and n 2 N,Z �

0

jj f .t/ � f .tC �/jjnH d� < ��n:

There is furthermore �f 2 RC such that

jj f .t/jj � �f ; 0 � t � �:

Analogous values shall obtain for t 7! q .t; �/ [(Lemma) 9.2.8], and shall be denoted
ıq .�; �/ and �q.

Remark 9.2.27

1. As e�x � 1 � x, �
R �
0 e���d� D 1 � e��� � �� .

2. For x > 0, fixed, but arbitrary, using the series expansion of ex,

ex � 1C xC x2ex; so that
ex � 1 � x

x
� xex:

Lemma 9.2.28 j and q are as in (Lemma) 9.2.8. Let 0 < �; � < 1 be fixed, but
arbitrary. There exists then ı .�; �/ > 0, and ˛ 2 RC, such that, given constraints
0 < � < ı .�; �/ and ft; t C �g � Œ0; ��,ˇ̌̌

ˇ
ˇ̌̌
ˇPt Œq .tC �; �/� q .t; �/�

�
� � fq .t; �/ � f .t/g

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

�

� �
ˇ̌̌
ˇ
ˇ̌̌
ˇ j .tC �; �/� j .t; �/

�
� �j .t; �/C f .t/

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

� � .� C ˛�/ ;

where ˛ is a constant.
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Proof As q .t; �/ D �Pt Œ j .t; �/�,

Pt Œq .tC �; �/� q .t; �/�

�
� � fq .t; �/ � f .t/g D

D �Pt

	
j .tC �; �/� j .t; �/

�
� �j .t; �/C f .t/



;

hence the first inequality in the statement. As [(Remark) 9.2.24]

j .tC �; �/� j .t; �/

�
D

D � e�� � 1
��

Z 1
�

e��� f .tC �/d� � 1
�

Z �

0

e��� f .tC �/d�;

and, using the definition of j,

� j .t; �/ D �
Z 1
�

e��� f .tC �/d� C �
Z �

0

e��� f .tC �/d�;

one may write, setting

A D �
�

e�� � 1 � ��
��

� Z 1
�

e��� f .tC �/d�;

B D ��
Z �

0

e��� f .t C �/d�;

C D f .t/ � 1
�

Z �

0

e��� f .t C �/d�;

that

j .tC �; �/� j .t; �/

�
� �j .t; �/C f .t/ D AC BC C:

For the evaluation of the norm of A, one uses (Remark) 9.2.27, item 2, to obtain that

e�� � 1 � ��
��

� ��e�� :

One also has that [(Remark) 9.2.25]

�

Z 1
�

e��� jj f .t C �/jjH d� � E˘0
�
Œjj f .tC �/jjH� �

˚
�e�t	f .�/

�1=2
:

So the following inequality prevails:

jjAjjH �
n
�3=2e�f�C.t=2/g	 1=2

f .�/
o
�:
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The norm of B is evaluated noticing that [(Remark) 9.2.26], for � � � < ıf .�; �/,

jj f .tC �/jjH � jj f .tC �/� f .t/jjH C jj f .t/jjH < � C �f ;

so that

jjBjjH � �
Z �

0

e��� jj f .tC �/jjH d� � � �� C �f
�
�:

Finally, as

C D 1

�

Z �

0

˚
f .t/ � e��� f .tC �/� d�;

and that ˇ̌̌̌
f .t/ � e��� f .tC �/ˇ̌̌̌

H
�

� jj f .t/jjH
�
1 � e���

�C e��� jj f .tC �/� f .t/jjH ;

one has, for 0 < � < ıf .�; �/, that

jjCjjH � �f
�
1 � e���

�C � � ��f � C �:

In fine one must take into account the � that multiplies AC BC C. ut
Lemma 9.2.29 Let 0 < �; � < 1 be fixed, but arbitrary. There exists then
ı .�; �/ > 0 and ˛ 2 RC such that, for 0 < � < ı .�; �/ and ft; t C �g � Œ0; ��,

jjPt Œq .tC �/� q .t; �/�jjH � ��
˚
� C ˛� C �q C �f

�
:

Proof One has that jjPt Œq.tC �; �/� q.t; �/�jjH is dominated by

�

� ˇ̌̌
ˇ
ˇ̌̌
ˇPt Œq.tC �; �/� q.t; �/�

�
� � fq.t; �/ � f .t/g

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

C � jjq.t; �/ � f .t/jjH
�
;

but, in the latter expression, the first norm is dominated by �.� C ˛�/ [(Lemma)
9.2.28], and the second, by �.�q C �f / [(Remark) 9.2.26]. ut
Lemma 9.2.30 Let 0 < �; � < 1 be fixed, but arbitrary. There exists then
ı .�; �/ > 0 such that, for 0 < � < ı .�; �/ and ft; t C �g � Œ0; ��,ˇ̌̌

ˇ
ˇ̌̌
ˇfq .t; �/ � f .t/g � 1

�

Z tC�

t
fq .�; �/� f .�/g d�

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

� 2�:
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Proof One has thatˇ̌̌
ˇ
ˇ̌̌
ˇ1�
Z tC�

t
fq .�; �/� f .�/g d� � fq .t; �/ � f .t/g

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

D

D 1

�

ˇ̌̌
ˇ
ˇ̌̌
ˇ
Z tC�

t
Œq .�; �/� q .t; �/� d� C

Z tC�

t
Œ f .t/ � f .�/� d�

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

� 1

�

�Z �

0

jjq .tC �; �/ � q .t; �/jjH d�C
Z �

0

jjf .t C �/ � f .t/jjH d�

�
:

One must then choose [(Remark) 9.2.26] ı .�; �/ � ıf .�; �/ ^ ıq .�; �/. ut
Proposition 9.2.31 For � > 0 and t � 0, fixed, but arbitrary,

jjh�.t/jj2H D jjq .t; �/jj2H � jjq .0; �/jj2H C 2�
Z t

0

d� h f .�/� q .�; �/ ; q .�; �/iH:

Proof It suffices to prove the result for t D 1, as the actual value of t is “irrelevant”
to the claim. That choice however helps keeping the notation simpler.

One has, for n 2 N, fixed, but arbitrary, that

jjh�.1/jj2H D
ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1

�
h�

�
i

n

�
� h�

�
i � 1

n

�� ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌2
H

;

and thus [(Proposition) 9.2.21]

jjh�.1/jj2H D lim
n

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1

�
h�

�
i

n

�
� h�

�
i� 1

n

�� ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌2
H

:

It follows from the definition of h� [(Definition) 9.2.9] that

h�.tC �/� h�.t/ D fq .tC �; �/ � q .t; �/g C �
Z tC�

t
f f .�/� q .�; �/g d�:

Let

AŒt;� � D fq .tC �; �/� q .t; �/g � Pt Œq .tC �; �/ � q .t; �/� ;

BŒt;� � D Pt Œq .tC �; �/� q .t; �/� � �� fq .t; �/ � f .t/g ;

CŒt;� � D �� fq .t; �/ � f .t/g C �
Z tC�

t
f f .�/ � q .�; �/g d�:
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Then

h�.tC �/ � h�.t/ D AŒt;� � C BŒt;� � C CŒt;� �:

Consequently, letting t D i�1
n , and � D 1

n ,

nX
iD1

�
h�

�
i

n

�
� h�

�
i � 1

n

��
D

D
nX

iD1
AŒ i�1

n ; 1n �
C

nX
iD1

BŒ i�1
n ; 1n �
C

nX
iD1

CŒ i�1
n ; 1n �

:

Let

An D
nX

iD1
AŒ i�1

n ; 1n �
; Bn D

nX
iD1

BŒ i�1
n ; 1n �

; Cn D
nX

iD1
CŒ i�1

n ; 1n �
:

One has that, as � D 1=n,

BŒ i�1
n ; 1n �
D

D 1

n

(
P i�1

n

�
q
�

i
n ; �

� � q
�

i�1
n ; �

��
1
n

� �
�

q

�
i � 1

n
; �

�
� f

�
i� 1

n

��)
;

so that, using (Lemma) 9.2.28,

jjBnjjH �
nX

iD1

ˇ̌̌̌̌̌
BŒ i�1

n ; 1n �

ˇ̌̌̌̌̌
H
� �

nX
iD1

1

n

n
� C ˛

n

o
D �

�
� C ˛

n

�
:

Analogously, using (Lemma) 9.2.30,

jjCnjjH � 2��:

Consequently

lim
n

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1

�
h�

�
i

n

�
� h�

�
i � 1

n

�� ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌2
H

D lim
n
jjAnjj2H :

For temporary convenience, let

q�;n;i D q

�
i

n
; �

�
� q

�
i � 1

n
; �

�
:
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One has that jjAnjj2H is a sum of terms of the form

hAŒ i�1
n ; 1n �

;Ah j�1
n ; 1n

iiH;
where

AŒ i�1
n ; 1n �
D q�;n;i � P i�1

n
Œq�;n;i� D P?i�1

n
Œq�;n;i� :

Suppose i < j. Then
AŒ i�1

n ; 1n �
;Ah j�1

n ; 1n

i�
H

D

P?j�1

n

Œq�;n;i� ;P
?
j�1

n

�
q�;n;j

��
H

:

But

P?j�1
n

Œq�;n;i� D P?j�1
n

	
�P i

n

	
j

�
i

n
; �

�

� �P i�1

n

	
j

�
i� 1

n
; �

�


D 0H:

Thus only inner products with the same index in both entries are different from zero,
and ˇ̌̌̌̌̌

AŒ i�1
n ; 1n �

ˇ̌̌̌̌̌
2

H
D
ˇ̌̌̌̌̌
q�;n;i � P i�1

n
Œq�;n;i�

ˇ̌̌̌̌̌
2

H

D jjq�;n;ijj2H �
ˇ̌̌̌̌̌
P i�1

n
Œq�;n;i�

ˇ̌̌̌̌̌
2

H
:

As, from (Lemma) 9.2.29,

ˇ̌̌̌̌̌
P i�1

n
Œq�;n;i�

ˇ̌̌̌̌̌
2

H
� �2

n2

n
� C ˛

n
C �q C �f

o2
; (?)

one obtains that

jjh�.1/jj2H D lim
n

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1

�
h�

�
i

n

�
� h�

�
i� 1

n

�� ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌2
H

D lim
n

nX
iD1
jjq�;n;ijj2H :

But

q�;n;i D

D q

�
i

n
; �

�
� q

�
i� 1

n
; �

�

D
�

q

�
i

n
; �

�
� �P i�1

n

	
j

�
i

n
; �

�
�
C
�
�P i�1

n

	
j

�
i

n
; �

�

� q

�
i � 1

n
; �

��

D �
�

P i
n
� P i�1

n

� 	
j

�
i

n
; �

�

C P i�1

n
Œq�;n;i� :
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Since the sum of the squared norms of second terms in the latter expression is
negligible, as already seen (?),

jjh�.1/jj2H D lim
n

nX
iD1
jjq�;n;ijj2H D �2 lim

n

nX
iD1

ˇ̌̌
ˇ
ˇ̌̌
ˇ�P i

n
� P i�1

n

� 	
j

�
i

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

:

Nowˇ̌̌
ˇ
ˇ̌̌
ˇ�P i

n
� P i�1

n

� 	
j

�
i

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

D
ˇ̌̌
ˇ
ˇ̌̌
ˇP i

n

	
j

�
i

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

�
ˇ̌̌
ˇ
ˇ̌̌
ˇP i�1

n

	
j

�
i

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

;

and, by inspection,

nX
iD1

.ai � bi/ D .an � b1/ �
n�1X
iD1

.biC1 � ai/ :

Thus, letting

ai D
ˇ̌̌
ˇ
ˇ̌̌
ˇP i

n

	
j

�
i

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

; and bi D
ˇ̌̌
ˇ
ˇ̌̌
ˇP i�1

n

	
j

�
i

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

;

one obtains that

jjh�.1/jj2H D �2 jjP1 Œ j.1; �/�jj2H � �2 lim
n

ˇ̌̌
ˇ
ˇ̌̌
ˇP0

	
j

�
1

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

� �2 lim
n

n�1X
iD1

� ˇ̌̌
ˇ
ˇ̌̌
ˇP i

n

	
j

�
iC 1

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

�
ˇ̌̌
ˇ
ˇ̌̌
ˇP i

n

	
j

�
i

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

�
:

But, in any real Hilbert space, jjxjj2 � jjyjj2 D hx � y; xC yi, and thusˇ̌̌
ˇ
ˇ̌̌
ˇP i

n

	
j

�
iC 1

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

�
ˇ̌̌
ˇ
ˇ̌̌
ˇP i

n

	
j

�
i

n
; �

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

is the inner product of

P i
n

	
j

�
iC 1

n
; �

�

� P i

n

	
j

�
i

n
; �

�


and

P i
n

	
j

�
iC 1

n
; �

�

C P i

n

	
j

�
i

n
; �

�

:
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So, finally, j being continuous [(Lemma) 9.2.8], jjh�.1/jj2H is jjq.1; �/jj2H �jjq.0; �/jj2H
from which the following quantity is subtracted:

lim
n

n�1X
iD1
hP i

n

	
q

�
iC 1

n
; �

�

� q

�
i

n
; �

�
;P i

n

	
q

�
iC 1

n
; �

�

C q

�
i

n
; �

�
iH :

However, from (Lemma) 9.2.28,ˇ̌̌
ˇ
ˇ̌̌
ˇP i

n

	
q

�
iC 1

n
; �

�

� q

�
i

n
; �

�
� �

n

�
q

�
i

n
; �

�
� f

�
i

n

�� ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

� �

n

�
� C ˛

n

�
;

and, from (Lemma) 9.2.29,ˇ̌̌
ˇ
ˇ̌̌
ˇP i

n

	
q

�
iC 1

n
; �

�

� q

�
i

n
; �

�ˇ̌̌
ˇ
ˇ̌̌
ˇ
H

� �

n

�
� C ˛

n
C �f C �q

�
:

Consequently, omitting negligible terms,

n�1X
iD1


P i

n

	
q

�
iC 1

n
; �

�

� q

�
i

n
; �

�
;P i

n

	
q

�
iC 1

n
; �

�

C q

�
i

n
; �

��
H

D

D 2�
n�1X
iD1

1

n


q

�
i

n
; �

�
� f

�
i

n

�
; q

�
i

n
; �

��
H

;

whose limit is

2�

Z 1

0

hq.�; �/� f .�/; q.�; �/iH d�:

ut
Remark 9.2.32 A similar calculation, sketched below, yields an expression for

jjh�1.t/˙ h�2.t/jj2H :

Let, for i 2 f1; 2g,

A.i/Œt;� � D fq .tC �; �i/ � q .t; �i/g � Pt Œq .tC �; �i/ � q .t; �i/� ;

B.i/Œt;� � D Pt Œq .tC �; �i/ � q .t; �i/� � �i� fq .t; �i/� f .t/g ;

C.i/
Œt;� � D �i� fq .t; �i/� f .t/g C �i

Z tC�

t
f f .�/ � q .�; �i/g d�;
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so that

h�i.tC �/ � h�i.t/ D A.i/Œt;� � C B.i/Œt;� � C C.i/
Œt;� �;

and thus

h�1.tC �/C h�2.tC �/ � fh�1.t/C h�2.t/g D
D
n
A.1/Œt;� � C A.2/Œt;� �

o
C
n
B.1/Œt;� � C B.2/Œt;� �

o
C
n
C.1/

Œt;� � C C.2/

Œt;� �

o
:

Consequently, letting, for i 2 f1; 2g,

A.i/n D
nX

jD1
A.i/h j�1

n ; 1n

i;

the following expression:

lim
n

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1

	
h�1

�
i

n

�
C h�2

�
i

n

�
�
�

h�1

�
i � 1

n

�
C h�2

�
i � 1

n

��
ˇ̌̌ˇ̌
ˇ̌̌
ˇ̌2
H

may be computed as

lim
n

ˇ̌̌̌̌̌
A.1/n C A.2/n

ˇ̌̌̌̌̌
2

H
;

whose elements are sums of terms of the following form:
A.i/
Œ k�1

n ; 1n �
;A.j/
Œ l�1

n ; 1n �

�
H

:

Of these, only inner products with the same lower index in both entries are different
from zero, that is terms of the form

A.i/
Œ k�1

n ; 1n �
;A.j/
Œ k�1

n ; 1n �

�
H

;

which, using the representation

A.i/
Œ k�1

n ; 1n �
D q�i;n;k � P k�1

n
Œq�i;n;k� ;

are equal to

˝
q�i;n;k; q�j;n;k

˛
H
�
D
P k�1

n
Œq�i;n;k� ;P k�1

n

�
q�j;n;k

�E
H
:
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Since the terms in the second inner product of the latter expression go to zero,

jjh�1.t/C h�2.t/jj2H D lim
n

2X
iD1

2X
jD1

nX
kD1

˝
q�i;n;k; q�j;n;k

˛
H

D lim
n

nX
kD1
jjq�1;n;k C q�2;n;kjj2H :

The term q .�i; n; k/ can again be “reduced” to a term of the following form:

q .tC �; �i/ � �iPt Œ j .tC �; �i/� D �i fPtC� Œ j .tC �; �i/� � Pt Œ j .tC �; �i/�g ;

so that

lim
n

nX
kD1
jjq�1;n;k C q�2;n;kjj2H D

D lim
n

nX
kD1

ˇ̌̌
ˇ
ˇ̌̌
ˇ�1

�
P k

n

	
j

�
k

n
; �1

�

� P k�1

n

	
j

�
k

n
; �1

�
�

C �2

�
P k

n

	
j

�
k

n
; �2

�

� P k�1

n

	
j

�
k

n
; �2

�
� ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

:

That latter norm expression is of the following form:

jj˛ .a� b/C ˇ .A � B/jj2 D ˛2 jja � bjj2 C 2˛ˇha� b;A � Bi C ˇ2 jjA � Bjj2 :

The particular values of a; b;A, and B produce the following equalities:

jja � bjj2 D jjajj2 � jjbjj2 ;
jjA � Bjj2 D jjAjj2 � jjBjj2 ;

ha � b;A � Bi D ha;Ai � hb;Bi;

so that

jj˛ .a � b/C ˇ .A � B/jj2 D jj˛aC ˇAjj2 � jj˛bC ˇBjj2 :
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Inserting the actual values of a; b;A and B, one finally obtains that the limit to be
computed is that of a sum of terms of the following form:ˇ̌̌

ˇ
ˇ̌̌
ˇP k

n

	
�1j

�
k

n
; �1

�
C �2j

�
k

n
; �2

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

�

�
ˇ̌̌
ˇ
ˇ̌̌
ˇP k�1

n

	
�1j

�
k

n
; �1

�
C �2j

�
k

n
; �2

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ2
H

:

Introducing the possibility of a minus sign, that last expression has the following
form:

jjA1 ˙ A2jj2 � jjB1 ˙ B2jj2 D h.A1 C B1/˙ .A2 C B2/ ; .A1 � B1/˙ .A2 � B2/i;

where

A1 C B1 leads to 2 q1;
A2 C B2 leads to 2 q2;
n .A1 � B1/ leads to �1 .q1 � f / ;
n .A2 � B2/ leads to �2 .q2 � f / ;

and that form leads to the integral

2

Z
hq1 ˙ q2; �1 .q1 � f /˙ �2 .q2 � f /i :

Hence the following corollary:

Corollary 9.2.33 Letting

� .�/ D �1 .f .�/ � q .�; �1//˙ �2 .f .�/ � q .�; �2// ;

one has that

jjh�1.t/˙ h�2.t/jj2H D jjq .t; �1/˙ q .t; �2/jj2H � jjq .0; �1/˙ q .0; �2/jj2H
C 2

Z t

0

d� h� .�/ ; q .t; �1/˙ q .t; �2/iH ;

and, using the expression hh; ki D 1
4

˚jjhC kjj2 � jjh � kjj2�, that the following inner
product:

hh�1.t/; h�2 .t/iH
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is the sum of

hq .t; �1/ ; q .t; �2/iH � hq .0; �1/ ; q .0; �2/iH
andZ t

0

d� fh f .�/; �1q .�; �1/C �2q .�; �2/iH � .�1 C �2/ hq .�; �1/ ; q .�; �2/iHg :

9.2.3 The Cramér-Hida Representation from the Prediction
Process

In this section one assumes that

f .t/ D
Z

T
Œ˚.t; 
/� dmh

is a proper canonical representation (needed, in particular, in (Lemma) 9.2.39
below) with˚ as in (Proposition) 9.2.16. One will see how˚ and h may be obtained
from f and q.

The following notation shall at times be used: the map � 7! ˚ .tC �; t/ is
denoted ˚t, and its Laplace transform, L˚

t :

L˚

t .�/ D
Z 1
0

e��� ˚.tC �; t/d� D
Z 1
0

e��� ˚t.�/d�:

As L˚
t .�/ is �.t; t/ of (Lemma) 9.2.22, one has that [(Proposition) 9.2.23]

Z
T

Mh.dt/

	Z 1
0

e��� ˚.t C �; t/d�

2
<1;

and, since Mh is locally finite, so that functions locally in L2 are locally in L1, one
has that:

Lemma 9.2.34 For � > 0, fixed, but arbitrary, for almost every t 2 T, with respect
to Mh, Z 1

0

e��� j˚ .tC �; t/j d� <1:



9.2 The Case of Karhunen Representations 737

Remark 9.2.35 Lemma 9.2.39 below “says” that, for almost every t 2 T, with
respect to Mh, L˚

t has domain �0;1Œ. As

t 7!
Z 1
0

e��� j˚ .tC �; t/j d�

is measurable, one may and shall assume that the Laplace transform exists for every
t 2 T.

Fact 9.2.36 One shall use the following property of the Laplace transform, which
is a consequence of it is analyticity [46, 268, p. 57, respectively p. 73]:

1. when L˚
t is zero at the values of a sequence in �0;1Œ which converges to a point

of �0;1Œ, then ˚t is, with respect to Lebesgue measure, almost surely zero;
2. when ˚t is not, with respect to Lebesgue measure, almost surely equal to the zero

function, L˚
t can be zero in a finite and closed interval only at a finite number of

points.

One shall need, for some ensuing proofs, two specific, measurable sets, denoted and
defined respectively using the following expressions:

�t D f� 2 �0; tŒ WWRTLeb; ˚� .�/ D 0; a:e:�g ;
�t D

˚
.�; �/ 2 �0;1Œ � �0; tŒ W L˚

� .�/ D 0
�
:

Fact 9.2.37 One has that �t and its sections,

�t Œ�� D
˚
� 2 �0; tŒ W L˚

� .�/ D 0
�
;

�t Œ�� D
˚
� 2 �0;1Œ W L˚

� .�/ D 0
�
;

are measurable sets.

Proof Indeed, the map .�; �; x/ 7! e��x˚ .� C x; �/ is measurable, so that the
following map:

.�; �/ 7!
Z 1
0

e��x˚ .� C x; �/ dx D L˚

� .�/

is measurable. Consequently�t is measurable, and so are its sections. ut
Fact 9.2.38 One has that

�t D
�
� 2 �0; tŒ W Leb .�t Œ��/ D

Z
�0;1Œ

��t
.�; �/ d� > 0

�
:

Proof The right-hand side of the latter equality lists those �’s for which L˚� is zero
for a set of positive Lebesgue measure. They form a measurable set. Let �?

t denote
that set. When ˚� is almost surely equal to zero, its Laplace transform is zero, and
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the section at � of �t equals �0;1Œ, so that �t � �?
t . Suppose conversely that

� 2 �?
t . Then�t Œ�� is a Borel set of strictly positive Lebesgue measure. Since

[
n

�
�t Œ�� \

	
1

n
; n


�
D �t Œ�� ;

there is an n such that

Leb

�
�t Œ�� \

	
1

n
; n


�
> 0:

Thus the set of points �2Œ 1n ;n� at which L˚� .�/ D 0 is at least countable. So there is a
sequence of zeros of L˚

t that converges to some element of Œ 1n ;n�. But then ˚� must
be zero almost surely, and � belongs to �t. ut
Lemma 9.2.39 One has that Mh .�t/ D 0.

Proof Suppose that Mh .�t/ > 0. One has, by the definition of �t, thatZ 1
0

Mh.d�/��t
.�/

Z 1
0

d� e���˚2.� C �; �/ D 0:

A change of variables, and an interchange of order of integration, yield successively
that

0 D
Z 1
0

Mh.d�/��t
.�/e��

Z 1
�

due��u˚2.u; �/

D
Z 1
0

due��u

Z u

0

Mh.d�/��t
.�/e�� ˚2.u; �/:

It follows that, for u � t, ˚.u; 
/ is, with respect to Mh, on �t, zero almost surely,
and thus that

f .u/ D
Z

I�c
t Œ˚.u; 
/� dmh:

But then
R

I�t dmh is a non-null element of Lt Œmh� that is orthogonal to Lt Œ f �,
contradicting thus the assumption that one is in presence of a proper canonical
representation of f . ut
Lemma 9.2.40 For fixed, but arbitrary t > 0, the map

� 7! � .�/ D Mh .�t Œ��/

is upper semi-continuous.
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Proof It suffices [5, p. 388] to establish that lim supn � .�n/ � � .�/, whenever
limn �n D �. Now

� .�/ D Mh .�t Œ��/ D
Z
�
�t Œ��

.�/Mh .d�/ :

Since attention is restricted to the interval Œ0; t�, one may assume that Mh is finite.
Since the sequence of functions n

�
�t Œ�n �

; n 2 N

o
is uniformly bounded, it is uniformly integrable [5, p. 296]. One may thus use an
extension of Fatou’s lemma [5, p. 295] to obtain that

lim sup
n

�Z
�
�t Œ�n �

.�/Mh .d�/

�
�
Z

lim sup
n

n
�
�t Œ�n �

.�/
o

Mh .d�/ :

But [3, p. 12]

lim sup
n

n
�
�t Œ�n �

o
D �

lim supn �t Œ�n �
;

and, by definition,

lim sup
n

�t Œ�n� D
1\

nD1

1[
pDn

�t
�
�p
�
:

Since, for fixed, but arbitrary � > 0, � 7! L˚

� .�/ is continuous (it is analytic),

1\
nD1

1[
pDn

�t
�
�p
� � �t Œ�� :

ut
Definition 9.2.41 A measure � on the Borel sets of a subset of R is continuous
when, for all x in that subset, � .fxg/ D 0.

Lemma 9.2.42 Let � be a fixed, but arbitrary continuous measure on the Borel sets
of �0;1Œ. Let � > 0 be fixed, but arbitrary. When the map ˚� is not zero, almost
surely, with respect to Lebesgue measure,

� .�t Œ��/ D 0:
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Proof The statement expresses the fact that a Laplace transform is analytic, and
that, in any finite and closed interval, the kernel of an analytic function is either void
or finite [(Fact) 9.2.36]. ut
Lemma 9.2.43 Let t > 0 be fixed, but arbitrary, and � be a fixed, but arbitrary
continuous measure on the Borel sets of �0;1Œ. Then, with respect to �, for almost
every � 2 �0;1Œ,

Mh .�t Œ��/ D 0:

Proof Using Fubini’s theorem one has thatZ
�0;1Œ

� .d�/Mh .�t Œ��/ D
Z
�0;1Œ

� .d�/
Z
�0;tŒ

Mh .d�/ I�t .�; �/

D
Z
�0;tŒ

Mh .d�/
Z
�0;1Œ

� .d�/ I�t .�; �/

D
Z
�0;tŒ

Mh .d�/ � .�t Œ��/ :

Now �t Œ�� D
˚
� 2 �0;1Œ W L˚

� .�/ D 0
�
. But the set of elements �’s for which

�t Œ�� D �0;1Œ, that is the set �t, has, because of (Lemma) 9.2.39, measure zero
for Mh, and, for the �’s not in �t, � .�t Œ��/ D 0, because of (Lemma) 9.2.42.
Consequently, Z

�0;1Œ
� .d�/Mh .�t Œ��/ D 0:

ut
Lemma 9.2.44 Let B be a Borel subset of �0; tŒ, and

D .t; �/ D �L˚

t .�/ ;

�� .B/ D
Z

B
D2 .�; �/Mh .d�/ :

There exists an at most countable�0 such that, for � in�c
0, fixed, but arbitrary, the

measures �� and Mh are mutually absolutely continuous.

Proof It suffices to prove that, except for an at most countable number of �’s, for
fixed, but arbitrary � > 0, D2 .
; �/ is, with respect to Mh, almost surely strictly
positive. As D .�; �/ D �L˚

� .�/, the zeros of � 7! D .�; �/, for fixed, but arbitrary
� > 0, are the elements of the set �t Œ��. It thus suffices to prove that Mh .�t Œ��/ D
0 except for an at most countable set of �’s.
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Let � > 0 be fixed, but arbitrary. Since � 7! Mh .�t Œ��/ is upper semi-continuous
[(Lemma) 9.2.40], the set

B� D f� 2 �0;1Œ W Mh .�t Œ��/ � �g

is closed [5, p. 388], and thus a Borel set. Consequently [(Lemma) 9.2.43], for any
fixed, but arbitrary continuous measure �,

�.B�/ D � .f� 2 �0;1Œ W Mh .�t Œ��/ � �g/ D 0: (?)

Suppose that B� is uncountable. By the Alexandroff-Hausdorff theorem [83, p. 386],
B� includes a perfect set PB� , homeomorphic to C, the Cantor set. Let hB�;C W C �!
PB� be that homeomorphism. Let L W Œ0; 1� �! Œ0; 2� be the sum of the Cantor–
Lebesgue function and the identity map of Œ0; 1�. Then [275, p. 89] L and L�1 are
continuous, strictly increasing functions, and Leb .L .C// D 1. The measure

� D Leb ı ˚hB�;C ı L�1
��1

is continuous by construction, and

� .PB� / D Leb .L .C// D 1:

But the latter is impossible because of (?). Choosing successively, for � > 0, the
elements of the sequence

˚
1
n ; n 2 N

�
, one sees that the claim obtains. ut

Remark 9.2.45 Because of (Proposition) 9.2.23, since, by definition,

��.t; t/ D �L˚

t .�/ D D.�; �/;

�� of (Lemma) 9.2.44 is the measure determined by the process with orthogonal
increments h�. It shall be an adequate choice for h provided one can prove that
� 2 �c

0 [(Lemma) 9.2.44]. The next result states that such a choice is possible.

Proposition 9.2.46 One can actually find a �? such that one may choose for h, in
the canonical representation of f , the process

t 7! h�?.t/:

Proof Let 0 < a < b < 1 be fixed, but arbitrary. As, for fixed, but arbitrary
Borel B, � 7! �� .B/ is, by its very definition [(Lemma) 9.2.44], measurable, the
following definition makes sense:

� .B/ D
Z b

a
�� .B/ d�;
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and, because of (Lemma) 9.2.44, � is equivalent to Mh. But then, since

� .B/ D
Z

B
Mh .d�/

Z b

a
D2 .�; �/ d�;

it follows that, with respect to Mh, almost surely,

0 <
d�

dMh
.�/ D

Z b

a
D2 .�; �/ d�:

Let ı.�/ D R b
a D2.�; �/d�, so that d� D ıdMh. One may then write that

�� .B/ D
Z

B

D2 .�; �/

ı.�/
ı.�/Mh .d�/ D

Z
B

D2 .�; �/

ı.�/
� .d�/ ;

so that

d��
d�

.�/ D D2 .�; �/R b
a D2 .�; �/ d�

;

which is, from its definition, and for fixed, but arbitrary � , analytic in �. Let

C .�; t/ D
�
� 2 �0; tŒ W d��

d�
.�/ D 0

�
:

Were one able to find a � > 0 such that � .C .�; t// D 0, one would have a � > 0

such that (� denotes mutual absolute continuity) �� � � � Mh.
Let then fCn .t/ ; n 2 Ng be the increasing sequence whose terms are

Cn .t/ D
�
� > 0 W � .C .�; t// � 1

n

�
:

One checks, as in the proof of (Lemma) 9.2.44, that Cn .t/ is closed, and at most
countable. Let I be a finite, closed interval, and suppose that Cn .t/ \ I contains an
infinite number of points. There exists then˚

�.n/p ; p 2 N
� � Cn .t/ \ I; and �.n/ 2 I;

such that limp �
.n/
p D �.n/. Fix arbitrarily

� 2 lim sup
p

C
�
�.n/p ; t

�
; that is, � 2 C

�
�
.n/

p.�/; t
�

for infinitely many p .�/0 s;
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or, since d��
d� ;D

2.
; �/, and L˚� .�/ have the same zeroes,

L�
�
�
.n/

p.�/

�
D 0; and lim

p.�/
L�
�
�
.n/

p.�/

�
D L

�
�.n/
�
:

Then [(Fact) 9.2.36], almost surely, with respect to Lebesgue measure, it obtains
that ˚� D 0. Since, as in (Lemma) 9.2.40,

�

�
lim sup

p
C
�
�
.n/

p.�/; t
��
� lim sup

p
�
�

C
�
�
.n/

p.�/; t
��
� 1

n
;

and � � Mh,

Mh .� 2 �0; tŒ W WRT Leb; ˚� D 0 a.s./ D Mh .�t/ > 0;

which is impossible because of (Lemma) 9.2.39. The sets Cc
n \ I � Cc

nC1 \ I thus
contain finite, closed intervals of positive length. Proceeding inductively, one thus
obtains a nested sequence of closed intervals which contain at least one point �?

such that

� .C .�?; t// D 0:

One then chooses h D h�? . ut
Remark 9.2.47 To find a point in Cc

n, it “suffices” to compute � .C .�; t// for the
rational �’s aligned in the “k-sequence” p 2 N; 0 < � D k

p � p.

Remark 9.2.48 To obtain the representation of f in terms of h�? , one must identify
the substitute for ˚ . But how that is “done” has been shown in (Proposition) 9.2.16.
One introduces the following measure:

�?t .Œt1; t2Œ/ D h f .t/; h�?.t2/ � h�?.t1/iH;

and computes the Radon-Nikodým derivative d�?t
dMh

. But here, from (Proposition)
9.2.23, one has that

�?t .Œt1; t2Œ/ D �?
Z t

0

�
Œt1;t2Œ

˚.t; �/ �.�; �/ Mh.d�/:

When one does not know˚ , and thus � , as is generally the case, one may try to use
the representation of h�? in terms of the prediction process:

h�?.t2/� h�?.t1/ D q.t2; �
?/� q.t1; �

?/C �?
Z t2

t1

f f .�/ � q .�; �?/g d�;
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and the equality:

h f .t/; q.�; �/iH D �
Z

T
e���hP� Œ f .t/� ;P� Œ f .� C �/�iHd�;

which should be computable as one “knows” the prediction process.

Example 9.2.49 Let

Xt D
Z t

0

Œ2t � ��W .d�/ ;

with W a Wiener process in the wide sense (one thus writes dW for dmW). As, for
s < t, fixed, but arbitrary,Z s

0

Œ2s� �� Œ2t � �� d� D 3s2t � 2
3

s3;

CX , the covariance of X, has the form:

CX .t1; t2/ D 4 .t1 ^ t2/
2 .t1 _ t2/� 2

3
.t1 ^ t2/

3 :

Such a process has multiplicity one. Indeed, let f be square integrable, and F .t/ beR t
0

f .�/ d� . If, for fixed, but arbitrary t � 0,

Z t

0

Œ2t � �� f .�/ d� D 0;

an integration by parts with dF D fd� yields that

tF .t/C
Z t

0

F .�/ d� D 0;

a differential equation of the form t dg
dt C g D 0; whose solution is the logarithm. As

one must have g .0/ D 0, only f D 0 will do.
The representation of the prediction process Pt ŒXtCs� in terms of X may be

obtained as follows. One has that

Pt ŒXtCs� D
Z t

0

Œ2 .tC s/ � ��W .d�/ D Xt C 2sWt:

But, as [(Fact) 6.2.24]

Z b

a
f .�/W .d�/ D f .b/Wb � f .a/Wa �

Z b

a

df

d�
.�/W� d�;
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one has, applying that formula to the integral defining X, that

Xt D tWt C
Z t

0

W� d�:

Consequently, using integration by parts, one obtains that

Z t

0

X� d� D
Z t

0

�W� d� C
Z t

0

d�
Z �

0

Wu du

D
Z t

0

� d

"Z �

0

Wu du

#
C
Z t

0

d�
Z �

0

Wu du

D t
Z t

0

W� d�:

Thus

Wt D 1

t

�
Xt � 1

t

Z t

0

X� d�

�
;

and

Pt ŒXtCs� D Xt C 2sWt D Xt C 2s

�
1

t

�
Xt � 1

t

Z t

0

X� d�

��
;

so that

Pt ŒXtCs� D
�
1C 2s

t

�
Xt � 2s

t2

Z t

0

X� d�:

One shall now compute successively q .t; �/ and h�. By definition

q .t; �/ D �
Z 1
0

e���Pt ŒXtC� � d�: (?)

Replacing the generic prediction process by its explicit expression, and using the
following formulae:

�

Z 1
0

e���d� D 1; and �

Z 1
0

�e���d� D 1

�
;

one obtains that

q .t; �/ D
�
1C 2

�t

�
Xt � 2

�t2

Z t

0

X� d�:
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Consequently, as q.0; �/ is the zero element (?),

h�.t/ D q .t; �/C �
Z t

0

fX� � q .�; �/g d�

D q .t; �/C 2
Z t

0

d�

(
1

�2

Z �

0

Xu du � X�
�

)

D q .t; �/C 2
Z t

0

(
d

	
� 1
�


 Z �

0

Xu du� d�
X�
�

)

D q .t; �/ � 2
t

Z t

0

X� d�

D
�
1C 2

�t

�
Xt � 2

�
1

t
C 1

�t2

� Z t

0

X� d�:

From that latter expression one may notice that

h1.t/ � h2.t/ D Xt

t
� 1

t2

Z t

0

X� d�;

which, as seen above, is Wt. In principle one does not know that latter fact, since
the only available knowledge is that of X and of the prediction process. Thus, to
establish that h1.t/ � h2.t/ is a Wiener process, one would have to compute the
square of its norm, either from the knowledge of the covariance of X, or from that
of h�.

It remains to obtain F to have the representation Xt D
R

T Ft dmh� . Let

Nt D h1.t/ � h2.t/ D Xt

t
� 1

t2

Z t

0

X� d�:

Setting f .t/ D 1
t ; g .t/ D R t

0
X� d� , one has that

Nt D f .t/
dg

dt
.t/C df

dt
.t/ g .t/ ;

so that Z t

0

N� d� D 1

t

Z t

0

X� d�;

and then

Xt D tNt C
Z t

0

N� d�:
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One has thus here, to ease the calculations, two considerable advantages over the
“general case:” one is able to know that N is a Wiener process, and X can be
expressed in terms of N. So one continues the computation as follows: for a < b � t,
fixed, but arbitrary,

hXt;Nb � NaiL2.˝;F ;P/ D thNt;Nb � NaiL2.˝;F ;P/

C
Z t

0

d� hN� ;Nb � NaiL2.˝;F ;P/
D t .b � a/

C
Z a

0

d� hN� ;Nb � NaiL2.˝;F ;P/

C
Z b

a
d� hN� ;Nb � NaiL2.˝;F ;P/

C
Z t

b
d� hN� ;Nb � NaiL2.˝;F ;P/

D t .b � a/C 0C
Z b

a
.� � a/ d� C

Z t

b
.b � a/ d�

D t .b � a/C .b � a/2

2
C .b � a/ .t � b/

D .b � a/

�
2t � aC b

2

�
:

Thus the measure determined by the function

� 7! hXt;N� iL2.˝;F ;P/
is equivalent to Lebesgue measure, and the Radon-Nikodým derivative is

d
�hXt;N� iL2.˝;F ;P/

�
d�

D
d
h
2t� � �2

2

i
d�

D 2t � �:

The procedure used returns thus the proper canonical representation.

The example which follows starts with a process Y whose representation is not
canonical, but with a covariance equal to that of X in (Example) 9.2.49, and returns
the canonical one.

Example 9.2.50 Let

Yt D
Z t

0

Œ4� � 3t� dW� :
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As, for s < t, fixed, but arbitrary,Z s

0

Œ4� � 3s� Œ4� � 3t� d� D 3s2t � 2
3

s2;

Y has the same covariance as X of (Example) 9.2.49. The representation of Y is thus
not proper canonical. In fact,Z t

0

Œ4� � 3t� f .�/ d� D 0

yields that

3t
Z t

0

f .�/ d� D 4
Z t

0

� f .�/ d�;

which, differentiating, becomes

3

Z t

0

f .�/ d� C 3tf .t/ D 4tf .t/ :

That, in turn, yields the differential equation

3F .t/ D t
dF

dt
.t/ ;

whose solution is proportional to t3, so that f .t/ is proportional to t2.
The prediction process for Y may be obtained as follows. One has, using

integration by parts, that

Yt D 4

Z t

0

� dW� � 3 tWt

D 4

Z t

0

� dW� � 3
�Z t

0

� dW� C
Z t

0

W� d�

�

D
Z t

0

� dW� � 3
Z t

0

W� d�:

Y is thus a semi-martingale (in the wide sense), and the following expression is licit:Z t

0

f .�/ dY� D
Z t

0

� f .�/ dW� � 3
Z t

0

f .�/ W� d�:
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The integral
R t
0

f .�/ dY� is the prediction process whenever it solves the following
equation, for all u � t,

hYu;YtCsiL2.˝;F ;P/ D hYu;

Z t

0

f .�/ dY� iL2.˝;F ;P/:

The left-hand side of the latter expression is 3u2 .sC t/ � 2
3
u3. The right-hand side

is computed as follows, using the notation ft .�/ D 4� � 3t:

hYu;

Z t

0

f .�/ dY�iL2.˝;F ;P/ D

D h
Z t

0

fu .�/ dW� ;

Z t

0

� f .�/ dW� � 3
Z t

0

f .�/ W� d� iL2.˝;F ;P/

D
Z u

0

� fu .�/ f .�/ d� � 3
Z t

0

f .�/ d� hW� ;

Z u

0

fu .x/ dWxiL2.˝;F ;P/

D
Z u

0

� fu .�/ f .�/ d� � 3
Z t

0

f .�/ d�
Z �^u

0

fu .x/ dx

D
Z u

0

� fu .�/ f .�/ d� � 3
Z u

0

f .�/ d�
Z �

0

fu .x/ dx � 3
Z t

u
f .�/ d�

Z u

0

fu .x/ dx

D
Z u

0

d� f .�/

"
� fu .�/ � 3

Z �

0

fu .x/ dx

#
� 3

Z t

u
f .�/ d�

Z u

0

fu .x/ dx:

Two calculations yield that

� fu .�/ � 3
Z �

0

fu .x/ dx D 6u� � 2�2;

and that Z u

0

fu .x/ dx D �u2:

One thus reaches the following equality:

2

Z u

0

d� f .�/
�
3u� � �2�C 3u2

Z t

u
d� f .�/ D 3u2 .sC t/ � 2

3
u3:

In the first integral to the left of the latter expression, let � D ux and, in the second,
� D uC x. One thus obtains that

2u3
Z 1

0

dxf .ux/
�
3x � x2

�C 3u2
Z t�u

0

dxf .uC x/ D 3u2 .sC t/ � 2
3

u3:
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Dividing by u2, one has that

2u
Z 1

0

dxf .ux/
�
3x � x2

�C 3 Z t�u

0

dxf .uC x/ D 3 .sC t/ � 2
3

u:

Taking the limit as u # 0, one finally gets thatZ t

0

f .x/ dx D sC t;

whose solution is

f .x/ D 1C 2s

t2
x:

The prediction process is thusZ t

0

�

	
1C 2s

t2
�



dW� � 3

Z t

0

	
1C 2s

t2
�



W� d� D

D
Z t

0

� dW� � 3
Z t

0

W� d� C 2s

t2

�Z t

0

�2dW� � 3
Z t

0

�W� d�




D Yt C 2s

t2

Z t

0

� Œ� dW� � 3W� d��

D Yt C 2s

t2

Z t

0

� dY� :

An integration by parts yields thatZ t

0

� dY� D tYt �
Z t

0

Y� d�;

so that the prediction process is�
1C 2s

t

�
Yt � 2s

t2

Z t

0

Y� d�:

Remark 9.2.51 The prediction process of Y is thus obtained by replacing X with Y
in the expression for the prediction process of XŠ That is perfectly sensible. Indeed,
as X and Y have the same RKHS, Xt and Yt are unitarily related, and every valid
linear expression formed from one of the processes yields a valid linear expression
for the other. In practice however one does not know a priori what the proper
canonical representation of the process is, and thus the prediction process is not
“cullable” as in (Example) 9.2.49, and must usually be computed by procedures
that can be, as those used for Y show, tortuous. But, once the prediction process
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is available, Knight’s method provides the proper canonical representation! Indeed
all the calculations in (Example) 9.2.50, starting with q and h�, require only the
covariance of the original process as well as that of the prediction process, and
not the original form of Y (or X), in terms of a Wiener process. Consequently one
can replace X with Y in the calculations, and the final result is a proper canonical
representation of YŠ

9.3 Cramér-Hida and Knight’s Representations

To count the number of stationary processes which are at the basis of a Gaussian
process, Knight [158] has devised an index of stationarity. It is always larger than
the multiplicity of that process, and yields some more precise representations than
the CHR does. All of it is at the expense of some generality, as one must work with
Gaussian strict sense processes, rather than wide sense ones, filtrations that satisfy
the “usual” conditions of completeness and continuity to the right, and integrability
conditions. Those are difficult to ascertain, even for Goursat processes, so that the
interest here for the index of stationarity lies in that it offers an upper bound on
multiplicity, and that it adds information on the process’ structure. It is based on the
dimension of the linear spaces spanned by the processes h� of Sect. 9.2.

Whereas CHR derives multiplicity directly from the process whose multiplicity
is of interest, here, multiplicity shall be obtained from the prediction process, and
the martingales that may be obtained from it.

9.3.1 Notation, Modifications to the Assumptions,
and Consequences

The problem’s framework must be completed as follows.

Assumptions 9.3.1 To Assumption 9.2.2, on adds:

1. .˝;A;P/ is a complete probability space;
2. X, which is f of (Assumption) 9.2.2, is Gaussian with a mean equal to zero, and

H is L2.˝;A;P/.
In (Assumption) 9.2.2, f was assumed continuous, so X shall be continuous in
quadratic mean. Xt shall denote the equivalence class of X.
; t/. The symbol � .F/,
where F is a family of (equivalence classes) of functions, denotes the �-algebra
generated by the elements of F (the elements in the equivalence classes of F/. One
shall need the following families of �-algebras: for fixed, but arbitrary t 2 T,

1. �t .X/ is the � algebra generated by fX .
; �/ ; � � tg:

�t .X/ D � .F/ ; F D fX .
; �/ ; � � tg I
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2. � o
t .X/ is generated by �t .X/ and the sets of A that have measure zero for P,

3. �Ct .X/ D \�>0� o
tC� .X/.

The Gaussian assumption has a number of consequences, as follows [200, 202, p. 22
and p. 25, respectively, p. 43].

1. � o
t .X/ D � .Lt ŒX�/.

2. For fixed, but arbitrary Y 2 L[T ŒX�, the equivalence class of the following
random variable: EP

�
Y j � o

t .X/
�

is the projection in L[T ŒX� of Y onto Lt ŒX�.
It then follows that, for fixed, but arbitrary � > 0, the equivalence class of
EP
�
Y j � o

tC� .X/
�

is PtC� ŒY�, Pt the projection of L[T ŒX� with range Lt ŒX�. So
the equivalence class of

EP
�
Y j �Ct .X/

�
is PCt ŒY�, and thus

�Ct .X/ D �
�
LCt ŒX�

�
:

In particular, in that context, there is no difference between strict and wide sense
martingales, as long as one is not concerned with path properties, and takes, as a
representative of a projection, the conditional expectation.

3. X has a measurable modification.

One may furthermore replace, in all expressions of Sect. 9.2, Pt with PCt without
altering the fundamental relations. However continuity to the left becomes conti-
nuity to the right. One consequence is that h�, defined in Sect. 9.2, is a Gaussian
martingale in the wide sense which is continuous to the right in quadratic mean.
It has then [223, p. 173] a modification whose paths have limits to the left, and are
continuous to the right, for the �-algebras �Ct .X/. It is such a modification that shall
be henceforth used.

One then needs that the terms defining h� be given “path-wise” meaning. As X is
continuous in quadratic mean, it has a measurable, and integrable, modification that
allows one to define Z t

0

X .
; �/ d�

as a Lebesgue integral, and thus as a continuous function. The only term that has
then to be defined “path-wise” is

q .t; �/ D �PCt Œ j .t; �/� :
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Writing the definition of h� as

��1h�.t/ D ��1q.t; �/ � ��1q.0; �/C
Z t

0

X� d� � �
Z t

0

��1q.�; �/d�;

and introducing

f�.t/ D ��1q.t; �/ D PCt Œ j.t; �/� ;

one obtains the following expression:

f�.t/ � �
Z t

0

f�.�/d� D ��1h�.t/C PC0 Œ j.0; �/��
Z t

0

X� d�;

in which the right-hand side, as it depends on the process and its prediction, is
assumed to be known. As such it shall be denoted g�, a function continuous to the
right, with limits to the left. Taking f� to be the unknown, one is in the presence of
a Volterra equation of the second kind:

f�.t/ � �
Z t

0

f�.�/d� D g�.t/:

Its unique solution is [25, p. 84]

f�.t/ D g�.t/C �
Z t

0

e�.t��/g�.�/d�;

so that q may be taken to be continuous to the right, and have limits to the left, and
one has the following “path-wise” identity, where the dot in Pc indicates an element
in the equivalence class c:

Ph� .!; t/ D Pq .!; t; �/ � Pq .!; 0; �/C �
Z t

0

fX .!; �/ � Pq .!; �; �/g d�:

Lemma 9.3.2 One has that, uniformly on finite intervals of t-indices,

lim
�"1
jjq .t; �/ � Xtjj2L2.˝;A;P/ D 0:

Proof One has that

jjq .t; �/ � Xtjj2L2.˝;A;P/ D
ˇ̌̌
ˇ
ˇ̌̌
ˇPt

	
�

Z
T

e���XtC� d�



� Xt

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
L2.˝;A;P/

�
ˇ̌̌
ˇ
ˇ̌̌
ˇ�
Z

T
e���XtC� d� � Xt

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
L2.˝;A;P/
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D EP

	
�

Z 1
0

e��� fX.
; tC �/� X.
; t/g

2

D EP

h
E2

˘0
�

ŒX.
; tC �/� X.
; t/�
i

� EP

h
E˘0

�

�fX.
; tC �/� X.
; t/g2�i
D E˘0

�

�
EP
�fX.
; tC �/ � X.
; t/g2��

D
Z 1
0

�e��� jjXtC� � Xtjj2L2.˝;A;P/ d�

�D��D
Z 1
0

d� e��
ˇ̌̌̌̌̌
XtC �

�
� Xt

ˇ̌̌̌̌̌
2

L2.˝;A;P/
:

Since t 7! Xt is continuous, it is uniformly continuous on closed and bounded
intervals, so that, when � increases indefinitely, that latter integral will be uniformly
small on closed and bounded intervals. ut
Remark 9.3.3 For large �, q .t; �/ is thus an approximation to Xt.

Remark 9.3.4 Let � o
t .q/ be the �-algebra generated by the family

fPq .
; �; �/ ; � 2 Œ0; t� ; � a positive integer, or rational numberg ;

and the sets of A that have measure zero for P. Then:

� o
t .X/ � � o

t .q/ � �Ct .X/ :

Example 9.3.5 Let Z be a (the class of a) standard normal random variable, and W
be an independent Wiener process. Let

Xt D Z C
Z t

0

W� d�:

As X is differentiable with W as derivative, for fixed, but arbitrary t 2 T,

Lt ŒX� D V ŒZ�˚ Lt ŒW� :

Furthermore

XtC� D Xt C
Z tC�

t
W� d�:
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But [(Fact) 6.2.24]

Z tC�

t
W� d� D .tC �/WtC� � tWt �

Z tC�

t
�W .d�/

D .tC �/ .WtC� �Wt/C �Wt �
Z tC�

t
�W .d�/ :

The first and third terms on the right of the latter equality are orthogonal to V ŒZ�,
and to Lt ŒW�, and the second belongs to the latter. Consequently

Pt ŒXtC� � D Xt C �Wt:

But then

q .t; �/ D �
Z

T
e��� fXt C �Wtg d� D Xt C ��1Wt;

Xt � q .t; �/ D ��1Wt;

and

h�.t/ D ��1Wt:

Thus, for t 2 T, fixed, but arbitrary, the family of (classes of) random variables

fq .0; �/ ; h�.�/; � 2 Œ0; t�g

generates the same completed �-algebra as the family

fq .�; �/ ; � 2 Œ0; t�g ;

despite the fact that

�

Z t

0

fX� � q .�; �/g d� D
Z t

0

W� d�

does not vanish as � "" 1. That equality of �-algebras is true in general as
explained in the following section.
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9.3.2 Equalities of � -Algebras

It is established below that some �-algebras that are central to multiplicity consid-
erations à la Knight are equal. As consequence, one obtains a proper representation.

Lemma 9.3.6 Let X be a progressively measurable process with values in R, for
the filtration A of the complete probability space .˝;A;P/, satisfying the usual
conditions. Assume that

EP

	Z 1
0

jX .
; t/j dt



<1:

Let

U.
; t/ D EP

	Z 1
0

X .
; �/ d� j At



;

V.
; t/ D EP

	Z 1
t

X .
; �/ d� j At



;

W.
; t/ D
Z t

0

X .
; �/ d�:

Then:

1. U D V CW,
2. U is a uniformly integrable martingale, which one may assume to be continuous

to the right and have limits to the left;
3. V is a quasimartingale [128, p. 213], which one may assume to be continuous to

the right and have limits to the left;
4. the process

Y�.
; t/ D U.
; 0/C
Z t

0

e�� U.
; d�/

is a martingale, which one may assume to be continuous to the right and have
limits to the left, and

Y�.
; t/ D e�tV.
; t/C
Z t

0

e�� .X.
; �/� �V.
; �// d�:

Proof Item 1 follows from the fact that W is adapted. U is the conditional
expectation of an integrable random variable and thus uniformly integrable [128,
p. 6]. Martingales have unique modifications that are continuous to the right and
have limits to the left [223, p. 173]. So item 2 obtains. For item 3, one makes use of
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the following definitions:

xC D x _ 0;
x� D � .x ^ 0/ ;

V˙.
; t/ D EP

	Z 1
t

X˙ .
; �/ d� j At



:

As, for fixed, but arbitrary 0 � t1 < t2,

EP
�
V˙.
; t2/ j At1

� D EP

	
EP

	Z 1
t2

X˙ .
; �/ d� j At2



j At1




D EP

	Z 1
t2

X˙ .
; �/ d� j At1




� EP

	Z 1
t1

X˙ .
; �/ d� j At1



D V˙.
; t1/;

V˙ is thus a positive supermartingale. Since

t 7! EP
�
V˙.
; t/� D EP

	Z 1
t

X˙ .
; �/ d�




is a continuous map, V˙ may be assumed to be continuous to the right, and
have limits to the left [223, p. 173]. V is thus the difference of two positive
supermartingales, which are continuous to the right, and have limits to the left, that
is, a quasimartingale [128, p. 214]. As such, it has a unique decomposition into the
sum of a local martingale, and a predictable process, whose paths start at zero, and
have locally integrable variation [216, p. 118]. That decomposition is obtained as
follows. Using integration by parts [128, p. 244] onZ t

0

e��U.
; d�/;

one gets thatZ t

0

e��U.
; d�/ D e�tU.
; t/�U.
; 0/� �
Z t

0

e��U.
; �/d�: (1)
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Replacing U with V CW, and using integration by parts on e�tW.
; t/, one obtains
that

e�tU.
; t/ D e�tV.
; t/C
Z t

0

e��W.
; d�/C �
Z t

0

e��W.
; �/d�: (2)

But, again as U D V CW,Z t

0

e��U.
; �/d� D
Z t

0

e��V.
; �/d� C
Z t

0

e��W.
; �/d�; (3)

so that

Y�.
; t/ D U.
; 0/C
Z t

0

e��U.
; d�/

.1/D e�tU.
; t/ � �
Z t

0

e��U.
; �/d�

.2/D e�tV.
; t/C
Z t

0

e��W.
; d�/C �
Z t

0

e��W.
; �/d�

.3/� �
�Z t

0

e��V.
; �/d� C
Z t

0

e��W.
; �/d�
�

D e�tV.
; t/C
Z t

0

e�� fW.
; d�/� �V.
; �/d�g ;

which, given the definition of W, yields the formula of 4. As a stochastic integral, Y�
is a local martingale. To prove that it is a martingale, it suffices to prove that [264,
p. 64], for any stopping time T, the family

�Z S

0

e��U.
; d�/; S � T; S a bounded stopping time

�
(4)

is uniformly integrable. Using the representation of the integral in (4), obtained from
(1), letting � be a finite bound for S, and A, an arbitrary measurable set, one has that

EP

	
�

A

ˇ̌̌
ˇ
Z S

0

e�� U.
; d�/
ˇ̌̌
ˇ


� e��EP

�
�

A
jU.
; S/j�C EP

�
�

A
jU.
; 0/j�

C �

Z �

0

e��EP
�
�

A
jU.
; �/j� d�:
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Let G D EP
�
�

A
j AS

�
, and H D R1

0 X.
; �/ d� , which exists by assumption.
Then, as

U.
; t/ D EP ŒH j At� ;

one has that

EP
�
�

A
jU.
; S/j� D EP

��
EP
�
�

A
jU.
; S/j�� j AS

�
D EP ŒG jUSj�
D EP ŒG jEP ŒH j AS�j�
D EP ŒjEP ŒGH j AS�j�
� EP ŒEP ŒG jHj j AS��

D EP ŒG jHj�

� EP

	
G
Z 1
0

jX .
; �/j d�


:

The conditions [5, p. 296] for uniform integrability thus obtain. ut
Lemma 9.3.7 Let D D D .RC/ be the Skorohod space of all functions that are
continuous to the right and have limits to the left: it is a complete, separable metric
space, or Polish space. Denote L1loc .RC/ the separable Fréchet space of locally
integrable functions (functions whose restriction to compact intervals is integrable).
The following sets shall be of use (� is fixed, but arbitrary):

D� D
�

f 2 D W lim
t""1

e��t j f .t/j D 0
�
;

A D
�

f 2 L1loc .RC/ W for all � > 0;
Z 1
0

e��t j f .t/j dt <1
�
;

B D A �
Y
n2N

Dn:

For fixed, but arbitrary f 2 A, n 2 N, hn 2 Dn, one defines the function ˚ W B �!
DN using the following two relations:

kn .t/ D hn .t/C
Z t

0

f f .�/ � nhn .�/g d�;

and (h has components hn, and k, kn)

˚ .f ; h/ D k:
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There exists then a measurable � W DN �! B such that, for fixed, but arbitrary
.f ; h/ 2 B,

� ı ˚ .f ; h/ D .f ; h/ :

Proof As functions in D are determined by dense sets,

D� D
\

n

[
p

\
q2Q;q>0

�
f 2 D W e��.pCq/ j f .pC q/j < 1

n

�
:

But, Et denoting evaluation at t,�
f 2 D W e��.pCq/ j f .pC q/j < 1

n

�
D
�

f 2 D W ˇ̌EpCq .f /
ˇ̌
<

e�.pCq/

n

�

D E�1pCq

�

�e�.pCq/

n
;

e�.pCq/

n

	�
;

so that D� is measurable, as the Borel sets of D are generated by the evaluation maps
[145, p. 328]. A Polish space is Lusin [239, p. 94], and every Borel set of a Lusin
space is Lusin [239, p. 95]. As a closed manifold in a Frechet space [113, p. 192],
A is similarly measurable, and thus Lusin. B is thus Lusin as a countable product of
Lusin spaces [239, p. 94].
˚ is measurable by its very definition, since the defining equation may be looked

at as the result of computing the evaluation at t and at � of the various functions
entering the formula. It is also an injection. Suppose indeed that, for fixed, but
arbitrary f 2 A, h� 2 D�, � > 0, for all t � 0,

h�.t/C
Z t

0

f f .�/ � �h�.�/g d� D 0:

Then, letting

F .t/ D
Z t

0

f .�/ ; and H� .t/ D
Z t

0

h� .�/ d�;

one has that

h� .t/C F .t/ � �H� .t/ D 0:
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The assumptions on the behavior of f and h� (locally integrable) allow one
[238, p. 238] to proceed with Laplace transforms. Thus, using the following
formulae [217]:

L
�
f 0
�
.s/ D sf .s/ � f .0/ ;

L
�Z �

0

f

�
.s/ D L .f / .s/

s
;

L
�
e��
�
.s/ D 1

s � �;

one has that

0 D s
L .h�/ .s/

s
C L .f / .s/

s
� �L .h�/ .s/

s
;

that is,

L .h�/ .s/ D �L .f / .s/
s� � D �L .f / .s/L �e��� .s/ :

One can now use the inversion formula

L�1 .L .f /L .g// D
Z t

0

g .�/ f .t � �/ d�

to obtain that

h� .t/ D �e�t

Z t

0

e��� f .�/ d�:

Having assumed that limt""1 e��t jh� .t/j D 0, one has that L .f / .�/ D 0. When
� 2 N, the change of variables y D e�x yields that

Z 1
0

e�nxf .x/ dx D
Z 1

0

yn�1f .� ln y/ dy:

Since the set of functions x 7! xn is total in L2 Œ0; 1� [134, p. 10], f must be zero
almost surely with respect to Lebesgue measure. But then hn must be zero for n 2 N,
for, otherwise, as it is proportional to ent, it does not belong to Dn.
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The conclusion follows from the Souslin-Lusin theorem [70, p. 77]: ˚.B/ is
Borel in DN, and ˚ is a Borel isomorphism from B to ˚.B/. � may be chosen
as follows:

� .h/ D
�
˚�1 .h/ when h 2 ˚ .B/�
f0; h0

�
when h 2 ˚ .B/c ;

where
�
f0; h0

�
is any constant function. ut

Remark 9.3.8 In what follows and beyond, At shall always be
˚
� o

t .X/
�C

.

Remark 9.3.9 When, in (Lemma) 9.3.6, X is replaced with e���X, V gets trans-
formed as follows. Since now

V�.
; t/ D EP

	Z 1
t

e���X.
; �/d� j At



;

letting � D � � t,

V�.
; t/ D e��tEP

	Z 1
0

e���X.
; tC �/d� j At



:

Consequently e�tV�.
; t/ corresponds to Pt Œ j .t; �/�, � e�tV�.
; t/ corresponds to
q .t; �/, and, using (Lemma) 9.3.6,

�Y�.
; t/ D �e�tV�.
; t/C �
Z t

0

e��
˚
e���X.
; �/� �V�.
; �/

�
d�

D �e�tV�.
; t/C �
Z t

0

˚
X.
; �/� �e��V�.
; �/

�
d�;

so that �Y�.
; t/ corresponds to h�.t/. According to (Proposition) 9.3.10 which
follows, one has then a “pathwise” solution to the equation

Ph�.
; t/ D Pq .
; t; �/C �
Z t

0

fX.
; �/� Pq .
; �; �/g d�;

where, since Ph� and Pq are taken as known, X is the unknown.
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Proposition 9.3.10 Let X be a progressively measurable process with values in R,
for the filtration A of the complete probability space .˝;A;P/, satisfying the usual
conditions. Assume that

EP

	Z 1
0

e��t jX .
; t/j dt



<1:

There is then a deterministic procedure which, for almost every ! 2 ˝ , reconstructs
the paths t 7! X .!; t/ and t 7! E Œ j .
; t; �/ j At� .!/ from the paths t 7! Y� .!; t/,
where

Y� .!; t/ D e�tV� .!; t/C
Z t

0

�
X .!; �/ � �e��V� .!; �/

�
d�;

V� .!; t/ D EP

	Z 1
t

e���X .
; �/ d� j At



.!/ :

Proof The assumption says that, for fixed, but arbitrary � > 0, for almost every
! 2 ˝ , with respect to P, Z 1

0

e��t jX .!; t/j dt <1:

Since

V� .!; t/ D EP

	Z 1
t

e���X .
; �/ d� j At



.!/

can be expressed (as in (Lemma) 9.3.6) as the difference of two supermartingales,
continuous to the right, whose expectations both tend to zero, because of the
integrability assumption, each of these supermartingales has then a limit that is zero,
and thus, almost surely with respect to P,

lim
t""1

e��t
˚
e�tV�.
; t/

� D 0:
One may thus apply (Lemma) 9.3.7 with

f .t/ D X .!; t/ ;

hn .t/ D ent Vn .!; t/ ;

kn .t/ D Yn .!; t/ ;
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so that, Y.!; 
/ having components Yn.!; 
/, and V.!; 
/, en�Vn.!; 
/, almost surely,
with respect to P,

Y.!; 
/ D ˚
�	

X.!; 
/
V.!; 
/


�
; and

	
X.!; 
/
V.!; 
/



D � .Y.!; 
// :

ut
Corollary 9.3.11 Mutatis, mutandis, (Proposition) 9.3.10 is true for finite intervals.

Proof Let � > 0 be fixed, but arbitrary. Let A�
t D At^� , and

X� .
; t/ D
�

X.
; t/ when t � �
EP ŒX.
; t/ j A� � when t � � :

The usual conditions obtain for the �-algebras of the form A�
t , and X� is progres-

sively measurable with respect to them. Furthermore, the integrability condition
of (Proposition) 9.3.10 obtains for X� also. The process

V�
�.
; t/ D EP

	Z 1
t

e��� X� .
; �/d� j A�
t




is thus well defined, and so is Y�� . Now, for t � � , by definition, one has that
X� .
; t/ D X.
; t/, and V�

�.
; t/ D V�.
; t/, so that Y��.
; t/ D Y�.
; t/. When t > � ,
then A�

t D A�
� , and, since Y�� is a martingale with respect to the A�

t ’s, one has that

Y��.
; t/ D EP
�
Y��.
; t/ j A�

t

� D EP
�
Y��.
; t/ j A�

�

� D Y��.
; �/ D Y�.
; �/:

That means that knowing Y�.!; 
/ on Œ0; ��, one knows Y��.!; 
/ on RC, that is
X� .!; 
/ on RC, and thus, X.!; 
/ on Œ0; ��. ut
Remark 9.3.12 When using (Corollary) 9.3.11 within the framework of Sect. 9.2.1,
the basic integrability assumption of (Proposition) 9.3.10 is covered by that
of Sect. 9.2.1. Indeed

EP

	Z 1
0

e��� jX.
; �/j d�


�
Z 1
0

e���E1=2

P

�
X2.
; �/� d�

�
Z 1
0

e���EP
�
X2.
; �/� d�

Z 1
0

e��� d�

<1:
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Corollary 9.3.13 Let t 2 T and p 2 N be fixed, but arbitrary. The following �-
algebras have completions in At that are equal:

�t.V/ D � .V�.
; �/; � 2 Œ0; t� ; � > 0/ ;
�t.Yn>p/ D � .Vn.
; 0/;Yn.
; �/; � 2 �0; t� ; n > p/ ;

�t.Y/ D � .Vn.
; 0/;Yn.
; �/; � 2 �0; t� ; n 2 N/ :

Proof In the sequel, V has components Vn; n 2 N, Y , Yn. The terms “inclusion of Y
in V” shall mean, in what follows, that �t.Y/ � �t.V/. One has that, almost surely,
with respect to P,

Y�.
; 0/ D V�.
; 0/:

By definition, the �-algebras considered are in At, and the completion of �t.Y/ is in
that of �t .X;V/, since Y is a function of X and V [(Proposition) 9.3.10, (Corollary)
9.3.11]. But, because of (Lemma) 9.3.2, X may be recovered from V (the difference
between q and V is multiplication by �). Thus the “inclusion Y in V” obtains.

For the “inclusion V in Y,” one may proceed using the following remarks.
From (Proposition) 9.3.10 and (Corollary) 9.3.11, V is a measurable function of
Y. It will suffice to prove that, for � > 0, fixed, but arbitrary, V�.
; t/ is the limit in
L1.˝;A;P/ of linear combinations of the form

Pp
iD1 ˛iVni.
; t/. Now

V�.
; t/ �
pX

iD1
˛iVni.
; t/

D
Z 1
0

(
e��.�Ct/ �

pX
iD1

˛ie
�ni.�Ct/

)
EP ŒX.
; tC �/jAt� d�:

The expectation of the absolute value of the left-hand side of the latter equality is
smaller than (with the obvious notation)Z 1

0

ˇ̌
f .�/ � fp.�/

ˇ̌
EP ŒjX.
; tC �/j� d�;

where the expectation is locally square integrable by assumption. Since [268, p. 62]
a locally integrable g is almost surely zero when, for all n � p, p arbitrary, but fixed,Z 1

0

e�n�g.�/d� D 0;

choosing g 2 L2 ŒRC�, one obtains that the family of exponentials˚
� 7! e�n� ; n � p

�
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is total in L2 ŒRC�. Choose thus a sequence
˚

fp
�

that converges in L2 ŒRC� to f .
Since, with gp D

ˇ̌
f .�/ � fp.�/

ˇ̌
,

Z 1
0

gp.�/EP ŒjX.
; tC �/j� d� �

�
X

n

Z nC1

n
gp.�/EP ŒjX.
; tC �/j� d�;

for each fixed, but arbitrary n, one may choose pn such that pn > pn�1 and, for
p > pn,

Z nC1

n
gp.�/EP ŒjX.
; tC �/j� d� �

� ˇ̌̌̌ f � fp
ˇ̌̌̌
2

L2ŒRC�

Z nC1

n
EP
�
X2.
; tC �/� d� � �

2n
:

The required convergence to zero follows. ut
Proposition 9.3.14 The completion � o

t .q/ of the �-algebra generated by the family

fPq .
; �; �/ ; � 2 Œ0; t� ; � > 0g

is equal to �Ct .X/.

Proof From (Remark) 9.3.9, one has that Pq.
; t; �/ is � e�tV�.
; t/, and Ph�.
; t/,
�Y�.
; t/. Let ft; t1; t2g � T; t1 < t2, be fixed, but arbitrary. One has already seen
[(Remark) 9.3.4] that

� o
t .X/ � � o

t .q/ � �Ct .X/ :

Consequently

�Ct1 .X/ � � o
t2 .X/ � � o

t2 .q/ :

If one is able to prove that �Ct .q/ D � o
t .q/, then

�Ct1 .X/ � �Ct1 .q/ D � o
t1 .q/ � �Ct1 .X/ :

Now [(Corollary) 9.3.13] � o
t .q/ D � o

t .h/, the �-algebra generated from the
processes of form hn. Furthermore [Sect. 9.3.1 and result (Proposition) 9.2.21, item
4] hn is a Gaussian martingale with respect to the �-algebras generated by X, that is

hn.t2/� hn.t1/ ? LCt1 ŒX� ;
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so that Phn.
; t2/�Phn.
; t1/ is independent of �Ct1 .X/, and thus of � o
t1
.q/ that it contains,

and consequently of � o
t1
.h/, as the latter is equal to � o

t1
.q/.

Let A 2 �Ct1 .q/ be fixed, but arbitrary. As, for fixed, but arbitrary � > 0,

Phn.
; t2/ � Phn.
; t1 C �/

is independent of � o
t1C� .q/, it is independent of

�Ct1 .q/

that it contains. Consequently, as Phn is continuous to the right, the difference
Phn.
; t2/ � Phn.
; t1/ is independent of A.

Now, as A 2 � o
t2 .q/ D � o

t2 .h/, and that a function adapted to a completion is
almost surely equal to a function adapted to the underlying �-algebra [275, p. 97],
�

A
may be taken to be a function adapted to the �-algebra generated by the family

of elements

Phn;

and, as such, has a representation of the following form, for an appropriately
measurable ˚A[41, p. 144]:

�
A
D ˚A

�Phni .
; ti/ ; ti 2 Œ0; t2� ; i 2 I; jIj � @0
�
:

As, for ti > t1, fixed, but arbitrary,

Phn.
; ti/ D
˚Phn.
; ti/ � Phn.
; t1/

�C Phn.
; t1/;
one may rewrite the representation of �

A
as follows:

I D I1 [ I2; I1 D fi 2 I W ti � t1g ; I2 D fi 2 I W t1 < ti � t2g ;
�

A
D �A

�Phni .
; ti/ ; i 2 I1; Phnj.
; t1/; Phnj

�
; tj� � Phnj .
; t1/ ; j 2 I2
�
;

�A still being appropriately measurable.
Let

�1 D �
�Pq .
; 0; �/ ; Ph� .
; ti; �/ ; i 2 I1; Phnj.
; t1/; j 2 I2

�
;

�2 D �
�Phni .
; ti/� Phni .
; t1/ ; i 2 I2

�
:

Let X be the vector whose components generate �1, and Y be the vector whose
components generate �2. Then �

A
D �A .X;Y/. Let B be a fixed, but arbitrary
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element of B .RI1 /. ThenZ
X�1.B/

�
A

dP D
Z

X�1.B/
�A .X;Y/ dP

D
Z

B�RI2

�A

�
x; y
�

P.X;Y/

�
d
�

x; y
��

D
Z

B�RI2

�A

�
x; y
�

PX ˝ PY

�
d
�

x; y
��

D
Z

B
PX .dx/

Z
RI2

�A

�
x; y
�

PY

�
dy
�

D
Z

B
EP Œ�A .x;Y/�PX .dx/

D
Z

X�1.B/
EP
�
�

A
j �1

�
dP:

Consequently, almost surely,

�
A
D EP

�
�

A
j �1

�
;

so that A is in the completion of �1, which is contained in � o
t1 .h/ D � o

t1 .q/. ut
Remark 9.3.15 When the processes h� hold the part of Z in a representation
of the following type: Xt D

R
Ft dZ, the conjunction of (Corollary) 9.3.13

and (Proposition) 9.3.14 says that the representation of X by that integral with
respect to h� is proper.

9.3.3 The Index of Stationarity of a Gaussian Process

The index of stationarity does, to a certain extent, for the martingales obtained
from X, what multiplicity does for X itself. But its computation is based on the
� parameter rather than time. One shall see that the value of the index is related to
the stationary features of X, whence its name.

Definition 9.3.16 The index of stationarity at t, of the process X, from which the
process h� may be derived, as in (Definition) 9.2.9, is the dimension sX Œt� of the
(closed) subspace�t ŒX� generated by the family fh�.t/; � > 0g, that is

sX Œt� D dim f�t .X/g D dim
n
V Œfh�.t/; � > 0g�

o
:
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Proposition 9.3.17 For fixed, but arbitrary ft1; t2g � T; t1 < t2, one has that:

1. sX Œt1� � sX Œt2�;
2. when t1 > 0, sX Œt1� <1, and Y is the following map: t 7! Yt D Xt1Ct, then

sX Œt2� � sX Œt1� � sY Œt2 � t1� � sX Œt2� :

Proof (1) Let L W �t2 ŒX� �! �t1 ŒX� be defined using the following relation, based
on the martingale property of h� [Sect. 9.3.1 and result (Proposition) 9.2.21, item 4]:

L Œh�.t2/� D Pt1 Œh�.t2/� D h�.t1/:

The closure of the range of L is �t1 ŒX�. The adjoint of L, L?, is thus [266, p. 71]
a linear injection of �t1 ŒX� into �t2 ŒX�, so that the latter’s dimension must exceed
that of the former’s.

Proof (2) Let ft; t1g � �0;1Œ be fixed, but arbitrary, and ja; bj denote a finite
interval of any type, open, closed, half open. Then

fY� ; � 2 ja; bjg D fXt1C� ; � 2 ja; bjg D fX� ; � 2 jt1 C a; t1 C bjg :

Let k� be for Y the counterpart of h� for X. One shall use the following fact, to be
established below:

k�.t/ D h�.t1 C t/ � h�.t1/: (?)

With that fact taken temporarily for granted, by definition,

k�.t2 � t1/ D h�.t2/� h�.t1/;

and

�t2�t1 .Y/ D V Œfk�.t2 � t1/; � > 0g� D V Œfh�.t2/ � h�.t1/; � > 0g�:

Since one has the following orthogonal decomposition:

h�.t2/ D fh�.t2/� h�.t1/g C h�.t1/ D k�.t2 � t1/C h�.t1/;

it follows that

V Œfh�.t2/; � > 0g� � V Œfh�.t1/; � > 0g�˚ V Œfh�.t2/ � h�.t1/; � > 0g�
D V Œfh�.t1/; � > 0g�˚ V Œfk�.t2 � t1/; � > 0g�;
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and that translates to

sX Œt2� � sXŒt1�C sY Œt2 � t1�:

Furthermore, as in item 1, the map L W �t2 ŒX� �! �t2�t1 ŒY� defined using the
following relation:

L Œh�.t2/� D
˚
IL2.˝;A;P/ � Pt1

�
Œh�.t2/� D h�.t2/� h�.t1/ D k�.t2 � t1/

is linear and continuous, and the closure of its range is �t2�t1 .Y/. Consequently its
adjoint is an injection, and the second inequality in item 2 obtains.

One must then prove the initial assertion (?). Let Lt1;t ŒX� denote the (closed)
subspace generated linearly by fX� ; � 2 Œt1; t1 C t�g. Then, as

fX� ; � 2 Œt1; t1 C t�g D fY� ; � 2 Œ0; t�g ;

it follows that Lt1;t ŒX� D Lt ŒY�. Consequently

LCt ŒY� D
\
�>0

Lt1;tC� ŒX� � LCt1Ct ŒX� :

As

fX� ; � 2 Œ0; t1 C t�g D fX� ; � 2 Œ0; t1�g [ fX� 2 Œt1; t1 C t�g
D fX� ; � 2 Œ0; t1�g [ fY� ; � 2 Œ0; t�g ;

one has that

Lt1Ct ŒX� � LCt1 ŒX� _ LCt ŒY� ;

so that [(Lemma) 8.4.17]

LCt1Ct ŒX� �
\
�>0

˚
LCt1 ŒX� _ LCtC� ŒY�

�
D LCt1 ŒX� _

\
�>0

LCtC� ŒY�

D LCt1 ŒX� _ LCt ŒY� :

Consequently LCt1Ct ŒX� D LCt1 ŒX� _ LCt ŒY�. ut
Let

• LCt1Ct ŒX� D LCt ŒY�˚ HX;Y
t ,

• PY
t be the projection with range LCt ŒY�,
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• ˘ X;Y
t be the projection with range HX;Y

t ,
• qY be, for Y, the counterpart of q for X.

Since every element in an orthogonal decomposition has a unique sum representa-
tion, and that, for � 2 Œ0; t�, fixed, but arbitrary, both

LCt1C� ŒX� � LCt1Ct ŒX� ; and LC� ŒY� � LCt ŒY� ;

obtain,

HX;Y

� � HX;Y
t :

Then, with Y1 2 HX;Y
t ,

qY .t; �/ D �PY
t

	Z 1
0

e��� YtC� d�




D � ˚PCt1Ct �˘ X;Y
t

� 	Z 1
0

e���Xt1CtC� d�



D q .t1 C t; �/ � Y1:

Similarly, with Y2 2 HX;Y
0 ,

qY .0; �/ D q .t1; �/ � Y2;

and, with Z� 2 HX;Y

� , and Y3 2 HX;Y
t ,

Z t

0

fY� � qY .�; �/g d� D
Z t

0

fXt1C� � q .t1 C �; �/C Z� g d�;

D
Z t1Ct

t1

fX� � q .�; �/g d� C Y3:

It follows then, from the definition of h� [(Definition) 9.2.9], applied to k�.t/, and
the preceding calculation, that

k�.t/ D h�.t1 C t/ � h�.t1/C Y3 C Y2 � Y1;

where Y3 C Y2 � Y1 2 HX;Y
t . Let

K D LCt1Ct ŒX� ; KX D LCt1 ŒX� ; and KY D LCt ŒY� :

As already seen,

K D KX _ KY :
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Write

K0 D KX \ KY ; K1 D KX \ K?0 ; K2 D KY \ K?0 :

One has that

K D .K1 _ K0/ _ .K0 _ K2/ D K1 _ K0 _ K2;

and that

K1 \ K2 D f0Kg ;

so that

K D K1 C K0 C K2;

and thus that [167, p. 184] K1 is the orthogonal complement in K of KY , and K2, that
of KX . Since the difference h�.t1 C t/ � h�.t1/ is orthogonal to LCt1 ŒX�, k�.t/ is thus
the sum of an element in LCt ŒY� and an element in its orthogonal complement. As
k�.t/ belongs to

LCt ŒY� ;

one must have that Y3 C Y2 � Y1 D 0L2.˝;A;P/. ut
Definition 9.3.18 Let X have the properties listed in (Assumption) 9.2.2 and
Sect. 9.3.1, hn be defined as the expression preceding the statement of (Lemma)
9.3.2, and let, for t 2 T, fixed, but arbitrary,

Lt Œh� D V Œfhn.�/; � � t; n 2 Ng�:

Suppose that, for an yet unspecified mXŒt� 2 f0g [N [ f1g,˚
X.i/; i 2 Œ1 W mX Œt��

�
is a family of independent (orthogonal) Gaussian processes, each of which has a
mean equal to zero, independent increments, and paths that are continuous to the
right. When mX Œt� is the smallest integer such that

V
�˚

X.i/

� ; � � u; i 2 Œ1 W mX Œt��
�� D Lu Œh� ; u � t;

it is called the index of multiplicity of Xt. When Lt Œh� is reduced to the zero element,
one sets mX Œt� D 0.
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Lemma 9.3.19 Given a sequence

M D ˚M.i/; i 2 I � N
�

of martingales in the wide sense, there exits a sequence

N D ˚N.i/; i 2 J � I
�

of martingales in the wide sense which has orthogonal terms, and generates, with
respect to “time” the same linear subspaces as M.

Proof Let N.1/ D M.1/. It is, by definition and assumption, a martingale in the wide
sense whose basis measure shall be denoted MN.1/ . Let

PN.1/

t be the projection onto Lt
�
N.1/

�
;

Mt
N.1/ be the restriction of MN.1/ to Tt:

The projection of M.2/ onto Lt ŒN.1/� has then the following generic form:

PN.1/

t

�
M.2/

t

� D Z t

0

F.2;1/

t dmN.1/ ; F.2;1/

t 2 L2
�
Tt; Tt;M

t
N.1/

�
:

Then, by definition, for fixed, but arbitrary � � t, using the characterization of
projection [44, p. 80],

0 D hM.2/

t � PN.1/

t

�
M.2/

t

�
;N.1/

� iL2.˝;A;P/

D hM.2/

t ;N
.1/

� iL2.˝;A;P/ �
Z �

0

PF.2;1/

t .�/MN.1/ .d�/ ;

so that the following measure on Tt is well defined:

�N.2;1/

t .Œ0; ��/ D hM.2/

t ;N
.1/

� iL2.˝;A;P/ D
Z �

0

PF.2;1/

t .�/MN.1/ .d�/ ;

and thus, in terms of equivalence classes, with respect to MN.1/ ,

F.2;1/

t D d�N.2;1/

t

dMN.1/
:

One then sets

N.2/

t D M.2/

t �
Z t

0

d�N.2;1/

t

dMN.1/
dmN.1/ :

N.2/ is a martingale in the wide sense as the sum of two such objects.
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Proceeding recursively one will be able to obtain that

N.pC1/
t D M.pC1/

t �
pX

iD1

Z t

0

d�N.pC1;i/

t

dMN.i/
dmN.i/ ;

where

• MN.i/ is the basis measure of N.i/, and, for i 2 Œ1 W p � and � � t, fixed, but arbitrary,

�N.pC1;i/

t .Œ0; ��/ D hMN.pC1/

t ;N.i/

� iL2.˝;A;P/;

• N.p/
t is Gaussian (since it is obtained using linear operations on Gaussian

processes), and is a wide sense martingale (by construction),
• for p ¤ q, fixed, but arbitrary, N.p/ and N.q/ are orthogonal (by construction),
• Lt ŒN� D Lt ŒM� (again by construction).

ut
Remark 9.3.20 Let Mi denote the basis measure of M.i/, and, generically,

m Œ� D
Z
dm:

The formulae resulting from (Lemma) 9.3.19 produce the following set of equal-
ities, where fpC1;i stands for the corresponding Radon-Nikodým derivative in the
formulae:

M1 D MN.1/ ;

M2 D MN.1/
�

f 22;1
�CMN.2/ ;

M3 D MN.1/
�

f 23;1
�CMN.2/

�
f 23;2
�CMN.3/ ;


 
 
 D 
 
 


so that positive linear combinations in the measures Mi are mutually absolutely
continuous with respect to the same linear combinations in the measures Ni.

Remark 9.3.21 The next lemma uses the Lebesgue decomposition as follows (the
measures involved are on Tt, the Borel sets of Œ0; t�).

Let �1 D MN.1/ , and, for i � 1, given that

Ni D
iX

jD1
MN.j/ ;
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write

dMN.iC1/ D fiC1dNi C d�iC1;

where

�iC1 ? Ni; and has support SiC1:

The following facts shall be used.

1. Since Nj .SiC1/ D 0, for j 2 Œ1 W i� ; fixed, but arbitrary MN.j/ .SiC1/ D 0.
2. One may assume that the supports SiC1 are decreasing.

Let indeed

˙i D
[
j�i

Si:

Since �iC1 .˙iC1/ � �iC1 .SiC1/ D �iC1 .Œ0; t�/, and simultaneously j � i and
k � iC 1, using item 1,

Ni .˙iC1/ D
iX

jDi

MN.j/ .˙iC1/ �
iX

jDi

X
k�iC1

MN.j/ .Sk/ D 0;

so that the ˙i’s are decreasing supports.
3. Suppose that the Si’s are decreasing. They may then be taken as disjoint.

Let indeed

˙i D Si \ Sc
iC1:

Then, since, given the definition of �iC1, and then using item 1,

�iC1 .SiC2/ � MN.iC1/ .SiC2/ D 0;

one has that

�iC1 .˙iC1/ D �iC1 .˙iC1/C �iC1.SiC1 \ SiC2/ D �iC1 .SiC1/ D �iC1 .Œ0; t�/ ;

and, using item 1 again,

Ni .˙iC1/ D
iX

jD1
MN.j/

�
SiC1 \ Sc

iC2
� � iX

jD1
MN.j/ .SiC1/ D 0:

4. Letting, in item 3 above, S0 to be the complement of [i�1Si, one has a sequence
of disjoint supports for the measures �i, and, because of the definitions of the Ni’s
and �i’s, then for i fixed, but arbitrary, and all j > i, MN.i/ .Sj/ D 0.
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5. One has, using recursion, and the definitions and properties of the diverse
ingredients, the following sets of equalities:

(i) MN.1/ D �1;
(ii) MN.2/ D �1 Œ f2�C �2;

(iii) MN.3/ D �1 Œ f3 C f2 f3�C �2 Œ f3�C �3;
(iv) 
 
 


and, referring to (Remark) 9.3.20,

(i) M1 D �1;
(ii) M2 D �1

�
f 22;1 C f2

�C �2;
(iii) M3 D �1

�
f 23;1 C f 23;2 f2 C f3

�C �2 � f 23;2 C f3
�C �3;

(iv) 
 
 

Lemma 9.3.22 The sequence N of (Lemma) 9.3.19 may be chosen so that for i 2 I
fixed, but arbitrary, MN.iC1/ � MN.i/ .

Proof Since the formulae which appear in the proof are complicated, one shall
restrict it to the details of the first steps of the recursion to which it is reduced.
The processes of the statement’s conclusion shall be denoted with boldface. Below,
as usual, when S is a set, �

S
is the indicator of S, and IS its equivalence class with

respect to whatever measure is considered. The Si’s are the supports of (Remark)
9.3.21, item 4, so they are disjoint, and t there shall be 1 here. So the proof covers
the interval Œ0; 1�. At the end of the proof, one shall see how that first result gets
extended.

a) Definition of N.1/:

Let, for t 2 Œ0; 1�, fixed, but arbitrary,

N.1/

t D
Z t

0

IS1 dmN.1/ C
X
i�2

R t
0

ISi dmN.i/

2i
p

MN.i/ .Œ0; 1�/
:

One thus assumes that MN.i/ .Œ0; 1�/ > 0. When that is not the case, as the numerator
is the zero element, the term does not enter the expression. Then

ˇ̌̌̌
N.1/

t

ˇ̌̌̌
2

L2.˝;A;P/ D
Z t

0

�S1
.�/MN.1/ .d�/

C
X
i�2

1

22iMN.i/ .Œ0; 1�/

Z t

0

�Si
.�/MN.i/ .d�/

� MN.1/ .Œ0; t�/C
X
i�2

1

22i

< 1;
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and thus, since [(Remark) 9.3.21] MN.1/ .S1/ D �1.S1/ D �1.Œ0; t�/, and

dMN.iC1/ D fiC1dNi C d�iC1; with Ni .SiC1/ D 0;

one obtains that

dMN.1/ D dMN.1/ C
X
i�2

1

22iMN.i/ .Œ0; 1�/
�Si

dMN.i/

D d�1 C
X
i�2

1

22iMN.i/ .Œ0; 1�/
d�i:

Consequently, for fixed, but arbitrary i � 1, �i � MN.1/ . As [still (Remark) 9.3.21]

MN.1/ D �1; and MN.2/ D �1 Œ f2�C �2;

whose summands are both absolutely continuous with respect to MN.1/ , then

MN.2/ � MN.1/ :

Since [still (Remark) 9.3.21] MN.3/ D �1Œ f3Cf2f3�C�2Œ f3�C�3; then MN.3/ � MN.1/ ,
and it should be clear that the just initiated induction procedure may be continued
indefinitely. Since, by construction,

M.pC1/
t D N.pC1/

t C
pX

iD1

Z t

0

d�N.pC1;i/

t

dMN.i/
dmN.i/ ;

one has also that Mi � MN.1/ .

b) Definition of N.2/:

Let PN.1/

t denote the projection onto Lt
�
N.1/

�
. Then,

PN.1/

t

�
N.j/

t

� D Z t

0

G.j/
t dmN.1/ ; some G.j/

t 2 L2
�

Tt; Tt;M
jTt

N.1/

�
;

where j � 2 is fixed, but arbitrary. One must have (characterization of projection:
[44, p. 80]), for � � t, that

hN.j/
t ;N

.1/

� iL2.˝;A;P/ D
Z �

0

PG.j/
t .x/MN.1/ .dx/ :
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But, for fixed, but arbitrary i � 1, using the definition of N.1/

t , the Si’s being disjoint,

MN.1/ .Œ0; t� \ Si/ D 1

22iMN.i/ .Œ0; 1�/
MN.i/ .Œ0; t� \ Si/ ; (?)

and thus, still using the definition of N.1/

t , plus (?),

hN.j/
t ;N

.1/

� iL2.˝;A;P/ D
1

2j
p

MN.j/ .Œ0; 1�/

Z �

0

�
Sj

dMN.j/

D
Z �

0

2j
p

MN.j/ .Œ0; 1�/ �Sj
dMN.1/ :

Consequently

PG.j/
t D 2j

p
MN.j/ .Œ0; 1�/ �Sj

;

and, since

PN.1/

t

�
N.j/

t

� D Z t

0

G.j/
t dmN.1/ D

Z t

0

2j
p

MN.j/ .Œ0; 1�/ISj dmN.1/ ;

it follows, again using (?), that

PN.1/

t

�
N.j/

t

� D Z t

0

I
Sj

dmN.j/ : (??)

Let now, for j � 2,

N.2;j/
t D N.j/

t � PN.1/

t

�
N.j/

t

� D Z t

0

I
Sc

j
dmN.j/ :

Now Sc
j is the disjoint union of Sk’s, k < j, and Sl’s, l > j. But, since [(Remark)

9.3.21] MN.j/ .Sl/ D 0 for l > j,

N.2;j/
t D

Z t

0

IhUj�1
kD1 Sk

i dmN.j/ :

Thus the basis measure of N.2;j/ is absolutely continuous with respect to MN.j/ , and,
since MN.j/ � MN.1/ ,

MN.2;j/ � MN.1/ :
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Consider then the sequence�
N Œi�

t D N.2;iC1/
t D

Z t

0

IŒ
Ui

jD1 Sj�dmN.iC1/

�
:

It is orthogonal by construction, and made of martingales in the wide sense. One
may thus define, as above,

N.2/

t D
Z t

0

IS1dmNŒ1� C
X
i�2

R t
0

ISidmNŒi�

2i
p

MNŒi� .Œ0; 1�/
;

which rewrites as

N.2/

t D
Z t

0

IS1dmN.2/ C
X
i�2

R t
0

ISi dmN.iC1/

2i
p

MN.iC1/ .Œ0; 1�/
:

In particular

MN.2/ .Œ0; t� \ B/ D MN.2/ .Œ0; t� \ S1 \ B/C
X
i�2

MN.iC1/ .Œ0; t� \ Si \ B/

2i
p

MN.iC1/ .Œ0; 1�/
:

c) Definition of N.3/:

One proceeds along the lines followed for the definition of N.2/. The novelty is the
shift of indices separating the Si’s and the N.i/’s.

Let PN.2/

t denote the projection onto Lt
�
N.2/

�
. Then,

PN.2/

t

�
N.j/

t

� D Z t

0

G.j/
t dmN.2/ ; some G.j/

t 2 L2
�

Tt; Tt;M
jTt

N.2/

�
;

where j � 3 is fixed, but arbitrary. One must have, for � � t, that

hN.j/
t ;N

.2/

� iL2.˝;A;P/ D
Z �

0

PG.j/
t .x/MN.2/ .dx/ :

But, for fixed, but arbitrary i > 1, letting MN.iC1/ .Œ0; 1�/ be denoted �i,

MN.2/ .Œ0; t� \ Si/ D 1

22i�i
MN.iC1/ .Œ0; t� \ Si/ ;
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and thus

hN.j/
t ;N

.2/

� iL2.˝;A;P/ D
1

2j�1p�j�1

Z �

0

�
Sj�1

dMN.j/

D
Z �

0

2j�1p�j�1 �Sj�1
dMN.2/ :

Consequently

PG.j/
t D 2j�1p�j�1 �Sj�1

;

and

PN.2/

t

�
N.j/

t

� D Z t

0

G.j/
t dmN.2/

D
Z t

0

2j�1p�j�1 I
Sj�1

dmN.2/

D
Z t

0

I
Sj�1

dmN.j/ :

Let now, for j � 3,

N.3;j/
t D N.j/

t � PN.2/

t

�
N.j/

t

� D Z t

0

I
Sc

j�1
dmN.j/ ;

and for fixed, but arbitrary i,

˙ i D ]i
jD1Sj; ˙i D ]j�iSj:

Then

Sc
j�1 D ˙ j�2 ]˙j;

and, since [(Remark) 9.3.21] MN.j/ .Sk/ D 0 for k > j,

N.3;j/
t D

Z t

0

I
Œ˙ j�2U Sj�

dmN.j/ :

Thus the basis measure of N.3;j/ is absolutely continuous with respect to MN.j/ , and,
since MN.j/ � MN.2/ ,

MN.3;j/ � MN.2/ :
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Consider then the sequence�
N Œi�

t D N.3;iC2/
t D

Z t

0

I
Œ˙ i]SiC2�

dmN.iC2/

�
:

It is orthogonal by construction, and made of martingales in the wide sense. One
may thus define, as above,

N.3/

t D
Z t

0

IS1dmNŒ1� C
X
i�2

R t
0

ISidmNŒi�

2i
p

MNŒi� .Œ0; 1�/
;

which rewrites as

N.3/

t D
Z t

0

IS1dmN.3/ C
X
i�2

R t
0 ISi dmN.iC2/

2i
p

MN.iC2/ .Œ0; 1�/
:

d) Conclusion: the processes N.1/, N.2/ and N.3/ have the following list of properties.

(i) They are wide sense martingales.
(ii) They are orthogonal (as the sets Si are associated with N.i/ in N.1/, with N.iC1/

in N.2/, and with N.iC2/ in N.3/).
(iii) Absolute continuity prevails: MN.3/ � MN.2/ � MN.1/ .
(iv) The element N.1/

t belongs to Lt
�
N.1/

�
(as, using (??),

N.1/

t � PN.1/

t

�
N.1/

t

� D Z t

0

I
Sc
1

dmN.1/ D 0L2.˝;A;P/;

since [(Remark) 9.3.21] MN.1/ .S1Ci/ D 0).
(v) The element N.2/

t belongs to Lt
�
N.1/

� ˚ Lt
�
N.2/

�
(as, analogously to what has

been done in (iv),

N.2/

t � PN.1/

t

�
N.2/

t

� D Z t

0

I
Sc
2

dmN.2/

D
Z t

0

I
S1

dmN.2/

D
Z t

0

I
S1

dmN.2/ /:
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(vi) The element N.3/

t belongs to Lt
�
N.1/

�˚ Lt
�
N.2/

�˚ Lt
�
N.3/

�
(as

N.3/

t � PN.2/

t

�
N.3/

t

� D Z t

0

I
S1]S3

dmN.3/

D
Z t

0

I
S1

dmN.3/ C
Z

I
S3

dmN.3/

D
Z t

0

I
S1

dmN.3/ C
Z

I
S3

dmN.1/ /:

That shows how to ascertain that the statement obtains in Œ0; 1�. To extend its validity
to �1; 2�, one repeats the procedure with the process

M.n/
t �M.n/

1 :

ut
Remark 9.3.23 The construction performed above is such that

1. the measure MN.1/ is a linear combination of all the measures �i;
2. for i, fixed, but arbitrary, Mi � MN.i/ � �i.

Consequently, any measure of type MN such that, for all i, MN � Mi, or MN �
MN.i/ , or MN � �i, is such that MN � MN.1/ . In that respect MN.1/ is minimal. Since
the construction repeats identically, that feature persists for the other terms in the
sequence.

Remark 9.3.24 One has already seen [(Lemma) 6.4.45] that the sequence
of (Lemma) 9.3.22 is unique within equivalence classes for mutual absolute
continuity.

Remark 9.3.25 The conclusion is that it makes sense to define the multiplicity mX Œt�
of (Definition) 9.3.18 at t as the smallest integer n for which MN.nC1/ .Œ0; t�/ D 0.

Remark 9.3.26 Integrating the N.i/’s with respect to proper subsets allows one to
express the N.i/’s and thus the M.i/’s with respect to the N.i/’s. Thus, in the simplest
case, one has that

M.1/

t D N.1/

t D
Z t

0

I
S1

dmN.1/ :

Proposition 9.3.27 The CHR representation becomes, in the present context, and
in quadratic mean:

Xt D PX
0 ŒXt�C

mX Œt�X
iD1

Z t

0

F.i/
t dmN.i/ ;
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with F.i/
t a Radon-Nikodým derivative, as in (Proposition) 9.2.16. Furthermore

mX Œt� � sX .t/ :

Proof The first assertion follows from (Corollary) 9.3.13, (Proposition) 9.3.14, and
the fact that, in a Gaussian environment, �-algebras are generated by subspaces
[200, p. 22, Chapter II].

Since � 7! M.�/

t is continuous in quadratic mean,

�t ŒM� D V
˚
M.q/

t ; q 2 Q
�
:

Let fN.t;i/; i 2 Ig be an orthonormal basis for �t ŒM� obtained by applying Gram-
Schmidt to

V
˚
M.q/

t ; q 2 Q
�
;

and let

N.t;i/

� D P�
�
N.t;i/

�
:

As M.q/
t D

P
i2I ˛

.t;q/

i N.t;i/,

M.q/

� D P�
�
M.q/

t

� DX
i2I

˛
.t;q/

i P�
�
N.t;i/

� DX
i2I

˛
.t;q/

i N.t;i/

� ;

so that the �-algebra generated by M is the same as the �-algebra generated by N.
So one may use N to obtain the multiplicity. But then one has the required inequality
since the integers are a subset of the rationals. ut
Remark 9.3.28 Knight [160, p. 124] provides formulae that express the prediction
process, and its related martingales, in terms of the N.i/’s. They are obtained as
those in Sect. 9.2.3. The examples to follow illustrate, for simple cases, the attending
computations.

Example 9.3.29 Let, ignoring the difference, for instance, between e�ˇ.t��/ and its
class,

Xt D
Z t

0

e�ˇ.t��/mW .d�/ :

It is a proper canonical representation since
R t
0

eˇ� f .�/d� D 0 for all t has the
zero function as solution. The representation has thus multiplicity one. The usual
calculation using the operational definition of projection [44, p. 80] (or the general
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representation of projection for a canonical representation) yields that

Pt ŒXtC� � D
Z t

0

e�ˇ.tC��x/mW .dx/ D e�ˇ.tC�/
Z t

0

eˇxmW .dx/ :

Then

q .t; �/ D �
Z 1
0

e���Pt ŒXtC� � d�

D �e�ˇt

Z 1
0

d� e�.ˇC�/�
Z t

0

eˇxmW .dx/

D �e�ˇt

ˇ C �
Z t

0

eˇxmW .dx/

D �

ˇ C �Xt:

Consequently X� � q .�; �/ D ˇ

ˇC�X� , and thus

M.�/

t D q .t; �/ � q .0; �/C �
Z t

0

fX� � q .�; �/g d�

D �

ˇ C �Xt C ˇ�

ˇ C �
Z t

0

X� d�

D �

ˇ C �Xt C ˇ�

ˇ C �
Z t

0

d� e�ˇ�
Z �

0

eˇxW .dx/ :

This latter integral is of the following form:
R t
0

F .d�/G .�/, and may be com-
puted as

F .t/G .t/ � F .0/G .0/�
Z t

0

G .d�/F .�/ ;

which translates into(
e�ˇ�

�ˇ

Z �

0

eˇx W .dx/

) ˇ̌̌
ˇ̌t
0

�
Z t

0

e�ˇ�

�ˇ

eˇ�W .d�/ ;

and that, in turn, yields Wt � 1
ˇ

Xt. Finally

M.�/

t D
�

ˇ C �Wt; and Xt D ˇ C �
�

Z t

0

e�ˇ.t��/mM.�/.d�/:
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Thus mX Œt� D sX Œt� D 1. When X is defined on the real line, it is an Ornstein-
Uhlenbeck (stationary) process.

Example 9.3.30 Let

Xt D
Z t

0

.2t � �/W .d�/ :

It has already been checked [(Example) 9.2.49] that the multiplicity is one, and
computed that

Xt D tWt C
Z t

0

W� d�;

and that

M.�/
t D

�
1C 2

�t

�
Xt � 2

�
1

t
C 1

�t2

�Z t

0

X� d�:

Now

Z t

0

X� d� D
Z t

0

(
�W� C

Z �

0

Wxdx

)
d�

D
Z t

0

�W�d� C
(
�

Z �

0

Wxdx

) ˇ̌̌
ˇ̌t
0

�
Z t

0

�W�d�

D t
Z t

0

W� d�:

Consequently

M�
t D

�
tC 2

�

�
Wt �

Z t

0

W�d�:

But the two terms on the right are linearly independent, for indeedˇ̌̌
ˇ
ˇ̌̌
ˇ˛
�

tC 2

�

�
Wt C ˇ

Z t

0

W�d�

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
L2.˝;A;P/

D
�
˛

�
tC 2

�

�
C ˇ

2
t

� 2
C ˇ2 t2

4
:

Thus mX Œt� < sX Œt�.
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9.3.4 The Case of Finite Multiplicity

When a process X has finite multiplicity, one is in a position to characterize the cases
for which the index of stationarity is finite, and that yields a finer representation of
X. Only multiplicity one shall be considered. The case of higher multiplicity is dealt
with similarly in [158, p. 560].

In what follows one shall need a specific form [110, p. 149] of the Riesz repre-
sentation theorem for continuous linear functionals which shall now be explained.

Fact 9.3.31 Let C .RC/ be the space of real valued, continuous functions, with
domain RC. Let˚ � C .RC/ be made of functions with the following properties:

(a) for  2 ˚ , and t 2 RC, fixed, but arbitrary, .t/ � 0;
(b) for fixed, but arbitrary n 2 N, and f1; : : : ; ng � ˚ , there exists  2 ˚ , and

� > 0, such that, for i 2 Œ1 W n�, and t 2 RC, fixed, but arbitrary, i.t/ � �.t/;
(c) for fixed, but arbitrary t 2 RC, there exists  2 ˚ such that .t/ > 0.

[One shall use below the family ˚ D ft 7! e�t; � > 0g. The result applies equally
well to any subset of RC.]

C˚ .RC/ shall be the family of continuous functions t 7! f .t/ such that, for fixed,
but arbitrary  2 ˚ ,

sup
RC

f.t/ j f .t/jg <1:

One then defines a family of seminorms as follows: for  2 ˚ , fixed, but arbitrary,

n.f / D sup
RC

f.t/ j f .t/jg :

C˚ .RC/ shall also denote the linear space which emerges when one endows it with
the family of seminorms

˚
n;  2 ˚

�
.

