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Foreword

These Lecture Notes contain detailed expositions of five (out of six total) lecture
series delivered at the 2013 Prague School on Mathematical Statistical Mechanics.
The lecture series aimed to address some of the currently most rapidly developing
subjects at the interface of probability theory, statistical physics, combinatorics,
and computer science. One common thread running through all lectures is the
prominent role played by random walks and random fields; these appear both as
primary objects of study or as tools to represent other quantities of interest. Another
important common aspect is the role of underlying disorder that is responsible for
many spectacular effects found in the behavior of these systems. We will now
describe the content of the forthcoming chapters in more detail, highlighting the
important features and further connections.

The opening chapter, contributed by Anton Bovier, summarizes recent advances
in the understanding of the Branching Brownian Motion. This is a process of
particles that perform independent Brownian motions until they branch, at ran-
dom times, to form more Brownian particles that henceforth move (and branch)
independently. Such models are naturally interesting for population dynamics,
although other uses can be found in the literature as well. The present notes address
the Branching Brownian Motion from the perspective of statistical mechanics of
disordered systems, particularly, spin glasses with Gaussian disorder. What connects
these together is the reliance on extreme order statistics, a method for systematic
study of the maximum and, in fact, all near-maximal values of a large number of
random variables. There is also a close link to the subject of random fields as the
extrema of the Branching Brownian Motion turn out to behave quite similarly to
those of the two-dimensional Gaussian Free Field. The latter is a topic that plays an
important role in several other chapters of the Lecture Notes as well.

The second chapter, written by David Brydges, explains how the behavior of the
four-dimensional weakly self-avoiding walk can be studied using the methods of
field theory and renormalization group. A representation of a weakly self-avoiding
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vi Foreword

random walk by means of an interacting random field (specifically, the �4-theory)
goes back several decades, but it was only recently that this connection could be
exploited to obtain rigorous conclusions about the random walks as well. This
is particularly challenging in four spatial dimensions, where the renormalization
group has to deal with (what are called) marginal terms. As a result, logarithmic
corrections appear next to the ordinary “diffusive” or “free-field like” scaling
of the two-point correlation function known to occur above the upper critical
dimension. Brydges’s notes explain all necessary background for entering this field
and, in particular, his own extensive papers on the subject that have been circulated
recently.

The third contribution to these Lecture Notes, written by Amin Coja-Oglan, takes
us to the world of discrete structures exhibiting phase transitions as the parameters
of the problem vary. The “interaction” in these systems is usually of a rather simple
kind; what makes the problem hard is the disorder that is built into the system. The
main focus of the notes is a specific tool, called the cavity method, whose name
fittingly describes the basic idea: evaluate the change of the physical properties of
the system when a “cavity” is created by removing a single constituent. The cavity
method is commonly used by physicists to study spin-glass systems; unfortunately,
little of it has been put on rigorous footing until recently. Coja-Oghlan’s notes
describe some of the mathematical advances using salient examples of the Random-
Graph Coloring and the Random Satisfiability Problem. Various other concepts that
arise in this subject area are also explained and used in practice, e.g., the replica
symmetry breaking, belief propagation, or quiet planting.

The fourth chapter of these notes, contributed by Dmitry Ioffe, is a survey of
recent advances in the area of polymer models with disorder. The focus is on the
ballistic regime, i.e., the situation when the polymer spreads linearly in space.
The polymer itself is subject to self-interactions as well as interactions with a
random environment. A rigorous version of the Ornstein-Zernike theory is reviewed,
which gives full control of the limiting distribution of the polymer endpoint in the
ballisticity regime. The role of a strong disorder in low spatial dimensions and a
weak disorder in high spatial dimensions is discussed. Renormalization methods
are employed to make a link to effective models that are easier to study.

The final chapter of the notes, written jointly by Greg Lawler and Jacob Perlman,
summarizes Lawler’s lectures on random walk loop-soup models. Here, a loop-
soup is a family of random closed paths on a graph or in the Euclidean space
that are subject to an interaction that depends on (what Lawler and Perlman call)
an acceptable weight. Several two-dimensional systems of interest have a natural
representation by way of a loop-soup measure, the self-avoiding walk being one
natural example. The notes give an introduction to the approach based on complex
weights and the relation between loop soups, the loop-erased random walk and
uniform spanning trees. There are also natural connections to the Gaussian Free
Field as well as other topics arising elsewhere in these Lecture Notes.



Foreword vii

These Lecture Notes are primarily aimed at early graduate students with only a
modest background in probability and mathematical physics. Notwithstanding, the
notes will be enjoyed also by seasoned researchers as well as general audiences
interested in learning about recent advances in the above fields.
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Vienna, Austria Jiří Černý
Warwick, UK Roman Kotecký
December 2014
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From Spin Glasses to Branching Brownian
Motion—and Back?

Anton Bovier

1 Introduction

These lecture notes are mainly about work that I have done over the last 5 years
with Louis-Pierre Arguin and Nicola Kistler on branching Brownian motion (BBM)
[3–7]. Louis-Pierre and Nicola should be considered co-authors of these notes (but
not responsible for any errors or nonsense I may introduce).

BBM was studied over the last 50 years as a subject of interest in its own right,
with seminal contributions by McKean [44], Bramson [18, 19], Lalley and Sellke
[40], Chauvin and Rouault [22, 23], and others. Recently, the field has experienced
a revival with many remarkable contributions and repercussions into other areas. My
personal motivation comes from the connection to spin glass theory, and specifically
the so-called Generalised Random Energy models (GREM) introduced by Gardner
and Derrida [30–32]. These models can be seen as special examples of Gaussian
processes on trees, and so can BBM. One question of central interest in spin glass
theory is to understand the structure of ground states, which translates into the
analysis of the extremal process in the languor of extreme value theory of stochastic
processes.

In work I did with Irina Kurkova [15, 16] it emerged that BBM is a particularly
interesting example, lying right at the borderline where correlations begin to
influence the behaviour of the extremes of the process. This made the study of the
extremal process of BBM an obvious target.

This goal was reached in our work with Arguin and Kistler [6] as well as, in
parallel, in that of Aïdékon, Beresticky, Brunet, and Shi [2]. A review of this work
is at the centre of these notes, in Sect. 4. To begin, however, I will, in Sect. 2 explain
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the connection to spin glasses and the models of Derrida. In Sect. 3 I review some
fundamental background work on BBM. The final Sect. 5 takes a swing back to
Derrida’s model and describes some recent results on so-called variable speed BBM
that is motivated by these models.

Many results on BBM were extended to branching random walk, see e.g.
Aïdékon [1]. Other developments concern the connection to extremes of the free
Gaussian random field in d D 2 by Bramson and Zeitouni [20], Ding [26], Bramson,
Ding, and Zeitouni [21], and Biskup and Louidor [11].

The recent activities in and around BBM have triggered a number of lecture notes
and reviews, that hopefully are complementary to this one. I mention the review by
Gouéré [33] that presents and compares the approaches of Arguin et al. and Aïdékon
et al. Ofer Zeitouni has lecture notes on his homepage that deal with branching
random walk and the Gaussian free field [51]. Nicola Kistler just wrote a survey
linking REM and GREM to other correlated Gaussian processes [38].

2 Spin Glasses

The motivation for the results I present in these lectures comes from spin glass
theory. There is really not enough time to go into this at any depth and I will only
sketch a few key concepts. Those interested in more should read a book on the
subject, e.g. [12, 50] or [47], or the less technical introduction by Newman and
Stein [45].

2.1 Setting and Examples

Spin glasses are spin systems with competing, random interactions. To remain close
to the main frame of these lectures, let us remain in the realm of mean-field spin
glasses of the type proposed by Sherrington and Kirkpatrick.

Here we have a state space, SN � f�1; 1gN . On this space we define a Gaussian
process HN W SN ! R, characterised by its mean EHN.�/ D 0, for all � 2 SN ,
and covariance

EHN.�/HN.�
0/ � Ng.�; � 0/; �; � 0 2 SN ; (1)

where g is a positive definite quadratic from. The random functions HN are called
Hamiltonians. In physics, they represent the energy of a configuration of spins, � . In
the examples that are most popular, g is assumed to depend only on some distance
between � and � 0. There are two popular distances:
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• The Hamming distance,

dham.�; �
0/ �

NX

iD1
��i¤� 0

i
D 1

2

 
N �

NX

iD1
�i�

0
i

!
: (2)

In this case one choses

g.�; � 0/ D p
�
1 � 2dham.�; �

0/=N
�
; (3)

with p a polynomial with non-negative coefficients. The most popular case is
p.x/ D x2. One denotes the quantity

1 � 2dham.�; �
0/=N � RN.�; �

0/ (4)

as the overlap between � and � 0. The resulting class of models are called
Sherrington-Kirkpatrick models.

• A second popular distance is the lexicographic distance

dlex.�; �
0/ D N C 1 � min.i W �i ¤ � 0

i /; (5)

Note the dlex is an ultrametric. In this case,

g.�; � 0/ D A.1 � N�1dlex.�; �
0//: (6)

A W Œ0; 1� ! Œ0; 1� can here be chosen as any non-decreasing function. It will
be convenient to denote qN.�; �

0/ � N�1.min.i W �i ¤ � 0
i / � 1/ and call it

the ultrametric overlap. The models obtained in this way were introduced by
Derrida and Gardener [30, 31] and are called generalised random energy models
(GREM).

The main objects one studies in statistical mechanics are the Gibbs measures
associated to these Hamiltonians. They are probability measures on SN that assign
to � 2 SN the probability

�ˇ;N.�/ � e�ˇHN .�/

Zˇ;N
; (7)

where the normalising factor Zˇ;N is called the partition function. The parameter ˇ
is called the inverse temperature. Note that these measures are random variables on
the underlying probability space .˝;F;P/ on which the Gaussian processes HN are
defined.

The objective of statistical mechanics is to understand the geometry of these
measures for very large N. This problem is usually interesting in the case when ˇ
is large, where the Gibbs measures will feel the geometry of the random process
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HN . In particular, one should expect that for large enough ˇ (and finite N), �ˇ;N will
assign mass only to configurations of almost minimal energy.

One way to acquire information on the Gibbs measures its thus to first analyse
the structure of the minima of HN .

2.2 Classical Extreme Value Theory, Aka the REM

In order to illustrate what can go on in spin glasses, Derrida had the bright idea to
introduce a simple toy model, the random energy model (REM). In the REM, the
values HN.�/ of the Hamiltonian are simply independent Gaussian random variables
with mean zero and variance N. One might think that this should be too simple, but,
remarkably, quite a lot can be learned from this example.

Understanding the structure of the ground states in this model turns into the
classical problem of extreme value theory for iid random variables, which is of
course extremely well understood (there are numerous textbooks of which I like
[41] and [48] best). We will set HN.�/ � �X� .

The first question is for the value of the maximum of the X� ; � 2 SN .

2.3 Rough Estimates, the Second Moment Method

To get a first feeling we ask for the right order to the maximum. More precisely, we
ask for the right choice of functions uN W R ! R, such that the maximum is of that
order uN.x/ with positive, x-dependent probability. To do so, introduce the counting
function

MN.x/ �
X

�2SN

�X�>uN .x/; (8)

which is the number of �’s such that X� exceeds uN.x/. Then

P

�
max
�2SN

X� > uN.x/

�
� EMN.x/ D 2N

P.X� > uN.x//: (9)

This may be called a first moment estimate. So a good choice of uN.x/ would be
such that 2N

P.X� > uN.x// D O.1/. For later use, we even choose

2N
P.X� > uN.x// � e�x: (10)
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It is easy to see that this can be achieved with

uN.x/ D N
p
2 ln 2 � 1

2

ln.N ln 2/C ln.4�/p
2 ln 2

C xp
2 ln 2

: (11)

The fact that EMN.x/ D O.1/ precludes that there are too many exceedances of the
level uN.x/, by Chebyshev’s inequality. But it may still be true that the probability
that MN.x/ > uN.x/ tends to zero. To show that this in not the case, one may want to
control, e.g., the variance of MN.x/. Namely, using the Cauchy-Schwartz inequality,
we have that

.EMN.x//
2 D �

E.MN.x/�MN .x/�1/
�2 � E

�
MN.x/

2
�
P .MN.x/ � 1/ ; (12)

so that

P .MN.x/ � 1/ � .EMN.x//
2

E .MN.x/2/
: (13)

Now it is easy to compute

E
�
MN.x/

2
� D 2N

P .X� > uN.x//C 2N.2N � 1/P .X� > uN.x//
2 (14)

D .EMN.x//
2 .1� 2�N/C EMN.x/:

Hence

P .MN.x/ � 1/ � 1

1 � 2�N C 1=EMN.x/
� 1

1C ex
; (15)

for N large. Together with the Chebyshev upper bound, this gives already good
control on the probability to exceed uN.x/, at least for large x:

e�x

1C e�x
� P

�
max
�2SN

X� > uN.x/

�
� e�x: (16)

In particular,

lim
x"1

ex lim
N"1

P

�
max
�2SN

X� > uN.x/

�
D 1; (17)

which is a bound on the upper tail of the distribution of the maximum. This is called
the second moment estimate. First and second moment estimates are usually easy
to use and give the desired control on maxima, if they work. Unfortunately, they do
not always work as nicely as here.
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2.3.1 Law of the Maximum and the Extremal Process

In this simple case, we can of course do better. Just use that, by independence,

P

�
max
�2SN

X� � uN.x/

�
D .P .X� � uN.x///

2N
(18)

D .1 � P .X� > uN.x///
2N

� �
1 � 2�Ne�x

�2N ! e�e�x
;

as N " 1. This is the classic result that the distribution of the rescaled maximum
of iid Gaussian random variables is Gumbel distributed [41].

The same simple argument yields a lot more: let

EN �
X

�2SN

ıu�1
N .X� /

(19)

denote the point process (see the Appendix for a brief review on the theory of point
processes) of the rescaled X� . Then we can look at the so-called Laplace functional
of EN : For � W R ! RC a continuous, non-negative function of compact support,
we set

�N.�/ � E

�
exp

�
�
Z
�.x/EN.dx/

��
D E

2

4exp

0

@�
X

�2SN

�
�
u�1

N .X�/
�
1

A

3

5 :

(20)

It is well-known that the Laplace functional determines the law of the process EN ,
and that convergence to a limit implies convergence in law of EN to some point
process (see the Appendix). The computations in the iid case are very simple. By
independence,

E

2

4exp

0

@�
X

�2SN

�
�
u�1

N .X� /
�
1

A

3

5 D
Y

�2SN

E
�
exp

��� �u�1
N .X� /

��	

D �
E
�
exp

��� �u�1
N .X� /

��	�2N

: (21)

We know that the probability for u�1
N .X� / to be in the support of � is small of order

2�N . Thus if we write

E

h
e��.u�1

N .X� //
i

D 1C E

h
e��.u�1

N .X� // � 1
i
; (22)



Branching Brownian Motion 7

the second term will be of order 2�N . Therefore,



E

h
e��.u�1

N .X� //
i�2N

� exp


2N

E

h
e��.u�1

N .X� // � 1
i�

(23)

Finally,

lim
N"1

2N
E

h
e��.u�1

N .X� // � 1
i

D
Z

e�x
�
e��.x/ � 1� dx: (24)

To show the latter, note first that u�1
N .x/ D p

2 ln 2 .x � uN.0//. Now assume that �
is supported on the interval Œa

p
2 ln 2; b

p
2 ln 2�. Then

E

h
e��.u�1

N .X� // � 1
i

D 1p
2�N

Z 1

�1
e� z2

2N



e��.p2 ln 2.z�uN .0/// � 1

�
dz (25)

D 1p
2�N

Z bCuN .0/

aCuN .0/

e� z2
2N



e��.p2 ln 2.z�uN .0/// � 1

�
dz

D 1p
2�N

Z b

a
e� .zCuN .0//

2

2N



e��.p2 ln 2z/ � 1

�
dz

Now

e�.zCuN.0//
2=2N D e�uN .0/

2=2Ne�zuN .0/=Ne�z2=2N : (26)

By definition of uN , as N " 1,

2N e�uN .0/
2=2N

p
2�N

! p
2 ln 2; (27)

zuN.0/=N ! p
2 ln 2z; (28)

and e�z2=2N ! 1, uniformly on the domain of integration. This shows that

lim
N"1

E



e��.u�1

N .X� // � 1
�

D
Z b

p
2 ln 2

a
p
2 ln 2

e�z
�
e��.z/ � 1� dz: (29)

Since the integrand vanishes beyond the integration domain, we can extend the
integration range to all R which yields (24). Putting all things together, we have
shown:
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Theorem 2.1 In the REM, for any positive continuous function � of bounded
support,

lim
N"1

�N.�/ D exp

�Z �
e��.z/ � 1� e�zdz

�
: (30)

Now the right-hand side of (30) is recognised as the Laplace functional of
a Poisson point process with intensity measure e�zdz. Therefore we have as a
corollary the classical result on Poisson convergence of the extremal process [41]:

Corollary 2.2 In the REM, the sequence of point processes EN converge in law to
the Poisson point process with intensity measure e�zdz on R.

2.4 The GREM, Two Levels

To understand what happens if correlation is introduced into the game, we consider
the simplest version of the generalised random energy model with just two
hierarchies. That is, for �1 2 SN=2 and �2 2 SN=2, we define the Hamiltonian

HN.�
1�2/ � a1X�1 C a2X�1�2 : (31)

where all X are iid centred Gaussian with variance N, and a21 C a22 D 1.
Note that this corresponds to the Gaussian process with covariance

EHN.�/HN.�
0/ D NA.qN.�; �

0//; (32)

where

A.x/ D

8
ˆ̂<

ˆ̂:

0; if x < 1=2

a21; if 1=2 � x < 1;

1; if x D 1:

(33)

2.4.1 Second Moment Method

We may be tempted to retry the second moment method that worked so nicely in the
REM. Of course we get

EMN.x/ D 2N
P.HN.�/ > uN.x//; (34)

as in the REM. But this quantity does not see any correlation, so this should make
us suspicious. But we know how to check whether this is significant: compute the
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second moment. This is easily done:

E
�
MN.x/

2
	 D

X

�1;�2;	1;	2

E
�
�HN .�1�2/>uN .x/�HN .	1	2/>uN .x/

	
(35)

D
X

�1;�2

E
�
�HN .�1�2/>uN .x/

	

C
X

�1

X

�2¤	2
E
�
�HN .�1�2/>uN .x/�HN .�1	2/>uN.x/

	

C
X

�1¤	1

X

�2;	2

E
�
�HN .�1�2/>uN .x/

	
E
�
�HN .	1	2/>uN .x/

	
:

The first terms yield 2N
P.HN.�/ > uN.x//, the last give .2N � 1/2P.HN.�/ >

uN.x//2, so we already know that these are ok, i.e. of order one. But the middle
terms are different. In fact, a straightforward Gaussian computation shows that

E
�
�HN .�1�2/>uN .x/�HN .�1	2/>uN .x/

	 � exp

�
� uN.x/2

N.1C a21/

�
: (36)

Thus, with uN.x/ as in the REM, the middle term gives a contribution of order

23N=22�2N=.1Ca21/: (37)

This does not explode only if a21 � 1
3
. What is going on here?

To see this, look in detail into the computations:

P
�
HN.�

1�2/ � u ^ HN.�
1	2/ � u

� �
Z

exp

�
� x2

2a21N
� .u � x/2

.1 � a21/N

�
dx:

(38)

Now this integral, for large u gets its main contribution from values of x that

maximise the exponent, which is easily checked to be reached at xc D 2ua21
1Ca21

. For

u D uN.x/, this yields indeed

P
�
HN.�

1�2/ � uN.x/ ^ HN.�
1	2/ � uN.x/

� � exp

�
� uN.x/2

N.1C a21/

�
: (39)

However, in this case

xc � N
2a21

p
2 ln 2

1C a21
D 2

p
2a1

1C a21
a1N

p
ln 2 (40)
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Now a1N
p

ln 2 is the maximum that any of the 2N=2 variables a1X�1 can reach,
and the value xc is larger than that as soon as a1 >

p
2 � 1. This indicates that

this moment computation is non-sensical above that value of a1. On the other
hand, when we compute P.HN.�

1�2/ � uN/ in the same way, we find that the
corresponding critical value of the first variable is xc D uNa21 D a1

p
2a1N

p
ln 2 D

a1
p
2max�1.a1X�1/. Thus, here a problem occurs only for a1 > 1=

p
2. In that latter

case we must expect a change in the value of the maximum, but for smaller values
of a1 we should just be more clever.

2.4.2 Truncated Second Moments

We see that the problem comes with the excessively large values of the first
component contributing to the second moments. A natural idea is to cut these off.
Thus we introduce

OMN.x/ �
X

�1;�2

�HN .�1�2/>uN .x/�a1X�1�a1N
p

ln 2: (41)

A simple computation shows that

E OMN.x/ D EMN.x/.1C o.1//; (42)

as long as a21 < 1=2. On the other hand, when we now compute E

h OMN.x/2
i
, the

previously annoying term becomes

23N=2
E

h
�HN .�1�2/>uN .x/�HN .�1	2/>uN .x/�X�1�N

p
ln 2

i
� 2

�N
.1�

p

2a1/
2

1�a21 ; (43)

which is insignificant for a21 < 1=2. Since MN.x/ � OMN.x/, it follows also that

P .MN.x/ � 1/ �


E OMN.x/

�2

E

h OMN.x/2
i : (44)

So the result can be used to show that as long as a21 < 1=2 to show that the maximum
is of the same order as in the REM. If a21 D 1=2, the bound on (43) is order one.
Thus we still get the same behaviour for the maximum. If a1 is even larger, then the
behaviour of the maximum changes. Namely, one cannot reach the value

p
2 ln 2N

any more, and the maximum will be achieved by adding the maxima of the first
hierarchy to the maximum in one of the branches of the second hierarchy. This
yield for the leading order .a1 C a2/

p
2N.
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2.4.3 The Finer Computations

As in the REM, we do of course want to compute things more precisely. This means
we want to compute the limit of

• P
�
max.�1;�2/ HN.�

1�2/ � uN.x/
�
, or, better,

• compute the limit of the Laplace functionals of the extremal process,

E exp

0

@�
X

�1;�22SN=2

�
�
u�1

N .HN.�
1�2//

�
1

A : (45)

Technically, there is rather little difference in the two cases, Let us for simplicity
compute the Laplace functional for the case �.x/ D 
�.uN .x/;1/. Then

E

2

4exp

0

@�

X

�1;�22SN=2

�HN .�1�2/>uN .x/

1

A

3

5 (46)

D
Y

�12SN=2

E

2

4exp

0

@�

X

�22SN=2

�HN .�1�2/>uN.x/

1

A

3

5

D
�

1p
2�N

Z
e� t2

2N
�
E
�
e�
�a2X>uN .x/�a1 t

	�2n=2

dt

�2N=2

D
�

1p
2�N

Z
e� t2

2N
�
1C .e�
 � 1/P.a2X > uN.x/ � a1t/

�2N=2

dt

�2N=2

:

Here X is a centred Gaussian random variable with variance N.
Basically, to get something nontrivial, the probability in the last expression

should be of order 2�N . We define tc by

P.a2X > uN.x/� a1tc/ D 2�N : (47)

By standard Gaussian asymptotics, this yields

tc D uN.x/

a1
� a2N

p
ln 2

a1
: (48)

Let us anticipate that the contribution for t > tc will be negligible. Then we get that
the integral in (46) is essentially

1p
2�N

Z tc

�1
e� t2

2N
�
1C 2N=2.e�
 � 1/P.a2X > uN.x/ � a1t/

�
dt: (49)
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Inserting the standard Gaussian asymptotics and reorganising things, this is asymp-
totically equal to

1C �
e�
 � 1� 2N=2 e� uN .x/

2

2Np
2�uN.x/=

p
N

Z tc�uN .x/˛1

�1
e� s2

2a2N

p
2�Na2

ds (50)

� 1C 2�N=2e�x
�
e�
 � 1

� Z tc�uN .x/˛1

�1
e� s2

2a2N

p
2�Na2

ds:

The integral is essentially one, if tc �uN.x/a1 > 0, which is the case when a21 < 1=2.
In the case a21 D 1=2, the integral is 1=2. Inserting this fact, we get in both cases

lim
N"1

E exp

0

@�

X

�1;�22SN=2

�HN .�1�2/>uN .x/

1

A (51)

D exp
�
e�x

�
e�
 � 1

�
K
�
;

which is the Laplace functional for a Poisson process with intensity Ke�xdx, K being
1 or 1=2, depending on whether a21 < 1=2 or a21 D 1=2, respectively.

In [15] the full picture is explored when the number of levels is arbitrary (but
finite). The general result is that the extremal process remains Poisson with intensity
measure e�xdx whenever the function A is strictly below the straight line A.x/ D x,
and it is Poisson with intensity Ke�xdx when A.x/ touches the straight line finitely
many times. The value of the constant K < 1 can be expressed in terms of the
probability that a Brownian bridge stays below 0 in the points where A.x/ D x.

If a21 > 1=2, the entire picture changes. In that case, the maximal values of the
process are achieved by adding up the maxima of the two hierarchies, and this leads
to a lower value even on the leading scale N. The extremal process also changes, but
it is simply a concatenation of Poisson processes. This has all been fully explored
in [15].

2.4.4 The General Model and Relation to Branching Brownian Motion

We have seen that the general case corresponds to a Gaussian process indexed by
SN with covariance EXsX� 0 D NA.qN.�; �

0//, for a non-decreasing function A.
Now we are invited to think of SN as the leaves of a tree with binary branching and
N levels. Then it makes sense to extend the Gaussian process from the leaves of the
tree to the entire tree. If we think of the edges of the tree of being of length one, this
process should be indexed by t 2 Œ0;N�, with covariance

E ŒX�.t/X� 0.s/� � NA..t ^ s/=N ^ qN.�; �
0//: (52)
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These models were introduced by Derrida and Gardner [30, 31] and further
investigated in [16]. In the case A.x/ D x, one sees easily that this can be realised
as follows. Start at time 0 with a Brownian motion that splits into two independent
Brownian motions at time t D 1. Each of these splits again into two independent
copies at time t D 2, and so on. The case A non-decreasing just corresponds to
a time change of this process. The case studied above, when A is a step function,
corresponds to singular time changes where for some time the Brownian motions
stop to move and just split and then recover their appropriate size instantaneously.

This observation strongly links the GREM to the process we will study next,
branching Brownian motion.

3 Branching Brownian Motion

In this section we start to look at branching Brownian motion as a continuous time
version of the GREM. We collect some basic facts that will be needed later.

3.1 Definition and Basics

The simplest way to describe branching Brownian motion is as follows. At time
zero, a single particle x1.0/ starting at the origin, say, begins to perform Brownian
motion in R. After an exponential time, 	 , of parameter one, the particle splits into
two identical, independent copies of itself that start Brownian motion at x1.	/. This
process is repeated ad infinitum, producing a collection of n.t/ particles xk.t/; 1 �
k � n.t/.

Remark 3.1 In these notes we consider for notational simplicity only the case of
binary branching described above. Everything extends to the case of more general
offspring distributions where particles split in k � 1 particles with probabilities pk

such that
P

k�1 pk D 1,
P

k�2 kpk D 2 and
P

k�1 k.k � 1/pk < 1.

Another way to see this process is to start with a continuous time Galton-Watson
(resp. Yule, in the binary splitting case) process. Here particles are just numbered
but are not immersed into space. At time t, there are n.t/ particles pk.t/; k � n.t/.
The point is that the collection of particles is endowed with a genealogical structure.
Namely for each pair of particles at time t, pk.t/; p`.t/, there is a unique time 0 �
s � t when their most recent common ancestor split into two. We call this time
d.pk.t/; p`.t//.

Branching Brownian motion (at time t) can now be interpreted as a Gaussian
process xk.t/, indexed by the leaves of a GW-process, such that Exk.t/ D 0 and,
given a realisation of the Galton Watson process,

E Œxk.t/x`.t/� D d.pk.t/; p`.t//: (53)
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This observation makes BBM perfectly analogous to the CREM [16] with covari-
ance function A.x/ D x, which we have seen to be the critical covariance.

To get into the mood of this process, let us show that

Lemma 3.2

En.t/ D et: (54)

Proof The idea is to use the recursive structure of the process. Clearly, if t < 	 , then
n.t/ D 1, Otherwise, it is n0.t � 	/C n00.t � 	/, where n0 and n00 are the number of
particles in the two independent offspring processes. This reasoning leads to

En.t/ D P.	 > t/C
Z t

0

P.	 2 ds/2En.t � s/ (55)

D e�t C 2

Z t

0

e�s
En.t � s/ds:

Differentiating this equation yields

d

dt
En.t/ D �e�t C 2En.t/� 2

Z t

0

e�s
En.t � s/ds D En.t/; (56)

where we used integration by parts. The assertion follows by solving this differential
equation with En.0/ D 1. ut

We can also show the following classical result (see the standard textbook by
Athreya and Ney [8] for this and many further results on branching processes):

Lemma 3.3 If n.t/ is the number of particles of BBM at time t, then

M.t/ � e�tn.t/ (57)

is a martingale. Moreover, M.t/ converges, a.s. and in L1, to an exponential random
variable of parameter 1.

Proof The verification that M.t/ is a martingale is elementary. Since M.t/ is positive
with mean one, it is bounded in L1 and hence, by Doob’s martingale convergence
theorem, M.t/ converges a.s. to a random variable M. To show that the martingale
is uniformly integrable and hence converges in L1, we show that

�.t/ � E
�
M.t/2

	 D 2 � e�t: (58)

This can be done by noting that EM.t/2 satisfies the recursion

�.t/ D e�3t C 2

Z t

0

e�3s�.t � s/ds C 2

3

�
1 � e�3t

�
: (59)
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Differentiating yields the differential equation

�0.t/ D 2 � �.t/; (60)

of which (58) is the unique solution with �.0/ D 1. Convergence to the exponential
distribution can be proven similarly. ut

3.2 The F-KPP Equation

The fundamental link between BBM and the F-KPP equation [29, 39] is generally
attributed to McKean [44], but I learned from an anonymous referee that it had first
been discovered by Ikeda, Nagasawa, and Watanabe [34–36].

Lemma 3.4 ([44]) Let f W R ! Œ0; 1� and fxk.t/ W k � n.t/g a branching Brownian
motion starting at 0. The function

u.t; x/ D E

2

4
n.t/Y

kD1
f .x � xk.t//

3

5 (61)

is the solution of the F-KPP equation (62)

@tu D 1

2
@2xu C u2 � u; (62)

with initial condition u.0; x/ D f .x/.

Proof The derivation of the F-KPP equation is quite similar to the arguments used in
the previous section. Let f W R ! Œ0; 1�. Define u.t; x/ by (61). Then, distinguishing
the cases when the first branching occurs before or after t, we get

u.t; x/ D e�t
Z

e� z2
2tp
2�t

f .x � z/dz (63)

C
Z t

0

e�s
Z

e� z2
2sp
2�s

u.t � s; x � z/2dz ds:

Differentiating with respect to t, using integration by parts as before together with
the fact that the heat kernel satisfies the heat equation, we find that

@tu D 1

2
@2xu C u2 � u: (64)

Obviously, u.0; x/ D f .x/. ut
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The first example is obtained by choosing f .x/ D �x�0. Then

u.t; x/ D E

2

4
n.t/Y

kD1
�.x�xk.t/�0/

3

5 D P

�
max
k�n.t/

xk.t/ � x

�
: (65)

A second example we will exploit is obtained by choosing f .x/ D exp.��.x// for
� a non-negative continuous function with compact support. Then

u.t; x/ D E

2

4
n.t/Y

kD1
e��.x�xk.t//

3

5 D E

�
exp

�
�
Z
�.x � z/Et.dz/

��
; (66)

where Et � Pn.t/
kD1 ıxk.t/ is the point process associated to BBM at time t. We see that

in this case u is the Laplace functional of the point process Et.

3.3 The Travelling Wave

Bramson [19] studied convergence of solutions to a large class of KPP equations

@tu D 1

2
@2xu C F.u/; (67)

for a large class of functions F that include the those that arise from BBM.
In particular, he established under what conditions on the initial data solutions
converge to travelling waves.

The following theorem slightly specialises Bramson’s Theorems A and B from
[19] to the cases we need here. Bramson states the result actually not in the form
that applies to the equation in the form (62), but for the equation

@tu D 1

2
@2xu C u � u2: (68)

Clearly, of u solves (62) with initial condition u.0; x/ D f .x/, then v D 1� u solves
Eq. (68) with initial condition v.0; x/ D 1� f .x/. I am afraid that there will be many
switches between the two equations and that this is a constant source of confusion.

Lemma 3.5 ([39]) The equation

1

2
!00 C p

2!0 � !2 C ! D 0: (69)

has a unique solution satisfying 0 < !.x/ < 1, !.x/ ! 0, as x ! C1, and
!.x/ ! 1, as x ! �1, up to translation, i.e. if !;!0 are two solutions, then there
exists a 2 R s.t. !0.x/ D !.x C a/.
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Theorem 3.6 ([19]) Let u be solution of the F-KPP equation (68) with 0 �
u.0; x/ � 1. Then there is a function m.t/ such that

u.t; x C m.t// ! !.x/; (70)

uniformly in x, where ! is one of the solutions of (69) from Lemma 3.5, as t " 1, if
and only if

(i) for some h > 0, lim supt!1 1
t ln

R t.1Ch/
t u.0; y/dy � �p

2, and

(ii) for some � > 0, M > 0, N > 0,
R xCN

x u.0; y/dy > � for all x � �M.

Moreover, if limx!1 ebxu.0; x/ D 0, for some b >
p
2, then one may choose

m.t/ D p
2t � 3

2
p
2

ln t: (71)

Of course, we can get an equivalent statement for solutions to (62) by simple
substitution u.0; x/ ! 1 � u.0; x/. The equation for the limit is then

1

2
!00 C p

2!0 C !2 � ! D 0; (72)

Theorem 3.6 is one of the core results of Bramson’s work on Brownian motion
and most of the material in his monograph [19] is essentially needed for its proof.
Naturally, we cannot reproduce the proof here, but we limit ourselves to a few
comments.

First, this result implies that

P

�
max
k�n.t/

xk.t/ � m.t/ � x

�
! !.x/: (73)

It should be noted that it follows already from the results of Kolmogorov et al. [39]
that (73) must hold for some function m.t/ with m.t/=t ! p

2. But only Bramson’s
precise evaluation of m.t/ shows that the shift is chafed from the iid case where it
would have to be

m0.t/ D p
2t � 1

2
p
2

ln t; (74)

which is larger than m.t/. Moreover,!.x/ would have to be the Gumbel distribution,
which does not solve (69).

The rough heuristics of the correct rescaling can be obtained from second
moment calculations. From the experience with the GREM, we would expect that
the entire ancestral path of BBM will stay below the straight line with slope

p
2,
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with probability essentially one. More precisely, we should consider the events

n
9k�n.t/ fxk.t/ � m.t/ > xg ^

n
xk.s/ � p

2s
o
;8s 2 .r; t � r/

o
; (75)

for r fixed. Here we write, for given t, and s � t, xk.s/ for the ancestor at time s of
the particle xk.t/. One of the crucial observations of Bramson [18] is that the event
in (75) has the same probability as the event

˚9k�n.t/xk.t/ � m.t/ > x
�
; (76)

when first t " 1 and then r " 1. This is not very easy, but also not too hard.
It is clear that the ancestral path from xk.t/ to zero is just a Brownian bridge from

xk.t/ to zero. That is, we can write

xk.t � s/ D t � s

t
xk.t/C zk.s/; (77)

where zk.s/; s 2 Œ0; t�, is a Brownian bridge form 0 to 0, independent of xk.t/. The
event in (75) can then be expressed as

n
9k�n.t/ fxk.t/ � m.t/ > xg ^

n
zk.s/ � .1 � s=t/.

p
2t � xk.t//

o
;8s 2 .r; t � r/

o
;

(78)

where of course the Brownian bridges are not independent. The point, however, is,
that as far as the maximum is concerned, they might as well be independent.

We need to bound the probability of a Brownian bridge to stay below a straight
line. The following lemma is taken from Bramson [18], but is of course classic.

Lemma 3.7 Let y1; y2 > 0. Let z be a Brownian bridge from 0 to 0 in time t. Then

P
�
z.s/ � s

t y1 C t�s
t y2;80�s�t

� D 1 � exp.�y1y2=t/: (79)

Proof The proof is a nice exercise using the reflection principle. First we can rotate
everything to see that the probability in question is the same as the probability that
Brownian motion, conditioned to end in y2 � y1, stays below y2,

P
�
z.s/ � s

t y1 C t�s
t y2;80�s�t

� D P
�
Bs � y2;80�s�t

ˇ̌
�.Bt/

�
.y2 � y1/: (80)

Now use the reflection principle. All paths that do not stay below y2 have a reflected
counterpart that ends in y2 C y1 in instead in y2 � y1. Expressing the conditional
probability in terms of heat kernels p.t; x/, we get

P
�
Bs � y2;80�s�t

ˇ̌
�.Bt/

�
.y2 � y1/ D 1 � p.t; y2 C y1/

p.t; y2 � y1/
D 1 � exp.�y1y2=t/;

(81)

and the proof is completed. ut
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The first moment estimate shows (the calculations are a bit intricate and
constitute a good part of Bramsons first paper [18])

P



9k�n.t/ fxk.t/ � m.t/ > xg ^

n
zk.s/ � .1 � s=t/.

p
2t � xk.t//

o
;8s 2 .r; t � r/

�

� et e�
.m.t/Cx/2

2tp
2�m.t/=

p
t

Cx2

t
� C0et e�

m.t/2

2t

t3=2
x2e�

p

2x: (82)

The t-dependent term is equal to one if

m.t/ D p
2t � 3

2
p
2

ln t: (83)

To justify that this upper bound is not bad, one has to simply perform a second
moment computation in which one retains the condition that at the splitting point,
the particle is not above the straight line

p
2s. This is not so easy here and actually

yields a lower bound there the x2 is not present. Indeed, it also turns out that the
upper bound is not optimal, and that the x2 should be replaced by x. We will show
that in the next section. A refinement of the truncated second moment method was
used more recently by Roberts [49].

One can actually localise the ancestral paths of extremal particles much more
precisely, as was shown in [3]. Namely, define

ft;� .s/ �
(

s� ; 0 � s � t=2

.t � s/� ; t=2 � s � t:
(84)

Then the following holds:

Theorem 3.8 ([3]) Let D D Œdl; du� 2 R be a bounded interval. Then for any 0 <
˛ < 1

2
< ˇ, and any � > 0, there are r0 � r0.D; �; ˛; ˇ/, such that for all r > r0

and t > 3r,

P



8k�n.t/such that xk.t/� m.t/ 2 D; it holds that (85)

8s2Œr;t�r�;
s

t
xk.t/C ft;˛.s/ � xk.s/ � s

t
xk.t/C ft;ˇ.s/

�
� 1 � �:

Basically this theorem says that the paths of maximal particles lie below the
straight line to their endpoint along the arc ft;1=2.s/. This is just due to a property
of Brownian bridges: in principle, a Brownian bridge wants to oscillate (a little bit
more) than

p
t at its middle. But if it is not allowed to cross zero, than it also will not

get close to zero, because each time it does so, it is unlikely to not do the crossing.
This phenomenon is known as entropic repulsion in statistical mechanics.
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Note also that for the ancestral paths of particles that end up much lower thanp
2t, say around at with a <

p
2, there is no such effect present. The ancestral paths

of these particles are just Brownian bridges from zero to their end position which are
localised around the straight line by a positive upper and a negative lower envelope
ft;� , with any � > 1

2
.

3.4 The Derivative Martingale

While Bramson analyses the asymptotic behaviour of the functions!.x/, he does not
give an explicit form of these solutions, and in particular he does not provide a link
to the Gumbel distribution from classical extreme value theory. This was achieved
a few years later by Lalley and Sellke. They wrote a short and very insightful paper
[40] that provides, after Bramson’s work, the most significant insights into BBM
that we have. It’s main achievement is to give a probabilistic interpretation for the
limiting distribution of the maximum of BBM. But this is not all.

For 1 � f satisfying the hypothesis of Theorem 3.6 let u be given by (61). Now
define

Ou.t; x/ � E

2

4
n.t/Y

iD1
f .

p
2t C x � xi.t//

3

5 D u.t;
p
2t C x/: (86)

One checks that Ou solves the equation [note that here we are in the realm of the
form (62)]

@t Ou D 1

2
@2x Ou C p

2@x Ou � Ou.1 � Ou/: (87)

Let ! solve Eq. (72). Then Ou.t; x/ � !.x/ is a stationary solution to (87) with initial
condition Ou.0; x/ D !.x/. Therefore, we have the stochastic representation

!.x/ D E

2

4
n.t/Y

iD1
!.

p
2t C x � xi.t//

3

5 : (88)

Now probability enters the game.

Lemma 3.9 For every x 2 R, the function W.t; x/ � Qn.t/
iD1 !.

p
2t C x � xi.t//

is a martingale with respect to the natural filtration Ft of BBM. Moreover, W.t; x/
converges almost surely and in L1 to a non-trivial limit, W�.x/. Moreover,

EW�.x/ D !.x/: (89)



Branching Brownian Motion 21

Proof The proof is straightforward. It helps to introduce the notation xy
k.t/ for BBM

started in y. Clearly W.t; x/ is integrable. By the Markovian nature of BBM,

W.t C s/ D
n.t/Y

iD1

ni.s/Y

jD1
!

p

2.t C s/ � x�x
i .t/ � �

x0i;j.s/
��
: (90)

where the xi;j are independent BBM’s. Now

E
�
W.t C s; x/

ˇ̌
Ft
	 D

n.t/Y

iD1
E

2

4
ni.s/Y

jD1
!

p

2.t C s/ � x�x
i .t/ � �

x0i;j.s/
�� ˇ̌

Ft

3

5 (91)

D
n.t/Y

iD1
E

2

4
ni.s/Y

jD1
!

�p
2s �

�
x

x�x
i .t/�p

2t
i;j .s/

�� ˇ̌
Ft

3

5

D
n.t/Y

iD1
!

p

2t � x�x
i .t/

�
D W.t; x/:

Now W.t; x/ is bounded and therefore converges almost surely and in L1 to a limit,
W�.x/. ut

There are more martingales. First, by a trivial computation,

Y.t/ �
n.t/X

iD1
e

p
2xi.t/�2t (92)

is a martingale. Since it is positive and EY.t/ D 1, it converges almost surely to a
finite non-negative limit. But this means that the exponents in the sum must all go
to minus infinity, as otherwise no convergence is possible. This means that

min
i�n.t/


p
2t � xi.t/

�
" C1; a.s: (93)

(this argument is convincing but a bit fishy, see the remark below).
One of Bramson’s results is that (we will see the proof of this in the next section,

see Corollary 4.3)

1 � !.x/ � Cxe�p
2x; as x " 1: (94)
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Hence

W.t; x/ D exp

0

@
n.t/X

iD1
ln!.

p
2t C x � xi.t//

1

A (95)

� exp

0

@�C
n.t/X

iD1
.
p
2t C x � xi.t//e�p

2.
p
2tCx�xi.t//

1

A

D exp


�Cxe�p

2xY.t/ � Ce�p
2xZ.t/

�
;

where

Z.t/ �
n.t/X

iD1

�p
2t � xi.t/

�
e�p

2.
p
2t�xi.t//: (96)

Z.t/ is also a martingale, called the derivative martingale, with EZt D 0. The
fact that Z.t/ is a martingale can be verified by explicit computation, but it will
actually not be very important for us. In any case, Z.t/ is not even bounded in L1

and therefore it is a priori not cleat that Z.t/ converges. By the observation (93),
Z.t/ is much bigger than Y.t/, which implies that unless Y.t/ ! 0, a.s., it must
be true that lim inf Z.t/ D C1, which is impossible since this would imply that
W.t; x/ ! 0, which we know to be false. Hence Y.t/ ! 0, and thus Z.t/ ! Z, a.s.,
where Z is finite and positive. It follows that

lim
t"1

W.t; x/ D exp


�CZe�p

2x
�
: (97)

Remark 3.10 While the argument of Lalley and Sellke for (93) may not convince
everybody,1 the following gives an alternative proof for the fact that Yt ! 0. By a
simple Gaussian computation,

P



9k�n.t/ W p

2t � xk.t/ < K
�

� e
p
2K

p
4�t

: (98)

But this implies that

P

�
Z.t/

Y.t/
< K

�
� ct�1=2: (99)

1Thanks to Marek Biskup for voicing some doubt about this claim.
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Now assume that Yt ! a > 0, a.s. Then, for large enough t,

P .Z.t/ < 2Ka/ � ct�1=2: (100)

But this implies that

P

�
lim inf

n"1
Z.2n/ < 2aK

�
D 0: (101)

and hence

P

 
lim sup

t"1
Z.t/ < 2aK

!
D 0: (102)

But this implies that

lim inf
t"1

W.t; x/ D 0; a.s.; (103)

and since we know that W.t; x/ converges almost surely, it must hold that the limit is
zero. But this is in contradiction with the fact that the limit is a non-negative random
variable with positive expectation and that convergence holds in L1. Hence it must
be the case that Yt ! 0, almost surely.

Remark 3.11 One may interpret Y.t/ as a partition function. Namely, if we set

Zˇ.t/ �
n.t/X

iD1
eˇxi.t/; (104)

then

Y.t/ D Zp
2.t/

EZp
2.t/

: (105)

p
2 has the natural interpretation of the critical inverse temperature for this model,

which can be interpreted as the value where the “law of large numbers” starts to fail
in a strong sense, namely that Zˇ.t/=EZˇ.t/ does no longer converge to a non-trivial
limit. In the REM, the critical value is

p
2 ln 2, and it was shown in [17] that in this

case, at the critical value, this ratio converges to 1=2. For BBM, it was used and
shown in [13], that

Zˇ.t/

EZˇ.t/
: (106)
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is a uniformly integrable martingale for all values ˇ < 1 that converges a.s. and in
L1 to a positive random variable of mean 1.

Finally, we return to the law of the maximum. We have that

lim
t"1

P

�
max
k�n.t/

xk.t/ � m.t/ � x

�

D lim
t"1

P

�
max

k�n.tCs/
xk.t C s/ � m.t C s/ � x

�

D lim
t"1

E

�
P

�
max

k�n.tCs/
xk.t C s/� m.t C s/ � xjFs

��

D lim
t"1

E

2

4
n.s/Y

iD1
P

�
max

k�ni.t/
xi;k.t/ � m.t C s/ � xi.s/ � xjFs

�3

5

D lim
t"1

E

2

4
n.s/Y

iD1
u.t; x C m.t C s/� xi.s//

3

5 : (107)

where u is the solution of the F-KPP equation with Heavyside initial condition. Next
we use that

m.t C s/ � m.t/ � p
2s ! 0; as t " 1; (108)

for fixed s. This shows that

lim
t"1

P

�
max
k�n.t/

xk.t/ � m.t/ � x

�

D lim
t"1

E

2

4
n.s/Y

iD1
u.t; x C m.t/ � p

2s � xi.s//

3

5

D E

2

4
n.s/Y

iD1
!.x � p

2s � xi.s//

3

5

D EW.s; x/: (109)

As now s " 1,

W.s; x/ ! e�CZe�

p

2x
; a.s. (110)

which proves the main theorem of Lalley and Sellke [40]:
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Theorem 3.12 ([40]) For BBM,

lim
t"1

P

�
max
k�n.t/

xk.t/ � m.t/ � x

�
D Ee�CZe�

p

2x
: (111)

Moreover

lim
s"1

lim
t"1

P

�
max
k�n.t/

xk.t/ � m.t/ � xjFs

�
D e�CZe�

p

2x
; a.s. (112)

Remark 3.13 Of course, the argument above shows that any solution of (69) satis-

fying the conditions of Lemma 3.5 has a representation of the form 1 � e�CZe�

p

2x
,

with only different constants C.

Remark 3.14 Lalley and Sellke conjectured in [40] that

lim
T"1

1

T

Z T

0

�maxk�n.t/ xk.t/�m.t/�xdt D e�CZe�

p

2x
; a.s. (113)

This was proven to be true in [5].

4 The Extremal Process of BBM

In this section we discuss the construction of the extremal process of branching
Brownian motion following the paper [6]. This construction has two parts. The first
is the proof of convergence of Laplace functionals of the point process of BBM
as t " 1. This will turn out to be doable using estimates on the asymptotics of
solutions of the F-KPP equation that are the basis of Bramson’s work. The ensuing
representation for Laplace functionals is rather indirect. In the second part, one gives
an explicit description of the point process that has this Laplace functional as a
cluster point process.

4.1 Controlling Solutions of the F-KPP Equation

In what follows, fxk.t/; k � n.t/g will always denote a branching Brownian motion
of length t started in zero. We will usually consider the F-KPP equation in the
form (68).

4.1.1 Feynman-Kac Representation

Bramson’s analysis of the asymptotics of solutions of the KPP equation in [19]
relies on a Feynman-Kac representation. Namely, if u.t; x/ is the solution of the
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linear equation

@tu D 1

2
@2xu C k.t; x/u; (114)

with initial conditions u.0; x/, then the standard Feynman-Kac formula yields the
representation

u.t; x/ D Ex

�
exp

�Z t

0

k.t � s;Bs/ds

�
u.0;Bt/

�
: (115)

where the expectation is with respect to ordinary Brownian motion started at x. To
get back to the full equation (68), we use this with

k.t; x/ D .1 � u.t; x//; (116)

where u itself is the solution of the F-KPP equation. Still, the ensuing representation
is very useful as it allows to process a priori information on the solution into finer
estimates. Bramson’s key idea here was to use the Feynman-Kac representation not
all the way down to the initial condition, but to go back to some arbitrary time
0 � r < t. This shows that a solution of the F-KPP equation must satisfy2

u.t; x/ D Ex

�
exp

�Z t�r

0

k.t � s;Bs/ds

�
u.r;Bt�r/

�
: (117)

This can be conveniently be rewritten in terms of Brownian bridges. Denote for
T > 0 and 0 < ˛ < ˇ < 1, by fzT

˛;ˇ.s/; 0 � s � Tg the Brownian bridge of length
T starting in ˛ and ending in ˇ. Then

u.t; x/ D
Z 1

�1
dy u.r; y/

e�.x�y/2=.2.t�r//

p
2�.t � r/

exp

�Z t�r

0

k.t � s; zt�r
x;y .s//ds

�
: (118)

Note that k.t; x/ D 1� u.t; x/ lies between zero and one and tends to one as x " 1.
Bramson’s basic idea to exploit this formula is to prove a priori estimates on the
function k.s; x/. In particular, he shows that k.s; x/ � 1 if x is a above a certain
curve,M . On the other hand, he shows that the probability that the Brownian bridge
descends below a curve M , is negligibly small. The following proposition is an
application of this strategy and essentially contained in Bramson’s monograph [19,
Proposition 8.3].

2One should appreciate the beauty of Bramson’s construction: start with a probabilistic model
(BBM), derive a pde whose solutions represent quantities of interest, and then use a different
probabilistic representation of the solution (in terms of Brownian motion) to analyse these
solutions. . .
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Proposition 4.1 Let u be a solution to the F-KPP equation (68) with initial
condition satisfying

Z 1

0

ye
p
2yu.0; y/dy < 1 ; (119)

and such that u.t; � C m.t// converges. Define

 .r; t; xCp
2t/ � e�p

2x

p
2�.t � r/

Z 1

0

u.r; yCp
2r/e

p
2ye� .y�x/2

2.t�r/ .1�e�2y
.xC

3
2
p

2
ln t/

t�r /dy

(120)

Then for r large enough, t � 8r, and x � 8r � 3

2
p
2

ln t,

��1.r/ .r; t; x C p
2t/ � u.t; x C p

2t/ � �.r/ .r; t; x C p
2t/; (121)

where �.r/ # 1, as r ! 1.

We see that  basically controls u, but of course  still involves u. The fact that
u is bounded by u may seem strange, but we shall see that this is very useful.

Proof Bramson (see [19, Proposition 8.3]) showed that for u satisfying the assump-
tions in the Proposition 4.1, the following holds:

1. For r large enough, t � 8r and x � m.t/C 8r

u.t; x/ �  1.r; t; x/ (122)

� C1.r/e
t�r
Z

1

�1

u.r; y/
e�

.x�y/2

2.t�r/

p
2�.t � r/

P



zt�r

x;y .s/ >M
x
r;t.t � s/; s 2 Œ0; t � r�

�
dy

and

u.t; x/ �  2.r; t; x/ (123)

� C2.r/e
t�r
Z

1

�1

u.r; y/
e�

.x�y/2

2.t�r/

p
2�.t � r/

P
�
zt�r

x;y .s/ >M 0

r;t.t � s/; s 2 Œ0; t � r�
�

dy;

where the functions M
x
r;t.t � s/, M 0

r;t.t � s/ satisfy

M 0
r;t.t � s/ � nr;t.t � s/ � M

x
r;t.t � s/: (124)

Here

nr.s/ � p
2r C .s � r/

t � r
.m.t/ � p

2r/: (125)
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Moreover, C1.r/ " 1, C2.r/ # 1 as r " 1.
2. The bounds  1.r; t; x/ and  2.r; t; x/ satisfy

1 �  2.r; t; x/

 1.r; t; x/
� �.r/; (126)

where �.r/ # 1 as r " 1.

Hence, if we denote by

 .r; t; x/ D et�r
Z 1

�1
u.r; y/

e� .x�y/2

2.t�r/

p
2�.t � r/

P
�
zt�r

x;y .s/ > nr;t.t � s/; s 2 Œ0; t � r�
�

dy

(127)

we have by domination  1 �  �  2. Therefore, for r; t and x large enough

u.t; x/

 .r; t; x/
�  2.r; t; x/

 .r; t; x/
�  2.r; t; x/

 1.r; t; x/
� �.r/ ; (128)

and

u.t; x/

 .r; t; x/
� 1

�.r/
: (129)

Combining (128) and (129) we get

��1.r/ .r; t; x/ � u.t; x/ � �.r/ .r; t; x/: (130)

For x � 8r � 3

2
p
2

ln t we get from (130) that

��1.r/ .r; t; x C p
2t/ � u.t; x C p

2t/ � �.r/ .r; t; x C p
2t/: (131)

The nice thing is that the probability involving the Brownian bridge in the
definition of  can be explicitly computed, see Lemma 3.7.

Since our bridge goes from x C p
2t to y and the straight line is between

p
2r

and m.t/, and it stays above this line, we have to adjust this to length t � r, y1 Dp
2t C x � m.t/ D x C 3

2
p
2

ln t > 0 (for t > 1) and y2 D y � p
2r.

