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Foreword I

Various problems from the broad field of research on sediment transport, such as
local scouring, sedimentation in reservoirs, erosion due to floods, dam breaching
flows, aggradations, and degradations of riverbed are of fundamental importance
for river engineers, geophysicists, decision makers, and environmentalists. At the
same time, these problems are still far from being solved and constitute the basic
issue for scientists dealing with environmental hydraulics. Even at microscale
level, we realize that sediment particles respond to hydraulic forces such as shear
and lift, whose effects are in turn related to basic hydrodynamic flow properties,
particle size, shape, and density. Sediment transport can, in principle, be thought of
as moving water exerting both lift and drag on sediment particles at rest and/or in
motion. Although this concept is relatively simple numerous other, very often
nonlinear, processes occur and quantitative modeling of sediment transport turns
out to be extremely difficult. This is the result of the complexity of the physical
processes that govern the particle transport in water bodies, manifold of important
scales, meaningful uncertainties related to input data, knowledge gaps, and
numerical difficulties.

This book brings together emerging perspectives from fluid mechanics, sedi-
ment transport theory, civil engineering, and mathematical modeling. Reflecting
on the book’s theoretical and empirical focus, the audience is two-fold: students
and scholars working within the university tradition, and environmental scholars
and engineers interested in solving real life problems. Together, this mix forms a
creative synthesis for both sets of readers.

Although the problems of sediment transport have been studied for more than
two centuries, there are not many up-to date reference books presenting the actual
state of the art in the field. In view of this lack of readily available, clearly
presented information, this volume fills an important void. Its analyses and dis-
cussions of also individual aspects provide the kind of basis that any student and
specialist in the field would like to have in approaching this subject. It is thus a
most welcome contribution to the growing body of literature on hydraulics,
focusing exclusively on what is clearly the key area of concern.

Subhasish Dey has been a pioneer in the field of applied hydrodynamics, tur-
bulence, and sediment transport. His journey in the world of science and engi-
neering took him from the University of North Bengal through a number of stops
at the Universität Stuttgart, Technische Universität Darmstadt, University of Iowa,
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Technical University of Denmark, Adelaide University, University of Bradford,
Chinese Academy of Science, Tsinghua University, University of Hong Kong,
Università di Pisa, Università della Calabria, Politecnico di Milano, University of
Florence, University of Oulu, Instituto Superior Tecnico Lisbon, National Taiwan
University, National Chung Hsing University, National Cheng Kung University,
Nanyang Technological University, Laboratoire Central des Ponts et Chaussées,
and other academia, where he offered a course on sediment transport and/or stayed
as a visiting professor, to his present home at the Indian Institute of Technology
Kharagpur where he is the professor and head of the Department of Civil Engi-
neering. This journey has given him a unique perspective on the thrilling field of
sediment transport. I could personally experience his extraordinary passion and
devotion to science having Sub (as I call him in short) as invited speaker during
two international schools of hydraulics (2010 and 2012) that I had the privilege to
chair. The contacts and the friendship struck up that time have brought fruit at
enormous speed and we can now enjoy this fantastic tome.

Scientists and engineers working in the field of hydrodynamics, sediment
transport, and related areas owe Subhasish Dey a debt of gratitude for producing
this excellent volume. It will help young people entering the field and will serve as
a valuable reference work for more experienced scientists. I believe that the field
of sediment research will progress more quickly and vigorously as a result of the
publication of this excellent book. This volume will also enormously enrich the
Springer book series: GeoPlanet: Earth and Planetary Sciences.

Warsaw, March 2014 Pawel M. Rowinski
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Foreword II

The traditional Fluvial Hydraulics has significantly transformed over recent dec-
ades moving from a largely empirical discipline towards a qualitatively new level
of mathematically and physically rigorous methodologies of modern fluid
mechanics. This step change has become possible due to the progress in modeling
and experimental capabilities that led to significant advances in the understanding
of the key processes involved in fluvial dynamics. The turbulence structure among
them is particularly important as it is a fundamental driver of the interactions
between turbulent flow and its erodible boundaries. As a reflection of these
changes, the title of the discipline has changed from Fluvial Hydraulics to Fluvial
Hydrodynamics and this book is an excellent highlight of this important transition.

Over the years, the author of this book has been among key players in the
modernization of fluvial hydraulics by contributing on many fronts, from funda-
mental issues of open-channel flow turbulence to particle entrainment and trans-
port. This personal involvement in the subject makes this book particularly
interesting and stimulating.

The book joins a great family of recent texts on this topic, such as W. Graf and
M. Altinakar (1998), A. Raudkivi (1998), G. Parker (2004), M. H. Garcia (1996,
2008), J. C. Winterwerp and W. G. M. van Kesteren (2004), A. Gyr and K. Hoyer
(2007), E. Partheniades (2009), and A. J. Mehta (2013). Each of these books is
unique and provides their own specific perspective on the subject. Subhasish Dey’s
book continues this tradition and the author should be highly commended for his
outstanding effort. I have no doubt that this book will help in training a new
generation of civil and hydraulic engineers and will inspire new discoveries in
hydraulic research.

Aberdeen, March 2014 Vladimir Nikora
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Foreword III

This book, Fluvial Hydrodynamics, by Subhasish Dey is based on his teaching,
laboratory research, and extensive field experience for more than 30 years. His
practical knowledge along with a strong scientific background has enabled him to
come up at this stage. This spirit impregnates to write this excellent book that
contains a wealth of theoretical as well as applied material justifying a compre-
hensive treatise on hydrodynamics of sediment transport. I strongly believe that
the book would be a standard textbook all over the world not only for postgraduate
and research level students, but also for field engineers as a practical guide and
supplementary engineering handbook.

Knoxville, March 2014 Thanos Papanicolaou
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Foreword IV

The book Fluvial Hydrodynamics that comprehensibly addresses the issues of
sediment transport by turbulent flow differs from most texts in this field. It deals
with every aspect of hydrodynamics related to sediment transport and is important
in the context of sediment research and practice.

The author Subhasish Dey is not only an excellent researcher and at the fore-
front of current understanding of sediment transport, but also reviewed a broad
spectrum of scientific literature to bring to the audience of this text an excellent
volume that is up-to-date in all respects.

Beijing, March 2014 Zhao-Yin Wang
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Foreword V

…I thought and still so believe that a book of this title will be of great value to the
upcoming generations. As is evident from the most detailed list of contents, the
book covers all possible problems, which future engineers will be confronted in
their professional career, but equally in research. The exercises, a special feature in
the text, presented in the book will be very useful.

Lausanne, November 2013 Walter H. Graf
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Preface

I come from haunts of coot and hern,
I make a sudden sally
And sparkle out among the fern,
To bicker down a valley.

By thirty hills I hurry down,
Or slip between the ridges,
By twenty thorpes, a little town,
And half a hundred bridges.

Till last by Philip’s farm I flow
To join the brimming river,
For men may come and men may go,
But I go on forever.
…

The Brook, Alfred Lord Tennyson (1809–1892)

Flow in a river that goes on forever is one of the most evident manifestations of
gravity. The river and its characteristics must be studied, must be understood. The
book, Fluvial Hydrodynamics, goes in this direction written by an unknown
hydraulician.

The state of the art in fluvial hydrodynamics can be examined only through a
careful exploration of the theoretical development and applied engineering tech-
nology. This book is primarily focused, since most up-to-date primary research
findings in this field are presented, on the research aspects that involve a com-
prehensive understanding of the mechanics and physics of sediment transport by
turbulent flow. It begins with the fundamentals of hydrodynamic principles
applicable to open-channel flow followed by turbulence characteristics related to
sediment motion. Then, the sediment dynamics are described from a classical
perspective by applying the mean bed shear approach, and additionally, incorpo-
rating a statistical description of the role of turbulence. The book also describes the
local scour problems at hydraulic structures and scale models. It is thus intended
primarily as a course textbook at the graduate/research level and also as a guide for
field engineers, keeping up with modern scientific developments. Therefore, as a
simple prerequisite, the readers should have a basic background knowledge in
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hydraulics/fluid mechanics and an understanding of fundamentals of calculus,
probability, statistics and physics.

In the field of civil engineering, where engineers typically learn about rivers in
courses called open channel hydraulics and sediment transport, sound knowledge
of fluvial hydrodynamics is important because it determines the aggradations and
degradations of the river systems, life span of hydraulic structures and river pro-
tection works, etc. Thus, it is not surprising that this subject is of interest to a wide
circle of professions that include hydraulicians, hydrologists, geologists, sedi-
mentologists, geographers, civil engineers, environmental engineers, and so on.

I understand from the discussions with and comments from colleagues and
students over the years during delivering lectures on an international short course
on turbulent flows, sediment transport and scour offered to different universities
around the world and on the regular graduate courses on hydraulics of sediment
transport and turbulent fluid flows at my Institute (Indian Institute of Technology,
Kharagpur) that the phenomena concerning the dynamics of sediment particles
under a turbulent flow invite many open questions. My primary attempt is there-
fore to address the fundamental aspects of fluvial hydrodynamics from the view-
point of micro-mechanical interaction of sediment particles with turbulent flow.

I am of the opinion that it could be possible to build a sound understanding of
fluvial hydrodynamics on the typical foundation of fluid mechanics, basic calculus,
probability, statistics and physics. Introducing new aspects found in the research of
turbulent flow, this book updates the theories of sediment transport. It is therefore
my hope that this book would close the gap between the micro-mechanics of
sediment transport and the stochastic characteristics of turbulent flow. It differs
from the traditional treatments of open channel hydraulics and sediment transport
in its greater emphasis on the basic physics of turbulent flow in terms of quanti-
tative analytical information.

A course based on this book would be appropriate for graduate and research
students in hydraulic engineering and earth sciences curricula and would expected
to be taught by a teacher with an active interest in this field. Under these cir-
cumstances, instructors would assign students in exploring questions that arise and
in discussing papers from the journals, and to involve them in laboratory experi-
ments and/or field studies. Therefore, I have also included exercises that can be
used to explore the problems of practical importance involving complex hydro-
dynamic phenomena in the context of sediment dynamics. I would be greatly
rewarded if this book proves to be of any assistance in improving existing scarcity
of textbooks on sediment transport by turbulent flow.

I express my deep sense of indebtedness to Pawel Rowinski, Institute of Geo-
physics, Polish Academy of Sciences, Warsaw, Poland, who proposed and inspired
me to write this book in his capacity as the Editor-in-Chief of the Springer book
series: Geoplanet: Earth and Planetary Sciences. He was an endless source of help
and encouragement. I heartily thank Oscar Castro-Orgaz, University of Cordoba,
Spain for reviewing the manuscript at various stages in its development. I also
thank Walter Hans Graf, Laboratoire de Recherches Hydrauliques, École Poly-
technique Fédérale, Lausanne, Switzerland for his suggestions at the final stage of
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the preparation of manuscript. Comments from Pawel, Oscar and Walter are
extremely helpful to bring the manuscript to its final stage. Further, I am thankful
to my graduate student Sk Zeeshan Ali for checking the manuscript thoroughly.
However, I of course am solely responsible if there remain any errors and lack of
clarity. Readers are however invited to communicate with me by giving sugges-
tions on how the book can be improved in forthcoming editions. E-mails can be
sent to me at sdey@iitkgp.ac.in

This work would not have been possible without the constant encouragement
and support of my parents, Kana Dey (mother) and Bimalendu Dey (father), while
pursuing my school level, undergraduate, and graduate education; and of my
advisors of doctoral research, Sujit K. Bose, (former Professor) S. N. Bose National
Centre for Basic Sciences, Kolkata, India, and Ghandikota L. N. Sastry, (former
Professor) Indian Institute of Technology, Kharagpur, India, who most inspired
and educated me.

The love, support, and encouragement of my wife Swastika, son Sibasish, and
daughter Sagarika have sustained me in this work, as in every part of my life.
Every human being owes a great deal to their friends and I am no exception.
I treasure my close association with all my friends for their support, cooperation,
and sincere help in various ways.

March 2014, Kharagpur Subhasish Dey
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Chapter 1
Introduction

1.1 General

The term fluvial is commonly used in geophysics and earth sciences to refer to the
processes associated with rivers or streams, and the erosions or deposits and
morphology created by them. The subject hydrodynamics under the curriculum of
civil engineering and environmental engineering becomes more diverse including
the mechanism of the processes associated with fluvial systems. Fluvial processes
comprise the sediment transport and aggradations or degradations of the riverbeds.
The flow over a bed formed by the loose sediment exerts a shear stress on the bed.
If the stabilizing resistance to the sediment particles is lower than the bed shear
stress exerted, the sediment can be mobilized. For each particle size, there is a
specific velocity or bed shear stress at which the particles on the bed surface start
to move, called the threshold velocity or threshold shear stress, respectively.
Sediment transport by the stream flows can occur in different modes. Sediment in
rivers is transported as bed load (coarser fractions which move close to the bed)
and/or suspended load (finer fractions carried by the flow). There is also a com-
ponent carried as wash load that remains near the free surface of flow. Little is
known specifically about the wash load where it comes from or where it goes.
Further, during the sediment transport, the riverbed takes different undular fea-
tures, called the bedforms. All these related to sediment transport make the flow in
a river rather intricate, as compared to that in a rigid-bed channel. Further, the flow
in rivers is locally modified by the embedded obstacles, such as bridge piers,
abutments, and pipelines and the hydraulic structures, such as barrages, drops, and
sills. The modified flow has enormous erosive potential causing a local scour near
the obstacles and the hydraulic structures.

A natural river continually picks up sediment from and drops sediment on its
bed throughout its course. Where the river flows with high velocity, more sediment
is picked up than dropped. In contrast, where the flow is tranquil, more sediment is
dropped than picked up. These processes including the formations of bedforms,
such as ripples, dunes, and antidunes, determine the complex morphology of a
river. In a typical river, the largest carried sediment is of sand and gravel size, but a
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larger flood can carry cobbles and even boulders. The amount of sediment carried
by a large river is enormous. For instance, the Mississippi in USA annually carries
406 9 106 tons of sediment to the sea, the Hwang Ho in China 796 9 106 tons
and the Po in Italy 67 9 106 tons.

The origin of the development of fluvial hydrodynamics dates back to the distant
past, as people faced the problems due to erosion, sedimentation, and floods. The
ancient civilizations particularly in the valleys of Indus, Tigris, Euphrates, Nile, and
Hwang Ho rivers used the unlined canals for irrigation. Historical records suggest
that about six thousand years ago, marginal embankments were built along the
Hwang Ho in China; irrigation canals and flood control structures constructed in
Mesopotamia; and one thousand years afterward a masonry dam built across the
Nile in Egypt. In India, more than five thousand years ago, the mechanics of
sediment transport by stream flows was explained by sage Vashistha. During the
Renaissance era, famous Italian painter and scientist-cum-engineer Leonardo da
Vinci made the first empirical studies of streams and their velocity distributions. His
notebooks are full of observations that he made on rivers; and they reveal that he
understood the principles of sedimentation and erosion. Since then, scientists and
engineers have performed a large number of studies on rivers.

The subject fluvial hydrodynamics, being important in the fields of civil engi-
neering, environmental engineering, sedimentary geology, and earth sciences, is
most often used to know whether erosion or deposition of sediment or even
transport of sediment can occur. If so, what are the magnitude of erosion or
deposition and the duration or transport rate? Even though enormous efforts have
been made by scientists and engineers to resolve various problems related to
sediment transport, due to inherent complexities involved in sediment transport
processes and difficulties in taking accurate measurements, inadequate landmark
breakthroughs have so far been achieved on a sizable number of key problems. As
such, the knowledge on such complex problems is still limited to the perceptual
state. Therefore, the research on sediment transport should be directed in solving
problems, that often arise in practice involving inherent complex phenomena.

Knowledge of sediment transport can be applied extensively in civil engi-
neering such as to plan the extended life of a dam forming a reservoir. Sediment
carried by a river deposits into a reservoir formed by a dam developing a reservoir
delta. The delta grows with time filling the reservoir to reduce its capacity, and
eventually, either the reservoir needs to be dredged or the dam needs to be
abandoned. Also an adequate knowledge of the mechanics of sediment transport in
a built environment is important for civil and hydraulic engineers. Flow in cul-
verts, over spillways, below pipelines, and around bridge piers/abutments creates
scour, which can damage the environment and expose the foundations of the
structures being detrimental to them.

Sediment transport, being applied in solving various environmental engineering
problems, is important in providing habitat for fish in rivers and other instream
organisms, sustaining a hygienic stream ecosystem. On the other hand, when
suspended load of sediment is substantial due to human activities, it can cause
environmental hazards including the filling up of the channels by siltation.
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Geologists, on the other hand, seek inverse solutions for sediment transport
relationships to get an idea on the flow depth, velocity, and direction, from the
characteristics of the sedimentary rocks and new deposits of sediment particles.

1.2 Scope of this Book

The aim of the science of fluvial hydrodynamics is to understand the behavior of
sediment transport in natural streams and to provide a basis for predicting its
responses to natural or man-made disturbances. However, in general, the basic
problem of flow over a sediment bed can be stated in a rather deceptively simple
way: Given the sediment characteristics, flow rate and bed slope; what are the
probable flow depth and the sediment transport rate? Even for the simplest case of
a two-dimensional flow over a flat bed formed by a uniform sediment size, a
general solution can only be presented with estimates involving high degree of
uncertainty, as much of the intricacy lies on velocity or turbulent stress distribution
over a sediment bed. Advances in measurement technology and progress in
understanding of the turbulence phenomena in shear flow within near-bed flow
region inspire recent research trend that may append to a more satisfactory
response to the basic questions. Moreover, this topic has attracted the attention not
only of engineers but also of earth scientists, with potentially constructive results
and contributions being published in leading journals, reports, and monographs not
essentially familiar to the hydraulic engineering communities.

The objective of this book is therefore to develop a sound qualitative and
quantitative basis of knowledge of the subject. This book is rather different from a
typical engineering treatment of open-channel flow in its larger emphasis on fluvial
streams and their interactions with structures, such as, bridge piers and abutments,
bed sills. It also differs from a general earth science-oriented treatment in its
extended emphasis on the analyses based on the physics of turbulent flow and its
customary applications developed for engineering practices. To be useful, a special
attempt is made in this book to include the new important research results on
sediment transport achieved over the past years. It seems to be a demand, as over
decades, there have been inadequate efforts in incorporating of new developments
that help to predict sediment transport processes more accurately and are also
helpful in field situations not so far included in the traditional textbooks.

1.3 Coverage of this Book

The topics of this book include hydrodynamic principles and turbulence charac-
teristics related to open-channel flow, mechanics of sediment transport, and local
scour phenomena including application examples in fluvial hydrodynamics. It is
organized into eleven chapters. They are as follows:
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This chapter provides an introduction to the fluvial hydrodynamics, scope and
outline of this book, and the properties of fluid and sediment. Chapter 2 introduces
the fundamental theories of hydrodynamics in the context of open-channel flow.
Chapter 3 presents the turbulence characteristics in flow over a sediment bed. It
includes most of the modern development of turbulent flow, such as bursting
phenomenon, double averaging of heterogeneous flow over gravel-beds. Chapter 4
is devoted to the theories of the initiation of sediment motion. It encompasses
different concepts of sediment threshold and their theoretical and empirical
developments. Chapter 5 describes the concepts, theories, and empirical formu-
lations of bed load transport and saltation, while Chaps. 6 and 7 illustrate those of
suspended and total load transports, respectively. Chapter 8 demonstrates different
types of bedforms and their mechanism of formation and resistant to flow. Chapter
9 describes the natural fluvial processes toward meanderings and braiding. Chapter
10 outlines comprehensive information on local scour within channel contractions,
downstream of structures, below horizontal pipelines, at bridge piers and abut-
ments, and scour countermeasures. Chapter 11 is designed to deal with the issue to
describe dimensional analysis, modeling, and similitude of sediment transport and
scour problems.

The general feature of all the chapters is shaped by the fundamentals, such as the
definitions of the phenomena and the involved parameters as well as a series of
methodologies, starting from the earlier developments and ending to the latest ones.

In the end of each chapter, bibliographical references are given.

1.4 Physical Properties of Fluid and Sediment

Following properties of fluid and sediment are of general importance to study the
fluvial hydrodynamics. For the convenience, typical values, SI units, and dimen-
sions in MLT system (also see Chap. 11) are given.

1.4.1 Mass Densities of Fluid and Sediment

The mass density q of a fluid is defined as its mass per unit volume. The mass
density at a point is determined by considering the mass dm of a small volume
dV surrounding the point. As dV becomes a magnitude e3, where e is the small
linear distance but larger than the mean distance between molecules, the mass
density at a point is given by

q ¼ lim
dV!e3

dm

dV
ð1:1Þ
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Similarly, the mass density qs of a sediment sample is defined as its mass per unit
solid volume (without void). In case of a single particle, the mass and the volume
refer to those of that particle. However, the submerged density of a sediment
sample denoted by Dq is qs - q.

Its unit is kg m-3 and dimension ML-3. Typical value of q for water is
103 kg m-3 at standard atmospheric pressure of 1.013 9 105 Pa (or 0.76 m height
of mercury in a barometer) and temperature of 4 �C, while typical value of qs for a
quartz sand sample is 2.65 9 103 kg m-3. Mass density of water varies with
temperature. The dependency of the mass density of water on temperature is given
by q = 103 - 6.5 9 10-3(t - 4) kg m-3, where t is the temperature in �C.

1.4.2 Specific Weights of Fluid and Sediment

The specific weight c of a fluid is defined as its weight per unit volume. Since
weight is dependent on acceleration due to gravity g, the specific weight of a fluid
varies from place to place. It is therefore related to the mass density as

c ¼ qg ð1:2Þ

Similarly, the specific weight cs of a sediment sample is defined as its weight per
unit solid volume. In case of a single particle, the weight and the volume refer to
those of that particle. However, the submerged specific weight of a sediment
sample denoted by Dc is cs - c.

Its unit is N m-3 and dimension ML-2 T-2. Typical value of c for water is
9.81 9 103 N m-3 at a place where g is 9.81 m s-2, while typical value of cs for a
quartz sand sample is 2.65 9 9.81 9 103 N m-3.

1.4.3 Relative Densities of Fluid and Sediment

The relative density sf of a fluid is defined as the ratio of the mass density of fluid
to the mass density of water at 4 �C.

Similarly, the relative density s of a sediment sample is defined as the ratio of
the mass density of sediment to the mass density of water at 4 �C. However, the
submerged relative density of a sediment sample denoted by D is s - sf.

The relative density has no unit being represented by a number. Its dimension is
M0 L0 T0 (=1). Typical values of sf for water and s for a quartz sand sample are 1
and 2.65, respectively.
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1.4.4 Viscosity of Fluid

By definition, fluid is a substance that deforms continuously under the action of
shear force, however, small it may be. Shear force within successive layers of fluid
parallel to the boundary is the consequence of the fluid flow having differential
velocities of the layers. The velocities of the layers increase away from the
boundary, while the fluid particles in contact with the boundary have the same
velocity as the boundary, called the no-slip condition. For the fluids obeying the
Newton’s law of viscosity, the shear stress s being proportional to the velocity
gradient therefore is given by

s ¼ l
du

dz
ð1:3Þ

where l is the coefficient of dynamic viscosity and u is the velocity in x-direction
(that is the streamwise direction) at a normal distance z from the boundary.

Rearranging Eq. (1.3), the coefficient of dynamic viscosity (in short, also called
dynamic viscosity) l is defined as the shear stress (that is the shear force per unit
area) required to drag one layer of fluid with a unit velocity past another layer at a
unit distance apart. Its unit is Pa s and dimension ML-1 T-1. Note that the
dynamic viscosity is often measured in poise (P), which equals 0.1 Pa s. Typical
value of l for water is approximately 10–3 Pa s at 20 �C.

Note that the laminar flow (also called viscous flow) is represented by a series of
parallel layers sliding over another without any exchange of mass between the
layers. In turbulent flow, however, the mixing between the layers takes place, and
the shear stress s is given by

s ¼ lþ etqð Þ d�u

dz
ð1:4Þ

where et is the coefficient of eddy viscosity or turbulent diffusivity and �u is the time-
averaged velocity in x-direction at a normal distance z from the boundary. Details
of turbulent diffusivity and its role are given in Chaps. 3 and 6.

Removing the mass term from the dynamic viscosity expression by dividing it
by the mass density q of fluid, the coefficient of kinematic viscosity (in short, also
called kinematic viscosity) t is obtained. Hence, it is defined as the ratio of
dynamic viscosity to mass density:

t ¼ l
q

ð1:5Þ

Its unit is m2 s-1 and dimension L2 T-1. Note that the kinematic viscosity is often
measured in stokes (St), which equals 10-4 m2 s-1. Typical value of t for water is
approximately 10-6 m2 s-1 at 20 �C.
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Viscosity is dependent on temperature, but independent of pressure. The
dependency of kinematic viscosity on temperature of river water is given by
t = [1.14 – 3.1 9 10-2(t – 15) + 6.8 9 10-4(t - 15)2] 9 10-6 m2 s-1, where
t is in �C (Julien 1998).

1.4.5 Size of a Sediment Particle

Particle size is the most important parameter to deal with sediment transport
processes. The mode of sediment transport and the corresponding mechanism are
partially dependent on the particle size to be transported. The size of a sediment
particle can be represented by a number of ways: Nominal diameter, area diam-
eter, sieve diameter, fall diameter, and sedimentation diameter. The SI units are
used to represent the sediment size in m. However, the sediment size is also
expressed in mm, micron (1 lm = 10-3 mm) and logarithmic units U.

Nominal diameter, dn: It is the diameter of a sphere having the same volume as
that of a given sediment particle:

dn ¼
6V

p

� �1=3

ð1:6Þ

where V is the volume of sediment particle. The approximate volume can be
estimated considering a sediment particle as an ellipsoid as V & pa1a2a3/6, where
a1, a2, and a3 are the longest, intermediate, and shortest lengths along mutually
perpendicular axes of a Cartesian coordinate system.

Area diameter, da: It is the diameter of a sphere having the same surface area as
that of a given sediment particle:

da ¼
S

p

� �0:5

ð1:7Þ

where S is the total surface area of sediment particle. The area diameter is usually
used to characterize the flat-shaped particles (Mehta et al. 1980; Dey 2003).

Sieve diameter, d: It is the diameter of a sphere equaling the side length of a
square sieve opening through which a given sediment particle can just pass. For
sediment sizes (0.2–20 mm) of natural streambeds, sieve diameter is approxi-
mately equaling 0.9dn (US Interagency Committee 1957).

Fall diameter, dt: It is the diameter of a sphere having a relative density of 2.65
and a same terminal fall velocity as that of a given sediment particle in quiescent,
pure water at 4 �C.

Sedimentation diameter, dw: It is the diameter of a sphere having equal terminal
fall velocity and relative density as those of a given sediment particle in the same
sedimentation fluid under the same atmospheric pressure and temperature.
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U units: In order to facilitate the sediment size representation by a nondi-
mensional number, another standard way to specify particle sizes is the U scale, in
which d = 2-U (Krumbein and Sloss 1963). Taking the logarithmic of both sides,
U units for given sediment sizes are determined as

U ¼ � log2 d ¼ � log10 d

log10 2
ð1:8Þ

where d is in mm. For example, U(d = 4 mm) = -2. From Eq. (1.8), it implies
that U(d = 1 mm) = 0.

Table 1.1 furnishes the sediment size classification based on grade scale, as
recommended by the subcommittee on sediment terminology of the AGU (Lane
1947), which is widely used by the hydraulicians and geologists.

Table 1.1 Grade scale of sediment size

Class Size range

mm U units

Very large boulder 4,000 C d [ 2,000
Large boulder 2,000 C d [ 1,000
Medium boulder 1,000 C d [ 500
Small boulder 500 C d [ 250 –9 B U\ –8

Large cobble 250 C d [ 130 –8 B U\ –7
Small cobble 130 C d [ 64 –7 B U\ –6

Very coarse gravel 64 C d [ 32 –6 B U\ –5
Coarse gravel 32 C d [ 16 –5 B U\ –4
Medium gravel 16 C d [ 8 –4 B U\ –3
Fine gravel 8 C d [ 4 –3 B U\ –2
Very fine gravel 4 C d [ 2 –2 B U\ –1

Very coarse sand 2 C d [ 1 –1 B U\ 0
Coarse sand 1 C d [ 0.5 0 B U\ 1
Medium sand 0.5 C d [ 0.25 1 B U\ 2
Fine sand 0.25 C d [ 0.125 2 B U\ 3
Very fine sand 0.125 C d [ 0.062 3 B U\ 4

Coarse silt 0.062 C d [ 0.031 4 B U\ 5
Medium silt 0.031 C d [ 0.016 5 B U\ 6
Fine silt 0.016 C d [ 8 9 10-3 6 B U\ 7
Very fine silt 8 9 10-3 C d [ 4 9 10-3 7 B U\ 8

Coarse clay 4 9 10-3 C d [ 2 9 10-3 8 B U\ 9
Medium clay 2 9 10-3 C d [ 10-3

Fine clay 10-3 C d [ 5 9 10-4

Very fine clay 5 9 10-4 C d [ 2.4 9 10-4
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1.4.6 Shape of a Sediment Particle

The shape of a given sediment particle refers to the general geometric form apart
from its size and material composition. In sediment analysis, one of the most
relevant shape parameters is sphericity, Sc. According to Wadell (1932), the
sphericity is defined as the ratio of the surface area of a sphere of the same volume
as that of a given sediment particle to the actual surface area of the particle. The
sphericity basically characterizes the motion of a settling particle relative to the
fluid. As the actual surface area of a small particle is rather difficult to obtain,
Wadell redefined the sphericity as

Sc ¼
V

Vc

� �1=3

ð1:9Þ

where Vc is the volume of circumscribing sphere. However, the sphericity can also
be approximated as Sc & dn/a1. Also, Krumbein (1941) expressed the sphericity as

Sc ¼
a2a3

a2
1

� �1=3

ð1:10Þ

On the other hand, roundness is defined as the average radius of curvature of
several edges of a given sediment particle to the radius of a circle inscribed in the
maximum projected area of the particle. Unlike sphericity, roundness has been
found to be a trivial parameter in the hydrodynamics of sediment transport.

Importantly, the irregular-shaped particles are usually defined by the Corey
shape factor Sp (Vanoni 1977) as

Sp ¼
a3

ða1a2Þ0:5
ð1:11Þ

The Corey shape factor which is always less than unity is typically 0.7 for natu-
rally worn particles. The main drawback of using Corey shape factor is that it does
not take into account the distribution of the surface area and the volume of the
particle. For example, a cube and a sphere have the same shape factor Sp being
unity. Nevertheless, the hydrodynamic characteristics, such as drag and lift forces,
induced on a cubical particle and a spherical particle are different. To overcome
this difficulty, Alger and Simons (1968) proposed a shape parameter Ssp that is
given by

Ssp ¼ Sp

da

dn

ð1:12Þ

According to Heywood (1938), another shape description can be given as volume
coefficient kv, which is the ratio of the volume of a given sediment particle to the
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cube of the diameter D of circle containing the projected area of the particle onto
the plane parallel to a1a2-plane. Hence, kv = V/D3. For natural sediments, kv is
approximately 0.3. He also defined surface coefficient kc as kc = S/D2

1.5 Properties of Sediment Mixture

1.5.1 Size Distribution

The fluvial sediment is usually composed of mixture of particles of various sizes.
The size distribution of a sediment mixture can be measured by the sieve analysis.
Typical results of the sieve analysis of adequate quantity of representative sedi-
ment sample are presented in the form of a frequency histogram (or a frequency
curve) (Fig. 1.1a) and a cumulative frequency curve (Fig. 1.1b). The cumulative
frequency curve is also commonly known as particle size distribution curve. In the
frequency curve (Fig. 1.1a), the abscissa represents the particle size d class
intervals in logarithmic scale and the ordinate the percentage concentration (by
weight) of the total sample contained in the corresponding intervals of the particle
size class. On the other hand, the particle size distribution curve represents the
variation of the percentage (by weight) of sediment finer (in the ordinate) than a
given sediment size d (in the abscissa using logarithmic scale) in the total sample,
as shown in (Fig. 1.1b).

Very often, the size distribution of natural well-graded sediments follows the
lognormal probability curve when plotted. The probability distribution f(d) and the
cumulative distribution F(d) can be approximated by the lognormal and the error
function distributions, respectively, as given by the following expressions [see
Fredsøe and Deigaard (1992)]:

f ðdÞ ¼ 1

d
ffiffiffiffiffiffi
2p
p

ln rg

exp � 1
2

ln ðd=d50Þ
ln rg

� �2
( )

;

FðdÞ ¼ 1
2

1þ erf
1ffiffiffi
2
p � ln ðd=d50Þ

ln rg

� �� � ð1:13Þ

where rg is the geometric standard deviation of particle size distribution and d50 is
the median particle diameter or 50 % finer particle size, which can be obtained
from the particle size distribution curve (Fig. 1.1b). Besides the lognormal dis-
tribution, natural sediments may also have a bimodal distribution that displays two
distinct peaks in a frequency distribution curve characterizing each peak as the
mode of the distribution. Nonuniform sediments with a distinctive finer and
coarser size of sediment mixture can have bimodal distribution.
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The geometric standard deviation rg is an important parameter used to deter-
mine the nonuniformity of a sediment mixture. It is expressed as

rg ¼
d84:1

d50
¼ d50

d15:9
¼ d84:1

d15:9

� �0:5

ð1:14Þ

where d84.1 and d15.9 are 84.1 and 15.9 % finer diameters, respectively. For a given
particle size distribution, if rg B 1.4, then the sediment is considered to be uni-
form; otherwise, the sediment is nonuniform (Dey and Sarkar 2006). The geo-
metric mean size dg is the square root of the product of d84.1 and d15.9.

dg ¼ ðd84:1d15:9Þ0:5 ð1:15Þ

Apart from the geometric standard deviation, the gradation coefficient G is in use.
It is given by

G ¼ 1
2

d84:1

d50
þ d50

d15:9

� �
ð1:16Þ

In addition, Kramer (1935) proposed a uniformity parameter M that is defined as
the ratio of the median sizes of the two portions in the particle size distribution
curve separated by the median particle size d50:

M ¼

Pi¼50

i¼0
pidi

Pi¼100

i¼50
pidi

ð1:17Þ

where i is the cumulative percentage of sediment finer than di and pi is the fraction
of each size class in percentage. Kramer’s uniformity parameter M = 1 for uni-
form sediment and M \ 1 for nonuniform sediment.
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Fig. 1.1 a Typical frequency histogram and frequency distribution curve and b typical
cumulative frequency distribution or particle size distribution curve
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The relationship between di and Ui is therefore expressed as

Ui ¼ �
log10 di

log10 2
ð1:18Þ

1.5.2 Porosity, Void Ratio, Dry Mass Density, and Dry
Specific Weight

The porosity q0 of a sediment mixture is defined as the volume of void per unit
total volume. If the volume of void is Vv and the volume of solid is Vs, then the
porosity is given by

q0 ¼
Vv

Vv þ Vs

ð1:19Þ

Komura (1963) gave an empirical relationship for the porosity of unconsolidated
saturated sediment as

q0 ¼ 0:245þ 0:14

d0:21
50

ð1:20Þ

where d50 is in mm. Using the laboratory experimental and field data, Wu and
Wang (2006) modified Komura’s relationship as

q0 ¼ 0:13þ 0:21

ð0:002þ d50Þ0:21 ð1:21Þ

The void ratio e of a sediment mixture is defined as the volume of void per unit
volume of solid; and hence, it can be related with the porosity as

e ¼ Vv

Vs

¼ q0

1� q0
ð1:22Þ

The dry mass density qd and the dry specific weight cd of a sediment mixture are
defined as the mass and the weight of solid per unit total volume, respectively.
They are expressed in terms of porosity as

qd ¼ qsð1� q0Þ; cd ¼ csð1� q0Þ ð1:23Þ
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1.5.3 Angle of Repose

The angle of repose / (or more precisely, the critical angle of repose) is the
steepest angle of descent of the slope with respect to the horizontal plane when the
sediment particles submerged in water are on the verge of sliding on the sloping
surface of a sediment heap. The angle of repose therefore corresponds to a so-
called sediment avalanche. The angle of repose is approximately equal to the angle
of internal friction at the contacts of the sediment particles. Hence, / approxi-
mately equals arctan ld, where ld is the static Coulomb friction coefficient. Note
that the force, in addition to inertia, opposing the motion of noncohesive sediments
at contacts is friction. The friction coefficient ld is therefore described as the
ability of a particle to resist motion (sliding) relative to its submerged gravity
component normal to the sliding; it therefore represents the ratio of the tangential
resistive force to the downward normal force.

In mechanics of sediment transport, the angle of repose is assumed to be
equivalent to the pivoting angle / of the superimposed particle resting over the
bed particles at the point of contact P over which it can move (Fig. 1.2). It is
evident that the superimposed particle can roll over either the points of contact of
the valley formed by the two bed particles or the single point of contact of a bed
particle, depending on the arrangement or the orientation of bed particles and
according to the direction of superimposed particle tending to move. Importantly,
the angle of repose varies significantly with the nonuniformity of sediments, while
for uniform sediments, the values of / lie in between 28 and 32�.

Zhang et al. (1989) proposed an empirical relationship for the angle of repose of
noncohesive sediment with sediment size as

/ ¼ 32:5þ 1:27d50 ð1:24Þ

where / is in deg and d50 in mm. Equation (1.24) is applicable for the sediment
size range 0.2 B d50 B 4.4 mm.

For a simple case of spherical particles, Fig. 1.2 clearly depicts that the angle of
repose varies with the ratio of the size of superimposed spherical particle to that of
bed particles over which it rests. Ippen and Eagleson (1955) gave an equation of
angle of repose for spherical particles as

tan / ¼ 0:866
d

ks

� �2

þ2
d

ks

� �
� 1

3

" #�0:5

ð1:25Þ

where d is the sediment particle diameter and ks is the bed particle size or bed
roughness height. Li and Komar (1986) showed that the angle of repose decreases
with an increase in d/ks. The relationship, which is applicable for 0.3 \ d/ks \ 3, is
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/ ¼ a
d

ks

� ��b

ð1:26Þ

where a and b are coefficient and exponent dependent on the shape of the particles,
respectively. Li and Komar (1986) determined the values of a and b for spheres,
ellipsoidal, and angular gravels, as given in Table 1.2.

It is pertinent to mention that in natural conditions, the values of angle of repose
vary to a wide range that it is not easy to determine in field situations.

1.6 Properties of Fluid and Suspended Sediment Mixture

Figure 1.3 shows a schematic of sediment suspension in fluid, called fluid–sedi-
ment mixture, consisting of a volume of sediment Vs and a volume of fluid Vf. Note
that the volume of fluid here equals the volume of void, that is Vf = Vv. The
sediment concentration C by volume is defined as

C ¼ Vs

Vf þ Vs

ð1:27Þ

Submerged weight

d
Hydrodynamic drag

ks

P
P

φφ

Fig. 1.2 Schematic of pivoting angles of superimposed sediment particles relative to bed
particles

Table 1.2 Values a and b as
proposed by Li and Komar
(1986)

Shape a b

Sphere 51.3 0.33
Ellipsoidal gravels 31.9 0.36
Angular gravels 36.3 0.72 for d/ks [ 1

36.3 0.55 for d/ks \ 1
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On the other hand, the sediment concentration c by mass is defined as

c ¼ qsVs

qVf þ qsVs

¼ ðqs=qÞC
1þ ½ðqs=qÞ � 1�C ð1:28Þ

Equation (1.28) remains same for the sediment concentration by weight, since the
equation is transformed to weight of the quantities by multiplying the numerator
and the denominator with the same value of g. In case of water as a fluid,
Eq. (1.28) becomes c = sVs/(Vf + sVs) = sC/(1 + DC), where D = s – 1. Sedi-
ment concentration is usually expressed in parts per million (ppm) by mass or
weight, that is 106c. However, sediment concentration is also expressed in mass
per unit volume of concentration, qsC, or in weight per unit volume of concen-
tration, csC. The mass density of fluid–sediment mixture qm is expressed as

qm ¼ qþ ðqs � qÞC ð1:29Þ

The specific weight of fluid–sediment mixture cm is

cm ¼ cþ ðcs � cÞC ¼ qmg ð1:30Þ

The kinematic viscosity of fluid–sediment mixture tm is

tm ¼
lm

qm

ð1:31Þ

where lm is the dynamic viscosity of fluid–sediment mixture. Based on the
experimental results for 0.2 B C B 0.6, Bagnold (1954) formulated the dynamic
viscosity of water–sediment mixture as

lm ¼ l 1þ 1

ð0:74=CÞ1=3 � 1

" #
1þ 0:5

ð0:74=CÞ1=3 � 1

" #
ð1:32Þ

Vs

Vf  

Vf + Vs

Fig. 1.3 Schematic of
sediment suspension in fluid
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Here, l is the dynamic viscosity of a clear water. Also, an empirical relationship
for lm was given by Lee (1969) as

lm ¼ lð1� CÞ�ð2:5þ1:9Cþ7:7C2Þ ð1:33Þ

1.7 Terminal Fall Velocity of Sediment in Fluid

1.7.1 Terminal Fall Velocity of a Spherical Particle

The gravitational fall velocity of sediment is one of the key parameters in sedi-
ment transport, especially when sediment suspension is the dominant process. It
acts as a restoring force against turbulent entraining force acting on the particle.
Knowledge on fall velocity of a particle is thus important. In sediment transport,
although natural sediment is seldom spherical, the fall velocity of a rigid sphere is
usually used as an approximation in predicting fall velocity of a sediment particle
in natural streams.

In hydrodynamics, a particle falls at its terminal velocity if its velocity is
constant due to the drag exerted by the fluid through which it falls. As a falling
particle accelerates under the gravity, the drag force acting on the particle
increases with an increase in velocity, causing the acceleration of the particle or in
turn, the inertia force acting on the particle to reduce. At the point, the particle
ceases to accelerate and continues falling at a constant velocity, called the terminal
fall velocity or settling velocity. A free-falling particle therefore attains its terminal
fall velocity ws when the submerged gravity force FG of the particle equals the
upward drag force FD, as shown in Fig. 1.4.

For a spherical particle falling with a terminal fall velocity ws in a column of
water, the following equation is thus obtained:

Dqg
p
6

d3

|fflfflfflfflffl{zfflfflfflfflffl}
FG

¼ CD

q
2

w2
s

p
4

d2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
FD

) ws ¼
4
3
� Dgd

CD

� �0:5

ð1:34Þ

where D is s - 1, q is the mass density of water, d is the diameter of falling
particle, and CD is the drag coefficient.

Neglecting all inertia terms, Stokes (1851) analyzed the Navier–Stokes equa-
tions for laminar flow range of particle Reynolds number Re (= wsd/t) \ 1 aided by
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a stream function to derive a solution for the drag as FD = 3pldws (see Sect. 2.8)
that yields

CD ¼
24
Re

ð1:35Þ

Oseen (1927) included some inertia terms in solving the Navier–Stokes equations
to obtain the drag coefficient as

CD ¼
24
Re

1þ 3
16

Re

� �
ð1:36Þ

Afterward Goldstein (1929), who gave an extended solution of Oseen’s approxi-
mation, determined the drag coefficient as

CD ¼
24
Re

1þ 3
16

Re �
19

1280
R2

e þ
71

20480
R3

e þ � � �
� �

ð1:37Þ

Equation (1.37) is applicable for Re B 2. For Re [ 2, the drag coefficient that
could not be found theoretically had to be determined empirically. Schiller and
Naumann (1933) used experimental data for Re \ 800 to fit a curve with the
following relationship:

CD ¼
24
Re

1þ 0:15R0:687
e


 �
ð1:38Þ

Rouse (1938) used the available experimental data to prepare a CD(Re) curve for
the estimation of terminal fall velocity of a sphere, as shown in Fig. 1.5. Figure 1.5
also provides a good comparison of the variation of CD with Re obtained from the
formulas given by different investigators. Importantly, in turbulent settling region

FD

FG

ws

Fig. 1.4 Schematic of a
sphere falling in a static fluid
with a terminal fall velocity
ws
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of particle Reynolds number, Re [ 103, the drag coefficient is not only poorly
correlated with the particle Reynolds number Re but also invariant of it for certain
ranges of Re.

1.7.2 Terminal Fall Velocity of Sediment Particles

Rubey (1933) was the first to introduce a formula for the determination of terminal
fall velocities of gravel, sand, and silt particles. Since then, many investigators put
forward number of semitheoretical and empirical relationships for the terminal fall
velocity of sediment particles. Generally, the drag coefficient, according to Cheng
(1997), can be generalized as

CD ¼
P

Re

� �1=m

þ Q1=m

" #m

ð1:39Þ

where P and Q are the coefficients and m is an exponent. The particle Reynolds
number Re is estimated by using nominal diameter dn of sediment particles, as
Re = wsdn/t. The nominal diameter is approximated as dn = d/0.9, where d is the
median sieve diameter of sediment. Using Eq. (1.39), the expression for terminal
fall velocity is obtained from Eq. (1.34) (Wu and Wang 2006):
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Fig. 1.5 Drag coefficient as a function of particle Reynolds number for sphere
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ws ¼
P

Q
� t
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ 4Q

3P2
D3
�

� �1=m
s

� 1
2

2
4

3
5

m

^ D� ¼ dn

Dg

t2

� �1=3

ð1:40Þ

where D* is the nondimensional particle parameter.
Table 1.3 furnishes the values of P, Q, and m obtained from the formulas given

by different investigators for naturally worn sediment particles with shape factor
Sp & 0.7.

In addition, Hallermeier (1981), Chang and Liou (2001), and Guo (2002) put for-
ward the expressions for ws(D*), which could not be arranged in the form given by Eqs.
(1.39) and (1.40). For natural sediment particles, the formulas are given in Table 1.4.

A number of relationships for terminal fall velocity for the case of natural
sediment particles are found in the literature. Dietrich (1982) analyzed the
experimental data and obtained a formula as

Table 1.3 Values P, Q, and m

References P Q m

Rubey (1933) 24 (for dn B 1 mm) and
0 (for dn [ 1 mm)

2.1 1

Zhang (1961) 34 1.2 1
Zanke (1977) 24 (for dn B 1 mm) and

0 (for dn [ 1 mm)
1.1 1

Raudkivi (1990) 32 1.2 1
Fredsøe and Deigaard (1992) 36 1.4 1
Julien (1998) 24 1.5 1
Cheng (1997) 32 1 1.5
Soulsby (1997) 26.4 1.27 1
She et al. (2005) 35 1.56 1
Wu and Wang (2006) 53.5 exp(–0.65Sp) 5.65 exp(–2.5Sp) 0.7 + 0.9Sp

Camenen (2007) 24.6 0.96 1.53

Table 1.4 Formulas given by Hallermeier (1981), Chang and Liou (2001) and Guo (2002)

References Formula Range of D*

Hallermeier (1981)
wsc ¼

t
dn

� D
3
�

18

D* B 3.42

wsc ¼
t
dn

� D
2:1
�
6

3.42 \ D* B 21.54

wsc ¼ 1:05
t
dn

D1:5
�

D* [ 21.54

Chang and Liou (2001)
wsc ¼ 1:68

t
dn

� D1:389
�

1þ 30:22D�1:611
�

–

Guo (2002)
wsc ¼

t
dn

� D3
�

24þ 0:866D1:5
�

–
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ws ¼
t
dn

10�c1þc2 log D��c3ðlog D�Þ2�c4ðlog D�Þ3þc5ðlog D�Þ4 ð1:41Þ

where c1 = 1.25572, c2 = 2.92944, c3 = 0.29445, c4 = 0.05175, and
c5 = 0.01512.

Another formula proposed by Ahrens (2000) can be given in terms of afore-
mentioned variables as

ws ¼
t
dn

0:055D3
� tanh

12
D1:77
�

expð�4� 10�4D3
�Þ

� ��

þ1:06D1:5
� tanh 0:016D1:5

� exp � 120
D3
�

� �� �� ð1:42Þ

In an attempt to obtain a more realistic relationship, Jiménez and Madsen
(2003) developed a formula by fitting the relatively long expression given by
Dietrich (1982). It is

W� ¼ 0:954þ 20:48
S�

� ��1

^ W� ¼
ws

ðDgdnÞ0:5
_ S� ¼ dn

ðDgdnÞ0:5

t

ð1:43Þ

where W* is the nondimensional terminal fall velocity and S* is another nondi-
mensional particle parameter.

Experiments evidenced that in water with dense sediment suspension, the flow
around adjacent settling particles induces a greater drag, as compared to that in a
clear water. It is known as hindered settling effect that results in a terminal fall
velocity wsc in a suspended sediment water (sediment-laden water) to reduce from
that in a clear water. According to Richardson and Zaki (1954), the terminal fall
velocity (or hindered fall velocity) wsc in water with suspended sediment con-
centration C can be determined by

wsc ¼ wsð1� CÞn ð1:44Þ

where ws is the terminal fall velocity in a clear water and n is an empirical
exponent varying from 4.9 to 2.3 for Re increasing from 0.1 to 103. However, the
exponent n is approximately 4 for the particle sizes ranging from 0.05 to 0.5 mm.

Oliver (1961) conducted experiments on terminal fall velocity in water with
suspended sediment. He used the data of his experiments and those of McNown
and Lin (1952) to propose a formula:

wsc ¼ wsð1� 2:15CÞð1� 0:75C0:33Þ ð1:45Þ

Sha (1965) proposed a formula applicable for fine sediment d50 B 0.01 mm:
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wsc ¼ ws 1� C

2d0:5
50

� �3

ð1:46Þ

Soulsby (1997) proposed a formula for the hindered fall velocity in a dense sed-
iment suspension. In his formula (see Table 1.3), a simple change in the values of
P and Q due to C is required for the estimation of wsc as given below:

P ¼ 26

ð1� CÞ4:7
; Q ¼ 1:3

ð1� CÞ4:7
ð1:47Þ

Although the empirical formulas summarized here would be adequate for the
approximate estimations required by engineers, an accurate estimation of the
terminal fall velocity for sediment particles is rather far from being resolved.
Nevertheless, the formula that includes a shape factor given by Wu and Wang
(2006) seems to be more complete.

1.8 Examples

Example 1.1 A sieve analysis of the riverbed sediment weighing 31.4 N is done.
The relative density of sediment is measured as 2.65. The particle size distribution
is given in the following table:

(i) Plot the particle size distribution and % finer versus U curves;
(ii) determine di and Ui for i = 15.9, 50, 84.1, and 90 % finer;

(iii) calculate rg, dg, and G; and
(iv) calculate q0, e, qd, and /.

Solution

The particle size distribution curve that is plotted in a semilogarithmic graph
representing percentage finer versus sieve size is prepared through following steps.
On the graph, the sieve size scale is logarithmic. To find the percentage finer (that
is the percentage of sediment passing through each sieve), the percentage retained
in each sieve is first obtained as

Size fraction (mm) Weight retained (N) Size fraction (mm) Weight retained (N)

d \ 0.15 0 1.18 \ d \ 1.25 6.712
0.15 \ d \ 0.25 0.864 1.25 \ d \ 1.4 4.092
0.25 \ d \ 0.425 1.392 1.4 \ d \ 1.7 0.988
0.425 \ d \ 0.6 1.824 1.7 \ d \ 2 0.332
0.6 \ d \ 1 7.724 2 \ d 0.284
1 \ d \ 1.18 7.188
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% retained ¼ ðweight of sediment retained in the seive � total weightÞ
� 100 %

The next step is to determine the cumulative percentage of the sediment retained in
each sieve. Thus, the total amount of sediment that is retained in each sieve and the
amount in the previous sieves are added. The percentage finer (or the cumulative
percentage passing) of the sediment is estimated by subtracting the percentage
retained from 100 % as

% finer ¼ 100 % � % cumulative retained

Then, U is determined from Eq. (1.18).

(i) The particle size distribution and % finer versus U curves obtained from the
given sieve analysis are shown in Fig. E1.1.

(ii) From the particle size distribution curve (Fig. E1.1), the following particle
sizes di and Ui corresponding to the given % finer (denoted as fraction i in
the form of subscript of d and U) are obtained:

d15:9 ¼ 0:65 mm, d50 ¼ 1:12 mm, d84:1 ¼ 1:27 mm and d90 ¼ 1:36 mm

U15:9 ¼ 0:62, U50 ¼ �0:16, U84:1 ¼ �0:34 and U90 ¼ �0:44
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Fig. E1.1 Particle size distribution and % finer versus U curves
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(iii) Using the particle sizes determined in (ii), one can obtain

rg ¼
1:27
0:65

� �0:5

¼ 1:398( Eq: ð1:14Þ

dg ¼ ð1:27� 0:65Þ0:5 ¼ 0:909 mm( Eq: ð1:15Þ

G ¼ 1
2

1:27
1:12
þ 1:12

0:65

� �
¼ 1:429( Eq: ð1:16Þ

(iv) Using d50 = 1.12 mm, one can calculate from Wu and Wang’s equation:

q0 ¼ 0:13þ 0:21

ð0:002þ 1:12Þ0:21 ¼ 0:335( Eq: ð1:21Þ

e ¼ 0:335
1� 0:335

¼ 0:504( Eq: ð1:22Þ

qd ¼ 2:65� 103 1� 0:335ð Þ ¼ 1; 762:25 kg m�3 ( Eq: ð1:23Þ

To calculate /, the equation given by Zhang et al. is used:

/ ¼ 32:5þ 1:27� 1:12 ¼ 33:92� ( Eq: ð1:24Þ

Example 1.2 A sample of 2 9 10-3 m3 of river water is evaporated to collect
suspended sediment of 5.2 N (dry weight), having d50 = 0.1 mm and s = 2.65.
Determine C, c, qm, cm, and lm. Consider l for a clear water as 10-3 Pa s.

Solution

Weight of sediment = 5.2 N; and total volume of water including
sediment = 2 9 10-3 m3

Therefore, one can calculate

Vs ¼
5:2
cs

¼ 5:2
2:65� 9:81� 103

¼ 2� 10�4 m3 ( Definition of specific weight

Vf þ Vs ¼ 2� 10�3 m3

C ¼ 2� 10�4

2� 10�3
¼ 0:1( Eq: ð1:27Þ
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c ¼ 2:65� 0:1
1þ ð2:65� 1Þ0:1 ¼ 0:227( Eq: ð1:28Þ

qm ¼ 103 þ ð2:65� 103�103Þ0:1 ¼ 1;165 kg m�3 ( Eq: ð1:29Þ

cm ¼ 1165� 9:81 ¼ 11; 428:65 N m�3 ( Eq: ð1:30Þ

To calculate lm, the equation given by Lee is used:

lm ¼ 10�3ð1� 0:1Þ�ð2:5þ1:9�0:1þ7:7�0:12Þ ¼ 1:34� 10�3 Pa s( Eq: ð1:33Þ

Example 1.3 Determine the terminal fall velocity ws in water for a spherical
particle with diameter of 5 mm. The relative density of sediment is measured as
2.65. Consider g = 9.81 m s-2 and t for a clear water = 10-6 m2 s-1.

Solution

For the nominal diameter d = 5 mm, assume a value of CD = 0.4. Calculation of
ws is as follows:

ws ¼
4
3
� ð2:65� 1Þ9:81� 5� 10�3

0:4

� �0:5

¼ 0:519 m s�1 ( Eq: ð1:34Þ

Check: For Re (= wsd/t = 0.519 9 5 9 10-3/10-6) = 2,595, CD = 0.43 is
obtained from Fig. 1.5.
For the next trial, consider CD = 0.43 and estimate ws again as above. The esti-
mated ws is as 0.5 m s-1.
Check: For Re (= wsd/t = 0.5 9 5 9 10-3/10-6) = 2,500, CD = 0.43 is obtained
from Fig. 1.5. Thus, the assumed and the calculated values of CD are equal.
Therefore, the terminal fall velocity, ws = 0.5 m s-1

Example 1.4 A sample of riverbed sand has a nominal diameter of 0.5 mm. The
relative density of sediment is measured as 2.65. Find the terminal fall velocity ws

using different formulas. Consider Sp = 0.7, g = 9.81 m s-2, and t for a clear
water = 10-6 m2 s-1.

Solution

For the nominal diameter dn = 0.5 mm, D* [= dn(Dg/t2)1/3] is calculated as
D* = 0.5 9 10-3{[(2.65 - 1)9.81]/(10-6)2}1/3 = 12.65.
Use Eq. (1.40) to determine ws for the values of P, Q, and m given in Table 1.3.
The estimated values of ws are furnished in Table 1.5.
From formulas given in Table 1.4 and Eqs. (1.41)–(1.43), following estimations
are made:
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Hallermeier formula:

wscð3:42\D� 	 21:54Þ ¼ 10�6

0:5� 10�3
� 12:652:1

6
¼ 0:069 m s�1

Chang and Liou formula:

wsc ¼ 1:68
10�6

0:5� 10�3
� 12:651:389

1þ 30:22� 12:65�1:611
¼ 0:076 m s�1

Guo formula:

wsc ¼
10�6

0:5� 10�3
� 12:653

24þ 0:866� 12:651:5
¼ 0:064 m s�1

Dietrich formula:

ws ¼
10�6

0:5� 10�3
10�1:25572þ2:92944 log 12:65�0:29445ðlog 12:65Þ2�0:05175ðlog 12:65Þ3þ0:01512ðlog 12:65Þ4

¼ 0:074 m s�1 ( Eq: ð1:41Þ

Ahrens formula:

ws ¼
10�6

0:5� 10�3
0:055� 12:653 tanh

12
12:651:77

expð�4� 10�4 � 12:653Þ
� ��

þ1:06� 12:651:5 tanh 0:016� 12:651:5 exp � 120
12:653

� �� ��
¼ 0:07 m s�1

( Eq: ð1:42Þ

Jiménez and Madsen formula:
For the nominal diameter dn = 0.5 mm, S* [= dn(Dgdn)0.5/t] is calculated as
S* = 0.5 9 10-3[(2.65 - 1)9.81 9 0.5 9 10-3]0.5/10-6 = 44.98

Table 1.5 Results of ws

References P Q m ws (m s-1)

Rubey (1933) 24 (for dn B 1 mm) 2.1 1 0.0612
Zhang (1961) 34 1.2 1 0.0707
Zanke (1977) 24 (for dn B 1 mm) 1.1 1 0.0796
Raudkivi (1990) 32 1.2 1 0.0719
Fredsøe and Deigaard (1992) 36 1.4 1 0.0658
Julien (1998) 24 1.5 1 0.0703
Cheng (1997) 32 1 1.5 0.0611
Soulsby (1997) 26.4 1.27 1 0.0737
She et al. (2005) 35 1.56 1 0.0637
Wu and Wang (2006) 53.5 exp(–0.65Sp) 5.65 exp(–2.5Sp) 0.7 + 0.9Sp 0.0651
Camenen (2007) 24.6 0.96 1.53 0.0664
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ws ¼ ½ð2:65� 1Þ9:81� 0:5� 10�3�0:5 0:954þ 20:48
44:98

� ��1

¼ 0:064 m s�1

( Eq: ð1:43Þ

Example 1.4 therefore produces a somewhat varying estimation of terminal fall
velocity for a given sediment size, when formulas proposed by different investi-
gators are used.
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Chapter 2
Hydrodynamic Principles

2.1 General

The hydrostatic phenomenon is simplified by the absence of shear stress within the
fluid and in contact with the solid boundary. In contrast, the hydrodynamic phe-
nomenon becomes rather complex. As the fluid flows over a solid boundary,
whether stationary or moving, the fluid velocity in contact with the boundary must
be the same as that of the boundary, termed no-slip. Thus, a velocity gradient is
created over the boundary, as the fluid velocity increases with the normal distance
from the boundary. The resulting differential velocity normal to the boundary
gives rise to the shear stress within the fluid and on the boundary, as already
discussed in Newton’s law of viscosity, Eq. (1.3). Fluid flows as a result of the
action of forces set up by the pressure difference or the gravity. Fluid motion is
controlled by the inertia of fluid and the effect of the shear stress exerted by the
surrounding fluid. Therefore, the resulting fluid motion cannot be easily analyzed
theoretically; and the theories are often essentially supplemented by the experi-
ments. The fluid motion can be defined in the following ways:

The path traced by an individual fluid particle over a period of time is known as
pathline, which describes the trajectory (position at successive intervals of time) of
a particle that started from a given position. On the other hand, streakline provides
an instantaneous picture of the positions of all the particles which have passed
through a particular point at a given time. Streakline is therefore the locus of points
of all the fluid particles that have passed continuously through a particular spatial
point in the past. Since the flow characteristics may vary from instant to instant, a
streakline is not necessarily the same as a pathline.

In analyzing a fluid flow, one often makes use of the idea of a streamline, which
is an imaginary line whose tangents at every point along the imaginary line rep-
resent velocity vectors at that moment. It implies that at a given instant, there is no
flow across the streamline. Since there can be no flow through a solid boundary,
the streamline in contact with or nearest to the solid boundary is known as limiting
streamline. Let us consider a particle moves in the direction of the streamline at
any instant; it has a displacement ds having components dx, dy, and dz and the
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velocity vector v having components u, v, and w in the x-, y-, and z-direction,
respectively. Then, the equation of streamline is

dx

u
¼ dy

v
¼ dz

w
ð2:1Þ

For a continuous stream of fluid, streamlines are continuous lines extending to
infinity upstream and downstream or forming closed curves, but they cannot
intersect. When flow conditions are steady and laminar, then the pathlines and the
streamlines are identical; however, if the flow is fluctuating or turbulent, this is not
the case. A family of streamlines through every point on the perimeter of a small
area of the fluid flow cross section forms a streamtube (Fig. 2.1). Since there is no
flow across a streamline, no fluid can enter or leave a streamtube except through its
ends. It thus behaves as if it were a solid tube.

The Lagrangian approach of the fluid flow is the method of looking at fluid
motion, where the observer follows an individual fluid particle as it moves through
space and time. To illustrate its use, let (xA(x0, y0, z0, t), yA(x0, y0, z0, t), zA(x0, y0,
z0, t)) be the position at an instant t of a fluid particle that had an initial position (x0,
y0, z0) at time t0. Hence, by definition, xA(x0, y0, z0, t = t0) = x0(x0, y0, z0). The
velocity components are given by

uðx0; y0; z0; tÞ � lim
Dt!0

xAðx0; y0; z0; t0 þ DtÞ � xAðx0; y0; z0; t0Þ
Dt

¼ lim
Dt!0

xA � x0

Dt
¼ oxAðx0; y0; z0; tÞ

ot

vðx0; y0; z0; tÞ ¼
oyAðx0; y0; z0; tÞ

ot

wðx0; y0; z0; tÞ ¼
ozAðx0; y0; z0; tÞ

ot

9>>>>>>>>>>=
>>>>>>>>>>;

ð2:2Þ

In the above, Dt = t - t0. The partial derivatives signify that the differentiation
is performed keeping initial position (x0, y0, z0) fixed. Then, the acceleration
components are given by

Fig. 2.1 Streamtube, where
curved lines with arrows
represent streamlines. The
two arrows tangential to the
lowest streamline show the
velocity vectors at those
points
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axðx0; y0; z0; tÞ ¼
ouðx0; y0; z0; tÞ

ot
¼ o2xAðx0; y0; z0; tÞ

ot2

ayðx0; y0; z0; tÞ ¼
ovðx0; y0; z0; tÞ

ot
¼ o2yAðx0; y0; z0; tÞ

ot2

azðx0; y0; z0; tÞ ¼
owðx0; y0; z0; tÞ

ot
¼ o2zAðx0; y0; z0; tÞ

ot2

9>>>>>>>=
>>>>>>>;

ð2:3Þ

On the other hand, the Eulerian approach of the fluid flow is the method of
looking at fluid motion that focuses on specific locations in the space through
which the fluid flows, as over the time. To describe velocity components, it is
written as

u ¼ uðx; y; z; tÞ
v ¼ vðx; y; z; tÞ
w ¼ wðx; y; z; tÞ

9>=
>; ð2:4Þ

Then, to determine the acceleration, having known that as the acceleration
means the rate of change of velocity of a fluid particle at a position while noting
that the particle moves from that position at the time it is being studied, the
acceleration component in x-direction is

ax ¼ lim
Dt!0

Duðxþ uDt; yþ vDt; zþ wDt; t þ DtÞ
Dt

¼ u
ou

ox
þ v

ou

oy
þ w

ou

oz
þ ou

ot

ay ¼ u
ov

ox
þ v

ov

oy
þ w

ov

oz
þ ov

ot

az ¼ u
ow

ox
þ v

ow

oy
þ w

ow

oz
þ ow

ot

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð2:5Þ

Note that the first three terms in the right-hand side of Eq. (2.5) are referred to
as convective acceleration (also occasionally called advective acceleration) and
the last terms in the right-hand side of Eq. (2.5) are the local acceleration (also
occasionally called temporal acceleration).1 The convective terms are quadratic in
the velocity components and hence they are nonlinear. This introduces the major
complexity in having the solution of the equations of fluid motion. On the other
hand, as the Lagrangian approach does not have nonlinearity, one might thought
that it could be relatively convenient to use. This is, however, not the case, as the

1 Convective acceleration is the acceleration of fluid due to space at a given time, while the local
acceleration is the acceleration of fluid due to time at a given spatial location.
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internal force terms due to viscosity introduced by the Newton’s laws become
nonlinear in the Lagrangian approach. Further, the physical laws, such as the
Newton’s laws and the laws of conservation of mass and energy, apply directly to
each particle in the Lagrangian approach. However, the fluid flow is a continuum
phenomenon, at least down to the molecular level. It is not possible to track each
particle in a complex flow field. Thus, the Lagrangian approach is rarely used in
hydrodynamics.

In the Eulerian approach, individual fluid particles are not tracked; instead, a
control volume is defined. The flow parameters are described as fields within the
control volume, expressing them as a function of space and time. Hence, one is not
concerned about the location or velocity of a particular fluid particle, but rather
about the velocity, acceleration, etc. of whatever particle happens to be at a par-
ticular location and at a given time. Since the fluid flow is a continuum phe-
nomenon, the Eulerian approach is usually preferred in hydrodynamics.
Notwithstanding that the physical laws, such as the Newton’s laws and the laws of
conservation of mass and energy, apply directly to particles in a Lagrangian
approach, some transformations or reformulations of these laws are required for
the use with the Eulerian approach.

2.2 Rates of Deformation

In a fluid flow, if the fluid elements do not undergo rotation as it flows, then the
flow is called irrotational. In consideration of a frictionless or ideal fluid flow, no
shear stresses act on the surface of the elements. Only normal stresses or pressures
act following the Pascal’s law. Then, the resultant of all surface forces acting on
the element should pass through the centroid of the element irrespective of its
shape. As a result , there can be no turning moment on the element and it remains
in the same orientation at all its locations provided the element remains undis-
turbed initially. On the other hand, rotation of elements is inevitable, where vis-
cous forces come into play. In a real fluid flow, a fluid element gets distorted as it
moves. Note that distortion is not always rotation which is identified by the change
in orientation of the diagonal or the axis of the element. An element may, however,
get distorted without undergoing rotation or vice versa. A fluid element can
undergo four types of motion or deformation: (1) translation, (2) rotation, (3)
extensional strain, and (4) shear strain. These types of motion are time dependent.

Consider a rectangular fluid element ABCD at time t and then after elapsing a
small interval of time dt, the element undergoes four types of motion to become
A0B0C0D0 at time t + dt, as shown in Fig. 2.2. The translation is defined by the
displacement udt and vdt of the corner B. The rotation of the diagonal BD is
expressed as xzdt = h + da - 45�, where xz denotes the angular velocity or rate
of rotation about an axis parallel to z-axis.
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Using the summation of angles 2h + da + db = 90� yields

xzdt ¼ 1
2
ðda� dbÞ ð2:6Þ

Referring to Fig. 2.2, da and db are expressed as

da ¼ lim
dt!0

arc tan

ov

ox
dxdt

dxþ ou

ox
dxdt

0
B@

1
CA � ov

ox
dt ð2:7aÞ

db ¼ lim
dt!0

arc tan

ou

oy
dydt

dyþ ov

oy
dydt

0
BB@

1
CCA � ou

oy
dt ð2:7bÞ

Substituting Eqs. (2.7a, b) into Eq. (2.6), the rate of rotation or angular velocity
about z-axis is obtained as

xz ¼
1
2

ov

ox
� ou

oy

� �
ð2:8Þ
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Fig. 2.2 Deformation of a moving fluid element
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Similarly, the rates of rotation about x- and y-axis are

xx ¼
1
2

ow

oy
� ov

oz

� �
;xy ¼

1
2

ou

oz
� ow

ox

� �
ð2:9Þ

Note that if the rates of rotational components vanish, then the flow is irrota-
tional, for which the conditions are

xx ¼ xy ¼ xz ¼ 0) ow

oy
¼ ov

oz
;

ou

oz
¼ ow

ox
;

ov

ox
¼ ou

oy
ð2:10Þ

The vorticity is the tendency of a fluid element to spin. The components of
vorticity in three dimensions are expressed as follows:

Xx ¼ 2xx ¼
ow

oy
� ov

oz

� �
; Xy ¼ 2xy ¼

ou

oz
� ow

ox

� �
; Xz ¼ 2xz ¼

ov

ox
� ou

oy

� �

ð2:11Þ

The circulation is the line integral around a closed curve of the fluid velocity
(Fig. 2.3). It can be considered as the amount of push along a closed boundary or
path. Thus, it provides an estimation of the strength of the rotational flow. Cir-
culation can be related to the vorticity by the Stokes theorem as

C ¼
I
C

u � dl ¼
Z Z

A

XdA ð2:12Þ

where dl is the linear increment along the contour C and A is the area within the
contour.

The components of circulation in three dimensions are expressed as follows:

Cx ¼
Z
y

Z
z

ow

oy
� ov

oz

� �
dydz; Cy ¼

Z
z

Z
x

ou

oz
� ow

ox

� �
dzdx;

Cz ¼
Z
x

Z
y

ov

ox
� ou

oy

� �
dxdy

ð2:13Þ
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Fig. 2.3 Definition sketch
for fluid circulation

34 2 Hydrodynamic Principles



The two-dimensional shear strain rate is generally defined as the average
decrease in angle between two lines which are initially perpendicular to each other
before the strained state. Taking AB and BC as initial lines (Fig. 2.2), the shear
strain rate is

exy ¼
1
2

da
dt
þ db

dt

� �
¼ 1

2
ov

ox
þ ou

oy

� �
ð2:14Þ

Similarly, other components of shear strain rate are

eyz ¼
1
2

ow

oy
þ ov

oz

� �
; ezx ¼

1
2

ou

oz
þ ow

ox

� �
ð2:15Þ

The extensional strain in x-direction is defined as the fractional increase in
length of horizontal side of the element. The normal strain rate in x-direction is

exxdt ¼ 1
dx

dxþ ou

ox
dxdt

� �
� dx

� �
¼ ou

ox
dt) exx ¼

ou

ox
ð2:16Þ

Similarly, other components of normal strain rate are

eyy ¼
ov

oy
; ezz ¼

ow

oz
ð2:17Þ

2.3 Conservation of Mass

Except in the relativistic processes (E = mc2, where E is the energy, m is the mass
of the matter, and c is the speed of the light) after Albert Einstein in 1905, matter is
neither created nor destroyed. This principle of conservation of mass can be
applied to the fluid flow.

Considering an enclosed region in the flow constituting a control volume (CV)
(Fig. 2.4), the equation of conservation of mass can be written in terms of mass
flux as

Mass flux entering ¼ Mass flux leaving

þ Change of mass in the CV per unit time
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For the steady flow, there is no change of mass of fluid in the CV and the
relation reduces to

Mass flux entering ¼ Mass flux leaving

Applying this principle to a steady flow in a streamtube (Fig. 2.5) having an
elementary cross-sectional area, through which the velocity to be considered as
constant across the cross section, since there can be no flow across the wall of a
streamtube, the conservation of mass for the region between sections 1 and 2 is

q1u1dA1 ¼ q2u2dA2 ¼ d _m ¼ constant ð2:18Þ

The mass influx or mass entering per unit time at section 1 equals the mass
efflux or mass leaving per unit time at section 2. In Fig. 2.5, u is the velocity
through the elementary cross-sectional area dA, q is the mass density of fluid and
the subscripts denote sections. Therefore, for a steady flow, it implies that the mass
flow rate, termed mass flux d _m, across any cross section of the elementary
streamtube is constant. This is known as the continuity equation for the com-
pressible fluid flow through an elementary streamtube. Therefore, the continuity
equation of the fluid flow for the entire cross section of the streamtube can be
obtained integrating Eq. (2.18) as

q1U1A1 ¼ q2U2A2 ¼ _m ¼ constant ^ U ¼ 1
A

Z
A

udA ð2:19Þ

Control volume

Mass of fluid entering

Mass of fluid leaving

Fig. 2.4 Control volume in a fluid flow
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Fig. 2.5 Definition sketch
for the fluid flow through a
streamtube showing an
elementary streamtube
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where U is the average velocity through the cross-sectional area A.
If the fluid is incompressible, then q1 = q2 = q; and Eq. (2.19) reduces to

U1A1 ¼ U2A2 ¼ Q ¼ constant ð2:20Þ

where Q is the discharge or volume rate of flow.

2.3.1 Continuity Equation in Three Dimensions

Differential mode of continuity equation is used to analyze two- and three-
dimensional flows. To derive three-dimensional continuity equation of fluid flow, a
control volume element of fluid dxdydz, having a mass density q, with a center at
(x, y, z) in a Cartesian coordinate system is considered (Fig. 2.6). The velocity
components in x-, y- and z-direction are u, v, and w, respectively. The mass influx
of fluid flow through the back face of the control volume by advection in the x-
direction is given by

qu� o

ox
ðquÞ � dx

2

� �
dydz

In the above expression, the first term, qudydz, is the mass influx through
the central plane normal to the x-axis, as shown by the broken line in Fig. 2.6.
The second term, [q(qu)/qx](dx/2)dydz, is the change of mass flux with respect
to distance in x-direction multiplied by the distance dx/2 to the back face.
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Fig. 2.6 Definition sketch for the derivation of three-dimensional continuity equation of fluid
flow in a control volume element
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Similarly, the mass efflux through the front face of the control volume in
x-direction is given by

quþ o

ox
ðquÞ � dx

2

� �
dydz

Therefore, the net mass flux out in x-direction through these two faces is
obtained as

o

ox
ðquÞdxdydz

The other two directions yield similar expressions; and hence, the net mass flux
out of the control volume is

o

ox
ðquÞ þ o

oy
ðqvÞ þ o

oz
ðqwÞ

� �
dxdydz

From the concept of conservation of mass, the net mass flux out of the
control volume plus the rate of change of mass in the control volume, given by
(qq/qt)dxdydz, equals the rate of production of mass in the control volume, which
is zero, by definition of the conservation of mass. Thus, the three-dimensional
continuity equation of fluid flow is given by

o

ox
ðquÞ þ o

oy
ðqvÞ þ o

oz
ðqwÞ ¼ � oq

ot
ð2:21Þ

which must hold for every point in the flow of a compressible fluid. For incom-
pressible fluid flow (q = constant), Eq. (2.21) simplifies to

ou

ox
þ ov

oy
þ ow

oz
¼ 0 ð2:22Þ

The kinematic relation in terms of the components of normal strain rate can be
obtained using Eqs. (2.16) and (2.17) into Eq. (2.22). It is

exx þ eyy þ ezz ¼ 0 ð2:23Þ

Thus, the sum of the components of normal strain rate vanishes to satisfy the
continuity. If Eq. (2.22) reduces to only two terms, regardless of the coordinate
system, a useful device is to introduce the so-called stream function w, defined so
as to satisfy the continuity identically. For example, for two-dimensional incom-
pressible flow in xz plane, the continuity equation (Eq. 2.22) reduces to
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ou

ox
þ ow

oz
¼ 0 ð2:24Þ

If the stream function is defined as w such that

u ¼ ow
oz
; w ¼ � ow

ox
ð2:25Þ

By direct substitution of Eq. (2.25), Eq. (2.24) is satisfied identically, assuming
that the w is continuous to the second-order derivatives. The stream function has a
useful physical significance:

dw ¼ ow
ox

dxþ ow
oz

dz ¼ �wdxþ udz) w ¼ �
Z

wdxþ
Z

udz ð2:26Þ

Equation (2.26) implies that the line of constant w(dw = 0) is the line across
which no flow takes place; that means it is a streamline. However, the difference
between the values of stream functions w1 and w2 of two neighboring streamlines
is numerically equal to the flow rate per unit width (denoted by Dq) between those
two streamlines.

w2 � w1 ¼ Dq ð2:27Þ

It is illustrated in Fig. 2.7, where the flow rate across section AB is dw
explaining now the flow across the two streamlines dw = Dq = -wdx + udz.

2.3.2 Continuity Equation for Open-Channel Flow

The continuity equation of unsteady flow in open channel states that the difference
of mass influx into and mass efflux out of the control volume must be equal to the
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Fig. 2.7 The stream function
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rate of increase in fluid mass within the control volume. In Fig. 2.8, the initial free
surface is shown by the solid lines, while the final free surface after a small interval
of time dt is shown by the dotted lines. The flow is analyzed through a space
between two sections having an elementary distance dx apart to form a control
volume. The flow in the channel is fed laterally with a uniform flow rate qL. Note
that qL may also arise in the form of seepage flow (injection) normal to the wetted
perimeter of the channel. The mass influx in time dt into the control volume is

qUAdt|fflfflffl{zfflfflffl}
Main flow

þ qqLdxdt|fflfflfflffl{zfflfflfflffl}
Lateral flow

where U is the area-averaged flow velocity through left section and A is the flow
area of the left section.

The mass efflux in time dt out of the control volume is

qðU þ dUÞðAþ dAÞdt) q U þ oU

ox
dx

� �
Aþ oA

ox
dx

� �
dt

where U + dU is the area-averaged flow velocity through right section and
A + dA is the flow area of the right section. Note that dU = (qU/qx)dx and
dA = (qA/qx)dx.
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Fig. 2.8 Continuity of an unsteady flow in an open channel
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The rate of increase in fluid mass in time dt within the control volume is

qT
oh

ot
dtdx

where T is the top width of the flow and h is the initial flow depth.
The continuity of flow in an open channel is therefore given by

qUAdt þ qqLdxdt � q U þ oU

ox
dx

� �
Aþ oA

ox
dx

� �
dt ¼ qT

oh

ot
dtdx ð2:28Þ

Simplifying,

U
oA

ox
þ A

oU

ox
þ T

oh

ot
¼ qL ð2:29Þ

Using Q = UA and qA = Tqh at a given section, Eq. (2.29) becomes

oQ

ox
þ oA

ot
¼ qL ð2:30Þ

Further, using hydraulic depth hd = A/T and qA = Tqh at a given section,
Eq. (2.29) can be given as

U
oh

ox
þ hd

oU

ox
þ oh

ot
¼ qL

T
ð2:31Þ

Equations (2.30) and (2.31) are the two different forms of the continuity
equation for an unsteady flow in open channels. For a rectangular channel with no
lateral flow (qL = 0), Eq. (2.30) reduces to

oq

ox
þ oh

ot
¼ 0 ð2:32Þ

where q is the discharge per unit width (=Uh). This equation was first introduced
by de Saint-Venant (1871).

2.4 Conservation of Momentum

The momentum equation is a statement of Newton’s second law of motion and
relates the sum of the forces acting on a fluid element to its acceleration or the rate
of change of momentum in the direction of the resultant force. The change of
momentum flux in the control volume is obtained from the difference between the
momentum efflux and the momentum influx in the control volume. Let us consider
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a simple case of flow through a streamtube, as shown in Fig. 2.9, denoting the flow
parameters with subscripts 1 and 2 at the entrance and the exit, respectively. The
rate of change of momentum in the horizontal direction according to Newton’s
second law of motion is caused a horizontal force component Fx, such that

Fx ¼ q2A2U2u2 � q1A1U1u1 ¼ _mðu2 � u1Þ ^ q1A1U1 ¼ q2A2U2 ¼ _m

ð2:33Þ

The value of Fx is positive in the direction in which u is assumed to be positive.
Similarly, in three dimensions, Fy and Fz can be given as follows:

Fy ¼ _mðv2 � v1Þ; Fz ¼ _mðw2 � w1Þ ð2:34Þ

To summarize the position, the total force exerted on the fluid in a control
volume in a given direction equals the rate of change of momentum in the given
direction of the fluid passing through the control volume. Therefore,

F ¼ _mðUout � UinÞ ð2:35Þ

The nonuniform distribution (variation with the vertical distance) of velocity
affects the computation of momentum in the flow based on the area-averaged
velocity U (=Q/A). The actual and the area-averaged velocity distributions are
illustrated in Fig. 2.10. Based on the area-averaged velocity, the momentum flux
of the fluid passing through a section is expressed as b _mU, where b is known as
the momentum coefficient or Boussinesq coefficient. The equation balancing the
momentum flux calculated from the actual velocity distribution and that obtained
from the area-averaged velocity corrected by b is used to determine momentum
coefficient b as

Z
A

ðqudA � uÞ ¼ b _mU )
Z
A

qu2dA ¼ bqU2A ð2:36Þ
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Fig. 2.9 Control volume as a
streamtube with influx and
efflux normal to the control
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where u is the velocity through an elementary area dA. Solving for b yields

b ¼ 1
A

Z
A

u2

U2
dA ð2:37Þ

In straight prismatic channels, b roughly varies from 1.01 to 1.12 (Chow 1959).

2.4.1 Momentum Equation in Three Dimensions

2.4.1.1 Equations of Motion for Inviscid Flow (Euler Equations)

In Euler equations of motion, the resultant force on a fluid element equals the
product of the fluid mass and its acceleration, acting in the direction of the
resultant. A control volume element of fluid dxdydz, having a mass density q, with
a center at (x, y, z) in a Cartesian coordinate system is considered (Fig. 2.11).
Assuming that the fluid is inviscid (frictionless), the contact forces are pressure
forces acting normally on the faces of the element. The pressure intensity at the
center of the element is p. Let the component of the body force per unit mass in the
x-direction be gx. The extraneous force in the x-direction acting on the element is
gxqdxdydz. The net force in the x-direction is then

Fx ¼ p� op

ox
� dx

2

� �
dydz� pþ op

ox
� dx

2

� �
dydzþ gxqdxdydz

¼ � op

ox
þ gxq

� �
dxdydz ð2:38Þ
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Fig. 2.10 Velocity distribution and area-averaged velocity in an open-channel flow
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According to Newton’s second law of motion, the net force Fx in x-direction
equals the product of the mass and acceleration, that is, (qdxdydz)ax. Hence, using
Eq. (2.5) into Eq. (2.38) yields

u
ou

ox
þ v

ou

oy
þ w

ou

oz
þ ou

ot
¼ � 1

q
� op

ox
þ gx ð2:39Þ

Similarly,

u
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ox
þ v
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oy
þ w
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oz
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ot
¼ � 1

q
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oy
þ gy ð2:40Þ

u
ow

ox
þ v

ow

oy
þ w

ow

oz
þ ow

ot
¼ � 1

q
� op

oz
þ gz ð2:41Þ

where gy and gz are the body forces per unit mass in y- and z-direction, respec-
tively. Equations (2.39)–(2.41) are known as the Euler equations of motion.

2.4.1.2 Equations of Motion for Viscous Flow (Navier–Stokes
Equations)

Stress Components in Cartesian Coordinates: Nine stress components, as shown in
Fig. 2.12, are acting on the faces of the three-dimensional fluid element, whose
each face is normal to the coordinate axis of a Cartesian coordinate system. The
normal stresses are denoted by r, considering positive in the outwards and having
a subscript to indicate its direction according to the axis. The effects of viscosity
are to cause shear or tangential stresses in the fluid. The shear stresses are denoted
by s, having first subscript to indicate the direction of the normal to the plane over
which the stress acts and the second subscript to indicate the direction.
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Let the moment be taken about an axis through the center of the element
parallel to the z-axis to show that

sxydydz|fflfflffl{zfflfflffl}
Shear force

dx� syxdxdz|fflfflffl{zfflfflffl}
Shear force

dy ¼ 0) sxy ¼ syx ð2:42Þ

Similarly,

syz ¼ szy; szx ¼ sxz ð2:43Þ

Hence, the stress components that define the state of stress at a point can be
conveniently written in a matrix format as

rx sxy sxz

syx ry syz

szx szy rz

Equations of Motion in Terms of Stress Components: Referring to Fig. 2.13, the
shear stresses are included in the equations of motion. Let the stress components at
the center (x, y, z) of the fluid element be sxy, syz, szx, rx, ry, and rz that follow
above matrix. Accordingly, the stresses are obtained on six faces of the fluid
element shifting the positions by a distance of one half of the length of the
element.

According to Newton’s second law of motion, the product of the mass and
acceleration of the element, that is, (qdxdydz)ax, equals the summation of the
forces (net force) acting on the element in the x-direction. Thus,
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Fig. 2.12 Stress components on a fluid element in Cartesian coordinates
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Dividing both sides of Eq. (2.44) by the element mass, qdxdydz, and taking the
limit as the element reduces to a point, that is, dxdydz ? 0, the general form of
equations of motion in three dimensions can be written using Eqs. (2.5) and (2.44) as
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In Newtonian fluid, both the normal and the shear stress components are related
to the velocity gradients so that the viscous stresses are proportional to the shear
strain rates. The normal stresses can be defined in terms of a linear deformation by
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the dynamic viscosity l (=tq, where t is the coefficient of kinematic viscosity) and
a second viscosity lS to account for the volumetric deformation, defined as the
sum of the velocity gradients or the components of normal strain rate along each of
the three coordinate axes (Streeter 1948). The normal stresses are as follows:
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In a three-dimensional case, extending the Newton’s law of viscosity, the
components of shear stress are

sxy ¼ syx ¼ l
ov

ox
þ ou

oy

� �
; syz ¼ szy ¼ l

ow

oy
þ ov

oz

� �
; szx ¼ sxz ¼ l

ou

oz
þ ow

ox

� �

ð2:47Þ

The effect of the second viscosity lS is of secondary importance being small in
practice. A good approximation is to set

lS ¼ �2l=3

that is, the Stokes hypothesis; and the pressure may be seen to be the average from
Eqs. (2.46a–c) as

p ¼ � 1
3
ðrx þ ry þ rzÞ ð2:48Þ

As an exemplar, using Eqs. (2.46a), (2.47) and (2.48) into Eq. (2.45a) and
applying the Stokes hypothesis, the equation of motion in x-direction is
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where

r2 ¼ o2
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Similarly,
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For unsteady and incompressible flow, by reference to the continuity equation
(Eq. 2.22), Eqs. (2.49) and (2.50a, b) reduce to
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The above equations are known as the equations of motion for viscous fluid flow
or the Navier–Stokes equations. These equations in other coordinate systems are
given in Appendix (Sect. 2.9).

2.4.2 Momentum Equation for Open-Channel Flow

2.4.2.1 Momentum Equation for Gradually Varied Steady Flow

A gradually varied steady flow through an open channel, whose bed is inclined at
an angle h with the horizontal, is considered. Figure 2.14 shows the forces acting
on the flow within the control volume between sections 1 and 2. The application of
Newton’s second law of motion, in a one-dimensional flow case, to this control
volume along the streamwise direction is made equating the resultant of all the
external forces acting on the fluid body with the rate of change of momentum in
the flowing fluid body. Thus,

F1 � F2 þ FW sin h� Ff ¼ qQðb2U2 � b1U1Þ ð2:52Þ

where F1 and F2 are the resultants of the hydrostatic pressure forces in the
direction of flow acting at sections 1 and 2, respectively, Fw is the weight of the
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fluid within the control volume, Ff is the total external force due to frictional
resistance acting along the contact surface between the fluid and the channel
boundary, Q is the total flow discharge, U1 and U2 are the area-averaged flow
velocities at sections 1 and 2, respectively, and b1 and b2 are the momentum
coefficients at sections 1 and 2, respectively.

Assuming h to be small or a horizontal bed (h & 0), Ff to be negligible for a
short reach of a prismatic channel and also b1 = b2 = 1, Eq. (2.52) reduces to

F1 � F2 ¼ qQðU2 � U1Þ ð2:53Þ

The resultants of the hydrostatic pressure forces in the streamwise direction
(that is, the horizontal direction for h & 0) acting on the plane flow areas A1 and
A2 are expressed as

F1 ¼ qgzc1A1; F2 ¼ qgzc2A2 ð2:54Þ

where g is the acceleration due to gravity, and zc1 and zc2 are the distances to the
centroid of respective flow areas A1 and A2 from the free surface. Substituting
U1 = Q/A1, U2 = Q/A2, and Eq. (2.54) into Eq. (2.53) yields

Q2

gA1
þ zc1A1 ¼

Q2

gA2
þ zc2A2 ð2:55Þ
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Fig. 2.14 Momentum principle applied to a gradually varied steady flow in an open channel.
Forces acting on a control volume are shown
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The left-hand and right-hand sides of Eq. (2.55) are analogous and therefore
may be expressed by a general momentum or force function for any flow cross
section as

M ¼ Q2

gA
þ zcA ð2:56Þ

The first term of the right-hand side of Eq. (2.56) represents the momentum flux
passing through the channel section per unit weight of fluid, and the second term is
the force per unit weight of fluid. The sum of these two terms is called specific
force and is denoted by M.

To illustrate the variation of specific force M with flow depth h given by
Eq. (2.56), the specific force diagram [that is, M(h) curve] for a given rectangular
channel having width of 2 m carrying a flow discharge of 0.3 m3 s-1 is drawn as
shown in Fig. 2.15a. The M(h) curve has two limbs, AC and BC. The lower limb AC
asymptotically approaches the abscissa, while the upper limb BC rises upwards and
extends indefinitely to the right. Thus, for a given value of specific force M (say
M = 0.2 m3 of water as shown in Fig. 2.15), the M(h) curve predicts two possible
flow depths, a low stage h1 (=0.023 m) and a high stage h2 (=0.436 m). These depths
are termed sequent depths. For instance, h1 is the sequent depth of h2 and vice versa.
However, at point C on the M(h) curve, the two depths merge and the specific force
becomes a minimum [Mmin(hc = 0.132 m) = 0.052 m3, where hc is the critical
depth], termed critical flow condition. Mathematically, the minimum value of the
specific force can be obtained from Eq. (2.56) by taking the first derivative of M with
respect to h and setting the resulting expression equal to zero. Thus,
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dM

dh
¼ 0) � Q2

gA2
� dA

dh
þ d

dh
ðzcAÞ ¼ 0 ð2:57Þ

Referring to Fig. 2.15b, note that for a change in flow depth dh, the corre-
sponding change of the moment of the flow area, d(zcA), can be obtained as

dðzcAÞ ¼ ðzc þ dhÞAþ TðdhÞ2

2

" #
� zcA � Adh) d

dh
ðzcAÞ ¼ A ð2:58aÞ

or

d
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Z
A

hdA ¼
Z
A

dh

dh
dA ¼ A ð2:58bÞ

Using Eq. (2.58a) or Eq. (2.58b), T = dA/dh, U = Q/A, and hd = A/T into
Eq. (2.57) yields

U2
c

2g
¼ hd

2
) Frc ¼

Ucffiffiffiffiffiffiffi
ghd

p
� �

¼ 1 ð2:59Þ

where Fr is the flow Froude number and subscript ‘‘c’’ refers to the quantity for the
critical condition. The above equation provides the criterion for the critical flow,
which states that at the critical flow condition, the velocity head is equal to half the
hydraulic depth or the flow Froude number is unity. In conclusion, at the critical
flow condition, the specific force is a minimum for a given discharge, and the
corresponding flow depth is termed critical depth, hc. More discussion on critical
flow is available in Sect. 2.5.1.

2.4.2.2 Momentum Equation for Gradually Varied Unsteady Flow

One can proceed to obtain equations describing an unsteady open-channel flow
considering a control volume with a short reach of dx (Fig. 2.16). The bed is
inclined at an angle h with the horizontal. Applying Newton’s second law of
motion in the streamwise direction (x-direction), one gets

pA� pAþ oðpAÞ
ox

dx

� �
þ FW sin h� Ff ¼ max ^ ax ¼ U

oU

ox
þ oU

ot
ð2:60Þ

where m is the mass of the fluid element (=qAdx). Using the expressions for the
weight of fluid in the control volume FW = qgAdx, the bed frictional resistance
Ff = s0Pdx, m, and ax into Eq. (2.60) yields
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� oðpAÞ
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dxþ qgAdx sin h� s0Pdx ¼ qAdx U
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ot
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ð2:61Þ

where s0 is the bed shear stress and P is the wetted perimeter of the channel. For a
small bed slope (h = small), one can assume sinh & tanh = -qz/qx = S0 (say).
Dividing both sides of Eq. (2.61) by the weight of fluid, qgAdx, in the control
volume and rearranging, one gets
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where Sf is the friction slope and Rb is the hydraulic radius (=A/P). The first term
of the left-hand side of Eq. (2.62) can be expressed in a more general way as
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Then, Eq. (2.62) becomes
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ð2:64Þ

This equation is called the general dynamic equation for gradually varied
unsteady flow. It is applicable as indicated in Eq. (2.64). It shows how nonuniformity
and unsteadiness contribute to the equation of motion. Equation (2.64), also called de
Saint-Venant equation, was first introduced by de Saint-Venant (1871).

2.4.2.3 Momentum Equation for Steady Uniform Flow

Referring to Fig. 2.17, for a steady uniform flow, F1 = F2 and U1 = U2 = U.
Then, Eq. (2.52) reduces to

FW sinh� Ff ¼ 0 ð2:65Þ

Using FW = qgAL, Ff = s0PL, and sinh = S0 yields

qgALS0 � s0PL ¼ 0 ð2:66Þ

Experiments revealed that the bed shear stress s0 is a function of dynamic
pressure, kfqU2/2, where kf is a friction parameter. Hence, rearranging Eq. (2.66)
yields
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Fig. 2.17 Definition sketch
for a steady uniform flow
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U ¼ CRðRbS0Þ0:5 ^ CR ¼
2g

kf

� �0:5

ð2:67Þ

where CR is the Chézy coefficient. The above equation, that defines the flow
resistance, is called the Chézy equation, which is applicable for uniform flow in
open channels. The flow depth in uniform flow is called normal flow depth and is
denoted by h0.

However, the most widely used flow resistance equation for steady uniform
flow is the Manning equation. It is

U ¼ 1
n

R2=3
b S0:5

0 ð2:68Þ

where n is Manning roughness coefficient. Note that the Manning equation is an
empirical equation.

2.5 Conservation of Energy

An element of fluid, as shown in Fig. 2.18, acquires the potential energy due to its
elevation z above the datum and the kinetic energy due to its velocity U.

If weight of the element is w, then the potential energy is wz. Thus,

potential energy per unit weight ¼ z ð2:69Þ

Then, the kinetic energy is wU2/(2g). Thus,

kinetic energy per unit weight ¼ U2

2g
ð2:70Þ

A steady fluid flow also does work due to hydrostatic pressure force acting on
the cross section of fluid, as the fluid flows. If the hydrostatic pressure p acting at
the section 1–1 having a cross-sectional area A, then the pressure force exerted on
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Fig. 2.18 Definition sketch
for the derivation of energy
equation of fluid flow
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1–1 is pA. The section 1–1 moves to 2–2 after a weight of fluid w transported along
the streamtube. Then, the volume of fluid passing through the section 1–1 is
w/(qg). The distance between 1–1 and 2–2 is w/(qgA). The pressure energy or the
work done by the pressure is pA 9 w/(qgA) = pw/(qg). Therefore,

pressure energy per unit weight ¼ p

qg
ð2:71Þ

Equations (2.69)–(2.71) together represent the total energy per unit weight H in
the fluid flow.

Each of the equations has the dimension of a length, called the head; and they
are often referred to as the hydrostatic or piezometic pressure head, p/(qg); the
velocity head, U2/(2g); the potential head, z; and the total head, H. Therefore, for a
steady flow of an inviscid fluid along a streamline, the energy equation is as
follows:

p

qg
þ U2

2g
þ z ¼ H ð2:72Þ

This equation is also commonly called Bernoulli’s equation. Interestingly,
Bernoulli derived it from the integration of the Euler equation along a streamline
containing same terms as in Eq. (2.72).

The nonuniform distribution (variation with the vertical distance) of velocity
affects the computation of kinetic energy in the flow based on the area-averaged
velocity U (=Q/A). Figure 2.10 illustrates the nonuniform and area-averaged
velocity distributions and was already used in the context of momentum calcu-
lation. Based on the area-averaged velocity, the kinetic energy flux of the fluid
passing through a section is expressed as a _mU2/2, where a is known as the energy
coefficient or Coriolis coefficient. The equation balancing the kinetic energy flux
calculated from the actual velocity distribution and that obtained from the area-
averaged velocity corrected by a is used to determine energy coefficient a as

Z
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qudA
u2

2
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¼ a _m
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2
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q
u3

2
dA ¼ aq

U3

2
A ð2:73Þ

Solving for a yields

a ¼ 1
A

Z
A

u3

U3
dA ð2:74Þ

In straight prismatic channels, a varies approximately from 1.03 to 1.36 (Chow
1959).
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2.5.1 Energy Equation for Open-Channel Flow

Figure 2.19 illustrates the energy heads in a gradually varied steady flow in
an open channel, whose bed is inclined at an angle h with the horizontal. In an
open-channel flow, the free surface represents the hydrostatic pressure head,
provided there is no curvilinearity in the streamlines in the flow. It implies that
p/(qg) = hcosh, where h is the flow depth. Considering a suitable datum, the
Bernoulli’s equation is applied to the flow section 0–0, and the total energy head
H is given by

zþ h cos hþ a
U2

2g
¼ H ð2:75Þ

where a is the energy coefficient, U is the area-averaged velocity, and z is the
elevation of the channel bottom above the datum. It is pertinent to mention that as
the velocity distribution along the vertical distance varies, the velocity head, which
is based on the constant velocity distribution U, that is truly identical for all points
across the flow section, is corrected by a.

According to Bernoulli’s equation, the total energy head at the upstream sec-
tion 1 should be equal to the total energy head at the downstream section 2 plus
the loss of energy head hf between the two sections (Fig. 2.19). Thus,
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flow in an open channel

56 2 Hydrodynamic Principles



z1 þ h1 cos hþ a1
U2

1

2g
¼ z2 þ h2 cos hþ a2

U2
2

2g
þ hf ð2:76Þ

This is the energy equation for gradually varied flow in an open channel.
Assuming h to be small or a horizontal bed (cos h & 1) and hf to be negligible for
a short reach of a prismatic channel and also a1 = a2 = 1, Eq. (2.76) becomes

z1 þ h1 þ
U2

1

2g
¼ z2 þ h2 þ

U2
2

2g
¼ constant ð¼HÞ ð2:77Þ

Either of the above equations is known as the energy equation for open-channel
flow.

2.5.1.1 The Specific Energy

Specific energy at a channel section is defined as the total energy head or the total
energy per unit weight of the flow at the section with respect to the channel
bottom. It means z = 0 in Eq. (2.75). Therefore, for a given channel section, the
specific energy, denoted by E, is

E ¼ h cos hþ a
U2

2g
ð2:78Þ

For h to be small and a & 1 (for simplicity), Eq. (2.78) becomes

E ¼ hþ U2

2g
ð2:79Þ

The specific energy, as indicated by Eq. (2.79), is the sum of the flow depth and
the velocity head. Substituting U = Q/A, Eq. (2.79) becomes

E ¼ hþ Q2

2gA2
ð2:80Þ

Since for a given channel section, Q = Q(h) and A = A(h), the specific energy
E is a function of flow depth h only.

To illustrate the variation of specific energy E with flow depth h given by
Eq. (2.80), the specific energy diagram [that is, E(h) curve] for a given rectangular
channel having a width of 2 m carrying a flow discharge of Q = 0.3 m3 s-1 is
drawn, as shown in Fig. 2.20. The E(h) curve has two limbs, AC and BC. The
lower limb AC asymptotically approaches the abscissa toward the right, while the
upper limb BC rises upwards and approaches the line OD as it extends to the right.
The line OD that passes through the origin and is inclined at an angle 45� rep-
resents the hydrostatic pressure head or the flow depth h. Thus, for a given value of
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specific energy E (say E = 0.3 m of water as shown in Fig. 2.20), the E(h) curve
predicts two possible flow depths, a low stage h1 (=0.071 m) and a high stage h2

(=0.286 m). These depths are termed alternate depths. For instance, h1 is the
alternate depth of h2, and vice versa. However, at point C on the curve, the
alternate depths merge and the specific energy becomes a minimum. The flow
corresponding to a minimum specific energy is known as critical flow and the
resulting flow depth is termed critical depth, hc. In Fig. 2.20, the minimum specific
energy Emin = 0.198 m corresponds to a critical depth hc = 0.132 m. When the
flow depth is greater than the critical depth, the flow velocity is less than the
critical velocity for a given discharge, and hence, the flow is called subcritical. On
the other hand, when flow depth is less than the critical depth, the flow is
supercritical. Hence, h1 is the supercritical flow depth and h2 is the subcritical
flow depth. With the change in discharge, the E(h) curve changes its position.
Figure 2.20 also shows another E(h) curve for a discharge Q1 = 0.5 m3 s-1,
which is greater than the previous discharge Q = 0.3 m3 s-1. The E(h) curve of
Q1 lies on the right side of E(h) curve of Q. Similarly, the E(h) curve of a discharge
less than Q will lie on the left side of E(h) curve of Q.

Mathematically, the minimum value of the specific energy can be obtained
from Eq. (2.80) by taking the first derivative of E with respect to h and setting the
resulting expression equal to zero. Thus,

dE
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¼ 0 ) 1� Q2

gA3
� dA

dh
¼ 0 ð2:81Þ
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energy diagram
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Using T = dA/dh and hd = A/T into Eq. (2.81) yields

Q2T

gA3
¼ 1 ) U2

c

2g
¼ hd

2
) Frc ¼

Ucffiffiffiffiffiffiffi
ghd

p
� �

¼ 1 ð2:82Þ

Equation (2.82) provides the criterion for the critical flow, which is similar to
that discussed in Sect. 2.4.2. In summary, at the critical flow condition, the specific
energy is minimum for a given discharge. Hence, for critical condition, h = hc,
U = Uc, and Fr = Frc = 1; for subcritical condition, h [ hc, U \ Uc, and Fr \ 1;
and for supercritical condition, h \ hc, U [ Uc, and Fr [ 1.

2.5.1.2 The Gradually Varied Flow

Figure 2.21 shows a schematic of a gradually varied flow (GVF) in a prismatic
open channel. The definition of a GVF indicates two conditions: (1) steady flow
and (2) practically parallel streamline flow, that is, a hydrostatic pressure distri-
bution prevailing along the depth. The derivation of a GVF profile is based on the
following assumptions:

(a) The channel is prismatic.
(b) The flow depth is indifferent whether it is measured in the vertical or normal

(to the channel bed) direction. It means the bed slope is small; and hence,
h & hcos h such that cos h & 1.

(c) The head loss at a channel section is identical as for a uniform flow having
the same velocity and hydraulic radius of the section. Thus, the resistance
equation, such as the Manning equation, for the uniform flow can be used to
determine the energy slope of a GVF.

Datum

Q

1 2

21

U2/(2g)

z

h

Energy slope, Sf 

Free Surface

Sf dx

Bed slope, S0 

dx

Fig. 2.21 Schematic of a
gradually varied flow in an
open channel
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(d) The friction coefficient is independent of the flow depth and unchanged
throughout the channel reach, that is under consideration.

Considering cos h & 1 and a & 1 and differentiating Eq. (2.75) with respect to
x, one gets

dH

dx
¼ dz

dx
þ dh

dx
þ d

dx

U2

2g

� �
ð2:83Þ

Using U = Q/A and T = dA/dh, the last term of the right-hand side of
Eq. (2.83) is developed as

d
dx

U2

2g

� �
¼ d

dh

Q2

2gA2

� �
dh

dx
¼ � Q2

gA3
� dA

dh
� dh

dx
¼ �Q2T

gA3
� dh

dx
ð2:84Þ

Substituting Eq. (2.84) into Eq. (2.83) and rearranging yield

dh

dx
¼ S0 � Sf

1� Q2T
gA3

^ dH

dx
¼ �Sf _ dz

dx
¼ �S0 ð2:85Þ

where Sf is the energy or friction slope and S0 is the bed slope. Further, using
hd = A/T and Q = UA into Eq. (2.85), it produces

dh

dx
¼ S0 � Sf

1� Fr2
^ Fr ¼ Uffiffiffiffiffiffiffi

ghd

p ð2:86Þ

This is the general differential equation of a GVF and predicts the free surface
profiles. Flow with a positive value of dh/dx refers to an increase in flow depth
along the streamwise direction and is called backwater curve. On the other hand,
flow with a negative value of dh/dx refers to a decrease in flow depth along the
streamwise direction and is called drawdown curve. However, for a uniform flow,
dh/dx = 0 or S0 = Sf.

Classification of Bed Slope: A downward bed slope (positive value of S0) is
classified as steep if the normal depth is less than the critical depth (that is, the
normal flow is supercritical) and mild if the normal depth is greater than the critical
depth (that is, the normal flow is subcritical).2 Other types of slopes are critical
(S0 = Sc [ 0 and h0 = hc), horizontal (S0 = 0 and h0 ? ?), and adverse (S0 \ 0
and h0 = imaginary). The slopes are designated using the first characters as S, M,
C, H, and A for steep, mild, critical, horizontal, and adverse slopes, respectively.
Further, to designate the flow profiles (that is, free surface profiles) corresponding
to a given slope, the second characters 1, 2, and 3 are used as the subscript of the

2 Alternatively, a downward slope is steep if it exceeds the critical slope Sc (that is the slope at
which the normal depth of flow is critical depth). Hence, S0 [ Sc. Similarly, mild slope can be
explained.
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first characters referring to the zone, where the actual depth h lies with respect to
the flow depth lines for hc and h0 and the channel bed. By convention, zone 1
refers to the zone above the upper line, whichever (either hc or h0) it may be; zone
2 is the zone between the two lines; and zone 3 is the zone between the bed and the
lower line. Figures 2.22, 2.23, 2.24, 2.25 and 2.26 show various flow profiles.
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h0

Fig. 2.22 Steep slope
profiles (S-profiles)
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h0

hc

Fig. 2.23 Mild slope profiles
(M-profiles)

C3

Bed slope S0 = Sc 

h0 = hc

C1
Fig. 2.24 Critical slope
profiles (C-profiles)

Bed slope S0 = 0

h0 = ∞

hc

H2

H3

Fig. 2.25 Horizontal slope
profiles (H-profiles)
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A number of methods to compute steady GVF from Eq. (2.86) are furnished in
Chow (1959). The direct and standard step methods solve the energy equation
between two consecutive channel sections. Dey (2000) presented a generalized
numerical solution in the Chebyshev form for the standard step method. Then, a
number of numerical methods are also available to integrate the differential
equation, Eq. (2.86). These methods do not allow a direct solution, and therefore,
trial-and-error method of solution is to be used (Chaudhry 2008).

2.5.1.3 Pressure Distribution in Curvilinear Flow

In the preceding cases, the streamlines were straight and parallel to the channel
bottom. For instance, streamlines in a uniform flow are practically parallel and
those in GVF may also be regarded as parallel, since the variation of flow depth is
gradual that the streamlines have neither considerable curvature nor steep diver-
gence/convergence. However, in real-life cases, the streamlines in several flow
situations have pronounced curvature and/or divergence/convergence that the
effects of acceleration components on the flow section are significant.

When the streamlines in a fluid flow have substantial curvature, the flow is
called curvilinear flow. The curvature of streamlines is to induce considerable
acceleration component normal to the direction of flow, called centrifugal accel-
eration. Thus, the pressure distribution in a curvilinear flow over the flow depth
departs from the hydrostatic law, that is, p = qgh. Such curvilinear flows may be
either convex or concave as shown in Figs. 2.27a, b. In a convex flow situation
guided by a convex boundary, the centrifugal acceleration acts upward against the
gravity and the resulting pressure is less than the hydrostatic pressure. On the other
hand, in a concave flow situation guided by a concave boundary, the centrifugal
acceleration acts downward to add to the gravity and the resulting pressure is
greater than the hydrostatic pressure. Likewise, when streamlines have consider-
able divergence/convergence to develop appreciable acceleration normal to
the flow direction, the pressure distribution again departs from the hydrostatic
law. The distribution of pressure can be obtained by the Euler equations
(Eqs. 2.39–2.41). In normal or radial direction of flow, it is

Bed slope S0 = negative

h0 = imaginary

hc

A2

A3

Fig. 2.26 Adverse slope
profiles (A-profiles)
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o

oz

p

qg
þ z cos h

� �
¼ � ar

g
ð2:87Þ

where ar is the centrifugal acceleration at the radius of curvature r of the
streamline and h is the angle between the section of interest and the vertical line.
The centrifugal acceleration at any point in a curvilinear flow is ar = u2/r, where
u is the tangential velocity at r. It is positive for the concave flow and negative for
the convex flow. Integrating Eq. (2.87) within limits z = z and z = h yields

p

qg
¼ ðh� zÞ cos h� 1

g

Zz

h

u2

r
dz ð2:88Þ
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Fig. 2.27 Pressure distributions in curvilinear flows: a convex flow and b concave flow
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The above expression can be evaluated if u = u(r) is known using r = R ± z,
where positive z is for convex flow and negative z for concave flow. Here, R is the
radius of curvature of the channel boundary. For instance, (1) u can be invariant of r,
as an average velocity; (2) u is proportional to r for forced vortex type of flow; and
(3) u is proportional to r-1 for free vortex type of flow.

2.5.1.4 Pressure Distribution in Flow with Small Free Surface
Curvature

Figure 2.28 shows a schematic of a free overfall whose free surface curvature is
relatively small varying from a finite value at the free surface to zero at the channel
bottom. According to Boussinesq approximation (Jaeger 1957), a linear variation
of the streamline curvature at any point A at a vertical distance z is assumed.
Hence, the radius of curvature r of a streamline at A is expressed as

1
r
¼ z

h
� 1
rs

ð2:89Þ

where rs is the radius of curvature of the free surface. For small free surface
curvature, it can be approximated as

1
rs

¼ d2h

dx2
ð2:90Þ

where x is the streamwise distance. The normal acceleration az based on the
aforementioned assumption is given by

az ¼ Kz ^ K ¼ U2

h
� d

2h

dx2
ð2:91Þ
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Fig. 2.28 Schematic of flow
with a small free surface
curvature
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where U is the average flow velocity over depth h; hence, it is constant along the
vertical distance. Considering the bottom as a datum and then integrating
Eq. (2.87), the hydrostatic pressure head hp at point A is obtained as

hp ¼
p

qg
þ z

� �
¼ � 1

g

Z
Kzdzþ C ¼ �K

g
� z

2

2
þ C ð2:92Þ

Using the boundary condition, at z = h, p = 0, and hp = h, it leads to

C ¼ hþ K

g
� h

2

2
ð2:93Þ

Hence, from Eq. (2.92), the hydrostatic pressure head hp is obtained as

hp ¼ hþ Kðh2 � z2Þ
2g

; ) hp ¼ hþ Dh ð2:94Þ

It indicates that the variation of hydrostatic pressure head is given by
Dh. Therefore, the depth-averaged value of Dh can be determined as

Dh ¼ 1
h

Zh

0

Dhdz ¼ 1
h
� K

2g

Zh

0

ðh2 � z2Þdz ¼ Kh2

3g
ð2:95Þ

The effective hydrostatic pressure head hep is therefore

hep ¼ hþ Kh2

3g
¼ hþ U2h

3g
� d

2h

dx2
ð2:96Þ

Note that d2h/dx2 is negative for convex flow and positive for concave flow.

2.6 The Boundary Layer

According to the concept of the ideal fluid flow (that is, the potential flow), a
streamline follows the solid boundary, termed limiting streamline, involving a
finite fluid velocity at the boundary. It, in fact, implies that the fluid particles slip at
the boundary, as a result of which, the no-slip condition is not preserved in the
ideal fluid flow. However, in real fluid flow, the viscosity causes the fluid particles
to have no motion at the boundary preserving a no-slip condition. In reality, the
velocity, that is zero at the boundary, keeps increasing with the perpendicular
distances away from the boundary. The change in velocity is discernible only
within a layer adjacent to the boundary. The layer close to the solid boundary
affected by the boundary shear is called boundary layer, where the viscous effects
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are prominent. This phenomenon was discovered by Prandtl (1904). He, however,
arbitrarily suggested the boundary layer to extend up to 99 % of the free stream
velocity U. Hence, it is possible to define the boundary layer thickness d as that the
distance from the boundary where the local velocity u equals 0.99U:

d ¼ zju¼0:99U

In fluid flow outside the boundary layer, the effects of viscosity may be van-
ishingly small that the theory of ideal fluid flow is applicable. Importantly,
boundary layer is not a streamline. It is worth mentioning that the concept of
boundary layer is the most significant contribution to the development of
hydrodynamics.

2.6.1 Characteristics of Boundary Layer

Consider a fluid flow over a flat plate aligned parallel to the approaching free
stream, as shown in Fig. 2.29. The approaching free stream that has a velocity
U suffers retardation in the vicinity of the plate due to the viscous resistance offered
by the solid boundary. The boundary layer starts growing from the leading edge of
the plate. Its thickness increases with distance from the leading edge as more and
more fluid is to decelerate by the viscous resistance near the solid boundary. Near
the leading edge, the flow in the boundary layer is entirely laminar. With an
increase in distance, the laminar boundary layer thickness grows becoming
progressively unstable and eventually changes to a turbulent boundary layer over
a transition region. The transition occurs in the range Rx = 3 9 105 to 106,

z

x

TransitionLaminar boundary 
layer

U

Turbulent boundary 
layer

u = 0.99U
Edge of boundary layer

Viscous sublayer

δ

U

u

Fig. 2.29 Details of a boundary layer developed over a flat plate
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where Rx = Ux/t. Even in the region of the turbulent boundary layer, the turbu-
lence becomes suppressed to such a degree that the viscous effects predominate and
a very thin layer adjacent to the solid boundary remains laminar, which is called the
viscous sublayer.

The boundary layer thickness is the distance from the boundary to a point where
the velocity is 0.99U, which has already been discussed. It is based on the fact that
beyond this arbitrary limit of vertical distance z|u=0.99U, the viscous stresses are
practically absent. Other definitions of thickness, such as displacement thickness
and momentum thickness, are also useful in boundary layer theory.

The presence of a boundary introduces a retardation to the free stream velocity
in the vicinity of the boundary. The difference (U - u), called the velocity defect,
causes a decrease in the mass flux as compared to the mass flux of the free stream
that would pass through the same section in the absence of the boundary layer (see
Fig. 2.30). To compensate for this defect, the actual boundary may be imagined to
have been displaced by a displacement thickness d* such that the mass flux would
be the same as that of an ideal fluid flowing over the displaced boundary. The
equivalence of the two mass fluxes yields the displacement thickness in incom-
pressible flow (q = constant) as

Zd

0

qudz ¼
Zd

d�

qUdz )
Zd

0

udz ¼
Zd

0

Udz� Ud�; ) d� ¼
Zd

0

1� u

U

� 	
dz

ð2:97Þ

Further, the retardation offlow within the boundary layer causes a reduction in the
momentum flux as well. The momentum thickness h is defined as the thickness of an
imaginary layer in free stream flow which has a momentum flux equals the deficiency
of momentum flux over the entire section caused to the actual mass flux within the
boundary layer. Mathematically, for an incompressible flow (q = constant), it can be
developed as

qU2h ¼
Zd

0

quðU � uÞdz; ) h ¼
Zd

0

u

U
1� u

U

� 	
dz ð2:98Þ
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Fig. 2.30 The velocity
defect
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The shape factor Hs, that is defined as the ratio of the displacement thickness to
the momentum thickness is used to determine the nature of the flow.

Hs ¼
d�

h
ð2:99Þ

For a higher value of shape factor Hs, a stronger adverse pressure gradient
(qp/qx [ 0) is indicated. Conventionally, Hs = 2.59 is typical for laminar flow,
while Hs = 1.3 - 1.4 is typical for turbulent flow.

2.6.1.1 Boundary Layer Separation

In a favorable streamwise pressure gradient (qp/qx \ 0), the flow is accelerated by
the pressure force and thereby the boundary layer thickness keeps thin. In contrast,
when the flow encounters an adverse streamwise pressure gradient (qp/qx [ 0)
along the solid boundary, the flow is decelerated by the pressure force, thereby
causing the boundary layer to thicken. Then, the flow cannot advance too far in the
region of adverse pressure gradient due to the insufficient kinetic energy that the
fluid flow possesses. As a result, the boundary layer is deflected from the wall,
known to be the separated boundary layer, which progresses into the main flow, as
shown in Fig. 2.31. In general, the flow downstream the separation point (point S)
experiences the adverse pressure gradient and turns to the reverse direction of the
main flow that exists in the upper region of the separation line. As a result of the
flow reversal, the boundary layer is thickened rapidly. The separation point is
defined as the limit between the main and the reverse flow in the immediate
vicinity of the wall. Further, in explaining the separation phenomenon by the

δ

Separation point
( u/ z)z=0 > 0 ( u/ z)z=0 = 0 ( u/ z)z=0 < 0

S

I

Boundary layer

Reversed flow

Fig. 2.31 Boundary layer separation
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potential flow theory, the streamlines within the boundary layer in the vicinity of
the boundary layer separation are shown in Fig. 2.31. At the separation point, a
streamline originates from the wall at a certain angle due to the merger of two
limiting streamlines moving in the opposite direction. The separation point can be
determined by the condition that the velocity gradient normal to the wall becomes

zero on the wall, that is, ou=ozjSz¼0¼ 0.
The integral equation of the boundary layer to be discussed in the Sect. 2.6.2 is

only applicable to the extent where the separation point occurs. At a short distance
downstream the separation point, the boundary layer becomes so thick that the
assumptions that are made in deriving the boundary layer equation no longer
apply. In a steady flow, the event of separation that occurs only in a decelerated
flow can be obtained from the relation between the pressure gradient qp/qx and the
velocity distribution u(z) with the aid of the Navier–Stokes equations. From
Eq. (2.51a) with the boundary condition u = w = 0 (no-slip at the wall, z = 0) in
a two-dimensional flow, one can have at z = 0

l
o2u

oz2






S

z¼0

¼ op

ox
) o3u

oz3






S

z¼0

¼ 0

In the vicinity of the wall, the curvature of the velocity distribution q2u/qz2

depends only on the pressure gradient qp/qx. The curvature q2u/qz2|z=0 at the wall
does changeover its sign with qp/qx. In flow with a decreasing pressure (accelerated
flow, qp/qx \ 0), the prevailing condition is q2u/qz2|z=0 \ 0; and therefore, q2u/qz2

is negative over the entire boundary layer thickness (Fig. 2.31). On the other hand, in
flow within the near-wall layer of increasing pressure (decelerated flow, qp/qx [ 0),
the prevailing condition is q2u/qz2 [ 0. In flow with q2u/qz2 \ 0 at some distance
above the wall, there must exist a point (point I) for which q2u/qz2 = 0, which is an
inflexion point of the velocity distribution within the boundary layer (Fig. 2.31).
It suggests that in the region of decelerating potential flow, the velocity distribution
within the boundary layer always displays an inflexion point. Since there exists
q2u/qz2 \ 0 at the edge of the boundary layer, the velocity distribution that has a
separation point with qu/qz|z=0 = 0 must have an inflexion point.

2.6.2 von Kármán Momentum Integral Equation

Consider a control volume ABCD of elementary length dx having a boundary layer
thickness d, as shown in Fig. 2.32. For a steady flow, the forces on the control
surface are caused by the pressure and the wall or boundary shear stress. As the flow
is almost parallel, a uniform pressure at a section can be assumed, neglecting the
hydrostatic pressure. The components of force (per unit area and width) in x-
direction are shown in Fig. 2.32. Since the boundary layer is thin, the pressure
within the boundary layer at a section equals the pressure in the free stream portion
at that section outside the boundary layer. The summation of forces in x-direction is
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X
Fx ¼ pd� ðpþ dpÞðdþ ddÞ þ pþ dp

2

� �
dd� s0dx ^ dp ¼ op

ox
dx ð2:100Þ

Simplifying and neglecting second-order terms, Eq. (2.100) becomes

X
Fx ¼ � d

op

ox
þ s0

� �
dx ð2:101Þ

Change of momentum flux in the control volume is
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By Newton’s second law of motion, one can write
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The continuity of flow for the control volume that constitutes the equation is3
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Fig. 2.32 Control volume in
the boundary layer

3 The mass flux through BC can be obtained as q(ûiþ wk̂)�(-dd̂i + dxk̂) = q(-udd + wdx).
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Using Eq. (2.103) into Eq. (2.102) and replacing partial differential by total
differential yield

�d
dp

dx
� s0 ¼

d
dx

Zd

0

qu2dz� U
d
dx

Zd

0

qudz ð2:104Þ

Further, the pressure gradient dp/dx can be determined from the Bernoulli’s
equation (Eq. 2.72), considering the potential head z = 0. Hence,

p

qg
þ U2

2g
¼ H ) pþ q

2
U2 ¼ constant ð2:105Þ

Differentiating with respect to x and rearranging, Eq. (2.105) becomes

dp

dx
¼ �qU

dU

dx
ð2:106Þ

Substituting the expression of dp/dx into Eq. (2.104), the wall shear stress s0 for
incompressible flow (q = constant) is obtained as

s0 ¼ �q
d
dx

Zd

0

u2dzþ qU
d
dx

Zd

0

udzþ qUd
dU

dx
;

) s0 ¼ q
d
dx
ðU2hÞ þ qUd

dU

dx

ð2:107Þ

Equation (2.107) is the generalized von Kármán momentum integral equation,
which can be applicable for both laminar and turbulent boundary layer flows.

If the flow has a zero-pressure gradient dp/dx = 0, then dU/dx = 0; and
Eq. (2.107) reduces to

s0 ¼ qU2 dh
dx

ð2:108Þ
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2.6.2.1 Laminar Boundary Layer Over a Flat Plate in a Zero-Pressure
Gradient Flow

The laminar boundary layer is formed as a result of flow over a short reach of the
leading edge of a flat plate. In practice, it always prevails, even in flows that are
evidently turbulent. To apply von Kármán momentum integral equation for such a
flow situation, the assumption on the velocity u distribution, which is reasonably a
function of g (=z/d) and invariant of x, is an essential prerequisite. For an
approximate analysis of a laminar boundary layer, a third-order polynomial law
(u/U = A + Bg + Cg2 + Dg3 = f, where A, B, C, and D are the coefficients) of
velocity distribution that satisfies the boundary conditions (1) u(z = 0) = 0, (2)
q2u/qz2(z = 0) = 0, (3) u(z = d) = U, and (4) qu/qz(z = d) = 0 was assumed by
Prandtl within the boundary layer (0 B z B d). The coefficients are obtained as
A = C = 0, B = 3/2 and D = -1/2. Therefore, the velocity distribution is

u

U
¼ f ðgÞ ^ f ð0� g\1Þ ¼ 3

2
g� 1

2
g3; f ðg	 1Þ ¼ 1 ð2:109Þ

Inserting Eq. (2.109) into Eq. (2.108), one can obtain
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� �
1� 3

2
gþ 1

2
g3

� �
dg

¼ 0:139qU2 dd
dx

^ h ¼ d
Z1

0

f 1� fð Þdg

ð2:110Þ

Further, applying Newton’s law of viscosity at the boundary, one gets

s0 ¼ l
du

dz






z¼0

¼ l
U

d
� df

dg






g¼0

¼ l
U

d
� d
dg

3
2
g� 1

2
g3

� �




g¼0

¼ 3
2

l
U

d
ð2:111Þ

Equating Eqs. (2.110) and (2.111) and rearranging yield

ddd ¼ 10:79
t
U

dx ð2:112Þ

The above equation is integrated as follows:

Zd

0

ddd ¼ 10:79
t
U

Zx

0

dx ^ d2

2
¼ 10:79

t
U

x; ) d ¼ 4:643xR�0:5
x ð2:113Þ
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Equation (2.113) can be used to determine the boundary layer thickness d(x),
which varies directly as a square root of distance x. Substituting the expression for
d into Eq. (2.111), the wall shear stress expression s0(x) is obtained. It is

s0 ¼ 0:323qU t
U

x

� �0:5

¼ 0:323l
U

x
R0:5

x ð2:114Þ

It indicates that the wall shear stress varies inversely as a square root of distance
x. Equation (2.114) can be used to determine the wall shear resistance per unit
width Fs on the surface of the plate for a given length x = 0 to L as

Fs ¼
ZL

0

s0dx ¼ 0:646qUðtULÞ0:5 ¼ 0:646qUtR0:5
L ^ RL ¼

UL

t
ð2:115Þ

2.6.2.2 Turbulent Boundary Layer Over a Flat Plate in a Zero-
Pressure Gradient Flow

For the approximation of a turbulent boundary layer, a 1/7-th power law of
velocity distribution, which is a good replacement of the logarithmic law (Sect. 3.
7.2), as proposed by Prandtl, can be assumed within the boundary layer
(0 B z B d). Thus,

u

U
¼ f ðgÞ ^ f ð0� g\1Þ ¼ g1=7; f ðg	 1Þ ¼ 1 ð2:116Þ

Inserting Eq. (2.116) into Eq. (2.108), one can obtain

s0 ¼ qU2 dd
dx

Z1

0

f ð1� f Þdg ¼ qU2 dd
dx

Z1

0

g1=7ð1� g1=7Þdg ¼ 7
72

qU2 dd
dx
ð2:117Þ

Blasius (1912, 1913) obtained the wall shear stress for hydraulically smooth
flow as

s0 ¼ 2:28
 10�2qU2 t
Ud

� 	0:25
ð2:118Þ

Equating Eqs. (2.117) and (2.118) and rearranging yield

d0:25dd ¼ 0:235
t
U

� 	0:25
dx ð2:119Þ
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The above equation is integrated as follows:

Zd

0

d0:25dd ¼ 0:235
t
U

� 	0:25
Zx

0

dx ^ d1:25 ¼ 0:294
t
U

� 	0:25
x;

) d ¼ 0:376xR�0:2
x

ð2:120Þ

Hence, the turbulent boundary layer thickness increases with distance as x0.8, as
compared to the laminar boundary layer thickness that varies as x0.5. It indicates
that the turbulent boundary layer thickness grows faster. Substituting the expres-
sion for d into Eq. (2.118) yields

s0 ¼ 2:91
 10�2qU2 t
Ux

� 	0:2
¼ 2:91
 10�2qU2R�0:2

x ð2:121Þ

The wall shear resistance per unit width Fs on the surface of the plate for a
given length x = 0 to L is

Fs ¼
ZL

0

s0dx ¼ 3:638
 10�2qU2L
t

UL

� 	0:2
¼ 3:638
 10�2qU2LR�0:2

L ð2:122Þ

2.7 Flow in Curved Channels

Flow in a curved channel is influenced by the centrifugal acceleration, which
induces a three dimensionality in the flow characterized by a helical (spiral)
motion with a superelevated free surface. The helical motion can be viewed across
a cross section as a transverse circulation. The differential centrifugal acceleration
u2/r along a vertical line due to vertical variation of streamwise velocity u in open
channel is the cause of the transverse circulation. As a result, a helical motion is
initiated when the flow enters the curved (bend) portion of the channel. The
helicoidal flow is gradually fully developed becoming in an equilibrium state,
where the flow structure remains unchanged from cross section to cross section.
Such a flow situation eventually prevails, if a prismatic channel has an adequately
long curved reach. The streamlines near the free surface are deflected toward the
outer bank, whereas those near the bed are inclined toward the inner bank
(Fig. 2.33). Hence, the near-bed velocity and the bed shear stress are generally
directed toward the inner bank.

The flow in a curved channel is analyzed in cylindrical polar coordinates
restricting to a subcritical flow having a hydrostatic pressure distribution
(Fig. 2.34). In natural channels, the flow depth is in general much smaller than the
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width and the radius of curvature. In cylindrical polar coordinates, the velocity
components (ur, uh, uz) are in r-, h-, and z-direction, respectively. Note that
qs = rqh. Referring to Fig. 2.34, the forces in the tangential direction, that is, h-
direction, is given by

ðsh þ dshÞ � sh þ qgShdz½ �drds ¼ osh

oz
þ qgSh

� �
drdsdz ^ dsh ¼

osh

oz
dz

where sh and Sh are the shear stress and the slope of the channel in h-direction,
respectively. Applying Newton’s second law of motion in h-direction yields

ahqdrdsdz ¼ osh

oz
þ qgSh

� �
drdsdz ) ah ¼

1
q
� osh

oz
þ gSh

ah ¼ uh
ouh

os
þ uhur

r
þ ur

ouh

or
þ uz

ouh

oz
þ ouh

ot
;

) uh
ouh

os
þ ur

ouh

or
þ uz

ouh

oz
þ ouh

ot
¼ 1

q
� osh

oz
þ gSh �

uhur

r

ð2:123Þ

where ah is the total acceleration in h-direction. On the other hand, the forces in the
radial direction, that is, r-direction, is given by

½ðsr þ dsrÞ � sr�drdsþ ½p� ðpþ dpÞ�dsdz

¼ osr

oz
� qgSr

� �
drdsdz ^ dsr ¼

osr

oz
dz _ dp ¼ op

or
dr ¼ qgSrdr

where sr and Sr are the shear stress and the slope of the free surface in r-direction,
respectively. Applying Newton’s second law of motion in r-direction yields

Bottom current

β

Surface current

Outer bank

Inner bank

Outer bank Inner bank

Fig. 2.33 Flow in a curved channel
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arqdrdsdz ¼ osr

oz
� qgSr

� �
drdsdz) ar ¼

1
q
� osr

oz
� gSr

ar ¼ uh
our

os
þ ur

our

or
� u2

h

r
þ uz

our

oz
þ our

ot
;

) uh
our

os
þ ur

our

or
þ uz

our

oz
þ our

ot
¼ 1

q
� osr

oz
� gSr þ

u2
h

r

ð2:124Þ
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Fig. 2.34 Velocity and force distributions in flow through a curved channel
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where ar is the total acceleration in r-direction. The continuity equation is

our

or
þ ur

r
þ ouh

os
þ ouz

oz
¼ 0 ð2:125Þ

2.7.1 Superelevation in Curved Channels

The superelevation Dz of the free surface is the difference between the free surface
level at the outer and the inner banks. It can be approximated as

Dz ¼
Zro

ri

Srdr ð2:126Þ

where ro and ri are the radii of curvature of outer and inner banks, respectively.
The slope of the free surface in radial direction can be obtained by balancing the
radial force components acting on the column of fluid with depth h. Neglecting the
bed resistance, the net pressure force due to the free surface slope in r-direction is
balanced by the centripetal force. It yields

Zh

0

u2
h

r
qdrdsdz ¼ qghSrdrds) Sr ¼

1
gh

Zh

0

u2
h

r
dz ¼ br

U2

gr
^ brU

2h ¼
Zh

0

u2
hdz

ð2:127Þ

where br is the correction factor and U is the depth-averaged tangential velocity.
Then, using Eq. (2.127) into Eq. (2.126), the superelevation Dz is obtained as

Dz ¼
Zro

ri

br
U2

gr
dr � br

U2
a T

grc

ð2:128Þ

where Ua is the cross-sectional averaged tangential velocity, T is the width of the
free surface, and rc is the radius of curvature of the centerline of the channel. In
Eq. (2.128), br can be assumed as unity.

2.7.2 Velocity Distributions in Curved Channels

In a steady fully developed flow, quh/qt = qur/qt = 0 and quh/qs = qur/qs = 0.
Further, the radial and the vertical velocity components are negligible as compared
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to the tangential velocity components. Hence, uh = uh(z) and ur = uz = 0. From
Eqs. (2.123) and (2.124), one can obtain

1
q
� osh

oz
þ gSh ¼ 0 ð2:129aÞ

1
q
� osr

oz
� gSr þ

u2
h

r
¼ 0 ð2:129bÞ

Integration of Eq. (2.129a) produces a linear distribution of tangential shear
stress as

sh ¼ qghSh 1� z

h

� 	
ð2:130Þ

Following the concept of the mixing length (see Sect. 3.5), it can be written as

sh ¼ ql2 duh

dz










 duh

dz
¼ qet

duh

dz
ð2:131Þ

where l is the mixing length and et is the eddy viscosity or turbulent diffusivity.
Equating Eqs. (2.130) and (2.131), et can be determined from

et ¼ ghSh 1� z

h

� 	 duh

dz

� ��1

ð2:132Þ

if a suitable velocity distribution, uh = uh(z), is assumed. Note that by the concept
of the isotropic turbulence

sr ¼ qet

dur

dz
ð2:133Þ

Using Eqs. (2.132) and (2.133) yields

sr ¼ qghSh 1� z

h

� 	 duh

dz

� ��1dur

dz
ð2:134Þ

Equation (2.134) can be used in Eq. (2.129b) to determine the radial velocity
distribution, as uh = uh(z).

For tangential velocity distribution, Rozovskii (1957) assumed

uh

U
¼ 1þ g0:5

jCR

ð1þ ln~zÞ ð2:135Þ
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where j is the von Kármán constant, CR is the Chézy coefficient, and ~z = z/h. Using
Eq. (2.135), Rozovskii (1957) derived the radial velocity distribution in case of a
hydraulically smooth flow as

ur

U
¼ h

r
� 1
j2

/1 �
g0:5

jCR

/2

� �
^ /1 ¼

Z
2 ln~z

~z� 1
d~z _ /2 ¼

Z
ln2 ~z

~z� 1
d~z

ð2:136Þ

On the other hand, in case of a hydraulically rough flow, Rozovskii (1957)
derived the radial velocity distribution as

ur

U
¼ h

r
� 1
j2

/1 �
g0:5

jCR

/2 þ 0:8ð1þ ln~zÞ½ �
� �

ð2:137Þ

The angle b of the velocity vector at any depth with the tangential direction, as
shown in Fig. 2.33, can be obtained from b = arctan(ur/uh).

Kikkawa et al. (1976) also derived the velocity distributions from the equation
of motion, where the eddy viscosity was assumed to be same as that of a two-
dimensional flow in a straight channel. They suggested the equation of motion that
governs by the secondary flow as

o4w
oz4
¼ uh

ouh

oz
ð2:138Þ

where w is the stream function. Neglecting the nonlinear interaction between the
secondary flow and the main flow, the tangential velocity distribution could be
shown as

uh � us

u�
¼ � 1

j
ln~z ð2:139Þ

where us is the tangential velocity at the free surface and u� is the shear velocity.
Kikkawa et al. (1976) derived the radial velocity distribution in a fully developed
flow by integrating Eq. (2.138) as

ur

Ua

¼ U2

U2
a

� h
r
� 1
j

/A �
1
j
� u�
Ua

/B

� �
ð2:140Þ

where U is the depth-averaged tangential velocity, which is a function of r, and /A

and /B are as follows:

/A ¼ �15 ~z2 ln~z� ~z2

2
þ 15

54

� �
ð2:141aÞ
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/B ¼
15
2

~z2 ln2 ~z� ~z2 ln~zþ ~z2

2
� 19

54

� �
ð2:141bÞ

Equation (2.140) indicates that the radial velocity distribution ur(z) is propor-
tional to U2 and h/r.

Odgaard (1989) assumed the tangential and the radial velocity distributions as

uh

U
¼ mþ 1

m
~z1=m ^ m ¼ j

U

u�
¼ j

8
kD

� �0:5

¼ j
CR

g0:5
ð2:142aÞ

ur ¼
1
h

Zh

0

urdzþ 2urjca ~z� 1
2

� �
ð2:142bÞ

where m is the reciprocal of exponent, kD is the Darcy-Weisbach friction factor,
and ur|ca is the centrifugally induced component. For a fully developed flow,
Odgaard (1989) gave

U ¼ m

j
ðghSÞ0:5 ð2:143aÞ

urjca

U
¼ 1

j2
� ðmþ 1Þð2mþ 1Þ

1þ mþ 2m2
� h

r
ð2:143bÞ

Odgaard argued that the ratio h/r is nearly a constant varying between 7.2 and 8,
while m can vary between 3 and 6 in a curved channel.

2.7.3 Bed Shear Stress Distribution in Curved Channels

The bed shear stress in a curved channel is decomposed into tangential s0h and
radial s0r components. The tangential component of the bed shear stress can be
given by

s0h ¼ qg
U2

C2
R

ð2:144Þ

From a radial velocity distribution similar to that of Rozovskii (1957)
(Eq. 2.137), Jansen et al. (1979) derived the radial component of bed shear stress as

s0r ¼ �
2qgh

rj2
� U

2

C2
R

1� g0:5

jCR

� �
ð2:145Þ
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2.8 Hydrodynamic Drag and Lift on a Particle

When a real fluid flows past a solid particle, the hydrodynamic force of resistance
contributes in two ways. Firstly, resistance due to viscosity is developed at the wall
of the particle in the form of shear stresses. Secondly, differential pressure
intensities act normal to the wall. The integration of both the forces over the entire
surface of the particle composes the total hydrodynamic force. The component of
the hydrodynamic force in the flow direction is called drag, which is the force by
which the fluid tends to drag the particle. On the other hand, the component normal
to the flow direction is called lift, which is the force by which the fluid tends to lift
the particle (Fig. 2.35).

2.8.1 The Drag

The drag on the body of the particle is made up of two contributions, namely skin
friction drag and form or pressure drag. Thus, drag is the sum of the components
of the wall shear stress s0 and the pressure p in the flow direction, respectively.
Thus, referring to Fig. 2.35, s0 and p act on an elementary area da tangentially and
normally, respectively; and the drag is given by

FD ¼
Z
a

s0 sin hda

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Skin friction drag

þ
Z
a

p cos hda

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Form drag

ð2:146Þ

where a is the total surface area. The above equation suggests that both the
contributions to the drag can therefore be theoretically calculated. It, however,
requires knowledge of the wall shear stress distribution on the surface of the
particle and the pressure distribution around the particle. Nevertheless, the inte-
grals of Eq. (2.146) cannot be evaluated easily, as the description of s0 and
p becomes uncertain due to the boundary layer separation phenomenon, as
described in the preceding section. It is therefore simpler to measure the drag

U 
p

FL

da

0

FD d

θ
τ

Fig. 2.35 Hydrodynamic
drag and lift due to flow past
a particle
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experimentally and express it as a function of dynamic pressure force (qU2/2)A,
where A is the projected area of the particle on a plane, that is normal to the flow
direction. Thus,

FD ¼
1
2

CDqU2A ð2:147Þ

where CD is the drag coefficient being determined experimentally (see Sect. 1.7).

2.8.1.1 Creeping Flow About a Spherical Particle (Stokes’ Law)

The basic assumption for a creeping flow is that the inertia terms are negligible in
the momentum equation if the particle Reynolds number Re is very small (Re � 1,
where Re = Ud/t and d is the size or diameter of the particle). This is the special
case of creeping viscous flow, where viscous effects predominate.

Let a creeping flow of free stream velocity U about a solid spherical particle of
diameter d be considered (Fig. 2.36). Using a spherical polar coordinates (r, h), the
radial and tangential velocity components ur and uh are related to the Stokes
stream function w by the relations

ur ¼
1

r2 sin h
� ow
oh
; uh ¼ �

1
r sin h

� ow
or

ð2:148Þ

For a creeping flow, the Navier–Stokes equations in two-dimensional spherical
coordinates reduce to

1
q
� op

or
¼ tr2ur;

1
q
� 1

r
� op

oh
¼ tr2uh ^ r2 ¼ o2

or2
þ sin h

r2
� o

oh
1

sin h
� o

oh

� �

ð2:149Þ
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u

r = d/2
r

ur 

d
θ

θ
Fig. 2.36 Creeping flow past
a spherical particle
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Using Eq. (2.148) into Eq. (2.149) yields

op

or
¼ l

r2 sin h
� o

oh
ðr2wÞ; op

oh
¼ � l

sin h
� o

or
ðr2wÞ ð2:150Þ

Eliminating p, one finds

r4w ¼ 0 or
o2

or2
þ sin h

r2
� o

oh
1

sin h
� o

oh

� �� �2

w ¼ 0 ð2:151Þ

Making substitution w = f(r) sin2h, it allows to reduce Eq. (2.151) to a fourth-
order ordinary differential equation

d2

dr2
� 2

r2

� �
d2f

dr2
� 2f

r2

� �
¼ 0 ð2:152Þ

A substitution of f = rk leads to fourth-order polynomial, whose roots are
k = -1, 1, 2, and 4. Thus, the general solution for f becomes

f ðrÞ ¼ Ar�1 þ Br þ Cr2 þ Dr4 ð2:153Þ

where A, B, C, and D are the constants of integration. The boundary conditions are
the following: (1) at r = d/2 (at surface), w = 0 (ur = 0 at surface), and
qw/qr = 0 (uh = 0 at surface) and (2) at r ? ?, w ? (Ur2/2)sin2h. It leads to
A = Ud3/32, B = -3Ud/8, C = U/2, and D = 0. Then, the desired stream func-
tion for a creeping flow is obtained as

wðr; hÞ ¼ 1
16

Ud2 sin2 h
d

2r
� 6r

d
þ 8r2

d2

� �
ð2:154Þ

Then, the velocity components are obtained from Eq. (2.148) as

ur ¼ U cos h 1þ d3

16r3
� 3d

4r

� �
; uh ¼ U sin h �1þ d3

32r3
þ 3d

8r

� �
ð2:155Þ

With known ur and uh, the pressure is determined by integrating Eq. (2.150).
The result is

p ¼ p1 �
3ldU

4r2
cos h ð2:156Þ

where p? is the uniform free stream pressure. This exerts a pressure drag on the
spherical particle. In addition, a wall shear stress exerts a drag. The shear stress
distribution is given by
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srh ¼ l
1
r
� our

oh
þ ouh

or
� uh

r

� �
¼ �lU

sin h
r
� 3d3

16r3
ð2:157Þ

Then, the total drag can be obtained from Eq. (2.146) as

FD ¼ �
Zp

0

srhjr¼d=2sin hda�
Zp

0

pjr¼d=2cos hda ^ da ¼ pd
d

2
sin hdh;

) FD ¼ 2pldU þ pldU ¼ 3pldU ð2:158Þ

This is known as the Stokes’ law (Stokes 1851). Note that viscous shear force
contributes two-third and pressure force one-third. Equation (2.158) is strictly
valid only for Re � 1, but satisfactorily agrees with the experimental data up to
Re & 1.

2.8.2 The Lift

As already discussed, fluid flowing past a particle exerts hydrodynamic force on
the surface of the particle. Lift is the component of this force. It acts normal to the
flow direction. The total lift force is the integral of the pressure forces normal to
the flow direction. Thus,

FL ¼
Z
a

p sin hda ð2:159Þ

Analogous to Eq. (2.147), lift can also be expressed as a function of dynamic
pressure force (qU2/2)A, where A is the planform area. Thus,

FL ¼
1
2

CLqU2A ð2:160Þ

where CL is the lift coefficient being determined experimentally.
Further, when a small spherical particle spinning with an angular velocity x is

placed in a uniform free stream, in addition to drag a lift due to Magnus effect acts
on the particle. Rubinow and Keller (1961) formulated it as

FL ¼
p
8

qd3Ux ð2:161Þ
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It is pertinent to mention that the lift due to Magnus effect on a rotating cylinder
in an ideal (inviscid) fluid flow is given by FL = qUC, where C is the circulation
of the cylinder.

2.8.2.1 Lift in a Shear Flow

Particle in a shear flow, that has a spatially nonuniform velocity distribution,
experiences a transverse force on the particle, even when the particle is prevented
from a spinning motion (Fig. 2.37). The shear lift is originated from the inertia
effects in the viscous flow around the particle and is fundamentally different from
the hydrodynamic lift. The expression for the inertia shear lift was first obtained by
Saffman (1965, 1968). It is

FL ¼ aLqd2u t
ou

oz

� �0:5

ð2:162Þ

where aL is the Saffman lift coefficient, being equal to 1.615.

2.9 Appendix

2.9.1 Navier–Stokes and Continuity Equations in
a Cylindrical Polar Coordinate System

Navier–Stokes equations in cylindrical polar coordinates (r, h, z) with corre-
sponding velocity components (u, v, w) for an incompressible fluid flow are given
as follows:

FD
u 

FL

z

d

Fig. 2.37 Shear flow past a
spherical particle
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The continuity equation for an incompressible flow is

ou

or
þ u

r
þ 1

r
� ov

oh
þ ow

oz
¼ 0 ð2:164Þ

2.9.2 Navier–Stokes and Continuity Equations in a Spherical
Polar Coordinate System

Navier–Stokes equations in spherical polar coordinates (r, h, u) with corre-
sponding velocity components (u, v, w) are as follows:

u
ou

or
þ v

r
� ou

oh
þ w

r sin h
� ou

ou
� v2 þ w2

r
þ ou

ot
¼ gr �

1
q
� op

or

þ t r2u� 2u

r2
� 2

r2
� o

2v

oh2 �
2v

r2
cot h� 2

r2 sin h
� ow

ou

� � ð2:165aÞ

u
ov

or
þ v

r
� ov

oh
þ w

r sin h
� ov

ou
þ uv

r
� w2

r
cot hþ ov

ot
¼ gh �

1
q
� 1

r
� op

oh

þ t r2vþ 2
r2
� ou

oh
� v

r2 sin2 h
� 2 cos h

r2 sin2 h
� ow

ou

� � ð2:165bÞ

u
ow

or
þ v

r
� ow

oh
þ w

r sin h
� ow

ou
þ wu

r
þ vw

r
cot hþ ow

ot
¼ gu �

1
q
� 1
r sin h

� op

ou

þ t r2w� w

r2 sin2 h
þ 2

r2 sin h
� ou

ou
þ 2 cos h

r2 sin h
� ov

ou

� � ð2:164cÞ
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where

r2 ¼ 1
r2
� o

or
r2 o

or

� �
þ 1

r2 sin h
� o

oh
sin h

o

oh

� �
� 1

r2 sin2 h
� o2

ou2

� �

The continuity equation for an incompressible flow is

1
r2
� o

or
ðr2uÞ þ 1

r sin h
� o

oh
ðv sin hÞ þ 1

r sin h
� ow

ou
¼ 0 ð2:166Þ

2.10 Examples

Example 2.1 The velocity distribution in a wide channel is given by u/umax =
(z/h)1/n, where umax is the maximum velocity at a flow depth h. Find the depth-
averaged velocity, momentum coefficient b and energy coefficient a.

Solution

The depth-averaged velocity U is obtained as

U ¼ 1
h

Zh

0

udz ¼ 1
h

Zh

0

umax

z

h

� 	1=n
dz ¼ n

1þ n
umax

Therefore, the velocity distribution can be expressed in terms of depth-averaged
velocity as

u ¼ umax

z

h

� 	1=n
¼ 1þ n

n
U

z

h

� 	1=n

For a wide channel, the momentum coefficient b given by Eq. (2.37) can be
expressed as

b ¼ 1
h

Zh

0

u2

U2
dz ¼ 1

h

Zh

0

1
U2

1þ n

n

� �2

U2 z

h

� 	2=n
dz ¼ ð1þ nÞ2

ð2þ nÞn

Again, for a wide channel, the energy coefficient a given by Eq. (2.74) can be
expressed as

a ¼ 1
h

Zh

0

u3

U3
dz ¼ 1

h

Zh

0

1
U3

1þ n

n

� �3

U3 z

h

� 	3=n
dz ¼ ð1þ nÞ3

ð3þ nÞn2
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Example 2.2 Determine the critical depth for a water discharge of 8 m3 s-1

flowing in a trapezoidal channel with a base width of 3 m and a side slope of 1
horizontal to 2 vertical.