C0

˚ .RC/ shall denote the subspace of C˚ .RC/ obtained when restricting
attention to those functions f for which f vanishes at infinity. That subspace is
complete and separable.

The Riesz representation theorem then states that a linear functional

L W C0

˚ .RC/ �! R

has, for f 2 C0

˚ .RC/, and  2 ˚ , fixed, but arbitrary, the property that

jL Œ f �j � �n.f /

if, and only if, for some measure �L,

L.f / D
Z 1
0

f .t/�L.dt/;
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with Z 1
0

1

.t/
j�Lj .dt/ � �:

Lemma 9.3.32 Let F and N be as in (Proposition) 9.3.27, and

 .t/ D
nX

iD1
ie
��i t;

˚� .�/ D
Z 1
0

e��x .x/ PF .� C x; �/ dx:

Then, C0.RC/ denoting the family of continuous functions vanishing at infinity,

1. '� .t/ D
R t
0

˚R1
0 e��x PF2 .� C x; �/ dx

�
MN .d�/ <1;

2. ˚2

� .�/ � ��1 jjjj2C0.RC/
R1
0

e��x PF2 .� C x; �/ dx;

3.
ˇ̌̌̌ R t
0
˚� .�/mN .d�/

ˇ̌̌̌ 2
L2.˝;A;P/ D

R t
0
˚2

� .�/MN .d�/ � ��1'� .t/ jjjj2C0.RC/ I
4.
ˇ̌̌̌
M.�/

t

ˇ̌̌̌ 2
L2.˝;A;P/ � '�.t/.

Proof Item 1 is already in (Lemma) 9.2.22. Item 2 obtains since [(Definition) 9.2.3]

�Z 1
0

e��x .x/ PF .� C x; �/ dx

� 2
D
n
��1E˘0

�

�
 PF .� C 
; �/�o2

� ��2E˘0
�

�
2
�

E˘0
�

� PF2 .� C 
; �/�
� ��1 jjjj2

C0.RC/

Z 1
0

e��x PF2 .� C x; �/ dx:

Item 3 is by integration, using items 1 and 2, and item 4 is obtained as item 2. ut
Lemma 9.3.33 When sX Œt� D 1, for functions f 2 C0

˚ .RC/, one has, in
L2 .˝;A;P/, thatZ t

0

�Z 1
0

f .x/ PF .� C x; �/ dx

�
mN .d�/ D � .f /M.1/

t ;

where the notation � .f / means that it is a unique constant that depends on f only.

Proof When sX Œt� D 1, one may assume that �t ŒX� is generated by M.1/

t . Thus

M.�/

t D � .�/M.1/

t ; � > 0; some � .�/ :



788 9 Cramér-Hida Representations via the Prediction Process

When f 2 C0

˚ .RC/, f belongs to C0 .RC/. Thus, for fixed, but arbitrary � > 0, there
exists, by the Stone-Wierstrass theorem,

� .t/ D
nX

iD1

.�/

i e��
.�/
i t

such that, with f�.t/ D e�tf .t/, uniformly

j f� .t/ � � .t/j < �:

As [(Proposition) 9.2.23]

M.�/

t D �
Z t

0

�Z 1
0

e��x PF .� C x; �/ dx

�
mN .d�/ ;

and [˚.�/

� is as ˚� in (Lemma) 9.3.32]

˚
.�/

� .�/ D
nX

iD1

.�/

i

Z 1
0

e
�x

�
�C�

.�/
i

�
PF .� C x; �/ dx;

one has thatZ t

0

˚
.�/

� .�/mN .d�/ D
nX

iD1

.�/

i

Z t

0

�Z 1
0

e
�x

�
�C�

.�/
i

�
PF .� C x; �/ dx

�
mN .d�/

D
nX

iD1

.�/

i

�
�C �.�/i

��1
M

�
�C�

.�/
i

�
t

D M.1/

t

nX
iD1

�
�
�C �.�/i

�

.�/

i

�
�C �.�/i

��1
D ��;�M.1/

t :

Let ˚ .�/ D R10 f .x/ PF .� C x; �/ dx. Then

˚
˚ .�/ �˚.�/

� .�/
�2 D �Z 1

0

e��x Œf� .x/� � .x/� PF .� C x; �/ dx

� 2

� �
�Z 1

0

e��x
ˇ̌ PF .� C x; �/

ˇ̌
dx

� 2
D ���2

n
E˘0

�

�ˇ̌ PF .� C 
; �/ˇ̌�o2
� ���1

Z 1
0

e��x PF2 .� C x; �/ dx:
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ConsequentlyZ t

0

˚2 .�/MN .d�/ D

D
Z t

0

˚�
˚ .�/ �˚.�/

� .�/
�C ˚.�/

� .�/
�2

MN .d�/

� 2
�Z t

0

˚
˚ .�/ �˚.�/

� .�/
�2

MN .d�/C
Z t

0

˚
˚

.�/

�

�2
.�/MN .d�/

�
;

so that [(Lemma) 9.3.32]
R t
0
˚2 .�/MN .d�/ <1, and

ˇ̌̌
ˇ
ˇ̌̌
ˇ
Z t

0

˚ .�/mN .d�/�
Z t

0

˚
.�/

� .�/mN .d�/

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
L2.˝;A;P/

D

D
Z t

0

˚
˚ .�/ � ˚.�/

� .�/
�2

MN .d�/

� ���1
Z t

0

�Z 1
0

e��x PF2 .� C x; �/ dx

� 2
MN .d�/ :

The integral
R t
0 ˚ .�/mN .d�/ thus exists in L2 .˝;A;P/, and, in L2 .˝;A;P/,Z t

0

˚ .�/mN .d�/ D lim
�##0

Z t

0

˚
.�/

� .�/mN .d�/ :

Since, as already assessed,
R t
0
˚

.�/

� dmN D ��;� M.1/

t , and that the corresponding net
converges, the net f��;�g is convergent to some unique �, and then

Z t

0

˚ dmN D �M.1/

t :

But ˚ and � have the form of the lemma’s statement [(Lemma) 9.3.33]. ut
Lemma 9.3.34 The assumptions are those of this section: in particular, both
indexes, that of multiplicity, and that of stationarity, have value one. For f 2
C0

˚ .RC/, fixed, but arbitrary, let

L Œ f � D �.f /;

where �.f / is defined in (Lemma) 9.3.33. L is, on C0

˚ .RC/, a continuous, linear
functional.
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Proof From (Lemma) 9.3.33 one has that

� .f /M.1/

t D
Z t

0

�Z 1
0

f .x/ PF .� C x; �/ dx

�
mN .d�/ : (?)

L is thus well defined and linear. Write n� for n when .t/ D e�t. Computing the
square of the norm of that latter expression (?) yields that

�2 .f /
ˇ̌̌̌
M.1/

t

ˇ̌̌̌
2

L2.˝;A;P/ D
Z t

0

�Z 1
0

e�xf .x/e��x PF.� C x; �/dx

� 2
MN.d�/

� n2�.f /
Z t

0

�Z 1
0

e��x PF.� C x; �/dx

� 2
MN.d�/

� ��1'�.t/n2�.f /:

Consequently, with c�;t D �'1=2� .t/=
ˇ̌̌̌
M.1/

t

ˇ̌̌̌
L2.˝;A;P/,

j�.f /j � c�;t n�.f /:

ut
Proposition 9.3.35 Suppose that mX Œt� D 1. Then sX Œt� D 1 if, and only if, in the
representation

Xt D PX
0 ŒXt�C

Z t

0

Ft dmN ;

one may choose PFt .�/ D G .t � �/ ; � 2 Œ0; t�, some G.

Proof Suppose that one may chose PFt .�/ D G .t � �/.
One shall write PF .t; �/ for PFt .�/. As [(Proposition) 9.2.23]

M.�/

t D �
Z t

0

�Z 1
0

e��x PF .� C x; �/ dx

�
mN .d�/ ;

one obtains

M.�/

t D �
Z t

0

�Z 1
0

e��xG .x/ dx

�
N .d�/ D

�
�

Z 1
0

e��xG .x/ dx

�
Nt:

Thus�t ŒX� is generated by Nt, and has thus dimension one.

Proof Suppose that sX Œt� D 1.
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Let � .�/ D R1
0

e�x PF .� C x; �/ dx. Then

M.1/

t D
Z t

0

�dmN ;

and the relation (?) at the beginning of the proof of (Lemma) 9.3.34, and (Lemma)
9.3.34 itself, yield, for all fixed, but arbitrary t 2 RC and f 2 C0

˚ .RC/, �� being
the measure in the Riesz representation [(Fact) 9.3.31],�Z 1

0

f .x/��.dx/

� �Z t

0

�.�/mN.d�/

�
D

D
Z t

0

�Z 1
0

f .x/ PF.� C x; �/dx

�
mN.d�/:

Thus, on Œ0; t�, almost surely in � , with respect to MN , but depending on f ,Z 1
0

f .x/ PF .� C x; �/ dx D � .�/
Z 1
0

f .x/ �� .dx/ :

As C0

˚ .RC/ is separable, restricting attention to a countable, dense set of f ’s, one
may assume that the set of �’s for which equality obtains is the same for all f ’s.
Consequently

F .� C x; �/ dx D � .�/�� .dx/ ;

and thus �� is absolutely continuous with respect to Lebesgue measure (Leb). Let
d��
dLeb denote the Radon-Nikodým derivative. Then, except for a set of .�; x/’s in
Œ0; t� � RC of measure zero for �� ˝ Leb,

PF .� C x; �/ D � .�/ d��
dLeb

.x/ :

This latter expression, setting y D � C x, may be given the following form:

PF .y; �/ D � .�/ d�L

dLeb
.y � �/ :

ut



Part III
Likelihoods

The word “likelihood” shall often be abbreviated in the sequel using the acronym
“LKD.” In this part, one sees how an analytical form for the detection likelihood
may be obtained, when a random signal, whose law is unknown, is hidden in a
mean square continuous, dependent, Gaussian noise. One starts with some tools
needed for the material to follow [Chap. 10]. The Cramér-Hida representation
requires a specific form of stochastic calculus, which is presented in Chap. 11,
and specific sample spaces, which are explained in Chap. 12. The Girsanov theory
of the likelihood is covered in Chap. 13 with moments and paths conditions, the
latter being the adequate form for detection as presented here. Chapters 14–16 are
concerned with the adequacy of the Girsanov likelihood for the detection problems
of interest. In the last chapter [Chap. 17], the preceding material is assembled to
produce the Gaussian likelihood, and some comments are made as to the practical
usefulness of the theory that has been developed.

The Cramér-Hida representation of a Gaussian noise process N that is continuous
as a map from RC; or some finite interval Œ0;T� ; to L2.˝;A;P/; that is,

Nt D
MNX
iD1

Z t

0

F.i/
t dmBi ;

may be looked at, formally, as a map sending a vector B of Gaussian martingales Bi

to Nt; that is,

Nt D ˚t ŒB� ;

˚t being determined by the sequence˚
F.i/

t ; i 2 Œ1 W MN �
�
;

and a subsequent integration procedure. It is that view that allows one to produce an
expression for the likelihood.
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To make such a view operational, one needs some stochastic calculus properties
for integrators B with a possibly infinite, but countable number of components.
Since in practice, MN is unknown, one should proceed as if it were infinite. The
particular features of the Cramér-Hida representation, and the generality required by
practice, dictate that all those features, but no more, be conscripted when developing
the calculus. That explains the need to tailor the “usual” Itô calculus to those
properties, and justifies the developments that follow. The law of the received signal
is, in practice again, usually unknown. In such a context the only known path to the
likelihood is the appropriate version of Girsanov’s formula [116]. That explains the
space allocated to its derivation and its properties. One shall thus have to deal with
processes B and SŒa �C B; where B emerges from the Cramér-Hida decomposition.
These processes have values in l2; and paths in

Q1
nD1 CŒ0; 1�: It is that product which

will support the laws of B and SŒ a � C B: Thus the general scheme of things is to
make sense of Girsanov’s original approach for the Wiener process in that wider
framework.

The “Girsanov method” works, in its premier context [116], as follows. Suppose
that P is the basic probability, and that the received signal is

Yt D
Z t

0

s� d� CWt;

W a standard Brownian motion. Let Q be defined using the following formula:

dQ D
n
e
R 1
0 .�s� /dW�� 12

R T
0 s2�d�

o
dP:

It turns out that, with the appropriate assumptions, P and Q are mutually absolutely
continuous and, with respect to Q; Y is a standard Brownian motion. Now, when PY

and QY denote the measures induced on C Œ0; 1� by, respectively, P and Y; and Q
and Y; one has that PY and QY are mutually absolutely continuous. Since QY D PW ;

it follows that PW and PY are mutually absolutely continuous, and the likelihood is
obtained from dQ

dP with its explicit form. The map ˚ then preserves those properties.



Chapter 10
Bench and Tools

This chapter covers two topics. As explained below, the “usual conditions” [70,
p. 183] of stochastic calculus are not adequate in the present context. There
is thus a section on sets of measure zero, enlargements of algebras using such
sets, and restrictions to their complement. Exponentials of continuous martingales,
continuous processes with independent increments, and the Wiener process are all
closely related, and there is thus a second section in which those relations are
examined, when the processes used take their values in l2; the Hilbert space of
sequences, whose components have squares that sum up to a finite number. The
presence of l2 is a consequence of the Cramér-Hida representation.

10.1 Some Terminology, Notation, and Attending Facts

Gathered here, for convenience, are the definitions, and attending facts, from [264]
(which shall be the main reference used, in what follows, for basic stochastic
calculus), that are not always “standard,” but appear frequently in the sequel.

Let .˝;A;P/ represent a probability space .˝;A;P/with a family of �-algebras
A D fAt � A; t 2 Œ0; 1�g, such that, for t1 < t2 in Œ0; 1�; fixed, but arbitrary, At1 �
At2 (such a family shall be called a filtration for A). N .A;P/ shall be the family
of sets in A for which have zero measure P. The restriction to Œ0; 1� stems from
practical considerations, as observed signals get monitored over finite time. Since,
in [264], the set of times is most often RC; to apply its results, it suffices to take,
for t > 1; the value at one, of whatever object one considers. Thus, for example, for
t > 1; fixed, but arbitrary, one has that ACt D A1:

A wide sense stopping time (forA) is usually [70, p. 184] understood as a map S W
˝ �! Œ0; 1� such that, for fixed, but arbitrary t 2 Œ0; 1�; f! 2 ˝ W S.!/ � tg 2 ACt :
That is equivalent [264, p. 32] to the requirement that f! 2 ˝ W S.!/ < tg 2 At:

However, in [264], a wide sense stopping time is called a stopping time. What is

© Springer International Publishing Switzerland 2015
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usually [70, p.184] called a stopping time (f! 2 ˝ W S.!/ � tg 2 At/; becomes, in
[264], a strict stopping time.

For a process X; XS.!; t/ stands for X.!; t ^ S.!//:
A localizing sequence is a sequence of wide sense stopping times fSn; n 2 Ng

such that, almost surely, with respect to P; limn Sn.!/ D 1: In that case 1 plays
the part taken by1 when the time span is RC: That such sequences are required
shall be seen, for example, when some uniform boundedness properties will prove
necessary in the construction of the stochastic integral [(Proposition) 11.2.3].

A process X is adapted when, for t 2 Œ0; 1�; fixed, but arbitrary, X.
; t/ is adapted
to At and the Borel sets of R: All processes considered shall have all their paths
continuous to the right. A martingale in L2; say X; is thus an adapted process,
whose paths are continuous to the right, with the added properties that for t 2 Œ0; 1�;
fixed, but arbitrary, EP

�
X2.
; t/� <1; and that X is a martingale. X is a martingale

bounded in L2 when it is a martingale in L2 for which

sup
t2Œ0;1�

EP
�
X2.
; t/� <1:

However, since X2 is a submartingale [264, p. 44], for t1 < t2 in Œ0; 1�; fixed, but
arbitrary, EP

�
X2.
; t1/

� � EP
�
X2.
; t2/

�
; and X is automatically bounded in L2 when

it is in L2: X is locally a martingale in L2 when there is a localizing sequence,
say fSn; n 2 Ng ; such that, for n 2 N; fixed, but arbitrary, XSn.
; 
/ � X.
; 0/ is a
martingale in L2; and thus bounded in L2 as well. X is a local martingale when there
is a localizing sequence, say fSn; n 2 Ng ; such that, for n 2 N; fixed, but arbitrary,
the process XSn.
; 
/ � X.
; 0/ is a uniformly integrable martingale. Obviously a
martingale that is locally in L2 is a local martingale, but, more importantly for the
present considerations, every (continuous to the right by assumption) almost surely
continuous local martingale is a martingale locally in L2 with, as localizing sequence
[264, p. 63],

Sn.!/ D inf ft 2 Œ0; 1� W jX.!; t/� X.!; 0/j > ng :

When X has all its paths continuous, one may replace strict inequality by inequality,
and obtain a strict stopping time [264, p. 38]. X is almost surely continuous when

f! 2 ˝ W XŒ!� not continuousg � N 2 N .A;P/:

Fact 10.1.1 ([264, p. 71]) Each adapted and almost surely continuous process has
an adapted version whose paths which are not continuous are continuous to the
right.

The predictable sets P are usually a �-algebra over˝��0;1Œ [264, p.112], but, for
what follows, the predictable sets of ˝��0; 1�:
Definition 10.1.2 In case N is a Gaussian process, continuous in quadratic mean,
the Gaussian martingales Bn; produced by the Cramér-Hida decomposition, shall
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be called, when looked at as vectors B; whose components are the real stochastic
processes Bn; Cramér-Hida processes.

Cramér-Hida processes shall be central to building the likelihood.

10.2 Sets of Measure Zero

Let X be an adapted process, and N .A;P/; the family of sets in A whose measure
for P is zero. Let XŒ!� denote the path of X at !; and X; the map

X W ! 7! XŒ!�:

X is adapted to A and C.RŒ0;1�/; the �-algebra generated by the cylinder sets. One
would expect the law of an almost surely continuous process to sit on CŒ0; 1�; the
space of continuous functions. But, in order to have an adapted map, one must deal
with the paths that are not continuous. Let thus

Xc D �Nc X:

Xc has continuous paths, Xc.
; t/; and thus Xc; are adapted to A; but not necessarily
adapted (to A). Thus, Et being the evaluation at t; Et.Xc/ may not be adapted to At;

and E ; not a process adapted the �-algebras generated by the evaluation maps. One
response to that situation is to assume, whatever t;

N .A;P/ � At;

or, even more, that At contains, with each N 2 N .A;P/; all its subsets. But such
a presupposition means that, at time zero, one knows something that can only be
assessed at time 1. As stated in [251, p. 97] (see also [264, p. 31]), . . . this solution
[completion] is not entirely suitable for us, since the completion is a function of the
underlying measure P; and in our applications the measure P changes, whereas the
�-algebras do not. Then [264, p. 31]: As a consequence we have to distinguish e.g.
between continuous processes and a.s. continuous processes. But the reader should
keep in mind that there is always the obvious “nullset elimination argument”:
If a probabilistic statement holds, say, for every continuous process with some
additional properties then one can expect it to carry over to the almost surely
continuous case. One just substitutes the original space ˝ by the set ˝ n N with
the induced filtration and measure (where N is the exceptional set). On ˝ n N
the continuous version of the result in question can be applied and usually the
conclusion stays valid if one shifts back to ˝: Those considerations are particularly
relevant when investigating absolute continuity of measures, and one shall meet,
farther, examples of such “null sets arguments.” That is why the stochastic calculus
text one shall peruse is [264], and any concept, or fact, not explained here should be
looked up there.
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In the latter context, it is useful to be aware of the part sets of measure zero play.
And one must distinguish between measurable sets of measure zero and subsets
of such, not, a priori, measurable. The rule of thumb is that enlarging a sub-�-
algebra of A with sets in N .A;P/ causes little trouble, but that, otherwise, one
must be rather careful. Below B shall be a �-algebra of strictly contained in A; C;
an enlargement of B with, typically, measurable sets, and D; an enlargement with
sets, typically, not taken, a priori, to be measurable.

10.2.1 Adjunction of Sets to � -Algebras

The aim is to enlarge B; adding to it the sets of a given family N ; and, possibly,
subsets of the latter’s elements. Given two families of sets, S and T ; S _ T denotes
the �-algebra they generate, that is, the smallest one which contains them both.

Enlargement with One Set and, Possibly, Its Subsets

Below, A and B are �-algebras of subsets of ˝; with B � A:

Fact 10.2.1 Let˝0 � ˝ be a fixed, but, arbitrary subset of˝ that does not belong
to B: Let also

C D f.B1 \˝0/ [ .B2 \˝c
0/;B1 2 B;B2 2 Bg :

C is a �-algebra containing both B and˝0:

Proof Choosing B1 D B2 D B; one sees that B � C: Choosing B1 D ˝ and
B2 D ;; one sees that ˝0 2 C:

Let C 2 C be fixed, but arbitrary, that is C D .B1 \ ˝0/ ] .B2 \ ˝c
0/;B1 2 B;

and B2 2 B: Then, as

�Cc D 1 � �C

D �˝0 C �˝c
0
�
n
�B1
�˝0 C �B2

�
˝c
0

o
D �˝0

˚
1 � �B1

�C �
˝c
0

˚
1 � �B2

�
;

one has that Cc D �
Bc
1 \˝0

� [ �Bc
2 \˝ c

0

� 2 C: Let fCn; n 2 Ng � C be fixed, but
arbitrary, that is

Cn D .Bn
1 \˝0/[ .Bn

2 \˝c
0/;B

n
1 2 B; and Bn

2 2 B:
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Then:

[nCn D [n2N f.Bn
1 \˝0/[ .Bn

2 \˝c
0/g

D f[n2N.Bn
1 \˝0/g [ f[n2N.Bn

2 \˝c
0/g

D fŒ[n2NBn
1� \˝0g [ fŒ[n2NBn

2� \˝c
0g

2 C:

ut
Fact 10.2.2 In (Fact) 10.2.1, C D B _ f˝0g :
Proof Result (Fact) 10.2.1 implies B _ f˝0g � C: Since, when B 2 B; B \˝0 and
B \˝c

0 belong to B _ f˝0g ; C � B _ f˝0g : ut
Fact 10.2.3 The family

D D fB�˝00;B 2 B;˝00 � ˝0g
is a �-algebra which contains B; and the subsets of ˝0:

Proof Since ; 2 B is a subset of˝0; both B and˝00 belong to D; and thus so do ;
and˝:

Let D D B�˝00 be fixed, but arbitrary. Since [79, p. 8] � is associative, and
Dc D D�˝;

Dc D .B�˝00/
c D ˝�.B�˝00/ D .˝�B/�˝00 D Bc�˝00 2 D:

Let fDn; n 2 Ng � D be fixed, but arbitrary. Then:

Dn D Bn�˝
n
00; Bn 2 B; ˝n

00 � ˝0;

and, using 2.7 of [79, p. 8], and the fact that A�B � A [ B;

.[nBn/�.[n˝
n
00/ � [n.Bn�˝

n
00/ � .[nBn/ [ .[n˝

n
00/;

so that, since .A [ B/ n .A�B/ D A \ B;

[n.Bn�˝
n
00/ D f.[nBn/�.[n˝

n
00/g ]˝?

00; ˝
?
00 � .[nBn/\ .[n˝

n
00/ � ˝0:

As, for disjoint A and B; A [ B D A�B; and that ˝?
00 is disjoint from the set

.[nBn/�.[n˝
n
00/;

[n.Bn�˝
n
00/ D .[nBn/� f.[n˝

n
00/�˝

?
00g 2 D:

ut
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Fact 10.2.4 Let C be as in (Fact) 10.2.1, and D; as in (Fact) 10.2.3. Let

E D �.fB�˝0;B 2 Bg/:

Then: E D C � D:

Proof By definition, B�˝0 2 C: Thus E � C: Since ˝0 D ;�˝0; ˝0 2 E :
Since � is associative, .B�˝0/�˝0 D B 2 E ; that is, B � E ; and, consequently,
C D B _ f˝0g � E : ut
The following examples illustrate what may happen with enlargement. The first one
shows that C may be as large as A; the second, larger.

Example 10.2.5 Let ˝ D fa; b; c; dg ; and A be the �-algebra of its subsets. Let
also B D fa; bg ; and B be the �-algebra generated by B: Let finally ˝0 D fb; cg :
The following table yields C: B is in one diagonal of the table, and the generators of
E are in the other. Here E D C D D D A:

˝c
0

D fa; dg

˝0 [ ; \˝c
0 B \˝c

0 Bc \˝c
0 ˝ \˝c

0

D fb; cg D ; D fag D fdg D fa; dg

; \˝0 ; fag fdg ˝�˝0

D ; D fa; dg

B \˝0 fbg B Bc�˝0 fa; b; dg
D fbg D fb; dg

Bc \˝0 fcg B�˝0 Bc fa; c; dg
D fcg D fa; cg

˝ \˝0 ;�˝0 fa; b; cg fb; c; dg ˝

D fb; cg D fb; cg

Example 10.2.6 Let ˝ D fa; b; c; d; ˛; ˇ; �; ıg ;

A1 D fa; bg ; B1 D f˛; ˇg ;
A2 D fc; dg ; B2 D f�; ıg ;
A D A1 ] A2 ; B D B1 ] B2;
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and A be generated by A1;A2;B1;B2: It consists thus of

;;˝;A1;A2;B1;B2;A;B;

A1 ] B1;A1 ] B2;A2 ] B1;A2 ] B2;A ] B1;A ] B2;A1 ] B;A2 ] B:

Let B be generated by B1 and B2: It consists thus of

;;˝;B1;B2;A;B;A ] B1;A ] B2:

Let ˝0 D fa; cg : Then˝c
0 D fb; dg ] B: C is then made of B and

fa; cg ; fa; cg]B1; fa; cg]B2; fa; cg]B; fb; dg ; fb; dg]B1; fb; dg]B2; fb; dg]B:

Here C � D; and C is not contained in A:

Remark 10.2.7 For A and B disjoint, as noticed, A�B D A [ B: Thus

B2 D .B2 \˝0/ [ .B2 \˝c
0/ D .B2 \˝0/�.B2 \˝c

0/;

and

B2� f.B1 \˝0/ [ .B2 \˝c
0/g D

D f.B2 \˝0/�.B2 \˝c
0/g� f.B1 \˝0/�.B2 \˝c

0/g :

Since � is associative, and A�A D ;;

B2� f.B1 \˝0/ [ .B2 \˝c
0/g D .B1 \˝0/�.B2 \˝0/:

Because of the formula [79, p. 8] A \ .B�C/ D .A \ B/�.A\ C/;

.B1 \˝0/�.B2 \˝0/ D .B1�B2/\˝0 � ˝0:

Thus B2�
˚
.B1 \˝0/[ .B2 \˝c

0/
� � ˝0; and, when ˝0 is a set of measure zero,

the difference between B2 and the sets in C it produces according to its building rule
are subsets of a set of measure zero.

Enlargement with a Family of Sets and, Possibly, with the Subsets of Those
Sets

Definition 10.2.8 A set˝0 � ˝ is internally P-negligible when, whenever A � ˝0

and A 2 A; P.A/ D 0:
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Remark 10.2.9 Every set of N .A;P/ is internally P-negligible. N .A;P/ contains,
with every sequence of its sets, their union. The �-algebra generated by B and
N .A;P/ is contained in A: Every subset of a measurable set of measure zero is
internally negligible. When N is internally negligible, and N 2 A; P.N/ D 0; as N
is a subset of itself.

Fact 10.2.10 Let N be a family of subsets of ˝ that are internally negligible.
Suppose N is closed for countable unions. Let M be the family of subsets of sets in
N ; and D D fB�M;B 2 B;M 2Mg : D is a �-algebra.

Proof It is mutatis mutandis that of (Fact) 10.2.3. ut
Proposition 10.2.11 Let PjB be the restriction of P to B: Let N be a family of
internally negligible sets for P; closed for countable unions. PjB can be extended
uniquely to a probability PB on B _N in such a way that the elements in N have
zero PB-probability.

Proof Since M of (Fact) 10.2.10 contains the empty set, B_N � D: Given the set
B�M 2 D; fixed, but arbitrary, let

Q.B�M/ D PjB.B/ D P.B/:

One must check that Q is well defined, that is, independent of the representation
of B�M. Suppose thus that B1�M1 D B2�M2: Then

; D .B1�M1/� .B2�M2/ D .B1�B2/�.M1�M2/;

and thus

PjB .B1�B2/ D Q ..B1�M1/� .B2�M2// D Q.;/:

But, when B�M D ;; B D B \M D M � N 2 N ; and, since B 2 A; P.B/ D 0:

Thus Q.;/ D 0: Consequently PjB.B1�B2/ D 0: Since

PjB.B1/ D PjB.B1 n .B1 \ B2//C PjB.B1 \ B2/ D PjB.B1 \ B2/;

and

PjB.B2/ D PjB.B2 n .B1 \ B2//C PjB.B1 \ B2/ D PjB.B1 \ B2/;

PjB.B1/ D PjB.B2/; and thus Q.B1�M1/ D Q.B2�M2/:

One must next check that Q is a probability on D: One has just seen that Q.;/ D
0; and the proof of (Fact) 10.2.3 yields that

[n.Bn�Mn/ D .[nBn/�M;
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so that

Q.[n.Bn�Mn// D PjB.[nBn/:

Suppose that .B1�M1/ \ .B2�M2/ D ;: Since [34, p. 29]

.B1�M1/\ .B2�M2/ D .B1 \ B2/�M; M � M1 [M2;

it follows that

0 D Q.;/ D Q..B1�M1/\ .B2�M2// D Q..B1 \ B2/�M/ D PjB.B1 \ B2/;

so that

PjB.B1 [ B2/ D PjB.B1/C PjB.B2/:

One may then continue inductively. Thus the following relation:

.B1�M1/\ .B2�M2/\ .B3�M3/ D f.B1 \ B2/�Mg \ .B3�M3/

D .B1 \ B2 \ B3/�M0

yields that PjB.B1 \ B2 \ B3/ D 0; and thus that

PjB.B1 [ B2 [ B3/ D PjB.B1/C PjB.B2/C PjB.B3/;

so that, in the end,

Q.[n.Bn�Mn// D PjB.[nBn/ D
X

n

PjB.Bn/ D
X

n

Q.Bn�Mn/:

PB is the restriction of Q to B _N :
Let ˘B;N be another probability on B _ N such that ˘ jBB;N D P and, when

N 2 N ; ˘B;N .N/ D 0: Every set in M is internally negligible for ˘B;N : ˘B;N
can thus be extended to a probability Q˘ on D whose restriction to B is P; and
which gives probability zero to the sets of M: But then ˘B;N must be PB;N : ut
Remark 10.2.12 D D B _M:

Indeed, B�M 2 B _M; so that D � B _M: On the other hand, ; 2 B \M;

so that B � D and M � D; and thus B _M � D:

Remark 10.2.13 Let B 2 B and M 2M; M � N; N 2 N ; be fixed, but arbitrary.
One has that

B [M D B ] .M n B/ D B�.M \ Bc/;
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and that

B�M D .B n N/ ] ..B \ N/�M/:

Thus D is also generated by sets of the form B ]M:

Remark 10.2.14 Let C D �.fB�N;B 2 B;N 2 N g/: Then

C D B _N � D;

and, when N � A; C � A\D:
Again, B�N 2 B _N ; so that C � B _N : Also, as ; 2 B; N � C; and, since

B D .B�N/�N; B � C; that is, B _N � C:

Remark 10.2.15 When N � A; QjC D PB;N D P:

Remark 10.2.16 Every C 2 C; as an element of D; has a representation as C D
B�M with M 2 C:

As an element of D; C D B�M; B 2 B; M � N; with N internally negligible.
One may thus “compute,” for C and B; elements of C; B�C; and obtain an element
of C: But B�C D M:

Example 10.2.17 Let ˝ D fa; b; c; d; eg and A be generated by

A1 D fag ; P.A1/ D 1=3;
A2 D fbg ; P.A2/ D 1=3;
A3 D fc; dg ; P.A3/ D 1=3;
A4 D feg :

Let B be generated by fa; bg : Let N D fd; eg : It is internally negligible and

M D f;; fdg ; feg ; fd; egg :

Then:

• ;�M produces ;; fdg ; feg ; fd; eg I
• fa; bg�M produces fa; bg ; fa; b; dg ; fa; b; eg ; fa; b; d; eg I
• fc; d; eg�M produces fc; d; eg ; fc; eg ; fc; dg ; feg I
• ˝�M produces˝; fa; b; d; eg ; fa; b; c; eg ; fa; b; cg I
• B�N produces fcg ; fd; eg ; fa; b; cg ; fa; b; d; eg ; and generates

f;; fcg ; fa; bg ; fd; eg ; fa; b; cg ; fd; e; cg ; fa; b; d; eg ;˝g :

P is defined neither on C; nor on D:
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Example 10.2.18 Let ˝ D fa; b; c; d; eg and A be generated by

A1 D fag ; P.A1/ D 1=3;
A2 D fbg ; P.A2/ D 1=3;
A3 D fcg ; P.A3/ D 1=3;
A4 D fdg ;
A5 D feg :

Let B be generated by fa; bg : Let N D fd; eg : It is internally negligible and

M D f;; fdg ; feg ; fd; egg � A:

P is defined on C; as well as on D:

Example 10.2.19 Let ˝ D fa; b; c; d; eg and A be generated by

A1 D fag ; P.A1/ D 1=3;
A2 D fbg ; P.A2/ D 1=3;
A3 D fcg ; P.A3/ D 1=3;
A4 D fd; eg :

Let B be generated by fa; bg : Let N D fd; eg 2 A: It is internally negligible and

M D f;; fdg ; feg ; fd; egg :

Here C � A; but D is not contained in A: P is defined on C; but not on D:

Example 10.2.20 Let ˝ D f1; 2; 3; 4g ; and

A , ; f1g f2g f3; 4g f1; 2g f1; 3; 4g f2; 3; 4g ˝
P , 0 1=3 1=3 1=3 2=3 2=3 2=3 1

Q , 0 1=2 1=2 0 1 1=2 1=2 1

Let also B D f;; f1; 2g ; f3; 4g ;˝g ; and S D f1; 2g : Then Q.A/ D .3=2/P.A\ S/:
Q is absolutely continuous with respect to P; and Q.Sc/ D 0: The completions of
A and B with respect to Q are obtained, respectively, as A _ ff3g ; f4gg D P.˝/;
and f;; f1; 2g ; f3g ; f4g ; f3; 4g ; f1; 2; 3g ; f1; 2; 4g ;˝g : P is not defined on those
completions.

Remark 10.2.21 Let the identity of˝ be denoted id˝: It is, in the following scheme,
adapted:

.˝;D;Q/ id˝�! .˝; C;QjC/ id˝�! .˝;B;QjB/;



806 10 Bench and Tools

and

QjC D Q ı id�1˝ ; QjB D QjC ı id�1˝ :

It follows that, for B 2 B; B�M 2 C; M 2 C [(Remark) 10.2.16], fB adapted to B;
and fC adapted to C;Z

B
fB dP D

Z
B

fB dQjB D
Z

B
fB dQjC D

Z
B

fB dQ;

and, when N � A;Z
B

fC dP D
Z

B�M
fC dP D

Z
B�M

fC dQjC D
Z

B�M
fC dQ:

Proposition 10.2.22 Let fD be adapted to D: There exists fB; adapted to B; such
that Q.jfD � fBj > 0/ D 0:
Proof Let fD D �B�M ; and fB D �B : Then:

Q.jfD � fBj > 0/ D Q.j�B�M � �B j > 0/
D Q.�

.B�M/�B > 0/

D Q.M/

D 0:

Let FD be the class of functions for which the statement is true. It contains the
indicators of sets in D which, being a �-algebra, is a �-class [128, p. 3].FD contains
the functions that are constant. Let now˚

f .n/D 2 FD; n 2 N
�

be a sequence of positive functions that increases to the finite f : As a limit of
functions adapted to D; f is adapted to D:

Let f .n/B be adapted to B and have the property that

Q.
ˇ̌
f .n/D � f .n/B

ˇ̌
> 0/ D 0:

Let Dn � ˝ be the set on which f .n/D and f .n/B have a different value, and D0 D
[n2NDn: Let also

fB D sup
n2N

f .n/B :
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Then:

Q.jf � fBj > 0/ D Q.fjf � fBj > 0g \ D0/C Q.fjf � fBj > 0g \Dc
0/ D 0:

The result thus follows from a monotone class theorem [128, p. 4]. ut
Remark 10.2.23 Mutatis mutandis, the same result, with the same proof, apply to
B and C: When N � A; QjC may be replaced with P:

Remark 10.2.24 Let f be adapted to D; and be integrable. Then:Z
B�N

EQ Œf j C� dQ D
Z

B�N
f dQ

D
Z

B
f dQ

D
Z

B
EQ Œf j B� dQ

D
Z

B�N
EQ Œf j B� dQ:

Thus EQ Œf j B� is in the class of EQ Œf j C� : When N � A; since QjB D P; one may
replace EQ Œf j B� with EP Œf j B� :
Remark 10.2.25 Let N � A; and

C D f! 2 ˝ W EPŒf j B�.!/ ¤ EQŒf j C�.!/g 2 C;

and A 2 A be a set such that P.A/ D 0; and, for ! 2 Ac;

EPŒf j B�.!/ D EPŒf j C�.!/:

Then, as Ac � Cc; C � A:

10.2.2 Enlargement with All the Sets of Measure Zero
and, Possibly, Their Subsets

That enlargement, a special case of the one in the previous section, is the one of
usual interest, as it amounts to completion. So one uses then a specific notation as
follows. D becomes Bo; and C; oB: Q becomes

˚
PjB
�o
; and QjC; o

˚
PjB
�
; or, when

N � A; simply P:When B D A, (Proposition) 10.2.22 has an improved version as
follows [70, p. 49]: f is adapted to Ao if and only if there are g and h; adapted to A;
such that g � f � h and P.jg� hj > 0/ D 0:
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Let the �-algebra B � A contain N .A;P/: If f and g are adapted to A; and
are, with respect to P; almost surely equal, then they are either both adapted to
B; or none is. Thus an equivalence class of functions adapted to A either contains
only functions adapted to B or none. When B does not contain N .A;P/; let C D
B _ N .A;P/: Then f ; adapted to A; is adapted to C if, and only if, there exits g
adapted to B such that, almost surely, with respect to P; f D g:

When B1 � B2 � A; the same order shall prevail for the different enlargements,
and the different probabilities shall be consistent. So, when one deals with a
filtration, and N � A; there is only a need to distinguish between the �-algebras,
but not between the probabilities.

10.2.3 Restriction to a Subset of the Base Set

When the process X has paths that are continuous to the right, and that almost
all of them are continuous, it may prove convenient, in order to work with strict
stopping times, rather than wide sense ones, to restrict the process to a subset of ˝
of probability one for which the paths are continuous. One now lists some of the
facts that may be pertinent in such a situation.

Let N 2 A be a set of measure zero, ˝N D ˝ n N; and JN W ˝N �! ˝ be
the inclusion map. When f is a map with domain ˝; its restriction to ˝N is f ı JN :

Since, for an ˝0 � ˝; fixed, but arbitrary,

J�1N .˝0/ D ˝N \˝0;

any measurable structure on˝ yields a measurable structure on˝N by intersection.
Thus, for example,

J�1N .A/ D ˝N \A:

Functions adapted to ˝N \ A are of the form f ı JN ; f adapted to A: Indeed, since
N is assumed to belong to A; when g is adapted to ˝N \A; it is adapted to A; and
thus h D �Nc g is adapted to A: But h ı JN D g: One may define a probability PN on
˝N\A using, for A 2 A; fixed, but arbitrary, the following relation: PN

�
J�1N .A/

� D
P.A/: Then Z

A
f dP D

Z
A

f d.PN ı J�1N / D
Z

J�1N .A/
.f ı JN/dPN :

One shall use, when convenient, the following notation: AN
t D J�1N .At/; and AN for

the corresponding filtration. As a preliminary, one needs the following proposition.

Proposition 10.2.26 Let A be a filtration for A in ˝; and S be a wide sense
stopping time for A:
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1. Let � 2 Œ0; 1�; and A� 2 A� be fixed, but arbitrary. Let, for ! 2 ˝; fixed, but
arbitrary,

S� .!/ D �A�
.!/� C �

Ac
�

.!/:

S� is a strict stopping time.
2. [128, p. 80] S is adapted to

A�S D A0 _ � .A \ fS > tg W A 2 At; t 2 Œ0; 1�/
D A0 _ �

�
A \ fS > tg ;A 2 ACt ; t 2 Œ0; 1�

�
:

3. When S0 is another wide sense stopping time for A; and

A 2 ACS D
˚
A 2 A W t 2 Œ0; 1�) A \ fS � tg 2 ACt

�
D fA 2 A W t 2 Œ0; 1�) A \ fS < tg 2 Atg ;

then A \ fS < S0g 2 A�S0 :
4. When S0 is adapted to ACS ; S0 � S; and S0 > S on fS < 1g ; then S0 is a strict

stopping time.
5. One has that

Sn.!/ D
2nX

kD1
�
Œ k�1
2n ; k

2n Œ
.S.!//

k

2n
C �

f1g
.S.!//

produces a sequence of strict stopping times that decrease to S:
6. S is the lower envelope of a countable family of stopping times of the type found

in item 1.

Proof (1) Let t 2 Œ0; 1� be fixed, but arbitrary. Then

f! 2 ˝ W S� � tg D Œf! 2 ˝ W S� .!/ � tg \ A� � [
�f! 2 ˝ W S� .!/ � tg \ Ac

�

�
D Œf! 2 ˝ W � � tg \ A� � [

�f! 2 ˝ W 1 � tg \ Ac
�

�
D
8<
:
; 2 At when t < �
A� 2 At when � � t < 1
˝ 2 At when t D 1

:

Proof (2) By definition fS > tg 2 A�S ; and that is enough.
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Proof (3) Since, by assumption, A 2 ACS ; then, by definition of ACS ;

A \ fS � tg 2 ACt :

By definition then, since S0 is a wide sense stopping time,

ŒA \ fS � tg� \ fS0 > tg 2 A�S0 :

But, r denoting a rational in Œ0; 1�;

A \ fS < S0g D [r fŒA \ fS � rg� \ fS0 > rgg ;

a set that belongs to A�S0 :

Proof (4) Since fS0 � 1g 2 AC1 D A1; one may assume t < 1: By assumption,
fS0 � tg 2 ACS : Now, since, on fS < 1g ; S < S0; there .S0 � t/) .S < t/; so that
fS0 � tg \ fS � tg D ; (given that S � S0 � t < 1). Thus

fS0 � tg D ŒfS0 � tg \ fS < tg� ] ŒfS0 � tg [ fS � tg� D fS0 � tg \ fS < tg :

But then one may use item 3. Indeed, since, by assumption, S0 is adapted to ACS ;
fS0 � tg 2 ACS : Letting in item 3, A D fS0 � tg ; and choosing S0 there to be
identically t; it follows that A \ fS < tg 2 A�t � At; and thus that fS0 � tg 2 At:

Proof (5) By item 2, S is adapted to A�S ; and thus to ACS : It is thus also the case for
Sn: By definition Sn � S; and, on fS < 1g ; Sn > S: Consequently, because of item 4,
Sn is a strict stopping time. That Sn decreases to S follows also from the definition.

Proof (6) Let In;k D
�

k�1
2n ;

k
2n

�
and

˙n;k.!/ D �In;k
.S.!//

k

2n
C �

Icn;k
.S.!//:

From item 1,˙n;k is a strict stopping time. Suppose that S.!/ 2 In;k0 : Then Sn.!/ D
k0
2n ; and

˙n;k0 D
k0
2n
; while ˙n;k D 1 for k ¤ k0:

Consequently Sn D V2n

kD1 ˙n;k: Since S D lim Sn D inf Sn; S is the lower envelope
of the stopping times˙n;k: ut

“Navigation” between˝ and ˝N is ruled by the following facts.

Proposition 10.2.27 Let S W ˝ �! Œ0; 1� be a map, N 2 A be a fixed,
chosen set of zero probability, and N ; the family of subsets of N: Let AoN

t be the
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completion of At with respect to N (as in (Facts) 10.2.10 and 10.2.11), that is,
AoN

t D fA�N0;A 2 At;N0 2 N g : Then:

1. AN
t � AoN

t I
2. when S is a wide (strict) sense stopping time of A; it is a wide (strict) sense

stopping time of AN I
3. when SN ; the restriction of S to ˝N ; is a wide (strict) sense stopping time of AN ;

there is a wide sense stopping time PS of A such that, on ˝N ; PSN D SN :

Proof (1) The assertion obtains since [(Fact) 10.2.2]

A \˝N D .; \ N/ [ .A \˝N/ 2 At _ fNg � AoN
t :

Proof (2) The assertion is true, as, for example, fSN < tg D fS < tg \˝N :

Proof (3) One has that

fS < tg D ŒfS < tg \˝N ��ŒfS < tg \ N�;

fS � tg D ŒfS � tg \˝N ��ŒfS � tg \ N�:

But, by assumption, using item 1,

fS < tg \˝N D fSN < tg 2 AN
t � AoN

t ;

fS � tg \˝N D fSN � tg 2 AN
t � AoN

t :

Furthermore fS < tg \ N 2 N � AoN
t ; and fS � tg \ N 2 N � AoN

t : S is thus a
wide (strict) sense stopping time of AoN :

Because of (Proposition) 10.2.26, item 6, S is the lower envelope, for AoN ; of a
sequence of stopping times of type met in (Proposition) 10.2.26, item 1. Consider
thus a stopping time for AoN of the type met in (Proposition) 10.2.26, item 1, that is,

S� D �A�
� C �

Ac
�

; A� 2 AoN
� :

One has that

• A� D PA��N� ; PA� 2 A� ; N� 2 N ;
• Ac

� D ˝�A� D .˝� PA� /�N� D PAc
��N� ;

• PA��A� D N� ;
• PAc

��Ac
� D N� ;
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Thus PS� D �
PA�
� C �

PAc
�

is a strict stopping time for A [(Proposition) 10.2.26, item

1], and

ˇ̌
S� .!/ � PS� .!/

ˇ̌ � � ˇ̌̌�
A�
� �

PA�

ˇ̌̌
C
ˇ̌̌
ˇ�Ac

�

� �
Ac
�

ˇ̌̌
ˇ

D ��
A� �PA�

C �
Ac
�
�PAc
�

D .1C �/�
N�

� .1C �/�
N
:

Since the minimum of two wide (strict) sense stopping times is a wide (strict) sense
stopping time [128, p. 80], the minimum of a finite number of stopping times of the
type PS� is a strict stopping time for A: The countable envelope PS of stopping times
of type PS� is the limit of the minimum of a finite number of such stopping times, and
is thus a wide sense stopping time for A [70, p. 189]. Since S� and PS� only differ in
N; S and PS only differ in N: ut
Proposition 10.2.28 Let H be a real and separable Hilbert space, and the adapted
process X W ˝ � Œ0; 1� �! H have paths continuous to the right (so that it may be
stopped: [264, p. 55]). Let XN W ˝N � Œ0; 1� �! H denote its restriction to ˝N �
Œ0; 1� W XN.!; t/ D X.JN.!/; t/: The base probability space of XN is .˝N ;AN ;PN/:

S W ˝ �! Œ0; 1� is a map, and SN D S ı JN : One has that XN is adapted to AN and
that

1. when X is a martingale for .A;P/; XN is one for .AN ;PN/I
2. when X is a local martingale for .A;P/; and fSn; n 2 Ng a localizing sequence

for it, XN is a local martingale for .AN ;PN/ with localizing sequence
f.Sn/N ; n 2 Ng I

3. when X is a martingale locally in L2 for .A;P/; and fSn; n 2 Ng a localizing
sequence for it, XN is a martingale locally in L2 for .AN ;PN/ with localizing
sequence f.Sn/N ; n 2 Ng I

4. when XN is a martingale for AN ; X is a martingale for AI
5. when XN is a local martingale for AN ; X is a local martingale for AI
6. when XN is, locally, a martingale in L2 for AN ; X is, locally, a martingale in L2

for AI
Proof (1) One has thatZ

˝N

jjXN.!; t/jjH PN.d!/ D
Z

J�1N .˝/

jjX.JN.!/; t/jjH PN.d!/

D
Z
˝

jjX.!; t/jjH PN ı J�1N .d!/
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D
Z
˝

jjX..!; t/jjH P.d!/

< 1;

and, for t1 < t2; and A 2 AN
t1 ; fixed, but arbitrary, as A D PA \˝N ; PA in At1 ;Z

A
XN.!; t2/PN.d!/ D

Z
J�1N . PA/

X.JN.!/; t2/PN.d!/

D
Z
PA

X.!; t2/PN ı J�1N .d!/

D
Z
PA

X.!; t2/P.d!/

D
Z
PA

X.!; t1/P.d!/

D
Z

A
XN.!; t1/PN.d!/:

Items 2 and 3 are checked analogously. Item 4 is proved as item 1. The proof of item
5 is along the following lines. Let

˚
SN

n ; n 2 N
�

be a localizing sequence for XN ; and
obtain ˚PSn; n 2 N

�
according to (Proposition) 10.2.27. Let also

A.˛; n; t/ D ˚
! 2 ˝ W ˇ̌̌̌XPSn.!; t/ � X.!; 0/

ˇ̌̌̌
H
> ˛

�
D ˚

! 2 ˝ W ˇ̌̌̌X.!; PSn.!/ ^ t/ � X.!; 0/
ˇ̌̌̌

H
> ˛

�
:

Since J�1N fA.˛; n; t/g is equal to˚
! 2 ˝N W

ˇ̌̌̌
X.JN.!/; PSn.JN.!// ^ t/ � X.JN.!/; 0/

ˇ̌̌̌
H
> ˛

� D
D ˚

! 2 ˝ W ˇ̌̌̌XN.!; S
N
n.!/ ^ t/ � XN.!; 0/

ˇ̌̌̌
H
> ˛

�
;
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one has thatZ
f!2˝WjjXPSn .!;t/�X.!;0/jjH>˛g

ˇ̌̌̌
XPSn.!; t/ � X.!; 0/

ˇ̌̌̌
H

P.d!/ D

D
Z
�
!2˝W

ˇ̌̌
ˇ
ˇ̌̌
ˇXSN

n
N .!;t/�XN .!;0/

ˇ̌̌
ˇ
ˇ̌̌
ˇ
H
>˛

� ˇ̌̌̌̌̌XSN
n

N .!; t/� XN.!; 0/
ˇ̌̌̌̌̌

H
PN.d!/:

ut

10.3 Stopping and Change of Times

At different stages in the sequel, one shall need some facts about the inversion of
monotone increasing functions that are either continuous or only continuous to the
right. Change of (stopping) time covers inversion for paths of stochastic processes
and shall be important in evaluating the scope of the models used for deriving the
likelihood.

10.3.1 Inverting Monotone Increasing Functions

When a function ˛ is increasing, but not strictly, the usual notion of inverse does
not apply, and one replaces it with a surrogate, either ˛ defined using ˛.t/ D
inf fx W ˛.x/ � tg ; or ˛.t/ D inf fx W ˛.x/ > tg : The former seems better suited to
inverting distribution functions, the latter, increasing processes. Since one shall need
both, both cases are presented.

The Case of Distribution Functions

Definition 10.3.1 The map ˛ W R �! R is increasing when, given x < y in R;

fixed, but arbitrary, then ˛.x/ � ˛.y/: It follows that limx##�1 ˛.x/ exists, and shall
be denoted ˛l; and limx""1 ˛.x/ exists as well, and shall be denoted ˛r: One sets

˛.�1/ D ˛l; and ˛.1/ D ˛r:

Definition 10.3.2 For t 2 R; fixed, but arbitrary, let

I˛.t/ D fx 2 R W ˛.x/ � tg ; and I˛.t/ D fx 2 R W ˛.x/ > tg :
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The functions ˛; ˛ W R �! R are defined using the following assignments:

˛.t/ D
�1 when I˛.t/ D ;

inf I˛.t/ when I˛.t/ ¤ ;
;

˛.t/ D
�1 when I˛.t/ D ;

inf I˛.t/ when I˛.t/ ¤ ; :

Remark 10.3.3 Since I˛.t/ � I˛.t/; ˛.t/ � ˛.t/:
Remark 10.3.4 When ˛.x/ � t for all x 2 R; I˛.t/ D R; so that ˛.t/ D �1:
When ˛.t/ D �1; but there exists x0 2 R such that ˛.x0/ < t; one has then that
˛.t/ � x0 > �1: Thus ˛.t/ D �1 if, and only if, ˛.x/ � t for all x 2 R:

Remark 10.3.5 ˛.t/ D 1 if, and only if, I˛.t/ D ;; so that ˛.t/ D 1 if, and only
if, ˛.x/ < t for all x 2 R:

Remark 10.3.6 When ˛.x/ > t for all x 2 R; I˛.t/ D R; so that ˛.t/ D �1:
When ˛.t/ D �1; but there exists x0 2 R such that ˛.x0/ � t; one has then that
˛.t/ � x0 > �1; so that ˛.t/ D �1 if, and only if, ˛.x/ > t for all x 2 R:

Remark 10.3.7 ˛.t/ D 1 if, and only if, I˛.t/ D ;; so that ˛.t/ D 1 if, and only
if, ˛.x/ � t for all x 2 R:

Remark 10.3.8 Since, for fixed, but arbitrary t1 < t2 in R;

I˛.t2/ � I˛.t1/; and I˛.t2/ � I˛.t1/;

˛ and ˛ are increasing functions.

Fact 10.3.9

1. When ˛.t/ 2 R; then, at t; ˛ is continuous to the left, and has a limit to the right.
2. When ˛.t/ 2 R; then at t; ˛ is continuous to the right, and has a limit to the left.

Proof Let ftn; n 2 Ng be a sequence increasing to t; and � > 0; fixed, but arbitrary,
be given. When, in R; inf fz 2 R W ˛.z/ � xg D ˛.x/ D y;

˛.y � �/ < x � ˛.yC �/:
Let thus ˛.t/ D �; and ˛.tn/ D �n: Then, as just seen,

˛.�n � �/ < tn � ˛.�n C �/:

Since ˛ is increasing, �n � � < 1: Thus limn �n D �0 � � exists. Suppose that
�0 < �: Since �n � �0;

�n � �0
2
� �0

2
; and �n C � � �0

2
� � C �0

2
D � � � � �0

2
:
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Consequently, choosing � D ���0
2
; one has, since ˛ is increasing, that

tn � ˛.�n C �/ � ˛.� � �/ < t;

a contradiction. Suppose now that ftn; n 2 Ng decreases to t: Since ˛ is increasing,
˛.t/ � ˛.tn/: Since the left-hand side of that latter inequality is finite, the sequence
f˛.tn/; n 2 Ng has a limit.

Suppose similarly that ftn; n 2 Ng is a sequence decreasing to t; and � > 0; fixed,
but arbitrary, is given. When, in R; inf fz 2 R W ˛.z/ > xg D ˛.x/ D y;

˛.y � �/ � x < ˛.yC �/:

Let ˛.t/ D �; and ˛.tn/ D �n: Then �n � �: Let �0 D limn �n: Suppose that �0 > �:
Set � D �0��

2
: Then, as �0 � �n;

�0

2
� �n � �0

2
; and � C � D � C �0 � �

2
D � C �0

2
� �n � �0 � �

2
D �n � �;

so that, as ˛ is increasing, t < ˛.� C �/ � ˛.�n � �/ � tn; a contradiction. That ˛
has a limit to the left is due to the fact that it is increasing, and ˛.t/; finite. ut
Fact 10.3.10 One has that:

1. ˛.˛.t// � tI
2. when ˛ is strictly increasing, ˛.˛.t// D tI
3. ˛.˛.t// � tI
4. when ˛ is strictly increasing, ˛.˛.t// D t:

Proof As ˛.˛.t// D inf fx 2 R W ˛.x/ � ˛.t/g ; and that ˛.t/ � ˛.t/; obviously
˛.˛.t// � t: When ˛ is strictly increasing, ˛.x/ � ˛.t/ implies x � t; and thus
˛.˛.t// � t: Since x < t implies ˛.x/ � ˛.t/; ˛.x/ > ˛.t/ implies x � t; and thus
the third assertion. Finally, when t < ˛.˛.t//; let t < � < ˛.˛.t//: If ˛ is strictly
increasing, ˛.t/ < ˛.�/ < ˛.˛.˛.t//; so that ˛.˛.t// is not the infimum of those
x’s for which ˛.x/ > ˛.t/: ut
Fact 10.3.11 When t 2 RŒ˛�; ˛.t/ D inf˛�1.ftg/:
Proof Since I˛.t/ D ˛�1.ftg/ [ I˛.t/; and inf.A [ B/ � inf.A/ ^ inf.B/;

˛.t/ D inf
�
˛�1.ftg/� ^ ˛.t/:

But both ˛.x/ D t and ˛.y/ > t imply x � y as the inequality x > y yields
t D ˛.x/ � ˛.y/ > t: ut
Fact 10.3.12 When ˛ is continuous to the right, one has that:

1. ˛.t/ <1 implies ˛.˛.t// � t; and thus that I˛.t/ is an interval closed to the left
by ˛.t/I

2. t 2 inf .RŒ˛�/ [RŒ˛� [ sup .RŒ˛�/ implies ˛.˛.t// D tI
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3. t < inf .RŒ˛�/ implies ˛.˛.t// > tI
4. t > sup .RŒ˛�/ implies ˛.˛.t// < t:

Proof When ˛.t/ <1; I˛.t/ ¤ ; [(Remark) 10.3.5]. There exists thus a sequence
f�n; n 2 Ng � I˛.t/; decreasing to ˛.t/:But ˛ is continuous to the right, and ˛.�n/ �
t; so that t � limn ˛.�n/ D ˛.˛.t//: In particular ˛.t/ 2 I˛.t/:

Suppose that t 2 RŒ˛�: Then, from (Fact) 10.3.11, ˛.t/ D inf˛�1.ftg/: Let, in
˛�1.ftg/; f�n; n 2 Ng be a sequence which decreases to ˛.t/: Then

t D lim
n
˛.�n/ D ˛.˛.t//:

Suppose that t 2 inf .RŒ˛�/ : If t 2 RŒ˛�; the result has been proved, so one may
assume that t is not in RŒ˛�: But then ˛.t/ D �1: As ˛ is increasing,

˛.˛.t// D ˛.�1/ D inf f˛.x/; x 2 Rg D inf .RŒ˛�/ D t:

Suppose similarly that t D sup .RŒ˛�/ ; but t does not belong to RŒ˛�: Then ˛.t/ D
1: Consequently,

˛.˛.t// D ˛.1/ D sup f˛.x/; x 2 Rg D sup .RŒ˛�/ D t:

When t < inf .RŒ˛�/ ; ˛.t/ D �1: Thus

˛.˛.t// D ˛.�1/ D inf .RŒ˛�/ > t:

When t > sup .RŒ˛�/ ; ˛.t/ D 1: Thus

˛.˛.t// D ˛.1/ D sup .RŒ˛�/ < t:

ut
Fact 10.3.13 One has that:

1. ˛.x/ � t implies x � ˛.t/; and ˛.x/ > t implies x � ˛.x/I
2. when ˛ is continuous to the right, x � ˛.t/ (and thus x � ˛.t/) implies ˛.x/ � tI
3. ˛.x/ < t implies x � ˛.t/ (and thus x � ˛.t/).
Proof Item 1 follows from the definitions respectively of ˛ and ˛: The inequality
˛.t/ � x implies ˛.˛.t// � ˛.x/: But as ˛ is continuous to the right, ˛.˛.t// � t;
because of (Fact) 10.3.12, item 1. Suppose finally that ˛.x/ < t: If there is y such
that ˛.y/ � t; then y � x; so that ˛.t/ � x: If there is no such y; ˛.t/ D1 � x: ut
Fact 10.3.14 One has that:

�˛.t�/; ˛.tC/Œ � ˛�1.ftg/ � Œ˛.t�/; ˛.tC/� :
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Proof Since ˛ is increasing [(Remark) 10.3.8], ˛.t�/ and ˛.tC/ exist, and, when,
in R; t1 < t < t2;

˛.t1/ � ˛.t�/ � ˛.t/ � ˛.tC/ � ˛.t2/: (?)

The proof uses the following remark: given two sets, A and B; with A n B D ;;
A D .A n B/] .A \ B/ � B: Suppose thus that

� 2 f �˛.t�/; ˛.tC/Œg n ˚˛�1.ftg/� ;
and let

ı� D � � ˛.t�/ > 0; ıC D ˛.tC/ � � > 0:

Since ˛.�/ ¤ t; either ˛.�/ < t; or ˛.�/ > t: If ˛.�/ < t; let

t1 D ˛.�/C t

2
2 �˛.�/; tŒ:

Since ˛.�/ < t1, (Fact) 10.3.13 implies that � � ˛.t1/; and thus (?) that

� � ˛.t1/ � ˛.t�/ D � � ı�;

a contradiction. Suppose thus that ˛.�/ > t; and let t2 D ˛.�/: Then, as ˛.�/ �
˛.�/ and

˛.t2/ D inf fx 2 R W ˛.x/ � t2g D inf fx 2 R W ˛.x/ � ˛.�/g ;

˛.t2/ � �; and thus (?)

� C ıC D ˛.tC/ � ˛.t2/ D �;

a contradiction. Thus

f �˛.t�/; ˛.tC/Œg n ˚˛�1.ftg/�
is empty, and the statement’s first inclusion obtains.

As to the second, when ˛�1.ftg/ is empty, there is nothing to prove. Suppose thus
that ˛.�/ D t: By definition, ˛�1.ftg/ � I˛.t/; so that

˛.t�/ � ˛.t/ D inf .I˛.t// � inf
�
˛�1.ftg/� : (??)

Fix now � > t; and x 2 ˛�1.ftg/: Then ˛.x/ D t < �; so that [(Fact) 10.3.13
again], ˛.�/ � x: Thus, for � > t; and x 2 ˛�1.ftg/; ˛.�/ � x; that is, ˛.�/ �
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sup
�
˛�1.ftg/� ; so that

˛.tC/ � sup
�
˛�1.ftg/� : (? ? ?)

The statement’s second inclusion thus also obtains (?? and ? ? ?). ut
Fact 10.3.15 One has that:

1. ˛ is continuous if, and only if, ˛ is strictly increasing;
2. ˛ is strictly increasing if, and only if, ˛ is continuous on RŒ˛�:

Proof It suffices to prove that ˛ is not continuous if, and only if, ˛ is not strictly
increasing. Suppose thus that ˛ is discontinuous at x; that is, letting t1 D ˛.x�/; t D
˛.x/; t2 D ˛.xC/; that t1 < t2; and one of t1 � t < t2; t1 < t � t2 obtains. Let �1
and �2 be such that t < �1 < �2 < t2 in the former case, or t1 < �1 < �2 < t; in
the latter, and suppose the latter obtains. By its very definition, ˛ is constant over
Œ�1; �2�; and is thus not strictly increasing. If, conversely, ˛ is not strictly increasing,
there are t1 < t2 such that ˛.�/ is constant over Œt1; t2�: Let � D ˛.�/ for � 2 Œt1; t2�:
Then, given � > 0; fixed, but arbitrary, because of the definition of ˛; one has that

˛.� � �/ < t1 < t2 < ˛.� C �/:
Consequently ˛.��/ � t1 < t2 � ˛.�C/; and ˛ is discontinuous at �:

For the second statement, it suffices to prove that ˛ is not strictly increasing
if, and only if, ˛ is discontinuous on RŒ˛�: Suppose first that ˛ is not strictly
increasing, that is, there exist x1 < x2 such that ˛ is constant on Œx1; x2�: Let, for
x 2 Œx1; x2�; ˛.x/ D �: Then ˛�1.f�g/ � Œx1; x2�: It follows, from (Fact) 10.3.14,
that ˛.��/ < ˛.�C/; that is, ˛ is not continuous at � 2 RŒ˛�: Suppose conversely
that the latter obtains, that is, there exists t 2 RŒ˛� at which ˛.t�/ < ˛.tC/: It
follows, from (Fact) 10.3.14, that ˛�1.ftg/ contains an open interval, that is, ˛ is not
strictly increasing. ut
Fact 10.3.16 Suppose that ˛; ˇ W R �! R are increasing and continuous to the
right. Then

˛ ı ˇ D ˇ ı ˛:

Proof From (Fact) 10.3.13, in the presence of continuity to the right, ˛.x/ � t is
equivalent to ˛.t/ � x: Thus:n

˛ ı ˇ
o
.t/ D inf fx 2 R W ˛.ˇ.x// � tg
D inf fx 2 R W ˛.t/ � ˇ.x/g
D inf

n
x 2 R W ˇ .˛.t// � x

o
D ˇ .˛.t// :ut
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Let X be a random variable, FX; its (continuous to the right) distribution function,
and mX; the measure generated by FX: The support of mX is the closed set SX of
points x 2 R for which, given � > 0; fixed, but arbitrary, mX.�x��; xC�Œ/ > 0: It is
also the smallest closed set of mass one, and its complement, the largest open set of
mass zero. Now when FX.t2/�FX.t1/ D 0;mX.�t1; t2�/ D 0; so that �t1; t2Œ� Sc

X; and
thus ft1; t2g � Sc

X: One may thus define the (essential) range of X as SX; and then,
on the range of X thus defined, FX is strictly increasing. That amounts to ignoring
the values of X “which have zero probability.”

Fact 10.3.17 Let FX be the (continuous to the right) distribution function of the
random variable X: Then:

1. when FX is continuous, FX ı X has a uniform distribution on Œ0; 1�I
2. when U has a uniform distribution on Œ0; 1�; the law of FX ı U is that of X; that

is, FX:

Proof FX being continuous, FX is strictly increasing [(Fact) 10.3.15]. Thus

P .FX ı X � t/ D P .FX .FX ı X/ � FX.t// :

But, since one looks at the inequality FX .FX ı X/ � FX.t/ probabilistically,
one may assume that FX is strictly increasing so that, because of (Fact) 10.3.10,
FX.FX.X// D X: Thus

P .FX ı X � t/ D P.X � FX.t// D FX.FX.t//:

Finally, because of (Fact) 10.3.12, FX.FX.t// D t when t 2 RŒFX �: But there is no
need to consider t > 1; and thus indeed P .FX.X/ � t/ D t; which characterizes the
uniform distribution on the unit interval.

Also, because of (Fact) 10.3.13, FX.U/ � t if, and only if, U � FX.t/; so that

P .FX.U/ � t/ D P.U � FX.t// D FX.t/:

ut
Example 10.3.18 ˛.x/ D �

�0;1Œ
.x/ W then

˛.t/ D
8<
:
�1 for t 2 ��1; 0�
0 for t 2 �0; 1�
1 for t 2 �1;1Œ

; ˛.t/ D
8<
:
�1 for t 2 � �1; 0Œ
0 for t 2 Œ0; 1Œ;
1 for t 2 Œ1;1Œ

:

Example 10.3.19 ˛.x/ D �
Œ0;1Œ

.x/ W then

˛.t/ D
8<
:
�1 for t 2 ��1; 0�
0 for t 2 �0; 1�
1 for t 2 �1;1Œ

; ˛.t/ D
8<
:
�1 for t 2 � �1; 0Œ
0 for t 2 Œ0; 1Œ;
1 for t 2 Œ1;1Œ

:



10.3 Stopping and Change of Times 821

Example 10.3.20 ˛.x/ D ex

1Cex W

˛.t/ D ˛.t/ D
8<
:
�1 for t 2 � �1; 0�
ln
˚
1
1�t

�
for t 2 �0; 1Œ

1 for t 2 Œ1;1Œ
:

The Case of Increasing Paths

Let ˛ W RC �! R be monotone increasing. Setting, for t < 0; Q̨ D ˛.0/; and, for
t � 0; Q̨ .t/ D ˛.t/; a number of results obtained for distribution functions translate
without further ado to ˛; though one may have to check each time what happens
at zero. That shall not be done here, and the presentation below shall be specific to
paths of increasing processes, at the cost of some redundancy, but perhaps with the
benefit of clarity and simplicity.

Let ˛ W RC �! RC be monotone increasing and continuous to the right, and
˛.1/ D limt!1 ˛.t/: The range of ˛; RŒ˛�; may, or may not, contain ˛.1/: ˛�
is the following function:

˛�.0/ D ˛.0/; and, for t > 0; ˛�.t/ D lim
�""t

˛.�/:

Let

I˛.t/ D f˛ < tg ; J˛.t/ D f˛ � tg ; K˛.t/ D f˛ D tg :

Those are intervals (with every two points in the set, the closed interval determined
by those two points is in the set), and, since ˛ is continuous to the right, Ic

˛.t/
contains its infimum. Also I˛.t/ ] K˛.t/ D J˛.t/; and

I˛.t/ D ; when t � ˛.0/ ; I˛.t/ D RC when t > ˛.1/;
J˛.t/ D ; when t < ˛.0/ ; J˛.t/ D RC when t � ˛.1/;
K˛.t/ D ; when t 2 RŒ˛�c:

Let Leb denote Lebesgue measure, and, for t 2 RC; fixed, but arbitrary,

˛.t/ D Leb .I˛.t// ;

˛.t/ D Leb .J˛.t// :

In particular, ˛.t/ � ˛.t/; and

when t � ˛.0/; ˛.t/ D 0 ; when t > ˛.1/; ˛.t/ D1;
when t < ˛.0/; ˛.t/ D 0; ; when t � ˛.1/; ˛.t/ D1:
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Fact 10.3.21 ˛ is continuous to the left, and ˛; continuous to the right. Both are
increasing.

Proof The sets I˛.t/ and J˛.t/ are increasing with tI Œ0; tŒD [nŒ0; tnŒ; tn < t; tn
increases to tI Œ0; t� D \nŒ0; tn�; t < tn; tn decreases to t: The result follows thus
from the properties of measure. ut
Fact 10.3.22 One has that:

1. Ic
˛.t/ D Œ˛.t/;1ŒI

2. ˛.t/ D sup I˛.t/ D inf Ic
˛.t/I

3. ˛.t/ D sup J˛.t/ D inf Jc
˛.t/:

Proof When Ic
˛.t/ is the empty set,

I˛.t/ D RC; Leb.I˛.t// D1; sup I˛.t/ D 1; inf Ic
˛.t/ D 1:

When I˛.t/ ¤ ;; let �0 D inf Ic
˛.t/: Then I˛.t/ D Œ0; �0Œ; Ic

˛.t/ D Œ�0;1Œ; so that

Leb.I˛.t// D �0; sup I˛.t/ D �0; inf Ic
˛.t/ D �0:

The same reasoning applies to J˛.t/ and its complement. Indeed, as J˛.t/ and Jc
˛.t/

are intervals with the property that the complement of one is the other, sup J˛.t/ D
inf Jc

˛.t/: Letting, in the nondegenerate case,

�0 D sup J˛.t/ D inf Jc
˛.t/;

Leb.J˛.t// D �0: ut
Remark 10.3.23 Because ˛ is an infimum, when ˛.�/ � t; ˛.t/ � �; and, for the
same reason, when � � ˛.t/; ˛.�/ � t W thus

˛.t/ � � , ˛.�/ � t; so that ˛.t/ > � , ˛.�/ < t:

Fact 10.3.24 One has that .˛/�.t/ D ˛.t/:
Proof Let tn increase to t: Since ˛ � ˛; ˛.tn/ � ˛.tn/: But

˛.t/ D inf Ic
˛.t/ � inf Jc

˛.tn/ D ˛.tn/:

Since ˛ is continuous to the left, one is done. ut
Fact 10.3.25 One has that:

1. when ˛.t/ <1; t � ˛.˛.t// � ˛.˛.t//I
2. ˛�.˛.t// � ˛�.˛.t// � t:

Proof One has that ˛ � ˛: When ˛.t/ < 1; ˛.t/ 2 Ic
˛.t/; so that ˛.˛.t// � t: Let

�n < ˛.t/ increase to ˛.t/ D sup J˛.t/: Then ˛.�n/ � t; so that ˛�.˛.t// � t: ut
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Remark 10.3.26 Suppose that ˛.t/ D1: Then ˛.�/ < t; all �’s, so that ˛.˛.t// D
˛.1/ � t: When ˛.t/ <1;
1. ˛�.˛.t// � t � ˛.˛.t//;
2. ˛�.˛.t// � t � ˛.˛.t//:
Fact 10.3.27 One has that:

1. ˛.t/ < � implies ˛.�/ > tI
2. ˛.t/ � � implies ˛.�/ � tI
3. when ˛ is continuous, and ˛.�/ > t; ˛.t/ < �:

Proof Suppose that ˛.t/ < �: Then ˛.t/ < �; and, because of (Fact) 10.3.25, t �
˛.˛.t//: But, since ˛ is increasing, ˛.˛.t// � ˛.�/: Suppose that ˛.�/ D t: Then
˛.t/ D ˛.˛.�//; and, since ˛.˛.�// D inf f� 2 RC W ˛.�/ > ˛.�/g � �; ˛.t/ D
˛.˛.�// � �; a contradiction.

When ˛.t/ � �; since ˛ is increasing, ˛.˛.t// � ˛.�/: But, because of
(Fact) 10.3.25, since ˛.t/ � � <1; t � ˛.˛.t//:

Suppose that ˛ is continuous, and that t < ˛.�/: Then, since

˛.t/ D inf f� 2 RC W ˛.�/ > tg ;

� � ˛.t/: Suppose that � D ˛.t/: Then ˛.˛.t// D ˛.�/ > t: But, because of
(Fact) 10.3.25, when ˛ is continuous, ˛.˛.t// � t; and that leads to a contradiction.

ut
Fact 10.3.28 One has that ˛.t/ D .˛/.t/:
Proof Indeed, t < ˛.�/ D sup fx 2 RC W ˛.x/ � �g implies [(Fact) 10.3.22] that
˛.t/ � �: Thus

.˛/.t/ D inf f� 2 RC W ˛.�/ > tg � inf f� 2 RC W ˛.t/ � �g D ˛.t/:

On the other hand, ˛.˛.t// D inf f� 2 RC W ˛.�/ > ˛.t/g � t; so that

˛.˛.tC �// � tC � > t;

and thus ˛.t C �/ 2 f� 2 RC W ˛.�/ > tg ; so that ˛.t C �/ � .˛/.t/: But ˛ is
continuous to the right. ut
Remark 10.3.29 In the following cases, the point t does not belong to RŒ˛�
(K˛.t/ D ;):

(a) t < ˛.0/I
(b) � is a discontinuity point of ˛; and t 2 Œ˛�.�/; ˛.�/ŒI
(c) ˛.1/ 2 RŒ˛�; t > ˛.1/I
(d) ˛.1/ not in RŒ˛�; and t � ˛.1/:
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Then:

1. In case a), ˛.t/ D ˛.t/ D 0;

Œ˛.t/; ˛.t/ŒD ; D f˛ D tg � Œ˛.t/; ˛.t/� D f0g :

2. In case b), ˛.t/ D ˛.t/ D �; and

Œ˛.t/; ˛.t/ŒD ; D f˛ D tg � Œ˛.t/; ˛.t/� D f�g :

3. In cases c) and d), ˛.t/ D ˛.t/ D1; and

Œ˛.t/; ˛.t/ŒD ; D f˛ D tg � Œ˛.t/; ˛.t/� D f1g :

When t 2 RŒ˛�; f˛ D tg is an interval closed to the left. It can be finite, or infinite.
When it is finite, it can be open to the right (there is a jump at the end of the interval),
or closed (˛ is continuous at the end of the interval). When it is infinite, it is open to
the right, as, for example, for the indicator of the interval Œa;1Œ; a closed set.

Fact 10.3.30 One has that Œ˛.t/; ˛.t/Œ � f˛ D tg � Œ˛.t/; ˛.t/� :
Proof Because of (Remark) 10.3.29, one may assume that t 2 RŒ˛�: Since ˛ is
continuous to the right,

f� 2 RC W ˛.�/ � tg D Œ˛.t/;1Œ :

Thus, when ˛.�/ D t; � � ˛.t/; and thus

f� 2 RC W ˛.�/ D tg � Œ˛.t/;1Œ :

As ˛.t/ D sup f� 2 RC W ˛.�/ � tg ; when ˛.�/ D t; � � ˛.t/; and thus

f� 2 RC W ˛.�/ D tg � Œ˛.t/; ˛.t/� :

Finally, when ˛.t/ � �; by definition, ˛.�/ � t; and, when � < ˛.t/; by definition,
˛.�/ � t; that is, ˛.�/ D t: Thus, when � 2 Œ˛.t/; ˛.t/Œ ; ˛.�/ D t: ut
Remark 10.3.31 Fact 10.3.30 designates ˛ as the smallest inverse of ˛; and ˛; the
largest.

Fact 10.3.32 When, for t 2 RŒ˛�; fixed, but arbitrary, f˛ D tg is closed

f˛ D tg D Œ˛.t/; ˛.t/� \ RC:

The result thus applies in particular when ˛ is strictly increasing, or continuous.
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Proof By assumption, f˛.�/ D tg ¤ ;: It is thus an interval closed to the left. It
can have two forms: Œ�1; �2�; or Œ�;1Œ: In the first case, ˛.t/ D �1; ˛.t/ D �2; and
the result follows from (Fact) 10.3.30. In the second case, ˛.t/ D �; and ˛.t/ D1:
The result is again a consequence of (Fact) 10.3.30. ut
Fact 10.3.33 When ˛ is continuous, for t 2 RC; fixed, but arbitrary,

f˛ ı ˛g .t/ D ˛.0/ _ .t ^ ˛.1// :

Proof When ˛ is continuous, and ˛.t/ <1; ˛.˛.t// D t [(Remark) 10.3.26]. Since
0 � ˛.t/ � 1; and ˛ is increasing, ˛.0/ � ˛.˛.t// � ˛.1/; the result is true when
˛.t/ <1:

When ˛.t/ D 1; since ˛ � ˛; ˛.t/ D 1; and ˛.˛.t// D ˛.1/: When ˛ is
continuous, (Remark) 10.3.26 yields that ˛.0/ � ˛.˛.t// � t; so that the result is
also true when ˛.t/ D 1: ut
Definition 10.3.34 The function f W RC �! R is ˛-continuous when it is constant
on Œ˛�.t/; ˛.t/� whenever ˛�.t/ < ˛.t/:

Fact 10.3.35 When f is ˛-continuous, for t 2 RC; fixed, but arbitrary,

f .˛ .˛.�/ ^ t// D
8<
:

f .˛.0// when � 2 Œ0; ˛.0/Œ

f .� ^ ˛.t// when � � ˛.0/
:

Proof When:

(i) 0 � � < ˛.0/ W ˛.�/ D inf fx 2 RC W ˛.x/ � �g D 0; and, consequently,

f .˛.˛.�/ ^ t// D f .˛.0//I

(ii) ˛.0/ � � � ˛.t/ W because of (Remark) 10.3.23, ˛.�/ � t; so that ˛.�/ <1;
and

f .˛.˛.�/ ^ t// D f .˛.˛.�///I

since, on Œ˛�.˛.�//; ˛.˛.�//�; f is constant, then, because of (Remark) 10.3.26,

f .˛.˛.�// D f .�/I

(iii) � > ˛.t/ W as ˛.�/ D inf fx 2 RC W ˛.x/ � �g ; t < ˛.�/; and

f .˛.˛.�/ ^ t// D f .˛.t//:
ut
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Fact 10.3.36 Let

(a) ˛ W RC �! RC be continuous to the right, and monotone increasing;
(b) ˇ W RC �! RC be continuous to the right, monotone increasing, and ˛-

continuous;
(c) � D ˇ ı ˛:
m˛ shall denote the Borel measure generated by ˛: Then:

1. for fixed, but arbitrary Borel set B;

m� ı ˛�1.B/ D mˇ .Œ˛.0/; ˛.1/� \ B/ I

2. for fixed, but arbitrary  W RC �! R; integrable for mˇ; the integrals in the
following equality exist, and equality obtains:

Z t

0

f ı ˛g dm� D
Z ˛.t/

˛.0/

dmˇ: (?)

Proof One must first notice that ˛.t/ < ˛.t/ has, as consequence that

�.˛.t/C/ � �.˛.t/�/ D 0: (??)

Indeed, as �.˛.t/C/ D ˇ.˛.˛.t/C//; and that ˛ is continuous to the right, one has
that �.˛.t/C/ D ˇ.˛.˛.t///: Furthermore

�.˛.t/�/ D ˇ.˛.˛.t/�// D ˇ.˛�.˛.t///:

But [(Fact) 10.3.24] ˛.t/ D .˛.t//�; so that ˛�.˛.t// D ˛�..˛.t//�/: As ˛� is
continuous to the left, ˛�..˛.t//�/ D ˛�.˛.t//: Thus �.˛.t/�/ D ˇ.˛�.˛.t///:
When ˛�.˛.t// D ˛.˛.t//; there is nothing left to prove, and, when, otherwise,
˛�.˛.t// < ˛.˛.t//; then it is the ˛-continuity of ˇ that does the trick.

The value of m� .f˛ D tg/ is obtained as follows:
when f˛ D tg is

(i) the empty set, the measure is zero;
(ii) a genuine interval, that is, Œ˛.t/; ˛.t/Œ� f˛ D tg ; ˛.t/ < ˛.t/ (otherwise
f˛ D tg is at most a point), the measure is also zero: indeed, as seen above (??),

m� .f˛ D tg/ � �.˛.t/C/ � �.˛.t/�/ D 0I

(iii) a point, the measure is equally zero as seen presently: for then [(Fact) 10.3.32]
f˛ D tg D f˛.t/g ; so that [275, p. 508]

m� .f˛ D tg/ D m� .f˛.t/g/ D �.˛.t/C/ � �.˛.t/�/;
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where, given that � is continuous to the right, �.˛.t/C/ D �.˛.t//I further-
more, f˛ D tg D f˛.t/g means that ˛.˛.t// D t; so that

m� .f˛.t/g/ D ˇ.t/ � �.˛.t/�/I

as ˛.t/ < 1; ˛�.˛.t// � t � ˛.˛.t// [(Remark) 10.3.26]: one has either an
equality, and there is nothing to prove, or there is strict inequality, and, again,
the ˛-continuity of ˇ does the trick.

Consequently

m� .f˛ � tg/ D m� .f˛ < tg/
D m� .Œ0; ˛.t/Œ/

D � .˛.t/�/ � �.0�/
D ˇ.˛�.˛.t/// � ˇ.˛.0�//:

When ˛.t/ <1; because of (Remark) 10.3.26 and ˛-continuity of ˇ;

ˇ.˛�.˛.t/// D ˇ.t/ D ˇ.tC/ D ˇ.�0; t�/C ˇ.0C/:

Furthermore

ˇ.˛.0// D ˇ.˛.0/C/ D ˇ.�0; ˛.0/�/C ˇ.0C/:

Thus, since ˛.0/ � ˛.�/ < t;

m� .f˛ � tg/ D ˇ.�0; t�/ � ˇ.�0; ˛.0/�/ D ˇ.Œ˛.0/; t�/:

When ˛.t/ D 1; ˇ.˛�.˛.t/// D ˇ.˛.1// D ˇ.�0; ˛.1/�/C ˇ.0C/: Thus

m� .f˛ � tg/ D ˇ.Œ˛.0/; ˛.1/�/:

Consequently, as t > ˛.1/ implies ˛.t/ D 1;

m� .f˛ � tg/ D ˇ.Œ0; t� \ Œ˛.0/; ˛.1/�/;

and that proves item 1.
Let a D ˛.0/; and b D ˛.t/: ThenZ 1

0

˚
�
Œa;b� .˛/.˛/

�
dm� D

Z 1
0

�
�
Œa;b� 

�
d
˚
m� ı ˛�1

�
:
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Since Œa; b� � Œ˛.0/; ˛.1/�; in the right-hand side of the latter equality, the measure
m� ı ˛�1 may be replaced, using item 1, with mˇ: That takes care of the right-hand
side of (?) in item 2. As for the left-hand side, one proceeds as follows. One has that
Œ0; t� � fa � ˛ � bg ; and thusZ 1

0

˚
�
Œa;b� .˛/.˛/

�
dm� D

Z
Œ0;t�
.˛/dm� C

Z
fa�˛�bgnŒ0;t�

.˛/dm� :

But � 2 fa � ˛ � bg n Œ0; t� is such that ˛.�/ D ˛.t/; and one has already seen that
the set f˛ D ˛.t/g has m� -measure zero. ut

Here are a few examples, mostly for t 2 Œ0; 1�; the time set that is here of main
interest.

Example 10.3.37 ˛.t/ < ˛.t/ occurs typically when ˛ is constant over an interval.
Let indeed t D 2�1; and

˛.�/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

2� when 0 � � � 1
4

1
2

when 1
4
< � � 3

4

2� � 1 when 3
4
< � � 1

:

Then Ic
˛.t/ D

�
4�1; 1

�
; and ˛.t/ D 4�1; while Jc

˛.t/ D
�
3 
 4�1; 1� ; and,

consequently, ˛.t/ D 3 
 4�1:
Example 10.3.38 Let ˛t.�/ D ˛.� ^ ˛.t//; and P̨ t.�/ D ˛.� ^ ˛.t//: ˛t and P̨ t are
˛ stopped at ˛.t/ and ˛.t/ respectively: they are constant once they have reached
the threshold for the first time. Usually one expects that ˛t and P̨ .t/ be bounded by t:
But some restrictions are needed for the bounds to hold. Suppose thus that t D 2�1;
and that

˛.�/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

�
2

when 0 � � < 1
2

1
2

when 1
2
� � < 1

1 when � D 1

:

Then Ic
˛.t/ D

�
2�1; 1

�
; and ˛.t/ D 2�1; while Jc

˛.t/ D f1g ; and ˛.t/ D 1; so that

˛t.�/ D
8<
:

�
2

when 0 � � < 1
2

1
2

when 1
2
� � � 1

;

and thus that ˛t � 1
2
; but P̨ t D ˛; which 1

2
does not bound.
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Increasing functions are required. Thus, when ˛.�/ D 1 � �; and t D 2�1;

Ic
˛.t/ D

�
0; 2�1

�
; Jc

˛.t/ D
�
0; 2�1

�
; ˛.t/ D ˛.t/ D 0;

and ˛t.�/ D P̨ t.�/ D 1 > t:

Example 10.3.39 Let ˛ D �
�1;1Œ

: Then

˛.1=2/ D 1; and ˛.˛.1=2// D 0 < 1=2:

When ˛ D �
Œ1;1Œ

;

˛.1=2/ D 1; and ˛.˛.1=2// D 1 > 1=2:

10.3.2 Change of Time for a Continuous Local Martingale

One shall need a statement of the Dambis-Dubins-Schwarz theorem [264, p. 213].
Here it is preceded by some definitions.

Definition 10.3.40 A time-change is an increasing net of wide sense stopping
times, say S D fSt; t 2 RCg : Given a process X; its time-changed transformation
by S is the process .!; t/ 7! X.!; St.!//:

Definition 10.3.41 Let S be a positive random variable, and M; an almost surely
continuous local martingale for A; starting at 0. M is a Brownian motion stopped by
S when hMi D t ^ S:

Remark 10.3.42 Definition 10.3.41 does not mean that M is a Brownian motion.
An example follows [221, p. 624].

Example 10.3.43 W is a standard Brownian motion, and one considers the follow-
ing stopping times:

S1 D inf ft W W.
; t/ D 1g ;
S.1=2/ D inf ft > S1 W W.
; t/ D 1=2g ;
S.3=2/ D inf ft > S1 W W.
; t/ D 3=2g ;

S D S.1=2/ ^ S.3=2/:
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Let

a.!; t/ D �
��0;S��
.!; t/

C �fSDS.1=2/g .!/ ���S;1ŒŒ
.!; t/

C 3�fS<S.1=2/g .!/ ���S.1=2/;1ŒŒ
.!; t/:

It is a predictable process. Then

M.!; t/ D
Z t

0

a.!; �/W.!; d�/

is a continuous martingale. When

• S.1=2/ � S.3=2/; that is, S D S.1=2/;

a.!; 
/ � 1; and M.!; 
/ D W.!; 
/I

• when S.1=2/ > S.3=2/; that is S < S.1=2/;

– for 0 < t � S.3=2/.!/;

a.!; t/ D 1; and M.!; t/ D W.!; t/;

– for S.3=2/.!/ < t � S.1=2/;

a.!; t/ D �
��0;S.3=2/��

.!; t/; and M.!; t/ D 3=2;

– for t > S.1=2/.!/;

a.!; t/ D �
��0;S.3=2/��

.!; t/C 3�
��S.1=2/;1��

.!; t/;

and

M.!; t/ D 3=2C 3.W.!; t/� .1=2// D 3W.!; t/:

Thus, for stopping times T � S;MT D WT ; and M is a stopped Brownian motion.

Remark 10.3.44 At the cost of expanding the basic probability space, all stopped
Brownian motions may be obtained by stopping an actual Brownian motion [264,
p. 207].
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Fact 10.3.45 (Dambis, Dubins, Schwarz (DDS) Factorization) Let M be an
almost surely continuous local martingale for A; and

SM.!; t/ D inf f� 2 RC W hMi.!; �/ > tg ;

WM.!; t/ D M.!; SM .!; t// �M.!; 0/;

Bt D ACSM.�;t/:

Then:

1. when P .hMi.
;1/ D1/ D 1;

WM is a Brownian motion for BI

2. when P .hMi.
;1/ <1/ > 0;

WM is, for B; a Brownian motion stopped by hMi.
;1/I

3. for t � 0; fixed, but arbitrary, almost surely with respect to P;

M.
; t/ �M.
; 0/ D WM .
; hMi.
; t// ;

and, for progressively measurable f ;

Z t

0

f dM D
Z hMi.�;t/
0

f .
; SM.
; �//WM.
; d�/;

where one side of the latter equality is defined when the other is, and f D 0 when
SM.
; t/ D1:

WM is called the Dambis, Dubins, Schwarz (DDS) Brownian motion of M:One shall
write W ˘ V.!; t/ for W.!;V.!; t//; and designate it as the DDS factorization of
M:

Remark 10.3.46 WŒ!� denotes the path t 7! W.!; t/; at the value !: One way to
look at W ˘ V is then as follows: W ˘ VŒ!� D WŒ!� ı VŒ!�; and one has thus the
following diagram:

! 7! .WŒ!�;VŒ!�/ 7! WŒ!� ı VŒ!�:

Define

W W ˝ �! C.RC/; and V W ˝ �! C.RC/;
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using, respectively, the following assignments:

W.!/ D WŒ!�; and V.!/ D VŒ!�:

Letting T W ˝ �! C.RC/ � C.RC/ be defined using the following assignment:

T.!/ D .W;V/.!/ D .W.!/;V.!// D .WŒ!�;VŒ!�/;

and 	 W C.RC/ � C.RC/ �! C.RC/; the following one:

	 .f ; g/ D f ı g;

one has that W ˘ VŒ!� D 	 ı TŒ!�: If 	 ı T is adapted,

PW˘V D PW;V ı 	 �1:

C.RC/ is a separable Fréchet space for the following distance [267]:

d.f ; g/ D
1X

nD1

1

2n

jjf � gjjn
1C jjf � gjjn

; jjf jjn D sup
t2Œ0;n�

jf .t/j ;

and, for that distance, fp ! f if, and only if, for n 2 N; fixed, but arbitrary,

lim
p

ˇ̌̌̌
fp � f

ˇ̌̌̌
n
D 0:

C.RC/ � C.RC/ is given the product topology, so that f.fn; gn/; n 2 Ng converges
to .f ; g/ if, and only if, ffn; n 2 Ng converges to f ; and fgn; n 2 Ng converges to g
[74, p. 73]. The Borel space of the product is the product of the Borel spaces of the
components [208, p. 6].

T is adapted since W and V are. 	 is continuous. Let indeed n 2 N; be fixed, but
arbitrary, and let

˚
fp
�

converge to f ; and
˚
gp
�
; to g: Thenˇ̌̌̌

f ı g � fp ı gp

ˇ̌̌̌
n
� ˇ̌̌̌ f ı g � f ı gp

ˇ̌̌̌
n
C ˇ̌̌̌ f ı gp � fp ı gp

ˇ̌̌̌
n
:

The first term on the right-hand side of the latter expression goes to zero because of
[109, p. 360], and the second, because of [109, p. 370]. 	 ı T is thus a measurable
map.

It may be useful to look at an example.

Example 10.3.47 Let f be a strictly positive, progressively measurable process such
that Z 1

0

f 2.
; �/Leb.d�/ <1;
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and W; a standard Brownian motion. Suppose that M D R f dW: Then

hMi D
Z

f 2dLeb:

It is continuous, and strictly increasing, and thus there is a unique SM.
; t/ such that

Z SM.�;t/

0

f 2dLeb D t:

But, using (Fact) 10.3.36, with mˇ; Lebesgue measure, one gets

Z SM.�;t/

0

f 2.
; �/Leb.d�/ D
Z t

0

f 2.
; SM.
; �//mSM.�;�/.d�/:

It follows that

f 2.
; SM.
; �//mSM.�;�/.d�/ D d�;

or

SM.
; t/ D
Z t

0

d�

f 2.
; SM.
; �// :

Choosing f .
; �/ D f2�g1=2 ; one obtains that SM.
; t/ D t1=2; so that

WM.
; t/ D M ˘ SM.
; t/ D 21=2
Z t1=2

0

�1=2W.
; d�/:

10.4 Exponential Martingales

Exponential martingales are very handy tools in the study of processes of the type
encountered below. This section gathers the facts useful for the sequel.

10.4.1 Positive Local Martingales

Let M be a process with values in R; and paths that are continuous to the right, and,
with respect to P; almost surely continuous. When M is a local martingale, M has
the representation M.
; t/ D M.
; 0/CM0.
; t/; M0 a local martingale that is zero at
the origin. The fact that M is a local martingale puts no restriction on M.
; 0/:
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Example 10.4.1 ([184, p. 95]) Let ˝ D Œ0; 1�; At D B .Œ0; 1�/ ; t 2 Œ0; 1�; and also
P D Lebesgue measure. Let M.!; t/ D X; a random variable that is not integrable.
M is a continuous local martingale as it is a continuous process, and that M0 D 0:

M is not a martingale, and M.
; 0/ is not integrable.

The results which follow, on continuous, local martingales, are stated for the index
set RC: When one restricts attention to Œ0; 1�; since processes are all assumed
continuous to the right, one sets, for t > 1; M.!; t/ D M.!; 1/; At D A1; and
then applies the results valid for RC: The continuity assumption is not necessary for
some of the statements, but since one is only concerned with continuous processes,
let that be it.

Fact 10.4.2 ([264, p. 103]) Let M be a local martingale, continuous to the right,
which is, almost surely, with respect to P; continuous, and let S be a wide
sense stopping time such that EPŒhMi.
; S/� < 1: Then MS.
; 
/ � M.
; 0/ is a
martingale bounded in L2; and, when M.
; 0/ has an integrable square, MS is a
martingale bounded in L2: As a consequence, when, for t 2 RC; fixed, but arbitrary,
EPŒhMi.
; t/� <1; then M is a martingale in L2:

Proposition 10.4.3 ([184, p. 101]) Let M be a positive, local martingale, continu-
ous to the right, and, with respect to P; almost surely continuous. As such, it is also
a supermartingale.

Proof Let fSn; n 2 Ng be the sequence that makes of MSn
0 ; for n 2 N; fixed, but

arbitrary, a uniformly integrable martingale [264, p. 63]. For t 2 R; fixed, but
arbitrary, the sequence n

MSn
0 .
; t/ D M0.
; t ^ Sn/; n 2 N

o
converges almost surely, with respect to P; to M0.
; t/: Since conditional expecta-
tions for positive random variables are well defined, one has, using Fatou’s lemma,
that, for t1 < t2 in Œ0; 1�; fixed, but arbitrary,

EPŒM.
; t2/ j At1 � D EPŒlim inf
n

MSn.
; t2/ j At1 �

� lim inf
n

EPŒM
Sn .
; t2/ j At1 �

D M.
; 0/C lim inf
n

EŒMSn
0 .
; t2/ j At1 �

D M.
; 0/C lim inf
n

MSn
0 .
; t1/

D M.
; 0/CM0.
; t1/
D M.
; t1/:

ut
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The consequence of (Proposition) 10.4.3 is the following corollary:

Corollary 10.4.4 EPŒM.
; t/� � EPŒM.
; 0/�:
Proposition 10.4.5 Let M be a positive, local martingale, continuous to the right,
and, with respect to P; almost surely continuous. Suppose that, for some � > 0;

EPŒM.
; �/� D EPŒM.
; 0/� <1: Then M is a martingale on Œ0; ��:

Proof Because of (Proposition) 10.4.3, for t 2 Œ0; ��; fixed, but arbitrary,

EPŒM.
; t/� D EPŒM.
; 0/�:

Let t1 < t2 in Œ0; ��; and A 2 At1 ; be fixed, but arbitrary. The supermartingale
property of M [(Proposition) 10.4.3] yields thatZ

A
M.
; t2/dP �

Z
A

M.
; t1/dP;Z
Ac

M.
; t2/dP �
Z

Ac
M.
; t1/dP:

Since EPŒM.
; t1/� D EPŒM.
; t2/�; from the second of the latter inequalities, one gets
that Z

A
M.
; t2/dP �

Z
A

M.
; t1/dP;

and inequality may be replaced with equality. ut

10.4.2 Relations Between Martingales and Their Exponentials

It is often easier to deal with the exponentials of martingales than with the
martingales themselves. Their relations are described below.

Proposition 10.4.6 ([189, 4–54]) Below, ˛ 2 R is fixed, but arbitrary. M and V
are real, adapted processes that are continuous to the right and, with respect to P;
almost surely continuous. V has, almost surely, with respect to P; increasing paths
that start at 0. Set

X˛.!; t/ D ˛M.!; t/ � 1
2
˛2V.!; t/;

E˛.!; t/ D eX˛.!;t/:
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The following obtain:

1. E˛ is a local martingale for A if, and only if, M is, locally, a martingale in L2;
starting at zero, and hMi D V:

2. When M is, locally, a martingale in L2; that hMi D V; and that, for t 2 RC;
fixed, but arbitrary,

EP

	Z t

0

e2˛MdV



<1;

then E˛ is a martingale in L2; continuous to the right, and, with respect to P;
almost surely continuous.

3. If E˛ is a martingale, and there exists ˛0 > 0 such that, for t 2 RC; fixed, but
arbitrary,

EP

h
e˛0jM.�;t/j

i
<1;

M is a martingale.

Proof When M is, locally, a martingale in L2; such that V D hMi; that E˛ is, locally,
a martingale is established in [264, p. 183] as a consequence of Itô’s formula. It is
also shown there that E˛ solves dE˛ D ˛E˛ dM; which explains that

hE˛i D ˛2
Z �
0

e2X˛ dV:

Half of item 1 is thus proved.
When the assumptions of item 2 are valid, one has that

EP

	Z t

0

e2X˛dV



� EP

	Z t

0

e2˛MdV



<1;

that is, hE˛i has finite expectation. Fact 10.4.2 then yields that E˛ is a martingale
bounded in L2:

Suppose now that E˛ is a martingale, and that EP
�
e˛0jM.�;1/j

�
< 1 (that is, item

3). Then, for t1 < t2 in Œ0; 1� and A 2 At1 ; fixed, but arbitrary,Z
A

E˛.
; t1/dP D
Z

A
E˛.
; t2/dP:

Differentiating twice with respect to ˛ (supposing for the time being that it is
allowed), one obtains thatZ

A
fM.
; t1/� ˛V.
; t1/gE˛.
; t1/dP D

Z
A
fM.
; t2/� ˛V.
; t2/gE˛.
; t2/dP;
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and that Z
A

˚
ŒM.
; t1/ � ˛V.
; t1/�2 � V.
; t1/

�
E˛.
; t1/dP D

D
Z

A

˚
ŒM.
; t2/ � ˛V.
; t2/�2 � V.
; t2/

�
E˛.
; t2/dP:

Setting ˛ to zero, the first equation says that M is a martingale, and the second, that
M2 � V is, thus identifying V as the quadratic variation of M:

To check that differentiation is allowed, let U W ˝ �! R2 have, at ! 2 ˝;
components M.!; t/ and V.!; t/; B; be a Borel set in R2; and

f˛.x; y/ D e˛ x� 1
2 ˛

2y;

g˛.x; y/ D .x � ˛y/ f˛.x; y/:

Then Z
B

f˛.x; y/P ı U�1.dx; dy/ D
Z

U�1.B/
E˛.!; t/P.d!/;

and Z
B

g˛.x; y/P ı U�1.dx; dy/ D

D
Z

U�1.B/
fM.!; t1/� ˛V.!; t1/gE˛.!; t1/P.d!/;

where U�1.B/ 2 At: One then applies the standard differentiation theorem [113,
p. 137] to f˛ and g˛: The main step (uniform domination) may be checked as follows.

When e˛0jM.�;1/j has finite expectation, since  .x/ D e˛jxj is convex, .M.
; t// is
a submartingale, and, in particular,

EP Œ .M.
; t//� � EP Œ .M.
; 1//� <1:

The case of f˛ is thus a direct consequence of the assumption. Also, the powers of
jM.
; t/j are integrable, and, in particular, when ˛ � ˛0

2
;

E2P
h
jM.
; t/j e˛jM.�;t/j

i
� EP

�
M2.
; t/�EP

h
e2˛jM.�;t/j

i
<1:
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Thus

x 7! jxj e ˛0
2 jxj

is integrable with respect to P ı U�1: The map

y 7! jyj e�
˛20
2 jyj

is bounded, and thus

jg˛.x; y/j �
n
jxj C ˛0

2
jyj
o

e
˛0
2 jxj�

˛20
2 jyj:

Let

fSn; n 2 Ng

be a sequence of wide sense stopping times that stops the largest of V and jMj at n
[264, p. 63], and ˚PSn; n 2 N

�
;

a sequence that localizes E˛: Then˚
˙n D Sn ^ PSn; n 2 N

�
is also a localizing sequence for E˛ [264, p. 65]. But then E˙n

˛ is a martingale by
item 2, and the choice of stopping times. Consequently M˙n

0 is a martingale with
V˙n
0 as variation, and the proof of item 1 is complete. ut

In the remarks which follow, let M.
; 0/ D 0;M and V be continuous to the right,
and, with respect to P; almost surely continuous.

Remark 10.4.7 Let M be locally in L2; and such that hMi D V: Then E˛; being a
local martingale, is a supermartingale [(Proposition) 10.4.3] such that

EPŒE˛.
; t/� � 1:

Remark 10.4.8 When there exists � 2�0; 1� such that EPŒE˛.
; �/� D 1; E˛ is a
martingale for t 2 Œ0; �� [(Proposition) 10.4.5].

Remark 10.4.9 Let E˛ be, for ˛0 > 0 and ˛ 2��˛0; ˛0Œ; fixed, but arbitrary, locally,
a martingale in L2; continuous to the right and, with respect to P; almost surely
continuous, such that EPŒV.
; 1/� < 1: Then M is bounded in L2: The proposition
says indeed that M is, locally, a martingale in L2 with hMi D V: One then applies
(Fact) 10.4.2.
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Proposition 10.4.10 ([186]) Let M and V be adapted, continuous to the right
and, with respect to P; almost surely continuous and zero at the origin, as in
(Proposition) 10.4.6. Suppose that M is, locally, a martingale in L2; that hMi D V;
and that there exists ˛0 > 0 such that

EPŒe
˛20V.�;1/� <1:

Then:

1. for ˛2 2 Œ0; 2˛20�; E˛ is a martingale;

2. for ˛2 2
h
0;

˛20

3C2p2
i
; E˛ is a martingale bounded in L2:

Proof (1) Because of (Proposition) 10.4.6, item 1, E˛ is a local martingale. Let thus
fSn; n 2 Ng be a sequence that localizes it. Suppose one is able to prove that there
exists � > 0 such that, for ˛ as in item 1,

sup
n

EP

h˚
ESn
˛ .
; t/

�1C�i
<1;

that is, the uniform integrability of the sequence
˚
ESn
˛ .
; t/; n 2 N

�
[192, p. 19]. Since

that sequence converges also almost surely, with respect to P; to E˛.
; t/; the con-
vergence takes place in L1; and the limit is in L1 [192, p. 18]. Since EP

�
ESn
˛ .
; 0/

� D
EP
�
ESn
˛ .
; 1/

�
; E˛ is then a martingale because of (Proposition) 10.4.5.