Of course P
�
zt�r

x;y .s/ > nr;t.t � s/; s 2 Œ0; t � r�
� D 0 for y � p

2r. For y >
p
2r,

from Lemma 3.7 we have

P
�
zt�r

x;y .s/ > nr;t.t � s/; s 2 Œ0; t � r�
� D 1 � exp

0

@�



x C 3

2
p
2

ln t
�
.y � p

2r/

t � r

1

A :

(132)
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Changing variables to y0 D y � p
2r in the integral appearing in the definition of

 , we get (120). This, together with the formula (130), concludes the proof of the
proposition. ut

4.1.2 Limit Theorems for Solutions

The bounds in (121) have been used by Chauvin and Rouault to compute the
probability of deviations of the maximum of BBM, see Lemma 2 in [23]. We will
use their arguments in this slightly more general setting. Our aim is to control limits
when t and later r tend to infinity.

We will need to analyse solutions u.t; x C p
2t/ where x D x.t/ depends on t in

different ways. First we look at x fixed. This corresponds to particles that are just
3

2
p
2

ln t ahead of the natural front of BBM. We start with the asymptotics of  .

Proposition 4.2 Let the assumptions of Proposition 4.1 be satisfied, and assume in
addition that y0 � supfy W u.0; y/ > 0g is finite. Then, for any x 2 R,

lim
t"1

ex
p
2 t3=2

3

2
p
2

ln t
 .r; t; x C p

2t/ D
r
2

�

Z 1

0

yey
p
2u.r; y C p

2r/dy � C.r/:

(133)

Moreover, limr"1 C.r/ � C exists and it is positive and finite. Finally,

lim
t"1

ex
p
2 t3=2

3

2
p
2

ln t
u.t; x C p

2t/ D C: (134)

Proof Consider first the limit t " 1. For fixed x, the integrand converges
pointwise to 3

2
p
�

yey
p
2u.r; y C p

2r/, as can be seen by elementary calculations.
To deduce convergence of the integral, we need to show that we can use dominated
convergence. It is clear that the integrand in (120) after multiplication with the
prefactor in (133) is bounded from above by

const:ye
p
2yu.r; y C p

2r/: (135)

Thus we need an a priori bound on u. Bramson observed that this can be obtained
in terms of a solution, u.2/, of the linearised F-KPP equation,

@tu
.2/ D 1

2
@xxu.2/ � u.2/ (136)
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with the same initial conditions u.2/.0; x/ D u.0; x/. Using the Feynman-Kac
formula for this linear equation yields

u.2/.t; x/ D Ex

�
exp

�Z t

0

ds

�
u.0;Bt/

�
(137)

� et
Z y0

�1
1p
2�t

e� .y�x/2

2t dy;

where we used that u.0; x/ � �x�y0 . Bramson also established [19, Corollary 1,
p.29] a maximum principle for nonlinear parabolic pde’s, which implies that

u.t; x/ � u.2/.t; x/: (138)

Using this estimate, we can bound the integrand in (120) by (ignoring constants)

e�p
2y
�y�y0�

p
2r C e

p
2ye�.yCp

2r�y0/2=2r
�y�y0�

p
2r; (139)

which is integrable in y uniformly in t. Hence Lebesgue’s dominated convergence
theorem applies and the first part of the proposition follows.

The more interesting task is to show now that C.r/ converges to a non-trivial
limit, as r " 1. By Proposition 4.1, for r large enough,

lim sup
t"1

ex
p
2 t3=2

3

2
p
2

ln t
u.t; xCp

2t/ � �.r/ lim
t"1

ex
p
2 t3=2

ln t
 .r; t; xCp

2t/ D C.r/�.r/ ;

(140)

and

lim inf
t"1

ex
p
2 t3=2

3

2
p
2

ln t
u.t; x C p

2t/ � 1

�.r/
lim
t"1

ex
p
2 t3=2

ln t
 .r; t; x C p

2t/ D C.r/

�.r/
;

(141)

These bounds hold for all r, and since �.r/ ! 1, we can conclude that the left-
hand sides is bounded from above by lim infr"1 C.r/ and from below by and
lim supr"1 C.r/. So the lim sup � lim inf and hence limr"1 C.r/ D C exists. As a
byproduct, we see that also the left-hand sides of (140) and (141) must agree, and
thus we obtain (134). A very important aspect is that the bounds (140) and (141)
hold for any r. But for large enough finite r, the constants C.r/ are strictly positive
and finite by the representation (133), and this shows that C is strictly positive and
finite. ut

We will make a slight stop on the way and show how the sharp asymptotics for
the upper tail of solutions follows from what we just did.
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Corollary 4.3 Let u be as in the preceding proposition. Then

lim
x"1

lim
t"1

ex
p
2

x
u.t; x C m.t// D C; (142)

for some 0 < C < 1.

Proof Note that

 .r; t; x C m.t// D  



r; t;
p
2t C x � 3

2
p
2

ln t
�
: (143)

Then, by the same arguments as in the proof of Proposition 4.2, we get that

lim
t"1

ex
p
2

x
 .r; t; x C p

2t/ D
r
2

�

Z 1

0

yey
p
2u.r; y C p

2r/dy D C.r/: (144)

Here C.r/ the same constant as before. Now we can choose x > 8r in order to be
able to apply Proposition 4.1 and then let r " 1. This yields (142). ut

The next lemma is a variant of the previous proposition for the case when x � p
t.

Lemma 4.4 Let u be a solution to the F-KPP equation (68) with initial condition
satisfying the assumptions of Theorem 3.6 and

y0 � supfy W u.0; y/ > 0g < 1 : (145)

Then, for a > 0, and y 2 R,

lim
t!1

e
p
2a

p
tt3=2

a
p

t
 .r; t; y C a

p
t C p

2t/ D C.r/e�p
2ye�a2=2 (146)

where C.r/ is the constant from above. Moreover, the convergence is uniform for a
in compact sets.

Proof The structure of the proof is the same as in the proposition. Compute
the pointwise limit and produce an integrable majorant from a bound using the
linearised F-KPP equation. ut

It will be very important to know that as r " 1, in the integral representing C.r/,
only the y’s that are of order

p
r give a non-vanishing contribution. The precise

version of this statement is the following lemma.

Lemma 4.5 Let u be a solution to the F-KPP equation (68) with initial condition
satisfying the assumptions of Theorem 3.6 and

y0 � supfy W u.0; y/ > 0g < 1 : (147)
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Then for any x 2 R

lim
A1#0

lim sup
r"1

Z A1
p

r

0

u.r; x C y C p
2r/ yey

p
2dy D 0

lim
A2"1

lim sup
r"1

Z 1

A2
p

r
u.r; x C y C p

2r/ yey
p
2dy D 0 :

(148)

Proof Again it is clear that we need some a priori information on the behaviour
of u. This time this will be obtained by comparing to a solution of the F-KPP
equation with Heaviside initial conditions, which we know are probabilities for the
maximum of BBM. Namely, by assumption, u.0; y/ � �fy<y0C1g. It follows from the
representation of u as an expectation (61) the u is monotone in the initial conditions
and thus

u.r; x C y C p
2r/ � P

�
max
k�n.t/

xk.r/ � p
2r > y0 C 1C x C y

�
: (149)

For the probabilities we have a sharp estimate on the tail that follows from an
estimate due to Bramson [19, Proposition 8.2]:

Lemma 4.6 ([4, Cor. 10]) There exists a numerical constants, ; t0 < 0, such that
for all x > 1, and all t � t0,

P

�
max
k�n.t/

xk.t/ � m.t/ � x

�
� x exp

�
�p

2x � x2

2t
C 3x

2
p
2

ln t

t

�
: (150)

.

Proof The proof follows from the exploitation of the Feynman-Kac formula with
r D 0. This gives, for the special case that u is the Heaviside initial condition, a
bound

u.t; x C m.t// � et
Z 0

�1
e�.xCm.t/�y/2=2t

p
2�t

�
1 � e�2.yC1/x=t

�
dy: (151)

Writing out what m.t/ is the result follows. ut
We will use this for x � p

t, so the x2=t term is relevant. The last term involving
ln t=t can, however, be safely ignored. The lemma follows in a rather straightforward
and purely computational way once we insert this bound in integrals. The details can
be found in [6]. Note that the precise bound (150) is needed and the trivial bound
comparing to iid variables would not suffice. ut

The following lemma shows how C D limr"1
q

2
�

R1
0

u.r; y C p
2r/ yey

p
2dy

behaves when the spatial argument of u is shifted.
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Lemma 4.7 Let u be a solution to the F-KPP equation (68) with initial condition
satisfying the assumptions of Theorem 3.6 and

y0 � supfy W u.0; y/ > 0g < 1 : (152)

Then for any x 2 R:

lim
r"1

r
2

�

Z 1

0

yey
p
2u.r; x C y C p

2r/dy (153)

D e�p
2x lim

r"1

r
2

�

Z 1

0

yey
p
2u.r; y C p

2r/dy D Ce�p
2x:

Proof The proof is obvious from the fact proven in Lemma 4.5. Namely, changing
variables,
Z 1

0

yey
p
2u.r; x C y Cp

2r/dy D e�p
2x
Z 1

x
.y � x/ey

p
2u.r; y Cp

2r/dy (154)

Now the part of the integral from x to zero cannot contribute, as it does not involve
y of the order of

p
r, and for the same reason replacing y by y � x changes nothing

in the limit. ut
The following is a slight generalisation of Lemma 4.7:

Lemma 4.8 Let h.x/ be continuous function that is bounded and is zero for x small
enough. Then

lim
t"1

r
2

�

Z 0

�1
E

�
h.y C max

i
xi.t/ � p

2t/

�
.�y/e�p

2ydy

D
Z

R

h.z/
p
2Ce�p

2zdz; (155)

where C is the constant appearing in the law of the maximum, Theorem 3.12.

Proof Consider first the case when h.x/ D �Œb;1/.x/, for b 2 R.

lim
t"1

r
2

�

Z 0

�1
E

�
h.y C max

i
xi.t/ � p

2t/

�
.�y/e�p

2ydy (156)

lim
t"1

Z 0

�1
P

�
y C max

i
xi.t/ � p

2t > b

�q
2
�
.�y/e�p

2ydy

D lim
t"1

Z 1

0

P

�
max

i
xi.t/ > b C y C p

2t

�q
2
�

ye
p
2ydy

D lim
t"1

Z 1

0

u.t; b C y C p
2t/
q

2
�

ye
p
2ydy;
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where u solves the F-KPP equation (68) with initial condition u.0; x/ D �x<0. Hence
the right-hand side of (156) converges, by Lemma 4.7, to

Ce�p
2b D C

Z

R

h.z/e�p
2z

p
2dz: (157)

To pass to the general case (155), note that by linearity, (157) holds for linear
combinations of indicator functions of intervals. The general case when follows
from a monotone class type argument. ut

4.2 Existence of a Limiting Process

We now look at the construction of the limit of the point processes

Et �
X

k�n.t/

ıxk.t/�m.t/: (158)

The results presented here were achieved in a paper with Arguin and Kistler [6],
following two preparatory papers [3, 4]. An alternative proof was given by Aïdékon,
Brunet, Beresticky, and Shi [2]. A comparison of the two approaches is given in the
notes by Gouéré [33], and is also discussed in the published versions of [2, 6].

4.2.1 Convergence of the Laplace Functional

To prove the existence of the limiting extremal process we show the convergence of
Laplace functionals

 t.�/ � E

�
exp

�
�
Z
�.y/Et.dy/

��
; (159)

for � 2 Cc.R/ non-negative. Clearly, the Laplace functional related to a solution u
of the F-KPP equation with initial conditions u.0; x/ D e��.x/ via

 t.�/ D u.t;m.t//: (160)

Theorem 4.9 The point process Et D P
k�n.t/ ıxk.t/�m.t/ converges in law to a point

process E .



Branching Brownian Motion 35

Proof It suffices to show that, for � 2 Cc.R/ positive, the Laplace transform t.�/,
defined in (159), of the extremal process of branching Brownian motion converges.
Notice first that this limit cannot be 0, since in the case of BBM it can be checked
(see [3]) that for any bounded interval, B � R,

lim
N"1

lim
t"1

P .Et.B/ > N/ D 0; (161)

hence the limiting point process must be locally finite. (Basically, if (161) failed
then the maximum of BBM would have to be much larger than it is know to be).

For convenience, we define maxEt � maxk�n.t/ xk.t/� m.t/. By Theorem 3.6 we
know already that

lim
t"1

P.maxEt > ı/ D 1 � !.ı/; (162)

and

lim
ı"1

.1 � !.ı// D 0 : (163)

We write the Laplace transform as a sum of two terms, corresponding to whether
maxEt � ı, or maxEt > ı, for some ı > 0:

E

�
exp

�
�
Z
� dEt

��
D E

�
exp

�
�
Z
� dEt

�
�fmaxEt�ıg

�
(164)

CE

�
exp

�
�
Z
� dEt

�
�fmaxEt>ıg

�
(165)

�  ıt .�/C ˚ı
t .�/:

Note that, by (163),

lim sup
ı"1

lim sup
t"1

˚ı
t .�/ � lim sup

ı"1
lim sup

t"1
P.maxEt > ı/ D 0 : (166)

We will show that

lim
ı"1

lim
t"1

 ıt .�/ �  .�/ (167)
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exists, and is strictly smaller than one. To see this, set gı.x/ � e��.�x/
�f�x�ıg, and

uı.t; x/ � E

2

4
Y

k�n.t/

gı.x � xk.t//

3

5 : (168)

By Lemma 3.4, uı is then solution to the F- KPP equation (62) with uı.0; x/ D gı.x/.
Also gı.x/ D 1 for x large enough, and gı.x/ D 0 for �x large enough. Therefore,
1�uı solves the F-KPP equation in the form (68) with initial condition that satisfies
the hypothesis of Bramson’s theorem (3.6). Note that this would not be the case
without the presence of the cutoff. Therefore

uı.t; x C m.t// D E

2

4
n.t/Y

kD1
gı.x � xk.t/C m.t//

3

5 (169)

converges, as t " 1, uniformly in x to a solution of (72). But

 ıt .�/ D E

�
exp

�
�
Z
� dEt

�
�fmaxEt�ıg

�
(170)

D E

2

4
Y

k�n.t/

exp .�� .xk.t/ � m.t///�fxk.t/�m.t/�ıg

3

5

D E

2

4
Y

k�n.t/

gı.xk.t/ � m.t//

3

5 D uı.t; 0C m.t//;

and therefore limt"1  ıt .�/ �  ı.�/ exists. But the function ı 7!  ı.�/ is
increasing and bounded by construction. Therefore, limı"1  ı.�/ D  .�/ exists.
Moreover, there is the obvious bound (uniformly in ı)

E

�
exp

�
�
Z
� dEt

�
�fmaxEt�ıg

�
� E Œexp .��.maxEt//� < 1; (171)

since maxEt is an atom of Et and � is non-negative. The limit t " 1 of the
right side exists and is strictly smaller than 1 by the convergence in law of the
re-centred maximum to !.x/. (Note that the support of !.x/ is R). Therefore
 .�/ D limı"1 limt"1  ıt .�/ < 1 which proves (167). ut
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4.3 Flash Back to the Derivative Martingale

Having established the tail asymptotics for solutions of the KPP equation, one
might be tempted to compute the law of the maximum (or Laplace functionals)
by recursion at an intermediate time r, e.g.

E

�
exp

�
�
Z
�.�x C y/Et.dy/

��
D E

�
E

�
exp

�
�
Z
�.�x C y/Et.dy/

� ˇ̌
Fr

��

D E

2

4E

2

4
n.r/Y

iD1

exp
�

�
Z
�.�x C xi.r/� m.t/C m.t � r/C y/E .i/

t�r.dy/

� ˇ̌
Fr

3

5

3

5

D E

2

4E

2

4
n.r/Y

iD1



1 � v.t � r;�x C xi.r/� p

2r/
� ˇ̌

Fr

3

5

3

5 ; (172)

where E .i/
s are iid copies on BBM and

v.s; x � xi.r/C
p
2r C m.s// � 1� exp

�
�
Z
�.�x C xi.r/ � p

2r C y/E .i/
s .dy/

�
:

(173)

We have used that m.t/ � m.r/ D p
2r C o.1/. We want to use the fact (see

Theorem 3.8) that the particles that will show up in the support of � at time t
must come from particles in an interval .

p
2r � c1

p
r;

p
2r � c2

p
r/, if r is large

enough and c1 > c2 > 0 become large. Hence we may assume that the conditional
expectations that appear in (172) can be replaced by their tail asymptotics, i.e.

v.t�r; x�xi.r/C
p
2rCm.t�r// � C.�x�xi.r/C

p
2r/e�p

2.x�xi.r/C
p
2r/: (174)

Hence we would get,

lim
t"1

E

�
exp

�
�
Z
�.x C y/Et.dy/

��

D lim
r"1

E

h
e�C

Pn.r/
iD1.x�xi.r/�

p
2r/e�

p

2.x�xi.r/C
p

2r/
i

D lim
r"1

E

h
e�CZre�

p

2x�CYrxe�

p

2x
i
; (175)

with Zt and Yt the martingales from Sect. 3.4.
Now one could argue like Lalley and Sellke that Yr must converge to a non-

negative limit, implying that
p
2r �xi.r/ " 1. Then again this implies that Yr ! 0,
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a.s., and hence

lim
t"1

E

�
exp

�
�
Z
�.x C y/Et.dy/

��
D lim

r"1
E

h
e�CZre�

p

2x
i
: (176)

The argument above is not quite complete. In particular, the function v does not
satisfy the hypothesis needed to apply the convergence results obtained above. In
the next subsection we will show that the final result is nonetheless true.

4.4 A Representation for the Laplace Functional

In Sect. 4.2 we have shown convergence of the Laplace functional. The following
proposition exhibits the general form of the Laplace functional of the limiting
process.

Proposition 4.10 Let Et be the process (158). For � 2 Cc.R/ non-negative and any
x 2 R,

lim
t"1

E

�
exp

�
�
Z
�.y C x/Et.dy/

��
D E

h
exp



�C.�/Ze�p

2x
�i

(177)

where, for v.t; y/ solution of F-KPP (62) with initial condition v.0; y/ D e��.y/,

C.�/ D lim
t"1

r
2

�

Z 1

0



1 � v.t; y C p

2t/
�

ye
p
2ydy (178)

is a strictly positive constant depending on � only, and Z is the derivative
martingale.

Proof We first establish an integral representation for the Laplace functionals of the
extremal process of BBM which are truncated; later we show that the truncation can
be removed.

Lemma 4.11 Set

uı.t; x/ � 1�E

2

4exp

0

@�
X

k�n.t/

�.�x C xk.t//

1

A�fmaxk�n.t/.�xCxk.t//�ıg

3

5 : (179)

Then uı.t; x/ is the solution of the F-KPP equation (68) with initial condition
uı.0; x/ D 1 � e��.�x/

�f�x�ıg. Moreover,

C.�; ı/ � lim
t"1

r
2

�

Z 1

0

uı.t; y C p
2t/ye

p
2ydy ; (180)
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exists and

lim
t"1

uı.t; x C m.t// D 1 � E

h
exp



�C.�; ı/Ze�p

2x
�i

: (181)

Proof Due to the presence of the truncation, the function uı.0; x/ satisfies the
hypothesis that were required in the previous results on sharp approximation. In
particular the truncation ensures that limx#�1 uı.0; x/ D 1 (and not zero, as it would
without the cutoff).

The existence of the constant C.�; ı/ follows from Proposition 4.2.
On the other hand, it follows from Theorem 3.6 and the Lalley-Sellke represen-

tation, that

lim
t"1

uı.t; x C m.t// D 1 � E

h
exp



�CZe�p

2x
�i
; (182)

for some constant C (recall that the relevant solution of (69) is unique up to shifts
(see Lemma 3.5), which translates into uniqueness of the representation (181) up to
the choice of the constant C).

Thus all what is left is to identify this constant with C.�; ı/. This is essentially
done by rerunning Proposition 4.2 with

p
2t replaced by the more precise m.t/.

For x; r so that x � m.t/C 8r, Proposition 4.1 yields the bounds

1

�.r/
 .r; t; x C m.t// � uı.t; x C m.t// � �.r/ .r; t; x C m.t// (183)

where

 .r; t; x C m.t// (184)

D t3=2e�p
2x

p
2�.t � r/

Z 1

0

uı.r; y C p
2r/ey

p
2e�

�
.y�xC

3
2
p

2 ln t

�2

2.t�r/ .1� e�2 yx
t�r /dy:

Using dominated convergence as in Proposition 4.2, one gets

lim
t"1

 .r; t; x C m.t// D 2xe�p
2x

p
2�

Z 1

0

uı.r; y C p
2r/yey0

p
2dy: (185)

Putting this back in (183),

1

�.r/
C.r/ � lim

t"1
uı.t; x C m.t//

xe�p
2x

� �.r/C.r/; (186)

for C.r/ �
q

2
�

R1
0 uı.r; y C p

2r/yey
p
2dy, and x > 8r. We know that

limr"1 C.r/ � C > 0 exists by Proposition 4.2. Thus taking x D 9r, letting
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r " 1 in (186), and using that �.r/ # 1, one has

lim
x"1

lim
t"1

e
p
2x

x
uı.t; x C m.t// D lim

r"1

r
2

�

Z 1

0

uı.r; y C p
2r/yey

p
2dy D C.�; ı/:

(187)

But the constant C appearing in the representation (182) was just the constant form
the large x asymptotics of limt"1 u.t; x C m.t/, which is C.�; ı/. This proves (181).

ut
We now want to show that the cutoff ı can be taken to infinity.

Lemma 4.12 Let u.t; x/; uı.t; x/ be solutions of the F-KPP equation (68) with
initial condition u.0; x/ D 1 � e��.�x/ and uı.0; x/ D 1 � e��.�x/

�f�x�ıg,
respectively. Then limı"1 C.�; ı/ exists, and

C.�/ � lim
ı"1

C.�; ı/ D lim
t"1

r
2

�

Z 1

0

u.t; y C p
2t/ye

p
2ydy : (188)

Moreover

lim
t"1

u.t; x C m.t// D 1 � E

h
exp �C.�/Ze�p

2x
i
: (189)

Proof Since � is non-negative, it is easy to see from Lemma 3.4 that

0 � uı.t; x/ � u.t; x/ � P.max xk.t/ > ı C x/ ; (190)

which implies that

Z 1

0

uı.t; x C p
2t/xe

p
2xdx �

Z 1

0

P



max xk.t/ � p

2t > ı C x
�

xe
p
2xdx

�
Z 1

0

u.t; x C p
2t/xe

p
2xdx �

Z 1

0

uı.t; x C p
2t/xe

p
2xdx: (191)

Define

F.t; ı/ �
Z 1

0

uı.t; x C p
2t/xe

p
2xdx; (192)

U.t/ �
Z 1

0

u.t; x C p
2t/xe

p
2xdx; (193)

and

M.t; ı/ �
Z 1

0

P



max xk.t/ � p

2t > ı C x
�

xe
p
2xdx: (194)
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The inequalities in (191) then read

F.t; ı/� M.t; ı/ � U.t/ � F.t; ı/: (195)

By Lemma 4.7, it holds

lim
ı"1

lim
t"1

M.t; ı/ D 0: (196)

Note also that Proposition 4.2 implies that for each ı, limt"1 F.t; ı/ � F.ı/ exists
and is strictly positive. We thus deduce from (195) that

lim inf
ı"1

F.ı/ � lim inf
t"1

U.t/ � lim sup
t"1

U.t/ � lim sup
ı"1

F.ı/: (197)

We must show that limı"1 F.ı/ exists, is strictly positive, and is finite. To see this,
observe that the function ı ! F.ı/ is by construction decreasing and positive.
Therefore the limit limı"1 F.ı/ exists. Strict positivity is follows from the conver-
gence of the maximum. Namely, if limı"1 F.ı/ D 0, then also limt"1 U.t/ D 0.
But this would imply that limı"1 C.�; ı/ D 0, and therefore

lim
ı"1

lim
t"1

uı.t; x C m.t// D 0; (198)

which is impossible due to the convergence of the maximum and the same argument
as used in (171). ut

Proposition 4.10 follows directly from Lemma 4.12. ut

4.5 Interpretation as Cluster Point Process

In the preceding section we have given a full construction of the Laplace functional
of the limiting extremal process of BBM and have given a representation of it in
Proposition 4.10. Note that all the information on the limiting process is contained
in the way how the constant C.�/ depends on the function �. The characterisation of
this dependence via a solution of the F-KPP equation with initial condition given in
terms of � does not appear very revealing at first sight. In the following we will
remedy this by giving explicit probabilistic descriptions of the underlying point
process.

4.5.1 Interpretation via an Auxiliary Process

We will construct an auxiliary class of point processes that a priory have nothing
to do with the real process of BBM. To make the distinction transparent, we denote
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probabilities and expectation for this process by P and E. Let .�iI i 2 N/ denote the
atoms of a Poisson point process on .�1; 0/ with intensity measure

r
2

�
.�x/e�p

2xdx : (199)

For each i 2 N, consider independent BBM’s fx.i/k .t/; k � n.i/.t/g. Note that, for
each i 2 N,

max
k�n.i/.t/

x.i/k .t/ � p
2t ! �1; a.s. (200)

The auxiliary point process of interest is constructed from these ingredients as

˘t �
X

i;k

ı 1
p

2
ln ZC�iCx

.i/
k .t/�

p
2t
; (201)

where Z has the same law as limit of the derivative martingale. The existence and
non-triviality of the process in the limit t " 1 is not obvious, especially in view
of (200). We will show that not only it exists, but it has the same law as the limit of
the extremal process of BBM.

Theorem 4.13 Let Et be the extremal process (158) of BBM. Then

lim
t"1

Et
lawD lim

t"1
˘t : (202)

Proof The proof of this result just requires the computation of the Laplace
transform, which we are already quite skilled in.

The Laplace functional of ˘t using the form of the Laplace functional of a
Poisson process reads

E

�
exp

�
�
Z
�.x/˘t.dx/

��

D E

"
exp



�
Z 0

�1

n
1 � E

h
exp

� �
X

k�n.t/

�.x C xk.t/ � p
2t C 1p

2
ln Z/

�io

	
r
2

�
.�x/e�p

2xdx
�#

D E

"
exp

 
�
r
2

�

Z 1

0

u.t; x C p
2t � 1p

2
ln Z/xe

p
2xdx

!#
; (203)
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with

u.t; x/ D 1 � E

2

4exp

0

@�
n.t/X

kD1
�.�x C xk.t//

1

A

3

5 : (204)

By (153), the exponent in the last line of (203) converges to �ZC.�/, to wit

lim
t"1

r
2

�

Z 1

0

u.t; x C p
2t � 1p

2
ln Z/xe

p
2xdx (205)

D Z

r
2

�
lim
t"1

Z 1

0

u.t; x C p
2t/xe

p
2xdx D ZC.�/;

where the last equality follows by Lemma 4.12. This implies that the Laplace
functionals of limt"1 ˘t and of the extremal process of BBM are equal and proves
the proposition. ut

4.5.2 The Poisson Process of Cluster Extremes

We will now give another interpretation of the extremal process. In the paper [4],
the following result was shown: consider the ordered enumeration of the particles
of BBM at time t,

x1.t/ � x2.t/ � � � � � xn.t/.t/: (206)

Fix r > 0 and construct the equivalence classes of these particles such that each
class consists of particles that have a common ancestor at time s > t � r. For each
of these classes, we can select as a representative its largest member. This can be
constructed recursively as follows:

i1 D 1;

ik D min.j > ik�1 W q.i`; j/ < t � r;8` � k � 1/: (207)

This is repeated to exhaustion and provides the desired decomposition. We denote
the resulting number of classes by n�.t/. We can think of the xik .t/ as the heads of
families at time t. We then construct the point processes

�r
t �

n�.t/X

kD1
ıxik .t/�m.t/: (208)

In [4] the following result was proven.
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Theorem 4.14 Let �r
t be defined above. Then

lim
r"1

lim
t"1

�r
t D �; (209)

where convergence is in law and � is the random Poisson process (Cox process)
with intensity measure CZe�p

2xdx, Z being the derivative martingale, and C the
constant from Theorem 3.12.

Remark 4.15 The thinning-out of the extremal process removes enough correlation
to Poissonise the process. This is rather common in the theory of extremal processes,
see e.g. [9, 10].

I will not prove this theorem here. Rather, I will show how this result links up to
the representation of the extremal process of BBM given above.

Proposition 4.16 Let

˘ ext
t �

X

i

ı 1
p

2
ln ZC�iCMi.t/�

p
2t (210)

where M.i/.t/ � maxk x.i/k .t/, i.e. be the point process obtained by retaining from ˘t

the maximal particles of each of the BBM’s. Then

lim
t"1

˘ ext
t

lawD PZ D PPP



Z
p
2Ce�p

2xdx
�

(211)

as a point process on R, where C is the same constant appearing the law of the
maximum. In particular, the maximum of limt"1˘ ext

t has the same law as the limit
law of the maximum of BBM.

Proof Consider now the Laplace functional of our thinned out auxiliary process,

E

"
exp

 
�
X

i

�.�i C M.i/.t/ � p
2t/

!#
(212)

Since the M.i/’s are i.i.d., and denoting by F� the �-algebra generated by the Poisson
point process of the �’s, we get that

E

"
exp

 
�
X

i

�.�i C M.i/.t/ � p
2t/

!#
(213)

D E

"
Y

i

E



exp


��.�i C M.i/.t/ � p

2t/
� ˇ̌

F�

�#

D E exp

 
�
X

i

g.�i/

!
;
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where

g.z/ � � ln



E
h
exp



��.z C M.t/ � p

2t/
� ˇ̌

F�

i�
; (214)

M.t/ has the same law as Mi.t/. Using now the form of a Laplace functional for
Poisson processes, (213) is equal to

exp

 
�
Z 0

�1
�
1 � e�g.y/

�
r
2

�
.�y/e�p

2ydy

!
: (215)

Finally,

Z 0

�1
�
1 � e�g.y/

	
r
2

�
.�y/e�p

2ydy

D
Z 0

�1
E


1 � e��.yCM.t/�p

2t/
�r 2

�
.�y/e�p

2ydy:

(216)

Using Lemma 4.8 with h.x/ D 1 � e��.x/, we see that

lim
t"1

Z 0

�1
E


1 � e��.yCM.t/�p

2t/
�r 2

�
.�y/e�p

2ydy

D
Z

R

�
1 � e��.a/�C

p
2e�p

2ada;

(217)

which is the Laplace functional of the PPP with intensity
p
2Ce�p

2ada on R.
Adding the random shift 1p

2
ln Z, the assertion of Proposition 4.16 follows. ut

So this is nice. The process of the maxima of the BBM’s in the auxiliary process
is the same Poisson process as the limiting process of the heads of families. This
gives a clear interpretation of the BBM’s in the auxiliary process.

4.5.3 More on the Law of the Clusters

Let us continue to look at the auxiliary process. We know that it is very hard for
any of the M.i/.t/ to exceed

p
2t and thus to end up on above a level a as t "

1. Therefore, many of the atoms �i of the Poisson process will not have relevant
offspring.

The following proposition states that there is a narrow window deep below zero
from which all relevant particles come. This is analogous to the observation in
Lemma 4.5:
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Proposition 4.17 For any y 2 R and " > 0 there exist 0 < A1 < A2 < 1 and t0
depending only on y and ", such that

sup
t�t0

P


9i;k W �i C x.i/k .t/ � p

2t � z; ^ �i … ��A1
p

t;�A2
p

t
	�
< ": (218)

Proof Throughout the proof, the probabilities are considered conditional on Z.
Clearly we have

P


9i;k W �i C x.i/k .t/ � p

2t � z; but �i � �A1
p

t
�

(219)

� E

"
X

i

��i2Œ�A1
p

t;0�P



M.i/.t/ � p
2t C �i � y

ˇ̌
F�

�#
;

D
Z 0

�A1
p

t
P



M.i/.t/ � p
2t C �i � z

�
C.�y/e�p

2ydy

D
Z A1

p
t

0

P



M.i/.t/ � p
2t � z C y C p

2t
�

Cye
p
2ydy:

Similarly, we have that

P


9i;k W �i C x.i/k .t/ � p

2t � z; but �i � �A2
p

t
�

(220)

�
Z 1

A2
p

t
P



M.i/.t/ � p
2t � z C y C p

2t
�

Cye
p
2ydy:

Both terms can be made smaller than "=2 (as t " 1) by choosing A1 small enough
and A2 large enough, due to Lemma 4.5 by taking A1 small enough. ut

We see that there is a close analogy to Lemma 4.5. How should we interpret the
auxiliary process? Think of a very large time t, and go back to time t � r. A that
time, there is a certain distribution of particles which all lie well below

p
2.t � r/

by an order of
p

r. From those a small fraction will have offspring that reach the
excessive size

p
2r C p

r and thus contribute to the extremes. The selected particles
form the Poisson process, while their offspring, which are now BBMs conditioned
to be extra large, form the clusters.

4.5.4 The Extremal Process Seen from the Cluster Extremes

We finally come to yet another description of the extremal process. Here we start
with the Poisson process of Proposition 4.16 and look at the law of the clusters “that
made it up to there”. Now we know that the point in the auxiliary process all came
from the

p
t window around �p

2t. Thus we may expect the clusters to look like
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BBM that was bigger than
p
2t. Therefore we define the process

E t D
X

k�n.t/

ıxk.t/�
p
2t : (221)

Obviously, the limit of such a process must be trivial, since the probability that the
maximum of BBM shifted by �p

2t does not drift to �1 is vanishing. However,
conditionally on the event fmaxk xk.t/� p

2t � 0g, the process E t does converge to
a well defined point process E D P

j ı�j as t " 1.
We may then define the point process of the gaps

Dt �
X

k

ıxk.t/�maxj�n.t/ xj.t/; (222)

and

D D
X

j

ı�j ; �j � �j � max
i
�i; (223)

where �i are the atoms of the limiting process E . Note that D is a point process on
.1; 0� with an atom at 0.

Theorem 4.18 Let PZ be as in (211) and let fD .i/; i 2 Ng be of independent
copies of the gap- process (223). Then the point processes Et D P

k�n.t/ ıxk.t/�m.t/

converges in law as t " 1 to a Poisson cluster point process E given by v

E � lim
t"1

Et
lawD
X

i;j

ı
piC�.i/j

: (224)

This theorem looks quite reasonable. The only part that may be surprising is that
all the �j have the same law, since a priori we only know that they come from a

p
t

neighbourhood of
p
2t. This is the content of the next theorem.

Theorem 4.19 Let x � �a
p

t C b for some a > 0; b 2 R. The point process

X

k�n.t/

ıxCxk.t/�
p
2t (225)

converges in law under P



�ˇ̌fx C maxk xk.t/ � p

2t > 0g
�

, as t " 1 to a well-

defined point process E . The limit does not depend on a and b, and the maximum of
E shifted by x has the law of an exponential random variable of parameter

p
2.

Proof Set maxE t � maxi xi.t/ � p
2t. We first show that

lim
t"1

P



x C maxE t > X

ˇ̌
ˇx C maxE t > 0

�
D e�p

2X; (226)
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for X > 0. This follows from the fact that the conditional probability is just

P



x C maxE t > X

�

P



x C maxE t > 0

� ; (227)

and the numerator and denominator can be well approximated by the functions
 .r; t;X � x C p

2t/ and  .r; t;�x C p
2t/, respectively. Using Lemma 4.4 for

these, we get the assertion (226).
Second, we show that for any function � that is continuous with compact support,

the limit of

E

�
exp �

Z
�.x C z/E t.dz/

ˇ̌
ˇx C maxE t > 0

�
(228)

exists and is independent of x. The proof is just a tick more complicated than before,
but relies again on the properties of the functions . I will skip the details. ut

We now can proof Theorem 4.18.

Proof (of Theorem 4.18) We show that for � W R ! RC continuous with compact
support, the Laplace functional �t.�/ of the extremal process Et satisfies

lim
t"1

�t.�/ D E

�
exp

�
�CZ

Z

R

EŒ1 � e� R
�.yCz/D.dz/�

p
2e�p

2ydy

��
(229)

for the point process D defined in (223).
By Theorem 4.13,

lim
t"1

�t.�/ D lim
t"1

E

"
exp

 
�
X

i;k

�.�i C 1p
2

ln Z C x.i/k .t/ � p
2t/

!#
: (230)

Using the form for the Laplace transform of a Poisson process we have for the right
side

lim
t"1

E

"
exp

 
�
X

i;k

�.�i C 1
p

2
ln Z C x.i/k .t/ � p

2t/

!#
(231)

D E

"
exp

 
�Z lim

t"1

Z 0

�1

E

�
1 � exp

�
�
Z
�.x C y/E t.dx/

��r
2

�
.�y/e�

p

2ydy

!#
:

Define

Dt �
X

i�n.t/

ıxi.t/�maxj�n.t/ xj.t/: (232)
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The integral on the right-hand side equals

lim
t"1

Z 0

�1
E

�
f

�Z
�.z C y C E t/Dt.dz/

��r
2

�
.�y/e�p

2ydy (233)

with f .x/ � 1 � e�x. By Proposition 4.17, there exist A1 and A2 such that

Z 0

�1
E

�
f

�Z
�.zy C maxE t/Dt.dz/

��r
2

�
.�y/e�p

2ydy (234)

D ˝t.A1;A2/

C
Z �A1

p
t

�A2
p

t
E

�
f

�Z
�.z C y C maxE t/Dt.dz/

��r
2

�
.�y/e�p

2ydy;

(235)

where the error term satisfies limA1#0;A2"1 supt�t0 ˝t.A1;A2/ D 0: Let m� be the
minimum of the support of �. Note that

f

�Z
�.z C y C maxE t/Dt.dz/

�
(236)

is zero when yCmax E t < m� , and that the event fyCmax E t D m�g has probability
zero. Therefore,

E

�
f

�Z
�.z C y C maxE t/Dt.dz/

��

D E

�
f

�Z
�.z C y C max E t/Dt.dz/

�
�

fyCmaxE t>m�g

�

D E

�
f

�Z
�.z C y C max E t/Dt.dz/

� ˇ̌
ˇy C max E t > m�

�
P
�
y C max E t > m�

�
:

(237)

One can show (see Corollary 4.12 in [6]) that the conditional law of the pair .Dt; yC
maxE t/ given fy C maxE t > m�g converges as t " 1. Moreover, the convergence
is uniform in y 2 Œ�A1

p
t;�A2

p
t�. This implies the convergence of the random

variable
R
�.z C y C maxE t/Dt.dz/. Therefore,

lim
t"1

E

�
f

�Z
�.z C y C maxE t/Dt.dz/

� ˇ̌
ˇy C maxE t > m�

�

D e
p
2m�

Z 1

m�

E

�
f

�Z
�.z C y/D.dz/

��p
2e�p

2ydy: (238)
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On the other hand,

Z �A1
p

t

�A2
p

t
P



y C maxE t > m�

�r 2

�
.�y/e�p

2ydy D Ce�p
2m� C˝t.A1;A2/

(239)

by Lemma 4.8, using the same approximation as in (234).
Combining (239), (238) and (237), one sees that (231) converges to

E

�
exp

�
�CZ

Z

R

EŒ1 � e� R
�.yCz/D.dz/�

p
2e�p

2ydy

��
; (240)

which is by (230) the limiting Laplace transform of the extremal process of branch-
ing Brownian motion: this shows (229) and concludes the proof of Theorem 4.18.

ut
The properties of BBM conditioned to exceed their natural threshold were

already described in detail by Chauvin and Rouault [23, Theorem 5]. There will be
one branch (the spine) that exceeds the level

p
2t by an exponential random variable

of parameter
p
2 (see the preceding proposition). The spine seen from its endpoint

is a Brownian motion with drift �p
2 (i.e. very close to a straight line of slope

p
2).

This spine is decorated with size biased BBM’s conditions to stay below it. In the
work of Aïdékon et al [2], the description of the limiting point process is obtained
directly in this form (see their Theorem 2.3).

From this spine ordinary BBM’s branch off at Poissonian times. Clearly, all the
branches that split off at times later than r before the end-time, will reach at most
the level

p
2.t � r/C p

2r � 3

2
p
2

ln r D p
2t � 3

2
p
2

ln r: (241)

Seen from the top, i.e.
p
2t, this tends to �1 as r " 1. Thus only branches that are

created “a finite time” before the end-time t remain visible in the extremal process.
This does, of course, correspond perfectly to the observation in Theorem 4.14 that
implies that all the points visible in the extremal process have a common ancestor
at a finite time before the end. As a matter of fact, from the observation above one
can prove Theorem 4.14 easily.

5 Variable Speed BBM

We have seen that BBM is somewhat related to the GREM where the covariance
is a linear function of the distance. It is natural to introduce versions of BBM that
have more general covariance functions A.x/. This can be achieved by changing the
speed (D variance) of the Brownian motion with time. Variable speed BBM was
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introduced by Derrida and Spohn [25] and has recently been studied recently by
Fang and Zeitouni [27, 28] and others [42, 43, 46].

The general model can be constructed as follows. Let A W Œ0; 1� ! Œ0; 1� be a
right-continuous increasing function. Fix a time horizon t and let

˙2.x/ D tA.x=t/: (242)

Note that ˙2 is almost everywhere differentiable and denote by �2.x/ its derivative
wherever it exists. We define Brownian motion with speed function ˙2 as time
change of ordinary Brownian motion on the interval Œ0; t� as

B˙x D B˙2.x/: (243)

Now branching Brownian motion with speed function ˙2 is constructed like
ordinary Brownian motion except that if a particle splits at some time s < t, then the
offspring particles perform variable speed Brownian motions with speed function
˙2, i.e. their laws are independent copies fB˙r �B˙s gt�r�s, all starting at the position
of the parent particle at time s.

We denote by n.s/ the number of particles at time s and by fxi.s/I 1 � i � n.s/g
the positions of the particles at time s. If we denote by d.xk.t/; x`.t// the time of the
most recent common ancestor of the particles i and k, then a simple computation
shows that

Exk.s/x`.s/ D ˙2 .d.xk.s/; x`.s/// : (244)

Moreover, for different times, we have

Exk.s/x`.r/ D ˙2 .d.xk.t/; x`.t/ ^ s ^ r// : (245)

Remark 5.1 Strictly speaking, we are not talking about a single stochastic process,
but about a family fxk.s/; k � n.s/gt2RC

s�t of processes with finite time horizon,
indexed by that horizon, t.

The case when A is a step function with finitely many steps corresponds to
Derrida’s GREMs, with the only difference that the binary tree is replaced by a
Galton-Watson tree. The case we discuss here corresponds to A being a piecewise
linear function. The case when A is arbitrary has been dubbed CREM in [16] (and
treated for binary regular trees). In that case the leading order of the maximum was
obtained; this analysis carries over mutando mutandis to the BBM situations. Fang
and Zeitouni [28] have obtained the order of the correction (namely t1=3) in the case
when A is strictly concave and continuous, but there are no results on the extremal
process or the law of the maximum. This result has very recently strengthened by
Maillard and Zeitouni [42] who proved convergence of the law of the maximum
to some travelling wave and computed the next order of the correction (which is
logarithmic).
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Understanding the piecewise linear case seems to be a prerequisite to getting the
full picture. Fang and Zeitouni [28] have in this case obtained the correct order of the
corrections, which is completely analogous to the GREM situation, without further
information on the law of the maximum and the extremal process.

The simplest case corresponds to choosing a speed �21 up to a time t1 D tb and
a speed �22 after time t1. This case was fully analysed in a recent paper with Lisa
Hartung [13], we provide the construction of the extremal processes. Interestingly,
this provides a few surprises.

In this case, Fang and Zeitouni [27] showed that

max
k�n.t/

xk.t/ D

8
ˆ̂<

ˆ̂:

p
2t � 1

2
p
2

ln t C O.1/; if �1 < �2;p
2t.�1b C �2.1 � b//

� 3

2
p
2
.�1 C �2/ ln t C O.1/; if �1 > �2:

(246)

The second case has a simple interpretation: the maximum is achieved by adding to
the maxima of BBM at time tb the maxima of their offspring at time t.1 � b/ later,
just as in the analog case of the GREM. The second case suggests that we are in the
simple REM case, as would be the case of the GREM. But here things are a lot more
subtle.

The main result of [13] is the following.

Theorem 5.2 ([13]) Let xk.t/ be branching Brownian motion with two speeds as
described above. Assume that �1 < �2 and b 2 .0; 1/. Then

(i)

lim
t"1

P

�
max
k�n.t/

xk.t/ � Qm.t/ � x

�
D Ee�C0Ye�

p

2x
; (247)

where Qm.t/ D p
2t � 1

2
p
2

ln t, C0 is a constant and Y is a random variable that
is the limit of a martingale (but different from Z!).

(ii) The point process

QEt �
X

k�n.t/

ıxk.t/� Qm.t/ ! QE ; (248)

as t " 1, in law, where

QE D
X

k;j

ı
�kC�2�.k/j

; (249)

where �k is the kth atom of a mixture of Poisson point process with intensity
measure C0Ye�p

2xdx, with C0 and Y as in (i), and �
.k/
i are the atoms of

independent and identically distributed point processes �.k/, which are the
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limits in law of

X

j�n.t/

ıxi.t/�maxj�n.t/ xj.t/; (250)

where x.t/ is BBM of speed 1 conditioned on maxj�n.t/ xj.t/ � p
2�2t.

The picture is completed by the limiting extremal process in the case �1 > �2.
This result is much simpler and could be guessed form the known fact on the GREM.

Theorem 5.3 ([13]) Let xk.t/ be as in Theorem 5.2, but �2 < �1. Again b 2 .0; 1/.
Let E � E 0 and E .i/; i 2 N be independent copies of the extremal process of
standard branching Brownian motion. Let

m.t/ � p
2t.b�1 C .1� b/�2/� 3

2
p
2
.�1 C �2/ ln t � 3

2
p
2
.�1 ln b C �2 ln.1� b//;

(251)

and set

QEt �
X

k�n.t/

ıxk.t/�m.t/: (252)

Then

lim
t"1

QEt D QE ; (253)

exists, and

QE D
X

i;j

ı
�1eiC�2e

.i/
j
; (254)

where ei; e
.i/
j are the atoms of the point processes E and E .i/, respectively.

We just comment on the main steps in the proof of Theorem 5.2. The first step
is a localisation of the particles that will eventually reach the top at the time of the
speed change. The following proposition says that these are in a

p
t neighbourhood

of �21 t
p
2b, which is much smaller then the position �1t

p
2b of the leading particles

at time tb.

Proposition 5.4 Let �1 < �2. For any d 2 R and any � > 0, there exists a constant
A > 0 such that for all t large enough

P



9j�n.t/ W xj.t/ > Qm.t/ � d ^ jxj.bt/ � p

2�21 btj > A
p

t
�

� �: (255)

Thus, the faster particles in the second half-time must make up for this. It is not
very hard to know everything about the particles after time tb. The main problem



54 A. Bovier

one is faced with is to control their initial distribution at this time. Fortunately, this
can be done with the help of a martingale. Define

Ys D
n.s/X

iD1
e�s.1C�21 /C

p
2xi.s/: (256)

When �1 < 1, one can show that Y is a uniformly integrable positive martingale
with mean value one. This yields by the usual martingale convergence theorems the
following theorem.

Theorem 5.5 The limit lims!1 Ys exists almost surely and in L1, is finite and
strictly positive.

The martingale Ys will take over the role of the derivative martingale in the
standard case. The proof of the convergence of the maximal law and the Laplace
functionals now follows the strategy indicated in Section 4.3. That is, we use
explicitly the convergence of the martingale Yt together with the asymptotics of
the post-bt BBMs to prove convergence without relying on analytic results on this
convergence.

The remainder of the proofs is fairly similar to the proof in the standard case and
will not be given here.

Remark 5.6 We see that in the case �1 < �2 only the variances enter in the
description of the limiting process. The McKean martingale depends only on �1
and the process of the clusters depends only on �2. One may in fact obtain exactly
the same result if b D b.t/ # 0, provided b.t/t " 1. It is interesting to look at
the extreme cases. If b becomes small, nothing seems to change. There is always
enough time for the McKean martingale to converge. If �1 D 0, then Ys D e�sn.s/,
which is known to converge to an exponential random variable. If b tends to one,
then �2 has to tend to infinity. It is not very hard to convince oneself that in that case,
the processes�.k/ of the clusters converge to the trivial process ı0.

Remark 5.7 In the course of the proof one finds that in all cases, the Laplace
functional of the limiting process has the form

lim
t"1

�t.�.� C x// D E exp


�C.�/Me�p

2x
�
; (257)

where M is a martingale limit (either Y of Z) and C.�/ is a constant whose
dependence on � contains all the information on the limiting process. This is in
agreement with the finding in [42] in the case where the speed is a concave function
of s=t. The universal form (257) is thus misleading and without knowledge of the
specific form of C.�/, (257) contains almost no information.

Remark 5.8 After these lectures were given, the results of Theorem 5.3 were
extended in [14]. The result is the following theorem.
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Theorem 5.9 Assume that A W Œ0; 1� ! Œ0; 1� satisfies some very mild regularity
assumptions. Let A0.0/ D �2b < 1 and A0.1/ D �2e > 1. Let Qm.t/ D p

2t � 1

2
p
2

log t.

Then there is a constant QC.�e/ depending only on �e and a random variable Y�b

depending only on �b such that

(i)

lim
t"1

P

�
max

1�i�n.t/
xi.t/ � Qm.t/ � x

�
D E

h
e�QC.�e/Y�e e�

p

2x
i
: (258)

(ii) The point process

X

k�n.t/

ıxk.t/� Qm.t/ ! E�b;�e D
X

i;j

ı
piC�e�

.i/
j
; (259)

as t " 1, in law, where the pi are the atoms of a Poisson point process on
R with intensity measure QC.�e/Y�b e�p

2xdx, and the �.i/ are the limits of the
processes as in (250), but conditioned on the event fmaxk Qxk.t/ � p

2�etg.
(iii) If A0.1/ D 1, then C.1/ D 1=

p
4� , and �.i/ D ı0, i.e. the limiting process

is a Cox process.

The proof of this theorem is based on Gaussian comparison techniques.

Appendix: Point Processes

Here we provide some basic background on point processes and in particular
Poisson point processes. For more details, see [24, 37, 48].

Definition and Basic Properties

Point processes are designed to describe the probabilistic structure of point sets in
some metric space. The key idea is to associate to a collection of points a point
measure.

Let us first consider a single point x. We consider the usual Borel-sigma algebra,
B � B.Rd/, of Rd, that is generated by the open sets in the Euclidean topology
of Rd. Given x 2 R

d, we define the Dirac measure, ıx, such that, for any Borel set
A 2 B,

ıx.A/ D
(
1; if x 2 A

0; if x 62 A:
(260)
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A point measure is now a measure, �, on R
d, such that there exists a countable

collection of points, fxi 2 R
d; i 2 Ng, such that

� D
1X

iD1
ıxi (261)

and, if K is compact, then �.K/ < 1.
Note that the points xi need not be all distinct. The set S� � fx 2 R

d W �.x/ ¤ 0g
is called the support of �. A point measure such that for all x 2 R

d, �.x/ � 1 is
called simple.

We denote by Mp.R
d/ the set of all point measures on R

d. We equip this set
with the sigma-algebra Mp.R

d/, the smallest sigma algebra that contains all subsets
of Mp.R

d/ of the form f� 2 Mm.R
d/ W �.F/ 2 Bg, where F 2 B.Rd/ and B 2

B.Œ0;1//. Mp.R
d/ is also characterised by saying that it is the smallest sigma-

algebra that makes the evaluation maps, � ! �.F/, measurable for all Borel sets
F 2 B.Rd/.

A point process, N, is a random variable taking values in Mp.R
d/, i.e. a

measurable map, N W .˝;FIP/ ! Mp.R
d/, from a probability space to the space of

point measures.
This looks very fancy, but in reality things are quite down-to-earth:

Proposition 6.1 N is a point process, if and only if the map N.�;F/ W ! ! N.!;F/,
is measurable from .˝;F/ ! B.Œ0;1//, for any Borel set F, i.e. if N.F/ is a real
random variable.

Proof Let us first prove necessity, which should be obvious. In fact, since ! !
N.!; �/ is measurable into .Mp.R

d/;Mp.R
p//, and � ! �.F/ is measurable from

this space into .RC;B.RC//, the composition of these maps is also measurable.
Next we prove sufficiency. Define the set

G � fA 2 Mp.R
d/ W N�1A 2 Fg (262)

This set is a sigma-algebra and N is measurable from .˝;F/ ! .Mp.R
d/;G/ by

definition. But G contains all sets of the form f� 2 Mp.R
d/ W �.F/ 2 Bg, since

N�1f� 2 Mp.R
d/ W �.F/ 2 Bg D f! 2 ˝ W N.!;F/ 2 Bg 2 F; (263)

since N.�;F/ is measurable. Thus G 
 Mp.R
d/, and N is measurable a fortiori as a

map from the smaller sigma-algebra. ut
We will have need to find criteria for convergence of point processes. For this we

recall some notions of measure theory. If B is a Borel-sigma algebra, of a metric
space E, then T � B is called a˘ -system, if T is closed under finite intersections;
G � B is called a 
-system, or a sigma-additive class, if

(i) E 2 G,
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(ii) If A;B 2 G, and A 
 B, then A n B 2 G,
(iii) If An 2 G and An � AnC1, then limn"1 An 2 G.

The following useful observation is called Dynkin’s theorem.

Theorem 6.2 If T is a ˘ -system and G is a 
-system, then G 
 T implies that
G contains the smallest sigma-algebra containing T .

The most useful application of Dynkin’s theorem is the observation that, if two
probability measures are equal on a ˘ -system that generates the sigma-algebra,
then they are equal on the sigma-algebra (since the set on which the two measures
coincide forms a 
-system containing T ).

As a consequence we can further restrict the criteria to be verified for N to be a
Point process. In particular, we can restrict the class of F’s for which N.�;F/ need
to be measurable to bounded rectangles.

Proposition 6.3 Suppose that T are relatively compact sets in B satisfying

(i) T is a ˘ -system,
(ii) The smallest sigma-algebra containing T is B,

(iii) Either, there exists En 2 T , such that En " E, or there exists a partition, fEng,
of E with [nEn D E, with En � T .

Then N is a point process on .˝;F/ in .E;B/, if and only if the map N.�; I/ W ! !
N.!; I/ is measurable for any I 2 T .

Corollary 6.4 Let T satisfy the hypothesis of Proposition 6.3 and set

G � ˚f� W �.Ij/ D nj; 1 � j � kg; k 2 N; Ij 2 T ; nj � 0
�
: (264)

Then the smallest sigma-algebra containing G is Mp.R
d/ and G is a ˘ -system.