Solution

For base width, b = 3 m and side slope, z = 1/2 = 0.5, the area A and the top
width T are

A ¼ ðbþ zhÞh ¼ 3hþ 0:5h2; T ¼ bþ 2zh ¼ 3þ h

The condition of a critical flow is

f ðhÞ ¼ Q2T

gA3
¼ 1( Eq: 2:82ð Þ

) f ðhÞ ¼ Q2T

gA3
¼ 82ð3þ hÞ

9:81ð3hþ 0:5h2Þ3
¼ 6:524ð3þ hÞ
ð3hþ 0:5h2Þ3

Adopting the trial-and-error method, the solution of the above equation is
f(h = 0.854) & 1. Therefore, the critical depth is 0.854 m.

Example 2.3 Derive the relationship for the sequent depth ratio of a hydraulic
jump4 on a horizontal floor of a rectangular channel, as shown in Fig. E2.1. Also
determine the energy loss.

Solution

The specific force equation between sections 1 and 2 for a prismatic rectangular
channel having a width b can be given by

Q2

gA1
þ zc1A1 ¼

Q2

gA2
þ zc2A2 ( Eq: 2:55ð Þ

h2

h1

1

2Fig. E2.1 Hydraulic jump

4 Hydraulic jump occurs when there is a rapid change in flow depth resulting from a low stage
(supercritical) to a high stage (subcritical) with an abrupt rise in free surface elevation. It is
therefore a local phenomenon due to a transition from a supercritical flow to a subcritical flow.
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Substituting Q = U1A1 = U2A2, A1 = bh1, A2 = bh2, zc1 = h1/2, zc2 = h2/2, and
F1 = U1/(gh1)0.5, the above equation becomes

h2

h1

� �2

þ h2

h1
� 2F2

1 ¼ 0

where h1 and h2 are the sequent depths and F1 is the Froude number in low stage.
The feasible solution for the sequent depth ratio of the quadratic equation is

h2

h1
¼ 1

2
ð1þ 8F2

1Þ
0:5 � 1

h i

Bélanger (1828) was the first to apply the momentum equation across a hydraulic
jump to obtain the above equation, which is often called the Bélanger equation.
Applying the specific energy concept, the energy loss DE in a hydraulic jump can
be expressed as

DE ¼ E1 � E2 ¼ h1 þ
U2

1

2g

� �
� h2 þ

U2
2

2g

� �

where E1 and E2 are the specific energies at sections 1 and 2, respectively. In the
above, the energy coefficients are assumed to be unity, that is, a1 = a2 = 1.
Applying the continuity equation, the discharge per unit width q is given by
q = U1h1 = U2h2, and then, the above equation becomes

DE ¼ �ðh2 � h1Þ þ
q2

2g

1

h2
1

� 1

h2
2

� �

Further, applying q = U1h1 and F1 = U1/(gh1)0.5, the equation of sequent depth
ratio or the Bélanger equation is expressed as

q2

g
¼ h1h2

2
ðh1 þ h2Þ

Therefore, the energy loss DE in a hydraulic jump is formulated as

DE ¼ ðh2 � h1Þ3

4h1h2

Example 2.4 Derive the relationship of the critical depth in terms of alternate
depths in the flow through a rectangular channel.
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Solution

Since the specific energy is same at two sections (low and high stages), assuming
a1 = a2 = 1, it gives

h1 þ
U2

1

2g
¼ h2 þ

U2
2

2g

Then, applying q = U1h1 yields

h2 � h1 ¼
q2

2g

1

h2
1

� 1

h2
2

� �

Again, the condition of a critical flow in a rectangular channel can be obtained
from Eq. (2.82) as

h3
c ¼

q2

g

Thus, the relationship of the critical depth in terms of alternate depths is obtained
as follows:

hc ¼
2h2

1h2
2

h1 þ h2

� �1=3

Example 2.5 Oil with a free stream velocity of 1 m s-1 flows over a thin plate of
1.5 m wide and 2.5 m long. Determine the boundary layer thickness and the wall
shear stress at a distance of 1.5 m from the leading edge of the plate and also
calculate the total resistance on one side of the plate. Consider coefficient of
kinematic viscosity of oil t = 10-5 m2 s-1 and relative density of oil s = 0.8.

Solution

Given data are as follows:
Free stream velocity, U = 1 m s-1; plate width, b = 1.5 m; plate length,
L = 2.5 m; coefficient of kinematic viscosity of oil, t = 10-5 m2 s-1; and relative
density of oil, s = 0.8.
The mass density of oil, q = 0.8 9 103 kg m-3

The Reynolds number Rx at x = 1.5 m is

Rx ¼
Ux

t
¼ 1
 1:5

10�5
¼ 1:5
 105\3
 105

It is low enough to allow a laminar boundary layer
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The boundary layer thickness d at x = 1.5 m is

d ¼ 4:643xR�0:5
x ¼ 4:643
 1:5ð1:5
 105Þ�0:5 ¼ 0:018 m( Eq: 2:113ð Þ

The wall shear stress s0 at x = 1.5 m is

s0 ¼ 0:323l
U

x
R0:5

x ¼ 0:323ð10�5 
 0:8
 103Þ 1
1:5
ð1:5
 105Þ0:5 ¼ 0:667 Pa

( Eq: 2:114ð Þ

The Reynolds number RL at the end of the plate having a length L = 2.5 m is

RL ¼
UL

t
¼ 1
 2:5

10�5
¼ 2:5
 105\3
 105

The RL is to allow a laminar boundary layer.
The wall shear resistance per unit width Fs on one side of the plate of length
L = 2.5 m can be obtained from

Fs ¼ 0:646qUtR0:5
L ¼ 0:646
 0:8
 103 
 1
 10�5ð2:5
 105Þ0:5

¼ 2:584 N m�1 ( Eq: 2:115ð Þ

Therefore, the total resistance is FR = Fs b = 2.584 9 1.5 = 3.876 N

Example 2.6 Water that has a free stream velocity of 1.5 m s-1 at the entrance
flows through a 2.5 m wide rectangular channel. Determine the length of the
channel required to obtain a fully developed turbulent flow for the flow depth of
0.5 m and also calculate the wall shear stress at the location of the fully developed
flow and the total resistance on the channel base up to that location. Consider
coefficient of kinematic viscosity of water t = 10-6 m2 s-1. Assume the length of
the channel over which the laminar boundary layer exists is negligibly small as
compared to that over which the turbulent boundary layer exists.

Solution

Given data are as follows:
Free stream velocity, U = 1.5 m s-1; channel width, b = 2.5 m; and coefficient of
kinematic viscosity of water, t = 10-6 m2 s-1.
Fully developed flow depth, h = d = 0.5 m.
Considering a turbulent boundary layer, the equation of boundary layer is used as

d ¼ 0:376xR�0:2
x ¼ 0:376x

Ux

t

� ��0:2

( Eq: 2:120ð Þ

) x ¼ 3:396d1:25 U

t

� �0:25

¼ 3:396
 0:51:25 1:5
10�6

� �0:25

¼ 49:97 m
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The Reynolds number Rx at x = 49.97 m is

Rx ¼
Ux

t
¼ 1:5
 49:97

10�6
¼ 7:496
 107 [ 106

Noting that the transition occurs in the range Rx = 3 9 105 to 106, the
Rx = 7.496 9 107 is therefore large enough to allow a turbulent boundary layer.
However, the length up to the transition is x = Rx(t/U) = 106(10-6/1.5)
= 0.667 m, which is negligibly small in comparison to the length required to form
the fully developed turbulent flow, that is, x = 49.97 m.
The wall shear stress s0 at x = 49.97 m is

s0 ¼ 2:91
 10�2qU2R�0:2
x ¼ 2:91
 10�2 
 103 
 1:52ð7:496
 107Þ�0:2

¼ 1:742 Pa( Eq: 2:121ð Þ

The wall shear resistance per unit width Fs for L = x = 49.97 m and
RL = Rx = 7.496 9 107 is

Fs ¼ 3:638
 10�2qU2LR�0:2
L

¼ 3:638
 10�2 
 103 
 1:52 
 49:97ð7:496
 107Þ�0:2 ¼ 108:84 N m�1

( Eq: 2:122ð Þ

Therefore, the total resistance is FR = Fs b = 108.84 9 2.5 = 272.1 N

Example 2.7 A spherical particle having a diameter d = 4 mm is placed in a free
stream of water with a velocity U = 1.2 m s-1. Determine the drag and the
lift acting on the particle. The drag and lift coefficients are given by
CD = 24R�1

e (1 + 0.15R0:687
e ) and CL = 0.85CD, where Re = Ud/t. Consider

coefficient of kinematic viscosity of water t = 10-6 m2 s-1.

Solution

Given data are as follows:
Particle diameter, d = 4 mm; free stream velocity, U = 1.2 m s-1 and coefficient
of kinematic viscosity of water, t = 10-6 m2 s-1.
The particle Reynolds number Re is

Re ¼
Ud

t
¼ 1:2
 4
 10�3

10�6
¼ 4:8
 103

The drag and lift coefficients are

CD ¼
24
Re

ð1þ 0:15R0:687
e Þ ¼ 24

4:8
 103
½1þ 0:15ð4:8
 103Þ0:687� ¼ 0:259

CL ¼ 0:85CD ¼ 0:85
 0:259 ¼ 0:22
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The drag is

FD ¼
1
2

CDqU2A ¼ 1
2

 0:259
 103 
 1:22 
 p

4
ð4
 10�3Þ2

¼ 2:343
 10�3 N( Eq: 2:147ð Þ

The lift is

FL ¼
1
2

CLqU2A ¼ 1
2

 0:22
 103 
 1:22 
 p

4
ð4
 10�3Þ2

¼ 1:991
 10�3 N( Eq: 2:160ð Þ
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Chapter 3
Turbulence in Open-Channel Flows

3.1 General

Fluid flows are broadly classified into two categories: laminar flow and turbulent
flow. The difference between them can still be best illustrated by the well-known
experiment of Osborne Reynolds (Reynolds 1883). Laminar flow occurs at rela-
tively low flow velocity and is envisaged as a layered flow in which fluid layers
smoothly slide over each other, thus maintaining a differential flow velocity in
fluid layers (normal to the flow direction), without any exchange of fluid mass in
between the layers. As the flow velocity exceeds a certain limiting value,1 the
laminar flow becomes unstable, resulting in the formation of eddies2 which spread
throughout the fluid medium. Such highly irregular, random, and fluctuating flow
is termed turbulent flow.

More specifically, in hydrodynamics, turbulence in a fluid flow is characterized
by irregular and chaotic motion of fluid particles, whose velocities change rapidly
in space and time. In other way around, at a fixed point in the fluid medium, the
velocity and the pressure do not remain invariant of time but fluctuate very
irregularly with a high frequency. This essentially includes low momentum dif-
fusion (that is, the mixing of mass without bulk motion), high momentum
advection (that is, the mixing of mass with bulk motion), and rapid variation of
velocity and pressure in space and time, as already stated. Further, the turbulent
diffusivity, which causes a rapid mixing and an increased rate of momentum
transfer, is another important feature. As most of the fluvial hydrodynamic-related
phenomena are turbulent, an understanding of turbulence characteristics in open-
channel flow is highly essential. In fact, the turbulence is an intricate phenomenon
by nature and is not easy to define. However, one can indicate its characteristic

1 Laminar flow changes over to turbulent flow, if the Reynolds number Re [=UD/t for pipe flow
and U(4Rb)/t for open-channel flow] is greater than 2000. Here, U is the average flow velocity,
D is the pipe diameter, t is the coefficient of kinematic viscosity, and Rb is the hydraulic radius.
2 Eddies can be defined as swirls of fluid parcels with highly irregular shapes and wide range of
sizes that are in a continual state of generation, evolution, and decay, as a cyclic process
(Middleton and Southard 1984).

S. Dey, Fluvial Hydrodynamics, GeoPlanet: Earth and Planetary Sciences,
DOI: 10.1007/978-3-642-19062-9_3, � Springer-Verlag Berlin Heidelberg 2014
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features from the measurement of instantaneous velocity data. The most significant
characteristic of turbulence is its randomness and intermittency, which make a
deterministic approach potentially infeasible. Thus, one has to rely on statistical
analysis of temporal velocity data.

It is pertinent to mention that the time-averaged flow may be two- or three-
dimensional, but the turbulence is always three-dimensional and rotational and
occurs at high flow velocities or, in turn, at large Reynolds numbers. Eddies play a
major role in turbulence; thus, the random velocity fluctuations that characterize
the turbulent flow are maintained by the mechanism of eddy diffusion which is not
present in laminar flow. Turbulent flow is highly dissipative, and viscous shear
stresses perform deformation work at the expense of the turbulent kinetic energy
(TKE). Thus, without continuous supply of energy provided by the time-averaged
flow, turbulence cannot be sustained. Therefore, turbulence properties are pri-
marily characterized by the following features:

1. Fluctuations: The disorderly motion of fluid particles causes three-dimensional
velocity fluctuations that are superimposed on a mean value of each velocity
component.

2. Randomness: The randomness of a fluctuating velocity component has a spe-
cific continuous energy spectrum which drops off to zero at high wave numbers
(small eddy size).

3. Mixing process: The readily available supply of energy in flow is to enhance
the mixing and to increase the fluxes of mass, momentum, and energy in a fluid
flow called diffusivity.

4. Self-perpetuating motion: Once initiated, turbulence in a fluid flow can maintain
itself by producing new eddies to replenish those annihilated by viscous diffusion.

Significant progress since early 1960s provided considerable evidence that
a turbulent shear layer exhibits a quasi-deterministic structure of irregular, but
repetitive spatially temporal flow structures known as coherent structures (Robinson
1991; Smith 1996). Further, such structures are self-perpetual and thus can be
assumed to be cyclic phenomena. Importantly, they are the cause of most of the TKE
production in a fluid flow (Grass et al. 1991).

Finally, turbulence is the property of the flow, but not the property of the fluid.
Thus, the characteristics of turbulent flow are highly dependent on the boundary
conditions. However, sediment motion is closely related to the turbulence phe-
nomenon, because sediment movement is maintained by the flow against the bed
resistance and the gravity.

3.2 Decomposition and Averaging Procedure

In turbulent flow, hydrodynamic quantities, such as velocity and pressure at a
given point in space, do not remain constant in time, but perform highly irregular
fluctuations. Visualization of turbulent flow revealed that the eddies, which
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continually appear and then degenerate, are the cause of the said fluctuations. It is
therefore convenient to describe a hydrodynamic quantity by separating the time-
averaged value from its fluctuations. Such a decomposition of an instantaneous
value of a hydrodynamic quantity is called the Reynolds decomposition (Reynolds
1895). Figure 3.1 schematically illustrates the time variation and the decomposi-
tion of velocity component in x-direction, denoted by u.

According to the Reynolds decomposition, the instantaneous velocity compo-
nents (u, v, w) in the Cartesian coordinate system (x, y, z) and the instantaneous
pressure intensity p are expressed as

u ¼ �uþ u0; v ¼ �vþ v0; w ¼ �wþ w0 ð3:1aÞ

p ¼ �pþ p0 ð3:1bÞ

where �u, �v, and �w are the time-averaged velocity components in (x, y, z), u0, v0, and
w0 are the fluctuations of u, v, and w, respectively, �p is the time-averaged pressure
intensity, and p0 is the fluctuations of p.

The time-averaged value of a hydrodynamic quantity, say u, is given by

�u ¼ 1
t1

Zt0þt1

t0

udt ð3:2Þ

where t0 is any arbitrary time and t? is the time over which the averaging is
performed. The time t? should be sufficiently long time in order to obtain the
time-independent time-averaged value of the quantity. Thus, the time-averaged
values of all the fluctuations are equal to zero. Similarly, the time-averaged values
of the derivatives of all the fluctuations also vanish.

u0 ¼ v0 ¼ w0 ¼ p0 ¼ 0 ð3:3aÞ

ou0

ox
¼ o2u0

ox2
¼ ouu0

ox2
¼ � � � ¼ 0 ð3:3bÞ

Time, t 

u

u′

Fig. 3.1 Time variation of u0 and its decomposition
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However, the quadratic terms resulting from the products of cross-velocity
fluctuations, such as u0u0, u0v0, and ou0v0=ox, do not reduce to zero. Bar denotes the
time-averaging.

It is pertinent to mention that in turbulent flow, the velocity fluctuations (u0, v0, w0)
influence the progress of the time-averaged velocity components (�u, �v, �w), so that
(�u, �v, �w) exhibit an apparent increase in resistance to deformation. This results in an
apparent increase in viscosity, giving rise to apparent stresses, which are termed
turbulent stresses or Reynolds stresses.

The following relationships that arise from the time-averaging procedure are
known as the Reynolds conditions, written with two quantities, say e and f:

eþ f ¼ �eþ �f ; �c�e ¼ c�e; �c ¼ c;
oe

os
¼ o�e

os
; �e ¼ �e; �ef ¼ �e�f ;

e0 ¼ 0; �ef 0 ¼ 0; ef ¼ �e�f þ e0f 0;

Z
f ds ¼

Z
�f ds

ð3:4Þ

where c is the constant and s is the space and time coordinates, that is, (x, y, z, t).

3.3 Continuity Equation

For incompressible fluid flow, the conservation of mass given by Eq. (2.22) in the
Cartesian coordinate system can be expressed in terms of instantaneous velocity
components (symbols remain same) as

ou

ox
þ ov

oy
þ ow

oz
¼ 0) oui

oxi
¼ 0 ð3:5Þ

In the above equation, for convenience, Einstein’s summation convention is
used in tensor form, where ui is the velocity component in i-direction.

The Reynolds decomposition is applied to Eq. (3.5), and then, averaging is per-

formed by taking into account the Reynolds conditions. Since ou0=ox ¼
ov0=oy ¼ ow0=oz ¼ 0, it yields the continuity equation for time-averaged part as

o�u

ox
þ o�v

oy
þ o�w

oz
¼ 0) o�ui

oxi
¼ 0 ð3:6Þ

Applying the Reynolds decomposition to Eq. (3.5) and then using Eq. (3.6)
yield the continuity equation for fluctuating part as

ou0

ox
þ ov0

oy
þ ow0

oz
¼ 0) ou0i

oxi
¼ 0 ð3:7Þ

Thus, the time-averaged velocity components and their fluctuations satisfy the
continuity equation.
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3.4 Equation of Motion (Reynolds Equations)

The Navier–Stokes equations (Eqs. 2.51a–c) for an incompressible fluid flow in
the Cartesian coordinate system can be expressed in terms of instantaneous
velocity components (symbols remain same) as

u
ou

ox
þ v

ou

oy
þ w

ou

oz
þ ou

ot
¼ gx �

1
q
� op

ox
þ tr2u ð3:8aÞ

u
ov

ox
þ v

ov

oy
þ w

ov

oz
þ ov

ot
¼ gy �

1
q
� op

oy
þ tr2v ð3:8bÞ

u
ow

ox
þ v

ow

oy
þ w

ow

oz
þ ow

ot
¼ gz �

1
q
� op

oz
þ tr2w ð3:8cÞ

where

r2 ¼ o2

ox2
þ o2

oy2
þ o2

oz2

where gx, gy, and gz are the body forces per unit mass or gravity components in (x,
y, z) and q is the mass density of fluid. Equations (3.8a–c) can then be reorganized
as

oðu2Þ
ox
þ oðuvÞ

oy
þ oðuwÞ

oz
þ ou

ot
¼ gx �

1
q
� op

ox
þ tr2u ð3:9aÞ

oðvuÞ
ox
þ oðv2Þ

oy
þ oðvwÞ

oz
þ ov

ot
¼ gy �

1
q
� op

oy
þ tr2v ð3:9bÞ

oðwuÞ
ox
þ oðwvÞ

oy
þ oðw2Þ

oz
þ ow

ot
¼ gz �

1
q
� op

oz
þ tr2w ð3:9cÞ

Applying the Reynolds decomposition to Eqs. (3.9a–c) and then averaging by
taking into account the Reynolds conditions yield

�u
o�u

ox
þ �v

o�u

oy
þ �w

o�u

oz
þ o�u

ot
¼ gx �

1
q
� o�p

ox
þ tr2�u� ou0u0

ox
þ ou0v0

oy
þ ou0w0

oz

� �

ð3:10aÞ

�u
o�v

ox
þ �v

o�v

oy
þ �w

o�v

oz
þ o�v

ot
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These equations are known as the Reynolds equations or more explicitly Rey-
nolds-averaged Navier–Stokes (RANS) equations. The set of equations can be
expressed in tensor form

�uj
o�ui

oxj
þ o�ui

ot
¼ gxi �

1
q
� o�p

oxi
þ t

o2�ui

ox2
j

�
ou0iu

0
j

oxj
ð3:11Þ

Note that the RANS equations (Eqs. 3.10a–c) are identical to the Navier–Stokes
equations (Eqs. 2.51a–c) if (�u, �v, �w) are replaced by (u, v, w), except the last terms
within parentheses. These last terms are obtained from three cross products of
velocity fluctuations and provide additional stresses developed due to turbulence.
Hence, they are called the turbulent stresses or Reynolds stresses. Since both sides
of the RANS equations have dimension of acceleration, the equations are multi-
plied all throughout by mass density of fluid q to convert the dimension into stress.
Hence, the stresses can be expressed as a stress tensor called Reynolds stress
tensor. They are

rx sxy sxz

syx ry syz

szx szy rz

¼ �q
u0u0 u0v0 u0w0

v0u0 v0v0 v0w0

w0u0 w0v0 w0w0

0
@

1
A) ridij þ sijð1� dijÞ ¼ �qu0iu

0
j

ð3:12Þ

where rx, ry, and rz are the Reynolds normal stresses in (x, y, z), sxy, sxz, syx, syz,
szx, and szy are the Reynolds shear stresses, and dij is the Kronecker delta, defined
as dij (i = j) = 1 and dij (i 6¼ j) = 0. These Reynolds stresses are developed due to
turbulent fluctuations and are given by time-averaged values of the quadratic terms
of the velocity fluctuations. As these terms are added to the ordinary viscous
stresses and have a similar influence on the flow, the viscosity that arises in
turbulent flow is often called eddy viscosity. In general, these Reynolds stresses far
outweigh the viscous stresses in turbulent flow.

The terms u
0
iu
0
j are called second moments or second-order correlations, while

the first moments are always zero (u0i ¼ 0). However, the second moments are
never zero unless the velocity fluctuations are zero. Let us discuss more about the

second moments u
0
iu
0
j for i = j. The root mean square (RMS) of a second moment

provides us with an idea about the magnitude of fluctuations and hence is often
called turbulence intensity. It is defined by
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This second moment is therefore a correlation of u0i with itself and is thus called
an autocorrelation.

On the other hand, the case of second moment u0iu
0
j for i 6¼ j can be discussed

further. Considering a two-dimensional shear flow along x-axis with vertical
direction in z-axis (that is, on xz plane), it can be written as

u ¼ �uþ u0; �u ¼ �uðzÞ; d�u

dz
[ 0; �w ¼ 0; w ¼ w0

The upward vertical motion of fluid parcels is caused by the eddies (w0[ 0) to
arrive a level z2 from a lower level z1 that is immediately below the level z2. Note
that �u at z2 is greater than �u at z1. In order to retain the original time-averaged
velocity �u in the vertical motion of the fluid parcel, a –u0 at layer z2 is induced by
the eddies. On the other hand, a downward vertical motion of fluid parcels caused
by the eddies (w0\ 0) arriving from a higher level induces a +u0 in the lower layer.
Therefore, in a shear flow, a +w0 is accompanied by a –u0 and a –w0 by a +u0. Thus,
their product u0w0 is in general nonzero and indeed negative. It means that the
Reynolds shear stress, sxz ¼ �qu0w0, is positive, as u0w0\0.

3.4.1 Shear Stress in Steady-Uniform Flow in an Open
Channel

For a steady-uniform flow (that is, a zero-pressure gradient in the streamwise
direction), the basic equations are the two-dimensional continuity equation and
Reynolds-averaged Navier–Stokes (RANS) equations. It is assumed that the
channel bed that makes an angle h (down streamwise) with the horizontal is
aligned along the x-direction. The flow depth h remains unchanged all throughout
the channel reach wherein the flow is steady-uniform. The continuity equation is
automatically satisfied. For two-dimensional steady flow, the RANS equations
reduce to x-component (along the channel bed) and z-component (normal to the
channel bed)
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Further, with �w ¼ 0, gz ¼ �g cosh, and the flow parameters to be invariant of
distance in x-direction, the z-component of RANS equation (Eq. 3.14b) gives an
equation of pressure by integrating within limits z and h

o�p

oz
¼ �qg cos h� q

ow0w0

oz
) �p ¼ qgðh� zÞ cos hþ qw0w0jz¼h

z¼z ð3:15Þ

where g is the acceleration due to gravity. Note that �p z ¼ hð Þ ¼ 0 (gauge pres-
sure) and �p z ¼ zð Þ ¼ �p, and w0w0 at the free surface (z = h) is zero. Hence,
Eq. (3.15) becomes

�p ¼ qgðh� zÞ cos h� qw0w0jz¼z ð3:16Þ

On the other hand, with �u ¼ �uðzÞ, �w ¼ 0, gx = gsinh, and the flow parameters to
be invariant of distance in x-direction, the x-component of RANS equation
(Eq. 3.14a) reduces to

� l
d2�u

dz2
� dð�qu0w0Þ

dz
¼ qg sin h ^ sin h � S0

� d
dz

l
d�u

dz
þ ð�qu0w0Þ

� �
¼ s0

h
^ s0 ¼ qghS0

ð3:17Þ

where l is the coefficient of dynamic viscosity of fluid (=tq), S0 is the bed slope,
which is approximately equal to sinh, and s0 is the bed shear stress. In the above
equation, partial differentials are replaced by the total differentials.

The terms inside the square bracket in the left-hand side of Eq. (3.17) are
expressed as

l
d�u

dz
þ ð�qu0w0Þ ¼ sv þ sxz ¼ s ð3:18Þ

where sv is the shear stress due to viscosity ½¼ lðd�u=dzÞ�, sxz is the shear stress due
to turbulence or Reynolds shear stress ½¼ �qu0w0�, and s is the total shear stress at
z. Therefore, Eq. (3.17) becomes

� ds
dz
¼ s0

h
ð3:19Þ

Integrating Eq. (3.19) within limits z and h yields

s ¼ 1� z

h

� �
s0 ð3:20Þ
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Figure 3.2 schematically shows the distributions of total shear stress s, viscous
shear stress sv, and Reynolds shear stress sxz. The total shear stress s linearly
decreases with an increase in vertical distance z, as given by Eq. (3.20), being zero
at the free surface (z = h) and maximum (s = s0) at the bed (z = 0). At the bed,
there is no turbulence (u0 = w0 = 0); thus, the Reynolds shear stress sxzð¼
�qu0w0Þ is zero. The damping of Reynolds shear stress sxz in the buffer layer and
the viscous sublayer is discussed in Sect. 3.7.3. Therefore, the viscous shear stress
is dominant in a very thin layer near the bed, where the flow is laminar. This thin
layer having a thickness d0 is called viscous sublayer (see Sect. 2.6.1). In contrast,
above the viscous sublayer, that is, in the main flow region, the Reynolds shear
stress dominates (Fig. 3.2). The measurements showed that the viscous shear stress
in the viscous sublayer is almost constant and is equal to the bed shear stress.

3.5 Classical Turbulence Theories

As the turbulence phenomena are extremely complex, no full-proof theory is
available to describe the phenomena completely. The existing theories are pri-
marily based on the semiempirical hypotheses, which establish a relationship
between the Reynolds shear stresses caused by the exchange of momentum and the
time-averaged velocities. The basic theories proposed by Ludwig Prandtl and
Theodore von Kármán are described here.

3.5.1 Prandtl’s Mixing Length Theory

Prandtl (1925) introduced the mixing length concept in order to determine the
Reynolds shear stress in a turbulent shear flow. He simulated the momentum

δ′

z

τ
xz τ

v

τ = τ
xz

+τ
v

h

Fig. 3.2 Shear stress distribution in a steady-uniform flow in an open channel
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exchange on a macro-scale being analogous to that of the molecular motion of a
gas to explain the mixing phenomenon induced by the turbulence in a fluid flow
and thus established the mixing length theory.

In a turbulent shear flow, the eddies forming the fluid parcels generate and then
degenerate after traveling an average distance l, termed mixing length, to change
their momentum by a new environment in the fluid. These fluid parcels travel both
in streamwise (that is horizontal) and in vertical directions and are presumed to
retain their original time-averaged velocity at the arrival position. Figure 3.3a
schematically shows such a fluid parcel located at level 1 (higher level) to move a
distance l at level 2 (lower level) due to eddy motion. The velocity of the fluid
parcel at level 1 is still retained when it just arrives at level 2 and then decreases to
the velocity at level 2 soon after by exchanging the momentum with the fluid in the
neighborhood of level 2. This action accelerates up the fluid at level 2, which
causes a development of Reynolds shear stress sxz acting at level 2 while accel-
erating at level 2. The streamwise instantaneous velocity fluctuations of the fluid
parcel at level 2 is given by3

u0 ¼ �uþ l
d�u

dz

� �
� �u ¼ l

d�u

dz
ð3:21Þ

where l is the mixing length. Following Prandtl’s hypothesis, the vertical velocity
fluctuations w0 are of the same order of magnitude of u0, that is, |u0| = |w0|. Thus,

�w0 ¼ l
d�u

dz
ð3:22Þ

Here, the negative sign is due to the downward movement of fluid parcel.
However, the other case, that is the upward motion of a fluid parcel arriving from a
lower level, is clearly illustrated in Fig. 3.3b. In this case, a -w0 is accompanied
by a +u0 and a +w0 by a –u0, making the product u0w0 always a negative. Thus, the
Reynolds shear stress sxz becomes

sxz ¼ �qu0w0 ¼ ql2
d�u

dz

� �2

ð3:23Þ

This yields the turbulent flow model of the mixing length. Equation (3.23) is
rearranged introducing a modulus sign to have an absolute value of the velocity
gradient in order to retain the sign and then expressed analogous to the Newton’s
law of viscosity (Eq. 1.3). Therefore,

3 The velocity at level 1 is expressed as �u zþ lð Þ ¼ �u zð Þ þ d�u. If �u(z + l) is expanded in a
Taylor series up to the linear term only, then d�u ¼ �uðzþ lÞ � �uðzÞ ¼ ld�u=dz. Hence, the
velocity at level 1 is given by ū + ldū/dz. However, velocity at level 2 is �u.
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sxz ¼ ql2
d�u

dz

����
���� d�u

dz
) sxz ¼ qet

d�u

dz
^ et ¼ l2

d�u

dz

����
���� ð3:24Þ

where et is the coefficient of eddy viscosity or turbulent diffusivity. In Eq. (3.24),
the eddy viscosity assumption is also known as Boussinesq hypothesis. Using
Eq. (3.24) into Eq. (3.18) yields

s ¼ ðlþ qetÞ
d�u

dz
¼ qðtþ etÞ

d�u

dz
ð3:25Þ

According to Prandtl, the mixing length l is proportional to the vertical distance
z from the boundary. For a laminar flow, l must vanish, as the transverse motion of
fluid is inhibited. The l varies linearly with z within the wall shear layer

l ¼ jz ð3:26Þ

where j is the von Kármán constant, determined experimentally as 0.41. It is
considered to be a universal constant in flow over solid boundaries. Near the solid
boundary, viscous effects become substantial and thus have a damping effect on
the mixing length.4
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Fig. 3.3 a Sketch illustrating the mixing length concept in turbulent flow showing a fluid parcel
moving downward and b sketch explaining the fluid parcels moving downward (in the left) and
upward (in the right) to result in velocity fluctuations at the arrival position (level 2) as (u0, –w0)
and (–u0, w0), respectively

4 The modified mixing length model of van Driest (1956) that incorporates the viscous effect is
as follows:

l ¼ jzCð~zþÞ ^ Cð~zþÞ ¼ 1� exp ~zþ
Bd

� �
_ ~zþ ¼ zu�

t

where C ~zþð Þ is the van Driest damping function and Bd is the damping factor.
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3.5.2 Similarity Hypothesis of von Kármán

In the flow region outside of the viscous sublayer, von Kármán (1930) developed
an important relationship for the mixing length l based on the similarity hypoth-
esis. He assumed the following: (1) Except in the vicinity of the solid boundary,
turbulence phenomena are not influenced by the viscosity and (2) the basic features
of turbulence at different positions are similar, that is, they differ only in time and
length scales. Alternatively, the mixing length l is a function of the distribution of
time-averaged velocity in turbulent flow, while it is indirectly related to the dis-
tance z from the boundary. He originally derived two alternative expressions
relating the Reynolds shear stress and the velocity distribution: one in terms of the
Reynolds shear stress itself and the other in terms of the Reynolds shear stress
gradient. They are given as

sxz ¼ ql2 d�u

dz

� �2

;
dsxz

dz
� ql2 d�u

dz
� d

2�u

dz2

Applying the similarity hypothesis, von Kármán proposed the mixing length
l as

l ¼ j
d�u=dzj j

d2�u=dz2
�� �� ð3:27Þ

Equation (3.27) indicates that the mixing length l is a function of local velocity
distribution in the neighborhood of a point.

3.6 Classification of Flow Field in Open Channels

Traditionally, the flow field in open channels can be classified into different flow
layers, depending on the flow characteristics (Fig. 3.4). Interestingly, specific
characteristics are exhibited in various flow layers, whose thicknesses are divided
according to certain values of nondimensional vertical distances from the solid
boundary. They are expressed as ~zþ ¼ zu�=t and/or ~z ¼ z=h.

1. Viscous sublayer (~zþ � 5): It is the thin layer, where the flow is purely laminar
without any turbulence (no velocity fluctuations), being developed adjacent to a
smooth solid boundary; however, the flow outside this layer is essentially
turbulent. It is already discussed in Sect. 2.6. According to the measurements,
the viscous shear stress that is prevalent within this layer is constant and equals
the bed shear stress.

2. Transition or buffer layer (5\~zþ\30): In this layer, the changeover from a
laminar flow to a turbulent flow takes place. Hence, the flow in this layer is
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influenced by both viscosity and turbulence. The thickness of this layer is about
five times thicker than that of viscous sublayer.

3. Turbulent wall shear layer (~zþ 	 30, ~z\0:2): It is the layer (immediately above
the buffer layer) wherein the Reynolds shear stress is predominant and the
viscous shear stress is effectively negligible. Measurements showed that the
Reynolds shear stress is constant within the layer and equals the bed shear
stress. Note that in this layer, Prandtl introduced the mixing length concept and
found that the logarithmic law of velocity distribution (the law of the wall) is
preserved. Hence, this layer is also known as logarithmic layer.

4. Turbulent outer layer (0:2�~z� 1): In this layer, velocity is almost invariant of
vertical distance due to the presence of large eddies, which produce a strong
mixing of fluid in flow.

Note that up to the turbulent wall shear layer from the boundary is called inner
layer.

On the other hand, Nezu and Nakagawa (1993) differentiated the flow layers
from the viewpoint of TKE budget. There are three spectral subranges of velocity
fluctuations: (1) Turbulent energy containing range, where the TKE comes from
the time-averaged velocity, (2) inertial subrange, where the TKE is transmitted to
smaller-scale eddies, and (3) viscous dissipation range, where the TKE is dissi-
pated into heat. It is discussed in Sect. 3.11 in details. Nezu and Nakagawa argued
that the TKE transfer in open-channel flow is analogous to this cascade process
through the spectral subranges. From this analogy, the turbulent flow field in open
channel can be divided into three flow layers. These flow layers are also shown in
Fig. 3.4 and discussed as follows:

Viscous sublayer
Buffer layer

Turbulent wall shear layer

Turbulent outer layer

Wall shear layer

Intermediate layer

Free surface layer 

z 

h

Fig. 3.4 Classification of flow field in different layers (layer thickness not according to scale)

3.6 Classification of Flow Field in Open Channels 107



1. Wall shear layer (~z\0:2): This is the inner layer of a fully developed turbulent
flow, whose length scale is defined by t/u* (for smooth flow) and velocity scale
by the shear velocity u*. In fact, the layer is regarded as a turbulent bursting
(that is the processes of ejections and sweeps, discussed in Sect. 3.16) prone
near-boundary flow region, having a range ~zþ � 50, where the TKE production
rate exceeds the TKE dissipation rate. In this layer, the law of the wall is
preserved.

2. Free surface layer (0:6\~z� 1): In this layer, the flow field is governed by the
outer variables. The length scale is defined by the flow depth h or the boundary
layer thickness d and the velocity scale by maximum streamwise velocity Umax.
The TKE dissipation rate exceeds the TKE production rate within this layer. As
a result of this, the TKE is transmitted from the wall shear layer to this layer by
a TKE diffusion process.

3. Intermediate layer (0:2�~z� 0:6): This layer is influenced by the composite
characteristics of the wall shear layer and the free surface layer; however, the
viscous effects are practically negligible. In this layer (having a range ~zþ[ 50),
a near-equilibrium TKE budget is maintained, where the TKE production rate
equals the TKE dissipation rate.

3.7 Velocity Distribution

Regarding the velocity distribution over a solid boundary, we are indebted to the
physical insight of Ludwig Prandtl and Theodore von Kármán. They deduced the
velocity distributions in the wall shear layer and the outer layer plus intermediate
overlapping between these two in the intermediate layer. For the wall shear layer,
Prandtl (1933) argued that the velocity distribution depends on the bed shear stress
s0, mass density of fluid q, viscosity of fluid t, and vertical distance z from the
boundary, but not on the maximum or the free stream velocity Umax. Hence, the
law of the wall can be given in functional form as

�u ¼ f1ðs0; q; t; zÞ

Conversely, for the outer layer, von Kármán (1930) deduced that the boundary
acts as a source of deceleration to decrease the local flow velocity �uðzÞ below the
maximum or the free stream velocity Umax in the way of independent of viscosity
of fluid t, but dependent on bed shear stress s0, mass density of fluid q, vertical
distance z, and boundary layer thickness d. Hence, the law of the outer layer is

Umax � �u ¼ f2ðs0; q; z; dÞ

In the above equation, the ðUmax � �uÞ is called velocity defect.
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For the intermediate layer, a simplified overlapping law shows that the velocity
distributions of wall shear layer and outer layer merge smoothly. Hence,

�uðwall shear layerÞ ¼ �uðouter layerÞ:

3.7.1 The Linear Law in Viscous Sublayer

In viscous sublayer ð~zþ � 5Þ, the viscous shear stress sv is constant and equals the
bed shear stress s0. That is,

sv ¼ qt
d�u

dz
¼ s0 ) d�u ¼ u2

�
t

dz ^ s0 ¼ qu2
� ð3:28Þ

Integrating and applying the no-slip condition at the boundary, that is
�u z ¼ 0ð Þ ¼ 0, yield

uþ ¼ ~zþ ^ uþ ¼ �u

u�
_ ~zþ ¼ zu�

t
ð3:29Þ

Thus, the linear law of velocity distribution exists in the viscous sublayer.
Equation (3.29) holds good for the range 0\~zþ � 5.

3.7.2 The Logarithmic Law in Turbulent Wall Shear Layer

It is appropriate to discuss the turbulent wall shear layer before the buffer layer,
which is characterized by both viscous and turbulence properties. In turbulent wall
shear layer (~zþ 	 30, ~z\0:2), the total shear stress s contains only the turbulent
shear stress sxz and practically sv & 0. According to Prandtl’s mixing length
theory,

sxz ¼ ql2
d�u

dz

� �2

¼ s0 ð3:30Þ

Substituting l = jz yields

d�u ¼ u�
jz

dz ð3:31Þ
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Integrating Eq. (3.31), one gets

uþ ¼ 1
j

ln zþ C ð3:32Þ

where C is the integration constant. Using the boundary condition �u z ¼ z0ð Þ ¼ 0,
where z0 is the zero-velocity level, produces

uþ ¼ 1
j

ln
z

z0

� �
ð3:33Þ

By the modification of the mixing length theory introduced by Prandtl, the
logarithmic velocity distribution is applicable to both the buffer layer and the
turbulent outer layer. On the other hand, in the viscous sublayer, the boundary
roughness plays an important role in defining the velocity distribution, which was
first observed by Johann Nikuradse in pipe flows (Nikuradse 1933). He introduced
the concept of equivalent roughness ks, called Nikuradse’s equivalent roughness or
equivalent sand roughness (Schlichting and Gersten 2000). Based on the experi-
mental findings on roughness, the flow regimes are classified as hydraulically
smooth, rough, and transitional flows5 (Figs. 3.5a–c). In this context, the shear
Reynolds number R* (=u*ks/t) plays a decisive role in defining the flow regimes.

1. Hydraulically smooth flow (R* B 5): In this flow, the boundary roughness
height ks is much smaller than the viscous sublayer thickness d0. Thus, the
roughness elements are submerged by the viscous sublayer (Fig. 3.5a). The
main flow outside the viscous sublayer cannot therefore sense the roughness.
Hence, the velocity distributions in turbulent wall shear and outer layers are not
affected by the boundary roughness, but affected by the fluid viscosity.

Viscous sublayer
 

ks

Turbulent flow

ks

Turbulent flow

Viscous sublayer
ks

Turbulent flow

No viscous sublayer
δ′ δ′

(a) (b) (c)

Fig. 3.5 Different flow regimes: a smooth, b rough, and c transition

5 More explicitly, the flow regimes are called (1) hydraulically smooth flow regime, (2)
hydraulically rough flow regime, and (3) hydraulically transitional flow regime of turbulent flow.
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2. Hydraulically rough flow (R* C 70): In this flow, the boundary roughness
height is much larger than the viscous sublayer thickness (Fig. 3.5b). Near the
boundary, the roughness produces eddies annihilating the viscous sublayer. The
roughness elements are therefore exposed to the main flow region. The velocity
distributions in turbulent wall shear and outer layers are affected by the
boundary roughness, but not by the fluid viscosity.

3. Hydraulically transitional flow (5 \ R* \ 70): In this flow, the boundary
roughness height is typically in the order of viscous sublayer thickness
(Fig. 3.5c). The velocity distributions are affected by both the boundary
roughness and the fluid viscosity.

According to Nikuradse’s study on pipe flows, the expressions for zero-velocity
level z0 for different flow regimes are

Smooth flow: z0ðR� � 5Þ ¼ 0:11
t
u�

^ R� ¼
u�ks

t
ð3:34aÞ

Rough flow: z0ðR� 	 70Þ ¼ ks

30
ð3:34bÞ

Transition: z0ð5\R�\70Þ ¼ 0:11
t
u�
þ ks

30
ð3:34cÞ

It is important to note that the zero-velocity level z0 in smooth flow is a function
of viscosity t and shear velocity u*, but not a function of roughness ks. However, z0

in rough flow is a function of ks, but not a function of t and u*. On the other hand,
the transitional case has a composite effect of smooth and rough flows. The ASCE
Task Force (1963) on friction factor in open channels reported that for open-
channel roughness similar to that encountered in pipes, the resistance equations
similar to those of pipe flows are adequate. Here, boundary roughness is discussed
with reference to the roughness types that are often encountered in engineering
practice. In reality, the solid boundaries including sediment beds exhibit some
roughness. Since there can be an unlimited number of possible surface states, a
standard roughness is essentially introduced to describe the roughness effect on a
fluid flow. Here, it is assumed that a solid boundary is covered with a layer of
spheres packed together as closely as possible, as is obtained in case of sandpaper.
Thus, the standard roughness is called sand roughness. The diameter of the sphere
is called the sand roughness height and is a measure of the boundary roughness.
Therefore, it is adequate to consider the effects of sand roughness on the law of the
wall. However, technically rough boundary or sediment bed can be generally
assigned to so-called equivalent sand roughness or simply equivalent roughness.
The equivalent roughness formulas for sediment beds given by various investi-
gators are summarized in Table 3.1.

In the above discussion, the roughness limits are given in terms of sand
roughness or its equivalent value. These types of rough boundaries are categorized
by k-type, where the roughness affects the flow scale with roughness height ks.

3.7 Velocity Distribution 111



The other category of rough boundaries is known as d-type, where the roughness
elements are large enough and closely spaced, so that the flow passes over the top
of the elements with stagnant fluid in between the elements (Jiménez 2004).
Further, in sediment bed with bedforms, the total roughness can be obtained by
adding the two values: ks|total = ks|sand + ks|bedforms.

Reverting to the velocity distribution, for smooth flow, such as a plane sediment
bed formed by median particle size less than 0.25 mm, it is customary to express
Eq. (3.33) in another form as

uþ ¼ 1
j

ln~zþ þ Bjsmooth ^ Bjsmooth¼ �
1
j

ln~zþ0 _ ~zþ0 ¼
z0u�
t

ð3:35Þ

where B|smooth is the integration constant for a smooth flow. Nikuradse suggested
that j & 0.4 and B|smooth & 5.5 using Eq. (3.34a), but afterward, more accurate
data analysis produced j & 0.41 and B|smooth & 5. Figure 3.6 shows a schematic

Table 3.1 Equivalent roughness formulas for sediment beds

References Formula

Wilson (1987) ks ¼ 5d50H ^ H ¼ u2
�=ðDgd50Þ _ D ¼ s� 1 ^ s ¼ qs=q

Yalin (1992) ks = d50[5H + (H - 4)2(0.043H3 - 0.289H2 - 0.203H + 0.125)]
van Rijn (1993) ks = 3d90H
Sumer et al. (1996) ks(ws [ 0.9u*) = d50(2 + 0.6H2.5)

ksðws� 0:9u�Þ ¼ d50½4:5þ 0:25exp 0:6W4
�

	 

H2:5�

^ W� ¼ ws=ðDgd50Þ0:5
Camenen et al. (2006) ks ¼ d50ð0:6þ 1:8 W1:2

�s H1:7Fr�2:4Þ ^ W�s ¼ wsD
2=3=ðgtÞ1=3

_ Fr ¼ U= ghð Þ0:5

Note H is the Shields parameter, D is the submerged relative density of sediment, s is the relative
density of sediment, qs is the mass density of sediment, ws is the terminal fall velocity of
sediment, and Fr is the flow Froude number
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nondimensional velocity distribution in a smooth flow regime, where rough ele-
ments are small enough to be covered by the viscous sublayer. The merger of the
linear distribution (Eq. 3.29) with the logarithmic distribution (Eq. 3.35) at the
edge of the viscous sublayer is noticeable (Fig. 3.7).

Between 5 \ R* \ 70, called the buffer layer, the velocity distribution is nei-
ther linear nor logarithmic, but is instead a smooth merge between the two.
Spalding (1961) deduced a single composite equation covering the entire wall
shear layer. It is as follows:

~zþ ¼ uþ þ expðjuþÞ � 1� juþ � ðjuþÞ2

2
� ðjuþÞ3

6

" #
expð�jBjsmoothÞ ð3:36Þ

Equation (3.36) holds good not only in the viscous sublayer and the logarithmic
wall shear layer, but also in the outer layer for the range ~zþ[ 100, as shown in
Fig. 3.7.

For rough flow, such as a sediment bed formed by gravels, Eq. (3.33) can be
expressed in another form as

uþ ¼ 1
j

ln zþ þ Bjrough ^ zþ ¼ z

ks

_ Bjrough¼
1
j

ln
1

fþ

� �
^ fþ ¼ z0

ks

ð3:37Þ

where B|rough is the integration constant for a rough flow, which is 8.5 for j � 0:4
using Eq. (3.34b). Figure 3.8 shows a schematic nondimensional velocity distri-
bution in a rough flow regime, where roughness elements are large enough, such
that the viscous sublayer could not be formed.

It is important to note that the origin of z-axis is considered at a convenient
depth at the top or below the top of the roughness elements. The virtual reference
level (also called virtual bed level of a sand- or a gravel-bed) of a rough boundary
is considered passing through the origin of z-axis and lying on the x-axis.

1 10 100 1000 10000

z~+ 

0

5

10

15

20

25

30

u+
 

Eq. (3.35)

Eq. (3.29)
Eq. (3.36)

Spalding (1961)

Fig. 3.7 Velocity
distribution in the inner layer
and a portion of the outer
layer

3.7 Velocity Distribution 113



For instance, van Rijn (1984) assumed that the origin of z-axis is at 0.25ks below
the top of the roughness elements. It is, however, advisable to use the following
form of Eq. (3.37), setting the origin of z-axis at the top of the roughness elements
(Fig. 3.8). The logarithmic law then becomes

uþ ¼ 1
j

ln
zþ þ Dzþ

fþ

� �
ð3:38Þ

where Dz+ = Dz/ks and Dz is the depth of the origin of z-axis or the virtual bed
level from the top of the roughness elements. Dz is also known as zero-plane
displacement, which can be determined by fitting the measured velocity data (see
Sect. 5.15) (Dey and Das 2012; Dey et al. 2012).

For immobile rough boundary streams or technical rough boundaries, the
average values of B|rough (and their standard deviation) obtained by different
investigators are 8.5 (±0.15) of Reynolds (1974), 8.47 (±0.9) of Kironoto and
Graf (1994), and 8.42 (±0.22) of Song et al. (1994). However, Dey and Raikar
(2007) obtained it as 7.8 (±0.37) for gravel-beds under the near-threshold con-
dition (weakly mobile). It is less than those reported in the literature for immobile
rough boundary streams. Importantly, in flow with unrest surface particles at the
near-threshold condition, there prevails a decreasing tendency of the value of
B|rough.

The expression of B in composite form for both smooth and rough flows, as
well as transitional range between them, was given by García (2008) as

B ¼ 8:5þ ð2:5 ln R� � 3Þ exp½�0:121ðln2:42 R�Þ� ð3:39Þ

Figure 3.9 shows the variation of B with R* obtained from Eq. (3.39). For
smooth flow, B is a function of R* as B = 5.5 + 2.5ln R*, while for rough flow,
B = 8.5.
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3.7.3 Law in Buffer Layer

In buffer layer (5\~zþ\30), the flow is characterized by both viscosity and tur-
bulence. Hence, it somewhat possesses a composite property of both the viscous
sublayer and the turbulent wall shear layer. Although an analytical solution for the
buffer layer is not available, it can no longer be neglected in turbulence research,
because it plays a critical role in the bursting phenomena. However, a theoretical
curve for the velocity distribution in this layer can be obtained numerically from
the differential equation given by Nezu and Azuma (2004) using the van Driest’s
model. It is as follows:

duþ

d~zþ
¼

2 1� ~zþ

R�

� �

1þ 1þ 4lþ2 1� ~zþ

R�

� �� �0:5 ^ lþ ¼ lu�
t

ð3:40Þ

The modified mixing length model of van Driest (1956) that incorporates the
viscous effects is

lþ ¼ j~zþCð~zþÞ ^ Cð~zþÞ ¼ 1� exp
~zþ

Bd

� �
ð3:41Þ

where Cð~zþÞ is the van Driest damping function and Bd is the damping factor,
which can be assumed as 26.

Further, the modified mixing length model of van Driest can also be used to
describe the damping of Reynolds shear stress distribution in the buffer layer and
the viscous sublayer. In two-dimensional open-channel flow, according to Nezu
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and Azuma (2004) [also see Nezu and Nakagawa (1993)], the Reynolds shear
stress distribution with viscous effects is given by

� u0w0

u2
�
¼ 1� ~z� duþ

d~zþ
ð3:42Þ

3.7.4 Log-Wake Law and Velocity Defect Law

In the outer layer ð0:2\~z� 1Þ, the velocity distribution that has an excess velocity
deviates from the logarithmic law, as the distance increases from the boundary,
especially for ~zþ[ 1,000. The reason for the departure is attributed to the
assumption of constant shear stress and linearly varying mixing length throughout
the fluid. Coles (1956) gave the complete description of the velocity distribution,
including the wake law, called the log-wake law. It is as follows:

uþ ¼ 1
j

ln
z

z0

� �
þ 2P

j
sin2 p

2
~z

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Wake function

^ ~z ¼ z

h
ð3:43Þ

where P is Coles’ wake parameter. Note that the sine function in the last term of
the right-hand side of Eq. (3.43) can be approximated by

sin2 p
2

~z
� �

� 3~z2 � 2~z3

The last term in fact describes the velocity enhancement in the turbulent outer
layer and is called the wake function. The wake function is zero at the boundary
(z = 0) and increases gradually toward the free surface and reaches a maximum
value of 2P=j at the free surface (z = h).6 The advantage of Eq. (3.43) is that it is
a complete and reasonably accurate expression covering entire range of a two-
dimensional boundary layer flow, whether fully developed or not.

The usual form of Coles’ wake law is in terms of the velocity defect that would
require information on the maximum velocity u = Umax of a vertical distribution
of velocity that usually occurs at the free surface z = h, unless there is a dip
(discussed in Sect. 3.10). Equation (3.33) is used to obtain the velocity defect law

6 The forms of the log-wake law for smooth and rough flows are as follows:

Smooth flow: uþ ¼ 1
j

ln~zþ þ Bjsmooth

� �
þ 2P

j
sin2 p

2
~z

� �

Rough flow: uþ ¼ 1
j

ln~zþ þ Bjrough

� �
þ 2P

j
sin2 p

2
~z

� �
:
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that provides the outer form of the law of the wall (Schlichting 1979). It is as
follows:

DUþmax ¼ �
1
j

ln~z ^ DUþmax ¼
DUmax

u�
_ DUmax ¼ Umax � �u ð3:44Þ

In relation to the log-wake law (Eq. 3.43), the velocity defect law can be given
as follows (Coleman 1981; Coleman and Alonso 1983):

DUþmax ¼ �
1
j

ln~zþ 2P
j

cos2 p
2

~z
� �

ð3:45Þ

The time-averaged velocity distribution for smooth flow was expressed by Dean
(1976) as a combination of logarithmic and wake terms. According to him, the log-
wake law and the velocity defect law are as follows:

uþ ¼ 1
j

ln~zþ þ Bjsmooth

� �
þ 1

j
½ð1þ 6PÞ~z2 � ð1þ 4PÞ~z3� ð3:46aÞ

DUþmax ¼ �
1
j

ln~zþ 1
j
½2P� ð1þ 6PÞ~z2 þ ð1þ 4PÞ~z3� ð3:46bÞ

Guo et al. (2005) introduced a cubic correction term to satisfy the requirement of a
zero-velocity gradient at the edge of the boundary layer. Combining the loga-
rithmic law, the wake law and the cubic correction produced a modified log-wake
law. The log-wake law and the velocity defect law are as follows:

uþ ¼ 1
j

ln~zþ þ Bjsmooth

� �
þ 2P

j
sin2 p

2
~z

� �
� ~z3

3j
ð3:47aÞ

DUþmax ¼ �
1
j

ln~zþ 2P
j

cos2 p
2

~z
� �

� 1� ~z3

3j
ð3:47bÞ

Dey and Raikar (2007) used the experimental velocity distributions to estimate
the wake parameter P for gravel-beds under the near-threshold condition. The
average value of P (and its standard deviation) was 0.11 (±0.026). Due to the feeble
movement of surface particles at the near-threshold condition, the value of P is
slightly greater than that of immobile rough boundaries, for example, 0.09 of
Kironoto and Graf (1994) and 0.08 of Song et al. (1994). The lone case of negative
value of P (= –0.03) for a gravel-bed of ks = 23 mm was reported by Kironoto and
Graf (1994). In contrast, for smooth boundary streams, the values of P are relatively
high. Coleman (1981) obtained an average value of P as 0.19, Nezu and Rodi (1986)
as 0.2, Steffler et al. (1985) as 0.08–0.15, and Kirkgöz (1989) as 0.1. Coleman (1981)
and Nezu and Rodi (1986) studied the flow with reasonably large Reynolds numbers.
However, for low flow Reynolds numbers, the value of P increases as high as 0.23
(Dong et al. 1991; Nezu and Nakagawa 1993; Nikora and Goring 2000).
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3.8 Turbulence Intensity

The degree of velocity fluctuations is one of the most important characteristics of
turbulence; hence, its measurement has received top priority in studying turbu-
lence. Earlier, hot-film anemometer (HFA) was used, and in recent years, acoustic
Doppler velocimeter (ADV) and laser Doppler anemometer (LDA) are being used
to measure the turbulent characteristics in fluid flow.

The velocity fluctuations are represented in the form of root mean square (RMS),
termed turbulence intensity [also see Eq. (3.13)]. The root-mean-square values of

velocity fluctuations in streamwise urms½¼ ðu0u0Þ0:5�, lateral vrms½¼ ðv0v0Þ0:5�, and

vertical wrms½¼ ðw0w0Þ0:5� directions are written in nondimensional form, dividing
them by either the shear velocity u* or the depth-averaged flow velocity U. Note that
the turbulence intensity is the square root of Reynolds normal stress (divided by q)
[see Eq. (3.12)]. The experimental results of Grass (1971) are shown in Fig. 3.10.
The conclusions of the results are as follows:

1. The turbulence intensity is zero at the boundary and increases rapidly to reach
its peak value within a short distance (z = 0.04–0.12 h) from the boundary.
Away from the boundary, in the main flow region, the turbulence intensity is
rather less and nearly a constant.

2. In the main flow region, the vertical component of turbulence intensity
approaches the shear velocity, wrms/u* & 1, while the streamwise component
of turbulence intensity is slightly greater than the shear velocity.

3. Near the boundary, the turbulence intensity is influenced by the boundary
roughness. As the boundary roughness increases, lesser is the streamwise tur-
bulence intensity and greater is the vertical turbulence intensity. However, the
influence of boundary roughness disappears in the main flow region.

4. The distribution of turbulence intensity across the depth is more uniform in
case of the rough boundary than in case of the smooth boundary.
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Nezu (1977) gave the following exponential law of streamwise and vertical
components of turbulence intensity:

~urms ¼ Bu expð�Cu~zÞ; ~vrms ¼ Bv expð�Cv~zÞ; ~wrms ¼ Bw expð�Cw~zÞ ð3:48Þ

where ~urms ¼ urms=u�, ~vrms ¼ vrms=u�, ~wrms ¼ wrms=u�, and Bu, Bv, Bw, Cu, Cv and
Cw are the constants.

Nezu (1977) used HFA to obtain Bu = 2.3, Bv = 1.63, Bw = 1.27, and
Cu = Cv = Cw = 1 for smooth and rough flows. From LDA measurements, Nezu
and Rodi (1986) obtained values of Bu = 2.26, Bw = 1.23, Cu = 0.88, and
Cw = 0.67 for smooth and rough flows. Cardoso et al. (1989) reported Bu = 2.28
and Cu = 1.08 for smooth flow; Kironoto and Graf (1994) reported Bu = 2.04,
Bw = 0.97, Cu = 1.14, and Cw = 0.76 for rough flow; and Dey and Raikar (2007)
obtained Bu = 2.07, Bw = 0.95, Cu = 1.17, and Cw = 0.69 for rough and feebly
mobile streams. Note that Eq. (3.48) cannot be applied to the near-boundary flow
region where viscous effects are significant. Motivated by the modified mixing
length model of van Driest (1956), Nezu (1977) put forward a combined model
between the viscous sublayer and the outer layer as

~urms ¼ 2:3 exp � ~z

R�

� �
Cð~zþÞ þ 0:3~zþ½1� Cð~zþÞ� ^ Cð~zþÞ ¼ 1� exp

~zþ

Bd

� �

ð3:49Þ

where Cð~zþÞ is the van Driest damping function and Bd is the damping factor. The
value of Bd for this case is approximately 10. The viscous effects on ~urms appear to
be dominant for ~zþ � 10.

On the other hand, Nikora and Goring (1998) proposed the logarithmic law of
turbulence intensity components for mobile gravel-bed streams as

~u2
rms ¼ 1:9þ 1:32 ln~z; ~v2

rms ¼ 0:59þ 0:22 ln~z: ð3:50Þ

3.9 Bed Shear Stress

It is always a challenging task to determine bed shear stress s0ð¼ qu2
�Þ and hence

shear velocity u* in laboratory experimental flumes or field channels. However, the
bed shear stress can be determined by using the following methods.
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3.9.1 Bed Shear Stress from Bed Slope

For steady-uniform flow in a wide open channel, the bed shear stress s0 can be
calculated traditionally from the bed slope S0 as

s0 ¼ qghS0 ð3:51Þ

Note that in the above equation, S0 actually represents an energy slope, which
equals the bed slope for a uniform flow. However, this method is not appropriate
for local and small-scale estimates of the variation in bed shear stress.

3.9.2 Bed Shear Stress from Velocity Distribution

In fully developed turbulent flow in open channels, the expression in the inner
layer, as well as outer layer, is assumed to be in the form of log-wake law as given
by Eq. (3.43). Then, it can be reorganized as follows:

�u ¼ u�
j

ln~zþ u�
j

ln
h

z0

� �
þ 2P

j
u� sin2 p

2
~z

� �
¼ K1 ln~zþ K2 þ K3 sin2 p

2
~z

� �
ð3:52Þ

The velocity data, �uð~zÞ, can be fitted to Eq. (3.52) by the least-squares method,
and the coefficients K1, K2, and K3 can then be calculated. In this way, the shear
velocity u* can be determined from the value of K1, assuming the von Kármán
constant j ¼ 0:41. However, it is always advisable to use the velocity data within
the logarithmic wall shear layer (~z \ 0.2) to determine u*. Then, Eq. (3.33) can be
reorganized as follows:

�u ¼ u�
j

ln zþ � u�
j

� �
ln z0 ¼ C1 ln zþ C2 ð3:53Þ

The velocity data, �uð~z\0:2Þ, can be fitted to Eq. (3.53) by the least-squares
method to calculate the coefficients C1 and C2, and then, u* can be determined
from the value of C1, assuming j ¼ 0:41. The method of least-squares fitting of
Eq. (3.53) for the velocity data in the inner layer is known as Clauser method
(Clauser 1954). Once u* is obtained, the bed shear stress s0ð¼ qu2

�Þ can be esti-
mated. This method is widely used to evaluate the local bed shear stress. Although
the method is rather easy, the velocity measurement errors influence the estimation
of bed shear stress. Further, this method is useful in field studies, provided the
velocity distributions in the inner layer are quite logarithmic.
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3.9.3 Bed Shear Stress from Average Velocity

The bed shear stress s0 can be expressed as a function of dynamic pressure due to
an average velocity U of flow as

s0 ¼
kD

8
qU2 ð3:54Þ

where kD is the Darcy–Weisbach friction factor. The Colebrook–White equation7

can be used to evaluate kD (Colebrook and White 1937). It is as follows:

1

k0:5
D

¼ �0:86 ln
ksP

14:8A
þ 2:51

Re k0:5
D

 !
ð3:55Þ

where A is the flow area, P is the wetted perimeter, and Re is the flow Reynolds
number. In a channel or an experimental flume, the bed is rough consisting of
sediment particles and the sidewalls are usually smooth. It suggests that the fric-
tion factor kD|w associated with smooth wall is different from the friction factor
kD|b associated with rough bed. Consequently, the shear stress s0|w associated with
wall is significantly different from the shear stress s0|b associated with bed. Hence,
Vanoni’s (1975) method of sidewall correction can be applied to such a composite
roughness due to smooth wall and rough bed for a given cross section of a channel.
Using the continuity equation, the discharge Q is as follows:

Q ¼ AU ¼ AjwUjwþ AjbUjb ð3:56Þ

The average velocity U, considered to be same as U|w and U|b, can be computed
once Q is known. The equation of force in the streamwise direction (x-direction) is
given by

�A
dp

dx
¼ q

kD

8
U2P ¼ q

kDjw
8

Uj2wPjw þ q
kDjb

8
Uj2bPjb ð3:57Þ

where dp/dx is the streamwise pressure gradient. Using U = U|w = U|b into
Eq. (3.57), one gets

PkD ¼ PjwkDjw þ PjbkDjb ð3:58Þ

7 The Colebrook–White equation is an implicit equation. An explicit form of the Colebrook–
White equation was given by Haaland (1983). It is as follows:

1

k0:5
D

¼ �0:782 ln
ksP

14:8A

� �1:1

þ 6:9
Re

" #
:

3.9 Bed Shear Stress 121



As the hydraulic grade line is same for the smooth wall and the rough-bed
regions, equating forces to the wall and the bed regions, one can obtain

PkD

A
¼ PjwkDjw

Ajw
¼ PjbkDjb

Ajb
ð3:59Þ

The Reynolds numbers of flow for different regions are as follows:

Re ¼ 4UA

tP
; Rejw¼

4UAjw
tPjw

; Rejb¼
4UAjb
tPjb

ð3:60Þ

Using Eq. (3.60) into Eq. (3.59), one gets

Re

kD

¼ Rejw
kDjw

¼ Rejb
kDjb

ð3:61Þ

As the wall is smooth, Blasius equation can be used to evaluate kD|w. It is as
follows:

kDjw¼
0:316

Rej0:25
w

ð3:62Þ

Using Eqs. (3.56)–(3.62), the following equation is obtained:

kDjb¼ 0:316Rejb
4UA

tPjw
� RejbPjb

Pjw

� ��1:25

ð3:63Þ

Again, using Eq. (3.61) into Eq. (3.55), the Colebrook–White equation
becomes

1

kDj0:5b

¼ �0:86 ln
ksU

3:7tRejb
þ 2:51

RejbkDj0:5b

 !
ð3:64Þ

For the given data of A, U, P, P|w, P|b, t, q, and ks, the unknowns Re|b and kD|b
can be determined numerically solving Eqs. (3.63) and (3.64). Then, Eq. (3.54)
can be used to estimate the bed shear stress s0|b [= (kD|b/8)qU2]. For uniform flow,
this method was effectively used by Dey (2003).

3.9.4 Bed Shear Stress from Reynolds Shear Stress
Distribution

For uniform flow, the bed shear stress s0 can be obtained from the measured data
plots of the Reynolds shear stress distribution (sxz ¼ �qu0w0) extending the linear
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portion of the distribution on to the boundary, as shown in Fig. 3.11. Then, the bed
shear stress s0 can be obtained as

s0 ¼ sxzjbed¼ �qu0w0
��
bed

ð3:65Þ

Note that the Reynolds shear stress distribution has a near-bed damping (see
Fig. 3.11) and becomes zero at the bed. Hence, one should not misunderstand,
because Eq. (3.65) indicates an extrapolated value of the linear portion of the
Reynolds shear stress distribution above the bed, although sxz on the bed is zero.
The linear variation (shown by the inclined straight line) therefore simulates the
total shear stress distribution, as represented by Eq. (3.20). However, this method
somewhat provides a direct estimation and is useful for the fully developed tur-
bulent flow with large Reynolds numbers (Dyer 1986). Nevertheless, due to
inherent uncertainty involved in near-bed measurements of fluctuating velocity,
the extrapolated values of Reynolds shear stress could be erroneous as a result of
data scattering in Reynolds shear stress distributions.

3.9.5 Bed Shear Stress from Turbulent Kinetic Energy
Distribution

Simple relationships between the TKE and the shear stress were proposed in
turbulence models (Galperin et al. 1988), while further studies by Soulsby and
Dyer (1981) and Stapleton and Huntley (1995) showed that the TKE is propor-
tional to the bed shear stress. It is as follows:

s0 ¼ Ckqk ^ k ¼ 1
2
ðu0u0 þ v0v0 þ w0w0Þ ð3:66Þ

where k is the TKE and Ck is a proportionality constant, being approximately 0.19
(Kim et al. 2000).
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3.9.6 Bed Shear Stress from Spectral Density Function

López and García (1999) [also see Gross and Nowell (1985)] put forward the
spectral method for the estimation of bed shear stress. They used the estimated
values of TKE dissipation rate e in the inertial subrange of the spectral domain.

s0 ¼ qðejzÞ2=3 ð3:67Þ

The estimation of e can be done by using Kolmogorov second hypothesis that
predicts the following equality describing the true inertial subrange (Pope 2001):

e ¼ k5=3
w Suu

C

 !3=2

where kw is the wave number, Suu is the spectral density function for u0, and C is
the constant approximately equaling 0.51 for the inner layer and 0.55 for the outer
layer of wall shear flow (Bradshaw 1967). The Suu [= (0.5u/p)Fuu(f), where Fuu is
the spectral density function for u0(f)] is a function of kw [= (2p/u)f]. The e is
usually estimated by a best fit to the measured Suu in the inertial subrange,
as explained in Sect. 5.16.

3.9.7 Bed Shear Stress from Vertical Reynolds Normal Stress
Distribution

Kim et al. (2000) suggested a modification of the determination of bed shear stress
from TKE. They used only the vertical component of Reynolds normal stress
(variance of vertical velocity component) distribution, since instrumental noise
errors associated with the vertical velocity fluctuations are smaller than those for
horizontal velocity fluctuations (Voulgaris and Trowbridge 1998). The bed shear
stress is then

s0 ¼ Czqw0w0 ð3:68Þ

where Cz is a proportionality constant, being approximately 0.9 (Kim et al. 2000).
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3.9.8 Bed Shear Stress and Reynolds Shear Stress
for Unsteady-Nonuniform Flow: Dey–Lambert’s
Approach

In nature, most of the stream flows are often unsteady and nonuniform, and hence,
it is important to determine the bed shear stress in such situations. Dey and
Lambert (2005) obtained the expressions for the bed shear stress and the Reynolds
shear stress for an unsteady-nonuniform flow in open channels, assuming the
logarithmic law of the wall and using the two-dimensional RANS and continuity
equations. The derivation is as follows:

The RANS equation for two-dimensional unsteady-nonuniform flow in open
channels is given by

�u
o�u

ox
þ �w

o�u

oz
þ o�u

ot
¼ 1

q
� o�p

ox
þ osxz

oz

� �
ð3:69Þ

where �p is the time-averaged piezometric (hydrostatic) pressure at a vertical dis-
tance z from the bed and sxz is the Reynolds shear stress at a vertical distance
zð¼ �qu0w0Þ.

The time-averaged velocity components and the Reynolds shear stress are
expressed in the following functional forms:

�u ¼ Uwð~z; tÞ ð3:70aÞ

�w ¼ Uuð~z; tÞ ð3:70bÞ

sxz ¼ �qu0w0 ¼ s0nð~z; tÞ ð3:70cÞ

where U is the depth-averaged velocity, s0 is the bed shear stress, that is sxzjz¼z0
, z0

is the zero-velocity level, that is zj�u¼0, being equal to 0.033ks, ks is the equivalent
roughness assumed to be median size of bed sediment d, and ~z ¼ z=h. The loga-
rithmic law of the wall is

�u ¼ 1
j

s0

q

� �0:5

ln
z

z0

� �
ð3:71Þ

The depth-averaged velocity U can be given by

U ¼ 1
h� z0

Zh

z0

�udz ¼ b
j

s0

q

� �0:5

ð3:72Þ
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where b ¼ �ln~z1=ð1�~z0Þ
0 �1 and ~z0 ¼ z0=h. Partially differentiating Eqs. (3.70a) and

(3.70c), one can obtain

o�u

ox
¼ w

oU

ox
� U

h
~z
ow
o~z
� oh

ox
;

o�u

oz
¼ U

h
� ow
o~z
;

osxz

oz
¼ s0

h
� on
o~z
;

o�u

ot
¼ w

oU

ot
� U

h
~z
ow
o~z
� oh

ot
þ U

ow
ot

ð3:73Þ

Partially differentiating Eq. (3.70b) yields

o�w

oz
¼ U

h
� ou
o~z

ð3:74Þ

Using the continuity equation of two-dimensional time-averaged velocity
components, that is o�u=oxþ o�w=oz ¼ 0, and using Eq. (3.73) (first equation), one
gets

ou
o~z
¼ ~z

ow
o~z
� oh

ox
� h

U
w

oU

ox
ð3:75Þ

Integrating Eq. (3.75), the following equation is obtained:

u ¼ oh

ox

Z~z

~z0

~z
ow
o~z

d~z� h

U
� oU

ox

Z~z

~z0

wd~z ¼ w~z
oh

ox
� 1

U
h
oU

ox
þ U

oh

ox

� �Z~z

~z0

wd~z ð3:76Þ

The continuity equation (Eq. 2.32) for depth-averaged unsteady-nonuniform
flow in open channels is

h
oU

ox
þ U

oh

ox
þ oh

ot
¼ 0 ð3:77Þ

Using Eq. (3.77) into Eq. (3.76), the expression of u becomes

u ¼ w~z
oh

ox
þ 1

U
� oh

ot

Z~z

~z0

wd~z ð3:78Þ

Inserting Eq. (3.78) into Eq. (3.70b), equation of �w is obtained as

�w ¼ �u~z
oh

ox
þ oh

ot

Z~z

~z0

wd~z ð3:79Þ

Substituting Eqs. (3.70a, b), (3.73) and (3.79) into Eq. (3.69) yields
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Uw2 oU

ox
þ w

oU

ot
� U

h
~z�

Z~z

~z0

wd~z

0
B@

1
CA ow

o~z
� oh

ot
þ U

ow
ot
¼ 1

q
� o�p

ox
þ s0

h
� on
o~z

� �

ð3:80Þ

The piezometric pressure gradient is given by

o�p

ox
¼ �qg S0 �

oh

ox

� �
ð3:81Þ

The de Saint-Venant equation of motion (Eq. 2.64) for unsteady-nonuniform
flow in open channels is

U

g
� oU

ox
þ oh

ox
� S0 þ

s0

qgh
þ 1

g
� oU

ot
¼ 0 ð3:82Þ

For simplicity, the momentum coefficient is assumed to be unity in Eq. (3.82),
as the momentum coefficient varies from 1.01 to 1.1 in straight open channels.
Rearranging Eq. (3.82), it gives

qhU

s0
� oU

ox
¼ � qgh

s0

oh

ox
� S0 þ

1
g
� oU

ot

� �
� 1 ¼ �k� 1 ð3:83Þ

where k is the streamwise pressure gradient parameter, which is given by

k ¼ qgh

s0

oh

ox
� S0 þ

1
g
� oU

ot

� �
ð3:84Þ

In Eq. (3.84), for steady flow, qU/qt = 0, and for uniform flow, qh/qx = 0. In
accelerating and decelerating flows, k\ –1 and k[ –1, respectively.

Using Eqs. (3.83) and (3.84) into Eq. (3.80) yields

�ðkþ 1Þw2 þ ðw� 1Þ qh

s0
� oU

ot
� ~z�

Z~z

~z0

wd~z

0
B@

1
CA qU
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� ow
o~z
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þ qh

s0
U
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ot

¼ �kþ on
o~z

ð3:85Þ

Dividing Eq. (3.71) by Eq. (3.72) and equating with Eq. (3.70a) give

�u

U
¼ 1

b
ln

~z

~z0

� �
¼ w ð3:86Þ
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Equation (3.86) represents the self-similar velocity distribution that remains
independent of time (qw/qt = 0) and streamwise distance x. Substituting
Eq. (3.86) into Eq. (3.85) and making qw/qt = 0 result in

on
o~z
¼ k� ðkþ 1Þ 1

b2 ln2 ~z

~z0

� �
þ 1

b
ln
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~z0
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� 1

� �
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� 1
b

1� 1
b
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~z

~z0

� �
þ ~z

~z0
� 1

� �� 
qU

s0
� oh

ot

ð3:87Þ

At the zero-velocity level ~z ¼ ~z0ð Þ, the above equation becomes

on
o~z

����
~z¼~z0

¼ k� qh

s0
� oU

ot
� 1

b
� qU

s0
� oh

ot
ð3:88Þ

Integrating Eq. (3.87) and using the boundary condition nj~z¼~z0
¼ 1 yield

n ¼ 1þ kð~z� ~z0Þ � ðkþ 1Þ 1
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� 1þ 2

b
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qU
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� oh
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ð3:89Þ

Substituting k from Eq. (3.84) and qU/qx from Eq. (3.77) into Eq. (3.89), the
equation of nondimensional Reynolds shear stress for unsteady-nonuniform flow
in open channels is obtained as

n ¼ 1þ ð~z� ~z0Þ
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� �
qU
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� oh
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ð3:90Þ

The bed shear stress s0 can be obtained from Eq. (3.90) using the boundary
condition sxz|z=h = 0 as
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s0 ¼ �ð1� ~z0Þqgh
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Using Eqs. (3.90) and (3.91), the equation of Reynolds shear stress sxz can be
obtained as

sxz ¼ �ð1� ~zÞqgh
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ð3:92Þ

The distribution of Reynolds shear stress in nondimensional and dimensional
forms can be computed by using Eqs. (3.90) and (3.92), respectively, if h, U, S0,
qh/qx, qh/qt, qU/qt, ks, and s0 are known. As a priori, Eq. (3.91) can be used to
estimate the bed shear stress s0 for unsteady-nonuniform flow. Figures 3.12a–c
present ~zðnÞ curves computed using Eq. (3.90), where the values of s0 were cal-
culated from Eq. (3.91). Three cases are considered in Figs. 3.12a–c: (a)
Unsteady, (b) nonuniform accelerating, and (c) nonuniform decelerating flows.
Interestingly, the Reynolds shear stress distributions are no longer linear. The
computed curves are in agreement with the experimental data of Song (1994) for
unsteady and nonuniform flows in open channels.

It is also important to recognize that the Reynolds shear stress in unsteady-
nonuniform flow modifies the flow field due to change in turbulence structure.
Therefore, Eq. (3.92) can be utilized to determine the influence of the Reynolds
shear stress on the mixing length. The Reynolds shear stress sxz is related to the
mixing length l as follows:

sxz ¼ ql2
o�u

oz

� �2

ð3:93Þ

Using Eq. (3.73) (second equation) into Eq. (3.93), the mixing length is
expressed as
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l ¼ sxz

qU2

� �0:5 h

ow=o~z
ð3:94Þ

In the above equation, sxz from Eq. (3.92) can be substituted to obtain the
modification in mixing length due to unsteady-nonuniform flow.
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3.10 Secondary Currents and Dip Phenomenon

3.10.1 Secondary Currents

In case where there is a three-dimensional flow field, the flow is often regarded as
comprising of two flow components, such as primary flow and secondary flow. The
primary flow is parallel to the main direction of fluid motion, and the secondary
flow is transverse to it. In most of the cases, the secondary flow is a relatively
minor flow superimposed on the primary flow and is commonly termed secondary
currents.

Prandtl (1952) divided the secondary currents into two categories. Secondary
currents which are the consequence of the mean flow skewing due to curvilinearity
of streamlines are called the secondary currents of Prandtl’s first kind, and those
currents which are caused by the flow nonuniformities near the walls induced by
the anisotropic turbulence u0u0 6¼ w0w0

	 

are called the secondary currents of

Prandtl’s second kind. The latter category is the main focus here as that is induced
by the turbulence. The maximum velocity of the second kind is of the order of 5 %
of the mean streamwise velocity (Nezu and Nakagawa 1993).

In a Cartesian coordinate system, the equation of motion of time-averaged
vorticity Xx about x-axis is given as follows (Perkins 1970):

oXx

ot|{z}
Unsteady

þ �u
oXx
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þ �v
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þ �w
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ð3:95Þ

where Xy and Xz are the vorticities about y-axis and z-axis, respectively. Here, x-
axis is in the streamwise direction, y-axis is transverse to the streamwise direction,
and z-axis is in the vertical direction. The vorticities are expressed as

Xx ¼
o�w

oy
� o�v

oz

� �
; Xy ¼

o�u

oz
� o�w

ox

� �
; Xz ¼

o�v

ox
� o�u

oy

� �
ð3:96Þ

Equation (3.95), which is applicable for both first and second kinds, is most
readily derived by eliminating the pressure term between the RANS equations in
y-direction and z-direction in addition to continuity equation. Various terms
involved in Eq. (3.95) are discussed as follows:

The first term unsteady signifies the time dependence of streamwise vorticity Xx

and vanishes in case of steady flow. The term I represents the total advection of Xx

by the primary flow and the secondary currents. The term II accounts for the
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viscous diffusion of Xx. The term III indicates the streamwise stretching of Xx. The
term IV describes the vorticity production through the skewing of the mean shear
by a transverse gradient of streamwise velocity. The secondary flows can be
produced in a curved channel due to centrifugal action on the basis of terms III and
IV. Such flows correspond to Prandtl’s first kind, and the terms III and IV vanish
for uniform flow in straight channels, as o�u=ox ¼ 0 and Xyo�u=oyþ Xzo�u=oz ¼ 0.
The term V represents the production of a rotational acceleration of a fluid element
about the streamwise axis due to turbulence anisotropy, while the term VI is to
suppress it. The term VII signifies the vorticity production due to Reynolds shear
stress gradient in nonuniform flow. For uniform flow, the terms �uoXx=ox, III, and
VII vanish.

Since it is difficult to solve Eq. (3.95) in its full form, a suitable turbulence
assumption is required to do so. In a steady-uniform flow, for the secondary
current of Prandtl’s second kind, which is primarily turbulence induced, the term
qXx/qt = 0 and the terms I–IV are negligible in comparison to the terms V and VI
(Nezu and Nakagawa 1993; Ikeda 1981). Hence, Eq. (3.95) reduces to

o2

oyoz
ðv0v0 � w0w0Þ ¼ o2

oy2
� o2

oz2

� �
v0w0 ð3:97Þ

In the above equation, the production of vorticity due to turbulence anisotropy
(left-hand side) is balanced by the suppression of vorticity due to Reynolds shear
stress (right-hand side). Using an eddy viscosity model, the higher-order terms of
the Reynolds shear stress can be approximated as

�v0w0 ¼ et

o�w

oy
þ o�v

oz

� �
ð3:98Þ

where et is the eddy viscosity. Ikeda (1981) obtained an approximate formulation
for the depth-averaged eddy viscosity from the logarithmic law as

et ¼
j
6

�u�h ð3:99Þ

where �u� is the spatially averaged shear velocity in the transverse direction. It
varies sinusoidally in the transverse direction in a wide channel due to the for-
mation of a cellular structure of secondary currents.

Nakagawa et al. (1981) attempted to establish the vorticity production term
v0v0 � w0w0
	 


=u2
� a universal. Then,

v0v0 � w0w0

u2
�

� a0
�u0w0

u2
�

ð3:100Þ

where a0 is a proportionality constant being approximated as unity.
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Ikeda (1981) assumed a linear distribution of the difference in the Reynolds
normal stresses as

v0v0 � w0w0

�u2
�

¼ s0

q�u2
�
ð1� ~zÞ ^ ~z ¼ z

h
ð3:101Þ

The bed shear stress s0 ¼ qu2
� that varies sinusoidally in the transverse direction

(y-direction) can be simulated as

s0

q�u2
�
¼ 1þ ab cosðkw~yÞ ^ ~y ¼ y

h
ð3:102Þ

where ab is the amplitude of the sinusoidal distribution of s0 in the transverse
direction and kw is the wave number.

From the solution of Eq. (3.97), using Eqs. (3.98)–(3.102), Ikeda (1981)
obtained a transverse series of secondary current cells for which kw = pn, where
n is an integer. According to Townsend (1976), the dominant cell, for which
kw = p, mainly contributes to the production of secondary currents. Ikeda (1981)
obtained a cellular secondary circulation by setting kw = p as follows:

vþ ¼ 6ab

jp2

2
p

cos p~z� ð2~z� 1Þ sin p~z

� �
sin p~y ^ vþ ¼ �v

�u�
ð3:103aÞ

wþ ¼ 6ab

jp2
½ð2~z� 1Þ cos p~zþ 1� cos p~y ^ wþ ¼ �w

�u�
ð3:103bÞ

The above equations can simulate the circular counter-rotating cells of diameter
h. Rodríguez and García (2008) experimentally captured the cellular structure in a
rectangular flume, confirming the above derivation.

Figures 3.13a, b schematically show that the secondary currents in a wide
channel are characterized by a well-defined cellular structure, while those in a
narrow channel are characterized by a strong free surface vortex paired with a
comparatively weaker bottom vortex. In a wide channel, the corner-induced sec-
ondary currents are observed near the sidewalls and are characterized by the flow
moving into the apex of the corner with a return flow moving away from the corner
(Perkins 1970; Gessner 1973; Galletti and Bottaro 2004). The corner vortices are
damped within a short distance in the transverse direction from the sidewalls.

3.10.2 Dip Phenomenon

In open-channel flow, sidewall effects are more important in narrow channels,
while the bed effects are important in the central portion of wide channels (see
Figs. 3.13a, b). Based on the ratio of channel width B to flow depth h, termed
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aspect ratio, the wide and narrow channels are defined. For instance, aspect ratio
B/h \ 5 applies to narrow channels and B/h [ 10 to wide channels. Narrow
channels present strong secondary currents, and as a result, the maximum velocity
appears below the free surface, which is called the dip phenomenon (Chow 1959).

Tracy and Lester (1961) argued that the open-channel flow may be divided into
two regions: the central region flow and the corner region flow that exists in the
vicinity of the wall. Besides, Keulegan (1938) proposed that a flow region can be
divided using a straight division line as shown in Fig. 3.14; one region is asso-
ciated with the bed and the other two regions with the sidewalls. Yang and Lim
(1997) obtained the expression for the central portion as kh \ y \ (B - kh),
where k is the slope of the division line and y is the distance from the sidewall.
From the experimental results, it was found that the logarithmic law can be
applicable to express the velocity distribution near the bed, but failed in the outer
region.

Yang et al. (2004) derived the modified logarithmic law including the dip
phenomenon. The derivation is as follows:

For a steady-uniform turbulent flow in an open channel (Fig. 3.14), the RANS
equation in x-direction using the continuity equation yields

Wall WallCL CL

(a) (b)

Fig. 3.13 Secondary currents in a a wide channel and b a narrow channel
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Fig. 3.14 Division of flow region and velocity dip
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where S0 is the streamwise bed slope (& sinh). In the central region (Fig. 3.14), it
can be assumed that the vertical gradient q(�)/qz dominates, allowing to neglect the
transverse gradient q(�)/qy (on the horizontal plane). Since the viscous shear stress
is negligible as compared to the Reynolds shear stress, that is, �u0w0 � to �u=oz,
Eq. (3.104) reduces to

o

oz
ð�u�wþ u0w0Þ ¼ gS0 ð3:105Þ

Integrating Eq. (3.105) and introducing a global shear velocity u* yield

� u0w0

u2
�
¼ 1� ~z� a1~zþ

�u�w

u2
�
^ a1 ¼

ghS0 � u2
�

u2
�

ð3:106Þ

Assuming an empirical model, Yang et al. (2004) gave

�u�w

u2
�
¼ �a2~z ð3:107Þ

where a2 is a positive coefficient. Using Eq. (3.107) into Eq. (3.106) yields

� u0w0

u2
�
¼ 1� ~z� a~z ^ a ¼ a1 þ a2 ð3:108Þ

According to Boussinesq hypothesis, one can approximate

�u0w0 ¼ et

d�u

dz
ð3:109Þ

Thus, Eq. (3.108) becomes

d�u

dz
¼ u2

�
et

ð1� ~z� a~zÞ ð3:110Þ

A parabolic distribution of eddy viscosity et(z) is obtained by using Eqs. (3.20)
(that is, the linear law of fluid shear stress), (3.31) (that is, the logarithmic law of
streamwise velocity) and (3.109). It is
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et ¼ ju�zð1� ~zÞ ð3:111Þ

Inserting Eq. (3.111) into Eq. (3.110) and then integrating with a boundary
condition ½�u z ¼ z0ð Þ ¼ 0� yield

�uþ ¼ 1
j

ln
~z

~z0
þ a lnð1� ~zÞ � a lnð1� ~z0Þ

� �
^ �uþ ¼ �u

u�
_ ~z0 ¼

z0

h

ð3:112Þ

where z0 is the zero-velocity level. Since ~z0 � 1, then lnð1�~z0Þ ! 0 and

�uþ ¼ 1
j

ln
~z

~z0
þ a lnð1� ~zÞ

� �
ð3:113Þ

This is the modified logarithmic law including the dip phenomenon, deduced by
Yang et al. (2004). It is evident from Eq. (3.113) that the dip phenomenon is
governed by the term alnð1�~zÞ with a as a dip correction factor.

The location of the maximum velocity (�u maximum) can be obtained by dif-
ferentiating Eq. (3.113) with respect to z and setting d�u=dz ¼ 0. It is as follows:

d ¼ h

1þ a
ð3:114Þ

Yang et al. (2004) proposed an empirical formula for the dip correction factor
as a ¼ 1:3 expð�~yÞ. At the centerline of the channel, it is a = 1.3exp(–0.5B/h).
However, according to Wang et al. (2001), the maximum velocity is located at

d ¼ h 0:44þ 0:212~yþ 0:05 sin 2
p

2:6
~y

� �h i

On the other hand, Absi (2011) derived the modified log-wake law including the
dip phenomenon. Instead of a parabolic distribution as given by Eq. (3.111), he
approximated the eddy viscosity et(z) in accordance with the log-wake law given
by Nezu and Rodi (1986) as follows:

et ¼ ju�hð1� ~zÞ 1
~z
þ pP sinðp~zÞ

� ��1

ð3:115Þ

where P is the Coles’ wake parameter. Using Eq. (3.115) into Eq. (3.110), the
nondimensional differential equation is obtained as

d�uþ

d~z
¼ 1

j
1� a

~z

1� ~z

� �
1
~z
þ pP sinðp~zÞ

� �
ð3:116Þ
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Integration of Eq. (3.116) for ~z0 � 1 yields the modified log-wake law. It is as
follows:

�uþ ¼ 1
j

ln
~z

~z0
þ 2P

j
sin2 p

2
~z

� �
þ a

j
lnð1� ~zÞ � apP

j

Z~z

~z0

~z

1� ~z
sinðp~zÞd~z ð3:117Þ

3.11 Isotropic Turbulence Theory

3.11.1 Energy Cascade Process

Richardson’s (1922) concept of turbulence is a turbulent flow to be composed of
variable sizes of eddies. The sizes of the eddies define the characteristic length
scale ‘ of the eddies, which are also characterized by the velocity scale u(‘) and the
time scale s(‘) [= ‘/u(‘)] being a function of the length scale ‘. The large sizes of
eddies are unstable and eventually disintegrated into smaller eddies. The TKE that
an initial large eddy possesses is distributed into the smaller eddies, which also
undergo the similar process of disintegration, giving rise to even smaller eddies
that take over the TKE from their predecessor eddies and so on. In this process, the
TKE is transferred from the large-scale motions to smaller-scale motions until
attaining an adequately small length scale so that the fluid molecular viscosity can
effectively dissipate the TKE into heat. Therefore, the large eddies as a continuous
process are transformed successively into smaller and smaller eddies in a cascade
process with the TKE being transferred from large to small scale (Fig. 3.15).

Richardson notably summarized the turbulence processes in a nice rhyming
verse (Richardson 1922):

Big whorls have little whorls;
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity
(in the molecular sense).

3.11.2 Integral Scale

Eddies of the largest size, termed macro-turbulence, are characterized by the
length scale ‘T, which is comparable with the flow length scale L, for example the
flow depth in an open-channel flow, and the velocity scale uT(‘T) having an order
of magnitude of turbulence intensity given by (2k/3)1/2, which is comparable with
the mean flow velocity U, where k is the TKE. It is assumed that the TKE of eddies
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of velocity scale uT is dissipated in time scale sT. The length scale ‘T is referred to
as the integral scale of turbulence and is given by

‘T�
k3=2

e

where e is the TKE dissipation rate. In the above, the proportionality constant is in
the order of unity. The velocity scale uT is

uT ¼ k1=2

The Reynolds number corresponding to the large eddies is termed turbulence
Reynolds number RT, which is given by

RT ¼
uT‘T

t
¼ k2

et

The large eddies contain TKE of the order of u2
T to be dissipated in time scale

sT = ‘T/uT, such that the rate of TKE transfer, known as TKE dissipation rate e,
from the large eddies, is assumed to a scale as u2

T=sT ¼ u3
T=‘T being independent

of viscosity t. Note that the RT corresponds to a sufficiently large Reynolds
number.

Besides the integral scale, note that the large-scale eddies, which are macro-
turbulent eddies, in an open-channel flow, can be regarded as of the order of
Prandtl’s mixing length l, which is a function of the distance from the bed, cor-
responding to the location z (Yalin 1977).

Largest eddy

Cascade process Smallest eddies

ε

ε

ε ε

ε

ε
ε

Mean flow energy

Inertial subrange

ε

ε

Anisotropy Isotropy

ε

Heat

Heat

Heat

Fig. 3.15 Energy cascade process
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3.11.3 Kolmogorov Hypotheses

Kolmogorov (1941) postulated that for sufficiently large Reynolds numbers, eddies
of small size are statistically isotropic, that is, they could not be discriminated by a
specific spatial direction. The isotropic simply implies that u0u0 ¼ v0v0 ¼ w0w0.
Therefore, Kolmogorov hypothesis of local isotropy states:

At sufficiently large Reynolds numbers, but not infinite, the small-scale turbulent motions
(‘T � ‘) are statistically isotropic.

The terminology local isotropy indicates the isotropy at small-scale motions,
while the large-scale motions can still remain anisotropic. Let the length scale ‘E

be the threshold length scale to changeover the large-scale anisotropic eddies
(‘T [ ‘E) to the small-scale isotropic eddies (‘E [ ‘). Then, for the large Reynolds
numbers, ‘E is related to the integral scale ‘T (that is, the large-scale eddies) as

‘E �
‘T

6

In general, eddies of large size are anisotropic, since they are determined by the
specific geometrical characteristics of the boundaries. Kolmogorov argued that in
the Richardson’s energy cascade process, this geometrical and directional infor-
mation of the large-scale eddies is vanished in the chaotic scale reduction process
as the TKE is transferred to successively smaller eddies. The statistics of the small-
scale motions is characterized by a universal feature, as they are identical for all
turbulent flows when the Reynolds numbers are sufficiently large. Therefore, the
small-scale motions at large Reynolds numbers are invariant of the mean flow and
the boundary conditions.

The small-scale eddies are dependent on the rate of transfer of TKE, tKE, to
them from the larger-scale eddies and the viscous diffusion, which is related to the
kinematic viscosity t. This rate of transfer of TKE is approximately equal to the
TKE dissipation rate, that is, tKE & e. Therefore, Kolmogorov first similarity
hypothesis states:

In all turbulent flows at sufficiently large Reynolds numbers, the statistical properties of
the small-scale motions (‘\ ‘E) have a universal form that is entirely determined by the
average kinetic energy dissipation rate e and the kinematic viscosity t.

Therefore, the universal equilibrium range refers to the length scale range
‘\ ‘E. A shorter time scale s, in this range, is required as compared to the time
scale sT corresponding to large eddies, that is, s (=‘/u) \ sT (=‘T/uT). Thus, a
dynamic equilibrium of small eddies is quickly attained with the rate of transfer of
TKE, tKE, to them from the larger-scale eddies. Since the small-scale motions are
determined by simply two parameters, such as TKE dissipation rate and viscosity,
there are unique in length, velocity, and time scales that can be deduced by using
dimensional analysis as follows:
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g  t3

e

� �1=4

; ug  ðetÞ1=4; sg 
t
e

� �1=2
ð3:118Þ

This set of equations provides the Kolmogorov micro-scales. The g, ug, and sg

are known as Kolmogorov length, velocity, and time scales. There are two dis-
tinctive characteristics stemming from the definition of Kolmogorov micro-scales.
They are as follows:

1. The Reynolds number corresponding to the small eddies is

Rg ¼
ugg
t
¼ ðetÞ

1=4ðt3=eÞ1=4

t
¼ 1

Thus, the energy cascade continues to be smaller and smaller scales until the
Kolmogorov micro-scales are small enough for the dissipation of TKE to be
effective.

2. The TKE dissipation rate corresponding to the small eddies is

e ¼ t
ug

g

� �2

¼ t
ðetÞ1=4

ðt3=eÞ1=4

" #2

¼ t
s2
g

) ug

g
¼ 1

sg

It provides a consistent description of the velocity gradient of dissipative
eddies.

The ratios of small-scale to large-scale eddies are readily determined by using
integral scale ‘T * k3/2/e in Eq. (3.118). They are

g
‘T

�R�3=4
T ;

ug

uT

�R�1=4
T ;

sg

sT

�R�1=2
T ð3:119Þ

It is evident that at large Reynolds numbers, the velocity and time scales of
small-scale eddies are smaller than those of large eddies. At sufficiently large
Reynolds numbers, the ratio g/‘T is so small that there is a range of length scale ‘
that is very small as compared to ‘T and however very large as compared to g, that
is, ‘T � ‘ � g. Since the eddies in this range are much larger than the dissipative
eddies, it may be imagined that their Reynolds numbers are large. As a result of
this, their motion is little influenced by the viscosity. This leads to Kolmogorov
second similarity hypothesis that states:

In all turbulent flows at sufficiently large Reynolds numbers, the statistical properties of
the motions of scale ‘ in the range ‘T � ‘ � g have a universal form that is entirely
determined by the average kinetic energy dissipation rate, but independent of kinematic
viscosity.
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It is therefore suitable to introduce a new length scale ‘D (& 60g for large
Reynolds numbers), such that the range can be given by ‘E [ ‘[ ‘D. The length
scale ‘D divides the universal equilibrium range (‘\ ‘E) into two subranges:

1. The inertial subrange (‘E [ ‘[ ‘D) where the motions are governed by the
inertial effects, but the viscous effects remain negligible.

2. The dissipation range (‘\ ‘D) where the motions undergo the viscous effects.

The length scales and their ranges are illustrated by a simple sketch, as shown
in Fig. 3.16. It shows that the energy containing range, which has a size range ‘E

(=‘T/6) \ ‘\ 6‘T, possesses bulk of the TKE.
The TKE dissipation rate e corresponding to the eddies in the inertial subrange

of size ‘ is

e ¼
u3

g

g
¼

u2
g

sg
¼ g2

s3
g

Given the eddy size ‘ and TKE dissipation rate e, the characteristic velocity and
time scales are

uð‘Þ ¼ ðetÞ1=4 ¼ ug
‘

g

� �1=3

� uT

‘

‘T

� �1=3

sð‘Þ ¼ ‘2

e

� �1=3

¼ sg
‘

g

� �2=3

� sT

‘

‘T

� �2=3

It is the corollary of the Kolmogorov second similarity hypothesis that in the
inertial range, the velocity scale and the time scale decrease with a decrease in
length scale ‘.

Inertial subrange

Taylor micro-scale

Energy containing range Dissipation range

Universal equilibrium range

L
E DT

η

Integral scale Kolmogrov length scale

Anisotropy Isotropy

TKE transfers to successively 
smaller eddies at a rate T

KE
( )

TKE production rate TKE dissipation rate

Decreasing length scaleIncreasing length scale

Fig. 3.16 Sketch illustrating length scales and their ranges including TKE transfer process
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3.11.4 Taylor Micro-Scale

In a turbulent shear flow, all time-averaged quantities except �ui are spatially
independent. In such a situation, the TKE production rate equals the TKE dissi-
pation rate of the same quantity (Hinze 1987). It suggests a TKE budget equation

�u0iu
0
jsij|fflfflfflffl{zfflfflfflffl}

Production Rate

¼ 2ts0ijs
0
ij|fflffl{zfflffl}

Dissipation Rate

^ sij ¼
1
2

o�ui

oxj
þ o�uj

oxi

� �
_ s0ij ¼

1
2

ou0i
oxj
þ

ou0j
oxi

� �

where sij is the shear strain rate, which is discussed in Sect. 2.2 with different
symbols [see Eqs. (2.14) and (2.15)], and s0ij is the fluctuating shear strain rate. Let
the equation of TKE dissipation rate for the isotropic turbulence be written
(remembering that the small-scale motions tend to be isotropic) as

e ¼ 2ts0ijs
0
ij ¼ 15t

ou0

ox

� �2

ð3:120Þ

A new length scale k, called Taylor micro-scale, is introduced (Taylor 1935),
and it can be defined as

ou0

ox

� �2

 u0u0

k2 ð3:121Þ

The scaling of u02 follows the condition of isotropic turbulence, that is,

u0u0 ¼ v0v0 ¼ w0w0, so that u0u0 ¼ u0iu
0
i=3. Then, using Eqs. (3.120) and (3.121), the

TKE dissipation rate is related to the Taylor micro-scale as

e ¼ ejxþejyþejz) e ¼ 15t
u0u0

k2 ^ ejx¼ ejy¼ ejz ð3:122Þ

From TKE k ¼ ðu0u0 þ v0v0 þ w0w0Þ=2, it can be derived u0u0 ¼ 2=3ð Þk for
isotropic turbulence. Thus, using Eq. (3.122), the Taylor micro-scale is given by

k ¼ 10
tk

e

� �1=2

ð3:123Þ

The relationship between the Taylor micro-scale and the Kolmogorov micro-
scale can be determined from the ratios of k to ‘T, g to ‘T, and k to g expressing
them in terms of turbulence Reynolds number RT [= k2/(et)] as follows:
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k
‘T

¼ 101=2R�1=2
T ;

g
‘T

¼ R�3=4
T ;

k
g
¼ 101=2R1=4

T ) k ¼ 101=2g2=3‘
1=3
T

Thus, at large Reynolds numbers, the Taylor micro-scale falls in between the
large-scale and the small-scale eddies, that is, ‘T [ k[ g (Fig. 3.16). Taylor time
scale of the eddies of length scale k is related to the Kolmogorov time scale as

sk ¼
k

ðu0u0Þ0:5
¼ 15

t
e

� �1=2
¼ 151=2sg

In the characterization of turbulence, the Reynolds number Rk½¼ ðu0u0Þ0:5k=t�
corresponding to the Taylor micro-scale can be related to the turbulence Reynolds
number RT as

Rk ¼
20
3

RT

� �1=2

3.11.5 Transformation of Length Scale to Wave Number

The wave number kw is defined as kw = 2p/‘. The length scales and their ranges
can be expressed in terms of wave number. They are as follows:

ðkwg; kwD; kwE; kwTÞ ¼ 2p � ð‘g; ‘D; ‘E; ‘TÞ�1

In this way, the universal equilibrium range (‘E [ ‘) is given by
kw [ kwE : 2p/‘E. Similarly, the inertial subrange (‘E [ ‘[ ‘D) is expressed as
kwD [ kw [ kwE. In nondimensional form, the wave numbers are expressed mul-
tiplying them by the Kolmogorov length scale g as

ðgkwg; gkwD; gkwE; gkwTÞ ¼ 2pg � ð‘g; ‘D; ‘E; ‘TÞ�1

Note that in the dissipation range, the nondimensional wave number is
gkwg = 2p. Figure 3.17 shows the length scales and their ranges in terms of wave
number.

3.11.6 Spectrum Function

It is an important question: How is TKE distributed among the eddies of different
sizes? This can be determined by the spectral analysis, which is capable of
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transforming a time-domain signal to the frequency-domain signal in terms of a
spectral density function as a function of frequency f itself or wave number kw. In
the turbulence analysis, the spectral density functions that are commonly used are
energy spectrum function E and spectrum function Sii of velocity fluctuations.

A nondimensional correlation function Cu(n) between two streamwise velocity
fluctuations u0(x) and u0(x + n) having a streamwise lag distance n can be defined
as follows (Nezu and Nakagawa 1993):

CuðnÞ ¼
u0ðxÞ � u0ðxþ nÞ

u0u0
¼
Z1

0

SuuðkwÞ cosðkw � nÞdkw ð3:124Þ

where Suu(kw) is a nondimensional spectrum function of u0 and is given by

SuuðkwÞ ¼
2
p

Z1

0

CuðnÞ cosðkw � nÞdkw

For the case of no lag (n = 0), Eq. (3.124) becomes

Z1

0

SuuðkwÞdkw ¼ 1 ð3:125Þ

The way in which the TKE is distributed over the range of scales is the fun-
damental characterization of turbulence. For isotropic turbulence, this can be
performed by means of the energy spectrum function E(kw) that represents the
TKE k to contain eddies of size ‘ having wave number kw (=2p/‘). By definition,
k is the integral of E(kw) over the full range of wave number kw. Thus,

k ¼ 1
2

u0iu
0
i ¼

Z1

0

EðkwÞdkw

In developing E(kw) within the inertial subrange, E(kw) is solely dependent on
wave number kw and TKE dissipation rate e (by Kolmogorov second similarity
hypothesis). From an analogy between spatial turbulence field and spectral wave
number space, the TKE dissipation rate e is regarded as a fundamental quantity.
Therefore, by dimensional analysis, the possible form for the energy spectrum
function can be obtained as

EðkwÞ ¼ Ce2=3k�5=3
w ð3:126Þ
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where C is the universal Kolmogorov constant, which was experimentally deter-
mined as 1.5 (Zhou 1993). Equation (3.126) leads to the Kolmogorov hypothesis
of energy spectrum function that states:

In the inertial subrange, the energy spectrum function is proportional to –5/3-th power of
the wave number which is a universal.

It is commonly known as Kolmogorov’s –5/3-th power law. The –5/3-th power
law can be verified only by using experimentally obtained velocity data over a
sufficiently long period of time in a turbulent flow (see Fig. 5.19a). A larger
Reynolds number associated with the large eddies gives rise to a larger inertial
subrange. In laboratory experiments, it is, however, very difficult to reach suffi-
ciently large Reynolds numbers to produce an adequately broad inertial subrange.
Figure 3.18 schematically illustrates the energy spectrum function E(kw) curve in a
log–log plot. The –5/3 slope of the curve in the inertial subrange corresponds to the
Kolmogorov –5/3-th power law. On the other hand, the energy containing range
corresponds to small range of wave numbers kw and the dissipation range to large
range of kw.

Equation (3.126) can also be expressed in terms of spectral density function Suu

of velocity fluctuations u0 (Nezu and Nakagawa 1993):
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Fig. 3.17 Sketch illustrating length scales and their ranges in terms of wave number
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SuuðkwÞ�
e2=3

u0u0
k�5=3

w ð3:127Þ

The best possibility is that the spectrum function F(f) can be readily obtained
from the velocity fluctuations u0 by using the fast Fourier transform (FFT) method
(Bose 2009).8

Nezu (1977) obtained the following equations of the length scale ratios from the
combined spectrum functions between the inertial subrange and the dissipation
range:

‘T

k
¼ K

15
RTk

� �1=2

ffi 0:21R1=2
Tk ;

‘T

g
¼ ðKR3

TkÞ
1=4 ffi 0:91R3=4

Tk

^ RTk ¼
ðu0u0Þ0:5‘T

t

where K is a weak function that can be given by

KðRTk [ 200Þ � 0:691þ 3:98

R1=2
Tk

The ‘T/k increases, and the inertial subrange becomes wider with an increase in
RTk. So at large RTk, the –5/3-th power law applies over a wide spectral range.

3.12 Anisotropy in Turbulence

The characterization of turbulent flow requires knowledge of the departure from
isotropy. Reynolds stress anisotropy tensor bik is defined as the difference between
the ratio of Reynolds stress tensor terms to the turbulent kinetic energy (TKE) and its
isotropic equivalent quantity (Lumley and Newman 1977). Thus, bik is as follows:

bik ¼
u0iu
0
k

2k
� dik

3
ð3:128Þ

where k is the average TKE, that is u0iu
0
i=2, and dik is the Kronecker delta function,

that is dik(i 6¼ k) = 0 and dik(i = k) = 1. Importantly, bik is a symmetric and
traceless tensor bounded by –1/3 B bik B 2/3 and bik = 0 for isotropic turbulence.

8 The following transformation then applies:

SuuðkwÞ ¼
�u

2p
Fðf Þ ^ kw ¼ 2p

f

�u
:
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The sign of each diagonal component in bik refers to the relative contribution of the
Reynolds stress relative to the TKE. However, a more convenient method for
comparing the overall anisotropy is to use two principal independent invariants II
(=–bikbik/2) and III (=bijbjkbki/3), while the first invariant is zero (I = bii = 0). A
cross plot of –II against III is termed anisotropic invariant map (AIM). In an AIM,
–II (positive or zero) represents the degree of anisotropy and III corresponds to the
nature of anisotropy. An AIM that is constructed plotting –II against III with the
AIM boundaries is shown in Fig. 3.19a for the data of rigid- and mobile-bed flows,
obtained by Sarkar (2010). The possible states of turbulence prevail within the left-
and right-curved boundaries, given by III = ±6(II/6)3/2, originating from the
bottom cusp (defined by –II = III = 0). These boundaries indicate two types of
axisymmetric turbulence. The left boundary as identified by Choi and Lumley
(2001) represents a pancake-shaped turbulence, where one component of TKE is
smaller than other two that are equal. On the other hand, the right boundary
represents a cigar-shaped turbulence, where one component of TKE is larger than
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Fig. 3.19 a Anisotropic invariant maps (AIM) and b vertical distributions of anisotropic
invariant function F (Sarkar 2010)
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other two. The limits of one- and two-dimensional turbulence are given by the
upper linear boundary, that is, II = III + (8/9). Thus, for one-dimensional tur-
bulence, II = 8/3 and III = 16/9; for two-dimensional, II = 2/3 and III = –2/9;
and for three-dimensional, –II = III = 0. In Fig. 3.19a, the data plots adjacent to
the beds start from the limit of two-dimensional turbulence, as they are close to the
left curved boundary. With increasing distance from the bed, they shift slightly
downward and toward left. In case of mobile-bed flow, the plots have an affinity to
shift toward the bottom cusp, becoming a better isotropy.

Another method to estimate the overall anisotropy in the Reynolds stress tensor
is given by the anisotropic invariant function F (Lumley 1978):

F ¼ I þ 9II þ 27III ð3:129Þ

It is a measure of the approach to either two-dimensional turbulence (F = 0) or
a three-dimensional isotropic state (F = 1). In other words, it is therefore con-
venient to ascertain the state of turbulence, that is either two- or three-dimensional.
Figure 3.19b shows that the data plots collapse on a band across the flow layer,
where the values of F approach closer to unity in mobile-bed flow than in rigid-bed
flow. It suggests that the turbulence in mobile-bed flow satisfies isotropy better
than that in rigid-bed flow. While all the data for both the cases conclusively
support an overall reduction in anisotropy near the bed, there is also an evidence to
suggest that each case has its own AIM signature, as the rates of reduction in
anisotropy are different, albeit marginally. Hence, they have their own level of
anisotropy for the Reynolds shear stresses.

3.13 Higher-Order Correlations

Higher-order correlations that contain important stochastic information relating to
the flux and diffusion of the stresses developed due to turbulence are directly
attributable to the turbulent coherent structures (Simpson et al. 1981; Gad-el-Hak
and Bandyopadhyay 1994). To be more explicit, third-order correlations preserve
their signs positive or negative, providing useful stochastic information on the
temporal distribution of velocity fluctuations with respect to the time-averaged

velocity. For instance, the third-order correlation u01u02u02 defines the flux of the

Reynolds normal stress (RNS) u02u02 (in fact, it is RNS divided by q) driven by u01.
The set of third-order correlations mjk are specified as follows (Raupach 1981):

mjkðjþ k ¼ 3Þ ¼ û jŵk ^ û ¼ u0

ðu0u0Þ0:5
_ ŵ ¼ w0

ðw0w0Þ0:5
ð3:130Þ

With j + k = 3 in Eq. (3.130), the M30 and M03 are skewness of u0 and w0,
respectively. The stochastic interpretation of the skewness lies on the asymmetry
in the Gaussian distribution of the probability density function of velocity
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fluctuations (u0 or w0). From the viewpoint of hydrodynamics, the skewness of u0 is

M30ð¼ û3Þ, defining the streamwise flux of the streamwise RNS u0u0. A similar

expression can be written for M03ð¼ ŵ3Þ, defining the vertical flux of the vertical

RNS w0w0. On the other hand, the diffusion factors are M21ð¼ û2ŵÞ and

M12ð¼ ûŵ2Þ, characterizing the diffusions of u0u0 in z-direction and w0w0 in x-
direction, respectively. The characteristics of mjk are demonstrated through
experimental results of Dey and Das (2012) as follows:

Figure 3.20 presents the distributions of mjkð~zÞ for the cases of rigid-bed and
mobile-bed flows. In rigid-bed flow, m30 and m12 start with small negative values
near the bed and decrease (increase in negative magnitudes) with ~z. On the other
hand, in mobile-bed flow, m30 and m12 start with small positive values near the
bed, changing over to negative values with a slight increase in ~z. It suggests that
the bed mobility influences m30 and m12 by changing the u0u0 flux and the w0w0

diffusion to the streamwise direction, while they propagate against the streamwise
direction in rigid-bed flow. Away from the bed ð~z [ 0:06Þ, the u0u0 flux and the
w0w0 diffusion occur against the streamwise direction and become pronounced with
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an increase in ~z for both rigid-bed and mobile-bed flows. The trends of m03ð~zÞ and
m21ð~zÞ in the rigid-bed flow are positive over the entire flow depth, while those in
the mobile-bed flow are negative near the bed ð~z � 0:06Þ and positive for
~z [ 0:06. It suggests that the w0w0 flux and the u0u0 diffusion are in upward
direction over the entire flow depth for rigid-bed flow, while those are in down-
ward direction in the near-bed flow region for mobile-bed flow.

Further, the fourth-order correlation termed coefficient of kurtosis of u0 (say),

Kuð¼ û4Þ, illustrates the intermittency of turbulence. The kurtosis for a standard
Gaussian distribution is three. For this reason, the excess kurtosis is defined as (Ku

– 3). Therefore, Ku [ 3 refers to a distribution with a peaky signal characteristic
(leptokurtic distribution or too tall) of intermittent turbulent events, while Ku \ 3
refers to a flat characteristic (platykurtic distribution or too flat). For instance,
Andreopoulos et al. (1984) observed very high values of Ku near the wall and in
the outer layer as well, specifying that the turbulence is highly intermittent in both
locations. It is in conformity with the observations of Grass (1971) that ejections
and sweeps provide strong intermittent contributions to turbulence production.

3.14 Turbulent Kinetic Energy Flux

The components of TKE flux in x-, y- and z-direction are expressed as follows:

fku ¼ ku0; fkv ¼ kv0; fkw ¼ kw0 ^ k ¼ 1
2
ðu0u0 þ v0v0 þ w0w0Þ ð3:131Þ

In two-dimensional flow, the streamwise and vertical flux of the TKE can be
approximated as fku ¼ 0:75 u0u0u0 þ u0w0w0

	 

and fkw ¼ 0:75 w0w0w0 þ u0u0w0

	 

,

respectively (Krogstad and Antonia 1999). The nondimensional form of the TKE
fluxes is given by Fku, Fkv, Fkw = (fku, fkv, fkw) 9 u*

-3.
To demonstrate the characteristics of Fku and Fkw in rigid-bed and mobile-bed

flows, the experimental results of Dey and Das (2012) are considered (Fig. 3.21).
In rigid-bed flow, the Fku starts with a small negative value and decreases (increase
in negative value) with ~z. It implies that the Fku transports against the streamwise
direction over the entire flow depth. The inertia of flowing fluid layer induces a
retarding effect being attributed to the negative value of Fku. On the other hand, the
positive Fkw over the entire flow depth suggests an upward transport of Fkw.
Therefore, the negative Fku and the positive Fkw compose a retardation process
with the arrival of slowly moving fluid parcel. The influence of bed mobility is
prominent in the Fku and Fkw distributions. In mobile-bed flow, the positive Fku

and the negative Fkw in the near-bed flow region ð~z � 0:06Þ imply the streamwise
and downward transport of TKE flux components, respectively. However, in the
away-bed flow region ð~z [ 0:06Þ, the behavioral characteristics of Fku and Fkw in
the mobile-bed flow are similar to those in the rigid-bed flow. Therefore, the most
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significant characteristic of the mobile-bed flow lies on the near-bed flow region,
in which the positive Fku and the negative Fkw compose an accelerating effect as an
inrush of fluid parcel.

3.15 Turbulent Kinetic Energy Budget

To understand the physical processes in turbulence (that is, velocity fluctuations in
flow), it is essential to balance the rate of conversion of kinetic energy of velocity
fluctuations. The balance of the quantity under consideration is TKE, as given by
Eq. (3.131) (see equation of k). For three-dimensional steady flow, the TKE
budget reads
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where p0 is the pressure fluctuations. In most of the literature, Eq. (3.132) is given
in tensor form.9

The TKE budget equation describes the rate of conservation of TKE through
four components of TKE budget: advection, diffusion, dissipation, and production.
The diffusion rate is constituted by the pressure energy, TKE, and viscous diffu-
sion rates. These terms are all gradients whose contribution therefore disappears
by integration over the flow cross section when an overall balance is taken.

9 The TKE budget equation in tensor form is as follows:
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Importantly, the TKE dissipation rate e that means a rate of conversion of TKE to
internal energy is always positive, and thus, the term –e is an energy sink. On the
other hand, the TKE production rate tP is in general positive, being an energy
source. In case of a negative tP, the energy flows from the velocity fluctuations to
the time-averaged flow velocity. The flow region, where tP and e are approximately
equal and much greater than the remaining terms of the TKE budget, is called
energy equilibrium region.

The TKE budget for a uniform open-channel flow in two-dimensional is given
as follows (Nezu and Nakagawa 1993):

�u0w0
o�u

oz|fflfflfflfflffl{zfflfflfflfflffl}
tP

¼ 1
q
� o

oz
ðp0w0Þ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pD

þ ofkw

oz|{z}
tD

� t
o2k

oz2|ffl{zffl}
vD

þ e ð3:133Þ

As the flow is uniform, the advection term disappears in Eq. (3.133). Near-bed
flow region is called energy excess region, where tP [ e; while near the free
surface, it is called energy deficiency region, where e [ tP & 0. On the other hand,
in the intermediate region, the TKE is transported from the near-bed region to the
near-free surface region maintaining a dynamic equilibrium, in which tP & e. In
particular, pD and tD in the near-bed region are controlled by the flow roughness.

In fully developed turbulent flow, the viscous diffusion rate vD in the main flow
is negligible due to large flow Reynolds numbers, but it is substantial within the
viscous sublayer. However, accurate estimation of TKE dissipation rate e is always
challenging. There are several methods of estimation of e. Among them, e is
believed to be best estimated from the Kolmogorov second hypothesis applicable
to the inertial subrange:

e ¼ k5=3
w Suu

C

 !3=2

ð3:134Þ

where kw is the wave number, Suu is the spectral density function for u0, and C is
the constant approximately equaling 0.51 for the inner layer and 0.55 for the outer
layer of wall shear flow. The estimate of e is explained in Sect. 5.16.

The e can also be determined from the following equation (Irwin 1973;
Krogstad and Antonia 1999):

e ¼ 15t
�u2

ou0

ot

� �2

ð3:135Þ

The above equation usually has a tendency to overestimate e to some extent.
The pressure energy diffusion rate pD can be calculated as a residual parameter

from Eq. (3.133) as
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pD ¼ tP � tD � e ð3:136Þ

The nondimensional parameters of TKE budget are TP, PD, TD, ED = (tP, pD,
tD, e) 9 (h/u*

3). For open-channel flow, Nezu and Nakagawa (1993) gave formu-
lations for the TKE production rate TP and dissipation rate ED as

TP ¼
1
j

1� ~z

~z

� �
ð3:137aÞ

ED ¼
9:8
~z0:5

expð�3~zÞ ð3:137bÞ

To illustrate the terms of TKE budget in rigid-bed and mobile-bed flows, the
experimental results of Dey and Das (2012) are considered, as shown in
Figs. 3.22a, b. The TKE production rate TPð~zÞ curves show the conversion rate of
energy from the time-averaged flow to the turbulence. It has a near-bed amplifi-
cation and decreases monotonically with an increase in ~z, becoming nearly con-
stant (with a small magnitude) for ~z [ 0:3. The ED also decreases with ~z in the
similar way, as TP does. The distributions of ED have a distinct lag from those of
TP. However, the Tpð~zÞ and EDð~zÞ curves obtained from Eqs. (3.137a) and
(3.137b), respectively, proposed by Nezu and Nakagawa (1993), overestimate the
experimental data plots of TP and ED to some extent. The influence of bed mobility
is apparent in the near-bed distributions of TP and ED, where the lag is reduced
considerably in case of mobile-bed flow. To be explicit, the effects of bed mobility
are to reduce TP significantly and ED feebly. The reduction of TP in the near-bed
flow region in presence of bed mobility is an effect of the damping in local
Reynolds shear stress. Importantly, the difference in TP and ED at any depth ~z is
balanced by the summation of TD and PD. The TD decreases monotonically with an
increase in ~z within the wall shear layer and then becomes almost invariant of ~z
attaining a small magnitude. The bed mobility influences TD by increasing its
magnitude in comparison to TD in rigid-bed flow. In rigid-bed flow, PD is almost
equaling ED, but it decreases drastically with ~z, becoming almost invariant (with a
small magnitude) of ~z for ~z [ 0:06. The most interesting feature lies on the near-
bed characteristics of PD in mobile-bed flow. It is evident that the bed mobility is
associated with a drastic changeover of PD to a negative value, indicating a gain in
turbulence production. It can be therefore concluded that in the near-bed flow
region for mobile bed, the lag between TKE production and dissipation rates is
narrowed down and the pressure energy diffusion rate becomes negative. Detert
et al. (2010) also reported the bed mobility to be associated with a low-pressure
flow mode.
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3.16 Concept of Burst

Experimental studies in 1960s and 1970s showed that the near-boundary flow has
an extremely complex structure and most of the turbulence is produced there.
Investigations on the viscous sublayer by Kline et al. (1967), Corino and Brodkey
(1969), Grass (1971), Offen and Kline (1973, 1975) and others revealed a near-
boundary flow structure dominated by the viscosity being repetitive in nature and
consisting of alternate zones of three-dimensional high- and low-speed streaks with
roughly regular spanwise spacing. They are known to be persistent features of the
near-boundary flow in a turbulent boundary layer (Smith and Metzler 1983). The
concept of turbulent burst is constituted by the entrainment of the near-boundary
low-speed streaks into main turbulent flow. The entrained fluid streaks subse-
quently become unstable and collapse to cause an inrush of high-speed fluid from
the outer flow region toward the boundary. The whole process is a quasi-cyclic
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process. (Note: It means an approximately periodic process.) It therefore indicates
that the turbulence is not as random as it was initially viewed. The concept of
simply introducing a randomly fluctuating velocity to the time-averaged velocity is
therefore potentially inadequate one. Spatially temporal, but orderly motions, as
already mentioned as quasi-cyclic process, exist in a turbulent flow.

3.16.1 Coherent Structures and Burst

In boundary layer flow, the underlying concept of burst lies on the viscous sublayer
that enlarges with time leading to an unstable process, which ends up in a burst with
an emission of a fluid parcel of concentrated vortex to the outer turbulent flow in the
wall shear layer. In this way, in the streamwise direction, a series of vortices
(spanwise with moderately equidistant), called K or hairpin vortices, organized in
turbulent spots is produced, as shown in Fig. 3.23 (Head and Bandyopadhyay 1981).
These hairpin vortices, which have average length and breadth of ~xþ ¼ 20�40 and
~yþ ¼ 15�20, respectively, are streamwise vortices with slightly raised front portion
having two limbs of weak transverse vortices. Here, ~xþ ¼ xu�=t and ~yþ ¼ yu�=t.
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Fig. 3.23 The K or hairpin vortices
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These vortices get elongated and stretched as they develop with time. The rotational
motion of vortex is intensified with an increase in curvature of the stretched portion
(as the front portion of hairpin is gradually lifted) reaching a maximum at the tip
of the hairpin. By this mechanism, the turbulent flow is fed with the fluid vortex
parcels that are produced in the near-boundary flow only. Finally, the vortex parcels
collapse forming eddies of various sizes. After the burst, the viscous sublayer is
recovered and the same process is continued time and again. As the destabilizing
process being recursive in nature is always performed in an identical time, the
bursting phenomenon becomes a quasi-cyclic process and the released vortices are
very similar. In this process, the streak-like structures, called the coherent struc-
tures, are formed. However, away from the boundary, the structures persist for some
distance, but their degree of coherence and organization diminishes with the dis-
tance from the boundary.

The sequence of bursting phenomenon is described by two significant features,
such as ejection and sweep (Figs. 3.24a–d). The intermittent enlargement of vis-
cous sublayer is in fact analogous to a boundary layer separation subject to an
adverse pressure gradient, wherein a near-boundary low-speed streak (which is a
hairpin vortex structure, as already mentioned) is subjected to have a separation
due to a local and temporary adverse pressure gradient (dp/dx [ 0) (Fig. 3.23). It
occurs as a low-speed streak that oscillates in three dimensions to be lifted up from
the boundary, resulting in a coherent low-speed fluid to entrain into the main
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Fig. 3.24 Sequence of bursting events: a initiation of ejection, b entrainment of ejected fluid
(low-speed streak) in outer flow, c collapse of ejected fluid (low-speed streak), and d inrush of
fluid (high-speed streaks) or sweep
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turbulent flow (Figs. 3.24a, b). This process is called ejection event. According to
Nychas et al. (1973), the fluid ejection originates in the flow region 5\~zþ\ 50
and the ejected fluid can reach in the flow region 80 \~zþ\ 100, where
~zþ ¼ zu�=t. The fluid streak ejected into the main flow grows in size, as it is
slowly advected streamwise while preserving its coherent entity. This continues
over a short period of time, and eventually, the coherent structure collapses
(Fig. 3.24c). Then, the ejected fluid that remains as a result of retardation is
brushed away by high-speed fluid approaching the boundary as an inrush
(Fig. 3.24d). This process is called sweep event. In other words, a portion fluid
mass from the coherent structure rushes back to the near-boundary region,
impinging the boundary and spreading out spanwise. During the sweep event, the
downward flow generates a narrow, highly fluctuating shear layer containing
multiple eddies. Two such neighboring high-speed streaks eventually unite and are
to slow down the flow there, and as a result, a new near-boundary low-speed flow
is reformed. Although the low-speed streaks appear at random in space and
interact with neighboring streaks, the average value of the instantaneous spanwise
and streamwise spacings in nondimensional form is constant, thus remaining
invariant of flow Reynolds number and Froude number (Lee et al. 1974; Offen and
Kline 1973). The nondimensional spanwise and streamwise spacings are as
follows:

kþy ¼
kyu�
t
� 100; kþx ¼

kxu�
t
� 1,300

where ky and kx are the spanwise and streamwise spacings, respectively.
The time period spent from the formation of the low-speed streak at time t = 0

to the formation of the next one at time t = tb is called the bursting period. After
the reformation of the newly near-boundary low-speed fluid motion, the same
sequence of events takes place and continues as a cyclic process. According to
Smith and Metzler (1983), the average bursting time in nondimensional form is

tþb ¼
tbu2
�

t
¼ 480

However, in some cases, the maximum bursting time was found to be as high as
tþb ¼ 2,500 (Nezu and Nakagawa 1993). The bursting events can be quantified by
the quadrant analysis, which is discussed next.

3.16.2 Quadrant Analysis

The bursting events are quantified from the conditional statistics of velocity
fluctuations (u0 and w0). To evaluate the total Reynolds shear stress �qu0w0 at a
specific point as a sum of contributions from different bursting events, it is
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customary to plot the fluctuations of velocity components (u0 and w0) according to
quadrant in a u0w0 plane (Lu and Willmarth 1973), as shown schematically in
Fig. 3.25.

The hyperbolic shaded zone bounded by the curve |u0w0| = constant is called a
hole. Introducing a parameter H called hole size that represents the threshold level
as explained by Nezu and Nakagawa (1993), the size of the hole is decided by the

curve ju0w0j ¼ Hðu0u0Þ0:5ðw0w0Þ0:5. With this method, the large contributions to the
Reynolds shear stress from each quadrant can be extracted leaving the smaller
fluctuations of velocity components (u0 and w0) that belong to the hole corre-
sponding to more quiescent periods. Therefore, the hole size H allows to differ-
entiate between strong and weak events for small values of the hole size and only
strong events for large values of the hole size. The four quadrants i (=1, 2, 3, and 4)
characterize the types of bursting events. They are (1) the outward interactions Q1
(i = 1; u0[ 0, w0[ 0), (2) the ejections Q2 (i = 2; u0\ 0, w0[ 0), (3) the
inward interactions Q3 (i = 3; u0\ 0, w0\ 0), and (4) the sweeps Q4 (i = 4;
u0[ 0, w0\ 0). The hole size H = 0 means that all data of u0 and corresponding
w0 are taken into consideration. The quadrant analysis that provides an analysis of
velocity fluctuation data in quadrantwise by fixing the hole size to eliminate weak
events is also known as the analysis of conditional statistics.

The analysis of the conditional statistics can be performed introducing a
detection function ki,H(t) defined as

ki;Hðz; tÞ ¼ 1; if ðu0; w0Þ is in quadrant i and if u0w0j j 	Hðu0u0Þ0:5ðw0w0Þ0:5
0; otherwise

�

ð3:138Þ

where t is the time. At any point, contribution to the total Reynolds shear stress
from the quadrant i outside the hyperbolic hole region of size H is given by

Outward 
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Ejection
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Fig. 3.25 The quadrant
analysis
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u0w0h ii;H¼ lim
T!1

1
T

ZT

0

u0ðtÞw0ðtÞki;Hðz; tÞdt ð3:139Þ

where T is the sampling duration. The Reynolds shear stress fractional contribution
to each event is given by

Si;H ¼
u0w0h ii;H
u0w0

ð3:140Þ

It implies that Si,H [ 0 when i = 2 and 4 (ejections and sweeps) and Si,H \ 0
when i = 1 and 3 (outward and inward interactions). Therefore,

Xi¼4

i¼0

Si;H

��
H¼0
¼ 1

Figure 3.26 shows the vertical distributions of fractional contribution
Si,0(H = 0) of the Reynolds shear stress in rigid-bed and mobile-bed flows (Dey
and Das 2012). In rigid-bed flow, Q2 and Q4 events at the near-bed region con-
tribute strongly to the total Reynolds shear stress production by approximately 64
and 60 %, respectively, while Q1 and Q3 events contribute weakly by about 10
and 14 %, respectively. It suggests that the arrival of low-speed fluid streaks from
the near-bed flow region is almost revoked by that of a succession of high-speed
fluid streaks from the outer flow region, as the strengths of Q1 and Q3 events are
not very different. Thus, only a slowly moving process is effectively prevalent in
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Fig. 3.26 Distributions of Si,0(~z) in rigid-bed and mobile-bed flows (Dey and Das 2012)
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the form of weak Q2 events. In contrast, in the mobile-bed flow, the Q4 events are
the governing mechanism for bed mobility contributing about 70 % toward the
Reynolds shear stress production, while the Q2 events contribute relatively less
(about 60 %). The characteristic of Q4 events to dominate momentum transfer in
the near-bed flow region is therefore strongly dependent on the bed mobility. It
implies that the bed mobility is governed by the arrival of high-speed fluid streaks.
However, the contributions from Q1 and Q3 events continued to be rather weak
are about 16 and 14 %, respectively.

Figure 3.27 represents the distributions of the fractional contributions |Si,H| of
the Reynolds shear stress as a function hole size H for each of the four quadrants at
a near-bed region for rigid-bed and mobile-bed flows. The |Si,H| decreases pro-
gressively with an increase in H in all quadrants. It is obvious that when the hole
size H becomes large, there remain only two contributions, ejections Q2 and
sweeps Q4.
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Fig. 3.27 Distributions of |Si,H| as a function of H at a near-bed region in rigid-bed and mobile-
bed flows
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3.17 Probability Distributions of Turbulence

In open-channel flow, the random quantities are the fluctuations of streamwise and
vertical velocity components (u0 and w0) and also their product u0w0, whose
averaged value yields the Reynolds shear stress �qu0w0. Due to the fact that in
turbulent flow, �qu0w0 is a nonzero quantity, it follows that u0 and w0 are correlated
quantities. The knowledge of the probability density function (PDF) of these
quantities leads to the understanding of the associated turbulent bursting phe-
nomenon in open-channel flow (Nakagawa and Nezu 1977).

Frenkiel and Klebanoff (1967) and van Atta and Chen (1968) predicted
moments of u0 higher than two. They considered the correlations at two points
separated in time and showed that while the even-order correlations can be pre-
dicted by assuming a Gaussian joint PDF, the odd-order correlations follow a
Gaussian based Gram–Charlier (GC) PDF. Considering the non-Gaussian
behavior of u0 and w0, Antonia and Atkinson (1973) used a GC series expansion for
the joint PDFs of u0 and w0 obtained by inverting a Gaussian-based characteristic
function. To retain skewness and flatness, the series was truncated by discarding
cumulants of the order higher than four. In contrast, Nakagawa and Nezu (1977)
considered a joint PDF, which was Gaussian-based GC series, but of the form
given by Kampé de Fériet (1966). Essentially, the prevalence of bursting in the
near-bed flow provokes a non-Gaussian PDF distribution for the turbulence
quantities. Bose and Dey (2010) therefore argued that the joint PDFs of u0 and w0

can be derived from a GC series based on the exponential distribution, which is
universal being applicable for smooth- and rough-bed flows. Their theory is fur-
nished below.

3.17.1 Bose–Dey Universal Probability Theory

3.17.1.1 Joint Probability Distribution of u0 and w0

In open-channel flow, bed resistance gives rise to the production of turbulence.
The instantaneous streamwise velocity u can be decomposed into a time-averaged
velocity �u and its fluctuations u0, while the instantaneous vertical velocity w solely
constitutes the fluctuations w0, as the time-averaged vertical velocity �w remains
zero. It implies that u = �uþ u0 and w = w0.

Velocity fluctuations, say u0, appear on a computer monitor (during measure-
ment) as a traveling wave train of sharply peaked signals of random magnitude |u0|.
For an appropriate model of the PDF pu0(u0) of u0, let the 0th approximation be
symmetric with respect to u0 = 0, which means pu0(–u0) = pu0(u0). Then, it can
easily be shown that the PDF p|u0 |(|u0|) of |u0| is connected to pu0(u0) by
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p u0j jð u0j jÞ ¼ 2pu0 ðu0Þ ð3:141Þ

Now, a random signal magnitude |u0| is analogous to the service or waiting time
of customers arriving in a queue. Hence, if P0(|u0|) is the cumulative probability of
random fluctuations exceeding magnitude |u0| and if the process is stationary, then
P0(|u0| + Du0)/P0(|u0|) is the conditional probability of fluctuations exceeding Du0,
provided it had exceeded |u0| = P0(Du0), where Du0 is an increment. This means
that P0(|u0| + Du0) = P0(|u0|) 9 P0(Du0). The solution of this functional equation
is, known as exponential distribution, given by

P0ð u0j jÞ ¼ exp
� u0j j
ru

� �
^ ru ¼ ðu0u0Þ0:5 ð3:142Þ

where standard deviation ru [ 0, since P0(|u0|) B 1. Hence, the cumulative
probability of fluctuations up to |u0|, namely P|u0 |(|u0|), is

P u0j jð u0j jÞ ¼ 1� P0ð u0j jÞ ¼ 1� exp
� u0j j
ru

� �
ð3:143Þ

Therefore, by Eq. (3.141), the PDF of u0 is

pu0 ðu0Þ ¼
1
2

p u0j jð u0j jÞ ¼ 1
2
� d
d u0j j ½P u0j jð u0j jÞ� ¼ 1

2ru
exp

� u0j j
ru

� �
ð3:144Þ

Equation (3.144) is a symmetric exponential distribution with standard devia-
tion 20.5ru. By similar arguments, the PDF of w0 could be a similar distribution,
with ru replaced by some standard deviation rw [ 0. If u0 and w0 are assumed to be
independent, their joint PDF is

pu0;w0 ðu0;w0Þ ¼
1

4rurw
exp

� u0j j
ru
þ� w0j j

rw

� �
^ rw ¼ ðw0w0Þ0:5 ð3:145Þ

which is a two-dimensional symmetric exponential distribution. The joint PDF
given by Eq. (3.145) contains arbitrary moments up to only order two. The dis-
tribution is next generalized to include higher-order moments by the well-known
Gram–Charlier (GC) series expansion method (Cramer 1999). Consider the
characteristic function v or the Fourier integral of a PDF pu0,w0(u0,w0)

vðn; gÞ ¼
Z1

�1

Z1

�1

exp½iðu0nþ w0gÞ�pu0;w0 ðu0;w0Þdu0dw0¼
X1
n¼0

in

n!
ðu0nþ w0gÞn

ð3:146Þ
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where the over-bar is the mean value or expectation. Expanding the quantity under
the over-bar by binomial theorem, the expansion can be written as

vðn; gÞ ¼
X1
n¼0

X1
j¼0

in

j!ðn� jÞ! n
jgn�ju0jw0n�jHðn� jÞ ¼

X1
j¼0

X1
k¼0

ijþk

j!k!
mjkn

jgk ð3:147Þ

where H(n – j) = 1, if n C j, and H(n – j) = 0, if n \ j. The right most expression
is obtained by interchanging the order of summation and using the definition of the

function H. In Eq. (3.147), k = n – j and mjk ¼ u0jw0k.
For the symmetric exponential distribution given by Eq. (3.144), the integral

defining the characteristic function v0 is evaluated as

v0ðn; gÞ ¼ ð1þ r2
un

2Þ�1ð1þ r2
wg2Þ�1 ð3:148Þ

Equation (3.148) is generalized to accommodate moments of all orders in the
PDF pu0w0(u0, w0) of (u0, w0) as

vðn; gÞ ¼
X1
j¼0

X1
k¼0

ijþkCjk
ðrunÞ jðrwgÞk

ð1þ r2
un

2Þjþ1ð1þ r2
wg2Þkþ1 ð3:149Þ

In the above equation, the leading coefficient C00 = 1. The leading term of
Eq. (3.149) for j = k = 0 is simply v0(n,g) as given by Eq. (3.148). By Fourier
inversion of Eq. (3.149), one gets

pu0;w0 ðu0;w0Þ ¼
1

4p2

Z1

�1

Z1

�1

vðn; gÞ exp½�iðu0nþ w0gÞ�dndg

¼ 1
4p2

X1
j¼0

X1
k¼0

ijþkCjk

Z1

�1

ðrunÞ j
expð�iu0nÞ

ð1þ r2
un

2Þjþ1 dn
Z1

�1

ðrwgÞk expð�iw0gÞ
ð1þ r2

wg2Þkþ1 dg

¼ 1
4p2rurw

X1
j¼0

X1
k¼0

ijþkCjkIj
u0

ru

� �
Ik

w0

rw

� �

ð3:150Þ

where

IjðxÞ ¼
Z1

�1

n j expð�ixnÞ
ð1þ n2Þjþ1 dn ð3:151Þ

In terms of nondimensional variables, û ¼ u0=ru and ŵ ¼ w0=rw, one can
therefore write
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pu0;w0 ðu0;w0Þ ¼
1

rurw
pû;ŵðû; ŵÞ ð3:152aÞ

pû;ŵðû; ŵÞ ¼
1

4p2

X1
j¼0

X1
k¼0

ijþkCjkIjðûÞIkðŵÞ ð3:152bÞ

The integral in Eq. (3.151) is evaluated according to Gradshteyn and Ryzhik
(1980), as given in formulas 3.773 (2 and 5), yielding

I0ðxÞ ¼p expð� xj jÞ; I1ðxÞ ¼ �
ip
2

x expð� xj jÞ;

I2ðxÞ ¼
p
8
ð1þ xj j � x2Þ expð� xj jÞ; I3ðxÞ ¼ �

ip
48

xð3þ 3 xj j � x2Þ expð� xj jÞ

I4ðxÞ ¼
p

384
ð9þ 9 xj j � 3x2 � 6 xj j3þx4Þ expð� xj jÞ; � � �

ð3:153Þ

By direct integration and using I0-4 in Eq. (3.153), it can be verified that

Z1

�1

pû;ŵðû; ŵÞdûdŵ ¼ C00 ¼ 1

An examination of the derivation of Eq. (3.150) shows that the characteristic
function of the distribution of (û, ŵ) is given by Eq. (3.149) with run and rwg
replaced by n and g, respectively. If this equation is identified with the moment
generating Eq. (3.147), the coefficients Cjk become related to mjk by

C00 ¼m00¼ 1; C10 ¼ m10; C20 ¼
1
2

m20 � 1; C30 ¼
1
6

m30 � 2 m10;

C40 ¼
1

24
m40 �

3
2

m20 þ 2; C11 ¼ m11; C21 ¼
1
2

m21 � m01; C31 ¼
1
6

m31 � 2m11;

C22 ¼
1
4

m22 �
1
2

m20 �
1
2

m02 þ 1

ð3:154Þ

The coefficients C01, C02, C03, C04, C12, and C13 can be found from Eq. (3.154)
by commuting the subscripts. Subsequently, in Eqs. (3.157), (3.162), (3.165) and
(3.167), it can be seen that moments of order greater than four contribute insig-
nificant terms, and accordingly, the coefficients Cjk of order j + k [ 4 in
Eq. (3.154) are not mentioned. Estimating the moments mjk using the experimental
data, the coefficients Cjk and then the PDF pû;ŵðû; ŵÞ can be obtained from
Eq. (3.152b).
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3.17.1.2 Marginal Distribution of û and ŵ

The marginal distribution of û is given by

pûðûÞ ¼
Z1

�1

pû;ŵðû; ŵÞdŵ ¼ 1
4p2

X1
j¼0

X1
k¼0

ijþkCjkIjðûÞ
Z1

�1

IkðŵÞdŵ ð3:155Þ

and by changing the order of integration, one can write

Z1

�1

IkðŵÞdŵ ¼
Z1

�1

gk

ð1þ g2Þkþ1 dg
Z1

�1

expð�iŵgÞdŵ

¼
Z1

�1

gk

ð1þ g2Þkþ1 dg � 2pdðgÞ ¼ 2pdk0 ð3:156Þ

where d(g) is the Dirac delta function and dk0 is the Kronecker symbol, that is
dk0(k = 0) = 1 and dk0(k 6¼ 0) = 0. Hence, it follows from Eq. (3.156) that

pûðûÞ ¼
1

2p

X1
j¼0

i jCj0IjðûÞ ¼
1
2

expð� ûj jÞ þ 1
4

C10û expð� ûj jÞ

� 1
16

C20ð1þ ûj j � û2Þ expð� ûj jÞ � 1
96

C30ûð3þ 3 ûj j � û2Þ expð� ûj jÞ

þ 1
768

C40ð9þ 9 ûj j � 3û2 � 6 ûj j3 þ û4Þ expð� ûj jÞ þ � � �

ð3:157Þ

The marginal distribution of pŵðŵÞ is similarly given by an expression in which
û is replaced by ŵ and the coefficients C10, C20, C30, and C40 by C01, C02, C03, and
C04, respectively. It can easily be verified that the integrals of the expressions for
pûðûÞ and pŵðŵÞ between –? and +? equal unity. Similarly, it follows that the
moments

mj0 ¼
Z1

�1

û jpûðûÞdû; m0k ¼
Z1

�1

ŵkpŵðŵÞdŵ ð3:158Þ

are related to Cj0 and C0k, respectively, exactly as given by Eq. (3.154).
The coefficients Cj0 and C0k appearing in the PDFs, pûðûÞ and pŵðŵÞ, depend on

the boundary resistance, velocity u, and distance z from the boundary. The coef-
ficients Cj0 and C0k can therefore be estimated from the experimental data. Thus, if
the relative frequency fûðûÞ of the random variable û is computed from the
experimental data at a given z, then from Eq. (3.158), the mj0 are estimated by
approximating pûðûÞ by fûðûÞ and the integrals are evaluated by a composite
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Simpson’s rule. Similarly, the m0k are estimated from fŵðŵÞ of the random variable
ŵ. Thus, using Eq. (3.154), Cj0 and C0k are calculated and the PDFs are computed
to yield the theoretical curves for pûðûÞ and pŵðŵÞ. For normalizing u0 and w0 to
obtain û and ŵ, the standard deviations ru and rw are estimated from the root-
mean-square values of u0 and w0. Figures 3.28 and 3.29 show the pûðûÞ and pŵðŵÞ
distributions for smooth- and rough-bed flows at z = 0.03h and 0.2h. In general,
the computed pûðûÞ and pŵðŵÞ distributions correspond to the experimental data.
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Fig. 3.28 Distributions of pûðûÞ in smooth- and rough-bed flows at z = 0.03h and 0.2h (Bose
and Dey 2010)
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Fig. 3.29 Distributions of pŵðŵÞ in smooth- and rough-bed flows at z = 0.03h and 0.2h (Bose
and Dey 2010)
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3.17.1.3 PDF of Reynolds Shear Stress

The Reynolds shear stress is defined by sxz ¼ �qu0w0. Thus, –sxz/q is the mean
value of the product of random variable u0w0, whose PDF depends on the joint PDF
of u0 and w0. Making nondimensional, one can consider the random variable

ŝ ¼ ûŵ. Using the two-dimensional transformation ŝ ¼ ûŵ, f̂ ¼ û or ŵ, the mar-
ginal PDF of ŝ is given in terms of the joint PDF pû;ŵðû, ŵÞ as

pŝðŝÞ ¼
Z1

�1

pû;ŵ û;
ŝ
û

� �
dû

ûj j ¼
Z1

�1

pû;ŵ
ŝ
ŵ
; ŵ

� �
dŵ

ŵj j ð3:159Þ

Inserting Eq. (3.152b) into one of the two forms in Eq. (3.159), integrals of the
following form are encountered, whose value is as follows [see Gradshteyn and
Ryzhik (1980), as given in formula 3.471(9)]:

Z1

0

xe�1 exp �ax� b
x

� �
dx ¼ 2

b
a

� �e=2

Ke 2
ffiffiffiffiffiffi
ba

p� �
for b[ 0; c[ 0

ð3:160Þ

where Ke(f) is the modified Bessel function of order e. In this manner, Eq. (3.159)
yields

pŝðŝÞ ¼ K0ð2s1Þ �
1
8
ðC20 þ C02Þ½K0ð2s1Þ þ s1K1ð2s1Þ � s2

1K2ð2s1Þ� þ
1
4

C11ŝK0ð2s1Þ

þ 1
64

C22½ð1þ s2
1 þ s4

1ÞK0ð2s1Þ þ 2s1ð1� s2
1ÞK1ð2s1Þ � 2s2

1K2ð2s1Þ�

� 1
96
ðC31 þ C13Þŝ½3K0ð2s1Þ þ 3s1K1ð2s1Þ � s2

1K2ð2s1Þ�

þ 1
384
ðC40 þ C04Þ½9K0ð2s1Þ þ 9s1K1ð2s1Þ � 3s2

1K2ð2s1Þ � 6s3
1K3ð2s1Þ þ s4

1K4ð2s1Þ�

þ � � �
ð3:161Þ

where s1 ¼ jŝjð Þ0:5. Invoking the recurrence relationship Ke+1(f) – Ke–1(f) =
(2e/f)Ke(f) of the modified Bessel function Ke(f), the expression for pŝðŝÞ sim-
plifies to

pŝðŝÞ ¼ K0ð2s1Þ �
1
8
ðC20 þ C02Þð1� s2

1ÞK0ð2s1Þ þ
1
4

C11ŝK0ð2s1Þ

þ 1
64

C22½ð1� s2
1 þ s4

1ÞK0ð2s1Þ � 2s3
1K1ð2s1Þ�

� 1
96
ðC31 þ C13Þŝð3� s2

1Þ½K0ð2s1Þ þ s1K1ð2s1Þ�

þ 1
384
ðC40 þ C04Þ½ð9� 9s2

1 þ s4
1ÞK0ð2s1Þ � 2s3

1K1ð2s1Þ� þ � � �

ð3:162Þ
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It can be verified that the integral of pŝðŝÞ as given by Eq. (3.162) from –? to
+? is unity. This follows from Gradshteyn and Ryzhik (1980), as given in
formula 6.561(16).