Let thus X.n/˛ D ˛MSn � 1
2
˛2VSn : To isolate V; in order to use the integrability

assumption, Hölder’s inequality is applied as follows. One starts with the insertion
of .1C �/˛2

2
VSn in

1

p
X.n/˛p.1C�/ D ˛.1C �/MSn � ˛

2p.1C �/2
2

VSn

D .1C �/X.n/˛
C f1 � p.1C �/g .1C �/˛

2

2
VSn :

Thus

.1C �/X.n/˛ D
1

p
X.n/˛p.1C�/ C

˛2

2
.1C �/ fp.1C �/ � 1gVSn ;

and, consequently, since V is increasing, using Hölder’s inequality,

EP

h˚
ESn
˛ .
; t/

�1C�i D EP

h
e.1C�/X

.n/
˛ .�;t/

i
D EP

	
e
1
p X

.n/
˛p.1C�/.�;t/ � e

˛2

2 .1C�/fp.1C�/�1gVSn .�;t/
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� E
1
p

P

	
eX

.n/
˛p.1C�/.�;t/



E
1
q

P

	
eq ˛

2

2 .1C�/fp.1C�/�1gVSn .�;t/



D E
1
p

P

h
ESn
˛p.1C�/.
; t/

i
E
1
q

P

	
eq ˛

2

2 .1C�/fp.1C�/�1gV.�;t/


:

Now, since E˛p.1C�/ is a supermartingale [(Remark) 10.4.7], and Sn is a wide sense
stopping time,

ESn
˛p.1C�/ is a supermartingale [264, p. 57], and thus E

1
p

P

h
ESn
˛p.1C�/.
; t/

i
� 1:

To use the assumption, given that ˛2 � 2˛20; one must choose � > 0; p and q so that

q
˛2

2
.1C �/ fp.1C �/ � 1g � ˛20 :

Let

˛2 D 2˛20
1C � ; � � 0; so that ˛20 D .1C �/

˛2

2
:

Then, since 1
p C 1

q D 1; that is, p D q
q�1 ;

1C � � q.1C �/ fp.1C �/ � 1g

D q.1C �/
�

q

q � 1.1C �/ � 1
�

D q.1C �/.1C �q/
q � 1

D qC �qC �q2 C �2q2
q � 1

D .q � 1/C .1C �q/C .1C �/�q2
q � 1 :

One must thus have

1C �qC .1C �/�q2
q � 1 � �:
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Let q � 1 D 2
�

to obtain that 1C � �1C 2
�

�C .1C �/� �1C 1
�

�2 � 2; so that

� �
(�
1C 2

�

�
C .1C �/

�
1C 2

�

�2)�1
�
(�
1C 2

�

�
C
�
1C 2

�

�2)�1
:

Proof (2) Suppose that one proves that

sup
n

EP

h˚
ESn
˛ .
; t/

�2i � EP

h
e˛

2
0V.�;t/

i
:

One has then again, for the same reason as that given at the beginning of the proof,
uniform integrability. Paired with almost sure convergence, that yields, as for the
proof of item 1, that E2˛.
; t/ is integrable. But the same condition as that of item 1,
with � D 1; provides the required bound. Indeed condition

q
˛2

2
.1C �/ fp.1C �/ � 1g � ˛20

becomes

˛2.2p� 1/q � ˛20:

Letting � D ˛20
˛2

and p D q
q�1 ; one obtains that

�
2q

q � 1 � 1
�

q � �;

or, equivalently that

q2 C .1 � �/qC � � 0:

As one must have q > 1; let q D 1C ı: The last equation then becomes

ı2 C ı .3 � �/C 2 � 0

which requires .3��/2 � 8; that is 3�� � 2p2; or ��3 � 2p2: Since one needs
a lower bound to �; one must choose � � 3C 2p2: ut
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10.5 Random Elements with Values in the Hilbert Space
of Sequences

As one shall deal with vectors X whose components are random variables Xn such
that, almost surely with respect to some probability P;

P
n X2

n is finite, the basic facts
about such elements are listed below. One short reference is [201]. The standard
basis of l2 shall be denoted

˚
en; n 2 N

�
:

Let X W ˝ �! l2 be a map. It is a random element when it is adapted to A and the
Borel sets of l2: That is equivalent to the maps Xn D hX; enil2 being adapted for all
n 2 N: The norm of a random element is a random variable as the composition of a
measurable map with a continuous one. A random element is (Bochner or strongly)
integrable when its norm has finite expectation, that is

EP
�jjXjjl2� D EP

2
4 X

n

X2

n

!1=235 <1:
Then EP ŒX� 2 l2; and jjEP ŒX�jjl2 � EP

�jjXjjl2� : Also, for every continuous linear
functional ' W l2 �! R; one has that

EP Œ'.X/� D '.EP ŒX�/:

Choosing '.
/ D h
; enil2 ; one sees that the components of EP ŒX� are the expecta-
tions of the components of X: Furthermore, for ˛ 2 l2; fixed, but arbitrary, one gets
that

EP Œh˛;Xil2 � D EP

" 1X
nD1

˛nXn

#
D
1X

nD1
˛n EP ŒXn� D h˛;EPŒX�il2 :

Let Ll2
1 .˝;A;P/ be the Banach space of equivalence classes of integrable random

elements with domain ˝; and range in l2; and B be a sub-�-algebra of A:

Fact 10.5.1 The conditional expectation of X with respect to B is a linear operator,
denoted EP Œ 
 j B� ; idempotent and contracting, from Ll2

1 .˝;A;P/ into itself, with
the following properties:

1. When X.!/ DPn
iD1 xn�fXDxng .!/;

EP ŒX j B� D
X

x2XŒ˝�

xP .X D x j B/ :

2. The range of the conditional expectation operator is the (closed) subspace of
Ll2
1 .˝;A;P/ of the classes of elements adapted to B:

3. Almost surely with respect to P; jjEP ŒX j B�jjl2 � EP
�jjXjjl2 j B� :
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4. For every continuous linear functional ' of l2;

EP Œ'.X/ j B� D ' .EP ŒX j B�/

[so that, in particular, the components of EP ŒX j B� are the conditional expecta-
tions of the components of X�:

A random element in l2; that is, whose “square” is integrable, is one for which the
expectation of jjXjj2l2 exists. For random elements whose values are almost surely in
l2 (rather than all in l2), the same properties obtain mutatis mutandis [264, p. 31 and
Sect. 10.2.3].

10.5.1 Sequence Valued Martingales and Associated
Exponentials

Cramér-Hida processes (Brownian motions) are, in particular, martingales with
values in l2: A few features of such processes are now explained.

Definition 10.5.2 Below, B1.l2/ denotes the Banach space of operators of l2 that
have finite trace [the norm is the trace]. A partial order is given by the request that,
for C1 and C2 in B1.l2/; C1 � C2 if, and only if, for ˛ 2 l2; fixed, but arbitrary,
hC1Œ˛�; ˛il2 � hC2Œ˛�; ˛il2 :
One should perhaps remember [264, p. 71] that each adapted, and almost surely
continuous process, has an adapted version, whose paths that are not continuous are
continuous to the right.

Definition 10.5.3 Let C W ˝ � Œ0; 1� �! B1.l2/ be an adapted process with
(operator) paths continuous to the right, and, almost surely, with respect to P; the
zero operator at the origin, and paths continuous, and monotone increasing. It is
the quadratic variation of the martingale X; with values in l2; if, and only if, for
f˛1; ˛2g � l2; fixed, but arbitrary, the following map:

.!; t/ 7! h˛1;X.!; t/il2h˛2;X.!; t/il2 � hC.!; t/Œ˛1�; ˛2il2
is a martingale. In operator notation (tensor product), one has that X ˝ X � C is a
martingale. One often writes, for C; hhXii: One shows that C exists and is unique
[65, 81].

One shall mostly need deterministic quadratic variations, and use to that end the
following terminology.

Definition 10.5.4 Let X W ˝ � Œ0; 1� �! R be a map, and b W Œ0; 1� �! RC;
a continuous, monotone increasing function that is zero at the origin. X is an
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.A; b/-martingale when

1. the paths of X are continuous to the right, and almost surely continuous, with
respect to PI

2. X is a local martingale for AI
3. hXi D b:

X is a b-martingale when, in item 2, just above, A is �.X/:

Definition 10.5.5 Let t 7! C.t/ be a continuous, monotone increasing map into
B1.l2/; with C.0/; the zero operator, and C.t/; positive and self-adjoint. Let also
X W ˝ � Œ0; 1� �! l2 be a map. X is an .A;C/-martingale when

1. the paths of X are continuous to the right, and almost surely continuous, with
respect to PI

2. X is a local martingale for AI
3. hhXii D C:

X is a C-martingale when, in item 2, just above, A is �.X/:

Let X W ˝ � Œ0; 1� �! l2 be a map, and ˛ 2 l2 be a fixed, but arbitrary element. X˛
shall denote the process .!; t/ 7! h˛;X.!; t/il2 : When S is a strict, or wide sense,
stopping time, and the expressions used make sense,

XS
˛ D h˛;XSil2 :

That such a formula is reasonable shall be seen below.
The exponential (formula (Proposition)) 10.4.6 is also useful, mutatis mutandis,

for processes with values in l2: It shall only be needed for deterministic quadratic
variation, though its scope is wider [206].

Proposition 10.5.6 Let X W ˝ � Œ0; 1� �! l2 be a process with the following
properties: it is adapted to A; has paths continuous to the right, and, almost
surely, with respect to P; starts at 0l2 ; and has continuous paths. Let also C W
˝ � Œ0; 1� �! B1.l2/ be a process with the following properties: it is adapted to
A; has paths continuous to the right, and, almost surely, with respect to P; C.
; 0/ is
the zero operator, and C has continuous, monotone increasing paths. The following
statements are then equivalent:

1. X is a local martingale such that hhXii D CI
2. for ˛ 2 l2; fixed, but arbitrary, letting

X˛ D h˛;Xil2 ; and C˛ D hC.
/Œ˛�; ˛il2 ;

the following process:

E˛ D eX˛� 12C˛

is local martingale.
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Proof Suppose that item 1 obtains. Let fSn; n 2 Ng be a sequence of wide sense
stopping times that reduces X to a sequence of uniformly integrable martingales.
Then

EP
�ˇ̌

XSn
˛ .
; t/

ˇ̌� � jj˛jjl2 EP

hˇ̌̌̌
XSn.
; t/ˇ̌̌̌

l2

i
<1;

and EPŒX.
; Sn/ j At� D XSn.
; t/; so that

XSn
˛ .
; t/ D h˛;XSn.
; t/il2

D h˛;EP ŒX.
; Sn/ j At�il2
D EP Œh˛;X.
; Sn/il2 j At�

D EP ŒX˛.
; Sn/ j At� :

Thus the properties of X carry over to X˛: Furthermore, the quadratic variation is
such that, for fixed, but arbitrary ˛1 and ˛2 in l2;

h˛1;X.
; t/i2h˛2;X.
; t/il2 � hhhXiiŒ˛1�; ˛2il2
is a local martingale. But then the assumption on hhXii implies that

X2

˛ � C˛

is a local martingale. Consequently [(Proposition) 10.4.6], item 2 obtains.
Suppose conversely that item 2 obtains. Then [(Proposition) 10.4.6], X˛ , is a

continuous local martingale with C˛ as quadratic variation. Let fSn; n 2 Ng be the
sequence that stops X when its norm crosses n; and

˚
S˛n ; n 2 N

�
be a sequence that

reduces X˛ in L2 [264, p. 63]. Then [264, p. 57], for p 2 N; fixed, but arbitrary,

X
S˛n^Sp
˛

is a martingale. Since the process XS˛n^Sp is adapted [264, p. 41], and its expectation
exists, from

EP

h
X

S˛n^Sp
˛ .
; t2/ j At1

i
D X

S˛n^Sp
˛ .
; t1/;

one obtains, writing that equality explicitly, that

h˛;XSp^S˛n .
; t1/il2 D EP

h
h˛;XSp^S˛n .
; t2/il2 j At1

i
D h˛;EP

h
XSp^S˛n .
; t2/ j At1

i
il2 :
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Because of the continuity properties of paths, and the boundedness introduced by
Sp; one may let n increase indefinitely, to obtain that

h˛;XSp.
; t1/il2 D h˛;EP
�
XSp.
; t2/ j At1

�il2 :
But ˛ is arbitrary, and thus

XSp.
; t1/ D EP
�
XSp.
; t2/ j At1

�
:

Since

X˛1X˛2 �
1

4
fhX˛1 C X˛2i � hX˛1 � X˛2ig

is a local martingale, and that, for example,

hX˛1 C X˛2i D hX˛1C˛2i D hC.
/Œ˛1 C ˛2�; ˛1 C ˛2il2 ;

the tensor quadratic variation of X is indeed provided by C: ut

10.5.2 Sequence Valued Processes with Independent
Increments

Cramér-Hida processes (Brownian motions) are, in particular, processes with values
in l2 and independent increments. A few features of such processes are now
explained.

Definition 10.5.7 Let .˝;A;P/ be a probability space with a filtration, and X W
˝ � Œ0; 1� �! l2 be a process adapted to A: It has independent increments when,
for fixed, but arbitrary t1 < t2 in Œ0; 1�; the increment X.
; t2/�X.
; t1/ is independent
of At1 :

Fact 10.5.8 Let X have independent increments. Let n 2 N; and times t0 < t1 <

 
 
 < tn in Œ0; 1� be fixed, but arbitrary. Then the following family of increments
forms an independent family:

X.
; t1/� X.
; t0/; : : : ;X.
; tn/� X.
; tn�1/:

Proof That is seen by successive conditioning. ut
Fact 10.5.9 Let X have independent increments. X˛ D h˛;Xil2 has independent
increments.

When ˛ is one of the elements of an orthonormal basis, one shall write �˛ for X˛;
and, when ˛ has an index n; �n (so that, for example, Xen

D �n).
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Fact 10.5.10 Let X have independent increments. Since the Borel sets of l2 are
generated by the continuous, linear functionals, and that those are generated by
the continuous, linear functionals corresponding to any orthonormal basis,

�.X.
; t2/ � X.
; t1// D �.f�n.
; t2/� �n.
; t1/; n 2 Ng/:

Thus, given that the family f�n; n 2 Ng is made of processes with independent
increments, X will have independent increments.

Fact 10.5.11 Let X have independent increments. When (Fact) 10.5.8 obtains, X
has independent increments for the filtration it generates. The requirement for
independent increments is then equivalent to the following (set of) condition(s):
[260, p. 259] for

n 2 N; t0 < t1 < t2 < t3 < 
 
 
 < tn in Œ0; 1�; f�1; �2; �3; : : : � ng in l2;

fixed, but arbitrary,

EP

h
ei
Pn

kD1h� k;X.�;tk/�X.�;tk�1/il2
i
D

nY
kD1

EP

h
eih� k;X.�;tk/�X.�;tk�1/il2

i
:

The following example shows the need for different �-parameters in (Fact) 10.5.11.

Example 10.5.12 Let X and Y be independent, standard normal random variables
and e1; e2 be the first two elements of the standard basis of l2: Let

U D Xe1 C Ye2; and V D Xe2 � Ye1:

When a; b; and �; are arbitrary elements of l2;

h�;Uil2 D �1X C �2Y � N .0; �21 C �22/;
h�;Vil2 D �2X � �1Y � N .0; �21 C �22/;

h�;Uil2 C h�;Vil2 D .�1 C �2/X C .�2 � �1/Y � N .0; 2.�21 C �22//;
ha;Uil2 C hb;Vil2 D .a1 C b2/X C .a2 � b1/Y � N .0; .a1 C b2/

2 C .a2 � b1/
2/:

Thus h�;Uil2 and h�;Vil2 are independent, but ha;Uil2 and hb;Vil2 are not.

Fact 10.5.13 Let X have independent increments. Let oAt be the �-algebra gener-
ated by At and the sets of A which have zero measure for P: Then, when X has
independent increments with respect to A; it has also independent increments with
respect to oA:
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Proof Indeed, generally, a random element X is independent from the �-algebra X ;
if, and only if, for fixed, but arbitrary bounded and measurable f ; almost surely,
E Œf .X/ jX � D E Œf .X/� : But, using (Proposition) 10.2.24, one has, for fixed, but
arbitrary t1 < t2 in Œ0; 1�; and f ; bounded and measurable, that, almost surely:

EP Œf .X.
; t2/� X.
; t1// j oAt� D EP Œf .X.
; t2/� X.
; t1// j At�

D EP Œf .X.
; t2/� X.
; t1//� :

The following standard formula, valid for �-algebras A1 and A2; A2 � A1;

E ŒE ŒX j A2� j A1� D E ŒX j A2�

says that the converse is also true. ut
Fact 10.5.14 Let X have independent increments, and paths continuous to the right,
and almost surely continuous. Let N 2 A be a set such that P.N/ D 0; and, for
! 2 Nc; t 7! X.!; t/ is continuous. Notation shall be as in Sect. 10.2.3. Then XN
has independent increments with respect to AN :

Proof Indeed, for t1 < t2 in Œ0; 1�; AN 2 AN
t1 ; and f bounded, and adapted to the

Borel sets of l2; all fixed, but arbitrary,Z
AN

EPN

�
f
�
XN.
; t2/� XN.
; t1/

� j AN
t1

�
dPN D

D
Z

AN

f
�
XN.
; t2/� XN.
; t1/

�
dPN

D
Z

A
f .X.
; t2/� X.
; t1// dP

D
Z

A
EP Œf .X.
; t2/ � X.
; t1// j At1 � dP

D
Z

A
EP Œf .X.
; t2/ � X.
; t1//� dP

D
Z

AN

EPN

�
f
�
XN.
; t2/� XN.
; t1/

��
dPN:

ut
Corollary 10.5.15 The process XN of the latter fact is then Gaussian, as it has
continuous paths, and independent increments [114, 247].
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Corollary 10.5.16 An analogous calculation (assuming zero mean), using the fact
that XN is Gaussian (with, say, C as covariance), yields that X is Gaussian, and that

EP

h
eih�;X.�;t/il2

i
D e� 12 hC.t/Œ��;�il2 ;

where t 2 Œ0; 1�; and � 2 l2; are fixed, but arbitrary, and C.t/ is a bounded,
linear operator of l2 that is positive, self-adjoint, and has finite trace. C.t/ has a
representation [259, p. 32] as an infinite matrix of elements cn;p.t/ such that the sum
of positive elements,

P1
nD1 cn;n.t/; is finite. Thus, in particular, X has finite second

moments.

Fact 10.5.17 Suppose that X has independent increments with respect to A; has
integrable norm, and zero mean. Then it is a martingale. Thus, when X has
independent increments, and paths continuous to the right, and almost surely
continuous, with zero mean, it is a Gaussian martingale.

Proposition 10.5.18 Let X be a .A;C/ martingale, and ˛ 2 l2 be fixed, but
arbitrary. Then, with X˛ D h˛;Xil2 ; and C˛.t/ D hC.t/Œ˛�; ˛il2 ;
1. E˛.!; t/ D eX˛.!;t/� 12C˛.t/ is a martingale whose square is integrable;
2. for t1 < t2 in Œ0; 1�; fixed, but arbitrary, X.
; t2/ � X.
; t1/ is independent of At1 I
3. X is a Gaussian random process whose covariance operator stems from
.t1; t2/ 7! C.t1 ^ t2/I

4. for t1 < t2 in Œ0; 1�; fixed, but arbitrary, X.
; t2/�X.
; t1/ has covariance operator
C.t2/� C.t1/:

Proof As [(Fact) 10.4.2] X˛ is a .A;C˛/ martingale, then [(Proposition) 10.4.6] E˛
is a local martingale, and

hE˛i.!; t/ D
Z t

0

E2

˛.!; �/hX˛i.!; d�/ D
Z t

0

e2X˛.!;�/�C˛.�/C˛.d�/:

But the exponential of 2X˛ � 1
2
4C˛ is a positive, local martingale whose value at

zero is one. Thus

EP
�
E2

˛.
; t/
� D eC˛.t/EP

h
e2X˛.�;t/� 12 4C˛.t/

i
� eC˛.t/;

and

EP ŒhE˛i.
; t/� D
Z t

0

EP
�
E2

˛.
; �/
�

C˛.d�/ �
Z t

0

eC˛.�/C˛.d�/: (?)

Since

C˛.t/ � C˛.1/ D hC.1/Œ˛�; ˛il2 � jjC.1/jj jj˛jj2l2 ;
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the second integral on the right-hand side of EP ŒhE˛i.
; t/� ; that is (?), is finite, and
E˛ is a martingale whose square is integrable [(Fact) 10.4.2].

One has, from item 1, that EP ŒE˛.
; t/� D 1; so that

EP
�
eX˛.�;t/� D e

1
2C˛.t/;

and, consequently, that X˛.
; t/ is a Gaussian random variable with mean zero and
variance C˛.t/: The martingale property of E˛ yields that, for t1 < t2 in Œ0; 1�; fixed,
but arbitrary,

EP

h
eX˛.�;t2/� 12C˛.t2/ j At1

i
D eX˛.�;t1/� 12C˛.t1/;

so that

EP

h
eh˛;X.�;t2/�X.�;t1/il2 j At1

i
D e

1
2 hfC.t2/�C.t1/gŒ˛�;˛il2 :

That proves items 2, 3, and 4. ut
Corollary 10.5.19 Let X W ˝ � Œ0; 1� �! l2 be an adapted (to A) process that is
zero at the origin, continuous to the right, and almost surely continuous. Then:

1. X has independent increments if, and only if, it is Gaussian with covariance
.t1; t2/ 7! C.t1 ^ t2/; where t 7! C.t/ is a map into the family of operators
of l2 that have finite trace;

2. X is an .A;C/-martingale if, and only if, it is Gaussian with covariance .t1; t2/ 7!
C.t1 ^ t2/; where t 7! C.t/ is a map into the family of operators of l2 that have
finite trace.



Chapter 11
Calculus for Cramér-Hida Processes

One shall find below the stochastic calculus results required to state, and prove,
a Girsanov’s formula tailored to the Cramér-Hida representation. One attaches
meaning to expressions on the following form:

IB fag .!; t/;

which shall be interpreted as (stochastic) integrals of a with respect to B. The process
a (the “derivative” of the signal) shall have paths in a Hilbert space isomorphic to
the RKHS of the process N that gives rise to B, its associated Cramér-Hida process,
that is, a vector whose countable components enjoy the properties of the Cramér-
Hida representation. They are, in particular, independent, mean zero, almost surely
continuous, Gaussian martingales, and the measures attached to their quadratic
variations have absolute continuity properties. IB fag shall in fact be the countable
sum of usual stochastic integrals. However, since the components of integrators and
integrands are to a certain extent “organically” tied, and that one may interpret a as
a (random) functional on l2, linear and continuous, acting on B, one may have there
a justification for notation and vocabulary as well.

11.1 Integrators: Cramér-Hida Processes

Cramér-Hida processes (Cramér-Hida Brownian motions) are Gaussian martingales
with values in l2, with added properties: their covariance operators are diagonal,
so that their components are independent, and the measures corresponding to the
quadratic variation of each component are ordered by absolute continuity. .˝;A;P/
shall be a fixed, but arbitrary probability space with filtration.

© Springer International Publishing Switzerland 2015
A.F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise,
DOI 10.1007/978-3-319-22315-5_11
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852 11 Calculus for Cramér-Hida Processes

Definition 11.1.1 A Cramér-Hida process is a map

B W ˝ � Œ0; 1� �! R1;

with components fBn; n 2 Ng, and the following properties:

1. for fn; pg � N, and t � t1 < t2 in Œ0; 1�, fixed, but arbitrary,

(i) Bn.
; t/ is adapted to A;
(ii) EPŒBn.
; t/� D 0;

(iii) At and Bn.
; t2/ � Bn.
; t1/ are independent;
(iv) EPŒB2n.
; t/� D bn.t/, a continuous, monotone increasing function such that

bn.1/ D 1=2n;
(v) the processes fBn; n 2 Ng are independent; they have paths continuous to the

right, and almost all of their paths are continuous;

2. for n 2 N, and t1 < t2 in Œ0; 1�, fixed, but arbitrary, let Mn be the measure on
B.Œ0; 1�/ determined by bn, that is, Mn.Œt1; t2�/ D bn.t2/ � bn.t1/: then MnC1 is
absolutely continuous with respect to Mn [denoted MnC1 � Mn].

Remark 11.1.2 Feature (iv) of item 1 in (Definition) 11.1.1 is no restriction as seen
in (Lemma) 6.4.34.

Fact 11.1.3 Let b.t/ DP1nD1 bn.t/. Then b.1/ D 1, and

EP

h
jjB.
; t/jj2l2

i
D b.t/:

B.
; t/ has thus almost all its values in l2, and is a martingale in L2, since all its
components are martingales in L2 [(Fact) 10.5.1].

Fact 11.1.4 Let Bn be the vector whose components are the first n components of
B, as well as the projection of B onto the subspace of l2 generated by

˚
e1; : : : ; en

�
(then the components following the n-th one are all zero). The path properties of B
are those of Bn.

Proof With � > 0, fixed, but arbitrary, one has that

P

 
! 2 ˝ W sup

t2Œ0;1�
jjB.!; t/ � Bn.!; t/jj2l2 > �

!
D

D P

 
! 2 ˝ W sup

t2Œ0;1�

1X
iDnC1

B2i .!; t/ > �

!
:

Let

An;p D
(
! 2 ˝ W sup

t2Œ0;1�

nCpX
iDnC1

B2i .!; t/ > �

)
:
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Then, for p 2 N, fixed, but arbitrary, An;p � An;pC1. Let

An D
[
p2N

An;p:

Then

An D
(
! 2 ˝ W sup

t2Œ0;1�

1X
iDnC1

B2i .!; t/ > �

)
;

and P.An/ D limp P.An;p/. By Doob’s maximal inequality [221, p. 54],

P.An;p/ D P

 
! 2 ˝ W sup

t2Œ0;1�

nCpX
iDnC1

B2i .!; t/ � �
!
� 1

�
EP

"
nCpX

iDnC1
B2i .
; 1/

#
:

But

EP

"
nCpX

iDnC1
B2i .
; 1/

#
D

nCpX
iDnC1

bi.1/ D
nCpX

iDnC1

1

2i
D 1

2n

�
1 � 1

2p

�
;

so that

P

 
! 2 ˝ W sup

t2Œ0;1�
jjB.!; t/ � Bn.!; t/jj2l2 > �

!
� 1

2n�
:

ut
Fact 11.1.5 Let, for t 2 Œ0; 1�, fixed, but arbitrary, C.t/ W l2 �! l2 be defined using
the following relation:

C.t/
�
en

� D bn.t/en:

Since
˝
C.t/Œen�; en

˛
l2
D bn.t/, C.t/ has finite trace, equal to b.t/. Furthermore, since

EP
�h˛1;B.
; t1/il2 h˛2;B.
; t2/il2� D hC.t1 ^ t2/˛1; ˛2il2 ;

C.t/ is the covariance operator of B.
; t/. Since b is continuous, t 7! C.t/ is
continuous for the trace norm.

Fact 11.1.6 Let B.!; t/ D jjB .!; t/jj2l2 D
P1

nD1 B2n.!; t/. B is a uniformly
integrable submartingale, and, in the Doob-Meyer decomposition B D M C V,
M a martingale, and V a monotone increasing process [264, p. 145], V is b.
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Proof Let indeed t1 < t2 in Œ0; 1�, and A 2 At1 be fixed, but arbitrary. Then

Z
A

B.!; t2/P.d!/ D
1X

nD1

Z
A
fŒBn.!; t2/� Bn.!; t1/�C Bn.!; t1/g2 P.d!/

�
1X

nD1

Z
A

B2n.!; t1/P.d!/

D
Z

A
B.!; t1/P.d!/:

Furthermore, since B2n.
; t/� bn.t/ D B2n.
; t/ � hBni .
; t/ is a martingale,

Z
A
fB.!; t2/� b.t2/gP.d!/ D

1X
nD1

Z
A

˚
B2n.!; t2/� bn.t2/

�
P.d!/

D
1X

nD1

Z
A

˚
B2n.!; t1/� bn.t1/

�
P.d!/

D
Z

A
fB.!; t1/� b.t1/gP.d!/:

b is thus hBi, the first increasing process of B [190, p. 115]. ut
Fact 11.1.7 The quadratic variation process of B is hhBii .!; t/ D C.t/, as, for
f˛1; ˛2g � l2, fixed, but arbitrary,

hB.
; t/; ˛1il2 hB.
; t/; ˛2il2 � hC.t/Œ˛1�; ˛2il2
is a martingale [65, p. 81].

11.1.1 The � -Algebras Generated by a Cramér-Hida Process

One shall use the following notation. For t 2 Œ0; 1�, fixed, but arbitrary, Bt stands for
�t.B/. For t 2 Œ0; 1�, and � 2 l2, fixed, but arbitrary, let

1. .!; �; t/ D e�h�;B.!;t/il2 ,

2. ˚.�; t/ D EP Œ.
; �; t/� D EP

h
e�h�;B.�;t/il2

i
D e�

1
2 hC.t/Œ��;�il2 > 0,

3. Z.!; � ; t/ D .!;�;t/
˚.�;t/ .
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Lemma 11.1.8 Let t1 < t2 in Œ0; 1� be fixed, but arbitrary. Then Z.
; �; t1/ is a
version of EP ŒZ.
; �; t2/ j Bt1 �.

Proof Indeed

EP

h
e�h�;B.�;t2/il2 j Bt1

i
D e�h�;B.�;t1/il2EP

h
e�h�;B.�;t2/�B.�;t1/il2

i
D e�h�;B.�;t1/il2

˚.�; t2/

˚.�; t1/
:

ut
Lemma 11.1.9 Let t1 < t2 in Œ0; 1� be fixed, but arbitrary. Then,

EP

h
e�h�;B.�;t2/il2 j Bt1

i
is a version of EP

h
e�h�;B.�;t2/il2 j BCt1

i
:

Proof Let t 2�t1; t2Œ be fixed, but arbitrary. From [(Lemma) 11.1.8]

EP ŒZ.
; �; t2/ j Bt� D Z.
; �; t/;

one obtains that

EP

h
e�h�;B.�;t2/il2 j Bt

i
D ˚.�; t2/

˚.�; t/
e�h�;B.�;t/il2 : (?)

Since B has paths that are continuous to the right, and ˚ is continuous in t, letting
t ## t1, and using the appropriate martingale convergence theorem [201, p. 118],
almost surely, with respect to P,

EP

h
e�h�;B.�;t2/il2 j BCt1

i
D ˚.�; t2/

˚.�; t1/
e�h�;B.�;t1/il2 :

Using (?) above with t1 replacing t, one gets the equality in the lemma’s statement.
ut

Lemma 11.1.10 Let t1 < t2 � t3 in Œ0; 1�, and f�2; �3g � l2 be fixed, but arbitrary.
Let also

X.!/ D h�2;B.!; t2/il2 C h�3;B.!; t3/il2 :

Then EP
�
e�X j Bt1

�
is a version of EP

�
e�X j BCt1

�
.
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Proof Let t 2�t1; t2Œ be fixed, but arbitrary. Then, since e�X is the product
.
; �2; t2/.
; �3; t3/, adding and subtracting h�3;B.!; t2/il2 ,

EP
�
e�X j Bt

� D EP Œ.
; �2; t2/.
; �3; t3/ j Bt�

D EP

h
EP

h
.
; �2 C �3; t2/ e

�h�3;B.�;t3/�B.�;t2/il2 j Bt2

i
j Bt

i
D EP

h
.
; �2 C �3; t2/ EP

h
e
�h�3;B.�;t3/�B.�;t2/il2

i
j Bt

i
D ˚.�3; t3/

˚.�3; t2/
EP Œ.
; �2 C �3; t2/ j Bt� :

But

.
; �2 C �3; t2/ D .
; �2 C �3; t/ e
�h�2C�3;B.�;t2/�B.�;t/il2 ;

so that

EP Œ.
; �2 C �3; t2/ j Bt� D .
; �2 C �3; t/
˚.�2 C �3; t2/
˚.�2 C �3; t/

D ˚.�2 C �3; t2/ Z.
; �2 C �3; t/:

Consequently

EP
�
e�X j Bt

� D ˚.�3; t3/

˚.�3; t2/
˚.�2 C �3; t2/ Z.
; �2 C �3; t/:

The same calculation yields that

EP
�
e�X j Bt1

� D ˚.�3; t3/

˚.�3; t2/
˚.�2 C �3; t2/ Z.
; �2 C �3; t1/:

Since, when t ## t1, as already seen, EP
�
e�X j Bt

�
goes to EP

�
e�X j BCt1

�
, and

Z.
; �2 C �3; t/, to Z.
; �2 C �3; t1/, the lemma proves true. ut
Proposition 11.1.11 One has, for t 2 Œ0; 1�, fixed, but arbitrary, that

BCt �oBt;

so that the filtration foBt; t 2 Œ0; 1�g is continuous to the right.



11.1 Integrators: Cramér-Hida Processes 857

Proof With a proof that is essentially that of (Lemma) 11.1.10, one may state that,
for

n 2 N; t; t1 < t2 < t3 < 
 
 
 < tn in Œ0; 1�; and f�1; �2; �3; : : : ; �ng � l2;

fixed, but arbitrary, EP

	
e
�
Pn

jD1h� j;B.�;tj/il2 j Bt



is a version of

EP

	
e
�
Pn

jD1h� j;B.�;tj/il2 j BCt


:

Let F be the set of bounded functions f for which

EP
�
f .h�1;B.
; t1/il2 ; : : : ; h�n;B.
; tn/il2 / j Bt

�
is a version of EP

�
f .h�1;B.
; t1/il2 ; : : : ; h�n;B.
; tn/il2 / j BCt

�
. It is a �-system [184,

p. 547] which contains the�-system [184, p. 547] of trigonometric polynomials, and
thus the bounded, real valued functions adapted to the �-algebra generated by the
trigonometric polynomials [184, p. 550]. Since trigonometric polynomials generate
L2 spaces over finite intervals [134, p. 123], indicator functions of Borel sets in IRn

are included in the latter family.
The family of indicator functions of sets in[

n2N
�
�h�1;B.
; t1/il2 ; : : : ; h� n;B.
; tn/il2

�

forms a �-system, as the product of two indicators is an indicator. From what has
been seen above, it is contained in the family of indicator functions of measurable
sets �C for which EPŒ�C j Bt� is a version of EPŒ�C j BCt �. But that latter family
forms a �-system by its very definition, and, again because of the monotone class
theorem, the property extends to bounded functions adapted to B1. One then applies
Theorem 9.7.1 of [264, p. 238]. ut

11.1.2 The Reproducing Kernel Hilbert Space
of a Cramér-Hida Process

The aim here is to describe the RKHS of B, and that of structurally similar processes.
The latter reveal the increase of complexity arising when going from Gaussian
martingales to Cramér-Hida processes.

What follows [51] allows one to define the RKHS of a process with values in l2,
whose covariance is a positive definite function with values in a space of operators
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of l2. Let thus S be a set, and K be a real Hilbert space. A K-reproducing kernel
Hilbert space (K-RKHS) is a Hilbert space of functions H.S;K/ � KS, with domain
S, and range in K, for which, given s 2 S, fixed, but arbitrary, there exists �.s/ such
that, for h 2 H, fixed, but arbitrary,

jjEsŒh�jjK D jjh.s/jjK � �.s/ jjhjjH.S;K/ :

Es W H.S;K/ �! K, the evaluation map at s 2 S, is thus an operator which is linear
and bounded.

A K-covariance is a symmetric map H W S � S �! L.K;K/, the set of bounded,
linear operators of K, such that, for n 2 N, fs1; : : : ; sng � S, f˛1; : : : ; ˛ng � R,
fixed, but arbitrary, for k 2 K, fixed, but arbitrary,

nX
iD1

nX
jD1

˛i˛j
˝
H.sj; si/Œk�; k

˛
K D

*8<
:

nX
iD1

nX
jD1

˛i˛jH.sj; si/

9=
; Œk�; k

+
K

� 0:

Given a K-RKHS H.S;K/, there is a K-covariance associated with it as follows. Let

H.s1; s2/ D Es1E?s2 2 L.K;K/:

Then indeed

nX
iD1

nX
jD1

˛i˛j
˝
H.sj; si/Œk�; k

˛
K D

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌ nX

iD1
˛iE?si

Œk�

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
H

:

Let 	 W S �! L .K;H.S;K// be defined using the following relation:

	 .s/ D E?s :

Then H.s1; s2/ D 	 .s1/?	 .s2/.
The following properties obtain.

1. H just defined reproduces the functions h W S �! K of H.S;K/ in the following
sense. 	 .s/ sends k 2 K to a function of H.S;K/, so that one may compute

	 .s/Œk�.x/ D Ex Œ	 .s/Œk�� D Ex
�
E?s Œk�

� D H.x; s/Œk� D Ex ŒH.
; s/Œk�� :

Thus 	 .s/Œk� is the function x 7! H.x; s/Œk�. Furthermore, for h in H.S;K/, fixed,
but arbitrary,

hh.s/; kiK D
˝
h; E?s Œk�

˛
H.S;K/ D hh; 	 .s/Œk�iH.S;K/ D hh;H.
; s/Œk�iH.S;K/ ;
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so that, given the orthonormal basis
˚
eK

i ; i 2 I
�

for K,

h.s/ D
X
i2I

˝
h.s/; eK

i

˛
K

eK
i D

X
i2I

˝
h;H.
; s/ŒeK

i �
˛
H.S;K/

eK
i :

2. The following family of functions of H.S;K/,

F D ˚H.
; s/Œk� D E?s Œk� D 	 .s/Œk�; s 2 S; k 2 K
�
;

is total in H.S;K/, that is,

([
s2S

RŒE?s �
) ?
D 0H.S;K/:

Indeed [266, p. 35], for a set A in a Hilbert space, and the linear manifold V.A/
it generates,

A? D fV.A/g? D
n
V.A/

o?
;

so that [126, 266, p. 24, respectively 71],

([
s2S

RŒE?s �
)?
D
(_

s2S

RŒE?s �
) ?
D
\
s2S

N ŒEs�

only contains the zero function.
3. Convergence in H.S;K/ implies “point-wise” convergence, and uniform conver-

gence over sets over which the diagonal of H is bounded. One has indeed that

jjh.s/jjK D jjEsŒh�jjK � jjEsjj jjhjjH.S;K/ ;

and that

jjH.s; s/jj D ˇ̌̌̌EsE?s
ˇ̌̌̌ D ˇ̌̌̌E?s ˇ̌̌̌ 2 D jjEsjj2 :

4. Given a K-covariance H, there is a unique K-RKHS whose kernel is H.
Let H0 � KS be the manifold generated by the family

fH.
; s/Œk�; s 2 S; k 2 Kg



860 11 Calculus for Cramér-Hida Processes

(it is the family F of item 2). A bilinear form on H0 may be defined as follows:

h1 D
mX

iD1
˛
.1/

i H.
; s.1/i /Œk
.1/

i �;

h2 D
mX

iD1
˛
.2/

i H.
; s.2/i /Œk
.2/

i �;

hh1; h2iH0 D
*

mX
iD1

˛
.1/

i H.
; s.1/i /Œk
.1/

i �;

nX
jD1

˛
.2/

j H.
; s.2/j /Œk
.2/

j �

+
H0

D
mX

iD1

nX
jD1

˛
.1/

i ˛
.2/

j

D
H.s.2/j ; s

.1/

i /Œk
.1/

i �; Œk
.2/

j �
E
K
:

That indeed makes sense. Let to that end ˚0 W F �F �! R be defined using the
following relation:

˚0.H.
; s1/Œk1�;H.
; s2/Œk2�/ D hH.s2; s1/Œk1�; k2iK :

Suppose that
Pn

iD1 ˛iH.
; si/Œki� is the zero function from S to K. Then

nX
iD1

˛i˚0.H.
; si/Œki�;H.
; s/Œk�/ D
nX

iD1
˛i hH.s; si/Œki�; kiK

D
*

nX
iD1

˛iH.s; si/Œk1�; k

+
K

D 0:

The bilinear form just defined also reproduces the functions of H0. Indeed, letting
h.s/ DPn

iD1 ˛iH.s; si/Œki�,

hh;H.
; s/Œk�iH0 D
*

nX
iD1

˛iH.
; si/Œki�;H.
; s/Œk�
+

H0

D
*

nX
iD1

˛iH.s; si/Œki�; k

+
K

D
*
Es

"
nX

iD1
˛iH.
; si/Œki�

#
; k

+
K

D hEsŒh�; kiK :
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It remains to check that the bilinear form is an inner product. Let h 2 H0 be fixed,
but arbitrary. Suppose that k 2 K has norm one. Then

jhh.s/; kiK j D
ˇ̌̌˝

h; E?s Œk�
˛
H0

ˇ̌̌
� jjhjjH0

ˇ̌̌̌
E?s
ˇ̌̌̌
;

so that jjh.s/jjK � jjhjjH0
ˇ̌̌̌
E?s
ˇ̌̌̌
, and thus h is the zero function when its H0-norm

is zero.
The following inequality shall be used tacitly below:

jjH.
; s/Œk�jj2H0 D hH.
; s/Œk�;H.
; s/Œk�iH0
D hH.s; s/Œk�; kiK
� jjH.s; s/jj jjkjj2K :

Let H be the completion of H0 for the inner product just defined. Let
	 .s/ W K �! H be defined using the following relation:

	 .s/Œk� D ŒH.
; s/Œk��H ;
where Œ
�H denotes equivalence class. Since

jj	 .s/Œk�jjH D jjH.
; s/Œk�jjH0 � jjH.s; s/jj
1
2 jjkjjK ;

	 .s/ is an operator that is linear and bounded. Define then J W H �! KS using
the following relation:

JŒh�.s/ D 	 .s/?Œh�:
J is an injection. Suppose indeed that JŒh� is the zero function. Then, for all s 2 S,

h 2 N Œ	 .s/?� D RŒ	 .s/�?;

and, since
S

s2S RŒ	 .s/� generates the inclusion of H0 in H, h D 0H. Thus H
may be identified with H.S;K/ D JŒH� � KS. Let

hJŒh1�; JŒh2�iH.S;K/ D hh1; h2iH :

With that inner product, H.S;K/ is a Hilbert space, and J is unitary. Furthermore

jjEs ŒJŒh��jjK D jjJŒh�.s/jjK
D jj	 .s/?Œh�jjK
� jj	 .s/?jj jjhjjH
D jj	 .s/?jj jjJŒh�jjH.S;K/ ;
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so that H.S;K/ is a K-RKHS. Furthermore, since

Es ŒJŒh�� D JŒh�.s/ D 	 .s/?Œh� D 	 .s/?J?JŒh�;

Es D 	 .s/?J?. Consequently,

Es1E?s2 D 	 .s1/?	 .s2/;

and then ˝
Es1E?s2 Œk1�; k2

˛
K
D h	 .s2/Œk1�; 	 .s1/Œk2�iH
D hŒH.
; s2/Œk1��H ; ŒH.
; s1/Œk2��HiH
D hH.
; s2/Œk1�;H.
; s1/Œk2�iH0
D hH.s1; s2/Œk1�; k2iK ;

so that H is the reproducing kernel of H.S;K/. The RKHS so obtained is unique
as there is only one completion of H0 [129, p. 21].

5. Let S be a set, H and K, real Hilbert spaces, and L W H �! KS, a map. The
following statements are equivalent (equivalences, denoted e-):

(i) For s 2 S, fixed, but arbitrary, there is �.s/ such that, for h 2 H, fixed, but
arbitrary,

jjLŒh�.s/jjK � �.s/ jjhjjH :

(ii) There is a map 	 W S �! L.K;H/ such that, for s 2 S and h 2 H, fixed, but
arbitrary,

LŒh�.s/ D 	 .s/?Œh�:

(iii) L is a partial isometry from H onto a K-RKHS H.S;K/ � KS.

When these statements are true, then (consequences, denoted c-):

(i) NL D
˚S

s2S RŒ	 .s/�
�?

;
(ii) the reproducing kernel of H.S;K/ is H.s1; s2/ D 	 .s1/?	 .s2/;

(iii) Es D 	 .s/?L?, where L is the partial isometry of e-(iii).

Indeed:

[e-(i))e-(ii)] By definition, for h 2 H, and s 2 S, fixed, but arbitrary,
LŒh�.s/ 2 K. Thus the assignment 	 ?.s/ W H �! K obtained when setting
	 ?.s/Œh� D LŒh�.s/ is well defined. Furthermore, by assumption,

jj	 ?.s/Œh�jjK D jjLŒh�.s/jjK � �.s/ jjhjjH ;
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so that 	 ?.s/ 2 L.H;K/, and its transpose, denoted 	 .s/, is well defined,
linear, and bounded. Since 	 .s/? D 	 ?.s/, e-(ii) is true.

[e-(ii))e-(i)] That is immediate from the assumption, and the fact that 	 .s/?

is bounded.
[e-(ii))c-(i)] Suppose that LŒh� is the zero function. Then, as

LŒh�.s/ D 	 .s/?Œh�;

using in succession [126, 266, 266, p. 71, respectively, 24, and 35],

h 2
\
s2S

N Œ	 .s/?� D
\
s2S

RŒ	 .s/�? D
(_

s2S

RŒ	 .s/�
) ?
�
([

s2S

RŒ	 .s/�
) ?

;

so that

N ŒL� �
([

s2S

RŒ	 .s/�
) ?

:

Suppose conversely that h 2 ˚Ss2S RŒ	 .s/�
�?

. Then, for s 2 S, and k 2 K,
fixed, but arbitrary, 0 D hh; 	 .s/Œk�iH D h	 .s/?Œh�; kiK , so that, for s 2 S,
fixed but arbitrary, LŒh�.s/ D 	 .s/?Œh� D 0. LŒh� is thus the zero function, and

([
s2S

RŒ	 .s/�
) ?
� N ŒL�:

In particular L is injective on N ŒL�? .
[e-(ii))e-(iii)] Let H.S;K/ D RŒL� be given the following Hilbert space

structure:

hLŒh1�;LŒh2�iH.S;K/ D hh1; h2iH :

Let� be L as a map from H onto H.S;K/. It is a partial isometry, with N ŒL�?
as initial set. Thus �?� is the projection onto N ŒL�? . One must prove that
H.S;K/, with its inner product, is a K-RKHS. To that end, let h� D �Œh�,
h D h1 C h2; h1 2 N ŒL�; h2 2 N ŒL�?. Then

h�.s/ D �Œh�.s/ D LŒh2�.s/ D 	 .s/?Œh2� D 	 .s/?�?�Œh� D 	 .s/?�?Œh��:

It follows that Es D 	 .s/?�? is continuous, and thus that H.S;K/ is a
K-RKHS, so that c-(iii) obtains.
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[e-(ii))c-(ii)] Since e-(ii) implies c-(iii), the reproducing kernel of H.S;K/
is obtained as

Es1E?s2 D 	 .s1/?�?�	 .s2/ D 	 .s1/?PN ŒL�?	 .s2/ D 	 .s1/?	 .s2/:

[e-(iii))e-(ii)] It suffices to prove that e-(i) follows from e-(iii). But

jjLŒh�.s/jjK D jjEs ŒLŒh��jjK � jjEsjj jjLŒh�jjH.S;K/ � jjEsjj jjhjjH :

The treatment of the case of B takes into account the properties specific to
that process, and one then needs some results from calculus for operator valued
functions. The reference is [106, 7.4, 7.8 and 12.5].

Some Calculus for Operator Valued Functions

One shall peruse below the “standard” classes of compact operators for Hilbert
space (Hilbert-Schmidt and trace-class). The only facts needed here [235] are that
the Hilbert-Schmidt operators form a Hilbert space (denoted B2.H/), and the trace-
class ones, a Banach space (denoted B1.H/), with respective inner product, and
norm, as used. The continuous linear functionals of B1.H/ are of the following form
[235, p. 47]: L.T/ D trace.TL/, where T has finite trace, and L is a bounded, linear
operator.

Let S be a �-algebra of subsets of a set S, and H, a real and separable Hilbert
space. Suppose that M W S �! B1.H/ is additive, and of bounded variation (for the
trace-class norm). Let jMjTC denote the variation of M (for the trace-class norm).
There exists then DM W S �! B1.H/, adapted to S, and the Borel sets of B1.H/,
such that:

1. when the values of M are positive (self-adjoint) operators, one may choose the
values of DM to be positive (self-adjoint) operators;

2. almost surely, with respect to jMjTC , jjDM.s/jjTC D 1, and , when M is positive
and self-adjoint, D1=2

M .s/ is Hilbert-Schmidt;
3. for S0 2 S, fixed, but arbitrary,

M.S0/ D
Z

S0

DM.s/ jMjTC .ds/;

where the integral is a weak integral, that is, for a fixed, but arbitrary (operator)
functional T 7! L.T/,

LŒM.S0/� D
Z

S0

LŒDM.s/� jMjTC .ds/I

4. jjM.S0/jjTC �
R

S0
jjDM.s/jjTC jMjTC .ds/ D jMjTC .S0/.
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The following considerations depend on the assumption that the diagonal of S � S
belongs to S ˝ S, and that is the case when S is a complete, separable metric space
[106, p. 613]. Let m W S �! R be additive, with bounded variation jmj, and L, a
map, defined on S, with values in the space of bounded, linear operators of H. It is
assumed that, for fh1; h2g � H, fixed, but arbitrary, s 7! hL.s/Œh1�; h2iH is adapted,
and that s 7! jjL.t/jj is integrable with respect to jmj. Then there is a unique bounded,
linear operator Im fLg, the weak integral of L with respect to m, such that

1. for fh1; h2g � H, fixed, but arbitrary,

hIm fLg Œh1�; h2iH D
Z

S
hL.s/Œh1�; h2iH m.ds/I

2. jjIm fLgjj �
R

S jjL.s/jj jmj .ds/;
3. when, for s 2 S, fixed, but arbitrary, L.s/ is Hilbert-Schmidt, and the Hilbert-

Schmidt norm of L.s/ is integrable with respect to jmj, the weak integral is
a Hilbert-Schmidt operator, and one may replace operator norm with Hilbert-
Schmidt norm; mutatis mutandis, one may replace Hilbert-Schmidt by trace-
class, and then one has furthermore that s 7! traceL.s/ is adapted, and that

trace.Im fLg/ D
Z

S
trace.L.s//m.ds/:

Let again s 7! L.s/ be a map whose values are bounded, linear operators of H, and
S0 7! M.S0/ be a map whose values are positive operators with finite trace. Then,
provided the required assumptions are made, one may define an integral IM fLg using
the following relation:

IM fLg D IjMjTC
fLDMg :

Manifolds and Subspaces Generated by Functions Whose Values
Are Hilbert-Schmidt Operators

Let .˝;A;P/ be a probability space, and H, a real and separable Hilbert space.
Let LH

2 .˝;A;P/ be the Hilbert space of equivalence classes of random elements
X W ˝ �! H such that

EP

h
jjXjj2H

i
<1:

The inner product of LH
2 .˝;A;P/ is computed according to the following formula:

hX;YiLH
2 .˝;A;P/ D EP ŒhX;YiH� D trace.CX;Y/;

where CX;Y is the (cross-)covariance operator of X and Y [12].
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A subspace K of LH
2 .˝;A;P/ is invariant when, for a fixed, but arbitrary,

bounded, linear operator L of H, L.K/ � K .L.K// is the set of the elements obtained
as compositions of elements of K with L. Given a fixed, but arbitrary subset K0 of
LH
2 .˝;A;P/, there is a smallest invariant subspace that contains it. It is obtained as

the closure in LH
2 .˝;A;P/ of the family of elements of the following form:

nX
iD1

LiŒXi�;

where:

1. fL1; : : : ;Lng is a family of bounded, linear operators of H;
2. fX1; : : : ;Xng � K0.

Suppose now that H D B2.H/, and that P D jMjTC (one assumes thus
that M has total trace-class variation equal to one, which is the case for
Cramér-Hida processes). The elements X are then (equivalence classes of)
functionss 7! L.s/ 2 B2.H/, and

hL1;L2iLB2.H/
2 .S;S;jMjTC/

D
Z

S
hL1.s/;L2.s/iHS jMjTC .ds/

D
Z

S
trace

�
L1.s/L

?
2 .s/

� jMjTC .ds/:

Let K denote LB2.H/
2 .S;S; jMjTC/, and LŒM� � K be the subset of those classes

of functions s 7! L.s/ for which, for fixed, but arbitrary h 2 H, when
DM.s/Œh� D 0H, almost surely, with respect to jMjTC, then L.s/Œh� D 0H, that
is, N ŒDM.s/� � N ŒL.s/�. LŒM� is a subspace of K.

Let L0ŒM� be the subset of LŒM� made of the classes of elements of the following
form:

L.s/ D
(

nX
iD1

�Si
.s/Li

)
ı D1=2

M .s/;

where fS1; : : : ; Sng � S is a partition of S in S, and fL1; : : : ;Lng are bounded, linear
operators of H. L0ŒM� is a dense manifold of LŒM�.

As, for L1 and L2 Hilbert-Schmidt, L1L?2 has finite trace, on K, one may also
define the following bilinear map which is, in fact, an inner product:

ŒL1;L2�M D
Z

S
L1.s/L

?
2 .s/ jMjTC .ds/;

and obtain an operator of H of finite trace, provided the associated norms are
integrable.
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The Case of B

Let C be the covariance function of B. It is a continuous function, with, for the
trace norm, bounded variation. Let M be defined using the following relation:
M.�t1; t2�/ D C.t2/ � C.t1/. M can be extended to a measure on the Borel sets
of Œ0; 1�, with values in the Banach space of operators with finite trace [75, p. 208].
jMj shall be the trace norm variation. The properties of absolute continuity attached
to B allow one to identify DM as a diagonal matrix, whose diagonal elements are the
Radon-Nikodým derivatives dMn

dMb
, where Mn is the measure attached to bn, and Mb,

that attached to b. That fact however is here of marginal relevance.
Let X W ˝ � Œ0; 1� �! l2 be a process with mean zero and covariance function

.t1; t2/ 7! C.t1 ^ t2/. Let

MX.�t1; t2�/ D X.
; t2/� X.
; t1/:

MX is thus defined on the semiring of intervals �t1; t2�. Furthermore

E1=2

P

hˇ̌̌̌
MX.�t1; t2�/

ˇ̌̌̌
2

l2

i
� Mb.�t1; t2�/:

Consequently X, as a map with domain Œ0; 1�, and values in the Hilbert space
K D Ll2

2 .˝;A;P/, is continuous, and a map of bounded variation. MX thus extends
to a measure on the Borel sets of Œ0; 1�, with values in K. It has orthogonal values
on disjoint sets because of the latter inequality.

Let fL1;L2g � L0ŒM� be fixed, but arbitrary. One may assume that (the sets Si’s
are the same in both sums)

L1.t/ D
(

nX
iD1

�Si
L.1/

i

)
ı D1=2

M .t/; and L2.t/ D
(

nX
iD1

�Si
L.1/

2

)
ı D1=2

M .t/:

Then, by definition,

ŒL1;L2�M D
nX

iD1

Z
Si

n
L.1/

i DM.t/
�
L.2/

i

�?o jMj .dt/:

Let �1.t/ DPn
iD1 �Si

L.1/

i , and define a simple integral using the following relation:

X1 D
Z 1

0

�1.t/MX.dt/ D
nX

iD1
Li
�
MX.Si/

�
:
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X2, and �2, its integral, are defined analogously. Then:

EP
�hX1; ˛1il2 hX2; ˛2il2� D

D EP

2
4* nX

iD1
L.1/

i ŒMX.Si/�; ˛1

+
l2

*
nX

iD1
L.2/

i ŒMX.Si/�; ˛2

+
l2

3
5

D
nX

iD1

nX
jD1

EP

	D
MX.Si/;

�
L.1/

i

�?
Œ˛1�

E
l2

D
MX.Sj/;

�
L.2/

j

�?
Œ˛2�

E
l2




D
nX

iD1

D
M.Si/

h�
L.1/

i

�?
Œ˛2�

i
;
�
L.2/

i

�?
Œ˛1�

E
l2

D
*

nX
iD1

L.2/

i M.Si/
�
L.1/

i

�?
Œ˛2�; ˛1

+
l2

D
*

nX
iD1

L.1/

i M.Si/
�
L.2/

i

�?
Œ˛1�; ˛2

+
l2

;

so that

CX1;X2 D
nX

iD1
L.1/

i M.Si/
�
L.2/

i

�?

D
nX

iD1

Z
Si

L.1/

i DM.t/
�
L.2/

i

�? jMj .dt/

D ŒL1;L2�M:

Let K.X/ be the invariant subspace generated by the values of MX , and

U W
(

nX
iD1

�Si
L.1/

i

)
ı D1=2

M 7!
Z 1

0

nX
iD1

�Si
L.1/

i dMX:

From what precedes U is an unitary operator from L0.M/, with the Œ 
; 
 �M inner
product, to a family generating the invariant subspace K.X/ with the covariance
inner product. The extension of U yields the integral with respect to MX , that is,
when L is a map with Œ0; 1� as domain, and bounded, linear operators as values,
such that

LD1=2

M 2 LŒM�;
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then Z 1

0

L.t/MX.dt/ D U
�
LD1=2

M

�
:

To obtain the reproducing kernel one proceeds as follows. Let F.t/ be the class of

�
Œ0;t�D

1=2

M 2 LŒM�:

It is a map from Œ0; 1� into the space of Hilbert-Schmidt operators. Then, in
particular,

ŒF.t1/;F.t2/�M D C.t1 ^ t2/:

The functions in the RKHS of the process X, or the covariance C.t1 ^ t2/, are
obtained as follows. Let

LF W LŒM� �! B2.l2/Œ0;1�

be defined by the following relation:

LF
�
LD1=2

M

�
.t/ D ŒLD1=2

M ;F.t/�M D
Z 1

0

�Œ0;t�.�/L.�/DM.�/ jMj .d�/:

Since the following identity: ŒLD1=2

M ;F.t/�M D 0B1.l2/, for t 2 Œ0; 1�, fixed, but
arbitrary, implies that L is the zero operator, LF is a unitary map, so that the RKHS
is isomorphic to LŒM� which is, in turn, isomorphic to K.X/.

H.S;K/ is the range of LF . Since LF ŒF.t/� .�/ D ŒF.t/;F.�/�M D C.t ^ �/,
LFŒF.t/� is the map � 7! C.t ^ �/, and˝

LFŒLD1=2

M �;C.t ^ 
/
˛
H.S;K/ D

˝
LFŒLD1=2

M �;LFŒF.t/�
˛
H.S;K/

D ŒLD1=2

M ;F.t/�

D LFŒLD1=2

M �.t/:

11.2 Families of Integrands

In the sequel one shall integrate some families of processes (the a’s in IB fag) which
are listed once their path spaces are described. Those are:
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1. L2 Œbn� and L2 Œbn�:
Let a W Œ0; 1� �! R be adapted to B.Œ0; 1�/ and B.R/, and have the property

that Z 1

0

a2.t/Mn.dt/ <1:

a is an element of L2 Œbn�. The equivalence classes of elements of L2 Œbn� form
L2 Œbn�. The equivalence class of a shall be denoted Œa�n and the norm of the latter,

jjŒa�njjn :

2. L2 Œb � and L2 Œb �:
Let a denote the vector with components an 2 LnŒbn�; n 2 N, and b that with

components bn. L2 Œb � is the family of those a’s for which

1X
nD1

Z 1

0

a2n.t/Mn.dt/ <1:

Let Œa � be the vector with components Œan�n. When a “runs through” L2Œb �, Œa �
generates L2Œb �. One has that (˚ denoting the Hilbert direct sum)

L2 Œb� D
1M

nD1
L2 Œbn� ; and jjŒa�jj2

L2Œ b � D
1X

nD1
jjŒan�njj2n :

Remark 11.2.1 Notation L2 Œb � has the following rationale [46, p. 143].

• Let f.˝�;A�/; � 2 �g be an indexed family of measurable spaces with the
property that the sets ˝� are pairwise disjoint. Then by the direct sumM

�2�
.˝�;A�/

is meant the measurable space .˝;A/, where ˝ D S
�2� ˝�, and A is the

�-algebra consisting of all those sets A of˝ with the property that A\˝� 2 A�,
for every index � 2 �.

• When there is given a measure�� on .˝�;A�/, for each index �, the set function
� defined using the following relation:

�.A/ D
X
�2�

��.A \˝�/; A 2 A;

is a measure on .˝;A/.
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• The measure space .˝;A; �/ is called the direct sum of the family

f.˝�;A�; ��/; � 2 �g :

• .˝;A/ contains each of the measure spaces .˝�;A�/ as a subspace.
• A function f on˝ is adapted to A if, and only if, f j˝� is adapted to A�, for every

index �.
• When f is adapted to A, it is integrable for � if, and only if, the indexed family�Z

˝�

jf j d��; � 2 �
�

is summable, in which caseZ
˝

f d� D
X
�2�

�Z
˝�

f d��

�
:

When one lets � be N, ˝n D .n; Œ0; 1�/, An D .n;B.Œ0; 1�//, and �n D Mn,
L2Œb � becomes a bona fide L2-space.

One shall use, in the sequel, the following notation:

1. For S W ˝ �! Œ0; 1� (random time),

ŒŒ0; S�� D f.!; t/ 2 ˝ � Œ0; 1� W 0 � t � S.!/g :

2. ajt D �Œ0;t�a, and ajS D �ŒŒ0;S��a.

The following families of integrands shall be used:

1. I0 Œb �:
It shall be the family of stochastic processes a, with components an, with the

following properties:

(i) an W ˝� Œ0; 1� �! R is adapted to .˝;A;P/, and progressively measurable;
(ii) P .! 2 ˝ W Œa.!; 
/� 2 L2 Œb�/ D 1, that is (it shall be the preferred nota-

tion),

P
�
! 2 ˝ W jjŒa.!; 
/�jj2

L2Œ b � <1
�
D

D P

 
! 2 ˝ W

1X
nD1

Z 1

0

a2n.!; t/Mn.dt/ <1
!
D 1:
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2. I2 Œb �:
It shall be the subset of I0 Œb � made of those elements a for which

EP

h
jjŒa.
; 
/�jj2

L2Œ b �

i
D
1X

nD1

Z 1

0

EP
�
a2n.
; t/

�
Mn.dt/ <1:

3. I loc
2 Œb �:

It shall be the family of stochastic processes a, with components an, with the
following properties:

(i) an W ˝� Œ0; 1� �! R is adapted to .˝;A;P/, and progressively measurable;
(ii) there is a localizing sequence fSn; n 2 Ng for which ajSn

2 I2 Œb �.

The assumption that the integrands are progressively measurable is essentially
minimal, as an adapted, measurable process has a version that is progressively
measurable [192, p. 68]. One shall see below that

.I2 Œb� �/ I0 Œb � � I loc
2 Œb� :

Those inclusions are strict. I0Œb � is the class of processes that enter “naturally” the
developments related to the Cramér-Hida decomposition as it represents the class of
signals that are almost surely in the RKHS of the noise, a central characterization of
nonsingular detection. I2Œb� and I loc

2 Œb� are required for the definition of a stochastic
integral that adequately accommodates the present context of I0Œb �.

To prove the latter inclusion one needs the following lemma that allows one to
“ignore” the fact that the infinite sum in (ii) of item 1 above is finite only almost
surely.

Lemma 11.2.2 Let a 2 I0 Œb � be fixed, but arbitrary, and

A.!; t/ D
1X

nD1

Z t

0

a2n.!; �/Mn.d�/:

1. A is adapted, continuous to the left, and separable;
2. there exists a progressively measurable Oa that equals a, path by path, almost

surely with respect to P, such that the “corresponding” A, denoted OA, has
continuous paths.

Whenever an A process shall be encountered, one shall assume that it is OA.

Proof Let An.!; t/ D Pn
iD1

R t
0 a2i .!; �/Mi.d�/. Since An is adapted, so is A. The

latter is continuous to the left, by definition and monotone convergence (but, for
some!’s, could have an infinite left limit), and, consequently, separable [264, p. 36].
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The map t 7! A.!; t/ is not continuous to the right at t < 1 when A.!; t/ <1, but
A.!; tC 1

n / D 1 for all sufficiently large n 2 N. Let

I.!; t/ D �
RC
.A.!; t// D

8<
:
1 when A.!; t/ <1

0 when A.!; t/ D1
;

and

Oa.!; t/ D I.!; t/a.!; t/:

Since A is adapted and continuous to the left, I.!; t/ is adapted and continuous to
the left, and Oa is thus progressively measurable [264, p. 40]. One has that a.!; 
/ ¤
Oa.!; 
/ when there is a t 2 Œ0; 1Œ such that A.!; t/ D 1, and, since A.!; t/ D 1
implies A.!; 1/ D 1,

f! 2 ˝ W Oa.!; 
/ ¤ a.!; 
/g � f! 2 ˝ W A.!; 1/ D1g ;

a set of probability zero, so that a and Oa are almost surely equal. One then sets

OA .!; t/ D
1X

nD1

Z t

0

Oa2n.!; �/Mn.d�/:

For every !, t 7! OA.!; t/ is continuous to the left, again by monotone convergence.
Suppose that A.!; t/ <1, but A.!; tC 1

n / D 1 for all sufficiently large n 2 N.
Then, given u > t, fixed, but arbitrary, there is n 2 N such that tC 1

n < u, and then,
for n large enough, A.!; tC 1

n / � A.!; u/ D 1, and Oa.!; u/ D 0. Consequently,

1X
nD1

Z
�t;1�
Oa2n.!; �/Mn.d�/ D 0;

and thus, for u > t,

1X
nD1

Z u

0

Oa2n.!; �/Mn.d�/ D
1X

nD1

Z t

0

Oa2n.!; �/Mn.d�/:

ut
Proposition 11.2.3 I0 Œb� � I loc

2 Œb �.
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Proof Let a 2 I0 Œb � be fixed, but arbitrary. Let OA be the continuous version of A,
obtained in (Lemma) 11.2.2, and, for n 2 N, fixed, but arbitrary,

Sn.!/ D
8<
:1 when

n
t 2 Œ0; 1� W OA.!; t/ � n

o
D ;

inf
n
t 2 Œ0; 1� W OA.!; t/ � n

o
when

n
t 2 Œ0; 1� W OA.!; t/ � n

o
¤ ; :

Since OA is continuous and adapted, Sn is a strict stopping time of A [264, p. 38],
and the sequence fSn; n 2 Ng is increasing. Since, almost surely with respect to P,
A.!; 1/ is finite, almost surely with respect to P, limn Sn.!/ D 1, and, since, almost
surely with respect to P, t 7! A.!; t/ is continuous, almost surely with respect to P,
A.!; Sn.!// � n. Thus

EP ŒA.
; Sn.
//� � n;

and that means ajSn
2 I2 Œb�, or a 2 I loc

2 Œb�. ut
Remark 11.2.4 In the sequel, repeated use shall be made of the sequence
fSn; n 2 Ng defined in (Proposition) 11.2.3. The reference shall be: “the localizing
sequence of (Proposition) 11.2.3.”

Remark 11.2.5 The inclusion in (Proposition) 11.2.3 is strict. Here is an example.
Let

bn.t/ D 2�nt; and an.!; t/ D .1 � t/�1:

Since an is adapted and continuous (to the right at 0, to the left at 1), it is
progressively measurable [264, p. 40]. A.!; t/ is .1 � t/�1, and it then follows that
Sn.!/ D 1�n�1. One thus obtains a localizing sequence. A computation yields that

EP

hˇ̌̌̌
ajSn

ˇ̌̌̌
2

L2Œ b �

i
D n; but jjajj2L2Œ b � D 1:

11.3 Some Stochastic Integrals and Their Properties

One shall call “CH-stochastic integral” the limit, in an appropriate sense, of sums of
the form

nX
iD1

Z t

0

ai.!; �/Bn.!; d�/:

As indicated in the introduction to the chapter, that limit shall be denoted IB fag.
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11.3.1 Definition of the Integral

The CH-stochastic integral shall be defined for integrands in I loc
2 Œ b �, which is

enough for present purposes. It will be, locally, a martingale in L2.
Let a 2 I loc

2 Œb�, and fSn; n 2 Ng be a localizing sequence. Then, since, for p 2 N,
fixed, but arbitrary,

EP

hˇ̌̌̌
apjSn

ˇ̌̌̌ 2
L2Œ bp �

i
� EP

hˇ̌̌̌
ajSn

ˇ̌̌̌ 2
L2Œ b �

i
<1;

fSn; n 2 INg is a localizing sequence for ap. The (one-dimensional) stochastic
integral

IBp

˚
ap
� D Z �

0

ap dBp

is thus well defined [264, p. 116]. So is then the sum

IBp

n
ap

o
D

pX
iD1

Z �
0

ai dBi:

Now, for fn; p; qg � N, and � > 0, fixed, but arbitrary,1

P

 
! 2 ˝ W sup

t2Œ0;Sn.!/�

ˇ̌̌
IBpCq

n
apCq

o
.!; t/ � IBp

n
ap

o
.!; t/

ˇ̌̌
> �

!
�

� ��2EP

2
4( sup

t2Œ0;Sn �

ˇ̌̌
IBpCq

n
apCq

o
.
; t/� IBp

n
ap

o
.
; t/

ˇ̌̌) 235

� 4��2EP

"
qX

iD1

Z Sn

0

a2pCi.
; t/MpCi.dt/

#
:

The justification for those inequalities is as follows. The first one is Markov
inequality [138, p. 164], and the second, Doob’s [264, p. 104], taking into account
that the quadratic variation of

�
IBpCq

n
apCq

o
.
; t/ � IBp

n
ap

o
.
; t/

�Sn D
qX

iD1

Z Sn

0

apCi dBpCi

1One could invoke the maximal inequality relating probability and expectation, but, in [264],
matters are so presented that the longer expression yields a shorter reference.
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is

qX
iD1

qX
jD1

Z Sn

0

apCi apCj dhBpCi;BpCji D
qX

iD1

Z Sn

0

a2pCi dMpCi:

In that latter calculation, one uses the following facts about quadratic variation:

1. formulae 7.3.2 in [264, p. 162], and 7.4.3 in [264, p. 174];
2. for continuous martingales the brackets Œ � and h i are equal [264, p. 148];
3. hBpCi;BpCji D 0 when i ¤ j.

Since

EP

hˇ̌̌̌
ajSn

ˇ̌̌̌ 2
L2Œ b �

i
D EP

2
4 1X

pD1

Z Sn

0

a2p dMp

3
5

is finite,

lim
p;q

P

 
! 2 ˝ W sup

t2Œ0;Sn.!/�

ˇ̌̌
IBpCq

n
apCq

o
.!; t/ � IBp

n
ap

o
.!; t/

ˇ̌̌
> �

!
D 0:

Consequently [264, p. 69], the sequencen
IBp

n
ap

o
; p 2 N

o
converges locally, uniformly in probability, to a process which shall be denoted
IB fag. Since the elements in the sequence may be taken to be continuous to the
right [264, p. 71], and, furthermore, almost surely continuous with respect to P
[264, p. 116], the limit may be, consequently, taken to have the same property [264,
p. 69].

Definition 11.3.1 The process IB fag shall be called the CH-stochastic integral of a
with respect to B.

11.3.2 Properties of the Integral

Local, uniform convergence in probability insures that the “usual” properties of the
stochastic one-dimensional integral obtain for integrals of type IB fag. Only those
properties of use in the sequel shall be listed.



11.3 Some Stochastic Integrals and Their Properties 877

Lemma 11.3.2 Let U and V be two positive random variables, and � > 0 be fixed,
but arbitrary. Then

P.U C V > �/ � P.U > 0/C P.V > �/:

Proof One has that

fU C V > �g D
h
fU C V > �g

\
fU > 0g

i
S h
fU C V > �g

\
fU D 0g

i
� fU > 0g

[
fV > �g :

ut
The CH-stochastic integral of (Definition) 11.3.1 has the properties listed below.

Fact 11.3.3 It is locally a martingale in L2 [264, p. 93].

Fact 11.3.4 Let hIB fagi denote the quadratic variation of IB fag. Then

hIB fagi.!; t/ D
ˇ̌̌̌
ajt.!; 
/

ˇ̌̌̌ 2
L2Œ b �

:

Proof Let, the notation not defined presently being that of the beginning of this
section,

Xp D IBp

n
ap

o
; Ap DPp

iD1
R �
0

a2i dMi;

X D IB fag ; A DP1
iD1

R �
0

a2i dMi:

As seen hXpi D Ap. By Markov inequality [138, p. 164], the probability

P

 
! 2 ˝ W sup

t2Œ0;Sn.!/�

�
ApCq.!; t/ � Ap.!; t/

�
> �

!

is dominated by

��1EP

"
qX

iD1

Z Sn

0

a2pCi dMpCi

#
;

which has limit zero, so that the sequence
˚
Ap; p 2 N

�
converges locally, uniformly

in probability, to a process that can be taken to be continuous to the right and almost
surely continuous, with respect to P, say A? [264, p. 69]. But an analogous inequality
establishes that the same sequence converges locally, uniformly in probability, to A.
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One may thus assume that A has the path properties of A?. It now suffices to check
that X2�A is, locally, a martingale in L2 [264, p. 101]. But, for n 2 N, and t 2 Œ0; 1�,
fixed, but arbitrary, the sequence ˚

ASn
p .
; t/; p 2 N

�
converges in L1 to ASn.
; t/ [192, p. 18]. Furthermore [264, p. 93] the sequence˚

XSn
p .
; t/; p 2 N

�
converges in L2 to XSn.
; t/. Since, for t1 < t2 in Œ0; 1�, fixed, but arbitrary,

EP

h�
XSn

p

�2
.
; t2/� ASn

p .
; t2/ j At1

i
D �XSn

p

�2
.
; t1/� ASn

p .
; t1/;

that relation shall be preserved when taking limits with respect to the index p. ut
Fact 11.3.5 Given f˛1; ˛2g � R, and

˚
a1; a2

� � I loc
2 Œb �, fixed, but arbitrary,

1. ˛1IB
˚
a1
�C ˛2IB

˚
a1
� D IB

˚
˛1a1 C ˛2a2

�
;

2. hIB
˚
a1
�
; IB

˚
a2
�i.
; t/ D ha1jt; a2jtiL2Œ b �;

3. for wide sense stopping times S,

IS
B fag D IB

˚
ajSn

� D IBS fag :

Proof For i 2 Œ1 W 2�, fixed, but arbitrary, let

Xi D IB
˚
ai

�
; Xi;p D IBp

n
ai;p

o
;

Y D IB
˚
˛1a1 C ˛2a2

�
; Yp D IBp

n
˛1a1;p C ˛2a2;p

o
;

Zi;p D Xi � Xi;p; Zp D Y � Yp:

For p 2 N, fixed, but arbitrary, one has that [264, p. 162]

˛1X1;p C ˛2X2;p D Yp:

But, inserting that latter equality,(
! 2 ˝ W sup

t2Œ0;Sn.!/�

j˛1X1.!; t/C ˛2X2.!; t/ � Y.!; t/j > �
)
D

D
(
! 2 ˝ W sup

t2Œ0;Sn.!/�

ˇ̌
˛1Z1;p.!; t/C ˛2Z2;p.!; t/C Zp.!; t/

ˇ̌
> �

)
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�
(
! 2 ˝ W j˛1j sup

t2Œ0;Sn.!/�

ˇ̌
Z1;p.!; t/

ˇ̌
>
�

3

)

S (
! 2 ˝ W j˛2j sup

t2Œ0;Sn.!/�

ˇ̌
Z2;p.!; t/

ˇ̌
>
�

3

)

S (
! 2 ˝ W sup

t2Œ0;Sn.!/�

ˇ̌
Zp.!; t/

ˇ̌
>
�

3

)
;

so that, taking probabilities, and using locally, uniform convergence in probability,
the first relation obtains. The second follows from [264, p. 165]:

hIB
˚
a1
�
; IB

˚
a2
�i D 1

4

˚hIB
˚
a1
�C IB

˚
a2
�i � hIB

˚
a1
� � IB

˚
a2
�i� ;

and both (Facts) 11.3.4 and 11.3.5, item 1, above.
Since IB fag is, locally, the uniform limit in probability of the sequence

n
IBp

n
ap

o
; p 2 N

o
;

the same will be true for the processes stopped at S: IS
B fag is, locally, the uniform

limit in probability of the sequencen
IS
Bp

n
ap

o
; p 2 N

o
:

But the result is true [264, p. 96] for the elements ofn
IBp

n
ap

o
; p 2 N

o
:

Then IB
˚
ajSn

�
is the limit of

n
IBp

n
apjSn

o
; p 2 N

o
;

and IBS fag that of

n
IBS

p

n
ap

o
; p 2 N

o
:

Since the limit of each of these sequences is unique, the stated equalities obtain. ut
Remark 11.3.6 (Property (Fact)) 11.3.5, item 2, has the following consequence:
every Gaussian process N that is continuous in quadratic mean is an isonormal [204,
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p. 4] process with L2Œb� as indexing Hilbert space. That allows time to be taken into
account.

Fact 11.3.7 Let ˛ be a progressively measurable process such that

.˛a/ 2 I loc
2 Œb �:

Then: Z
˛dIB fag D IB f˛ag :

Proof The result is true in the real case [264, p. 171], so that

IB f˛ag D lim
n

IBn

˚
˛an

� D lim
n

Z
˛dIBn

˚
an

�
:

But [264, p. 171]Z
˛dIB fag �

Z
˛dIBn

˚
an

� D Z ˛d
˚
IB fag � IBn

˚
an

��
;

and, for the appropriate localizing sequence fSn; n 2 Ng,

P

�ˇ̌̌
ˇ
Z Sn

˛d
˚
IB fag � IBn

˚
an

��ˇ̌̌ˇ � �
�
D

� ��2EP

	Z Sn

˛2dhIB fag � IBn

˚
an

�i


� ��2EP

"Z
˛2

1X
iDnC1

a2i dMi

#
:

ut
Fact 11.3.8 Let a 2 I0 Œb� be fixed, but arbitrary, and S be a wide sense stopping
time. Then, for � > 0 and ı > 0, fixed, but arbitrary,

P

 
! 2 ˝ W sup

t2Œ0;S.!/�

ˇ̌
IB fag .!; t/

ˇ̌
> �

!
�

� P .! 2 ˝ W A.!; S.!// � ı/C 4 ı
�2
:
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Proof Let fSn; n 2 Ng be the sequence of strict stopping times of (Proposition)
11.2.3. The following integrals are well defined:

IB
˚
ajSn

�
.
; t/; and IB

˚
a � ajSn

�
.
; t/:

Then

sup
t2Œ0;1�

ˇ̌
IB fag .!; t/

ˇ̌ �
� sup

t2Œ0;1�
˚ˇ̌

IB
˚
a � ajSn

�
.!; t/

ˇ̌C ˇ̌IB
˚
ajSn

�
.!; t/

ˇ̌�
� sup

t2Œ0;1�

ˇ̌
IB
˚
a � ajSn

�
.!; t/

ˇ̌C sup
t2Œ0;1�

ˇ̌
IB
˚
ajSn

�
.!; t/

ˇ̌
:

Since the integral processes involved are separable, the suprema are random
variables, and

P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
IB fag .!; t/

ˇ̌
> �

!
� P .! 2 ˝ W U.!/C V.!/ > �/

when

U.!/ D sup
t2Œ0;1�

ˇ̌
IB
˚
a � ajSn

�
.!; t/

ˇ̌
;

V.!/ D sup
t2Œ0;1�

ˇ̌
IB
˚
ajSn

�
.!; t/

ˇ̌
:

It follows from (Lemma) 11.3.2 that

P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
IB fag .!; t/

ˇ̌
> �

!
�

� P .! 2 ˝ W U.!/ > 0/C P .! 2 ˝ W V.!/ > �/ :

For n 2 N, fixed, but arbitrary, set

˝.1/

n D f! 2 ˝ W A.!; 1/ < ng ; and ˝.2/

n D f! 2 ˝ W Sn.!/ D 1g :

The definition of Sn then implies that

˝.1/

n � ˝.2/

n :
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Furthermore, when ! 2 ˝.2/
n , ajSn

.!; 
/ D a.!; 
/. Consequently,

˝.2/

n � f! 2 ˝ W U.!/ D 0g ;

and thus

f! 2 ˝ W U.!/ > 0/ D f! 2 ˝ W U.!/ D 0gc � �˝.2/

n

�c � �˝.1/

n

�c
;

so that

P .! 2 ˝ W U.!/ > 0/ � P
��
˝.1/

n

�c� D P .! 2 ˝ W A.!; 1/ � n/ :

Using again Markov’s [138, p. 164], and Doob’s inequalities [264, p. 58], one
obtains that

P .! 2 ˝ W V.!/ > �/ � 4��2EP

h
I2B
˚
ajSn

�
.
; 1/

i
D 4��2EP

h
I2B fag .
; Sn/

i
D 4��2EP ŒA.
; Sn/�

� 4��2n:

Finally

P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
IB fag .!; t/

ˇ̌
> �

!
� P .! 2 ˝ W A.!; 1/ � n/C 4��2n:

As

P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
IB fag .!; t/

ˇ̌
> �

!
D

D P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
IB
˚
.n=ı/1=2a

�
.!; t/

ˇ̌
> .n=ı/1=2�

!
;

it follows from the last inequality between probabilities that

P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
IB fag .!; t/

ˇ̌
> �

!
�

� P .! 2 ˝ W .n=ı/A.!; 1/ � n/C 4��2 ı:
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Let f W Œ0; 1� �! R denote a fixed, but arbitrary function, and t 2 Œ0; 1� be fixed, but
arbitrary. Then

sup
�2Œ0;t�

f .�/ D sup
�2Œ0;1�

f .� ^ t/;

so that

P

 
! 2 ˝ W sup

t2Œ0;S.!/�

ˇ̌
IB fag .!; t/

ˇ̌
> �

!
D

D P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
IB
˚
ajS
�
.!; t/

ˇ̌
> �

!
:

ut
Fact 11.3.9 Suppose that

˚
a1; a2

� � I2Œb� are fixed, but arbitrary, and that, almost
surely with respect to P,

IB
˚
a1
�
.
; 1/ D IB

˚
a2
�
.
; 1/:

Then a1 D a2 in I2Œb �.

Proof Indeed,

EP

h˚
IB
˚
a1
�
.
; 1/� IB

˚
a2
�
.
; 1/�2i D EP

hˇ̌̌̌
a1 � a2

ˇ̌̌̌ 2
L2Œ b �

i
:

ut
Fact 11.3.10 Let ˛ 2 l2 be fixed, but arbitrary, and let, for n 2 N and t 2 Œ0; 1�,
fixed, but arbitrary, a˛n.t/ D ˛n, the n-th component of ˛. Since

Z 1

0

˚
a˛n
�2

dMn D ˛2nbn.1/ D 2�n˛2n � ˛2n ;

a˛ with components
˚
a˛n; n 2 N

�
belongs to I2Œb � and

IB fa˛g D h˛;Bil2 :
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11.3.3 Stochastic Integrals and Change of Space

One shall also need, for stochastic integrals, transformation formulae analogous toZ
A

f d.P ı T�1/ D
Z

T�1.A/
. f ı T/dP:

To that end, let .˝;A;P/ and .
;B;Q/ be two filtered spaces whose index set is
Œ0; 1�. Let f W ˝ �! 
 be a map such that:

• for t 2 Œ0; 1�, fixed, but arbitrary, f�1.Bt/ � At;
• Q D P ı f�1.

Let X and Y be local martingales for, respectively, .A;P/ and .B;Q/, continuous to
the right, almost surely continuous, and such that

X.!; t/ D Y. f .!/; t/:

Remark 11.3.11 Let F W ˝ � Œ0; 1� �! 
 � Œ0; 1� be the map

.!; t/ 7! . f .!/; t/;

that is,

F D . f ı˘˝; id ı˘Œ0;1�/;

where the ˘ maps are the projections onto the factors. For S
 and SŒ0;1�, sets
respectively in 
 and Œ0; 1�,

F�1
�
S
 � SŒ0;1�

� D f�1.S
/ � SŒ0;1�:

When S
 2 Bt and SŒ0;1� 2 B.Œ0; t�/,

F�1
�
S
 � SŒ0;1�

� 2 At � B.Œ0; t�/:

As [138, p. 46] �.˚�1.S// D ˚�1.�.S//,

f�1.Bt/˝ B.Œ0; t�/ D F�1.Bt ˝ B.Œ0; t�// � At ˝ B.Œ0; t�/:

Finally, as F�1.S \ f
 � Œ0; t�g/ D F�1.S/ \ f˝ � Œ0; t�g, F is adapted to the
progressively measurable sets.

Looking at sets of the form B��t1; t2�, B 2 Bt1 , one sees analogously that F is
adapted to the predictable sets.
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Consequently when  is progressively measurable, or predictable, for B,  ıF is
then progressively measurable, respectively, predictable for A.

Remark 11.3.12 Suppose that hXi D hYi ı F, F as in (Remark) 11.3.11, and let

�.d!; d�/ D P.d!/hXi.!; d�/;
�.d�; d�/ D Q.d�/hYi.�; d�/:

Then

� ı F�1 .B��t1; t2�/ D

D
Z
˝

P.d!/�
f�1.B/

.!/ fhXi.!; t2/� hXi.!; t1/g

D
Z
˝

P.d!/�B. f .!// fhYi. f .!/; t2/� hYi. f .!/; t1/g

D
Z



Q.d�/�B.�/ fhYi.�; t2/ � hYi.�; t1/g

D � .B��t1; t2�/ ;

so that, from
R

C d� D RF�1.C/  ı Fd�, one gets that

Z
C
.�; �/Q.d�/hYi.�; d�/ D

Z
F�1.C/

 ı F.!; �/P.d!/hXi.!; d�/;

and, when C D 
 � Œ0; t�,

EQ

	Z t

0

.
; �/hYi.
; d�/


D EP

	Z t

0

. f .
/; �/hXi.
; d�/


:

Remark 11.3.13 Since

P .! 2 ˝ W �B. f .!// fhYi. f .!/; t2/ � hYi. f .!/; t1/g 2 C/ D
D Q .� 2 
 W �B.�/ fhYi.�; t2/� hYi.�; t1/g 2 C/ ;

and that, for example,

�B.�/ fhYi.�; t2/ � hYi.�; t1/g D
Z 1

0

�B.�/��t1;t2� .�/hYi.�; d�/;
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for appropriate ,

P

�
! 2 ˝ W

Z 1

0

. f .!/; �/hXi.!; d�/ 2 C

�
D

D Q

�
� 2 
 W

Z 1

0

.�; �/hYi.!; d�/ 2 C

�
:

Proposition 11.3.14 One has that

1. hXi D hYi ı F;
2. for predictable  such that, for t 2 Œ0; 1�, fixed, but arbitrary,

Q

�
� 2 
 W

Z t

0

2.�; x/hYi.�; dx/ <1
�
D 1;

for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,Z t

0

. f .!/; x/X.!; dx/ D
�Z t

0

.
; x/Y.
; dx/

�
ı f .!/:

Proof One has [264, p. 101], for t 2 Œ0; 1�, fixed, but arbitrary, locally, uniformly
in probability for Q, for every sequence of partitions of Œ0; t�, whose mesh goes to
zero,

hYi.
; t/ D lim
n

pnX
iD1

˚
Y
�
; t.n/iC1

� � Y
�
; t.n/i

��2
:

Using, when necessary, a subsequence, one may assume that convergence is
almost sure. But then, almost surely, with respect to P,

hYi. f .!/; t/ D lim
n

pnX
iD1

˚
Y
�

f .!/; t.n/iC1
� � Y

�
f .!/; t.n/i

��2

D lim
n

pnX
iD1

˚
X
�
!; t.n/iC1

� � X
�
!; t.n/i

��2
D hXi.!; t/:

The continuity of paths assumption says then that the paths of hXi and hYiıF cannot
be distinguished.

Suppose first that Y.�; 1/ 2 L2ŒQ�, and let

• U W L2Œ�� �! L2Œ�� be given by  7!  ı F, and
• V W L2ŒQ� �! L2ŒP�, by " 7! " ı f .
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U is an isometry because of (Remark) 11.3.12. V is an isometry because of the
change of variables formula. Let IP be the stochastic integral isometry between L2Œ��
and L2ŒP�, and IQ, that between L2Œ�� and L2ŒQ�. Item 2 amounts to proving that

V ı IQ D IP ı U:

NowZ t

0

�B. f .!//�
�t1;t2�

.�/X.!; d�/ D �B. f .!// ŒX.!; t2 ^ t/ � X.!; t1/�

D �B. f .!// ŒY. f .!/; t2 ^ t/ � Y. f .!/; t1/�

D f�B.
/ ŒY.
; t2 ^ t/� Y.
; t1/�g ı f .!/

D
�Z t

0

�B.
/��t1;t2� .�/Y.
; d�/
�
ı f .!/;

and the processes of the form �B��t1;t2� are total in L2Œ��.
In the general case, one uses a localizing sequence fSn; n 2 Ng that localizes Y

as well as Z t

0

dY:

Now fSn ı f ; n 2 Ng localizes X, and XSnıf .!; t/ D YSn. f .!/; t/, so that, from the
first part, Z t

0

. ı f /dXSnıf D
�Z t

0

dYSn

�
ı f :

The properties of the stochastic integral yield then that

Z t^.Snıf /

0

. ı f /dX D
�Z t^Sn

0

dY

�
ı f :

One then lets n increase indefinitely. ut
Given a martingale M, continuous to the right, almost surely continuous, and zero
at the origin, one may define [264, p. 117] the Föllmer-Doléans measure �M on
A˝ B.Œ0; 1�/ using, for measurable , the following relation:

Z
˝�Œ0;1�

d�M D EP

	Z 1

0

dhMi


:
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Then [264, p. 126], given a progressively measurable  for which, for t 2 Œ0; 1�,
fixed, but arbitrary,

P

�Z t

0

 2dhMi <1
�
D 1;

there is a predictable  such that �M . ¤  / D 0. One then defines [264, p. 127]
the stochastic integral of  with respect to M using the following relation:Z t

0

 dM D
Z t

0

dM:

One has thus the following corollary:

Corollary 11.3.15 (Result (Proposition)) 11.3.14 is true for progressively measur-
able .

11.4 Local Martingales of a Cramér-Hida Process

Farther, one shall have to use martingales obtained from conditioning Radon-
Nikodým derivatives. To establish that these martingales have the adequate regular-
ity properties, one relies on the fact that those properties hold when the conditioning
fields are obtained from Gaussian martingales. As seen below Hermite polynomials
may serve as the basic tool of the matter.

Definition 11.4.1 Let B be a Cramér-Hida process for A.

1. Let B D fBt; t 2 Œ0; 1�g be a filtration of A. It is called a B-Gaussian martingale
filtration when the following holds: for t 2 Œ0; 1�, fixed, but arbitrary,

�t.B/ � Bt � o�t.B/

where o�t.B/ is the �-algebra generated by �t.B/ and the sets of A that have
measure zero for P, that is, N .A;P/.

2. A polynomial in .t; x/ 2 Œ0;1Œ�R, of the following form, where n 2 f0g [ N is
fixed, but arbitrary:

Hn.t; x/ D .�t/n

nŠ
e

x2
2t Dn

x

	
e�

x2
2t




is called a (generalized) Hermite polynomial of degree n [Dn
x represents the n-th

derivative with respect to the variable x].
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Remark 11.4.2 Let B be a Gaussian martingale for A, with variance function b, and
paths continuous to the right, and almost surely, with respect to P, zero at the origin,
and continuous. Let B be a B-Gaussian filtration such that, for t 2 Œ0; 1�, fixed, but
arbitrary,

�t.B/ � Bt � o�t.B/;

where o�t.B/ is the �-algebra generated by �t.B/, and the sets of A that have
measure zero for P. B is then a mean zero, almost surely continuous, Gaussian
martingale for B with variance function b.

Let indeed X be a martingale for �.B/. As seen (Remark 10.2.14, and
Sect. 10.2.2),

o�t.B/ D �.Ct/; Ct D fB�N;B 2 Bt;N 2 N .A;P/g :

One has, for t2 > t1 in Œ0; 1� and B�N in Ct1 , fixed, but arbitrary, thatZ
B�N

X.!; t2/P.d!/ D
Z

B
X.!; t2/P.d!/

D
Z

B
X.!; t1/P.d!/

D
Z

B�N
X.!; t1/P.d!/:

By the monotone class theorem one has that equality obtains for all sets in �.Ct1 /. So
X is a martingale for o�.B/. But then it is a martingale for the “smaller” filtration B.

Fact 11.4.3 Hermite polynomials have the following properties [264, p. 231]:

1. H0.t; x/ D 1, and

H1.t; x/ D x;

H2.t; x/ D 1

2
.x2 � t/;

H3.t; x/ D 1

6
x3 � 1

2
tx;

H4.t; x/ D 1

24
x4 � 1

4
tx2 C 1

8
t2;

: : : I

2. the leading term of Hn.t; x/ is xn

nŠ ;
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3. DtHn.t; x/C 1
2
D2

xHn.t; x/ D 0, so that [264, p. 185], for almost surely continuous
local martingales M,

dHn.hMi;M/ D Hn�1.hMi;M/dMI

Remark 11.4.4 From (Fact) 11.4.3, item 2, one has that, for t 2 R, fixed, but
arbitrary, every polynomial may be expressed as a linear combination of Hermite
polynomials. The coefficients will depend on t. For example,

˛0 C ˛1xC ˛2x2 D .˛0 C ˛2t/C ˛1H1.t; x/C 2˛2H2.t; x/:

Lemma 11.4.5 Let B be a Gaussian martingale for A, with variance function b,
and paths continuous to the right, and almost surely, with respect to P, zero at the
origin, and continuous. Let N .0; b.t// denote the law of a real, normal random
variable with mean zero and variance b.t/. Then:

1. the process .!; t/ 7! Hn.b.t/;B.!; t// is a martingale in L2 for A (and thus for
�.B/) such that

jjHn .b.t/;B.
; t//jj2L2.˝;A;P/ D
bn.t/

nŠ
I

2. for b.t/ > 0, fixed, but arbitrary, the following family of polynomial functions:

(s
nŠ

bn.t/
Hn.b.t/; 
/; n 2 f0g [ N

)

is orthonormal, and complete in the space L2 .R;B.R/;N .0; b.t///;
3. every polynomial function p.X1; : : : ;Xn/ of independent, Gaussian, centered

random variables X1; : : : ;Xn, with respective variances �21 ; : : : ; �
2
n , has a rep-

resentation of the following form:

nX
k1;:::;kmD0

ak1;:::;km

mY
iD1

Hki.�
2
i ;Xi/;

and the terms of the sum are orthogonal [264, p. 234];
4. for a 2 Œ0; 1Œ, and t 2 Œ0; 1 � a�, fixed, but arbitrary,

Hn.b.t/� b.a/;B.
; t/� B.
; a// D

D
Z aCt

a
Hn�1.b.�/ � b.a/;B.
; �/� B.
; a//B.
; d�/:
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Proof (1) Since H0.t; x/ D 1, and H1.t; x/ D x, item 1 is true for those two cases.
Suppose the formula is true for n0. Then, from (Fact) 11.4.3, item 3, and [43, p. 337],

EP
�
H2

n0C1 .b.t/;B.
; t//
� D Z t

0

EP
�
H2

n0 .b.�/;B.
; �//
�

Mb.d�/

D
Z t

0

bn0 .�/

n0Š
Mb.d�/

D bn0C1.�/

n0 C 1Š :

Proof (2,3) It proceeds, mutatis mutandis, as in [264, pp. 233–235].

Proof (4) Let Wa.
; t/ D B.
; aC t/ � B.
; a/. Using the definitions and (Corollary)
10.5.19, one obtains, for the filtration

Wa D ˚Wa
t ; t 2 Œ0; 1 � a�

� D fBaCt; t 2 Œ0; 1 � a�g ;

a Gaussian martingale whose variance function is t 7! b.aC t/�b.a/. Furthermore,
as presently seen,

Z t

0

f .
; �/Wa.
; d�/ D
Z aCt

a
f .
; � � a/B.
; d�/: (?)

Let indeed S1 � S2 be wide sense stopping times for Wa with values in Œ0; 1 � a�.
Then, for t 2 Œ0; 1 � a�, fixed, but arbitrary,Z t

0

�
��S1;S2��

.
; �/Wa.
; d�/ D Wa.
; t ^ S2/�Wa.
; t ^ S1/

D B.
; aC t ^ S2/ � B.
; aC t ^ S1/

D
Z 1

0

�
��aCt^S1;aCt^S2��

.
; �/B.
; d�/

D
Z 1

0

�
��t^S1;t^S2��

.
; � � a/B.
; d�/

D
Z 1

0

�
Œ0;t� .
; � � a/�

��S1;S2��
.� � a/B.
; d�/

D
Z aCt

a
�
��S1;S2��

.� � a/B.
; d�/:
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A monotone class argument then completes the proof of (?) above. Since one has
that [(Fact) 11.4.3, item 3]

Hn.hWai.
; t/;Wa.
; t// D
Z t

0

Hn�1.hWai.
; �/;Wa.
; �//Wa.
; d�/;

it follows from (?) above that

Hn.b.aC t/ � b.a/;B.
; aC t/ � B.
; a// D

D
Z aCt

a
Hn�1.hWai.
; � � a/;Wa.
; � � a//B.
; d�/:

But Wa.
; � � a/ D B.
; Œ� � a�C a/� B.
; a/ and

hWai.
; � � a/ D b.Œ� � a�C a/� b.a/:

Item 4 thus obtains. ut
Fact 11.4.6 Let B be a Gaussian martingale for A, with variance function b, and
paths continuous to the right, and almost surely, with respect to P, zero at the origin,
and continuous. Then:

1. [264, p. 234] the polynomial functions form a family that is dense in the space

L2 .R;B.R/;N .0; b.t/// I

2. [264, p. 235] let P.B/ be the linear span of the random variables of the following
form:

nY
iD1

pi .B.
; tiC1/� B.
; ti// ;

with fixed, but arbitrary 0 � t1 < t2 < t3 < 
 
 
 < tnC1 in Œ0; 1�, and polynomials
p1; : : : ; pn: one has that P.B/ is dense in L2.˝; �.B/;P/.

With the adjustments listed in (Lemma) 11.4.5, the following three results are
proved as in [264, p. 239].

Lemma 11.4.7 Let B be a Gaussian martingale for A, with variance function b,
and paths continuous to the right, and almost surely, with respect to P, zero at the
origin, and continuous. Let B be a Gaussian martingale filtration for B, that is, for
t 2 Œ0; 1�, fixed, but arbitrary, �t.B/ � Bt � o�t.B/. Let the following times, and
polynomials be fixed, but arbitrary:

t1 < t2 < t3 < 
 
 
 < tn < tnC1 2 Œ0; 1�; and p1; : : : ; pn:
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Let

X D
nY

iD1
pi.B.
; tiC1/ � B.
; ti//:

Then, almost surely, with respect to P,

EP ŒX j Bt� D
Z t

0

�.
; �/B.
; d�/;

where � is a predictable process whose square is integrable for the product measure
P˝Mb.

Proof Let X D Y � Z, where Y is the product of the first n � 1 polynomial terms
of X, and Z is the last one. Since pn may be written as a combination of Hermite
polynomials, X is the sum of terms of the following form:

Yc Hq .b.tnC1/ � b.tn/;B.
; tnC1/ � B.
; tn// ;

where Yc is Y times the (“constant”) coefficient of the Hermite polynomial which
follows. Yc is adapted to �tn.B/ � Btn . Also one may assume that the q in Hq is
strictly positive (otherwise the Hermite polynomial would be a constant). For t � tn,
one has that (Lemma 11.4.5, item 4):

Hq.b.t/� b.tn/;B.
; t/� B.
; tn// D

D
Z t

tn

Hq�1.b.�/ � b.tn/;B.
; �/� B.
; tn//B.
; d�/:

To make notation shorter, one shall temporarily write, for the latter equality,

V.
; t/ D
Z t

tn

U.
; �/B.
; d�/:

Since Yc is adapted to �t.B/ � Bt,

EP ŒX j Bt� D Yc EP ŒV.
; tnC1/ j �t.B/� :

Since V is a martingale for �.B/ [(Lemma) 11.4.5, item 1], it is one for B [(Remark)
11.4.2], and

EP ŒV.
; tnC1/ j Bt� D V.
; t ^ tnC1/:
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But V has an integral representation:

V.
; t ^ tnC1/ D
Z t^tnC1

tn

U.
; �/B.
; d�/:

Using [264, p. 155],

Yc

Z t^tnC1

tn

U.
; �/B.
; d�/ D
Z t^tnC1

tn

Yc U.
; �/B.
; d�/:

But Z t^tnC1

tn

Yc U.
; �/B.
; d�/ D
Z t

0

�
�tn ;tnC1�

.�/Yc U.
; �/B.
; d�/;

and

�
�tn ;tnC1�

.�/Yc U.
; �/
is predictable. That its square is integrable follows from (Lemma) 11.4.5,
item 1. ut
Lemma 11.4.8 Let, in (Lemma) 11.4.7, X be a random variable whose square
is integrable. The conditional expectation of X with respect to B maintains its
representation as a stochastic integral.

Proof Let fXn; n 2 Ng be a sequence of random variables of the form given
in (Lemma) 11.4.7, such that [(Fact) 11.4.6, item 2],

lim
n

EP

h
.EPŒX j B1� � Xn/

2
i
D 0:

Then [(Lemma) 11.4.7]

EP ŒXn j Bt� D
Z t

0

�n dB:

Xn closes that martingale, and thus

EP

h�
Xp � Xn

�2i D EP

"�Z 1

0

˚
�p � �n

�
dB

�2#
D EP

	Z 1

0

�
�p � �n

�2
dMb



:

f�n; n 2 Ng is thus a Cauchy sequence of predictable processes in the L2 space of
the measure P˝Mb. It has thus a predictable limit in that space, say �. Then:

EP ŒX j Bt� D lim
n

EP ŒXn j Bt� D lim
n

Z t

0

�n dB D
Z t

0

� dB:

ut
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Fact 11.4.9 [237, p. 421] Let B and C be �-algebras contained in A. Suppose that
X is a positive random variable, or that its conditional expectation with respect to
C is finite. When B and C _ �.X/ are independent,

EPŒX j B _ C� D EPŒX j C�:

Fact 11.4.10 [264, p. 239] Let Bn be the projection onto Rn of a Cramér-Hida pro-
cess, and B.n/, a Gaussian martingale filtration for Bn. Then, when X 2 L2.˝;A;P/,
t 2 Œ0; 1�, fixed, but arbitrary, and

�t.Bn/ � B.n/
t � o�t.Bn/;

one has that

EP
�
X j B.n/

t

� D nX
iD1

Z t

0

ai.
; �/Bi.
; d�/ D IBn

˚
an

�
.
; t/;

where, for i 2 Œ1 W n�, fixed, but arbitrary, the process ai is predictable, and a2i is
integrable with respect to P˝Mi, the latter product measure component being the
measure determined by the variance function of Bi.

Proof Let X D Qn
iD1 Xi, where Xi is adapted to �.Bi/, the �-algebra generated

by the i-th component of Bn. Suppose that X has a square that is integrable, and a
strictly positive variance, which, given the independence of its components, means
that each component has a square that is integrable. Let

Yi.
; t/ D EP ŒXi j �t.Bi/� ; and Y D
nY

iD1
Yi:

Since Yi is, by definition, a martingale with respect to �.Bi/, it has the representationR �
0 �i dBi. As such, it has, in particular, almost surely continuous paths. Since

the processes fY1; 
 
 
 ;Yng are furthermore independent, their product is a local
martingale, and their mutual quadratic variation is zero [264, p. 168]. It follows
by Itô’s formula that

dY D
nX

iD1

8<
:

nY
jD1;j¤i

Yj

9=
; dYi;

and, consequently, that

dY D
nX

iD1

8<
:

nY
jD1;j¤i

Yj�i

9=
; dBi:
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For i 2 Œ1 W n�, fixed, but arbitrary, let PBi 2 �t.Bi/ be fixed, but arbitrary. Then

Z
\n

iD1
PBi

Y.
; t/dP D
Z
\n

iD1
PBi

nY
iD1

EPŒXi j �t.Bi/�dP

D
nY

iD1

Z
PBi

Xi dP

D
Z
\n

iD1
PBi

X dP

D
Z
\n

iD1
PBi

EPŒX j �t.Bn/�dP;

so that, by the monotone class theorem,

Y D EPŒX j �t.Bn/�:

Since the elements X introduced at the beginning of the proof are total in the L2
space generated by the process Bn, the proof is complete in view of (Lemma) 11.4.8
and (Remark) 11.4.2. ut
Fact 11.4.11 (264, p. 239) Let Bn be the projection onto Rn of a Cramér-Hida
process, and B.n/, a Gaussian martingale filtration for Bn. Then, when M is a local
martingale for B.n/ (as such, it is continuous to the right), zero at the origin, one has
that

M.
; t/ D
nX

iD1

Z t

0

ai.
; �/Bi.
; d�/ D IBn

˚
an

�
.
; t/;

where, for i 2 Œ1 W n�, fixed, but arbitrary, the process ai is predictable, and a2i is
integrable with respect to P˝Mi, the latter product measure component being the
measure determined by the variance function of Bi.