Next we show that the law, PN , of a point process is determined by the law of the
collections of random variables N.Fn/, Fn 2 B.Rd/.

Proposition 6.5 Let N be a point process in .Rd;B.Rd/ and suppose that T is as
in Proposition 6.3. Define the mass functions

PI1;:::;Ik .n1; : : : ; nk/ � P
�
N.Ij/ D nj;81 � j � k

	
(265)

for Ij 2 T , nj � 0. Then PN is uniquely determined by the collection

fPI1;:::;Ik ; k 2 N; Ij 2 T g (266)

We need some further notions. First, if N1;N2 are point processes, we say that
they are independent, if and only if, for any collection Fj 2 B, Gj 2 B, the vectors

.N1.Fj/; 1 � j � k/ and .N2.Gj/; 1 � j � `/ (267)

are independent random vectors.
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The intensity measure, 
, of a point process N is defined as


.F/ � EN.F/ D
Z

Mp.Rd/

�.F/PN.d�/ (268)

for F 2 B.
For measurable functions f W Rd ! RC, we define

N.!; f / �
Z

Rd
f .x/N.!; dx/ (269)

Then N.�; f / is a random variable. We have that

EN.f / D 
.f / D
Z

Rd
f .x/
.dx/: (270)

Laplace Functionals

If Q is a probability measure on .Mp;Mp/, the Laplace transform of Q is a map,  
from non-negative Borel functions on R

d to RC, defined as

 .f / �
Z

Mp

exp

�
�
Z

Rd
f .x/�.dx/

�
Q.d�/: (271)

If N is a point process, the Laplace functional of N is

 N.f / � Ee�N.f / D
Z

e�N.!;f /
P.d!/ (272)

D
Z

Mp

exp

�
�
Z

Rd
f .x/�.dx/

�
PN.d�/

Proposition 6.6 The Laplace functional,  N, of a point process, N, determines N
uniquely.

Proof For k � 1, and F1; : : : ;Fk 2 B, c1; : : : ; ck � 0, let f D Pk
iD1 ci�Fi.x/. Then

N.!; f / D
kX

iD1
ciN.!;Fi/ (273)

and

 N.f / D E exp

 
�

kX

iD1
ciN.Fi/

!
: (274)
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This is the Laplace transform of the vector .N.Fi/; 1 � i � k/, that determines
uniquely its law. Hence the proposition follows from Proposition 6.5 ut

Poisson Point Processes

The most important class of point processes for our purposes will be Poisson point
processes.

Definition 6.7 Let 
 be a �-finite, positive measure on R
d. Then a point process,

N, is called a Poisson point process with intensity measure 
 (PPP.
/), if

(i) For any F 2 B.Rd/, and k 2 N,

P ŒN.F/ D k� D
(

e�
.F/ .
.F//k
kŠ ; if 
.F/ < 1

0; if 
.F/ D 1;
(275)

(ii) If F;G 2 B are disjoint sets, then N.F/ and N.G/ are independent random
variables.

In the next theorem we will assert the existence of a Poisson point process with
any desired intensity measure. In the proof we will give an explicit construction of
such a process.

Proposition 6.8

(i) PPP.
/ exists and its law is uniquely determined by the requirements of the
definition.

(ii) The Laplace functional of PPP.
/ is given, for f � 0, by

�N.f / D exp

�Z

Rd
.e�f .x/ � 1/
.dx/

�
: (276)

Proof Since we know that the Laplace functional determines a point process, in
order to prove that the conditions of the definition uniquely determine the PPP.
/,
we show that they determine the form (276) of the Laplace functional. Thus suppose
that N is a PPP.
/. Let f D c�F. Then

�N.f / D E exp .�N.f // D E exp .�cN.F// (277)

D
1X

kD0
e�cke�
.F/ .
.F//k

kŠ
D e.e

�c�1/
.F/

D exp

�Z
.e�f .x/�/
.dx/

�
;
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which is the desired form. Next, if Fi are disjoint, and f D Pk
iD1 ci�F�i, it is

straightforward to see that

�N.f / D E exp

 
�

kX

iD1
ciN.Fi/

!
D

kY

iD1

E exp .�ciN.Fi// (278)

due to the independence assumption (ii); a simple calculations shows that this yields
again the desired form. Finally, for general f , we can choose a sequence, fn, of the
form considered, such that fn " f . By monotone convergence then N.fn/ " N.f /. On
the other hand, since e�N.g/ � 1, we get from dominated convergence that

�N.fn/ D Ee�N.fn/ ! Ee�N.f / D �N.f /: (279)

But, since 1 � e�fn.x/ " 1 � e�f .x/, and monotone convergence gives once more

�N.fn/ D exp

�Z
.1 � e�fn.x//
.dx/

�
" exp

�Z
.1 � e�f .x//
.dx/

�
(280)

On the other hand, given the form of the Laplace functional, it is trivial to verify that
the conditions of the definition hold, by choosing suitable functions f .

Finally we turn to the construction of PPP.
/. Let us first consider the case

.Rd/ < 1. Then construct

(i) A Poisson random variable, 	 , of parameter 
.Rd/.
(ii) A family, Xi, i 2 N, of independent,Rd- valued random variables with common

distribution 
. This family is independent of 	 .

Then set

N� �
	X

iD1
ıXi (281)

It is not very hard to verify that N� is a PPP.
/.
To deal with the case when 
.Rd/ is infinite, decompose 
 into a countable sum

of finite measures, 
k, that are just the restriction of 
 to a finite set Fk, where the
Fk form a partition of Rd. Then N� is just the sum of independent PPP.
k/ N�

k . ut

Convergence of Point Processes

Before we turn to applications to extremal processes, we still have to discuss
the notion of convergence of point processes. As point processes are probability
distributions on the space of point measures, we will naturally think about weak
convergence. This means that we will say that a sequence of point processes, Nn,
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converges weakly to a point process, N, if for all continuous functions, f , on the
space of point measures,

Ef .Nn/ ! Ef .N/: (282)

However, to understand what this means, we must discuss what continuous func-
tions on the space of point measures are, i.e. we must introduce a topology on the
set of point measures. The appropriate topology for our purposes will be that of
vague convergence.

Vague Convergence

We consider the space R
d equipped with its natural Euclidean metric. Clearly R

d is
a complete, separable metric space. We will denote by C0.Rd/ the set of continuous
real-valued functions on R

d that have compact support; CC
0 .R

n/ denotes the subset
of non-negative functions. We consider MC.Rd/ the set of all �-finite, positive
measures on .Rd;B.Rd//. We denote by MC.Rd/ the smallest sigma-algebra of
subsets of MC.Rd/ that makes the maps m ! m.f / measurable for all f 2 CC

0 .R
d/.

We will say that a sequence of measures, �n 2 MC.Rd/ converges vaguely to a
measure � 2 MC.Rd/, if, for all f 2 CC

0 .R
d/,

�n.f / ! �.f / (283)

Note that for this topology, typical open neighbourhoods are of the form

Bf1;:::;fk ;�.�/ � f� 2 MC.Rd/ W 8k
iD1 j�.fi/� �.fi/j < �g; (284)

i.e. to test the closeness of two measures, we test it on their expectations on
finite collections of continuous, positive functions with compact support. Given
this topology, on can of course define the corresponding Borel sigma algebra,
B.MC.Rd//, which (fortunately) turns out to coincide with the sigma algebra
MC.Rd/ introduced before.

The following properties of vague convergence are useful.

Proposition 6.9 Let �n, n 2 N be in MC.Rd/. Then the following statements are
equivalent:

(i) �n converges vaguely to �, �n
v! �.

(ii) �n.B/ ! �.B/ for all relatively compact sets, B, such that �.@B/ D 0.
(iii) lim supn"1 �n.K/ � �.K/ and lim supn"1 �n.G/ � �.G/, for all compact K,

and all open, relatively compact G.
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Weak Convergence

Having established the space of �-finite measures as a complete, separable metric
space, we can think of weak convergence of probability measures on this space just
as if we were working on an Euclidean space.

Definition 6.10 A sequence of point processes Nn converges weakly with respect
to the vague topology to a point process, N, iff for all functions F W MC.Rd/ ! R

that are continuous with respect to the vague topology,

lim
n"1

EF.Nn/ D EF.N/: (285)

An important convergence criterion is given by the following theorem (see [24,
Chap. 11]).

Theorem 6.11 A sequence of point processes Nn converges weakly to a point
process N, if for all positive continuous functions, �, with compact support,

lim
n"1

�Nn.�/ D �N.�/: (286)
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The Renormalization Group and Self-avoiding
Walk

David Brydges

1 Introduction

I am grateful and honoured to be given this opportunity to give an introduction to the
renormalisation group. It is based on recent work with Gordon Slade, and Roland
Bauerschmidt. These notes are intended to be interesting for mathematicians. No
knowledge of physics is assumed, but our topic began life in physics and so I begin
with a review of this background. This review contains references that cannot be
understood without a background in physics. I include them for historical reasons,
not because they are required reading. However it would make me very happy if the
mathematical developments in these notes help someone in my audience understand
physics better.

The renormalisation group (RG) first appeared in quantum electrodynamics with
work by Stueckelberg and Petermann [45] and Gell-Mann and Low [30]. Quantum
electrodynamics is the quantum theory that extends the classical theory of elec-
tromagnetism. Classical electromagnetism is the combination of Maxwell’s partial
differential equations for the electromagnetic field and the Lorentz equation that
describes the force experienced by a charged particle moving in an electromagnetic
field. The force is proportional to the charge and charge is an example of a coupling
constant. Maxwell’s equations are invariant under a common rescaling of space and
time and the charge does not change under such rescaling. However scale invariance
of charge as a coupling constant does not survive in quantum electrodynamics.
These founding papers were statements about how the charge coupling constant
transforms under rescaling. Later the insight of these papers was put in a more
useful form, called the Callan-Symanzik equations, [23, 48, 49]. These equations
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are a set of coupled differential equations for the flow of the coupling constants
under scaling. In these lectures we will see how it can be that coupling constants
depend on scale.

A quite different line of thought started with Symanzik [46] who began the study
of quantum field theory on R

d with the euclidean metric instead of the Minkowski
metric prescribed by Nature. He realised that these, despite the name “quantum
fields”, are random fields in the standard sense of probability. By formulating this
idea also for fields on a lattice such as Z

d these theories were connected with the
scaling limits of lattice spin systems such as the Ising model. This was exploited in
a deep way in [31, 32, 42, 43] where euclidean quantum field theory is studied as the
limit of classical spin systems and, in particular, correlation inequalities are used. In
the other direction, from euclidean field theory to lattice spin systems, Wilson and
Fisher [53] and Wilson [51] showed that the renormalisation group and the Feynman
expansion of quantum field theory can systematically calculate critical exponents
in statistical mechanics. In these lectures we will be explaining some parts of this
method.

Other authors [40, 57] expressed the same ideas for calculating critical exponents
in terms of the Callan-Symanzik equations. In particular, using an idea of de Gennes
[24], Brezin et al. [13] and Duplantier [26] used the Callan-Symanzik equations
to calculate exponents for self-avoiding walk in three and four dimensions. These
authors are assuming that the scaling limit of a lattice spin system in four dimensions
exists as a continuum random field with the scaling properties prescribed by the
Callan-Symanzik equations and that the coefficients in these equations are given by
perturbation theory. They give very efficient calculations of critical exponents based
on these assumptions.

In our work, [10] and the five papers that it references, we avoid such assumptions
by following the work of Ken Wilson, who invented a more detailed form of the
renormalisation group that applies to statistical mechanical models on lattices. It is
in fact a program to prove the existence of scaling limits as quantum field theories.
We only make part of that program mathematically complete, just enough to prove
that the susceptibility of a walk with weak self-repulsion has a log

1
4 correction.

If you are seeing this log correction for the first time then it will not seem very
interesting but think of it as a signal: Wilson’s program is systematic, in the same
sense that calculus is systematic, and it is a calculus for critical statistical mechanics
and scaling limits. It is more complicated than you will like, but most profound
ideas have not been easy at first. I regard the influential lecture course [54] as still
one of the best places to appreciate the ideas and scope of this program. Perhaps
even better and also amusing in places, is his Nobel prize lecture [52].

Wilson and Kogut start with a random field � defined on a lattice Z
d . They

“integrate out” fluctuations in the random field up to some chosen length scale L.
One intuitively attractive way to do this is called the block spin method and it is
defined as follows. The lattice is partitioned into disjoint cubes of side L and the
random field is conditioned on its empirical averages over the cubes. The centres of
the cubes are a new coarser lattice of spacing L and the empirical averages are a new
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random field on this coarser lattice. The coarse lattice is scaled so that it becomes
the unit lattice Z

d. Thus the combination of conditioning followed by rescaling is a
map RG taking the space M of all probability laws for a lattice random field into
itself. Thus RG can be iterated and can be analysed as a dynamical system.

Suppose RG has a fixed point. Then one can define the stable set S to be the
set of all points in M that have orbits under RG that converge to the fixed point.
This S is invariant under RG. The Wilson picture is that points on S are probability
distributions for random fields that are critical, for example an Ising model at
its critical temperature. The set S is the universality class of all random fields
whose scaling limit is the probability distribution represented by the fixed point.
This special probability distribution is expected to have more symmetries than the
distributions represented by points on S. For example it will be scale invariant. In
fact in some cases it is conjectured to satisfy the axioms of euclidean quantum field
theory. To be clearer, the fixed point is a probability distribution for a lattice random
field, but in fact there will be a continuum generalised random field whose empirical
averages over cubes centred on the lattice points are the random variables for the
fixed point model. It is this continuum field that will be scale invariant and may
satisfy the axioms of euclidean quantum field theory. One of the most important
such fixed point distributions is called the massless free field. Wilson argued that in
more than two dimensions the stable set for this fixed point has finite codimension:
you have to carefully select values of finitely many parameters to be a critical
model on the stable set for this fixed point. In four and more dimensions, and for
even measures, Wilson asserts that the codimension is 2. One of the parameters
is a parameter of the massless free field analogous to the variance of the normal
distribution. As in the central limit theorem you have to normalise the empirical
averages correctly in order that the scaling limit be a standard massless free field.
Selecting the other parameter corresponds, for the Ising model, to choosing the
temperature to be critical. In these lectures we will see this codimensionality of
2 for self-avoiding walk in four dimensions.

We implement the Wilson RG a little differently. Our definition of RG relies on
the fact that the gaussian free field � on the lattice Zd is equal in distribution to a sum
� D P

j �j over scales j of independent gaussian fields �j with a strong independence
property: �j;x and �j;y are independent when the spatial points x and y are separated by
at least Lj=2. This suggests an interesting open problem: characterise the gaussian
random fields � which in distribution can be written as such a sum. There is a nice
proof that the lattice gaussian free field has such a decomposition in [7] along with
references to the original constructions of such representations.

The first rigorous control of RG was achieved by Gawedzki and Kupiainen
[28, 29]. Hara and Tasaki [33] used their methods to prove the existence of log
corrections in the �4 lattice field theory. There is a different program with similar
outcomes called the phase cell expansion described in [2]. Using the phase cell
expansion Iagolnitzer and Magnen [34] considered a model that is roughly speaking
an Edwards model in the continuum. They determine the asymptotics of the Greens
function as one spatial argument tends to infinity. A nice feature of their approach is
that it deals quite directly with walks whereas our method transforms self-avoiding
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walk into massless free field language. Balaban has made the most far reaching
accomplishments in the rigorous renormalisation group, for example in his series of
papers on the classical lattice Heisenberg models that starts with [6].

At this time the scaling limit of self-avoiding walk in three dimensions is, for
mathematicians, a complete mystery. It is believed that the scaling limit is a non-
gaussian fixed point for RG and we hardly understand these at all. However in [57]
you can read the remarkable non rigorous progress that started with ideas of Wilson
and Fisher. With � WD 4�d, critical exponents are obtained as expansions in powers
of �. The first few terms of these expansions can be calculated and results in accurate
agreement with simulations of three dimensional self-avoiding walk are obtained by
setting � D 1. A step in this direction of varying a dimension-like parameter has
been made in [41]. Related to this is [1] which, for a �4 theory in three dimensions,
constructs a complete renormalization group trajectory that at one end converges to
a gaussian and at the other end to a non-gaussian fixed point.

2 The Lattice Edwards Model

We start with a continuous time random walk fXtW t � 0g on the euclidean lattice Zd

or on the torus � � .Z=RZ/d where R is a positive integer. The side or period R
of � is chosen from the geometric sequence LN ;N D 1; 2; : : : ; where L � 2 is an
integer. The (negative) generator of the walk is the lattice Laplacian ��, acting on
bounded functions f defined on Z

d or on �. It is given by

.��f /x WD
X

y�x

�
fx � fy

�
; (1)

where y � x means that y is a nearest neighbour to x. On the torus � every lattice
point has 2d neighbours because there is no boundary. We use Pa to denote the
law of the random walk starting at the vertex a 2 � and Ea is the corresponding
expectation. In addition, we consider the random walk that gets killed with a rate
m2 � 0, i.e. the process on either Zd [ ? or � [ ? whose (negative) generator is
given by the following block matrix

� ?

� m2 ��; �m2
� �

? 0; 0

The state � is called the cemetery. The dynamics is easy to describe: the walk waits
for a random time with distribution Exp.m2 C 2d/ and then jumps to a nearest
neighbour with probability 1=.m2C2d/ or to the state ? with probability m2=.m2C
2d/. Further, let us denote by � WD infft � 0W Xt D ?g the killing time, i.e. the first
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hitting time of ?. For any x 2 � we define the local time spent at x by

Lx WD
Z
�fXsDxg ds; (2)

where the integral is over Œ0;1/. The time spent in self-intersection is defined to be

“
�fXsDXt¤�g ds dt (3)

and by (2),

“
�fXsDXt¤�g ds dt D

X

x2�
L2x : (4)

We use P.m/a for the law of random walk starting from a and with killing rate m2 and
E.m/a for the corresponding expectation. Notice that for any function F of the local
times we have

E.m/a

�
F.L/

	 D m2

Z
E.0/a

h
F.LT/

i
e�m2T dT (5)

with

LT
x WD

Z

Œ0;T�
�fXsDxg ds: (6)

Definition 2.1 (Susceptibility) For g � 0 and � 2 R and random walk on Z
d

starting in state a, define

�.g; �/ WD
Z

E.0/a

h
e�g

P
x.L

T
x /
2
i

e��T dT (7)

with values in .0;1�. This is called the infinite volume susceptibility of the lattice
Edwards model. We define the finite volume susceptibility �

�
.g; �/ 2 .0;1/ by

replacing Z
d by � so that the random walk is on �. In the infinite volume case we

define the critical value of � by

�c WD � inf
˚
� 2 RW�.g; �/ < 1�

: (8)

In [10, Lemma A.1] we use standard subadditivity arguments to prove that
�.g; �/ is finite if and only if � is strictly greater than �c. The exponential term
suppresses self-intersection. As g is taken larger the suppression becomes stronger,
but at the same time the speed of the walk increases because the time it spends
between jumps is also being suppressed. The various large g limits are discussed in
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[22]. For g D 0 we have simple random walk for which �c D 0. We will find that �c

is negative for g > 0.
The finite volume susceptibility �� increases to the infinite volume susceptibility

� as � increases through tori of side-length R D LN with N ! 1. This is proved
in [10] by an argument based on wrapping an infinite volume walk onto a torus
and noticing that this increases the number of self-intersections. Furthermore, all
derivatives of �� with respect to � converge to the corresponding derivatives of �
because this is a property of the one-sided Laplace transform and the susceptibility
is a one-sided Laplace transform, with � dual to time. This good property of the
Laplace transform comes about because the one-sided Laplace transform is an
analytic function of � for � in the half-plane <� < �c. By the Vitali theorem
pointwise convergence for real values of � implies uniform convergence on compact
subsets of the half-plane and from this it follows that derivatives converge.

The next theorem on the Edwards model is the focus for these notes. To state it
we define a.�/ � b.�/ to mean that lim�#0 a.�/

b.�/ D 1. Let

� D 1

4
: (9)

We make this definition in order to be able to track the origin of the exponent in the
logarithmic correction through these notes.

Theorem 2.2 (Part of Theorem 1.1 in [10]) Let d WD 4. For g > 0 sufficiently
small, there exists Ag > 0 such that

�
�
g; �c.g/C �

� � Ag

�
log� .1=�/; � # 0: (10)

For simple random walk, �.0; �c C �/ D 1=� for each � > 0 (in all dimensions)
so the log is an effect of g > 0. The conclusion of this theorem can be rewritten as

Z
e��cT E.0/a

h
e�g

P
x.L

T
x /
2
i

„ ƒ‚ …
cT

� e��T dT �
�#0

Ag log
1=4.1=�/: (11)

Thanks to the fact that � e�� TdT is a probability on .0;1/, this may be interpreted
as a weak version of the (conjectural) statement that the quantity cT marked above
obeys

cT �
T!1 Age�cT

�
log T/

1=4: (12)

Remark 2.3 For dimensions d > 4 there will not be a log correction. I do not know
if exactly this result has been proved for the Edwards model but such results are
proved for the standard discrete time self-avoiding walk by the lace expansion [8,
38]. I am not sure if anyone has considered lace expansions for continuous time
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models like the Edwards model. It should be possible and they might even be neater
than the standard discrete case.

3 The Free Field and Local Time

The free field is usually introduced as a real gaussian field. However we will
consider a complex valued free field because the next section requires it and because
the connections we are about to describe between gaussian fields and continuous
time random walk are more general when complex fields are used. We only define
gaussian fields on the torus�. Therefore we consider � 2 C

�, i.e. � D f�xW x 2 �g.
We can also write �x D ux C ivx, where u and v are gaussian fields. A gaussian
complex valued measure has the form

e�.�;A N�/ det.A/
Y

x2�

duxdvx

�
; (13)

where we are using the notation

.�;A N�/ WD
X

x;y2�
�xAxy N�y: (14)

We say that A is dissipative if <e.�;A N�/ � m2
P
�x N�x for some m2 > 0. The above

gaussian complex measure exists for any dissipative matrix A. If Axy D Ayx and A
is real, then the gaussian measure in a genuine probability distribution, in other
words it is not complex valued. Furthermore, the gaussian fields u; v mentioned
above are independent. We will mostly be working with a real symmetric A, but for
the moment let us not make this assumption. Even though there is no probability
measure we will still denote integration with respect to the complex measure by the
symbol E. The following formulas may surprise you a little. The first is an exercise.
The second follows from the invariance of the gaussian density under the change of
variables �x 7! ei˛�x and N�x 7! e�i˛ N�x for all x 2 � with any real ˛. Recall that A
is real. This symmetry is called gauge invariance.

E
� N�x�y

	 D .A�1/xy (15)

while

E
� N�x N�y

	 D 0 D E
�
�x�y

	
: (16)

Definition 3.1 If A WD m2 id � �, then � is called the (complex) free field with
mass m.
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The real field version of the following theorem has been called the Dynkin
Isomorphism since [27], but Dynkin references two earlier papers. One of them
is [19], where this isomorphism appears in Theorem 2.2, but stated in terms of the
skeleton walk defined by a continuous time walk, and the second is [47], which
is the first time a connection between local time of random walk and the square
of a gaussian field was found. Since we and Symanzik are dropping out of sight
in the probability literature on this theorem I am going to come back and haunt
everyone who does not remember us! See [50] where the recent history of this
theorem is discussed. It includes the relation between � N� and the local time of loop
soup discovered first in [47], but admittedly not stated very precisely.

A version [14, Proposition 3.1] of the following theorem is valid when A is a real
matrix such that (1) all row sums are strictly positive, (2) A is dissipative. This is
interesting because this allows A to be the generator of a nonsymmetric walk, but I
do not want to pursue this here and will from now on assume that

A D m2 id �� (17)

for some m2 > 0.

Theorem 3.2 For bounded continuous FWR�C ! R, m2 > 0 and a; b 2 �,

E
�
F.� N�/ N�a�b

	 D m�2
E˝ Ea

h
F.� N� C L/�fX�� Dbg

i
: (18)

Proof By the monotone class theorem and the linearity of both sides in the function
F it suffices to check that both sides are equal for functions of the form F.t/ WD
exp

˚�Px2� wxtx
�

where wx � 0. Let W be the � 	 � diagonal matrix whose
diagonal entries are wx; x 2 �. Then

F.� N�/ D exp
˚�
X

x2�
wx�x N�x

� D exp
˚�.�;W N�/�: (19)

Since this is gaussian the left hand side of (18), up to a normalisation, is the
covariance of a gaussian measure whose density is the exponential of ���; .A C
W/ N��, where A D m2 id ��. Therefore the left hand side of (18) equals

.A C W/�1ab E
�
F.� N�/	: (20)

Now consider the right hand side of (18): our special choice of F is such that F.� N�C
L/ D F.� N�/F.L/ so the right hand side is

m�2
E

h
F.� N�/

i
Ea

h
F.L/�fX��Dbg

i
(21)
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and we are reduced to checking that

.A C W/�1ab D m�2 Ea

h
F.L/�fX��Dbg

i
: (22)

The continuous time walk X defines the sequence Y0; : : : ;Y� of lattice sites visited
by X before it arrives at �. Let WnIab be the set of all nearest neighbour walks y D
.y0; y1; : : : ; yn/ such that y0 D a and yn D b. For y 2 WnIab the probability of
the event Y D y is the probability that the continuous time walk X will make the
independent transitions y0 ! y1, y1 ! y2 and so on ending with yn to �. Therefore

Ea

h
�YDy

i
D
�

1

m2 C 2d

�n m2

m2 C 2d
: (23)

On the event Y D y, for i D 0; : : : ; n the time that X waits at yi is exponential
with parameter m2 C 2d and all these exponential times are independent. Therefore,
recalling that F.L/ D e�P

wxLx ,

Ea

h
F.L/�YDy

i
D m2 C 2d

m2 C 2d C wy0

: : :
m2 C 2d

m2 C 2d C wyn

Ea

h
�YDy

i

D 1

m2 C 2d C wy0

: : :
1

m2 C 2d C wyn

m2: (24)

By summing this last formula over y 2 WnIab and over n,

m�2 Ea

h
F.L/�fX�� Dbg

i
D
X

n�0

X

y2WnIab

1

m2 C 2d C wy0

: : :
1

m2 C 2d C wyn

: (25)

To complete the proof we need the right hand side of this equation to be equal to
.ACW/�1ab . To check this write ACW as a diagonal matrix D minus an off-diagonal
matrix J. By the expansion .D � J/�1 D D�1 C D�1JD�1 C D�1JD�1JD�1 C : : :

with matrix products written out in terms of sums over indices,

.A C W/�1ab D
X

n�0

X

y2WnIab

1

m2 C 2d C wy0

: : :
1

m2 C 2d C wyn

; (26)

as desired. This expansion is a sum of positive terms because J has nonnegative
entries and D has positive diagonal entries. The expansion is convergent because
the number of terms in WnIab is .2d/n whereas the summand is smaller than .2d C
m2/nC1.

Example 3.3 In Theorem 3.2 set

F.t/ WD e�g
P

x t2x : (27)
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Then from Theorem 3.2,

E

h
e�P

x g . N�x�x/
2 N�a �b

i
D m�2

Z 1

0

E˝ Ea

h
e�P

x g . N�x�xCLx/
2
i

e�m2T dT: (28)

The left hand side is known as the lattice j�j4 quantum field theory. According to,
for example, Theorem 2 and the last item on page 22 of [35], in

� N�x�x C Lx
�2 D � N�x�x

�2 C L2x C 2 N�x�xLx (29)

the random variables .�x N�x; x 2 �/ have the same distribution as the local times of
loop soup plus a field of independent � variables that represent the local times
of trivial loops that stay at one point. Thus the first term in (29) represents an
interaction between the loops of loop soup and also a self-interaction for each loop.
This interaction suppresses all mutual and self-intersections in the loop soup, much
like the factor in the Edwards model suppresses self-intersections of a continuous
time random walk. In fact, in the second term of (29) we see that as well as the
loops there is a random walk with its own Edwards interaction. The third term
suppresses all intersections between the loops and the walk. Thus the lattice j�j4
quantum field theory is a model of many polymers which mutually repel. This is
what Symanzik discovered in [47]. He was advocating this as a way to understand
euclidean quantum field theory, but it might also be a good way to study polymers
because the correlation inequalities of euclidean quantum field theory are interesting
statements for the polymer model.

4 The Free Field, Local Time and Differential Forms

The main result in this section is Proposition 4.3 which is a variant of Theorem 3.2
that will be used to express the susceptibility of the Edwards model in terms of the
massless free field. However it requires a conceptual extension of the massless free
field and we first prepare the way with a review of differential forms.

4.1 Review of Differential Forms

A good reference for (differential) forms is [5]. As a motivational example let f be
a smooth real function on R

2. Given a point .u; v/ in R
2 let .Pu; Pv/ be also a point

in R
2, but think of it as a direction one can travel in, starting at .u; v/, and call it a

tangent vector at .u; v/. Then define df D df.u;v/, as a linear function on the vector
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space of tangent vectors at .u; v/, by

df W .Pu; Pv/ 7! fu Pu C fv Pv; (30)

where fu D fu.u; v/ and fv D fv.u; v/ are the partial derivatives of f at .u; v/. With
this definition with f replaced first by the function Ou W .u; v/ 7! u and second by
the function Ov W .u; v/ 7! v the reader can verify that df D fud Ou C fvd Ov. It is usual
to leave off the hats as soon as we have understood that u and v are being used in
two senses. Thus, by defining the symbols df ; du; dv as linear functions on tangent
spaces, we gain a precise meaning for

df D fudu C fvdv: (31)

The space of forms at .u; v/ of degree one is the vector space dual to the vector space
of tangent vectors at .u; v/. When we omit the phrase “at .u; v/” and say simply that
“! is a form of degree one” then we mean that for each point .u; v/ in R

2 !.u;v/ is
a form of degree one at .u; v/ and that .u; v/ 7! !.u;v/ is smooth. This statement is
clearly true for du and dv and it follows that it is true for df since fu.u; v/ and fv.u; v/
are smooth functions of .u; v/. It is obvious how to generalise this discussion to R

n.
Given two forms ! and !0 of degree one at a point in R

n, we create a bilinear
form ! ˝ !0 by setting, for any two tangent vectors e and e0,

.! ˝ !0/.e; e0/ D !.e/!0.e0/ (32)

but the bilinear form with geometrical significance is the antisymmetric tensor
product defined by

.! ^ !0/.e; e0/ WD !.e/!0.e0/ � !0.e/!.e/: (33)

For example

.du ^ dv/.e; e0/ WD du.e/dv.e0/� du.e0/dv.e/ (34)

is the (signed) area of the parallelogram generated by e and e0. A form of degree two
on R

n is, by definition, an antisymmetric bilinear function of directions assigned to
points smoothly. All such objects can be written as

P
aijdui ^ duj where aij are

smooth functions on R
n. Similarly forms of degree p on R

n are antisymmetric p-
linear functions of directions assigned smoothly to points. Notice that the degree is
at most p D n because there are no antisymmetric functions of higher degree. By
definition forms of degree 0 are functions on R

n.
Now the textbooks do something that looks strange but works out well: given

two forms ! and !0 of degree p 6D p0 we define the direct sum ! ˚ !0, which we
can do because the set of forms of degree p is a vector space ˝.p/ and so ! ˚ !0
is an element of the vector space ˝.p/ ˚ ˝.p0/. This amounts to saying that when
! ˚ !0 is evaluated on p directions Pu1; : : : ; Pup it equals the evaluation of ! on these
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p directions and likewise when ! ˚ !0 is evaluated on p0 directions it equals the
evaluation of !0 on these p0 directions, and evaluation on q directions is zero for q
not p or p0. Let ˝� D L

˝.p/. This is the vector space of all forms and we write
the addition in this space using C in place of ˚. After defining dui1 ^ � � � ^ duip
by antisymmetrising the tensor product the general form ! 2 ˝� on R

n can be
written as

! D
X

p

X

i1;:::;ip

ai1;:::;ip dui1 ^ � � � ^ duip (35)

where the coefficients are smooth functions on R
n. The important fact is that the ^

product is associative, as well as distributive, over C. When a is a form of degree
zero, that is, a smooth function on R

n, and ! is a general form, then by definition

a! D a
X

p

X

i1;:::;ip

ai1;:::;ip dui1 ^� � �^duip D
X

p

X

i1;:::;ip

aai1;:::;ip dui1 ^� � �^duip (36)

which is the pointwise scalar product of the vector space ˝�. In this case we omit
the wedge. Note that

a.! ^ !0/ D .a!/ ^ !0 D ! ^ .a!0/: (37)

From now on we rarely need to know that a form is a linear combination of
antisymmetric multilinear functions of tangent vectors. Most of the time we only
use the fact that˝� is an algebra with n generators dui; i D 1; : : : ; n, that satisfy the
relations dui ^ dui D 0 for i D 1; : : : ; n. An algebra whose generators satisfy such
relations is called a Grassmann algebra. These relations imply that dui ^ duj D
�duj ^ dui for all i; j D 1; : : : ; n. This means that multiplication is commutative
for forms of even degree and anticommutative for forms of odd degree. In our case
we have a Grassmann algebra over C1.Rn/ which means that for f in C1.Rn/

and forms ! and !0, f .! ^ !0/ D .f!/ ^ !0 D ! ^ .f!0/. The Grassmann algebra
generated by linear functions on a vector space V is called the exterior algebra of V .

Given a form ! as in (35) with integrable coefficients we define

Z

Rn
! D

Z

Rn
a1;2;:::;ndu1 : : : dun: (38)

At first it seems strange that this definition of the integral of a form ignores all
coefficients except the one in the top degree form, but it is consistent with our earlier
remarks about the meaning of addition in the exterior algebra and the idea that
du1 ^ � � � ^ dun is a multilinear function that assigns volume to parallelopipeds of
dimension n. The important point about integration of forms is that the value of the
integral is independent of the choice of coordinates for Rn. To understand this try as
an exercise case n D 2. Let f be a smooth orientation preserving bijection from R

2

to itself. Rewrite ! D P
aijdui ^ duj in terms of .u0

1; u
0
2/ where ui D fi.u0

1; u
0
2/ by
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substituting du D P
fidu0

i into!. Check that
R
! is the same regardless of whether it

is expressed in terms of u or u0. This invariance property of forms is what motivated
Cartan to introduce this formalism.

4.2 Gaussian Integrals in Terms of Forms

We make the natural extension of the previous constructions for Rn to the complex
space C

�. A point in this space is given by � D u C iv where u D .ux/x2� and
v D .vx/x2� are in R

�. For each x 2 �we have a degree one form d�x WD duxCidvx

and

d�x ^ d N�x D .dux C idvx/ ^ .dux � idvx/ D �2 i .dux ^ dvx/: (39)

Let N .�/ denote the exterior algebra over C1�
R
2�
�

generated by fdux; dvxW x 2
�g or, alternatively, fd�x; d N�xW x 2 �g.

Now let’s go back to the definition of the gaussian (complex) measure (13). For
F a random variable (form of degree zero)

E
�
F
	 D

Z

R2�
e�.�;A N�/F det.A/

Y

x2�

duxdvx

�
: (40)

We claim that for any dissipative real matrix A,

E
�
F
	 D

Z

R2�
e�.�;A N�/� 1

2�i .d�^;Ad N�/ F (41)

where

�
d�^;A d N�� WD

X

x;y2�
d�x ^ Axyd N�y (42)

and we really are claiming that there is no constant of normalisation in (41). For ˛
a function and ˇ a form the exponential e˛Cˇ is the element of the algebra N .�/

defined by

e˛Cˇ WD e˛
X

p�0

1

pŠ
ˇ^ p: (43)

The sum is finite because all terms of degree more than 2j�j are zero. For our case

ˇ D � 1

2�i
.d�^;Ad N�/: (44)
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So an expansion of the second term in the exponent results in a linear combination
of forms of various degrees. Recall that the rule of integration (38) of forms is that
the integral of all but the highest-degree form vanishes. The highest degree form is
the term p D j�j in the sum in (43). As an exercise show that this term equals

ˇ2p D .2�i/�p det A
Y

x2�
.�d�x ^ d N�x/ (45)

and complete the proof of (41) using (39).
Let c D 1

2� i and define

.	�/x WD 1

2



�x .�� N�/x C c d�x ^ .��d N�/x

C.���/x N�x C c .��d�/x ^ d N�x

�
(46)

and

	x WD �x N�x C c d�x ^ d N�x: (47)

When .	�/x appears under a sum over x in � the second two terms in .	�/x make
the same contribution as the first two terms, which cancels the 1=2. Let

	�.�/ D
X

x2�
.	�/x; 	.�/ D

X

x2�
	x: (48)

Then, for A D m2 � �, the exponent in (41) is the same as m2	.�/ C 	�.�/, as
claimed in the following definition.

Definition 4.1 (Super-Expectation) The super-expectation for massive free field
is defined for m2 > 0 and for bounded forms F in N .�/ by

E
.m/ŒF� WD

Z

R2�

e�.�;A N�/� c.d�;Ad N�/F D
Z

R2�

e�.m2	C	�/.�/ F (49)

where

A WD m2 ��; c D 1

2�i
: (50)

A bounded form is a form whose coefficients are bounded. Here and from now on
we are omitting the ^ between the exponential and F.

The point of this definition is that the right hand side makes sense if F is a
form in N .�/ but when we evaluate the super-expectation of a form of degree
0, in other words a random variable, by (41) the super-expectation is the same as
the expectation, so we are defining an extension of the standard expectation to the
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algebra of integrable forms. Of course not all properties we are used to remain valid
when we are taking the super-expectation of a form. For example we do not have a
Jensen inequality unless the form under E.m/ is of degree zero.

4.3 The Local Time Isomorphism and Forms

Recall the definition of 	x from (47) and let 	 denote the sequence of forms .	x/,
where x ranges over �. Likewise let � N� denote the sequence .�x N�x/ and c d� ^ d N�
denote the sequence .c d�x ^ d N�x/. For a smooth function F defined on R

�, there is
a multivariable Taylor expansion

F.t C Pt/ �
X

p

1

˛Š
F.˛/.t/Pt˛ (51)

about the point t in R
� in powers Pt˛ D Q

x2� Pt˛x
x of the components .tx/ of t. Let t D

� N� and Pt D c d�^d N� in this Taylor series, replacing
Q

x2� Pt˛x
x by the wedge product

^x2�Pt˛x
x . This product is well defined regardless of the order with which x ranges

over � because the forms c d�x ^ d N�x are even. Also, the series terminates after
finitely many terms because each term is a form of degree 2j˛j1 and forms of degree
larger than 2j�j vanish. Therefore the Taylor expansion with these substitutions
defines a form. We denote this form by F.	/. It is a good notation because F 7! F.	/
is an algebra homomorphism from the algebra of smooth functions into N .�/. Also
the map respects composition f .F.	// D .f ı F/.	/. We will not prove these claims,
but they are consequences of the uniqueness of the Taylor expansion.

Lemma 4.2 For any bounded smooth function FWR� ! R with bounded deriva-
tives and for m2 > 0,

E
.m/
�
F.	/

	 D F.0/: (52)

This also holds for any dissipative matrix A in place of A as defined in (50).

Proof A complete proof is given in [21] but it is instructive to check the claim for
the special case F.	/ WD expf�Px wx	xg with wx � 0. We exhibit dependence on
the matrix A by writing EA. Let W be the diagonal matrix with wx on the diagonal.
Then with this special F we have from Definition 4.1 that EAŒF� D EACW Œ1�

and EACW Œ1� D 1 D F.0/ as desired because the super-expectation equals the
expectation on forms of degree 0.

Recall that when we proved Theorem 3.2 we also checked the special case of
an exponential F and this sufficed to prove the general case because both sides are
linear in F. In this algebra of forms context we no longer have monotone class
theorems to extend from linear combinations of exponentials to the general case.
The idea in [21] is instead to write a general F as the fourier transform of its Fourier
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transform to see that it is a limit of linear combinations of exponentials. The same
idea is at work in the next isomorphism theorem, which I will call the “	 D L”
theorem.

Proposition 4.3 For a bounded smooth function FWR� ! R with bounded
derivatives,

E
.m/
�
F.	/ N�a�b

	 D m�2 Ea
�
F.L/�fX��Dbg

	
: (53)

Proof For a complete proof see [21, Proposition 2.4]. It is again sufficient to prove
it is true for the special case F.	/ WD expf�Px wx	xg with wx � 0. As in the last
proof,

E
.m/
�
F.� N�/ N�a�b

	 D EA
�
F.� N�/ N�a�b

	 D EACW
� N�a�b

	
: (54)

The super-expectation on the right coincides with the expectation so the right hand
side equals .A C W/�1ab and in the proof of Theorem 3.2 we proved that this equals
the right hand side of Proposition 4.3, as desired.

5 Susceptibility as a Gaussian Integral

For the parameters g; � that appeared in the Edwards model and a new one called z
and X � � define

Vg;�;zIx WD g 	2x C � 	x C z.	�/x;

Vg;�;z.X/ D
X

x2X

Vg;�;zIx;

�.X/ D
X

x2X

�x: (55)

Notice that we are starting to omit ^, for example 	2x is really 	x ^ 	x. By choosing
F.	/ D exp

��g 	2x .�/� .��m2/ 	.�/
	

in Proposition 4.3 and using the definition
of the super-expectation we find that

��.g; �/ D
Z

R2�

e�Vg;�;1.�/ N�a �.�/: (56)

Thus the susceptibility is represented as a 2j�j dimensional integral of forms.
Perhaps this does not seem like a very pleasant reward for so much work, but let
us see.

These differential form representations came from [39, 44] and particularly
[37] in the physics literature, where they are instances of supersymmetry. The
results in these papers are expressed in terms of anticommuting numbers which
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are also known as ghosts. Anticommuting numbers are another name for elements
of a Grassmann algebra as defined above. The definition of a Grassmann integral
as the coefficient of the highest degree monomial in a Grassmann algebra is
called the Berezin integral after the standard reference [12]. I first encountered
the identification of anticommuting numbers with differential forms in [36, 55].
I discussed the isomomorphism between local time and the gaussian field for the
complex case with and without Berezin integration in [14].

Lemma 4.2 for the exponential is a special case of the remarkable Duistermaat-
Heckman theorem [25, Theorem 4.1 on p. 267]. We shall not need this theorem but
to see why it is a more general statement note that it applies to even dimensional
spheres. Since we are considering integrals over R2j�j of functions that decay at
infinity we can add a point at infinity and replace R

2j�j by an even dimensional
sphere. The mathematical literature on the Duistermaat-Heckman theorem makes
unfounded assumptions about my education in topology and I found the more
informal Sect. 2.2.2 and the standard example in Appendix A of [56] helpful.

5.1 The Most General Split into Gaussian Plus Perturbation

At the end of the last section we found that the susceptibility has the representation

��.g; �/ D
Z

R2�

e�Vg;�;1.�/ N�a �.�/: (57)

where

Vg;�;1.�/ D
X

x2�
Vg;�;1Ix;

Vg;�;1Ix D �
g	2 C �	 C 	�

�
x: (58)

We are now going to try to regard this as an almost gaussian integral because in
Theorem 2.2 the hypothesis was that g is positive, but small. Since Vg;�;1 has two
quadratic terms a naive attempt is to use them to define the gaussian measure.
However, recall that Theorem 2.2 concerns the case where � is just a little larger
than the critical value �c given by Definition 2.1. Furthermore �c will turn out to be
negative. Therefore we cannot make this naive choice of gaussian measure because
A D �cid �� is not dissipative, which means that the gaussian is not integrable.

Actually we want to choose the gaussian part to be whatever best approximates
the long distance behaviour of the model. As an analogy recall that when we
want to approximate a sum of n identically distributed centred independent random
variables by a gaussian as in the central limit theorem, we have to know (1) to
normalise the sum by

p
n, (2) what the variance of the gaussian will be. (1) and (2)

are both determined by computing the variance of the sum and this can be done
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because the variables are independent. In the present case we cannot guess how to
scale � or what the best gaussian will be because there is no obvious independence.
Instead, we consider a general split that is parameterised by two parameters called
m2 and z0 and wait patiently for the renormalisation group to tell us what the values
of the parameters should be.

The most general way to split

Vg;�;1.�/ D �
g	2 C �	 C 	�

�
.�/ (59)

into a quadratic (gaussian) part and a perturbation can be parameterised by two
parameters as follows. First, we introduce a parameter z0 > �1 and split the
coefficient 1 implicit in front of 	� as

1 D 1

1C z0
C z0
1C z0

: (60)

Then we introduce another parameter m2 > 0 to split

� D m2

1C z0
C
�
� � m2

1C z0

�
: (61)

The reason that 1C z0 is written in the denominators is so that we can get rid of it
by rescaling. Introducing the rescaled field O� D .1C z0/�1=2�, we have

Vg;�;1.�/ D V0;m2;1. O�/C Vg0;�0;z0 . O�/; (62)

where

g0 D g.1C z0/
2; �0 D �.1C z0/� m2: (63)

I will call the parameters z0;m2 splitting parameters.
From the representation (57) of �� and noticing that the exponent in the super-

expectation in Definition 4.1 is V0;m2;1.�/, we have

��.g; �/ D .1C z0/E
.m/
h
e�Vg0;�0 ;z0 .�/ N�a �.�/

i
: (64)

We obtained this by rewriting the integral in terms of the scaled variable O� and
then renaming O� back to �. The change of variable does not give a Jacobian factor
because it is a form integral. We define

O��.m2; g0; �0; z0/ DE
.m/
h
e�Vg0;�0;z0 .�/ N�a �.�/

i
; (65)

O�.m2; g0; �0; z0/ D lim
�!Zd

O�
�
.m2; g0; �0; z0/ (66)
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As explained in Sect. 2 the limit as � increases to Z
d exists for �� and partial

derivatives with respect to coupling constants can be taken under this limit.
Therefore we have proved the following splitting lemma

Lemma 5.1 Given � 2 R and g > 0, and given splitting parameters z0 > �1 and
m2 > 0, let

g0 D g .1C z0/
2 and �0 D � .1C z0/ � m2 (67)

then

��.g; �/ D .1C z0/ E
.m/
h
e�Vg0;�0 ;z0 .�/ N�a �.�/

i
: (68)

The infinite volume limit exists and is given by

�.g; �/ D .1C z0/ O�.m2; g0; �0; z0/: (69)

Moreover, for �0 > �c,

@

@�
�.g; �/ D .1C z0/

2 @

@�0
O�.m2; g0; �0; z0/: (70)

5.2 The Proof of Theorem 2.2

The Edwards model that we are studying contains two parameters � and g. Our
general problem is: given �; g calculate the susceptibility for � slightly larger than
the critical value �c.g/. In the last section we introduced a strategy: show that
this model has a gaussian approximation and calculate the susceptibility of this
approximation. This strategy was started by splitting the model into (a scaling of)
a free field with mass m2 and a perturbation described by parameters g0; �0; z0. The
four new parameters m2; �0; g0; z0, are linked by two relations (67) so we expect to
need two more relations to completely specify all of them in terms of the given �; g.
Theorem 5.2 in this section provides these two relations in the form �0 D �c

0.m
2; g0/

and z0 D zc
0.m

2; g0/ and it gives enough information to prove our main Theorem 2.2.
In this Theorem 5.2 appears the expected time

Bm2 D 8

“
P
�
X.t/ D Y.s/

�
e�m2te�m2s dt ds (71)

that two independent simple random walks with killing spend intersecting each
other. In d D 4 dimensions it can be shown that as m2 tends to zero,

Bm2 � 8 log m�2 (72)

with b D 1=.2�2/. In more than four dimensions there is no divergence as m2 ! 0.
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Theorem 5.2 (Theorem 4.1 in [10]) Let d D 4, and let ı > 0 be sufficiently small.
There are continuous real-valued functions �c

0; z
c
0, defined for .m2; g0/ 2 Œ0; ı/2

and continuously differentiable in g0, and there is a continuous function c.g0/ D
1C O.g0/, such that for all m2; g0; Og0 2 .0; ı/,

O� �m2; g0; �
c
0.m

2; g0/; z
c
0.m

2; g0/
� D 1

m2
; (73)

@ O�
@�0

�
m2; g0; �

c
0.m

2; g0/; z
c
0.m

2; g0/
� � � 1

m4

c.Og0/
.Og0Bm2 /

�
as .m2; g0/ ! .0; Og0/:

(74)

The functions �c
0; z

c
0 obey

�c
0.m

2; 0/ Dzc
0.m

2; 0/ D 0;

@�c
0

@g0
.m2; g0/ DO.1/;

@zc
0

@g0
.m2; g0/ DO.1/; (75)

where O.1/ means that these derivatives are bounded on their whole domain by
constants uniform in .m2; g0/.

Remark 5.3 In the standard theory of renormalisation (73) is not a theorem, but
merely the definition of m2. In our work m2 has been defined as the mass in a free
field and we will instead use the renormalisation group to prove that �c

0; z
c
0 exist such

that at large scales this system becomes this free field.

Proof (of Theorem 2.2) Define the map

A W .m2; g0/ 7! �
m2; g0; �

c
0.m

2; g0/; z
c
0.m

2; g0/
�

(76)

with the domain .m2; g0/ 2 Œ0; ı/2 specified in the theorem for �c
0 and zc

0. We
eliminate m�2 in (74) using (73). The elimination includes the m2 in Bm2 using (72).
We obtain

�
@ O�
@�0

�
ı A � �. O� ı A/2

c.Og0/�Og08 b log. O� ı A/
�� ; (77)

We define another map B W .m2; g0; �0; z0/ 7! .g; �/ by solving (67) explicitly. Let
C D B ı A. By Lemma 5.1, we obtain the following equation for � D �.g; �/.

�
@�

@�

�
ı C � �.� ı C/2

c.Og0/�
8bg0 log.� ı C/ � 8bg0 log.1C zc

0/
��

� �.� ı C/2
c.Og0/�

8bg0 log.� ı C/
�� : (78)
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The � allows us to omit the term involving log.1C zc
0/ term because (75) implies it

is bounded as .m2; g0/ ! .0; Og0/, whereas � ı C diverges. The divergence of � ı C
follows from Lemma 5.1 and (73), which together assert that

� ı C D 1C zc
0

m2
; (79)

noting that (75), and decreasing ı if necessary, implies that 1 C zc
0 does not vanish

as m2 # 0.
Proposition 4.2 (ii) in [10] states that the inverse C�1 W .g; �/ 7! .m2; g0/ exists,

is right-continuous in � for g fixed and is defined on a domain 0 < g < ı1, �c.g/ �
� < �c.g/C ı1. In the notation of Bauerschmidt et al. [10], the two components of
C�1 are called Qm2; Qg and they are written as functions of .g; �/ where � D ���c.g/.
By the definition of �c in Definition 2.1 and the comment below this definition,
�.g; �/ is finite for � 2 .�c.g/;1/ and diverges as � # �c.g/. Therefore, by (79),
m2 D 0 when � D �c.g/. By the right continuity of C�1, � # �c

0 with g fixed implies
.m2; g0/ ! .0; Og0/. Therefore (78) simplifies to

@�

@�
� ��2 c.Og0/�

8bg0 log�
�� ; � # �c

0 with g fixed; (80)

where Og0 is the g component of C�1.g; 0/.
We fix g < ı1 and define F.�/ D 1

�.g;�/ for � D �c.g/ C � with � 2 .0; ı1/ and

we set F.0/ D 0. By dividing (80) by �2 (80) becomes, for � # 0,

dF

d�
� 1

Ag
�

log F�1�� ; Ag D .Qg0.g; 0/b/�
c0.g/

(81)

and this differential relation can be easily integrated [10, Lemma 4.3] to show that

F.�c C "/ � A�1
g ".� log "/�� : (82)

Recalling that F D ��1 this is the claim in Theorem 2.2.

5.3 The Susceptibility in Terms of Super-Convolution

Our main result Theorem 2.2 has been reduced to Theorem 5.2. To prepare
for the proof of Theorem 5.2, we put the susceptibility into a form that suits
the renormalisation group which will be introduced in the next sections. The
conclusion of this section is Proposition 5.5. The proof of this Proposition contains
the important idea of using a translation to approximately evaluate a generating
function. This is part of the “evaluation as if gaussian” strategy that started in
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Sect. 5.1. The use of “tilting” in the theory of large deviations is also an instance
of this strategy.

This section and the renormalisation group use super-convolution. In order to
motivate the definition of super-convolution, recall that the convolution of a function
f with a probability measure P is the function x 7! R

f .x C z/P.dz/. In order to
think of this as an operation that transforms f into a new function g we define a
homomorphism � from the algebra of functions of one variable to the algebra of
functions of two variables by: for x 7! f .x/ let � f W .x; z/ 7! f .x C z/. Then the
convolution can be written as f 7! E

.z/� f .

Definition 5.4 Define the algebra homomorphism � WN .�/ ! N .� t �/ to be
the map that replaces � by � C � and d� by d� C d�. Then the super-convolution
of a form F 2 N .�/ by the super-expectation E

.m/ is given by

F 7! E
.m;�/

�
�F
	
; (83)

where E
.m;�/ acts only on �; (Therefore, in Definition 4.1 rename � to � and then

replace F by �F.)

Let F be an element of N .�/. Recall that this means that F is a form whose
coefficients are functions of � and � 2 C

�. The directional derivative of F with
respect to � in the direction f 2 C

� is defined by replacing � by �C zf , N� by N�C NzNf
and evaluating .@=@z/F at z D 0 by the rules @Nz=@z D 0 and @z=@z D 1. These rules
follow from the definition @=@z D 1

2
.@=@x� i@=@y/ when z D xC iy. The directional

derivative of a differential is zero because the replacement of � by �Czf is a change
of variable and f does not depend on � so d.� C zf / D d�. Similarly there is also
the directional derivative of F with respect to N� in the direction Nf .

Let 1 denote the function in C
� which is the constant function 1x D 1 for all x 2

�. In the next Proposition D2F.0I 1; 1/ denotes the result of taking two directional
derivative of F with respect to � in the direction 1 and then setting � D 0 including
d� D 0. (In [10] we used the notation D2F.0; 0I 1; 1/ since � and d� are both set to
zero.)