The PDF in Eq. (3.162) for pŝðŝÞ contains three other coefficients C11, C22, and
C31 + C13. They are estimated from the moments as

Z1

�1

ŝpŝðŝÞdŝ¼ C11 þ
11
8
ðC31 þ C13Þ;

Z1

�1

ŝ2pŝðŝÞdŝ ¼ 4þ 4ðC20 þ C02Þ þ
25
4

C22;

Z1

�1

ŝ3pŝðŝÞdŝ¼ 144C11 þ 7407ðC31 þ C13Þ

Replacing pŝðŝÞ by the relative frequency distribution of ŝ ¼ ûŵ, as observed
from experiments, the required three parameters are estimated to complete the
theoretical expression in Eq. (3.162). Figure 3.30 compares computed pŝðŝÞ with
those measured for smooth- and rough-bed flows. The experimental data collapse
reasonably on the computed curves, implying that pŝðŝÞ can be represented by the
GC series expansion based on the exponential distribution.

3.17.1.4 Conditional Distributions of ûŵ

The fractional contribution to the total Reynolds shear stress production from each
event is given by the random variable ŝ ¼ ûŵh iQi that corresponds to the appro-
priate quadrant. Following Nakagawa and Nezu (1977), the PDFs of the events Q1,
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Fig. 3.30 Distributions of pŝðŝÞ in smooth- and rough-bed flows at z = 0.03h and 0.2h (Bose and
Dey 2010)
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Q2, Q3, and Q4 are denoted by p1ðŝÞ, p2ðŝÞ, p3ðŝÞ, and p4 ŝð Þ, respectively.
It follows that

p1ðŝÞ þ p2ðŝÞ þ p3ðŝÞ þ p4ðŝÞ ¼ pŝðŝÞ ð3:163Þ

The expression for p1ðŝÞ for outward interactions is as in the case of Eq. (3.159)

p1ðŝ [ 0Þ ¼
Z1

0

pŝ û;
ŝ
û

� �
dû

û
¼ 1

4p2

X1
j¼0

X1
k¼0

ijþkCjk

Z1

0

IjðûÞIk
ŝ
û

� �
dû

û
ð3:164Þ

Evaluating the series of integrals in the above expression for p1ðŝÞ by using
Eq. (3.164) and simplifying by using the recurrence relation for Ke(f), it can be
shown that

p1ðŝ[ 0Þ ¼ 1
2

pŝðŝÞ þ
1
4
ðC10 � C01Þs1K1ð2s1Þ

� 1
96
ðC30 � C03Þs1½s1K0ð2s1Þ þ ð4� s1ÞK1ð2s1Þ�

þ 1
32
ðC21 � C12Þs1½s1K0ð2s1Þ þ ð1� s2

1ÞK1ð2s1Þ� þ � � �

ð3:165Þ

For ŝ[ 0, p1ðŝÞ ¼ 0, the distribution of Q1 is one-sided, remaining on the
positive side. Interestingly, the expression for p4ðŝÞ is the same as that given by
Eq. (3.165), but for ŝ\0, whereas for ŝ[ 0, p4ðŝÞ ¼ 0.

The expression for p2ðŝÞ for ejections is

p2ðŝ\0Þ ¼
Z0

�1

pŝ û;
ŝ
û

� �
dû

û
¼ 1

4p2

X1
j¼0

X1
k¼0

ijþkCjk

Z1

0

Ijð�f̂ÞIk �
ŝ

f̂

� �
df̂

f̂
ð3:166Þ

where f̂ ¼ �û is a substitution variable. The integrals in Eq. (3.166) can again be
evaluated by using Eq. (3.160) and Ke+1(f) – Ke–1(f) = (2e/f)Ke(f). Using
Eq. (3.153), it is found that

p2ðŝ\0Þ ¼ 1
2

pŝðŝÞ �
1
4
ðC10 � C01Þs1K1ð2s1Þ

þ 1
96
ðC30 � C03Þs1 s1K0ð2s1Þ þ ð4� s1ÞK1ð2s1Þ½ �

� 1
32
ðC21 � C12Þs1½s1K0ð2s1Þ þ ð1� s2

1ÞK1ð2s1Þ�

ð3:167Þ

For ŝ[ 0, p2ðŝÞ ¼ 0. Moreover, the expression for p3ðŝÞ is identical as that
given by Eq. (3.167), except that for ŝ[ 0. For ŝ\ 0, p3ðŝÞ ¼ 0. The expressions
for p1ðŝÞ, p2ðŝÞ, p3ðŝÞ and p4ðŝÞ evidently satisfy Eq. (3.163).
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The conditional PDFs in Eqs. (3.165) and (3.166) contain the coefficient C21 – C12,
which can be estimated by computing the moment as

Z1

0

ŝp1ðŝÞdŝ ¼ 1
2

Z1

0

ŝpŝðŝÞdŝþ 1
4
ðC10 � C01Þ �

3
32
ðC21 � C12Þ

from the experimentally determined relative frequencies f1ðŝÞ and fŝðŝÞ of ŝ.
Figures 3.31 and 3.32 compare the computed piðŝÞ with those measured for

smooth- and rough-bed flows at z = 0.03h and 0.2h. It is evident that the condi-
tional Reynolds shear stresses corresponding to ejections (Q2) and sweeps (Q4)
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Fig. 3.31 Distributions of pi(ŝ) in smooth-bed flow at z = 0.03h and 0.2h (Bose and Dey 2010)
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Fig. 3.32 Distributions of pi(ŝ) in rough-bed flow at z = 0.03h and 0.2h (Bose and Dey 2010)
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can be well represented by the exponential distribution, while those corresponding
to outward interactions (Q1) and inward interactions (Q3) have a departure from
the computed distributions. As the outward and inward interactions are the weaker
events, they may not strictly follow the exponentially based distribution.

In conclusion, the universal PDF distributions of u0, w0, u0w0, and conditional
Reynolds shear stresses in smooth- and rough-bed flows can be derived using a GC
series expansion based on the exponential distribution truncating the series up to
fourth order. The PDFs are easy for straightforward computation as compared to
those of Nakagawa and Nezu (1977).

3.18 Double-Averaging Concept

In situations like macro-rough-bed flows (for example, boulder- or gravel-bed
flow), the time-averaging assumptions are modified by the time-space-averaging to
apply in the vicinity of the near-bed flow where the time-averaged flow is locally
three-dimensional and significantly heterogeneous in space, as indicated in several
studies particularly the recent ones (Nikora et al. 2001, 2007a, b; Rodríguez and
García 2008; Franca and Lemmin 2009; Sarkar and Dey 2010; Dey et al. 2011;
Dey and Das 2012).

To resolve the spatial heterogeneity, the time-averaging is conceptually sup-
plemented by the area-averaging in the layer parallel to the mean bed surface,
called the double-averaging methodology (DAM). The DAM produces modified
momentum and continuity equations that are averaged in both time (ensemble)
and space domains. In general, there are two ways to obtain the double-averaging
(DA) equations: (1) Time-space-averaging, where the spatial averaging of the
already time-averaged variables is performed, and (2) space-time-averaging,
where the time-averaging of the already space-averaged variables is performed.
The first option is more appropriate for describing the rough-bed flow hydrody-
namics as the time-space-averaging order is consistent with the traditional tur-
bulence research, and it seems to be physically more transparent and sound as well.
The dimensions of the averaging domain in the plane parallel to the mean bed
surface should be much larger than the dominant turbulence scales, but much
smaller than the large-scale features in bed topography.

Since the DAM is applicable for the near-bed flow over and within the flow-
roughness-element interface, it enables to have an insight into the turbulence
characteristics within the flow sublayers induced by the roughness elements. These
flow sublayers are the form-induced sublayer and interfacial sublayer, together
called roughness sublayer (Fig. 3.33). The form-induced sublayer that occupies
the flow region just above the roughness crests is influenced by the individual
roughness elements. The interfacial sublayer is further influenced by individual
roughness elements and occupies the flow region below the roughness crests.

In the DAM, the local time-averaged flow quantity is decomposed as
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�h ¼ h�hi þ ~h

and the local instantaneous flow quantity follows the traditional Reynolds
decomposition, that is,

h ¼ �hþ h0

where ~h is the fluctuations of the local time-averaged flow quantity �h from the DA
flow quantity �h

� �
and h0 is the fluctuations of the local instantaneous flow quantity

h from the local time-averaged flow quantity �h. Here, the intrinsic spatial aver-
aging, that is denoted by using angle brackets �h i, is intended as an area integration
over a surface parallel to the mean bed surface at variable elevation (Nikora et al.
2007a, b). Note that h is a quantity defined only over the fluid phase.

Regarding the coordinate system, the bed surface is the reference of the z-axis
(z = 0), which is positive vertically upward. The x-axis is aligned with the bed
surface and positive in the streamwise direction. The origin of x-axis (x = 0) is
located at the starting point of the DA analysis. The y-axis is directed spanwise,
being positive to the right. The virtual bed level (also called the mean bed level),
that is, z1 = 0 or z = – zc (see Fig. 3.33), is considered aligning with the average
bed surface fluctuations. The top of the interfacial sublayer, z1 = zc or z = 0, is
defined as the maximum crest level of the gravels.

The DA procedure does not differ from the standard averaging where the
integration domain is totally occupied by the fluid (z C zc, where z is the vertical
distance with respect to the roughness crest level). Within the interfacial sublayer
(z B zc), the integration is, however, done only over the space not occupied by the

z

DA velocity, u〈 〉
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Form-induced
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Interfacial sublayer

z
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h

Gravel crest
level, z = 0

Virtual bed level, z = –z
c

or z
1
= 0

z
1

(= z + z
c
)

x

Fig. 3.33 Flow over a rough gravel-bed showing the flow sublayers (Dey and Das 2012)
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roughness elements. The idea of spatial averaging in open-channel flow was first
introduced by Smith and McLean (1977). They averaged velocity along lines of
constant distance from an undular bed. As already mentioned, the DA quantity is
proposed for an area-averaging over a layer parallel to the mean bed at an ele-
vation z. Then, the information of the quantity of voids within the integration
domain is specified by the roughness geometry function /(z). For z B 0 (below the
roughness crest), the roughness geometry function /(z) (=Af/A0, where Af is the
area occupied by the fluid at an elevation z within the total area A0 for averaging) is
used as a multiplier of an intrinsic DA flow quantity contributing to a superficial
DA flow quantity. Within the interfacial sublayer, it is necessarily 1 C / C q0

(where q0 is the porosity of the bed), while /(z C zc) : 1. In this regard, results
obtained by Dey and Das (2012) are furnished, as an example.

Figure 3.34 shows the variation of /(z1) obtained from the measurement of the
bed surface fluctuations by the point gauge. As the lower curvature of the gravels
forming the inter-gravel voids could not be measured by the point gauge, the /
function determined by the point gauge could be only applicable for the upper
portion of the interfacial sublayer. In order to obtain the actual / function for the
zone where the point gauge measurement was not possible, the water displacement
method was adopted by placing gravels in a transparent container. Figure 3.34 also
shows the actual / function obtained from the water displacement method.

The generalized DA continuity and Reynolds-averaged Navier–Stokes (RANS)
equations in Cartesian coordinates are given as follows (Nikora et al. 2001).

For the flow region above the roughness crest (z C zc),
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Fig. 3.34 Variation of
roughness geometry function
/ with z1 (=z + zc) (Dey and
Das 2012)
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For the flow region within the interfacial sublayer (z \ zc),
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Figure 3.35 illustrates the time-averaged velocity vectors in gravel-bed flow on
the vertical plane of symmetry, obtained by Dey and Das (2012). The near-bed

flow heterogeneity is evident from the magnitude, ð�u2 þ �w2Þ0:5, and the direction,
arctanð�w=�uÞ, of the velocity vectors. Within the flow-gravel-bed interface, the flow
is slowed down due to a mixing process in presence of gravels, becoming no
longer streamwise. An application of the DAM thus demands to characterize the

Fig. 3.35 Vector diagram for gravel-bed flow showing the local time-averaged velocities on the

vertical plane of symmetry. The vector ? 0.3 m s-1 refers to a scale ð�u2 þ �w2Þ0:5 = 0.3 m s-1

(Dey and Das 2012)
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variable nature of time-averaged streamwise velocities representing them to DA
velocities on the planes parallel to the virtual bed level.

Figure 3.36 shows the vertical distribution of normalized DA streamwise
velocity uþh i. In order to fit the data plots within the wall shear layer (z [ 0) above
the gravel crests to a logarithmic law, the �uh i and the z are scaled by u* and Dz,
respectively, such that huþi ¼ h�ui=u� and g+ = (z + Dz)/Dz, where Dz is the zero-
plane displacement. To plot the experimental data, one can consider the loga-
rithmic law as expressed in the following form:

huþi ¼ 1
j

ln
gþ

gþ0

� �
ð3:170Þ

where g0
+ = z0/Dz and z0 is the zero-velocity level. It is clear that to plot the data

uþðgþÞh i (Fig. 3.36), a prior estimation of Dz was required to arrange the data set
of uþh i versus g+. Also, a subsequent determination of j and g0

+ was essential to fit
the data to the logarithmic law given by Eq. (3.170). Note that the flow quantities
within an angle bracket �h i represent the superficial DA quantities (=intrinsic
DA 9 /).

Determination of the flow parameters was done independently, as described
below:

Step 1: Having obtained u* from the sxzh i distribution by projecting a straight
line on the bed surface [see Eq. (3.20)], such that u� ¼
� u0w0
� �	 
0:5

���
z¼0

, prepare the data set of huþið¼ h�ui=u�Þ corresponding

to g+ [= (z + Dz)/Dz] for the analysis.
Step 2: As an initial trial, assume a very small value of Dz and then determine j

and g0
+ from Eq. (3.170) by regression analysis. Evaluate the regression

coefficient, RC.
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Dey and Das (2012)
Fitted

Crest level

Virtual bed level, z1 = 0

Eq. (3.171)

Eq. (3.172)
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Fig. 3.36 Variation of
normalized DA streamwise
velocity uþh i with g+ (Dey
and Das 2012)
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Step 3: Increase Dz at a regular interval by a small magnitude (say 0.001) and
determine j and g0

+ in the same way, as is done in step 2. Check RC for
each value of Dz, till RC becomes maximum. Then, the corresponding
values of Dz, j, and z0 are the determined parameters.

Dey and Das (2012) obtained the logarithmic law of hu+(g+)i within the wall
shear layer above the gravel crests (g+ [ 1) as

huþi ¼ 2:451 ln gþ þ 4:325 ð3:171Þ

On the other hand, the uþh i distribution within the interfacial sublayer (g+ B 1)
can be represented by a third-degree polynomial series given by

huþi ¼ 0:421� 2:905gþ þ 12gþ2 � 5:191gþ3 ð3:172Þ

A close examination of the data plots for g+ B 1 reveals that uþh i has an
inflectional distribution due to an effect of the roughness geometry function,
resulting from a potential mixing type of flow within the inter-gravel space. The
near-invariant uþh i distribution toward the roughness trough (g+ B 0.3) is caused
by the subsurface flow beneath the gravel-bed. This is the reason why uþh i dis-
tribution below the gravel crests follows a polynomial law.

For a steady-uniform flow over a rough bed, the DA RANS equations provide a
new definition for the total DA fluid shear stress �sh i in the streamwise direction:

h�sðzÞi ¼ �qh~u~wi|fflfflfflffl{zfflfflfflffl}
hsfi

�q u0w0
� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
hsxzi

þqt
dh�ui
dz|fflfflfflfflffl{zfflfflfflfflffl}

hsvi

ð3:173Þ

where sfh i is the DA form-induced shear stress, u and w are the instantaneous
streamwise and vertical velocity components, respectively, sxzh i is the spatially
averaged Reynolds shear stress, and svh i is the DA viscous shear stress. Therefore,
the DAM provides an additional stress term in the form of form-induced shear.

As given by Eq. (3.173), the DA total shear stress �sh i is the sum of the spatially
averaged Reynolds shear stress sxzh i, DA form-induced shear stress (FISS) sfh i,
and DA viscous shear stress svh i. Then, the �sh i has to be balanced by the gravity. It
has a linear distribution for �sð~z	 1Þh i=ðqu2

�Þ ¼ 1� ~z [see Eq. (3.20)], where
~z ¼ z=h. The shear stresses are normalized as ~sh i, ~sxzh i, ~sfh i, ~svh i ¼ ð �sh i, sxzh i,
sfh i, svh iÞ 
 ðqu2

�Þ
�1. The variations of ~sh i, ~sxzh i, ~sfh i, and ~svh i with ~z are shown

in Fig. 3.37, where the horizontal line immediate below the crest level represents
virtual bed level (indicated by z1 = 0) and the next one is the zero-plane dis-
placement (indicated by z+ = 0). The ~sxzh i is the governing shear stress across the
flow depth. The damping in ~sxzh i distribution within the interfacial sublayer occurs
due to a reduction in turbulence level (u0 and w0). In this sublayer, the decrease in
~sxzh i is compensated partially by the appearance of FISS ~sfh i, as shown

in Fig. 3.37, and both of them are comparable. Moreover, below the crest level,
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in addition to the FISS, a form-drag-induced stress is also prevalent (Nikora et al.
2007b), which can be obtained from the integration of the pressure distribution
across the frontal face of the gravels. Unfortunately, little progress has so far been
made to evaluate the form-drag-induced stress in the flow-gravel-bed interface.
However, the ~sfh i remains insignificant above the roughness sublayer and so is
~svh i over the entire flow depth. Since the ~sfh i and ~svh i are of negligible magnitude,

the data plots of ~sxzh i to be the dominant shear stress above the roughness sublayer
collapse on the linear gravity line (Fig. 3.37). It is rather convenient to determine
the thickness of the form-induced sublayer from the location where the ~sfh i dis-
tribution attains a small finite value ( ~sfh i[ 0). In Dey and Das (2012), the
thickness of the form-induced sublayer is 0.16h or 3.5ks. Other criterion to
determine this sublayer is the location where the uþh i distribution departs from the
logarithmic law (Nikora et al. 2004). However, it is clear that the form-induced
sublayer occurs close to the gravel crests (less than a gravel size above the crest
level) based on either criterion. Within the interfacial sublayer, the total shear
stress ~sh i becomes nonlinear due to its superficial DA value obtained by the
product of / (Manes et al. 2007). It is

h~si ¼
Z1

ẑ

/d~z ¼ 1þ
Z0

ẑ

/d~zþ Form-drag-induced stress ðnondimensional)

Nikora et al. (2007b) suggested that the form drag together with viscous drag
exerted by the fluid on the roughness elements (per unit fluid volume) can be
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Das 2012)
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calculated as 0.5qCDakh�ui2, where CDðzÞ is the drag coefficient, and ak is the local
roughness density, that is the ratio of the frontal area of roughness elements to the
fluid volume. The experimental data of ~sh i ¼ ~sxzh i þ ~sfh i þ ~svh ið Þ to show
the variation with ~z are depicted in Fig. 3.37. They almost collapse on the gravity
line above the gravel crest, while a reduction in ~sh i is apparent within the inter-
facial sublayer. Further if one can consider the fitting of a logarithmic law of �uh i,
then its applicability is legitimate above the crest level [see Eq. (3.171)]. Appar-
ently, there is a consensus on the damping characteristic in ~sxzh i distribution. It
initiates from the flow region near the gravel crests located roughly at ~z = 1–1.5,
becoming greater within the interfacial sublayer with a decrease in ~z. Figure 3.37
also elaborates the distribution of FISS ~sfh i. The FISS, as the time-averaged flow
close to the gravel crests, is spatially heterogeneous, starts developing within the
form-induced sublayer, and grows sharply with a decrease in ~z. Therefore, the
FISS along with the form drag is to reduce the flow velocity in this sublayer.
Within the interfacial sublayer (~z B 0), the fluid momentum also gets transferred
to the gravel voids having a mixing effect in the fluid. The ~sfh i that is considerable
for ~z B 0 attains a peak above the virtual bed level, and then, it decreases with a
further decrease in ~z.

Figure 3.38 shows the variation of the ratio ~sfh i= ~sxzh i with ~z. The ~sfh i= ~sxzh i
increases with a decrease in ~z attaining a peak at the virtual bed level. It is evident
that the peak value is ~sfh i= ~sxzh ið Þmax� 0:4, as observed by Dey and Das (2012).
However, below the virtual bed level, a drastic drop of sfh i and sxzh i results from a
reduction in temporal (u0 and w0) and spatial (~u and ~w) velocity fluctuations,
respectively. More specifically, the severe reduction in ~sfh i= ~sxzh i in this region is
associated with the reduction in sfh i (that is, ~u and ~w) that occurs more rapidly than
that of sxzh i (that is, u0 and w0).
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3.19 Example

Example 3.1 Determine the depth-averaged momentum equation for the two-
dimensional curvilinear turbulent flow on a flat inclined bed with a velocity dis-
tribution that follows 1/m-th power law.

Solution

Under consideration is a curvilinear flow over a flat rigid bed inclined at an angle h
with the horizontal (Fig. E3.1). The continuity equations in two dimensions are as
follows:

o�u

ox
þ o�w

oz
¼ 0;

ou0

ox
þ ow0

oz
¼ 0 ðE3:1Þ

The RANS equations in two dimensions take the form as follows:

o�u

ot
þ �u

o�u

ox
þ �w

o�u

oz
¼ � 1

q
� o�p

ox
þ 1

q
� osxz

oz
þ t

o2�u

oz2
� oðu02Þ

ox
þ g sin h ðE3:2aÞ

o�w

ot
þ �u

o�w

ox
þ �w

o�w

oz
¼ � 1

q
� o�p

oz
þ 1

q
� osxz

ox
þ t

o2 �w

ox2
� oðw02Þ

oz
� g cos h ðE3:2bÞ

The power law of velocity distribution that is a good replacement of the loga-
rithmic law is as follows:

�u ¼ Umaxðx; tÞ
z

h

� �1=m
ðE3:3Þ

where m is an exponent and Umax ¼ �u z ¼ hð Þ. Let h(x, t) represent the height of the
free surface at a point (x, 0) on the bed. If U(x, t) represents the depth-averaged
velocity, then

Uðx; tÞ ¼ 1
h

Zh

0

�udz ¼ Umax

hð1þmÞ=m

Zh

0

z1=mdz ¼ m

1þ m
Umax ðE3:4Þ

Hence, in terms of U, Eq. (E3.3) can be written as

�u ¼ 1þ m

m
Uðx; tÞ z

h

� �1=m
ðE3:5Þ

Then, Eq. (E3.1) yields

�w ¼ �h
oU

ox

z

h

� �ð1þmÞ=m
ðE3:6Þ
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The streamwise flow is assumed to be gradual having a small curvature, where the
streamwise gradient of h(x, t) becomes small, that is, |qh/qx| & 0. Moreover, the
total normal acceleration d�w=dt along the curvilinear streamlines is assumed to
be predominantly convective so that the local normal acceleration becomes zero
ðo�w=ot � 0Þ. From Eq. (E3.1), the convective normal acceleration is

�u
o�w

ox
þ �w

o�w

oz
¼ �u

o�w

ox
� �w

o�u

ox
¼ �u2 oðtan wÞ

ox
¼ �u2

r
sec3 w � �u2

r
ðE:3:7Þ

where w ¼ arctan �w=�uð Þ, which is the slope of the streamline through the point P(x,
z) being nearly zero (parallel to the free surface) (Fig. E3.1). According to
Boussinesq approximation, a linear variation of the streamline curvature with
depth z is obtained from Eqs. (2.89) and (2.90):

1
r
� z

h
� o

2h

ox2
ðE3:8Þ

Thus, using Eq. (E3.5) into Eq. (E3.7), the convective normal acceleration is
obtained as

�u
o�w

ox
þ �w

o�w

oz
� 1þ m

m

� �2

U2 z

h

� �ð2þmÞ=m o2h

ox2
ðE3:9Þ

Inserting Eq. (E3.9) into Eq. (E3.2b) and integrating with respect to z yields

�p ¼ p0 � qgðz� hÞ cos h� 1þ m

2m
qU2h

z

h

� �2ð1þmÞ=m
�1

� �
o2h

ox2
� qw02 ðE3:10Þ

where p0 ¼ �pðz ¼ hÞ. It is assumed that the Reynolds stresses in the streamwise

direction are negligible, that is, ow02=ox ¼ 0. Differentiating Eq. (E3.10) with
respect to x produces

o�p

ox
¼ qg cos h

oh

ox
� 1þ m

2m
� o

ox
qU2h

z

h

� �2ð1þmÞ=m
�1

� �
o2h

ox2

� 
ðE3:11Þ
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Fig. E3.1 Definition sketch
of a curvilinear flow over a
flat inclined bed of an open
channel
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In order to obtain the equations for h and U, one can consider the continuity
equation (Eq. E3.1). At the free surface, z = h(x, t), and thus,

�w ¼ dh

dt
¼ �

Zh

0

o�u

ox
dz ¼ � oðhUÞ

ox
þ �uðh; tÞ oh

ox
ðE3:12Þ

Hence, the depth-averaged continuity equation is obtained as

oh

ot
þ oðhUÞ

ox
¼ 0 ðE3:13Þ

Neglecting the viscous stress term and using Eq. (E3.11) and the condition

ou02=ox � 0 into Eq. (E3.2a), the depth-averaged equation is obtained as

Zh

0

o�u
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ox
þ �w
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� �
dz ¼ �gh cos h

oh

ox
� c

o

ox
h2U2 o2h

ox2

� �
� s0

q
þ gh sin h

ðE3:14Þ

where s0 ¼ tðo�u=ozÞz¼0. From the Manning equation, s0 is qgn2U2/h1/3, where n is
the Manning coefficient and c = (1 + m)2/[m(2 + 3m)]. Partially integrating the
third term in the left-hand side of Eq. (E3.14) and using Eq. (E3.1), the depth-
averaged momentum equation is as follows

oðhUÞ
ot
þ a

oðhU2Þ
ox

þ gh cos h
oh

ox
þ c

o

ox
h2U2 o2h

ox2

� �
þ gn2U2

h1=3
� gh sin h ¼ 0

ðE3:15Þ

where a = (1 + m)2/[m(2 + m)]. Equation (E3.15) can be regarded as the gen-
eralized form of de Saint-Venant equation, where the variability of �u is in
accordance with 1/m-th power law and the curvature of streamlines is included.
Using Eq. (E3.13), Eq. (E3.15) can be rewritten as

oU

ot
þ ð2a� 1ÞU oU

ox
þ ða� 1ÞU

2

h
� oh

ox
þ cU hU

o3h
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oðhUÞ
ox
� o
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ox2

� �

þ g cos h
oh

ox
þ gn2U2

h4=3
� g sin h ¼ 0

ðE3:16Þ

The above equation was first obtained by Bose and Dey (2007).
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Chapter 4
Sediment Threshold

4.1 General

When a stream flow interacts with a loose boundary composed of sediment par-
ticles, hydrodynamic force is exerted on the sediment particles forming the
boundary (henceforth bed). With an increase in flow velocity, the sediment par-
ticles on the bed surface are intermittently entrained at a random rate if the
magnitude of the induced hydrodynamic force (drag and lift) acting on the par-
ticles exceeds a certain threshold value to overcome the stabilizing force (that is,
submerged weight of particles). The condition that is just adequate to initiate
sediment motion is termed threshold condition or critical condition of sediment
entrainment. Importantly, the induced bed shear stress of the stream flow in excess
of that of the stream flow at threshold condition governs the sediment entrainment
mechanism. The threshold of sediment movement at the bed is an important
component in studying the management of rivers and channel systems, such as
sediment transport, design of stable channels, and preventive measures against
erosion.

In 1753, Brahms proposed that the flow velocity required to begin the particle
motion is proportional to the particle’s weight raised to the power one-sixth. Later,
in 1914, Forchheimer explained the influence of sediment gradation, sorting, and
armoring on the sediment threshold. The doctoral research study by Shields (1936)
on sediment movement carried out at the Technischen Hochschule Berlin, Ger-
many, was a phenomenal contribution (Kennedy 1995). His important finding was
his diagram, well known as Shields diagram, that represents the variation of
nondimensional threshold bed shear stress (or threshold Shields parameter) with
shear Reynolds number corresponding to the threshold of sediment entrainment. It
is considered to be the reference of any sediment transport research. His pio-
neering work which is widely applied to the fields has inspired numerous inves-
tigators conducting further studies. However, not many attempts were made before
Shields (1936), but they were mostly empirical with limited applicability. Despite
the fact that the Shields diagram is widely used, even as of today, researchers have
identified some limitations (Miller et al. 1977; Mantz 1977; Yalin and Karahan

S. Dey, Fluvial Hydrodynamics, GeoPlanet: Earth and Planetary Sciences,
DOI: 10.1007/978-3-642-19062-9_4, � Springer-Verlag Berlin Heidelberg 2014
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1979; Buffington 1999), since the diagram less complies with the experimental
data plots in the smooth and the rough flow regimes (Yalin and Karahan 1979).
Thus, further attempts have so far been made to modify the Shields diagram,
conducting additional experiments and analyzing the problem theoretically based
on deterministic and probabilistic approaches. Miller et al. (1977), Buffington and
Montgomery (1997), Paphitis (2001), and Dey and Papanicolaou (2008) presented
a comprehensive survey on this topic. However, after the discovery of the bursting
phenomenon in turbulent flow (Kline et al. 1967), it has created a new look to
further explore the sediment entrainment problem. The turbulence has so far been
introduced as an average like Reynolds shear stress. The conditional statistics
toward the bursting events can be the obvious treatment of the sediment entrain-
ment problem, as the most important turbulent events remain implicit with the
averaging process. It leads to an open question that to what extent the micro-
mechanical processes can be studied in a deterministic framework and when the
results can be determined by a probabilistic approach. Therefore, a merger of latest
knowledge of turbulence with sediment entrainment theories demands its way to
link between a deterministic and a probabilistic approach.

It is worthwhile to mention that the present state of knowledge has been
attained progressively, as in all fields of science and technology also in sediment
transport. There is no doubt a logical exercise in the development of the subject
having governed by the complex phenomena. In fact, a proper understanding of the
complex laws of sediment transport requires considerable period of time. In many
cases, previous results and theories have been completed and/or modified by later
researchers. In some cases, earlier results and theories have become outdated or
replaced by now by the new ones, while others with some modifications and
refinements remain still applicable.

4.2 Definition of Sediment Threshold

It is always difficult to set a clear definition of the sediment threshold. First type of
definition corresponds to the sediment flux. Shields (1936) suggested that the bed
shear stress has a value for which the extrapolated sediment flux vanishes. On the
other hand, USWES (1936) put forward that the tractive force should be such that
produces a general motion of bed particles. For the median size of sediment less
than 0.6 mm, this concept was found to be inadequate. Thus, the general motion
was redefined as the sediment in motion should reasonably be represented by all
sizes of bed particles, such that the sediment flux should exceed
4.1 9 10-4 kg s-1 m-1. From the stochastic viewpoint, Paintal (1971) suggested
that due to the fluctuating mode of instantaneous velocity, there is no mean bed
shear stress below which there is no flux, thus questioning the use of mean bed
shear stress to define sediment threshold. However, the threshold condition is
defined as the mean bed shear stress that produces a certain minimal amount of
sediment flux.
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Second type of definition corresponds to the bed particle motion. Kramer
(1935) defined four types of bed shear stress conditions for which: (1) No particles
are in motion, termed no transport, (2) a small number of smallest particles are in
motion at isolated zones, termed weak transport, (3) many particles of mean size
are in motion, termed medium transport, and (4) particles of all sizes are in motion
at all points and at all times, termed general transport. However, Kramer (1935)
expressed the difficulties in setting a clear demarcation between these regimes, but
defined threshold bed shear stress to be the shear stress that initiates a general
transport. Vanoni (1964) proposed that the sediment threshold is the condition of
the particle motion in every two seconds at any location of the bed. Different
threshold definitions that are in use in various studies leading to discrepancies in
the data sets and introducing difficulties in making comparisons (Paintal 1971;
Buffington and Montgomery 1997).

4.3 Threshold Velocity Concept

A threshold velocity or critical velocity is a near-bed velocity ucr at the particle
level or the average velocity Ucr, which is just adequate to start the sediment
particle motion for a given size on the bed surface (Fig. 4.1). In principle, use of
near-bed velocity for determining the threshold condition is rather uncertain. On
the other hand, the idea of using average velocity for describing the threshold
condition is apparently logical one, since the average velocity is easy to determine
for the given discharge Q and cross-sectional area A of flow. Nevertheless, it does
not provide precise results at all, since the average velocity yields an ad hoc
estimation toward the threshold condition, while a near-bed velocity or a bed shear
stress plays a key role toward the particle movement. For the determination of
near-bed and average velocities, it would be required to introduce assumptions
concerning the distribution of time-averaged streamwise velocity across the flow
depth. Since it is a difficult task to measure the near-bed velocity exactly at the
particle level, the magnitudes determined indirectly from the velocity distributions
are in no way unambiguous. In this circumstances, defining the near-bed velocity,
arbitrary assumptions are essentially introduced. For instance, an extrapolation of
the velocity distribution up to the particle level could be one of the potential
methods to determine a near-bed velocity, as illustrated in Fig. 4.1.

Numerous papers and reports have been published on the studies using a near-
bed velocity ucr at the particle level or an average velocity Ucr as a sediment
threshold criterion. Here, only some of them are discussed. Goncharov (1964) used
the threshold velocity as detachment velocity Ucr. It was defined as the lowest
average velocity at which individual particles detache from the bed. He gave an
equation of Ucr as
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Ucr ¼ 1:07ðDgdÞ0:5 log 8:8
h

d95

� �
ð4:1Þ

where h is the flow depth, d is the representative sediment size, that is the median
diameter, g is the acceleration due to gravity, D is the submerged relative density
(=s - 1), s is the relative density of sediment (=qs/q), qs is the mass density of
sediment, and q is the mass density of water. Subscript ‘‘95’’ denotes the per-
centage finer. Similar type of equations having logarithmic term was also put
forward by Lavy (1956) as

Ucr

h

d90
[ 60

� �
¼ 1:4ðgdÞ0:5 log 12

h

d90

� �
ð4:2aÞ

Ucr 10\
h

d90
\60

� �
¼ 1:4ðgdÞ0:5 log 156:8

h

d90

� �
ð4:2bÞ

Carstens (1966) proposed an equation of threshold velocity ucr at the particle
level by analyzing a large number of experimental data. It is

ucr � 1:9ðDgdÞ0:5ðtan / cos h� sin hÞ0:5 ð4:3Þ

where / is the angle of repose of sediment and h is the angle made by the
streamwise bed slope with the horizontal.

Neill (1968) developed a design curve for the initiation of motion of coarse
gravels in terms of average velocity Ucr as a threshold velocity and expressed as

Ucr ¼ 1:41ðDgdÞ0:5 h

d

� �1=6

ð4:4Þ

Analyzing large number of data on threshold condition, Garde (1970) proposed
equations for hydraulically rough flow as

Bed particles 

Ucr (= Q/A) 

ucr

Fig. 4.1 Definition sketch of threshold velocity
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ucr ¼ 1:51ðDgdÞ0:5 ð4:5aÞ

Ucr ¼ ðDgdÞ0:5 0:5 log
h

d
þ 1:63

� �
ð4:5bÞ

Figure 4.2 shows the plots of threshold velocities (Ucr and ucr) as a function of
median sediment size d for quartz sediments (s = 2.65) obtained from the studies
of Hjulström (1935), Shields (1936), and Mavis and Laushey (1966), as demon-
strated by the ASCE Sedimentation Task Committee (Vanoni 1977). The data
plots Ucr(d) and the set of curves having upper, mean, and lower limits are
obtained from Hjulström (1935).

The curve of Mavis and Laushey (1966) yields an equation of near-bed
threshold velocity ucr as

ucr ¼ 3:3D0:5d4=9 ð4:6Þ

It is obvious that the data of Mavis and Laushey (1966) provides an estimation that
is very similar to that obtained from the data of Shields (1936) with a small sift.

Zanke (1977) recommended the following equation:

Ucr ¼ 2:8ðDgdÞ0:5 þ 14:7c1
t
d

� �
ð4:7Þ

where c1 is the coefficient varying from 1 for noncohesive to 0.1 for cohesive sedi-
ments and t is the coefficient of kinematic viscosity of water. Equations (4.1)–(4.7)
are expressed in SI units. Though most of the earlier authors provided valuable
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Fig. 4.2 Variations of threshold velocities, Ucr and ucr, with median particle size d for quartz
sediments (Vanoni 1977)
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information regarding threshold velocity, many of them had not clearly reported the
exact particle size and the location of the near-bed velocity to be taken. As such, it
invites an open question as to what is meant by the threshold velocity at particle level
ucr or the threshold average velocity Ucr. Thus, the threshold velocity concept has not
been categorically welcomed by the community working with sediment transport.
This confusion has insisted the researchers to seek a more acceptable standard
quantity like the threshold bed shear stress. Nevertheless, Yang’s (1973) analytical
model for the estimation of Ucr seems to be reasonable.

4.3.1 Yang’s Threshold Velocity Model

Yang (1973) analyzed the force system on a spherical sediment particle in a stream
flow on the bed of an open channel, as shown in Fig. 4.3. The particle is subjected
to the hydrodynamic force (drag and lift) induced by the flow. The hydrodynamic
drag force FD is expressed as

FD ¼ CD

q
2

�u2
d

p
4

d2 ð4:8Þ

where CD is the drag coefficient and �ud is the flow velocity, considered acting at
the top (that is at an elevation d from the bed) of the particle, by which the particle
is dragged.

The submerged weight FG of the particle is balanced by the drag force FD of a
falling particle, when the terminal fall velocity ws of the particle is reached. It was
already discussed in Sect. 1.7. Thus, one can write

du

F
G

d F
D

L

RF

F

Fig. 4.3 Forces acting on a spherical sediment particle on the bed of an open channel
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FG ¼
p
6

d3Dqg ¼ CD1
q
2

w2
s

p
4

d2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
FD

ð4:9Þ

where CD1 is the drag coefficient at ws, being assumed as w1CD. Eliminating CD

from Eqs. (4.8) and (4.9), the drag force is

FD ¼
p

6w1w2
s

d3Dqg �u2
d ð4:10Þ

Considering the law of the wall (logarithmic law) for the velocity distribution,
the near-bed velocity �ud at the particle level and the depth-averaged velocity U are
obtained as:

�ud ¼ Bu� ð4:11aÞ

U ¼ u� 5:75 log
h

d
� 1

� �
þ B

� �
ð4:11bÞ

where B is the roughness function and u* is the shear velocity. Using Eqs. (4.11a, b)
into Eq. (4.10) yields

FD ¼
p

6w1
d3Dqg

U

ws

� �2

B2 5:75 log
h

d
� 1

� �
þ B

� ��2

ð4:12Þ

The hydrodynamic lift force FL acting on the particle is given by

FL ¼ CL

q
2

�u2
d

p
4

d2 ð4:13Þ

where CL is the lift coefficient, which is related to the drag coefficient as CD/w2.
Thus, using Eqs. (4.11a, b) into Eq. (4.13) yields

FL ¼
p

6w1w2
d3Dqg

U

ws

� �2

B2 5:75 log
h

d
� 1

� �
þ B

� ��2

ð4:14Þ

At sediment threshold (when the particle is about to move), the drag force FD is
balanced by the resistance force FR. Thus, the force balance equation is

FD ¼ FR ¼ w3ðFG � FLÞ ð4:15Þ

where w3 is the friction coefficient. The average velocity U corresponding to
threshold condition is denoted by Ucr.

Inserting Eqs. (4.9), (4.12) and (4.14) into Eq. (4.15), the equation of threshold
average velocity Ucr is obtained as
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Ucr

ws

¼ w1w2w3

w2 þ w3

� �0:5 5:75
B

log
h

d
� 1

� �
þ 1

� �
ð4:16Þ

Equation (4.16) is the governing equation defining the threshold condition for
sediment motion for a given flow regime. For hydraulically smooth flow regime,
B(0 \ R* \ 5) = 5.75log R* + 5.5 implies that Ucr/ws varies significantly with
R*; while the relative roughness d/h has little influence. Here, R* is the shear
Reynolds number, that is u*ks/t, u* is the shear velocity, and ks is the bed
roughness. In contrast, for hydraulically rough flow regime, B(R* [ 70) = 8.5
suggests that Ucr/ws is a function of relative roughness d/h only. For the transition
regime (5 B R* B 70), the dependency of B on R* decreases and d/h increases
with an increase in R* (R* [ 5). However, the values of the coefficients (w1, w2,
and w3) had to be determined experimentally. The laboratory experimental data
collected by various investigators were used by Yang (1973) to evaluate the
coefficients. He gave the equations for the determination of threshold average
velocities for both smooth and rough flows as follows:

Ucrð0\R�\70Þ ¼ ws

2:5
log R� � 0:06

þ 0:66

� �
ð4:17aÞ

UcrðR� � 70Þ ¼ 2:05 ws ð4:17bÞ

4.4 Lift Force Concept

Einstein (1950), Velikanov (1955), Yalin (1963), Gessler (1966), and Ling (1995)
thought that the sediment is entrained solely by the lift force. The lift force can
primarily be induced for the following reasons: (1) Sediment particles on the bed
surface experience maximum velocity gradient; thus, a lift acts on the particles due
to considerable pressure difference, (2) sediment particles may experience lift due
to the instantaneous vertical velocity fluctuations in the vicinity of the bed, and (3)
the slip-spinning motion of sediment particles may result in lift due to Magnus
effect (Dey 1999). Note that if the lift force equals the submerged weight of the
particle, then a smallest drag force is adequate to entrain the bed particles. The lift
force on a spherical particle is given by Eq. (4.13).

Jeffreys (1929) analyzed a potential flow over a circular cylinder having its axis
horizontal and perpendicular to the flow. He argued that the lift to carry the
cylinder is prevalent if

ð3þ p2ÞU2 [ 9Dgr ð4:18Þ
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where r is the radius of the cylinder. The drawback of the analysis was that the
drag force was ignored. However, to apply the results in analyzing sediment
entrainment, modification factors should be accounted for, as a two-dimensional
model behaves in a different way from that of a three-dimensional spherical
particle in a fluid flow.

Reitz (1936) discussed a similar idea to express the sediment entrainment with a
lift criterion, where the circulation and the viscosity were important parameters for
his analysis.

Lane and Kalinske (1939) emphasized on the turbulence for quantification of
lift. They assumed that (a) the particles experience lift when the instantaneous
vertical velocity fluctuations in the vicinity of the bed exceed their terminal fall
velocity, (b) the variation of velocity fluctuations follows a normal-error law, and
(c) a correlation exists between the velocity fluctuations and the shear velocities.

Experimental study by White (1940) and theoretical analysis by Iwagaki (1956)
revealed that the inclusion of lift on the particle does not change its threshold
tractive force appreciably and thereby concluded that the lift is of secondary
importance.

Einstein and El-Samni (1949) measured the lift force directly as a static pres-
sure difference between the top and the bottom points of hemispheres. They
proposed the lift force per unit area fL as

fL ¼ 0:5CLq�u2
0:35d ð4:19Þ

where CL is the lift coefficient assumed as 0.178 and �u0:35d is the flow velocity at an
elevation 0.35d from the theoretical bed. They also studied the effects of turbulent
fluctuations on lift. The experiments revealed a constant average lift force with
superimposed random fluctuations that follow the normal-error law. Their results
were used by the Task Committee (1966) of the Journal of Hydraulics Division
estimating fL/s0c & 2.5, where s0c is the threshold bed shear stress. It suggests that
the lift force is an important mechanism toward the threshold of sediment
entrainment. However, Chepil (1961) pointed out that once the particle moves, the
lift tends to diminish, while the drag increases. Using the experimental results of
Emmerling (1973) and Dinkelacker et al. (1977) that the maximum near-bed
pressure fluctuations equal 18 times the bed shear stress, Gyr and Hoyer (2006) used
the relationship (pd2/4)18s0c = Dqg(pd3/6) to obtain s0c = 0.037Dqgd.

Chepil (1961) measured that the lift to drag ratio is about 0.85 for 47 \ UD/t
\ 5 9 103 in a wind stream on hemispherical roughness having diameter D, while
Brayshaw et al. (1983) measured the ratio as 1.8 for the same type of roughness at
R* = 5.2 9 104. Aksoy (1973) and Bagnold (1974) found the lift to drag ratio on a
sphere of about 0.1 and 0.5 at R* = 300 and 800, respectively. Apperley (1968)
studied a sphere laid on gravels and found the lift to drag ratio as 0.5 at R* = 70.

Watters and Rao (1971) observed the negative (downward) lift force on a
sphere for 20 \ R* \ 100. Davies and Samad (1978) also reported that the lift
force on a sphere adjacent to the bed becomes negative if significant underflow
takes place beneath the sphere and the flow condition is R* \ 5, while the lift is
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positive for R* C 5. However, they could not clearly explain the cause of the
negative lift force.

While the lift forces obviously contribute to the sediment entrainment, the exact
magnitude of lift on a sediment particle is still unclear. Insufficient experimental
results are available to determine reliable quantitative relationship for lift; as such,
a threshold lift criterion has so far not been obtained which could have been a
ready reference for the determination of sediment entrainment. The occurrence of
negative lift at low shear Reynolds numbers has been well established, but its
cause and magnitude remain uncertain. It was understood that besides the lift, the
drag is always prevalent to contribute toward the sediment entrainment. For higher
shear Reynolds numbers, the correlation between lift and drag is another uncertain
issue, although the lift is certainly positive.

4.5 Threshold Bed Shear Stress Concept

The concept of threshold bed shear stress has been widely applied for the deter-
mination of inception of particle motion and seems to provide reasonable results.
The origin of this concept lies on the experimental (laboratory and field) or the-
oretical determination of so-called tractive force per unit area, that is the bed shear
stress, given by qghtanh. In developing a sediment threshold theory, this concept is
based on the analysis of the hydrodynamic force caused by the flowing fluid and
the stabilizing force due to submerged weight to formulate the threshold bed shear
stress in nondimensional form, termed threshold Shields parameter. In doing so,
the constants or the coefficients are to be determined experimentally. Therefore, all
the analytical models belong to the concept of threshold bed shear stress and are
semitheoretical. Besides, there are empirical equations proposed by various
investigators. Due to its practical importance, the concept of threshold bed shear
stress is discussed here in details.

4.5.1 Empirical Equations

Attempts have been made to correlate the threshold bed shear stress s0c with
sediment properties obtained from the experimental and field measurements. Using
the laboratory experimental data, Schoklitsch (1914) recommended an equation as

s0c ¼ 0:448qgðDSpd3Þ0:5 ð4:20Þ

where s0c is in kg m-2, Sp is the Corey shape factor varying from 1 for spherical to
4.4 for flat particles, and d is in m. He worked extensively on sediment transport
related issues for 40 years. Later, he refined the estimation of s0c and
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recommended the equation suggested by Krey (1925) for d C 6 9 10-3 m and
that by him for 10-4 B d B 3 9 10-3 m. They are

s0cðd� 6� 10�3 mÞ ¼ 7:6� 10�2Dqgd ð4:21aÞ

s0cð10�4� d� 3� 10�3 mÞ ¼ 2:85� 10�4Dqgd1=3 ð4:21bÞ

However, the estimation of s0c(3 9 10-3 \ d \ 6 9 10-3 m) was recommended
as a transitional value in between the values obtained from Eqs. (4.21a, b).

Kramer (1935) proposed

s0c ¼ 29
Dqgd

M

� �0:5

ð4:22Þ

where s0c is in g m-2, M is the Kramer’s uniformity parameter, and d is in m.
Equation (4.22) is applicable for 0.24 B d B 6.52 mm and 0.265 B M B 1.

USWES (1936) recommended the following formula:

s0c ¼ 0:285
Dd

M

� �0:5

ð4:23Þ

where s0c is in Pa and d is in mm. Equation (4.23) is valid for
0.205 B d B 4.077 mm and 0.28 B M B 0.643.

A simple equation of s0c was given by Leliavsky (1966) as

s0c ¼ 166d ð4:24Þ

where s0c is in g m-2 and d is in mm. None of the equations take into account the
effects of fluid viscosity. Further, each of these equations produces results that
differ from each other. However, these empirical equations estimate the approxi-
mate value of s0c and their use cannot be recommended for the precise estimations.

4.5.2 Semitheoretical Analyses

4.5.2.1 Shields’ Approach

Shields (1936) was the pioneer in proposing a semitheoretical method for the
entrainment threshold of sediments. He considered that the particles do not move
at very low velocity. As the flow velocity increases to a certain value, the driving
force on the sediment particles exceeds the stabilizing force, and the sediment
particles start to move. The threshold of particle motion is governed by balancing
the driving force (that is, drag force, in this case) and the stabilizing resistance.
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Note that Shields neglected the lift force. Figure 4.4 shows a schematic of the
force system when a sediment particle is about to move.

The driving force is the drag force FD due to flow exerted on the sediment
particles and is given by

FD ¼ CD

1
2
q�u2a1d2 ð4:25Þ

where �u is the time-averaged flow velocity at an elevation z = a2d and a1 is the
particle shape factor.

The drag coefficient CD is given by a function of particle shape factor and
particle Reynolds number as

CD ¼ f1 a1;
�ud

t

� �
ð4:26Þ

Considering the bed roughness height ks being proportional to d, the logarithmic
law of wall for the velocity distribution yields

�u ¼ u�
j

ln
z

z0

� �
¼ u�f2 a2;

u�ks

t

� �
ð4:27Þ

where j is the von Kármán constant (=0.41) and z0 is the zero-velocity level, that
is 0.11(t/u*) + 0.03ks.

Using Eqs. (4.26) and (4.27) into Eq. (4.25), the FD is

FD ¼ qu2
�d

2f3 a1; a2;R�ð Þ ^ R� ¼
u�ks

t
ð4:28Þ

The frictional resistance FR to particle motion was assumed to be dependent
only on the bed roughness and the submerged weight FG of the particle. That is

FL Shields did not consider lift force L

D

G

u

FR

z

F

F

F

Fig. 4.4 Schematic of a particle subjected to instantaneous hydrodynamic force
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FR ¼ a3Dqgd3 ð4:29Þ

where a3 is the frictional coefficient dependent on roughness produced by the bed
particles. At the threshold condition, when the sediment particles are about to
move, u* ? u*c (where u*c is the threshold shear velocity); then, the drag is
balanced by the frictional resistance, that is, FD = FR (Fig. 4.4). Therefore,
rearranging the terms

u2
�c

Dgd
¼ s0c

Dqgd
¼ f ðR�Þ ^ s0c ¼ qu2

�c ð4:30Þ

The Shields parameter H is defined as

H ¼ u2
�

Dgd
¼ s0

Dqgd
^ s0 ¼ qu2

� ð4:31Þ

where s0 is the bed shear stress. Therefore, Eq. (4.30) is expressed as a threshold
Shields parameter Hc that is

Hc ¼ f ðR�Þ ð4:32Þ

The relationship between Hc and R* was determined experimentally.
Figure 4.5, which shows Shields’ and others experimental results at incipient

motion of different types of bed particles (amber, lignite, granite, barite, and sand)
to correlate Hc to R*, is known as Shields diagram. The Hc(R*) curve represents
the criterion for the threshold of sediment motion. For a given sediment size, the

1 10 100 1000
R* 

0.01

0.1

1

Θ
c

No sediment motion

Sediment motion

τ0 = τc 

Rough flow regime

Smooth flow regime

Fig. 4.5 Shields diagram representing threshold Shields parameter Hc as a function of shear
Reynolds number R* (Shields 1936)
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flow condition corresponding to the region above the curve represents sediment
motion, while the region below the curve refers to no sediment motion.

The Hc(R*) curve in Fig. 4.5 depicts three distinct flow regions: (1) hydrauli-
cally smooth flow for R* B 2: In this region, d is much smaller than the viscous
sublayer thickness. The flow is a smooth-viscous. The curve is linearly varying,
that is, Hc = 0.1/R*; (2) hydraulically rough flow for R* C 500: In this region, the
viscous sublayer does not exist. The flow is a rough-turbulent. The threshold
Shields parameter Hc is invariant of fluid viscosity and is a constant as
Hc = 0.056; and (3) hydraulically transitional flow for 2 \ R* \ 500: In this
region, the sediment particles are of the order of viscous sublayer thickness. There
is a minimum value of Hc as Hc(R* = 12) = 0.032. Note that Shields did not have
data for smooth flow regime (R* B 2). The linear variation of the Hc(R*) curve
was an extrapolation.

The shortcomings of the Shields diagram are discussed here. The viscous
parameter does not have any effect for R* C 70, but Hc still varies with R* in Shields
diagram when the latter is greater than seventy. In addition, Shields used the bed
shear stress s0c and the shear velocity u*c in his diagram as dependent and inde-
pendent variables, which is not appropriate as they are interchangeable. Conse-
quently, s0c or u*c remains implicit and must be determined by trial and error
method.1 Thus, attempts are made to derive the explicit equations for the Shields
diagram, as furnished in Table 4.1. It is already mentioned that Shields neglected lift
force in his analysis. Although it was not appropriate, its effect was accounted for
implicitly by the process of calibrating the Hc(R*) curve with the experimental data.
Furthermore, the extrapolated portion of Hc(R*) curve in smooth flow regime does
not provide realistic results. Therefore, in later period, Mantz (1977) refined the
Shields diagram and gave a relationship Hc(0.056 \ S* \ 3.16) = 0.135S�0:261

� .

4.5.2.2 White’s Approach

White (1940) assumed that the lift force has negligible influence on threshold of
particle motion compared to other forces, and hence, it was neglected in his
analysis. At limiting equilibrium, the drag force (shear drag) is balanced by the
frictional resistance.

White (1940) classified hydraulically transitional and rough flow regimes
(R* C 3.5), and smooth flow regime (R* \ 3.5) in analyzing threshold of particle
motion.

1 Procedure for the determination of threshold shear velocity u*c (or threshold bed shear stress
s0c) by using Shields diagram (Fig. 4.5) for the given d, s, t, and g is as follows:

Step 1: Assume a suitable trial value for u*c (say u*c|trial) and then calculate R*c.
Step 2: For R*c, find Hc from the Shields diagram (Fig. 4.5) and obtain the new value of u*c|new.
Step 3: If u*c|new 6¼ u*c|trial, then retry Step 1 to Step 3 with u*c|new, until u*c|new = u*c|trial is

obtained.
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In hydraulically transitional and rough flow regimes (R* C 3.5), high flow
velocity is required to move larger sediment particles, where the drag acting on the
particle due to skin friction is negligible as compared to that due to pressure
difference. The resultant force solely due to pressure difference pierces through the
center of gravity of the particle and is directed to the flow direction, as shown in
Fig. 4.6. When the particle is about to move, the pivot point is M. If pf is the
packing coefficient defined by Nd2, where N is the number of particles per unit
area, the shear drag per particle (that is s0c/N) is given by s0cd

2/pf. At limiting
equilibrium of a particle resting on the horizontal bed formed by the sediment
particles, the shear drag is balanced by the product of the submerged weight FG of
the particle, as given by Eq. (4.9), and the frictional coefficient tan/. Therefore, it
yields

HcðR� � 3:5Þ ¼ p
6

pf tan / ð4:33Þ

White introduced a factor termed turbulence factor Tf, which is the ratio of the
instantaneous bed shear stress to the mean bed shear stress. Hence, Eq. (4.33) is
modified as

Table 4.1 Explicit empirical equations for the Shields diagram

References Equation

Brownlie (1981) Hc ¼ 0:22S�0:6
� þ 0:06 expð�17:77S�0:6

� Þ, where S* = d(Dgd)0.5/t
van Rijn (1984) Hcð1\D� � 4Þ ¼ 0:24D�1

�

Hcð4\D� � 10Þ ¼ 0:14D�0:64
�

Hcð10\D� � 20Þ ¼ 0:04D�0:1
�

Hcð20\D� � 150Þ ¼ 0:013D0:29
�

HcðD�[ 150Þ ¼ 0:055
where D* is the particle parameter, that is d(Dg/t2)1/3

Soulsby and Whitehouse
(1997)

Hc ¼
0:3

1þ 1:2D�
þ 0:055½1� expð�0:02D�Þ�

Wu and Wang (1999) HcðD�\1:5Þ ¼ 0:126D�0:44
�

Hcð1:5�D�\10Þ ¼ 0:131D�0:55
�

Hcð10�D�\20Þ ¼ 0:0685D�0:27
�

Hcð20�D�\40Þ ¼ 0:0173D0:19
�

Hcð40�D�\150Þ ¼ 0:0115D0:3
�

HcðD� � 150Þ ¼ 0:052

Paphitis (2001)
Hcð0:1\R�\104Þ ¼ 0:273

1þ 1:2D�
þ 0:046½1� 0:576 expð�0:02D�Þ�

It is the formula for the mean curve of Paphitis (2001)
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HcðR� � 3:5Þ ¼ p
6
	 pf

Tf

tan / ð4:34Þ

He experimentally obtained pf = 0.4 and Tf = 4 for fully developed turbulent
flow in transitional and rough flow regimes (33 B R* B 1280) yielding
Hc = 0.044 with / = 40�.

In hydraulically smooth flow regime (R* \ 3.5), low flow velocity is required to
move smaller sediment particles, where the drag due to pressure difference acting
on the particle is very small as compared to the viscous force that acts tangentially
on the surface of the particle (Fig. 4.7). However, the upper portion of the particle
is exposed to the viscous shear drag that acts above the center of gravity of the
particle in the streamwise direction, as shown in Fig. 4.7. This effect is taken into
account by introducing a coefficient af. Therefore, the equation of sediment
threshold is

0cd
2/pf CG 

z 

F
G 

M 

u

τ

φ

Fig. 4.6 Equilibrium of an
individual sediment particle
in hydraulically transitional
and rough flow regimes for
shear Reynolds numbers
R* C 3.5

0cd
2/pf

CG 

FG 

M 

u

z 

τ

φ

Fig. 4.7 Equilibrium of an
individual sediment particle
in hydraulically smooth flow
regime for shear Reynolds
numbers R* \ 3.5
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HcðR�\3:5Þ ¼ p
6

pfaf tan / ð4:35Þ

White experimentally obtained pfaf = 0.34 as an average value. Therefore,
Eq. (4.35) yields Hc = 0.095 with / = 28�.

4.5.2.3 Iwagaki’s Approach

Iwagaki (1956) analyzed the equilibrium of an isolated spherical particle having
diameter d placed on a rough horizontal bed, as shown in Fig. 4.8. He considered
the force balance within the flow region dividing into viscous sublayer and tur-
bulent flow regions and obtained the conditions required for the beginning of
sediment motion under a unidirectional stream flow.

Considering the viscous sublayer thickness of d0, the hydrodynamic drag force
in the zone of turbulent flow is FDT and that in the viscous sublayer is FDV

(Fig. 4.8). Thus, the total drag force is

FD ¼ FDV þ FDT ð4:36Þ

Introducing a fractional area bT (projected area) exposed to the turbulent flow,
FDV and FDT are given by

FDV ¼ CDV

q
2

�u2
d0

p
4

d2ð1� bTÞ ð4:37aÞ

FDT ¼ CDT

q
2

�u2
d

p
4

d2bT �
p
4

d2bTd
op

ox

� �
d

ð4:37bÞ

du

FG

FD = DV + DT 

L

R

d 

z 

x 

uδ ′

δ′

F

F

FDT

F F

DVF

Fig. 4.8 Forces acting on an individual spherical particle resting on a horizontal bed, as
considered by Iwagaki (1956)
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where �ud0 and �ud are the velocity components in x-direction (streamwise) at z = d0

and d, respectively, CDV and CDT are the drag coefficients corresponding to �ud0 and
�ud, respectively, and qp/qx is the piezometric pressure gradient in streamwise
direction.

Neglecting the effect of viscosity, Euler equations yield

� op

ox

� �
d

¼ q
du

dt

� �
d

ð4:38Þ

where du/dt is the total acceleration in streamwise direction, u is the instantaneous
streamwise velocity component, and t is the time.

Using Eq. (4.38) into Eq. (4.37b), the equation of FDT becomes

FDT ¼ CDT

q
2

�u2
d

p
4

d2bT þ q
p
4

d3bT

du

dt

� �
d

ð4:39Þ

The hydrodynamic lift force FL due to piezometric pressure gradient in vertical
direction is

FLðd0 � 0:5dÞ ¼ p
4

d2ðd � d0Þ op

oz

� �
d

¼ �q
p
4

d2ðd � d0Þ dw

dt

� �
d

ð4:40aÞ

FLðd0[ 0:5dÞ ¼ pd0ðd � d0Þðd � d0Þ op

oz

� �
d

¼ �qpd0ðd � d0Þ2 dw

dt

� �
d

ð4:40bÞ

where w is the instantaneous velocity component in z-direction (vertical).
Iwagaki considered the two-dimensional flow on the vertical xz-plane.

Neglecting the local acceleration terms and using the Reynolds decomposition for
the local instantaneous velocity components as u ¼ �uþ u0 and w = w0, he
expressed du/dt and dw/dt after statistical averaging as

du

dt
¼ �u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ou0

ox

� �2
s

þ
ffiffiffiffiffiffi
u02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ou0

ox

� �2
s

þ
ffiffiffiffiffiffiffi
w02

p d�u

dz
þ

ffiffiffiffiffiffiffi
w02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ou0

oz

� �2
s

ð4:41aÞ

dw

dt
¼ �u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ow0

ox

� �2
s

þ
ffiffiffiffiffiffi
u02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ow0

ox

� �2
s

þ 1
2
	 dw02

dz
ð4:41bÞ

where �u is the time-averaged streamwise velocity component, and u0 and w0 are the
fluctuations of streamwise and vertical velocity components, respectively. The
overbar denotes the time-averaged of the velocity fluctuations.

Reverting to the force system, the drag force FD is balanced by the resistance
force FR at the sediment threshold or limiting equilibrium condition (see Fig. 4.8).
Thus, the force balance equation is
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FD ¼ FR ¼ ðFG � FLÞ tan / ð4:42Þ

For a spherical sediment particle, the FG is given by Eq. (4.9).
Iwagaki divided three flow regimes depending on the values of shear Reynolds

number R*.
Case 1 (R* B 6.83): In this case, the bed particles are submerged in the viscous

sublayer. It therefore corresponds to the smooth flow regime; the viscous flow is
therefore prevalent in the bed particle vicinity. It implies that FDT = 0, FL = 0,
and bT = 0.

From the velocity distribution for smooth flow regime, it gives

�ud ¼ u�
u�d

t
¼ u�R� ^ ks ¼ d ð4:43Þ

The drag coefficient CDV is a function of particle Reynolds number
Rdð¼ �udd=tÞ:

CDV ¼ CDVðRdÞ ^ Rd ¼ R2
� ð4:44Þ

Therefore, using Eqs. (4.9), (4.37a), (4.43) and (4.44) into Eq. (4.42) for the
threshold condition (u* ? u*c), the threshold Shields parameter Hc is expressed as
a function of R*:

HcðR� � 6:83Þ ¼ # tan / 	 f1ðR�Þ ð4:45Þ

where # is the empirical coefficient. Iwagaki developed the theory for the equi-
librium of a single particle on a flat sand-bed. In practice, this situation seldom
occurs in the presence of other bed particles. Therefore, the sheltering effect for the
target particle is inevitable. This is the reason why the empirical coefficient # was
introduced having a value of 2.5 for the range of R* covered by all three cases.

Case 2 (R* C 51.1): In this case, the bed particles are exposed to the main flow,
and the viscous sublayer does not exist. It therefore corresponds to the rough flow
regime, and the turbulent flow is prevalent in the bed particle vicinity. It implies
that FDV = 0, d0 = 0, and bT = 1. The velocity distribution for rough flow regime
is defined by the logarithmic law, given by Eq. (4.27), with a zero-velocity level
z0 = 0.03d.

By using transverse correlations and introducing microscales, the expressions
for du/dt and dw/dt, in Eqs. (4.41a, b), respectively, are given by

du

dt
¼

ffiffiffiffiffiffiffiffi
2u02

p
ks

�uþ
ffiffiffiffiffiffi
u02

p� �
þ

ffiffiffiffiffiffiffi
w02

p d�u

dz
þ

ffiffiffiffiffiffiffi
w02

u02

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

u02

k1

 !2

þ 1
4

ou02

oz

 !2
vuut ð4:46aÞ

dw

dt
¼

ffiffiffiffiffiffiffiffiffi
2w02

p
k2

�uþ
ffiffiffiffiffiffi
u02

p� �
þ 1

2
	 ow02

oz
ð4:46bÞ
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Iwagaki hypothesized that the size of the smallest eddies ks are responsible for
turbulent kinetic energy dissipation. Considering the homogeneous isotropic tur-
bulence, that is, k (=k1 = k2), in the flow of wall region, the ks is correlated with
Taylor microscale k as

ks ¼
ffiffiffi
2
p

k ^ k ¼ k0 þ 5z ð4:47Þ

where k0 is the amount of increase in size of the smallest eddies depending on the
wall roughness.

Using Prandtl’s mixing length theory, the root-mean-square (rms) expressions
for the components of velocity fluctuations are given by

ffiffiffiffiffiffi
u02

p
¼ 2l

d�u

dz
¼ 2u� ð4:48aÞ

ffiffiffiffiffiffiffi
w02

p
¼ l

d�u

dz
¼ u� ð4:48bÞ

where l is the mixing length defining the traversing distance of eddies. Using the
logarithmic law given by Eqs. (4.27) and (4.41a) with z = d, the �ud is

�ud ¼ �uþ
ffiffiffiffiffiffi
u02

p� �
z¼d
¼ 10:5u� ð4:49Þ

Therefore, using above-developed expressions into Eq. (4.42) for the threshold
condition (u* ? u*c), the threshold Shields parameter Hc is expressed as a func-
tion of R*:

HcðR� � 51:1Þ ¼ # tan / 	 f2ðR�Þ ð4:50Þ

The value of Hc = 0.05 corresponding to large values of R* for which Hc is
independent of R*.

Case 3 (6.83 \ R* \ 51.1): In this case, the size of bed particles are in the order
of the viscous sublayer thickness. The flow therefore corresponds to the transi-
tional regime, and the effects of both viscous and turbulence are prevalent in the
bed particle vicinity. It implies that FDV, FDT, FL, d0, and bT exist. The velocity
distribution for transitional regime is obtained from the total shear stress s equation
as follows:

s ¼ q tþ l2
d�u

dz












� �
d�u

dz
ð4:51Þ

Iwagaki put s ¼ s0ð¼ qu2
�Þ on the wall and obtained the differential equation
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d�u

dz

d�u

dz
[ 0

� �
¼ 1

2l2
�tþ ðt2 þ 4l2u2

�Þ
0:5

h i
ð4:52Þ

Inserting l = jz and integrating over the limits from d0 to z, Eq. (4.52) yields

�u ¼ u�
j

1
Rl

1
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l þ
1
4

r !
þ ln 2Rl þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l þ
1
4

r !
þ Rd0

" #
ð4:53Þ

where Rl = u*l/t = 0.4(Rz - Rd0), Rz = u*z/t, and Rd0 = u*d0/t. Therefore, for the
threshold condition (u* ? u*c), the threshold Shields parameter Hc is expressed as
a function of R*:

Hcð6:83\R�\51:1Þ ¼ # tan / 	 f3ðR�Þ ð4:54Þ

Equations (4.45), (4.50) and (4.54), when they are expressed in explicit form,
are of complicated types and not so convenient to use. So Iwagaki expressed them
by empirical curves fitting as

HcðS� � 2:14Þ ¼ 0:14

Hcð2:14\S� � 54:2Þ ¼ 0:195S�7=16
�

Hcð54:2\S� � 162:7Þ ¼ 0:034

Hcð162:7\S� � 671Þ ¼ 0:195S3=11
�

HcðS�[ 671Þ ¼ 0:05

ð4:55Þ

4.5.2.4 Wiberg and Smith’s Approach

Wiberg and Smith (1987) analyzed the force system acting on a sediment particle
for the limiting equilibrium of the particle resting over the bed formed by the
sediment particles. They obtained the force balance as given by Eq. (4.42).

They expressed the submerged weight of particle FG, drag force FD, and lift
force FL as follows:

FG ¼ DqgVd ð4:56Þ

FD ¼ CD

1
2
q�u2Ax ¼ CD

1
2
s0 f 2ðz=z0Þ
� �

Ax ð4:57Þ

FL ¼ CL

1
2
q �u2

T � �u2
B

 �
Ax ¼ CL

1
2
s0 f 2ðzT=z0Þ � f 2ðzB=z0Þ
� �

Ax ð4:58Þ

where Vd is the volume of the particle, Ax is the frontal area of the particle, �u is the
velocity at an elevation z, �uT is the velocity at the top of the particle, �uB is the
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velocity at the bottom of the particle, zT is the height of the top of the particle from
the bed, and zB is the height of the bottom of the particle from the bed. They
assumed the bed level passing through the mid-points (the contact points) of the
bed particles.

Using Eqs. (4.56)–(4.58) into Eq. (4.42), the expression for Hc is obtained as

Hc ¼
2

CDa0
	 1
f 2ðz=z0Þ

	 tan /
1þ ðFL=FDÞc tan /

ð4:59Þ

where a0 = Axd/Vd. Wiberg and Smith used CD as a function of particle Reynolds
number (Schlichting 1979), and CL = 0.2.

The relation of angle of repose of bed sediment was determined as a function of
d/ks by fitting the experimental data of Miller and Byrne (1966) as cos/ =
[(d/ks) + z*]/[(d/ks) + 1] for the ratio of particle size to bed roughness d/ks [ 0.5.
For natural sands, z* = -0.02.

Specific information on velocity distributions for different ranges of R* is
required to solve Eq. (4.59). For smooth flow (R* B 3) and transitional flow
(3 \ R* \ 100), Reichardt’s (1951) equation of velocity distribution was used,
while for rough flow (R* C 100), the logarithmic law of velocity distribution [see
Eq. (4.27)] was taken into consideration. Reichardt’s (1951) equation is given by

�u ¼ u�
j

ln 1þ j
zR�
ks

� �
� 1� exp � zR�

11:6ks

� �
� zR�

11:6ks

exp � zR�
11:6ks

� �� �
ln j

z0R�
ks

� �� �

ð4:60Þ

Solving Eq. (4.59), they prepared Hc(R*) curves for different ratios of particle
size to bed roughness d/ks, as shown in Fig. 4.9.
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Fig. 4.9 Threshold Shields parameter Hc as a function of shear Reynolds number R* for different
ratios of particle size to bed roughness d/ks (Wiberg and Smith 1987)
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4.5.2.5 Ling’s Approach

Ling (1995) studied the threshold condition of a solitary sediment particle situated
on the top of the spherical particles forming the bed. Figure 4.10 shows the
schematic of the force system.

On the basis of mechanical and hydrodynamic considerations, two separate
criteria for the threshold of sediment motion were derived. They are rolling
threshold criterion and lifting threshold criterion. Regarding the force consider-
ation, the hydrodynamic drag FD and lift FL are the destabilizing forces, while the
submerged weight FG of the sediment particle is the stabilizing force. At the point
of contact M for rolling, the normal reaction is FN and the frictional resistance FR.

Coleman’s (1967) analysis of closely packed three-dimensional arrangements
of spheres showed that the equation of moment about point M under rolling
threshold criterion is as follows:

FDlz þ FLlx�FGlx ^ lx ¼
d

4
ffiffiffi
3
p _ lz ¼

dffiffiffi
6
p ð4:61Þ

where lx and lz are the lever arms. On the other hand, the lifting threshold criterion
is prevalent when the lift force just exceeds the submerged weight of the particle to
lift the particle off the bed. The equation is therefore

FL�FG ð4:62Þ

The hydrodynamic drag force FD is given by

FD ¼ CD

q
2

u2
r

p
4

d2 ð4:63Þ

where ur is the relative velocity between the fluid and the solitary particle.
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Fig. 4.10 Forces acting on a
solitary spherical particle
resting on bed particles, as
considered by Ling (1995)
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The total lift force FL is expressed as the sum of the shear lift FLs (Saffman
1965, 1968), the Magnus lift FLm (Rubinow and Keller 1961), and the centrifugal
lift FLc. Thus,

FL ¼ FLs þ FLm þ FLc ð4:64Þ

The rolling motion of the solitary particle over the curvature of the bed particle
ahead of it induces Magnus lift (due to rolling motion) and centrifugal lift (due to
curvilinear motion). The components of the lift force in the right-hand side of
Eq. (4.64) are given by

FLs ¼ CLqur t
o�u

oz

� �0:5

d2 ð4:65aÞ

FLm ¼ q x ur

p
8

d3 ^ xjmax¼
1
2
	 o�u

oz
ð4:65bÞ

FLc ¼ sq
p
6

d3 	 ðdxÞ2

4d
cos kg ð4:65cÞ

where �u is the time-averaged flow velocity in x-direction, x is the angular velocity,
and kg is the angle between the normal at the point of contact and the gravity force.
The lift coefficient CL was assumed to be 1.615. Saffman (1965) showed that the
maximum angular velocity xmax achieved by a freely rotating particle driven by
the flow is 0.5q�u=oz. The ur was defined as ur = uf - ux = buf, where uf is the
average fluid velocity across the sphere and ux is the particle velocity in x-direc-
tion. Ling assumed that the solitary particle accelerates from x = 0 to 0.5q�u=oz.
By using x = 2ux/(dcoskg). He expressed FLs, FLm, and FLc as

FLs ¼ bCLuþf ðuR�Þ0:5s0d2 ð4:66aÞ

FLm ¼ bð1� bÞ p
4 cos kg

uþ2
f s0d2 ð4:66bÞ

FLc ¼ ð1� bÞ2 p
6 cos kg

uþ2
f s0d2 ð4:66cÞ

where uþf ¼ uf=u� and u ¼ d=u�ð Þðo�u=ozÞ. To maximize b, Eq. (4.64), having
inserted expressions for FLs, FLm, and FLc, is differentiated with respect to b. Then,

oFL

ob
¼ 0 ) bmax ¼

1
2

1þ E1 � E3

E2 � E3

� �
ð4:67Þ

where E1 ¼ CLuþf ðuR�dÞ0:5, R�d is the shear Reynolds number characterized by
dð¼ u�d=tÞ, E2 ¼ ðp=4Þðuþ2

f =coskgÞ, and E3 ¼ ðp=6Þ uþ2
f =coskg

 �
. He considered
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ks = 3d, as was done by van Rijn (1984). It implies that R* = 3R*d. Therefore,
Eq. (4.64) is written as

FL ¼ ½bE1 þ bð1� bÞE2 þ ð1� bÞ2E3�s0d2 ð4:68Þ

Case 1 (R*d B 1): In this case, the linear distribution of �u can be used as given
by Eq. (4.43). When the solitary particle rolls over the bed particle ahead of it, its
center is raised by an amount d = d(coskg - cosk0), where cosk0 = 0.8164, that
is, the lowest point of the sphere (solitary particle) resting over three closely
packed spheres in a three-dimensional configuration. Then, uþf and u are

uþf ¼
uf

u�
¼ 1

u�
uf jz¼dþ uf jz¼dþd

 �
¼ R�d

2
1þ 2

d
d

� �
ð4:69aÞ

u ¼ d

u�
	 o�u

oz
¼ R�d ^ o�u

oz
¼ u2

�
t

ð4:69bÞ

For R*d B 1, CD is

CDðR�d � 1Þ ¼ 24
Rd

^ Rd ¼
�ud

t
ð4:70Þ

At the point where the solitary particle begins to roll, d = 0, x = 0, and b = 1.
Then,

FD ¼
3p
2

s0d2 ð4:71aÞ

FLs ¼
CL

2
R�ds0d2 ð4:71bÞ

FLm ¼ FLc ¼ 0 ð4:71cÞ

Substituting FL given by Eq. (4.64), FG by Eq. (4.7) and Eqs. (4.71a–c) into
Eq. (4.61), the rolling threshold criterion is obtained as

Hc R�d � 1ð Þ ¼ p

3ðCLR�d þ 6
ffiffiffi
2
p

pÞ
ð4:72Þ

For lifting threshold criterion, once the stress reaches the rolling threshold, the
solitary particle starts to roll first and then accelerates to its maximum angular
velocity xmax. Finally, the particle lifts up by the shear stress corresponding to
lifting threshold by rotating at the xmax. Setting x = xmax yields

4.5 Threshold Bed Shear Stress Concept 213



b ¼ 1� u
4uþf

� �
cos kg ð4:73Þ

The lifting threshold criterion obtained from Eq. (4.62) with Eq. (4.64) is

HcðR�d � 1Þ ¼ p=6

bE1 þ bð1� bÞE2 þ ð1� bÞ2E3

ð4:74Þ

For estimation of E1, E2, and E3, uþf and u are obtained from Eqs. (4.69a, b),
and d = d(coskg - cosk0). The estimation revealed that the maximum lift occurs
at coskg = 1.

Case 2 (R*d C 30): In this case, the logarithmic law distribution of �u can be
used as given by Eq. (4.27). Thus, the average fluid velocity uf, being considered
equaling ur due to ux & 0, is

uf � ur ¼
1
d

Zdþd

d

�udz ¼ u�
j

1þ d
d

� �
ln

d þ d
z0

� �
� 1

� �
� e

d
ln

e
z0

� �
� 1

� �� �

ð4:75Þ

where e = d or z0 whichever is larger, and z0 = 0.033ks. The velocity gradient

o�u

oz
¼ 1

d

Zdþd

d

o�u

oz
dz ¼ �udþd � �ue

d
¼ u�c

jd
ln

d þ d
z0

� �
� ln

e
z0

� �� �
ð4:76Þ

Then, uþf and u are

uþf ¼
uf

u�
¼ 1

j
1þ d

d

� �
ln

d þ d
z0

� �
� 1

� �
� e

d
ln

e
z0

� �
� 1

� �� �
ð4:77aÞ

u ¼ d

u�
	 o�u

oz
¼ 1

j
ln

d þ d
z0

� �
� ln

e
z0

� �� �
ð4:77bÞ

The rolling threshold criterion at large shear Reynolds numbers can be obtained
by setting d = 0, FLm = FLc = 0, and b = 0 in Eqs. (4.63), (4.64), (4.66a),
(4.77a, b) and substituting into Eq. (4.61). Thus,

HcðR�d � 30Þ ¼ p=6

CLuþf
u

R�d

� �0:5

þ p

2
ffiffiffi
2
p CDuþ2

f

ð4:78Þ

Ling used the formula of Schiller and Naumann (1933) for obtaining CD. It is
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CDð30\R�d\500Þ ¼ 24
Rfd

1þ 0:15R0:687
fd

 �
^ Rfd ¼

ufd

t
ð4:79Þ

where Rfd is the particle Reynolds number characterized by uf. He used CL = 1.48.
For large shear Reynolds numbers, lifting threshold criterion is given by

HcðR�d � 30Þ ¼ p=6

bE1 þ bð1� bÞE2 þ ð1� bÞ2E3

ð4:80Þ

For estimation of E1, E2, and E3, the expressions for b, uþf , and u are obtained
from Eqs. (4.73), (4.77a, b), respectively. The maximum lift occurs at
coskg = 0.92.

Case 3 (1 \ R*d \ 30): In this case, Reichardt’s (1951) equation for the dis-
tribution of �u is used as given by Eq. (4.60). Therefore, uþf and u are

uþf ¼
uf

u�
¼ 1

d

Zdþd

d

�udz ð4:81aÞ

u ¼ d

u�
	 o�u

oz
¼ 1

d

Zdþd

d

o�u

oz
dz ð4:81bÞ

Therefore, rolling and lifting threshold criteria can be obtained from Eqs. (4.78)
and (4.80) for 1 \ R*d \ 30. The values of coskg were 1 and 0.92 for R*d B 3 and
R*d [ 3, respectively.

Figure 4.11 shows two threshold criteria (rolling and lifting) obtained from
solving Eqs. (4.72), (4.74), (4.78) and (4.80), and the equations derived from Case
3. The rolling threshold produces the minimum threshold Shields parameter Hc

required to begin the particle motion, and the lifting threshold provides the min-
imum stress for the sediments to come in suspension. The comparison of the
curves with the experimental data of different investigators makes clear that the
main feature of sediment threshold lies in between the curves defining the rolling
and lifting threshold criteria. Ling argued that since the experimental definition of
a threshold is rather subjective, it might be appropriate to use two threshold criteria
rather than one.

4.5.2.6 Dey’s Approach

Dey (1999) considered a unidirectional steady-uniform flow over a sedimentary
bed. The most stable three-dimensional configuration of a spherical solitary sed-
iment particle of diameter D resting over three closely packed spherical particles
of identical diameter d forming the sediment bed is shown in Fig. 4.12.
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Depending on the orientation of the bed particles, the solitary particle has a
tendency to either roll over the valley formed by the two particles or roll over the
summit of a single particle due to the hydrodynamic force. When the solitary
particle is about to dislodge downstream from its original position, the equation of
moment about the point of contact M downstream of the solitary particle is

0.01 0.1 1 10 100 1000 10000

R*d 

0.01

0.1

1

10

Θ
c

Lifting threshold

Rolling threshold

Fig. 4.11 Threshold Shields parameter Hc as a function of shear Reynolds number R*d for
rolling and lifting threshold criteria (Ling 1995). Experimental data from Gilbert (1914), Casey
(1935), Kramer (1935), Shields (1936), USWES (1936), White (1940), Vanoni (1946), Meyer-
Peter and Müller (1948), Neill (1967), Grass (1970), White (1970), Karahan (1975), Mantz
(1977), and Yalin and Karahan (1979) are plotted for comparison
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Fig. 4.12 Diagrammatic presentation of forces acting on a spherical solitary particle, as
considered by Dey (1999)
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ðFL � FGÞlx þ FDlz ¼ 0 ð4:82Þ

The expressions for the lever arms lx and lz given by Dey (1999) [also see Dey
et al. (1999)] are

lx ¼
ffiffiffi
3
p

4
	 Dd

Dþ d
ð4:83aÞ

lz ¼
1

2
ffiffiffi
3
p 	 D

Dþ d
3D2 þ 6Dd � d2
 �0:5 ð4:83bÞ

The submerged weight FG of the solitary particle is

FG ¼
p
6

D3Dqg ð4:84Þ

The drag force FD developed due to pressure and viscous skin frictional forces
is given by

FD ¼ CD

p
8

D2q u2
m ð4:85Þ

where um is the mean flow velocity received by the frontal area (that is, the
projected area of the particle to be right angles to the direction of flow) of the
solitary particle. The empirical equation of drag coefficient CD given by Morsi and
Alexander (1972) can be expressed as follows:

CD ¼ aþ b

R
þ c

R2
^ R ¼ umD

t
ð4:86Þ

where R is the flow Reynolds number at the particle level, and a, b, and c are the
coefficients dependent on R [see Morsi and Alexander (1972)].

The lift force caused by the velocity gradient in a shear flow is termed lift due to
shear effect (FLs). For a sphere in a viscous flow, Saffman (1968) proposed the
following equation:

FLs ¼ CLqD2um t
o�u

oz

� �0:5

ð4:87Þ

where �u is the time-averaged flow velocity at z.
For low shear Reynolds numbers R*, Eq. (4.87) is applicable. However, for large

shear Reynolds numbers (R* [ 3), the solitary particle spins into the groove,
formed by three closely packed bed particles, just before dislodging from its ori-
ginal position due to large velocity gradient (that is, the differential velocity in the
vertical direction owing to the considerable velocity difference between the bottom
and the top points of the solitary particle) at the particle level (Dey et al. 1999). To
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be more explicit, the hydrodynamic force acting on the upper portion of the particle
is significantly greater than that acting on the lower portion of the particle, resulting
in a turning moment to the particle. Therefore, the inclusion of slip-spinning mode
is significant in the analysis of the threshold of sediment motion. The lift force
caused by the spinning mode of particle is termed lift due to Magnus effect (FLm).
Rubinow and Keller (1961) formulated it as

FLm ¼ CL1qx umD3 ^ xjmax¼
1
2
	 o�u

oz
ð4:88Þ

The above formula of Rubinow and Keller was modified by Dey introducing a
free parameter (to be experimentally calibrated) as CL1. He argued that the use of a
free parameter could give more realistic results; finally, he assumed CL1 = CL.

The total lift force FL, a combination of FLs and FLm, is expressed as

FL ¼ CLqD2um

o�u

oz

� �0:5

t0:5 þ 0:5Df ðR�Þ
o�u

oz

� �0:5
" #

^ R� ¼
u�cks

t
ð4:89Þ

where f(R* C 3) = 1, f(R* \ 3) = 0, and R* is the shear Reynolds number. He
assumed ks = d. For low values of R*(R* \ 3), solitary particle does not spin.

Using Eqs. (4.83a)–(4.85) and (4.89) into Eq. (4.82), the equation of the
threshold of sediment motion (u* ? u*c) is obtained as

Hc ¼
2pd̂

pCDuþ2
m ð3þ 6d̂ � d̂2Þ0:5 þ 6CLd̂uþm

ouþ

oẑ
2

R�

d̂
	 ouþ

oẑ

� ��0:5

þ f ðR�Þ
" #

ð4:90Þ

where uþm ¼ um=u�c, d̂ ¼ d=D, uþ ¼ �u=u�c, and ẑ ¼ z=D.

The d̂ can be determined from the information on angle of repose / of bed
sediments by using the expression given by Ippen and Eagleson (1955) for the
spherical sediments as

d̂ ¼
2 tan / 6 tan /þ ð48 tan2 /þ 27Þ0:5

h i
4 tan2 /þ 9

ð4:91Þ

The threshold of sediment motion over a sedimentary bed is controlled by the
applied instantaneous shear stress at the bed due to turbulent bursting phenome-
non. The most important events for the threshold of sediment motion are the sweep
events, which have a dominant role in entraining the sediment particles at bed
(Dey et al. 2011). The sweep events apply shear to the direction of flow by
inrushing the faster moving fluid parcels toward the bed and provides additional
shear stress to the viscous shear stress. Keshavarzy and Ball (1996) reported that
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the magnitude of instantaneous bed shear stress during the sweep events is much
larger than the time-averaged bed shear stress. Thus, they proposed the following
equation of total shear velocity for rough-turbulent regime:

u�T ¼ 1þ ps

ffiffiffiffiffiffiffiffiffiffiffiffiffi
as � 1

p
cos w

� �
u�c ¼ gtu�c ð4:92Þ

where u*T is the total shear velocity (=u*c + u*t), u*t is the instantaneous shear
velocity [=u*c ps(as - 1)0.5cosw = (s0t/q)0.5], s0t is the instantaneous bed shear
stress, ps is the probability of occurring sweep events, as = s0t/s0, and w is the
angle of sweeping fluid.

Therefore, the Hc calculated from Eq. (4.90) is modified as

Hc ¼
Hc from Eq. ð4:90Þ

g2
t

ð4:93Þ

Keshavarzy and Ball (1996) experimentally observed that in the vicinity of the
bed, the frequency of sweep events ps and the sweep angle w are 30 % and 22�,
respectively. In smooth flow regime, gt is considered as unity. To solve Eq. (4.93),
one needs additional information as discussed below.

The particle parameter S* is given by d(Dgd)0.5/t. The following equation is
used to compute S* being related with Hc and R*:

S� ¼ R�
d̂

Hc

 !0:5

ð4:94Þ

The virtual bed level was considered to be at a depth of n0d below the top of the
bed particles (Fig. 4.12). Thus, the normal distance d between the virtual bed level
and the bottom point of the solitary sediment particle is given by

d ¼ 1

2
ffiffiffi
3
p 3D2 þ 6Dd � d2
 �0:5� 1

2
ðDþ dÞ þ n0d ð4:95Þ

According to van Rijn (1984), n0 = 0.25.
The mean flow velocity received by the frontal area of the solitary particle is

given by

um ¼
2fd

Ax

ZDþd

e

�u½ðz� dÞðDþ d� zÞ�0:5dz ð4:96Þ

where Ax is the frontal area of the solitary particle exposed to the flow, that is
(D2/4){p – arccos(1–2!) + 2(1–2!)[!(1 - !)]0.5}, ! = (e - d)/D, fd is the
coefficient being less than unity, and e is the normal distance between the bottom
point of the solitary particle or zero-velocity level and the virtual bed level,
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whichever is larger. The introduction of fd is pertinent here because the summits of
the bed particles upstream of the solitary particle obstruct the flow velocity to a
certain degree. It was found that the value of fd being 0.5 produced satisfactory
results.

The normalized mean velocity uþm is therefore obtained as

uþm ¼
2fd

Âx

Z1þd̂

ê

uþ½ðẑ� d̂Þð1þ d̂� ẑÞ�0:5dẑ ð4:97Þ

where Âx ¼ Ax=D2, d̂ ¼ d=D, and ê ¼ e=D.
The velocity gradient o�u=oz can be obtained as follows:

o�u

oz
¼ 1

Dþ d� e

ZDþd

e

o�u

oz
dz ¼ �uDþd � �ue

Dþ d� e
ð4:98Þ

Thus, the normalized velocity gradient ouþ=oẑ is given by

ouþ

oẑ
¼

uþ
1þd̂
� uþê

1þ d̂� ê
ð4:99Þ

Case 1 (R* B 3): When the flow is hydraulically smooth, it can be assumed that
the velocity distribution of the near-bed flow is solely linear, as given by
Eq. (4.43). Thus, the mean flow velocity uþm obtained using Eq. (4.97) is

uþm ¼
2fdR�

Âxd̂

Z1þd̂

ê

½ðẑ� d̂Þð1þ d̂� ẑÞ�0:5ẑ dẑ ð4:100Þ

where ê ¼ 0 if d̂� 0, and ê ¼ d̂ if d̂ [ 0.
The velocity gradient determined using Eq. (4.99) is

ouþ

oẑ
¼ R�

d̂
ð4:101Þ

Case 2 (R* C 70): When the flow over a sedimentary bed is completely rough,
the logarithmic velocity distribution in rough flow regime can be used as given by
Eq. (4.27). The mean flow velocity uþm derived using Eq. (4.97) is

uþm ¼
2fd

jÂx

Z1þd̂

ê

½ðẑ� d̂Þð1þ d̂� ẑÞ�0:5 ln
ẑ

ẑ0

� �
dẑ ð4:102Þ
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The velocity gradient can be determined using Eq. (4.99) as

ouþ

oẑ
¼ 1

jð1þ d̂� êÞ
ln

1þ d̂
ê

 !
ð4:103Þ

Case 3 (3 \ R* \ 70): The range of shear Reynolds number 3 B R* B 70
refers to transitional regime. The equation of the velocity distribution for transi-
tional regime proposed by Reichardt (1951) can be used. It is given by Eq. (4.60).
The mean flow velocity uþm is determined using Eq. (4.97) as

uþm ¼
2fd

jÂx

Z1þd̂

ê

½ðẑ� d̂Þð1þ d̂� ẑÞ�0:5 ln 1þ jẑR�

d̂

� ��

� 1� exp � ẑR�
11:6d̂

� �
� ẑR�

11:6d̂
exp � ẑR�

3d̂

� �� �
ln

jẑ0R�
d̂

� ��
dẑ

ð4:104Þ

where ê ¼ ẑ0 if ðẑ0 � d̂Þ� 0, and ê ¼ d̂ if ðẑ0 � d̂Þ\0.
The velocity gradient obtained using Eq. (4.99) is

ouþ

oẑ
¼ 1

jð1þ d̂� êÞ
ln 1þ jð1þ d̂ÞR�

d̂

" #
� ln 1þ jêR�

d̂

� �( )

þ 1

jð1þ d̂� êÞ
exp �ð1þ d̂ÞR�

11:6d̂

" #(
� exp � êR�

11:6d̂

� �

þ ð1þ d̂ÞR�
11:6d̂

exp �ð1þ d̂ÞR�
3d̂

" #
� êR�

11:6d̂

� �
exp � êR�

3d̂

� ��
ln

jẑ0R�

d̂

� �

ð4:105Þ

Simpson rule can be applied to solve Eqs. (4.100), (4.102) and (4.104).
As the exact expression for the lift coefficient CL was not available, Eq. (4.93)

was required to be calibrated extensively. The experimental data (Hc and R*) on
sediment threshold reported by Gilbert (1914), Casey (1935), Kramer (1935),
Shields (1936), USWES (1936), White (1940), Vanoni (1946), Meyer-Peter and
Müller (1948), Iwagaki (1956), Neill (1967), Grass (1970), White (1970), Karahan
(1975), Mantz (1977), and Yalin and Karahan (1979) were used to calibrate
Eq. (4.93), using CL as a free parameter. The negative values of CL for low range
of R* (B 3) were obtained, as reported by Watters and Rao (1971) and Davies and
Samad (1978) [see Dey et al. (1999)]. The dependency of Hc on particle parameter
S* for different values of / is presented in Fig. 4.13, which enables a direct
estimation of u*c. The curve for / = 28� refers to the uniform sediment size.
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4.5.2.7 Other Investigations

Kurihara (1948) extended the work of White (1940) to obtain an expression for
turbulence factor Tf in terms of R*, turbulence intensity, and probability of bed
shear stress increment. The theoretical equations were quite complex. So he
proposed simpler empirical equations of Shields parameter as

Hcðv2� 0:1Þ ¼ ð0:047 log v2 � 0:023Þb2

Hcð0:1\v2� 0:25Þ ¼ ð0:01 log v2 þ 0:034Þb2

Hcðv2 [ 0:25Þ ¼ ð0:0517 log v2 þ 0:057Þb2

ð4:106Þ

where v2 & 4.67 9 10-3[Dg/(t2b2)]1/3d and b2(0.265 B M B 1) = (M + 2)/
(1 + 2 M).

Egiazaroff (1965) gave yet another derivation for Hc(R*). He assumed that the
velocity at an elevation of 0.63d (above the bottom of particle) equals the fall
velocity ws of the particle. He derived an equation as

Hc ¼
1:33

CD½Br þ 5:75 logð0:63Þ�2
ð4:107Þ

where Br = 8.5 and CD = 0.4 for large R*. Both Br and CD increase for low R*.
His results did not correspond to the Shields diagram.

Mantz (1977) proposed the extended Shields diagram to obtain the condition of
maximum stability of sediment particles (Fig. 4.14). Yalin and Karahan (1979)
presented a Hc(R*) curve, using a large number of data collected from literature
(Fig. 4.14). The Hc(R*) curve provides Hc(R* [ 70) = 0.045. Their curve is
regarded as a superior curve to the Shields diagram.

Cao et al. (2006) derived a set of explicit equations for the curve of Yalin and
Karahan (1979). It is
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Fig. 4.13 Threshold Shields parameter Hc as a function of particle parameter S* for different
angles of repose /
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HcðS� � 6:61Þ ¼ 0:1414S�0:23
�

Hcð6:61\S�\282:84Þ ¼ ½1þ ð0:0223S�Þ2:84�0:35

3:09S0:68
�

HcðS� � 282:84Þ ¼ 0:045

ð4:108Þ

The analysis of Ikeda (1982) that was based on Iwagaki (1956) and Coleman
(1967) could approximately derive the Shields diagram. He considered the forces
acting on a solitary particle placed on a sediment bed and obtained an equation as
follows:

Hc ¼
4
3
	 tan /
ðCD þ CL tan /Þ 	

10:08

R10=3
�
þ 1

j
ln 1þ 4:5R�

1þ 0:3R�

� �� ��10=3
( )0:6

ð4:109Þ

Zanke (2003) developed a theory for the sediment threshold. He assumed that
the threshold bed shear stress s0c for the initial motion in viscous flow is solely
defined by the angle of internal friction / or the angle of repose /1 of single
particles. In turbulent flow, the fluctuations s00 in the bed shear stress as well as the
lift forces are induced by the velocity fluctuations. Hence, the actual (effective)
threshold bed shear stress s0 þ s00 acting on a particle is greater than the average
bed shear stress s0. On the other hand, the effective weight of the particles is
reduced. On the basis of Zanke’s analytical formulation, the threshold of sediment
motion can be described solely by the angle of repose of particles and the tur-
bulence parameters. He derived the equation for sediment threshold as

Hc ¼
0:7 tanð0:67/Þ

1þ 1:8
ðu02Þ0:5





z¼ks

u�c
	 u�c

ucr

2
64

3
75

2

1þ 0:4 tanð0:67/Þ 1:8
ðu02Þ0:5





z¼ks

u�c

2
64

3
75

28><
>:

9>=
>;
ð4:110Þ
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Fig. 4.14 The Hc(R*) curves of Mantz (1977) and Yalin and Karahan (1979). Experimental data
from Gilbert (1914), Casey (1935), Kramer (1935), Shields (1936), USWES (1936), White
(1940), Vanoni (1946), Meyer-Peter and Müller (1948), Neill (1967), Grass (1970), White
(1970), Karahan (1975), Mantz (1977), and Yalin and Karahan (1979) are plotted for comparison
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where ðu02Þ0:5




z¼ks

is the turbulence intensity or the root mean square of streamwise

velocity fluctuations at bed level and ucr is the streamwise velocity at the bed level.
They can be obtained from the following equations:

ðu02Þ0:5




z¼ks

u�c
¼ 0:31R� expð�0:1R�Þ þ 1:8 exp �0:88

d

h

� �
½1� expð�0:1R�Þ�

ð4:111aÞ

ucr

u�c
¼ 0:8þ 0:9

ujz¼ks

u�c
ð4:111bÞ

Figure 4.15 shows the dependency of threshold Shields parameter Hc on shear
Reynolds number R* obtained solving Eq. (4.110) by using Eqs. (4.111a, b). The
comparison of the Hc(R*) curve with the experimental data of different investi-
gators shows a good agreement.

4.5.3 Threshold Bed Shear Stress on Sloping Beds

Most of the natural riverbeds have slopes. To quantify scour and deposition of
sediments along a river and its banks or to design a stable channel section,
knowledge of the threshold bed shear stress on streamwise and side slopes is
indispensable. Unlike the case of sediment threshold on a horizontal bed, the
gravity component of the sediment particles is involved in the force analysis of
sediment threshold on a sloping bed.
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Fig. 4.15 Threshold Shields parameter Hc as a function of shear Reynolds number R* (Zanke
2003). Experimental data from Gilbert (1914), Casey (1935), Kramer (1935), Shields (1936),
USWES (1936), White (1940), Vanoni (1946), Meyer-Peter and Müller (1948), Neill (1967),
Grass (1970), White (1970), Karahan (1975), Mantz (1977), and Yalin and Karahan (1979) are
plotted for comparison
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4.5.3.1 Threshold Bed Shear Stress on a Streamwise Sloping Bed

Considering flow over a streamwise sloping sediment bed that is inclined at an
angle h with the horizontal, Fig. 4.16 illustrates the forces acting on a sediment
particle lying on the bed slope. At sediment threshold, the force balance in the
streamwise direction yields

tan / ¼ FG sin hþ FD

FG cos h� FL

ð4:112Þ

In the above, FG ¼ Dqgk1d3, FD ¼ CDqk2d2u2
cr, FL ¼ CLqk2d2u2

cr, ucr is the

threshold velocity at the particle level being approximated as u�ch=k
0:5
f , u�ch is the

threshold shear velocity on streamwise sloping bed, and kf is the friction parameter.
Substituting them into Eq. (4.112), the equation of threshold Shields parameter

Hch½¼ u2
�ch=ðDgdÞ� on streamwise sloping bed is obtained as

Hch ¼ Kðtan / cos h� sin hÞ ^ K ¼ k1kf

k2
	 1
CD þ CL tan /

ð4:113Þ

For the horizontal bed (h = 0), the equation of the threshold Shields parameter
Hc½¼ u2

�c=ðDgdÞ� obtained from Eq. (4.113) is

Hc ¼ K tan / ð4:114Þ

Dividing Eq. (4.113) by Eq. (4.114), the ratio of threshold bed shear stress on
any streamwise sloping bed to that on horizontal bed is obtained. It is

FG

F
D
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ucr
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θ

Fig. 4.16 Forces acting on a sediment particle lying on a streamwise bed slope
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~Hch ¼
Hch

Hc

¼ s0ch

s0c

¼ u2
�ch

u2
�c
¼ cos h 1� tan h

tan /

� �
ð4:115Þ

where s0ch is the threshold bed shear stress on streamwise sloping bed.
For the threshold bed shear stress on a streamwise sloping bed, Eq. (4.115) was

obtained by various investigators (Stevens et al. 1976; Fernandez Luque and van
Beek 1976; Allen 1982; Whitehouse and Hardisty 1988; Chiew and Parker 1994;
Iversen and Rasmussen 1994; Dey et al. 1999; Dey and Debnath 2000).

4.5.3.2 Threshold Bed Shear Stress on a Side Slope

Ikeda (1982) considered the flow in a channel having a side sloping bed that is
inclined at an angle a with the horizontal. Figure 4.17 illustrates the forces acting
on a sediment particle lying on the side slope. At sediment threshold, the force
balance relationship is given by

F2
R ¼ F2

D þ ðFG sin aÞ2 ð4:116Þ

where FR is the resultant force on the plane of the bed equaling the frictional
resistance between the particle and the bed at threshold.

The frictional resistance is balanced by the effective normal force component to
the sloping bed multiplied by the bed friction coefficient, tan/. Then,

FR ¼ ðFG cos a� FLÞ tan / ð4:117Þ
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Fig. 4.17 Forces acting on a sediment particle lying on a side slope
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Using Eq. (4.9) of FG, a quadratic equation of threshold Shields parameter Hca

[¼ u2
�ca=ðDgdÞ, where u�ca is the threshold shear velocity on side slope] on a side

slope is obtained as

F̂2
Dð1� g2 tan2 /ÞH2

ca þ 2F̂Dg tan2 / cos a Hca þ sin2 a� tan2 / cos2 a ¼ 0

ð4:118Þ

where g = FL/FD and F̂D ¼ 6FD=ðpqd2u2
�caÞ.

The positive solution of Hca obtained from Eq. (4.118) is

Hca ¼
1

F̂D

	 �g tan2 / cos aþ ðtan2 / cos2 aþ g2 tan2 / sin2 a� sin2 aÞ0:5

1� g2 tan2 /

ð4:119Þ

For horizontal bed (a = 0), the equation of Shields parameter Hc½¼ u2
�c=ðDgdÞ�

obtained from Eq. (4.119) is

Hc ¼
1

F̂D

	 tan /
1þ g tan /

ð4:120Þ

Dividing Eq. (4.119) by Eq. (4.120), the ratio of threshold bed shear stress on

any side slope to that on horizontal bed is obtained. It is denoted by ~Hca

[¼ Hca=Hc ¼ s0ca=s0c ¼ u2
�ca=u2

�c, where s0ca is the threshold bed shear stress on
side slope].

Hence, ~Hca is expressed as

~Hca ¼
�g tan2 / cos aþ ðtan2 / cos2 aþ g2 tan2 / sin2 a� sin2 aÞ0:5

ð1� g tan /Þ tan /
ð4:121Þ

Assuming a negligible FL(g = 0) at the threshold condition, Eq. (4.121)
becomes

~Hcaðg ¼ 0Þ ¼ cos a 1� tan2 a
tan2 /

� �0:5

¼ 1� sin2 a

sin2 /

� �0:5

ð4:122Þ

The above equation is exactly the same as that derived by Lane (1955) and Chow
(1959).
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4.5.3.3 Threshold Bed Shear Stress on an Arbitrary Bed Slope

Figure 4.18 represents definition sketch of forces acting on a spherical sediment
particle placed on a bed having an arbitrary bed slope. When the particle is about
to move downstream from its original position, the equation of force balance is

F2
R ¼ ðFD cos nþ FG sin hÞ2 þ ðFD sin nþ FG sin aÞ2 ð4:123Þ

where FR is the resultant force on the plane of the bed equaling frictional resis-
tance between the particle and the bed at threshold, h is the streamwise bed angle
with the horizontal, a is the transverse bed (side sloping bed) angle with the
horizontal, and n is the angle of inclination of flow with respect to the longitudinal
axis of the channel (positive downstream).

The static frictional resistance FR between the particle and the bed is

FR ¼ ðFG cos c� FLÞ tan / ^ cos c ¼ 1

ð1þ tan2 hþ tan2 aÞ0:5
ð4:124Þ

where c is the angle between the line normal to the bed slope and the vertical line.
Equating Eqs. (4.123) and (4.124) and expressing in nondimensional form, one
gets a quadratic equation as
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Fig. 4.18 Forces acting on a sediment particle lying on an arbitrary bed slope. The xy-plane lies
on the sloping bed, and z-axis is normal to the sloping bed
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ð1� g2 tan2 /ÞH2
cs þ

2

F̂D

ðf1 þ g cos c tan2 /ÞHcs þ
1

F̂2
D

ðf2 � cos2 c tan2 /Þ ¼ 0

ð4:125Þ

where g = FL/FD, Hcs is the threshold Shields parameter on an arbitrary sloping
bed, that is u2

�cs=ðDgdÞ or s0cs/(Dqgd), u*cs is the threshold shear velocity on an
arbitrary sloping bed, that is (s0cs/q)0.5, s0cs is the threshold bed shear stress on an
arbitrary sloping bed, F̂D ¼ 6FD=ðpqd2u2

�csÞ, f1 = cosn sinh + sinn sina, and
f2 = sin2h + sin2a. The value of g proposed by Chepil (1958) was 0.85.

The positive solution of Eq. (4.125) is

Hcs ¼
1

ð1� g2 tan2 /ÞF̂D

�ðf1 þ g cos c tan2 /Þ þ ðf1 þ g cos c tan2 /Þ2
hn

�ð1� g2 tan2 /Þðf2 � cos2 c tan2 /Þ
�0:5o

ð4:126Þ

For horizontal bed, h and a become zero and Eq. (4.126) reduces to Eq. (4.120).
Dividing Eq. (4.126) by Eq. (4.120), the ratio of threshold bed shear stress on

any arbitrary bed slope to that on horizontal bed is obtained as

~Hcs ¼
Hcs

Hc

¼ s0cs

s0c

¼ u2
�cs

u2
�c
¼ 1
ð1� g tan /Þ tan /

� f1 þ g cos c tan2 /
 ��

þ f1 þ g cos c tan2 /
 �2� 1� g2 tan2 /

 �
f2 � cos2 c tan2 /
 �h i0:5

�

ð4:127Þ

However, in general, the flow through a river or a channel is in the longitudinal

direction (x-direction). Therefore, the equation of ~Hcs for this type of flow can be
obtained by putting n = 0 in Eq. (4.127) as

~Hcsðn ¼ 0Þ ¼ 1
ð1� g tan /Þ tan /

� sin hþ g tan2 /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec2 hþ tan2 a
p

� ��

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin hþ g tan2 /ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sec2 hþ tan2 a
p

� �2

�ð1� g2 tan2 /Þ sin2 hþ sin2 a� tan2 /
sec2 hþ tan2 a

� �s 9=
;

ð4:128Þ

For longitudinal bed slope, using a = 0, Eq. (4.128) reduces to Eq. (4.115). On
the other hand, for transverse bed slope, using h = 0 and g = 0, Eq. (4.128)
reduces to Eq. (4.122).

Again, van Rijn (1993) and Dey (2004) proposed that the threshold bed shear
stress on an arbitrary sloping bed can be obtained from the following equation:
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~Hcs ¼ ~Hch
~Hca ¼ cos h 1� tan h

tan /

� �
1� sin2 a

sin2 /

� �0:5

ð4:129Þ

Further, Kovacs and Parker (1994) developed a vectorial equation of sediment
threshold on an arbitrary sloping bed. Including lift force, its analytical form as a
quadratic equation was given by Seminara et al. (2002). It is

tan2 /ð1� #LÞH2
cs þ 2 tan /ðsin hþ #L cos c tan2 /ÞHcs

þ ð1þ #LÞð1� cos2 c� tan2 /Þ ¼ 0
ð4:130Þ

where #L is the parameter quantifying the effect of lift force being approximately
equal to g tan/.

Besides, Calantoni and Drake (1999) used the following equation to develop a
discrete particle model with an arbitrary sloping bed:

~Hcs ¼ cos h 1� sin2 a

sin2 /

� �0:5

� tan h
tan /

" #
ð4:131Þ

On the other hand, Duan et al. (2001) and Duan and Julien (2005) used the
following equation:

~Hcs ¼
sinð/� hÞ

tan /
1� sin2 a

sin2 /

� �0:5

ð4:132Þ

Both Eqs. (4.131) and (4.132) are expressed after additional simplification. In

addition, Dey (2003) proposed an approximate estimation for ~Hcs, while Zhang

et al. (2005) and Chen et al. (2010) formulated ~Hcs without considering the effect
of lift force.

4.6 Probabilistic Concept of Entrainment

The sediment entrainment is probabilistic in nature. It depends primarily on the
turbulence characteristics in conjunction with the location of a specific particle
relative to the surrounding particles of various sizes and their orientations. In
addition, the compactness of the bed particles plays a role. The entrainment
mechanism is also governed by the instantaneous strength of turbulence induced
by the near-bed velocity fluctuations. The concept therefore gives rise to the time-
averaged condition that there is a fifty percent probability for a given particle to
move under the specific flow and sediment conditions.

230 4 Sediment Threshold



4.6.1 Gessler’s Approach

Gessler (1970) estimated the probability for the particles of a specific size to
remain stationary. It was revealed that the probability of a given particle to remain
stationary depends strongly on the Shields parameter H and feebly on the shear
Reynolds number R*. Assuming the Reynolds decomposition for the bed shear
stress ðs0t ¼ s0 þ s00Þ, he considered if s0t \ s0c or s0þ0 \sþ0c � 1, then the sediment
cannot move. Here, s0t is the instantaneous bed shear stress, s0 is the time-aver-
aged bed shear stress, s00 is the fluctuations of s0t with respect to s0, s0þ0 ¼ s00=s0

and sþ0c ¼ s0c=s0. From the experimental evidences, the sþ0c can be directly related
to the probability that a sediment particle stays and therefore used to determine the
particle size distribution of the retained sediment particles. The probability pst of
sediment particles to stay is

pst ¼
1

rs0þ0

ffiffiffiffiffiffi
2p
p

Zsþ0c
�1

�1

exp
s0þ2

0

�2r2
s0þ0

 !
ds0þ0 ð4:133Þ

where rs0þ0
is the standard deviation of s0þ0 . For coarse sediments, rs0þ0

is approx-

imately 0.57. Note that the pst varies with the particle size d. For known maximum
and minimum sizes of sediment particles of a bed sediment sample being dmax and
dmin, respectively, the retained fraction of the sediment having a size less than d is
given by

P0ðdÞ ¼
Zd

dmin

p0ðdÞdd ð4:134Þ

where p0(d) is the frequency function of the original distribution. The particle size
frequency of the retained sediment particles is

pRðdÞ ¼ k0pstp0ðdÞ ð4:135Þ

where k0 is the constant that can be determined by

Zdmax

dmin

pRðdÞdd ¼ 1 ð4:136Þ

The expression for the particle size distribution of the retained sediment par-
ticles is
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PRðdÞ ¼

Rd
dmin

pstp0ðdÞdd

Rdmax

dmin

pstp0ðdÞdd

ð4:137Þ

The expression for particle size distribution of the transported sediment particles is

PRðdÞ ¼

Rd
dmin

ð1� pstÞp0ðdÞdd

Rdmax

dmin

ð1� pstÞp0ðdÞdd

ð4:138Þ

The sediments of finer size given by Eq. (4.138) cease to transport, once the
armor layer is formed by sorting the sediment particles.

4.6.2 Grass’s Approach

The most detailed experimental investigation on the bed shear stress fluctuations
carried out so far is due to Grass (1970). He proposed to use a probabilistic
description of the stresses acting on a single particle to achieve motion. He
identified two probability distributions: P(s0t) and P(s0bt) (see Fig. 4.19).

The probability distributions P(s0t) and P(s0bt) are for the instantaneous bed
shear stress s0t induced by the flow and the instantaneous bed shear stress s0bt

required to put the particle in motion, respectively. When these two distributions
start overlapping (Fig. 4.19), the particles that have the lowest threshold bed shear
stress start to move. The representative magnitudes of the probability distributions
are their standard deviations being used to describe the distance of the two time-
averaged bed shear stresses as s0b - s0 = n(r0b + r0), where r0b and r0 are the
standard deviations of s0bt and s0t, respectively. Grass obtained the relationships as
r0 = 0.4s0 and r0b = 0.3s0b, which led to s0 = s0b[(1 - 0.3n)/(1 + 0.4n)]. For
n = 0.625, the result collapses with that of Shields.
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Fig. 4.19 Probabilities of
bed shear stress s0t due to
flow and threshold bed shear
stress s0bt corresponding to
the motion of individual
particles
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4.6.3 Wu and Chou’s Approach

Wu and Chou (2003) studied the rolling and lifting probabilities for sediment
entrainment by introducing the probabilistic features of the velocity fluctuations
and bed particle configuration. These probabilities were linked to the two separate
criteria (rolling and lifting) for incipient motion to study the threshold entrainment
probabilities.

Wu and Chou considered a solitary particle of size d resting over the particles of
identical size forming the bed, as shown in Fig. 4.20. The virtual bed level (z = 0)
was assumed at 0.25d below the crest of the bed particles. The points of contact
between the solitary particle and the bed particles are located at z = hc, and the
bottom of the solitary particle is at z = d. Therefore, the lower and the upper limits
of d depending on minimum and maximum compactness of the bed particles are
d = -0.75d and 0.116d, respectively. The initial position of the solitary particle
was supposed to be randomly oriented relative to the bed level, and thus, d was
treated as a random variable. As a result of which the value of d varies randomly
within the two limits, d = -0.75d and 0.116d; its probability density function is
expressed as pd(-0.75d B d B 0.116d) = [0.116d - (-0.75d)]-1 = 1.155d-1.

The forces acting on the solitary particle are drag FD and lift FL. They are

FD ¼ CD

q
2

u2
mAx ð4:139aÞ

FL ¼ CL

q
2

u2
mAx ð4:139bÞ
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Fig. 4.20 Schematic of forces acting on a solitary sphere resting over typically spaced bed
particles
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where um is the area-averaged instantaneous velocity received by the solitary
particle and Ax is the frontal area of the particle exposed to the flow. The sub-
merged weight of the particle is given by Eq. (4.9). For the estimation of CD, Wu
and Chou (2003) used the formula of Schiller and Naumann (1933). It is

CD ¼
24
R
ð1þ 0:15R0:687Þ ^ R ¼ �umð0:75d þ dÞ

t
ð4:140Þ

where �um is the area-time-averaged velocity received by the solitary particle. In
this study, the ratio of drag to lift coefficients was considered to be unity (that is,
CL = CD). Determination of �um was done considering the universal logarithmic
velocity distribution in rough flow regime, given by Eq. (4.27), and assuming
z0 = ks/30 with ks = 2d. Thus, the �um is

�um ¼
u�
j
	

Rdþd

0:25d

½ðz� dÞðd � zþ dÞ�0:5lnð15z=dÞdz

Rdþd

0:25d

½ðz� dÞðd � zþ dÞ�0:5dz

¼ u�gd ð4:141Þ

where gd is the nondimensional function of d.
The point of action of �um (resultant of the distributed velocity system over the

exposed area of the solitary particle) can be obtained from Eq. (4.27) by replacing
�u ¼ �um and z ¼ zm as zm ¼ d=15ð Þexpðj�um=u�Þ. According to Wu and Lin
(2002), the area-averaged instantaneous velocity um of the area-time-averaged
velocity �um follows the log-normal distribution. Denoting vm in place of logarithm
of um, that is, vm (0 \ um \?) = ln(um), the probability density function pv of vm

can be given by a Gaussian distribution as

pvðvmÞ ¼
1ffiffiffiffiffiffi

2p
p

rv

	 exp �ðvm � �vmÞ2

2r2
v

" #
ð4:142Þ

where �vm is the mean of vm and rv is the standard deviation of vm.
In case of rolling threshold, the overturning moment about the pivot (M) exceeds

the stabilizing moment to keep the particle in rest (see Fig. 4.20). Such a condition
can be obtained to initiate the rolling motion of the solitary particle if

FDlz þ FLlx [ FGlx ð4:143Þ

where lx and lz are the horizontal and vertical lever arms, respectively. Using Eqs.
(4.9) (for FG), (4.139a, b), Eq. (4.143) yields

�um [ ER ¼
2lx

CDlz þ CLlx
	 Dgpd3

6Ax

� �0:5

^ lx ¼ 0:5 ½d2 � ð0:75d þ dÞ2�0:5

lz ¼ zm � hc ¼ zm � 0:125d � 0:5d

#

ð4:144Þ
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where ER is the rolling threshold.
In case of lifting threshold, the lift force exceeds the submerged weight. To

initiate the particle motion in lifting mode, the condition can be given by

FL [ FG ð4:145Þ

Using Eqs. (4.9) and (4.139b), Eq. (4.145) yields

�um [ EL ¼
2

CL

	 Dgpd3

6Ax

� �0:5

ð4:146Þ

where EL is the lifting threshold.
The ratio of rolling to lifting threshold can therefore be obtained as

ER

EL

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

lx
lz þ lx

s
\1 ^ CL

CD

¼ 1 ð4:147Þ

It indicates that the entrainment threshold in lifting is greater than that in
rolling. Hence, if ER\�um\EL, the particle is entrained in a pure rolling mode
keeping in contact with the bed particles. In contrast, if �um [ EL, the entrainment
occurs in a simultaneous rolling and lifting mode. To be explicit, the particle is
lifted off the bed while it starts to roll. Thus, �um [ EL corresponds to the lifting
mode.

Probability PR of entrainment threshold in rolling mode is given by

PR ¼ PðER\um\ELÞ ¼ Pðln ER\vm\ ln ELÞ
¼ Pðvm\ ln ELÞ � Pðvm\ ln ERÞ

ð4:148Þ

Using the approximation of Cheng and Chiew (1998), Eq. (4.148) becomes

PR ¼
Zln EL

�1

pvðvmÞdvm �
Zln ER

�1

pvðvmÞdvm ¼
Z�vm

�1

pvðvmÞdvm þ
Zln EL

�vm

pvðvmÞdvm

2
4

3
5

�
Z�vm

�1

pvðvmÞdvm þ
Zln ER

�vm

pvðvmÞdvm

2
4

3
5 ¼ 1

2
ln EL � �vm

ln EL � �vmj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 2ðln EL � �vmÞ2

pr2
v

" #vuut
8<
:

� ln ER � �vm

ln ER � �vmj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 2ðln ER � �vmÞ2

pr2
v

" #vuut
9=
;

ð4:149Þ

Using formulas for �vm and rv given by Wu and Lin (2002) and a linear rela-
tionship between ru (=standard deviation of �um) and �um by Cheng and Chiew
(1998), the �vm and rv are determined as
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�vm ¼ ln
�umffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þðru=�umÞ2
q
2
64

3
75 ¼ ln

�um

1:006

� �
^ ru ¼ 0:37�um ð4:150aÞ

r2
v ¼ ln 1þ ru

�um

� �2
" #

¼ 0:128 ð4:150bÞ

Substituting Eqs. (4.141), (4.144), (4.146) and (4.150a, b) into Eq. (4.149), the
threshold of entrainment (u* ? u*c) for the rolling probability for a givend is obtained as

PRðdÞ ¼
1
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ð4:151Þ

where GR = 2 lx/(CDlz + CLlx), GL = 2/CL, and ar = pd2/(6Ax).
As -0.75d B d B 0.116d, the mean rolling probability PRM of entrainment

threshold is given by

PRM ¼
Z0:116d

�0:75d

PRðdÞpdðdÞdd ¼ 1
0:866

Z0:116

�0:75

PRðd�Þdd� ð4:152Þ

where d* = d/d.
Further, probability PL of entrainment threshold in lifting mode is

PL ¼ Pðum [ ELÞ ¼ Pðvm [ ln ELÞ ¼ 1� Pð�1\vm\ ln ELÞ ð4:153Þ

As was done in Eq. (4.149), Eq. (4.153) can be restructured as

PL ¼ 1�
Z�vm

�1

pvðvmÞdvm þ
Zln EL

�vm

pvðvmÞdvm

2
4

3
5

¼ 1
2

1� ln EL � �vm

ln EL � �vmj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 2ðln EL � �vmÞ2

pr2
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" #vuut
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:

9=
;

ð4:154Þ
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Substituting Eqs. (4.141), (4.146) and (4.150a, b) into Eq. (4.154), the threshold
of entrainment (u* ? u*c) for the lifting probability for a given d is obtained as

PLðdÞ ¼
1
2

1�
ln

1:137GLar

g2
dHc

� �

ln
1:137GLar

g2
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� �
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1� exp � 2
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( )vuut

ð4:155Þ

The mean lifting probability PLM of entrainment threshold can be given as
follows:

PLM ¼
Z0:116d

�0:75d

PLðdÞpdðdÞdd ¼ 1
0:866

Z0:116

�0:75

PLðd�Þdd� ð4:156Þ

As rolling and lifting are independent modes, the total probability PT and the
mean total probability PM of entrainment threshold can be obtained as

PT ¼ PR þ PL ð4:157aÞ

PM ¼ PRM þ PLM ð4:157bÞ

Equations (4.152) and (4.156) are solved numerically to evaluate the rolling and
lifting probabilities for a given range of Hc.

The variation of probabilities of entrainment threshold with threshold Shields
parameter Hc for rolling and lifting criteria is demonstrated in Fig. 4.21. The
lifting probability PLM increases monotonically with an increase in Hc, while the
rolling probability PRM increases initially with Hc reaching its peak (PRM = 0.25)
at Hc = 0.15 and then decreases with a further increase in Hc. It is evident that the
PRM makes up more than 90 % of the total entrainment probability PM for a given
Hc \ 0.05, while the PLM occupies more than 90 % of the PM for a given
Hc [ 0.6. Hence, PRM(Hc \ 0.05) and PLM(Hc [ 0.6) can be used as the
approximations to PM. However, for 0.05 \ Hc \ 0.6, the contributions from both
PRM and PLM toward PM are equally weighted.

Figure 4.22 shows the rolling and lifting threshold criteria (Hc as a function of
R*) obtained by Wu and Chou (2003). The comparison of the curves with those
obtained by Ling (1995) shows that there is a considerable discrepancy in the
results of these two studies. The reason is attributed to the assumption of a single
logarithmic law of velocity distribution for the rough flow regime over the ranges
of smooth and transitional flow regimes. It is apparent from the corresponding
values of R*.
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4.6.4 Other Investigations

Mingmin and Qiwei (1982), who developed a stochastic model, expressed the
statistical parameters using the velocity of bottom flow and particle size. The
probability of incipient motion, life distribution of stationary particles, number of
distributions of particles in incipient motion, and intensity of incipient motion
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were derived. The quadrant analysis of fluctuations of velocity components by
Papanicolaou et al. (2001) showed that the ratio of Reynolds shear stress to tur-
bulence intensity is smaller in the beds with low densely packed particles than the
densely packed ones. Hence, the sediment entrainment criterion solely based on
the time-averaged bed shear stress may under predict the transport, especially in
low densely packed cases. Based on these, Papanicolaou et al. (2002) developed a
stochastic sediment threshold model that considered the role of near-bed turbulent
structures and bed micro-topography upon the initiation of unisized particle
motion. The model was based on the hypothesis that the probability of occurrence
of exceeding the minimum moment required to initiate rolling motion equals the
probability of first displacement of a particle. The theoretical derivation was
complemented by the experimental measurements of the probability and near-bed
turbulence for different packing regimes. They found it reasonable to consider that
on average (temporal and spatial) for a sufficient large number of data, the
probability of the occurrence of intermittent turbulent events equals the sediment
entrainment probability. In another attempt, Dancey et al. (2002) proposed a cri-
terion that might be interpreted as the probability of individual particle motion
considering the statistical nature of sediment motion in turbulent flow and the
timescale of flow. The sediment threshold was specified by a constant value of the
probability. However, a threshold criterion based on the probability of particle
motion could yield relatively active sediment beds, where the mechanism is
strongly dependent on the sediment packing density.

4.7 Turbulence-Induced Entrainment Concept

After the discovery of the turbulent bursting phenomena, the researchers have been
encouraged to pay an increased attention in further studying the role of turbulence
on sediment entrainment. The bursting events result in a high frequency and
considerable pressure fluctuations on the particles lying on the bed surface and
thus have a significant effect on sediment entrainment. The near-bed velocity
fluctuations provoked by the bed roughness diffuse into the flow as turbulence. In
the process of production of turbulence and subsequent dissipation, the size of
individual eddies decreases through the diffusion process without losing energy,
until eddies become small enough for viscous stresses to become dominant and
dissipate the energy into heat. The sediment entrainment can be governed by the
turbulence in number of ways: (1) The bed particles may be entrained by the drag
exerted by a transitory eddy, (2) the low-pressure core created by an eddy or the
lift created by the near-bed vertical velocity fluctuations may eject the bed par-
ticles, and (3) the high-speed inrush of the sweeping fluid may dislodge the bed
particles. Importantly, the temporal mean bed shear stress maintains sediment
entrainment process, while turbulent agitation (that is, velocity fluctuations) can
enhance the mobility of the particles, even at the lower threshold bed shear stress
at which they initiate the motion.
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The pioneering study on the role of turbulence on sediment entrainment was
due to Sutherland (1967). The observation of bed particle motion led by him to
construct an entrainment concept was based on turbulent eddies disrupting the
viscous sublayer and inrushing the fluid on the bed. The former and the latter
events have been subsequently well known as ejections and sweeps. His concept of
sediment entrainment therefore remarkably corresponded with the discovery of the
turbulent bursting phenomena. He concluded that the sediment entrainment is
associated with a near-bed eddy impact onto the bed particles to produce a
streamwise drag force that is large enough enabling to roll the particles. Heath-
ershaw and Thorne (1985) investigated the role of the turbulent structures on the
sediment entrainment in tidal channels. They argued that the entrainment is not
correlated with the instantaneous Reynolds shear stress but correlated with the
near-bed instantaneous streamwise velocity. Schmid (1985) reported that the
sweeps are relevant mechanism for sediment entrainment, because they are the
only turbulent event inducing large amount of lift on the bed particles. He visually
observed the origin of the lift in combination with velocity measurements. The
threshold of sediment entrainment was created by a strong deceleration of the
inrushing fluid by sweeps when they interacted with the bed by creating a shear
layer of high vorticity. Using the concept of coherent structures, the negative
pressure is produced by the apex of the developing hairpin or front vortex (K-
vortex), which is a loop-shaped structure (see Fig. 4.23). The efficiency of the
sweeps increases with a decrease in angle of attack, which is the angle between the
inrushing fluid and the bed surface. Field observations by Drake et al. (1988) on
the mobility of gravels in alluvial streams suggested that the majority of the gravel
entrainment is associated with the sweep events which give rise to the mobility of
gravels. These events occur during a small fraction of time at any particular
location of the bed. Thus, the entrainment process is rather episodic with short
periods of high entrainment together with long periods of relatively feeble or no
entrainment. Thorne et al. (1989) observed that the sweeps and the outward
interactions play an important role in sediment entrainment. It is the instantaneous
increase in streamwise velocity fluctuations that generate excess bed shear stresses,
governing entrainment processes. In an attempt to link the characteristics of

Ejection

vortex system

Advective sweep

Next sweep

Λ−

Fig. 4.23 Schematic of coherent structure during sediment entrainment
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turbulent events with the threshold of sediment entrainment, Clifford et al. (1991)
and Nelson et al. (1995) suggested that the Reynolds stress component is not the
most relevant parameter to the sediment entrainment. Having studied the sediment
entrainment by nonuniform flow over two-dimensional dunes, Nelson et al. (1995)
reported that the near-bed turbulence can change considerably and hence the
sediment entrainment, while the bed shear stress remains almost unchanged. They
observed that when the magnitude of the outward interactions increases relative to
the other bursting events, then the sediment flux increases albeit the bed shear
stress decreases. Cao (1997) gave a model for the sediment entrainment on the
basis of the bursting structures. He defined that on the bed surface, a sediment
particle, which may at rest, slide, or roll on the bed without detaching the bed, is
entrained whenever it detaches the bed surface. If a particle comes to rest in
succession to an entrainment by the turbulent bursts, a short jump or saltation
occurs. As turbulent bursting is random in space and time, the entrainment rate is
therefore defined as the averaged quantity over a long time period and large spatial
extent compared to the temporal and spatial scales of turbulent bursts, respec-
tively. He finally argued that the sediment entrainment is strongly dependent on
the shear velocity. Sechet and Le Guennec (1999) conducted experiments to
analyze the interaction between the near-bed coherent structures and the sediment
entrainment. The laser Doppler velocimetry (LDV) measurements of near-bed
velocity were coupled with the real-time measurements of sand particle trajecto-
ries. The period between two consecutive displacements of a sand particle is
commensurable with the period between two consecutive ejections. For the dis-
placements of small particles, the time period between two consecutive dis-
placements has two modes. One mode is associated with the particles whose mean
resting time corresponds to the mean time period of ejections, and next mode is
associated with the particles whose mean resting time approximately equals the
mean time period of sweeps. They concluded that the dominant mode of particle
entrainment is due to ejections; the particle whose bed friction is stronger can be
entrained by sweeps. Their results are therefore contradictory to the findings of the
majority of other researchers.

Dey et al. (2011, 2012) studied the turbulence characteristics on immobile and
sediment entrained beds. A summary of the results obtained by them is furnished
below:

A reduction in Reynolds shear stress distributions over the entire flow depth in
presence of sediment entrainment is prevalent. The cause of reduction is attributed
to the provided momentum from the main flow to maintain particle mobility
overcoming the bed frictional resistance. In addition, the near-bed Reynolds shear
stress distributions undergo an excessive damping due to a diminishing level of
velocity fluctuations resulting from a fall in magnitude of relative flow velocity
(flow velocity minus particle velocity) of transporting sediment particles. It leads
to a reduction in mobile-bed flow resistance and friction factor. The logarithmic
law in the presence of sediment entrainment is characterized by a decrease in von
Kármán constant and an upward shifting of the virtual bed level and the zero-
velocity level. The traversing length of an eddy decreases, but the eddy size
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increases in a sediment entrained flow, as compared to that in a clear-water flow.
The analysis of third-order correlations reveals that during the sediment entrain-
ment, a streamwise acceleration directing downward is established and associated
with a streamwise diffusion of vertical Reynolds normal stress and a downward
diffusion of streamwise Reynolds normal stress. In the near-bed flow region, the
particle mobility is associated with a positive streamwise turbulent kinetic energy
(TKE) flux directing toward the flow and a negative vertical TKE flux directing
downward. The influence of sediment entrainment on the TKE budget is pro-
nounced, reducing the TKE production rate and changing the pressure energy
diffusion rate drastically to negative magnitude in the near-bed flow region.
Conditional statistics of Reynolds shear stress showed that the sweep events are
the prevailing mechanism toward the sediment entrainment.

A conceptual framework can therefore be planned to explain the physics of
sediment entrainment. As a remark, the link between the findings of the near-bed
turbulence characteristics and the visual observation of the sediment movement
can be clarified.

An observation of sediment entrained bed revealed that the entrainment takes
place as a common temporal (but continual) motion of sediment particles from the
isolated regions of the bed with change in locations very frequently to cover the
entire bed surface. This is well known to be governed by intermittently charac-
terized coherent structures of turbulence. Grass (1971) and Schmid (1985) pos-
tulated that the bed particle movement is originated by the sweep events, while
they interact with the bed. The sweep events during the sediment entrainment were
quantified by Dey et al. (2012) contributing about 70 % toward the total Reynolds
shear stress production. Figure 4.23 presents the conceptual schematic of the
coherent structure during sediment entrainment. The quasiperiodic three-dimen-
sional loop-shaped structure, called K-vortex, may be represented by hairpin
vortices, characterized by a transverse vortex forming the head and two-legged
vortex. Strong ejections occur upstream of the hairpin head, while sweeps are
found on the downstream side. A shear layer separates ejections and sweeps. The
sweeps are the part of a K-vortex system, as a potential physical process of particle
motion. The near-bed shearing flow is highly retarded interacting with the bed
roughness developing K-vortex that has an intense vorticity core under pressure.
Inrush of faster moving fluid streaks from the outer flow is steered toward the bed
in front of the head of the K-vortex. In the rear of the K-vortex, the slower moving
fluid streaks are ejected toward the outer flow. In fact, K-vortex is capable of
dislodging (lifting) the sediment particles from the bed surface through its low-
pressure core and they are drifted by the near-bed flow. Therefore, the most
provoking turbulence characteristic toward the sediment entrainment is a sweep
producing low-pressure field, as confirmed by Dey et al. (2012) from the drastic
change in pressure energy diffusion rate near the bed to a negative value. It induces
a lift force transporting the bed particles collectively from the isolated regions, as
was visually observed. The arrival of K-vortex system is rather temporal and
intermittent, but it covers the whole bed surface in succession of arrivals making a
continual process of sediment entrainment. This concept is in fact the basis of the
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sediment entrainment by the turbulent flow. Thus, much attention is required to be
given on this issue in modeling the sediment transport.

The results of this study are therefore instrumental in resolving a number of
important issues that can address how to analyze the sediment entrainment phe-
nomenon, as a future scope of research. The most important is how best to
incorporate the sweep events into a theoretical model describing the sediment
entrainment process. Thus, the knowledge of how the sweep events to contribute
toward the near-bed Reynolds shear stress production governing the sediment
motion would be an essential prerequisite. In the near-bed flow region, a gain in
turbulence production due to negative pressure energy diffusion rate is another
aspect that can be given adequate importance for developing a theoretical model.
As the TKE production and dissipation rates are almost equal for sediment
entrained flow, little is contributed from the TKE production rate toward the
sediment motion. Also, a reduction in near-bed TKE dissipation rate leads to an
increase in near-bed eddy size, as reflected from the increased values of the near-
bed Taylor microscale in sediment entrained flow. A modified parameterization for
the Basset term containing the temporal change of flow velocity relative to that of a
particle velocity could also be prepared for inclusion in a model of sediment
entrainment.

These results therefore allow to carefully elaborating a more accurate param-
eterization for the reduction in Reynolds shear stress in the presence of sediment
entrainment. Regarding the law of the wall in sediment entrained flow, the
application of traditional logarithmic law over a rough wall is highly questionable
due to reduced value of von Kármán constant (leading to a reduced traversing
length of eddies) and elevated levels of virtual bed and zero-velocity in sediment
entrained flow. Last but not the least, as the near-bed turbulence creates the pro-
cess of sediment entrainment highly probabilistic, the universal probability density
functions (PDF) for the turbulence parameters developed by Bose and Dey (2010)
could be employed to develop a more realistic model for sediment entrainment. It
can be concluded that the state of the art of the threshold of sediment entrainment
models including local turbulence properties of fluid–particle interactions is in an
embryonic state. Further research is therefore required on sediment entrained flow
preferably by using high-resolution flow measuring and visualizing techniques to
characterize these findings in the context of sediment entrainment.

4.8 Threshold of Nonuniform Sediment Motion

The mechanism of the threshold of motion of different size fractions of a non-
uniform sediment mixture is rather complex. For instance, coarse particles have
greater probability to exposure to the flow, while finer ones are more likely to be
shielded by the coarse particles. Essentially, the effects of hiding and exposure of
the size fractions in nonuniform sediment govern the mechanism of sediment
entrainment. In fact, the threshold bed shear stress of a given size fraction depends
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on the particle size distribution of the sediment mixture and the surface texture.
The common approach is therefore to introduce a correction factor to be appro-
priate for an existing formula of uniform sediment threshold or to propose a
separate empirical formula for nonuniform sediment.

Egiazaroff (1965) derived a formula for the determination of threshold bed
shear stress of a size fraction di in a sediment mixture as

Hci ¼
0:1

log2ð19di=d50Þ
ð4:158Þ

where Hci is the threshold Shields parameter for the sediment size fraction di, that
is s0ci/(Dqgdi), and s0ci is the threshold bed shear stress for di. Ashida and Michiue
(1971) modified the Egiazaroff formula as

Hciðdi=d50� 0:4Þ ¼ Hc

log2 19

log2ð19di=d50Þ
ð4:159aÞ

Hciðdi=d50\0:4Þ ¼ Hc

d50

di
ð4:159bÞ

Qin (1980) proposed the following formula for the threshold near-bed velocity
ucri of a size fraction di in a nonuniform sediment mixture:

ucri ¼ 0:786
h

d90

� �1=6

ðDgdiÞ0:5 1þ 2:5m
dam

di

� �0:5

ð4:160Þ

where m(gd \ 2) = 0.6, m(gd C 2) = 0.76059 - 0.68014(gd + 2.2353)-1,
gd = d60/d10, and dam is the arithmetic mean size of bed sediment.

The formula proposed by Parker et al. (1982) is

Hci ¼ Hc

d50

di

� �0:982

ð4:161Þ

Besides the above empirical formulas, the methodology proposed by Wu et al.
(2000) for the estimation of threshold bed shear stress of a given size fraction seems
to be promising. He considered a mixture of spherical sediment particles with
various sizes forming the streambed. The hydrodynamic force acting on a particle
depends on the position of the particles lying on the bed surface. It means the
particles are either sheltered by the larger ones or exposed to the flow. Wu et al. thus
introduced an exposure height de that is defined as the difference of the height
between the top of a target particle and the particle upstream of it or the bed particle.
It therefore clearly differentiates an exposed state, for which de [ 0, from a hidden
state, for which de B 0. The de can therefore randomly vary within limits from -dj

to di, where di is the size of the target particle and dj is the size of the particle
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upstream of it. It is assumed that de follows a uniform probability distribution law,
such as pe(-dj B de B di) = (di + dj)

-1 and pe(–dj [ de or de [ di) = 0.
The probability of particles dj staying in front of particles di is assumed to be

the fraction pej of particles dj at the bed surface. Therefore, the total probabilities
of particles di to be hidden and exposed due to particles dj, PHi, and PEi, respec-
tively, are obtained as follows:

PHi ¼
Xj¼N

j¼1

pej
dj

diþdj
ð4:162aÞ

PEi ¼
Xj¼N

j¼1

pej
di

diþdj
ð4:162bÞ

where N is the total number of particle size fractions in the nonuniform sediment
mixture. As there exists PHi + PEi = 1, in case of a uniform sediment mixture, it
follows PHi = PEi = 0.5, implying an equality in hidden and exposed probabili-
ties. However, in a nonuniform sediment mixture, PEi is greater than PHi for
coarser particles and PEi is smaller than PHi for finer particles. By using the hidden
and exposed probabilities, Wu et al. obtained a hiding and exposure correction
factor denoted by gi and then the Shields parameter Hci for sediment size fraction
di as

Hci ¼ Hcgi ^ gi ¼
PHi

PEi

� �a1

ð4:163Þ

They determined Hc = 0.03 and a1 = 0.6 by using laboratory experimental and
field data.

4.9 Stable Channel Design

4.9.1 Straight Trapezoidal Channels

Lane (1953) developed stable channel design criterion for trapezoidal channels
based on maximum allowable tractive force per unit area, that is, the bed shear
stress. He showed that the maximum bed shear stress approximately equals
qghtanh on the bottom and 0.77qghtanh on the sides of a trapezoidal channel for
the range of side slope 0 \ m B 2, where the side slope is defined by m horizontal
to 1 vertical. He also showed that there is zero bed shear stress at the corners
(junction of bottom and side slope) of the channels. The threshold bed shear stress

on side slope can be obtained from Eq. (4.122) as s0ca ¼ ~Hcas0c, where s0c can be
obtained from Shields or Yalin and Karahan diagram (Fig. 4.5 or Fig. 4.14).
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4.9.2 Stable-Ideal Section of a Threshold Channel

A threshold channel has a bank profile for which the sediment particles along the
wetted perimeter are in a state of incipient motion. It is the essential prerequisite
toward design of a stable-ideal channel section having a mobile bed at threshold of
motion.

The most commonly used method for analyzing the threshold channel is the
tractive force approach developed by Glover and Florey (1951). Their approach
was based on following assumptions:

• Sediment particles on the channel bed are in equilibrium implying that their
stability is maintained by the component of their submerged weight acting
normal to the bed.

• The equilibrium of the sediment particles is assumed when the threshold bed
shear stress (threshold tractive force per unit area) is balanced by the compo-
nent of the submerged weight of particles per unit area opposing the motion.

• At and above the free surface of the flow, the side slope of the channel is at an
angle of repose of the sediment forming the channel bed.

• At the central plane of symmetry of the channel, the side slope is zero and the
bed shear stress equals its threshold value for the initiation of sediment motion.

The bed shear stress is obtained from the product of the component of the
weight per unit area of the water over the elementary surface under consideration
and the streamwise bed slope (Fig. 4.24).

The schematic of a stable-ideal channel section is shown in Fig. 4.24, where y-
axis lies along the free surface running transverse to the flow direction and z-axis is
positive vertically downward. The origin of the coordinate system (that follows a
left-hand rule) lies on the free surface at the half of the top width of flow. The last
assumption can be used to formulate the bed shear stress acting on the elementary
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Fig. 4.24 Schematic of
stable-ideal section of a
threshold channel (Glover
and Florey 1951)
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surface having a length [(dy)2 + (dz)2]0.5, inclined at an angle a with the hori-
zontal, and a unit streamwise thickness. Then,

s0ca ¼ qgz tan h cos a ^ tan h ¼ S0 _ cos a ¼ dy

½ðdyÞ2 þ ðdzÞ2�0:5

ð4:164Þ

where S0 is the streamwise bed slope. At the central plane of symmetry of the
channel (last assumption), the bed shear stress becomes s0(z = h, a = 0) = qghS0,
where h is the flow depth. The channel section is stable, if s0c C s0ca.

Therefore, using Eqs. (4.122) and (4.164), the following expressions can be
obtained:

qgzS0 cos a ¼ qghS0
~Hca ^ zðy ¼ 0Þ ¼ h _ a ¼ arc tan

dz

dy
ð4:165aÞ

dz

dy

� �2

þ z

h

� �2
tan2 /� tan2 / ¼ 0 ð4:165bÞ

The solution of Eq. (4.165b) using the boundary condition z(y = 0) = h yields
the equation of threshold channel profile

z ¼ h cos
tan /

h
y

� �
ð4:166Þ

Equation (4.166) can be used to define the geometry of a stable-ideal channel
section by a simple cosine curve. For a stable-ideal channel section, the USBR
(1951) gave the following recommendation for the flow area A, the average flow
velocity U, and the top width T of flow:

A ¼ 2h2

tan /
^ h ¼ s0c

qgS0
ð4:167aÞ

U ¼ 1
n

h cos /
Eðsin /Þ

� �2=3

S0:5
0 ^ Eðsin /Þ ¼ p

2
1� 1

4
sin2 /

� �
ð4:167bÞ

T ¼ ph

tan /
ð4:167cÞ

where n is the Manning roughness coefficient. The theoretical discharge Qth of the
stable-ideal channel section is thus obtained as Qth = UA.

In practice, the design discharges Qd in most of the cases differ from the
theoretical ones. When Qd [ Qth, a flat central base T0 at a depth h is added to the
channel section in order to accommodate extra discharge Qd – Qth as
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T0 ¼
n

h5=3S0:5
0

ðQd � QthÞ ð4:168Þ

On the other hand, when Qd \ Qth, the value of h can be altered and the
corresponding new theoretical discharge can be estimated. The procedure is
repeated until design, and theoretical discharges are equal (Qd = Qth).

Dey (2001) developed a simplified model for the computation of shape and
dimensions of the cross-section of a self-formed straight threshold channel. The
model was based on the equilibrium of the individual sediment particles lying on
the channel bed at the threshold condition due to the hydrodynamic force acting on
it. The transverse momentum diffusion, caused by the Reynolds shear stress, was
assumed as a function of the transverse distance from the center. As the transverse
bed slope of a channel is much greater than the streamwise slope, the streamwise
component of gravity force is ignored in analyzing the forces acting on an indi-
vidual sediment particle at threshold condition.

The schematic of a stable-ideal section of self-formed threshold channel con-
sidered by Dey (2001) is shown in Fig. 4.25, where y-axis lies on the bottom of the
channel running transverse to the flow direction and z-axis is positive vertically
upward. The origin of the coordinate system (that follows a right-hand rule) lies on
the bottom of the channel (that is on the axis of symmetry of the flow section).
Based on the modified area method of Lundgren and Jonsson (1964), the following
expression for the bed shear stress acting along the wetted perimeter dP can be
obtained considering the balance of downstream momentum for the area dA as
shown in Fig. 4.25:

½s0�a¼a ¼ qgS0
dA

dP
þ d

dP

Zh

h�z

�qu0v0dz

0
@

1
A ð4:169Þ
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where [s0]a=a is the bed shear stress acting on the elementary area of the channel
bed, and z is the vertical distance from the mid-point of the channel bed. The
second term of the right-hand side of Eq. (4.169) refers to the transverse
momentum diffusion caused by the Reynolds shear stress due to turbulence. The
transverse transport of momentum by the turbulence acts to diffuse momentum
from the areas of high concentration (faster flow) to the areas of low concentration
(slower flow). The depth integrated transport is given by nt(y) as

ntðyÞ ¼
Zh

h�z

�qu0v0dz ð4:170Þ

Ignoring secondary currents, the local momentum balance is obtained from
Eq. (4.169) as

½s0�a¼a ¼ qgS0ðh� zÞ þ dnt

dy

� �
cos a ð4:171Þ

Using [s0]a=0 = qghS0, Eq. (4.171) is expressed in nondimensional form as

~Ha ¼
½s0�a¼a

½s0�a¼0

¼ 1� ~zþ d~nt

d~y

 !
cos a ð4:172Þ

where ~z ¼ z=h, ~y ¼ y=h, and ~nt ¼ nt=½hðqghS0Þ�. According to Parker (1979), as the
bed stress shear varies monotonically with y, nt should have a monotonic variation

with y. Hence, ~nt was assumed as a function of y in the form of a power law:

~nt ¼ Cn~y
m1 ð4:173Þ

where Cn and m1 are the coefficient and exponent, respectively. By using the
experimental data of Stebbings (1963), the values of Cn and m1 were obtained as
0.0027 and 4.5, respectively.

In case of a threshold channel, the sediment particles on the channel bed are at
threshold of motion, that is, [s0]a=a ? [s0c]a=a. Using cosa = [1 + (dz/dy)2]-0.5

and Eq. (4.173), and then equating Eqs. (4.121) and (4.172), the following dif-
ferential equation for the channel profile of a threshold channel is obtained:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 tan2 /

p d~z

d~y
¼ tan /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½ð1� ~zþ Cnm1~ym1�1Þð1� g tan /Þ þ g tan /�2

q

ð4:174Þ

Equation (4.174) is a first-order differential equation, which can be solved
numerically by the fourth-order Runge–Kutta method to determine the variation of ~z
with ~y, that is, the nondimensional channel profile of a threshold channel. The values
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of d50, S0, and / are required as input data. The g = 0.85 can be considered, as
proposed by Chepil (1958). The steps involved in the computation are as follows:

1. Compute D* = ks(Dg/t2)1/3, assuming ks = 2d50.
2. Compute Hc from the following equation that provides an explicit version of

the threshold curve given by Dey (1999):

HcðD� � 1Þ ¼ 0:142D�0:35
�

Hcð1\D� � 15Þ ¼ 0:148D�0:6
�

Hcð15\D� � 50Þ ¼ 0:013D0:32
�

HcðD�[ 50Þ ¼ 0:045

ð4:175Þ

3. Compute [s0c]a=0, using [s0c]a=0 = Hc(qgDd50).
4. Compute h, using h = [s0c]a=0/(qgS0).
5. Compute the variation of ~z with ~y from Eq. (4.174) by using the fourth-order

Runge–Kutta method.
6. Compute the area A and the top width T of flow numerically using the variation

of zð¼ ~zhÞ with yð¼ ~yhÞ. The wetted perimeter P can also be computed from
the length of the curve representing the channel profile.

7. Compute Q from the following relationship:

Q ¼ AU ¼ 2:5A gS0
A

T

� �0:5

ln 11
A

d50T

� �
ð4:176Þ
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The above relationship for the estimation of discharge was proposed by Diplas and
Vigilar (1992). Figure 4.26 shows the nondimensional channel profiles for
d50 = 45 mm and different values of tan/.

4.10 Examples

Example 4.1 Use Shields diagram to determine the threshold shear velocity for the
median sediment size of 1.1 mm. Consider coefficient of kinematic viscosity of
water t = 10-6 m2 s-1 and relative density of sediment s = 2.65.