Proof Let
˚
Sp; p 2 N

�
be a localizing sequence for M. Let Xp be a random variable

such that its square is integrable and

lim
p

EP
�ˇ̌

M.
; Sp/� Xp

ˇ̌� D 0:
Doob’s inequality [192, p. 93] then yields that

�P

 
sup

t2Œ0;1�

ˇ̌
MSp.
; t/ � EPŒXp j Bt�

ˇ̌ � �
!
�

� sup
t2Œ0;1�

EP
�ˇ̌

MSp.
; t/ � EPŒXp j Bt�
ˇ̌�

D EP
�ˇ̌

M.
; Sp/ � Xp

ˇ̌�
:
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Since EPŒXp j Bt� is a process whose paths are almost surely continuous, so is M,
which is thus locally in L2. One may then assume that MSp is a martingale in L2. As
such it has a representation as a stochastic integral:

MSp.
; t/ D IBn

n
�
��0;Sp ��

a.p/
o
.
; t/:

Then

M D IBn
fag ; with a D

1X
pD1

�
��Sp�1;Sp ��

a.p/:

ut
Lemma 11.4.12 Let B be a Cramér-Hida process, and B, a Gaussian martingale
filtration for B. Then, when X 2 L2.˝;A;P/, there exists a 2 I2Œb�, with predictable
components, such that

EP ŒX j B1� D IB fag .
; 1/:

Proof Let B.n/

1 D B1 \ o�1.B1; : : : ;Bn/, and Bn be the usual restriction-projection
of B. It follows then from (Lemma) 11.4.8 that, for some an,

EP
�
X j B.n/

1

� D IBn

˚
an

�
.
; 1/:

Letting a.n/p D 0 for p > n, keeping the same notation, one may replace

IBn

˚
an

�
.
; 1/ with IB

˚
an

�
.
; 1/:

Now [201, p. 29], almost surely with respect to P, as well as in quadratic mean,

lim
n

EP
�
X j B.n/

1

� D EP ŒX j B1� :

In particular, ˚
EP
�
X j B.n/

1

�
; n 2 N

�
is a Cauchy sequence in quadratic mean so that

EP

h˚
EP
�
X j B.nCp/

1

� � EP
�
X j B.n/

1

��2i D EP

	ˇ̌̌̌̌̌
anCp � an

ˇ̌̌̌̌̌ 2
L2Œ b �
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has limit zero as n and p increase indefinitely. Consequently
˚
an; n 2 N

�
is a Cauchy

sequence in the Hilbert space I2Œb �, that is,

1M
nD1

L2.˝ � Œ0; 1�;A˝ B.Œ0; 1�/;P˝Mn/;

and has thus a limit, say a. But, because of [264, p. 124] (with Lebesgue measure
replaced by Mi), each ai, i 2 N, may be taken to be predictable. Finally

EP

h˚
EPŒX j B1� � IB fag .
; 1/

�2i D
D EP

h˚�
EP ŒX j B1� � EP

�
X j B.n/

1

��C �IB
˚
an

�
.
; 1/� IB fag .
; 1/

��2i
� 2

n
EP

h˚
EP ŒX j B1� � EP

�
X j B.n/

1

��2iC EP

h
I2B
˚
a � an

�
.
; 1/

io
;

and, as seen, the right-hand side of the latter inequality goes to zero. ut
Remark 11.4.13 Predictability in (Lemma) 11.4.12 is for the filtration B.

Proposition 11.4.14 Let M be a martingale in L2 for B that is zero at the origin.
There exists then aM 2 I2Œb �, with predictable components (for B), such that, for
t 2 Œ0; 1�, fixed, but arbitrary, almost surely with respect to P,

M.
; t/ D IB
˚
aM

�
.
; t/:

M may thus be assumed to be continuous to the right and, with respect to P, almost
surely continuous.

Proof From (Lemma) 11.4.12, since M.
; 1/ is adapted to B1, and has a square that
is integrable,

M.
; 1/ D IB
˚
aM

�
.
; 1/:

Since both sides of the latter equality are martingales, the result follows by
conditioning. ut
Proposition 11.4.15 Let M be, for B, a martingale locally in L2, that is zero at the
origin. There exists then aM 2 I loc

2 Œb �, with predictable components (for B), such
that, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely with respect to P,

M.
; t/ D IB
˚
aM

�
.
; t/:

M may thus be assumed to be, with respect to P, almost surely continuous.



11.4 Local Martingales of a Cramér-Hida Process 899

Proof Let fSn; n 2 Ng be a localizing sequence for M. (Result (Proposition))
11.4.14 applied to MSn yields a an 2 I2Œb� such that

MSn.
; t/ D IB
˚
an

�
.
; t/:

Now, for p 2 N, fixed, but arbitrary, one has that

IB
˚
an

�
.
; t/ D MSn.
; t/ D MSn^SnCp.
; t/ D IB

n
�
��0;Sn��

anCp

o
.
; t/;

and thus, because of (Fact) 11.3.9,

�
��0;Sn ��

anCp D an:

One may consequently define ai setting �
��0;Sn��

a D an to obtain that

aM D ���0;S1��a1 C
1X

nD2
�
��Sn�1;Sn��

an:

Stochastic intervals of the type used in that last expression are predictable [264,
p. 112], so that one is summing products of predictable processes, and the result is
predictable. The process a belongs to I loc

2 Œb � by construction. ut
Proposition 11.4.16 Let M be, for B, a local martingale that is zero at the origin.
There exists then aM 2 I loc

2 Œb �, with predictable components (for B), such that, for
t 2 Œ0; 1�, fixed, but arbitrary, almost surely with respect to P,

M.
; t/ D IB
˚
aM

�
.
; t/:

M may thus be assumed to be, with respect to P, almost surely continuous.

Proof Let fSn; n 2 Ng be a localizing sequence for M, so that, for n 2 N,
fixed, but arbitrary, MSn is a uniformly integrable martingale. The random variable
M.
; Sn.
// is, in particular, adapted to B1, and integrable. There is thus a sequence˚
Mn;p; p 2 N

�
of simple functions, adapted to B1, and integrable, with the property

that, in L1,

lim
p

Mn;p D M.
; Sn.
//:

Let
˚
�q > 0; q 2 N

�
be such that limq �q D 0,

EP
�ˇ̌

M.
; Sn.
//�Mn;q

ˇ̌�
< �q; and Un;q.
; t/ D EP

�
Mn;q � EP

�
Mn;q

� j Bt
�
:
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Un;q is a martingale in L2 for B, zero at the origin, and thus (Proposition 11.4.14)
continuous to the right, and almost surely continuous. But then so is

Vn;q.
; t/ D EP
�
Mn;q j Bt

�
:

Let

Wn;q.
; t/ D MSn.
; t/� Vn;q.
; t/:

Doob’s maximal inequality [192, p. 93] says that

�P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
Wn;q.!; t/

ˇ̌
> �

!
� EP

�ˇ̌
Wn;q.
; 1/

ˇ̌�
< �q:

Consequently,
˚
Vn;q; q 2 N

�
is a sequence of martingales that are continuous to the

right, and almost surely continuous, with respect to P, that converges uniformly in
probability towards the martingale MSn that inherits thus the same path properties.
But then, M is locally in L2 [264, p. 63]. The result then follows from (Proposition)
11.4.15. ut
Remark 11.4.17 In the proposition to follow the following fact is used. Let the map
f W Œ0; 1� �! RC be continuous with f .0/ D 0. Let

f ?.t/ D sup
�2Œ0;t�

f .�/;

and tf be the smallest abscissa of those t’s at which f is maximum. f ? increases from
0 to tf and then is constant with value f .tf /. Let n be a fixed, but arbitrary integer.
If n > f .tf /, let tn D 1. Otherwise, let tn be the smallest t such that f .t/ � n. The
interval Œ0; tn� is obtained as the set of t’s for which f ?.t/ � n.

Proposition 11.4.18 Let M be, for B, a martingale that is zero at the origin. There
exists then aM 2 I0Œb�, with predictable components (for B), such that, for t 2 Œ0; 1�,
fixed, but arbitrary, almost surely with respect to P,

M.
; t/ D IB
˚
aM

�
.
; t/:

M may thus be assumed to be continuous to the right, and, with respect to P, almost
surely continuous.

Proof Since B is continuous to the right, its martingales have modifications continu-
ous to the right [264, p. 53]. Thus martingales for that filtration are local martingales
[264, p. 63]. One may assume [(Proposition) 11.4.16] that M is continuous to
the right, and almost surely continuous. It is no restriction to suppose that it is
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continuous [(Proposition) 10.2.28]. Let thus IM;n.!/ D ft 2 Œ0; 1� W jM.!; t/j � ng,
and

Sn.!/ D
�
1 when IM;n.!/ D ;
inf IM;n.!/ when IM;n.!/ ¤ ; :

Sn is a strict stopping time. MSn is then a martingale for B, uniformly bounded by n,
and, as such, has a representation of the following form:

MSn.!; t/ D IB
˚
an

�
.!; t/ with an 2 I2Œb �:

Let

M?.!; t/ D sup
�2Œ0;t�

jM.!; �/j ; and 
n D f.!; t/ 2 ˝ � Œ0; 1� W M?.!; t/ � ng :

One has, for n 2 N, fixed, but arbitrary, that 
n � 
nC1. Furthermore, for p > n, in
N, fixed, but arbitrary, MSp^Sn D MSp yields that

IB

n
apjSn

o
D IB

˚
an

�
;

and [(Remark) 11.4.17] apjSn
D �
n

ap. Thus [(Fact) 11.3.9], for p > n, in N, fixed,
but arbitrary,

�
n
ap D an:

It thus makes sense to define aM setting �
n
aM D an. But then

P
�
! 2 ˝ W ˇ̌̌̌ aM.!; 
/

ˇ̌̌̌ 2
L2Œ b �
D 1

�
�

� P
�
! 2 ˝ W ˇ̌̌̌ aM.!; 
/� an.!; 
/

ˇ̌̌̌ 2
L2Œ b �

> 0
�

� P .! 2 ˝ W M?.!; 1/ � n/ :

Since M has continuous paths, the latter probability goes to zero when n increases
indefinitely. Let Y D IB

˚
aM

�
. Since [(Fact) 11.3.8]

P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
IB
˚
aM � an

�
.!; t/

ˇ̌
> �

!
�

� P
�
! 2 ˝ W ˇ̌̌̌ aM.!; 
/� an.!; 
/

ˇ̌̌̌ 2
L2Œ b �
� ı

�
C 4 ı

�2
;

Y is the uniform limit, in probability, of MSn which converges, path by path, to M.
ut



Chapter 12
Sample Spaces

The paths of B, a Cramér-Hida process, belong, almost surely, to the set

C D
1Y

nD1
CnŒ0; 1�; CnŒ0; 1� D CŒ0; 1�;

so that PB, the law determined by B, will be defined for subsets of C. This chapter
contains material on that subject. C is taken to be either a Banach space or a Fréchet
space, and the properties of the “natural” sets of these spaces, that is, the Borel sets,
are presented. There are also results on the existence of measures, a topic required
when searching for the likelihood in the presence of Gaussian noise.

12.1 Topologies for Sample Spaces

Let � be a compact, metric space, typically Œ0; 1�. As such, it is complete [111,
p. 246], and separable [226, p. 163]. C.�; l2/, the family of those functions c W
� �! l2 that are continuous, is a Banach space [111, p. 352]. It is furthermore
separable [248, p. 63]. The countable product of copies of the Banach space C.�;R/
is a separable Fréchet space [185, p. 40]. In C.�; l2/, convergence is determined by
a norm (the supremum), in the Fréchet space case, by a quasinorm [46, p. 223].
The contrast between the two cases is analogous to that between CŒ0; 1� and RŒ0;1�.
It is often useful to see C.�; l2/ as the injective tensor product C.�/ Ő l2, where
C.�/ is the space of real valued functions on � [231, p. 49]. It allows in particular
the representation of continuous linear functionals on C.�; l2/ [73, 231, p. 58,
respectively, p. 182].

© Springer International Publishing Switzerland 2015
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12.1.1 Fréchet Spaces

Some of the facts about Fréchet spaces needed in the sequel are gathered below.
Some references are [100, p. 3] and [185, p. 40 and p. 294].

The Fréchet spaces one shall meet are obtained as follows. Let fEn; n 2 Ng be a
sequence of normed spaces with respective norms denoted jj
 jjn. Let

E D
Y
n2N

En;

with elements x with p-th component xp in Ep. On E let

d.x1; x2/ D
X
n2N

1

2n

( ˇ̌̌̌
x.1/n � x.2/n

ˇ̌̌̌
n

1C ˇ̌̌̌ x.1/n � x.2/n

ˇ̌̌̌
n

)
:

d is a metric and

1. a sequence
˚
xn; n 2 N

� � E is Cauchy (convergent) if, and only if, for p 2 N,
fixed, but arbitrary, ˚

x.n/p ; n 2 N
� � Ep

is Cauchy (convergent);
2. .E; d/ is a locally convex, metric, linear space;
3. when, for n 2 N, fixed, but arbitrary, .En; jj 
 jjn/ is complete, that is, a Banach

space, .E; d/ is complete, so that it is a Fréchet space, but, except when only a
finite number of the Banach spaces entering the product are different from the
zero space, .E; d/ is not a Banach space.

4. Œjxj�E D d.x; 0/ is a quasinorm [46, p. 225] that induces the product topology on E,
that is, the coarsest topology on E for which all the canonical maps En W E �! En

are continuous (En .x/ D xn);
5. E is separable if, and only if, En is, for all n 2 N;
6. the dual of E is the direct sum

L
n2N E?n .

Separable Fréchet spaces have the following useful properties [100, p. 3].

1. E is Polish.
2. The Borel sets of E, B.E/ are generated by the continuous, linear functionals of

E.
3. B.E/ has a countable number of generators.
4. B.E/ is generated by any sequence of measurable sets that separate points of E.
5. Any probability on B.E/ is inner regular with respect to compact sets.
6. From any open covering of E, one may extract a countable one.
7. Any continuous map into a Polish space, with E as domain, has a universally

measurable image.
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8. The properties of E and B.E/ remain true for any measurable subset of E
endowed with the relative topology and �-algebra.

9. The closed, convex hull of any compact subset of E is compact.

The Fréchet Space of Sequences

R1 shall be taken to be [185, p. 36] the Fréchet space obtained as
Q1

nD1R with the
distance

dR1.u; v/ D
1X

nD1

1

2n

� jun � vnj
1C jun � vnj

�
; fu; vg � R1:

The Borel sets of R1, denoted B.R1/, are obtained as the product of the Borel sets
of R [208, p. 6], or as the sets in the �-algebra generated by the evaluation maps
fEn; n 2 Ng, which are continuous in the product topology. A detailed description of
the properties of R1 may be found in [259, p. 2].

The Borel sets of lp shall be denoted B.lp/. They are generated by the family of
continuous, linear functionals fEn; n 2 Ng. Since, for x 2 l2, fixed, but arbitrary, the
map t 7! t

1Ct � t being monotone increasing,

1X
nD1

2�n jxnj
1C jxnj �

jjxjjl2
1C jjxjjl2

� jjxjjl2 ;

the inclusion Jl2;R1 of l2 into R1 is well defined, injective, and a contraction.
Furthermore, when 1 � p < q � 1, lp � lq [275, p. 424], and, on lp, it holds
that jjxjjq � jjxjjp. Jlp;lq is thus equally well defined, and a contraction.

12.1.2 Norms, Quasinorms, and Distances on Sample Spaces

There are several “natural” ways to look at the path space of processes with an
infinite, but countable number of continuous components of the type encountered
so far, each corresponding to a specific norm, quasinorm, or distance. Let thus c be
a vector with a countably infinite number of components denoted cn, each of which
is a continuous function on Œ0; 1�. The norm of a continuous function c on Œ0; 1� shall
be denoted

jjcjj D sup
t2Œ0;1�

jc.t/j :
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Let then

jjcjjp D
˚P1

nD1 jjcnjjp
�1=p D ˚P1

nD1
˚
supt2Œ0;1� jcn.t/j

�p�1=p
;

jjcjjCl2
D supt2Œ0;1� jjc.t/jjl2 D supt2Œ0;1�

˚P1
nD1Œcn.t/�2

�1=2
;

jjcjjCF
DP1

nD1
2�njjcnjj
1Cjjcnjj DP1

nD1
2�n supt2Œ0;1�jcn.t/j
1Csupt2Œ0;1�jcn.t/j :

For n 2 N, fixed, but arbitrary, let

Cn D CŒ0; 1�; and C D
Y
n2N

Cn:

Cp
S, Cl2 , and CF shall denote the subset of C of elements c for which, respectively,

jjcjjp <1; jjcjjCl2
<1; jjcjjCF

<1:

In fact, CF D C [185, p. 11], and, by definition, jjcjjCF
D Œjcj�C, where the notation

on the right-hand side of the latter equality denotes quasinorm [46, p. 223]. It is a
Fréchet space that is not a Banach space [185, p. 40]. Cp

S is a Banach space [60,
p. 72]. Cl2 is the Banach space of continuous functions c W Œ0; 1� �! l2.

Those norms and quasinorm are related as follows. Since

jjcnjj D sup
t2Œ0;1�

jcn.t/j � sup
t2Œ0;1�

jjc.t/jjl2 ;

and that t 7! t
1Ct � t is increasing,

jjcjjCF
� jjcjjCl2

:

Since, for p 2 Œ1; 2�, on lp, jjc.t/jjl2 � jjc.t/jjlp � jjcjjp, one has that

jjcjjCl2
� jjcjjp :

One has thus that, for p 2 Œ1; 2�, fixed, but arbitrary,

Cp
S � Cl2 � CF with jjcjjCF

� jjcjjCl2
� jjcjjp :

The inclusions are strict: Suppose indeed that c has each component equal to the
same constant, say � . Then jjcnjj D � , so that

jjcjjCF
D �

1C � ; but jjcjjCl2
D1:
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Let now

E D
	
1

3
;
2

3



; �.i/ 2 f0; 1g ; i 2 Œ1 W n�;

and E�.1/;:::;�.n/ be the following interval:

"
nX

iD1
�.i/

2

3i
C 1

3nC1 ;
nX

iD1
�.i/

2

3i
C 2

3nC1

#
:

Thus, for n D 1,

E�.1/ D
	
�.1/

2

3
C 1

9
; �.1/

2

3
C 2

9




yields the intervals	
1

9
;
2

9



when �.1/ D 0; and

	
7

9
;
8

9



when �.1/ D 0:

Those are intervals that enter the construction of the Cantor set. Let c1 be the
function whose nonzero part has, as graph, the isosceles triangle with height one,
and base Œ 1

3
; 2
3
�. The other elements in the sequence are built analogously: c2 has

base Œ 1
9
; 2
9
�, c3, Œ 79 ;

8
9
�, and so forth, using the formula for E�.1/;:::;�.n/ from “left to

right.” c has those components. Since jjcnjj D 1, independently of n,

jjcjjClp
D 1;

but, since, for t 2 Œ0; 1�, fixed, but arbitrary, only one component of c.t/ is not zero,
and jjc.t/jjl2 � 1,

jjcjjCl2
<1:

The different spaces are not closed in the larger spaces: Let c be the vector of
“isosceles triangle functions” described above. Define

c.n/k .t/ D
(

ck.t/
ppn

for k � n

0 for k > n
:

Then
ˇ̌̌̌
c.n/k

ˇ̌̌̌ p D n�1, and
ˇ̌̌̌
cn

ˇ̌̌̌
p
D 1. But

ˇ̌̌̌
cn.t/

ˇ̌̌̌ 2
l2
� n�

2
p . Let finally

c.n/k .t/ D
�

tn for k D n
0 for k ¤ n

:



908 12 Sample Spaces

Then
ˇ̌̌̌
cn.t/

ˇ̌̌̌ 2
l2
D t2n, and

ˇ̌̌̌
cn

ˇ̌̌̌
Cl2
D 1. However

ˇ̌̌̌
cn

ˇ̌̌̌
CF
D 2�.nC1/.

The injections

Jp;2 W Cp
S �! Cl2 and J2;F W Cl2 �! CF

are continuous. Cp
S and Cl2 are FH spaces for H D CF [269, p. 202]. It follows [269,

p. 203] that the topology of Cp
S is strictly stronger than the topology of Cl2 , which is,

in turn, strictly stronger than that of CF , and that [269, p. 204] Cp
S is of first category

in Cl2 , which, in turn, is of first category in CF .

12.2 Measurable Subsets of Sample Spaces

Cl2 and CF are the “natural” spaces in the present context. In the sequel, no
distinction shall be required, and one shall deal with a “generic” space that covers
both cases. It shall be denoted K. When necessary, K shall be substituted with one
of those C-spaces, or their respective index. One also uses the terms “Fréchet case”
and “Banach case.” The range space of the function t 7! c.t/; c 2 K, shall be R1,
or some lp. Again no distinction is necessary as long as each is properly associated
with its relevant space, that is, R1 “goes” with CF , lp with Cp

S , and l2 with Cl2 . The
“generic” form for those spaces of sequences shall be s.

A family F of functions f W X �! R separates points of X when, given fx1; x2g �
X; x1 ¤ x2, fixed, but arbitrary, there exists f 2 F such that f .x1/ ¤ f .x2/. Let �.F/
be the �-algebra generated on X by F . Suppose that X is Polish (which includes
complete metric spaces), and that F , a family of functions, measurable for the Borel
sets of X, separates points of X. Then [260, p. 6]:

1. when F is countable, �.F/ D B.X/ (the Borel sets of X);
2. when F is made of continuous functions, �.F/ D B.X/.
Those two facts are useful when F is made of evaluation maps on a space of
functions. One shall use the following evaluations:

1. for T � R, t 2 T, X some set, and a function f W T �! X, Et.f / D f .t/;
2. for c 2 C, EC

n .c/ D cn, the n-th component function of c;
3. for t 2 T and c 2 C, EC

t .c/ D c.t/.

They all separate points.

12.2.1 Evaluation Maps and Borel Sets in the Fréchet Case

The topology of CF is the coarsest on C that makes the evaluations EC
n continuous.

Thus

�
�˚
EC

n ; n 2 N
�� D B.CF/:
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Since (CiŒ0; 1� D CŒ0; 1�)

˚
EC

n

��1
.B.CŒ0; 1�// D

n�1Y
iD1

CiŒ0; 1� � B.CŒ0; 1�/ �
1Y

iDnC1
CiŒ0; 1�;

B.CF/ is the product �-algebra of a countably infinite number of copies of
B.CŒ0; 1�/.

Since Et is continuous on CŒ0; 1�, Et ı EC
n is continuous on CF , and thus these

evaluation maps also generate the Borel sets of CF .
Finally, since

Œjc.t/j� D
1X

nD1

1

2n

jcn.t/j
1C jcn.t/j �

1X
nD1

1

2n

jjcnjj
1C jjcnjj D Œjc j�C ;

EC
t is also continuous, and B.CF/ is also generated by those maps.

Remark 12.2.1 Let �t.CF/ be the � algebra generated by one of the following
family of maps: ˚

E�EC
n ; � � t; n 2 N

�
; or

˚
EC
� ; � � t

�
:

Let also, for n 2 N, fixed, but arbitrary, C .n/t be the �-algebra of the set of functions
CnŒ0; 1� D CŒ0; 1� generated by the following family of evaluations: fE� ; � � tg.
Then �t.CF/ is a product �-algebra, that is,

�t.CF/ D
1O

nD1
C .n/t :

Remark 12.2.2 Let, for n 2 N, fixed, but arbitrary,

PCn
Bn
D P ı B�1n ; and PCF

B D P ı B�1;

B being a Cramér-Hida process. One has that

PCF
B D

1O
nD1

PCn
Bn
:

12.2.2 Evaluation Maps and Borel Sets in the Banach Case

Let en be the n-th element of the standard basis of l2. Then

EC
n .c/ D hc.
/; enil2 D cn:
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Since

jcn.t/j � jjc.t/jjl2 ;

EC
n is continuous on Cl2 . Et ı EC

n is again continuous, and so is EC
t . Thus the Borel

sets of Cl2 are also generated by the evaluation maps.

12.3 Measures for Sample Spaces

Farther, when dealing with the likelihood for general Gaussian noise, one shall need
some results which secure the existence of a measure on the Borel sets of K. One
shall find here the transcription for K (norm and quasinorm replace absolute value)
of those weak convergence results for CŒ0; 1� that are used there. The source is [38].

The basic tool is a form of the Arzelà-Ascoli theorem, which, in turn, uses the
modulus of continuity. Let thus ı 2�0; 1Œ and k 2 K be fixed, but arbitrary. Then,
the modulus of continuity of k is measured with the help of the following index of
continuity:

w.k ; ı/ D sup
fu;vg�Œ0;1�
ju�vj<ı

jjk.u/� k.v/jjs :

Since jsupS f � supS gj � supS j f � gj and thatˇ̌̌̌
k1.u/� k1.v/

ˇ̌̌̌
s �

ˇ̌̌̌
k1.u/� k2.u/

ˇ̌̌̌
s C

ˇ̌̌̌
k2.u/� k2.v/

ˇ̌̌̌
s C

ˇ̌̌̌
k2.v/ � k1.v/

ˇ̌̌̌
s ;

one has, for fixed, but arbitrary ı 2�0; 1Œ, thatˇ̌
w.k1; ı/ � w.k2; ı/

ˇ̌ � 2 ˇ̌̌̌ k1 � k2
ˇ̌̌̌

K
;

so that k 7! w.k ; ı/ is continuous, and thus measurable. Furthermore, since the
elements in K are uniformly continuous,

lim
ı!0w.k ; ı/ D 0;

and the latter establishes the uniform continuity of k.

Proposition 12.3.1 A subset K0 � K has compact closure if, and only if,

1. supk2K0 jjk.0/jjs <1;
2. limı##0 supk2K0 w.k ; ı/ D 0.

Proof Let K0 be the closure of K0. Since EC
0 is continuous, the image by it, in s,

of K0, is compact, and, in a metric space, compact sets are closed and bounded
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[84, p. 233]. Now w.k ; 1n / is continuous in k, and decreasing to zero when n
increases, so that convergence is uniform on compact sets [38, p. 218], and, in
particular, on K0.

Suppose now that items 1 and 2 obtain. Choose n large enough so that

sup
k2K0

w .k ; 1=n/

is finite. Since

jjk.t/jjs � jjk.0/jjs C
nX

iD1

ˇ̌̌
ˇ
ˇ̌̌
ˇk
�	

i

n



t

�
� k

�	
i � 1

n



t

�ˇ̌̌
ˇ
ˇ̌̌
ˇ
s

;

one has that

sup
t2Œ0;1�

sup
k2K0

jjk.t/jjs <1:

Let dK denote the distance on K determined by its norm or quasinorm, and
� D ˚

kn; n 2 N
�

be a sequence of points dense in K. The map J� W K �! R1 is
defined using the following relation:

J�.k/ D .dK.k; k1/; dK.k; k1/; dK.k; k1/; : : :/:

J�.K/ is homeomorphic to a subset of R1 [38, p. 219]. Since J�.K0/ has
components

dK.k; kn/ � jjkjjK C
ˇ̌̌̌
kn

ˇ̌̌̌
K � 2 sup

k2K0

sup
t2Œ0;1�

jjk.t/jjs <1;

J�.K0/ has compact closure [38, p. 219]. Since J� is continuous, using [84, p. 80],

J�1� .J�.K0// � J�1�
�

J�.K0/
�
;

and it follows that K0 has compact closure. ut
Proposition 12.3.2 Let

˚
PK;PK

n ; n 2 N
�

be probability measures on K. When the
finite dimensional distributions of PK

n converge weakly to those of PK, and the family˚
PK

n ; n 2 N
�

is tight, then the latter converges weakly to PK.

Proof According to Prohorov’s theorem [38, p. 37], since K is separable and
complete, relative compactness and tightness of measures are equivalent properties.
The family

˚
PK

n ; n 2 N
�

is thus relatively compact, and then [38, p. 35] each
subsequence n

PK
np
; p 2 N

o
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contains a weakly convergent subsequencen
PK

npq
; q 2 N

o
;

with limit say QK . The finite-dimensional distributions of QK must be the weak limit
of the corresponding finite-dimensional distributions of the elements in the sequence
converging to QK [38, p. 29 and 35]. But then they must coincide with those of
PK . Since the cylinders form a determining class, one must have that QK D PK .
Thus each subsequence of the original sequence contains a subsequence converging
to PK . That means [38, p. 16] that the original sequence converges weakly
to PK . ut
Proposition 12.3.3 Let fPn; n 2 Ng be a sequence of probability measures on K. It
is a tight sequence if, and only if,

1. for � > 0, fixed, but arbitrary, there exists � such that, for all n 2 N,

Pn
�
k 2 K W ˇ̌̌̌EC

0 .k/
ˇ̌̌̌

s
> �

� � �I
2. for � > 0 and ı > 0, fixed, but arbitrary, there exists � 2�0; 1Œ, and p 2 N such

that, for all n � p,

Pn .k 2 K W w.k ; �/ � ı/ � �:

Proof Suppose first that the given sequence is tight, that is, for � > 0, fixed, but
arbitrary, there is a compact K� � K such that, for all n 2 N, Pn.K�/ > 1 � �.

Since EC
0 is continuous and K� , compact,

�� D sup
k2K�

ˇ̌̌̌
EC
0 .k/

ˇ̌̌̌
s

is finite (it is a maximum). Thus

1� � < Pn.K�/ � Pn
�
k 2 K W ˇ̌̌̌EC

0 .k/
ˇ̌̌̌

s
� ��

�
:

Since K� is uniformly equicontinuous [154, p. 233], given ı > 0, there is � > 0

such that w.k ; �/ < ı whatever k 2 K� . Consequently, K� � fk 2 K W w.k ; �/ < ıg,
and

1� � < Pn.K�/ � Pn .k 2 K W w.k ; �/ < ı/ :

Suppose now that items 1 and 2 of the statement obtain. One may assume that p D 1.
Indeed, a single probability is tight [38, p. 10]. Thus, for i 2 Œ1 W p � 1�, let Ki be a
compact set such that Pi.Ki/ > 1 � �. Since Ki is uniformly equicontinuous, there
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is �i > 0 such that Ki � fk 2 K W w.k ; �i/ < ıg, and Pi.k 2 K W w.k ; �i/ � ı/ � �.
Let �0 be the smallest of �1; : : : ; �p�1; �. Then

fk 2 K W w.k ; �0/ � ıg �

� fk 2 K W w.k ; �/ � ıg \
"

p�1\
iD1
fk 2 K W w.k ; �i/ � ıg

#
;

and, for n 2 N, fixed, but arbitrary, Pn .k 2 K W w.k ; �0/ � ı/ � �.
Because of item 1, given � > 0, one may choose � so that, setting

K0 D
˚
k 2 K W ˇ̌̌̌EC

0 .k/
ˇ̌̌̌

s
� �� ;

then, for all n 2 N,

Pn .K0/ � 1 � �
2
;

and, because of item 2, �q so that, setting

Kq D
�

k 2 K W w.k ; �q/ <
1

q

�
;

then, for all n 2 N, one has that

Pn.Kq/ � 1 � �

2qC1 :

Let K0\
�
\1qD1Kq

�
have closure K� . Then, for all n 2 N, looking at the complement

of K� ,

Pn.K�/ � 1 � �:

But, because of (Proposition) 12.3.1, K� is compact. ut
Proposition 12.3.4 Let fPn; n 2 Ng be probability measures on K, and, for t 2
Œ0; 1� and � � 0, fixed, but arbitrary,

I.t; �/ D f� 2 Œ0; 1� W t � � � .tC �/ ^ 1g :

Suppose that

1. for � > 0, fixed, but arbitrary, there exists � such that, for all n 2 N,

Pn
�
k 2 K W ˇ̌̌̌EC

0 .k/
ˇ̌̌̌

s
> �

� � �I
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2. for � > 0 and ı > 0, fixed, but arbitrary, there exists � 2�0; 1Œ, and p 2 N such
that, for t 2 Œ0; 1�, fixed, but arbitrary, for all n � p,

1

�
Pn

 
k 2 K W sup

I.t;�/
jjk.�/ � k.t/jjs � �

!
� ı:

Then fPn; n 2 Ng is tight.

Proof Fix � 2�0; 1Œ and let

Kt;� D
(

k 2 K W sup
I.t;�/
jjk.�/ � k.t/jjs � �

)
:

For v fixed, the u’s for which ju � vj < � are the union of �v � �; v� and Œv; v C �Œ.
For some integer iv ,

v 2 Œiv�; .iv C 1/��; denoted Iv;

and, for some integer iu,

u 2 Œiu�; .iu C 1/��; denoted Iu:

When u 2 Œv; vC��, one must have that u and v belong to Iu[ Iv , Iu and Iv abutting.
The situation for �v � �; v� is symmetric, so that, when v is fixed and u belongs to
�v � �; v C �Œ, u and v belong to three successive and abutting intervals of the form
Œi�; .iC 1/��. Consequently, for v fixed, w.k ; �/ � 3� implies that k is in the union
of three successive sets of the form Ki;�. For example, when i� < v < .i C 1/� <
u < v C � < .iC 2/�,

˛ � jjk.v/ � k.u/jjs
D jjk.v/ � k.i�/C k.i�/ � k..iC 1/�/C k..iC 1/�/� k.u/jjs
� jjk.v/ � k.i�/jjs C jjk.i�/ � k..iC 1/�/jjs C jjk..iC 1/�/� k.u/jjs
D aC bC c

implies that at least one of a; b, and c must exceed ˛=3. But v is arbitrary so that,
for i� < 1,

fk 2 K W w.k ; �/ � 3�g � [i�Ki;�;

and thus

Pn.k 2 K W w.k ; �/ � 3�/ � P
�[i�Ki;�

� �X
i�

P
�
Ki;�

�
:
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Now, by assumption, P.Ki;�/ � ı�. Consequently, the sum of the latter probabilities
will be smaller that .1C Œ 1

�
�/ı�, and, since � < 1; .1C Œ 1

�
�/� � 2, one has that

Pn.k 2 K W w.k ; �/ � 3�/ � 2ı:

ut
Corollary 12.3.5 Let, in Œ0; 1�, 0 D t0 < t1 < 
 
 
 < tn�1 < tn D 1 be a partition
such that , for i 2 Œ2 W n � 1�, ti � ti�1 � �. Then

P .k 2 K W w.k ; �/ � 3�/ �
nX

iD1
P

 
k 2 K W sup

�2Œti�1;ti�
jjk.�/� k.ti�1/jjs � �

!
:

Proof Since the intervals Œti; tiC1� have length at least �, an interval of length 2�
will be contained in at most two abutting intervals of the latter type. Thus, when
ju � vj < �, for some i, one will have, for example,

ti�1 � u � ti � v � tiC1;

so that

jjk.u/� k.v/jjs D jjk.u/� k.ti�1/C k.ti�1/� k.ti/C k.ti/� k.v/jjs :

ut
Application of the previous results to the existence of measures requires the
evaluation of partial sums which follows. Let thus X1; : : : ;Xn be random elements
with values in s,

S0 D 0s; and Sn D X1 C 
 
 
 C Xn:

Let also

�n D max
i2Œ0;n�

ˇ̌̌̌
Si

ˇ̌̌̌
s
; �n D max

i2Œ0Wn�
˚ˇ̌̌̌

Si

ˇ̌̌̌
s
^ ˇ̌̌̌ Sn � Si

ˇ̌̌̌
s

�
:

From the definition,

�n � �n:

Furthermore, sinceˇ̌̌̌
Si

ˇ̌̌̌
s
D ˇ̌̌̌ Si � Sn C Sn

ˇ̌̌̌
s
� ˇ̌̌̌ Si � Sn

ˇ̌̌̌
s
C ˇ̌̌̌ Sn

ˇ̌̌̌
s
;
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and .aC b/ ^ .aC c/ D aC .b ^ c/, one has thatˇ̌̌̌
Si

ˇ̌̌̌
s
� ˚ˇ̌̌̌ Sn

ˇ̌̌̌
s
C ˇ̌̌̌ Si

ˇ̌̌̌
s

� ^ ˚ˇ̌̌̌ Sn

ˇ̌̌̌
s
C ˇ̌̌̌ Sn � Si

ˇ̌̌̌
s

�
D ˇ̌̌̌

Sn

ˇ̌̌̌
s
C ˚ˇ̌̌̌ Si

ˇ̌̌̌
s
^ ˇ̌̌̌ Sn � Si

ˇ̌̌̌
s

�
;

and thus

�n � �n C
ˇ̌̌̌
Sn

ˇ̌̌̌
s :

Lemma 12.3.6 Let, for strictly positive a; b; x; y, and positive ˛,

f .x; y/ D a

x2˛
C b

y2˛
:

Let also � D .2˛ C 1/�1. Then

min
xCyDz

f .x; y/ D .a� C b�/
1
�
1

z2˛
:

Proof Let g.x; y/ D f .x; y/ � c.xC y/. As, for example,

@g

@x
D �

�
cC 2˛a

x2˛C1

�
;

equating the partial derivatives to zero yields that

a

x2˛C1
D b

y2˛C1
; or

x

y
D
�a

b

��
:

As xC y D z, x
�
1C y

x

� D z, so that

x D z
�
1C y

x

��1 D z

�
1C

�
b

a

����1
D z

�
a� C b�

a�

��1
D a�

a� C b�
z;

and

y D z � x D b�

a� C b�
z :

The minimum of f is then

a˚
za�

a�Cb�
�2˛ C b˚

za�

a�Cb�
�2˛ D .a� C b� /2˛

z2˛

�
a

a2˛�
C b

b2˛�

�

D .a� C b� /2˛C1

z2˛
:

ut
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Proposition 12.3.7 Let ˛ � 0 and ˇ > 1
2

be fixed, but arbitrary. Suppose that for
all � > 0, and 0 � i � j � k � n, there exists f�1; : : : ; �ng � RC such that

P
�ˇ̌̌̌̌̌

Sj � Si

ˇ̌̌̌̌̌
s
� �;

ˇ̌̌̌̌̌
Sk � Sj

ˇ̌̌̌̌̌
s
� �

�
� 1

�2˛

8<
:X

l2�iWk�
�l

9=
;
2ˇ

:

There exits then �.˛; ˇ/ such that, for all � > 0,

P .�n � �/ � �.˛; ˇ/f�1 C 
 
 
 C �ng2ˇ
�2˛

:

Proof The proof shall be by induction. Let � D .2˛ C 1/�1: � 2�0; 1�. Let also, for
� > 0,

f .�/ D 2�
�
1

22ˇ�
C 1

��

�
:

f is decreasing, and its limit is 2��.2ˇ�1/ < 1. Choose � such that � � 1, and
f .�/ � 1. Let c D �1 C 
 
 
 C �n, c0 D 0, and ci D c�1.�1 C 
 
 
 C �i/.

The case n D 1: As, by definition, �1 D 0, P.�1 � �/ D 0, which is smaller than
any positive quantity, so that the result is true.
The case n D 2: The only term entering the definition of �2 which is possibly
different from zero is

ˇ̌̌̌
S1
ˇ̌̌̌

s ^
ˇ̌̌̌
S2 � S1

ˇ̌̌̌
s, so that �2 equals the latter, and the

assumption says, since S0 D 0s, that, with � � 1,

P.�2 � �/ D P.
ˇ̌̌̌
S1
ˇ̌̌̌

s
^ ˇ̌̌̌ S2 � S1

ˇ̌̌̌
s
� �/

� P.
ˇ̌̌̌
S1 � S0

ˇ̌̌̌
s � �;

ˇ̌̌̌
S2 � S1

ˇ̌̌̌
s � �/

� .�1 C �2/2ˇ
�2˛

� � .�1 C �2/
2ˇ

�2˛
:

Suppose that the result obtains up to n�1. The numbers ci D �1C���C�i
c are increasing

to one. So there is i0 such that ci0�1 � 1
2
� ci0 .

One shall dominate �n with the help of the following variables:

U1 D max
j2Œ0Wi0�1�

nˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
^
ˇ̌̌̌̌̌
Si0�1 � Sj

ˇ̌̌̌̌̌
s

o
;

U2 D max
j2Œi0;n�

nˇ̌̌̌̌̌
Sj � Si0

ˇ̌̌̌̌̌
s
^
ˇ̌̌̌̌̌ �

Sn � Si0

� � �Sj � Si0

�ˇ̌̌̌̌̌
s

o
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D max
j2Œi0;n�

nˇ̌̌̌̌̌
Sj � Si0

ˇ̌̌̌̌̌
s
^
ˇ̌̌̌̌̌
Sn � Sj

ˇ̌̌̌̌̌
s

o
;

V1 D
ˇ̌̌̌
Si0�1

ˇ̌̌̌
s
^ ˇ̌̌̌ Sn � Si0�1

ˇ̌̌̌
s
;

V2 D
ˇ̌̌̌
Si0

ˇ̌̌̌
s
^ ˇ̌̌̌ Sn � Si0

ˇ̌̌̌
s
:

Domination of U1: When i0 D 1, U1 is zero, and one need not be concerned.
Suppose thus that i0 > 1. Since i0 � 1 < n, the result is true for X1; : : : ;Xi0�1,
so that, since ci0�1 � 1

2
,

P .U1 � �/ � � .ci0�1c/
2ˇ

�2˛
� �

�2˛

� c

2

�2ˇ
:

Domination of U2: When i0 D n, U2 D 0, and again there is no need to be
concerned. Otherwise, since n � i0 < n, the result is also true for

QX1 D Xi0C1; : : : ; QXn�i0 D Xn;

using Q�1 D �i0C1; : : : ; Q�n�i0 D �n, so that

P.U2 � �/ � �

�2˛

� c

2

�2ˇ
:

Domination of V1 and V2: When i0 D 1, V1 D 0, and, when i0 D n, V2 D 0.
One must then only consider the case 1 < i0 < n. But then the assumption yields
directly, using again the fact that S0 D 0s, that

P.V1 � �/ � c2ˇ

�2˛
; and P.V2 � �/ � c2ˇ

�2˛
:

Domination of �n using U1;V1;U2;V2:

• When j 2 Œ0 W i0 � 1�,

�j D
ˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
^
ˇ̌̌̌̌̌
Sn � Sj

ˇ̌̌̌̌̌
s
� U1 C V1:

Indeed:

– when
ˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
� U1,

�j �
ˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
� U1 � U1 C V1I

– when
ˇ̌̌̌̌̌
Si0�1 � Sj

ˇ̌̌̌̌̌
s
� U1 and



12.3 Measures for Sample Spaces 919


 ˇ̌̌̌
Si0�1

ˇ̌̌̌
s
D V1, then

�j �
ˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
�
ˇ̌̌̌̌̌
Si0�1 � Sj

ˇ̌̌̌̌̌
s
C ˇ̌̌̌ Si0�1

ˇ̌̌̌
s
� U1 C V1I


 ˇ̌̌̌
Sn � Si0�1

ˇ̌̌̌
s
D V1, then

�j �
ˇ̌̌̌̌̌
Sn � Sj

ˇ̌̌̌̌̌
s
�
ˇ̌̌̌̌̌
Si0�1 � Sj

ˇ̌̌̌̌̌
s
C ˇ̌̌̌ Sn � Si0�1

ˇ̌̌̌
s
� U1 C V1:

• When j 2 Œi0 W n�,

�j D
ˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
^
ˇ̌̌̌̌̌
Sn � Sj

ˇ̌̌̌̌̌
s
� U2 C V2:

Indeed:

– when
ˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
� U2,

�j �
ˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
� U2 � U2 C V2I

– when
ˇ̌̌̌̌̌
Si0
� Sj

ˇ̌̌̌̌̌
s
� U2 and


 ˇ̌̌̌
Si0

ˇ̌̌̌
s
D V2, then

�j �
ˇ̌̌̌̌̌
Sj

ˇ̌̌̌̌̌
s
�
ˇ̌̌̌̌̌
Si0
� Sj

ˇ̌̌̌̌̌
s
C ˇ̌̌̌ Si0

ˇ̌̌̌
s
� U2 C V2I


 ˇ̌̌̌
Sn � Si0

ˇ̌̌̌
s
D V1, then

�j �
ˇ̌̌̌̌̌
Sn � Sj

ˇ̌̌̌̌̌
s
�
ˇ̌̌̌̌̌
Si0
� Sj

ˇ̌̌̌̌̌
s
C ˇ̌̌̌ Sn � Si0

ˇ̌̌̌
s
� U2 C V2:

Consequently,

�n � fU1 C V1g _ fU2 C V2g ;

so that, since a _ b � � implies either a � �, or b � �, or both,

P .�n � �/ � P .U1 C V1 � �/C P .U2 C V2 � �/ :

Domination of P .U1 C V1 � �/: Let � > 0 be decomposed arbitrarily into �uC�v ,
with �u > 0 and �v > 0. Then the above established probability bounds yield that

P .U1 C V1 � �/ � P .U1 � �u/C P .V1 � �v/ � �

�2˛u

� c

2

�2ˇ C c2ˇ

�2˛v
:
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One may thus apply the lemma, with a D � � c
2

�2ˇ
and b D c2ˇ, to obtain that

P .U1 C V1 � �/ � c2ˇ

�2˛

n
1C

� �

22ˇ

��o 1�
:

The induction proof may now be completed. The same inequality obtains for P.U2C
V2 � �/ as for P .U1 C V1 � �/, so that

P .�n � �/ � 2 c2ˇ

�2˛

n
1C

� �

22ˇ

��o 1�
:

Since, by choice,

2�

��

n
1C

� �

22ˇ

��o D 2� � 1

22ˇ�
C 1

��

�
� 1;

and that ��1 D 2˛C 1 � 1, it follows that

2

�

n
1C

� �

22ˇ

��o 1� � 1 ;
so that

P .�n � �/ � � c2ˇ

�2˛
;

and the induction is complete. ut
Proposition 12.3.8 Suppose that, for ˛ � 0, ˇ > 1, fi; jg � Œ0 W n� such that i � j,
fixed, but arbitrary, for all � � 0,

P
�ˇ̌̌̌̌̌

Sj � Si

ˇ̌̌̌̌̌
s
� �

�
� 1

�˛

0
@X

k2�iWj�
ck

1
Aˇ ;

then, for all � � 0,

P .�n � �/ � Q�.˛; ˇ/ cˇ

�˛
:

In fact, one may choose Q�.˛; ˇ/ equal to 2˛
n
1C �

�
˛
2
;
ˇ

2

�o
.
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Proof By Schwarz’s inequality, P.A1 \A2/ � P
1
2 .A1/P

1
2 .A2/. The assumption, and

the fact that ab � .aC b/2, yield that

P
�ˇ̌̌̌̌̌

Sj � Si

ˇ̌̌̌̌̌
s
� �;

ˇ̌̌̌̌̌
Sk � Sj

ˇ̌̌̌̌̌
s
� �

�
�

� 1

�
˛
2

0
@X

l2�iWj�
cl

1
A

ˇ
2

1

�
˛
2

0
@X

l2�jWk�
cl

1
A

ˇ
2

� 1

�˛

0
@X

k2�iWj�
ck

1
Aˇ :

Thus (Proposition) 12.3.7 obtains when ˛ becomes ˛
2

, and ˇ, ˇ
2

, that is,

P .�n � �/ � �
�
˛

2
;
ˇ

2

�
cˇ

�˛
:

The assumption says again that

P
�ˇ̌̌̌

Sn

ˇ̌̌̌
s
� �� � cˇ

�˛
:

As

P .�n � �/ � P

�
�n � �

2

�
C P

�ˇ̌̌̌
Sn

ˇ̌̌̌
s
� �

2

�
;

the proof is finished. ut
Proposition 12.3.9 Let fRn; n 2 Ng be a sequence of random elements in K. It is
tight when the following obtain:

1. the sequence fRn.
; 0/; n 2 Ng is tight;
2. there exist ˛ � 0, ˇ > 1, and a real, monotone increasing function �, with

domain Œ0; 1�, such that, for all t1; t2; n, and positive �’s,

P
�
! 2 ˝ W jjRn.!; t1/� Rn.!; t2/jjs � �

� � 1

�˛
j�.t2/ � �.t1/jˇ :

The following inequality implies item 2:

EP
�jjRn.!; t1/� Rn.!; t2/jj�1s

� � j�.t2/� �.t1/j�2 :
Proof Because of (Proposition) 12.3.3, it suffices, given � > 0 and ı > 0, fixed, but
arbitrary, to produce an � 2�0; 1Œ such that, for all n,

P
�
w.Rn; �/ � 3�

� � ı:
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Because of (Corollary) 12.3.5, that will obtain provided ��1 is an integer, and

X
i< 1

�

P

 
sup

t2Œi�W.iC1/��
jjRn.
; t/ � Rn.
; i�/jjs � �

!
� ı:

So the latter shall be checked. To that end, let n; � and i be, for the moment, fixed,
and p be an arbitrary integer in N. Set, for k 2 Œ1 W p�,

Xk D Rn

�

; i�C k

p
�

�
� Rn

�

; i�C k � 1

p
�

�
;

ck D �

�
i�C k

p
�

�
� �

�
i�C k � 1

p
�

�
:

From the definitions, one has that

Sk D Rn

�

; i�C k

p
�

�
� Rn .
; i�/ ;

and

c1 C 
 
 
 C ck D �
�

i�C k

p
�

�
� �.i�/;

so that

Sl � Sk D Rn

�

; i�C l

p
�

�
� Rn

�

; i�C k

p
�

�
;

and

cl � ck D �
�

i�C l

p
�

�
� �

�
i�C k

p
�

�
:

Thus, using the assumption,

P
�ˇ̌̌̌

Sl � Sk

ˇ̌̌̌
s
� �� D P

�ˇ̌̌
ˇ
ˇ̌̌
ˇRn

�

; i�C l

p
�

�
� Rn

�

; i�C k

p
�

�ˇ̌̌
ˇ
ˇ̌̌
ˇ
s

� �
�

� 1

�˛

ˇ̌̌
ˇ�
�

i�C l

p
�

�
� �

�
i�C k

p
�

�ˇ̌̌
ˇˇ

D 1

�˛

0
@ X

m2�kWl�
cm

1
Aˇ :
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One may thus use (Proposition) 12.3.8 to assert that

P

�
max

k2Œ0;p�

ˇ̌̌
ˇ
ˇ̌̌
ˇRn

�

; i�C k

p
�

�
� Rn .
; i�/

ˇ̌̌
ˇ
ˇ̌̌
ˇ
s

� �
�
�

� �.˛; ˇ/ .�..iC 1/�/� �.i�//
ˇ

�˛
:

Since Rn has continuous paths,

lim
p

max
k2Œ0;p�

ˇ̌̌
ˇ
ˇ̌̌
ˇRn

�

; i�C k

p
�

�
� Rn .
; i�/

ˇ̌̌
ˇ
ˇ̌̌
ˇ
s

D sup
t2Œi�W.iC1/��

jjRn.
; t/� Rn.
; i�/jjs :

Consequently

X
i< 1

�

P

 
sup

t2Œi�W.iC1/��
jjRn.
; t/� Rn.
; i�/jjs � �

!

is dominated by

�.˛; ˇ/ .�.1/� �.0//
�˛

max
i< 1

�

.�..iC 1/�/� �.i�//ˇ�1 :

Since � is continuous, and ˇ > 1, the statement’s assertion is true taking ı D p�1,
p a large integer. ut
Proposition 12.3.10 Let, for all n 2 N, tn D ft1; : : : ; tng � Œ0; 1�, Ptn be a
probability on the Borel sets of sn. Suppose that the resulting family is consistent,
and that there exists ˛ � 0, ˇ > 1, and � W Œ0; 1� �! RC, monotone and
continuous, such that, for all t1; t2 and � � 0,

Pt2

�
.k1; k2/ 2 s � s W ˇ̌̌̌ k1 � k2

ˇ̌̌̌
s
� �� � 1

�˛
j�.t1/� �.t2/jˇ :

A sufficient condition isZ
s�s

ˇ̌̌̌
k1 � k2

ˇ̌̌̌ �
s

Pt2 .dk1; dk2/ � j�.t1/ � �.t2/jˇ :

There exists then in K a random element whose finite dimensional projections have
the Ptn ’s as distributions.

Proof Let sŒ0;1� be the set of functions with domain Œ0; 1�, and range in s. If

C.sŒ0;1�/
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is the �-algebra of sŒ0;1� generated by the evaluation maps, that is, the product �-
algebra of the Borel sets of s, there exists a probability measure P on it whose
marginal distributions are the Ptn ’s [70, p. 111].

Let n 2 N be fixed, but arbitrary, and, for i 2 Œ0 W 2n�, t.n/i D i
2n . The evaluation

maps

E s;n
i W sŒ0;1� �! s

that assign to t 7! k.t/ the value k.t.n/i /, define random elements whose joint law is
Ptn . Let thus the random process Rn be defined as follows on sŒ0;1�:

• Rn.k ; t
.n/

i / D E s;n
i .k/,

• when � 2�t.n/i�1; t
.n/

i Œ, (linear interpolation)

Rn.k ; �/ D
t.n/i � �

t.n/i � t.n/i�1
Rn.k ; t

.n/

i�1/C
� � t.n/i�1
t.n/i � t.n/i�1

Rn.k ; t
.n/

i /:

By construction, Rn belongs to K, and the law of�
Rn .
; 0/ ;Rn

�

; 1
2n

�
; : : : ;Rn

�

; 2

n � 1
2n

�
;Rn .
; 1/

�

is Ptn . When t1 D i
2n and t2 D j

2n , then, by assumption,

P
�jjRn.
; t1/� Rn.
; t2/jjs � �

� � 1

�˛
j�.t1/� �.t2/jˇ :

As in the proof of the previous proposition, let n, �, and i be fixed, with ��1
an integer. If the points of the form i� C k

p� are also of the form j
2n , then the

expression of the previous proposition involving the maximum obtains equally.
Suppose furthermore that �2n is also an integer, and let p D �2n. Then the points
of the form i� C k

p� are indeed of the form j
2n , and they partition the intervals

Œi�; .iC1/��. It follows that the conclusions of the previous proof involving suprema
obtain also. But, if � D 2q, q an integer large enough for the right-hand side of the
last relation of the previous proof be less than ı, the Rn’s for n beyond a certain
fixed value form a tight sequence. There is thus, by Prohorov’s theorem a random
element R in K, and a subsequence with elements of the form Rnp

that converges in
distribution (weakly) to it.

R is the required random element. Indeed, when ft1; : : : ; tmg are dyadic rationals,
because of the consistency assumption, the law of

fRn.
; t1/; : : : ;Rn.
; tm/g
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is Ptm for large enough n, and it follows that the latter is also the law of
˚
R.
; t1/;

: : : ;R.
; tm/
�
. When ft1; : : : ; tmg are not dyadic rationals, one chooses dyadic

rationals
˚
d1;q; : : : ; dm;q

�
such that limq dq;i D ti, i 2 Œ1;m�. Then

˚
R.
; dq;1/; : : : ;

R.
; dq;m/
�

converges in distribution to

fR.
; t1/; : : : ;R.
; tm/g :

But, because of the assumption and the continuity of �, Pdq;m
converges weakly to

Ptm , so that

fR.
; t1/; : : : ;R.
; tm/g

has law Ptm . ut



Chapter 13
Likelihoods for Signal Plus “White Noise”
Versus “White Noise”

In this chapter, one obtains the likelihood for a “signal plus noise” model for which
the noise is a Cramér-Hida process. The “white noise” of the chapter’s title is a
convenience: for a short glimpse at “real white noise,” one may, for example, look
at [164, p. 260]. As for the finite dimensional case, the road to the likelihood is
based on a version of Girsanov’s theorem, and the likelihood itself follows when
the “signal plus noise,” that is, the observation process, has a representation as the
solution of a stochastic differential equation.

One shall use the following acronyms: SPWN shall mean “signal plus white
noise,” SPGN, “signal plus Gaussian noise” (that is, Gaussian, but not “white”).

13.1 A Version of Girsanov’s Theorem

The version to follow shall allow one to implement, for Cramér-Hida processes
(noises), the procedure delineated at the beginning of this part (Part III) of the book.

13.1.1 Framework

The framework for the sequel is now described. When using simultaneously
probabilities P and Q, one shall write respectively

IP
0 Œb � and IQ

0 Œb �

for the corresponding I0Œb �. When Q� P, IP
0 Œb� � IQ

0 Œb �.
Let .˝;A;P/ be the basic probability space, and B W ˝ � Œ0; 1� �! s be a

Cramér-Hida process whose covariance function is C [(Fact) 11.1.5]. Let a 2 I0Œb �

© Springer International Publishing Switzerland 2015
A.F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise,
DOI 10.1007/978-3-319-22315-5_13
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be fixed, but arbitrary. X is the process, with values in s, whose components Xn have
the following form: for n 2 N, and t 2 Œ0; 1�, fixed, but arbitrary,

Xn.!; t/ D
Z t

0

an.!; �/Mn.d�/C Bn.!; t/ D SnŒa�.!; t/C Bn.!; t/:

The integral in that latter expression yields an adapted process (Fubini). One shall
most often use the abridged notation X D S Œa�CB. Now, since, for t1 < t2 in Œ0; 1�,
fixed, but arbitrary, by Schwarz’s inequality,

�Z t2

t1

an.!; �/Mn.d�/

� 2
� fbn.t2/� bn.t1/g jjan.!; 
/jj2L2Œ bn �

� fb.t2/� b.t1/g jjan.!; 
/jj2L2Œ bn �
;

one has that

1X
nD1

�Z t2

t1

an.!; �/Mn.d�/

� 2
� fb.t2/� b.t1/g jja.!; 
/jj2L2Œ b � :

Since a can be chosen to have finite norm for every ! 2 ˝ [(Lemma) 11.2.2], S Œa�
has paths in K.

Given a fixed, but arbitrary ˛ 2 I0Œb �, the meaning of IX f˛g .!; t/ shall be the
following expression:

IX f˛g .!; t/ D h˛jt.!; 
/; ajt.!; 
/iL2Œ b � C IB f˛g .!; t/:

When probabilities P and Q must be entertained, one shall write, for such an integral,
when distinction is required,

IP
X f˛g .!; t/; and IQ

X f˛g .!; t/:

The probability determined, on K, by a process X, and a probability P, shall be
denoted PK

X . When Q is a probability (measure) absolutely continuous with respect
to the probability (measure) P, one writes sometimes Q � P; when P and Q are
mutually absolutely continuous, one sometimes writes Q � P.

13.1.2 Tools for Absolutely Continuous Change of Measure

A few required facts from martingale theory are now listed.
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Fact 13.1.1 ([264, pp. 246–247]) Let Q be a probability on A such that Q � P
(absolute continuity), and let D denote the Radon-Nikodým derivative. When D has
paths that are continuous to the right,

1. given a wide sense stopping time S, denoting PS and QS the restrictions to AS of,
respectively, P and Q, one has that

dQS

dPS
.!/ D D.!; S.!//I

2. given a process X that is adapted, and continuous to the right, it is a local
martingale with respect to Q if, and only if, the process X�D is a local martingale
with respect to P, and, when D is almost surely continuous, one may replace
“local martingale” with “a martingale locally in L2.”

One also needs an approximation result based on properties of convolution. The
convolution of two functions, f and g, with R as domain, is the function obtained,
when it makes sense, using the following formula:

ff ? gg .t/ D
Z
R

f .�/g.t � �/d� D
Z
R

f .t � �/g.�/d�:

When f .t/ and g.t/ are zero for t < 0, ff ? gg .t/ D 0 for t � 0, and, for t > 0,

ff ? gg .t/ D
Z t

0

f .�/g.t � �/d�:

When f 2 L1ŒR�, and g 2 L1ŒR�, one has that [108, p. 345]:

1. f ? g.t/ makes sense for t 2 R;
2. the class of f ? g is in L1ŒR�;
3. jjf ? gjj � jjf jjL1ŒR� jjgjjL1ŒR�;
4. f ? g 2 CŒR�, the space of continuous functions.

A function is locally in a space of integrable functions when its restriction to every
compact set is in the corresponding space of integrable functions. An approximate
unit for convolution is a sequence fın; n 2 Ng of (classes of) functions of L1ŒR� such
that, given f 2 Lloc

1 ŒR�, or f 2 Lloc
2 ŒR�, fixed, but arbitrary, fın ? f ; n 2 Ng converges

in Lloc
1 ŒR�, respectively 2 Lloc

2 ŒR�. To obtain sequences of type fın; n 2 Ng, it suffices
[108, p. 372] to choose probability densities ı 2 L1ŒR�, with compact support, and
then to set ın.t/ D nı.nt/. One then has, when choosing fn D ın ? f , the following
lemma:

Lemma 13.1.2 Let f W RC �! R be Borel measurable, and bounded by �. There
is a sequence ffn; n 2 Ng of continuous functions, bounded by �, such that, on every
finite interval, say Œa; b�,

lim
n

Z b

a
ff � fng2 dLeb D 0:
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Lemma 13.1.3 Let X be a progressively measurable process on .˝;A;P/, with
index set Œ0; 1�, whose square is integrable with respect to P˝Leb. There exists then
a sequence fXn; n 2 Ng of (uniformly) bounded simple, progressively measurable
processes such that

lim
n

Z
˝

Z t

0

fX.!; t/ � Xn.!; t/g2 P˝ Leb.d!; dt/ D 0:

Proof It is no restriction, when necessary, to assume that the index set is R, or
RC, as, with respect to P ˝ Leb, X D �

�0;1�
X. The proof consists in recognizing

that any process may be approximated by bounded ones, that bounded ones may be
approximated by continuous ones, and continuous ones, by simple functions.

Suppose that X is a (uniformly) bounded, adapted process with continuous paths
(it is thus progressively measurable [264, p. 71]). Let

Xn.!; t/ D
n�1X
nD0

X.!; ti/��ti ;tiC1� .t/;

Xn is by definition progressively measurable, and (uniformly) bounded. Thus, by
dominated convergence, for each ! 2 ˝ , since X has continuous paths,

lim
n

Z 1

0

jX.!; t/ � Xn.!; t/j2 Leb.dt/ D 0:

The same is true for the expectation.
Suppose now that X is progressively measurable and (uniformly) bounded. When

applying (Lemma) 13.1.3 to X.!; 
/, one may assume that the latter is f , and thus X
bounded yields f integrable. Furthermore fn involves the integral from 0 to t, and it
is bounded. Let thus

Xn.!; t/ D
Z t

0

ın.t � �/X.!; �/Leb.d�/:

One has that Xn has continuous paths, and is bounded by the same bound as that
which obtains for X. Also, for each ! 2 ˝ ,

lim
Z 1

0

fX.!; t/ � Xn.!; t/g2 Leb.dt/:

The same is true for expectations.
Finally Xn D �Œ�n;nŒ .X/ provides a bounded approximation to X. ut

Lemma 13.1.4 Let Mb be a measure on the Borel sets of Œ0; 1�, generated by the
continuous, increasing function b, which is zero at the origin. Let a be a real valued,
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progressively measurable process on .˝A;P/, A indexed by Œ0; 1�, such that

Z
˝

Z 1

0

ja.!; t/j2 P˝Mb.d!; dt/ <1:

There exists a sequence of simple, progressively measurable processes an on
.˝A;P/ such that

lim
n

Z
˝

Z 1

0

ja.!; t/� an.!; t/j2 P˝Mb.d!; dt/ D 0:

Proof Let be be the extension of b to RC obtained using, when t > 1, the following
assignment: be.t/ D b.1/. The �-algebras in A and any function f are extended
similarly to obtain, respectively, Ae and fe (A1 D A1 and fe.1/ D f .1/). Let
be.t/ D inf f� 2 RC W be.�/ > tg. It is a strict stopping time [(Fact) 10.3.22], and an
increasing function [(Fact) 10.3.21], continuous to the right. The following process:
.!; t/ 7! a.!; be.t// is a progressively measurable process for the filtration with
elements Abe.t/ [192, p. 73]. Since be is continuous, because of (Fact) 10.3.33,

be
�
be.t/

� D t:

As

be
�
be.t/

� � be
�
be.t ��/

� D �;
be is be-continuous [(Definition) 10.3.34]. One may thus apply, path by path, the
change of variables formula [(Fact) 10.3.36], with  D a.!; 
/, ˛ D be, ˇ D be,
and � D Leb, to obtain that

Z t

0

˚
 ı be

�2
dLeb D

Z be.t/

0

2dmbe :

Let now a have an integrable square with respect to P˝M. Then  ı be has a square
that is integrable with respect to Lebesgue measure. There is thus [150, p. 60] a
sequence of processes of the following form:

˚n.!; t/ D
n�1X
iD1

a.!; be.ti//�Œti ;tiC1Œ .t/

such that

lim
n

EP

	Z ˚
a ˘ be �˚n

�2
dLeb



D 0:
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Since be.be.t// D t, ˚n.!; t/ D ˚n.!; be.be.t//. One may thus apply the change of
variable formula [(Fact) 10.3.36] in reverse to obtain that

lim
n

EP

	Z
fa� ˚n ˘ beg2 dMbe



D 0:

Since [(Fact) 10.3.28] be D be, be is a change of time for the �-algebras of type

Abe.t/;

that is, At. Consequently ˚n ˘ be is progressively measurable for A [192, p. 73]. It
remains to see that the Mbe -measure of Œ1;1� is zero. ut
Corollary 13.1.5 Add to the assumptions of (Lemma) 13.1.4 that Q is absolutely
continuous with respect to P, and that

Z
˝

Z 1

0

ja.!; t/j2 Q˝Mb.d!; dt/ <1:

There is then a sequence of simple, progressively measurable processes an on
.˝A;P/ such that

lim
n

Z
˝

Z 1

0

ja.!; t/� an.!; t/j2 P˝Mb.d!; dt/ D 0;

and

lim
n

Z
˝

Z 1

0

ja.!; t/� an.!; t/j2 Q˝Mb.d!; dt/ D 0

Proof Let ˘ D .PC Q/=2. When a is progressively measurable and has a square
that is integrable with respect to both P ˝ Mb and Q ˝ Mb, the same is true with
respect to˘ . Applying (Lemma) 13.1.4 with ˘ in place of P, one gets the required
sequence as, for example, Z

a2d.P˝Mb/ � 2
Z

a2d˘:

ut
Definition 13.1.6 Let B be a zero mean, almost surely continuous, Gaussian
martingale with variance function b. Let Mb be the measure corresponding to b,
and a, a process whose paths are almost surely in L2.Œ0; 1�;B;Mb/. Given

X.
; t/ D
Z t

0

a.
; �/M.d�/C B.
; t/;
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one sets [264, p. 151], for ˛, progressively measurable, with paths almost surely in
L2.Œ0; 1�;B;Mb/ [264, p. 152],Z t

0

˛.
; �/X.
; d�/ D
Z t

0

˛.
; �/a.
; �/M.d�/C
Z t

0

˛.
; �/B.
; d�/:

Proposition 13.1.7 Let aP; aQ;BP;BQ have the meaning of a and B in (Defini-
tion) 13.1.6. Suppose that Q is a probability which is absolutely continuous with
respect to P, and that, with respect to P, X has the following representation:

XP.!; t/ D
Z t

0

aP.
; �/M.d�/C BP.
; t/;

while, with respect to Q, it has the following representation:

XQ.!; t/ D
Z t

0

aQ.
; �/M.d�/C BQ.
; t/;

where BP and BQ have the law of B in (Definition) 13.1.6. Let ˛ be such that its
integral with respect to X makes sense for P as well as for Q. Then, almost surely
with respect to Q, Z t

0

˛dXP D
Z t

0

˛dXQ:

Proof Let f˛n; n 2 Ng be a sequence as in (Corollary) 13.1.5. Then, since
R
˛n dX

does depend neither on P, nor on Q, the claim is valid for each ˛n. Now, for example,
for ˛ 2 L2ŒP˝Mb�,

EP

"�Z t

0

˛dXP �
Z t

0

˛n dXP

� 2#
�

� 2
�
1C EP

	Z t

0

a2dMb


�
EP

	Z t

0

f˛ � ˛ng2 dMb



:

One can thus find a subsequence of f˛n; n 2 Ng, say
˚
˛np ; p 2 N

�
, such that, almost

surely, with respect to P, and thus with respect to Q,

lim
n

Z t

0

˛np dX D lim
n

Z t

0

˛np dXP D
Z t

0

˛dXP;

and, almost surely, with respect to Q,

lim
n

Z t

0

˛np dX D lim
n

Z t

0

˛np dXQ D
Z t

0

˛dXQ:



934 13 Likelihoods for Signal Plus “White Noise” Versus “White Noise”

Consequently, the claim obtains for ˛’s such that

EP

	Z 1

0

˛2dMP



_ EQ

	Z 1

0

˛2dMQ



<1:

For an ˛ that is almost surely square integrable with respect to both P and Q, one
can find a family of stopping times fSn; n 2 Ng such that

EP

	Z 1

0

�
ŒŒ0;Sn ��

˛2dMP



_ EQ

	Z 1

0

�
ŒŒ0;Sn ��

˛2dMQ



<1:

A modification of ˛ as in (Lemma) 11.2.2 allows one to even choose strict stopping
times. From the L2 case, one has that, almost surely with respect to Q,

Z t^Sn

0

˛dXP D
Z t^Sn

0

˛dXQ:

ut

13.1.3 A Girsanov Type Theorem

One proves below a Girsanov’s type theorem for the “model”

X D S Œa �C B:

The proof requires the following result:

Proposition 13.1.8 Suppose that Q is a probability, absolutely continuous with
respect to P, and that X is a process, adapted to A, which has, for P and Q, the
following respective representations:

XP D S
�
aP

�C BP;

XQ D S
�
aQ

�C BQ;

for which, L.X/ denoting the law of the process X,

L.BP/ D L.BQ/;

and

P
�
! 2 ˝ W ˇ̌̌̌ aP.!; 
/

ˇ̌̌̌
L2Œ b �

<1
�
D Q

�
! 2 ˝ W ˇ̌̌̌ aQ.!; 
/

ˇ̌̌̌
L2Œ b �

<1
�

D 1:
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Suppose that ˛ is a process adapted to A, which belongs to IP
0 Œb �, and thus also to

IQ

0 Œb �. Then, almost surely, with respect to Q,

IQ
XQ
f˛g D IP

XP
f˛g :

Proof Since the integrals in the proposition are limits, locally, uniformly in
probability, of finite sums, and that the result is true for finite sums [(Proposition)
13.1.7], it remains true for the integrals themselves. ut
Proposition 13.1.9 Let a 2 IP

0 Œb � be fixed, but arbitrary, and X D S Œa�C B, as in
Sect. 13.1.1. Let the processes D and U, and the probability Q, be defined as follows:

U.!; t/ D � ˚IB fag .!; t/C .1=2/hIB fagi.!; t/
�
;

ln D D U; and dQ D D.
; 1/dP:

Suppose that EP ŒD.
; 1/� D 1. Then:

1. QK
X D PK

B;
2. PK

B � PK
X, and, almost surely, with respect to PK

X,

dPK
B

dPK
X

.k/ D EP ŒD.
; 1/ j X D k� I

3. PK
X � PK

B, and, almost surely, with respect to PK
B,

dPK
X

dPK
B

.k/ D EQ

h
fD.
; 1/g�1 j X D k

i
:

Proof (1) One must check that, with respect to Q, X is a Cramér-Hida process whose
covariance function is C. According to (Corollary) 10.5.19, it suffices to prove that,
with respect to Q, X is an .A;C/-martingale. Because of (Proposition) 10.5.6, it is
enough to check that, for ˛ 2 l2, fixed, but arbitrary,

E˛.!; t/ D eX˛.!;t/� 12C˛.t/ D eh˛;X.!;t/il2�
1
2 hC.t/Œ˛�;˛il2

is a local martingale with respect to Q. But that will be the case [(Fact) 13.1.1, item
2] if the process E˛ � D is a local martingale with respect to P, and that will obtain
[(Proposition) 10.4.6] if it is possible to express E˛ �D as the exponential of a local
martingale minus half its quadratic variation.

Now

• D is the exponential of �IB fag � 1
2
hIB fagi with

hIB fagi.!; t/ D
ˇ̌̌̌
ajt.!; 
/

ˇ̌̌̌ 2
L2Œ b �
I
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• E˛ is the exponential of h˛;Xil2 � 1
2
hC.
/Œ˛�; ˛il2 with [(Definition) 13.1.6]

h˛;Xil2 D h˛; SŒa�il2 C h˛;Bil2 :

With notation and (property (Fact)) 11.3.10, h˛;Bil2 D IB fa˛g, and

hIB fa˛gi D jja˛jj2L2Œ b � D hC.
/Œ˛�; ˛il2 :

Furthermore

h˛; SŒa�il2 D ha˛; aiL2Œ b �:

Putting the pieces together, one obtains that the process E˛ �D is the exponential of

IB fa˛ � ag � .1=2/hIB fa˛ � agi;

and is thus a local martingale with respect to P.

Proof (2) Since Q� P, QK
X � PK

X . But, as seen, QK
X D PK

B, so that

PK
B � PK

X:

Furthermore, for measurable K0 � K,

PK
B.K0/ D QK

X .K0/

D Q
�
X�1.K0/

�

D
Z

X�1.K0/
D.
; 1/dP

D
Z

K0

EP ŒD.
; 1/ j X D k�PK
X.dk/:

Proof (3) One must first check that, with respect to Q, almost surely,

D.
; 1/ > 0:

But, by assumption, a 2 IP
0 Œb � so that

P
�
! 2 ˝ W hIB fagi.!; 1/ <1

� D 1:
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Since Q� P, one has, as well, that

Q
�
! 2 ˝ W hIB fagi.!; 1/ <1

� D 1:
One must thus secure that IB fag is, with respect to Q, almost surely finite. But that
is a consequence of (Proposition) 13.1.8. One may thus write that

dP D D�1.
; 1/D.
; 1/dPD D�1.
; 1/dQ:

Consequently P� Q, and thus PK
X � QK

X D PK
B. Finally, for measurable K0 � K,

PK
X.K0/ D P

�
X�1.K0/

�

D
Z

X�1.K0/
D�1.
; 1/dQ

D
Z

K0

EQ
�
D�1.
; 1/ j X D k

�
QK

X.dk/

D
Z

K0

EQ
�
D�1.
; 1/ j X D k

�
PK

B.dk/:

ut
Remark 13.1.10 The condition EP ŒD.
; 1/� D 1 of (Proposition) 13.1.9 obtains in
particular when the map ! 7! jja.!; 
/jjL2Œ b � is, with respect to P, almost surely
bounded [(Proposition) 10.4.10].

Proposition 13.1.11 When one omits, in (Proposition) 13.1.9, the requirement that

EP ŒD.
; 1/� D 1;

one still has that PK
X � PK

B.

Proof Let fSn; n 2 Ng be the localizing sequence of (Proposition) 11.2.3, and Oa, the
modification of a defined there. Set

OX.n/
.!; t/ D S

� OajSn

�C B:

Since the norm of OajSn
is, by definition, bounded by n, PK

OX.n/ � PK
B, a consequence

of (Proposition) 13.1.9 and (Remark) 13.1.10. Let then

˝n D f! 2 ˝ W Sn.!/ D 1g ; and ˝[ D [n2N˝n:
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By definition P.˝[/ D 1. Let K0 be a measurable set. Then

PK
X.K0/ D P .f! 2 ˝ W X.!; 
/ 2 K0g \˝[/

D P .[n2N .f! 2 ˝ W X.!; 
/ 2 K0g \˝n// :

However, on ˝n, almost surely with respect to P, X D OX.n/
, so that

PK
X.K0/ D P

�
[n2N

�n
! 2 ˝ W OX.n/

.!; 
/ 2 K0
o
\˝n

��
:

Suppose now that PK
B.K0/ D 0. Then, because of mutual absolute continuity,

PK
OX.n/.K0/ D 0, and consequently PK

X.K0/ D 0. ut
Remark 13.1.12 A form of the likelihood has been obtained in (Proposition) 13.1.9.
However, it depends functionally on the paths of the SPWN process, and, when
detecting, that is what one tries to discover, rather than assume. One must thus
decouple the likelihood from the underlying processes, and that is achieved through
a preliminary series of decompositions.

13.2 Decomposition of Processes

Let .˝;A;P/ be the base probability space, and N .A;P/, the sets of
A of P-probability zero. Let B � A be a �-algebra. Then

oB D � .B;N .A;P// :

When A is complete, one shall write Bo for oB.
The evaluations

˚
EK

t ; t 2 Œ0; 1�
�

shall often be looked at as a process on the space
.K;K/, and, to indicate that they are considered as a process for a given measure,
say �, one shall write E� to mean that the operating measure is �, and that

E�.k; t/ D EK
t .k/ D k.t/ 2 s:

Those evaluation maps generate a filtration on K, denoted K:

Kt D �t
�
EK
�
:

Given a process X, X shall denote the random element whose value at ! is the path
XŒ!� 2 K:

XŒ!� D fX.!; t/; t 2 Œ0; 1�g D Œt 7! X.!; t/�:
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One then defines ˚X W ˝ � Œ0; 1� �! K � Œ0; 1� using the following assignment:

˚X.!; t/ D .XŒ!�; t/ :

ds shall denote the distance of s, obtained with the l2 norm when s D l2, and the
Fréchet distance when s D R1.

When aK W K � Œ0; 1� �! s, the expression
ˇ̌̌̌̌̌
aK
jt .k; 
/

ˇ̌̌̌̌̌ 2
L2Œ b �

shall mean

1X
nD1

Z t

0

˚
aK

n.k; �/
�2

Mn.d�/:

Furthermore

aK�˚X.!; t/ D aK .XŒ!�; t/ :

Fact 13.2.1 ([138, p. 443]) Let f W E �! .F;F/, and g W E �! .G;G/, be
two maps into measurable spaces. Suppose that f is adapted to �.g/. There exists
 W G �! F, adapted to G and F , such that f D  ı g in each of the following two
cases:

1. F is a complete, and separable, metric space, and F D B.F/;
2. F separates points in F, and g.E/ 2 G.

Proposition 13.2.2 (Decomposing “White Noise”) Suppose that Po denotes the
probability obtained when completing A with respect to P and that B is adapted to
the filtration �o

t .X/. There exists then, on
�
K;K;PK

X

�
, an adapted process BX such

that

1. for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to Po,

BX�˚X.!; t/ D B.!; t/I

2. PK
BX
D PK

B.

Proof Let t 2 Œ0; 1� be fixed, but arbitrary, and let B?.!; t/ be adapted to
�t.X/, and almost surely equal to B.
; t/ [(Proposition) 10.2.22]. X is adapted
to �t.X/ and Kt, as, for � � t, fixed, but arbitrary, EK

� ı X D X.
; �/ [192,
p. 11]. Furthermore, X�1.Kt/ D �t.X/. One has thus the following pattern:

B?.
; t/ : ˝ �! .s;B.s// (it is f in (Fact) 13.2.1),

X : ˝ �! .K;Kt/ (it is g in (Fact) 13.2.1),

B?.
; t/ is adapted to �t.X/ D X�1.Kt/.
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There is thus [(Fact) 13.2.1] an adapted BX.
; t/ W .K;Kt/ �! .s;B.s// such that

B?.!; t/ D BX.XŒ!�; t/ D BX�˚X.!; t/:

Let n 2 N, and
˚
Bs
1; : : : ;B

s
n

� � B.s/ be fixed, but arbitrary Borel sets. Then

PK
X

�
k 2 K W BX.k; t1/ 2 Bs

1; : : : ;BX.k; tn/ 2 Bs
n

� D
D P

�
! 2 ˝ W B?.!; t1/ 2 Bs

1; : : : ;B
?.!; tn/ 2 Bs

n

�
D Po

�
! 2 ˝ W B.!; t1/ 2 Bs

1; : : : ;B.!; tn/ 2 Bs
n

�
:

One must now insure that BX has the proper path continuity properties. To that end,
let

• D denote the dyadic rationals of Œ0; 1�,
• I.n/i D

�
i
2n ;

iC1
2n

�
; i 2 Œ0 W 2n � 1�; n 2 N,

• BD
X denote the restriction of BX to D.

Set

• Dn D
˚

k
2n ; k 2 Œ0 W 2n�

� W then Dn � DnC1; D D [nDn;
• Dn D

˚
.di; dj/ 2 D �D W ˇ̌di � dj

ˇ̌
< 2�n

� W then DnC1 � Dn;
• Dn;i D D \ I.n/i ;
• Un D supDn

ds
�
BD

X .
; di/;BD
X .
; dj/

� W then UnC1 � Un;
• V .n/

i D supDn;i
ds
�
BD

X .
; d/;BD
X .
; i

2n /
�
,

• Vn D maxi V .n/

i .

Let .di; dj/ 2 Dn be fixed, but arbitrary. Since

D D [k.D \ I.n/k /;

di 2 I.n/ki
and dj 2 I.n/kj

. I.n/ki
and I.n/kj

must be adjacent since otherwise one would haveˇ̌
di � dj

ˇ̌ � 2�n. Thus

ˇ̌̌
ˇ ki

2n
� kj

2n

ˇ̌̌
ˇ < 1

2n
:

Then

ds
�
BD

X .
; di/;B
D
X .
; dj/

� � ds

�
BD

X .
; di/;B
D
X .
;

ki

2n
/

�

C ds

�
BD

X .
;
ki

2n
/;BD

X .
;
kj

2n
/

�

C ds

�
BD

X .
;
kj

2n
/;BD

X .
; dj/

�
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� sup
Dn;ki

ds

�
BD

X .
; di/;B
D
X .
;

ki

2n
/

�

C sup
Dn;ki

ds

�
BD

X .
;
ki

2n
/;BD

X .
;
kj

2n
/

�

C sup
Dn;kj

ds

�
BD

X .
;
kj

2n
/;BD

X .
; dj/

�

D 2V .n/

ki
C V .n/

kj

� 3Vn:

Consequently, Un � 3Vn, and fk 2 K W Un.k/ > �g �
˚
k 2 K W Vn.k/ >

�
3

�
. It

follows from the equalities relating finite dimensional distributions, seen above, that

PK
X

�n
k 2 K W Vn.k/ >

�

3

o�
D

D Po

 (
max

i
sup
Dn;i

ds

�
B .
; d/ ;B

�

; i

2n

��
>
�

3

)!
;

and, since B has, with respect to Po, paths that are almost surely uniformly
continuous, the right-hand side of the latter equality does have a zero limit, so that
the left-hand side does too, which means that PK

X .fUn > �g/ has a zero limit also.
That latter limit says that BD

X has, almost surely, uniformly continuous paths.
But then, path by path, BD

X can be extended uniquely to a continuous function on
Œ0; 1� [84, p. 302]. The resulting process is adapted as the procedure used above may
be restricted to Œ0; t� without change other than notational. That extension shall be
denoted Bext

X . Then, when t 2 Œ0; 1� is not in D, given a fixed, but arbitrary � > 0,

PK
X

�
k 2 K W ds

�
Bext

X .k; t/ ;BX .k; t/
�
> �

� D
D PK

X

�
k 2 K W ds

�
lim

Œd2D;d""t�
BD

X .k; d/ ;BX .k; t/

�
> �

�

D P

�
! 2 ˝ W ds

�
lim

Œd2D;d""t�
BD

X .XŒ!�; d/ ;BX .XŒ!�; t/

�
> �

�

D P

�
! 2 ˝ W ds

�
lim

Œd2D;d""t�
B? .!; d/ ;B? .!; t/

�
> �

�

D Po

�
! 2 ˝ W ds

�
lim

Œd2D;d""t�
B .!; d/ ;B .!; t/

�
> �

�
D 0:
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Thus

Po
�
! 2 ˝ W ds

�
Bext

X .XŒ!�; t/ ;B.!; t/
�
> �

� D
D P

�
! 2 ˝ W ds

�
Bext

X .XŒ!�; t/ ;B
?.!; t/

�
> �

�
D P

�
! 2 ˝ W ds

�
Bext

X .XŒ!�; t/ ;BX .XŒ!�; t/
�
> �

�
D PK

X

�
k 2 K W ds

�
Bext

X .k; t/ ;BX .k; t/
�
> �

�
D 0:

ut
The Bext

X process shall be denoted BX .

Remark 13.2.3 One may adapt the proof of [264, p. 115] to obtain that measurable
processes on K � Œ0; 1�, adapted to the filtrations generated by the evaluation maps,
are predictable.

Proposition 13.2.4 (Decomposing Stochastic Differential Equations) Suppose
that

(a) aK W K � Œ0; 1� �! R1 has progressively measurable components;
(b) there exists X W .˝;A;P/ � Œ0; 1� �! R1 such that, for t 2 Œ0; 1�, fixed, but

arbitrary, almost surely, with respect to P,

X.!; t/ D S
�
aK�˚X

�
.!; t/C B.!; t/I

(c) PK
X

�
k 2 K W jjaK .k; 
/jj2L2Œ b � <1

�
D 1.

There exists then a Cramér-Hida process BX, with base
�
K;K;PK

X

�
, such that

1. PK
BX
D PK

B;
2. for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to PK

X,

EPK
X
.k; t/ D S

�
aK
�
.k; t/C BX.k; t/:

Proof Let

BX.k; t/ D EPK
X
.k; t/ � S

�
aK
�
.k; t/:

That yields an adapted process whose paths may be assumed [(Lemma) 11.2.2] to
be continuous. It follows that, almost surely with respect to P,

BX.XŒ!�; t/ D EPK
X
.XŒ!�; t/ � S

�
aK
�
.XŒ!�; t/

D X.!; t/ � S
�
aK�˚X

�
.!; t/

D B.!; t/;

so that, with respect to PK
X , BX is a Cramér-Hida process with law PK

B. ut
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Proposition 13.2.5 (Decomposing Stochastic Integrals) Let the framework be
that of (Proposition) 13.2.4. The following integrals make then sense:

1. IB faK�˚Xg, for �.X/ and P,
2. IBX

faKg, for K and PK
X,

and, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely with respect to P,

IBX

˚
aK
�

�˚X.!; t/ D IB
˚
aK�˚X

�
.!; t/:

Proof Within the framework of Sect. 11.3.3, let .K;K;PK
X/ take the part of

.
;B;Q/, and X, that of f . Since EK
t ı X D X.
; t/, the requirements for the

application of (Proposition) 11.3.14 are met. Let ˛ be a fixed, but arbitrary element
in l2, and set:

B˛ D h˛;Bil2 ; and BX
˛ D h˛;BXil2 :

One has then [(Proposition) 11.3.14] that, for appropriate , with domain K� Œ0; 1�,Z t

0

 .XŒ!�; �/B˛.!; d�/ D
�Z t

0

 .k; �/BX
˛.k; d�/

�
ı XŒ!�:

But [(Fact) 11.3.10] B˛ D IB
˚
a˛K
�
, so that dB˛ D h˛; dBil2 , and, consequently,

choosing, for ˛, the element en, and, for  , the element aK
n , one obtains thatZ t

0

aK
n.XŒ!�; �/Bn.!; d�/ D

�Z t

0

aK
n.k; �/B

X
n.k; d�/

�
ı XŒ!�;

that is,

IB
˚
aK�˚X

� D IBX

˚
aK
�

�˚X :

ut

13.3 Likelihoods with Moment Conditions

The likelihood shall now be produced for a SPWN model, whose noise is, of course,
a Cramér-Hida process, and whose observations (signal plus noise) are the solution
of a stochastic differential equation. The moment conditions are those of item (c)
of (Proposition) 13.3.1 just below.

Proposition 13.3.1 Suppose that, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely
with respect to P,

X.!; t/ D S
�
aK�˚X

�
.!; t/C B.!; t/
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where

(a) B is a Cramér-Hida process;

(b) PK
X

�
k 2 K W jjaK .k; 
/jj2L2Œ b � <1

�
D 1;

(c) EP ŒD� D 1, with

ln ŒD.!/� D �IB
˚
aK�˚X

�
.!; 1/� 1

2

ˇ̌̌̌
aK�˚X.!; 
/

ˇ̌̌̌ 2
L2Œ b �

:

Then

1. almost surely, with respect to PK
X,

ln

	
dPK

B

dPK
X

.k/



D �IBX

˚
aK
�
.k; 1/� 1

2

ˇ̌̌̌
aK .k; 
/ˇ̌̌̌ 2

L2Œ b �
I

2. almost surely, with respect to PK
X,

ln

	
dPK

B

dPK
X

.k/



D �IE

PK
X

˚
aK
�
.k; 1/C 1

2

ˇ̌̌̌
aK .k; 
/ˇ̌̌̌ 2L2Œ b �I

3. almost surely, with respect to PK
B,

ln

	
dPK

B

dPK
X

.k/



D �IE

PK
B

˚
aK
�
.k; 1/C 1

2

ˇ̌̌̌
aK .k; 
/ˇ̌̌̌ 2

L2Œ b �
I

4. almost surely, with respect to PK
B,

ln

	
dPK

X

dPK
B

.k/



D IE

PK
B

˚
aK
�
.k; 1/� 1

2

ˇ̌̌̌
aK .k; 
/ˇ̌̌̌ 2

L2Œ b �
I

5. almost surely, with respect to PK
X,

ln

	
dPK

X

dPK
B

.k/



D IE

PK
X

˚
aK
�
.k; 1/� 1

2

ˇ̌̌̌
aK .k; 
/ˇ̌̌̌ 2

L2Œ b �
:

Proof (1) Because of Assumption (b), IBX
faKg is well defined. Let thus

ln ŒDK.k/� D �IBX

˚
aK
�
.k; 1/� 1

2

ˇ̌̌̌
aK .k; 
/ˇ̌̌̌ 2

L2Œ b �
:

Then

ln ŒDK ı XŒ!�� D �IBX

˚
aK
�

�˚X.!; 1/� 1
2

ˇ̌̌̌
aK�˚X .!; 
/

ˇ̌̌̌ 2
L2Œ b �

:
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However [(Proposition) 13.2.5] IBX
faKg�˚X D IB faK�˚Xg, so that

DK ı X D D:

Let now K0 2 K be fixed, but arbitrary, and dQ D DdP. From Girsanov’s theorem,
one has that PK

B D QK
X , so that

PK
B.K0/ D Q

�
X�1.K0/

�
D
Z

X�1.K0/
D.!/P.d!/

D
Z

X�1.K0/
DK .XŒ!�/P.d!/

D
Z

K0

DK.k/P
K
X.dk/:

Proof (2) Because of the assumptions, and (Proposition) 13.2.4, on K � Œ0; 1�,

EPK
X
D S

�
aK
�C BX ;

so that [(Proposition) 13.1.7] aK is integrable with respect to EPK
X
, and

IE
PK

X

˚
aK
� D ˇ̌̌̌ aK .k; 
/ˇ̌̌̌ 2L2Œ b � C IBX

˚
aK
�
:

It then suffices to use that latter formula in the expression of item 1 to obtain that of
item 2.

Proof (3) Since QK
X � PK

X , and because of (Proposition) 13.1.8, almost surely, with
respect to QK

X , that is, PK
B,

IE
PK

X

˚
aK
� D IE

PK
B

˚
aK
�
:

Exchanging integrals in the expression of item 2 yields that of item 3.

Proof (4) Let now

ln ŒD?.!/� D IX
˚
aK�˚X

�
.!; 1/� 1

2

ˇ̌̌̌
aK �˚X.!; 
/

ˇ̌̌̌ 2
L2Œ b �

:

Since

IX
˚
aK�˚X

� D ˇ̌̌̌ aK�˚X

ˇ̌̌̌ 2
L2Œ b �
C IB

˚
aK�˚X

�
;
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one has that D?dQ D D?DdP D dP. Let

ln
�
D?

K.k/
� D IE

PK
B

˚
aK
�
.k; 1/� 1

2

ˇ̌̌̌
aK.k; 
/ˇ̌̌̌ 2

L2Œ b �
:

Since, an evaluation process being an evaluation, almost surely, with respect to P,
EPK

B
ı X D X, so that D?

K ı X D D?, one has, for K0 2 K, fixed, but arbitrary, that

PK
X.K0/ D

Z
X�1.K0/

D?.!/Q.d!/

D
Z

X�1.K0/
D?

K.XŒ!�/Q.d!/

D
Z

K0

D?
K.k/Q

K
X.dk/

D
Z

K0

D?
K.k/P

K
B.dk/;

which yields the expression of item 4.

Proof (5) The expression of item 4, with the equality of integrals of item 3, yields
the expression of item 5. ut

13.4 Likelihoods with Paths Conditions

Assumption (c) in (Proposition) 13.3.1 (the moment conditions) is rather inconve-
nient, and one would like to stay within the assumption that the paths of the signal
have finite energy. To what extent that is possible gets investigated in the present
section. The following lemmas are required in the sequel.

Lemma 13.4.1 Let M be a real valued, continuous to the right, almost surely
continuous, local martingale, with a quadratic variation hMi that is zero at the
origin. Let ˛ > 0, and ˇ > 0, be fixed, but arbitrary. Then, for ˝0 2 A, fixed,
but arbitrary,

P.! 2 ˝ W �˝0.!/ jM.!; t/j > ˛/ �
� P.! 2 ˝ W �˝0.!/hMi.!; t/ > ˇ/C 2e�.1=2/.˛2=ˇ/:

Proof Let at first ˝0 D ˝ . Since jaj > b means a > b or �a > b,

P.! 2 ˝ W jM.!; t/j > ˛/ � P.! 2 ˝ W M.!; t/ > ˛ and hMi.!; t/ � ˇ/
C P.! 2 ˝ W �M.!; t/ > ˛ and hMi.!; t/ � ˇ/
C P.! 2 ˝ W hMi.!; t/ > ˇ/:
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Let � > 0 be fixed, but arbitrary. Since M.!; t/ > ˛, and hMi.!; t/ � ˇ, imply

�M.!; t/ � .�2=2/hMi.!; t/ > �˛ � .�2=2/ˇ;

one has that

P.! 2 ˝ W M.!; t/ > ˛ and hMi.!; t/ � ˇ/

is less or equal to

P
�
! 2 ˝ W e�M.!;t/�.�2=2/hMi.!;t/ > e�˛�.�2=2/ˇ

�
:

But the process e� M�.�2=2/hMi is a supermartingale [(Propositions) 10.4.6, 10.4.3]
and thus, by Doob’s inequality, that latter probability is less than

e��˛C.�2=2/ˇEP

h
e�M.�;0/�.�2=2/hMi.�;0/

i
:

So

P.! 2 ˝ W M.!; t/ > ˛ and hMi.!; t/ � ˇ/ � e��˛C.�2=2/ˇ:

The minimum value of the right-hand side of that latter inequality is obtained for
� D ˛=ˇ, and is the exponential of �˛2=.2ˇ/.

The same calculation works for the second term of the initial inequality of the
current proof. The general case is obtained noticing that

P.! 2 ˝ W �˝0.!/ jM.!; t/j > ˛/ D P.f! 2 ˝ W jM.!; t/j > ˛g \˝0/:

ut
Lemma 13.4.2 Let P and Q be two probabilities on .˝;A/, and ˝0 2 A be a set
such that P.˝0/ D Q.˝0/ D 1. Let then

1. A0 D A \˝0, and, for A 2 A, fixed, but arbitrary, A0 D A \˝0;
2. P0.A0/ D P.A \˝0/, and Q0.A0/ D Q.A \˝0/.

When P0 and Q0 are mutually absolutely continuous, so are P and Q, and, almost
surely, with respect to P and Q,

dQ

dP
D dQ0

dP0
:

Proof Let J0 W ˝0 �! ˝ be the injection map. Since, for A 2 A, fixed, but
arbitrary,

J�10 .A/ D A \˝0;
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J0 is adapted. Furthermore

P0 ı J�10 .A/ D P0.A \˝0/ D P.A \˝0/ D P.A/:

Let, for ! 2 ˝ , fixed, but arbitrary,

D.!/ D �˝0.!/
dQ0

dP0
.!/:

D is adapted to A, and, for A 2 A, fixed, but arbitrary,Z
A

DdP D
Z

A
Dd.P0 ı J�10 /

D
Z

A0

.D ı J0/dP0

D
Z

A0

dQ0

dP0
dP0

D Q0.A0/

D Q.A/:

Finally, since dQ0
dP0

is almost surely strictly positive, so is D. ut
Lemma 13.4.3 ([70, p. 230 et 234]) Let E be a Polish space, and ˝ � EŒ0;1� [the
latter with the uniform topology]. Set

• X.!; t/ D Et.!/ D !.t/;
• At D �.X.
; �/; � � t/ D �.E� ; � � t/;
• for t 2 Œ0; 1�, fixed, but arbitrary, let Tt W ˝ �! ˝ be defined using the following

relation:

TtŒ!�.�/ D !.� ^ t/:

Then:

1. T�1t .A1/ D At;
2. a random variable V [that is, a real valued function adapted to A1] is adapted to

At if, and only if, V D V ı Tt;
3. S W ˝ �! Œ0; 1�, adapted to A1; is a strict sense stopping time if, and only if, for

t 2 Œ0; 1�, fixed, but arbitrary, the following conditions:

• S.!1/ � t,
• X.!1; �/ D X.!2; �/ for � 2 Œ0; t�,

imply that S.!1/ D S.!2/.
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Proof (1) From the definitions, for t and � in Œ0; 1�, and Borel E0, fixed, but arbitrary,
one has that

T�1t .f! 2 ˝ W E� .!/ 2 E0g/ D f! 2 ˝ W E�^t.!/ 2 E0g :

But, generally [275, p. 8], f�1.�.S// D �.f�1.S//.
Proof (2) V is adapted to At if, and only if [41, p. 144],

V D .E�i ; �i � t; i 2 I; jIj � @0/:

Then

V.!/ D .!.�i/; �i � t; i 2 I; jIj � @0/
D .!.�i ^ t/; �i � t; i 2 I; jIj � @0/
D .E�i.TtŒ!�/; �i � t; i 2 I; jIj � @0/
D V.TtŒ!�/:

Conversely, when V D V ı Tt,

V�1.B/ D T�1t .V�1.B// 2 At;

because of item 1.

Proof (3) The implication of the statement is equivalent to the following (weaker)
one: the sufficient conditions of item 3 imply that S.!2/ � t. That weaker
implication obviously follows from the initial one.

Suppose now that second implication obtains. Let � D S.!1/ � t. Then, given
that both

S.!1/ � � and X.!1; �/ D X.!2; �/; � 2 Œ0; ��

imply S.!2/ � � D S.!1/ � t, S.!2/ � S.!1/. But then one can interchange the
roles of !1 and !2 to obtain S.!1/ � S.!2/. Consequently S.!1/ D S.!2/.

Assume now the weaker implication S.!2/ � t. One shall see that S is a strict
sense stopping time. As, for � � t in Œ0; 1�,

X.!; �/ D !.�/ D !.� ^ t/ D TtŒ!�.�/;

the following relation:

X.!1; �/ D X.!2; �/; � 2 Œ0; t�;



950 13 Likelihoods for Signal Plus “White Noise” Versus “White Noise”

means that TtŒ!1� D TtŒ!2�. Let the latter equality mean that !1 and !2 are
equivalent (!1 � !2 with equivalence class Œ!1� D Œ!2�). The weaker implication
then means that

S.!1/ � t and !1 � !2 imply S.!2/ � t;

that is, if !1 2 f! 2 ˝ W S.!/ � tg, then

Œ!1� � f! 2 ˝ W S.!/ � tg ;

so that f! 2 ˝ W S.!/ � tg is the union of the equivalence classes of its elements.
But, since

TtŒfTtŒ!�g�.�/ D fTtŒ!�g .� ^ t/ D !.f� ^ tg ^ t/ D TtŒ!�.�/;

TtŒ!� � !, and thus, since f! 2 ˝ W S.TtŒ!�/ � tg D T�1t .f! 2 ˝ W S.!/ � tg/,

fS � tg D T�1t .fS � tg/:

Since fS � tg 2 A1, it belongs, because of item 1, to At, and S is a strict stopping
time.

Suppose now that S is a strict stopping time. Then, because of item 2, one has the
following equality: S D S ı Tt, and thus, when TtŒ!1� D TtŒ!2�,

S.!1/ D S.TtŒ!1�/ D S.TtŒ!2�/ D S.!2/:

ut
Proposition 13.4.4 Suppose that, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely
with respect to P,

X.!; t/ D S
�
aK�˚X

�
.!; t/C B.!; t/;

where

(a) B is a Cramér-Hida process,

(b) PK
B

�
k 2 K W jjaK.k; 
/jj2L2Œ b � <1

�
D 1,

(c) PK
X

�
k 2 K W jjaK .k; 
/jj2L2Œ b � <1

�
D 1,

(d) ln Œ� .k/� D �IE
PK

X
faKg .k; 1/C 1

2
jjaK.k; 
/jj2L2Œ b �.

Then:

1. EPK
X
Œ� � D 1;

2. PK
X and PK

B are mutually absolutely continuous.
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Proof The assumptions, and (Proposition) 13.2.4, yield that

EPK
X
.k; t/ D S

�
aK
�
.k; t/C BX.k; t/:

Step 1: One may assume that the paths of S ŒaK� are continuous.

Proof As in (Lemma) 11.2.2, let

A.k; t/ D
1X

nD1

Z t

0

˚
aK

n.k; �/
�2

Mn.d�/

and

OaK.k; t/ D �
RC
.A.k; t//aK.k; t/:

The latter is progressively measurable,

S
�OaK
�

has continuous paths, and the following probabilities are equal, and both are equal
to one:

PK
B

�
k 2 K W ˇ̌̌̌ OaK

.k; 
/ˇ̌̌̌ 2
L2Œ b �

<1
�
; PK

X

�
k 2 K W ˇ̌̌̌ OaK

.k; 
/ˇ̌̌̌ 2
L2Œ b �

<1
�
:

Furthermore, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to PK
X ,

EPK
X
.k; t/ D S

�OaK
�
.k; t/C BX.k; t/:

Step 2: An restriction scheme

One reduces the continuous signal to a uniformly bounded one, using a localizing
sequence. The aim is to apply Girsanov’s theorem, the moment condition being a
consequence of boundedness.

Define, as in (Proposition) 11.2.3, for k 2 K, fixed, but arbitrary,

TŒk� D
�

t 2 Œ0; 1� W
ˇ̌̌̌̌̌
aK
jt.k; 
/

ˇ̌̌̌̌̌ 2
L2Œ b �
� n

�
;

and let

SK
n.k/ D

�
1 when TŒk� D ;
inf TŒk� when TŒk� ¤ ; :

One thus obtains a strict stopping time for K [264, p. 38].
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Let (the signal should be continuous and finite)

• Kf D
n
k 2 K W jjaK.k; 
/jj2L2Œ b � <1

o
;

• Jf W Kf �! K be the inclusion map;
• Kf

t D J�1f .Kt/ D Kt \ Kf ;
• for fixed, but arbitrary K0 2 K; Kf

0 D J�1f .K0/ D K0 \ Kf ;

• P
Kf

X .K
f

0/ D P
Kf

X .J
�1
f .K0// D PK

X.K0/, so that P
Kf

X ı J�1f D PK
X;

• on the base
�

Kf ;Kf ;P
Kf

X

�
, the process YK

n obtained as follows:

– when .kf ; t/ 2 ŒŒ0; SK
n �� \

�
Kf � Œ0; 1�

�
,

YK
n.k

f ; t/ D EPK
X
.kf ; t/;

– when .kf ; t/ 2 ŒŒ0; SK
n ��

c \ �Kf � Œ0; 1�
�
,

YK
n.k

f ; t/ D EPK
X
.kf ; t/ � ˚S ŒaK� .kf ; t/ � S ŒaK� .kf ; SK

n.k
f //
�

(so that, when the signal becomes too large, it is replaced by a “constant”);
• finally

– aK
n.k; t/ D �ŒŒ0;SK

n ��
.k; t/aK.k; t/;

– ˚YK
n
W Kf � Œ0; 1� �! K � Œ0; 1� be “computed” as

˚YK
n
.kf ; t/ D �YK

n Œk
f �; t
�
:

Then the following assertions obtain:

• for kf 2 Kf , SK
n

�
˚YK

n
Œkf �
� D SK

n.k
f /;

• for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P
Kf

X ,

YK
n.k

f ; t/ D S
�
aK

n �˚YK
n

� �
kf ; t

�C Bf

X.k
f ; t/;

where Bf

X is the restriction of BX to Kf .