Recall that the finite volume susceptibility O�� D O��.m2; g0; �0; z0/ was defined
in (65). We repeat the definition here in order to introduce some new notation,

O�� D E
.m/
h
Z0 N�a �.�/

i
; Z0 D e�V0.�/; V0.�/ D Vg0;�0;z0 .�/: (84)

Proposition 5.5 Let m2; g0; �0; z0 be real numbers with g0;m2 positive and z0 >
�1. Then

O��.m2; g0; �0; z0/ D 1

m2
C 1

m4 j�j D2F.0I 1; 1/; (85)

where F D E
.m;�/

�
�Z0

	
.
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To prepare for the proof of this result we first discuss generating functions in this
context. Given an external field J W � ! C, we write

.J; N�/ D
X

x2�
Jx N�x; .NJ; �/ D

X

x2�
NJx�x: (86)

Recall that 1 denotes the function in C
� that is identically one. By translation

invariance,

O�� D j�j�1 E.m/
h
.1; N�/.1; �/Z0

i
: (87)

We define the generating function˙ W C� ! C by

˙.J; NJ/ D E
.m/
h
e.J; N�/C.�;NJ/Z0

i
: (88)

By taking two directional derivatives, one with respect J in the direction 1, the
second with respect to NJ in the direction 1 and setting J D 0 we generate a factor
.1; N�/.1; �/ and so we have

O�� D j�j�1D2
NJ;J˙.0I 1; 1/; (89)

where D2NJ;J indicates two directional derivatives with respect to J and NJ, the argument

0 means the derivative is at J D NJ D 0 and the two arguments 1 indicate the
directions. The evaluation of O�

�
now becomes reduced to the evaluation of D2

NJ;J˙ on
the right-hand side of (89). Here is where the above mentioned strategy of evaluation
as if gaussian (V0 D 0) comes into play. Recall that gaussian integrals are evaluated
by change of variables by an optimal translation that centres the gaussian. By using
such a translation � D � C H, where � is the new integration variable, we obtain

˙.J; NJ/ D e.J;CNJ/ h
E
.m;�/

�
�Z0

	i

j�DCJ;d�D0

; (90)

where C D .��C m2/�1. In more detail, with A D ��C m2 D C�1 and referring
to Definition 4.1,

X

x2�

�
	�;x C m2	x

� � .J; N�/� .�; NJ/

D .�;A N�/C c.d�;^Ad N�/
� .J; N�/� .NJ; �/C .H;A N�/C .�;A NH/

C .H;A NH/� .J; NH/� .NJ;H/

D .�;A N�/C c.d�;^Ad N�/� .J;CNJ/; (91)
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where the last line is obtained by choosing H to make the terms in the second line
sum to zero. This happens when H D CJ, NH D CNJ. Since H does not depend on
�, d� D d.� C H/ D d� and so the form part is as written. The formula (90)
follows immediately. Notice that the translation also changes � in Z0 to � C CJ and
d� to d�. This is implemented in (90) by � which changes � to � C � followed by
evaluation at � D CJ and d� D 0 after taking the super-expectation over �. Since
our strategy was based on the hope that our splitting into gaussian and interaction
is such that V0.�/ can be neglected, Z0 D e�V0.�/ should not be very dependent on
this translation and so this calculation should be a good way to “almost” evaluate
the generating function˙.J; NJ/.
Proof (of Proposition 5.5) We use (89) followed by (90) to obtain

O�
�
.m2; g0; �0; z0/

D j�j�1D2
NJ;J

�
e.J;CNJ/h

E
.m;�/

�
�Z0

	i

j�DCJ;d�D0

�
.0I 1; 1/: (92)

The desired result is obtained by evaluating the directional derivatives in the
direction 1 noting that C1 D .m2 ��/�11 D m�2.

6 The Renormalisation Group

The renormalisation group is a method to evaluate D2F.0I 1; 1/ in the right hand
side of Proposition 5.5. From this point on these notes become a selection of topics
from the six papers that collectively comprise the proof of Theorem 2.2. There are
many references to these papers, but I suggest that anyone who wishes to continue
reading ignore these references until some of the general ideas emphasised by these
notes start to come into focus. Many of the important ideas are also discussed in
great detail in [15] for much simpler problems.

As discussed in Sect. 1 the renormalisation group can be defined in different
ways, which are different interpretations of what the phrase “integrating out
fluctuations” should mean. In our case we are going to write the gaussian field �
as a sum �1 C � � � C �N of independent gaussian fields �j and then integrate over �1,
followed by �2, and so on. First we will discuss the representation in distribution of
� as �1 C � � � C �N . This depends on the following theorem [11, Sect. 6.1] about the
inverse .m2 � �/�1 where � D �� is the finite difference Laplacian for the torus
� defined in (1). Recall that � has period LN .

Theorem 6.1 (Finite Range Decomposition) For m2 > 0 let C D .m2 � ��/
�1,

regarded as a � 	 � matrix. There exist positive-definite � 	 � matrices Cj D
Cj.m2/ defined for j D 1; 2; : : : ;N � 1 and m2 � 0, and there exists CN;N D
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CN;N.m2/ defined for m2 > 0, such that

1. .m2 ���/
�1 D PN�1

jD1 Cj C CN;N,

2. For j D 1; : : : ;N � 1, CjIx;y D 0; if jx � yj � 1
2
Lj,

3. jCjIx;yj � c
�
1C m2L2j

��k
L�2.j�1/, j D 1; : : : ;N � 1.

Finite difference derivatives up to any fixed order p are also bounded, accord-
ing to

jr˛
x rˇ

y CjIx;yj � c.1C m2L2.j�1//�kL�.j�1/.2C.j˛j1Cjˇj1//;

where c D c.p; k; Nm2/ is independent of m2; j;L.

The matrix entries CjIx;y are � independent functions of z 2 Z
d where .x; y/ 7! z is

defined for x; y in � by setting z equal to the minimal Zd representative of x � y in
�. Part (3) also holds for j D N provided m2L2N is bounded away from zero.

Since CjIx;y D 0 when the representative z has jzj � Lj=2 it does not matter how
the minimal representative is chosen when there is more than one. If a covariance
G can be written as a sum of positive-definite matrices as in (1, 2) then we say
that G has a finite range decomposition. Quite a large class of covariances are
shown to have finite range decompositions in [4, 7, 18, 20], where the proof in
[7] is particularly economical. Exactly what class of covariances have finite range
decompositions is an open question of great interest to us.

Property (3) is special to the covariance .m2 � �/�1. It expresses in a crude
way that the covariances Cj are approximately scalings of each other for j such that
m2Lj � 1. When j is too large for this to hold the covariances become small because
these covariances have to be consistent with the exponential decay that Cxy is known
to have for jx � yj  m�1. In fact in the finite range decomposition discovered in
[20] they are double exponentially small in j � N such that m2Lj  1.

Theorem 6.2 (� as Sum of Increments) For each covariance Cj of Theorem 6.1,
let Ej be the super-expectation given by Definition 4.1, but with A D C�1

j , and
denote by �j the associated gaussian field. Let Z W � 7! Z.�/ be a bounded function
defined on C

�. Then

E
.m/
�
Z.�/

	 D EN EN�1 : : :E1
�
Z.�1 C � � � C �N/

	
: (93)

Furthermore, this also holds for smooth bounded forms Z W .�; d�/ 7! Z.�; d�/ in
N .�/, with the understanding that d� becomes d�1 C � � � C d�N on the right hand
side.

For the case where Z is a function on C
�, we have a form of degree zero

which is just another name for a random variable. We have seen that in this case
the super-expectation is the usual expectation of probability; the theorem is just
a restatement of the standard fact that the distribution of a sum of independent
gaussian random variables �1; : : : ; �N is also gaussian with covariance equal to the
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sum of the covariances of the �’s. Thus the new content in this theorem is in the case
where Z is a form. For a proof of an equivalent result see [16, Proposition 2.6].

6.1 Progressive Integration

Now we re-organise Theorem 6.2 into an iterative procedure where the fields
�1; : : : ; �N are successively integrated out. The process is: for each j D 1; : : : ;N,
replace� by �C�j, fix � and integrate over �j with respect to the gaussian probability
distribution with covariance Cj. The accumulation of all these replacements is the
same as replacing� by �C�1C� � �C�N . Setting � D 0 and taking theEj expectations
reproduces the right hand side of Theorem 6.2. Since in this procedure we only deal
with one fluctuation field �j at a time we often write � in place of �j, using the
subscript j on Ej to show which field is being integrated out.

Recall the discussion around Definition 5.4 where we have defined the algebra
homomorphism � WN .�/ ! N .�t�/ to be the map that replaces � by �C� and
d� by d� C d�. Returning to the context of Proposition 5.5, we define a sequence
of forms in N .�/ by the recursion

Z0 D e�V0.�/;

ZjC1 D EjC1
�
�Zj
	
; j D 0; 1; : : : ;N � 1: (94)

We will keep referring back to this important sequence because our goal is
to calculate ZN which is the function F in Proposition 5.5 that determines the
susceptibility O�� that appears in Theorem 5.2.

6.2 First Order Perturbation Theory

The recursion (94) defines forms Zj. We will now be interested in how the functional
dependence of Zj on arguments �; d� changes under the map Zj 7! ZjC1. In this
section we examine this in a preliminary way using perturbation theory. Perturbation
theory is purely algebraic: we fix an order p and regard Zj as a power series in Vj

where

Vj D gj 	
2 C L�2j�j 	 C zj	�: (95)

Then we calculate modulo VpC1
j , or equivalently, modulo monomials of degree pC1

in gj; zj; �j. This is called pth order perturbation theory. Notice that we have started
to write Vj in terms of �j instead of �j, where

�j D L2j�j: (96)
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Also we are writing the parameters in the order gj; zj; �j instead of the former order
gj; �j; zj because of a triangular property of some forthcoming equations for these
coupling constants.

The proof of Theorem 5.2 requires second order perturbation theory, that is p D
3, but first order is easier and shows why coupling constants are scale dependent,
so we do the first order calculation in detail and then summarise the conclusions of
second order calculations. For first order perturbation theory, let gj; �j; zj be given
real numbers, subject to the usual integrability constraints gj > 0; zj > �1. If Zj D
e�Vj.�/ modulo V2

j , then I claim that, modulo V2
j (or V2

jC1/,

ZjC1 D e�VjC1.�/; (97)

where VjC1 is defined with coupling constants

gjC1 D gj;

�jC1 D L2�j C 2L2jC2CjC1;0;0 gj;

zjC1 D zj: (98)

Here we see a very important idea: there is a scale dependent coupling constant
j 7! �j determined by the above recursion. According to part (3) of Theorem 6.1, for
m2 D 0, we have L2jC2CjC1;0;0 D O.1/. In fact in Proposition 6.1 of [11] we prove
that L2jC2CjC1;0;0 has a positive limit as j ! 1 so this recursion of �j becomes
independent of j for j large.

Proof (of Claim) Modulo V2 we have

EjC1
�
�Zj
	 D EjC1

h�
1 � Vj.�/

�i

D 1 � EjC1
�
Vj.�/

	 D e�EjC1ŒVj.�/�: (99)

Therefore it is sufficient to prove that

EjC1
�
�Vj.�/

	 D VjC1.�/: (100)

Let Q WD EjC1�	2x . We start by calculating Q. By the definition (47) of 	 ,

	2x D .�x N�x/
2 C 2 �x N�x c d�x ^ d N�x: (101)

Applying � replaces � by � C � in this expression. Therefore the terms Q.0/ in Q
that do not depend on � are

Q.0/ D EjC1
�
.�x

N�x/
2 C 2 �x

N�x c d�x ^ d N�x
�

(102)
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which is the � expectation of 	2x with � replaced by �. By the last line in Lemma 4.2
applied with F.	/ D 	2x this equals zero. Next we calculate the terms Q.2/ in Q that
are of degree 2 in �; d�. From � applied to (101) and using gauge invariance as
in (16) to escape writing some terms,

Q.2/ D EjC1
�
4�x N�x�x

N�x C 2 �x N�x c d�x ^ d N�x C 2 �x
N�x c d�x ^ d N�x

�

D EjC1
�
2�x N�x�x

N�x C 2�x N�xŒ�x
N�x C c d�x ^ d N�x�C 2 �x

N�x c d�x ^ d N�x
�

D EjC1
�
2�x N�x�x

N�x C 2 �x
N�x c d�x ^ d N�x

� D 2	x EjC1
�
�x

N�x
�
: (103)

In the third equality we used the fact that the expectation of the terms in square
brackets is zero by the last line in Lemma 4.2 applied with F.	/ D 	x. The last
equality holds by the definition (47) of 	 . Since the terms Q.4/ of degree 4 in �; d�
in Q are 	2x and since Q D Q.0/ C Q.2/ C Q.4/ these formulas for Q.0/, Q.2/ and
Q.4/ imply that

EjC1
�
�	2x

	 D 	2x C 2 	x EjC1�x
N�x: (104)

By a much shorter version of the same calculation EjC1�	x D 	x. By summing these
formulas over x in � and using the definition CjC1;x;x D EjC1�x

N�x of the covariance
and translation invariance of the covariance we have proved (100).

6.3 Second Order Perturbation Theory

A much more efficient method for calculating in perturbation theory is used in
[11]. It is based on [16, Proposition 2.6] and [11, Lemma 5.2]. In second order
perturbation theory, where one calculates modulo V3, the function V 7! e�V.�/

does not retain its form under the map EjC1� , and we have modify it so that it
is form invariant. In [11, (3.21)] we construct a sequence of explicit functions
V 7! Wj.V; �/ that are quadratic in V and take values in N .�/. There is a map
[11, (4.11)]

'.0/pt;j W R3 ! R
3 (105)

such that the function

Ij W .V; �/ 7! e�V.�/.1C Wj.V; �// (106)

satisfies, modulo V3,

EjC1
�
�Ij.V; �/

	 D IjC1
�
V ı '.0/pt;j; �

�
; (107)
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where we regard V as a function of its coupling constants so that the composition
V ı '.0/pt;j makes sense. Equation (107) says that integrating out the fluctuation field
�jC1 in �Ij.V; �/ is equivalent to changing the three coupling constants g; �; z in V
according to the map '.0/pt;j. This is what we mean when we say that Ij retains its form
at second order under the map EjC1� .

We will not need the explicit formula [11, (4.11)] for the map '.0/pt;j because it
is conjugate to a simpler map. According to [11, Proposition 4.3], for each scale
j D 0; : : : ;N � 1 there is an explicit quadratic map Tj W R3 ! R

3, which is almost
the identity map,

T0.V/ D V; Tj.V/ D V C O.kVk2/: (108)

Therefore it is invertible near the origin. Furthermore, modulo terms that only
contribute to the discarded O.V3/,

'.0/pt;j D T�1
jC1 ı N'j ı Tj; (109)

where N'j W R3 ! R
3 defines, by .NgjC1; NzjC1; N�jC1/ D N'j.Ngj; Nzj; N�j/, the recursion

NgjC1 D Ngj � ˇj Ng2j ; (110)

NzjC1 D Nzj � �j Ng2j ; (111)

N�jC1 D L2 N�j.1 � �ˇj Ngj/C �j Ngj � �j Ng2j � �j NgjNzj; (112)

for scale dependent coupling constants.
The coefficients ˇj; �j; �j; �j; �j are real coefficients defined precisely in [11,

(3.24), (3.27), (3.28)]. These coefficients, and also those of the transformations
Tj, are independent of the side LN of the torus. This means that all the recursions
obtained as N varies are consistent and it is not necessary to know what N is so
long as N is larger than whatever scale j one is considering. Thus there is a formal
infinite volume recursion where j runs over all integers j � 0, not just j < N. To put
it another way, we can use this infinite volume recursion for j < N since it coincides
with the N recursion until j D N.

The sequence .ˇj/0�j<1 plays a key role in the analysis. These are positive
numbers that have a non zero limit when m2 D 0 and the dimension is 4. For m2 > 0

they decay faster than exponentially to zero, but the decay does not set in until the
scale j is large enough that L2jm2 is roughly 1. We make the following definitions
[9, (1.7)]. Given˝ > 1, we define a scale j˝ as the first scale where the exponential
decay sets in,

j˝ D inffk � 0 W jˇjj � ˝�.j�k/Cˇmax for all j � 0g; (113)

where ˇmax D maxj ˇj. The infimum of the empty set is defined to equal 1, e.g., if
ˇj D b for all j then j˝ D 1. The choice of ˝ is arbitrary; let ˝ D 10. We also
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define

�j D ˝�.j�j˝/C : (114)

Thus the sequence �j is a normalised version of ˇj which equals one for j � ˝ and
decays exponentially for j > ˝ .

Unlike the recursion defined by '.0/pt;j the N' recursion (110)–(112) is triangular:
the Ng-equation does not depend on Nz or N�, the Nz-equation depends only on Ng, and
the N�-equation depends both on Ng and Nz. Therefore we can solve the recursion one
equation at a time and thereby prove the following Proposition, which follows from
[9, Proposition 1.2]. In its statement, z1 denotes the limit z1 D limj!1 zj, and
similarly for �1.

Proposition 6.3 If Ng0 > 0 is sufficiently small, then there exists a unique global
solution .Ngj; Nzj; N�j/j2N0 to the recursion (110)–(112) with initial condition Ng0 and
final condition .Nz1; N�1/ D .0; 0/. This flow satisfies, for any real p 2 Œ1;1/,

�j Ngp
j D O

� Ng0
1C Ng0j

�p

; Nzj D O.�j Ngj/; N�j D O.�j Ngj/; (115)

with constants independent of j˝ and Ng0, and dependent on p in the first bound.
Furthermore, .Ngj; Nzj; N�j/ is continuously differentiable in the initial condition Ng0 and
continuous in the mass parameter m2 � 0, for every j 2 N0.

The proposition shows that when m2 D 0 the coupling constants Ngj tends to
zero like j�1. This is called asymptotic freedom. It suggests that perturbation theory
becomes more accurate at larger scales and the theory becomes more gaussian, as
needed for the “evaluation as if gaussian” strategy that started in Sect. 5.1.

6.4 The Error Coordinate

The perturbation theory of the preceding sections suggests that we approximate
Zj defined in (94) by Ij.Vj; �/ defined in (106) and then, by (107), ZjC1 should
be approximately equal to IjC1.VjC1;�/ where the coupling constants in VjC1 are
obtained by applying the map (109) to the coupling constants in Vj. However our
calculations have given us formulas which hold in a very weak algebraic sense since
we have worked modulo O.V3/. For example there is no uniformity in �. Now we
need a way to include the O.V3/ error terms so that all our formulas hold in the usual
sense of equality. For scale j in the range 0; : : : ;N we will write Zj as a function of
.Vj;Kj/ where Vj specifies the Ij approximation by perturbation theory and the error
coordinate Kj specifies the difference between Zj and perturbation theory. Our main
result for this section is Lemma 6.6 where we show that ZjC1 is the scale equivalent
function of VjC1 and the error coordinate KjC1 on the next scale.
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Fig. 1 Illustration of both blocks B with side length Lj and a polymer at scale j

Lemma 6.6 is an important step in our definition of the renormalisation group
map, but it is not a complete description of our formalism. Firstly, we only give the
version for first order perturbation theory, and secondly it is but one of a family of
ways to define KjC1 such that ZjC1 is represented by .VjC1;KjC1/. This many-to-one
aspect is important for overcoming a problem that we will discuss in Sect. 7.2.

Geometry Let B be a block as in Fig. 1 with side length Lj and denote by Bj.�/

the set of all such j-blocks or blocks at scale j. By definition a j-polymer or polymer
at scale j is a union of j-blocks. A polymer can be the empty set. If X is a j-polymer,
then Bj.X/ denotes the set of j-blocks contained in X. Notice that polymers at scale
j are also polymers at scales smaller than j because we have chosen the sides of
blocks to be powers of L. � is a polymer at all scales and is a single block at scale
N. We denote by Pj.�/ the set of j-polymers in�, and for a j-polymer X let Pj.X/
denote the set of all j-polymers contained in X. Two polymers X;Y are said to touch
if there is a point x in X and a point y in Y such that jx � yj1 D 1. A polymer X
is said to be connected if it is not empty and if whenever Y and Y 0 are nonempty
polymers such that X D Y [Y 0 then Y;Y 0 touch. For each scale j and j-polymer X let

X 7! X� (116)

be an assignment of a polymer X� that contains X. We think of this as an assignment
of a neighbourhood of X to X. The assignment must be translation invariant and
satisfy .X [ Y/� D X� [ Y�. Our specific choice is

X� D
[

fYjY 
 X;Y 2 S g; (117)

where S is an important class of sets specified in
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Definition 6.4 For any scale j we say that a polymer X in Pj.�/ is a small polymer
if X is connected and is a union of at most 2d blocks. Let Sj be the set of small scale
j polymers.

Thus the neighbourhood assigned to a block on scale j has diameter O.Lj/ and,
for L large enough, when j-polymers X and X0 are separated by a distance LjC1,

dist.X�;X0�/ >
1

2
LjC1 (118)

holds for all scales j. We will always assume that L is at least this large.
For X � � let N .X/ be the set of forms in N .�/ that only depend on

�x; d�x (and their conjugates for x 2 X). These sets N .X/ are the form analogues
of �-algebras of random variables. For example, when j-polymers X and X0 are
separated by a distance LjC1, A 2 N .X�/ and B 2 N .X0�/, then �A and �B are �
independent,

EjC1�
h
AB
i

D EjC1
h
.�A/.�B/

i
D EjC1

�
�A
	
EjC1

�
�B
	
; (119)

by item 2 of Theorems 6.1 and (118).
Let B 7! Ij.B/ assign to each block in Bj.�/ a form Ij.B/ 2 N .B�/. For

example our discussion of first order perturbation theory suggests

Ij.B/ D e�Vj.B/; (120)

and in this case the condition Ij.B/ 2 N .B�/ holds since the term zj	�.B/ in Vj.B/
depends only on fields �x for x in B or x a nearest neighbour to some site in B.
The other terms in Vj.B/ only depend on fields in B. For second order perturbation
theory as in (106) the formula [11, (3.21)] for Wj also satisfies Ij.B/ 2 N .B�/. For
a polymerX 2 Pj let

IX D
Y

B2B.X/

I.B/: (121)

Definition 6.5 Let Kj be the set of maps K W Pj.�/ ! N .�/ such that

1. K.¿/ D 1,
2. For X 2 Pj, K.X/ 2 N .X�/,
3. If X and Y are polymers that do not touch then K.X [ Y/ D K.X/K.Y/,
4. Symmetry properties.

The symmetry properties express invariance under lattice automorphism and super-
symmetry. See [17, Definition 1.7] for details, but they are not needed here.
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At scale j D 0, let

I0.B/ D e�V0.B/ and K0.X/ D
(
1; X D ¿
0; else

(122)

then

Z0 D e�V0.�/ D
X

X2P0.�/

I�nX
0 K0.X/: (123)

More generally, for any elements A;B of Kj we define a new element AıB of Kj by

A ı B.Y/ D
X

X2Pj.Y/

A.X/B.Y n X/: (124)

This product is easily verified to be commutative and associative with identity

�¿.X/ D
(
1; X D ¿
0; else

(125)

(which is the same function as K0.) Then, after extending the domain of Ij from
Bj.�/ to Pj.�/ by setting

I0.X/ D IX
0 ; X 2 Pj.�/ (126)

we can now write (123) in the shorter form

Z0 D I0 ı K0.�/: (127)

Notice also that the ı product depends on scale. For example at scale N, BN.�N/

consists only of ¿; �, therefore for A;B that equal 1 when evaluated on the empty
set ¿,

A ı B.�/ D A.�/C B.�/: (128)

The next result, which is the main result of this subsection, is stated for first order
perturbation theory. We use a more complicated second order version in the proof
of Theorem 2.2. We implicitly assume integrability. When we discuss norms there
will be a property called the integration property that takes care of this issue.

Lemma 6.6 Let j be in f0; 1; : : : ;N � 1g and for k D j; j C 1 let Ik D e�Vk . Given
Kj 2 Kj there exists KjC1 2 KjC1 such that

EjC1�
h
Ij ı Kj.�/

i
D IjC1 ı KjC1.�/: (129)
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Thus if .Vj;Kj/ are such that Zj D Ij ı Kj.�/, then ZjC1 D IjC1 ı KjC1.�/. A formula
for KjC1 is given in (137).

In particular, we can make any choice of V1; : : : ;VN and then by induction based
on this Lemma and by (128) there exists KN such that

ZN D IN ı KN.�/ D IN.�/C KN.�/: (130)

By combining this result with Proposition 5.5 we have

O��.m2; g0; �0; z0/ D 1

m2
C 1

m4 j�j
�
D2IN.�I 0I 1; 1/C D2KN.�I 0I 1; 1/� ;

(131)

Notation When we are concerned with a fixed scale and the transition to the next
scale we clean up the equations by suppressing the subscript j, writing I and K in
place of Ij and Kj, etc., and shorten the j C 1 subscript to C so that, for example,
KjC1, EjC1, PjC1 become KC, EC, PC.

I have the following pictorial view of the proof of Lemma 6.6, but you lose
nothing in the logical sense by skipping this. I give the actual proof below. The
representation I ı K.�/ is a sum over ways to partition � into a polymer � n X
weighted by a product of I factors, one per block in�nX, and a polymer X weighted
by K.X/. The left hand side in Fig. 2 represents one term in this sum over partitions:
the white region is the polymer�nX and each square in the white region represents
a block B with a factor I.B/. The blue region is the polymer X for which there is a
factor K.X/. If we apply the algebra homomorphism � to I ı K.�/ then the white
region represents a product over blocks B of �I.B/ and the blue represents �K.X/.
In the first step (133) of the proof below each �I.B/ is expanded into IC C ı (which
defines an error term ı). Thus there arises a sum of ways to colour a subset of the
white blocks red, each red block B denoting a ı.B/. The remaining white blocks are

Fig. 2 Illustration of Eq. (135)
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Fig. 3 Illustration of Eq. (138)

now IC factors as in the right hand side of Fig. 2, which stands for just one term in
a sum over partitions into red, white and blue. The next step (138) in the proof is a
passage to blocks on the next scale, accomplished by considering the smallest scale
jC1 polymer Y that covers the red and blue region, as indicated in the left hand side
of Fig. 3. The right hand side of Fig. 3 represents the sum ˙.Y/ over all red, white
and blue partitions as in the left hand side that generate the same polymer Y. Since
this right hand picture is a partition of � into a white polymer � n Y that represent
products of IC blocks and a blue polymer Y, and since these are polymers on the next
scale, this picture is a term in IC ı ˙ and it tells us to define KC.Y/ D EjC1˙.Y/
because then we match the desired right hand side of the Lemma.

Proof (of Lemma 6.6.) Define B 7! ı.B/ on B.�/ by

ı D �I � IC: (132)

Notice that �I is evaluated on scale j blocks so we have to extend the domain of IC
which is defined on scale j C 1 block to include scale j blocks, but we can do this
easily for first order perturbation theory since VjC1 can be summed over points in
blocks of any scale: we set IjC1.X/ D e�VjC1.X/ for X any scale block. For later in
the proof note that ı depends on � because of the � , but IC is not dependent on �.
For the next equation we also extend the domain of ı from blocks to polymers by
writing ı.X/ D ıX for a X 2 P . Then, for X 2 P ,

� IX D �
IC C ı

�X D
X

Xı2P.X/

IXnXıC ıXı

D
X

Xı2P.X/

IXnXıC ı.X/ D IC ı ı.X/: (133)
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Let

H D ı ı �K: (134)

Then

�.I ı K/.�/ D �I ı �K.�/

D �
IC ı ı� ı �K.�/ D IC ı �ı ı �K

�
.�/

D IC ı H.�/: (135)

For X 2 P.�/, define the closure X of X on the next scale to be smallest polymer
in PC.�/ containing X. For Y in PC let P.Y/ be the set of all polymers in P
whose closure is Y, then

IC ı H.�/ D
X

X2P.�/

I�nX
C H.X/

D
X

Y2PC.�/

X

X2P.Y/

I�nX
C H.X/

D
X

Y2PC.�/

I�nY
C

X

X2P.Y/

IYnX
C H.X/: (136)

For Y in PC.�/ let

KC.Y/ D EC
� X

X2P.Y/

IYnX
C H.X/

�

D
X

X2P.Y/

IYnX
C EC

�
H.X/

	
: (137)

Then by (135)–(137)

EC�
�
Ij ı Kj.�/

	 D
X

Y2PC.�/

I�nY
C EC

� X

X2P.Y/

IYnX
C H.X/

�

D
X

Y2PC.�/

I�nY
C KC.Y/ D IC ı KC.�/; (138)

which verifies the desired property with respect to EC of KC.
We now outline the proof that KC defined by (137) is in KC. This is where

the finite range property of Theorem 6.1 plays its crucial role and part (2) of
Definition 6.5 and the analogous property of I are used. If K

C
is evaluated on X [X0
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where X and X0 are polymers in PC that do not touch, then the distance between
X and X0 is at least LjC1 because they are each unions of j C 1 scale blocks which
cannot touch. Therefore factors of ı evaluated on blocks in X are independent of
factors of ı evaluated on blocks in X0. Furthermore, by part (3) of Definition 6.5
for K, when �K is evaluated on a subset of X [ X0, it is a product of a factor of K
evaluated on a subset of X and a factor of K evaluated on a subset of X0. These are
also independent. Finally it is straightforward to check that the sums defining H and
KC factor into sums of ways to partition X and a separate sum over ways to partition
X0. Taken all together this implies that KC has property (3) of the definition of KC.
The other properties of KC are much easier to check.

7 The Norm of the Error Coordinate

So far all our analysis of the action of EjC1� in terms of .V;K/ has been algebraic
with no hint on how the errors could be controlled. In this section we explain part
of our formalism in [17] for the control of errors. In particular we will see that the
error coordinate at scale j can be regarded as an element of a Banach space Fj. The
spaces Kj; j D 0; 1; : : : ;N, for the error coordinate introduced in Definition 6.5 are
not vector spaces because part (3) of Definition 6.5 is not linear, but the restrictions
of elements of Kj to connected polymers form a vector space as in the following
definition.

Definition 7.1 For j D 0; 1; : : : ;N, let Cj.�/ be the set of connected polymers in
Pj.�/. Let CKj be the complex vector space under pointwise addition and scalar
multiplication of maps K W Cj.�/ ! N .�/ such that

1. For X 2 Cj.�/, K.X/ 2 N .X�/,
2. Symmetry properties,

where the symmetry properties are a repetition of part (4) of Definition 6.5.

Not only does an element of Kj determine an element of CKj by restriction, but,
conversely, given an element K of CKj we can extend its domain from Cj.�/ to
Pj.�/ by imposing property (3) of Definition 6.5: a polymer X in Pj.�/ can be
decomposed into its connected components X1; : : : ;Xn and then we define K.X/ DQn

iD1 K.Xi/. If X is the empty set we define K.X/ D 1.

7.1 The F Norm

7.1.1 Norm on CKj

For each scale j the norm on CKj is constructed from a family of complete norms
kFkj D kFkj;N .X�/, one for each space N .X�/ where X ranges over connected
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j-polymers. Given such norms we define the norm kKkFj for K 2 CK by

kKkFj D sup
X2Cj.�/

W.X/kK.X/kj;N .X�/ (139)

with a weight X 7! W.X/. In these notes we set

W.X/ D ��jXjj ; (140)

where jXjj D jBj.X/j is the number of j-blocks in X and � is a positive parameter
smaller than one. This is not our choice in [17] but could have been and it is
instructive.

7.1.2 The Norm on N .X�/

The definitions are given in [16] and they take time to assimilate, so instead
of repeating them, I list some desired properties and illustrate the role of these
properties by using them axiomatically to prove a bound in the following section.

• Product Property: For all scales j D 0; : : : ;N � 1, for disjoint j-polymers X;Y,
for forms A in N .X�/, B in N .Y�/ and AB in N ..X [ Y/�/,

kABkj � kAkjkBkj: (141)

See [16, Proposition 3.16]. All the spaces N .X/, where X ranges over subsets of
�, are subalgebras of N .�/ so it makes sense to multiply A;B.

• IC Bound: There is a constant ˛I and a coupling constant domain DjC1 for the
coupling constants in VjC1 such that

ke�VjC1.B/kjC1 � ˛I (142)

for B 2 Bj.�/.
• Integration Property: Recall the definition of ı from (132) and let k D j or j C 1.

There is a constant ˛E such that for disjoint X;Y 2 Pj, F.Y/ 2 N .Y�/ and Vk

with coupling constants in Dk,

kEjC1 ıX�F.Y/kjC1 � ˛
jXjjCjYjj
E

�
jXjj
ı kF.Y/kj; (143)

where �ı tends to zero as the coupling constants in Vk tend to zero.
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7.1.3 Comment on Norms

If we were not working with forms, but just functions of fields then the L1 norm
would have these properties. In [16] we show how to construct norms that record
information on derivatives by being equivalent to C p norms, but which also have the
product property. The construction is based on the idea that the Taylor expansion of
a product AB is the product of the Taylor expansions for A and for B. As a corollary
we can extend the norms to forms in N .X�/ using the fact that coefficients of
monomials in d� and d N� are analogous to coefficients in a Taylor expansion.

Another consideration is that at scale j an element F of N .X�/ is not going to be
evaluated on arbitrary fields � 2 C

�, but on fields that are typical for the distribution
of � D P

k>j �k. Therefore, for each polymer X, we consider Kj.X/ as a smooth (C p)
function defined on the vector space C� with norm chosen so that the supremum of
a unit norm field is O.L�j/. This factor is because part (3) of Theorem 6.1 says that
the standard deviation of

P
k>j �k is O.L�j/, provided m2 � O.L�2j/. The norm on

Kj.X/ measures directional derivatives of Kj.X/ as a function of fields in C
�. For

example,

DKj.XI�I P�/ D d

dt j0
Kj.XI� C t P�/ (144)

is bounded in norm by the norm of Kj.X/ times a sup norm of P� divided by L�j. As
an important example for us, let P� be the constant test function 1, then the second
directional derivative D2KN.0I 1; 1/ at � D 0 and d� D 0 satisfies

jD2KN.�I 0I 1; 1/j � kKkFN O.L2N/: (145)

7.2 The Irrelevant Parts of KC

We will now illustrate the use of the properties postulated in Sect. 7.1.2 for the norm
on N .X�/. Lemma 6.6 has provided us with a formula (137) for a map KC W
.Vj;VjC1;Kj/ 7! KjC1 that exactly represents Zj 7! ZjC1 as in (94). The main result
of this section is Proposition 7.2 which shows a very good property of KC. It shows
that KC is contractive in Kj provided Kj, which is a map from connected polymers to
N , restricts to be zero on the connected polymers in the class S of Definition 6.4.

For the rest of this section we omit j subscripts and abbreviate jC1 to C as in the
notation explained below (131). We also suppress the dependence of KC on V and
VC because our estimates are pointwise and uniform for V;VC in domains D ;DC.
Referring to the formula (137) for KC let P .2/.Y/ denote the set of pairs .X;XK/

such that X 2 NPj.Y/ and XK 2 Pj.X/. From (137) and (134),

KC.Y/ D
X

.X;XK/2P.2/.Y/

IYnX
C EC

�
ıXnXK K.XK/

	
: (146)
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(i) We subtract from KC.Y/ the value of KC.Y/ when K D 0 by omitting terms in
the sum which do not depend on K, that is terms where XK D ¿. (ii) We omit terms
where X D XK 2 S , where S is the class of small sets defined in Definition 6.4.
To study the remaining part of KC, let

KIC .Y/ D
X

.X;XK/2I .Y/

IYnX
C EC

�
ıXnXK K.XK/

	
: (147)

where

I .Y/ D P .2/.Y/ n


fXK D ¿g [ fX D XK 2 S g

�
: (148)

Wilson called terms that contract irrelevant so we have used the letter I to label
the set of terms that we can prove are collectively contracted. Wilson called terms
that expand relevant and terms that stay the same size marginal. Thus we use R to
label the complement of the set I , but neither class is in precise correspondence
with Wilson’s classification because although we are capturing his intuition we are
working outside his original context.

For the next section we define KRC be the part of KC that we subtracted out under
item (ii). We could write it in exactly the same form as (147) with the set I .Y/
replaced by

R.Y/ D P .2/.Y/ n


fXK D ¿g [ fX D XK 62 S g

�
; (149)

but it is easy to verify that this is the same as

KRC .Y/ D
X

XK2S W XKDY

IYnXKC EC
�
K.XK/

	
: (150)

If the restriction of K to S is zero then KRC D 0, but in general we have

KC D KCjKD0
C KRC C KIC : (151)

For the main result of this section let � D 1
2
.1 C �/ where � > 1 is defined

by geometry in Lemma 7.3. It follows that � > � > 1 and this is the only fact
about � that is important for us. Recall the definitions of the parameters ˛I; ˛E from
Sect. 7.1.2 and let ˛ be the maximum of ˛I , ˛E and 1. We choose � in (140) smaller
than 1 and such that

� <
2

3
; where � D .3˛/L

d
���1: (152)
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We decrease, if necessary, the domain Dk of the coupling constants gk; zk; �k with
k D j; j C 1 so that, by the remark below (143),

�ı � �� ��2
dC1

: (153)

Let BF be the ball in F given by

kKkF �


��2

dC1
�2
: (154)

Proposition 7.2 With the choices (148)–(154), the function K 7! KIC with domain
BF satisfies

kKIC kFC
� �kKkF ; (155)

and, for K and K0 in the smaller domain 1
4
BF ,

KIC .K0/ � KIC .K/

FC

� 3

2
�kK0 � KkF : (156)

Thus KIC is a contractive map from 1
4
BF to itself. If the restriction of K to S is zero

then KC is contractive.

To prove this Proposition we need the following two geometrical estimates which
show why small sets have an exceptional role. We measure the size of a polymer
at scale j by counting the number of scale j blocks it contains. Similarly the size
of a polymer at scale j C 1 is measured by counting the number of scale j C 1

blocks it contains. Does the closure map X 7! X make a polymer smaller? For
example let X be a polymer that consists of a single block. Then X is also a polymer
which consists of a single block so it is the same size as X. Lemma 7.3 says (1) that
connected polymers that are not small always decrease in size under closure and (2)
that no polymer increases in size under closure.

Lemma 7.3 ([15, Lemma 6.15]) There is an � D �.d/ > 1 such that for all L �
L0.d/ D 2d C 1 and for all connected scale j polymers that are not in Sj,

jXjj � �jXjjC1: (157)

In addition, (157) holds with � replaced by 1 for all X 2 Pj (not necessarily
connected, and possibly small).

Corollary 7.4 ([15, Lemma 6.16]) Let X 2 Pj and let n be the number of
components of X. Then

jXjj � 1

2
.1C �/jXjjC1 � 1

2
.1C �/2dC1n: (158)
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Proof (of Proposition 7.2) The estimate (156) follows from (155) and [3, Lemma 1]
with � D 1

4
. The final claim in Proposition 7.2 follows from (151) and the remark

above this equation. Therefore we are reduced to proving (155).
By applying to (147), the product property (141), the bound (142) on IC and the

integration property (143), for Y 2 C .�/,

kKIC .Y/kjC1 �
X

.X;XK/2I .Y/

˛jYjj�jXnXK jj
ı kK.XK/kj: (159)

The polymer XK may not be connected. Suppose it has connected components
X1; : : : ;Xn. We use property (3) of Definition 6.5 together with the product
property (141) and the definition (139) of kKkF D kKkFj to obtain

kK.XK/kj D
Y

iD1;:::;n
kK.Xi/kj

D �jXK jj Y

iD1;:::;n
��jXi jjkK.Xi/kj � �jXK jj kKkn

F ; (160)

where n D n.XK/ is the number of components in XK . We substitute (160) into (159)
and estimate the sum by noting that it extends over less than 3jYjj terms because this
is the number of ways to partition Y into three disjoint subsets XK ;X n XK ;Y n X that
are each polymers at scale j. Also we can replace Y by X because one of the defining
conditions for I .Y/ is that they are equal. Therefore we have

kKIC .Y/kjC1 � sup
.X;XK/2I .Y/

.3˛/jXjj�jXnXK jj
ı �jXK jj kKkn.XK /

F : (161)

We multiply both sides by ��jYjjC1 which equals ��jXjjC1 and take the supremum
over connected j C 1 scale polymers in order to form the FjC1 D FC norm on the
left hand side and we obtain

kKIC kFC
� sup

.X;XK/2I
F.X;XK/; where

F.X;XK/ D ��jXjjC1 .3˛/jXjj�jXnXK jj
ı �jXK jjkKkn.XK /

F ; (162)

and I D [Y2CC.�/I .Y/. Recall that Y 2 CC.�/ implies that Y is not empty.
Now we cover I by three subsets and it suffices to prove that for .X;XK/ in each
covering set we have F.X;XK/ � �kKkF . We give the proof in most detail for
subset 1 because the proofs are similar for the other sets.
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Subset 1 For .X;XK/ 2 I \ fn.XK/ D 1; jXKj > 2dg, by using Lemma 7.3 twice,
� > � and the hypothesis (153) on �ı and �ı � 1,

�
jXnXK jj
ı �jXK jj � �

jXnXK jjC1

ı ��jXK jjC1

� �� jXnXK jjC1�� jXK jjC1 � �� jXjjC1 : (163)

The final inequality holds because A [ B 
 A [ B since the closure is the
smallest next scale polymer cover. Putting this estimate into (162) and using the
definition (152) of � we have

F.X;XK/ � .3˛/jXjj�.��1/jXjjC1kKkF

D


.3˛/L

d
���1

�jXjjC1 kKkF � �kKkF : (164)

Subset 2 For .X;XK/ 2 I \ fn.XK/ D 1; jX n XK jj � 1g, by Lemma 7.3 and
Corollary 7.4 and the hypothesis (153) on �ı ,

�
jXnXK jj
ı �jXK jj � �

jXnXK jjC1

ı �� jXK jjC1���2dC1 � �� jXjjC1 : (165)

Putting this estimate into (162) we have

F.X;XK/ � .3˛/jXjj�.��1/jXjjC1kKkF
� .3˛/L

d
���1kKkF � �kKkF : (166)

Subset 3 For .X;XK/ 2 I \ fn.XK/ � 2g, by Lemma 7.3 and Corollary 7.4, the
hypothesis (153) on �ı and the domain (154) for K,

�
jXnXK jj
ı �jXK jjkKkn.XK /

F � �
jXnXK jjC1

ı �� jXK jjC1



���2dC1kKkF

�n.XK /

� �� jXjjC1



���2dC1kKkF

�2

� �� jXjjC1kKkF : (167)

Putting this estimate into (162) we have

F.X;XK/ � .3˛/jXjj�.��1/jXjjC1kKkF

�


.3˛/L

d
���1

�jXjjC1 kKkF � �kKkF : (168)
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7.3 The Complete Recursion

We have seen in the previous section that the map .Vj;VjC1;Kj/ 7! KC provided
by Proposition 7.2 is contractive provided Kj vanishes when evaluated on polymers
in the class S of small sets. In this section we will discuss a better choice for KC
which is contractive. Part of the improvement comes from specifying VjC1 carefully,
recalling that Proposition 7.2 put essentially no constraint on it. However we need
also another idea which is a change of variable formula for K. The conclusions
which play a role in the sequel are the recursion (170) and its conjugation (175).

Recall from (142) and (143) that Dj is a domain in R
3 for the coupling constants

gj; zj; �j. Let BFj denote a ball in a Banach space Fj. In [17] we define, for all scales
D 0; 1; : : : ;N � 1, domains Dj 	 BFj and functions

RC W Dj 	 BFj ! R
3; KC W Dj 	 BFj ! BFjC1

: (169)

These functions, together with the second order perturbative map '.0/pt;j appearing
in (105), build a recursion,

.gjC1; zjC1; �jC1/ D '.0/pt;j.gj; zj; �j/C RC.gj; zj; �jI K/;

KjC1 D KC.gj; zj; �jI Kj/; (170)

This recursion, with initial condition .g0; z0; �0I K0/, where K0 D �¿, has the
following properties:

1. KC is contractive in Kj.
2. The recursion generates a sequence .gj; zj; �jI Kj/jD0;:::;jexit;N which terminates at

scale jexit;N , which is the first scale j ^ N such that .gj; zj; �j/ is not in Dj.
3. For Zj given by (94) and Ij D Ij.Vj/ given by (106) and (95), we have

Zj D Ij ı Kj.�/; j � jexit;N : (171)

4. Volume � compatibility.

The existence of R and KC with the first and third properties are parts of Theorem 2.2
of [17]. The second property follows immediately from the domains of the functions
RC and KC. The fourth property is a statement analogous to the statements
below (112). The essential idea is that the recursions for two tori of different sizes
N;N0 generate the “same” gj; zj; �jI Kj for j up to the scale before the smaller of
N;N0. However, it takes time to formulate the meaning of “same” so we refer to
[17, Sect. 1.8.3]. This compatibility enables the definition of the infinite volume
limit of (170) which is a recursion that generates a sequence .gj; zj; �jI Kj/jD0;:::;jexit;1

where Kj is defined on polymers in Z
d and

jexit;1 D lim sup
N

jexit;N : (172)
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To put this into the context of Proposition 7.2 refer to Eq. (151). The term KIC
is contractive. Indeed, the preamble for this Proposition shows that the contractivity
constant � can be made arbitrarily small by choosing � in the norm small and the
ball BFj small. But the term KRC in (151) cannot be contractive. To understand why,
consider (150) when Y is a single block on the scale j C 1. Then the sum over
polymers XK has a range that includes the Ld possible choices of a single block
XK D B in Bj.Y/. This factor of Ld prevents KRC from being contractive.

The function RC in (170) is part of the solution to this problem. By choosing
gjC1; zjC1; �jC1 to be different from '.0/pt;j.gj; zj; �j/ we generate terms in KjC1 that
I will call counterterms. These counterterms cancel most of KR

j in (151) which
enables KC to be contractive. However, to achieve this cancellation, one must have
some way of changing the allocation of the counterterms to the different small sets
XK 2 S , because Proposition 7.2 does not match the counterterms correctly with
the small set parts of Kj. We solve this allocation problem by taking advantage of
the fact that there are re-allocation changes of variable Kj 7! K0

j such that

Ij ı K0
j .�/ D Ij ı Kj.�/: (173)

These changes of variable are supplied by Brydges and Slade [17, Proposition 4.1].
Roughly speaking these changes of variable cancel some part J.X/ of Kj.X/
for small sets X 2 Sj which are not single blocks and compensate by addingP

X�B J.X/ to Kj.B/ for each block B. Using this re-allocation we can prove that
when RC is chosen correctly the small set part of the re-allocated K0

j is almost zero.
Therefore when KC given by (146) is evaluated on the re-allocated K0 the term
KIC is almost zero and Proposition 7.2 proves that the composition is contractive.
Thus the composition of (146) on the right with a re-allocation gives a contractive
formula. In passing let me remark that there is another re-allocation problem that is
solved by a further composition with a re-allocation on the left. This problem is that
one cannot prove that the first term in (151) is O.V3

j / as expected from our choice
of the second order formula for Ij unless the contributions from perturbation theory
are re-allocated. This is happening in Lemmas 4.2 and 5.8 of [17].

Recall from (108) that Tj is a map that conjugates '.0/pt;j to the triangular map N'j.
We rewrite the recursion (170) in terms of new variables defined by

.Lgj; Lzj; L�jI LKj/ D �
Tj.gj; zj; �j/I Kj

�
: (174)

By (109) the new recursion is

.LgjC1; L�jC1; LzjC1/ D N'j.Lgj; L�j; Lzj/C LRC.Lgj; L�j; LzjI LK/;
LKjC1 D LKC.Lgj; L�j; LzjI LKj/; (175)

where LRjC1 D TjC1 ı RjC1 ı T�1
j plus the O.V3/ error in (109) and on the right

hand side of (175) LKjC1 D KjC1 ı T�1
j where T�1

j acts only on the R
3 part.
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As explained in Sect. 6.6 of Bauerschmidt et al. [10] these new functions have
almost the same domains and satisfy essentially the same bounds as the old ones
because the conjugations Tj are close (108) to the identity. In particular LKjC1 is still
contractive.

8 Outline of Proof of Theorem 5.2

This is a survey of the complete argument which is in [10, Sect. 8.3]. I omit the
proofs of (75). One point that I find remarkable is that there are exact formulas for
� and its derivative in terms of the recursion of the coupling constant part of (170).
The error coordinate does not appear in these formulas; the only role it has is to
slightly change, via RC, the recursion of second order perturbation theory. I should
mention that this feature has been strongly emphasised in physics, but it is nice to
be able to verify it here.

8.1 Construction of zc
0
; �c

0

Recall from (172) the definition of jexit;1. The first step is to prove that there exist
functions zc

0 and �c
0 of .m2; g0/ such that jexit;1 D 1 for the (infinite volume limit

of the) recursion (170) with the initial condition

.g0; z0; �0I K0/ such that z0 D zc
0.m

2; g0/; �0 D �c
0.m

2; g0/; K0 D �¿:
(176)

Proposition 7.1 of Bauerschmidt et al. [10] shows that zc
0 and �c

0 exist. This
proposition is proved by showing that the conjugated recursion (175) generates
an infinite sequence .Lgj; Lzj; L�jI LKj/j2N0 with the same initial condition (176). The
initial condition is the same because, by (108), T0 is the identity. The main ideas in
the proof of Proposition 7.1 of Bauerschmidt et al. [10] are that (1) the existence
of infinite sequences for the N' recursion (110)–(112) is given by Proposition 6.3.
(2) Norm estimates on the functions LRC and LKC in the recursion (175) show
that they are always small compared with N' on the infinite sequence supplied by
Proposition 6.3. By the main result of Bauerschmidt et al. [9] there exists a unique
infinite sequence generated by the recursion (175) that stays close to the infinite
sequence supplied by Proposition 6.3.
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8.2 Coupling Constants at Large Scales

The following results are needed for the next steps in the proof. Recall from
Sect. 8.1 that the infinite sequence generated by the recursion (175) stays close to
the infinite sequence supplied by Proposition 6.3. In particular, by Proposition 7.1
of Bauerschmidt et al. [10],

kKjkWj.sj;�N / � O.�j Ng3j /; Lzj D O.�j Lgj/; L�j D O.�j Lgj/; (177)

where Wj.sj; �N/ is a weighted maximum of two different choices of Fj norms.
These bounds are the same as the coupling constant bounds (115) and Kj is third
order which manifests the idea that the recursion is staying close to the second order
perturbative recursion.

The coupling constant Lgj has the same asymptotic behaviour as the solution
to (110), but does not tend to zero unless m2 D 0. By Lemma 8.5 of Bauerschmidt et
al. [10] it tends to a limit Lg1 and, for Og0 small and positive, as m2 # 0 and g0 ! Og0,

Lg1 � 1

Bm2
: (178)

By the formulas for the conjugation Tj which are given in [11, (6.93)], there exist
constants aj D O.1/ such that L�j D �j C aj�

2
j . By (177) and the a-priori limitation

of coupling constants to be in a small domain Dj, this implies that

�j D O.�j Lgj/; �0
j D L�0

j.1C O.�j// � L�0
j; as j ! 1; (179)

where the prime denotes the derivative of with respect to �0. Note that �0 D L�0 D
�0 by (108) and (96). Therefore

L�0
0 D �0

0 D 1: (180)

We will be applying these bounds with j D N which is the scale where the
finite volume recursion parts company with the infinite volume recursion; at the
scale where the torus becomes a single block we are integrating out a field �N with
the � dependent covariance CN;N of Theorem 6.1. But, provided N is large such
that m2L2N � 1, the recursion (170) obeys the same bounds as the infinite volume
recursion and we can set j D N in (177). Since we studying the limits in the order
N ! 1 followed by m2 # 0 we can assume that m2L2N � 1.
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8.3 Proof of (73)

By (131) and (106),

O��.m2; g0; �0; z0/ D 1

m2
C 1

m4 j�j D2IN.�I 0I 1; 1/C 1

m4 j�j D2KN.�I 0I 1; 1/

D 1

m2
C 1

m4j�jD2e�VN .�I 0I 1; 1/C 1

m4j�jD2WN.�I 0I 1; 1/

C 1

m4 j�j D2KN.�I 0I 1; 1/: (181)

where cross-terms in D2IN are zero when � D 0 and d� D 0 because WN defined
in [11, Sect. 3.5] has no monomials of odd degree, in particular of degree one. The
first term on the right-hand side of (181) can be evaluated by direct calculation,
using (95), (46) and (47), to give

D2e�VN .�I 0I 1; 1/ D D2.�VN/.�I 0I 1; 1/
D �

X

x;y

�NL�2Nıxy1x1y �
X

x;y

zN.��xy/1x1y

D ��NL�2N j�j; (182)

since the quartic term 	2 does not contribute, and �1 D 0. Therefore

O�N D 1

m2
� �NL�2N

m4
C 1

m4

1

j�jD2W0
N.0; 0I 1; 1/

C 1

m4

1

j�jD2K0
N.0; 0I 1; 1/: (183)

For m2 fixed the final term tends to zero as N ! 1 like O.�Ng3N/L
�2N . This follows

from (145) and

1. 1
j�j D L�4N .

2. kKNkFN � O.�Ng3N/ by (177).

By (177) �N is bounded and therefore the second term tends to zero like L�2N .
The third term is estimated from the explicit formula for WN and tends to zero as
O.�N Ng2NL�2N/ by Bauerschmidt et al. [10, (8.56)]. Thus we have proved Part (1) of
Theorem 5.2.
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8.4 Proof of (74)

By the remark above Theorem 2.2 we can interchange a derivative with respect to
�0 with the infinite volume limit. Thus we take the derivative of both sides of (183)
with respect to �0 and obtain

@ O�
@�0

D � 1

m4
lim

N!1 L�2N @�N

@�0
D � 1

m4
lim

N!1 L�2N L�0
N ; (184)

where we used (179) to obtain the second equality. As in Sect. 8.3, there are no
contributions to this derivative from the third and fourth terms in (183) because
they decay to zero as N ! 1. To calculate the derivative L�0

N we differentiate
the recursion (175) with respect to �0 and obtain a recursion for the derivatives
.Lg0

j; Lz0
j; L�0

jI LK0
j /. Since there are many terms and the details are given in Sect. 8.3 of

Bauerschmidt et al. [10] we write only the terms that will turn out to be dominant.
From (175) and (112) the L� equation is

L�jC1 D L2 L�j.1 � �ˇj Lgj/C rj; (185)

where rj is the sum of all the other terms. It changes from line to line in the next
equations. Therefore

L�0
jC1 D L2 L�0

j.1 � �ˇj Lgj/C r
0

j

D L2 L�0
j.1 � ˇj Lgj/

� C r
0

j : (186)

From (175) and (110) and an estimate on the Lg component of LRC,

LgjC1 D Lgj � ˇj Lg2j C O.�j Lg3j / D Lgj.1 � ˇj Lgj/C O.�j Lg3j /: (187)

Using this to eliminate .1 � ˇj Lgj/ in (186) and dropping r
0

j we obtain

L�0
jC1 D L2 L�0

j

� LgjC1
Lgj

�� �
1C O.�j Lg2j /

��
: (188)

By iterating this equality and recalling (180) we have

lim
N!1 L�2N L�0

N D c.m2; g0/ L�0
0

� Lg1
Lg0
��

D c.m2; g0/

� Lg1
Lg0
��
; (189)

where Lg1 D lim LgN and c.m2; g0/ arises from the r
0

j terms and the factors 1 C
O.�j Lg2j /. The coefficient c.m2; g0/ has a limit as m2 # 0. We insert (189) into (184)
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and obtain

@ O�
@�0

D � 1

m4
c.m2; g0/

� Lg1
Lg0
��
: (190)

By (178), we obtain the desired (74).
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Phase Transitions in Discrete Structures

Amin Coja-Oghlan

1 Introduction

Random discrete structures such as random graphs, formulas or matrices play
an important role in several disciplines, including combinatorics, coding theory,
computational complexity theory, and the theory of algorithms [3, 5, 18]. Over the
past 20 years, a systematic but non-rigorous statistical mechanics approach to these
problems has been developed [21] that provides plausible “predictions” with respect
to many important open problems. From a mathematical perspective, the obvious
problem is to provide a rigorous foundation for the physics approach, the so-called
cavity method. In this lecture, I am going to give a very brief introduction into this
line of work.