Solution

Given data are as follows:
Size of the sediment, d50 = 1.1 mm; relative density, s = 2.65; and kinematic
viscosity of water, t = 10-6 m2 s-1. Assume acceleration due to gravity
g = 9.81 m s-2

First trial: Assume a trial value of u*c|trial = 0.05 m s-1

Calculate R*c:

R�c ¼
u�cjtriald50

t
¼ 0:05� 1:1� 10�3

10�6
¼ 55

Use R*c = 55 to determine Hc from the Shields diagram (Fig. 4.5). It is
Hc = 0.038.
Calculate new u*c|new:

u�cjnew ¼ ðHcDgdÞ0:5 ¼ ð0:038� 1:65� 9:81� 1:1� 10�3Þ0:5 ¼ 0:026 m s�1

Therefore, u*c|new 6¼ u*c|trial.
Second trial: Retry with u*c|trial = 0.026 m s-1

Calculate R*c:

R�c ¼
u�cjtriald50

t
¼ 0:026� 1:1� 10�3

10�6
¼ 28:6

Use R*c = 28.6 to determine Hc from the Shields diagram (Fig. 4.5). It is
Hc = 0.037.
Calculate new u*c|new:

u�cjnew ¼ ðHcDgdÞ0:5 ¼ ð0:037� 1:65� 9:81� 1:1� 10�3Þ0:5 ¼ 0:0257 m s�1

Therefore, u*c|new & u*c|trial.
Hence, the threshold shear velocity u*c = 0.0257 m s-1
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Example 4.2 A straight unlined trapezoidal channel is to be designed to convey a
water discharge of 30 m3 s-1. The median size of bed sediment is 25 mm for
which Manning roughness coefficient is 0.015 SI units. The bed sediment is
approximately rounded quartz particles having an angle of repose of 36� and a
relative density of 2.65. It is proposed the channel to be laid on with a longitudinal
slope of 1.2 9 10-3. Compute the dimensions of the channel.

Solution

Given data are as follows:
Flow discharge, Q = 30 m3 s-1; size of the bed sediment, d50 = 25 mm; Man-
ning roughness coefficient, n = 0.015 SI units; angle of repose, / = 36�; relative
density, s = 2.65; and longitudinal slope, S0 = 1.2 9 10-3.
To determine the threshold bed shear stress s0c on a horizontal bed, the explicit
equation given by Cao et al. (2006) for the curve of Yalin and Karahan (1979) is
used:

S� ¼ d50ðDgd50Þ0:5=t ¼ 25� 10�3ð1:65� 9:81� 25� 10�3Þ0:5=10�6 ¼ 15903:3

HcðS� � 282:84Þ ¼ 0:045( Eq. 4:108ð Þ
s0c ¼ HcDqgd50 ¼ 0:045� 1:65� 103 � 9:81� 25� 10�3 ¼ 18:21 Pa

The side slope of the channel should be less than the angle of repose of the bed
sediment. Therefore, a side slope of the channel of 1.5 horizontal to 1 vertical (that
is, m:1), which has an angle a = 33.7�, is assumed.
Next, the threshold bed shear stress on side slope can be calculated as follows:

~Hca ¼ 1� sin2 33:7


sin2 36


� �0:5

¼ 0:33( Eq. ð4:122Þ

s0ca ¼ ~Hcas0c ¼ 0:33� 18:21 ¼ 6:01 Pa

Determination of flow depth h:

h ¼ s0c

qgS0
¼ 18:21

103 � 9:81� 1:2� 10�3

¼ 1:55 m ðfrom bottom shear stress criterionÞ

h ¼ s0ca

0:77qgS0
¼ 6:01

0:77� 103 � 9:81� 1:2� 10�3

¼ 0:66 m ðfrom side shear stress criterionÞ

The flow depth is adopted as 0.66 m that provides a bed shear stress of 7.77 Pa at
the bottom being less than the threshold bed shear stress s0c = 18.21 Pa
The bottom width b of the channel can be determined by solving the Manning
equation numerically:
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Q ¼ A

n

A

P

� �2=3

S0:5
0 ^ A ¼ ðbþ mhÞh _ P ¼ bþ 2ð1þ m2Þ0:5h

30 ¼ ðbþ 1:5� 0:66Þ0:66
0:015

ðbþ 1:5� 0:66Þ0:66

bþ 2ð1þ 1:52Þ0:5 � 0:66

" #2=3

ð1:2� 10�3Þ0:5 ) b ¼ 25:86 m

Therefore, the dimensions of the trapezoidal channel are as follows:

Side slope = 1.5:1
Flow depth = 0.66 m
By using a freeboard of 0.15 m, the design depth of the channel is 0.81 m
(=0.66 + 0.15 m).
Width = 25.86 m

Example 4.3 Determine stable-ideal section of a threshold channel for the data
given in Example 4.2.

Solution

Given data are as follows:
Design flow discharge, Qd = 30 m3 s-1; size of bed sediment, d50 = 25 mm;
Manning roughness coefficient, n = 0.015 SI units; angle of repose, / = 36�;
relative density, s = 2.65; longitudinal slope, S0 = 1.2 9 10-3; and threshold bed
shear stress, s0c = 18.21 Pa

Flow depth h ¼ s0c

qgS0
¼ 18:21

103 � 9:81� 1:2� 10�3
¼ 1:55 m

Equation of threshold channel is z ¼ 1:55 cos
tan 36


1:55
y

� �
¼ 1:55cos 0:469yð Þ

( Eq. 4:166ð Þ

A ¼ 2� 1:552

tan 36

¼ 6:614 m2 ( Eq. 4:167að Þ

Eðsin 36
Þ ¼ p
2

1� 1
4

sin2 36

� �

¼ 1:435

U ¼ 1
0:015

1:55 cos 36


1:435

� �2=3

ð1:2� 10�3Þ0:5 ¼ 2:111 m s�1 ( Eq. 4:167bð Þ

T ¼ p� 1:55
tan 36


¼ 6:7 m( Eq. ð4:167cÞ

Qth ¼ UA ¼ 2:111� 6:614 ¼ 13:96 m3 s�1\ Qd ¼ 30 m3 s�1
 �

Therefore, an extra flat channel base T0 is to be provided. It is

T0 ¼
0:015

1:555=3ð1:2� 10�3Þ0:5
ð30� 13:96Þ ¼ 3:346 m( Eq. ð4:168Þ
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Chapter 5
Bed-Load Transport

5.1 General

The transport of sediment in rivers, by which the river morphological changes are
closely related, is an important aspect in fluvial processes. The term load, as often
used to define the sediment transport, refers to the quantity of sediment that is
transported in a stream. More specifically, it is used to define the rate (volume or
weight per unit time and width) at which the sediment is transported.

When the bed shear stress s0 induced by the flow exceeds the threshold bed
shear stress s0c for the initiation of sediment motion, the sediment particles
forming the bed are set in motion. The bed-load transport is the mode of sediment
transport where the sediment particles slide, roll, or travel in succession of low
jumps, termed saltation, but belong close to the bed, from where they may leave
temporarily. The dislodgment of the sediment particles is rather intermittent, as
turbulence (velocity fluctuations) interacts with the bed particles randomly to play
an important role in transporting them. It is, however, convenient to distinguish the
modes of sediment transport as bed load (slide, roll, and saltation) and suspended
load. Figure 5.1 presents a schematic of different modes of sediment transport.

At relatively small excess bed shear stress (s0 - s0c), the bed-load transport
takes place in a sliding and/or rolling mode. It therefore describes a sediment
motion generally in contact with the bed; while individual sediment particles have
intermittent motion, but substantially continuous. The bed-load transport in this
mode is known as contact load. With an increase in excess bed shear stress,
increasingly sediment particles are driven streamwise in a short succession of
jumping or bouncing mode of motion, as the particles lose contact with the bed for
a short while to attain a mean height in water of a number of particle diameters.
The bed-load transport in this mode is called saltation. According to Einstein
(1942, 1950), the bed-load transport is defined as the transport of sediment par-
ticles within a thin layer having a thickness of two particle diameters above the bed
by sliding, rolling, or traveling in succession of jumps with a streamwise distance
of a few particle diameters. On the other hand, Bagnold (1956) defined the

S. Dey, Fluvial Hydrodynamics, GeoPlanet: Earth and Planetary Sciences,
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bed-load transport that takes place by successive contacts of the particles with the
bed being limited by the gravity effect.

With a further increase in excess bed shear stress, the production of turbulence
near the bed and its diffusion in upward direction lift up relatively finer sediment
particles from the bed keeping them in suspension, as they are transported by the
flow. The upward diffusion of turbulence retains the particles in the fluid domain
against the gravity; while relatively coarser particles are still transported as bed
load. In reality, the particles stay occasionally in contact with the bed and are
displaced by making more or less large jumps to remain often surrounded by the
fluid. The sediment transport in suspension mode is termed suspended load.
Bagnold (1956) defined the suspended-load transport that takes place by balancing
submerged weight of the particles with upward diffusion of turbulent eddies. In
both bed-load and suspended-load transports, the sediment transport is established
by the action of gravity on the fluid phase driving the sediment particles by the
induced drag.

It is useful to provide approximate limiting values to separate different modes
of sediment transport:

6 [ ws=u� � 2 contact-load; bed-load ð5:1aÞ

2 [ ws=u� � 0:6 saltation; bed-load ð5:1bÞ

0:6 [ ws=u� suspended-load ð5:1cÞ

where u* is the shear velocity and ws is the settling or terminal velocity of par-
ticles. Generally, the amount of bed load transported through a large deep river is
approximately 5–25 % of the suspended load.

In natural stream, wash load is the portion of sediment that is carried by the
flow such that it always remains close to the free surface. It is in near-permanent
suspension and transported without deposition, essentially passing straight through

Particles in bed‐load

Particles in suspended‐load

Particles in wash‐load

Saltating
Rolling

Sliding

Fig. 5.1 Schematic of different modes of sediment transport
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the stream. It consists of very fine sediment particles, such as silt and clay. The
composition of wash load is distinct because it is almost entirely made up of
particles that are only found in small quantities in the bed. Nevertheless, wash-load
particles are also brought in by the overland flow or from the cohesive stream
banks. As the wash-load particles tend to be very fine, they have a small settling
velocity, being easily kept in suspension by the turbulence in flow. A physical
characterization of the wash load is a difficult proposition, as the wash load, by
definition, cannot be determined by the given flow characteristics of a river.

5.2 Definition of Bed-Load Transport

The term bed-load transport is defined as the sediment particles, such as silt, sand,
gravel, etc., carried by the stream flow in the streamwise direction immediately
above the bed as sliding, rolling, and/or saltating at a velocity less than that of the
stream flow. The bed-load transport rate qb is generally expressed as the solid
volume of sediment transported per unit time and width. It is also expressed as the
weight of sediment transported per unit time and width, denoted by gb, or the
submerged weight of sediment transported per unit time and width, denoted by gbs.
However, in nondimensional form, the bed-load transport rate is designated as
bed-load transport intensity and denoted by Ub. The bed-load transport intensity
Ub is related with qb, gb, and gbs as follows:

Ub ¼
qb

ðDgd3Þ0:5
¼ gb

qsgðDgd3Þ0:5
¼ gbs

DqgðDgd3Þ0:5
ð5:2Þ

where D is the submerged relative density (= s - 1), s is the relative density of
sediment (= qs/q), qs is the mass density of sediment, q is the mass density of
water, g is the acceleration due to gravity, and d is the representative sediment
size, that is the median or weighted mean diameter.

The bed-load transport rate qb can be defined as the product of the particle
velocity ub in streamwise direction, the volumetric concentration C of particles
transported as bed-load, and the thickness db of bed-load transport layer. It is
therefore given by

qb ¼ ubCdb ð5:3Þ

The bed-load transport rate qb can also be defined as the product of the particle
velocity ub in streamwise direction, the number of particles in motion Nb per unit
area, and the volume of particles Vb. It is thus

qb ¼ ubNbVb ð5:4Þ
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Further, by defining the particle velocity ub as the ratio of saltation or step
length ks to saltation or step period te, that is ub = ks/te, Eq. (5.4) can be rewritten
as

qb ¼
ks

te
NbVb ¼ ksEb ¼ ksDb ^ Eb ¼ Db ¼

NbVb

te

ð5:5Þ

where Eb and Db are the degraded or aggraded volume of particles per unit time
and area.

Another way of defining bed-load transport rate is the pickup rate. It is, in fact
basically, defined as the number of particles picked up per unit time and area.
Later, the definition of pickup rate Ep has been modified to the mass of particles
picked up per unit time and area. The nondimensional pickup rate, known as the
sediment pickup function Up, is defined according to Einstein (1950) as

Up ¼
Ep

qsðDgdÞ0:5
ð5:6Þ

Although different researchers studied pickup rate (Einstein 1950; Fernandez
Luque 1974; Yalin 1977; Nakagawa and Tsujimoto 1980; de Ruiter 1982, 1983;
van Rijn 1984b; Dey and Debnath 2001), it, however, remains almost unclear
whether contact load or saltation contributes to pickup rate.

5.3 Bed Shear Stress Concept for Bed-Load Transport

5.3.1 du Boys’ Approach

The pioneering attempt to predict the bed-load transport rate was due to MP du
Boys in 1879, who was a French engineer. His analysis was based on the force
balance between the force applied to the top layer of sediment bed by the flowing
fluid and the frictional resistance between the top layer of sediment particles and
the layers beneath it.

du Boys (1879) assumed that the sediment particles move in series of super-
imposed layers of individual thickness De by the tractive force offered by the
uniform flow as given by the bed shear stress s0 = qghS0 applied to the surface of
the top layer; where h is the flow depth and S0 is the streamwise bed slope. The
mean velocity of the successive layers that are sliding over each other increases
linearly toward the bed surface. It implies that the velocity is highest at the top
layer forming the bed surface and zero (minimum) at the lowest layer at a depth of
De�m; where m is the number of layers. Figure 5.2 illustrates the definition sketch
of du Boys model. Under the equilibrium condition, the top layer is one where
the tractive force balances the frictional resistance force between these layers.
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The coefficient of frictional resistance lf between successive layers is assumed to
be constant, such that the force balance is

s0 ¼ qghS0 ¼ lf � De � mðqs � qÞg ð5:7Þ

The fastest moving layer being the top layer moves with a velocity of (m - 1)us,
where us is the velocity of the second lowest layer. As the layers between the first
and the m-th move according to a linear velocity distribution, the sediment transport
rate (in volume per unit time and width, that is, m3 s-1 m-1) is given by

qb ¼ De � m ðm� 1Þus

2
ð5:8Þ

The threshold condition at which sediment motion is just about to begin can be
obtained by setting m = 1. Then, from Eq. (5.7), threshold bed shear stress s0c can
be determined, and thus, m is obtained as the ratio of applied bed shear stress to
threshold bed shear stress as follows:

s0c ¼ lf � Deðqs � qÞg ) m ¼ s0

s0c

ð5:9Þ

It is introduced into Eq. (5.8) and then

qb ¼
De � us

2s2
0c

� �
s0ðs0 � s0cÞ ð5:10Þ

du Boys referred the first term within the parenthesis in right-hand side of
Eq. (5.10) as a characteristic of sediment coefficient and denoted by v. Thus, the
equation becomes

Flow h 

τ0 

(m – 1)u
(m – 2)u

2u
u

0 1 

3 

m 
m – 1 

2 

ε

s

s

s

s

Fig. 5.2 Definition sketch of
du Boys’ bed-load model
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qb ¼ vs0ðs0 � s0cÞ ð5:11Þ

The sediment coefficient v was determined from the experimental data obtained
by Schoklitsch (1914). According to Graf (1971), it is

v ¼ 0:54
Dqg

in metric unitsð Þ ð5:12Þ

Straub (1935) related v with the particle size d (in mm) (0.125 \ d \ 4 mm) as

v ¼ 6:89� 10�6

d0:75
in SI unitsð Þ ð5:13Þ

5.3.2 du Boys Type Equations

du Boys equation that is characterized by the excess bed shear stress is one of the
classical equations of bed-load transport. Later, investigators have tried to put
forward improved version of bed-load transport equations, known as du Boys type
equations, based on excess bed shear stress. They are discussed below:

Shields (1936) obtained the threshold bed shear stress that had a value for
which the extrapolated sediment flux (bed-load transport) became zero. Therefore,
he basically studied the flow conditions corresponding to the bed-load transport
rate greater than zero. He obtained an empirical equation of bed load as

qb ¼
10qS0

sD2qgd
ðs0 � s0cÞ ) Ub ¼

10U

sðDgdÞ0:5
ðH�HcÞH ð5:14Þ

where H and Hc are the Shields and threshold Shields parameters, respectively,
q is the flow rate per unit width (= Uh), and U is the depth-averaged flow velocity.
The Shields parameter is given by H = s0/(Dqgd) and Hc corresponds to s0c.

Meyer-Peter and Müller (1948) gave the following equation of bed load
including the effects of particle roughness:

qb ¼
8

Dq1:5g

CR

C0R

� �1:5

s0 � s0c

" #1:5

) Ub ¼ 8ðgCH�HcÞ1:5 ^ gC ¼
CR

C0R

� �1:5

ð5:15Þ

where CR is the total Chézy coefficient due to effective bed roughness ks, that is
18log(12 h/ks) or U/(RbS0)0.5, Rb is the hydraulic radius, and C0R is the Chézy
coefficient due to particle roughness d90, that is 18log(12 h/d90). In Eq. (5.15),
Meyer-Peter and Müller recommended the value of Hc = 0.047. Their formula
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corresponded well with the experimental data for coarse sands and gravels. The gC

was reported to vary from 0.5 to 1 that corresponds to coarse sand and a small form
drag. Considering ks & d90, the gC becomes unity; and the Meyer-Peter and
Müller formula can be simplified to

Ub ¼ 8ðH�HcÞ1:5 ð5:16Þ

Subsequently, Frijlink (1952) proposed a formula that can approximate Meyer-
Peter and Müller formula, but it is not a du Boys type equation. It is

Ub ¼ 5ðgCHcÞ0:5 exp � 0:27
gCH

� �
ð5:17Þ

However, Chien (1954) showed that the Meyer-Peter and Müller formula can
be replaced by

Ub ¼ ð4H� 0:188Þ1:5 ð5:18Þ

Further, Wong and Parker (2006) reanalyzed the experimental data used by
Meyer-Peter and Müller and found a better fitting for the Meyer-Peter and Müller
formula with the following equation:

Ub ¼ 3:97ðH� 0:0495Þ1:5 ð5:19Þ

For the high bed-load transport rate, Wilson (1966) put forward an empirical
equation as

Ub ¼ 12ðH�HcÞ1:5 ð5:20Þ

Chang et al. (1967) suggested that the bed-load transport can be determined
from the following relationship:

Ub ¼ Kt

D
s
� U

ðDgdÞ0:5
ðH�HcÞ ^ Kt ¼ Kb

s

D
� 1
tan /

ð5:21Þ

where Kb is a constant and / is the angle of repose of the sediment. In the above,
Kt represents a constant defining the bed-load transport and can be determined
using Fig. 5.3.

Ashida and Michiue (1972) analyzed micro-mechanical particle collision with
the bed, but not considered the saltation. They obtained the following equation of
bed-load transport intensity for the range of particle size 0.3 B d B 7 mm:
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Ub ¼ 17ðH�HcÞðH0:5 �H0:5
c Þ ð5:22Þ

In the above, Ashida and Michiue recommended the value Hc = 0.05.
Fernandez Luque and van Beek (1976) used laboratory experimental data to

suggest bed-load transport intensity as

Ub ¼ 5:7ðH�HcÞ1:5 ð5:23Þ

They considered a range of Hc within 0.05 B Hc B 0.058 for 0.9 B d B 3.3 mm.
For gravel-bed rivers, Parker (1979) proposed

Ub ¼ 11:2
ðH� 0:03Þ4:5

H3 ð5:24Þ

Smart (1984) measured bed-load transport rate in steep channels
(0.03 B S0 B 0.2) for the gravel sizes 2 B d B 10.5 mm. Based on his data and
the data of Meyer-Peter and Müller, he proposed

Ub ¼ 4
CR

g0:5

d90

d30

� �0:2

S0:6
0 ðH�HcÞH0:5 ð5:25Þ

The bed-load transport intensity equation derived by van Rijn (1984a) for
0.2 B d B 2 mm is
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Fig. 5.3 Variation of Kt with
(U/u*)HS0 for different
sediment sizes (Chang et al.
1967)
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Ub ¼
0:053
D0:3
�

H
Hc

� 1

� �2:1

ð5:26Þ

where D* is the particle parameter, that is d(Dg/t2)1/3, and t is the kinematic
viscosity of water.

Graf and Suszka (1987) gave a bed-load transport intensity formula for steep
bed slopes as

UbðUb� 10�2Þ ¼ 10:4 1� 0:045
H

� �2:5

H1:5 ð5:27aÞ

UbðUb [ 10�2Þ ¼ 10:4H1:5 ð5:27bÞ

Madsen (1991) recommended

Ub ¼ KbðH�HcÞðH0:5 � 0:7H0:5
c Þ ð5:28Þ

where Kb = 8/tan/ for sliding and rolling sand particles, and Kb = 9.5 for sal-
tating sand particles in water. However, Niño and García (1998) proposed a similar
equation with Kb = 12/ld for saltating particles. They determined a dynamic
coefficient of friction ld = 0.23.

Nielsen’s (1992) equation for sand and gravel (0.69 B d B 28.7 mm) transport is

Ub ¼ 12ðH� 0:05ÞH0:5 ð5:29Þ

Damgaard et al. (1997) conducted experiments for the wide variation of
streamwise bed slope (–32� B h B 32�; where h is the streamwise bed angle with
the horizontal). They introduced a correction factor fh to Meyer-Peter and Müller
formula as

Ub ¼ 8ðH�HcÞ1:5fh ð5:30Þ

where

fhð�32�\h� 0Þ ¼ 1þ 0:8
Hc

H

� �0:2

1�Hch

Hc

� �1:5þ H
Hc

fhð0\h� 32�Þ ¼ 1

ð5:31Þ

where Hch is the threshold Shields parameter on streamwise bed slope.
Lajeunesse et al. (2010) suggested

Ub ¼ 10:6ðH�HcÞðH0:5 �H0:5
c þ 0:025Þ ð5:32Þ
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5.3.3 Other Empirical Relationships Involving Bed Shear
Stress

Kalinske (1947) emphasized on the near-bed turbulence that plays an important
role in analyzing bed particle motion. The time-averaged bed-load transport rate qb

was expressed as a product of three quantities: volume of a particle, number of
particles in motion per unit area, and time-averaged particle velocity �ub. It is

qb ¼
pd3

6
� 4pn

pd2
� �ub ð5:33Þ

where pn is the fraction of moving particles. The time-averaged particle velocity �ub

can be obtained as

�ub ¼ c0

Z1

ucr

ðud � ucrÞf ðudÞdud ð5:34Þ

where c0 is the constant of proportionality, ud is the instantaneous flow velocity at
the particle level, ucr is the threshold velocity (at the particle level) for the particle
motion, and f(ud) is the frequency distribution of ud. The f(ud) is given by

f ðudÞ ¼
1

ð2pÞ0:5ru

exp �ðud � �udÞ2

2r2
u

" #
ð5:35Þ

where ru is the standard deviation of ud. Assuming s0c=s0 ¼ ðucr=�udÞ2, where �ud is
the time-averaged value of ud, the following functional relationship is obtained:

�ub

u�
¼ f

s0c

s0

� �
ð5:36Þ

Using Eq. (5.36), Eq. (5.33) can be expressed a functional relationship as

qb

u�d
¼ f1

s0c

s0

� �
ð5:37Þ

Figure 5.4 shows this relationship.
Frijlink (1952) formula, as already given by Eq. (5.17) that can approximate

Meyer-Peter and Müller formula, was one that falls under the category to involve
bed shear stress. Further, the bed-load transport formula that was widely used by
Engelund and Hansen (1967) for sand transport in terms of bed shear stress is
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Ub ¼ 0:05
U2

Dgd
H1:5 ð5:38Þ

In case of weak bed-load transport rate, Paintal (1971) obtained a bed-load
transport formula for 1 B d B 25 mm as

Ubð0:007\H\0:06Þ ¼ 6:56� 1018H16 ð5:39Þ

The relationships proposed by Misri et al. (1984) to involve bed shear stress due
to particle roughness are as follows:

UbðH0 � 0:065Þ ¼ 4:6� 107H08 ð5:40aÞ

UbðH0[ 0:065Þ ¼ 0:85H01:8

ð1þ 5:95� 10�6H0�4:7Þ1:43 ð5:40bÞ

where H0 is the Shields parameter due to particle roughness, that is s00=ðDqgdÞ, and
s00 is the bed shear stress due to particle roughness.

On the other hand, Cheng (2002) gave a relationship for moderate bed-load
transport rate as

Ub ¼ 13H1:5 exp � 0:05

H1:5

� �
ð5:41Þ

The above equation yields results similar to those obtained from Meyer-Peter
and Müller formula for moderate transport rate and Paintal formula for weak
transport rate.
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For high bed-load transport rate, Rickenmann (1991) reported that the particles
transport like a sheet flow, when H [ 0.4. Hanes (1986) suggested that under a
sheet flow type transport, the intense bed-load transport can be approximated as

Ub ¼ 6H2:5 ð5:42Þ

5.4 Discharge Concept for Bed-Load Transport

Schoklitsch (1934) was the pioneer to use discharge for the estimation of bed load.
He used the data of Gilbert (1914) with his own to propose a bed-load transport
rate formula for particle size 0.305 B d B 7.02 mm as

gb ¼
7000
d0:5

S1:5
0 ðq� qcÞ ð5:43Þ

where gb is the bed-load transport rate in mass per unit time and width
(kg s-1 m-1), d is in mm, and qc is the discharge per unit width corresponding to

sediment threshold. Schoklitsch determined qc ¼ 1:944� 10�5=S4=3
0 m2 s�1ð Þ by

plotting a curve of bed-load transport rate versus bed slope. He then extrapolated
the curve to zero transport rate (gb = 0) to determine the corresponding value of
q as qc. Schoklitsch later modified the equation for d C 6 mm as

gb ¼ 2500S1:5
0 ðq� qcÞ ð5:44Þ

He redefined the threshold discharge as qc ¼ h5=3
c S0:5

0 =n ¼ 0:26D5=3d1:5=S7=6
0

m3 s�1 m�1ð Þ; where d is in m, n is the Manning coefficient, and hc is the flow
depth corresponding to sediment threshold.

5.5 Velocity Concept for Bed-Load Transport

Donat (1929) used the Chézy equation in Eq. (5.11) and obtained the following
equation of bed-load transport using average flow velocity:

qb ¼ v
ðqgUÞ2

C4
R

ðU2 � U2
crÞ ^ U2 ¼ C2

R

s0

qg
_ U2

cr ¼ C2
R

s0c

qg
ð5:45Þ

where Ucr is the average threshold velocity.
Barekyan (1962) proposed bed-load transport equation using average flow

velocity as

qb ¼ 0:187qsg
qS0

D
U

Ucr

� 1

� �
ð5:46Þ

272 5 Bed-Load Transport



Based on the stream power concept, Dou (1964) established an empirical
equation of bed-load transport for sand as

gb ¼ 0:01
s

D
s0ðU � UcrÞ

U

ws

ð5:47Þ

5.6 Bedform Concept for Bed-Load Transport

Bedforms are discussed comprehensively in Chap. 8. Note that the bed load is the
mode of sediment transport in lower flow regime when the bed is covered by
ripples and/or dunes. The particles transport up the face of the mild slope of the
ridge of a bedform and then drop down the steep slope being deposited on
the downstream face and in the trough. As a result of sediment removal from the
upstream and deposition on the downstream slope, the bedforms move down-
stream (Fig. 5.5). The bed-load transport can therefore be calculated directly from
the movement of the bedforms. The continuity equation of sediment transport
resulting in a change of bed level was given by Exner (1925) as

ð1� q0Þ
og
ot
þ oqb

ox
¼ 0 ð5:48Þ

where g is the elevation of the sand-bed with respect to a horizontal reference, t is
the time, x is the horizontal distance from a reference point, and q0 is the porosity
of sediment.

Assuming that the bedforms migrate with a velocity of Ub being independent of
time, the following transformation can be used:

n ¼ x� Ubt ð5:49Þ

By using Eq. (5.49), Eq. (5.48) yields

ð1� q0Þ
og
on
� on
ot
þ oqb

on
� on
ox
¼ 0 ) �ð1� q0ÞUb

og
on
þ oqb

on
¼ 0 ð5:50Þ

Integrating Eq. (5.50) yields

qb ¼ ð1� q0ÞUbgþ A ð5:51Þ

Assuming that the simplified bedforms are triangular shaped with an average
height or pick-to-pick amplitude of am and noting that the constant of integration
A = 0 for the initial boundary condition, Eq. (5.51) becomes

qb ¼ ð1� q0ÞUb

am

2
ð5:52Þ

The above equation can be used to determine the bed-load transport rate from
the information of the bedform migration velocity and its height.
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5.7 Probabilistic Concept for Bed-Load Transport

5.7.1 Einstein’s Approach

Einstein (1942, 1950) was the pioneer to develop a bed-load transport model based
on the probabilistic concept. Primarily, he had two fundamental considerations that
departed from the then earlier concepts. Firstly, the threshold criterion was avoi-
ded, as it is always a difficult proposition to define, if not impossible. Secondly, the
transport of sediment particles was related to the velocity fluctuations instead of
the time-averaged velocity. As a result of which, the beginning and the ceasing
of sediment motion are expressed with probabilistic concept that relates to the ratio
of submerged weight of the particle to instantaneous hydrodynamic lift induced to
the particle. Some of the key issues toward the bed-load transport of sediment
particles, as experimentally observed by Einstein, are as follows:

• A rigorous, but steady, exchange of sediment particles is prevalent between the
bed surface and mobile bed-load layer.

• The particles travel along the bed in a series of quick steps. A particle does not,
however, remain in motion continuously, but temporarily deposited on the bed
after some steps with comparatively long intermediate resting periods.

• The average step, which is always the same and about 100 times the particle
diameter, is simply proportional to the particle diameter and independent of the
hydraulic condition and the transport rate.

• The transport rate is dependent on the average time period between two steps
and the thickness of the mobile bed-load layer.

Einstein’s (1942, 1950) bed-load transport model was based on the aforemen-
tioned aspects. He first presented an empirical relationship in 1942, which was
then replaced by a semitheoretical approach in 1950.

Dynamic equilibrium during the bed-load transport is established by
exchanging the particles from the bed within the bed-load transport layer. Thus,

Sediment removal

z

q
b 

Sediment 
deposition

Ub 
η(x) 

am 

x

Fig. 5.5 Bed-load transport with migration of bedforms
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the conservation of sediment mass is maintained balancing the number of particles
removal (washed out by the flow) per unit time and area by those deposited (put
down by the flow) per unit time and area.

Rate of deposition: The average traveling distance Lx of a particle is defined
by the distance that a particle travels from its starting point until it is deposited
on the bed. The single step length of a particle having diameter d can be
expressed as ksd and for spherical particles, ks = 100. As a particle travels a step
by a brief jump (Fig. 5.6), it goes down on the bed at a location where a local
lift force exceeds the submerged weight of the particle. Thus, the particle does
not stop moving but travels for a second step and so on until it is temporarily
deposited on the bed with comparatively long intermediate resting periods. In
this way, the sediment particles passing a section (across the flow) per unit time
deposit within a length of the channel that is equal to Lx, regardless from where
they have started to move. If gb represents the bed-load transport rate in dry
weight and ibs is the fraction of bed load to be deposited of a given sediment size
d, then the rate at which the particles of a size d are deposited per unit time and
width is gbibs. Therefore, the number of particles Nd deposited per unit time and
area is given by

Nd ¼
gbibs

Lxðqsgk1d3Þ ð5:53Þ

where k1 is the factor related to particle volume. The term within the parenthesis in
the denominator defines the weight of a particle.

If p is the probability of lift force to exceed the submerged weight of the
particles, then n(1 - p) particles deposit on the bed after traveling a step length,
where n is the number of particles in motion. Thus, only np particles continue to
move. Subsequently, the np(1 - p) more particles deposit and only np2 particles
remain in motion after traveling the second step length, and so on. In this way, all
n particles deposit on the bed after elapsing some time. The average traveling
distance1 can therefore be determined as

Lx ¼
X1
n¼0

ð1� pÞpnðnþ 1Þksd ¼
ksd

1� p
ð5:54Þ

1 The probability of a particle performing (n + 1) number of jumps is (1 - p)pn(n + 1). Then,

X1
n¼0

ð1� pÞpnðnþ 1Þ ¼ 1þ pþ p2 þ p3 þþ pn ¼ ð1� pÞ�1:

5.7 Probabilistic Concept for Bed-Load Transport 275



Using Eq. (5.54) into Eq. (5.53), the number of particles deposited per unit time
and area becomes

Nd ¼
gbibsð1� pÞ
ksqsgk1d4

ð5:55Þ

Rate of removal: Depending on the availability of the particles and the flow
conditions, a particle of a given size d is removed. If the fraction of sediment of a
given size d to be removed is ibr, then the number of such particles per unit area
can be given by ibr/(k2d2); where k2 is the factor related to the projected area of the
particle. If p is the probability of a particle to begin to move at any location, then
p/te is the probability of removal per unit time. Here, te is the time consumed by
each exchange. Therefore, the number of particles removed Nr per unit time and
area is given by

Nr ¼
ibr

k2d2
� p

te
ð5:56Þ

The exchange time te or the time for a particle to remove is assumed to be
proportional to the time for a particle to fall a height of one diameter with a
terminal velocity ws in a still water. Thus, it is

te	
d

ws

¼ k3
d

Dg

� �0:5

ð5:57Þ

where k3 is a constant for time scale. Using Eq. (5.57) into Eq. (5.56), the number
of particles removed per unit time and area is

Nr ¼
ibr

k2d2
� p

k3

Dg

d

� �0:5

ð5:58Þ

Equilibrium of bed-load transport: Sediment transport is in equilibrium if the
rate of sediment deposition on the bed is balanced by the rate of sediment removal

Flow direction

1 

λsd λsd λsd λsd 

Fig. 5.6 Sketch of a particle traveling along the bed in a series of steps
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from the bed. Thus, equating Eqs. (5.55) and (5.58), the equation of dynamic
equilibrium is obtained as

Nd ¼ Nr )
gbibsð1� pÞ
ksqsgk1d4

¼ ibr

k2d2
� p

k3

Dg

d

� �0:5

ð5:59Þ

The bed-load transport equation is therefore obtained from Eq. (5.59) as

p

1� p
¼ A�

ibs

ibr

� �
Ub ¼ A�Ub� ^ A� ¼

k2k3

ksk1
_ Ub� ¼

ibs

ibr

� �
Ub ð5:60Þ

The parameter Ub* is called bed-load transport intensity, and the probability
p of rate of sediment removal is given by

p ¼ A�Ub�
1þ A�Ub�

ð5:61Þ

Probability determination: The probability p of a sediment particle removal is a
function of the ratio of submerged weight FG of the particle to instantaneous
hydrodynamic lift FL induced to the particle. The condition of removal is therefore
p(FG/FL) \ 1. It can therefore be expressed as

p ¼ p
FG

FL

� �
¼ p

Dgk1d

CLk2u2
d0
=2

 !
^ FG ¼ Dqgk1d3 _ FL ¼ CL

q
2

k2d2u2
d0

ð5:62Þ

where CL is the lift coefficient and ud0 is the effective instantaneous flow velocity at
the edge of the viscous sublayer. Einstein and El-Samni (1949) observed that for
uniform sediment particles, if the flow velocity at an elevation z = 0.35X is taken
as the effective flow velocity ud0, the distribution of lift force fluctuations follows
the Gaussian distribution with a standard deviation equaling half of the mean value
and the lift coefficient as CL = 0.178 (a constant value). Here, X is the charac-
teristic size of the bed sediment particles. The random function parameter
gt(t) represents the lift force fluctuations with time t being distributed according to
the normal error law, where the standard deviation g0 is a universal constant
having a value g0 = 0.5. Using a nondimensional number g* that represents the lift
force fluctuations, it can be written as gt = g0g*.

The effective instantaneous flow velocity ud0 is expressed as

ud0

u0�
¼ 1

j
ln

0:35X

Dk=30:2

� �
^

X
Dk

d0
� 1:8

� �
¼ 0:77Dk

X
Dk

d0
\1:8

� �
¼ 1:39d0

ð5:63Þ
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where j is the von Kármán constant, Dk is the apparent roughness (= ks/xk), xk is
a correction factor, u0� is the shear velocity due to particle roughness, that is

ðgR0bS0Þ0:5, R0b is the hydraulic radius due to particle roughness, and d0 is the
viscous sublayer thickness ð¼ 11:6t=u0�Þ. Einstein (1950) considered Nikuradse’s
equivalent sand roughness as ks = d65. The correction factor xk can be obtained
from the curve given by Einstein (1950) (Fig. 5.7), and thus, apparent roughness
Dk (= ks/xk) can be determined.

Hence, the lift force can be expressed as

FL ¼ ð1þ g0g�Þ0:178
q
2

k2d2 1
j2

gR0bS0 ln2 10:6X

Dk

� �
ð5:64Þ

The probability p of sediment removal is expressed as the probability of the
ratio of the submerged weight FG to the instantaneous lift FL. The ratio has to be
smaller than unity, that is

1 [
FG

FL

¼ 1
1þ g0g�

� Dd

R0bS0
� 2k1j2

0:178k2
� 1

b2
x

^ bx ¼ ln
10:6X

Dk

� �
ð5:65Þ

Using symbols, Eq. (5.65) can be reduced to

1 [
1

1þ g0g�
�W
0
bB

b2
x

^ W0b ¼
Dd

R0bS0
_ B ¼ 2k1j2

0:178 k2
ð5:66Þ

In the above, W0b is known as flow intensity parameter due to particle roughness,
which is reciprocal of the Shields parameter.

Einstein (1950) proposed two correction factors n and Y termed hiding factor
and lift correction factor, respectively, which were determined experimentally
(Figs. 5.8 and 5.9). Particles in the sediment mass smaller than X likely to hide
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Fig. 5.7 Variation of
correction factor xk with ks/d0,
where Nikuradse’s equivalent
sand roughness ks = d65
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between larger ones or within the viscous sublayer, as such the lift experienced by
the smaller particles is to be corrected by a factor n-1. Einstein gave a curve for the
hiding factor n as a function of d/X (see Fig. 5.8). The lift correction factor Y takes
care of the change of lift coefficient in the sediment mass due to different
roughness and is expressed as a function of ks/d0 (see Fig. 5.9).

The fluctuations of lift force are caused by the velocity fluctuations. The lift
force is always positive regardless of the velocity fluctuations to be positive or
negative. Thus, the inequality for the lift force can be modified as

g� þ
1
g0

����
����[ B�Wb� ^ B� ¼

B

g0 ln2ð10:6Þ
_ Wb� ¼ W0bnY

ln2ð10:6Þ
b2

x

ð5:67Þ
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Fig. 5.9 Variation of lift
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Therefore, the threshold condition for the bed particle motion is as follows:2

g� ¼ 
B�Wb� �
1
g0

ð5:68Þ

It implies that between these two values of g*, no sediment transport takes
place. Therefore, the probability p of sediment motion, as the lift force fluctuations
follow Gaussian distribution, is

p ¼ 1� 1
p0:5

ZB�Wb��g�1
0

�B�Wb��g�1
0

expð�t2Þdt ð5:69Þ

Using Eq. (5.69) into Eq. (5.60), Einstein’s bed-load transport equation is

Ub� ¼
1

A�
�

1� 1
p0:5

ZB�Wb��g�1
0

�B�Wb��g�1
0

expð�t2Þdt

1
p0:5

ZB�Wb��g�1
0

�B�Wb��g�1
0

expð�t2Þdt

ð5:70Þ

Einstein experimentally obtained the values of the constants that are g0 = 0.5,
A* = 43.5 and B* = 1/7. The variation of Wb* with Ub* from Eq. (5.70) is shown
in Fig. 5.10.3 The Wb*(Ub*) curve matches well with the experimental data of
Gilbert (1914), Meyer-Peter et al. (1934) and Chien and Wan (1999).

5.7.2 Empirical Refinement of Einstein Formula

Brown (1950) refined the Einstein formula by curve fitting and showed that the
majority of flume data of Gilbert and Meyer-Peter et al. could be expressed by the
following relationships:

2 To minimize the errors, the standard deviation of lift force fluctuations given by Eq. (5.68)
should be small, then B* ? ? as g0 ? ?. Hence,

�B�Wb� �
1
g0
¼ �1 and B�Wb� �

1
g0
6¼ 0

3 The use of Einstein’s Wb*(Ub*) curve as shown in Fig. 5.10 is as follows:
Step 1: From the given bed sediment and flow conditions, compute Wb* from Eq. (5.67). Then,

the correction factors n and Y can be obtained from Figs. 5.8 and 5.9, respectively. The other
parameters required to be computed are B* from Eq. (5.67), Dk = ks/xk, xk from Fig. 5.7,
u0� ¼ ðgR0bS0Þ0:5, d0 ¼ 11:6t=u0�, and Wb and B from Eq. (5.66).

Step 2: From Fig. 5.10, determine Ub* for the computed Wb*. Thus, qb or gb can be obtained
from Eq. (5.2).
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Ubð1:92\Wb� 5:56Þ ¼ 40Kf

1

W3
b

^ Kf ¼
2
3
þ 36t2

Dgd3

� �0:5

� 36t2

Dgd3

� �0:5

ð5:71aÞ

UbðWb [ 5:56Þ ¼ 2:15Kf expð�0:391WbÞ ð5:71bÞ

For the sediment transport at higher Shields parameter (Wb B 1.92), Julien
(1998) suggested

UbðWb� 1:92Þ ¼ 15Kf

1

W1:5
b

ð5:72Þ

In the above equations, the parameter Kf that appears in Rubey (1933) formula
for terminal fall velocity was introduced by Brown to account for the effects of fall
velocity of the sediment particles.

5.7.3 Modified Einstein’s Approach

The derivation of Einstein’s bed-load formula involves some oversimplified
assumptions concerning the step length of a particle, exchange time, and proba-
bility of particle removal. Later, Wang et al. (2008) proposed a modification of the
Einstein formula.

They argued that conceptually, the step length of a particle increases with the
magnitude of the lift force exerted by the flow, but decreases with the submerged
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Fig. 5.10 Variations of Wb* with Ub* obtained from the models of Einstein (1950) and Wang
et al. (2008)
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weight of the particle. The step length can thus be given by ksd/Wb. The rate of
particle deposition gdep per unit area is obtained as

gdep ¼
gb

Lx
¼ gb

ksd
ð1� pÞWb ^ Lx ¼

ksd

ð1� pÞWb

ð5:73Þ

The number of particles per unit area can be estimated as 1/(k2d2), and their
total weight is k1qsgd3/(k2d2). If p is the probability of a particle to begin to move,
sediment with a total weight of (k1/k2)qsgdp is removed from the bed per unit time
and area.

Based on the finding by Hu and Hui (1996) that the upward velocity of a
particle is approximated by a linear relationship of shear velocity u*, the time for a
particle to be removed from the bed is inversely proportional to u*. Wang et al.,
therefore, suggested that the exchange time te can be expressed as

te	
d

u�
¼ k3

d

u�
ð5:74Þ

The rate of particle removal grem per unit area is obtained as

grem ¼
1
te

� k1

k2
qsgdp ¼ k1

k2k3
qsgpu� ð5:75Þ

Equilibrium is reached when the rate of sediment removal from the bed equals
the rate of deposition on the bed. Equating Eqs. (5.73) and (5.75) yields

p ¼ A�Ub

W�1:5
b þ A�Ub

^ A� ¼
k2k3

ksk1
ð5:76Þ

Wang et al. assumed that a particle is removed only if the lift force exceeds the
submerged weight of the particle, that is

1þ g0g�[ B0Wb ð5:77Þ

where B0 is the coefficient. The probability p of particle removal is given by

p ¼ 1
p0:5

Z1

ðB0Wb�1Þ=g0

expð�t2Þdt ð5:78Þ

Combining Eqs. (5.76) and (5.78) and introducing nonuniformity of sediments,
the following relationship is obtained
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1
p0:5

Z1

ðB0Wb�1Þ=g0

expð�t2Þdt ¼ A�Ub�

W�1:5
b þ A�Ub�

^ Ub� ¼
ibs

ibr

� �
Ub ð5:79Þ

Based on the measured data used by Einstein (1950), the values of the constants
were determined as B0/g0 = 0.07, g0 = 0.5 and A* = 20. The variation of Wb (read
Wb* as Wb) with Ub* obtained from Eq. (5.79) is shown in Fig. 5.10. The Wb(Ub*)
curve departs to some extent from the experimental data plots of Gilbert (1914),
Meyer-Peter et al. (1934) and Chien and Wan (1999), and the curve of Einstein
(1950).

5.7.4 Engelund and Fredsøe’s Approach

Engelund and Fredsøe (1976) developed a bed-load transport model for the flow
conditions close to the threshold of sediment motion. In this type of flow, the
superficial bed particles are only transported. The model is based on the concept of
Fernandez Luque and van Beek (1976), who hypothesized that the transported bed
particles are to reduce the maximum fluid bed shear stress to its threshold value for
the bed particle motion by exerting an average reaction force on the ambient fluid.

If the particles are transported with a mean velocity �ub, when they are in
motion, the hydrodynamic drag force FD acting on a transported particle is given
by

FD ¼
1
2
qCD

p
4

d2ðau� � �ubÞ2 ð5:80Þ

where CD is the drag coefficient and au* is the flow velocity at the bed particle
level. If the particle is at a distance of one to two particle diameters above the
mean bed level, then a = 6–10.

The stabilizing resistance FR on the moving particle is

FR ¼ Dqg
p
6

d3ld ð5:81Þ

where ld is the dynamic coefficient of friction for the bed particles.
At dynamic equilibrium, the hydrodynamic drag force is balanced by the sta-

bilizing resistance (FD = FR). Thus, equating Eqs. (5.80) and (5.81) and then
simplifying yield

�ub

u�
¼ a 1� H0c

H

� �0:5
" #

^ H0c ¼
4ld

3a2CD

ð5:82Þ
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where H0c is the threshold Shields parameter for a particle protruding from the bed
surface. In fact, H0c differs from Hc, which is the conventional threshold Shields
parameter for the initiation of particle motion in a compactly arranged bed. As a
particle lying on the bed is easier to move than a particle within the bed, it implies
that Hc [H0c. From the experimental data, Fernandez Luque and van Beek
(1976) found H0c = 0.5Hc. Thus, Eq. (5.82) becomes

�ub

u�
¼ a 1� 0:7

Hc

H

� �0:5
" #

ð5:83Þ

For a sandy bed, a & 9.3. Engelund and Fredsøe treated sediment particles as
spheres of diameter d, so that the number of spherical particles per unit area of bed
surface is approximately 1/d2. For a given flow intensity, the probability of the
particles on the bed surface to move is p. Hence, the bed-load transport rate gb is

gb ¼
p
6

d3qsg
p

d2
�ub ð5:84Þ

Using Eq. (5.83) into Eq. (5.84) yields

gb ¼ 9:3
p
6

dqsgp 1� 0:7
Hc

H

� �0:5
" #

u� ð5:85Þ

According to Bagnold, the applied bed shear stress s0 by the flow is composed
of dispersive particle bed shear stress s0b and interfacial (intergranular) fluid bed
shear stress s0f. Furthermore, he suggested that during bed-load transport, the
interfacial fluid bed shear stress s0f equals the threshold bed shear stress s0c for the
initiation of particle motion. This phenomenon is further discussed in the fol-
lowing section using a shear stress diagram. The estimation of probability p of
surface bed particle removal is based on the assumption that only s0c of the applied
bed shear stress s0 by the flow is transmitted directly to the immobile-bed particles
as a skin frictional stress; whereas the residual fluid bed shear stress (s0 - s0c) is
directly transmitted to the mobile particles as a drag induced bed shear s0b

(= nFD) and indirectly transmitted to the bed by intermittent surface creep. Hence,

s0 ¼ s0c þ nFD ð5:86Þ

where n is the number of particles moving per unit area of bed surface. As
FD = FR, inserting Eq. (5.81) into Eq. (5.86) leads to an estimation of p as

H ¼ Hc þ
p
6

ldðnd2Þ ¼ Hc þ
p
6

ldp ) p ¼ 6
pld

ðH�HcÞ ^ p ¼ nd2

ð5:87Þ
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Using Eq. (5.87) into Eq. (5.85), the bed-load transport rate, expressed as bed-
load transport intensity Ub, is obtained as follows:

Ub ¼
9:3
ld

ðH�HcÞðH0:5 � 0:7H0:5
c Þ ð5:88Þ

For an intense bed-load transport rate H � Hc, Eq. (5.88) can be approximated
as Ub = 9.3H1.5/ld.

5.8 Deterministic Concept for Bed-Load Transport

5.8.1 Bagnold’s Approach

Bagnold (1954) identified the limitation in Einstein’s approach by revealing an
inconsistency toward the stability criterion of the bed during bed-load transport.
Let it be discussed with an ideal example of the flow over a plane bed formed by
uniform spherical sediment particles. This situation of a streambed leads to an
equal exposure of all the bed particles to the flow; and hence, the stochastic
variations due to turbulence can be ignored. When the applied bed shear stress
exceeds its threshold value for the particle motion, all particles in the uppermost
layer are in motion simultaneously and removed by the flow. As a result, the next
layer of particles comes in contact with the flow and is subsequently also removed
and so on. In this way, all the subsequent underlying layers of particles are
removed and equilibrium toward a stable bed never exits as long as the bed shear
stress exceeds the threshold value. Bagnold, however, argued this inconsistency by
decomposing the applied shear stress s by the flow into the dispersive particle
shear stress sb that is the shear stress transmitted due to exchange of momentum
for the collision of moving particles and the interfacial fluid shear stress sf that is
the shear stress transmitted by the interfacial fluid (Fig. 5.11). The background of
the idea was that the sediment-laden flows are a result of shear that includes shear
between the layers of the particles and that between the sediment and the sur-
rounding fluid. An applied bed shear stress s0 induced by the fluid tractive force
that acts in the streamwise direction to sustain such a shear is developed by the
gravity in the streamwise direction (Fig. 5.11).

The bed shear stress decomposition is therefore

s0 ¼ s0b þ s0f ð5:89Þ

Bagnold further argued that with the removal of a layer of particles, a dispersive
pressure on the subsequent layer of particles is developed as a stabilizing force.
The number of layers to be removed is governed by the interfacial fluid bed shear
stress s0f until it equals the threshold bed shear stress s0c that acts on the first
immobile layer. The applied bed shear stress s0 induced by the fluid tractive force
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is therefore greater than the threshold bed shear stress s0c. Hence, the s0 is partially
transmitted to the moving particle as s0b and rest to the immobile bed as s0c.

Bagnold (1956) assumed that the saltation is the primary mode of bed-load
transport. The momentum component in the streamwise direction when a saltating
particle drops down to the bed is mGu1. Here, mG is the submerged mass of the
particle, and u1 is the velocity component of the particle in the streamwise
direction when it collides with the bed. The particle at the same time is acted on by
a force from the bed particles producing a momentum component mG(–u0)
opposite to the streamwise direction. Here, –u0 is the reduction of particle velocity
component in the streamwise direction due to collision with the bed particles. To
maintain the saltation of a particle, the flowing fluid therefore must act on the
particle to provide a momentum component mGu0 in the time interval Dt between
successive collisions of the saltating particle with the bed particles.

Therefore, the fluid flow exerts a force on the particle with a component in the
streamwise direction as

Fx ¼
mGu0

Dt
¼ FGu0

gDt
ð5:90Þ

If �ub is the average velocity of the particle, then the work done per unit time by
the flowing fluid on the particle is Fx�ub. Also, the energy consumed per unit time
by the flow is FG�ub tan/d; where /d is the dynamic frictional angle. Equating them
and using Eq. (5.90) yield

x

Flow
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τ

τ

f

τ0b τ0f 
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Fig. 5.11 Decomposition of applied shear stress into dispersive particle shear stress and
interfacial fluid shear stress
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Fx

FG

¼ tan /d ¼
u0

gDt
ð5:91Þ

The vertical distance zn is the location at which the particle is acted upon by a
force Fx to accelerate the particle from u1 - u0 to u0. If the flow velocity at zn is
�un, then the urð¼ �un � �ubÞ exists at an elevation z = zn. As a number of particles
are in motion along the bed during bed-load transport, then

sbn�ub ¼ FG�ub tan /d ¼ gbs tan /d ð5:92Þ

where sbn is the shear stress for maintaining sediment motion at z = zn. So, the
bed-load transport rate gbs (in submerged weight per unit time and width) is

gbs ¼
sbn

tan /d

ð�un � urÞ ð5:93Þ

Using a coefficient a, the shear stress sbn is given by

sbn ¼ as0 ð5:94Þ

The flow velocity is considered to follow the logarithmic law in the flow region
z C zn, and the velocity at z = 0.4h is considered to be equal to the depth-averaged
flow velocity U. Then,

�un ¼ U � u�
j

ln
0:4h

zn

ð5:95Þ

Using Eqs. (5.94) and (5.95) into Eq. (5.93) yields

gbs ¼
as0

tan /d

U � u�
j

ln
0:4h

zn

� �
� ur

� �
ð5:96Þ

Determination of a: Bagnold argued a = 0 at the threshold condition and
a ? 1 for the high flow velocity corresponding to intense bed-load transport. It is
thus given by

a ¼ u� � u�c
u�

ð5:97Þ

Determination of ur: The hydrodynamic drag force exerted by the flow on a
particle is balanced by the bed resistance. It can be expressed as

Fx ¼
1
2

CDx
p
4

d2qu2
r ¼ FG tan /d ð5:98Þ
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where CDx is the drag coefficient for the drag force acting in the streamwise
direction.

When a particle falls with a terminal fall velocity ws in a still fluid, the drag
force FDz acting on the particle is balanced by the submerged weight FG of the
particle. Then,

FDz ¼
1
2

CDz
p
4

d2qw2
s ¼ FG ð5:99Þ

where CDz is the drag coefficient for a settling particle. From Eqs. (5.98) and
(5.99), the following relationship is obtained:

ur ¼ ws

CDz tan /d

CDx

� �0:5

ð5:100Þ

It was found from the measured data that CDx & CDz and tan0.5/d & 1.
Therefore, Eq. (5.100) becomes

ur ¼ ws ð5:101Þ

Determination of zn: In the absence of any bedforms, the average elevation of
the saltating particles is proportional to their diameter. Thus,

zn ¼ m1d ^ m1 ¼ K1
u�
u�c

� �0:6

ð5:102Þ

where K1 is a coefficient. In laboratory experiments, K1 = 0.4 was found by
Francis (1973); but in rivers, it becomes 2.8 for sands and 7.3–9.1 for gravels
(Bagnold 1977).

Equation of bed-load transport rate: Using Eqs. (5.97), (5.101) and (5.102) into
Eq. (5.96), the equation of bed-load transport rate obtained by Bagnold in terms of
submerged weight is given by

gbs ¼
u� � u�c

u�
� s0U

tan /d

1� 1
j

u�
U

� �
ln

0:4h

m1d

� �
� ws

U

� �� �
ð5:103Þ

Later, Bagnold (1966) simplified the analysis introducing an efficiency factor eb

for the bed-load transport. He balanced the available fraction of flow energy per
unit time and area (that is the stream power) s0Ueb with the work done required to
move the bed-load particles FG�ubtan/dð¼ gbstan/dÞ. Thus, equation of bed-load
transport rate is

gbs ¼
s0U

tan /d

eb ^ gb ¼
s

D
gbs ) gb ¼

s0Us

D tan /d

eb ð5:104Þ
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The variation of bed-load transport efficiency eb with U for different particle
sizes d given by Bagnold is shown in Fig. 5.12. The prediction of eb is possible for
d = 0.01–1 mm.

5.8.2 Yalin’s Approach

Yalin (1977) proposed a bed-load transport model based on the analysis of forces
acting on a sediment particle. The equations of force acting on a moving sediment
particle in the streamwise and normal directions are

Fx ¼ mG

dub

dt
ð5:105aÞ

�Fz � FG ¼ mG

dwb

dt
ð5:105bÞ

where Fx and Fz are the force components of flow acting on a particle in the
streamwise and normal directions, respectively, and ub and wb are the velocity
components of a sediment particle in the streamwise and normal directions,
respectively. The force components Fx and Fz are given by

Fx ¼
p
8

CDxqd2ðud � ubÞ2 ð5:106aÞ

Fz ¼
p
8

CDzqd2w2
b ð5:106bÞ

where ud is the instantaneous streamwise flow velocity at the particle level.
A particle detaches from the bed by the action of hydrodynamic lift force FL.

The difference FL - FG [ 0 near the bed reduces with distance from the bed and
becomes FL - FG = 0 at an elevation where the particle reaches its maximum
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Fig. 5.12 Variation of bed-
load transport efficiency eb

with U for different particle
sizes d
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vertical velocity component [wb]max. The [wb]max can be determined from the
following equation:

�Fz � FG þ FL ¼ mG

dwb

dt
ð5:107Þ

Equation (5.107) represents the initial condition of Eq. (5.105b). To solve these
equations, Yalin made the assumptions: (1) The FL/FG ratio decreases with z/d
according to the exponential law, that is FL/FG * exp(–z/d), (2) the drag coeffi-
cients CDx and CDz are constants, and (3) the nondimensional flow velocity
u/u* in the vicinity of the bed is constant.

As a result, he obtained an expression for ub and then its average value �ub over
the time when the particle is in motion. It is given by

�ub ¼ u�C1 1� Hc

a1ðH�HcÞ
ln 1þ a1

H
Hc

� 1

� �� �	 

ð5:108Þ

where a1 ¼ 2:45H0:5
c =s0:4 and C1 is a constant to be determined. He determined the

submerged weight of the bed-load transport per unit area Ws from the dimensional
analysis. It follows

Ws

Dqgd
¼ f1ðH;R�dÞ ð5:109Þ

where H = RbS0/(Dd), Rb is the hydraulic radius, and R*d = u*d/t. Equation
(5.109) can be rewritten as

Ws

Dqgd
¼ f2 H;

Dgd3

t2

� �
^ R�d ¼

Dgd3

t2
H

� �0:5

ð5:110Þ

At the threshold of particle motion, H(Ws = 0) = Hc, and thus

f2 Hc;
Dgd3

t2

� �
¼ 0 ð5:111Þ

Equations (5.110) and (5.111) are combined to

Ws

Dqgd
¼ f2ðH;HcÞ ð5:112Þ

Yalin assumed that the left-hand side of Eq. (5.112) is linearly proportional to
nondimensional excess bed shear stress. Hence,
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Ws

Dqgd
¼ C2

H
Hc

� 1

� �
ð5:113Þ

where C2 is a constant to be determined.
Substituting Eqs. (5.108) and (5.113) into Eqs. (5.105a, b) and determining the

constants from the measured data, the bed-load transport rate gb in weight per unit
time and width is given by gb ¼ ðs=DÞgbs ¼ ðs=DÞWs�ub. Thus, the bed-load
equation of Yalin is

gb ¼ 0:635qsgdu�
H
Hc

� 1

� �
1� Hc

a1ðH�HcÞ
ln 1þ a1

H
Hc

� 1

� �� �	 

ð5:114Þ

Equation (5.114) can be expressed in nondimensional form as

Ub ¼ 0:635H0:5 H
Hc

� 1

� �
1� Hc

a1ðH�HcÞ
ln 1þ a1

H
Hc

� 1

� �� �	 

ð5:115Þ

For initiation of bed-load transport, H ? Hc and a1[(H/Hc) – 1] & 0. Hence,
one can write

Hc

a1ðH�HcÞ
ln 1þ a1

H
Hc

� 1

� �� �
� 1� 1

2
� a1

H
Hc

� 1

� �
ð5:116Þ

The bed-load transport rate equation, Eq. (5.115), becomes

Ub ¼ 0:635a1
H0:5

2
H
Hc

� 1

� �2

ð5:117Þ

For high intensity bed-load transport rate, H � Hc and (H - Hc) ? ?.
Hence, it is given by

Hc

H�Hc

! 0 ð5:118Þ

The bed-load transport rate equation, Eq. (5.115), then becomes

Ub ¼ 0:635H0:5 H
Hc

� 1

� �
ð5:119Þ
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5.9 Equal Mobility Concept for Bed-Load Transport

Parker et al. (1982) developed a concept of equal mobility assuming that the bed-
load transport of gravels can be accomplished through mobility of the particles
exposed to the flow. The participation of the underneath particles in bed-load
transport can only be possible up to the extent of the degradations that can result in
an exposure of those particles to the flow. They referred coarser surface layer with
bed-load transport as pavement; however, it is different from an armor layer. In
this concept, the particle size distribution of bed load is approximated by that of
underneath particles for all flows capable of mobilizing the majority of available
gravel sizes.

Based on the equal mobility concept, Parker et al. (1982) developed a func-
tional relationship between a bed-load transport function Uþbi and a bed shear stress
parameter Hþi for a gravel size of di. The Uþbi and Hþi are given by

Uþbi ¼
Dgbi

piðghS0Þ0:5hS0

ð5:120aÞ

Hþi ¼
hS0

Ddisþ0i

ð5:120bÞ

where gbi is the bed-load transport rate per unit width for the fractional particle
size di, pi is the fraction by weight of size di, and sþ0i ¼ 0:0875 d50=dið Þ.

Due to equal mobility of all sizes, a specific particle size, termed subpavement
size and denoted by d50, is used to characterize the bed-load transport. Based on
the field data of gravel-bed streams with sizes from 18 to 28 mm, Parker et al.
(1982) proposed

Uþb ð0:95\Hþ50\1:65Þ ¼ 2:5� 10�3 exp½14:2ðHþ50 � 1Þ � 9:28ðHþ50 � 1Þ2
ð5:121aÞ

Uþb ¼ 11:2 1� 0:822

Hþ50

� �4:5

ð5:121bÞ

where Hþ50 is the bed shear stress parameter defined in Eq. (5.120b) corresponding
to subpavement size d50.

5.10 Sediment Pickup Function

Pickup rate, defined as volume rate of sediment removal per unit area, was studied
by different investigators. Although the mode of bed-load transport according to
the concept of pickup is not clear, there are three concepts of sediment pickup. As
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already discussed, Einstein (1950) hypothesized that after a period of rest, a
sediment particle can only be picked up. The period of rest is longer than that of
pickup. In his hypothesis, the total distance between two successive periods of rest
can be traveled by a particle by performing several brief jumps. A particle covers
an average step length of 100d by performing a jump. However, the pickup def-
inition of Yalin (1977) is different from that of Einstein. Yalin hypothesized that a
particle can be picked up when it detaches the bed surface to perform a jump. It
implies that a jump by a particle involves a pickup and then deposition. According
to de Ruiter (1982, 1983), the period of pickup equals the time period required to
travel (from rest) by a particle over a distance of its half the diameter.

The approach of Einstein (1950) was stochastic. He assumed that a sediment
particle is lifted when the instantaneous lift having a Gaussian distribution exceeds
the submerged weight of the particle. His sediment pickup formula is

Up ¼ app ð5:122Þ

where ap is the coefficient and p is pickup or removal probability, that is the time
fraction during which a sediment particle is picked up by the flow, which has
already been discussed in Einstien’s approach.

Fernandez Luque (1974) used experimental data for 0.9 B d B 1.8 mm and
proposed

Upð0:05�H� 0:11Þ ¼ apðH�HcÞ1:5 ð5:123Þ

According to Yalin (1977), the period of pickup is proportional to the ratio of
the particle diameter to shear velocity. Using a stochastic approach, he obtained a
sediment pickup formula as

Up ¼ appH ð5:124Þ

Based on experimental data (3 B d B 13.5 mm), Nakagawa and Tsujimoto
(1980) suggested

Upð0:03�H� 0:2Þ ¼ ap 1� 0:035
H

� �3

H ð5:125Þ

They recommended ap = 0.02 for spherical particles.
According to de Ruiter (1982, 1983), the pickup time period was found to be

much smaller than that of instantaneous bed shear stress exceeding its threshold
value. Based on stochastic approach, he proposed

Up ¼ appp

r0

Dqgd
� tan /

Hc

� �0:5

ð5:126Þ
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where pp is the pickup probability function and r0 is the standard deviation of
instantaneous bed shear stress. The value of coefficient ap, recommended by de
Ruiter, is 0.016.

van Rijn (1984b) conducted experiments with different sand sizes
(0.13 B d B 1.5 mm) and proposed an empirical equation of pickup function as

Up ¼ 3:3� 10�4D0:3
�

H
Hc

� 1

� �1:5

ð5:127Þ

Dey and Debnath (2001) performed experiments with various uniform and
nonuniform sand sizes (0.24 B d B 1.55 mm). Considering the effects of sediment
nonuniformity, they proposed

Up ¼ 6� 10�4D0:24
�

H
Hc

� 1

� �
r1:9

g ð5:128Þ

where rg is the geometric standard deviation of particle size distribution.

5.11 Saltation

5.11.1 Characteristics of Saltation

When the bed shear stress just exceeds the threshold value for the initiation of
particle motion, the particles roll and/or slide in contact with the bed. As the bed
shear stress increases further, the particles move along the bed by a series of short
jumps with approximately same step lengths. This phenomenon is called saltation.
The saltation of a particle is governed by the hydrodynamic drag and lift forces
and also the bed roughness. Due to the gravity, the particle begins to descend and
returns to the bed when it is lifted by the hydrodynamic force to a certain height. In
this way, the particle undergoes a saltation process as shown in Fig. 5.13. Sub-
sequently, a new step of saltation may begin as a result of an impact against the
bed and the lift force. According to the laboratory experimental observations by
Francis (1973) and Abbott and Francis (1977), the characteristics of a saltating
particle are described as follows:

The particle transport in saltation mode is limited to a maximum height of about
ten times the particle diameter. The particle motion is dominated by the gravita-
tional force, although it can be set off by the impulses of velocity fluctuations
(near-bed turbulence agitations) during bursting events or by the effects of wall
shear flow that a particle experiences a shear lift due to the velocity gradient in the
vicinity of the bed. The hydrodynamic pressure and the viscous skin friction can
also be the sources to provide momentum to the particles. In the rising stage of
particle trajectory, the vertical component of the drag force and the gravitational
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force are together directed downwards; while in the falling stage of particle tra-
jectory, the vertical component of drag force being directed upwards opposes the
gravitational force. The lift force is always directed upwards provided the particle
velocity to lag behind the fluid velocity at the saltating particle.

It is observed that some particles move in the form of series of saltations. It
means that after the particles coming back to the bed performing a saltation, they
immediately perform next saltation without any pause on the bed. It is obvious that
the lift force is the main cause of lifting up the particles from the bed. However,
the effects of the bed impact force by no means can be neglected. As a saltating
particle strikes the bed particles, it may either ricochet off the bed particles or
impact against them. During the impact of the particles with the bed particles,
majority of the momentum, that they possess, is transferred to the bed particles in a
succession of horizontal impulses. It may cause to initiate a rolling motion of the
surface particles, termed surface creep. However, a saltating particle may cease
motion, if it falls within one of the local depressions on the bed surface.

5.11.2 Particle Trajectory and Characteristic Parameters
(van Rijn’s Approach)

The forces acting on a saltating particle, as shown in Fig. 5.13, were analyzed by
van Rijn (1984a). In fact, he analyzed the problem deterministically in the context
of estimation of bed-load transport rate. In Fig. 5.13, the forces are the submerged
weight of the particle FG acting downwards and the hydrodynamic force com-
ponents in the form of drag and lift. The direction of drag force FD is opposite to
the direction of the particle velocity vr relative to the fluid flow; whereas the lift
force is in the normal direction.

FL

0.25d
0.6d

FD

FG

vr

hs
0z

•

0x
•

bλ

Fig. 5.13 Schematic of a particle saltation
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Equations of motion: The trajectory of a saltating particle can be determined by
solving the equations of motion. Assuming a spherical saltating particle and the
forces due to fluid accelerations to be of a second order, the equations of motion,
according to White and Schultz (1977), can be written as

ma€x� FL

_z

vr

� �
� FD

�u� _x

vr

� �
¼ 0 ð5:129aÞ

ma€z� FL

�u� _x

vr

� �
þ FD

_z

vr

� �
þ FG ¼ 0 ð5:129bÞ

where ma is the particle mass plus added fluid mass, vr is the particle velocity

relative to the fluid flow, that is ½ð�u� _xÞ2 þ _z20:5, �u is the local time-averaged flow
velocity in x-direction, _x and _z are the streamwise and vertical velocities of par-
ticle, respectively, and €x and €z are the streamwise and vertical accelerations of
particle, respectively.

The added fluid mass or virtual mass is the inertia added to a system. An
accelerating or decelerating particle is to move some volume of surrounding fluid,
as it moves through it, since the particle and fluid cannot occupy the same physical
space simultaneously. For simplicity, this can be assumed as some volume of fluid
moving with the particle, though in reality all the fluid is accelerated to various
degrees. Therefore, the total mass of a spherical particle can be given by

ma ¼
1
6
ðqs þ amqÞpd3 ð5:130Þ

where am is the added mass coefficient. Assuming a potential flow, the added mass
of a sphere is obtained as the half of the fluid mass displaced by the sphere.
However, in real fluid flow, the flow is separated from the sphere and am may be
different from that for a potential flow. The value am = 0.5 was considered by van
Rijn.

The drag force FD, which is resulted from the pressure and the viscous skin
frictional effects, can be expressed as

FD ¼ CD

q
2

v2
r

p
4

d2 ð5:131Þ

The drag coefficient CD can be determined from the empirical expressions given
by Morsi and Alexander (1972).

The lift on a particle in the wall shear layer of flow is induced by two ways.
They are due to (1) velocity gradient in the shear layer and (2) spinning motion of
the particle as a Magnus effect. For a sphere moving in a viscous fluid flow,
Saffman (1968) determined the lift FLs due to shear as
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FLs ¼ CLqt0:5d2vr

o�u

oz

� �0:5

ð5:132Þ

The Magnus lift FLm due to spinning motion in a viscous fluid flow obtained by
Rubinow and Keller (1961) is given by

FLm ¼ CLqd3vrx ð5:133Þ

where x is the angular velocity of the particle. The total lift force FL is therefore

FL ¼ FLs þ FLm ð5:134Þ

The submerged weight of the spherical particle is given by Eq. (4.9). The
velocity distribution in the wall shear layer is assumed to follow the logarithmic
law given by Eq. (4.27), where the zero-velocity level can be considered as z0 =
0.11(t/u*) + 0.03ks.

Boundary conditions and solution scheme: The virtual bed level is assumed to be
at 0.25d below the top of the bed particles, as shown in Fig. 5.13. The initial position
of the particle lying on closely packed bed particles is 0.6d above the virtual bed
level. Here, d is the representative particle size, assumed to be d50. According to the
experimental observations by Francis (1973) and Abbott and Francis (1977),
_x ¼ _z ¼ 2u�. Equations (5.129a, b) were first transformed4 by van Rijn to a system of
ordinary simultaneous differential equations of the first order. Then, he solved them
by a numerical method known as automatic step-change differential equation solver.
The characteristic parameters of saltating particles were computed for the range
u* = 0.04–0.14 m s-1 and d50 = 0.1–2 mm. He assumed ks = 2d50 and calibrated
CL as CL(R*d B 5) = 1.6, CL(5 \ R*d \ 70) = 1.6–20 varying linearly, and
CL(R*d C 70) = 20.

Characteristic parameters of saltating particles: The saltation length kb and
height hs were first computed. Then, they are empirically correlated with the
nondimensional particle parameter D* [= d(Dg/t2)1/3] and the nondimensional
excess bed shear stress (H/Hc) – 1 as follows (van Rijn 1984a):

kb

d50
¼ 3D0:6

�
H
Hc

� 1

� �0:9

ð5:135aÞ

hs

d50
¼ 0:3D0:7

�
H
Hc

� 1

� �0:5

ð5:135bÞ

4 The procedure of transformation of second order differential equation to first order and the
numerical solution methodology of a system of ordinary simultaneous differential equations can
be found in Bose (2009).
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The above equations suggest that the saltation length and height increase with
an increase in particle parameter and excess bed shear stress, but independent of
flow depth. Experimental observations by Poreh et al. (1970) on saltation length
and Williams (1970) on saltation height confirmed that kb & 8d50 for
d50 = 1.35 mm and hs = 5–40d50 for d50 = 1.9 mm. The results obtained from
Eqs. (5.135a, b) are more or less in conformity with these experimental results.
Besides van Rijn’s Eqs. (5.135a, b), Table 5.1 furnishes the formulas of saltation
length kb and height hs proposed by different investigators. It is obvious that their
results are quite varying from one another.

For a saltating particle, van Rijn (1984a) computed the mean velocity �ub as a
function of nondimensional particle parameter and nondimensional bed shear
stress as

�ub

u�
¼ 9þ 2:6 log D� � 8

Hc

H

� �0:5

ð5:136Þ

Further, van Rijn (1984a) approximated Eq. (5.136) in a simpler form as

�ub

ðDgd50Þ0:5
¼ 1:5

H
Hc

� 1

� �0:6

ð5:137Þ

Besides Eqs. (5.136) and (5.137), Table 5.2 furnishes the formulas of mean
velocity �ub of a saltating particle given by different investigators.

Bed-load transport rate: van Rijn (1984a) defined the bed-load transport rate qb

as a product of the particle velocity �ub, the volumetric concentration C of trans-
ported particles, and the saltation height hs. It is therefore given by

Table 5.1 Formulas of saltation length kb and height hs proposed by different investigators

References Saltation length Saltation height

Fernandez Luque and van Beek
(1976)

kb/d50 = 16 –

Abbott and Francis (1977) kb = kb(H) hs = hs(d50, H)
Sekine and Kikkawa (1992) kb/d50 = 3000(u*/ws)

1.5

9 (u* - u*c)/u*

where u*c = threshold shear
velocity

–

Niño et al. (1994) kb/d50 = 2.3H/Hc hs = hs(d50, H/Hc)
Lee and Hsu (1994) kb/d50 = 196.3(H - Hc)

0.788 hs/d50 = 14.3(H
- Hc)

0.575

Hu and Hui (1996) kb/d50 = 27.5 s0.94H0.9 hs/d50 = 1.78 s0.86H0.69

Lajeunesse et al. (2010) kb/d50 = 70(u* - u*c)/ws –
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qb ¼ �ubChs ð5:138Þ

Note that if the saltation height hs is replaced by the thickness db of bed-load
transport layer, then Eq. (5.138) becomes Eq. (5.3). Analysis of the experimental
data by van Rijn (1981) showed that the bed-load concentration C (by volume) can
be represented by

C

C0
¼ 0:18

D�

H
Hc

� 1

� �
ð5:139Þ

where C0 is the maximum bed-load concentration. He determined C0 = 0.65. It is
interesting to note that the bed-load concentration C is inversely proportional to
the nondimensional particle parameter and directly proportional to the nondi-
mensional excess bed shear stress. Using Eqs. (5.135b), (5.137) and (5.139) into
Eq. (5.138), van Rijn (1984a) obtained a bed-load transport equation, which has
already been given as Eq. (5.26) as a du Boys type equation.

5.12 Fractional Bed Load of Nonuniform Sediments

Natural streams are typically made up of nonuniform sediment mixtures, whose
transport phenomenon is therefore of immense importance. Unlike the transport of
uniform sediment, the problems related to fractional nonuniform sediment trans-
port are rather complex, especially when the consideration is given to the shelter–
exposure interactions of bed particles of different sizes. Einstein (1950) was the
pioneer to develop fractional transport rate of nonuniform sediments. Since then,
Ashida and Michiue (1972), Parker et al. (1982), Patel and Ranga Raju (1996), Wu
et al. (2000), and some other investigators put forward different methods to cal-
culate the fractional bed-load transport rate of nonuniform sediments. Besides, Hsu
and Holly (1992) proposed a method to determine the size fractional composition
of nonuniform bed load aided by probability and availability of mobile sediments.
The probabilistic approach by Einstein (1950) and the equal mobility approach by

Table 5.2 Formulas of mean velocity �ub of a saltating particle given by different investigators

References Mean velocity of particle

Fernandez Luque and van Beek (1976) �ub ¼ 11:5 u�� 0:7u�cð Þ
Engelund and Fredsøe (1976) �ub ¼ u�½10� 0:7ðHc=HÞ0:5
Abbott and Francis (1977) �ub ¼ a u��u�cð Þ ^ a ¼ 13:4�14:3
Sekine and Kikkawa (1992) �ub ¼ 8ðu2

� � u2
�cÞ

0:5

Niño et al. (1994) �ub ¼ a u��u�cð Þ ^ a ¼ 6:8�8:5
Lee and Hsu (1994) �ub ¼ 11:53u�ðH�HcÞ0:174

Hu and Hui (1996) �ub ¼ 11:9 u�� 0:44u�cð Þ
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Parker et al. (1982) taking into the fractional transport rate have already been
discussed. Here, some other important methods are introduced.

Ashida and Michiue’s (1972) bed-load transport formula for uniform sediment
is given by Eq. (5.22). This formula was found to overestimate the individual size
fractions of bed-load transport rate when compared with the experimental data for
nonuniform sediment mixtures. They recommended the values of Shields
parameters to be corrected for the fractional size of sediment. Thus, the equation of
fractional bed-load transport intensity is given by

Ubi ¼ 17ðHi �HciÞðH0:5
i �H0:5

ci Þ ^ Ubi ¼
qbi

piðDgd3
i Þ

0:5 _ qbi ¼ ibqb

ð5:140Þ

where Hi and Hci are the Shields parameter and threshold Shields parameter
corresponding to a fraction pi of size di, respectively, and ib is the fraction of bed-
load transport. Equation (5.140) thus can be used to compute total bed-load
transport for the entire range of particle size distribution of the bed sediment.5

Hsu and Holly’s (1992) method begins with the determination of the size
distribution of transported sediment and then ends with the estimation of bed-load
transport rate. The each fractional size di in the transported sediment is hypothe-
sized to be proportional to the joint probability of its mobility under the prevailing
hydraulic condition and its availability on the bed surface within the active layer.
If the flow velocity fluctuations follow the Gaussian probability distribution, the
probability pri of removal of size di is derived as

pri ¼
1

ð2pÞ0:5r~ud

Z1

ðucri=�udÞ�1

exp � ~u2
d

2r2
~ud

 !
d~ud ¼ 0:5� 0:5erf

ðucri=�udÞ � 1
20:5r~ud

� �

ð5:141Þ

5 The procedure of computation of total bed-load transport for the entire range of particle size
distribution of the bed sediment is as follows:

Step 1: Compute Ubi for the fraction pi of sediment size di by using Einstein’s approach or
Ashida and Michiue’s bed-load transport formula or by any other standard method given in this
chapter.

Step 2: Compute ibqb by using Eq. (5.140) as

Ubi ¼
qbi

piðDgd3
i Þ

0:5 ^ qbi ¼ ibqb ) ibqb ¼ Ubi � piðDgd3
i Þ

0:5

Step 3: For each size fraction, the ibqb can be computed in this way. The total bed-load
transport can therefore be obtained by summing up the results over the entire range of
particle size distribution.
Note: In case of a mixture of small size of sediment spread, the size d35 can be

approximated as an effective sediment size for the approximate estimation of total bed-load.
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where ~ud ¼ u0=�ud, u0 is the fluctuations of instantaneous streamwise velocity at the
bed particle level, �ud is the time-averaged streamwise velocity at the bed particle
level, r~ud

is the standard deviation of ~ud, and ucri is the near-bed threshold velocity
for the initiation of motion of sediment size di. They employed Qin’s (1980)
formula given by Eq. (4.160) for the computation of ucri for a given size di, and
used r~ud

¼ 0:2, as suggested by Yen et al. (1988).
The availability of fractional size di is equivalent to its fractional representation

bbi on the bed surface within the active layer. Therefore, the fraction pi of size di in
the transported sediment is

pi ¼
pribbiRdmax

dmin

pribbidd

ð5:142Þ

In this way, the particle size distribution of the transported sediment in bed load
is determined. Then, the weighted mean sediment size dm and mean near-bed
threshold velocity ucrm are estimated. For the estimation of bed-load transport rate
for all fractional sizes, Hsu and Holly used Shamov’s formula (Zhang et al. 1989):

gb ¼ 12:5gd0:5
m �ud � ucrjdmin

� � �ud

ucrm

� �3 dm

h

� �0:25

^ ucrjdmin
¼ ucrðdminÞ ð5:143Þ

Hsu and Holly originally expressed gb in mass of bed-load transport rate per
unit width. The right-hand side of Eq. (5.143) is multiplied by g (acceleration due
to gravity) to convert the unit to N m-1 s-1.

Patel and Ranga Raju (1996) expressed the fractional bed-load transport
intensity Ubi as a function of Hcinb. In fact, they corrected the threshold Shields
parameter Hci corresponding to fractional size di by a factor nb, termed hiding–
exposure correction factor. The estimation of nb is as follows:

nb ¼
0:0713

CmðCsHciÞ0:75144 ^ Hci ¼
s00i

Dqgdi
ð5:144aÞ

CmðM [ 0:38Þ ¼ 1;Cmð0:05\M� 0:38Þ ¼ 0:7092 log M þ 1:293 ð5:144bÞ

log Cs ¼ 0:0644s�3 � 0:1949s�2 � 0:9571s� � 0:1957 ^ s� ¼ log
s00i

s0cg

� �

ð5:144cÞ

where M is the Kramer’s uniformity parameter, s00i ¼ qgR0bS0, R0b ¼ ðUn0=S0:5
0 Þ

1:5,

n0 ¼ d1=6
65 =24, and s0cg is the threshold bed shear stress for the geometric mean size

dg [& (d84.1d15.9)0.5] of the nonuniform sediment mixture as per Shields. The
variation of fractional bed-load transport intensity Ubi with Hcinb obtained by Patel
and Ranga Raju (1996) is illustrated in Fig. 5.14.
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Wu et al. (2000) presented a relationship of fractional bed-load transport
intensity Ubi as a function of nondimensional excess particle bed shear stress. It is

Ubi ¼ 5:3� 10�3 n0

n

� �1:5 s0

s0ci

� �
� 1

" #2:2

ð5:145Þ

where n0 ¼ d1=6
50 =20, s0ci is the threshold bed shear stress corresponding to size di,

s0 = qgRbS0, Rb is the total hydraulic radius, and n is the Manning roughness

coefficient ð¼ R2=3
b S0:5

0 =UÞ.
Note that one can use Meyer-Peter and Müller (1948) formula for the estima-

tion of fractional bed-load transport intensity Ubi (van Rijn 1993). The threshold
bed shear stress is corrected to account for the nonuniformity effect as niHc. Then,

qbi ¼ 8piðDgd3
i Þ

0:5 CR

C0R

� �1:5

Hi � niHc

" #1:5

) Ubi ¼ 8ðgCHi � niHcÞ1:5

ð5:146Þ

In the above, the correction factor ni given by Egiazaroff (1965) is

ni ¼
log2 19

log2ð19di=dmÞ
^ dm ¼

X
pidi ð5:147Þ
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Fig. 5.14 Curve to estimate fractional bed-load transport rate (Patel and Ranga Raju 1996)
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5.13 Sediment Sorting and Streambed Armoring

The time-dependent transport rate of nonuniform sediment mixture is a compli-
cated process due to sorting of a sediment bed in addition to sediment diffusion as
suspension. In a sediment mixture, the resistance to an individual particle motion
depends upon particle size and shape, as well as sheltering and exposure to the
flow. Sediment sorting is defined as a selective transport of different fractional
sizes of sediment particles. When the sediment transport rate of a bed exceeds the
rate of sediment supply by the approaching flow, the sediment bed starts to
degrade. Active layer refers to the surface layer of the sediment bed from which
the sediment can be entrained to the flow. Because of the nonuniformity of the
sediment, typically, exposed finer particles are transported easily at a faster rate
than the coarser ones, and the remaining bed particles are being coarsened. Thus,
the size of particles’ sorting takes place. The weakly entrained or unentrained
coarse particles tend to accumulate in the surface layer, forming a band of coarser
particles. Gradually, this coarsening process stops until a layer of coarse particles
is completely developed to cover the streambed protecting the underneath finer
sediment particles from being transported. Once this process is completed, the
streambed is called armored and the layer of coarsest particles is called the armor
layer (Fig. 5.15).

Due to variable nature of flow condition of a natural streambed, typically one or
more than one layers of armor particles are required to protect the underneath finer
sediment particles (Fig. 5.16). Borah (1989) and Froehlich (1995) reported that the
natural armor-layer thickness is one to three times the armor-particle sizes.
However, the thickness, porosity, and particle size distribution of an armor layer

Original erodible streambed Degraded streambed with armor‐layer

Active‐layer

Armor‐layer

Fig. 5.15 Definition sketch of streambed armoring
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vary with flow and bed evolution. Importantly, fine sediment can still be winnowed
at a very feeble rate through the interstices of armored particles.

Borah et al. (1982) considered an active layer to be homogeneous within itself
at any given time and proposed estimation for the thickness of the active layer ta
from the volumetric consideration as

ta ¼
1Pn

i¼M
pi

� dM

1� q0M
ð5:148Þ

where M is the fraction of the size dM or larger than dM, that cannot be transported
by the flow, dM is the size for the fraction M, and q0M is the porosity for the
fraction M. Thus, the fractional size dM and larger sizes contribute to an armor
layer.

In an active layer, the rate of transport from the bed surface decreases with time
but does not truly go to zero even after a long time (several days). It implies that
the development of an armor layer is an asymptotic process. When the bed shear
stress increases, the finer particles are transported and coarser ones stay in place.
Eventually, an upper limiting condition of the streambed is reached, which is
called the threshold armoring condition. The corresponding bed shear stress is
used to define the threshold bed shear stress for armoring s0ca. Hence, a sediment
mixture has a range of bed shear stress over which its bed surface can be armored.
The armor layer is thus now formed by the near-coarsest particles d90 or even
coarser than d90, which are found in a particle size distribution curve of nonuni-
form sediment. However, for a higher flow rate, when s0 [ s0ca, the armor layer
becomes unstable and subsequently is destroyed. Correia and Graf (1988) sug-
gested the median size of armor particles: d50a & 1.4d50 and d50a B 0.6d90.

Fig. 5.16 Natural streambed armoring. Photograph by the author
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Raudkivi (1990) gave an empirical relationship for the estimation of stability of
particles in an armor layer as

Hca

Hc

¼ 0:4
d50

d50ajmax

� �0:5

þ0:6

" #2

^ Hca ¼
s0ca

Dqgd50ajmax

_ d50ajmax

d100
� 0:55

ð5:149Þ

where Hca is the threshold Shields parameter for the armoring particles and
d50a|max is the maximum size of the armoring particles, being determined by
extrapolating the particle size distribution curve on the basis of last two or three
points. Importantly, no armoring takes place for uniform sediments.

In case of a nonuniform sediment sample with a mixture of fine and large
particles (for example, sand and gravel), Chin et al. (1994) observed that the
stability of individual large particles and their number in the bed govern the
process of formation of a stable armor layer. The removal of finer particles from
the bed surface exposes individual large particles. As a large particle is exposed
considerably to the flow, it leads to the formation of an erosion pit in the front and
a deposition of finer particles at the rear. The large particle may then slide into the
erosion pit, reducing its exposure to the flow and becoming more stable. Medium
and relatively coarse particles may also be accumulated within the scour pit and
finer particles may hide behind and in between the larger ones. Gradually, this
rearrangement of the surface particles leads to the formation of clusters of particles
of various sizes. A cluster may slowly collapse with an erosion of the bed at its
periphery. The anchor large particle may then be moved downstream to another
stable position; and the process of cluster formation may be repeated. Thus, the
formation of an armor layer in a nonuniform sediment mixture with fine and large
particles is a continuous process involving formation and collapse of clusters. In
Sect. 8.6, formation of cluster is further discussed.

5.14 Sediment Entrainment Probability to Bed Load

Determination of sediment entrainment probability to bed load is an essential
prerequisite in developing a probabilistic theory of bed-load transport. Einstein
(1942) laid the foundation of the probabilistic concept to study the bed-load
transport, in which the probability of sediment removal was introduced. The most
innovative development was due to Einstein (1950) to introduce a formula for the
probability of sediment transport [see Eq. (5.70)]. It was based on the probability
of hydrodynamic lift induced by the fluctuating velocity to exceed submerged
particle weight, using the Gaussian distribution, as already discussed. The prob-
ability function p that is given by Eq. (5.69) can be written in a simplified form as
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p ¼ 1� 1
p0:5

Z0:143H�1�2

�0:143H�1�2

expð�t2Þdt ð5:150Þ

Subsequent investigations by other researchers viewed the probability of sed-
iment removal in different ways and put forward formulation for probability in
terms of entrainment or pickup probability function. The entrainment probability
function is a function of Shields parameter H. Engelund and Fredsøe (1976) gave
an empirical formula for the entrainment probability function [see Eq. (5.87)] by
using experimental data of Guy et al. (1966) and Fernandez Luque (1974). The
formula was subsequently modified by Fredsøe and Deigaard (1992) in the form

p ¼ 1þ ldp=6
H�Hc

� �4
" #�0:25

ð5:151Þ

However, following Einstein’s concept of bed-load transport, Cheng and Chiew
(1998) obtained an expression for the entrainment probability function, based on
the assumption of the Gaussian distribution for the streamwise velocity fluctua-
tions. They expressed the sediment entrainment probability in hydraulically rough
flow regime as

p ¼ pðFL [ FGÞ ¼ pðu2
d [ B2Þ ¼ pðud [ BÞ þ pðud\�BÞ ð5:152Þ

where ud is the instantaneous near-bed velocity and B = [4Dgd/(3CL)]0.5. They
estimated the time-averaged near-bed velocity �ud, using the logarithmic law and
fixing the zero-plane displacement level at 0.25d and the zero-velocity level z0 at
ks/30 below the top of the closely packed bed particles. Here, ks was considered as
2d. They assumed that a particle placed in an interstice between two bed particles
is about to move. In this way, they estimated �ud ¼ 5:52u� acting on the particle in
an initial position at z = 0.6d. Quoting Kironoto and Graf (1994), Cheng and

Chiew (1998) assumed
ffiffiffiffiffiffi
u02

p
¼ 2u� and finally obtained the entrainment proba-

bility as

p ¼ 1� 0:5
0:21�

ffiffiffiffiffiffiffiffiffiffi
HCL

p

j0:21�
ffiffiffiffiffiffiffiffiffiffi
HCL

p
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 0:46ffiffiffiffiffiffiffiffiffiffi

HCL

p � 2:2

� �2
" #vuut

� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 0:46ffiffiffiffiffiffiffiffiffiffi

HCL

p þ 2:2

� �2
" #vuut

ð5:153Þ

Cheng and Chiew (1998) selected a value of CL = 0.25 to fit Eq. (5.153) with
the previous experimental data, as shown in Fig. 5.17.
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Later, Wu and Lin (2002) noted that since only positive fluctuations in the
streamwise velocity could cause entrainment of bed particles, a log-normal dis-
tribution could be better suited to derive an expression for the entrainment prob-
ability. They therefore modified the concept of entrainment probability as

p ¼ pðud [ BÞ ¼ pðln ud [ ln BÞ ¼ 1� pð�1\ ln ud\ ln BÞ ð5:154Þ

Wu and Lin (2002) finally expressed the entrainment probability as

p ¼ 0:5� 0:5
lnð0:044H�1C�1

L Þ
j lnð0:044H�1C�1

L Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp � 2

p
lnð0:044H�1C�1

L Þ
0:724

� �2
( )vuut

ð5:155Þ

Bose and Dey (2013) argued that the Gaussian and the log-normal distributions
primarily occur when there is additive and multiplicative accumulation of errors.
This is, however, not the case of turbulent velocity fluctuations in open channel
flow. Bose–Dey universal probability theory (see Sect. 3.17.1), on the other hand,
gave the Gram–Charlier series expansion of the probability densities based on the
two-sided exponential or Laplace distribution. They explained that the probability
density function (henceforth pdf) pûðûÞ for the nondimensional streamwise
velocity fluctuations û can be given by
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Fig. 5.17 Variation of
Shields parameter H with
probability p of sediment
entrainment (Bose and Dey
2013). The H(p) curves
obtained from the approaches
given by Einstein (1950),
Fredsøe and Deigaard (1992)
and Cheng and Chiew (1998),
and the experimental data of
Guy et al. (1966) and
Fernandez Luque (1974) are
shown for the comparison
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pûðûÞ ¼
1
2

1þ 1
2

�
C10û� 1

8
C20ð1þ ûj j � û2Þ � 1
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C30ûð3þ 3 ûj j � û2Þ

þ 1
384

C40ð9þ 9 ûj j � 3û2 � 6 û3
�� ��þ û4Þ þ � � �

�
expð� ûj jÞ ^ û ¼ u0ffiffiffiffiffiffi

u02
p
ð5:156Þ

Dey et al. (2012) obtained that the coefficients C10 and C30 are of the order of
0.001; while C20 & –0.5 and C40 & 0.6. Thus, it was assumed that C20 & –0.5
and the rest of the coefficients are effectively negligible due to their smallness or
division by a large number, such as 384. Then, Eq. (5.156) reduces to

pûðûÞ ¼
1

32
ð17þ ûj j � û2Þ expð� ûj jÞ ð5:157Þ

The instantaneous near-bed streamwise velocity ud, which can be decomposed
as ud ¼ �ud þ u0, is the cause of an entrainment of particles lying on the bed. Wu
and Lin (2002), following Nelson et al. (1995), argued that the entrainment is only
possible when the velocity fluctuations u0[ 0, for which the pdf according to
Eq. (5.157) becomes the one-sided exponential based Gram–Charlier series.
Therefore,

pu0 ðu0 � 0Þ ¼ 1

16
ffiffiffiffiffiffi
u02

p ð17þ û� û2Þ expð�ûÞ

pu0 ðu0\0Þ ¼ 0

9=
; ð5:158Þ

where pu0(u0) is the pdf for u0. It satisfies the condition

Z1

�1

pu0 ðu0Þdu0 ¼
Z1

0

pu0 ðu0Þdu0 ¼ 1

Following Einstein (1950), a particle placed on the bed is likely to be lifted by
the flowing fluid provided FL [ FG. Importantly, the instantaneous lift force FL

acting on a particle fluctuates in accordance with the velocity fluctuations u0 of the
near-bed velocity ud; while the submerged weight FG of a particle is a constant for
a given particle size. Therefore, FL [ FG implies that ud [ B or u0[ B� �ud,
where B = [4Dgd/(3CL)]0.5. Thus, using Eq. (5.158), the total entrainment prob-
ability p is

p ¼
Z1

B��ud

pu0 ðu0Þdu0 ¼ 1
16
ð16� a� a2Þ expð�aÞ ^ a ¼ B� �udffiffiffiffiffiffi

u02
p ð5:159Þ
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It is pertinent to mention that Dey et al. (2012) found that when the bed
particles move, the von Kármán constant j diminishes from its universal value
0.41, and the zero-plane displacement level and the zero-velocity level move up as
compared to their values in immobile beds [also available in Dey and Raikar
(2007), Gaudio et al. (2010), Dey et al. (2011), and Gaudio and Dey (2012)]. These
modify the estimation of near-bed velocity from the logarithmic law as �ud ¼ 6:4u�,
which was used by Bose and Dey. Quoting Kironoto and Graf (1994), Cheng and

Chiew (1998) estimated
ffiffiffiffiffiffi
u02

p
¼ 2u�. Using these results, the a can be expressed

as

a ¼ B� �udffiffiffiffiffiffi
u02

p ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DgdH
p

ffiffiffiffiffiffiffiffiffiffiffi
4Dgd

3CL

s
� 6:4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DgdH

p !
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

3CLH
p � 3:2 ð5:160Þ

Figure 5.17 depicts the theoretical H(p) curve for CL = 0.15 obtained by
solving Eq. (5.159) using Eq. (5.160). The theoretical curve matches well with the
experimental data of Guy et al. (1966) and Fernandez Luque (1974). The data of
Guy et al. (1966) that correspond to dunes have less agreement, because the
analysis by Bose and Dey (2013) did not include the flow resistance due to bed-
forms. However, the curve obtained by Bose and Dey (2013) corresponds closely
with the curves of Fredsøe and Deigaard (1992) and Cheng and Chiew (1998) for
p \ 0.2. The Shields parameter H for rough flow regime (R* [ 70, where R* is the
shear Reynolds number, u*ks/t) according to Yalin and Karahan’s (1979) diagram
is 0.046, for which the probability of entrainment is 0.1 % as obtained from
Fig. 5.17. It implies that 0.1 % of all the particles on a given bed area are in
motion under the threshold of sediment entrainment.

5.15 Effects of Bed Load on Velocity Distribution

Dey et al. (2012) conducted experiments to measure the velocity distributions and
turbulence parameters in mobile-bed flow with bed-load transport and to compare
them with those in a clear-water (immobile bed) flow. The experimental data for
clear-water flow were used as a reference. For each sediment sample, an experi-
mental set comprised of two different runs, such as clear-water and mobile-bed
flow conditions. Fixed-bed roughness for a clear-water flow was prepared by
gluing sediment on the flume bottom. The mobile-bed experiments were con-
ducted to simulate the bed-load transport at a certain rate corresponding to the
same flow condition as that of the clear-water flow. In mobile-bed experiments, the
same sediment that was glued on the flume bottom was fed in the flow at a uniform
rate to achieve a dynamic equilibrium condition of the mobile bed. A continuous
weak sediment transport (as bed load) was established by the flow in the form of a
thin sediment layer disallowing any bedforms to develop.
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Figure 5.18 shows the vertical distributions of nondimensional time-averaged
streamwise velocity u+ for clear-water and mobile-bed flows. In order to fit the
data points in the inner layer (z B 0.2h) to the universal logarithmic law of wall,
the time-averaged streamwise velocity �u and the vertical distance z are scaled by
u* and d50, such that uþ ¼ �u=u� and z+ = z/d50. For the convenience, the origin of
z-axis is set at the top of the bed particles (that is the bed surface). As the flow
regime was the rough-turbulent flow, it is customary to use d50 to scale z. Dey et al.
used the values of u* that were obtained from the Reynolds shear stress plots by
extrapolating a linear curve fitting onto the bed surface. To plot the experimental
data, they consider the logarithmic law expressed in nondimensional form. It is

uþ ¼ 1
j

ln
zþ þ Dzþ

fþ

� �
ð5:161Þ

where Dz+ = Dz/d50, Dz is the depth of the virtual bed level from the bed surface,
f+ = z0/d50, and z0 is the zero-velocity level. Figure 5.18 describes the logarithmic
law showing the variations of u+ with z+ + Dz+ for the experimental datasets. It is
clear that a prior estimation of Dz+ was an essential prerequisite to plot the data,
and subsequent determination of j and f+ was required to fit the data to the
logarithmic law given by Eq. (5.161). The determination of these parameters was
done independently, as described below:

Step 1: Having obtained u* from the Reynolds shear stress plots by projecting
straight line on the bed surface [see Eq. (3.20) and Fig. 3.11], such that

u� ¼ ð�u0w0Þ0:5
���
z¼0

, the dataset u+(z+) for the range z B 0.2h were

prepared for the data analysis.
Step 2: As an initial trial, considering Dz+ = 0, the values of j and f+ were

determined from Eq. (5.161) by the regression analysis, and then, the
regression coefficient RC was evaluated.

Step 3: The values Dz+ were increased at a regular interval by a small mag-
nitude (say 0.001), and the values of j and f+ were determined in the
same way as in step 2. The values of RC for each value of Dz+ were
checked, till RC became the maximum. Then, the corresponding values
of Dz+, j and f+ were considered as parameters for Eq. (5.161).

The average values of Dz+ = 0.39, j = 0.413, and f+ = 0.034 obtained for
clear-water flow are in agreement with those for the traditional logarithmic law
over rough boundary. Typically, the customary values of these parameters for the
rough beds are Dz+ = 0.25, j = 0.41, and f+ = 0.033 (van Rijn 1984a). Thus, for
clear-water flow, the data collapse well on the average logarithmic law curve
shown by a solid line in Fig. 5.18. On the other hand, the average values of
Dz+ = 0.21, j = 0.37, and f+ = 0.04 obtained for mobile-bed flow suggest the
modified values of the parameters for the logarithmic law over a rough mobile bed.
It is obvious that for mobile-bed flow, the data exhibit some degree of scatter about
the average logarithmic law curve. A comparison of the values of Dz+ and f+ for
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clear-water and mobile-bed flows reveals that the virtual bed and zero-velocity
levels move up in the presence of bed-load transport. Although the data analysis
related to the logarithmic law was done considering the data range z B 0.2h,
Fig. 5.18 displays all the data plots for z B 0.2h and z [ 0.2h. Thus, the data plots
depart from the logarithmic law in the outer layer to some extent. Additionally, the
values of Nikuradse’s equivalent sand roughness ks can be determined from the
relationship of zero-velocity level as ks = 30f+d50. Finally, it can be concluded
that for mobile-bed flow, (1) the von Kármán constant decreases and (2) the virtual
bed and the zero-velocity levels move up.

0.1 1 10 100 1000

z+ + Δ z+

0

5

10

15

20

25

u+

0.1 1 10 100 1000

z+ + Δ z+

0

5

10

15

20

25

u+

Clear-water

Mobile-bed

2.10-3

3.5.10-3

7.10-3

2.10-3

3.5.10-3

7.10-3

3.5.10-3

7.10-3

gb (kg s  m  )

0.95        0.594      0.1
0.95        0.628      0.12
0.95        0.665      0.15
2.6          0.767      0.1
2.6          0.813      0.12
2.6          0.851      0.15
4.1          0.839      0.12
4.1          0.918      0.15

d50(mm)   U h (m)

Logarithmic law

Logarithmic law

–1 –1

 (m s  )–1

Fig. 5.18 Vertical distributions of nondimensional time-averaged streamwise velocity u+ for
clear-water and mobile-bed flows (Dey et al. 2012)
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5.16 Effects of Bed Load on Length Scales of Turbulence

According to Prandtl, the mixing length l, which defines a distance that a fluid
parcel (eddy) keeps its original characteristics before dispersing into the sur-
rounding fluid, is given by

l ¼ ð�u0w0Þ0:5

d�u=dz
ð5:162Þ

To calculate the mixing length l from Eq. (5.162), Dey et al. (2012) used the
measured velocity profiles to determine the velocity gradients d�u/dz by a smooth
curve fitting to the data plots. They obtained the values of �u0w0 directly from the
measured Reynolds shear stress distributions. The variations of nondimensional
mixing length ~l ¼ l=hð Þ with ~z ¼ z=hð Þ for clear-water and mobile-bed flows as
obtained by Dey et al. are shown in Fig. 5.19. Within the wall shear layer
(z B 0.2h), ~l varies linearly with ~z. All the experimental data points for clear-water
and mobile-bed flows collapse reasonably on a single band, which is in conformity
with Prandtl’s mixing length hypothesis. Also, the data points collapse satisfac-

torily on the curves obtained from the theoretical equation of ~l ¼ j~zð1�~zÞ0:5 given
by Nezu and Nakagawa (1993). The slope of the linear portion defining von
Kármán constant jð¼ ~l=~z ¼ l=zÞ for mobile-bed flow is smaller than that for clear-
water flow. It suggests that the traversing length of an eddy decreases with bed-
load transport and increases more rapidly with z in a clear-water flow.
A detailed discussion on nonuniversality of von Kármán constant j is given in next
section.

Studies by Gore and Crowe (1991), Hetsroni (1993), Crowe (1993), Best et al.
(1997) argued that in flow with transported particles, the ratio of the size of
transported particles to the length scale of turbulence is involved in influencing the
enhancement or attenuation of the streamwise turbulence intensity. Taylor
microscale kT, which defines the eddy size in the inertial subrange, is the relevant
length scale of turbulence and is given by

kT ¼
15tu02

e

 !0:5

ð5:163Þ

where e is the turbulent kinetic energy dissipation rate. The estimation of e is done
by using Kolmogorov second hypothesis that predicts the following equality
describing the true inertial subrange (Pope 2001):

k5=3
w Suu ¼ Ce2=3 ð5:164Þ

where kw is the wave number, Suu is the spectral density function for u0, and C is
the constant approximately equaling 0.5 (Monin and Yaglom 2007).
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In Fig. 5.20a, the spectra Suu½¼ ð0:5�u=pÞFuu fð Þ as a function of kw½¼
ð2p=�uÞf  are drawn using the despiked instantaneous velocity data at z = 2 mm
(near-bed point) from the bed surface having d50 = 2.6 mm for clear-water and
mobile-bed flows. For both flow conditions, the depth-averaged flow velocity was
0.851 m s-1 and the flow depth 0.15 m. The bed-load transport rate in mobile-bed
experiment was 7 9 10-3 kg s-1 m-1. The inertial subranges in clear-water and
mobile-bed flows are characterized by Kolmogorov’s –5/3-th power law. It cor-

responds to a subrange of kw, where the average value of k5=3
w Suu is relatively

constant (that is independent of kw), as shown in Fig. 5.20b. Then, the e was
estimated from Eq. (5.164) and kT from Eq. (5.163).

Figure 5.21 shows the variations of the ratio of sediment size to Taylor

microscale, that is k̂d ¼ d50=kT, with ~z obtained by Dey et al. (2012) for the same
flow condition mentioned above (clear-water and mobile-bed cases). Near the bed

(z B 0.1 h), k̂d for mobile-bed flow is smaller than that for a clear-water flow. In

the outer layer, k̂d for both the cases, the variation being almost same decreases
away from the bed. The values of kT near the bed are 2 and 2.44 mm in clear-water
and mobile-bed flows, respectively. Hence, the eddy size close to the bed increases
in the presence of bed-load transport. Other studies on two-phase flows reported

that the range k̂d � 0:2�1:2 corresponds to the turbulence enhancement; while the

range k̂d � 0:2�0:065 corresponds to the turbulence attenuation (Gore and Crowe
1991; Hetsroni 1993; Best et al. 1997).

Figure 5.22 presents the data plots of the ratio of particle size to Taylor micro-

scale, k̂d, for mobile-bed flow as a function of relative difference of streamwise

turbulence intensities Druu½¼ ðu02Þ0:5jmb=ðu02Þ
0:5jcw�1. Here, subscripts ‘‘cw’’ and
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‘‘mb’’ refer to clear-water and mobile-bed flows, respectively. The positive values of
Druuð~z\0:2Þ indicate that the streamwise turbulence intensity in mobile bed is
greater than that in clear-water flow. This is in conformity to the findings of Sumer
et al. (2003), who studied the role of externally induced turbulence fields on bed-load
transport and argued that the sediment transport rate increases considerably with an

increase in streamwise turbulence intensity ðu02Þ0:5.

5.17 Effects of Bed Load on von Kármán Constant j

During bed-load transport, the sediment motion (by rolling, sliding, and saltation)
produces an expansion of the roughness layer. Recking et al. (2008) reported that
the Nikuradse’s equivalent sand roughness ks increases from the particle size d50

for immobile-bed condition to 2.6d50 for intense bed-load transport condition. The
expansion of the roughness layer modifies the logarithmic wall shear layer,
resulting in the variation of von Kármán constant j from its universal value 0.41.
Gaudio et al. (2010) and Gaudio and Dey (2012) reviewed the studies on the
effects of sediment transport on j, which is discussed below:

Gust and Southard (1983) analyzed the velocity data in the wall shear layer
(z/h B 0.2) measured by a hot-wire anemometer. They observed a decrease in j
from its universal value with an increase in bed-load transport rate. After a tran-
sitional regime corresponding to the entrainment threshold of sediment, j adjusted
to a constant value of 0.32 ± 0.04 for all the experiments with bed-load transport,
in which the transport rate varied by a factor 10. Best et al. (1997) used a phase
Doppler anemometer to differentiate the characteristics of the fluid from those of
the sediment particles and to quantify the influence of the sediments on the carrier
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Fig. 5.22 Ratio of particle size to Taylor microscale k̂d for mobile-bed flow as a function of
relative difference of streamwise turbulence intensities Druu between clear-water and mobile-bed
flows (Dey et al. 2012)
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fluid turbulence. They observed that the average value of j was 0.385 in the
presence of bed-load transport. Nikora and Goring (2000) reported a study on the
characteristics of turbulent structure of high Reynolds number in quasi-two-
dimensional flow with fixed and weakly mobile gravel-beds. The flow measure-
ments by an acoustic Doppler velocimeter in an irrigation field canal were carried
out for two bed conditions: fixed and weakly mobile beds. Measurements were first
taken with a weakly mobile-bed flow (WMBF) and then repeated for a fixed-bed
flow (FBF). They obtained j & 0.29 for the WMBF being significantly smaller
than j & 0.4 for the FBF. They argued that the value j & 0.4 with the WMBF
would have been achieved with an adjustment of the virtual bed level if the bed
level was shifted by 30 mm upwards. Since such a shift is physically unjustifiable,
it corroborates that the difference of j values between the WMBF and the FBF is
possible due to the effects of bed-load transport. Bennett and Bridge (1995),
Nikora and Goring (1999), and Gallagher et al. (1999) also revealed an appreciable
decrease in j under bed-load transport. Nikora and Goring (1999) anticipated that
the reduction in j might reflect the special turbulence characteristics within a
narrow range of the Shields parameter when the bed shear stress is approximately
equal to the threshold bed shear stress. In Nikora and Goring (2000), the drag
reduction effects were expressed as decreased values of j. The general concept is
that the drag reduction prevails when the spacing between turbulent bursting
events increases in comparison to the spacing in flow with no sediment
(Tiederman et al. 1985). However, it is revealed that the j reduces when spanwise
(lateral) spacing between bursting events increases; while streamwise spacing
remains unchanged (Hetsroni et al. 1997). Nikora and Goring (2000) found that the
streamwise spacing between bursting events was approximately the same for both
the WMBF and the FBF, referring to an increase in spanwise spacing for the
WMBF. Dey and Raikar (2007) reported the laboratory experimental results on the
turbulent flow characteristics measured by an acoustic Doppler velocimeter. The
primary endeavor was to investigate the response of the turbulent flow field,
having zero-pressure gradient, to the uniform gravel-beds at the near-threshold of
sediment of motion. They observed that the variation of mixing length is con-
siderably linear with the distance from the bed within the wall shear layer, whose
thickness was obtained as 0.23 times the boundary layer thickness; and von
Kármán j was estimated as 0.35.

Gaudio et al. (2011) performed laboratory tests in a narrow flume with sediment
feeding to simulate bed load on a rough bed and measured the velocity within the
wall shear layer (z/h B 0.2) by using a Pitot-Prandtl tube. They obtained a decrease
in j, that j varied from 0.3 with bed load (0.0334 B gb B 0.0649 kg s-1 m-1) to
0.4 with clear-water flow condition. Further, Dey et al. (2012) fitted a logarithmic
law for mobile-bed flow to obtain j = 0.37 for bed-load transport rates
(2 9 10-3 B gb B 7 9 10-3 kg s-1 m-1), as already discussed. Table 5.3 fur-
nishes a summary of the results on j in flow with bed-load transport. The available
experimental data are so limited that the variation of j with bed-load transport rate
(qb or gb) is not so specific, although it has been well-recognized that the j values
with bed-load transport are less than its universal value 0.41.
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5.18 Examples

Example 5.1 The flow velocity in a wide river is 1.65 m s-1, flow depth 3.2 m, and
energy slope 5 9 10-4. The flow is uniform within the measuring reach. The bed
sediment has a median size d50 = 1.5 mm, d65 = 1.8 mm, and d90 = 3 mm, a static
angle of repose of 32�, a dynamic angle of repose of 20�, and a relative density of
2.65. Consider coefficient of kinematic viscosity of water t = 10-6 m2 s-1 and mass
density of water q = 103 kg m-3.

Compute the bed-load transport rate (in volume per unit time and width) by
using formulas/methodologies proposed by du Boys, Shields, Schoklitsch, Meyer-
Peter and Müller, Einstein, Brown/Julien (empirical form of Einstein’s method),
Bagnold, Engelund and Fredsøe, Yalin, and van Rijn.

Also, compute the saltation characteristics of the particle.

Solution

Given data are as follows:
Flow velocity, U = 1.65 m s-1; flow depth, h = 3.2 m; energy slope,
Sf = 5 9 10-4; sediment size, d50 = 1.5 mm, d65 = 1.8 mm, and d90 = 3 mm;
static angle of repose, / = 32�; dynamic angle of repose, /d = 20�; relative
density, s = 2.65; kinematic viscosity of water, t = 10-6 m2 s-1; and mass
density of water, q = 103 kg m-3

For uniform flow, the energy slope equals the streamwise bed slope. Thus,
Sf = S0 = 5 9 10-4

Applied bed shear stress, s0 = qghS0 = 103 9 9.81 9 3.2 9 5 9 10-4

= 15.7 Pa
Shear velocity, u* = (s0/q)0.5 = (15.7/103)0.5 = 0.125 m s-1

Shields parameter, H = s0/(Dqgd50) = 15.7/(1.65 9 103 9 9.81 9 1.5 9 10-3)
= 0.647
Use van Rijn’s empirical formula for the determination of threshold bed shear
stress and threshold shear velocity (see Table 4.1):

Table 5.3 Experimental results on the effects of bed-load transport on j

References d50 (mm) R* gb (kg s-1 m-1) j

Gust and Southard
(1983)

0.16 – 0.15 - 1.5 9 10-5 0.32 ± 12.5 %

Best et al. (1997) 0.22 8.9 9 - 22 9 10-3 0.385
Nikora and Goring

(2000)
6.4 429 0.0138 0.29 ± 10.3 %

Dey and Raikar
(2007)

4.1–14.25 210–1,573 1.23 - 0.09 0.35 ± 0.86 %

Gaudio et al. (2011) 1 101–120 3.34 - 0.0649 0.3 - 0.39 ± 10.7 %
Dey et al. (2012) 0.95, 2.6, 4.1 63–508 2–7 9 10-3 0.35 - 0.42
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Particle parameter, D* = d50(Dg/t2)1/3 = 1.5 9 10-3[1.65 9 9.81/(10-6)2]1/3 =
37.94
Threshold Shields parameter, Hcð20 \D� � 150Þ ¼ 0:013D0:29

� ¼ 0:013�
37:940:29 ¼ 0:037
Threshold bed shear stress, s0c = HcDqgd50 = 0.037 9 1.65 9 103 9 9.81 9

1.5 9 10-3 = 0.898 Pa
Threshold shear velocity, u*c = (s0c/q)0.5 = (0.898/103)0.5 = 0.03 m s-1

Computation of bed load by du Boys formula

v ¼ 6:89� 10�6=1:50:75 ¼ 5:083� 10�6 kg�2 m4 s3

( Eq: 5:13ð Þ Note: d50 is in mmð Þ
qb ¼ 5:083� 10�6 � 15:7 15:7� 0:898ð Þ ¼ 1:181� 10�3 m2 s�1

( Eq: 5:11ð Þ

Computation of bed load by Shields formula

q ¼ Uh ¼ 1:65� 3:2 ¼ 5:28 m2 s�1

qb ¼
10� 5:28� 5� 10�4

2:65� 1:652 � 103 � 9:81� 1:5� 10�3
ð15:7� 0:898Þ

¼ 3:681� 10�3 m2 s�1 ( Eq: 5:14ð Þ

Computation of bed load by Schoklitsch formula

qc ¼ 1:944� 10�5=S4=3
0 ¼ 1:944� 10�5=ð5� 10�4Þ4=3 ¼ 0:49 m2 s�1

gb ¼
7000

ð1:5� 10�3Þ0:5
ð5� 10�4Þ1:5ð5:28� 0:49Þ ¼ 9:679 N s�1m�1 ( Eq: 5:43ð Þ

qb ¼ gb=ðqsgÞ ¼ 9:679=ð2:65� 103 � 9:81Þ ¼ 3:723� 10�4 m2 s�1

Computation of bed load by Meyer-Peter and Müller formula

CR ¼ U= hS0ð Þ0:5¼ 1:65=ð3:2� 5� 10�4Þ0:5 ¼ 41:25 m0:5 s�1

C0R ¼ 18 log 12h=d90ð Þ ¼ 18 log½12� 3:2=ð3� 10�3Þ ¼ 73:93 m0:5 s�1

gC ¼ ðCR=C0RÞ
1:5 ¼ 41:25=73:93ð Þ1:5¼ 0:417

Meyer-Peter and Müller recommended Hc = 0.047 and corresponding
s0c = HcDqgd50 = 0.047 9 1.65 9 103 9 9.81 9 1.5 9 10-3 = 1.14 Pa

qb ¼
8

1:65ð103Þ1:5 � 9:81
ð0:417� 15:7� 1:14Þ1:5 ¼ 1:965� 10�4 m2 s�1

( Eq: 5:15ð Þ
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Computation of bed load by Einstein’s method
Assume R0b ¼ Rb ¼ h ¼ 3:2 m (for the wide channel)

Wb ¼ Dd65=ðR0bS0Þ ¼ 1:65� 1:8� 10�3=ð3:2� 5� 10�4Þ ¼ 1:86

From Fig. 5.10, Ub (Wb = 1.86) = 4

qb ¼ UbðDgd3
50Þ

0:5 ¼ 4½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 0:349� 10�4 m2 s�1

Computation of bed load by empirical form of Einstein’s method
Wb = 1.86 B 1.92; thus, Julien formula, given by Eq. (5.72), is applicable.

Kf ¼
2
3
þ 36ð10�6Þ2

1:65� 9:81ð1:5� 10�3Þ3

" #0:5

� 36ð10�6Þ2

1:65� 9:81ð1:5� 10�3Þ3

" #0:5

¼ 0:791( Eq: 5:71að Þ

UbðWb� 1:92Þ ¼ 15� 0:791� 1
1:861:5

¼ 4:677( Eq: 5:72ð Þ

qb ¼ UbðDgd3
50Þ

0:5 ¼ 4:677½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 1:093� 10�3 m2 s�1

Computation of bed load by Bagnold formula
Assume eb = 0.1

gbs ¼ 15:7� 1:65� 0:1=tan20
� ¼ 7:12 N s�1m�1 ( Eq: 5:104ð Þ

gb ¼ ðs=DÞgbs ¼ 2:65=1:65ð Þ7:12 ¼ 11:44 N s�1m�1

qb ¼ gb=ðqsgÞ ¼ 11:44=ð2:65� 103 � 9:81Þ ¼ 4:4� 10�4 m2 s�1

Computation of bed load by Engelund and Fredsøe formula
Dynamic coefficient of friction, ld = tan 20�

Ub ¼
9:3

tan 20�
ð0:647� 0:037Þð0:6470:5 � 0:7� 0:0370:5Þ ¼ 10:44( Eq: 5:88ð Þ

qb ¼ UbðDgd3
50Þ

0:5 ¼ 10:44½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 2:44� 10�3 m2 s�1

The formula of Engelund and Fredsøe seems to produce a higher estimation.

Computation of bed load by Yalin formula

a1 ¼ 2:45H0:5
c =s0:4 ¼ 2:45� 0:0370:5=2:650:4 ¼ 0:319

ðH=HcÞ�1 ¼ 0:647=0:037ð Þ�1 ¼ 16:49

Ub ¼ 0:635� 0:6470:5 � 16:49 1� 1
0:319� 16:49

lnð1þ 0:319� 16:49Þ
� �

¼ 5:486( Eq: 5:115ð Þ
qb ¼ UbðDgd3

50Þ
0:5 ¼ 5:486½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 1:282� 10�3 m2 s�1
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Computation of bed load by van Rijn formula

Ub ¼ ð5:3� 10�2=37:940:3Þ16:492:1 ¼ 6:41( Eq: 5:26ð Þ
qb ¼ UbðDgd3

50Þ
0:5 ¼ 6:41½1:65� 9:81ð1:5� 10�3Þ30:5 ¼ 1:498� 10�3 m2 s�1

Computation of saltation characteristics
By van Rijn formulas:

Saltation length, kb=d50 ¼ 3� 37:940:6 � 16:490:9 ) kb ¼ 0:497 m( Eq: 5:135að Þ
Saltation height, hs=d50 ¼ 0:3� 37:940:7 � 16:490:5 ) hs ¼ 0:023 m( Eq: 5:135bð Þ
Particle velocity, �ub=ðDgd50Þ0:5 ¼ 1:5� 16:490:6 ) �ub ¼ 1:256 m s�1 ( Eq: 5:137ð Þ

Further, estimates of saltation length kb, height hs, and particle velocity �ub by using
the formulas (see Tables 5.1 and 5.2) proposed by different investigators are given
in Table 5.4.

Example 5.2 Water flows with a depth-averaged velocity of 1.5 m s-1 through a
wide channel having a uniform flow depth of 3 m. The channel has a streamwise
bed slope of 8 9 10-4. The size classes of nonuniform sediment obtained from the
sieve analysis are 35 % between 0.1 and 0.5 mm, 30 % between 0.5 and 1 mm,
20 % between 1 and 2 mm, 10 % between 2 and 3 mm, and 5 % between 3 and
4 mm. Relative density of sediment is 2.65; and sediment size, d50 = 0.75 mm
and d90 = 3 mm.

Find the bed-load transport rate by using the methods of (1) Meyer-Peter and
Müller and (2) Ashida and Michiue.

Table 5.4 Saltation length kb, height hs and particle velocity �ub obtained from different formulas

References kb (m) hs (m) �ub (m s-1) Remark

Fernandez Luque and van Beek (1976) 0.024 – 1.196
Engelund and Fredsøe (1976) – – 1.229
Abbott and Francis (1977) – – 1.33 a = 14
Sekine and Kikkawa (1992) 2.55 – 0.971 From Cheng formula,

ws = 0.15 m s-1

(Table 1.3)
Niño et al. (1994) 0.06 – 0.71 a = 7.5
Lee and Hsu (1994) 0.2 0.016 1.322
Hu and Hui (1996) 0.07 0.005 1.33
Lajeunesse et al. (2010) 0.066 – –
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Solution

Given data are as follows:
Flow velocity, U = 1.5 m s-1; flow depth, h = 3 m; bed slope, S0 = 8 9 10-4;
bed sediment size, d50 = 0.75 mm and d90 = 3 mm; and relative density, s = 2.65

1. Meyer-Peter and Müller’s method
Weighted mean size, dm =

P
pidi = 1.06 mm (see Table 5.5)

CR ¼ U= hS0ð Þ0:5¼ 1:5=ð3� 8� 10�4Þ0:5 ¼ 30:62 m0:5 s�1

C0R ¼ 18 log 12h=d90ð Þ ¼ 18 log½12� 3=ð3� 10�3Þ ¼ 73:43 m0:5 s�1

gC ¼ ðCR=C0RÞ
1:5 ¼ 0:269

Applied bed shear stress, s0 = qghS0 = 103 9 9.81 9 3 9 8 9 10-4 =
23.54 Pa

Hi ¼ s0=ðDqgdiÞ ¼ 23:54=ð1:65� 103 � 9:81� diÞ ¼ 1:454� 10�3=di

Threshold Shields parameter, Hc = 0.034 that is obtained from van Rijn’s
empirical formula (Table 4.1) for the sediment size dm = 1.06 mm. Bed-load

transport rate for fractional size di is qbi ¼ 8ðDgÞ0:5pid1:5
i ðgCHi�niHcÞ1:5[see

Eq. ( 5.146)]
Therefore, the total bed-load transport rate for all size fractions, qb = 2.146 9

10-4 m2 s-1 (Table 5.5)
However, one can check the difference in estimation of bed-load transport rate
obtained using the weighted mean size dm.

H ¼ s0=ðDqgdmÞ ¼ 23:54=ð1:65� 103 � 9:81� 1:06� 10�3Þ ¼ 1:372

qb ¼ 8ðDgd3
mÞ

0:5ðgCH�HcÞ1:5 ¼ 8½1:65� 9:81ð1:06� 10�3Þ30:5ð0:269� 1:372�0:034Þ1:5

¼ 2:154� 10�4 m2 s�1

which is almost equaling the estimate of total bed-load transport rate for all size
fractions.

Table 5.5 Calculation by Meyer-Peter and Müller’s method

Size class (mm) di (mm) pi pidi (m) ni gCHi niHc qbi m2 s�1ð Þ
0.1–0.5 0.3 0.35 1.05 9 10-4 3.064 1.304 0.104 7.695 9 10-5

0.5–1 0.75 0.3 2.25 9 10-4 1.284 0.522 0.0437 6.555 9 10-5

1–2 1.5 0.2 3 9 10-4 0.8 0.261 0.0272 4.223 9 10-5

2–3 2.5 0.1 2.5 9 10-4 0.6 0.157 0.0204 2.021 9 10-5

3–4 3.5 0.05 1.75 9 10-4 0.506 0.112 0.0172 9.693 9 10-6P
1:06� 10�3

P
2:146� 10�4
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2. Ashida and Michiue’s method

Bed-load transport rate for fractional size di is qbi ¼ 17ðDgÞ0:5pid1:5
i ðHi�HciÞ

�ðH0:5
i �H0:5

ci Þ [see Eq. (5.140)]
Threshold Shields parameter Hci for the fractional size di can be obtained by
using van Rijn’s empirical formula (Table 4.1) for the size di (Table 5.6).
Therefore, the total bed-load transport rate for all size fractions, qb ¼
3:14� 10�3 m2 s�1 (Table 5.6)
However, one can check the difference in estimation of bed-load transport rate
obtained using the weighted mean size dm.

qb ¼ 17ðDgd3
mÞ

0:5ðH�HcÞðH0:5 �H0:5
c Þ ¼ 17½1:65� 9:81ð1:06� 10�3Þ30:5

� 1:372� 0:034ð Þ 1:3720:5 � 0:0340:5
� 

¼ 3:12� 10�3 m2 s�1

which is very close to the estimate of total bed-load transport rate for all size
fractions.
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Chapter 6
Suspended-Load Transport

6.1 General

If and when the motion of sediment particles in a flowing fluid is such that they are
surrounded by the fluid over an appreciably long period of time, the sediment
particles are said to be in suspension and the transport mode is termed suspended
load. In natural streams, large amount of sediment is transported as suspended
load. The mechanism of sediment to come in suspension and being transported by
the stream flow is rather complex in details. Convection1 of turbulence in flow
results in exchanges of both mass and momentum (including suspended sediment
particles) between layers of fluid flow. However, suspended load of sediment
particles that are diffused and supported by the advection of turbulence throughout
the column of fluid differs from the bed load. The spreading of suspended sediment
particles by random motion and by turbulence is termed diffusion, while that due to
gradients of time-averaged velocity components is termed advection. In reality,
when the tendency for settling sediment particles with their terminal fall velocity is
counterbalanced by the diffusion induced by the turbulence, sediment particles
remain in suspension and are transported by the time-averaged flow velocity.
There exists an active interchange of sediment particles between bed load and
suspended load. The upper extremity of sediment suspension is the free surface,
where suspension comes to an end; while the lower extremity is up to the top of the
bed-load layer, whose determination is a difficult proposition. Therefore, sus-
pended load is always accompanied by the bed-load transport.

The suspended-load transport rate is calculated by the depth integration of the
product of sediment concentration and flow velocity and expressed as

1 Technically, convection means a transport governed by diffusion together with advection.
Diffusion results in mixing or mass transport mechanism of a substance without requiring bulk
motion, while advection is the transport by a fluid due to the bulk motion of fluid.

S. Dey, Fluvial Hydrodynamics, GeoPlanet: Earth and Planetary Sciences,
DOI: 10.1007/978-3-642-19062-9_6, � Springer-Verlag Berlin Heidelberg 2014
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qs ¼
Zh

a

C�u dz; gs ¼ qsg

Zh

a

C�u dz; gss ¼ Dqg

Zh

a

C�u dz ð6:1aÞ

Us ¼
qs

Dgd3ð Þ0:5
¼ gs

qsg Dgd3ð Þ0:5
¼ gss

Dqg Dgd3ð Þ0:5
ð6:1bÞ

where qs is the suspended-load transport rate in volume per unit time and width, gs

is the suspended-load transport rate in weight per unit time and width, gss is the
suspended-load transport rate in submerged weight per unit time and width, Us is
the nondimensional suspended-load transport rate, called suspended-load transport
intensity, �u is the time-averaged velocity at an elevation z, C is the time-averaged
concentration by volume at an elevation z, a is the thickness of bed-load layer, h is
the flow depth, qs is the mass density of sediment, and g is the acceleration due to
gravity. The integration of Eq. (6.1a) is possible, if mathematical expressions of
C(z) and �uðzÞ are known. Several attempts have so far been made for the deter-
mination of the relationship Cð�uÞ both analytically and empirically.

The theoretical analyses for sediment suspension are based on diffusion, energy,
and stochastic concepts. However, the diffusion concept has so far been the most
acceptable one for practical applications and also the basis of most of the
numerical exercises.

6.2 Diffusion Concept

6.2.1 Background

The concept developed for molecular diffusion, which is based on the continuum
hypothesis and Fick’s law, is by analogy important for turbulent diffusion. Fick’s
first law defines the diffusive flux that goes from high-concentration zone to low-
concentration zone with a magnitude that is proportional to the concentration
gradient. The transport is postulated down the concentration gradient. The law in
the context of diffusion of small amount of dye in still water is therefore

J ¼ �em

oC

oz
ð6:2Þ

where J is rate at which the dye transports across a unit area normal to z-direction,
em is the molecular diffusivity, and C is the concentration of dye.

Fick’s second law defines how diffusion causes the concentration to change
with time
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oC

ot
¼ � oJ

oz
¼ em

o2C

oz2
ð6:3Þ

where t is the time. The molecular diffusivity em is assumed not to vary with
concentration C, being satisfied with the condition for a dilute concentration.
Equation (6.3) has a solution

Cðz; tÞ ¼ B

t0:5
exp � z2

4emt

� �
ð6:4Þ

where B is an integration constant.

6.2.2 Generalized Advection–Diffusion Equation
of Suspended Sediment Motion

To derive three-dimensional continuity equation of suspended sediment motion by
the fluid flow, a control volume element of fluid dxdydz, containing a sediment
concentration C having a mass density qs, with center at (x, y, z) in a Cartesian
coordinate system is considered, as shown in Fig. 6.1. The velocity components in
x-, y-, and z-direction are u, v, and w, respectively. Note that for the simplicity of
the derivation, the velocity components are initially assumed to be nonfluctuating
in nature. However, the velocity fluctuations due to turbulence are introduced
subsequently in the analysis. The mass flux of sediment entering through the back
face of the control volume by advection in x-direction is given by

qsCu� o

ox
ðqsCuÞ � dx

2

� �
dydz

In the above expression, the first term, (qsCu)dydz, is the mass flux through a
central plane normal to the x-axis, as shown by the broken line (Fig. 6.1). The
second term, [q(qsCu)/qx](dx/2)dydz, is the rate of change of mass flux with
respect to distance in x-direction multiplied by the distance dx/2 from the central
plane to the back face. Similarly, the mass flux leaving through the front face of
the control volume in x-direction is given by

qsCuþ o

ox
ðqsCuÞ � dx

2

� �
dydz

Therefore, the net mass flux out in x-direction through these two faces is
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o

ox
ðqsCuÞdxdydz

The other two directions yield similar expressions, and hence, the net mass flux
out of the control volume is

o

ox
ðqsCuÞ þ o

oy
ðqsCvÞ þ o

oz
ðqsCwÞ

� �
dxdydz

By definition of the principle of conservation of mass, the net sediment mass
flux out of the control volume plus the rate of change of mass in the control
volume, given by [q(qsC)/qt]dxdydz, equals the rate of production of mass in the
control volume, that is

d
dt
ðqsCÞdxdydz

Thus, the three-dimensional continuity equation of suspended sediment motion
is given by

o

ot
ðqsCÞ þ

o

ox
ðqsCuÞ þ o

oy
ðqsCvÞ þ o

oz
ðqsCwÞ ¼ d

dt
ðqsCÞ ð6:5Þ

For suspended sediment motion in turbulent flow, the velocity and concentration
fluctuate with time. Hence, Eq. (6.5), which has been derived for nonfluctuating
velocity and concentration, is modified by replacing the nonfluctuating quantities

dy

dx

d

Fig. 6.1 Definition sketch for derivation of three-dimensional continuity equation of sediment
suspension in a control volume element
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by the instantaneous quantities. Now, C is replaced by Ct, that represents the
instantaneous concentration, and u, v, and w represent the instantaneous velocity
components in x-, y-, and z-direction, respectively. Thus, for a constant mass
density qs of sediment, Eq. (6.5) is rewritten as

oCt

ot
þ o

ox
ðCtuÞ þ

o

oy
ðCtvÞ þ

o

oz
ðCtwÞ ¼

dCt

dt
¼ _C ð6:6Þ

Applying Reynolds decomposition, the instantaneous velocity components and
the suspended sediment concentration are split into time-averaged and fluctuation
parts as

u ¼ �uþ u0

v ¼ �vþ v0

w ¼ �wþ w0

Ct ¼ C þ C0

9>>>=
>>>;

ð6:7Þ

Using Reynolds conditions, the time-averaging of the product of Ct and u is

Ctu ¼ ðC þ C0Þð�uþ u0Þ ¼ C�uþ C0u0 ¼ C�uþ C0u0

^ u0 ¼ C0 ¼ 0 _ C�u ¼ C�u
ð6:8aÞ

Similarly,

Ctv ¼ C�vþ C0v0 ð6:8bÞ

Ctw ¼ C�wþ C0w0 ð6:8cÞ

In the above, the first term of right-hand side of each equation represents advective
flux and the second term characterizes diffusive and mixing flux.

Then, introducing Prandtl’s mixing length theory, it can be hypothesized that
the fluid parcel, as it is generated by the turbulence, containing suspended sedi-
ment moves randomly in turbulent flow. As the fluid parcel moves, it travels over a
distance l, well known as mixing length, before it mixes (degenerates or loses its
identity) with the local fluid body. The change in magnitude of suspended sedi-
ment concentration in the fluid parcel between its generation and degeneration
points produces a temporal fluctuation. Thus,

C0 ¼ �lx
oC

ox
ð6:9Þ
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In the above, the subscript x denotes the quantity in x-direction. By definition of
turbulent diffusivity or eddy viscosity, the following expression can be written:

etx ¼ u0j jlx ¼ esx ð6:10Þ

where et is the turbulent diffusivity or eddy viscosity and es is the solid diffusivity.
In the above expression, the turbulent diffusivity is considered to be identical with
the solid diffusivity, which is the governing mechanism of diffusion of suspended
sediment particles. The Reynolds analogy, which relates solid diffusivity for mass
transfer to turbulent diffusivity for momentum transfer, is valid if the mechanisms
controlling both mass and momentum transfer are identical, that is, es = et.
However, its validity was tested by Brush et al. (1962), Majumdar and Carstens
(1967) and Jobson and Sayre (1970). They found es \ et and expressed the
inequality as es = bet, where b is the proportionality factor. For suspended sedi-
ment in turbulent flow of water, b depends on centrifugal acceleration induced on a
particle having a particle size d. As a result of which, evaluating b even under
simplified assumption is a difficult proposition. Using Eq. (6.10) into Eq. (6.9) and
then time-averaging yield

C0u0 ¼ �esx
oC

ox
¼ �bxetx

oC

ox
^ esx ¼ bxetx ð6:11Þ

Recollecting Fick’s second law, suspended particles can also be transported by
the molecular diffusion process, although it is a weak process as compared to
turbulent or solid diffusion. Equation (6.11) is therefore generalized as

C0u0 ¼ �ðem þ esxÞ
oC

ox
¼ �ðem þ bxetxÞ

oC

ox
ð6:12aÞ

Similarly, for other two directions, the expressions are

C0v0 ¼ �ðem þ esyÞ
oC

oy
¼ �ðem þ byetyÞ

oC

oy
^ esy ¼ byety ð6:12bÞ

C0w0 ¼ �ðem þ eszÞ
oC

oz
¼ �ðem þ bzetzÞ

oC

oz
^ esz ¼ bzetz ð6:12cÞ

Inserting Eq. (6.7), then averaging and using Eqs. (6.8a–c) and (6.12a–c) into
Eq. (6.6), the generalized three-dimensional advection–diffusion equation for a
low concentration of suspended sediment motion in incompressible fluid flow is
obtained as
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ot|{z}
I

þ �u
oC

ox
þ �v

oC

oy
þ �w

oC

oz
þ C

o�u

ox
þ o�v

oy
þ o�w

oz

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

¼ _C|{z}
III

þ o

ox
ðem þ esxÞ

oC

ox

� �
þ o

oy
ðem þ esyÞ

oC

oy

� �
þ o

oz
ðem þ eszÞ

oC

oz

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IV

ð6:13Þ

In Eq. (6.13), the term denoted by I represents the local change of concentration
due to time, the terms denoted by II correspond to the advection of concentration,
the term denoted by III signifies the rate of change of state of concentration, and
the terms denoted by IV characterize the diffusion and the mixing of concentration.
Importantly, according to the law of the conservation of mass, _C that is in fact the
sediment production rate or dissipation rate per unit volume is zero. In viscous
flow, the molecular diffusion is prevalent (em 6¼ 0) and the turbulent diffusion does
not exist (etx = ety = etz = 0). In contrast, in turbulent flow, molecular diffusion is
negligible (em & 0) in comparison to turbulent diffusion (etx, ety, etz � em).

6.2.3 Governing Equation of Vertical Distribution
of Sediment Concentration

The mechanism of suspended sediment motion occurs in a turbulent flow through
the transport of sediment particles by the velocity fluctuations and the mixing of
sediment particles with the surrounding fluid body. For two-dimensional steady-
uniform flow (zero-pressure gradient) under consideration, the streamwise veloc-
ity, being the main flow velocity, is in the downstream direction, and the time-
averaged vertical velocity component is zero, but the fluctuations of vertical
velocity component is nonzero. Therefore, the convection of suspended sediment
particles cannot be governed by the time-averaged velocity, but it should be
attributed to the complex diffusion process. Convective transport of the suspended
particles occurs when a fluid parcel containing suspended particles is transported
by the vertical velocity fluctuations to a zone of lower sediment concentration and
mixes with the surrounding fluid body with lower sediment concentration.
Therefore, the diffusion is toward the direction of decreasing concentration tending
to equalize the concentration. The transport rate of suspended sediment should
therefore be directly related to the gradient of its concentration.

In a two-dimensional steady-uniform flow, the sediment concentration varies
with and diffuses in the vertical direction only, but not in the streamwise or
transverse directions. Because of the gravitational effects on suspended sediment
particles, the concentration usually decreases in the upward direction. Under
this consideration, the advection–diffusion equation, given qC/qt = 0, qC/qx = 0,
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qC/qy = 0, q2C/qx2 = 0, o2C=oy2 ¼ 0, �v ¼ 0, o�u=oxþ o�v=oyþ o�w=oz ¼ 0, em ¼ 0

and _C ¼ 0, reduces to

�w
oC

oz
¼ o

oz
esz

oC

oz

� �
ð6:14Þ

In Eq. (6.14), the vertical velocity component �w is substituted by the terminal
fall velocity -ws (negative sign is due to downwards motion) of sediment and the
notation of solid or sediment diffusivity in z-direction esz by es. Integrating
Eq. (6.14) yields

es

oC

oz|ffl{zffl}
Entrainment flux

þ Cws|{z}
Depositional flux

¼ 0 ð6:15Þ

The integration constant, which is determined from the boundary condition
qC/qz = 0 for C = 0, is zero. Equation (6.15) represents that in a steady turbulent
flow, the equilibrium of the sediment suspension exists by balancing the upward
rate of sediment motion (entrainment flux) due to turbulent diffusion and the
downward volumetric rate of sediment settling (depositional flux) per unit area
(parallel to the bed) due to gravity. Schmidt (1925) was the first to derive
Eq. (6.15) and used it to describe the distribution of fine dust particles in atmo-
sphere. An interpretation of Eq. (6.15) is illustrated in Fig. 6.2.

The vertical distribution of suspended sediment concentration C can be deter-
mined from the solution of Eq. (6.15). Considering the importance of Eq. (6.15),
for better understanding of the readers, the mechanism of sediment diffusion, as it
occurs in an open-channel flow, can be explained further in an analytical way as
follows:

In a steady flow, as sediment particles are kept in suspension in fluid by the
turbulent fluctuations, they settle by their terminal fall velocity ws. Following the
Prandtl’s mixing length theory, fluid containing sediment particles are transported
from the lower level I, where the concentration (volumetric) of suspended sedi-
ment is C – dC, to the higher level II, where the concentration is C + dC (see
Fig. 6.3).

The fluid transports up with the amount of sediment qu (volume rate per unit
area) through the section AA (having a length of unity), which is a section in
between I and II. It is

qu ¼ ðw0 � wsÞðC � dCÞ ¼ ðw0 � wsÞ C � lz
oC

oz

� �
ð6:16Þ

The upward transport is reciprocated by a corresponding downward transport of
fluid with sediment. Analogous to Eq. (6.16), the downward sediment transport qd

is given by
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qd ¼ ðw0 þ wsÞðC þ dCÞ ¼ ðw0 þ wsÞ C þ lz
oC

oz

� �
ð6:17Þ

In case of a steady flow, the upward transport qu and the downward transport qd

are balanced (that is, qu = qd), which yields

Cws þ w0lz
oC

oz
¼ 0 ð6:18Þ

Analogous to Eq. (6.10) and introducing b [see Eq. (6.12c)], one can write,
|w0|lz & betz = esz; and thus, Eq. (6.18) becomes Eq. (6.15).

Here, it is important to have a discussion on b-factor. The b-factor in fact
describes diffusion of discrete sediment particles relative to that of a fluid parcel in
which sediment particles belong to. In the analysis, b is in general assumed to be
constant over entire flow depth. However, experimental results were interpreted to
show b & 1 for fine sediment particles that correspond to et & es; and b\ 1 for
course sediment particles that correspond to et [ es. On the other hand, using
experimental results of Coleman (1970), van Rijn (1984b) represented

C

z

C – dC

C + dC qu

C

qd

1

A A

II

I

lz 

lz 

Fig. 6.3 Mechanism of
sediment suspension in
turbulent flow

h

–εs C/ z

Cws z 

Fig. 6.2 Equilibrium of
sediment suspension by
settling and diffusion
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b 0:1\
ws

u�
\1

� �
¼ 1þ 2

ws

u�

� �2

ð6:19Þ

where u* is the shear velocity. Equation (6.19) suggests b[ 1 (contradictory to the
previous findings), which signifies a predominating influence of centrifugal
acceleration causing the particles to be moved outwards of an eddy. Thus, it results
in an increase in the effective mixing length of eddies.

6.2.4 Distribution of Sediment Concentration

For uniform turbulence, the solution of Eq. (6.15) with a simplest approximation et

(or in turn es) to be invariant of z can be obtained through integration, such that

C

Ca
¼ exp �ws

es

ðz� aÞ
� �

ð6:20Þ

where Ca is the reference concentration (by volume) at an elevation z = a from
the bed level and a is the reference level. According to Eq. (6.20), the concen-
tration distribution is an exponential. The concentration varies with distance from
the bed being maximum at z = a and decreasing with an increase in z. Importantly,
the diffusivity varies with the vertical distance in an open-channel flow or in a
natural stream. Therefore, the concentration distribution obtained from Eq. (6.20),
which is based on et as a constant, is merely approximate one and can hardly be
used for any problem dealing with realistic situation.

6.2.4.1 Rouse Equation

Separating the variables and replacing the partial differential by the total differ-
ential sign, Eq. (6.15) can be rearranged as

dC

C
þ ws

dz

es

¼ 0 ð6:21Þ

In the above equation, the diffusivity of sediment particles es is given as a
function of z, that is, es = es(z). Integration of Eq. (6.21) yields

C ¼ Ca exp �ws

Zz

a

dz

es

0
@

1
A ð6:22Þ
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For turbulent flow, the Reynolds shear stress s, according to Boussinesq
hypothesis, can be expressed as

s ¼ etq
d�u

dz
ð6:23Þ

The shear stress distribution along z in turbulent flow is given by

s ¼ s0 1� z

h

� �
ð6:24Þ

where s0 is the bed shear stress.
Assuming that the logarithmic law of velocity distribution is preserved over the

entire flow depth, one can write

d�u

dz
¼ u�

j
� 1

z
ð6:25Þ

where j is the von Kármán constant. From Eqs. (6.23)–(6.25), one gets

et ¼ ju�z 1� z

h

� �
^ es ¼ bet ¼ bju�z 1� z

h

� �
ð6:26Þ

Inserting es from Eq. (6.26) into Eq. (6.22) and performing the integration yield

C

Ca
¼ 1� ~z

~z
� ~a

1� ~a

� �f

^ ~z ¼ z

h
_ ~a ¼ a

h
^ f ¼ ws

bju�
ð6:27Þ

The exponent f is called Rouse number or suspension number. This equation of
concentration distribution, known as Rouse equation of concentration, was intro-
duced by Rouse (1937), who assumed b = 1 as an approximation. Equation (6.27)
can be used to calculate the concentration C at any distance z from the bed for a
given terminal fall velocity ws of the sediment size if a reference concentration Ca

at a reference level a is known.
The vertical distribution of suspended sediment concentration (C/Ca versus z1)

for different values of f according to Rouse equation is presented in Fig. 6.4, where
z1 = (z - a)/(h - a) and ~a is assumed as 0.05. Note that the concentration
C decreases with the distance z from the bed. Mathematically, at the bed (z = 0),
the concentration C becomes infinity breaking down Eq. (6.27). Einstein et al.
(1940) pointed out that the sediment suspension cannot be feasible in the so-called
bed layer, which has a thickness of two particle diameters. However, at the free
surface (z = h), the concentration C becomes zero, and at the reference level
z = a or z1 = 0, C = Ca, as already mentioned. It is attributed to the fact that
Eq. (6.26) that is known as Rousean formulation of vertical turbulent diffusivity et

predicts a parabolic form of distribution (Fig. 6.5).
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Coleman (1970) was the first to present the experimental variation of turbulent
diffusivity et with distance z from the bed. The observation was that the turbulent
diffusivity becomes invariant of z for the upper half (z [ 0.5h) of the flow depth
and is no longer a parabolic distribution; while for the lower half (z B 0.5h) of the
flow depth, the distribution of turbulent diffusivity is reasonably parabolic, as
shown in Fig. 6.5. It is pertinent to mention that van Rijn (1984b), among others,
introduced the variation of turbulent diffusivity obtained by Coleman (1970) in his
model, as discussed in succeeding subsection.
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Reverting to the Rouse equation, Fig. 6.6 shows that the computed distributions
of concentration using Eq. (6.27) with ~a ¼ 0:05 corresponded well with the
experimental data of Vanoni (1946). For small values of Rouse number f, the
concentration varies slowly with an increase in vertical distance z; while for large
values of f, the concentration varies rapidly with z. It is important to mention that
the distributional pattern of concentration C is primarily governed by the particle
size, expressed by the terminal fall velocity ws(d), and the flow, expressed by the
shear velocity u*. Therefore, small and large values of f correspond to fine and
coarse sediment sizes, respectively. Alternatively, for a given sediment size, an
increase in u* leads to a decrease in f and results in a slow variation C with
z. Although Rouse equation is widely used in prediction of concentration distri-
bution for given sediment size and flow condition, the primary shortcoming of the
equation is that it is derived from the logarithmic law of velocity distribution,
notwithstanding that the logarithmic law is legitimate only for the wall shear layer
(z B 0.2h) of flow having a universal von Kármán constant j (=0.41). Whether j
to be a universal constant in a sediment-laden flow is still in debate and is dis-
cussed further in Sect. 6.7.