Proof As a separable Fréchet space is Polish, s is Polish, and (Lemma) 13.4.3
applies, with E D s (˝ is K). For kf 2 Kf ,

ˇ̌̌̌
aK.kf ; 
/ˇ̌̌̌ 2

L2Œ b �
<1;

so that, from its definition,

t 7! YK
n.k

f ; t/

is a continuous function, and thus YK
n Œk

f � 2 K. Since SK
n is a stopping time, and that,

when SK
n.k

f / D t, on Œ0; t�, YK
n Œk

f � D kf ,

SK
n.k

f / D SK
n.Y

K
n Œk

f �/:
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Using that latter equality, and the definition of aK
n ,

aK
n D aK

n �˚YK
n
:

Finally, using the following facts:

• EPK
X
D SŒaK�C BX ,

• when kf 2 Kf , fixed, but arbitrary, and SK
n.k

f / � t, then aK
n D aK ; and, having that

aK
n D aK

n �˚YK
n
;

it follows that

• when t � SK
n.k

f /,

YK
n.k

f ; t/ D EPK
X
.kf ; t/

D S
�
aK
�
.kf ; t/C Bf

X.k
f ; t/

D S
�
aK

n

�
.kf ; t/C Bf

X.k
f ; t/

D S
�
aK

n �˚YK
n

�
.kf ; t/C Bf

X.k
f ; t/;

• when t > SK
n.k

f /,

YK
n.k

f ; t/ D EPK
X
.kf ; t/ � ˚S �aK

�
.kf ; t/ � S

�
aK
�
.kf ; SK

n.k
f //
�

D S
�
aK
�
.kf ; SK

n.k
f //C Bf

X.k
f ; t/

D S
�
aK

n

�
.kf ; t/C Bf

X.k
f ; t/

D S
�
aK

n �˚YK
n

�
.kf ; t/C Bf

X.k
f ; t/:

Step 3: When

ln
h
�

Kf
n .kf /

i
D �I

B
f
X

˚
aK

n �˚YK
n

�
.kf ; 1/� 1

2

ˇ̌̌̌
aK

n �˚YK
n
.kf ; 
/ˇ̌̌̌ 2

L2Œ b �
;

then

E
P

Kf
X

h
�

Kf
n

i
D 1:

Proof Since BX is a Cramér-Hida process for PK
X , so is

Bf

X D BX.Jf .
/; 
/;

for P
Kf

X . Since the “signal” is bounded, the assertion is a consequence of the
properties of exponential martingales.
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Step 4:
n
�

Kf
n ; n 2 N

o
converges almost surely, with respect to P

Kf

X , to � j Kf .

The exponent of �
Kf
n has been defined as

�I
B

f
X

˚
aK

n �˚YK
n

�
.kf ; 1/� 1

2

ˇ̌̌̌
aK

n �˚YK
n
.kf ; 
/ˇ̌̌̌ 2

L2Œ b �
:

It follows from the definitions that

aK
n �˚YK

n
.kf ; t/ D �

ŒŒ0;Sn ��
.kf ; t/aK.kf ; t/:

Then, using (Proposition) 13.2.5, one sees that the first term of the exponent of �
Kf
n

is one entry in the sequence whose limit is the integral of aK with respect to BX . The
second (“norm”) term is

ˇ̌̌̌
aK

n �˚YK
n
.kf ; 
/ˇ̌̌̌ 2

L2Œ b �
D ˇ̌̌̌�

ŒŒ0;Sn ��
.kf ; 
/aK.kf ; 
/ˇ̌̌̌ 2

L2Œ b �
;

so that monotone convergence applies to produce a limit which is finite by definition.
The limit of the exponent of �

Kf
n is thus

�IBX

˚
aK
�
.kf ; 1/� 1

2

ˇ̌̌̌
aK.kf ; 
/ˇ̌̌̌ 2L2Œ b � :

Since

EPK
X
.k; t/ D S

�
aK
�
.k; t/C BX.k; t/;

one has that

IE
PK

X

˚
aK
� D ˇ̌̌̌ aK

ˇ̌̌̌ 2
L2Œ b �
C IBX

˚
aK
�
;

and thus that the limit of the exponent of �
Kf
n is

�IE
PK

X

˚
aK
�C 1

2

ˇ̌̌̌
aK
ˇ̌̌̌ 2

L2Œ b �
;

that is, the exponent of � in Assumption (d) of the statement, restricted to Kf .

Step 5: The sequence
n
�

Kf
n ; n 2 N

o
is uniformly integrable for P

Kf

X .

Proof Let �o
t

�
YK

n

�
be the completion, with respect to P

Kf

X , of �t
�
YK

n

�
.

The process BX is, for PK
X , a Cramér-Hida process. Thus, for P

Kf

X , Bf

X is a Cramér-
Hida process with law PK

B. From step 2,

Bf

X.k
f ; t/ D YK

n.k
f ; t/ � S

�
aK

n �˚YK
n

�
.kf ; t/:
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It follows that Bf

X is adapted to �o
t

�
YK

n

�
. One may thus use (Proposition) 13.2.2 to

decompose Bf

X as follows:

Bf

X.k
f ; t/ D BK;n

X ı YK
n.k

f ; t/; almost surely with respect to
n
P

Kf

X

oo
;

where, for

QK
n D P

Kf

X ı
˚
YK

n

��1
;

BK;n
X , on the base .K;K;QK

n/, has law PK
B.

On
�
K;K;QK

n

�
, let

ln Œ�n.k/� D �IBK;n
X

˚
aK

n

�
.k; 1/� 1

2

ˇ̌̌̌
aK

n.k; 
/
ˇ̌̌̌ 2

L2Œ b �
:

Then, because of (Proposition) 13.2.5,

ln
�
�n
�
YK

n Œk
f �
�� D �IBK;n

X

˚
aK

n

�
.YK

n Œk
f �; 1/ � 1

2

ˇ̌̌̌
aK

n.Y
K
n Œk

f �; 
/ˇ̌̌̌ 2
L2Œ b �

D �IBK;n
X

˚
aK

n

�
�˚YK

n
.kf ; 1/� 1

2

ˇ̌̌̌
aK

n �˚YK
n
.kf ; 
/ˇ̌̌̌ 2

L2Œ b �

D �I
B

f
X

˚
aK

n �˚YK
n

�
.kf ; 1/� 1

2

ˇ̌̌̌
aK

n �˚YK
n
.kf ; 
/ˇ̌̌̌ 2

L2Œ b �

D ln
h
�

Kf
n .kf /

i
;

and thus (step 3)

EQK
n
Œ�n� D E

P
Kf
X

�
�n ı YK

n

� D E
P

Kf
X

h
�

Kf
n

i
D 1:

Furthermore, because of (Proposition) 13.2.4, the following equation from step 2:

YK
n D SŒaK

n �˚YK
n
�C BX

decomposes as

EQK
n
D SŒaK

n �C BK;n
X ;

so that one may apply Girsanov’s theorem, and its consequences, to obtain that QK
n

and PK
B are mutually absolutely continuous, and that, almost surely, with respect to

QK
n ,

dPK
B

dQK
n

D �n:
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But, with respect to PK
B, �n has the following representation [(Proposition) 13.3.1,

item 3]:

ln Œ�n .k/� D �IE
PK

B

˚
aK

n

�
.k; 1/C 1

2

ˇ̌̌̌
aK

n.k; 
/
ˇ̌̌̌ 2

L2Œ b �
:

As �aC b
2
> ˛; b � 0, implies either jaj > ˛

2
, or b > ˛, one then has, given � > 0,

fixed, but arbitrary, thatZ
n
�

Kf
n >�

o � Kf
n dP

Kf

X D

D
Z
f�n>�g

�n dQK
n

D PK
B .k 2 K W �n.k/ > �/

D PK
B

�
k 2 K W �IE

PK
B

˚
aK

n

�
.k; 1/C 1

2

ˇ̌̌̌
aK

n.k; 
/
ˇ̌̌̌ 2

L2Œ b �
> ln �

�

D P

�
! 2 ˝ W �IE

PK
B

˚
aK

n

�
.BŒ!�; 1/C 1

2

ˇ̌̌̌
aK

n.BŒ!�; 
/
ˇ̌̌̌ 2

L2Œ b �
> ln �

�

� P

�
! 2 ˝ W

ˇ̌̌
IE

PK
B

˚
aK

n

�
.BŒ!�; 1/

ˇ̌̌
>

ln �

2

�

C P
�
! 2 ˝ W ˇ̌̌̌ aK

n.BŒ!�; 
/
ˇ̌̌̌ 2

L2Œ b �
> ln �

�
:

But, according to (Lemma) 13.4.1, with ˛ D ln �
2

, and ˇ D ln � ,

P

�
! 2 ˝ W

ˇ̌̌
IE

PK
B

˚
aK

n

�
.BŒ!�; 1/

ˇ̌̌
>

ln �

2

�

is smaller than

P
�
! 2 ˝ W ˇ̌̌̌ aK

n.BŒ!�; 
/
ˇ̌̌̌ 2

L2Œ b �
> ln �

�
C 2�� 18 :

Consequently

lim
�""1

Z
n
�

Kf
n >�

o � Kf
n dP

Kf

X � 2 lim
�""1

PK
B

�
k 2 K W ˇ̌̌̌ aK.k; 
/ˇ̌̌̌ 2

L2Œ b �
> ln �

�

C 2 lim
�""1

�� 18

D 0:
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Step 6: Convergence in L1

Proof Steps 4 and 5 insure convergence in L1 [192, p. 18], so that

E
P

Kf
X

h
� jKf

i
D 1:

Step 7: EPK
X
Œ� � D 1.

Proof That is the consequence of step 6 and of (Lemma) 13.4.2. ut
Proposition 13.4.5 In (Proposition) 13.4.4,

1. Assumption (b) is necessary and sufficient for PK
X and PK

B to be mutually
absolutely continuous;

2. when Assumption (b) does not obtain, one has that

(i) PK
X is absolutely continuous with respect to PK

B, and
(ii) almost surely, with respect to PK

X,

ln

	
dPK

X

dPK
B

.k/



D IE

PK
X

˚
aK
�
.k; 1/� 1

2

ˇ̌̌̌
aK.k; 
/ˇ̌̌̌ 2L2Œ b �:

Proof (Result (Proposition)) 13.1.11 says that, given a Cramér-Hida process B, a
SPWN model X D SŒ a � C B, with a 2 L2Œ b �, almost surely, with respect to P,
has the property that PK

X � PK
B. Within (Proposition) 13.4.4, those are Assumptions

(a) and (c), and they yield claim 2. Since Assumption (b) insures that Girsanov’s
theorem obtains, Assumption (b) implies that PK

X � PK
B. The reverse is obvious. So

it is item 3 that must be established. One proves that the Radon-Nikodým derivative
is the limit, in L1ŒPK

B�, of a sequence whose limit in probability, with respect of PK
X ,

is the density of item 3.
Retain, from (Proposition) 13.4.4, the following elements:

•
˚
SK

n ; n 2 N
�
, the sequence of strict stopping times;

• Kn D
˚
k 2 K W SK

n.k/ D 1
�
;

• for n 2 N, fixed, but arbitrary,

aK
n D �ŒŒ0;SK

n ��
aKI

• YK
n , the process on Kf , with law QK

n , with respect to P
Kf

X .

Let, with respect to PK
B,

ln ŒDn.k/� D IE
PK

B

˚
aK

n

�
.k; 1/� 1

2

ˇ̌̌̌
aK

n.k; 
/
ˇ̌̌̌ 2

L2Œ b �
:
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For K0 2 K, fixed, but arbitrary,

QK
n.K0 \ Kf \ Kn/ D P

Kf

X

�˚
YK

n

��1 ˚
K0 \ Kf \ Kn

��
:

But, as seen in (Proposition) 13.4.4, on ŒŒ0; Sn.k/��, YK
n.k; t/ D k.t/, so that

QK
n.K0 \ Kf \ Kn/ D P

Kf

X

�
K0 \ Kf \ Kn

�
;

and, furthermore, QK
n and PK

B are mutually absolutely continuous, with Radon-
Nikodým derivative

dQK
n

dPK
B

D Dn.k/:

Consequently

PK
X.K0/ D lim

n
PK

X.K0 \ Kn/

D lim
n

PK
X.K0 \ Kn \ Kf /

D lim
n

QK
n.K0 \ Kn \ Kf /

D lim
n

Z
K0\Kn

dQK
n

dPK
B

dPK
B

D lim
n

Z
K0\Kn

Dn dPK
B:

Let

ln ŒD.k/� D IE
PK

X

˚
aK
�
.k; 1/� 1

2

ˇ̌̌̌
aK.k; 
/ˇ̌̌̌ 2

L2Œ b �
:

The proof now proceeds in steps. Let D D ˚�Kn
Dn; n 2 N

�
.

Step 1: With respect to PK
B, the sequence D converges in probability.

When k 2 Kn, as SK
n.k/ D 1,

ˇ̌̌̌
aK

n.k; 
/
ˇ̌̌̌ 2

L2Œ b �
D ˇ̌̌̌ aK.k; 
/ˇ̌̌̌ 2

L2Œ b �
<1 ;

that is, k 2 Kf . Thus

�Kn
.k/Dn.k/ D �Kn

.k/e
�Kf

.k/ IE
PK

B
faK

n g.k;1/� 12 �Kf
.k/ jjaK

n .k;�/jj2L2Œ b �
:
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Because of (Lemma) 13.4.1, with Kf for ˝0, and IE
PK

B
for M, one has that

PK
B

�
k 2 K W �Kf

.k/
ˇ̌̌
IE

PK
B

˚
aK

n

�
.k; 1/� IE

PK
B

n
aK

nCp

o
.k; 1/

ˇ̌̌
> ˛

�
D

D PK
B

�
k 2 K W �Kf

.k/
ˇ̌̌
IE

PK
B

n
aK

n � aK
nCp

o
.k; 1/

ˇ̌̌
> ˛

�
� PK

B

�
k 2 K W �Kf

.k/
ˇ̌̌̌̌̌ n

aK
n � aK

nCp

o
.k; 
/

ˇ̌̌̌̌̌ 2
L2Œ b �

> ˇ

�
C 2e�

˛2

2 ˇ ;

and thus that the following sequence:n
IE

PK
B

˚
aK

n

�
.
; 1/; n 2 N

o
is, with respect to PK

B, convergent in probability. Let its limit be denoted JB. Since,
furthermore, almost surely, with respect to PK

B,

lim
n
�Kf

ˇ̌̌̌
aK

n

ˇ̌̌̌ 2
L2Œ b �
D �Kf

ˇ̌̌̌
aK
ˇ̌̌̌ 2

L2Œ b �
;

it follows that, in probability, with respect to PK
B,

lim
n
�Kn

Dn D e
JB� 12 �Kf

jjaKjj2L2Œ b � :

Step 2: Identification of the limit in probability, with respect to PK
X, of the sequence

D.

From the following relation [(Proposition) 13.2.4]:

EPK
X
D SŒaK�C BX;

valid with respect to PK
X , and, since PK

X is absolutely continuous with respect to PK
B,

because of (Proposition) 13.1.8, almost surely, with respect to PK
X ,

IE
PK

X

˚
aK

n

�
.
; 1/ D IE

PK
B

˚
aK

n

�
.
; 1/;

one has the following alternative representation of Dn:

Dn.k/ D e
IE

PK
X
faK

n g.k;1/� 12 jjaK
n .k;�/jjL2Œ b �2

:

Since, with respect to PK
X ,
˚
aK

n ; n 2 N
�

also converges, in L2Œb �, to aK , the sequence
fDn; n 2 Ng converges in probability, with respect to PK

X, to D, which has the
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following expression:

D.k/ D e
IE

PK
X
faKg.k;1/� 12 jjaK .k;�/jj2L2Œ b �

:

Step 3: The sequence D is, with respect to PK
B, uniformly integrable.

Since QK
n and PK

B are mutually absolutely continuous, with derivative Dn, given
that

˚
�Kn

Dn > �
� D fDn > �g \ Kn, one has that

Z
n
�Kn

Dn>�
o �Kn

Dn dPK
B �

Z
fDn>�g

Dn dPK
B

D QK
n .k 2 K W Dn.k/ > �/

D P
Kf

X

�
k 2 Kf W ŒDn ı YK

n �Œk� > �
�
:

Now, because of relation (Proposition) 11.3.14, symbolically�Z
dY

�
ı F D

Z
. ı F/d.Y ı F/;

one has (using again, locally, uniform convergence in probability) that

IE
PK

X

˚
aK

n

� ı YK
n D IE

PK
X
ıYK

n

˚
aK

n �˚YK
n

� D IYK
n

˚
aK

n �˚YK
n

�
:

But [(Proposition) 13.4.4, step 2], with respect to P
Kf

X ,

YK
n D SŒaK

n �˚YK
n
�C BX ;

so that

P
Kf

X

�
k 2 Kf W ŒDn ı YK

n �Œk� > �
� D

D P
Kf

X

�
k 2 Kf W IBX

˚
aK

n �˚YK
n

�
.k; 1/C 1

2

ˇ̌̌̌
aK

n �˚YK
n
.k; 
/ˇ̌̌̌ 2

L2Œ b �
> ln �

�
:

But, as in the final part of (Proposition) 13.4.4 (step 4), that latter probability is
dominated by

2PK
B

�
k 2 K W ˇ̌̌̌ aK.k; 
/ˇ̌̌̌ 2L2Œ b � > ln �

�
C 2�� 18 :

ut



Chapter 14
Scope of the Signal Plus “White Noise” Model (I)

The model X D SŒ a � C B (the SPWN model of the title) used so far has several
potential limitations, summarized as the following items: a priori

(a) the interference of signal and noise could be other that additive;
(b) the signal could have paths outside the RKHS of the noise;
(c) the observation X need not solve a stochastic differential equation;
(d) the noise could be a martingale other than a Cramér-Hida process, a continuous

martingale, for example, as continuous martingales are time changed Brownian
motions.

The severity of such limitations will be, to some extent, examined in this, and the
two chapters which follow. It is proved below that when the noise is a Cramér-Hida
process, the additive form of interference between signal and noise, with signal in
the RKHS of the noise, is not a limitation. That covers points (a) and (b) above. Point
(c) is discussed in the next chapter, and (d), in the one which follows the latter.

As a preliminary step one must know something about weak solutions of
stochastic differential equations.

14.1 Weak Solutions of Stochastic Differential Equations

Definition 14.1.1 Let aK 2 I0Œ b � be given, and B be a Cramér-Hida process. A
weak solution of the following formal equation

X D SŒaK �˚X �C B ;

where X represents the unknown, is a couple .QK ;N/ where QK is a probability on
K, with respect to which N, defined on K�Œ0; 1�, is a Cramér-Hida process such that

© Springer International Publishing Switzerland 2015
A.F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise,
DOI 10.1007/978-3-319-22315-5_14

961
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QK ı N�1 D PK
B, and, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely with respect

to QK ,

EQK
.k; t/ D SŒaK �.k; t/C N.k; t/:

When QK is the unique probability with respect to which what precedes obtains, the
solution is deemed unique.

Remark 14.1.2 One should perhaps notice that, in relation to (Definition) 14.1.1,
the value of the process EQK

at .k; t/ is k.t/, so that one has indeed the “standard”
stochastic differential equation form.

Proposition 14.1.3 Let

(a) aK W K � Œ0; 1� �! s have progressively measurable components for K, and the
property that, for every k 2 K,ˇ̌̌̌

aK.k; 
/
ˇ̌̌̌

L2Œ b �
<1I

(b) ln ŒD.k/� D IE
PK

B

˚
aK

�
.k; 1/� 1

2

ˇ̌̌̌
aK.k; 
/

ˇ̌̌̌ 2
L2Œ b �

.

The integral equation of (Definition) 14.1.1 has a weak solution if, and only if,

EPK
B
ŒD� D 1:

When a solution exists, it is unique.

Proof Suppose that EPK
B
ŒD� D 1.

Define then N, with respect to PK
B, as follows:

N.k; t/ D SŒ�aK �.k; t/C EPK
X
.k; t/:

Let dQK D DdPK
B. Since D may be seen as follows:

ln ŒD.k/� D �IE
PK

B

˚�aK

�
.k; 1/� 1

2

ˇ̌̌̌�aK.k; 
/
ˇ̌̌̌ 2

L2Œ b �
;

given the assumption, one may invoke Girsanov’s theorem to establish that, with
respect to QK , N is a Cramér-Hida process whose covariance function is that of B.
But then EPK

B
D EQK

, so that

EQK
.k; t/ D SŒaK �.k; t/C N.k; t/;

and one thus indeed has a weak solution of the initial stochastic differential equation.



14.1 Weak Solutions of Stochastic Differential Equations 963

Proof Suppose that a weak solution exists.

By definition [(Remark) 14.1.2], it is then EQK
. Conditions

PK
B

�
k 2 K W ˇ̌̌̌ aK.k; 
/

ˇ̌̌̌ 2
L2Œ b �

<1
�
D 1;

and

QK

�
k 2 K W ˇ̌̌̌ aK.k; 
/

ˇ̌̌̌ 2
L2Œ b �

<1
�
D 1;

are equally free of charge. It follows then [(Proposition) 13.4.4] that PK
B and QK are

mutually absolutely continuous, and that the Radon-Nikodým derivative

dQK

dPK
B

is D, so that EPK
B
ŒD� D 1.

Proof When a solution exists, it is unique.

Let .Q?
K ;N

?/ be another solution. One will similarly have that

dQ?
K

dPK
B

D D;

from which it follows that Q?
K D QK . ut

Remark 14.1.4 Suppose that item (a) of (Proposition) 14.1.3 is modified to

PK
B

�
k 2 K W ˇ̌̌̌ aK.k; 
/

ˇ̌̌̌ 2
L2Œ b �

<1
�
D 1:

When EPK
B
ŒD� D 1, the same proof yields the existence of a solution, but one does

not know whether

QK

�
k 2 K W ˇ̌̌̌ aK.k; 
/

ˇ̌̌̌ 2
L2Œ b �

<1
�
D 1

or not, so that uniqueness does not follow.

Fact 14.1.5 ([128, p. 61]) Let X be a positive supermartingale, with index set RC,
which is continuous to the right. Let

Sn D inf

�
t W X.
; t/ < 1

n

�
; S D sup

n
Sn:

Then:

1. fSn; n 2 Ng and S are wide sense stopping times;
2. for almost all ! 2 fS <1g, t � S.!/ implies that X.!; t/ D 0;



964 14 Scope of the Signal Plus “White Noise” Model (I)

3. for all ! 2 fS > 0g, and t < S.!/,

X.!; t/ > 0; and lim inf
�""t

X.!; �/ > 0:

S is called the time X attains zero.

Remark 14.1.6 Let X be a positive supermartingale, with index set Œ0; 1�, which is
continuous to the right. Since, for t1 < t2 2 Œ0; 1�, fixed, but arbitrary, almost surely,
with respect to P, EP ŒX.
; t2/ j At1 � .!/ � X.!; t1/, the inequality X.
; t1/ < ˛

implies, almost surely, with respect to P, X.
; t2/ < ˛.
Let, on Œ0; 1�, Ae

t be At, and Xe be X; and, on �1;1Œ, Ae
t be A1, and Xe be X.
; 1/.

Xe is then a positive supermartingale with index set RC which is continuous to the
right. Let S and Sn be the stopping times of (Fact) 14.1.5 for Xe, and PS and PSn, the
analogous stopping times for X. Let

Bn.!/ D
�

t 2 Œ0; 1ŒW X.!; t/ < 1

n

�
;

PAn.!/ D
�

t 2 Œ0; 1� W X.!; t/ < 1

n

�
;

An.!/ D
�

t 2 RC W Xe.!; t/ <
1

n

�
:

When X.!; 1/ � 1
n ,

Bn.!/ D PAn.!/ D An.!/;

but, when X.!; 1/ < 1
n , then

PAn.!/ D Bn.!/ [ f1g ; and An.!/ D Bn.!/ [ Œ1;1Œ:
Thus

Bn.!/ � PAn.!/ � An.!/:

One has the following cases:

• when An.!/ D ;, PAn.!/ D ;, thus PSn.!/ D 1, but Sn.!/ D 1;
• when An.!/ ¤ ;, and X.!; 1/ < 1

n , then

– in case Bn.!/ D ;, PSn.!/ D Sn.!/ D 1,
– in case Bn.!/ ¤ ;, PSn.!/ D Sn.!/ < 1;

• when An.!/ ¤ ;, and X.!; 1/ � 1
n , then Bn.!/ ¤ ;, and, again,

PSn.!/ D Sn.!/ < 1:
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Thus PSn D Sn ^ 1, and PSn.!/ ¤ Sn.!/ only when An.!/ D ;, that is, when
Sn.!/ D1.

Since the sets An.!/ and PAn.!/ are decreasing with n, the times Sn.!/ and PSn.!/

are increasing with n. Thus S.!/ and PS.!/ are the limits of increasing sequences.
Furthermore

PS.!/ D sup
n

PSn.!/ D sup
n
fSn.!/ ^ 1g � S.!/ ^ 1:

Suppose that PS.!/ < S.!/^ 1. Then, for all n, PSn.!/ � PS.!/ < 1, that is, Bn.!/ ¤
;. But then Sn.!/ < 1 for all n, that is S.!/ � 1, and thus PS.!/ � S.!/ � 1. But
then, for all n, PSn.!/ D Sn.!/, that is PS.!/ D S.!/, a contradiction. So PS.!/ D
S.!/ ^ 1.

S.!/ D 1 if, and only if, there exists n with Sn.!/ D 1. Indeed, since Sn � S,
when Sn is infinite, so is S. Suppose now that S.!/ D 1, but that Sn.!/ < 1, all
n. Since Sn.!/ <1 means Sn.!/ � 1, S.!/ � 1, a contradiction.

When S.!/ <1, S.!/ D PS.!/, and, according to (Fact) 14.1.5,

t � S.!/ implies X.!; t/ D 0:

Thus, when X.!; 1/ > 0, either S.!/ < 1, and then S.!/ > 1 (which means
S.!/ D 1, leading to a contradiction), or S.!/ D 1. Thus S.!/ D 1. Since
S.!/ is the increasing limit of the Sn.!/’s, and that those are either smaller than, or
equal to, one, or1, there is an n such that Sn.!/ D 1. But then An.!/ D ;, and
X.!; t/ � 1

n for all t.

14.2 A Signal Plus “White Noise” Model Is No Restriction

One should remark that “no restriction” is claimed only in case one decrees that a
likelihood is required, and that the noise is “white,” Gaussian.

Proposition 14.2.1 Let X W ˝ � Œ0; 1� �! s be a process with paths in K, and
assume that PK

X and PK
B are mutually absolutely continuous. There exists then a

process aK W K � Œ0; 1� �! s, with base .K;K;PK
X/, and progressively measurable

components, and a Cramér-Hida process NX, with base .˝; �.X/;P/, and law
PK

NX
D PK

B such that:

1. for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

X.!; t/ D S
�
aK�˚X

�
.!; t/C NX.!; t/I

2. PK
B

�
k 2 K W jjaK.k; 
/jj2L2Œ b � <1

�
D 1;

3. PK
X

�
k 2 K W jjaK.k; 
/jj2L2Œ b � <1

�
D 1.
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Proof Let

M.k; t/ D EPK
B

	
dPK

X

dPK
B

j Kt



:

M is a martingale for K, which is a B-Gaussian martingale filtration [(Definition)
11.4.1]. As such it has a representation as a stochastic integral [(Proposition)
11.4.18]:

M.k; t/ D 1C IE
PK

B

˚
aK
�
.k; t/;

where

• aK is predictable for K;

• PK
B

�
k 2 K W jjaK.k; 
/jj2L2Œ b � <1

�
D 1.

It follows, in particular, that M is continuous to the right, and almost surely
continuous.

Given that, by assumption, PK
X and PK

B are mutually absolutely continuous,
M.
; 1/ > 0, almost surely, with respect to PK

B, so that [(Remark) 14.1.6]

PK
B

�
k 2 K W inf

t2Œ0;1�M.k; t/ > 0
�
D 1:

Consequently, with respect to PK
B, ln M is well defined (almost surely). Then Itô’s

formula yields that

ln M.k; t/ D IE
PK

B

�
aK

M

�
.k; t/ � 1

2

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌	aK.k; 
/

M.k; 
/


jt

ˇ̌̌
ˇ̌
ˇ̌̌
ˇ̌2
L2Œ b �

:

Let

aK
M D

aK

M
:

As

1X
nD1

Z 1

0

�
aK

n.k; �/

M.k; �/

� 2
Mn.d�/ �

jjaK.k; 
/jj2L2Œ b �
inft2Œ0;1� M2.k; t/

;

it follows that

PK
B

�
k 2 K W ˇ̌̌̌ aK

M.k; 
/
ˇ̌̌̌
2

L2Œ b �
<1

�
D 1;
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and, because of equivalence, also that

PK
X

�
k 2 K W ˇ̌̌̌ aK

M.k; 
/
ˇ̌̌̌
2

L2Œ b �
<1

�
D 1:

Since, by definition, EPK
B
ŒM.
; 1/� D 1, one knows from (Proposition) 14.1.3 that

the formal equation of (Definition) 14.1.1 has a weak solution. One then sets, as in
the proof of (Proposition) 14.1.3, for .K;K;PK

B/,

dQK D M.
; 1/dPK
B; and N D S

��aK
M

�C EPK
X
:

Girsanov’s theorem says that N is, with respect to QK , a Cramér-Hida process, with
law PK

B. Since M.
; 1/ is a version of the Radon-Nikodým derivative of PK
X with

respect to PK
B, QK D PK

X . One finally composes the equation on K with X W NX D
N�˚X . ut

As shall be seen below, (Proposition) 14.2.1 has a stronger version when, instead
of the equivalence of PK

X and PK
B, one assumes only that PK

X is absolutely continuous
with respect to PK

B. A number of features of martingales are required for the proof
of that result, and they are listed below.

Remark 14.2.2 For t 2 Œ0; 1�, fixed, but arbitrary, St W K �! Œ0; 1� with St.k/ D t,
all k 2 K, is a strict, and thus also wide sense, stopping time for K [264, p. 32].
Then [264, p. 33] KSt D Kt, and KCSt

D KCt .

Remark 14.2.3 Let M be the uniformly integrable [264, p. 51], locally in L2 [264,
p. 63] martingale of (Proposition) 14.2.1, and Sn.k/D inf

˚
t2 Œ0; 1� W M.k; t/< n�1

�
.

MSn is a uniformly integrable martingale [264, p. 57], and it is also, locally, in L2
[264, p. 63].

Remark 14.2.4 Since the minimum of two wide sense stopping times is a wide
sense stopping time [264, p. 34], Sn;t D Sn ^ t is a wide sense stopping time. Then
[264, p. 34]

KCSn;t

is a �-algebra, and the random variable V is adapted to KCSn;t
if, and only if, for

� 2 Œ0; 1�, fixed, but arbitrary,

�fSn;t<�gV

is adapted to K� . Finally [264, p. 34],

KCSn;t
� KCSt

D KCt and KCSn;t
D KCSn

\KCSt
D KCSn

\KCt :

Remark 14.2.5 When one has, on K, the measure PK
B, K is the filtration

generated by a Cramér-Hida process, and oK is thus continuous to the right
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[(Proposition) 11.1.11]. Consequently, using the definitions [264, p. 33], the items
of (Remark) 14.2.4 for oK are true without the “C” exponent. For example,

oKSn^ t DoKSn \oKt:

Remark 14.2.6 As M may be assumed to be continuous to the right, M.
; Sn;t/ is
adapted to KSn;t [264, p. 41].

Proposition 14.2.7 In (Proposition) 14.2.1, suppose that PK
X is absolutely continu-

ous with respect to PK
B, rather than equivalent. Then items 1 and 3 of its conclusion

obtain.

Proof The beginning of it is the same as that of (Proposition) 14.2.1, up to the
definition of the wide sense stopping time Sn. In particular aK is almost surely in
L2Œb �, with respect to PK

B, and thus also with respect to PK
X .

One must deal with the fact that M of (Proposition) 14.2.1 can take the zero value
with strictly positive PK

B probability. Now, for K0 2 KSn;t , fixed, but arbitrary,

PK
X.K0/ D

Z
K0

dPK
X

dPK
B

dPK
B

D
Z

K0

EPK
B

	
dPK

X

dPK
B

j KSn;t



dPK

B

D
Z

K0

M.
; Sn;t/dPK
B;

so that, on KSn;t ,

dPK
X D MSn.
; t/dPK

B:

Since MSn.
; t/ � 1
n , one has also, on KSn;t ,

˚
MSn.
; t/��1 dPK

X D dPK
B:

Consequently, as K 2 KSn;t ,

EPK
X

h˚
MSn.
; t/��1i D PK

B.K/ D 1:

The continuity properties of M, with respect to PK
B, and thus to PK

X , and Fatou’s
lemma, yield that [(Fact) 14.1.5]

EPK
X

h˚
MS.
; t/��1i D EPK

X

	
lim inf

n2N
˚
MSn.
; t/��1
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� lim inf
n2N EPK

X

h˚
MSn.
; t/��1i

D 1:

As M.
; S/ D 0 [(Fact) 14.1.5], one must have S D 1, almost surely with respect
to PK

X .
Now

1X
pD1

Z Sn

0

�
aK

p.k; �/

M.k; �/

� 2
Mp.d�/ � n2

ˇ̌̌̌
aK.k; 
/ˇ̌̌̌ 2

L2Œ b �
;

so that, since, with respect to PK
X , jjaK.k; 
/jj2L2Œ b � is finite almost surely,

PK
X

0
@k 2 K W

1X
pD1

Z 1

0

�
aK

p.k; �/

M.k; �/

� 2
Mp.d�/ <1

1
A D 1:

That is item 3 of the proposition’s statement. One shall write again aK
M for the ratio

aK=M.
Let, on .K;K/, PK

n be defined setting

dPK
n D M.
; Sn/dPK

B:

Then, for K0 2 Kt, fixed, but arbitrary,

PK
n.K0/ D

Z
K0

M.
; Sn/dPK
B

D
Z

K0

EPK
B
ŒM.
; Sn/ j Kt�dPK

B

D
Z

K0

M.
; Sn;t/dPK
B;

so that,

dPKjKt
n D M.
; Sn;t/dPK

B D MSn.
; t/dPK
B:

Furthermore, since MSn is a uniformly integrable martingale for PK
B,

PK
n.K/ D EPK

B
ŒMSn.
; 1/� D 1:
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Let, on the base space .K;K;PK
B/,

Nn.k; t/ D S
h
�aK

MjSn

i
.k; t/C EPK

B
.k; t/:

As presently seen, the process Nn is, for the base .K;K;PK
n/, a Cramér-Hida process

with law PK
B. Indeed, since, almost surely with respect to PK

B, MSn.
; t/ � 1
n , one is

allowed to compute its logarithm, and use Itô’s formula to obtain that, almost surely,
with respect to PK

B,

ln
�
MSn.
; t/� D IE

PK
B

n
aK

MjSn

o
.
; t/� 1

2

ˇ̌̌̌
aMjSn^t

ˇ̌̌̌
2

L2Œ b �
:

Since

EPK
B
ŒM.
; Sn/� D EPK

B

�
MSn.
; 1/� D 1;

one may use Girsanov’s theorem to assert that, with respect to PK
n , Nn is a Cramér-

Hida process with law PK
B. As NSn

nC1 D Nn, one may define, with respect to PK
B,

N.k; t/ D S
h
�aK

MjS
i
.k; t/C EPK

B
.k; t/:

Since, almost surely, with respect to PK
X, S D 1, and that PK

X � PK
B, then, almost

surely, with respect to PK
X ,

N.k; t/ D S
��aK

M

�
.k; t/C EPK

X
.k; t/:

In the final step one must establish that N is a Cramér-Hida process with law PK
B.

Now NSn MSn D NnMSn . Since, with respect to PK
n , Nn is a Cramér-Hida process, for

t1 < t2 in Œ0; 1�, and K0 2 Kt1 , fixed, but arbitrary,Z
K0

Nn.
; t2/dPK
n D

Z
K0

Nn.
; t1/dPK
n :

As, on Kt, dPK
n D MSn.
; t/dPK

B, and that K0 2 Kt1 � Kt2 ,Z
K0

Nn.
; t2/MSn.
; t2/dPK
B D

Z
K0

Nn.
; t1/MSn.
; t1/dPK
B; (?)

that is, NSn MSn is a martingale for K and PK
B. It is thus, since KSn;t � Kt, a martingale

for the filtration of the �-algebras KSn;t . But, as seen earlier in the proof, on KSn;t

MSn.
; t/dPK
B D dPK

X:



14.2 A Signal Plus “White Noise” Model Is No Restriction 971

Thus, choosing K0 2 KSn;t1
in the last equality (?) above, one has that Nn is a

martingale for the filtration of the �-algebras KSn;t and the probability PK
X . Let Kt 2

K be fixed, but arbitrary. One has that

Kt D ŒKt \ fSn < tg�[ ŒKt \ fSn � tg� 2 KSn;t :

Consequently NSn is a martingale for K and PK
X .

Let N˛ D h˛;Nil2 , so that NSn
˛ D h˛;Nnil2 . Since, with respect to PK

n , Nn is
a Cramér-Hida process with law PK

B, then, with respect to the law PK
n , hNSn

˛ i D
hC.
/˛; ˛il2 . Since, on KSn;t , PK

X � PK
n , the same is true with respect to PK

X [264,
p. 245]. Since hC.
/Œ˛�; ˛il2 is bounded, NSn

˛ is uniformly integrable, and N˛ is a
local martingale with hC.
/Œ˛�; ˛il2 as quadratic variation. The result then follows
from (Proposition) 10.5.6 and (Corollary) 10.5.19. ut



Chapter 15
Scope of the Signal Plus “White Noise”
Model (II)

When one does not know that the SPWN model has a representation in the form of a
stochastic differential equation, which is generally the case within the Cramér-Hida
framework, it becomes important to know that such a representation exists, as it is
that representation which allows an explicit form for the likelihood. In the previous
chapter, it was seen that the existence of the likelihood has the consequence that
the observations are represented in the form of a stochastic differential equation.
The result is however an existence result which gives no hint as to the form of
the resulting signal. When one is willing, or able, to assume some integrability
conditions on the signal (that is typically the case when adjusting a model to data:
one makes do with what is available, as long as the procedure is reasonable, and can
be seriously evaluated), one then obtains a stochastic differential equation form in
which the signal is a conditional expectation with respect to the observations. That
latter stochastic differential equation representation is known under the appellation
of “innovation representation,” and makes up the next topic. In the framework of
the Cramér-Hida representation, assumptions on the integrability of the signal in
the derived “white noise model” may be difficult, nay, impossible to justify. It is
nevertheless useful to know that the stochastic differential equation representation
is related to conditional expectations with respect to the observations process.

The following “generic model” is assumed thereafter, and assumptions about it
shall be explained as needed, as an innovation representation may be obtained under
diverse assumptions on the signal and the noise:

X D SŒa �C N:

In fine, N shall be B.

© Springer International Publishing Switzerland 2015
A.F. Gualtierotti, Detection of Random Signals in Dependent Gaussian Noise,
DOI 10.1007/978-3-319-22315-5_15
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15.1 The Case of Real Processes

The model is thus X D SŒa�C N, with processes having values in R. The idea is to
condition SŒa�C N on X in the hope to obtain a relation

X D SŒa�˚X�C NX ;

where that latter derived equation has, mutatis mutandis, the properties of the initial
relation X D SŒa�C N.

15.1.1 Measurable Versions of Conditional Expectations

Conditioning on X, for t 2 Œ0; 1�, fixed, though arbitrary, produces a well-defined
object. Needed are regularity properties, with respect to time, of the resulting
objects. The following facts shall be assumed to obtain:

Assumptions 15.1.1 The base assumptions are:

1. M, is a measure on the Borel sets of B.Œ0; 1�/, obtained from a deterministic,
monotone increasing, continuous function;

2. a is a progressively measurable process for �.X/;

3. EP

hR 1
0 ja.!; t/jM.dt/

i
<1.

The following lemmas are needed in the sequel.

Lemma 15.1.2 Let M be a measure on B.Œ0; 1�/, and

(a) B � A˝ B.Œ0; 1�/ be a �-algebra;
(b) for t 2 Œ0; 1�, fixed, but arbitrary, at W ˝ �! R is adapted to A and B.R/;
(c) for n 2 N, fixed, but arbitrary, ˛n W ˝ � Œ0; 1� �! R is adapted to B and B.R/;
(d) for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

lim
n
˛n.!; t/ D at.!/I

There exists then ˛ W ˝ � Œ0; 1� �! R, adapted to B and B.R/, such that

1. almost surely with respect to P˝M, limn ˛n.!; t/ D ˛.!; t/;
2. for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

˛.!; t/ D at.!/:

Proof Let

B0 D
n
.!; t/ 2 ˝ � Œ0; 1� W lim

n
˛n.!; t/ does not exist

o
:
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Then B0 2 B [113, p. 93]. Let B0Œt� be the section at t of B0: it is also a measurable
set [113, p. 238]. One has that

B0Œt� � f! 2 ˝ W f˛n.!; t/; n 2 Ng does not converge to at.!/g :

Thus P .B0Œt�/ D 0, and

ŒP˝M�.B0/ D
Z 1

0

P .B0Œt�/ M.dt/ D 0:

That is claim 1. For claim 2, one observes that, for t 2 Œ0; 1�, and ! 2 B0Œt�c, fixed,
but arbitrary, limn ˛.!; t/ exists. Let it be denoted ˛.!; t/. Then, for t 2 Œ0; 1�, fixed,
but arbitrary, almost surely with respect to P, ˛.!; t/ D at.!/. ut
Lemma 15.1.3 Let tn;i D i2�n; i 2 Œ0 W 2n�, and Y W ˝ � Œ0; 1� �! R, a process
such that

(a) Y.!; t/ D 0 when .!; t/ 2 .˝��tn;i; tn;iC1�/c;
(b) for fixed, but arbitrary .n; i/, Y is adapted to A˝ B .�tn;i; tn;iC1�/;
(c) for t 2 Œ0; 1�, fixed, but arbitrary, EP ŒjY.
; t/j� <1.

Then

.!; t/ 7! EP
�
Y.
; t/ j �tn;i .X/

�
has a version Yn;i that is adapted to �tn;i.X/˝ B .�tn;i; tn;iC1�/.
Proof It is no restriction to suppose the process Y positive.

Let Y have the following form, where A 2 At, and tn;i � t1 < t2 � tn;iC1:

Y.!; t/ D �A.!/��t1;t2� .t/:

Then, as

EP
�
Y.
; t/ j �tn;i.X/

� D ��t1;t2�.t/EP
�
�

A
j �tn;i.X/

�
;

the claim is true for that type of Y, and thus for any linear combination of Y’s of
such type. Let V denote the vector space thus defined.

Let
˚
Yp; p 2 N

� � V be an increasing sequence converging to Y, and define the
following maps: for p 2 N, fixed, but arbitrary,

˛p W ˝ � Œ0; 1� �! R

is adapted to �tn;i.X/ ˝ B .�tn;i; tn;iC1�/, and such that, for t 2 Œ0; 1�, fixed, but
arbitrary, almost surely, with respect to P,

˛p.!; t/ D EP
�
Yp.
; t/ j �tn;i.X/

�
.!/:
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Since
˚
Yp; p 2 N

�
is increasing, and, for t 2 Œ0; 1�, fixed, but arbitrary, Y.
; t/ is

integrable, almost surely, with respect to P,

lim
p

EP
�
Yp.
; t/ j �tn;i.X/

�
.!/ D EP

�
Y.
; t/ j �tn;i.X/

�
.!/:

It then suffices to choose, in (Lemma) 15.1.2,

at.!/ D EP
�
Y.
; t/ j �tn;i.X/

�
.!/; and B D �tn;i.X/˝ B .�tn;i; tn;iC1�/ :

ut
Proposition 15.1.4 When (Assumption) 15.1.1 obtains, there exists ˛, predictable
for �.X/, such that, almost surely, with respect to M, ˛.
; t/ is a version of
EP Œa.
; t/ j �t.X/�.

Proof Suppose first that X is continuous. Since, by assumption,

Z 1

0

M.dt/EP Œja.
; t/j� <1;

almost surely, with respect to M, EP Œja.
; t/j� < 1, and EP Œa.
; t/ j �t.X/� exists.
Let

I D ft 2 Œ0; 1� W EP Œja.
; t/j� <1g :

I is measurable, has M-measure equal to one, and aI D �I a is measurable, and
adapted. It thus has a progressively measurable modification, say apm [192, p. 68].
apm has the same integrability properties as a, and thus the conditional expectation
of apm exists for t 2 Œ0; 1�. apm may thus replace a.

Let Tn D ftn;i 2 Œ0; 1� W tn;i D i2�n; i 2 Œ0 W 2n�g, and, for t 2 Œ0; 1�, and n 2 N,
fixed, but arbitrary,

when t 2 �tn;i; tn;iC1� ; tn;i.t/ D tn;i:

The sequence
˚
tn;i.t/; n 2 N

�
increases to t. As X has continuous paths, �.X/ is

continuous to the left, and thus

�t.X/ D
_
n2N

�tn;i.t/.X/:

Let

an;i.!; t/ D ��tn;i;tn;iC1� .t/apm.!; t/:
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Result (Lemma) 15.1.3 applies to an;i, so that there exits ˛n;i, adapted to the algebra
�tn;i.X/˝B .�tn;i; tn;iC1�/, and thus predictable, such that, almost surely, with respect
to P,

˛n;i.!; t/ D EP
�
an;i.
; t/ j �tn;i.X/

�
.!/:

Let then

˛n.!; t/ D
2n�1X
iD0

˛n;i.!; t/:

˛n is adapted to
W2n�1

iD0
˚
�tn;i.X/˝ B .�tn;i; tn;iC1�/

�
, and thus predictable. Further-

more, almost surely, with respect to P,

˛n.!; t/ D EP
�
apm.
; t/ j �n;i.t/.X/

�
:

A martingale convergence theorem [201, p. 29] yields that, almost surely, with
respect to P, as n increases indefinitely,

EP
�
apm.
; t/ j �n;i.t/.X/

�
converges to

EP

"
apm.
; t/ j

1_
nD1

�n;i.t/.X/

#
D EP

�
apm.
; t/ j �t.X/

�
:

Consequently, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

lim
n
˛n.!; t/ D EP

�
apm.
; t/ j �t.X/

�
:

Letting, in (Lemma) 15.1.2,B be the predictable sets, and at D EP
�
apm.
; t/ j �t.X/

�
,

one obtains an ˛ such that, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely with
respect to P,

˛.!; t/ D EP
�
apm.
; t/ j �t.X/

�
:

Furthermore, for t 2 I, fixed, but arbitrary,

˛.!; t/ D EP
�
apm.
; t/ j �t.X/

� D EP Œa.
; t/ j �t.X/� :
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Suppose now that X is only almost surely continuous. Let XN be defined as
in Sect. 10.2.3. There exists then ˛, predictable for

�t.XN/ D �t.X/ \˝N � �t.X/ _ f˝Ng ;

and thus for the latter family of �-algebras, such that, almost surely with respect to
M, for t fixed, but arbitrary, ˛.
; t/ is a version of

EP Œa.
; t/ j �t.X/\˝N � :

Now EP Œa.
; t/ j �t.X/� is a version of EP Œa.
; t/ j �t.X/ _ f˝Ng�. But, for arbitrary
measurable sets A and B,

�A�˝N
D ˇ̌

�A � �˝N

ˇ̌
D ˇ̌

�A\N C �A\˝N
� �˝N

ˇ̌
D �A\N C �˝N

�Ac ;

�A�˝N
�B�˝N

D �A\B\N C �˝N
�Ac\Bc ;

and also �t.X/ _ f˝Ng D �.Xt;0�˝N;Xt;0 2 �t.X//, so thatZ
Xt;0�˝N

EP Œa.
; t/ j �t.X/ _ f˝Ng� D
Z

Xc
t;0\˝N

a.
; t/dP

D
Z

Xc
t;0\˝N

˛.
; t/dP

D
Z

Xt;0�˝N

˛.
; t/dP:

The variable ˛.
; t/ is thus a version of EP Œa.
; t/ j �t.X/\ f˝Ng�, and thus of
EP Œa.
; t/ j �t.X/�. ut
Remark 15.1.5 Since, for t 2 I, ˛.!; t/ D EP Œa.
; t/ j �t.X/�, for t 2 I, a set of
M-measure one, Z t

0

˛.!; �/M.d�/

exists, and is finite.

Remark 15.1.6 EP

hR 1
0 j˛.
; �/jM.d�/

i
<1.
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Remark 15.1.7 When a is square integrable for P˝M, an analogous result obtains,
and in particular,

EP

	Z 1

0

˛2.
; �/M.d�/


<1:

15.1.2 Innovations for Product Square Integrable Signals

The following facts shall be assumed to obtain:

Assumptions 15.1.8 The assumptions are:

1. N is a continuous, square integrable martingale for A;
2. X is a continuous process adapted to A;
3. a is progressively measurable for A;
4. for t 2 Œ0; 1�, fixed, but arbitrary, almost surely with respect to P,

X.!; t/ D
Z t

0

a.!; �/M.d�/C N.!; t/;

5. EP

hR 1
0 a2.
; t/M.dt/

i
<1.

Proposition 15.1.9 Let B be a filtration such that, for t 2 Œ0; 1�, fixed, but arbitrary,
�t.X/ � Bt � At (one writes B � A), and

I.!; t/ D X.!; t/�
Z t

0

˛.!; �/M.d�/;

where ˛ is a progressively measurable version of the conditional expectation of a
with respect to B (one thus supposes that ˛ exists). I is then a continuous martingale
for B, whose square is integrable, and whose square bracket is that of N. That
statement applies in particular when Bt D �t.X/, and X is one of the components
of X.

Proof By definition,

I.!; t/ D
Z t

0

fa.!; �/� ˛.!; �/gM.d�/C N.!; t/:

Hence, for t1 < t2, in Œ0; 1�, fixed, but arbitrary,

EP ŒI.
; t2/� I.
; t1/ j Bt1 � D

D EP ŒN.
; t2/� N.
; t1/ j Bt1 �C EP

	Z t2

t1

fa.
; �/� ˛.
; �/gM.d�/ j Bt1



:
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The term involving N is zero, since it is a martingale for A, and that B � A. Let B
be a fixed, but arbitrary element of Bt1 . Then, since, in Œ0; 1�, for � � t1, fixed, but
arbitrary, B 2 Bt1 � B� ,Z

B
EP

	Z t2

t1

fa.
; �/� ˛.
; �/gM.d�/ j Bt1



dP D

D
Z

B
dP
Z t2

t1

fa.
; �/� ˛.
; �/gM.d�/

D
Z t2

t1

M.d�/
Z

B
dP fa.
; �/� ˛.
; �/g

D
Z t2

t1

M.d�/
Z

B
dPEP Œfa.
; �/� ˛.
; �/g j B� � :

But the inside integral of that latter double integral is zero by assumption, and I is a
square integrable martingale for B (definition of I, and, for ˛, (Remark) 15.1.7). Let
� be a partition of Œ0; t�, using t0; t1; : : : ; tn, that gets finer as n increases indefinitely.
Then

nX
iD1
fI.
; ti/ � I.
; ti�1/g2 D

D
nX

iD1
fN.
; ti/ � N.
; ti�1/g2

C 2
nX

iD1
fN.
; t1/ � N.
; ti�1/g

�Z ti

ti�1

fa.
; �/� ˛.
; �/gM.d�/

�

C
nX

iD1

�Z ti

ti�1

fa.
; �/� ˛.
; �/gM.d�/

� 2
:

The left-hand side of the latter equality, when the filtration is B, converges in
probability [264, p. 164] to h I i. For the same reason, the first term on the right-
hand side, when the filtration is A, converges in probability to hNi. Let

�.!; �/ D max
�

Z ti

ti�1

ja.!; �/� ˛.!; �/jM.d�/:

The last right-hand term in the approximation to the quadratic variation of I
is dominated by �.!; �/

R t
0 ja.!; �/� ˛.!; �/jM.d�/, which converges to zero

almost surely, with respect to P. Let

�.!; t/ D max
�
jN.!; ti/ � N.!; ti�1/j :
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The middle term on the right-hand side in the approximation to the quadratic
variation of I is dominated by

2�.!; t/
Z t

0

ja.!; �/� ˛.!; �/jM.d�/:

But, since N is continuous, �.!; t/ converges to zero almost surely, with respect to
P. One consequence is that hNi is adapted to B, hence the stated equality of brackets.

ut
Remark 15.1.10 The same proof applies when the processes take their values in Rn.
When N is the vector whose components are the first n components of B, a Cramér-
Hida process, one shall have that the components of the innovation are independent,
and that matters in the Cramér-Hida context.

15.1.3 Innovations for Product Integrable Signals

The following facts shall be assumed to obtain:

Assumptions 15.1.11 The assumptions are those of (Assumption) 15.1.8, except
that item 5 becomes

EP

	Z 1

0

ja.
; t/jM.dt/



<1: (?)

Proposition 15.1.12 (Result (Proposition)) 15.1.9 obtains given that latter (?)
integrability assumption.

Proof The only part of the proof of (Proposition) 15.1.9 that must be validated is
that I has a square that is integrable. Let Bn.!/ D ft 2 Œ0; 1� W jI.!; t/j � ng, and

Sn D
�
1 when Bn D ;
inf Bn when Bn ¤ ; :

Sn is a strict stopping time when restricted to the subset ˝N of ˝ for which the
paths of I are continuous, and there is [(Proposition) 10.2.27] a wide sense stopping
time for B that is equal to Sn on ˝N . Let the latter be denoted Sn also. ISn is a
martingale, adapted to B, whose square is integrable. Using (Proposition) 15.1.9
and [264, p. 166], one has that

hISni D hNSni D hNiSn � hNi:
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Now, for t 2 Œ0; 1�, fixed, but arbitrary, limn ISn.
; t/ D I.
; t/, almost surely with
respect to P, and, by Fatou’s lemma,

EP
�
N2.
; t/� D EP ŒhNi.
; t/�

� lim inf
n

EP
�
.ISn.
; t//2�

� EP

h
lim inf

n
.ISn.
; t//2

i
D EP

�
I2.
; t/� :

ut

15.1.4 Innovations for Signals That Are in the Reproducing
Kernel Hilbert Space of the Noise

That is the “natural” case in the Cramér-Hida context, but, unfortunately a case
for which the “natural” assumptions seem insufficient. Indeed, when the signal is
almost surely in the RKHS of a noise that is a Brownian motion, as shall be seen, a
candidate for the conditional expectation exists. But, for that candidate to actually
be the conditional expectation, one must know “independently” that that conditional
expectation exists. That existence can be established under added assumptions,
which, in practice, are hard to validate.

15.2 The Case of Vector Processes

One shall assume that the following facts obtain:

Assumptions 15.2.1 They are as follows:

1. the process a shall belong to I2 Œb� (rather than to I0 Œb�: that restriction has its
origin in Sect. 15.1.4 above);

2. X D S Œa�C B, where B, is a Cramér-Hida process.

Proposition 15.2.2 There exists a process I, adapted to � .X/, whose law is PK
B, and

a predictable process aK, with base
�
K;K;PK

X

�
, such that aK�˚X belongs to I2 Œb�,

and, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

X.!; t/ D S
�
aK�˚X

�
.!; t/C I.!; t/:

That representation is unique.
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Proof Since Xn.!; t/ D
R t
0

an.!; �/Mn.d�/C Bn.!; t/, one may use (Proposition)
15.1.9 to obtain that

Xn.!; t/ D
Z t

0

˛n.!; �/Mn.d�/C In.!; t/;

where ˛n is a version of the conditional expectation of an with respect to � .X/,
and In has the same law as Bn. Furthermore I shall have independent components
[(Remark) 15.1.10].

One must now decompose ˛n to obtain aK
n . One proceeds as in (Proposition)

15.1.9, using the partition of Œ0; 1� with points tp;k. One has that

˛n D lim
p
˛.n/p ;

˛.n/p D
X

i

˛
.n/

p;i;

˛
.n/

p;i adapted to �tp;i.X/˝ B
��

tp;i; tp;iC1
��

, and

˚�1X

˚
Ktp;i ˝ B

��
tp;i; tp;iC1

��� D �tp;i.X/˝ B
��

tp;i; tp;iC1
��
:

One has thus the following situation: on�
˝ � Œ0; 1�; �tp;i.X/˝ B

��
tp;i; tp;iC1

���
;

there are two maps,

• the first, ˚X , adapted to the range
�
K � Œ0; 1�;Ktp;i ˝ B

��
tp;i; tp;iC1

���
,

• and the second, ˛.n/p;i, adapted to the range .R � Œ0; 1�;B.R/˝ B.Œ0; 1�//.

The factorization theorem [138, p. 443] then says that ˛.n/p;i D aK
n;p;i�˚X for some

adapted

a.n/n;p;i W
�
K � Œ0; 1�;Ktp;i ˝ B

��
tp;i; tp;iC1

��� �! .R � Œ0; 1�;B.R/˝ B.Œ0; 1�// :

One then sets

aK
n;p D

X
i

aK
n;p;i;

with the property that

aK
n;p �˚X D ˛.n/p :



984 15 Scope of the Signal Plus “White Noise” Model (II)

aK
n;p has base .K;K;PK

X/, and is adapted to
W

i Ktp;i ˝ B
��

tp;i; tp;iC1
��

. It is thus
predictable.

Let

Ln D
�
.!; t/ 2 ˝ � Œ0; 1� W lim

p
aK

n;p �˚X.!; t/ does not exist

�

D
�
.!; t/ 2 ˝ � Œ0; 1� W lim

p
˛.n/p .!; t/ does not exist

�
:

By construction [(Lemma) 15.1.2], fP˝Mng .Ln/ D 0. Let

LK
n D

�
.k; t/ 2 K � Œ0; 1� W lim

p
aK

n;p.k; t/ does not exist

�
:

One has that
˚
PK

X ˝Mn
� �

LK
n

� D fP˝Mng .Ln/ D 0. One may thus define aK
n setting

aK
n.k; t/ D lim

p
aK

n;p.k; t/:

aK
n is thus predictable, and, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with

respect to P,

aK
n �˚X.!; t/ D ˛n.!; t/ D EP Œan.
; t/ j �t.X/� .!/;

and thus

EP

hˇ̌̌̌
aK�˚X

ˇ̌̌̌ 2
L2Œ b �

i
<1:

That the representation is unique is seen as follows. Let

X.!; t/ D SŒ QaK�˚X�.!; t/C QI.!; t/

be another representation. Then, for n 2 N, and t 2 Œ0; 1�, fixed, but arbitrary, almost
surely with respect to P,

In.!; t/ � QIn.!; t/ D
Z t

0

˚QaK
n.!; �/ � aK

n.!; �/
�

Mn.d�/:

On the left-hand side of that latter equality, one has a continuous martingale, and, on
the right-hand side, a process of bounded variation. Both sides must then be zero.

ut
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Remark 15.2.3 Representation (Proposition) 15.2.2 allows one to obtain, mutatis
mutandis, the likelihoods of Chap. 13.

15.3 Strong Solutions of Stochastic Equations

From the point of view of modeling, it is important to know that, when writing
down a model, that model makes sense, here, that the given probability space, the
given signal, and the given noise lead to a stochastic differential equation with a
solution on the space on which they are defined: In signal processing applications,
one must deal with the noisy signal that one is given, so strong solutions are required
[87, p. 197]. When the SPWN model results from the Cramér-Hida representation,
requiring Lipschitz coefficients, as is often done to obtain strong solutions, is not a
realistic option. The premises of an approach that is better suited to the Cramér-Hida
framework (signal in the RKHS of the noise) is presented below.

Remark 15.3.1 The notation being that of the previous sections, let

• NX D X�1
�
N .K;PK

X/
�
,

• KX D
˚
K0�MX;K0 2 K;MX � NX 2 N .K;PK

X/
�
,

• for k 2 K, ˝Œk� D X�1.fkg/.
As, for K0 � K, X�1.K0/ D [k2K0˝Œk�, any subset of ˝ that is not in the latter

form cannot be the inverse image of a set in K. Since inverse images preserve set
operations [84, p. 11],

X�1.K0�MX/ D X�1.K0/�X�1.MX/:

Furthermore, assuming P to be complete,

P.X�1.MX// � P.X�1.NX// D PK
X.NX/ D 0:

But a subset of a set in NX need not be of the form X�1.MX/ (one has only that
A � f�1.f .A// [84, p. 12], so that

X�1.KX/ � fA�M;A 2 �.X/;M � N 2 NXg ;

where strict inclusion is possible. However, because of the relation [138, p. 46]
�.f�1.H// D f�1.�.H//,

X�1.K _N .K;PK
X// D �.X/ _NX:

Suppose now that .˝;A;P/ D .K;K;QK/, and that X D EQK . One has then
that PK

X D QK , and that X is the identity. The particularities described above are no
longer needed.
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Lemma 15.3.2 Let W be a Cramér-Hida process on .K;K;Q/, and t 2�0; 1Œ be
fixed but arbitrary.

1. Let �Œt;1�.W/ be the �-algebra generated by the following vectors:

fW.
; t2/ �W.
; t1/; ft1; t2g � Œ0; 1� W t � t1 < t2g :

Then

Kt and �Œt;1�.W/

are independent.
2. Let V be an integrable variable adapted to Kt. Then, almost surely, with respect

to Q,

EQŒV j �t.W/� D EQŒV j �.W/�:

Proof (1) Let KŒt;1� 2 �Œt;1�.W/ be fixed, but arbitrary. As seen in the proof of item 4
of (Lemma) 11.4.5,

W.
; tC �/ �W.
; t/

is a Cramér-Hida process on Œt; 1�, and the conditional expectation

EQ

h
�KŒt;1�

� Q.KŒt;1�/ j �Œt;1�.W/
i

has a representation as a stochastic integral. Using the fact that

�KŒt;1�
� Q.KŒt;1�/

is adapted, one obtains that

�KŒt;1�
D Q.KŒt;1�/C IW

n
aK
jŒt;1�

o
:

Let Kt 2 Kt be fixed, but arbitrary. Then

EQ

h
�Kt
�KŒt;1�

i
D Q.Kt/Q.KŒt;1�/C EQ

h
�Kt

IW

n
aK
jŒt;1�

oi
:

Because of [264, p. 155], and the definition of IW ,

�Kt
IW

n
aK
jŒt;1�

o
D IW

n
�Kt

aK
jŒt;1�

o
;

and the right-hand side is zero, as the integrand is zero [264, p. 35].
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Proof (2) As presently seen, one has that �.W/ D �t.W/ _ �Œt;1�.W/. Let indeed R
be the ring generated by sets of the form Rt \ RŒt;1�, with Rt in �t.W/, and RŒt;1� in
�Œt;1�.W/. It suffices to prove that the following measures:

d� D EQ ŒV j �t.W/� dQ; and d� D EQ ŒV j �.W/� dQ

are equal on R. Now:Z
Rt\RŒt;1�

EQ ŒV j �.W/� dQ D EQ

h
�Rt
�RŒt;1�

EQ ŒV j �.W/�
i

D EQ

h
EQ

h
�Rt
�RŒt;1�

V j �.W/
ii

D EQ

h
�Rt
�RŒt;1�

V
i

item 1D EQ

h
�RŒt;1�

i
EQ
�
�Rt

V
�

D EQ

h
�RŒt;1�

i
EQ
�
EQ
�
�Rt

V j �t.W/
��

D EQ

h
�RŒt;1�

i
EQ
�
�Rt

EQ ŒV j �t.W/�
�

D EQ

h
�RŒt;1�

�Rt
EQ ŒV j �t.W/�

i
D

Z
Rt\RŒt;1�

EQ ŒV j �t.W/� dQ:

ut
Proposition 15.3.3 Let .˝;A;P/ be a complete probability space such that
N .A;P/ � At for t 2 Œ0; 1�, fixed, but arbitrary. Let B and X be adapted processes
related in the following way:

(a) for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

X.!; t/ D SŒaK �˚X �.!; t/C B.!; t/;

where aK is progressively measurable for .K;K/, and, for k 2 K, fixed, but
arbitrary, ˇ̌̌̌

aK.k; 
/ˇ̌̌̌ 2
L2Œ b �

<1I

(b) B is a Cramér-Hida process, adapted to �o.X/, with decomposition

B D BX�˚X;

where [(Proposition) 13.2.2] BX is a Cramér-Hida process, with law PK
B for

.K;K;PK
X/.
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Suppose that, when �.BX/ does not equal K, there exists a probability QK on K
such that

(A) QK ¤ PK
X,

(B) fQKgj�.BX/
D ˚PK

X

�
j�.BX/

,

(C) BX is a martingale for .K;K;QK/.

Let N X
t D X�1.N .Kt;PK

X// D N .�t.X/;P/,

Ct D �t.B/ _N X
t ; and CX

t D �t.BX/ _N .Kt;PK
X/;

Dt D �t.X/ _N X
t ; and DX

t D Kt _N .Kt;PK
X/:

Then, for t 2 Œ0; 1�, fixed, but arbitrary,

Ct D Dt:

Proof It shall be done in two steps.

Step 1: C1 D D1.

As seen in (Remark) 15.3.1,

Ct D X�1.CX
t /; and Dt D X�1.DX

t /:

It is sufficient then to prove that CX
1 D DX

1 . The assumption, and (Proposition) 13.2.4,
allow one to write that

EPK
X
� SŒaK� D BX;

which indicates that .BX;P
K
X/ is the unique weak solution of the following formal

equation, with unknown Y: Y D SŒaK�˚Y �C B.
Suppose that CX

1 D DX
1 does not hold. Then, according to the assumption, there is

QK such that BX is a martingale on .K;K;QK/. Since the restrictions to �.BX/ of QK

and PK
X are, by assumption, equal, BX is a also a Cramér-Hida process with respect

to QK . But then Y D SŒaK�˚Y �C B has two solutions, a contradiction.

Proof Step 2: For t 2 Œ0; 1Œ, fixed, but arbitrary, Ct D Dt.

Let V be a random variable adapted to Kt. Because of (Lemma) 15.3.2,

EPK
X

�
V j CX

t

� D EPK
X

�
V j CX

1

�
:

Since, by step 1, C1 D D1,

EPK
X

�
V j CX

t

� D V;
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and thus, since CX
t � DX

t , CX
t D DX

t . The result follows by taking the inverse image
by X. ut
Definition 15.3.4 Let .˝;A;P/ be a probability space with filtration, B an adapted
Cramér-Hida process, and aK a progressively measurable process for K. A strong
solution to the formal equation Y D SŒ aK�˚Y � C B is a process X, adapted to
.˝;A;P/, such that, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect
to P,

X.!; t/ D SŒaK�˚X�.!; t/C B.!; t/:

A strong solution is unique when, given two solutions, X1 and X2, almost surely,
with respect to P, X1Œ!� D X2Œ!�.

Lemma 15.3.5 Let f W .˝;A/ �! .X;X / be an adapted map between measurable
spaces, and let B D f�1.X /. Suppose that � is a compact, metrizable space, and
that, for � 2 �, fixed, but arbitrary, g� W .˝;B/ �! .l2;B.l2// is adapted. Suppose
finally that, for ! 2 ˝ , fixed, but arbitrary, � 7! g�.!/ is continuous. There exists
then adapted maps �� W .X;X / �! .l2;B.l2// such that

1. g� D �� ı f ;
2. for x 2 X, fixed, but arbitrary, � 7! ��.x/ is continuous.

Proof Let, as seen in Sects. 12.1 and 12.2, C.�; l2/ be the Banach space of
continuous functions, with domain �, and range in l2, with the supremum norm.
It is a separable space. The Borel �-algebra of that Banach space shall be denoted
C. It is generated by the evaluation maps E�.c/ D c.�/ 2 l2.

An elementary function  from a measurable space .M;M/ to a metric space S is
a function whose range is at most countable [260, p. 11]. When S is separable, every
measurable function with range in S is the uniform limit of a sequence of elementary
functions [260, p. 12]. These elementary functions are obtained as follows. Suppose
that  W M �! S. Let fsn; n 2 Ng be a set dense in S. Set

Sn;1 D
˚
s 2 S W dS.s; s1/ < n�1

�
;

Sn;2 D
˚
s 2 S W dS.s; s1/ � n�1; dS.s; s2/ < n�1

�
;


 
 

Sn;p D

˚
s 2 S W dS.s; s1/ � n�1; : : : ; dS.s; sp�1/ � n�1; dS.s; sp/ < n�1

�
;


 
 


Let, when s 2 Sn;p, � S
n.s/ D sp. The uniform limit of the sequence � S

n is the identity.
One then chooses S

n D � S
n ı . Thus

.S
n/
�1.
˚
sp
�
/ D �1.Sn;p/:
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Let g W ˝ �! C.�; l2/ be defined using the following assignment:

g.!/ D fg�.!/; � 2 �g :

Since E�.g.!// D g�.!/, g is adapted to B and C. Let thus 	 D ˚
cn; n 2 N

�
be a

set dense in C.�; l2/, C	
n;p, the set corresponding to Sn;p, introduced above on S, and

�	n , one of the maps, on C.�; l2/, corresponding to the � S
n’s above. Let also

gn D �	n ı g:

As above, gn.!/ D cp on g�1.C	
n;p/. But, since B D f�1.X /, for some set Xn;p 2 X ,

g�1.C	

n;p/ D f�1.Xn;p/:

Let, for x 2 X, fixed, but arbitrary, �n.x/ D cp when x 2 Xn;p, and, outside of
[pXn;p, when necessary, the zero function of C.�; l2/. Let !Œx� be an element of ˝
such that f .!Œx�/ D x. When x 2 Xn;p, �n.x/ D cp, and

!Œx� 2 f�1.Xn;p/ D g�1.C	

n;p/;

so that gn.!Œx�/ D cp, and �n.x/ D gn.!Œx�/. Since

f�1
�[pXn;p

� D g�1 .C.�; l2// D ˝;

�n.x/ D gn.!Œx�/ whenever f .!Œx�/ D x, that is, �n.f .!Œx�// D gn.!Œx�/.
Let X	

u be the set of x’s at which f�n; n 2 Ng converges uniformly on�. Since

X	

u D
\

m

[
n

\
p�n

�
x 2 X W sup

�

ˇ̌̌̌
E�.�p.x//� E�.�n.x//

ˇ̌̌̌
l2
� m�1

�
;

X	
u 2 X . One has furthermore, as presently seen, that Rf � X	

u . Indeed, given a
fixed, but arbitrary x 2 Rf , and !Œx� 2 f�1.x/, since fgn.!Œx�/; n 2 Ng converges
uniformly to g.!Œx�/, and that �n.x/ D gn.!Œx�/, then x 2 X	

c .
Setting

E�.�.x// D
�

limn E�.�n.x// when x 2 Xc

0l2 when x 2 Xc
c

;

one has the required decomposition. ut
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Proposition 15.3.6 Let .˝;A;P/ be a complete probability space such that, for
t 2 Œ0; 1�, N .A;P/ � At. Let B W ˝ � Œ0; 1� be a Cramér-Hida process adapted to
A. Suppose that:

(a) aK is progressively measurable for K, and such that, for k 2 K, fixed, but
arbitrary,

ˇ̌̌̌
aK.k; 
/ˇ̌̌̌ 2L2Œ b � <1;

(b) EPK
B

"
e

IE
PK

B
faK .�;1/g� 12 jjaK .�;�/jj2L2Œ b �

#
D 1,

so that a weak solution .N;QK/ to the formal equation

Y D SŒaK�˚Y �C N

exists and is unique [(Proposition) 14.1.3], that is,

(i) N is a Cramér-Hida process for .K;K;QK/;
(ii) for t 2 Œ0; 1�, fixed, but arbitrary, almost surely with respect to QK,

EQK .k; t/ D SŒaK �.k; t/C N.k; t/:

Suppose furthermore that when �.N/ does not equal K, there exists a probability
˘K on K such that

(A) ˘K ¤ QK,
(B) f˘Kgj�.N/ D fQKgj�.N/,
(C) N is a martingale for .K;K; ˘K/.

There is then a strong solution X for .˝;A;P/ and B.

Proof Result (Proposition) 15.3.3 yields that �o.N/ D Ko, the completion being
with respect to QK , and (Remark) 15.3.1 that �o.N/ D N�1.Ko/. There is then,
because of (Lemma) 15.3.5, a decomposition of EQK in the following form:

EQK .k; t/ D NE .NŒk�; t/ ;

with the property that, almost surely, with respect to QK ,

EQK D NE ı N:

The equation

EQK .k; t/ D SŒaK�.k; t/C N.k; t/
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yields then that

N.k; t/ D �SŒaK�.k; t/C EQK .k; t/

has the form

N.k; t/ D �SŒaK�.NE ı NŒk�; t/C NE .NŒk�; t/ ;

which means that, almost surely, with respect to PK
B,

EPK
B
.k; t/ D �SŒaK�.NE Œk�; t/C NE.k; t/:

Let now B be a Cramér-Hida process for .˝;A;P/. It yields, when combined with
the last equality, that, almost surely, with respect to P,

B.!; t/ D �SŒaK�.NE ı BŒ!�; t/ C NE.BŒ!�; t/:

The process X.!; t/ D NE.BŒ!�; t/ provides then the strong solution. ut
Corollary 15.3.7 Given the first two conditions of (Proposition) 15.3.6 insuring the
existence of a weak solution, and the formal equation Y D SŒaK �˚Y �C N, one has
that the following statements are equivalent (BX is the N of the weak solution X):

1. given a fixed, but arbitrary Cramér-Hida process B with law PK
B for the

probability space .˝;A;P/, the equation Y D SŒ aK� ˚Y � C N admits X as
strong solution;

2. for t 2 Œ0; 1�, fixed, but arbitrary, Kt and �t.BX/ _ N .Kt;PK
X/ have equal

completions with respect to PK
B.

Proof Item 2 implies item 1 since the assumption of item 2 is the consequence of
the third assumption of (Proposition) 15.3.6 that leads to the existence of a strong
solution.

Suppose that item 1 obtains. Given .˝;A;P/ and B, let X be a strong solution.
Consider the filtration built as follows:

�t.B/ _N .�t.X/;P/:

X is also a strong solution with respect to the latter filtration. Consequently, since a
solution is adapted, �t.X/ � �t.B/_N .�t.X/;P/. The reverse is true since a strong
solution is also a weak solution. One then uses the fact that those filtrations are
inverse images by X of the filtrations on K given in the statement of item 2. ut

One has also the following result [187, p. 41]:

Proposition 15.3.8 In the statement of (Proposition) 15.3.6 omit the second con-
dition, that which requires the expectation of the exponential to be one. Suppose
that .˝;A;P/ is complete, and that, for t 2 Œ0; 1�, fixed, but arbitrary, N .A;P/ is
included in At. Then, when a strong solution to Y D SŒaK�˚Y �C B of (Corollary)
15.3.7 exists, it is unique.



Chapter 16
Scope of Signal Plus “White Noise” Model (III)

Cramér-Hida processes have components that are continuous, Gaussian martingales.
One may wonder what happens when one drops the Gaussian assumption, since,
as seen, continuous martingales are time changed Wiener processes [264, p. 213].
One shall see that Girsanov’s theorem loses then its strength to the point that the
family of signals admissible for the computation of likelihoods becomes practically
useless (signals must depend on the quadratic variation of the noise). But the
road to establishing that fact is long and tortuous, though quite interesting. It also
often requires the assumption that probability spaces are complete. The standard
assumption for the section shall thus be that basic probability spaces are complete,
and that �-algebras contained in the “mother” �-algebras contain the sets of
measure zero of the latter.

16.1 Separable Families of Sets

To a large extent, what follows requires separable �-algebras, that is, �-algebras
generated by countable families of elements. There are two notions of separability,
one without probability, and one with probability. The difference is that zero
measure sets are admitted in the second case, and one then speaks of �-algebras
that are essentially separable.

Let ˝ be a set. A paving of ˝ is a family of subsets of ˝ that contains at least
one set. A �-algebra A of subsets of˝ is separable when there is a countable paving
B of ˝ such that �.B/ D A [138, p. 66]. One has that:

1. [138, p. 66] When A is separable, it is generated by a countable algebra.
2. [138, p. 91] A is separable if, and only if, there exits a measurable function

f W ˝ �! R such that A D f�1.B.R//. A function f that is frequently used
in such a context is the Marczewski function, an infinite linear combination of
indicator functions of sets, basically those which generate the �-algebra.

© Springer International Publishing Switzerland 2015
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3. [138, p. 65] Given the paving B, let

(a) E.B/ D ˚B1 [ Bc
2;B1 and B2 2 B

�
,

(b) B0 D B,
(c) B1 D B0 [ f;;˝g,
(d) for integer n � 1;BnC1 D E.Bn/.

Then:

(i) for n 2 f0g [ N, Bn � BnC1,
(ii) the algebra generated by B is [1nD1Bn;

(iii) when B is countable, so is the algebra it generates.

4. [138, p. 66] Let B be the paving of ˝ whose members are its countable subsets,
and subsets whose complement is countable. Then:

(i) B is a �-algebra;
(ii) when˝ is uncountable, B is not separable;

(iii) [224, p. 15] let ˝ D R, A be the Borel sets of R, and B, the paving just
considered: one has thus a separable �-algebra containing a �-algebra that
is not separable.

Suppose that B is a �-algebra contained in the separable �-algebra A. To be able
to conclude that B is separable also, one must use another definition of separability,
that given in the next section, which is obtained integrating sets of measure zero
into the definition. Thus, when one does not want to integrate those sets, one must
assume separately that B is separable. It shall be assumed that probability spaces
are complete, as farther use shall require, though that assumption is not required,
immediately, and everywhere.

Let .˝;A;P/ be a complete probability space; L0.˝;A;P/ be the family of
adapted maps f W ˝ �! R such that f! 2 ˝ W jf .!/j D 1g has probability zero;
N0.˝;A;P/, that of maps such that f! 2 ˝ W f .!/ ¤ 0g has probability zero; and
L0.˝;A;P/, the quotient of L0.˝;A;P/ by N0.˝;A;P/. The equivalence class of
f is denoted Œ f �0,P, and, when  denotes an equivalence class,

P 2 

denotes one of its elements. The topology of L0.˝;A;P/ is that of convergence in
probability and is given by a distance. One convenient choice is the following one
[41, p. 406]:

d0,P.Œ f �0,P; Œg�0,P/ D
Z
˝

fjf .!/� g.!/j ^ 1g P.d!/:

L0 .˝;A;P/ is thus a complete, metric linear space (it is also a complete F-lattice,
[276, p. 369]) and that distance corresponds to the obvious quasi-norm (let g be
zero) [46, p. 226].
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Another way to introduce a metric space related to .˝;A;P/ is as follows [46,
p. 173]. Two sets A1 and A2 of A are (P-)equivalent when P.A1�A2/ D 0. Let ŒA�P
denote the equivalence class of A 2 A. The collection of equivalence classes shall
be denoted AeP, and PeP is defined on AeP setting

PeP .ŒA�P/ D P.A/:

One thus gets the probability algebra associated with .˝;A;P/. All Boolean
operations make then sense. A distance may be defined on AeP setting

ıP.ŒA1�P ; ŒA2�P/ D PeP.ŒA1�A2�P/:

The resulting metric space is complete [46, p. 190].
Let JP W .AeP;PeP/ �! L0.˝;A;P/ be defined using the following relation:

JP .ŒA�P/ D Œ�A �0,P
:

JP is an isometry as

ıP .ŒA1�P ; ŒA2�P/ D P.A1�A2/

D EP
�ˇ̌
�A1
� �A2

ˇ̌�
D EP

�ˇ̌
�A1
� �A2

ˇ̌ ^ 1�
D d0,P

��
�A1

�
0,P
;
�
�A2

�
0,P

�
D d0,P

�
JP
�
ŒA1�0,P

�
; JP

�
ŒA2�0,P

��
:

As measurable functions are limits of simple ones, RŒJP� is total in L0.˝;A;P/. As
a consequence both �

AeP;PeP
�
; and L0.˝;A;P/

are simultaneously separable or not [46, p. 376].

Definition 16.1.1 .˝;A;P/ is essentially separable when both�
AeP;PeP

�
and L0.˝;A;P/

are separable.

Remark 16.1.2 .˝;A;P/ is essentially separable if, and only, if A is generated by
a random variable, for example the Marczewski function (and zero measure sets).
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16.2 Morphisms and Embeddings for Probability Spaces

Isomorphisms provide the necessary flexibility, in matters to be considered.

Definition 16.2.1 Let .˝;A;P/ and .
;B;Q/ be two complete probability spaces.
Let � W L0.˝;A;P/ �! L0.
;B;Q/ be a map such that, for fixed, but arbitrary,

2
4 n 2 N;

 W Rn �! R; adapted to the Borel sets,
ff1; : : : ; fng � L0.˝;A;P/;

one has that, P�. f / denoting an element in the class �. f /,

�
��
. Pf1; : : : ; Pfn/

�
0,P

�
D � � P�. f1/; : : : ; P�. fn/

��
0,Q
:

� is called an almost sure morphism of .˝;A;P/ towards .
;B;Q/.

Remark 16.2.2 Definition 16.2.1 asserts a form of commutative diagram. Let
indeed�n send . f1; : : : ; fn/ to .�. f1/; : : : ; �. fn//, dotn be the operation that chooses
an equivalence class of n functions, and class be the operation that sends an element
to its equivalence class. Then

� ı .class ı  ı dotn/ D .class ı  ı dotn/ ı �n:

Example 16.2.3 Let .
;B;Q/ D .˝;A;Q/, with Q � P. One has then that
N0,P.˝;A;P/ � N0,Q.˝;A;Q/, so that Œ f �0,P � Œ f �0,Q. The following map:

�
�
Œ f �0,P

� D Œ f �0,Q

is thus well defined, and

�
��

� Pf1; : : : ; Pfn��0,P

�
D � � Pf1; : : : ; Pfn��0,Q

D � � P�. f1/; : : : ; P�. fn/
��

0,Q
:

Example 16.2.4 Let .
;B;Q/ D .˝;B;P/, with A � B. Let f be adapted to
A, and g be almost surely equal to f , with respect to P. g is then adapted to A.
Consequently Œ f �0,P is also an element of L0.˝;B;P/, and � is the inclusion map.

Example 16.2.5 Let f W ˝ �! X be a map into some space X, and g, also with
values in X, be similarly defined on 
. Let A and B be generated by f , respectively
g, and some �-algebra X on X. Suppose that Qg D Q ı g�1 � Pf D P ı f�1. Let,
for a random variable , adapted to X ,

�
�
Œ. f /�0,P

� D Œ.g/�0,Q :
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� is well defined. Indeed, when, almost surely, with respect to P, . f / D  . f /,

Pf . ¤  / D P.. f / ¤  . f // D 0;

so that 0 D Qg. ¤  / D Q..g/ ¤  .g//, and thus, almost surely, with respect
to Q, .g/ D  .g/.
Proposition 16.2.6 The map � of (Definition) 16.2.1 has the following proper-
ties:

1. � is linear, increasing, and sends constants to constants;
2. � is continuous for convergence in probability;
3. when f is the class of a random variable, the law of�. f / is absolutely continuous

with respect to that of f ;
4. when f stems from the indicator of a set, �. f / stems also from the indicator of a

set;
5. the composition of two such morphisms is a morphism.

Proof Let, for any set S, �S denote the indicator of S. Given any adapted function
f W ˝ �! R which is almost surely finite, the set

f! 2 ˝ W �˝.!/ � �R
. f .!// ¤ 0g

has P-probability zero. Thus

Œ�˝ �0,P
D Œ�

R
. f /�

0,P
;

so that

�
�
Œ�˝ �0,P

� D � �Œ�
R
. f /�

0,P

� D ��
R

� P� �Œ f �0,P

���
0,Q
D Œ�
 �0,Q

:

Thus, if � is proved linear, it will send constants to constants, and in particular zero
to zero. Let now, in (Definition) 16.2.1, .x; y/ D axC by. Then

� .˛f1 C ˇf2/ D �
��
˛Pf1 C ˇPf2

�
0,P

�
D �

��
. Pf1; Pf2/

�
0,P

�
D �


� P�. f1/; P�. f2/

��
0,Q

D �
˛ P�. f1/C ˇ P�. f2/

�
0,Q

D ˛
� P�. f1/

�
0,Q
C ˇ � P�. f2/

�
0,Q

D ˛�. f1/C ˇ�. f2/:

Thus � is linear.
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The relation f � g extends to equivalence classes: Œ f �0,P � Œg�0,P if, and only if,
f � g, except possibly on a set of P-probability zero. The relation � is represented
by the half space H of R2, situated above, and to the left, of the line x D y: x � y if,
and only if, �H .x; y/ D 1, a Borel measurable function. Thus �H . f .x/; g.x// D 1 if,
and only if, f .x/ � f .y/. So

�
�
Œ�H . f ; g/�

0,P

� D ��H .
P� �Œ f �0,P

�
; P� �Œ f �0,P

��
0,Q
;

and both, argument and value, are simultaneously one. � is thus increasing.
As one works in a linear, metric space, and that� is linear, to prove its continuity,

it suffices [228, p. 23] to consider a sequence ffn; n 2 Ng that converges to zero in
probability, and to prove that the following sequence:˚ P� .Œ fn�0,P/ ; n 2 N

�
converges to zero in probability. In fact, it suffices to prove that each subsequence of˚ P� .Œ fn�0,P/ ; n 2 N

�
contains a subsequence that converges almost surely [39, p. 231]. Suppose, which
is no restriction, that ˚ P� .Œ fn�0,P/ ; n 2 N

�
is such a subsequence. Since limn EP Œjfnj ^ 1� D 0, there is a subsequence such that

1X
pD1

EP
�ˇ̌

fnp

ˇ̌ ^ 1� <1:
But then, almost surely, with respect to P,

1X
pD1

˚ˇ̌
fnp

ˇ̌ ^ 1� <1:
Since the general term of a convergent series of positive terms must go to zero,
eventually

ˇ̌
fnp

ˇ̌ ^ 1 D ˇ̌fnp

ˇ̌
, so that, almost surely,

1X
pD1

ˇ̌
fnp

ˇ̌
<1;



16.2 Morphisms and Embeddings for Probability Spaces 999

and, letting S denote that latter sum, for m 2 N, fixed, but arbitrary,

mX
iD1
jfni j � S:

Since � preserves order, with .x1; : : : ; xm/ DPm
iD1 jxij,

mX
iD1

ˇ̌ P� .Œ fni �0,P/
ˇ̌ � P� �ŒS�0,P

�
;

so that, almost surely, with respect to Q,

1X
iD1

ˇ̌ P� .Œ fni �0,P/
ˇ̌
<1;

that is,

lim
p
P� .Œ fni �0,P/ D 0:

Suppose that B is a Borel set for which P. Pf 2 B/ D 0, that is, almost surely, with
respect to P, �B.

Pf / D 0. Then, since

�
��
�B.
Pf /�

0,P

�
D ��B

� P�. f /
��

0,Q
;

and that zero is preserved by the morphism, almost surely, with respect to Q,

�B

� P�. f /
� D 0:

Thus the law of P�. f / is absolutely continuous with respect to the law of Pf .
The law of an indicator function �A has a probability distribution that is a step

function, with a jump at 0 of value P.Ac/, and a jump at 1, with value P.A/. Any
law that is absolutely continuous with respect to that of an indicator must have a
distribution that is a step function with jumps at the points 0 and 1 only, and is thus
the law of an indicator function. ut
Remark 16.2.7 Let� be an almost sure morphism, and .x; y/ D xy. The following
expression:

�
��

�
�A1
; �A2

��
0,P

�
D
h

� P� ���A1

�
0,P

�
; P�

��
�A2

�
0,P

��i
0,Q
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then translates to

�
��
�A1\A2

�
0,P

�
D
h P� ���A1

�
0,P

� P� ���A1

�
0,P

�i
0,Q
:

Since images of indicators by morphisms are indicators, letting

�
��
�A1

�
0,P

�
D ��B1

�
0,Q
; and �

��
�A2

�
0,P

�
D ��B2

�
0,Q
;

one obtains that

�
��
�A1\A2

�
0,P

�
D ��B1\B2

�
0,Q
:

Define

˚� W
�
AeP;PeP

� �! �
BeQ;QeQ

�
;

using the following assignment: given that �
�
Œ�A �0,P

� D Œ�B �0,Q
,

˚�
�
ŒA�0,P

� D ŒB�0,Q :

˚� is well defined as � is linear, and sends constants to constants.
Since

�

�h
�A1nA2

i
0,P

�
D �

��
�A1

�
0,P
� ��A1\A2

�
0,P

�
D �

�B1

�
0,Q
� ��B1\B2

�
0,Q

D
h
�B1nB2

i
0,Q
;

it follows that

˚�
�
ŒA1�0,P n ŒA2�0,P

� D ˚� �ŒA1 n A2�0,P

�
D ŒB1 n B2�0,Q

D ŒB1�0,Q n ŒB2�0,Q

D ˚�
�
ŒA1�0,P

� n˚� �ŒA1�0,P

�
:

Similarly,

˚�
�
ŒA1�0,P _ ŒA2�0,P

� D ˚� �ŒA1�0,P

� _˚� �ŒA2�0,P

�
;
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and, when ŒA1�P � ŒA2�P,

˚� .ŒA1�P/ � ˚� .ŒA2�P/ :

As a consequence,

˚�
�_1nD1 ŒAn�P

� D _1nD1˚� .ŒAn�P/ ;

and

˚�
�^1nD1 ŒAn�P

� D ^1nD1˚� .ŒAn�P/ :

In particular ˚� is a �-lattice homomorphism [226, p. 318], and the image of A by
� is a �-algebra.

Remark 16.2.8 It follows from the definitions that � ı JP D JQ ı˚� , where JP and
JQ are as in Sect. 16.1, and ˚� , as in (Remark) 16.2.7.

Remark 16.2.9 ([46, p. 179]) Suppose ˚ W .AeP;PeP/ �! .BeQ;QeQ/ is such that

˚ .ŒA1�P n ŒA2�P/ D ˚ .ŒA1�P/ n ˚ .ŒA1�P/ ;
˚ ._n ŒAn�P/ D _n˚ .ŒAn�P/ :

Let AeP
0 D fŒA1�P ; : : : ; ŒAn�Pg � AeP, be fixed, but arbitrary, and the image of that

family by ˚ , be

BeQ
0 D

˚
ŒB1�Q ; : : : ; ŒBn�Q

� � BeQ:

Then ˚ carries the equivalence classes of the sets belonging to the partition of ˝
determined by fA1; : : : ;Ang of the following form:

ŒS1 \ 
 
 
 \ Sn�P ; Si D Ai or Si D Ac
i ;

onto the equivalence classes of the sets belonging to the partition of 
 determined
by fB1; : : : ;Bng in such a manner that, when ŒA�P is in the former partition, and that
˚.ŒA�P/ D ŒB�Q, then

ŒA�P � ŒAi�P ; some i 2 Œ1 W n� if, and only if, ŒB�Q � ŒBi�Q :

Let S0 .˝;A;P/ denote the linear submanifold of L0 .˝;A;P/ consisting of all
equivalence classes of the form Œs�0,P, where s is a simple function. Analogous
definitions for .
;B;Q/ are labeled accordingly. Let the map (JP is as in Sect. 16.1)

�˚ W RŒJP� �! RŒJQ�
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be defined using the following relation: when ˚ .ŒA�P/ D ŒB�Q,

�˚
�
Œ�A �0,P

� D Œ�B �0,Q
:

One has that

nX
iD1

ai
�
�Ai

�
0,P
D
"

nX
iD1

ai�Ai

#
0,P

:

Let s DPn

iD1 ai�Ai
,
˚
˛1; : : : ; ˛p

�
be the distinct values taken by s, and

A˛j D
˚
! 2 ˝ W s.!/ D ˛j

�
:

Then

s D
pX

jD1
˛j�A˛j

:

One may thus assume that the ai’s are distinct, and the Ai’s disjoint. When s is zero
almost surely, one may assume that the Ai’s have positive probability, so that the ai’s
must be zero. But then

nX
iD1

ai
�
�Bi

�
0,Q
D Œ0�0,Q :

�˚ has thus a unique linear extension to S0 .˝;A;P/ [46, p. 26], so that

�˚

0
@" nX

iD1
ai�Ai

#
0,P

1
A D �˚

 
nX

iD1
ai
�
�Ai

�
0,P

!

D
nX

iD1
ai
�
�Bi

�
0,Q

D
"

nX
iD1

ai�Bi

#
0,Q

:

The lattice properties of ˚ are recovered by �˚ , and, when, s˝ being a simple
function on ˝ , and s
 , one on
,

�˚
�
Œs˝�0,P

� D Œs
�0,Q ;
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one has that

�˚
�
Œjs˝ j�0,P

� D Œjs
 j�0,P :

When ˚ is furthermore a bijection, that is, when ˚ is a weak measure ring
isomorphism, so is �˚ a bijection onto S0 .
;B;Q/. Finally, when, in addition,

QeQ .˚ .ŒA�P// D PeP .ŒA�P/ ;

that is, when ˚ is a measure ring isomorphism, one has, since the difference of two
simple functions is a simple function, that

EQ

2
4
ˇ̌̌
ˇ̌̌ P�˚

0
@" nX

iD1
ai�Ai

#
0,P

1
A
ˇ̌̌
ˇ̌̌ ^ 1

3
5 D EQ

"ˇ̌̌
ˇ̌ nX

iD1
ai P�˚

��
�Ai

�
0,P

�ˇ̌̌ˇ̌ ^ 1
#

D EQ

"ˇ̌̌
ˇ̌ nX

iD1
ai�Bi

ˇ̌̌
ˇ̌ ^ 1

#

D
nX

iD1
.jaij ^ 1/EQ

�
�Bi

�

D
nX

iD1
.jaij ^ 1/Q.Bi/

D
nX

iD1
.jaij ^ 1/P.Ai/

D EP

"ˇ̌̌
ˇ̌ nX

iD1
ai�Ai

ˇ̌̌
ˇ̌ ^ 1

#
;

so that �˚ is a linear isometry, and, since the S0-manifolds are dense in their
respective L0-spaces, �˚ extends to an isometry between those L0-spaces.

Definition 16.2.10 An embedding of the probability space .˝;A;P/ into the
probability space .
;B;Q/ is an almost sure morphism � such that, for fixed, but
arbitrary f 2 L0.˝;A;P/, the law of P�. f / is that of Pf (a function and its image have
the same law).

Remark 16.2.11 When the law of P�. f / is that of Pf , and that

�
�
Œ�A �0,P

� D Œ�B �0,Q
;
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then

P.A/ D Q.B/:

Thus

EP Œ�A � D EQ
� P� �Œ�A �0,P

��
;

and, since � is linear, � will be an isometry between the Lp-spaces based,
respectively, on .˝;A;P/ and .
; C;Q/, where C is the �-algebra resulting from
the range of � . Furthermore, since, as seen [(Remark) 16.2.7],

EP
�
�A�A0

� D EQ

h P� �Œ�A �0,P

� P� ���A0

�
0,P

�i
;

conditional expectations will be carried by � to conditional expectations.

Example 16.2.12 Let A D �. f /. Let g be an element of L0.
;B;Q/ such that the
law of Pg is that of Pf . The following assignment:

�
��
. Pf /�

0,P

�
D Œ.Pg/�0,Q

yields an embedding.

Remark 16.2.13 The composition of two embeddings is an embedding. An embed-
ding is linear, continuous for convergence in probability, and carries set indicators
to set indicators.

Proposition 16.2.14 An embedding is injective.

Proof Suppose that �. f / is the class of the zero function on 
. Its elements have
then a law that is a point mass at the origin. But then the elements of f have a law
that is a point mass at the origin. f is thus the class of the zero function on˝ . ut
Remark 16.2.15 When � is an embedding,˚� of (Remark) 16.2.7 is an injection.

Proposition 16.2.16 When � is an embedding, and A0 � A, a �-algebra, there is
a unique (within isomorphisms) �-algebra B0 � B, denoted � .A0/, such that �
is a bijection between L0 .˝;A0;P/ and L0 .
;B0;Q/. The following relations are
furthermore equivalent:

ŒX0�0,P D ŒEP ŒX j A0��0,P ;

�
�
ŒX0�0,P

� D �
EQ
� P� �ŒX0�0,P

� j B0��0,Q
:

Proof That is a consequence of (Remark) 16.2.11 and (Proposition) 16.2.14. ut
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Remark 16.2.17 The equivalent relations of (Proposition) 16.2.16 are easier to read
when expressed as follows, as in [28]:

Y D EPŒZjB� if, and only if, �.Y/ D EQŒ�.Z/j�.B�:

As a consequence of (Proposition) 16.2.16, and the isometric properties of �
[(Remark) 16.2.11], martingales and stochastic calculus on .˝;A;P/ carry over
to martingales and stochastic calculus on .
;B;Q/.

Proposition 16.2.18 Let � W L0.˝;A;P/ �! L0.
;B;Q/ be an almost sure
morphism. There is a probability ˘ on A, absolutely continuous with respect to
P, such that � is an embedding of .˝;A; ˘/ into .
;B;Q/.

Proof Let

˘.A/ D EQ
� P� �Œ�A �0,P

��
:

˘ is well defined, and, when P.A/ D 0, because of (Proposition) 16.2.6,

EQ
� P� �Œ�A �0,P

�� D 0:
ut

The following proposition is a verification tool very similar in content to that
of (Remark) 16.2.9.

Proposition 16.2.19 Let .˝;A;P/ and .
;B;Q/ be probability spaces, A0 be a
Boolean algebra generating A, and ˚ , a map from A0 into B, such that

(a) ˚ commutes with the Boolean operations,
(b) given the fixed, but arbitrary n 2 N,

˚
A0

1; : : : ;A
0
n

� � A0, and a Boolean
operation ˇ involving n elements, then, almost surely, with respect to P,

˚
�
ˇ
�
A0

1; : : : ;A
0

n

�� D ˇ �˚ �A0

1

�
; : : : ; ˚

�
A0

n

��
;

(c) for A0 2 A0, fixed, but arbitrary, P .A0/ D Q .˚ .A0//.

There exist then a unique embedding �˚ of .˝;A;P/ into .
;B;Q/ such that, for
A0 2 A0, fixed, but arbitrary,

�˚

��
�A0

�
0,P

�
D ��

˚.A0/

�
0,P
:

Proof Let f˛1; : : : ; ˛ng � R be fixed, but arbitrary, and suppose that, almost surely,
with respect to P,

s D
nX

iD1
˛i�

A0i
D 0: (?)
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Suppose that I � Œ1 W n� is such that
P

i2I ˛i ¤ 0. Let J D Œ1 W n� n I, and

AI
0 D \i2IA

0

i ; AJ
0 D \j2J

˚
A0

j

�c
; A0

0 D AI
0 \ AJ

0:

Since A0

0 � AI
0, on A0

0, s is different from zero, so that P.A0

0/ D 0. Consequently,
since ˚ preserves probabilities, using Assumption (b),˚\i2I˚

�
A0

i

�� \ ˚\j2J˚
�˚

A0

j

�c��
has Q-probability zero. The following assignment thus makes sense:

�˚

0
@" nX

iD1
˛i�

A0i

#
0,P

1
A D

"X
iD1n

˛i�
˚.A0i /

#
0,Q

:

Letting S0.˝;A0;P/ denote the equivalence classes of functions of type s, as in
(?), one thus obtains a linear map �˚ W S0.˝;A0;P/ �! S0.
;B;Q/ which
maintains probability laws, and for which, given ff1; : : : ; fng � S0.˝;A0;P/, fixed,
but arbitrary,

�˚

��

� Pf1; : : : ; Pfn��0,P

�
D
h

� P�˚ . f1/ ; : : : ; P�˚ . fn/

�
0,Q

�
:

Since probabilities are maintained,

EP Œfjsj ^ 1g� D EQ
�˚ P�˚ �Œjsj�0,P

� ^ 1�� ;
so that �˚ is continuous for convergence in probability. Since simple functions are
dense, and the L0-spaces involved complete, �˚ has a unique, injective, isometric
extension to A. To check the validity of the formula characterizing morphisms, one
may start with a continuous , and notice that such continuity makes the formula,
valid for simple functions based on A0, valid also for ff1; : : : ; fng � L0.˝;A;P/. To
obtain that the formula is valid for Borel measurable , one argues that the family
of ’s for which the formula is valid is closed for simple limits, and, as it contains
the continuous functions, for all Borel measurable functions. ut
Definition 16.2.20 An isomorphism of the probability spaces .˝;A;P/ and
.
;B;Q/ is a surjective embedding � W L0.˝;A;P/ �! L0.
;B;Q/.

One shall use below the following convention: .˝ �
;A˝B;P˝Q/ stands for
.˝ �
;A˝ B;P˝ Q/ completed for P˝ Q.

Lemma 16.2.21 ([168, p. 131]) Let C and D be two �-algebras, and f be a random
variable adapted to C _ D. There exists then variables 	 , adapted to C, and �,
adapted to D, such that �. f / � �.	;�/. There is in particular a Borel  such that
f D .	;�/. 	 and� may be chosen to be bounded.
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Proof Let ˙ D [f	 2C;�2Dg�.	;�/. It is a �-algebra. Indeed, ; and ˝ are in
each �.	;�/. Furthermore, when A 2 ˙ , A belongs to some �.	A; �A/, so that
Ac 2 �.	A; �A/ as well. When fAn; n 2 Ng � ˙ , An belongs to some �.	n; �n/.
Since the latter is separable, there is [Sect. 16.1] a family˚

Cn
p;D

n
p; p 2 N

�
such that the family

˚
Cn

p \ Dn
p; p 2 N

�
generates �.	n; �n/. Let thus

F D ˚Cn
p; fn; pg 2 N � N

�
; G D ˚Dn

p; fn; pg 2 N � N
�
:

Define a random variable U generating the same �-algebra as does F , and a random
variable V generating the same �-algebra as does G (the Marczewski function for
example). Then

fAn; n 2 Ng � �.U;V/ � ˙:

Since ˙ � [f	 2C;�2Dg�.	 / _ �.�/ � C _ D, and that the �.�C ; �D/’s generate
C _D, the lemma is true. ut
Proposition 16.2.22 In A, let A1 and A2 be two independent �-algebras. There is
a unique, almost sure morphism

� W L0.˝;A1 _A2;P/ �! L0.˝ �˝;A1˝A2;P˝P/

such that, when f1 is adapted to A1, and f2, to A2, almost surely, with respect to
P˝P,

P� �Œ f1f2�0,P

�
.!1; !2/ D f1.!1/f2.!2/: (?)

That morphism is in fact an isomorphism.

Proof A random variable adapted to A1 _A2 is, as seen [(Lemma) 16.2.21], of the
following form: .A1;A2/, A1 adapted to A1, A2, to A2. Let

A˝1 .!1; !2/ D A1.!1/; A˝2 .!1; !2/ D A2.!2/:

A˝1 and A˝2 are adapted to A1˝A2. When A1 and A2 are independent, one has,
because of (?), using a monotone class theorem, that

EP Œj.A1;A2/ ^ 1j� D EP˝P

�ˇ̌
.A˝1 ;A

˝

2 / ^ 1
ˇ̌�
:

The same equality obtains for expressions of the following form:


�
1.A

.1/

1 ;A
.1/

2 /; : : : ; n.A
.n/

1 ;A
.n/

2 /
�
:
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One thus defines a linear isometry between the respective L0 spaces. That it is onto
follows from the fact that measurable functions are approximated by simple ones,
and that the indicators of A1 \ A2 and A1 � A2 are isometrically related. ut
Lemma 16.2.23 Let f1 and f2 be adapted to A, and have the same law. The
probability spaces .˝; �. f1/;P/ and .˝; �. f2/;P/ are isomorphic.

Proof The isomorphism is defined using the following relation:

�
�
Œ. f1/�0,P

� D Œ. f2/�0,P :

ut
Lemma 16.2.24 For i 2 f1; 2g, let .˝i;Ai;Pi/ and .
i;Bi;Qi/ be isomorphic.
Then .˝1 �˝2;A1˝A2;P1˝P2/ and .
1 �
2;B1˝B2;Q1˝Q2/ are isomorphic.