In the first part of the lecture, we will see various examples of (random)
discrete structures and learn about the physics approach. This part follows the
monograph [21], where the various references to the original research articles can
be found. The second part of the lecture deals with “classical” rigorous material
from the theory of random discrete structures. Finally, in the third part we venture
into the more recent, physics-inspired rigorous work. For the sake of concreteness,
the second and the third part deal with the random hypergraph 2-coloring problem,
although the ideas presented there have are fairly general and carry over to a wide
variety of other examples as well.
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2 The Cavity Method

In this section we learn about the (non-rigorous) physics approach to a variety
of problems concerning (random) discrete structures. In the physics literature, a
generic method has been developed for calculating the “partition function” (a key
quantity) and for locating phase transitions. This is the so-called cavity method. We
begin by introducing a few basic concepts and examples. Then, we proceed with a
discussion of the two variants of the cavity method that are most important for our
purposes, the replica symmetric ansatz and the 1-step replica symmetry breaking
ansatz. This section closely follows the monograph [21].

2.1 Basic Concepts

Generally, the “systems” that we are going to be interested in can be captured as
follows. There is a (small) finite set X of possible “spins” and a (large) number
N of “variables” or “sites”. A configuration assigns each variable one of the spins
from X . Hence, a configuration is just an element of X N . Furthermore, there are
a (large) number of functions  a W X N ! R�0, a D 1; : : : ;M. These functions
give rise to a probability distribution on X N , called the Boltzmann distribution,
defined by

�.x/ D 1

Z

MY

iD1
 a.x/; provided that Z D

X

x2X N

MY

iD1
 a.x/ > 0:

The number Z is called the partition function.
Typically, each of the functions  a only really depends upon a (small) subset

@a � f1; : : : ;Ng of the variables; that is, for any two configurations x; x0 2 X n

such that xi D x0
i for all i 2 @a we have  a.x/ D  a.x0/. This leads to the notion

of the factor graph. This is a bipartite graph with two kinds of vertices: there are N
variable nodes x1; : : : ; xN and M function nodes 1; : : : ;  M , and each function node
 a is connected with the variable nodes xi, i 2 @a. Let us look at a few examples.

Example 2.1 (The One-Dimensional Ising Model at Inverse Temperature ˇ > 0)
We have X D f�1; 1g. Moreover, there are M D N � 1 factors  1; : : : ;  M

defined by

 a W X N ! R�0; x 7! exp.ˇxaxaC1/:

Thus, @a D fa; a C 1g. Moreover, the factor graph is just a path with alternating
variable and function nodes, see Fig. 1.
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Fig. 1 The factor graph of the one-dimensional Ising model with N D 7. The round vertices
represent the variable nodes and the square vertices the function nodes

Fig. 2 A graph G (left) and the factor graph of the corresponding Potts antiferromagnet (right)

Example 2.2 (The Potts Antiferromagnet) In this case, we let X D f1; : : : ;Kg,
where K is a given number of spins. In addition, we are given a graph G D .V;E/
on N D jVj vertices. For each of the M D jEj edges we define a factor  e, e D
fv;wg 2 E, by letting

 e W X V ! R�0; x 7! exp.�ˇ1xvDxw/:

Thus,  e.x/ is equal to exp.�ˇ/ if under the configuration x the two vertices v;w
that the edge e connects have the same spin; otherwise, e.x/ D 1. As before, ˇ > 0
is a parameter, called the inverse temperature. The factor graph in this model arises
simply from the graph G by placing a (square) factor node in the middle of each
edge of G, see Fig. 2.

For a given model, the key quantity that we are going to be interested in is
the partition function Z. The reason for this is that the partition function typically
captures the key quantities of the model. More specifically, the partition function can
generally be viewed as a function of the parameters that go into the definition of the
functions a (such as the inverse temperature). By taking, e.g., the derivative of ln Z
with respect to the inverse temperature, we obtain physically meaningful quantities
such as the “average energy” of a state chosen from the Boltzmann distribution.
Since the partition function typically scales exponentially in the “system size” N,
we typically aim to calculate 1

N ln Z: Following [21], we refer to this quantity as the
free entropy.

In fact, we will typically be interested in examples where it is meaningful to let
N tend to infinity (“thermodynamic limit”). That is, strictly speaking we consider
a sequence of Boltzmann distributions .�ŒN�/N and their associated partition
functions .ZŒN�/N . To unclutter the notation, we typically drop the reference to N.
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Thus, we would like to get a handle on

lim
N!1

1

N
ln Z; (1)

the so-called free entropy density.
This notion immediately leads to several questions. First, can we prove for a

given model that the limit (1) exists? Second, if it exists, what properties does
the limit have as a function of the various system parameters such as the inverse
temperature? More specifically, we refer to parameter values where the free entropy
density is non-analytic as phase transitions.

For example, it is well known that in the one-dimensional Ising model described
above (parametrized by the inverse temperature ˇ) there is no phase transition.
By contrast, Onsager’s well-known result shows that the Ising model on a two-
dimensional lattice does exhibit a phase transition at a certain critical tempera-
ture ˇc.

2.2 Belief Propagation

Generally, computing the free entropy is a very difficult problem. But in the case
that the factor graph is a tree there is a systematic recipe called Belief Propagation.
Thus, in this section we assume that the factor graph associated with the Boltzmann
distribution� is a tree. In addition, for the sake of simplicity we assume that �.x/ >
0 for all configurations x. (This is the case in both the Ising and the Potts model as
described in the previous section.)

Strictly speaking, Belief Propagation is a mechanism for calculating the marginal
distribution of the spin of a given variable xi under a configuration chosen from the
Boltzmann distribution. To accomplish this, Belief Propagation performs a fixed
point computation for a collection of so-called “messages” that travel along the
edges of the factor graph.

More precisely, let M be the set of all families � D .�j!a; O�a!j/a2ŒM�;j2ŒN�;j2@a

such that �j!a, O�a!j are probability distributions on X . In other words, for every
edge

˚
xj;  a

�
of the factor graph � features two distributions �j!a; O�a!j on X . We

think of the first distribution �j!a as a “message” from j to a, and of the second
distribution O�a!j as a “message” from a to j. Let us call M the message space.

We now define the Belief Propagation operator BP W M ! M as follows. For
j 2 @a and xj 2 X we define � D BP.�/ by letting

O�a!j.xj/ /
X

x@anj

 a.x@a/
Y

i2@anj

�i!a.xi/: (2)

To be explicit, the above summation is over all vectors x@anj 2 X @anj, i.e., over all
possible ways of assigning spins to the variables xi, i ¤ j, that affect factor  a. For
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each choice of x@anj, we obtain a vector x@a D .xi/i2@a by inserting the given value
xj. We evaluate  a for this particular x@a and multiply the result by the “messages”
from the other variables xi, i 2 @a n j, to  a. Finally, the / sign in (2) indicates that
we normalise such that O�a!j becomes a probability distribution on X . Spelled out
in full, this means that we set

O�a!j.xj/ D
P

x@anj
 a.x@a/

Q
i2@anj �i!a.xi/

P
yj2X

P
y@anj

 a.y@a/
Q

i2@anj �i!a.yi/
: (3)

Additionally, we define

�j!a.xj/ /
Y

b2@xjna

O�b!j.xj/: (4)

Here @xj denotes the set of b 2 ŒM� such that xj and  b are neighbors in the factor
graph. Of course, in (4) the / symbol denotes the appropriate normalisation that
turns �j!a into a probability distribution on X . Spelled out, (4) reads

�j!a.xj/ D
Q

b2@xjna O�b!j.xj/
P

yj2X
Q

b2@xjna O�b!j.yj/
: (5)

The two equations (2) and (4) define the operator BP W M ! M . The key property
of this operator is summarised by the following theorem.

Theorem 2.3 Assume that the factor graph is a tree.

1. The operator BP has a unique fixed point �� (i.e., BP.��/ D ��).
2. If T is the diameter of the factor graph (i.e., the maximum distance between any

two vertices), then for any � 2 M and any t > T we have

BPt.�/ D ��:

That is, iterating the operator from any starting point t > T times yields the
unique fixed point.

3. For j 2 ŒN� let �j be the marginal distribution of the jth variable under the
Boltzmann distribution. Then for any xj 2 X we have

�j.xj/ /
Y

b2@j

O��
b!j.xj/:

The proof of Theorem 2.3 is based on a relatively simple induction (over the
size of the factor graph). The theorem states that Belief Propagation does indeed
enable us to calculate the marginals of the individual variables under the Boltzmann
distribution (if the factor graph is a tree). Indeed, part 2 of the theorem asserts that
this calculation is quite efficient in terms of the number of fixed point iterations.
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While we skip the proof of Theorem 2.3, let us at least provide some intuition
why it is plausible that the BP fixed point �� captures the marginals. The key
observation (which can easily be fleshed out to prove Theorem 2.3) is that the
“message” ��

j!a is the marginal distribution of variable j in the modified Boltzmann
distribution where we remove the factor  a. Similarly, O��

a!j turns out to be the
marginal distribution of j if we remove all factors  b with b 2 @j n a. With this
semantics in mind, it is easy to see that the fixed point equations resulting from (2)
and (4) “make sense”:

O��
a!j.xj/ /

X

x@anj

 a.x@a/
Y

i2@anj

��
i!a.xi/; ��

j!a.xj/ /
Y

b2@xjna

O��
b!j.xj/: (6)

Indeed, the first equation reflects that in the absence of the other factors b 2 @j n a,
the marginal of variable j is governed by  a and the messages coming from the sub-
trees rooted at the other variables i 2 @a n j. Similarly, the second equation reflects
that in the absence of the factor  a, variable j aligns itself to the sub-trees rooted at
the other factors b ¤ a that it is adjacent to.

While Theorem 2.3 shows that the Belief Propagation fixed point captures the
marginals, the following result states that it does, in fact, also yield the partition
function.

Theorem 2.4 Assume that the factor graph is a tree. Define a functional F W M !
R by letting

F.�/ D
MX

aD1
Fa.�/C

NX

iD1
Fi.�/�

X

.i;a/Wi2@a

Fia.�/; where

Fa.�/ D ln
X

x@a

 a.x@a/
Y

i2@a

�i!a.xi/;

Fi.�/ D ln
X

xi

Y

b2@i

O�b!i.xi/;

Fia.�/ D ln
X

xi

�i!a.xi/ O�a!i.xi/:

If �� 2 M is the Belief Propagation fixed point, then ln Z D F.��/.

Without going into any details, we note that the functional F, the so-called Bethe
free entropy, fully solves the problem of calculating the free entropy in the case that
the factor graph is a tree. An example of this is the one-dimensional Ising model,
where Belief Propagation translates directly into the well-known transfer matrix
method.
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2.3 Disordered Systems

To this point we have been considering either one given factor graph or a natural
family of factor graphs (e.g., in the case of the one-dimensional Ising model).
But the main topic of this lecture is the case that the Boltzmann distribution (and
the factor graph) under consideration is itself a random object. In physics, this
case pertains to models of so-called “disordered systems” (such as glasses). If the
Boltzmann distribution is itself a random object, our quantity of interest is

lim
N!1

1

N
EŒln Z�;

the average of the free entropy density. Let us look at a few examples of “disordered
systems”.

Example 2.5 (The Potts Antiferromagnet on a Random Graph) Suppose that ˛ >
0; ˇ > 0;K � 2 are given parameters and that N > 0 is an integer. Set M D
d˛Ne and let G.N;M/ be a graph on the vertex set ŒN� with precisely M edges
chosen uniformly at random. Let � be the Boltzmann distribution of the K-spin
Potts antiferromagnet on the random graph. Then� is itself a random object, and the
partition function Z is a random variable. Thus, there are two levels of randomness.
First, the random choice of the Boltzmann distribution. Second, once the Boltzmann
distribution is fixed (or “quenched” in physics jargon), there is the random choice
of a configuration.

In models of the above type, the distribution of the partition function is governed
by two natural parameters: the inverse temperatureˇ and the density ˛ of the random
factor graph. Hence, there is a two-dimensional phase diagram.

Example 2.6 (The Random Graph Coloring Problem) If we let ˇ ! 1, the Potts
model leads naturally to a classical problem on random graphs that goes back
to the work of Erdős and Rényi [15]. To be precise, let us define a Boltzmann
distribution � on a random graph G.N;M/ by setting  e.x/ D 1 if x.v/ ¤ x.w/
and  e.x/ D 0 otherwise for each edge e D fv;wg. Then � is nothing but the
uniform distribution over the K-colorings of the random graph G.N;M/ and Z is
the number of K-colorings. Thus, Z depends on the parameter ˛, and figuring out
its limiting behavior is a well-known open problem in the theory of random graphs.
Formally, since Z may take the value 0, the quantity of interest is

lim
N!1

1

N
EŒln.Z _ 1/�:

Alternatively, one might consider

lim
N!1 EŒZ1=N �:

However, it is not currently known that these limits even exists for all ˛.
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The following well-known example is of particular relevance to theoretical
computer science.

Example 2.7 (The Random K-SAT Problem) Let K � 2 be a fixed integer, let ˛ > 0
and let M D d˛Ne and X D f0; 1g. We create a random bipartite factor graph as
follows. There are N variable nodes x1; : : : ; xN and M function nodes  1; : : : ;  M .
We connect each function node  a independently with a set of K variable nodes
chosen uniformly at random among all

�N
K

�
such sets. Furthermore, for each function

node a we choose a K-tuple ya D .ya;j/jD1;:::;K 2 X K uniformly at random. Now, if
the K variables that a is connected to are xa1 ; : : : ; xaK with 1 � a1 < � � � < aK � N,
then we let

 a.x/ D 1 �
KY

jD1
1xaj Dya;j :

Thus,  a.x/ D 1 unless the K values that the K variables involved in  i take
precisely the “forbidden” value ya. Much like in the graph coloring problem,
the Boltzmann distribution in the random K-SAT problem is just the uniform
distribution over all x 2 X N such that  a.x/ D 1 for all a.

Combinatorially, the random Boltzmann distribution described in the previous
paragraph can be described as a Boolean formula. The variables of this formula are
x1; : : : ; xN . Moreover, the function node  a can be interpreted as a disjunction

.xa1 ¤ ya;1/ _ � � � _ .xak ¤ ya;k/:

Thus, �.x/ > 0 iff

M̂

aD1
Œ.xa1 ¤ ya;1/ _ � � � _ .xak ¤ ya;k/�:

This means that we can interpret � as the uniform distribution over Boolean
assignments that satisfy the above conjunctive normal form formula. The problem
of satisfying such formulas is known in computer science as the (random) K-
SAT problem (“satisfiability problem”). This problem plays a prominent role in
computational complexity theory.

The K-SAT problem has a fairly intricate combinatorial nature. The following
problem is a bit simpler but conceptually similar.

Example 2.8 (The Random Hypergraph 2-Coloring Problem) Let K � 2 be a fixed
integer, let ˛ > 0 and let M D d˛Ne and X D f0; 1g. As in the K-SAT problem,
we create a random factor graph with N variable nodes x1; : : : ; xN and M function
nodes  1; : : : ;  M by connecting each function node  a independently with a set of
K variable nodes chosen uniformly at random among all

�N
K

�
such sets. The factors
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 a are defined by

 a.x/ D 1�
KY

jD1
1xaj D0 �

KY

jD1
1xaj D1:

Thus,  a.x/ D 1 unless the K values that the K variables involved in  i all take the
same value (either 0 or 1).

Combinatorially, we can think of the above as a random hypergraph on N vertices
in which each edge joins precisely K vertices (a so-called K-uniform hypergraph).
Then �.x/ > 0 iff x is a proper 2-coloring of this hypergraph, i.e., none of the edges
comprises of vertices that all take the same color.

2.4 The Replica Symmetric Ansatz

In the examples from the previous section the underlying factor graphs are random.
For most values of the density parameter ˛ these factor graphs are likely to have
a very complicated combinatorial structure. For instance, they feature many long
cycles and they have excellent expansion properties. However, for any fixed value
˛ > 0 they do not contain large numbers of short cycles. More specifically, with
probability tending to 1 as N ! 1, only o.N/ vertices are going to be part of a
cycle of length less than, say, ln N= ln ln N. Thus, if we look at the part of the factor
graph consisting of all vertices at distance less than, say, ln N= ln ln N from a given
vertex, then very likely this sub-graph is a tree. In other words, the factor graphs
from the previous section are locally tree-like.

This leads to the question whether Belief Propagation can be used to compute the
marginals and/or the free entropy. Roughly speaking, this amounts to asking whether
there are any “long-range correlations” in the above models or, more precisely, for
what values of ˛ long-range correlations prevail. Indeed, if the marginal of a variable
node xi is governed by the vertices at distance less than ln N= ln ln N from xi, then
we should expect that Belief Propagation yields at least a very good approximation
to the marginal of xi. The assumption that long-range correlations do not exist leads
to the first variant of the cavity method, the replica symmetric ansatz, which is based
on Belief Propagation.

Of course, we first need to adapt the Belief Propagation formalism to the specific
types of trees that arise as the local neighborhoods in random factor graphs. These
have two distinguished properties. First, they are random. Second, for most values
of ˛ they are infinite with probability close to one.

Instead of attempting to give a general formal account, let us work through
two examples. First, let us consider the random hypergraph 2-coloring problem,
arguably the simplest non-trivial case. Suppose we start with some variable node xi,
and also assume that N is large. Let us refer to the number of function nodes that
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xi is involved in as the degree of xi. By construction, the average is KM=N � ˛K
(because function nodes choose K vertices randomly). In fact, standard arguments
show that as N ! 1, the degree of xi converges in distribution to a Poisson
variable Po.˛K/. Furthermore, each factor a that involves xi involves another K�1
variables. For each such variable xj, the number of function nodes other than  a that
xj is involved in is again asymptotically a Poisson variable Po.˛K/. (Due to the
memorylessness property of the Poisson distribution, the number of other function
nodes that xj occurs in really has distribution Po.˛K/, regardless of the fact that xj

occurs in  a.)
Proceeding inductively, we see that the local neighborhood of xi can be described

by a multi-type branching process. In this process, there are two types of vertices:
variable nodes and function nodes. The offspring of a variable node is a Po.˛K/
number of function nodes, and the offspring of a function node consists of precisely
K � 1 variable nodes. Thus, the resulting tree is infinite with a non-vanishing
probability if ˛K.K � 1/ > 1.

While we learned about Belief Propagation applied to a finite tree, it seems
difficult to extend this procedure to infinite trees. Nonetheless, the recursive
structure of the random tree described above enables us to generalise the notion
of a Belief Propagation fixed point. Indeed, in the scenario described above we are
not specifically interested in the marginal of a specific node xi, but rather in the
distribution of these marginals, viewed as probability distributions on X . That is,
suppose we first choose a random Boltzmann distribution and then choose a variable
node xi randomly, what is the distribution of the marginal�i? Hence, the object that
we are interested in is a distribution over distributions on X .

Returning to the Belief Propagation formalism on random trees, this means that
we are interested in the distribution of the fixed point messages ��

j!a; O��
a!j that travel

along an edge of the tree. Now, if we fix a variable node xj and the function node
 a that is the parent of xj in the tree, the crucial observation is as follows. Consider
the variables xi ¤ xj that occur in the function nodes b ¤ a that are the children of
xj. Then these variables xi are themselves the root of a random tree with exactly the
same distribution as the random tree emerging from xj. Therefore, the distribution
of the messages from the xi to b should be identical, and it should also be the same
as the distribution of the message from xj to a. A similar observation applies to the
messages O��

a!j.
This observation inspires the idea of viewing the fixed point condition (6) as a

distributional fixed point equation. That is, we aim to find �� D .��; O��/ such that
��, O�� are probability distributions over probability distributions over X (sic!) such
that the following system of distributional equations holds true:

O��.x1/
dD
P

x2;:::;xk2X  .x1; : : : ; xk/
Qk

iD2 ��
i .xi/

P
y1;:::;yk

 .y1; : : : ; yk/
Qk

iD1 ��
i .yi/

; (7)

��.x/ dD
Qd

bD1 O��
b .x/P

y2X
Qd

bD1 O��
b .y/

(8)
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Here  .x1; : : : ; xk/ D 0 if x1 D � � � D xk and  .x1; : : : ; xk/ D 1 otherwise
(mirroring the hypergraph 2-coloring problem). Furthermore, ��

1 ; : : : ; �
�
k�1 are

probability distributions on X that are chosen independently from the distribution
��. In addition, d D Po.˛K/ is a Poisson random variable, and O��

1 ; : : : ; O��
d are

probability distributions on X that are chosen independently of each other and of d
from O��.

In the case of hypergraph 2-coloring, the two equations (7) and (8) have the
canonical solution

�� D O�� D 1.1=2;1=2/: (9)

That is, both ��, O�� are atoms that put the full mass on the uniform distribution
on X .

A more complicated situation arises in the case of the random K-SAT problem.
Here the fixed point equations take the same form as (7) and (8). The only difference
is that now

 .x1; : : : ; xK/ D 1 �
KY

iD1
1xiDzi ;

where .z1; : : : ; zK/ 2 X k is a random K-tuple (chosen independently of everything
else). Due to the randomness involved in  , there is no trivial fixed point anymore.
In fact, it is expected that the (relevant) fixed point is a mixture of a distribution
with a countable support (corresponding to the case that the tree is finite) and
a continuous distribution. Additionally, in both the case of random hypergraph
2-coloring and random K-SAT there is no guarantee that Eqs. (7) and (8) have a
unique solution. We will return to this question below.

Anyhow, assuming that we have got the (correct) distributional fixed point �, it
is now straightforward to derive the prediction as to the free entropy. All we need
to do is to calculate the expectation of the functional F from Theorem 2.4. To be
explicit, the replica symmetric solution reads

 D ˛ � Fa C Fi � ˛K � Fia; where

Fa D E

2

4ln
X

x2X k

 .x/
KY

iD1
�i.xi/

3

5 ;

Fi D E

"
ln
X

x2X

dY

bD1
O�b.x/

#
;

Fia D E

"
ln
X

x2X
�1.x/ O�1.x/

#
:
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Here �1; �2; : : : are independently chosen from the distribution ��, O�1; O�2; : : : are
independent samples from the distribution O�� (and also independent of �1; �2; : : :),
and d has a Poisson distribution with mean ˛K that is independent of everything
else. According to the replica symmetric ansatz,

 D lim
N!1

1

n
EŒln.Z _ 1/�:

In the case of the hypergraph 2-coloring problem, it is easy to work out  due to
the particularly simple form of the fixed point (9). Indeed, we find that

 D ln 2C ˛ ln.1 � 21�K/: (10)

It is easily verified that the above is zero if ˛ D 2K�1 ln 2 � ln 2=2 C "K , where
"K ! 0 in the limit of large K. (Generally, in problems such as random K-SAT or
random K-uniform hypergraph coloring, one obtains fairly simple asymptotics in
the limit of large K.) Thus, according to the replica symmetric ansatz, we expect
that in the random hypergraph 2-coloring problem Z is positive up to

˛ D 2K�1 ln 2 � ln 2=2C "K ; (11)

and that Z D 0 for larger ˛ with probability tending to one as N ! 1.
We will see in due course that this prediction is inaccurate. The reason for this is

that the key assumption behind the replica symmetric ansatz, the absence of long-
range effects, does not hold for ˛ near 2K�1 ln 2 � ln 2=2.

2.5 Replica Symmetry Breaking

How can we formalise the presence or absence of “long-range effects”? For the sake
of presentation, let us stick to the example of random hypergraph 2-coloring. For a
variable node xi let us denote by N!.xi/ the sub-graph of the factor graph consisting
of all vertices at distance at most 2! from xi. If ! � ln n= ln ln n, then with
probability tending to one this sub-graph will be a tree whose leaves are variable
nodes. Analogously, let N>!.xi/ denote the sub-graph induced on the vertices at
distance greater than 2! from xi.

The following property, which is called Gibbs uniqueness, is very strong way of
formalising the absence of long-range effects:

lim
!!1 lim

N!1 E

"
sup

x2X N W�.x/>0
j�i.1 j xN>!.xi//� �i.1/j

#
D 0: (12)
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In words, if we condition on any possible configuration of the vertices that are at
distance greater than 2! from xi, then in the limit as the system size tends to infinity
the impact of that conditioning on xi tends to 0 for large !. Of course, in (12) the
expectation refers to the choice of the Boltzmann distribution �.

The Gibbs uniqueness condition is very strong and there have been various
examples where it has been shown to be sufficient to verify the validity of the
replica symmetric solution (e.g., [12]). However, the condition is so restrictive that
we normally expect the replica symmetric solution to be correct for much wider
ranges of the parameters. (Yet Gibbs uniqueness does generally hold whenever the
parameters are chosen such that the factor graph is sub-critical, i.e., there is no “giant
component”. In random hypergraph 2-coloring this is true if ˛K.K � 1/ < 1.)

A weaker condition of a similar flavour is non-reconstruction. In this case, rather
than taking the worst possible configuration of the far away nodes, we average with
respect to the Boltzmann distribution. Formally, the requirement reads

lim
!!1 lim

N!1 E

2

4
X

x2X N

�.x/ � j�i.1 j xN>!.xi// � �i.1/j
3

5 D 0: (13)

In hypergraph 2-coloring, this condition is expected to be valid for ˛ < .1 �
"K/2

K�1 ln K=K, where "K ! 0 in the limit of large K. Provably, the condition
is violated for ˛ > .1 C "K/2

K�1 ln K=K. Thus, while we might expect that (13)
provides a valid condition for the success of the replica symmetric ansatz, the
condition is still too restrictive to get us anywhere near the replica symmetric
prediction ˛ D .1� "K/2

K�1 ln 2 as to where 2-colorings cease to exist in a random
hypergraph.

Yet another, weaker condition is that the joint distribution of a number of “far
away variables” is asymptotically independent. This can be formalised by the
requirement that for any fixed integer ! > 0,

lim
N!1 E k�1 ˝ � � � ˝ �! � �.x1; : : : ; x!/kTV D 0: (14)

Here �1 ˝ � � � ˝ �! denotes the product of the marginal distributions of the first !
variables x1; : : : ; x! . Moreover,�.x1; : : : ; x!/ signifies the joint distribution of these
variables. As before, the expectation is over the choice of the random Boltzmann
distribution. One might expect that the condition (14) is sufficient to warrant validity
of the replica symmetric solution, but it seems that we are very far from proving this
rigorously in any generality.

In the physics literature a supposedly equivalent, more combinatorial perspective
on the properties (13) and (14) has been put forward. We continue to stick to
the example of the random hypergraph 2-coloring problem. According to this
combinatorial view, if condition (13) fails to hold, then the support of the Boltzmann
distribution (in our example, the set of 2-colorings of the random hypergraph)
decomposes into a large number of well-separated “clusters”. Furthermore, if ˛ is
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such that (14) holds, then each of these clusters only contains an exponentially small
fraction of all the 2-colorings. In physics jargon, this scenario is known as dynamical
replica symmetry breaking. In the example of random hypergraph 2-coloring, the
physics prediction is that dynamical replica symmetry breaking occurs for

.1C oK.1//2
K�1 ln K=K < ˛ < 2K�1 ln 2 � ln 2C oK.1/: (15)

Here and throughout, we denote by oK.1/ a term that tends to 0 in the limit of
large K.

By contrast, if ˛ is such that (14) fails to hold, then the largest clusters are
expected to have the same order of magnitude as Z, the total number of 2-colorings.
Moreover, a bounded number of clusters are expected to dominate the entire set
of 2-colorings. This scenario is referred to as static replica symmetry breaking or
condensation. In hypergraph 2-coloring, condensation is expected to occur for

˛ > 2K�1 ln 2 � ln 2C oK.1/: (16)

Furthermore, the replica symmetric solution is expected to be inaccurate in the
condensation phase.

To be explicit, in the case of random hypergraph 2-coloring we could define
the clusters as follows. We can view the set of all 2-colorings of as a subset � �
f0; 1gN . Now, turn� into a graph by connecting any two x; x0 2 � if their Hamming
distance is bounded by, say, N= ln N (more generally, any unbounded function that
is o.N/ would do). Then the clusters are the connected components of this auxiliary
graph. Furthermore, each clusters is expected to give rise to a (near-)fixed point
of Belief Propagation on the factor graph. To be precise, by iterating the Belief
Propagation operator starting from any solution in the cluster, one might expect
to obtain a collection of messages that is asymptotically invariant under a further
application of the Belief Propagation operator for large enough N. This is not a
contradiction to Theorem 2.3 because the factor graph is not a tree with probability
tending to 1; thus, Belief Propagation might have multiple fixed points.

Additionally, the internal structure of the clusters is expected to be characterised
by “frozen variables”. More specifically, we call a variable xi frozen in a cluster C
if xi takes the same value in all the configurations in C . Hence, we can represent
the cluster C by a “code word” in f0; 1;�gN , where we represent a variable that is
frozen to 0 by a 0, a variable that is frozen to 1 by a 1, and an unfrozen variable by �.
This symbolic representation does not, of course, imply that the variables marked �
are perfectly independent.

To cope with (static) replica symmetry breaking, physicists have developed a
stronger version of the cavity method, the so-called 1-step replica symmetry break-
ing ansatz. The basic idea behind this approach is to perform a similar approach as
Belief Propagation for a modified Boltzmann distribution. More precisely, imagine a
decomposition of the Boltzmann distribution as a convex combination of probability
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measures that correspond to the “clusters”, i.e.,

� D
X

1�i�˙
wi � �i:

For instance, in hypergraph 2-coloring the �i are just the uniform distributions
on the various clusters, and the pre-factors wi are proportional to the sizes of the
clusters. Roughly speaking, the key idea behind the replica symmetric ansatz is to
apply Belief Propagation not to the actual 2-colorings, but to the “clusters”�i. In the
process of this, we introduce a parameter that allows us to reweigh the pre-factors
wi, the so-called Parisi parameter.

In the extreme case, the re-weighting is such that all clusters have exactly the
same weight, i.e., we look at the uniform distribution over clusters (Parisi parameter
0). The merit of this is that it does away with the issues that condensation causes.
More precisely, the condition (14) cannot be expected to hold in the presence
of condensation. This is because two states x; x0 chosen from the Boltzmann
distribution have a constant probability of belonging to the same cluster, in which
case they are strongly correlated, and a non-vanishing probability of belonging to
distinct clusters. Hence, it is implausible that the joint distribution factorises as
required by (14). However, if we consider the uniform distribution over clusters, i.e.,
if we disregard the volumes of the clusters, then there is a chance that a condition
similar to (14) might still hold. This is because there is a huge total number of
clusters (exponential in N), most of which only contain a very small number of 2-
colorings. Thus, considering the uniform distribution over clusters effectively does
away with the big clusters that dominate the Boltzmann distribution.

Technically, Belief Propagation can be extended to this case of considering the
uniform distribution over clusters systematically. Roughly speaking, this amounts
to generalising Belief Propagation to the case that we add the “joker spin” � to
represent unfrozen variables, and interpret the spins 0; 1 to indicate that a variable is
frozen to this value. This leads to a modified message passing scheme called Survey
Propagation. In addition, there is a generalisation of the Bethe free entropy. In the
case of Survey Propagation, this formula yields a prediction as to the number ˙
of clusters, rather than the free entropy. From this formula it is possible to make a
prediction as to the threshold value of ˛ up to which the random hypergraph admits a
2-coloring: this is expected to be the largest density up to which limN!1 1

N EŒln.1_
˙/� > 0. In the case of hypergraph 2-coloring, this threshold is expected to be

˛ D 2K�1 ln 2 �
�

ln 2

2
C 1

4

�
C oK.1/: (17)

In the following lectures, we will see to what extent the physics picture can be
turned into rigorous mathematics. Throughout, we are going to stick to the example
of the random hypergraph 2-coloring problem.
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3 Classical Rigorous Results

In this section we discuss the “classical” rigorous approach to problems such as
random hypergraph 2-coloring. This material is largely independent of the physics
predictions from the previous section.

While much of this material generalises to other problems, we are going to focus
on is the 2-coloring problem in random K-uniform hypergraphs. Thus, fix an integer
K � 3, let N;M be a (large) integers, and set ˛ D M=N. Recall that a K-uniform
hypergraph˚ with N vertices and M edges consists of a vertex set V of size jVj D N
and an edge set E of size jEj D M such that each e 2 E is a K-element subset
of V . We say that the hypergraph ˚ is 2-colorable if there is a map � W V !
f0; 1g such that �.e/ D f0; 1g for all e 2 E. In other words, if we think of 0; 1
as colors, then none of the edges is monochromatic. As we saw in the previous
section, the hypergraph can be represented canonically by a bipartite factor graph
G.˚/ whose vertices correspond to the vertices and edges of ˚ , and where there is
an edge between v and e iff v 2 e.

Given K;N;M, let ˚ D ˚K.N;M/ denote the uniformly random K-uniform
hypergraph on V D ŒN� with M edges. Throughout, we are going to be interested in
the situation that N ! 1, while ˛ D M=N remains fixed. We say that an event A
occurs with high probability (‘w.h.p.’) if limN!1 PŒA � D 1. The questions that we
are going to be dealing with are the following.

• For what ˛ is ˚ 2-colorable w.h.p.?
• If it is, how many 2-colorings are there?

Throughout, we write f .N/ � g.N/ if limN!1 f .N/=g.N/ D 1.

3.1 Basics

The following result shows that there is a “non-uniform threshold” for 2-colorability.

Theorem 3.1 ([17]) For any K � 3 there is a sequence ˛2�col.K;N/ such that for
any " > 0 the following is true.

• If M=N < .1 � "/˛2�col.K;N/, then ˚ is 2-colorable w.h.p.
• If M=N > .1C "/˛2�col.K;N/, then ˚ fails to be 2-colorable w.h.p.

Unfortunately, the sequence .˛2�col.K;N//N�1 is not currently known to converge
(although it is, of course, known that

0 < lim inf˛2�col.K;N/ � lim sup˛2�col.K;N/ < 1

for any K � 3). Thus, we do not currently know that there is a 2-colorability
threshold ˛2�col.K/ that is independent of N. Moreover, the proof of Theorem 3.1
does not reveal the actual value of ˛2�col.K;N/. Theorem 3.1 is merely a corollary
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of a much more general result from [17]. The proof of this more general result is
based on discrete Fourier analysis, and is beyond the scope of this lecture.

Let Z be the number of 2-colorings of ˚ . This corresponds to the partition
function of the uniform distribution over the set of 2-colorings of ˚ (except that
this set might be empty).

What can we say about the location of the 2-colorability threshold ˛2�col? Let
us start with some simple observations. First, if ˛ < K�1.K � 1/�1, then the
random hypergraph ˚ is well-known to have a very simple structure. Indeed, for
˛ < K�1.K � 1/�1, all components of G.˚/ contain only O.ln N/ vertices w.h.p.
Furthermore, all but O.1/ components of G.˚/ are trees, while the remaining
components contain only one cycle (“unicyclic components”) w.h.p. [24]. In
particular, each of these components is 2-colorable, and so is ˚ . Additionally,
Theorems 2.3 and 2.4 show that Belief Propagation and the Bethe formula yield
the correct value of E lnŒZ _ 1�. By contrast, for ˛ > K�1.K � 1/�1 the random
hypergraph ˚ is going to have a connected component on ˝.N/ vertices with
a plethora of intersecting cycles w.h.p. As ˛ increases, the relative size of this
component grows rapidly [24].

Yet it is easy to compute the expected number of 2-colorings for any ˛ > 0.
Indeed, we have

1

N
ln EŒZ� � ln 2C ˛ ln.1 � 21�K/: (18)

To see this, observe that there are 2N maps � W V ! f0; 1g. Furthermore, given any
� , the probability that a random edge e is bichromatic is at most 1 � 21�K . This is
because e consists of K random vertices, and the probability that all of them have
the same color is

" 
j��1.1/j

K

!
C
 

j��1.0/j
K

!#
=

 
N

K

!
: (19)

In addition, (19) shows that the probability that a random edge is monochromatic
is 1 � 21�K C o.1/ if � is such that j��1.1/j � N=2. Since .1 � o.1//2N maps
� W V ! f0; 1g have this property, we obtain (18).

We observe that (18) coincides with the Belief Propagation prediction (10) as
to the value of 1

N EŒln Z _ 1�. This is a consequence of the particularly strong
symmetry properties of the hypergraph 2-coloring problem. In other problems such
as random K-SAT, the “annealed average” 1

N ln EŒZ� differs from the “quenched
average” 1

N EŒln Z _ 1�.
As an immediate consequence, we obtain that ˚ fails to be 2-colorable w.h.p. for

any ˛ such that

ln 2C ˛ ln.1 � 21�K/ < 0:
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Since the expression is linear in ˛, it is easily verified that this occurs for ˛ �
2k�1 ln 2 � ln 2

2
C oK.1/. Thus, we have

Proposition 3.2 If ˛ > 2K�1 ln 2 � ln 2
2

C oK.1/, then ˚ fails to be 2-colorable
w.h.p.

Once more, we observe that Proposition 3.2 matches the “replica symmetric
prediction” (11). Furthermore, we emphasise that despite the use of the asymptotic
notation oK.1/, we do not take K D K.N/ to be a sequence that tends to infinity as
N ! 1. Instead, K always remains a fixed number, and the oK.1/ simply hides an
error term "K that we do not bother to specify but that can be made arbitrarily small
by choosing K large enough.

3.2 The “Vanilla” Second Moment Method

As a next step, we aim to obtain an improved lower bound on ˛2�col. This section
follows [2].

Theorem 3.3 ([2]) Assume that

˛ < 2K�1 ln 2 � 1C ln 2

2
� "K: (20)

Then ˚ is 2-colorable w.h.p.

The proof of Theorem 3.3 is based on the second moment method. For the sake
of technical simplicity, we are going to work with a modified random variable Ze

rather than Z. More precisely, let us call a map � W V ! f0; 1g equitable if

jj��1.0/j � j��1.1/jj � p
N;

and let Ze be the number of equitable 2-colorings of ˚ . Using Stirling’s formula
and (18), we check that

1

N
ln EŒZe� � 1

N
ln EŒZ� � ln 2C ˛ ln.1 � 21�K/: (21)

Thus, at least as far as the expectation goes, we are not giving away much by
confining ourselves to equitable 2-colorings.

We are going to compare EŒZ2e � to EŒZe�
2. More precisely, we are going to show

that for ˛ satisfying (20) we have

EŒZ2e � � C � EŒZe�
2; (22)
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where C D C.K/ > 0 is independent of N. Then the Paley-Zygmund inequality
(valid for any non-negative random variable)

P ŒZe > 0� � EŒZe�
2

EŒZ2e �
(23)

implies that

lim inf
N!1 P ŒZe > 0� � C�1 > 0:

Hence, Theorem 3.1 implies that indeed ˚ is 2-colorable w.h.p. for any ˛0 < ˛.
Thus, to prove Theorem 3.3 we “just” need to verify (22). That is, we need to

work out the second moment: summing over equitable �; 	 , we have

EŒZ2e � D
X

�;	

P Œboth �; 	 are 2-colorings�

D
X

�

X

	

P Œ	 is a 2-coloringj� is a 2-coloring� � P Œ� is a 2-coloring�

� EŒZe� � max
�

EŒZej� is a 2-coloring�:

In the last line, which simply follows from symmetry, � stands for an equitable map.
Let C� denote the event that � is a 2-coloring. Then (22) is equivalent to

E ŒZejC� � � C � EŒZe� (24)

for all equitable � . To compute the conditional expectation, fix an equitable � and let

Z! D jf	 W dist.�; 	/ D !N; 	 is an equitable 2-coloringgj :

Here dist.�; 	/ D jfv 2 V W �.v/ ¤ 	.v/gj denotes the Hamming distance. We can
write E ŒZejC� � as

E ŒZejC� � D
NX

wD0
EŒZw=N jC� �:

It is easy to compute EŒZw=N jC� �. Indeed, consider one random edge e in our
hypergraph. What is the probability that e is bichromatic under both � and another
equitable 	 with dist.�; 	/ D !N? Clearly, for symmetry reasons we have

P Œe is monochromatic under �� � P Œe is monochromatic under 	� � 21�K :

In addition,

P Œe is monochromatic under 	 je is monochromatic under �� � !K C .1 � !/K :
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In fact, for this event to occur either �; 	 must agree on all K vertices in e, or
they must differ on all of them. The formula follows because these vertices are
(essentially) uniformly distributed and independent. Thus, by inclusion/exclusion

P Œe is bichromatic under both �; 	 � � 1 � 22�K C 21�K.!K C .1 � !/K/:

Since the edges of ˚ are (essentially) independent, we get

1

N
ln P ŒC� ;C	 � � ˛ ln.1 � 22�K C 21�K.!K C .1 � !/K//;

and thus

1

N
ln P ŒC	 jC� � � ˛ ln

�
1 � 1 � !K � .1 � !/K

2K�1 � 1

�
:

Furthermore, by Stirling’s formula the logarithm of the total number of equitable 	
with dist.�; 	/ D !n satisfies

1

N
ln

 
N

!N

!
� H.!/ D �! ln! � .1 � !/ ln.1 � !/:

Accounting for the various error terms carefully, we obtain

EŒZ!� � C � exp.f .!/N/; where

f .!/ D H.!/C ˛ ln

�
1 � 1 � !K � .1 � !/K

2K�1 � 1
�
: (25)

Because f .!/ is in the exponent, the sum is dominated by the maximum function
value. Indeed, using the “Laplace method”, one obtains the following.

Lemma 3.4 We have EŒZejC� � � C � exp.N max!2.0;1/ f .!//.

Thus, we need to study the function f .!/. Since f .!/ D f .1 � !/, we have
f 0.1=2/ D 0. Indeed, ! D 1=2 turns out to be a local maximum, and a bit of algebra
shows that

exp.f .1=2/N/ D �.E.Ze//: (26)

Hence, we find that

EŒZejC� � � C � EŒZe� iff max
!2Œ0;1� f .!/ D f .1=2/:

Basic calculus shows that this is true for ˛ satisfying (20), cf. Fig. 3. Thus, we have
got Theorem 3.3.
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Fig. 3 The function f for
K D 7 and ˛ D 2K�1 ln 2� 2

Corollary 3.5 ([1]) Assume that (20) holds. Then ln Z � ln EŒZ� w.h.p.

Proof Due to (21) it suffices to prove that ln Z � ln EŒZe� w.h.p. This follows from
the strong form of the Palay-Zygmund inequality

P

�
Ze � 1

2
EŒZe�

�
� E.Ze/

2

4E.Z2e /

together with a stronger version of Theorem 3.1 from [1] that provides a concentra-
tion result for Z. ut

4 A Physics-Enhanced Rigorous Approach

We continue to consider the example of the random hypergraph 2-coloring problem.
How do the results from the previous section compare with the physics predictions?
According to the cavity method,

• dynamic 1RSB occurs at ˛d1RSB � 2K�1 ln K=K. In particular, that the set
of solutions “clusters” was an important aspect of the physics picture. By
comparison, in Sect. 3 the idea that there are “clusters” with “frozen variables”
went completely unnoticed.
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• the static 1RSB phase transition occurs at

˛s1RSB D 2K�1 ln 2 � ln 2C oK.1/:

This is a bit greater than the bound provided by Theorem 3.3. For ˛ > ˛s1RSB,
we expect that ln Z < ln EŒZ� �˝.N/ w.h.p.

• we have

˛2�col D 2K�1 ln 2 �
�
1

4
C ln 2

2

�
C oK.1/:

This is half-way between the bounds provided by Proposition 3.2 and Theo-
rem 3.3.

In this section we will first develop a rigorous approach towards proving that,
indeed, the set of 2-colorings of the random hypergraph decomposes into clusters for
˛ > .1C oK.1//2

K�1 ln K=K. This is by means of a trick from [1]; following [20],
we refer to this technique as “quiet planting”. Then we will see how this trick can
be used to establish the condensation phase transition and the asymptotic threshold
for the existence of 2-colorings rigorously.

4.1 Quiet Planting

In this section we are going to verify the d1RSB picture that the set of 2-colorings
of the random hypergraph decomposes into clusters. Recall that the Boltzmann
distribution that we are interested in can be described as follows.

B1. Create a random hypergraph ˚ .
B2. Sample a 2-coloring � of ˚ uniformly at random.
B3. The result is .˚; �/.

Thus, the above experiment induces a probability distribution on hypergraph/2-
coloring pairs .˚; �/.

The Boltzmann distribution is difficult to analyse directly. By contrast, the
following so-called planted distribution is quite accessible.

P1. Choose a map � W V ! f0; 1g uniformly at random.
P2. Choose a hypergraph ˚ that is 2-colored under � uniformly at random.
P3. The result is .˚; �/.

We emphasise that step P2 is indeed easy to implement: we simply choose a set
of M random edges randomly out of the

 
N

K

!
�
 

j��1.0/j
K

!
�
 

j��1.1/j
K

!
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edges that are bichromatic under � . A double-counting argument implies the
following connection between the two distributions.

Lemma 4.1 (“Quiet Planting Lemma”, [1]) Assume that ˛ is such that ln Z �
ln EŒZ� w.h.p. Then for any event A we have

PBoltzmann ŒA � � exp.o.N// � Pplanted ŒA �C o.1/:

Observe that Corollary 3.5 implies that the assumption of the quiet planting lemma
is valid for ˛ satisfying (20). Generally speaking, the quiet planting lemma allows
us to upper-bound the Boltzmann probability of some “bad” event A by way of the
planted model.

As an application of Lemma 4.1, we can now verify the prediction that the set of
2-colorings decomposes into tiny clusters for

.1C "K/2
K�1 ln K=K < ˛ < .1 � "K/2

K�1 ln 2:

Indeed, let us say that shattering occurs if the set �.˚/ of 2-colorings of ˚ has a
decomposition �.˚/ D S˙

iD1 �i such that the following two conditions hold for
some "K > 0.

SH1. For any 1 � i � ˙ we have 1
N ln j�ij < 1

N ln Z.˚/ � "K .
SH2. If 1 � i < j � ˙ , then dist.�i; �j/ � "KN.

Condition SH1 enforces that each cluster only contains an exponentially small frac-
tion of all 2-colorings. Moreover, SH2 ensures that distinct clusters are separated by
a linear Hamming distance.

Theorem 4.2 ([1]) There exist a number K0 > 0 and a sequence ."K/ ! 0 such
that for K � K0 and for

.1C "K/2
K�1 ln K=K � ˛ < 2K�1 ln 2 � .1C ln 2/=2� "K

shattering occurs.

To prove Theorem 4.2, we combine Lemma 4.1 with a closer analysis of the
function f .!/ from (25). The following is an exercise in calculus.

Lemma 4.3 Keep the assumptions of Theorem 4.2. There is !0 2 .0; 1=2/ such that

f .!0/ < 0 and sup
0�!�!0

f .!/ < f .1=2/:

In words, the function f is strictly negative at some point 0 < !0 < 1=2, and the
maximum value of f over the interval .0; !0/ is strictly smaller than f .1=2/; Fig. 3
provides an illustration of this picture in the case K D 7.
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Proof of Theorem 4.2 Define the cluster of a 2-coloring � as

C .�/ D f	 2 �.˚/ W dist.�; 	/ � !0Ng :

In terms of the planted model, Eq. (25) shows that f .!/ is the logarithm of
the expected number of 2-colorings at Hamming distance !n from the planted
2-coloring � . Hence, Lemma 4.3 implies together with Markov’s inequality that
there is "K > 0 such that in the planted model, the following two conditions hold
with probability � 1 � exp.�"KN/.

• We have jC .�/j � EŒZ� exp.�"KN/; this follows because f .1=2/ � 1
N ln EŒZ�,

cf. (26).
• For all 	 2 �.˚/we have dist.�; 	/=N 62 Œ!0�"K; !0C"K�; this follows because

f is continuous.

Let us call � good if the two conditions above hold.
We now construct the cluster decomposition of �.˚/ as follows (for ˚ a

uniformly random hypergraph). Let �0 be the set of all � 2 �.˚/ that are not
good. By Lemma 4.1, w.h.p. we have j�0j � exp.�"KN/ for some "K > 0. Now,
construct�i for i � 1 as follows.

• Pick a good � 2 �.˚/ nSj<i�i.
• Let �i D C .�/ nSj<i�i.

It is easily verified that this decomposition satisfies SH1–SH2. ut

4.2 Condensation

Remember that there is a gap between Corollary 3.5 and the physics prediction as
to the s1RSB phase transition. In this section we are going to show how “quiet
planting” can be used to remedy this discrepancy.

Theorem 4.4 ([10]) There is a sequence ."K/ ! 0 such that the following is
true.

1. If ˛ < 2K�1 ln 2 � ln 2� "K, then ln Z � ln EŒZ� w.h.p.
2. If 2K�1 ln 2 � ln 2C "K < ˛ < ˛2�col, then ln Z < ln EŒZ� �˝.N/ w.h.p.

This theorem implies that there occurs a phase transition at ˛ D 2K�1 ln 2 �
ln 2C "K . Indeed, (18) shows that for smaller ˛, the free entropy density is a linear
function of ˛. Thus, by the uniqueness of analytic continuations the free entropy
density is non-analytic at ˛ D 2K�1 ln 2 � ln 2C "K .

To prove Theorem 4.4, we need to investigate the existence of frozen variables.
Based on this concept, we are going to prove the following. Throughout, we are
going to assume that K � K0 for a certain constant K0 > 3.
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Lemma 4.5 Assume that 2K�1 ln 2 � 10 � ˛ � 2K ln 2. Let .˚; �/ be chosen from
the planted model. Then w.h.p. we have

1

N
ln jC .�/j D ln 2C oK.1/

2K
: (27)

The statement of Lemma 4.5 may seem surprising since the r.h.s. of (27) does
not appear to depend on ˛. Indeed there is a (slight) dependence on ˛, which is,
however, hidden in the oK.1/ term; the reason for this will become apparent in the
following paragraphs.

To prove Lemma 4.5, let us call an edge e of the hypergraph ˚ critical with
respect to � if it contains K � 1 vertices that take the same color under � . If v 2 e
is the unique vertex with the minority color, we say that e blocks v. An elementary
calculation shows that in the planted model we expect to have N � .K C "K/ ln 2
critical edges. Indeed, the number of edges blocking one particular vertex v is
asymptotically Poisson with mean .KC"K/ ln 2, and these random variables turn out
to be nearly independent. Hence, we expect that all but about exp.�K ln 2/ D 2�K

vertices are blocked.
In fact, for K � K0 the number of edges blocking a vertex v is going to be, say,

at least 10 for most vertices v. More precisely, let O̊ be the largest sub-hypergraph
of ˚ in which every vertex v is blocked by at least 10 edges that consist of vertices
in O̊ only. We call O̊ the core of ˚ . (Algorithmically, the core can be obtained
by iteratively removing vertices that violated the aforementioned condition.) Using
standard arguments from probabilistic combinatorics, one can show the following.

Fact 4.6 W.h.p. the core O̊ contains all but at most K112�KN vertices.

If we try to recolor one vertex v in the core, we are going to have to recolor at
least one other vertex in each of the �10 edges that block v. Since these vertices
are in the core, too, it seems plausible that this is going to trigger an “avalanche” of
recolorings. Indeed, the expansion properties of the random hypergraph imply the
following. Recall that C .�/ denote the cluster of � .

Fact 4.7 Let 	 2 C .�/. Then for all v 2 O̊ we have �.v/ D 	.v/.

Although the core dominates the random hypergraph ˚ , the number of vertices
outside is still a bit bigger than 2�KN. To enhance the core, we construct the
backbone of ˚ as follows.

BB1. Initially, let B be the vertex set of the core.
BB2. While there is a vertex v 62 B that has a blocking edge e such that e �

B [ fvg, add v to B.

Once more based on standard arguments, we obtain the following.

Fact 4.8 W.h.p. the backbone contains all but .1C oK.1//2
�KN vertices.
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By construction, Fact 4.7 implies that for all v in the backbone we have �.v/ D 	.v/

for all 	 2 C .�/. Thus, Fact 4.8 yields

1

N
ln jC .�/j � ln 2C oK.1/

2K
w.h.p.

Conversely, it turns out that most of the vertices outside the backbone can be
colored independently. More specifically, if we reduce the hypergraph by replacing
all vertices in the core by constants 0 or 1, then the factor graph of the resulting
system is sub-critical. In fact, it mostly consists of isolated vertices. Working this
out in detail implies (27).

Let us now call an equitable 2-coloring of ˚ tame if (27) holds. Moreover, let Z
be the number of tame 2-colorings of ˚ . Together with a double counting argument,
Lemma 4.5 implies

EŒZ � � EŒZ�: (28)

Furthermore, the definition of “tame” implies that if ˛ < 2K�1 ln 2� ln 2� "K , then
jC .�/j � EŒZ� for all tame � . As a consequence, we find that

EŒZ 2� � C � EŒZ �2 for ˛ < 2K�1 ln 2 � ln 2 � "K :

Thus, the second moment method “works” for Z , which implies the first part of
Theorem 4.4.

The second assertion follows from a “converse quiet planting lemma”. If ˛ >
2K�1 ln 2� ln 2C "K , then by similar reasoning as above we find that in the planted
model w.h.p.

1

N
ln jC .�/j > 1

N
ln EŒZ�C "K

for some "K > 0. This estimate can be shown to be irreconcilable with the notion
that ln Z � ln EZ w.h.p.

Remark 4.9 The above construction of the core and the backbone also implies the
existence of multiple Belief Propagation (near-)fixed points. Namely, if we start
Belief Propagation from a 2-coloring � as above, the messages of the vertices in the
backbone are going to remain one-point distributions (concentrated on the color that
the vertices are frozen to).