Note that in this book, the symbol f with b 6¼ 1 is not differentiated from that with
b = 1. Rather symbol f [= ws/(bju*)] has been used all throughout mentioning
explicitly if b 6¼ 1 or b = 1. However, in literature, different symbols were some-
times used for f|b 6¼1 and f|b=1, where they can be easily be related to f|b=1/f|b6¼1 = b.
In an attempt to obtain the relationship for b, Chien (1954) suggested

b ¼
fjb¼1

fjb 6¼1
¼ exp �

L2fj2b¼1

p

 !

þ 2
p

� �0:5

Lfjb¼1

Zð2=pÞ0:5Lfjb¼1

0

exp½�0:5ðln zÞ2�dðln zÞ ^ L ¼ lnð1þ RjÞ

ð6:28Þ

where R is the coefficient that modifies universal j as Rj for defining mixing
length (l = Rjz). If f|b=1 is very large, then

2
p

� �0:5

Lfjb¼1

Zð2=pÞ0:5Lfjb¼1

0

exp½�0:5ðln zÞ2�dðln zÞ ! 1) fjb 6¼1! L�1

It means that f|b6¼1 approaches a constant. Alternatively, if f|b=1 is very small,
then
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2
p

� �0:5

Lfjb¼1

Zð2=pÞ0:5Lfjb¼1

0

exp½�0:5ðln zÞ2�dðln zÞ ! 0) fjb 6¼1! fjb¼1

From the curve fitting with the experimental data, Rj was found as 0.3. In later
period, van Rijn (1984b) suggested a refined expression for b in the context to
relate turbulent and sediment diffusivities [see Eq. (6.19)].

6.2.4.2 Lane and Kalinske Equation

Lane and Kalinske (1941) assumed es = et for b = 1. Equation (6.26) then
becomes

es ¼ ju�hð1� ~zÞ~z ð6:29Þ

The average value of es over flow depth h is given by

es ¼
1
h

Zh

0

esdz ¼
Z1

0

esd~z ¼ ju�h

Z1

0

ð1� ~zÞ~zd~z ð6:30Þ

Performing the integration of Eq. (6.30) and using the value of von Kármán
constant j = 0.41 yield
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Eq. (6.27)

Fig. 6.6 Comparison of vertical distribution of suspended sediment concentration obtained from
Rouse equation with experimental data of Vanoni (1946)
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es ¼
1

15
u�h ð6:31Þ

Introducing Eq. (6.31) into Eq. (6.22), the equation of concentration is obtained
as

C

Ca
¼ exp �15

ws

u�
ð~z� ~aÞ

� �
ð6:32Þ

Note that Eq. (6.32) is characterized by a depth invariant quantity es. It is
therefore quite similar to Eq. (6.20). However, this simple exponential distribution
is capable to provide a reasonable estimation of concentration distribution in wide
streams. Additionally, Eq. (6.32) produces a finite estimate of sediment concen-
tration at the free surface; while the Rouse equation is unable to do so.

6.2.4.3 Hunt Equation

Hunt (1954) considered the state of equilibrium of solid (suspended sediment) and
fluid phases, as was done to derive Eq. (6.13). For steady-uniform flow, he reduced
Eq. (6.13), that is applicable for both the phases, with em = 0 and the time-
averaged concentration to be constant over time and varying only with the vertical
distance. The equation of solid phase is obtained as follows:

�wb

oC

oz
� C

owb

oz
þ o

oz
esz

oC

oz

� �
¼ 0 ð6:33Þ

where wb is the velocity of suspended solid particle in z-direction. Likewise, for
the fluid phase, the equation is given by

��w
oC

oz
þ ð1� CÞ o�w

oz
þ o

oz
etz

oC

oz

� �
¼ 0 ð6:34Þ

The time-averaged vertical velocity component wb of sediment particles is
equal to the sum of the fluid velocity �w together with the terminal fall velocity of
the sediment particles in still water -ws. Thus, the velocity relationship is given by

wb ¼ �w� ws ð6:35Þ

Eliminating wb and �w from Eqs. (6.33) and (6.34) with Eq. (6.35) yields

esz
oC

oz
þ C

oC

oz
ðetz � eszÞ þ ð1� CÞCws ¼ 0 ð6:36Þ
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The above equation is regarded as the most generalize governing equation for
suspended sediment motion. However, to simplify the solution, the solid and
turbulent diffusivities were assumed same, that is, esz = etz = es. Thus, one gets

es

dC

dz
þ ð1� CÞCws ¼ 0 ð6:37Þ

The quantity (1 - C) that appears as a product in the second term of the left-
hand side of Eq. (6.37) makes Eq. (6.37) to differ from Eq. (6.15). The (1 - C)
results by accounting for the volume of sediment in setting the expression for the
sediment flux similar to those as shown in Fig. 6.2.

He hypothesized the distribution of streamwise velocity ub of suspended sed-
iment from the defect law

U � ub

u�
¼ � 1

js

ð1� ~zÞ0:5 þ Bs ln 1� 1
Bs

ð1� ~zÞ0:5
� �	 


ð6:38Þ

where U is the depth-averaged velocity, Bs is the constant of integration in the
velocity distribution law (Bs B 1), and js is the constant similar to the von Kármán
constant. Substituting Eq. (6.38) into Eq. (6.23) and using Eq. (6.24), the sediment
diffusivity es (= et for b = 1) is derived as

es ¼ 2jshu�ð1� ~zÞ½Bs � ð1� ~zÞ0:5� ð6:39Þ

The solution of Eq. (6.37) using Eq. (6.39) is obtained as follows:

C

1� C
� 1� Ca

Ca
¼

ffiffiffiffiffiffiffiffiffiffiffi
1� ~z

1� ~a

r
� Bs �

ffiffiffiffiffiffiffiffiffiffiffi
1� ~a
p

Bs �
ffiffiffiffiffiffiffiffiffiffiffi
1� ~z
p

 !f0

^ f0 ¼
ws

jsBsu�
ð6:40Þ

It is known as Hunt equation. Equation (6.40) agrees well with Rouse equation
(Eq. 6.27) for the values of Bs between 0.99 and 1 and js between 0.31 and 0.44,
that Hunt determined using the experimental data of Vanoni (1946). However, due
to complex form of Eq. (6.40), it has not been widely used so far, because
Eq. (6.40) requires two unknown parameters (Bs and f0) to be determined; while
Eq. (6.27) consists of a single unknown (f) that makes possible for a better fitting
of experimental data.

Importantly, for large sediment concentration, Eq. (6.34) should be used. If the
sediment diffusivity is obtained from the relationship given by Einstein and Chien
(1955) as

s ¼ ð1þ DCÞqet

d�u

dz
ð6:41Þ

then the governing equation of large sediment concentration is
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dC

dz
þ ð1þ DCÞð1� CÞCws

q
s
� d�u

dz
¼ 0 ð6:42Þ

where D is the submerged relative density (=s – 1), s is the relative density of
sediment (=qs/q), qs is the mass density of sediment, and q is the mass density of
water.

However, for small sediment concentration, Eq. (6.15) can be effectively used.

6.2.4.4 Zagustin Equation

According to Rouse equation (Eq. 6.27), the magnitude of sediment concentration
C at the free surface z = h vanishes. However, this result does not correspond to
that observed in the stream flows with suspended sediment. The turbulent diffusion
does not exist at the free surface (etz = 0), but the sediment diffusion persists there
(es [ 0). For turbulent diffusion, according to the mixing length theory [see Eq. (3.24)],
the relationship of the Reynolds shear stress �qu0w0 holds; and it shows that the
shear stress is generated by the diffusion of eddies only at the position where u0 and
w0 have a certain degree of correlation. On the other hand, sediment suspension is
primarily governed by |w0| that is smaller than |u0|, as turbulence in a stream flow is
anisotropic in nature. Thus, even if u0 and w0 are not correlated, sediment can still
be moved. Therefore, although the turbulent diffusion does not persist at z = h,
sediment exchange can be possible at that level. Importantly, at the free surface,
the logarithmic law of velocity distribution does not hold. Instead, the following
equation makes possible to estimate the velocity near the free surface

umax � �u

u�
¼ 2

j
arc tanhð1� ~zÞ1:5 ð6:43Þ

where umax is the maximum value of �u which occurs at z = h. The mixing length
l and the turbulent diffusivity etz are then

l ¼ j
3

h½1� ð1� ~zÞ3� ð6:44Þ

et ¼
j
3

u�hð1� ~zÞ0:5½1� ð1� ~zÞ3� ð6:45Þ

Remembering the relationship es = bet, the differential equation of the vertical
distribution of sediment concentration can be obtained as

Cws þ b
j
3

u�ð1� ~zÞ0:5 1� ð1� ~zÞ3
h i dC

d~z
¼ 0 ð6:46Þ

The solution of Eq. (6.46) that was obtained by Zagustin (1968) is given by
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C

Ca
¼ expð�f XÞ ð6:47Þ

where

X ¼ 1
2

ln
ð1� ~zÞ1:5 þ 1
h i

ð1� ~zÞ0:5 � 1
h i3

ð1� ~zÞ1:5 � 1
h i

ð1� ~zÞ0:5 þ 1
h i3

�������

~z¼~z

~z¼~a

þ
ffiffiffi
3
p

arc tan �
ffiffiffi
3
p ð1� ~zÞ

~z

0:5
" #�����

~z¼~z

~z¼~a

ð6:48Þ

In Fig. 6.7, a comparison is presented between the distributions of suspended
sediment concentration obtained from Eqs. (6.27) and (6.47). It is evident that
Eq. (6.47) provides a finite (nonzero) estimation of concentration at the free sur-
face. However, Eq. (6.47) underestimates Rouse equation to some extent in most
of the portions of the flow depth.

6.2.4.5 van Rijn Equation

The differential equation of sediment concentration that was used by van Rijn
(1984b) is similar to Eq. (6.37), but in slightly modified form with a replacement
of ws by wsc. It is

es

dC

dz
þ ð1� CÞCwsc ¼ 0 ð6:49Þ

where wsc is the terminal fall velocity of sediment particles in sediment-laden
water. It is less than the terminal fall velocity ws of sediment particles in the clear
water. The relationship used by him was wsc = ws(1 - C)4, which was proposed
by Richardson and Zaki (1954) [see Eq. (1.44)].

He divided the flow into two layers, namely the lower and the upper half. As
was experimentally observed by Coleman (1970), he considered a parabolic-
constant distribution of et that gives a parabolic variation in the lower half
(z \ 0.5h) and a constant value in the upper half (z C 0.5h) (Fig. 6.5), such that

etð~z\0:5Þ ¼ 4~zð1� ~zÞetjmax ð6:50aÞ

etjmaxð~z� 0:5Þ ¼ 0:25ju�h ð6:50bÞ

The sediment diffusivity is described by

es ¼ b/et ð6:51Þ
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where / is a factor accounting for the damping of fluid turbulence in the presence
of suspended sediment particles. However, van Rijn (1984b) suggested an
empirical relationship as / = 1 + (C/Cmax)0.8 - 2(C/Cmax)0.4.

Setting / = 1 (that is, negligible damping effect) and concentration depended
terminal fall velocity of sediment, the concentration distribution is obtained by
integrating Eq. (6.49) as

ln
C

1� C

� �
þ
X4

n¼1

1
nð1� CÞn

" #�����
C¼C

C¼Ca

¼ ln
1� ~z

~z
� ~a

1� ~a

� �f

for ~z\0:5 ð6:52aÞ

ln
C

1� C

� �
þ
X4

n¼1

1
nð1� CÞn

" #�����
C¼C

C¼Ca

¼ �f ln
~a

1� ~a

� �
þ 4ð~z� 0:5Þ

� �
for ~z� 0:5

ð6:52bÞ

For small concentration (C \ Ca \ 0.001), Eqs. (6.52a) and (6.52b) reduce to
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Fig. 6.7 Comparison between the vertical distributions of suspended sediment concentration
obtained from Eqs. (6.27) and (6.47)
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C

Ca
ð~z\0:5Þ ¼ 1� ~z

~z
� ~a

1� ~a

� �f

ð6:53aÞ

C

Ca
~z� 0:5ð Þ ¼ ~a

1� ~a

� �f

exp �4f ~z� 0:5ð Þ½ � ð6:53bÞ

6.2.4.6 Ni and Wang Equation

Ni and Wang (1991) started the analysis with Eq. (6.15), as governing equation,
with the assumption that es (=et for b = 1) is characterized by the vertical com-
ponent of the Lagrangian trajectory of particle, called sediment mixing length ls
being different from the so-called Prandtl’s mixing length l. Hence,

es ¼
ls
2

w0j j ð6:54Þ

As w0 is assumed to follow the Gaussian distribution, then

f ðw0Þ ¼ 1ffiffiffiffiffiffi
2p
p ffiffiffiffiffiffiffi

w02
p exp � w02

2w02

� �
; f w0j j � 0

� �
¼ 2ffiffiffiffiffiffi

2p
p ffiffiffiffiffiffiffi

w02
p exp � w02

2w02

� �

ð6:55aÞ

therefore

w0j j ¼
Z1

0

f w0j j
� �

w0dw0 ¼
ffiffiffi
2
p

r ffiffiffiffiffiffiffi
w02

p
ð6:55bÞ

The relationship that was used by them for the terminal fall velocity wsc of sed-
iment particles in sediment-laden water was wsc = ws(1 - C)a, where a is an
exponent dependent on particle size.

Replacing ws by wsc and using the above relationships into Eq. (6.15), the
differential equation of sediment diffusion is given by

dC

dz
¼ �

ffiffiffiffiffiffi
2p
p ws

u�
ð1� CÞaC

u�

ls

ffiffiffiffiffiffiffi
w02

p ^ fjb¼1�
ffiffiffiffiffiffi
2p
p ws

u�
ð6:56Þ

Since the experiments by Grass (1971) proved that w02 � u2
� for almost entire

flow depth (except in near-bed region), the characteristic Eulerian length l0 related
to vertical motion of sediment can be shown identical with ls as follows:
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l0 ¼ ls

ffiffiffiffiffiffiffi
w02

p
u�
¼ ls ^

ffiffiffiffiffiffiffi
w02

p
� u� ð6:57Þ

Analogous to Prandtl’s mixing length l, a typical expression for l0 can be put
forward considering the effects of sediment suspension as

l0

z
¼ ~zð1� ~zÞm ð6:58Þ

where m is an exponent accounting for the effects of sediment–water interaction on
the length scale of vertical motion of sediment. Equation (6.58) is quite similar to
the traditional expression for turbulent diffusivity or eddy viscosity.

Using Eqs. (6.57) and (6.58) into Eq. (6.56) and then integrating yield

ZC

Ca

dC

ð1� CÞaC
¼ �

Z~z

~a

f � 1
~zð1� ~zÞm d~z ð6:59Þ

For low concentration, Eq. (6.59) with a = 0 becomes

C

Ca
¼ exp �f

Z~z

~a

1
~zð1� ~zÞm d~z

2
4

3
5 ð6:60Þ

For m taking positive integer values, a progressional solution is obtained as

C

Ca
¼ ~a

~z
� 1� ~z

1� ~a

� �f

� exp f
Xn¼m�1

n¼1

1
nð1� ~zÞn

" #�����
~z¼~z

~z¼~a

8<
:

9=
; ð6:61Þ

On the other hand, for m B 1 taking integer values, another progressional
solution is obtained as

C

Ca
¼ ~a

~z

� �f

� exp f
Xi¼m

i¼1

ð�1Þi

i
� mðm� 1Þ � � � ðm� iþ 1Þ

i!
ð�~zÞj~z¼~z

~z¼~a

" #( )
ð6:62Þ

where m takes absolute values. However, Ni and Wang (1991) also used the
following progressional method for the integration of Eq. (6.60):

f ð1� ~zÞ ¼
Z

1
~zð1� ~zÞm d~z ¼

Xm¼n

m¼0

~z1þn�m

1þ n� m
ð6:63aÞ
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f ð~zÞ ¼
Z

1
~zmð1� ~zÞ d~z ¼�

Xm¼n

m¼0

ð1� ~zÞ1þn�m

1þ nþ m
ð6:63bÞ

Therefore, the generalized equation of concentration distribution can be
obtained as

C

Ca
¼ exp ff ð~zÞj~z¼~z

~z¼~a

h i
ð6:64Þ

Some of the interesting features of the integral equation of concentration
(Eq. 6.60) can be furnished as follows:

1. With m = 0, Laursen (1980) equation can be obtained from Eq. (6.60). It is

C

Ca
¼ a

z

� �f

ð6:65Þ

2. With m = 1, Rouse (1937) equation (Eq. 6.27) is obtained.

3. With m = 0.8, Barenblatt (1956) equation can be obtained with equivalent

substitution of 2ð1� ~zÞ½1� ð1� ~zÞ0:5� and ð1� ~zÞ0:8 from Eq. (6.60) as

C

Ca
¼

ffiffiffiffiffiffiffiffiffiffiffi
1� ~z
p
ffiffiffiffiffiffiffiffiffiffiffi
1� ~a
p � 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� ~a
p

1�
ffiffiffiffiffiffiffiffiffiffiffi
1� ~z
p

 !f

ð6:66Þ

4. With m = 0.5, Tanaka and Sugimoto (1958) equation can be obtained from
Eq. (6.60) as

C

Ca
¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� ~z
p

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� ~a
p � 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� ~a
p

1�
ffiffiffiffiffiffiffiffiffiffiffi
1� ~z
p

 !f

ð6:67Þ

6.2.4.7 Umeyama Equation

From the data analysis, Umeyama and Gerritsen (1992) observed that the Prandtl’s
mixing length theory, used to derive the velocity equation, fails to agree with the
experimental data for sediment-laden flows in the flow region outside the near-bed
layer. Therefore, in order to improve mixing length hypotheses, Umeyama (1992)
proposed a new mixing length lu, that is
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lu ¼ jh~zð1� ~zÞ0:5½1þbðC=CaÞ� ð6:68Þ

Analogous to other theoretical development in sediment-laden flows, the
Reynolds shear stress s is expressed as

s ¼ ð1þ DCÞql2
u

d�u

dz

����
���� d�u

dz
ð6:69Þ

Equating the right-hand side of Eq. (6.69) with that of Eq. (6.24), it leads to

d�u

dz
¼ ðs0=qÞ0:5

jz
� 1

ð1� ~zÞ0:5bðC=CaÞð1þ DCÞ0:5
^ u� ¼

s0

q

� �0:5

ð6:70Þ

Using Eq. (6.70), the turbulent diffusivity et is obtained from Eq. (6.23) as

et ¼ ju�h~zð1� ~zÞ1þ0:5bðC=CaÞð1þ DCÞ0:5 ð6:71Þ

The new mixing length lu is assumed to be independent of the sediment con-
centration C. So, lu is a function of z alone. Then, the turbulent diffusivity et is
modified as

et ¼ ju�h~zð1� ~zÞ1þ0:5bðC0:1h=CaÞð1þ DC0:1hÞ0:5 ð6:72Þ

where C0.1h is the suspended sediment concentration at z = 0.1h.
Substituting Eq. (6.72) into Eq. (6.15) with es = bet and then integrating yield

C

Ca
¼ A exp � f

1þ DC0:1hð Þ0:5
ln~zþ 1þ b

2
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� �
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�(
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2
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Ca

� �
. . . nþ b

2
� C0:1h

Ca

� �
~zn

n

�


ð6:73Þ

where A is a constant to be determined from the boundary condition.

6.2.4.8 Other Equations

Lavelle and Thacker (1978) assumed that the turbulent diffusivity et (=es for
b = 1) is a function of distance from the bed. It is

et ¼ ae þ beh~zð Þ 1� ~zð Þ ð6:74Þ
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where ae and be are the empirical constants. Using Einstein and Chien’s (1955)
flume data, the ranges of ae and be for u* = 0.1009 - 0.1245 m s-1 were evalu-
ated as 5.8 9 10-8 - 1.5 9 10-6 m2 s-1 and 0.0146 - 0.401 m s-1, respec-
tively. The relationship used by them for the terminal fall velocity wsc of sediment
particles in sediment-laden flows is wsc = ws(1 - C)5.

Replacing ws by wsc [and expressing wsc = ws(1 - C)5] and using Eq. (6.74)
into Eq. (6.15), the concentration distribution is obtained as

ln
C

1� C

� �
�
X1
n¼2

1� Cð Þ1�n

1� n

" #�����
C¼C

C¼Ca

¼ � ws

be þ ae=hð Þ ln
ae=ðbehÞ½ � þ ~z

1� ~z

	 
����
~z¼~z

~z¼~a

ð6:75Þ

Willis (1979) argued that the turbulent diffusivity et (=es for b = 1) can be
expressed by an error function as

et ¼
ffiffiffi
2
p ju�h

6
exp �P2

2

� �
ð6:76Þ

where quantity P can be obtained from the following relationship:

ZP

�1

exp �0:5r2
 �

dr ¼
ffiffiffiffiffiffi
2p
p

~z ð6:77Þ

Then, the concentration distribution is obtained as

C

Ca
¼ exp � 3fffiffiffi

p
p

� �
P� Pað Þ

� �
ð6:78Þ

where Pa = P|z=a.
Antsyferov and Kos’yan (1980), who argued that the Rouse equation of con-

centration cannot describe the concentration distribution if ws [ 0.27u*, proposed
a two-layer model for the distribution of suspended sediment concentration. They

pointed out that in the vicinity of the bed,
ffiffiffiffiffiffiffi
w02

p
approximately equals u*, and

therefore, et and es differ significantly from each other. Based on the analysis of
experimental data, es is proposed as

es

u�z
¼ R�zð1� ~zÞ

2:8R�z þ 15:7
tanh

u�
ws

~z

� �
þ 1

0:14Ds
� t2=3

g1=3z

�ud

u�
� ws

u�

� �
exp �30

z

d

� �

ð6:79Þ

where R*z = u*z/t, t is the coefficient of kinematic viscosity of water, �ud is the
time-averaged flow velocity close to the bed, given by 1.25U[log(8.8 h/d)]-1, and
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d is the sediment size. The concentration distribution can be determined from
numerical integration of the following integration obtained from Eq. (6.22):

C

Ca
¼ exp �wsh

Z~z

~a

1
es

d~z

0
@

1
A ð6:80Þ

Itakura and Kishi (1980) recognized that the logarithmic law of velocity dis-
tribution does not satisfactorily hold in sediment-laden flows. Instead, the fol-
lowing velocity defect law makes it possible to estimate the velocity distribution in
sediment-laden flows:

�u� umax

u�
¼ 2

j
ln(~zÞ þ h�ð~z� 1Þ½ � ^ h� ¼

2:8Dgshws
�C

u2
�

ð6:81Þ

where �C is the depth-averaged sediment concentration. Using Eqs. (6.26) and
(6.81) into Eq. (6.22), the concentration distribution is derived as

C

Ca
¼ ~a

~z

1� ~z

1� ~a

� �1þh�
" #f

ð6:82Þ

As C remains unknown a priori, Eq. (6.82) is to be solved by trial and error
method.

McTigue (1981) divided the flow into two layers, such as an inner layer
(z B 0.2h) and an outer layer (z [ 0.2h). The sediment diffusivity is assumed as

esðz	 0:2hÞ ¼ k1u�z; esðz [ 0:2hÞ ¼ k2u�h ð6:83Þ

where k1 and k2 are the coefficients and were evaluated using a lone experimental
run as 0.35 and 0.11, respectively. The concentration distribution is given by

C

Ca
ð~z	 0:2Þ ¼ z

a

� ��ws=ðk1u�Þ
ð6:84aÞ

C

Ca
ð~z [ 0:2Þ ¼ exp � ws

k2u�
ð~z� ~aÞ

� �
ð6:84bÞ

Bose and Dey (2009b) proposed that it is convenient to fit a concentration
distribution by an empirical equation as

C

Ca
¼ z

a

� ��p0

þ g0
z

a

� �p1

ð6:85Þ

The exponents p0, p1 and coefficient g0 being dependent on sediment size and flow
condition were determined empirically.
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6.2.5 Stratification Effects on Concentration Distribution

Stream flows carrying suspended sediment are subjected to a variable sediment
concentration in the vertical. The concentration C of suspended sediment
decreases with an increase in elevation z above the bed. It implies that the mass
density of the fluid–sediment mixture qm, given by qm = (1 + DC)q, also
decreases with an increase in z. In particular, the flow region close to the bed,
where the sediment concentration is high behaving as a concentrated fluid, is
referred to as a heavy-fluid zone. The remaining portion of the flow having rela-
tively low sediment concentration has a little change of mass density of the fluid–
sediment mixture from that of fluid and is called light-fluid zone. The heavy-fluid
zone is much shallow as compared to the light-fluid zone. This stable stratification
slows down the process of turbulent mixing of the fluid momentum and the sed-
iment mass in the vertical. To be more explicit, turbulence is produced in the
vicinity of the bed and the heavy-fluid zone acts as a filter to dissipate the tur-
bulence level because the turbulent kinetic energy is spent to retain the sediment
particles in suspension in this zone. As a result of which, the vertical distributions
of both streamwise flow velocity and suspended sediment concentration are
modified, as the former becomes faster in the vertical than the logarithmic law
distribution and the latter decreases more rapidly in the vertical than the distri-
bution obtained from the Rouse equation. It is, however, pertinent to mention that
both the logarithmic law and the Rouse equation are devoid from the consideration
of the stratification concept.

The concept of self-stratification formed by the suspended sediment in sedi-
ment-laden flows was brought in by Smith and McLean (1977a, b) and McLean
(1991, 1992). Following the concept of self-stratification, García (2008) modified
the sediment diffusivity esd due to stratification effects by introducing a function of
the gradient Richardson number /R(RG) as a product of es (without stratification
effects) and obtained the gradient Richardson number RG as follows:

esd ¼ es/RðRGÞ ^ esðb ¼ 1Þ ¼ ju�z 1� z

h

� �
) RG ¼ �

DgðdC=dzÞ
ðd�u=dzÞ2

ð6:86Þ

where �u is the streamwise time-averaged flow velocity at an elevation z.
The function of the gradient Richardson number, /R(RG), which reduces with

an increase in gradient Richardson number RG as an effect of damping of turbu-
lence due to flow stratification, was introduced by Smith and McLean (1977a, b) as

/RðRGÞ ¼ 1� 4:7RG ¼ 1þ 4:7
DgðdC=dzÞ
ðd�u=dzÞ2

ð6:87Þ

In the above equation, /R(RG ? 0) ? 1 corresponds to no stratification effects,
and /R(RG = 0.21) = 0 refers to no turbulent mixing (that is, a viscous flow).
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Using Eqs. (6.86) and (6.87) into Eq. (6.22) yields the concentration equation

C

Ca
¼ exp �ws

Zz

a

ju�z 1� z

h

� �h i�1
1þ 4:7

DgðdC=dzÞ
ðd�u=dzÞ2

" #�1

dz

8<
:

9=
; ð6:88Þ

Equation (6.88) converges to the Rouse equation (nonstratification case), as
/R(RG ? 0) ? 1. However, Eq. (6.88) can be solved, if the term d�u=dz is known
for the self-stratification case.

Smith and McLean (1977a) approximated the equation of Reynolds shear stress
in an open-channel flow with a zero-pressure gradient as

esd

d�u

dz
¼ s0 1� z

h

� �
ð6:89Þ

The flow velocity at the reference level can be obtained from the logarithmic
law as

�ujz¼a¼
u�
j

ln
z

z0

� �����
z¼a

¼ u�
j

ln 30
a

ks

� �
^ z0 ¼

ks

30
ð6:90Þ

where z0 is the zero-velocity level and ks is the Nikuradse’s equivalent sand
roughness.

Using Eq. (6.86) into Eq. (6.89) and then integrating Eq. (6.89) with boundary
condition given by Eq. (6.90) yield the equation of velocity distribution as

�u ¼ u�
j

ln
a

z0

� �
þ
Zz

a

z�1 1þ 4:7
DgðdC=dzÞ
ðd�u=dzÞ2

" #�1

dz

8<
:

9=
; ð6:91Þ

Note that Eq. (6.91) converges to the universal logarithmic law (nonstratifica-
tion case), as /R(RG ? 0) ? 1.

Equations (6.88) and (6.91) constitute an implicit solution for the concentration
and the velocity distributions. García (2008) proposed an iterative method of
solution2 for the concentration C and the velocity �u from Eqs. (6.88) and (6.91).

2 The iterative method is as follows:
Step 1: To initiate the computation, calculate C|i=0 and �uji¼0 from the Rouse equation

(Eq. 6.27) and the logarithmic law (Eq. 4.27), respectively.
Step 2: The values of C|i=0 and �uji¼0 obtained in Step 1 are used in Eqs. (6.88) and (6.91)

with stratification effects, as given by Eq. (6.87) that is introduced to Eqs. (6.88) and (6.91).
Step 3: Continue the iterations for C|i=i and �uji¼i, until the solutions for C and �u converge to a

minimum error (say 0.1 %).
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Wright and Parker (2004) used an approach similar to that of García (2008) for the
estimation of concentration and velocity distributions. The computational results
agreed well with the observed data.

6.2.6 Nonequilibrium Sediment Concentration
Distribution

Brown (2008) introduced a formulation for the nonequilibrium distribution of
sediment concentration, using the approach used by Nielsen (1992) and Fujita and
Mizuyama (2000) to describe the effects of convective flux on the equilibrium
distribution of sediment concentration. He considered a generalized quasi-steady
flow condition with nonequilibrium suspended sediment flux, which is liable to net
erosion or deposition. It was assumed that on the horizontal plane, the spatial
variation of concentration is dominant over temporal variation. Hence, the tem-
poral derivative of concentration was neglected. Figure 6.8, which is modified
form of Fig. 6.3, illustrates the relevant contributions to the vertical sediment flux
(positive in upwards) balance.

According to Prandtl’s mixing length theory, fluid parcel containing sediment
particles having concentration C – dC are transported from the lower level I up to
the higher level II, where the concentration is C + dC (see Fig. 6.8). In addition,
in case of nonequilibrium suspended sediment flux, qz is the nonequilibrium
sediment flux transported in the upward direction through lower level I and
qz + dqz is the nonequilibrium flux transported in the upward direction through
upper level II. The nonequilibrium flux was assumed to vary linearly with mixing
length.

The fluid (volume per unit time and area) moves up with the amount of sedi-
ment qu through the section AA (having a length of unity), which is a section in
between I and II. It is

qu ¼ w0 � wsð Þ C � lz
oC

oz

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

C�dC

ð6:92Þ

The downward sediment flux qd through the section AA is given by

qd ¼ w0 þ wsð Þ C þ lz
oC

oz

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

CþdC

ð6:93Þ
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The dynamic equilibrium exists balancing the net upward sediment flux (qu - qd)
by the total nonequilibrium suspended sediment flux. Hence,

w0 � wsð Þ C � lz
oC

oz

� �
� w0 þ wsð Þ C þ lz

oC

oz

� �
¼ qz þ qz þ 2lz

oqz

oz

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

qzþdqz

ð6:94Þ

Simplifying Eq. (6.94), it gives

Cws þ w0lz
oC

oz
þ qz þ lz

oqz

oz
¼ 0 ð6:95Þ

Nielsen (1992) and Fujita and Mizuyama (2000) also obtained an equation,
which was analogous to Eq. (6.95), in describing the contribution from convective

flux. Remembering that |w0|lz & bet = es and w02 � u2
� (Grass 1971), Eq. (6.95),

by replacing partial differential to total differential sign, becomes

Cws þ es

dC

dz
þ qz þ

es

u�
� dqz

dz
¼ 0 ð6:96Þ

As qz(es = 0) = -Cws from Eq. (6.96), one can establish the ratio of qz (at any
elevation z) to qz|z=a (that is, at z = a) and express dqz/dz as

qz

qzjz¼a

¼ C

Ca
) dqz

dC
¼ qzjz¼a

Ca
, )

dqz

dz
¼ dqz

dC
� dC

dz
¼ qzjz¼a

Ca
� dC

dz
ð6:97Þ
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Fig. 6.8 Schematic of nonequilibrium sediment flux in turbulent flow
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Using Eq. (6.97) into Eq. (6.96), the following differential equation of con-
centration can be obtained

dC

C
¼ �

ws þ
qzjz¼a

Ca

� �

es 1þ 1
u�
�
qzjz¼a

Ca

� � dz ^ es ¼ bju�z 1� z

h

� �
ð6:98Þ

Integrating Eq. (6.98) within limit z(C = Ca) = a to z(C = C) = z and
expressing the resulting equation in nondimensional form yield

C

Ca
¼ 1� ~z

~z
� ~a

1� ~a

� �fN

^ fN ¼
1þ ~qzjz¼a

bj
u�
ws

þ ~qzjz¼a

� ��1

_ ~qzjz¼a¼
qzjz¼a

Caws

ð6:99Þ

Note that if the equilibrium of suspended sediment exists, then qz|z=a = 0 and
Eq. (6.99) becomes the Rouse equation (Eq. 6.27).

6.2.7 Vertical Distribution of Sediment Concentration Due
to Nonuniform Streamwise Variation of Concentration

For nonuniform sediment transport, the spatial variation of sediment flux is
associated with changes in sediment bed elevation that reflects aggradations or
degradations. The rate of aggradations or degradations is related to the spatial
variation of sediment flux by the continuity equation of sediment transport given
by Exner (1925). The Exner equation corresponding to the bed-load transport with
migration of bedforms is given by Eq. (5.48), which is modified here in presence
of sediment suspension as

oðqb þ qsÞ
ox

þ o

ot

Zz

g

Cdzþ ð1� q0Þ
og
ot
¼ 0 ð6:100Þ

where qb is the bed-load transport rate in volume per unit time and width, g is the
elevation of the sediment bed with respect to a horizontal reference, x is the
streamwise direction, and q0 is the porosity of sediment. Note that the term (1 - q0)
converts the bulk volume of bed elevation change per unit length into the net volume
of sediment that is used for qb and qs. Equation (6.100) was used by Bose and Dey
(2009a) in analyzing the formation of sand waves.

For nonuniform sediment transport, the diffusion phenomenon influences
suspended sediment entrainment or deposition. The finer fractions of suspended
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sediment particles involve considerable time period and long distance in settling or
in attaining its transport capacity. As a result of which the suspended sediment
may not respond and adjust immediately according to the flow condition. The
spatial variation of concentration of suspended sediment over a sediment bed
downstream of a rigid boundary following an introduction of a clear-water flow is
depicted schematically in Fig. 6.9. When there is a rapid streamwise variation of
suspended sediment concentration, the diffusion effects become pronounced. Due
to which, a certain development length is required to attain the equilibrium con-
centration. For a mathematical treatment of such problems, the development
length for suspended sediment flux is thus required to be included.

The nonuniform suspended sediment concentration can be computed from the
advection–diffusion equation (Eq. 6.13), which reads for time-averaged variables
on the vertical plane (xz) after replacing �w by �w� ws and using esx = esz = es as
follows (van Rijn 1986):

oC

ot
þ �u

oC

ox
þ ð�w� wsÞ

oC

oz
þ C

o�u

ox
þ o

oz
ð�w� wsÞ

� �
� o

ox
es

oC

ox

� �
� o

oz
es

oC

oz

� �

¼ 0

ð6:101Þ

For a steady sediment transport rate, qC/qt = 0, the derivatives in streamwise
direction are qes/qx (
 qes/qz) & 0 and q2C/qx2 (
 q2C/qz2) & 0. Hence, con-
sidering a steady transport rate and neglecting the streamwise diffusive transport
that has a smaller order of magnitude in comparison to other terms in Eq. (6.101),
Eq. (6.101) reduces to

�u
oC

ox
þ ð�w� wsÞ

oC

oz
þ C

o�u

ox
þ o

oz
ð�w� wsÞ

� �
� o

oz
es

oC

oz

� �
¼ 0 ð6:102Þ

The solutions of the above advection–diffusion equation (Eq. 6.102) have been
mainly obtained numerically for one- and two-dimensional approaches. In a one-
dimensional approach, the depth-averaged streamwise variation of suspended
sediment concentration is considered (Mei 1969; Hjelmfelt and Lenau 1970;
Zhang et al. 1983; Cheng 1985). In an attempt to determine depth-averaged sus-
pended sediment concentration �C, Zhang et al. (1983) started with following
equation:

�u
oC

ox
¼ o

oz
es

oC

oz
þ Cws

� �
ð6:103Þ

Then, integrating across the flow depth for depth-averaging, they obtained
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d�C

dx
¼ � aews

q
ð�C � �CeÞ ð6:104Þ

where q is the flow discharge per unit width, �Ce is the depth-averaged equilibrium
concentration of sediment or the transport capacity of a specific flow, and ae is the
coefficient characterizing the rate of attaining the transport capacity. The general
solution is

�C ¼ Aþ
Z

aews

q
exp

Z
aews

q
dx

� �
dx

� �
exp �

Z
aews

q
dx

� �
ð6:105Þ

where A is a constant of integration, which can be obtained from the initial value
of the concentration (C|x=0) at the starting point (x = 0) of the sediment bed.
Zhang et al. (1983) gave an approximate numerical solution for Eq. (6.105) for a
given particle size as

ð�CÞjþ1 � ð�CeÞjþ1 ¼ exp � aews

q
Dx

� �
½ð�CÞj � ð�CeÞjþ1� ð6:106Þ

where j is the cross section index counted from upstream to downstream and Dx is
the spacing of grids. The coefficient ae should be determined separately for the
cases of deposition and entrainment due to different processes. According to Zhang
et al. (1983), they were

aeðdepositionÞ ¼ 1þ 1
2
� 6ws

ju�
; aeðentrainmentÞ ¼ p2 ju�

6ws

þ 1
4
� 6ws

ju�
ð6:107Þ
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Fig. 6.9 Schematic of nonuniform streamwise variation of sediment concentration as a clear-water
flowing over a rigid boundary and entering a sediment bed
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However, Chang (1988) gave a finite difference form of Eq. (6.105) in terms of
size fractions for sediment having a size fraction index i as

ð�CiÞjþ1 ¼ ð�CiÞj þ
aewsið�CeiÞjþ1=2

qiþ1=2
exp � aewsi

qiþ1=2
Dx

� �
Dx

" #
exp � aewsi

qiþ1=2
Dx

� �

ð6:108Þ

On the other hand, in a two-dimensional approach, the vertical distributions of
suspended sediment concentration and streamwise flow velocity under accelerated
(qU/qx [ 0) and decelerated (qU/qx \ 0) conditions are employed (van Rijn
1986).

6.2.8 Reference Level and Reference Concentration

The depth a and the concentration Ca that appear in equations of concentration
distribution proposed by various investigators are called reference level and ref-
erence concentration, respectively. The reference level a, in fact, is the demar-
cation line between the bed-load and the suspended-load transport.

Einstein (1950) assumed that the bed-layer thickness, which is denoted by db in
Chap. 5, is twice the bed particle size and set as z = a = 2d. The average particle
velocity within the bed layer �ub can be found to be �ub ¼ 11:6u�. By definition of
bed-load transport rate [see Eq. (5.3)], qb ¼ Ca�uba, the reference concentration Ca

is then

Ca ¼
qb

�uba
¼ qb

23:2u�d
¼ Ub

23:2H0:5 ^ H ¼ s0

Dqgd
_ Ub ¼

qb

ðDgd3Þ0:5

ð6:109Þ

where H is the Shields parameter and U is the bed-load transport intensity.
Bijker (1971) suggested that a could be taken as the bed roughness height ks and

Ca could be the concentration of the bed-load transport rate qb. He assumed that
the bed-load transport takes place in the bed layer from z = 0 to a (=ks) with a
constant sediment concentration Ca. He argued that in a hydraulically rough flow,
there is still a viscous sublayer, which starts from z = 0 extending up to d0 where
the linear velocity distribution matches tangentially with the logarithmic law of
velocity distribution. The hypothesis therefore relies on a thickness of the viscous
sublayer in hydraulically rough flow which is much smaller than that in hydrau-
lically smooth flow, although the hypothesis seems to be questionable if the vis-
cous sublayer at all exists in a hydraulically rough flow. However, he obtained
streamwise velocity as �uðz ¼ d0Þ ¼ u�=j at the top of the viscous sublayer. The
depth-averaged velocity within the bed layer �ub is obtained as
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�ub ¼
1
ks

1
2
� u�d

0

j
þ
Zks

d0

u�
j

ln
z

z0

� �
dz

2
64

3
75 � 6:34u� ð6:110Þ

Given the bed-load transport rate qb ¼ Ca�ubks, the sediment concentration Ca is
estimated as

Ca ¼
qb

�ubks

¼ qb

6:34u�ks

ð6:111Þ

Engelund and Fredsøe (1976) proposed a bed-layer thickness z = a = 2d and
obtained the reference concentration Ca as

Ca ¼
0:65k3

H

ð1þ kHÞ3
^ kH ¼

H�Hc � ðb1pp=6Þ
0:027ðDþ 1ÞH

� �0:5

_ p ¼ 1þ b1p=6
H�Hc

� �4
" #�0:25 ð6:112Þ

where p is the probability of the particles to move in the bed layer, b1 is a
coefficient, Hc is the threshold Shields parameter, that is s0c/(Dqgd), and s0c is the
threshold bed shear stress. Engelund and Fredsøe (1976) originally set b1 = 0.51,
but later they modified it as b1 = 1 (Engelund and Fredsøe 1982). The Shields
parameter was obtained as follows:

H ¼ s0

Dqgd
¼ u2

�
Dgd

^ u� ¼ U 6þ 2:5 ln
h

2:5d

� �� ��1

ð6:113Þ

Smith and McLean (1977a) argued that the bed-layer thickness is equal to the
thickness of the zero-velocity level z0. They recommended

a ¼ k0s þ 26:3ðH�HcÞd ^ k0s ¼ 3d90 ð6:114Þ

where k0s is the particle roughness. They proposed the reference concentration Ca at
the top of the bed layer z = a as

Ca ¼ 0:65c0
H�Hc

Hc þ c0ðH�HcÞ

� �
ð6:115Þ

where c0 is a constant (=2.4 9 10-3).
Itakura and Kishi (1980) set a reference level z = a = 0.05h and determined

the reference concentration Ca as
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Ca ¼ 8� 10�3 0:14
u�
ws

� N
H
� 1

� �
ð6:116Þ

where

N ¼ H
0:143

2þ expð�r2
HÞR1

rH

expð�r2Þdr

2
6664

3
7775� 1 ^ rH ¼

0:143
H
� 2 ð6:117Þ

In case of a flat bed (without bedforms), van Rijn (1984b) suggested that the
bed-layer thickness can be obtained from the saltation height (denoted by hs in
Chap. 5) of the bed-load particles, given by Eq. (5.135b) that estimates a value in
the range 2–10 times particle diameter (median size). The reference level a and the
reference concentration Ca, as a depth-averaged sediment concentration within the
bed layer, are given by

a ¼ 0:3dD0:7
�

H
Hc

� 1

� �0:5

^ D� ¼ d
Dg

t2

� �1=3

ð6:118aÞ

Ca ¼ 0:18CmaxD�1
�

H
Hc

� 1

� �
¼ 0:015

d

a
D�0:3
�

H
Hc

� 1

� �1:5

ð6:118bÞ

The maximum concentration Cmax was taken as 0.65. In case of bedforms, the
reference level a is assumed to be equaling the half of the bedform height gd. If the
dimensions of the bedforms are not known, then a minimum value of a can be
taken as 0.01h.

Celik and Rodi (1984) obtained the reference concentration Ca at an elevation
z = a = 0.05h as

Ca ¼ 1:13
�C

I0
^ �C ¼ 0:034 1� ks

h

� �0:06
" #

u2
�

Dgh
� U

ws

_ I0 ¼
Z1

~a

~a

~z
� 1� ~z

1� ~a

� �f

d~z

ð6:119Þ
Akiyama and Fukushima (1986) put forward the reference concentration Ca as a

nondimensional coefficient of bed sediment entrainment in suspension at a refer-
ence level z = a = 0.05h. It is

Cað<	 5Þ ¼ 0

Cað5\<\13:2Þ ¼ 3� 10�12<10 1� 5
<

� �

Cað<� 13:2Þ ¼ 0:3

^ < ¼ u�
ws

dðDgdÞ0:5

t

" #0:5

ð6:120Þ

García and Parker (1991) suggested the reference concentration Ca at a refer-
ence level z = a = 0.05h as

6.2 Diffusion Concept 361

http://dx.doi.org/10.1007/978-3-642-19062-9_5
http://dx.doi.org/10.1007/978-3-642-19062-9_5
http://dx.doi.org/10.1007/978-3-642-19062-9_5


Ca ¼
1:3� 10�7<5

u

1þ 4:33� 10�7<5
u

^ <u ¼
u�s
ws

dðDgdÞ0:5

t

" #0:6

_ u�s ¼ U
g0:5

C0R

ð6:121Þ

where C0R is the Chézy coefficient due to particle roughness (ks & 3d), that is
18log(12h/ks).

Zyserman and Fredsøe (1994) gave an empirical relationship for the reference
concentration Ca assuming a bed-layer thickness z = a = 2d. It is

Ca ¼
0:331ðH0 �HcÞ1:75

1þ 0:72ðH0 �HcÞ1:75 ð6:122Þ

where H0 is the Shields parameter due to particle roughness. For a flat sediment
bed, H0 = H.

It can be concluded that the formulations for the reference level and the ref-
erence concentration were developed on the basis of a certain assumption of
reference level z = a and the corresponding concentration. They are

ðiÞa� h; ðiiÞa� d; ðiiiÞa� gd; and ivð Þa ¼ hs

In reality, it is not feasible to experimentally quantify the suspended sediment
concentration at a few particle sizes above the bed. Therefore, from the viewpoint
of verification of the concentration distribution, the reference level proportional to
the flow depth, that is a * h, could provide a reliable experimental verification, as
the near-bed concentration Ca at a level z = a = 0.05h was possible with some
interpolation or a slight extrapolation.

6.2.9 Suspended Load by Diffusion Approach

6.2.9.1 Lane and Kalinske’s Approach

Equation (6.32) for the distribution of suspended sediment concentration C given
by Lane and Kalinske (1941) can be integrated over the flow depth to obtain the
depth-averaged concentration �C provided the reference concentration Ca at
z = a to be known. Then, the ratio �C to Ca is given by PC.

The following equation of suspended-load transport rate qs was suggested by
Lane and Kalinske (1941):

qs ¼ qCaPC exp
15wsa

u�h

� �
ð6:123Þ

362 6 Suspended-Load Transport



where PC is �C=Ca being a function of ws/u* and relative roughness n/h1/6, as shown
in Fig. 6.10, and n is the Manning roughness coefficient. Here, h is in inches.

As Eq. (6.123) is applicable for a single particle size with a terminal fall velocity
ws, the equation is to be solved for each particle size range to estimate corre-
sponding suspended-load transport rate. Note that Eq. (6.123) provides an esti-
mation of suspended-load transport rate in volume per unit time and width in metric
units (ft2 s-1). To convert the suspended-load transport rate (gs) in weight per unit
time and width, the right-hand side of the equation is to be multiplied by qsg.

6.2.9.2 Einstein’s Approach

Einstein (1950) obtained the suspended-load transport rate qs from the integral
equation, Eq. (6.1a), by using the distribution of sediment concentration given by
the Rouse equation and the logarithmic law of streamwise velocity distribution. He
assumed b = 1 and j = 0.4. Replacing the shear velocity u* with the shear
velocity due to particle roughness u0�, the Rouse number f is

f ¼ ws

ju0�
ð6:124Þ

He used the logarithmic law of velocity distribution given by Keulegan (1938)

�u ¼ u0�
j

ln 30:2
z

Dk

� �
ð6:125Þ

where Dk is the apparent roughness, that is ks/xk, and xk is a correction factor. The

particle shear velocity can be obtained from u0� ¼ ðgR0bS0Þ0:5, where R0b is the
hydraulic radius due to particle roughness and S0 is the streamwise bed slope.
Einstein (1950) assumed ks = d65 and gave a curve for the determination of
correction factor xk (Fig. 5.7). Hence, the apparent roughness Dk (=ks/xk) can be
determined.

Substituting Eqs. (6.27) and (6.125) into Eq. (6.1a), the suspended-load trans-
port rate qs is

qs ¼
Zh

a

Ca
1� ~z

~z
� ~a

1� ~a

� �f u0�
j

ln 30:2
z

Dk

� �
dz ð6:126Þ

After simplification, Eq. (6.126) becomes

qs ¼
Cau0�h

j
~a

1� ~a

� �fZ1

~a

1� ~z

~z

� �f

ln
30:2~z

Dk=h

� �
d~z ð6:127Þ
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Rearranging Eq. (6.127) yields

qs ¼
Cau0�h

j
~a

1� ~a

� �f

ln
30:2h

Dk

� �Z1

~a

1� ~z

~z

� �f

d~zþ
Z1

~a

1� ~z

~z

� �f

ln~z d~z

2
4

3
5

ð6:128Þ

As the closed-form integration of Eq. (6.128) could not be possible, Einstein
(1950) expressed it as

qs ¼
Cau0�a

j
ðPEJ1 þ J2Þ ^ PE ¼ ln

30:2h

Dk

� �
ð6:129Þ

where

J1 ¼
I1

0:216
^ I1 ¼ 0:216

~af�1

ð1� ~aÞf
Z1

~a

1� ~z

~z

� �f

d~z ð6:130aÞ

J2 ¼
I2

0:216
^ I2 ¼ 0:216

~af�1

ð1� ~aÞf
Z1

~a

1� ~z

~z

� �f

ln~z d~z ð6:130bÞ

The values of integral functions I1 and I2, called Einstein’s integrals, were
given by Einstein in graphical form in terms of ~a for different values of f (see
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Fig. 6.10 Relationship of PC

(Lane and Kalinske 1941)
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Figs. 6.11 and 6.12). However, these integral functions can also be computed
numerically by using Simpson’s rule through a simple algorithm (Bose 2009).

Einstein (1950) emphasized on the bed layer, which has a thickness of a = 2d,
being the source of supplying sediment to suspended load. Then, the reference
concentration Ca that is the most important parameter can be obtained.

If qb represents the rate of bed-load transport and ib is the fraction of bed-load
transport for a given sediment size di, then the rate at which the particles of a size di

are transported per unit time and width is ibqb. If the velocity of bed particles is ub,
then the volume of the particles for a given particle size di per unit area is ibqb/ub.
The average concentration in the bed layer can be obtained from Eq. (6.109) as

Ca ¼
1

11:6
� ibqb

u0�a
ð6:131Þ

Therefore, the suspended-load transport rate, where the bed-load transport
exists, can be obtained for a given sediment size fraction di as

isqs ¼ 0:216ibqbðPEJ1 þ J2Þ ¼ ibqbðPEI1 þ I2Þ ð6:132Þ

where is is the fraction of suspended load.
There were number of attempts to propose analytical expressions and expansion

series for Einstein’s integrals I1 and I2. Nakato (1984) expressed the integral
portion of I1, that is G1, as

G1 ¼
Z1

~a

1� ~z

~z

� �f

d~z ¼
Ze

~a

1� ~z

~z

� �f

d~zþ
Z1

e

1� ~z

~z

� �f

d~z

¼ G1a þ G1b þ G1c þ � � � þ
Z1

e

1� ~z

~z

� �f

d~z

ð6:133Þ

where e is a small value (e [ ~a) and G1a, G1b, and G1c are

G1aðf 6¼ 1Þ ¼ 1
1� f

e1�f � ~a1�f
 �

G1aðf ¼ 1Þ ¼ ln e� ln ~a
ð6:134aÞ

G1b f 6¼ 2ð Þ ¼ f
f� 2

e2�f � ~a2�f
 �

G1b f ¼ 2ð Þ ¼ �2 ln e� ln ~að Þ
ð6:134bÞ

G1c f 6¼ 3ð Þ ¼ fðf� 1Þ
2ð3� fÞ e3�f � ~a3�f

 �

G1c f ¼ 3ð Þ ¼ 3 ln e� ln ~að Þ
ð6:134cÞ
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He expressed the integral portion of I2, that is G2, in a similar way as

G2 ¼
Z1

~a

1� ~z

~z

� �f

ln~z d~z ¼
Ze

~a

1� ~z

~z

� �f

ln~z d~zþ
Z1

e

1� ~z

~z

� �f

ln~z d~z

¼ G2a þ G2b þ G2c þ � � � þ
Z1

e

1� ~z

~z

� �f

ln~z d~z

ð6:135Þ

where G2a, G2b, and G2c are
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Fig. 6.11 Integral function I1 in terms of ~a for different f (Einstein 1950)
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G2aðf 6¼ 1Þ ¼ 1
1� f

e1�f ln e� 1
1� f

� �
� ~a1�f ln ~a� 1

1� f

� �� �

G2aðf ¼ 1Þ ¼ 1
2
½ðln eÞ2 � ðln ~aÞ2�

ð6:136aÞ

G2bðf 6¼ 2Þ ¼ f
f� 2

e2�f ln e� 1
2� f

� �
� ~a1�f ln ~a� 1

2� f

� �� �

G2bðf ¼ 2Þ ¼ �ðln eÞ2 þ ðln ~aÞ2
ð6:136bÞ
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Fig. 6.12 Integral function -I2 in terms of ~a for different f (Einstein 1950)
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G2c f 6¼ 3ð Þ ¼ f f� 1ð Þ
2 3� fð Þ e3�f ln e� 1

3� f

� �
� ~a3�f ln ~a� 1

3� f

� �� �

G2c f ¼ 3ð Þ ¼ 3
2

ln eð Þ2� ln ~að Þ2
h i ð6:136cÞ

Nakato’s (1984) suggested that the second integral in Eqs. (6.133) and (6.135)
can be evaluated by a simple numerical exercise (for example, Simpson’s rule).
So, the solutions proposed by him could not give complete analytical solutions for
Einstein’s integrals.

On the other hand, Guo and Julien (2004) who gave complete analytical
solutions, although approximate, for Einstein’s integrals expressed the integral
portions G1 and G2 as

G1 ¼
Z1

~a

1� ~z

~z

� �f

d~z ¼
Z1

0

1� ~z

~z

� �f

d~z�
Z~a

0

1� ~z

~z

� �f

d~z ð6:137aÞ

G2 ¼
Z1

~a

1� ~z

~z

� �f

ln~z d~z ¼
Z1

0

1� ~z

~z

� �f

ln~z d~z�
Z~a

0

1� ~z

~z

� �f

ln~z d~z ð6:137bÞ

Using the results based on C-function obtained by Guo and Wood (1995) for
n\ 1, first integral parts of the right-hand side of Eqs. (6.137a, b) are solved. The
second integral parts of the right-hand side of Eqs. (6.137a, b) can be expressed by
the infinite series. Then, Guo and Julien gave

G1 ¼
fp

sin fp
� ð1� ~aÞf

~af�1
� f

X1
n¼1

ð�1Þn

n� f
~a

1� ~a

� �n�f
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F1ðfÞ

ð6:138aÞ

G2 ¼
fp

sin fp
p cot fp� 1� 1

f
þ
X1
n¼1

1
n
� 1

nþ f

� �" #

� F1ðfÞ ln ~aþ 1
f� 1

� �
þ f

X1
n¼1

ð�1ÞnF1 f� nð Þ
f� nð Þ f� n� 1ð Þ

" # ð6:138bÞ

They suggested the following approximation:

X1
n¼1

1
n
� 1

nþ f

� �
� p2

6
� f

ð1þ fÞ0:7162 ð6:139Þ
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6.2.9.3 Brooks’ Approach

Brooks (1963) assumed that the logarithmic law of velocity distribution is appli-
cable and the sediment concentration follows the Rouse equation (Eq. 6.27).
Taking b = 1, that is, f = ws/(ju*) and the velocity defect relationship of loga-
rithmic law, he obtained

qs ¼ qC0:5h 1þ u�
jU

Z1

~a

1� ~z

~z

� �f

d~zþ u�
jU

Z1

~a

1� ~z

~z

� �f

ln~z d~z

2
4

3
5 ð6:140Þ

where C0.5h is the reference concentration at z = 0.5h. Having performed the
integration, Eq. (6.140) is expressed in terms of a transport function TB as

qs

qC0:5h
¼ TB

jU

u�
; f; ~a

� �
ð6:141Þ

Taking a lower limit of integration at zero-velocity level and the nondimen-
sional reference level as ~a ¼ expf�½ðkU=u�Þ þ 1�g, Eq. (6.141) is given by

qs

qC0:5h
¼ TB1

jU

u�
; f

� �
ð6:142Þ

The functional relationship is illustrated in Fig. 6.13.

6.2.9.4 Chang et al.’s Approach

Chang et al. (1965) assumed that for sediment diffusivity, Eq. (6.26) holds and is
given by

es ¼ bju�h~zð1� ~zÞ ð6:143Þ

Substituting Eq. (6.143) into Eq. (6.22) yields

C

Ca
¼ 1� ð1� ~aÞ0:5

~a0:5

" #f1
~z0:5

1� ð1� ~zÞ0:5

" #f1

^ f1 ¼
2ws

bju�
ð6:144Þ

Using Eq. (6.144) into Eq. (6.1a), the equation of suspended load is expressed
as

qs ¼
Zh

a

C�u dz ¼ Cah UI3 �
2u�
j

I4

� �
ð6:145Þ
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In the above, I3 and I4 are the integrals that are given by

I3 ¼
1� ð1� ~aÞ0:5

~a0:5

" #f1Z1

~a

~z0:5

1� ð1� ~zÞ0:5

" #f1

d~z ð6:146aÞ

I4 ¼
1� ð1� ~aÞ0:5

~a0:5

" #f1Z1

~a

~z0:5

1� ð1� ~zÞ0:5

" #f1

ln
~z0:5

1� ð1� ~zÞ0:5

" #
� ð1� ~zÞ0:5 � 1

3

( )
d~z

ð6:146bÞ

In Figs. 6.14 and 6.15, the variations of integral functions I3 and I4 with ~a for
different values of f1 are presented.

It was assumed the bed sediment velocity as ub = 0.8U. Using the definition of
bed-load transport given by Eq. (5.3), the reference concentration Ca is

Ca ¼
qb

0:8Ua
ð6:147Þ

Substituting Ca into Eq. (6.15) yields

qs ¼
qbh

0:8Ua
UI3 �

2u�
j

I4

� �
ð6:148Þ
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Based on du Boys’ (1879) assumption, the bed-layer thickness a is obtained as

a ¼ cj

s0 � s0c

ð1� q0ÞDqg tan /
ð6:149Þ

where cj is a constant determined empirically as 10 and / is the angle of repose.
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6.2.9.5 Bijker’s Approach

Based on Einstein’s (1950) approach, Bijker (1971) proposed an equation of
suspended-load transport rate. He assumed the reference level at z = a = ks. He
used the Rouse equation for concentration distribution (Eq. 6.27) with b = 1 and
the logarithmic law of velocity distribution (Eq. 4.27) with zero-velocity level
z0 = ks/33 = a/33, into Eq. (6.1a) to obtain

qs ¼
Cau�a

j
ðPE1J1 þ J2Þ ^ PE1 ¼ ln

33h

a

� �
ð6:150Þ

Using the relationship of reference concentration Ca (Eq. 6.111) and the bed-
load transport rate qb given by him, Eq. (6.150) is rewritten as

qs ¼ 0:158
qb

j
ðPE1J1 þ J2Þ ð6:151Þ

6.2.9.6 van Rijn’s Approach

Further, van Rijn (1984b) expressed the suspended-load transport rate by using the
concentration distribution given by Eqs. (6.53a, b) and the logarithmic law given
by Eq. (4.27) with zero-velocity level z0 = 0.03ks in Eq. (6.1a). It is

qs ¼ F~zCaUh ð6:152Þ

where

F~z ¼
1
j
� u�

U

1� ~a

~a

� �fw
Z0:5

~a

1� ~z

~z

� �fw

ln
~z

~z0

� �
d~zþ

Z1

0:5

exp �4fw ~z� 1
2

� �� �
ln

~z

~z0

� �
d~z

8<
:

9=
;
ð6:153Þ

where fw is the modified Rouse number and ~z0 ¼ z0=h. He expressed fw as

fw ¼ fþ w ^ f ¼ ws

bju�
ð6:154Þ

where w is the correction factor and is empirically given by

w 0:01	 ws

u�
	 1

� �
¼ 2:5

ws

u�

� �0:8 Ca

Cmax

� �0:4

ð6:155Þ

In the above equations, the values of b, a, and Ca can be obtained from
Eqs. (6.19) and (6.118a, b), respectively, as proposed by van Rijn (1984b).
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Further, van Rijn (1984b) proposed a simplified empirical expression as

qs ¼ 0:012Uh
U � Ucr

ðDgdÞ0:5

" #2:4
d

h

� �
1

D0:6
�

ð6:156Þ

where Ucr is the average threshold velocity. Equation (6.156) was obtained for
1 B h B 20 m, 0.5 B U B 2.5 m s-1, and 0.1 B d B 2 mm.

6.3 Energy Concept

6.3.1 Velikanov’s Approach

Based on the principle of conservation of energy, Velikanov (1954, 1958)
developed a theory, named the gravitational theory, for the distribution of sus-
pended sediment particles. He considered the work done per unit time of a unit
volume of fluid and suspended sediment mixture to transfer from one layer to
another layer. The fluid and sediment phases were treated separately with an idea
that they together completely occupy the entire space within a unit volume. The
fluid phase was regarded as the active component of dispersion performing work in
taking the sediment particles in suspension and transporting them. In contrast, the
sediment phase is the passive component, as the sediment particles are picked up
into a suspension to consume the energy from the fluid. The energy dissipation
along a unit streamwise distance was assumed to take into account the sum of the
energy dissipation due to momentum exchange between fluid layers and the energy
required to transport the sediment. The conservation of energy is maintained
separately in the fluid and sediment phases by balancing the energy supplied and
the energy dissipated. His mathematical analysis is as follows:

For two-dimensional steady-uniform flow, Velikanov expressed the energy
balance for fluid phase as

qgð1� CÞ�uSf|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
E1

¼ ��u
d

dz
½ð1� CÞs�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

E2

þDqgð1� CÞCws|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
E3

^ s ¼ �qu0w0

) g 1� Cð Þ�uSf ¼ �u
d
dz
ð1� CÞu0w0
� �

þ Dg 1� Cð ÞCws

ð6:157Þ

where Sf is the energy slope and s is the Reynolds shear stress (¼ �qu0w0). In
Eq. (6.157), the term E1 represents the amount of energy (work done per unit time
due to energy slope) supplied by the fluid phase, the term E2 denotes the energy
dissipated (work done per unit time due to internal shear) for the momentum
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exchange in the fluid phase, and the term E3 refers to the amount of energy
required to keep the sediment particles in suspension.

On the other hand, he expressed the energy balance for sediment phase as

qsgC�uSf|fflfflfflffl{zfflfflfflffl}
E4

¼ �s�u
d

dz
ðCsÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

E5

) gCSf ¼
d
dz

Cu0w0
 �

ð6:158Þ

In the above, the term E4 represents the amount of energy supplied (work done
per unit time due to energy slope) by the sediment phase and the term E5 denotes
the energy dissipated (work done per unit time due to internal shear) for the
momentum exchange in the sediment phase. As the water–sediment interaction is
the present case, the qs and q are combined to qs/q ratio being traditionally
denoted by the relative density s; where q represents the mass density of water.

Velikanov assumed a sediment particle to fall in a flowing fluid with a velocity
w - ws. Note that subscript t of a quantity denotes the instantaneous condition of
the quantity. In a two-dimensional, two-phase flow (steady-uniform), the vertical
net flux of each phase must be zero. Applying the Reynolds decomposition [see
Eq. (6.7)] and the Reynolds conditions, the continuity of suspended sediment
passing through a unit area (parallel to the bed) at an elevation z from the bed is

qsCtðw� wsÞ ¼ 0 ) C�w� Cws þ w0C0 ¼ 0 ð6:159Þ

and the continuity of fluid is

qwð1� CtÞ ¼ 0 ) �w� C�w� w0C0 ¼ 0 ð6:160Þ

Combining Eqs. (6.159) and (6.160) yields

�w ¼ Cws; �Cð�w� wsÞ ¼ w0C0 ð6:161Þ

In the above, the first equation implies that the time-averaged vertical velocity
component �w of fluid is finite and directed upwards, as both C and ws are finite and
positive. The second equation suggests that the downward flux (with negative sign)
of falling particles is equal to the upward flux of lifting particles by the fluid
through a unit area parallel to the bed.

Velikanov adopted the logarithmic law of velocity distribution for rough flow
regime given by Nikuradse

�u ¼ u�
j

ln 1þ z

Dk

� �
¼ ðghSfÞ0:5

j
ln 1þ ~z

a

� �
^ u� ¼ ðghSfÞ0:5 _ a ¼ Dk

h

ð6:162Þ
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where Dk is the roughness parameter. Dividing Eq. (6.157) by �u and then adding it
to Eq. (6.158), the resulting equation is integrated within limits z to h. Then,

Zh

z

gSfdz ¼
Zh

z

d
dz
ðu0w0Þdzþ Dgws

Zh

z

ð1� CÞC
�u

dz ð6:163Þ

Performing integration except the second term of the right-hand side of
Eq. (6.163) yields

gSfðh� zÞ ¼ �u0w0 þ Dgws

Zh

z

ð1� CÞC
�u

dz ð6:164Þ

As C is small and �u is large, the ratio C=�u is very small, which makes the
second term of the right-hand side of Eq. (6.164) to be negligibly small as com-
pared to the first term, that is, Reynolds shear stress divided by q. The equation is
then approximated as

u0w0 ¼ �gSfðh� zÞ ) d(u0w0Þ
dz

¼ gSf ^ u0w0 � Dgws

Zh

z

ð1� CÞC
�u

dz � 0

ð6:165Þ

For small suspended sediment concentration, 1 - C & 1; and the substitution
of Eqs. (6.162) and (6.165) into Eq. (6.157) yields the differential equation of
suspended sediment concentration as

dC

C
¼ �bv

d~z

ð1� ~zÞ ln 1þ ~z=að Þ½ � ^ bv ¼
Djws

Sf ghSfð Þ0:5
ð6:166Þ

The distribution of suspended sediment concentration is obtained from the
solution of Eq. (6.166) as

C

Ca
¼ exp �bvfvð Þ ^ fv ¼

Z~z

~a

d~z

ð1� ~zÞ ln 1þ ~z=að Þ½ � ð6:167Þ

The weakness of the gravitational theory is that the energy balance seems to be
not scientifically sound. This is the reason why the theory has become disputed
one. The primary objection lies on the principle of treating the fluid and sediment
phases separately; while both occupy the entire space at the same time.

To determine depth-averaged concentration �C, Velikanov (1954, 1958) expressed
Eq. (6.157) to integrate over the entire flow depth with an approximation 1 - C & 1
for a small suspended sediment concentration as
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Zh

0

g�uSfdz ¼
Zh

0

�u
d
dz

u0w0
 �

dzþ
Zh

0

DgCwsdz ð6:168Þ

Since �qu0w0 ¼ s0ð1� ~zÞ and s0 * U2, he expressed

Zh

0

�u
d
dz

u0w0
 �

dz ¼ khU3 ð6:169Þ

where kh is the coefficient. Then, Eq. (6.168) is integrated and simplified by using
Eq. (6.169). Rearranging, the resulting equation is given by

kh

kk

þ D
�Cws

USf

¼ 1 ^ kk ¼
ghSf

U2
ð6:170Þ

where kk is the bed friction coefficient.
For clear-water flow (�C ¼ 0), Eq. (6.170) provides

kh ¼ kk0 ð6:171Þ

where kk0 is the bed friction coefficient corresponding to �C ¼ 0. Importantly,
under a certain flow condition for a given sediment size, the sediment concen-
tration in the flow may attain the state of saturation, which corresponds to the
maximum sediment carrying capacity by the flow. Here, the corresponding bed
friction coefficient is denoted by kkm.

Velikanov argued that the ratio kk0/kkm is approximately a constant. Substi-
tuting the ratio into Eq. (6.170) yields

D
�Cws

USf

¼ 1� kk0

kkm

ð6:172Þ

Here, �C is thus the saturated depth-averaged sediment concentration defining
suspended-load transport capacity.

The depth-averaged velocity can be given by

U ¼ 1
h

Zh

0

�udz ¼ 1
h

Zh

0

ghSfð Þ0:5

j
ln 1þ z

Dk

� �
dz

) U ¼ f ðaÞ ghSfð Þ0:5

j
^ f ðaÞ ¼ ð1þ aÞ ln 1þ að Þ � 1½ �

ð6:173Þ

Substituting Eq. (6.173) into Eq. (6.172) yields
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Dj�Cws

f ðaÞSfðghSfÞ0:5
¼ 1� kk0

kkm

) bv
�C

f ðaÞ ¼ 1� kk0

kkm

¼ constant ð6:174Þ

Hence,

�C� f ðaÞ
bv

¼ j2U3

D f 2ðaÞghws

ð6:175Þ

Therefore, the general form of suspended-load transport capacity equation
obtained from Eq. (6.175) is given by

�C ¼ K
U3

ghws

ð6:176Þ

where K is a coefficient. A group of investigators from the Wuhan Institute of
Hydraulic and Electric Engineering, China, made an extensive analysis of the field
data collected from different rivers and canals in China (WIHEE 1981). They
proposed that Eq. (6.176) should be modified to

�C ¼ K
U3

ghws

� �m1

ð6:177Þ

The variations of coefficient K (in kg m-3) and exponent m1 with U3/(ghws),
obtained by WIHEE (1981), are shown in Fig. 6.16.

In another attempt, based on the energy concept, Zhang (1961) and Zhang and
Xie (1993) also established a relationship between the suspended-load transport
capacity �C and the parameter U3/(ghws), using the field data from different Chinese
rivers. Later, Guo (2002) approximated their results by a convenient relationship
as

�C ¼ 1
20

U3

ghws

� �1:5

1þ 1
45
� U3

ghws

� �1:15
" #�1

ð6:178Þ

6.3.2 Bagnold’s Approach

Bagnold (1966) hypothesized that the suspended sediment particles in fluid are
settled with their terminal fall velocity ws, despite the distribution of sediment
concentration across the fluid column is still preserved. It implies that to establish a
dynamic equilibrium of sediment exchange, the flow must continuously pick up
the sediment at the same rate with an upward velocity equaling ws.
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According to Bagnold (1966), in the fluid column resting over a unit area of
bed, the power (work done per unit time) by the turbulent flow to keep sediment in
suspension is expressed as WGws, where WG is the total submerged weight of
suspended sediment in the fluid column. He argued that the potential energy of the
flow is the source toward the turbulent kinetic energy required to maintain the
motion of suspended particles. Thus, the energy required for sediment particles to
keep in suspension is related to the potential energy loss. Hence, the work done per
unit time for sediment suspension is equated to the net stream power used for the
suspended-load transport

WGws ¼ s0Uð1� ebÞes ð6:179Þ

where eb and es are the efficiencies for bed-load and suspended-load transports,
respectively. The idea to introduce the efficiency terms is that a portion of total
stream power s0Ueb is dissipated into heat by the process of bed friction leaving
the available power s0U(1 - eb) for suspended-load transport. Thus, when the
available power s0U(1 - eb) is multiplied by es, it provides the net stream power
used for the suspended-load transport.

The suspended-load transport rate gss in submerged weight per unit time and
width is expressed as

gss ¼ WGUs ð6:180Þ

where Us is the depth-averaged velocity of suspended load. Using Eq. (6.179) to
substitute WG in Eq. (6.180) yields
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Fig. 6.16 Variations of
K (in kg m-3) and m1 with
U3/(ghws) (WIHEE 1981)
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gss ¼ s0U
Us

ws

ð1� ebÞes ð6:181Þ

Bagnold assumed that at a certain elevation, the suspended sediment particles
transport with the velocity that equals the flow velocity at that location. Thus, the
depth-averaged velocity of the suspended load can be compared with that of the
flow as follows:

Us ¼
1

h� a

Zh

a

C�udz; U ¼ 1
h

Zh

0

�udz, ) Us\U ð6:182Þ

Note that the velocity �u increases with an increase in elevation z, while the sediment
concentration C decreases with z. Therefore, the depth-averaged velocity of sus-
pended load Us is usually smaller than that offlow velocity U. Setting r = Us/U \ 1,
Eq. (6.181) becomes

gss ¼ s0
U2

ws

rð1� ebÞes ð6:183Þ

However, the suspended-load transport rate gs in weight per unit time and width
can be given by

gs ¼ s0
s

D
� U

2

ws

rð1� ebÞes ð6:184Þ

Bagnold used the laboratory data to evaluate r(1 – eb)es = 0.01. Thus, the
suspended-load transport rate is

gs ¼ 0:01s0
s

D
� U

2

ws

ð6:185Þ

6.3.3 Wu et al.’s Approach

Following Bagnold’s (1966) stream power approach, Wu et al. (2000) related the
suspended-load transport rate to the rate of energy available in the flow, that is,
s0U. They argued that the suspended-load transport rate is also influenced by the
gravity that is accounted for by introducing the terminal fall velocity ws and the
threshold bed shear stress s0c. They conducted the dimensional analysis to
determine the nondimensional dependent parameter qs/(Dgd3)0.5 and the inde-
pendent parameter (s0/s0c)(U/ws). The s0/s0c ratio was logically modified by
reformatting to (s0 - s0c)/s0c. By using the experimental data of nonuniform
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suspended load measured by Samaga et al. (1986) and the field data of the Yampa
River and the Yellow River, the relation for the fractional transport rate Usi was
obtained. It is

Usi ¼ 2:62� 10�5 s0

s0ci
� 1

� �
U

wsi

� �1:74

^ Usi ¼
qsi

pi Dgd3
ið Þ0:5

ð6:186Þ

where pi is the fraction of sediment size di, s0ci is the threshold bed shear stress for
sediment size fraction di, and wsi is the terminal fall velocity of sediment size di.
The threshold bed shear stress s0ci was determined using Eq. (4.163) that takes into
account the hiding and exposure effects in nonuniform sediment transport. The
terminal fall velocity of sediment was obtained by using the Zhang (1961)
equation (see Table 1.3).

6.4 Threshold Condition for Sediment Suspension

The threshold of sediment suspension is defined as the flow condition required for
the mass exchange process of sediment particles of a given size at the lower
boundary of the suspended load, that is at the top of the bed layer. In other words,
the threshold refers to the flow condition at which the initiation of sediment
suspension occurs.

Bagnold (1966) stated that sediment particles are lifted in suspension if the
upward velocity of turbulence induced eddies exceeds the terminal fall velocity ws

of the particles. He obtained the upward velocity of eddies to be 1.25 times the
shear velocity. This leads to the following threshold condition for sediment
suspension:

ws

u�
¼ 1:25 ð6:187Þ

It means that the particles are kept in suspension if u* [ 0.8ws.
Xie (1981) obtained the threshold condition for sediment suspension from the

Rouse equation (Eq. 6.27). As the Rouse number f increases, the distribution of
sediment concentration becomes progressively inclined toward the abscissa, as
shown in Fig. 6.4; and the sediment transport rate in the form of suspended load
decreases. Xie defined the threshold of suspension to occur at the condition f = 5,
for which the suspended-load transport rate becomes very small. Hence,

f ¼ ws

ju�
¼ 5 ð6:188Þ

The threshold condition for the sediment suspension identified by van Rijn
(1984b) is the instantaneous upward motion of the sediment particle that has a
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jump length of 100 particle diameters. He used the experimental results to rep-
resent the following relationships:

u�
ws

ð1\D� 	 10Þ ¼ 4
D�

^ D� ¼ d
Dg

t2

� �1=3

ð6:189aÞ

u�
ws

ðD�[ 10Þ ¼ 0:4 ð6:189bÞ

Sumer (1986) proposed the threshold condition for the sediment suspension in
terms of Shields parameter as a function of shear Reynolds number R*. The
formulas are

HðR� 	 70Þ ¼ 17
R�

^ R� ¼
u�ks

t
_ ks ¼ d ð6:190aÞ

HðR�[ 70Þ ¼ 0:27 ð6:190bÞ

Celik and Rodi (1991) gave the following empirical relationships to determine
the bed shear stress for the initiation of sediment suspension:

HðR� 	 0:6Þ ¼ 0:15
R�

ð6:191aÞ

HðR�[ 0:6Þ ¼ 0:25 ð6:191bÞ

Both Sumer (1986) and Celik and Rodi (1991) considered sediment particles to
be in suspension from the sediment bed with no motion rather than from the top of
the bed layer. Note that the above expressions defining the threshold criterion for
sediment suspension are empirical and devoid of probabilistic considerations.

6.4.1 Cheng and Chiew’s Probabilistic Approach

Cheng and Chiew (1999), however, brought the probabilistic consideration for the
first time to determine the threshold of sediment suspension. They defined the
threshold condition as the fluctuations of vertical velocity component w0 exceeds
the terminal fall velocity ws of the particles, that is, w0[ ws. In contrast, the
condition of w0\ ws was used for the termination of suspension of sediment
particles at any location in the suspension zone. They expressed the probability of
suspension p to be given by p = p(w0[ ws). They adopted the concept of Nezu
(1977) that the probability of fluctuations of vertical velocity component near the
bed could be considered, as a first approximation, to follow the Gaussian distri-
bution. Thus
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p ¼ 1ffiffiffiffiffiffi
2p
p ffiffiffiffiffiffiffi

w02
p

Z1

ws

exp � 1
2
� w
02

w02

� �
dw0 ð6:192Þ

where
ffiffiffiffiffiffiffi
w02

p
is the root-mean-square (rms) of w0. Using the approximate solution

of the error function (Cheng and Chiew 1998), they approximated Eq. (6.192) to

p ¼ 1
2
� 1

2
1� exp � 2

p
� w2

s

w02

� �� �0:5

ð6:193Þ

The terminal fall velocity ws was obtained from Cheng’s (1997) equation
(Table 1.3). The root-mean-square of w0 for hydraulically rough flow regime can
be obtained from the experimental results of Grass (1971) and Nezu (1977). It is

ffiffiffiffiffiffiffi
w02

p
¼ u� ð6:194Þ

For hydraulically smooth flow regime, Cheng and Chiew (1999) proposed
following equation obtained using the experimental data of Grass (1971):

ffiffiffiffiffiffiffi
w02

p
¼ u� 1� exp �0:025

2:75u�d

t

� �1:3
" #( )

ð6:195Þ

They computed and compared with experimental results to conclude the
probability of threshold of sediment suspension to be 0.01, that is, one percent.

6.4.2 Bose and Dey’s Probabilistic Approach

Bose and Dey (2013) argued that the Gaussian distribution primarily occurs when
there is an additive accumulation of errors. This is, however, not the case of
turbulent velocity fluctuations. Bose and Dey, on the other hand, drawing a sim-
ilarity with the random signals on a computer monitor for the fluctuating velocity
to be regarded analogous to the service arriving in a queue, gave the Gram–
Charlier series expansion of the probability densities based on the two-sided
exponential or Laplace distribution. They explained that the probability density
function (pdf) pŵðŵÞ for the nondimensional vertical velocity fluctuations ŵ can be
given by
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pŵðŵÞ ¼
1
2

1þ 1
2

�
C01ŵ� 1

8
C02 1þ ŵj j � ŵ2
 �

� 1
48

C03ŵ 3þ 3 ŵj j � ŵ2
 �

þ 1
384

C04 9þ 9 ŵj j � 3ŵ2 � 6 ŵ3
�� ��þ ŵ4

 �
þ � � �

�
exp � ŵj jð Þ ^ ŵ ¼ w0ffiffiffiffiffiffiffi

w02
p
ð6:196Þ

Dey et al. (2012) obtained that the coefficients C01 and C03 are of the order of
0.001; while C02 & -0.5 and C04 & 0.6. Thus, it was assumed that C02 & -0.5
and the rest of the coefficients are effectively negligible due to their smallness or
division by a large number, such as 384. Then, Eq. (6.196) reduces to

pŵðŵÞ ¼
1

32
17þ ŵj j � ŵ2
 �

exp � ŵj jð Þ ð6:197Þ

The vertical velocity fluctuations w0 are random to follow Eq. (6.197); and their
pdf for positive values can be given by

pw0 ðw0 � 0Þ ¼ 1

16
ffiffiffiffiffiffiffi
w02

p ð17þ ŵ� ŵ2Þ expð�ŵÞ

pw0 ðw0\0Þ ¼ 0

9=
; ð6:198Þ

where pw0(w0) is the pdf for w0. It satisfies the condition

Z1

�1

pw0 ðw0Þdw0 ¼ 1

The total probability p of a particle to remain in suspension is thus given by

p ¼
Z1

ws

pw0 ðw0Þdw0 ¼ 1
16

16� b� b2
 �

expð�bÞ ^ b ¼ wsffiffiffiffiffiffiffi
w02

p ð6:199Þ

Given the values of ws and
ffiffiffiffiffiffiffi
w02

p
, the total probability p depends on the value offfiffiffiffiffiffiffi

w02
p

at a given point in the fluid, as ws is a constant for a given particle size.
Near the bed, if the bed layer is very thin, the bed is regarded as hydraulically

rough. Using the condition for a hydraulically rough flow given by Eq. (6.194), the
p can be given by

p ¼ 1
16

16� ws

u�
� w2

s

u2
�

� �
exp �ws

u�

� �
ð6:200Þ
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For a comparatively thicker bed layer, the bed is regarded as hydraulically
smooth, for which the empirical formula, that is Eq. (6.195), given by Grass
(1971) can be used. Hence, in this case, the p can be given by

p ¼ 1
16

16� u�ffiffiffiffiffiffiffi
w02

p � ws

u�
� u2

�
w02
� w

2
s

u2
�

 !
exp � u�ffiffiffiffiffiffiffi

w02
p � ws

u�

 !
ð6:201Þ

Equations (6.200) and (6.201) for hydraulically rough and smooth flow regimes,
respectively, can be represented in terms of Shields parameter H and shear Rey-
nolds number R* with the introduction of the particle parameter D* that gives

H ¼ R2
�

D3
�

ð6:202Þ

The expression of D* can be related to ws/u* as follows [see Eq. (1.40) and
Table 1.3] (Cheng 1997):

D� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1:2
R�ws

u�

� �2=3 R�ws

u�

� �2=3

þ10

" #vuut ð6:203Þ

Using Eq. (6.200) for a given value of p and a range of R* from 0.03 to 104,
ws/u* was first computed from Eqs. (6.195) and (6.201) by numerical method of
solving equations. Following this step, D* was obtained from Eq. (6.203), and
then, H was computed from Eq. (6.202). The computational results in terms of
H(R*) for different values of p = 0.001, 0.01, 0.05, and 0.1 are presented in
Fig. 6.17. The entrainment threshold curve given by Yalin and Karahan (1979) is
also superimposed for the comparison. Note that Yalin and Karahan’s curve is
often used for the comparison, as it is regarded as superior to well-known Shields
diagram (Dey 1999; Dey et al. 1999).

The Rouse number f [=ws/(ju*)] is an essential parameter that provides a
measure of the relative effect of the gravity and the turbulence on a sediment
particle in suspension. It can therefore be used to examine the condition of sus-
pended sediment concentration. Regarding the computation of Rouse number f,
the related conversion can be made by using Eqs. (6.202) and (6.203). In Fig. 6.18,
the f(D*) curve for probability of suspension p = 0.05 was plotted by Bose and
Dey using Eqs. (6.195) and (6.101). For p = 0.05, the f(D*) curve completely
matches with that proposed by Cheng and Chiew (1999). The value p = 0.05 was
used as an index for the threshold of sediment suspension. It means that the
sediment suspension begins with bringing 5 % of particles in suspension from a
given area at the top of bed layer. Note that Cheng and Chiew (1999) who used the
Gaussian probability distribution obtained such a curve for p = 0.1. It implies that
the exponential based probability distribution yields the threshold criterion for
suspension at a lower value of probability. Importantly, Bose and Dey (2010)
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showed that the exponential based probability distributions for the velocity fluc-
tuations are universal. Reverting to Fig. 6.18, it is evident that f increases sharply
with D* up to D* = 15 and then f becomes independent of D* for D* [ 15. The
f(D*) curves drawn from the threshold criterion of suspension given by Bagnold
(1966), Xie (1981), van Rijn (1984b), Sumer (1986), Celik and Rodi (1991) and
Cheng and Chiew (1999) are superimposed for the comparison. The curves of
various investigators yield widely varying results for D* \ 50, while the threshold
criterion lies in between f & 4.8 and 6.1 for D* C 50. However, Bagnold’s (1966)
curve provides a much reduced value of f = 3.05.
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Fig. 6.17 Curves for the threshold of suspension in terms of H(R*) for different values of
p = 0.001, 0.01, 0.05, and 0.1 obtained by Bose and Dey (2013). Entrainment threshold curve
given by Yalin and Karahan (1979) is superimposed for the comparison
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Fig. 6.18 Variation of Rouse number f with particle parameter D* obtained by Bose and Dey
(2013). The curves of f versus D* drawn from the formulas given by Bagnold (1966), Xie (1981),
van Rijn (1984b), Sumer (1986), Celik and Rodi (1991), and Cheng and Chiew (1999) are
superimposed for the comparison
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Further, in Fig. 6.19, Rouse number f is plotted against H for p = 0.05. This
curve clearly illustrates that for the given values of f and H whether the sediment
particles of a given size in a flow can be in suspension. In fact, this curve can be
used as a predication curve for the determination of threshold criterion for sedi-
ment suspension in terms of f and H. For instance, a particle can be in suspension
if H(f = 3.5) [ 0.103, as shown in Fig. 6.19.

6.5 Effects of Suspended Load on Bed-Load Transport

Fredsøe and Deigaard (1992) developed a method to quantify the effects of sed-
iment suspension on bed-load transport. They first distinguish the bed load,
according to the definition of Wilson (1966), from the suspended-load transport,
according to their own definition: The bed load is the portion of sediment load that
is transported immediately over the bed and supported by the effects of random
particle interactions rather than by the effects of fluid turbulence (Wilson 1966),
while suspended load is then the portion of the load that is primarily supported by
the effects of fluid turbulence.

Fredsøe and Deigaard (1992) extended the applied bed shear stress s0 equation
given by Bagnold (1954) [see Eqs. (5.86) and (5.89)] including the dispersive bed
shear stress s0s from the suspended load. It is

s0 ¼ s0c þ nFD þ s0s ð6:204Þ

According to Bagnold (Fredsøe and Deigaard 1992), the dispersive bed shear
stress s0s is
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Fig. 6.19 Diagram for the
prediction of threshold of
suspended load from bed load
in terms of Rouse number f
as a function of H obtained
by Bose and Dey (2013)
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s0s ¼ 0:013qsK
2
cd2 d�u

dz

� �2

ð6:205Þ

where Kc is the linear concentration related to sediment concentration as

C ¼ Cjmax 1þ #�1
c

 ��3
. It was approximated that the velocity gradient is unaf-

fected by the sediment load. As the dispersive bed shear stress acts at an elevation
z that is in the order of a particle size, z = a0d, where a0 is an order of unity, the
velocity gradient at that point is defined by

d�u

dz

����
z¼a0d

¼ ðs0=qÞ0:5

ja0d
ð6:206Þ

Using Eqs. (6.205) and (6.206) into Eq. (6.204) and rearranging lead to

s0 ¼ ðs0c þ nFDÞ 1þ 0:013

j2a2
0

sK2
c0

� ��1

ð6:207Þ

where Kc0 is the value of Kc at the bed level. With Eq. (5.87), Eq. (6.207) can be
expressed in nondimensional form as

H ¼ Hc þ
p
6

ldp
� �

1þ 0:013

j2a2
0

sK2
c0

� ��1

ð6:208Þ

where p is the probability of the particles to move and ld is the dynamic coefficient
of friction. Fredsøe and Deigaard (1992) tested Eq. (6.208) for the case of large
transport rate (that is, H � Hc or H - Hc & H) that corresponds to p ? 1. They
estimated Kc0 from Eq. (6.208) as Kc0 = 4.32 and corresponding C|max = 0.35.
The estimation was done for ld = 0.57, s = 2.65, j = 0.41, and a0 = 2.

6.6 Effects of Suspended Load on Velocity Distribution

It has already been discussed in Sect. 6.2.2 that in the flow region close to the bed,
the sediment concentration is high; while in the remaining portion of the flow, the
sediment concentration is relatively low. This stratification retards turbulent
mixing process of fluid momentum and sediment mass. As a result of which, the
velocity distribution in sediment-laden flows is modified from the logarithmic law
distribution in a clear-water flow. As already discussed, García (2008) proposed an
iterative solution for the velocity �u in sediment-laden flows using Eqs. (6.88) and
(6.91). Besides, there are number of contributions that are discussed as follows:
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6.6.1 Einstein and Chien’s Contribution

Einstein and Chien (1955) modified the logarithmic law of velocity distribution
due to the effects of sediment suspension. They argued that in sediment-laden
flows, a more realistic velocity distribution could be obtained by the introduction
of the participation of suspended sediment particles in the exchange mechanism.
They modified the traditional Reynolds shear stress s relationship according to
Boussinesq hypothesis given by Eq. (3.24) or (6.23). The modified equation is

s ¼ ð1þ DCÞqet

d�u

dz
ð6:209Þ

In the zone of small concentration, that is, 1 + DC & 1, Eq. (6.209) becomes
Eq. (6.23). In this case, an equation similar to the universal logarithmic law, but
with different values of constants, could be applied. Experimental data analysis
suggested the following relationship:

�u

u�
¼ 17:66þ 1

j
ln

z

35:45ks

� �
ð6:210Þ

Experiments revealed that when the local sediment concentration reaches
C = 981 N m-3 in the near-bed flow region or when the flow region is z \ 0.1h,
Eq. (6.210) proved to be inadequate. In this flow region, the suspended sediment
concentration is high, and the shear stress given by Eq. (6.209) can be approxi-
mated by the bed shear stress s0 as

s0 ¼
Zh

0

ð1þ DCÞqgS0dz ð6:211Þ

The velocity distribution is thus obtained as

�u

u�
¼ 1

j

1þ Dh�1
Rh
0

Cdz

1þ DCjz¼0

0
BBB@

1
CCCA

0:5

ln Be

z

ks

� �
ð6:212Þ

where Be is a constant to be determined empirically. However, the depth-averaged
velocity U can be obtained from the following equation with a minimal error

U

u�
¼ 17:66þ 1

j
ln

z

96:5ks

� �
ð6:213Þ
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6.6.2 Umeyama and Gerritsen’s Contribution

Using a modified mixing length concept, Umeyama and Gerritsen (1992) devel-
oped a theoretical model to predict the velocity distribution in a sediment-laden
flow. They introduced a modified mixing length l for sediment-laden flows as

l ¼ jzð1� ~zÞa1 ^ a1 ¼ 0:5 1þ b1
C

Ca

� �
ð6:214Þ

where b1 is a coefficient to be determined empirically. Substituting Eq. (6.214)
into the traditional Reynolds shear stress equation obtained from Prandtl’s mixing
length theory provides

s ¼ qml2 o�u

oz

����
���� o�u

oz

� �
¼ ð1þ DCÞq½jzð1� ~zÞa1 �2 o�u

oz

����
���� o�u

oz
ð6:215Þ

In the above, the mass density q of a clear-water fluid is replaced by that of
fluid–sediment mixture qm, given by qm = (1 + DC)q (Eq. 1.29). Remembering
that the Reynolds shear stress distribution in a zero-pressure gradient (uniform)
flow is linear and can be given by s ¼ s0ð1� ~zÞ, it can be equated to Eq. (6.215) to
get

d�u

dz
¼ u�

jz
ð1þ DCÞ�0:5ð1� ~zÞ�0:5b1ðC=CaÞ ð6:216Þ

In Eq. (6.216), the partial differential form is replaced by the total differential,
as both �u and C are functions of z. The Rouse equation, Eq. (6.27), can be used as a
first approximation for C. Then, the velocity distribution in a sediment-laden flow
can be determined numerically from Eq. (6.216).

6.6.3 Castro-Orgaz et al.’s Contribution

The study of Castro-Orgaz et al. (2012) proposed a physical interpretation of the
turbulent momentum transfer in sediment-laden flows by using a modified mixing
length theory. They considered a steady two-dimensional turbulent flow having the
distributions of mass density of fluid–sediment mixture qm(z), induced by the
sediment suspension, and velocity �uðzÞ as shown in Fig. 6.20. Note that there
exists a mass density gradient due to differential sediment concentration along
vertical. The flow momentum per unit volume M ¼qm�uð Þ at an elevation z from the
bed is expanded by a Taylor series up to the first-order term.
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Mðzþ dzÞ ¼ MðzÞ þ dz
dM

dz
ð6:217Þ

Analogous to Prandtl’s mixing length theory, it was assumed that dz is the
length scale l, termed the mixing length for the sediment-laden flows. Thus, from
Eq. (6.217), it can be obtained as

dM ¼ Mðzþ dzÞ �MðzÞ ¼ l
d
dz
ðqm�uÞ ¼ l �u

dqm

dz
þ qm

d�u

dz

� �
ð6:218Þ

Further, from the definition sketch (Fig. 6.20), dM is obtained as

dM ¼ ðqm � dqmÞð�uþ d�uÞ � qm�u ¼ qmd�u� �udqm ^ d�udqm ! 0 ð6:219Þ

Equating Eqs. (6.218) and (6.219) gives

d�u ¼ l
�u

qm

� dqm

dz
þ l

d�u

dz
þ �u

dqm

qm

ð6:220Þ

The mass density difference can also be expanded in terms of l as

dqm ¼ l
dqm

dz
þ l2

2
� d

2qm

dz2
ð6:221Þ

Using Eq. (6.221) into Eq. (6.220) yields

l u

z

u uδ+

ρm

z

ρm – δρm

Fig. 6.20 Distributions of mass density qm and velocity �u in a sediment-laden flow, as
components of momentum transfer, M ¼ qm�u, between two layers separated by the mixing length
l (Castro-Orgaz et al. 2012)
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d�u ¼ l
d�u

dz
1þ �u

qm

d�u

dz

� ��1

2
dqm

dz
þ l

2
� d

2qm

dz2

� �" #
ð6:222Þ

The above equation that was originally developed by Montes (1973) represents
the influence of mass density of suspended sediment on the momentum transfer.
The turbulent momentum transfer is therefore not only influenced by the local
values of qm and �u, but also by their gradients. Therefore, Eq. (6.222) implies that
the influence of suspended sediment is pronounced in the flow region with large
gradients of mass and momentum transfer, as in the near-bed flow region; both
dqm/dz and d�u=dz are substantial.

The mass density qm of fluid–sediment mixture is given by [see Eq. (1.29)]

qm ¼ qþ ðqs � qÞC ¼ qð1þ DCÞ ð6:223Þ

An accelerating or decelerating particle is to move some volume of surrounding
fluid as it transports through it, since the particle and fluid cannot occupy the same
physical space simultaneously. Therefore, it was required to include the added
fluid mass or virtual mass, that is the inertia added to a system, through a modi-
fication of the mass density of a particle qp as follows (Montes 1973; Liggett
1994):

qp ¼ qs þ amq ð6:224Þ

where am is the added mass coefficient, which can be approximated as am = 0.5
(van Rijn 1984a). Using Eq. (6.224), Eq. (6.223) can be reformed as

qm ¼ q½1þ ð1þ D� bmÞC� ð6:225Þ

where bm = 1 - am. Differentiating Eq. (6.225) once and twice with respect to
z yields

dqm

dz
¼ q 1þ D� bmð Þ dC

dz
;

d2qm

dz2
¼ q 1þ D� bmð Þ d

2C

dz2
ð6:226Þ

Then, inserting Eq. (6.226) into Eq. (6.222), the resulting equation is

d�u ¼ l
d�u

dz
1þ q

qm

�u 1þ D� bmð Þ d�u

dz

� ��1dC

dz
2þ l

2
� d

2C=dz2

dC=dz

� �
dz

" #
ð6:227Þ

Differentiating the diffusion equation Eq. (6.37) that was obtained by Hunt
(1954), with respect to z, yields:
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es

d2C

dz2
þ wsð1� 2CÞ dC

dz
¼ 0 ð6:228Þ

Inserting Eq. (6.228) into Eq. (6.227) produces

d�u ¼ l
d�u

dz
1þ q

qm

�uð1þ D� bmÞ
d�u

dz

� ��1dC

dz
2� lws

2es

ð1� 2CÞ
� �( )

ð6:229Þ

In turbulent momentum transfer, the term dC/dz represents the stratification
effect that is predominant in the near-bed flow region (Smith and McLean 1977a).
In order to simplify, the sediment diffusivity es in near-bed flow can be approxi-
mated by (Montes 1973):

es ¼ lu� ð6:230Þ

However, besides the near-bed approximation, its application to the entire flow
depth was hypothesized, as in the upper flow layer, the mass and momentum
transfer is less affected by the suspended particles (Smith and McLean 1977a).
Further, the mixing length l in a sediment-laden flow which is different from the
mixing length l0 in a clear-water flow was assumed as l = l0 based on the
asymptotic considerations. Note that if C ? 0, then dC/dz ? 0 by Eq. (6.37); and
if l ? l0, then Eq. (6.229) tends to be the classical Prandtl equation, d�u ¼ l0d�u=dz.
With this approximation and that given by Eq. (6.230), Eq. (6.229) is rewritten as

d�u ¼ l0
d�u

dz
1þ q

qm

�uð1þ D� bmÞ
d�u

dz

� ��1dC

dz
2� ws

2u�
ð1� 2CÞ

� �( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
/

) d�u ¼ /l0|{z}
lm

d�u

dz

ð6:231Þ

where / is a sediment damping factor, which modifies the clear-water mixing
length l0 to lm = /l0 for sediment-laden flows. The damping factor / is therefore
dependent on �uðzÞ, C zð Þ, d�u=dz, and dC/dz.

In order to analytically relate the mixing length l0 in a clear-water flow with the
mixing length lm in a sediment-laden flow, Castro-Orgaz et al. derived l0 by
balancing the Reynolds shear stress equation obtained from the Prandtl’s mixing
length theory with the linear Reynolds shear stress distribution in a zero-pressure
gradient flow given by s ¼ s0ð1� ~zÞ:

s ¼ ql2
0

d�u

dz

����
���� d�u

dz
¼ s0ð1� ~zÞ ð6:232Þ
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To determine the velocity gradient, they used the wall-wake velocity distri-
bution in a clear-water flow as follows (White 1991):

U � �u

u�
¼ � 1

j
ln~zþ 2P

j
ð1� -Þ ^ u� ¼

s0

q

� �0:5

_ - ¼ sin2 p
2

~z
� �

ð6:233Þ

where P is the Coles’ wake parameter. Using Eq. (6.233) into Eq. (6.232), the l0
and lm are obtained as

l0

h
¼ j~zð1� ~zÞ0:5 1þ 2Pz

d-
dz

� ��1

^ d-
dz
¼ p

2h
sinðp~zÞ ð6:234aÞ

lm

h
¼ /

l0
h

� �
¼ /j~zð1� ~zÞ0:5 1þ 2Pz

d-
dz

� ��1

ð6:234bÞ

Therefore, von Kármán constant js for sediment-laden flows is defined by

js ¼ /j ð6:235Þ

The above equation suggests that js is a function of z, as / = /(z).
For sediment-laden flows, Eq. (6.232) was expressed as follows (Lyn 1986;

Umeyama and Gerritsen 1992):

s ¼ ql2m
d�u

dz

����
���� d�u

dz
¼ s0 1� ~zþ D

Z1

~z

Cd~z

0
@

1
A ð6:236Þ

Equation (6.236) produces a differential equation of velocity distribution, that is

duþ

d~z
¼ h

lmð1þ DCÞ0:5
1� ~zþ D

Z1

~z

Cd~z

0
@

1
A

0:5

^ uþ ¼ �u

u�
ð6:237Þ

However, the term / in Eq. (6.231) is further simplified with the assumption
that ws/u* in pure suspension is less than unity leading to ws(1 - 2C)/(2u*) 
 2.
Therefore, the / is approximated as

/ ¼ 1þ 2uþ � 1þ D� bm

1þ DC
� dC

d~z

duþ

d~z

� ��1

ð6:238Þ

The solution for velocity distribution from Eq. (6.237) can be obtained if the
concentration distribution is known. Castro-Orgaz et al. adopted a simplified
exponential distribution for sediment concentration as follows (Montes 1973):
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C

Cjmax

¼ exp �A~z
1þ exp(� 2B~zÞ

2

� ��A=B
( )

ð6:239Þ

where A and B are empirical coefficients. According to Montes (1973), A could be
determined by fitting Eq. (6.239) and B & 30. In the above, C|max is C at the
interface of bed load and suspended load.

Equation (6.237) was solved in velocity defect form, d#=d~z ¼ �duþ=d~z [where
# ¼ ðU � �uÞ=u�], using lm from Eq. (6.234b) and / from Eq. (6.238). The
C(z) and dC/dz were determined from Eq. (6.239), once A was obtained by fitting
the experimental data of C. Equation (6.237) was then solved numerically using a
fourth-order Runge–Kutta method, with an initial value of # ~z ¼ 0:999ð Þ ¼ 0. To
avoid a singularity, ~z ¼ 0:999 was used in place of ~z ¼ 1 for the computation. Note
that Eq. (6.237) was implicit in duþ=d~z. The value duþ=d~z in a given computa-
tional step for the computation of / was used from the previous step. The com-
putation was continued until no significant variation between the assumed duþ=d~z
in / and that computed from Eq. (6.237) were detected. Figure 6.21 compares the
computed velocity uþð~zÞ distributions obtained from Castro-Orgaz et al.’s
approach with the experimental data of Montes (1973) and Coleman (1981) having
reference concentrations Ca = 9 9 10-3 and 0.0246, respectively.

6.7 Effects of Suspended Load on von Kármán Constant j

Gaudio et al. (2010) [also Gaudio and Dey (2012)] gave a comprehensive review
of the studies on the influence of sediment suspension on von Kármán constant j.
In fact, von Kármán constant j has been a long disputed parameter, involved in the
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Fig. 6.21 Comparison of velocity distributions computed from Castro-Orgaz et al.’s (2012)
approach with the experimental data of Montes (1973) and Coleman (1981)
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velocity data analysis of the logarithmic law distribution in the wall shear layer, to
report the results of sediment-laden flows. In the past, pioneering research con-
tributions were due to Vanoni (1946), Brooks (1954), Einstein and Chien (1955)
and Elata and Ippen (1961) to study the influence of suspended sediment con-
centration C on the distributions of streamwise velocity �u by fitting the logarithmic
law to match the experimental results. One of the important findings was that j
decreases from its universal value (j = 0.41) with an increase in C as suspended
sediment in the flow induces a damping effect on the turbulence momentum
transfer, as hypothesized by Vanoni (1946). It may be attributed to the energy that
comes from the turbulence to keep sediment particles in suspension. In fact, it was
seen that an increase in velocity gradient d�u=dz for a given u* was associated with
a decrease in j. However, Coleman (1981, 1986) argued strongly against this
issue. He believed that the results of Vanoni were an artifact of the erroneous
method of evaluating j that was generally accepted at the time when he did the
work. According to Coleman, the experimental findings of Einstein and Chien
(1955) were also unreliable, as the velocities were measured only within the lower
40 % of the flow depth. Thus, it was hard to obtain the general information of the
flow characteristics, such as boundary layer thickness, and maximum velocity. In
experiments by Elata and Ippen (1961), they used virtually neutral buoyant
polystyrene particles to simulate the sediment suspension. The �u distributions were
plotted as velocity defect distributions; and the apparent reduction of j was due to
its erroneous evaluation, as emphasized by Coleman. However, in sediment-laden
flows, Coleman (1981) studied �u distributions using the wake law and argued that
the wake coefficient rather than j is influenced by sediment suspension. The wake
law that can describe the logarithmic law distribution in sediment-laden flows only
near the bed has the same value of j = 0.41 as that in a clear-water flow. Lyn
(1986) pointed out that in the variation of j with C, the application of the loga-
rithmic law results in a decreased value of j; while the application of the log-wake
law yields a universal value of j. Cioffi and Gallerano (1991) conducted an
experimental study to determine �u and C distributions by using the phase differ-
ence method. Without examining j in the logarithmic law layer, they only dem-
onstrated that the measured �u distributions were reasonably interpolated with
j = 0.4 if ~z\0:15. Cellino and Graf (1999) studied the effects of sediment sus-
pension in flows under noncapacity (unsaturated) and capacity (saturated) condi-
tions. They reported that j = 0.4 was an acceptable value for describing �u
distributions using the velocity defect law. According to Muste (2002), j = 0.41
could be an appropriate value for sediment-laden flows involving only small
values of C (\0.05). The above discussion is made on the studies by the inves-
tigators who opposed the changed value of j from its universal value.

On the other hand, other investigators believed that j is nonuniversal in sedi-
ment-laden flows. Besides Vanoni (1946), Einstein and Chien (1955), and Elata
and Ippen (1961), many others during the 1960s and 1970s reported that j
diminishes as C increases, primarily owing to an increase in velocity gradient
d�u=dz in presence of sediment suspension (Vanoni and Nomicos 1960; Hino 1963;
Ippen 1971). In 1980s, Nouh (1989) analyzed the velocity data in logarithmic law
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layer ð~z	 0:15Þ. He argued that the variation of j with depth-averaged suspended
sediment concentration �C depends on the flow Reynolds number Re (= 4Uh/t).
The �C increases with a decrease in j if Re \ 7 9 105, but increases if
Re [ 7 9 105. The variation of j with �C is insignificant in flow with Re nearly
equaling the critical value Rec = 7 9 105. Nouh (1989) hypothesized that the
turbulence level (Reynolds stresses) in the flow region of the proximity of the bed
decreases if Re \ Rec and increases if Re [ Rec, as �C increases. Additionally, he
argued that the near-bed turbulence level in sediment-laden flows increases as �C
decreases and Re increases, with a rate depending on �C and Re. For Re \ Rec, the
�C influences the turbulence level more than Re, and vice versa for Re [ Rec. These
two effects balance each other for Re & Rec. Nouh (1989) also observed that the
amplified values of j in flow with fine suspended particles are larger than those in
flow with relatively coarse suspended particles. Also, the amplified values of j in
flow with high �C are larger than those in flow with low �C. In a clear-water flow, j
is invariant of Re for 4 9 105 \ Re \ 2 9 106. Wang and Qian (1992) explained
that in the far-bed flow region ð0:1\~z\1Þ, the values of j in sediment-laden flows
are less than j = 0.41 in clear-water flow. Guo and Julien (2001) argued that the
reduction of j in sediment-laden flows is due to �C; and the mass density gradient
should be given by the Richardson number. In sediment-laden flows, Wang et al.
(2001) modified the von Kármán constant separately as jp for the logarithmic
law and jw for the wake law. For the logarithmic law, they proposed jp =
2.08j/(Du+j + 2.08), where Duþ ¼ ð�ucw � �usfÞ=u�, and �ucw and �usf are the time-
averaged velocities at ~z = 0.05 in clear-water and sediment-laden flows, respec-
tively. It is obvious that the jp (evaluated within the flow region z \ d; where d is
the boundary layer thickness) decreases with an increase in Du+. For the wake law,
they obtained an average value of jw as 0.346 with a relative error of 229 %. Nezu
and Azuma (2004) conducted measurements in the logarithmic law layer for both
particles and fluid in particle-laden flow by means of a discriminator particle-
tracking velocimeter. They observed that j decreases with an increase in �C. They
detected increased near-bed turbulence intensity in flow with particle suspension.
Bose and Dey (2009b) also reported a reduction of j in sediment-laden flows. It
can therefore be concluded that j decreases due to an increase in near-bed tur-
bulence intensity that is augmented by suspended sediment particles. In a recent
attempt, a rational approach to study the effects of sediment suspension on tur-
bulent momentum transfer was put forward by Castro-Orgaz et al. (2012). It has
already been discussed in Sect. 6.6. An improved definition of the von Kármán
constant js as a local turbulent variable was proposed, arising from a modified
mixing length theory for sediment-laden flows. The analysis showed that the js is
not constant in turbulent sediment-laden flows, but a function of distance from the
wall, as the turbulent momentum transfer is influenced by the stratification. In
investigating the log-wake data fitting by their approach, it was observed that if
near-wall data were used, the conclusion of Coleman (1981) was generally sup-
ported, resulting in j & 0.41. Nevertheless, it was recognized that it did not
corroborate that the suspended sediment influences the turbulence structure of the
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outer layer. Further, if the data over entire flow depth were taken into account, then
the fitted js by a log-wake approach reduced considerable from 0.41, because js

(=/j, where /\ 1) in a sediment-laden flow is less than j in a clear-water flow.
The researchers supporting the universality of j in sediment-laden flows

referred to Coleman’s (1981, 1986) data and analysis. In this context, it is pertinent
to mention that Gust (1984) severely criticized the method of data analysis by
Coleman’s (1981). One of the reasons for the critique was the lack of data in the
near-wall flow region, typically four data points, which might lead to inaccurate
fittings for the corresponding j values. Subsequent work by Parker and Coleman
(1986) corroborated the results presented by Coleman (1981, 1986) regarding the
strength of the wake, but it did not provide enough additional information to
support the value j = 0.41. Further, criticizing the approach of Coleman (1981,
1986), Lyn (1986, 1988), and Valiani (1988) argued that statistically rigorous
fittings by the log-wake law suggest that both j and wake function are influenced
by the suspended sediment. Valiani (1988) adopted the log-wake law for sediment-
laden flows reanalyzing Coleman’s (1986) data. He proposed that rather than
determining j from the near-wall data, the entire velocity distribution could be
used with values weighted inversely with the distance from the wall. Surprisingly,
using this weighted values, Valiani (1988) recognized a pronounced effect of
sediment suspension reducing the value of j and a less significant effect on wake
function, which yielded smaller values from those obtained by Coleman (1986).

Owing to the available evidence where j varies in flow with suspended sedi-
ment concentration C, a reanalysis of Coleman’s dataset was carried out by Gaudio
et al. (2010) [also Gaudio and Dey (2012)] to verify the constancy of j. Using the
velocity defect law as in the original work, the data �umax � �uð Þ=u� versus z/d were
plotted in a semilog graph (Fig. 6.22). The slopes representing -j-1 were
determined from a straight line fitting within the logarithmic law layer
(z B 0.15d). The newly obtained values of j were different from those originally
obtained by Coleman (1981, 1986). Figure 6.22 depicts the reanalyzed plots for j
versus C. The mean trend shown by the solid line confirms a progressively
diminishing trend of j with an increase in C. In general, the values of j are less
than 0.41 for C [ 0.0008.

6.8 Effects of Sediment Suspension on Turbulence
Characteristics

6.8.1 Effects on Turbulent Stresses

Suspended sediment particles are known to modify the turbulence structure in a
fluid flow by which they are transported, which in turn affects the sediment trans-
port. The interaction between turbulent flow and suspended particles is of primary
attention in the mechanics of sediment transport. There has been much controversy
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over the effects of suspended sediment on turbulent flow. The major controversy is
related to the turbulence intensities or Reynolds stresses, if they increase or
decrease, and the turbulence modulation, if it enhances or attenuates. Present
understanding of these issues is not at all comprehensive but far from complete.

Elata and Ippen (1961), who conducted experiments on neutrally buoyant
suspension of high concentrations, argued that the turbulence structure is modified
primarily at scales comparable to suspended particle size. Wang and Qian (1989)
performed experiments with both fine sand and neutrally buoyant plastic particles
having average concentrations to be greater than 1 %. In contrast to Elata and
Ippen, they observed a noticeable reduction in streamwise turbulence intensity.
Examining streamwise turbulence intensity in sediment-laden flows with fine sand
(d & 0.24 mm), van Ingen (1983) concluded that the sediment-laden flows did not
exhibit substantially different streamwise turbulence intensity from that in a clear-
water flow. Lyn (1992) examined flows with well-sorted sand (d = 0.15 -

0.24 mm) suspension under both equilibrium sediment bed and rigid bed condi-
tions. The streamwise turbulence intensity was found to increase slightly in the
upper half and the near-bed flow regions, separated by a flow region where no
distinction was observed. Power spectra of the streamwise velocity fluctuations at
about half the flow depth revealed a relative attenuation of small scales and a
relative enhancement of larger scales. He, however, did not observe any evidence
to support the traditional inference of turbulence damping. Nezu and Azuma
(2004) reported that the turbulence intensities are enhanced substantially by the
presence of particles in the near-bed flow region. The turbulence intensities of
particles become further larger than those of fluid in that region. Cellino and
Lemmin (2004) measured enhanced turbulence intensities corresponding to ejec-
tions that are involved in suspended sediment transport.
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Fig. 6.22 Variation of j with C obtained by Gaudio et al. (2010) [also Gaudio and Dey (2012)]
reanalyzing the data of Coleman (1981, 1986)
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6.8.2 Response of Turbulent Bursting to Sediment
Suspension

As a latest development of research in sediment transport by turbulent flow, the
dynamics of coherent structures in sediment-laden flows has been studied in great
detail to explore their generation mechanism and role in bringing the sediment
particles in suspension and transporting them. Investigations were primarily con-
cerned with the quantification of the conditional shear stress in hydraulically
smooth and rough boundary layer flows. They, however, documented the presence
of a dominant turbulence to generate bursting events. Figures 6.23a, b show the
near-bed flow visualization by Mao (2003) illustrating a single ejection and sweep
in smooth boundary layer flow. These events that were well recognized are
characterized by highly intermittent with large amplitudes and turbulent time-
scales. However, no consensus has so far been achieved concerning a formal
scaling law for these structures, because the complex mutual interaction between
bursts and suspended particles is far from being understood.

Attempts were primarily made to determine the link between the coherent
structures and sediment transport. Sediment particles are found to respond to dif-
ferent flow structures in bed- and suspended-load transports. The general opinion is
that the bed-load transport arises from pressure fluctuations induced by sweeps at
the bed; while ejections lift the particles in suspension in turbulent flow. Sumer and
Oguz (1978) and Sumer and Deigaard (1981) experimentally studied the near-bed
motion of sediment particles in hydraulically smooth and rough flow regimes. They
observed that the kinematics in connection with the particle motion is in good
agreement with the bursting events in both flow regimes. The underlying mecha-
nism is that the lifting up of the particles is strongly governed by the ejections. The
process continues until the accompanying bursting structure breaks up. The lifting
of particles then terminates, and they start to move (fall) toward the bed. On the way
back to the bed, a particle may interact with newly generated ejecting fluid streaks
due to other bursts, and then, the particle again starts to rise. In the case, where the
particles turn back to reach the bed, they are lifted up again by the same mechanism.
Sediment particles are thus suspended in this way. Nezu and Nakagawa (1993)
documented that the vertical movements of the particles coincide with ejection and
sweep velocities observed in bursting. They also argued that in a hydraulically
rough flow, sweeps dominate over ejections. The sweeps are important in the near-
bed shear layer for the re-suspension of the sediment particles. Soulsby et al. (1994)
observed in a tidal flow, the vertical sediment flux to dominate by the dynamics of
large-scale turbulent structures. They also argued that the damping of the turbulent
kinetic energy is the cause of suspension, as was identified by Barenblatt (1955) and
Smith and McLean (1977a). Niño and García (1996) and García et al. (1997)
showed that in hydraulically smooth and rough flow regimes, ejections are
responsible for particle entrainment into suspension if the particles are completely
immersed in the viscous sublayer. This mechanism is independent of the relative
roughness and in conformity with the previous findings by Grass (1971) and Grass
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et al. (1993), who also reported that ejections and sweeps occur in a similar manner
in both smooth and rough shear flows. Hurther and Lemmin (2003) observed that
the coherent structures are important contributors to suspended sediment transport.
Strong structures that persist for 30 % of the time carry about 50 % of the vertical
sediment flux. This indicates that the suspended-load transport is strongly inter-
mittent and that the sediment concentration along vertical varies strongly. Nezu and
Azuma (2004) found that the vertical component of turbulence intensities of par-
ticles are more marked than the streamwise ones. It infers that the vertical motion of
particles is more enhanced due to the bursting events. Cellino and Lemmin (2004)
argued that the upward sediment flux C0w0 is generally generated by ejections. The
contribution of sweeps directed toward the sediment bed is always smaller than that
of ejections. They noticed that the emergence of sediment clouds from the bed
corresponds to the strong events of vertical velocity fluctuations, in general, and the
strong ejections, in particular. The sediment cloud is coherent over entire flow depth
with nearly invariant concentration. They also observed that in the events of
downward vertical velocity fluctuations, the sediment cloud frequently disappears.
Lelouvetel et al.’s (2009) study focused on the kind and the strength of turbulence
structures involved in particle suspension. By applying the quadrant analysis to the
flow in the vicinity of moving particles, they found that an upward motion of a
particle is strongly correlated to the presence of ejections in the vicinity of the
particle. For a given study, all particles surrounded by ejections with an instanta-
neous magnitude of momentum flux greater than a threshold value are lifted with a
positive vertical velocity.

Mao (2003) used the particle image velocimetry (PIV) and the hydrogen bubble
generator to study the bursting phenomenon over sediment beds. He observed the
occurrence of quite a few ejections, termed a multi-ejection (Fig. 6.24a). It was
found that with an increase in Re, when R* [ 0.5, the occurrence of multi-ejection

Fig. 6.23 a Single ejection, and b sweep over a bed having ks & 0.1 mm (Mao 2003)
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becomes more common instead of a single ejection; and the sweeps are reduced.
For larger roughness ks, multi-ejection plays a leading role. With an increase in R*,
the magnitude of kinetic energy in the main flow and the turbulent kinetic energy
near the bed increase, and thus, the ejection density increases as well. In contrast,
the sweeps encounter the resistance from the so-called ejection cushion formed by
the multi-ejection (Figs. 6.24b, c). Sediment particles from the bed are ejected to a
certain height to start their movement in suspension. As the flow velocity
increases, multi-ejection becomes more frequent, for which fluid streaks are
ejected at a higher elevation with a longer period of ejection. On the other hand,
the sediment particles in suspension may fall by the gravity, but the ejection
cushion may prevent them from falling. The relative thickness of the ejection
cushion increases with R*, implying the particles in suspension to move further.

Breugem (2012) conducted experiments to study the vertical transport process
of suspended sediment particles and the role of turbulence in transporting them
under a fully developed flow condition. Experiments were performed by feeding
sediment into the flow at the far upstream of the measuring zone. The flow velocity
was measured by a particle image velocimetry (PIV), and the velocities of indi-
vidual sediment particles were detected by a particle tracking velocimetry (PTV).

His observation is shown schematically in Fig. 6.25 that illustrates the occur-
rence of a hairpin vortex parcel, consisting of multiple aligned hairpin vortices
separated each other by an internal shear layer, and the trajectories of two parti-
cles. From the near-bed flow region, particles are transported upwards by ejection
events (Q2), leading to an increase in number of upward moving particles in
ejections. Some of these particles are also transported above the hairpin vortex.

Fig. 6.24 a Beginning of multi-ejection, b beginning of sweeps, and c sweeping fluid streaks
coming across an ejection cushion over a bed having ks & 6 mm (Mao 2003)
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Only those particles end up in sweep events (Q4), leading to a decrease in number
of particles in sweeps. Other particles end up in inward interaction events (Q3)
induced by an upstream hairpin vortex, leading to an increase in number of
downward moving particles in inward interactions.

As the sediment particles were observed more frequently in ejections and
inward interactions and less frequently in sweeps, they encounter more frequently
with low velocity flow structures. This is the governing mechanism to have an
average streamwise particle velocity that is lower than the average streamwise
flow velocity. To be more explicit, a net upward velocity, that the particles
encounter, is resulted from an increased occurrence in ejections and is correlated
with a flow velocity to be lower than the average flow velocity. In addition, due to
an increased occurrence of inward interactions, the particles arrive from the near-
bed flow region where the mean flow velocity is lower.

He recognized that the individual coherent structures transport particles in
different modes than the way they transport momentum. Particles are transported
upwards from higher to lower concentration zone by ejections and downwards by
sweeps and inward interactions. Thus, sweeps have a different effect on momen-
tum transport than on sediment transport. He also identified that each individual
quadrant event is more efficient in transporting particles than momentum. In
particular, ejections are more efficient in transporting particles than others. The net
transport of sediment particles and momentum is the collective effect of all
quadrant events.

6.9 Wash Load

Wash load is the portion of sediment that is transported by the stream flows,
usually in a river, such that it always remains near the free surface as a near-
permanent suspension (see Fig. 5.1). It is therefore transported without deposition,

HVH 

Q3

ISL
HVH

HVH

ISL

Q

Q

3
Q2

2

Fig. 6.25 Schematic of the mechanism of particle transport in a fully developed boundary layer
flow illustrating a hairpin vortex parcel and two typical particles in a frame moving with the
convective velocity of hairpin vortex parcel. ISL is the internal shear layer and HVH is the hairpin
vortex head (Breugem 2012)
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essentially passing straight through the stream. It consists of the finest sediment
particles and can approximately be defined by those having a Rouse number
f\ 0.8, implying that the vertical turbulence intensity, that is root-mean-square of

w0 (
ffiffiffiffiffiffiffi
w02

p
being nearly equal to u*), to retain the sediment is far greater than the

terminal fall velocity ws of the sediment.
Einstein et al. (1940) introduced a concept of wash load and defined as the

finest size fractions of the total sediment-load, not at all present or hardly present
in significant amounts in the streambed and banks. These size fractions are
transported as suspended load through the channel over a long distance and
scarcely deposited on the bed. The transport rate of wash load could be considered
to depend upon the supply rate from the upstream catchment and that might not be
uniquely related to the hydraulic parameters of the flow. Einstein (1950) recom-
mended that the limiting (largest) size of sediment for the wash load could be
arbitrarily chosen as that particle size d10 for which 10 % of the bed sediment is
finer. However, the Subcommittee of Sediment Terminology of the American
Geophysical Union formally introduced a definition of wash load (Lane 1947):
Wash load is the part of the sediment load of a stream which is composed of
particle sizes smaller than those found in appreciable quantities in the sifting
portions of the streambed. It is therefore not appropriate to identify wash load with
suspended load, as the primary difference is that the former carries sediment
particles that never come in contact with the bed or bed layer and the latter has a
continuous exchange of sediment with the bed layer.

Besides Einstein and Lane, some other researchers also attempted to put for-
ward the definition of wash load. Einstein and Chien (1953a, b) argued against the
general belief that the sediment transported by wash load is never deposited on the
riverbed. They also argued that the wash load could not be predicted from Ein-
stein’s bed-load approach. Shen (1970) defined the wash load as the sediment
transport rate of a given size for which the sediment supply rate is less than the
sediment transport capacity by the flow for a given hydraulic condition. According
to Partheniades (1977), the wash load may be governed by two different types of
sediment transport processes. They may either exist separately or coexist. The first
type refers to a bed-load function for a limited range of discharge. For a higher
discharge, it may behave as a wash load without depositing particles over the bed;
while for a lower discharge, the sediment can simply be deposited over the river
bed. On the other hand, the second type of sediment transport does correspond to a
bed-load function. The sediment in wash load is either transported as suspension
without leaving any signature over the bed, or it is deposited on the bed in the
enlarged zones, where considerably low bed shear stresses exist, such as in estu-
arine reaches of a channel or in a reservoir zone. Woo et al. (1986) stated that it
was not feasible to specify the sediment size limit for the wash load. Nevertheless,
many researchers assumed the limiting size of sediment carried by the wash load
being approximately 0.0625 mm, which corresponds to the silt size.

Diplas and Parker (1992) recognized that when the sediment-laden flows
containing fine sediment in suspension pass over a gravel-bed, the suspended fine
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sediment interacts with the macro-roughness of the gravel-bed, infiltrates into the
substrate, and becomes trapped within the interstices of gravels forming the bed.
The fines deposited within the interstices of gravels can be re-entrained and
washed out as a wash load by the subsequent clear-water flow. The condition of
equilibrium between sediment concentration of wash load in the flow and the
fraction of washed material (fine sediment) in the bed sediment was experimen-
tally investigated by Khullar et al. (2010). They gave the suspended wash-load
transport intensity Uwi relationship for such sediments as

Uwi ¼ 28 nsiHið Þ6 ð6:240aÞ

log nsi
s0

s0avjc

� �0:62
" #

¼ 0:703þ 0:54 log
di

da

� �
þ 0:0308 log

di

da

� �� �3

ð6:240bÞ

where nsi is the sheltering factor and s0av|c is the threshold bed shear stress for the
average size da of a sediment mixture.

In conclusion, the prediction of wash-load transport rate still remains an elusive
issue. It is generally acknowledged that the wash load is originated in the water-
shed and conveyed to the watercourse by an overland flow. It consists of very fine
sediment that is mostly washed through the watercourse without contributing
much to its sedimentation processes, but that generally provides the bulk of the
contribution to estuarine sedimentation, lake and reservoir deposits. It is generally
accepted that the wash load cannot be related to the traditional hydraulics of two-
phase flow. However, aerial precipitation could be an important cause in producing
the overland flow that brings the wash load to the watercourse contributing to the
main stream flow.

6.10 Examples

Example 6.1 A natural stream has a bed slope of 5 9 10-3 and the flow depth of
1.2 m. The bed consists of fine sand with median size of 0.45 mm. Consider the
sediment concentration at an elevation 0.06 m from the bed is 0.55. (1) Calculate
the Rouse number and (2) plot the sediment concentration distribution between
0.06 mm and the free surface. Assume that the sediment concentration distribution
follows the Rouse equation.

Solution

Given data are as follows:
Bed slope, S0 = 5 9 10-3; flow depth, h = 1.2 m; reference level, a = 0.06 m;
reference concentration, Ca = 0.55, and median size of sediment, d50 = 0.45 mm.
Nominal diameter, dn = d50/0.9 = 0.45/0.9 = 0.5 mm
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For dn = 0.5 mm, the terminal fall velocity ws has been calculated in Example 1.4.
Considering Cheng’s formula (see Table 1.5), ws = 0.0611 m s-1

Bed shear stress, s0 = qghS0 = 103 9 9.81 9 1.2 9 5 9 10-3 = 58.86 Pa
Shear velocity, u* = (s0/q)0.5 = (58.86/103)0.5 = 0.243 m s-1

1. Calculation of Rouse number:

Considering b = 1 and j = 0.41, calculate Rouse number

f ¼ 0:0611
1� 0:41� 0:243

¼ 0:613( Eq: ð6:27Þ

2. Plotting of sediment concentration distribution:

Using Rouse equation (Eq. 6.27), calculate sediment concentration distribution

C ¼ Ca
h� z

z
� a

h� a

� �f

¼ 0:55
1:2� z

z
� 0:06
1:2� 0:06

� �0:613

¼ 0:0905
1:2� z

z

� �0:613

The sediment concentration distribution curve plotted using the above equation
is shown in Fig. E6.1.

Example 6.2 Water flows through a wide channel with a flow rate per unit width
of 12 m2 s-1 having a uniform flow depth of 7 m. The channel has a streamwise
bed slope of 2 9 10-4. Relative density of sediment forming the bed is 2.65;
sediment size, d50 = 0.5 mm and d65 = 0.6 mm, for which Manning roughness
coefficient is 0.02 SI units. The terminal fall velocity of sediment particles is
0.072 m s-1, static angle of repose is 32�, and porosity is 0.4. Assume coefficient
of kinematic viscosity of water as 10-6 m2 s-1.

Find the suspended-load transport rate by using the methods of (1) Lane and
Kalinske,3 (2) Einstein, (3) Brooks, (4) Chang et al., (5) Bijker, (6) van Rijn,
(7) Bagnold, and (8) Wu et al.

3 For Lane and Kalinske’s method, they did not clearly define the reference level and its
corresponding concentration. It is therefore suggested that one can consider reference level at
0.05 times the flow depth. However, the concentration at that level may be assumed as 10-3, for
solving this problem. Essentially, in practice, these two parameters are to be obtained from the
measured concentration distributions.
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Solution

Given data are as follows:
Flow rate per unit width, q = 12 m2 s-1; flow depth, h = 7 m; bed slope,
S0 = 2 9 10-4; relative density of sediment, s = 2.65; sediment size,
d50 = 0.5 mm and d65 = 0.6 mm; Manning roughness coefficient, n = 0.02 SI
units; terminal fall velocity of sediment, ws = 0.072 m s-1; static angle of repose,
/ = 32�; porosity of sediment, q0 = 0.4; and coefficient of kinematic viscosity of
water, t = 10-6 m2 s-1

Average flow velocity, U = q/h = 12/7 = 1.714 m s-1

Bed shear stress, s0 = qghS0 = 103 9 9.81 9 7 9 2 9 10-4 = 13.734 Pa
Shear velocity, u* = (s0/q)0.5 = (13.734/103)0.5 = 0.117 m s-1

Shields parameter, H¼u2
�=ðDgd50Þ ¼ 0:1172=ð1:65� 9:81� 0:5� 10�3Þ¼1:691

Use van Rijn’s empirical formula for the determination of threshold bed shear
stress and threshold shear velocity (see Table 4.1):

Particle parameter, D* = d50(Dg/t2)1/3 = 0.5 9 10-3[1.65 9 9.81/(10-6)2]1/3 =
12.648
Threshold Shields parameter, Hcð10\D� 	 20Þ ¼ 0:04D�0:1

� ¼ 0:04� 12:648�0:1

¼ 0:031
Threshold bed shear stress, s0c = HcDqgd50 = 0.031 9 1.65 9 103 9 9.81 9

0.5 9 10-3 = 0.251 Pa
Threshold shear velocity, u*c = (s0c/q)0.5 = (0.251/103)0.5 = 0.016 m s-1
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Fig. E6.1 Sediment
concentration distribution
curve

406 6 Suspended-Load Transport

http://dx.doi.org/10.1007/978-3-642-19062-9_4


Use Zanke’s formula to calculate threshold flow velocity [see Eq. (4.7)]:
Consider c1 = 1 for noncohesive sediment.
Threshold flow velocity, Ucr = 2.8(1.65 9 9.81 9 0.5 9 10-3)0.5 + 14.7 9

1[10-6/(0.5 9 10-3)] = 0.281 m s-1 ( Eq. (4.7)

Calculation for other parameters:
Rouse number, f(b = 1) = ws/(ju*) = 0.072/(0.41 9 0.117) = 1.5 ( Eq. (6.27)
Ratio ws to u*, ws/u* = 0.072/0.117 = 0.615
Hence, 0.1 \ ws/u* \ 1; and factor b = 1 + 2(0.072/0.117)2 = 1.757( Eq.
(6.19)
Exponent of Chang et al. equation, f1 = 2ws/(bju*) = 2 9 0.072/(1.757 9 0.41
9 0.117) = 1.71 ( Eq. (6.144)

Note: Regarding the choice of reference level a and the corresponding estimation
of reference concentration Ca, there are several formulas given in Sect. 6.2.8.
In the following, the solutions are obtained from the consideration of a and Ca as
given by respective investigators.

1. Lane and Kalinske’s method:
For ws/u* = 0.615 and n/h1/6 = 0.02/(275.6)1/6 = 7.84 9 10-3

In the above, n is in SI units and h in inches, h = 7 m = 275.6 in
Note that Fig. 6.10 does not provide a curve for n/h1/6 = 0.00784. Therefore,
an approximate extrapolated value of PC is considered as 0.15 for
ws/u* = 0.615 and n/h1/6 = 7.84 9 10-3

Given a = 0.05 9 7 = 0.35 m and Ca = 10-3

15wsa

u�h
¼ 15� 0:072� 0:35

0:117� 7
¼ 0:462

qs ¼ 129:1� 10�3 � 0:15� exp 0:462ð Þ ¼ 0:031 ft2 s�1

¼ 2:88� 10�3 m2 s�1 ( Eq: ð6:123Þ
In the above, q is in ft2 s-1, q = 12 m2s-1 = 129.1 ft2s-1

gs ¼ 2:88� 10�3 � 2:65� 103 � 9:81 ¼ 70:632 N s�1 m�1

2. Einstein’s method:
a = ks = 2d50 = 2 9 0.5 9 10-3 = 10-3 m (according to Einstein), ~a =a/h =
10-3/7 = 1.429 9 10-4

From Figs. 6.11 and 6.12, I1 = 0.42 and I2 = –2.95 for ~a = 1.429 9 10-4 and
f = 1.5

J1 ¼ I1=0:216 ¼ 0:42=0:216 ¼ 1:94

J2 ¼ I2=0:216 ¼ �2:95=0:216 ¼ �13:657
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Wb ¼ 1=H ½or Dd50= hS0ð Þ� ¼ 1=1:691 ¼ 0:591

From Fig. 5.10, Ub(Wb ¼ 0:591) = 12

Ca ¼ 12=ð23:2� 1:6910:5Þ ¼ 0:4( Eq: ð6:109Þ

Note, it is assumed that u0� ¼ u�
The viscous sublayer thickness, d0 ¼ 11:6t=u0� ¼ 11:6� 10�6=0:117 ¼ 9:915� 10�5 m

d65/d0 = 0.6 9 10-3/9.915 9 10-5 = 6.05
From Fig. 5.7, correction factor xk = 1.03 for d65/d0 = 6.05. The apparent
roughness Dk = d65/xk = 0.6 9 10-3/1.03 = 5.825 9 10-4 m

PE ¼ ln
30:2� 7

5:825� 10�4

� �
¼ 12:802( Eq: ð6:129Þ

qs ¼
0:4� 0:117� 10�3

0:41
ð12:802� 1:94� 13:657Þ ¼ 1:276� 10�3 m2 s�1

( Eq: ð6:129Þ

gs ¼ 1:276� 10�3 � 2:65� 103 � 9:81 ¼ 33:17 N s�1m�1

3. Brooks’ method:
jU/u* = 0.41 9 1.714/0.117 = 6.006
From Fig. 6.13, qs/(qC0.5h) = 17, for f = 1.5 and jU/u* = 6.006

~a ¼ 1:429� 10�4 and Ca ¼ 0:4

C0:5h ¼ 0:4
1� 0:5

0:5
� 1:429� 10�4

1� 1:429� 10�4

� �1:5

¼ 6:831� 10�7 ( Eq: ð6:27Þ

qs ¼ 17 qC0:5hð Þ ¼ 17 12� 6:831� 10�7
 �

¼ 1:394� 10�4 m2 s�1

gs ¼ 1:394� 10�4 � 2:65� 103 � 9:81 ¼ 3:624 N s�1 m�1

4. Chang et al.’s method:
f1 = 1.71
cj = 10

a ¼ 10
13:734� 0:251

ð1� 0:4Þ1:65� 103 � 9:81� tan 32
¼ 0:022 m ( Eq: ð6:149Þ

~a ¼ a=h ¼ 0:022=7 ¼ 3:143� 10�3
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From Figs. 6.14 and 6.15, I3 = 0.0252 and I4 = 0.0191 for ~a ¼ 3:143� 10�3

and f = 1.71

qb ¼ UbðDgd3
50Þ

0:5 ¼ 12½1:65� 9:81ð0:5� 10�3Þ3�0:5 ¼ 5:398� 10�4 m2 s�1

qs ¼
5:398� 10�4 � 7

0:8� 1:714� 0:022
1:714� 0:0252� 2� 0:117

0:41
0:0191

� �

¼ 4:045� 10�3 ( Eq: 6:148ð Þ

gs ¼ 4:045� 10�3 � 2:65� 103 � 9:81 ¼ 105:16 N s�1 m�1

5. Bijker’s method:

J1 = 1.94
J2 = –13.657
qb = 5.398 9 10-4 m2 s-1

Ca ¼ 5:398� 10�4=ð6:34� 0:117� 10�3Þ ¼ 0:728 ( Eq: ð6:111Þ

PE1 ¼ ln
33� 7
10�3

� �
¼ 12:35 ( Eq: ð6:150Þ

qs ¼
0:728� 0:117� 10�3

0:41
ð12:35� 1:94� 13:657Þ ¼ 2:14� 10�3 m2 s�1

( Eq: ð6:150Þ

gs ¼ 2:14� 10�3 � 2:65� 103 � 9:81 ¼ 55:63 N s�1 m�1

6. van Rijn’s method:

qs ¼ 0:012� 1:714� 7
1:714� 0:281

ð1:65� 9:81� 0:5� 10�3Þ0:5

" #2:4
0:5� 10�3

7

� �
1

12:6480:6

¼ 1:723� 10�3 m2 s�1 ( Eq: ð6:156Þ

gs ¼ 1:723� 10�3 � 2:65� 103 � 9:81 ¼ 44:792 N s�1 m�1

7. Bagnold’s method:

gs ¼ 0:01� 13:734
2:65
1:65
� 1:7142

0:072
¼ 9 N s�1 m�1 ( Eq: ð6:185Þ
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8. Wu et al.’s method:

Us ¼ 2:62� 10�5 13:734
0:251

� 1

� �
1:714
0:072

� �1:74

¼ 6:67( Eq: ð6:186Þ

qs ¼ 6:67½1:65� 9:81ð0:5� 10�3Þ3�0:5 ¼ 3� 10�4 m2 s�1

gs ¼ 3� 10�4 � 2:65� 103 � 9:81 ¼ 7:8 N s�1 m�1
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Chapter 7
Total-Load Transport

7.1 General

Quantification of the total sediment transport rate is necessary in studying the
fluvial processes in a river. In fact, the sediment transport and the water discharge
govern the dynamic stability or instability of the streambeds, such as aggradations
and degradations. The total amount of sediment transported per unit time and
width through a given section of a river for the given flow and sediment bed
conditions is termed total load. Based on the mode of sediment transport, the total
load is the sum of the bed load, suspended load, and wash load. In laboratory
experimental studies, the wash load cannot be usually simulated; while it generally
exists in natural streams and is often not insignificant, although it is a difficult
proposition to separate out the wash load from the suspended load. To date, there
are many formulas proposed by various investigators for the calculation of bed
load, suspended load, and total load. As an informal way, the total load is also
simply called the bed-material load1 as it is made up of only those sediment
particles consisting of sizes represented in the bed; and the wash load remains
usually excluded in those formulas. This is the reason why the actual total load in a
stream does not necessarily have to be exactly identical with the bed-material load.
As discussed in Sect. 6.9, the amount of wash load depends mainly on the supply
of very fine sediment from the watershed, being independent of the river
hydraulics. Consequently, it is not possible to predict the wash load from the
hydraulic characteristics of a river. Most of the total-load prediction formulas are
therefore actually the total bed-material load prediction formulas. There are two
general approaches to determine the total load:

Indirect approach: The total-load transport rate can be determined as the sum of
bed load and suspended load transport rates, estimated separately by using
appropriate bed-load and suspended-load formulas. It is therefore someway an
indirect approach of the addition of two fractional sediment loads.

1 By definition, the bed-material load is the total load minus the wash load.
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Direct approach: The total-load transport rate can also be determined directly
without dividing it into bed-load and suspended-load components. This approach
is rather useful for river engineers or practitioners, because in some cases, they
only want to estimate the total load in a river section. In addition, the distinction
between the bed-load and the suspended-load transports is sometimes very difficult
in measurement for both of them, as they are often interchangeable. For instance,
particularly at a high rate of suspended-load transport, the bed load is hardly
separated from the suspended load (Chien and Wan 1999).

The equations of total-load transport rate qt in volume per unit time and width
and gt in weight per unit time and width are given as follows:

qt ¼ qb þ qs|fflfflffl{zfflfflffl}
Bed-material load

ðþ qw|{z}
Wash-load

Þ ð7:1aÞ

gt ¼ gb þ gs|fflfflffl{zfflfflffl}
Bed-material load

ðþ gw|{z}
Wash-load

Þ ð7:1bÞ

where qb, qs, and qw are the bed-load, suspended-load, and wash-load transport
rates in volume per unit time and width, respectively, and gb, gs, and gw are the
bed-load, suspended-load, and wash-load transport rates in weight per unit time
and width, respectively. In non-dimensional form, the total-load transport inten-
sity Ut is expressed as

Ut ¼
qt

ðDgd3Þ0:5
¼ gt

qsgðDgd3Þ0:5
ð7:2Þ

7.2 Indirect Approach

7.2.1 Einstein’s Approach

Einstein (1950) advanced the bed-load and the suspended-load concepts for the
computation of total load as the summation of these two loads. The bed load and
suspended load for sediment size fractions are given by ibqb and isqs, respectively.
Here, ib and is are the fractions of bed-load and suspended-load transport rates,
respectively. Therefore, using Eq. (7.1a) and excluding wash load (qw = 0), the
total-load transport rate qti for a given sediment size fraction di is expressed as

itqt ¼ ibqb þ isqs ^ qti ¼ itqt ) qti ¼ ibqb þ isqs ð7:3Þ
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Using Eq. (6.132) into Eq. (7.3), the total-load transport rate qti can be obtained as

qti ¼ ibqbð1þ PEI1 þ I2Þ ^ PE ¼ ln
30:2h

Dk

� �
ð7:4Þ

where h is the flow depth, PE is transport parameter, and Dk is the apparent rough-
ness. In the above, I1 and I2 are the Einstein’s integrals given by Eqs. (6.130a, b),
respectively. It is pertinent to mention that Einstein’s approach is rather complicated
and lengthy for a practical use, although it involves considerable fundamental
concepts of sediment transport from the theoretical viewpoint. The total-load
transport rate gti is gti = ibgb(1 + PEJ1 + J2).

7.2.2 Modified Einstein Procedure

In the above, original Einstein’s (1950) approach calculates the total load
excluding wash load for the given flow and bed conditions. Colby and Hembree
(1955) and afterward others proposed some modifications of the original Einstein’s
approach, termed modified Einstein procedure, for the estimation of total load
including wash load for a given flow rate. Here, the total load is obtained from the
depth-integrated suspended sediment concentration samples, the flow and the bed
sediment characteristics. For the reason of several information related to the field
measurement required to estimate the total load by the modified Einstein proce-
dure, the approach cannot be used for the design purposes; while the original
Einstein approach can be used for the said purposes.2 Simons and Sentürk (1977)
and Yang (1996) provided an outline of the application of modified Einstein
procedure as proposed by Colby and Hembree (1955).

The information required for the application of the modified Einstein procedure
is the flow discharge Q, the flow area A, the channel width B, the average flow
depth hm at the location of suspended sediment sampling, the measured suspended
sediment concentrations C|m, the fraction of measured suspended sediment is, the

2 Besides, the major differences between the original Einstein’s approach (Einstein 1950) and the
modified Einstein procedure (Colby and Hembree 1955) are as follows:

1. The modified approach requires information of the measured mean velocity U, rather than
computed velocity for a given bed slope S0. The flow depth h is also to be measured in each
vertical where the velocity is measured.

2. The exponent of Rouse equation or the Rouse number f is to be determined from the observed f
value for a dominantly prevailing suspended sediment particle size. The f values for other particles
are to be calculated from the f value for dominant size and are assumed to vary with a law of w0:7

s ,
where ws is the terminal fall velocities of the other particles.

3. The hiding factor n was introduced with a minor change.
4. The hydraulic radius Rb of the channel was replaced by the flow depth h.
5. The bed-load transport intensity Ub originally proposed by Einstein (1950) was arbitrarily

multiplied by a factor 0.5 for an improved fitting of the observed bed-load transport data.

7.2 Indirect Approach 419

http://dx.doi.org/10.1007/978-3-642-19062-9_6
http://dx.doi.org/10.1007/978-3-642-19062-9_6
http://dx.doi.org/10.1007/978-3-642-19062-9_6


fraction of measured bed-load sediment ib at the measuring section and the tem-
perature t of flowing water.

Step 1: The first step is to compute the suspended-load transport rate qsi|m (=isqs|m)
for a given size fraction in the sampling zone of cross section. The sediment
transport rate through a unit width of sampling zone is

qsjm¼
X

i

qsijm ¼
CjmQjm

B
¼ Cjmqjm ð7:5Þ

where Q|m and q|m are the total flow discharge and the flow discharge per unit
width in the sampling zone.

Assuming the streamwise velocity to follow the logarithmic law of velocity
distribution given by Keulegan (1938) [see Eq. (6.125)], the ratio of q|m to q is
therefore given by

qjm
q
¼

Rhm

am

�udz

Rhm

0
�udz

¼ 1� ~am 1þ ln ~am

Pm � 1

� �
^ ~am ¼

am

hm

_ Pm � ln
30:2xkh

d65

� �
ð7:6Þ

where q is the flow discharge per unit width, am is the distance from the streambed
to the sampling point which should be as close as possible to the bed, and xk is a
correction factor, which can be obtained by trial and error using the curve xk versus
ks/d0 as shown in Fig. 5.7 and the resistance equation given by Einstein (1950) as

U

u�
¼ ln 12:27R0b

xk

ks

� �
^ xk ¼ xk

ks

d0

� �
_ d0 ¼ 11:6

t
u�

ð7:7Þ

where R0b is the hydraulic radius due to particle roughness, ks is the Nikuradse’s
equivalent sand roughness, d0 is the viscous sublayer thickness, u� is the shear
velocity, and t is the coefficient of kinematic viscosity. Using Eqs. (7.5) and (7.6)
yields

qsijmð¼isqsjmÞ ¼ isCjmq 1� ~am 1þ ln ~am

Pm � 1

� �� �
ð7:8Þ

Step 2: The next step is to compute the bed-load transport rate qbi (=ibqb) for a
given size fraction in the sampling zone of cross section. The flow intensity
parameter due to particle roughness is determined as

W0b ¼
Dd35

R0bS0
^ d35 � 0:4dg ð7:9Þ
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where D is the submerged relative density (= s - 1), s is the relative density of
sediment (=qs/q), qs is the mass density of sediment, q is the mass density of
water, d35 is the 35 % finer sediment size, dg is the geometric mean size, and S0 is
the bed slope.

The computed value of W0b is used to determine Ub (&Ub*) from Einstein’s
curve, as shown in Fig. 5.10, where Wb* is replaced by W0b. Then, by definition of
Ub given by Eq. (5.2), the following bed-load transport rate for a given size
fraction di is obtained:

qbið¼ibqbÞ ¼ 0:5UbpiðDgd3
i Þ

0:5 ð7:10Þ

where pi is the fraction of size di. In the above, the bed-load transport intensity Ub

is arbitrarily multiplied by a factor 0.5 to fit the measured field data.

Step 3: The final step is to compute the Rouse number fmi by trial and error for a
given fractional sediment size di. If qsi|m is expressed as

qsijm¼
Zhm

am

Ci�udz ð7:11Þ

then the ratio of qsi|m to ibqb, that is analogous to Eq. (6.132), is given by

qsijm
ibqb

¼ I1ð~a; fmÞ
Jað~a; fmÞ

½PmJað~am; fmÞ þ Jbð~am; fmÞ� ð7:12Þ

where ~a = a/h,

Jað~am; fmÞ ¼
Z1

~am

1� ~z

~z

� �fm

d~z ð7:13aÞ

Jbð~am; fmÞ ¼
Z1

~am

1� ~z

~z

� �fm

ln~z d~z ð7:13bÞ

I1ð~a; fmÞ ¼ 0:216
~afm�1

ð1� ~aÞfm
Jað~a; fmÞ ^ Jað~a; fmÞ ¼

Z1

~a

1� ~z

~z

� �fm

d~z ð7:13cÞ

Equation (7.13c) is identical to Eq. (6.130a); hence, I1 = I1(~a, fm). Then, Eq.
(7.12) becomes
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Qsijm
ibQb

¼ Bqsijm
Bibqb

¼ I1

Jað~a; fmÞ
½PmJað~am; fmÞ þ Jbð~am; fmÞ� ð7:14Þ

The values of I1, Ja, and Jb can be obtained from Figs. 6.11, 7.1 and 7.2,
respectively. From Eq. (7.14), the Rouse number fmi for a given fractional size di

can be solved by trial and error, as Qsi|m/(ibQb) is known for a given di. In this way,
fmi can be obtained for all sediment size fractions.