Proof The isomorphism is defined using the following relation:

�
�
Œ1. f1/2. f2/�0;P1 P̋2

� D �1 � P�1 �Œ f1�0;P1�� 2 � P�2 �Œ f2�0;P2���0;P1 P̋2
:

ut
Corollary 16.2.25 Let the random variables f1 and f2 be adapted to A, and have
the same law, and A0 � A be a �-algebra independent of f1 and f2. There exists a
unique isomorphism between .˝;A0_�. f1/;P/ and .˝;A0_�. f2/;P/ which acts
as the identity on .˝;A;P/, and sends the class of f1 to that of f2.

Proof From (Proposition) 16.2.22,

.˝;A0 _ �. f1/;P/ is isomorphic to
�
˝ �˝;A0˝�. f1/;P˝P

�
;

and

.˝;A0 _ �. f2/;P/ is isomorphic to
�
˝ �˝;A0˝�. f2/;P˝P

�
:

Since, because of (Lemmas) 16.2.23 and 16.2.24,�
˝ �˝;A0˝�. f1/;P˝P

�
and

�
˝ �˝;A0˝�. f2/;P˝P

�
are isomorphic, so are .˝;A0 _ �. f1/;P/ and .˝;A0 _ �. f2/;P/. ut



16.2 Morphisms and Embeddings for Probability Spaces 1009

Proposition 16.2.26 Let, for .˝;A;P/, C, D, and E be �-algebras contained in A,
having the following properties:

(a) E is essentially separable,
(b) E � C _D,
(c) C is independent of D and E .

There exists then an embedding of .˝; E ;P/ into .˝;D;P/.

Proof One may assume, without restricting validity, that C _ D D A. Let ˝1 D
˝2 D ˝ , and P1 D PjC, P2 D PjD. Let c be an equivalence class in L0.˝1; C;P1/,
d, one in L0.˝2;D;P2/; ˘1 be the projection of ˝1 �˝2 onto its first component,
˘2, the projection onto its second one; c ı ˘1 is the class of Pc composed with ˘1,
d ı˘2, that of Pd ı˘2. Since C is independent of D, there is [(Proposition) 16.2.22]
an almost sure morphism (an isomorphism in fact),

� W L0 .˝; C _D;P/ �! L0
�
˝1 �˝2; C˝D;P1˝P2

�
.D L0 .
;B;Q// ;

such that

�.cd/ D .c ı˘1/.d ı˘2/:

Let C� D �.C/, and D� D �.D/. Since � sends products to products, letting T
denote the trivial �-algebra,

C� D C˝T ; and D� D T ˝D:

C� and D� are independent. Finally, when g is an essentially bounded element
of L0 .
;B;Q/, let Pg 2 g be adapted to C ˝ D. The characteristic equation for
EQ ŒPg j C� � is, with C 2 C, fixed, but arbitrary,Z

C�˝
PgdQ D

Z
C�˝

EQ ŒPg j C� � dQ:

But, using Fubini’s theorem,Z
C�˝
Pg.!1; !2/Q.d!1; d!2/ D

Z
C

P1.d!1/
Z
˝

P2.d!2/ Pg.!1; !2/

D
Z

C
P1.d!1/EP2 ŒPg.!1; 
/� :

Thus, almost surely, with respect to Q,

EQ ŒPg j C� � D EP2 ŒPg.˘1; 
/� : (?)
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Let E0 � E be a countable, dense algebra. Given E0 2 E0, let

E�

0 D �.ŒE0�P/; and PE�

0 2 C ˝D:

The conditional expectation formula referred to above by (?), with

Pg D �
PE�0
;

yields, SŒ!� denoting the section of S at !, that, almost surely, with respect to Q,

Q
� PE�

0 j C�
� D P2

� PE�

0 Œ˘1�
�
:

But C and E being independent, so are C� and E� , and thus,

Q
� PE�

0 j C�
� D Q

� PE�

0

�
:

Now, � being an isomorphism,

Q
� PE�

0

� D P.E0/:

Thus, almost surely, with respect to Q,

P2
� PE�

0 Œ˘1�
� D P.E0/:

Since E0 is countable, there exists C0 2 C such that P.C0/ D 0, and, for !1 2 Cc
0,

fixed, but arbitrary, one has that:

(i) for E0 2 E0, fixed, but arbitrary, P2. PE�

0 Œ!1�/ D P.E0/;
(ii) for n 2 N, fE0;1; : : : ;E0;ng � E0, and �n, a Boolean relation of n arguments, for

which, almost surely, with respect to P2,

�n

�
�E0;1

.!/; : : : ; �E0;n
.!/

�
obtains, then, for almost all !2, with respect to P,

�n

�
�
PE�0;1
.!1; !2/; : : : ; �PE�0;n

.!1; !2/

�

obtains.

The embedding one looks for is obtained as follows. Let !1 2 Cc
0, and E0 2 E0 be

fixed, but arbitrary. Since PE�

0 2 C ˝D, PE�

0 Œ!1� 2 D, and one thus sets:

�0 .ŒE0�P/ D
� PE�

0 Œ!1�
�

P2
:
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Because of the first property (i), itemized above,�0 preserves the law. For fixed, but
arbitrary fE0;1; : : : ;E0;ng � E0, and relation �n, let

R D �n .E0;1; : : : ;E0;n/ :

Let furthermore

�nC1 � Œr D �n.e1; : : : ; en/� :

Because of the second property (ii), itemized above, used with �nC1, one has that

�0 .ŒR�P/ D
�
�n
� P�0 �ŒE0;1�P� ; : : : ; P�0 �ŒE0;1�P���P2 :

(Result (Proposition)) 16.2.19 allows one to conclude, that is, obtain an embedding
of .˝; E ;P/ into .˝2;D;P2/ D .˝;D;P/. ut

16.3 Morphisms and Inclusions for Filtrations

A filtered probability space shall have the following form: .˝;A;P;A/, where A is
an increasing family of �-algebras, contained in A, continuous to the right, whose
elements each contain the subsets of N .A;P/. A1 is the �-algebra generated by
the filtration, and it is often no restriction to assume that A1 D A, but it is perhaps
clearer to keep those �-algebras separated in what follows.

Definition 16.3.1 Let .˝;A;P;A/ and .
;B;Q;B/ be two filtered probability
spaces. A and B are isomorphic, and one writes A � B when there exists an
isomorphism � between .˝;A1;P/ and .
;B1;Q/ such that, for t 2 RC, fixed,
but arbitrary, � .At/ D Bt.

Definition 16.3.2 B and C being two filtrations for .˝;A;P/, the filtration B is
included in the filtration C when, for t 2 RC, fixed, but arbitrary, Bt � Ct. The
notation shall be B v C.

Definition 16.3.3 Let .˝;A;P;A/ and .
;B;Q;B/ be two filtered probability
spaces. A is includable in B when there exists a probability space .E; E ;M/ and
two filtrations in E , F and G, such that

1. F v G;
2. .˝;A;P;A/ and .E; E ;M;F/ are isomorphic;
3. .
;B;Q;B/ and .E; E ;M;G/ are isomorphic (one may always use the former for

the latter).

The notation shall be: A  B.
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16.4 Multiplicity for Algebras of Sets

Multiplicity shall be of use when determining the uniqueness class of continuous
local martingales [Sect. 16.8], but it has nobler purposes [28]!1

In the sequel, .˝;A;P/ shall be fixed, but arbitrary. Let A 2 A be fixed, but
arbitrary. AŒA� shall be the �-algebra

fA0 2 A W A0 � Ag :

Let P ŒA� be the family of finite partitions of ˝ with sets in A. When } 2 P ŒA�,
j}j denotes the number of sets in the partition }.

Definition 16.4.1 LetA0 � A be a �-algebra, and} 2 P ŒA� be fixed, but arbitrary.
The support of } with respect to A0 is the set:

S.} j A0/ D f! 2 ˝ W 8A 2 };P.A j A0/.!/ > 0g

D
8<
:! 2 ˝ WY

A2}
P.A j A0/ > 0

9=
; :

Remark 16.4.2 Since conditional expectations of the same element, with respect to
the same �-algebra, are in the same equivalence class, the support is defined within
a set of zero probability. From the definition, S.} j A0/ 2 A0.

Lemma 16.4.3 Let fx1; : : : ; xng and fy1; : : : ; yng be fixed, but arbitrary subsets of
Œ0; 1�. Then

nY
iD1

xi �
nX

iD1
xi;

and, when xi � yi; i 2 Œ1 W n�,
nY

iD1
xi �

nY
iD1

yi:

1Si .˝;A;P/ est un espace probabilisé, la dimension de l’espace vectoriel L0.˝;A;P/ est aussi
le nombre maximal de valeurs différentes que peut prendre une variable aléatoire, ou encore le
nombre maximal d’événements non négligeables et deux-à-deux disjoints. Si maintenant B est une
sous-tribu de A, ces équivalences subsistent conditionnellement à B, c’est-à-dire en considérant
comme constantes les variables aléatoires mesurables pour B; la dimension devient alors elle-
même une variable aléatoire mesurable pour B; elle est introduite ci-dessous sous le nom de
multiplicité conditionnelle de A par rapport à B.



16.4 Multiplicity for Algebras of Sets 1013

Proof For example

y1y2y3y4 � x1x2x3x4 D .y1y2y3y4 � y1y2y3x4/C .y1y2y3x4 � y1y2x3x4/

C .y1y2x3x4 � y1x2x3x4/C .y1x2x3x4 � x1x2x3x4/

D y1y2y3.y4 � x4/C y1y2x4.y3 � x3/

C y1x3x4.y2 � x2/C x2x3x4.y1 � x1/

� 0:

Then x1.1 � x2x3x4/C x2 C x3 C x4 � 0, that is,

x1 C x2 C x3 C x4 � x1x2x3x4:

ut
Remark 16.4.4 When }f is a partition that is finer than }, since

Y
Af2}f

P.Af j A0/ �
Y
A2}

P.A j A0/;

the support of }f is contained in that of }. Indeed, any set A of } is of the following
form (disjoint union): A D A1 [ 
 
 
 [ An, where Ai 2 }f , and i 2 Œ1 W n�. Then
(almost surely) P.A j A0/ DPn

iD1 P.Ai j A0/. One then uses (Lemma) 16.4.3.

Remark 16.4.5 When } contains a set A0 2 A0, S.} j A0/ � A0. Indeed, P.A0 j
A0/ D �A0

.

Example 16.4.6 Let ˝ be the disjoint union of A1;A2, and A3, all of positive
probability. Let A0 be generated by A3 and } be the partition made of A1 and its
complement. Then

P.A1 j A0/ D P.A1/

P.A1/C P.A2/
�

Ac
3
;

P.Ac
1 j A0/ D P.A2/

P.A1/C P.A2/
�

Ac
3
C �A3

:

The support of } with respect to A0 is thus Ac
3.

Definition 16.4.7 ([128, p. 8]) Let .˝;A;P/ be a probability space, and F , a
nonempty family of random variables. A random variable  is called the essential
supremum of F when both conditions which follow obtain:

(a) almost surely, with respect to P, f �  whenever f 2 F ;
(b) when  is another random variable for which (a) obtains, then, almost surely,

with respect to P,  �  .
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Fact 16.4.8 ([128, pp. 9–10]) One has that:

1. the essential supremum exists and is unique;
2. there are at most a countable number of functions of F , say

ffi; i 2 I � Ng

such that

ess supF D
_
i2I

fiI

3. when F is closed for the
W

-operation, the fi’s may be chosen to be monotone
increasing;

4. let B � A be not-empty and F D f�B ;B 2 Bg: there is then

fBi; i 2 I � Ng

such that

ess supF D
_
i2I

�Bi
D �f[i2I Big :

Definition 16.4.9 The conditional multiplicity of A given A0 is defined as

multŒA j A0� D ess sup}2P ŒA�
n
�S.}jA0/

j}j
o
2 N [ f1g :

When it is necessary to take the probability into account, one shall write:

multPŒA j A0�:

Remark 16.4.10 The essential supremum is a random variable [(Fact) 16.4.8], and
it is thus adapted to A0. Since ˝ is a partition by itself, and since

P.˝ j A0/ D 1;

it follows that multŒA j A0� is bounded below [(Remark) 16.4.4], almost surely,
with respect to P, by the constant function whose value is one.

When A0 D A, P.A j A0/ D �A , so that

f! 2 ˝ W 8A 2 };P.A j A0/.!/ > 0g D f! 2 ˝ W 8A 2 }; �A > 0g D ;;

for all partitions, except that made only of˝ , and then mult is the constant function
with value one.
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Example 16.4.11 In (Example) 16.4.6, �
Ac
3
j}j is a random variable that is zero on

A3, and 2 on Ac
3.

Proposition 16.4.12 Let n 2 N be fixed, but arbitrary. Then, almost surely, with
respect to P, multŒA j A0� � n if, and only if, given disjoint

fA1; : : : ;An;AnC1g � A;

one has that, almost surely, with respect to P,

nC1Y
iD1

P.Ai j A0/ D 0:

Proof Suppose that multŒA j A0� � n, almost surely, with respect to P. Let
A1; : : : ;An;AnC1 be given, pairwise disjoint, fixed, but arbitrary. Let A0 D .A1 [

 
 
 [ An/

c. Then A0;A1; : : : ;An form a partition, and, given the assumption,

nY
iD0

P.Ai j A0/ D 0:

But P.AnC1 j A0/ � P.A0 j A0/, and thus

nC1Y
iD1

P.Ai j A0/ �
nY

iD0
P.Ai j A0/ D 0:

Suppose conversely that the statement’s condition obtains. When none of
A1; 
 
 
 ;An;AnC1 is void, there are two cases. Either it is a partition, and when
not, A0;A1; : : : ;An is a partition. By assumption, in both cases, one has a partition
leading to a zero product, so that, by definition, multŒA j A0� � n. ut
Proposition 16.4.13 multŒA j A0� D 1 if, and only if, A D A0.

Proof Since always [(Remark) 16.4.4] multŒA j A0� � 1, then multŒA j A0� D 1

if, and only if, multŒA j A0� � 1. Suppose the latter. Then, because of (Proposition)
16.4.12, for A 2 A, fixed, but arbitrary, almost surely, with respect to P,

P.A j A0/ � P.Ac j A0/ D 0:

Let

S1 D f! 2 ˝ W P.A j A0/ > 0g ; S2 D f! 2 ˝ W P.Ac j A0/ D 0g :
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All the inclusions below shall be within a set of probability zero. Since, by the
definition of conditional probability,

0 D
Z

Sc
1

P.A j A0/dP D
Z

Sc
1

�A dP D P .A n S1/ ;

then, almost surely with respect to P, A � S1. But, given that the product of
P.A j A0/ and P.Ac j A0/ is zero, S1 � S2. Finally, since

0 D
Z

S2

P.Ac j A0/dP D
Z

S2

�Ac dP D P.S2 n A/;

then S2 � A. Thus A � S1 � S2 � A, and A is then almost surely equal to a set in
A0. Consequently, A � A0. But A0 � A.

Suppose now that A D A0. Then, for A 2 A,

P.A j A0/ � P.Ac j A0/ D �A�Ac D 0;

and thus multŒA j A0� � 1. ut
Lemma 16.4.14 The set S1 D f! 2 ˝ W P.A j A0/ > 0g is, within sets of measure
zero for P, the smallest one in A0 which contains A.

Proof By definition, S1 2 A0. If now A0 2 A0 contains A, �A � �A0
, so that

P.A j A0/ D EP Œ�A j A0� � EP
�
�A0
j A0

� D �A0
:

Thus, P.A j A0/ is zero outside of A0, and when it is positive, it is in A0. ut
Proposition 16.4.15 When Q is a probability measure equivalent to P,

multQŒA j A0� D multPŒA j A0�:

Proof The conclusion of (Lemma) 16.4.14 is independent of the actual choice of
P. S1 thus remains the smallest set in A0, containing A, with respect to probability
measures equivalent to P. But then the same is true for supports, and hence for
conditional multiplicity. ut
Lemma 16.4.16 Let Q be absolutely continuous with respect to P, but not equiva-
lent. There exists S such that 0 < P.S/ < 1, and then

QS.A/ D P.A \ S/

P.S/

determines a probability, absolutely continuous with respect to P, mutually abso-
lutely continuous with respect to Q.
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Proof Since Q � P, there exists an essentially unique, adapted f such that, for
A 2 A, fixed, but arbitrary,

Q.A/ D
Z

A
f dP:

Let S D f! 2 ˝ W f .!/ > 0g 2 A. Then

Q.A/ D
Z

A
f dP D

Z
A\S

f dP: (?)

Suppose that P.S/ D 0. Then, because of (?), for A 2 A, fixed, but arbitrary,
Q.A/ D 0, which is impossible as Q is a probability. Suppose that P.S/ D 1. Again,
because of (?), Q.A/ D 0 implies that P.A \ S/ D 0, so that P.A/ D 0, which is
impossible, as P and Q are not mutually absolutely continuous.

Then the following definition:

A 2 A; QS.A/ D P.A \ S/

P.S/

makes sense and defines a probability. Furthermore dQS D P.S/�1�S dP. By
definition, QS � P. Suppose then that Q.A/ D 0. Then, because of (?), P.A \
S/ D 0, that is, QS.A/ D 0. Suppose that the latter is true. Then, by definition,
P.A\ S/ D 0. Furthermore P.Sc/ D 0. Thus, since Q is absolutely continuous with
respect to P, Q.A\S/ D Q.A\Sc/ D 0, and Q.A/ D Q.A\S/CQ.A\Sc/ D 0. ut
Lemma 16.4.17 N .A;QS/ D fN [ C;N 2 N .A;P/;C 2 A \ Sc/g.
Proof The elements of the form N[C of the lemma’s statement are in N .A;QS/ as
QS.N[C/ � QS.N/CQS.C/ D 0, as QS � P and C � Sc. As A D .A\S/[.A\Sc/,
QS.A/ D 0 implies A is of the form N [ C, where N D A\ S, and C D A\ Sc. ut
Lemma 16.4.18 Let AQS be the completion of A with respect to QS, Qo

S be the
extension of QS to AQS , and AQS

0 be generated by A0 and the subsets of sets in
N .A;QS/. Then

1. S 2 AQS
0 ;

2. AQS D f˝0 � ˝ W ˝0 \ S 2 Ag,
3. AQS

0 D f˝0 � ˝ W ˝0 \ S D A0 \ S; some A0 2 A0g,
4. for AQS 2 AQS , fixed, but arbitrary, Qo

S.A
QS/ D QS.AQS \ S/.

Proof [1] As QS.Sc/ D 0, Sc 2 AQS
0 , so that S 2 AQS

0 .

Proof [2] Let AS D f˝0 � ˝ W ˝0 \ S 2 Ag. It is a �-algebra. Indeed, one has that
; \ S D ; 2 A, and that ˝ \ S D S 2 A. Suppose now that ˝0 2 AS. Then

˝c
0 \ S D .˝�˝0/ \ S D .˝ \ S/�.˝0 \ S/ 2 A:
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Finally, when f˝n; n 2 Ng � AS,

.[n˝n/ \ S D [n.˝n \ S/ 2 A:

Since, for A 2 A, fixed, but arbitrary, A \ S 2 A, A � AS. If now M is a subset
of a set N of measure zero for QS, M \ S � N \ S 2 A, and QS.N/ D 0, so that
P.N \ S/ D 0, and M \ S 2 A, as A is complete. Thus AS � AQS .

But, when ˝0 2 AS, as ˝0 D ˝0 \ S C˝0 \ Sc, ˝0 is the set sum of a set in A,
and a subset of a set of measure zero for QS, Sc. So AS � AQS . That ends he proof
of item 2.

Proof [3] Let AS D f˝0 � ˝ W ˝0 \ S D A0 \ S; some A0 2 A0g. It is a �-
algebra. Indeed, since ; 2 A0, ; 2 AS. The same is true of ˝ . If now ˝0 2 AS,
˝0 \ S D A0 \ S; A0 2 A0, and

˝c
0 \ S D .˝�˝0/ \ S

D .˝ \ S/�.˝0 \ S/

D .˝ \ S/�.A0 \ S/

D .˝�A0/ \ S

D Ac
0 \ S:

Finally, when f˝n; n 2 Ng � AS,

.[n˝n/\ S D [n .˝n \ S/ D [n .An \ S/ D .[nAn/ \ S:

Since each An is in A0, [nAn is in A0, and [n˝n, in AS.

Obviously A0 � AS, and every subset M of a set N of measure zero for QS is in AS,
since M \ S is a subset of a set of measure zero in A, and that those are in A0. So,
again, AQS

0 � AS. Finally, since

˝0 D ˝0 \ SC˝0 \ Sc D A0 \ SC˝0 \ Sc;

˝0 is a set sum of a set in A0 and a subset of a set of measure zero for QS, and thus
AS � AQS

0 . Item 3 thus obtains.

Proof [4] Since S 2 AQS
0 , that Sc has measure zero for QS, and that, from item 2,

AQS \ S 2 A,

Qo
S.A

QS/ D Qo
S.A

QS \ S/C Qo
S.A

QS \ Sc/ D Qo
S.A

QS \ S/ D QS.A
QS \ S/:

ut
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Lemma 16.4.19 Given A0 2 A0, fixed, but arbitrary, and } D fA1; : : :Ang,

S.} j A0/\ A0 D S.}0 j A0/;

where }0 D fA1 \ A0; : : : ;An \ A0g.
Proof One has that P.A j A0/�A0

D P.A \ A0 j A0/. Thus

f! 2 ˝ W P.A \ A0 j A0/ > 0g D f! 2 ˝ W P.A j A0/ > 0g \ A0:

Let Ci D f! 2 ˝ W P.Ai j A0/ > 0g. Then S.} j A0/ D \n
iD1Ci. Thus

S.} j A0/ \ A0 D \n
iD1 fCi \ A0g D S.}0 j A0/:

ut
Proposition 16.4.20 Let .˝;A;P/ be a complete probability space, Q, a probabil-
ity on A, absolutely continuous with respect to P, A0 � A, a �-algebra (containing
the sets of measure zero for P in A). Then, almost surely, with respect to Q,

multQŒAQ j AQ
0 � � multPŒA j A0�;

where AQ is the completion of A with respect to Q, and AQ

0 is the �-algebra
generated by A0 and the sets of measure zero of the extension of Q to AQ.

Proof Because of (Proposition) 16.4.15, one may assume that Q is QS of (Lemma)
16.4.16. Let thus

}QS D ˚AQS
1 ; : : : ;A

QS
n

�
be a partition of ˝ in AQS . Then

}
QS
S D

˚
AQS
1 \ S; : : : ;AQS

n \ S
�

is a partition of S in A because of (Lemma) 16.4.18, item 2. Because of (Lemma)
16.4.18, item 4, and the definition of QS, when, for some i 2 Œ1 W n�, P.AQS

i \S/ D 0,
Qo

S.A
QS
i / D 0, and ˇ̌

}QS
ˇ̌
�

S

�
}QS jA

QS
0

� D 0:

One may thus assume that P.AQS
i \ S/ > 0; i 2 Œ1 W n�. Since [(Lemma) 16.4.18,

item 2]

AQS
n [ Sc D .ŒAQS

n \ S� [ ŒAQS
n \ Sc�/ [ Sc D ŒAQS

n \ S�[ Sc
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belongs to A, then

}
QS
S;C D

˚
AQS
1 \ S; : : : ;AQS

n�1 \ S;AQS
n [ Sc

�
is a partition of ˝ in A. Since AQS

n [ Sc D ŒAQS
n \ S� [ Sc, that, almost surely, with

respect to P,

0 < P.Sc j A0/ � P.AQS
n [ Sc j A0/;

and finally that, using AQS
i D ŒAQS

i \ S�[ ŒAQS
i \ Sc�,

Qo
S.A

QS
i j AQS

0 / D Qo
S.A

QS
i \ S j AQS

0 /;

it will be sufficient to prove the following inclusion:

S.}QS j AQS
0 /\ S � S.}QS

S;C j A0/;

or the following one: for A 2 A, fixed, but arbitrary,˚
! 2 ˝ W Qo

S.A j AQS
0 / > 0

�\ S � f! 2 ˝ W P.A j A0/ > 0g :

Let X D ˚
! 2 ˝ W Qo

S.A j AQS
0 / > 0

�
, and Y D f! 2 ˝ W P.A j A0/ > 0g. As seen

[(Lemma) 16.4.14], Y is, within sets of probability zero for P, the smallest set in
A0 which contains A, almost surely, with respect to P, and X is, within sets of
probability zero for Qo

S, the smallest set in AQS
0 which contains A, almost surely,

with respect to Qo
S. Now Y is also in AQS

0 , and contains A, almost surely, with respect
to QS, and thus with respect to Qo

S. Consequently, since X is smallest, X is contained
in Y, almost surely with respect to Qo

S, and then X n Y is a set of measure zero for
Qo

S. So

0 D Qo
S.X n Y/ D QS.ŒX n Y� \ S/ D P.S/�1P.ŒX n Y� \ S/:

But, as ŒX \ S� n ŒY \ S� D ŒX \ S�\ ŒYc [ Sc� D ŒX \ S�\ Yc D ŒX n Y� \ S, then

X \ S D .ŒX \ S� n ŒY \ S�/[ .ŒX \ S�\ ŒY \ S�/

D .ŒX n Y� \ S/[ .ŒX \ S� \ ŒY \ S�/ :

Consequently, almost surely, with respect to P, thus to QS, and consequently to Qo
S,

X \ S � Y \ S � Y. ut
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Proposition 16.4.21 When, for n 2 N [ f1g, fixed, but arbitrary,

P .fmultŒA j A0� � ng/ > 0;

there exists } such that j}j D n, and, almost surely, with respect to P,

S.} j A0/ D fmultŒA j A0� � ng :

Proof Write M for multŒA j A0�. When M.!/ D n, there is at least a partition of
˝ with n sets in A, whose conditional probabilities with respect to A0 are strictly
positive, and, furthermore, ! is in the support, with respect to A0, of that partition.
There is thus a countable family of partitions, say

˚
}q; q 2 N

�
such that

fM � ng � [qS.}q j A0/:

Taking the intersection of the latter inclusion with fM � ng, a set in A0, one may
assume [(Lemma) 16.4.19] that the inclusion is an equality; finally, since the sets
fM D ng are disjoint, one may assume that the union is a disjoint union. For each q,
let
˚
A.q/

1 ; : : : ;A
.q/
n

�
be a partition of ˝ in A, with n elements, which is not finer than

}q. Let

QA.q/

i D A.q/

i \ S.}q j A0/;

OAi D [q QA.q/

i :

One thus obtains, respectively, a partition of S.}q j A0/, and of fM � ng. Now

OAi \ S.}q j A0/ D QA.q/

i D A.q/

i \ S.}q j A0/;

so that,

P. OAi j A0/ D
X

q

P. QA.q/

i j A0/ > 0:

The following set of events:n OA1 [ fM < ng ; OA2; : : : ; OAn

o
forms a partition } of ˝ in A, of which each element has, with respect to A0, a
strictly positive probability. Furthermore fM � ng � S.} j A0/, and, consequently,
fM � ng D S.} j A0/. ut
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Corollary 16.4.22 Using the notation of (Proposition) 16.4.21, when
P .fM � 2g/ > 0, there exists A 2 A with

fM � 2g � fP.A j A0/ > 0g \ fP.Ac j A0/ > 0g :

Proof From (Proposition) 16.4.21, there exists A 2 A such that, for example,

fM � 2g D fP.A j A0/P.A
c j A0/ > 0g � fP.A j A0/ > 0g :

ut

16.5 Vershik’s Lacunary Isomorphism Theorem

That theorem shall perform as a Deus ex machina in the matter which follows, as
it finds, in, at first superficial sight, amorphous filtrations, the explicit structure that
shall prove indispensable.

Definition 16.5.1 Let .˝;A;P/ be a probability space, and let A and B be two
filtrations in A. A_B shall be the filtration with entries At_Bt. One then says that:

1. B is included in A when, for t 2 RC, fixed, but arbitrary, Bt � At.
2. B is immersed in A when every martingale for B is one for A.
3. B and A are jointly immersed when both are immersed in A _ B.
4. Let B � A be a �-algebra. It is saturated for A when B � A1, and, for fixed,

but arbitrary t 2 RC and B 2 B, P.B j At/ is adapted to B.

Remark 16.5.2 (Immersion Implies Inclusion) Indeed, when B 2 B� is fixed, but
arbitrary, M.
; t/ D EP Œ�B j Bt� is a martingale for which, when t � � , M.
; t/ D �B .
Since M is a martingale for A, B 2 At for t � � .

Remark 16.5.3 Let F and G be independent filtrations, meaning that, when t 2 T,
is fixed, but arbitrary, Ft and Gt are independent. Then they are jointly immersed
in fFt _ Gt; t 2 Tg. That follows from the fact that, for example, for a martingale
M with respect F , t1 < t2 in T, F 2 Ft1 , G 2 Gt1 , fixed, but arbitrary, using the
independence of �G and �F M,Z

F\G
M.
; t2/dP D

Z
F\G

M.
; t1/dP:

Proposition 16.5.4 Let .˝;A;P/ be a probability space, and A be a fixed, but
arbitrary filtration of A. Let FI.A/ denote the family of filtrations immersed in A,
and S.A/, that of �-algebras of A that are saturated for A.

1. When F is immersed in A, and N .At;P/ � Ft, for t 2 RC, fixed, but arbitrary,
Ft D F1 \At .
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2. Let ˚ W FI.A/ �! S.A/ be defined using the following rule:

F 7! F1:

When N .A;P/ � F0, ˚ is a bijection, and its inverse is the following map:

S 7! fFt D S \At; t 2 RCg :

Proof [Step 1] When F be immersed in A, F1 is saturated for A, and˚ has indeed
range in S.A/.

Since immersion implies inclusion [(Remark) 16.5.2], F1 � A1. Let S 2 F1
be fixed, but arbitrary. Then

M.
; t/ D P.S j Ft/ D EP Œ�S j Ft�

is a martingale for F . Thus [201, p. 96]

M1 D lim
t

M.
; t/ D EP Œ�S j F1� D �S :

Let also

N.
; t/ D P.S j At/ D EP Œ�S j At� ;

a martingale for A. Since F1 � A1,

N1 D lim
t

N.
; t/ D EP Œ�S j A1� D �S :

Since F is immersed in A, M is a martingale for A. M � N is then a martingale for
A; so that jM � Nj is a submartingale for A. Since M1 D N1 D �S , outside of a
set S0 2 N .At;P/, M.
; t/ D N.
; t/. Consequently

P.S j At/ D �Sc
0

P.S j At/C �S0
P.S j At/ D �Sc

0
P.S j Ft/C �S0

P.S j At/:

Thus, when N .At;P/ � Ft, P.S j At/ is adapted to Ft, and a fortiori, to F1.

Proof [Step 2] Given that, when F is immersed in A, F1 is saturated for A, one
has that Ft D F1 \At .

When S 2 F1 \At, given the immersion and the general completion assumptions,
from step 1,

EP Œ�S j Ft� D EP Œ�S j At� D �S ;
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so that S 2 Ft, that is, F1\At � Ft. If now F 2 Ft is fixed, but arbitrary, F 2 F1,
so that, as above, EP Œ�F j At� D EP Œ�F j Ft� D �F , and F 2 At. Consequently
Ft D F1 \At.

It has thus been checked that, when F immersed in A, F1 is saturated for A,
and Ft D F1 \At. So item 1 obtains.

Proof [Step 3] When S is a �-algebra saturated for A, there is a filtration F such
that S D F1, and Ft D S \At (˚ is thus well defined and onto).

By assumption, S � A1, and, for t 2 RC and S 2 S, P.S j At/ is adapted to S.
Then, in particular, P.S j At/ is adapted to S \ At. Let Ft D S \ At � S, so that
F1 � S.

Let X be bounded, and adapted to S, and M.
; t/ D EP ŒX j At�. Because of
the previous paragraph, by the monotone class theorem, M is adapted to F , and
is thus a martingale with respect to that latter filtration: indeed, for t1 < t2, fixed,
but arbitrary, when M.
; t1/ is adapted to Ft1 ,

EPŒM.
; t2/ j Ft1 � D EP ŒEP ŒM.
; t2/ j At1 � j Ft1 �

D EPŒM.
; t1/ j Ft1 �

D M.
; t1/:

Now, M being a martingale with respect to F , since S � A1,

M.
;1/ D lim
t

EPŒX j At� D EPŒX j A1� D X;

and, since M.
;1/ 2 F1, X 2 F1, that is, S � F1. Consequently S D F1.

Proof [Step 4] The filtration F , defined in step 3, is immersed in A.

According to the proof of step 3, given S saturated for A, one may define F so that,
for every X, bounded and adapted to S, there is a process M that is simultaneously a
martingale for F and A. That result remains true for integrable X, using truncation
at n, because of [56, p. 13], provided that N .A;P/ � F0. When dealing with a
general martingale, one applies the same procedure to Mn.
; t/ D EP ŒM.
; n/ j Ft�.

ut
Lemma 16.5.5 Let An be, for n 2 N, a �-algebra of subsets of ˝ . Let Bn D
�.Ak; k � n/, and C D �.Bn; n 2 N/. A real valued function adapted to C has the
following form: ˚.˛1; : : : ; ˛n; : : :/, where ˚ is real valued and adapted to the Borel
sets of R1, and, for n 2 N, ˛n is real valued, and adapted to An.

Proof One has that _1nD1An D _1nD1
˚_n

iD1Ai
�
. One uses then result [41, p. 144] to

conclude. ut
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Proposition 16.5.6 Let .˝;A;P/ be a probability space, and A be a filtration
indexed by Z�0 , the set of negative integers and zero. Suppose that, for n 2 Z�0 ,
fixed, but arbitrary,

(a) Bn is a �-algebra,
(b) Bn � An,
(c) Bn is independent of An�1.

Let Cn D �.fBk; k � ng/. Then:

1. C is immersed in A;
2. C1 D �.

˚
Cn; n 2 Z�0

�
/ is saturated for A.

Proof Let Bn denote a random variable adapted to Bn. Every bounded random
variable X, adapted to C1, has, for some measurable ˚ , a representation of the
following form [(Lemma) 16.5.5]:

X D ˚.Bn; n 2 Z�0 /:

The family Bn D fBk; k � ng is adapted to An, and, furthermore, the family
B.n/ D fBk; k � nC 1g is independent of An. Thus [138, p. 452], setting �.bn/ D
EP
�
˚
�
bn;B

.n/
��

,

EP ŒX j An� D EP
�
˚
�
Bn;B

.n/
� j An

� D �.Bn/:

So EP ŒX j An� is adapted to Cn. Furthermore, as Cn � An, for Cn 2 Cn, fixed, but
arbitrary, Z

Cn

X dP D
Z

Cn

EPŒX j An�dP;

and, by definition, Z
Cn

X dP D
Z

Cn

EPŒX j Cn�dP:

Consequently EP ŒX j Cn� D EP ŒX j An�. So C is immersed in A, and C1 is saturated
for A [(Proposition) 16.5.4, step 5]. ut
Lemma 16.5.7 A function f W RC �! R which is continuous to the right is Borel
measurable.

Proof For fk; ng � f0g [ N, let tn;k D k
2n , and In;k D

�
k
2n ;

kC1
2n

�
. Set

fn.x/ D
X

k

f ..kC 1/2�n/ �In;k
.x/:
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Given x 2 RC, fixed, but arbitrary, there is a monotone decreasing sequence of
intervals of type In;k, say I.x/n;k, which contain x. The intersection of those intervals is
x. But

lim
n
�

I
.x/
n;k

.x/ jf .x/ � fn.x/j D lim
n
�

I
.x/
n;k

jf .x/ � f ..k.x/C 1/2�n/j D 0:

ut
Lemma 16.5.8 Let .M;M/ be a measurable space, and f W M � R �! R, a
function such that, for m 2 M, fixed, but arbitrary, x 7! f .m; x/ is continuous to the
right, and, for fixed, but arbitrary x 2 R, m 7! f .m; x/ is adapted. Then f is adapted
to M˝ B.R/. The same is true when continuity is to the left.

Proof Let fn.m; x/ DPk f .m; .kC 1/2�n/ �M�In;k
.m; x/. ut

Lemma 16.5.9 Let .˝;A;P/ be a complete probability space, C0 � A, a separable
�-algebra [so that, [138, p. 91] for some f , C0 D f�1.B.R//], and also C be
generated by C0 and the subsets of N .A;P/. Let OB.R/ denote the universally
measurable sets for B.R/ [70, p. 50], and  W R �! D be adapted to OB.R/ and D.
Then  ı f is adapted to C and D.

Proof Let

Bf .R/ D
˚
S � R W f�1.S/ 2 C0

�
:

It is a �-algebra [30, p. 17], and f is adapted to C0 and Bf .R/. The following
relation: Pf D P ı f�1 then defines a probability on Bf .R/. Let Po

f and Bo
f .R/ be the

corresponding completions. One has that

OB.R// � Bo
f .R/;

and  is thus adapted to Bo
f .R/. Let D0 2 D be fixed, but arbitrary. Then

�1.D0/ D B0�M0; M0 � N0 2 N .Bf .R/;Pf /:

Now

f�1.B0�M0/ D f�1.B0/�f�1.M0/; f�1.M0/ � f�1.N0/:

But P. f�1.N0// D Pf .N0/ D 0. Thus . ı f /�1.D0/ 2 C, and  ı f is adapted, as
claimed. ut
Lemma 16.5.10 Let F be a continuous distribution function with associated
measure �F. Then (notation is from (Definition) 10.3.2):

1. �F.F�1.Œ0; t�// D t;
2. F.F.t// D t.
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Proof Since F is continuous, fx 2 R W F.x/ � tg is a closed interval. Its right-
hand limit is F.t/. The interval ŒF.t/;F.t/� has zero measure, and, consequently,
F.F.t// D F.F.t// D t, because of (Fact) 10.3.12, item 2. Also, still because F is
continuous, F.F.t// D sup fx 2 R W F.x/ � F.t/g D t. ut
Proposition 16.5.11 L.
/ denotes the law of element .
/, and U Œ0; 1�, the uniform
distribution on Œ0; 1�. Let B and C be �-algebras in A, with C � B, andB, essentially
separable. Consider the following statements:

1. There exists X W ˝ �! R, adapted to B, such that, for every Y W ˝ �! R,
adapted to C, P.! 2 ˝ W X.!/ D Y.!// D 0.

2. There exists X W ˝ �! R, adapted to B, independent of C, such that L.X/ is
diffuse.

3. There exists X W ˝ �! R, adapted to B, independent of C, such that L.X/ D
U Œ0; 1� and C _ �.X/ D B.

4. Whenever Z W ˝ �! R is such that B D C _ �.Z/, it has a law that is diffuse.

Then, when the �-algebras concerned contain the subsets of sets in N .A;P/, items
1–4 are equivalent.

Proof Obviously item 3 implies item 2.

Proof [2 ) 1] Let �.R2/ be the diagonal of R2. It is measurable [138, p. 92].
Let Y be an arbitrary random variable adapted to C. Then, given X adapted to B,
independent of C, with a diffuse law,

P.! 2 ˝ W X.!/ D Y.!// D
Z
�.R2/

PX.dx/PY.dy/ D
Z
R

PX.fyg/PY.dy/:

Since PX is diffuse, one integrates the zero function.

Proof [1) 3] Let the separable B be generated by the random variable B, and the
separable C, by C [138, p. 91]. Let also PBjC be a Markov kernel providing a regular
version of the conditional law of B given C [30, p. 308]: one has that

P.B 2 I;C 2 J/ D
Z

J
PBjC.I; c/PC.dc/ D

Z
C�1.J/

PBjC.I;C.!//P.d!/:

For I D� � 1; x�, one shall write Fc.x/ for PBjC.I; c/. Thus Fc is a distribution
function, and, as such, it has limits from the left, and is continuous to the right.
Furthermore, for x fixed, but arbitrary, c 7! Fc.x/ is adapted. Consequently,
F.x; c/ D Fc.x/ is jointly measurable [(Lemma) 16.5.8].
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Since X is adapted to B, one has that X D X ıB, some measurable X [138, p. 443].
Let Y be adapted to C. Then, given the assumption,

P.! 2 ˝ W B.!/ D Y.!// � P.! 2 ˝ W X ı B.!/ D X ı Y.!//

D P.! 2 ˝ W X.!/ D X ı Y.!//

D 0:

Since F�c .x/ is continuous to the left, it is jointly measurable [(Lemma) 16.5.8].
For fixed, but arbitrary � > 0, the set

˚
.c; x/ 2 R2 W Fc.x/� F�c .x/ � �

�
is jointly

measurable, and thus, setting J�.c/ D
˚
x 2 R W Fc.x/ � F�c .x/ � �

�
, one has that

the following map:

a�.c/ D
�1 when J�.c/ D ;

inf J�.c/ when J�.c/ ¤ ;

is universally measurable [128, p. 110]. Since J�.c/ is finite, a�.c/ yields the smallest
point at which the jump of Fc is greater than, or equal to, �.

It follows from (Lemma) 16.5.9 that a� ıC is adapted. Now, from what has been
assessed above,

P.! 2 ˝ W B.!/ D a� ı C.!// D 0;
that is,

PB;C
�
.x; y/ 2 R2 W x D a�.y/

� D 0;
so that, almost surely, there is no atom of size at least �. Consequently FC is diffuse
almost surely.

Because of (Lemma) 16.5.10, PBjC
�
F�1c .Œ0; t�/ ; c

� D t. Let Z D F.B;C/ D
FC.B/. Since C � B, Z is adapted to B. Furthermore, for fixed, but arbitrary
t 2 Œ0; 1�, and measurable ,

EP
�f ı Cg ˚�Œ0;t� .Z/�� D

Z
R2
.c/�

Œ0;t� .F.x; c// PB;C.dx; dc/

D
Z
R

.c/PC.dc/
Z
R

�
Œ0;t� .F.x; c// Fc.dx/

D
Z
R

.c/PC.dc/PBjC.F�1c .Œ0; t�/; c/

D tEPŒ.C/�:
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Thus Z and C are independent, and Z is uniformly distributed on the unit interval.
Furthermore, using (Lemma) 16.5.10 again, one has, almost surely, that

B D FC.FC.B// D FC ı Z

is adapted to C _ �.Z/, and, consequently, B D C _ �.Z/.
Proof [1) 4] Suppose that Z is such that B D C _ �.Z/. For X of the assumption,
adapted to B, for some , X D .C;Z/ [(Lemma) 16.2.21]. Thus, when Z.!/ D z,
.C.!/; z/ D X.!/, and then

P.! 2 ˝ W Z.!/ D z/ � P .! 2 ˝ W X.!/ D .C.!/; z// ;

which, by assumption, is zero.

Proof [4 ) 1] One may assume that B generating B is strictly positive [138,
p. 91]. Let Y be adapted to C, and Z D �

fY¤BgB. Since C � B, Z is adapted to
B. Furthermore fZ D 0g D fY D Bg, so that

B D �
fY¤BgBC �fYDBgB D Z C �

fZD0gY;

and, consequently, B D C _ �.Z/. But then, by assumption, Z is diffuse. Thus
P.Y D B/ D P.Z D 0/ D 0, and the required X of item 1 is B. ut
Remark 16.5.12 (M. Émery) In the above, one may extend the results true for
random variables to random elements, whenever the measure spaces involved are,
as measure spaces, isomorphic to R and its Borel sets. One may also notice that the
proof that item 1 implies item 4 applies to vectors as well.

Definition 16.5.13 When assertions 1–4 of (Proposition) 16.5.11 obtain, B is said
to be conditionally nonatomic given C, and any X for which item 3 obtains is said
to be a complement to C in B.

Proposition 16.5.14 Let B, C, and D be �-algebras in the essentially separable A,
and assume that C � B. Then,

1. when B _ D is conditionally nonatomic given C _ D, then B is conditionally
nonatomic given C;

2. when B is conditionally nonatomic given C, and B and D are independent, then
B _D is conditionally nonatomic given C _D, and every complement of C in B
is a complement of C _D is B _D.

Proof Let Z be a random variable such that C _ �.Z/ D B. One has then that
C _ D _ �.Z/ D B _ D, and the assumption, coupled with (Proposition) 16.5.11,
item 4, yields that Z is diffuse. That same condition applied to B, C, and Z does the
trick.
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Let X be a complement of C in B. It is independent of C [(Proposition) 16.5.11,
item 3]. Furthermore, D being independent of B, is independent of C _ �.X/. So X
is independent of C _ D. As C _ �.X/ _D D B _D, X is a complement of C _D
in B _D. ut
Both examples which follow warn against possible pitfalls in the use of the previous
concept.

Example 16.5.15 (Pitfall 1) Given that B is conditionally nonatomic given C, that
X is adapted to B, is independent of C, and has a diffuse law, there may exist no
complement Y of C in B such that �.X/ � �.Y/.

Let C;X and Z be independent, uniform on Œ0; 1�, and use the following notation:
	 D ˚C < 1

2

�
. Set

C D �.C/; B D �.C;X; �	 Z/:

As X is adapted to B, independent of C, and diffuse, B is conditionally nonatomic
given C because of (Proposition) 16.5.11, item 2, and (Definition) 16.5.13.

Let Y be adapted to B, be independent of C, and such that �.Y/ � �.X/.
Suppose for a moment that �.Y/ D �.X/. As

EP Œ�	 Z j �.C;X/� D �	 EPŒZ� D �	
1

2
;

�
	

Z is not adapted to �.C;X/, so that �.C/_�.Y/ D �.C/_�.X/ D �.C;X/ � B,
and the example is confirmed.

One shall now check that, indeed, �.Y/ D �.X/, for candidates Y to the role
of complement. Since Y is adapted to B D �.C;X; �

	
Z/, and that, by assumption,

�.Y/ � �.X/, there exists a measurable N, Borel ˚ and � , such that P.N/ D 0,
and, outside of N, both X D ˚.Y/, and Y D �.C;X; �

	
Z/ obtain. Let �.c; x/ D

�.c; x; 0/. Then, outside of N, since C < 1
2
,

�
Œ 12 ;1�

.C/Y D �
Œ 12 ;1�

.C/�.C; ˚.Y//;

so that, as Y is adapted to B, and independent of C,

0 D EP

	
�
Œ 12 ;1�

.C/ jY � �.C; ˚.Y//j



D
Z 1

1
2

Z
R

jy � �.c; ˚.y/jPC;Y.dc; dy/

D
Z 1

1
2

PC.dc/
Z
R

jy � �.c; ˚.y//jPY.dy/;
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that is, for almost every c � 1
2
, with respect to PC, almost surely, with respect to PY ,

y D �.c; ˚.y/, which means that, for some c � 1
2
,

Y D �.c; ˚.Y// D �.c;X/;

or that Y is adapted to �.X/. Thus �.Y/ D �.X/, and, from the first part, one has
that �.C;X/ � B.

Example 16.5.16 (Pitfall 2) When B is conditionally nonatomic given C, and D
such that C _D D B, there may exist no D-adapted complement to C in B.

Let

˝1 D
	
0;
1

2



� Œ0; 1�; ˝2 D

	
1

2
; 1



�
	
0;
1

2



; ˝3 D

	
1;
3

2



�
	
1

2
; 1



;

and˝ D ˝1 [˝[˝3. P shall be Lebesgue measure restricted to ˝ . Let

C.x; y/ D x; D.x; y/ D y; X D
ˇ̌̌
ˇD � 12

ˇ̌̌
ˇ ;

C D �.C/; D D �.D/; B D �.C;D/:

C and D are not independent as, for example,

P

�
C 2

	
1

2
; 1



;D 2

	
1

2
; 1


�
D 0;

but

P

�
C 2

	
1

2
; 1


�
P

�
D 2

	
1

2
; 1


�
D 1

8
:

However, C and X are independent: indeed

P .C � ˛;X � ˇ/ D
8<
:
2ˇ � ˛ when ˛ 2 �0; 1

2

�
2ˇ � � 1

4
C ˛

2

�
when ˛ 2 � 1

2
; 3
2

�
D P .C � ˛/ P .X � ˇ/ :

Since X is adapted to B, is independent of C, has a uniform distribution, and is thus
diffuse, B is conditionally nonatomic given C [(Proposition) 16.5.11, item 2]. Let
Z be any random variable adapted to D, such that B D C _ �.Z/. Suppose that
�.Z/ D D: then, since C and D are not independent, there is no complement to C in
B adapted to D.
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Now, as in (Example) 16.5.15, almost surely, Z D ˚.D/, and D D �.C;Z/ D
�.C; ˚.D//, so that, because, choosing C < 1

2
, one works in a “rectangular” subset

of ˝1,

0 D EP

	
�fC< 12 g jD � �.C; ˚.D//j




D
Z
Œ0; 12 Œ

Z 1

0

jy � �.x; ˚.y//j PC;D.dx; dy/

D
Z 1

2

0

dx
Z 1

0

dy jy � �.x; ˚.y//j :

There is thus an x 2 Œ0; 1
2
Œ such that, almost surely in Œ0; 1�, y D �.x; ˚.y//, that is

D D �.x;Z/, and thus �.Z/ D D.

Example 16.5.15 involves a Y whose law is diffuse. When Y is discrete, a
complement X always exists.

Proposition 16.5.17 Suppose that C � B are essentially separable �-algebras in
A, and that B is conditionally nonatomic given C. Then:

1. when X is adapted to B, and takes at most countably many values, then B is
conditionally nonatomic given C _ �.X/;

2. when furthermore X is independent of C, there exists a complement U to C in B
such that �.X/ � �.U/.

Proof Suppose that Z is such that B D C _ �.X/ _ �.Z/. Because of (Remark)
16.5.12, (Proposition) 16.5.11 applies to vectors, and, because of the assumption in
the current statement, (Proposition) 16.5.11, item 4, is true. The law of the vector
.X;Z/ is thus diffuse. Since X takes at most a countable number of values,

P.! 2 ˝ W Z.!/ D z/ D
X

i

P.! 2 ˝ W Z.!/ D z;X.!/ D xi/ D 0:

Z is thus diffuse, and, consequently [(Proposition) 16.5.11, item 4], B is condition-
ally nonatomic given C _ �.X/.

Suppose furthermore that X is independent of C. Because of item 1 of the current
statement, (Proposition) 16.5.11, item 3, obtains, and there exists Z, whose law is
uniform, adapted to B, independent of C _ �.X/, such that

fC _ �.X/g _ �.Z/ D B:

Let Y generate �.X;Z/. Then �.Y/ � �.X/ and �.Y/ � �.Z/. Consequently
Z D ˚.Y/, and, as Z is diffuse,

P.Y D y/ � P.˚.Y/ D ˚.y// D P.Z D ˚.y// D 0:
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So Y is diffuse. It follows that FY is continuous, and then that U D FY.Y/ has a
uniform distribution. Thus U is adapted to B, is independent of C, has a uniform
distribution, and C _ �.U/ D B. U is thus a complement to C in B. ut
Remark 16.5.18 FY being continuous, F�1Y .fcg/ is closed. But then it is a closed
interval Œa; b�; a � b. When a < b, the subsets of Œa; b� are not in F�1Y .B.R//, hence
the need to work with completed �-algebras.

One shall need below the following considerations. Let K be a compact metric
space with distance dK , and PK be the space of probability measures defined on the
Borel sets of K. For weak convergence, PK is a compact metric space [208, p. 45].
Denote V.A;K/ the family of random elements with values in K, adapted to A. The
distance between two elements X and Y of V.A;K/ is defined to be

dV.A;K/.X;Y/ D EP ŒdK.X;Y/� :

Let now B be a �-algebra of A, and PXjB be the regular conditional law of X
in V.A;K/, with respect to B. It is an element of V.B;PK/. The Kantorovich-
Rubinshtein (abbreviated KR) distance dKR on PK is defined as follows: let ˘ be a
probability on (the Borel sets of) K�K, and J1 and J2 be, respectively, the projections
of K � K onto its first and second component. Then:

dKR.P1;P2/ D inf
f˘ W˘ıJ�11 DP1;˘ıJ�12 DP2g

Z
K�K

dK.k1; k2/˘.dk1; dk2/:

Convergence for dKR is equivalent to weak convergence [151].
Suppose now that K D fk1; : : : ; kng, and that a minimum ˘ for dKR.P1;P2/

exists. In the following table, the margins are obtained by summing the rows and
the columns:

˘.k1; k1/ 
 
 
 ˘.k1; kn/ P1.k1/
:::

:::
:::

:::

˘.kn; k1/ 
 
 
 ˘.kn; kn/ P1.kn/

P2.k1/ 
 
 
 P2.kn/ 1

:

The different values of ˘ may then be looked at as a solution of the system of
linear equations M� D p, where �i;j D ˘.ki; kj/, and pi represents a probability
in the margins of the latter table. The matrix M “sums” its rows and columns. The
solutions of the system have the following form [121, p. 143]:

� D M�pC .I �M�M/x;
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where M� is the generalized inverse of M, and x is any vector in R2n. M�p is thus
always a solution, and consequently ˘ may be chosen to depend “arithmetically”
on P1 and P2.

The coming proposition expresses distance between random elements as distance
between probability measures.

Proposition 16.5.19 Let .˝;A;P/ be a probability space. Suppose that:

(a) C � B are essentially separable �-algebras of A,
(b) B is, given C, conditionally nonatomic,
(c) X 2 V.B;K/ and Q 2 V.C;PK/ are simple random elements,
(d) the range of Q contains only probability measures with finite support.

There exists then a random element Z in V.B;K/ such that

1. PZjC D Q;
2. dV.B;K/.X;Z/ D EP

�
dKR.PXjC;Q/

�
.

Proof Let

K0 D fk1; : : : ; kmg � K; fB1; : : : ;Bmg � B; X D
mX

iD1
ki�Bi

;

fC1; : : : ;Cng � C; fP1; : : : ;Png � PK ; Q D
nX

jD1
Pj�Cj

;

and Pj have support

Kj D
n
k.j/1 ; : : : ; k

.j/

n.j/

o
� K:

Set

Kf D K0 [
˚[n

jD1Kj
�
:

Since Kf is compact, and any distance is continuous (for the product topology,
on the product with itself, of the space over which it is defined [84, p. 184]),
dKR.PXjC;Q/ has a minimum, say˘X;Q, for every pair of fixed, but arbitrary random
elements .X;Q/. ˘X;Q may be chosen, as seen, adapted to C. The relations that
follow thus obtain:P

k2Kf
˘X;Q.!; 
; k/ D PXjC.!; 
/;

P
k2Kf

˘X;Q.!; k; 
/ D QŒ!�.
/;
P

.k;Qk/2Kf�Kf
dK.k; Qk/˘X;Q.!; k; Qk/ D dKR

�
PXjC.!; 
/;QŒ!�

�
:
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Let

U.!/ D
X
k2Kf

˘X;Q.!;X.!/; k/

D
mX

iD1
�Bi
.!/˘X;Q.!; ki; k/

D
mX

iD1
�Bi
.!/PXjC.!; ki/ :

Thus, tentatively,

U.!/�1 D
mX

iD1

�Bi
.!/

PXjC.!; ki/
:

But

P.U D 0;X D ki j C/ D P .fU D 0g \ Bi j C/
D P

�˚
PXjC.
; ki/ D 0

�\ Bi j C
�

D �fPXjC .�;ki/D0gP.Bi j C/
D �fPXjC .�;ki/D0gPXjC.
; ki/

D 0:

Consequently P.U D 0/ D 0, and U > 0, almost surely, with respect to P.
Let

˚
�1; : : : ; �p

�
be an enumeration of the points of Kf . Let V0 � 0, and, for

l 2 Œ1 W p �, fixed, but arbitrary, set

Vl.!/ D U.!/�1
(

lX
iD1

˘X;Q.!;X.!/; �i/

)
:

Vl is adapted to C _ �.X/, and fVl; l 2 Œ0 W p �g is an increasing sequence, starting at
zero, and ending at one. Since X is simple, because of (Proposition) 16.5.17, B is,
given C _ �.X/, conditionally nonatomic, and, because of (Proposition) 16.5.11,
there exists a complement W to C _ �.X/ in B, that is, W is adapted to B, is
independent of C _ �.X/, has uniform law with support Œ0; 1�, and furthermore
C _ �.X/ _ �.W/ D B. Let then, whenever W.!/ 2 �Vl�1.!/;Vl.!/�,

Z.!/ D �l:
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As

P.Z D �l j C _ �.X// D EP

h
�
�Vl�1;Vl�

.W/ j C _ �.X/
i
;

that W is independent of the conditioning �-algebra, letting

.V;W/ D �
�Vl�1;Vl�

.W/;

and

 .v/ D EP Œ.v;W/� D
Z
R

.v;w/PW.dw/ D
Z 1

0

.v;w/dw;

one has that [138, p. 452]

EP Œ.V;W/ j C _ �.X/� D  .V/

D
Z 1

0

.V;w/dw

D
Z 1

0

�
�Vl�1;Vl�

.w/dw

D Vl � Vl�1:

Thus, given the definition of U,

P .Z D �l j C _ �.X// .!/ D U.!/�1˘X;Q.!;X.!/; �l/;

P .fX D kig \ fZ D �lg j C _ �.X// .!/ D �Bi
.!/

˘X;Q.!;ki;�l/

PXjC.!;ki/
;

P .fX D kig \ fZ D �lg j C/ .!/ D ˘X;Q.!;ki;�l/

PXjC.!;ki/
EP
�
�Bi
j C�

D ˘X;Q.!; ki; �l/:

The law of .X;Z/, given C, is thus ˘X;Q. Hence, the law of Z, given C, is Q.
Furthermore:

EP ŒdK.X;Z/ j C� D
X

.k;Qk/2Kf�Kf

dK.k; Qk/˘X;Q.
; k; Qk/ D dKR
�
PXjC;Q

�
;

hence EP ŒdK.X;Z/� D EP
�
dKR.PXjC;Q/

�
. ut

The following remarks are useful for the next assertion.
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Remark 16.5.20 Let aC D max.a; 0/, and a� D �min.a; 0/. It then follows that
aC C a� D jaj. So

.a � b/C D a � Œa ^ bg ; and .a � b/� D b � fa ^ bg :

Remark 16.5.21 Let S D fs1; : : : ; sng: for
˚
si; sj

� � S, the following relation:

dS.si; sj/ D
�
0 when si D sj

1 when si ¤ sj

defines a metric on S.

Remark 16.5.22 Let P1 and P2 be probabilities on the set S of (Remark) 16.5.21,
and define, for i 2 Œ1 W n�, fixed, but arbitrary,

˘1.si/ D P1.si/� fP1.si/ ^ P2.si/g D .P1.si/� P2.si//
C ;

˘2.si/ D P2.si/� fP1.si/ ^ P2.si/g D .P1.si/� P2.si//
� ;

so that

˘1.si/C˘2.si/ D jP1.si/ � P2.si/j ;

and

nX
iD1

˘1.si/ D 1 �
nX

iD1
fP1.si/ ^ P2.si/g D

nX
iD1

˘2.si/:

Let � denote the common value of the last set of equalities: then

2� D
nX

iD1
jP1.si/� P2.si/j :

Remark 16.5.23 Let

˘1;2.si; sj/ D
8<
:
��1˘1.si/˘2.sj/ when i ¤ j

��1˘1.si/˘2.si/C fP1.si/ ^ P2.si/g when i D j
:

Then

nX
i;jD1

˘1;2.si; sj/ D ��1
nX

iD1
˘1.si/

nX
jD1

˘2.sj/C
nX

iD1
fP1.si/ ^ P2.si/g D 1;
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so that ˘1;2 is a probability. Furthermore

Z
S�S

dS.s; Qs/˘1;2.ds; dQs/ D
nX

i;jD1
i¤j

˘1;2.si; sj/ D �:

Remark 16.5.24 Let ˘ be any probability on S � S. Then

Z
S�S

dS.s; Qs/˘.ds; dQs/ D
nX

i;jD1
i¤j

˘.si; sj/ D 1 �
nX

iD1
˘.si; si/;

and the left-hand side of the latter relation is smallest when the second term on the
right is largest. But, since one must have that

˘.si; sj/ � P1.si/ ^ P2.sj/;

˘1;2 of (Remark) 16.5.23 yields a minimum.

Proposition 16.5.25 .˝;A;P/ is the basic probability space. Let C � B be
essentially separable �-algebras in A, and B be, conditionally on C, nonatomic. Let
S be a finite set, and X W ˝ �! S be adapted to B. There exists then Z W ˝ �! S,
adapted to B, which is independent of X, and such that

P.Z ¤ X/ D 1

2

nX
iD1

EP
�ˇ̌

PXjC.
; si/ � P.X D si/
ˇ̌�
:

Proof The context is that of (Proposition) 16.5.19. Choose for S, the set Kf ; for
dK , dS; and, for Q of (Proposition) 16.5.19, the constant function QŒ!� D PX .
The Z of (Proposition) 16.5.19 is thus such that PZjC.!; 
/ D QŒ!� D PX ,
so that Z is independent of C. Furthermore, using the preceding remarks, item
2 of the conclusion of (Proposition) 16.5.19 yields the second statement of the
proposition. ut
Proposition 16.5.26 .˝;A;P/ is the basic probability space. Let Z�0 be the set
f: : : ;�2;�1; 0g, and

fBn � A; n 2 Z�0 g � A

be a filtration such that:

(a) B0 is essentially separable,
(b) each Bn is, conditionally on Bn�1, nonatomic,
(c) B�1 D \ Œn2Z�0 �Bn is essentially degenerate.
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Given � > 0, and a simple random variable X, adapted to B0, fixed, but arbitrary,
there exists n�;X 2 Z�0 nf0g, and a random variable Y�;X , adapted to B0, independent
of Bn�;X , such that

P.Y�;X ¤ X/ < �:

Proof Let RŒX� denote the range of X, and x 2 RŒX� be fixed, but arbitrary.
Since B�1 is essentially degenerate, because of the reverse martingale convergence
theorem [201, p. 118], in L1,

lim
n

PXjBn.
; x/ D lim
n

P.X D x j Bn/ D P.X D x/:

There is thus n�;X < 0 such that

X
x2RŒX�

EP

hˇ̌̌
PXjBn�;X

.
; x/� P.X D x/
ˇ̌̌i
< �:

The Y�;X one looks for is then provided by (Proposition) 16.5.25. ut
Proposition 16.5.27 .˝;A;P/ is the basic probability space. Let

fBn � A; n 2 Z�0 g

be a filtration as in (Proposition) 16.5.26. Let p 2 Z�0 n f0g be fixed, but arbitrary,
and

Xp D
˚
XpC1; : : : ;X�1;X0

�
be random variables such that, for k 2 Œp C 1 W 0�, fixed, but arbitrary, Xk is a
complement to Bk�1 in Bk. Let � > 0, and X, a random variable adapted to B0, be
fixed, but arbitrary. There exists then, in Z�0 , n�;p < p, a complement to Bn�;p in Bp,
say Y�;p, and a random variable Z, adapted to �.Y�;p;Xp/, such that

P.Z ¤ X/ < �:

Proof That Xk is a complement to Bk�1 in Bk means that [(Definition) 16.5.13] Xk

is adapted to Bk, that it is independent of Bk�1, has a law that is uniform on the unit
interval, and that Bk�1 _ �.Xk/ D Bk. One may thus write that

B0 D Bp _ �.XpC1; : : : ;X0/:

Since B0 is essentially separable, each Bn, for n 2 Z�0 , has the same property, and
is thus the union of essentially finite �-algebras. One may thus assume, since a
“general” U is the almost sure limit of simple functions whose “base” is a finite
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�-algebra, that

X D ˚ �U;XpC1; : : : ;X0
�
;

where ˚ is a Borel measurable function, and U, a simple random variable, adapted
to Bp.

Let, for q 2 Z�0 , fixed, but arbitrary, Cq D BpCq. One may apply (Proposition)
16.5.26 to the filtration ˚

Cq; q 2 Z�0
�
;

and the simple random variable U, to obtain, given a fixed, but arbitrary � > 0, in
Z�0 , a q� < p, and a simple random variable V , adapted to Bp, and independent of
Bq� , such that P.V ¤ U/ < �. Consequently

P
�
˚.V;XpC1; : : : ;X0/ ¤ X

�
< �:

Now, because of (Proposition) 16.5.17, there is a complement W to Bq� in Bp such
that �.W/ � �.V/. Thus V D  .W/, and P

�
˚. .W/;XpC1; : : : ;X0/ ¤ X

�
< �.

ut
Definition 16.5.28 Let

˚
Bn � A; n 2 Z�0

�
be a filtration. It is standard, nonatomic,

when it is generated by a family
˚
Xn; n 2 Z�0

�
of independent, identically distributed

random variables, whose law is uniform on the unit interval.

Definition 16.5.29 A filtration is standard when it may be immersed in a standard,
nonatomic filtration.

Proposition 16.5.30 Let
˚
Bn � A; n 2 Z�0

�
be a filtration as in (Proposition)

16.5.26. There exists a strictly increasing map f W Z�0 �! Z�0 such that the filtration
whose elements are Cn D Bf .n/ is standard, nonatomic.

Proof Let B be a random variable generating B0 [138, p. 91], and �, a strictly
positive sequence

˚
�.n/; n 2 Z�0

�
such that �.0/ D 1, and limn##�1 �.n/ D 0.

Since B0 is, conditionally on B�1, nonatomic, there exists [(Proposition) 16.5.26]
a complement X0 to B�1 in B0. It may be chosen to be adapted to B0, to be
independent of B�1, to have a law which is uniform on the unit interval, and the
property that B�1 _ �.X0/ D B0. There exists then [(Proposition) 16.5.27] p < �1,
a complement Xp to Bp in B�1 (with, mutatis mutandis, the properties of X0), and
a random variable Yp, adapted to �.Xp;X0/, such that, for arbitrary a priori ı > 0,
P.Yp ¤ B/ < ı.

Choose thus

• f .0/ D 0 : C0 D Bf .0/ D B0;
• f .�1/ D �1 : C�1 D Bf .�1/ D B�1, and C0 D X0, a complement of C�1 in C0;
• f .�2/ D p : C�2 D Bp, C�1 D Xp, a complement of C�2 in C�1, and D�1 D Yp

is adapted to �.C�1;C0/, and such that P.D�1 ¤ B/ < �.�1/.
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Continuing in the same vein, with the help of (Proposition) 16.5.27, one may
construct, by induction, and for n 2 Z�0 , fixed, but arbitrary,

• a strictly increasing map f W Z�0 �! Z�0 , and a filtration with elements
Cn D Bf .n/,

• a random variable Cn which is a complement to Cn�1 in Cn,
• a random variable Dn adapted to �.Cn; : : : ;C0/ and such that

P.Dn ¤ B/ < �.n/:

Let Fn D �.Cp; p � n/. In (Proposition) 16.5.6, let An be Cn (as just above), and Bn

be �.Cn/, as just built. Then Cn of (Proposition) 16.5.6 becomesFn. One thus defines
a filtration which is immersed in the filtration of the Cn’s, for which F0 is saturated.
By construction, B is the limit, in probability, of the sequence

˚
Dn; n 2 Z�0 n f0g

�
.

It is thus adapted to F0. But then, since B generates B0, F0 D B0. As C0 D B0,
F0 D C0. By construction, the filtration of the Cn’s is immersed in itself and saturated
for it. Because of (Proposition) 16.5.4, the filtrations of the Fn’s and Cn’s are thus
equal, and, since that of the Fn’s is, by construction, standard, nonatomic, so is that
of the Cn’s. ut
Proposition 16.5.31 (Vershik’s Lacunary Isomorphism Theorem) Let a filtra-
tion

˚
An; n 2 Z�0

�
be given, for which A0 is essentially separable, and A�1,

essentially degenerate. There exists then a strictly increasing f W Z�0 �! Z�0 such
that the filtration

˚
Bn; n 2 Z�0

�
obtained as Bn D Af .n/ is standard.

Proof Let
˚
Cn; n 2 Z�0

�
be a standard, nonatomic filtration, independent of the

filtration of the An’s. It always exists for, when not, one enlarges the sample space.
Let

˚
Dn; n 2 Z�0

�
be the filtration for which Dn D An _ Cn.

The filtration of the Dn’s has the same properties as that of the An’s. Indeed, the
�-algebra generated by A0 and C0 is essentially separable, since both �-algebras
are. Using the formula [53, p. 29]

F _ f\nGng D \n fF _ Gng ;

where fGn; n 2 Ng is decreasing, and F and G1 are independent, one sees that

An _
˚\pCp

� D \p
˚
An _ Cp

� � \p
˚
An^p _ Cn^p

�
:

Since \pCp is essentially degenerate (Kolmogorov’s zero-one law), the left-hand
side of the latter expression is An. Intersecting the An’s, one gets the degenerate
�-algebra on the left, and, on the right, \m fAm _ Cmg. Furthermore, because
of (Proposition) 16.5.11, Dn is, conditionally on Dn�1, nonatomic. One may thus
apply (Proposition) 16.5.30 to the filtration of the Dn’s to obtain a filtration of
elements En D Df .n/ that is standard, nonatomic. Let Bn D Af .n/. Because
of (Remark) 16.5.3, the filtration of the Bn’s is immersed in that of the Dn’s. It
is thus, by definition, standard. ut
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Lacunary isomorphism supports in an essential way the next proposition, which,
in turn, provides an indispensable link to the sequel. But that proposition requires
acquaintance with the construction which follows, given as a remark.

Remark 16.5.32 Let U be a random variable that is uniformly distributed on Œ0; 1�.
Using the nonterminating dyadic expansion of numbers in Œ0; 1�, one may write [39,
p. 3] that

U D
X

n

1

2n
Dn;

where the Dn’s are 0–1, independent random variables. Using the proof [218, p. 58]
that the cardinality of N2 is that of N, one may write N as a countable union of
sequences ˚˚

ni;j; j 2 N
�
; i 2 N

�
:

Defining [200, p. 27]

Ui D
X

j

1

2j
Dni;j ;

one obtains independent, uniformly distributed random variables. Evaluating the
inverse of the distribution function of a standard normal random variable at the Ui’s,
one obtains independent, standard normal random variables, say N D ˚

Np; p 2 N
�
,

generating the same �-algebra as U. Given N, one can manufacture [166, p. 104]
a Brownian motion, which generates the same �-algebra as U, respectively N.
Such a Brownian motion may be defined on any compact interval, adjusting the
Haar system to be a basis of the L2-space of that interval. Thus, given a family of
independent random variables U D fUn; n 2 Ng, which are uniformly distributed,
one can manufacture a family of independent Brownian motions, each of which
generates the same �-algebra as that generated by the corresponding uniform
random variable. Consequently, given a family of intervals, each associated with an
independent, uniformly distributed random variable, one can juxtapose independent
Brownian motions, according to the pattern of [166, p. 107], to obtain a single
Brownian motion which will generate the same �-algebra as the corresponding
uniform variables do, and preserve the order resulting from the intervals entering
the construction.

Proposition 16.5.33 ([89, p. 201]) Let F be some filtration, and B be the filtration
of a one-dimensional Brownian motion started at the origin (such a filtration is
unique up to isomorphism). Then [notation in Sect. 16.3] F  B if, and only if, F0
is essentially degenerate, and F1, essentially separable.

Proof Let H be the filtration made, for n D 0; 1; 2; 3; : : : , of the elements F1=n.
As \nHn D F0 is essentially degenerate, and H0 D F1, essentially separable,
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Vershik’s theorem yields a standard subfiltration K of H, with elements F1=np , p � 0,
that is, one for which there is an isomorphism � which sends K to a filtration L,
which is immersed into a filtration generated by a family of independent, uniformly
distributed random variables. The elements of the latter filtration have the following
form: Un D �.Un;UnC1;UnC2; : : : /. � sends F to a filtration F ? whose element
F ?
1=np
� Up is the corresponding element of L. Let tp D n�1p , so that t0 D 1, and

limp tp # 0. Proceeding as in (Remark) 16.5.32, let B be a Brownian motion, such
that, for p � 0, fixed, but arbitrary,˚

B.
; t/ � B.
; tpC2/; t 2 ŒtpC2; tpC1�
�

generates the same �-algebra as Up. Thus, when p D 0,

fB.
; t/� B.
; t2/; t 2 Œt2; t1�g

generates the same �-algebra as U0 does, and then, when tpC1 D t1, all the Up’s have
entered the picture. One obtains a Brownian motion stopped at t1, whose natural
filtration contains F ?. ut

16.6 Girsanov’s Theorem for Real, Continuous, Local
Martingales

Here is a version of Girsanov’s theorem valid for real, continuous, local martingales.
What it misses, from the version valid for the Wiener process, is the part asserting
that there is a property of law invariance.

Proposition 16.6.1 Let .˝;A;P/ be a probability space, with filtration A, indexed
by RC; M, a real, continuous, local martingale for that filtered space; f , a
progressively measurable process for A, such that, for t 2 RC, fixed, but arbitrary,
almost surely, with respect to P,Z t

0

f 2.!; �/hMi.!; d�/ <1:

Let � 2 R n f0g be fixed, but arbitrary. Let also, for t 2 Œ0; ��, fixed, but arbitrary,

(a) lnŒEf .!; t/� D
R t
0

f .!; �/M.!; d�/ � 1
2

R t
0

f 2.!; �/hMi.!; d�/,
(b) dQt D Ef .
; t/dP,

and suppose that EP
�
Ef .
; t/

� D 1, so that Qt is a probability measure on At ,
absolutely continuous with respect to P, restricted to At .

Consider then following probability space where A� D fAt; t 2 Œ0; ��g:

.˝;A� ;Q� /:
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The process X, with index set Œ0; ��, for that probability space, defined using the
following relation:

X.!; t/ D M.!; t/ �
Z t

0

f .!; �/hMi.!; d�/;

is a real, continuous, local martingale such that hXi D hMi.
Proof t 2 Œ0; �� is fixed, but arbitrary. Since, because of the assumption of finite
expectation, and (Remark) 10.4.8, Ef is a martingale for P, then, for � < t, fixed,
but arbitrary,

EP

	
dQt

dP
j A�



D Ef .
; �/:

Since Ef .
; t/ is an exponential, P
�
Ef .
; t/ D 0

� D 0, so that P and Qt are mutually
absolutely continuous on At.

Let, for ˛ 2 R, fixed, but arbitrary,

lnŒY˛.!; t/� D ˛X.!; t/ � ˛
2

2
hMi.!; t/:

Since

˛X � ˛
2

2
hMi C

Z
f dM � 1

2

Z
f 2dhMi D

Z
f˛ C f g dM � 1

2

Z
f˛ C f g2 dhMi;

Y˛Ef may be expressed as Y˛Ef D Z˛;f , where

lnŒZ˛;f � D N � 1
2
hNi; and N D

Z
f˛ C f g dM:

The process Z˛;f is, with respect to P, a local martingale [(Proposition) 10.4.6]. Let˚
Sın; n 2 IN

�
be the sequence of wide sense stopping times defined as follows:

Sın.!/ D inf
˚
t 2 RC W Ef .!; t/ > n;Y˛.!; t/ > n;Z˛;f .!; t/ > n

�
(Sın.!/ D 1 when the defining set is empty). The sequence is increasing, almost
surely, as the processes involved are almost surely finite. Let˚

S�n; n 2 IN
�
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be a sequence of wide sense stopping times that makes of Z˛;f a martingale bounded
in L2, and set

Sn D Sın ^ S�n:

One has then a sequence of wide sense stopping times, increasing indefinitely, and
such that YSn

˛ is a martingale in L2 (in fact Lp) [264, p. 57]. Let A 2 At^Sn be fixed,
but arbitrary. Then, using Z˛;f D Y˛Ef ,Z

A
Y˛.!; t ^ Sn/Ef .!; t ^ Sn/P.d!/ D

Z
A

Z˛;f .!; t ^ Sn/P.d!/:

Since ESn
f is a martingale, it is a martingale for the filtrations of the following type:

At^Sn � At, and thus, for Sp � Sn,Z
A

Y˛.!; t ^ Sn/Ef .!; t ^ Sp/P.d!/ D
Z

A
Y˛.!; t ^ Sn/Ef .!; t ^ Sn/P.d!/:

Let f�; tg � Œ0; �� be fixed, but arbitrary. The limit in L1, with respect to n, of
Ef .
; t ^ Sn/ is Ef .
; t/, and YSn

˛ is bounded. Thus, because of weak convergence
in L1, Z

A
Y˛.!; t ^ Sn/Ef .!; t ^ Sn/P.d!/ D

D lim
p

Z
A

Y˛.!; t ^ Sn/Ef .!; t ^ Sp/P.d!/

D
Z

A
Y˛.!; t ^ Sn/ lim

p
Ef .!; t ^ Sp/P.d!/

D
Z

A
Y˛.!; t ^ Sn/Ef .!; t/P.d!/;

and, consequently,Z
A

Z˛;f .!; t ^ Sn/P.d!/ D

D
Z

A
Y˛.!; t ^ Sn/Ef .!; t/P.d!//

D
Z

A
Y˛.!; t ^ Sn/Q� .d!/:
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Finally, for � > t,Z
A

Y˛.!; � ^ Sn/Q� .d!/ D
Z

A
Z˛;f .!; � ^ Sn/P.d!/

D
Z

A
Z˛;f .!; t ^ Sn/P.d!/

D
Z

A
Y˛;f .!; t ^ Sn/Q� .d!/:

Thus YSn
˛ is a martingale for the �-algebras of type At^Sn , and the probability Q� .

It is also, as presently seen, a martingale for the initial �-algebras, and the same
probability. Indeed, given t1 < t2 in RC and A in At1 , fixed, but arbitrary,Z

A
YSn
˛ .!; t1/P.d!/ D

D
Z

A\fSn<t1g
YSn
˛ .!; t1/P.d!/

C
Z

A\fSn�t1g
YSn
˛ .!; t1/P.d!/:

On fSn < t1g,

YSn
˛ .
; t1/ D Y˛.
; Sn/ D Y˛.
; t2 ^ Sn/; and A \ fSn < t1g 2 At1 ;

so that Z
A\fSn<t1g

YSn
˛ .!; t1/P.d!/ D

Z
A\fSn<t1g

YSn
˛ .!; t2/P.d!/:

Finally, since A \ fSn � t1g 2 At1^Sn , using the martingale property of YSn
˛ ,Z

A\fSn�t1g
YSn
˛ .!; t1/P.d!/ D

Z
A\fSn�t1g

YSn
˛ .!; t2/P.d!/:

But then [(Proposition) 10.4.6] X is local martingale with respect to Q� , such that

hXi D hMi:

ut
Remark 16.6.2 Girsanov’s theorem for continuous martingales that are not Gaus-
sian states thus that it is the quadratic variation, rather than the law, that is invariant
under a random translation. The natural question is then: when does invariance of
quadratic variation mean invariance of law? As one shall see, one must deal with
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a special class of martingales, called Ocone martingales, whose main characteristic
is that, in the “universal” equality WM D M ˘ SM [(Fact) 10.3.45], WM and SM are
independent (in fact, as shall be seen, even more is required). Hence the next topic.

16.7 Ocone Martingales

In the sequel, M shall always be a continuous to the right, almost surely continuous,
local martingale, zero at the origin, and WM D M ˘ SM [(Fact) 10.3.45]. CŒ0;1Œ
is the family of real, continuous functions, which start at zero, and its elements are
denoted c. Et is the evaluation map at t, and Ct D �t.E/, C D _tCt. MŒ!� denotes the
path of M at !; M, the map ! 7! MŒ!�. A similar notation is adopted for hMi. The
notation L.
/ designates the law of the item represented by the dot.

16.7.1 Definitions, Characterization, and Properties

Definition 16.7.1 M is an Ocone martingale when, in the representation
M D WM ˘ hMi, WM is independent of the quadratic variation hMi (and thus SM).

One shall need the following (classes of) functions, and their integrals:

Definition 16.7.2

1. F is the class of functions of the following form:

f� .t/ D �Œ0;� � .t/ � ���;1Œ
.t/:

2. ˚ is the class of processes X that are adapted to C˝B.RC/ and C (they are then
predictable [264, p. 115]), and have range in the set f�1; 1g.

One shall write IM ff�g for the integral of f� 2 F with respect to M. It has the
following properties:

Fact 16.7.3

1. IM ff� g .
; t/ D M.
; t ^ �/ � fM.
; t/ �M.
; t ^ �/g;
2. using item 1,

I�M ff� g .
; t/ D M� .
; t/I

3. again using item 1, for t1 < t2, fixed, but arbitrary,

IM fft1g .
; t2/� IM fft1g .
; t1/ D �fM.
; t2/�M.
; t1/g :
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Remark 16.7.4 When � D � , IIMff� g ff� g D M.
; t/. Let

N.!; t/ D IM ff�g .!; t/

D
Z t

0

f� .x/M.!; dx/

D 2M.!; t ^ �/ �M.!; t/:

Then

IN ff� g D 2N.!; t ^ �/� N.!; t/

D 2 f2M.!; t ^ � ^ �/�M.!; t ^ �/g � f2M.!; t ^ �/�M.!; t/g
�D�D 4M.!; t ^ �/� 2M.!; t ^ �/ � 2M.!; t ^ �/CM.!; t/:

Definition 16.7.5 M is F -invariant when, for � 2 RC, fixed, but arbitrary,

L.IM ff�g/ D L.M/:

Remark 16.7.6 Because of (Fact) 16.7.3, item 3, F -invariance is a symmetry
requirement.

Definition 16.7.7 JM fg .!; t/ denotesZ t

0

.MŒ!�; �/M.!; d�/;  2 ˚:

M is ˚-invariant when, for  2 ˚ , fixed, but arbitrary,

L.JM fg/ D L.M/:

Remark 16.7.8 ˚-invariance implies F invariance.

Definition 16.7.9 PMjhMi shall be a regular conditional probability of M given hMi,
that is,

1. for ! 2 ˝ , fixed, but arbitrary, C 7! PMjhMi.!;C/ is a probability, denoted
P!

MjhMi , and,
2. for C 2 C, fixed, but arbitrary, almost surely, with respect to P,

PMjhMi.
;C/ D P.M 2 C j hMi/:

Definition 16.7.10 M is, given hMi, a conditionally Gaussian martingale when, for
almost every ! 2 ˝ , with respect to P, the process

EP!MjhMi
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is a Gaussian martingale for C, and that, for t 2 RC, fixed, but arbitrary,

EP!MjhMi

h
E 2

P!MjhMi
.
; t/

i
D hMi.!; t/:

Lemma 16.7.11 When M1 and M2 are continuous, local martingales, with the same
law, the couples .M1; hM1i/ and .M2; hM2i/ have the same law.

Proof Taking continuity, and zero initial value into account, one has that hMi
is [264, p. 101], locally uniformly, the limit in probability of sums of squared
differences in M. ut
Proposition 16.7.12 When the continuous, local martingale M is Gaussian, condi-
tionally on hMi, it is ˚-invariant.

Proof Let  2 ˚ , and ! 2 ˝ be fixed, but arbitrary, and set:

X;!.c; t/ D
Z t

0

.c; �/EP!MjhMi
.c; d�/:

Since, by assumption, the process

EP!MjhMi

is a Gaussian martingale with (deterministic) quadratic variation

t 7! hMi.!; t/;

and that, identically, 2 D 1, it follows that

hX;!i.c; t/ D
Z t

0

2.c; �/hEP!MjhMi
i.c; d�/ D

Z t

0

hEP!MjhMi
i.c; d�/ D hMi.!; t/:

Thus X;! is a continuous martingale, with (deterministic) quadratic variation t 7!
hMi.!; t/. It is thus Gaussian and has the same law as

EP!MjhMi

(with respect to P!

MjhMi).
Suppose that one chooses a  of the following (predictable) form:

.c; t/ D
nX

iD0
i.c/���i;�iC1� .t/;
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and sets

X.c; t/ D
nX

iD0
i.c/ fE.c; t ^ �iC1/ � E.c; t ^ �i/g :

Then:

X.MŒ!�; t/ D JM fg .!; t/:

Let C 2 C be fixed, but arbitrary. Then, using the following formula [139, p. 120]:

E Œ f .S/ j T� D
Z

f .s/PSjT .ds;T/;

and then the identity in law, for P�MjhMi, of X;� and EP�MjhMi
, established just above,

P .JM fg Œ
� 2 C/ D EP Œ�C .JM fg Œ 
 �/�
D EP Œ�C .X ŒM Œ 
 ��/�
D EP ŒEP Œ�C .X ŒM Œ 
 ��/ j hMi��

D EP

	Z
CŒ0;1Œ

�C .X Œc�/ P�MjhMi.dc/




D EP

	Z
CŒ0;1Œ

�C

�
EP�MjhMi

Œc�
�

P�MjhMi.dc/




D EP

h
EP

h
�C

�
EP�MjhMi

ŒM Œ 
 ��
�
j hMi

ii
D EP Œ�C .M Œ 
 �/�
D P.MŒ 
 � 2 C/:

Given the uniform in probability approximation property of stochastic integrals
using elementary processes [264, p. 152], one has, for every elementary process
n approximating ,

L.JM fng/ D L.M/;

and

lim
n

P.JM.fng/ 2 C/ D P.JM.fg/ 2 C/:

ut
Proposition 16.7.13 When the continuous, local martingale M is F -invariant, it is,
given hMi, a conditionally Gaussian martingale.
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Proof To shorten notation, M� shall stand for IM ff�g.
Proof [Step 1] Given f� , fixed, but arbitrary, L.M� ; hMi/ D L.M; hMi/.
Since, by assumption, L.M� / D L.M/, then, because of (Lemma) 16.7.11,

L.M� ; hM� i/ D L.M; hMi/:

But hM�i D hMi since the square of f� is the constant function with value one.

Proof [Step 2] For almost every ! 2 ˝ , with respect to P, the process

EP!MjhMi

is a local martingale for C.

Let fSn; n 2 Ng be the sequence of wide sense stopping times that stops hMi at n
[264, p. 37]: Sn D inf ft 2 RC W hMi.
; t/ > ng. S�n does the same for hM� i, and
equals Sn, since the quadratic variation of the latter integral is that of M [step 1].
Then, in particular, MSn is an L2-bounded martingale [264, p. 103].

Let 0 < t1 < t2 in RC, V0 2 �.hMi/, and C 2 Ct1 , be fixed, but arbitrary. Because
of the assumption of equality in law between M and M� , one has, in law, that:

(i) �C .M/ D �C .M� /;
(ii) MSn.
; t/ D MSn

� .
; t/ D IMSn ff�g .
; t/, as, for example,

P
�
MSn.
; t/ 2 B

� D
D P .fM.
; t/ 2 Bg \ ft � Sng/C P .fM.
; t/ 2 Bg \ ft > Sng/ ;

and that

P .fM.
; t/ 2 Bg \ ft � Sng/ D P
�fM.
; t/ 2 Bg \ ˚t � S�n

�� I
(iii) �V0

D  .hMi/ D  .hM� i/ for some functional  adapted to C.

One may thus replace, in expressions valid in law, containing elements (i)–(iii), M
with M� . The following expressions are thus equal in law:

 .hMi/�C .M/
�
MSn.
; t2/�MSn.
; t1/

�
; (?)

and

 .hM� i/�C .M� /
�
MS�n
� .
; t2/ �MS�n

� .
; t1/
�
: (??)

But one has also that [(Definition) 16.7.2, item 1]

M� .
; t/ D M.
; t ^ �/� .M.
; t/ �M.
; t ^ �// ;
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and, consequently, using that latter expression with � D t1, and S�n D Sn, that

Mt1 .
; t2 ^ Sn/ �Mt1 .
; t1 ^ Sn/ D �fM.
; t2 ^ Sn/ �M.
; t1 ^ Sn/g :

The equality in law established above (.?/
LD .??/) becomes that the following

variables:

�V0
�C .M/

�
MSn.
; t2/�MSn.
; t1/

�
;

and

��V0
�C .M/

�
MSn.
; t2/�MSn.
; t1/

�
;

are equal in law, so that

EP
�
�V0
�C .M/

�
MSn.
; t2/�MSn.
; t1/

�� D 0 (? ? ?)

(the expectation exits because of the stopping at Sn). But then, the expectation, with
respect to P, of the following expression, is zero:

�V0
.
/
Z

CŒ0;1Œ
�C .c/

n
EP�MjhMi

.c; t2 ^ Sn/� EP�MjhMi
.c; t1 ^ Sn/

o
P�MjhMi.
; dc/:

Thus, given that one deals with a separable �-algebra Ct, and a continuous process
(that of evaluation maps), almost surely, with respect to P, for all t1 < t2, c, and n,

EP!MjhMi

h
EP!MjhMi

.c; t2 ^ Sn.!// � EP!MjhMi
.c; t1 ^ Sn.!/ j Ct

i
D 0; (? ? ??)

that is, EP!MjhMi
is a local martingale.

Proof [Step 3] EP!MjhMi
has hMi.!; 
/ as quadratic variation.

Relation (? ? ?) means that M is a continuous, local martingale with respect to
the �-algebras of the following type: �t.M/ _ �t.hMi/. Thus the following process:
M2 � hMi D 1

2

R
M dM is a continuous, local martingale, with respect to the same

filtrations. A derivation analogous to that leading to relation (? ? ??) says that the
conditional expectation, with respect to Ct, and for P!

MjhMi, of

E2P!MjhMi.
; t2 ^ Sn.!// � E2P!MjhMi.
; t1 ^ Sn.!//

minus

hMi.!; t2 ^ Sn.!// � hMi.!; t1 ^ Sn.!//
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is zero, almost surely with respect to P, which shows that the evaluation map
has, with respect to P!

MjhMi , quadratic variation hMi.!; 
/. It is thus a Gaussian
martingale. ut
Remark 16.7.14 Since [(Proposition) 16.7.12] “conditionally Gaussian” implies
˚-invariant, that ˚-invariant implies F -invariant [(Remark) 16.7.8], and that F -
invariant implies “conditionally Gaussian,” [(Proposition) 16.7.13] one has that
“conditionally Gaussian,” ˚-invariant, and F -invariant are equivalent properties.

Remark 16.7.15 The property of being “conditionally Gaussian” is equivalent to
the following equality: for ˛ measurable, and adapted to C (and thus predictable
[264, p. 115]), fixed, but arbitrary,

EP

h
e�
R1
0 ˛.hMiŒ � �;�/M.�;d�/ j �.hMi/

i
D e�

1
2

R1
0 ˛2.hMiŒ � �;�/hMi.�;d�/: (?)

Indeed, because of (Proposition) 11.3.14, one has that

hMi.!; t/ D hEPMi.MŒ!�; t/;

and that Z t

0

˛.hMiŒ 
 �; �/M.
; d�/ D
�Z t

0

˛ .hEPMiŒ 
 �; �/ EPM.
; d�/
�
ıM:

The left-hand side of (?) has thus the form EP Œ f .M/ j �.hMi/�. The following
formula [139, p. 120], valid for regular conditional probabilities, yields that

EP Œ f .M/ j hMi D m� D EPm
MjhMi

Œ f � :

When M is conditionally Gaussian on hMi,

EPm
MjhMi

Œ f � D EPm
MjhMi

"
e
�
R1
0 ˛.


EPm

MjhMi

�
Œ � �;�/


EPm

MjhMi

�
.�;d�/

#

D e
� 12

R1
0 ˛2

�
EPm

MjhMi

�
Œ � �;�

�
EPm

MjhMi

�
.�;d�/

:

But then [138, p. 449]

EP Œ f .M/ j hMi� D e
� 12

R1
0 ˛2

�
EPm

MjhMi

�
Œ � �;�

�
EPm

MjhMi

�
.�;d�/ ı hMi;

that is, the right-hand side of (?). Finally, when the stated formula (?) obtains, M is
indeed, conditionally on hMi, Gaussian, as, ˛ being arbitrary, the left-hand side of
(?) yields the characteristic function of M, given hMi, and the right one, the normal
characteristic function.
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Proposition 16.7.16 Let M start at zero, and be divergent, that is,

lim
t
hMi.
; t/ D1;

almost surely. Formula (?) of (Remark) 16.7.15 is necessary, and sufficient, for M
to be an Ocone martingale.

Proof Suppose that, in WM D M ˘ SM, WM and SM are independent.
One shall use the following formula [138, p. 452]: on .˝;A;P/, let X, and

B � A, be independent, and Y be adapted to B. Define, for appropriate � ,

 .y/ D EP Œ�.X; y/� :

Then, almost surely, with respect to P,

EP Œ�.X;Y/ j B� D  .Y/:

One shall also use the following property [264, p. 213]:Z 1
0

f .hMiŒ 
 �; t/M.
; dt/ D
Z 1
0

f .hMiŒ 
 �; Et.SMŒ 
 �/WM.
; t/:

Let then �.WM; hMi/ be the exponential of

�

Z 1
0

f .hMiŒ 
 �; Et.SMŒ 
 �/WM.
; dt/:

One obtains, with �.t/ D inf f� 2 RC W v.�/ > tg, that

 .v/ D EP Œ�.WM; v/� D e�
R1
0 f .v;Et.�//WM.�;dt/ D e�

1
2

R1
0 f 2.v;Et.�//dt:

Consequently, using the change of variables formula [(Fact) 10.3.36],

 .hMi/ D e�
1
2

R1
0 f 2.hMiŒ � �;SM .�;t//dt D e�

1
2

R1
0 f 2.hMiŒ � �;t/hMi.�;dt/:

Proof Suppose that formula (?) of (Remark) 16.7.15 obtains.

Let W be a Brownian motion independent of hMi, and let N D W ˘ hMi. As in
the first part of the proof, formula (?) of (Remark) 16.7.15 obtains for N. Since
hNi D hMi, M and N have the same law. Consequently .WM; hMi/ and .WN ; hNi/ D
.W; hMi/ have the same law because of that formula. But then WM and hMi are
independent. ut
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Proposition 16.7.17 Let M be a divergent, continuous local martingale starting at
zero. It is an Ocone martingale if, and only if, for fixed, but arbitrary

Pn
kD1 ˛k�Œ0;tk�

,

EP

"
e
�
R1
0

�Pn
kD1 ˛k�Œ0;tk�

�
dM

#
D EP

2
4e
� 12

R1
0

�Pn
kD1 ˛k�Œ0;tk�

� 2
dhMi

3
5 :

Proof If M is an Ocone martingale, one uses (Proposition) 16.7.16, and then takes
expectation. Suppose conversely that the given equality obtains. Let W be a standard
Brownian motion independent of hMi, and N D W ˘ hMi. Since N is an Ocone
martingale, the given equality applies to N. Since hNi D hMi, the right-hand side
of the given equality is the same for M and N, which means that M and N have the
same law. Since WM D M ˘ SM and WN D N ˘ SN D W ˘ SM , .WM; hMi/ and
.WN ; hNi/ have the same law, and that proves that WM and hMi are independent,
that is, M is an Ocone martingale. ut

16.7.2 Ocone Martingales and Exponentials

Given a divergent, continuous, local martingale M, starting at zero, and a progres-
sively measurable process ˛, one shall use the following notation:

• lnŒE˛.!; t/� D
R t
0
˛.!; �/M.!; d�/ � 1

2

R t
0
˛2.!; �/hMi.!; d�/,

• M˛.!; t/ D M.!; �/ � R t
0
˛.!; �/hMi.!; d�/,

• dPjAt
˛ D E˛.
; t/dPjAt .

Proposition 16.7.18 Let ˛ denote a bounded function, which does not depend on
!, and is adapted to the Borel sets. When, for fixed, but arbitrary such ˛, E˛ is a
martingale such that, with respect to P˛, M˛ is a martingale with the same law as
M, with respect to P, then M is an Ocone martingale.

Proof Let f W C.RC/ �! R be positive, and adapted to Ct. By definition, for ˛ of
the assumption,

EP˛ Œ f .hMi/� D EP Œ f .hMi/E˛.
; t/� :

The identity in law of the assumption implies that

EP˛ Œ f .hMi/� D EP Œ f .hMi/� :

Consequently

EP Œ f .hMi/E˛.
; t/� D EP Œ f .hMi/� :
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The latter equality is equivalent to the following one: almost surely, with respect
to P,

EP ŒE˛.
; t/ j �t.hMi/� D 1;

which means that

EP

h
e
R t
0 ˛.�/M.�;d�/ j �t.hMi/

i
D e

1
2

R t
0 ˛

2.�/ hMi.d�/:

Let W be a Brownian motion independent of hMi, and set N D W ˘ hMi. Then

EP

h
e
R t
0 ˛.�/N.�;d�/ j �t.hMi/

i
D e

1
2

R t
0 ˛

2.�/ hMi.d�/;

so that,

EP

h
e
R t
0 ˛.�/M.�;d�/ j �t.hMi/

i
D EP

h
e
R t
0 ˛.�/N.�;d�/ j �t.hMi/

i
;

that is, M and N have the same law. But then [(Lemma) 16.7.11], with respect to P,
L.M; hMi/ D L.N; hMi/. Now M D WM ˘ hMi so that, using the time change SM ,
one obtains that, with respect to P,

L.WM; hMi/ D L.W; hMi/;

that is, WM and hMi are independent. ut
Remark 16.7.19 In (Proposition) 16.7.18, let N˛ D

R
˛ dM, so that hN˛i DR

˛2 dhMi. One conclusion of the proof’s first paragraph, when multiplying ˛ with
� , a constant, is that

EP
�
e�N˛.�;t/

� D EP

h
e
�2

2 hN˛ i.�;t/
i
: (?)

Stopping N˛ when jN˛j crosses n, one may assume a bounded process. Then, for t
fixed, but arbitrary, and z complex, one has that z 7! EP ŒezN˛.�;t/� is entire. Thus (?)
extends to complex values, and one may use (Proposition) 16.7.17 to conclude.

Proposition 16.7.20 When

(a) M is an Ocone martingale,
(b) f W C.RC/ �! R, is a fixed, but arbitrary, bounded, progressively measurable

process for C,
(c) ˛ D f .hMiŒ 
 �; 
/,
then E˛ is a martingale, and the law of M˛ with respect to P˛ is that of M with
respect to P.
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Proof One shall use the transformation formula [(Fact) 10.3.36]

Z t

0

f ı ˛g dm� D
Z ˛.t/

˛.0/

dmˇ; � D ˛ ı ˇ;

with mˇ , Lebesgue measure, and ˛ D hMi, on an expression of the form
R
 dhMi.

 must thus be written as  .SM ˘ hMi/. But that is possible only when hMi is
strictly increasing. However, when it is constant, the interval of constancy has a
measure determined by hMi that is zero. So it is not a restriction to assume hMi
strictly increasing.

Let  W C.RC/ �! R be a positive functional adapted to Ct. Then, by definition,

EP˛ Œ .M˛Œ 
 �/� D EP

h
 .M˛Œ 
 �/e

R t
0 ˛.�;�/M.�;d�/� 12

R t
0 ˛

2.�;�/ hMi.�;d�/
i
:

But, using the definitions of ˛ and M˛, and the transformation formula repeated just
above,

M˛.
; t/ D WM ˘ hMi.
; t/�
Z hMi.�;t/
0

f .hMiŒ 
 �; SM.
; �//d�;

and Z t

0

˛2.
; �/hMi.
; d�/ D
Z hMi.�;t/
0

f 2.hMiŒ 
 �; SM.
; �//d�:

Furthermore, because of the choice for ˛ and (Fact) 10.3.45,

Z t

0

f .hMiŒ 
 �; �/M.
; d�/ D
Z hMi.�;t/
0

f .hMiŒ 
 �; SM.
; �//WM.
; d�/:

Thus

 .M˛Œ 
 �/e
R t
0 ˛.�;�/M.�;d�/� 12

R t
0 ˛

2.�;�/ hMi.�;d�/

has the form

�.WM; hMi/:

Now, letting

Wv
M.!; t/ D WM.!; v.t//;
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and

Wv
˛ .!; t/ D Wv

M.!; t/ �
Z t

0

˛.v; �/v.d�/;

one has, using Girsanov’s theorem for Brownian motion, that

EPŒ�.WM; v/� D EP

h
 .Wv

˛ /e
R t
0 ˛.v;�/W

v
M .�;d�/� 12

R t
0 ˛

2.v;�/v.d�/
i

D EP
�
 .Wv

M/
�
:

Consequently, EP Œ�.WM; hMi/� D EP Œ .M/�, that is

EP˛ Œ .M˛Œ 
 �/� D EP Œ .MŒ 
 �/� ;

so that M˛, with respect to P˛, has the same law as M with respect to P. ut
Corollary 16.7.21 The assumption of (Proposition) 16.7.18, and the conclusion
of (Proposition) 16.7.20, provide equivalent conditions for M to be an Ocone
martingale.

Proof Indeed, the assumption of (Proposition) 16.7.18 is a particular case of the
conclusion of (Proposition) 16.7.20. ut
Proposition 16.7.22 Another property equivalent to those of (Corollary) 16.7.21
for M to be an Ocone martingale is that, for fixed, but arbitrary ˛ that does not
depend on !, bounded and adapted to the Borel sets, hMi has the same law with
respect to P˛ and P.

Proof The proof of (Proposition) 16.7.18 uses the equality in law with respect to P˛
and P of hMi. The reverse claim is a consequence of (Proposition) 16.7.20. ut

16.7.3 Ocone Martingales, More Properties, and Some
Examples

One should keep in mind that only continuous (local) martingales are dealt with.

Proposition 16.7.23 Let M be an Ocone martingale, and N be a local martingale
for �.hMi/. Then:

1. N is a local martingale for �.M/.
2. N is orthogonal to M, that is MN is a local martingale.
3. M is extremal if, and only if, hMi is deterministic.

Proof [1] Since there is an underlying assumption of continuity, it is sufficient
to prove the result for uniformly integrable martingales N, and, in that case, that
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EP ŒN.
;1/ j �t.M/� D N.
; t/. Let  be a functional adapted to Ct. Then, PW

being Wiener measure for continuous functions, and �.!; t/ D c.hMi.!; t//, using
first Ocone independence, and second, the martingale property of N with respect to
�.hMi/,

EP ŒN.
;1/ .MŒ 
 �/� D EP ŒN.
;1/ .WM ˘ hMiŒ 
 �/�

D
Z

C.RC/
PW.dc/EP ŒN.
;1/ .�Œ 
 �/�

D
Z

C.RC/
PW.dc/EP ŒN.
; t/ .�Œ 
 �/�

D EP ŒN.
; t/ .MŒ 
 �/� :

Proof [2] Let t1 < t2 be fixed, but arbitrary, and  be adapted to Ct1 . Then

EP ŒM.
; t2/N.
; t2/ .MŒ 
 �/� D
D EP ŒWM.
; hMi.
; t2//N.
; t2/ .WM ˘ hMiŒ 
 �/� :

The right-hand side of the latter equality is an expression of the following form:

EP Œ f .WM; hMi/� D EP ŒEP Œ f .WM; hMi/ j �.hMi/�� ;

where the arguments of f are independent. Let

F.m/ D EP Œ f .WM; hMi/ j hMi D m� D EP Œ f .WM;m/� :

Since N is a function of hMi, one uses the martingale property of WM to obtain that
one may replace, in WM.
; hMi.
; t2//, t2 with t1, so that

EP Œ f .WM;m/� D EP ŒWM.
;m.t1//N.
; t2/ .WM ˘ mŒ 
 �/� :

Then

EP Œ f .WM; hMi/ j �.hMi/� D
D F.hMi/
D EP ŒWM ˘ hMi.
; t1/N.
; t2/ .WM ˘ hMiŒ 
 �/ j �.hMi/� ;

and thus

EP ŒM.
; t2/N.
; t2/ .MŒ 
 �/� D EP ŒM.
; t1/N.
; t2/ .MŒ 
 �/� :
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But

EP ŒM.
; t1/N.
; t2/ .MŒ 
 �/� D
D EP ŒWM.
; hMi.
; t1//N.
; t2/ .WM ˘ hMiŒ 
 �/�

D
Z

C.RC/
PW.dc/EP Œc.hMi.
; t1//N.
; t2/ .c.hMiŒ 
 �//� :

Since N is a martingale with respect to the �-algebras generated by hMi, one may
replace, in the latter integral, N.
; t2/ with N.
; t1/, and, consequently,

EP ŒM.
; t2/N.
; t2/ .MŒ 
 �/� D EP ŒM.
; t1/N.
; t1/ .MŒ 
 �/� :

Proof [3] For an Ocone martingale, and 	 , a fixed, but arbitrary measurable set of
continuous functions,

PM.	 / D
Z

C.RC/
PhMi.dc/P.WM ˘ hMi 2 	 j hMi D c/

D
Z

C.RC/
PhMi.dc/P.WM ˘ c 2 	 /:

When PhMi is a point mass, PM is the law of a deterministic time changed Brownian
motion, and those processes are extremal martingales [221, pp. 213–214]. When PM

is extremal, and C is a measurable set, PhMi.C/ is either zero or one, as otherwise
PM could be represented as a mixture. But then PhMi is Dirac measure, and again
PM is the law of a deterministic time changed Brownian motion. ut
Example 16.7.24 Let W be a Brownian motion for A, and ˛, a continuous to the
right process, which is almost surely continuous, and adapted to A, such that

• j˛j > 0, almost surely with respect to the product of P and Lebesgue measure,
• almost surely, with respect to P,

R1
0
˛2.
; �/d� D 1.