4.3 The Asymptotic 2-Colorability Threshold

Up to the "K error term, the following result matches the prediction of the 1-step
replica symmetry breaking ansatz as to the 2-colorability transition.
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Theorem 4.10 ([7]) We have ˛2�col D 2K�1 ln 2 � �
1
4

C ln 2
2

�C "K.

The proof of Theorem 4.10 follows the prescription of the 1RSB cavity method.
That is, we are going to mimic the effect of working with a Parisi parameter y < 1.
In the terminology of the previous section, this means that we should work with
solutions that have a larger number of frozen variables than occur in the planted
model.

Capturing the notion of “frozen” accurately is technically difficult, e.g., because
we are working with hypergraphs with an irregular degree sequence. As a proxy, we
are going to work with a prescribed number of blocked variables. Thus, let Z� be the
number of equitable 2-colorings in which .1 � �/N variables are blocked. The idea
is to carry out a second moment argument for Z� .

However, it turns out that EŒZ2� � � exp.ıN/E
�
Z�
	2

for some ı D ı.K/ > 0.
The reason for this is fluctuations of the degree sequence: roughly speaking, a graph
with a “more regular” degree sequence is more likely to have a large number of
blocked variables. Hence the moments of Z� are driven up by a small number of
“pathological” degree sequences that are far more regular than the (Poisson) degree
sequence of the random hypergraph ˚ .

To get around this problem, let d D .dv/v2V denote the degree sequence of the
random hypergraph ˚ . That is, dv is the number of edges vertex v appears in. We are
going to fix one particular degree sequence d and work with the random hypergraph
˚d with that degree sequence.

In this setup, even the computation of the first moment is non-trivial. The key
element is the probability that a given number of critical edges block the correct
number of vertices. Hence, if we think of each vertex as a “bin” of capacity dv
and of each critical edge as a ball that is tossed randomly into a bin, we need to
calculate the probability of obtaining precisely �N empty bins. That is, we need to
solve a large deviations problem for an occupancy problem. Furthermore, we also
need to optimise the number of critical clauses. Of course, each of these comes with
a “price”, i.e., we need to take into account the large deviations principle of this
random variable. In the case of a regular degree sequence (i.e., dv D dv0 for all v), it
is not very difficult to solve this problem precisely, but in the case of general degree
distributions d an accurate analysis is far from trivial.

In any case, we can identify a function g.�/ such that for a random d w.h.p. we
have

1

N
ln EŒZ� � D g.�/C "K3:99

�K:

Now, by a similar token as in the previous section, if the number of blocked (or
frozen) variables is .1 � �/N, we expect that the cluster size satisfies

1

N
ln jC .�/j D � ln 2C "K3:99

�K :
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Thus, a necessary condition for the success of the second moment argument is that
(up to the error term)

� ln 2 < g.�/: (29)

This necessary condition turns out to be (essentially) sufficient. That is, neglecting
some technical details, it is possible to carry out a second moment argument for
(essentially) Z� .˚d/ under the assumption that (29) is satisfied.

This fact allows us to also estimate the free entropy. Namely, for a given ˛ let
�.˛/ be the largest � > 2�K for which (29) is satisfied. Then the free entropy
comes to

1

N
EŒln 1 _ Z� D .1C "K/g.�/:

5 Conclusions and Outlook

We have seen that the physicists’ non-rigorous cavity method leads to remarkable
predictions as to the properties and phase transitions of random discrete structures
such as random graphs, hypergraphs or formulas. As was illustrated with the
example of the random hypergraph 2-coloring problem, these predictions can be
harnessed to obtain a more complete rigorous picture. Yet we are far from having
a complete rigorous version of the cavity method, and the rigorous picture still has
significant gaps. These gaps arise in part from the difficulty of getting a handle
on the (distributional) fixed point problems that describe the results of the cavity
formalism.

The techniques that we presented (mostly) in the context of the hypergraph 2-
coloring problem extend to a wide range of other cases. For instance, the replica
symmetric lower bound and the 1RSB upper bound on the K-colorability threshold
in random graphs have been turned into rigorous results both in the case of the
Erdős-Rényi random graph and in the case of random regular graphs [9, 11]. In
addition, the 1RSB prediction on the random K-SAT threshold has been verified
asymptotically [6, 8].

Indeed, very recently there have been the first full rigorous verifications of
1RSB predictions in random regular K-SAT and random regular K-NAESAT as
well as the independent set problem (or “hardcore model”) on random regular
graphs [6, 13, 14]. These results are enabled by the fact that in these regular cases,
the distributional fixed point problems that come out of the 1RSB ansatz simplify to
fixed point problems over the real numbers.

While the aforementioned results are all based on various instalments of the
second moment method, a further powerful rigorous proof method is the interpo-
lation method [4, 16, 23]. This method has been used to prove the existence of the
free entropy density in certain problems or to establish upper bounds on it. The
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interpolation method also played a significant role in the context of the Sherrington-
Kirkpatrick model [25].

Finally, the cavity method has inspired novel “message passing algorithms” that
have been received with much excitement by the computer science community [22].
Experiments suggest that these algorithms perform extraordinarily well on random
K-SAT instances that are well beyond the reach of “traditional” satisfiability
algorithms [19]. Achieving a rigorous understanding of the performance of these
algorithms is an important challenge.

Acknowledgements I am grateful to Victor Bapst for his comments on a draft version of these
notes.
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Multidimensional Random Polymers:
A Renewal Approach

Dmitry Ioffe

1 Introduction

Mathematical and probabilistic developments presented here draw inspiration from
statistical mechanics of stretched polymers, see for instance [4, 25].

Polymers chains to be discussed in these lecture notes are modeled by paths
of finite range random walks on Z

d. We shall always assume that the underlying
random walk distribution has zero mean. The word stretched alludes to the situation
when the end-point of a polymer is pulled by an external force, or in the random
walk terminology, by a drift. In the case of random walks this leads to a ballistic
behaviour with limiting spatial extension described in terms of the usual law of
large numbers (LLN) for independent sums. Central limit theorem (CLT) and large
deviations (LD) also hold.

Polymer measures below are non-Markovian objects (see Remark 1.1), which
gives rise to a rich morphology. We shall distinguish between ballistic and sub-
ballistic phases and between quenched and annealed polymers. Quenched polymers
correspond to pulled random walks in random potentials. Their annealed counter-
parts correspond to pulled random walks in a deterministic attractive self-interaction
potentials.

Two main themes are the impact of the drift, that is when the model in question,
annealed or quenched, becomes ballistic, and the impact of disorder, that is whether
or not quenched and annealed models behave similarly.

It is instructive to compare models of stretched polymers with those of directed
polymers [3]. In the latter case sub-ballistic to ballistic transition is not an issue.
Furthermore, in the stretched case polymers can bend and return to the same
vertices, which makes even the annealed model to be highly non-trivial (in the
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directed case the annealed model is a usual random walk). On the other hand it
is unlikely that a study of stretched polymers will shed light on questions which are
open in the directed context.

1.1 Class of Models

Underlying Random Walk Consider random walk on Z
d with an irreducible

finite range step distribution. We use the notation Pd both for the random walk
path measure and for the distribution of individual steps. For convenience we shall
assume that nearest neighbour steps ˙ek are permitted,

Pd .˙ek/ > 0 (1)

The size of the range is denoted R: Pd .X D x/ > 0 ) jxj � R. Without loss of
generality we shall assume that EdX D 0.

Random Environment The random environment is modeled by an i.i.d. collection
fV!x gx2Zd of non-negative random variables. The notation Q and E are reserved for
the corresponding product probability measure and the corresponding expectation.
We shall assume:

(A1) V! is non-trivial and 0 2 supp .V!/ .
(A2) Q .V! < 1/ > pc.Z

d/, where pc is the critical Bernoulli site percolation
probability.

Polymers and Polymer Weights Polymers � D .�0; : : : ; �n/ are paths of the
underlying random walk. For each polymer � we define j� j D n as the number
of steps, and X.�/ D �n � �0 as the displacement along the polymer.

The are two type of weights we associate with polymers: quenched random
weights

W!
d .�/ D exp

8
<

:�ˇ
j� jX

iD1
V!�i

9
=

; Pd.�/; (2)

and annealed weights

Wd.�/ D E
�
W!

d .�/
� D e�˚ˇ.�/ Pd.�/; (3)

where the self-interacting potential

˚ˇ.�/ D
X

x

�ˇ.`� .x//: (4)
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Above `� .x/ is the local time of � at x;

`� .x/ D
nX

iD1
�f�iDxg; (5)

and �ˇ is given by:

�ˇ.`/ D � logE



e�ˇ`V!
�
: (6)

The inverse temperature ˇ > 0 modulates the strength of disorder.

Pulling Force, Partition Functions and Probability Distributions For h 2 R
d

we shall consider quenched and annealed partition functions

Z!n .h/ D
X

j� jDn

eh�X.�/W!
d .�/ and Zn.h/ D E .Z!n .h// D

X

j� jDn

eh�X.�/Wd.�/;

(7)

and the corresponding probability distributions,

P
h;!
n .�/ D 1

Z!n .h/
eh�X.�/W!

d .�/ and P
h
n.�/ D 1

Zn.h/
eh�X.�/Wd.�/: (8)

Remark 1.1 Annealed measures P
h
n are non-Markovian. Quenched measures P

h;!
n

are also non-Markovian in the sense that in general Ph;!
n is not a marginal of Ph;!

m
for m > n.

1.2 Morphology

We shall distinguish between ballistic and sub-ballistic behaviour of quenched and
annealed polymers (8) and between strong an weak impact of disorder on the
properties of quenched polymers (as compared to the annealed ones).

Ballistic Phase For the purpose of these lecture notes, let us say that a self-
interacting random walk (or polymer) is ballistic if there exists ı > 0 and a vector
v ¤ 0 such that

lim
n!1P

h
n .jXj � ın/ D 0 and lim

n!1
1

n
E

h
n X.�/ D v: (9)

The model is said to be sub-ballistic, if

lim
n!1

1

n
E

h
n jX.�/j D 0: (10)
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At this stage it is unclear whether there are models which comply neither with (9)
nor with (10). It is the content of Theorem 2.1 below that for the annealed models
the above dichotomy always holds.

Similarly, the quenched model is said to be in the ballistic, respectively sub-
ballistic, phase if Q-a.s

lim
n!1P

h;!
n .jXj � ın/ D 0 and lim

n!1
1

n
E

h;!
n X.�/ D v; (11)

and, respectively,

lim
n!1

1

n
E

h;!
n jX.�/j D 0: (12)

For quenched models it is in general open question whether the limiting spatial
extension [second limit in (11)] always exists. See Theorem 2.7 below for a precise
statement.

Ballistic and sub-ballistic phases correspond to very different patterns of
behaviour. We focus here on the ballistic phase. In a sense sub-ballistic behaviour is
more intricate than the ballistic one. In the continuous context (Brownian motion)
results about sub-ballistic phase are summarized in [29]. The theory (so called
enlargement of obstacles) was adjusted to random walks on Z

d in [1].

Strength of Disorder For each value of the pulling force h and the interaction ˇ
strength of disorder may be quantified on several levels:

L1. Q-a.s lim supn!1 1
n log Z!n .h/

Zn.h/
< 0.

Since by Assumption (A1) the annealed potential �ˇ in (6) satisfies limˇ!1
�ˇ
ˇ

D
0, it is not difficult to see that, at least in the case when fx W V!x D 0g does not
percolate, L1. holds in any dimension whenever the strength of interaction ˇ and
the pulling force h are large enough.

Furthermore, as we shall see in Sect. 5 (and as it was originally proved in [33])
the disorder is strong in the sense of L1. in lower dimensions d D 2; 3 for any ˇ > 0
provided that the annealed polymer is in (the interior of) the ballistic phase.

L2. Q-a.s limn!1 Z!n .h/
Zn.h/

D 0.

This is presumably always the case when the quenched model is in sub-ballistic
phase. The case h D 0 is worked out in great detail [1, 29].

Remark 1.2 A characterization of annealed and quenched sets of sub-critical drifts;
K0 and Kq

0 is given in (20) and (58) below. It always holds that K0 � Kq
0 . The

inclusion is strict in any dimension for ˇ large enough, and it is presumably strict
in dimensions d D 2; 3 for any ˇ > 0. On the other hand, it seems to be an open
question whether in higher dimensions d > 3 the two sets of sub-critical drifts
coincide at sufficiently small ˇ.
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L3. Typical polymers under Ph
n and P

h;!
n have very different properties.

Ballistic phase of annealed polymers in dimensions d � 2 is by now completely
understood, and we expose the core of the corresponding (Ornstein-Zernike) theory
developed in [14, 17] in Sect. 3. In dimensions d � 4, the disorder happens to be
weak in the sense of any of L1–L3 in the following regime (which we shall call very
weak disorder): Fix h ¤ 0 and then take Q .V! D 1/ and ˇ in (2) to be sufficiently
small. These results [11, 15, 18, 32] are explained in Sect. 4.

Zero Drift Case At h D 0 properties of both annealed and quenched measures
were described in depth in [29] and references therein, following an earlier analysis
of Wiener sausage in [8, 9]. This is not the case we consider here. However,
it is instructive to keep in mind what happens if there is no pulling force, and,
accordingly, we give a brief heuristic sketch. To fix ideas consider the case of pure
traps p D Q .V! D 0/ D 1 � Q .V! D 1/. If 1 � p is small, then fx W V!x D 0g
percolates, and the model is non-trivial. Let us start with a quenched case. Let Br

be a lattice box Br D fx W jxj1 � rg and Br.x/ D x C Br. We say that there is an
.R; r/-clearing if

9 x 2 BR such that V!y D 0 for all y 2 Br.x/:

The probability

Q .there is a .R; r/ clearing/ � 1 �


1 � pc1rd

�c2Rd=rd

� 1 � e�c3pc1rd Rd

rd :

Up to leading terms this is non-negligible if pc1rd
Rd � const, or if r � .log R/1=d.

On the other hand, a probability that a random walk will go ballistically to a box
(clearing) Br.x/ at distance of order R from the origin is of order e�c4R, and the
probability that afterwards it will spend around n units of time in Br.x/ is � e�c5n=r2 .
We, therefore need to find an optimal balance between R and n=r2 � n=.log R/2=d

terms, which gives, again up to leading terms, R � n=.log n/2=d. This suggests
both a survival pattern for typical quenched polymer (see Fig. 1), and an asymptotic
relation for the quenched partition function

log Z!n � � n

.log n/2=d
: (13)

As far as the annealed model is considered for ` � 1 define as before �ˇ.`/ D
� logE

�
e�ˇ`V0� D � log p

�D �. Consider random walk which stays all n units

of time inside BR. The probabilistic price for the latter is � e�c6n=R2 . On the other
hand, the self-interaction price is � e�c7�Rd

. Choosing optimal balance leads to
R � n1=.dC2/. This suggests a behaviour pattern for typical annealed polymers
(see Fig. 1), which is very different from the survival pattern for typical quenched
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Fig. 1 On the left: A survival pattern for an n-step quenched polymer with R 	 n=.log n/2=d . On
the right: n-step annealed polymer in BR with R 	 n1=.dC2/

polymer as discussed above. This also suggests the following asymptotics for the
annealed partition function:

log Zn � �nd=.dC2/: (14)

The above discussion indicates that in the zero drift case the disorder is strong on
levels L2, L3, but not on L1.

Outline of the Notes We do not attempt to give a comprehensive survey of
the existing results on the subject. Neither the notes are self-contained, in many
instances below we shall refer to the literature for more details on the corresponding
proofs. The emphasis is on the exposition of the renewal structure behind stretched
polymers in the ballistic regime, and how this might help to explore and understand
various phenomena in question.

Section 2 is devoted to the thermodynamics of annealed and quenched polymers,
namely to the facts which can be deduced from sub-additivity arguments and large
deviation principles.

Multidimensional renewal theory (under assumption of exponential tails) is
discussed in detail in Sect. 3. In Sect. 3.2 we explain renormalization procedures
which lead to a reformulation of annealed models in this renewal context, which is
the core of the Ornstein-Zernike theory of the latter. As a result we derive very sharp
and essentially complete description of the ballistic phase of the annealed polymers
on the level of invariance principles and local limit asymptotics on all deviation
scales.

In Sect. 4 we explain why the annealed renewal structure persists for quenched
models in the regime of very weak disorder in dimensions d � 2. More precisely, it
happens that in the latter case the disorder is weak on all three levels L1–L3.
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In Sect. 5 we explain how to check that the disorder is always strong already on
level L1 in dimensions d D 2; 3. A more or less complete argument is given only in
two dimensions.

To facilitate references and the reading some of the back ground material on
convex geometry and large deviations is collected in the Appendix.

Notation Conventions Values of finite positive constants c; �; c1; �1; c2; �2; : : :
may change between different sections.

In the sequel we shall use the following notation for asymptotic relations: Given
a set of indices A and two positive sequences fa˛; b˛g˛2A , we say that

• a˛
<� b˛ uniformly in ˛ 2 A if there exists a constant c > 0 such that a˛ � cb˛

for all ˛ 2 A .
• We shall use a˛ Š b˛ if both a˛

<� b˛ and a˛
>� b˛ hold.

For 1 � p � 1, the `p-norms on R
d are denoted

jxjp D

 dX

iD1
jxijp

� 1
p
:

The default notation is for the Euclidean norm j�j D j�j2.
If not explicitly stated otherwise paths � D .�0; : : : ; �n/ are assumed to have

their starting point at the origin; �0 D 0. A concatenation � ı � of two paths � D
.�0; : : : ; �n/ and � D .�0; : : : ; �m/ is the path

� ı � D .�0; : : : ; �n; �n C �1; : : : ; �n C �m/ :

A union of two paths �[�, with end-points at the origin or not, is a subset of Zd with
multiplicities counted. In particular, local times satisfy `�[�.x/ D `� .x/C `�.x/.

2 Thermodynamics of Annealed and Quenched Models

In the sequel we shall employ the following notation for families of polymers:

Px D f� W X.�/ D xg Pn D f� W j� j D ng and Px;n D Px \ Pn

(15)

Conjugate Ensembles Let 
 � 0. Consider

G!

 .x/ D

X

X.�/Dx

e�
j� jW!
d .�/ and G
.x/ D E

�
G!

 .x/

� D
X

X.�/Dx

e�
j� jWd.�/:

(16)



154 D. Ioffe

Free Energy and Inverse Correlation Length One would like to define quenched
and annealed free energies via:


q.h/ D lim
n!1

1

n
log Z!n .h/ and 
.h/ D lim

n!1
1

n
log Zn.h/: (17)

Similarly one would like to define and the inverse correlation lengths: For x 2 R
d

set

	
q

 .x/ D � lim

r!1
1

r
log G!


 .brxc/ and 	
.x/ D � lim
r!1

1

r
log G
 .brxc/ :

(18)

Depending on the context other names for 
.h/ are connectivity constant and log-
moment generating function, and for 	
.x/ are Lyapunov exponent and, for some
models in two dimensions, surface tension.

By Thermodynamics we mean here statements about existence of limits in (17)
and (18), and their relation to Large Deviation asymptotics under quenched and
annealed polymer measures (8). Facts about Thermodynamics of annealed and
quenched models are collected in Theorems 2.1 and 2.7 below, and, accordingly,
discussed in some detail in Sects. 2.1 and 2.2.

2.1 Annealed Models in Dimensions d � 2

Theorem 2.1

A. The free energy 
 is well defined, non-negative and convex on R
d. Furthermore,

0 D min
h

.h/ D 
.0/: (19)

The set

K0
�D fh W 
.h/ D 0g (20)

is a compact convex set with a non-empty interior.
B. The inverse correlation length 	
 is well defined for any 
 � 0, and it can be

identified as the support function of the compact convex set

K

�D fh W 
.h/ � 
g : (21)

Define

I.v/ D sup
h

fh � v � 
.h/g D sup



f	
.v/� 
g : (22)
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C. For any h 2 R
d the family of polymer measures P

h
n satisfies LD principle with

the rate function

Ih.v/
�D sup

f
ff � v � .
.f C h/� 
.h//g D I.v/� .h � v � 
.h// : (23)

D. For h 2 int .K0/ the model is sub-ballistic, whereas for any h 62 K0 the model is
ballistic.

E. Furthermore, at critical drifts h 2 @K0 the model is still ballistic. In other words,
the ballistic to sub-ballistic transition is always of the first order in dimensions
d � 2.

Proofs of Parts A–C and of Part D for sub-critical drifts (h 2 int .K0/) of
Theorem 2.1 are based on sub-additivity arguments. Parts D (namely existence of
limiting spatial extension v in (9) for super-critical drifts h 62 K0) and E require a
more refined multidimensional renewal analysis based on Ornstein-Zernike theory.

Sub-additivity The following result is due to Hammersley [13]:

Proposition 2.2 Let fang and fbng be two sequences such that:

(a) For all m; n, anCm � an C am C bnCm.
(b) The sequence bn is non-decreasing and

X

n

bn

n.n C 1/
< 1: (24)

Then, there exists the limit

�
�D lim

n!1
an

n
and

an

n
� � C bn

n
� 4

1X

kD2n

bk

k.k C 1/
(25)

Note that �
�D lim infn!1 an

n is always defined. The usual sub-additivity statement
is for bn � 0. In this case � D infn

an
n . The proof (in the case bn � 0) is

straightforward: Indeed, iterating on the sub-additive property, we infer that for any
n � m and any k (and N D kn C m),

aN

N
� kan

kn C m
C am

kn C m

Therefore, for any n fixed

lim sup
N!1

aN

N
� an

n
:
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Remark 2.3 Note that (25) implies that � < 1, however the case � D �1 is not
excluded by the argument. Note also that even if � > �1, no upper bounds (apart
from lim an

n D �) on an
n are claimed. In other words the sub-additivity argument

above does not give information on the speed of convergence.

Attractivity of the Interaction The interaction �ˇ in (6) is attractive in the sense
that

�ˇ.`C m/ � �ˇ.`/C �ˇ.m/: (26)

Indeed, (26) follows from positive association of probability measures on R.
Namely, if X 2 R is a random variable, and f ; g two bounded functions on R which
are either both non-increasing or both non-decreasing, then

Ef .X/g.X/ � Ef .X/Eg.X/: (27)

The universal validity of the latter inequality is related to total ordering of R. If Y is
an i.i.d. copy of X, then

.f .X/� f .Y// .g.X/� g.Y// � 0:

Taking expectation we deduce (27).

Exercise 2.4 Show that if � is attractive, then that for any h 2 R
d and for any 


and x; y 2 Z
d

ZnCm.h/ � Zn.h/Zm.h/: (28)

Note that due to a possible over-counting such line of reasoning does not imply that
G
.x C y/ � G
.x/G
.y/.

Part A of Theorem 2.1 Since the underlying random walk has finite range R,
Zn.h/ � eRnjhj. On the other hand, since we assumed that Pd.e1/ > 1,

Zn.h/ � �
eh�e1��ˇ.1/Pd.e1 > 1/

�n
:

Consequently, 
n.h/
�D 1

n log Zn.�/ is a sequence of convex (by Hölder’s inequality)
locally uniformly bounded functions. By Jensen’s inequality 
n.0/ D min
n. For
each h fixed, log Zn.h/ is, by (28) super-additive in n. By Proposition 2.2, 
.h/ D
limn!1 
n.h/ exists, and, by the above, convex and finite on R

d.
Let us check that 
.0/ D minh 
.h/ D 0. Assumption (A1) implies that

�ˇ is monotone non-decreasing, �ˇ.1/ D min
`
�ˇ.`/ > 0; (29)
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and that

lim
`!1

�ˇ.`/

`
D 0: (30)

Next we rely on the following well-known estimate for the underlying finite range
random walk:

Estimate 1 There exists c D c.Pd/ < 1 and L0 < 1, such that for any L > L0,

Pd

�
max
`�n

jX.`/j � L

�
>� e�c n

L2 : (31)

uniformly in n 2 N.
Let �L D fx W jxj1 � Lg. Then,

Zn.h/ � e�jhjL X

�
BL

Wd.�/�fj� jDng:

If j� j D n and � � BL, then

˚ˇ.�/ � .2L C 1/d max
`�n

�ˇ.`/:

Consequently, in view of (31),

lim inf
n!1

1

n
log Zn.h/ � � c

L2
� .2L C 1/d lim inf

n!1
max`�n �.`/

n
; (32)

for any L > L0. By (30),

lim
n!1

max`�n �ˇ.`/

n
D 0:

It follows that 
.h/ � 0 for any h 2 R. On the other hand, since the interaction
potential �ˇ is non-negative Zn D Zn.0/ � 1, and, consequently, 
.0/ � 0. Hence

.0/ D 0 D minh 
.h/ as claimed.

Since 
 � 0, the set K0 in (20) is convex. In order to check that it contains
an open neighbourhood of the origin it would be enough to show that there exists
ı > 0, such that

X

n

Zn.h/ D
X

x

eh�xG0.x/ < 1; (33)

whenever, jhj < ı. The convergence in (33) will follow as soon as we shall show
that the critical two-point function G0.x/ in (16) is exponentially decaying in x. We
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Fig. 2 Paths � 2 P
.k/
x

continue to employ notation Px for paths � with X.�/ D x (and, of course, with
Pd.�/ > 0). Consider the disjoint decomposition

Px D
[

k�2
P

.k/
x ;

where (see Fig. 2),

P
.k/
x D ˚

� 2 Px W � � �kjxj1
� n ˚� 2 Px W � � �.k�1/jxj1

�
:

If � 2 P
.k/
x , then since the range R of the underlying random walk is finite,

˚ˇ.�/ � .k � 1/ jxj1
R

inf
`
�ˇ.`/ D .k � 1/ jxj1

R
�ˇ.1/:

As a result,

G.k/
0 .x/

�D Wd



P

.k/
x

�
� e�.k�1/jxj1�ˇ.1/=R

X

�2P.k/
x

Pd.�/:

At this stage we shall rely on another well known estimate for short range zero-mean
random walks:

Estimate 2 Let �0 be the first hitting time of 0. Then,

Ed

 
�0X

`D0
�fX.`/Dxg

ˇ̌
X.0/ D x

!
<� Ad.jxj/ �D

8
ˆ̂<

ˆ̂:

jxj ; d D 1

log jxj ; d D 2

1; d � 3

(34)
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uniformly in x 2 Z
d. By a crude application of (34),

X

�2P.k/
x

Pd.�/ � Ad.k jxj1/ ) G.k/
0 .x/ � Ad.k jxj1/e� �ˇ.1/

R .k�1/jxj1 : (35)

Therefore,

G0.x/ �
X

k�1
Ad..k C 1/ jxj1/e� �ˇ.1/

R kjxj1 ;

and (33) follows.

Part B of Theorem 2.1 As we have already noted, due to a possible over-
counting it is not obvious that G
.x C y/ � G
.x/G
.y/. However, in view of
the attractivity (26) of �ˇ, the latter super-multiplicativity property holds for the
following first-hitting time version H
 of G
:

H
.x/ D
X

�2Px

e�
j� jWd.�/�`x.�/D1: (36)

In particular, the limit

	
.x/ D � lim
r!1

1

r
log H
 .brxc/ (37)

exists, and, by Proposition 2.2, is a non-negative, convex, homogeneous of order
one function on Z

d. Furthermore, H
.x/
<� e�	
.x/.

Exercise 2.5 Prove the above statements.

We claim that the second of (18) holds with the very same 	
. Clearly, H
.x/ �
G
.x/. The proof, therefore, boils down to a derivation of a complementary upper
bound, which would render negligible correction on the logarithmic scale. We shall
consider two cases: Fix any 
0 > 0.

Case 1. 
 > 
0. Then for any x,

G
.x/ � H
.x/G
.0/ � H
.x/
X

y

G
.y/ � H
.x/
1

1 � e�
0 : (38)

Case 2. 
 � 
0. Evidently 	
 is non-decreasing in 
. Define:

k0 D 3
R

�ˇ.1/
max

y

	
0 .y/
jyj1

: (39)
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By (35) ,

X

k�k0

G.k/

 .x/ �

X

k�k0

G.k/
0 �

X

k�k0

Ad.k jxj1/e� �ˇ.1/

R .k�1/jxj1 � e�2	
.x/

is exponentially negligible with respect to e�	
.x/. Consequently,

G
.x/
<�
X

k<k0

G.k/

 .x/ � H
.x/Ad.k0 jxj1/ � e�	
.x/Ad.k0 jxj1/; (40)

and the second of (18) indeed follows.

�� is the Support Function of K� In order to see this notice that the set K
 D
fh W 
.h/ � 
g is the closure of the domain of convergence

h 7!
X

n

e�
nZn.h/ D
X

x

eh�xG
.x/: (41)

Consider

˛
.h/ D max fh � x W 	
.x/ � 1g : (42)

The series in (41) diverges if ˛
.h/ > 1, whereas, h 2 int.K
/ if ˛
.h/ < 1. Hence,

@K
 D fh W ˛
.h/ D 1g or 	
.x/ D max
h2@K


h � x: (43)

Part C of Theorem 2.1 To be precise large deviations are claimed for the
distribution of end-points, which we, with a slight abuse of notation, proceed to
call Ph

n.x/:

P
h
n.x/ D

X

x.�/Dx

P
h
n.�/

�D eh�xZn.x/
Zn.h/

: (44)

Let h 2 R
d. The limiting log-moment generation function under the sequence of

measures
˚
P

h
n

�
is

lim
n!1

1

n
logEh

n

�
ef �X� D 
.h C f /� 
.h/:

The function Ih in (23) is just the Legendre-Fenchel transform of the above.
Since the underlying random walk has bounded range, exponential tightness is
automatically ensured. By Theorem 6.26 and Exercise 6.24 of the Appendix, upper
large deviation bounds hold with Ih.
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We still need a matching lower bound. Let us sketch the proof which relies
on sub-additivity and Lemma 6.27 of Appendix. Due to a possible over-counting
the function n ! log Zn.bnxc/ is not necessarily super-additive. However, its first
hitting time version (see (15) for the definition of Px;n);

OZn.bnxc/ D
X

�2Px;n

Wd.�/�f`� .x/D1g; (45)

is super-additive. By Proposition 2.2 the limit

J.x/ D � lim
n!1

1

n
log OZn.bnxc/ and OZn.bnxc/ � ce�nJ.x/ (46)

exists and is a convex non-negative function on R
d. Some care is needed to make this

statement rigorous. Indeed, OZn.x/ D 0 whenever x does not belong to the (bounded)
range of the underlying n-step walk, and what happens at boundary points should
be explored separately. We shall ignore this issue here.

A slight modification of arguments leading to (19) imply that J.0/ D 0. By
convexity this means that for any ˛ 2 .0; 1/ and any x,

J.x/ � ˛J

 x
˛

�
: (47)

Since, �ˇ is non-negative,

OZn.bnxc/ � Zn.bnxc/ �
nX

mD1
OZm.bnxc/ �

nX

mD1
ce�mJ. n

m x/ � cne�nJ.x/; (48)

where we used (46) and (47) on the last two steps. We conclude:

J.x/ D � lim
n!1

1

n
log Zn.bnxc/ and Zn.bnxc/ � ce�nJ.x/C log n

n (49)

Now, (49) means that (213) and (217) are satisfied, the latter uniformly in x.
Since the range of the underlying random walk is bounded, (220), and in particular
exponential tightness, is trivially satisfied as well. Hence, by Lemma 6.27, I D J.
Since

�1
n

logPh
n.bnxc/ D �1

n
log Zn.bnxc/�

�
h � bnxc

n
� log Zn.h/

n

�
;

claim C of Theorem 2.1 follows as well.
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Part D of Theorem 2.1 and Limiting Spatial Extension For drifts h 2 int .K0/,

Ih.v/ D sup
g

fg � v � .
.h C g/� 
.h//g � jvj dist .h; @K0/ > 0;

for any v ¤ 0. Hence, if h 2 int .K0/, then the model is sub-ballistic in the sense
of (10).

On the other hand, if h 62 K0 or, equivalently, if 
.h/ > 0, then

Ih.0/ D sup
g

f�
.g C h/C 
.h/g D 
.h/ > 0:

This is a rough expression of ballisticity. It implies that the polymer is pulled away
from the origin on the linear scale, but it does not imply that the limit in (9) exists.

More precisely, if 
 is differentiable at h 62 K0, then (9) holds with v D r
.h/.
Indeed in the latter case Ih is strictly convex at v and, consequently Ih.v/ D 0 is the
unique minimum. Furthermore, in such a case, the following law of large numbers
holds: For any � > 0,

X

n

P
h
n

�ˇ̌
ˇ
X
n

� v
ˇ̌
ˇ � �

�
< 1; (50)

and the series converge exponentially fast.
However, the above sub-additivity based thermodynamics of annealed polymers

does not imply that the sub-differential @
.h/
�D Mh D fv W Ih.v/ D 0g is always a

singleton. The general form of (50) is

X

n

P
h
n

�
min

v2Mh

ˇ̌
ˇ
X
n

� v
ˇ̌
ˇ � �

�
< 1: (51)

Therefore, in general, large deviations (Part C of Theorem 2.1) imply neither
existence of the limit in (9), nor a LLN. The set Mh could be characterized as
follows [10, 16]:

Lemma 2.6 For any h 62 K0 the set Mh satisfies: Set � D 
.h/ > 0. Then,

v 2 Mh ”
8
<

:
	�.v/ D h � v
d�

d


ˇ̌
ˇ

D�	
.v/ � 1 � dC

d


ˇ̌
ˇ

D�	
.v/

(52)

Proof By (23),

v 2 Mh ” sup



.	
.v/ � 
//C .� � h � v/ D 0:
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The choice 
 D � implies that 	
.v/ � h �v. Since h 2 @K�, the first of (52) follows
by (43). As a result,

	
.v/ � 	�.v/ � 
 � �; (53)

for any 
. Since the function 
 ! 	
.v/ is concave, left and right derivatives are
well defined, and the second of (52) follows from (53).

The differentiability (and even analyticity) of 
 at super-critical drifts h 62 K0

and, in particular, the existence of the limit in (9) and the LLN (50), is established
in Sect. 3.2 as a consequence of much sharper asymptotic results based on analysis
of renewal structure of ballistic polymers.

Part E of Theorem 2.1 Finally, Ih.0/ D 0 whenever h 2 @K0, which sheds
little light on ballistic properties of the model at critical drifts. The critical case
was worked out in [17] via refinement of the renormalization construction of the
Ornstein-Zernike theory (see Sect. 3.2), and it is beyond the scope of these notes to
reproduce the corresponding arguments here.

2.2 Thermodynamics of Quenched Polymers

The underlying random walk imposes a directed graph structure on Z
d. Let us

say that y is a neighbour of x; x Ý y if Pd.y � x/ > 0. Because of (1) and
Assumption (A.2) there is a unique infinite component Cl1 of fx W V!x < 1g.
Clearly, non-trivial thermodynamic limits may exist only if 0 2 Cl1. Furthermore,

if E .V!/ D 1, then
P

r Q



V!
brxc > cr

�
D 1 for any c > 0, and consequently,

lim inf
r!1

1

r
log G!


 .brxc/ D �1;

Q-a.s. for any x ¤ 0. Hence, in order to define inverse correlation length 	q

 one

needs either to impose more stringent requirements on disorder and use (18), or to
find a more robust definition of 	q


 . A more robust definition is in terms of the so
called point to hyperplane exponents:

Given h ¤ 0 define the set H C
h;t D fx W h � x � tg. Let Ph;t be the set of paths

� D .�.0/; : : : ; �.n// with �.n/ 2 H C
h;t . For 
 � 0 consider,

D!
h;
.t/ D

X

�2Ph;t

e�
j� jW!
d .�/:

Assume that the limit

� lim
t!1

1

t
log D!

h;
.t/
�D 1

˛
q

.h/

(54)
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exists. Should the inverse correlation length 	q

 be also defined (and positive), the

following relation should hold:

1

˛
q

.h/

D min
x2H C

h;1

	
q

 .x/: (55)

If 	q

 is the support function of a convex set Kq


, then, by (198) of the Appendix, ˛q



should be the support function of the polar set (199) or, equivalently, the Minkowski
function of Kq


.
Conversely, if the limit ˛q


 in (54) exists, then we may define 	q

 via

	
q

.x/ D max

˚
h � x W ˛q


.h/ � 1
�
; (56)

even if a direct application of (18) does not make sense.
There is an extensive literature on thermodynamics of quenched models, [10,

23, 29, 31] to mention a few. The paper [23] contains state of the art information
on the matter, and several conditions on the random environment were worked out
there in an essentially optimal form. The treatment of Q.V! D 1/ > 0 case and,
more generally, of E .V!/ D 1 case is based on renormalization techniques for
high density site percolation and, eventually, on sub-additive ergodic theorems and
large deviation arguments. It is beyond the scope of these lectures to reproduce the
corresponding results here. Below we formulate some of the statements from [23]
and refer to the latter paper for proofs and detailed discussions.

We assume (A1) and (A2).

Theorem 2.7 The following happens Q-a.s on the event 0 2 Cl1:

A. The free energy 
q is well defined, deterministic, non-negative and convex on
R

d. Furthermore,

0 D min
h

q.h/ D 
q.0/: (57)

The set

Kq
0

�D ˚
h W 
q.h/ D 0

�
(58)

is a compact convex set with a non-empty interior.
B. The point to hyperplane exponent ˛q


 in (54) is well defined for any 
 � 0.
Consequently, the inverse correlation length 	q


 is well defined via (56) also for
any 
 � 0, and, furthermore, it can be identified as the support function of the
compact convex set

Kq



�D ˚
h W 
q.h/ � 


�
: (59)
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Define

Iq.v/ D sup
h

˚
h � v � 
q.h/

� D sup



˚
	

q

 .v/� 
� : (60)

C. For any h 2 R
d the family of polymer measures Ph;!

n satisfies LD principle with
the rate function

Iq
h .v/

�D sup
f

˚
f � v � �


q.f C h/� 
!.h/
�� D Iq.v/� �

h � v � 
q.h/
�
: (61)

D. For h 2 int
�
Kq
0

�
the model is sub-ballistic, whereas for any h 62 Kq

0 the model
is ballistic in the sense that Iq

h .0/ > 0.

The above theorem does not imply strong limiting spatial extension form of
the ballisticity condition (11) for all h 62 Kq

0 , exactly for the same reasons as
Theorem 2.1 does not imply the corresponding statement for annealed models.
Existence of limiting spatial extension for quenched models in the very weak
disorder regime is discussed, together with other limit theorems, in Sect. 4.

In the case of critical drifts h 2 @Kq
0 , a form of ballistic behaviour was established

in the continuous context in [28].

3 Multidimensional Renewal Theory and Annealed Polymers

3.1 Multi-Dimensional Renewal Theory

One-Dimensional Renewals Let ff.n/g be a probability distribution on N (with
strictly positive variance). We can think of f as of a probability distribution for a
step T of the effective one-dimensional random walk

SN D
NX

1

Ti:

The distribution of fSng is governed by the product measure P. The renewal array
ft.n/g is given by

t.0/ D 1 and t.n/ D
nX

mD1
f.m/t.n � m/: (62)

In probabilistic terms (62) reads as:

t.n/ D P . 9 N W SN D n/ D
X

N

P .SN D n/ : (63)
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Renewal theory implies that

lim
n!1 t.n/ D 1

ET
�D 1

�
: (64)

A proof of (64) is based on an analysis of complex power series

Ot.z/ �D
X

n

t.n/zn and Of.z/ �D
X

n

f.n/zn (65)

Exercise 3.1 Show that Ot is absolutely convergent and hence analytic on the interior
of the unit disc D1 D fz W jzj < 1g. Check that Ot.1/ D 1.

It follows that on D1,

Ot.z/ D 1

1 � Of.z/
: (66)

Exercise 3.2 Check that jf.z/j � f.jzj/ < 1 for any z 2 D1. Prove (66).

Consequently, by Cauchy formula,

t.n/ D 1

2�i

I

jzjDr

Ot.z/
znC1 dz D 1

2�i

I

jzjDr

dz

znC1


1 � Of.z/

� ; (67)

for any r < 1.

Exponential Tails Assume that there exists � > 0, such that

f.n/
<� e��n; (68)

uniformly in n 2 N.

Lemma 3.3 Under Assumption (68) the convergence in (64) is exponentially fast
in n.

We start proving Lemma 3.3 by noting that under (68) the function Of is defined and
analytic on D1C� .

Exercise 3.4 Check that there exists � 2 .0; �/ such that z D 1 is the only zero of
1 � f.z/ on ND1C� . Furthermore, 1�z

Of.z/�1 is analytic on D1C�.

Recall that we defined � D P
n nf.n/ D Of0.1/. Consider the representation,

1

�
D 1

2�i

Z

jzjDr

dz

�.1 � z/znC1 ;
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which holds for any r < 1. By (67),

t.n/� 1

�
D 1

2�i

Z

jzjDr

Of.z/� 1 � �.z � 1/

.1� Of.z//.1 � z/znC1 dz
�D 1

2�i

Z

jzjDr

�.z/

znC1 dz: (69)

On ND1C� the denominator in the definition of � vanishes only at z D 1. However,

since � D Of0.1/, expansion of the numerator in a neighbourhood of z D 1 gives:

Of.z/� 1 � �.z � 1/ D .z � 1/2U.z/;

with some analytic U. It follows that

�.z/ D U.z/

.1 � Of.z//=.z � 1/
:

In view of Exercise 3.4 � is analytic on ND1C�. As a result,

1

2�i

Z

jzjDr

�.z/

znC1 dz D 1

2�i

Z

jzjD1C�
�.z/

znC1 dz:

By (69),

ˇ̌
ˇ̌t.n/� 1

�

ˇ̌
ˇ̌ <� .1C �/�n; (70)

uniformly in n. This is precisely the claim of Lemma 3.3. ut
Complex Renewals Suppose that (62) holds with complex ff.n/g and, accordingly,
with complex ft.n/g. As before, define Ot.z/ and Of.z/ as in (65). In the sequel we shall
work with complex renewals which satisfy one of the following two assumptions,
Assumption 3.5 or Assumption 3.6, below.

Assumption 3.5 There exists � > 0, such that the function Of satisfies the following
three properties:

(a) Of.0/ D 0 and the Of.z/ in (65) is absolutely convergent in a neighbourhood of
ND1C� .

(b) z D 1 is the only zero of

Of.z/ � 1

�
in ND1C� .

(c) Of0.1/ ¤ 0.

Under Assumption 3.5 the exponential convergence bound (70) still holds. Indeed,
the only thing we have to justify is that Ot.z/ D P

n t.n/zn is defined and analytic on
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some neighbourhood of the origin, and that

Ot.z/ D 1

1 � Of.z/
; (71)

for all jzj sufficiently small. Indeed, if this is the case, then (67) holds for some r > 0,
and we may just proceed as before. However, by Assumption 3.5(a),

P
n jf.n/j jzjn <

1 for all jzj small enough. Hence (71).

Assumption 3.6 There exists � > 0, such that the function Of satisfies the following
two properties:

(a) The series Of.z/ in (65) is absolutely convergent in a neighbourhood of ND1C� .
(b) There exists � > 0, such that minjzj�1C�

ˇ̌
ˇ1 � Of.z/

ˇ̌
ˇ � �.

Under Assumption 3.6, the function


1 � Of.z/

��1
is analytic in a neighbourhood of

ND1C�, and the Cauchy formula (67), which again by absolute convergence of Of still
holds for r sufficiently small, implies:

jt.n/j � 1

�.1C �/n
: (72)

Multi-dimensional Renewals Let ff.x;n/g be a probability distribution on Z
d 	N.

As in the one-dimensional case we can think of f as of a probability distribution for
a step U D .X;T/ of the effective .d C 1/-dimensional random walk

SN D
NX

1

Ui:

The distribution of fSng is governed by the product measure P. We assume:

Assumption 3.7 Random vector U D .X;T/ has a non-degenerate .d C 1/-
dimensional distribution. The random walk SN is aperiodic (that is its support is
not concentrated on a regular sub-lattice).

The renewal array ft.x; n/g is given by

t.x; 0/ D �fxD0g and t.x; n/ D
nX

mD1

X

y

f.y;m/t.x � y; n � m/: (73)

Again, as in the one dimensional case (63), in probabilistic terms (73) reads as:

t.x; n/ D P . 9 N W SN D .x; n// : (74)
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The renewal relation is inherited by one-dimensional marginals: Set

f.n/ D
X

x

f.x; n/ and t.n/ D
X

x

t.x; n/:

Then, (62) holds.
We are going to explore the implications of the renewal relation (73) for a local

limit analysis of conditional measures

Qn .x/ D t.x; n/
t.n/

: (75)

Exponential Tails Assume that there exists � > 0, such that

f.x;n/
<� e��.jxjCn/; (76)

uniformly in .x; n/ 2 Z
d 	 N. In particular, (70) holds, and as a result we already

have a sharp control over denominators in (75).
Consider the following equation

F.�; 
/
�D log

X

x;n

ex���
nf.x; n/ D 0: (77)

Above F W Cd 	 C 7! C.

Exercise 3.8 Check that under (76) there exists ı > 0 such that F is well defined
and analytic on the disc D

dC1
ı � C

dC1.

Shape Theorem We shall assume that ı is sufficiently small. Then by the analytic
implicit function theorem [19], whose application is secured by Assumption 3.7,
there is an analytic function 
 W Dd

ı 7! C with such that for .�; 
/ 2 D
dC1
ı ,

F.�; 
/ D 0 , 
 D 
.�/: (78)

For � 2 D
d
ı define:

f�.x; n/ D f.x; n/e��x�
.�/n and t�.x; n/ D t.x; n/e��x�
.�/n: (79)

Evidently, the arrays
˚
f�.x; n/

�
and

˚
t� .x; n/

�
satisfy (73). Also, under (76), f� .n/

�DP
x f�.x; n/ is well defined for all j�j < �.

Lemma 3.9 There exists ı > 0 and � > 0 such that

Of�.z/ �D
X

n

f�.n/zn;

satisfies Assumption 3.5 for all j�j < ı.
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Proof Conditions (a) and (c) are straightforward. In order to check (b) note that it is
trivially satisfied at � D 0. Which, by continuity means that we can fix � > 0 such
that for any � > 0 fixed, the equation

Of�.z/ D 1 (80)

has no solutions in D1C� n D�.1/ for all j�j < ı. However, the family of analytic

functions
nOf�
o

j�j<ı is uniformly bounded on ND�.1/. Furthermore, for ı > 0 small

the collection of derivatives.
(

Of0�.1/ �D �.�/
�D
X

n

nf�.n/

)

j�j<ı
(81)

is uniformly bounded away from zero. Therefore, there exist � > 0 and ı D ı.�/ >

0, such that z D 1 is the only solution of Of�.z/ D 1 on ND�.1/ for all j�j < ı.
Remark 3.10 Note that the restriction of F to R

dC1 \ D
dC1
ı is convex, and it is

monotone non-increasing in 
. Hence, the restriction of 
 to R
d \ D

d
ı is convex

as well. Indeed, let 
i D 
.�i/; i D 1; 2, for two vectors �1; �2 2 R
d \ D

d
ı .

From convexity of level set f.�; 
/ W F.�; 
/ � 0g, we infer that for any convex
combination � D ˛�1 C .1 � ˛/�2

F.�; ˛
1 C .1 � ˛/
2/ � 0 ) 
.�/ � ˛
1 C .1 � ˛/
2:

The term shape theorem comes from the fact that in applications function 


frequently describes local parametrization of the boundary of the appropriate
limiting shape.

Limit Theorems Consider the canonical measure Qn defined in (75). The follow-
ing proposition describes ballistic behaviour under Qn.

Proposition 3.11 Under assumption on exponential tails (76),

lim
n!1

1

n
Qn .X/ D lim

n!1
1

n

P
x t.x; n/x
t.n/

D EX
ET

�D v: (82)

Proof Note that

Qn .X/ D
P

x t.x; n/x
t.n/

D r� log

 
X

x

e��xt.x; n/

!
.0/:

For j�j small we can rely on Lemmas 3.3 and 3.9 to conclude that

e�
.�/nX

x

e��xt.x; n/ D 1

�.�/
.1C o ..1C �/�n// ; (83)
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where �.�/ was defined in (81). The convergence in (83) is in a sense of analytic
functions on D

d
ı for ı small enough. As a result, the convergence,

e�
.�/n
Qn
�
e��X

� D �.0/

�.�/
.1C o ..1C �/�n// ; (84)

is also in a sense of analytic functions on D
d
ı . Since 
.0/ D 0,

vn
�D 1

n
Qn .X/ D r
.0/� 1

n
r log�.0/C o ..1C �/�n/ : (85)

Equation (82) follows, since by (77)

r
.0/ D EX
ET

D v: (86)

Integral Central Limit Theorem For � 2 C
d consider

�n.�/ D Qn .exp fi.X � nvn/ � �g/ : (87)

For any R fixed, �n



�p
n

�
is well defined on D

d
R. By (84) and (85),

�n

�
�p
n

�
D exp

�
n

�

.

i�p
n
/� r
.0/ � i�p

n

�
C O

�
Rp

n

��
D e

� 1
2����CO



R

p

n

�

;

(88)

in the sense of analytic functions on D
d
R. Above �

�D Hess.
/. We claim:

Lemma 3.12 � is a positive definite d 	 d matrix.

Proof Fix � 2 R
d n 0 and consider (78):

X

x;n

f .x; n/e���x�n
.��/ � 1;

which holds for all j�j < ı= j�j. The second order expansion gives:

Hess
.0/ � � � D 1

ET
E

��
X � EX

ET
T
�

� �
�2
:

The claim of the lemma follows from the non-degeneracy Assumption 3.7.

In view of Lemma 3.12, asymptotic formula (88) already implies the integral form
of the CLT: The family of random vectors 1p

n
.X � nvn/ weakly converges (under

fQng) to N .0;�/.



172 D. Ioffe

Local CLT �n is related to the characteristic function of X in the following way:
For any � 2 R

d ,

�n.�/ D e�invn��
Qn
�
ei� �X� D e�invn��

t.n/

X

x

t.x; n/eix�� :

The complex array
˚
t.x; n/eix��� is generated via multi-dimensional renewal rela-

tion (73) by
˚
f.x; n/eix���. Since ff.x; n/g is a non-degenerate probability distribution

on Z
d with exponentially decaying tails, for any ı > 0 one can find � D �.ı/ > 0

and � D �.ı/, such that the array
˚
f.x; n/eix��� satisfies Assumption 3.6 uniformly

in j� j � ı. We conclude:

Lemma 3.13 For any ı > 0 there exists cı > 0 such that

j�n.�/j � e�cın; (89)

whenever � 2 R
d satisfies j� j � ı.

One applies Lemma 3.13 as follows: By the Fourier inversion formula,

Qn.x/ D 1

.2�/d

Z

Td
e�i� �.x�nvn/�n.�/d�: (90)

Choose ı; � > 0 small. The above integral splits into the sum of three terms:

Z
e�i� �.x�nvn/�n.�/d� D

Z

An

e�i� �.x�nvn/�n.�/d�

C
Z

Bn

e�i� �.x�nvn/�n.�/d� C
Z

j� j�ı
e�i� �.x�nvn/�n.�/d�:

(91)

Above An D
n
� W j� j < n� 1

2C�
o

and Bn D
n
� W n� 1

2C� � j� j < ı
o
. The third

integral is negligible by Lemma 3.13. In order to control the second integral (over
Bn) note that for ı small enough (84) applies, and hence, in view of positive
definiteness of � ,

ˇ̌
ˇ̌
Z

Bn

e�i� �.x�nvn/�n.�/d�

ˇ̌
ˇ̌ �

Z

Bn

e� n
4 � � ��d�:

The first integral in (91) gives local CLT asymptotics uniformly in jx � nvnj D
o



n
1
2�.dC1/�

�
. Namely, for such x-s

Z

j� j<n�
1
2C�

e�i� �.x�nvn/�n.�/d� D
Z

j� j<n�
1
2C�

�n.�/d� C o

�
1p
nd

�
:
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As in (88),

�n.�/ D e� n
2� � ��CO.nj� j3/;

uniformly in j� j < n� 1
2C� . We have proved:

Proposition 3.14 For any fixed � > 0 the asymptotic relation:

Qn.x/ D 1p
.2�n/ddet�

.1C o .1// ; (92)

holds uniformly in jx � nvnj <� n
1
2�� .

In fact, as it will become clear from local large deviations estimates below, it would
be enough to state (92) only for jx � nvnj � 1.

Local Large Deviations Estimates Assumption (76) implies that the family of
measures fQng is exponentially tight. Furthermore, by the very definition of t in (73)

t.x C y; n C m/ � t.x; n/t.y;m/:

Hence, by the sub-additivity argument the function

J.u/ D � lim
n!1

1

n
log t.n; bnuc/ (93)

is well defined and convex on R
d. By the renewal theorem (64),

J.u/ D � lim
n!1

1

n
logQn.bnuc/:

Consequently, fQng satisfies the large deviation principle with J.
A large deviation result states what it states. Obviously, J in (93) is non-negative,

and min J D J.v/ D 0, where v was defined in (82). We shall show that J has
a quadratic minimum on B

d
�.v/, and prove a local LD asymptotic relation for any

u 2 B
d
�.v/.

Recall that 
 is analytic (and convex) on a (real) ball Bd
ı . Since, as we already

know by Lemma 3.12, Hess .
/ .0/ is non-degenerate, and since r
.0/ D v, there
exists � > 0 such that

B
d
�.v/ � r
ˇ̌

B
d
ı
: (94)

Let u 2 B
d
�.v/. Set un D bnuc=n and choose �n 2 B

d
ı such that un D r
.�n/.

By (94) such �n exists (at least for all n sufficiently large), and, for it is unique by the
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implicit function theorem. Recall how we defined tilted function t�n in (79). Then,

t.n; bnuc/ D en
.�n/��n�bnuct�n.n; bnuc/ (95)

The term t�n.n; bnuc/ obeys uniform sharp CLT asymptotics (92) with �.�n/ D
Hess.
/.�n/. The term

J.un/ D �n � un � 
.�n/

is quadratic. Indeed, for any � 2 B
d
�.v/ and w D r
.�/, one, using 
.0/ D 0, can

rewrite:

� � w � 
.�/ D 
.0/� 
.�/ � .��/ � r
.�/

D
�Z 1

0

Z s

0

Hess.
/..1 � 	/�/d	ds

�
� � �;

(96)

and rely on non-degeneracy of Hess.
/ on B
d
� . Incidentally, we have checked that on

B
d
�.v/ the function J D 
� is real analytic with Hess.J/.v/ being positive definite.

The local limit estimates we have derived reads as: Recall notation un D bnuc=n
and �n being defined via un D r
.�n/. Then,

Qn .bnuc/ D �.0/

�.�n/
p
.2�/ddet�.�n/

e�nJ.un/ .1C o .1// ; (97)

uniformly in u 2 B
d
�.v/.