Colby and Hembree (1955) recognized that there exists a relationship between
the Rouse number fmi and the terminal fall velocity wsi for a given fractional size
di as

fmi

fm1

¼ wsi

ws1

� �0:7

ð7:15Þ

where fm1 is the Rouse number obtained from Eq. (7.14) for the dominantly
prevailing suspended particle size that has a terminal fall velocity ws1.

Therefore, the total-load transport rate Qti through the channel cross section for
a given fractional size di is estimated from

Qti ¼ Qsijm
PmJað~a; fmÞ þ Jbð~a; fmÞ

PmJað~am; fmÞ þ Jbð~am; fmÞ
ð7:16Þ

for the range of fine particle sizes.
To calculate the total-load transport rate for the coarse sediment particles, the

following equation obtained from Eq. (7.4) is used

Qti ¼ ibQbið1þ PmI1 þ I2Þ ð7:17Þ

where Qbi is the bed-load transport rate through the channel cross section for a
given fractional size di (=Bqbi). The Qti is in volume per unit time. To convert the
units to total load Gti in weight per unit time, Qti is to be multiplied by qsg; where
g is the acceleration due to gravity. One of the equations, Eq. (7.16) or (7.17), can
be used to calculate the total load for the entire range of particle size fractions. In
practical applications, Eq. (7.16) is restricted to the range of particle sizes due to
which Qsi|m can be found with a reasonable accuracy. Besides, Eq. (7.17) is
restricted to the range of particle sizes due to which ibQbi can be determined with a
reasonable accuracy. Further, there is a limitation on the selection of equations that
a given variation of fm changes the estimated total load more than that obtained
from Eq. (7.16) when fm is large and more than that obtained from Eq. (7.17)
when fm is small.

Therefore, the modified Einstein procedure estimates unmeasured sediment
load from the measured load. The total-load transport rate is determined from the
measurements by a depth-integrated suspended sediment sampler and a sample of
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bed load. The method was developed based on the data from the Niobrara River,
Nebraska, USA. The US Bureau of Reclamation (USBR 1955) provided a step-by-
step method for computing total load by the modified Einstein procedure that was
put forward by Colby and Hembree (1955).

Further development of the modified Einstein procedure was based on the
series expansion of the Einstein integrals given by Guo and Julien (2004) [see Eqs.
(6.137)–(6.139)]. The series expansion of the modified Einstein procedure was
developed by Shah-Fairbank (2009) and Shah-Fairbank et al. (2011) and tested on
various laboratory experimental and field (sand-bed) data from the Niobrara to the
Mississippi River, USA.
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7.2.3 Bagnold’s Approach

Bagnold (1966) considered the energy balance concept that led to the relationship
between the rate of energy available to a fluvial system and the rate of work done
by the system in transporting sediment. He obtained the equation of bed-load
transport rate gb that is given by Eq. (5.104).

Further, to derive the equation of suspended-load transport rate gs, Bagnold
equated the work done per unit time for sediment suspension to the net stream
power used for the suspended-load transport. He then proposed Eq. (6.185) for
suspended-load transport rate gs.
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Using Eqs. (5.104) and (6.185) into Eq. (7.1b), the total-load transport rate
gt (=gb + gs) can be obtained as

gt ¼
s0Us

D
eb

tan /d

þ 0:01
U

ws

� �
ð7:18Þ

where s0 is the bed shear stress and eb is the efficiency for bed-load transport. In
Eq. (7.18), the product s0U is the stream power or the power per unit area acting
along the bed surface. The variation of efficiency eb given by Bagnold is shown in
Fig. 5.12. Equation (7.18) can be applicable for u�=ws\2 for the best results.

7.2.4 Chang et al.’s Approach

Chang et al. (1965, 1967) computed the total load as a summation of the bed load
and the suspended load. So, wash load was excluded.

They suggested a bed-load transport relationship given by Eq. (5.21) that can be
expressed in terms of gb (weight per unit time and width) as follows:

gb ¼ KtUðs0 � s0cÞ ð7:19Þ

where Kt is a constant, which can be determined using Fig. 5.3, and s0c is the
threshold bed shear stress.

They also derived the suspended-load transport equation, given by Eq. (6.148),
which can be rearranged as

gs ¼ gbRs ^ Rs ¼
h

0:8Ua
UI3 �

2u�
j

I4

� �
ð7:20Þ

where a is the level given by Eq. (6.149), j is the von Kármán constant, and I3 and
I4 are the Chang et al.’s integrals. Figures 6.14 and 6.15 can be used to determine
I3 and I4, respectively.

Using Eqs. (7.19) and (7.20) into Eq. (7.1b), the total-load transport rate gt

(=gb + gs) can therefore be obtained as

gt ¼ KtUðs0 � s0cÞð1þ RsÞ ð7:21Þ

7.3 Direct Approach

7.3.1 Laursen’s Approach

Laursen (1958) used his laboratory experimental data to develop a functional
relationship for the total load of sediment transport in terms of sediment
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concentration (by volume) taking into account the summation of each size fraction
of sediment for the given particle size distribution and flow condition. It is

�Ct ¼ 0:01
X

i

pi
di

h

� �7=6 s00
s0ci
� 1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

f
u�
wsi

� �
|fflfflfflffl{zfflfflfflffl}

II

) qt ¼ q�Ct ð7:22Þ

where pi is the percentage of sediment size di, s00 is the bed shear stress due to
particle roughness, and s0ci is the threshold bed shear stress for size fraction di. In
Eq. (7.22), the portion I corresponds to the bed load, as it contains an excess bed
shear stress expression; while the portion II expressing a function of the ratio of
shear velocity to terminal fall velocity of sediment involves in turbulence mixing
that sustains sediment in suspension. In this way, Eq. (7.22) involves both bed load
and suspended load in expressing the total load, although wash load is excluded.

The functional relationship f ðu�=wsiÞ that was proposed by Laursen based on the
flume data is shown in Fig. 7.3. He expressed the bed shear stress s00 due to particle

roughness with the aid of Manning-Strickler formula, U=u� ¼ 7:66ðh=d65Þ1=6, as

s00 �
qU2

58
di

h

� �1=3

ð7:23Þ

7.3.2 Bishop et al.’s Approach

Bishop et al. (1965) argued that the flow intensity parameter W0b could be used to
predict total-load transport intensity Ut (excluding wash load) as

Ut ¼ f ðW0bÞ ð7:24Þ

According to them, the Ut and W0b are given by

Ut ¼
qt

ðDgd3
50Þ

0:5 ¼
gt

qsgðDgd3
50Þ

0:5 and W0b ¼
Dd35

R0bS0
ð7:25Þ

Based on the experimental data for sand sizes 0.19, 0.27, 0.47, and 0.93 mm,
they established the functional relationship given by Eq. (7.24), which is shown in
Fig. 7.4. The trend of variation of individual curves for different sand sizes is quite
identical, although their magnitudes are considerably dissimilar. The portion of the
curves Ut B 5 are almost similar to Einstein’s Wb*(Ub*) curve (Fig. 5.10). There-
fore, for this portion, the theoretical probability curve represented by Eq. (5.69) was
fitted with the data by selecting different values of A* and B* for different sand sizes.
Variations of A* and B* with sand size d50 are shown in Fig. 7.5, which suggests
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that A* and B* are not constant as considered by Einstein (1950), but are a function
of particle size. Note that the portions of curves Ut [ 5 cannot be predicted by
Einstein’s approach, since a large portion of sediment is transported as suspended
load that was beyond the scope of Einstein’s bed-load transport equation. In fact, in
Fig. 7.4, the band of the curves forming a trend has three segments. The portions of
the curves Ut [ 20 correspond to the upper flow regime with plane beds and
antidunes, while the portions of the curves Ut \ 5 represent the data of the lower
flow regime with bedforms as ripples and/or dunes. Besides, the portions of the
curves 5 \ Ut \ 20 show an inflectional pattern corresponding to transitional flow
regime such as dunes to plane beds or starting to form antidunes.

7.3.3 Engelund and Hansen’s Approach

Engelund and Hansen (1967) applied Bagnold’s stream power concept and the
similarity principle to obtain the total-load transport equation over a bed with
bedforms. They did not take into account the wash load in estimation of total load.

The energy (work done per unit time and width) consumed Es to lift the sed-
iment particles from the bed over an elevation equaling bedform height gd is

Es ¼ ðDqgÞqt|fflfflfflffl{zfflfflfflffl}
Submerged weight of solid flux

� gd ð7:26Þ
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On the other hand, the energy (work done per unit time and width) supplied Ef

by the flowing fluid to the particles to move over a distance equaling bedform
length kd is

Ef ¼ k1ðs00 � s0cÞu�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Effective stream power

� kd ð7:27Þ

where k1 is a constant. Applying the principle of conservation of energy (Es = Ef)
yields
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qt ¼ k1ðs00 � s0cÞ
u�

Dqg
� k2

kf

^ k2 ¼
kdkf

gd

_ kf ¼
2gRbS

U2
¼ 2g

C2
R

ð7:28Þ

where kf is the friction parameter and CR is the Chézy coefficient. From the experimental
data, Engelund and Hansen found that the quantity kdkf/gd (= k2) is approximately a
constant. Using Eq. (7.2), Eq. (7.28) is expressed in non-dimensional form as

Ut ¼
k3

kf

ðH0 �HcÞH0:5 ^ k3 ¼ k1k2 _ H0 ¼ s00
Dqgd

ð7:29Þ

where H is the Shields parameter given by Eq. (4.31) and H0 is the Shields parameter
corresponding to particle roughness. For lower flow regime (H B 0.7), they
defined H0 = 0.06 + 0.4H2 and Hc & 0.06 and also found empirically k3 = 0.25.3

Using these conditions, Eq. (7.29) is expressed as

Ut ¼
0:1
kf

H2:5 ð7:30Þ

The above equation can also be expressed as the volume of total load per unit time
and width qt and the depth-averaged concentration �ct (by weight) as follows:

qt ¼ 0:05U2 d

Dg

� �0:5

H1:5 ð7:31aÞ

�ct ¼
s�Ct

1þ D�Ct

^ �Ct ¼
qt

q
ð7:31bÞ

Note that the relationship between �ct and �Ct is given by Eq. (1.28). Categorically,
Eq. (7.30) or (7.31a) or (7.31b) should be applicable to the flows over dune beds in
accordance with the similarity principle. However, they found that it can also be
applied to the upper flow regime (H[ 0.7) with particle size greater than 0.15 mm
without severe deviation from the theory.

7.3.4 Graf and Acaroglu’s Approach

Graf and Acaroglu (1968) used hydraulic radius Rb, without separating it to R0b and
R00b , where R00b is the hydraulic radius due to bedforms. They developed a flow

3 For upper flow regime, H0 is as follows:

H0ð0:7\H� 1Þ ¼ H

H0ðH[ 1Þ ¼ 0:298þ 0:702

H1:8

� ��0:56

:
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intensity parameter Wb as a transport criterion. It is given as in Eq. (5.66) with
Rb = R0b as follows:

Wb ¼
Dd

RbS0
ð7:32Þ

Based on the work done rate concept, a transport parameter was established as

Ut ¼
�CtURb

ðDgd3Þ0:5
ð7:33Þ

Using experimental data of different investigators, Graf and Acaroglu obtained
the following empirical relationship between Ut and Wb:

Ut ¼
10:39

W2:52
b

ð7:34Þ

It is pertinent to mention that Eq. (7.34) was obtained from the laboratory
experimental and field data with open channels and closed conduits, and hence, it
is applicable for both the cases.

7.3.5 Ackers and White’s Approach

On the basis of Bagnold’s (1966) stream power approach, Ackers and White
(1973) carried out the dimensional analysis to express the total-load transport rate
in terms of a newly introduced mobility number and some other non-dimensional
parameters. They hypothesized that a portion of bed shear stress is effective in
causing the motion of coarse sediment particles. On the other hand, suspended-
load transport is predominant for fine sediment particles, in which total bed shear
stress is effective in causing the motion of the fine sediment particles. Their
empirical equation of total-load transport rate can be expressed as the volume of
total load per unit time and width qt and the depth-averaged concentration �ct:

qt ¼ KUd35
U

u�

� �n Fgr

A
� 1

� �m

ð7:35aÞ

�ct ¼ Ks
d35

h

U

u�

� �n Fgr

A
� 1

� �m

ð7:35bÞ

where K and A are the coefficients, n and m are the exponents, and Fgr is called the
mobility number, which is
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Fgr ¼
un
�

ðDgd35Þ0:5|fflfflfflfflfflffl{zfflfflfflfflfflffl}
I

U

5:66 logðah=d35Þ

� �1�n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

ð7:36Þ

where a is a coefficient determined for the turbulent shear flow as 10. Further, their
hypothesis is reflected in the mobility factor Fgr (Eq. 7.36), as the bed load and the
suspended load are distinguishable. For instance, coarse sediment transports as a
bed load, which is attributed to the stream power s00U generated by the bed shear
stress due to particle roughness. It involves in the portion II of Eq. (7.36). On the
other hand, fine sediment transports mainly as suspension. The fluctuations of
vertical velocity component, given by (w0w0)0.5, that sustains the sediment sus-
pension is a function of the stream power s0U generated by the total bed shear
stress. Therefore, the portion I of Eq. (7.36) reflects stream power consumption
associated with the turbulence intensity to bring the fine sediment in suspension.
However, Eq. (7.35) was basically made for the bed-material load.

The coefficients and exponents suggested by them for different ranges of par-
ticle parameter D* [=d35(Dg/t2)1/3] are given in Table 7.1.

The coefficient K and exponent m were later revised by Ackers (1990) given in
Table 7.2.

Note that for fine sediments, D* \ 1 and n = 1, it leads to Fgr = H0.5.

7.3.6 Yang’s Approach

Yang (1972) assumed that the total load of sediment transport is caused by the rate
of energy dissipation of flow. In a steady uniform flow, as the kinetic energy of
flow does not vary, the rate of energy dissipation is due to the rate of change of
potential energy,4 which is expressed as the product of velocity and bed slope,
US0, termed unit stream power. As the sediment transport mainly occurs in tur-
bulent flow condition, Yang and Molinas (1982) made a derivation to show that

Table 7.1 Coefficients and
exponents (Ackers and White
1973)

Parameter D* [ 60 60 C D* [ 1

K 0.025 log K = 2.86 log D* - (log D*)2 - 3.53
A 0 0.23 D�0:5

� + 0.14
n 0.17 1 - 0.56 log D*

m 1.5 9.66 D�1
� + 1.34

4 The rate of potential energy dissipation per unit weight of flow over an elementary reach
dx having a drop of dz is

dz

dt
¼ dx

dt
� dz

dx
¼ US0 ^ dx

dt
¼ U _ dz

dx
¼ S0:
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the average concentration �cpt [in parts per million (or ppm) by weight] can be
directly related to the unit stream power. The generalized stream power equation is

log �cpt ¼ M þ N log Ps ð7:37Þ

where M, N, and Ps are the coefficients (see Table 7.3).
Yang and Simões (2005) used Yang’s unit stream power approach (Yang 1979;

Yang et al. 1996) to predict the total bed-material load and the wash load in the
Yellow River in China.5

7.3.7 Brownlie’s Approach

Brownlie (1981) used more than 1,000 flume experimental and field data to pro-
pose an empirical equation of average concentration �cpt (in ppm by weight) as

�cpt ¼ 7115cfðFd � FdcÞ1:978S0:6601
0

Rb

d50

� ��0:3301

ð7:38Þ

Table 7.2 Coefficient K and
exponent m (Ackers 1990)

Parameter D* [ 60 60 C D* [ 1

K 0.025 log K = 2.79 log D* - 0.98(log D*)2 - 3.46
m 1.78 6.83 D�1

� + 1.67

5 Steps involved in predicting the total load by Yang and Simões’s approach are as follows:

Step 1: Compute �cpt from Eq. (7.37) using M, N, and Ps given by Yang (1979) (Table 7.3).
Step 2: Compute �Cbm (by volume) for bed-material load from the equation:

�Cbm ¼
�cpt � 10�6

s� D�cpt � 10�6

Step 3: Compute average concentration of suspended load �Ct including wash load from �Ct =
a�Cbm, where a is the proportionality factor (&1.5).
Step 4: Compute mass density of sediment-laden flow qm from Eq. (1.29) and kinematic vis-
cosity of sediment laden flow tm from tm = (tq/qm)exp(5.06�Ct).
Step 5: Compute new �cpt (say, �cpt

��
new

) from Eq. (7.37) with M, N, and Ps given by Yang
(1979) (Table 7.3) replacing ws by wsc [= ws(1 – �Ct)

7], t by tm [= (tq/qm)exp(5.06�Ct)] and
US0/ws by (US0/ws)[(q/qm) – 1]-1(1 – �Ct)

-7.
Step 6: Compute new �Cbm (say, �Cbmjnew) for bed-material load from the equation:

�Cbmjnew¼
�cptj

new
�10�6

s�D�cptj
new
�10�6

Step 7: Compute new �Ct (say, �Ctjnew) from �Ctjnew = a �Cbmjnew.
Step 8: If �Ct & �Cbmjnew within acceptable accuracy, then no further iteration is required.
Otherwise, if �Ct 6¼ �Cbmjnew, then repeat the iteration from Step 4 to Step 8 until
�Ct & �Cbmjnew.
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where cf is the coefficient depending on experimental conditions, Fd is the den-
simetric Froude number, and Fdc is the densimetric Froude number corresponding
to sediment threshold. In Eq. (7.38), cf is 1 for laboratory flumes and 1.268 for
field channels. Equation (7.38) includes the wash load. Note that the relationship
between �cpt and �ct is �ct ¼ 10�6�cpt. The Fd and Fdc are given by

Fd ¼
U

ðDgd50Þ0:5
ð7:39aÞ

Fdc ¼
Uc

ðDgd50Þ0:5

" #
¼ 4:596

H0:5295
c

S0:1045
0 r0:1606

g

^ Hc ¼ 0:22!� 0:06
107:7!

_ ! ¼ 1
S0:6
�

ð7:39bÞ

where S* = d(Dgd)0.5/t.

7.3.8 Karim and Kennedy’s Approach

Karim and Kennedy (1990) used non-linear multiple regression analysis to relate
flow velocity, total-load transport rate, bedform configuration, and friction factor
of sediment bed. The uncoupled relationships for total load and flow resistance
proposed by them are

log Ut ¼ �2:279þ 2:972 log Fd

þ 1:06 log Fd þ 0:299 log
h

d50

� �� �
log

u� � u�c

ðDgd50Þ0:5

" #
ð7:40aÞ

Fd ¼
U

ðDgd50Þ0:5

" #
¼ 2:822

q

ðDgd3
50Þ

0:5

" #0:376

S0:31
0 ð7:40bÞ

Table 7.3 Coefficients M, N, and Ps

M N Ps

Sand transport (Yang 1973)
5:435� 0:286 log Re þ 0:457 log wþs 1:799� 0:409 log Re þ 0:314 log wþs (U - Ucr)(S0/ws)
Sand and silt transport at high concentration (Yang 1979)
5:165� 0:153 log Re þ 0:297 log wþs 1:78� 0:36 log Re þ 0:48 log wþs US0/ws

Gravel transport (Yang 1984)
6:681� 0:633 log Re þ 4:816 log wþs 2:784� 0:305 log Re þ 0:282 log wþs (U - Ucr)(S0/ws)

Note Re is the particle Reynolds number (=wsd50/t), wþs = ws/u*, and Ucr is the depth-averaged flow
velocity corresponding to the sediment threshold, which can be determined from Eqs. (4.17a, b)
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Equation (7.40b) that is used for the flow condition well above the threshold of
sediment motion does not take into account the resistance due to bedforms. Hence,
for the bed with bedforms, a modified resistance equation was proposed as

Fd ¼
U

ðDgd50Þ0:5

" #
¼ 9:82U0:216

t

kD

k0D

� ��0:164

ð7:41Þ

where kD is the Darcy-Weisbach friction factor and k0D is the friction factor due to
particle roughness, which was expressed as

k0D ¼ 8 2:5 ln
h

2:5d50

� �
þ 6:25

� ��2

ð7:42Þ

They suggested that the ratio of kD to k0D could be computed as

kD

k0D
ðH	 1:5Þ ¼ 1:914þ 6:66H� 17:969H2 þ 23:423H3 � 0:982H4 ð7:43aÞ

kD

k0D
ðH\1:5Þ ¼ 1:2 ð7:43bÞ

Later, Karim (1998) suggested a simpler empirical equation for total-load
transport using the same data set used by Karim and Kennedy (1990) in their
analysis. It is

Ut ¼ 1:39� 10�3F2:97
d

u�
ws

� �1:47

ð7:44Þ

The above equation was also used by Karim to laboratory experimental and
field data for nonuniform sediment by dividing sediment into size fractions.
However, both Eqs. (7.40a) and (7.44) could produce almost same results, but
latter equation is easier to use than the former.

Equations (7.40a), (7.41) and (7.43) constitute a set of coupled total-load
transport rate, flow resistance due to friction, and bedforms relationship. The
solution of them can be obtained by an iterative scheme.6

6 Procedure for the determination of total-load transport rate qt for the given q, S0 and d50 is as
follows:

Step 1: Assume a suitable trial value for h, say h|trial

Step 2: Compute U = q/h|trial.
Step 3: Compute qt from Eq. (7.40a).
Step 4: Compute kD/k0D from Eq. (7.43).
Step 5: Compute U from Eq. (7.41).

434 7 Total-Load Transport



7.3.9 Molinas and Wu’s Approach

Molinas and Wu (2001) expressed concerns over the field applicability of the
predictors proposed by Engelund and Hansen (1967), Ackers and White (1973),
and Yang (1973), as they were developed using the flume experimental data on
shallow flow depths being less than 1 m, in general. Therefore, the flow depths
used in the laboratory flume experiments were very limited as compared to the
large natural rivers. For instance, the average depths vary from 12 to 68 m for
Amazon River and from 3 to 22 m for Mississippi River (Posada 1995). Likewise,
in laboratory conditions, the flow Reynolds numbers are much smaller, the flow
Froude numbers are much larger, and the energy gradients are steeper than those
conditions in large natural rivers. Thus, in developing an empirical equation of
average concentration �ct, they applied the stream power and the energy concepts
together with the data of large sand-bed rivers (namely, Amazon, Atchafalaya,
Mississippi, Orinoco, Red River, etc.). The equation of �cpt (in ppm by weight) is

�cpt ¼
1430ð0:86þW0:5

s ÞW1:5
s

0:016þWs

^ Ws ¼
U3

Dghws

log
h

d50

� �� ��2

ð7:45Þ

where Ws is the non-dimensional stream power. The above equation takes into
account the wash load.

7.3.10 Yang and Lim’s Approach

Yang and Lim (2003) and Yang (2005) conducted a dimensional analysis to derive
the following equation of total-load transport rate including the wash load:

gt ¼ k
ss0

Dws

� ðu02� � u2
�cÞ ð7:46Þ

where k is an empirical coefficient (=12.5), u0� is the shear velocity due to particle
roughness, and u*c is the threshold shear velocity. They used experimental data of

(Footnote 6 continued)
Step 6: If computed values of U from Step 2 and Step 5 are within an acceptable accuracy, then
go to Step 7. Otherwise, retry Step 1 to Step 6 with a new value for h until a convergence on U is
obtained.

Step 7: Compute h = q/U.
Step 8: Compute kD = 8ghS0/U2 and H = hS0/(Dd50).
Step 9: Determine flow regime: Lower regime H B 1.1; transition 1.1 \H \ 1.5; upper regime
H C 1.5.
Step 10: Compute qt from Eq. (7.40a).
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USWES (1936) to validate Eq. (7.46), which is quite simple and can produce
reasonably good estimations.

7.3.11 Sinnakaudan et al.’s Approach

Sinnakaudan et al. (2006) proposed an empirical equation of total-load transport
rate in terms of average concentration �Ct (by volume) that could be applicable for
the uniform sediment sizes ranging from 0.37 to 4 mm and provided best results
for the rivers in Malaysia. It is

�Ct ¼ 1:811� 10�4 ðDgd3Þ0:5

URb

US0

ws

� �0:293 Rb

d

� �1:39

ð7:47Þ

Equation (7.47) does not take into account the wash load.

7.4 Total-Load Transport of Nonuniform Sediments

Natural riverbeds are usually composed of nonuniform sediment mixtures and the
corresponding particle size distribution of transported sediment is generally finer
than the distribution of bed sediment, because of the selective transport process.
The nonuniformity of bed sediments affects the total-load transport rate calcula-
tions based on median size d50. Wu et al. (2004) analyzed the relationship between
total-load transport calculation by particle size fractions di and calculations based
on the median size d50 of particle for sediment transport. A size gradation cor-
rection factor Kd was introduced to account for the lognormal distribution of bed
sediments. The use of Kd in conjunction with total-load equations originally
developed for single particle sizes improved the accuracy of transport calculations
for sediment mixtures. This method is applicable to laboratory flumes and natural
rivers with median size of bed sediment in the sand size ranges. They found that
the results depend on the geometric standard deviation of particle size distribution
given by rg = (d84/d16)0.5, which is one of the measures of the nonuniformity of
sediments. Data plots showed that the measured total-load transport rate gti for a
fractional particle size di varies inversely with di according to

Kd �
di

d50

� ��1:2

^ Kd ¼
gti

gtjd50

ð7:48Þ

where gti is the total-load transport rate in weight per unit time and width for
particle size di, and gtjd50

is the total-load transport rate in weight per unit time and
width for particle size d50. Wu et al. (2004) then defined the ratio of the transport
rate by size fraction gti to the transport rate gtjd50

based on the median particle size
d50 as a function of rg. The Kd is given by
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Kd ¼ exp
1
2
ð1:2 ln rgÞ2

� �
ð7:49Þ

Similarly, the d50s of the sediment in suspension was expressed as a function of rg

and d50 of the total load as

d50s

d50
¼ r�1:2 ln rg

g ð7:50Þ

In practice, it was found that this correction due to sediment nonuniformity is quite
significant when rg [ 2 and negligible for rg \ 1.5. Note that Wu et al. did not
take into account the wash load.

7.5 Examples

Example 7.1 A wide natural stream flows with an average velocity of 1.1 m s-1,
having a bed slope of 2 9 10-3 and an average flow depth of 0.55 m. The bed
consists of uniform fine sand of median size d50 = 0.25 mm and d35 = 0.2 mm,
having a relative density of 2.65. Calculate the total-load transport rate in volume
per unit time and width by the following methods:

(i) Laursen, (ii) Bishop et al., (iii) Bagnold, (iv) Engelund and Hansen, (v) Graf
and Acaroglu, (vi) Yang (1973), (vii) Ackers and White, (viii) Brownlie, (ix)
Karim, (x) Molinas and Wu, (xi) Yang and Lim, and (xii) Sinnakaudan et al.

Solution

Given data are as follows:
Average flow velocity, U = 1.1 m s-1; bed slope, S0 = 2 9 10-3; average flow
depth, h = 0.55 m; median size of sediment, d50 = 0.25 mm; d35 = 0.2 mm; and
relative density, s = 2.65

Discharge per unit width, q = Uh = 1.1 9 0.55 = 0.605 m2 s-1

Bed shear stress, s0 = qghS0 = 103 9 9.81 9 0.55 9 2 9 10-3 = 10.791 Pa
Shear velocity, u� = (s0/q)0.5 = (10.791/103)0.5 = 0.104 m s-1

Shields parameter, H = s0/(Dqgd50) = 10.791/(1.65 9 103 9 9.81 9 0.25 9 10-3)
= 2.667
Shear Reynolds number, R* = u*d50/t = 0.104 9 0.25 9 10-3/10-6 = 26
(assume t = 10-6 m2 s-1).

The empirical relationship proposed by van Rijn is used to determine threshold bed
shear stress and threshold shear velocity (see Table 4.1):

Particle parameter, D* = d50(Dg/t2)1/3 = 0.25 9 10-3[1.65 9 9.81/(10-6)2]1/3 =
6.324
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Threshold Shields parameter, Hc(4 \ D* B 10) = 0.14D�0:64
� = 0.14 9 6.324-0.64

= 0.043
Threshold bed shear stress, s0c = HcDqgd50 = 0.043 9 1.65 9 103 9 9.81 9

0.25 9 10-3 = 0.174 Pa
Threshold shear velocity, u*c = (s0c/q)0.5 = (0.174/103)0.5 = 0.013 m s-1.

The terminal fall velocity is calculated by the formula given by Cheng (1997) [see
Eq. (1.40) and Table 1.3], considering shape factor Sp = 0.7 and nominal diam-
eter dn & d50 as

ws ¼
t
d
½ð25þ 1:2D2

�Þ
0:5 � 5�1:5 ¼ 10�6

0:25� 10�3
½ð25þ 1:2� 6:3242Þ0:5 � 5�1:5

¼ 0:027 m s�1

Threshold average velocity is obtained from Yang’s (1973) formula, Eq. (4.17):

Ucrð0\R�\70Þ ¼ ws

2:5
log R� � 0:06

þ 0:66

� �
¼ 0:027

2:5
log 26� 0:06

þ 0:66

� �

¼ 0:068 m s�1

(i) Laursen’s method:

For uniform bed sand, Eq. (7.22) is reduced to

�Ct ¼ 0:01
d

h

� �7=6 s00
s0c

� 1

� �
f

u�
ws

� �

The bed shear stress s00 due to particle roughness is obtained from Eq. (7.23) as

s00 ¼
103 � 1:12

58
0:25� 10�3

0:55

� �1=3

¼ 1:604 Pa( Eq: 7:23ð Þ

Note: In the above equation, it is assumed that d65 & d50

For u�=ws = 0.104/0.027 = 3.852, the parameter f ðu�=wsÞ is determined from
Fig. 7.3 as f ðu�=wsÞ ¼ 90
Therefore, the average sediment concentration is

�Ct ¼ 0:01
0:25� 10�3

0:55

� �7=6
1:604
0:174

� 1

� �
90 ¼ 9:323� 10�4

The total-load transport rate is

qt ¼ q�Ct ¼ 0:605� 9:323� 10�4 ¼ 5:64� 10�4 m2 s�1
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(ii) Bishop et al.’s method:

The flow intensity parameter is obtained as

W0b ¼
Dd35

R0bS0
¼ 1:65� 0:2� 10�3

0:55� 2� 10�3
¼ 0:3 ðNote: It is assumed that R0b � hÞ

For W0b = 0.3, total-load transport intensity Ut cannot be determined from Fig. 7.4,
as the individual curves for different d50 are limited to 0.6 \ W0b \ 25. Therefore,
Bishop et al.’s method does not produce any result for the given data.

(iii) Bagnold’s method:

For U = 1.1 m s-1 and d50 = 0.25 mm, the bed-load transport efficiency eb is
obtained from Fig. 5.12 as eb = 0.132. Also, it is assumed that /d = 25�. The
total-load transport rate (in weight per unit time and width) is

gt ¼
10:791� 1:1� 2:65

1:65
0:132

tan 25

þ 0:01

1:1
0:027

� �
¼ 13:163 N s�1 ( Eq: 7:18ð Þ

Then, the total-load transport rate (in volume per unit time and width) is

qt ¼
gt

qsg
¼ 13:163

2:65� 103 � 9:81
¼ 5:063� 10�4 m2 s�1

(iv) Engelund and Hansen’s method:

The total-load transport rate obtained using Eq. (7.31a) as

qt ¼ 0:05� 1:12 0:25� 10�3

1:65� 9:81

� �0:5

2:6671:5 ¼ 1:036� 10�3 m2 s�1

( Eq: 7:31að Þ

(v) Graf and Acaroglu’s method:

The total-load transport intensity is obtained from Eq. (7.34) as

Ut ¼
10:39
0:32:52

¼ 215:91( Eq: 7:34ð Þ

Then, the total-load transport rate (in volume per unit time and width) is

qt ¼ UtðDg d3
50Þ

0:5 ¼ 215:91½1:65� 9:81ð0:25� 10�3Þ3�0:5

¼ 3:434� 10�3 m2 s�1
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(vi) Yang’s method:

For wþs = ws/u� = 0.027/0.104 = 0.26, Re = wsd50/t = 0.027 9 0.25 9

10-3/10-6 = 6.75, the values of M, N, and Ps are obtained from Table 7.3 as follow:

M ¼ 5:435� 0:286 log Re þ 0:457 log wþs ¼ 5:435� 0:286 log 6:75

þ 0:457 log 0:26 ¼ 4:93

N ¼ 1:799� 0:409 log Re þ 0:314 log wþs ¼ 1:799� 0:409 log 6:75

þ 0:314 log 0:26 ¼ 1:276

Ps ¼ ðU � UcrÞ
S0

ws

¼ ð1:1� 0:068Þ 2� 10�3

0:027
¼ 0:076

The average concentration �ct (by weight) is calculated from Eq. (7.37) as

�cpt ¼ 10MþN log PS ¼ 104:93þ1:276 log 0:076 ¼ 3176:28( Eq: 7:37ð Þ
�ct ¼ 10�6�cpt ¼ 10�6 � 3176:28 ¼ 3:176� 10�3

The average concentration �Ct (by volume) is

�ct ¼
s�Ct

1þ D�Ct

Eq: 1:28ð Þ ) �Ct ¼
�ct

s� D�ct

� �ct

s
¼ 3:176� 10�3

2:65
¼ 1:198� 10�3

The total-load transport rate (in volume per unit time and width) is

qt ¼ q�Ct ¼ 0:605� 1:198� 10�3 ¼ 7:248� 10�4 m2 s�1

(vii) Ackers and White’s method:

For D* = 6.324 (that is 60 C D* [ 1), the values of A and n from Table 7.1 and
K and m from Table 7.2 can be obtained as follows:

A ¼ 0:23
D0:5
�
þ 0:14 ¼ 0:23

6:3240:5
þ 0:14 ¼ 0:231

n ¼ 1� 0:56 log D� ¼ 1� 0:56 log 6:324 ¼ 0:551

K ¼ 102:79 log D��0:98ðlog D�Þ2�3:46 ¼ 102:79 log 6:324�0:98ðlog 6:324Þ2�3:46 ¼ 0:014

m ¼ 6:83
D�
þ 1:67 ¼ 6:83

6:324
þ 1:67 ¼ 2:75

The mobility number Fgr is determined from Eq. (7.36) as
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Fgr ¼
0:1040:551

ð1:65� 9:81� 0:2� 10�3Þ0:5
1:1

5:66 logð10� 0:55=0:2� 10�3Þ

� �1�0:551

¼ 1:239( Eq: 7:36ð Þ

The total-load transport rate is obtained from Eq. (7.35a) as

qt ¼ 0:014� 1:1� 0:2� 10�3 1:1
0:104

� �0:551 1:239
0:231

� 1

� �2:75

¼ 6:495� 10�4 m2 s�1 ( Eq: 7:35að Þ

(viii) Brownlie’s method:

The densimetric Froude number Fd is calculated from Eq. (7.39a) as

Fd ¼
1:1

ð1:65� 9:81� 0:25� 10�3Þ0:5
¼ 17:292( Eq: 7:39að Þ

For S* = d50(Dgd50)0.5/t = 0.25 9 10-3(1.65 9 9.81 9 0.25 9 10-3)0.5/10-6

= 15.903, the parameter ! and the threshold Shields parameter Hc according to
Brownlie are calculated from Eq. (7.39b) as

! ¼ 1
S0:6
�
¼ 1

15:9030:6
¼ 0:19 and Hc ¼ 0:22!� 0:06

107:7!

¼ 0:22� 0:19� 0:06
107:7�0:19

¼ 0:04

Then, the densimetric Froude number Fdc corresponding to threshold condition is
calculated from Eq. (7.39b) as

Fdc ¼ 4:596
0:0430:5295

ð2� 10�3Þ0:1045 � 10:1606

¼ 1:663( Eq: 7:39bð Þ
ðNote: rg ¼ 1 for uniform sedimentÞ

The average concentration �ct (by weight) is calculated from Eq. (7.38) as

�cpt ¼ 7115� 1:268ð17:292� 1:663Þ1:978ð2� 10�3Þ0:6601 0:55
0:25� 10�3

� ��0:3301

¼ 2703:75( Eq: ð7:38Þ
�ct ¼ 10�6�cpt ¼ 10�6 � 2703:75 ¼ 2:704� 10�3

Note: In the above, it is assumed that Rb = h and cf = 1.268.
The average concentration �Ct (by volume) is
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�ct ¼
s�Ct

1þ D�Ct

Eq: 1:28ð Þ ) �Ct ¼
�ct

s� D�ct

� �ct

s
¼ 2:704� 10�3

2:65
¼ 1:02� 10�3

The total-load transport rate (in volume per unit time and width) is

qt ¼ qCt ¼ 0:605� 1:02� 10�3 ¼ 6:171� 10�4 m2 s�1

(ix) Karim’s method:

The total-load transport intensity is obtained from Eq. (7.44) as

Ut ¼ 1:39� 10�3 � 17:2922:97 0:104
0:027

� �1:47

¼ 47:902( Eq: 7:44ð Þ

Then, the total-load transport rate (in volume per unit time and width) is

qt ¼ UtðDg d3
50Þ

0:5 ¼ 47:902½1:65� 9:81ð0:25� 10�3Þ3�0:5

¼ 7:618� 10�4 m2 s�1

(x) Molinas and Wu’s method:

The non-dimensional stream power is computed from Eq. (7.45) as

Ws ¼
U3

Dghws

log
h

d50

� �� ��2

¼ 1:13

1:65� 9:81� 0:55� 0:027
log

0:55
0:25� 10�3

� �� ��2

¼ 0:496

The average concentration �ct (by weight) is calculated from Eq. (7.45) as

�cpt ¼
1430ð0:86þ 0:4960:5Þ0:4961:5

0:016þ 0:496
¼ 1526:16( Eq: 7:45ð Þ

�ct ¼ 10�6�cpt ¼ 10�6 � 1526:16 ¼ 1:526� 10�3

The average concentration �Ct (by volume) is

�ct ¼
s�Ct

1þ D�Ct

Eq: 1:28ð Þ ) �Ct ¼
�ct

s� D�ct

� �ct

s
¼ 1:526� 10�3

2:65
¼ 5:758� 10�4

The total-load transport rate (in volume per unit time and width) is

qt ¼ q�Ct ¼ 0:605� 5:758� 10�4 ¼ 3:484� 10�4 m2 s�1

442 7 Total-Load Transport



(xi) Yang and Lim’s method:

The total-load transport rate (in weight per unit time and width) is calculated from
Eq. (7.46) as

gt ¼ 12:5
2:65� 10:791
1:65� 0:027

0:1042 � 0:0132
� 	

¼ 85:427 N s�1 ( Eq: 7:46ð Þ

Note: In the above, it is assumed that k = 12.5 and u0� = u*.
Then, the total-load transport rate (in volume per unit time and width) is

qt ¼
gt

qsg
¼ 85:427

2:65� 103 � 9:81
¼ 3:286� 10�3 m2 s�1

(xii) Sinnakaudan et al.’s method:

The average concentration �Ct (by volume) is calculated from Eq. (7.47) as

�Ct ¼ 1:811� 10�4 ½1:65� 9:81ð0:25� 10�3Þ3�0:5

1:1� 0:55

1:1� 2� 10�3

0:027

� �0:293
0:55

0:25� 10�3

� �1:39

¼ 1:011� 10�4 m2 s�1 ( Eq: 7:47ð Þ

Note: In the above, it is assumed that Rb = h.
The total-load transport rate (in volume per unit time and width) is

qt ¼ q�Ct ¼ 0:605� 1:011� 10�4 ¼ 6:117� 10�5 m2 s�1:

Example 7.2 Given the cross section of an alluvial channel (Fig. E7.1) and the
following data, compute the total-load transport rate in weight per unit time by
using Einstein’s approach: Bed slope S0 = 9 9 10-4; relative density of sediment
s = 2.65; maximum flow discharge Qmax = 63.2 m3 s-1; and coefficient of
kinematic viscosity of water t = 10-6 m2 s-1.

The sieve analysis results and particle size distribution curve (Fig. E7.2) are as
follows:

Size fraction (mm) Percentage
retained

Mean size, di (mm) Terminal fall
velocity, ws (m s-1)

0.6 \ d 0.5 – –
0.425 \ d \ 0.6 16.8 0.5125 0.058
0.25 \ d \ 0.425 39.3 0.3375 0.041
0.15 \ d \ 0.25 35.6 0.2 0.022
0.125 \ d \ 0.15 7.1 0.1375 0.012
d \ 0.125 0.7 – –
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Solution

From the given channel cross section (Fig. E7.1), the variations of flow area A,
wetted perimeter P, and hydraulic radius Rb with flow depth h are estimated and
shown in Figs. E7.3a, b:
In the table of the sieve analysis results, the mean size of sediment actually
corresponds to the geometric mean size, which is approximately equal to the
arithmetic mean size for a small difference in size fractions. Consider the mean
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Fig. E7.1 Channel cross section
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Fig. E7.2 Particle size
distribution curve
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size di being the representative size for the size fractions. From the particle
size distribution curve (Fig. E7.2), d35 = 0.303 mm, d50 = 0.35 mm, and
d65 = 0.415 mm are obtained.
The computation is performed in two phases: (i) hydraulic computation for the
flow (Table 7.4) and (ii) total-load transport rate computation (Table 7.5).

(i) Hydraulic computation for the flow:

Following steps are involved in computation of various parameters in Table 7.4

1. Various values of hydraulic radius due to particle roughness R0b are assumed
covering the entire range of maximum discharge, Qmax = 63.2 m3 s-1

2. Calculate the shear velocity due to particle roughness, u0� = (gR0bS0)0.5

3. Calculate the viscous sublayer thickness, d0 = 11.6t/u0�

A (m2),  P (m)
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h  versus  Ah  versus  P

Fig. E7.3 a Flow depth h versus flow area A and wetted perimeter P curves and b flow depth
h versus hydraulic radius Rb curve

7.5 Examples 445



T
ab

le
7.

4
S

um
m

ar
y

of
hy

dr
au

li
c

co
m

pu
ta

ti
on

R
0 b

u0 �
d0

k s
/d
0

x k
D

k
U

(m
)

(m
s-

1
)

(m
)

(m
)

(m
s-

1
)

1
2

3
4

5
6

7

0.
1

0.
02

97
3.

9
9

10
-

4
1.

06
3

1.
62

2.
56

9
10

-
4

0.
62

9
0.

2
0.

04
2

2.
76

9
10

-
4

1.
50

3
1.

5
2.

77
9

10
-

4
0.

95
4

0.
4

0.
05

94
1.

95
9

10
-

4
2.

12
6

1.
31

3.
17

9
10

-
4

1.
43

2
0.

6
0.

07
28

1.
59

9
10

-
4

2.
60

4
1.

24
3.

35
9

10
-

4
1.

81
7

0.
9

0.
08

91
1.

3
9

10
-

4
3.

18
9

1.
16

3.
58

9
10

-
4

2.
30

1
1.

2
0.

10
3

1.
13

9
10

-
4

3.
68

2
1.

12
3.

71
9

10
-

4
2.

72
2

1.
6

0.
11

9
9.

76
9

10
-

5
4.

25
2

1.
07

3.
88

9
10

-
4

3.
21

5

W
0 b

U
/u
00 �

u0
0 �

R
00 b

R
b

u *
h

(m
s-

1
)

(m
)

(m
)

(m
s-

1
)

(m
)

8
9

10
11

12
13

14

5.
55

5
10

.1
0.

06
2

0.
43

6
0.

53
56

0.
06

88
1

2.
77

8
15

.2
0.

06
24

0.
44

05
0.

64
05

0.
07

52
1.

1
1.

38
9

28
0.

05
1

0.
29

54
0.

69
54

0.
07

84
1.

2
0.

92
6

40
.5

0.
04

48
0.

22
74

0.
82

74
0.

08
55

1.
4

0.
61

7
71

0.
03

24
0.

11
86

1.
01

86
0.

09
48

1.
76

0.
46

3
11

2
0.

02
43

0.
06

67
1.

26
67

0.
10

58
2.

32
0.

34
7

13
5

0.
02

38
0.

06
41

1.
66

41
0.

12
12

2.
9

A
P

Q
X

Y
b

x
P

E

(m
2
)

(m
)

(m
3

s-
1
)

(m
)

15
16

17
18

19
20

21

3.
9

7.
21

1
2.

44
3

5.
43

9
10

-
4

0.
83

3.
11

1
11

.6
78

4.
5

7.
02

6
4.

26
5

3.
84

9
10

-
4

0.
74

2.
68

8
11

.6
96

5.
1

7.
33

4
7.

29
2

2.
71

9
10

-
4

0.
58

2.
20

6
11

.6
47

6.
8

8.
21

8
12

.3
41

2.
58

9
10

-
4

0.
55

2.
09

9
11

.7
47

9.
3

9.
09

9
21

.3
71

2.
75

9
10

-
4

0.
53

2.
09

9
11

.9
09

14
11

.0
52

38
.0

56
2.

85
9

10
-

4
0.

52
5

2.
09

9
12

.1
5

19
.7

11
.8

39
63

.2
48

2.
99

9
10

-
4

0.
52

2.
09

9
12

.3
27

446 7 Total-Load Transport



T
ab

le
7.

5
S

um
m

ar
y

of
to

ta
l-

lo
ad

tr
an

sp
or

t
ra

te
co

m
pu

ta
ti

on

R
0 b

W
0 b

d i
/X

n
W

b
*

U
b
*

i b
g b

i b
G

b
P i b

G
b

(m
)

(N
s-

1
m

-
1
)

(N
s-

1
)

(N
s-

1
)

1
2

3
4

5
6

7
8

9

F
ra

ct
io

na
l

si
ze

d i
=

5.
12

5
9

10
-

4
m

an
d

fr
ac

ti
on

p i
=

16
.8

%
or

0.
16

8
0.

1
9.

39
6

0.
94

4
1.

12
5.

02
9

0.
7

0.
14

3
1.

03
9

1.
03

9
0.

2
4.

69
8

1.
33

6
1

2.
68

2
2.

65
0.

54
3.

79
6

3.
79

6
0.

4
2.

34
9

1.
88

9
1

1.
56

1
4.

8
0.

97
9

7.
17

7
7.

17
7

0.
6

1.
56

6
1.

98
9

1
1.

08
9

6.
8

1.
38

6
11

.3
93

11
.3

93
0.

9
1.

04
4

1.
86

1
0.

7
10

.8
2.

20
2

20
.1

01
20

.1
01

1.
2

0.
78

3
1.

79
6

1
0.

52
14

.5
2.

95
6

32
.6

71
32

.6
71

1.
6

0.
58

7
1.

71
6

1
0.

38
6

20
4.

07
7

48
.2

69
48

.2
69

F
ra

ct
io

na
l

si
ze

d i
=

3.
37

5
9

10
-

4
m

an
d

fr
ac

ti
on

p i
=

39
.3

%
or

0.
39

3
0.

1
6.

18
8

0.
62

2
2.

15
6.

35
7

0.
4

0.
10

2
0.

74
2

1.
78

1
0.

2
3.

09
4

0.
88

1.
2

2.
11

9
3.

25
0.

82
8

5.
82

9.
61

6
0.

4
1.

54
7

1.
24

4
1.

05
1.

07
9

7.
5

1.
91

1
14

.0
19

21
.1

96
0.

6
1.

03
1

1.
31

1
0.

71
7

10
.6

2.
70

1
22

.2
01

33
.5

94
0.

9
0.

68
8

1.
22

5
1.

05
0.

48
4

15
.5

3.
95

36
.0

65
56

.1
66

1.
2

0.
51

6
1.

18
3

1.
04

0.
35

6
20

.5
5.

22
5

57
.7

43
90

.4
13

1.
6

0.
38

7
1.

13
1.

02
0.

25
9

27
6.

88
1

81
.4

62
12

9.
73

1
F

ra
ct

io
na

l
si

ze
d i

=
2

9
10

-
4

m
an

d
fr

ac
ti

on
p i

=
35

.6
%

or
0.

35
6

0.
1

3.
66

7
0.

36
9

8
14

.0
17

0.
03

5
3.

68
6

9
10

-
3

0.
02

68
1.

80
8

0.
2

1.
83

3
0.

52
1

2.
95

3.
08

7
1.

75
0.

18
4

1.
29

5
10

.9
11

0.
4

0.
91

7
0.

73
7

1.
6

0.
97

4
8

0.
84

3
6.

17
9

27
.3

76
0.

6
0.

61
1

0.
77

6
1.

4
0.

59
5

12
1.

26
4

10
.3

86
43

.9
8

0.
9

0.
40

7
0.

72
6

1.
7

0.
46

4
16

1.
68

5
15

.3
84

71
.5

5
1.

2
0.

30
6

0.
70

1
1.

8
0.

36
5

21
2.

21
2

24
.4

43
11

4.
85

6
1.

6
0.

22
9

0.
67

2
0.

30
1

24
2.

52
8

29
.9

22
15

9.
65

3

(c
on

ti
nu

ed
)

7.5 Examples 447



T
ab

le
7.

5
(c

on
ti

nu
ed

)

R
0 b

W
0 b

d i
/X

n
W

b
*

U
b
*

i b
g b

i b
G

b
P i b

G
b

(m
)

(N
s-

1
m

-
1
)

(N
s-

1
)

(N
s-

1
)

1
2

3
4

5
6

7
8

9

F
ra

ct
io

na
l

si
ze

d i
=

1.
37

5
9

10
-

4
m

an
d

fr
ac

ti
on

p i
=

7.
1

%
or

0.
07

0.
1

2.
52

1
0.

25
3

20
24

.0
91

1
9

10
-

3
1.

19
7

9
10

-
5

8.
72

9
10

-
5

1.
80

8
0.

2
1.

26
0.

35
8

8.
9

6.
40

4
0.

44
5.

26
8

9
10

-
3

0.
03

7
10

.9
48

0.
4

0.
63

0.
50

7
3.

2
1.

34
5.

5
0.

06
6

0.
48

3
27

.8
59

0.
6

0.
42

0.
53

4
2.

8
0.

81
8

9.
8

0.
11

7
0.

96
4

44
.9

45
0.

9
0.

28
0.

49
9

3.
23

0.
60

6
12

.1
0.

14
5

1.
32

3
72

.8
73

1.
2

0.
21

0.
48

2
4

0.
55

8
13

.5
0.

16
2

1.
78

6
11

6.
64

3
1.

6
0.

15
8

0.
46

4.
2

0.
43

5
17

0.
20

4
2.

41
16

2.
06

3

~ a
f

I 1
–I

2
1

+
P

E
I 1

+
I 2

i s
tg

st
i s

tG
st

P i s
G

st

(N
s-

1
m

-
1
)

(N
s-

1
)

(N
s-

1
)

10
11

12
13

14
15

16
17

F
ra

ct
io

na
l

si
ze

d i
=

5.
12

5
9

10
-

4
m

an
d

fr
ac

ti
on

p i
=

16
.8

%
or

0.
16

8
1.

91
9

10
-

3
4.

88
0.

05
4

0.
33

3
1.

29
8

0.
18

5
1.

34
8

1.
34

8
1.

6
9

10
-

3
3.

45
1

0.
08

8
0.

53
1.

49
9

0.
81

5.
69

1
5.

69
1

1.
47

9
10

-
3

2.
44

0.
14

9
0.

86
8

1.
86

7
1.

82
7

13
.4

03
13

.4
03

1.
24

9
10

-
3

1.
99

2
0.

21
4

1.
22

7
2.

28
7

3.
17

26
.0

53
26

.0
53

1
9

10
-

3
1.

62
7

0.
33

5
1.

81
3.

17
9

7
63

.9
11

63
.9

11
8.

09
9

10
-

4
1.

40
9

0.
47

5
2.

49
3

4.
27

8
12

.6
47

13
9.

77
3

13
9.

77
3

6.
16

9
10

-
4

1.
22

0.
72

7
3.

57
9

6.
38

3
26

.0
26

30
8.

10
4

30
8.

10
4

F
ra

ct
io

na
l

si
ze

d i
=

3.
37

5
9

10
-

4
m

an
d

fr
ac

ti
on

p i
=

39
.3

%
or

0.
39

3
1.

26
9

10
-

3
3.

45
0.

08
8

0.
55

1
1.

47
7

0.
15

1
1.

09
6

2.
44

4
1.

05
9

10
-

3
2.

43
9

0.
14

9
0.

92
1.

82
3

1.
51

10
.6

08
16

.2
98

9.
71

9
10

-
4

1.
72

5
0.

29
1.

63
9

2.
73

9
5.

23
5

38
.3

95
51

.7
98

8.
16

9
10

-
4

1.
40

8
0.

47
5

2.
49

4.
09

11
.0

48
90

.7
96

11
6.

84
9

(c
on

ti
nu

ed
)

448 7 Total-Load Transport



T
ab

le
7.

5
(c

on
ti

nu
ed

)

~ a
f

I 1
–I

2
1

+
P

E
I 1

+
I 2

i s
tg

st
i s

tG
st

P i s
G

st

(N
s-

1
m

-
1
)

(N
s-

1
)

(N
s-

1
)

10
11

12
13

14
15

16
17

6.
63

9
10

-
4

1.
15

0.
86

8
4.

02
2

7.
31

5
28

.8
96

26
3.

80
9

32
7.

72
5.

33
9

10
-

4
0.

99
6

1.
43

3
5.

96
5

12
.4

46
65

.0
24

2
71

8.
65

9
85

8.
43

1
4.

06
9

10
-

4
0.

86
2

2.
52

3
9.

29
1

22
.8

11
15

6.
96

6
18

58
.2

4
21

66
.3

5
F

ra
ct

io
na

l
si

ze
d i

=
2

9
10

-
4

m
an

d
fr

ac
ti

on
p i

=
35

.6
%

or
0.

35
6

7.
47

9
10

-
4

1.
85

1
0.

25
1.

51
8

2.
40

1
8.

85
9

10
-

3
0.

06
4

2.
50

9
6.

25
9

10
-

4
1.

30
9

0.
59

3.
05

9
4.

84
2

0.
89

2
6.

27
22

.5
68

5.
75

9
10

-
4

0.
92

6
1.

82
3

6.
96

5
15

.2
68

12
.8

64
94

.3
48

14
6.

14
5

4.
83

9
10

-
4

0.
75

6
3.

88
6

12
.2

38
34

.4
1

43
.4

86
35

7.
37

7
47

4.
22

6
3.

93
9

10
-

4
0.

61
7

8.
48

4
22

.1
9

79
.8

44
13

4.
54

12
28

.3
1

15
56

.0
3

3.
16

9
10

-
4

0.
53

4
15

.1
03

35
.1

65
14

9.
33

6
33

0.
27

1
36

50
.2

1
45

08
.6

4
2.

4
9

10
-

4
0.

46
3

27
.4

16
57

.3
79

28
1.

59
71

1.
73

84
25

.8
2

10
59

2.
17

F
ra

ct
io

na
l

si
ze

d i
=

1.
37

5
9

10
-

4
m

an
d

fr
ac

ti
on

p i
=

7.
1

%
or

0.
07

5.
13

9
10

-
4

1.
01

1.
37

5
5.

82
9

11
.2

28
1.

34
9

10
-

4
9.

79
9

10
-

4
2.

51
4.

29
9

10
-

4
0.

71
4

4.
93

6
14

.8
25

43
.9

06
0.

23
1

1.
62

5
24

.1
93

3.
96

9
10

-
4

0.
50

5
16

.1
56

3.
64

4
18

5.
53

2
12

.2
18

89
.6

09
23

5.
75

4
3.

32
9

10
-

4
0.

41
2

31
.8

53
61

.0
34

31
4.

13
2

36
.8

59
30

2.
91

6
77

7.
14

3
2.

7
9

10
-

4
0.

33
7

60
.8

11
10

3.
81

62
1.

37
7

90
.0

21
82

1.
86

9
23

77
.9

01
2.

17
9

10
-

4
0.

29
1

98
.0

02
15

6.
03

10
35

.6
88

16
7.

40
4

18
50

.1
8

63
58

.8
22

1.
65

9
10

-
4

0.
25

2
16

1.
21

24
1.

56
17

46
.7

1
35

5.
52

8
42

08
.9

2
14

80
1.

09

7.5 Examples 449



4. Obtain the ratio ks/d0, where ks = d65

5. Find the correction factor xk from Fig. 5.7 for the value of ks/d0

6. Obtain the apparent roughness, Dk = ks/xk

7. Calculate the depth-averaged velocity, U = (u0�/j)ln(12.27R0b/Dk) [see
Eq. (7.7)]

8. Estimate the flow intensity parameter, W0b = Dd35/(R0bS0)
9. Find the ratio U/u00� from Fig. 8.35 for the value of W0b

10. Obtain the shear velocity due to bedforms u00� from the ratio U/u00�
11. Calculate the hydraulic radius due to bedforms, R00b ¼ u

002
� = gS0ð Þ

12. Calculate the total hydraulic radius, Rb = R0b + R00b
13. Calculate the total shear velocity, u* = (gRbS0)0.5

14. Using Fig. E7.3b, determine the flow depth h for the value of Rb

15. Determine the flow area A from Fig. E7.3a
16. Determine the wetted perimeter P from Fig. E7.3a or simply from P = A/Rb

17. Obtain the flow discharge, Q = UA. The variation of discharge Q with flow
depth h is shown in Fig. E7.4

18. Find the characteristic particle size, X(Dk/d0 C 1.8) = 0.77Dk and X(Dk/d0\ 1.8)
= 1.39d0

19. Find the lift correction factor Y from Fig. 5.9 for the value of ks/d0

20. Calculate bx from bx = ln(10.6X/Dk) [see Eq. (5.65)]
21. Calculate the transport parameter, PE = ln(30.2h/Dk) [see Eq. (6.129) or (7.4)]

(ii) Total-load transport rate computation:

Following steps are involved in computation of various parameters in Table 7.5

1. Get the hydraulic radius due to particle roughness R0b from Table 7.4.
2. Obtain the flow intensity parameter for a fractional particle size di (mean value

of fractional size), W0b = Ddi/(R0bS0)
3. Find the ratio d/X, where X is obtained from Table 7.4.

0 20 40 60 80

Q (m3 s )

1

1.5

2

2.5

3

h 
 (

m
)

−1

Fig. E7.4 Variation of
discharge Q with flow depth h
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4. Find the hiding factor n from Fig. 5.8 for the value of d/X
5. Calculate the flow intensity parameter due to individual particle roughness,

Wb* = W0bnY[ln(10.6)/bx]2, where Y and bx are obtained from Table 7.4
6. Obtain the bed-load transport intensity Ub* due to individual particle rough-

ness from Fig. 5.10 for the value of Wb*

7. Calculate the bed-load transport rate (in weight per unit time and width) for a
particle size fraction, ibgb = piUb*qsg(Dgd3

i )0.5

8. Calculate the bed-load transport rate (in weight per unit time) for a particle
size fraction for the entire cross section, ibGb = (ibgb)P

9. Calculate the bed-load transport (in weight per unit time) for all particle size
fractions for the entire cross section,

P
ibGb

10. Obtain the ratio ~a = a/Rb, where a = 2di

11. Calculate the Rouse number, f = ws/(0.4u0�), where ws and u0� are obtained
from sieve analysis table and Table 7.4, respectively

12. Read the Einstein integral I1 from Fig. 6.11 or compute I1 numerically from
Eq. (6.130a)

13. Read the Einstein integral I2 from Fig. 6.12 or compute I2 numerically from
Eq. (6.130b)

14. Calculate 1 + PEI1 + I2, where PE is obtained from Table 7.4
15. Calculate the total-load transport rate (in weight per unit time and width) for a

particle size fraction, istgst = ibgb(1 + PEI1 + I2)
16. Calculate the total-load transport rate (in weight per unit time) for a particle

size fraction for the entire cross section, istGst = (istgst)P
17. Calculate the total-load transport (in weight per unit time) for all particle size

fractions for the entire cross section,
P

isGst
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Chapter 8
Bedforms

8.1 General

In nature, sediment beds are almost always characterized by bed undulations
resulting from the flow associated with sediment transport. The processes of local
sediment removal and deposition govern the configuration of bed undulations. The
undulation may be only a few centimeters to several meters high, displaying
relatively regular features in statistical sense. This is the reason why the sediment
bed surface is rarely found plane and the bed configuration usually exhibits
somewhat distinctive geometric features.

When the bed shear stress s0 of flow over a sediment bed exceeds its threshold
value s0c, the sediment starts moving and the bed surface does not remain stable
but takes different geometric configurations known as bedforms. As the bed shear
stress increases in accordance with an increase in flow velocity, the bedforms grow
to a certain size and then decrease to a state where the sediment transport
essentially takes place on a relatively plane bed. With further increase in bed shear
stress (or in turn, flow velocity), a strong interaction between the bed undulations
and the water surface takes place. Therefore, the shape, size, and spacing of the
bedforms, which are uniform in statistical sense, depend on the flow (velocity and
depth) and the bed sediment characteristics (size and grading). Due to sediment
transport, the bedforms (except antidune propagating upstream) usually migrate in
the downstream direction with a velocity that is much slower than the average flow
velocity, while their shape is preserved for the given flow condition and sediment
size. The interaction between the flow and the bedforms in addition to sediment
transport (bed load and/or suspended load) is extremely complex. On the one hand,
the intensity of flow controls the bedforms. On the other hand, the bedforms
significantly influence the characteristics of flow field. Detailed description of
various bedforms was given by Allen (1968).

To classify bedforms, three flow regimes are distinguished according to the
flow Froude number Fr [= U/(ghd)0.5, where U is the depth-averaged flow
velocity, g is the acceleration due to gravity, hd is the hydraulic depth (= A/T), A is
the flow area, and T is the top width of flow] (Simons et al. 1961):

S. Dey, Fluvial Hydrodynamics, GeoPlanet: Earth and Planetary Sciences,
DOI: 10.1007/978-3-642-19062-9_8, � Springer-Verlag Berlin Heidelberg 2014
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1. Lower flow regime for Fr \ 1 (subcritical flow), namely ripples, ripples on
dunes, and dunes.

2. Transition for Fr & 1 (about critical flow), namely washed-out dunes.
3. Upper flow regime for Fr [ 1 (supercritical flow), namely plane bed, antidunes,

chutes, and pools.

According to Simons and Richardson (1966), Figs. 8.1(a–h) illustrate different
bedforms. As Froude number increases, a plane bed is modified to different bedforms
with a sequence: plane bed ) ripples ) ripples on dunes ) dunes ) transition
or washed-out dunes ) plane bed ) antidune standing waves ) antidune
breaking waves ) chutes and pools [also see Engelund and Fredsøe (1982)].

8.2 Bedforms

8.2.1 Ripples

Small skewed delta-shaped (asymmetrical triangular) bedforms having a relatively
long gentle upstream slope (approximately 6�) and a short steep downstream slope
(approximately angle of repose of bed sediment, / & 32�) are called ripples
(Figs. 8.1a and 8.2). Ripples can only be observed on a bed of fine sediments
having median size d less than 0.7 mm and at shear Reynolds number R� (= u*ks/
t, where u* is the shear velocity, ks is the Nikuradse’s equivalent sand roughness,
and t is the coefficient of kinematic viscosity), ranging less than 11.6.1 The length
kr of ripples is usually shorter than 600 mm and the height gr shorter than 60 mm.
According to Yalin (1985), kr = 500–1000d and gr = 50–200d.

It is understood that the ripples are developed in the presence of viscous sub-
layer (hydraulically smooth flow) in which the bed shear stress induced by the flow
exceeds its threshold value for the sediment motion, while dunes are formed in
hydraulically rough flow. The length of the ripples depends on the sediment size
and the flow velocity, but is believed to be independent of the flow depth
(Raudkivi 1990). Ripples may be superimposed on the upstream slope of dunes
(Fig. 8.1b); this condition usually prevails when there is a transition between
ripples and dunes. It is therefore concluded that the ripples are the bed configu-
ration that is developed in a shear layer of smooth flow at small excess bed shear
stress (that is, s0 - s0c), while dunes interact with the main flow. However, at a

1 In terms of Shields parameter, ripples can occur at about H = 10–14Hc, where H and Hc are
the Shields parameter and the threshold Shields parameter, respectively. The Shields parameter is
defined as H = s0/(Dqgd), and the threshold Shields parameter Hc corresponds to the threshold
bed shear stress s0c. Here, s0 is the bed shear stress ð¼ qu2

�Þ, D is the submerged relative density
(= s - 1), s is the relative density of sediment (= qs/q), qs is the mass density of sediment, q is
the mass density of water, g is the acceleration due to gravity, and d is the median particle size.

454 8 Bedforms



low flow intensity, ripples are more or less uniform, but they become three-
dimensional at an increased flow intensity. Further, in developing state, the ripples
undergo the process of coarsening with a progressive increase in length as time
goes by due to the merger of two adjacent ripples (Raudkivi 1997; Baas 1999;
Valance 2005).

(b)

Dunes with ripples superimposed

Weak boil (f)

Antidune standing waves

(d)

Washed-out dunes

(h)

Pool
Chute

(e)

Plane bed

(a)

Ripples

(c)

Dunes

Boil (g)

Antidune breaking waves

Chutes and pools

Fig. 8.1 Schematic of bedforms (Simons and Richardson 1966): a ripples, b ripples on dunes,
c dunes, d transition or washed-out dunes, e plane bed, f antidune standing waves, g antidune
breaking waves, and h chutes and pools
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The mechanism of ripple formation is not so well understood, as there is no
general consensus of opinions as yet. The concepts, in this regard, are broadly
divided into two categories: stability concept and initial disturbance concept.
Bagnold (1956) studied the stability of the sediment bed in a steam flow. He defined
the threshold Shields parameter and above which all the surface particles to be in a
saltating motion (see Sect. 5.11). At slightly lower values of the Shields parameter,
he argued that the plane bed that becomes unstable is unable to resist the applied
bed shear stress. Primary ripples are then formed to introduce form drag and thus to
reduce the resistance due to skin friction. In increased flow intensities, these pri-
mary ripples become unstable and form secondary ripples with a larger form drag.
Liu (1957), however, argued that the sediment bed acts as a viscous fluid and ripples
are formed due to a type of Kelvin–Helmholtz instability2 of two sheared fluids of
different densities. It seems to be not a successful attempt. In contrast, according to
the initial disturbance concept, the genesis of the formation of ripples lies on the
local intermittent action of turbulence or a disturbance that causes a deviation from
a perfectly plane sediment bed (Raudkivi 1963, 1966; Williams and Kemp 1971). In
particular, Raudkivi (1966) attributed the ripples to a downstream propagation of a
possible initial piling up of the bed sediment, while Williams and Kemp (1971)
believed that the small bed disturbances are resulted from the random action of
near-bed turbulent bursts. The disturbed bed then causes the near-bed flow to
separate with subsequent building up of the bed disturbances into ripples. The
propagation of ripples proceeds with an erosion and deposition process.

Fig. 8.2 Photograph of two-dimensional ripples (courtesy of JH Baas, Bangor University, UK)

2 The Kelvin–Helmholtz instability may occur when there is shear at the interface between two
flowing fluids.
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Richards (1980) gave the criterion for the formation of ripples in terms of the
product of wave number and roughness parameter as

7� 10�4\ kwe0 \0:16 ð8:1Þ

where kw is the wave number (= 2p/kr), kr is the wavelength of ripple, and e0 is the
roughness parameter given by

e0 ¼ 26:3dðH�HcÞ þ z0 ^ z0 ¼
ks

30

where ks is the Nikuradse’s equivalent sand roughness.
Using the laboratory data of Guy et al. (1966), Karim (1999) proposed the

criterion for the formation of ripples as

N�\ 80 ^ N� ¼ R�Fd _ Fd ¼
U

ðDgdÞ0:5
ð8:2Þ

where Fd is the densimetric Froude number and U is the depth-averaged velocity.
According to Julien (2010), the conditions for the formation of ripples are

ð1Þ 2\D�\6; ð2Þ 4\R�\11:6; ð3Þ s0\
4

D�
or s0\1 ^ D� ¼ d

Dg

t2

� �1=3

ð8:3Þ

It is also important to discuss the dimensions of ripples. Yalin (1985) gave the
range of equilibrium length kr of ripples as

krjmin \ kr \ krjmax ^ krjmin¼ 2096
d

D0:75
�

_ krjmax¼ 2000d ð8:4Þ

Both kr|min and d are in mm. Equation (8.4) is applicable for d = 0.105–0.26 mm.
On the other hand, Baas (1993) proposed empirical equations for the length kr

and height gr of ripples in equilibrium condition as

kr ¼ 75:4 log d þ 197; gr ¼ 18:16d0:097 ð8:5Þ

Both gr and d are in mm.
Raudkivi (1997) related ripple length to particle size as

kr ¼ 245d0:35 ð8:6Þ
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8.2.2 Dunes

Dunes are the larger bedforms as compared to ripples. The streamwise profile of a
dune is roughly asymmetrical triangular with a mild, but a little convexly curved,
stoss-side (upstream) slope and a leeside (downstream) slope approximately
equaling the angle of repose of bed sediment (Figs. 8.1c and 8.3). Dunes are
formed in relatively coarse sediments (d [ 0.6 mm), as compared to ripple-
forming sediments and at larger excess bed shear stresses (s0 - s0c) than those for
the case of ripples.

The dune profile is out of phase with the free surface profile. Flow separation
that originates at the dune crest reattaches to the trough (Fig. 8.1c). Thus, a roller
is formed on the leeside of dunes. In the flow zone above the roller, high turbulent
mixing occurs, where the turbulent kinetic energy production, as well as dissi-
pation, takes place to a large extent. The presence of flow separation is also

Fig. 8.3 Photographs of dunes (Núñez-González 2012)
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observed at the free surface in the form of boils rising up to the surface (Fig. 8.1c).
Near the reattachment zone, the sediment particles are removed by the turbulence,
even though the local bed shear stress is less than its threshold value. On the stoss
side of dunes, the bed shear stress drives the sediment particles uphill until they
roll over the crest and eventually are deposited on the leeside and buried by the
succession of sediment deposition. In fact, the flow roller favors sediment depo-
sition. As sediment is transported from the stoss side and deposited on the leeside,
dunes continuously migrate downstream at a slow speed.

Yalin (1977) argued that the formation of dunes may be caused by the large-
scale oscillations. Large, but low-frequency, eddies appear at a relatively regular
interval, resulting in decrease and increase in bed shear stress. This is the reason
for local deposition and erosion of sediment particles on leeside and stoss side,
respectively. Yalin explained the decrease and increase in bed shear stress cor-
responding to near-bed decrease and increase (with respect to standard distribu-
tion) in velocity gradients (du/dz) (Fig. 8.4a). It leads to a relatively similar kind of
sediment deposition at x = 2ph, 4ph, … and erosion at x = ph, 3ph, …
(Fig. 8.4b). Thus, the dunes that are developed, in this way, have a wavelength
kd & 2ph, which shows that the geometry of dunes depends on flow depth h.

According to Julien (2010), dunes can be formed, if the following conditions
are satisfied:

Modified velocity distribution Standard velocity distribution(a)

h

(b)

= 2 h

Deposition Deposition Deposition
ErosionErosion

x = 0 x = h x = 2 h x = 3 h x = 4 hππ

π

π π

λd

Fig. 8.4 Formation of dunes according to Yalin (1977): a Modified velocity distributions and
b zones of sediment deposition and erosion
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ð1Þ 3\D�\70; ð2Þ 11:6\R�\70; ð3Þ s00\
1

D�j
ln

h

20d

� �
ð8:7Þ

where s00 is the bed shear stress due to particle roughness, j is the von Kármán
constant, and h is the mean flow depth.

Performing a detailed potential flow analysis (see Sect. 8.5.3), Kennedy (1963)
proposed the criterion for the formation of dunes as follows:

Fr2\
1

kwh
tanhðkwhÞ ^ kw ¼

2p
kd

ð8:8Þ

where kd is the wavelength of dune.
Regarding the dimensions of dunes, Fredsøe (1975) expressed the steepness

(ratio of dune height gd to dune length kd) of dunes using the data reported by Guy
et al. (1966) as

gd

kd

¼ 0:119 1� 0:06
H
� 0:4H

� �2

ð8:9Þ

In this context, it is pertinent to mention that the steepness of a dune can be
approximately calculated considering the dune shape a triangular with an upstream
slope a (& 6�, say) and a downstream slope b (& 33�, say). Then, the steepness is
as follows:

gd

kd

¼ sin a sin b
sinðaþ bÞ �

1
11

On the other hand, van Rijn (1984b) gave empirical equations for the deter-
mination of dune height gd and length kd:

gd ¼ 0:11h
d

h

� �0:3

1� exp �0:5
s00 � s0c

s0c

� �� �
25� s00 � s0c

s0c

� �
; kd ¼ 7:3h

ð8:10Þ

Note that Yalin (1964) proposed kd = 2ph, which is very close to the value of
kd in Eq. (8.10). However, it was recognized that both the equations tend to
underestimate the dune height and length of the field data. To overcome this
discrepancy, Julien and Klaassen (1995) compiled a large number of field data to
propose average dune height and length, which can be used at least as a first
approximation. They are as follows:

�gd � 2:5h0:7d0:3; �kd ¼ 6:5h ð8:11Þ
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According to García (2008) [also Yalin (1964)], a dune in a fully developed
stage has a height up to one-sixth of the flow depth, that is, gd = h/6. The
wavelength of dunes can be given in terms of the product of the wave number and
the flow depth ranging 0.25 \ kwh \ 4. Other relationships for the dimensions of
dunes are given in Table 8.1.

Tjerry and Fredsøe (2005) gave an analytical solution for the migration of
dunes. They considered two-dimensional dunes, as shown in Fig. 8.5, migrating
with a velocity Ub in the x-direction without changing the shape (Fig. 8.6). The
dunes migrate due to erosion of stoss side and deposition on leeside.

Referring to Fig. 8.5, the dune shape g(x, t) at a given distance x and time t and
its differential form are given by

gðx; tÞ ¼ gðx� UbtÞ ) Ub

og
ox
þ og

ot
¼ 0 ð8:12Þ

If the amount of sediment deposited is qb1, then the migration velocity Ub is
obtained as

Ub ¼
qb1

ð1� q0Þgd

ð8:13Þ

where q0 is the porosity of the sediment. The continuity equation of sediment
transport resulting in a change in bed level was given by Exner (1925). It is as
follows:

Table 8.1 Dimensions of dunes

References Dune height Dune length

Allen (1968) gd = 0.086 h1.19 kd = h0.6

Gill (1971)
gd ¼

1� Fr2ð Þh
2na

1� s0c

s0

� �
–

where n is the exponent of velocity power law
(= 3–6) and a is the shape coefficient
of dunes (= 0.5–0.7)

Orgis (1974)
gdjmax¼ 2h 1� Fr2

2
� 3Fr2=3

2

� �
–

Ranga Raju and
Soni (1976)

gd ¼ 6500
d

Fr3Fd

H08=3 kd ¼ 3� 108 d2

Fr3Fdh
H010=3

where H0 is the Shields parameter due
to particle roughness

Yalin (1977)
gd ¼

h

6
1� s0c

s0

� �
kd = 6.3 h

Allen (1978) gd ¼ h
�
0:08þ 0:747H�2:014H2

þ 2:626H3�1:09H4�
–

Watannabe
(1989)

gd ¼ 2000d 1� Fr2ð ÞðH�HcÞ1:5 –
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ð1� q0Þ
og
ot
þ oqb

ox
¼ 0 ð8:14Þ

Using Eqs. (8.12) (the differential form of g) and (8.14) yields

oqb

ox
¼ ð1� q0ÞUb

og
ox

ð8:15Þ

By integration of Eq. (8.15), the following equation is obtained:

qb ¼ qb0 þ ð1� q0ÞUbg ð8:16Þ

where qb0 is a constant sediment transport rate at the trough (g = 0). Tjerry and
Fredsøe assumed the bed load to be the only mode of sediment transport and no
sediment to be transported at the trough. Hence, qb0 becomes zero. Then,
Eq. (8.13) and Eq. (8.16) produce

g
gd

¼ qb

qbjg¼gd

ð8:17Þ

Ub

Sediment removal

z

qb

Sediment 
deposition

Flow separation point

Reattachment point

h

Trough

Crest

Stoss-side Leeside

x

(x, t)

q b1

λd

η ηd

δd

Fig. 8.5 Schematic profile of dunes (enlarged vertical scale)

Ubdt

qb1dt

Ub

qb

x

z

(x, t)η ηd

Fig. 8.6 Migration of dunes (enlarged vertical scale) (Tjerry and Fredsøe 2005)
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Recalling Meyer-Peter and Müller formula for a horizontal bed,Ub = 8(H - Hc)
1.5

[see Eq. (5.16)], Fredsøe and Deigaard (1992) suggested the modification of
Meyer-Peter and Müller formula due to streamwise bed slope as

Ub ¼ 8 H� l
og
ox
�Hc

� �1:5

ð8:18Þ

where Ub is the bed-load transport intensity [see Eq. (5.2)] and l is the particle
frictional coefficient, which is of the order of 0.1, according to Fredsøe and
Deigaard. They also specified Hc = 0.047. Both Eqs. (8.17) and (8.18) lead to a
differential equation of dune shape:

og
ox
¼

Hc �Hjg¼gd

l

� �
g
gd

� �2=3

þH�Hc

l
ð8:19Þ

The above equation provides a relationship of dune shape with the local bed
shear stress.

The continuity of fluid flow between a flow section at x over the dune (that is,
over g = g) and a flow section right over the dune crest (that is, over g = gd) is
given by

U 1� g
h

� 	
¼ Ujg¼gd

1� gd

h

� 	
ð8:20Þ

where U is the average flow velocity over a dune where the bed elevation is g = g.
Using the expression for bed shear stress that is expressed as a function of dynamic
pressure due to an average flow velocity, it leads to the following equations:

s0 ¼
fD
8

qU2; s0jg¼gd
¼

fDjg¼gd

8
qUj2g¼gd

ð8:21Þ

where fD is the Darcy–Weisbach friction factor. Inserting Eq. (8.21) into
Eq. (8.20) yields

H ¼ Hjg¼gd

fD
fDjg¼gd

1� ðgd=hÞ
1� ðg=hÞ

� �2

ð8:22Þ

Differentiating Eq. (8.22) with respect to x and assuming no variation of Darcy–
Weisbach friction factor over the dune (that is, fD ¼ fDjg¼gd

), it gives

oH
ox
¼ Hjg¼gd

1=h

1� ðgd=hÞ �
og
ox

ð8:23Þ
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With qb0 = 0 and using Eqs. (8.16) and (8.17) into Eq. (8.15) yield

oqb

ox
¼ qb1

gd

� og
ox

^ oqb

ox
¼ oqb

oH
� oH

ox
ð8:24Þ

Then, inserting Eq. (8.24) into Eq. (8.23), the following equation is obtained:

gd=h

1� ðgd=hÞ ¼
Ubjg¼gd

2H
dUb

dH

� ��1

ð8:25Þ

Using Meyer-Peter and Müller formula, Eq. (8.25) becomes

gd=h

1� ðgd=hÞ ¼
1
3

H�Hc

H

� �1:5

ð8:26Þ

The above equation, which was obtained by Tjerry and Fredsøe (2005), can be
used to determine dune height.

In case of dominant bed-load transport, Fredsøe and Deigaard (1992) argued
that the maximum bed shear stress is located at approximately 16gd downstream
the former crest of dune. Also, the maximum sediment transport rate, with the
exception of very small values of Shields parameter, occurs at the crest of the
dunes. Then, the dune length kd can be obtained from Eq. (8.17) as

kd ¼ 16gd ð8:27Þ

On the other hand, at a very large bed shear stress, where suspended-load
transport becomes the dominant mechanism of sediment transport, Fredsøe and
Deigaard (1992) argued that the maximum bed shear stress and the maximum
suspended-load transport rate are not located at the same section, as the suspended
load requires a distance to reach its maximum value. They introduced a spatial
phase lag Ls between the locations of the maximum bed shear stress and the
maximum suspended-load transport rate. Thus, in such a case, the dune length kd is
given by

kd ¼ 16gd þ
qs

qb þ qs

Ls ð8:28Þ

where qs is the suspended-load transport rate. They deduced the spatial phase lag
Ls formulation as

Ls ¼ zc

ujz¼zc

ws

^ zc ¼

Rh
0

Cz dz

Rh
0

C dz

ð8:29Þ
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where zc is the height of the centroid of concentration distribution above the bed,
ujz¼zc

is the velocity at an elevation z = zc, ws is the terminal fall velocity of
sediment, and C is the sediment concentration at an elevation z.

8.2.3 Transition and Plane Bed

With an increase in flow Froude number, which is still less than unity (that is a
subcritical flow), the stream power, Us0, increases and the dunes are gradually
washed out, which is called a transition from dunes to a plane bed (Fig. 8.1d). In
the process of washing out of dunes, the dunes become progressively elongated
and flattened lowering the amplitude. Eventually they almost disappear attaining a
relatively plane bed (Fig. 8.1e). Both the flow resistance and the flow depth are
reduced drastically due to the change in bed feature from dunes to a plane bed.
However, in some cases, a part of the plane bed may be covered by distorted dunes
(which is also found in case of a transition), although in most of the cases, the
plane beds are devoid of any distinct bedforms. Note that in lower flow regime,
washed-out ripples also exist (Baas and de Koning 1995).

8.2.4 Antidunes

Of the bedforms developed by unidirectional flows, the bedforms classed as
antidunes occur in the so-called upper flow regime (Fr [ 1). Contrary to the
bedforms (ripples and dunes) that can only migrate in the downstream in lower
flow regime (Fr \ 1), antidunes can remain stationary or migrate upstream or
downstream.

For antidunes, the bed and the free surface profiles are almost in phase
(Figs. 8.1f, g, and 8.7). The streamwise profile of antidunes is nearly sinusoidal
and so is free surface profile, but usually with much larger amplitude. Antidunes
do exist as a continuous train of bed waves having a wavelength of approximately
ten times the flow depth. While the flow and the sediment transport are in
downstream direction, the antidunes and the free surface undulations may remain
stationary or migrate upstream or downstream. At a higher flow Froude number,
which is more than unity (that is a supercritical flow), antidunes appear as standing
waves (Fig. 8.1f). However, with a further increase in Froude number, the anti-
dunes that appear as breaking waves may grow, becoming unstable and breaking
in the upstream direction. They move upstream just before breaking (Fig. 8.1g). If
the breaking waves occur, the antidunes are destroyed and the bed becomes rel-
atively plane. However, the formation of antidunes resumes all over the bed. After
breaking, the reformed antidunes may be small for the time being, but the process
of growing and breaking is repeated.
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Antidune migration may be related to the flow detachment at the crest, so that
the flow separation over the stoss side may be associated with an upstream
migration, while the flow separation over the leeside may be associated with a
downstream migration. In contrast to dunes, the flow detachment over antidunes
may be intermittent and irregular in position. This unsteadiness is attributed to the
strong interaction between the bed and the free surface. The antidunes, especially
to migrate upstream, tend to be very symmetrical with a curved crest in their
profile parallel to the flow. However, from the viewpoint of sediment transport, the
upstream migration of antidunes occurs due to strong leeside erosion and stoss-
side deposition. Following a potential flow analysis, Kennedy (1963) proposed the
criterion for the upstream migration of antidunes as

Fr2� 1
kwh

tanhðkwhÞ ð8:30Þ

8.2.5 Chutes and Pools

Very strong antidunes actively lead to chutes and pools flow, which occur at
relatively steep slopes with high flow velocities and sediment concentrations. The
bedforms consist of large elongated sediment heaps forming chutes in which the
flow is shooting or supercritical. Shooting flow on the sediment heaps rushes into a
pool, where the flow is generally tranquil or subcritical (Fig. 8.1h). In this way, a
chute is normally connected to a pool and vice versa. The flow is supercritical at
the chutes and subcritical in the pools. The transition from the supercritical flow to
the subcritical flow occurs through a weak hydraulic jump. The sediment is eroded
severely at the chutes and deposited into the pools. In this way, the entire bedforms
slowly migrate downstream. In natural rivers on plains, the flow velocity is seldom
high enough for this phenomenon to occur.

Fig. 8.7 Photograph of antidunes appearing as standing waves (Núñez-González 2012)

466 8 Bedforms



8.3 Bars

It is pertinent to mention that the larger type of bedforms, which are not neces-
sarily very much linked with a specific flow regime but potentially featuring more
than any other bedforms with a flow three-dimensionality, is called bar. Bars
appear as a large sediment depositional feature with a length dimension of in the
order of a channel width or a height dimension of a flow depth. Seemingly, they
have the geometry of a dune, but are large enough. In most of the cases, bars are
formed at high flow discharges and may appear as small islands or peninsulas
during a low-stage flow in rivers.

There are different types of bars, as shown in Fig. 8.8. Among them, point bars
are the sediment deposits that take place on the inner side of a curved channel.
Depending on the flow condition, their shape may vary; however, they remain
unmoved relative to the channel curvature. Alternate bars generally appear peri-
odically along the straight channels with bars near alternate channel banks
(Fig. 8.8). The wavelength of alternate bars is approximately six to ten times the
channel width, while the width is much less than the channel width. These bars
may slowly migrate downstream.

Sukegawa (1973) proposed the condition for the formation of alternate bars as

u�
u�c
� 2:236

ðgBÞ0:5S0

u�c

" #1=3

ð8:31Þ

where u� is the shear velocity, u�c is the threshold shear velocity for the sediment
motion, B is the channel width, and S0 is the streamwise bed slope.

Further, Jaeggi (1984) put forward the minimum bed slope required for the
formation of alternate bars as

S0 [
expð1:07B̂0:15 þMÞ

12:9B̂
^ B̂ ¼ B

rg

ð8:32Þ

where M is a parameter being 0.34 for uniform sediments and 0.7 for nonuniform
sediments and rg is the geometric standard deviation of particle size distribution.

On the other hand, middle bars appear in the mid portion of the straight
channels as isolated bars. Tributary bars that are approximately triangular are
sometimes found at the confluence of the tributaries and the main channels. While
the middle bars may migrate, the tributary bars remain almost stationary. How-
ever, the shape of both bars may vary depending on the flow condition.
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8.4 Prediction of Bedforms

Important studies on bedforms were carried out by various investigators to predict
the occurrence of bedforms and their types. However, a universally acceptable
predictor is still lacking, as the mechanism of formation of bedforms is yet to be
well understood. Predictors are mainly empirical and are discussed here.

Based on the experimental and field data, Simons and Richardson (1961, 1966)
proposed a bedform predictor in graphical form (curves for stream power Us0

versus median fall diameter dt), as shown in Fig. 8.9. The zones in between the
curves delineate the range of formation of different bedforms. The lower flow
regime changes to upper flow regime via transition with an increase in stream
power. It implies that the bedforms are well correlated with the rate of flow energy
expenditure per unit area. For instance, a threshold stream power as
0.1 N s-1 m-1 for dt \ 0.4 mm is required for the formation of ripples. Figure 8.9
is applicable only for the sands.
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Liu (1957) prepared the bedform predictor in graphical form (curves for shear
velocity to terminal fall velocity ratio u�=ws versus shear Reynolds number R�)
that was extended later by Simons and Richardson (1961), as shown in Fig. 8.10.
The predictor covers a wide range of sediment particle sizes. It is evident that the
curves discriminating various bedforms tend to collapse (except in the upper flow
regime) with an increase in R� becoming independent of R� at higher R�.

Chabert and Chauvin (1963) put forward a bedform predictor based on the Shields

diagram (H versus R�), as shown in Fig. 8.11. They used D�½¼ dðDg=t2Þ1=3	 as a
third parameter. Ripples form when D�\20, which corresponds to R�\15, or when
flow regime changes from a transition to hydraulically smooth flow. However, their
diagram is not suitable for the description of upper flow regime.

Athaullah (1968) used flow Froude number Fr versus relative submergence
Rb/d plots to prepare the bedform predictor, as shown in Fig. 8.12. Here, Rb is the
hydraulic radius. It means that one can predict bedforms if mean flow velocity,
flow depth, and sediment size are known. The diagram shows that at small relative
submergence, lower flow regime prevails at higher Froude numbers. On the other
hand, the transition from lower flow regime to plane bed is persistent at relatively
small Froude numbers.

Based on the experimental and field data, Brownlie (1983) argued that the
transitional flow regime can be defined by the densimetric Froude number Fd and
the ratio of particle size d to viscous sublayer thickness d0 (=11.6t/u*). He asserted
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that all bedforms for bed slopes S0 greater than 0.006 are in the upper flow regime.
However, for S0 \ 0.006, he proposed the following relationships for the lower
limit of the upper flow regime:

logðFdS1=3
0 Þ ¼ 0:2159þ 0:1517 log

d

d0
þ 0:8381 log

d

d0

� �2

for
d

d0
\2 ð8:33aÞ

FdS1=3
0 ¼ 2:175 for

d

d0
� 2 ð8:33bÞ
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Fig. 8.12 Bedform predictor after Athaullah (1968)
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For the upper limit of lower flow regime, Brownlie proposed

logðFdS1=3
0 Þ ¼ 0:0379þ 0:07026 log

d

d0
þ 0:933 log

d

d0

� �2

for
d

d0
\2 ð8:34aÞ

FdS1=3
0 ¼ 1:392 for

d

d0
� 2 ð8:34bÞ

Southard and Boguchwal (1990) proposed a bedform predictor in graphical
form. As reorganized by Ashley (1990), the bedform predictor is shown in
Fig. 8.13. It shows a plot of mean flow velocity U versus median size d of sedi-
ment (covering the range of fine to coarse sands and gravels) at 10 �C water
temperature for the flow depths of 0.25–0.4 m. Several limiting curves provide
demarcation of different types of bedforms. It is evident that the ripples are stable
for sediment size range d \ 0.8 mm. The range of U for ripples narrows down
with an increase in d to end up against the zones for the plane beds with and
without sediment motion. For medium sands, ripples give way abruptly to dunes
with an increase in U, while for finer sands, ripples yield abruptly to plane beds
without appearance of dunes. On the other hand, dunes are rather stable over a
wide range of U with sediment sizes ranging from medium to coarse sands and
gravels. Both the lower and the upper limiting curves of the dune zone rise with an
increase in U. For sediments d [ 0.8 mm, there is a narrow zone below the dune
zone for a lower flow regime plane bed. The lower limiting curve of this zone is
represented by the Shields curve for the threshold of sediment motion on a plane
bed. The antidune zone exists at higher mean flow velocities (U [ 1.5 m s-1).
It indicates that the transition to the upper flow regime occurs for Froude numbers
smaller than unity.
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Using both laboratory experimental and field data, van Rijn (1984b, 1993)
advanced significantly the bedform prediction scheme. The scheme is based on the
(s0 - s0c)/s0c, known as transport stage parameter T*, and the particle parameter
D*. The prediction scheme is given in Table 8.2.

According to van Rijn, in lower flow regime, the small ripples have a length
scale of the order of turbulence length scale near the bed. Also, it means that the
length scale is much smaller than the flow depth (kr 
 h). In contrast, the large
ripples, which could be superimposed on the dunes, have a length scale of the
order of flow depth [kr & O(h)]. On the other hand, in the upper flow regime, the
sand waves have a length scale much larger than the flow depth (kd � h). Due to
the involvement of large number of laboratory experimental and field data and
methodical use of important parameters, T* and D*, this method is perhaps
superior to other ones, although it is very sensitive to any inaccuracy in deter-
mining the values of threshold bed shear stress.

The bedform predictor that was proposed by Bonnefille–Pernecker in a graphical
form, as modified and prepared by Bechteler et al. (1991), is shown in Fig. 8.14.
It shows a plot of particle parameter D* versus shear Reynolds number R*. For finer

Table 8.2 Bedform prediction scheme after van Rijn (1993)

Flow regime Transport stage parameter Particle parameter and corresponding bedforms

1 B D* B 10 D* [ 10

Lower 0 \ T* B 3 Small ripples Dunes
3 \ T* B 10 Large ripples and dunes Dunes
10 \ T* B 15 Dunes Dunes

Transition 15 \ T* \ 25 Washed-out dunes and sand waves (asymmetrical)
Upper T* C 25, Fr \ 0.8 Sand waves (symmetrical)

T* C 25, Fr C 0.8 Plane bed and/or antidunes
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sediments (D* \ 20), the transition from ripples to plane bed in the upper flow
regime and then antidunes occurs with an increase in R*. In contrast, for coarser
sediments, dunes follow a narrow strip of plane bed in lower flow regime. Further,
ripples superimposed on dunes, that is a transition from ripples to dunes, are
observed for 20 \ R* \ 45 and 7 \ D* \ 20.

In another attempt, van den Berg and van Gelder (1993) proposed a diagram for
bedform prediction that provides a plot of Shields parameter H0 due to particle
roughness as a function of particle parameter D* (Fig. 8.15). As proposed by van
Rijn (1984b), H0 can be given by

H0 ¼ U2

DgdC02R
^ C0R ¼ 18 log

4h

d90

� �

It is evident from Fig. 8.15 that the transition from ripples to plane bed in the
upper flow regime takes place for D* \ 20. The discriminator curves are compared
with the Shields diagram.

Karim (1995) used limiting Froude numbers to define various regimes and types
of bedforms as (1) for lower flow regime (ripples and dunes), Fr B FT, (2) for
transitional flow regime (washed-out dunes), FT B Fr B FU, and (3) for upper
flow regime (plane bed and antidunes), Fr C FU. Here, FT is the beginning of
transitional flow regime from lower flow regime, and FU is the beginning of upper
flow regime. They are given by
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FT ¼ 2:716
d

h

� �0:25

; FU ¼ 4:785
d

h

� �0:27

ð8:35Þ

Karim additionally used a limit Fr C 0.8 for the prediction of antidunes.
Julien and Raslan (1998), however, reported that the transport stage parameter

T* for the plane bed in the upper flow regime increases with an increase in relative
submergence h/d. They identified two separate regimes for the transition to upper
flow regime with

HðR�\11:6Þ � 4
D�
; HðR� � 11:6Þ ¼ 1

D�
� 1
j

ln
h

20d

� �

where j is the von Kármán constant (= 0.4). Therefore, according to them, the
ripples are formed when

2\D�\6; 4\R�\11:6; H\
4

D�

On the other hand, the dunes are formed when

3\D�\70; 11:6\R�\70; H\
1

D�
� 1
j

ln
h

20d

� �

8.5 Mathematical Developments

8.5.1 Exner’s Model

Based on sediment continuity, a classical model that can predict the profile and
migration velocity of bedforms was developed by Exner (1925). He initially
derived the model without considering friction. Referring to Fig. 8.16, the conti-
nuity equation of sediment transport resulting in a change of bed level, as given by
Eq. (5.48), can be rearranged as follows:

ð1� q0Þ
og
ot
þ oqb

ox
¼ 0) og

ot
þ aE

oU

ox
¼ 0 ^ qb ¼ ð1� q0ÞaEU ð8:36Þ

where g is the elevation of the sand-bed with respect to a horizontal reference, t is
the time, qb is the bed-load transport, x is the streamwise direction, q0 is the
porosity of the sediment, U is the depth-average flow velocity, and aE is the
erosion coefficient. Exner considered qb proportional to U, as given by Eq. (8.36).
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Considering the flow depth over the bedforms as h - g and the flow discharge
per unit width q (constant), the continuity equation of flow is given by

U ¼ q

h� g
ð8:37Þ

where h is the depth from x-axis or datum being approximated as a constant.
Inserting U from Eq. (8.37) into Eq. (8.36) yields

og
ot
þ aEq

ðh� gÞ2
� og
ox
¼ 0 ð8:38Þ

The solution of the above equation at initial time t = 0 can be sought as a
cosine function

g ¼ a0 þ am cosðkwxÞ ð8:39Þ

where am is the amplitude, kw = 2p/k, and k is the wavelength of bedforms. The
equation of a bedform for a given time t is

g ¼ a0 þ am cos½kwðx� UbtÞ	 ^ Ub ¼
aEq

ðh� gÞ2
ð8:40Þ

where Ub is the bedform migration velocity. An examination of the above
expression of Ub reveals that the crest of bedforms moves faster than the trough,
and as a result, the sinusoidal bed becomes an asymmetrical wave with gentle
upstream slope. However, the theoretical solution produces the bedform profiles
that have an overhanging crest portion (on downstream slope) with time. It does
not occur in nature.

In developing a model considering a friction, the dynamic equation of gradually
varied unsteady flow, given by Eq. (2.64), can be rearranged as follows:
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hSediment removal

z
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deposition

Ub
(x)
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Fig. 8.16 Definition sketch of Exner’s model
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Sf ¼ S0 �
oh

ox
� U

g
� oU

ox
� 1

g
� oU

ot
) oU

ot
¼ �gSf þ gS0 � g

oh

ox
� U

oU

ox
ð8:41Þ

Considering horizontal bed (S0 = 0) and approximating frictional effects as
gSf & kfU, Eq. (8.41) together with Eqs. (8.36) and (8.37) can be rearranged and
then differentiated to yield

o2g
ot2
� m

o2g
oxot
þ kf

og
ot
� aEg

o2g
ox2
¼ 0 ^ m ¼ gq

U2
� U ð8:42Þ

where kf is the friction parameter (per unit time). The solution of Eq. (8.42) is
obtained with the initial condition in terms of a cosine function, given by
Eq. (8.39). It is as follows:

g ¼ a0 þ am exp � kf

2
� p

� �
t

� �
cos kw x� m

2p

kf

2
� p

� �
t

� �
 �
ð8:43Þ

where p is a function depending on kf, m, k, and aE. In Eq. (8.43), if 0.5kf - p [ 0,
then the amplitude of the bedforms decreases with an increase in time due to
frictional resistance. The bedforms with longer wavelength have a migrating
velocity slower than the shorter ones, and also the rate of decrease in amplitude is
slower than the shorter ones.

8.5.2 Kinematic Model

Song (1983) proposed a simple model that enables us to predict the migration
velocity and direction of bedforms. Referring to Fig. 8.17, the energy and the
continuity equations of flow are

U2

2g
þ hþ n ¼ E ð8:44aÞ

Uðhþ n� gÞ ¼ q ð8:44bÞ

where n is the free surface elevation with respect to mean flow level (that is,
x-axis), g is the bed elevation with respect to mean bed level, and E is the total
energy. Following the usual assumption of bed-load transport qb as a function of
average flow velocity U, the expression can be written as:

oqb

og
¼ oqb

oU
� oU

og
ð8:45Þ
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Noting that E and q are constants and using Eqs. (8.44a, b) yields

oU

og
¼ U2

qð1� Fr2Þ ^ Fr ¼ U

ðghÞ0:5
ð8:46Þ

The bedform (sand wave) migration velocity Ub is given by

Ub ¼
oqb

og
¼ oqb

oU
� oU

og
¼ oqb

oU
� U2

qð1� Fr2Þ ð8:47Þ

Since qqb/qU is always positive, the direction of bedform migration that
depends on its sign is governed by the term (1 - Fr2). For Fr \ 1 (subcritical
flow), Ub [ 0 implies a downstream migration, and for Fr [ 1 (supercritical flow),
Ub \ 0 suggests an upstream migration. These are in conformity with the reality.

In another attempt, Núñez-González and Martín-Vide (2011) developed a
model for antidune migration. The underlying phenomenon is that antidunes
propagate in the downstream direction if the sediment is predominantly eroded
over the stoss side and deposited over the leeside. Conversely, antidunes migrate
upstream if most of the sediment is deposited over the stoss side and eroded over
the leeside. To relate these two conditions to the near-bed flow features and the
flow depth, it can be stated that the sediment deposition occurs where the near-bed
flow decelerates and the flow depth increases, and the erosion occurs where the
near-bed flow accelerates and the flow depth decreases. In this way, if it is con-
sidered that the flow depth variation along the antidune profile is the most
important property for defining the direction of antidune migration, the following
conditions can be established, according to Fig. 8.18: (1) If h1/h2 \ 1, the antid-
unes migrate downstream; (2) if h1/h2 = 1, the antidunes remain stationary; and
(3) if h1/h2 [ 1, the antidunes migrate upstream. Here, h1 and h2 are the flow
depths above the crest and the trough, respectively.
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Fig. 8.17 Definition sketch of flow over sand waves
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Considering that the idealized train of sinusoidal antidunes, as shown in
Fig. 8.18, is stable, the continuity of flow over a crest and an immediate down-
stream trough can be related to the average flow condition as

q ¼ Uh ¼ U1h1 ¼ U2h2 ð8:48Þ

where subscripts 1 and 2 refer to the flow over the crest and the trough, respec-
tively. The average flow depth h is defined as a geometric mean of the flow depths
over the crest and the trough. Then, it is as follows:

h ¼ ðh1h2Þ0:5 ð8:49Þ

If energy losses are considered negligible, the total energy head at the upstream
section over the crest should be equal to the total energy head at the downstream
section over the trough (Fig. 8.18). Then,

amc þ h1 þ
U2

1

2g
¼ �amt þ h2 þ

U2
2

2g
ð8:50Þ

where amc and amt are the average elevations of crest and trough of antidunes from
the mean bed level. Further, the hydrostatic (that is, piezometric) pressure head
over the crest and the trough must be corrected to account for the centrifugal
effects due to curvilinear flow. Including the correction as a function of flow depth,
flow velocity, gravity, and radius of curvature, Eq. (8.50) can be modified as

amc þ h1 1� 1
g
� U

2
1

r1

� �
þ U2

1

2g
¼ �amt þ h2 1þ 1

g
� U

2
2

r2

� �
þ U2

2

2g
ð8:51Þ
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Fig. 8.18 Definition sketch of flow over antidunes. Note that the free surface profile and the
antidune profile are in phase (Núñez-González and Martín-Vide 2011)
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If the profiles of antidunes are symmetrical, then the following relationships
hold

am0 ¼ 2amc ¼ 2amt ¼ amc þ amt; r ¼ r1 ¼ r2 ð8:52Þ

Using Eqs. (8.48), (8.49) and (8.52), Eq. (8.51) can be rewritten as

am0 þ h1 � h2 ¼ Fr2h3 1
h1
þ 1

h2

� �
1
r
þ 1

2
1
h2
� 1

h1

� �� �

^ Fr ¼ U

ðghÞ0:5
¼ q

ðgh3Þ0:5
ð8:53Þ

where q is the discharge per unit width (= Uh).
For a stationary train of antidunes (h1 = h2 = h), Eq. (8.53) reduces to the

following nondimensional number, defined as antidune mobility number

Fa ¼ Fr � h 2
ram0

� �0:5

¼ 1 ð8:54Þ

By definition, the curvature of a sinusoidal function is equal to

r ¼ 1
2am0

k
p

� �2

¼ 1
2am0

2
kw

� �2

^ kw ¼
2p
k

ð8:55Þ

where k is the wavelength of antidunes.
Inserting Eq. (8.55) into Eq. (8.54), the antidune mobility number can be

defined solely as a product of flow Froude number Fr, average flow depth h, and
wave number kw. Thus,

Fa ¼ Fr � h � kw ð8:56Þ

The solution of Eq. (8.53), as Fa a function of h1/h2 for different Froude numbers
Fr and a value of am0/k = 0.05, is shown in Fig. 8.19. It is found that for Fr [ 1
(that is the supercritical flow, when antidunes occur), the relationship between Fa

and h1/h2 is biunivocal.3 Besides, it is always fulfilled that if Fa \ 1, then h1/h2 [ 1,
and if Fa [ 1, then h1/h2 \ 1. The biunivocal characteristic of the deduced function
for the supercritical flow range allows for the establishment of a criterion to identify
the preferential direction of antidune migration according to antidune mobility
number Fa. Due to this, the criterion for the direction of antidune migration can be
stated as (1) if Fa \ 1, the antidunes migrate downstream, (2) if Fa = 1, the anti-
dunes remain stationary, and (3) if Fa [ 1, the antidunes migrate upstream.

3 Biunivocal is a type of relationship that exclusively links two terms to one another on the basis
of one of the two terms.
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8.5.3 Potential Flow Model

At first, the potential flow theory is discussed briefly. In Sect. 2.3.1, the intro-
duction to stream function w has been given through Eqs. (2.25)–(2.27). There is
another function known as velocity potential function, which is a fictitious con-
tinuous function /(x, y, z), defining the components of the velocity vector as the
gradient of scalar velocity potential function /. In hydrodynamics, the potential
flow therefore describes the velocity field as the gradient of velocity potential
function. As a result, the potential flow is characterized by an irrotational flow
field. Thus, velocity components are

u ¼ o/
ox
; v ¼ o/

oy
; w ¼ o/

oz

Substituting them into three-dimensional continuity equation (Eq. 2.22), the
Laplace equation is obtained. It is as follows:

o2/
ox2
þ o2/

oy2
þ o2/

oz2
¼ 0) r2/ ¼ 0

Potential flow in two dimensions is analyzed using the conformal mapping, by
using transformations of the complex plane. The idea is to use an analytic function f,
which maps the physical domain (x, z) to the transformed domain (/, w). While
x, z, /, and w are all real variables, it is convenient to define the complex quantities
as

Z ¼ xþ iz; W ¼ /þ iw) f ðxþ izÞ ¼ /þ iw) f ðZÞ ¼ W
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Fig. 8.19 Antidune mobility number Fa as a function of h1/h2 for different flow Froude numbers
Fr and am0/k = 0.05 (Núñez-González and Martín-Vide 2011)
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where f is an analytic function that should satisfy the following equation called the
Cauchy–Riemann equations:

o/
ox
¼ ow

oz
;

o/
oz
¼ � ow

ox

Then, differentiating f with respect to Z yields

df

dZ
¼ u� iw) u ¼ o/

ox
¼ ow

oz
; w ¼ o/

oz
¼ � ow

ox

8.5.3.1 Kennedy’s Model

Based on the potential flow theory, Kennedy (1963) developed an analytical model
to examine the stability of the fluid-bed interface and the bedform characteristics.
Referring to Fig. 8.17 where the flow over a mobile sinusoidal bed is considered,
the free surface profile and the bed profile are represented by

z ¼ nðx; tÞ ^ n ¼ as sin½kwðx� UbtÞ	 ð8:57aÞ

z ¼ �hþ gðx; tÞ ^ g ¼ am sin½kwðx� UbtÞ	 ð8:57bÞ

where n and g are the fluctuations of free surface and bed waves, respectively, and
as and am are the amplitudes of free surface and bed waves, respectively. The
amplitudes are small in comparison to wavelength.

The kinematic boundary condition that the streamline follows the free surface
(z = 0) yields

U
on
ox
þ on

ot
¼ o/

oz
ð8:58Þ

where t is the time. The dynamic boundary condition that the pressure at the free
surface (z = 0) is constant yields

U
o/
ox
þ o/

ot
¼ �gn ð8:59Þ

Another condition is that for the limiting streamline at the bed (z = –h), the
velocity component normal to the bed vanishes. It produces

U
og
ox
þ og

ot
¼ o/

oz
ð8:60Þ

Also, considering both bed and suspended load of sediment transport, the
continuity equation of sediment transport given by Eq. (5.48) can be rearranged as
follows:
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ð1� q0Þ
og
ot
þ oqt

ox
¼ 0) bE

og
ot
þ ogt

ox
¼ 0 ^ bE ¼ qsgð1� q0Þ

_ gt ¼ qsgqt

ð8:61Þ

where qt is the solid volume of sediment transported per unit time and width, gt is
the weight of sediment transported per unit time and width, and bE is the bulk
specific weight of sediment.

The complex velocity potential satisfying the kinematic conditions required by
Eqs. (8.57a, b) can be given as follows (Milne-Thompson 1960):

W ¼ U Z þ as

sinhðkwHÞ cos½kwðZ þ iH � UbtÞ	

 �

ð8:62Þ

where Z = x + iz, which is the complex coordinate and H is the depth of virtual
bottom so that at z = –H (Fig. 8.17), a streamline has a stream function w = –UH.
For celerity of wave with small amplitude, it can be written

U2 ¼ g

kw

tanhðkwHÞ ð8:63Þ

Separating the real and the imaginary parts of Eq. (8.62), the velocity potential
function / and the stream function w can be given by

/ ¼ U xþ as

cosh½kwðzþ HÞ	
sinhðkwHÞ cos½kwðx� UbtÞ	


 �
ð8:64aÞ

w ¼ U z� as

sinh½kwðzþ HÞ	
sinhðkwHÞ sin½kwðx� UbtÞ	


 �
ð8:64bÞ

The bed corresponds to the stream function w0 = –Uh with a position z = –h
+ g(x, t). Thus, neglecting the higher-order quantities and using Eq. (8.64b) yield

g ¼ as

sinh½kwðH � hÞ	
sinhðkwHÞ sin½kwðx� UbtÞ	 ð8:65Þ

Introducing the concept of slowly varying amplitude a(t) of bed waves with
time t such that qa/qt 
 Ukwa, the velocity potential function / for the flow over
bed waves with slowly varying amplitude is

/ðUb 
 UÞ ¼ U xþ aðtÞ cosh½kwðzþ HÞ	
sinhðkwHÞ cos½kwðx� UbtÞ	


 �
ð8:66Þ

Equating Eqs. (8.57b) and (8.65) and using Eq. (8.63), the relationship of
amplitude of bed waves is related to that of free surface waves
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amðtÞ ¼ aðtÞ sinh½kwðH � hÞ	
sinhðkwHÞ

) amðtÞ ¼ aðtÞ 1� g

kwU2
tanhðkwhÞ

� �
coshðkwhÞ

ð8:67Þ

Kennedy assumed the sediment transport rate as a function of flow velocity and
suggested

gtðx; tÞ ¼ m
o/
ox

� �n

^ / ¼ /ðx� Ls;�h; tÞ ð8:68Þ

where m, n, and Ls are the parameters being dependent on h, U, d, q, qs, and t. The
Ls is the distance by which the local sediment transport rate lags the local bed shear
stress.

Substituting Eq. (8.66) into Eq. (8.68) and expressing into binomial series yield

gtðx; tÞ ¼ mUn � kwmnUna
cosh½kwðH � hÞ	

sinhðkwHÞ sin½kwðx� Ls � UbtÞ þ Oðu2Þ

ð8:69Þ

Neglecting the higher-order terms, the streamwise sediment transport rate gt|x is
given as

gtjx¼ mUn ð8:70Þ

Substituting Eqs. (8.57b), (8.67), (8.69) and (8.70) into Eq. (8.61) and
neglecting terms of O(u2) yield the following differential equation for a(t):

oa
ot

sin½kwðx� UbtÞ	 � akwUb cos½kwðx� UbtÞ	

þ a
nk2

wgtjx
bE

coth½kwðH � hÞ	 cos½kwðx� Ls � UbtÞ	 ¼ 0
ð8:71Þ

The solution is

aðtÞ ¼ að0Þ exp t
nk2

wgtjx
bE

coth½kwðH � hÞ	 sinðkwLsÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I

8>><
>>:

� nkwgtjx
bEUb

coth½kwðH � hÞ	 cosðkwLsÞ þ 1

 �
ln sin½kwðx� UbtÞ	j j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
II

9>>=
>>;

ð8:72Þ
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As a(t) is a function of t only, the term II is zero. Hence, the velocity of bed
wave migration is

Ub ¼ �
nkwgtjx

bE

coth½kwðH � hÞ	 cosðkwLsÞ ð8:73Þ

Substituting Eq. (8.72) into Eq. (8.67) and eliminating x dependent term by
Eq. (8.73), the amplitude of bed waves is obtained as

amðtÞ ¼ að0Þ sinh½kwðH � hÞ	
sinhðkwHÞ exp t

nk2
wgtjx
bE

coth½kwðH � hÞ	 sinðkwLsÞ

 �

ð8:74Þ

Equation (8.74) suggests that the amplitude of small waves (perturbations) on
an otherwise plane bed initiated by an arbitrary disturbance increases exponen-
tially with time, provided kw and Ls are such that the exponential term in Eq. (8.74)
is positive, and under such condition, a flat bed becomes unstable. On the other
hand, the amplitude of bed waves cannot continue to grow indefinitely. As the
amplitude increases, it gives rise to the nonlinear effects which govern the equi-
librium height of fully developed dunes and antidunes.

Using Eqs. (8.67), (8.73) and (8.74), the various bedforms and the criteria for
their occurrence are furnished in Table 8.3, as was given by Kennedy (1963).

From Eq. (8.74), the initial growth rate am0 is obtained as

am0ð0Þ ¼ að0Þ nk2
wgtjx
bE

� cosh½kwðH � hÞ	
sinhðkwHÞ sinðkwLsÞ ð8:75Þ

To determine kw corresponding to maximum am0, Eq. (8.75) is differentiated
with respect to kw and then equated to zero. Hence, eliminating H using Eq. (8.63),
the following can be obtained:

dam0ð0Þ
dkw

¼ að0Þ ngtjx
bE

½2kw sinðkwLsÞ þ k2
wLs cosðkwLsÞ	

g coshðkwhÞ
kwU2

� sinhðkwhÞ
� �


þ k2
w sinðkwLsÞ �

g coshðkwhÞ
k2

wU2
þ gh sinhðkwhÞ

kwU2
� h coshðkwhÞ

� ��
¼ 0

ð8:76Þ

The solution given by Kennedy is as follows:

Fr2 ¼ 1þ kwh tanhðkwhÞ þ jkwh cotðjkwhÞ
ðkwhÞ2 þ ½2þ jkwh cotðjkwhÞ	kwh tanhðkwhÞ

^ Ls ¼ jh ð8:77Þ
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For the limiting case (Ls 
 h or j ? 0), Eq. (8.77) becomes

lim
j!0

Fr2 ¼ 2þ kwh tanhðkwhÞ
ðkwhÞ2 þ 3kwh tanhðkwhÞ

ð8:88Þ

The shortest wavelength kmin for the bed waves can be obtained by setting
H ? ? in Eq. (8.63). It is as follows:

kminðH !1Þ ¼
2p
g

U2 ð8:89Þ

Note that the wavelength k of bed waves can have any value greater than kmin.
The relationship between Fr and kwh for the shortest possible long-crested waves
(two-dimensional) can be obtained from Eq. (8.89) as

Fr2
m ¼

U2

gh
¼ kmin

2ph
¼ 1

kwh
ð8:90Þ

Here, Frm is the maximum possible Froude number for the given kw and h, pro-
vided the surface waves and bed profiles are two-dimensional. Therefore, for long-
crested waves (two-dimensional), the kwh belongs to the range 0 \ kwh \ Fr-2,
while for short-crested waves (three-dimensional), the kwh can exceed Fr-2,
provided for the given values of U and H, these waves are shorter than two-
dimensional waves (Fuchs 1951).

Another case is that for H = h, the relationship between Fr and kwh can be
obtained replacing H by h in Eq. (8.63) and then dividing by gh as

Fr2
a ðH ¼ hÞ ¼ U2

gh
¼ tanhðkwhÞ

kwh
ð8:91Þ

Here, Fra is the minimum Froude number for the formation of antidunes. It
means that the above equation holds for all values of j provided H = h.

Table 8.3 Summary of bedforms and the criteria for their occurrence (Kennedy 1963)

Case Bed and free
surface profiles

H–h kwLs sin(kwLs) cos(kwLs) Direction of
bedform migration

Bedforms

1 In phase +ve 0–0.5p +ve +ve Upstream Antidunes
2 +ve 0.5p +ve 0 None
3 +ve 0.5p–p +ve –ve Downstream
4a No bed wave –ve p–1.5p –ve +ve – Plane bed
4b –ve 0–p +ve – –
4c +ve p –2p –ve – –
5 Out of phase –ve 1.5p–

2p
–ve +ve Downstream Dunes
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Figure 8.20 shows the variation of flow Froude number Fr with kwh obtained
from Eqs. (8.88), (8.90) and (8.91). For a given value of kwh, the Fr is either greater
than Fra(H [ h) or less than Fra(H \ h). It is found that the condition H [ h cor-
responds to the formation of antidunes and the condition H \ h to the formation of
dunes. As a result of this, the antidunes occur in the region above the Fra(kwh) curve
(Eq. 8.91). It implies that for a given value of kwh, the Fra is the minimum Froude
number for the formation of antidunes and at the same time the maximum Froude
number for the formation of dunes. The available experimental data that are used
for the comparison are due to Tison (1949), Tsubaki et al. (1953), Brooks (1954),
Barton and Lin (1955), Plate (1957), Laursen (1958), Kennedy (1961a, b), Simons
et al. (1961) and Guy et al. (1966). From Fig. 8.20, it is noticeable that the antidune
data plots are in satisfactory agreement, while particularly most of the dune data
plots fall below the Fra(kwh) curve. However, the overall performance of the model
is apparently encouraging in predicting the formation of dunes and antidunes.

8.5.3.2 Hayashi’s Model

Hayashi (1970) initiated to develop a model considering almost similar boundary
conditions [Eqs. (8.57a, b), (8.58) and (8.60)] assumed by Kennedy (1963).
However, he used a modified form of Eq. (8.59) as
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Fig. 8.20 Flow Froude number Fr as a function of kwh obtained by Kennedy (1963) and
comparison with the experimental data (Tison 1949; Tsubaki et al. 1953; Brooks 1954; Barton
and Lin 1955; Plate 1957; Laursen 1958; Simons et al. 1961; Kennedy 1961a, b; Guy et al. 1966)
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1
2

o/
ox

� �2

þ o/
oz

� �2
" #

þ o/
ot
þ gn ¼ constant ðon z ¼ 0Þ

Using the boundary conditions and the Laplace equation, the velocity potential
function is obtained as

/ ¼ U x� am

coshðkwzÞ þ Fr2kwh sinhðkwzÞ
sinhðkwhÞ � Fr2kwh coshðkwhÞ cos½kwðx� UbtÞ	


 �
ð8:92Þ

provided that the slowly varying amplitude a(t) with time t is prevalent such that
qa/qt 
 Ukwa and Ub 
 U. Using Eqs. (8.58) and (8.92), the following rela-
tionship between amplitudes of free surface and bed waves is obtained:

asðtÞ ¼ aðtÞ Fr2kwh

½tanhðkwhÞ � Fr2kwh	 coshðkwhÞ ð8:93Þ

provided that as(t) is also a slowly varying function of t such that qas/qt 
 Ukwas.
The continuity equation of sediment transport given by Eq. (5.48) was rearranged
by Hayashi as follows:

ð1� q0Þ
og
ot
þ oqt

ox
¼ 0) og

ot
þ oqT

ox
¼ 0 ^ qT ¼

qt

1� q0
ð8:94Þ

where qT is the sediment transport rate in bulk volume per unit time and width.
Hayashi expressed it as

qTðx; tÞ ¼ m 1þ a
og
ox

� �
o/
ox

� �4

^ g ¼ gðx� Ls; tÞ _ / ¼ /ðx� Ls;�h; tÞ ð8:95Þ

where m is a dimensional coefficient and a is a nondimensional constant.
Substituting Eq. (8.95) into Eq. (8.94) and expressing q/(x, z, t)/qx = U +

u(x, z, t) yield

ogðx; tÞ
ot

þ qTjx
o2gðx� Ls; tÞ

ox2
þ 4

U
� ouðx� Ls;�h; tÞ

ox
þ Oðu2Þ

� �
¼ 0 ð8:96Þ

where qTjx ¼ mU4, which is the net streamwise sediment transport rate.
Substituting Eq. (8.57b) and the expression of u obtained from Eq. (8.92) into

Eq. (8.96), the following differential equation of a(t) is obtained:

_aðtÞ
aðtÞ � k2

wqTjx a cosðkwLsÞ � 4
1� Fr2kwh tanhðkwhÞ
tanhðkwhÞ � Fr2kwh

sinðkwLsÞ
� �

� kw

tan½kwðx� UbtÞ	

� Ub � qTjxkw a sinðkwLsÞ þ 4
1� Fr2kwh tanhðkwhÞ
tanhðkwhÞ � Fr2kwh

cosðkwLsÞ
� �
 �

¼ 0

ð8:97Þ
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As a(t) is a function of t, the third term of the left-hand side of Eq. (8.97) must
vanish. Hence, assuming kwLs 
 1, Eq. (8.97) reduces to

aðtÞ ¼ að0Þ exp
mg2a

C
Fr4k2

wh2#t

� �
ð8:98Þ

where

C ¼ a

Ls

U2

2g

� ��1

; # ¼ C � 2Fr2kwh
1� Fr2kwh tanhðkwhÞ
tanhðkwhÞ � Fr2kwh

ð8:99Þ

Equation (8.98) produces an increase in amplitude of bed waves if #[ 0, which
is the condition for a plane bed to become unstable. It implies that #[ 0 is the
criterion for the formation of bed waves and #\ 0 is the criterion for a plane bed.
Therefore, the limits of the formation of bed waves are as follows: (1) # = 0 and
(2) tanh(kwh) - Fr2kwh = 0. Thus, the limiting values of Fr2 are obtained as

Fr2 ¼
Fr2

2

Fr2
1

" #
¼ 1

4kwh tanhðkwhÞ fC þ 2� ½ðC þ 2Þ2 � 8C tanh2ðkwhÞ	0:5g

ð8:100aÞ

Fr2 ¼ Fr2
a ¼

tanhðkwhÞ
kwh

ð8:100bÞ

Figure 8.21 shows the variation of flow Froude number Fr with kwh for C = 0
and the experimental data plots for the comparison. Hayashi defined the dunes and
the antidunes as bed waves correspond to as \ am and as [ am, respectively. In
Fig. 8.21, the regions of occurrence of different bedforms in terms of Froude
number are furnished in Table 8.4, which provides an understanding on the criteria
for the formation of bedforms.

Table 8.4 suggests that

1. Fr1 is the maximum Froude number for the formation of dunes,
2. Fra is the minimum Froude number for the formation of antidunes, and
3. Fr2 is the maximum Froude number for the formation of antidunes.

In Eq. (8.98), the instability occurs for C = 0 only in the region whose limits
are given by Eq. (8.100b) and

Fr2 ¼ Fr2
m ¼

1
kwh tanhðkwhÞ ð8:101Þ

The curves obtained from these two equations are shown in Fig. 8.21. The bed
waves formed in the region bounded by the two curves are antidunes. Hence, for
C = 0, only antidunes can occur.
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8.5.3.3 Song’s Model

Song (1983) advanced the methodology developed by Milne-Thompson (1960) for
the solution of flow over a sinusoidal wavy bed to explain the bedform
phenomenon.

He expressed the complex velocity potential satisfying the kinematic conditions
required by Eqs. (8.57a, b) as

W ¼ Um Z þ as

sinhðkwHÞ cos½kwðZ þ iH � UbtÞ	

 �

ð8:102Þ

where Um is the mean flow velocity over the entire flow field. At z = –H, a
streamline has a stream function w = –UmH. The complex velocity potential is to
satisfy the condition of the constant pressure at the free surface. It is therefore
required
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Fig. 8.21 Flow Froude number Fr as a function of kwh obtained by Hayashi (1970) and
comparison with the experimental data (Tison 1949; Tsubaki et al. 1953; Brooks 1954; Barton
and Lin 1955; Plate 1957; Laursen 1958; Simons et al. 1961; Kennedy 1961a, b; Guy et al. 1966)

Table 8.4 Criteria for the
formation of bedforms
(Hayashi 1970)

Bedform Criterion

Dunes Fr \ Fr1

Antidunes Fra \ Fr \ Fr2

Plane bed Fr1 \ Fr \ Fra and Fr2 \ Fr
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U2
m ¼

g

kw

tanhðkwHÞ ð8:103Þ

There also exists a relationship between the amplitudes of free surface waves
and bed waves as

am ¼ as 1� g

kwU2
m

tanhðkwhÞ
� �

coshðkwhÞ ð8:104Þ

Noting that the celerity C of gravity waves having a small amplitude is given by

C2 ¼ g

kw

tanhðkwhÞ ð8:105Þ

Equation (8.104) suggests that the free surface waves and the bed waves are in
phase if the flow is supercritical and out of phase if the flow is subcritical.

To estimate the velocity of bedform migration, it is assumed that the bed-load
transport is a function of near-bed flow velocity. This assumption is applicable in
case of no flow separation and a thin boundary layer. Some error is expected for
fully developed dunes, as the flow is separated on the leeside.

Differentiating Eq. (8.102) with respect to Z and setting z = –h, the component
of near-bed flow velocity u0 in streamwise direction is obtained as

u0 ¼ Um 1� askw

sinhðkwHÞ cosh½kwðH � hÞ	 sin½kwðx� UbtÞ	

 �

ð8:106Þ

Using Eqs. (8.57a, b), (8.103) and (8.104), Eq. (8.106) is simplified as

u0 ¼ Umð1þ kwU�gÞ ^ U� ¼ 1� Fr2kwh tanhðkwhÞ
tanhðkwhÞ � Fr2kwh

ð8:107Þ

where U* is a nondimensional parameter.
If the amplitude of bedforms is small, then the vertical velocity component of

the near-bed flow is small as compared to streamwise velocity component u0.
Thus, it can be approximated as u0 & U. Then, the migration velocity Ub of
bedforms (sand waves) using Eq. (8.47) is obtained as

Ub ¼
oqb

og
¼ oqb

oU
� oU

og
¼ oqb

oU
� kwUmU� ) U� ¼ Ub

oqb

oU
� kwUm

� ��1

ð8:108Þ

Therefore, the nondimensional parameter U* represents the nondimensional
velocity of bedform migration.

Figure 8.22 shows Fra(kwh) curves for different U*. The plane Fr-kwh is divided
into three regions by the curves represented by
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Fr2 ¼ tanhðkwhÞ
kwh

; Fr2 ¼ 1
kwh tanhðkwhÞ

In Fig. 8.22, these curves represent the demarcation lines across which the
migration of bedforms changes the direction. Zone I, in which Um B C and U* C 1,
is the zone where dunes occur. On the other hand, antidunes occur in Zone II, in
which Um C C and U* \ 0. The occurrence of a downstream migration of bed-
forms in Zone III is rather interesting. Kennedy (1963) who used the lag as the
mechanism of growth of the bedforms found Zone III to be the unstable zone. In
contrast, Engelund (1970) and Fredsøe (1974) argued that the antidunes moving
downstream could potentially occur in this zone, if the mode of sediment transport
is predominantly the bed load.

8.5.4 Bose–Dey Instability Theory

8.5.4.1 Instability of Sand-Bed Leading to Formation of Dunes
and Antidunes

Based on the Reynolds-averaged Navier–Stokes (RANS) equations, Bose and
Dey (2009) developed a theory of turbulent shear flow over bed waves addressing
the instability criterion for a plane bed leading to the formation of bedforms. Under
consideration is a curvilinear flow over a sinusoidal bed (Fig. 8.23). The z-axis is
vertically upward. For bed waves, the bed elevation is z = g(x, t) with respect to
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the mean bed level (that is, x-axis). The bed waves cause a wavy profile of the free
surface of flow being defined by z = f(x, t) above the mean bed level. However,
the mean flow depth, that is the height from the mean bed level to the mean free
surface is h being approximately a constant. According to the Reynolds decom-
position in two-dimensional turbulent flow, the instantaneous velocity components
(u, w) at a point P(x, z) at time t can be split into the time-averaged part ð�u, �wÞ and
the fluctuating part (u0, w0).

The continuity equations are

o�u

ox
þ o�w

oz
¼ 0;

ou0

ox
þ ow0

oz
¼ 0 ð8:109Þ

The RANS equations are

o�u

ot
þ �u

o�u

ox
þ �w

o�u

oz
¼ 1

q
� o�p

ox
þ os

oz

� �
þ t

o2�u

oz2
� oðu02Þ

ox
ð8:110aÞ

o�w

ot
þ �u

o�w

ox
þ �w

o�w

oz
¼ 1

q
� o�p

oz
þ os

ox

� �
þ t

o2 �w

ox2
� oðw02Þ

oz
� g ð8:110bÞ

where �pðx,z, tÞ is the time-averaged hydrostatic pressure and s is the Reynolds
shear stress.

The power law of velocity distribution is given by

�u ¼ Umaxðx; tÞ
z� g
f� g

� �1=m

ð8:111Þ
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Fig. 8.23 Definition sketch of flow over sand waves (Bose and Dey 2009)
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where m is an exponent and Umax ¼ �uðz ¼ fÞ. The Umax can be related to the
depth-averaged velocity U(x, t) of the flow section, and then, �u is expressed as

Uðx; tÞ ¼ 1
f� g

Zf

g

�u dz ¼ m

1þ m
Umaxðx; tÞ ) �u ¼ 1þ m

m
U

z� g
f� g

� �1=m

ð8:112Þ

Equation (8.109) then yields

�w ¼ �ðf� gÞ oU

ox

z� g
f� g

� �ð1þmÞ=m

ð8:113Þ

The free surface waves and the bed waves have small amplitude and long
wavelength, so |qf/qx| & 0 and |qg/qx| & 0. Moreover, along a curvilinear
streamline with a small curvature, the normal acceleration is essentially convective
for vanishing local acceleration ðo�w=ot � 0Þ. By Eq. (8.109), the convective
vertical acceleration can be given by

�u
o�w

ox
þ �w

o�w

oz
¼ �u

o�w

ox
� �w

o�u

ox
¼ �u2 oðtan wÞ

ox
� �u2k ð8:114Þ

where w ¼ arctanð�w=�uÞ, that is the slope of the streamline through the point
P(x, z), and k is the curvature of the streamline through the point P, such that
k(f) & q2f/qx2 and k(g) & q2g/qx2, in which the slopes are negligible. Following
the Boussinesq approximation, a linear variation of k with z exists, so that

k ¼ kðgÞ þ ½kðfÞ � kðgÞ	 z� g
f� g

ð8:115Þ

With this expression of k in Eq. (8.114) and �u given by Eq. (8.112),
Eq. (8.110b) is integrated over the depth z and the resulting equation is

�p

q
¼ �p0

q
þ gðf� zÞ � U2ðf� gÞ 1þ m

m

� �2 m

2þ m
kðgÞ z� g

f� g

� �ð2þmÞ=m

�1

" #(

þ m

2ðmþ 1Þ ½kðfÞ � kðgÞ	 z� g
f� g

� �2ð1þmÞ=m

�1

" #)
� w02

ð8:116Þ

where �p0 ¼ �pðz ¼ fÞ. Equation (8.116) yields o�p=ox, noting that the contribution

from w02 is negligible due to insignificant streamwise variation of turbulence
stresses. Thus, the gravity, the curvature of streamlines, and the 1/m-th power law
of streamwise velocity contribute to the expression for o�p=ox. The resulting
expression for o�p=ox is used in Eq. (8.110a).
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Integrating the continuity equation (Eq. 8.109) and using Eq. (8.112), the
depth-averaged continuity equation is obtained as

df
dt
� dg

dt
¼ �wjfg ¼ �

Zf

g

o�u

ox
dz ¼ � o

ox
½ðf� gÞU	 þ �uðx; f; tÞ of

ox
� �uðx; g; tÞ og

ox
;

)
o

ot
ðf� gÞ þ o

ox
½ðf� gÞU	 ¼ 0

ð8:117Þ

From Eq. (8.116), it yields

1
q

Zf

g

o�p

ox
dz ¼ gðf� gÞ oh

ox
þ b

o

ox
U2ðf� gÞ2 kðfÞ þ m

2ðmþ 1Þ kðgÞ
� �
 �

ð8:118Þ

where b = (m + 1)2/[m(3m + 2)]. Similarly, for the convective acceleration,
partially integrating the terms of the left-hand side of Eq. (8.110a) using Eqs.
(8.109) and (8.112) yields

Zf

g

o�u

ot
þ �u

o�u

ox
þ �w

o�u

oz

� �
dz ¼ o

ot
½ðf� gÞU	 þ o

ox

Zf

g

�u2dz

¼ o

ot
½ðf� gÞU	 þ a

o

ox
½ðf� gÞU2	

ð8:119Þ

where a = (m + 1)2/[m(m + 2)]. Neglecting the variation of Reynolds stresses in
x-direction, the integration of Eq. (8.110a) over z produces

o

ot
½ðf� gÞU	 þ a

o

ox
½ðf� gÞU2	 þ b

o

ox
ðf� gÞ2U2 kðfÞ þ m

2ðmþ 1Þ kðgÞ
� �
 �

þ gðf� gÞ of
ox
þ gn2 U2

ðf� gÞ1=3
¼ 0

ð8:120Þ

where n is the Manning roughness coefficient. The Manning equation used for the

estimation of local flow resistance is given by qu2
� ¼ s0 ¼ qgn2U2ðf�gÞ�1=3

where u* is the shear velocity at a distance x. Rearranging Eq. (8.120), an alter-
native form of Eq. (8.120) can be obtained as
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þ ð2a� 1ÞU oU

ox
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ox
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� okðfÞ
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okðgÞ
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ðf� gÞ4=3
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ð8:121Þ

Equation (8.120) or (8.121) is a generalization of the de Saint-Venant equation,
where the variability of �u is in accordance with 1/m-th power law including the
curvature effects of streamlines.

The total load sediment transport rate qt (by volume) per unit time and width is
given by

qt ¼ qb þ
Zf

g

�uC dz ð8:122Þ

where qb is the bed-load transport rate and C is the concentration of sediment
suspension. The total load satisfies the Exner’s equation. It is as follows:

oqt

ox
¼ �ð1� q0Þ

og
ot
� o

ot

Zf

g

Cðx; z; tÞdz ¼ �ð1� q0Þ
of
ot
� o

ot
½ðf� gÞ�C	 ð8:123Þ

where �Cðx,tÞ is the depth-averaged concentration, which is given by

�Cðx; tÞ ¼ 1
f� g

Zf

g

Cðx; z; tÞdz ð8:124Þ

Including the effects of bed slope in the bed-load transport equation, the original
equation of Meyer-Peter and Müller (1948) was modified by Fredsøe (1974). It is
then expressed as

qb ¼ 8dðDgdÞ0:5 s0

Dqgd
� l

og
ox
� 0:047

� �1:5

ð8:125Þ

where l is the frictional coefficient of particles (of the order of 0.1). The bed shear
stress is obtained from the Manning equation of flow resistance as
s0 = qgn2U2(f - g)-1/3. Consequently, the sediment transport rate is higher near
the crest of the bed waves. The sediment concentration C in suspension satisfies
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the fluid–sediment continuity equation (Engelund 1970). The equation is an
advection–diffusion equation [see Eq. (6.13)], which is given by

dC

dt
¼ ws

oC

oz
þ esx

o2C

ox2
þ esz

o2C

oz2

� �
ð8:126Þ

where ws is the terminal fall velocity of sand, and esx and esz are the turbulent
diffusivities in x- and z-direction, respectively. Thackston and Krenkel (1967) gave
an estimate of esx as

esx ¼ 7:25u�h
U

u�

� �0:25

¼ 7:25g0:375n0:75Uh0:875 ð8:127Þ

On the other hand, Lane and Kalinske (1941) expressed esz as

esz ¼
1

15
u�h ¼ 0:066g0:5nUh5=6 ð8:128Þ

Using Eq. (8.109) into Eq. (8.126) and integrating between limits g to f yield

Zf

g

dC

dt
dz ¼ o

ot
½ðf� gÞ�C	 þ o

ox

Zf

g

�uC dz ð8:129Þ

The time-averaged velocity �u increases with z, while C diminishes. Hence, in
Eq. (8.129), it can be assumed that �uC � U �C, replacing the velocity and the
concentration by their averaged values. The integral of the right-hand side of
Eq. (8.126) is

wsC þ esz
oC

oz

� �f

g

þ esx

Zf

g

o2C

ox2
dz � esx

o2

ox2
½ðf� gÞ�C	 ð8:130Þ

In Eq. (8.130), the first term of the left-hand side vanishes, as there is no net
vertical sediment flux across the extremities (z = g and f). Equation (8.126) thus
leads to

o

ot
½ðf� gÞ�C	 þ o

ox
½ðf� gÞU �C	 ¼ esx

o2

ox2
½ðf� gÞ�C	 ð8:131Þ

It is pertinent to mention that Eq. (8.131) is approximately legitimate. Thus,
using Eqs. (8.122), (8.125) and (8.131) into the Exner equation (Eq. 8.123) yields
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ð1� q0Þ
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Equations (8.117), (8.121) (with a = 1 and b = 2/5), (8.131) and (8.132)
constitute the governing equation of perturbed flow due to erosion of bed. In
Eq. (8.121), k(f) = q2f/qx2 and k(g) = q2g/qx2 are taken.

In analogy of propagation of waves along the interface of two immiscible fluids,
the conditions for propagation of sand waves are investigated for a mean flow
depth h and a mean flow velocity Um over an undisturbed plane bed. The above set
of equations to the first order is then linearized as

of
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ox
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 �
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ð8:133dÞ

where G ¼ 12ðn2gd2U2
mh�1=3� 0:047Dgd3Þ0:5 and C0 is the initial average con-

centration resulting from the mean flow velocity Um. According to Engelund
(1970), if an exponential distribution of C0 is assumed with esz given by
Eq. (8.128), then the average concentration C0 is

C0 ¼ 4:853� 10�4 g2n4U4
m

w4
s h2=3

ð8:134Þ

A system of linear differential equations is constituted by Eqs. (8.133a–d) with
Eq. (8.134). For propagating waves, such as dunes and antidunes, the solution
must be of the form

ðf; g; U; �CÞ ¼ ð~H; ~E; ~U; ~CÞ expð�k̂tÞ expðikwxÞ ð8:135Þ
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where k̂ is a complex number, whose imaginary part Imðk̂Þ and real part Reðk̂Þ
represent circular frequency and exponential decay rate, respectively. The constants
~H, ~E, ~U and ~C are the complex constants involving amplitude and possible phase
differences between two different components in Eq. (8.135). For an unstable bed

resulting in a moving bedform g ¼ ~E exp½�Reðk̂Þt expfi	 ½kwx� Imðk̂Þt	g which

grows with time t [ 0, if Reðk̂Þ\0. The exponential growth with time is actually
inhibited by the nonlinear nature of the parent flow equations [Eqs. (8.117), (8.121),
(8.131) and (8.132)] that are lost in the linear instability analysis. Under unstable
conditions, therefore, saturation of amplitude sets in resulting in bedforms for all

time. Thus, for unstable bedforms, Reðk̂Þ\0, and for stable beds, Reðk̂Þ[ 0. By
substitution of Eq. (8.135), noting that the constant term (last term) in Eq. (8.133b)
has no role in such an unstable solution analysis; the following linear algebraic
equations are obtained:

ð�k̂þ ikwUmÞð~H � ~EÞ þ ikwh ~U ¼ 0 ð8:136aÞ
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ikwC0 ~U þ ð�k̂þ ikwUm þ esxk2
wÞ~C ¼ 0 ð8:136cÞ
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¼ 0

ð8:136dÞ

Eliminating ~H, ~E, ~U, and ~C from Eqs. (8.136a–d), the quartic equation for k̂ is
obtained as

ðk̂� ikwUm � esxk2
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ð8:137Þ

Equation (8.137) has four complex roots. For the formation of sand waves, the
real part of at least one root in Eq. (8.137) must be negative. If a root simulta-
neously possesses a positive real part, it represents a rapidly decaying mode without

altering overall instability. Using nondimensional quantities X ¼ ðh=gÞ0:5k̂,

k̂w ¼ kwh, Fr ¼ Um= ghð Þ0:5, u0 = hu/(Dd), u is the bed characteristic parameter
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(=n2g/h1/3), uA = 12(Fr2u0-0.047)0.5/[D(u0/u)1.5], e = esx/(gh3)0.5 = 7.25u3/8Fr
and C0 = 4.853 9 10-4(Fr2/u2)(u*/ws)

4, Eq. (8.137) is expressed as a quartic
equation of X:
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40

k̂2
wFr2 þ 1

� �
¼ 0

ð8:138Þ

Equation (8.138), which is an implicit equation of X, is amenable to solution by
the numerical method for the given values of the parameters. Possible values of the
parameters as q0 = 0.4, D = 1.65, u = 2.5 9 10-3, u0 = 600u, and u*/ws = 0.6
are chosen for the computation of the four roots of X for different values of

nondimensional wave number k̂wð¼ kwhÞ and Froude number Fr.

It transpires that there is at least one root with negative real part when the Frðk̂wÞ
plots, as shown in Fig. 8.24, lie in a curved band forming a zone in which bedforms
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Fig. 8.24 Bose–Dey stability diagram [Froude number Fr versus k̂wð¼ kwhÞ] (Bose and Dey
2009) and its comparison with the experimental data (Tison 1949; Tsubaki et al. 1953; Brooks
1954; Barton and Lin 1955; Plate 1957; Laursen 1958; Simons et al. 1961; Kennedy 1961a, b;
Guy et al. 1966)
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propagate with time. In this zone, if Fr [ 0.8, there exists one root with negative
real part, while if Fr B 0.8, there are two roots with negative real part. On the left
side of and below the left bounding curve, all the roots possess either positive real
part or do not exist at all, forming a stable zone. In contrast, on the right bounding
curve, the roots cease to exist indicating stability, and beyond for higher values of

k̂w, only one root possesses negative real part. The crescent-shaped unstable zone in
Fig. 8.24, where significant sediment transport takes place as both bed load and
suspended load, is replete with the experimental data of antidunes and also standing
waves, having higher Froude numbers ([ 0.8), reported by various investigators.

The zone shrinks to an asymptotic limiting line at Fr = 0.177, when k̂w becomes
large. Below this line, no root of Eq. (8.138) exists, as the sediment transport is
inhibited due to significant decrease in flow velocity. If C0 = 0, the transport mode
is due to bed load only. In this case, the boundary of the unstable zone degenerates
into a small enclosed zone above Fr = 0.3. The asymptotic line defined by
Fr = 0.177 could therefore be called the lower limit of bedform formation. The
usual practice is that the threshold of sediment transport is defined by the Shields
parameter, H = s0/(Dqgd). The relationship H = u0Fr2 produces the Shields
parameter H = 0.047, corresponding to Fr = 0.177 for the lower limit of bedform
formation. However, in Fig. 8.24, the stability limits in the zone of formation of
dunes change considerably by the influence of gravity. This is attributed to the fact
that the bed-load transport is the principal sediment transport mechanism in the
dunal regime, while the formation of antidunes is associated with the bed load and
suspended load of sediment transport.

8.5.4.2 Instability of Sand-Bed Leading to Formation of Ripples

Bose and Dey (2012) extended the preceding instability theory (for dunes and
antidunes) of them (Bose and Dey 2009) to predict the formation of ripples. The
primary modifications in the governing equations are the considerations of (1) the
near-bed flow layer influenced by the ripples being 3.5 times the ripple height (gr)
and (2) the sediment transport mode being solely the bed-load transport for the
rolling particle ripples (in the range of fine sand sizes), as defined by Bagnold
(1946). Formation of ripples on the sand-bed is envisaged as an instability phe-
nomenon of the fluid-bed-particle interface, and as such, a moderately thick layer
of flow above the bed is needed to be considered.

Figure 8.25 shows a schematic of steady flow over an erodible sinusoidal sand-
bed. Let D be the thickness of the near-bed flow layer which is influenced by the
roughness due to ripples. According to Raupach et al. (1991), the extent of the near-
bed disturbed layer could be in the order of 2 to 5 times the perturbation height.
Thus, D as 3.5 times ripple height (that is, D & 3.5gr) can be considered as an
average value of that recommended by Raupach et al. (1991). Taking the x-axis
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along the undisturbed bed level in the direction of flow and the z-axis in the
vertically upward direction, let the perturbed ripple height at a point (x, 0) at time
t be g(x, t), where |g|
 h. Here, h is the flow depth. In a two-dimensional turbulent
flow over a sinusoidal sand-bed under consideration, instantaneous velocity com-
ponents at a point P(x, z) at time t are (u, w), whose time-averaged and fluctuating
parts are ð�u, �wÞ and (u0, w0), respectively. It is assumed that the Reynolds stresses in
the x-direction are almost invariant.

Integrating the two-dimensional continuity equation [see Eq. (8.117)] yields

og
ot
¼ o

ox
½ðD� gÞU	 ð8:139Þ

Then, adopting the Boussinesq approximation for curvilinear streamlines and
integrating the RANS equation in z-direction yield
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� ldk2

w

" #
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ð8:140Þ

where �p0 ¼ �pðz ¼ DÞ and m is an exponent of 1/m-th power law of velocity
distribution. Unlike �p0 ¼ 0 (gauge pressure) as in Bose and Dey (2009) in the
preceding analysis, �p0 is nonzero here, representing the pressure at z = D. How-
ever, as a result of differentiation with respect to x in the following steps [also see
Eq. (8.118)], the effect of �p0 is not carried out.

Sand-bed
D

h

z

x
O

U

P(x, z)
r

Fig. 8.25 Definition sketch of flow over a rippled (sinusoidal) bed (Bose and Dey 2012)
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For integrating the RANS equation in x-direction, the assumption of the
invariant Reynolds stresses in x-direction is applied. For the convective acceler-
ation in x-direction, Eq. (8.119) is used. The RANS equation in x-direction is
therefore

o

ot
½ðD� gÞU	 þ a

o

ox
½ðD� gÞU2	 þ b ðD� gÞU2 o2g

ox2

� �

� v
o3

otox2
½ðD� gÞ3U	 þ s0

q
¼ 0

ð8:141Þ

where a = (1 + m)2/[m(2 + m)], b = (1 + m)/[2(2 + 3m)], and v = m/(1 + 3m).
For m = 7, the values of a & 1, b & 4/23, and v & 7/22. Using Eq. (8.139),
Eq. (8.141) reduces to
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q
¼ 0

ð8:142Þ

where f = D – g, that is the thickness of the flow layer influenced by the perturbed
bed.

When the bed shear stress s0 induced by the flow just exceeds its threshold value
s0c, the sediment begins to transport as bed load, and the ripples are gradually
formed on the bed, if the bed sand is fine. If qb is the volumetric bed-load transport
per unit time and width, the Exner’s sediment continuity equation is as follows:

oqb

ox
¼ �ð1� q0Þ

og
ot
¼ ð1� q0Þ

of
ot

ð8:143Þ

The well-known Meyer-Peter and Müller (1948) formula [see Eq. (5.16)] for
the bed-load transport qb is used here. Equation (5.16) is expressed as

qb ¼ 8dðDgdÞ0:5ðH�HcÞ1:5

The threshold Shields parameter Hc is dependent on the local bed slope
qg/qx and the sand size forming ripples. During the instability, the bed accrues a
slope, for which Fredsøe (1974) gave the bed-load transport formula [see
Eq. (8.125), which is explained here explicitly], taking Hc = Hc0 + ldqg/qx. Here,
Hc0 is the threshold Shields parameter for horizontal bed and ld(0 \ ld \ 1) is the
coefficient of dynamic friction. The value of Hc0 for a given d can be obtained from
the set of empirical formulas given by van Rijn (1984a) (see Table 4.1). The average
value of ld for equivalent sinusoidal sand wave form is approximated as ld &
tan 30� = 0.577.