Let s be the sign function, and

M.
; t/ D
Z t

0

˛.
; �/W.
; d�/;

B.
; t/ D
Z t

0

fs ı ˛.
; �/gW.
; d�/:

Then M is an Ocone martingale if, and only if, the Brownian motion B and the
following �-algebra:

�.j˛j/ D �.hMi/

are independent.
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The claim may be checked as follows. Let  be a progressively measurable
process for C. Then, as dM D ˛dW D fs ı ˛g ˛dB,Z 1

0

˚
 ˘ ˚hMi

�
dM D

Z 1
0

˚
 ˘ ˚hMi

� fs ı ˛g ˛dB;

and, provided Z 1
0

˚
 ˘ ˚hMi

�2
.
; �/˛2.
; �/d� <1;

when B and �.j˛j/ D �.hMi/ are independent,

EP

h
e�
R1
0 f ˘˚hMigfsı˛g˛ dB j �.hMi/

i
D e�

1
2

R1
0 f ˘˚hMig2.�;�/˛2.�;�/d� ;

which rewrites as

EP

h
e�
R1
0 f ˘˚hMigdM j �.hMi/

i
D e� 12

R1
0 f ˘˚hMig2dhMi:

But the latter equality means that M is an Ocone martingale [(Example) 16.7.28].
Conversely, when M is an Ocone martingale, the latter equality prevails, and,

choosing f to be a generic, simple, deterministic function with compact support,
setting

 ˘ ˚hMi D f

j˛j ;

one obtains that

EP

h
e�
R1
0 f dB j �.hMi/

i
D e� 12

R1
0 f 2.�/d� ;

which proves that B and �.hMi/ are independent [138, p. 452].

Definition 16.7.25 Let N D WN ˘ hNi be a local martingale for A, starting at zero,
and divergent. When �1.N/ D �1.WN/, N is said to be a pure martingale.

Example 16.7.26 M D R
BdB is a pure martingale when B is a standard Brownian

motion. That claim may be checked as follows [252, p. 597]. One has that
hMi D R B2. Thus, by the change of time formula,

t D
Z t

0

hMi.
; d�/
B2.
; �/ D

Z hMi.�;t/
0

d�

B2 ˘ SM.
; �/ :
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Furthermore (Itô’s formula) B2 D 2M C t. Let N D B2 ˘ SM. Then

SM D
Z �
0

d�

N.
; �/ ; and N D 2WM C SM:

Let f .x; y/ D .2xC y/2. Then f .WM; SM/ D N2, so that (Itô’s formula again)

N2.
; t/ D
Z t

0

@f

@x
.WM; SM/dWM C

Z t

0

@f

@y
.WM; SM/dSM

C 1

2

Z t

0

@2f

@x2
.WM; SM/dt

D 4
Z t

0

N dWM C 6t:

By definition, N � 0, so that N2.
; t/ D 4 R t
0

p
N2dWMC6t, and N2 is the solution of

a stochastic differential equation which has the property that [223, Vol. 2, p. 69] N2

is adapted to the completion of the �-algebras generated by WM , say BM . But then
so is N, and, since N D 2WM C SM, so is SM also. Since SM.!; �/ � t is equivalent
to hMi.!; t/ � � , and since SM.
; �/ is a wide sense stopping time for � , fixed, but
arbitrary, hMi.
; t/ is adapted to BM

t . Consequently so is M D WM ˘ SM.

Example 16.7.27 The same calculation as that of (Example) 16.7.26 applies to

M D M1 CM2; Mi D
Z

BidBi; i 2 f1; 2g ;

where B1 and B2 are independent, standard Brownian motions. One has indeed, with
Bf2g D B21 C B22, that hMi D R �

0
Bf2g, and that

Bf2g D B21 C B22 D
�
2

Z
B1dB1 C t

�
C
�Z

B2dB2 C t

�
D 2M C 2t:

One may thus proceed replacing B2 with Bf2g.

Example 16.7.28 Suppose that N is a pure, continuous local martingale. When
the martingale M is orthogonal to N, and hMi is adapted to �.N/, it is then an
Ocone martingale. That claim may be checked as follows. Since M and N are
orthogonal, it follows from [264, p. 216] that WM and WN are independent. Since
furthermore �1.N/ D �1.WN/, WM and N are independent, and thus WM and hMi
are independent.

Example 16.7.29 M.
; t/ D R t
0

B1.
; �/B2.
; d�/ is an Ocone martingale when B1
and B2 are independent Brownian motions, but not when B1 D B2. Indeed, B1
is pure, and hMi.
; t/ D R t

0
B21.
; �/ d� is adapted to the �-algebras generated by

B1. Also B1 and M are orthogonal [(Example) 16.7.28]. On the other hand, when
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B1 D B2 D B, M D B2 � t and dhMi D B2dt, so that dSM D B�2dt and
WM D B2 ˘ SM � SM. Thus WM is adapted to B2, and thus to M. So M is pure.
But WM and SM are not independent.

Example 16.7.30 ([255]) Let F WRn �! Rn be a map, DŒF�, be its derivative, and
�ŒF� D DŒF�?. Suppose that, for x 2 Rn, fixed, but arbitrary,

�ŒF�.x/F.x/ D x; and hF.x/; xiRn D 0:

Let B be a standard Brownian motion with values in Rn, and set

M.!; t/ D
nX

iD1

Z t

0

Fi .B.!; �// Bi.!; d�/:

M is an Ocone martingale. A particular case is F.x/ D A.x/, where A is orthogonal
and antisymmetric, for example

A D
	
0 �1
1 0



:

That claim may be checked as follows. One has that

hMi.!; t/ D
Z t

0

nX
iD1

F2i .B.!; �// d�:

Let

˚.x/ D
nX

iD1
F2i .x/:

Then

@˚

@xk
.�/ D 2

nX
iD1

Fi.�/
@Fi

@xk
.�/;

so that, given the assumptions, DŒ˚�.�/ D 2F?.�/DŒF�.�/ D 2�?. Consequently,
D2Œ˚� D 2In, and Itô’s formula [56, p. 111] yields that

˚.B/.!; t/ D 2
nX

iD1

Z t

0

Bi.!; �/Bi.!; d�/C nt:
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Finally

hMi.!; t/ D
Z t

0

˚ .B.!; �// d�:

Let

N.!; t/ D ˚.B/.!; t/ � nt D 2
nX

iD1

Z t

0

Bi.!; �/Bi.!; d�/:

As seen in (Example) 16.7.27, N is a pure martingale, and hMi is adapted to the
filtration generated by N. Thus, if M and N are orthogonal, M is an Ocone martingale
because of (Example) 16.7.28. But

hM;Ni.
; t/ D
Z t

0

hF.B.
; �//;B.
; �/iRnd� D 0:

Example 16.7.31 Example 16.7.30 applies to the process 1
2

R t
0 fB1dB2 � B2dB1g, an

Ocone martingale.

16.8 The Uniqueness Class of Continuous Local Martingales

One finds below an answer to the following question, related to the second
fundamental property of the original Girsanov’s theorem: when does a continuous
local martingale have a law which is determined by its quadratic variation?

Definition 16.8.1 (Class M) All the martingales considered entering this section
shall be zero at the origin, have (almost surely) continuous paths, and be divergent.
They form the class M.

Definition 16.8.2 (Class P) P shall be the class of laws L.M/; M 2M, with the
following property:

ŒN 2M and L.hNi/ D L.hMi/� H) ŒL.N/ D L.M/� :

Remark 16.8.3 The probability space for N in (Definition) 16.8.2 may be different
from that for M.

Proposition 16.8.4 The following obtain:

1. when L.M/ 2 P , M is an Ocone martingale;
2. L.M/ 2 P if, and only if,

ŒN 2M and L.hNi/ D L.hMi/� H) N is an Ocone martingale.
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Proof Suppose that L.M/ 2 P , and let N D JM fg, as defined in (Definition)
16.7.7. Since then, as 2 D 1, hNi D hMi, and that L.M/ 2 P , it follows
that L.N/ D L.M/, so that M is ˚ invariant. But then, because of (Example)
16.7.28, (Remark) 16.7.15, and (Proposition) 16.7.16, M is an Ocone martingale.

Suppose now that L.M/ 2 P , and that N 2M is such that L.hNi/ D L.hMi/.
By assumption and definition L.N/ D L.M/. Using (Proposition) 16.7.17, one thus
sees that N is an Ocone martingale.

Suppose finally that both N 2 M and L.hNi/ D L.hMi/ imply that N is
an Ocone martingale. Choosing for N, IM ff�g, as defined in (Definition) 16.7.1,
one has that the latter is an Ocone martingale, and, as such, F -invariant. Thus
[(Proposition) 16.7.16], for appropriate � , IIMff� g ff� g has the same law as IM ff�g.
But [(Remark) 16.7.4], when � D � , IIMff� g ff� g D M.
; t/. M is thus an
Ocone martingale [(Proposition) 16.7.16]. However, two Ocone martingales, whose
associated increasing processes have the same law, have themselves the same law.
Thus L.M/ 2 P . ut
Definition 16.8.5 One shall use below the following maps:

1. Ta: a 2 R, fixed, but arbitrary,

Ta.x/ D xC a; x 2 RI

2. F�: � > 0, f W RC �! R, fixed, but arbitrary,

F�Œ f �.t/ D �Œ�;1Œ
.t/f .T��.t//I

3. G�: G�Œ f �.t/ D f .T�.t//.

Remark 16.8.6 In (Definition) 16.8.5, for F�Œ f � to yield a continuous function, one
must have f .0/ D 0. Furthermore G� ı F� is the identity.

Proposition 16.8.7 Let � > 0, M 2M be fixed, but arbitrary, and

hMi�.!; t/ D F�ŒhMi.!; 
/�.t/:

Suppose that N 2 M is such that L.hNi/ D L.hMi�/. Then L.M/ 2 P implies
L.N/ 2 P .

Proof The definition of hMi� makes sense as hMi.
; 0/ D 0. Let, for the filtration
�.N/, N D WN ˘ hNi. Set

hNi�.!; t/ D G�ŒhNi.!; 
/�.t/;

BN
t D �CSN .�;t/.N/:
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For t 2 RC, fixed, but arbitrary, hNi�.
; t/ is a strict stopping time for the filtration
BN . Indeed, one must have, for ˛ 2 RC, fixed, but arbitrary,

f! 2 ˝ W hNi�.!; t/ � ˛g 2 BN
˛:

That is equivalent to [(Proposition) 10.2.26] for fixed, but arbitrary � 2 RC,

f! 2 ˝ W hNi�.!; t/ � ˛g \ f! 2 ˝ W SN.!; ˛/ < �g 2 �� .N/:

Since SN.
; ˛/ is a wide sense stopping time, the second set in the latter intersection
is indeed in �� .N/. Since hNi is continuous [(Fact) 10.3.27],

f! 2 ˝ W SN.!; ˛/ < �g D f! 2 ˝ W hNi.!; �/ > ˛g :

It follows that tC � � � , and thus the first set in the latter intersection is in �� .N/.
The process N� D WN ˘ hNi� is thus well defined, belongs to M, and has

quadratic variation hNi� . Furthermore

PhMi� D PF�ıhMi D PhMi ı F�1� ;

and

QhN�i D QG�ıhNi D QhNi ı G�1� :

But, by assumption, QhNi D PhMi� so that

QhN�i D PhMi ı F�1� ı G�1� D PhMi ı fG� ı F�g�1 D PhMi:

Thus, for � > 0, fixed, but arbitrary, N� is an Ocone martingale [(Proposition)
16.8.4]. It follows, taking the limit, as � goes to zero, using (Proposition) 16.7.17,
that N is an Ocone martingale, and thus that L.N/ 2 P [(Proposition) 16.8.4 again].

ut
Lemma 16.8.8 Let M and N belong to M. When L.hMi/ D L.hNi/,
1. L.SM/ D L.SN/;
2. when �1.hMi/ D �0.SM/, then, provided the �-algebras involved are complete,
�1.hNi/ D �0.SN/.

Proof The first item follows from the fact that hMi.
; t/ > � if, and only if,
SM.
; �/ < t [(Fact) 10.3.27], the second from equalities of the following type
(equality in law may occur for different probability spaces):

0 D EP
�ˇ̌
�B1
.hMi.
; t//� �B2

.SM.
; 0//
ˇ̌�

D EQ
�ˇ̌
�B1
.hNi.
; t//� �B2

.SN.
; 0//
ˇ̌�
;

and the fact that SM.
; 0/ D inf f� � 0 W hMi.
; �/ > 0g. ut
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Proposition 16.8.9 Let M 2M be fixed, but arbitrary. When

�1.hMi/ D �0.SM/;

then L.M/ 2 P .

Proof Since WM , the DDS Brownian motion of M, is a standard Brownian motion
with respect to the family n

BM
t D ACSM.�;t/; t � 0

o
;

it is independent of BM
0 . But then, by assumption, since �0.SM/ � BM

0 , it is
independent of �1.hMi/. M is thus an Ocone martingale. Let N 2 M be such
that L.hNi/ D L.hMi/. Because of (Lemma) 16.8.8, it is an Ocone martingale for
the same reason M is one. But then, because of (Proposition) 16.8.4,L.M/ 2 P . ut
Example 16.8.10 Let f ; g W RC �! RC be continuous, increasing functions,
starting at zero, but not identically equal to it, nor equal, and let

nf D inf f� � 0 W f .�/ > 0g ; ng D inf f� � 0 W g.�/ > 0g :

Let X be a random variable such that P.X D 0/ D P.X D 1/ D 1
2
. Define the

following sets: ˝0 D f! 2 ˝ W X.!/ D 0g, ˝1 D f! 2 ˝ W X.!/ D 1g. Set

V.!; t/ D �˝0 .!/ f .t/C �˝1 .!/g.t/;

and choose a standard Brownian motion W, independent of X, to define the
following Ocone martingale:

M D W ˘ V:

Then hMi D V . Denote  the inverse of f (.t/ D inf f� W f .�/ > tg), and � , the
inverse of g (�.t/ D inf f� W g.�/ > tg). Then:

SM.!; t/ D inf f� � 0 W hMi.!; �/ > tg D �˝0 .!/.t/C �˝1 .!/�.t/:

In particular SM.!; 0/ D �˝0 .!/nf C �˝1 .!/ng.
Since, for some t > 0, hMi.!; t/ > 0, �t.hMi/ D �.X/. When either one of

nf and ng is different from zero, �0.SM/ D �.X/ (otherwise �0.SM/ is the trivial
�-field).

Finally, when Pf is the law of the following map: .!; t/ 7! W.!; f .t//, and Pg,
that of the following one: .!; t/ 7! W.!; g.t//, PM D 1

2

˚
Pf C Pg

�
, a law that is not



1068 16 Scope of Signal Plus “White Noise” Model (III)

Gaussian as, for example,

EP
�
e��M.�;t/� D 1

2

�
e�

�2

2 f .t/ C e�
�2

2 g.t/

�
:

Also L.hMi/ D 1
2

˚
ıf C ıg

�
.

Suppose now that N 2 M, on .
;B;Q/, is such that L.hNi/ D 1
2

˚
ıf C ıg

�
.

Let 
f D f� 2 
 W hNi.�; 
/ D f g, and define 
g analogously. Let also Y D 0 on

f , and Y D 1 on 
g. Y is not obviously independent of WN . But, as seen, one
has that �1.hMi/ D �0.SM/, so that [(Proposition) 16.8.9] L.M/ 2 P , and thus
L.N/ D L.M/. Consequently, WN and Y are indeed independent.

Let now � be strictly positive, and N be an Ocone martingale for which L.hNi/ is
L.hMi�/. Then [(Proposition) 16.8.7] L.N/ 2 P . Thus, since L.hNi/ D L.hMi�/,
SN.
; 0/ equals either � C nf or � C ng. Now �0.SN/ D �.X/. And �0.hNi/ is
the trivial �-algebra. Thus �0.hNi/ ¤ �0.SN/, but �1.hNi/ D �0.SN/, and thus
�1.hNi/ ¤ �0.hNi/.
Proposition 16.8.11 Let M 2M, for the filtration B, be such that

hMi.
; t/ D
Z t

0

f 2.
; �/d�;

where f is progressively measurable for B, and, almost surely, with respect to the
product of P with Lebesgue measure, f .!; t/ > 0. Then, when L.M/ 2 P , and B is
any Brownian motion for B, hMi and B are independent.

Proof Let W be a Brownian motion independent of B1. One may make such an
assumption as, when necessary, one can embed the basic space˝ into˝ �C.RC/,
and use, on the latter, the process of evaluation maps with respect to PW , the Wiener
measure. Let

Ft D Bt _ �t.W/;

and

NB.
; t/ D
Z t

0

f .
; �/B.
; d�/; NW.
; t/ D
Z t

0

f .
; �/W.
; d�/;

defined as integrals with respect to F , which makes sense, as B1 and W are
independent. One has, [237, p. 421], for example, that, for t1 < t2, fixed, but
arbitrary,

EP ŒNB.
; t2/ j Ft1 � D EP ŒNB.
; t2/ j Bt1 � D NB.
; t1/:
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Thus NB and NW are martingales with respect to F . Furthermore

hNBi.
; t/ D
Z t

0

f 2.
; �/d�; hNWi.
; t/ D
Z t

0

f 2.
; �/d�; (?)

and

B.
; t/ D
Z t

0

NB.
; d�/
f .
; �/ ; W.
; t/ D

Z t

0

NW .
; d�/
f .
; �/ :

Because of (?), f is adapted to �.NB/ and to �.NW/. Since f > 0, 1=f is locally
bounded, and the integrals yielding B and W may be taken as integrals with
respect to the �-fields generated by NB and NW [216, p. 175], so that B is adapted
to �.NB/, and W, to �.NW/. Given the assumption L.M/ 2 P , and that (?)
hNBi D hNWi D hMi,

L.NB/ D L.M/ D L.NW /:

Consequently [(Lemma) 16.7.11]

L.NB; hNBi/ D L.M; hMi/ D L.NW ; hNWi/:

Since B is adapted to �.NB/, and W, to �.NW/, B is an “explicit” functional of NB,
and W, one of NW , so that

L.B; hMi/ D L.W; hMi/:

Indeed [141, p. 345], f 2 is the limit of expressions of the following type:

n
˚hMi.!; tC n�1/� hMi.!; t/� :

But then B and hMi are independent as W and hMi are. ut
Lemma 16.8.12 Let X and Y be random elements, and suppose that EŒX� makes
sense. Then, both

(a) X and Y independent, and
(b) X adapted to �.Y/,

mean X constant.

Proof Independence means that E ŒX j �.Y/� D EŒX�. Adaptation means that
E ŒX j �.Y/� D X. Thus X D EŒX�. ut
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Proposition 16.8.13 Let M 2M have the following properties:

1. L.M/ 2 P;
2. hMi.
; t/ D R t

0
f 2.
; �/d� , with f progressively measurable, and, with respect to

the product of P and Lebesgue measure, almost surely strictly positive;
3. hMi is adapted to the filtration generated by a finite, or countable, number of

independent standard Brownian motions (denoted Bi).

Then hMi is a function of t 2 RC only.

Proof Let n be fixed, finite, and smaller than the number of Brownian motions of
the assumption, and f W RC �! Rn be a vector of bounded measurable functions
fi; i 2 Œ1 W n�, with the property that, for t 2 RC, fixed, but arbitrary,ˇ̌̌̌̌̌

f .t/
ˇ̌̌̌̌̌
Rn
> 0 :

Let i.t/ D fi.t/=
ˇ̌̌̌̌̌
f .t/

ˇ̌̌̌̌̌
Rn

, and W.
; t/ D Pn
iD1

R t
0
i.�/Bi.
; �/. W is a standard

Brownian motion. Because of (Proposition) 16.8.11, W is independent of hMi, and
so then is

ˇ̌̌̌̌̌
f .t/

ˇ̌̌̌̌̌
Rn

W.
; t/ D
nX

iD1

Z t

0

fi.�/Bi.
; �/:

For t 2 RC, fixed, but arbitrary, let Ft W C.RC/ �! R be a positive functional
adapted to Ct. Then, because of independence,

EP

h
Ft.hMi/e

Pn
iD1

R t
0 fi.�/ Bi.d�/

i
D EP ŒFt.hMi/�EP

h
e
Pn

iD1

R t
0 fi.�/Bi.d�/

i
:

hMi and B are thus independent. Since hMi has been assumed to be adapted to the
�-algebras generated by the Bi’s, hMi.
; t/ D hMi.t/ [(Lemma) 16.8.12]. ut
Proposition 16.8.14 Let M be a continuous local martingale such that

(a) �0.SM/ is essentially degenerate;
(b) L.M/ 2 P .

Then hMi is deterministic.

Proof Since M is continuous, �1.SM/ is essentially separable. Then, because
of (Proposition) 16.5.33, there is W, a Brownian motion such that �t.SM/ � �t.W/.
Since hMi is a change of time for �.SM/ [128, p. 103], it is one for �.W/. The local
martingale QM D W ˘ hMi has hMi as increasing process. But then (Proposition
16.8.4 and Assumption (b)), QM is an Ocone martingale, that is, hMi is independent
of W. Since hMi is adapted to �1.W/, it must be deterministic [(Lemma) 16.8.12].

ut
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Proposition 16.8.15 Let M be a continuous, local martingale, for the space
.˝; �.M/;P/, and Q � P be such that � D dQ

dP is adapted to �1.hMi/. When
M is an Ocone martingale for P, it is also one for Q.

Proof Let DM.
; t/ D EP Œ� j �t.M/�, and DhMi.
; t/ D EP Œ� j �t.hMi/�. Since
M is an Ocone local martingale, and DhMi is adapted to �.hMi/, then because
of (Proposition) 16.7.23, DhMi is a martingale for �.M/, and hDhMi;Mi D 0. In
particular, for t1 < t2, fixed, but arbitrary,

EP
�
DhMi.
; t2/ j �t1 .M/

� D DhMi.
; t1/:

Letting t2 increase indefinitely, since� is adapted to �1.hMi/, DhMi.
; t2/ converges
to� in L1, and thus DM.
; t/ D DhMi.
; t/. Then, as a consequence, as, as seen above,
hDhMi;Mi D 0, hDM;Mi D 0, and DMM is a local martingale. But then M is a local
martingale for Q [128, p. 339].

Let U 2 �1.WM/, and V 2 �1.hMi/, be bounded, fixed, but arbitrary. Then

EQ ŒUV�
.1/D EP ŒUV��

.2/D EP ŒU�EP ŒV��

.3/D EP ŒU�EP ŒV��EP Œ��

.4/D EP ŒU��EP ŒV��

.5/D EQ ŒU�EQ ŒV� ;

where equalities (1) and (5) follow from the definition of Q, (2) and (4), from
independence (of U from V�, as � is adapted to �1.hMi/, and (3), from the fact
that the expectation of � is one. Thus WM and hMi are independent with respect to
Q, and M is an Ocone martingale for Q. ut
Proposition 16.8.16 Let M be a continuous, local martingale for the space
.˝; �.M/;P/, and Q, a probability measure equivalent to P (mutually absolutely
continuous), with Radon-Nikodým derivative � D dQ

dP , adapted to �1.hMi/. Then
LP.M/ 2 P if, and only if, LQ.M/ 2 P .

Proof By assumption, for some adapted ˚ ,

� D ˚.hMi.
; ti/; i 2 I � N/:

Let QM be a continuous, local martingale for the space .
; �. QM/; QQ/, such that
L QQ.h QMi/ D LQ.hMi/. One must prove that L QQ. QM/ 2 P .
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To that end, let

Q� D ˚.h QMi.
; ti/; i 2 I � N/;

d QP D Q��1d QQ;
QD.
; t/ D E QQ

� Q��1 j �t. QM/
�
:

The definition of QP makes sense as

QQ �˚˚.h QMi.
; ti/; i 2 I � N/ > 0
�� D Q .f˚.hMi.
; ti/; i 2 I � N/ > 0g/
D P .f˚.hMi.
; ti/; i 2 I � N/ > 0g/
D 1:

For bounded, fixed, but arbitrary �.h QMi.
; �j/; j 2 J � N/, one has that

E QP
�
�.h QMi.
; �j/; j 2 J � N/

� D E QQ
�
�.h QMi.
; �j/; j 2 J � N/ Q��1�

D EQ
�
�.hMi.
; �j/; j 2 J � N/��1

�
D EP

�
�.hMi.
; �j/; j 2 J � N/

�
;

that is,

L QP.h QMi/ D LP.hMi/: (?)

Since QP is equivalent to QQ, with derivative Q��1, the process

QN.
; t/ D QM.
; t/ �
Z t

0

1

QD.
; �/ dh QM; QDi

is, with respect to QP, by Girsanov’s theorem, a local martingale such that h QNi D h QMi.
But then, from (?), L QP.h QNi/ D LP.hMi/. Since LP.M/ 2 P , L QP. QN/ D LP.M/,
and, because of (Proposition) 16.8.4, QN is an Ocone martingale for QP. Consequently
[(Proposition) 16.8.15], QN is an Ocone martingale for QQ. Furthermore, since, with
respect to QP, h QNi D h QMi, and that QP and QQ are equivalent, equality is also valid with
respect to QQ, and thus, from (Proposition) 16.8.15 again, L QQ. QM/ 2 P . ut
Remark 16.8.17 Let Ct denote the �-algebra of C.RC/ generated by the evaluation
maps up to time t. C1 denotes �.[tCt/. Given a probability P, Ns.C1;P/ is the
family of subsets of sets in C1 which have P-measure zero. Given a filtration of
elements Ft, in C1, the resulting “usual conditions” filtration has elements [70,
p. 183] FP

t D FCt _Ns.C1;P/.
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Let

q.c; t/ D lim sup
n

X
i

˚
c
�
t.n/iC1 ^ t

� � c
�
t.n/i ^ t

��2

D lim sup
n

X
i

�
E

t
.n/
iC1^ t

.c/� E
t
.n/
i ^ t

.c/

� 2
;

where the t.n/i ’s form a partition of RC whose largest step goes to zero with n. With
respect to any probability ˘ for which the evaluation maps are a local martingale
[264, p. 101],

q.E˘.c; 
/; t/ D hE˘i.c; t/:

Set

SE˘ .c; t/ D inf f� � 0 W hE˘i.c; �/ > tg ; St D �t.SE˘ /:

S˘
t has a part, SCt , which is independent of ˘ (but it is the presence of ˘ which

gives q its meaning), and a part, Ns.C1; ˘/ which is strictly dependent on ˘ .
Thus, when given two probabilities, P and Q, on C1, with Q � P, one shall
have SP

t � SQ
t . The �-algebra �0.SEP/ is, in fact, SP

0 . The latter notation is hopefully
useful for the proof which follows.

Proposition 16.8.18 Let M ŒC.RC/� be the family (convex set) of probability
measures for which the evaluation map process E is a local martingale. When the
measure is P, E is then denoted EP, so that L.EP/ D P.

Let P 2 M ŒC.RC/� be fixed, but arbitrary, and Q be a probability on �1.EP/

that is absolutely continuous with respect to P. Suppose that � D dQ
dP is adapted to

�0.SEP/. Then:

1. Q 2 M ŒC.RC/�;
2. P 2 P implies Q 2 P .

Proof Let [(Fact) 10.3.45] WEP D EP ˘ SEP be the DDS Brownian motion for EP;
t1 < t2 be fixed, but arbitrary in RC; and ˚ be a bounded functional adapted to
�SEP .�;t1/.EP/. Then, since � is adapted to �0.SEP/,

EQ ŒfWEP.
; t2/�WEP.
; t1/g˚� D EP ŒfWEP.
; t2/�WEP.
; t1/g˚�� D 0:

Thus, with respect to Q, and the filtration with entries �t.SEP/, WEP is a continuous
martingale. For the same reason, W2

EP
.
; t/ � t is a martingale for Q. But then the

evaluation process is a continuous, local martingale, as a time changed Wiener
process.

Item 2 has already been proved [(Proposition) 16.8.16] for the case of mutual
absolute continuity. Suppose thus that P.� D 0/ > 0.
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Let QQ 2 M ŒC.RC/� have the property that

L QQ.hE QQi/ D LQ.hEQi/: (?)

Since� is adapted to SP
0 , it is, as seen [(Remark) 16.8.17], adapted to SQ

0 , and there
are [70, p. 49] �l and �u, adapted to SC0 , for which�l � � � �u and

Q.�u ��l > 0/ D 0:

But, because of assumption (?), QQ.�u � �l > 0/ D 0, so that � is adapted to S QQ0 ,
and the following assignments make sense:

d OQ D �
f�>0g

�
d QQC �

f�D0g
dP;

d OQ1 D �
f�>0g

P.�>0/� d QQ;

d OQ2 D �
f�D0g

P.�D0/ dP;

so that

d OQ D P.� > 0/d OQ1 C P.� D 0/d OQ2:

Since, by assumption, QQ belongs to M ŒC.RC/�, that OQ1 is absolutely continuous
with respect to QQ, and that, by construction, the corresponding Radon-Nikodým
derivative is adapted to

�0.SE QQ/;

because of item 1, OQ1 belongs to M ŒC.RC/�. For the same reasons, OQ2 belongs to
M ŒC.RC/�, so that, since the latter is convex, OQ belongs to M ŒC.RC/�.

Let 	 D ˚
q.c; �1/ 2 B1; : : : ; q.c; �p/ 2 Bp

�
, the Bi’s being Borel. Then, since it

is assumed that L QQ.hEi QQ/ D LQ.hEiQ/,

OQ.	 / D
Z
	\f�>0g

d QQ
�
C P.	 \ f� D 0g/

D
Z
	\f�>0g

dQ

�
C P.	 \ f� D 0g/

D
Z
	\f�>0g

�dP

�
C P.	 \ f� D 0g/

D P.	 /:
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Consequently, L OQ.hE OQi/ D LP.hEPi/. But then, when P 2 P , OQ 2 P , and, since
there is only one probability on C.RC/which makes the evaluation process a Wiener
process, OQ D P. Thus

dP D �
f�>0g

�
d QQC �

f�D0g
dP;

so that

�
f�>0g

�dP D �
f�>0g

d QQ;

or

�
f�>0g

dQ D �
f�>0g

d QQ:

But f� > 0g is the support of Q, so that 1 D Q.f� > 0g/ D QQ.f� > 0g/, and
f� > 0g is also the support of QQ, hence QQ D Q, or Q 2 P . ut
Definition 16.8.19 The sign function sŒ
� is the function

sŒx� D �
�0;1Œ

.x/ � �
��1;0�

.x/:

Given a Brownian motion W, and a decreasing sequence of indices, say˚
tn; n 2 Z�0

� � �0;1Œ, one shall write V0 D 1 and

Vn D sŒW.
; tnC1/�W.
; tn/�: (?)

Lemma 16.8.20 Let t1 < t2 in �0;1Œ, be fixed, but arbitrary; U be a random
variable for which P.U D 1/ D P.U D �1/ D 1

2
; and W be a Brownian motion

independent of U. There exists then a Brownian motion B such that

1. s ŒB.
; t2/� B.
; t1/� D U,
2. �1.B/ D �1.W/ _ �.U/,
3. W is a Brownian motion for �.B/.

Proof Let
˚
tn; n 2 Z�0

� ��0;1Œ be a decreasing sequence with t0 D t2 and t�1 D t1.
Let also, Vn being defined at (?) of (Definition) 16.8.19, for n 2 Z�0 ,

QV0 D 1;
QVn D V�1 
 
 
Vn;

U0 D U;

Un D U QVn:
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Un is thus a function of U and

W.
; t0/ �W.
; t�1/;W.
; t�1/ �W.
; t�2/; : : : ;W.
; tnC1/ �W.
; tn/:

As a first step, one proves that Un and W are independent. For bounded, adapted
functionals, denoted ˚ and � , one has that

EP Œ˚.W/�.Un/� D
D EP

�
˚.W/�.1/

˚
�
f1g
.U/�

f1g
. QVn/C �f�1g.U/�f�1g. QVn/

��
C EP

�
˚.W/�.�1/ ˚�

f1g
.U/�

f�1g
. QVn/C �f�1g.U/�f1g. QVn/

��
D �.1/EP

�
˚.W/

˚
�
f1g
.U/�

f1g
. QVn/C �f�1g.U/�f�1g. QVn/

��
C �.�1/EP

�
˚.W/

˚
�
f1g
.U/�

f�1g
. QVn/C �f�1g.U/�f1g. QVn/

��
:

Now, for example,

EP
�
˚.W/

˚
�
f1g
.U/�

f1g
. QVn/C �f�1g.U/�f�1g. QVn/

��
D EP

�
�
f1g
.U/

�
EP
�
˚.W/�

f1g
. QVn/

�
C EP

�
�
f�1g

.U/
�

EP
�
˚.W/�

f�1g
. QVn/

�
D 1

2
EP
�
˚.W/

˚
�
f1g
. QVn/C �f�1g. QVn/

��
D 1

2
EP Œ˚.W/� :

The same calculation yields that EP Œ�.Un/� D EP Œ�.U/�, so that

EP Œ˚.W/�.Un/� D EP Œ˚.W/�EP Œ�.Un/� :

Let

� .!; t/ D
X

n2Z�0
�
�tn ;tnC1�

.t/Un C ��t0;1Œ
.t/U0;

B.
; t/ D
Z t

0

� .
; �/W.
; d�/:

Let p.t/ be the integer for which t 2�tp.t/; tp.t/C1� (when t 2�t0;1Œ, one sets tp.t/ D t0,
and tp.t/C1 D 1). By definition of the integral,

B.
; t/ D Up.t/
˚
W.
; t/ �W.
; tp.t//

�CX
i<p.t/

Ui fW.
; tiC1/�W.
; ti/g :
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Thus, when �1 < �2,

B.
; �2/ � B.
; �1/ D Up.�2/
˚
W.
; �2/�W.
; tp.�2/

�
C

p.�2/�1X
iDp.�1/C1

Ui fW.
; tiC1 �W.
; ti/g

C Up.�1/
˚
W.
; tp.�1/C1 �W.
; �1/

�
:

In particular,

B.
; t0/ � B.
; t�1/ D
D U�1 .W.
; t0/ �W.
; t�1//
D U fs ŒW.
; t0/ �W.
; t�1/�g .W.
; t0/�W.
; t�1// ;

so that sŒB.
; t0/� B.
; t�1� D s.U/ D U0. Also

B.
; t�1/ � B.
; t�2/ D
D U�2 .W.
; t�1/ �W.
; t�2//
D U�1V�2 .W.
; t�1/ �W.
; t�2//
D U�1 fs ŒW.
; t�1/ �W.
; t�2/�g .W.
; t�1/�W.
; t�2// ;

so that sŒB.
; t�1/ � B.
; t�2/� D s.U�1/ D U�1. And so forth . . . Consequently

s ŒB.
; tn/� B.
; tn�1/� D Un;

and thus Un is adapted to �tn.B/.
Furthermore, when t belongs to �tn; tnC1�,

B.
; t/ � B.
; tn/ D Un .W.
; t/ �W.
; tn// :

Let, when t 2 Œtn; tnC1Œ,

Bt D �t.W/ _ �.Un/;

where �t.W/ and �.Un/ are complete. Then, since W and Un are independent, one
has that [53, p. 29]

\�>0 f�tC�.W/ _ �.Un/g D f\�>0�tC�.W/g _ �.Un/ D �t.W/ _ �.Un/;

and B satisfies the usual conditions.
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One must now check that B is a Brownian motion for B. To that end one applies
the procedure used in the interval by interval construction of Brownian motion, as
described in (Remark) 16.5.32. Let t 2�tp.t/; tp.t/C1�, and u 2 f�1; 1g, be fixed, but
arbitrary. Then, given a functional ˚tp.t/ .W/, adapted to �tp.t/ .W/, using the fact that
Up and W are independent,

EP

	˚
B.
; t/� B.
; tp.t//

�
�fUp.t/Dug˚tp.t/ .W/



D

D EP

	
Up.t/ �fUp.t/Dug

˚
W.
; t/ �W.
; tp.t//

�
˚tp.t/ .W/




D EP

	
Up.t/ �fUp.t/Dug



EP
�˚

W.
; t/ �W.
; tp.t//
�
˚tp.t/ .W/

�
D 0:

B is, by construction, continuous, and its quadratic variation is t. It is thus a
Brownian motion. One consequence is that �t.B/ � Bt.

Since, when t 2�tp.t/; tp.t/C1�, � .
; t/ D Up.t/, and that Bt D �t.W/_ �.Up.t//, the
process � is adapted to B. Then the following integral is well defined, and its value
is, as � 2 D 1, Z

� dB D
Z
� 2dW D W:

But, when t 2�tp.t/; tp.t/C1�,

W.
; t/ D
Z t

0

� .
; �/B.
; d�/

D Up.t/.
/ fB.
; t/� B.
; tn/g C
X

i<p.t/

Ui.
/ fB.
; tiC1/ � B.
; ti/g ;

so that, given that Up.t/ is adapted to �p.t/.B/, as seen above, W.
; t/ is adapted to
�t.B/. Consequently,

�t.B/ � Bt D �t.W/ _ �.Up.t// � �t.B/:

W is thus a Brownian motion for �.B/. Finally, since, for t > t0,

Bt D �t.W/ _ �.Up.t// D �t.W/ _ �.U/ � �1.W/ _ �.U/;
B1 � �1.W/ _ �.U/. Furthermore �.U/ � Bt � B1, and, since �t.W/ � Bt,
�1.W/ � B1, so that

�1.W/ _ �.U/ � B1:

ut
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Lemma 16.8.21 Let � > 0 be fixed, but arbitrary, and M be a continuous, local
martingale, with L.M/ 2 P . Let M� D WM� ˘ hM�i be a continuous, local
martingale (which may be based on a distinct probability space) such that hM�i
has the same law as

V.
; t/ D �
Œ0;��
.t/ tC �

��;1�
.t/ f� C hMi.
; t � �/g :

Then hM�i is independent of � .WM� .
; tC �/ �WM� .
; �/; t 2 RC/.

Proof Result (Fact) 10.3.45, given the basic prevailing assumptions for the mar-
tingales one works with, and, in particular, the fact that filtrations obey the usual
conditions, says that WM� is a Brownian motion for the filtration with entries
�SM� .�;t/.M�/ [221, p. 181], and, for the latter, hM�i.
; t/ is a stopping time [216,
p. 99]. Then [strong Markov property of Brownian motion] [216, p. 23]:

X.
; t/ D WM� .
; tC �/ �WM� .
; �/

is a Brownian motion for the filtration with entries �SM� .�;tC�/.M�/, and, for the latter,
hM�i.
; tC �/ is a stopping time. Thus

fhM�i.
; tC �/ � � � ˛g D fhM�i.
; tC �/ � ˛ C �g 2 �SM� .�;˛C�/.M�/;

and

Y.
; t/ D X.
; hM�i.
; tC �/ � �/

is a change of time on a Brownian motion, and thus a continuous, local martingale,
so that hYi is well defined, with value hM�i.
; 
 C �/ � �. Now, by assumption,

hM�i.
; tC �/ � � and V.
; tC �/ � � D hMi.
; t/

have the same law. Thus L.hYi/ D L.hMi/, and, since, by assumption, the
martingale M belongs to P , Y is an Ocone martingale [(Proposition) 16.8.4]. Thus
hM�i.
; 
 C �/ � � is independent of X. ut
What follows is one characterization property of continuous, divergent, local
martingales whose law is determined by their associated increasing process: they
are Ocone martingales with a restriction on the related increasing process. A second
one follows which involves the predictable representation property.

Proposition 16.8.22 Let M be a continuous, divergent, local martingale. Then
LP.M/ 2 P if, and only if, �1.hMi/ D �0.SM/. Furthermore LP.M/ is Gaussian if,
and only if, �0.SM/ is essentially degenerate.

Proof The Gaussian part of the statement follows from the first part, and the fact that
a Gaussian martingale has a quadratic variation which is deterministic (in the sense
of not random). Because of (Proposition) 16.8.9, one need only prove that LP.M/ 2
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P implies the equality �1.hMi/ D �0.SM/. Since hMi is continuous, SM.
; t/ < �

if, and only if, hMi.
; �/ > t [(Fact) 10.3.27], and thus �1.hMi/ D �1.SM/. The
conclusion then becomes �1.SM/ D �0.SM/.

Proof Assume, to begin with, that �0.SM/ is essentially degenerate.

As just seen, it suffices to prove that, for t > 0, fixed, but arbitrary, �t.SM/ is
essentially degenerate.

Suppose that there exists t0 > 0, and ˝t0 2 �t0 .SM/, such that

0 < P.˝t0 / < 1:

Let

� D 1

2

�
�˝t0

P.˝t0/
C

�
˝c

t0

P.˝c
t0/

�
;

and

dQ D �dP:

Since � is strictly positive, P and Q are mutually absolutely continuous. Since �
is adapted to �t0 .SM/, it is to �1.SM/, which is, as seen above �1.hMi/. But then,
since it is assumed that LP.M/ 2 P , because of (Proposition) 16.8.16, LQ.M/ 2 P .

From the definition of � one has also that Q.˝t0 / D 1
2
.

Let 0 < t�1 < t0 be fixed, but arbitrary, and

L.
; t/ D �
Œ0;t�1�

.t/ tC �
�t�1;1Œ

.t/ fhMi.
; t � t�1/C t�1g :

The symbol� shall denote the inverse of L. By definition,�.
; t�1/ D SM.
; 0/, and,
since �0.SM/ is, by assumption, essentially degenerate,˝t0 2 �t0 .SM/ is independent
of �0.SM/ D �t�1 .�/.

Let

U D �˝t0
� �

˝c
t0
:

One has that Q.U D 1/ D Q.U D �1/ D 1
2
. Also, with respect to Q, U

and WM are independent. Indeed, since LQ.M/ 2 P , M is an Ocone martingale
for Q [(Proposition) 16.8.4], and thus, for Q, WM and SM are independent. But
˝t0 2 �t0 .SM/.

Let B be the Brownian motion obtained from U and WM as in (Lemma) 16.8.20
(the notation which follows is as explained there).

Let Ct D �t.B/ _ �t.�/ (the latter completed, and made continuous to the
right). Since ˝t0 is a set independent of �t�1 .�/, one shall presently see that B
is a Brownian motion for C. Let indeed t 2 �tn; tnC1�, ˚�;tn be bounded and adapted
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to �tn.�/, �WM ;tn be bounded and adapted to �tn.WM/, � be bounded and adapted to
the Borel sets of the reals. For n 2 Z�0 , let Un D U QVn, where

QVn D
nC1Y
nD0

s ŒB.
; tn/� B.
; tn�1/� :

Then, using properties evidenced in the proof of (Lemma) 16.8.20,

Xn;t D EQ Œ.B.
; t/� B.
; tn// ˚�;tn�WM ;tn� .Un/�

D EQ ŒUn .WM.
; t/�WM.
; tn// ˚�;tn�WM ;tn� .Un/�

D EQ

h
�˝t0
QVn .WM.
; t/ �WM.
; tn// ˚�;tn�WM ;tn� . QVn/

i
� EQ

h
�
˝c

t0

QVn .WM.
; t/ �WM.
; tn// ˚�;tn�WM ;tn� .� QVn/
i

D EQ

h
�˝t0

˚�;tn

i
EQ
� QVn .WM.
; t/�WM.
; tn// �WM ;tn� .

QVn/
�

� EQ

h
�
˝c

t0
˚�;tn

i
EQ
� QVn .WM.
; t/�WM.
; tn// �WM ;tn� .� QVn/

�
:

As QV0 D 1, X0;t has EQ Œ.WM.
; t/ �WM.
; t0// �WM ;t0 � as factor, which is zero. When
n � �1, as ˝t0 is independent of �t�1 .�/,

EQ

h
�˝t0

˚�;tn

i
D 1

2
EQ Œ˚�;tn � ;

so that

Xn;t D 1

2
EQ Œ˚�;tn �

˚
EQ
� QVn .WM.
; t/�WM.
; tn// �WM ;tn� .

QVn/
�

�EQ
� QVn .WM.
; t/�WM.
; tn// �WM ;tn� .� QVn/

��
:

But U is independent of WM , so that, because of (Lemma) 16.8.20, and as in its
proof,

Xn;t D EQ Œ˚�;tn �EQ ŒUn .WM.
; t/ �WM.
; tn// �WM ;tn� .Un/�

D EQ Œ˚�;tn �EQ Œ.B.
; t/ � B.
; tn// �WM ;tn� .Un/�

D EQ Œ˚�;tn � � 0
D 0:
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Now, since L is a continuous change of time, fL.
; �/ � tg D f�.
; t/ � �g, so that
L is a continuous change of time for C. Hence, since [149, p. 344], for time changes
� , �Z

V dX

�
˘ � D

Z
fV ˘ �g d fX ˘ �g ;

and that B D R
� dWM, Mt�1 D B ˘ L is a continuous, local martingale,

and hMt�1i D L. Thus [(Fact) 10.3.45], B ˘ L is the Dambis-Dubins-Schwarz
representation of Mt�1 , and, because of (Lemma) 16.8.21, hMt�1i is independent
of the �-algebra

�.WMt�1
.
; � C t�1/ �WMt�1

.
; t�1/; � 2 RC/ D
D �.B.
; � C t�1/� B.
; t�1/; � 2 RC/;

the latter, as B D WMt�1
, which was acknowledged above. But, since one has that

L.
; � C t�1/ D hMi.
; �/,

hMi and �.B.
; � C t�1/� B.
; t�1/; � 2 RC/

are independent, and that contradicts the fact that, choosing

˝t0 D fB.
; t0/ � B.
; t�1/ > 0g ;

one has that, using a remark made in the first paragraph of the proof,

˝t0 2 �t0 .SM/ � �1.SM/ D �1.hMi/:

The claim is thus true when �0.SM/ is essentially degenerate.

Proof The general case: no a priori assumption on �0.SM/.

Since, as seen in the first paragraph of the proof, �1.hMi/ D �1.SM/, it is sufficient
[(Proposition) 16.4.13] to prove that, almost surely, with respect to P,

f! 2 ˝ W mult Œ�1.SM/ j �0.SM/� .!/ > 1g D ;:

One shall work within the framework of (Proposition) 16.8.18. Let, to that end,
MŒ!� be the path of M at !. Then, for PM D P ıM�1, and the natural filtration, E ,
the evaluations process on C.RC/, is a continuous, local martingale. The notation
shall be EPM . Furthermore hMi D hEPMi ı M, and SM.!; t/ D SEPM

.MŒ!�; t/.
Consequently

�0.SM/ D �.SEPM
.MŒ 
 �; 0// D M�1

�
�0.SEPM

/
�
;
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and

�1.SM/ D �1.SEPM
ıM/ D M�1.�1.SEPM

//:

It thus suffices to prove the claim on path space.
Suppose there exists t0 > 0 such that with respect to PM ,

C0 D
˚
c 2 C.RC/ W multŒ�t0 .SEPM

/ j �0.SEPM
/�.c/ > 1

�
has positive probability

Let

dP0 D
�C0

PM.C0/
dPM:

By definition, the Radon-Nikodým derivative dP0
dPM

is adapted to �0.SEPM
/. Thus,

because of (Proposition) 16.8.18, and the assumption that M 2 P , P0 2 P .
According to (Corollary) 16.4.22, there exists˝t0 2 �t0 .SEPM

/ such that

C0 �
˚
PM.˝t0 j �0.SEPM

/ > 0
�\ ˚PM.˝

c
t0
j �0.SEPM

/ > 0
�
:

Since P0 � PM , EP0 and EPM have the same quadratic variation [(Proposition)
16.6.1], and thus �0.SEPM

/ � �0.SEP0
/, so that, given C 2 �0.SEPM

/, fixed, but
arbitrary,

P0.˝t0 \ C/ D
Z

C
P0.˝t0 j �0.SEP0

//dP0;

and

P0.˝t0 \ C/ D PM.C0/
�1PM.˝t0 \ C \ C0/

D PM.C0/
�1

Z
C\C0

PM.˝t0 j �0.SEPM
//dPM

D
Z

C
PM.˝t0 j �0.SEPM

//dP0:

But that equality of integrals over sets in �0.SEPM
/ extends to sets in �0.SEP0

/, so
that

PM.˝t0 j �0.SEPM
// is a version of P0.˝t0 j �0.SEP0

//:

Consequently, almost surely with respect to P0,

C0 �
˚
P0.˝t0 j �0.SEP0

// > 0
�
:
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But P0.C0/ D 1. The following definitions make thus sense:

� D 1

2

(
�˝t0

P0.˝t0 j �0.SEP0
//
C

�
˝c

t0

P0.˝c
t0 j �.SEP0

//

)
;

and

dQ D �dP0:

Since � is strictly positive, P0 and Q are mutually absolutely continuous. Thus
[(Proposition) 16.6.1] �0.SEQ/ D �0.SEP0

/. By construction,

Q.˝t0 / D
1

2
EP0

"
�˝t0

P0.˝t0 j �0.SEP0
//

#

D 1

2
EP0

"
1

P0.˝t0 j �0.SEP0
//

EP0

h
�˝t0
j �0.SEP0

/
i#

D 1

2
:

Similarly, when C 2 �0.SEQ/ is fixed, but arbitrary, Q.C/ D P0.C/, so that

Q.˝t0 \ C/ D 1

2
EP0

"
�C

�˝t0

P0.˝t0 j �0.SEP0
//

#
D 1

2
P0.C/ D Q.˝t0 /Q.C/;

so that ˝t0 and C are independent for Q.
One may then proceed as in the first part of the proof, the probabilities P0 and Q

taking, respectively, the parts taken there by P and Q. ut
Proposition 16.8.23 L.M/ 2 P if, and only if, M is an Ocone martingale, and WM,
the DDS Brownian motion of M, has the predictable representation property for the
filtration whose elements are �t.WM/ _ �t.SM/.

Proof Suppose to start with that L.M/ 2 P . Because of (Proposition) 16.8.22,

�0.SM/ D �1.hMi/:

Since M is an Ocone martingale, and �1.hMi/ D �1.SM/,

�t.WM/ _ �t.SM/ D �t.WM/ _ �0.SM/;

with �0.SM/ D �1.hMi/ independent of �t.WM/. The predictable representation
property is thus that of Brownian motion.
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Suppose now that the predictable representation property obtains. Since M is
Ocone, �.WM/ and �.SM/ are immersed [(Definition) 16.5.1] in �.WM/ _ �.SM/.
Thus [145, p. 189], when N is a continuous, local martingale for �.SM/,

N.
; t/ D N.
; 0/C
Z t

0

fN.
; �/WM.
; d�/;

where fN is predictable for �.WM/ _ �.SM/. Now, because of independence,
hN;WMi D 0, that is,

R t
0

fN.
; �/ d� D 0. Consequently
R t
0

f 2N.
; �/ d� D 0. But
then N.
; t/ D N.
; 0/, and, consequently, �0.SM/ D �1.SM/ D �1.hMi/, so that
L.M/ 2 P . ut



Chapter 17
Likelihoods for Signal Plus Gaussian Noise
Versus Gaussian Noise

Here, “Gaussian noise” means noise which is Gaussian, but not “white.”
The basic setup shall be as follows. The time index is Œ0; 1�, as it is required that

signals have finite energy for finite time periods. N is a stochastic process, defined
on the probability space .˝;A;P/, with values in R: it is Gaussian, with mean zero;
it is continuous in L2, and almost surely zero at the origin. The measure induced by
N, on the �-algebra generated by the cylinder sets of RŒ0;1�, denoted C.RŒ0;1�/, shall
be written PN , that induced on the Borel sets of L2Œ0; 1�, P2

N , and that induced on the
Borel sets of CŒ0; 1�, in case it has continuous paths, Pc

N . P2

N and Pc
N are assumed to

have a support that has infinite dimension. The Cramér-Hida decomposition of N is,
for t 2 Œ0; 1�, fixed, but arbitrary,

Nt
L2D

MNX
kD1

Z
Œ0;1�

k.t/dmN
k ; (?)

where mN
k is the vector measure with values in L2, generated by a process with

orthogonal increments, say BN
k . BN denotes the family of those processes, and the

Cramér-Hida representation is such that LtŒN� D LtŒBN �, for t 2 Œ0; 1�, fixed, but
arbitrary. As a consequence �ıt .N/ D �ıt .BN/. But then the usual conditions are
satisfied [264, p. 238].

Now a process continuous in quadratic mean is not necessarily separable, as may
be seen with the simplest example of a process which is not separable [258, p. 21]:
X.!; t/ D �

ftg.!/, .t; !/ 2 Œ0; 1�, the probability being Lebesgue measure. Then
EP
�
.X.
; t/� X.
; �//2� D 0. Taking both sides of (?) separable, which is always

possible when quadratic mean continuity prevails [199, p. 91], one may claim that
the following representation obtains (almost surely):

N.
; t/ path�wiseD
MNX
kD1

Z t

0

Fk.t; �/B
N
k .
; d�/: (??)
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Given a stochastic process X, its path at ! shall be denoted XŒ!�. The Cramér-Hida
map looks at the latter equality (??) as having the following form:

NŒ!� D ˚ �BN Œ!�
�
;

and takes advantage of it to obtain the likelihood for a Gaussian noise that is no
longer a martingale.

Since the value of M is usually unknown, one shall assume M D 1. When M is
finite, the extra components are set to be zero.

17.1 An Introductory but Instructive Example

One may see, on the basis of an appropriate example, that of a Goursat process with
one component, what the solution to the SPGN case can be, once the SPWN case
has been solved. That is the content of the present section.

Let W be a standard Brownian motion, and

N.!; t/ D f .t/
Z t

0

g.�/W.!; d�/:

Thus, the Cramér-Hida representation of N uses

F.t; �/ D f .t/�
Œ0;t� .�/g.�/:

As

EP
�
N2.
; t/� D f 2.t/

Z t

0

g2.�/d�;

one should expect g to have an integrable square. As, for t1 < t2,

N.
; t2/ � N.
; t1/ D

D f f .t2/ � f .t1/g
Z t1

0

g.�/W.
; d�/C f .t2/
Z t2

t1

g.�/W.
; d�/;

one has that

EP
�fN.
; t2/� N.
; t1/g2

� D
D f f .t2/ � f .t1/g2

Z t1

0

g2.�/W.
; d�/C f 2.t2/
Z t2

t1

g2.�/d�;
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and one should expect f to be continuous. Let, for  2 L2Œ0; 1�,

f .t/
Z t

0

.�/g.�/d� D hF.t; 
/; iL2Œ0;1� D 0; t 2 Œ0; 1�:

One should thus expect f .t/ ¤ 0; t 2 Œ0; 1�; g not to be zero, almost surely; and
notice that one has, to the left of the zero, a function in the RKHS of N.

Let thus N be as above, with f > 0 and continuous, and g have an integrable
square, and be different from zero, almost surely. Suppose furthermore that g is
absolutely continuous with derivative � . Then (Itô’s formula, for example),

N.!; t/ D f .t/

�
g.t/W.!; t/ �

Z t

0

�.�/W.!; �/d�

�
:

Let ˚ W CŒ0; 1� �! CŒ0; 1� be defined using the following rule:

˚.c/.t/ D f .t/

�
g.t/c.t/ �

Z t

0

c.�/�.�/d�

�
: (? ? ?)

One has that NŒ!� D ˚.WŒ!�/, that is, the Cramér-Hida representation of N
is a functional transformation of a Cramér-Hida process. Furthermore, when s is
progressively measurable, and has a square that is, almost surely, integrable with
respect to Lebesgue measure,

˚

�
t 7!

Z t

0

s.!; �/d�

�
.t/ D

D f .t/

(
g.t/

Z t

0

s.!; �/d� �
Z t

0

( Z �

0

s.!; x/dx

)
�.�/d�

)

D f .t/

�
g.t/

Z t

0

s.!; �/d� �
�

g.t/
Z t

0

s.!; x/dx �
Z t

0

s.!; x/g.x/dx

��

D f .t/
Z t

0

s.!; �/g.�/d�

D hF.t; 
/; s.!; 
/iL2Œ0;1�:

Consequently ˚ sends the paths

• of W to those of N,
• of

R
sCW to those of hF; siL2Œ0;1� C N.
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Since one has, with appropriate assumptions, that the law of
R

sCW is absolutely
continuous with respect to that of W, the same is true for

˚

�Z
sCW

�
D hF; siL2Œ0;1� C N D SC N; and ˚.W/ D N:

Then, formally,

PSCN.A/ D P ı .SC N/�1.A/

D P ı
�
˚

�Z
sCW

���1
.A/

D P ı
�Z

sCW

��1 �
˚�1.A/

�
D
Z
˚�1.A/

�
dPR sCW

dPW

�
dPW

D
Z
˚�1.A/

�
dPR sCW

dPW
ı .˚�1 ı ˚/

�
dPW

D
Z

A

�
dPR sCW

dPW
ı ˚�1

�
dPW ı ˚�1

D
Z

A

�
dPR sCW

dPW
ı ˚�1

�
dPN:

So, knowing the likelihood for the SPWN model, and the inverse of ˚ , one obtains
the likelihood for the SPGN model. The objective of this chapter is the calculation
of ˚ and its inverse. There are several cases, depending on the assumptions. All the
resulting ˚’s shall be called “Cramér-Hida maps.”

Supposing that the operations performed below are legitimate, one may try to
invert˚ as follows. Let the left-hand side of .???) above, divided by f , be denoted
b, a now known function. Let a D ��1g, and

F.t/ D
Z t

0

�.x/c.x/dx:

Equation (?) above may now be given the following form:

b.t/ D a.t/F0.t/ � F.t/;

and may be solved explicitly for F [211, p. 604]. Then c D ��1F0. For a Cramér-
Hida process, such a procedure will not generally be possible, as the required
assumptions shall not be available, but one may consider an analogous procedure
to find the inverse of ˚ , and that is the computation of W, conditional on N, in the
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probability sense. That such a procedure is feasible may be seen in the result of the
following computations.

Let 0 < t1 < 
 
 
 < tn � 1 be fixed, but arbitrary, and

X1 D
Z t1

0

gdW; X2 D
Z t2

t1

gdW; X3 D
Z t3

t2

gdW; : : :

Then

N.
; t1/ D f .t1/X1;
N.
; t2/ D f .t2/ fX1 C X2g ;
N.
; t3/ D f .t3/ fX1 C X2 C X3g ;

 
 
 D 
 
 
 ;

and thus

N D Df Ln ŒX� ;

where Df is the diagonal matrix whose diagonal terms are the values of f at the time
points, and Ln is a square matrix of dimension n, with the following form:

Ln D

2
666664

1 0 0 0 0 
 
 
 0
1 1 0 0 0 
 
 
 0
1 1 1 0 0 
 
 
 0
:::
:::
:::
:::
:::

:::

1 1 1 1 1 
 
 
 1

3
777775 :

˙N , the covariance matrix of N, is thus

˙N D Df LnVXL?n Df ;

where VX is the covariance matrix of X. It is diagonal, with diagonal elements of the
following form (˘SŒg� is the class of �S Pg):

v2i D
ˇ̌̌̌
˘�ti�1;ti�Œg�

ˇ̌̌̌
2

L2Œ0;1�
:

The generic form of ˙N is thus DL�L?D, with D and � diagonal. The inverse is
then

D�1 .L?/�1 ��1L�1D�1;
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with

L�1 D

2
666664

1 0 0 0 0 
 
 
 0 0

�1 1 0 0 0 
 
 
 0 0

0 �1 1 0 0 
 
 
 0 0
:::

:::
:::
:::
:::

:::
:::

0 0 0 0 0 
 
 
 �1 1

3
777775 :

To be explicit, let n D 9, and set Ni D N.
; ti/;Wi D W.
; ti/. N has components
N1; : : : ;N9, and W, components W3;W4;W5. The law of W, given N, is Gaussian,
with mean

˙W;N˙
�1
N N;

where˙W;N D EP ŒW N?�, ˙N D EP ŒN N?�, and variance

˙W �˙W;N˙
�1
N ˙N;W :

One may write W D MŒY �, where Y contains the increments of W: for example
W3 D Y1 C Y2 C Y3, and Y3 D W.
; t3/�W.
; t2/. Now, with

M D
2
4 1 1 1 0 01 1 1 1 0

1 1 1 1 1

3
5 ;

one has that

EP ŒW N?� D EP
�
MY X?L?9Df

� D MEP ŒY X?�L?9Df ;

and the matrix EP ŒY X?� has entries different from zero only in the positions .i; i/,
i D 1; 2; 3; 4; 5, and then

ui D EPŒYiXi� D h˘�ti�1;ti�g; 1iL2Œ0;1�:

Consequently,

˙W;N˙
�1
N D ˚

MEP ŒY X?�L?9Df
� ˚

D�1f .L?9 /
�1V�1X L�19 D�1f

�
D MEP ŒY X?�V�1X L�19 D�1f :
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But EPŒY X?� D ŒDu O5;4� (Op;q being a matrix of zeroes of dimensions . p; q/), so
that EPŒY X?�V�1X D

�
DuD�1

v2
O5;4

�
. Since, for example,

2
664

d1 0 0 0

0 d2 0 0

0 0 d3 0
0 0 0 d4

3
775
2
664
1 0 0 0

�1 1 0 0

0 �1 1 0

0 0 �1 1

3
775 D

2
664

d1 0 0 0

�d2 d2 0 0

0 �d3 d3 0

0 0 �d4 d4

3
775 ;

one obtains that

˙W;N˙
�1
N D M

2
66666664

u1
f .t1/v

2
1

0 0 0 0

� u2
f .t1/v

2
2

u2
f .t2/v

2
2

0 0 0

0 � u3
f .t2/v

2
3

u3
f .t3/v

2
3

0 0 O5;4

0 0 � u4
f .t3/v

2
4

u4
f .t4/v

2
4

0

0 0 0 � u5
f .t4/v

2
5

u5
f .t5/v

2
5

3
77777775
;

and thus, with hi D ui=vi, that ˙W;N˙
�1
N ŒN� has, for example, as first line, m1

denoting the conditional mean of W1 given N, the following expression:

m1 D hh1; 1iL2Œ0;1�ˇ̌̌̌
˘�0;t1�g

ˇ̌̌̌
L2Œ0;1�

�
N.
; t1/

f .t1/

�

C hh2; 1iL2Œ0;1�ˇ̌̌̌
˘�t1;t2�g

ˇ̌̌̌
L2Œ0;1�

�
N.
; t2/

f .t2/
� N.
; t1/

f .t1/

�

C hh3; 1iL2Œ0;1�ˇ̌̌̌
˘�t2;t3�g

ˇ̌̌̌
L2Œ0;1�

�
N.
; t3/

f .t3/
� N.
; t2/

f .t2/

�
:

One then has, for example, that

1ˇ̌̌̌
˘�t1;t2�g

ˇ̌̌̌
L2Œ0;1�

�
N.
; t2/

f .t2/
� N.
; t1/

f .t1/

�

may be looked at as the following product:

R t2
t1

g.�/W.
; d�/
W.
; t2/ �W.
; t1/ �

W.
; t2/ �W.
; t1/
.t2 � t1/

1=2
�
 R t2

t1
g2.�/d�

t2 � t1

!�1=2
:

When t2 � t1 is small, the first term of the latter product is approximately g [221,
p. 143]. The third is approximately jgj�1, so that, conditioning on N, one recovers
a large linear combination of independent normal random variables with small
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coefficients, that is something that looks like Brownian motion. Indeed,

Wt D
X

i

.ti � ti�1/1=2
Wti �Wti�1

.ti � ti�1/1=2
:

Suppose now that

N.!; t/ D

D f1.t/
Z t

0

g1.�/W1.!; d�/C f2.t/
Z t

0

g2.�/W2.!; d�/

D N1.!; t/C N2.!; t/;

where the f ’s and g’s are as in the first example, and the Brownian motions are
independent. Again, when g1 and g2 are absolutely continuous,

N.!; t/ D f1.t/

�
g1.t/W1.!; t/ �

Z t

0

�1.�/W1.!; �/d�

�

C f2.t/

�
g2.t/W2.!; t/ �

Z t

0

�2.�/W2.!; �/d�

�
;

and N D ˚
�	

W1

W2


�
, where

˚

�	
c1
c2


�
D f1

�
g1c1 �

Z �
0

�1.�/c1.�/d�

�
C f2

�
g2c2 �

Z �
0

�2.�/c2.�/d�

�
:

Computing explicitly the conditional law becomes more difficult, in practice rather
than principle. Let again, mutatis mutandis,

N D N1 C N2; Ni D DiLn
�
Xi

�
; i D 1; 2;

so that ˙N D ˙1 C˙2. It follows from [278, p. 44] that

˙�1N D ˙�11
�
˙�11 C˙�12

��1
˙�12 D ˙�12

�
˙�11 C˙�12

��1
˙�11 :

Since the inverse of ˙i is a triangular matrix, the parenthesis is a triangular
matrix whose inverse may be explicitly computed recursively. It has even a form
DL?�LD, with D and � diagonal [27]. Let now W1 be the vector with components
W1.
; t3/;W1.
; t4/;W1.
; t5/. W2 is built analogously. Then

EP

		
W1

W2


 �
N1 C N2

�?
 D 	EP
�
W1N

?
1

�
EP
�
W2N

?
2

� 
 ;
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so that

˙W;N˙
�1
N ŒN� D

"
EP
�
W1N

?
1

�
˙�11

�
˙�11 C˙�12

��1
˙�12 ŒN�

EP
�
W2N

?
2

�
˙�12

�
˙�11 C˙�12

��1
˙�11 ŒN�

#
:

One thus sees that EP
�
W1N

?
1

�
˙�11 is the same term as in the first part of the

example, and that N gets replaced with

QN D �˙�11 C˙�12 ��1
˙�12 ŒN� :

The procedure of the first part of the example thus yields, modulo computational
complications, the same conclusion.

17.2 The Cramér-Hida Maps

From the Cramér-Hida representation, one has, for t1 < t2 in Œ0; 1�, fixed, but
arbitrary, that

EP
�fN.
; t2/� N.
; t1/g2

� D jjF.t2/ � F.t1/jj2L2Œ b � ;

where F W Œ0; 1� �! L2Œ b � has, for components, the equivalence classes of the
Fn.t; 
/’s. F is thus continuous as N is. Let LF W L2Œb � �! RŒ0;1� be defined using
the following relation:

LF Œa� .t/ D ha;F.t/iL2Œ b � :

As

CN.t1; t2/ D hF.t1/;F.t2/iL2Œ b � ;

the range of LF is the RKHS of CN , and, as the representation is proper canonical,˝
LFŒa1�;LF Œa2�

˛
H.CN ;Œ0;1�/

D ˝a1; a2˛L2Œ b � :
LF , as an operator into the RKHS of N, is then unitary. In the sequel, the following
notation, which makes sense, shall be used:

X D SŒa�C BN ;

IX fFg D hF; aiL2Œ b � C IBN
fFg :
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There shall be three Cramér-Hida maps, corresponding to paths of N lying, respec-
tively, in RŒ0;1�, L2Œ0; 1�, and CŒ0; 1�. Each has its advantages, . . . and limitations.
When avoidable, no distinction shall be made between a random variable and its
class.

Proposition 17.2.1 (Real Functions as Paths)

1. There exists a map ˚ W K �! RŒ0;1�, adapted to K and C.RŒ0;1�/, such that, for
t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

N.!; t/ D Et
�
˚.BN Œ!�/

�
:

2. Suppose that PK
X is absolutely continuous with respect to PK

BN
. Then, for t 2 Œ0; 1�,

fixed, but arbitrary, almost surely, with respect to P,

IX fFg .!; t/ D Et .˚.XŒ!�// :

Proof Let i; j;m; n, and p belong to N, with m 2 Œ1 W 2n�, fixed, but arbitrary. One
shall use the following type of step functions, with domain Œ0; 1�, where �j 2 R,
0 � �j < �j � 1:

Fi;m;n.t/ D
pX

jD1
�j���j ;�j�

.t/;

chosen, because of (uniform) continuity of F, so that

ˇ̌̌̌̌̌
Fi

�m

2n
; 

�
� Fi;m;n

ˇ̌̌̌̌̌
2

L2ŒMi �
� 1

2nCi
: (?)

One shall set, for arbitrary f W Œ0; 1� �! R:

Z 1

0

Fi;m;n.t/ f .dt/ D
pX

jD1
�j
˚

f .�j/ � f .�j/
�
: (??)

Let then

QFn;i.t; �/ DP2n

mD1 �� m�1
2n ; m

2n �
.t/Fi;m;n.�/;

QFn.t; �/ have components QFn;i.t; �/;

F.n/.t; �/ DP2n

mD1 �� m�1
2n ; m

2n �
.t/F

�
m
2n ; �

�
:
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Define also ˚n W K �! RŒ0;1� using the following relation (k 2 K):

˚n Œk� .t/ D
nX

iD1

Z 1

0

QFn;i.t; �/ki.d�/;

where ki is the i-th component of k. The definition makes sense because of (??) and
the relation which follows it.

Step 1: ˚n is adapted to K and C.RŒ0;1�/.

Indeed, for fixed, but arbitrary i and � , k 7! ki.�/ D E� ı EK
i .k/ is adapted to

K and C.RŒ0;1�/. Thus, given the definition of the elements involved, for fixed, but
arbitrary t, k 7! ˚n Œk� .t/ is adapted to K and C.RŒ0;1�/, as it is a linear combination
of terms of type E� ı EK

i .k/.

Step 2: f˚n; n 2 Ng is, for PK
BN

, a Cauchy sequence in probability.

Given the definitions,

˚n
�
BN

�
.t/ D

nX
iD1

Z 1

0

QFn;i.t; �/B
N
i .
; d�/:

Thus, for q > n, fixed, but arbitrary, using Markov’s inequality [138, p. 164],

PK
BN

�
k 2 K W ˇ̌˚q Œk� .t/ � ˚n Œk� .t/

ˇ̌
> �

� �
� P

 
! 2 ˝ W

ˇ̌̌
ˇ̌ nX

iD1

Z 1

0

˚ QFq;i.t; �/ � QFn;i.t; �/
�

BN
i .!; d�/

ˇ̌̌
ˇ̌ > �

2

!

C P

 
! 2 ˝ W

ˇ̌̌
ˇ̌ qX
iDnC1

Z 1

0

QFq;i.t; �/B
N
i .!; d�/

ˇ̌̌
ˇ̌ > �

2

!

� 4

�2

nX
iD1

Z 1

0

˚ QFq;i.t; �/ � QFn;i.t; �/
�2

Mi.d�/

C 4

�2

qX
iDnC1

Z 1

0

QF2

q;i.t; �/Mi.d�/:

Now, using E2ŒX� � EŒX2� applied to X D 4�1.aC bC cC d/, one has that .aC bC
cC d/2 � 4.a2C b2C c2C d2/, so that, inserting and deleting the appropriate terms,

Z 1

0

˚ QFq;i.t; �/ � QFn;i.t; �/
�2

Mi.d�/ �

� 4
Z 1

0

˚ QFq;i.t; �/ � F.q/

i .t; �/
�2

Mi.d�/
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C 4
Z 1

0

˚
F.q/

i .t; �/ � Fi.t; �/
�2

Mi.d�/

C 4
Z 1

0

˚
Fi.t; �/ � F.n/

i .t; �/
�2

Mi.d�/

C 4
Z 1

0

˚
F.n/

i .t; �/ � QFn;i.t; �/
�2

Mi.d�/:

Using the definitions, and in particular (?), one has also that

Z 1

0

˚ QFq;i.t; �/ � F.q/

i .t; �/
�2

Mi.d�/ D

D
2qX

mD1
�
� m�1
2q ; m

2q �
.t/
Z 1

0

n
Fi;m;q.�/� Fi

�m

2q
; �
�o2

Mi.d�/

�
2qX

mD1
�
� m�1
2q ; m

2q �
.t/

1

2qCi

� 1

2qCi
:

Furthermore, still because of the definitions and (?),

qX
iDnC1

Z 1

0

QF2

q;i.t; �/Mi.d�/ D

D
qX

iDnC1

ˇ̌̌̌ QFq;i.t; 
/
ˇ̌̌̌ 2

L2ŒMi �

D
qX

iDnC1

2qX
mD1

�
� m�1
2q ; m

2q �
.t/
ˇ̌̌̌
Fi;m;q.t; 
/

ˇ̌̌̌
2

L2ŒMi �

�
qX

iDnC1

2qX
mD1

�
� m�1
2q ; m

2q �
.t/

�
1

2
qCi
2

C
ˇ̌̌̌̌̌
Fi

�m

2q
; 

�ˇ̌̌̌̌̌

L2ŒMi�

� 2

� 2
qX

iDnC1

2qX
mD1

�
� m�1
2q ; m

2q �
.t/

�
1

2qCi
C
ˇ̌̌̌̌̌
Fi

�m

2q
; 

�ˇ̌̌̌̌̌ 2

L2ŒMi �

�

D 1

2q�1
qX

iDnC1

1

2i
C

qX
iDnC1

ˇ̌̌̌
F.q/

i .t; 
/ˇ̌̌̌ 2L2ŒMi �
:
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Consequently

PK
BN

�
k 2 K W ˇ̌˚q Œk� .t/ � ˚n Œk� .t/

ˇ̌
> �

� �
� 16

�2

�
1

2q
C ˇ̌̌̌F.q/.t/ � F.t/

ˇ̌̌̌
2

L2Œ b �

�

C 16

�2

� ˇ̌̌̌
F.n/.t/ � F.t/

ˇ̌̌̌
2

L2Œ b �
C 1

2n

�

C 4

�2

(
1

2q�1
qX

iDnC1

1

2i
C

qX
iDnC1

ˇ̌̌̌
F.q/

i .t; 
/ˇ̌̌̌ 2
L2ŒMi �

)
;

a quantity that, for fixed t, goes to zero as n and q increase indefinitely. ˚ shall
denote the limit in probability, with respect to PK

BN
, of the sequence f˚n; n 2 Ng.

Step 3: The first part of statement (Proposition) 17.2.1 obtains.

One has, for t 2 Œ0; 1�, fixed, but arbitrary, that

P
�
! 2 ˝ W ˇ̌N.!; t/ � Et

�
˚.BN.!/

�ˇ̌
> �

� �
� P

�
! 2 ˝ W ˇ̌N.!; t/ � Et

�
˚n.BN.!//

�ˇ̌
>
�

2

�
C P

�
! 2 ˝ W ˇ̌Et

�
˚n.BN.!//

� � Et
�
˚.BN.!//

�ˇ̌
>
�

2

�
D pn C qn:

By step 2, limn qn D 0. Now, using on the second Œf
 
 
 g2� expression below,
.aC b/2 � 2.a2 C b2/, one has that

pn D P
�
! 2 ˝ W ˇ̌N.!; t/ � Et

�
˚n.BN.!//

�ˇ̌
>
�

2

�
� 4

�2
EP

h˚
N.!; t/ � Et

�
˚n.BN.!//

��2i

D 4

�2
EP

"(
nX

iD1

Z 1

0

�
Fi.t; �/ � QFn;i.t; �/

�
BN

i .
; d�/

C
1X

iDnC1

Z 1

0

Fi.t; �/B
N
i .
; d�/

) 2#

� 8

�2

(
nX

iD1

Z 1

0

˚
Fi.t; �/ � QFn;i.t; �/

�) 2

Mi.d�/

C 8

�2

1X
iDnC1

Z 1

0

F2

i .t; �/Mi.d�/:
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As

Fi � QFn;i D
�
Fi � F.n/

i

�C �F.n/

i � QFn;i
�
;

one may proceed as in step 2 to obtain that limn pn D 0.

Step 4: For t 2 Œ0; 1�, fixed, but arbitrary, the sequence fEt .˚n.X// ; n 2 Ng
converges in probability, with respect to P, to IX fFg .
; t/.
One has that

IX fFg .
; t/ � Et .˚n.X.
/// D
nX

iD1

Z t

0

˚
Fi.t; �/ � QFn;i.t; �/

�
ai.
; �/Mi.d�/

C
1X

iDnC1

Z t

0

Fi.t; �/ai.
; �/Mi.d�/

C N.
; t/ � Et
�
˚n.BN Œ
�/

�
:

As seen in the proof of item 1, the third term on the right of the latter expression
converges to zero in probability, with respect to P. The second term converges
equally to zero since F and a belong to L2Œ b �, at least almost surely for a, with
respect to P. Thus only the first term requires attention. Butˇ̌̌

ˇ̌ nX
iD1

Z t

0

˚
Fi.t; �/ � QFn;i.t; �/

�
ai.!; �/Mi.d�/

ˇ̌̌
ˇ̌ �

�
nX

iD1

Z 1

0

ˇ̌
Fi.t; �/ � QFn;i.t; �/

ˇ̌ jai.!; �/j Mi.d�/

�
nX

iD1

�Z 1

0

˚
Fi.t; �/ � QFn;i.t; �/

�2
Mi.d�/

� 1=2 �Z 1

0

a2i .!; �/Mi.d�/

� 1=2

�
(

nX
iD1

Z 1

0

˚
Fi.t; �/ � QFn;i.t; �/

�2
Mi.d�/

) (
nX

iD1

Z 1

0

a2i .!; �/Mi.d�/

)

(step 2)� 2

�
1

2n
C ˇ̌̌̌F.t/ � F.n/.t/

ˇ̌̌̌
2

L2Œ b �

�
jja.!; 
/jj2L2Œ b � :

Convergence of the last term in the right-hand side of the latter expression is almost
surely, with respect to P, uniform in t.

Step 5: For t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

IX fFg .
; t/ D Et .˚.XŒ
�// :
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From step 2, one has that, for t 2 Œ0; 1�, fixed, but arbitrary, the sequence
fEt .˚n/ ; n 2 Ng converges in probability to Et .˚/, with respect to PK

BN
. By taking

a subsequence if necessary, one may assume that convergence is almost sure. But
since, by assumption,

PK
X � PK

BN
;

convergence takes place almost surely with respect to PK
X . Step 4 then insures that

item 2 of the statement obtains. ut
Proposition 17.2.2 (Square Integrable Functions as Paths) There is an adapted
map ˚2 W K �! L2Œ0; 1� such that

1. almost everywhere, with respect to P, NŒ!� D ˚2.BN Œ!�/;
2. when PK

X � PK
BN

, almost everywhere, with respect to P,

IX fFg Œ!� D ˚2.XŒ!�/:

Proof As seen [(Remark) 11.2.1], L2Œb � may be looked at as an L2-space, and thus
the map F W Œ0; 1� �! L2Œb � may be seen as a square integrable map into it. But
the space LH

2 .Œ0; 1�/; H D L2Œ b �, is isomorphic to an L2-space built on a product
of measure spaces [202, p. 115], and, in the present case, that corresponding to
Lebesgue measure on Œ0; 1� and that corresponding to the direct sum of the L2 spaces
of the form L2.Œ0; 1�;B.Œ0; 1�/;Mn/.

Let fBn.Œ0; 1�/; n 2 Ng be an increasing sequence of finite �-algebras generated
by intervals whose union generates B.Œ0; 1�/ (for instance, the dyadic intervals of
length 2�n). Let An be the �-algebra generated in the direct sum using the family
fBn.Œ0; 1�/; n 2 Ng, that is, A 2 An if and only if A \ Œ0; 1� belongs to Bn.Œ0; 1�/ for
each n 2 N. Because of [177, p. 180], there is then a sequence of “simple” functions˚

F.n/; n 2 N
�

that converges in L2 to F. The generic form of an entry in an element of that sequence
has the following aspect:

F.n/
m .t; �/ D

pnX
iD1

�
.n/

i;m�

t
.n/
i;l ;t

.n/
i;r


.t/�

�
.n/
i;l ;�

.n/
i;r


.�/:

It has the property that

ˇ̌̌̌
F.n/

m .t; 
/
ˇ̌̌̌
2

L2Œ bm �
D
Z 1

0

˚
F.n/

m .t; �/
�2

Mm.d�/

D
pnX

iD1
�


t
.n/
i;l ;t

.n/
i;r


.t/
�˚
�
.n/

i;m

�2 ˚
Mm

�
�
.n/

i;r

� �Mm
�
�
.n/

i;l

���
:
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Consequently, taking into account the fact that
ˇ̌̌̌
F.n/.t/

ˇ̌̌̌
L2Œ b �

must be finite,

ˇ̌̌̌
F.n/.t/

ˇ̌̌̌
2

L2Œ b �
D
1X

mD1

ˇ̌̌̌
F.n/

m .t; 
/
ˇ̌̌̌
2

L2Œ bm �

D
pnX

iD1
�


t
.n/
i;l ;t

.n/
i;r


.t/
 1X

mD1

˚
�
.n/

i;m

�2 ˚
Mm

�
�
.n/

i;r

� �Mm
�
�
.n/

i;l

��!
:

Define then ˚.n/

2 W K �! L2Œ0; 1� using the following formula:

P‚…„ƒ
˚

.n/

2 Œk�.t/ D
pnX

iD1
�


t
.n/
i;l ;t

.n/
i;r


.t/
1X

mD1
�
.n/

i;m

˚
km.�

.n/

i;r /� km.�
.n/

i;l /
�
:

So one has that

EPK
BN

hˇ̌̌̌
˚

.n/

2

ˇ̌̌̌ 2
L2Œ0;1�

i
D

D EP

hˇ̌̌̌
˚

.n/

2 ŒBN �
ˇ̌̌̌ 2

L2Œ0;1�

i

D EP

"Z 1

0

(
pnX

iD1
�


t
.n/
i;l ;t

.n/
i;r


.t/
1X

mD1
�
.n/

i;m

˚
BN

m.
; � .n/i;r /� BN
m.
; � .n/i;l /

�) 2

dt

#

D EP

"Z 1

0

pnX
iD1

�

t
.n/
i;l ;t

.n/
i;r


.t/
(
1X

mD1
�
.n/

i;m

˚
BN

m.
; � .n/i;r /� BN
m.
; � .n/i;l /

�) 2

dt

#

D
Z 1

0

pnX
iD1

�

t
.n/
i;l ;t

.n/
i;r


.t/
(
1X

mD1

˚
�
.n/

i;m

�2 ˚
Mm.�

.n/

i;r / �Mm.�
.n/

i;l /
�)

dt

D
Z 1

0

ˇ̌̌̌
F.n/.t/

ˇ̌̌̌
2

L2Œ b �
dt:

Since ˚.n/

2 � ˚.q/

2 has the same generic aspect as ˚.n/

2 ,

EPK
BN

hˇ̌̌̌
˚

.n/

2 � ˚.q/

2

ˇ̌̌̌ 2
L2Œ0;1�

i
D
Z 1

0

ˇ̌̌̌
F.n/ � F.q/

ˇ̌̌̌
2

L2Œ b �
dt;

and
˚
˚

.n/

2 ; n 2 N
�

is a Cauchy sequence in

LL2Œ0;1�

2

�
K;K;PK

BN

�
:
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Let ˚2 be its limit. By, when necessary, taking a subsequence, one may assume that
convergence takes also place almost surely, with respect to PK

BN
. Finally

1

2
EP

h
jjN �˚2.BN/jj2L2Œ0;1�

i
� EP

hˇ̌̌̌
N � ˚.n/

2 .BN/
ˇ̌̌̌ 2

L2Œ0;1�

i
C EP

hˇ̌̌̌
˚

.n/

2 .BN/� ˚2.BN/
ˇ̌̌̌ 2

L2Œ0;1�

i
D
Z 1

0

ˇ̌̌̌
F.t/ � F.n/.t/

ˇ̌̌̌
2

L2Œ b �
dt

C EPK
BN

hˇ̌̌̌
˚

.n/

2 �˚2
ˇ̌̌̌ 2

L2

i
:

Thus, almost surely, with respect to P, in L2Œ0; 1�, NŒ!� D ˚2.BN Œ!�/.
Let � � 1 be fixed, but arbitrary, and

˝� D
n
! 2 ˝ W jja.!; 
/jjL2Œ b � � �

o
:

One has that

P‚ …„ ƒ
˚

.n/

2 .XŒ!�/.t/ D

D
pnX

iD1
�


t
.n/
i;l ;t

.n/
i;r


.t/
1X

mD1
�
.n/

i;m

˚
Xm.!; �

.n/

i;r / � Xm.!; �
.n/

i;l /
�

D
pnX

iD1
�


t
.n/
i;l ;t

.n/
i;r


.t/
1X

mD1
�
.n/

i;m

Z �
.n/
i;r

�
.n/
i;l

am.!; �/Mm.d�/C
P‚ …„ ƒ

˚.n/
n .BN Œ!�/.t/

D ˝
F.n/.t/; a.!; 
/˛

L2Œ b �
C

P‚ …„ ƒ
˚.n/

n .BN Œ!�/.t/:

Consequently,

IX fFg .!; t/ �
P‚ …„ ƒ

˚
.n/

2 .XŒ!�/.t/ D

D ˝
F.t/ � F.n/.t/; a.!; 
/˛L2Œ b � C

(
N.!; t/ �

P‚ …„ ƒ
˚

.n/

2 .BN Œ!�/.t/

)
;

so thatˇ̌̌̌
IX fFg .!; 
/� ˚.n/

2 .XŒ!�/
ˇ̌̌̌ 2

L2Œ0;1�
D

D
ˇ̌̌̌̌̌ ˝

F.
/� F.n/.
/; a.!; 
/˛
L2Œ b �
C ˚NŒ!� � ˚.n/

2 .BN Œ!�/
�ˇ̌̌̌̌̌ 2

L2Œ0;1�
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� 2 jja.!; 
/jj2L2Œ b �
Z 1

0

ˇ̌̌̌
F.t/ � F.n/.t/

ˇ̌̌̌
2

L2Œ b �
dt

C 2 ˇ̌̌̌NŒ!� � ˚.n/

2 .BN Œ!�/
ˇ̌̌̌ 2

L2Œ0;1�
;

and thus

EP

h
�
˝�

ˇ̌̌̌
IX fFg �˚.n/

2 .X/
ˇ̌̌̌ 2

L2Œ0;1�

i
� 2 �1C �2� Z 1

0

ˇ̌̌̌
F.t/ � F.n/.t/

ˇ̌̌̌
2

L2Œ b �
dt;

that is, for fixed, but arbitrary � � 1, almost surely on ˝� , with respect to P, in
L2Œ0; 1�,

lim
n
˚

.n/

2 .X/ D IX fFg :

Since, with respect to PK
BN

,˚.n/

2 converges almost surely to˚2, and that, furthermore,
by assumption, PK

X � PK
BN

, that convergence obtains also with respect to PK
X . Hence,

almost surely, with respect to P,

lim
n
˚

.n/

2 .XŒ!�/ D ˚2ŒX.!�/:

It follows that, almost surely on ˝� , with respect to P,

IX fFg Œ!� D ˚2.XŒ!�/:

ut
Proposition 17.2.3 (Continuous Functions as Paths) When N has continuous
paths, there is an adapted map ˚c W K �! CŒ0; 1� such that

1. almost everywhere, with respect to P, NŒ!� D ˚c.BN Œ!�/;
2. when PK

X � PK
BN

, almost everywhere, with respect to P,

IX fFg Œ!� D ˚c.XŒ!�/:

Proof Let J W CŒ0; 1� �! L2Œ0; 1� be the inclusion map which associates with a
continuous function its equivalence class. It is a continuous injection since

Z 1

0

fc1.t/ � c2.t/g2 dt � sup
t2Œ0;1�

fc1.t/ � c2.t/g2 :

Since CŒ0; 1� is a Borel set, because of [208, p. 22], RŒJ� is a Borel set, and J an
isomorphism of CŒ0; 1� onto RŒJ�. Let

˚c D J�1 ı ˚�RŒJ� .˚2/ ˚2
�
:
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˚c is adapted as a composition of adapted functions. Furthermore, because of the
continuity assumption, �RŒJ� .˚2/ ˚2 D ˚2, so that the result is true. ut
Definition 17.2.4 The maps defined above, that is, ˚ , ˚2, and ˚c shall be called
the Cramér-Hida maps.

Remark 17.2.5 As the proofs above show, the Cramér-Hida maps are linear, and
“differentiate,” in the sense that they send vectors with components of typeR t
0 sn.
; �/Mn.d�/ to inner products with terms of type

Z t

0

Fn.t; �/sn.
; �/Mn.d�/:

17.3 Inverse Cramér-Hida Maps

As seen [Sect. 17.1], expressions for the likelihood do involve the inverses of the
Cramér-Hida maps. Those are obtained below.

17.3.1 The Inverse for Square Integrable Paths

Let S W L2Œb � �! L2Œ0; 1� be the operator obtained according to the following rule:
SŒa� is the equivalence class of

t 7! hF.t/; aiL2Œ b � :

S is thus the composition of the unitary identification of L2Œ b � with the RKHS
H.CN ; Œ0; 1�/, followed by the imbedding of the latter into L2Œ0; 1�. Since

Z 1

0

hF.t/; ai2L2Œ b � dt � jjajj2L2Œ b �
Z 1

0

jjF.t/jj2L2Œ b � dt;

S is well defined, linear, and bounded.
When f 2 L2Œ0; 1�, for almost every t 2 Œ0; 1�, with respect to Lebesgue measure,

the element f .t/F.t/ belongs to L2Œb � since

jj f .t/F.t/jj2L2Œ b � D f 2.t/ jjF.t/jj2L2Œ b � � max
t2Œ0;1� jjF.t/jj

2

L2Œ b � f
2.t/:
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The map t 7! f .t/F.t/ is Bochner integrable. Indeed,

Z 1

0

jj f .t/F.t/jjL2Œ b � dt D
Z 1

0

j f .t/j jjF.t/jjL2Œ b � dt

� jj f jjL2Œ0;1�
�Z 1

0

jjF.t/jj2L2Œ b � dt

� 1=2
:

Consequently

Z 1

0

F.t/ f .t/dt; a

�
L2Œ b �

D
Z 1

0

hF.t/; aiL2Œ b � f .t/dt D hSŒa�; f iL2Œ0;1� :

S?Œ f � is thus the equivalence class of

f 7!
Z 1

0

F.t/ Pf .t/dt:

Furthermore

P‚…„ƒ
SS?Œ f �.t/ D

P‚ …„ ƒ
SŒ
Z 1

0

F.�/ f .�/d��.t/

D

F.t/;

Z 1

0

F.�/ f .�/d�

�
L2Œ b �

D
Z 1

0

hF.t/;F.�/iL2Œ b � Pf .�/d�

D
P‚…„ƒ

RN Œ f � .t/;

so that SS? D RN W L2Œ0; 1� �! L2Œ0; 1�, the covariance operator associated with the
covariance CN.t1; t2/ D hF.t1/;F.t2/iL2Œ b � of the noise N. The polar decomposition
yields that

S? D U
�
.S?/? S?

�1=2 D UR1=2

N ;

where U is a partial isometry whose

• initial set is RŒR1=2

N �, with closure in L2Œ0; 1�,
• and final set, RŒS?�, with closure in L2Œb �.

Since, HF being the subspace generated linearly in L2Œ b � by the family
fF.t/; t 2 Œ0; 1�g, N ŒS� D H?F , and, since one works with a proper canonical
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decomposition,

N ŒS� D
n
0L2Œ b �

o
:

Since the support of a Gaussian measure on a Hilbert space is the closure of the
square root of its covariance operator [142], and that one may assume, without
restricting generality, full support,

RŒR1=2

N � D L2Œ0; 1�;

and U is unitary.
Let fen; n 2 Ng and f�n; n 2 Ng be, respectively, the eigenvectors and the

eigenvalues of RN , a compact operator with finite trace. Let

Jn W L2ŒMn� �! L2Œb �

be the imbedding of L2ŒMn� into L2Œb �, and ˘n D JnJ?n . Then J?n is the coordinate
map, and ˘n, the projection onto RŒJn�. Let 1 2 L2Œb � be the class of the element
whose components are the equivalence classes of the constant function equal to one.
Then ˝

SŒ˘nŒ�Œ0;t�1��; ep
˛
L2Œ0;1�

D ˝
˘nŒ�Œ0;t�1�; S

?Œep�
˛
L2Œ b �

D ˝
JnJ?n Œ�Œ0;t�1�;UR1=2

N Œep�
˛
L2Œ b �

D �1=2p

˝
J?n
�
�
Œ0;t�1

�
; J?n ŒUŒep��

˛
L2ŒMn �

D �1=2p

Z t

0

P‚ …„ ƒ
J?n ŒUŒep��.�/Mn.d�/:

The map t 7! R t
0

P‚ …„ ƒ
J?n ŒUŒep��.�/Mn.d�/ shall be denoted n;p. It is a continuous

function, and, for fn; pg � N and t1 < t2 in Œ0; 1�, fixed, but arbitrary, as J?n U is
a contraction, ˇ̌

n;p.t2/ � n;p.t1/
ˇ̌ � bn.t2/ � bn.t1/:

With respect to P2

N , for f 2 L2Œ0; 1�, and p 2 N, fixed, but arbitrary, the map
f 7! ˝

f ; ep
˛
L2Œ0;1�

is a normal random variable, with mean zero, and variance �p,
so that

Xp D ��
1
2

p
˝
; ep

˛
L2Œ0;1�
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is N.0; 1/. The family
˚
Xp; p 2 N

�
is made of independent random variables. Let

then, for f 2 .L2Œ0; 1�;B.L2Œ0; 1�/;P2

N/, fixed, but arbitrary,

Vn;p.f ; t/ D ��1p

˝
S˘nŒ�Œ0;t�1�; ep

˛
L2Œ0;1�

˝
f ; ep

˛
L2Œ0;1�

:

From what has been acknowledged above,

Vn;p.f ; t/ D n;p.t/Xp.f /:

One has thus that, for n 2 N, and t 2 Œ0; 1�, fixed, but arbitrary, the family˚
Vn;p; p 2 N

�
is made of independent, normal random variables, with mean zero,

and variance 2n;p.t/. Furthermore

1X
pD1

2n;p.t/ D
1X

pD1

˝
˘nŒ�Œ0;t�1�;UŒep�

˛2
L2Œ b �
D ˇ̌̌̌˘nŒ�Œ0;t�1�

ˇ̌̌̌
2

L2Œ b �
D bn.t/:

It follows that [199, p. 146], for n 2 N and t 2 Œ0; 1�, fixed, but arbitrary,

mn.f ; t/ D
1X

pD1
Vn;p.f ; t/

D
1X

pD1
n;p.t/Xp.f /

D
1X

pD1
��1p

˝
SŒ˘nŒ�Œ0;t�1��; ep

˛
L2Œ0;1�

˝
; ep
˛
L2Œ0;1�

is well defined. It is a Gaussian process, as a limit of Gaussian random variables
[241, p. 304]. It has, almost surely, with respect to P2

N , continuous paths. Let indeed

mn;p.f ; t/ D
pX

iD1
n;i.t/Xi.f /:

Then

mn.f ; t/ � mn;p.f ; t/ D
1X

iDpC1
n;i.t/Xi.f /:

The latter sum is a Gaussian random variable, with mean zero, and variance

1X
iDpC1

2n;i.t/ D
1X

iDpC1

˝
˘nŒ�Œ0;t� 1�;UŒei�

˛2
L2Œ b �

:
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Let Q̆ n be the projection in L2Œb � generated by fUŒe1�; : : : ;UŒen�g. One has that

1X
iDpC1

˝
˘nŒ�Œ0;t� 1�;UŒei�

˛2
L2Œ b �
D ˇ̌̌̌ Q̆ ?p ˘nŒ�Œ0;t� 1�

ˇ̌̌̌ 2
L2Œ b �

:

Let, when the latter norm object is different from zero,

X.f / D
8<
:
1X

iDpC1
n;i.t/Xi.f /

9=
; =

nˇ̌̌̌ Q̆ ?
p ˘nŒ�Œ0;t�1�

ˇ̌̌̌
L2Œ b �

o
:

X is, with respect to P2

N , a standard normal random variable. Then

1X
iDpC1

n;i.t/Xi.f / D
ˇ̌̌̌ Q̆ ?

p ˘nŒ�Œ0;t� 1�
ˇ̌̌̌

L2Œ b �
X.f /;

and

P2

N

 
f 2 L2Œ0; 1� W sup

t2Œ0;1�

ˇ̌
mn.f ; t/ � mn;p.f ; t/

ˇ̌
> �

!
D

D P2

N

 
f 2 L2Œ0; 1� W sup

t2Œ0;1�

ˇ̌̌ˇ̌̌̌ Q̆ ?
p ˘nŒ�Œ0;t�1�

ˇ̌̌̌
L2Œ b �

X.f /
ˇ̌̌
> �

!

� 1

�2
sup

t2Œ0;1�

ˇ̌̌̌ Q̆ ?
p ˘nŒ�Œ0;t�1�

ˇ̌̌̌ 2
L2Œ b �

:

Let �p.t/ D
ˇ̌̌̌ Q̆ ?

p ˘nŒ�Œ0;t�1�
ˇ̌̌̌

L2Œ b �
. One has that

• �p is continuous;
• �p � �pC1;
• limp �p.t/ D 0.

Consequently, �p converges uniformly to zero [230, p. 150], and mn is the uni-
form limit in probability of the following sequence of continuous functions:˚
mn;p; p 2 N

�
. It is thus, with respect to P2

N , almost surely continuous, and thus
separable. In the sequel one shall consider the following process:

m.f ; t/ W L2Œ0; 1� � Œ0; 1� �! R1;

with components mn.f ; t/. It has values in l2 as

EP2N

�jjm.
; t/jj2l2� D ˇ̌̌̌�Œ0;t�1ˇ̌̌̌ 2L2Œ b � :
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The process m is, as shall be seen, the inverse of ˚2.

Fact 17.3.1 For fn; pg � N, and t 2 Œ0; 1�, fixed, but arbitrary,

EP

h
Bn.
; t/

˝
NŒ 
 �; ep

˛
L2Œ0;1�

i
D ˝SŒ˘nŒ�Œ0;t�1��; ep

˛
L2Œ0;1�

D �1=2p n;p.t/:

Proof One has indeed that

EP

h
Bn.
; t/

˝
NŒ 
 �; ep

˛
L2Œ0;1�

i
D

D EP

	
Bn.
; t/

Z 1

0

N.
; �/ Pep.�/d�




D
Z 1

0

d� Pep.�/EP ŒBn.
; t/N.
; �/�

D
Z 1

0

d� Pep.�/EP

	
Bn.
; t/

Z 1

0

Fn.�; x/Bn.
; dx/




D
Z 1

0

d� Pep.�/

Z 1

0

�
Œ0;t� .x/Fn.�; x/Mn.dx/

D
Z 1

0

d� Pep.�/
˝
J?n Œ�Œ0;t�1�; J

?
n ŒF.�/�

˛
L2Œ b �

D
Z 1

0

d� Pep.�/
P‚ …„ ƒ

SŒ˘nŒ�Œ0;t�1��.�/

D ˝
SŒ˘nŒ�Œ0;t� 1��; ep

˛
L2Œ0;1�

:

ut
Fact 17.3.2 EP

�fmn.NŒ 
 �; t/ � Bn.
; t/g2
� D 0.

Proof Expanding the square, the latter expectation is

EP2N

�
m2

n.
; t/
� � 2EP Œmn.NŒ 
 �; t/Bn.
; t/�C EP

�
B2

n.
; t/
�
:

One has already seen that EP2N

�
m2

n.
; t/
� D bn.t/ D EP

�
B2

n.
; t/
�
. But, because of the

L2 convergence in the definition of mn, and (Fact) 17.3.1,

EP Œmn.NŒ 
 �; t/Bn.
; t/� D

D EP

"
1X

iD1
��1i

˝
SŒ˘nŒ�Œ0;t�1��; ei

˛
L2Œ0;1�

hNŒ 
 �; eiiL2Œ0;1� Bn.
; t/
#
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D
1X

iD1
��1i

˝
SŒ˘nŒ�Œ0;t� 1��; ei

˛
L2Œ0;1�

EP
�hNŒ 
 �; eiiL2Œ0;1� Bn.
; t/

�

D
1X

iD1
��1i

˝
SŒ˘nŒ�Œ0;t� 1��; ei

˛2
L2Œ0;1�

D
1X

iD1

˝
˘nŒ�Œ0;t�1�;UŒei�

˛2
L2ŒMn �

D ˇ̌̌̌
˘nŒ�Œ0;t�1�

ˇ̌̌̌
2

L2Œ b �

D bn.t/:

ut
Fact 17.3.3 As a consequence of (Fact) 17.3.2, one has that:

1. whenever n 2 N, 0 < t1 < 
 
 
 < tn � 1, and f�1; : : : ; �ng � R,

EP2N

h
ei
Pn

jD1 �jmn.�;tj/
i
D EP

h
ei
Pn

jD1 �jBn.�;tj/
i
;

so that, with respect to P2

N, mn has the same law as Bn with respect to P;
2. with respect to P2

N, mn has independent increments;
3. whenever ft1; t2g � Œ0; 1�,

EP2N
Œmn.
; t1/mn.
; t2/� D bn.t1 ^ t2/;

EP2N

�fmn.
; t1/ �mn.
; t2/g2
� D bn.t1 _ t2/� bn.t1 ^ t2/I

4. with respect to P2

N, for the filtrations it generates, mn is a square integrable
martingale;

One may thus state the following “summary”:

Proposition 17.3.4 Almost surely, with respect to P2

N, m has the properties of B,
and, almost surely, with respect to PK

BN
, m ı ˚2 is the identity of K.

Proof Let BN be the Cramér-Hida process obtained from N, using the Cramér-Hida
representation: it has components BN

n . One has then that

PK
BN
.k 2 K W dK.m Œ˚2Œk�� ; k/ > �/ D
D P

�
! 2 ˝ W dK.mŒ˚2ŒBN Œ!���;BN Œ!�/ > �

�
D P

�
! 2 ˝ W dK

�
mŒNŒ!��;BN Œ!�

�
> �

�
:
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When K is taken to be Fréchet (as opposed to Banach), it suffices to prove that, for
n 2 N, fixed, but arbitrary,

P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
mn.NŒ!�; t/ � BN

n.!; t/
ˇ̌
> �

!
D 0:

But, since mn is a separable, continuous martingale, one may use Doob’s L2
inequality to obtain that the latter probability is dominated by

1

�2
sup

t2Œ0;1�
EP

h˚
mn.NŒ
�; t/ � BN

n.
; t/
�2i D 0:

When K is taken to be Cl2 .Œ0; 1�/, since

dK
�
m.NŒ!�; t/;BN.!; t/

� D 1X
nD1

˚
mn.NŒ!�; t/ � BN

n.!; t/
�2
;

the distance dK will be zero for the reason already stated. ut
Fact 17.3.5 BN has, with respect to N, a regular conditional distribution concen-
trated at the point m ı N.

Proof Let K0 2 K, and L0 2 B.L2Œ0; 1�/, be fixed, but arbitrary. Since, when

P
�
BN 2 K0 j N D f

� D �K0
.mŒ f �/ ;

one has that

P
�
BN 2 K0;N 2 L0

� D Z
L0

P
�
BN 2 K0 j N D f

�
P2

N.df /

D
Z

L0

�K0
.mŒ f �/P2

N.df /

D
Z

N�1.L0/
�K0

.mŒN�/ dP;

one must check that

P
�
BN 2 K0;N 2 L0

� D P .mŒN� 2 K0;N 2 L0/ :

That equality will be true as soon as it obtains for generating sets. Let thus

• 0 � t1 < 
 
 
 < tn � 1,
• Bi 2 B.l2/; i 2 Œ1 W n�,
• K0 D

˚
k 2 K W EK

t1 .k/ 2 B1; : : : ; EK
tn.k/ 2 Bn

�
,
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•
˚

f1; : : : ; fp
� � L2Œ0; 1�,

• Cj 2 B.R/; j 2 Œ1 W p�,
• L0 D

n
f 2 L2Œ0; 1� W h f ; f1iL2Œ0;1� 2 C1; : : : ;

˝
f ; fp

˛
L2Œ0;1�

2 Cp

o
,

be fixed, but arbitrary. The required probability equality is then obviously true as, in
L2, for t fixed, but arbitrary, BN.
; t/ D m.NŒ
�; t/. ut
Remark 17.3.6 As seen above, for n 2 N, fixed, but arbitrary, the family˚
n;p; p 2 N

�
is equicontinuous. The family˚

�1=2p n;p; .n; p/ 2 N � N
�

is also equicontinuous. Indeed

ˇ̌
�1=2p n;p

ˇ̌ D ˇ̌̌˝˘nŒ�Œ0;t� 1��; S
?Œei � ej�

˛
L2Œ b �

ˇ̌̌
� bn.t/

ˇ̌̌̌
S?Œei � ej�

ˇ̌̌̌
L2Œ bn �

:

The sequence of eigenvectors of RN converges weakly to zero, and S is compact.
Thus fS?Œei�; i 2 Ng converges to zero.