3.2 Ballistic Phase of Annealed Polymers

Recall that the reference polymer weights Wd are given by (3). ˚ is the self-
interaction potential (4) which satisfies the attractivity condition (26). Let h 62 K0

and, accordingly, h 2 @K
 with 
 D 
.h/ > 0. We shall consider the normalized
weights

Wh;

d .�/ D eh�X.�/�
j� jWd.�/: (98)

These weight are normalized for the following reason: As before define

Px D f� W X.�/ D xg Pn D f� W j� j D ng and Px;n D Px \ Pn:

(99)
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Then,

X

�2Px

Wh;

d .�/ D eh�xG
.x/ � eh�x�	
.x/ and

X

�2Pn

Wh;

d .�/ D e�n
Zn.h/ � 1:

(100)

If h � x D 	
.x/, then the first term in (100) is also of order 1. More generally, let us
define the following crucial notion:

Surcharge Function For any x 2 R
d define the surcharge function

sh.x/ D 	
.x/� h � x � 0: (101)

In view of (40) the first of the estimates in (100) could be upgraded as follows
(see (34) for the definition of Ad)

Wh;

d .x/

�D
X

�2Px

Wh;

d .�/ � e�sh.x/ and;moreover;Wh;


d .x/
<� Ad.k0 jxj1/e�sh.x/:

(102)

Surcharge Cone Let us say that Y1 is a ı1-surcharge cone with respect to h if:

(a) Y1 is a positive cone (meaning that its opening is strictly less than �) and it
contains a lattice direction ˙ek in its interior.

(b) For any x 62 Y1 the surcharge function s satisfies

s.x/ D 	
.x/ � h � x > ı1	
.x/: (103)

For the rest of this section we shall fix ı1 2 .0; 1/ and a ı1-surcharge cone Y1
with respect to h.

Factorization Bound Assume that the path � can be represented as a concatena-
tion,

� D �0 ı �1 ı �1 ı � � � ı �m ı �mC1; (104)

such that paths �` D .u`; : : : ; v`C1/ satisfy the following two properties:

(P1) �i is disjoint from �j for all i > j.
(P2) For any i the local time `�i.viC1/ D 1.

By (29) and (P1),

˚ˇ.�/ � ˚ˇ.�1 [ � � � [ �m/ D
X

`

˚ˇ.�`/:
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Consequently,

Wd .�/ e�
j� j �
mY

lD1
Wd.�`/e�
j�`j �

mY

kD1
e�
j�k j: (105)

Fixing end points u1; v2;u2; : : : and paths �` in (104), and summing up with respect
to all paths �1; : : : ; �m (with �` D .u`; : : : ; v`C1/) satisfying properties (P1) and
(P2) above we derive the following upper bound:

X

�1;:::;�m

Wd .�/ e�
j� j �
mY

1

H
.v`C1 � u`/e�
Pj�`j � e�P
	
.v`C1�u`/�
Pj�`j:

(106)

Let us proceed with describing our algorithm to construct representation (104) with
properties (P1) and (B2) for any path � 2 Px.

Construction of Skeletons Skeletons O�K are constructed as a collection O�K D
ŒtK ; hK �, where tK is the trunk and hK is the set of hairs of O�K . Let � 2 Px and
choose a scale K. In the sequel we use UK


 D fu W 	
.u/ � Kg denote the ball of
radius K with respect to 	
 (note that since, in general, 	
.y/ ¤ 	
.�y/, it does not
have to be a distance). Recall that R denotes the range of the underlying random
walk. Choose r D r
 D min

˚
s W B

d
R � Us




�
, where as before B

d
R is the Euclidean

ball of radius R. Let us first explain decomposition (104) and construction of trunks
(see Fig. 3).

STEP 0. Set u0 D 0, 	0 D 0 and t0 D fu0g. Go to STEP 1.
STEP (l+1) If .�.	l/; : : : �.n// � UK


 .ul/ then set �lC1 D n and stop. Otherwise,
define

�lC1 D min
˚
i > 	l W �.i/ 62 UK


 .ul/
�

and

	lC1 D 1C max
˚
i > 	l W �.i/ 2 UKCr


 .ul/
�
:

Fig. 3 Decomposition (104) and construction of the trunk tK D fu1; : : : ; u4g of the skeleton
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Fig. 4 Construction of a hair
hK D fw1; : : : ;w4g

Set vlC1 D �.�lC1/ and ulC1 D �.	lC1/. Update tK D tK [ fulC1g and go to
STEP (l+2) ut
Clearly the above algorithm leads to a decomposition of � as in (104) with

�l D .�.	l/; : : : ; �.�lC1// and �l D .�.�l/; : : : ; �.	l// ;

and with �1; �2; : : : satisfying conditions (P1) and (P2).
The set tK is called the trunk of the skeleton O�K of � on Kth scale. The hairs hK of

O�K take into account those �l-s which are long on Kth scale. Recall that �l W vl 7! ul.
It is equivalent, but, since eventually we want to keep track of vertices from the trunk
tK , more convenient to think about �l as of a reversed path from ul to vl. Then the
lth hair hl

K D hK Œ�l� of � is constructed as follows:
If �l � UK


 .ul/ then hl
K D ;. Otherwise, set u D ul, v D vl, � D �l, m D j�j,

and proceed with the following algorithm (see Fig. 4):

STEP 0. Set w0 D u, 	0 D 0 and hK Œ�� D ;. Go to STEP 1.
STEP (l+1). If .�.	l/; : : : ; �.m// � UK


 .ul/ then stop. Otherwise set

	lC1 D min
˚
j > 	l W �.j/ 62 UK


 .wl/
�
:

Define wlC1 D �.	lC1/, update hK D hK [ fwlC1g and go to STEP (l+2). ut
Control of Wh;�

d

� O�K
�

In the super-critical case 
 > 0, and hairs could be
controlled in a crude fashion via comparison with an underlying walk killed at
rate 
.

Exercise 3.15 There exists � D � .Pd; 
/ > 0, such that

X

�2Pu

e��j� jPd.�/
<� e��	
.u/ (107)

uniformly in u.

Let O�K D .tK ; hK/ be a skeleton. We shall carefully control the geometry of the
trunk tK D .u0; : : : ;uN/. As far as the hairs are considered, we shall rely on (107),
and the only thing we shall control is # .hK/—the total number of K-increments (in
	
-metrics).
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Let us fix u0; v1;u2; : : : . By (106) the contribution coming from �` W u` !
v`C1 paths is bounded above by the product of e�	
.v`C1�u`/. Now, by construction
v`C1 2 UKCr



 .u`/ n UK

 .u`/, which means that 	
.v`C1 � u`/ 2 ŒK;K C r
�. On

the other hand if u`C1 is defined, then u`C1 2 UKC2r


 .u`/ n UKCr



 .u`/. Hence,

	
.u`C1 � u`/ � 	
.v`C1 � u`/C 2r
. There are
<� RKd�1 possible exit points from

UK

 .v`/-balls which are possible candidates for v`C1 vertices.
Consequently, (106) and (107) imply that there exists c D c.
; ˇ/ > 0 such

that the following happens: Let O�K D .tK ; hK/ be a skeleton with trunk tK D
.u0; : : : ;uN/, and hK D ˚

h`K
�

collection of hairs. Notation � � O�K means that
O�K is the K-skeleton of � in the sense of the two algorithms above. Then,

X

�� O�K

Wh;

d .�/

<� exp

(
h � x �

NX

`D0
	
.u`C1 � u`/� �K#.hK/C cN log K

)
;

(108)

uniformly in x, large enough scales K and skeletons O�K .

Kesten’s Bound on the Number of Forests A forest FN is a collection of N
rooted trees FN D .T1; : : : ;TN/ of forward branching ratio at most b. The tree
F` is rooted at u`. Given M 2 N we wish to derive an upper bound on #.M;N/-
number of all forests FN satisfying jFN j D M. Above jFN j D M is the number of
vertices of FN different from the roots u1; : : : ;uN . Let PN

p be the product percolation

measure on 	Tb
` at the percolation value p, where Tb is the set of (edge) percolation

configurations on the rooted tree of branching ration b. In this way T` is viewed as
a connected component of u`. Clearly,

P
N
p .jFN j D M/ � 1: (109)

Each realization of FN with jFN j D M has probability which is bounded below by
pM.1 � p/b.NCM/. Therefore, (109) implies:

#.M;N/ �
�

max
p2Œ0;1�

pM.1 � p/b.NCM/

��1
: (110)

For x 2 Œ0; 1�,

log.1 � x/ D �
Z x

0

dt

1 � t
� � x

1 � x

Choosing p D 1
b we, therefore, infer from (110)

#.M;N/ � eM log bC.NCM/ b
b�1 : (111)
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Surcharge Cost of a Skeleton A substitution of (111) with b
�D RKd�1 into (108)

implies: There exist �0; c0 > 0, such that

X

��tK
#.hK /�M

Wh;

d .�/

<� exp

(
h � x �

NX

`D0
	
.u`C1 � u`/� �0KM C c0N log K

)
:

(112)

uniformly in x, scales K, trunks tK and M 2 N.
With (112) in mind let us define the surcharge cost of a skeleton O�K D ŒtK ; hK � as

follows: Recall the notation sh.u/ D 	
.u/� h � u. Then,

sh . O�K/
�D

NX

`D1
sh.u` � u`�1/C �0K# .hK/ : (113)

Above the trunk tK D .u0; : : : uN/. We conclude:

Lemma 3.16 For any � > 0 there exists a scale K0, such that
X

sh. O�K />2�jxj
Wh;


d . O�K/
<� e��jxj; (114)

for all K � K0 fixed and uniformly in h 2 @K
, x 2 Z
d. By convention the

summation above is with respect to skeletons O�K of paths � 2 Px.

Cone Points of Skeletons Recall the definition of the surcharge cone Y1 in (103).
Fix ı2 2 .ı1; 1/ and ı3 2 .ı2; 1/ , and define enlargements Yi of Y1 as follows: For
i D 2; 3,

Yi D fx W s.x/ � ıi	
.x/g (115)

Clearly, Yi-s are still positive cones for i D 2; 3. Let A0
�D A n 0. Then, by

construction, Y 0
1 � int

�
Y 0
2

�
and Y 0

2 � int
�
Y 0
3

�
.

Consider a skeleton O�K D ŒtK ; hK �. Let us say that a vertex of the trunk u` 2 tK D
.u0; : : : ;u`; : : : ;umC1/ is a Y2-cone point of the skeleton O�K if

O�K � .u` � Y2/[ .u` C Y2/ : (116)

Let #bc . O�K/ be the total number of vertices of O�K which are not cone points.

Proposition 3.17 There exists �2 > 0 such that the following happens: For any
� > 0 there exists a scale K0, such that

X

#bc. O�K />�
jxj

K

Wh;

d . O�K/

<� e��2jxj; (117)

for all K � K0 fixed and uniformly in x 2 Z
d.
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A proof of Proposition 3.17 contains several steps and we refer to [14] for more
details. First of all we show that, up to exponentially small corrections, most of
the vertices of the trunk tK are Y1-cone points of the latter. We shall end up with
N0 �D jxj

K Y1-cone points of tK .
Any Y1-cone point of the trunk tK is evidently also a Y2-cone point of the latter.

On the other hand, in view of (114), we can restrict attention to # .hK/ � 2�
�0

jxj
K . For

� � �0 the total number of leaves # .hK/ is only a small fraction of N0. It is clear
that an addition of a leave is capable of blocking at most c D c.ı1; ı2/ Y1-cone
points of tK from being a Y2-cone point of the whole skeleton O�K . It is important
that the above geometric constant c D c.ı1; ı2/ does not depend on the running
scale K. Consequently, under the reduction we are working with on large enough
scales K, there are just not enough leaves to block all (and actually a small fraction
of) Y1-cone points of tK from being a Y2-cone point of the whole skeleton O�K .

Cone Points of Paths � 2 Px Let us say that u` 2 � D .u0; : : : ;u`; : : : ;un/ 2 Px

is a cone point of � if 0 < ` < n and

� � .u` � Y3/[ .u` C Y3/ : (118)

Let #cone.�/ be the total number of the cone points of � .

Proposition 3.18 There exist � > 0 and � > 0 such that:

X

#cone.�/<�jxj
Wh;


d .�/
<� e��jxj; (119)

uniformly in x 2 Z
d.

As before, we refer to [14] for details of the proof. Construction of cone points is
depicted on Fig. 5

Fig. 5 u is a cone point of
the path � D .�0; : : : ; �n/.
Black vertices belong to the
trunk. Paths leading from
white vertices to black
vertices give rise to hairs
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Irreducible Decomposition of Paths in Px, Pn and Px;n In the sequel we set

Y
�D Y3, whereY3 is the positive cone in Proposition 3.18. A path � D .u0; : : : ;un/

is said to be irreducible if it does not contain Y -cone points. We shall work with
three sub-families F Œl�, F Œr� and F D F Œl� \ F Œr� of irreducible paths. Those are
defined as follows:

F Œl� D f� irreducible W � � un � Y g ; F Œr� D f� irreducible W � � u0 C Y g :

Note that any � D .u0; : : : ;un/ 2 F is automatically confined to the diamond shape

� � D.u0;un/
�D .u0 C Y /\ .un � Y / : (120)

Proposition 119 implies that up to corrections of order e��jxj one can restrict
attention to paths � 2 Px which have the following decomposition into irreducible
pieces (see Fig. 6):

� D �Œl� ı �1 ı � � � ı �N ı �Œr�: (121)

Define

fŒl�.x; n/ D
X

X.�/Dx;j� jDn
�2F Œl�

Wh;

d .�/ and fŒr�.x; n/ D

X

X.�/Dx;j� jDn
�2F Œr�

Wh;

d .�/: (122)

Theorem 3.19 The weights fŒl� and fŒr� have exponentially decaying tails: There
exists � > 0 and, for every 
 > 0, �
 > 0 such that the following mass gap
estimate holds uniformly in x and n:

fŒl�.x; n/; fŒr�.x; n/
<� e��jxj��
n: (123)

Fig. 6 Irreducible
decomposition
� D �Œl� ı �1 ı � � � ı �4 ı �Œr�.
The path �Œl� W u0 7! u1
belongs to F Œl�, and the path
�Œr� W u5 7! u6 belongs to
F Œr�. Paths �` W u` 7! u`C1

belong to F . Each irreducible
�` stays inside the diamond
shape D.u`; u`C1/, and the
concatenation
�1 ı � � � ı �4 
 D.u1; u5/
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Furthermore, for each 
 D 
.h/ > 0, Wh;

d is a probability distribution on F . In

particular, the family of weights ff.x;n/g,

f.x; n/ D
X

X.�/Dx;j� jDn
�2F

Wh;

d .�/

�D
X

�2Fx;n

Wh;

d .�/ (124)

is a probability distribution on Z
d 	 N with exponentially decaying tails.

Remark 3.20 Note that exponential decay in n is claimed only if 
 > 0. 
 D 0

corresponds to the case of critical drifts h 2 @K0. For critical drifts, the decay in n is
sub-exponential and, furthermore, the whole coarse-graining (skeleton construction)
procedure should be modified. It happens, nevertheless, that the decay in x is still
exponential. We do not discuss critical case in these lecture notes, and refer to [17].

Proof For fixed 
 > 0 bounds fŒl�.x; n/; fŒr�.x; n/
<� e��jxj directly follow from

Proposition 3.18. The case to work out is when jxj is much smaller than n, say
jxj < �



n. But then eh�x�
n � e�.
��/n. Since by (40) the two-point function G0.�/ is

bounded, the decay in n indeed comes for free as long as 
 > 0.
In order to see that ff.x; n/g is a probability distribution recall that K
 was

characterized as the closure of the domain of convergence of h 7! P
� ehx�
nWd.�/.

Thinking in terms of (121), and in view of (123) this necessarily implies thatP
f.x; n/ D 1.

Local Geometry of @K� and Analyticity of � Inspecting construction of the cone
Y for h 2 @K
 we readily infer that the very same Y would do for all drifts
g 2 �

h C B
d
�

� \ @K
, for some � > 0 sufficiently small. Similarly, it would do
for all j� � 
j sufficiently small. We are in the general renewal framework of (77).
The following theorem is a consequence of (78), Lemma 3.12 of Sect. 3.1 and (202)
of the Appendix:

Theorem 3.21 There exists � D �
 > 0, such that the following happens: Let h be
a super-critical drift; 
.h/ D 
 > 0. Construct Y and, accordingly, ff .x; n/g as in
Theorem 3.19. Then for .g; �/ 2 B

dC1
� .h; �/,

� D 
.g/ ,
X

�2F
Wg;�

d .�/ D
X

x;n

e.g�h/�xC.
��/nf.x; n/ D 1: (125)

As a result, 
.�/ is real analytic onBd
� .h/ and�.h/ D Hess.
/.h/ is non-degenerate.

In particular,

g 2 �h C B
d
�

� \ @K
 ,
X

x;n

e.g�h/xf.x; n/ D 1: (126)

As a result, @K
 is locally analytic and has a uniformly positive Gaussian curvature.
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Ornstein-Zernike Theory Theorem 3.19 paves the way for an application of the
multidimensional renewal theory, as described in Sect. 3.1 to a study of various
limit properties of annealed measures Ph

n, whenever h 62 K0 is a super-critical drift.
For the rest of the section let us fix such h and 
 D 
.h/ > 0. By the above,
this generates a cone Y and a probability distribution ff.x; n/g with exponentially
decaying tails. We declare that it is a probability distribution of a random vector
U D .X;T/ 2 Z

d 	 N. In view of our assumptions on the underlying random
walk, U satisfies the non-degeneracy Assumption 3.7, which means that it is in the
framework of the theory developed therein.

Let us construct the array ft.x; n/g via the renewal relation (73). The number
t.x; n/ has the following meaning: Recall our definition D.x; y/ D .x C Y / \
.y � Y / of diamond shapes, and define the following three families of diamond-
confined paths:

Tx D f� 2 Px W � � D.0; x/g ; TnD f� 2 Pn W � � D.0; �n/g and Tx;nDTx \Tn:

(127)

As before, t.x/ D P
n t.x; n/ and t.n/ D P

x t.x; n/. Then,

t.x; n/ D
X

�2Tx;n

Wh;

d .�/; t.x/ D

X

�2Tx

Wh;

d .�/ and t.n/ D

X

�2Tn

Wh;

d .�/: (128)

Asymptotics of Partition Functions By Theorem 3.19, the partition function
Zn.h/ in (7) satisfies:

e�n
Zn.h/ D Wh;

d .Pn/ D O .e��
n/C

X

kCmCjDn

fŒl�.k/t.m/fŒr�.j/: (129)

Define �.h/ D

P

k fŒl�.k/
� 
P

j fŒr�.j/
�

and �.h/ D P
nf.n/ D ET. By Lemma 3.3

lim
n!1 e�n
.h/Zn.h/ D �.h/

�.h/
; (130)

exponentially fast.

Limiting Spatial Extension and Other Limit Theorems Since 
 is differentiable
at any h 62 K0, (9) and LLN (50) follow with v D r
.h/. However, since for any h 62
K0 the probability distribution ff.x;n/g in (124) has exponential tails much sharper
local limit results follow along the lines of Sect. 3.1: Let g 62 K0 and u D r
.g/.
Fix ı sufficiently small and consider Bd

ı .u/. For w 2 B
d
ı .u/ define wn D bnwc=n

and let gn being defined via wn D r
.gn/.
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Theorem 3.22 There exists a positive real analytic function  on B
d
ı .u/ such that

P
h
n .bnwc/ D  .w/p

.2�/ddet�.gn/
e�nIh.wn/ .1C o .1// ; (131)

uniformly in w 2 B
d
ı .u/.

In particular (considering u D v), under P
h
n the distribution of the rescaled

end-point X�nvp
n

converges to the d-dimensional mean-zero normal distribution with

covariance matrix �.h/ D Hess.
/.h/.

Let us turn to the (Ornstein-Zernike) asymptotics of the two point function G
. Let
x ¤ 0 and h D r	
.x/, that is h 2 @K
 and 	
.x/ D h � x. Since, as we already
know, @K
 is strictly convex, such h is unambiguously defined. Under the weights
Wh;


d the irreducible decomposition (121) folds in the sense that the Wh;

d -weight

of all paths � 2 Px which do not comply with it, is exponentially negligible as
compared to G
.x/. Hence:

e	
.x/G
.x/ .1C o .1// D
X

n

t.x; n/ D c.h/q
jxjd�1

.1C o .1// ; (132)

asymptotically in x large. This follows from (131) and Gaussian summation
formula.

Invariance Principles There are two possible setups for formulating invariance
principles for annealed polymers. The first is when we consider Ph

n, and accordingly
polymers � with fixed number n of steps. In this case one defines

xn.t/ D 1p
n

�
�bntc � ntv

�
;

and concludes from Theorem 3.22 that xn.�/ converges to a d-dimensional Brownian
motion with covariance matrix �.h/.

A somewhat different .d � 1/-dimensional invariance principle holds in the
conjugate ensemble of crossing polymers. To define the latter fix x ¤ 0, 
 > 0 and
consider the following probability distribution P

x

 on the family Px of all polymers

� which have displacement X.�/ D x:

P
x

.�/ D 1

G
.x/
e�
j� jWd.�/: (133)

Consider again the irreducible decomposition (121) of paths � 2 Px. Let vertices
0;u1; : : : ;uNC1; x be the end-points of the corresponding irreducible paths. We can
approximate � by a linear interpolation through these vertices. We employ the
language of section “Curves and Surfaces” of the Appendix. Let n.h/ D x

jxj and
v1; : : : ; vd�1 are unit vectors in the direction of principal curvatures of @K
 at h.
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In the orthogonal frame .v1; : : : ; vd�1; n.h//, the linear interpolation through the
vertices of the irreducible decomposition of � can be represented as a function
Y W Œ0; jxj� 7! Th@K
. Consider the rescaling

yx.t/ D 1p
x

Y.t jxj/:

Then, (132) and the quadratic expansion formula (207) of the Appendix leads to
the following conclusion: Let xm be a sequence of points with jxmj ! 1 and
limm!1 xmjxmj D n.h/. Then the distribution of yxm.�/ under Pxm


 converges to the
distribution of the .d�1/-dimensional Brownian bridge with the diagonal covariance
matrix diag .�1.h/; : : : ; �d�1.h//, where �i.h/ are the principal curvatures of @K


at h.

4 Very Weak Disorder in d � 4

The notion of very weak disorder depends on the dimension d � 4 and on the
pulling force h ¤ 0. It is quantified in terms of continuous positive non-decreasing
functions �d on .0;1/; limh#0 �d.h/ D 0. Function �d does not have an independent
physical meaning: It is needed to ensure a certain percolation property (143), and to
ensure validity of a certain L2-type estimate formulated in Lemma 4.6 below.

Definition 4.1 Let us say that the polymer model (8) is in the regime of very weak
disorder if h ¤ 0 and

�ˇ.1/ � �d .jhj/ : (134)

Remark 4.2 Equation (134) is a technical condition, and it has three main implica-
tions as it is explained below after formulation of Theorem 4.5.

Quenched Polymers at Very Weak Disorder In the regime of very weak disorder
quenched polymers behave like their annealed counter-parts. Precisely: For h ¤ 0,
continue to use vh D r
.h/ and�h D Hess.
/.h/ for the limiting spatial extension
and the diffusivity of the annealed model. Let Cl1 be the unique infinite connected
cluster of fx W V!x < 1g.

Theorem 4.3 Fix h ¤ 0. Then, in the regime of very weak disorder, the following
holds Q-a.s. on the event f0 2 Cl1g:

• The limit

lim
n!1

Z!n .h/

Zn.h/
(135)

exists and is a strictly positive, square-integrable random variable.
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• For every � > 0,

X

n

P
h;!
n

�ˇ̌
ˇ̌X.�/

n
� vh

ˇ̌
ˇ̌ > �

�
< 1: (136)

• For every ˛ 2 R
d,

lim
n!1P

h;!
n

�
exp

�
i˛p

n
.X.�/� nvh/

��
D exp

�
�1
2
�h˛ � ˛

�
: (137)

Remark 4.3 Since in the regime of very weak disorder h 62 K0, the series in (50)
converge exponentially fast. Using Z!n .Ajh/ for the restriction of Z!n to paths from
A we conclude (from exponential Markov inequality) that there exists c D c.�/ > 0
such that

X

n

Q

�
Z!n

�ˇ̌
ˇ̌X.�/

n
� vh

ˇ̌
ˇ̌ > �

ˇ̌
h

�
> e�cnZn.h/

�
< 1:

In other words, (136) routinely follows from (135) and exponential bounds on
annealed polymers.

Reformulation in Terms of Basic Partition Functions For each h ¤ 0 and ˇ > 0
basic annealed partition functions were defined in (128). Here is the corresponding
definition of basic quenched partition functions:

t!.x; n/ D
X

�2Tx;n

eh�X.�/�
j� jW!
d .�/; (138)

and, accordingly t!.x/ D P
n t!.x; n/ and t!.n/ D P

x t!.x; n/.
Let Y D Yh be the cone used to define irreducible paths. Then Clh1 is the infinite

connected component (unique if exists) of fx 2 Yh W V!x < 1g.

Theorem 4.5 Fix h ¤ 0. Then, in the regime of very weak disorder, infinite
connected cluster Clh1 exists Q-a.s.. Furthermore, the following holds Q-a.s. on
the event

˚
0 2 Clh1

�
:

• The limit

s!
�D lim

n!1
t!.n/
t.n/

(139)

exists and is a strictly positive, square-integrable random variable.
• For every ˛ 2 R

dC1,

lim
n!1

1

t!.n/

X

x

exp

�
i˛p

n
� .x � nv/

�
t!.x; n/ D exp

�
�1
2
˙˛ � ˛

�
: (140)
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Below we shall explain the proof of (139). The Q-a.s. CLT follows in a rather
similar fashion, albeit with some additional technicalities, and we refer to [18] for
the complete proof.

Three Properties of Very Weak Disorder The role of (technical) condition
�ˇ.1/ � �d.jhj/ is threefold:

First of all, setting pd D Q .V! D 1/ and noting that

�d .jhj/ � �ˇ.1/ D � logE



e�ˇV!
�

� � log.1 � pd/ � pd; (141)

we conclude that (134) implies that:

Q .V! D 1/ � �d .jhj/ : (142)

Thus, in view of (141), condition (134) implies that the infinite cluster Clh1 exists:
Namely if we choose �d such that suph �d.jhj/ is sufficiently small, then

Q
�
there is an infinite cluster Clh1

� D 1; (143)

for all situations in question.
The second implication is that for any h ¤ 0 fixed, h 62 K0.ˇ/ for all ˇ

sufficiently small. In other words, in the regime of very weak disorder the annealed
model is always in the ballistic phase. Indeed, since �ˇ.`/ � `�ˇ.1/,

Zn.h/ � e�n�ˇ.1/
�
Edeh�X�n

:

Consequently 
.h/ > 0 whenever log
�
Edeh�X� > �ˇ.1/.

The third implication is an L2-estimate (144) below. Recall that for h fixed,
annealed measures Ph

n have limiting spatial extension vh D r
.h/, and they satisfy
sharp classical local limit asymptotics around this value.

For a subset A � Z
d, let A be the �-algebra generated by fV!x gx2A. We shall call

such �-algebras cylindrical.

Lemma 4.6 For any dimension d � 4 there exists a positive non-decreasing
function �d on .0;1/ and a number  < 1=12 such that the following holds: If
�ˇ.1/ < �d.jhj/, then there exist constants c1; c2 < 1 such that

ˇ̌
E
�
t!.x; `/t!.y; `/E

�
f�x!.z;m/� f.z;m/

ˇ̌
A
�
E
�
f�y!.w; k/� f.w; k/

ˇ̌
A
�	ˇ̌

� c1e�c2.mCk/

`d� exp

(
�c2

 
jx � yj C jx � `vhj2

`
C jy � `vhj2

`

!)
;

(144)

for all x; y; z;w;m; k and all cylindrical �-algebras A such that both t!.x; `/ and
t!.y; `/ are A -measurable.
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Remark 4.7 Since the underlying random walk is of bounded range,

#
˚
z W f!.z;m/ ¤ 0

� <� md:

Hence, inequality (144) also holds with f�x!.m/ and f�y!.k/ instead of f�x!.z;m/ and
f�y!.w; k/.

There is nothing sacred about the condition  < 1=12. We just need  to be
sufficiently small. In fact, (144) holds with  D 0, although a proof of such
statement would be a bit more involved.

We refer to [18] (Lemma 2.1 there) for a proof of Lemma 4.6. The claim (144) has
a transparent meaning: For  D 0, the expression

c1
`d

exp

(
�c2

 
jx � `vhj2

`
C jy � `vhj2

`

!)

is just the local limit bound on the annealed quantity t.x; `/t.y; `/. The term

e�c2.kCm/ reflects exponential decay of irreducible terms


f�x!.z;m/ � f.z;m/

�
and,

accordingly,


f�y!.w; k/ � f.w; k/

�
. The term e�c2jx�yj appears for the following

reason (see Fig. 7): By irreducibly, f�x!.z;m/ � f.z;m/ depends only on V!u with u
belonging to the diamond shape D.x; xCz/. Similarly, f�y!.w;m/�f.w;m/ depends
only on variables inside D.y; yCw/. All these terms have zero mean. Consequently,

E
h
t!.x; `/t!.y; `/E



f�x!.z;m/� f.z;m/

ˇ̌
A
�
E


f�y!.w; k/ � f.w; k/

ˇ̌
A
�i

D 0;

Fig. 7 Kites t!.x; `/E


f�x!.z;m/� f.z;m/

ˇ̌
A
�

and t!.y; `/E


f�y!.w; k/� f.z; k/

ˇ̌
A
�

may have

a non-zero covariance only if their diamond shapes D.x; x C z/ and D.y; y C w/ intersect



Multidimensional Random Polymers: A Renewal Approach 189

whenever D.x; xCz/\D.y; yCw/ D ;. The remaining terms satisfy max fz;wg >�
jx � yj. In other words, the term e�c2jx�yj also reflects exponential decay of
irreducible connections.

The disorder imposes an attractive interaction between two replicas. The
impact of small �d.jhj/ condition in the very weak disorder regime, as formulated
in (144), is that this interaction is not strong enough to destroy individual annealed
asymptotics.

Sinai’s Decomposition of t!.x; n/ We rely on an expansion similar to the one
employed by Sinai [27] in the context of directed polymers. By construction
quantities t!.x; n/ satisfy the following (random) renewal relation:

t!.x; 0/ D �fxD0g and t!.x; n/ D
nX

mD1

X

y

f!.y;m/t�y!.x � y; n � m/: (145)

Iterating in (145) we obtain (for n > 0):

t!.x; n/ D f!.x; n/C
1X

rD1

X

x1;:::xr

X

n1C���CnrDn

Y
f�xi�1!.xi � xi�1; ni/;

where x0
�D 0. Writing,

f!.y;m/ D f.y;m/C �
f!.y;m/� f.y;m/

�
;

we, after expansion and re-summation, arrive to the following decomposition:

t!.x; n/ D t.x; n/

C
n�1X

`D0

n�X̀

mD1

n�`�mX

rD0

X

y;z

t!.y; `/


f�y!.z � y;m/ � f.z � y;m/

�
t.x � z; r/:

(146)
In particular, the decomposition of t!.n/ is given by

t!.n/ D t.n/C
n�1X

`D0

n�X̀

mD1

n�`�mX

rD0

X

y

t!.y; `/


f�y!.m/� f.m/

�
t.r/: (147)

In order to prove (140) one needs to consider the full decomposition (146). As it
was already mentioned, we shall not do it here and, instead, refer to [18]. From
now on, we shall concentrate on proving (139) and, accordingly shall consider the
reduced decomposition (147). Nevertheless, modulo additional technicalities, the
proof of (139) captures all essential features of the argument.
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Recall that for the annealed quantities, limn!1 t.n/ D 1
�.h/ D 1

�
exponentially

fast. Writing t.m/ D 1
�

C .t.m/ � 1
�
/ in all the corresponding terms in (147), we

infer that t!.n/ can be represented as

t!.n/ D 1

�
s!.n/C �!n C

�
t.n/� 1

�

�
(148)

where

s!.n/ D 1C
X

`�n

X

x

t!.x; `/


f�x! � 1

�
; (149)

and the correction term �!n is given by

�!n D �!n;1 � �!n;2
�D

X

`CmCrDn

X

x

t!.x; `/


f�x!.m/� f.m/

��
t.r/� 1

�

�

C � 1
�

X

`�n
m>n�`

X

x

t!.x; `/


f�x!.m/� f.m/

�
:

(150)

The term t.n/ � 1
�

is negligible. Our target claim (139) is a direct consequence of
the following proposition:

Proposition 4.8 In the very weak disorder regime the following happens P-a.s.:

lim
n!1 s!.n/ D s! D 1C

X

x

t!.x/
�
f�x! � 1

�
and

X

n

E .�!n /
2 < 1: (151)

Furthermore, s! > 0 on the set
˚
0 2 Clh1

�
.

Remark 4.9 Note that the formula for s! is compatible with the common sense if
the random walk is trapped (case Q.V! D 1/ > 0.) Indeed, in such situation
limn!1 t!.n/ should be clearly zero. On the other hand, if the random walk is

trapped, then the sum 1CP
x t!.x/



f�x! � 1

�
contains only finitely many non-zero

terms. Using t!.0/ D 1, let us rewrite it as

1C
X

x

t!.x/f�x! �
X

x¤0
t!.x/ � 1 D

X

x

t!.x/f�x! �
X

x¤0
t!.x/:

However, for x ¤ 0,

t!.x/ D
X

y

t!.y/f�y!.x � y/ )
X

x¤0
t!.x/ D

X

y

t!.y/f�y!:
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Mixingale Form of s!.n/ and �!
n Let us rewrite s!.n/ as

s!.n/ D 1C
X

`�n

Y` where Y` D
X

x

t!.x; `/


f�x! � 1

�
: (152)

The variables Y` are mean zero, and it is easy to deduce from the basic L2-
estimate (144) that in the regime of weak disorder,

P
E
�
Y2`
�
< 1. Should fY`g

be a martingale difference sequence (as in the case of directed polymers), we would
be done. However, since, in principle, same vertices x may appear in different Y`-s,
there seems to be no natural martingale structure at our disposal. Instead one should
make a proper use of mixing properties of fY`g. Hence the name mixingale, which
was introduced in [22]. In order to prove convergence of s!.n/ we shall rely on the
mixingale approach developed in [22].

Turning to the correction terms in (150), note that both �!n;1 and �!n;2 could be
written in the form

X

`�n

X

x

t!.x; `/
X

m

a.n/.`;m/


f�x!.m/� f.m/

�
�D
X

`�n

Z.n/` ; (153)

where

a.n/.`;m/ D
�

t.n � ` � m/ � 1

�

�
�`Cm�n and a.n/.`;m/ D ��`Cm>n (154)

respectively in the cases of �!n;1 and �!n;2. Again,
n
Z.n/`

o
is not a martingale difference

sequence, and we shall rely on the mixingale approach of [22] for deducing their
second convergence statement in (151).

Below we shall formulate a particular case of the maximal inequality for mixin-
gales [22]. To keep relation with quenched polymers, and specifically with (152)
and (153), in mind, let us introduce the following filtration fAmg. Recall that the
end-point of the m-step annealed polymer stays close to mvh D mr
.h/. Define
half-spaces H �

m and the corresponding �-algebras Am as

H �
m D ˚

x 2 Z
d W x � vh � mjvhj2� and Am D �

˚
V!x W x 2 H �

m

�
: (155)

Mixingale Maximal Inequality and Convergence Theorem of McLeish Let
Y1;Y2; : : : be a sequence of zero-mean, square-integrable random variables. Let also
fAkg1

�1 be a filtration of �-algebras. Suppose that there exist � > 0 and numbers
d1; d2; : : : in such a way that

E


E
�
Y`
ˇ̌
A`�k

�2� � d2`
.1C k/1C�

and E
�
Y` � E

�
Y`
ˇ̌
A`Ck

��2 � d2`
.1C k/1C�

(156)
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for all ` D 1; 2; : : : and k � 0. Then [22] there exists K D K.�/ < 1 such that, for
all n1 � n2,

E

8
<

: max
n1�r�n2

 
rX

n1

Y`

!29=

; � K
n2X

n1

d2` : (157)

In particular, if
P

` d2` < 1, then
P

` Y` converges Q-a.s. and in L2.

Convergence of s!.n/ Consider decomposition (152). Clearly,

E
�
Y`
ˇ̌
A`�k

� D
X

x2H �

`�k

t!.x; `/


f�x! � 1

�
(158)

Applying (144) we conclude that for any x; y 2 H �
`�k,

ˇ̌
ˇE
h
t!.x; `/t!.y; `/E



f�x! � 1

ˇ̌
A`�k

�
E


f�y! � 1ˇ̌A`�k

�iˇ̌
ˇ

� c3
`d� exp

(
�c2

 
jx � yj C jx � `vhj2

`
C jy � `vhj2

`

!)
;

(159)

Consequently, summing up with respect to x; y 2 H �
`�k we infer that for any � � 2:

E

�
E


Y`
ˇ̌
ˇA`�k

�2� � c5e�c4
k2
`

`d=2� � c6
`.d�1/=2��.1C k/1C�

�D d2`;�
.1C k/1C�

: (160)

On the last step we have relied on a trivial asymptotic inequality

e�c4
k2
`

`.1C�/=2
<� 1

.1C k/1C�
:

Note that if .d � 1/=2� � > 1, which is compatible with d � 4 and  < 1=12, thenP
d2`;� < 1.
Turning to the second condition in (156) note first of all that

E


t!.x; `/



f�x! � 1

� ˇ̌
A`Ck

�
D 0

whenever x 2 H C
`Ck, and

E


t!.x; `/



f�x!.y/� f.y/

� ˇ̌
A`Ck

�
D t!.x; `/



f�x!.y/ � f.y/

�
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whenever x C y 2 H �
`Ck. Therefore,

Y` � E


Y`
ˇ̌
ˇA`Ck

�
D

X

x2H C

`Ck

t!.x; `/


f�x! � 1

�

C
X

x2H �

`Ck

y2H C

`Ck

t!.x; `/


f�x!.y � x/ � E



f�x!.y � x/

ˇ̌
A`Ck

��
:

(161)

The first term in (161) has exactly the same structure as (158). The second term
in (161) happens to be even more localized (see discussion of (2.14) in [18]). The
conclusion is:

E

�
Y` � E



Y`
ˇ̌
ˇA`Ck

�2� � d2`;C
.1C k/1C�

; (162)

where d2`;C
<� `�.d�1/=2C�.

Set d2` D max
n
d2`;�; d2`;C

o
<� `�.d�1/=2C� , we, in view of the feasible choice

.d � 1/=2 � � > 1, conclude from (157) that s!.n/ is indeed a Q-a.s. converging
sequence.

Correction Terms Treatment of correction terms in their mixingale representa-
tion (153) follows a similar pattern. We refer to Section 2.2 in [18] for the proof of
the second claim in (151).

Positivity of s! As we have already checked the sum s! D 1CPx t!.x/


f�x! � 1

�

converges Q-a.s. and in L2. In particular, E .s!/ D 1. We claim that s! > 0, Q-a.s.
on the event

˚
0 2 Clh1

�
. In order to prove this it would be enough to check that

Q
�9x 2 Y W s�x! > 0

� D 1: (163)

Let us sketch the argument: If s�x! > 0, then x 2 Clh1. But there is exactly one
infinite cluster in Y . Hence 0 is connected to x by a finite path � � Clh1 � Y .
Now, by assumption on x, limn!1 t�x!.n/ D limn!1

P
z t�x!.z; n/ > 0. By

comparison with annealed quantities [large deviations, for instance (97)] we, at least
for large n, may ignore terms t�x!.z; n/ with � 6� .x C z/ � Y . Which means that
lim infn!1 t!.n/ � Wh;
;!

d .�/ s�x!

�
, where Wh;
;!

d .�/ D eh�X.�/�
j� jW!
d .�/ > 0.

It remains to check (163). Consider sets

Bn D @H C
n \ Y ; jBnj �D nd�1:



194 D. Ioffe

We refer to the last subsection of [15] for the proof of the following statement:

ˇ̌
Cov.s�x!; s�y!/

ˇ̌ <� 1

jy � xjd=2�1 ; (164)

uniformly in n and in x; y 2 Bn. The quantity 1

jy�xjd=2�1 in (164) represents an

intersection probability for trajectories of two ballistic d-dimensional random walks
(such as the effective random walks with step distribution f.w;m/) which start at x
and y. The statement (164) is very similar in spirit to that of Lemma 4.6: it says that
possible weak attraction due to disorder does not destroy such asymptotics.

With (164) at our disposal it is very easy to finish the proof of (163). Indeed, it
implies that

Var

0

@ 1

nd�1
X

x2Bn

s�x!

1

A <� 1

nd=2�1 ;

and since E
�P

x2Bn
s�x!

� D jBnj �D nd�1, the conclusion follows by Chebychev
inequality and Borel-Cantelli argument.

5 Strong Disorder

In this section, we work only under Assumption A1 of the Introduction, and we do
not impose any further assumptions on the environment fV!x g. The case of traps;
Q .V! D 1/ 2 .0; 1/, is not excluded and we even do not need A2 or any other
restriction on the size of the latter probability.

The environment is always strong in two dimensions in the following sense (level
L1 in the language of the Introduction):

Theorem 5.1 Let d D 2 and ˇ; 
 > 0. There exists c D c.ˇ; 
/ > 0 such that the
following holds: Let 
.h/ D 
 (in particular h 62 K0). Then, Q-a.s.

lim sup
n!1

1

n
log

Z!n .h/

Zn.h/
< �c: (165)

In particular, 
!.h/ < 
.h/ D 
 whenever 
! is well defined.

Remark 5.2 As in [21] and, subsequently, [33] proving strong disorder in dimension
d D 3 is a substantially more delicate task.

Let us explain Theorem 5.1: By the exponential Markov inequality (and Borel-
Cantelli) it is sufficient to prove that there exist c0 > 0 and ˛ > 0 such that

E

��
Z!n .h/

Zn.h/

�˛�
� e�c0n: (166)
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We shall try to establish (166) with ˛ 2 .0; 1/. This is the fractional moment
method of [21]. It has a transparent logic: Since E

�
Z!n .h/

� D Zn.h/, expecting (165)
means that Z!n .h/ takes excessive exponentially high values with exponentially
small probabilities. Taking fractional moments in (166) amounts to truncating these
high values.

Reduction to Basic Partition Functions Recall the definition of diamond-
confined (basic) partition functions f.x; n/ D E

�
f!.x; n/

�
, t.x; n/ D E .t!.x; n//

and, accordingly, f.x/, t.x/; : : : in (128). Since limn!1 t.n/ D �.h/�1, theorem
target statement (165) would follow from

lim sup
n!1

1

n
log

t!.n/
t.n/

D lim sup
n!1

1

n
log t!.n/ < 0: (167)

In its turn, in view of Theorem 3.19, (167) is routinely implied by the following
statement ((169) below): Let r!N be the partition function of N irreducible steps:

r!N
�D

X

u1;��� ;uN

f!.u1/f
�u1!.u2 � u1/ � � � f�uN�1!.uN � uN�1/ D

X

x

r!x;N : (168)

Then, Q-a.s.

lim sup
N!1

1

N
log r!N < 0: (169)

Again by Borel-Cantelli and the exponential Markov inequality, (169) would follow
as soon as we check that for some ˛ > 0,

lim sup
N!1

1

N
logE

�
r!N
�˛
< 0: (170)

Fractional Moments The proof of the fractional moment bound (170) comprises
several steps.

STEP 1 Following [21]: (170) is verified once we show that there exist N 2 N

and ˛ 2 .0; 1/ such that

E

(
X

x

�
r!x;N

�˛
)
< 1: (171)

Indeed, first of all if ai � 0 and ˛ 2 .0; 1/, then


X
ai

�˛ �
X

a˛i : (172)
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Equivalently (setting p D 1=˛ > 1 and bi D a˛i ),
P

bp
i � .

P
bi/

p
: Since

d

dbn


X
bi

�p � pbp�1
n D d

dbn

X
bp

i ;

the latter form of (172) follows by induction.

We proceed with proving that (171) implies (170). Evidently, by (172),

r!NCM D
X

x

r!N;xr�x!
M ) �

r!NCM

�˛ �
X

x

�
r!N;x

�˛ 

r�x!
M

�˛
;

for any ˛ 2 .0; 1/. Since r!N;x and r�x!
M are independent, and r!M is translation

invariant, it follows that

E
˚
.r!NCM/

˛
� � E

(
X

x

�
r!N;x

�˛
)
E f.r!M/˛g :

Hence (171), implies exponential decay of M 7! E
˚
.r!M/

˛
�
.

STEP 2 Let vh D P
x xf.x/; mean displacement under probability measure

ff.x/g. By Theorem 3.19, the latter distribution has exponential tails, and classical
moderate deviation results apply. For y 2 Z

d define the distance from y to the
line in the direction of vh; dh.y/ D mina jy � avhj. Pick K sufficiently large and
� small, and consider

AN D
n
y 2 Z

d W 0 � y � vh � KN and dh.y/ � N
1
2C�

o
:

Recall that rx;N is the distribution of the end point of the N-step random walk
with ff.x/g being the one step distribution. With a slight abuse of notation, we can
consider rN as a distribution on the set of all N-step trajectories of this random walk:

rN.x1; : : : ; xN/ D f.x1/f.x2 � x1/ : : : f.xN � xN�1/: (173)

By classical (Gaussian) moderate deviation estimates, there exists c > 0 such that

X

x62AN

r˛x;N � e�c˛N2� and rN .fx1; : : : ; xNg 6� AN/ � e�cN2� : (174)

Furthermore, with another slight abuse of notation we can consider rN.�/ as the
distribution on the family of all N-concatenations � D �1ı�2ı� � �ı�N of irreducible
paths �i 2 F . In this way,

rN.�/ D
NY

1

Wh;

d .�i/:
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Fig. 8 Example: N D 5. The
path .0; x1; : : : ; x5/ of the
effective random walk, and
the union of diamond shapes
[iD.xi�1; xi/ 
 AN

Recall from (120) that irreducible paths �i satisfy the following diamond confine-
ment condition: If xi�1; xi are the end points of �i, then �i � D.xi�1; xi/.

Exercise 5.3 Prove the following generalization of the second of (174) (see Fig. 8):
There exists c > 0 such that

rN .[iD.xi�1; xi/ 6� AN/ � e�cN2� : (175)

Since any concatenation � D �1ı�2ı� � �ı�N of irreducible paths �i 2 F satisfies
� � [iD.xi�1; xi/, we readily infer that under rN typical annealed paths stay inside
AN ,

rN .� 6� AN/ � e�cN2� ) E
˚�

r!N .� 6� AN/
�˛� � e�˛cN2� ; (176)

for any ˛ 2 .0; 1/ (by Jensen’s inequality).
Since E

˚�
r!x;N

�˛� � r˛N;x, we, in view of the first of (174), may restrict summation
in (171) to x 2 AN . In view of (176), it would be enough to check that

X

x2AN

E
˚�

r!x;N.� � AN/
�˛� � jAN j E ˚�r!N .� � AN/

�˛�
< 1: (177)

The first inequality above is a crude over-counting, but for d D 2 it will do.

STEP 3 We, therefore, concentrate on proving the second inequality in (177). At
this stage, we shall modify the distribution of the environment inside AN in the
following way: The modified law of the environment, which we shall denote Qı

is still product and, for every x 2 AN ,

dQı

dQ

�
V!x
� �D eı .V

!
x /�g.ı/; where eg.ı/ D logE



eı .V

!/
�

,

and  is a bounded non-decreasing function on RC, for instance  .v/ D v ^ 1.
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The annealed potential in the modified environment is

�ˇ.`; ı/ D � logEı



e�ˇ`V!� D � log

(
E
�
e�ˇ`V!Cı .V!/�

E
�
eı .V

!/
�

)
:

Note that for any ` � 1,

d�ˇ.`; ı/

dı

ˇ̌
ıD0 D E . .V!// E .e�`ˇV! /� E



 .V!/e�`ˇV!

�
> 0: (178)

Indeed, since  is non-decreasing and e�`v is decreasing, the last inequality follows
from positive association of one-dimensional probability measures, as described in
the beginning of Sect. 2.1.

By (176) we can ignore paths which do not stay inside AN . Thus, (178) implies:
There exists c > 0 such that for all ı sufficiently small,

Eı .r!/ D
X

x;n

Eı
�
f!.x; n/

� � 1 � c ı ) Eı.r!N/ � e�Nc ı: (179)

From Hölder’s inequality,

E
˚�

r!N .� � AN/
�˛� �



Eı

�� dQ

dQı

�1=.1�˛/
��1�˛�

Eı
˚
r!N.� � AN/

��˛

(179)�


Eı

�� dQ

dQı

�1=.1�˛/
��1�˛

e�Nc ˛ı: (180)

Now, the first term on the right hand side of (180) is

Eı

�� dQ

dQı

�1=.1�˛/
�

D E

�
dQı

dQ

� dQ

dQı

�1=.1�˛/
�

D


E
n
e

˛
1�˛ .g.ı/�ı .V!//

o�jAN j
:

(181)

However, the first order terms in ı cancel:

d

dı

ˇ̌
ˇ
ıD0 logE

n
e

˛
1�˛ .g.ı/�ı .V!//

o
D ˛

1 � ˛
�
g0.0/� E f .V!/g� D 0: (182)

Consequently, by the second order expansion, there exists � < 1, such that



Eı

�� dQ

dQı

�1=.1�˛/
��1�˛ � e

� 
1�˛ ı

2jAN j: (183)
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A substitution to (180) yields:

E
˚�

r!N .� � AN/
�˛� � e�Nc ˛ıC � 

1�˛ ı
2jAN j: (184)

We are now ready to specify the choice of ı D ıN : In two dimensions; d D 2, the
cardinality jAN j <� N

3
2C� . Hence, (177) follows whenever we choose

C log N

N
� ıN � N� 1

2��

with C D C.˛/ being sufficiently large.

Appendix: Geometry of Convex Bodies and Large Deviations

In these notes we shall restrict attention to finite dimensional spaces R
d. The

principal references are [2, 24, 26] for convex geometry and [5–7, 30] for large
deviations.

Convexity and Duality

Convex Functions A function � W Rd ! R [ 1 is said to be convex if

� .tx C .1 � t/y/ � t�.x/C .1 � t/�.y/;

for all x; y 2 R
d and all t 2 Œ0; 1�.

Remark 6.1 Note that by definition we permit 1 values, but not �1 values.

Alternatively, � W Rd ! R [ 1 is convex if the set

epi.�/ D f.x; ˛/ W �.x/ � ˛g � R
dC1 (185)

is convex. We shall work with convex lower-semicontinuous functions: � is lower-
semicontinuous if for any x and any sequence xn converging to x,

�.x/ � lim
n!1�.xn/:

Alternatively, � is lower-semicontinuous if the set epi.�/ is closed.
A basic example of a convex and lower-semicontinuous (actually continuous)

function is an affine function

la;h.x/ D a C h � x:
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Theorem 6.2 The following are equivalent:

(a) � W Rd ! R [ 1 is convex and lower-semicontinuous.
(b) epi.�/ is convex and closed.
(c) � can be recovered from its affine minorants:

�.x/ D sup
a;h

fla;h.x/ W la;h � �g : (186)

(d) epi.�/ is the intersection of closed half-spaces

epi.�/ D
\

la;h��
epi .la;h/ : (187)

Definition 6.3 � is sub-differentiable at x if there exists la;h � � such that �.x/ D
la;h.x/. In the latter case we write h 2 @�.x/.
Example 6.4 Check that h 2 @�.x/ iff �.x/ < 1 and

�.y/� �.x/ � h � .y � x/ (188)

for any y 2 R
d.

Convex functions on R
d are always sub-differentiable at interior points of their

effective domains. In general, sets @�.x/ may be empty, may be singletons or they
may contain continuum of different slopes h.

Example 6.5 Find an example with @�.x/ D ;. Prove that in general @�.x/ is
closed and convex. Check that a convex � is differentiable at x with r�.x/ D h iff
@�.x/ D fhg.

Definition 6.6 Let � W R
d 7! R [ 1. The Legendre-Fenchel transform, or the

convex conjugate, of � is

��.x/ D sup
h

fh � x � �.h/g : (189)

By construction, �� is always convex and lower-semicontinuous: Indeed,

epi.��/ D
\

h

epi
�
l��.h/;h

�
;

which is obviously closed and convex.

Duality Let � be a convex and lower-semicontinuous function. Let us say that h
and x are a pair of conjugate points if x 2 @�.h/.
Theorem 6.7 If � is convex and lower-semicontinuous, then

�
.�/�

�� D �. In the
latter situation, the notion of conjugate points is symmetric, namely the following
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are equivalent:

x 2 @�.h/ , h 2 @��.x/ , �.h/C ��.x/ D h � x: (190)

Let h; x be a pair of conjugate points. Then strict convexity of � at h is equivalent to
differentiability of �� at x. Namely,

8 g ¤ h; �.g/� �.h/ > x � .g � h/ , r��.x/ D h: (191)

Support and Minkowski Functions Let K � R
d be a compact convex set with

non-empty interior around the origin 0 2 int .K/.

Definition 6.8 The function

�K.h/ D
(
0; if h 2 K

1; otherwise
(192)

is called the characteristic function of K.
The function

	K.x/ D sup
h2K

h � x D max
h2@K

h � x (193)

is called the support function of K.
The function

˛K.h/ D inf fr > 0 W h 2 rKg (194)

is called the Minkowski function of K.

As it will become apparent below functions �K; 	K and �K are convex and lower-
semicontinuous.

Duality Relation Between �K and �K The characteristic function �K is convex
and lower-semicontinuous since epi .�K/ D K 	 Œ0;1/. The support function
	K is the supremum of linear functions. As such it is homogeneous of order one.
Also, (193) could be recorded in the form which makes 	K to be the convex
conjugate:

	K D ��
K and, by Theorem 6.7, �K D 	�

K: (195)

Since 	K is homogeneous, the latter reads as

K D
\

n2Sd�1

fh W h � n � 	K.n/g : (196)
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By (192) if h 2 @K then x 2 @�K.h/ if and only if x is in the direction of the
outward normal to a hyperplane which touches @K at h. Thus, @�K.h/ is always a
closed convex cone (which can be just a semi-line).

Other way around, @	K.x/ contains all boundary points h 2 @K, such that x is
the direction of the outward normal to a supporting hyperplane at h. In particular,

@	K.rx/ D @	K.x/; (197)

and @	K.x/ � @K is a closed convex facet (which can be just one point).
As a consequence: 	K is differentiable at x ¤ 0 iff the supporting hyperplane with

the outward normal direction of x touches @K at exactly one point h. In particular
	K is differentiable at any y ¤ 0 iff @K is strictly convex.