The equation of the bed shear stress s0 on a plane rough bed expressed as a
function of dynamic pressure is

502 8 Bedforms

http://dx.doi.org/10.1007/978-3-642-19062-9_5
http://dx.doi.org/10.1007/978-3-642-19062-9_5
http://dx.doi.org/10.1007/978-3-642-19062-9_4


s0 ¼
kD

8
qU2 ð8:144Þ

where kD is the Darcy–Weisbach friction factor. For low shear Reynolds number
(R* B 70), which is consistent with the hydraulically smooth and transitional flow
regimes under consideration, the friction factor kD can be obtained from the
Colebrook–White formula (Colebrook and White 1937). The Colebrook–White
formula is an implicit formula, but an explicit approximate version of that was
proposed by Haaland (1983), which is

1

k0:5
D

¼ �0:782 ln
ks

14:8f

� �1:1

þ 1:725t
Uf

" #
ð8:145Þ

where ks is Nikuradse’s equivalent sand roughness (ks & 2d).
Using qb from Meyer-Peter and Müller (1948) and Eqs. (8.144) and (8.145),

Eq. (8.143) for a sand-bed yields the dynamical differential equation for f. It is as
follows:

ð1� q0Þ
of
ot
� 12dðDgdÞ0:5 kDU2

8Dgd
þ ld

of
ox
� 0:035

� �0:5

� U

8Dgd
2kD

oU

ox
þ U

okD

ox

� �
þ ld

o2f
ox2

� �
¼ 0

ð8:146Þ

Ripple formation on the sand-bed can be viewed as an instability phenomenon
governed by the two dynamical equations [Eqs. (8.142) and (8.146)], when flow
takes place with a mean velocity Um forming a near-bed flow layer of thickness
D in which the flow is influenced by the roughness due to ripples. For the stability
or instability analysis of a system, the solution of the two equations is taken in the
sinusoidal forms over the mean values as follows:

U ¼ Um þ ~U expð�k̂tÞ expðikwxÞ; f ¼ Dþ ~Z expð�k̂tÞ expðikwxÞ ð8:147Þ

In the above, k̂ is a complex number. Its imaginary part Imðk̂Þ and real part

Reðk̂Þ correspond to the circular frequency and the exponential decay rate,
respectively, and ~U and ~Z are the complex constants. The length kr of such a
ripple, simulated by a sinusoidal wave, is half of the wavelength of the wave (note
that Fig. 8.25 shows that the ripple length is simulated best by a half sinusoidal

wavelength), that is, kr = p/kw. For an unstable ripple, Reðk̂Þ\0 implies an
exponential growth with time t that is actually inhibited by the nonlinear nature of
parent equations [Eqs. (8.142) and (8.146)] to be lost in linearization. Substituting
Eq. (8.147) into Eqs. (8.142) and (8.146) and then performing the linearization, the
last term of Eq. (8.142) reduces to a constant having no role in the instability
analysis. Thus, the homogeneous linear system of equations is obtained as follows:
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� 1þ 7
22

k2
wD2

� �
k̂þ ikwUm

� �
~U þ k2

wDUm

4ikw

23
Um �

21
22

k̂

� �
~Z ¼ 0 ð8:148aÞ

ikwUm

8Dgd
2kDm �

2:698tk1:5
Dm

UmDCm

� �
~U þ

"
ð1� q0Þk̂

12dðgDÞ0:5Am

� 0:195ikwBmk1:5
DmU2

m

DgdD
� ldk2

w

#
~Z ¼ 0

ð8:148bÞ

where kDm is the kD given by Eq. (8.145) for U = Um and f = D,
Am = [kDmU2

m(8gD)-1 – 0.035DgdD-1]0.5, Bm = C�1
m [0.122(d/D)1.1 + Gm],

Cm = [0.111(d/D)1.1 + Gm], and Gm = 1.725t[FrDD(gD)0.5]-1. The above two

equations can be normalized by introducing X ¼ k̂ðD=gÞ0:5, k̂w ¼ kwD and

Um = FrD(gD)0.5. Eliminating ~U and ðg=DÞ0:5~Z from the resulting two equations,
a quadratic equation of X is obtained as

ð1� q0Þ
12Am
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� ikDmFr2
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wEm

D
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D
þ ild

d

D
FrDk̂3
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46
� kDmFr3

Dk̂4
wEm

D
¼ 0

ð8:149Þ

where Em ¼ 2 � f2:698tk0:5
Dm½FrDD gDð Þ0:5Cm	�1g. Equation (8.149) has two

complex roots for X. For the instability of bed due to formation of ripples, at least

one of them must have a negative real part, as X is proportional to k̂. When a root
simultaneously possesses a positive real part, then it represents a quickly decaying
mode without changing overall instability.

To perform a numerical exercise, the values of s = 2.65, q0 = 0.4,
t = 1.004 9 10-6 m2 s-1, and g = 9.81 m s-2 are taken. For a given value of d,
Re(X) is computed from Eq. (8.149). It is found that Re(X) of one root is always

positive, but for the other root, it is positive for small values of k̂w ¼ kwD and very

slowly changing to a negative value with an increase in k̂w. The length of the

corresponding sinusoidal ripple is determined from kr ¼ pD=k̂w with k̂w to be the
approximate transitional value. The theoretical curve for the nondimensional ripple
length kr/d versus Shields parameter H is shown in Fig. 8.26. The layer of influence
D is estimated from its maximum value being approximately 3.5 times the ripple
height gr, that is D/gr & 3.5, as already mentioned. On the other hand, kr can be
approximated by the horizontal projection of the sloping line at an angle of repose of
30�. Hence, gr/kr & tan30� = 0.58 and D/kr (= D/gr 9 gr/kr) & 2. So, the change
in sign of the positive root of Eq. (8.149) is so selected that kr = D/2 has values
lying in the range of 0.1–0.25 m and that of D lying in the range of 0.2–0.5 m.

504 8 Bedforms



In Fig. 8.26, the theoretical curve shows that kr/d increases with an increase in
H. For the purpose of comparison, the experimental data plots are overlapped. The
distribution of data plots somewhat confirms that the theory is capable of pre-
dicting the ripple lengths close to their observed values for the data of Davies
(1971) and Zhang et al. (2009). Due to the shallowness of flow depths (*0.15 m)
in the experiments by Banks and Collinson (1975), the flow layer D influenced by
the ripples could have a possibility to extend close to the experimental flow depths,
resulting in a departure of data plots (encircled) from the theoretical curve.

8.6 Bed Features in Gravel-Bed Streams

In the preceding sections, the characteristic features of the bedforms and the
mathematical theories on their stability in sand-bed streams are discussed. In
contrast, the bed features in gravel-bed streams are even more complex in nature.
A sand-bed is usually composed of approximately narrow range of particle sizes,
while a gravel-bed contains a wide range of particle sizes, such as fine sand to
large cobbles or boulders. Thus, for a given flow condition, differential sediment
transport rate prevails for different particle sizes; even the larger size fraction may
remain immobile. As a consequence, an armoring of bed may occur, leading to an
asymptotic reduction in sediment transport rate with time, unless another flow with
higher flow velocity that may occur at a later period is capable to break the armor
layer transporting all sizes indiscriminately. Thus, the complexities in gravel-bed
features arise from selective transports. The gravel bedforms can be broadly
divided into four categories: (a) Cluster, (b) riffle–pool sequence, (c) step–pool
sequence, and (d) rapids and cascades.

A single stone protruding above the bed surrounded by the neighboring smaller
particles forms a small-scale bedform, termed cluster (Brayshaw et al. 1983; Billi
1988). On the surface of gravel-beds, larger cobbles or boulders may act as anchor
stones that support the formation of clusters where various sizes of small cobbles
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Banks and Collinson (1975)
Baas (1994)
Zhang et al. (2009)

Computed (Bose and Dey 2012)

Fig. 8.26 Nondimensional
ripple length kr/d as a
function of Shields parameter
H obtained theoretically by
Bose and Dey (2012) and the
plots of experimental data
(Davies 1971; Banks and
Collinson 1975; Baas 1994;
Zhang et al. 2009)
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and coarse gravels support each other (Fig. 8.27). Once a cluster is formed, it is
then degenerated in the process of erosion at the periphery of the cluster, and
subsequently, a new cluster is reformed and so on. In fully developed stage, a
cluster consists of a stoss-side accumulation of larger particles and a leeside
deposition of finer particles. The particles in the course of transport are prevented
by the anchor stone which creates an accumulation of particles on the stoss side of
the stone, while the leeside accumulation of particles is due to sheltering.

In gravel-bed streams, a riffle–pool sequence is formed as a stream flow
structure alternating from the zones of relatively shallow to deeper flow over an
undulating streambed (Fig. 8.28), but do not tend to form in sand-bed streams
(Knighton 1998). A prominent feature of riffle–pool sequence is the bed particle
sorting and distribution associated with the changes in bed elevations. Riffles that
correspond to elevated zones in the bed topography are formed in shallow zones
containing gravel deposits over which the flow takes place with a faster velocity.
In contrast, pools that correspond to the deeper zones where sediment transport
takes place as a bed load of fine sand or silt. The stream flow is characterized by a
rapid flow over coarse sediment in the relatively steep riffle zones and a slower
flow through the deeper pools. The sequence of spacing (pool to pool or riffle to
riffle) within a streambed commonly occurs at intervals ranging from 5 to 7 stream
width (Keller and Melhorn 1978). Riffle–pool sequences are found in straight,
meandering, and braided reaches (Richards 1976). Pools are most easily developed
with relatively coarse bed load in a meandering stream where the outer edge of
each meander loop is deep and undercut, while riffles are formed in the shallow
water crossovers between one meander to the next on the opposite margin of the
stream (Fig. 8.29). The pools are the zones of active erosion, and the sediment

Flow

Anchor stone

Larger particles Finer particles

Stoss-side Leeside

Fig. 8.27 Sketch of a cluster

Riffle
Riffle

Pool
Pool

Fig. 8.28 Sketch of a riffle–pool sequence in a straight stream
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eroded tends to be deposited in the riffle zone between. Riffle–pool sequences are
present in nearly all perennial streams where the sediment size is larger than coarse
sand, and they are relatively stable in their position along the stream.

Step–pool sequence is often observed in steep (in the order of exceeding 2 %
slope), upland, or mountain streams formed by cobbles and boulders. The steps are
formed as a framework of larger cobbles or boulders that are tightly packed with
finer particles featuring vertical drops over which the flow plunges into the deeper
and relatively tranquil flow in the pool immediately downstream (Fig. 8.30). Steps
are relatively a permanent structure. The spacing of steps and pools is, on an
average, two to three times the stream width. The spacing of pools tends to become
closer with an increase in slope. The height of steps tends to increase with the size
of particle transport (Chin 1999). Step–pool sequences are most apparent during
low stages, as they tend to be submerged at higher stages. It is also during low
stages that step–pool sequence provides the most flow resistance. There is also
significant energy dissipation, as the flow cascades over each step and goes into the
relatively tranquil pools (Bathurst 1993).

Rapids whose morphological features can have a series of regularly spaced
cobble or boulder ridges are associated with steep gradient and shallower stream
flows. They are characterized by transverse, riblike arrangements of coarse par-
ticles that are oriented across the channel (that is, transverse to the flow)
(Fig. 8.31) (McDonald and Banerjee 1971; Robert 1990). Rapids appear to persist
in streams with wider range of bed slopes. On the other hand, cascades have a
more disorganized, random structure (Fig. 8.32). Rapids and cascades are stable
during most flows because except very high flows, the usual flows are incompetent
in moving the coarser cobbles and boulders that form the main structure
(Fig. 8.33).

Fig. 8.29 Photograph of a riffle–pool sequence in a meandering stream. Photograph by the
author
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8.7 Resistance to Flow Due to Bedforms

In this section, the resistance to flow from the sediment beds and bedforms is
discussed. In case of ripples and dunes (that is, in the lower flow regime), the
separated flow on the leeside of these bedforms is the primary cause of significant
resistance to flow. It involves a generation of large-scale turbulence dissipating
considerable amount of kinetic energy. In this regime, the rate of sediment
transport is relatively low as the transport mechanism is the bed-load transport
only. On the other hand, in case of plane bed and antidunes (that is, in the upper
flow regime), the resistance to flow is less due to predominance of roughness due
to particles. However, the kinetic energy is dissipated by standing waves and the

Fig. 8.30 Photograph of a step–pool sequence. Photograph by the author

Fig. 8.31 Photograph of rapids. Photograph by the author
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formation of breaking antidunes causes to enhance the resistance to flow. The total
(or effective) resistance to flow is decomposed into (1) resistance accounting for
forces acting on individual particles, termed resistance due to particles or skin
friction, and (2) resistance due to bedform configurations, termed form resistance
or form drag. It is important to understand that the net pressure distribution over an
entire bedform and the resulting flow separation due to adverse pressure gradient
give rise to substantial form drag, while a portion of drag, in terms of skin friction
drag, governs the bed particle transport.

Following the aforementioned resistance phenomenon and accordingly con-
structing a definition sketch (Fig. 8.34), the total (or effective) bed shear stress s0

acting over bedforms can be decomposed as follows:

s0 ¼ s00 þ s000 ð8:150Þ

where s00 is the bed shear stress due to particle roughness and s000 is the bed shear
stress due to form drag.

Fig. 8.33 Photograph of rapids and cascades. Photograph by the author

Fig. 8.32 Photograph of submerged cascades. Photograph by the author
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Equation (8.150) can be expressed in terms of the decomposition of total energy
slope Sf and total hydraulic radius Rb as

s0 ¼ qgRbSf ; s00 ¼ qgRbS0f ; s000 ¼ qgRbS00f ) Sf ¼ S0f þ S00f ð8:151aÞ

s0 ¼ qgRbSf ; s00 ¼ qgR0bSf ; s000 ¼ qgR00bSf ) Rb ¼ R0b þ R00b ð8:151bÞ

where S0f and R0b are the energy slope and the hydraulic radius due to particle
roughness, respectively, and S00f and R00b are the energy slope and the hydraulic
radius due to form drag, respectively. In two-dimensional case, R0b ¼ h0 and
R00b ¼ h00, where h0 and h00 are the depths due to particle roughness and form drag,
respectively.

Again, Eq. (8.150) can be expressed in terms of the decomposition of total
shear velocity u* and total friction factor kD as

s0 ¼ qu2
�; s00 ¼ qu02� ; s000 ¼ qu002� ) u2

� ¼ u02� þ u002� ð8:152aÞ

s0 ¼
kD

8
qU2; s00 ¼

k0D
8

qU2; s000 ¼
k00D
8

qU2 ) kD ¼ k0D þ k00D ð8:152bÞ

where u0� and k0D are the shear velocity and the friction factor due to particle
roughness, respectively, and u00� and k00D are the shear velocity and the friction factor
due to form drag, respectively.

Further, Eq. (8.150) can be expressed in terms of Shields parameters as given by

s0

Dqgd
¼ s00

Dqgd
þ s000

Dqgd
) H ¼ H0 þH00 ð8:153Þ
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Fig. 8.34 Shear stress distribution over a dune and total bed shear stress decomposition
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where H00 is the Shields parameter due to form drag.
It is interesting to note that the Manning equation produces two different

relationships for Manning roughness coefficients n, n0, and n00. Using Eqs. (8.150)
and (8.151a), and Eqs. (8.150) and (8.151b), the Manning equation yields

U ¼ 1
n

R2=3
b S0:5

f ; U ¼ 1
n0

R2=3
b S00:5f ; U ¼ 1

n00
R2=3

b S000:5f ) n2 ¼ n02 þ n002

ð8:154aÞ

U ¼ 1
n

R2=3
b S0:5

f ; U ¼ 1
n0

R02=3
b S0:5

f ; U ¼ 1
n00

R002=3
b S0:5

f ) n1:5 ¼ n01:5 þ n001:5

ð8:154bÞ

In the above, the Manning roughness coefficients possess two different expo-
nents (2 and 1.5), which can cause an inconsistency in analyses. However, an
application of Chézy equation in the similar way can produce a consistent result. It
is as follows:

1
C2

R

¼ 1
C02R
þ 1

C002R

ð8:155Þ

where CR is the total Chézy coefficient, and C0R and C00R are the Chézy coefficients
due to particle roughness and form drag, respectively. Making use of Eq. (8.155)
and the relationship between Chézy and Manning coefficients, a consistent rela-
tionship for the Manning roughness coefficients can be obtained as

CR ¼
1
n

R1=6
b ; C0R ¼

1
n0

R01=6
b ; C00R ¼

1
n00

R001=6
b ) n2

R1=3
b

¼ n02

R01=3
b

þ n002

R001=3
b

ð8:156Þ

8.7.1 Einstein and Barbarossa’s Method

Einstein and Barbarossa (1952) were the first to introduce the decomposition of
total resistance into skin friction and form drag. Under a fully hydraulic rough
regime, R0b can be determined from the Manning–Strickler formula as

U

u0�
¼ 7:66

R0b
k0s

� �1=6

^ u0� ¼ ðgR0bSfÞ0:5 ð8:157Þ

In Eq. (8.157), the particle roughness height k0s is considered as d65. In case of
particle roughness which does not produce fully hydraulic rough regime, R0b can be
determined from the logarithmic law of depth-averaged velocity. It is as follows:
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U

u0�
¼ 1

j
ln 12:27

R0b
k0s

xk

� �
ð8:158Þ

where xk is the correction factor [see Eq. (5.63) and Fig. 5.7]. Einstein and Bar-
barossa related the form drag with the sediment transport rate in lower flow regime.

U

u00�
¼ f ðW0bÞ ð8:159Þ

where W0b is the flow intensity parameter due to particle roughness, which is
reciprocal of H0. It means that W0b is inversely proportional to s00. Further, note that

U=u00� ¼ ð8=k00DÞ
0:5. The flow intensity parameter is given by

W0b ¼
Dd35

R0bSf

ð8:160Þ

Based on the field data, the functional relationship given by Eq. (8.159) was
represented in graphical form as shown in Fig. 8.35 (Einstein and Barbarossa
1952). The U=u00� decreases with an increase in W0b in lower flow regime, for which
the applicability of the diagram is limited.

The computation of total hydraulic radius Rb from a given discharge Q by
Einstein and Barbarossa’s method is illustrated in Example 7.2 (see Table 7.4).

8.7.2 Engelund’s Method

Engelund (1966) used the energy slope decomposition [see Eq. (8.151a)] to
determine the resistance to flow. The head loss due to form drag of a dune h00f ,
which is an expansion loss, can be estimated from the Carnot equation as
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Ψb
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U
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*' '

Field data

Fitted curve by Einstein and Barbarossa (1952)

′

Fig. 8.35 Flow resistance
relationship by Einstein and
Barbarossa (1952)
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h00f ¼ KL

ðU1 � U2Þ2

2g
ð8:161Þ

where U1 and U2 are the average velocities on the crest and the trough, respec-
tively, and KL is the loss coefficient. The average velocities U1 and U2 are obtained
as

U1 ¼
q

h� 0:5gd

; U2 ¼
q

hþ 0:5gd

ð8:162Þ

where q is the discharge per unit width (= Uh), h is the average flow depth, and gd

is the dune height. Therefore, Using Eq. (8.162), Eq. (8.161) becomes

h00f ¼
KL

2g

q

h� 0:5gd

� q

hþ 0:5gd
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� KL

2
� g

2
d

h
Fr2 ð8:163Þ

The decomposition of total energy slope, Eq. (8.151a), can be given by

Sf ¼ S0f þ S00f ^ S00f �
h00f
kd

¼ KL

2
� g2

d

kdh
Fr2 ð8:164Þ

The decomposition of Shields parameter, Eq. (8.153), can be expressed as

H ¼ H0 þH00 ^ s0

Dqgd|fflffl{zfflffl}
H

¼ hS0f
Dd|{z}
H0

þ KL

2
� g2

d

Dkdd
Fr2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
H00

ð8:165Þ

A boundary layer where the velocity distribution is nonuniform is developed in
the flow over a bedform, while the velocity distribution outside this layer is uni-
form. Engelund and Hansen (1967) assumed that the outer flow and the boundary
layer flow are independent of each other, as there is no significant amount of
energy exchanged between them. Hence, the energy slope of the boundary layer
flow is equal to that of the outer layer and that of the total flow. Thus, it is given by

s00 ¼ qgh0Sf ¼ k0D
qU2

8
) 8

k0D
¼ U2

gh0Sf

ð8:166Þ

where k0D is the skin friction coefficient. Here, the boundary layer thickness d is
assumed to be equal to h0, that is the flow depth due to particle roughness. The
expression of Sf is

Sf ¼ kD

U2

8gh
ð8:167Þ
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Therefore, Eqs. (8.166) and (8.167) produce

k0D
h0
¼ kD

h
ð8:168Þ

The friction factor k0D for the boundary layer is determined from the equation of
Nikuradse for hydraulically rough regime as

8

k0D

� �0:5

¼ 1
j

ln 12:2
h0

ks

� �
) U

ðgh0SfÞ0:5
¼ 1

j
ln 12:2

h0

ks

� �
ð8:169Þ

Using the experimental data of Guy et al. (1966), Engelund and Hansen (1967)
proposed the following relationships:

H0ðH0\0:55Þ ¼ 0:06þ 0:4H2 ð8:170aÞ

H0ð0:55\H0\1Þ ¼ H ð8:170bÞ

Equation (8.170b) refers to the plane bed and standing waves, where no
expansion loss takes place. Later, Brownlie (1983) suggested a relationship for
H0[ 1 as

H0ðH0[ 1Þ ¼ 0:298þ 0:702

H1:8

� ��0:56

ð8:171Þ

Figure 8.36 shows the variation of H with H0 obtained from Eqs. (8.170a) and
(8.171). The curves compare well with the experimental results.

For the given values of discharge q, bed slope S0, and sediment size d, the flow
depth can be predicted by Engelund’s method as follows:

Step 1: Assume a value of depth due to particle roughness h0.
Step 2: Calculate H0 [= h0S0/(Dd)].
Step 3: Obtain H from Fig. 8.36.
Step 4: Calculate h [= H(Dd)/S0].
Step 5: Calculate U from Eq. (8.169) by using ks = 2.5d50.
Step 6: Calculate q = Uh.
Step 7: Compare the calculated value of q with the given value of q.
Step 8: Repeat iteration (Step 1 to Step 6) until these two values of q converge.

8.7.3 Karim and Kennedy’s Method

Karim and Kennedy (1981) derived the flow resistance in terms of the ratio of
friction factor kDm over a mobile bed to friction factor kDi over an immobile bed as
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kDm

kDi

¼ 1:2þ 8:92
gd

h
^ kDi ¼ 8

1
j

ln 12
h

ks

� �� ��2

_ ks ¼ 2:5d50 ð8:172Þ

Note that the notation for the median size of sediment d50 is used as d so far.
Henceforth, both the notations d50 and d are used to refer to median size of
sediment.

Karim and Kennedy used the expression for dune height gd for H\ 1.5 given
by Allen (1978) (Table 8.1) and gd(H[ 1.5) = 0. They adopted the regression
analysis to obtain an expression for depth-averaged flow velocity as

U

ðgRbSfÞ0:5
¼ 6:683

h

d50

� �0:626

S0:503
0

kDm

kDi

� ��0:465

ð8:173Þ

For a given flow depth h, the average flow velocity can be determined from
Eq. (8.174). The bedforms can be predicted as H B 1.2 for lower flow regime,
1.2 \H \ 1.5 for transition, and H C 1.5 for upper flow regime.

8.7.4 van Rijn’s Method

To calculate dune height gd, van Rijn (1984b) gave an empirical equation [see
Eq. (8.10)]. He suggested that the shear velocity due to particle roughness u0� can
be determined from

U

u0�
¼ 8

k0D

� �0:5

¼ 1
j

ln 12:2
h

k0s

� �
ð8:174Þ
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By setting the bedform length kd = 7.3h, the particle roughness k0s ¼ 3d90 and
the bedform roughness (roughness contributes to form drag) k00s ¼ 1:1gd[1 -

exp(-25gd/kd)], the total (or effective) bed roughness ksð¼ k0s þ k00s Þ is obtained as

ks ¼ 3d90 þ 1:1gd 1� exp �25
gd

kd

� �� �
ð8:175Þ

The total Chézy coefficient CR can be computed as CR = 18log(12Rb/ks). Then,
using the Manning–Strickler equation with k0s ¼ 3d90 ¼ 6:8d50 yields

U

u0�
¼ 8

k0D

� �0:5

� 5
h

d50

� �1=6

) k0D � 0:32
d50

h

� �1=3

ð8:176Þ

Using Eqs. (8.167) and (8.174) for kD and k0D, respectively, the friction factor
k00D due to form drag can be determined from Eq. (8.152b). Note that the
approximate value of k00D � gd=kd.

8.7.5 Nelson and Smith’s Method

To derive the bed shear stress s000 due to form drag, Nelson and Smith (1989)
adopted the following procedure:

FDx ¼ CD

q
2

U2
r Bgd ) s000 ¼

FDx

Bkd

¼ CD

q
2

U2
r

gd

kd

ð8:177Þ

where FDx is the hydrodynamic drag force in streamwise direction (x-direction),
CD is the drag coefficient (assumed as 0.21), Ur is the reference streamwise flow
velocity, and B is the channel width.

The reference flow velocity, which is the average velocity from trough to crest
level of the bedform, can be determined from the logarithmic law, and then, from
Eq. (8.177), s000=s

0
0 is deduced as

Ur ¼
1
j

s00
q

� �0:5

ln 30
gd

ks

� �
� 1

� �
) s000

s00
¼ CD

1
2
� gd

kdj2
ln 30

gd

ks

� �
� 1

� �2

ð8:178Þ

Nelson and Smith assumed the logarithmic law of time-averaged velocity �uðzÞ
for the ranges ks \ z \ gd and gd \ z \ h. They are

�uðks\z\gdÞ ¼
1
j

s00
q

� �0:5

ln 30
z

ks

� �
; �uðgd\z\hÞ ¼ 1

j
s0

q

� �0:5

ln 30
z

ksc

� �

ð8:179Þ
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where ksc is the composite roughness height. Equating �uðz ¼ gdÞ at the crest of the
bedform and rearranging yield

s0

s00
¼ ln 30

gd

ks

� �� �2

ln 30
gd

ksc

� �� ��2

) s000
s00
¼ ln 30

gd

ks

� �� �2

ln 30
gd

ksc

� �� ��2

�1

ð8:180Þ

Using Eqs. (8.178) and (8.180) produces

CD

1
2
� gd

kdj2
ln 30

gd

ks

� �
� 1

� �2

¼ ln 30
gd

ks

� �� �2

ln 30
gd

ksc

� �� ��2

�1 ð8:181Þ

For the given values of ks, gd, and kd, the composite roughness height ksc can be
solved from Eq. (8.181). Then, s0ð¼ s00 þ s000Þ, s00, and s000 can be obtained from
Eqs. (8.178) (second equation) and (8.180).

García (2008) argued that the composite roughness height ksc can be determined
from Keulegan’s depth-averaged velocity formula. The expression for ksc is

ksc ¼ 11h exp � jU

u�

� �
^ u� ¼

s000 þ s00
q

� �0:5

ð8:182Þ

Later, García and Parkar (1993) extended the Nelson and Smith’s method for
the hydraulically smooth flow. The modification of Eq. (8.178) for the case of
hydraulically smooth flow is given by

s000
s00
¼ CD

1
2
� gd

kdj2
ln 9

u0�gd

t

� �
� 1

� �2

ð8:183Þ

8.7.6 Wright and Parker’s Method

Wright and Parker (2004), who identified that Engelund’s method could be well
applicable to laboratory scale but did not perform satisfactorily for large-scale field
applications, proposed a modified method that provides good results for both
small- and large-scale applications. They defined Shields parameter due to particle
roughness as

H0 ¼ 0:05þ 0:7ðHFr0:7Þ0:8 ð8:184Þ

They used the stratification adjusted form of the equation given by Brownlie. It
is as follows:
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U

u0�
¼ 8:32

a
h0

ks

� �1=6

^ u0� ¼ ðgh0S0Þ0:5 ð8:185Þ

where a is the stratification adjustment constant. They considered ks = 3d90. The a
is given by

a
C0:05

S0
� 10

� �
¼ 1� 0:06

C0:05

S0

� �0:77

ð8:186aÞ

a
C0:05

S0
[ 10

� �
¼ 0:67� 0:0025

C0:05

S0
ð8:186bÞ

where C0.05 is the reference concentration at reference level a = 0.05h.
The relationship between the depth and the discharge appropriate for the lower

flow regime is developed by first assuming that the velocity distribution over a bed
with dunes has roughly the same shape as that over a plane bed. Thus, ks in
Eq. (8.185) is to be replaced by a composite roughness ksc and u0� by u*. Then, it is
obtained as

U

u�
¼ 8:32

a
h

ksc

� �1=6

^ u� ¼ ðghS0Þ0:5 ð8:187Þ

Using continuity equation q = Uh, Eq. (8.187) can be expressed as

h

d50
¼ a

8:32
� q̂

S0:5
0

ksc

d50

� �1=6
" #0:6

^ q̂ ¼ q

d50ðgd50Þ0:5
ð8:188Þ

The relationship between the composite roughness and the particle roughness
can then be obtained from Eqs. (8.185) and (8.187) as

ksc ¼ ks

h

h0

� �4

¼ H

H0

� �4

ð8:189Þ

The reference concentration C0.05 can be calculated as follows:

Esi ¼
7:8� 10�7ðfrviÞ5

1þ 2:6� 10�6ðfrviÞ5
^ fr ¼ 1� 0:28r/ _ vi ¼ R0:6

pi S0:08
0

u0�
wsi

di

d50

� �0:2

^ Rpi ¼
diðDgdiÞ0:5

t
; ) C0:05 ¼

X Esi

Fbi

ð8:190Þ
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where r/ is the standard deviation of bed sediment’s particle size distribution
based on U scale, di is the fractional particle size, and Fbi is the fraction of particle
size di in bed sediment.

For the given discharge q, bed slope S0 and particle size distribution (di and
Fbi), Wright and Parker’s method can be applied as follows:

Step 1: Assume a flow depth h.
Step 2: Calculate H and Fr.
Step 3: Calculate H0 from Eq. (8.184) and ksc from Eq. (8.189).
Step 4: Calculate C0.05 from Eq. (8.190).
Step 5: Calculate a from Eq. (8.186).
Step 6: Calculate h from Eq. (8.188) and then compare the calculated value of

h with the assumed value of h.
Step 7: Repeat next iteration (Step 1 to Step 6) with calculated value of h (as the

next assumed value of h) until the assumed and the calculated values
converge.

8.8 Examples

Example 8.1 The depth-averaged flow velocity in a wide river is 1.2 m s-1, flow
depth 3.2 m, and energy slope 1.6 9 10-4. The flow is fairly uniform within the
measuring reach. The characteristics of bed sediment are the median size
d50 = 0.4 mm, d65 = 0.55 mm, and d90 = 0.9 mm having a relative density of
2.65. Assume coefficient of kinematic viscosity of water t = 10-6 m2 s-1 and
mass density of water q = 103 kg m-3.

(a) Predict the type of bedform formation.
(b) Compute the dimensions of the bedforms.

Solution

Given data are as follows:
Flow velocity, U = 1.2 m s-1; flow depth, h = 3.2 m; energy slope, Sf =
1.6 9 10-4; sediment size, d50 = 0.4 mm, d65 = 0.55 mm, and d90 = 0.9 mm;
relative density, s = 2.65; kinematic viscosity of water, t = 10-6 m2 s-1; and
mass density of water, q = 103 kg m-3.
For uniform flow, the energy slope equals the streamwise bed slopes. So,
Sf = S0 = 1.6 9 10-4.
Applied bed shear stress, s0 = qghS0 = 103 9 9.81 9 3.2 9 1.6 9 10-4 =
5.023 Pa.
Shear velocity, u* = (s0/q)0.5 = (5.023/103)0.5 = 0.071 m s-1.
Shields parameter, H = s0/(Dqgd50) = 5.023/(1.65 9 103 9 9.81 9 0.4 9 10-3)
= 0.776.
Shear Reynolds number, R* = u*ks/t = 0.071 9 0.55 9 10-3/10-6 = 39.05
(Note: ks = d65 is assumed).

8.7 Resistance to Flow Due to Bedforms 519



Flow Froude number, Fr = U/(gh)0.5 = 1.2/(9.81 9 3.2)0.5 = 0.21.
Densimetric Froude number, Fd = U/(Dgd50)0.5 = 1.2/(1.65 9 9.81 9 0.4 9

10-3)0.5 = 14.91.
Terminal fall velocity, ws = 0.06 m s-1 [obtained from Cheng’s (1997) formula
(see Table 1.3) with nominal diameter dn = d50/0.9].

Use van Rijn’s empirical formula for the determination of threshold bed shear
stress and threshold shear velocity (see Table 4.1):
Particle parameter, D* = d50(Dg/t2)1/3 = 0.4 9 10-3[1.65 9 9.81/(10-6)2]1/3

= 10.118.
Threshold Shields parameter, Hcð4\D� � 20Þ ¼ 0:04D�0:1

� ¼ 0:04� 10:118�0:1

¼ 0:0317
Threshold bed shear stress, s0c = HcDqgd50 = 0.0317 9 1.65 9 103 9 9.81
9 0.4 9 10-3 = 0.205 Pa.
Threshold shear velocity, u*c = (s0c/q)0.5 = (0.205/103)0.5 = 0.014 m s-1

(a) Prediction of bedform type:

Simons et al.’s method:

On the basis of Fr (= 0.21), which is less than unity, it indicates a lower flow
regime with a possibility of formation of ripples, ripples on dunes, and dunes.

Simons and Richardson’s method:

Us0 ¼ 1:2� 5:023 ¼ 6:028 N m�1 s�1

dt ¼ 0:4 mm ðNote: Fall diameter dt is assumed to be equaling d50Þ

From Fig. 8.9 (Us0 versus dt), bedforms are predicted to be dunes.

Liu’s method:
u�
ws

¼ 0:071
0:06

¼ 1:18; R� ¼ 39:05

From Fig. 8.10 (u*/ws versus R*), bedforms are predicted to be ripples.

Chabert and Chauvin’s method:

From Fig. 8.11 (H versus R*), bedforms are predicted to be dunes for H = 0.776
and R* = 39.05.

Athaullah method:

Rb

d
¼ h

d50
¼ 3:2

0:4� 10�3
¼ 8;000 ðNote : it is assumed that Rb ¼ hÞ; Fr ¼ 0:21

From Fig. 8.12 (Fr versus Rb/d), it indicates a lower flow regime. Hence, the
possible bedforms are dunes.
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Southard and Boguchwal method:

From Fig. 8.13 (U versus d), bedforms are predicted to be dunes for
U = 1.2 m s-1 and d50 = 0.4 mm.

van Rijn method:

T� ¼
s0 � s0c

s0c

¼ 5:023� 0:205
0:205

¼ 23:5

From Table 8.2 with 15 \ T* \ 25 and D* [ 10, it indicates washed-out dunes
and sand waves (asymmetrical).

Bonnefille–Pernecker method:

From Fig. 8.14 (D* versus R*), bedforms are predicted to be plane bed for
D* = 10.118 and R* = 39.05.
van der Berg and van Gelder method:

C0R ¼ 18 log
4h

d90

� �
¼ 18 log

4� 3:2
0:9� 10�3

� �
¼ 74:75

H0 ¼ U2

DgdC02R
¼ 1:22

1:65� 9:81� 0:4� 10�3 � 74:752
¼ 0:04

From Fig. 8.15 (H0 versus D*), bedforms are predicted to be ripples.

Karim method:

FT ¼ 2:716
d50

h

� �0:25

¼ 2:716
0:4� 10�3

3:2

� �0:25

¼ 0:287 [ Frð¼ 0:21Þ

FU ¼ 4:785
d50

h

� �0:27

¼ 4:785
0:4� 10�3

3:2

� �0:27

¼ 0:423

The condition Fr \ FT corresponds to the lower flow regime (ripples and dunes).

Julien and Raslan method:

For the given data, D* = 10.118 and R* = 39.05. They correspond to the fol-
lowing conditions:

3 \ D�\ 70 and 11:6 \ R�\70
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Again,

1
D�
� 1
j

ln
h

20d50

� �
¼ 1

10:118
� 1
0:4

ln
3:2

20� 0:4� 10�3

� �
¼ 1:48 [ Hð¼ 0:776Þ

The above conditions correspond to the formation of dunes.

(b) Dimensions of bedforms:
The majority of different methods used for the prediction are in favor of the for-
mation of dunes. Therefore, dimensions of bedforms as dunes are calculated here.

van Rijn formula:

gd ¼ 0:11h
d

h

� �0:3

1� exp �0:5
s00 � s0c

s0c

� �� �
25� s00 � s0c

s0c

� �

¼ 0:11� 3:2
0:4� 10�3

3:2

� �0:3

1� exp �0:5� 5:023� 0:205
0:205

� �� �

� 25� 5:023� 0:205
0:205

� �
¼ 0:036 m

kd ¼ 7:3h ¼ 7:3� 3:2 ¼ 23:36 m( Eq: ð8:10Þ

Julien and Klaassen formula:

�gd � 2:5h0:7d0:3 ¼ 2:5� 3:20:7ð0:4� 10�3Þ0:3 ¼ 0:54 m
�kd ¼ 6:5h ¼ 6:5� 3:2 ¼ 20:8 m( Eq: ð8:11Þ

Dimensions of dunes calculated from some other formulas, as given in Table 8.1,
are furnished in Table 8.5.

Example 8.2 Water flows at a rate of 3 m2 s-1 (discharge per unit width) in a wide
channel. If the streamwise bed slope is 2.5 9 10-4 and the median size of sedi-
ment 0.5 mm with a relative density of 2.65, determine the flow depth by
Engelund’s method. Assume mass density of water is 103 kg m-3.

Solution

Given data are as follows:
Flow discharge per unit width, q = 3 m2 s-1; bed slope, S0 = 2.5 9 10-4; sed-
iment size, d50 = 0.5 mm; relative density, s = 2.65; and mass density of water,
q = 103 kg m-3

Step 1: Assume a value of hydraulic radius due to particle roughness ðR0b � h0Þ.
Let the first trial value of h0 be 1.5 m
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Step 2: Calculate H0:

H0 ¼ h0S0

Dd50
¼ 1:5� 2:5� 10�4

1:65� 0:5� 10�3
¼ 0:455

Step 3: Obtain H from Fig. 8.36 or from Eq. (8.170a). It is H = 0.994
Step 4: Calculate h:

h ¼ HDd50

S0
¼ 0:994� 1:65� 0:5� 10�3

2:5� 10�4
¼ 3:28 m

Step 5: Calculate U from Eq. (8.169) by using ks = 2.5d50 and assuming Sf = S0:

U ¼ ðgh0S0Þ0:5

j
ln 12:2

h0

ks

� �

¼ ð9:81� 1:5� 2:5� 10�4Þ0:5

0:4
ln 12:2

1:5
2:5� 0:5� 10�3

� �
¼ 1:454 m s�1

Step 6: Calculate q:

q ¼ Uh ¼ 1:454� 3:28 ¼ 4:769 m2 s�1

Step 7: Calculated q is not equal to the given value of q (= 3 m2 s-1)
Step 8: Repeat iteration (Step 1 to Step 6) until these two values of q converge.

The final results that match with the given value of q (= 3 m2 s-1) are as follows:

h0 = 1.021 m (final trial value)
H0 = 0.309
H = 0.79
h = 2.607 m
U = 1.152 m s-1 ) q = Uh = 1.152 9 2.607 = 3 m2 s-1.

Table 8.5 Results of dimensions of dunes

References Height gd (m) Length kd (m) Remark

Allen (1968) 0.343 2.01
Gill (1971) 0.445 – Assumed n = 5.5 and a = 0.6
Orgis (1974) 2.867 – Maximum dune height
Yalin (1977) 0.512 20.16
Allen (1978) 0.892 –
Watannabe (1989) 0.491 –
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Example 8.3 A wide river has a streamwise bed slope of 3.5 9 10-4. The flow is
fairly uniform within the measuring reach. The characteristics of bed sediment are
median size d50 = 0.6 mm and relative density s = 2.65. Assume coefficient of
kinematic viscosity of water t = 10-6 m2 s-1 and mass density of water
q = 103 kg m-3. Determine the type and dimensions of bedform, and estimate the
flow discharge per unit width, if the flow depth is 2.5 m.

Solution

Given data are as follows:
Flow depth, h = 2.5 m; bed slope, S0 = 3.5 9 10-4; sediment size, d50 = 0.6
mm; relative density, s = 2.65; kinematic viscosity of water, t = 10-6 m2 s-1;
and mass density of water, q = 103 kg m-3

Applied bed shear stress, s0 = qghS0 = 103 9 9.81 9 2.5 9 3.5 9 10-4 =
8.584 Pa
Shear velocity, u* = (s0/q)0.5 = (8.584/103)0.5 = 0.093 m s-1

Shields parameter, H = s0/(Dqgd50) = 8.584/(1.65 9 103 9 9.81 9 0.6 9 10-3)
= 0.884
Shear Reynolds number, R* = u*ks/t = 0.093(2 9 0.6 9 10-3)/10-6 = 111.6
(Note: ks = 2d50 is assumed)
Particle parameter, D* = d50(Dg/t2)1/3 = 0.6 9 10-3 [1.65 9 9.81/(10-6)2]1/3

= 15.178

From Figs. 8.11 (H versus R*) and 8.14 (D* versus R*), bedforms are predicted to
be dunes.

By using Julien and Klaassen’s formula (Eq. 8.11), the average dimensions of
dunes are as follows:

�gd � 2:5h0:7d0:3 ¼ 2:5� 2:50:7ð0:6� 10�3Þ0:3 ¼ 0:513 m, �kd ¼ 6:5h
¼ 6:5� 2:5 ¼ 16:25 m

Total friction factor is calculated by van Rijn’s method:

kD ¼ k0D þ k00D � 0:32
d50

h

� �1=3

þ �gd

�kd

¼ 0:32
0:6� 10�3

2:5

� �1=3

þ 0:513
16:25

¼ 0:051

The depth-averaged velocity is

U ¼ u�
8
kD

� �0:5

¼ 0:093
8

0:051

� �0:5

¼ 1:16 m s�1

The flow discharge per unit width is

q ¼ Uh ¼ 1:16� 2:5 ¼ 2:9 m2 s�1:
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Chapter 9
Fluvial Processes: Meandering
and Braiding

9.1 General

In general, fluvial processes that belong to the geomorphologic category cover the
complete chronological processes of formation and evolution of a river system
from where it originates to end up in an estuary. However, in a specific sense,
fluvial processes that belong to the category of fluvial hydrodynamics focus on
river morphological changes occurring due to natural processes and/or engineering
activities, such as river regulation and training works. The fluvial processes of
rivers are the result of the interaction of stream flow, sediment, and riverbed. The
riverbed controls the flow and sediment transport, which in turn enhance changes
in the riverbed. Thus, they are interdependent, but complement each other. The
characteristics of rivers are related to the gradient of the terrain from extremely
steep mountainous torrents to steep rivers at the foot-hills and rivers in the plains.
Thus, a river could be regarded as it consisting of upper, middle, and lower reaches
which correspond to erosion, regime, and aggradations states, respectively. In
upper reach, the sediment transport capacity by the stream flow is generally greater
than the prevailing sediment transport rate, leading to an erosion of the streambed.
In middle reach, the sediment transport rate is less than the transport capacity by
the stream due to gradual streambed armoring followed by a long-term bed-sorting
process. This river reach is in a state of quiescent erosion or so-called regime. In
lower reach, aggradations occur due to substantial reduction in transport capacity
with decrease in valley slope.

According to the static and dynamic characteristics, alluvial river patterns are in
general categorized as (1) straight, (2) meandering, and (3) braided rivers (Leopold
and Wolman 1957):

1. Straight rivers have minimal sinuosity1 (\ 1.1) at the bankfull conditions.
Usually, rivers, as simple straight open channels, exist only over short reaches

1 The ratio of the curvilinear length to the linear distance (straight line) between the end points of
the curve is known as sinuosity or sinuosity index. In case of a river, it is the ratio of the actual
river length to the down-valley length. Its minimum value is unity for a perfectly straight river.

S. Dey, Fluvial Hydrodynamics, GeoPlanet: Earth and Planetary Sciences,
DOI: 10.1007/978-3-642-19062-9_9, � Springer-Verlag Berlin Heidelberg 2014
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(Fig. 9.1); while long, straight rivers seldom occur in nature. At low flow
stages, alluvial bars exist on either side of the stream. The thalweg2 may wind
in a sinuous route along the bars, even though the channel is straight. The
thalweg may move with alternate bars as they migrate downstream.

2. Meandering rivers (sinuosity [ 1.5) consist of a series of turns with alternate
curvatures connected at the points of inflection or by short straight crossings, as
shown in Figs. 9.2 and 9.3. They have a relatively low gradient. The natural
meandering rivers are quite unstable due to predominant bank erosion down-
stream of concave banks. Deeper flows are prevalent in the bends and higher
velocities along the outer concave banks. The flow depth at crossings is rela-
tively shallow compared to that at bends. Meandering rivers migrate gradually
and hence sinuosity tends to increase. Eventually, the channel forms almost a
closed loop and the meander gets often cutoff during a flood. Meandering is
therefore the result of streambed instability; in particular, when instability acts
on the banks.
Here, it is pertinent to discuss that the rivers with a sinuosity of less than 1.1 is
described as straight, those between 1.1 and 1.5 are sinuous, and meandering
rivers have a sinuosity of greater than 1.5. Therefore, sinuous rivers are the
transition between straight and meandering rivers. Although these descriptions
are commonly used, they are somewhat arbitrary, since they are not based on
any physical differences. Further, there is a tendency for the thalweg to swing
from side to side along the rivers. This is observed even in straight rivers and is
often associated with the development of riffles, pools, and alternate bars.

3. Braided rivers are wide and shallow and divided to branches by a number of
semistable or unstable bars or islands (Figs. 9.4 and 9.5). More specifically,
braided river can be defined as one that flows in two or more channels around
alluvial bars or islands. They have a braided look at the low flow stages with
exposed bars, but all or some of the bars are submerged during the high flow
stages. However, in most of the occasions, the branching is such that one is the
main stream and the others are subsidiary channels. The main stream is rela-
tively stable, but it can change its route under some flow and sediment transport
conditions, while the subsidiary channels are quite unstable and often change
during floods.

In changing the planform geometry, that is the transition from meandering to
braiding and vice versa, although it is best viewed as gradual, empirical equations
were put forward to set up some potential relations for the threshold of meandering
or braiding (Carson 1984). Leopold and Wolman (1957) gave a relationship to
define the transition from meandering to braiding involving riverbed slope S0 and
bankfull discharge Qbf (m3 s-1)

2 The locus of lowest bed elevation or maximum flow depth within a watercourse is known as
thalweg.
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S0 ¼ 0:012Q�0:44
bf ð9:1Þ

The above equation, which is the simplest one, indicates that the threshold bed
slope above which a river could exhibit a braided form increases with a decrease in
bankfull discharge. In addition, Lane (1957) proposed slightly different criterion
for the thresholds of meandering from a straight river and braiding from a
meandering river by using mean annual discharge Q as

S0 ¼ 7� 10�4Q�0:25 ðmeandering thresholdÞ;
S0 ¼ 0:004Q�0:25 ðbraiding thresholdÞ

ð9:2Þ

Fig. 9.1 Photograph of a straight river. Photograph by the author

Fig. 9.2 Aerial photograph of a meandering river (courtesy of O. Link, Universidad de
Concepción, Chile)
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Fig. 9.3 Photograph of a meandering river. Photograph by the author

Fig. 9.4 Photograph of a braided river downstream of a valley glacier (courtesy of O. Link,
Universidad de Concepción, Chile)
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The above equations are in metric units being applicable for sand-bed streams.
Note that the bed slopes for these two thresholds (meandering and braiding) differ
by a factor of approximately 6.

Equations (9.1) and (9.2) are too general. Henderson (1963) and Ferguson
(1987) identified the importance of participation of sediment size d50 along with
mean annual discharge Q in defining the threshold of braiding from meandering.
Henderson and Ferguson suggested the following equations, respectively:

S0 ¼ 2� 10�4d1:15
50 Q�0:44 and S0 ¼ 4:9� 10�3d0:52

50 Q�0:21 ð9:3Þ

where d50 is in mm and Q is in m3 s-1.
Parker (1976) related planform geometry to a form parameter E as

E ¼ SeB

pFrh
^ Fr ¼ Uffiffiffiffiffiffiffi

ghd

p ð9:4Þ

where Se is the energy slope, Fr is the flow Froude number, h is the flow depth, B is
the average river width, U is the area-averaged flow velocity, g is the acceleration
due to gravity, and hd is the hydraulic depth. In the above equation, the parameters
B, h, U, and hd correspond to the bankfull conditions. The meandering corresponds
to E \ 1 and braiding to E [ 1.

On the other hand, Millar (2000) argued that the bank vegetation affects
planform geometry of a river. He showed that the resistance to bank erosion is to
increase the threshold bed slope for braiding from meandering. He introduced a
bank sediment friction angle /b in degrees in his equation. The /b takes into
account the effects of binding of bank sediment by the roots of bank vegetation,
sediment packing, etc. He suggested

Fig. 9.5 Photograph of a braided river with gravel bars. Photograph by the author
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S0 ¼ 2� 10�4/1:75
b d0:61

50 Q�0:25
bf ð9:5Þ

where d50 is in m and Qbf is in m3 s-1. The value of /b is approximately 40� for
sparsely vegetated gravel banks, but it can be as high as 80� for heavily vegetated
banks because of the grip made by the roots.

Hayashi and Ozaki (1978) proposed the criteria for the prediction of different
planforms in terms of flow Froude number Fr and a nondimensional parameter
~B ¼ ðBS0=hdÞ by using the stability analysis as follows:

Fr� 3:16~B0:5ðstraightÞ
3:16~B0:5�Fr� 2~B0:5ðtransition from straight to meanderingÞ
2~B0:5�Fr� ~B0:5ðcoexistance of meandering and braidingÞ
~B0:5�Fr ðbraidingÞ

9>>>=
>>>;

ð9:6Þ

9.2 Meandering Rivers

In alluvial plains of lower reaches, the rivers normally develop a single-twisting
course, termed meander, as already discussed in preceding section. The degree of
meandering of a river is defined by the sinuosity, which is the ratio of centerline
length to wavelength of meander. Note that the thalweg length is also considered
instead of centerline length by some authors. The sinuosity is a function of valley
slope or stream power. For a meandering river, sinuosity that is always greater than
unity increases with valley slope, but it reverts close to unity when braiding forms.

Figure 9.6 illustrates an idealized planform of a meandering river. In reality,
unlike the idealized illustration, alternating bends of a meandering river are rather
quasi-regular. The down-valley axis x in a rectilinear coordinate system represents
the centerline of the meandering planform downstream of the valley slope, while
the sinuous axis n in a curvilinear coordinate system defines the centerline of the
meandering path. Points of inflection for changing the curvatures (also called
crossovers) are denoted by I-1, I0, I1, and I2. The deflection angle h is the angle
that creates the meandering path at any location n with the down-valley axis. It
changes continuously along the sinuous axis n. Note that h(n = 0) = h0 is the
maximum value of h. It is pertinent to mention that the radius of curvature of
meandering path denoted by rc is not constant for a given meandering bend, so a
single value of rc is somewhat subjective to define for the meandering bend. For
instance, the rc is minimum at the apex of the bend and maximum at the crossings.
Besides, the meandering wavelength is denoted by km, the meandering arc length
(that is the length along the meandering path between two repeating points of
inflection) by L, the meandering belt width by Bm, the meandering amplitude (or
meander width) by am, and the average flow width by B.
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The idea of the sine-generated curve was used by von Schelling (1951) to
outline the most probable path between fixed points. For a given number of steps,
he considered the Gaussian distribution for the changing over the direction at the
terminus of each step. He showed that a criterion for the most probable path of a
continuous curve is obtained if the variance or overall curvature becomes a
minimum. Following the minimum variance concept, Langbein and Leopold
(1966) argued that a meandering river to achieve the minimum variance is more
stable than a straight river and gave the equation of a regular meandering path as

h ¼ h0 cos
2px

L
ð9:7Þ

The above equation thus produces a sine-generated curve that can fit well the
meandering path of a river, provided appropriate values of h0 and L are chosen.

In a meandering bend, the centrifugal acceleration influences the flow, which is
characterized by a helical motion with a super-elevated free surface. Flow near the
free surface is deflected toward the outer bank and near the bed is inclined toward
the inner bank. This phenomenon is already discussed in Sect. 2.7. As a stream
actively curves to flow, obvious erosion takes place at the outer bank (looking
convex from the ground alongside the stream) of the bend. The sediment eroded
from the outer bank is transported inward and deposited on the inner edge of the
next bend downstream, where the flow velocity is slower, building up an inner
point bar (Figs. 9.7 and 9.8). Remembering that the zone of high velocity in a
meandering bend shifts from inner (at the inflection zone) to outer side (at the apex
zone) with the distance, the zone of maximum bed shear stress shifts similar way.
This effect actively shifts the river very slowly toward the eroded banks. The
cross-section at the meandering bend apex is normally asymmetrical having deep
portion of the stream located along the outer bank and a broad, shallow portion
extending from the inner bank toward the center of the stream (Fig. 9.7). The
thalweg wanders from deep pool at the outer side of a bend over a shallow
crossover to next deep pool at the outer side of the next bend, and so on (Fig. 9.7).
As most of the natural river sediments are nonuniform, the asymmetry in
cross-section in meandering bends is associated with a spanwise sediment sorting
feature. By the influence of the helicoidal flow, finer particles tend to move inward.

rc
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θ
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I2

Valley slope
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0

Fig. 9.6 Definition sketch of an idealized planform of a meandering river
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In this way, the coarser particles tend to accumulate near the outer banks with a
gradual fining toward the inner banks. Dietrich and Smith (1984) argued that the
maximum flow depth is inversely proportional to the ratio of radius of curvature of
the bend to stream width, that is, hmax * (rc/B)-1. Note that the river that has a
tendency to braiding does not have an exclusively localized erosion and deposition
at the bends only. Evidently, the braiding occurs only when the stream power
exceeds a higher threshold. Thus, the sequence of straight, meandering, and
braided rivers corresponds to an increase in valley slope or stream power
magnitude.

The meander loops are, in general, inherently asymmetrical due to local dif-
ferences in bank erodibility producing irregularities in bend forms, although
Langbein and Leopold (1966) tried to define them by a so-called sine-generated
curve [see Eq. (9.7)]. In reality, the nature of this asymmetry in meander loops is
not random, but they are well defined and somewhat consistent. Such an asym-
metry to exist in meander loops does not appear to be the result of probability, but
seems to reflect certain inherent flow features through bends. The most important
feature in the asymmetrical meander loops is the location of the inflection points
that alter on opposite sides of the valley axis, producing a delayed inflection from
one meandering turn to the next one downstream (Carson and Lapointe 1983;
Parker et al. 1983). Consequently, the most meandering bends are facing down-
valley. Thus, from a geometric viewpoint, restraint of the meander amplitude
could be at the expense of that part of the traverse downstream of the inflection
point. In this process, it produces an aborted form that is dominantly convex

A1

A2

C1

C2

Thalweg

Centerline

Valley slope

Zone of erosion

Zone of deposition or point bar

A1 A2

C1 C2

Fig. 9.7 Sketch showing zones of erosion and deposition in a meandering river
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Fig. 9.8 Photograph of a meandering river showing the erosion at outer banks and the formation
of point bar in the inner bank (courtesy of L. Solari, University of Florence, Italy)

Fig. 9.9 Photograph of the meandering loops of a river showing the potentiality of cutoff by the
broken line (courtesy of Z. Wang, Tsinghua University, China)
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down-valley. Delayed inflection is attributed to a delayed thalweg crossover
leading to spatial variations of bank erosion rates being in turn translated into a
delayed inflection in the meander loops. Note that the delayed inflection appears to
be prevalent for the meandering rivers that carry considerable suspended load
(Carson and Griffiths 1987).

Meander cutoff is a fundamental process in the evolution of meandering rivers.
As the planform of a meandering river progressively migrates in the downstream
direction and expands in the transverse direction, the meander loops shift at a
differential rate due to nonuniform erosion rates at the banks. The resulting shape
in a developed state appears to form a bulb with inflection zones of a loop to come
closer forming a neck (two closest portions of river). Eventually, the banks at the
neck breach by a chute channel, called cutoff, that connects the neck of the loop
(Gagliano and Howard 1984; Hooke 1995). Figure 9.9 displays the potentiality of
cutoff at the necks of meandering loops of a river. Besides bank-breaching, cutoff
may also occur when floods incise a floodplain channel or chute that evolves into
the dominant conveyor of river flow (Hooke 1995; Gay et al. 1998). The cutoff
causes the flow to abandon the meander and to continue straight downslope. After
formation of a cutoff, a new meandering bend may slowly grow again. Cutoffs are
a natural part of the evolution of a meandering river. The abandoned meander
forms an oxbow lake that may persist over a long time period before getting it
filled. The oxbow lake formation process through a meandering neck cutoff is
schematically illustrated in Fig. 9.10.

Ripley (1927) studied the meandering rivers and gave the criterion for a
meander loop to have a tendency to form a cutoff as rc \ 40A0.5, where A is the
flow cross-sectional area. However, he also suggested the criterion for a stable
meandering bend as 40A0.5 \ rc \ 110A0.5.

The aforementioned description is related to sand-bed meandering rivers, which
are regarded as low-energy rivers. Carson and Griffiths (1987) reported that the
characteristics of gravel-bed meandering rivers, regarded as high-energy rivers, are
considerably different from sand-bed rivers in terms of meandering outline. The
gravel-bed rivers exhibit a premature inflection instead of a delayed inflection that
is observed for a low-energy river. Premature inflection in high-energy rivers
results in up-valley migration of meandering course and is associated with over-
widening of meandering bends (Carson 1986). In low flow stages, high-energy
meandering rivers sometimes have a tendency to cut across the point bars. This
along with over-widening of meandering bends in low flow stages may initiate to
develop the braiding. Carson and Griffiths (1987) designated this type of rivers’
configuration, which is in fact a transition between meandering and braiding, as
pseudo-meandering streams.
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9.2.1 Meander Planform Characteristics

Field and laboratory observations on the dimensions of meandering geometry have
been used to develop empirical relationships between certain planform charac-
teristics that are somewhat consistent for a wide range of river sizes. Various
investigators, importantly Inglis (1947), Leopold and Wolman (1957), and Zeller
(1967), recognized that the meandering wavelength km is directly proportional to
flow width B. The relationship that was obtained by Garde and Ranga Raju (2000)
from the data plots is

km � 6B ð9:8Þ

Further, Leopold and Wolman (1960) proposed the following relationships
between different planform characteristics of meandering rivers:

km ¼ 4:6r0:98
c ; L ¼ 11B1:01; am ¼ 6B1:1 ð9:9Þ

The units of the quantities in Eq. (9.9) are in m.
On the other hand, Chang (1988) suggested rc & 3B.

9.2.2 Concepts of Meandering

Attempts have been made to identify the cause of meandering and to understand
the background mechanism of its development. Some of the important concepts
are discussed below:

Cutoff

1 2

3 4 

Oxbow
lake

Fig. 9.10 Oxbow lake formation process following a meandering loop cutoff shown in the
sequence of 1–4 line diagrams
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Earth’s Revolution Concept: The Coriolis effect3 is caused by the revolution of
the earth, and the inertia of the mass of an object is to experience the effect. On the
earth, an object that moves along a north–south path, or longitudinal line,
undergoes apparent deflection to the right in the northern hemisphere and to the
left in the southern hemisphere. Rather than rivers flowing directly as they would
be in a nonrevolving system, the flow tends to the right in north of the equator and
to the left in south of it. In the nineteenth century, naturalist Karl Ernst von Baer
observed that the rivers in the northern hemisphere do most of their erosion on the
side to the right of the direction of flow; and on the left in the southern hemisphere.
The reason is attributed to the Coriolis effect. Albert Einstein (1926) simply
observed that as the stream flow curves on the earth surface, the Coriolis effect
induces rotational motion to the flow. The flow moves helicoidally downstream, as
if a corkscrew moves. Einstein’s discussion on the cause of meander was rather
casual, but characteristically insightful, as his attribution of secondary currents to
the Coriolis force might have been among the earliest. Besides, Gilbert (1884),
Eakin (1910), and Lacey (1923) before Einstein’s observation and Chatley (1938),
Quraishy (1943), and Neu (1967) after Einstein’s observation argued that the
earth’s revolution could be the cause of river meandering.

Instability Concept: Any irregularities or perturbations in the upstream flow
cause a modification in the flow structure in the downstream direction leading to
meandering. In fact, irregularities introduce instability to the flow and the bed to
form meanders. The initial irregularities could be due to any obstacle or sediment
deposition on the bed (Griggs 1906; Werner 1951), random velocity fluctuations due
to turbulence (Hjulström 1957), oblique entry of flow in a channel (Friedkin 1945),
or some other reasons. Agarwal (1983) observed alternate bars in an experimental
flume by introducing a two-dimensional periodic disturbance on the bed.

Helicoidal Flow Concept: A group of investigators believed that the helicoidal
flow due to secondary current of Prandtl’s first kind (see Sect. 3.10) is potentially
responsible for the occurrence of meandering. Since secondary current is present
in all the stream flows, the asymmetry in secondary circulation due to asymmet-
rical cross-section and/or bed resistance of natural rivers is the cause to initiate
meandering (Prus-Chacinski 1954; Leliavsky 1966; Onishi et al. 1976; Shen
1983). Once the meandering is initiated, secondary current of Prandtl’s first kind is
the governing mechanism.

Excess Flow Energy Concept: This concept is based on the energy content in
the stream flow on which the meandering process is related. Flow in a meandering
river is to reduce the excess energy (and in turn, to reduce the excess slope) of the
flow by increasing its traveling length (Schoklitsch 1937; Inglis 1947). According
to Bagnold, the energy loss in a bend is least if the ratio of bend radius to river
width lies between 2 and 3. Based on Bagnold’s concept of minimum bend loss,

3 The Coriolis effect is an apparent deflection of the path of an object in motion due to an
induced transverse force normal to its path, when it is set in a rotating reference frame. In a
reference frame with clockwise rotation, the deflection is to the left of the motion of the object,
while with counter-clockwise rotation, the deflection is to the right.
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Leopold and Wolman (1960) and Ramette (1980) argued that the minimization of
energy is associated with the formation of meandering in rivers. However, Yang
(1971) expressed dissatisfaction about the legitimacy of the hypothesis that a river
meanders in order to dissipate excess flow energy. Thus, he introduced a concept
of minimum time rate of energy expenditure. According to his concept, during the
evolution of a meandering river toward its equilibrium state, a river finds its course
of flow in such a way so that the minimum time rate of potential energy expen-
diture per unit mass of water prevails along its course.

Large-Scale Eddy Concept: Yalin and da Silva (2001) argued that the mean-
dering is caused by the large-scale eddies. They identified that the horizontal
length scale (streamwise spacing) kx of large eddies in a straight rectangular open
channel approximately equals the horizontal length Kb of alternate bars
(Figs. 9.11a, b); and both the length scales are six times of the flow width B. The
formation of alternate bars at a relatively regular interval is analogous to the
formation of dunes caused by the large-scale eddies that also appear at a relatively
regular interval resulting in decrease and increase in bed shear stress (see Fig. 8.4).
Thus, taking into account the relationship given by Eq. (9.8), one can relate

kx ¼ Kb ¼ km � 6B ð9:10Þ

Equation (9.10) therefore suggests that both alternate bars and meanders initiate
because of the same mechanism, that is, the large-scale eddies or large-scale
turbulent structure. Alternate bars are caused by the action of large-scale turbu-
lence structure collapse on the erodible bed, and the threshold of meandering is
caused by the action of turbulence structure collapse on the erodible banks
(Fig. 9.11b).

λx

B

Λb

Erosion Erosion Erosion

Erosion ErosionDeposition Deposition Deposition

Deposition Deposition

B

y

z 
x 

(a)

(b)

Fig. 9.11 Conceptual illustration of large-scale eddy concept after Yalin and da Silva (2001):
a top view of large eddies appearing at a relatively regular interval and b top view of alternate
bars appearing at a relatively regular interval
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9.3 Mathematical Modeling of Meandering Rivers

In this section, the flow and bed topography models developed by Ikeda and
Nishimura (1986) and Odgaard (1989) are presented in details.

9.3.1 Ikeda and Nishimura’s Model

9.3.1.1 Flow Field

Ikeda and Nishimura (1986) considered orthogonal curvilinear coordinates (s, n) to
represent depth-averaged velocity components (U, V) (Fig. 9.12a). The U and
V are decomposed as

U ¼ �U þ U0; V ¼ V 0 ð9:11Þ

where �U is the reach-averaged velocity in s-direction, and U0 and V0 are the
perturbed velocity components.

Referring to Fig. 9.12b, the average flow depth H is decomposed as

z

A A2

h

B

n

H

r
c

B

A
1

A2

Zone of erosion 

Zone of deposition or point bar

s
U

V a
mc

m

L

x 

λ

η

n

(a)

(b)

1

�

Fig. 9.12 Definition sketch: a meandering river with coordinate system and b cross-section of
river at A1–A2
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H ¼ hþ fþ g ð9:12Þ

where h is the reach-averaged flow depth, f is the super-elevation of the free
surface due to curvilinear flow induced by centrifugal inertia, and g is the change
of bed elevation with respect to mean bed level due to erosion or deposition.

According to Kikkawa et al. (1976), the g is

g
h
¼ r

rc

� �#
�1 ^ # ¼ 3

4
� lCD

1þ gRl

� �0:5ns

j
� �u�

ðDgd50Þ0:5
4:167

k0:5
f

� 6:6

 !
ð9:13Þ

where r = rc + n, # is an exponent defining erosion factor, l is the coefficient of
dynamic viscosity, CD and CL are the drag and lift coefficients, respectively, ns is
the sheltering coefficient, gR is CL/CD, j is the von Kármán constant, �u� is the
shear velocity at the centerline [= (ghS0)0.5], D is the submerged relative density,
kf is the friction parameter ð¼ ghS0=�U2 ¼ gh3S0=q2Þ, and q is the discharge per
unit width.

Using Eq. (9.13) and approximation of rc by a sine-generated curve
½r�1

c ¼ r�1
c0 cos kwbsð Þ�, perturbed streamwise velocity U0 can be obtained as follows

(Ikeda et al. 1981):

U0

�U
¼ n

rc0

½a sinðkwbsÞ þ b cosðkwbsÞ� ð9:14Þ

where rc0 is the minimum radius of curvature at the bend apex, kwb is the wave
number of centerline of meandering, and a and b are as follows:

a ¼ kfkwbhð#þ Fr2 þ 2Þ
4k2

f þ ðkwbhÞ2
; b ¼ 2ð#þ Fr2Þk2

f � ðkwbhÞ2

4k2
f þ ðkwbhÞ2

^ Fr ¼
�U

ðghÞ0:5

ð9:15Þ

The wave number in meandering rivers, according to Ikeda et al. (1981), is
expressed as kwb = 1.5kf/h.

The perturbed transverse velocity V0 is given by

V 0

�U
¼ kwbrc0

2
� rc

r
� h

H
½a cosðkwbsÞ � ðbþ #þ Fr2Þ sinðkwbsÞ� B

2rc0

� �2

� n

rc0

� �2
" #

ð9:16Þ
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Assuming that the velocity defect law is preserved in streamwise velocity
distributions in meandering rivers, the time-averaged streamwise velocity �u zð Þ at
any elevation z was obtained by Ikeda and Nishimura. It is

�u

�u�
¼ u

U
�U

�U

�u�
þ 1

j
ð1þ ln ĝÞ

� �
¼ u

U
�U

1

k0:5
f

þ 1
j

GðĝÞ
" #

^ ĝ ¼ 1þ z

H
ð9:17Þ

where u is a function of ĝ being unity in main flow zone and zero at the banks,
GðĝÞ ¼ 1þ ln ĝ, and z is the vertical distance (Fig. 9.12b).

Then, centrifugally induced time-averaged transverse velocity component
v00(z) of the secondary current is given by

v00

�U
¼ u2 U

�U

� �2 H

jr
vu0

rc

rc0

cosðkwbs� rLÞ ð9:18Þ

where v is the factor for secondary current, u0 ¼ u1ðĝÞ � k0:5
f j�1u2ðĝÞ, u1ðĝÞ ¼

�15ðĝ2ln ĝ� 0:5ĝ2 þ 0:278Þ, u2ðĝÞ ¼ 7:5ðĝ2ln2 ĝ� ĝ2ln ĝþ 0:5 ĝ2� 0:352Þ, and
rL is the phase lag of the secondary current relative to meandering planform.

The vorticity equation for secondary current in a sinuous river is expressed as

�u
oXs

os
� 2

r
�u
o�u

oz
¼ et

o2Xs

oz2
^ Xs �

ov00

oz
ð9:19Þ

where Xs is the vorticity of secondary current, which is approximated as above due
to negligible time-averaged vertical velocity component, and et is the turbulent
diffusivity. At the centerline (r = rc) of the meandering rivers, u = 1, U ¼ �U, and
H = h. Using r�1

c ¼ r�1
c0 cos kwbsð Þ, Eq. (9.19) at the centerline becomes

�U
oXs

os
� 2 cosðkwbsÞ

rc0

�U
o�U

oz
¼ et

o2Xs

oz2
ð9:20Þ

Substituting Eqs. (9.17) and (9.18) into Eq. (9.20) and then equating the
coefficients of sin(kwbs) and cos(kwbs) to obtain two equations, the v and rL are
solved as

v ¼ 2
dG

dĝ
kwbh

�U

�u�
� du0

dĝ
sin rL �

et

�u�h
� d

3u0

dĝ3
cos rL

� ��1

ð9:21aÞ

rL ¼ arctan kwbh
du0

dĝ
et

�u�h
� �u��U �

d3u0

dĝ3

� ��1
" #

ð9:21bÞ

Ikeda et al. (1985) proposed et=ð�u�hÞ ¼ 0:1 for the flow in sinuous rivers. Then,
v and rL take the forms
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v ¼ kwbh
1:11

k0:5
f

� 1:42

 !
sin rL þ cos rL

" #�1

ð9:22aÞ

rL ¼ arctan kwbh
1:11

k0:5
f

� 1:42

 !" #
ð9:22bÞ

Note that kwbh = 1.5kf, as already stated.
The estimation of �u zð Þ is possible from Eq. (9.17) using Eqs. (9.11), (9.14) and

(9.15); and the time-averaged transverse velocity component �v zð Þ can be calcu-
lated from the decomposition relationship �v ¼ V 0 þ v00, where V0 is given by
Eq. (9.16) and v00 can be obtained from Eq. (9.18) using Eqs. (9.22a, b).

9.3.1.2 Bed Deformation

In equilibrium state, the continuity equation of sediment transport resulting in a
change of bed level is given and then its integral form is obtained as

rc

r
� oqts

os
þ 1

r
� oðrqtnÞ

on
¼ 0 ^ qts ¼ qbs þ qss _ qtn ¼ qbn þ qsn

) qtn ¼ �
rc

r

Z
oqts

os
dn

ð9:23Þ

where qts and qtn are the volumetric total-load transport rate in s- and r-direction,
respectively, qbs and qbn are the volumetric bed-load transport rate in s- and r-
direction, respectively, and qss and qsn are the volumetric suspended-load transport
rate in s- and r-direction, respectively.

Ikeda and Nishimura used Parker’s (1979) formula, (Eq. 5.24), to estimate qbs.
Equation (5.24) is rearranged as

qbs ¼ 11:2ðDgd3
50Þ

0:5 ðH� 0:03Þ4:5

H3 ð9:24Þ

where H is the Shields parameter, which is u2
�=ðDgd50Þ for a horizontal bed of a

straight river. Here, u* is the local shear velocity. Due to helicoidally curvilinear
flow in meandering rivers, H is corrected as

H ¼ u2 U
�U

� �2 �u2
�

Dgd50
ð9:25Þ
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Parker (1984) gave

qbn

qbs
¼ tan bþ 1þ gRl

nsl
Hc

H

� �0:5

tan a ^ a ¼ arctan
og
on

where b is the angle made by the near-bed limiting streamline with s-direction, that
is, arctan ð�vd=�udÞ, �vd is the near-bed time-averaged transverse velocity, �ud is the
near-bed time-averaged streamwise velocity, Hc is the threshold Shields parameter,
and a is the angle made by the transverse bed slope with horizontal. For sand-beds,
Kikkawa et al. (1976) approximated l, gR, and ns as 0.43, 0.85 and 0.59, respec-
tively; and the above equation becomes

qbn

qbs
¼ tan bþ 5:38

Hc

H

� �0:5
og
on

ð9:26Þ

Ikeda and Nishimura obtained �ud from the logarithmic law of velocity distri-
bution for hydraulically rough flow applied to the roughness height level ks as

�ud ¼ u� 8:5þ 1
j

ln
zþ H

ks

����
z¼�Hþks

 !
¼ 8:5u� ^ u� ¼ u

U
�U

�u�

) �ud ¼ 8:5u
U
�U

�u�

ð9:27Þ

They obtained �vd from the relationship �v ¼ V 0 þ v00, where v00ðĝ ¼ 0Þ at the bed
is obtained from Eq. (9.18). Then, tanb is given by

tan b ¼ V 0

�U
þ u2 U

�U

� �2 H

jr
vu0ð0Þ

rc

rc0

cosðkwbs� rLÞ
" #

8:5u
U
�U

� �
k0:5

f

� ��1

ð9:28Þ

where u0ð0Þ ¼ �4:167þ 2:64 k0:5
f j�1.

The suspended-load transport rate qss in s-direction and time-averaged con-
centration distribution C(z) are given by

qss ¼
Z0

�H

C�udz ð9:29aÞ

C ¼ Ca exp �ws

es

ðzþ HÞ
� �

ð9:29bÞ

where Ca is the near-bed concentration, ws is the terminal fall velocity of sediment,
and es is the sediment diffusivity. Above equations are the modified forms of Eqs.
(6.1a) and (6.20) due to change of position of the origin of z-axis. The sediment
diffusivity es can be assumed as follows (Vanoni 1975):
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es ¼ 0:077u�H ð9:30Þ

Further, Ikeda and Nishimura (1985) gave Ca in empirical form as

Caðu� 	 88:3wsÞ ¼ 2:31� 10�4 u�
ws

� �1:6

; Caðu�[ 88:3wsÞ ¼ 0:3 ð9:31Þ

Inserting Eqs. (9.17) and (9.29b) into Eq. (9.29a) yields

qss

�UH
¼ u

U
�U

Uss ð9:32Þ

where
Uss ¼Caf½w1�w2expð-�1Þ�-þ ½w3�w4expð-�1Þ�-2

þ ½w5�w6expð�-�1Þ�-3 þ w7½1�expð�-�1Þ�-4g,
- ¼ es= wsHð Þ ¼ 0:077u�=ws ¼ 0:077uU�u�=ð�UwsÞ, w1 ¼ 1� 5:798k0:5

f ,

w2 ¼ 1þ 2:678k0:5
f , w3 ¼ 26:6k0:5

f , w4 ¼ 6:95k0:5
f , w5 ¼ �69:45k0:5

f ,

w6 ¼ 30:15k0:5
f , and w7 ¼ 99:6k0:5

f :
The suspended-load transport rate qsn in n-direction is given by

qsn ¼
Z0

�H

C�vdz ð9:33Þ

Inserting expressions for �v ð¼ V 0 þ v00Þ and Eq. (9.29b) into Eq. (9.33) yields

qsn

�UH
¼ V 0

�U
Usn1 � u2 U

�U

� �2 H

jr
v

rc

rc0

cosðkwbs� rLÞUsn2 ð9:34Þ

where Usn1 = Ca[1 - exp(--�1)]-, Usn2 = Ca{[n1exp(--�1) - n2]- +

[n3exp(--�1) - n4]-2 + [n5exp(--�1) - n6]-3 � 72.34[exp(--�1) - 1]-4},
n1 ¼ 3:26� 2:58k0:5

f , n2 ¼ �4:29þ 7:005k0:5
f , n3 ¼ �1:57þ 3:69k0:5

f , n4 ¼ 4:61

�22:86k0:5
f , n5 ¼ �42:36þ 26:55k0:5

f , and n6 ¼ 15þ 13:28k0:5
f :

Equation of bed-level variation can be obtained by substituting Eq. (9.26) into
Eq. (9.23) as

og
on
¼ �0:186

H
Hc

� �0:5 1
qbs

rc

r

Z
o

os
ðqbs þ qssÞdnþ qsn þ qbs tan b

� �
ð9:35Þ

The bed- and suspended-load transport rates, qbs, qbn, qss, and qsn, are obtained
from Eqs. (9.24), (9.26), (9.32) and (9.34), respectively. The partial derivative
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qqbs/qs can be obtained from Eq. (9.24) by using Eqs. (9.11), (9.14) and (9.25).
Further, qqss/qs can be obtained from Eq. (9.32) in terms of H and u*. Using the
relationship given by Ikeda et al. (1981), that is, f = Fr2hn/rc, and Eq. (9.13), H is
expressed as

H ¼ h Fr2 n

rc

þ r

rc

� �#" #
ð9:36Þ

Thus, the term q(qbs + qss)/qs in Eq. (9.35) can take the form

1
�Uh
� 1
kwb

� o

os
ðqbs þ qssÞ

¼ u
n

rc0
Wbs þ Fr2 n

rc

þ r
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� �#" #
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� n
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� �#�1
" #

Uss sinðkwbsÞ

ð9:37Þ

where

Wbs ¼ 33:6
ðDgd3

50Þ
0:5

�Uh
u

U
�U
� �u2

�
Dgd50

� ðHþ 0:06ÞðH� 0:03Þ3:5

H4 ;

Wss = Ca{-c1exp(--�1) + [c2 - c3exp(–-�1)]- + [c4 - c5exp(--�1)]-2 +

[c6 - c7exp(--�1)]-3 + c8[1 - exp(–-�1)]-4}, c1 ¼ 26:6k0:5
f , c2 ¼ 2:6�

15:07k0:5
f , c3 ¼ 2:6þ 13:91k0:5

f , c4 ¼ 95:76k0:5
f , c5 ¼ 55:17k0:5

f , c6 ¼ �319:5k0:5
f ,

c7 ¼ 238:3k0:5
f , and c8 ¼ 557:8k0:5

f . Then, the integration in Eq. (9.35) can be per-
formed with the determination of integral constant from the condition that the
average variation of bed level across the cross-section is zero, that is
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Z0:5B

�0:5B

gdn ¼ 0

9.3.2 Odgaard’s Model

9.3.2.1 Flow Field and Bed Topography

Odgaard (1989) considered orthogonal curvilinear coordinates (s, n, z) to represent
time-averaged velocity components �u, �v, �wð Þ and bed variations, as shown in
Fig. 9.13. The plan view of a sinusoidal river is same as shown in Fig. 9.12a. In
meandering rivers, the prevailing conditions are the flow depth to be smaller than
the flow width (H 
 B) and the radius of curvature to be generally larger than the
width (rc [ B). Under these conditions, all the terms containing �w can be dropped
out in momentum and continuity equations as �w! 0. This approximation makes
the problem a two-dimensional. According to Rozovskii (1957), the two-dimen-
sional momentum equations of flow can be written as

�u
o�u

os
þ �v

o�u

on
þ �u�v

r
¼ 1

q
� o�p

os
þ oss

oz

� �
ð9:38aÞ

�u
o�v

os
þ �v

o�v

on
� �u2

r
¼ 1

q
� o�p

on
þ osn

oz

� �
ð9:38bÞ

where r is the local radius of curvature, �p is the time-averaged hydrostatic pressure,
and ss and sn are the shear stresses in s- and n-direction, respectively. The con-
tinuity equations of flow and sediment transport are

o�u

os
þ 1

r
� oð�vrÞ

on
¼ 0 ð9:39aÞ

oqbs

os
þ 1

r
� oðqbnrÞ

on
¼ 0 ð9:39bÞ

where qbs and qbn are the bed-load transport in s- and n-direction, respectively.
The integration (with respect to depth) of the pressure containing terms in Eqs.

(9.38a, b) can be expressed in terms of the free-surface slopes (Ss and Sn) as -gSs

in s-direction and -gSn in n-direction. Here, g is the acceleration due to gravity.
Thus, the depth-averaged momentum and continuity equations become
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U
oU

os
þ V

oU

on
þ UV

r
¼ gSs �

s0s

qH
ð9:40aÞ

U
oV

os
þ V

oV

on
� U2

r
¼ gSn �

s0n

qH
ð9:40bÞ

and

oðUHÞ
os

þ 1
r
� oðVHrÞ

on
¼ 0 ð9:41Þ

where U and V are the depth-averaged velocities in s- and n-direction, respec-
tively, and s0s and s0n are the bed shear stresses in s- and n-direction, respectively.
In the above, the approximate relationships are used as �u�v � UV and �u�u � U2,
which are based on the field and laboratory experimental data (Dietrich and Smith
1983; Bergs 1989).

The �u distribution is represented by a power law as

�u

U
¼ 1þ m

m

z

H

� 	1=m
^ m ¼ j

U

u�
¼ j

8
kD

� �0:5

¼ j
CR

g0:5
_ u� ¼

s0s

q

� �0:5

ð9:42Þ

where m is an exponent indicating resistance to flow, kD is the Darcy–Weisbach
friction factor, and CR is the Chézy coefficient. Above relationship for m was given
by Zimmermann and Kennedy (1978). In bankfull conditions, the m is 3 B m B 5.

On the other hand, the �v distribution is represented as an addition of V and
centrifugally induced transverse velocity component v00(z) of the secondary cur-
rent, which is approximated by a linear law as 2v000 z=Hð Þ�0:5½ �, where v000 ¼
v00ðz ¼ hþ fÞ (Rozovskii 1957; Kikkawa et al. 1976). Thus,

�v ¼ V þ v00 ¼ V þ 2v000
z

H
� 1

2

� �
ð9:43Þ

Subtracting Eq. (9.40b) from Eq. (9.38b) at z = h + f yields

�u0
o�v0

os
� U

oV

os
þ �v0

o�v0

on
� V

oV

on
¼ �u2

0 � U2

r
þ s0n

qH
þ 1

q
� osn

oz

����
z¼hþf

ð9:44Þ

where �u0 ¼ �uðz ¼ hþ fÞ and �v0 ¼ �vðz ¼ hþ fÞ. The partial derivative in the last
term of the right-hand side of Eq. (9.44) can be determined as

osn

oz
¼ o

oz
et

o�v

oz

� �
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Then, by solving et from the power law and ss = s0s[1 - (z/H)] and assuming
an isotropic et with �v given by Eq. (9.43), the above partial derivative at free
surface is obtained as

osn

oz

����
z¼hþf

¼ � m

1þ m
� 2qjv000u�

H
ð9:45Þ

The ratio of s0n to s0s is obtained from the deflection of the near-bed limiting
streamline from s-axis, that is, tanb ¼ �vd=�ud. Then,

s0n

s0s
¼ �vd

�ud

¼ V � v000
U

ð9:46Þ

Note that the expression for m in Eq. (9.42) leads to

s0s ¼ qj2 1
m2

U2 ð9:47Þ

Substituting Eqs. (9.42), (9.43) and (9.47) into Eq. (9.40a) yields

1
2
� oU2

os
þ j2

m2H
U2 ¼ gSs � V

oU

on
þ U

r

� �
ð9:48Þ

Substituting Eqs. (9.42), (9.43), (9.45) and (9.46) into Eq. (9.44) yields

oV
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þ m

U
� oðv

00
0VÞ
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þ m

2U
� oðv

00
0v000Þ
on

¼ 1þ 2m

m
� U

r
þ j2

mH
V � j2

mH
1þ 2m2

1þ m

� �
v000

ð9:49Þ

Thus, the above mathematical analysis produces Eqs. (9.39a, b), (9.48) and
(9.49) as governing equations for solving V, H, U, and v000, respectively.

From field and laboratory results, Odgaard argued that the variables �u and H are
essentially constant along the centerline, but vary somewhat linearly in transverse
direction. Hence, they are linearized with respect to their centerline values:

U

Uc

¼ 1þ n

h
~Ucn ^ ~Ucn ¼ h

o

on

U

Uc

� �� �
c

ð9:50aÞ

H

h
¼ 1þ n

h
Scn ^ Scn ¼

oH

on

����
c

ð9:50bÞ

where Uc and h are the depth-averaged velocity and flow depth at the centerline,
respectively, ~Ucn is the nondimensional transverse velocity gradient at the cen-
terline, and Scn is the transverse gradient of the bed at the centerline. In the above,
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subscript ‘‘c’’ refers to the centerline value. From Eq. (9.41), Vc is obtained as an
integral equation and then solved using Eqs. (9.50a, b) and r = rc + n. Thus,

Vc ¼
1

hrc

� d
ds

Z0:5B

0

rUHdn) Vc ¼
an

8
Uc

B2

h
� d
ds
ðScn þ ~UcnÞ ð9:51Þ

where an is the transverse flux correction factor having an average value of 0.4.
Odgaard assumed qbs = [qbs]c(U/Uc)

M, where [qbs]c is the bed-load transport
rate in s-direction at the centerline and M is an exponent varying from 2 to 4
(Simons and Sentürk 1977). Then, integration of Eq. (9.39b) yields

½qbn�c ¼
1
rc

� d
ds

Z0:5B

0

qbsrdn) ½qbn�c ¼ ½qbs�c
bn

8
� B

2

h
M

d ~Ucn

ds
ð9:52Þ

where [qbn]c is the bed-load transport rate in n-direction at the centerline and bn is
the transverse sediment flux correction factor have an order of magnitude same as
that of an.

Using Eqs. (9.26), (9.46) and (9.47), Eq. (9.52) yields

5:38
j

mðDgd50Þ0:5H0:5Scn ¼
an

8
� B

2

h
UcM

d ~Ucn

ds
þ ½v000 �c � Vc ð9:53Þ

Substituting Eqs. (9.50a, b), (9.51) and (9.53) into Eqs. (9.48) and (9.49) and
neglecting higher order terms, the resulting linear equations are

d ~Ucn

dŝ
þ a1 ~Ucn ¼

1
2

a1Scn ^ ŝ ¼ s

B
ð9:54aÞ

d2Scn

dŝ2
þ a2

d2 ~Ucn

dŝ2
þ a3

dScn

dŝ
þ a4

d ~Ucn

dŝ
þ a5Scn ¼ a6 ð9:54bÞ

where

a1 ¼
2j2

m2
� B

h
, a2 ¼ 1� 1þ m

2þ m
M, a3 ¼ 43

H0:5

anjFd

� mð1þ mÞ
2þ m

� h
B

þ 2j2m

ð1þ mÞð2þ mÞ �
B

h
, a4 ¼

2j2m

ð1þ mÞð2þ mÞ 1�M 1þ 1
2m
þ 1

2m2

� �� �
B

h
,

a5 ¼ 43
jH0:5

anð2þ mÞFd

1þ 2m2

1þ m

� �
, a6 ¼

8
an
� 1þ 2m

mð2þ mÞ �
h

rc

where Fd is the densimetric Froude number [= Uc/(Dgd50)0.5]. Further, using
Eq. (9.54a), Eq. (9.54b) is rearranged as
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d3 ~Ucn

dŝ3
þ b1

d2 ~Ucn

dŝ2
þ b2

d ~Ucn

dŝ
þ b3 ~Ucn ¼ b4 ð9:55Þ

where b1 = a1 + 0.5a1a2 + a3, b2 = a1a3 + 0.5a1a4 + a5, b3 = a1a5, and
b4 = 0.5a1a6. Equation (9.55) can be solved for ~Ucn for the given boundary
conditions, and then, Scn can be determined from Eq. (9.54a).

Note that in fully developed flow in a channel bend, the terms dð�Þ=dŝ ¼ 0, and
Eqs. (9.54a, b) reduce to

U

Uc

¼ H

h

� �0:5

; Scn0 ¼
GFdch

rc

^ G ¼ ð1þ mÞð1þ 2mÞ
5:38jH0:5mð1þ mþ 2m2Þ

where Scn0 is the fully developed value of Scn and Fdc is the Fd at the centerline.
An approximate solution of Eqs. (9.54a, b) can be obtained assuming d2 ~Ucn=d2ŝ

to be negligible. Then, Eqs. (9.54a, b) produce

d2Scn

dŝ2
þ a3 þ

a4

2

� 	 dScn

dŝ
þ a5Scn ¼ a6 ð9:56Þ

At the starting section of the bend (that is ŝ ¼ 0), both Scn and dScn=dŝ vanish;
and the solution of Eq. (9.56) is

Scn ¼ Scn0 1� 1þ a0

2/0

� �2
" #0:5

cosð/0ŝ� w0Þ exp � a0ŝ

2

� �8<
:

9=
; ð9:57Þ

where /0 ¼ 0:5ð4a5� a2
0Þ

0:5, a0 = a3 + 0.5a4, and w0 = arctan(0.5a0//0).

9.3.2.2 Stability of Meandering Rivers

In stability analysis, Odgaard (1989) introduced a small perturbation in the form of
a traveling sinusoidal wave to the system of governing equations of a river flow
coupled with the sediment transport. Then, their effect on river planform is
determined by evaluating the growth rate of perturbation. The perturbation due to a
traveling sinusoidal wave is introduced as river displacement n(x, t) given by

nðx; tÞ ¼ amcðtÞ sin½kwbðx� ctÞ� ð9:58Þ

where x is the coordinate distance along the unperturbed river axis or the valley
slope (Fig. 9.12a), kwb is the wave number (= 2p/km), amc is the amplitude, km is
the meandering wavelength, c is the celerity of sinusoidal wave, and t is the time.

Approximating local radius of curvature as r�1
c ¼ �d2n=dx2 and using

Eq. (9.58), Eq. (9.55) is solved for ~Ucn as
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~Ucn ¼
Bk2

wbamc

ðe2
1 þ e2

2Þ
0:5 N sin½kwbðx� ctÞ � c0� ^ c0 ¼ arctan

e2

e1

� �
ð9:59Þ

where e1 ¼ b3� 2b1B2k2
wb, e2 ¼ b2Bkwb� k3

wbB3, and

N ¼ 8j2

an
� 1þ 2m

m3ð2þ mÞ :

Substituting Eq. (9.59) into Eq. (9.54a) yields

Scn ¼
2Bk2

wbamc

ðe2
1 þ e2

2Þ
0:5 N 1þ Bkwb

a1

� �2
" #0:5

sin½kwbðx� ctÞ � b0� ð9:60Þ

where b0 = c0 - arctan(Bkwb/a1).
Odgaard assumed that the rate of bank retreat nb is linearly proportional to the

change of bed level at the bank:

nb ¼ EUc

Hbank

h
� 1

� �
ð9:61Þ

where E is the erosion parameter and Hbank is the near-bank value of H. Due to
small curvature of the river, nb & qn/qt. The closure of the analysis is achieved by
substituting Eq. (9.58) into left-hand side of Eq. (9.61) and Eqs. (9.59) and (9.60)
into right-hand side of Eq. (9.61). Performing required simplifications, the equa-
tions of growth rate of amplitude qamc/qt and celerity c are obtained as follows:

1
amc

� oamc

ot
¼ 2EUc

B
KBkwb 1þ Bkwb

a1

� �2
" #0:5

cos b0 ^ K ¼ NB

2h
� Bkwb

ðe2
1 þ e2

2Þ
0:5

ð9:62aÞ

c ¼ 2EUcK 1þ Bkwb

a1

� �2
" #0:5

sin b0 ð9:62bÞ

Note that the wave number kwb corresponding to maximum amplitude growth,
called dominant wave number, can be determined from the following condition:

o2amc

otokwb

¼ 0
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9.4 Braided Rivers

Braided rivers are quite dynamic with strong fluvial activities (interactions
between streambed morphology, flow, and sediment transport) to follow rapidly
change in subdivided stream forms. The bars and islands characterize braiding by
dividing streams by their sides. While bars are relatively unstable having complex
features, islands are rather stable with well-defined shapes. Bars are modified by
the processes of erosion and deposition and evolve over a short period of time.
During high flow stages, major changes take place due to rapid rates of stream
migration facilitated by high stream power and unstable banks. There can also be
extensive changes in stream position as subdivided streams are abandoned or
earlier abandoned streams are reactivated. However, even in a braided reach, a
single dominant stream, in some cases, can be distinguishable. Planform of braided
rivers can change radically with the change in discharge. For instance, Bristow and
Best (1993) argued that the discharge fluctuations are a prerequisite for braiding
especially in sand-bed rivers. Rivers may act as a single stream during bankfull
conditions and exhibit characteristic braided pattern at lower stages. Therefore, the
number of bars to be emerged may vary with flow stages; as such, complex
sequence of erosion and deposition may occur with the variation of flow stages.
Nevertheless, at both low and high stages, some of the rivers show braided pattern
where some of the islands are in general permanent. Southard et al. (1984) reported
that the process of bar growth and streambed erosion occurs almost simulta-
neously, and the majority of the emerged bars are the result of complex events of
erosion and deposition. Robert (2003) gave a good overview on braided rivers.

Lane (1957) studied planforms of many braided rivers and their history. He
came out with a conclusion that the braiding can be caused by (1) overloading and
(2) steep slopes. Overloading refers to when the sediment discharge (inflow
transport rate) exceeds the sediment capacity (outflow transport rate) of a river
depositing sediment load (aggradations) throughout the reach. As a consequence,
the river carrying most of the sediment load gradually changes its morphology as
the excess sediment load settles progressively in the downstream direction.
Besides, the fining of bed sediment size takes place in the downstream direction
and is usually accompanied by a downstream reduction in bed slope. The depo-
sition of sediment in an aggrading river makes it out of bankfull conditions. The
river tends to widen and becomes shallow with an appearance of bars subjected to
changes in morphology. At low stages, a series of small streams divide and rejoin
through the exposed bars in more or less regular and repeatable processes. These
streams are braided as the bed slope enhances with aggradations. On the other
hand, steep slope that induces greater stream power for the given discharge results
in a wide shallow river in which bars and islands are readily developed. Stream
subdivision is continued until there is inadequate stream power to erode the banks
(Leopold and Wolman 1957). A distinction is often made between bars and
islands, although they have the same origin and may share similar morphological
characteristics. While bars are only developed at low stages being unvegetated, but
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often submerged in bankfull conditions, islands are more stable and may be
vegetated, but emerge even in bankfull conditions.

Carson and Griffiths (1987) recognized three types of braided rivers: unstable
multiple stream, stable multiple stream, and multi-thalweg. In unstable multiple-
stream pattern, streams are separated by the bars and can be rapidly diverted from
one stream to another depending on sediment deposition. Stable multiple-stream
pattern consists of relatively stable streams even during high flow stages with
subdivided streams separated by stable vegetated islands. On the other hand, multi-
thalweg pattern is characterized by braids being separated by submerged bars
during high flow stages.

9.4.1 Mechanism of Braid Formation

Complex mechanisms are involved in inception and development of braided
planforms, depending on the stream flow characteristics and both erosional and
depositional processes. Ashmore (1991) identified four types of mechanisms of
braid formation: middle bar accretion, transverse bar conversion, chute cutoff, and
multiple bar dissection. A summary of various mechanisms put forward by dif-
ferent investigators is presented below:

Leopold and Wolman (1957) were the first to study the mechanism of inception
and development of braided planforms through laboratory experiments. They
identified that the development of braided planforms by middle bar accretion takes
place through a sequence of events that comprise of deposition in mid-river and
erosion of banks. The characteristic shape of middle bars (also called linguoid
bars) is rhombic or lobate in plan view and elongated in streamwise direction. In
an unbraid river reach, localized flow converges to a high velocity at the upstream
end of the narrower flanking river reach leading to an excessive erosion. It forms a
sheet of bed-load sediment (that includes coarser to finer size fractions) that is
transported along the riverbed. In transporting the bed load, a small submerged
gravel bar where the flow becomes locally incompetent to transport the coarsest
particles, called lag deposits, is formed. The upstream of the bar margin is made up
by the coarse fraction of bed-load sediment that is transported along the middle
portion of the river. Finer particles are in general transported over the bar, while a
fraction of finer particles are deposited on the bar and/or trapped behind the coarser
particles, leading to the enlargement of the emerging bar in all dimensions (ver-
tical, streamwise, and transverse directions). Once the bar becomes sufficiently
large, it starts affecting the divided streams along its sides by increase in the flow
velocity or in turn, the stream power, which begins to attack the banks and widens
the river by bank erosion. The bar gradually gets stabilized due to more deposition
on and around it. The feedback process then recurs in another place along the river,
eventually leading to the formation of braided planforms. Ashmore (1991)
observed that the mechanism of middle bar formation is restricted to the near-
threshold flow conditions (that is, the Shields parameter H is in the order of 0.06).

556 9 Fluvial Processes: Meandering and Braiding



The mechanism therefore involves the deposition of coarser particles carried as a
bed load by the stream flow, where a small change of local flow depth can be
adequate to reduce the local bed shear stress below the threshold bed shear stress,
being incompetent to transport the coarser particles. Figure 9.14 displays a pho-
tograph of a middle bar in a river.

In an experimental study, Ashmore (1991) observed that another kind of bar
formation process, called the transverse bar conversion, is prevalent. The main
morphological feature of a transverse bar is that it has downstream avalanche faces
being developed under high stream power conditions. Initially, a contracted chute
(narrow channel) with steep sides is formed due to bed erosion by the flow con-
vergence, which possesses an enhanced stream power. Consequently, a substantial
amount of sediment is removed due to the chute erosion and transported down-
stream. As a part of this process, as the flow diverges out of the contracted chute
with a declining flow competency to carry sediment, a massive sediment load is
then deposited forming an incipient bar. As the time progresses, the bed load
continues to deposit in succession in the form of layers as it passes over and across
the bar. This process contributes to the vertical accretion of the bar form by
building up its surface. In the process of deposition of sediment, a steep slant face
is formed where the deposited sediment starts to avalanche over the downstream
edges of the bar. As the elevation of the bar grows, the emerging bar starts to

Fig. 9.14 Photograph of a middle bar in a river (courtesy of A. Radecki-Pawlik, Polish Academy
of Sciences, Poland)
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obstruct the flow that is then deflected off the edges of the bar. The mechanism of
middle bar formation is thus different from that of transverse bar, where the bar
accretions are initiated by the erosion and extensive deposition of large amount of
bed load, rather than the deposition of only the coarser sediment particles which
are locally incompetent to transport by the flow. In contrast to middle bars, when
the bed shear stress is considerably greater than its threshold value, it is possible
for the large amount of sediment required for the transverse bar mechanism to be
eroded and deposited (Ashmore 1991). Figure 9.15 shows a photograph of a
transverse bar in a river.

Fig. 9.15 Photograph of a transverse bar in a river (courtesy of A. Radecki-Pawlik, Polish
Academy of Sciences, Poland)

Fig. 9.16 Photograph of the chute cutoff of a point bar in a river (courtesy of A. Radecki-Pawlik,
Polish Academy of Sciences, Poland)
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According to Ashmore (1991), other two mechanisms involved in the formation
of a braid can be described as erosional processes. They are chute cutoff and
multiple bar dissection. In chute cutoff, the development of a chute due to bed
erosion across a point bar is prevalent during the inception of braiding. Eventually,
the point bar is separated off from the bank (Fig. 9.16). Chute, in this case, rep-
resents a relatively narrow stream that occurs due to flow concentration to run
through a point bar surface. Chute cutoff may occur on single point bars in existing
braided rivers or across alternate point bars in moderately straight rivers. In a
developed state, the size of chute may become almost similar to that of main
stream on the other side of the separated point bar. Further, middle bars can also be
cutoff by a single stream or multiple streams exhibiting multiple bar dissection
(Rundle 1985a, b). Flow concentration is responsible to the formation of cutoff
into the bar surface. The dissection of bars usually occurs during high flow stages
when the flow crosses over the submerged bar surface. In low flow stages, the
dissected bars are exposed as two or more in numbers of smaller bars, as shown in
Fig. 9.17.

There are additional situations associated with the braid formations that need to
be discussed. Avulsion is defined as a relatively abrupt switching of the stream
flow from one branch to another (Ferguson 1993). This situation prevails when
chute cutoffs form. Also it may occur when the stream flows switch over to
previously abandoned branches of stream. Another mechanism includes the
blocking of a stream flow by a bar deposition and thus leading to the formation of
an upstream pool and a downstream overfall.

Fig. 9.17 Photograph of a dissected bar in a river (courtesy of A. Radecki-Pawlik, Polish
Academy of Sciences, Poland)
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Chapter 10
Scour

10.1 General

Scour is a natural phenomenon of lowering the riverbed level due to removal of
sediment by the erosive action of flowing stream. The magnitude of reduction in
the riverbed level below an assumed natural level (or initial level) is termed scour
depth. Scour is broadly classified as general scour, contraction scour, and local
scour.

General scour in the river occurs as a result of the change in characteristics of
the river. Based on the duration of scour development, general scour can be
categorized as short-term scour and long-term scour. Short-term scour occurs
during a single flood or several floods of shorter durations to appear in quick
succession, while long-term scour takes a considerably long time, usually of the
order of a number of years, and results in a progressive bed degradation and bank
erosion. Short-term scour may also occur due to flow convergence, a shift in the
meandering stream thalweg or braids within the stream and bedform migration. On
the other hand, the long-term scour may be caused by the natural changes in the
catchments, for example, channel straightening, volcanic activities, climate
change, or by the human activities, for example, channel alterations, streambed
mining, dam/reservoir construction, and land-use changes.

Contraction scour is the scour of streambed arising from accelerated flow
through contraction of waterways, where flows over flood plains are converged by
bridge causeways and channeled through the bridge waterways.

In contrast, local scour (also termed localized scour) is developed near the
structures due to modification of the flow field as a result of obstruction to the flow
by the structures. Scour within the contracted portion of rivers, scour downstream
of structures, scour at bed sills, scour below horizontal pipelines, scour at bridge
piers and abutments, and scour at other river training works are the examples of
local scour.

Local scour is classified as clear-water scour and live-bed scour. Clear-water
scour occurs when the sediment is removed from the scour hole but not supplied by
the approaching flow. The equilibrium of scour is reached when the flow induced
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force can no longer dislodge the sediment particles from the scour hole. On the
other hand, live-bed scour occurs when the scour hole is continuously fed with the
sediment by the approaching flow. The equilibrium of scour is attained over a
period of time, when the rate of removal of sediment out of the scour hole equals the
rate of supply of sediment into the scour hole. Usually, the magnitude of scour
depth in live bed is to some extent less than that in clear-water, if the flow condition
is such that the approaching flow velocity U equals or is slightly less the threshold
flow velocity Ucr for the bed sediment motion.

This chapter summarizes the contraction scour and local scour at different
structures including various aspects, such as mechanism of scour and design
formulas for the prediction of scour depth. It is however pertinent to mention that
despite large number of investigations, hydraulics of local scour is as yet not well
established, because most of the studies came from the laboratory and only a few
from the fields. As such, the scour prediction formulas can only provide a general
guideline for the designers or engineers.

10.2 Scour Within Channel Contractions

A reduction in width of a watercourse by constructing parallel sidewalls is termed
channel contraction. Contractions of river width to construct bridges, barrages,
weirs, and cross-drainage works are common examples of channel contractions.
The flow velocity in the contracted zone of the channel increases due to the
reduction in flow area, and hence, the bed shear stress induced by the flow
increases considerably. Consequently, the sediment bed within the channel con-
traction is scoured. Such localized scour in the contracted zone of the channel is
called contraction scour.

Depending on the ratio of the length of the contraction L to the approaching
channel width B1, channel contractions are designated as long or short. According
to Komura (1966) and Dey and Raikar (2005), a contraction becomes long when
L/B1 [ 1, whereas Webby (1984) considered it as L/B1 [ 2. Figures 10.1 and 10.2
show schematic of scour in a channel contraction and a photograph of the scoured
bed, respectively. Smith (1967) proposed the angles of upstream and downstream
transitions as 12.5� for a smooth transition to the contracted zone.

Local scour in a channel contraction is usually studied considering a configu-
ration of long rectangular contraction, as shown schematically in Fig. 10.1.
Because of the simple geometrical configuration of the problem, various analytical
investigations to predict the equilibrium scour depth in long contractions were
attempted. Straub (1934) was the pioneer to present a simplified one-dimensional
theory of the equilibrium scour in long contractions. His work was later extended
and modified by Laursen (1963), Komura (1966), Gill (1981), Lim (1993), and
Lim and Cheng (1998). Further, Dey and Raikar (2005, 2006) studied the scour in
long contractions in gravel-beds and proposed analytical models for the estimation
of scour depth under both clear-water and live-bed scour conditions.
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10.2.1 Laursen’s Model

Laursen (1963) considered a channel contraction as shown in Fig. 10.1. The dis-
charge in the channel is obtained from the continuity equation as

Q ¼ U1h1B1 ¼ U2h2B2 ð10:1Þ

B1 B2 

L 

x

(a)

(b)

21

1 2

h1

h2

ds Sediment bed
x 

z 

Fig. 10.1 Schematic of a rectangular channel contraction at equilibrium scour condition: a plan
view and b elevation view

Fig. 10.2 Photograph
showing an equilibrium
scoured bed within a channel
contraction
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where U1 is the approaching flow velocity, h1 is the approaching flow depth, U2 is
the flow velocity in contracted zone, h2 is the flow depth in contracted zone, and B2

is the contracted width of the channel.
Using the energy equation between sections 1 and 2, the scour depth ds is

obtained as

h1 þ
U2

1

2g
¼ h2 þ

U2
2

2g
� ds þ hf ^ hf ¼ KL

U2
2

2g
� U2

1

2g

� �
ð10:2aÞ

) ds

h1
¼ h2

h1
� 1þ 1þ KL

2

� �
Fr2

1
B1

B2

� �2 h1

h2

� �2

�1

" #
ð10:2bÞ

where hf is the head loss due to flow in transition, Fr1 is the approaching flow
Froude number [= U1/(gh1)0.5], and KL is the head loss coefficient.

When the scour in the contracted zone reaches an equilibrium, the bed shear
stress becomes equal to its threshold value, that is, s0c = 0.628d50 (in Pa), where
d50 is the median sediment size (in mm). The bed shear stress s01 in the uncon-
tracted zone (section 1) can be estimated using the Manning equation and the
Strickler’s relationship for Manning roughness coefficient n as

s01 ¼
U2

1d0:33
50

30h0:33
1

ð10:3Þ

Taking the ratio of bed shear stress in the uncontracted zone to that in the
contracted zone yields

s01

s0c

¼ U2
1

120d2=3
50 h1=3

1

ð10:4Þ

Similar expression can also be written for the bed shear stress in the contracted
zone. Hence, the flow depth ratio h2/h1 can be obtained from

s01

s02
¼ U1

U2

� �2 h2

h1

� �1=3

¼ s01

s0c

ð10:5Þ

where s02 is the bed shear stress in the contracted zone (section 2).
Using Eqs. (10.1) and (10.5), one can write

h2

h1
¼ s01

s0c

� �3=7 B1

B2

� �6=7

ð10:6Þ
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Substituting Eq. (10.6) into Eq. (10.2b) results

ds

h1
¼ s01

s0c

� �3=7 B1

B2

� �6=7

�1þ 1:87ð1þ KLÞ
d50

h1

� �2=3 ðB1=B2Þ2=7

ðs01=s0cÞ6=7
� 1

" #
s01

s0c

� �

ð10:7Þ

Neglecting the difference in the velocity heads and the loss through the tran-
sition, Eq. (10.7) reduces to

ds

h1
¼ s01

s0c

� �3=7 B1

B2

� �6=7

�1 ð10:8Þ

10.2.2 Dey and Raikar’s Model

Dey and Raikar (2005, 2006) developed analytical models for clear-water and live-
bed scour cases.

10.2.2.1 Clear-Water Scour Model

Dey and Raikar (2005) analytically computed the equilibrium clear-water scour
depth in two ways: Considering sidewall correction and without considering
sidewall correction.

Determination of scour depth considering sidewall correction: In clear-water
scour, the equilibrium scour depth ds reaches in a long contraction, when the flow
velocity U2 in the contracted zone becomes equal to threshold velocity Ucr for the
sediment motion. The flow velocity U2jU2¼Ucr

in the contracted zone can be
obtained from the well-known equation of bed shear stress as a function of
dynamic pressure (Eq. 3.54). It is

s0cð¼ qu2
�cÞ ¼

kD

8
qU2

2
U2¼Ucr

) U2

�� ��
U2¼Ucr

¼ u�c
8
kD

� �0:5

ð10:9Þ

where q is the mass density of water, u*c is the threshold shear velocity for
sediment, and kD is the Darcy–Weisbach friction factor, which can be determined
from Colebrook–White equation (Eq. 3.55).

In the contracted zone, the bed is rough consisting of sediment particles and the
sidewalls are smooth. Hence, the friction factor kD|w associated with the wall is
considerably different from the friction factor kD|b associated with the bed. There-
fore, Vanoni’s (1975) method of sidewall correction can be applied for the con-
tracted zone of the channel, as given in Sect. 3.9, where the solution for kD|b was
obtained from the solution of Eqs. (3.63) and (3.64), which are here expressed as
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kDjb¼ 0:316Rejb
4U2jU2¼Ucr

A

tPjw
� RejbPjb

Pjw

� ��1:25

ð10:10aÞ

1

kDj0:5b

¼ �0:86 ln
ksU2jU2¼Ucr

3:7tRejb
þ 2:51

RejbkDj0:5b

 !
ð10:10bÞ

where ks is equivalent roughness height (=2d50), Re|b is the flow Reynolds number
associated with the bed, that is, 4U2jU2¼Ucr

Ajb=ðtPjbÞ, Ajb is the flow area asso-
ciated with the bed, P|b is the wetted perimeter associated with the bed (=B2), A is
the total flow area of contracted zone (=h2B2), P|w is the wetted perimeter asso-
ciated with the wall (=2h2), and t is the kinematic viscosity of water.

In clear-water scour, at equilibrium scour condition, Eq. (10.1) becomes

U1h1B1 ¼ U2jU2¼Ucr
h2B2 ð10:11Þ

For the given U1, h1, B1, B2, and d50, the unknowns U2jU2¼Ucr
, h2, Re|b, and kD|b

can be determined numerically solving Eqs. (10.9), (10.10a, b) and (10.11). Then,
neglecting the head loss in transition, energy equation [see the energy equation,
Eq. (10.2a)] is used to determine equilibrium scour depth ds as

ds ¼ h2 þ
U2j2U2¼Ucr

2g
� h1 �

U2
1

2g
ð10:12Þ

Determination of scour depth without considering sidewall correction: In this
simplified approach, the depth-averaged flow velocity U2jU2¼Ucr

in the contracted
zone for equilibrium scour is determined assuming the logarithmic equation of the
depth-averaged velocity as

U2jU2¼Ucr

u�c
¼ 5:75 log

h2

2d50
þ 6 ð10:13Þ

For the given U1, h1, B1, B2, and d50, the unknowns U2jU2¼Ucr
and h2 can be

obtained numerically solving Eqs. (10.11) and (10.13). Then, equilibrium scour
depth ds can be determined from Eq. (10.12).

10.2.2.2 Live-Bed Scour Model

Dey and Raikar (2006) proposed a live-bed scour model for the estimation of scour
depth within channel contractions. In live-bed scour, the equilibrium scour depth is
reached, when the sediment supplied by the approaching flow into the contracted zone
is balanced by the sediment transported out of the contracted zone. Thus, at the
equilibrium, the sediment continuity equation between sections 1 and 2 of Fig. 10.1 is
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qbju�¼u�1
B1 ¼ qbju�¼u�2

B2 ð10:14Þ

where qb is the bed-load transport rate of sediment. The bed-load transport rate qb

can be estimated by the formula of Fredsøe and Deigaard (1992) as

qb ¼ 1:55 p d50 u� 1� 0:7
u�c
u�

� �
p ^ p ¼ 1þ 0:085 pDgd50

u2
� � u2

�c

� �4
" #�0:25

ð10:15Þ

Assuming the logarithmic equation of average velocity for approaching flow,
the shear velocity u*1 at section 1 is obtained as

u�1 ¼ U1 5:75 log
h1

2d50
þ 6

� ��1

ð10:16Þ

In the contracted zone, incorporating the logarithmic equation of average
velocity in Eq. (10.1) yields

B1

B2
� h1

h2
¼ u�2

U1
5:75 log

h2

2d50
þ 6

� �
ð10:17Þ

where u*2 is the shear velocity in the contracted zone.
For the given U1, h1, B1, B2, and d50, the unknowns U2 and h2 can be deter-

mined numerically solving Eqs. (10.14), (10.15) and (10.17). Then, the energy
equation [see the energy equation, Eq. (10.2a)] is used to determine equilibrium
scour depth ds as

ds ¼ h2 � h1 þ
U2

2

2g
� U2

1

2g
ð10:18Þ

10.2.3 Maximum Scour Depth Prediction

The parameters that influence the scour within channel contractions are as follows
(Dey and Raikar 2005):

1. Parameters relating to the channel contraction: Channel opening ratio and
channel shape.

2. Parameters relating to the bed sediment: Median particle size, particle size
distribution, angle of repose, and cohesiveness.

3. Parameters relating to the approaching flow condition: Approaching flow
velocity, approaching flow depth, shear velocity, and roughness.
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4. Parameters relating to the fluid: Mass density, viscosity, gravitational accel-
eration, and temperature. Note that the temperature may not be important in
scour problems, unless free surface is frozen.

The functional relationship showing the influence of above parameters on the
equilibrium scour depth ds in a long rectangular contraction can be given as

ds ¼ dsðU1; h1; q; qs; g; t; d50;B1;B2; rgÞ ð10:19Þ

where qs is the mass density of sediment, g is the gravitational acceleration, and rg

is the geometric standard deviation of the particle size distribution.
Dey and Raikar (2005) argued that the scour in a long contraction starts when

the excess approaching flow velocity U1eð¼ U1 � U1jds¼0
U2¼Ucr

Þ is greater than zero.

For no-scour condition, U1e is less than or equal to zero. Here, U1jds¼0
U2¼Ucr

refers to
the approaching flow velocity U1 that initiates scour in a contraction. Therefore,

U1jds¼0
U2¼Ucr

corresponds to U1 for which U2 becomes Ucr for the undisturbed bed

condition (ds = 0) in the contracted zone. The U1jds¼0
U2¼Ucr

can be determined as
follows:

Considering negligible head loss (hf = 0) and applying the energy equation
between sections 1 and 2 for the bed sediments within contracted zone under
threshold condition, that is U2 = Ucr, before initiation of scour (ds = 0), the fol-
lowing equation is obtained (Fig. 10.1) (Dey and Raikar 2005):

h1 þ
1

2g
U1jds¼0

U2¼Ucr

� �2
¼ h2 þ

1
2g

U2jds¼0
U2¼Ucr

� �2
ð10:20Þ

The continuity equation between sections 1 and 2 is

U1jds¼0
U2¼Ucr

h1B1 ¼ U2jds¼0
U2¼Ucr

h2B2 ð10:21Þ

The threshold flow velocity at section 2 can be determined using the loga-
rithmic equation of average velocity as

U2jds¼0
U2¼Ucr

u�c
¼ 5:75 log

h2

2d50
þ 6 ð10:22Þ

Therefore, for the given h1, B1, B2, d50, and u*c (determined from the Shields

diagram), the approaching flow velocity U1jds¼0
U2¼Ucr

required to initiate the sediment
motion within the contracted zone can be estimated solving Eqs. (10.20)–(10.22)
numerically.

In the context of scour, it is appropriate that U1, in Eq. (10.19), is to be replaced
by U1e. In sediment–water interaction, the parameters g, q, and qs are combined
into a parameter Dg, where D = s - 1 and s is the relative density of sediment
(= qs/q). Also, it is reasonable to use the channel opening ratio B2/B1 to account

570 10 Scour



for the combined effect of B1 and B2. In addition, the influence of kinematic
viscosity t of water is insignificant for a turbulent flow over rough sediment beds
(Yalin 1977). Therefore, applying these considerations, the Buckingham P theo-
rem (see Sect. 11.2.3) is used with U1e and h1 as repeating variables to obtain the
following nondimensional equation:

ds

h1
¼ f F1e;

d50

h1
;
B2

B1

� �
ð10:23Þ

where F1e is the excess approaching flow Froude number ½¼ U1e=ðDgh1Þ0:5�. The
condition U1 ! Ucr (that is the limiting condition for a clear-water scour, as
U1 [ Ucr corresponds to a live-bed scour) is recognized to be the most idealized
condition for maximum equilibrium scour depth ½ds�maxð¼ dsjU1¼Ucr

Þ in long
contractions under a clear-water scour condition (Gill 1981). Therefore, to
determine the equation of maximum equilibrium scour depth [ds]max in long
contractions, Eq. (10.23) is written for U1 ! Ucr. Using the experimental data for
clear-water scour, Dey and Raikar (2005) obtained the empirical equation of
maximum equilibrium scour depth as follows:

½ds�max

h1
¼ 0:368F0:55

1ec

B2

B1

� ��1:26 d50

h1

� ��0:19

ð10:24Þ

where F1ec ¼ U1ec=ðDgh1Þ0:5 and U1ec ¼ Ucr � U1jds¼0
U2¼Ucr

. Equation (10.24) is
written for uniform sediments, as it does not include rg.

The equilibrium scour depth ds(rg) in nonuniform sediments can be estimated
in terms of geometric standard deviation rg of sediments using the following
relationship:

dsðrgÞ ¼ Krds ð10:25Þ

where Kr is the coefficient due to sediment gradation. The coefficient Kr is defined
as the ratio of equilibrium scour depth in nonuniform sediment (rg [ 1.4) to that
in uniform sediment. The variation of Kr with rg is shown in Fig. 10.3 (Dey and
Raikar 2005).

10.2.4 Other Scour Depth Predictors

Phenomena involving scour in long contractions have been studied extensively in
laboratories, from which a number of semianalytical and empirical equations have
been developed to estimate the equilibrium scour depth under both clear-water and
live-bed scour conditions. In general, they are based on a limited range of data.
Table 10.1 furnishes the empirical equations of equilibrium scour depth proposed
by different investigators.
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Fig. 10.3 Variation of Kr as
a function of rg (Dey and
Raikar 2005)

Table 10.1 Equations of equilibrium scour depth within channel contractions proposed by dif-
ferent investigators

References Formula Regime

Straub (1934) ds

h1
¼ B2

B1

� ��6=7 s0c

2s01

� �2

þ B2

B1

� ��1
"(

� 1� s0c

s01

� �#0:5

þ s0c

2s01

)�3=7

� 1

Clear-water

Komura (1966) ds

h1
¼ 1:6Fr0:2

1
B2

B1

� ��0:67

r�0:5
g � 1

Clear-water

ds

h1
¼ 1:45Fr0:2

1
B2

B1

� ��0:67

r�0:2
g � 1

Live bed

Gill (1981) ds

h1
¼ B2

B1

� ��6=7 s0c

s01

� ��3=7

�1
Clear-water

ds

h1
¼ B2

B1

� ��6=7 B2

B1

� ��1=m

1� s0c

s01

� �
þ s0c

s01

" #�3=7

�1

where m is an exponent varying from 1.5 to 3

Live bed

Lim (1993) ds

h1
¼ 1:854F0:75

1d

B2

B1

� ��0:75 d50

h1

� �0:25

�1

where F1d = U1/(Dgd50)0.5

Clear-water/live
bed

Lim and Cheng
(1998)

ds

h1
¼ B2

B1

� ��0:75

�1
Clear-water/live

bed

Note In order to obtain maximum equilibrium scour depth [ds]max, equations of ds are to be
expressed for the threshold condition U1=Ucr ! 1 or s01=s01c ! 1. For uniform sediments
(rg \ 1.4), the geometric standard deviation rg is considered to be unity
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10.3 Scour Downstream of Structures

10.3.1 Scour Below Drop Structures

Drops are provided in rivers for lowering the bed level when the slope of the river is
smaller than the natural ground slope. These structures therefore artificially
increase the slope of the rivers. The stream flow running over the drops is called an
overfall. In addition, the scour is developed downstream of the bed protection
provided to control the slope or elevation of the riverbed to create a drop. The water
released from the drop structures impinges on the free surface of the tailwater as a
jet, which is called plunging jet. This freely falling jet may have considerable
potential to scour the bed downstream of the structures, and such scour is known as
jet scour. Scour due to jets occurs very rapidly, which causes danger to the stability
of the channel bed, in addition to the devastating effects on the hydraulic structures.
Considerable portion of the energy of the flowing stream is dissipated through
turbulent mixing in the pool due to plunging jet. Figures 10.4a, b show schematic of
scour below weir type and free overfall type drop structures.

The pioneering study on scour below a drop structure was due to Schoklitsch
(1932). He proposed the following empirical relationship for the equilibrium scour
depth for the flow over structures:

ds ¼ K0
q0:57H0:2

d0:32
90

� ht ^
d90 in mm;K0 ¼ 4:75 ðin s0:6 m0:3Þ
d90 in m;K0 ¼ 0:52 ðin s0:6 m0:3Þ

(
ð10:26Þ

where q is discharge per unit width, H is the height between upstream and
downstream water levels, d90 is the 90 % finer sediment size, and ht is the tailwater
depth.

Based on the dimensional analysis and using the experimental data, Kotoulas
(1967) developed a relationship for the equilibrium scour depth downstream of a
structure. It is

ds ¼
1:9

g0:35
� q

0:7H0:35

d0:4
95

� ht ð10:27Þ

where d95 is the 95 % finer sediment size.
For free overfall type drop structures, Dey and Raikar (2007b) proposed a

procedure to calculate the jet velocity U0 and the jet thickness l0 at the entry of jet
into the tailwater.1

1 Dey and Raikar (2007b) considered section 0 at the upstream of the drop where the critical
depth hc occurs and section 0 at the entry of jet into the tailwater (Fig. 10.4b). The continuity
equation applied between sections 1 and 0 is
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Fahlbusch (1994) proposed an empirical equation of equilibrium scour depth
for weir type drop structures. He expressed scour depth ds as a function of q and jet
velocity U0 entering the tailwater depth ht at an angle hj with the horizontal at the
water level as

ds ¼ Kp

qU0

g
sin hj

� �0:5

� ht ð10:28Þ

The coefficient Kp is dependent on sediment size. For gravel, 3 \ Kp \ 5; for
sand, 5 \ Kp \ 20; and for silt, Kp & 20.

Later, a more generalized relationship of equilibrium scour depth for weir type
drop structures was recommended (Graf 1998). It is

ds ¼
3:6

D4=9g0:3
� q

0:6H0:5

d0:4
90

� ht ð10:29Þ

Also, D’Agostino and Ferro (2004) suggested a simplified equation of equi-
librium scour depth for weir type drop structures as

ds

Z
¼ 0:975

h

Z

� �0:863

ð10:30Þ

(Footnote 1 continued)

Uchc ¼ U0l0

ð10:30Þ

where Uc is the critical velocity of the flow upstream of the drop. According to Bakhmeteff
(1932), the jet velocity U0 is given by

U0 ¼ C0½2gðh0 þ 1:5hcÞ�0:5

where C0 is the velocity coefficient and h0 is the height of drop above the tailwater level.
Using the value of end-depth-ratio (= he/hc, where he is the end depth) for rectangular channels

equaling 0.715 as given by Rouse (1936), the above equation becomes

U0 ¼ C0½2gðh0 þ 2:1heÞ�0:5

Inserting into the continuity equation, the expression for jet thickness l0 can be written as

l0 ¼
1:17h1:5

e

C0ðh0 þ 2:1heÞ0:5

Using the experimental data, the value of C0 was estimated as 0.672.
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where Z is the crest height of the weir and h is the flow depth over a weir
(Fig. 10.4a). Note that Eq. (10.30) does not take into account the effects of sedi-
ment size and tailwater depth.

Stein et al. (1993) developed an analytical equation to predict the equilibrium
scour depth downstream of a headcut type drop structure for the condition of
shallow tailwater depth (ds � ht) (Fig. 10.5). Neglecting the effects of tailwater
depth, they proposed

ds ¼
C2

dkfqU2
0 l0

s0c

sin hj ^ kf ¼ 0:0275
t
q

� �0:25

ð10:31Þ

where Cd is the jet diffusion coefficient (= 2.6).
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Fig. 10.4 Schematic of scour below drop structures: a weir type and b free overfall type

10.3 Scour Downstream of Structures 575



10.3.2 Scour Downstream of Grade-Control Structures

Grade-control structures are employed to prevent excessive riverbed degradation
(Fig. 10.6). Bormann and Julien (1991) investigated the scour downstream of
grade-control structures based on two-dimensional jet diffusion and particle sta-
bility. They put forward the following expression for the equilibrium scour depth:

ds ¼ 1:8
sin /

sinð/þ hjÞ

� �0:8q0:6U1 sin hj

ðDgÞ0:8d0:4
90

( )
� Zp ð10:32Þ

where U1 is the approaching velocity, Zp is the drop height of grade-control
structure, hj is the jet angle near the original bed level, and / is the angle of repose
of bed sediment.

10.3.3 Scour Downstream of Bed Sills

Mountain streams are frequently subjected to channel incision. One of the methods
to stabilize them is to employ a series of transverse structures called bed sills. Bed
sills are generally preferred when the height of the riverbed is to be somewhat
raised in order to reduce instability of the valley slope. The overfall plunging jet
issued from a sill crest diffuses its energy in mixing process through rollers inside
the downstream pool below. Further downstream, a uniform flow can be estab-
lished if the riverbed has an equilibrium slope for a significant length. This con-
dition is satisfied when the intermediate distance between two bed sills is
adequately long. Flow over immediate upstream of a sill crest is characterized by a
critical flow condition. At the edge of the sill, the flow becomes supercritical,
being accelerated by that gravity as an overfall jet that has significant power to

ht

ds

Sediment bed

l0

U0

θj

Overfall

ds ht

Fig. 10.5 Schematic of scour below a headcut
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remove sediment from the bed downstream of a bed sill. Practically, scour
downstream of a bed sill endangers its stability leading to the failure if the
maximum scour depth is deep enough to expose the foundation (Fig. 10.7).

According to Gaudio et al. (2000), the maximum clear-water scour depth ds at a
bed sill can be given as a functional form. It is

ds ¼ dsðg; t; q;Dq; q; h1; d50; a1Þ ð10:33Þ

where h1 is the uniform flow depth and a1 is the morphological drop which is
defined by

a1 ¼ ðS0 � SeqÞL ð10:34Þ

where S0 is the initial streamwise bed slope, Seq is the equilibrium bed slope, and
L is the distance between two neighboring sills. The equilibrium slope in clear-
water condition can be expressed by the threshold Shields parameter Hc for the
initiation of bed particle motion under fully developed turbulence flow condition.
It is

Hc ¼
h1Seq

Dd50
¼ constant ð10:35Þ

From the Manning equation, one can write

q ¼
h5=3

1 S0:5
eq

n
ð10:36Þ

where n is the Manning roughness coefficient. Using Eqs. (10.35) and (10.36), the
uniform flow depth and the equilibrium bed slope can be obtained as

ht

ds
Sediment bed

U1

Duneθ j

Zp

Fig. 10.6 Schematic of scour downstream of a grade-control structure
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h1 ¼
ðnqÞ6=7

ðHcDd50Þ3=7
ð10:37aÞ

Seq ¼
ðHcDd50Þ10=7

ðnqÞ6=7
ð10:37bÞ

Equation (10.37a) provides the dependency of the uniform flow depth on other
flow and sediment parameters. This allows h1 to be dropped from Eq. (10.33).

The specific energy Es on the sill is given by

Es ¼ 1:5
q2

g

� �1=3

ð10:38Þ

Applying Buckingham P theorem (see Sect. 11.2.3) to Eq. (10.33) devoid of
h1, one can write

ds

Es

¼ f
q

t
;D;

a1

Dd50
;
a1

Es

� �
ð10:39Þ

For fully developed turbulent flow, kinematic viscosity t can be neglected.
Further, D is assumed to be a constant. Equation (10.39) thus reduces to

ds

Es

¼ f
a1

Dd50
;
a1

Es

� �
ð10:40Þ

ds

a1

a2

ls

L

S0

Seq

Fig. 10.7 Definition sketch of scour at a bed sill (Gaudio et al. 2000; Lenzi et al. 2002)
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Experiments by Gaudio and Marion (2003) revealed that only the first nondi-
mensional parameter of the right-hand side of Eq. (10.40) influences the scour
depth. The empirical equation of scour depth given by Gaudio and Marion is

ds

Es

¼ 0:18
a1

Dd50
þ 0:369 ð10:41Þ

The above equation is applicable for 1.3 B a1/(Dd50) B 9.1. The length of the
scour hole is as follows (Gaudio et al. 2000):

ls

Es

¼ 1:87
a1

Dd50
þ 4:02 ð10:42Þ

Later, Lenzi et al. (2002) recognized that both the nondimensional parameters
of the right-hand side of Eq. (10.40) affect the scour depth. They put forward
expressions for the scour depth and the length of the scour hole as

ds

Es

¼ 0:436þ 1:453
a1

Es

� �0:863

þ 0:06
a1

Dd95

� �1:491

ð10:43aÞ

ls

Es

¼ 4:479þ 0:023
a1

Es

� ��1:81

þ 2:524
a1

Dd95

� �1:13

ð10:43bÞ

10.3.4 Scour Due to Horizontal Jets Issuing from a Gate
Opening

The scour phenomenon downstream of a sluice gate opening is complex in nature
owing to the abrupt change of the flow characteristics on the sediment bed (Dey
and Sarkar 2006a) (Fig. 10.8). Scour initiates at the downstream edge of the apron
when the bed shear stress exerted by the submerged jet exceeds the threshold bed
shear stress for the bed sediment. In the initial stage, the evolution of the vertical
dimension of scour hole is faster than the longitudinal one, and the suspended load
is the only mode of sediment transport. However, with the development of the
vertical dimension of the scour hole, the mode of sediment transport changes to a
combination of suspended load and bed load. As the flow separation takes place at
the edge of the apron having a reattachment of flow at the deepest point of the
scour hole, the movement of the sediment particles is divided into two parts. Some
amount of sediments move along the downstream slope of the scour hole and
ultimately go out of the scour hole. The other part moves back toward the upstream
along the upstream slope of the scour hole by the reversed flow. The upstream
portion of the scour hole achieves a steep slope.
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The theory of submerged plane wall jet was developed by Dey et al. (2010).
They derived the velocity and Reynolds stress distributions in submerged wall jets
(see Sect. 10.8.1). The theory would help the future researchers to model scour
downstream of an apron due to submerged wall jets. However, Dey and Sarkar
(2006b) gave a semiempirical model of the same. The application of the theory of
submerged wall jet to compute scour is discussed in Sect. 10.8.2.

Qayoum (1960) studied the scour downstream of a vertical gate without apron
(L0 = 0). Using the dimensional analysis, he proposed an empirical equation

ds ¼
2:78
g0:2
� q

0:4H0:22h0:4
t

d0:22
90

� ht ð10:44Þ

Altinbilek and Basmaci (1973) proposed an equation of scour depth due to
submerged jets issuing from a sluice opening as

ds ¼ b0
b0

d50
tan /

� �0:5 U0

ðDgb0Þ0:5

" #1:5

ð10:45Þ

where b0 is the thickness of sluice opening and U0 is the issuing velocity of jet.
Breusers and Raudkivi (1991) gave

ds ¼ 8� 10�3b0
U0

u�c

� �2

ð10:46Þ

Hoffmans (1998) [also Hoffmans and Verheij (1997)] derived equilibrium scour
depth due to submerged jets (with L0 = 0) by applying the momentum principle
between the vertical section at the sluice opening and the section passing through
the dune crest as

ht
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Sediment bed

Dune
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Jet
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H

Fig. 10.8 Schematic of scour due to horizontal jet issuing from a sluice gate opening
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ds ¼ b0
50
ks

1� Ucrest

U0

� �
ð10:47Þ

where ks is the scour factor dependent on d90, and Ucrest is the average velocity
over the downstream dune crest. The values of ks are ks(d90 = 0.1 mm) = 1.4,
ks(d90 = 0.3 mm) = 2, ks(d90 = 0.5 mm) = 2.3, ks(d90 = 1 mm) = 2.95, ks(d90

= 3 mm) = 4.3, ks(d90 = 5 mm) = 5.1, ks(d90 = 10 mm) = 6.3, and ks(d90

C 12 mm) = 6.8.
Shalash (1959) and Dey and Sarkar (2006a) conducted experiments and pro-

posed empirical equations of equilibrium scour depth downstream of an apron due
to submerged jets issuing from a sluice opening. According to Shalash (1959),

ds ¼ 0:61
q0:6ðH þ htÞ0:5

d0:4
90

1:5
H

L0

� �0:6

� ht ð10:48Þ

and according to Dey and Sarkar (2006a),

ds ¼ 2:59b0
U0

ðDgd50Þ0:5

" #0:94
b0

L0

� �0:37 ht

b0

� �0:16 d50

b0

� �0:25

ð10:49Þ

Eggenberger and Müller (1944) investigated scour downstream of hydraulic
structures due to a combined overfall and submerged jet (Fig. 10.9). They gave a
general relationship for equilibrium scour depth as

ds ¼
c0

15:849
� q

0:6H0:5

d0:4
90

� ht ^ c0 ¼ 22:88� 103ð4:9q̂3 � 6:3q̂2 þ 29q̂þ 64Þ�1

ð10:50Þ

where q̂ ¼ q1=q0, q1 is the overfall discharge per unit width, and q0 is the sub-
merged jet discharge per unit width through a sluice opening. By definition of
continuity, total discharge per unit width is q = q1 + q0. For overfall only, c0

(q̂� 1) = 22.88 s0.6 m-0.3; and for submerged jets only, c0 (q̂� 1) = 10.35 s0.6

m-0.3.

10.4 Scour Below Horizontal Pipelines

Local scour below pipelines, laid on and across the riverbeds to convey water, oil,
gas, or any fluid, commonly occurs by the erosive action of flowing stream. Scour
may leave a pipeline unsupported over a considerable distance resulting in fatigue
failure due to flow-induced oscillation by wake vortex shedding. Therefore, one of
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the imperative aspects of pipeline design is to predict the magnitude of scour
below pipelines.

When a pipeline is laid on an erodible bed with a little embedment
e (Fig. 10.10), it is subjected to a hydrodynamic force, and a pressure gradient is
set up between the two sides of the pipeline. At the same time, the pressure
gradient between upstream and downstream contact points (A and B) is also set up
in the sediment bed immediately below the pipeline. Due to this pressure gradient,
the subsurface seepage flow is driven below the pipeline. As the flow velocity
increases, the pressure gradient is simultaneously enhanced, because the pressure
intensity is proportional to the quadratic of the flow velocity. With an increase in
pressure gradient dp/dx (where p is the pressure intensity and x is the distance
along the pipe perimeter), a condition is reached when the sediment below the
pipeline starts to dislodge and is called scour threshold. The mechanism of scour
below a pipeline under a steady flow is described as follows (Sumer and Fredsøe
2002):

Once a threshold point is reached, the seepage flux increases rapidly than the
order of the pressure gradient by which the seepage is driven. At the same time, the
surface of the sediment bed in the immediate downstream of the pipeline bulges.
Eventually, the sediment–water mixture breaks through the space underneath the
pipeline, which is called piping (Fig. 10.11). Sumer and Fredsøe (2002) derived
the threshold condition of piping through a simple calculation by balancing the
upward seepage pressure force and the submerged weight of sediment at the exit
point B (see Fig. 10.10). It is

1
qg
� dp

dx
	Dð1� q0Þ

ht

ds

Sediment bed

Dune
q0 Jet

Gate

H

q1

Overfall

q = q0 + q1

Fig. 10.9 Schematic of scour due to a combined action of overfall and submerged jet allowed by
a sluice gate
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where q0 is the porosity of the sediment. Further, Sumer et al. (2001) determined
the threshold condition empirically in terms of velocity considering a small
embedment e of the pipeline having an external diameter D. Using the above
relationship and the laboratory experimental data, they proposed

U2
gcr

Dgð1� q0ÞD
¼ 0:025 exp 81

e

D

� �0:5
ð10:51Þ

where Ugcr is the threshold velocity of scour below a pipeline. Note that the scour
does not initiate all along the length of the pipeline simultaneously, but occurs
locally.

After the piping process, a small gap is developed between the pipeline and the
bed. A considerable magnitude of flow is diverted to the gap leading to a flow
concentration in the gap. It enhances the shear stress acting on the bed immediately
below the pipeline. The enhanced bed shear stress is of the order of magnitude of
three times the bed shear stress of the approaching flow (Jensen et al. 1990). As a
result, a large amount of sediment is scoured underneath the pipeline. The sedi-
ment–water mixture is spouted from the enlarged gap. Such scour process is
known as tunnel erosion (Fig. 10.12). With an increase in gap size, the gap
velocity decreases and the tunnel erosion gradually seizes. This stage is followed
by lee-wake erosion.

As a result of tunnel erosion, a dune is formed on the downstream end of the
pipeline and it gradually migrates further downstream. Finally, the dune disappears
as the scour progresses. At this stage, the scour is governed by the lee-wake

e

A B

Fig. 10.10 Schematic of
seepage flow induced below a
pipeline

e

Fig. 10.11 Piping
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erosion, which occurs due to the vortex shedding on the downstream end of the
pipeline (Fig. 10.13). At the end of the tunnel erosion, when the gap between the
pipeline and the bed enlarges to a certain magnitude, the vortex shedding begins.
The vortices that shed from the pipe wall sweep the sediment as they get convected
downstream. During this period, the bed shear stress increases by about four times
having a greater scour potential at the lee end of the pipe. However, the bed shear
stress gradually reduces with the enlargement of the scour hole size. The equi-
librium is reached when the bed shear stress underneath the pipeline reaches the
value being equal to the threshold bed shear stress for sediment motion in clear-
water case or equal to the approaching bed shear stress in live-bed case. Fig-
ure 10.14 shows the photograph of an equilibrium scour below a pipe in a flume.

10.4.1 Estimation of Gap Discharge

In studying scour below a pipeline, estimation of gap discharge is an important
aspect. It can be determined analytically as described here. The schematic of a
scour hole below a pipeline and the coordinate system are shown in Fig. 10.15,
where the origin of the coordinate system lies at the contact point of the circular
pipe with the initial bed level. According to Chao and Hennessy (1972), the image
method of potential flow theory is applicable assuming a steady flow around the
pipeline and neglecting the curvature effect of the scour hole. The potential
function / and the stream function w governing the flow are

Fig. 10.12 Tunnel erosion

Fig. 10.13 Lee-wake
erosion
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/ ¼ U0x 1þ D2

4½x2 þ ðz� 0:5DÞ2�
þ D2

4½x2 þ ðzþ 2ds þ 0:5DÞ2�

( )
ð10:52aÞ

w ¼ U0ðzþ dsÞ 1� D2

4½x2 þ ðz� 0:5DÞ2�
� D2

4½x2 þ ðzþ 2ds þ 0:5DÞ2�

( )

ð10:52bÞ

where U0 is the depth-averaged velocity up to the elevation of the horizontal
diameter of the pipeline, that is, z = 0.5D. It can be estimated assuming a loga-
rithmic law of approaching velocity as U0 = 5.75u*log (2.765D/d50), where u* is
the approaching shear velocity. Here, it is intuitive that the flow through the gap is

Fig. 10.14 Photograph of an
equilibrium scour below a
pipe in an experimental
flume. Flow took place from
the right to left

z

ds

h

D

Pipeline

x
Initial bed level

Fig. 10.15 Schematic of a
scour hole below a pipeline
and the coordinate system
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contributed by the approaching flow velocity up to the elevation of the horizontal
diameter of the pipeline from the bed level. Hence, the horizontal velocity com-
ponent �u within the scour hole is given by

�u ¼ o/
ox
¼ U0 1þ D2

4½x2 þ ðz� 0:5DÞ2�
� x2D2

2½x2 þ ðz� 0:5DÞ2�2

(

þ D2

4½x2 þ ðzþ 2ds þ 0:5DÞ2�
� x2D2

2½x2 þ ðzþ 2ds þ 0:5DÞ2�2

) ð10:53Þ

Integrating �u within limits z = –ds and z = 0, the gap discharge qg is obtained
as

qg ¼
Z0

�ds

�udz ¼ U0 ds þ 0:5D� D2

4ð2ds þ 0:5DÞ

� �
ð10:54Þ

Alternatively, one can also estimate the gap discharge qg from the graphical
solution given by Chiew (1991) as h/D is a function of qg/q, where h is the flow
depth and q is the free stream discharge per unit width in the channel. However, it
would be convenient to use his graphical solution if it is expressed as follows (Dey
and Singh 2007):

qg ¼ 0:781q
D

h

� �0:787

ð10:55Þ

10.4.2 Scour Depth Estimation

Phenomena involved in local scour below underwater pipelines have been studied
most extensively in the laboratory experiments, from which a number of empirical
equations and the methodologies have been developed to estimate the equilibrium
scour depth below pipelines. The important predictors of scour depth are sum-
marized below:

Kjeldsen et al. (1973) were the pioneer to give an empirical relationship for
equilibrium scour depth below pipelines. It is

ds ¼ 0:972
U2

2g

� �0:2

D0:8 ð10:56Þ
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The Dutch research group (Bijker and Leeuwestein 1984) put forward the
following empirical equation of scour depth below an underwater pipeline:

ds ¼ 0:929
U2

2g

� �0:26
D0:78

d0:04
50

ð10:57Þ

The empirical equations proposed by Ibrahim and Nalluri (1986) for the esti-
mation of scour depth below pipelines in clear-water and live-bed conditions are

Clear-water scour:
ds

D
¼ 4:706

U

Ucr

� �0:89

Fr1:43 þ 0:06 ð10:58aÞ

Live-bed scour:
ds

D
¼ 0:084

U

Ucr

� ��0:3

Fr�0:16 þ 1:33 ð10:58bÞ

where Fr is the Froude number [= U/(gh)0.5] and Ucr is the threshold velocity for
sediment motion.

Chiew (1991) proposed the following iterative method to predict equilibrium
scour depth below pipelines:

1. For a given value of h/D, determine the gap discharge qg.
2. Assume a scour depth ds and estimate the average gap velocity Ug below the

pipeline by Ug = qg/ds.
3. Compute the shear stress s0 on the scoured bed using s0 ¼ kDqU2

g=8, where the
friction factor kD can be estimated from the Moody diagram for a relative
roughness (= d50/ds) and a Reynolds number (= Ugds/t).

4. Compare s0 with the threshold bed shear stress s0c obtained from the Shields
diagram. Continue the iteration for different values of ds until s0c = s0.

Moncada-M and Aguirre-Pe (1999) suggested the following empirical equation
of equilibrium scour depth below an underwater pipeline:

ds

D
¼ 0:9 tanh 1:4

U

ðghÞ0:5

" #
þ 0:55 ð10:59Þ

With consideration of an initial gap e between the original bed level and the
pipe bottom above the bed level, Moncada-M and Aguirre-Pe (1999) proposed

ds

D
¼ 2Fr sech 1:7

e

D

� �
ð10:60Þ

Based on wall correction method (Sect. 3.9), Dey and Singh (2007) put forward
a simplified iterative method for the computation of equilibrium scour depth. Dey
and Singh (2008) conducted an extensive experimental study to explore the
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influence of various parameters on equilibrium scour depth in clear-water condition
(U/Ucr & 0.9). The equilibrium scour depth ds increases with an increase in
approach flow depth h for shallow flow depths, becoming independent of higher
flow depths when h/D [ 5. The curve of scour depth versus pipe Froude number FD

[= U/(DgD)0.5] has a maximum value of ds/D = 1.65 at FD = 0.58 (Fig. 10.16).
Dey and Singh (2008) also studied the influence of sediment gradation on scour

depth. The influence of sediment gradation was found to be prominent for non-
uniform sediments, which reduce scour depth to a large extent due to the formation
of armor layer within the scour hole. The variation of Kr with rg is shown in
Fig. 10.17. Further, the influence of different shaped cross sections of pipes on the
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Fig. 10.16 Influence of pipe
Froude number FD on scour
depth ds (Dey and Singh
2008)
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Fig. 10.17 Variation of Kr

as a function of rg (Dey and
Singh 2008)
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scour depth was investigated, where the shape factors2 for circular, 45� (diagonal
facing), and 90� (side facing) square pipes were obtained as 1, 1.29, and 1.91,
respectively.

10.5 Scour at Bridge Piers

At bridge sites, localized scour in the vicinity of piers, over which the bridge
superstructure rests, poses a challenging problem to the hydraulic engineers.
Figure 10.18 shows the photograph of bridge piers, where the scour takes place
even in the summer season at a lean flow discharge condition. Failure of bridges
due to scour at pier foundations is a common occurrence, if the magnitude of scour
is too large to uncover the pier foundations. The obstruction to the approaching
flowing stream by a bridge pier causes a three-dimensional separation of flow
forming a vortex flow and a periodical vortex shedding downstream of the pier.
The complexity in flow structure increases with the development of the scour hole.
To be more explicit, the flow separates at the upstream face of the pier as it travels
by the side of the pier, creating a vortex trail, termed horseshoe vortex. The vortex
moves downstream and as a result of which local scour takes place around the pier
due to the removal of bed sediment. The scour at bridge piers has been studied
extensively by various researchers. Reviews of the important experiments and field
studies were given by Breusers et al. (1977), Dey (1997a, b), Melville and
Coleman (2000), and Richardson and Davis (2001). Figure 10.19 shows the
photograph of an equilibrium scour hole at a circular pier in an experimental
flume. It gives an idea about the shape of the scour hole that occurs at a pier.

According to Raudkivi (1986), the approaching flow, which is stationary at the
upstream face of the pier, is maximum at the free surface and decreases to zero at
the bed in the free flow (unobstructed by the pier) reach. The stagnation pressure at
the upstream face of the pier decreases in the downward direction causing the flow
to be driven down along the face of the pier, producing a downflow. The downflow
along the vertical plane of symmetry of the pier has a velocity profile with zero at
the pier wall and again at some distance upstream of it. The maximum magnitude
of downflow, at any elevation in the upstream, measured by Ettema (1980) occurs
at 0.02–0.05b from the pier face being closer to the pier lower down. Here, b is the
pier width across the flow (or pier diameter in case of a circular pier). The
horseshoe vortex developed due to the flow separation at the upstream edge of the
scour hole rolls to form a helical flow, which is similar to the ground roller
downstream (leeside) of a dune crest (see Sect. 8.2.2). It migrates downstream by
the side of the pier for a few pier diameters before losing its existence becoming a

2 Shape factor is the ratio of the equilibrium scour depth for a given non-circular pipe to that for
a circular shaped pipe having a same diameter to the vertical cross-sectional length of the non-
circular pipe.
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part of the general turbulence. The horseshoe vortex is a consequence of scour, not
the cause of scouring. It also pushes the downflow inside the scour hole closer to
the pier. The bow wave, formed at the free surface adjacent to the pier face rotating
in a direction opposite to that of the horseshoe vortex, becomes pertinent in rel-
atively shallow flows where it can interfere with the approaching flow causing a
reduction in downflow velocity. The stagnation pressure also accelerates the flow
by the side of the pier, resulting in a flow separation at the side and creating a wake
with the cast-off vortices at the interfaces to the main flow. The cast-off vortices
travel downstream with the flow and interact with the horseshoe vortex at the bed

Fig. 10.18 Scour taking place at bridge piers in a field condition. Photograph by the author

Fig. 10.19 Photograph of an equilibrium scour at a circular pier in an experimental flume
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causing it to oscillate. Figures 10.20a, b show the typical geometry of a scour hole
and the components of the flow field at a pier.

Conducting an experimental study, Dey (1991) described the clear-water
scouring process at a circular pier. According to him, the horseshoe vortex is
formed due to the diving mode of approaching flow into the scour hole. In the
upstream of a pier, the sediment particles are mainly dislodged by the action of the
downflow and subsequently pulled up along the upstream slope of the scour hole
by the upward velocity of the horseshoe vortex. The scour hole is also fed by the
sediment due to the collapse of the slant bed of scour hole, and finally, the
sediment particles are drifted downstream by the arms of the horseshoe vortex
along the circumference of the pier. The process of digging by the downflow along
with the slant bed erosion continues until a quasi-equilibrium state is reached (Dey
1995). In this state, the scour hole is continually fed by a small amount of sediment
particles due to slant bed erosion without a noticeable change in scour depth. The
equilibrium, when the erosion ceases, is reached after a long period of time.
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Fig. 10.20 Typical geometry of a scour hole and the components of flow field at a circular pier: a
elevation view and b plan view
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In quasi-equilibrium state, the average upstream slope of the scour hole, termed
dynamic angle of repose /d, is about 10–20 % greater than the angle of repose /
of sediment in still water. A flat semicircular rim is formed around the upstream
pier base (Fig. 10.20a). On downstream, the scour initiates at the pier base due to
wake vortices (which act like a tornado) in the form of a spontaneous lifting of
sediment particles by the action of suction from the each core of wake vortices. In
the further downstream, a dune is progressively formed by the substantial depo-
sition of sediment and side scouring. The dune, thus formed, slowly migrates
downstream with the development of the scour hole. The erosion continues on
both sides of the dune to form a shallow channel on either side having an adverse
longitudinal slope that is flatter than the upstream slope.