17.3.2 The Inverses for Real and Continuous Paths

Since, in the ˚2 case, m has been identified as the support of the conditional law
of BN given N, one shall, in the ˚ and ˚c cases, compute that conditional law, and
then check that it is the inverse.

Since N D ˚.BN/, the conditional law of BN given N should be a point mass.
Indeed, for K0 2 K, and L0 2 B.L2Œ0; 1�/, fixed, but arbitrary, since BN and N
generate the same �-algebras,

fBN 2 K0g D
˚
BN 2 ˚�1. QK0/

�
;

some QK0 2 B.L2Œ0; 1�/. One then has that

P.BN 2 K0;N 2 L0/ D EP
�
�K0
.BN/�L0

.˚.BN//
�

D
Z

K0

�L0
.˚.k//PK

BN
.dk/

D
Z
˚�1. QK0/

�L0
.˚.k//PK

BN
.dk/

D
Z
QK0
�L0
.f /PN.df /

D
Z

L0

�
QK0
.f /PN.df /:
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However, what one needs, for practical purposes, is an explicit form of the
conditional law. That is the object of the next proposition. Since no particular
structure is assumed, one must trek through finite dimensional distributions. Since
those require quite a bit of accounting, one shall start with a number of preliminaries
about notation and implicit assumptions.

Since N is continuous in L2, the conditional law, given N, is the same as the
conditional law given N, a vector of values of N obtained at a dense set of times, and
the latter shall be the limit, as the subsets increase, of finite subsets of components
of N. For the finite dimensional distributions of BN , one will have to proceed with a
finite number of components, and times of the latter. Hence the following notation.

Preliminary 17.3.7 (Indices)

1. For
˚
p; n1; : : : ; np

� � N and ni < niC1; i 2 Œ1 W p � 1�, fixed, but arbitrary,

N. p/ D
˚
n1; : : : ; np

� I
2. for n and pŒn� in N, fixed, but arbitrary, and i 2 Œ1 W pŒn�� 1�,

in �0; 1�; t.n/i < t.n/iC1; and Tn D
˚
tn;1; : : : ; tn;pŒn�

� I
3. for n 2 N, fixed, but arbitrary, Tn � TnC1 (strict inclusion);
4. T D Sn2N Tn, T dense in Œ0; 1�;
5. T shall be ordered as follows: the first pŒ1� elements are those of T1, the next

those of T2 nT1, in the order in which they appear in T2, the next those of T3 nT2,
in the order in which they appear in T3, and so forth, until T be exhausted, and
the result is T D ft1; t2; t3; : : :g; thus, when Tm � Tn, Tn will contain, in the order
given, the following elements:

tm;1; : : : ; tm;pŒm�; �1; : : : ; �q;

where
˚
�1; : : : ; �q

� D Tn n Tm, and q D pŒn� � pŒm�;
6. for n 2 N, fixed, but arbitrary,

in �0; 1�; �i < �iC1; i 2 Œ1 W n � 1�; and 
n D f�1; : : : ; �ng :

Preliminary 17.3.8 (Intervals)

1. For n 2 N and fa; bg � Rn, fixed, but arbitrary, a < b (a � b) means that ai < bi

(ai � bi) for i 2 Œ1 W n�;
2. �a; b� D fx 2 Rn W a < x � bg;
3. for p 2 N and, in Rn, aj < bj; j 2 Œ1 W p�, fixed, but arbitrary,

�a; b�pn D
pY

jD1
�aj; bj�I
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4. given that, for example, a. j/

i is the j-th component of ai,

�a; b�pn;i D
pY

jD1
�a. j/

i ; b
. j/

i �:

Preliminary 17.3.9 (Evaluation Maps)

One shall need a number of maps that are evaluations, as follows.

1. EK
N.q/ W K �! fC.Œ0; 1�/gq,

which retains, from the vector of countable continuous functions k, its compo-
nents kn1 ; : : : ; knq ;

2. E q


p
W fC.Œ0; 1�/gq �! Rpq,

which retains, from a vector cq 2 fC.Œ0; 1�/gq, the following values:

c1.�1/ 
 
 
 c1.�p/
:::

:::

cq.�1/ 
 
 
 cq.�p/

I

3. EK

p
W K �! sp,

which retains, from the vector of countable continuous functions k, p elements
of s,

˚
k.�1/; : : : ; k.�p/

�
;

4. E p

N.q/ W sp �! Rpq,
which retains, from p vectors in s, x1; : : : ; xp, the following values:

x.1/n1 
 
 
 x. p/
n1

:::
:::

x.1/nq

 
 
 x. p/

nq

I

5. for n 2 N, p 2 N [ f1g, n < p, fixed, but arbitrary, Ep;n W Rp �! Rn,
which retains the first n components of x 2 Rp;

6. for a set S, a set of indices T0 � Œ0; 1�, and a function

f W Œ0; 1� �! S;

fixed, but arbitrary, ET0 .f / 2 ST0 is the restriction to T0 of f :

ET0 .f / D f T0 :

One has in particular that

E q


p
ı EK

N.q/ D E p

N.q/ ı EK

p
:
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Preliminary 17.3.10 (Projections in s)

Let
˚
en; n 2 N

� � s be the standard basis of l2. It is also a Schauder basis for the
Fréchet R1. Let, for x 2 s,

˝
x; en

˛
s

denote the usual inner product of l2 when x 2 l2,
and the coordinate functional otherwise. In the latter case it is a continuous linear
functional as well. Thus, letting xn D

Pn

iD1
˝
x; ei

˛
s
ei,

lim
n

ˇ̌̌̌
x � xn

ˇ̌̌̌
s
D 0;

and xn may be used as the projection of x on the subspace spanned by e1; : : : ; en. One
shall write ˘ s

N.q/ for the projection onto the subspace of s spanned by en1
; : : : ; enq

.
The projection

.˘ s
N.q/; ˘

s
N.q//

shall be denoted˘2s
N.q/. Finally, when N.q1/ � N.q2/,ˇ̌̌̌̌̌

˘ s
N.q1/

ˇ̌̌̌̌̌
s
�
ˇ̌̌̌̌̌
˘ s

N.q2/

ˇ̌̌̌̌̌
s
:

For � > 0, let

• f� W s2 �! RC be defined as

f�.u; v/ D jju � vjj�s ;

• � W R2q �! RC, as, mutatis mutandis, f� on s2.

Letting xi D
˝
u; eni

˛
s

and yi D
˝
v; eni

˛
s
, one has that

f�.˘
s
N.q/Œu�; ˘

s
N.q/Œv�/ D �.x; y/ D �.E s

N.q/.u/; E s
N.q/.v//:

Preliminary 17.3.11 (Sets)

One must manipulate N at times Tn, and the coordinates BN
i of BN , at times 
p:

1. for BN , Kc D
n
E q


p
ı EK

N.q/

o�1 �
�a; b�qp

�
,

so that B�1N .Kc/ is the set of !’s in ˝ such that, for

�i 2 
p; i 2 Œ1 W p�; nj 2 N.q/; j 2 Œ1 W q�;

fixed, but arbitrary,

BN
nj
.!; �i/ 2

�
a. j/

i ; b
. j/

i

� I
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2. for N, Dc D E�1Tn

�
��; ��n1

�
, so that N�1.Dc/ is the set of !’s in ˝ such that, for

t.n/i 2 Tn; i 2 Œ1 W pŒn��;

fixed, but arbitrary,

N.!; t.n/i / 2��i; �i�:

Preliminary 17.3.12 (Vectors of Normal Random Variables)

1. For ni 2 N.q/, fixed, but arbitrary, Xp

i is the vector with components BN
ni
.
; �j/;

�j 2 
p;
2. Xp;q is the vector with components Xp

1; : : : ;X
p
q;

3. Yn is the vector with components N.
; tn;k/; tn;k 2 Tn; k 2 Œ1 W pŒn��;
4. one has the following relation: E1;n ı ET.N/ D E1;n.N/ D Yn.

Preliminary 17.3.13 (Covariance Matrices)

1. for p 2 N and fi; jg 2 Œ1 W q� fixed, but arbitrary,

˙X. p; i; j/ D EP

h
Xp

i .X
p

j /
?
i
I

that matrix has dimensions . p; p/; it is either the zero matrix (i ¤ j), or a matrix
with the following form (i D j):

0
BBB@

bni.�1/ bni.�1/ bni.�1/ 
 
 

bni.�1/ bni.�2/ bni.�2/ 
 
 

bni.�1/ bni.�2/ bni.�3/ 
 
 

:::

:::
:::

:::

1
CCCA ;

and, since, for f�k; �lg � 
p, fixed, but arbitrary,˝
˘ni Œ�Œ0;�k �1�;˘nj Œ�Œ0;�l �1�

˛
L2Œ b �
D ıni;nj bni.�k ^ �l/;

the matrix ˙X. p; i; j/ is more usefully described as having entries given by the
left-hand side of the latter set of equalities, that is, in terms of projections;

2. the following matrix has dimensions .pq; pq/:

˙
p;q
X D

0
BBB@
˙X. p; 1; 1/ ˙X. p; 1; 2/ ˙X. p; 1; 3/ 
 
 

˙X. p; 2; 1/ ˙X. p; 2; 2/ ˙X. p; 2; 3/ 
 
 

˙X. p; 3; 1/ ˙X. p; 3; 2/ ˙X. p; 3; 3/ 
 
 


:::
:::

:::
:::

1
CCCA ;
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and is thus a diagonal matrix with matrices in the diagonal as given in item 1; it
is the covariance matrix of the vector Xp;q;

3. the matrix

˙X;Y.n; p; i/ D EP
�
Xp

i Y
?
n

�
has dimensions . p; pŒn�/; its entry, in row k and column l, is

EP
�
BN

ni
.
; �k/N.
; tn;l/

� D
D
Z �k

0

Fni.tn;l; x/Mni.dx/

D ˝
˘ni Œ�Œ0;�k �1�;F.tn;l/

˛
L2Œ b �
I

4. the following matrix has dimensions .pq; pŒn�/:

˙
n;p;q

X;Y D

0
BBB@
˙X;Y.n; p; 1/
˙X;Y.n; p; 2/
˙X;Y.n; p; 3/

:::

1
CCCA I

5. the matrix

˙ n
Y D EP

�
Yn Y?n

�
has dimensions . pŒn�; pŒn�/, and entries of the following form, in row k and
column l:

EP ŒN.
; tn;k/N.
; tn;l/� D CN.tn;k; tn;l/

D hF.tn;k/;F.tn;l/iL2Œ b � I

it shall be assumed that there is no interval of positive length over which N has
paths that are almost surely constant, and thus that T may be chosen so that ˙ n

Y
is always invertible: indeed the following relation:

EP
�fN.
; u/� N.
; v/g2� D jjF.u/� F.v/jj2L2Œ b �

would imply, in case of constancy, that fF.t/; t 2 Œ0; 1�g is not total;
6. the matrix

˙
n;p;q

Z D
 

˙
p;q

X ˙
n;p;q

X;Y�
˙

n;p;q

X;Y

�? D ˙ n;p;q

Y;X ˙ n
Y

!
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has dimensions .pqCpŒn�; pqCpŒn�/, and is the covariance matrix of the Gaussian
vector

Zn;p;q D
"

Xp;q

Yn

#
:

Preliminary 17.3.14 (Measures and Densities)

1. The Gaussian measure on the Borel sets of Rn, with mean m and covariance C,
shall be denoted, for Borel B, fixed, but arbitrary,

	n.B j m;C/I

2. the vector Zn;p;q has, as law, 	pqCpŒn�

�

 j 0pqCpŒn�; ˙

n;p;q

Z

�
;

3. the conditional law of Xp;q when Yn D y
pŒn�

is Gaussian with

mean W mh
Xp;qjYnDy

pŒn�

i D ˙ n;p;q

X;Y .˙
n
Y/
�1

�
y

pŒn�

�
;

variance W ˙h
Xp;qjYnDy

pŒn�

i D ˙ p;q

X �˙ n;p;q

X;Y .˙
n
Y/
�1˙

n;p;q

Y;X :

Proposition 17.3.15 The conditional law PBN jN.f ; 
/ of BN, given that N D f , is
provided by the following relation: almost surely, with respect to PN, for K0 2 K,
fixed, but arbitrary,

PBN jN.f ;K0/ D �K0
.m.f ; 
//;

where

(i) m is a continuous, Gaussian process, defined on .RŒ0;1�; C.RŒ0;1�/;PN/, whose
law is the same as that of BN, with respect to P;

(ii) m is the weak limit of a sequence
˚
mn; n 2 N

�
of continuous, Gaussian pro-

cesses, defined on .RŒ0;1�; C.RŒ0;1�;PN/, whose components have the following
form:

mn;p.f ; t/ D
˝
ETn

�
LF˘pŒ�Œ0;t�1�

�
; ˙�1N;nE1;nET.f /

˛
Rn ;

where˘n is as in Sect. 17.3.1, and LF W L2Œb� �! H.CN ; Œ0; 1�/, the map whose
range is the RKHS associated with N.

Proof Let N D ET.N/. Since N is continuous in L2, N and N generate the same
�-algebra, so that, with

N�1.C0/ D N�1
�
E�1T .C0/

�
;
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it is sufficient to consider the following expression:

P.BN 2 K0;N 2 E�1T .C0// D P.BN 2 K0;N 2 C0/

D
Z

C0

PBN jN.x;K0/PN.dx/

D
Z
E�1T .C0/

PBN jN.ET.f /;K0/PN.df /:

One starts by computing the following probability:

P
�
Bni.
; �j/ 2�a. j/

i ; b
. j/

i �; ni 2 N.q/; �j 2 
p;N.
; tn;k/ 2��k; �k�; tn;k 2 Tn
�
;

which is equal to the following expression [(Preliminary) 17.3.11]:

P
�
BN 2 Kc;N 2 Dc

� D P
�

Xp;q 2�a; b�qp;Yn 2��; ��pŒn�1
�
:

Now, since Yn D E1;pŒn�.N/ [(Preliminary) 17.3.12],

P
�

Xp;q 2�a; b�qp;Yn 2��; ��pŒn�1
�
D

D
Z
��;��

pŒn�
1

	pŒn�.dy
pŒn�
j 0pŒn�; ˙

n
Y/ �

� 	pq

�
�a; b�qp j mh

Xp;qjYnDy
pŒn�

i; ˙h
Xp;qjYnDy

pŒn�

i�

D
Z

Dc

PN.dx/ �

� 	pq

�
�a; b�qp j mŒXp;qjYnDE1;pŒn�.x/�; ˙ŒXp;qjYnDE1;pŒn�.x/�

�
:

The proof consists in studying the behavior of

	pqŒx�.n/ D 	pq

�
�a; b�qp j mŒXp;qjYnDE1;pŒn�.x/�; ˙ŒXp;qjYnDE1;pŒn�.x/�

�
;

as the number pŒn� of evaluation points for N increases indefinitely.
Let HF be the subspace of L2Œ b � generated by fF.t/; t 2 Œ0; 1�g (one thus

does not yet take into account the assumption that the representation of N is
proper canonical), and ˘F be the associated projection. The matrix ˙F;q.�i; �j/,
of dimensions .q; q/, shall have entries, in position .k; l/, given by the following
expression: D

˘?F Œ˘nk Œ�Œ0;�i �1��;˘nl Œ�Œ0;�j � 1�
E
L2Œ b �

:
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Thus, when the representation is proper canonical, ˙F;q.�i; �j/ is a matrix with all
entries equal to zero.
˙
.pq/
F shall be the p � p matrix of the q � q matrices ˙F;q.�i; �j/: it has thus

dimension pq � pq. Thus, for example, when p D 2,

˙
.2q/

F D
	
˙F;q.�1; �1/ ˙F;q.�1; �2/

˙F;q.�2; �1/ ˙F;q.�2; �2/



:

If then, Ip being the . p; p/ identity matrix, M D �Iq j �Iq
�
,

M˙.2q/

F M? D ˙F;q.�1; �1/ �˙F;q.�1; �2/ �˙F;q.�2; �1/C˙F;q.�2; �2/;

whose term, in position .k; l/, is˝
˘?F ˘nk Œ���1;�2�1�;˘nl Œ���1;�2�1�

˛
L2Œ b �

:

Let, for x 2 R1, and t 2 Œ0; 1�, fixed, but arbitrary,

m.n/

i .x; t/ D
˝
ETn ı LF ı˘iŒ�Œ0;t� 1�; .˙

n
Y /
�1E1;pŒn�.x/

˛
RpŒn�

be the components of mn. Suppose that one thus defines a process with paths in K.
Then

PN

�
E�1 ı EK

n1

�
mn

� 2 B1; : : : ; E�p ı EK
np

�
mn

� 2 Bp

�
D

D PN

�
m.n/

n1 .
; �1/ 2 B1; : : : ;m
.n/
np
.
; �p/ 2 Bp

�
is a finite dimensional distribution of mn, for the cylinder sets of R1 and PN .
Were one to show that the sequence of mn’s is tight, and that the finite dimensional
distributions converge weakly, one would then have established the existence of a
process m which is the weak limit of the mn’s [38, p. 35].

Step 1: With respect to PN, for almost every x 2 R1, as n 2 N increases
indefinitely, 	pqŒx�.n/ converges weakly to

	pq.
 j mp;qŒx�; ˙
.pq/

F /;

where mp;qŒx� is as determined below.

Since one only deals with Gaussian measures on Euclidean spaces, it suffices to
establish the convergence of means and covariance matrices. Now, the entries of

˙
n;p;q

X;Y .˙
n
Y/
�1˙

n;p;q

Y;X
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have the following form:

u?pŒn�.˙
n
Y/
�1vpŒn� D

D
.˙ n

Y /
�1vpŒn�; upŒn�

E
RpŒn�

;

where upŒn� and vpŒn� are columns of ˙ n;p;q

Y;X . The latter are the columns of the
successive

EPŒYn.X
p

i /
?�’s;

which, as seen [(Preliminary) 17.3.13], have the following form (for the k-th
column):

ETn ı LF ı˘ni

�
�
Œ0;�k �

1
�
:

The entries of ˙ n;p;q

X;Y .˙
n
Y /
�1˙

n;p;q

Y;X are thus of the following form:

˝
.˙ n

Y/
�1
˚
ETn ı LF ı˘ni

�
�
Œ0;�k �

1
��
; ETn ı LF ı˘nj

�
�
Œ0;�l �
1
�˛
RpŒn� : (?)

Let Hn.CN ; Œ0; 1�/ be the subspace of H.CN ; Œ0; 1�/ generated by the functions˚
t 7! CN.
; t.n/i /; t

.n/

i 2 Tn; i 2 Œ1 W pŒn��
�
;

and

˘Hn.CN ;Œ0;1�/

be the associated projection. Since the range of LF is the RKHS of N, the latter inner
product (?) is [(Proposition) 1.6.22] the explicit expression for˝

˘Hn.CN ;Œ0;1�/ ı LF ı˘ni

�
�
Œ0;�k �

1
�
;

˘Hn.CN ;Œ0;1�/ ı LF ı˘nj

�
�
Œ0;�l �
1
�˛

H.CN ;Œ0;1�/
:

Since N is continuous in L2, and that T is dense in Œ0; 1�, the strong limit in
H.CN ; Œ0; 1�/ of the sequence ˚

˘Hn.CN ;Œ0;1�/; n 2 N
�

is the identity of H.CN ; Œ0; 1�/, and thus

lim
n
˙

n;p;q

X;Y .˙
n
Y/
�1˙

n;p;q

Y;X
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has entries equal to˝
LF ı˘ni

�
�
Œ0;�k �

1
�
;LF ı˘nj

�
�
Œ0;�l �
1
�˛

H.CN ;Œ0;1�/
D

D ˝
˘F ı˘ni

�
�
Œ0;�k �

1
�
; ˘F ı˘nj

�
�
Œ0;�l �
1
�˛

L2Œ b �
:

Since ˙ p;q

X has, as seen [(Preliminary) 17.3.13], entries of the following form:˝
˘ni

�
�
Œ0;�k �

1
�
; ˘nj

�
�
Œ0;�l �
1
�˛

L2Œ b �
;

it ensues that

lim
n

˚
˙

p;q

X �˙ n;p;q

X;Y .˙
n
Y /
�1˙

n;p;q

Y;X

�
has entries of the following form:˝

˘?F
�
˘ni

�
�
Œ0;�k �

1
��
; ˘?F

�
˘nj

�
�
Œ0;�l �
1
��˛

L2Œ b �
;

which are those of ˙.pq/

F .
Regarding the mean, one has that

˙X;Y.n; p; i/.˙
n
Y/
�1E1;pŒn�.x/

is a vector in Rp whose k-th entry has the following form:

v?pŒn�.˙
n
Y /
�1E1;pŒn�.x/ D

D
.˙ n

Y /
�1E1;pŒn�.x/; vpŒn�

E
RpŒn�

;

where vpŒn� is the k-th column of˙?
X;Y.n; p; i/ D ˙Y;X.n; p; i/, and is, as already seen

[(Preliminary) 17.3.13],

ETn ı LF ı˘ni

�
�
Œ0;�k �

1
�
:

Consequently, the rows of the conditional mean have the following form:

m.n/

ni;k
Œx� D ˝.˙ n

Y/
�1E1;pŒn�.x/; ETn ı LF ı˘ni

�
�
Œ0;�k �

1
�˛
RpŒn� :

Now

m.n/

ni;k
ŒN� D ˝Yn; .˙

n
Y/
�1 ı ETn ı LF ı˘ni

�
�
Œ0;�k �

1
�˛
RpŒn� ;

so that [(?) again]

EPN

h˚
m.n/

ni;k

�2i D ˇ̌̌̌˘Hn.CN ;Œ0;1�/ ı LF ı˘ni Œ�Œ0;�k �1�
ˇ̌̌̌
2

H.CN ;Œ0;1�/
:
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Furthermore, given n < p in N, and vn 2 Rn, fixed, but arbitrary, let vn;0 be the
vector of Rp obtained by padding vn with p � n zeroes. Then, the transpose of Ep;n

is obtained as

E?p;n.vn/ D vn;0:

Thus, for n < p in N, using (?),

EP
�
m.n/

ni;k
.N/m. p/

ni;k
.N/

� D
D EP

hD
Yp; E?pŒp�;pŒn�.˙ n

Y /
�1 ı ETn ı LF ı˘ni

�
�
Œ0;�k �

1
�E

RpŒn�
�

� ˝Yp; .˙
p

Y /
�1 ı ETp ı LF ı˘ni

�
�
Œ0;�k �

1
�˛
RpŒp�

i
D ˝

.˙ n
Y/
�1 ı ETn ı LF ı˘ni

�
�
Œ0;�k �

1
�
;

EpŒp�;pŒn� ı ETp ı LF ı˘ni

�
�
Œ0;�k �

1
�˛
RpŒn�

D ˝
.˙ n

Y/
�1 ı ETn ı LF ı˘ni

�
�
Œ0;�k �

1
�
; ETn ı LF ı˘ni

�
�
Œ0;�k �

1
�˛
RpŒn�

D ˇ̌̌̌
˘Hn.CN ;Œ0;1�/ ı LF ı˘ni Œ�Œ0;�k �1�

ˇ̌̌̌
2

H.CN ;Œ0;1�/
:

Consequently

EPN

h˚
m. p/

ni;k
� m.n/

ni;k

�2i D
D ˇ̌̌̌ ˚

˘Hp.CN ;Œ0;1�/ �˘Hn.CN ;Œ0;1�/

�
ŒLF ı˘ni Œ�Œ0;�k � 1�

ˇ̌̌̌
2

H.CN ;Œ0;1�/
;

so that ˚
m.n/

ni;k
; n 2 N

�
is a Cauchy sequence in L2 for PN . Choosing, when necessary, a subsequence, one
may assume that convergence is almost sure. The limit shall be mni;k, and mp;q is the
vector with those components. Since

˚
	pqŒx�.n/; n 2 N

�
is, with respect to PN , for

almost every x, weakly convergent, the corresponding characteristic functions are
almost surely convergent, and, by dominated convergence, the second requirement,
reviewed in the lines preceding the statement of step 1, for

˚
mn; n 2 N

�
to be tight,

is met.

Step 2: A candidate for PBN jN.

Let m.n/

i W R1 � Œ0; 1� �! R be defined using the following relation:

m.n/

i .x; t/ D
˝
ETn ı LF ı˘iŒ�Œ0;t�1�; .˙

n
Y /
�1E1;pŒn�.x/

˛
RpŒn� : (??)
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Then

EPN

h˚
m.n/

i .
; t/
�2i D

D ˝
.˙ n

Y/
�1ETn ı LF ı˘iŒ�Œ0;t� 1�; ETn ı LF ı˘iŒ�Œ0;t�1�

˛
RpŒn�

D ˇ̌̌̌
˘Hn.CN ;Œ0;1�/

�
LF ı˘iŒ�Œ0;t�1�

�ˇ̌̌̌ 2
H.CN ;Œ0;1�

� ˇ̌̌̌˘iŒ�Œ0;t�1�
ˇ̌̌̌
2

L2Œ b �

D bi.t/:

mn shall be the process, with values in l2, whose components are the m.n/

i ’s.
To have that mn is, for PN , a Gaussian process, one must check that, for q 2 N,˚

˛1; : : : ; ˛q

� � l2, and
˚
t1; : : : ; tq

� � R, fixed, but arbitrary,

V D
qX

iD1

˝
˛i;mn.N; ti/

˛
l2

is Gaussian [65, p. 83]. But˝
˛;mn.N; t/

˛
l2
D

D
1X

kD1
˛k m.n/

k .N; t/

D
1X

kD1
˛k
˝
ETn ı LF ı˘kŒ�Œ0;t�1�; .˙

n
Y /
�1E1;pŒn�.N/

˛
RpŒn�

D
*
ETn ı LF

" 
1X

kD1
˛k˘k

! �
�
Œ0;t�1

�#
; .˙ n

Y/
�1E1;pŒn�.N/

+
RpŒn�

:

Let ˘˛ DP1kD1 ˛k˘k. Then

V D
*
ETn ı LF

"
qX

iD1

�
˘˛i

Œ�
Œ0;ti �
1�
�#
; .˙ n

Y/
�1E1;pŒn�.N/

+
RpŒn�

;

a Gaussian random variable. The mean of mn.
; t/ is, with respect to PN , zero, and

EPN

	˝
˛;mn.
; t1/

˛
l2

D
ˇ;mn.
; t2/

E
l2



D

D EPŒ˝
.˙ n

Y /
�1
�
ETn ı LF ı˘˛Œ�Œ0;t1�1�

�
; ETn ı LF ı˘˛Œ�Œ0;t1�1�

˛
RpŒn�
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D
.˙ n

Y/
�1
h
ETn ı LF ı˘ˇŒ�Œ0;t2� 1�

i
; ETn ı LF ı˘ˇŒ�Œ0;t2�1�

E
RpŒn�

�

D
D
˘Hn.CN ;Œ0;1�/

�
LF
�
˘˛Œ�Œ0;t1�1�

��
;LF

h
˘ˇŒ�Œ0;t2�1�

iE
H.CN ;Œ0;1�/

:

Now, given fu; vg � Œ0; 1�, u ¤ v, fixed, but arbitrary, let x D u^v and y D u_v.
Then, using the definition of m.n/

i given at (??),

ˇ̌̌̌
mn.N; u/� mn.N; v/

ˇ̌̌̌
2

l2
D

D
1X

iD1

˝
ETn ı LF

�
˘iŒ��x;y� 1�

�
; .˙ n

Y/
�1E1;pŒn�.N/

˛2
RpŒn� :

Let fu;v W N �! R be the following function:

fu;v.i/ D
˝
ETn ı LF

�
˘iŒ��x;y� 1�

�
; .˙ n

Y/
�1E1;pŒn�.N/

˛2
RpŒn� :

Since the evaluations over a RKHS are continuous functionals, and that LF is a
partial isometry, the following function is well defined:

gu;v.i/ D jjETn jj2
ˇ̌̌̌
.˙ n

Y/
�1Yn

ˇ̌̌̌
2

RpŒn�

ˇ̌̌̌
˘iŒ��x;y� 1�

ˇ̌̌̌
2

L2Œ b �
:

But ˇ̌̌̌
˘iŒ��x;y� 1�

ˇ̌̌̌
2

L2Œ b �
D bi.y/� bi.x/;

so that, for fixed, but arbitrary i 2 N, fu;v.i/ � gu;v.i/, and

lim
ju�vj#0

fu;v.i/ D lim
ju�vj#0

gu;v.i/ D 0:

Finally

1X
iD1

gu;v.i/ D jjETn jj2
ˇ̌̌̌
.˙ n

Y/
�1Yn

ˇ̌̌̌
2

RpŒn�

1X
iD1

ˇ̌̌̌
˘iŒ��x;y� 1�

ˇ̌̌̌
2

L2Œ b �

D jjETn jj2
ˇ̌̌̌
.˙ n

Y/
�1Yn

ˇ̌̌̌
2

RpŒn� .b.y/� b.x// :

Consequently, using a general dominated convergence theorem [226, p. 232],

lim
ju�vj#0

1X
iD1

fu;v.i/ D 0:
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It follows that mn is continuous.
To obtain that the sequence

˚
mn; n 2 N

�
is tight one may proceed as follows.

(a) Case of s D l2: One has, for Gaussian elements with values in appropriate
Banach spaces, among which l2, that [171, p. 60], for fixed, but arbitrary
fp; qg ��0;1Œ,

E1=p

P

�jjXjjpl2� � �. p; q/E1=q

P

�jjXjjql2� :
Let now q D 2, and X D mn.
; t1/� mn.
; t2/. One obtains that

EP

hˇ̌̌̌
mn.
; t1/ �mn.
; t2/

ˇ̌̌̌ p

l2

i
� �p. p; 2/Ep=2

P

hˇ̌̌̌
mn.
; t1/� mn.
; t2/

ˇ̌̌̌
2

l2

i
� �p. p; 2/ jb.t1/� b.t2/jp=2 :

It suffices thus to take p > 2 and to apply the tightness (result (Proposition))
12.3.10.

(b) Case of R1: Let en 2 R1 have all its components zero, except the n-th one
that has value one. The set

˚
en; n 2 N

�
is a Schauder basis for the Fréchet space

s D R1. The coordinate functionals E s
n.x/ D xn are continuous, and the dual

of s is obtained using the finite linear combinations of evaluation functionals.
Furthermore, as seen [Sect. 12.1.2], when s D R1, and x 2 l2, jjxjjs � � jjxjjl2 .
But the latter obtains almost surely [259, p. 15], and consequently the result for
l2 obtains also for s.

It may thus be taken as true that, with respect to PN ,
˚
mn; n 2 N

�
converges

weakly to some process m which is continuous and Gaussian, with, using step 1, a
mean equal to zero, and a covariance with the following entries:D

Cm.t1; t2/ Œ˛� ; ˇ
E
s
D
D
LF
�
˘˛

�
�
Œ0;t1�
1
��
;LF

h
˘ˇ

�
�
Œ0;t2�
1
�iE

H.CN ;Œ0;1�/
;

where, for s D l2, Cm.t1; t2/ is an actual covariance matrix, whereas, when s D
R1, the formal inner product denotes a bilinear functional, and, for example, ˛,
the coefficients, finite in number, of an element in the dual of s. Furthermore, the
components mni;kŒx� of mŒx� of step 1 are, almost surely, with respect to PN , equal to
mni.x; �k/, where mni is the ni-th component of m.

Let Q be the following cylindrical probability on K [(Preliminary) 17.3.11, item
1, (Preliminary) 17.3.14, items 1 and 2]:

Q.Kc/ D Q ı
n
E q


p
ı EK

N.q/

o�1 �
�a; b�qp

�
D 	p;q

�
�a; b�qp

ˇ̌
0Rpq ; ˙

.pq/

F

�
:
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One has, the notation being that of (Preliminary) 17.3.10, and (???) below referring
to (Preliminary) 17.3.9, item 6, thatZ

s�s
f�.u; v/Q ı

˚
EK

2

��1
.du; dv/ D

D lim
q

Z
s�s

f�.˘
s
N.q/Œu�; ˘

s
N.q/Œv�/Q ı

˚
EK

2

��1
.du; dv/

D lim
q

Z
s�s
�.E s

N.q/.u/; E s
N.q/.v//Q ı

˚
EK

2

��1
.du; dv/

D lim
q

Z
R2q
�.x; y/Q ı

n
E s

N.q/ ı EK

2

o�1
.dx; dy/

???D lim
q

Z
R2q
�.x; y/Q ı

n
E q


2
ı EK

N.q/

o�1
.dx; dy/

D lim
q

Z
R2q
�.x; y/	2q

�
dx; dy

ˇ̌
0R2q ; ˙

.2q/

F

�
D lim

q
E
	2q

�
�j0

R2q ;˙
.2q/
F

� Œ�� :

Now, as above,

E
	2q

�
�j0

R2q ;˙
.2q/
F

� �p
� � �. p; 2/pEp=2

	2q

�
�j0

R2q ;˙
.2q/
F

� Œ2� :

But, with z, obtained by stacking x and y, and M D ŒIq j �Iq�, one has that x � y D
MŒz�, so that

2.x; y/ D
ˇ̌̌̌̌̌
x � y

ˇ̌̌̌̌̌
2

Rp
D ˝M?MŒz�; z

˛
R2q :

Using the formula for the expectation of a quadratic form [121, p. 243], one obtains
that the expectation of 2 is

trace
�
M?M˙.2q/

F

� D trace
�
M˙.2q/

F M?
�
:

But, as seen above, M˙.2q/

F M? is a q � q matrix with entries of the following form
(as �1 < �2/: ˝

˘?F ˘nk

�
�
��1;�2�

1
�
; ˘nl

�
�
��1;�2�

1
�˛

L2Œ b �
:

The trace is thus the sum of the diagonal terms (k D l), and that sum is dominated
by b.�2/ � b.�1/. Consequently (Proposition) 12.3.10 applies again, and Q extends
to a unique probability measure on K, also denoted Q. When the representation is
proper canonical, Q is a point mass at 0K .
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For � 2 K, fixed, but arbitrary, let T� W K �! K be translation by �:

T�.k/ D kC �:

It is an adapted map, and thus, for appropriate x 2 R1, fixed, but arbitrary,

Qm.x;�/ D Q ı T�1m.x;�/

is a well-defined probability, and a transition function. For appropriate x 2 R1 and
K0 2 K, fixed, but arbitrary, let the candidate conditional probability be

Qc.x;K0/ D Qm.x;�/.K0/:

When the representation is proper canonical, Qc is a point mass at the proper value
of m.

Step 3: For K0 2 K and C0 2 B.R1/, fixed, but arbitrary,

P.BN 2 K0;N 2 C0/ D
Z

C0

Qc.x;K0/PN.dx/:

As seen above,

P
�
BN 2 Kc;N 2 Dc

� D Z
Dc

PN.dx/	p;qŒx�.n/;

and
˚
	p;qŒx�.n/; n 2 N

�
converges weakly to 	p;q.
; j mŒx�; ˙. p;q/

F /. But, when the
representation is proper canonical, the limit is a point mass at mŒx�. When I D�a; b�qp
is a continuity set, by dominated convergence,

P.BN 2 Kc;N 2 Dc/ D
Z

Dc

PN.dx/�f�a;b�qpg.mŒx�/:

When mŒx� is on the boundary of I, it will not be on the boundary of (� > 0/

�.1 � �/a; .1C �/b�qp. The latter relation is true for the latter interval, and then one
goes to zero with �. So it is true for all intervals, and thus for all Borel sets. ut
Proposition 17.3.16 m is the inverse of ˚ .

Proof Since m is continuous, the following expression makes sense:

PK
BN

 
k 2 K W sup

t2Œ0;1�

ˇ̌
Et ı EK

n .mŒ˚.k/�/ � Et ı EK
n .k/

ˇ̌ � �
!
D

D P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
mn.NŒ!�; t/ � BN

n.!; t/
ˇ̌ � �

!
:
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Since m has, with respect to PN , the same law as BN with respect to P, one may use
Doob’s inequality to obtain that

P

 
! 2 ˝ W sup

t2Œ0;1�

ˇ̌
mn.NŒ!�; t/ � BN

n.!; t/
ˇ̌ � �

!
�

� ��2EP

h�
mn.NŒ
�; 1/ � BN

n.
; 1/
�2i
:

Now mn.NŒ
�; 1/ is the limit in L2ŒP� of a sequence of terms of the following type:

m.m/
n .NŒ
�; 1/ D

D
ETm ı LF ı˘n

�
�
Œ0;1�
1
�
;
�
˙m

Y

��1 E1;pŒm� ı ET.NŒ
�/
E
RpŒm�

:

Consequently

EP
�
mn.NŒ
�; 1/BN

n.
; 1/
� D lim

m
EP
�
m.m/

n .NŒ
�; 1/BN
n.
; 1/

�
:

But, since N is the sum of independent integral terms,

EP
�
m.m/

n .NŒ
�; 1/BN
n.
; 1/

� D
D EP

	
m.m/

n

�Z �
0

Fn.
; �/BN
n.
; d�/; 1

�
BN

n.
; 1/


:

Let Zm have components of the following type:

Zm;k D
Z t

.m/
k

0

F.t.m/k ; �/B
N
n.
; d�/:

Then m.m/
n

�R �
0 Fn.
; �/BN

n.
; d�/; 1
�

BN
n.
; 1/ is

D
ETm ı LF ı˘n

�
�
Œ0;1�
1
�
;
�
˙m

Y

��1 �
BN

n.
; 1/Zm

�E
RpŒm�

:

Taking the expectation of that latter expression has, as consequence, that the vector
Bn.
; 1/Zm is replaced by the vector with components of the following form (Mn is
the measure determined by bn):

Z t
.m/
k

0

Fn.t
.m/

k ; �/Mn.d�/:

But those are obtained as

LF
�
˘nŒ�Œ0;1� 1�

�
.t.m/k / D

˝
˘nŒ�Œ0;1�1�;F.t

.m/

k /
˛
L2Œ b �

:
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Consequently EP
�
m.m/

n .NŒ
�; 1/BN
n.
; 1/

�
equals

D
ETm ı LF ı˘n

�
�
Œ0;1�
1
�
;
�
˙ n

Y

��1 ETm ı LF ı˘n
�
�
Œ0;1�
1
�E

RpŒm�
;

which is ˇ̌̌̌
˘Hm.CN ;Œ0;1�LF

�
˘nŒ�Œ0;1�1�

�ˇ̌̌̌ 2
H.CN ;Œ0;1�/

:

Thus

EP
�
mn.NŒ
�; 1/BN

n.
; 1/
� D ˇ̌̌̌LF

�
˘nŒ�Œ0;1�1�

�ˇ̌̌̌ 2
H.CN ;Œ0;1�/

D bn.1/:

Expanding EP

h�
mn.NŒ
�; 1/ � BN

n.
; 1/
�2i

, one sees that it is thus zero. ut
Remark 17.3.17 The proof just given works also for ˚c.

Remark 17.3.18 At this point, one has proven that � ı ˚ is, almost surely, with
respect to PK

BN
, the identity of K, provided � is the appropriate inverse of ˚ , which

means that, almost surely, with respect to P, � ı ˚.BN Œ!�/ D BN Œ!�. But then,
˚ ı � ı ˚.BN Œ!�/ D ˚.BN.Œ!�/, that is ˚ ı �.NŒ!�/ D NŒ!�, so that ˚ ı � is an
almost sure identity for PN .

Remark 17.3.19 The choice of Œ0; 1� to define ˚ and � is a convenience. The same
proofs apply to any closed interval. The consequence is that˚ and� are measurable
when restricted to RŒ0;t� and Kjt (the functions of K restricted to Œ0; t�).

17.4 Absolute Continuity and Likelihoods for the Signal Plus
Gaussian Noise Case

Absolute continuity and likelihoods for Gaussian noises follow from the respective
results valid for Gaussian martingale noises and the Cramér-Hida maps. In the
statements below there appears an independent process whose raison d’être is
applications to information theory: it represents the message that is sent. It is
independent of channel noise. The transmitted signal depends in a causal manner
on the message and the channel output.

Proposition 17.4.1 Let � be independent of the Gaussian noise N, assumed to be
continuous as a map t 7! Nt 2 L2ŒP�, and have a mean equal to zero. S is a signal,
adapted to �ı.N/_�.�/, with paths that are almost surely, with respect to P, in the
RKHS of N. Let FN and BN be the ingredients of a proper, canonical Cramér-Hida
representation of N, with FN having components FN

n . Then:
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1. almost surely, with respect to P, S.!; t/ D hFN.t/; s.!; 
/iL2Œ b �, where the
components of s are predictable;

2. the process Y D SŒs� C BN is such that PK
Y � PK

BN
(the corresponding Radon-

Nikodým derivatives are to be found in Chap. 13);
3. when, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P, X.
; t/ D

S.
; t/C N.
; t/, then PX � PN, and

dPX

dPN
D dPK

Y

dPK
BN

ı m;

where m is to be found in (Proposition) 17.3.15;
4. when, almost surely with respect to P˝ Leb, X D SC N, then P2

X � P2

N, and

dP2

X

dP2

N

D dPK
Y

dPK
BN

ı m;

where m is to be found in Sect. 17.3.1;
5. when N has continuous paths, and, for t 2 Œ0; 1�, fixed, but arbitrary, almost

surely with respect to P, X.
; t/ D S.
; t/C N.
; t/, then Pc
X � Pc

N, and

dPc
X

dPc
N

D dPK
Y

dPK
BN

ı m;

where m is to be found in (Proposition) 17.3.15.

Proof It consists essentially in proving that X and N have representations that
entail absolute continuity for a related white Gaussian noise case, and then to
use the appropriate Cramér-Hida map. One always works with a proper canonical
representation of N, which yields the components FN used in the proof to follow.

Step 1: There exists a measurable s such that

(i) almost surely, with respect to P, sŒ!� 2 L2Œb �,
(ii) and then, S.!; t/ D hsŒ!�;FN.t/iL2Œ b �.

Let ˙ W ˝ �! L2Œb � be the following map:

˙.!/ D
(

L?F.SŒ!�/ when SŒ!� 2 H.CN ; Œ0; 1�/

0L2Œ b � when SŒ!� 2 H.CN ; Œ0; 1�/
c :

Let a 2 L2Œb � be fixed, but arbitrary. Since the representation is proper canonical, a
is the limit of a sequence in L2Œb �, of elements an, such that

an D
pŒn�X
iD1

˛n;i FN.t
.n/

i /:
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Then, almost surely, with respect to P,

ha; ˙Œ!�iL2Œ b � D lim
n
han; ˙Œ!�iL2Œ b �

D lim
n

pŒn�X
iD1

˛n;ihFN.t
.n/

i /;˙Œ!�iL2Œ b �

D lim
n

pŒn�X
iD1

˛n;ihSŒ!�;LF
�
FN.t

.n/

i /
�iH.CN ;Œ0;1�/

D lim
n

pŒn�X
iD1

˛n;ihSŒ!�;CN.
; t.n/i /iH.CN ;Œ0;1�/

D lim
n

pŒn�X
iD1

˛n;iS.!; t
.n/

i /:

Thus

(a) ˙ is adapted,
(b) each component of ˙ is adapted,
(c) ha; ˙iL2Œ b � is adapted to �ıt .N/_�t.�/ when a belongs to LtŒFN �, the subspace

of L2Œb � spanned by fFN.�/; � � tg.
For n 2 N, fixed, but arbitrary, let fen;k; k 2 Ng be a complete orthonormal set in

L2ŒMn�, and let

sn;p.!/ D
pX

iD1
h˙n.!/; en;iiL2ŒMn � en;i:

Since

lim
p;q

EP

hˇ̌̌̌
sn;p � sn;pCq

ˇ̌̌̌
2

L2ŒMn �

i
D lim

p;q
EP

2
4 qX

iDpC1
h˙n; en;ii2L2ŒMn�

3
5 D 0;

there exist a subsequence
˚Psn;pk ; k 2 N

�
which converges, almost surely with respect

to P˝Mn, to some measurable Psn. Then [229, p. 150], sc
n.!/ denoting the class, in

L2ŒMn�, of Psn.!; 
/, sc
n D ˙n, almost surely, with respect to P. Thus, almost surely,

with respect to P,

scŒ!� D L?F.SŒ!�/:
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Step 2: For n 2 N and t 2 Œ0; 1�, fixed, but arbitrary,

.!; t/ 7!
Z t

0

sc
n.!; �/Mn.d�/

is adapted to �ıt .N/ _ �t.�/.

Let˘n;t be the projection of L2ŒMn� that sends the class of f to that of �
Œ0;t� f . Since˚

FN
n .�; 
/; � � t

�
is dense in the range of˘n;t, the class of �

Œ0;t� may be approximated,
in L2ŒMn�, by a sequence whose elements have the following form:

Fn;p D
qŒp�X
iD1

˛p;i F
N
n .tp;i; 
/;

where tp;i � t. Then, on ˝ ,

Z t

0

sc
n.!; �/Mn.d�/ D lim

p

Z 1

0

PFn;p.�/s
c
n.!; �/Mn.d�/

D lim
p

qŒp�X
iD1

˛p;i

Z tp;i

0

FN
n .tp;i; �/s

c
n.!; �/Mn.d�/;

so that, using (c) of step 1,
R t
0

sc
n.!; �/Mn.d�/ is adapted to �ıt .N/ _ �t.�/.

Step 3: For n 2 N, fixed, but arbitrary, sn may be taken to be predictable for
�ı.N/ _ �.�/.
For notational convenience, one shall henceforward write sn for sc

n. Given a
function f , fC shall denote f _ 0, and f�, .�f / _ 0. Let then

UCn .!; t/ D
Z t

0

sCn .!; �/Mn.d�/:

It is, as seen, an adapted process. Since sCn is almost surely integrable, UCn has paths
continuous to the left, and almost all of them are continuous. An argument similar
to that used in (Lemma) 11.2.2 allows one to assume that UCn has continuous paths.
UCn is, in particular, predictable.

Let TCn;p.!/ D inf
˚
t 2 Œ0; 1� W UCn .!; t/ � p

�
. Since TCn;p.!/ � t if, and only if,

UCn .!; t/ � p, TCn;p is a strict stopping time. Let

˝n;p D
˚
! 2 ˝ W TCn;p.!/ D 1

�
:

Since TCn;p � TCn;pC1, ˝n;p � ˝n;pC1. Let ˝n D [p˝n;p. Since, almost surely, with
respect to P, UCn .
; 1/ <1, P.˝n/ D 1.
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Let, for product measurable G,

�Cn .G/ D EP

	Z 1

0

�G.
; t/sCn .
; t/Mn.dt/



:

Since �Cn .ŒŒ0;TCn;p��/ � p, �Cn is a �-finite measure on the measurable sets, as well
as on the predictable ones, which is absolutely continuous with respect to P˝Mn.
Let �Cn be the corresponding predictable, Radon-Nikodým derivative, and

VCn .!; t/ D
Z t

0

�Cn .!; �/Mn.d�/:

Since EP

	R 1
0
�
ŒŒ0;TCn;p ��

�Cn dMn



D EP

	R 1
0
�
ŒŒ0;TCn;p ��

sCn dMn



� p,

Z TCn;p

0

�Cn dMn

is almost surely finite, so that

�˝n;p

Z 1

0

�Cn dMn

is almost surely finite, and thus so is
R 1
0
�Cn dMn. Consequently VCn is a process

with the same properties as UCn . Since UCn and VCn induce the same measure, for
t 2 Œ0; 1�, fixed, but arbitrary, VCn .
; t/ is almost surely equal to UCn .
; t/. But then
VCn cannot be distinguished from UCn .

Step 4: Absolute continuity

Steps 1–3 allow one to write S.!; t/ D hFN.t/; s.!; 
/iL2Œ b �. The Cramér-Hida
representation allows one to write that N D ˚.BN/. Girsanov’s theorem yields that
the law of Y D SŒs�C BN is absolutely continuous with respect to that of BN , which
in turn allows one to write that X D ˚.Y/. The same is true, mutatis mutandis, when
N D ˚2.BN/.

Step 5: The Radon-Nikodým derivatives are the consequence of the lemma which
follows. ut

Lemma 17.4.2 Suppose that, on .˝;A/, one is given two probabilities, P and Q,
with Q � P. Suppose also that f W ˝ �! X is adapted to A and X , a �-algebra
of subsets of X. Suppose there exists a measurable g W X �! ˝ such that, almost
surely with respect to P, g ı f .!/ D !. Then QX D Q ı f�1 is absolutely continuous
with respect to PX D P ı f�1, and

dQX

dPX
D dQ

dP
ı g:
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Proof Let X0 2 X be fixed, but arbitrary. Then, by the standard image of measure
property,

QX.X0/ D Q
�
f�1.X0/

�
D
Z

f�1.X0/

dQ

dP
.!/P.d!/

D
Z

f�1.X0/

dQ

dP
.g ı f .!//P.d!/

D
Z

X0

dQ

dP
ı g.x/PX.dx/:

ut

17.5 Scope of the Signal Plus Gaussian Noise Model

When the noise is Gaussian, not “white,” the existence of the likelihood imposes
again, as seen below, an additive model for the received signal.

Proposition 17.5.1 .˝;A;P/ is the basic probability space. Let N denote a
process, continuous in mean of order two, with Cramér-Hida representation˚

�
BK

N

�
.

Let X be a process, adapted to F D �ı.N/_�.�/, such that, on C .RŒ0;1�/, PX � PN.
Then, for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect to P,

X.!; t/ D S.!; t/C NX.!; t/;

where

(i) S is, almost surely, with respect to P, path-wise, in the reproducing kernel of the
noise, and is adapted to the �-algebras generated by X;

(ii) NX, with law PN, is also adapted to the �-algebras generated by X.

Proof Let � be the inverse of ˚ , EK
t W K �! s, the evaluation map at t, and

Y.!; t/ D EK
t .� .XŒ!�//. Since X and � are adapted to Ct.R

Œ0;t�/ and Kt, Y is
adapted to the �-algebras generated by X, and thus to F . Then PY D PX ı ��1.
Since PX � PN , PY � PN ı ��1 D PK

BN
. One is thus within the framework

of (Proposition) 14.2.7: for t 2 Œ0; 1�, fixed, but arbitrary, almost surely, with respect
to P,

Y.!; t/ D S
�
aKut˚Y

�C BY.!; t/: (?)

In that latter equality, aK is adapted to .K;K;PK
Y/, and BY , of law PK

BN
, to

.˝; �.Y/;P/. Furthermore, with respect to PK
Y , almost surely, the paths of aK are

in L2Œ b �. Now ˚Y D ˚ ı � ı X, and, since [(Remark) 17.3.18], ˚ ı � is an
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almost sure identity with respect to PN , it is also one with respect to PX (the latter is
assumed to be absolutely continuous with respect to the former). Thus ˚ ı Y D X.
Since BY has law PK

BN
, ˚.BY/ has law PN . Finally,

aKut˚Y.!; t/ D aK.YŒ!�; t/ D aK.�.XŒ!�//; t/ D aK
�ut˚X.!; t/:

Applying ˚ to (?), as it “differentiates,” one gets

X.!; t/ D hF; aK
�ut˚XiL2Œ b �.!; t/C NX.!; t/:

ut
Proposition 17.5.2 Let X, in (Proposition) 17.5.1, be separable for closed sets, and
adapted to F . Then:

1. when PX is absolutely continuous with respect to PN, X has paths whose square
is, almost surely, with respect to P, integrable with respect to Lebesgue measure,
and P2

X is absolutely continuous with respect to P2

N, but the converse is false;
2. when N has continuous paths, and X is any process with continuous paths, the

following equivalences obtain:

a) PX � PN ” Pc
X � Pc

N ” P2

X � P2

N;
b) PN � PX ” Pc

N � Pc
X ” P2

N � P2

X;

Proof [1] PX � PN means that [(Proposition) 17.5.1], for t 2 Œ0; 1�, fixed, but
arbitrary, almost surely, with respect to P, X.
; t/ D S.
; t/C NX.
; t/, where N and
NX have the same law, S is adapted to �.X/, and belongs, almost surely, with respect
to P, to the RKHS of N. But X is assumed separable, so that, almost surely, with
respect to P ˝ Leb, X.!; t/ D S.!; t/ C NX.!; t/. Since S has continuous paths,
those of X have a square that is integrable, almost surely, with respect to P. But then
[(Proposition) 17.4.1] P2

X � P2

NX
, that is, P2

X � P2

N , as N and NX have the same law.
That the converse is false is seen on an example, as follows. Let h be an element

in the RKHS of N. Define, for t 2�0; 1�, f .t/ D h.t/, but f .0/ ¤ 0. Let X D f C N.
Since f does not belong to the RKHS of N, PX is orthogonal to PN . But the class of
f belongs to the square root of the covariance operator of N, and thus P2

X and P2

N are
equivalent.

Proof [2] Let Cf denote the cylinder sets of RŒ0;1� and Cc, those of C0.Œ0; 1�/. Let
also t1 < t2 < 
 
 
 < tn�1 < tn in Œ0; 1�, and B 2 B.Rn/, be fixed, but arbitrary. When

Cf D
˚

f 2 RŒ0;1� W .f .t1/; : : : ; f .tn// 2 B
� 2 Cf ;

Cc D fc 2 C0.Œ0; 1�/ W .c.t1/; : : : ; c.tn// 2 Bg 2 Cc;

one has that Cc D Cf \ C0.Œ0; 1�/, and

PX.Cf / D P.X 2 Cf /

D P.X 2 ˚Cf \ C0.Œ0; 1�/
�
/
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D Pc
X.Cc/;

PN.Cf / D Pc
N.Cc/:

Consequently, given a fixed, but arbitrary � > 0, there exists a ı > 0 such that
PX.Cf / < � whenever PN.Cf / < ı if, and only if, Pc

X.Cc/ < � whenever Pc
N.Cc/ <

ı. Since the families Cf and Cc are generating families for the corresponding �-
algebras, the relations valid for the algebras carry over, and thus absolute continuity
obtains.

Let J W CŒ0; 1� �! L2Œ0; 1� be the injection that sends the continuous c to its
equivalence class Œc� 2 L2Œ0; 1�. It is a continuous map. The process X defines a
map ! 7! XŒ!� 2 CŒ0; 1�, and a map ! 7! ŒX�Œ!� 2 L2Œ0; 1�, the latter being the
equivalence class of XŒ!�, that is, ŒX�Œ!� D J ı XŒ!�. Consequently

P2

X D Pc
X ı J�1:

By a theorem of Kuratowski [208, p. 21], J carries Borel sets isomorphically onto
Borel sets, and thus, for Borel B in CŒ0; 1�,

Pc
X.B/ D P.! 2 ˝ W XŒ!� 2 B/

D P.! 2 ˝ W XŒ!� 2 J�1.J.B///

D Pc
X ı J�1.J.B//

D P2

X.J.B//:

Similar relations obtain for Pc
N and P2

N , and the absolute continuity statements are
immediate consequences. ut
Remark 17.5.3 Item 2 of (Proposition) 17.5.2 does neither require that N be
Gaussian, nor that it starts at zero almost surely.

Proposition 17.5.4 Suppose that N is Gaussian, t 7! Nt 2 L2.˝;A;P/ is
continuous, and t 7! EPŒN.
; t/� is the zero function. X, in (Proposition) 17.5.1,
is adapted to F . Then:

1. one may have PX � PN (respectively P2

X � P2

N/, but not, for t 2 Œ0; 1�, fixed,
but arbitrary, almost surely, with respect to P (respectively, almost surely with
respect to P˝ Leb), X.
; t/ D S.
; t/C N.
; t/ with S adapted to �.X/, and paths
that are, almost surely, with respect to P, in the RKHS of N (respectively the
range of the square root of the covariance operator of N);

2. when N and X have continuous paths, almost surely, with respect to P, one may
have Pc

X � Pc
N, but no representation as SC N.

Proof Let � be a continuous paths, Gaussian process whose mean is zero. Those
paths will be in the range of the square root of the covariance operator of N, CN , or,
equivalently, in the RKHS of N, if, and only if, its covariance operator, C� , has a
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representation of the following form:

C� D C1=2

N TC1=2

N ;

T having finite trace. Let, for t 2 Œ0; 1�, fixed, but arbitrary,

X.
; t/ D �.
; t/C N.
; t/

(X is thus adapted to F). Then [97], PX � PN and P2

X � P2

N , if, and only if, T is
Hilbert-Schmidt.

Thus, when T is Hilbert-Schmidt, but not trace-class, one has absolute continuity
(and Pc

X � Pc
N when paths are continuous) without S having paths almost surely in

the RKHS of the noise. ut

17.6 From Theory to Practice: Some Comments

The results pertaining to the likelihood, when derived using the Cramér-Hida
representation, presuppose knowledge that is not generally available in applications.
Obtaining the eigenvectors and eigenvalues of integral operators, or Cramér-Hida
decompositions, are elusive tasks, especially when unique, discrete, and finite
data sets are at hand. Effective deployment, and employment, of those results in
operational systems require that discrete time approximations be developed, and that
such approximations be given in terms of quantities that can reasonably be expected
to be available from either prior knowledge, or estimation from observed data.

One item that can usually be obtained, with reasonable accuracy, is a reliable
covariance matrix of the noise, for the proper environment, and it shall be assumed
below that such is the case.

There are desirable criteria that detection algorithms should meet. Among those
are the following: the algorithms should

1. be based on the likelihood-ratio [the latter is at the core of all optimal proce-
dures];

2. preserve information [the solution should begin with the analysis of the original
continuous-time problem; the likelihood for the continuous-time problem should
then be approximated as well as possible in forming a discrete-time algorithm;
independent sampling, which typically destroys information, should not be used
unless absolutely necessary];

3. be implementable [although the analytical expression of the likelihood should be
part of the process leading to the algorithms, the latter must be developed into
expressions that can reasonably be expected to be put to work, and thus must not
require information that is not accessible in applications];

4. be adaptive [the algorithms should use data as soon as it becomes available].
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Algorithms are consequently obtained through a drastic reduction of mathematical
complexity. Qualitative justification for the diverse procedures presented below may
be found (and should be read) in [14, 16]. Here only the mechanics are given, in
order to illustrate what practice may mean in mathematical terms.

17.6.1 Framework

One sets:

1. B;W, standard Wiener processes;
2. N.!; t/ D R t

0
F.t; �/W.!; d�/, and multiplicity one;

3. X.!; t/ D R t
0

F.t; �/Z.!; d�/, with

Z.!; t/ D
Z t

0

˛.ZŒ!�; �/d� C B.!; t/;

and

P

�Z 1

0

˛2.ZŒ!�; �/d� <1
�
D 1:

Let Tn D
˚
t.n/0 ; : : : ; t

.n/
n

� � Œ0; 1� be the observation times, where

t.n/0 D 0; t.n/i < t.n/iC1; t.n/n D 1:

Mimicking the Euler scheme (here the values of the process are “known” and ˛ is
unknown),

Z.
; 0/ D 0;
Z.
; t.n/i / D Z.
; t.n/i�1/

C ˛ �Z.
; t.n/i�1/
� �

t.n/i � t.n/i�1
�

C B.
; t.n/i /� B.
; t.n/i�1/:

Stochastic integrals shall be approximated using the following procedure:

Z 1

0

a.t/ .dt/ �
nX

iD1
a.t.n/i�1/

˚
 .t.n/i / �  .t.n/i�1/

� D han; �n iRn ;
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where

a?n D Œa.t.n/0 /; a.t.n/1 /; : : : ; a.t.n/n�1/�;

�?
n D Œ .t.n/1 / �  .t.n/0 /;  .t.n/2 / �  .t.n/1 /; : : : ;  .t.n/n /�  .t.n/n�1/�:

Then the logarithm of the likelihood may be approximated at the sample s using the
following sum:

nX
iD1

˛.m.s; t.n/i�1/; t
.n/

i�1/
˚
m.s; t.n/i / �m.s; t.n/i�1/

��
� 1

2

nX
iD1

˛2.m.s; t.n/i�1/; t
.n/

i�1/
˚
t.n/i � t.n/i�1

�
:

The vector of evaluations of the function f at the points of Tn shall be denoted ETn
.f /.

One shall write

• ˛n;iŒ f � for ˛.m.f ; t.n/i /; t
.n/

i /;
• ˛Tn

Œ f � for the vectors whose entries are the ˛n;iŒ f �’s;
• �n;imŒ f � for m.f ; t.n/i /� m.f ; t.n/i�1/;
• �Tn

Œ f � for the vector whose components are the �n;imŒ f �’s.

The approximation to the logarithm of the likelihood may thus be given the
following familiar form, s denoting the received signal, and DTn , the diagonal matrix
whose diagonal elements are the differences t.n/iC1 � t.n/i :

�n
˚
ETn
.mŒs�/

� D h˛Tn
Œs�; �Tn

mŒs�iRn � 1
2
hDTn

�
˛Tn
Œs�
�
; ˛Tn

Œs�iRn :

Usually m and ˛ are unknown.

17.6.2 The Approximation’s Law for Noise Only

One shall do the calculations with uniform sampling: t.n/i D i�n. One has that

EPN

h
e�h�n;ETn .mŒ��/iRn

i
D EP

h
e�h�n;ETn .mŒN�/iRn

i
D EP

h
e�h�n;ETn .mŒ˚2.W/�/iRn

i
D EPW

h
e�h�n;ETn .mŒ˚2�iRn

i
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D EPW

h
e�h�n;ETn .�/iRn

i
D EP

h
e�h�n;ETn .W/iRn

i
Let �nW be the vector of differences of the following type:

W.
; i�n/ �W.
; .i � 1/�n/;

and Ln be the summation operator:

Ln D

2
666664

1 0 0 
 
 
 0 0
1 1 0 
 
 
 0 0
1 1 1 
 
 
 0 0
:::
:::
:::
:::
:::
:::

1 1 1 
 
 
 1 1

3
777775 :

Then LnŒ�nW� is the vector with components of type W.
; i�n/, and its characteristic

function is the exponential of ��n
2

ˇ̌̌̌
L?n Œ� n�

ˇ̌̌̌ 2
Rn . Thus

EPN

h
e�h�n;ETn .mŒ��/iRn

i
D e�

�n
2 jjL?n Œ� n�jj2Rn :

The aim is now to replace ETn
.mŒ
�/ with an expression that is computable, and has,

with respect to PN , the same law.
As seen, RN , the covariance operator of N, has a decomposition RN D SS?, where

S is the integral operator with F as kernel. The eigenvectors and eigenvalues of RN

are denoted, respectively, ei and �i. The process m has then, in the L2 case, the
following representation:

m.f ; t/ D
1X

nD1
��1n hS

�
�
Œ0;t�

�
; eniL2Œ0;1�h f ; eniL2Œ0;1�:

Let L be the Volterra operator

LŒ f �.t/ D
Z t

0

f .�/d�:

Then

hS ��
Œ0;t�

�
; eniL2Œ0;1� D

Z 1

0

�Z t

0

F.t; �/d�

�
Pen.t/dt
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D
Z t

0

�Z 1

0

F.t; �/ Pen.t/dt

�
d�

D LS?Œen�.t/;

and,˘n denoting the projection whose range is spanned by fe1; : : : ; eng,

m.s; t/ D lim
n

nX
iD1

��1i LS?Œei�.t/hs; eiiL2Œ0;1�

D lim
n

LS?
"

nX
iD1
hs; eiiL2Œ0;1���1i ei

#
.t/

D lim
n

LS?
"

nX
iD1
hs; eiiL2Œ0;1�R�1N Œei�

#
.t/

D lim
n

LS?R�1N

"
nX

iD1
hs; eiiL2Œ0;1�ei

#
.t/

D lim
n

LS? .SS?/�1 ˘nŒs�.t/

D lim
n

LS�1˘nŒs�.t/:

With probability one, s shall not be in the domain of S�1 [11], but one may proceed
as follows. Let RN;n be the matrix with entries

RN;n.i�n; j�n/ D
Z .i^j/�n

0

F.i�; �/F.j�; �/d�:

RN;n may be written as �nTN;nT?N;n, with TN;n lower triangular [121, p. 189]. Then,
with Nn having entries of type N.
; j�n/,

EPN

h
e�h�n;LnT�1N;nŒETn .�/�iRn

i
D EP

h
e�h�n;LnT�1N;nŒNn�iRn

i
D e�

1
2 hRN;n.T�1N;n/

?
L?n Œ�n�;.T�1N;n/

?
L?n Œ�n�iRn

D e�
�n
2 jjL?n Œ� n�jj2Rn :

In the approximation to the likelihood, one may thus replace the vector ETn.mŒ
�/
with the vector LnT�1N;nŒsn�.

In practice, one shall use ˙N;n, the available covariance matrix of the noise.
Factoring it as

˙N;n D �n OTN;n OT?N;n;
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one may use OTN;n in place of TN;n.

Example 17.6.1 For the case

N.
; k�n/ D f .k�n/

Z k�n

0

g.�/W.
; d�/;

it has already been noticed that

RN;n D DnLn	nL?n Dn;

where

• Dn is diagonal, with diagonal terms of the following form: f .k�n/;
• 	n is diagonal, with diagonal terms of the following form:

�2k D
ˇ̌̌̌
˘�.k�1/�n;k�n�g

ˇ̌̌̌
2

L2Œ0;1�
;

so that TN;n D ��1=2n DnLn	
1=2

n .

17.6.3 The Approximation’s Law for Signal-Plus-Noise

Again, with X, the signal-plus-noise process, having the representation˚2ŒZ�,

EPSCN

h
e�h�n;ETn .mŒ��/iRn

i
D EP

h
e�h�n;ETn .mŒX�/iRn

i
D EP

h
e�h�n;ETn .mŒ˚2.Z/�/iRn

i
D EPZ

h
e�h�n;ETn .mŒ˚2�/iRn

i
:

Since PZ � PW , mŒ˚2� is also the identity with respect to PZ , and the law of ETn
.m/

with respect to PSCN is that of Z.
Suppose now that, for t 2 Œ0; 1�, fixed, but arbitrary, � 7! F.t; �/ is smooth

enough so that

Z .i^j/�n

0

F.i�n; �/F.j�n; �/d� � �n

i^jX
kD1

F.i�n; k�n/F.j�n; k�n/:

Example 17.6.2 With the noise chosen as in (Example) 17.6.1, one must thus have,
as

F.i�n; k�n/ D f .i�n/�Œ0;i�n�
.k�n/g.k�n/;
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that

f .i�n/f .j�n/

Z .i^j/�n

0

g2.�/ d� D f .i�n/f .j�n/

i^jX
kD1

Z k�n

.k�1/�n

g2.�/d�

� �nf .i�n/f .j�n/

i^jX
kD1

g2.k�n/

D �n

i^jX
kD1

F.i�n; k�n/F.j�n; k�n/;

that is, systematically,
R k�n

.k�1/�n
g2.�/d� � �n g2.k�n/.

Let QTN;n be the lower triangular matrix with entries F.i�n; j�n/. In happy circum-
stances, one shall have that

QTN;n � TN;n:

Example 17.6.3 In the case of the noise chosen as example,

TN;n D DnLn
˚
��1=2n 	 1=2

n

�
QTN;n D DnLn fGng ;

where Gn has diagonal elements of the form jg.k�n/j.
Let �nZ be the vector with entries �iZ D Z.
; i�n/ � Z.
; .i � 1/�n/, and Xn, the
vector with entries

X.
; i�n/ D
Z i�n

0

F.i�n; �/Z.
; d�/ �
i�nX
kD1

F.i�n; .k � 1/�n/�kZ:

When one may choose

i�nX
kD1

F.i�n; .k � 1/�n/�kZ �
i�nX
kD1

F.i�n; k�n/�kZ;

then

Xn � QTN;n�nZ � TN;n�nZ;

so that

LnT�1N;nXn � Ln�nZ D Zn;
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the latter being the vector with entries Z.
; i�n/. In the case of the noise chosen as
example [(Example) 17.6.1], one makes the assumption that the variation of g is
modest over each observation interval (it does not seem reasonable to expect that
the variation of g be mitigated by that of Z as the latter is more of an unknown than
g).

As a consequence, assuming ˛ and F known and smooth, the probability of false
alarm, calculated under the chosen approximation, will exactly be that which one
would obtain with a “discretized” version of the exact, continuous-time likelihood
(provided of course that the simplifying assumptions relate to the subjacent reality).

17.6.4 A Recursive Approximation to the Likelihood

To write the expression for the approximation to the likelihood, one must remark
the following. The vector ei being the i-th basis vector of the appropriate Rn, e?i M
yields the i-th line of the matrix M. Consequently

e?iC1LnT�1N;n � e?i LnT�1N;n D
˚
e?iC1Ln � e?i Ln

�
T�1N;n D e?iC1T

�1
N;n;

and thus

hLnT�1N;nŒsn�; eiC1iRn � hLnT�1N;nŒsn�; eiiRn ;

the substitute for m.s; t.n/iC1/ �m.s; t.n/i /, has value

hT�1N;nŒsn�; eiC1iRn ;

so that the approximation to the logarithm of the likelihood shall have the following
form:

�n.sn/ D
n�1X
iD1

˛
�hLnT�1N;nŒsn�; eiiRn ; i�n

� hT�1N;nŒsn�; eiC1iRn

� �n

2

n�1X
iD1

˛2
�hLnT�1N;nŒsn�; eiiRn ; i�n

�
:

Suppose that a new data point is observed, that is, the observation interval becomes
Œ0; 1 C �n�. The approximation has then, as shall be seen, a recursive expression.
One has that

RN;nC1 D
"

RN;n rN;n

r?N;n rN;nC1

#
D �nTN;nC1T?N;nC1;
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and

TN;nC1 D
"

T .n/

N;nC1 0n

t.n/?N;nC1 tN;nC1

#
:

Thus"
�nTN;nT?N;n rN;n

r?N;n rN;nC1

#
D �n

"
T .n/

N;nC1T
.n/?

N;nC1 T .n/

N;nC1t
.n/

N;nC1
t.n/?N;nC1T

.n/?

N;nC1 t2N;nC1 C t.n/?N;nC1t
.n/

N;nC1

#
:

Since the triangular decomposition of a positive definite matrix is unique up to signs,
one may use

T .n/

N;nC1 D TN;n:

Furthermore "
A 0n

a?n ˛

#�1
D
"

A�1 0n

�˛a?nA�1 ˛�1

#
;

so that

T�1N;nC1 D
"

T�1N;n 0n

�t�1N;nC1t
.n/?

N;nC1T�1N;n t�1N;nC1

#
:

Consequently

T�1N;nC1ŒsnC1� D
"

T�1N;nŒsn�

t�1N;nC1
˚
snC1 � hT�1N;nŒsn�; t

.n/

N;nC1iRn

�# ;
and

LnC1T�1N;nC1ŒsnC1� D

D
"

LnT�1N;nŒsn�

h1n;T
�1
N;nŒsn�i C t�1N;nC1

˚
snC1 � hT�1N;nŒsn�; t

.n/

N;nC1iRn
�# ;

so that

hLnC1T�1N;nC1ŒsnC1�; eiiRnC1 D

D
(
hLnT�1N;nŒsn�; eiiRn when i � n
h1n;T

�1
N;nŒsn�i C t�1N;nC1

˚
snC1 � hT�1N;nŒsn�; t

.n/

N;nC1iRn

�
when i D nC 1 ;



1148 17 Likelihoods for Signal Plus Gaussian Noise Versus Gaussian Noise

and

hT�1N;nC1ŒsnC1�; eiC1iRnC1 D

D
(
hT�1N;nŒsn�; eiC1iRn when i � n � 1
t�1N;nC1

˚
snC1 � hT�1N;nŒsn�; t

.n/

N;nC1iRn

�
when i D n

:

Finally, noting that �nC1 D �n, since one has added�n to the observation time,

�n.snC1/ D �n.sn/

C ˛ �hLnT�1N;nŒsn�; eniRn ; 1
� snC1 � hLnT�1N;nŒsn�; t

.n/

N;nC1iRn

tN;nC1

� �n

2
˛2
�hLnT�1N;nŒsn�; eniRn ; 1

�
:

Remark 17.6.4 The approximation to the likelihood that is presented above is not
in general the likelihood one would obtain were one to know the law of the signal-
plus-noise at the instants it is observed. But that is the case, as shall be seen, when
˛.t; c/ D ˛.t/ c.t/, that is, when the signal-plus-noise is Gaussian. That provides
some evidence that the procedure developed above makes some sense.

Suppose that the model is ˛.t;ZŒ
�/ D ˛.t/Z.
; t/. The following equation:

Z.
; k�n/ D
kX

iD1

Z i�n

.i�1/�n

˛.ZŒ
�; �/d� C B.
; k�n/

yields equalities of the following type:

Zk D �n

k�1X
jD0

˛jZj C Bk: (?)

One observes, since, using (?), Bk D Zk ��n
Pk�1

jD0 ˛jZj, that

�n˛1Z1 C B1 D .1C�n˛1/Z1;

�n f˛1Z1 C ˛2Z2g C B2 D .1C�n˛2/Z2;


 
 
 
 
 


that is, a matrix expression of the following form (one writes I for the identity
matrix,� for�n, A for the diagonal matrix whose entries are the ˛i’s):

�LAZ C B D .I C�A/Z:
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Thus

Z D fI C�A ��LAg�1 B;

and, consequently,˙Z being the covariance matrix of Z,

˙�1Z D .I C�A ��AL?/˙�1B .I C�A��LA/:

Letting M D �A ��LA, one obtains that

˙�1Z �˙�1B D M?˙�1B C˙�1B M CM?˙�1B M;

which, using ˙�1B D ��1 fL?g�1 L�1, yields that

M?˙�1B C˙�1B M CM?˙�1B M D
D .�A ��AL?/��1 fL?g�1 L�1

C ��1 fL?g�1 L�1.�A��LA/

C .�A ��AL?/��1 fL?g�1 L�1.�A ��LA/

D A fL?g�1 L�1 � AL�1

C fL?g�1 L�1A � fL?g�1 A

C �A fL?g�1 L�1A

� �AL�1A ��A fL?g�1 AC�A2:

Then

h.˙�1Z �˙�1B /Œx�; xiRn D

D �
ˇ̌̌̌
L�1AŒx�

ˇ̌̌̌
2

Rn C 2hL�1Œx�;L�1AŒx�iRn � 2hL�1Œx�;AŒx�iRn

�2�hAŒx�;L�1AŒx�iRn C� jjAŒx�jj2Rn

D �
ˇ̌̌̌
L�1AŒx� � AŒx�

ˇ̌̌̌
2

Rn C 2hL�1Œx�;L�1AŒx� � AŒx�iRn

D �

n�1X
iD1

˛2i x2i � 2
n�1X
iD1

˛ixi.xiC1 � xi/;
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so that

�1
2
h.˙�1Z �˙�1B /Œx�; xiRn D

n�1X
iD1

˛ixi.xiC1 � xi/ � �
2

n�1X
iD1

˛2i x2i :

The approximation to the likelihood is indeed a Gaussian likelihood.

17.6.5 Estimating the Drift Parameter Function

It cannot be expected that ˛ be known, and thus it must be estimated on the basis
of the available data. The latter may be in the form of ensembles of independent
samples of representative signal-plus-noise data, of a long segment of data, longer
than the observation time over which the detection algorithm is to perform, or of a
single, observed, sample vector. The adequate procedure is thus data dependent,
and must furthermore take into account the sampling rate. Implementations, for
particular applications, must then be preceded by much numerical experimentation,
and it is unlikely that one may obtain a “one size fits all” method.

In the available statistical literature, there is much which pertains to cases
˛.c; t/ D ˛.t.c//, or ˛.c; t/ D ˛.c; t.t// little, or nothing, when ˛ is a genuine
functional of c, such as, for example,

˛.c; t/ D
Z t

0

f .c.�// d�:

Furthermore that literature deals mostly with homogeneous diffusions, is asymptotic
in nature, and requires that the processes be sometimes recurrent, sometimes
stationary [26, 214]. The inhomogeneous diffusion case seems to be given short
shrift. Thus, it is commented in [95] that, since only a trajectory of the process is
observed . . . there is not sufficient information to estimate the bivariate function,
[that is, ˛,] without further restrictions, and its author limits attention to the time
dependent affine case, with the conclusion that coefficient functions . . . cannot be
estimated reliably due to the collinearity effect in local estimation . . . , whereas [213]
simply adapts the procedure for the homogeneous case to the inhomogeneous one,
adding a kernel for time, without further ado. All these cases use indeed kernel
smoothing estimators. There is another all purpose method, that of sieves [122], in
which one typically expands ˛ into a finite number of elements of a basis, and uses
maximum likelihood. Properties of sieve estimators are obtained by balancing out
the increase in the amount of data available with that of the number of parameters, so
that again, with fixed data, effective comparisons of the efficiencies of the different
approaches are unknown.

As an illustration, remarking that [200, p. 115] the Hilbert tensor product
L2.˝1;A1; �1/˝L2.˝2;A2; �2/ is isomorphic to L2.˝1�˝2;A1˝A2; �1˝�2/,
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and that the latter is generated by linear combinations of maps of “product type,”
that is, f1.!1/f2.!2/, one shall consider an ˛ expressed as

˛.c; t/ D
n�1X
kD0

�k ak.t/ˇk.c/�Œtk ;1� .t/;

ˇk.c/ D
kY

jD1
bk;j.c.j�n//;

where the ak’s and the bk;j’s are function basis elements, chosen to validate the
sufficient conditions required for the existence of solutions of stochastic differential
equations with functional drift [191, 216, 264]. Suppose that

l�n � t < .lC 1/�n:

Then

˛.c; t/ D
lX

kD0
�k ak.c/ˇk.t/;

and ˛ is properly adapted. The logarithm of the likelihood is

Z 1

0

˛.c; t/c.dt/ � 1
2

Z 1

0

˛2.c; t/dt:

Let

Ak.c/ D
Z 1

k�n

˛k.t/c.dt/; Ak;l D
Z 1

.k_l/�n

˛k.t/˛l.t/dt:

When the integral defining Ak.c/ is computed using a finite number of observations,
the notation shall be Ak.c j ı/. One has then that

Z 1

0

˛.c; t/c.dt/ D
n�1X
kD0

�kˇk.c/
Z 1

0

˛k.t/�Œtk ;1� .t/c.dt/ D
n�1X
kD0

�kˇk.c/Ak.c/;

and that

Z 1

0

˛2.c; t/dt D
n�1X
kD0

n�1X
lD0

�k�lˇk.c/ˇl.c/Ak;l:
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Since, for appropriate matrices and vectors,

hAŒx�; xi � 2hc; xi D
ˇ̌̌̌̌̌
A
1
2 Œx� � A�

1
2 Œc�

ˇ̌̌̌̌̌
2 �

ˇ̌̌̌̌̌
A�

1
2 Œc�

ˇ̌̌̌̌̌
2

;

the logarithm of the likelihood shall be

hm.c/; �i � 1
2
hM.c/Œ� �; �i D

D �1
2

ˇ̌̌̌̌̌
M

1
2 .c/Œ�� �M�

1
2 .c/Œm.c/�

ˇ̌̌̌̌̌ 2
Rn
C ˇ̌̌̌M�1.c/Œm.c/�ˇ̌̌̌ 2

Rn ;

and thus

O�.c/ D M�1.c/Œm.c/�;

where the components of m.c/ are the ˇk.c/Ak.c/’s, and the entries of M.c/, the
ˇk.c/ˇl.c/Ak;l’s. When dealing with a finite number of observation, one need only
replace Ak.c/ with Ak.c j ı/ to formally obtain the same estimate.

Remark 17.6.5 The reduced model used in previous sections has a form that seems
tailored for the estimation of the signal as an inverse problem. The inverse solution
however yields the values of ˛ rather that its functional form. But, using an
expansion similar to that presented above, one may expect to achieve similar results.
Conversely, such a solution may also serve as a validating instrument, and one may
see the likelihood approximation as the solution of that inverse problem. On the
downside, to obtain mathematical results, one needs more assumptions on the signal,
and there is no indication of how the prior should be picked.

What follows is from [62]. It describes an abstract Bayesian framework for inverse
problems in which the unknown is a function and the data are finite. These problems
are hence underdetermined. They are also frequently ill-posed in a classical sense.
We describe three key ideas:

1. we prove a version of the Bayes theorem relevant to this function space setting,
showing that the posterior measure is absolutely continuous with respect to
the prior measure, and identifying the Radon-Nikodým derivative as the data
likelihood;

2. we demonstrate a form of well posedness by proving that the posterior measure
is Lipschitz continuous in the data, when Hellinger metric is used as a metric on
the posterior measure;

3. we show that the maximum a posteriori estimator for the posterior measure (the
posterior probability maximizer) is well defined whenever the posterior measure
is.
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One starts with the observations

X.
; ti/ D hF.ti; 
/; sŒ
�iL2Œ0;1� C N.
; ti/;

written in the following format:

X D �.s/C N;

where � W L2Œ0; 1� �! Rn is the operator for which

h�.f /; eiiRn D hF.ti; 
/; f iL2Œ0;1�:

Since

jj�.f /jj2Rn D
nX

iD1
hF.ti; 
/; f i2L2Œ0;1� � jj f jj2L2Œ0;1�

nX
iD1
jjF.ti; 
/jj2L2Œ0;1� ;

� is continuous, and thus measurable.

Let

• G.n/

N be the Gaussian law on the Borel sets of Rn determined by N, and
• G.n/

N;f that of the translation of N by �.f /.

Then, with ˙N as the covariance of N, and jjxjj˙N
D ˇ̌̌̌˙�1=2N Œx�

ˇ̌̌̌
Rn ,

ln

(
dG.n/

N;f

dG.n/

N

.x/

)
D 1

2
jjxjj2˙N

� 1
2
jjx � �.f /jj2˙N

:

Let Ps be the measure on B.L2Œ0; 1�/ generated by s, and set

˝ D L2Œ0; 1� � Rn; A D B.L2Œ0; 1�/˝ B.Rn/;

˘1.f ; x/ D f ; ˘2.f ; x/ D x;

P.df ; dx/ D G.n/

N .dx/Ps.df /; Q.df ; dx/ D G.n/

N;f .dx/Ps.df /:

Since � is measurable, G.n/

N;f .x/ is a Markov kernel, and thus Q is well defined. As

G.n/

N;f .dx/Ps.df / D G.n/

N;f

G.n/

N

.x/Ps.df /G.n/

N .dx/;
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Q is absolutely continuous with respect to P, with density

�.f ; x/ D G.n/

N;f

G.n/

N

.x/:

Let, for B1 2 B.L2Œ0; 1�/,

�˘1.f / D
Z
Rn
�.f ; x/G.n/

N .dx/;

�˘2.x/ D
Z

L2Œ0;1�
�.f ; x/Ps.f /;

D D fx 2 Rn W 0 < �˘2.x/ <1g ;

ı.f j x/ D

8̂<
:̂

�.f ;x/
�˘2 .x/

when x 2 D

�˘1.f / when x 2 Rn nD
;

P˘2

˘1
.B1 j x/ D

Z
B1

ı.f j x/Ps.df /:

Then [139, p. 124], P˘2

˘1
.B1 j x/ is a regular conditional distribution of˘1 given˘2,

that is,

P˘2

˘1
.df j x/ D ı.f j x/Ps.df /;

and the logarithm of the likelihood of the signal f , given the observation x, is a
constant minus 1

2
jjx � �.f /jj2˙N

.
Let

� .x; f / D 1

2
jjx � �.f /jj2˙N

:

The latter expression has the following properties:

1. when jjxjjRn < �, letting K1 D
ˇ̌̌̌
˙
�1=2

N

ˇ̌̌̌ 2 n
�2 CPn

iD1 jjF.ti; 
/jj2L2Œ0;1�
o
,

� .x; f / � 1

2

ˇ̌̌̌
˙
�1=2

N

ˇ̌̌̌ 2 jjx � �.f /jj2Rn

� ˇ̌̌̌˙�1=2N

ˇ̌̌̌ 2 ( jjxjj2Rn C jj f jj2L2Œ0;1�
nX

iD1
jjF.ti; 
/jj2L2Œ0;1�

)

� K1
n
1C jj f jj2L2Œ0;1�

o
I
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2. when max
˚jjxjjRn ; jj f1jjL2Œ0;1� ; jj f2jjL2Œ0;1�

�
< �, letting

K2 D 21=2K1=2

1

˚
1C �2�1=2

(
nX

iD1
jjF.ti; 
/jj2L2Œ0;1�

) 1=2

;

one has, using property 1 above, that

j� .x; f1/� � .x; f2/j �

� 1

2

˚jjx � �.f1/jjRn C jjx � �.f2/jjRn

� jj�.f2/ � �.f1/jjRn

� K2 jj f1 � f2jjL2Œ0;1� I

3. when max
˚ˇ̌̌̌

x1
ˇ̌̌̌
Rn ;

ˇ̌̌̌
x2
ˇ̌̌̌
Rn

�
< �, letting

K3 D 21=2K1=2

1 ;

one has, using property 1 above, that

ˇ̌
� .x1; f / � � .x2; f /

ˇ̌ � 1

2

nˇ̌̌̌
x1 � �.f /

ˇ̌̌̌
Rn C

ˇ̌̌̌
x2 � �.f /

ˇ̌̌̌
Rn

o ˇ̌̌̌
x1 � x2

ˇ̌̌̌
Rn

� K3
n
1C jj f jj2L2Œ0;1�

o1=2 ˇ̌̌̌
x1 � x2

ˇ̌̌̌
Rn

� K3
n
1C jj f jj2L2Œ0;1�

o ˇ̌̌̌
x1 � x2

ˇ̌̌̌
Rn :

A continuity property of x 7! P˘2

˘1
.
 j x/ shall be demonstrated next. To that

end one needs the Hellinger distance for probability measures, defined as follows
(P� M;Q� M):

d.P;Q/ D
8<
:12

Z  	
dP

dM


 1
2

�
	

dQ

dM


 1
2

!2

dM

9=
;

1
2

;

which will be used with P D P˘2

˘1
.
 j x/, Q D P˘2

˘1
.
 j y/, M D Ps. Let then

C.x/ D
Z

L2Œ0;1�
e�� .x;f /Ps.df / � 1;

so that, when C.x/ > 0,

ı.f j x/ D e�� .x;f /

C.x/
:
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Set then

BL2Œ0;1�.0; 1/ D
˚

f 2 L2Œ0; 1� W jj f jjL2Œ0;1� � 1
�
;

and assume that jjxjjRn _
ˇ̌̌̌̌̌
y
ˇ̌̌̌̌̌
Rn
< �. Using the first of the inequalities displayed

above,

C.x/ �
Z

BL2Œ0;1�.0;1/

e�� .x;f /Ps.df /

�
Z

BL2Œ0;1�.0;1/

e�2K1 Ps.df /

D e�2K1Ps
�
BL2Œ0;1�.0; 1/

�
:

When Ps is a probability with full support, then C.x/ > 0. Now, since [218, p. 383],
when  is continuous on Œa; b�, and 0, its derivative, exists on �a; bŒ, there exists
c 2�a; bŒ such that

j.b/� .a/j � ˇ̌0.c/ˇ̌ .b � a/;

one has, using for , the exponential in the integral defining C, and the third
inequality above (it imposes that x and y belong to a fixed ball),

ˇ̌̌
C.x/� C.y/

ˇ̌̌
� K3

ˇ̌̌̌̌̌
x � y

ˇ̌̌̌̌̌
Rn

Z
L2Œ0;1�

n
1C jj f jj2L2Œ0;1�

o
Ps.df /:

Thus, when Ps has strong order 2 (the norm is square integrable), which is
compatible with the assumption that signals have finite energy, C is continuous
(Lipschitz).

One has furthermore that 
e� x

2

a
� e�

y
2

b

!2

D e�y

( 
e�

x�y
2

a
� 1

a

!
C
�
1

a
� 1

b

�) 2

� 2e�y

8̂<
:̂
�

e�
x�y
2 � 1

�2
a2

C
�
1

a
� 1

b

�2

9>=
>;

D 2

a2

�
e�

x
2 � e�

y
2

�2 C 2�1
a
� 1

b

�2

e�y:
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Consequently

2d2
�

P˘2

˘1
.
 j x/;P˘2

˘1
.
 j y/

�
�

� 2

C.x/

Z
L2Œ0;1�

n
e�

1
2 � .x;f / � e�

1
2 � .y;f /

o2
Ps.df /

C 2
 

1

C
1
2 .x/
� 1

C
1
2 .y/

!2 Z
L2Œ0;1�

e�� .y;f /Ps.df /:

The inequality
ˇ̌̌
e� x

2 � e�
y
2

ˇ̌̌
� 1

2
jx � yj, and the third one given above, yield that

the first integral on the right is dominated by

K3
4

ˇ̌̌̌̌̌
x � y

ˇ̌̌̌̌̌
2

Rn

Z
L2Œ0;1�

n
1C jj f jj2L2Œ0;1�

o2
Ps.df /:

One must thus assume that the norm has integrable moments up to order four. That
restricts the family of signal measures that are allowed. That family contains at least
the Gaussian ones. Nowˇ̌̌

ˇ 1px
� 1p

y

ˇ̌̌
ˇ D

ˇ̌̌
ˇ
p

y �pxp
xy

ˇ̌̌
ˇ D jy � xj

y
p

xC x
p

y
;

so that

�
C�

1
2 .x/ � C�

1
2 .y/

�2 �
�

C.x/� C.y/
�2

min
n
C3.x/;C3.y/

o :
Finally to estimate the signal, one could try to minimize � , given the observations.
However, minimizing sequences in L2Œ0; 1� for � may fail to converge, and thus a
term is added to it, to force convergence. That can be done assuming that the a priori
law of the signal is Gaussian, with a mean ms in the range of the square root of its
covariance operator Cs (denoted G.ms;Cs/). Presumably, the choice of a Gaussian
law, besides the fact that it is “easy” to compute with such measures, is based on
the fact that the Gaussian distribution maximizes entropy over laws with the same
covariance. The positioning of the mean, in the range of the square root, insures the
existence of the likelihood of G.ms;Cs/ with respect to G.0L2Œ0;1�;Cs/. One is thus
led to consider the minimum of the following functional, over the range of the square
root of the covariance operator Cs (the norm in RŒC1=2

s � shall be denoted jj 
 jjCs
):

'.f j x/ D 1

2
jj f �msjj2Cs

C 1

2
jjx � �.f /jj2˙N

; fms; f g � RŒC1=2

s �:
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It is checked below that a minimum of ', denoted Q', exists, and, if fn belongs to a
sequence for which f'.fn j x/g tends to the minimum value of ', then f fng converges
to the value at which the minimum is attained.

Let � > 0 be fixed, but arbitrary, and let n� be such that, for n � n�,

Q'.x/ D inf
RŒC1=2s �

'.f j x/ � '.fn j x/ � Q'.x/C �;

so that

1

2
jj fn � msjj2Cs

� Q'.x/C �;

which proves, since ms 2 RŒC1=2
s �, that the sequence

˚jj fnjjCs
; n 2 N

�
is bounded.

One may thus assume that there exists fl 2 RŒC1=2
s � which is the weak limit of the

sequence f fn; n 2 Ng. But the embedding of RŒC1=2
s � into L2Œ0; 1� is compact [21],

so that the sequence is convergent in L2Œ0; 1�. But � is, as seen above (item 2),
Lipshitz continuous in the f variable, so that it is weakly continuous on RŒC1=2

s �.
As the norm is weakly lower semicontinuous [71, p. 140], 1

2
jj f � msjj2Cs

is a lower
semi-continuous functional on RŒC1=2

s �, so that

f 7! '.f j x/

is weakly lower semi-continuous on RŒC1=2
s �. It is there furthermore convex, since,

generically, expanding, then using Cauchy’s inequality, and finally the fact that �
defines a probability,

jj�hC .1 � �/k � cjj2 D jj�.h� c/C .1 � �/.k � c/jj2
� .� jjh � cjj C .1 � �/ jjk � cjj/2
� � jjh � cjj2 C .1 � �/ jjk � cjj2 :

It is finally coercive. It has consequently a minimum [71, p. 226].
Generically againˇ̌̌

ˇ
ˇ̌̌
ˇhC k

2
� c

ˇ̌̌
ˇ
ˇ̌̌
ˇ2 D

ˇ̌̌
ˇ
ˇ̌̌
ˇh � c

2
C k � c

2

ˇ̌̌
ˇ
ˇ̌̌
ˇ2

D 1

4
jjh � cjj2 C 1

2
hh � c; k � ci C 1

4
jjh � cjj2 ;

so that

�2hh� c; k � ci D jjh � cjj2 C jjk � cjj2 � 4
ˇ̌̌
ˇ
ˇ̌̌
ˇhC k

2
� c

ˇ̌̌
ˇ
ˇ̌̌
ˇ2 ;
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and thus that

jjh � kjj2 D jj.h � c/� .k � c/jj2

D 2 jjh � cjj2 � 4
ˇ̌̌
ˇ
ˇ̌̌
ˇhC k

2
� c

ˇ̌̌
ˇ
ˇ̌̌
ˇ2 C 2 jjk � cjj2 :

Consequently, for n and p large enough,

1

4

ˇ̌̌̌
fn � fp

ˇ̌̌̌
2

Cs
D

D 1

2
jj fn � msjj2Cs

C 1

2

ˇ̌̌̌
fp � ms

ˇ̌̌̌
2

Cs
�
ˇ̌̌
ˇ
ˇ̌̌
ˇ fn C fp

2
�ms

ˇ̌̌
ˇ
ˇ̌̌
ˇ2
Cs

D '.fn j x/C '.fp j x/ � 2'
�

fn C fp
2
j x
�

�� .x; fn/ � � .x; fp/C 2�
�

x;
fn C fp
2

�

� 2 f Q' C �/g � 2 Q' � � .x; fn/ � � .x; fp/C 2�
�

x;
fn C fp
2

�

D 2� � � .x; fn/ � � .x; fp/C 2�
�

x;
fn C fp
2

�
:

Since the sequence f fn; n 2 Ng converges in L2Œ0; 1� to fl, and that � is continuous
in its second argument, that sequence is Cauchy in RŒC1=2

s �, and thus has a limit.

17.6.6 Epilogue or . . . Le mot de la fin

It shall be from [24]: The key problem in developing effective signal detection
algorithms based on [the material in this book] is the determination of good
approximations to the functionals [appearing in the martingale likelihood ratio]. A
“bullet-proof” general approach is still to be determined and seems unlikely to exist.
However, in limited studies to date, algorithms based on such representations have
generally outperformed classical methods using both active and passive sonar data.
These representations have for the most part been determined by a combination of
examining representative data and consideration of the physical properties of the
noise, the target and the environment.

As can be seen, the theory developed here does not provide, as do approaches
such as matched filtering, a defined algorithm that can be implemented in a
straightforward manner for a given system. Rather, it provides a likelihood ratio-
based framework within which one can seek an effective implementation. As



1160 17 Likelihoods for Signal Plus Gaussian Noise Versus Gaussian Noise

such, the further development of effective algorithms based on the theory is far
more dependent on serious analysis of data properties and representation than is
generally performed in development of contemporary signal processing methods.
This lack of explicit solutions and the need for problem-by-problem approach
to developing a solution are the negatives of the theoretical results so far as
computational implementations are concerned. The positives are the existence of
a likelihood ratio-based approach within which one can proceed with confidence
and which applies to very general signal-plus-noise processes.
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69. Debnath, L., Mikusiński, P.: Introduction to Hilbert spaces with applications. Academic, San

Diego (1999)
70. Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel I-IV. Hermann, Paris (1975)
71. Demengel, F., Demengel, G.: Convexité dans les espaces fonctionnels. Ellipses, Paris (2004)
72. de Sam Lazaro, J., Meyer, P.A.: Questions de théorie des flots. Séminaire des probabilités

(Strasbourg). vol. 9, pp. 1–96. Springer, Berlin (1975)
73. Diestel, J., Uhl, J.J.: Vector Measures. American Mathematical Society, Providence, RI (1977)
74. Dieudonné, J.: Foundations of Modern Analysis. Academic, New York (1969)
75. Dinculeanu, N.: Vector Integration and Stochastic Integration in Banach Space. Wiley,

New York (2000)
76. Dixmier, J.: Les algèbres d’opérateurs dans l’espace Hilbertien, 2nd edn. Gauthier-Villars,

Paris (1969)
77. Donoghue, W.F., Jr.: Orthonormal sets in reproducing kernel Hilbert spaces and functional

completion. Note di Matematica. X(Suppl. 1), 223–227 (1990)
78. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)
79. Doob, J.L.: Measure Theory. Springer, New York (1994)
80. Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert

space. Proc. Am. Math. Soc. 17, 413–415 (1966)
81. Douglas, R.G.: Banach Algebra Techniques in Operator Theory. Academic, New York (1972)



1164 References

82. Duc-Jacquet, M.: Approximation des fonctionnelles linéaires sur les espaces hilbertiens
autoreproduisants. Thèse, Université de Grenoble, Grenoble (1973)

83. Dudley, R.M.: Real Analysis and Probability. Wadsworth, Pacific Grove, CA (1989)
84. Dugundji, J.: Topology. Allyn and Bacon, Boston (1968)
85. Dunford, N., Schwartz, J.T.: Linear Operators I. Interscience, New York (1967)
86. Dunford, N., Schwartz, J.T.: Linear Operators II. Wiley, New York (1988)
87. Durret, R.: Stochastic Calculus. CRC Press, Boca Raton (1996)
88. Embrechts, P., Hofert, M.: A Note on Generalized Inverses. ETH, Zürich (2011)
89. Émery, M.: Sandwiched filtrations and Lévy processes. In: Séminaire des probabilités

(Strasbourg), vol. 39, pp. 197–208. Springer, Berlin (2006)
90. Émery, M., Schachermayer, W.: On Verhik’s standardness criterion and Tsirelson’s notion of

cosiness. In: Séminaire des probabilités (Strasbourg), vol. 35, pp. 265–305. Springer, Berlin
(2001)

91. Ephremides, A.: A property of random processes with unit multiplicity. J. Multivar. Anal. 7,
525–534 (1977)

92. Eubank, R.L., Hsing, T.: Canonical correlation for stochastic processes. Stoch. Process. Appl.
118, 1634–1661 (2008)

93. Evard, J.C.: Commutation d’une matrice avec sa dérivée. Thèse, EPFL, Lausanne (1985)
94. Falk, H.: Prolog to detection of non-Gaussian signals: a paradigm for modern statistical

processing. IEEE Proc. 82, 1060 (1994)
95. Fan, J.: A selective overview of nonparametric methods in financial econometrics. Stat. Sci.

20, 317–337 (2005)
96. Fang, K.-T., Kotz, S., Ng, K.-W.: Symmetric multivariate and related distributions. Chapman

and Hall, London (1990)
97. Feldman, J.: Equivalence and perpendicularity of equivalent Gaussian processes. Pac. J. Math.

4, 699–708 (1958)
98. Fernique, X.M.: Régularité des trajectoires des fonctions aléatoires gaussiennes. Lecture

Notes in Mathematics, vol. 480, pp. 1–96. Springer, Berlin (1975)
99. Fernique, X.M.: Sur le théorème de Hajek-Feldman et de Cameron-Marin. C. R. Acad. Sci.

Paris Sér. I 299(8), 355–358 (1984)
100. Fernique, X.M.: Fonctions aléatoires gaussiennes, vecteurs aléatoires gaussiens. CRM Publi-

cations, Montréal (1997)
101. Fernique, X.: Extension du théorème de Cameron-Martin aux translations aléatoires. Ann.

Probab. 31, 1296–1304 (2003)
102. Fernique, X.: Extension du théorème de Cameron-Martin aux translations aléatoires. II.

Intégrabilité des densités. In: Progress in Probability, vol. 55, pp. 95–102. Birkäuser, Basel
(2003)

103. Ferreira, J.C., Menegatto, V.A.: Eigenvalues of integral operators defined by smooth positive
definite kernels. Integr. Equ. Oper. Theory 64, 61–81 (2009)

104. Feyel, D., Üstunel, A.S., Zakai, M.: The realization of positive random variables via
absolutely continuous transformations of measure on Wiener space. Probab. Surv. 3, 170–
205 (2006). Institute of Mathematical statistics and Bernoulli Society

105. Fillmore, P.A., Williams, J.P.: On operator ranges. Adv. Math. 7, 254–281 (1971)
106. Fortet, R.M.: Vecteurs, fonctions et distributions aléatoires dans les espaces de Hilbert.

Hermès, Paris (1995)
107. Fuhrmann, P.A.: Linear Systems and Operators in Hilbert Space. McGraw-Hill, New York

(1981)
108. Garnir, H.G.: Fonctions de variables rélles II. Vander, Louvain (1965)
109. Garnir, H.G.: Fonctions de variables rélles I. Vander, Louvain (1970)
110. Garnir, H.G., de Wilde, M., Schmets, J.: Analyse fonctionnelle III, Espaces de fonctions

usuels. Birkhäuser, Basel (1973)
111. Garsoux, J.: Analyse mathématique. Dunod, Paris (1968)
112. Garth, L.M., Poor, H.V.: Detection of non-Gaussian signals: a paradigm for modern statistical

processing. IEEE Proc. 82, 1061–1095 (1994)



References 1165

113. Genet, J.: Mesure et intégration. Vuibert, Paris (1976)
114. Gikhman, I.I., Skorokhod, A.V.: The theory of stochastic processes II. Springer, Berlin (1983)
115. Gill, J., Salehi, H.: A note concerning spectral multiplicity one. Publications de l’Institut

mathématique, Nouvelle série (Beograd). 44(58), 121–126 (1988)
116. Girsanov, I.W.: On transforming a certain class of stochastic processes by absolutely

continuous substitution of measures. Theory Probab. Appl. 5, 285–301 (1960)
117. Goffman, C., Pedrick, G.: First course in functional analysis. Prentice-Hall, Englewood Cliffs

(1965)
118. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators I. Birkhäuser, Basel

(1990)
119. Gohberg, I., Goldberg, S., Krupnik, N.: Traces and Determinants of Linear Operators.

Birkhäuser, Basel (2000)
120. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic, New York

(1980)
121. Graybill, F.A.: Introduction to Matrices with Applications in Statistics. Wadsworth, Belmont

(1969)
122. Grenander, U.: Abstract Inference. Wiley, New York (1981)
123. Gualtierotti, A.F.: Skew-normal processes as models for random signals corrupted by

Gaussian noise. Int. J. Pure Appl. Math. 20, 109–142 (2005)
124. Guelfand, I.M., Vilenkin, N.Y.: Les distributions 4. Dunod, Paris (1967)
125. Hackenbroch, W., Thalmaier, A.: Stochastische Analysis. Teubner, Stuttgart (1994)
126. Halmos, P.R.: Introduction to Hilbert Space and the Theory of Spectral Multiplicity, 2nd edn.

Chelsea Publishing, New York (1957)
127. Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York (1997)
128. He, S.-W., Wang, J.-G., Yan, J.-A.: Semimartingale Theory and Stochastic Calculus. CRC

Press, Boca Raton (1992)
129. Helmberg, G.: Introduction to Spectral Theory in Hilbert Space. North-Holland, Amsterdam

(1969)
130. Helstrom, C.W.: Statistical Theory of Signal Detection. Pergamon Press, London (1960)
131. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York (1965)
132. Hida, T.: Canonical representations of Gaussian processes and their applications. Mem. Coll.

Sci. Univ. Kyoto Ser. A Math. XXXIII(1), 109–155 (1960)
133. Hida, T., Hitsuda, M.: Gaussian Processes. American Mathematical Society, Providence, RI

(1993)
134. Higgins, J.R.: Completeness and Basis Properties of Sets of Special Functions. Cambridge

University Press, Cambridge (1977)
135. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups. American Mathematical

Society, Providence, RI (1965)
136. Hitsuda, M.: Multiplicity of some classes of Gaussian processes. Nagoya Math. J. 52, 39–46

(1973)
137. Hitsuda, M.: Wiener-like integrals for Gaussian processes and the linear estimation problem.

In: Pinsky, M.A. (ed.) Stochastic Analysis and Applications, pp. 167–177. Dekker, New York
(1984)

138. Hoffmann-Jørgensen, J.: Probability with a View Towards Statistics I. Chapman & Hall,
New York (1994)

139. Hoffmann-Jørgensen, J.: Probability with a View Towards Statistics II. Chapman & Hall,
New York (1994)

140. Horton, C.W. Sr.: Signal Processing of Underwater Acoustic Waves. United States Govern-
ment Printing Office, Washington (1969)

141. Hu, S.-T.: Elements of Real Analysis. Holden-Day, San Francisco (1967)
142. Itô, K.: The topological support of Gauss measure on Hilbert space. Nagoya Math. J. 38,

181–183 (1970)
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