Polarity Relation Between �K and ˛K As for ˛K.h/ the assumptions K is bounded
and 0 2 int .K/ imply that for any h ¤ 0, the value ˛K.h/ is positive and finite.
Consequently,

h

˛K.h/
2 @K and 9 x ¤ 0 such that 	K.x/ D x � h

˛K.h/
:

On the other hand, again since h
˛K.h/

2 @K,

	K .y/ � y � h

˛K.h/
;

for any y 2 R
d. Since 	K is homogeneous of order one, we, therefore, conclude:

˛K.h/ D max fh � y W 	K.y/ � 1g : (198)

In other words, ˛K is the support function of the closed convex set:

K� D fy W 	K.y/ � 1g : (199)

In particular, ˛K is convex and lower-semicontinuous.

Example 6.9 For any x; h ¤ 0, x � h � 	K.x/˛K.h/. Furthermore,

x � h

	K.x/˛K.h/
D 1 , x

	K.x/
2 @˛K.h/ , h

˛K.h/
2 @	K.x/: (200)

Actually, by homogeneity it would be enough to establish (200) for x 2 @K�
(equivalently 	K.x/ D 1) and h 2 @K (equivalently ˛K.h/ D 1). In the latter case,
let us say that x 2 @K� and h 2 @K are in polar relation if x � h D 1.
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Example 6.10 Let x; h be in polar relation. Then

@K is strictly convex (smooth) at h iff @K� is smooth (strictly convex) at x:
(201)

Remark 6.11 Most of the above notions can be defined and effectively studied in
much more generality than we do. In particular, one can go beyond assumptions of
finite dimensions and non-empty interior.

Curves and Surfaces

Let M be a smooth .d � 1/-dimensional surface (without boundary) embedded in
R

d. For u 2 M let n.u/ 2 S
d�1 be the normal direction at u. TuM is the tangent

space to M at u. Thus n is a map n W M 7! S
d�1. It is called the Gauss map, and

its differential dnu is called the Weingarten map. Since TuM D Tn.u/S
d�1, we may

consider dnu as a linear map on the tangent space TuM.

Exercise 6.12 Check that dnu is self-adjoint (with respect to the usual Euclidean
scalar product on R

d). Hence, the eigenvalues �1; : : : ; �d�1 of dnu are real, and the
corresponding normalized eigenvectors v1; : : : ; vd�1 form an orthonormal basis of
TuM.

Definition 6.13 Eigenvalues �1; : : : ; �d�1 � 0 of dn are called principal curvatures
of M at u. The normalized eigenvectors v1; : : : ; vd�1 are called directions of
principal curvature. The product

Q
` �` is called the Gaussian curvature.

Assume that M is locally given by a level set of a smooth function 
.�/, such that
r
.u/ ¤ 0. That is, in a neighbourhood of u; v 2 M $ 
.v/ D 0. Then,

nv D r
.v/
jr
.v/j :

Define ˙u D HessŒ
�.u/.

Example 6.14 Check that for g 2 TuM,

dnug � g D 1

jr
.v/j˙ug � g: (202)

Convex Surfaces Let now M D @K, and K is a bounded convex body with non-
empty interior. In the sequel we shall assume that the boundary @K is smooth (at
least C2). Let 	 D 	K be the support function of K. Whenever defined the Hessian
�x D HessŒ	 �.x/ has a natural interpretation in terms of the curvatures of K at
h D r	.x/. We are following Chap. 2.5 in [26].
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General Case We assume that M is smooth and that the Gaussian curvature of M
is uniformly non-zero. In particular, M D @K is strictly convex, and, by duality
relations, its support function 	 is differentiable. In the sequel n.h/ is understood as
the exterior normal to M at h.

Recall that for every x ¤ 0, the gradient r	.x/ D hx 2 @K, and could
be characterized by hx � x D 	.x/. Consequently, r	.rx/ D r	.x/. This is a
homogeneity relation. It readily implies the following: Let �x be the Hessian of
	 at x. Then,

�xx D 0: (203)

Let h 2 @K and let n D n.h/ be the normal direction to @K at h. Then

r	.n.h// D h:

In other words, the restriction of r	 to S
d�1 is precisely the inverse of the Gauss

map n. Hence the restriction O�n.h/ of �n to Th@K is the inverse of the Weingarten
map dnh.

Definition 6.15 Let n 2 S
d�1 and h D r	.n/. Eigenvalues r` D 1=�` of O�n are

called principal radii of curvature of M D @K at h.

Example: Smooth Convex Curves Let n� D .cos �; sin �/. Radius of curvature
r.�/ D 1=�.�/ of the boundary @K at a point h� D r	.n� / is given by

r.�/ D d2

d�2
	.�/C 	.�/;

where we put 	.�/ D 	.n� /. Indeed, v� D n0
� D .� sin �; cos �/ is the unit spanning

vector of Th� @K. Note that d
d� v� D �n� . Hence,

d2

d�2
	.�/ D d

d�
.r	.n� / � v� / D �n� v� � v� � r	.n� / � n� D �n� v� � v� � 	.n� /

Second Order Expansion Let .v1; : : : ; vd�1; n.h// be orthonormal coordinate
frame, where .v1; : : : ; vd�1/ is a basis of ThM. Consider matrix elements �n.i; j/
in this coordinates. Then the homogeneity relation (203) applied at x D n.h/ yields:

�n.`; d/ D 0 for all ` D 1; : : : ; d: (204)

Which means that as a quadratic form �n satisfies:

�nu � w D �n�hu � �hv; (205)
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where �h is the orthogonal projection on Th@K. Furthermore,

Example 6.16 Check that the Hessian �x
�D Hessx	 D 1

jxj�n, where n D nx 2
S

d�1 is the unit vector in the direction of x.

Consequently, second order expansion takes the form: For any x ¤ 0 and t 2 .0; 1/

	
 .tx C v/C 	
 ..1 � t/x � v/ � 	
.x/ D �nv � v
2t.1 � t/ jxj C o

 
jvj2
jxj

!
: (206)

Recording this in the (orthonormal) basis of principal curvatures, we deduce the
following Corollary:

Corollary 6.17 Let x 2 R
d; n D nx D x

jxj 2 S
d�1, and let h D r	.x/. Consider

the orthogonal frame .v1; : : : ; vd�1; n/, where v`-s are the directions of principal
curvature of @K at h. Then, for any t 2 .0; 1/ and for any y1; : : : yd�1,

	

 
tx C

d�1X

`D1
y`v`

!
C 	

 
.1 � t/x �

d�1X

`D1
y`v`

!
� 	.x/

D
d�1X

`D1

y2`
2t.1 � t/ jxj�` C o

�P
y2`

jxj
�
:

(207)

Strict Triangle Inequality If principal curvatures of @K are uniformly bounded
or, equivalently, if quadratic forms�n are uniformly (in n 2 S

d�1) positive definite,
then there exists a constant c > 0 such that

	.x/C 	.y/ � 	.x C y/ � c .jxj C jyj � jx C yj/ : (208)

In order to prove (208) note, first of all, that since for any z ¤ 0, r	.z/ D r	.nz/,
one can rewrite the left hand side of (208) as

	.x/C 	.y/ � 	.x C y/ D x � �r	.nx/� r	.nxCy/
�C y � �r	.ny/ � r	.nxCy/

�
:

Similarly,

jxj C jyj � jx C yj D x � �nx � nxCy
�C y � �ny � nxCy

�
:

Therefore, (208) will follow if we show that for any two unit vectors n;m 2 S
d�1,

n � .r	.n/ � r	.m// � c n � .n � m/ : (209)
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Set � D n � m. Since n � .n � m/
<� j�j2, and since we are not pushing for the

optimal value of c in (208), it would be enough to consider second order expansion
in j�j.

To this end define �t D m C t� and ht D r	.�t/. Then,

n � .r	.n/� r	.m// D n �
Z 1

0

d

dt
r	.�t/dt D

Z 1

0

��tn ��dt

D
Z 1

0

��t�htn � �ht�dt:

(210)

The last equality above is (205). By construction �t is orthogonal to Tht@K. Hence
the projection

�htn D n � n � �t

j�tj2
�t D .1 � t/�C .1 � t/� � �t

j�tj2
�t D .1 � t/�C o .j�j/ :

On the other hand �ht� D �C o .j�j/. Hence, up to higher order terms in j�j,
Z 1

0

��t�htn � �ht�dt � 1

2
min
h2@K

min
`

r`.h/ jn � mj2 ; (211)

and (208) follows.

Large Deviations

The Setup Although the framework of the theory is much more general we shall
restrict attention to probabilities on finite-dimensional spaces. Let fPng be a family
of probability measures on R

d.

Definition 6.18 A function J W R
d 7! Œ0;1� is said to be a rate function if it

is proper (Dom.J/
�D fx W J.x/ < 1g ¤ ;) and if it has compact level sets. In

particular rate functions are always lower-semicontinuous.

Definition 6.19 A family fPng satisfies large deviation principle with rate function
J (and speed n) if:

Upper Bound For every closed F � R
d

lim sup
n!1

1

n
logPn .F/ � � inf

x2F
J.x/: (212)
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Lower Bound For every open O � R
d

lim sup
n!1

1

n
logPn .O/ � � inf

x2O
J.x/: (213)

There is an alternative formulation of the lower bound:

Exercise 6.20 Check that (213) is equivalent to: For every x 2 R
d the family fPng

satisfies the LD lower bound at x, that is for any open neighbourhood O of x,

lim sup
n!1

1

n
logPn .O/ � �J.x/: (214)

All the measures we shall work with are exponentially tight:

Definition 6.21 A family fPng is exponentially tight if for any R one can find a
compact subset KR of Rd such that

lim sup
n!1

1

n
logPn

�
Kc

R

� � �R: (215)

If exponential tightness is checked then one needs derive upper bounds only for all
compact sets:

Exercise 6.22 Check that if fPng is exponentially tight and it satisfies (213) for all
open sets and (212) for all compact sets, then it satisfies LDP.

In particular, fPng satisfies an upper large deviation bound with J if

(a) It is exponentially tight.
(b) For every x 2 R

d, the family fPng satisfies the following upper large deviation
bound at x:

lim
ı#0

lim sup
n!1

1

n
logPn

�ˇ̌
ˇ̌X

n
� x

ˇ̌
ˇ̌ � ı

�
� �J.x/: (216)

We shall mostly work with measures on 1
nZ

d which are generated by scaled random
variables 1

n X, for instance when X D X.�/ is the spatial extension of a polymer or
the end point of a self-interacting random walk. In the latter case we shall modify
the notion (216) of point-wise LD upper bound as follows:

Definition 6.23 A family fPng of probability measures on Z
d satisfies an upper LD

bound at x 2 R
d if for any R > 0

lim sup
n!1

1

n
logPn .X D bnxc/ � �J.x/ ^ R: (217)
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At a first glance constant R in (217) does not seem to contribute to the statement.
However, checking and formulating things this way may be convenient.

Exercise 6.24 Let J be a rate function. Check that if fPng is exponentially tight,
if the lower bound (214) is satisfied, and if (217) is satisfied, for any R 2 Œ0;1/,
uniformly on compact subsets of Rd, then fPng satisfies the LD principle in the sense
of Definition 6.19.

Log-Moment Generating Functions and Convex Conjugates Frequently quests
after LD rate functions stick to the following pattern: Assume that the (limiting)
log-moment generating function


.h/ D lim
n!1

1

n
logEneh�X (218)

is well defined (and not identically 1) for all h 2 R
d.

Exercise 6.25 Check that if 
.�/ in (218) is indeed defined, then it is convex and
lower-semicontinuous.

Consider the Legendre-Fenchel transform I of 


I.x/ D sup
h

fh � x � 
.h/g : (219)

Here is one of the basic general LD results:

Theorem 6.26 Assume that 
 in (218) is well defined and proper.

Upper Bound. For any x 2 R
d the family fPng satisfies upper LD bound (217)

with I at x.
Lower Bound. If, in addition, I is sub-differential and strictly convex at x, then

fPng satisfies a lower LD bound at x with I in (214).

Sub-differentiability and strict convexity over finite-dimensional spaces are studied
in great generality (e.g. low-dimensional effective domains, behaviour at the
boundary of relative interiors etc.) and detail [24].

Lower LD bounds with I generically do not hold. In particular true LD rate
functions J are generically non-convex. However, I D J in many important examples
such as sums of i.i.d.-s and Markov chains. Moreover, I D J for most of polymer
models with purely attractive or repulsive interactions. A notable exception is
provided by one-dimensional polymers with repulsion [12, 20] (which we do not
discuss here). Under minor additional integrability conditions the relation between
I and J could be described as follows:

Let � be a function on RC with a super-linear growth at 1:

lim
t!1

�.t/

t
D 1:
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Lemma 6.27 Assume that fPng satisfies LDP with rate function J, and assume that

lim sup
1

n
Enen�



jXj

n

�

< 1: (220)

Then [7] 
.�/ in (218) is defined and equals to


.h/ D sup
x

fx � h � J.x/g :

Consequently, I is the convex lower-semicontinuous envelop of J, that is

I.x/ D sup fla;h.x/ W la;h � Jg :

In particular, if J convex, then I D J.
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Loop Measures and the Gaussian Free Field

Gregory F. Lawler and Jacob Perlman

1 Introduction

Loop measures have become important in the analysis of random walks and fields
arising from random walks. Such measures appear in work of Symanzik [9] but the
recent revival came from the Brownian loop soup [7] which arose in the study of the
Schramm-Loewner evolution. The random walk loop soup is a discrete analogue
for which one can show convergence to the Brownian loop soup. The study of such
measures and soups has continued: in continuous time by Le Jan [8] and in discrete
time in [5, 6]. The purpose of this note is to give an introduction to the discrete time
measures and to discuss two of the applications: the relation with loop-erased walk
and spanning trees, and a distributional identity between a function of the loop soup
and the square of the Gaussian free field. This paper is not intended to be a survey
but only a sample of the uses of the loop measure.

While the term “loop measure” may seem vague, we are talking about a specific
measure from which a probabilistic construction, the “loop soup” is derived. We are
emphasizing the loop measure rather than the loop soup which is a Poissonian
realization of the measure because we want to allow the loop measure to take
negative or complex values. However, we do consider the loop soup as a complex
measure. Measures with negative and complex weights can arise even when
studying probabilistic objects; for example, sharp asymptotics for the planar loop-
erased random walk were derived in [4] using a loop measure with signed weights.

We will start with some basic definitions. In many ways, the loop measure can
be considered a way to understand matrices, especially determinants, and some of
the results have very classical counterparts. Most of the theorems about the basic
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properties can be found in [5, Chap. 9] although that book restricted itself to positive
measures. We redo some proofs just to show that positivity of the entries is not
important. A key fact is that the total mass of the loop measure is the negative of the
logarithm of the determinant of the Laplacian.

We next introduce the loop-erased random walk and show how one can use
loop measures to give a short proof of Kirchhoff matrix-tree theorem by using an
algorithm due to David Wilson for generating uniform spanning trees.

Our next section describes an isomorphism theorem found by Le Jan that is
related to earlier isomorphism theorems of Brydges et al. [1, 2] and Dynkin [3].
In this case, one shows that the local time of a continuous time version of the loop
soup has the same distribution as the square of a Gaussian field. Le Jan established
this by constructing a continuous-time loop soup. We choose a slightly different,
but essentially equivalent, method of using the discrete loop soup and then adding
exponential waiting times. This is similar to the construction of continuous time
Markov chains by starting with a discrete time chain and then adding the waiting
times. In order to get the formulas to work, one needs to consider a correction term
that is given by “trivial loops”.

We finally give some discussion of complex Gaussian fields with positive definite
Hermitian weights. We first consider real (signed) weights and relate this to the real
Gaussian free field. Finally we consider a complex Gaussian field and show that it
can be considered as a pair of real Gaussian fields.

2 Definitions

We will consider edge weights, perhaps complex valued, on a finite state space A. A
set of weights is the same thing as a matrix Q indexed by A.

• We call Q acceptable if the matrix with entries jQ.x; y/j has all eigenvalues in
the interior of the unit disc. (This is not a standard term, but we will use it for
convenience.)

• We say Q is positive if the entries are nonnegative and Q is real if the entries are
real.

• As usual, we say that Q is symmetric if Q.x; y/ D Q.y; x/ for all x; y and Q is
Hermitian if Q.x; y/ D Q.y; x/ for all x; y.

• If Q is Hermitian we say that Q is positive definite if all the eigenvalues are
strictly greater than zero, or equivalently if x � Qx > 0 for all non-zero x.

If A ¨ A0 and Q is the transition matrix for an irreducible Markov chain on A0,
then Q restricted to A is positive and acceptable. This is one of the main examples
of interest. If Q is any matrix, then 
Q is acceptable for 
 > 0 sufficiently small.

If V � A with k elements, we will write QV for the k 	 k matrix obtained by
restricting Q to V . A path in A of length n is a finite sequence of points

! D Œ!0; : : : ; !n�; !j 2 A:
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We write j!j D n for the number of steps in the path and !R for the reversed path

!R D Œ!n; : : : ; !0�:

We allow the trivial paths with j!j D 0. We write Kx;y.A/ for the set of all paths in
A with !0 D x; !n D y; if x D y, we include the trivial path.

The matrix Q gives the path measure defined by

Q.!/ D
nY

jD1
Q.!j�1; !j/; ! D Œ!0; : : : ; !n� 2

[

x;y2A

Kx;y.A/;

where Q.!/ D 1 if j!j D 0. Note that if Q is Hermitian, then Q.!R/ D Q.!/. A
path ! is a (rooted) loop (rooted at !0) if !0 D !n. Note that we write Q both for
the edge weights (matrix entries) and for the induced measure on paths.

We let � D I � Q denote the Laplacian. We write G.x; y/ D GQ.x; y/ for the
Green’s function that can be defined either as

G D ��1 D
1X

jD0
Qj

or by

G.x; y/ D QŒKx;y.A/� D
X

!2Kx;y.A/

Q.!/:

Provided Q is acceptable, these sums converge absolutely. We write

G.x; y/ D GR.x; y/C i GI.x; y/;

where GR;GI are real matrices.
Let

fx D
X

Q.!/ (1)

where the sum is over all paths ! from x to x of length at least one that have no other
visits to x. A standard renewal argument shows that

G.x; x/ D
1X

kD0
f k
x ; (2)

and since the sum is convergent,

jfxj < 1:
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If V � A, we will write

GV.x; y/ D GQV .x; y/ D
X

!2Kx;y.V/

Q.!/;

for the corresponding Green’s function associated to paths in V . The next propo-
sition is a well known relation between the determinant of the Laplacian and the
Green’s function.

Proposition 2.1 If A D fx1; : : : ; xng and Aj D A n fx1; : : : ; xj�1g,

1

det�
D

nY

jD1
GAj.xj; xj/:

Proof By induction on n. If n D 1 and q D Q.x1; x1/, there is exactly one path of
length k in A1 and it has measure qk. Therefore

GA1 .x1; x1/ D
1X

kD0
qk D 1

1 � q
:

Assume the result is true for each Aj ¨ A, and note that if g.x/ D GAj.x; xj/, then

ŒI � QAj � g D ıxj

Using Cramer’s rule to solve this linear system. we see that

GAj.xj; xj/ D detŒI � QAjC1
�

detŒI � QAj �
:

Proposition 2.2 If Q is a Hermitian acceptable matrix, then for each x, G.x; x/ > 0.
In particular,� and G D ��1 are positive definite Hermitian matrices.

Proof It is immediate that � and G are Hermitian. If ! is a path in (1), then so is
!R. Since Q.!R/ D Q.!/, we can see that =Œfx� D 0, and hence �1 < fx < 1. As
in (2), we can write

G.x; x/ D
1X

kD0
f k
x D 1

1 � fx
> 0:

Combining this with Proposition 2.1, we see that each principal minor of � is
positive and hence� is positive definite.
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3 Loop Measures

3.1 Definition

Let O D O.A/ denote the set of rooted loops of strictly positive length. If Q is an
acceptable weight, then the (rooted) loop measure (associated to Q) is the complex
measure m D mQ on O , given by

m.!/ D Q.!/

j!j :

Note that the loop measure is not the same thing as the path measure restricted to
loops. An unrooted loop is an equivalence class of rooted loops in O under the
equivalence relation generated by

Œ!0; : : : ; !n� � Œ!1; : : : ; !n; !1�:

In other words, an unrooted loop is a loop for which one forgets the “starting point”.
We will write Q! for unrooted loops and we let QO denote the set of unrooted loops.
We write! � Q! if! is in the equivalence class Q!. The measure m induces a measure
that we call Qm by

Qm. Q!/ D
X

!� Q!
m.!/:

We make several remarks.

• Unrooted loops have forgotten their roots but have not lost their orientation. In
particular, Q! and Q!R may be different unrooted loops.

• Since Q.!/ and j!j are functions of the unrooted loop, we can write Q. Q!/; j Q!j.
If Q is Hermitian, then Q. Q!R/ D Q. Q!/:

• Let d. Q!/ denote the number of rooted loops ! with ! � Q!. Note that d. Q!/ is an
integer that divides j Q!j, but it is possible that d. Q!/ < j Q!j. For example, if a; b; c
are distinct elements and Q! is the unrooted loop with representative

! D Œa; b; c; a; b; a; b; c; a; b; a�;

then j Q!j D 10 and d. Q!/ D 5. Note that

Qm. Q!/ D d. Q!/
j Q!j Q. Q!/:

• Suppose that an unrooted loop Q! with j Q!j D n has d D d. Q!/ rooted
representative. In other words, the loop “repeats” itself after d steps and does
n=d such repetitions. Suppose k > 0 of these rooted representatives are rooted
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at x. In the example above, k D 2 for x D a and x D b and k D 1 for x D c.
Then the total number of times that the loop visits x is k.n=d/. Suppose that we
give each of the k loops that are rooted at x measure Q. Q!/=Œkn=d� and give all
the other rooted representatives of Q! measure zero. Then the induced measure on
unrooted loops is the same as the usual unrooted loop measure, giving measure
.d=n/Q. Q!/ to Q!.

• In other words, if we give each rooted loop rooted at x measure Q.!/=k where k
is the number of visits to x, then the induced measure on unrooted loops restricted
to loops that intersect x is the same as Qm.

• One reason that the unrooted loop measure is useful is that one can move the root
around to do calculations. The next lemma is an example of this.

Let

F.A/ D FQ.A/ D exp

0

@
X

Q!2 QO
Qm. Q!/

1

A D exp

 
X

!2O
m.!/

!
:

If V � A, we let

FV.A/ D exp

0

@
X

Q!2 QO; Q!\V¤;
Qm. Q!/

1

A :

Note that FA.A/ D F.A/. If V D fxg, we write just Fx.A/. The next lemma relates
the Green’s function to the exponential of the loop measure; considering the case
where Q is positive shows that the sum converges absolutely. As a corollary, we will
have a relationship between the determinant of the Laplacian and the loop measure.

Lemma 3.1

Fx.A/ D G.x; x/:

More generally, if V D fx1; : : : ; xlg � A and Aj D A n fx1; : : : ; xj�1g, then

FV.A/ D
lY

jD1
GAj.xj; xj/:

Proof Let Ak denote the set of Q! 2 QO that have k different representatives that are
rooted at x. By spreading the mass evenly over these k representatives, as described
in the second and third to last bullets above, we can see that

Qm ŒAk� D 1

k
f k
x :



Loop Measures and the Gaussian Free Field 217

Hence,

Qm
" 1[

kD1
Ak

#
D

1X

kD1

1

k
f k
x D � logŒ1 � fx� D log G.x; x/:

This gives the first equality and by iterating this fact, we get the second equality.

Corollary 3.2

F.A/ D 1

det�
:

Proof Let A D fx1; : : : ; xng;Aj D fxj; : : : ; xng. By Proposition 2.1 and Lemma 3.1,

1

det�
D

nY

jD1
GAj.xj; xj/ D F.A/:

Suppose f is a complex valued function defined on A to which we associate the
diagonal matrix

Df .x; y/ D ıx;y f .x/:

Let Qf D D1=.1Cf / Q, that is,

Qf .x; y/ D Q.x; y/

1C f .x/
:

If Q is acceptable, then for f sufficiently small, Qf will be an acceptable matrix for
which we can define the loop measure mf . More specifically, if ! D Œ!0; : : : ; !n� 2
O , then

mf .!/ DQf .!/

j!j D m.!/
nY

jD1

1

1C f .!j/
;

Qmf . Q!/ D Qm. Q!/
nY

jD1

1

1C f .!j/
:

Hence, if Gf D GQf ,

det Gf D exp

 
X

!2O
mf .!/

!
D exp

0

@
X

Q!2 QO
Qmf . Q!/

1

A :
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Example Consider a one-point space A D fxg with Q.x; x/ D q 2 .0; 1/. For each
n > 0, there is exactly one loop !n of length n with Q.!n/ D qn;m.!n/ D qn=n.
Then,� is the 1 	 1 matrix with entry 1 � q,

GA.x; x/ D
1X

nD0
qn D 1

1 � q
;

and

X

!2O
m.!/ D

1X

nD1

qn

n
D � logŒ1 � q�:

3.2 Relation to Loop-Erased Walk

Suppose A is a finite set, A ¨ A; @A D A n A, and Q is a an acceptable matrix
on A. Let K .A/ denote the set of paths ! D Œ!0; : : : ; !n� with !n 2 @A and
f!0; : : : ; !n�1g � A: For each path !, there exists a unique loop-erased path LE.!/
obtained from ! by chronological loop-erasure as follows.

• Let j0 D maxfj W !j D !0g.
• Recursively, if jk < n, then jkC1 D maxfj W !j D !jkC1g.
• If jk D n, then LE.!/ D Œ!j0 ; : : : ; !jk �:

If � D Œ�0; : : : ; �k� is a self-avoiding path in K .A/, we define its loop-erased
measure by

OQ.�I A/ D
X

!2K .A/;LE.!/D�
Q.!/:

The loop measure gives a convenient way to describe OQ.�I A/.

Proposition 3.3

OQ.�I A/ D Q.�/F�.A/:

Proof We can decompose any path ! with LE.!/ D � uniquely as

l0 ˚ Œ�0; �1�˚ l1 ˚ Œ�1; �2�˚ � � � ˚ lk�1 ˚ Œ�k�1; �k�

where lj is a rooted loop rooted at �j that is contained in Aj WD Anf�0; �1; : : : ; �j�1g.
By considering all the possibilities, we see that the measure of all walks with
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LE.!/ D � is

GA.�0; �0/Q.�0; �1/GA1 .�1; �1/ � � � GAk�1 .�k�1; �k�1/Q.�k�1; �k/;

which can be written as

Q.�/
k�1Y

jD0
GAj.�j; �j/ D Q.�/F�.A/:

There is a nice application of this to spanning trees. Let A D fx0; x1; : : : ; xng be
the vertex set of a finite connected graph, and let Q be the transition probability for
simple random walk on the graph, that is, Q.x; y/ D 1=d.x/ if x and y are adjacent,
where d.x/ is the degree of x. Consider the following algorithm due to David Wilson
[10] to choose a spanning tree from A:

• Start with the trivial tree consisting of a single vertex, x0, and no edges.
• Start a random walk at x1 and run it until it reaches x0. Erase the loops

(chronologically) and add the edges of the loop-erased walk to the tree.
• Let xj be the vertex of smallest index that has not been added to the tree yet. Start

a random walk at xj, let it run until it hits a vertex that has been added to the tree.
Erase loops and add the remaining edges to the tree.

• Continue until we have a spanning tree.

It is a straightforward exercise using the last proposition to see that for any tree, the
probability that it is chosen is exactly

2

4
nY

jD1
d.xj/

3

5
�1

F.A0/

which by Corollary 3.2 can be written as

2

4detŒI � QA0 �

nY

jD1
d.xj/

3

5
�1

D 1

detŒD � K�
:

Here D.x; y/ D ıx;y d.x/ is the diagonal matrix of degrees and K is the adjacency
matrix, both restricted to A0. (The matrix D � K is what graph theorists call the
Laplacian.) We can therefore conclude the following. The second assertion is a
classical result due to Kirchhoff called the matrix-tree theorem.

Theorem 3.4 Every spanning tree is equally likely to be chosen in Wilson’s
algorithm. Moreover, the total number of spanning trees is detŒD�K�: In particular,
detŒD � K� does not depend on the ordering fx0; : : : ; xng of the vertices of A.
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4 Loop Soup and Gaussian Free Field

4.1 Soups

If 
 > 0, then the Poisson distribution on N D f0; 1; 2; : : : g is given by

q
.k/ D e�
 
k

kŠ
:

We can use this formula to define the Poisson “distribution” for 
 2 C. In this case
q
 is a complex measure supported on N with variation measure jq
j given by

jq
j.k/ D je�
j j
jk

kŠ
D e�<.
/ j
jk

kŠ
;

and total variation

kq
k D
1X

kD0
jq
j.k/ D expfj
j � <.
/g � e2j
j:

Note that

1X

kD1
jq
j.k/ D expfj
j � <.
/g Œ1 � e�j
j� � j
j e2j
j:

The usual convolution formula q
1 � q
2 D q
1C
2 holds, and if

1X

jD1
j
jj < 1;

we can define the infinite convolution

�Y

j

q
j D lim
n!1.q


1 � � � � � q
n/ D q
P

j :

If 
 > 0 and Mt is a Poisson process with parameter 
, then the distribution of
Mt is

qt.fkg/ D qt
.k/ D e�t
 .t
/
k

kŠ
; k D 0; 1; 2; : : : (3)

The family of measures fqtg satisfy the semigroup law qsCt D qs � qt: If we are only
interested in the measure qt, then we may choose 
 in (3) to be complex. In this case
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the measures fqtg are not probability measures but they still satisfy the semigroup
law. We call this the Poisson semigroup of measures with parameter 
 and note that
the Laplace transform is given by

1X

kD0
ek˛qt.fkg/ D exp.t
.e˛ � 1//:

Suppose m is a complex measure on a countable set X, that is, a complex function
with

X

x2X

jm.x/j < 1:

Then we say that the soup generated by m is the semigroup of measures fqt W t � 0g
on N

X where qt is the product measure of fqx
t W x 2 Xg where fqx

t W t � 0g is a
Poisson semigroup of measures with parameter m.x/. Pushing forward qt along the
map � 7! P

x2X �.x/ to a measure on N [ f1g, we see that it agrees with
Q� qx

t
on N and thus qt is supported on the pre-image of N, the set of � 2 N

X with finite
support which we will call NX

fin. The complex measure qt satisfies

kqtk �
Y

x2X

kqx
t k � exp

(
2t
X

x2X

jm.x/j
)
:

Soups were originally defined when m is a positive measure on X, in which case
it is defined as an independent collection of Poisson processes fMx

t W x 2 Xg where
Mx

t has rate m.x/. A realization Ct of the soup at time t is a multiset of X in which
the element x appears Mx

t times. In this case qt gives the distribution of the vector
.Mx

t W x 2 X/.

4.2 Loop Soup

Suppose Q is an acceptable weight with associated loop measure m. Let 0 < � < 1
be such that the matrix with entries P�.x; y/ WD e� jQ.x; y/j is still acceptable. Let m
be the rooted loop measure associated to Q and note that

X

!2O
j!j e�j!j jm.!/j D

X

!2O
P�.!/ < 1: (4)

The (rooted) loop soup is a “Poissonian realization” of the measure m. To be
more precise, recall that O is the set of rooted loops in A with positive length. A
multiset C of loops is a generalized subset of O in which loops can appear more
than once. In other words it is an element fC .!/ W ! 2 Og of NO where C .!/
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denotes the number of times that ! appears in C . Then the rooted loop soup is the
semigroup of measures Mt D Mt;m on N

O given by the product measure of the
Poisson semigroups fM !

t W ! 2 Og where M !
t has parameter m.!/. The measure

M !
t is Poisson with parameter tm.!/ and hence kM !

t k � expf2tjm.!/jg and

1X

kD1
jM !

t .k/j � tjm.!/j e2tjm.!/j: (5)

For any x 2 A and rooted loop !, we define the (discrete) local time N!.x/ to be
the number of visits of ! to x W

N!.x/ D
j!j�1X

jD0
1f!j D xg D

j!jX

jD1
1f!j D xg:

Note that this is a function of an unrooted loop, so we can also write N Q!.x/. Also
N!R

.x/ D N!.x/. We define the additive function L W NO
fin ! N

A by

LC .x/ D
X

!2O
C .!/N!.x/:

By pushing forward by L, the loop soup Mt induces a measure on N
A which we

denote by �t D �t;m and refer to as the discrete occupation field. Indeed, since Mt

is a product measure, we can write �t as

�t D
�Y

!2O
�!t

where the notation
Q� means convolution and �!t denotes the measure supported

on fkN! W k D 0; 1; 2; : : :g with

�!t .kN!/ D e�tm.!/ Œtm.!/�
k

kŠ
:

For future reference we note that since N! D N!R
,

Œ�!t � �!R

t �.kN!/ D e�tŒm.!/Cm.!R/� tk Œm.!/C m.!R/�k

kŠ
;

and hence,

�2t D
�Y

!2O
�!2t D

�Y

!2O
�!t � �!t D

�Y

!2O
�!t � �!R

t D �t;mR ; (6)
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where

mR.!/ D m.!/C m.!R/:

4.3 A Continuous Occupation Field

In order to get a representation of the Gaussian free field, we need to change
the discrete occupation field to a continuous time occupation field. We will do
so in a simple way by replacing N!.x/ with a sum of N!.x/ independent rate
one exponential random variables. This is similar to the method of constructing
continuous time Markov chains from discrete time chains by adding exponential
waiting times.

We say that a process Y.t/ is a gamma process if it has independent increments,
Y.0/ D 0, and for any t; s � 0; Y.t C s/ � Y.t/ has a Gamma.s; 1/ distribution.
In particular, Y.n/ is distributed as the sum of n independent rate one exponential
random variables. Let fYx W x 2 Ag be a collection of independent gamma processes.
If Ns D fsx W x 2 Ag 2 Œ0;1/A, we write Y.Ns/ for the random vector .Yx.sx//. The
Laplace transform is well known,

E Œexpf�Y.Ns/ � f g� D
Y

x2A

1

Œ1C f .x/�sx
;

provided that kf k1 < 1. In particular, if C 2 N
O
fin, then

E Œexpf�Y.LC / � f g� D
Y

x2A

1

Œ1C f .x/�LC .x/

D
Y

!2O

Y

x2A

1

Œ1C f .x/�C .!/N!.x/

D
Y

!2O
exp Œ�C .!/.ln.1C f / � N!/� : (7)

For positive Q, we could then define a continuous occupation field in terms
of random variables, and we let Lt D Y.LCt / by taking Ct as an independent
loop soup corresponding to jQj. In order to handle the general case, we define the
“distribution” of the continuous occupation field at time t to be the complex measure
�t D �t;m on Œ0;1/A given by

�t.V/ D
X

C2NO
fin

Mt.C /PfY.LC / 2 Vg D
X

Nk2NA

�t.Nk/PfY.Nk/ 2 Vg; (8)
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where V � Œ0;1/A: We will write

�tŒh.L /� D
Z

Œ0;1/A
h.L /d�t.L /

provided that
R
Œ0;1/A

jh.L /j dj�tj.L / < 1:

Lemma 4.1 If EŒjh.Lt/j� < 1, then j�tjŒjh.L /j� < 1.

Proof First, note that

jMt.C /j D
ˇ̌
ˇ̌
ˇ
Y

!2O
M !

t .C .!//

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇe�t

P
!2O m.!/

ˇ̌
ˇ
Y

!2O

.tjm.!/j/C .!/
C .!/Š

D ˛PfCt D C g

with ˛ D et
P
!2O jm.!/j�<.m.!//. Thus, taking sup over all finite partitions fVign

iD1 of
V into measurable sets,

j�tj.V/ D sup
nX

iD1
j�t.Vi/j D sup

nX

iD1

ˇ̌
ˇ̌
ˇ̌
X

C2NO
fin

Mt.C /PfY.LC / 2 Vig
ˇ̌
ˇ̌
ˇ̌

� sup
nX

iD1

X

C2NO
fin

jMt.C /jPfY.LC / 2 Vig

D
X

C2NO
fin

jMt.C /jPfY.LC / 2 Vg D ˛PfLt 2 Vg:

We will compute the Laplace transform of the measure �t, but first we need use
the following lemma.

Lemma 4.2 Suppose S is a countable set and F W S 	 N ! C is a function with
F.s; 0/ D 1 for all s 2 S,

X

s2S

ˇ̌
ˇ̌
ˇ

1X

nD1
F.s; n/

ˇ̌
ˇ̌
ˇ < 1

and

X

 2NS
fin

ˇ̌
ˇ̌
ˇ
Y

s2S

F.s;  .s//

ˇ̌
ˇ̌
ˇ < 1:
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Then,

Y

s2S

1X

nD0
F.s; n/ D

X

 2NS
fin

Y

s2S

F.s;  .s//:

Proof Since
P

s2S jP1
nD1 F.s; n/j < 1, the product on the left-hand side does not

depend on the order. For this reason we may assume that S is the positive integers
and write

1Y

sD1

1X

nD0
F.s; n/ D lim

J!1

JY

sD1

1X

nD0
F.s; n/

D lim
J!1

X

 2NJ

JY

sD1
F.s;  .s// D

X

 2N1

fin

1Y

sD1
F.s;  .s//:

The last equality uses the absolute convergence of the final sum.

Proposition 4.3 For f sufficiently small,

�tŒexp.�L � f /� D
�

det Gf

det G

�t

: (9)

Proof We first claim that there exists ı > 0 such that if kf k1 < ı,

EŒj expf�Lt � f gj� < 1;

so that the left hand side of (9) is well defined. Indeed, if kf k1 < ı, and .1 � ı/ D
e�� , then for any C 2 N

!
fin

E Œj expf�Y.LC / � f gj� �
Y

!2O
j1 � ıj�C .!/ j!j D

Y

!2O
e� j!jC .!/;

and hence

EŒj expf�Y.LCt / � f gj� D E
�
EŒj expf�Y.LCt / � f gjˇ̌Ct�

	

� E

"
Y

!2O
e�j!jCt.!/

#

D
Y

!2O
exp



tjm.!/j.e�j!j � 1/

�

which is finite for � sufficiently small by (4).



226 G.F. Lawler and J. Perlman

We assume that kf k1 < ı. Using (7) we get

�tŒexp.�L � f /� D
X

C2NO
fin

Mt.C /E Œexp.�Y.LC / � f /�

D
X

C2NO
fin

Y

!2O
M !

t .C .!// exp ŒC .!/.� ln.1C f / � N!/�

D
Y

!2O

1X

nD0
M !

t .n/ exp Œn.� ln.1C f / � N!/�

D
Y

!2O
exp Œtm.!/.exp.� ln.1C f / � N!/� 1/� :

The third equality uses Lemma 4.2, which is valid as

X

!2O

ˇ̌
ˇ̌
ˇ

1X

nD1

.tm.!//n

nŠ
exp Œn.� ln.1C f / � N!/�

ˇ̌
ˇ̌
ˇ D

X

!2O

ˇ̌
exp

�
tmf .!/

	 � 1ˇ̌ < 1

and

X

C2NO
fin

ˇ̌
ˇ̌
ˇ
Y

!2O
M !

t .C .!// exp ŒC .!/.� ln.1C f / � N!/�

ˇ̌
ˇ̌
ˇ < 1

for sufficiently small f since jMtj is a finite measure on N
O
fin. Above we used that

exp.� ln.1C f / � N!/ D
Y

x2A

exp ln

"�
1

1C f .x/

�N!.x/
#

D
j!j�1Y

jD0

1

1C f .!j/
;

which also gives us

�tŒexp.�L � f /� D exp

2

4t
X

!2O
m.!/

j!j�1Y

jD0

1

1C f .!j/

3

5 exp

"
�t
X

!2O
m.!/

#

D exp

"
t
X

!2O
mf .!/

#
exp

"
�t
X

!2O
m.!/

#

D
�

det Gf

det G

�t

:

The last equality is by Corollary 3.2.
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Consider the one-point example at the end of Sect. 3.1. If we let s denote the
function f taking the value s, then

ms.!
n/ D 1

n

�
q

1C s

�n

;

and

X

!n2O
ms.!

n/ D
1X

nD1

1

n

�
q

1C s

�n

D � log

�
1 � q

1C s

�
:

Therefore, if Lt denotes the continuous time occupation field at time t,

E
�
e�sLt

	 D
�

det Gs

det G

�t

D
�
1C s � q.1C s/

1C s � q

�t

: (10)

We recall that we have defined the (discrete time) loop measure m.!/ D Q.!/
j!j

and then we have added continuous holding times. Another approach, which is the
original one taken by Le Jan [8], is to construct a loop measure on continuous time
paths. Here we start with Q, add the waiting times to give a measure on continuous
time loops, and then divide the measure by the (continuous) length. Considered as
a measure on unrooted continuous time loops, the two procedures are essentially
equivalent (although using discrete time loops makes it easier to have “jumps” from
a site to itself).

4.4 Trivial Loops

We will see soon that the loop soup and the square of the Gaussian free field are
closely related, but because our construction of the loop soup used discrete loops
and only added continuous time afterwards, we restricted our attention to loops of
positive length. We will need to add a correction factor to the occupation time to
account for these trivial loops which are formed by viewing the continuous time
process before its first jump.

Consider the one-point example at the end of Sect. 3.1. The Gaussian free field
with covariance matrix ŒI � Q��1 is just a centered normal random variable Z with
variance 1=.1� q/ which we can write as N=

p
1 � q where N is a standard normal.

Since N2 has a �2 distribution with one degree of freedom, we see that

E

h
e�sZ2=2

i
D
s

1 � q

1� q C s
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If we compare this to (10), we can see that

E

h
e�sZ2=2

i
D E

h
e

�sL 1
2

i
Œ1C s��1=2 :

The second term on the right-hand side is the moment generating function for
a Gamma. 1

2
; 1/ random variable. Hence we can see that Z2=2 has the same

distribution at L 1
2

C Y where Y is an independent Gamma. 1
2
; 1/ random variable.

The trivial loops we will add are not treated in the same way as the other loops. To
be specific, we add another collection of independent gamma processes fYx

trivialgx2A

and define the occupation field of the trivial loops as

Tt.x/ D Yx
trivial.t/:

When viewed in terms of the discrete time loop measure, this seems unmotivated. It
is useful to consider the continuous time loop measure in terms of continuous time
Markov chains. For any t prior to the first jump of the Markov chain, the path will
form a trivial loop of time duration t. As the Markov chain has exponential holding
times, the path measure (analogue of Q) to assign to such a trivial loop is e�t dt, and
so the loop measure (analogue of m) should be t�1 e�t dt. Hence in the continuous
time measure, we give trivial loops of time duration t weight e�t=t. Since e�t=t
is the intensity measure for the jumps of a gamma process, we see that the added
occupation time at x corresponds to Tt.x/.

We write �Tt for the probability distribution of Tt. In other words, it is the
distribution of independent gamma processes fYx.t/ W x 2 Ag. Note that if L 2
Œ0;1/A,

�Tt Œexpf�f � L g� D
Y

x2A

1

Œ1C f .x/�t
D Œdet D1Cf �

�t: (11)

We will also write

t D �t � �Tt ;

which using (8) can also be written as

t.V/ D
X

C2NO
fin

Mt.C /PfY.LC C Nt/ � Vg;

where Nt denotes the vector each of whose components equals t.
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4.5 Relation to the Real Gaussian Free Field

If A is a finite set with jAj D n, and G is a symmetric, positive definite real matrix,
then the (centered, discrete) Gaussian free field on A with covariance matrix G is
the random function � W A ! R, defined by having density

1

.2�/n=2
p

det G
exp

�
�1
2
� � G�1�

�
D 1

.2�/n=2
p

det G
exp

�
�1
2

jJ�j2
�

with respect to Lebesgue measure on R
n. Here J is a positive definite, symmetric

square root of G�1. In other words, � is a jAj-dimensional mean zero normal random
variable with covariance matrix EŒ�.x/�.y/� D G.x; y/.

Lemma 4.4 Suppose G is a symmetric positive definite matrix, � D G�1, and let
� denote a Gaussian free field with covariance matrix G. Then for all f sufficiently
small,

E

�
exp

�
�1
2
�2 � f

��
D 1p

det .�C Df /

1p
det G

: (12)

Proof This is a standard calculation,

E

�
exp

�
�1
2
�2 � f

��

D 1

.2�/n=2
p

det G

Z

Rn
exp

�
�1
2
�2 � f

�
exp

�
�1
2
� � G�1�

�
d�

D 1

.2�/n=2
p

det G

Z

Rn
exp

�
�1
2
� � .�C Df /�

�
d�:

If f is sufficiently small, then�C Df is a positive definite symmetric matrix and so
has a positive definite square root, call it Rf . Then

Z

Rn
exp

�
�1
2
� � .�C Df /�

�
d� D

Z

Rn
exp

�
�1
2

Rf� � Rf�

�
d�

D 1

det Rf

Z

Rn
exp

�
�1
2
� � �

�
d�

D .2�/n=2p
det.�C Df /

:

Theorem 4.5 If Q is a symmetric, acceptable real matrix, and � is the discrete
Gaussian free field on A with covariance matrix G, then the distribution of 1

2
�2

is 1
2
.
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Proof It suffices to show that the Laplace transforms for 1
2
�2 and 1

2
exist and agree

on a neighborhood of zero. We have calculated the transforms for L 1
2

and �2 in (9)
and (11) giving

1
2
ŒexpfL � f g� D � 1

2
ŒexpfL � f g� �T1

2

ŒexpfL � f g�

D det.D�1
1Cf /

1
2

�
det Gf

det G

� 1
2

D det.D�1
1Cf /

1
2

 
det.I � D�1

1Cf Q/
�1/

det G

! 1
2

D
�

det.D1Cf � Q/�1

det G

� 1
2

D 1
p

det .�C Df /

1p
det G

:

Comparing this to (12) completes the proof.

Conversely, suppose that a symmetric, positive definite real matrix G is given,
indexed by the elements of A and let f�.x/ W x 2 Ag denote the Gaussian free field.
If the matrix Q WD I �G�1 is positive definite and acceptable, then we can use loops
to give a representation of f�.x/2 W x 2 Ag. If G has negative entries then so must Q
(since the Green’s function for positive weights is always positive).

4.6 Complex Weights

There is also a relation between complex, Hermitian weights and a complex
Gaussian field. Let A be a finite set with n elements. Suppose G0 is a positive
definite Hermitian matrix and let K be a positive definite Hermitian square root
of .G0/�1. The (centered) complex Gaussian free field on A with covariance matrix
G0 is defined to be the measure on complex functions h W RA ! C with density

1

�n det G0 exp
��h � .G0/�1h

� D 1

�n det G0 exp
��jKhj2�

with respect to Lebesgue measure on C
n (or R2n). Equivalently, the function  Dp

2 h has density

1

.2�/n det G0 exp

�
�1
2
 � .G0/�1 

�
D 1

.2�/n det G0 exp

�
�1
2

jK j2
�
; (13)
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It satisfies the covariance relations

E
�
h.x/ h.y/

	 D 1

2
E

h
 .x/  .y/

i
D G0.x; y/; (14)

E Œh.x/ h.y/� D 0:

The complex Gaussian free field on a set of n elements can be considered as
a real field on 2n elements by viewing the real and imaginary parts as separate
components. The next proposition makes this precise. Let A� D fx� W x 2 Ag be
another copy of A and A D A [ A�. We can view A as a “covering space” of A and
let ˚ W A ! A be the covering map, that is, ˚.x/ D ˚.x�/ D x. We call A and A�
the two “sheets” in A. Let G0 D GR C iGI and define G on A by

G.x; y/ DG.x�; y�/ D GR.x; y/;

G.x; y�/ D � G.x�; y/ D �GI.x; y/:

Note that G is a real, symmetric, positive definite matrix.

Proposition 4.6 Suppose G0 D GR C iGI is a positive definite Hermitian matrix
indexed by A and suppose G is the positive definite, symmetric matrix indexed by A,

G D
� A A�

A GR �GI

A� GI GR

�
:

Let f�z W z 2 Ag be a centered Gaussian free field on A with covariance matrix G. If

 x D �x C i�x� ; (15)

then f x W x 2 Ag is a complex centered Gaussian free field with covariance matrix
2G0.

Proof Let K D KR C iKI be the Hermitian positive definite square root of .G0/�1
and write .G0/�1 D �R C i�I . The relation K2 D .G0/�1 implies

K2
R � K2

I D �R; KR KI C KI KR D �I:

and G0 .G0/�1 D I implies

GR �R � GI �I D I; GR�I C GI �R D 0:

Therefore,

G�1 D
�
�R ��I

�I �R

�
;
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and J2 D G�1 where

J D
�

KR �KI

KI KR

�
:

In particular, jJ�j2 D jK j2. Moreover if 
 > 0 is an eigenvalue of G0 with
eigenvector x C iy, then

GR x � GIy D 
 x; GR y C GI x D 
 y;

from which we see that

G

�
x
y

�
D 


�
x
y

�
; G

��y
x

�
D 


��y
x

�
:

Since the eigenvalues of G are the eigenvalues of G0 with double the multiplicity,

det G D Œdet G0�2:

Therefore, (13) can be written as

1

.
p
2�/2n

p
det G

exp

�
�1
2

jJ�j2
�
;

which is the density for the centered real field on A with covariance matrix G.

We will discuss the analogue to Theorem 4.5 for complex Hermitian weights. We
can either use the complex weights Q0 D I � .G0/�1 D QR C i QI on A to give a
representation of fj .x/j2 W x 2 Ag or we can use the weights on A given by

Q D
�

QR �QI

QI QR

�
D I � G�1; (16)

to give a representation of fj�.z/j2 W z 2 Ag. The latter contains more information
so we will do this. Note that Q is a positive definite symmetric matrix, but may not
be acceptable even if Q0 is.

Provided that Q0 and Q are acceptable, let Om;m denote the loop measures derived
from them respectively. As before, let O denote the set of (rooted) loops of positive
length in A. Let O be the set of such loops in A. Note that Om is a complex measure
on O and m is a real measure on O . We write

Om.!/ D OmR.!/C i OmI.!/:

Recall that ˚ W A ! A is the covering map. We also write ˚ W O ! O for the
projection, that is, if !0 D Œ!0

0; : : : ; !
0
k� 2 O then ˚.!0/ is the loop of length k
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whose jth component is ˚.!0
j /. We define the pushforward measure ˚�m on O by

˚�m.!/ D m
�
˚�1.!/

	 D
X

˚.!0/D!
m.!0/:

Proposition 4.7

˚�m.!/ D 2 OmR.!/ D Om.!/C Om.!R/:

Proof Let Sk D fR; Igk and if � D .�1; : : : ; �k/ 2 Sk we write d.�/ for the
number of components that equal I. Let S e

k denote the set of sequences � 2 Sk

with d.�/ even.
Suppose ! D Œ!0; : : : ; !k� 2 O . There are 2k loops !0 D Œ!0

0; !
0
1; : : : ; !

0
k� 2 O

such that ˚.!0/ D !. We can write each such loop as an ordered triple .!; �; �/.
Here � 2 f0;�g and � 2 S e

k . We obtain !0 from .!; �; �/ as follows. If � D 0 then
!0
0 D !0, and otherwise !0

0 D !�
0 . For j � 1, !0

j 2 f!j; !
�
j g. If � j D R, then !0

j is
chosen to be in the same sheet as !0

j�1. If � j D I, then !0
j is chosen in the opposite

sheet to !0
j�1. Since d.�/ is even, we see that !0

n D !0
0 so this gives a loop in O with

˚.!0/ D !.
By expanding the product we see that

Q0.!/ D
kY

jD1

�
QR.!j�1; !j/C i QI.!j�1; !j/

	

D
X

�2Sk

id.�/
kY

jD1
Q� j.!j�1; !j/;

Re
�
Q0.!/

	 D
X

�2S e
k

id.�/
kY

jD1
Q� j.!j�1; !j/;

Note that

Q.!0
j�1; !0

j / D � QI.!j�1; !j/; !0
j�1 2 A; !0

j 2 A0;

Q.!0
j�1; !0

j / DQI.!j�1; !j/; !0
j�1 2 A0; !0

j 2 A;

Q.!0
j�1; !0

j / DQR.!j�1; !j/; otherwise :

If dŒ�� is even, then dŒ��=2 denotes the number of times that the path !0 goes from
A� to A. Using this we can write

Re
�
Q0.!/

	 D 1

2
Q
�
˚�1.!/

	 D 1

2

X

˚.!0/D!
Q.!0/:
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The factor 1=2 compensates for the initial choice of !0
0. Since Q0.!R/ D Q0.!/, we

see that

Q0.!/C Q0.!R/ D Q
�
˚�1.!/

	
:

Since

Om.!/ D Q0.!/
j!j ; ˚�m.!/ D Q

�
˚�1.!/

	

j!j ;

we get the result.

Since

det G0 D exp

(
X

!
A

Om.!/
)
; det G D exp

8
<

:
X

!0
A

m.!/

9
=

; ;

we get another derivation of the relation det G D Œdet G0�2:
Given the loop measure Om on A (or the loop measure m on A), we can consider

the discrete occupation field at time t as a measure �t; Om on N
A (or �t;m on N

A,
respectively). The measure �t;m pushes forward to a measure ˚��t;m on N

A by
adding the components of x and x�. It follows from (6) and Proposition 4.7 that

˚��t;m D �2t; Om:

Also the “trivial loop occupation field” on A at time t induces an occupation field on
A by addition. This has the same distribution as the trivial loop occupation field on
A at time 2t since there are two points in A corresponding to each point in A. Hence
˚�t;m has the same distribution as 2t; Om.

Using Theorem 4.5 and Proposition 4.6 we get the following.

• Suppose Q0 is a positive definite acceptable Hermitian matrix indexed by A. Let
G0 D .I � Q0/�1.

• Let Q be the positive definite real matrix on A as in (16). Let G D .I � Q/�1.
• Let f�.z/ W z 2 Ag be a centered Gaussian free field on A with covariance matrix

G provided Q is acceptable.
• If h.x/ D Œ�.x/C i�.x�/�=

p
2, then h is a complex Gaussian free field on A with

covariance matrix G0.
• If t denotes the continuous occupation field on A (including trivial loops) given

by Q at time t then f 1
2
�.z/2 W z 2 Ag has distribution 1

2
:

• If 0
t denotes the continuous occupation field on A (including trivial loops) given

by Q0 at time t then fjh.z/j2 W z 2 Ag has distribution 0
1:
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