Melville (1975), Dey et al. (1995), Dey (1995), Graf and Istiarto (2002) and Dey
and Raikar (2007a) and Raikar and Dey (2008) measured the flow field in a scour
hole at a pier. The flow measurement was done by hot-wire anemometry (Melville
1975), five-hole pitot sphere (Dey et al. 1995), and acoustic Doppler velocity
profiler (Graf and Istiarto 2002). On the other hand, Dey and Raikar (2007a) and
Raikar and Dey (2008) measured the flow by an acoustic Doppler velocimeter
(ADV) and studied the characteristics of turbulent horseshoe vortex flow within the
developing scour hole at cylindrical piers. Figure 10.21 shows the time-averaged
velocity vectors at the upstream axis of symmetry of a pier in an equilibrium scour
hole. The horseshoe vortex flow is well evident within the scour hole.

10.5.1 Kinematic Model of Horseshoe Vortex

Dey et al. (1995) developed a kinematic model for the horseshoe vortex flow in a
scour hole at a pier.

In the upstream, the azimuthal section of a quasi-equilibrium scour hole, as
shown in Fig. 10.20a, is divided into zone 1, that is the zone vertically above the
sloping bed, and zone 2, that is the zone vertically above the flat bad (semicircular
rim) of the scour hole adjacent to the pier. The upstream edge of the scour hole can
be approximately represented by a circular arc up to the azimuthal angle
h = ±75�. The width ds of zone 2 is expressed as ew(R - 0.5b), where ew is a
factor (&0.1), R is the radius of the scour hole, that is, [dscot/d/(1 - ew)] + 0.5b,
and ds is the scour depth. In cylindrical polar coordinates, the velocity components
(ur, uh, uz) are in r, h, and z-direction, respectively.

The tangential velocity uh is represented by a power law preserving the no-slip
condition at the bed

uh

U
¼ k1 sin hGm J þ z

ds

� �1=n

ð10:61Þ

592 10 Scour



where

GðrÞ ¼ 1

JðrÞ ¼ R� r

ðR� 0:5bÞð1� ewÞ

9>=
>; for zone 1; that is 0:5bþ ewðR� 0:5bÞ
 r
R

GðrÞ ¼ R� r

ðR� 0:5bÞð1� ewÞ

JðrÞ ¼ 1

9>=
>; for zone 2; that is 0:5b\r
 0:5bþ ewðR� 0:5bÞ

where k1 = k1(U, h, b, ds), U is the depth-averaged approaching flow velocity, h is
the approaching flow depth, and m and n are the exponents. The values of m and
n were obtained as 2.1 and 3.9, respectively.

The radial velocity ur changes direction in the scour hole. The ur-distribution
along z varies linearly in the scour hole (z B 0) and follows a power law above it
(z [ 0). On the other hand, the ur-distribution along r is parabolic. Thus, the
expression for ur is

ur

U
¼ �k2 cos hðJ þ f1Þ 2

r

b
� 1

� �
ð10:62Þ

where

f1ðzÞ ¼ 2
z

ds

for zone 1; that is � ðR� rÞds

ðR� 0:5bÞð1� ewÞ

 z
 0

f1ðzÞ ¼ k3
z

h

� �1=a
for zone 2; that is 0
 z
 h

Fig. 10.21 Velocity vectors
at the upstream axis of
symmetry of a pier in an
equilibrium scour hole (Dey
and Raikar 2007a)
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where k2 and k3 are the coefficients similar to k1, a = jU/u*, j is the von Kármán
constant, and u* is the shear velocity. Note that Eqs. (10.61) and (10.62) violate the
no-slip condition at the pier wall and the bed, respectively, and cannot be appli-
cable to the immediate vicinity of them.

The expression for vertical velocity uz, obtained by integrating the continuity
equation (Eq. 2.164), is

uz

U
¼ �k1 cos h

ds

r
� n

1þ n
Gm J þ z

ds

� �ð1þnÞ=n

þ k2 cos h
z

r
4

r

b
� 1

� �n
ðGþ f2Þ

�sgnðrÞ r

ðR� 0:5bÞð1� ewÞ
2

r

b
� 1

� �	

ð10:63Þ

where

f2ðzÞ ¼
z

ds

for zone 1; that is � ðR� rÞds

ðR� 0:5bÞð1� ewÞ

 z
 0

f2ðzÞ ¼ k3
a

1þ a
z

h

� �1=a
for zone 2; that is 0
 z
 h

sgnðrÞ ¼ 1 for zone 1; that is 0:5bþ ewðR� 0:5bÞ
 r
R

sgnðrÞ ¼ 0 for zone 2; that is 0:5b\r
 0:5bþ ewðR� 0:5bÞ

Equation (10.63) produces a strong downflow along the upstream face of the
pier and a flow reversal in the scour hole. It however violates the no-slip condition
at the pier wall and the bed. Dey et al. gave the expressions for the coefficients as

k1 ¼ 1:9Fr0:83 h

b

� �0:69 b

ds

� �2

^ Fr ¼ U

ðghÞ0:5

k2 ¼ 2Fr0:92 h

b

� �0:57 b

ds

� �2

k3 ¼
0:8
k2
� 1þ a

a
2

R

b
� 1

� ��1

Dey and Bose (1994) used the expressions for ur, uh, and uz to compute the bed
shear stress in the scour hole by applying the turbulent boundary-layer approach.

10.5.2 Scour Depth Prediction

Scour at piers is influenced by various parameters (Breusers et al. 1977), which are
grouped as follows:
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1. Parameters related to the pier: Size, shape, spacing, number, and orientation
with respect to the approaching flow direction.

2. Parameters related to the bed sediment: Median particle size, particle size
distribution, angle of repose, and cohesiveness.

3. Parameters related to the approaching flow condition: Approaching flow
velocity, approaching flow depth, shear velocity, and roughness.

4. Parameters related to the fluid: Mass density, viscosity, gravitational accel-
eration, and temperature. Note that the temperature may not be important in
scour problems, unless free surface is frozen.

5. Parameters related to the time: Time of scour for an evolving scour case.

A large number of empirical equations were proposed by various investigators
to estimate the maximum scour depth at piers based on the data from the labo-
ratory experiments and the field measurements. In general, these equations were
derived from a limited range of data and are applicable to the conditions similar to
those for which they are valid. Though the number of proposed equations for the
estimation of maximum scour depth is overwhelming (Dey 1997a; Melville and
Coleman 2000), it is however difficult to confirm their adequacy for the design
purposes due to limited field measurements. Nevertheless, the design equations
proposed by Melville and Coleman (2000), HEC18 (Richardson and Davis 2001),
and Sheppard et al. (2014) seem to provide satisfactory estimations.

Melville and Coleman (2000) recommended a design equation for the esti-
mation of maximum scour depth at piers based on empirical factors, called K-
factors, which account for the effects of pier, flow, and sediment characteristics.
The K-factors were determined by fitting the curves that overlap the data plots.
Thus, the proposed K-factors potentially remain adequate from the viewpoint of a
safe pier foundation design. The maximum scour depth ds at a bridge pier for-
mulated as a product of various K-factors is given as

ds ¼ KhKIKdKsKaKt ð10:64Þ

where Kh is the flow depth–pier size factor, KI is the flow intensity factor, Kd is the
sediment size factor, Ks is the pier shape factor, Ka is the pier alignment factor, and
Kt is the time factor. The relationships for the K-factors are as follows:

The flow depth–pier size factor Kh is the scour depth ds at a pier of width b for a
given value of flow depth h. It is given by

Khðb=h\0:7Þ ¼ 2:4b

Khð0:7
 b=h\5Þ ¼ 2ðhbÞ0:5

Khðb=h	 5Þ ¼ 4:5h

9>=
>; ð10:65Þ

The flow intensity factor KI is the ratio of the scour depth ds for a given flow
velocity U to that for the threshold flow velocity Ucr for the bed sediment motion.
Thus, the flow intensity factor KI represents the effects of flow intensity on scour
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depth. It also accounts for the nonuniformity of sediment in terms of average
approaching velocity Ua at armor peak. It is given by

KI ¼
U � ðUa � UcrÞ

Ucr

; for
U � ðUa � UcrÞ

Ucr

\1

KI ¼ 1; for
U � ðUa � UcrÞ

Ucr

	 1

9>>=
>>;

ð10:66Þ

where Ua = 0.8Ucra and Ucra is the maximum average velocity for the bed to
armor. Note that for uniform sediment, Ua(rg \ 1.3) = Ucr. Under varied stream
flow velocities over a bed of nonuniform sediment, a process of armoring prevails
resulting in an exposure of coarser particles due to washing out of the finer
fraction. The armoring effect is to reduce the scour depth. The Ucr and Ucra can be
obtained from

Ucr

u�c
¼ 5:75 log 5:53

h

d50

� �
;

Ucra

u�ca

¼ 5:75 log 5:53
h

d50a

� �
ð10:67Þ

where u*ca is the threshold shear velocity for median size d50a of armor particles,
d50a = dmax/1.8 and dmax is the maximum bed sediment size. Melville and Cole-
man suggested that the u*c can be empirically calculated as u�cð0:1 mm

d50\1 mmÞ ¼ 0:0115þ 0:0125d1:4

50 and u�cð1 mm
 d50\100 mmÞ ¼ 0:0305d0:5
50

� 6:5� 10�3d�1
50 .

Here, u*c is in m s-1 and d50 in mm. For u*ca, same expressions can be used
replacing u*c by u*ca and d50 by d50a.

The sediment size factor Kd is the ratio of the scour depth ds for a given value of
b/d50 to that for b/d50 for which ds becomes maximum and beyond which, there is
no effect of b/d50 on ds. For nonuniform sediment, d50 is to be replaced by d50a. It
is

Kdðb=d50
 25Þ ¼ 0:57 log 2:24
b

d50

� �

Kdðb=d50 [ 25Þ ¼ 1

9>=
>; ð10:68Þ

However, for the piers embedded in gravel-beds, Raikar and Dey (2005b)
proposed an additional set of sediment size factor. It is

Kdðb=d50
 9Þ ¼ 0:6 log 3:88
b

d50

� �

Kdð9\b=d50
 25Þ ¼ 0:184 log 14070
b

d50

� �

Kdðb=d50 [ 25Þ ¼ 1

9>>>>>=
>>>>>;

ð10:69Þ
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The shape factor Ks is defined as the ratio of the scour depth ds for a particular
pier shape to that for the circular pier having a diameter same as the pier width.
The shape factors Ks for different piers are furnished in Table 10.2.

The alignment factor Ka is the ratio of the scour depth ds at an oblique pier to
that at an aligned pier. In case of noncircular piers, the scour depth increases with
an increase in the effective projected width of the piers. The Ka is given by

Ka ¼
bp

b

� �0:65

ð10:70Þ

where bp is the projected width of a rectangular pier normal to the approaching
flow (= Lsina + bcosa), a is the pier orientation with respect to the approaching
flow or skewness, and L is the pier length (Fig. 10.22). For circular piers, Ka = 1.

The time factor Kt is the ratio of the scour depth ds for a given time t to the
equilibrium scour depth. It depends on the scour condition, such as clear-water
scour and live-bed scour. For live-bed scour, Kt can be approximated as unity, as
equilibrium is attained rather rapidly, while for clear-water scour, Kt is given by

Kt ¼ exp �0:03
Ucr

U
ln

t

te

� �����
����
1:6

" #
ð10:71Þ

where te is the time to reach equilibrium scour depth. It can be calculated from

Table 10.2 Shape factors Ks

for pier scour
Shape Name Ks

b
Circular 1

b
Round nosed 1

b
Square nosed 1.1

b
Sharp nosed 0.9

L

b
α

bp

Flow

Fig. 10.22 Oblique
alignment of a rectangular
pier with respect to
approaching flow direction
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teðdaysÞ ¼ 48:26
b

U

U

Ucr

� 0:4

� �
; for

h

b
[ 6 and

U

Ucr

[ 0:4

teðdaysÞ ¼ 30:89
b

U

U

Ucr

� 0:4

� �
h

b

� �0:25

; for
h

b

 6 and

U

Ucr

[ 0:4

9>>>=
>>>;
ð10:72Þ

At threshold condition (U = Ucr), te being maximum, when h [ 6b, is given as

teðdaysÞ ¼ 28:96
b

U
ð10:73Þ

where b is in m and U in m s-1.
According to HEC18 (Richardson and Davis 2001), the scour depth at a pier in

both clear-water and live-bed scour conditions is given by

ds

b
¼ 2KsKaKbedKa

h

b

� �0:35

Fr0:43 ð10:74Þ

where Kbed is the factor for bed condition (Table 10.3) and Ka is the factor for
armoring of bed sediment. Further, for a maximum value of ds at a round-nosed
pier with aligned flow, if Fr B 0.8, then ds/b B 2.4 and if Fr [ 0.8, then ds/b B 3
(Table 10.4).

The Ka that takes into account of armoring of bed sediment can be given as

Ka ¼ 1; for d50\2 mm or d95\20 mm ð10:75aÞ

Table 10.3 Bed condition
factors Kbed for pier scour

Bed condition Dune height, gd (m) Kbed

Clear-water – 1.1
Plane bed and antidunes – 1.1
Small dunes 0.6 B gd \ 3 1.1
Medium dunes 3 B gd \ 9 1.1–1.2
Large dunes gd C 9 1.3

Table 10.4 Alignment
factors Ka for pier scour

a (degree) L/b = 4 L/b = 8 L/b = 12

0 1 1 1
15 1.5 2 2.5
30 2 2.75 3.5
45 2.3 3.3 4.3
90 2.5 3.9 5
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Ka ¼ 0:4U0:15
r ; for d50	 2 mm and d95	 20 mm ^ Ur ¼

U � Ucrsjd50

Ucrjd50
�Ucrsjd95

ð10:75bÞ

where Ucrsjdi
is the approaching flow velocity required for threshold of scour at a

pier with sediment size di, Ucrjdi
is the threshold flow velocity for bed sediment of

size di, and di is the i-percent finer sediment size. Note that in Eq. (10.75b), Ur

should be positive (Ur [ 0). The Ucrsjdi
is estimated as

Ucrsjdi
¼ 0:645

di

b

� �0:053

Ucrjdi
^ Ucrjdi

¼ 6:19h1=6d1=3
i ð10:76Þ

Further, Sheppard et al. (2014) proposed a method of scour depth prediction as

ds

be

¼ 2:5f1f2f3; for 0:4Ucr
U\Ucr ð10:77aÞ

ds

be

¼ f1 2:2
U � Ucr

Upeak � Ucr

� �
þ 2:5f3

Upeak � U

Upeak � Ucr

� �� �
; for Ucr
U
Upeak

ð10:77bÞ

ds

be

¼ 2:2f1; for U [ Upeak ð10:77cÞ

where be is the effective pier diameter and Upeak is the live-bed peak flow velocity,

f1 ¼ tanh
h

be

� �0:4
" #

; f2 ¼ 1� 1:2 ln
U

Ucr

� �� �2

; f3 ¼

be

d50

0:4
be

d50

� �1:2

þ10:6
be

d50

� ��0:13 ;

Upeak ¼ 5Ucr; if 5Ucr	 0:6ðghÞ0:5

Upeak ¼ 0:6ðghÞ0:5; if 5Ucr\0:6ðghÞ0:5

9=
;; be ¼ Ksbp; Ks ¼ 0:86þ 0:97 a� p

4

��� ���4

In the above, a is in radians and Ks = 1 for circular piers.
They suggested the empirical relationship for the computation of Ucr as

Ucrð5
<
 70Þ ¼ 2:5u�c ln
73:5h

d50
<ð2:85þ 0:002<� 0:58 ln<Þ þ 111

< � 6

� ��1
( )

ð10:78aÞ
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Ucrð<[ 70Þ ¼ 2:5u�c ln 2:21
h

d50

� �
ð10:78bÞ

where

< ¼ u�cd50

2:32� 10�7
; and

u�c ¼ 16:2d50
9:09� 10�6

d50
� d50ð38:76þ 9:6 ln d50Þ � 0:005

� �
 	0:5

Besides the aforementioned scour predictors that can produce potentially safe
results for the scour depth, Table 10.5 furnishes some empirical equations of
equilibrium scour depth proposed by different investigators.

Regarding the maximum limit of scour depth at circular piers, Melville and
Coleman (2000) [also Melville and Sutherland (1988)] reported ds B 2.4b for flow
Froude number Fr \ 1. On the other hand, ds B 3b was recommended by HEC18
(Richardson and Davis 2001) and Jain and Fischer (1979). In the experiments
conducted by Jain and Fischer (1979), the Fr was as high as 1.5 for the bed
conditions of antidunes. However, for noncircular piers, these maximum limits
increase and are to be corrected for pier shape and skewness, if any.

Table 10.5 Equations of equilibrium scour depth at piers proposed by different investigators

References Formula Regime Note

Laursen and
Toch (1956)

ds

b
¼ 1:35

h

b

� �0:3 Clear-water Laursen and Toch’s design curves
were expressed by Neill (1964)

Shen et al.
(1969) ds ¼ 2:23� 10�4 Ub

t

� �0:619 Clear-water

Hancu (1971) ds

b
¼ 2:42 2

U

Ucr

� 1

� �

� U2
cr

gb

� �1=3

Clear-water/
live bed

For live bed, 2
U

Ucr

� 1 ¼ 1

Breusers et al.
(1977)

ds

b
¼ 2 tanh

h

b

� �
KIKsKa

Clear-water/
live bed

KI = 0, for
U

Ucr


 0:5

KI ¼ 2
U

Ucr

� 1, for 0:5\
U

Ucr

\1

KI = 1, for
U

Ucr

	 1

Jain and
Fischer
(1980)

ds

b
¼ 1:86

h

b

� �0:5

� ðFr � FrcÞ0:25

Live bed
Frc ¼

Ucr

ðghÞ0:5

Jain (1981) ds

b
¼ 1:84

h

b

� �0:3

Fr0:25
c

Sediment
threshold

Dey (1999) ds

b
¼ 1:77

h

b

� �0:15 Sediment
threshold
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Fig. 10.23 Photograph of a wing-wall abutment. Photograph by the author

Fig. 10.24 Photograph of an equilibrium scour hole at a wing-wall abutment in a flume
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10.6 Scour at Bridge Abutments

Abutments, located at either end of a bridge span, are the substructures over which
the bridge superstructure rests (Fig. 10.23). Akin to bridge piers, they also help to
transmit the weight of the bridge including traffic to the foundation bed. Piers are
located within the bridge span (Sect. 10.5). Scour at bridge abutments is also
equally or even more responsible for failure of bridges as compared to scour at
piers. Similar to bridge piers, the flow separates at the upstream of the abutment as
it travels by the side of the abutment, creating a vortex trail to move downstream.
The result is that the sediment bed in the vicinity of the abutment is scoured,
exposing the abutment foundation that may lead to the failure of the bridge.

A study of the US Federal Highway Administration in 1973 concluded that of
383 bridge failures, 25 % involved pier damage and 72 % involved abutment
damage (Richardson et al. 1993). In a report submitted to the National Roads
Board of New Zealand, Sutherland (1986) pointed out that of the 108 bridge
failure records, 29 were attributed to abutment scour during 1960–1984.
According to Kandasamy and Melville (1998), 6 out of 10 bridge failures that
occurred in New Zealand during Cyclone Bola were related to the abutment scour.
In another report of the Department of Scientific and Industrial Research of New
Zealand, Macky (1990) mentioned that about 50 % of total expenditure was made
toward the bridge damage repairing and maintenance, out of which 70 % was
spent toward the abutment scour. Therefore, abutment scour, due to its practical
importance, was studied extensively by various researchers [see the review by
Barbhuiya and Dey (2004)]. Figure 10.24 shows the photograph of an equilibrium
scour hole at a wing-wall abutment in an experimental flume. It gives an idea
about the shape of the scour hole that occurs at an abutment.

The flow field at an abutment is complex in detail, and the complexity increases
with the development of scour hole involving flow separation to develop three-
dimensional vortex flow. Kwan and Melville (1994) [also in Kwan (1988)] used a
hydrogen bubble technique to measure the three-dimensional flow field in a scour
hole at a wing-wall abutment. They identified a primary vortex, which is quite
similar to the horseshoe vortex at a pier, along with the downflow being the
principal mechanism of scour at an abutment. On the upstream face of an abut-
ment, a vertical pressure gradient is developed due to the stagnation of
approaching flow by the abutment. The pressure gradient drives the fluid down-
ward to roll up. Thus, primary vortex is developed and it enlarges its size with the
development of the scour hole. They also reported that the primary vortex and the
downflow are confined mainly in the scour hole beneath the line of the original bed
level. The primary vortex is elliptical in shape with an inner core region as that of a
forced vortex and an outer core region as that of a free vortex. The maximum
velocity and downflow component in the vicinity of the abutment were measured
as 1.35 and 0.75 times the approaching flow velocity, respectively. They also
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identified a secondary vortex with counter rotational direction to that of the pri-
mary vortex occurring next to the primary vortex. The secondary vortex is
believed to have the effect of restricting the scouring capacity of the primary
vortex. In the downstream of abutment, wake vortices are created due to the

Wake 
vortices

Downflow

Primary 
vortex

Secondary 
vortex

Bow wave

Abutment

Bed sediment

l

bw

Fig. 10.25 Schematic of flow field at an abutment (Kwan 1988)

bw

l

z

r
θ

Fig. 10.26 Coordinate system for representation of flow and schematic of a scour hole at a 45o

wing-wall abutment
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separation of flow at the upstream and downstream of the abutment corners. The
unstable shear layers created due to the flow separation roll up to form eddy
structures, termed wake vortices. The wake vortices drifted downstream by the
mean flow act like small tornadoes lifting up sediment particles from the bed. The
wake vortices are rather weak as compared to the primary vortex. Bow wave
having a rotational motion opposite to that of primary vortex appears on the
upstream face of the abutment near the free surface. The major flow components at
a wing-wall abutment identified by Kwan (1988) are shown schematically in
Fig. 10.25.

Dey and Barbhuiya (2005a, b, 2006) investigated the three-dimensional tur-
bulent flow fields at semicircular, vertical-wall and 45o wing-wall abutments,
embedded in a stabilized equilibrium scoured bed by using an ADV [also in
Barbhuiya (2003)]. A cylindrical polar coordinate system, as shown in Fig. 10.26,
was used by Dey and Barbhuiya (2006) to represent the normalized velocity
vectors at azimuthal sections of a 45o wing-wall abutment with a scour hole.
Figure 10.27 shows velocity vectors at h = 10o and 30o (Dey and Barbhuiya
2006). Here, z is the vertical distance, r is the radial distance, and l is the abutment
length transverse to the flow. The characteristics of vortex flow inside the scour
hole (that is, in the flow zone z B 0) together with the strong downflow along the
upstream face of the abutment are evident. Note that as the length scales of the
axes (ordinate and abscissa) are different in Fig. 10.27, the vortices are apparently
stretched horizontally, but they are actually not so. The circulation is strong at the
upstream of the abutment and decreases with an increase in h. Above the scour
hole (that is, in the flow zone z [ 0), the flow is horizontal for r [ 3l, and then, it
gradually curves down toward the abutment.

Fig. 10.27 Normalized velocity vectors at azimuthal sections (h = 10o and 30o) of a 45o wing-
wall abutment after Dey and Barbhuiya (2006)
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10.6.1 Scour Depth Prediction

Parameters involved in scour phenomenon at abutments can be grouped in the
similar way as those of pier scour (Sect. 10.5.2), except the following two
parameters:

1. Parameters related to the abutment: Size, shape, and orientation with respect to
the approaching flow direction.

2. Parameters related to the geometry of channel: Width, cross-sectional shape,
and slope.

Most of the scour predictors were preliminarily obtained, as functional rela-
tionships, using the dimensional analysis based on the aforementioned parameters.
Then, experimental and field data were used to give them a final shape as empirical
equations. Proposed empirical equations for the estimation of maximum scour
depth at abutments are overwhelming (Barbhuiya and Dey 2004), but their
application is limited to the conditions similar to those for which they were val-
idated. The design approaches proposed by Melville and Coleman (2000) and
Froehlich (1989), which was recommended by HEC18 (Richardson and Davis
2001), for the estimation of maximum scour depth at abutments based on K-factors
seem to be adequate from the viewpoint of the safety of abutment foundation.

According to Melville and Coleman (2000), the maximum equilibrium scour
depth ds at an abutment for both clear-water and live-bed conditions is given by

ds ¼ KhKIKdKsKaKGKt ð10:79Þ

where KG is the channel geometry factor and other K-factors are designated similar
to that in Eq. (10.64). The relationships for K-factors, in case of abutment scour,
are given as follows:

The flow depth–pier size factor Kh for abutment scour is

Khðl=h
 1Þ ¼ 2l

Khð1\l=h\25Þ ¼ 2ðhlÞ0:5

Khðl=h	 25Þ ¼ 10h

9>=
>; ð10:80Þ

The above Kh-factor is based on Melville (1992) who distinguished short and
long abutments. For short abutments (l/h B 1), the scour depth ds is independent of
flow depth h and dependent on abutment length l. For long abutments (l/h C 25),
the ds is dependent on h and independent of l. For 1 \ l/h \ 25, the ds is dependent
on both l and h. Note that l is projected length for skewed abutments (Fig. 10.28).

The flow intensity factor KI given by Eq. (10.66) for the case of pier scour is
also applicable for the abutment scour.
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The sediment size factor Kd for abutment scour is

Kdðl=d50
 25Þ ¼ 0:57 log 2:24
l

d50

� �

Kdðl=d50 [ 25Þ ¼ 1

9>=
>; ð10:81Þ

However, for the abutments embedded in gravel-beds, Raikar and Dey (2005a)
proposed new sediment size factors as

Kdðl=d50
 10Þ ¼ 1:184 log 0:588
l

d50

� �

Kdð10\l=d50
 25Þ ¼ 0:226 log 1052:8
l

d50

� �

Kdðl=d50 [ 25Þ ¼ 1

9>>>>>=
>>>>>;

ð10:82Þ

The shape factor Ks is defined as the ratio of the scour depth ds for a given
abutment shape to that for the vertical-wall abutment having a same length. The
shape factors Ks for different abutments are given in Table 10.6.

For abutments, the values of alignment factor Ka for abutment scour are

Kaðl=h	 3Þ ¼ K�a

Kað1\l=h\3Þ ¼ K�a þ ð1� K�aÞ 1:5� 0:5
b

h

� �

Kaðl=h
 1Þ ¼ 1

9>>>=
>>>;

ð10:83Þ

The values of K�a in the above equation are obtained from Table 10.7.
The channel geometry factor KG is defined as the ratio of the scour depth ds at

an abutment to that at the same abutment in the equivalent rectangular channel. In
case of rectangular channels, KG = 1. However, for abutments in compound
channels, KG depends on the abutment position in the compound channel. The KG

is

Bank

Bank

L
αAbutment

Fig. 10.28 Oblique
alignment of an abutment
(plan view)
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KG ¼ 1� l�

l

� �
1� h�

h

� �5=3 n

n�

� �" #( )0:5

ð10:84Þ

where l* is the abutment length spanning the flood channel, h* is the flow depth in
the flood channel, and n and n* are the Manning roughness coefficients in the main
and flood channels, respectively. In case of an inclined abutment, l and l* are the
projected abutment length and that spanning the flood channel, respectively.

For live-bed scour, the time factor Kt is unity; while for clear-water scour, Kt for
abutment scour is given by

Kt ¼ 0:1
Ucr

U
ln

t

te

� �
þ 1 ð10:85Þ

Table 10.6 Shape factors Ks

for abutment scour
Shape Name Ks

Vertical-wall 1

Semicircular ended 0.75

45� wing-wall 0.75

Spill-through
(Horizontal:Vertical)

0.5:1 0.6
1:1 0.5
1.5:1 0.45

Table 10.7 Factors K�a for
abutment scour

a (degree) 30 45 60 90 120 135 150
K�a 0.9 0.95 0.98 1 1.05 1.07 1.08
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The time te to reach equilibrium scour depth is given by

teðdaysÞðl=h	 1:2Þ ¼ 25
h

U

teðdaysÞðl=h\1:2Þ ¼ 20:83
h

U

9>=
>; ð10:86Þ

HEC18 (Richardson and Davis 2001) recommended Froehlich’s (1989) equa-
tion of live-bed scour at abutments. The estimation of maximum scour depth is

ds

l
¼ 2:27KsKa

h

l

� �0:57

Fr0:61 þ 1 ð10:87Þ

where Fr = U0/(gh)0.5, U0 = Q0/A0, Q0 is the flow rate obstructed by the abutment
and approach embankment, and A0 is the flow area of the approach cross section
obstructed by the embankment. The values of shape factors Ks are furnished in
Table 10.8.

The alignment factor Ka is given by

Ka ¼
a

90

� �0:13
ð10:88Þ

where a is the downstream angle of inclination of abutment with bank
(Fig. 10.28), such that a\ 90� is for the abutment pointing downstream and
a[ 90� for pointing upstream.

Table 10.9 furnishes some additional empirical scour depth predictors at
abutments proposed by various investigators.

10.7 Scour Countermeasures

Engineering devices for countermeasure of scour at bridge piers are generally
classified into two categories: Flow-altering and bed-armoring countermeasures.
The working principle of flow-altering countermeasures is to diminish the strength
of the downflow and the horseshoe vortex, which are the primary cause of pier
scour. Of various types of flow-altering countermeasures, slot in a pier (Grimaldi
et al. 2009), spirally wrapped cables on a pier (Dey et al. 2006), collars and
horizontal plates attached to a pier (Kim et al. 2005; Parker et al. 1998),

Table 10.8 Shape factors Ks

for abutment scour
Abutment shape Ks

Vertical-wall 1
Vertical-wall abutment with wing walls 0.82
Spill-through 0.55
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arrangement of sacrificial piles (Melville and Hadfield 1999; Chiew and Lim 2003;
Haque et al. 2007), and flow deflection by upstream vanes or plates (Odgaard and
Wang 1991; Lauchlan 1999) are pertinent. Tafarojnoruz et al. (2010) compiled a
review of literature on flow-altering countermeasures at piers. On the other hand,
bed-armoring countermeasures provide a physical barrier against scour. In prac-
tice, these barriers often consist of large and heavy units, which cannot be easily
removed by the flow at piers (Melville and Coleman 2000; Lagasse et al. 2007;
Melville et al. 2008). The most commonly employed protection of bridge piers
(and also abutments) is the use of a riprap layer around the piers. In this section,
riprap protection at piers is mainly discussed.

Figure 10.29 shows a schematic of the placement of a riprap layer at a pier of
width b, considering the flow to be the normal to the plane of the drawing.
Parameters involved in riprap protection design at piers are as follows:

1. Thickness tr of riprap layer.
2. Coverage br of riprap layer at sides, upstream, and downstream of a pier.
3. Placement zr of riprap layer with respect to the original bed level.
4. Median size d50r of riprap stones and their gradation.

The thickness of the riprap layer is recommended typically in the range
tr = 2–3d50r. Thicker layer can resist higher flow intensity (Chiew 1995). The
general recommendation for riprap coverage is to place riprap around a pier
extending up to br = 3b from the pier wall in all directions (Parola 1995; Croad
1997; Parker et al. 1998; Lauchlan 1999). Parker et al. (1998) suggested br for
rectangular piers is br = 1.5b/cosa. Regarding the placement of a riprap layer zr,
the surface of the riprap layer to be placed at the original streambed level is the
common recommendation (Richardson and Davis 2001). Another recommendation
is to place the riprap layer below the possible general scour depth level (Neill
1973; Breusers et al. 1977). Further, to improve the performance of a riprap
protection, the use of a filter layer beneath the riprap layer is generally proposed.
Filters that can be granular filters or synthetic filters prevent the passage of finer

tr

Pier

Riprap layer z

b

b

Sediment bed

r

r

Fig. 10.29 Typical
placement of a riprap layer at
a pier
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bed sediment through the highly porous riprap layers, but also have sufficient
permeability to prevent building up water pressure within the underlying bed
sediment. Regarding riprap stones, it is important that they should be well graded,
such that the maximum stone size should not exceed twice the median size of
riprap stones, that is, dmax B 2d50r (Richardson and Davis 2001), and the median
size should not exceed twice the 15 % finer stone size, that is, d50r B 2d15r (Croad
1997). To determine the riprap stone size d50r, HEC-18 (Richardson and Davis
2001) and HEC-23 (Lagasse et al. 2001) recommended using the reorganized form
of Isbash (1936) equation. It is

d50r ¼ 0:346
ðKUÞ2

Dg
ð10:89Þ

where K is the pier shape coefficient. The values of K are that for round-nosed
piers, K = 1.5 and for rectangular piers, K = 1.7.

Further, Lauchlan (1999) suggested an equation of riprap stone size taking into
account the placement depth zr below the original bed level. It is

d50r ¼ 0:3fSFh 1� zr

h

� �2:75
Fr1:2 ð10:90Þ

where fSF is a safety factor that has a minimum recommended value of 1.1.
In case of riprap protection at abutments, the coverage br of riprap layer around

an abutment, called launching apron, is extended up to br = 1.5ds from the
abutment wall in all directions. It should have a minimum thickness of tr = 2d50r.
The spill-through abutments are additionally protected by stone-pitching on the
slant face of the abutment. The median stone size d50r of the riprap layer can be
obtained from the equation given by Austroads (1994) as

d50r ¼ 1:026
hFr2

D
ð10:91Þ

According to Atayee et al. (1993) and Richardson and Davis (2001), the median
stone size can be obtained as

d50rðFr2
 0:8Þ ¼ Ks

h2Fr2
2

D
ð10:92aÞ

d50rðFr2 [ 0:8Þ ¼ Ks

h2Fr0:14
2

D
ð10:92bÞ

where h2 is the flow depth in the contracted section of the bridge, Fr2 is the flow
Froude number in the contracted section [= U2/(gh2)0.5], and U2 is the average
flow velocity in the contracted section. The values of the shape factor Ks are 0.89
(Fr B 0.8) and 0.61 (Fr [ 0.8) for spill-through abutments and 1.02 (Fr B 0.8)
and 0.69 (Fr [ 0.8) for vertical-wall abutments.
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10.8 Appendix

10.8.1 Submerged Wall Jets (Dey et al. 2010)

Submerged plane wall jet is described as a fluid jet that impinges tangentially (or at
an angle) on a solid boundary surrounded by the same fluid (still or moving)
progressing along the solid boundary (Fig. 10.30a). By virtue of the initially
abounding momentum, the streamwise velocity �u in the shear flow of jet exceeds
that in external stream over a downstream reach (Launder and Rodi 1981). In a
submerged wall jet, the flow zone of principal importance is the fully developed
zone existing after the developing zone of jet (Fig. 10.30b). The jet is confined to a
solid boundary on one side, and the other side is fluid bounded. The jet layer is
overlain by a circulatory flow having an enormous mixing of fluid with a flow
reversal. Since the boundary conditions for a submerged wall jet are such that the
velocities at the solid boundary and on the separation line are zero (�u ¼ 0), the
velocity distribution has a peak within the jet layer. Below the peak velocity level
(in the inner layer), the flow is characterized by a boundary-layer flow, and the
upper flow zone is structurally similar to a free jet. Therefore, a submerged wall
jet, characterized by a shear flow influenced by the solid boundary and an over-
lying circulatory flow layer, is of self-similar type of flow (Dey et al. 2010).

A typical �u-distribution in the fully developed zone describing various layers of
flow is shown in Fig. 10.30a. The inner layer and outer layer of jet refer to the
zones below and above the point of occurrence of peak velocity u0, called the jet
velocity. Precisely, the jet layer (0 B z B d) that comprises of inner layer and outer
layer extends up to the inflection point (that is, the point of change of sign of slope,
d�u2=dz2 ¼ 0) of a �u-distribution. Above the jet layer, there exists a circulatory flow
layer that is divided by the separation line �u = 0 into inner layer and outer layer of
the circulatory flow. The flow in the outer layer of the circulatory flow is directed
toward upstream. Momentum exchange takes place through the separation line
within the circulatory flow layer of the jet. The jet layer thickness d is important
from the viewpoint of scaling the vertical distance z (Dey et al. 2010).

A two-dimensional submerged plane wall jet issuing from a sluice opening is
considered as the jet emerges in the form of a bunch of diverging streamlines.
Another bunch of streamlines constitutes a circulatory flow above the jet in the
circulatory flow layer. The limiting streamline on the solid boundary has a velocity
�u ¼ 0 due to no-slip. Let the equation of the jet layer be z = d(x1), where
x1 = x + x0, extending up to the inflection point of �u-distribution. The jet layer is
assumed as a boundary layer. Due to finite size of issuing jet, the point of emergence
(that is the origin) of the jet is located upstream of the sluice opening at a certain
distance x0. Applying the boundary-layer approximation to the two-dimensional
Reynolds-averaged Navier–Stokes (RANS) equations of steady flow and elimi-
nating pressure term, the following equation is obtained (Rajaratnam 1976):
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�u
o�u

ox
þ �w

o�u

oz
þ ou0w0

oz
þ o

ox
ðu0u0 � w0w0Þ ¼ t

o2�u

oz2
ð10:93Þ

The continuity equation is

o�u

ox
þ o�w

oz
¼ 0 ð10:94Þ

The flow in submerged plane wall jets is characterized by the self-similar class.
To obtain the similarity solutions of Eqs. (10.93) and (10.94) by the transformation
g = z/d(x1), where the horizontal length scale x1 is dimensional for the theory, the
solutions are of the form

�u ¼ u0 uðgÞ; u0w0 ¼ �u2
0 wðgÞ; u0u0 � w0w0 ¼ u2

0 rðgÞ ð10:95Þ

z

Sluice gate

Tailwater level

b0

Developing zone Fully developed zone Recovering zone

x

Reversed
flow

0

= 0

(b)

δ

Inflection point
∂ 2/∂z2 = 0

Inner-layer of jet
Outer-layer of jet

Inner-layer of 
circulatory flow

Outer-layer of 
circulatory flow or 
reversed flow layer

Circulatory 
flow layer

Jet-layeru0

z

Separation line
= 0

(a)

Fig. 10.30 a Typical sketch of ū-distribution superimposed on the flow field in the fully
developed flow zone and b flow zones in a submerged wall jet (Dey et al. 2010)
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where u0 = u0(x1). It is pertinent to mention that a wall jet boundary layer is not
amenable to similarity analysis, unless different scaling laws are assumed for the
inner layer and the outer layer of the jet (Barenblatt et al. 2005). Inserting the
above expressions into Eq. (10.93) and using Eq. (10.94), one obtains

d
u0
� du0

dx
u2 � dd

dx
þ d

u0
� du0

dx

� �
u0
Zg

0

udg� w0 ¼ 1
Rd

u00 � 2d
u0
� du0

dx
rþ dd

dx
r0 � 0

ð10:96Þ

where Rd = u0d/t. The right-hand side of Eq. (10.96) vanishes, as the terms
containing the difference of streamwise and vertical Reynolds normal stresses
represented by r are negligible and Rd is too large. For a similarity solution,
Eq. (10.96) must be independent of x or x1 (Schwarz and Cosart 1961), that is

dd
dx1
¼ b;

d
u0
� du0

dx1
¼ �ba ð10:97Þ

where b and a are constants. Hence, by integration, one can write

d ¼ bx1; u0 ¼ b0x�a
1 ð10:98Þ

where b0 is a constant. Noticeably, the d increases linearly with x1, and u0 varies as
x�a

1 . For a free jet, a is 0.5 (Schlichting 1979).
The velocity distribution obtained using Eqs. (10.96) and (10.98) is given by

au2 þ ð1� aÞu0
Zg

0

udgþ 1
b

w0 ¼ 0 ð10:99Þ

Setting u(g) = f 0(g), Eq. (10.99) becomes

af 02 þ ð1� aÞff 00 þ 1
b

w0 ¼ 0 ð10:100Þ

By definition of the turbulence diffusivity et, one can write

u0w0 ¼ �et

o�u

oz
¼ �u2

0w ð10:101Þ

Using Eq. (10.95), Eq. (10.101) yields

w ¼ et

u2
0

� o

oz
ðu0uÞ ¼

et

u0d
u0 ¼ et

b0b
� u0

x1�a
1

¼ �et

b0b
f 00 ð10:102Þ
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In Eq. (10.102), the left-hand side being independent of x1 implies that et is
proportional to x1�a

1 , and hence, et ¼ �etx1�a
1 . In the narrow turbulent jet layer, �et

may be assumed to be an averaged value of et over g. Thus, one obtains

af 02 þ ð1� aÞff 00 þ �et

b0b
2 f 000 ¼ 0 ð10:103Þ

The velocity distribution contains an arbitrary constant b0. Replacing b0 by
4�et=b

2 in Eq. (10.103), one gets the following equation for f:

af 02 þ ð1� aÞff 00 þ 1
4

f 000 ¼ 0 ð10:104Þ

The boundary conditions applicable for the solution of Eq. (10.104) are that at
the peak velocity of the jet f0(g = g0) = u(g = g0) = 1, f(g = g0) = 0 (that is
�w ¼ 0), and f0(g ? ?) = 0 (that is �u ¼ 0). For a free jet, g0 = 0 and a = 0.5
(Schlichting 1979), and the solution of Eq. (10.104) is f = tanh g. It is anticipated
that due to the submergence, a is modified as

a ¼ 0:5þ a1 ð10:105Þ

where a1 is an additional term mainly due to submergence. The solution of
Eq. (10.104) can be given by

f ðgÞ ¼ tanhðg� g0Þ þ a1GðgÞ ð10:106Þ

Substituting Eq. (10.106) into Eq. (10.104) and equating the coefficients of a1,
the differential equation for G is given by

G000 þ 2 tanhðg� g0ÞG00 þ 4sech2ðg� g0Þ½G0 � tanhðg� g0ÞG
þ tanh2ðg� g0Þ þ 1� ¼ 0 ð10:107Þ

with boundary conditions Gðg ¼ g0Þ ¼ 0, G0ðg ¼ g0Þ ¼ 0, and G0ðg!1Þ ¼ 0.
Equation (10.107) that has highly nonlinear coefficients is a linear differential
equation. Galerkin’s method is applied to obtain an approximate analytical solu-
tion. For this purpose, it is recognized that a function of the pattern of the leading
term of Eq. (10.106) that satisfies the boundary condition is

GðgÞ ¼ a0 tanh2ðg� g0Þ ð10:108Þ

Substituting Eq. (10.108) into Eq. (10.107) and taking the weighted average
with the weight appearing in the equation yield
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a0

Z1

0

sech2g tanh3 g ð5� 9 tanh2 gÞ dg � �
Z1

0

sech2g tanh2 g ð1þ tanh2 gÞ dg

ð10:109Þ

Numerically evaluating the integrals in Eq. (10.109), one obtains a0 & 32/15.
Differentiating Eq. (10.106) with the value of a0 in Eq. (10.108), one gets

uðgÞ ¼ sech2ðg� g0Þ 1þ 64
15

a1 tanhðg� g0Þ
� �

ð10:110Þ

Giving the velocity distribution of a submerged wall jet by Eqs. (10.95) and
(10.98), the profile holds for g C g0, because below the point of g0 (that is, within
the inner layer of the jet), boundary effects come into account.

In the near-boundary zone (that is, within the inner layer of the jet) 0 B g B g0,
the 1/m-th power law for u(g) can be assumed as in case of a flow over a solid
plate. Noting that as u(g = g0) = 1, u0(g = g0) = 0, such a law is

uðgÞ ¼ 1
m

g
g0

� �1=m

1þ m� g
g0

� �
ð10:111Þ

The Reynolds shear stress sxz is given by using Eqs. (10.101) and (10.102). It is

�u0w0 ¼ b0�et

b
x�2a

1 u0ðgÞ ð10:112aÞ

) sxz ¼ �qu0w0 ¼ qU2
0n ðx̂þ x̂0Þ�2au0ðgÞ ð10:112bÞ

where n ¼ b0�et=ðbU2
0b2a

0 Þ, x̂ ¼ x=b0, and x̂0 ¼ x0=b0.
From Eqs. (10.110) and (10.111), the following expressions for u0 are obtained:

u0ðg	 g0Þ ¼ �sech2ðg� g0Þ 2 tanhðg� g0Þ þ
64
15

a1½2 tanh2ðg� g0Þ � 1�

 	

ð10:113aÞ

u0ð0\g
 g0Þ ¼
1

mg0
1þ 1

m

� �
g
g0

� �ð1�mÞ=m

1� g
g0

� �
ð10:113bÞ

The Reynolds shear stress vanishes at the solid boundary. Equation (10.113b)
cannot be applicable to the very thin viscous sublayer in the vicinity of the
boundary, where viscous shear stress prevails. Using the experimental data, Dey
et al. (2010) estimated the values of coefficients and exponents as x̂0 ¼ 11:34,
b = 0.078, b1 = 3.17, a = 0.455, a1 = –0.045, g0 = 0.3, m = 6, and n = 79.87.
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Figures 10.31a, b show u(g) and u0(g) curves for U = 0.639 m s-1 and
b0 = 40 mm and the comparisons with the experimental data.

10.8.2 Computation of Scour Due to Submerged Wall Jets

The bed shear stress can be determined from Eq. (10.113b) by applying it to the
near-bed level. In case of an erodible sediment bed, the bed is initially horizontal
(before scour), and the fluid jet flows in the direction parallel to the horizontal bed
surface of sediment. The jet erodes the bed forming a scour hole as shown in
Fig. 10.32. The scour profile can be calculated by considering the bed shear stress
distribution along the surface of the bed. To determine the bed shear stress s0 in the
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Fig. 10.31 a u as a function of g and b u0 as a function of g for U = 0.639 m s-1 and
b0 = 40 mm in submerged plane wall jet (Dey et al. 2010)
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scour hole, Eq. (10.113b) along with Eq. (10.112b) is thus applied to the particle
level with an introduction to a shape function due to scour. With modification, the
equation of bed shear stress s0 can then be given by

s0ðx̂Þ ¼ qU2
0n ðx̂þ x̂0Þ�2a 1

mg0
1þ 1

m

� �
gb

g0

� �ð1�mÞ=m

1� gb

g0

� �
Gðg; x̂Þ ð10:114Þ

where gb = ks/d and Gðg, x̂Þ is a shape function to account for the bed shear stress
variation when the bed is no longer horizontal. Here, ks can be assumed as d50.
Note that the value of a = 0.5 + a1 depends on submergence ratio S [= (ht - hj)/
hj], where hj is the conjugate tailwater depth of free jump f¼ 0:5b0½ð1þ 8F2

0Þ
0:5 � 1�g

and F0 is the jet Froude number [= U0/(gb0)0.5].
Initially, the bed is horizontal (g = 0) and so Gð0, x̂Þ ¼ 1. A Gaussian-like

stress distribution with vertical distance can be assumed (Hogg el al. 1997):

Gðg	 0; x̂Þ ¼ 1; Gðg\0; x̂Þ ¼ exp½ðC0gÞ2� ð10:115Þ

where C0 is the coefficient to be determined from the experimental data.
For equilibrium scour, Eq. (4.115) is reorganized as

s0ðx̂Þ ¼ s0c cos h 1� tan h
tan /

� �
^ h ¼ arctan

dz

dx

� �
¼ arctan d̂

dg
dx̂

� �
ð10:116Þ

where d̂ ¼ d=b0. Using Eqs. (10.114) and (10.115), Eq. (10.116) which is a dif-
ferential equation can be solved by Runge–Kutta method to determine the

ht

Bed sediment

Dune
U0

b0

Gate

Jet
x 

z 

(x, –z) 

Fig. 10.32 Definition sketch of scour due to a submerged wall jet
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variation of scour depth ẑð¼ gd̂Þ with x̂, that is the nondimensional profile of
equilibrium scour hole.

10.9 Examples

Example 10.1 Estimate the maximum equilibrium scour depth within a long
contraction using the empirical equation given by Dey and Raikar for the fol-
lowing data:

Approaching flow depth, h1 = 5 m
Approaching channel width, B1 = 70 m
Channel width at contracted zone, B2 = 40 m
Median size of sediment, d50 = 2.6 mm
Geometric standard deviation of sediment, rg = 2.2
Consider coefficient of kinematic viscosity of water t = 10-6 m2 s-1 and

relative density of sediment s = 2.65

Solution

Use van Rijn’s empirical formula for the determination of threshold shear velocity
(see Table 4.1):

Particle parameter, D� ¼ d50ðDg=t2Þ1=3 ¼ 2:6 � 10�3 1:65 � 9:81= 10�6
� �2

h i1=3

¼ 65:77
Threshold Shields parameter, Hcð20\D� 
 150Þ ¼ 0:013D0:29

� ¼ 0:013�
65:770:29 ¼ 0:044
Threshold bed shear stress, s0c ¼ HcDqgd50 ¼ 0:044 � 1:65 � 103 � 9:81
� 2:6 � 10�3 ¼ 1:852 Pa

Threshold shear velocity, u�c ¼ ðs0c=qÞ0:5 ¼ 1:852=103ð Þ0:5¼ 0:043 m s�1

The approaching flow velocity U1jds¼0
U2¼Ucr

that corresponds to the threshold of
sediment motion within contraction is estimated from the solution of Eqs. (10.20)–
(10.22) as follows:

Eq: 10:20ð Þ ) 5þ 1
2� 9:81

U1jds¼0
U2¼Ucr

� �2
¼ h2 þ

1
2� 9:81

U2jds¼0
U2¼Ucr

� �2

Eq: 10:21ð Þ ) U1jds¼0
U2¼Ucr

� 5 � 70 ¼ U2jds¼0
U2¼Ucr

h2 � 40

Eq: 10:22ð Þ )
U2jds¼0

U2¼Ucr

0:043
¼ 5:75 log

h2

2� 2:6� 10�3
þ 6

Numerically solving above three equations, U1jds¼0
U2¼Ucr

¼ 0:565 m s�1
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The threshold velocity of approaching flow is determined as follows:

Ucr ¼ 0:043 5:75 log
5

2� 2:6� 10�3
þ 6

� �
¼ 1 m s�1

Then, for U1ec ¼ Ucr � U1jds¼0
U2¼Ucr

¼ 1� 0:565 ¼ 0:435 m s�1,

F1ec ¼
U1ec

ðDgh1Þ0:5
¼ 0:435

ð1:65� 9:81� 5Þ0:5
¼ 0:048

Using B2/B1 = 40/70 = 0.571 and d50/h1 = 2.6 9 10-3/5 = 5.2 9 10-4 in Dey
and Raikar’s equation (Eq. 10.24), the [ds]max is estimated as

½ds�max

h1
¼ 0:368� 0:0480:55 � 0:571�1:26 � ð5:2� 10�4Þ�0:19 ¼ 0:59

( Eq: 10:24ð Þ

The maximum scour depth in uniform sediment is [ds]max = 0.59h1 = 0.59 9 5
= 2.95 m
For nonuniform sediment with rg = 2.2 for which Kr = 0.38 (Fig. 10.3), the
maximum equilibrium scour depth in nonuniform sediment is [ds]max = 0.38 9

2.95 = 1.121 m.

Example 10.2 Calculate the equilibrium scour depth below a drop structure using
the equations of various investigators for the following data:

Height between upstream and downstream water levels, H = 1.5 m
Tailwater depth, ht = 0.9 m
Discharge per unit width, q = 1.4 m2 s-1

Angle of jet entering the tailwater, hj = 60�
Thickness of jet at the tailwater level, l0 = 0.1 m
Sediment size, d90 = 32 mm and d95 = 38 mm
Relative density of sediment, s = 2.65

Solution

Schoklitsch’s equation

ds ¼ 0:52
1:40:57 � 1:50:2

ð32� 10�3Þ0:32 � 0:9 ¼ 1:155 m( Eq: 10:26ð Þ
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Kotoulas’ equation

ds ¼
1:9

9:810:35
� 1:4

0:7 � 1:50:35

ð38� 10�3Þ0:4
� 0:9 ¼ 3:71 m( Eq: 10:27ð Þ

Fahlbusch’s equation
Velocity of jet entering the tailwater, U0 = q/l0 = 1.4/0.1 = 14 m s-1

Assume Kp = 3.5 (for gravels)

ds ¼ 3:5
1:4� 14

9:81
sin 60�

� �0:5

� 0:9 ¼ 3:7 m( Eq: 10:28ð Þ

Graf’s equation

ds ¼
3:6

1:654=9 � 9:810:3
� 1:40:6 � 1:50:5

ð32� 10�3Þ0:4
� 0:9 ¼ 7:726 m( Eq: 10:29ð Þ

Eggenberger and Müller’s equation

ds ¼
22:88

15:849
� 1:40:6 � 1:50:5

ð32� 10�3Þ0:4
� 0:9 ¼ 7:673 m( Eq: 10:50ð Þ

Example 10.3 Calculate the equilibrium scour depth downstream of a grade-
control structure for the following data:

Approaching flow depth, h = 1.2 m
Drop height, Zp = 0.5 m
Discharge per unit width, q = 1.55 m2 s-1

Angle of jet near the original bed level, hj = 55�
90 % finer size of sediment, d90 = 4 mm
Angle of repose of sediment, / = 40�
Relative density of sediment, s = 2.65

Solution

Bormann and Julien’s equation is used to calculate equilibrium scour depth
downstream of a grade-control structure.
Approaching flow velocity, U1 = q/h = 1.55/1.2 = 1.292 m s-1

ds ¼ 1:8
sin 40�

sinð40� þ 55�Þ

� �0:8 1:550:6 � 1:292� sin 55�

ð1:65� 9:81Þ0:8ð4� 10�3Þ0:4

( )
� 0:5 ¼ 1:213 m

( Eq: 10:32ð Þ
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Example 10.4 Calculate the equilibrium scour depth due to a horizontal jet issuing
from a sluice gate opening using the equations of various investigators for the
following data:

Height between upstream and downstream water levels, H = 0.5 m
Tailwater depth, ht = 2 m
Discharge per unit width, q = 1.6 m2 s-1

Sluice gate opening, b0 = 0.5 m
Sediment size, d50 = 10 mm and d90 = 18 mm
Angle of repose of sediment, / = 42�
Relative density of sediment, s = 2.65
Dune height, gd = 0.1ht

Solution

Use van Rijn’s empirical formula for the determination of threshold shear velocity
(see Table 4.1):

Particle parameter, D* = d50(Dg/t2)1/3 = 10 9 10-3[1.65 9 9.81/(10-6)2]1/3 =
252.95
Threshold Shields parameter, Hc(D* [ 150) = 0.055
Threshold bed shear stress, s0c = HcDqgd50 = 0.055 9 1.65 9 103 9 9.81 9

10 9 10-3 = 8.903 Pa
Threshold shear velocity, u*c = (s0c/q)0.5 = (8.903/103)0.5 = 0.094 m s-1

Qayoum’s equation

ds ¼
2:78

9:810:2
� 1:6

0:4 � 0:50:22 � 20:4

ð18� 10�3Þ0:22 � 2 ¼ 3:826 m( Eq: 10:44ð Þ

Altinbilek and Basmaci’s equation

Jet velocity, U0 = q/b0 = 1.6/0.5 = 3.2 m s-1

ds ¼ 0:5
0:5

10� 10�3
tan 42�

� �0:5 3:2

ð1:65� 9:81� 0:5Þ0:5

" #1:5

¼ 4 m( Eq: 10:45ð Þ

Breusers and Raudkivi’s equation

ds ¼ 8� 10�3 � 0:5
3:2

0:094

� �2

¼ 4:636 m( Eq: 10:46ð Þ
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Haffmans’ equation

Averaged velocity over dune, Ucrest = q/(ht - 0.1ht) = q/(0.9ht) = 1.6/(0.9 9 2)
= 0.889 m s-1

Scour factor, ks = 6.8 for d90 = 18 mm

ds ¼ 0:5
50
6:8

1� 0:889
3:2

� �
¼ 2:655 m( Eq: 10:47ð Þ

Eggenberger and Müller’s equation

ds ¼
10:35

15:849
� 1:60:6 � 0:50:5

ð18� 10�3Þ0:4
� 2 ¼ 1:053 m( Eq: 10:50ð Þ

Example 10.5 Determine the equilibrium scour depth downstream of an apron of
length L0 = 3 m due to a horizontal jet issuing from a sluice gate opening for the
data given in Example 10.4.

Solution

Shalash’s equation

ds ¼ 0:61
1:60:6ð0:5þ 2Þ0:5

ð18� 10�3Þ0:4
1:5

0:5
3

� �0:6

� 2 ¼ 0:776 m( Eq: 10:48ð Þ

Dey and Sarkar’s equation

ds ¼ 2:59� 0:5
3:2

ð1:65� 9:81� 10� 10�3Þ0:5

" #0:94
0:5
3

� �0:37 2
0:5

� �0:16 10� 10�3

0:5

� �0:25

¼ 2:2 m( Eq: 10:49ð Þ

Example 10.6 Calculate the equilibrium scour depth downstream of a hydraulic
structure due to a combined overfall and submerged jet for the following data:

Height between upstream and downstream water levels, H = 1.2 m
Tailwater depth, ht = 1.5 m
Total discharge per unit width, q = 1.6 m2 s-1

Discharge through sluice opening, q0 = 0.6q
Sediment size, d90 = 12 mm

Solution

Eggenberger and Müller’s equation
Submerged jet discharge through sluice opening, q0 = 0.6q = 0.6 9 1.6
= 0.96 m2 s-1
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Overfall discharge, q1 = q - q0 = 1.6 - 0.96 = 0.64 m2 s-1

Discharge ratio, q̂ ¼ q1=q0 ¼ 0:64=0:96 ¼ 0:67

c0 ¼ 22:88� 103

4:9q̂3 � 6:3q̂2 þ 29q̂þ 64

¼ 22:88� 103

4:9� 0:673 � 6:3� 0:672 þ 29� 0:67þ 64
¼ 10:7

ds ¼
10:7

15:849
� 1:60:6 � 1:20:5

ð12� 10�3Þ0:4
� 1:5 ¼ 4:251 m( Eq: 10:50ð Þ

Example 10.7 Given pipe diameter, D = 1.2 m; embedment, e = 0.1 m; porosity
of sediment, q0 = 0.4; and relative density of sediment, s = 2.65, what is the
threshold velocity of scour underneath the submarine pipeline?

Solution

From Eq. (10.51)

U2
gcr ¼ 0:025Dgð1� q0ÞD exp 81

e

D

� �0:5

¼ 0:025� 1:65� 9:81ð1� 0:4Þ1:2� exp 81
0:1
1:2

� �0:5

¼ 3:915

Therefore, Ugcr = 1.979 m s-1

Example 10.8 Compute the equilibrium scour depth below a 0.1 m diameter
underwater pipeline, laid on a sediment bed of d50 = 0.6 mm in a laboratory
flume, subjected to a steady flow velocity of 0.35 m s-1 having a flow depth of
0.4 m. Take coefficient of kinematic viscosity of water t = 10-6 m2 s-1 and mass
density of water q = 103 kg m-3.

Solution

Given data are as follows:
Pipe diameter, D = 0.1 m; flow velocity, U = 0.35 m s-1; flow depth,
h = 0.4 m; sediment size, d50 = 0.6 mm; kinematic viscosity of water,
t = 10-6 m2 s-1; and mass density of water, q = 103 kg m-3

Use van Rijn’s empirical formula for the determination of threshold bed shear
stress (see Table 4.1):

Particle parameter, D* = d50(Dg/t2)1/3 = 0.6 9 10-3[1.65 9 9.81/(10-6)2]1/3=
15.18
Threshold Shields parameter, Hc 10 \D� 
 20ð Þ ¼ 0:04D�0:1

� ¼ 0:04�15:18�0:1

¼ 0:03
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Threshold bed shear stress, s0c = HcDqgd50 = 0.03 9 1.65 9 103 9 9.81 9 0.6
9 10-3 = 0.291 Pa

Estimation of scour depth by Chiew’s method
Discharge per unit width, q = Uh = 0.35 9 0.4 = 0.14 m2 s-1. Then, qg is

qg ¼ 0:781� 0:14
0:1
0:4

� �0:787

¼ 0:0367 m2 s�1 ( Eq: 10:55ð Þ

Chiew proposed to determine friction factor kD from the Moody diagram. It can
however also be determined from the Colebrook–White equation (Eq. 3.55).
Remembering that the Colebrook–White equation is an implicit equation, it is
therefore preferred here to use Haaland’s (1983) explicit equation that gives an
approximate solution for the Colebrook–White equation and can be used as a
substitute. The original Haaland’s equation is given for a pipe flow case having an
average flow velocity U with an internal pipe diameter Di as

1

k0:5
D

¼ �0:782 ln
ks

3:7Di

� �1:1

þ 6
Re

" #
^ Re ¼ UDi

t

In this case, for the pressurized flow beneath the pipeline, the scour depth ds and
the average gap velocity Ug are analogous to Di and U, respectively. The rough-
ness height ks can be assumed as d50 (= 0.6 mm)
For the first trial, assume ds = 0.12 m and then calculate the average gap velocity
Ug = qg/ds = 0.0367/0.12 = 0.306 m s-1 and the Reynolds number Re = Ugds/
t = 0.306 9 0.12/10-6 = 36,720. The friction factor is determined from Haa-
land’s equation as

1

k0:5
D

¼ �0:782 ln
0:6� 10�3

3:7� 0:12

� �1:1

þ 6
36720

" #
) kD ¼ 0:033

Thus, the bed shear stress in the scour hole beneath the pipeline is

s0 ¼
kD

8
qU2

g ¼
0:033

8
� 103 � 0:3062 ) s0 ¼ 0:386 Pa ) s0 6¼ s0c

Following a trial-and-error method, the value of ds that satisfies the condition
s0 = s0c (= 0.291 Pa) is 0.136 m. Therefore, the equilibrium scour depth ds is
0.136 m.

Example 10.9 Calculate the maximum scour depth at a rectangular pier for the
following data:
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Pier width, b = 2 m
Pier length, L = 8 m
Approaching flow depth, h = 8 m
Discharge per unit width, q = 12 m2 s-1

Flow skewness, a = 15�
Median size of sediment, d50 = 0.9 mm (uniform sediment)

Use (1) Melville and Coleman’s method (2) HEC18 method and (3) Sheppard
et al.’s method.

Also, determine the size of riprap stone for the scour countermeasure at the pier.
Assume the riprap to be placed at the original bed level.

Solution

Approaching flow velocity, U = q/h = 12/8 = 1.5 m s-1

(1) Calculation of scour depth by Melville and Coleman’s method

The threshold shear velocity and threshold approaching flow velocity are as
follows:

u�cð0:1 mm
 d50\1 mmÞ ¼ 0:0115þ 0:0125d1:4
50 ¼ 0:0115þ 0:0125� 0:91:4

¼ 0:022 m s�1

Ucr ¼ u�c5:75 log 5:53
h

d50

� �
¼ 0:022� 5:75 log 5:53

8
0:9� 10�3

� �

¼ 0:593 m s�1 ( Eq: 10:67ð Þ

For uniform sediment, Ua = Ucr

Computation of K-factors is as follows:

1. For b/h = 2/8 = 0.25 \ 0.7, Kh = 2.4b = 2.4 9 2 = 4.8 m ( Eq. (10.65)

2. For
U � ðUa � UcrÞ

Ucr

¼ 1:5
0:593

¼ 2:53 [ 1, KI ¼ 1( Eq: 10:66ð Þ
3. For b/d50 = 2/(0.9 9 10-3) = 2222.2 [ 25, Kd = 1 ( Eq. (10.68)
4. For a rectangular pier (square nosed), Ks = 1.1 (Table 10.2)

5. For bp = Lsina + bcosa = 8 9 sin15� + 2 9 cos15� = 4 m, Ka ¼ bp=b
� �0:65

¼ 4=2ð Þ0:65¼ 1:569( Eq: 10:70ð Þ
6. For an equilibrium scour (t = te), Kt = 1 ( Eq. (10.71)

Then, the scour depth is
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ds ¼ KhKIKdKsKaKt ¼ 4:8� 1� 1� 1:1� 1:569� 1 ¼ 8:284 m( Eq: 10:64ð Þ

(2) Calculation of scour depth by HEC18 method

Computation of K-factors is as follows:

1. For a rectangular pier, Ks = 1.1 (Table 10.2)
2. For L/b = 8/2 = 4 and a = 15�, Ka = 1.5 (Table 10.4)
3. For Fr = 1.5/(9.81 9 8)0.5 = 0.169 and U (= 1.5 m s-1) [ Ucr

(= 0.593 m s-1), the possible bedforms are small dunes (assumed). Thus,
Kbed = 1.1 (Table 10.3)

4. For d50 = 0.9 mm \ 2 mm, Ka = 1 ( Eq. (10.75a)

Then, the scour depth is

ds

b
¼ 2KsKaKbedKa

h

b

� �0:35

Fr0:43 ¼ 2� 1:1� 1:5� 1:1� 1
8
2

� �0:35

0:1690:43

¼ 2:745( Eq: 10:74ð Þ
ds ¼ 2� 2:745 ¼ 5:49 m

(3) Calculation of scour depth by Sheppard et al.’s method

The threshold shear velocity and threshold approaching flow velocity are calcu-
lated as follows:

u�c ¼ 16:2d50
9:09� 10�6

d50
� d50ð38:76þ 9:6 ln d50Þ � 0:005

� �
 	0:5

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:2� 0:9� 10�3

9:09� 10�6

0:9� 10�3
� 0:9� 10�3½38:76þ 9:6 lnð0:9� 10�3Þ� � 0:005


 	s

¼ 0:021 m s�1

< ¼ u�cd50

2:32� 10�7
¼ 0:021� 0:9� 10�3

2:32� 10�7
¼ 81:47 ð<[ 70Þ

Ucr ¼ u�c2:5 ln 2:21
h

d50

� �
¼ 0:021� 2:5 ln 2:21

8
0:9� 10�3

� �
¼ 0:519 m s�1 ( Eq: 10:78bð Þ

The effective pier diameter is calculated as follows:

Ks ¼ 0:86þ 0:97 a� p
4

��� ���4¼ 0:86þ 0:97 15� p
180
� p

4

��� ���4¼ 0:933

be ¼ Ksbp ¼ 0:933� 4 ¼ 3:732 m

The functions are calculated as follows:
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f1 ¼ tanh
h

be

� �0:4
" #

¼ tanh
8

3:732

� �0:4
" #

¼ 0:876

f3 ¼

be

d50

0:4
be

d50

� �1:2

þ10:6
be

d50

� ��0:13 ¼
3:732

0:9� 10�3

0:4
3:732

0:9� 10�3

� �1:2

þ10:6
3:732

0:9� 10�3

� ��0:13

¼ 0:472

Then, the scour depth is calculated as follows:
For 5Ucr \ 0.6(gh)0.5, Upeak = 0.6(gh)0.5 = 0.6(9.81 9 8)0.5 = 5.315 m s-1.
; Ucr B U B Upeak

ds

be

¼ f1 2:2
U � Ucr

Upeak � Ucr

� �
þ 2:5f3

Upeak � U

Upeak � Ucr

� �� �

¼ 0:876 2:2
1:5� 0:519

5:315� 0:519

� �
þ 2:5� 0:472

5:315� 1:5
5:315� 0:519

� �� �

¼ 1:216( Eq: 10:77bð Þ
ds ¼ be � 1:216 ¼ 3:732� 1:216 ¼ 4:538 m

Calculation of riprap stone size
By HEC-23 formula:

d50r ¼ 0:346
ðKUÞ2

Dg
¼ 0:346

ð1:7� 1:5Þ2

1:65� 9:81
¼ 0:139 m( Eq: 10:89ð Þ

Note: For a rectangular pier, K = 1.7
By Lauchlan’s equation:
Placement depth, zr = 0

d50r ¼ 0:3fSFh 1� zr

h

� �2:75
Fr1:2 ¼ 0:3� 1:1� 8 1� 0

8

� �2:75

0:1691:2 ¼ 0:313 m

( Eq: 10:90ð Þ

Note: fSF = 1.1 is considered in the above calculation.
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Example 10.10 Determine scour depth in the end of the second day for q = 4 m2

s-1 and other data same as in Example 10.9.

Solution

Approaching flow velocity, U = q/h = 4/8 = 0.5 m s-1 \ Ucr (= 0.519 m s-1)
For U/Ucr = 0.5/0.519 = 0.963 \ 1 (clear-water scour), KI = 0.963
( Eq. (10.66)
For h/b = 8/2 = 4 \ 6 and U/Ucr = 0.963 [ 0.4, the time te to reach equilibrium is

te ¼ 30:89
b

U

U

Ucr

� 0:4

� �
h

b

� �0:25

¼ 30:89
2

0:5
0:5

0:519
� 0:4

� �
8
2

� �0:25

¼ 98:4 days

( Eq: 10:72ð Þ

For t = 2 days, Kt is

Kt ¼ exp �0:03
Ucr

U
ln

t

te

� �����
����
1:6

" #
¼ exp �0:03

0:519
0:5

ln
2

98:4

� �����
����
1:6

" #
¼ 0:755

( Eq: 10:71ð Þ

Then, the scour depth is

ds ¼ KhKIKdKsKaKt ¼ 4:8� 0:962� 1� 1:1� 1:569� 0:755 ¼ 6:017 m
( Eq: 10:64ð Þ

Example 10.11 Calculate the maximum scour depth at a circular pier for the
following data:

Pier diameter, b = 2.5 m
Approaching flow depth, h = 3.4 m
Discharge per unit width, q = 11.9 m2 s-1

Sediment size, d50 = 20 mm, d95 = 85 mm and dmax = 99 mm

Use (1) Melville and Coleman’s method and (2) HEC18 method.
Also, determine the size of riprap stone for the scour countermeasure at the pier.

Assume the riprap to be placed 0.5 m below the original bed level.

Solution

Approaching flow velocity, U = q/h = 11.9/3.4 = 3.5 m s-1

(1) Calculation of scour depth by Melville and Coleman’s method
The threshold shear velocity u*c and threshold approaching flow velocities, Ucr,
Ucra, and Ua are calculated as follows:
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u�cð1 mm
 d50\100 mmÞ ¼ 0:0305d0:5
50 � 6:5� 10�3d�1

50

¼ 0:0305� 200:5 � 6:5� 10�3 � 20�1 ¼ 0:136 m s�1

d50a ¼ dmax=1:8 ¼ 99=1:8 ¼ 55 mm

u�cað1 mm
 d50\100 mmÞ ¼ 0:0305d0:5
50a � 6:5� 10�3d�1

50a

¼ 0:0305� 550:5 � 6:5� 10�3 � 55�1 ¼ 0:226 m s�1

Ucr ¼ u�c5:75 log 5:53
h

d50

� �
¼ 0:136

� 5:75 log 5:53
3:4

20� 10�3

� �

¼ 2:325 m s�1 ( Eq: 10:67ð Þ

Ucra ¼ u�ca5:75 log 5:53
h

d50a

� �
¼ 0:226

� 5:75 log 5:53
3:4

55� 10�3

� �

¼ 3:293 m s�1 ( Eq: 10:67ð Þ
Ua ¼ 0:8Ucra ¼ 0:8� 3:293 ¼ 2:634 m s�1

Computation of K-factors is as follows:

1. For b/h = 2.5/3.4 = 0.735 (0.7 B b/h B 5), Kh = 2(hb)0.5 = 2(3.4 9

2.5)0.5 = 5.831 m ( Eq. (10.65)

2. For
U � ðUa � UcrÞ

Ucr

¼ 3:5� ð2:634� 2:325Þ
2:325

¼ 1:372 [ 1, KI ¼ 1( Eq: 10:66ð Þ

3. For b/d50a = 2/(55 9 10-3) = 36.36 [ 25, Kd = 1 ( Eq. (10.68)
4. For a circular pier, Ks = 1 (Table 10.2)
5. For a circular pier, Ka = 1 ( Eq. (10.70)
6. For an equilibrium scour (t = te), Kt = 1 ( Eq. (10.71)

Then, the scour depth is

ds ¼ KhKIKdKsKaKt ¼ 5:831� 1� 1� 1� 1� 1 ¼ 5:831 m( Eq: 10:64ð Þ
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(2) Calculation of scour depth by HEC18 method

Ucrjd50
¼ 6:19h1=6d1=3

50 ¼ 6:19� 3:41=6ð20� 10�3Þ1=3

¼ 2:06 m s�1 ( Eq: 10:76ð Þ
Ucrjd95

¼ 6:19h1=6d1=3
95 ¼ 6:19� 3:41=6ð85� 10�3Þ1=3

¼ 3:337 m s�1 ( Eq: 10:76ð Þ

Ucrsjd50
¼ 0:645

d50

b

� �0:053

Ucrjd50
¼ 0:645

20� 10�3

2

� �0:053

2:06

¼ 1:041 m s�1 ( Eq: 10:76ð Þ

Ucrsjd95
¼ 0:645

d95

b

� �0:053

Ucrjd95
¼ 0:645

85� 10�3

2

� �0:053

3:337

¼ 1:821 m s�1 ( Eq: 10:76ð Þ

Ur ¼
U � Ucrsjd50

Ucrjd50
�Ucrsjd95

¼ 3:5� 1:041
2:06� 1:821

¼ 10:289( Eq: 10:75bð Þ

Computation of K-factors is as follows:

1. For a circular pier, Ks = 1 (Table 10.2)
2. For a circular pier, Ka = 1
3. For Fr = 3.5/(9.81 9 3.4)0.5 = 0.6 and U (= 3.5 m s-1) [ Ucr

(= 2.06 m s-1), the possible bedforms are large dunes (assumed). Thus,
Kbed = 1.3 (Table 10.3)

4. For d50 = 20 mm [ 2 mm and d95 = 85 mm [ 20 mm, Ka ¼ 0:4U0:15
r ¼

0:4� 10:2890:15 ¼ 0:567( Eq: 10:75bð Þ

Then, the scour depth is

ds

b
¼ 2KsKaKbedKa

h

b

� �0:35

Fr0:43 ¼ 2� 1� 1� 1:3� 0:567
3:4
2:5

� �0:35

0:60:43

¼ 1:318( Eq: 10:74ð Þ
ds ¼ 2:5� 1:318 ¼ 3:295 m

Calculation of riprap stone size
By HEC-23 formula:

d50r ¼ 0:346
ðKUÞ2

Dg
¼ 0:346

ð1:5� 3:5Þ2

1:65� 9:81
¼ 0:589 m( Eq: 10:89ð Þ

Note: For a circular pier, K = 1.5
By Lauchlan’s equation:
Placement depth, zr = 0.5 m
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d50r ¼ 0:3fSFh 1� zr

h

� �2:75
Fr1:2 ¼ 0:3� 1:5� 3:4 1� 0:5

3:4

� �2:75

0:61:2 ¼ 0:535 m

( Eq: 10:90ð Þ

Note: fSF = 1.5 is considered in the above calculation.

Example 10.12 Calculate the maximum scour depth at a spill-through abutment
for the following data:

Abutment length = 10 m
Abutment length spanning to flood channel = 95 % of abutment length
Abutment slope, Sa = 0.5 (horizontal) : 1 (vertical)
Abutment alignment, a = 80�
Flow depth in main channel, hm = 8 m
Flow depth in flood channel, h* = 2 m
Discharge per unit width in main channel, q = 20 m2 s-1

Discharge per unit width in flood channel, q* = 5 m2 s-1

Manning coefficient in main channel, n = 0.022 SI units
Manning coefficient in flood channel, n* = 0.03 SI units
Sediment size, d50 = 20 mm, d95 = 85 mm, and dmax = 99 mm

Assume the flow depth reduction to be 2 % in the contracted portion.
Use (1) Melville and Coleman’s method and (2) HEC18 method.
Also, determine the size of riprap stone for scour countermeasure at the

abutment.

Solution

Calculation is based on the flow in the flood channel, where 95 % of abutment
length exists.
Approaching flow velocity in flood channel, U = q*/h* = 5/2 = 2.5 m s-1

Projected abutment length, l = 10 sina = 10 sin80� = 9.848 m
Projected abutment length in flood channel, l* = 10 9 0.95 sina = 10 9 0.95
sin80� = 9.356 m
The threshold approaching flow velocities, Ucr, Ucra, and Ua, are as follows:

u*c = 0.136 m s-1; u*ca = 0.226 m s-1; d50a = 55 mm (see Example 10.11)

Ucr ¼ u�c5:75 log 5:53
h�

d50

� �
¼ 0:136� 5:75 log 5:53

2
20� 10�3

� �

¼ 2:145 m s�1 ( Eq: 10:67ð Þ

Ucra ¼ u�ca5:75 log 5:53
h�

d50a

� �
¼ 0:226� 5:75 log 5:53

2
55� 10�3

� �

¼ 2:993 m s�1 ( Eq: 10:67ð Þ
Ua ¼ 0:8Ucra ¼ 0:8� 2:993 ¼ 2:394 m s�1
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Calculation of scour depth by Melville and Coleman’s method
Computation of K-factors is as follows:

1. For l/h* = 9.848/2 = 4.924 (1 B l/h* B 25), Kh = 2(h*l)0.5 = 2(2 9 9.848)0.5

= 8.876 m ( Eq. (10.80)

Note: As the flow depth in flood channel is applicable, h is replaced by h* in
Eq. (10.80)

2. For
U � ðUa � UcrÞ

Ucr

¼ 2:5� ð2:394� 2:145Þ
2:145

¼ 1:049 [ 1, KI ¼ 1( Eq: 10:66ð Þ

3. For l/d50a = 9.848/(55 9 10-3) = 179.05 [ 25, Kd = 1 ( Eq. (10.81)
4. For a spill-through abutment with slope Sa = 0.5:1, Ks = 0.6 (Table 10.6)
5. For a = 80�, K�a ¼ 0:993 is obtained from Table 10.7. Then, for l/h*

= 4.924 [ 3, Ka = 0.993 ( Eq. (10.83)
6. KG is calculated, considering h = hm, that is, the flow depth in main channel, as

KG ¼ 1� l�

l

� �
1� h�

h

� �5=3 n

n�

� �" #( )0:5

¼ 1� 9:356
9:848

� �
1� 2

8

� �5=3 0:022
0:03

� �" #( )0:5

¼ 0:345( Eq: 10:84ð Þ

7. For an equilibrium scour (t = te), Kt = 1 ( Eq. (10.85)

Then, the scour depth is
ds ¼ KhKIKdKsKaKGKt ¼ 8:876� 1� 1� 0:6� 0:993� 0:345� 1 ¼ 1:824 m
( Eq: 10:79ð Þ

Calculation of riprap stone size
By Austroads formula:

Fr = U/(gh*)0.5 = 2.5/(9.81 9 2)0.5 = 0.564

d50r ¼ 1:026
h�Fr2

D
¼ 1:026

2� 0:5642

1:65
¼ 0:396 m( Eq: 10:91ð Þ

By Lauchlan’s equation:
Shape factor, Ks = 0.89
Flow depth in contracted portion, h2 = 8 - 0.02 9 8 = 7.84 m
Flow velocity in contracted portion, U2 = q/h2 = 20/7.84 = 2.551 m s-1

Froude number in contracted portion, Fr2 = U2/(gh2)0.5 = 2.551/(9.81 9 7.84)0.5

= 0.291 \ 0.8

d50r ¼ Ks

h2Fr2
2

D
¼ 0:89

7:84� 0:2912

1:65
¼ 0:358 m( Eq: 10:92að Þ
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Example 10.13 Determine scour depth in the end of the second day for the dis-
charge per unit width in flood channel q = 4 m2 s-1 and other data same as in
Example 10.12.

Solution

Approaching flow velocity in flood channel, U = q*/h* = 4/2 = 2 m s-1

For
U � ðUa � UcrÞ

Ucr

¼ 2� ð2:394� 2:145Þ
2:145

¼ 0:816\1, KI ¼ 0:816( Eq: 10:66ð Þ

For l/h* = 9.848/2 = 4.924 [ 1.2, the time te to reach equilibrium is

te ¼ 25
h

U
¼ 25

2
2
¼ 25 days( Eq: 10:86ð Þ

For t = 2 days, Kt is

Kt ¼ 0:1
Ucr

U
ln

t

te

� �
þ 1 ¼ 0:1

2:145
2

ln
2

25

� �
þ 1 ¼ 0:729( Eq: 10:85ð Þ

Then, the scour depth is

ds ¼ KhKIKdKsKaKGKt ¼ 8:876� 0:816� 1� 0:6� 0:993� 0:345� 0:729
¼ 1:085 m( Eq: 10:79ð Þ

Example 10.14 Calculate the maximum scour depth at a vertical-wall abutment
for the following data:

Abutment length, l = 12 m
Abutment alignment, a = 90�
Flow depth, h = 8 m
Discharge per unit width, q = 24 m2 s-1

Median size of sediment, d50 = 0.9 mm (uniform sediment)

Solution

Approaching flow velocity, U = q/h = 24/8 = 3 m s-1

Threshold approaching flow velocity, Ucr = 0.593 m s-1 (see Example 10.9)
It is a live-bed flow condition (U [ Ucr). Hence, Froehlich’s (HEC 18) method is
applicable

Calculation of scour depth by HEC18 method:
Computation of K-factors is as follows:
Flow Froude number, Fr = U/(gh)0.5 = 3/(9.81 9 8)0.5 = 0.339

1. For a vertical-wall abutment, Ks = 1 (Table 10.8)
2. For a = 90�, Ka = 1 ( Eq. (10.88)
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Then, the scour depth is

ds

l
¼ 2:27KsKa

h

l

� �0:57

Fr0:61 þ 1 ¼ 2:27� 1� 1
8

12

� �0:57

0:3390:61 þ 1

¼ 1:931( Eq: 10:87ð Þ
ds ¼ 12� 1:931 ¼ 23:172 m
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Chapter 11
Dimensional Analysis and Similitude

11.1 General

Almost all problems on fluvial hydrodynamics involve complex mechanics of
fluid–particle interactions and cannot be solved by only using the analytical
methods, as described in the preceding chapters. These problems however rely
heavily on the experimental or field data for their solutions. In reality, it is
probably fair to say that the solutions of very few problems related to fluvial
hydrodynamics can be obtained by analytical method alone. Hence, the solutions
of most of the problems are achieved by using semianalytical approach extensively
calibrated by the experimental and/or field data or purely empirical approach based
on the experimental and/or field data. Thus, researchers and engineers working on
the problems of fluvial hydrodynamics should be conversant with the procedures
of experiments and/or field measurements to these problems in order to plan and
conduct the necessary experiments or to interpret and make use of the data
available in the literature. In this chapter, some techniques and ideas are discussed
that are important in understanding and correlating the experimental data. It is
needless to mention that an obvious goal of any experiment is to make the results
as widely applicable as far as possible in the field conditions.

Dimensional analysis is therefore a powerful tool in synthesizing (ordering and
grouping together) different parameters of experimental data and also analyzing
the individual data groups. If a group of quantities has a dimensional represen-
tation simplest of unity when multiplied or divided together, it is called non-
dimensional group. The great majority of experiment requires methods of mea-
surements using numerical scales whose both units and dimensions are defined. In
this chapter, laboratory and field measurements are used as a basis of analysis of
parameters involved in fluvial hydrodynamics and hence of dimensional analysis.
Therefore, the accuracy in measurements is of immense importance in obtaining
reliable data for quantification of various parameters through a dimensional

S. Dey, Fluvial Hydrodynamics, GeoPlanet: Earth and Planetary Sciences,
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analysis. In the context of measurement, it is pertinent to mention that in an
address to the Institution of Civil Engineers in 1883, Kelvin spoke on the
importance of measurement [available in Thomson (1889)]:

In physical science a first essential step in the direction of learning any subject, is to find
principles of numerical reckoning, and methods for practicably measuring, some quality
connected with it. I often say that when you can measure what you are speaking about, and
express it in numbers, you know something about it; but when you cannot measure it,
when you cannot express it in numbers, your knowledge is of a meagre and unsatisfactory
kind: it may be the beginning of knowledge, but you have scarcely, in your thought,
advanced to the stage of science, whatever the matter may be.

The prerequisite in the present logic requires consideration of a basic feature of
measurement. There are two aspects of measurement. One is that of the dimen-
sions used and the other of the units used. Dimensional analysis is based on the
fact that a physical law must be independent of the units used to measure the
physical variables. As a consequence, any valid equation must have the same
dimensions in both the sides. Therefore, a dimensional analysis can be used not
only to check the feasibility of a derived equation but also to develop a reasonable
hypothesis about a complex physical situation (such as sediment dynamics) that
can be tested by experiments or by more developed analytical theories of the
phenomena. An equation that is dimensionally examined is, therefore, acceptable
only if it includes all the possible variables, as it would be in an analytical deri-
vation. Thus, in the application of dimensional analysis, the primary aspect is the
right choice of the variables that might influence the phenomenon under
observation.

An understandable objective of an experimental campaign is to make the
outcomes applicable to the practical field situations as far as possible. To achieve
this end, the concept of similitude is commonly used so that the measurements
made in a laboratory model study can be used to describe the characteristics of
similar systems in the practical field situations. A model is the representation of a
physical system that can be used to predict the characteristics of the system in
some desired respect. The physical system for which the predictions are to be
made is termed the prototype. Thus, the similitude approach enables us to make
experiments with a conveniently controlled condition in the laboratory and then to
apply the results to a less convenient field condition. It is neither necessary the
same fluid being used for the model and its prototype nor the model necessarily
being smaller than its prototype. From these experimental model studies, empirical
expressions can be formulated, or specific predictions of one or more parameters
of some other similar system can be achieved with a reasonable degree of accu-
racy. Doing this, it is essential to establish the relationships between the laboratory
models and the prototypical systems. This chapter provides an elaborate discus-
sion: how can this be accomplished in a methodical approach?
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11.2 Dimensional Analysis

11.2.1 Synthesis of Experimental Data

To illustrate a typical problem on fluid–particle interaction where experimental
determination is required, consider a particle in the form of a small sphere that is
set in a steady–uniform flow of an incompressible Newtonian fluid. An important
aspect of this system, which could be of interest to a hydraulician exploring the
motion of a particle in a fluid, is the drag force that acts on the sphere in the flow
direction as a result of differential hydrodynamic pressure on either side (front and
rear) of the sphere (in conjunction with the skin friction, which is relatively
negligible on a smooth surface of a sphere). Note that it is always of the same kind
of problem whether the sphere is at rest in a flowing fluid or the former is in
motion in a static fluid medium. Although apparently the problem would be a
relatively simple, it could not be generally solved by an analytical approach alone
without taking the help of laboratory experimental results.

In planning an experimental program to study the problem, one has to decide
first of all the parameters or the variables that influence the drag force FD. One can
thus prepare the list including the mean flow velocity U, the sphere diameter d, the
mass density of fluid q, and the coefficient of kinematic viscosity of fluid t. Thus, it
yields a functional relationship as

FD ¼ f ðU; d; q; tÞ ð11:1Þ

The above equation simply provides theoretical information that the drag force
is expected to be a function of the variables contained within the parentheses. At
this juncture, the character of the function is rather indefinite. Therefore, the
primary objective of the experiments that are to be performed is to determine the
functional relationship explicitly.

In most of the experiments, all parameters are independently varied, with the
exception of one, which becomes the dependent variable. In Eq. (11.1), the
dependent and the independent variables are the parameters in the left- and the
right-hand side of the equation. In conducting the experiments in a significantly
methodical way, the experimental program should be such that one of the inde-
pendent variables, say the velocity, is allowed to vary, keeping others constant,
measuring the corresponding drag force as a dependent variable. Importantly, the
direct measurement of drag force is possible experimentally by a force sensor
(Dwivedi et al. 2010). This test series yields the data set that could be graphically
plotted to represent a curve as illustrated in Fig. 11.1a. Note that this curve, which
certainly does not convey the generalized characteristics of the system (that is a
general formulation) that is looked for, would only be suitable for the specific
sphere diameter and fluid used in the experiments. In the similar way, the tests
could therefore be repeated by varying each of the other variables in turn, keeping
the rest as constant. These test series yield data sets to plot representative curves as
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illustrated in Figs. 11.1b–d. This approach to obtain the separate relationships for
the drag force as a function of the individual influencing parameters, although
conceptually logical, is in fact a difficult proposition. Last two experimental sets,
as illustrated in Figs. 11.1c, d, would even be not feasible, because it would be
necessary to vary fluid mass density keeping viscosity a constant and vice versa.
Finally, it leaves an open question that how could one combine the data or results
in Figs. 11.1a–d to formulate a general functional relationship that would be
applicable for varied sphere diameters and different types of fluids?

To eliminate the difficulties described above, in the following sections, it is
shown that rather than handling with the original list of variables, for instance, as
in Eq. (11.1), they can be arranged in non-dimensional groups of variables, so that

FD

qU2pd2=8
¼ f1

Ud

t

� �
) CD ¼ f1ðReÞ ð11:2Þ

Thus, five dimensional variables could be reduced to only two non-dimensional
variables. Note that a suitable or standard non-dimensional variable can be
expressed by multiplying or dividing a non-dimensional group by a number and/or
a constant, as is done in the left-hand side of Eq. (11.2) to express drag coefficient
CD. It suggests that the experiment would simply be planned varying the non-
dimensional parameter Re (called sphere Reynolds number) and determining the
corresponding value of CD. A single universal curve could then represent the
results of the experiment, as illustrated in Fig. 11.2. The curve would be applicable
for any combination of sphere sizes and incompressible Newtonian fluids. To
obtain this curve, one could plan the experiment choosing a sphere of convenient
size and a fluid that is convenient to work with. The experiments thus would be
simpler, as even different sizes of sphere or different fluids need not be used.

A great deal of the fallacies in application of dimensional analysis is associated
with the erroneous selection of participating variables. To be quite safe, a common
tendency is to include as many variables as possible. Note that inclusion of more

U

d, ρ, υ~ constant

d

U, ρ, υ~ constant

F D

(a) (b)

F D

ρ

U, d, υ~ constant

υ

U, d, ρ~ constant

F D

(c)

F D

(d)

Fig. 11.1 Illustrative
graphical representation of
how drag force FD is
influenced by a U, b d, c q,
and d t
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than one dependent variables or exclusion of some of the participating independent
variables in the functional relationship is a serious fault. However, the parameters
that have no influence or exist as constants may be eliminated by themselves in the
processes of analysis. Nevertheless, having an excessive number of variables than
the required is as wrong as having less than required. In general, selection of a
redundant variable could be due to overlooking the specific role of that variable
being not relevant to the phenomenon and not become aware of that some
seemingly insignificant variables are in reality not insignificant. As a guideline in
making a correct choice of the variables, one can theoretically analyze the phe-
nomenon under consideration as a priori and accordingly assess which indepen-
dent variables should be considered. To be explicit, one should have a good
understanding about the role of a particular variable influencing the phenomenon.

The main limitation of the dimensional analysis lies on the fact that it might
sometimes yield incomplete solutions, spurious correlations, and obvious results.
Besides, the dimensional analysis cannot provide an insight into the actual
mechanism of the physical processes, although it is extensively applied in fluvial
hydrodynamics. Therefore, its applicability cannot be considered as a substitute
for, if not more than a primary support to, the analytical method. An appropriate
application of dimensional analysis always depends on experience and previous
decisive examination of the investigated phenomenon.

11.2.2 Dimensional System

It has been already discussed in Chap. 1 that a qualitative description of a physical
quantity can be presented in terms of basic dimensions: mass M, length L, and time
T. Then again, the basic dimensions in hydrodynamics are force F, M, L, and T,
since Newton’s second law of motion in fluid and solid phases are

F ¼ _mU in fluid phaseð Þ and F ¼ ma in solid phaseð Þ ð11:3Þ

Re

C
D

Fig. 11.2 Illustrative
graphical representation of
drag force using non-
dimensional parameters as
CD a function of Re

11.2 Dimensional Analysis 645

http://dx.doi.org/10.1007/978-3-642-19062-9_1
http://dx.doi.org/10.1007/978-3-642-19062-9_1


where F is the force vector, _m is the mass rate of flow, U is the velocity vector, m is
the mass, and a is the acceleration vector. Newton’s second law of motion is
therefore given in dimensional form as

F ¼ MLT�2 ð11:4Þ

The above dimensional equation shows that the three dimensions in the right-
hand side are independent. Therefore, the common system used in dimensional
analysis is MLT system. Table 11.1 furnishes some quantities that are commonly
used in fluvial hydrodynamics.

A quick examination of the dimensions of the two groups that appear in
Eq. (11.2) shows that they are in fact non-dimensional products, as both the right-
and left-hand sides yield M0L0T0 (=1). Thus, the advantage of a dimensional
analysis is not only to reduce the numbers of variables from five to two, but also to
appropriately arrange the variables in non-dimensional groups. It implies that the
results illustrated in Fig. 11.2 are independent of the system of units and hence
widely applicable. The foundation for the application of dimensional analysis to a
variety of problems is found in the Buckingham P theorem.

11.2.3 Buckingham P Theorem

In Buckingham P theorem (1915), the number of independent non-dimensional
groups that can be arranged in describing a law governing a physical phenomenon
involving number of n variables and m basic dimensions equals to n - m. The
basis of the application of Buckingham P theorem (henceforth P theorem)
belongs to the transformation of the relationship describing a physical phenome-
non in terms of a set of variables involved, say a1, a2, a3, …, an. Hence, there
exists a functional relationship as

f ða1; a2; a3; . . .; anÞ ¼ 0 ð11:5Þ

If a set of non-dimensional groups P1, P2, P3, … involves variables a1, a2, a3,
… and m dimensions, the relationship can exist for a reduced n - m number of
independent non-dimensional groups. Therefore, the non-dimensional functional
relationship to exist is

/ðP1;P2;P3; . . .;Pn�mÞ ¼ 0 ð11:6Þ

The number of non-dimensional P parameters is therefore fewer than the
number of original variables by m. The m is the minimum number of dimensions
required to describe the original list of variables. As discussed, the dimensions
required to describe the variables have the basic dimensions M, L, and T. However,
in some cases, for instance, to describe a kinematic variable, only two dimensions,
such as L and T, are required, or perhaps even one, such as L. To determine the P
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parameters, one has to select m number of a variables that consist m dimensions
among them, termed repeating variables. The repeating variables should not be a
non-dimensional quantity. For instance, if the repeating variables a1, a2, a3 contain
M, L, and T, not necessarily in each individual one but in a group, then the non-
dimensional P parameters appropriate for the physical phenomenon are the
product of the participating variables raised to various exponents as

P1 ¼ ap1
1 aq1

2 ar1
3 a4

P2 ¼ ap2
1 aq2

2 ar2
3 a5

P3 ¼ ap3
1 aq3

2 ar3
3 a6

� � �
Pn�m ¼ apn�m

1 aqn�m
2 arn�m

3 an

9>>>>>>=
>>>>>>;

ð11:7Þ

where p, q, and r are unknown exponents. In all the above P parameters, there
exist m + 1 number of variables having various values of exponents (including
zero). In general (for m = 3), the Eq. (11.7) could be compiled in such a way that
the three repeating variables, for example, characteristic length, velocity, and mass
density, appear in every P parameter differing the fourth variable with an expo-
nent (±) unity. This arrangement confirms that all participating n variables are
functional. Note that if only two dimensions are involved (that is m = 2), then two
of the variables are selected as repeating variables and two unknown exponents are
obtained for each P parameter. To determine P parameters, the exponents in the
set of equations (Eq. 11.7) are to be evaluated. The dimensions of the a variables
are substituted. The sum of exponents of each of M, L, and T of the right-hand side

Table 11.1 Dimensions of
physical quantities used in
fluvial hydrodynamics

Quantity Dimensions

Mass M
Length L
Time T
Area L2

Volume L3

Force MLT-2

Velocity LT-1

Acceleration LT-2

Gravitational acceleration LT-2

Mass density ML-3

Specific weight ML-2T-2

Pressure ML-1T-2

Bed shear stress ML-1T-2

Fluid flow discharge L3T-1

Sediment transport rate (in volume) L2T-1

Sediment transport rate (in weight) MT-3

Dynamic viscosity ML-1T-1

Kinematic viscosity L2T-1
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of Eq. (11.7) is determined and equated to zero, respectively, because on the left-
hand side of Eq. (11.7), the non-dimensional P parameters yield M0L0T0 (=1).
These produce three equations containing three unknowns (p, q, and r) for each P
parameter, so that the equations are solved simultaneously to determine the
unknowns, and then, P parameters are determined. Importantly, in number of
cases, the list of variables is such that the non-dimensional parameters are evident
by inspection or some of the listed variables are initially combined to achieve a
desirable parameter. Next, the steps to be followed in the analysis by P theorem
are detailed, as an instruction to students and researchers.

11.2.4 Steps Involved in Analysis by P Theorem

Step 1: Prepare a list of all the participating variables involved in a physical
phenomenon to be studied. Here, one should be sure that all participating vari-
ables are included. The variables are any pertinent parameters that include
dimensional and non-dimensional variables and constants as well (such as accel-
eration due to gravity g being a constant) participating in the physical phenomenon
to be studied. Selection of the variables may not be easy in some complex fluvial
systems. Experience from the previous experiments or field investigations or even
the physical laws that govern the phenomenon would help to identify the variables.
Indeed, the general classes of variables are of wide categories, and hence, each
problem requires to be analyzed with care. For a firsthand identification of the
variables in a sediment transport or a scour problem, the group of variables can be
typically categorized that are related to channel and/or structure geometry (such as
channel width, pier diameter, etc.), sediment properties (such as sediment size,
mass density, etc.), fluid properties (such as mass density, viscosity, etc.), and most
importantly flow characteristics (such as gravity, slope, flow depth, velocity, etc.).
In case of time-dependent processes (such as unsteady flow, temporal scour, etc.),
time of an event should be a variable.

To keep minimum number of variables facilitating to minimize the number of
experiments or non-dimensional groups, the variables should be independent of
each other. For instance, in a problem, the shear velocity u*, flow depth h, slope S0,
and g are the relevant variables; all of them cannot be listed as they are not
independent [u* = (ghS0)0.5]. Therefore, u* can replace g and S0, but h should be
retained as a variable. Another important point is that in fluvial phenomena (two-
phase flow problems), the water mass density q, sediment mass density qs, and
g should not be retained separately. They should be replaced by a single variable as
Dg or two variables as Dg and q. Here, D = s - 1 and s is the relative density of
sediment. All these logical selections are based on the laws to govern the physical
phenomenon under investigation.

Step 2: Write each of the variables in terms of basic M, L, and T dimen-
sions. The basic dimensions for typical variables that involve in problems of
fluvial hydrodynamics are furnished in Table 11.1.
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Step 3: Write the functional relationship. One can prepare a functional
relationship as in Eq. (11.5).

Step 4: Select the repeating variables. The number of repeating variables
required equals the number of reference dimensions m in the list of variables. One
must avoid making dependent variable a repeating variable. Essentially, all of the
required reference dimensions should be taken into the group of repeating vari-
ables. The repeating variables must be dimensionally independent of each other,
such that a non-dimensional product cannot be formed by combining themselves.
Often, one variable is selected that specifies the characteristic length, and others
the kinematic and dynamic quantities, depending on the type of the problem if that
involves only kinematic phenomenon or participation of force/mass as well.

Step 5: Write P parameters as a product of the repeating variables that
have unknown exponents and one of the non-repeating variables with an
exponent unity. The unknown exponents are to be determined so that the P
parameters are non-dimensional.

Step 6: Determine each of the P parameters as a product of the repeating
and non-repeating variables in a non-dimensional form. For each of the P
expressions [see Eq. (11.7)], at first, one has to substitute the dimensions. The
equations of the exponents can be written so that the sum of the exponents of each
dimension is zero. The equations can then be solved simultaneously for evaluating
exponents. Thus, the non-dimensional P parameters can be obtained once the
numerical values of the exponents are substituted back into the P expressions. In
this way, a functional relationship of the type of Eq. (11.6) can be established.

Step 7: Express the final form as one of the P parameters as a function of
others. Typically, one can write as

P1 ¼ /ðP2;P3; . . .;Pn�mÞ ð11:8Þ

where P1 should contain a dependent variable preferably in the numerator. In the
context of an explicit expression for P1 describing a physical problem, it is
important to mention that the actual functional relationship among the P param-
eters must be determined from the knowledge of the laboratory experimental or
field data. However, one can recombine, if desired, to adjust the forms of the P
parameters without changing the number of independent parameters. Also, a P
parameter can be discarded, if its involvement is found to be trivial for the problem
under investigation. For instance, the involvement of shear Reynolds number in
rough–turbulent flow is insignificant. In studying problems of fluvial hydrody-
namics, it is necessary to examine the values of the exponents for the dimensional
variables obtained from the P theorem forming the non-dimensional groups. If the
non-dimensional groups are such that they do not specify standard non-dimen-
sional numbers (such as Froude number, Reynolds number, etc.) used in fluvial
hydrodynamics, then the role of the non-dimensional groups has little use in
studying the problems. In this situation, it is advisable to redo the dimensional
analysis changing the repeating variables from the original list. The procedure can
be best illustrated by some examples.
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Let a simple problem be considered on the hydrodynamic drag force acting on a
sphere that has already been introduced in Sect. 11.2.1. It is recognized that the
drag force FD is influenced by the mean flow velocity U, the sphere diameter d, the
fluid mass density q, and the fluid kinematic viscosity t. The functional rela-
tionship thus exists as

f ðFD;U; d; q; tÞ ¼ 0 ð11:9Þ
Equation (11.9) contains three dimensions, M, L, and T. The repeating variables

are considered as U, d, and q. Hence, there are two P parameters as

P1 ¼ Up1 dq1qr1 FD ¼ LT�1
� �p1 Lq1 ML�3

� �r1 MLT�2 ¼ M0L0T0 ð11:10aÞ

P2 ¼ Up2 dq2qr2t ¼ LT�1
� �p2 Lq2 ML�3

� �r2 L2T�1 ¼ M0L0T0 ð11:10bÞ

Equating exponents of M, L, and T in Eq. (11.10a), one gets p1 + q1-

3r1 + 1 = 0, r1 + 1 = 0, and -p1 – 2 = 0. Therefore, solving them simulta-
neously yields p1 = -2, q1 = -2, r1 = -1 and then P1 = FD/(U2d2q). Similarly,
one can obtain P2 = t/(Ud) solving by Eq. (11.10b). By definition of dynamic
pressure force on a sphere, the P1 parameter can be expressed in a standard form
multiplying the denominator by a constant factor p/8. So, one can rearrange and
rewrite P1 = FD/(qU2pd2/8) = CD and by taking reciprocal P2 = Ud/t = Re.
The following relationship for the drag coefficient CD is therefore obtained:

CD ¼ /ðReÞ ð11:11Þ

Next, another problem is discussed considering the formation of ripples which
is common in fluvial systems. The length k of ripples formed by a steady–uniform
stream flow is considered to be determined by the shear velocity u*, the median
sediment size d, the kinematic viscosity t, the mass density of water q, the mass
density of sediment qs, and the acceleration due to gravity g. With all variables
together, the following functional relationship exists:

f ðk; u�; d; t; q; qs; gÞ ¼ 0 ð11:12Þ

In fluid–sediment interaction (two-phase flow), the q, qs, and g should be
replaced by Dg [= (s - 1)g]. Therefore, Eq. (11.12) becomes

f1ðk; u�; d; t;DgÞ ¼ 0 ð11:13Þ

The above equation contains only two dimensions, which are L and T. It is
therefore convenient to consider repeating variables as u* and d. Then, there are
three P parameters as

P1 ¼ up1
� dq1k ¼ ðLT�1Þp1 Lq1 L ¼ L0T0 ð11:14aÞ
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P2 ¼ up2
� dq2t ¼ LT�1

� �p2 Lq2 L2T�1 ¼ L0T0 ð11:14bÞ

P3 ¼ up3
� dq3Dg ¼ LT�1

� �p3 Lq3 LT�2 ¼ L0T0 ð11:14cÞ

Equating exponents of L and T in Eq. (11.14a), one gets p1 + q1 + 1 = 0 and
-p1 = 0. Therefore, solving them simultaneously yields p1 = 0, q1 = -1, and
then P1 = k/d. Similarly, one can obtain P2 = t/(u*d) and P3 = Dgd/u2

� by
solving Eqs. (11.14b) and (11.14c), respectively. Expressing in standard forms, the
P2 parameter can be expressed as shear Reynolds number R* [= (u*d)/t] and P3

parameter as Shields parameter H [= u2
�/(Dgd)] by taking reciprocal of both the

expressions. Hence, the following relationship for the non-dimensional ripple
length can be obtained:

k
d
¼ / R�;Hð Þ ð11:15Þ

To achieve explicit empirical or graphical relationships for Eqs. (11.11) and
(11.15), experimental results are to be used.

11.3 Similitude

11.3.1 Concept of Dynamic Similitude for Model Studies

Similitude is in general sense defined as a known relationship between two phe-
nomena. In fluvial hydrodynamics, this is usually a relationship between a full-
scale physical system and its smaller version having similar or partially similar
boundaries. The full-scale physical system is termed prototype and its smaller
scale model. Physical model studies of a proposed fluvial system are frequently
undertaken in the laboratory as an aid to the design engineers. If accurate quan-
titative results are to be obtained from a laboratory model study, there should be a
thorough dynamic similitude between the model and the prototype. It is well
known that most of the practical problems on fluvial system are highly intricate in
nature so that a desirable solution of the hydrodynamic equations is rather hoping
against hope. Even in many occasions, the equations are not at all applicable. The
obvious benefit of using a laboratory model, if it is carefully fabricated repre-
senting a simulated miniature prototype, could lead to a much accurate prediction
being applicable to the field.

To achieve a desired similitude between the model and the prototype, scaling
laws or criteria of similitude must be fulfilled. Geometric similarity of the model
and the prototype represents whether a model and its prototype are identical in
shape but differ only in size. All dimensions are replicated at the same scale,
keeping the corresponding angles same. The important deliberation toward a
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geometric similar model is that the flow feature is to be geometrically similar. The
linear dimensions Lp of the prototype to the corresponding dimensions Lm of the
model are transformed by a length scale Lr, such that Lp = LrLm. Here, subscripts
p, m, and r denote the prototype, model, and ratio of prototype to model condi-
tions, respectively. The area and volume scales are L2

r and L3
r , respectively.

Complete geometric similarity in many problems on sediment transport is a dif-
ficult proposition. For instance, the sediment particles of a small model could not
be reduced in proportion, maintaining a length scale. For such situations, the term
most frequently used is geometric distortion in which a model has a departure from
a scaling law by not satisfying one or more of the geometric similarities. Model
distortion in three dimensions thus implies a different horizontal Lxr, lateral Lyr,
and/or vertical Lzr length scales, according to a Cartesian coordinate system. Here,
x, y, and z are streamwise (that is, horizontal or longitudinal), spanwise (that is,
transverse), and vertical coordinates, respectively. Therefore, the area scales for
horizontal and vertical surfaces are LxrLyr and LzrLyr or LzrLxr respectively, and the
volume scale LxrLyrLzr.

Kinematic similarity between the model and the prototype exists if in addition
to geometric similarity, the velocities at all corresponding points in the flow field
have similarity. It is therefore the similitude of the parameters involving space and
time. It implies that the velocity scale Ur is

Ur ¼
Up

Um

ð11:16Þ

Therefore, the time scale Tr for kinematic similarity is

Tr ¼
Tp

Tm

� �
¼ Lr

Ur

ð11:17Þ

and the acceleration scale ar is

ar ¼
ap

am

� �
¼ Lr

T2
r

¼ U2
r

Lr

ð11:18Þ

In case of three-dimensional geometric distortion, the length scales in a
Cartesian coordinate system are Lxr = Lxp/Lxm; Lyr = Lyp/Lym, and Lzr = Lzp/Lzm.
Thus, the velocity and acceleration scales are

Uxr ¼
Uxp

Uxm

� �
¼ Lxr

Tr

; Uyr ¼
Lyr

Tr

; Uzr ¼
Lzr

Tr

axr ¼
axp

axm

� �
¼ Lxr

T2
r

¼ U2
xr

Lxr

; ayr ¼
Lyr

T2
r

¼
U2

yr

Lyr

; azr ¼
Lzr

T2
r

¼
U2

zr

Lzr

9>>>=
>>>;

ð11:19Þ
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Thus, kinematic similarity for a geometrically distorted model is obtained by
keeping Uxr, Uyr, Uzr and axr, ayr, azr as constants. Note that for an exact geometric
similarity, length scales should be identical (Lr = Lxr = Lyr = Lzr), and for an
exact kinematic similarity, velocity scales should be identical (Ur = Uxr =
Uyr = Uzr).

Finally, dynamic similarity between the model and the prototype exists if the
individual forces at all corresponding points in the flow field have similarity. It
implies that the ratios of the individual forces in prototype to those in model are
same at all corresponding points. Importantly, the forces in both the systems must
be parallel and act in the same direction in order to preserve the dynamic behavior
of fluids similar. The types of individual forces that could influence the fluid flow
in a channel are inertia I, pressure force P, gravity G, and viscous V. For dynamic
similarity of a geometric similar system, the inertia Ir, pressure force Pr, gravity Gr,
and viscous Vr scales are

Ir ¼ qrL
3
r

U2
r

Lr

� �
¼ qrU

2
r L2

r

Pr ¼ DprL2
r

Gr ¼ qrL
3
r gr

Vr ¼ trqr
DUr

DLr

� �
L2

r ¼ trqrUrLr

9>>>>=
>>>>;

ð11:20Þ

where Dp, DU, and DL are the pressure, velocity, and length differences, respec-
tively. Thus, for dynamic similarity, the following equation can be formed:

Ir ¼ Pr ¼ Gr ¼ Vr ¼ constant ð11:21Þ

It leads to the following set of relationships:

Im

Pm

¼ Ip

Pp

;
Im

Gm

¼ Ip

Gp

;
Im

Vm

¼ Ip

Vp

ð11:22Þ

From the knowledge of Eq. (11.20), Eq. (11.22) can be expressed as

U2
p

Dpp=qp

¼ U2
m

Dpm=qm

,
U2

p

gpLp

¼ U2
m

gmLm

,
UpLp

tp

¼ UmLm

tm

ð11:23Þ

The non-dimensional quantity obtained from the first expression in Eq. (11.23)
that is related to the ratio of the inertia force to the pressure force is known as the
Euler number. It is expressed as

Eu ¼ U

2Dp=qð Þ0:5
ð11:24Þ
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The non-dimensional quantity obtained from the second expression in
Eq. (11.23) that is related to the ratio of the inertia force to the gravity force is
known as the Froude number. It is expressed as

Fr ¼ U

gLð Þ0:5
ð11:25Þ

The non-dimensional quantity obtained from the third expression in Eq. (11.23)
that is related to the ratio of the inertia force to the viscous force is known as the
Reynolds number. It is expressed as

Re ¼ UL

t
ð11:26Þ

For a dynamic similarity, the Euler, Froude, and Reynolds scales are unity, that is,

Eur ¼ Frr ¼ Rer¼1 ) Eup ¼ Eum; Frp ¼ Frm; Rep ¼ Rem ð11:27Þ

Strictly, the dynamic similarity is preserved only if all the scaling laws (criteria
of similitude) are unity [as in Eq. (11.27)] in addition to the fulfillment of geo-
metric and kinematic similarities. In reality, it becomes a difficult proposition, if
not impossible, to satisfy all the conditions due to limitation of types of fluids,
spatial dimensions, and others. Nevertheless, it is not always necessary to fulfill all
the scaling laws, because one or other forces, in most of the problems, may remain
insignificant. For instance, in case of a falling sphere in a static fluid medium, only
the Reynolds similitude criterion can ensure dynamic similarity, while the Euler
and the Froude similitude criteria affect little. On the other hand, in case of flow
over a spillway model, only the Froude similitude criterion can ensure similarity.
Note that this approach is reasonable as long as one similitude criterion governs
the physical phenomenon and others can be neglected.

Scale effect could result in if all pertinent non-dimensional scaling laws
(Eq. 11.27) or conditions of similitude are not the same in the model and the pro-
totype. The scale effect is thus a consequence of dynamic non-similarity between the
model and the prototype working with a similitude criterion (say, Froude number)
and neglecting others. The minimization of errors arising due to the scale effect could
be done by adjusting the model reduction against the limits of the similarity.

For the computation of Fr or Re, the length L must be a specific characteristic
length that is significant in the flow field. For an open channel flow, the gravity
force is the determining law. Hence, the Froude number Fr is the relevant non-
dimensional number or the similitude criterion (scaling law) being extensively
used in model studies. Using a Froude similitude criterion, the velocity scale can
be obtained from Eq. (11.27) as

Urðgr ¼ 1Þ ¼ L0:5
r ð11:28Þ

654 11 Dimensional Analysis and Similitude



In the above equation, gr is considered to be unity, if the model and the pro-
totype location have not much elevation difference. Similarly, the time, the
acceleration, the discharge, and the force scales can be obtained as

Tr ¼ L0:5
r

ar ¼ Ur=Tr ¼ 1

Qr ¼ UrL2
r ¼ L2:5

r

Fr ¼ qrL
3
r

9>>>=
>>>;

ð11:29Þ

where Q and F are the discharge and force, respectively. If the viscosity is the
determining law, then the Reynolds number Re is the relevant similitude criterion.
The Reynolds similitude criterion yields the velocity, the time, the acceleration,
the discharge, and the force scales as

Ur ¼ tr=Lr

Tr ¼ L2
r =tr

ar ¼ t2
r =L3

r

Qr ¼ Lrtr

Fr ¼ qrt
2
r

9>>>>>=
>>>>>;

ð11:30Þ

Importantly, a coupled Froude and Reynolds similitude criterion would be
almost infeasible unless it is a distorted model. Let it be checked here. If Ur in
Eq. (11.28) is eliminated by the equation of Ur from Eq. (11.30), then one gets
tr = L1:5

r . It means that for a chosen length scale Lr, it is almost impossible to
satisfy the kinematic viscosity scale tr with the water or any other common fluids.

For three-dimensional geometric distortion, the inertia, the pressure, the grav-
ity, and the viscosity scales are

Ixr ¼ ðqrU
2
xrL

2
xrÞ ¼ qr

L4
xr

T2
r
; Iyr ¼ qr

L4
yr

T2
r
; Izr ¼ qr

L4
zr

T2
r

Pxr ¼ DprL2
xr; Pyr ¼ DprL2

yr; Pzr ¼ DprL2
zr

Gxr ¼ qrL
3
xrgr; Gyr ¼ qrL

3
yrgr; Gzr ¼ qrL

3
zrgr

Vxr ¼ trqrUxrLxr; Vyr ¼ trqrUyrLyr; Vzr ¼ trqrUzrLzr

9>>>=
>>>;

ð11:31Þ

Therefore, for a two-dimensional geometric distortion (xr 6¼ zr and yr = zr), the
Froude similitude criterion yields the velocity, the time, the acceleration, the
discharge, and the force scales as

Ur ¼ L0:5
zr

Tr ¼ Lxr=L0:5
zr

ar ¼ Lzr=Lxr

Qr ¼ LyrL1:5
zr ¼ L2:5

zr

Fr ¼ qrLxrL2
zr

9>>>>>=
>>>>>;

ð11:32Þ
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Note that a two-dimensional distorted model with xr 6¼ zr is termed tilted model
and with yr 6¼ zr distorted model. The tilted and distorted models relay on ignoring
the transverse and vertical convective accelerations as compared to the accelera-
tion due to gravity.

11.3.2 Immobile Bed Model Studies

An immobile bed implies that the bed is either rigid or loose with no sediment
transport, that is, the Shields parameter of flow is less than its threshold value for
the sediment motion. For immobile bed models, well-known Manning equation is
commonly used to represent the bed resistance to the turbulent flow through an
open channel, although it is not an easy task to ensure a turbulent flow in the model
satisfying the dynamic similarity. This is discussed in the end of this section. There
are two similitude criteria for the immobile bed models: (1) resistance (Manning
equation) and (2) Froude similitude criteria. The similitude criterion corresponding
to Manning equation is given by

L2=3
r S0:5

0r

Urnr

¼ 1 ð11:33Þ

where S0 is the bed slope and n is the roughness coefficient. In Eq. (11.33), the
hydraulic radius is replaced by the length scale. For an undistorted model, S0r = 1.
Using the Froude similitude criterion (Ur = L0:5

r ), one obtains

L1=6
r

nr

¼ 1 ) Lr ¼ n6
r ð11:34Þ

The above equation suggests that it is desirable to ascertain the length scale Lr

on the basis of the values of n in the model and the prototype. As it is essential to
maintain a turbulent flow in the model for the applicability of Manning equation,
one should check the Reynolds similitude criterion together with the Froude
similitude criterion. For the same fluid in model and prototype, the Reynolds
similitude criterion is expressed as

Rerðtr ¼ 1Þ ¼ UrLr Ur ¼ L0:5
r

� �
¼ L1:5

r ð11:35Þ

The Lr should therefore be chosen in such a way so that Rem corresponds to the
turbulent flow. According to Allen (1947), the flow is turbulent, if
Rem C 1.4 9 103, where Lm is the hydraulic depth (ratio of flow area to flow top
width). Therefore, it is usually difficult to work with a natural river model. (1) On
the one hand, Lr is to be determined from nr, and on the other hand, Rem should
correspond to the turbulent flow for that value of Lr. (2) Further, n is related to

Nikuradse’s equivalent sand roughness ks, as n * k1=6
s (Strickler 1923). Note that
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Strickler’s empirical formula n = k1=6
s = 6:7g0:5

� �
introduces a parameter that

describes the bed roughness. The roughness length scale ksr should maintain the
same resistance parameter corresponding to a hydraulically rough flow regime
[shear Reynolds number R* (= u*ks/t) [ 70, where u* is the shear velocity] in both
model and prototype. Although the roughness length scale can be maintained for a
macro-rough bed (boulder- or large gravel-bed) in prototype, the near-bed flow
condition could change the flow regime to a smooth or a transitional one for using
fine sediments, as the viscous sublayer thickness d0 in a model can easily submerge
the roughness in the model. One can examine it as d0 ¼ 11:6t=u�, d

0
rðtr ¼ 1Þ ¼

u�1
�r ¼ L�0:5

r for the same fluid used in model and prototype, suggesting a large
sublayer thickness and potentially prevailing a smooth flow in the model.

It would therefore be a difficult proposition to maintain all these conditional
combinations. Thus, one can try to overcome this problem by using a distorted
model, where the vertical scale Lzr is smaller than the horizontal one Lxr for a tilted
model. Then, the Froude similitude criterion for a tilted model is

Ur ¼ L0:5
zr ð11:36Þ

It is pertinent to mention the hydraulic depth in the expression of the Froude
number is characterized by the vertical scale. However, the slope scale is

S0r ¼
Lzr

Lxr

ð11:37Þ

The Manning similitude criterion is thus given by

L2=3
zr S0:5

0r

Urnr

¼ L2=3
zr Lzr=Lxrð Þ0:5

L0:5
zr nr

¼ 1 ) nr ¼
L2=3

zr

L0:5
xr

ð11:38Þ

Considering Strickler’s relationship, one obtains nr * k1=6
sr . Hence, Eq. (11.38)

yields ksr ¼ L4
zr=L3

xr. It is obvious that the bed roughness in model is governed by
the ratio L4

zr=L3
xr. For example, to keep the same bed roughness in model and

prototype (ksr = 1), the condition Lzr ¼ L0:75
xr must be satisfied. Therefore, one has

an option to select one scaling parameter (one degree of freedom) out of three (Lzr

or S0r or ksr). It implies that the geometric distortion for a tilted model is possible
within some limits in order to seek a desirable bed roughness in a model. In an
earlier study, Stevens et al. (1942) reported that for models of rivers, the ranges of
horizontal and vertical scales should be 2000 [ Lxr [ 100 and 150 [ Lzr [ 50,
respectively. Nevertheless, a distorted model has always some disadvantages. For
instance, velocities and flow fields may not be truly reproduced (USBR 1953).

It is therefore inevitable that the rough flow over a rigid bed should be simu-
lated by a tilted model. In such problems, the flow depth is scaled as that of exact
similitude, while the roughness size is to have a different scale. This helps to have
a matching roughness size in prototype by increasing (changing) the flow depth
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and the roughness size in the model as long as the roughness in the model is
comparable with that in prototype. Note that all these exercises are done by
sacrificing the kinematic similarity due to a model distortion.

11.3.3 Mobile Bed Model Studies

Study of similitude in mobile bed involves scour, erosion, aggradations, degra-
dations, bedform migration, etc. Due to complex fluid–sediment interaction, an
appropriate model study is always challenging. There are four similitude criteria
for a mobile bed study to be fulfilled: (1) resistance (Manning equation), (2)
Froude, (3) Shields, and (4) particle or shear Reynolds similitude criteria. A tilted
model is inevitable due to a slope scale S0r = Lzr/Lxr, preserving the transverse
length scale Lyr = Lzr.

Studying a problem of sediment threshold, criteria (1) and (2) applied to a tilted
model given by Eq. (11.38) yield dr = L4

zr=L3
xr. Here, the sediment particle size d is

assumed to be equal to the roughness height ks. The Shields similitude criterion
Hr = 1 produces the following relationship:

Hr ¼
s0cr

Drqrgrdr

ðqr ¼ gr ¼ 1Þ ¼ 1 ) dr ¼
LzrS0r

Dr

ð11:39Þ

where s0c is the threshold bed shear stress (= qgLzS0). In this context, it is worth
mentioning that the particle parameter D* [= d(Dg/t2)1/3], the shear Reynolds
number R* [= (u*d)/t], and the Shields parameter are interchangeable as

D� ¼ R2=3
� =H1=3. Therefore, one may choose either D*r = 1 or R*r = 1. The

expressions for D*r and R*r are as follows:

D�r ¼
dr Drgrð Þ1=3

t2=3
r

ðgr ¼ tr ¼ 1Þ ¼ 1 ) dr ¼
1

D1=3
r

R�r ¼
grLzrS0rð Þ0:5dr

tr

ðgr ¼ tr ¼ 1Þ ¼ 1 ) dr ¼
1

LzrS0rð Þ0:5

9>>>=
>>>;

ð11:40Þ

Eliminating Dr using first relation of Eq. (11.40) and inserting S0r = Lzr/Lxr in
Eq. (11.39), one gets dr ¼ L0:5

xr =Lzr. By using dr ¼ L4
zr=L3

xr (Manning–Strickler

similitude criterion), the vertical length scale becomes Lzr ¼ L7=10
xr , the particle

length scale dr ¼ L�0:2
xr ¼ L�2=7

zr , and slope scale S0r ¼ ðLzrd2
r Þ
�1 ¼ dr=Lzrð Þ1=3

¼ L�0:3
xr . Hence, from Eq. (11.40), one obtains Dr ¼ d�3

r ¼ Lzr=drð Þ2=3¼ L0:6
xr . Note

that from the second relation of Eq. (11.40), one can also obtain a condition, which is
however redundant, as it is dr ¼ L0:5

xr =Lzr. It suggests that there remain four inde-
pendent variables (Lxr, Lzr, dr, and Dr) against three equations

dr ¼ L4
zr=L3

xr ¼ LzrS0r=Dr ¼ D�1=3
r or L�0:5

zr S�0:5
0r

� �h i
. The problem can be solved
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completely if one of the variables can be selected arbitrarily and other variables are
solved from the equations. It means the designer has one degree of freedom. Inter-
estingly, if the same size of the sediment is used in the model and the prototype
(dr = 1), then a reduction in relative density of sediment Dm in model is required.

In case of bed-load transport, the similitude criterion of bed-load transport
intensity function Ub yields

Ubr ¼
qbr

Drgrd3
r

� �0:5 ðgr ¼ 1Þ ¼ 1 ) qbr ¼ D0:5
r d1:5

r ð11:41Þ

where qb is the bed-load transport rate. Using Dr = (Lzr/dr)
2/3, one can express bed-

load scale as qbr ¼ L1=3
zr d7=6

r . It is interesting to note that qbr = 1 for Hr = 1.
Therefore, the similitude criterion of bed-load transport is equivalent to that of
sediment threshold, as there are four unknowns against three equations. Again, the
problem can be solved completely if one of the variables is selected.

In case of suspended-load transport rate, the similarity criterion of suspended
sediment concentration can be obtained from the Rouse equation (Eq. 6.27). The
similitude criterion of Rouse number is therefore

fr ¼
wsr

jr sr=qrð Þ0:5
ðqr ¼ gr ¼ 1Þ ¼ 1 ) wsr ¼ LzrS0rð Þ0:5 ð11:42Þ

where f = Rouse number or exponent of Rouse equation of sediment concentra-
tion, ws is the terminal fall velocity of sediment particle, and j is the von Kármán
constant. With S0r = Lzr/Lxr, Eq. (11.42) becomes wsr ¼ Lzr=L0:5

xr ¼ d�1
r . Alterna-

tively, using Eq. (1.40), the terminal fall velocity scale can also be determined as
wsr ¼ d�1

r provided D*r = 1. The similitude criterion of sediment suspension that
is defined as the ratio of sediment terminal fall velocity to shear velocity of flow is
identical to that of sediment threshold criterion, that is, wsr/u*r = 1 and dr =

L0:5
xr =Lzr. Therefore, the complete solution of the problem is possible.

In case of scour of a sediment bed, the time scale t to change the bed elevation
can be determined from the sediment continuity equation given by Exner (1925)
(Eq. 8.36). It is

oqbr

oLxr

¼ �ð1� q0Þr
oLzr

otr
½ð1� q0Þr ¼ 1� ) tr ¼

LxrLzr

qbr

ð11:43Þ

where q0 is the porosity of sediment. It is assumed that the scale of the porosity

related term (1-q0)r is unity. Using Lxr ¼ L4=3
zr =d1=3

r (Manning–Strickler similitude

criterion) and qbr = L1=3
zr d7=6

r , one can express time scale as tr = L2
zr=d1:5

r . This
time scale is also useful for bedform migration and aggradations/degradations of
beds. However, the exchange time te (or time for a particle to be removed) during
the bed-load transport can be scaled from the concept of Einstein’s (1950) bed-
load transport model. It is ter ¼ dr=wsr ¼ d2

r ¼ Lxr=L2
zr.
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In some mobile bed model studies, the complete similitude is not feasible under
certain circumstances. In such cases, one criterion of similitude can usually be
given up in place of having an advantage of two degrees of freedom, although it
risks yielding erroneous results. This type of similitude is called incomplete
similitude. However, there are two ways to preserve the criteria of similitude in
both model and prototype. They are (1) Froude (Frr 6¼ 1) and (2) particle
(D*r 6¼ 1) quasi-similitude criteria. Using Manning and Strickler relationships, the
Froude quasi-similitude criterion is given by

Frr ¼
Ur

L0:5
zr

¼ Lzr

Lxr

� �0:5 Lzr

dr

� �1=3

ð11:44Þ

It means the Froude similitude criterion is supplemented by the Froude quasi-
similitude criterion with an additional degree of freedom, such as Lxr, Lzr, and dr.
The Froude quasi-similitude model thus allows to consider different Froude
numbers in model and prototype provided similar flow condition (subcritical flow)
to prevail in both the systems. A gradually varied flow that has a near-constant
Froude number (an average value) over a certain reach of prototypical channel is
quasi-simulated by a flow with different Froude number in the laboratory model
having similar flow condition (subcritical flow) as that in prototype. For instance, a
low Frp can be simulated with same bed sediment at higher Frm as long as the flow
is subcritical. In the Froude quasi-similitude criterion, Eqs. (11.39), (11.40) and
(11.44) (or Hr = 1, D*r = 1, and Frr 6¼ 1) are to be simultaneously satisfied. The
Shields (Hr = 1) and particle (D*r = 1) similitude criteria yield the relationship
dr = L0:5

xr =Lzr, and thus, Froude quasi-similitude criterion using Eq. (11.44) gives

Frr = L�1=3
zr . To be explicit, the relation Frp Frp\1

� �
¼ L�1=3

zr Frm Frm\1ð Þ
implies a slightly different Froude number in model and prototype. It is apparent
that the Froude quasi-similitude is restricted to a gradually varied subcritical flow.
Therefore, although this type of model can reasonably simulate the bed-load and
suspended-load transports, it is unable to simulate the flow kinematics and
dynamics to a desired degree of accuracy. Similitude in cross section without
distortion can be obtained with yr = zr and planer bed geometry with xr = yr.

On the other hand, the particle quasi-similitude criterion is

D�r ¼
dr Drgrð Þ1=3

t2=3
r

ðgr ¼ tr ¼ 1Þ ¼ drD
1=3
r ð11:45Þ

The particle quasi-similitude model can be used for bed-load dominant sedi-
ment transport cases. For instance, the bed-load transport of coarse sediment in
prototype can be simulated with a smaller value of particle parameter (D*m \ D*p)
in the model provided the flow being hydraulically rough (R* [ 70). This type of
model has a limitation that there remains always an uncertainty in prediction of
suspended-load transport or bedform migration due to the scale effects, as Shields
similitude criterion is preserved (Hr = 1), but particle similitude criterion is not
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preserved (D*r 6¼ 1). As D* = R2=3
� /H1/3, the non-preservation of particle simili-

tude criterion (D*r 6¼ 1) implies non-preservation of shear Reynolds similitude
criterion (R*r 6¼ 1) as well. Therefore, using Eq. (11.39), S0r = Lzr/Lxr, and

Lxr = L4=3
zr =d1=3

r (Manning–Strickler similitude criterion), one can obtain D�r ¼
d7=9

r L2=9
zr and R�r ¼ LzrS0rð Þ0:5dr ¼ L1=3

zr d7=6
r .

11.4 Examples

Example 11.1 Consider a velocity distribution in the wall shear layer of a fluid
flowing over an immobile sediment bed. The time-averaged velocity u at a dis-
tance z from the virtual bed level depends on the median sediment size d, the flow
depth h, the coefficient of kinematic viscosity of fluid t, the mass density of fluid q,
and the bed shear stress s0. Use the dimensional analysis to obtain a set of P
parameters and a possible functional relationship for u.

Solution

The functional relationship to exist is

f ðu; z; d; h; t; q; s0Þ ¼ 0

The above equation contains three dimensions, that is, M, L, and T. The repeating
variables are considered as s0, d, and q. Hence, there are four non-dimensional P
parameters as

P1 ¼ sp1
0 dq1qr1 u ¼ ðML�1T�2Þp1 Lq1ðML�3Þr1 LT�1 ¼ M0L0T0

P2 ¼ sp2
0 dq2qr2 z ¼ ðML�1T�2Þp2 Lq2ðML�3Þr2 L ¼ M0L0T0

P3 ¼ sp3
0 dq3qr3 h ¼ ðML�1T�2Þp3 Lq3ðML�3Þr3 L ¼ M0L0T0

P4 ¼ sp4
0 dq4qr4t ¼ ðML�1T�2Þp4 Lq4ðML�3Þr4 L2T�1 ¼ M0L0T0

By equating the exponents of M, L, and T of P1 parameter, the following equations
are obtained:

M ) p1 þ r1 ¼ 0

L ) �p1 þ q1 � 3r1 þ 1 ¼ 0

T ) �2p1 � 1 ¼ 0

By solving the three equations simultaneously, one obtains p1 = -0.5, q1 = 0,
and r1 = 0.5, and therefore, P1 = u/(s0/q)0.5.
By equating the exponents of M, L, and T of P2 parameter, the following equations
are obtained:
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M ) p2 þ r2 ¼ 0

L) �p2 þ q2 � 3r2 þ 1 ¼ 0

T ) �2p2 ¼ 0

By solving the three equations simultaneously, one obtains p2 = 0, q2 = -1, and
r2 = 0, and therefore, P2 = z/d. Similarly, one can also obtain P3 = h/d.
By equating the exponents of M, L, and T of P4 parameter, the following equations
are obtained:

M ) p4 þ r4 ¼ 0

L) �p4 þ q4 � 3r4 þ 2 ¼ 0

T ) �2p4 � 1 ¼ 0

By solving the three equations simultaneously, one obtains p4 = –0.5, q4 = -1,
and r4 = 0.5, and therefore, P4 = t/[d(s0/q)0.5].
Hence, the set of P parameters forms the following relationship:

/
u

s0=qð Þ0:5
;

z

d
;
h

d
;

t

d s0=qð Þ0:5

 !
¼ 0

Inserting u* = (s0/q)0.5 and R* = u*d/t, and then rearranging, the functional
relationship for u is obtained as

u ¼ u�/1
z

d
;
h

d
;R�

� �

Example 11.2 Consider a bed-load transport by the flowing fluid over a mobile
sediment bed. The bed-load transport rate qb (volume per unit time and width)
depends on the median sediment size d, the coefficient of kinematic viscosity of
fluid t, the mass density of fluid q, the mass density of sediment qs, the acceler-
ation due to gravity g, the bed shear stress of flow s0, and the threshold bed shear
stress s0c for the sediment motion. Use the dimensional analysis to determine a set
of P parameters and a possible functional relationship for the bed-load transport
intensity function.

Solution

The original functional relationship to exist is

f ðqb; d; t; q; qs; g; s0; s0cÞ ¼ 0

In fluid–sediment interaction (two-phase flow), q, qs, and g should be combined
and replaced by Dg [= (s-1)g] and q. Thus, the modified functional relationship
becomes
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f ðqb; d; t; q;Dg; s0; s0cÞ ¼ 0

The above equation contains three dimensions, that is, M, L, and T. The repeating
variables are considered as s0, d, and Dg. Hence, there are four P parameters as

P1 ¼ sp1
0 dq1ðDgÞr1 qb ¼ ðML�1T�2Þp1 Lq1ðLT�2Þr1 L2T�1 ¼ M0L0T0

P2 ¼ sp2
0 dq2ðDgÞr2t ¼ ðML�1T�2Þp2 Lq2ðLT�2Þr2 L2T�1 ¼ M0L0T0

P3 ¼ sp3
0 dq3ðDgÞr3q ¼ ðML�1T�2Þp3 Lq3ðLT�2Þr3 ML�3 ¼ M0L0T0

P4 ¼ sp4
0 dq4ðDgÞr4s0c ¼ ðML�1T�2Þp4 Lq4ðLT�2Þr4 ML�1T�2 ¼ M0L0T0

By equating the exponents of M, L, and T of P1 parameter, the following equations
are obtained:

M ) p1 ¼ 0

L) �p1 þ q1 þ r1 þ 2 ¼ 0

T ) �2p1 � 2r1 � 1 ¼ 0

By solving the three equations simultaneously, one obtains p1 = 0, q1 = –1.5, and
r1 = –0.5, and therefore, P1 = qb/[d1.5(Dg)0.5]
By equating the exponents of M, L, and T of P2 parameter, the following equations
are obtained:

M ) p2 ¼ 0

L) �p2 þ q2 þ r2 þ 2 ¼ 0

T ) �2p2 � 2r2 � 1 ¼ 0

By solving the three equations simultaneously, one obtains p2 = 0, q2 = –1.5, and
r2 = –0.5, and therefore, P2 = t/[d1.5(Dg)0.5].
By equating the exponents of M, L, and T of P3 parameter, the following equations
are obtained:

M ) p3 þ 1 ¼ 0

L) �p3 þ q3 þ r3 � 3 ¼ 0

T ) �2p3 � 2r3 ¼ 0

By solving the three equations simultaneously, one obtains p3 = –1, q3 = 1, and
r3 = 1, and therefore, P3 = qDgd/s0.
By equating the exponents of M, L, and T of P4 parameter, the following equations
are obtained:
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M ) p4 þ 1 ¼ 0

L) �p4 þ q4 þ r4 � 1 ¼ 0

T ) �2p4 � 2r4 þ 2 ¼ 0

By solving the three equations simultaneously, one obtains p4 = –1, q4 = 0, and
r4 = 0, and therefore, P4 = s0c/s0

Hence, the set of P parameters forms the following relationship:

/
qb

d1:5 Dgð Þ0:5
;

t

d1:5 Dgð Þ0:5
;
qDgd

s0
;
s0c

s0

 !
¼ 0

For bed-load transport formulation, it is desirable to express the ratio s0c/s0 as a
difference of s0 and s0c in non-dimension. Hence, s0c/s0 is replaced by (s0-s0c)/
s0c, known as transport stage parameter T*. Inserting Ub = qb/(Dgd3)0.5,
D* = d(Dg/t2)1/3, H = s0/(qDgd), and T* = (s0-s0c)/s0c, and then rearranging,
the functional relationship for bed-load transport function Ub is

Ub ¼ /1 D�;H; T�ð Þ

Example 11.3 A 3,750 m long gravel-bed river has a width of 100 m and carries a
discharge of 120 m3 s-1 with a flow depth of 3 m. If the median size of gravel is
6 mm, simulate a model in a laboratory space having a maximum length of 25 m.
Take the relative density of gravel as 2.65.

Solution

For the prototype, flow depth hp = 3 m, width bp = 100 m, and discharge
Qp = 120 m3 s-1 and the prototype flow velocity is Up = Qp/(hpbp) = 120/
(3 9 100) = 0.4 m s-1. The prototype Manning roughness coefficient is

np = d1=6
p /(6.7 g0.5) = (6 9 10-3)1/6/(6.7 9 9.810.5) = 0.02 m-1/3 s.

The length scale is Lr = Lp/Lm = 3750/25 = 150. From the Froude similitude
criterion, the velocity scale is Ur = L0:5

r = 1500.5 = 12.25. Therefore, the model
flow depth is hm = hp/Lr = 3/150 = 0.025 m, the bed material size dm = dp/Lr

= 6 9 10-3/150 = 4 9 10-5 m (or 0.04 mm), and the flow velocity Um = Up/Ur

= 0.4/12.25 = 0.0327 m s-1.
The prototype Froude number is Frp = Up/(ghp)0.5 = 0.4/(9.81 9 3)0.5

= 0.0737 \ 1 (subcritical flow). The prototype streamwise slope obtained from the

Manning equation is S0p = (npUp)2/h4=3
p = (0.02 9 0.4)2/34/3 = 1.48 9 10-5.

Note that S0p = S0m. The prototype shear velocity is u*p = (ghpS0p)0.5

= (9.81 9 3 91.48 9 10-5)0.5 = 0.021 m s-1. The prototype Shields parameter is
Hp = u2

�p/(Dgdp) = 0.0212/(1.65 9 9.81 9 6 910-3) = 0.0045 \ Hcp (= 0.056,
obtained from the Shields diagram), implying the gravel-bed to be immobile.
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The prototype Reynolds number is Rep = Uphp/t = 0.4 9 3/10-6

= 1.2 9 106 [ 1400 (turbulent flow) (Allen 1947), and the prototype shear
Reynolds number R*p = u*pdp/t = 0.021 9 6 9 10-3/10-6 = 126 [ 70 (hydrau-
lically rough flow). Thus, the flow is rough–turbulent in the prototype. The model
shear velocity is u*m = (ghmS0m)0.5= (9.81 9 0.025 91.48 9 10-5)0.5 = 1.905
9 10-3 m s-1. On the other hand, the model Reynolds number is Rem = Umhm/
t = 0.0327 9 0.025/10-6 = 817.5 \ 1400 (laminar flow), and the model shear
Reynolds number R*m = u*mdm/t = 1.905 9 10-3 9 4 9 10-5/10-6 =
0.076 \ 70. Thus, the flow is smooth–laminar in the model.

To preserve the rough–turbulent flow in model, adopt a tilted model by
selecting one of the scaling parameters (one degree of freedom) out of three (Lzr,
S0r, and ksr & dr) (see Sect. 11.3.2). Let us set a roughness scale be dr = 0.4.
Note that this scale depends on the larger size of gravels that can be used in the
laboratory model study. In this case, it is dm = dp/dr = 6 9 10-3/0.4 = 0.015 m
or 15 mm. Thus, the vertical length scale determined from the relationship
dr = L4

zr=L3
xr is Lzr Lr ¼ Lxrð Þ ¼ L0:75

xr d0:25
r ¼ 1500:75 � 0:40:25 ¼ 34:1, and from

the Froude similitude, the velocity scale Ur ¼ L0:5
zr ¼ 34:10:5 ¼ 5:84. The dis-

charge scale is Qr ¼ LyrL1:5
zr ¼ 150 � 34:11:5 = 29,869 (consider non-distorted

tilted model, Lr = Lxr = Lyr) [see Eq. (11.32)], and then, Qm = Qp/Qr = 120/
29869 = 4.018 9 10-3 m3 s-1. The model flow velocity is Um = Up/Ur = 0.4/
5.84 = 0.0685 m s-1, and the Reynolds number Rem(Rer = L1:5

zr ) = Rep/
Rer = Uphp/(tL1:5

zr ) = 0.4 9 3/(10-6 9 34.11.5) = 6,026.3 [ 1,400 (turbulent
flow). Thus, the model flow depth is hm = hp/Lzr = 3/34.1 = 0.088 m. The model
slope scale is S0m = S0p/(Lzr/Lxr) = 1.48 9 10-5/(34.1/150) = 6.51 9 10-5, and
the shear velocity u*m = (ghmS0m)0.5 = (9.81 9 0.088 9 6.51 9 10-5)0.5

= 7.497 9 10-3 m s-1. The model shear Reynolds number is R*m = u*mdm/
t = 7.497 9 10-39 0.015/10-6 = 112.46 [ 70 (hydraulically rough flow). It
confirms that the flow in model is rough–turbulent that complies with the prototype
flow condition.

Example 11.4 A sand-bed river has a streamwise slope of 5 9 10-5 and carries a
discharge of 3 9 104 m3 s-1 with a flow depth of 6 m and a velocity of 2.5 m s-1.
If the median size of sediment is 1 mm, find the scales to completely simulate a
laboratory model with polystyrene made artificial bed sediment. Take the relative
density of sand as 2.65 and polystyrene as 1.05.

Solution

For the prototype, slope is S0p = 5 9 10-5, flow depth hp = 6 m, and sand size
dp = 1 9 10-3 m. The prototype shear velocity is u*p = (ghpS0p)0.5 = (9.81 9 6 9

5 9 10-5)0.5 = 0.054 m s-1, and the Shields parameter Hp = u2
�p/(Dgdp) = 0.0542/

(1.65 9 9.81 9 1 9 10-3) = 0.18. The threshold Shields parameter obtained from
van Rijn’s relationship (Table 4.1) is Hcp = 0.033. Therefore, the condition
Hp [Hcp implies the prototype sediment bed to be mobile.
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The submerged relative density scale is Dr = Dp/Dm = (2.65 - 1)/(1.05 - 1)

= 33. The particle scale obtained from Eq. (11.40) is dr = D�1=3
r = 33-1/3

= 0.312, and thus, the model sediment size dm = dp/dr = 1 9 10-3/0.312 =
3.21 9 10-3 m or 3.21 mm. Note that the polystyrene-made sediment particles
having size of 3.21 mm should simulate a Nikuradse’s equivalent sand roughness
ks of 3.21 mm. It, of course, depends on the texture of the polystyrene-made
sediment particles, not the size only. The streamwise length scale obtained from
the relation Dr = L0:6

xr is Lxr = D1:67
r = 331.67 = 343.5, and thus, the vertical scale

Lzr = L7=10
xr = 343.57/10 = 59.6. The model flow depth is hm = hp/Lzr = 6/59.6

= 0.101 m. The slope scale is S0r = L�0:3
xr = 343.5-0.3 = 0.173, and the model

slope S0m = S0p/S0r = 5 9 10-5/0.173 = 2.89 9 10-4. The velocity scale is
Ur = L0:5

zr = 59.60.5 = 7.72, and the model velocity Um = Up/Ur = 2.5/7.72
= 0.324 m s-1. The discharge scale obtained from Eq. (11.32) is Qr =

L2:5
zr = 59.62.5 = 2.742 9 104, and the model discharge Qm = Qp/Qr = 3 9 104/

(2.742 9 104) = 1.094 m3 s-1.

Example 11.5 A 5,000 m long gravel-bed river has an average streamwise slope
of 5 9 10-3 and carries a discharge with a flow depth of 5 m. If the median size of
gravel is 25 mm, find the scales to simulate a laboratory model within a space of
maximum length of 25 m. Take the relative density of gravel as 2.65.

Solution

For the prototype, slope is S0p = 5 9 10-3, flow depth hp = 5 m, and sand size
dp = 0.025 m. The prototype shear velocity is u*p = (ghpS0p)0.5 = (9.81 9 5 9

5 9 10-3)0.5 = 0.495 m s-1, the shear Reynolds number R*p = u*pdp/t
= 0.495 9 0.025/10-6 = 12,375 [ 70, and the Shields parameter Hp = u2

�p/
(Dgdp) = 0.4952/(1.65 9 9.81 9 0.025) = 0.606 [Hcp (= 0.056, obtained from
the Shields diagram), implying the flow to be hydraulically rough and the gravel-
bed to be mobile. The prototype bed-load transport rate calculated from Meyer-
Peter and Müller (1948) formula is qbp = 8(Dgdp)(Hp-Hcp)1.5

= 8(1.65 9 9.81 9 0.025)(0.606 - 0.056)1.5 = 1.32 m2 s-1. The streamwise
length scale is Lxr = 5000/25 = 200. For an undistorted model, the sediment size

scale is dr = L�2=7
zr (Lxr = Lzr) = 200-2/7 = 0.22 and the model sediment size

dm = dp/dr = 0.025/0.22 = 0.114 m or 114 mm, which is impracticable.
Consider an incomplete similitude with particle quasi-similitude criterion

(D*r 6¼ 1), which would be appropriate as finer gravel to be used in the model. It
would still preserve hydraulically rough flow. It means that the particle similitude
criterion is supplemented by the particle quasi-similitude criterion with two degrees
of freedom, such as Lxr or Lzr and dr. Select the arbitrarily vertical length scale as
Lzr = 150 and the particle size scale dr = 20. The transverse length scale can be as
the original one; that is yr = 200. Therefore, the streamwise length scale is

666 11 Dimensional Analysis and Similitude



Lxr = L4=3
zr =d1=3

r ¼ 1504=3=201=3 ¼ 293:6, the shear Reynolds scale

R�r ¼ L1=3
zr d7=6

r ¼ 1501=3 � 207=6 ¼ 175:1, and the model shear Reynolds number
R*m = R*p/R*r = 12375/175.1 = 70.7 [ 70 (hydraulically rough flow).

The discharge scale is Qr = LyrL1:5
zr ¼ 200 � 1501:5 ¼ 3:674 � 105, and the

velocity scale Ur = L0:5
zr ¼ 1500:5 ¼ 12:25. The model sediment size is dm = dp/

dr = 0.025/20 = 1.25 9 10-3 m or 1.25 mm. The relative submerged density
scale is Dr = (Lzr/dr)

2/3 = (150/20)2/3 = 3.83, and the model relative submerged
density Dm = Dp/Dr = 1.65/3.83 = 0.43. Therefore, the relative density of sedi-
ment to be used in the model is sr = 1 + 0.43 = 1.43. Artificial sediment made of
polyoxymethylene that has relative density of approximately 1.43 can be used in
model. The slope scale is S0r = (dr/Lzr)

1/3 = (20/150)1/3 = 0.511, and the model
slope S0m = S0p/S0r = 5 9 10-3/0.511 = 9.785 9 10-3. The bed-load scale is

qbr ¼ L1=3
zr d7=6

r ¼ 1501=3 � 207=6 ¼ 175:1, and the model bed-load transport rate
qbm = qbp/qbr = 1.32/175.1 = 7.539 9 10-3 m2 s-1. The time scale of bed
degradations is tr ¼ L2

zr=d1:5
r ¼ 1502=201:5 ¼ 251:6. It means that the bed degra-

dation in prototype for an hour corresponds to that in model for 60 9 60/251.6 =
14.3 s.
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